The Amstrad
PPC Technical Reference Manual

SOFT 50031

AMSTRAD

Cover Index Contents

Preface

This Technical Reference Manual is intended primarily to assist writers of software for the Amstrad
PPC, although in conjunction with the PPC Service Manual it will be of interestto designers of add-on
hardware.

Itis assumed that the reader has a working knowledge of the Industry Standard architecture comprising
of an 8086 (or 8088) with DMA, PIT, RTC and Interrupt Controller support chips; plus Colour Graphics
Adapter (or Monochrome Graphics Adapter) with Floppy Disk, Serial and Parallel Adapters.

The information contained herein is largely unique to this document, with the exception of parts of the
appendices which expand on the information contained in the PPC User Instructions and the Microsoft
MSDOS Reference Manual.

Whilst the PPC implements a superset of the Industry Standard, this manual makes no attemptto
identify those areas of the PPC specification which exceed the Industry Standard. Users should,
therefore, exercise caution when writing software for a range of manufacturers' PCs and only use the
"Lowest Common Denominator" facilities if simple portability is required.

Please note, that communications regulations do not allow the release of technical information relating
to the circuitry or construction of the PC2000 modem.

© Copyright 1988 Amstrad Consumer Electronics Plc

Neither the whole nor any part of the information contained herein, nor the product described in this
manual may be adapted or reproduced in any form except with the prior approval of Amstrad Consumer
Electronics Plc (Amstrad').

All information of a technical nature and particulars of the product are given by Amstrad in good faith.
However, itis acknowledged that there may be errors or omissions in this manual.

All correspondence should be addressed to:

Amstrad Consumer Electronics Plc
Brentwood House
169 Kings Road
Brentwood
ESSEX CM14 4EF

All maintenance and service on the product must be carried out by Amstrad authorised dealers.
Amstrad cannot accept any liability whatsoever for anyloss or damage caused by service or
maintenance by unauthorised personnel. This manual is intended to assist the reader in the use of the
product, and therefore Amstrad shall not be liable for any damage or loss whatsoever arising from the
use of anyinformation or particulars in, or any error or omission in, this manual or anyincorrect use of
the product.

Written by Bill Weidenauer and edited by Susan Vass, Amstrad plc.

Published by Amstrad.

First Published 1987.

MS-DOS(R) is a registered trademark of Microsoft(R) Corporation
Amstrad is a registered trademark of Amstrad plc.

Unauthorised use of the trademark or the word Amstrad is strictly forbidden.

Cover Index Contents

Intro Index

Section 1

Table of Contents:

Section 1 - Hardware

1.0 Introduction

1.1 Central Processing Unit (CPU)

1.2 Memory Layout

1.3 Main Board I/O Channels

1.4 Expansion Bus |/O Channels

1.5 Direct Memory Access (DMA)
1.5.1 DMA Page Registers
1.5.2 DMA Initialization

1.6 System Interrupts
1.6.1 Interrupt Levels
1.6.2 Interrupt Controller Initialization
1.6.3 NMI Mask Control

1.7 Programmable Interval Timers

1.7.1 Timer Configuration
1.7.2 Counter 1 initialization

1.8 System Status and Control
1.8.1 Port B - System Control

1.8.2 Port A - Status-1 Input/Keyboard Code
1.8.3 Port C - Status-2 Input

1.8.4 Write System Status-1
1.8.5 Write System Status-2

1.8.6 System Reset

1.9 Real Time Clock

1.10 Parallel Printer Port
1.10.1 Printer Data Latch
1.10.2 Printer Control Latch
1.10.3 Printer Status Channel

1.11 The Internal display Adapter
1.11.1 Colour Alpha Display

1.11.2 Colour Graphics Display
1.11.2.1 Low Resolution Graphics

1.11.2.2 Medium Resolution Graphics

1.11.2.3 High Resolution (640 X200) Graphics Mode

1.11.3 Monochrome Display
1.11.4 BIOS Modes

1.11.5 Colour Mode Reqgisters.
1.11.5.1 CGA Mode Control Register

© 0000 N NO OO WN = =

NN DN DN DN DN DNDN DA A A A QA QA QA QQAQ QA Q QA
O P, OON 2200 NOOOODOGOODPDAPAWOWONM-—OODO

1.11.5.2 Colour Select Register
1.11.5.3 CGA Status Register

1.11.5.4 CGA Mode CRTC initialization.
1.11.5.5 Set and Clear Light Pen Latch
1.11.5.6 Operation Control/Status Register
1.11.5.7 CRTC Index Readback
1.11.5.8 CRTC Data Readback

1.11.6 Monochrome Mode Registers.
1.11.6.1 MDA Mode Control Register
1.11.6.2 MDA Status Reqister
1.11.6.3 Monochrome CRTC initialization.

.12 Floppy Disk Controller

1.12.1 FDC Hardware Conditions

.13 RS232C Asynchronous Serial Port

1.13.1 Serial Channnel Interface
1.13.2 Serial Channnel Pin Arrangement

.14 Parallel Printer Interface

.15 Keyboard Interface

1

1.15.1 Serial Clock and Serial Data
1.15.2 Keyboard to Main Board Interface

1.15.3 Main Board to Keyboard Interface
1.15.4 Keycodes

.16 Modem Interface

1.16.1 Modem Connector

.17 Light Pen Connector

1

.18 Expansion Interface Connectors

1

.19 Video Connector

1.20 Power Connectors

1.20.1 The Adapter Power Connector
1.20.2 The Display Power Connector

1.21 PPC Switch Settings

2.0 Firmware

2.1 Power-Up Initialization and Self Test

2.2 Power-Up Self Tests

2.2.1 Test Procedure.
2.2.2 Test Methods.
2.2.3 ROS Checksum Test.

2.2.4 Direct Memory Access Controller test.
2.2.5 Programmable Interval Timer test.

2.2.6 Programmable Peripheral Interface test.
2.2.7 Real Time Clock test.

2.2.8 Asynchronous Communications Element test.
2.2.9 Printer Parallel Port test.

2.2.10 System RAMtest.

26
27
27
29
29
30
30
31
31
32
32
34
34
35
35
36
36
38
38
38
38
39
39
39
40
41
44
45
45
45
46

47
47
52
52
53
53
54
54
54
54
54
54
54

2.2.11 Programmable Interrupt Controller test. 55

2.2.12 Disk test. 55
2.2.13 Keyboard Interface test. 55
2.3 ROM Firmware Interrupts. 55
2.3.1 Interrupt 2: Parity Error (NMI). 55
2.3.2 Interrupt 5: Print Screen. 56
2.3.3 Interrupt 8: System Clock Interrupt 56.
2.3.4 Interrupt 9: Keyboard Interrupt. 57
2.3.4.1 Special Key Actions 61
2.3.5 Interrupt 14: Floppy Disk Controller. 62
2.3.6 Interrupt 16: Video 1/O. 62
2.3.7 Interrupt 17: System Configuration. 71
2.3.8 Interrupt 18: Memory Size. 72
2.3.9 Interrupt 19: Disk I/O. 72
2.3.9.1 Hard Disk Call Parameters and Registers 77
2.3.10 Interrupt 20: Serial /0. 79
2.3.11 Interrupt 22: Keyboard I/O. 83
2.3.12 Interrupt 23: Printer 1/O. 87
2.3.13 Interrupt 24: System Restart. 88
2.3.14 Interrupt 24: Disk Bootstrap. 89
2.3.15 Interrupt 26: System Clock & Real Time Clock. 89
2.3.16 Interrupt 27: Keyboard Break Interrupt. 93
2.3.17 Interrupt 28: External Ticker Interrupt. 93
2.3.18 Interrupt 29: Video Parameter Table. 93
2.3.19 Interrupt 30: Disk Parameter Table. 95
2.3.20 Interrupt 31: Video Matrix Table. 95
2.4 System RAM Variables. 96
2.5 Non \olatile RAM. 103
2.6 ROS Messages. 104
2.6.1 Non-Fatal ROS Messages. 104
2.6.2 Fatal ROS Messages. 105
3.0 Reference Information. 106
3.1 Language Links. 106
3.2 Processor Memory Usage. 106
3.3 Asynchronous Communications Element (8250) Registers. 107
3.4 High Performance Programmable DMA Controller 110
(8237A-4) Registers
3.5 Programmable Interrupt Controller (8259A-2)
Command Words. 12
3.6 Programmable Interval Timer (8253) Registers. 115
3.7 Real Time Clock (HD146818) Reqisters 116
3.7.1 Time, Calendar and Alarm Locations 117
3.7.2 RTC Regqister Locations 119

3.8 Flo Disk Controller (uPD765A). 121

Appendix 1:
MS-DOS System Configuration
Appendix 2:

Country Dependent Information for MS-DOS 3

Appendix 3:
RS232C Connections

Appendix4:

Printer Lead (PL-2) Wiring Specification

Appendix 5:

PPC Power Usage
Appendix6:

ROM Character Set
Appendix 7:

Keyboard Keycodes
Appendix 8:

Kevyboard Layouts
Appendix 9:

The LINKER Program
Appendix 10:
COMMAND.COM

Appendix 11:

The DEBUG Utility Program (DEBUG)
Appendix 12:

The EXE2BIN Utility Program

Appendix 13:
The EXIT Command

Appendix 14:
The RECOVER Utility Program

Appendix 15:
The SHARE Utility Program

Appendix 16:
The FDISK Utility Program

Appendix17:
The BACKUP Command

Appendix 18:
The RESTORE Command

137

144

145

153

155

156

158

159

164

179

180

202

204

205

206

207

218

221

Section 1

Contents Index Section 2

Amstrad PPC Technical Manual

1.0 Introduction

This manual provides a comprehensive description of the Amstrad PPC hardware and firmware. General
information about the PPC and the delivered operating system software is contained in the Amstrad PPC
User Instructions. This manual is intended to satisfy the needs of advanced developers who must have
access to the various resources available within the PPC640 and PPC512.

Note that all address constants in this document are hexadecimal. In addition hexadecimal quantities are
noted with small letter 'h' terminator to denote that they are in hexadecimal form. Address quantities are
not usually annotated this way since they are clearly hexadecimal. Values are presented in hexadecimal
form when they are logically bit oriented quantities rather than of purely numerical significance.

1.1 Central Processing Unit (CPU)

The CPU is a low power 8086-2 microprocessor with 1 Megabyte memory addressing capability (See
Figure 1.1), running at a clock frequency of 8MHz The CPU is connected to an on-board 16-bit system
memory bus requiring four 125nS timing cycles (T-States) per access resulting in a 500nS memory cycle
for 16-bit memory. The CPU is also connected on an on-board 8 bit I/O and memory peripheral bus with a
4 MHz clock, which in turn connects to an external expansion bus. Operations on the 8-bit bus
automaticallyincur 125nS wait states as follows:

Operation Wait States [Bus Cycle
8-bit (Memory) 4 1.0 uS

16 to 8-bit convert (Memory)[12 20uS
8-bit (1/0) 6 1.25uS
16 to 8-bit convert (I/O) 16 25uS

The CPU is configured to run in maximum mode and the instruction set may be optionally extended by the
addition of an 8087-2 Numeric Data Coprocessor. The 8087 BUSY outputis connected directly to the 8086
NOT TEST input.

1.2 Memory Layout

The main board memory consists of 640K bytes of system RAM with parity checking and 16K bytes of
system ROM without parity checking.

The 640K byte user RAM starts at CPU memory address 00000 and extends to 9FFFF. Note that the
PPC512 has 512K bytes installed memory ending at address 7FFFFh and the address space from
80000h to 9FFFFh may be extended in external 32K byte blocks (up to the 640K maximum).

The 128K byte address space from AO00O to BFFFF is reserved for video regeneration buffers, and is not
used by CPU programs. The PPC Internal Display Adapter (IDA) uses the 64K byte address range from
B0O00O to BFFFF. The segmentation of this memoryrange is dependent on the display mode (See section
1.11). External display adapters also use this memory address range for their display buffers.

The 192K byte address space from C0000 to EFFFF is reserved for external expansion ROM address
space. Hard Disk controllers use the range from C8000 to COFFF. Additional hard disk controllers may
also use the area from CA000 to CD000. The PPC testboard uses the ROM area from E0000 to E7FFF.

The 16K byte system ROM s at FC000 to FFFFF and contains the Resident Operating System (ROS)

firmware. The 48K byte address range from FO00O to FBFFF is reserved for ROM space expansion. The
16K byte ROS area address bits are partially decoded such that the ROS ROM repeats four times in the
FO000 to FFFFF address range.

MEMORY LAYOUT

00000 ON-BOARD 640K Byte
9FFFF DYNAMIC RAM System Memory
A0000 128K BYTES
BFFFF VIDEO DISPLAY BUFFERS
1MBYTE C0000
ADDR 192K BYTES EXPANSION ROMS
RANGE EFFFF
FO000
FBEEE 48K BYTES ROS ROMBLOCK REPEATS 64K Byte
System ROM
FCO000 16K BYTES (ROS) area
RESIDENT OPERATING SYSTEM ROM
FFFFF

1.3 Main Board I/0 Channels

The interfaces on the main board occupy the 8086 I/0O addresses as follows:

ADDRESS(hex)|OUTPUT USE INPUT USE

000 - O0F 8237 DMA Controller 8237 DMA Controller
010-01F Do NotUse Do NotUse

020 - 021 8259 Interrupt control 8259 Interrupt control

022 - 03F Do NotUse Do Not Use

040 -042 8253 PIT Load Count (0-2)[8253 PIT Read Count (0-2)

043
044 - 05F
060
061
062
063
064
065
066
067 - 06F
070
071
072 -077
078

8253 PIT Load Mode
Do Not Use

No Effect

Port B - System Control
No Effect

No Effect

Write System Status-1
Write System Status-2
System Reset

Do Not Use

146818 RTC Address
146818 RTC Data

Do Not Use

Reserved

Undefined
Do NotUse

Port A- Keyboard Code or System Status 1

Port B - (Readback)
Port C - System Status-2
Do Not Use

Do Not Use

Do Not Use

Do Not Use

Do Not Use

Do Not Use
146818 RTC Data
Do Not Use
Reserved

ADDRESS(hex)
079

07A
07B - 07F
080

081

082

083
084 - 09F
0A0
0A1 - OBF
0CO - OFF

2F8 - 2FF

378
379
37A
37B -37F

3B0 - 3B7
3B8 - 3BF
3D0 - 3D7

3D8 - 3DF

3FO0 - 3F1
3F2
3F3
3F4
3F5
3F6 - 3F7

3F8 - 3FF

OUTPUT USE

Do Not Use

Reserved

Do Not Use

Do Not Use

DMA Page Register Ch 2
DMA Page Register Ch 3

DMA Page Register Ch 0,1

Do NotUse

NMI Mask Control
Do NotUse
Reserved

Modem UART Tx
Data/Control
Printer Data Latch
Do Not Use

Printer Control Latch
Do Not Use

Mono Mode CRTC
Registers

Mono Mode Control
Registers

Colour Mode CRTC
Registers

Colour Mode Control
Registers

Do Not Use

Drive Selection

Do Not Use

Do Not Use

765 FDC Data

Do Not Use

COM1 8250 UART Tx
Data/Control

INPUT USE

Do NotUse
Reserved

Do NotUse

Do NotUse

Do NotUse

Do NotUse

Do Not Use

Do NotUse

Do NotUse

Do Not Use
Reserved

Modem UART Rx
Data/Control
Printer Data Latch
Printer Status
Printer Control Latch
Do Not Use

Mono Mode CRTC
Registers

Mono Mode CRTC
Registers

Colour Mode CRTC
Registers

Colour Mode Control
Registers

Do Not Use

Do Not Use

Do Not Use

765 FDC Status
765 FDC Data

Do Not Use

COM1 8250 UART Rx
Data/Control

1.4 Expansion Bus I/O Channels

The 8086 CPU I/O addresses on the expansion bus are as follows:

ADDRESS(hex)|USE

200 - 20F External Game Control Interface
210 -217 External Bus Expansion Unit
220 - 24F Reserved

278 - 27F External Printer Port

2F0 - 2FF Reserved

300 - 31F External Prototyping Card

320 - 32F

External Hard Disk Controller

ADDRESS(hex)| USE

380 - 38F External SDLC Serial RS232C Port
3A0 - 3AF Reserved
3B0 - 3BB External Monochrome VDU Controllen

3BC - 3BF Printer Port
3C0-3CF External Graphics Controller
3DO0 - 3DF External Colour/Graphics Controller

I/O address above 03FFh, if accessed, wrap around and are mapped onto the range 0000h-03FFh.

External cluster controllers at 0790h-0793h, 0B90h-0B93h, 1390h-1393h and 2390h-2393h wrap around
to 1/0 addresses 0390h-0393h respectively.

1.5 Direct Memory Access (DMA)

The Amstrad PPC supports four DMA channels on the system board, using an 8237-4 DMA controller and
programmable page registers to extend its addressing range from 64k bytes to the full 1M byte processor
address range. Each channel is able to transfer data in blocks of up to a maximum of 64K bytes within a
page. The DMA channels are for 8-bit data transfers between (8-bit) I/O devices and 8-bit or 16-bit memory.

In peripheral (slave) mode, CPU I/O address lines AO - A3 are connected conventionally so that 16
command codes appear in the order described in the 8237 data sheets (See section 3.5).

The DMA controller CLK is driven at 4MHz (+/- 0.1%). In master mode during DMA transfers on channels
1,2 and 3, one wait state is added resulting in a five-clock DMA bus cycle of 1.25uS. Channel 0 transfers
have a four-clock bus cycle of 1uS.

The DMA channel request signals are as follows:

DMA Channel|USE

0 8253 Timer/Counter OUT1 output - for memoryrefresh.

1 Spare for use by expansion bus. Used by external SDLC Serial Port.

2 765 Floppy Disk Controller DRQ output. Available on the expansion bus.
3 Spare for use by expansion bus. Used by external Hard Disk Controller.

1.5.1 DMA Page Registers

DMA channels 1,2 and 3 can address the entire 1M byte addressing range of the CPU through the use of
their associated DMA page registers. There are three DMAregisters, one each for channels 1 through 3.
Each page register defines for its channel which one of sixteen 64K byte pages in the 1M byte address
range DMA transfers are to occur. The page registers are static so that modulo 64K byte addressing
occurs at page boundaries.

The DMA page register bitassignments are as follows:

Bit [Output Use

7-4|Not Connected
3 |Address bitA19
2 |Address bitA18
1 |[Address bit A17

Bit
0

Output Use
Address bit A16

1.5.2 DMA Initialisation

Following a reset, system (ROS) initialisation firmware (in the ROS) sets up the 8237 DMA controller for
channel 0 (dynamic refresh) operation as follows:

Function Initialised State
Word Count[64K Transfers

Read
Mode Autoinitialise
Register |Increment
Single Mode

Disable Memoryto Memoryj
Enable Controller
Normal Timing

ggg‘igt‘;”d Fixed Priority

Late Write

DREQ Active High

DACK Active Low
Mas.k Clear Channel 0 Mask Bit
Register

After power-up or system reset the DMA page registers are undefined and are initialised to zero by the
ROS firmware and all 8237 internal locations for channels 1-3 are initialised to a state comparable to the
channel zero initialisation above.

Following industry compatibility, memory to memory DMAis not supported on the PPC. Itis prohibited due
to timing considerations.

1.6 System Interrupts

Nine levels of hardware interrupt are provided for in the system bythe CPU Non Maskable Interrupt (NMI)
and by an 8259A-2 Interrupt Controller. All levels including NMI, are maskable under software control.

CPU /O address line A0 is connected conventionally so thatthe command codes appear in the order
described in the 8259 data sheets. The SP/EN pin is tied high signifying that the device is to be hardware
un-buffered and designated as a master, not a slave.

1.6.1 Interrupt Levels

The interrupt levels are assigned as follows:

Level|Assigned Function

NMI (Memory Parity Error and 8087 NDP INT output.
0 8253 Timer/Counter OutO output.
1 Keyboard Scan Code Receiver.

Level|Assigned Function

2 146818 Real Time Clock IRQ output.

Available on the expansion bus.

May be used by Enhanced Graphics Adapter

3 Used by Modem Serial Port (COM2)

and external SDLC Serial Port.

Available on the expansion bus.

4 Primary Serial port (COM1).

Available on the expansion bus.

Used by external SDLC Serial Port.

5 Hard Disk Controller. Available on the expansion bus.
6 765 Floppy Disk Controller INT output.

Available on the expansion bus.

7 Parallel Printer Port.

Available on the expansion bus.

Used by external Printer Port (secondary) and Printer Port (ternary) on external Monochrome VDU
Controller.

1.6.2 Interrupt Controller Initialisation

Following a reset, the initialisation firmware in the ROS sets the 8259 Interrupt Controller to operate as
follows:

8086 system, Single (not cascaded),
Normal fully nested (not special),
Edge-triggered,

Buffered mode - slave,

Normal EOI (not auto),

Fixed priority - level O highest, level 7 lowest.

The system (ROS) firmware initialises the 8259 address bits such that IRQO through IRQ7 appear in the
CPU interrupt vector space atinterrupts 8 through 15 respectrively. NMl is configured to CPU interrupt
vector 2.

1.6.3 NMI Mask Control

The NMI Mask Control is a write onlyregister at /O address 0AOh and allows the CPU non-maskable
interrupt (NMI) input to be enabled or disabled by software. The Bit assignments are as follows:

Bit |OutputUse

7 Enable NMI.
6 - O|[Not Connected

Following a reset NMl is disabled.

NMI can be connected to the 8087 NDP, the on-board memory parity check circuit, and the expansion bus
I/OCHCK (I/O Channel Check).

1.7 Programmable Interval Timers

Three programmable timer/counters are provided at /O Addresses 040 - 043 by an 8253 Programmable

Interval Timer (PIT) device. They are defined as follows:

Counter|Use

0 General Purpose Timer.

1 Used by DMA channel O (for dynamic ram refresh).
2 Tone Generation for Speaker.

1.7.1 Timer Configuration

The 8253 timers are configured as follows:

Function |Configuration

CLK
0,1,2
GATE 0,1 |Always 'ON'.
GATE 2 |Controlled via Port B (System Control Channel) Speaker Modulate output.
OUTO (Interrupts on 8259 PIC IRO input.
OUT1 Requests on 8237 DMA DREQO input.

Logical 'AND' with Port B (System Control Channel) Speaker Drive output. Also goes to Port C
OouT 2)
(System Status-2 Channel) as an input.

1.193 MHz +/- 0.1% (54.925493 ms per count)

1.7.2 Counter 1 initialisation

Following a reset, the system initialisation firmware in the ROS programs the 8253 PIT for counter 1
(dynamic ram refresh) operation as a rate generator producing a signal with a period of 15.13 pS. There
are no restrictions requiring the initialisation and programming of counters 0 and 2.

1.8 System Status and Control

Two system status input channels and four output channels are provided on-board. Ports A,Band C
emulate a pre-programmed 8255 PPl device. They are located in the I/O address space in the range 060h
- 06Fh. Port B is programmed for control output, Port Ais programmed either for Status-1 input or for
receiving data from the keyboard, and Port C is programmed for Status-2 input.

Ports A, B and C emulate an 8255 PPI that has been set up as follows:

Group AMode 0, Group B Mode 0,
Port A=input, PortB = output,
Port C(U) = input. Port C(L) = input.

Unlike an 8255, power-up and reset do not affect this configuration.
1.8.1 Port B - System Control

The System Control channel is located at /O Address 061h. Its bitassignmentis as follows:

Bit (PBn)|Output Use
7 Enable Status-1/Disable Keyboard Code on Port A.
6 Enable incoming Keyboard Clock.

Bit (PBn)[Output Use

5 Prevent external parity errors from causing NMI.
(Also Disable any pending NMI).

Disable parity checking of on-board system Ram.
Undefined (Not Connected).

Enable Port C LSB /Disable MSB. (See 1.8.3)
Speaker Drive.

8253 GATE 2 (Speaker Modulate).

O -~ N W H

When bit 7 is set high, Status-1 data is enabled on Port A, the keyboard data path and keyboard interrupts
are disabled. When bit 7 is setlow, keyboard input data is enabled on port A, the keyboard data path and
keyboard interrupts are enabled. Applications software which sets PB7 must restore it to the cleared state
else the keyboard may be rendered inoperable.

The keyboard interface operates as follows: Each incoming keycode is latched on-board, causing a
keyboard interrupt (on level 1). While the interrupt remains pending, the incoming keyboard data signal is
forced low as an acknowledgement to the keyboard that the keycode has been received. As soon as the
interrupt has been cleared, the keyboard may use the Data signal to transmit the next keycode.

PB5 when set prevents an external parity error (ie. an I/OCHCK condition on the expansion bus) from
causing NMI, even if NMl is unmasked. When NMI has been triggered and latched it may be cleared by
pulsing PB5 (if the external device has removed its /OCHCK signal).

PB2 when set enables the reading of the four LS bits of the RAM fitted indicator on Port C. When PB2 is
clear the top (MS) bit of the RAM fitted indicator is read (see 1.8.3).

PB1 maybe toggled to drive the speaker with a corresponding pulse train. The speaker mayalso be
driven by a wave form from the 8253 PIT OUT2 output (simultaneously with PB1).

PB0 may be toggled to drive the 8253 gate input, hence modulate counter 2 operations and therefore
driving the speaker which may all be performed simultaneously to create various audio effects.

1.8.2 Port A - Status-1 Input/Keyboard Code

Port Ais a read onlylocation located at I/O Address 060h. The bitassignments for Port Aare as follows:

Bit (PAn)(Status-1 Keyboard Input
7 Always 0. KBD7
6 Second Floppy disk drive installed.[KBD6
5 DDM1 - Default Display Mode bit 1.\KBD5
4 DDMO - Default Display Mode bit 0.\KBD4
3 Always 1. KBD3
2 Always 1. KBD2
1 8087 NDP installed. KBD1
0 Always 1. KBDO

When Port B, Bit 7 (PB7) is set to high, reading Port Aloads Status-1. When PB7 is setlow, reading Port A
loads keyboard data.

The Default Display Mode bits (DDM1, DDMO) are set up by the ROS during system initialisation as
follows:

DDM1|DDMO|Default Display Mode Selected

0 0 External Extended Graphics Adapter Installed
0 1 Colour Graphics Adapter Emulation (or external CGA) with alpha, 40 X25 chars, bright white

on black.

1 0 Colour Graphics Adapter Emulation (or external CGA) with alpha, 80 X25 chars, bright white
on black.

1 1 Monochrome Display Adapter Emulation (or external MDA) with alpha, 80 X 25 chars.

When the Internal Display Adapter (IDA) is enabled then switches 1 - 3 determine the IDA configuration
and switches 4 & 5 determine the default display mode. See section 1.22 for these details.

Following a reset, the ROS then sets the initial video state is based on the DDM value. Section 2.3.7 gives
additional details of the ROS Video Mode settings.

1.8.3 Port C - Status-2 Input

Port C is a read onlylocation located at /O Address 062h. Its bit assignments are as follows:

Bit (PCn)|Input Use
7 On-board system RAM parity error.
6 External parity error (IOCHCK from expansion bus).
5 8253 PIT OUT2 output.
4 Undefined.
LSB or MSB (depends on PB2)
3 RAM3 Undefined
2 RAM2 Undefined
1 RAM1 Undefined
0 RAMO RAV4

PC7 is forced to the zero state when on-board system RAM parity checking is disabled by PB4.

When the I/OCHCK condition (external parity error) from the expansion bus is disabled from causing NMI
(by PB5 set high), PC6 reflects the state of the /IOCHCK input else it reflects the latched state of IOCHCK.

The value of RAM4-RAMO denotes the amount of system RAMfitted to the system as follows:

RAV4 (RAM3 |RAM2 |RAM1|RAMO

1 1 1 0 512K bytes.
0 1 1 1 1 544K bytes.
1 0 0 0 0 576K bytes.
1 0 0 0 1 608K bytes.
1 0 0 1 0 640K bytes.

See section 1.8.1 for the Control Port B setting for reading RAM fitted segment bits.

1.8.4 Write System Status-1

The Write System Status-1 register (WSS1) is a write only register at I/O Address 064h and is initialised by
the Resident Operating System (ROS) firmware based on values obtained from configuration switches 4
and 5. Itis used in conjunction with the 8255 PPI Port Aemulation. The bit assignments are as follows:

@

Output Use

No effect.

PA6 - Second Floppy disk drive installed.
PA5 - DDM1.

PA4 - DDMO.

No effect.

No effect.

PA1 - 8087 NDP installed.

No effect.

O =_~DNW OO N

1.8.5 Write System Status-2

The Write System Status-2 register is a write onlyregister at /O Address 065h and is initialised by the
Resident Operating System (ROS) firmware based on the memory size check perfomed during Power On
Self Test. Itis used in conjunction with the 8255 PPI Port C emulation. The bitassignments are as follows:

@

it{Output Use

PC2 (MSB) - Undefined.
MSB) - Undefined.
PCO (MSB) - Undefined.
PC3 (MSB) - RAM4.
- RAM3.

RAM2.
RAM1.
RAMO.

O =~ N WS~ O O

)
)
LSB)
)

1.8.6 System Reset

Any write access to /0O Address 066h regardless of the value written will cause the hardware to generate
an immediate 512uS system reset and pulse the resetline on the expansion bus. The contents of the on-
board system RAMis preserved following a system reset.

1.9 Real Time Clock

AHD146818 Real Time Clock plus RAMdevice is installed and backed up by the battery pack. The clock
device provides a time of day clock with alarm, a one hundred year calendar, a programmable periodic
interrupt, and 50 bytes of static RAM. The static RAMis called the Non-\olatile RAM (NVR) and is used to
store time of last usage. The ROS firmware maintains a checksum of the NVR and will reset the RTC to
default configuration during startup whenever the checksum value is incorrect.

When system power is off and the 146818 is on battery backup power, the functions which remain active
are the clock and the retention of RAM data.

The input crystal oscillator runs at 32.768 KHz and the 146818 interrupt requestis connected to the 8259
system interrupt controller on level 2 (which is also available on the expansion bus). The 146818 power-
sense input PS is connected to a battery condition sensor. When the backup battery voltage is sufficiently
low, the VRT bitin register D becomes setindicating that the time, the calendar and the NVR data are no
longer valid. When this condition is noted during startup, the firmware outputs the message "Please fit
new batteries" and resets the NVR to default values (See section 2.5).

All the features described in the 146818 data sheet are available with the exceptions that the CKOUT
(clock output) and SQW (square wave output) pins are not connected on the main board.

Writing or reading the NVR involves a two step sequence for each byte thatis accessed. The RTC Address
channel (/O Address 070) is first loaded with the NVR location to be accessed. Then the RTC Data
channel (/O Address 071) is either written or read to complete the 1/O operation. This facility should be
used with caution in order to avoid disturbing the system configuration data.

1.10 Parallel Printer Port

The printer port provides an interface for driving 8-bit and 7-bit Centronics compatible printers. The timing
of the signals to the printer is under direct software control. There is a read/write control latch for sending
control signals to the printer, an unlatched read-only printer status channel, and a read/write data latch for
sending printer data.

In addition the printer control latch can be read to obtain system type and switch information.

1.10.1 Printer Data Latch

The printer data latch is a read/write record at I/O address 378 and its layoutis as follows:

Bit (Dn)|Output/Input Use|Cable Polarity
7 Data7 Hi
6 Data 6 Hi
5 Data 5 Hi
4 Data 4 Hi
3 Data 3 Hi
2 Data 2 Hi
1 Data 1 Hi
0 Data 0 Hi

The contents of the data latch are undefined following a power-up or system reset.

1.10.2 Printer Control Latch

The printer control latch is a read/write record at I/O address 37A and its layout is as follows:

Output/Input Use Reset State|Cable Polarity
PPC SW 4 (inverted) [RO]
PPC SW 5 (inverted) [RO]
FDC Change Line [RO]

Enable Inton ACK False
Select Printer False Low
Not Reset Printer True Low
Select Auto Feed False Low
Data Strobe False Low

O =N ® s oo N w
@

Bit 7 is a read-only bit which reflects the state of switch 4 (at the side of the machine) and returns a logic
"0" when the switch is in the "on" position and a logic "1" for the "off" position.

Bit 6 is a read-only bit which reflects the state of switch 5 and returns a logic "0" when the switch is in the
"on" position and a logic "1" for the "off" position.

Bit 5 is diskette change line status and is true (logic "1") when the selected floppy disk's door is open or no
diskette is installed. This signal is latched on the drive and remains true until the disk drive is selected
and itreceives a step pulse from the FDC. This bitis onlyvalid when a floppy drive is active and selected.

When Interrupt on ACK is enabled an incoming Printer Acknowledge condition will cause a system
interrupt on level 7 (which is also available on the expansion bus).

If the printer control lines normally driven via latched bits DO - D3 are driven externally, the data read on
input to this channel will be the logical OR of the latched bits and the externally driven bits, e.g. If a data bit
is false and the corresponding cable bit is driven true by the external driver, the bit input will be true.

Following power-up or system reset, the control latch contents assume reset conditions as shown.

Note that this is a general purpose printer interface and that not all printers require all the control signals,
hence the provision for non-standard printers to be able to drive some of the control signals as inputs to
the main board. The timing requirements on Centronics compatible printers generally specify that data
must be present at 1uS before the strobe is made active, and mustremain valid for atleast 1uS after
strobe goes inactive. The strobe duration must be between 1uS and 500 uS. Printer Busy status can be
inspected as soon as the strobe is inactive in order to determine when more data can be sent.

1.10.3 Printer Status Channel

The Printer Status Channel is a read only register at I/O Address 0379h. Its layout is as follows:

Bit|Input Use Cable Polarity
7 |-Printer Busy High

6 |-Printer Acknowledge|Low

5 [Paper Out High

4 |Printer Selected High

3 [-Printer Error Low

2 [-LKS fitted

1 [-LK2 fitted

0 [-LK1 fitted

LK1 - LK3 are general purpose factory installed option links on the main board which are used by the
system ROM Operating System (ROS) firmware to distinguish national variant machine configurations.
The ROS will produce its sign-on message and error messages in one of seven languages. The first
seven states (0 - 6) are used for language variants and the eighth (7) state is used extended diagnostic
mode testing (See section section 2.2). Since the link state is inverted, the value obtained from the lower
three bits of the printer port must be exclusive or'ed (XOR) with 1's to obtain the language number.

LK1|LK2|LK3|ROS Language
OFF|OFF|OFF|English.
OFF|OFF|ON |German.
OFF|ON |OFF|French.
OFF[ON [ON ([Spanish.

ON |OFF|OFF|Danish.

ON |OFF|ON |Swedish.

LK1[LK2[LK3|ROS Language
ON [ON |OFFltalian.
ON [ON [ON [Diagnostic Mode. (English)

Note that this is a general purpose printer interface and that not all printers implement all the status lines,
nor do they all attach the same meanings to the error conditions.

Printer Busy normally indicates that a printer cannot receive data, for example during data entry, printing,
when offline, or during a printer error condition.

Printer Acknowledge, ifimplemented is generally asserted by a printer to indicate that data has been
received and the printer is ready to receive the next data. Note that Printer Acknowledge (ACK) can also be
setto cause interrupts (See 1.10.3).

Section 1.14 contains the printer connector pin assignments.

1.11 The PPC Internal Display Adapter.

The Internal Display Adapter (IDA) is implemented using a gate array and a 6845 CRTC. It provides video
for either the internal Liquid Crystal Display (LCD) or video output to a standard (PC1640) video connector
atthe rear of the PPC. The IDAis completely software compatible with the industry standard MDA & CGA
environments and when outputting to an external display (in VDU mode) the video signals and scan
frequencies are compatible with industry standard monitors.

The IDA provides either a Colour Graphics Adapter (CGA) emulation mode or a Monochrome Display
Adapter (MDA) emulation mode. The video screen memory (or regeneration buffer) starting address is
configured to B8000 for CGA emulation mode and to BOO0O for MDA emulation mode.

The CGAdisplay mode supports text or graphics in 16 colours on a Colour Display (CD) with a maximum
resolution of 640 dots by 200 lines. Since colours cannot be displayed on the internal LCD a pixel will
either be ON or OFF depending on whether itis the foreground colour or the background colour.

The MDA display mode supports black and white textin normal, intense, inverse, blink, or underline with a
character cell resolution of 8 x 14. There are no graphics modes in MDA emulation mode. When using the
internal LCD in MDA emulation mode the software environmentis the same as that of a standard MDA
device, but the character cell resolution is 8 x 8, intensified or highlighted characters are displayed with the
vertical bars of each character one dot thinner than they would otherwise be and underlining is not
supported.

In CGAemulation mode, the colour palette consists of sixteen colours as follows:

Intensity|Red|Green|Blue|Colour
0 0 |0 0 Black

0 0 |0 1 Blue

0 0 |1 0 Green

0 0o |1 1 Cyan

0 1 [0 0 Red

0 1 0 1 Magenta
0 1 1 0 Brown

0 1 1 1 White

1 0O |0 0 Grey

Intensity] Red| Green|Blue|Colour

1 0 |0 1 Light Blue

1 0 |1 0 Light Green

1 0 |1 1 Light Cyan

1 1 |0 0 Light Red

1 1 0 1 Light Magenta
1 1 1 0 [Yellow

1 1 1 1 Intense White

1.11.1 Colour Alpha Display

In colour mode, two Alpha modes are available: either 40 characters by 25 rows or 80 characters by 25
rows. The display RAM requirementis 2K bytes and 4K bytes of display RAM for 40 and 80 column modes
respectively. The display regeneration buffer is from B8000h to BBFFFh for these modes and the ROS bios
supports up to 8 or 4 separate display pages for 40 and 80 column modes respectively. This same display
mapping is also repeated at BCO0Oh.

The character setis formed by a ROM character generator and each of the 256 characters is made up ofa
8 by 8 pixel matrix.

The starting address in the display RAMis programmed via the 6845 CRT (Cathode Ray Tube) Controller
(CRTC). The starting address is on an even address boundary and it addresses the first (leftmost)
character position in the top row of the display. The CRTC starting address register is a 16-bit register and
it specifies the offsetin two byte pairs from the display mode origin. This means for each change of one in
the CRTC starting address register, the next even address is selected in the display RAM as the current
regeneration buffer origin.

In order to display a single character, two bytes of display RAM are required, and for each pair of display
RAM bytes, the even address is for the character code and the odd address is for the attribute byte.
Subsequent characters are displayed along the row from left to right. When the end of a row is reached the
next pair in the display RAM appears in the first character position of the next row down. Appendix 6 gives
the 256 character codes and their respective default character representations.

The attribute byte allows a choice of either 16 foreground and 8 background colours per character, plus
blinking, or a choice of 16 colours for both foreground and background without blinking.

The attribute byte for each is as follows:

Bit (ATn)|Definition

Intensity or Enable Blink (Background)

Red (Background)

Green (Background)

Blue (Background)

Intensity (Foreground) or Character Map A/B Select
Red (Foreground)

Green (Foreground)

Blue (Foreground)

O =~ N WS OO N

Bit 7, the Intensity or Enable Blink Bit, changes function based the Mode Control Register. The Mode
Control Register (/0 address 03D8h) bit 5 selects between Intensity or Blink.

When driving the internal LCD displayin colour modes, the foreground and background colours are given
the weightings such that Intensity =1, Blue = 2, Red =4, Green = 8 and compared. If the background has a
higher value than the foreground the character is inverted. In addition, if bit 7 of the CGA mode control
register (section 1.11.5) is set characters with non-black backgrounds are also inverted. These two
inversion processes are cumulative so that characters may be doubly inverted and appear non-inverted.
As with MDA characters on the LCD, text with an intensified foreground will have verticals one dot thinner.

1.11.2 Colour Graphics Display

CGA emulation mode supports graphics with 200 scan lines with a choice of two horizontal resolutions,
either 320 pixels per scan line with four colours per pixel or 640 pixels per scan line with a two colours per
pixel.

An additional low resolution mode is also supported with 100 scan lines and a horizontal resolution of 160
pixels per scan line with sixteen colours per pixel.

The regeneration buffer for colour graphics modes starts at BB0O00 and requires 16K bytes and is
repeated at BC0O00. The ROS supports either 8 or 4 display buffer pages for the 320 or 640 resolution
modes respectively.

1.11.2.1 Low Resolution Graphics

Low resolution graphics mode is actually text mode and not a true bit mapped graphics mode in the
sense that high and medium resolution graphics are. The CRTC is programmed such that there are 100
lines on the screen and the mode register is set up the same as text mode. There is no support for this
mode in the ROS and the CRTC must be initialized as described in section 1.11.5.4.

In Low Resolution Graphics Mode (160x100), each logical pixel is mapped to a block of 4 x2 physical
pixels on the LCD. Each logical pixel also has 4 bits to determine which of the 16 colours it should be
displayed in. These 4 bits are mapped directly to both rows of 4 physical pixels representing the logical
pixels in question this providing 16 different pixel patterns to represent the 16 colours on the LCD.

The mapping of displayram in this graphics mode is actually an extension of the text mode scheme. The
even bytes are all filled with a special graphics character, 0DEh, which contains a vertical bar. The odd
bytes are then programmed in two four bit pairs with the leftmost pixel being the four high order bits. Each
displayline therefore requires 160 bytes and for the full 100 line display 16000 bytes are required.

The mapping of the odd byte(s) of graphics RAMin low resolution mode is as follows:

RAM Bit:|7(6]5/4|3[2]1]|0
Pixel: 0 1
Pixel Bit:[3(2(1{0[3]2]1]0

1.11.2.2 Medium Resolution Graphics

In Medium Resolution Graphics Mode (320x200), the display memory for one scan line (320 pixels)
consists of 80 bytes. Each pixel requires two bits so that four pixels are specified by each byte. The
leftmost pixel is contained in the two MS bits of the byte and the two bit pairs for the remaining pixels follow
on logicallyin left to right fashion. The two bit field for each pixel specifies one of four colours in one of
three palettes as follows:

Colour|Palette 0 Palette 1 Palette 2

0 Background|Background|Background
1 Green Cyan Cyan

2 Red Magenta Red

3 Yellow White White

In Medium Resolution LCD mode, each logical pixel is mapped to a pair of physical pixels on the LCD
rather than a single pixel of a particular colour as described above. Changing palettes will not, therefore,
change the display.

The display regeneration buffer for medium resolution graphics modes is mapped a split buffer
configuration with the even scan lines (0, 2, 4, ... 198) contained in the graphics memory space from
B8000 to BOF3F and the odd scan lines (1, 3,5, ... 199) in the memory address range from BAOOO to
BBF3F. The memorymap is as follows:

320 Pixels (2 Bits Per)

B8000 -|Scan Line 0 (80 Bytes)|- B804F
B8050 - [Scan Line 2 - B809F
B80AO - [Scan Line 4 - B8OEF
BOEFO -[Scan Line 198 - BO9F3F
BAOQO - [Scan Line 1 - BAO4F
BA050 -|Scan Line 3 - BAO9F
BAOAQ - (Scan Line 5 - BAOEF
BBEFO -|Scan Line 198 - BBF3F

The layout of a byte of graphics RAM in medium resolution mode is as follows:

RAM Bit: |7|6(5]413|2{1]0
Pixel: 0111213
Pixel Bit:|1|0|1|0(1(0{1{0

1.11.2.3 High Resolution (640 x 200) Graphics Mode

In High Resolution Graphics Mode, the display memory for for one scan line consists of 80 bytes. Each
pixel requires one bits so that eight pixels are specified by each byte. The leftmost pixel is contained in the
MS bit of the byte and the remaining pixels follow from left to right. In high resolution mode the two colours
are either black (pixel bit off) or pixel bit on with video in one of the 16 colours as selected by a foreground
palette register.

One byte of graphics RAM in medium resolution graphics is as follows:

RAM Bit:|7|6(5]4|3(2(1]0

|Pixel: |0]1]2|3]4|5]6]7|

The address mapping of the scan lines in display RAM for high resolution graphics is the split buffer
configuration depicted for medium resolution mode. - All (100) even scan lines from B8000 to B9F3F
followed by all (100) odd scan lines from BAOOO to BBF3F.

1.11.3 Monochrome Display

In monochrome mode there is only one Alpha mode available, 80 characters by 25 rows. When driving an
external monochrome display, the character outputis 8 x 14 pixel characters, whereas on the LCD a 8 x8
character matrixis used.

The display RAMrequirementis 4K bytes of display regeneration buffer area from BO000h to BOFFFh and
is repeated in 1000h boundaries up to and including B7000h.

The 6845 CRTC Starting Address is programmed in the same way as in colour modes and the two byte
character and attribute pairs are arranged in the display RAMjust as in the colour modes. The attribute
byte, however assumes different functions from the colour attributes since there are no IRGB signals sent
to the monitor, but Video and Intensity are produced. The monochrome attribute byte is as follows:

Function Bits 7 6 5 4 3 2 1 0
Blanked Bkg /B 0 0 0 I 0 0 0
Underlined Bkg I/B 0 0 0 I 0 0 1
Normal Bkg I/B 0 0 0 I 1 1 1
Inverse Bkg /B 1 1 1 I 0 0 0

Bit 7, the Background Intensity/ Blink Enable (B/l) Bit, changes function based on the Mode control register.
The Mode control Register (I/O address 03B8h) Bit 5 selects between Intensity or Blink Functions.

Bit 3 is the foreground intensity bit and controls the intensitywhen notin inverse video or blanked. The
internal LCD displays higher intensity characters using a hardware algorithm to display the vertical lines
one dot thinner than in normal intensity. Also, underlining is not supported on the LCD.

1.11.4 BIOS Modes

The ROS sets up the hardware to support eight different modes for the various displays available on the
PPC range. The following table gives the modes supported by the ROS.

ROS Mode 0 1 2 3 4 5 6 7

Type Text |[Text |Text |Text |Graph|Graph |Graph [Text
Columns 40 40 80 80 320 |320 (640 |80
Rows 25 25 25 25 200 |200 (200 |25
Colour(s) 16 16 16 16 4 BW |2 Mono

CharCell Size |8x8 |8x8 [|8x8 [8x8 |8x8 |8x8 |[8x8 [8x14
Regen Origin |B8000|B8000|B8000|B8000|B8000(B8000(B8000(BO0O0O
Regen Size 16384|16384|16384|16384|16384|16384 (16384 (4096
Page Size 2048 (2048 4096 |4096 |16384|16384(16384(4096
Number Pages|8 8 4 4 2 2 2 1

The Regeneration Buffer Origin is stated in hexadecimal notation since itis an address quantity. All other

values are in decimal notation.

The ROS Video /O supports multiple display pages and can be called to select an alternate page. The
default (base page) upon initial mode selection is always zero and it begins at the origin address. The
successive pages are located higher by the page size incrementin the table. The equation for page origin
is: Page Origin = Regen Origin + (Page Number - Page Size). Since the 'Page Size' quantity is a pure
binary multiple it becomes a shift factor for the selected page number. Page are numbered from 0 to n-1
where 'n'is the number of pages available.

1.11.5 Colour Mode Registers

In colour mode there are seven registers for mode, colour selection, additional control functions.
1.11.5.1 CGA Control Register

The CGA Mode Control Register is a read/write register located at /0O address 3D8h. Itis used to control
the state of the video circuitry, selecting Alpha or Graphics mode and the various sub options available
within Alpha and Graphics modes. On an industry standard CGA this is a write onlyregister.

The layout of the CGA Mode control register is as follows:

Bit|Output Use

7 |LCD Inverse

6 |LCD Lo-Res Graphics

5 |Enable Blinking Chars (disable intensified backgrounds)
4 |Select Graphics Mode 2 (de-select graphics mode 1)

3 |Enable Video Display

2 |[Select Palette 2 (de-select palettes 0,1)

1 |Select Graphics modes (de-select Alpha modes)

0 [Select Alpha 80 Char mode (de-select40 Char mode)

Bit 0 is used for controlling 40 or 80 column text selection. When bit 0 is resetto "0" 40 column text is
enabled. When bit0 is setto "1" then 80 column textis enabled. Bit 0 has no effect Graphics modes.

Bit 1 selects between text and graphics modes. When bit 0 is resetto "0" then text mode is selected and
when bit 0 is setto "1" then graphics mode is selected.

The Select Palette 2 bit (bit 2) has no effectin Alpha modes or in Graphics mode 2. Itis used in
conjunction with bit 5 of the VDU colour select register to control graphics mode 1 palette. To select palette
2, bit 5 of the CGA colour select register (below) should be reset and bit 2 of the VDU mode control register
should then be set.

When bit 3 is reset to "0" the displayis blanked by disabling foreground video. When bit 3 is setto "1"
foreground video is enabled.

Bit 4 Selects between high resolution and medium resolution graphics modes. When bit4 is setto "1"
then 640x200 graphics resolution is selected and when bit 4 is resetto "0" then 320x200 graphics
resolution is selected. Bit 4 has no effectin Alpha modes.

When bit5 is setin Alpha modes, the foreground will blink for all displayed characters with attribute bit 7
also set. Bit5 has no effectin Graphics modes.

Bit 6 provides hardware support for the CGA low resolution 160 x 100 sixteen colour graphics mode. It has
no effectin external video mode butin LCD mode it enables each of the 16 colours to be displayed as a
unique dot pattern.

Bit 7 adds an extra programmable feature to the interpretation of CGA text attributes when displayed on the
LCD. When bit7 is setto "1" in text mode, characters with non-black backgrounds will be displayed in
inverse video. This inversion process is in addition to the non-programmable inversion which takes place
place when the background colour is greater than the foreground. A character which is inverted by both of
these processes will appear non-inverted. This inversion process effects the entire text screen on a
character by character basis. This bit has no effect when driving an external CD display.

To avoid unsightly effects on the screen, this register should be updated during frame flypack time. Any
kind of mode changing should preferably be done with video disabled. Mode changing involves the use of
bits 1 and 0 and usually some re-programming of the CRTC.

1.11.5.2 CGA Colour Select Register
The CGA Colour Select Register is a write only register located at /0 address 03D9h and is used for

controlling border colour in alpha modes and for selecting palette, border and pixel colour options in the
graphics modes. The layout of the CGA Colour selectregister is as follows:

Bit|Alpha Modes Graphics Mode 1 Graphics Mode 2
7,6|No Effect No Effect No effect

5 |No Effect Select Palette 1 (Deselect palette 0) No effect

4 [No Effect Foreground Intensity for palettes 0, 1 & 2|No effect

3 |Intensity (Border)|Intensity (Backgnd and Border) Intensity (Pixel)

2 |Red (Border) Red (Background and Border) Red (Pixel)

1 |Green (Border) [Green (Background and Border) Green (Pixel)

0 |Blue (Border) Blue (Background and Border) Blue (Pixel)

In 640 x 200 two-colour graphics mode the overall screen palette is controlled by setting the CGA Colour
Select register (which is initialized to 07h by the ROS on selection of mode 6). This means that the colour
resolution is really one of 16 colours for foreground on a black background. Most applications software
however control 640 x 200 mode graphics as black and white graphics.

To avoid unsightly effects on the screen this register should only be updated during frame flyback time.
1.11.5.3 CGA Status Register

The CGA Status Registeris a read onlyregister located at 1/0 address 03DA. It may be read atanytime to
determine the following:

Bit |InputUse

7 - 4|Not used (always reset).

3 |Frame Flyback (VSYNC) Time.
2 |Light-pen switch made.

1 Light-pen latch set.

0 |DisplayEnabled.

Frame flypback time starts atthe same time as the bottom border and lasts for 46 horizontal scan periods,

ending 16 scans before the end of the subsequent top border.

Bit 2 reflects the state of the light-pen push button switch. Bit 2 ="1" when the light-pen switch is closed
and bit 2 ="0" when the light-pen switch is open.

When bit 1 is set, itindicates that the light pen latch is set, triggered either by a pulse from the light pen or
by writing data to set the light pen channel. Writing any data to the Clear Light Pen channel clears the latch.

Bit 0 = zero when the Video signal is enabled and bit 0 = "1" when either the vertical or horizontal retrace
signals are active. This is a real time indication of the raster scan line status.

1.11.5.4 CGA Mode CRTC initialization.

The 6845 CRTC is controlled by way of two I/0 addresses, the CRTC Address register and the CRTC Data
I/O location. The CRTC Address register is a write only register located at /0 address 3D4 and the lower 5
bits are used select the data register at I/O address 3D5. Addresses greater than 17 (11h) produce no
results. Note that this set of I/O addresses is partially decoded such that all even /O addresses between
3DO0 - 3D6 access the CRTC indexregister and all odd I/O address between 3D1 - 3D7 access the
selected CRTC data register.

The PPC gate arrayimplementation incorporates a special "Auto-Switch" feature which enables the LCD
to appear as a standard display device despite the fact that non-standard CRTC settings are required
when dealing with the LCD. The auto-switch prevents CRTC registers 0 - 11 from being altered when bit 6
of the operation control portis set. Any attempt to write to these registers are trapped and PPC unique
readback ports are provided so thatthe ROS's NMI service routine can readback the values written to
these registers. Any write access to either the prohibited CRTC registers, the Operation Control port or the
CGA control port will trigger a Non-Maskable Interrupt (NMI) when bit 7 of the Operation Control portis set.
Bits 5-7 of the CRTC Indexreadback register can then be read by the NMl service routine to determine
which of the three events triggered the NMI. In this way the NMI service routine is alerted to any attempted
mode change and can change modes itself byloading the CRTC registers with the appropriate values for
the operation in the desired LCD mode. The auto-switch also prevents accidental (hon-ROS) changes to
bits 6 and 7 of the CGA Control port.

The CRTC registers must be programmed according to the mode of operation required in conjunction with
the CGA Mode and Colour Select Registers previously described. Amode changing operation should be
performed in the following sequence: Disable video, reprogram the CRTC as required, reprogram the
Mode and Colour selectregisters as required, (maintaining video disabled), initialize display RAM as
required, enable video.

The CRTC registers are initialized for LCD CGA mode as follows:

Register Alpha 40 |Alpha 80 |Graphics |Graphics
Number |Register Name Char Mode|Char Mode|Low-res [High-res
(Hex) (Decimal) |(Decimal) |(Decimal)|(Decimal)
00 Horizontal Total (-1) |41 83 83 43

01 Horizontal Displayed |40 80 80 40

02 Horiz. Sync Position |41 81 81 42

03 Horiz. Sync Width 01 01 01 01

04 \ertical Total 26 26 107 107

05 \ertical Total Adjust |0 0 0 0

06 \ertical Displayed 26 26 107 107

Register Alpha 40 |Alpha 80 |Graphics |Graphics
Number|Register Name Char Mode|Char Mode|Low-res [High-res
(Hex) (Decimal) [(Decimal) |(Decimal){(Decimal)
07 \ertical Sync Position|25 25 100 100

08 Interlace 2 2 2 2

09 Max. Scan Address |7 7 1 1

0A Cursor Start 6 6 6 6

0B Cursor End 7 7 7 7

0C Start Address High |0 0 0 0

0D Start Address Low (0 0 0 0

OE Cursor Location High|0 0 0 0

OF Cursor Location Low (0 0 0 0

Values greater than 31 in register 0Ah turn the cursor off. This is because bit 5 is the cursor off bit. Bit 6 in
register 0Ah selects alternate blink rate.

Note that the values listed in the above two tables differ from the industry standard values used for other
CGAdevices. The user need not make special consideration when loading the CRTC but use the
standard values as described in section 2.3.20. The auto switch NMI routine will adjustthe CRTC values
for the mode of operation as required.

1.11.5.5 Set and Clear Light Pen Latch

A method of setting and clearing the light pen latch is provided as part of the IDA. Anyread or write /0O
access to port 03DBh clears the light pen latch and any read or write 1/0 to port 03DCh sets the light pen
latch. The data read or written is ignored.

1.11.5.6 Operation Control / Status Register

This register in a PPC unique register used to control and monitor the operational mode of the VDU/LCD
gate array. Itis an input/output port located at /O address 3DEh.

The layout of the Operation Control/Status Register is as follows:

9]

it{Output Use InputUse

7 |Enable Auto-Switch NMI|NMI Enable Readback

6 |CRTC Prohibit CRTC Prohibit Readback
5 |NotUsed PPC SW3

4 [NotUsed PPC SW2

3 |NotUsed PPC SW1

2 |Switch Out Switch Out Readback

1 |[MDA/CGA Select MDA/CGA Readback

0 |VDU/LCD Select VDU/LCD Readback

Bit 0 (output) controls the selection of the video output. When bit 0 is setto "1" then video outputis to the
connector at the rear of the PPC. When Bit 0 is reset to "0" then the internal LCD is selected. Readback
returns the information as written.

Bit 1 (output) controls the selection of the display type. When bit 1 is setto "1" then the PPC is setup as a
monochrome device and video output, the display buffer, CRTC I/O addresses, and control registers are

configured for monochrome. When bit 1 is resetto "0" then the PPC is configured as a colour device and
the video output, display buffer, and I/O addresses are set for colour compatibility. Readback returns the
information as written.

Bit 2 (output) controls whether the Internal Display Adapter is switched in or out. When bit 2 is setto "1"
then the IDA video RAM cannot be read or written and IDAinternal registers can be written but not read.
The display will continue to be active. An external display adapter may be fitted and there will be no
conflicts in either display RAM or display I/O addresses. When bit 2 is reset to "0" then the IDAis present
and as configured by bits 0 and 1. In this case an external display adapter may be present but must not be
in the same (colour/monochrome) mode else I/O address and regeneration buffer conflicts will occur.
Readback returns the information as written.

Bit 3 is not used for output. Upon input Bit 3 returns the state of configuration switch 1 and returns "1" when
the switch is ON and "0" when the switch is OFF.

Bit4 is not used for output. Upon input Bit 4 returns the state of configuration switch 2 and returns "1" when
the switch is ON and "0" when the switch is OFF.

Bit 5 is not used for output. Upon input Bit 5 returns the state of configuration switch 3 and returns "1" when
the switch is ON and "0" when the switch is OFF.

Note thatin practice the ROS uses configuration switches 1,2 & 3 to setbits 0, 1 & 2 of the Operation
Control Port so that the inputs on bits 3 through 5 are closely associated with the functions of bits 0
through 2.

Bit 6 (output) controls whether or not accesses to the CRTC will be prohibited and trapped by the auto
switch NMI. Setting bit 6 to "1" allows writes to CRTC registers RO - R11 to take place. Resetting bit 6 to "0"
prohibits CPU access to the CRTC registers as part of the auto-switch mechanism. Readback returns the
information as written.

Bit 7 (output) controls whether the auto-switch NMl is enabled or not. When bit 7 is setto "1" then a NMI will
be generated when the CPU writes to a prohibited CRTC register. When bit 7 is "0" the NMI feature is
turned off. Readback returns the information as written. Note thatthe NMI Mask Control register (section
1.6.3 at1/0O address 0AOh) masks this and all other NMl inputs into the CPU.

1.11.5.7 CRTC Index Readback

The CRTC Index Readback is a read onlyregister located at /O address 3DDh. Itis used by the auto-
switch NMI process to determine which CRTC register was last addressed. In addition the MS bits contain
additional information about the NMI process.

The layout of the CRTC Index Readback register is as follows:

Bit |InputUse

7 |CGAControl Port Written.

6 |Operation Control Port Written

5 |Prohibited CRTC register written.
4 - 0|CGA Control Port Written.

Bits 0 - 4 contain the last value written to the CRTC Indexregister.

Bit5is "1" when NMl was caused by an attempted write to a prohibited CRTC register.

Bit6 is "1" when NMl was caused by a write to the Operation Control port.
Bit 7 is "1" when NMl was caused by a write to the CGA Control port.

Bits 5 - 7 are reset by the trailing edge of a read of the CRTC Index Readback port and are setwhen a NMI
is generated by the VDU/LCD gate array.

1.11.5.8 CRTC Data Readback

The CRTC Data Readback is a read only register located at /O address 3DFh. Itis used by the auto-
switch NMI process to determine the value written to the lastindexed CRTC register. Upon read of I/O
address 3DFh the 8-bitreturned value is the value as written.

1.11.6 Monochrome Mode Registers

When the PPC is in monochrome mode it supports the monochrome text software environment.

1.11.6.1 MDA Mode Control Register

The MDA Mode Control Register is a write only register located at /O address 3B8h. Itis used to control
the state of the video circuitry.

The format of the MDA Mode control register is as follows:

@

it{Output Use

No effect

No effect

Enable Blinking Chars (disable intensified background)
No effect

Enable Video Display

No effect

No effect

Hi-res mode (no effect - always set)

O =~ NWHrrOILON

When bit5 is setin the foreground will blink for all displayed characters with the blink (7) bitsetin their
attribute bytes.

Bit 3 mustbe setin order to enable the video output and when bit 3 is zero the displayis blanked.

Bit 0 on the standard MDA is Hi-res mode but since this bit mustbe set to achieve anything sensible itis
redundant and wired permanently set.

1.11.6.2 MDA Status Register

The MDA Status Registeris a read onlyregister located at /0 address 03BA. It may be read atanytime to
determine the following:

Bit [InputUse
7 - 4|Not used (0).
3 |Video.

2 - 1|Notused (0).

Bit
0

Input Use
Horizontal Sync.

Bit 0 ="0" when the Video signal is enabled. Bit 0 = "1" when the horizontal retrace is active.

Bit 3 ="1" when the mono video output pin (7) is active. This is a real time status of the raster scan line
output.

1.11.6.3 Monochrome CRTC Initialization.

The CRTC is controlled by way of two I/0 addresses, the CRTC Address register and the CRTC Data I/O
location. The CRTC Address register is a write only register located at I/O address 3B0 and the lower 5
bits are used select the data register at I/O address 3B1. Addresses greater than 17 (11h) produce no
results. Note that this set of I/O addresses is partially decoded such that all even I/0O addreses between
3B0 - 3B6 access the CRTC indexregister and all odd I/O addresses between 3B1 - 3B7 access the
selected CRTC data register.

The CRTC registers names and initial values are as follows:

Register Text 80- |Text 80-
Number [Register Name Col VDU |Col LCD
(Hex) (Decimal)|(Decimal)
00 Horizontal Total (-1) |97 83

01 Horizontal Displayed |80 80

02 Horiz. Sync Position |83 81

03 Horiz. Sync Width 15 1

04 \ertical Total (-1) 25 26

05 \ertical Total Adjust |6 0

06 \ertical Displayed 25 26

07 \ertical Sync Position|25 25

08 Interlace 2 2

09 Maximum Scan 13 7

0A Cursor Start 11 6

0B Cursor End 12 7

0C Start Address High |0 0

0D Start Address Low |0 0

Setting bit 5 in register OAh turns the cursor off. Bit 6 in 0Ah selects alternate blink rate.

Note that the values listed in the above table differ from the industry standard for other monochrome
devices. The user need not make special consideration when loading the CRTC but use the standard
values as described in section 2.3.20. The auto switch NMI will adjustthe CRTC values for the mode of
operation as required.

1.12 Floppy Disk Controller

The floppy disk controller is based on the NEC uPD765A single chip controller, and supports one or two
5.25 inch single or double sided, MFM double density floppy disk drives with a data rate of 250 kilobits per
second.

The FDC is controlled by way of the Drive Selection register at I/O Address 03F2h. Itis defined as follows:

Bit (Dn)|Output Use

7-6
5

O -~ N W H

No effect

Switch motor(s) on and enable drive 1 selection
Switch motor(s) on and enable drive 0 selection
Allow 765A FDC to interrupt and request DMA

- 765Areset

Drive SelectBit1 (DS1)

Drive Select Bit 0 (DS0)

The Drive Select bits (DS1, DSO0) are only valid for values of 00 and 01 for drives 0 and 1 respectively. The
drive selection qualification is only completed when either bit 4 (for drive 0) or bit 5 (for drive 1) is set. In
addition setting bits 4 or 5 will have no effect until the value of DS1, DSO0 is correspondingly set.

Bit 2 (- 765Areset) must brought low (output as '0') and held low for atleast 3.5 ys in order to reset the
765A. It must then be set high in order to release the reset signal.

On power-up or following a system reset, all bits in this register are cleared to zero.

1.12.1 FDC Hardware Conditions

The hardware imposes the following conditions on the use of the 765A controller and disk drives:

1.
2.

8.
9.

The clock frequency of the 765AFDC is fixed at4.0 MHz

Disk data transfers are done by DMA using the on-board DMA controller. The 765A DRQ output may
connected to or disconnected from the DMA controller DRQ2 input by software using Drive Selection
Register bit 3.

. An interruptlevel is available for use by the 765Ato signal command completion and attention status

to the CPU. The 765A INT output may be connected to or disconnected from the interrupt controller
IRQ6 input by software using Drive Selection Register bit 3.

. Drive 0 is always present. Drive 1 is optional. Drives 2 and 3 are notimplemented and can never be

accessed. (No select signal decode is implemented for these drives.) Drive Ready output signal
from the currently selected drive is connected to the 765A RDY input. For drives which do not have a
drive ready output the 765A RDY input may be optionally fixed to the true condition.

. The 765A Drive Select outputs US1 and USO are not used to select the drives. This function together

with motor control is done via the Drive Selection Register which is external to the FDC 765A.

. The FLT (Fault) input 765Ais forced permanently false.
. ATwo-Sided status signal from the drive(s) is not provided butinterface to the drives allows the use

of double sided drives.
Write precompensation of 250 ns is provided.
The 765A may be individually reset by software using Drive Selection Register bit 2.

1.13 RS232C Asynchronous Serial Port

The asynchronous serial portis configured to I/O addresses 3F8h - 3FFh and is based on the National
INS8250 ACE (or UART), single channel device.

The clock frequencyinput of the 8250 is 1.8432 MHz (£ 0.1%).

The 8250 BAUD OUT outputis connected to the RCLK input.

An interrupt level is available for use by the 8250. When the 8250 OUT2 outputis driven low (i.e.a '"1"is
written to bit 2 of the 8250 MODEM Control Register) then the INTRPT signal is connected to the interrupt
control IRQ4 input.

1.13.1 Serial Channel Interface

The serial interface uses a 25-way subminiature D type plug (male) connector emulating a DTE (Data
Terminal Equipment).

The electrical levels of signal lines on this interface conform with EIA (Electronics Industry Association)
standard RS-232C (and the equivalent V.24 interface standard).

The RS232C drivers and receivers between the 8250 and the serial channel connector are all inverting.

1.13.2 Serial Channel Pin Arrangement

Pin|EIA[{CCITT|Description

2 |BA|103 ([TxD - Serial Data Output

3 |BB|104 |RxD - Serial Data Input

*4 |[CA|105 |[RTS - Requestto Send Output

5 |CB|106 |CTS - Clear to Send Output

6 |[CC|107 |[DSR -Data SetReady Input

7 |AB |102 |Signal Ground (Common Return)
8 |[CF|[109 [DCD - Data Carrier Detect Input
*20(CD|108.2 [DTR - Data Terminal Ready Output
22 IDE|125 |RI-Ring Indicator Input

* These interchange circuits, where implemented, shall be used to detect either a power off condition in
the equipment across the interface, or the disconnection of the interconnecting cable. The terminator for
these circuits shall interpret the power off condition or the disconnection of the interconnecting cable as an
OFF condition.

1234567 891011213

ONCNONCONONONONONONONONONS
CO0OO0O0OO0OO0OO0OO0OO0OO0O0OO0

14 15 16 17 18 1920 21 222324 25

See Appendix 3 for additional details of serial signals and cable connections.

1.14 Parallel Printer Interface

The parallel printer portis described in Section 1.10 and is a general purpose 'Centronics' style 8-bit
interface. The printer interface uses a 25-way subminiature 'D' socket (female) connector located at the
back of the PPC.

The Pin assignments for the printer connector is as follows:

Pin|Assignment

Not Data Strobe
Data Bit0

Data Bit 1

Data Bit 2

Data Bit 3

Data Bit4

Data Bit5

Data Bit6

9 |DataBit7

10 |Not Printer Acknowledge
11 |Printer Busy

12 |Paper Out

13 |Select Printer

14 [Not Select Auto Feed
15 |Not Printer Error
16 |Not Reset Printer
17 [Not Printer Selected
18 [GND

19 [GND

20 |[GND

21 |GND

22 |GND

23 |GND

24 |GND

25 |GND

B121MT1M0 98 76 54 3 21

010]01010]010]010101010]0,
0]0101010]010]0101010)0

2524232221201918 17 16 15 14

0o ~NOoO Ok, WN -~

Appendix 4 contains the Amstrad PL-2 printer lead specification.

1.15 Keyboard Interface

Keyboard data input to the CPU is via the 8255 PPI Port A, and the keyboard interrupt (level 1) of the 8259A
PIC. Both of these have been previously described in sections 1.6 and 1.8.

1.15.1 Serial Clock and Serial Data

The Serial Clock and Serial Data signals are used for keyboard interface. These two bidirectional signals
are used by the keyboard microcontroller to send keycodes to the main electronics board. The main
electronics board also uses the same two signals to indicate readiness to receive another keycode back
to the microcontroller. In addition these two signals are used to reset the microcontroller under hardware
or software control.

1.15.2 Keyboard to Main Board Interface

The quiescent state for both Serial Clock and Serial Data is high. Aminimum of 5 ys must separate a
transition of one signal from another transition of the same signal, or any transition of the other signal.

Keycodes are sent from the keyboard microcontroller to the main board in 8-bit serial form MS bit first.
Keycode data received by the main board is clocked into a shift register as either a "1" bit sequence or as
a "0" bitsequence. To be interpreted as a "1" bit, the Serial Data signal must remain high during the time
period when Serial Clock goes low and returns to the high state. To be interpreted as a "0" bit, Serial Data
must be low prior to the Serial Clock transition from high to low, Serial Data will then go high followed by
Serial Clock. The "1" bit or the "0" bitis clocked into the shift register on the falling edge of Serial Clock.

1.15.3 Main Board to Keyboard Interface

Upon receiving a keystroke from the microcontroller, within 5 us of the last clock falling edge, the main
board electronics drives the Serial Data line low and maintains it low until itis ready to receive a new
keystroke. When the main board returns the Serial Data signal to the high state the microcontroller is free
to send another keystroke. This response to the reception of a keycode is termed the ACKNOWLEDGE
sequence.

The mainboard electronics causes a RESET to the keyboard microcontroller by driving the Serial Clock
line low for 10 milliseconds or more. The state of the Serial Data signal does not affect the reset
sequence.

1.15.4 Keycodes

The 8-bit keyboard data is capable of 128 'make' codes correspondingly 128 'break' codes. For any key
which is pressed, the 'make' keycode produced is in the range of 0 - 127 decimal. When a key s released,
the 'break’ keycode produced is the same as the make keycode except that the top bitis setso that the
value is in the range of 128 - 511 (decimal). Anumber of keys (such as the dedicated keypad keys) send
an extended keycode sequence which identify them uniquely as dedicated keys rather than the numeric
keypad set. The typical extended keycode sequence consists of an extended keycode identifier, 224 (EOh),
followed by the keycode.

After a keyis pressed and the keycode has been sent to the main board electronics, if no new keys are
pressed and the key has remained pressed for more that one half second, then the keyboard
microcontroller re-sends the keycode every 83 milliseconds provided that the main board indicates by an
Acknowledge sequence thatis readyto accept a new keycode. The Pause/Break key does not repeat.

The keycode 0AAh is sent after a reset to indicate successful completion of power-up tests.

The PPC ROMBIOS receives the keycodes via an interrupt subroutine and it 'tokenizes' them into a two-
bytes value for further conversion to ascii values by applications software which use the tokenized
keyboard information. The keycodes and their corresponding token values are covered in the ROS
firmware (Section 2.3.4).

1.16 Modem Interface

The modem serial portis configured to /0 addresses 2F8h - 2FFh (COM2). It is based on the National
INS8250 ACE (or UART), single channel device.

The clock frequency of the 8250 is 1.8432 MHz (+/- 0.1%).

The 8250 BAUD OUT outputis connected to the RCLK input.

An interrupt level is available for use by the 8250. When the 8250 OUT2 outputis driven low (i.e.a'1'is
written to bit 2 of the 8250 MODEM Control Register) then the INTRPT signal is connected to the interrupt
control IRQ3 input.

The Modem (Hayes) AT commadn interface and register set details are documented in the Amstrad PPC
User Instructions.

1.16.1 Modem Connector.

The modem connector is a BT type 431A connector located in a small covered compartment to the right of
the LCD. Atelephone extension socket consisting of a BT type 603A socket is provided at the right hand
rear of the case. When the modem is notin use the connection is straight through so that the telephone
can be used in standard voice mode.

The modem connector pin assignments are as follows:

Pin|Assignment
Not Connected.
Line A

Local Earth.
Dialing Shunt.
Line B.

Not Connected.

[o) 3¢, N NSO I \C T

Note that pins 3 and 4 are not connected to the modem.

The USAversion modem does not use the extension lead arrangement as with the UK modem. Instead
the USAmodem has two BELL telephone connectors at the rear of the mdoem labelled LINE and PHONE.
Itis intended that the user supply a telephone extension lead and that the extension lead be connected
between the wall connector and the modem LINE connector and the telephone which was connected to
the wall socket be connected to the modem PHONE connection. The US telephone wiring uses a two wire
circuit and the inner two pins of the BELL connector are the line A & B connections.

1.17 Light Pen Connector

The AMSTRAD PPC Supports a standard light pen interface via the 6845 CRTC. The Light Pen connector
is located inside the PPC case on the left hand edge of the lower main board about 3 inches forward of the
configuration DIP switches. It consisists of a 6-way berg strip and is labeled LIGHT PEN in large letters.
Pin 1 is the forward most pin viewed from in front of the machine.

The pin assignmentis as follows:

Pin|Assignment
-Light Pen Input.
(Keyway)

-Light Pen Switch.
Ground.

+5 \olts DC.

a b~ wDN -

Pin
6

Assignment
+12 \olts DC.

1.18 Expansion Card Interface

At the rear of the PPC there are two large 'D' socket connectors labelled 'Expansion A-B' and these allow
the connection of external devices to the expansion bus.

Expansion Connector Ais a 25-way D-socket containing the following signals:

Pin|Signal In/Out

+5 \Wolts DC In

T/IC Out
I/O & Memory Address Bit A19(Out
I/O & Memory Address Bit A17|Out
I/O & Memory Address Bit A15(Out
I/O & Memory Address Bit A13|Out
I/O & Memory Address Bit A11|Out
I/O & Memory Address Bit AO9(Out
* |I/O & Memory Address Bit AO7|Out
10*(I/O & Memory Address Bit AO5|Out
11*|I/O & Memory Address Bit AO3|Out
12*|I/0O & Memory Address Bit AO1|Out

0o ~NOoO Ok, WN -~

[{e]

13 |AEN - Address Enable Out
14 |Ground In
15 [-DACKO Out

16 |I/O & Memory Address Bit A18|Out
17 |I/O & Memory Address Bit A16|Out
18 |I/O & Memory Address Bit A14|Out
19 |I/O & Memory Address Bit A12|Out
20 |I/O & Memory Address Bit A10|Out
21 |l/O & Memory Address Bit AO8|Out
22*|l/0 & Memory Address Bit AO6|Out
23*|l/O & Memory Address Bit A04|Out
24*|l/0O & Memory Address Bit A02|Out
25*(1/0 & Memory Address Bit AO0|Out

Expansion Connector B is a 37-way D-socket containing the following signals:

Pin |Signal In/Out
1 |-20 \Volts DC -

2 [IRQ2 In

3 [IRQ4 In

4 |IRQ6 In

5 [/ORDY In

6 [-DACK2 Out

7 |F/IOCHCK In

Pin |Signal In/Out
8 |DREQ2 In
9* |CK14 (OSC) Out
10* [-MEMR (Memory Read) [Out
11* [-IOR (I/O Read) In/Out
12* |ALE Out
13**1/0 & Memory Data Bit D7|In/Out
14**1/0 & Memory Data Bit D5|In/Out
15**1/0 & Memory Data Bit D3|In/Out
16**(1/0O & Memory Data Bit D1|In/Out
17 |-5\Wlts DC In
18 |-12\Wlts DC In
19 |Ground In
20 |External Power (+12V) |[In
21 [IRQ3 In
22 [IRQ5 In
23 [IRQ7 In
24 |-DACK1 Out
25 |-DACK3 Out
26 |DREQ1 In
27 |DREQ3 In
28* |-MEMW (Memory Write) |Out
29* |-IOW (I/O Write) In/Out
30* [RESET Out
31* [CK4 (CLOCK) Out
32*%1/0 & Memory Data Bit D6{In/Out
33**1/0 & Memory Data Bit D4{In/Out
34*%1/0 & Memory Data Bit D2[In/Out
35**1/0 & Memory Data Bit DO|In/Out
36 |+12\olts DC In
37 |+5\Wlts DC In
1 20 1
5[/ g l\)
N L™ I F bd
! o OOOOOOOOOOOOjo_] o 0000000000000 0O0000 o’-]
00000000000 Q000000000000 VO00
/ \ > h
/. \ i \ D,
7 A A / - \
25 14 39 21

Expansion A-B

Erratum: The illustration shows sockets with too many pins. See annotated image.

Note that the power pins (+5v-20V, -5\-12V, +12V) are listed as inputs, this means the power is to be
supplied to, rather than drawn from, these parts.

The signals marked with an asterisk (*) after the pin number are generated directly from the internal gate
arrays and should be buffered using a suitable non-inverting buffer (74HC244). There are a total of 16
such signals.

The signals marked with two asterisks (**) after the pin number are the expansion data bus and are at
cmos levels. Theyshould be pulled up to TTL levels with 10K ohm resistors.

All remaining signals are TTL compatible and can supporta maximum loading of sixlow-power schottky
(LSTTL) loads.

When an expansion unitis fitted, the PPC must be powered via the expansion connectors. PPC power
requirements are:

+12V1£5% 50mA
+5V 5% 2.5A
-5V £5% 50mA
-12V £5% 50mA
-20V £5% 30mA

In addition, the input signal External Power (pin B20) must be connected to +12 \blts to disable the interal
switching regulator. Other sources of power (monitor, battery, AC adapter) should be disconnected.

Note that direct access to the on-board 16-bit fast memorybus is not available via the I/0O expansion
connectors.

Additional engineering fetails of PPC circuitry can be obtained from the Amstrad PPC Service Manual
which is availale as advised by Amstrad Customer Services.

Note: The USA version of the PPC has the expansion connectors covered by a piece of metal to satisfy
FCC requirements.

1.19 Video Connector

The video connector a 9-way D type (female) socket located in the rear of the computer. Its pinoutis as
follows:

Pin |Assignment

1 Ground

2 Ground 5 4 3 2 1

3 |Red (R) [h
4 Green (G) 0 OO0 C O O 0
5 Blue (B) OO0 O O

6 Intensity (I)

7 Mono Video (V) - J
8 Horizontal SYNC 9 8 7 6

Pin
9

Assignment
Vertical SYNC Video Connector

The same pinoutis used for all three display types but the interpretation of a particular pin's function varies
with the selected video output mode and will be the RGBI version for colour mode or just Mono video and
intensity when in monochrome mode.

1.20 Power Connectors

There are two sets of power connectors at the rear of the PPC, a small connector for 12 volt DC from the
car cigarette lighter adapter or an AC adapter unitand a large 14-way Din connector for external power
supplied by a standard Amstrad PC1640 MD, CD or ECD display.

1.20.1 The Adapter Power Connector

The adapter power connector is to be used with either the car cigarette lighter adapter or the AC adapter
unit, both of which are supplied with the PPC. The outer (sleeve) connection of the adapter power
connector is ground and the centre pin in rated at +12V DC nominal ranging from 9.5 volts minimum to
17.5 volts maximum. The AC adapter outputrating is 1.9 amps at 13 volts. The supply voltage for the
USA/Canadian AC adapter (PPC640AC-A) mustbe 120 wvolts AC +/- 10%. The supply voltage for the UK AC
adapter (PPC640AC-B) must be 240 volts AC +/- 10%. The supply voltage for the European AC adapter
(PPC640AC-E) mustbe 220 volts AC +/- 10%. Only an Amstrad supplied AC adapter should be used with
the PPC. The car cigarette lighter adapter can only be used in cars with a 12 volt, negative earth electrical
system.

1.20.2 The Display Power Connector

The Display power connector is a 14-way Din socket located in the rear of the computer. Power is routed
from the power supplylocated in the monitor to the PPC through the power connector. Its pinoutis as
follows:

Pin Assignment

1 Not Connected

2 0 Wlts DC

3 + 5 \Wlts DC

4 0 Wlts DC

5 + 5 \Wlts DC

6 Not Connected

7 Not Connected

8 0 Wlts DC 8 9
9 -12 \Wlts DC

10 |0 Volts DC 6 7
11 +12 \Wolts DC

12 0 Wlts DC

13 -5 \Wlts DC 2 1 :

14 Not Connected Power Connector

1.21 PPC Switch Settings.

The PPC configuration switches are located on the left hand side of the PPC and control the Internal
Display Adapter initial mode and the Default display mode to be used by the ROS and MS-DOS.

The Layout of the switches is as follows:

Switch |1 2 3 4 5
Name [LCD/VDU[MDA/CGA|On/OfffDDMO(DDM?1

Switch 1 when ON selects that video be directed to the external video connector at the rear of the PPC.
When switch 1 is OFF all display will be directeod to the internal LCD display unit.

Switch 2 when ON selects that the Internal Display Adapter operates as a monochrome device. When
switch 2 is OFF then the IDA will operate as a colour device.

Switch 3 when ON turns the IDA off such that it is not perceived in the software environment. In this case
an external display adapter must be fitted. When switch 3 is OFF then the IDAis switched on and it will
operate as specified by switches 1 and 2.

Switches 4 and 5 are used by the ROS when setting up the default display mode (See section 1.8.2). The
followung table gives the interpretation of the four settings.

Switch 4|Switch 5|DDM Setting

OFF OFF External EGAinstalled
OFF ON CGAin 40 Column Mode
ON OFF CGAin 80 Column Mode
ON ON Monochrome Mode

Note that the settings of switches 4 and 5 must be consistent with the IDA control switch 2. If switches 4
and 5 say Monochrome then switch 2 must either be ON or you have an external MDA or Hercules adapter
installed in the expansion box. If neither is true the screen will go blank just after ROS initialization (Please
Wait....). The same holds true that if switches 4 and 5 say CGAthen switch 2 should be OFF or there's a
colour display (CGA) adapter in the expansion boxelse the screen goes blank after ROS initialization.

Contents Index Section 2

Section 1 Index Section 3

2.0 Firmware

This section describes the Amstrad PPC Resident Operating System (ROS). It defines the interfaces to
all the interrupt service routines provided by the Amstrad PPC ROS firmware (ROM) and all RAM
locations used by the ROS.

The following copyright message is stored at the beginning of the ROS starting at location 0003
(relative to its origin at FC000):

(C) Copyright 1987 AMSTRAD plc

The ROS physically occupies the highest 16K bytes (in the address range FC000 to FFFFF) in the 1
Mega Byte addressing range of the 8086-2 CPU (See Figure 1.1). The total 64K byte address range
from hexadecimal FOO0O0 to FFFFF is reserved for system ROM and this contains the resetand
initialization address FFFFO. The PPC address decoding for the system ROM area is such that the ROS
ROM which actuallyresides at FC00O is repeated four times in the address space starting at FO000.

Note that all address constants in this document are in hexadecimal form unless otherwise noted.

All calls to the ROS firmware should be made through the software interrupts disclosed in this manual.
Application programs should not attempt to access the locations within the ROM area directly. Amstrad
reserves the right to modify the coding within the Resident Operating System ROM as it sees fit.

The firmware provides a set of resident software routines which perform various services and I/O
functions:

1. Power-Up initialization and Self Test.

2. Keyboard input.

3. Video display of characters and pixels.

4. Video buffer screen dumping.

5. Character I/O to the printer and serial ports.

6. System clock and real time clock support.

7. Floppy Disk I/O including format, read and write.

To ensure hardware independence of application programs all I/O processes should be done using the
ROS. This avoids possible problems due to any hardware modifications and/or enhancements.

2.1 Power-Up initialization and Self Test

The Power-Up initialization and Self Test function is entered at location FFFFO, the CPU reset entry
point. This is a collection of routines which perform all necessary hardware initialization and self tests,
setting up of the BIOS RAM variable area, initialization all the interruptlocations used by the ROS,
initialization of expansion slot peripheral ROMs and the running of floppy diskette or hard disk
bootstrap.

The ROS does not use the System RAM (User RAM Area) for stack or program variables until it has

been successfullytested. If a RAM error is found an error message should be displayed correctly,
assuming there is no other fault that may result in incorrect operation of the CPU or Video Circuitry.

The Power-Up initialization and Self Test process proceeds as follows:

1. Disable maskable and non-maskable interrupts.
2. Run selftest which include the following:
Checksum of the ROS.
Test all system RAM.
8237 DMA controller.
8253 Programmable Interval Timer.
8255 Programmable Peripheral Interface.
RTC counting.
The system serial interface.
The system printer interface.
8259 programmable interrupt controller.

After a system reset all the selftests exceptthe RAMtests are rerun. If the three option links in the
least significant part of the system printer status register are set to all ones then diagnostic mode
is selected and if the diagnostic test ROM pack is found, itis entered, otherwise only the keyboard
and disk tests are run before external ROM initialization and system startup is attempted.

Refer to section 2.2 for the individual power-up self test details.
3. Check the RTC.
If the RTC registers are incorrect then it they are loaded with default values.
4. Initialise the 8253 Programmable Interval Timer.

Set up counter O to interrupt every 54.9337 milliseconds. Set up counter 1 to generate an output signal
with a period of 15.13 microseconds. Disable counter 2.

5. Initialise the 8237 DMA controller.

Setup DMAchannel 0 for memoryrefresh. Disable channel 1,2 and 3.

6. Initialise the 8259 Programmable Interrupt Controller.

Disable (mask) all interrupt levels. Note thatlevels 0, 1 and 6 are enabled (unmasked) later.

7. Initialise the Write Status Registers.

Write Status-1 is initialised with the number of drives fitted and the default Video Mode. This information
is determined by checking if a second floppy drive is fitted to the FDC and by reading PPC switches 4

and 5. The ROS also sets orresets bit 1 in the status register depending on whether or notan 8087
NDP is installed. See section 1.8 for further System Status-1 information.

Write Status-2 is initialised according to the amount of memoryinstalled. The ROS assumes a
minimum of 512K bytes and that additional RAM may be added in contiguous 32k byte increments up to

the maximum of 640K bytes. The additional memoryis sized according to the following procedure. The
segment address of each of the four 32K byte RAM blocks is written to the first two bytes of each
respective block. The segments are then verified from low to high until a non matching segment
address or the last block is encountered. The setting of the Write Status-2 register is according to the
RAMO-RAM4 table in section 1.8.3.

8. Initialise the ROS variable area in system RAM.

The ROS uses variables in the address range of 00300 to 00500. Refer to section 2.4 (RAM Variables)
for a complete description of these variables and their respective initialised values.

9. Initialise the first 32 Interrupt Vectors.

The first 32 interrupt vectors are set up to reference the ROS routines as listed below. Software interrupt
routines which do not perform any function reference a dummy routine that simply does a return from
interrupt (IRET) instruction. Hardware service interrupts which do not perform any function reference a
dummy (HWIRET) routine which issues a nonspecific end-of-interrupt to the 8259 interrupt controller
and then executes an IRET instruction.

Interrupt{Purpose Type

0 Divide by Zero Hardware (HWIRET)
1 Single Step Hardware (HWIRET)
2 Parity error routine (NMI) Hardware

3 Break Hardware (HWIRET)
4 Overflow Hardware (HWIRET)
5 Print Screen Software

6 Reserved Software

7 Reserved Software

8 System Clock interrupt Hardware

9 Keyboard interrupt Hardware

10 RTC interrupt Hardware (HWIRET)
11 COMMS Hardware (HWIRET)
12 COMMS Hardware (HWIRET)
13 Hard Disk Hardware (HWIRET)
14 Floppy Disk interrupt routine [Hardware

15 Printer interrupt Hardware (HWIRET)
16 Video I/0 Software

17 System Configuration Software

18 Memory Size Software

19 Disk I/O Software

20 Serial I/O Software

21 Reserved Software

22 Keyboard 1/O Software

23 Printer I/O Software

24 System Restart Software

25 Disk Bootstrap Software

26 System Clock and RTC /O [Software

Interrupt{ Purpose Type

27 Keyboard Break Software (IRET)
28 External Ticker interrupt Software (IRET)
29 Video parameter table Software \Vector
30 Disk Parameter table Software Vector
31 External 8x8 Char Matrix table|Software Vector

The interfaces to the above routines are detailed in section 2.3.

The 8259 PIC is programmed such thatits IRQO - IRQ7 interrupt levels use CPU interrupt vectors 8 - 15
as indicated in the above table.

10. Initialise and Test the Disk interface.
The initialise function of interrupt 19 in invoked followed by the disk test (see 2.2.12).
11. Keyboard Self Test.

The Keyboard microcontroller returns 0AAh upon successful completion of its power-up self test (See
2.2.13).

12. Initialise the 8259 Interrupt controller.

Enable 8259 interrupt controller on levels 0 (8253 counter 0), 1 (keyboard scan code receiver) and 6
(765 floppy disk controller). All other 8259 interrupt levels are masked.

13. Display the ROS sign-on message.

During power-up the ROS checks the RTC. After the sign-on message has been displayed, the ROS
checks if the date is reasonable, thatis, other than 1980. If so then the last startup and current date are
considered valid and the time and date of last switch-on are displayed. If a date of 1980 is detected itis
assumed thattime and date are invalid and warning messages to "Please Set Time and Date" and "Fit
new batteries" are output.

14. Enable the NMI.

If a NMl occurs the default ROS interrupt handler displays a RAM parity error message and hangs the
system. This condition can only be rectified by switching the machine off.

15. Initialise all external ROMs.

The ROS checks for external ROMs between addresses C0000 and F4000 in 800h (2k) byte
increments. An external ROM which conforms to the following specification will be initialised by the
ROS:

1. The first two bytes contain the hexadecimal value 55AA.

2. The next two bytes contain the size in 512 (1/2K) byte increments.
3. The next byte is the initialization routine entry point.

4. The LS byte of the byte sum of the ROMis zero.

When a ROM conforming to this specification is located then the initialization entryis called.

If the checksum test fails then an error message is displayed and initialization is not called.
17. System Clock initialization.

After all tests have been run the ROS sets up the 32-bit system clock location in RAM (at 046Ch) by
reading the RTC time and converts this to the number of system clock interrupts since midnight. (See
section 2.3.3).

18. Diskette Bootstrap.

The ROS attempts to load the bootstrap sector (from drive A, side 0, track 0, sector 1) into memory at
07CO00h. If the bootstrap sector loads successfullyitis given control (far jump to segment 0000 offset
7CO00). If after 10 retrys the bootstrap sector cannot be loaded then the ROS displays a message
prompting the user to insert a system disk into drive Aand press a key. The ROS then waits for the key
press and repeats the bootstrap procedure.

2.2 Power-Up Self Tests

On Power-Up or following a system reset, the ROS performs a series of self tests on the hardware to
verify proper operation. When a test failure occurs, the ROS displays an error message on the primary
displaydevice and the system is locked up. The keyboard interface is treated differently in that the ROS
repeats keyboard selftest until itis successful.

The ROS executes all self tests except when the option links (LK1 - LK3) are all set (See section
1.10.3), the ROS will only run the keyboard interface test and the disk test. If either of these two tests fail
an error message is displayed but the error is ignored. This allows the system to be brought up for
diagnostic testing.

When a softreset (Control, Aitand Del) is issued the ROS performs all the self tests exceptthe system
RAM (User Area RAM) test and the video RAM test. The program calling the ROS initialization after a soft
reset must store the value 1234h in system location 0:478h and this value notifies the ROS firmware
that a soft reset was requested. When the 1234h value is recognized a full hardware resetis performed
and this will reset all external peripheral cards in the expansion bus. Aspecial entryflag value, 1235h
performs the ROS Power-Up testing as described above butinhibits the full hardware reset from
occurring. The ROS sets the contents of the word location at 0:488 to 1234h when it completes its
testing.

2.2.1 Test Procedure.

Upon entry the ROS performs the necessaryfunctions to start video output by the IDAto the LCD
(regardless of the configuration switches), and then stores the message ("Please wait") on the firstline
of the screen to indicate that selftesting is in progress and as each successive selftestis started a dot
is displayed on the screen.

The tests are run in the following order:

1. ROS checksum test.
2. Direct Memory Access (8237) Controller test.

3. Programmable Interval timer (8253) test.
4. Programmable Peripheral Interface (8255) test.
5.Real Time Clock (HD146818) test.
6. Asynchronous Communications Element (8250) test.
7. Parallel Printer Port test.
8. System RAM test.
9. Programmable Interrupt Controller (8259) test.
10. Disk test.
11. Keyboard Interface test.

The ROS uses the stack during the Disk test, the Keyboard interface test and the Programmable
Interrupt Controller test. All other self tests are executed without using either the stack or any RAM
variables.

2.2.2 Test Methods.

Most of the device diagnostic tests consist of a Data Path test and a Waveform test as described below:
Data Path test.

The data path test checks the read/write path between the CPU and a particular device. A pattern
is written to a device and then read back to verify the integrity of the data path. The patterns are as
follows:

All zeros.
All ones.
Sliding single bitand complement across 8 bits.

Waveform test.

The waveform test detects address decoding errors in a hardware device. The waveform test
consists of selecting a specific address in a device, writing a test pattern (usually OFFFFh) and
verifying that the same pattern can be read back. The waveform testis done in both ascending
sequential order (upwards) and descending sequential order (downwards) in order to check that
the address decoding logic works correctly.

2.2.3 ROS Checksum Test.
All bytes in the Resident Operating System ROM are summed and then checked that the least

significant byte of the sum is zero. If the check fails then an error message indicating faulty ROM
checksum is displayed.

2.2.4 Direct Memory Access Controller test.

The upwards/downwards waveform testis used to confirm that the registers in the DMA controller chip
can be addressed. Anyfailure will cause the faulty DMA error message to be displayed.

2.2.5 Programmable Interval Timer test.

The fiest 8253 testis a read/write data path test to counter 2 followed by a check that counter 1 counts at
the correct rate. If either test fails an interval timer error message is displayed.

2.2.6 Programmable Peripheral Interface test.

The 8255 PPl tests consists of a data path test on each of the two system status channels (Status-1
and Status-2). The 8253 PIT OUT2 (Status-2) bitis also checked for proper operation. If either test fails
the faulty real time clock error message is displayed.

2.2.7 Real Time Clock test.

The RTC seconds counter is tested to be counting at the correct rate. Next a data path test on the
checksum byte of the NVR is run (and the checksum byte is restored). If either test fails the faulty real
time clock error message is displayed.

2.2.8 Asyncronous Communications Element test.

This test confirms that the transmitter and receiver of the 8250 (i. e. the system serial port) are
functioning correctly (at least in diagnostic mode).

The 8250 is configured in loop mode, 9600 baud, 8 data bits, 1 stop bitand no parity. Two test patterns
are transmitted and the received patterns are checked. The status register is monitored for no parity,
framing or overrun errors. If either received pattern does not equal the sent pattern or an error is setin
the status register the faulty system serial port error message is displayed.

2.2.9 Printer Parallel Port test.

Adata path testis performed on the printer data latch. If anyincorrect test pattern is returned, the faulty
printer port error message is displayed.

2.2.10 System RAM test.

The amount of System (User Area) RAMis determined using the procedure described in section 2.1
(This should always produce 640K as the answer). The data path testis run on all available RAM
followed by an upwards/downwards waveform test. If either test fails the faulty RAM error message is
displayed.

2.2.11 Programmable Interrupt Controller test.

The 8259 tests consist of a data path test on the interrupt mask register and an interrupt acknowledge
test to confirm that interrupts can occur and be serviced. If the test fails the faulty interrupt controller
message is displayed.

2.2.12 Disk test.

The disk test attempts to establish whether the drives fitted to the system seek correctly. The test moves
the read/write heads to track 10 on each drive. The ROS does not verify that the correct track was
attained. If any errors are reported then a floppy disk controller error message is displayed.

2.2.13 Keyboard Interface test.

Upon power-up or reset, the keyboard self testis performed by the keyboard controller firmware. The
keyboard returns keycode 0AAh to signify the successful completion of its testing. If any key code other

than 0AAh is returned the keyboard error message is displayed amd keyboard resetis issued (which
reruns the keyboard self test). The Keyboard testis repeated until the keyboard test passes. When test
pass is received, the error message is removed from the screen and the testis exited as normal.
During the keyboard test a short beep is sounded every five seconds to indicate that the testis in
progress.

2.3 ROS Interrupts.

The first 32 interrupt vectors are initialised by Power-Up initialization. The software IRET and hardware
HWIRET entries are dummy routines which require no entry or exit conditions and are not detailed here.

Any application program which replaces a default interrupt vector with its own entry point must not
invoke any ROS interrupts from within its own interrupt service routine.

2.3.1 Interrupt 2: Parity Error (NMI).

The Interrupt 2 routine deals with system RAM parity error. The screen is switched to the default display
mode, cleared and a RAM parity error message is displayed. The machine cannot be used until the
power switch is cycled off and on again.

This routine does not use RAM for stack or program variables.

An application program which makes use of the 8087 NDP must supply an interrupt 2 service routine
for the 8087 NDP.

CPU registers are used as follows:

Entry:

No conditions.
Exit:

Doesn't happen.

2.3.2 Interrupt 5: Print Screen.

The Interrupt 5 routine dumps the screen in character mode to the primary printer port. Since the screen
dump is character based, attempting to dump graphic pictures to the printer may produce incorrect
results. Characters that cannot be read back from the screen in graphics mode (using the video
interrupt 16 read character function) are printed as spaces.

If a screen printis alreadyin progress the interrupt takes no action.

The Print Screen Status variable (at address 00500) is setto 1 while the screen dump is in progress.
When complete the variable is set to zero. If the screen dump is abandoned due to printer port timeout,
the variable is setto 255.

CPU registers are used as follows:

Entry:
No conditions.
Exit:
All flags and registers preserved.

2.3.3 Interrupt 8: System Clock Interrupt.

The interrupt 8 routine is invoked by the system clock (counter 0 of the 8253). The default ROS routine
does the following:

1. Increment the 32-bit system clock count held in RAM (location 0046C). If the clock reaches the 24
hour time (0001855000h) then the countis reset to zero and the 24 hour flag (location 00470) is
setto OFFh.

2. If the least significant byte of the system clock countis zero then the currenttime and date in the
real time clock (RTC) is copied to the NVR. The time thatis last copied from the RTC before the
machine is switched off is displayed when the machine is next switched on.

3. If the disk motor timeout countis not zero then itis decremented by one. If the count reaches zero
all the drive motors are turned off.

4. Invoke interrupt 28. Application programs that want to be interrupted by the system clock should
use interrupt 28.

CPU registers are used as follows:

Entry:
No conditions.
Exit:
All flags and registers preserved.

2.3.4 Interrupt 9: Keyboard Interrupt.

The ROS Keyboard hardware interrupt reads a key code from the keyboard interface, translates the key
code into a 16-bit key token using an internal translation table and the key token is putinto the key token
buffer. If the buffer is full the keytoken is discarded and a bleep is output on the speaker. The key
tokenization for the most part consists of the high byte being the key number and the lower byte being
the ASCII for the keycap. Those keys for which there is no ASCII equivalent the token consists ofa
unique high byte value with the low byte cleared. In the case of the new 101 /102 key keyboard there are
quite a few extra keys. There are extra [ALT] and [CTRL] keys as well as a dedicated cursor keypad.
These keys basically return the exact same keycode as the originals except that preceding the keycode
an extra one is sentto signify that the key pressed is one of the new keys.

Entry:
No conditions.
Exit:
All flags and registers preserved.

The ROS Keycode translation table is as follows (all values are hexadecimal) and the keynames are
the USAversions:

Key Code|Key Name Normal|[Num Lock|ALT CTRL |SHIFT
01 ESC 011B |01FO 011B [011B [N/A
02 1and! 0231 (7800 Ignored(0221 |[N/A
03 2and @ 0332 |7900 0300 (0340 [N/A
04 3and # 0433 |7A00 Ignored|0423 |N/A
05 4and $ 0534 (7B0O Ignored|0524 |N/A
06 5and % 0635 |7C00 Ignored|0625 |N/A

Key Code
07
08
09
OA
0B
0C
0D
OE
OF
10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F
20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31
32

KeyName
6 and A
7 and &
8and*
9 and (

TO-Cc<-d4xms=sO %

[and {

SEF
T 32
I_ A

rX«IoOmTmoow>r

;and :
"and "
#and ~
LEFT SHIFT
\and |

S ZIm <O XN

Normal
0736
0837
0938
0A39
0B30
0C2D
0D3D
OEO8
O0F09
1071
1177
1265
1372
1474
1579
1675
1769
186F
1970
1A5B
1B5D
1CO0D
Ignored
1E61
1F73
2064
2166
2267
2368
246A
256B
266C
273B
2827
2960
Ignored
2B5C
2C7A
2D78
2E63
2F76
3062
316E
326D

Num Lock
7D00
7EQ00
7F00
8000
8100
8200
8300
OEFO
A500
1000
1100
1200
1300
1400
1500
1600
17000
1800
1900
1AFO
1BFO
1CFO
Ilgnored
1E00
1F00
2000
2100
2200
2300
2400
2500
2600
27F0
28F0
29F0
Ilgnored
2BFO
2C00
2D00
2EQ0
2F00
3000
3100
3200

ALT
071E
Ilgnored
Ilgnored
Ignored
Ilgnored
0C1F
Ilgnored
OE7F
9400
1011
1117
1205
1312
1414
1519
1615
1709
180F
1910
1A1B
1B1D
1COA
1E01
1F13
2004
2106
2207
2308
240A
250B
260C
lgnored
Ilgnored
Ilgnored
Ilgnored
2B1C
2C1A
2D18
2EQ3
2F16
3002
310E
320D

CTRL
075E
0826
092A
0A28
0B29
0CS5F
0D2B
OEO8
OFO00
1051
1157
1245
1352
1454
1559
1655
1749
184F
1950
1A7B
1B7D
1CO0D
Ignored
1E41
1F53
2044
2146
2247
2348
244A
254B
264C
273A
2822
297E
Ignored
2B7C
2C5A
2D58
2E43
2F56
3042
314E
324D

SHIFT
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A

Key Code|Key Name Normal[Num Lock|ALT CTRL |SHIFT
33 ,and < 332C |[33F0 Ignored|333C |N/A
34 .and > 342E |[34F0 Ignored|343E [N/A
35 /and ? 352F |[35F0 Ignored|353F [N/A
36 RIGHT SHIFT [Ignored|ignored |Ignored|---- N/A

* 37 * 372A |37F0 9600 ([372A |[N/A
38 ALT Ignored|---- Ignored|lgnored{N/A
39 SPACE 3920 (3920 3920 [3920 |N/A

* 3A CAPS LOCK |Ignored|Ilgnored [Ignored|lgnored|N/A
3B F1 3B00 |6800 5E00 (5400 [N/A
3C F2 3C00 (6900 5F00 (5500 [N/A
3D F3 3D00 ([6A00 6000 [5600 |N/A
3E F4 3E00 ([6B00 6100 [5700 |N/A
3F F5 3F00 ([6CO00 6200 |[5800 |N/A
40 F6 4000 |6DO0O0 6300 (5900 [N/A
41 F7 4100 |6EO00 6400 |[5A00 |N/A
42 F8 4200 |6F00 6500 [5B0O0 |N/A
43 F9 4300 |7000 6600 [5C00 |N/A
44 F10 4400 |7100 6700 (5D00 |[N/A
*45 NUMLOCK Ignored|lgnored [PAUSE |Ignored[N/A

* 46 SCROLL LOCK]Ignored|lgnored [lgnored|lgnored|N/A
47 KeyPad 7 4700 |lgnored |7700 4737
48 KeyPad 8 4800 |[Ignored |8DO00 4838
49 KeyPad 9 4900 |Ilgnored (8400 4939
4A Key Pad - 4A2D |lgnored |8EO0O 4A2D
4B KeyPad 4 4B00 |Ilgnored |[7300 4B34
4C KeyPad 5 Ignored|Ilgnored [8F00 | 4C35
4D Key Pad 6 4D00 (Ilgnored |7400 |[Note 1 [4D36
4E Key Pad + 4E2B |lgnored |9000 | 4E2B
4F Key Pad 1 4F00 |lgnored |7500 4F31
50 Key Pad 2 5000 |[Ignored [9100 5032
51 KeyPad 3 5100 [Ignored |7600 5133
*52 KeyPad 0 5200 |[Ignored |lgnored 5230
53 Key Pad . 5300 |[Ignored |lgnored 532E
54 Alt PrtScr Ignored|Sys Req |lgnored|ignored|N/A
55 Undefined Ignored|lgnored |Ignored|ignored|lgnored
+ 56 \and | 565C |[Ignored |lgnored|567C |N/A
57 F11 8500 |8B00 8900 8700 |N/A
58 F12 8600 |8C00 8A00 (8800 |[N/A
59 -7F |Undefined Ignored|lgnored |Ignored|ignored|lgnored
Extra Keys and their tokens

EO,1C Enter EOOD |[A600 EOOA |EOOD ([N/A
EO,1D Right CTRL Ignored|ignored |lgnored|ignored|ignored
EO,35 KeyPad / EO2F |A400 9500 ([EO2F |[N/A
E0,38 Right ALT Ignored|lgnored [Ignored|ignored|N/A

The following set of keys are the dedicated cursor keys. They produce different sequences of key codes
depending on state of the [SHIFT] and [NUM LOCK] keys. In the base and [SHIFT + NUM LOCK] state
the key sequence consists of the keycode expected from the corresponding key on the numeric keypad
(with the [NUM LOCK] off) preceded by the extra key keycode (ie. EOh). With only [NUM LOCK] on the key
sequence consists of the base sequence preceded by EOh,2Ah so there now are four keycodes in the
sequence. The last variation is if the [SHIFT] key onlyis down. In this case the sequence as shown in
the base case is preceded by EOh,AAh and again there are four keycodes in the sequence. Al
sequences of keycodes are treated in the same way by the ROS.

E0,46 |Prt Scrn{lgnored|ignored|lgnored|ignored|N/A
E0,47 [Home [47EO0 |9700 |77EO0 [47EOQ |N/A
EO0,48|1 48E0 (9800 |[8DEO [|48EO0 |N/A
EO0,49|PgUp |49E0 |9900 |77E0 |49EO0 |N/A
E0,4B|— 4BEO [9B00 |73E0 |4BEO ([N/A
E0,4D|— 4DEO [9D0O0 |74E0 |4DEO [N/A
EO,4F |End 4FEO [9F00 |[75EO0 |4DEO |N/A
E0,50 [— 50E0 [AOOO [91E0 [50EO0 [N/A
EO0,51|PgUp [51E0 |A100 |76E0 ([51EO0 |N/A
E0,52(Ins 52E0 |A200 |92E0 |[52E0 ([N/A
EO,53 |Del 53E0 |[A300 [93E0 [53E0 ([N/A

The last set of keys are classed as miscellaneous.

E0,37
CTRL or SHIFT Print Screen
EO0,2AE0,37
Print Screen
EO0,AAE0,35
Shift/ on keypad
E1,1D,45
Pause

Key codes marked with ™' cause special actions as explained below.

The key code marked '+'is handled by ROS but cannot be produced by the US (101 key) version of the
keyboard.

The table positions marked 'Ignored' are physically marked in the table by a value with the MS bit set
and this causes the keyboard processor to ignore these keystroke combinations.

Note 1: The Numeric keypad keys will produce a different token depending on the state of the [Num
Lock] and [Shift] keys. With [Num Lock] on and [Shift] down then Num Lock is cancelled and the Normal
column tokens are produced. With [Num Lock] off and [Shift] down then the tokens in the Num Lock
column are produced.

Note 2: Not all tokens listed in this table will be returned by the non-extended Get Key Token software
interrupt (Int 22); some are discarded and some are modified when returned to the calling software.
Refer to section 2.3.11 for complete details of the rules used when dealing with the extended keycodes
produced by the extended keyboard.

2.3.4.1 Special Key Actions.

Some keys or set of keys invoke a special action as detailed below. Unless otherwise stated they do not
resultin any key tokens being inserted into the buffer.

1. [Ctrl]+[Alt]+[Del]: Reset.
When reset is detected, a system hardware resetis issued. The power-up initialisation process is
entered but System RAM and video RAM tests are not run.

2. [Pausel].
The ROS waits for another key to be pressed (except [PAUSE]), thus suspending any application
thatis running.

3. [Ctrl]+[Pause]: Break.
When break is detected, interrupt 27 is invoked and the keyboard buffer is cleared. Key token
0000h is then inserted into the buffer.

4. [PrtScrn]: Print Screen.
When print screeen is detected interrupt 5 is invoked, the ROS print screen function. If this entry
pointis maintained screen dump will continue to work. Some operating systems such as CP/M
install a null pointer here. Typing [CtrI+PrtScrn] invokes printer echo mode whereby all keystrokes
are echoed to the printer. This mode can be toggled off by the same keystroke combination.
Printer echo mode can also be toggled using [Ctrl+P].

5. [Ins]: Insert Toggle.
Each time the Ins key (keycode 52) is received, exceptin Num Lock mode, the Ins key toggle bit
(bit 7 of RAMlocation 0:417) is inverted.

6. [Scroll Lock]: Scroll Toggle.
Each time the Scroll Lock key is pressed the scroll key toggle bit (bit 4 of RAM location 0:417) is
inverted. Note that Ctrl - Scroll Lock (break) does not flip the scroll toggle.

7. [Caps Lock]: Caps Lock Toggle.
Each time the Caps Lock key is pressed the Caps Lock toggle bit (bit 6 of RAM location 0:417) is
inverted.

8. [Num Lock]: Num Lock Toggle.
Each time the NUMLOCK keyis pressed the Num Lock toggle bit (bit 5 of RAMlocation 0:417) is
inverted. Note that pressing one of the keypad keys while a shift keyis down inverts the state of the
numlock and the token inserted into the buffer will be the opposite to that which Num Lock
indicates. (ie. Num Lock light off + [Shift] gives one of the keypad numeric keys).

9. [AIf]+[Numeric Key Pad 0 to 9]: Absolute Key Token.
When the [Alt] keyis held down, an absolute key token may be entered via the numeric keypad.
Pressing any other keyresets the absolute key token to zero (and inserts the associated Alt-key
token for the key pressed). When [ALT] is released the absolute key token modulo 256 is placed
into the keyboard buffer, unless the token is zero, in which case itis discarded.

10. [Alt], [Ctrl], [Shift], [Caps Lock] & [Num Lock].

The translation of various key codes into their respective tokens is affected by the current states of
these keys (which is stored in location 00417). The [Shift] key, while pressed, reverses the current
state of the Caps Lock and Num Lock. If more than one of Alt, Ctrl, Shift, Num Lock or Caps Lock
is active at one time then the order of precedence for key code translation is Alt, then Ctrl, then
Shift, then Caps Lock or Num Lock.

Caps Lock, when active, converts the key tokens for the lower case alphabetic keys (a - z) to their
upper case counterparts.

Note that some programs (such as KEYB) install their own entry points into the interrupt vectors and

these interrupt routines may exhibit different characteristics than those of the ROS routines described
here.

2.3.5 Interrupt 14: Floppy Disk Controller (OEh).

The ROS service routine for interrupt 14 sets bit 7 of the RAM DRIVE RESTORE FLAG, to indicate that
the Floppy Disk Controller interrupt has occurred.

CPU registers are used as follows:

Entry:
No conditions.
Exit:
All flags and registers preserved.

2.3.6 Interrupt 16: Video 1/0 (10h).

The ROS interrupt 16 service routine provides a set of routines for reading and writing characters in
alpha and graphics mode. In graphics mode the characters are constructed using a character matrix
table (see section 2.3.20). It also provides facilities for scrolling the screen up or down, reading and
writing pixels (graphics only) and reading the light pen.

CPU registers for Video Int 16 are used as follows:

Entry:
AH = Function Selector as follows:

0 - Set Video Mode.
1-Set Cursor Size.
2 - Set Cursor Address.
3 - Get Cursor Address.
4 - Get Light Pen Address.
5 - Set Display Page.
6 - Scroll Screen Up.
7 - Scroll Screen Down.
8 - Read Character and Attributes.
9 - Write Character and Attributes.
10 - Write Character only (OAh).
11 - Write Colour Select Register (0Bh).
12 - Write Pixel (OCh).
13 - Read Pixel (0ODh).
14 - Write Character in Teletype Emulation mode (OEh).
15 - Get Video Parameters (OFh).

All other registers as required by the function.

Exit:
If selector is greater than 15 then carryis set, else carryis clear.
All other flags and registers as specified by the function.

Alpha modes 0 and 1 require 2000 bytes of video RAM while alpha modes 2 and 3 require 4000 bytes

of the video RAM. The ROS takes advantage of all the video RAM available in alpha modes by
supporting multiple display pages. This means that application programs can setup a number of
display pages and switch them as required.

In general parameters passed to ROS routines are not checked and care should be taken when
choosing unusual parameters as unexpected results may occur. In particular be careful of boundary
conditions such as setting the top of the display window equal to the bottom of the display window (for
functions 6 and 7) effectively creating a one line display. In this instance the screen scrolling may not
perform as expected.

Int 16 Function 0: Set Video Mode.

CPU registers are used as follows:

Entry:
AH=0
AL = Mode Selector as follows:

0 - Alpha 25 Rows by 40 Columns.

1 -Same as Mode 0.

2 - Alpha 28 Rows by 80 Columns.

3 - Same as mode 2.

4 - Graphics 200 pixels by 320 pixels using palette 1.

5 - Graphics 200 pixels by 320 pixels using palette 2.

6 - Graphics 200 pixels by 640 pixels - 2 colours.

7 - Alpha 25 Rows by 80 Columns Monochrome.
Exit:

All flags and registers preserved.

In mode 4 palette 0 may be selected by writing the colour select register using Video Int 16 Function 11.
The definition of the palettes is contained in Section 1.11.2.1, Graphics Mode 1.

When mode 5 is selected it must be followed by a selection of palette zero (Colour select register - See
1.11.5.2) in order to enable palette 2.

If the default display mode indicates an external monochrome adapter, then mode 7 is selected
regardless of the mode in AL.

If the MS bit of System RAM variable location 0:412 is set (80h) then when a mode change into text
mode is setup the hardware LCD inverse bit will be setin the mode register and if the displayis the
internal LCD then the character output will be inverted as described in section 1.11.1.

To select the Video mode the ROS does the following:

1. Disable video output.

2. Resetthe Cursor Addresses for all pages to row 0 column 0.

3. Output the mode to the Video mode select register.

4. Reload the 6845 CRTC registers from the Video parameter table (which is supplied by interrupt
31).

5. Clear the video RAM. If an alpha mode is selected, the video RAM s filled with white space, i.e.
ASClI space (020h) and the default attribute byte (07 - white). The graphics mode fill is zeros.

6. If colour display then set up the Colour Select register (3D9h):

Set the border colour to the default background colour.
In graphics modes setintensified foreground colours.
In mode 6 (Graphics 640 Mode) set white foreground colour.

7. For text modes select page zero.
8. Setthe cursor size to start cursor from the video parameter table.
9. Enable video output.

Int 16 Function 1: Set Cursor Size.

This function is onlyrelevantin alpha modes as the hardware cursor is not supported in graphics
modes. It sets the start and end scan numbers of the cursor.

CPU registers are used as follows:

Entry:
AH =1
CH = Starting scan of cursorin range 0 to 63.
CL = Ending scan of cursorin range 0 to 31.
Exit:
All flags and registers preserved.

Note that values greater than 31 turn the cursor off. This is because bit 5 in the startregister is the 6845
cursor off bit.

Int 16 Function 2: Set Cursor Address.

This function sets the current row and column addresses of the cursor in the specified page.
CPU registers are used as follows:

Entry:
AH=2
BH = Page number for modes 0 to 3.
(Must be zero for all other modes.)
DH = Cursor Row Address.
DL = Cursor Column Address.
Exit:
All flags and registers preserved.

Refer to section 1.11.4 (BIOS Modes) for valid page numbers and page starting address details.
Int 16 Function 3: Get Cursor Address.

This function returns the current row and column address of the cursor in the specified page.
CPU registers are used as follows:

Entry:
AH=3

BH = Page number for modes 0 to 3.
(Must be zero for all other modes.)

Exit:

DH = Cursor Row Address.

DL = Cursor Column Address.

CH = Starting scan of cursor.

CL = Ending scan of cursor.

All flags and other registers preserved.

Refer to section 1.11.4 for valid page numbers and page starting address details.

Int 16 Function 4: Get Light Pen Address.

This function returns the address of the light pen.
CPU registers are used as follows:

Entry:
AH =4,
Exit:
If Light Pen switch set then
AH =1,
DH = Character Row address (0 to 24).
DL = Character Column address (0 to 79).
CH = Pixel Row address (0 to 199).
BX = Pixel Column address (0 to 639).
If Light Pen switch clear then

AH=1.
BX, CH & DX preserved.
Always

All flags and other registers preserved.
Int 16 Function 5: Set Display Page.

This function sets the active display page.
CPU registers are used as follows:

Entry:

AH=5.

BH = Page number to be displayed.
Exit:

All flags and registers preserved.

Refer to section 1.11.4 for valid page numbers and page starting address details.

Int 16 Function 6: Scroll Screen UP.

This function scrolls the active display page, or part of the active display page up a specified number of
lines.

CPU registers are used as follows:

Entry:
AH =6.
DH = Bottom Row of area to scroll.
DL = Right most Column of area to scroll.
CH = Top Row of area to scroll.
CL = Left most Column of area to scroll
BH = Attributes for blank lines scrolled onto the bottom of the scroll area.
AL = Number of lines to roll up.
If AL = 0 then blank the specified area.
If AL not zero then roll specified area up by the number of lines in AL.
If DH = CH then AL must be zero.
Exit:
All registers preserved.
Carryis clear and all other flags corrupt.

Scrolling always takes effect on the current active display page.
Hardware scrolling is not supported. Scrolling is achieved by copying areas of Video Display RAM.
In graphics modes blank lines are filled with zeros to display the current background colour.

Note this function will fail to operate properly if on entry CH equals DH and AL is not zero. This is also
true for all other compatible ROM environments.

Int 16 Function 7: Scroll Screen down.

This function scrolls the active display page, or part of the active display page down a specified number
of lines.

CPU registers are used as follows:

Entry:
AH=7.
DH = Bottom Row of area to scroll.
DL = Right most Column of area to scroll.
CH = Top Row of area to scroll.
CL = Left most Column of area to scroll
BH = Attributes for blank lines scrolled onto the top of the scroll area.
AL = Number of lines to roll down.
If AL = 0 then blank the specified area.
If AL not zero then roll specified area down by the number of lines in AL.
If DH = CH then AL must be zero.
Exit:
All flags and registers preserved.

Scrolling always takes effect on the current active display page.
Hardware scrolling is not supported. Scrolling is achieved by copying areas of Video Display RAM.

Note this function will fail to operate properlyif on entry CH equals DH and AL is not zero.

Int 16 Function 8: Read Character and Attributes.

This function reads the character and its associated attribute byte at the current cursor address in a
specified display page.

In graphics modes, the character pixel data is generated either from an internal character matrix table
for characters 0 to 127 or from an external character matrix table for characters 128 to 255, the address
of which is held in interrupt vector 31. See 2.3.20 for additional details.

CPU registers are used as follows:

Entry:
AH = 8.
BH = Page to read for alpha modes 0 to 3.
(Must be zero for all other modes.)
Exit:
AL = Character. (0 if no match found in Graphics Modes).
AH = Attributes byte. (Unchanged in graphics modes).
All flags and registers preserved.

Referto 1.11.1 and 1.11.2 for the definition of the character attributes bytes.

Int 16 Function 9: Write Character and Attributes.

This function writes a character (or a block of the same character) and its associated attribute byte to
the current cursor position in a specified display page.

In graphics modes, the character pixel data is generated either from an internal character matrix table
for characters 0 to 127 or from an external character matrix table for characters 128 to 255, the address
of which is held in interrupt vector 31. See 2.3.20 for additional details.

CPU registers are used as follows:

Entry:
AH=9.
AL = Character to write.
BH = Page to write for alpha modes 0 to 3.
(Must be zero for all other modes.)
BL = In alpha modes
Attributes of character.
In graphic modes
Write mode as follows:
Bit 7 = 0 for character overwrite mode.
Bit 7 = 1 for character XOR mode.
Bits 0 and 1 = required character colour (for modes 4 & 5 only).
CX=Repeat Count.
Exit:
All flags and registers preserved.

The repeat count specifies the number of consecutive locations to which the character and attributes
are written. In graphics modes all characters must fit on the current line.

In graphics mode if bit 7 of BL is set then the data for the specified character is exclusive ORed with the
data alreadyin the display RAM at the cursor address.

Int 16 Function 10: Write Character Only.

This function writes a character (or a block of the same character) to the current cursor positionin a
specified display page. In alpha modes the attribute bytes for all characters written remains unchanged.

In graphics modes, the character pixel data is generated either from an internal character matrix table
for characters 0 to 127 or from an external character matrix table for characters 128 to 255, the address
of which is held in interrupt vector 31. See 2.3.20 for additional details.

CPU registers are used as follows:

Entry:
AH =10 (0Ah).
AL = Character to write.
BH = Page to write for alpha modes 0 to 3.
(Must be zero for all other modes.)
BL = In alpha modes
BL is notused.
In graphic modes
Write mode as follows:
Bit 7 = 0 for character overwrite mode.
Bit 7 = 1 for character XOR mode.
Bits 0 and 1 = required character colour (for modes 4 & 5 only).
CX=Repeat Count.
Exit:
All flags and registers preserved.

The repeat count specifies the number of consecutive locations to which the character is written.

In graphics mode if bit 7 of BL is set then the data for the specified character is exclusive ORed with the
data alreadyin the display RAM at the cursor address.

Int 16 Function 11: Write Colour Select Register.

This function writes the CGA compatible Colour Select Register IRGB bits or the Palette select bits.
CPU registers are used as follows:

Entry:
AH =11 (0Bh).
BH = Function select:
Zero - Set the IRGB bits (3-0) as specified by BL.
Non Zero - Set the Palette (0 or 1) as specified by BL.
Exit:
All flags and registers preserved.

Changing the palette number (BH non-zero) only has effectin modes 4 and 5 (320 pixel graphics
mode). Refer to section 1.11.3 for further details.

Int 16 Function 12: Write a Pixel.

This function writes an individual pixel (only valid in graphics modes).
CPU registers are used as follows:

Entry:
AH =12 (0Ch).
DX = Pixel Row (0 to 199)
CX=Pixel Column (0 to 639)
AL = Write Mode:
Bit 7 = 0 for character overwrite mode.
Bit 7 = 1 for character XOR mode.
Bits 0 & 1 = Character Colour for 320 graphics modes.
Exit:
All flags and registers preserved.

The pixel colour specified in AL should be in the range 0 to 3 in modes 4 and 5 (graphics 320 pixel
mode) and in the range 0 to 1 for mode 6 (graphics 640 pixel mode).

Int 16 Function 13: Read a Pixel.

This function is used for reading an individual pixel (onlyin graphics modes).
CPU registers are used as follows:

Entry:
AH =13 (0Dh).
DX = Pixel Row (0 to 199)
CX=Pixel Column (0 to 639)
Exit:
AL = Colour of the specified pixel.
All flags and other registers preserved.

Int 16 Function 14: Write in TTY Emulation Mode.

This function writes the specified character in Teletype emulation mode at the current cursor address in
the active display page.

CPU registers are used as follows:

Entry:
AH =14 (OEh).
AL = Character to write.
BL = In alpha modes
BL is notused.
In graphic modes
Write mode as follows:
Bit 7 = 0 for character overwrite mode.
Bit 7 = 1 for character XOR mode.
Bits 0 and 1 = required character colour (for modes 4 & 5 only).

Exit:
All flags and registers preserved.

Upon completion of the write the cursor column is incremented by one. If the column address is greater
than the line length then the column address is setto zero and the cursor row address is incremented
byone.

If the incremented row address is greater than the last visible line then itis decremented to its original
value and the entire page is scrolled up one line. In alpha modes the line added to the bottom of the
page is cleared to spaces with the attributes the same as the first character in previous line. In graphic
modes the bottom line is cleared to zeroes.

The following display characters are executed rather than displayed symbolically:

BEL (07h)
Sounds a short (bleep) tone on the speaker.

BS (08h)
Decrements the cursor column one character position unless the column is already zero in which
case itis ignored.

CR (0Dh)
Sets the cursor column address to zero.

LF (OAh)
Increments the cursor row address byone and follows the scroll up procedure as detailed in the
paragraph above.

All other control characters are displayed.
Int 16 Function 15: Get Current Video Parameters.

This function returns the current Video Mode, the current display page and number of visible columns.
CPU registers are used as follows:

Entry:
AH =15 (OFh).
Exit:
BH = Current active display Page (or zero if in graphics modes or alpha mode 7).
AH = Number of visible columns (40 or 80).
AL = Currentvideo mode (0 to 7).

All flags and other registers preserved.

2.3.7 Interrupt 17: System Configuration (11h).

This software interrupt returns the current system configuration status ad defined in RAM locations
0:410 and 0:411 hex(see section 2.4).

CPU registers are used as follows:

Entry:
No conditions.
Exit:

AX = System Configuration status:

Bit(s) |Function

14 & 15[Number of printers (1-3).

13 Not used.

12 Setif an optional games adapter is fitted.
11 Always zero.

9 & 10 |[Number of serial interfaces (1 or 2).

8 Not used.
7 Always zero.
6 Setif second floppy disk drive is fitted.

4 &5 [Defaultdisplaymode (DDM).
2&3 |Always set.
1 Setif 8087 NDP is installed.
0 Always set.

All flags and other registers preserved.

Section 1.8.2 (Port A - Status-1 Input) contains the default mode states as defined in the DDM1 and
DDMO bits.

2.3.8 Interrupt 18: Memory Size (12h).
This software interrupt returns the system RAMssize as held in system locations 0:413 and 0:414 hex.
CPU registers are used as follows:

Entry:
No conditions.

Exit:
AX=Number of 1K memory blocks fitted.
All flags and other registers preserved.

2.3.9 Interrupt 19: Disk 1/0 (13h).

This software interrupt provides disk read, write, verify, and format functions for the drives fitted to the
standard floppy disk controller.

In actual practice by the time the MS-DOS operating system has been loaded and an applications
program is activated, the DOS startup process will have saved the ROS's interrupt vector (from location
0:4Ch) and installed its own entry vector. DOS does this so thatit can correct for such conditions as
DMA over a 64K segment boundary and it will break this sort of I/O requrest into a number of smaller I/O
requests. In addition anyinstalled hard disk will have 'chained' itself into the interrupt 19 vector so that
requests with the MSB of the drive number set can be serviced by its ROM based hard disk I/O routines
(usuallyin the C8000h address range). In general the call parameters for the hard disks are the same
as those described here for read and write, however there are a number of additional services provided
by the hard disk BIOS ROM's. The hard disk error return codes are also somewhat extended to the
floppy disk group documented here. The typical '‘compatible’ hard disk function selector list and errors
are documentedd following the ROS's functions.

CPU registers are used as follows:

Entry:
AH = Disk I/O Function selector:

0 - Initialise the disk sub-system.
1 - Return the status of the last operation.
2 - Read a number of consecutive sectors.
3 - Write a number of consecutive sectors.
4 - \erifya number of consecutive sectors.
5 - Format a track.
8 - Read Drive parameters.
21 - Read Drive Type (15h).
22 - Read Disk Change Status (16h).

Exit:
AH = Status Byte:

0 - Operation completed successfully.
1 - Incorrect function (or drive) specifier.
2 - Missing address mark error.
3 - Disk write protected (Write or Format commands only).
4 - Record not found.
8 - DMA overrun error.
9 - Attempted DMA over a 64K segment boundary.
16 - CRC error (10h).
32 - Floppy disk controller error (20h).
64 - Seek error (40h).
128 - Floppy disk controller timeout (Drive Not Ready) (80h).

All other registers as specified by the selected function.

For all disk functions the Carry Flag (CY) will be clear if no error else itis setif an error (and AH = error
number). All other flags are corrupt.

For all disk functions except 0 & 1 drive number (DL) is checked and if greater than maximum drive
number the function is rejected and return status is setto 1 (AH=1) and carryis set.

Media changed error status is only applicable to operations which transfer information to and from the
magnetic media. Itis derived using the following procedure: Before performing the I/O operation the
selected disk drive's change line status is checked. If false then the I/O operation carries on as normal.
If, however the change line is active then the ROS attempts to clear the change line byissuing a step
pulse. If the change status clears then there is media installed and the door is closed and the I/O
operation terminates by reporting that change line was detected. (AH = 06). If however the change line
remains true then either the door is open or there's no diskette installed (or both) and in this case a
timeout error (AH = 128) is returned.

Disk Function 0: Initalise Disk Sub-System.

This function performs a total initialisation of the disk interface as follows:

1. Reset the FDC (Floppy Disk Controller).
2. Re-configure the FDC parameters to those specified in the disk parameter table (see interrupt
30).

CPU registers are used as follows:

Entry:
AH =0.

Exit:
AH/Flags = Status as specified above.
All registers preserved.

When an error is returned by any other disk I/O function, the Initialise Disk function should be called
prior to the next disk I/O operation.

Disk Function 1: Return Last Status.

This function returns the status byte and Carry Bit of the last disk I/O operation.
CPU registers are used as follows:

Entry:
AH=1.

Exit:
AH/Flags = Status of last disk I/O as specified above.
All other registers preserved.

Disk Function 2: Read Sector.

This function reads a number of consecutive sectors. All sectors to be read must be on the same track.
CPU registers are used as follows:

Entry:
AH =2.
DH = Head Number (0 or 1).
DL = Drive Number (0 or 1).
CH =Track Number.
CL = Starting Sector Number.
BX = Offset Address of Read Data Buffer.
ES = Segment Address of Read Data Buffer.
AL = Number of Sectors to Read.
Exit:
AH/Flags = Status as specified above.
AL = Number of Sectors successfully read.
(Corruptif Timeout error.)
All other registers preserved.

Disk Function 3: Write Sector.

This function writes a number of consecutive sectors. All sectors to be written must be on the same
track.

CPU registers are used as follows:

Entry:
AH = 3.
DH = Head Number (0 or 1).
DL = Drive Number (0 or 1).
CH = Track Number.
CL = Starting Sector Number.
BX = Offset Address of Write Data Buffer.
ES = Segment Address of Write Data Buffer.
AL = Number of Sectors to Write.
Exit:
AH/Flags = Status as specified in 2.3.9.
AL = Number of Sectors successfully written.
(Corruptif Timeout error.)
All other registers preserved.

Disk Function 4: Verify Sector.

This function verifies a number of consecutive sectors. All sectors to be verified mustbe on the same
track.

CPU registers are used as follows:

Entry:
AH =4,
DH = Head Number (0 or 1).
DL = Drive Number (0 or 1).
CH = Track Number.
CL = Starting Sector Number.
AL = Number of Sectors to \erify.
Exit:
AH/Flags = Status as specified above.
AL = Number of Sectors successfully verified.
(Corruptif Timeout error.)
All other registers preserved.

Since the verification process is halted upon the first occurrence of an error, AL represents the number
of sectors successfully verified prior to the occurrence of an error or total sectors verified if no error.

Disk Function 5: Format Track.

This function formats an entire track.
CPU registers are used as follows:

Entry:
AH =5.
DH = Head Number (0 or 1).
DL = Drive Number (0 or 1).
CH = Track Number.
BX = Offset Address of Format Buffer.
ES = Segment Address of Format Buffer.

Exit:
AH/Flags = Status as specified above.
All other registers preserved.

The format buffer contains four bytes of information for each sector on the track:

1. Track Number.

2. Side Number.

3. Sector Number.

4. Sector Size Code:
0 - 128 bytes / Sector.
1 - 256 bytes / Sector.
2 - 512 bytes / Sector.
3 - 1024 bytes / Sector.

The gap length, filler byte and sectors per track required by the FDC Format command are obtained
from the DPT (See Disk Parameter Table - Section 2.3.20).

Disk Function 8: Read Drive Parameters

This function returns the floppy disk drive parameters.
CPU registers are used as follows:

Entry:
AH = 8.
DL = Drive Number (0 or 1).
Exit:
AX=0
DH = Number of Heads - 1. (1)
DL = Number of Drives installed. (1 or 2)
CH = Number of Tracks - 1. (79)
CL = Number of Sectors per Track. (9)
ES:DI = 20-bit pointer to Disk Parameter Table for the drive.
Flags corruptand CY clear.
All other registers preserved.

Disk Function 21: Read Drive Type

This function returns the floppy disk drive type.
CPU registers are used as follows:

Entry:
AH =21 (15h).
DL = Drive Number (0 or 1).
Exit:
AH = 2 (Diskette with change line.)
Flags corruptand CY clear.
All other registers preserved.

Disk Function 22: Read Disk Changeline.

This function returns the drive changeline status.
CPU registers are used as follows:

Entry:
AH =22 (16h).
DL = Drive Number (0 or 1).
Exit:
AH =0 if change line not active & CY clear.
6 if change line active & CY set.
Flags corruptand CY as above
All other registers preserved.

Note that this function does not clear the change line signal. An I/O function must be performed to clear
change line active.

Hard Disk Call parameters and registers.

As explained in the beginning of the ROS's floppy disk Int 19 calls, the 'compatible' hard disk expansion
slot ROM supports a register interface similar to the floppy disk I/O but with extended functions required
for the hard disk environment. This section gives the setup registers for this ‘compatible' hard disk /O
call.

CPU registers are used as follows:

Entry:
AH = Hard Disk I/O Function selector:

0 - Reset Controller.
1 - Return the status of the last operation.
2 - Read a number of consecutive sectors.
3 - Write a number of consecutive sectors.
4 - \erifya number of consecutive sectors.
5 - Format a track.
6 - Format a track with bad sector markers.
7 - Format the entire drive.
8 - Return drive parameters.
9 - Setdrive parameters.
10 - Read Long.
11 - Write Long.
12 - Seek to Track.
13 - Reset Controller (Alternate Entry).
14 - Read Sector Buffer.
15 - Write Sector Buffer.
16 - Test Drive ready.
17 - Recalibrate Seek.
18 - Ram Diagnostic.
19 - Drive Diagnostic.
20 - Controller Diagnostic.
22 - Park Heads over the landing zone.

Exit:
AH = Status Byte:

0 - Operation completed successfully.
1 - Incorrect function (or drive) specifier.
2 - Missing address mark error.
4 - Record not found.
7 - Drive initialization failure.
8 - DMA overrun error.
9 - Attempted DMA over a 64K segment boundary.
11 - Bad Track marker detected (0Bh).
16 - ECC error (10h).
17 - ECC data corrected (11h).
32 - Hard disk controller error (20h).
64 - Seek error (40h).
128 - Disk controller timeout (Drive Not Ready) (80h).
187 - Undefined error occurred (BBh).
255 - Read Status Failure (FFh).

The register call parameters for the function selections are very similar to the equivalent floppy disk 1/0
calls and are typically as follows:

Function Selector

AH: 0 - 20 & 22 (as per the table above)
Sector Count

AL:1-n. (17 Sectors / Track - typical)
Interleave Factor

AL: 1 - 16 Typically 3 to 7 (for the formatting calls)
Drive Number

DL:80h - FFh (Drive C:is 80h, D:is 81h ... efc).
Sector Number

CL:1-17 (Lower 6 bits of CL).
Head Number

DH: 0 - n (Typically 3 for 20MB drives with 4 heads).
Cylinder Number

CH: 0-1023 (8 LS Bits and 2 additional MS bits in the upper 2 MS bits of CL).
Buffer Address

ES:BX--> Segment:Offset value.

Exit:
AH: Return status as listed in the above table.
CF: Carry Flag Clear - No errors. (AH = 0)
Carry Flag Set - Error ccode in AH.

When Drive parameters are requested (Function 8) the return registers are as follows:

Hard disk drive count
DL.(1ton)
Maximum Head Number
DH. (0 to n-1)
Sectors per Track
CL. (bits 0 - 5)

Maximum Cylinder Number
CH. (10 bits: 8 LSBs in CH and 2 MS bits in the 2 upper bits of CL).

Cylinders and heads are numbered starting from zero, therefore the maxnumbers are 'n-1'. Sectors are
numbered starting at 1 and go to n which is typically 17 for the current'MFM technology. Newer 'RLL'
technology drives are beginning to appear with 26 sectors per track. The maximum track number is
actually one higher than the number reported but the highest track (termed the maintenance cylinder) is
reserved for diagnostic software maintenance tests so that applications cannot use this track for
storage.

Setting bad track markers is the method used to force DOS to setits 'Bad Sector Markers' during the
logical formatting process.

Hard disk formatting is a confusing subject because there are two formatting passes necessary before
the disk is ready for usage. The first formatting required is the low level (hard) formatting process which
writes the actual sector ID fields on the media. When a hard disk is being prepared for usage by MS-
DOS it must then be partitioned (using the FDISK utility) and finally 'Logically Formatted' the using the
MS-DOS FORMAT utility. MS-DOS formatting is merely a quick once over verify process to find any areas
which are not readable and for which it will mark the unreadable blocks in the DOS File Allocation Table
(FAT). MS-DOS then installs its file directory and FATs on the disk and reports disk size and bad sector
counts. The initial hard formatting process is a factory process which must take place in a controlled
environment (temperature and etc.) and the manufacturer's media defect listis entered and bad tracks
marked. User attempts to format hard disks are fraught with difficulties usually because of the media
defect problem whereby areas which may appear readable to MS-DOS's formatter but which fail to
retain certain data patterns contained in actual data written later and these will cause 'Unrecoverable
Read Error' reports to appear and frustrate all concerned. Itis generally a good idea to leave the
debugger 'g=C800:5' ROM formatter entry point to the experts.

2.3.10 Interrupt 20: Serial 1/0 (14h).

This software interrupt provides functions for character I/O to one of the two serial channels and
functions for configuring the serial parameters.

Two channels are supported, logical serial device 0 (COM1:) which is always configured and logical
serial device 1 (COM2:) which is optional. Power-up initialisation determines whether serial device 1 is
installed.

CPU registers are used as follows:

Entry:

AH = Serial I/O function selector:
0 - Initialise Serial Port.
1 - Write Character to Serial Port.
2 - Read Character from Serial Port.
3 - Return status of Serial Port.

DX = Logical Channel Number (0 or 1).

All other registers as required by the specified function.

Exit:
AX = Returned Status/Character as defined by the function.
All flags and other registers preserved.

If logical channel number is out of range (greater than 1) or is not fitted then the function is abandoned
and the timeout error status (bit 7 of AH) is returned and all other bits in AXare undefined.

The Logical Serial Device Timeout Count RAM variables (locations 0047C & 0047D) specify the time out
delay (in half seconds) used for channel timeout. See section 2.4.

Serial Function 0: Initalise Port.

This function performs a complete reinitialisation of a serial channel. Setting the Baud Rate, Data Bits,
Stop Bits and Parity.

CPU registers are used as follows:

Entry:
AH =0.
DX = Logical Channel Number (0 or 1).
AL = Hardware configuration:

Bit(s)[Function

5-7 |Baud Rate Code (0 -7).

4 Set for Even Parity/ Clear for Odd Parity.
Set Parity Enable.

Set for 2 Stop Bits / Clear for 1 Stop Bit.
Always set.

Set for 8 Data Bits/Clear for 7 Data Bits.

O =N W

Exit:
AH = 8250 Line Status register (See section 3.4).
AL = 8250 Modem Status register.
All flags and other registers preserved.

The Baud Rate code (bits 5 thru 7) is one of the following:

0 -110 Baud.
1-150 Baud.
2 - 300 Baud.
3 -600 Baud.
4 - 1200 Baud.
5-2400 Baud.
6 - 4800 Baud.
7 - 9600 Baud.

If the hardware flow control bitin the NVR default VDU mode byte is setthen RTS is raised true and
DTR is setfalse. Otherwise the current state of the control lines is preserved.

Serial Function 1: Send Character.
This function performs a character out sequence to the selected port. The character is output when CTS

and the 8250 Tx Holding Register Empty status is also true. If the character cannot be sent within the
time specified in the logical serial device timeout count RAM variable then the command is abandoned

and AH is returned with bit 7 set.
CPU registers are used as follows:

Entry:
AH=1.
AL = Character to be sent.
DX = Logical Channel Number (0 or 1).
Exit:
AH = 8250 Line Status register bits 0 to 6. Bit 7 is setif the channel timed out else bit 7 is clear
and the character was sent.

All flags and other registers preserved.
When this function is called, RTS is raised true.
Upon exit both the RTS and DTR control lines are left in their current state.

The Logical Serial Device Timeout Count RAM variables (locations 0:47C and 0:47D) specify the time
out delay (in half seconds) used for channel timeout.

Serial Sub-Function 2: Read Character.

This function attempts to read a character from the specified serial port. The character is notread until
both Data Ready (DR) and Data Set Ready (DSR) status bits are both true. If a character is not received
within the time specified by the logical device timeout count then the command is abandoned and
timeout status is flagged.

CPU registers are used as follows:

Entry:
AH = 2.
DX = Logical Channel Number (0 or 1).
Exit:
If character received from 8250 then
AL = Character received.
AH = Character status:

Bit(s)|Meaning

7-5 [Always '0".

4 Break status.

3 Setif framing error.
2 Set if parity error.
1

0

Setif overrun error.
Always '0'.

If logical channel timed out then
AH =080h (bit7 =1).
Always
All flags and other registers preserved.

If the character is received with no errors then AH = 0 on exit.
Upon entry, if no character is available at the serial port DTR is setin the Modem Control Register.

If logical channel number is out of range or is not fitted then the function is abandoned and the timeout
error status (bit 7 of AH) is returned and all other bits in AXare undefined.

The Logical Serial Device Timeout Count RAM variables (locations 0:47C and 0:47D) specify the time
out delay (in half seconds) used for channel timeout.

Serial Function 3: Get Channel Status.

This function returns the status of the specified logical channel.
CPU registers are used as follows:

Entry:
AH = 3.
DX = Logical Channel Number (0 or 1).
Exit:
AH = 8250 Line Status register (See section 3.4).
AL = 8250 Modem Status register.
All flags and other registers preserved.

All flags and other registers preserved.

If logical channel number is out of range or is not fitted then the function is abandoned and the timeout
error status (bit 7 of AH) is returned and all other bits in AXare undefined.

2.3.11 Interrupt 22: Keyboard 1/O (16h).

This software interrupt provides access to the keyboard buffer and the current toggle status.
CPU registers are used as follows:

Entry:
AH = Keyboard I/O function selector.

0 - Get key token from the keyboard buffer.
1 - Return keyboard buffer status.
2 - Return current key toggle and key States.
5 - Insert token into keyboard buffer.
16 - Get extended key token from the keyboard buffer (10h).
17 - Return extended keyboard Buffer status (11h).
18 - Return extended control states (12h).

Exit:
If function selector out of range then
AH =AH - 18.
If function within range then
All flags and registers as specified by function.

Keyboard I/0 Function 0: Get Key Token.

Return the next non-extended key token from the key token buffer. If no non-extended key token is
available then wait until a key token is available. If an extended key token is encountered during the
token search itis discarded. The key token search is carried out as follows:

If high byte of the token equals 00
then return the token. (Alt keypad token)
If high byte of the token is greater than 84h
then discard the token.
If low byte of the token equals FOh
then discard the token.
If low byte of the token equals EOh
then set the low byte 00h and return entry.

All other entries are returned unchanged except for:

= EOODh (Key Pad - Enter) translated to 1CODh (Enter).
= EO2Fh (KeyPad - Slash) translated to 352Fh (Slash).

CPU registers are used as follows:

Entry:
AH =0.
Exit:
AX = Key Token.
All flags and other registers preserved.

Keyboard I/0 Function 1: Return Keyboard Buffer Status.

Test whether the key token buffer is empty. If it is not empty return the next key token to be taken out of
the buffer without removing it from the buffer.

This sub-function uses the same process as sub-function 0 to determine whether there is a non-
extended key token in the keyboard buffer. Extended tokens are discarded in the key token search
process.

CPU registers are used as follows:

Entry:
AH=1.
Exit:
If key token buffer is empty then
Zero flag true.
AX corrupt.
If one or more tokens in buffer then
Zero flag false.
AX = next key token to be removed from buffer.
Always
Interrupts enabled.
All other flags corrupt.
All other registers preserved.

Keyboard I/0 Function 2: Return Shift States.

Return the current value of the shift states (from 0:417h).
CPU registers are used as follows:

Entry:
AH = 2.
Exit:
AL = Current shift states:

Bit(s)|Function (Set if key active)

Ins Toggle

Caps Lock Set

Num Lock Set

Scroll Lock Set

Alt Key Down (either Left or Right)
Ctrl Key Down (either Left or Right)
Left Shift Down

Right Shift Down

O =~ NWH~ OO N

All flags and other registers preserved.
Keyboard I/0 Function 5: Insert token into keyboard buffer.

Insert 16-bit key token into the keyboard buffer.
CPU registers are used as follows:
Entry:

AH =5.

CX=Token to be inserted into the buffer.
Exit:

AL = 0: Insertion Successful

AL = 1: Keyboard Buffer Full - Token discarded.
All flags and other registers preserved.

Keyboard I/0 Function 16: Get Extended Key Token.

Return the next key token from the key token buffer, if buffer empty then waits till one is available.
The key token translation process is as follows:

If low byte of the token equals FOh
then set the low byte 00h and return entry.

All other key tokens are returned unchanged.
CPU registers are used as follows:

Entry:

AH =16 (10h).
Exit:
AX = Key Token.
All flags and other registers preserved.

Keyboard I/0 Function 17: Return Extended Keyboard Buffer Status.

Test whether the key token buffer is empty. If itis not empty return the next key token to be taken out of
the buffer without actually removing it.

This sub-function uses the same process as sub-function 16.
CPU registers are used as follows:

Entry:
AH =17 (11h).
Exit:
If key token buffer empty then
Zero flag true.
AX corrupt.
If one or more tokens in buffer then
Zero flag false.
AX = next key token to be removed from buffer.
Always
Interrupts enabled.
All other flags corrupt.
All other registers preserved.

Keyboard /0O Function 18: Return Extended Shift States.

Returns two bytes relating to the state of system ram locations 417h, 418h and 496h which contain
keyboard status information.

CPU registers are used as follows:
Entry:

AH =18 (12h).
Exit:

AX = Current extended shift states:

AH Register -

Bit(s)|Function (Set if key active)
System Request (SysRq) Key
Caps Lock Active

Num Lock Active

Scroll Lock Active

Right Alt Key Down

Left At Key Down

Right Ctrl Key Down

-~ NW s OO N

Bit(s)
0

Function (Setif key active)
Left Ctrl Key Down

AL Register -

it(s)|Function (Set if key active)

Ins Toggle

Caps Lock Toggled

Num Lock Toggled

Scroll Lock Toggled

Alt Key Down (either Left or Right)
Ctrl Key Down (either Left or Right)
Left Shift Down

Right Shift Down

S =N ® s oo Nm
=

2.3.12 Interrupt 23: Printer 1/0 (17h).

This software interrupt provides access to the three printer channels.
CPU registers are used as follows:

Entry:
AH = Printer I/O Function selector:
0 - Send character to printer port.
1 - Initialise printer port.
2 - Return printer port status.
DX = Logical Channel Number (0 - 2).
Other registers as specified by function.

Exit:
AH = Printer Port Status (Bits 1 - 7):

Bit(s)[Function (Bit Set True)

Printer Idle.

Printer Acknowledge

Paper Out.

Printer Selected.

I/O Error.

& 2 |Always Zero.

Zero if /0 successful or set if Timeout. (see Printer functions).

O =~ W Hh Ol OO N

All flags and other registers preserved.

Three logical channels are supported. Logical printer device 0 is the system portand is standard to all
machines. The power-up initialisation sequence determines if additional external printer ports are
present. When both additional printer interfaces are present, device 1 is the external printer port and
device 2 is the printer port on the external monochrome VDU controller. If only one additional printer
interface is presentitis always logical device 1.

Locations 0478h - 047Ah contain the Logical Printer Device timeout counts (see section 2.4).

Printer Function 0: Print Character.

This function attempts to output a character to the specified printer port. If the character cannot be sent
within the time specified by the logical printer timout count RAM variable then the command is
abandoned and AH is returned with bit O set.

CPU registers are used as follows:

Entry:
AH =0.
AL = Character to be printed.
DX = Logical Channel Number (0 - 2).
Exit:
AH = Printer Port status (as given above) or Timeout (Bit 0) set.
All flags and other registers preserved.

Printer Function 1: Initialise Printer Channel.

This function performs a complete reinitialisation of a specified printer channel (if present). The printer
INIT signal is held low for approximately 4 milliseconds. Printer interrupts and auto linefeed are
disabled.

CPU registers are used as follows:

Entry:
AH=1.
DX = Logical Channel Number (0 - 2).
Exit:
AH = Printer Port status (as given above) or Invalid Channel (Bit 0) set.
All flags and other registers preserved.

Printer Function 2: Return Channel Status.

This function returns the status register of the specified logical printer channel (if present).
CPU registers are used as follows:

Entry:
AH=2.
DX = Logical Channel Number (0 - 2).
Exit:
AH = Printer Port status (as given above) or Invalid Channel (Bit 0) set.
All flags and other registers preserved.

2.3.13 Interrupt 24: System Restart (18h).

If a Hard Disk ROM BIOS was initialized during Power-Up Initialization then it will have installed its entry
pointinto this vector and saved the ROS's vector in its private storage area. Its bootstrap process
resembles the process described below (under Int 25) and if successful the system from the active
partition of the hard disk will be loaded if not then it executes the ROS's Int 24 whose vector it has
saved.

This software interrupt is intended to provide an orderly system restart capability. Amessage is
displayed on the active VDU requesting that the user "Inserta SYSTEMdisk into Drive A" and "Then
press any key." When the keypress is received, the Disk Bootstrap process (Interrupt 25) is invoked.

CPU registers are used as follows:

Entry:

No conditions.
Exit:

Disk Bootstrap.

2.3.14 Interrupt 25: Disk Bootstrap (19h).

This software interrupt to provide access to the disk bootstrap process which is normally executed after
power-up initialisation tests.

The ROS attempts to load the bootstrap sector (from drive A, side 0, track 0, sector 1) into memory at
07CO00. If the bootstrap sector is loaded successfullyitis given control (far jump to segment 0000 offset
7CO00). If the bootstrap sector cannot be loaded after 10 retries, the ROS will displaya message
prompting the user to "Inserta SYSTEMdisk into drive A" and "Then press anykey." The ROS then waits
for the keypress and repeats the system restart procedure (Int 24).

CPU registers are used as follows:

Entry:
No conditions.
Exit:
To program loaded by Disk Bootstrap.

2.3.15 Interrupt 26: System Clock & Real Time Clock (1Ah).

This software interrupt routine provides access to both the system (software maintained) clock location
as well the Real Time Clock (RTC) hardware.

CPU registers are used as follows:

Entry:

AH = Clock Function specifier:
0 - Get System Clock.
1 - Set System Clock.
2 - Get RTC time.
3 - SetRTC time.
4 - Get RTC date.
5 - Set RTC date.
6 - Set RTC alarm.
7 - Reset RTC alarm.

All other registers as required by function.

Exit:
All registers as specified by function.

Clock Function 0: Get System Clock.

This function returns the current value of the 32 bit system clock value.
CPU registers are used as follows:

Entry:
AH =0.
Exit:
DX = Least Significant Word of the clock count.
CX = Most Significant Word of the clock count.
AL =24 Hour Flag:
0 if not past 24 hours.
1 if past 24 hours.

All flags and other registers preserved.

The 32 but system clock is incremented every 54.9 milliseconds by the ticker hardware interrupt routine.
When the count reaches the 24 hour value (0001800B0h) the 24 Hour flag is set and the system clock
countis resetto zero. This 24 hour countis based on the system clock 1.19318 MHz divided by the
maximum divisor, 65536. This gives an interrupt rate of 54.92549323 Ms which when divided into the
number of seconds in 24 hours gives this 24 Hour time value above.

Note that the 24 hour flag is reset to zero after it has been read.
Clock Function 1: Set System Clock.

This function sets the current value of the 32 bit system clock value.
CPU registers are used as follows:
Entry:
AH=1.
DX = Least Significant Word of the clock count.
CX = Most Significant Word of the clock count.
Exit:
All flags and other registers preserved.

Clock Function 2: Get RTC Time.

This function gets the currenttime from the Real Time Clock.

CPU registers are used as follows:

Entry:
AH =2.
Exit:

If RTC not operating then
Carry True.
CXDXpreserved.

If RTC operating then
Carry False.

CH =Hour (BCD).

CL = Minute (BCD).
DH = Second (BCD).
Always
All other flags corrupt.
All other registers preserved.

Clock Sub-Function 3: Set RTC Time.

This function sets the Real Time Clock time.
CPU registers are used as follows:

Entry:
AH = 3.
CH =Hour (BCD).
CL = Minute (BCD).
DH = Second (BCD).
DL =1 to enable daylight savings option (otherwise 0).
Exit:
If RTC not operating then
Carry True.
If RTC operating then
Carry False.
Always
All other flags corrupt.
All other registers preserved.

When the daylight savings option is setit enables two special updates of the currenttime. On the last
Sunday in April, the time increments from 1:59:59 AMto 3:00:00 AM. Also on the last Sundayin October
the time increments from 1:59:59 AMto 1:00:00 AM.

Note that this option also disables the alarm function.
Clock Function 4: Get RTC Date.

This function gets the current date from the Real Time Clock.

CPU registers are used as follows:

Entry:
AH =4,
Exit:

If RTC not operating then
Carry True.
CXDXpreserved.

If RTC operating then
Carry False.

CH = Century (BCD).

CL = Year (BCD).

DH = Month (BCD).

DL = Day Of Month (BCD).

Always
All other flags corrupt.
All other registers preserved.

The century byte is setto 19 (BCD) if the year is 80 (BCD) or above otherwise itis setto 20 (BCD).

Clock Function 5: Set RTC Date.

This function sets the Real Time Clock time.
CPU registers are used as follows:

Entry:
AH =5.
CH = Century (BCD) [Ignored].
CL = Year (BCD).
DH = Month (BCD).
DL = Day of Month (BCD).
Exit:
If RTC not operating then
Carry True.
If RTC operating then
Carry False.
Always
All other flags corrupt.
All other registers preserved.

Centuryis ignored and is computed as described in Clock Function 4.

Clock Function 6: Set RTC Alarm.

This function sets the alarm time and arms the Real Time Clock alarm interrupt. The alarm interrupt will
occur then the currenttime matches the alarm time. An application program which uses this function
must first write the address of its alarm interrupt routine into interrupt vector 10.

CPU registers are used as follows:

Entry:
AH =6.
CH =Hour (BCD).
CL = Minute (BCD).
DH = Second (BCD).
Exit:
If RTC alarm already set then
Carry True.
If RTC alarm not already set then
Carry False.
Always
All other flags corrupt.
All other registers preserved.

Clock Function 7: Kill RTC Alarm.

This function disarms the Real Time Clock alarm function.
CPU registers are used as follows:

Entry:
AH=7.
Exit:
All flags and registers preserved.

2.3.16 Interrupt 27: Keyboard Break Interrupt (1Bh).

This software interruptis invoked by the keyboard hardware interrupt routine when a keyboard break
([CTRL] + [NUMLOCK]) is detected.

The power-up initialisation process loads the address of a dummy break handler routine which does
an interrupt return (IRET) instruction.

Application programs which supply a keyboard break interrupt must conform to the following register
conventions:

Entry:
DS =0040h (Spanning the ROS data).
Exit:
All registers must be preserved except AX, BX, CX, DX DS and Flags which may be corrupt.

The supplied interrupt routine must notinvoke any other ROS interrupts from within itself but may modify
any of the system RAM locations used bythe ROS.

2.3.17 Interrupt 28: External Ticker Interrupt (1Ch).

This software interruptis called from within the System Clock hardware interrupt routine. It is initialised
by power-up with a dummy handler which returns from interrupt by doing an IRET instruction. It can be
used by application programs which require a process to be run at a regular interval.

Application programs which supply an external ticker interrupt must conform to the following register
conventions:

Entry:
DS =0040h (Spanning the ROS data).
Exit:
All registers must be preserved except AX, DX, DS and Flags which may be corrupt.

The supplied interrupt routine must not invoke any other ROS interrupts from within itself but may modify
any of the system RAMlocations used bythe ROS.

2.3.18 Interrupt 29: VDU Parameter Table (1Dh).

This interrupt vector location contains the 32-bit address of the Video Parameter table used in setting
up the 6845 CRTC when changing video mode. Upon power-up or after a reset, the system ROS
initialisation process loads the ROMtable address into this vector location (0074-0077 hex).

The Video Parameter table consists of four consecutive 16 byte entries. Each entry contains an
initialisation quantity for each of the 6845 CRTC registers (See section 1.11.5). When a new video mode
is selected the table entry used for initialisation as follows:

Table Entry|Video Mode

0 0 - Alpha 25 by 40 Chars.
1 - Alpha 25 by 40 Chars.
1 2 - Alpha 25 by 80 Chars.
3 - Alpha 25 by 80 Chars.
2 4 - Graphics 320 by 200 Pixels, palettes 0 or 1.

5 - Graphics 320 by 200 Pixels, palette 2.
6 - Graphics 640 by 200 Pixels.
3 7 - Alpha 25 by 80 chars using monochrome adapter.

The table contains the following initialisation data:

Register Number|Function Entry O[Entry 1|Entry 2|Entry 3
RO Horizontal Total 56 113 56 97
R1 Horizontal Displayed [40 80 40 80
R2 Horiz. Sync Position [45 90 45 82
R3 Horiz. Sync Width 10 10 10 15
R4 \ertical Total 31 31 127 25
R5 \ertical Total Adjust (06 06 06 06
R6 \ertical Displayed 25 25 100 |25
R7 \ertical Sync Position |28 28 112 25
R8 Interlace 02 02 02 02
R9 Max. Raster Address |07 07 01 13
R10 Cursor Start Raster |06 06 06 11
R11 Cursor End Raster |07 07 07 12
R12 Start Address High |00 00 00 00
R13 Start Address Low |00 00 00 00
R14 Cursor Location High|00 00 00 00
R15 Cursor Location Low |00 00 00 00

Note that this table reflects industry standard values for CGA and MDA type devices and that at this user
level there is no distinction between using the PPC Internal Graphics Adapter and an external
(expansion slotbased) CGA or MDA. The PPC Auto Switch NMI process will adjust the values loaded
into the CRTC to be appropriate to the LCD or external video mode being used. The user can therefore
use this table directly without regard to the CRTC initialization values discussed in section 1.11.

2.3.19 Interrupt 30: Disk Parameter Table.

This interrupt vector location contains the 32-bit address of the parameter table of configuration
parameters for the disk interface. Upon power-up or after a reset, the initialisation process loads the
ROM table address into this vector location (0078 - 007B hex).

The Disk Parameter Table consists of 11 bytes as follows:

Byte[Function Value
0 |2nd byte of the disk controller specifycommand. (6 Ms Step Rate, Head Unload delay=15) [DFh
1 S;d byte of the disk controller specify command. (Head Load delay=1 & FDC DMA Mode = 02h
2 |Motor off timeout (approx 5.4 seconds). 64h
3 |Sector size selector (512 bytes) 02h
4 |End of Track (sector 9) 09h
5 |Gap length for Read/Write commands. 2Ah
6 |DTL - Data Length FFh
7 |Gap Length for format command. 50h
8 [Filler byte for format command. F6h
9 |Head Settling Delay (15 Ms) OFh
10 |Motor on Delay (500 Ms) 04h

2.3.20 Interrupt 31: VDU Matrix Table (1Fh).

This interrupt vector location contains the 32-bit address of the VDU matrixtable used in compatible
graphics modes for generating pixel data for characters 128 to 255.

Upon power-up or after a reset, the initialisation process loads this vector (007C-007F) with all zeros to
indicate that no external VDU matrix table is loaded. Programs such as GRAFTABL.EXE load a resident
upper 128 character matrixwhich can be used in the 640x200 resolution graphics modes.

Each of the 128 character table entries consists of eight bytes, one for each character scan. The first
byte is the top scan value and the last byte is the button scan value. The MSB, bit 7, is the left most pixel
and the LSB, bit 0, is the right most pixel of the scan. Aset bit displays the foreground colour and a reset
bit displays the background colour.

2.4 RAM Variables.

The System RAM address space from 00300 to 00500 is used bythe ROS for variable storage. The
following table lists the variables and their usage. They are either classified as Byte (8-bit), Word (16-
bit), Long Word (32-bit) or Buffer (greater than 32-bit) storage locations. Depending on the CPU's
segment register setting, the variables at 004xx can be said to be referenced at 40:XXX or 0:4XX.

Location(s) [Usage

00300-003FF{Initialisation Stack (Buffer).

Used as stack area only during initialisation.

00400 Logical Serial Device 0 Base /O Address (Word).
Contains the base address oflogical serial device 0.
Initally the System Asynchronous Serial port address.
00402 Logical Serial Device 1 Base I/O Address (Word).
Contains the base address oflogical serial device 1.
Initally the external asynchronous serial port or zero if itis not present at initialisation.
0404 - 0407 |Reserved.

00408 Logical Printer Device 0 Base I/O Address (Word).
The base address oflogical printer device 0.

Initally the System Parallel Printer port.

Location(s)
0040A

0040C

0040E
00410

00412
00413

00415

00417

00418

Usage

Logical Printer Device 1 Base I/O Address (Word).
The base address oflogical printer device 0.
Initially the external parallel printer portifitis present else it points to the external
monochrome VDU controller ifitis present. If neither is presentitis initialised to zero.
Logical Printer Device 2 Base I/O Address (Word).

Initially points to the external monochrome VDU controller if both the external parallel
printer port and the external monochrome VDU controller are present. If either is not
installed initialised to zero.

Reserved (Word).

System Configuration Status (Word).

Contains the System Configuration as follows:
Bit(s) |Function

14 & 15|Number of printers (1-3).

13 Notused.

12 Setif an optional games adapter is fitted.
11 Always zero.

9 & 10 [Number of serial interfaces (1 or 2).

8 Not used.
7 Always zero.
6 Setif second floppy disk drive is fitted.

4 &5 |Default VDU mode.

2&3 |Always set.

1 Setif 8087 NDP is installed.
0 Always set.

Reserved (Byte).

Total RAM Size (Word).
Initially set to the number of 1K User (System) RAM Blocks installed.

Extra RAM Size (Word).
Initially set to the number of 1K User (System) RAM Blocks installed minus 64

Key Toggles and Key States (Byte).

This byte is used to record the state of the Key Toggles (bits 4-7) and Key States (bits
0-3) as follows:

Bit|Key (Bit set if active)

Ins Toggle Set
Caps Lock Active
Num Lock Active
Scroll Lock Active
Alt Key (Left or Right) Active
Ctrl Key (Left or Right) Active
Left Shift Key Down

Right Shift Key Down

Keys down (Byte).

This byte is used to record the state of the toggle keys so that they do not repeat when
the keyis held down.

Bit|Key (Set if down)

O =~ N W H~OILO N

Location(s)

00419

0041A

0041C

0041E

0043E

0043F

00440

00441

00442

00449

0044A

Usage

Ins

Caps Lock

Num Lock

Scroll Lock
Pause

System Request
Left Alt

0 |Left Ctrl

= N W s~ OO N

Absolute Key Token Number (Byte).

When an absolute key token numbered is entered via ALT and the numeric key pad, this
variable holds the current state of the token.

Key Token Buffer Out Pointer (Word).

This variable holds the absolute offset to the next key token to be removed from the key
token buffer.

Note that the ROS assumes that the buffer has a segment paragraph address of 0040h.

Key Token Buffer In Pointer (Word).

This variable holds the absolute offset to the next empty position in the key token buffer.
The buffer is empty when this location is the same as the Out Pointer.

Key Token Buffer (Buffer).

The Key Token Buffer is a 16 word circular buffer used to store up to 16 key tokens.
Drive Restore Flag (Byte).

Each floppy disk drive has a restore flag associated with it (bit O for drive 0 and bit 1 for
drive 1).

If the restore flag for the specified drive is reset prior to any disk access (read/write/verify
fformat), then the restore command is issued to the FDC for that drive. If successful then
the associated flag bitis set. When the initialise sub-function of the disk interrupt is
called the restore flag is cleared.

Bit 7 is used for handling FDC hardware interrupts.

Drive Motor Flag (Byte).

When a disk drive motor is running then either bit 0 or bit 1 will be set to which drive (0 or
1 respectively) is selected.

Drive Motor Timeout Counter (Byte).

After each disk operation the the motor off timeout countis copied from the Disk
Parameter table (See interrupt 30) into this variable. Each time the system clock interrupt
is executed, the countis decremented. When it reaches zero the Drive Motor Flag is
reset.

Disk Status (Byte).

This byte holds the status returned by the last disk operation. (See section 2.3.11 Disk
/O Interrupt - Function 1.)

FDC Results/HD Parameter Buffer (Buffer).

This seven byte buffer is used for storage of the FDC status information returned upon
the completion of a disk I/O operation. Itis also used by the Hard Disk BIOS ROM for call
parameter storage.

Current Video Mode (Byte).

The current VDU mode from the last Int 16 setmode call is stored here.

Visible Display Columns (Word).
The number of visible character columns currently being displayed is stored here.

Location(s)
0044C

0044E

00450

00460

00461

00462

00463

00465
00466

0467-046B
0046C

00470

00471

00472

Usage

Video Display Page Size (Word).

This word holds the amount of Video RAM used by the ROM BIOS to display one page as
defined below:

Mode(s)|Size
0&1 2048
2&3 [4096
4-6 16384
7 4096
13 8192
14 16384
15-16 (32768

Display Page Start Offset (Word).

Contains the origin of the currently active video display page.

Cursor Address Buffer (Buffer)

This 16 byte buffer contains the row and column addresses for up to eight display pages.
This is the limiting factor is the number of pages which can be supported by the video
ROM BIOS routines.

Cursor End Scan (Byte).

This byte contains the current end scan number that was programmed into the CRT
controller.

Cursor Start Scan (Byte).

This byte contains the current start scan number that was programmed into the CRT
controller.

Active Display Page (Byte).

This byte contains the selected display page number.

CRTC I/O Address (Word).

This word contains the I/O address of the CRTC interface currentlyin use. (3B4 - Mono /
3D4 - Colour)

Current Video Mode Control Register (Byte).

This byte contains the current contents of the Video Mode Control Register.

Current CGA Colour Select Register (Byte).

This byte contains a copy of the data loaded into CGA colour select register.

Reserved

System Clock (Long Word).

The 32 bit system clock count

24 Hour Flag (Byte).

When the system clock reaches 0001800B0h then itis cleared and this flag byte is setto
OFFh.

Note that reading the clock via interrupt 26 clears this flag.

Break (Byte).

This byte is initially set to zero. Each time Break ([Ctrl][+[Nun Lock]) is detected, bit 7 is
set. An application program using this bit to detect break mustreset bit 7 when it detects
the break event.

System Reset Flag (Word).

When soft reset, [Ctrl]+[Alt]+[Del], is detected this location is setto 01234h prior to
issuing a system reset. The power-up self test routine then recognizes this pattern and

Location(s)

0474-0477
0478 -47A

0047B
047C -047D

0047E
00480
00482
00484
00485

00487

00488

00489
0048A

0048E

0048F

00496

Usage
does notrepeat the RAMtests. Setting 1235h prevents full hardware reset.

Reserved for Hard Disk BIOS ROM.

Logical Printer Device 0 - 2 Timeout Count (Buffer).

These timeout counts specify how long the ROS should wait in half second multiples,
while trying to output a character to a logical printer channel. The are initially setto 20 (10
Second timeout).

Reserved.

Logical Serial Device 0 - 1 Timeout Count (Buffer).

These timeout counts specify the length of the wait time half second intervals for
character I/O to a particular logical serial channel. All counts are setto 1 (for a second
timeout).

Reserved.

Key Token Buffer Start Address (Word).

Offset pointer to the start of the key token buffer.

Note that the assumed buffer segment paragraph address is 0040h.

Key Token Buffer End Address (Word).

Offset pointer to the start of the key token buffer.

EGADisplay Rows (Byte).

This location contains the number of character rows (less one) on the display screen.
EGA Character Points (Byte).

This location contains the current character matrixlength in bytes.

EGA Status (Byte).

This location is used by an EGA's ROMBIOS to hold its current status information
(Colour/Mono, Primary/Sec).

EGA Switches (Byte).

This location contains the current switch settings for EGA control switches 1-4 in bits 0-3
(inverted) and the features switches in the MS bits.

ROS NMI Flag (Byte).

This byte holds the ROS NMI anti-recursion flag.

ROS NMI Vector (Long Word).

This 4-byte location holds the second level NMI vector.

Low-Res Flag (Byte).

The ROS uses this byte to check for low-res mode.

Bit 0 = vduHlowres - Horizontal timing may mean low-res mode.

Bit 1 = vduMowres - \Vertical iming may mean low-res mode.

Operation Control Reg (Byte).

This byte holds a copy of the operation control register.

Keyboard type (Byte).

This byte holds the extended keyboard information

Bit{Meaning

Extended Keyboard Attached
Right Ctrl Down

Left Ctrl Down

Extended Code EOh lastreceived
Extended Code E1h lastreceived

O =N W H

Location(s) |Usage

00500 Print Screen Status (Byte).

Value [Meaning

0 Print Screen completed OK.

1 Print Screen in progress.

255 [Print Screen abandoned due to timeout.

2.5 Non-Volatile RAM (NVR)

The first 21 bytes of the battery backed RAM within the RTC hardware are for system parameter storage
as follows:

Byte(s)|Usage Default
0-9 Time and Date parameters. --

1 RTC Control Register A. 070

11 RTC Control Register B. 002

12 RTC Control Register C. --
13 RTC Control Register D. --
14 - 19|Time and Date when machine lastused.|--
20 Time and Date Checksum.
21-63 [Unused --

Locations 0 to 13 are RTC hardware registers. Refer to 3.8 for an explanation of their usage and setup
values.

After power-up or upon system reset the Time Last Used is checksummed and if the lower byte of the
sum is not OFFh or if the battery voltage low bitis setin the RTC status register, then the values in the
default column are loaded into their respective locations and a warning message is displayed on the
primary display device. Those locations without defaults (marked with '--') are notinitialized.

2.6 ROS Messages

The ROS outputs a number of messages during Power-Up Self Test initialisation as detailed below.
The language in which these messages are displayed is dependent of the three option links connected
to the three least significant bits of the system printer port status. (See Table 3.1 for the interpretation of
the three link bits.)

2.6.1 Non-Fatal ROS Messages

The following messages are displayed on the primary display screen (in the default display mode as
specified bythe NVR) in the situations as described. The initialisation process is allowed to complete
even though some of them mayrepresent self test failures.

Please wait
This message is displayed on the top line of the screen after Power-Up or after a Soft Reset
([Ctrl]+[Alt]+[Del]) from the keyboard. Adotis displayed after it for each major hardware self test
segment completed successfully.

Amstrad PPC nnnK (Vv.i) Last used at hh:mm on dd mn yy

This message is displayed after the successful completion of all self tests, where:

nnn =the RAMsize in kilobytes.
v.i =the ROS \ersion (v) and Issue (i) number.
hh:mm = the hours (hh) and the minutes (mm) of last on time.

dd mn yy=the day(dd), the calendar month (mn) and the year (yy) of the last date used.
Please fit new batteries
This message is displayed below the AMSTRAD PC message when itis noted thatthe RTC
battery voltage low bit (VRT) is set (indicating that there is either no batteryinstalled or that the
batteryis very near to failing).
Check keyboard and mouse
This message is displayed when the keyboard self test firmware does not respond with the test
pass (0OAAh).
Insert a SYSTEM disk into drive A
Then press any key
This message setis displayed when the floppy disk bootstrap is unable to successfullyread the
bootstrap sector from drive A after 10 retries.
Error: External ROM checksum incorrect: ROM address = nnnnnh
This message is displayed when the checksum on an external ROM s not zero (See section 2.1 -
16). The physical address of the ROMis displayed in five (nnnnn) hexadecimal digits.

2.6.2 Fatal ROS Messages

The following messages indicate that a self test segment has failed and that initialisation cannot
continue. In this situation the machine must be switched off and on again in order to reinitiate
operations. The displayis switched to 80 column alpha mode and cleared prior to displaying any of
these messages.

Error: Faulty SYSTEM RAM

Error: Faulty VDU RAM

Error: Faulty interrupt controller

Error: Faulty direct memory access controller
Error: Faulty floppy disk controller or disk drive
Error: Faulty interval timer

Error: Faulty system status register

Error: Faulty real time clock

Error: Faulty VDU controller

Error: Faulty system printer port

Error: Faulty system serial port

Error: Faulty ROS ROM checksum

Error: Faulty memory (parity error)

When one of these failures occurs, no other testing is run since further testing may require use of the
failing component. For this reason the system is placed in a non-interruptible loop. Failures of this sort
are not expected to occur even intermittently. When any self test failure does occur it should be referred
to a qualified Amstrad service facility for further diagnostic testing.

Section 1 Index Section 3

Section 2 Index Appendices

3 Reference Information

The following tables document a number of the hardware and software features of the Amstrad PPC
some of which may have been already mentioned in earlier sections but are repeated here for easy
reference.

3.1 Language Links.

The lower three bits of the Printer Status Channel (/O address 379) are wired to reflect the (one's
complement) state of a set of option links (LK1 - LK3) located inside the PPC case on the lower board.
They are used bythe ROS firmware to define the language option or diagnostic mode option as
detailed below.

Link Value|ROS Usage
English Language.
German Language.
French Language.
Spanish Language.
Danish Language.
Swedish Language.
ltalian Language.
Diagnostic Mode.

NOoO o WOWDN-~O

The ROS messages are displayed in the selected languge. In diagnostic mode, the messages revert to
English, and the normal testing is skipped. Any self test failures are reported but are ignored and upon
completion a disk bootstrap is attempted. This enables loading of an extended set of diagnostic
software. The actual value observed by reading I/O address 379h is the one's complement value so that
the values range (when masked with 07h) from 7 for English, 6 for German, and etc. down to 0.

3.2 Processor Memory Usage.

The following is a repeat of the processor's physical memorylayoutin tabular form with interrupts and
ROS areas included.

Location(s) Usage

00000 - 003FF Processor interrupt vectors 0 to 255. To derive an individual interrupt vector's
starting address multiply the vector number by four.

00400 - 00500 ROS Variables. (See section 2.4)

00501 - 9FFFF System (or User) RAM artea. The 640K byte area (inclusive of the previous entries)
is the maximum amount of system memory.

A0000 - BFFFF 128K byte area reserved for IDAvideo RAM and other display adapters (See 1.11
for buffers)

C0000 - C3FFF External EGA ROMBIOS area.

Location(s) Usage

C8000 - COFFF Base Hard Disk Controller ROM BIOS area.

CA000 - EFFFF This area used by additional HD controllers and peripheral cards (such as LANs)
which require support via a BIOS ROM. The Amstrad Diagnostic Pack ROM
resides from EO00O to E7FFF when itis installed.

FO000 - FFFFF 64K byte area reserved for System ROM. The ROS resides in the 16K byte area
from FCO0O0 to FFFFF. The remaining 48K bytes is reserved for future expansion.
The 16K byte ROS ROM repeats four times in this address range.

3.3 Asynchronous Communications Element (8250) Registers.

For serious design purposes, itis recommended that the designer obtain the standard INS8250 data
sheets. The following excerpt are the major software accessible registers.

Modem Status Register (MSR) [R6] - /0 Address 3FEh.

Bit(s)[Function

Data Carrier Detect (DCD).

Ring Indicator (RI).

Data Set Ready (DSR).

Clear To Send (CTS).

Delta Data Carrier Detect (DDCD).
Trailing Edge Ring Indicator (TREI).
Delta Data Set Ready (DDSR).
Delta Clear To Send (DCTS).

O =~ NWH~OILO N

Line Status Register (LSR) [R5] - I/O Address 3FDh.

Bit(s)|Function

Always Clear (0).

Transmitter Shift Register Empty (TSRE).
Transmitter Holding Register Empty (THRE).
Break Interrupt (BI).

Framing Error (FE).

Parity Error (PE).

Overrun Error (OE).

Data Ready (DR).

O =~ NWH~OILO N

Modem Control Register (MCR) [R4] - I/O Address 3FCh.

Bit(s)[Function

Always Clear (0).

Always Clear (0).

Always Clear (0).

Loop (Diagnostic Mode).
Out2 (Looped to RI).
Out1 (Looped to DCD).

N w b OO N

Bit(s)[Function
1 Requestto Send (RTS) (Looped to DSR).
0 Data Terminal Ready (DTR) (Looped to CTS).

Line Control Register (MCR) [R3] - /0O Address 3FBh.

it(s)|Function

Divisor Latch Access (DLAB) (Selects Regs 0 & 1).
Set Break.

Stick Parity (Holds parity as EPS not if PEN set).
Even parity Select (EPS).

Parity Enable (PEN).

Number of Stop Bits (STB) (0=1 Stop Bit, 1=>1).
Word Length Select Bit 1 (WLS1). (0-3 = 5-8 Bits)
Word Length Select Bit 0 (WLSO).

S =N ® s oo N|m
=

Interrupt Identification Register (IIR) [R2] - I/O Address 3FAh.

Bit(s)[Function

Interrupt ID Bit O (1IDO).
Not Interrupt Pending.

7 Always Clear (0).

6 Always Clear (0).

5 Always Clear (0). IID Int Type

4 Always Clear (0). 3 RxLine Status
3 Always Clear (0). 2 RxData Avail.

2 Interrupt ID Bit1 (IID1).|1 TxH.Reg Empty.
1

0

Interrupt Enable Register (IER) [DLAB = 0:R1] - I/O Address 3F9h.

When the Divisor Access Latch Bit (Line Control Register bit 7: DLAB) is clear, inputting I/O address 3F9
reads the IER.

Bit(s)[Function

Always Clear (0).

Always Clear (0).

Always Clear (0).

Always Clear (0).

Modem Status (EDSSI).

Receiver Line Status (ELSI).

Transmitter Holding Register Empty (ETBEI).
Received Data Available (ERBAI).

O =~ N WSO O N

Receive Buffer Register (RBR)
Transmit Holding Register (THR) [DLAB = 0:R0] - I/O Address 3F8h.

When the Divisor Access Latch Bit (Line Control Register bit 7: DLAB) is clear, reading and writing I/O
location 3F8 accesses the RBR/THR registers. An input from 1/0 address 3F8 reads the Receiver buffer

Register (bits 0 to 7). Outputting to I1/0 address 3F8 writes the Transmitter holding Register.
Divisor Latches MS & LS (DLL & DLM) [RO & R1 when DLAB Set].

When the Divisor Access Latch Bit (Line Control Register bit 7: DLAB) is set, then registers 0 & 1 are the
(16-bit) Divisor Register. The least significant bits are written to by outputting to address 3F8 and the
most significant bits are written to by an output to location 3F9. The divisors and their respective baud
rates are as follows.

Baud Rate|Divisor|R1 & RO (hex)

75 1536 |06-00
300 384 [01-80
600 192 |00-CO

1200 96 00 - 60
2400 48 00 - 30
4800 24 00-18
9600 12 00-0C

3.4 High Performance Programmable DMA Controller (8237A-4)
Registers.

The following are the major software accessible 8237Aregisters.

Command Register - Write /0 Address 008.

it(s)|Function (Action ...{1/0})

DACK sense active { hi/lo}.

DREQ sense active { hi/lo }.

{Extended/Late} write selection.

{Rotating/Fixed} priority.

{Compressed/Normal} timing.

{Disable/Enable} Controller.

{Enable/Disable} Channel 0 address hold.
{Enable/Disable} Memory-to-memory (not supported).

S =N ® s oo N|w
=

Status Register - Read I/0 Address 008.

Bit(s)[Function

Channel 3 Request.
Channel 2 Request.
Channel 1 Request.
Channel 0 Request.
Channel 3 has reached TC.
Channel 2 has reached TC.
Channel 1 has reached TC.
Channel 0 has reached TC.

O =~ NWPH OO N

Mode Register - /O Address 00B [WOQ].

it(s)

Function

O =N ® & 0o N|w
=

Mode Select Bit 1. (Modes: 0 = Demand, 1 = Single,
Mode Select Bit 0. 2 = Block, 3 = Cascade)
Address {decrement/increment} select.
Autoinitialisation {enable/disable}.

Transfer Type Bit 1. (Modes: 0 = \erify, 1 = Write,
Transfer Type Bit 0. 2 = Read, 3 = lllegal)

Channel Select Bit 1. (Channels: 0-3 respectively)
Channel Select Bit 0.

Request Register - /O Address 009h [WO].

Bit(s)

Function

Don't Care.

Don't Care.

Don't Care.

Don't Care.

Don't Care.

Request Bit {Set/Reset}.

Channel Select Bit 1. (Channels: 0-3 respectively)

O =~ N WS~ OO N

Channel Select Bit 0.

Mask Set/Reset Register - /O Address 00Ah [WO].

Bit(s)

Function

O =~ NW S~ OO N

Don't Care.

Don't Care.

Don't Care.

Don't Care.

Don't Care.

{Set/Reset} Mask Bit.

Channel Select Bit 1. (Channels: 0-3 respectively)

Channel Select Bit 0.

Mask Write Register - I/O Address 00F [WOQ].

it(s)

Function

O =N ® & 0o N|w
=

Don't Care.
Don't Care.
Don't Care.
Don't Care.
{Set/Clear} Channel 3 Mask Bit.
{Set/Clear} Channel 2 Mask Bit.
{Set/Clear} Channel 1 Mask Bit.

{Set/Clear} Channel 0 Mask Bit.

3.5 Programmable Interrupt Controller (8259A-2) Command
Words.

The Initialisation Command Word (ICW) sequence is as follows:

Initialisation Command Word 1 (ICW1) - Write I/O Address 020h.

Bit(s)|Function (Action ... {1/0 })

N/A.

N/A.

N/A.

Always Set (1)

{Level/Edge} Trigger Mode.

Call Address Interval of {4/8}.

{Single/Cascade} Mode (Need ICW3 if Single Mode).
ICW4 {Needed/Not Needed}.

O =~ NW S~ OILO N

Initialisation Command Word 2 (ICW2) - Write I/O Address 021h.

Bit(s)[Function (Action ...{1/0 })
Interrupt Type Bit 7 (T7).
Interrupt Type Bit 6 (T6).
Interrupt Type Bit 5 (T5).
Interrupt Type Bit4 (T4).
Interrupt Type Bit 3 (T3).
Not used.

Notused.

Not used.

O =~ NW S~ OILO N

This byte selects one of the interrupt service vector locations (in absolute locations 0 through 3FF) to be
used when interrupting. Type bits 3 - 7 (asserted on the data bus during the INTA cycle) map to address
bits 5 - 9 for interrupt vector selection. The lower three type bits are derived from the interrupt level.

Initialisation Command Word 3 (ICW3) - Write /O Address 021h.

This command word is not used since Single (ICW1 bit 1) is always true in the PPC. When used, this
command word specifies which IR has a slave in Master mode, or it a slave then bits 0 through 3
specify the slave ID number (0 to 7).

Bit(s)[Function (Action ...{1/0 })

Always clear (0).

Always clear (0).

Always clear (0).

{Enable/Disable} Special Fully Nested Mode.
Buffered Mode {On/Off}.

{Master/Slave} Mode (Only valid in Buffered Mode).
{Auto/Normal} EOI.

-~ N W s OO N

Bit(s)
0

Function (Action ... {1/0 })
Always set (1) - (8086/8088 Mode).

Operation Control Words
The operation control words select various 8259A modes of operation.

Operation Control Word 1 (OCW1) - Write I/O Address 021.

it(s)|Function (Action ...{ 1/0 })

Interrupt Mask 7 {Set/Reset}.
Interrupt Mask 6 {Set/Reset}.
Interrupt Mask 5 {Set/Reset}.
Interrupt Mask 4 {Set/Reset}.
Interrupt Mask 3 {Set/Reset}.
Interrupt Mask 2 {Set/Reset}.
Interrupt Mask 1 {Set/Reset}.
Interrupt Mask 0 {Set/Reset}.

S =N ® s oo Nm
=

The eight mask bits either mask (i.e. inhibit when M=1) or enable their respective channels.

Operation Control Word 2 (OCW2) - Write /0O Address 020h.

Bit(s)[Function

Level bit 2 (L2).
Level bit1 (L1).
Level bit 0 (LO).

7 Rotate (R) Bit.

6 Specific (SL) Bit.

5 End of Interrupt (EOI) bit.
4 Always zero.

3 Always zero.

2

1

0

The level bits are required when specific (SL) is set.

Operation Control Word 2 (OCW2) - Write I/O Address 020h.

Bit(s)[Function (Action ...{1/0})

{Enable/Disable} Poll Command.
Read Register (RR) enable bit.
Read {IS/IR} register on next -RD pulse (RIS).

7 Always zero.

6 Enable Special Mask Mode (ESMM) bit.
5 Special Mask Mode (SMM) {Set/Reset}.
4 Always zero.

3 Always set.

2

1

0

The ESMM bit must be set for the SMM bit to have any effect. Similarly the RR bit must be set for the RIS

bit to have an effect.

3.6 Programmable Interval Timer (8253) Registers.

The 8253 PIT has four addressable elements, the three counters (0 - 2) which are read or written 8 bits
atatime (on I/O addresses 40h - 42h) and the Control Word register (write I/O address 043h).

Bit(s)|[Function (Action ...{1/0})

Select Counter bit 1 (SC1).

Select Counter bit 0 (SCO).

Read/Load bit 1 (RL1).

Read/Load bit 0 (RLO).

Mode bit 2 (M2).

Mode bit 1 (M1).

Mode bit 0 (MO).

{Enable/Disable} Binary Coded Decimal (BCD) counter.

O =~ N WS~ OO N

The SC bits select counters 0-2 and the 3 (both bits set) state is illegal.

The RL bits enable the counter's Read/Load operation as follows:

0:
Counter Latching - Snapshot current counter (to a holding register) for next read operation.
1:
Read/Load MS byte only.
2:
Read/Load LS byte only.
3:

Read/Load LS byte first then the MS byte.

The Mode bits select one of five valid modes (six & seven wrap around to modes two and three). The
modes are as follows:

0:

Interrupt on Terminal count.
1:

Programmable One-Shot.
2:

Rate Generator.
3:

Square Wave generator..
4.

Software Triggered Strobe.
5:

Hardware triggered Strobe.

3.7 Real Time Clock (HD146818) Registers.

The HD146818 is a CMOS peripheral device which combines three unique features: a complete time-

of-day clock with an alarm and one hundred year calendar, a programmable periodic interrupt and

square-wave generator, and 50 bytes of low-power static RAM.

The figure below shows the address map of the HD146818. The memory consists of 50 bytes of
general purpose RAM, 10 RAM bytes which normally contain the time, calendar, and alarm data, and
four control and status bytes. All bytes are directly readable and writable by the processor except
Registers C and D which are read only. Bit 7 of Register Aand the seconds byte are also read only.

0 [Seconds |00
1 |Sec Alarm |01
2 |Minutes |02
3 [Min Alarm (03
4 |Hours 04
5 |[Hr Alarm (05
6 [DayofWk [06
7 |DayofMo |07
8 |Month 08
9 |Year 09
10|Register A[OA
11|Register B(0OB
12|Register C|0C
13|Register D[OD
14 OE

50

Bytes

User

RAM
63 3F

3.7.1 Time, Calendar and Alarm Locations

The processor obtains time and calendar information by reading the appropriate locations. The
program may initialise the time, calendar and alarm by writing these locations. The contents of the 10
time, calendar and alarm bytes may either be binary or binary-coded decimal (BCD).

Before initialising the internal registers the SET bit in register B should be setto a "1" to prevent
time/calendar updates from occurring. The program initialises the 10 locations in the selected format
(binary or BCD), then indicates the format in the data mode (DM) bit of register B. All 10 locations must
use the fame data mode, either binary or BCD. The SET bit may now be cleared to allow updates. Once
initialised the real-time clock makes all updates in the selected data mode. The data mode cannot be
changed without reinitialising the 10 data bytes.

The table below shows the binary and BCD formats of the time, calendar and alarm locations.

Address Function Range Binary Data Mode BCD Data Mode
0 Seconds 0-59 00h-3Bh 00h-59h
1 Sec Alarm 0-59 00h-3Bh 00h-59h
2 Minutes 0-59 00h-3Bh 00h-59h

Address Function Range Binary Data Mode BCD Data Mode

3 Min Alarm 0-59 00h-3Bh 00h-59h
Hours 01h-0Ch (AM) 01h-12h (AM)

4 12-Hr Mode 1-12 81h-8Ch (PM) 81h-92h (PM)
24-Hr Mode 0-23 00h-17h 00h-23h
Hrs Alarm 01h-0Ch (AM) 01h-12h (AM)

5 12-Hr Mode 1-12 81h-8Ch (PM) 81h-92h (PM)
24-Hr Mode 0-23 00h-17h 00h-23h

6 Day of Wk 1-7 01h-07h 01h-07h

7 Day of Mon 1-31 01h-1Fh 01h-31h

8 Month 1-12 01h-0Ch 01h-12h

9 Year 0-99 00h-63h 00h-99h

For the Day of the Week, Sunday = 1.

The 24/12 bitin register B establishes whether the hour locations represent 1-to-12 or 0-to-23. The
24/12 bit cannot be changed without reinitialising the hour locations. When the 12-hour format is
selected the high-order bit of the hours represents PMwhen itis a "1". The time, calendar and alarm
bytes are not always accessible by the processor. Once per second the 10 bytes are switched to the
update logic to be advanced by one second and to check for an alarm condition. If any of the 10
locations are read at this time, the data outputs are undefined. The update-in-progress (UIP) bitin
Register Amaybe used to determine if the update cycle is in progress or not. The UIP bit goes high
once a second and the update cycle begins 244 uS later. Therefore, if a "0" is read on the UIP bit, the
user has atleast 244 uS before the time/calendar data will be changed.

3.7.2 RTC Register Locations

The HD 146818 has four registers which are accessible to the processor. The four registers are fully
accessible during the update cycle.

The bitassignments for Register A (address 0Ah) are as follows:

@
~

Assignment

Update In Progress (UIP)
Divider Bit 2 (DV2)

Divider Bit 1 (DV1)

Divider Bit 0 (DVO)

Rate Selection Bit 3 (RS3)
Rate Selection Bit 2 (RS2)
Rate Selection Bit 1 (RS1)
Rate Selection Bit 0 (RS0)

O =~ NWH~rOILO N

The UIP bitindicates whether the 10 time, calendar and alarm bytes are being updated or not as
explained above.

The three Divider bits (DV2-DVO0) are used to identify which of the three time base frequencies is in use
or to reset the divider chain.

The four rate selection bits (RS3-RS0) select one of 15 taps on the 22-stage divider chain, or disable
the divider output. The tap selected maybe used to generate an output on the square (SQW) pin and/or
a periodic interrupt.

The bitassignments for Register B (address 0Bh) are as follows:

@
~

Assignment

SET Bit

Periodic Interrupt Enable (PIE) Bit

Alarm Interrupt Enable (AIE) Bit
Update-ended Interrupt Enable (UIE) Bit
Square-Wave Enable (SQWE) Bit

Data Mode (DM) Bit

12/12 hour format Bit

Daylight Savings Enable (DSE) Bit

O =~ NWH~ OO N

When the SET bitis a "0" the update cycle functions normally by advancing the counts once per second.
When the SET bitis written to a "1", any update cycle in progress is aborted and the processor may
initialise the time and calendar locations without updates occurring. SET is a read/write bit which is not
modified by -RES or internal functions of the HD146818.

The PIE bitis a read/write bit which allows the periodic-interrupt (PF) bit to cause the -IRQ pin to be
driven low. The program writes a "1" to the PIE bit in order to receive periodic interrupts at the rate
specified by the RS3 RSO0 bits in Register A. A"0" in PIE blocks 'IRQ from being generated, bu the
periodic flag (PF) bit still goes high at the periodic rate.

The AIE bitis a read/write bit which when setto "1" permits the alarm flag (AF) to assert -IRQ. An alarm
interrupt occurs for each second that the three time bytes equal the three alarm bytes. When AIE is a "0"
the AF bit does notinitiate an -IRQ. The -RES pin clears AIE to "0". The internal functions do not affect
the AIE bit.

The UIE bitis a read/write bit which enables the update-end flag (UF) bit to assert -IRQ. The -RES pin
going low or the SET bit going high clears the UIE bit.

When the SQWE bitis setto a "1" by the processor, a square-wave signal at the frequency specified by
the rate selection bits (RS3 to RS0) appears on the SQW pin. When the SQWE bitis setto "0" the SQW
pin is held low. The SQWE bitis cleared by the -RES pin. SQWE is a read/write bit.

The DM bitindicates whether time and calendar updates are to use binary or BCD format. DMis a
read/write bit and is not modified by -RES or internal functions of the HD146818. A"1"in DM signifies
binary data and a "0" specifies BCD data mode.

The 24/12 control bit specifies the format of the hour bytes. A"1" specifies 24-hour mode and a "0"
specifies 12-hour mode. Itis a read/write bit and is not affected by -RES or any HD146818 internal
functions.

The DSE bitis a read/write bit which when setto "1" enables daylight savings mode. When enabled,
two special updates take place. On the last sundayin April the time increments from 1:59:59 to 3:00:00
AM. On the last sundayin October when the time first reaches 1:59:59 AMis decremented to 1:00:00
AM. DSE is not changed by -RES or anyinternal operations.

The bitassignments for Register C (address 0Ch) are as follows:

Bit |[Assignment

7 |Interrupt Request Flag (IRQF) Bit

6 |Periodic Interrupt Flag (PF) Bit

5 |Alarm Interrupt Flag (AF) Bit

4 |Update-Ended Interrupt Flag (UF) Bit
3-0{0

The C register is a read-onlyregister and a program write has no effect any of the bits.

The IRQF bitis set by the logical equation: IRQF = PF-PIE + AF-AIE + UF-UIE. Any time the IRQF bitis a
"1", the IRQ pin is driven low. All flag bits in the C register are cleared after a program read or when the
-RES pin is low.

The PF bitis setto "1" when a particular edge is detected in the selected tap of the divider chain as
selected by the RS3 to RSO0 bits. The PF bitis setto a "1"independent of the state the PIE bit.

The AF bitis setto a "1" when the currenttime matches the alarm time.
The UF bitis set after each update cycle.
The remaining bits (3 to 0) are always low.

The bitassignments for Register D (address 0Dh) are as follows:

Bit [Assignment
7 |Valid RAM Time (VRT) Bit
6-0|0

The VRT bit indicates that the contents of the RAM and time are valid. A"0" appears in the VRT bit when
the power sense (PS) pin is low. The processor can setthe VRT bit when the time and calendar are
initialised to indicate that they are valid. The VRT bitis a read-only bitand is not modified by the -RES
pin. The VRT bit can only be set byreading the D register.

Bits 6 to 0 are unused and are always read as zeroes.

3.8 Floppy Disk Controller (uUPD765A).

The uPD765A Floppy Disk Controller (FDC) contains two registers which are accessible to the CPU; the
Main Status Register (at I/O address 03F4h) and the Data Register (at I/O address 03F5h) both of which
are 8 bits wide. The Status register contains the status of the FDC and may be accessed atanytime.
The Data Register is actually made up of several registers in a stack and stores data, commands and
Floppy Disk Drive (FDD) status information. Data is written into the data register in order to program a
particular command. The data address is read in order to obtain the result after an operation. The Main
Status register (/O address 3F4h) mayonly be read and is used to facilitate the transfer of data
between the CPU and the uPD765A FDC.

There are 15 separate commands which the uPD765A FDC can execute. Each of these commands
require multiple bytes to fully specify the operation. The result after execution of the command mayalso

be a multi-byte transfer back to the processor. Because of this multi-byte interchange of information
between the processor and the FDC, itis convenient to consider each command as consisting of three
phases:

Command Phase:
The FDC accepts all information to perform a particular operation from the CPU.
Execution Phase:
The FDC performs the operation.
Result Phase:
After completion of the operation, status and housekeeping information are made available to the
CPU.

The uPD765A contains five status registers. The main status register mentioned earlier which may be
read at any time and four result phase status registers (ST0, ST1, ST2 and ST3) which are only made
available during the Result Phase after completion of a command. The particular command which has
been executed determines which status registers will be returned.

The Command bytes which are sent to the uPD765A during the Command Phase must occur in the
order shown in the command table. Thatis, the command code must be sentfirst followed by the other
bytes in the prescribed sequence. No foreshortening of the Command Phase or the Result Phase is
allowed. After the last byte of data in the Command Phase is sent the Execution Phase automatically
starts. In a similar fashion, when the last byte of data is read out in the Result Phase, the command is
automatically ended and the uPD765Ais ready for a new command.

Itis important to note that during the Result phase all bytes shown in the Command table must be read.
The Read Data command, for example has seven bytes listed in the result phase. All seven bytes must
be read out else a new command will not be accepted.

The status registers as follows:

Main Status Register

Bit(s)[Function
Request for Master (RQM).
Data Input/Output (DIO).
Execution Mode (EXM).
FDC Busy (CB).
FDD 3 Busy (D3B
FDD 2 Busy (D2B
FDD 1 Busy(D1B
FDD 0 Busy (DOB

O =~ NWH~OILO N

)-
)-
).
)-

Status Register 0 (STO0)

Bit(s)[Function

7 Interrupt Code bit 1 (IC1).
6 Interrupt Code bit 2 (IC2).
5 Seek End (SE).

4 Equipment Check (EC).

Bit(s)
3

2
1
0

Function

Not Ready (NR).
Head Address (HD).
Unit Select 1 (US1).
Unit Select 2 (US2).

Status Register 1 (ST1)

Bit(s)

Function

O =~ NWH~OILO N

End of Cylinder (EN).
Always zero.

Data Error (DE).

Over Run (OR).

Always zero.

No Data (ND).

Not Writable (NW).

Missing Address Mark (MA).

Status Register 2 (ST2)

Bit(s)

Function

O =~ N WS~ OO N

Always zero.

Control Mark (CM).

Data Error in Data Field (DD).
Wrong Cylinder (WC).

Scan Equal Hit (SH).

Scan Not Satisfied (SN).

Bad Cylinder (BC).

Missing Address Mark in Data Field (MD).

Status Register 3 (ST3)

Bit(s)

Function

O =~ NWH~OILO N

Fault (FT).

Write Protect (WP).
Ready (RY).

Track 0 (TO).

Two Side (TS).
Head Address (HD).
Unit Select 1 (US1).

Unit Select 0 (USO).

The Commands are as follows:

Read Data

Command Phase: 9 bytes.

Byte 1: Command Code.

Bit(s)[Function (Action ...{1/0})

MT) Multi-Track {Enable/Disable}.

FM) Select {(MFM/FM} (Single/Dobule density) Mode.
SK) Enable Skip deleted data address mark.

P

O =~ NWH~OHLO N

S roe

Byte 2: Head and Unit select.

Bit(s)[Function

7-3 |Don'tCare.

2 HD - Head Select (0 or 1).
1 usS1.

0 USO - Unit Select (0 or 1).

Byte 3: Cylinder Number (0-76).

Byte 4: Head Number (as specified in the ID field).
Byte 5: Sector to be read.

Byte 6: Number of bytes per sector.

Byte 7: EOT - Final sector number on track.

Byte 8: GPL - Gap 3 Length.

Byte 9: DTL - Data Length to be read.

During execution data is transferred between the FDD and the CPU memory.
The Result phase returns 7 bytes:

Byte 1: STO - Status register 0 (See STO0 table).
Byte 2: ST1 - Status register 1 (See ST1 table).
Byte 3: ST2 - Status register 2 (See ST2 table).
Byte 4: Final Cylinder number.

Byte 5: Final head read.

Byte 6: Final Sector read.

Byte 7: Number of bytes read.

Read Track

Command Phase: 9 bytes.

Byte 1: Command Code.

it(s)|Function (Action ...{1/0})

-~ O

FM) Select {(MFM/FM} (Single/Dobule density) Mode.
SK) Enable Skip deleted data address mark.

S =N ® s oo N
=

©ero0c00o

Byte 2: Head and Unit select.

Bit(s)[Function

7-3 |Don'tCare.

2 HD - Head Select (0 or 1).
1 USH1.

0 USO - Unit Select (0 or 1).

Byte 3: Cylinder Number (0-76).

Byte 4: Head Number (as specified in the ID field).
Byte 5: Sector to be read.

Byte 6: Number of bytes per sector.

Byte 7: EOT - Final sector number on track.

Byte 8: GPL - Gap 3 Length.

Byte 9: DTL - Data Length to be read.

During execution data is transferred between the FDD and the CPU memory. The FDC reads all data
fields from index hole to EOT.

The Result phase returns 7 bytes:
Byte 1: STO - Status register 0 (See STO table).
Byte 2: ST1 - Status register 1 (See ST1 table).

Byte 3: ST2 - Status register 2 (See ST2 table).

Byte 4: Final Cylinder number.
Byte 5: Final head read.
Byte 6: Final Sector read.

Byte 7: Number of bytes read.

Read Deleted Data

Command Phase: 9 bytes.

Byte 1: Command Code.

Bit(s)[Function (Action ...{1/0})

MT) Multi-Track {Enable/Disable}.

FM) Select {(MFM/FM} (Single/Dobule density) Mode.
SK) Enable Skip deleted data address mark.

O =~ NWH~OILO N

co o

Byte 2: Head and Unit select.

Bit(s)[Function

7-3 |Don'tCare.

2 HD - Head Select (0 or 1).
1 UsSH1.

0 USO - Unit Select (0 or 1).

Byte 3: Cylinder Number (0-76).

Byte 4: Head Number (as specified in the ID field).

Byte 5: Sector to be read.

Byte 6: Number of bytes per sector.

Byte 7: EOT - Final sector number on track.

Byte 8: GPL - Gap 3 Length.

Byte 9: DTL - Data Length to be read.

During execution data is transferred between the FDD and the CPU memory.
The Result phase returns 7 bytes:

Byte 1: STO - Status register 0 (See STO table).

Byte 2: ST1 - Status register 1 (See ST1 table).
Byte 3: ST2 - Status register 2 (See ST2 table).
Byte 4: Final Cylinder number.

Byte 5: Final head read.

Byte 6: Final Sector read.

Byte 7: Number of bytes read.

Read ID

Command Phase: 9 bytes.

Byte 1: Command Code.

Bit(s)[Function (Action ...{1/0})

-~ O

FM) Select {(MFM/FM} (Single/Dobule density) Mode.

S - N ® & oo
e

Byte 2: Head and Unit select.

Bit(s)[Function

7-3 |Don'tCare.

2 HD - Head Select (0 or 1).
1 UsSH1.

0 USO - Unit Select (0 or 1).

During execution the first correct ID information on the cylinder is stored in the Data Register.
The Result phase returns 7 bytes:

Byte 1: STO - Status register 0 (See STO table).

Byte 2: ST1 - Status register 1 (See ST1 table).

Byte 3: ST2 - Status register 2 (See ST2 table).

Byte 4: Cylinder.

Byte 5: head.

Byte 6: Sector.

Byte 7: Number of bytes per sector.

Write Data

Command Phase: 9 bytes.

Byte 1: Command Code.

it(s)|Function (Action ...{1/0})

MT) Multi-Track {Enable/Disable}.
FM) Select {(MFM/FM} (Single/Dobule density) Mode.

—~

S =N ® s oo N
=

s

Byte 2: Head and Unit select.

Bit(s)[Function

7-3 |Don'tCare.

2 HD - Head Select (0 or 1).
1 USH1.

0 USO - Unit Select (0 or 1).

During execution data is transferred between the cpu memory and the FDD.
The Result phase returns 7 bytes:

Byte 1: STO - Status register 0 (See STO table).

Byte 2: ST1 - Status register 1 (See ST1 table).

Byte 3: ST2 - Status register 2 (See ST2 table).

Byte 4: Final Cylinder number.

Byte 5: Final head written.

Byte 6: Final Sector written.

Byte 7: Number of bytes written.

Write Deleted Data

Command Phase: 9 bytes.

Byte 1: Command Code.

|Bit(s)|Function (Action ...{1/0})

Bit(s)[Function (Action ...{1/0})

7 (MT) Multi-Track {Enable/Disable}.

6 (FM) Select {(MFM/FM} (Single/Dobule density) Mode.
5 0

4 0.

3 1.

2 0

1 0.

0 1.

Byte 2: Head and Unit select.

Bit(s)|Function

7-3 |Don'tCare.

2 HD - Head Select (0 or 1).
1 US1.

0 USO - Unit Select (0 or 1).

Byte 3: Cylinder Number (0-76).

Byte 4: Head Number (as specified in the ID field).
Byte 5: Sector.

Byte 6: Number of bytes per sector.

Byte 7: EOT - Final sector number on track.

Byte 8: GPL - Gap 3 Length.

Byte 9: DTL - Data Length to be written.

During execution data is transferred between the CPU memory and the FDD.
The Result phase returns 7 bytes:

Byte 1: STO - Status register 0 (See STO table).
Byte 2: ST1 - Status register 1 (See ST1 table).
Byte 3: ST2 - Status register 2 (See ST2 table).
Byte 4: Final Cylinder number.

Byte 5: Final head written.

Byte 6: Final Sector written.

Byte 7: Number of bytes written.

Format Track

Command Phase: 6 bytes.

Byte 1: Command Code.

Bit(s)[Function (Action ...{1/0})

FM) Select {(MFM/FM} (Single/Dobule density) Mode.

O =~ NWH~OHLO N
-~ O -~ O 0T O

Byte 2: Head and Unit select.

Bit(s)[Function

7-3 |Don'tCare.

2 HD - Head Select (0 or 1).
1 usS1.

0 USO - Unit Select (0 or 1).

Byte 3: Number of bytes per sector.

Byte 4: Number of sectors per track.

Byte 5: GPL - Gap 3 Length.

Byte 6: D - Filler Byte.

During execution the FDC writes address headers to the entire track.
The Result phase returns 7 bytes:

Byte 1: STO - Status register 0 (See STO table).
Byte 2: ST1 - Status register 1 (See ST1 table).
Byte 3: ST2 - Status register 2 (See ST2 table).
Byte 4: Cylinder number.

Byte 5: Head.

Byte 6: Sector.

Byte 7: Number of bytes per sector.

Scan Equal

Command Phase: 9 bytes.

Byte 1: Command Code.

it(s)|Function (Action ...{1/0})

MT) Multi-Track {Enable/Disable}.

FM) Select {(MFM/FM} (Single/Dobule density) Mode.
SK) Enable Skip deleted data address mark.

S =N ® s oo Nw
=

s

Byte 2: Head and Unit select.

Bit(s)[Function

7-3 |Don'tCare.

2 HD - Head Select (0 or 1).
1 us1.

0 USO - Unit Select (0 or 1).

Byte 3: Cylinder Number (0-76).

Byte 4: Head Number (as specified in the ID field).

Byte 5: Sector.

Byte 6: Number of bytes per sector.

Byte 7: EOT - Final sector number on track.

Byte 8: GPL - Gap 3 Length.

Byte 9: STP - Step Factor: 1 = Contiguous: 2 = Alternate Sectors.
During execution data is transferred from the CPU memory and compared with data from the FDD.
The Result phase returns 7 bytes:

Byte 1: STO - Status register 0 (See STO table).

Byte 2: ST1 - Status register 1 (See ST1 table).

Byte 3: ST2 - Status register 2 (See ST2 table).

Byte 4: Final Cylinder number.

Byte 5: Final head compared.

Byte 6: Final Sector compared.

Byte 7: Number of bytes compared.

Scan Low or Equal

Command Phase: 9 bytes.

Byte 1: Command Code.

Bit(s)[Function (Action ...{1/0})

(MT) Multi-Track {Enable/Disable}.

(FM) Select {(MFM/FM} (Single/Dobule density) Mode.
(SK) Enable Skip deleted data address mark.

1
1.
0.
0
1

O =~ N WS~ OILO N

Byte 2: Head and Unit select.

Bit(s)[Function

7-3 |Don't Care.

2 HD - Head Select (0 or 1).
1 US1.

0 USO - Unit Select (0 or 1).

Byte 3: Cylinder Number (0-76).

Byte 4: Head Number (as specified in the ID field).

Byte 5: Sector to be compared.

Byte 6: Number of bytes per sector.

Byte 7: EOT - Final sector number on track.

Byte 8: GPL - Length of Gap 3.

Byte 9: STP - Step Factor: 1 = Contiguous: 2 = Alternate Sectors.
During execution data from the CPU memoryis compared with data from the FDD.
The Result phase returns 7 bytes:

Byte 1: STO - Status register 0 (See STO table).

Byte 2: ST1 - Status register 1 (See ST1 table).

Byte 3: ST2 - Status register 2 (See ST2 table).

Byte 4: Final Cylinder number.

Byte 5: Final head compared.

Byte 6: Final Sector compared.
Byte 7: Number of bytes compared.
Scan High or Equal

Command Phase: 9 bytes.

Byte 1: Command Code.

Bit(s)|Function (Action ...{1/0})

7 (MT) Multi-Track {Enable/Disable}.

6 (FM) Select {(MFM/FM} (Single/Dobule density) Mode.
5 (SK) Enable Skip deleted data address mark.

4 1

3 1.

2 1.

1 0.

0 1

Byte 2: Head and Unit select.

Bit(s)[Function

7-3 |Don'tCare.

2 HD - Head Select (0 or 1).
1 UsSH1.

0 USO - Unit Select (0 or 1).

Byte 3: Cylinder Number (0-76).

Byte 4: Head Number (as specified in the ID field).

Byte 5: Sector to be compared.

Byte 6: Number of bytes per sector.Byte 7: EOT - Final sector number on track.
Byte 8: GPL - Length of Gap 3.

Byte 9: STP - Step Factor: 1 = Contiguous: 2 = Alternate Sectors.

During execution data from the CPU memoryis compared with data from the FDD.
The Result phase returns 7 bytes:

Byte 1: STO - Status register 0 (See STO table).

Byte 2: ST1 - Status register 1 (See ST1 table).

Byte 3: ST2 - Status register 2 (See ST2 table).

Byte 4: Final Cylinder number.

Byte 5: Final head compared.
Byte 6: Final Sector compared.

Byte 7: Number of bytes compared.

Recalibrate

Command Phase: 2 bytes.

Byte 1: Command Code.

it(s)|Function (Action ...{1/0})

S =N ® s oo N
=
e A

Byte 2: Head and Unit select.

Bit(s)[Function

7-3 |Don't Care.

2 0.

1 US1.

0 USO - Unit Select (0 or 1).

During execution phase, the Head is retracted to Track zero.
No status information is returned during the result phase.
Sense Interrupt Status

Command Phase: 1 byte.

Byte 1: Command Code = 08h.

The Result phase returns two bytes:
Byte 1: STO - Status Register 0.

Byte 2: PCN - Present Cylinder Number.
Specify

Command Phase: 3 bytes.

Byte 1: Command Code = 03h.

Byte 2: SRT/HUT - Step Rate Time (4 MS bits - in 1 ms increments)/Head Unload Time (4 LS bits -in 16
ms increments).

Byte 3: HLT/ND - Head Load Time (Bits 1 to 7 - in 2 ms increments)/Non-DMA Mode (Bit 0).

Seek
Command Phase: 3 bytes.
Byte 1: Command Code = OFh.

Byte 2: Head and Unit select.

Bit(s)[Function

7-3 |Don't Care.

2 HD - Head Number.

1 US1.

0 USO - Unit Select (0 or 1).

Byte 3: New Cylinder Number.
During execution phase, the Head is positioned to the specified Cylinder.

No status information is returned during the result phase.

Sense Drive Status

Command Phase: 2 bytes.
Byte 1: Command Code = 04h.

Byte 2: Head and Unit select.

Bit(s)|Function

7-3 |Don'tCare.

2 0.

1 US1.

0 USO - Unit Select (0 or 1).

Result phase: 1 byte.

Byte 1: ST3 - Status Register 3.

Invalid Opcodes

All command codes notlisted above are considered invalid. When an invalid code is encountered the
FDC returns the STO register with the MS bit (Invalid Opcode bit) set.

Section 2 Index Appendices

Section 3 Site Index Book Index

APPENDIX 1 MS-DOS SYSTEM CONFIGURATION

The MS-DOS operating system allows for a number of installation specific configuration options during the system
startup progress through the use of a file called CONFIG.SYS when itis found in the root directory of the startup disk.
These configuration options include the following commands:

Command [Description

BREAK Extended BREAK checking (Ctrl-C).

BUFFERS [Number of sector buffers.

COUNTRY |Country Specific parameter selection.

DEVICE Device driver installations.

DRIVPARM ([Override the drive parameters for a logical drive.

ECBS Number of files open byfile control blocks.
FILES Maximum number of files open concurrently.
LASTDRIVE|Maximum drive letter allowable.

SHELL Top level command processor specification.

STACKS Override the default DOS stack resources.

The CONFIG.SYS can be created with any text editor and the simple screen editor RPED is ideal for this purpose.

1.1 BREAK Command

This command enables the MS-DOS extended break checking to be either set or reset. Normally, MS-DOS checks to see
if [CTRL] [C] has been typed while itis reading from the keyboard, writing to the screen or a printer. Setting Break to 'on'
allows [CTRL] [C] checking to be extended to other functions such as disk reads or writes. The syntax of the BREAK
command is:

BREAK=[ON]
or
BREAK=[OFF]

If no field is specified then OFF is assumed (as the default value).

1.2 BUFFERS Command

This command allows you to specify the number of buffers that MS-DOS allocates when it starts up. Adisk bufferis a
block of memory where MS-DOS holds data being read from or written to a disk when the amount of data is not an exact
multiple of sector size.

The syntaxof the BUFFERS command is:
BUFFERS=n

Where 'n'is a number between 2 and 255. If the BUFFERS command is not used then MS-DOS defaults to 2 buffers. The
number of buffers remains in effect after bootstrap until the machine is switched off or bootstrapped again. For best
performance for standard applications environments (word processors, spreadsheets, etc.) a buffers allocation between
10 and 20 is recommended. If you tend to use many subdirectories then an allocation upwards to 30 may be better. But
since buffers use the system available memory, there may have to be a compromise between memory usage and
performance. Buffers allocated beyond 40 serves no useful purpose. Refer to the Users's Manuals for you applications if
in douby about required buffers for particular applications programs.

1.3 Country Command

The country command is used to select the country dependent information as shown in appendix 2.
The syntax of the country command is:
COUNTRY=country code[,[<code page>][,[drive:]flename]]

The country code is shown in Appendix 2. Note that only the parameters in the table are affected by the country command.
Other country dependent factors such as the language links, KEYB, and national variant disks, effect the total country
dependent environment.

<code page> is the code page for the country (see appendix 2).

Filename is a file containing the countryinformation. If no filename is specified the file COUNTRY.SYS is
assumed and it must be available in the root directory.

Note that the utility, NIsfunc, can also be used to load country specific information.

1.4 DEVICE Command

This command installs the device driver in the specified pathname to the system list.
The syntax of the DEVICE command is:
DEVICE=[drive:]<pathname>

The file specified is loaded and given control. The driver may then perform the necessary steps to configure itself and the
system for its operation. See the MS-DOS Technical Reference Manual for information on how to create your own device
driver.

Your MS-DOS disk (Disk 1) contains two installable device drivers, DRIVER.SYS, and RAMDRIVE.SYS which can be used
for variable device configurations.

If you plan to use the ANSI escape sequences described in the PPC Users Manual, you would need to include the
following command in your CONFIG.SYS file:

DEVICE=ANSI.SYS

This command causes MS-DOS to replace all keyboard input and screen output support with the ANSI escape
sequences. Refer to the PPC User Instructions for ANSI escape sequence reference information.

1.4.1 DRIVER.SYS

DRIVER.SYS is an installable device driver that supports external drives. To install DRIVER.SYS, include the following
command in your CONFIG.SYS file:

DEVICE=DRIVER.SYS /D:dd [/C] [/F:ff] [[H:hh] [/N] [/S:ss] [/T:t]
Where:

/D:dd is drive number (0-127: Floppy drives, 128-255 Hard drives)
and optionally:

/C indicates changeline (doorlock) support required.
/F-ffindicates the form factor where:

0 =5.25 inch floppy diskette, 320/360 K bytes.

1 =5.25 inch floppy diskette, 1.2 Mbytes.

2 =3.5inch floppy diskette, 720 K bytes.

3 =8 inch floppy diskette, Single Density.

4 =8 inch floppy diskette, Double Density.

5 = Hard Disk.

6 = Tape Drive.

7 = 3.5 inch floppy diskette, 1.44 Mbytes.
/H:hh is the maximum head number (1-99).
/N indicates non-removable block device.
/S:ss is the number of sectors per track (1-99).
[T:ttis the number of tracks per side (1-999).

1.4.2 RAMDRIVE.SYS

RAMDRIVE.SYS is an installable device driver which enables the usage of a portion of the computer's memory as though
it were a disk drive. This area of memoryis referred to as a RAMdisk or a virtual disk.

If you have extended memoryinstalled starting atthe 1MB boundary or if you have an extended memory which meets the
LIM [Lotus(R)/Intel(R)/Microsoft(R)] Expanded Memory Specification, you can use this memory for one or more RAM disks.
Otherwise RAMDRIVE.SYS locates RAMdrives in low memory.

To install RAMDRIVE.SYS, include the following command in your CONFIG.SYS file:
DEVICE=RAMDRIVE.SYS [<disk size> [<sector size> [<entries>3]]] [/A]
Where:

<disk size> is disk size in kilobytes. Defaultis 64 and minimum is 16.

<sector size> is the sector size. The values 128, 256, 512, and 1024 are allowed. Defaultis 128.

<entries> is the number of root directory entries. The default is 64, the minimum value is 4 and the maximum is
1024.

/Aiindicates that an extended memory board which meets the LIM Expanded Memory Specification for a RAM drive is
in use. Ifthis switch is used, the /E switch cannot be used.

There is an additional parameter for this driver which applies to 80286 style CPU architecture with memory above the 1M
byte range. This parameter is as follows:

/E indicates that extended memory (above 1MB) is to be used. If this switch is used, the /A switch cannot be used.

1.4.3 DISPLAY.SYS

DISPLAY.SYS is an installable device driver which supports code page switching for the console device. A code page is
an alternate set of 256 characters which can be used in graphics display modes and with EGAdisplay adapters in text
modes.

To install display.sys inserta command line of the following form in your config.sys file:
DEVICE=[DRIVE:][PATH]DISPLAY.SYS CON[:]=[type[,hwcp[,n,m]]]

The CON = parameters are as follows:

type -
The display adapter in use consisting of MONO, CGA, EGAor LCD. Note that LCD is not valid for the Amstrad PPC
since this pertains onlyto the "Industry Standard" PC's LCD hardware.
hwep -
The code page supported by the hardware as follows:
437 United States
850 Multilingual ** (Not Supported in PPC see LK6, LK7 below)
860 Portugal
863 French-Canadian
865 Norway

The number of additional code pages that can be supported. This number is dependent on the hardware. MONO
and CGAdo not support other fonts, so n mustbe 0. For EGA, n can be 2.

The number of sub-fonts that are supported by each code page.

Note that there are a set of font selector links within the PPC which are on the lower (main system) board located near
the character generator ROM (IC135), and these links select one of four hardware (hwcp) fonts. The two links, labeled
LK6 and LK7, are as follows:

LK7|LK6|Selected Character set|lhwcp number
Off |Off |English 437

Off |On |Norwegian 865

On |Off |Portugese 860

On |On |Greek

LK6 is the link closest to pin 28 of the character generator ROM (IC135) and LK7 is located adjacentto LK6 and is
parallel to the axis of IC135.

Files EGA.CPland LCD.CPI are additional code page files for use with the MODE command of the form:
MODE con: cp prepare=((cplist), drive:cpfile)
where:

cplist -
Is 850 if the hardware code page (hwcp) is 437.
If the hardware code page is not code page 437, cplistis 850 plus the hardware code page. For example,
Portugese is 850, 860.

drive: -
specifies the drive path where the display code page fontfile is loaded.

cpfile -
is the name of the code page font file. Note that for the PPC only EGA.CPI is valid and that LCD.CPI only works on
the "Industry Standard" PC's LCD hardware.

Note that this MODE command should be used in the AUTOEXEC .BAT file.

1.5 DRIVPARM Command
The DRIVPARM command allows overriding of the device parameters for a specific logical drive.
The syntaxis:
DRIVPARM=/D:dd [/F:Af /T:tt /S:ss /N /C /H:hh]
Where:
/D:dd is drive number (0-255). (0=A, 1=B, 2=C ...)
and optionally:

[T:ttis the number of tracks per side (1-999).
/S:ss is the number of sectors per track (1-99).
/H:hh is the maximum head number (1-99).
/C indicates changeline (doorlock) support required.
/N indicates non-removable block device.
/F:ffindicates the form factor where:

0 =5.25 inch floppy diskette, 320/360 K bytes.

1 =5.25 inch floppy diskette, 1.2 Mbytes.

2 =3.5inch floppy diskette, 720 K bytes.

3 =8 inch floppy diskette, Single Density.

4 =8 inch floppy diskette, Double Density.

5 = Hard Disk.

6 = Tape Drive.

7 = 3.5 inch floppy diskette, 1.44 Mbytes.

This command allows the overriding of default system parameters for a particular logical drive. This information would be
used by the commands which create new diskettes (such as FORMAT and COPY) when writing out the directory and FAT
(File Allocation Table) information. For any physical device which is read the information in the FAT ID is used when
determining device characteristics for floppy disks, hard disks and tape drives.

If no form factor (/F:) is specified then a value of 2 is assumed (720K, 3.5 inch diskette).

1.6 FCBS Command

The FCBS command allows you to specify the number of file control blocks available to the system and consequently the
number of files which can be opened atanyone time.

The syntaxof the FCBs is:
FCBS=<x><y>

Where <x> is the number of FCBs (in the range of 1 to 255) to allocate and <y> is the number of FCBs protected from
closure when a program tries to open more than <x> files. The first <y> files opened will be protected. MS-DOS selects
the least recently used (non-protected) FCB when it must automatically close a file.

Ifthe FCBS command is not used MS-DOS defaults <x> and <y>to 4 and 0 respectively. Itis an error to set <y> greater
than <x>

1.7 FILES Command

The FILES command specifies the maximum number of file handles that can concurrently be opened. When a program
opens a file or a device itis assigned an identifier or "handle" which can be used by that program in referring to the file.

The syntaxof the FILES command is:
FILES=n

Where 'n'is the number of handles in the range of 8 to 255. When no FILES command is used MS-DOS assumes a
default value of 8. Any value higher than 20 serves no useful function.

1.8 LASTDRIVE Command
The LASTDRIVE command is used to set the maximum drive letter which MS-DOS will accept.
The syntaxof the LASTDRIVE command is:

LASTDRIVE=d

Where 'd'is any letter from Ato Z (and is case insensitive). When the drive letter is lower than the actual physical drives
then MS-DOS ignores the LASTDRIVE specification and uses the default value which is the letter 'E'.

1.9 SHELL Command

The SHELL command is used to specify an alternate top-level command processor in place of the standard
COMMAND.COMfile.

The syntaxof the SHELL command is:
SHELL=[drive:]pathname [param1 [parm2 ..[paramn]]]

This command is used in conjunction with major software packages which furnish their own command processors. The
MS-DOS technical manual contains information on developing command processors.

1.10 STACKS Command

The Stacks command allows you to override the default DOS stack resource parameters. For each hardware interrupt
which occurs, MS-DOS allocates a stack to it from the pool of available stacks. When the interrupt process is completed,
MS-DOS returns the stack to the available stack pool.

The syntax of the STACKS command is:
STACKS=<number of stacks>,<stack size in bytes>

If there is no STACKS= command in your CONFIG.SYS file then MS-DOS allocates default stack resources equivalent to
the command STACKS=9,128. This however may not be sufficient if you are using multiple interrupting devices (such as
LANs, 8087 NDPs, or Hard Disks) and under these circumstances you may experience a number of stack related
messages such as "Internal Stack Failure" (most predominantly) or even "Divide Overflow". When messages such as
this occuritis advisable to try increasing the stacks, bearing in mind that stacks do use up available system memoryin
the same way that buffers and FCBs do. The number of stacks allowable is from 8 to 64 and the stack size parameter
may vary from 32 to 512 bytes.

APPENDIX 2: COUNTRY DEPENDENT INFORMATION
FOR MS-DOS 3

Country Num |KbC [DcP |AcP [DtF |DtS [TmS |[TmF [CSm |CFt [CSd |ThS |DeS [DIS
Australia 061 Uus (437 |850 |1 - : 0 $ 0 2 , . ,
Belgium 032 BE 437 |850 |1 / 1 BEF |2 2 , , ;
Canada (Eng.) 001 Uus 437 (850 |0 - 0 $ 0 2 , . ,
Canada (Fr.) 002 CF 863 850 |2 - 1 $ 3 2 , , ;
Denmark 045 DK (865 |850 |1 - 1 kr 2 2 , ;
Finland 358 SuU 437 |850 |1 : 1 mk 3 2 , , ;
France 033 FR 437 1850 (1 / 1 F 3 2 , , ;
Germany 049 GR 437 (850 |1 . 1 DM 2 2 , :
Italy 039 IT 437 |850 |1 / 1 L 0 0 , ;
Israel 972 - 437 (850 |1 / 1 0 2 2 , . ,
Latin America 003 LA 437 |850 |1 / 1 $ 3 2 , :
Middle East 785 -- 437 |850 |1 / 0 f 3 3 , ;
Netherlands 031 NL 437 |850 |1 - 1 T 2 2 , ;
Norway 047 NO (865 |850 |1 / 1 Kr 2 2 , ;
Portugal 351 PO (860 |850 |1 / 1 $ 4 2 , ;
Spain 034 SP 437 |850 |1 / 1 Pt 3 2 , ;
Sweden 046 SV 437 850 |2 - 1 SEK |2 2 , :
Switzerland (Fr.) 041 SF 437 (850 |1 1 Fr 2 2 , . ,
Switzerland (Ger.) 041 SG 437 (850 |1 1 Fr 2 2 , . ,
United Kingdom 044 UK 437 (850 |1 - 1 £ 0 2 , . ,
United States 001 Uus [437 |850 |0 - 0 $ 0 2 , . ,

Table Columns:

Num =Country Number Code.

KbC =KEYB Code.

DcP =Default Code Page.

AcP =Alternate Code Page.

DtF =Date Format. (0 = U.S. M/D/Y, 1=EURO D/M/Y, 2 = JAPAN Y/M/D)
DtS =Date Separator.

TmS =Time Separator.

TmF =Time Format. (0=12-hour clock, 1=24-hour clock)

CSm =Currency Symbol.

_Currency Format. (Bit 0: 0 = Currency symbol Precedes/1=Follows Field, Bits 1 & 2: Number of spaces between
“Value & Symbol)

CSd =Number of significant decimal digits in currency.

ThS =Thousands Separator.

DeS =Decimal Separator.

DIS =Data List Separator.

CFt

The items in this table are used in conjunction with the COUNTRY command and the Keyboard Utility (KEYB).

APPENDIX 3: RS232C CONNECTIONS

For a complete understanding of the connections required between the RS232C and the outside world, itis important to
realize that all devices with a serial interface can be classified as either a modem or as a terminal. Modems are merelya
way of extending the length of the connection (often via a terminal wire) between two terminals. Fig 1 (below) shows a
simplified, idealised terminal to terminal connection through modems.

IDEALISED TERMINAL TO TERMINAL CONNECTION

L~

Figure 1.

The standard connector used for serial interfaces has 25 pins although only up to seven are required in most cases.
When connecting to a modem a 'one-to-one' cable is used, i.e. pin 1 to pin 1, pin 2 to pin 2, ... pin 25 to pin 25. Assuming
such cables are in use, data is transferred as follows:

Following the signal path from left to right (in Fig 2), characters from the keyboard are sent as serial data patterns out of
pin 2 of the left-hand terminal, to pin 2 of the modem (the connection marked 'transmit data'). The left-hand modem
sends the characters via the telephone line, to the right hand modem. The characters are received pin 3 of the right hand
modem (the connection marked 'receive data') which sends them to pin 3 of the right-hand terminal. On receipt of the
characters, the right-hand terminal displays them on the screen.

Notice how the names of the connections tfransmit data' and 'receive data' are expressed from the view point of the
terminals and notthe modems.

The data path from left to right just described, is exactly matched by a data path from right to left which uses the same
numbered connections, i.e. pin 2 from the right-hand terminal to its modem (transmitting), and then to pin 3 of the left-
hand (receiving) modem to the terminal. This arrangementis perfectly symmetrical, and there is no confusion over who
is using which pin number and for what direction of data transfer.

{ /V
| RECEIVE DATA | | RECEVEDATA ‘
3 —— | 3~ - p— St 3
| AR
o | | N
| EARTH | \
SCREEN 7 - . SV— - . scasen
! - | di I 1’
Figure 2.

Problems of definition arise, howeve, when we wish to connect two terminals together locally, without the intervening pair
of modems. We cannot connect pin 2 to pin 2 because both keyboard will be transmitting head-on and neither screen is
connected to anyone who is sending. The obvious solution is to cross over pins 2 and 3 so that the transmit pin of each
terminal is connected to the receive pin of the other. Acable containing such a cross-over connection is known as a 'Null-
modem' cable because of the wayin which itreplaces the pair of back to back modems.

The earth pin (pin 7) is still common to both terminals using this arrangement.

TRANSMITOATA TRANSMIT DATA

| RECEIVEDATA | RECEIVEDATA
3 = | 3 -3 3
\
l N
e | N
SCREEN » 7 t —— ' —— 7 7+ S e everd P ~ SCREEN
I | | S |
Figure 3

Naturally, the Amstrad PPC with its RS232C interface is considered a terminal, and therefore to connect to a modem (for
example, to dial-up a database) requires a simple one-to-one cable.

The Null-modem cable is required for connecting to other terminals. The sort of equipment we mean by terminals is: a
second Amstrad computer plus RS232C, a conventional Visual Display Unit (VDU), a printer with a serial interface, or any

other serial interface device.

TELECOM

SERIAL MODEM |1~ GOLD SERIAL * PRINTER
INTERFACE £1c INTERFACE
AMSTRAD NMC AMSTRAD AMSTRAD NMC

+ + +

SERIAL * SERIAL SERIAL X TERMINAL

INTERFACE INTERFACE INTERFACE
Figure 4

There is a point to be noted here: many manufacturers of devices such as desk-top computers wire up their serial
interface (for VDU or a Printer) as if it were a modem, not a terminal. This is in the belief that life will therefore be simpler
because VDU's and printers can be connected to that computer with one-to-one cables.

AMSTRAD NMC
+ DESK TOP
SERIAL * COMPUTER
INTERFACE
-WIRED AS ATERMINAL
AMSTRAD
+ DESK TOP
SERIAL COMPUTER
INTERFACE
-WIRED AS AMODEM
Figure 5.

In a perfect world, it would be possible to identify which serial devices behave like modems and which ones behave like
terminals by examining the 'sex of the 25-way connector - terminals should have a 'male' connector, and modems a
‘female' connector. This is not, unfortunately, as reliable a guide as it should be, as many manufacturers of terminals and
printers equip them with 'female’ connectors, mostly for reasons of electrical safety.

Ifin doubt, the ultimate testis to examine the user manual and determine the function of PIN 2 - if the description
includes the word " TRANSMIT' then the equipmentis wired as a terminal, and if itincludes the word 'RECEIVE' then the
equipmentis wired as a modem.

Hardware Flow Control

The simplified connection described so far does not allow any control of the data flow. In practice, we often with the
receiving device to have control over the transmitting device, thus preventing the receiving device from being
overwhelmed (where itis slower in using the input than the rate at which the inputis arriving). In addition, if the
transmitting device has reason to mistrust the data which itis sending, there should be some provision for it to disable
the receiving device.

In the case of modem to terminal connection; when the terminal is able to transmit it activates pin 4 - the RTS pin
(Request To Send). When the modem is ready to receive input it activates pin 5 - the CTS pin (Clear To Send). The
terminal will only send when CTS is activated. Thus the modem can control the flow rate using CTS.

When the modem considers that the data which itis about to send is suitable, it activates pin 8 - the DCD pin (Data
Carrier Detect). When the terminal is ready to receive input it activates pin 20 - the DTR pin (Data Terminal Ready). The
modem will only transmitwhen DTR is activated. Thus the terminal can control flow rate using DTR.

There are two further signals which must be introduced here. One is on pin 22 - the Ring indicator, which simply allows
the modem to tell the terminal that the phone is ringing (at which point software in the terminal might be expected to wake
up). The other signal is on pin 6 - DSR (Data Set Ready). This signal is ignored by the receiving side of the RS232C; the
modem will activate this signal at much the same time thatit activates DCD, and therefore no functionality is lost by
ignoring DSR.

CONNECTIONS TO A MODEM
SERIALINTERFACE MODEM
TRANSMITDATA
2 — 2
!
A RTS - .
| CTS
5 | e 5
OUT TO THE MODEM
— e——t—— - — —
3 3
DTR
20 P— 20
SR
6 > g 3
DCD
8 — 8
RING
2] 2
IN FROM THE MODEM
Figure 6.

In the case of terminal-to-terminal conenctions, the Null-modem cable must be used with the additional connections to
pins 2, 3, and 7 as already discussed. The full Null-modem cable swaps pins 4 and 8 - the RTS/DCD 'l am happy to
send'signals, and pins 20 and 5 - the DTR/CTS 'busy signals. To be on the safe side, pin 6 (DSR) is connected to pin 8
(DCD) in case that end of the cable is ever connected to a terminal which is fussyand requires DSR as well as DCD.

TRANSMITTING FROM RS232C

' TRANSMITDATA
2 —

RECEIVEDATA
FEMALE ’———J 3 MALE

DSR 6
e ——
REQUEST TO SEND
4 -—
\ DCD
8
CLEARTO SEND
5
DTR
i 20
RECEIVING INTO R$232C
RECEIVE DATA
3 - TRANSMIT DATA
4 2

DCD (TELLS RECEIVER TO IGNORE POSSIBLE NOISE ON THE LINE)

8 3
N, W
—————————— 4

DSR
6 | ——

DTR

Figure 7.

There is a school of thought which says that a Null-modem cable, unlike the pair of modems itreplaces, is ALWAYS
'happyto send'. Therefore itis quite in order to generate DCD (and DSR) permanently. This is achieved by connecting
them to the RTS at the same end of the cable, rather than to the RTS at the other end of the cable.

2
\ RXD
—— 3
RTS DSR
4 b —— — 6
DCD
b — ——— §

T

=

ﬂ

-

i AN
’ N

e U
3
ﬂ 4

ff

5
DSR
6
DCD
|) SR —
THE RECOMMENDED NMC
Figure 8.

Finally, if the transmission rate from one of the two terminals is known to be unstoppable (e.g. a person typing at the
keyboard), oris so slow and infrequent (e.g. the software handshake characters 'XON, XOFF' sent by the printer) that
there is no danger of over-running the receiving end, then itis permissible to permanently enable the transmission by
linking pin 5 (CTS) to pin 4 (RTS), i.e. to always send if ready (at the transmitting end of the cable). It may well be
facilitated in any case, for the transmitting terminals to ignore the state of CTS under these circumstances.

THE RECOMMEND TERMINAL CABLE

™D

2 ——
\ RXD
i 3
CTs RTS
DSR
~— 6
DCD
4 H———w—] 8
TRANSMIT FROM SERIAL INTERFACE TO TERMINAL
RXD
\ TXD
- 2
RTS
‘$ ————— et ¢
6 —
CTs
8 e e R —-————] §

Figure 9

APPENDIX 4: PRINTER LEAD (PL-2) WIRING
SPECIFICATION

Connectors.

1. Computer Centronics Parallel Interface connector is a 25-way, D-plug.
2. Printer Input connector is a 36-way, IEEE-488 plug.

Cable Wiring.

|Line Name |Com puter Connector Printer Connector

Line Name Computer Connector Printer Connector
-Strobe 1 1
Data Bit0 2 2
Data Bit1 3 3
Data Bit2 4 4
Data Bit 3 5 5
Data Bit4 6 6
Data Bit5 7 7
Data Bit6 8 8
Data Bit7 9 9
-Ack 10 10
Busy 1" 1"
PO 12 12
Select Out 13 13
-AutoFd 14 14
-Error 15 32
-Reset 16 31
-SelectIn 17 36
GND 18 19
GND 19 20
GND 20 21
GND 21 22
GND 22 23
GND 23 24
GND 24 25
GND 25 26
GND - 27
GND - 28
GND - 29
GND - 30
GND - 33
GND - 15
GND - 16
GND - 17
GND - 18
GND - 34
GND - 35

APPENDIX 5: PPC POWER USAGE

The PPC power usage from the batteries is as follows:

1. Power OFF (internal RTC running) TmA
2. Power ON and RAMresident process, disk motors off 620mA
3. Power ON and RAMresident process, disk motors on 870mA

Itis notrecommended that the modem be used with the batteries otherwise the usable 1Arating of the batteries will be
exceeded. As the batteries age their voltage output will drop and the current regulator will increase the current demand to
maintain the internal electronics board power supply output. This process will foreshorten battery life considerably, as the
batteries age.

The PPC power usage from the AC adapter is as follows:

1. Power OFF (batteries supplying RTC) 100mA

740mA

2. Power ON and ROMresident process, disk motors off

850mA

3. Power ON and RAMresident process, disk motors off

1100mA

4. Power ON and RAM resident process, disk motors on

1220mA
1470mA

5. Power ON and RAMresident process, modem active

6. Power ON and RAMresident process, modem & disk active

The power usage during power off condition is due to a bleed resister in the adapter circuit, used to stablize the adapter
so that it will not supply open circuit voltage to the computer. The voltage from the AC adapter with just bleed currentis

approximately 15 volts. The minimum voltage with RAMresident process, modem and disk both active is approximately

13.5 volts.

ROM CHARACTER SET

APPENDIX 6

[+| (A1 [vi [== R || |l |n[m F +| [Ar]vi |e=}= | o |aa [[= [a |m
= ol |(=W|e e A A RN A = 1R = e el |w|w|e
a I~ EE | == | < B a I~ R M| et |
[&] = | | = =R 1= I FeH Q M| | =+ I =R | IRE= I BREE
Junms— = FlreeElrR R b | - i — | R e R B b |
Tw~fohsfepzin |o [L] r[sjarfe|y|a]|w |« %le|z[o2wo|le|la|o|wv[r|a|s x|z
=) #|elololoks|s|ola|a 0R..J%9 N B o o [|3 [B | 2|0 | W | = |
[=2] 5 M [i | o o <o [0 [0 [i= \..."n.nma A~laRN(T(e/~xl<E|Z|m|e|=
™~ TR |s]|2]|3|X| D N|w }Mo..m? Flulofw|s|2]|3|X| D N|w|==[~[[a
O IR A T) A e e £|s|o| O |w glalo[<|ofw|m|s|~|mx|~[s[=]|0
n =A== E IR S I A P (el _MS =1 G EIE E R R S P sl
s cmoamm|clz~=|x=E|lZz(lc] O |« Cclmoar|m|e|z(~=|x|=|E|Zz|c
[y} Rl N Gl Al P =0 L == 0 =) R B Al | Z |m N (o[|o]| V] Ao
N o || N[l [~ x|+ [./mAuz e || N[[~ k] E]]| o[\
- Yo |z |E o] 1o |y $ [« || Y e |z || B[efe=[=]|r]|e|d]s|[a|m
® 2| D|® | < |4 |+ KN O KA~ fﬂ*WB 0|9 |e <[4]+ KH O N0 [oF |0y IS |4
™ N | (w0 [~ (oo < | DEFWX N | | [0 [(00 (o [<C |ma | |& [Rad (R
= = |2
<9 *| (AW [Sy Qi [« [= N | m <9 | Al V][Sy | o o || |- CHL
= ol |(=w|e =lojola|wls |v|w|c = ale|(=w|e oo|c|w|e] |w|e
=] = FE | = | = W a I=| FE | = =t | =
(] | - |t I =R IFE= I pEHE Q M| - I | =Rl | 1= I FeHI
== g ™ Fl == A R | e R mim Fl =R A R M| -
T~ fofspRepz i jor [L[|vaw]e|y |2 T s fofsfepzle o |wbo|r[svjar|e]y |2
=) % [o [0 |0 ks s 3o [[[w [| [« o P b b <o 20 |0 hD |z b po [[[ar ho o po
[=2) 5 M ¢ |2 |om <0 [0 [0 |2 e o= [T b | 3 |00 5 O [| o O <0 ki [0 p kO |0 R kE
™~ ls|afe|s]| 23| X|D[N[w|=|~] |a] & |~ Tlsu|afe|s]2] 3] x| D N|[w[-=[~] |a
O AR A T e A e e mnoms glalo[<|ofw|o|s|~|=x|~[e[=|0
n olx|n|=|az =[x |>|N|=]|/|l=k | | T [w =1 EI = E R B S P sl
« clmlolamwlolz]~==klelzlc] © [« cmolarm|e|z(~|=|x|=E|Z|c
[} Rl A Gl Al e =0 o =0 =) R B __>?M3 Ll A Gl Al N = o =0 =Y N B N L Y
N ot BNl]|~ x]|+ 1 -IN| Ol o || N[[~ k] E]]| <N
wlalrlel=|El] i|ale]-]+] »Avww1. v o= ifen]e]2]r []a]s [a]w
2] 0 |D|® e [< |4+ KH O KA~ LS 5 |® 0 |D[(® e |<[¢|+ KO KE % |OF Ly [|4
,m N | (W [0 [~ [0 oy < | DEFmNmm N | L WO [(00 o [<C |mr O |e [Ra (R
1T}

GREEK character set

PORTUGESE character set

NOTE: Character sets are selected using the character set selection links described on page 141.

KEYBOARD KEYCODES

APPENDIX 7

@©
@D
M~
@D
M~
€O

ElCICIE

5]] &1 [

[1]

@D
ECE J[&]
wn ™ N~ oy ™
wn M~ M~ @ @D
™ N ©w

o
> @D
™ wn

R
2

[+ o]
< « Q-+
.
>
)

[7]
)
3]
o]
57

@D
@D
M~
@D
M~
€©O

%) [[[

%) [[[

[1]

@
ECE J[&]
wn ™ ~ oy [}
wn M~ M~ @ @
™ N ©

A
> @K
™ n

D
) ¥
HI i
<
wn
I~
-

@

N

o
mlE

[7]
2]
3]
]
57

[56] |

™

[]
©

wl| | B
—1 ¥

UK keyboard

USA keyboard

* keys designated by an asterix are extended keys and give extended key sequences as documented in section 2.3.4.
Note 1: This key, the Print Screen/Sys req key, gives the keycode sequence EOh, 2Ah, EOh, 37h when typed.

Note 2: This key, the Pause/Break key, gives the keycode sequence E1h, 1Dh, 45h when typed.

APPENDIX 8: KEYBOARD LAYOUTS

aus
[Sraak|

=I=lE

CcK

"
-
Fd

Prr
i
y5!

=

el o] [l

]

'S

=]]] [

Dlalala
T A
alals

o

LI+ T

[o8 o b8 [4

[e o]]
LA

Entar

Nu
LocH
[

End
0
Ing

[=]

il
=

[&]

==

(
9

3

trl

el s

Ul

aLs:
Sraak]

=

Lock

%]

=il

P,

F12

|

[
[

][]][]

o

USA keyboard

—

Nu
Loc!

(
9

BB IO ETED (=]

il

oF

CJ e BJETETE]E]

R
5]
o

-
%]
Q
I

trl

it
c

UK keyboard

| || : | | L& |
+ o + &
08 kot ok
> d ol |oal |- &
(] o o])
€ , g 2 3 g
E5] f e [Ld lod Bl 8 [[o8
i
g L e] [: ElLE]] [
3 | LE —| |—™ & —| | —
< - 8 !:
ik H
.
l l =
-
1= 0= 0le
W + N "9
-
0 EEEE; 0 @R E=Of;
5] g o &
o] — o] —
5) — L] —
O
=i =I5
= :] = = L]
> >
L] &] L] &
Nl
Elb N
; =
- e
oEe =
k]
> >
e Y e |
BH B!
T g g L g g
> bl ool —] =
o) e 3 ~
a L] NE L
d 6] =
d < I g Y
o0
[y - © o
436 ua» ol |2

FRENCH keyboard GERMAN keyboard

(I« e] I
3 g b5 2| g
HISIXISIE [] o8 o1 7] [
SE 2 c 3 2
25] (el [los g5 [[d 2] loe
—| [—=
] () i) L L]] [
B3 £ — |— B3 &) |LE — |—
5= b3] 2
g [F][3] ;
w c L z =
1 8 1 5
l |]
e
] O gle o5l
=B N -
w o . = w o .) =
DQDL bl =
!EIEJ HBE
D-x 5] e |
- L] N -E
L1= b=
Z =
1] J ot
o o] o
ck
alle) > 2w >
0] -
s ok
il oy
]S =
z]e = | = |
B < =12 s
¥ El N
o w2
I
© — af c © =
] L e Lo eI E

SPANISH keyboard ITALIAN keyboard

LI+ J &] HIE I
[bod o L8 [[bod o 3[4
zog 202
=
[&] [&]

e e O
- |:|<. <3 . Izl. -
_ _
DED% EIEI;”
sl =0 5 =0

ml2
= =
N sbs
o = hd =
e o mES
ahnlgl> E>
BB_ B—
e ok | Er=alke
D o= P
[;IB“"-; an
3] 3 —

SWEDISH keyboard DANISH keyboard

E]]]]

B]][]

=

tar

Enl

DI + ||

g .
s "‘

HIH

z
[_l -
(&)
l
L] =
o <A
- A i
& -
ol]
o] |4
N Rt P
oL

B
n-=l

K|

o
7S
=
w
o]

E]]] [

I
N
= o |
e BO
— LT R g
><
o N o
: Bl s
L= 8 L
=

aps Locl

-l <

trl

Ul

=

z

+ I

2 g
[l led b8 [4
-M-M

EILIdldl

-- PN
HiE

-. <l [£

K
>
<

aps Locl

trl

o

PORTUGESE keyboard

NORWEGIAN keyboard

APPENDIX 9: THE LINKER PROGRAM (MS-LINK)
9.1 INTRODUCTION

In this appendix you will learn about MS-LINK. Itis recommended that you read the entire appendix before you use MS-

LINK.

The MS-DOS linker (called MS-LINK) is a program that:

1. Combines separately produced object modules into one relocatable load module - an executable (.EXE) program

file which you can run.

2. Searches libraryfiles for definitions of unresolved external references.
3. Resolves external cross-references.
4. Produces a listing that shows both the resolution of external references and error messages.

9.2 Overview of MS-LINK

When you write a program, you write it in source code. This source code is passed through a compiler which produces
object modules. The object modules must be passed through the link process to produce machine language that the
computer can understand directly. This machine language is in the form required for running programs.

You maywish to link (combine) several programs and run them together. Each of your programs may refer to a symbol
thatis defined in another object module. This reference is called an external reference.

MS-LINK combines several object modules into one relocatable load module, or Run file (called an .EXE or Executable
file). As it combines modules, MS-LINK can search several libraryfiles for definitions of any external references that are
not defined in the object modules.

MS-LINK also produces a List file that shows external references resolved, and it also displays any error messages.

MS-LINK uses available memoryas much as possible. When available memoryis exhausted, MS-LINK creates a
temporarydisk file named VM.TMP.

Figure 1 illustrates the various parts of the MS-LINK operation:

Non-Assembly Assembly
Source Source
Complier Assembler
| N
.OBJ .OBJ .0BJ .0OBJ .0BJ .0BJ
“
N\
> MS-LINK
7N
/ /
Libraries Libraries
(.LIB) (.LST)
Upto 8 characters PUBLIC symbols
can be searched cross-referenced
ﬁUl:ed onlyif Run Run
Meis larger than unfile
memory VM. TMP EXE

Figure 1. The MS-LINK Operation

9.3 Definitions you will need to know

Some of the terms used in this appendix are explained below to help you understand how MS-LINK works. Generally, if
you are linking object modules compiled from BASIC, Pascal, or a high-level language, you will not need to know these

terms. However, if you are writing and compiling programs in assembly language you will need to understand MS-LINK
and the definitions of the memory divisions of MS DOS.

In MS DOS, memory can be divided into segments, classes and groups. Figure 2 illustrates these concepts.

Segment3 | Segment4 | Segment5

Segment 6 Segment7 | Segment8 | Segment9 Segment 10

Segment 13 | Segment 14 | Segment 15 Segment
16

Segment17 | Segment Segment19 | Segment | Segment | Segment
18 20 21 22

Shaded area = a group (64K bytes addressable)
Figure 3. How Memory Is Divided

Example:

Segment Number|Name |[Class

1 PROG.1|CODE
2 PROG.2|CODE
12 PROG.3|DATA

Note that segments 1, 2 and 12 have different segment names, and may or may not have the same segmentclass
name. Segments 1,2 and 12 form a group with a group address of the lowest address of segment 1 (ie., the lowest
address in memory).

Each segment has a segmentname and a class name from the first segment encountered to the last. All segments
assigned to the same class are loaded into memory contiguously.

During processing, MS-LINK references segments by their addresses in memory (where they are located). MS-LINK
does this by finding groups of segments.

Agroup is a collection of segments that fit within a 64K byte area of memory. The segments do not need to be contiguous
to form a group (see illustration). The address of any group is the lower address of the segments within that group. At link
time, MS-LINK analyses the groups, then references the segments by the address in memory fo that group. Aprogram
may consist of one or more groups.

If you are writing in assemblylanguage, you may assign the group and class names in your program. In high-level

languages (BASIC, COBOL, FORTRAN, Pascal), the naming is done automatically by the compiler.

9.4 Files that MS-LINK uses

MS-LINK:

1. Works with one or more input files.

2. Produces two output files.

3. May create a temporarydisk file.

4. May be directed to search up to eight libraryfiles.

For each type of file, the user may give a three-part file specification. The format for MS-LINK file specifications is the
same as that of a disk file:

[d:]<filename>[<.ext>)
where:

d:
is the drive designation. Permissible drive designations for MS-LINK are A: through O:. The colon is always required
as part of the drive designation.

filename
is anylegal filename of one to eight characters.

9.4.1 Input file Extensions

If no filename extensions are given in the input (object) file specifications, MS-LINK will recognize the following
extensions by default:

.0OBJ
-- Object code file from assembly or compilation.
LIB
-- Libraryfile created for some product such as FORTRAN or C.

9.4.2 Output file Extensions

MS-Link appends the following default extensions to the output (Run and List) files:

EXE

-- Run file. (may not be overriden)
.MAP

-- Listfile. (may be overridden)

9.4.3 VM.TMP (Temporary) File

MS-Link uses available memory for the link session. If the files to be linked create an output file that exceeds available
memory, MS-LINK will create a temporaryfile, name it VM.TMP, and putitin the disk in the default drive. If MS-LINK creates
VM.TMP, it will display the message:

VM.TMP has been created.
Do not change diskette in drive, <d:>

Once this message has been displayed, you must not remove the disk from the default drive until the link session ends.
if the disk is removed, the operation of MS-LINK will be unpredictable, and MS-LINK might display the error message:

Unexpected end of file on VM.TMP

The contents of VM.TMP are written to the Run file. (The name of the file is written at the Run file prompt). VM.TMP is a
working file only and is deleted at the end of the linking session.

WARNING

Do notuse VM.TMP as a filename for anyfile. If you have a file named VM.TMP on the default drive and MS-LINK requires
the VM.TMP file, MS-LINK will delete the VM.TMP already on disk and create a new VM.TMP. Thus the contents of the
previous VM.TMP file will be lost.

9.5 How to start MS-LINK

MS-LINK requires two types of input: a command to start MS-LINK and responses to command prompts. In addition,
seven switches control MS-LINK features. Usually, you will type all the commands to MS-LINK on the terminal keyboard.
As an option, answers to the command prompts and any switches may be contained in a response file. Command
characters can be used to assist you while giving commands to MS-LINK.

MS-LINK may be started in any of three ways. The first method is to type the commands in response to individual
prompts. In the second method, you type all commands on the line used to start MS-LINK. To start MS-LINK by the third
method, you must create a response file that contains all the necessarycommands and tell MS-LINK where that file is
when you start MS-LINK.

Summary of Methods to start MS-LINK

Method 1 LINK prompted.
Method 2 LINK <filenames> [/switches]
Method 3 LINK <filespec>

9.5.1 Method 1: Prompts

To start MS-LINK with Method 1, type:

LINK

MS-LINK will be loaded into memory. MS-LINK will then display four text prompts that appear one ata time. You answer
the prompts to command MS-LINK to perform specific tasks.

At the end of each line, you may type one or more switches, preceded by the switch character, a forward slash (/)
The command prompts are summarised below and described in more detail in the "Command Prompts" section.

Object Modules [.OBJ]:
Input '.OBJ' files to be linked. They must be separated by blank spaces or plus signs (+). If a plus sign is the last
character typed, the prompt will reappear. There is no default; a response is required.

Run File [Object-file.EXE]:
Give filename for executable object code. The defaultis first-object-filename.EXE. (You cannot change the output
extension.)

List File [Run-file. MAP]:
Give filename for listing. The defaultis RUN filename.

Libraries []:
Listfilenames to be searched, separated by blank spaces or plus signs (+). If a plus sign is the last character
typed, the prompt will reappear. The default is to search for default libraries in the object modules. (Extensions will
be changed to .LIB.)

9.5.2 Method 2: Command Line

To start MS-LINK with Method 2, type all commands on one line. the entries following LINK are responses to the
command prompts. The entryfields for the different prompts must be separated by commas. Use the following syntax:

LINK <object-list>, <runfile>, <listfile>, <lib-list> [/switch...]
where :-

= object-listis a list of object modules, separated by plus signs

= runfile is the name of the file to receive the executable output
= Jjstfile is the name of the file to receive the listing.
» Jib-listis alist of library modules to be searched.

/switch refers to optional switches, which may be placed following any of the response entries (just before any of the
commas or after the <lib-list>, as shown.

To select the default for a field, simply type a second comma with no spaces between the two commas.

Example:

LINK FUN+TEXT+TABLE+CARE/P/M+FUNLIST,COBLIB.LIB

This command causes MS-LINK to be loaded, then the object modules FUN.OBJ, TEXT.OBJ, TABLE.OBJ, and CARE.OBJ
are loaded. MS-LINK then pauses (as a result of using the /P switch). MS-LINK links the object modules when you press
anykey, and produces a global symbol map (the /M switch); defaults to FUN.EXE Run file; creates a List file named
FUNLIST.MAP; and searches the libraryfile COBLIB.LIB.

9.5.3 Method 3: Response File

To start MS-LINK with Method 3, type:
LINK @<filespec>

where: filespec is the name of a response file. Aresponse file contains answers to MS-LINK prompts (shown in Method
1) and may also contain any of the switches. When naming a response file, the use of flename extensions is optional.
Method 3 permits the command that starts MS-LINK to be entered from the keyboard or within a batch file without
requiring you to take any further action.

To use this option, you must create a response file containing several lines of text, each of which is the response to an
MS-LINK prompt. The response mustbe in the same order as the MS-LINK prompts discussed in Method 1. If desired, a
long response to the Object Modules: or Libraries: prompt may be typed on several lines by using a plus sign (+) to
continue the same response onto the nextline.

Use switches and command characters in the response file the same way as they are used for responses typed on the
terminal keyboard.

When the MS-LINK session begins, each prompt will be displayed in order with the responses from the response file. If
the response file does not contain answers for all the prompts, (in the form of flenames, the semicolon character or
carriage returns), MS-LINK will display the prompt which does not have a response, then wait for you to type a legal
response. When a legal response has been typed, MS-LINK continues the link session.

Example Response File:

FUN TEXT TABLE CARE
/PAUSE/MAP

FUNLIST

COBLIB.LIB

This response file tells MS-LINK to load the four object modules named FUN, TABLE and CARE. MS-LINK pauses before
producing a public symbol map to permit you to swap disks (see discussion under /PAUSE in the "Switches" section
before using this feature). When you press any key, the output files will be named FUN.EXE and FUNLIST.MAP. MS-LINK
will search the library file COBLIB.LIB, and will use the default settings for the switches.

9.6 Command Characters

MS-LINK provides three command characters:
Plus sign

Use the plus sign (+) to separate entries and to extend the current line in response to the Object Modules: and

Libraries: prompts. (Ablank space maybe used to separate object modules.) To type a large number of responses
(each maybe verylong), type a plus sign followed by the [RETURN] key at the end of the line to extend it. If the plus
sign is the last character typed before pressing the [RETURN] key, MS-LINK will prompt you for more module
names. When the prompt 'Object Modules:' or the prompt 'Libraries:' appears again, continue to type responses.
When all the modules to be linked and libraries to be searched have been input, be sure the response line ends
with the last module name and a [RETURN] and not a plus sign and [RETURN].

Example:

Object Modules [.OBJ]: FUN TEXT TABLE CARE <RETURN>
Object Modules [.OBJ]: FOO+FLIPPFLOP+JUNQUE <RETURN>
Object Modules [.OBJ]: CORSAIR <RETURN>

Semicolon (;) :

To select default responses to the remaining prompts, use a single semicolon (;) followed by a [RETURN] at any
time after the first prompt (Run file:). This feature saves time and overrides the need to press a series of [RETURN]

keys.

Once the semicolon has been typed and entered (by pressing the [RETURN] key), you can no longer respond to any
of the prompts for thatlink session. Therefore, do not use the semicolon to skip some prompts. To skip prompts,
use the [RETURN] key.

Example:

Object Modules [.OBJ]: FUN TEXT TABLE CARE [RETURN]
Run Module [FUN.EXE]: :[RETURN]

No other prompts will appear, and MS-LINK will use the default values (including FUN.MAP for the List file).

<CONTROL-C>
Use the [Ctrl][C] keys to abort the link session atanytime. If you type an erroneous response, such as the wrong
filename or an incorrectly spelled filename, you must press [Ctrl][C] to exit MS-LINK then restart MS-LINK. If the error
has been typed but you have not pressed the [RETURN] key, you may delete the erroneous characters with the
backspace key, but for that line only.

9.7 Command Prompts

MS-LINK asks you for responses to four text prompts. When you have typed a response to a promptand pressed
[RETURN], the next prompt appears. When the last prompt has been answered, MS-LINK begins linking automatically
without further command. when the link session is finished, MS-LINK exits to the operating system. When the operating
system prompt appears, Ms-LINK has finished successfully. If the link session is unsuccessful, MS-LINK will display the
appropriate error message.

MS-LINK prompts you for the names of Object, Run, and Listfiles, and for Libraries. The prompts are listed in order of
appearance. The default response is shown in square brackets ([]) following the prompt for prompts which can default to
presetresponses. The object Modules: prompt has no preset flename response and requires you to type a filename.

Object Modules [.OBJ]:

Type a list of the object modules to be linked. MS-LINK assumes by default that the filename extension is .OBJ. Ifan
object module has any other filename extension, the extension must be given. Otherwise, the extension may be
omitted.

Modules mustbe separated by plus signs (+).

Remember that MS-LINK loads segments into classes in the order encountered. You can use this information to
set the order in which the object modules will be read by MS-LINK.

Run File [First-Object-filename.EXE]:

Typing a filename will create a file for storing the Run (executable) file that results from the link session. All Run files
receive the filename extension .EXE, even if you specify an extension other than .EXE.

If no response is typed to the 'Run File:' prompt, MS-LINK uses the first filename typed in response to the Object
Modules: prompt as the RUN filename.

Example:
Run File [FUN.EXE]: B:PAYROLL/P

This response directs MS-LINK to create the Run file PAYROLL.EXE on drive B:. Also MS-LINK will pause, which
allows you to insert a new disk to receive the Run file.

List File [Run-Filename.MAP]:

The Listfile contains an entry for each segmentin the input (object) modules. Each entry also shows the
addressing in the Run file.

The defaultresponse is the Run filename with the default filename extension '"MAP'.
Libraries []:

The valid responses are up to eight library filenames or simplya [RETURN] (A[RETURN] means default library
search). Library files must have been created by a library utility. In default, MS-LINK will assume that the filename
extension is .LIB for libraryfiles.

Library filenames must be separated by blank space or plus signs (+).

MS-LINK searches libraryfiles in the order listed to resolve external references. When it finds the module that
defines the external symbol, MS-LINK processes that module as another object module.

If MS-LINK cannot find a library file on the disk drives, it will display the message:
Cannot find library <library-name> Type new drive letter:

Press the letter for the drive designation (for example, B).

9.8 MS-LINK switches

The seven MS-LINK switches control various MS-LINK functions. Switches must be typed at the end of a prompt
response, regardless of which method is used to start MS-LINK. Switches may be grouped at the end of anyresponse,
or may be scattered at the end of several. If more than one switch is typed at the end of one response, each switch must
be preceded by a forward slash (/).

All switches may be abbreviated. The onlyrestriction is that an abbreviation must be sequential from the first letter
through the last typed and no gaps or transpositions are allowed. Some legal and illegal abbreviations for the
/DSALLOCATE switch are as follows:

Legal lllegal

/D /DSL

/DS /DAL

/DSA /DLC
/DSALLOCA [/[DSALLOCT
/DSALLOCATE

Using the /DSALLOCATE switch tells MS-LINK to load all data at the high end of the Data Segment. Otherwise MS-LINK
loads all data atthe low end of the Data Segment. At run time, the DS pointer is set to the lowest possible address to
allow the entire DS segment to be used. Use of the IDSALLOCATE switch in combination with the default load low (that
is, the /HIGH switch is not used) premits the user application to dynamically allocate any available memory below the
area specifically allocated with DGroup, yet to remain accessible by the same DS pointer. This dynamic allocation is

needed for Pascal and FOTRAN programs.

Note:

Your application program may dynamically allocate up to 64K bytes (or the actual amount of memory available) less the
amount allocated within DGroup.

HIGH

Use of the /High switch causes MS-LINK to place the Run file as high as possible in memory. Otherwise, MS-Link
places the Run file as low as possible.

IMPORTANT
Do notuse the /High switch with Pascal or FORTRAN programs.
/LINENUMBERS

The /ILINENUMBERS switch tells MS-LINK to include in the List file the line numbers and addresses of the source
statements in the input modules. Otherwise, line numbers are notincluded in the Listfile.

Note:

Not all compilers produce object modules that contain line number information. In these cases, of course, MS-LINK
cannotinclude line numbers.

IMAP

/Map directs MS-LINK to list all public (global) symbols defined in the input modules. If/MAP is not given, MS-LINK
will list only errors (including undefined globals).

The symbols are listed alphabetically. For each symbol, MS-LINK lists its value and its segment.offset location in
the Run file. The symbols are listed at the end of the Listfile.

/PAUSE

The /PAUSE switch causes MS-LINK to pause in the link session when the switch is encountered. Normally, MS-
LINK performs the linking session from beginning to end without stopping. This switch allows the user to swap the
disks before MS-LINK outputs the Run (.EXE) file.

When MS-LINK encounters the /PAUSE switch, it displays the message:
About to generate .EXE file Change disks <hitanykey>
MS-LINK resumes processing when the user presses anykey.
CAUTION
Do notremove the disk which will receive the List file, or the disk used for the VM.TMP file, if one has been created.
ISTACK:<number>

Number represents any positive numeric value (in hexadecimal radix) up to 65536 bytes. If a value from 1 to 511 is
typed, MS-LINK will use 512. If the /STACK switch is not used for a link session, MS-LINK will calculate the
necessary stack size automatically.

All compilers and assemblers should provide information in the object modules that allow the linkter to compute
the required stack size.

At least one object (input) module must contain a stack allocation statement. If not, MS-LINK will display the
following error message:

WARNING: NO STACK SEGMENT

INO
INO is short for NO DEFAULT LIBRARY SEARCH. This switch tells MS-LINK to not search the default (product)
libraries in the object modules. For example, if you are linking object modules in Pascal, specifying the /NO switch
tells MS-LINK to not automatically search the library named PASCAL.LIB to resolve external references.

9.9 Sample MS-LINK session

This sample shows you the type of information thatis displayed during an MS-LINK session.
In response to the MS-DOS prompt, type:

LINK

The system displayes the following messages and prompts:

MICROSOFT Object Linker V.2.00 (C) Copyright 1982 by Microsoft Inc.

Object Modules [.OBJ]: I0 SYSINT <RETURN>
Run File [IO.EXE]: <RETURN> list file [NUL.MAP]: I0 /MAP <RETURN>
Libraries [.LIB]: ;<RETURN>

Notes:

1. By specifying /IMAP, you get both an alphabetic listing and a chronological listing of public symbols.

2. Byresponding PRN to the List File: prompt, you can redirect your output to the printer.

3. By specifying the /LINE switch, MS-LINK gives you a listing of all line numbers for all modules. (Note that the /LINE
switch can generate a large volume of output.)

4. By pressing <RETURN> in response to the Libraries: prompt, an automatic library search is performed.

Once MS-LINK locates all libraries, the linker map displays a list of segments in the order of their appearance within the
load module. The list might look like this:

Start Stop Length Name
00000H OO9ECH O09EDh CODE
009FOH 01166H 0777H SYSINTSEG

The information in the Start and Stop columns shows the 20-bit hexaddress of each segment relative to location zero.
Location zero is the beginning of the load module.

The addresses displayed are not the absolute addresses where these segments are loaded. Consultthe MS-DOS 2.0
Macro Assembler Manual for information on how to determine where relative zero is actually located, and also on how to
determine the absolute address of a segment.

Because the /MAP switch was used, MS-LINK displays the public symbols by name and value. For example:

ADDRESS PUBLICS BY NAME
009F:0012 BUFFERS

009F:0005 CURRENT_DOS_LOCATION
009F:0011 DEFAULTDRIVE
009F:0008B DEVICE_LIST
009F:0013 FILES

009F:0009 FINAL_DOS_LOCATION
009F:000F MEMORY_SIZE
009F:0000 SYSINIT

ADDRESS PUBLTICS BY VALUE
009F:0000 SYSINIT

009F:0005 CURRENT_DOS_LOCATION

009F:0009 FINAL_DOS_LOCATION

009F:0008B DEVICE_LIST

009F:000F MEMORY_SIZE
009F:0011 DEFAULTDRIVE
009F:0012 BUFFERS
009F:0013 FILES

9.10 Error Messages

All errors cause the link session to abort. After the cause has been found and corrected, MS-LINK must be re-run. The
following messages are displayed by MS-LINK:

Attempt to access data outside of segment bounds, possibly bad object module
There is probably a bad Object file.
Bad numeric parameter
Numeric value is notin digits.
Cannot open temporary file
MS-LINK is unable to create the file VM.TMP because the disk directory s full. Insert a new disk. Do notremove the
disk that will receive the List. MAP file.
Error: dup record too complex
DUP record in assemblylanguage module is too complex. Simplify DUP record in assemblylanguage program.
Error: Fixup offset exceeds field width
An assemblylanguage instruction refers to an address with a shortinstruction instead of a long instruction. Edit
assemblylanguage source and reassemble.
Input file read error
There is probably a bad Object file
Invalid object module
An object module(s) is incorrectly formed orincomplete (as when assemblyis stopped in the middle).
Symbol defined more than once
MS-LINK found two or more modules that define the same symbol.
Program size or number of segments exceeds capacity of linker
The total size may not exceed 384K bytes and the number of segments may not exceed 255.
Requested stack size exceeds 64K
Specify a size greater than or equal to 64K bytes with the /STACK switch.
Segment size exceeds 64K
64K bytes is the addressing system limit.
Symbol table capacity exceeded
Very many and/or very long names were typed, exceeding the limit of approximately 25K bytes.
Too many external symbols in one module
The limitis 256 external symbols per module.
Too many groups
The limitis 10 groups.
Too many libraries specified.
The limitis 8 libraries.
Too many public symbols
The limitis 1024 public symbols.
Too many segments or classes
The limitis 256 (segments and classes being taken together).
Unresolved externals: <list>
The external symbols listed have no defining module among the modules or libraryfiles specified.
VM read error
This is a disk error;itis not caused by MS-LINK.
Warning: no stack segment
None of the object modules specified contains a statement allocating stack space, but you typed the /STACK switch.
Warning: segment of absolute or unknown type
There is a bad object module or an attempt has been made to link modules that MS-LINK cannot handle (e.g. an
absolute object module).
Write error in tmp file
No more disk space remains to expand the VM.TMP file.

Write error on run file
Usually, there is not enough disk space for the Run file.

APPENDIX 10: COMMAND.COM

When MS-DOS is initially loaded the system commands processor, COMMAND.COM is loaded and becomes the
resident command line processor. You can however call the command processor by using, the syntaxbelow:

command [<drive:> <pathname>] [<cttydev>] [/p] [/c <string>] [/le <environment size>]
This command starts a new command processor (the MS-DOS program that contains all internal commands).

The command processor is loaded into memoryin two parts: the transient part and the resident part. Some application
programs write over the transient part of COMMAND.COM when they run. When this happens, the resident part of the
command processor looks for the COMMAND.COMfile on disk so it can reload the transient part.

The <drive:> <pathname> options tell the command processor where to look for the COMMAND.COMfile it it needs to
reload the transient partinto memory.

<cttydev> allows you to specify a different device (such as aux) for input and output. See the Ctty command in this chapter
for more information.

The /e switch specifies the environment size in bytes. The size mayrange between 128 and 32768 bytes. The default
value is 128 bytes.

If <environment size> is less than 128 bytes, MS-DOS defaults to 128 bytes and gives the message:

Invalid environment size specified
If <environment size> is greater than 32768 bytes, MS-DOS gives the same message, but defaults to 32768 bytes.
The /p switch tells COMMAND.COM not to exit to any higher level.

The /c switch, if used, should be the last switch in the command. It tells the command processor to execute the
command or commands specified by <string> and then return.

Example:
command /c chkdsk b:
This example tells the command processor to:

1. Starta new command processor under the current program.
2. Run the command "chkdsk b:"
3. Return to the first command processor.

APPENDIX 11: THE DEBUG UTILITY PROGRAM (DEBUG)

11.1 Introduction

The Microsoft DEBUG Utility (DEBUG) is a debugging program that provides a controlled testing environment for binary
and executable object files. Note that EDLIN is used to alter source files; DEBUG is EDLIN's counterpart for binaryfiles.
DEBUG eliminates the need to reassmeble a program to see if a problem has been fixed by a minor change. It allows
you to alter the contents of a file or the contents of a CPU register, and then to immediately re-execute a program to check
on the validity of the changes.

All DEBUG commands may be aborted at anytime by pressing [Control][C]. [Control][S] suspends the display, so that you
can read it before the output scrolls away. Entering any key other than [Control][C] or [Control][S] restarts the display. All of
these commands are consistent with the control character functions available atthe MS-DOS command level.

11.2 How to start DEBUG

DEBUG may be started two ways. By the first method, you type all commands in response to the DEBUG prompt (a
hyphen). By the second method, you type all commands on the line used to start DEBUG.

Summary of Methods to Start DEBUG

Method 1
DEBUG
Method 2
DEBUG [<filespec> [<arglist>]]

11.2.1 Method 1: DEBUG

To start DEBUG using method 1, type:
DEBUG

DEBUG responds with the hyphen (-) prompt, signaling thatitis readyto accept your commands. Since no filename has
been specified, current memory, disk sectors or disk files can be worked on by using other commands.

WARNINGS

1. When DEBUG (Version 2.0) is started, it sets up a program header at offset 0 in the program work area. On
previous versions of DEBUG, you could overwrite this header. You can still overwrite the default header if no
<filespec> is given to DEBUG. If you are debugging a .COM or .EXE file, however, do not tamper with the program
header below address 5CH, or DEBUG will terminate.

2. Do notrestart a program after the message, Program terminated normallyis displayed. You mustreload a program
with the N and L commands for it to run properly.

11.2.2 Method 1: Command Line

To start DEBUG using a command line, type:
DEBUG [<filespec> [<arglist>]]

For example, if a <filespec> is specified, then the following is a typical command to start DEBUG:
DEBUG FILE.EXE

DEBUG then loads FILE.EXE into memory starting at 100 hexadecimal in the lowest available segment. The BXCX
registers are loaded with the number of bytes placed into memory.

An <arglist> may be specified if <filespec> is present. The <arglist> is a list of flename parameters and switches that are
to be passed to the program <filespec>. Thus, when <filespec> is loaded into memory, itis loaded as if it had been
started with the command:

<filespec> <arglist>

Here, <filespec> is the file to be debugged, and the <arglist> is the rest of the command line thatis used when
<filespec> is invoked and loaded into memory.

11.3 Command Information

Each DEBUG command consists of a single letter followed by one or more parameters. Additionally, the control
characters and the special editing functions described in the MS-DOS User's Guide, applyinside DEBUG.

If a syntax error occurs in a DEBUG command, DEBUG reprints the command line and indicates the error with an up-
arrow (1) and the word "error."

For example:

dcs:100 cs:110
A Error

Any combination of uppercase and lowercase letters maybe used in commands and parameters.

The DEBUG commands are summarized in Table 11.1 and are described in detail, with examples, following the

description of command parameters.

Table 11.1 DEBUG Commands

DEBUG Command Function
Al <address>] Assemble
C<range> [<address>] Compare
D[<range> Dump
E<address> [<list>] Enter
F<range> <list> Fill

G[= <address>[<address> ...]| Go
H<value> <value> Hex
I<value> Input

L[<address> [<drive:> <record> <record>]] |Load

M <range> <address> Move

N <filename> [<filename>] Name

O <value> <byte> Output

Q Quit

R[<register-name> | Register
S<range> <list> Search
T[= <address> [<value>]] Trace

U[<range> Unassemble
W[<address> [<drive:> <record> <record>][|Write

Parameters

All DEBUG commands accept parameters, except the Quit command. Parameters may be separated by delimiters
(spaces or commas), but a delimiter is required only between two consecutive hexadecimal values. Thus, the following

commands are equivalent:

dcs:100 110
dcs:100 110
d,cs:100 110

PARAMETER DEFINITION

<drive>

<byte>

<record>

<value>

<address>

Aone-digit hexadecimal value to indicate which drive a file will be loaded from or written to. the valid values
are 0-3. These values designate the drives as follows: 0=A;, 1=B:, 2=C:, 3=D..

Atwo-digit hexadecimal value to be placed in or read from an address or reigster.

A 1-to 3-digit hexadecimal value to be used to indicate the logical record number on the disk and the
number of disk sectors to be written or loaded. Logical records correspond to sectors. However, their
numbering differs since they represent the entire disk space.

Ahexadecimal value up to four digits used to serial a port number or the number of times a command
should repeatits functions.

Atwo-part designation consisting of either an alphabetic segment register designation or a four-digit
segment address plus an offset value. The segment designation or segment address may be omitted, in
which case the default segmentis used. DS is the default segment for all commands exceptG, L, T, U and
W, for which the default segmentis CS. All numeric values are hexadecimal.

PARAMETER DEFINITION

<range>

<value>

<list>

<string>

For example:

CS:0100
04BA:0100

The colon is required between a segment designation (whether numeric or alphabetic) and an offset.

Two <address>es: e.g., <address> <address>; or one <address>, an L, and a <value> e.g. <address> L
<value> where:

is the number of lines the command should operate on, and L80 is assumed. The lastform cannot be
used if another hex value follows the <range>, since the hexvalue would be interpreted as the second
<address> of the <range>.

Examples:

CS:100 110
cS:100L 10
CS:100

The following is illegal:

Cs:100 c¢s:110
A Error

The limit for <range> is 10000 hex. To specify a value of <10000> hex within four digits, type 00 (or 0).

Aseries of <byte> values or of <string>s. <list> must be the last parameter on the command line.
Example:

fcs:100 42 45 52 54 41

Any number of characters enclosed in quote marks. Quote marks must be either single (') or double ("). If

the delimiter quote marks must appear within a <string>, the quote marks must be doubled. For example,
the following strings are legal:

'This is a "string" is okay!'
'This is a "string" is okay.'

However, this string is illegal:
‘This is a 'string' is not.’
Similarly, these strings are legal:

"This is a 'string' is okay."
"This is a ""string™ is okay."

However, this string is illegal:
"This is a "string" is not."

Note that the double quote marks are not necessaryin the following strings:

"This is a "string" is not necessary."
'This is a "'string™ is not necessary'

The ASCII values of the characters in the string are used as a <list> of byte values.

NAME Assemble
PURPOSE Assembles 8086/8087/8088 mnemonics directly into memory.
SYNTAX Al<address>]

If a syntax error is found, DEBUG responds with
A Error
and re-displays the currentassembly address.

All numeric values are hexadecimal and must be entered as 1-4 characters. Prefixmnemonics must be specified in front
of the opcode to which they refer. They may also be entered on a separate line.

The segment override mnemonics are CS:, DS;, ES:, and SS:. The mnemonic for the far return is RETF. String
manipulation mnemonics must explicitly state the string size. For example, use MOVSW to move word strings and
MOVSB to move byte strings.

The assembler will automatically assemble short, near or far jumps and calls, depending on byte displacement to the
destination address. These may be overridden with the NEAR or FAR prefix. For example:

0100:0500 JmP 502 ;2 2-byte short jump
0100:0502 IMP NEAR 505 ;a 3-byte near jump
0100:0505 IMP FAR 50A ;a 5-byte far jump

The NEAR prefixmay be abbreviated to NE, but the FAR prefix cannot be abbreviated.

DEBUG cannot tell whether some operands refer to a word memory location or to a byte memorylocation. In this case,
the data type must be explicitly stated with the prefix"WORD PTR" or "BYTE PTR". Acceptable abbreviations are "WO" and
"BY". For example:

NEG BYTE PTR [128]
DEC wo [SI]

DEBUG also cannot tell whether an operand refers to a memorylocation or to an immediate operand. DEBUG uses the
common convention that operands enclosed in square brackets refer to memory. For example:

MOV AX,21 ;Load AX with 21H
MOV AX, [21] ;Load AX with the
;contents

;of memory location 21H

Two popular pseudo-instructions are available with Assemble. The DB opcode will assemble byte values directly into
memory. The DW opcode will assemble word values directlyinto memory. For example:

DB 1,2,3,4,"THIS IS AN EXAMPLE"
DB '"THIS IS A QUOTE:"'

DB "THIS IS A QUOTE:'"

DW 1000,2000,3000, "BACH"

Assemble supports all forms of register indirect commands. For example:

ADD BX,34[BP+2].[SI-1]
POP [BP+DI]
PUSH [SI]

All opcode synonyms are also supported. For example:

Loopz 100
LOOPE 100
JA 200

INBE 200

For 8087 opcodes, the WAIT or FWAIT must be explicitly specified. For example:

FWAIT FADD ST,ST(3) ;This 1line assembles
;an FWAIT prefix
LD TBYTE PTR [BX] ;This 1ine does not

NAME Compare
PURPOSE Compares the portion of memory specified by <range> to a portion of the same size beginning at <address>.
SYNTAX C<range> <address>

If the two areas of memory are identical, there is no display and DEBUG returns with the MS-DOS prompt. If there are
differences, they are displayed in this format:

<address 1> <byte1;> <byte2;> <address2>
For example, The following commands have the same effect:
C100,1FF 300
or
C100L100 300
Each command compares the block of memoryfrom 100 to 1FFH with the block of memory from 300 to 3FFH.

NAME Dump
PURPOSE Displays the contents of the specified region of memory.
SYNTAX Dl[<range>]

If a range of addresses is specified, the contents of the range are displayed. If the D command is typed without
parameters, 128 bytes are displayed at the first address (DS:100) after the address displayed by the previous Dump
command.

The dump is displayed in two portions: a hexadecimal dump (each byte is shown in hexadecimal value) and an ASCII
dump (the bytes are shown in ASCII characters). Nonprinting characters are denoted by a period (.) in the ASCII portion of
the display. Each displayline shows 16 bytes with a hyphen between the eighth and ninth bytes. Attimes, displays are
splitin this manual to fit them on the page. Each displayed line begins on a 16-byte boundary.

If you type the command:
dcs:100 10F
DEBUG displays the dump in the following format:
04BA:0100 54 4F 4D 20 53 41 57 59-45 52 24 00 00 09 4E 44 TOM SAWYERS...ND
If you type the following command:
D

The displayis formatted as described above. Each line of the display begins with an address, incremented by 16 from
the address on the previous line. Each subsequent D (typed without parameters) displays the bytes immediately
following those last displayed.

If you type the command:

DCS:100 L20
the displayis formatted as described above, but 20H bytes are displayed.
If then you type the command:

DCS:100 115

the displayis formatted as described above, but all the bytes in the range of lines from 100H to 115H in the CS segment
are displayed.

NAME Enter
PURPOSE Enters byte values into memory at the specified <address>.
SYNTAX E<address> [<list>]

If the optional <list> of values is typed, the replacement of byte values occurs automatically. (If an error occurs, no byte
values are changed.)

If the <address> is typed without the optional <list>, DEBUG displays the address and its contents, then repeats the
address on the nextline and waits for your input. At this point, the Enter command waits for you to perform one of the
following actions:

1. Replace a byte value with a value you type. Simply type the value after the current value. If the value typed in is nota
legal hexadecimal value, or if more than two digits are typed, the illegal or extra character is not echoed.

2. Press the [SPACEBAR] to advance to the next byte. To change the value, simply type the new value as described in
(1.) above. If you space beyond an 8-byte boundary, DEBUG starts a new display line with the address displayed at
the beginning.

3. Type a HYPHEN (-) to return to the preceding byte. If you decide to change a byte behind the current position, typing
the hyphen returns the current position to the previous byte. When the hyphen is typed, a new line is started with the
address and its byte value displayed.

4. Press the [RETURN] key to terminate the Enter command. The [RETURN] key may be pressed at any byte position.

For example, assume that the following command is typed:
ECS:100

DEBUG displays:
04BA:0100 EB .

To change this value to 41, type 41 as shown:

04BA:0100 EB.41

To step through the subsequent bytes, press the Spacebar to see:

04BA:0100 EB.41 10. 00. BC.

To change BC to 42:
04BA:0100 EB.41 10. 00. BC.42

Now, realizing that 10 should be 6F, type the hyphen as manytimes as needed to return to byte 01 (value 10), then
replace 10 with 6F:

04BA:0100 EB.41 10. 00. BC.42-
04BA:0102 00.-
04BA:0101 10.6F

Pressing the [RETURN] key ends the Enter command and returns to the DEBUG command level.

NAME Fill
PURPOSEFills the addresses in the <range> with the values in the <list>.
SYNTAX F<range> <list>

If the <range> contains more bytes than the number of values in the <list>, the <list> will be used repeatedly until all bytes
in the <range> are filled. If the <list> contains more values than the number of bytes in the <range>, the extra values in the
<list> will be ignored. If any of the memory in the <range> is not valid (bad or nonexistent), the error wil occur in all
succeeding locations.

For example, assume that the following command is typed:

F 04BA:100 L 100 57 4B 57 42 41

DEBUG fills memory locations 04BA:100 through 04BA:1FF with the bytes specified. The five values are repeated until all
100H bytes are filled.

NAME Go
PURPOSE Executes the program currentlyin memory.
SYNTAX G[=<address> [<address> ..]]

If only the Go command is typed, the program executes as if the program had run outside DEBUG.

If =<address> is set, execution begins at the address specifed. The equal sign (=) is required, so that DEBUG can
distinguish the start =<address> from the breakpoint <address>es.

With the other optional addresses set, execution stops at the first <address> encountered, regardless of that address's
position in the list of addresses to halt execution or program branching. When program execution reaches a breakpoint,
the registers, flags and decoded instruction are displayed for the lastinstruction executed. (The resultis the same as if
you had typed the Register command for the breakpoint address.)

Up to ten breakpoints may be set. Breakpoints maybe set only at addresses containing the first byte of an 8086 opcode.
If more than ten breakpoints are set, DEBUG returns the BP Error message.

The user stack pointer must be valid and have 6 bytes available for this command. The G command uses an IRET
instruction to cause a jump to the program under test. The user stack pointer is set, and the user flags, Code Segment
register, and Instruction Pointer are pushed on the user stack. (Thus, if the user stack is not valid or is too small, the
operating system may crash.) An interrupt code (OCCH) is placed at the specified breakpoint address(es).

When an instruction with the breakpoint code is encountered, all breakpoint addresses are restored to their original
instructions.

If execution is not halted at one of the breakpoints, the interrupt codes are not replaced with the original instructions.
For example, assume that the following command is typed:
GCS:7550

The program currentlyin memory executes up to the address 7550 in the CS segment. DEBUG then displays registers
and flags, after which the Go command is terminated.

After a breakpoint has been encountered, if you type the Go command again, then the program executes just as if you
had typed the filename at the MS-DOS command prompt level. The only difference is that program execution begins at
the instruction after the breakpoint rather than at the usual start address.

NAME Hex
PURPOSE Performs hexadecimal arithmetic on the two parameters specified.
SYNTAX H<value> <value>

First, DEBUG adds the two parameters, then subtracts the second parameter from the first. The results of the arithmetic
are displayed on one line; first the sum, then the difference.

For example, assume that the following command is typed:
H19F 10A

DEBUG performs the calculations and then displays the result:
02A9 0095

NAME Input
PURPOSE Inputs and displays one byte from the port specified by value.

SYNTAX I<value>

A 16-bit port address is allowed.

For example, assume that you type the following command:
I2F8

Assume also that the byte at the portis 42H. DEBUG inputs the byte and displays the value:
42

NAME Load
PURPOSE Loads a file into memory.
SYNTAX L<address> [<drive:> <record> <record>]

Set BX:CXto the number of bytes read. The file must have been named either when DEBUG was started or with the N
command. Both the DEBUG invocation and the N command format a filename properly in the normal format of a file
control block at CS:5C.

Ifthe L command is typed without any parameters, DEBUG loads the file into memory beginning at address CS:100 and
sets BX:CXto the number of bytes loaded. If the L command is typed with an address parameter, loading begins at the
memory <address> specified. If L is typed with all parameters, absolute disk sectors are loaded, not a file. The
<record>s are taken from the <drive:> specified (the drive designation is numeric here--0=A:, 1=B:, 2=C:, etc.); DEBUG
begins loading with the first <record> specified, and continues until the number of sectors specified in the second
<record> have been loaded.

Assume that the following commands are typed:

A>DEBUG
-NFILE.COM

Now, to load FILE.COM, type:
L

DEBUG loads the file and then displays the DEBUG prompt. Assume that you want to load only portions of a file or certain
records from a disk. To do this, type:

LO4BA:100 2 OF 6D

DEBUG then loads 109 (6D hex) records, beginning with logical record number 15, into memory beginning at address
04BA:100. When the records have been loaded, DEBUG simply returns the - prompt.

If the file has a .EXE extension, itis relocated to the load address specified in the header of the .EXE file: the <address>
parameter is always ignored for .EXE files. The header itselfis stripped off the .EXE file before itis loaded into memory.
Thus the size of an .EXE file on disk will differ from its size in memory.

If the file named by the Name command or specified when DEBUG is started is a .HEXfile, then typing the L command
with no parameters causes DEBUG to load the file beginning at the address specified in the .HEXfile. If the L command
includes the option <address>, DEBUG adds the <address> specified in the L command to the address found in the
.HEXfile to determine the start address for loading the file.

NAME Move
PURPOSE Moves the block of memory specified by <range> to the location beginning at the address specified.
SYNTAX M<range> <address>

Overlapping moves (i.e., moves where part of the block overlaps some of the current addresses) are always performed
without loss of data. Addresses that could be overwritten are moved first. The sequence for moves from higher
addresses to lower addresses is to move the data beginning at the block's lowest address and then to work towards the
highest. The sequence for moves from lower addresses to higher addresses is to move the data beginning at the block's

highestaddress and to work towards the lowest.

Note that if the addresses in the block being moved will not have new data written to them, the data there before the move
will remain. The Mcommand copies the data from one area into another, in the sequence described, and writes over the
new addresses. This is why the sequence of the move is important.

Assume that you type:
MCS:100 110 CS:500

DEBUG first moves address CS:110 to address CS:510, then CS:10F to CS:50F, and so on until CS:100 is moved to
CS:500. You should type the D command, using the <address> typed for the Mcommand, to review the results of the
move.

NAME Name
PURPOSE Sets filenames.
SYNTAX N<filename> [<filename> ..]

The NAME command performs two functions. Firstly, NAME is used to assign a filename for a later Load or Write
command. Thus, if you start DEBUG without naming anyfile to be debugged, then the N<filename> command must be
typed before a file can be loaded. Secondly, NAME is used to assign filename parameters to the file being debugged. In
this case, Name accepts a list of parameters that are used by the file being debugged.

These two functions overlap. Consider the following set of DEBUG commands:

-NFILE1.EXE
-L
-G

Because of the effects of the NAME command, NAME will perform the following steps:

1.(N)ame assigns the filename FILE1.EXE to the filename to be used in any later Load or Write commands.

2.(N)ame also assigns the filename FILE1.EXE to the first filename parameter used by any program thatis later
debugged.

3. (L)oad loads FILE1.EXE into memory.

4. (G)o causes FILE1.EXE to be executed with FILE1.EXE as the single parameter (thatis, FILE1.EXE is executed as if
FILE1.EXE had been typed atthe command level).

A more useful chain of commands mightlook like this:

-NFILE1.EXE

-L

-NFILE2.DAT FILE3.DAT
-G

Here, Name sets FILE1.EXE as the filename for the subsequent Load command. The Load command loads FILE1.EXE
into memory, and then the Name command is used again, this time to specify the parameters to be used by FILE1.EXE.
Finally, when the Go command is executed, FILE1.EXE is executed as if FILE1 FILE2.DAT FILE3.DAT had been typed at
the MS-DOS command level. Note that if a Write command were executed at this point, then FILE1.EXE--the file being
debugged--would be saved with the name FILE2.DAT! To avoid such undesired results, you should always execute a
Name command before either a Load or a Write.

There are four regions of memory that can be affected by the Name command:

CS:5C

FCB for file 1
CS6C

FCB for file 2
CS:80

Count of characters
CS:81

All characters typed

AFile Control Block (FCB) for the first filename parameter given to the Name command is setup at CS:5C. Ifa second
filename parameteris typed, then an FCB is set up for it beginning at CS:6C. The number of characters typed in the
Name command (exclusive of the first character, "N") is given atlocation CS:80. The actual stream of characters given by
the Name command (again, exclusive of the letter "N") begins at CS:81. Note that this stream of characters may contain
switches and delimiters that would be legal in any command typed atthe MS-DOS command level.

Atypical use of the NAME command is:

DEBUG PROG.COM
-NPARAM1 PARAM2/C
-G

In this case, the GO command executes the file in memory as if the following command had been typed:
PROG PARAM1 PARAM2/C
Testing and debugging therefore reflect a normal runtime environment for PROG.COM.

NAME Output
PURPOSE Sends the <byte> specified to the output port specified by <value.>
SYNTAX O<value> <byte>

A 16-bit port address is allowed.
For example, typing:
O2F8 4F

causes DEBUG to output the byte value 4F to output port 2F8.

NAME Quit
PURPOSE Terminates the DEBUG utility.
SYNTAX Q

The Q command takes no parameters, and exits DEBUG without saving the file currently being operated on. You are
returned to the MS-DOS command level.

For example, to end the debugging session, type:
Q<Return>
DEBUG has been terminated, and control returns to the MS-DOS command level.

NAME Register
PURPOSE Displays the contents of one or more CPU registers.
SYNTAX R[<register-name>]

If no <register-name> is typed, the R command dumps the register save area and displays the contents of all registers
and flags.

If a register name is typed, the 16-bit value of that register is displayed in hexadecimal, and then a colon appears as a
prompt. You then either type a <value> to change the register, or simply press the [RETURN] key if no change is wanted.

The only valid <register-name>s are:

AXBP SS
BXSI CS
CXDI IP (IP and PC both refer to the Instruction Pointer)

DXDSPC
SPESF

Any other entry for <register-name> results in a br Error message.

If Fis entered as the <register-name>, DEBUG displays each flag with a two-character alphabetic code. To alter anyflag,
type the opposite two-letter code. The flags are either set or cleared.

The flags are listed below with their codes for SET and CLEAR:

FLAG NAME |SET CLEAR
Overflow ov NV

Direction DN Decrement{UP Increment
Interrupt El Enabled DI Disabled
Sign NG Negative |PL Plus

Zero ZR NZ

Auxiliary Carry|AC NA

Parity PE Even PO Odd
Carry CcY NC

Whenever you type the command RF, the flags are displayed in the order shown above in a row at the beginning of a line.
Atthe end of the list of flags, DEBUG displays a hyphen (-). You may enter new flag values as alphabetic pairs. The new
flag values can be entered in any order. You do not have to leave spaces between the flag entries. To exitthe R command,
press the [RETURN] key. Flags for which new values were not entered remain unchanged.

If more than one value is entered for a flag, DEBUG returns a DF Error message. If you enter a flag code other than those
shown above, DEBUG returns a BF Error message. In both cases, the flags up to the error in the list are changed; flags
at and after the error are not.

At startup, the segment registers are set to the bottom of free memory, the Instruction Pointer is setto 0100H, all flags are
cleared, and the remaining registers are setto zero.

For example, typing:
R

causes DEBUG to display all registers, flags and the decoded instruction for the currentlocation. If the location is CS:11A,
then the display will look similar to this:

AX=0E0O0 BX=00FF X=0007 DX=01FF SP=039D BP=0000
SI=005C DI=0000 DS=04BA ES=04BA SS=04BA CS=04BA
IP=011A NV UP DI NG NZ AC PE NC

04BA:011A ¢CD21 INT 21

If you type:
RF
DEBUG will display the flags:
NV UP DI NG NZ AC PE NC -
Now, type any valid flag designation, in any order, with or without spaces.
NV UP DI NG NZ AC PE NC -PL EI CY<RETURN>
DEBUG responds only with the DEBUG prompt. To see the changes, type either the R or RF command:

RF
NV UP ETI PL NZ AC PE CY -

Press the [RETURN] key to leave the flags this way, or to specify different flag values.

NAME Search
PURPOSE Searches the <range> specified for the <list> of bytes specified.
SYNTAX S<range> <list>

The <list> may contain one or more bytes, each separated by a space or comma. If the <list> contains more than one
byte, only the first address of the byte string is returned. If the <list> contains only one byte, all addresses of the byte in the
<range> are displayed.

If you type:
SCS:100 110 41
DEBUG displays a response similar to this:

04BA:0104
04BA:010D

NAME Trace
PURPOSE Executes one instruction and displays the contents of all registers and flags, and the decoded instruction.
SYNTAX T[=<address>][<value>]

If the optional =<address> is typed, tracing occurs atthe =<address> specified. The optional <value> causes DEBUG to
execute and trace the number of steps specified by <value>

The T command uses the hardware trace mode of the 8086 or 8088 microprocessor. Consequently, you mayalso trace
instructions stored in ROM (Read Only Memory).

For example if you type:
T

DEBUG returns a display of the registers, flags and decoded instruction for that one instruction. Assume that the current
position is 04BA:011A; DEBUG might return the display:

AX=0E0O0 BX=00FF (X=0007 DX=01FF SP=039D BP=0000
SI=005C DI=0000 DS=04BA ES=04BA SS=04BA CS=04BA
IP=011A NV UP DI NG NZ AC PE NC

04BA:011A ¢CD21 INT 21

If you type:
T=011A10

DEBUG executes sixteen (10 hex) instructions beginning at 011Ain the current segment, and then displays all registers
and flags for each instruction as itis executed. The display scrolls away until the last instruction is executed. Then the
display stops, and you can see the register and flag values for the last few instructions performed. Remember that
[Control][S] suspends the display at any point, so that you can study the registers and flags for any instruction.

NAME Unassemble

PURPOSEDisassembIes bytes and displays the source statements that correspond to them, with addresses and byte
values.

SYNTAX Ul<range>]

The display of disassembled code looks like a listing for an assembled file. If you type the U command without
parameters, 20 hexadecimal bytes are disassembled at the first address after that displayed by the previous
Unassemble command. If you type the U command with the <range> parameter, then DEBUG disassembles all bytes in
the range. If the <range> is given as an <address> only, then 20H bytes are disassembled.

If you type:
u04BA:100 L10

DEBUG disassembles 16 bytes beginning at address 04BA:0100:

04BA:0100 206472 AND [SI+72],AH
04BA:0103 69 DB 69
04BA:0104 7665 JBE 0168
04BA:0106 207370 AND [BP+DI+70],DH
04BA:0109 65 DB 65
04BA:010A 63 DB 63
04BA:010B 69 DB 69
04BA:010C 66 DB 66
04BA:010D 69 DB 69
04BA:010E 63 DB 63
04BA:010F 61 DB 61

If you type:

U04ba:0100 0108

the display shows:

04BA:0100 206472 AND [SI+72],AH
04BA:0103 69 DB 69

04BA:0104 7665 JBE 0168
04BA:0106 207370 AND [BP+DI+70],DH

If the bytes in some addresses are altered, the disassembler alters the instruction statements. The U command can be
typed for the changed locations, the new instructions viewed, and the disassembled code used to edit the source file.

NAME Write
PURPOSE Writes the file being debugged to a disk file.
SYNTAX W[<address> [<drive:> <record> <record>]]

If you type W with no parameters, BX:CX must already be set to the number of bytes to be written; the file is written
beginning from CS:100. If the W command is typed with just an address, then the file is written beginning at that address.
Ifa G or Tcommand has been used, BXCXmust be reset before using the Write command without parameters. Note
that if a file is loaded and modified, the name, length, and starting address are all set correctly to save the modified file
(as long as the length has not changed).

The file must have been named either with the DEBUG information command or with the N command (refer to the Name
command earlier in this manual). Both the DEBUG invocation and the N command format a filename properlyin the
normal format of a file control block at CS:5C.

Ifthe W command is typed with parameters, the write begins from the memory address specified; the file is written to the
<drive:> specified (the drive designation is numeric here--0=A:, 1=B:, 2=C: etc.); DEBUG writes the file beginning at the
logical record number specified by the first <record> DEBUG continues to write the file until the number of sectors
specified in the second <record> have been written.

Warning

Writing to absolute sectors is EXTREMELY dangerous
because the process bypasses the file handler.

If you type:

NEXAMPLE.DAT
w

and
BX=0001 CX=03B7,
DEBUG displays a message reporting the file size:
Writing 103B7 bytes
Then DEBUG writes the file (EXAMPLE.DAT) to disk and displays the DEBUG prompt (-) when finished.
If you type:
WCS:100 1 37 2B

DEBUG writes out the contents of memory, beginning with the address CS:100 to the disk in drive B:. The data written out
starts in disk logical record number 37H and consists of 2BH records. When the write is complete, DEBUG displays the
prompt.

11.5 Error Messages

During the DEBUG session, you may receive any of the following error messages. Each error terminates the DEBUG
command under which it occurred, but does not terminate DEBUG itself.

ERROR CODE DEFINITION
BF Bad flag

You attempted to alter a flag, but the characters typed were not one of the acceptable pairs of flag values. See the
Register command for the list of acceptable flag entries.

BP Too many breakpoints
You specified more than ten breakpoints as parameters to the G command. Re-type the Go command with ten or fewer
breakpoints.

BR Bad register
You typed the R command with an invalid register name. See the Register command for the list of valid register names.
DF Double flag

You typed two values for one flag. You may specify a flag value only once per RF command.

APPENDIX 12: THE EXE2BIN UTILITY PROGRAM

The EXE2BIN utility program converts .EXE (executable) files to BINary format.

SYNTAX
exe2bin [<drive:>]<pathname> [<drive>][<pathname>]

This command is useful only if you want to convert .EXE (executable) files to binary format. The file named by
<pathname> is the inputfile. If no extension is specified, it defaults to .EXE. The inputfile is converted to .BIN file format
(memoryimage of the program) and placed in the output file (second pathname). If you do not specify a drive name, the
drive of the input file will be used. If you do not specify a flename extension in the output filename, the new file will be
given an extension of .BIN.

The input file must be in valid .EXE format produced by the linker. The resident, or actual code and data part of the file
must be less than 64K. There mustbe no STACK segment.

Two kinds of conversions are possible, depending on whether the initial CS:IP (Code Segment: Instruction Pointer) is
specified in the .EXE file:

1. If CS:IP is not specified in the .EXE file, a pure binary conversion is assumed. If segments fixups are necessary
(thatis, the program contains instructions requiring segment relocation), you will be prompted for the fixup value.
This value is the absolute segment at which the program is to be loaded. The resultant program will be usable only
when loaded at the absolute memory address specified by a user application. The command processor will not be

able to load the program.

2.IfCS:IPis 00:100H, itis assumed that the file will run as a .COMfile with the location pointer setat 100H by the
assembler statement ORG; the first 100H bytes of the file are deleted. No segment fixups are allowed, as .COM
files mustbe segmentrelocatable; thatis, they must assume the entry conditions explained in the Microsoft Macro
Assembler Manual. Once the conversion is complete, you mayrename the output file with a .COM extension. Then
the command processor will be able to load and execute the program in the same way as the .COM programs
supplied on you MS-DOS disk.

MESSAGES:

File cannot be converted
CS:IP does not meet either of the criteria specified above, or it meets the .COMfile criterion but has segment fixups.
This message is also displayed if the file is not a valid executable file.
- File not found
- The file is not on the disk specified.
- Insufficient memory
- There is notenough memory to run Exe2bin.
- File creation error
Exe2bin cannot create the output file. Run Chkdsk to determine if the directory s full, or if some other condition
caused the error.
- Insufficient disk space
- There is not enough disk space to create a new file.
- Fixups needed - base segment (hex):
The source (.EXE) file contained information indicating that a load segmentis required for the file. Specify the
absolute segment address at which the finished module is to be located.
- File cannot be converted.
The inputfile is notin the correct format.
WARNING - Read error in EXE file. Amountread less than size in header
This is a warning message only. It means that the .EXE header is inconsistent with the size of the file.

APPENDIX 13: THE EXIT COMMAND

The EXIT command exits the program COMMAND.COM (the command processor) and returns to a previous level, if one
exists.

SYNTAX
exit

This command can be used when you are running an application program and want to start the MS-DOS command
processor, then return to your program. For example, to look at a directory on drive B while running an application
program, you mustissue an EXEC of the command interpreter (system call 4BH). The system prompt will appear. You
can now type the Dir command and MS-DOS will display the directorylisting. When you type EXIT, you return to the
previous level (your application program).

APPENDIX 14: THE RECOVER UTILITY PROGRAM

The RECOVER utility recovers a file or an entire disk containing bad sectors.

SYNTAX
recover [<drive:>]
or
recover <drive:>[<pathname>]

If a sector on a disk is bad, you can recover either the file containing that sector (without the bad sector) or the entire disk
(if the bad sector was in the directory).

To recover a particular file, type:

recover <filename>

This causes MS-DOS to read the file sector by sector and to skip the bad sector(s). When MS-DOS finds the bad
sector(s), the sector(s) are marked and MS-DOS will no longer allocate your data to that sector.

To recover a disk, type

recover <drive:>
where <drive:> is the letter of the drive containing the disk to be recovered.
MESSAGES:

File not found
MS-DOS cannot find the file that you specified. Check to see that the pathname is accurate and that the file exists in
the directory you specified.
(>o0xx) of (xxxx) bytes recovered
This message tells you the number of bytes that MS-DOS was able to recover from the disk.
Warning - directory full
The root directoryis too full for Recover processing. Delete some files in the root directory to free space.

APPENDIX 15: THE SHARE UTILITY PROGRAM

The SHARE utility installs file sharing and locking.

SYNTAX
share [/f:.<space:>][/L:<locks>]

The SHARE command is only used when networking is active. ltis included in the AUTOEXEC.BAT file to install shared
files. Refer to the Microsoft Networks Manager's Guide to learn about shared files.

Use the /fi<space> switch to allocate file space (in bytes) for the area MS-DOS uses to record filesharing information.
Each file thatis onpen needs the length of the full filename plus 11 bytes (the average pathname is 20 bytes). The default
value for the /f switch is 2048 bytes.

The L:<locks> switch allocates the number of locks you want to allow. The default value for the /L switch is 20 locks.
Once you have used the SHARE command in an MS-DOS session, all read and write requests are checked by MS-DOS.
For example, the following example loads file sharing and uses the default values for the /fand /L switches:

SHARE messages:

- Incorrect parameter

One of the options you specified is wrong.
- Not enough memory

There is not enough memory for MS-DOS to run the command.
- Share Already Installed

You can install Share onlyonce.

APPENDIX 16: THE FDISK UTILITY PROGRAM

The FDISK utility configures hard disks for MS-DOS.

Ahard disk is divided into separate areas, called partitions. There will always need to be atleast one partition for MS-
DOS. In addition, DOS 3.3 allows extra partitions to be allocated which can be handled as though they were separate
hard disk drives (referenced as though they were drives d:, e: etc.) In addition, FDISK will recognise and report the
presence of non-DOS partitions on a hard disk. Partitions of this sort are installed by other operating systems such as
XENIX.

Syntax:
FDISK

The FDISK command displays a series of menus to help you partition your hard disk for MS-DOS. With the FDISK
command you can:

= Create a primary MS-DOS partition.

= Create an extended MS-DOS partition.

Change the active partition.

Delete an MS-DOS partition.

Display partition data.

Select the next fixed disk for partitioning on a system with multiple fixed disks.

WARNING Reconfiguring your disk with FDISK destroys all existing files. Be sure to have a backup of all files on your
hard disk before you create a MS-DOS partition with FDISK.

After typing "FDISK" the main menu is displayed:

Fixed Disk Setup Program Version 3.30
(C)copyright Microsoft Corp. 1987

FDISK Options

Current Fixed Disk Drive: 1
Choose one of the following:
Create DOS Partition
Change Active Partition
Delete DOS Partition

Display Partition Data
Select Next Fixed Disk Drive

Ui WN R

Enter choice: [1]
Press [ESC] to return to DOS
You will see that each option has a number associated with it, and there is a box containing a number labelled:
Enter choice:

This box contains the current choice. Initially it contains the number 1. This is the option that the computer thinks you are
most likely to require, and is called the default. If you press a number, you will see itappear in the box. When you have the
option you want, press the [RETURN] key.

Each option is described in detail in the sections that follow.

Note that menu item 5, enclosed in curly brackets { },is optional and will only appear when one or more additional
physical hard disk drives are present.

16.1 Creating a DOS partition

When you choose the first main menu option, and if your hard disk is not yet completely partitioned, FDISK displays a
screen like the following:

Create DOS Partition
current Fixed Disk Drive: 1

1. Create Primary DOS partition
2. Create Extended DOS partition

3. Create Logical DOS Drive(s) 1in
the Extended DOS partition

Enter choice: [1]
Press ESC to return to FDISK options
Note thatif no extended partitions exist, the third option (in curly brackets { })is notdisplayed.

Selection 1: Create primary DOS partition

You must create a primary MS-DOS partition before you can create any extended MS-DOS partition on your hard disk. In
most cases you will need only one MS-DOS partition for your entire disk. To create a primary partition press the
[RETURN] key to accept the default selection (1).

The Create Primary DOS Partition menu appears next:

Create Primary DOS Partition
Current Fixed Disk Drive: 1

Do you wish to use the maximum size
for a DOS partition and make the DOS
partition active (Y/N)......... ? [Y]

Press ESC to return to FDISK Options

If you use the entire hard disk for MS-DOS, you will use the FDISK program only once to create the primary MS-DOS
partition. If you want to use the entire disk (up to 32 megabytes) fro MS-DOS press the [RETURN] key to accept the default
selection (Y).

FDISK now displays the following screen:

System will now restart

Insert DOS diskette in drive A:
Press any key when ready ...

Put your MS-DOS disk in drive Aand press anykey to restart MS-DOS.

Once MS-DOS has restarted you will need to format your hard disk to that MS-DOS can use it. If you want to start
(bootstrap) MS-DOS from your hard disk remember to use the /S switch with the format command. The format command
for a hard disk in drive C would be as follows:

FORMAT c: /s

Creating more than one DOS partition

When you chose the Create Primary MS-DOS partition menu selection, you had the option of using the maximum size
(available on your hard disk) for the DOS partition. In order to create more than one DOS partition you must create a
primary partition which is less than the maximum size. To do this type [N] (for No) in response to the first Create Primary
Dos Partition menu. When you press [RETURN] with the N displayed in the choice box (and after about 4 seconds
hesitation) FDISK displays the following screen:

Create Primary DOS Partition
Current Fixed Disk Drive: 1
Total disk space 1is 614 cylinders.

Maximum space available for partition
is 614 cylinders.

Enter partition size.......... :[614]

No partitions defined
Press ESC to return to FDISK Options

The space available on your disk is measured in cylinders, also called tracks (and the number shown, 614, is justa
typical number for illustration purposes). This menu shows the total number of cylinders available for a hard disk
partition, and prompts you to enter the size for size of your primary partition. For illustration purposes, let us say that we
want an extended partition of 200 cylinders (giving approximately 2/3rds to the primary partition and approximately 1/3rd to
the extended partition). In this case (using our 614 cylinder disk) you would enter 414 as the primary partition size and
press the [RETURN] key. The following confirmation screen would now appear:

Create Primary DOS Partition
Current Fixed Disk Drive: 1

Partition Status Type Start End Size
c: 1 PRI DOS 0 413 414

Primary DOS partition created
Press ESC to return to FDISK Options

At this point the only thing you can do with FDISK is to press the [Esc] key and you will be returned to the original (top
level) menu. But there's one extra line on the screen below the choice line:

WARNING! No partitions marked active

This is because you have created a partition less than the maximum and FDISK has not automatically made it active so
this will have to be done later using main menu, selection 2. The active partition is the one that the bootstrap program will
expect to find MS-DOS on so thatit can startup MS-DOS.

If the hard disk has already been partitioned, the above screens for allocating the primary partition would not have been
displayed. Instead FDISK displays a screen such as:

Create Primary DOS Partition

current Fixed Disk Drive: 1

Primary DOS partition already exists.
Press ESC to return to FDISK Options

And (as expected) pressing [Esc] takes you back to the main menu. No other key has any effect.
Selection 2: Create Extended DOS partition

Once you have created a primary MS-DOS partition, you can create extended MS-DOS partitions on your hard disk. In
most cases you will need onlyone MS-DOS partition for your entire disk unless the total capacity of your hard disk is
greater than 32 megabytes or you have some other special need for using multiple partitions. In order to designate one
or more logical drives, use menu selection 2 in the Create DOS partition menu. When you press [2] and the [RETURN]
key (after about 4 seconds hesitation) FDISK displays a screen something like this (using the disk size and primary
allocation numbers of the previous illustration):

Create Extended DOS Partition

current Fixed Disk Drive: 1

Partition Status Type Start End Size
c: 1 PRI DOS 0 413 414

Total disk space 1is 614 cylinders.
Maximum space available for partition
is 200 cylinders.

Enter partition size..........:[200]
Press ESC to return to FDISK Options

This menu is very similar to the primary creation menu and it gives you the current status of the disk partition(s) in
cylinders. Following the previous illustration you could press [RETURN] to allocate the total (default) of 200 cylinders. If,
for instance, 150 were entered you would leave 50 cylinders not allocated to MS-DOS, and since FDISK only allows one
primary partition and one extended partition, the unused space would be wasted unless some other operating system
could use the unused space. (There is actally room for four partitions on the bootstrap sector of your hard disk).

Following the previous illustration assume that you select the default (200) and press the [RETURN] key. The following
confirmation screen is displayed by FDISK:

Create Primary DOS Partition
Current Fixed Disk Drive: 1

Partition Status Type Start End Size
c: 1 PRI DOS 0 413 414
2 EXT DOS 414 613 200

Extended DOS partition created
Press ESC to return to FDISK Options

FDISK will not accept any key but [Esc] and when pressed you do not exactly return to the (top level) FDISK Options menu
as expected. Instead, FDISK knows you will want to allocate logical drives within the extended partition and automatically
enters the Create DOS partition option 3, Create logical drive(s) in the extended DOS partition.

When an extended DOS partition already exists and selection 2 is entered, FDISK displays a screen very similar to the
screen above with the message: Extended DOS partition already exists. The only thing you can do in this instance is
press the [Esc] key.

Selection 3: Create Logical DOS Drive(s) in the Extended DOS partition

Once you have created an extended MS-DOS partition, you can create logical MS-DOS drives within the extended MS-DOS
partition; and once configured and formatted, MS-DOS3.3 will recognize them as though they were real, physical, hard
disk drives. Older versions of MS-DOS will not recognize the extended partition as a native DOS partition and will not
support this capability. Considering transportability (which is not normally a major concern with hard disks), extended
partitions and logical drives are MS-DOS 3.3 unique and older DOS versions (or CP/M) cannot access information in
these areas.

When Create DOS Partition menu option 3 is selected, the following style screen is presented by FDISK (assuming the
200 cylinder allocation of the previous illustration):

Create Logical DOS Drive(s)
No logical drives defined
Total partition size is 200 cylinders.

Maximum space available for logical
drive is 200 cylinders.

Enter Togical drive size.......... [200]
Press ESC to return to FDISK Options

For illustration purposes assume you want two logical drives of 100 cylinders each. To do this just type the number 100
and press [RETURN] and FDISK hesitates momentarily while doing the allocation, and presents the following screen:

Create Logical DOS Drive(s)

Drv Start End Size
D: 414 513 100

Total partition size is 200 cylinders.
Maximum space available for logical
drive is 100 cylinders.

Enter logical drive size.......... [100]

Logical DOS drive created, drive letters
changed or added

Press ESC to return to FDISK Options
You will note that the next logical drive size will defaultto 100 cylinders, so just press [RETURN] and you will get the
above screen with the second drive's parameters displayed (E: 514 613 100). Note that when the system is next
bootstrapped there will be drives c:,d: and e: available under DOS 3.3. Pressing [Esc] at this point returns to the top level
FDISK Options menu.

Remember that anylogical drives allocated must be formatted using the format command prior to their usage and this
should be done immediately after the primary drive is formatted.

16.2 Changing the active partition

This main menu selection causes FDISK to display information about all the partitions on your hard disk. It shows you
the size, position, type and whether active or not, for each partition. There is only one active partition on a hard disk, and

thatis the one the computer uses when itis firstturned on. All the other partitions are inactive. If you have only one
partition, it has to be active.

If you had more than one partition the information would be displayed on the screen something like this:
Change Active Partition
Current Fixed Disk Drive: 1
Partition Status Type Start End Size
c: 1 PRI DOS 0 413 414
2 EXT DOS 414 613 200

Total disk space is 614 cylinders

Enter the number of the partition you
want to make active...........u...t [1]

Press ESC to return to FDISK opt'ions

Type the number of the partition you want to make active, and press the [RETURN] key. The computer will choose the
currently active partition as the default, to reduce the risk of accidents.

If there were partitions created by other operating systems (such as XENIX) there would be extra partitions displayed with
the type non-DOS displayed. These partitions cannot be made active by FDISK.

If, as is likely, you have just one partition covering the entire hard disk then FDISK will inform you that
Partition 1 is already active
Press ESC to return to FDISK options

In that case, you have to press [Esc] to return to the main menu. No other key will have any effect.

16.3 Deleting the DOS partition

When main menu, option 3 is chosen, FDISK displays a screen showing a menu such as the following:

Delete DOS Partition
Current Fixed Disk Drive: 1
Choose one of the following:

1. Delete Primary DOS partition

2. Delete Extended DOS partition

3. Delete Logical DOS Drive(s) 1in
the Extended DOS partition

Enter choice: []
Press ESC to return to DOS

FDISK puts up no defaultin the choice boxand you must enter a number otherwise FDISK will not know what to do. Note
that selection number 3 (displayed in brackets { })is notdisplayed unless there are logical drives which can be
deleted. There is also an order of deletion which FDISK enforces and this is from the lowestlevel up, that s, firstlogical
drives, then extended partitions and finally the primary partition. Any attempt to delete in another order will evoke the
notification that the deletion cannot be done with the lower elementin existence. Note also that FDISK will not delete a
non-DOS partition since these are to be managed by the program which initially placed them on the disk.

Deleting the Primary DOS Partition

When delete menu option 1 iss chosen, there can be no extended partition (and no logical drives) and if this is true,
FDISK displays a screen showing information on each partition on your hard disk, and ask you whether or not you want to
delete the primary DOS partition.

BEWARE: If you answer Y to that question, the primary DOS partition and all the data that it contained will be lost for ever.
For thatreason, FDISK selects N as the default.

The screen will look something like this:
Delete Primary DOS Partition
Current Fixed Disk Drive: 1

Partition Status Type Start End Size
c: 1 A PRI DOS 0 413 414

warning! Data in the Primary DOS
partition will be Tost. Do you wish
tTO CONtINUE. .. vttt ittt e eeeen e ? [N]

Press ESC to return to FDISK opt'ions

If you don't want to delete your DOS partition, press either the [RETURN] key or to return to the main menu. Otherwise type
Y and press the [RETURN] key. The partition will be deleted, and you will be returned to the main menu after being shown

the confirmation page.

Deleting the Extended DOS Partition

When delete menu, option 2 is chosen, there can be no logical drives and if this is true, FDISK displays a screen
showing information on each partition on your hard disk, and asks you whether or not you want to delete the Extended
DOS partition.

The screen will look something like this:
Delete Extended DOS Partition

current Fixed Disk Drive: 1

Partition Status Type Start End Size
c: 1 A PRI DOS 0 413 414
2 EXT DOS 414 613 200

warning! Data in the Extended DOS
partition will be lost. Do you wish
tO CONtINUE. . ittt ittt iesnnenn ? [N]

Press ESC to return to FDISK options

If you do not want to delete your extended DOS partition, press either the [RETURN] key or [Esc] to return to the main
menu. Otherwise type Y and press the [RETURN] key. The partition will be deleted, and you will be returned to the main
menu after being shown the confirmation page.

Deleting Logical DOS Drive(s)

When delete menu option 3 is chosen, FDISK displays a screen showing information on each logical drive on your hard
disk, and asks you which one you want to delete. After the selection you'll be asked to verify your selection.

BEWARE: If you answer Y to that question, the selected logical DOS drive and all the data that it contained will be lost for
ever. For that reason, FDISK selects N as the default.

The screen will look something like this:

Delete Logical DOS Drive

Drv Start End Size

D: 414 513 100

E: 514 613 100

Total partition size is 200 cylinders.
warning! Data in the logical DOS drive
will be Tost. what drive do you wish
todelete. . ittt it ? [D]
AFe YOU SUIE. it cv vt enensnnnnnnnns ? [N]

Press ESC to return to FDISK Options

If you do not want to delete your logical DOS drive, press either the [RETURN] key or [Esc] to return to the main menu.
Otherwise type Y and press the [RETURN] key. The logical drive will be deleted, and if there are more logical drives (such
as shown above) you will be recycled through the deletion procedure. Once there are no more logical drives, you will be
returned to the main menu after being shown the confirmation page.

16.4 Displaying partition data

Choosing the fourth main menu option will display a screen showing information about all the partitions on the disk. It
will look something like this:

Display Partition Information
Current Fixed Disk Drive: 1

Partition Status Type Start End Size
c: 1 A PRI DOS 0 413 414
2 EXT DOS 414 613 200

Total disk space is 614 cylinders.

The extended DOS partition contains
Togical DOS drives. Do you want to
display logical drive information? [Y]

Press ESC to return to FDISK Options

Note that the extra message (contained in brackets { }) will only be displayed when there are logical drives present. If
you press Y and the [RETURN] key the screen wiuld look something line this:

Display Partition Information

Drv Start End Size
D: 414 513 100
E: 514 613 100

Press ESC to return to FDISK Options

And (as expected) pressing [Esc] returns you to the main menu.

16.5 Selecting the Next Fixed Disk Drive.

This main menu option is not displayed unless you have more than one hard disk drive on your system. When you select
main menu item 5 and press the [RETURN] key, the main menu reappears and the message:

current Fixed Disk Drive: n

below the options title line shows the newly selected drive number. All other menus which show the currently fixed drive
number will also be effected. Selecting menu item 5 again advances to the next physical drive or if the current drive was
the last one then the next drive is the first drive (ie. the next drive chain is circular).

APPENDIX 17: THE BACKUP COMMAND.

The BACKUP command backs-up one or more files from one disk to another.

Syntax:
BACKUP [drive 1:]\[path\][filename filetype]
[drive2:][/ST/MI[/AI[/F][/D:date][/T:time]
[/L:[[drive[path]filename]

drive1 is the disk that you want to back-up.
drive2 is the target drive onto which the files are backed up.

The BACKUP command can back-up files on disks of different media types (hard disks and floppy disks). BACKUP can
also back-up files from one floppy disk to another, even if the disks have a different number of sides or sectors.

You will need to format the disk which is going to store the copies. Butit does not have to be formatted in the same way
as the source disk. For example, it can have a different number of sectors. However, if you use DISKCOPY to make a

back-up copy of a disk, both disks must be formatted in the same way. The copies are normally stored in the root
directory of the back-up disk.

The OPTION SWITCHES control:

= Whether existing back-up files on the disk are overwritten by the new copies

Whether sub-directories are backed-up or not

If back-ups are made of files that haven't been changed since they were last backed-up
If back-ups are made of files created before a certain date

Keeping a record of the back-up process

An exit code is set by BACKUP to record whether the back-up was completed successfully. This can be used in an IF
command to determine the next command.

OPTION SWITCHES:

IS
Backs-up subdirectories.

M
Will only back-up those files which have the Archive attribute set. This generally means that the file has been
changed since itwas last backed-up.

IA
Adds the files to be backed-up to those already on the back-up disk. It does not erase old files on the back-up disk.
This switch will not be accepted if files exist that were backed-up using BACKUP from MS-DOS versions 3.2 or
earlier.

/F

Causes the target disk to be formatted if it is not already formatted. For this switch to function the MS-DOS format
command must be accessible by the current path.
/D:date
Backs-up only those files that were changed on or after the given date. (Date is in the form dd-mm-yy).
[Ttime
Will only back-up those files that were changed at, or after the given time. (Time is in the form hh[:mm[:ss])).
/L:filename
Makes a BACKUP.LOG entry in the specified file. If you do not specify the flename, BACKUP places a file called
BACKUPLOG in the root directory of the disk which contains the files being backed-up.

If the BACKUP.LOG file already exists, BACKUP appends the current entry to the file.
The log file uses the following format:

The firstline lists the time and date of the back-up. Aline for each backed-up file lists the filename and number of the
back-up disk on which the file resides.

The back-up log file can be used when restoring a particular file from a floppy disk, but you must specify which disk to
restore so thatthe RESTORE command does not have to search for files. BACKUP displays the name of each file as itis
backed-up.

Notes:

If there are more files than can be backed-up to a single floppy disk, BACKUP directs you to insert additional floppies as
required. You should label and number each back-up disk consecutively to help you restore the files properly with the
RESTORE command.

If you're sharing files, MS-DOS will only allow you to back-up the files to which you have access.

You won't be able to restore these files using the PC-DOS version of the RESTORE command, nor with the old (MS-DOS
3.2 or earlier) versions of the RESTORE command.

Unless you use the /A switch, BACKUP erases the old files on a back-up disk before adding the new files to it.

You should not use the BACKUP command if the drive you are backing-up has been joined or substituted with the

ASSIGN, JOIN or SUBST commands. If you do, you may not be able to restore the files with the RESTORE command.
Exit Codes:

BACKUP returns the following exit codes:

° Normal completion.

1 No files found to backup.

’ Some files not backed-up because of sharing conflicts (networked systems only).
’ Terminated by user.

4

Terminated due to error.

These exit codes are used with the batch processing, IF ERRORLEVEL command, for appropriate responses to the
various codes.

Examples:

To back-up all the files in the current directory on Drive C, onto the disk in Drive A, and overwriting anyfiles that are already
there, use the command line:

BACKUP C: A:

(assuming that the external command BACKUP is stored in the default directory or in a directory that MS-DOS
automatically searches)

The back-up copies are all stored in the Root directory on Drive A.

To back-up all the files in the DIR1 directory on Drive C (a subdirectory of the Root directory) onto the disk in Drive A,
adding to the files alreadyin the Root directory on Drive A, use the command line:

BACKUP C: DIR1 A/A

To back-up all the files on the hard disk - Drive C (ie. not just the files in the Root directory but those in all the
subdirectories as well) onto Drive A, use the command line:

BACKUP C: A/S

These files are all stored in the Root directory on Drive A. It is most likely that this back-up operation will require more
than one diskette to complete the process. BACKUP will prompt you for additional disketts as required. Itis a good idea
to have a batch of newly formatted diskettes at hand. Each successive diskette of a series should be labelled
sequentially (1, 2, 3, ...) with the back-up date and other details for easy reference when restoring.

Use the /L option in your command line to keep a record of the files which are copied onto the back-up disk, and the date
the copies were made. For example, to record that you backed-up the files in the current directory on Drive C onto the disk
in Drive A, you might use the command line:

BACKUP C: A/L

The record would then be kept on the back-up disk in a file called BACKUP.LOG. If, however, you wanted to give this file a
special name - for example, RECORDS.LOG - you should change the command line to:

BACKUP C: A/LRECORDS.LOG

APPENDIX 18 THE RESTORE COMMAND.

The RESTORE command restores files that were backed up using the BACKUP command.

Syntax:
RESTORE drive 1: [drive2:][l[path J[filename filetype]
[/S]I/P][/B:date]/A:date][/E:time][/L:time][/M][/N]

drive1 contains the backed-up files.
drive2 is the target drive.

The RESTORE command copies files from backup disks onto working disks (eg. your hard disk), usually replacing the
existing versions of the same file on your working disk.

The option switches control:

= |[F ONLY files that have been changed since they were last backed-up are restored.

= |F ONLY files that have been changed since a particular date and/or time are restored.

= |[F ONLY files that have been deleted from the working disk (ie. files of which there is no existing version on this
disk) are restored.

= |F HIDDEN and READ-ONLY files are only restored with your knowledge.

At the end of the process, RESTORE sets an exit code to record how it finished. This can be used in an IF command.

Option Switches:

IS

Restores subdirectories also.
/P

Prompt for permission to restore anyfiles that are READ-ONLY or that have changed since the last backup.
M

Restores onlythose files modified since the last backup.
IN

Restores onlythose files that no longer exist on the target disk.
/A.date

Restores only those files last modified on or after the date.
/L:time

Restores onlythose files last modified at or after the time.
/B:date

Restores only those files last modified on or before the date.
/[E:time

Restores onlythose files last modified at or before the time.
Notes:

Dates are in the form: dd-mm-yy
Times are in the form: hh[:mm[:ss]]
RESTORE cannotrestore the system files, I0.SYS and MSDOS.SYS. Use the SYS command to restore these files.

The MS-DOS 3.3 RESTORE command will restore files backed up with earlier MS-DOS versions as well as the MS-DOS
3.3 BACKUP command.

Once MS-DOS has restored the file, use the DIR or TYPE command to make sure that the file was restored properly.
EXIT CODES:
Upon completion, RESTORE returns one of the following exit codes:

0

Normal completion.
1

No files were found to restore.
3

Terminated by user.

Terminated due to error.

These exit codes are used with the batch processing, IF ERRORLEVEL command, for appropriate responses to the
various codes.

Examples:

To restore all the files matching the filename template MY*.TXT to the DIR1 directory (a subdirectory of the Root directory)
on your hard disk (the default drive) from the backup disk in Drive A, use the command line:

RESTORE A: DIR1 MY*.TXT
(this assumes that the external command RESTORE is either in the default directory or in a directory on the search path).
If you want to restore only those files which no longer exist on your working disk, make your command line:

RESTORE A: DIR1 MY*.TXT/N

To restore all the files from the backup disk in Drive Aonto your hard disk (the default drive) and to restore the structure of
directories as well, use the command line:

RESTORE A: *.*/S

This will replace everyfile on your hard disk - including files that are marked READ ONLY. If you don't necessarily want all
files to be replaced, you should use the /P option. Your command line then becomes:

RESTORE A: *.*/S/P

Then, when a file which has changed since the last backup or a READ-ONLY file is about to be replaced, you will see a
message like:

restore filename filetype (Y/N)?

Type N if you don't want this file replaced.

Section 3 Site Index Book Index

Appendices Site Index

Back Cover

INDEX

1234h 52, 101

24 Hour Flag 90, 101

32.768 Khz Oscillator 15

160 x 100 Graphics 21

320 x 200 Graphics Mode 22

640 x 200 Graphics Mode 23

8087-2 Numeric Data Processor 1,72

Absolute Key Token 62, 98

ACE (8250) Registers 107

Active Video Display page 100

AMSTRAD PC 640K (W.i) message 104
Asynchronous Communications Elementtest 54
Attribute Byte (Color) 20

Attribute Byte (Monochrome) 24

Baud Rate Selector 80
Break Byte 100

BREAK Command 137
BUFFERS Command 138

Central Processing Unit (CPU) 1
Centronics Compatible Port 15
Centronics Interface Connector 37
CGA Color Select Register 26
CGACRTC Display Addressing 27
CGA Mode 6845 CRTC Emulation 67
CGA Mode Control Register 25
CGA Status Register 27

Character set select 141

Colour Alpha Display 19

Colour Graphics Display 21
COMMAND.COM 179

Counter 1 initialisation 10

Country Dependent Information 144
CRC Error 73

CRTC Initialisation Data 94

Ctrl + [Keys]: Key Actions 61

Current Video Color Select byte 100
Current Video Mode Byte 99
Current Video Mode Control Byte 100
Cursor Address Buffer 100

Cursor Start/End Scan Byte 100

DEBUG Utility Program 180

Default Display Mode (DDM) 12, 46, 71

DEVICE Command 138

Diagnostic Mode 18, 106

Direct memory Access (DMA) 5
Controller test 54
Controller (8237A-4) Registers 110
Initialization 7
Over 64K boundary (Disk I/O Error) 72, 77
Overrun Error 73
Page Registers 6

Disk Bootstrap Interrupt 89

Disk Controller Error 72,78

Disk /O Interrupt 72, 77

Disk Parameter Table 95

Disk Write Protect Error 72

Drive Motor Flag 99

Drive Motor Timeout Counter 99

Drive Not Ready

Drive Restore Flag

Drive Status Byte 99

DRIVER.SYS 139

DRIVPARM Command 141

Dynamic RAM Refresh 9

ECC Error 78

End of Track 95

Error: External ROM checksum incorrect 105
Error: Faulty ... 105

EXE (Run File) 164, 168

EXE2BIN Utility Program 202

EXIT Command 204

Expansion Bus I/O Channels 5
Expansion Interface Connectors 41
External Cluster Controllers 5
External Ticker Interrupt 93

Extra RAMsize 97

Fatal ROS Messages 105
FCBS Command 142

FDC (uPD765A) registers 121
FDC Command Codes 124
FDC Hardware Conditions 34
FDC Results Buffer 99

FILES Command 142

Filler Byte 95

Firmware 47

Floppy Disk Controller 34
Floppy Disk I/O Interrupt 72
Floppy Disk Interface test 55

Font Selection Links 141
FormatBad Track 77
Format Drive 77

Format Track 76, 77

Gap Length 95

Get Cursor Address 65

Get Key Token (Keyboard I/O Interrupt) 83
Get Light Pen Address 66

Get RTC Date 91

Get RTC Time 91

Get System Clock 90

Get Video Parameters 71

Hard Disk Call parameters and registers 77
Hard Disk Drive Count 101

Hard Disk I/O Interrupt 72

Hard Disk ROM 2, 77

Head Load Delay 95

Head Settling Delay 95

High Resolution (640 x 350) Graphics Mode 23
Horizontal Total 94

Initialization Stack 96

Initialize disk sub-system 73,77

Initialize printer port 88

Initialize Serial Port 80

Insert a System disk into drive A89, 104

Installed RAM Size 13

Internal Display Adapter 18

Interrupt Controller Initialisation 8

Interrupt Levels 8, 114

Interrupt Vector Initialisation 49

Interrupt Vectors 49
Interrupt 2: Parity Error (NMI) 55
Interrupt 5: Print Screen 56
Interrupt 8: System Clock Interrupt 56
Interrupt 9: Keyboard Interrupt 57
Interrupt 14 (OEh): Floppy Disk Controller 62
Interrupt 16 (10h): Video 1/0O 62
Interrupt 17 (11h): System Configuration 71
Interrupt 18 (12h): Memory Size 72
Interrupt 19 (13h): Disk I/O 72
Interrupt 20 (14h): Serial I/O 79
Interrupt 22 (16h): Keyboard 1/0 83
Interrupt 23 (17h): Printer 1/0O 87
Interrupt 24 (18h): System Restart 88
Interrupt 25 (19h): Disk Bootstrap 89
Interrupt 26 (1Ah): System Clock and RTC 89
Interrupt 27 (1Bh): Keyboard Break Interrupt 93
Interrupt 28 (1Ch): External Ticker Interrupt 93

N N AN N N N N S N~ A~ o~

Interrupt 29 (1Dh): Video Parameter Table 93
Interrupt 30 (1Eh): Disk Parameter Table 95
Interrupt 31 (1Fh): Video Matrix Table 95

Introduction 1

Invalid FDC Opcodes 136

IRGB Color Selection 19, 20

Keycodes 39, 57, 158
Key States 86, 97
Key Toggles 86, 97
Key Token Buffer End Address 102
Key Token Buffer Start Address 102
Key Token Buffer 98
Key Tokens 57 - 61
Keyboard and Key Codes 158
Keyboard Break Interrupt 93
Keyboard Buffer status 84, 86
Keyboard I/O Interrupt 83
Keyboard Interface 38
Keyboard Interface test 55
Keyboard Interrupt 57
Keyboard Layouts 159

Danish 162

French 160

German 160

Norwegian 163

Portugese 163

Spanish 161

Swedish 162

UK 159

USA 159
Keyboard to Main Board Interface 38
Kill RTC Alarm 92

Language Links 106

LASTDRIVE Command 143

LIB (Library Files) 167

Light Pen Connector 40

Linker Program 164

Logical Printer Device Base I/O Address 96
Logical Printer Device Timeout Buffer 101
Logical Serial Device Base I/0 Address 96
Logical Serial Device Timeout Buffer 101
Low Resolution (320 x200) Graphics 21

Main Board I/O Channels 3

Main Board to Keyboard Interface 38
MAP (Link Map File) 167

MDA CRTC Initialisation 32

MDA Mode Register 31

MDA Status Register 32

Medium Resolution (320 x200) Graphics Mode 22
Memory Layout 2

Memory Size Interrupt 72

Missing Address mark 73,78
Mode Control Register 25
Monochrome Alpha Display 23
Motor off timeout 95

Motor on Delay 95

MS-DOS System Configuration 137
MS-LINK 164

Maths Co-processor (NDP) 1,72

NMI Disable 11

NMI Mask Control 9

Non-Fatal ROS Messages 104
Non-\olatile RAM (NVR) 103, 117

Null Modem Cable 151

Number of Printers Attached 72
Number of Serial Interfaces Attached 72

OBJ (Object File) 167
Optional Games Adapter 72

Paper Out 87

Parallel Printer Interface 36

Parallel Printer Port 15

Parity Error (NMI) 55

Parity Error Disable 11

PCC Power Usage 155

PIC (8259A-2) Command Words 112
PIT (8253) Registers 115

Pixel to Bit Mapping (320 Res) 22
Pixel to Bit Mapping (640 Res) 23
Please fit new batteries 104

Please Wait 52,104

Port A - Status-1 Input/Keyboard Code 12
Port B - System Control 11

Port C - Status-2 Input 13

Power Connector 45

Power-Up Initialisation and Self Test47
Power-Up Self Tests 52

Power-Up Test Methods 53
Power-Up Test Procedure 52

Print Screen Status Byte 130

Print Screen 56

Printer Acknowledge 87

Printer Connector 37

Printer Control Latch 16

Printer Data Latch 16

Printer /O Interrupt 87

Printer Idle 87

Printer Lead Wiring 153
Printer Parallel Port test 54
Printer Selected 87
Printer Status Channel 17
Processor Memory Usage 2, 106
Programmable Interrupt Controller test 55
Programmable Interval Timer test 54
Programmable Interval Timers 9
Programmable Peripheral Interface test 54
RAMO - RAV4 139
RAMDRIVE.SYS 13
Read Character and Attributes 67
Read Pixel (Video Int16) 70
Read Sectors 74,78
Read Serial Port 81
Real Time Clock test 54
Real Time Clock 15
Record Not Found (Disk I/O Error) 73
RECOVER Utility Program 205
Reference Information 106
Resident Operating System (ROS) ROM 2
Return Disk I/O Status 74,78
Return printer port status 87
RGB Colour 19
ROM Character Set

English, Norwegian 156

Portugese, Greek 156
ROM Firmware Interrupts 50
ROS Checksum Test 53
ROS Interrupt 16 (10h): Video I/0 62
ROS Messages 104
RS232 Connections 145
RS232C Asynchronous Serial Port 35
RTC (HD146818) Registers 116

Scroll Screen Down 67

Scroll Screen Up 66

Second Floppy Disk Drive 14
Sector Size 95

Seek Error 73,78

Send character to the printer port 87
Serial Baud Rate Settings 80

Serial Channel Interface 35

Serial Channel Pin Arrangement 36
Serial Clock and Serial Data 38
Serial Connector 36

Serial I/O Interrupt 79

Serial Parity Settings 80

Serial Port Status 82

Serial Stop Bit Settings 80

Set Cursor Address 65

Set Cursor Size 65

Set Display Page 66

Set RTC alarm 92

Set RTC Date 91

Set RTC Time 90

Set System Clock 90

Set Video Mode 63

SHARE Utility Program 206
SHELL Command 143

Size of Ram Disk 140

Soft Reset 61

Speaker Drive & Modulate 11
Special Key Actions 61

STACKS Command 143

Status-1 Input/Keyboard Code 12
Status-2 Input 13

Step rate 95

System Clock and RTC Interrupt 89
System Clock Interrupt 56
System Clock Long Word 90, 101
System Commands Processor 179
System Configuration Interrupt 71
System Configuration Word 96
System Control Port 11

System Interrupts 7

System Memory 2

System RAMtest 54

System RAM Variables 96
System Reset Flag 53, 101
System Reset 14

System Restart Interrupt 88
System Status and Control 10

Then press anykey. 89, 104

Time and Date of lastusage 103, 104
Time and Date parameters 103, 116
Timer Configuration 10

Total RAM Size 97

\erify Sectors 75, 77

Video Connector 44

Video Display Buffer Size Word 99
Video Display Buffer Start Address 99
Video I/O Address Word 100

Video /O Interrupt 62

Video Matrix Table 95

Video Output Pins 44

Video Parameter Table 95

Visible Video Columns Byte 99

VM.TMP 168

Wait States 1

Write Character and Attributes 68
Write Character Only 80

Write Color Palette 69

Write in TTY emulation mode 70
Write Pixel 70

Write Sectors 75,78

Write Serial Port 80

Write System Status 14

Appendices Site Index

Back Cover

-

Al

|

|

510134135003 14 i
SOFT 50031

	PPC Technical Reference Manual
	http://www.seasip.info/AmstradXT/ppctech/index.html
	Preface
	Table of contents
	Section 1
	Section 2 - FIRMWARE
	Section 3
	Appendices
	Index
	https://www.seasip.info/AmstradXT/ppctech/cover.html

