

Amstrad NCI00 Magic
by Vic Gerhardi & Dave Hampson

Edited by Gill Gerhardi

ISBN 07457 0236 8

Amstrad NCI00 Magic

©1993 Vic Gerhardi & Andy Berry

This book and the programs within are supplied in the belief that the contents are correct
and that they operate as specified, but the authors and Kuma Computers Ltd shall not be

liable in any circumstances whatsoever for any direct or indirect loss or damage to
property incurred or suffered by the customer or any other person as a result of any fault

or defect in the information contained herein.

ALL RIGHTS RESERVED

No part of this publication may be reproduced, stored in a retrieval system or transmitted
in any form or by any means, electronic, mechanical, photocopying, scanning, recording

or otherwise without the prior written permission of the author and the publisher.

Published by:

Kuma Computers Ltd
12 Horseshoe Park
Pangboume
Berks
RG8 7JW

Tel 0734 844335
Fax 0734 844339

About the Authors, the Book and

Acknowledgements
The Authors have been working with small portable computers since 1979. Vic and Gill
run Rakewell and Dave helps to run Ranger.

Vic and Gill started writing Z88 Magic in 1989. At the end of writing that book they
vowed never to write another one. Since then, we have broken these vows often. They
have written several books with Andy Berry, ranging from the Psion Organiser to
Windows 3.

This time, however, Vic agreed to write this book without checking first with the other
authors, resulting in a colourful start! The outcome was that Gill agreed to EDIT the
book. A new member, Dave (who was working on a disk drive for the Notepad) joined
the team to write the technical and programming bits.

The authors would like to thank themselves jointly (especially Vic for getting him out of
a scrape) and all the people who have helped to put this book together. Jon and Tim at
Kuma for being most patient (again!), Cliff Lawson at Amstrad, Douglas Thompson at
Amor and everybody else whose lives have been strained because of NCI00 Magic!

Above all we would like to thank you for buying the book. We hope that you will enjoy
reading it and will get much pleasure out of using your Notepad.

December 1992

Other Computing Titles From Kuma:

IBM PC & Compatible Micros
DTP Sourcebook - Fonts & Clip Art for the PC by J, L, Borman
PageMaker 4.0 for Windows by William B. Sanders
ZBasic Quick Reference Guide for PC & Mac by John Sumner
The Windows Guide Book by Gill Gerhardi, Vic Gerbardi & Andy Berry
A Practical Guide to Timeworks Publisher 2 on the PC by Terry Freedman
The DR DOS 6 Quick Start Guide by John Sumner
Illustrated DR DOS 6 - The First 20 Hours by John Sumner
The User's Guide to Money Manager PC by John Sumner
Breaking Into Windows 3.1 by Bill Stott & Mark Brearley
The Utter Novice Guide to GW Basic by Bill Aitken
The Utter Novice Guide to Q Basic by Bill Aitken
PagePlus Illustrated by Richard Hunt
DOS 5 Quick Start Guide by John Sumner

07457 0030 6
07457 0031 4
07457 0140 X
07457 0041 1
07457 0147 7
07457 0038 1
07457 0044 6
07457 0047 0
07457 0056 X
07457 0045 4
07457 0046 2
07457 0062 4
07457 0054 3

Commodore Amiga
Program Design Techniques for the Amiga by Paul Overaa
Intuition A Practical Programmers Guide by Mike Nelson
The Little Red Workbench 1.3 Book by Mark Smiddy
The Little Blue Workbench 2 Book by Mark Smiddy

07457 0032 2
07457 0143 4
07457 0048 9
07457 0055 1

Apple Macintosh
DTP Sourcebook - Fonts & Clip Art for the Mac by J. L. Borman
ZBasic Quick Reference Guide for PC & Mac by John Sumner
The Quark Book by Rod Lawton & Isaac Davis

07457 0050 0
07457 0140 X
07457 0052 7

Psion Organiser
Psion Organiser Deciphered by Gill Gerhardi, Vic Gerhardi & Andy Berry
Using & Programming the Psion Organiser by Mike Shaw
File Handling on the Psion Organiser by Mike Shaw
Machine Code Programming on the Psion Organiser 2nd Ed. by Bill Aitken
Psion Organiser Comms Handbook by Gill & Vic Gerhardi & Andy Berry

Psion Series 3
First Steps in Programming the Psion Series 3 by Mike Shaw
Serious Programming on the Psion Series 3 by Bill Aitken

Atari ST
Atari ST Explored 2nd Ed. by John Braga & Malcolm McMahon
Program Design Techniques for the Atari ST by Paul Overaa
Programming by Example - ST Basic by Dr. G. McMaster
A Practical Guide to Calamus Desktop Publishing by Terry Freedman
A Practical Guide to Timeworks on the Atari ST by Terry Freedman

Cambridge Z88
Z88 Magic by Gill Gerhardi, Vic Gerhardi & Andy Berry

Games
Sega Megadrive Secrets by Rusel deMaria
Sega Megadrive Secrets Volume 2 by Rusel deMaria
Corish's Computer Games Guide
Awesome Sega Megadrive Secrets

Sharp IQ 7000 & 8000
Using Basic on the Sharp IQ by John Sumner

A selection from our fast-expanding range - latest full details on request

07457 0139 6
07457 0134 5
07457 0135 3
07457 0138 8
07457 0154 X

07457 0145 0
07457 0035 7

07457 0141 8
07457 0029 2
07457 0142 6
07457 0159 0
07457 0158 2

07457 0137 X

07457 0037 3
07457 0043 8
07457 0150 7
07457 0226 0

07457 0034 9

Table of Contents
XIntroduction

iWelcome
Opening the Bo*
What Did We Get it For7
New to Computer*?
Definition* and Tip*
What to do if You Don't Know What to do?
How to Avoid Mijor Disaster*
Power to the Notepad

Batteries
The Main* Adapter

Chapter 1 The Major Controls
The On/Off Switch
The Contrast Control Knob
The STOP Key
The ENTER Key
The Score t/Menu Key and Menu*
Leaving a Menu
The Secrct/Mcnu Key and Secret*
The Cursor keys
The Two Delete keys
The TAB key

The Driving Control*
The Function Key

Function Key - Short Cut*
The Control Key
The Shift Key*
The Capa Lock Key
The Symbol Key

The Main Menu
The Information Bar
Sy»tem Setting* Menu

Power ofT Etelay (min*. 0=Ncver)
Preserve Context During Power Off
Sticky Shift Key*?
Time Display Formal

Set Time and Date - The Clock

I
2
3
3
3
4
4
4
5
7

7
7
7
7
9

10
10
10
10
10
10
11
11
11
11
11
12
12
12
13
14
14
14
14
13
ISThe Options We have Left Out Here
15The Template

Looking Around Your Notepad
On the Back Edge
On the Side*

16
16
16
16Getting to the Bottom of it
17React
17A Forced React

Resetting Your Notepad by Choice
Doing a React - Step by Step
SoftReaet
Why Do a Soft React?
After a React
To Find the Version Number

17
17
17
IS
18
18
18Password
19Setting a Pats word

Secret Document
Changing Your Password
Resetting the Pas* word (Function <- Del)
Locking the Notepad 20

Chapter 2 The Programs and Their Commands
Tune Manager (Function T)

To Set an Alarm Call (Punction A)
To Edit Existing Alarm Calls
What Happen* When You Get an Alarm Call7
Editing Time Zone* - Function Z

BST or GMT
Changing the Place Name

19
19
20

21
21
22
23
23
24
24
24

I

Contents

25Changing the Time Zone
Chippag the Time difference

Tic CALENDAR/DIARY (Puncbon C)
Deleting a Diary Dale
What You Can't do in Diary

Chapter 3 Address Book (Function D)
Add New Addrca
Edit Addict*
Hud Addict*
Delete Addict*
Browte
Tranifer

25
26
27
27
29
29
30
30
30
30
30
31Chapter 4 The Calculator

Whtl the key* do
Uiing the Calculator
Uring a Com taut Value
Uiing the Calculator* Memory
ftrcentagei

31
32
33
33
34
34Square root*
35Chapter 5 Word Processing
35Introduction
35Why U»c a Word Proccaior?

Much More Than a Typewriter
The Enter Key

Uac Tab# to Line Up Your Te*t
T*b and Eater key*

Shift Enter and Shift Tab
Your Pint Lelfcr

Printing Your Hat Letfcr
Yourfint Printout

36
37
37
38
38
38
39
39
40Telling the Word Proceaor What to do

Uring Menu* 40
41The Word Processor Mean
41The Configure Menu

The Layout Menu
The Nowhere Command*

Command Line*
Whitii a Ruler Line?

Turning the Ruler line ON (Control V R)
The Default Ruler Line (Central D)
Creating a Ruler Line
Indenting Text With the Ruler line
Copying the Previoui Ruler (Control R)

The Status Bar (Punch on 8 or Control V I)
Where You Are in The Document
Insert cm/off (Control 4 or Control Tih)
Right Justify (Control J)
Word Wrap (Control W)
The Time
Cap Lock On

Chapter 6 Your Second Letter
Opening a New Document (Function N)

□loosing a Name
PC Compatible Document Name*
Other Things You Can Do to a Document Name
Your Letterhead

42
42
43
44
44
44
44
46
46
47
47
48
48
48
49
49
50
50
50
50
51
51

Tranafcring an Addrea* into a Document
Moving The Addrea to the Right
Miking Your Muter Copy
Uring Your Mufcr

Imcrt Document (Function 2, idect document, I)
Continuing the Letter

Insert Line (Control 2 or Control I)
Right Align

51
52
53
53
53
54
54
54

Tbe'R' Stop oo the Ruler line
Adding Today'* Date (Symbol D)

The Re*l of the Letter
Mopping Up the Formal Command*

Word Count (Function «)

54
54
55
55
55

II

Contents

55Format text (Control F)
Format Complete Document (Wort processor mam, Text formatting, F)
Centro Text (Control ° or Control C)

56
56
56Macro*
57Di* pitying the existing Macro* (Word pro<***or menu, D)

Recording Your Own Micro* (Shift Control M)
U*ing Your New Macro
Macro* and Reset

57
58
58

Special Character* and Accent*
Picking Your Spedal Character (Symbol Menu)

Drawing Boxes with Line* and Character*
Box Drawing Mode*

Box Drawing with Single line*
Box Drawing with Double Line* (Shift Control D)
Box Drawing with Character* (Shift Control C)
To Return to Line Drawing Mode (Shift Control L)
Line* or Bote* Not Printing?

Chapter 7 Page Formatting Commands
Header* and Fooler*

tfcfinc Header Text and Turn Header* On (>HB'texO
Define Footer Text and Turn Footer* On (>PO'texO
Turn Header* On/Off (>HE ON/OFF)
Two Pooler* On/Off(>PO ON/OFF)

Page Number* in Header* and Footers
Odd and Even Page*

Define Odd Page Header Text and Turn Header* On (>OH'texl‘)
Define Odd page Footer Text ind Turn Footer* On (>OPtext’)
Define Even Pige HeaderText and Turn Header* On (>EH'text*)
Define Even Page Poo ter Text and Turn Footer* On (>BPtext’)

Dc*igning a Header or Pooler Line
Print Control Command*

Page Number of Next P»ge (>PN n)
Con tin uoua/S ingle Sheet Printing (>CP ON/OFP)
Number of Copie* (>NC n)
line Sparing (>L5 n)
Which Page* to Print 65

Start at Page Number (>SA n)
End Printing at Page Number (>EA n)
Print Even Page* Only (>PE ON/OFP)
Print Odd Page* Only (>PO ON/OFF)

Enable/Di*»ble New Page at The End of Printing (>NP ON/OFF)
Page Throw (>PA or Control P)

Even Page Throw (>RP)
Odd Page Throw (>OP)

Cooditional Page Throw*
Fonn feed* Enablc/Diiabled (>PP ON/OPP)

Formatting Command* used with
Mail Merge

58
59
60
60
60
61
61
61
61

62
62
63
63
63
63
63
63
63
63
64
64
64
64
64
64
65
65

65
65
65
65
66
66
66
66
66
67
68
68
69Formatting Whilst Printing On/OfT(>FP ON/OFP)

Right Justification On/Off (>RJ ON/OFP)
Centro Line (>CE'tcxO

Special Hidden Character*
View Tab* and Re turn* (Control V T)
Insert Space (Control Sp»ce)

Special Formatting Characters
Soft and Hard Return*

69
69
69
69
69
70
70
70Non-break ipacc (Control N apace)

View Hard Space* (Control V S)
Uaing Hyphens
Non-break Hyphen* (Control N -)
Soft Hyphens (Control H)

Chapter 8 Using the Style Attributes

70
71
71
71

72
72Selecting Bold, Underlining or Italic Print (Control 7,8,-)

Short Cut Style Attribute* (Control X)
View Code* On/Off (Control V V)

72
73
73Scrolling
73Vertical Scroll ing (Shift Conor Up or Cursor Down)

Horizontal Scrolling
Turbocharging the Cun or Key*

Page Mode (Control Shift P)

74
74
75

III

Contents

75Goto Line / Page / Column (Control G Ln / Pn / Cn)
Maters 76

76Absolute Mobn (Control @ 0 to 9)
Multiple M uteri (Control @ 7)

Goto Previous Muter (Control Shift 5)
Goto Next Muter (Control Shift 6)
Goto Margin Mute is (Control @ L or R)
Goto Block Muteri (Control @ [or D
Gom Lai portion (Control L)

The Delete Commindr

76
77
77
77
77
77
78
78Undelete (Control U)

Special Insertion and Deletion Commands
Transpose Character! (Control A)
Changing Cases

Lower to Upper Case (Control /)
Upper to lower case (Control \)

78
78
78
79
79
80Chapter 9 Blocks

Mark Block (Function 9 or Control Z)
Clear Block (Control K)
What Yon Cars do With a Marked Block

80
80
80
81Search, find Sc Replace

find (Puncoon 3) 82
82A-All
82B-Backwardi

C-matd) Cue
G-Globil
W-whole word
n-Nth Occurrence
Special Chararan

Using?in find
Replace (Function 6)
Other find Commands

find Next (Control 6)
Find Previous (Control 5)

Chapter 10 Spell Checker
What the Spell Checker Docs
Spell Checker Command
Spell Checker Rules
What Happens When the Spell Checker finds a Mistake?

I - Ignore Weed
L - Lookup Word
E- EdilWord
S - Store Word

User Dictionary
View User Dictionary (Word processor menu, Editing, View user dictimary)
Remove Word Prom User Dictionary (Word processor menu. Editing, Remove word)

Chapter 11 The List (Function L)
Select a Document
Document Operations Menu

E-Edit
I- Insert
D - Deleting Documents
P-Print
R- Rename
P - Format Memory Card
T -Transfer

Showing Other files
Memory
Running Out of Memory
How Big Can Your Dxumcnt Be
How to Print Multiple Documents

Chapter 12 Printing
Print Test Page
How Wide Can Your Printer Print?
Typing a Wider line
Page Layout (Punchan 7)
Getting Rid of All the Margins
fill the P»ge With Number*
Designing Your Page Layout

82
83
83
83
83
83
84
84
84
84
85

85
85

86
86
86
86
87
87
87
87
87
88

89
89
89
89
90
90

90
90

90
91

92
92
93
93
94
94
94

94
95
96
96
96

IV

Contents

96Tcit Whether Your Printer Can Print Uaes
Advanced Printer Com mini

Printer Code*
98
96
98Different Number* That Mem the Same Thing

Set Double Height Ha ample
Escape
Output Code to Printer (>OC n n)
Multiple Commands
Printer Code Not Working
Hea Dump
Lines and Foreign Character* Don’t Print

Microspacing and Proportional Printing
Define Microspace Code Sequence (>MC n n)
Define Character Width (> CW)
MicroS pacing On/Off (>MS ON/OFF)
Proportional Printing On/Off (>PP ON/OFF)

99
99

103
103
104
104
105
105
105
106
106
106

Chapter 13 Layout
Configure Menu (Punchon 3)

Decimal Character

107
107
107

Key Repeat Startup Delay (100th aeca)
Key Repeat Period (100th sec*)
Cursor Flaah Period (100thsecs)
View Options Menu

107
108
108
108

Page Layout
Page Layout Menu

Why Change These Sellings?
Change the Menu or Use the Commands

108
109
110
110

Template Files
Examples of Template filea

Letter template
Klofax Template

Page Layout Commands
Top Margin (>TM n)
Header Margin (>HM n)
Side Margin (>SM n)
Odd side Margin (>OMn)
Even side Margin (>EM n)
Footer Margin (>PM n)
Bottom Margin (>BM n)
Page Length (>PL n)
Zero Margins (>ZM)

Miscellaneous Commanda
Comment Line (>CO text or »> text)
Mcasages

110
110
110
110
111
111
111
112
112
112
112
112
112
112
113
113
113

Gear Screen and Display Message (>CS text)
Display Message (>DM text)
Wait and Disptay Text(>WT text)
Stop Printing and Display Text (>ST text)

Insert Document (>IN document name)
Chapter 14 Mail Merge

113
113
114
114
114
115
116Precautions When Using Mail Merge

Designing a control document
Using Comment Lines and Insert in Mail Merge
Tearing
Check If It is Worth Doing Mail Merge
Keep Your Control Documents Priendly

Display Message (>DM text)

116
116
116
116
117
117
117Where Should You Start7
117Designing Your Data Hie

Definition - Helds and Records
Input for Mail merge

Data Rio

117
118
118
118Making up a Data Hie

Typing The Address Dirccdy
Using Addresses from the Notepsd’s
Building Up The Control Document

118
119
120

Etefming the Data Hie
Define Data Hie (>DP filename)

120
120

Variables 120
121What's in a name?

V

Contents

121Variable Name Ruk*
Variable* not found - message
Reading Variable* in the Control Document

Read Variable* - (>RV name)
Re*l Variable* Unconditionally • (>RU name)
Reid Variable* md pad with noil* - (>RV name)
Another Way of Using The >RV Command

Qoac Data Pile - (>CF)
Adding Your Letterhead
Print the Addiei* to Each fciion
Print the Real of the Letter

Tearing & Putting It All Together
fi»tMi2 Merge file
Tearing, Tearing. Tearing _

Chapter IS Address Labels
Practical Printer Problem*
Pod honing the Print on the Label
Page Layout for Label*

Altering the Page Length to the Length of a Label
line Fred Option
Form Feed Option

Chopping Long Addres* Lines
More About Variable*

Aik for Variable * (>AV menage var)
Rea Dieting the Number of Character* in a Variable
Setting Multiple Variable* On Ac Same Line.
Set Variabk* to a value - (>SV name value)

Adding and Splitting Variable*
Adding to Variable*
Adding Teat Variable*
Adding Number Variable*

Sjiitring Variable*
Chopping Long Addieaa Line* - con tinned
Printing the Labe]
Printing the Single Addrea* Label - Finale
Printing Two Label* Side by Side
Print Blank Line*

.Shuffling Addit** Line*
Conditional*

The Teat
The IP Command*
Special Condition Command*
IF variable i* Defined - (ID v)
IF variable ia Undefined • (IU v)
Updating ScrPrinlTEST
IF Data Hie ix Exhausted (IE)
SKip IF Condition True (SK eond)
REPEAT _ UNTIL Condition (RP)
Nesting

Staffling Addre** lines - continued
Tearing the Shuffle

Printing two Addrcuci continued
AAftionil Hid for Ac Second Addzcuci
Printing the Two Label*
Printing the Double A ddrea* Label - Finale

Chapter 16 Working with Numbers
Centigrade to Fahrenheit and vi* a vta*

Bracket*
Minimum and Maximum Number*

Chapter 17 Going Mathematical with Forms
Chapter 18 Calculating VAT
Chapter 19 Printing to Files

Open Hie for Writing (appending) (>WP fUc)
Writing to Hie on/off (WF ON/OFF)
Write Menage to file - used wilhWP(WM text)
Write file Qok (WQ
Writing a Log
Control Document to Add New Addre**ca to a Data File
Converting Other Data files

122
122
122
123
123
123
124
124
124
123
125
126
126

127
127
127
127
129
129
129
130
130
131
131
131
132
133
133
133
133
134
135
136
136
136
137
138
138
138
139
141
141
141
141
142
142
142
143
144
145
145
146
147
148

149
149
149
150
151
156
157
157
157
157
157
159
159
160

VI

Contents

160Cooduioa
Chapter 20 Transferring Documents

Backups
161
161
161No apace left

Somebody Elac Need* It
Document Format

161
162
162Transfer Method

Setting Up for Transfer
What Goc* at The Other End?
Whal About a Cable?

Making Them Talk
Trimfcr Protocol

Plain ASCII Tranifer
Plain ASCII Send
Plain ASCII Receive

XModem Tranifer
X Modem Send
XModem Receive

Address Book Tranifer
Using a Modem

The Memory Card
Installing a Memory Card
Formatting a Memory Card
Uaing Your Card

Moving Document! Using a Card
The Address Book cm a Memory Card
Programming a Memory Card

Chapter 21 BASIC
Why Bother?
Whiti. BASIC?
Our Aims
The Layout of the Examples
A Few Simple Rules
A Word of Reassurance

163
164
164
165
165
166
166
166
167
168
168
169
169
170
170
171
171
171
172
172
173
173
174
175
175
175
176

Your First Program 176
LIST 177
Line Number* 177

178Commands Uaed in Your Rut Program
178REM
178PRINT
178END
179The Next Stp

Saving Your Work
Variables

179
179
180Whal To Call A Variable

Variable* Never Forget
Variables cm Both Sides
Real Variables
Integer Variables
String Variables

The INPUT Command
Keep it Friendly - Please

The GOTO Trap
Halting Gracefully
What is Truth?
The Question Mark
Array* - Back to Variable# Again

Numeric Operator*
The Hidden Array Hem cut

Subroutine* and Procedures
LOCAL Variable*

181
181
182
182
182
183
183
184
185
186
189
190
192
195
196
199
202Bugs
203Why Bother With Procedure#?

Get Rid of the COTO’l 203
204FOR..NEXT
206Getting Out Too Soon

REPEAT..UNTIL 207
208Loops Within Loops
209Logical Operators
209AND

VII

Contents

210OR
211EOR
213NOT
213Logical Operator Sign miry

To Coetinoe The Program
The Three Mode* of BASIC

Why Three Mode*?
Immediate Mode
Plogjaro Mode
Edit Mode

213
218
218
218
219
219
219Bdi ting Your Progrm

Switching model 220
221Moving On

The Hofcl Reoeptian Deak
The Program Specification

Two Dunenriwl Amyl
How do you Write t Large Program?

PROC_wd come_»creen

221
222
223
225
227
227TAB
228PROCJnidiliw

PROCjeLdeanon
The AS CCCode

228
230
230PROC_do_inpct

PROC_do_output
Whatii« String

PROC_get_digit
INKEY

PROC_jct_room, PROC_*efJloor
PROC_no_mea*ige
PROCjneatage
PROC_geL«fcr

Summing Up tic Hotel Menage Example
Haying With String*

231
232
233
233
234
234
235
235
235
230
237LEN
237Adding String* Together

Subtracting String*
LEFTS, RIGHTS, MD»

Comparing String*
Searching Within a String
INSTR

Clanging the Variable Type
CHRSandASC

Getting String* Prom the Kcybosd
INKEYS
GETS
INKEYS Venn* GETS

A Good me of GETS
A Gooduae of INKEYS

238
238
240
243
243
246
246
250
250
250
250
250
250
251INPUT LINE

STRINGS and SPC
More Math* Function*

Trignomciric Function*

252
253
253
253Pi

RAD 254
DEG 254
Tbetlx'Trig' Hmction* 254

Logarithm*
Changing Number* • ABS

255
255

SGN 255
RND 255
DIV, MOD 256
INT 257
SQR 257
VAL 258
STRS 258

EVAL
Including Information in the Program

DATA
READ
RESTORE

More Control Over Printing

258
259
259
259
260
261

Vill

Contents

261POSandVPOS
Counting Printed dimeter*.
WIOTH tnd COUNT

Chtnging How PRINT PrinU - Ac Variable
The Effect of the Punctuation - in summary

The Comm*
The Semi-colon
The Tilde
The Space
The Apoatropbe
Combining Punctuation Marks

Print Format Control - the @% Variable
STRS Format Control - SS
Format Selection - NN
Number of Digits - PP

General Format - PP value*
Exponential Format - PP value*
Pixed Format-PP values

Zone Width-ZZ

M2
262
263
265
265
265
266
266
267
267
268
269
269
269
270
270
271
272

A Graphical View of the Screen 272
CLG 273
MOVE
DRAW
POINT
PLOT

A Rrst Look at File*
Different Type* of Rle Handling
OPENOUT
CLOSE
OP ENIN

274
275
275
275
279
280
280
282
282

EOF 282
OPENUP
BPUT and BGBT

283
283
285EXT
286PTR
287FN
288Reentrant Punctiou*
295Pretend Rle*

Handling Errors
ON ERROR
REPORT
AvddiDg the Errora in the firat Place

Wrapping up the Command*
TIME
TIMES
SOUND
CLEAR
oscu

296
296
298
29®
298
299
299
300
301
301
303Key definition

The Machine Code Interface 303
304PUT
304CALL.USR

HIM EM, LOMEM
PAGE

The VDU Emulator
The Practicalitie* of Writing a Program

Summing Up
BBC BASIC Keyword*
Stored commands

304
305
305
307
309
311
315
315Key
315Paper layout commands

Page form siting commands
Miscellaneous commands
Printer control commands

315
316
316
317Variable and data input - mail merging

Conditional printing and mail merging 317
318Key commands

Block commands 318
318Curaor movement

Ei tia characters
Formatting and rulers

319
320

IX

Contents

320find end Replies, text
find xnd Replicc, mirixr
Inmrtion ind deletion
Mii cell my
Other cotnnundi

320
320
321
321
322Printing

Spellchecking 322
323The Printer
323Why tre Thereto MmyTypei of Printer*?

How printer* work
Fond «nd Prater Attribute*

Different Type* of Printer*
The Dot Milrix printer
Dmy Wheel Printer
Ink or BuhWe Jet Printer*
1 Printca

Sena! ot Panlkl Conaccooc
How to Tell Whit Type of Connection Your Printer Urn*
Getting the Correct Cihlc
The Trouble with Seriil Printer*

Mix ind Mini

324
324
325
325
325
326
326
326
327
327
327
327
328PwiHel ftinter

Printer Type Setting
Em dinar*

328
328
329It’* Not Thu Bid

ASCII Tible
DUgnoitlc Tert
Uteful Nimes md Addrme*
index

330
331
334
336

X

Introduction

Welcome
Welcome to the Notepad Magic book. We are ready and waiting to guide you through
the magic maze. Although the Notepad is billed as easy to work with there are many dark
alleyways for you to get lost in when you start exploring deeper. With our help you will
find the way through and get much more out of this exciting computer.

Don’t be deceived by the small size of the Notepad. Targislike, its power and abilities
bear no relation to its size. It allows you to take your computer with you (without
requiring the skills of a weight lifter) and use it at meetings* libraries or just out in the
garden.

What do we hope to achieve with this book? We will show you round this magical little
computer and tell you what you can use it for in your everyday life. We also hope we can
save you time by showing you the quickest and easiest ways of doing things. Above all
we hope we can convince you that using your Notepad is fun. We must stress, however,
that the Notepad can only do all this for you if you USE it The number of people who
buy computers and then leave them sitting on the shelf is depressing when you know
what they could have achieved with them.

The publicity about the Notepad is right, it is easy to turn it on and use it for the first five
minutes. However, when you want to do more complex tasks with your Notepad the
steps you need to take are not always so obvious. This book will help you over those
hurdles helping you get the most out of your Notepad.

Opening the Box
We were excited when we got our Notepads. We took them home and opened the box
straight away. The first thing we saw was the large notice stuck on the front

PLEASE DO NOT ATTEMPT TO OPERATE THIS MACHINE WITHOUT
REFERENCE TO THE FIRST SECTION OF THE INSTRUCTION BOOK.

We headed back to the box and unearthed the book. After reading the first section we
fitted the batteries. Turning it On, to our delight it burst into life. Then we had to ask
ourselves a very serious question.

1

Introduction

What Did We Get it For?
We had had all sorts of ideas in the shop; now what were they? Oh yes, we were going to
take it into the garden and write to all those people that we’ve been meaning to write to
for ages. The fact that we have already got big computers sitting on our desks doesn’t
make any difference. When the weather is good, who wants to be stuck indoors anyway?
Being able to work outside, however, might just be the inducement we need to get down
to those letters.

Another thing we thought we could use it for was collecting the addresses of our friends.
They all keep moving and changing their names, not to mention telephone numbers. My
address book is beginning to look like a medieval paper patchwork that would probably
get prizes as an art exhibit Keeping them all on the Notepad would mean that we could
change them as much as we like (or at least they could) and we would still have a tidy
address file.

We also wanted to use the Notepad’s mailmerge facility. That would put the lucky
friend’s address into the top of the letter without us having to retype it That sounds like a
very good idea to us. Mailmerge would also print all the address labels for our Christmas
card list Our arms feel as if they are going to drop off after writing a hundred or so
envelopes. Using the Notepad we will only have a sticky tongue, from putting the stamps
on, to contend with.

What about Time Management we hear you ask? Oh, very well then, the Notepad’s
Clock, Diary and Alarm will also be useful. Our last New Year’s resolution was that we
were going to be more organised and more punctual for appointments. The Notepad
wasn’t there then, it is now. Watch this space.

One of us almost fell out of bed the first morning we used the Notepad’s Alaim. It was
lucky that they couldn’t find anything to throw at it; it may not have survived. The alarm
is LOUD, unlike some alarm systems that we have been able to sleep through.

There are other things in the Notepad that support the Word Processor which will also be
useful. These are: -

The Spell Checker for removing most of your typing mistakes
The List for displaying the names of the documents you have written
The Terminal for sending documents to another computer
The Printer Server for putting your documents onto paper

There is also a totally separate BBC BASIC program on board your Notepad. This
enables you to program your Notepad. You may not be a computer programmer now but

2

Introduction

if you want to make your Notepad do even more useful things for you, this book will
enable YOU to write programs. It might not be able to make the tea in the morning but
the Notepad’s magic will rub off on you. More of that much later, however you have to
learn to tell one end of the broomstick from the other before you can go soaring over the
rooftops.

Above all, we hope you will enjoy getting to know what the Notepad can do for you.

New to Computers?
If you are new to computers don’t worry. We were new to computers once and can
remember how daunting a prospect it seemed We will do our best to explain everything
as simply as we can.

There are a few points that we would like to tell you about before we start delving into
the depths of your Notepad.

Definitions and Tips
As with all subjects, people in the computer field invent new names for the things that
they are working with that ordinary people cannot understand. Although the boffins
would probably argue with us, we reckon they do this so that they can make everything
look more complicated than it is.

An everyday example of the sort of language boffins use would be if you have to go to
see a doctor with a bad toe. The doctor would call it a fancy Latin name while to you it is
still a bad toe.

Working with computers is very similar to that. To get over the problem, when we come
across a computer related word, we will explain what it means in plain English. These
will be called DEFINITIONS.

We will put additional or important information into TIPS. These are buried in the book
and are listed separately in the Index. This means that if you want to reread them again
later you can look them up instead of thinking “I know it’s in here somewhere, but I can’t
find it.”

What to do if You Don’t Know What to do?
If you don’t know what to do with a computer DON’T DO NOTHING. Many people
worry that they will do some damage to their new computer if they do something wrong.
The good news is that you CANNOT damage any computer physically by pressing the

3

Introduction

wrong key or selecting the wrong function. The worst thing that can happen is that you
lose everything that you have typed into it so far. You can always return your Notepad to
the state it was when you first took it out of the box.

How to Avoid Major Disasters
The best way to avoid losing everything in your Notepad’s memory (your life’s work) is
to keep a copy of it. The copy is called a backup.

Definition - Backups

A backup is a copy of some or all the information that you have typed into your
Notepad. __

You can copy the information in several different ways. You could print it out on paper
but you would then have to type it all back into your Notepad. It is better to copy it to a
memory card or disk, or transfer it to another computer. You can then copy it straight
back into your Notepad’s memory if the need arises. You could call Backup your anti
Amnesia Spell!

Although losing everything in memory is rare, backups are important. You should regard
them like insurance policies. We will cover the subject in more detail later.

Power to the Notepad
You can run your Notepad on batteries when you are out and about but when you are near
a power socket it makes sense to use the mains adaptor.

Batteries

The Notepad uses two totally different sorts of batteries simultaneously. The first sort is
the ‘AA’ size Alkalines that you have just put in. You can use rechargeable Nicads in
place of these if you want to cut the cost of batteries. The second sort is a Lithium battery
that you may not have come across before. The reason the Notepad has two sets of
batteries is to minimise the chance of it losing your information. To keep your
information safe, the memory of the Notepad always requires power. It’s a bit like our
short term memory. If you are trying to remember a number or something but get
distracted, you are likely to forget what you were trying to remember. If the Notepad
runs out of power its memory forgets everything.

The lithium battery provides power to the memory when your main batteries have run
down. You can’t do anything else with your Notepad until you have changed the *AA'

4

Introduction

batteries. The lithium battery is only there to power the memory. It is supposed to last up
to five years. We haven’t checked that, however, as we have not had our Notepads that
long yet

The worst scenario that could happen would be both types of battery going flat
simultaneously. You would then lose everything in memory. This would be extreme bad
luck but there is actually no way you can ensure that it won’t happen. One reason
backups are important

You must replace either type of battery when you get a battery low warning sign on the
screen. You cannot do anything with your Notepad until you have changed them. We
recommend that you get at least one spare set of * AA' batteries and a lithium cell to keep
with your Notepad. Our local camera shop has the lithium ones in stock, so there is a
good chance that you probably could get one locally as well. With spare batteries to hand
you can still carry on working with your Notepad even if the batteries run down while
you are in the middle of nowhere.

We are impressed by how long a set of batteries lasts.

TIP - Changing Batteries

When changing the ‘AA’ size batteries you should make sure the ends are clean so
that they make good contact with one another. A lint free clean cloth - a shirt sleeve
- will do. Sometimes dirt on the ends of the batteries can stop the current from
flowing.

You should avoid touching the ends of any batteries with your fingers since any
sweat can lead to contamination and corrosion later.

The Mains Adapter

If you are using a mains adaptor always use the one that comes with the Notepad. Don’t
be tempted to use a different one. There is no standard for power supplies and using the
wrong one with your Notepad is a sure way of generating expensive smoke! If you have
several mains adapters, it might be a good idea to get some coloured tape and colour code
the plugs. You can then tell which one to use with what piece of equipment.

TIP - The Hidden Fuse

The Notepad has an inbuilt fuse fitted on the main electronics board. This is not
easy to change. If you manage to blow it using the wrong mains adapter you will
lose all your files. It will appear that you have done your Notepad a lot of damage

5

Introduction

because nothing will work. Once the fuse is changed, however, it should be all
right

If you are going to another country, leave the mains adapter at home and take a supply of
spare batteries with you, including a spare lithium one.

Let’s get to know some of the keys and the Contrast Control knob.

6

Chapter 1

The Major Controls
Unlike the Notepad manual, we are not going to call the multifunction keys by all their
names at once. For example, we will call the red key labelled ‘Left Arrow’ and ‘Word’
simply the Cursor Left key. We are assuming that you have already put in the batteries.
This section will introduce you to the important keys so that you can start using your
Notepad.

The On/Off Switch
The On/Off switch is like the bathroom light switch. You press it to switch the Notepad
on. You press it again to switch the Notepad off. If you leave your Notepad switched on
without pressing a key it will switch itself off automatically, after a set period, to save
battery power.

The Contrast Control Knob
After turning Notepad on, the screen maybe completely black, completely white or
somewhere between the two.

At this point you may need to use the Contrast Control knob that is on the right-hand edge
of the Notepad. Its function is similar to the brightness control knob on the television.
Adjust this so that you can read the screen comfortably.

The STOP Key
If you have learnt how to drive a car, you may remember being taught how to stop early
in your first lesson. We thought we would do the same thing here. The key in the top
left-hand comer of the keyboard is the STOP key. You use it to stop whatever you are
doing at that particular moment.

You can also use it when you are somewhere in the Notepad that you don’t want to be.
Remember what we told you earlier about doing something when things are not going
quite the way you want them to go? Well pressing the STOP key (several times) is
something you can do because that will return you back to the beginning.

The ENTER Key
The instruction book calls this ‘the key with no name’. You will remember it quickly

7

Chapter 1 The Major Controls

8

Chapter 1 The Major Control#

because you are going to use it a lot. It is normally called the ENTER key - it’s the large
one on the far right of the keyboard.

You should regard this as the opposite to the STOP key. We wish we could call it a GO
key, but sometimes when you use it you may not GO anywhere.

The Secret/Menu Key and Menus
This key displays different menus or allows you to enter your secret document We know
what some readers may be thinking here. What is the lunch menu doing in a Notepad?

Definition - Menus

A menu is a list of choices that are available for you to choose from.

A menu on a computer is like a menu in a Cafe. Normally you can’t ask for anything that
isn’t on it. However, the Notepad is different because some of its commands are not on
menus at all. We will cover these later.

There are several different ways to select an item on a menu. You can either move
around the menu with the cursor keys and then select the command you are on by
pressing ENTER, or type the first letter of the line containing the command.

TIP • Short Cut Commands

There are short cut ways of selecting some commands that you can use without
going through a menu. These are normally a combination of the Control key and
one other key. Any command with a short cut is listed in the menu with its key
combination written in BOLD text.

TIP - Altering Settings in a Menu

Many menu entries have a choice. Some allow you to type in the number you want
while others display all the various options that are available. If, when you select a
menu option, a grey rectangle appears on the end of the line, it means that you can
type something into it. If there is something already there, you will need to delete
that first with the Del key before typing in what you want. When typing in
numbers, you will need to use the white number keys. If on the other hand several
different possible settings appear you can select the one you want with the cursor
and ENTER keys.

If you use the wrong key nothing will change. So don’t be frightened, try different

9

Chapter 1 The Major Controls

keys until something works.

Leaving a Menu
As always with the Notepad if you want to stop looking at the menu press the STOP key.

The Secret/Menu Key and Secrets
The Secret key gets you into a secret document that is protected by a password. You can
also use the Secret key to set a password to protect everything in your Notepad. There
will be more about this later.

The Cursor keys
These are the arrow keys. They move a flashing square (called the cursor, details coming
up soon) around the screen. This is really magic because it looks as though it works by
remote control. Among other things the cursor keys are used to select items or change
numbers and when used with other keys they can even start programs running.

The Two Delete keys
Just to keep those mortals happy who make typing mistakes, there are two delete keys.
Gobble left and gobble right These remove characters either to the right or to the left of
where the cursor is.

The TAB key
For users who have not come across a TAB key before, this causes the cursor to ‘jump’ to
a defined vertical stop on the screen. We will cover this is in greater detail in the word
processing section.

The Driving Controls
We have already introduced you to some lesser known keys like the STOP, ENTER, and
cursor keys. Now it is time to have a look at the rest of them in turn.

The next group of keys are special keys. Like the Shift key on a typewriter, you need to
press them first and then press another key as well. Unless you have turned on the
‘Sticky shift keys’ from the Systems Settings screen, pressing these keys on their own has
no effect. Their purpose is to alter the result of pressing other keys.

10

Chapter 1 The Major Controls

The Function Key
The Function key starts different programs as well as selecting some commands in the
Word Processor. These commands are shown on the template.

You may have noticed from the Main Menu that you can start three different programs by
pressing the Function key and one other key together.

Pressing Function and Cursor Left will start the Word Processor.
Pressing Function and Cursor Right will start the Calculator.
Pressing Function and Cursor Down will start the Diary.

Function Key - Short Cuts

Pressing the Function key with other letter keys is a short cut way of selecting the
different programs available in the Notepad.

The disadvantage of these short cuts is that you need to remember the key combinations.
That is not easy to start with, but you will quickly start remembering the ones you use
most often. The other combinations will come as you venture further into the labyrinth.
So don’t panic, you will pick it up as you go along.

The Control Key
Although this is a boring black key it behaves like the Function key to provide you with
commands inside programs. We will cover these in the sections about the individual
programs.

The Shift Keys
This key allows you to select Capital letters for all the alphabetic keys and the upper
white characters on keys that have two different white characters.

The Caps Lock Key

If you wish to write in CAPITAL LETTERS ALL THE TIME, you will find it easier to
press this key once rather than always holding down the Shift key. If you press Caps
Lock once it will turn Caps Lock ON. To turn Caps Lock OFF again you just press the
key again.

If you have Caps Lock turned ON, the Shift key will do the opposite to normal, that is, it

11

Chapter 1 The Major Controls

will give you lower case characters.

You can see when you have got Caps Lock turned ON because there will be a capital *C*
on the right of the Information Bar.

The Symbol Key
Although the Symbol key is another black one, we reckon it is in disguise because this
one can control some really powerful magic. It can start Macros or select special
symbols. Again we will be covering this one in detail later but at least you know that
they all do something.

Just in case you were wondering, you use the green numbers and letters on the keyboard
with the Calculator.

The Main Menu

To use theUtRD PROCESSOR
PressYELLOU S RED

To use the
CALCULATOR

Press
YELLOW 6 GREEN

To use the
DIftRY / CLOCK
ADDRESS BOOK

Press
YELLOW & BLUE

~W)G3

m sss
oaa €□□ □□
□ □□

When you first start your Notepad you normally see the Main Menu. To get there from
anywhere else in the Notepad all you need to do is to press the STOP key several times.
There are two things that you should notice here.

The Information Bar
Most of the different programs that make up the Notepad display a black bar along the
top of the screen. As well as telling you which program you are running, this bar gives
you a range of other information. When you are in the Main Menu, this bar shows you:

(you can’t change this)
where your Notepad thinks you are
the date that the clock has been set to
a clock displaying the Time
if the Caps Lock is set to ON

The remainder of the screen is taken up by three large pictures. These illustrate three
things that you can choose to do from the main menu. They do not show you everything

Amstrad NCI00
London
Today’s date
Current Time
A Capital ‘C*

12

Chapter 1 The Major Controls

that you can do - just what the designers thought you were going to use most frequently.

We will cover all the programs shortly.

System Settings Menu

Let’s change a few items in our System Settings menu. This will do two things. First, it
will show you what you can change straight away and secondly it will give you
immediate results. If you don’t like the settings we’ve suggested, you know what you can
do.

That’s right, change them back again. What did you think we were going to say?

Use t -l and Stojp-^to Finish
[No)
(dd/nm/yy)
(Serial/Protext)

(24 hour)

ay iruin^j
Preserve context during pouer oFP
Document sizes and dote displayFormat

ouer o ver

Document transfer port and Sticky shiFt keys?Tine display Format Set tune ana date
(NO)

To get to the SYSTEM SETTINGS Menu, turn your Notepad on and press the STOP key
a few times to take you back to the Main Menu screen. Then you just press the
Secret/Menu key.

The settings that you see on the screen are the Default settings.

Definition - Default

When you start working with a new computer, there are many things that you can
change. The programmer will have put in some settings to enable you to see the
whole thing working. These preset settings are the ‘Default’. Often the default
choices will be the best ones, but this should not stop you from changing them.

TIP - Numbers and Letters are Different

Unlike a typewriter, numbers and letters mean different things to a computer like
the Notepad. A few typists have got into the habit of using a lower case ‘L’ for the
number one, and an upper case ‘O’ for the number zero. If you are one of these,
break the habit now. It causes misunderstandings between you and your Notepad.
They may look the same but they have different meanings.

13

Chapter 1 The Major Controls

Power off Delay (mins, 0=Never)

The power off delay is the time that the Notepad will allow you to leave it doing nothing
before turning itself off automatically. The default is five minutes. Let’s change it to one
minute to save even more battery power.

When you first enter the System Settings menu, the cursor (the black square) will have a
white number five in it It should be sitting at the end of the Power Off Delay line; that is
just where you want it to be. Pressing the <Del key will delete the number five. If you
then press the white number ‘ 1 * key, you should see the number you have typed in place
of the original number five. There is one good thing about using the Notepad; you can
always change your mind. Nothing is cast in concrete.

Does everything look all right? Then press the STOP key to leave this menu or use the
Cursor Down key to select the next item in the menu.

Preserve Context During Power Off

This function isn’t the name of a type of jam. It sets whether, when you turn the Notepad
on, you wish to return to the Main Menu or to where you were when you last turned the
Notepad off. We prefer returning to where we were before we switched the Notepad off
so we have changed this with the Cursor Left key from No to Yes.

Sticky Shift Keys?

When we first saw this function we thought we knew what the jam did, but we were
wrong. Some keys on Notepad like Function, Shift and Control require you to press them
while pressing other keys as well. If you prefer typing with one finger you need to set the
Sticky Shift Keys option to ‘Yes’. That will allow you to select one of these keys first
followed by another key without having to hold them both down together.

Although this is called Sticky Shift Keys it should be called ‘Sticky Function, Control,
Symbol and Shift keys’ to cover all the keys it affects.

Time Display Format

If you wish to change the displayed time from a 12 to a 24-hour clock you can select it
with the left or right cursor keys.

We wish we could change this to a 72-hour day. That way we could write a lot more in a
day! But not even our magic is strong enough to slow the sun down.

14

Chapter 1 The Major Controls

Set Time and Date - The Clock
This is the first menu that you see when you first run your Notepad after fitting the
batteries and switching it on.

It’s easy to set. Use the up and down cursor keys to change the number where the cursor
is and then move the cursor left or right and alter the other numbers. When you’ve
correctly set up the time and date, use the STOP key to leave the screen.

You may be wondering why you should have a clock in the Notepad In fact the clock is
used frequently. It is permanently on display when you are in the Word Processor but it
is used in other places as well. It is used by:

The List (stored documents) - to display when you saved your files
The Diary - to check if you have any appointments for today
The Alarm - to blast you at the appointed time
Time Zones - to change your time when you are on the move

You need to make sure that the clock shows the right time and date. If you don’t, it will
make your Notepad much more difficult to use.

The Options We have Left Out Here

There are two functions on the System Settings Menu that are a bit too advanced to
describe here. For details of Document Date Display option which effects the document
sizes and date display in the List, see the List. For details of Document Transfer Port and
Format see file transfer.

The Template
Beneath the screen you will find the template. While you are finding your way around
your Notepad this will remind you of some of the keys to press, particularly when you are
using the Word Processor.

15

Chapter 1 The Major Controls

Looking Around Your Notepad
We have looked at the top of the Notepad and the keys. Now let’s go round the other
edges and discover what is there too.

On the Back Edge
Looking at the back edge there are three sockets on the left hand side. The first one is for
the Mains Adapter. The second socket is a nine pin plug labelled Serial. You can use
this to connect the Notepad to another computer, a modem, an external disk drive or a
serial printer.

The last socket on the back is a 25-way Parallel socket for connecting to a parallel printer.

TIP - Get a Printer

If you haven’t already got a printer we recommend that you get one as soon as
possible. No computer is much good without a printer because everything put into it
can only stay in it If you have a printer you can get your writing onto paper so that
other people can read it. The only way without a printer would be to post your
Notepad to your friends, which might get a bit expensive.

On the Sides
On the Left side there is a slot for a memory card. Memory cards give you extra space to
store documents or allow you to run additional programs written for your Notepad.

You will already be familiar with the screen contrast knob on the right side.

Getting to the Bottom of it
Underneath the Notepad there are the battery compartments and two fold down feet The
feet will save you from using the manual to prop up your Notepad so that you can see the
screen easily. There is also a ‘hidden door’ on the bottom with a screw in it but don’t
bother opening it and having a look. All that is behind it is the program chip that controls
your Notepad. If Amstrad make any amendments to the programs that run your Notepad
this is where you change the chip.

16

Chapter 1 Tho Major Control*

Reset
This is a good time to introduce the Reset functions. There are two different sorts of
reset, a hard one and a soft one. A hard reset allows you to return your Notepad to the
state it was in when you got it out of its box. It will clear the Notepad’s memory and
return all settings back to the default values, except the time. A soft reset, on the other
hand, will destroy the last document that you were working with but otherwise will leave
your memory alone. It returns all the settings to their default You could do a reset by
choice or you could have to do one.

A Forced Reset
Very occasionally computers can get themselves tied up in knots so that they don’t know
where they are. This happens less with the Notepad than with many other laptops. But if
your Notepad does start doing strange things, when it had been perfectly well behaved
before, a reset might put things back to normal.

Resetting Your Notepad by Choice
You can do a reset before lending your Notepad to a friend; to stop them being nosy and
looking at your documents. But be careful because it will stop you looking at them too as
they will no longer be there. Don’t do a hard reset unless you have a backup.

If you haven’t got any documents yet, why not try this out now. Press the Function,
STOP and <-Del keys together while turning the Notepad ON - resetting Notepad is a bit
like a playing chord on a piano.

Doing a Reset - Step by Step
OK. We’ll talk you through it in sequence. The Notepad should be OFF before you start
With your left hand, press the Function and STOP keys; with your right hand, press the <-
Del key and the ON/OFF switch. You must press them together. If you run out of
fmgers, you’ll have to press the ON/OFF switch with your nose! Your reward, should
you get this right, will be a loud LOW BEEP to show that you have successfully reset
your Notepad

Soft Reset
This is a less dramatic reset function, which only resets the System and Macro settings.
To do a soft reset press the Function and STOP keys together, while turning your

17

Chapter 1 The Major Controls

Notepad ON. A soft reset is very likely to destroy the last document that you were
working with, although the rest of your memory should be left intact Your Notepad will
give you a loud HIGH BEEP this time, so be prepared.

Why Do a Soft Reset?
There are two scenarios where a soft reset might be useful.

First if you had changed some settings in your Notepad but didn’t like the effect the
changes had made, a soft reset would restore the default settings for you.

Secondly, if you have to do a reset because of your Notepad’s erratic behaviour, it might
be better to try a soft reset first before you do a hard one.

After a Reset
If you have used any of these Reset functions, it may be wise to change the ‘System
Settings’ back to those that we changed earlier.

To Find the Version Number
On the subject of pressing keys as you turn your Notepad on, you can find out which
software version number you have by another combination of keys. Pressing the
Function, Symbol and ON keys together starts an inbuilt diagnostic test that tests various
parts of your Notepad. What these tests do is covered in the Appendix.

The first screen you should see is the ‘Press a key to start diagnostic test (Stop to skip)...
1 screen. Our Notepad has ‘ROM vl.00 (c) Amstrad 0 Apr 1992, written by Gavin, Mark
and Ray at Amor’ on the bottom of the screen. You can leave this screen by pressing the
STOP key to return to the Main Menu.

Password
You can stop anybody (and yourself if you forget your password) from prying into the
information stored in your Notepad The same password offers two levels of protection
that you can use.

You can use a password to protect the whole Notepad. If you turn the Password Lock on
before you turn your Notepad off you would need to use the password when you switch
your Notepad on again. If you don’t need to protect everything in your Notepad however,
you can just set a password to protect one secret document.

18

Chapter 1 The Major Controls

It is very important that you set a password, even if you do not intend using either the
lock or the secret document. There are two reasons for this. The first one is that if you
don’t set it someone else can. If you don’t know what the password is you can’t use your
Notepad.

The second reason why you need to set a password is that you can select the Password Set
Screen without meaning to. Once you have selected it, you cannot return to anything
without typing in a password. So you might as well do it before you start.

Setting a Password

You enter the password setting screen by pressing the Control and Menu keys together.
You can type in up to four characters and they are not case sensitive. That means that
you can either type your password in capital or lower case characters, it does not matter.
You need to type in the password followed by the ENTER key twice to confirm that you
know what it is.

]password C4 letters or digits) and press ; i\
nFirm the password by retyping it and pressing -J :

Type neu
Please co tm

Secret Document

You can enter your secret document by pressing the Function and Menu keys together.
You will then need to type in your password. The secret document has no name and you
can only have one of them. It is a cut down version of the Word Processor that we will be
covering later. The information always stays in memory. It is never saved as a
document.

Use the STOP key to leave the document.

Changing Your Password

Type neu password (4 letters or digits) and press «■* :

You can change the password that you have set by pressing the Menu key from inside

19

Chapter 1 The Major Controls

your secret document You will need to type in the old one first followed by the new one
twice.

Resetting the Password (Function o Del)
If you want to reset your password, select either the Password or Secret Document
screens and use Function <- Del. This will give you a warning message and if you cany
on your secret document and password will be deleted.

Locking the Notepad
You can stop your Notepad from being used by anyone else by selecting your password
before switching the Notepad off. When it is switched on again, the password needs to be
typed in before you can use your Notepad.

)Ploose enter password and press : Bjijjfclii

20

Chapter 2
The Programs and Their Commands

Now that you have been introduced to the Notepad’s driving Controls, it is about time
you took it out for a run. We will start with the easy programs and leave the more
difficult ones until later.

We know what you would really like to do is to speed down the motorway and use the
Word Processor straight away. However, if you follow the procedure covered here,
everything that needs to be set will be. And in addition you will understand some of the
terminology used.

To help you, we’ve put the quick key strokes with the heading. You can find whatever
you are looking for more quickly.

Time Manager (Function T)

The Time Manager Menu has six preset time zone areas, with their time differences,
which can be changed. It also allows you to set up to six Alarm calls. The Alarms can
occur at any time on any day. They can display a message and be set to happen once only
or repeat every day.

To select the Time Manager Menu from the Main Menu you press the Function and
Cursor Down keys together to select the Diary Menu and then press the Cursor Down key
again to select the Time Manager.

Alternatively you can use the short cut key sequence Function T from any other menu.

W^axtWII

bet/oit! To set i edit
time zomec

Press
BLUE

rctfriT* edit
olorm___________

[No 01 arms Set

existing
cal I sTo set an

at arm cal I
SH

0V*N7 Press
RED

You have three choices from this menu. These are:

To set an alarm call - press the Cursor Left key
To edit an existing alarm - press the Cursor Right key
To set the time zones - press the Cursor Down key

21

Chapter 2 The Programs and Their Commands

To Set an Alarm Call (Function A)

To Set an alarm call from the Main Menu you use Function and Cursor Down, Cursor
Down to select the Time Manager Menu and then Cursor Left.

Alternatively you can use the short cut key sequence of Function A from any other menu.

) C Set the tine...
Press to adjust the hour
Pres* uhen Finished

Press Step to exit

Once only111:24

message :

Note that if you have all your six alarms set, when you select this menu you will
automatically be given the next menu (‘To edit existing alarm calls’) instead. This allows
you to delete one alarm First before setting a new one.

It is quite easy to set an alarm, since many commands are the same as we have already
covered.

First, set the time of the alarm with the cursor keys. Up/down keys again change the
numbers while the left/right keys select which number to change. When you have set the
correct time press the ENTER key. The alarm is now set and you have more choices.

MBOfifiBMI

11 (11124 One® only PI I arm nou s®tVr%n i is sast its sitsPress M to add message to
Press Stop to exit

alarmmessage 1

These are T to adjust the time, D to adjust the date, M to add a message to the alarm and
STOP to exit

T changes the time again. Perhaps you made a mistake the first time round.

D changes the ‘Once only’ to ‘Repeats every day’ or by using the up/down keys change
the date that the alarm will occur on.

TIP - Alarm - Once You Press D You Lose ‘Once Only’

Once you press D you will lose the ‘Once only’ option for good on that alarm call.
The only way to get it back is to delete the call and set another alarm.

You can use M to display a message with your alarm call. A message length of up to
forty-two characters can be stored here to remind you what you thought you ought to be

22

Chapter 2 The Programs and Their Controls

doing when the alarm goes off.

Finally STOP leaves the Menu, leaving the alarm set

To Edit Existing Alarm Calls

You can edit an existing alarm call straight from the Main Menu. Just press the Function
and Cursor Down keys together, then the Cursor Down again (to select the Time Manager
Menu) and then the Cursor Right key.

There is NO short cut key sequence to get here.

mci* -ficcf .ondcn | I M -i't
I1?**

in

Note that if you have no alarms set, you can’t enter this menu.

Edit alarm call displays a list of your set alarms. There are three things you can do here
and these options are also displayed along the bottom of the screen.

To use these commands, you should first use the cursor keys to highlight the alarm call
you want to alter. You can then edit the alarm by pressing the ENTER key. This will
give you the familiar Set Alarm call Menu that you set it with originally.

To delete an alarm, select the one you don’t want any more with the cursor keys and then
press either Del key. You will need to confirm that you really do want to delete it by
pressing ‘Y\

Again, STOP allows you to leave the program.

What Happens When You Get an Alarm Call?

Whether your Notepad is on or not, the Alarm will turn it on. It will display the alarm
time complete with the message (if you set one) and beep for a minute. If you ignore the
alarm, the Notepad will turn off. When you switch your Notepad on again, the alarm will
be displayed, showing you that you have missed an alarm. If the alarm call was not a
‘Repeats every day’ one, it will be automatically deleted from your ‘Edit alarm call’ list

23

Chapter 2 The Programs and Their Commands

Editing Time Zones - Function Z

The Time Zone option allows you to change the time quickly on Notepad when you are
jetsetting around the world. Or, if you just want to telephone your friends in another
country, the time manager will show you what time it is over there. There should be no
excuses for getting them out of bed in the middle of your day.

To list the existing time zone information from the Main Menu you press the Function
and Cursor Down keys together, and then Cursor Down again twice.

Alternatively you can use the short cut key sequence of Function Z from any other menu.

Ference Time

+gl:gg !£ii|
-8IIII I!ill

Press E to edit zone and oFFset Press to select os current time zone PressCentral hurope New York Los Angeles Tokyo Sydney

arrow keys to rpove
ress Stop to exit

+09:00 20:43
+10100 21:43

BST or GMT

You ought to be aware that all the time differences set on Notepad are based on London
being at GMT (Greenwich Mean Time). This is fine for half the year but what should
you do when we are on BST (British Summer Time) that is one hour ahead of GMT?

There is no easy answer except to be aware of the differences. Other countries may have
summer and winter times as well that may change on different dates.

Changing the Place Name

The default setting for place name is ‘London’. We’re not in London. We are at the
publisher’s address in Pangboume. Let’s change this setting; why should London have
all the glory?

If the time where you are is the same as London, then just change the place name from
London to where you are. To change this, do the following.

The cursor should be already over London. Press the E key (to edit zone and offset). The
rest of that area should turn grey.

Do you remember about grey areas? That is right, you can type in them.

Pressing the STOP key deletes London and leaves you to type where you are. In our case
we’ll type “Pangboume - Vic.” You can use the Del keys and the cursor keys to correct

24

Chapter 2 The Programs and Their Controls

any mistakes you make. When you are happy with your entry, press the ENTER key to
return you back to the Time Manager Menu.

Now you can press the STOP key again several times until you are back at the Main
Menu and there, on the Information Bar, is your new entry. No longer London, it is the
place where YOU live.

Changing the Time Zone

If you are in New York’s time zone for example, then you should first let Notepad know
which time zone you are in before changing the place name. Let’s pretend that you are in
Boston to illustrate how this is done.

Select the Time Manager Menu, then move the cursor down to New York with the Cursor
Down key. Then press the ENTER key (to select it as the current time zone).

You should now see that all the time differences will have been recalculated to what they
should be from New York. Both the place and time shown on the Information Bar will
have changed to the new setting.

To change the place setting from ‘New York’ to ‘Boston’, follow the instructions above
‘Changing the Place Name’.

TIP - Are You Still at the Right Time?

When you initially set the Clock your Notepad assumes that you are in London. If
you are in a different Time Zone, New York for example, you should select that time
zone area and then set the Clock to the correct time.

Changing the Time difference

All that remains now is how to change the time difference. You would only need to
change this if you wanted to be able to select somewhere that wasn’t already listed.

Let’s change Tokyo at +09:00 difference to Afghanistan for example.

Getting out the telephone directory we discover that the time in Afghanistan is four and a
half hours ahead of GMT.

Assuming that you are in a GMT area, check the Place name on the Information Bar,
move the cursor over Tokyo.

Change the Place Name (as we did earlier) only this time since the time difference is

25

Chapter 2 The Programs and Their Commands

displayed on the same line, pressing the ENTER key moves the cursor over to the Time
Difference number. No grey areas are shown this time. You use the cursor keys to
change the time difference in increments of half an hour.

In our example, this should be set to +04:30.

Well that is the Time Manager out of the way. To leave this (or any other program come
to that), press the STOP key to Exit.

The CALENDAR/DIARY (Function C)
The calendar and diary program run from 1st January 1920 to the 31st of December 2099.
You can make diary entries within that period

To use the CALENDAR/DIARY Menu from the Main Menu you press the Function and
Cursor Down keys together which will select the Diary Menu and then the Cursor Right
key.

Alternatively you can use the short cut key sequence of Function C from any other menu.

o diary entry seleot
ng the *«t+4 keys and

Tine Zone :
London

To r*ake
date
press

usingIon Tue un
2 3 4 5 6 7 ^

i! 1? U ii^it i§
Friday

20 Nov 1992
1991
t

♦ DeoemberOotober ♦:HH ssI I 2 24 25 26 28 29 4I t 30 1993

The Calendar does not need much explaining because you will find all the help you need
on the screen. Every day has a separate document where you can put in your diary
entries.

Your Notepad will always start you in the Diary on today’s date. To select a page in your
diary, move the cursor over the date you want and press the ENTER key.

Making an entry in the diary does two things

1 It marks the calendar on that date with a ***, to show you that you have
something on

2 When you have a diary entry for today, the Main Menu displays a message on
the information bar and the Notepad makes a beeping noise. Pressing the ENTER
key will show the correct diary page with your entry. You can choose whether to
keep the entry or delete it when you leave the diary with the STOP key.

26

Chapter 2 The Programs and Their Controls

TIP - The Calendar Moves in Mysterious Ways

When moving the cursor around the calendar, be careful when you move it towards
the edge. Moving the cursor off the right of the list of dates changes the calendar to
the next month. Moving the cursor off the left of the list of dates changes the
calendar to the previous month. You will soon find yourself (like we did) on a day
that you didn’t want to be on. Take care, watch the cursor and double check the
date before going into your diary.

TIP - You Can Miss Your Diary Dates

Although your Notepad will remind you when you have a diary entry, this only
works if you turn Notepad on during the same day AND you use the Main Menu. It
will not remind you if you missed an appointment for yesterday. This can happen if
you don’t turn your Notepad on during the day.

If you want to make sure that you know about your diary entries, you need to do
two things.

X Set an Alarm call every day in the morning. That would make sure that the
Notepad gets turned on.

2 In the System Settings Menu check that you have the ‘Preserve context during
power off5 set to ‘No’. That will ensure that the Main Menu will be displayed when
you first turn the Notepad on which should enable you to see your diary message.

Deleting a Diary Date

Normally, the Notepad deletes your diary dates after you have viewed them. This
releases more memory for you to use elsewhere.

To delete other dates in your diary, move the cursor over the date on your calendar and
press either of the Del keys. You then need to press ‘Y’ to confirm that you wish to
remove that diary entry or STOP to exit.

What You Can’t do in Diary

There are three things that you can’t do with your diary.

1 Print it.
2 Move appointments from one day to another.

27

Chapter 2 The Programs and Their Commands

3 Make multiple entries, like birthdays, monthly subscriptions or even daily
events, other than by retyping the entry into every day on which you want it

One topic we will be covering later is making Macro’s. No, this is not a strong Mexican
lunch, but a way of storing text that can be recalled using two keys together. You can use
Macro’s to make multiple entries in your diary. Be patient; we will get there eventually.

After you found your way around the Word Processor, you can use some commands
available there (displayed on the template) in the diary as well.

28

Chapter 3

Address Book (Function D)
You can use the address book to store your names, addresses, telephone numbers and
even fax numbers.

There are several useful features. These include:

Finding a name or place, when you know who you are looking for
Browsing, when you’ve forgotten
Changing the entry when they’ve moved or got married
Transferring the address to the Word Processor

To get to the Address Book Menu from the Main Menu press the Function and Cursor
Down keys together (to select the Diary Menu) followed by the Cursor Left key.

Alternatively you can use the short cut key sequence Function D from any other menu.

r»e
Address Rdd/Edit address

Press t* to move
Press Stop to exitTe leptxjne

Fax

The Address Book is easy to work with since a menu of its commands is displayed with
the addresses. There are two ways of selecting the commands. The first way is to move
the cursor over the command you want and then to select it with the ENTER key. The
other way is just to press the letter shown in brackets alongside the command.

Let’s just go through all the commands

Add New Address

Use this command to add new addresses to the list Keep the address format constant
That is, don’t allow the address to go into the Telephone or Fax sections. This allows you
to use the contents of the address book to mailmerge later.

A good address to add in first is your own. You can use this later to make up your
‘Headed Notepaper’.

29

Chapter 3

Edit Address
This command is just like the Add Address command except it uses the address you’ve
already selected.

nwmraai

fsi'phooe i

naiie
Rddr*Si fldd/Edit address

Press tl to move
Press Stop to exitIII

Find Address

Find will find anything that you ask it for within the name, address and phone number.
The best way to use Find is to ask for part of the word you are looking for. For example
if you wanted to find ‘Fred Smith’ and you thought he was either at Southend or
Southampton, rather than finding ‘Smith’ you would probably find him more quickly by
searching for ‘South’. That would find all the names and addresses with ‘South’ in them.

Delete Address

Fallen out with anybody yet? This gets rid of them and releases memory.

Browse

Use the left and right cursor keys to browse through all the addresses (in the order that
you entered them).

Transfer

There is an additional function called Transfer that we are just going to touch on here. It
will only appear on the menu if you have a word processing document open
simultaneously. We will cover this feature when we get to word processing.

30

Chapter 4

The Calculator
Your Notepad has a simple calculator that is immediately available from anywhere within
the Notepad system. You can get to the calculator from the main menu by following the
instructions on the screen, but you can go directly to it by pressing the Function and Tight
Cursor keys together.

Whenever you are in the calculator there are few keys that will ‘do’ anything. The most
important is the one labelled STOP that will always take you back to the main menu. The
only other keys that are active are the ones with the green characters printed on them, the
ENTER key and the <-DEL key. The ENTER does the same job as the key labelled *=’
in green.

The keys behave slightly differently then you may be used to in the rest of the Notepad
system. Everywhere else the keys ‘auto-repeat’. This means that if you hold down a key
for more than half a second the key will repeat for you automatically. However this is not
so in the Calculator.

The calculator has a memory feature that is able to store one a number at a time. You can
add or subtract from this number and leave the result in memory.

The calculator can also maintain a constant for use in a sequence of different calculations.
Whenever there is a constant being maintained the letter ‘K’ appears on the far left of the
screen. You can clear the constant by pressing the CE/C key twice.

What the keys do
0 to 9 Enters the appropriate digit into the calculator

Enters a decimal point into the number being typed in

Causes the calculator to perform a calculation and put the result on the screen.
The ‘ENTER’ key performs the same function.

<-DEL Removes the last digit from the number currently displayed.

CE/C When you press this key once it ‘Cancels the last ‘E’ntry you typed in. If you
are part way through a calculation pressing the key once only removes the last
number entered. The previous parts of the calculation are left intact When a
constant is being maintained the display is cleared ready for the start of the next

31

Chapter 4

calculation using the constant

When you press this key twice it ‘Cancels the whole calculation and cancels a
constant if one was being maintained.

The normal arithmetic operators divide, multiply, add and subtract

Changes the sign of the number currently displayed

+ x + -

+/-

Allow the calculation of a percentage.%

Calculates the square root of the number currently displayed. This operation
can sometimes take a few seconds to complete.

{

MRC ‘M’emory ‘R’e'C’all displays whatever is currently in the calculator memory.

Takes the currently displayed number away from whatever is in the memory and
stores the result back in the memory.

M-

M+ Adds the currently displayed number to whatever is in the memory and stores
the result back in the memory.

The calculator is able to show up to twelve digits at a time. If the number is negative, a
‘minus’ sign appears at the far left of the screen. If you have tried to do a calculation that
exceeds the maximum range of the calculator a flashing ‘E’ symbol will appear at the top
left of the screen. The error symbol will only be removed when you press the CE/C key.

Before you use the memory you need to clear it. This can be done by either pressing the
MRC key twice followed by the CE/C key or by pressing the MRC key followed by the
M- key. Either route will result in the number ‘0’ being stored in memory.

Using the Calculator
The calculator works in a similar manner to most simple pocket calculators. In the
following examples we have listed a variety of calculations using standard mathematical
notation. Against each example we have shown the keys that you need to press and the
sequence in which to press them to evaluate the calculation.

Example Key sequence Answer

27x4+15 27 x 4 + 15 = 123

32

Chapter 4

12-K-3) 12 + 3+/- = -4

Using a Constant Value

The calculator can save the value of one constant. This is a number that you wish to use
in several different calculations. So for example if you wanted to multiply 154 by 73,
427 by 73 and 991 by 73 as three separate calculations you could save the number 73 as a
constant and only have to enter it once. As you will see in the examples below the
number to be used as a constant always has to be entered first, even when it logically
comes second in the calculation.

Example Key sequence Answer

154x73 73 x x 154 = 11242
(pressing x twice saves 73 as a constant)

31171
72343

427x73
991x73

CE/C 427 =
CE/C 991 =

12.36v 1.8 1.8 vv 12.36 =
(note that the constant was entered first)
CE/C 8.94 =
CE/C 6.28 =

6.866

8.94+1.8
6.28+1.8

4.966
3.488

Using the Calculators Memory
The memory is a more powerful feature than the constant. The calculator allows you to
add or subtract values to or from the number held in memory. The result of the
calculation is always re-stored in memory as well as being displayed on the screen.

AnswerExample Key sequence

0.1461.8vl2.36 MRC MRC 1.8 M+v 12.36 =
(save 1.8 in memory to use in next sum)

MRC v 8.94 =
MRC v 6.28 =

0.2011.8v8.94
0.2871.8v6.28

Percentages
120.29523x23%23% of 523

643.29523 +23 %23% increase on 523

33

Chapter 4

402.7123% decrease from 523 523 - 23 %

16.4245 + 274%45 as a %age of 274

Square roots

square root of 47.8 47.8 V 6.91

square root of
47.8-16.3 47.8- 16.3 = V 5.61

(14x8)-(72+4.3) MRC MRC 14 x 8 M+
72 +4.3 M- 95.256

The Notepad calculator does not include a facility for converting measurements between
the Metric and Imperial systems. We have included the following table of constants to
provide a quick way of doing the conversions if you need to.

In each case, if you want to convert from a metric measurement to an imperial one you
multiply your metric measurement by the constant in the first column of numbers.
Multiplying by the constant in the second column will convert an imperial measure to its
metric equivalent

Conversion req’d Metric to Imp Imp to Metric

kilometres, miles
metres, yards
centimetres, inches
hectares, acres
kilograms, pounds
grams, ounces
litres, gallons

0.6214
1.0936
0.3937

1.609
0.9144
2.54

2.471 0.4047
0.45362.2046

0.03215 28.35
0.22 4.545

34

Chapter 5

Word Processing

Introduction
Why Use a Word Processor?
Unlike when you use a typewriter or a pen, what you write on a word processor need not
be the final version on paper. This has several advantages because it means that you can
alter anything, from one word to the order of the paragraphs, without having to write
everything again.

For example, you could use it to list the things you wanted to cover in a letter. If you
then changed your mind, you could move things around in the list to wherever you
wanted them to be. This would save writing all over the list, drawing arrows to show
where you wanted everything moved to and then rewriting the whole thing again.

If you wanted to add more things into the list or expand on things that were already there,
that would be easy too. You could just type in the additional things creating extra lines in
the list as necessary. You could even type your letter around the list that you have made.

As your document gets larger, you can leave markers in it. These allow you to return to a
particular point in your document whenever you want to. Although, if you use all ten of
the markers available you may have a problem remembering what you used them all for.

It is easy to make changes to your document, since nothing is fixed until you print it
Even after you have printed it, you can still change it in your Notepad and then print it
again, always providing that you have not deleted the document from your Notepad in the
meantime.

When you have finished writing, leaving the word processor automatically saves what
you have typed into a document. You can then print it out or return to it later and make
some more changes. Word Processors are particularly good at working with documents
that have similarities in common. Letters, for example, have lots of features in commoa
Any letter you send out is likely to have your address, 'Yours sincerely’ and your name in
a format that remains the same every time. These similarities can be stored in a‘master’
document. Whenever you want to start a new letter you can copy your4master’ into your
new document. You don’t have to retype them every time. You can take it further than
that if you send out the same type of letter todifferent people. You can store the whole
letter in a document and just add the appropriate name and address as you need them.

35

Chapter 5 Word Processing

There is even a way of asking your Notepad to add the names and addresses
automatically as you will see later.

The icing on the cake for word processor users is a Spell Checker. No, this is not
something that will check what you have put in your magic potions. A spell checker will
check the spelling of all the words in your document against those stored in its dictionary.
It won’t find all your mistakes because if it fmds the word in the dictionary it will pass it
whether it is the right word or not If you meant to say‘it’ but you had actually typed
in‘to\ the spell checker would not consider that a mistake.

If you have not used a word processor before, then the best way to get to know how to
use it is to use it Just type anything in you like and try out the commands that we will be
describing. After all, you don’t even have to try to find a piece of paper to write on do
you? How about the weekly shopping list or the note to the newsagent or milkman? You
will soon discover how you can save time by re-using documents that you only need to
change slightly.

To use your shopping list as an example, you probably need to buy some items every
week. You might find that every week you need at least two bags of sugar. Great, you
won’t need to write that out every week. You could list the regular items and just change
the quantities as appropriate.

You may be one of those clever people who like to organise their list so that everything
appears in the order that you pick them off the shelves. If so, do supermarket managers
seem to like to make your life difficult by changing everything around? They won’t be
able to sustain the confusion for anywhere near so long with you from now on. You can
change your list to the new layout very easily. You could even take your Notepad
shopping and change the list as you go round the shop. That way you won’t even need to
print out your shopping list

Much More Than a Typewriter
In most respects a word processor behaves in the same way as a typewriter. When you
press a key on the keyboard the character for that key is printed on the screen. The
character is always printed where the cursor is. The cursor is the black flashing rectangle
that starts at the top left of the screen when you first enter a new document.

At the simplest level the only difference between a word processor and a typewriter is
that a word processor allows you to change what you have typed as often as you wish,
quickly and easily, without the need to resort to the Tippex.

In practice there are many more differences, mainly to do with the extra things that a

36

Chapter 5 Word Processing

word processor can do for you to make entering text quicker and easier.

Here are a few of the differences between a typewriter and the Notepad’s word processor.

The ENTER Key

When typing text you only use the Enter key at the end of paragraphs, in which case you
have to press it twice to leave a blank line. While you are working on a paragraph the
word processor will sort out when to move the cursor down to the next line for you.

Definition - Word Wrap

Word processors can decide when to start a new line in a paragraph. This function
is called‘Word Wrap’. This means that you don’t need to worry about the length of
the lines at all. Just type a paragraph as if it is one huge long line, leaving two
spaces between sentences. The word processor will sort it all out for you.

Unless you are typing something that you want to control where a new line starts,
leave word wrap turned on.

Use Tabs to Line Up Your Text

If you want to include columns of information or to indent a section of text within a
document, you could line up the words by pressing the space bar until the cursor was in
the correct position. This scheme would work fme while the document is on the screen
but may not look so good once it was printed. However, by setting a tap stop to where
you wanted the text to start and then pressing the Tab key to move the cursor there, you
could guarantee that the printed copy will be aligned correctly.

Definition - Insert or Overtype

There are two modes in which you can use the word processor. Normally it starts in
Insert mode. Insert mode means that when you add more text into the middle of a
line or paragraph the text in front of the cursor moves along letting the additional
text that you are typing into the gap that has opened up.

For example, if you type4A black cat’ but then you decide it should be4A fat lazy
black cat*, all you need to do is to move the cursor to the space between4A*
and4black’ and type4fat lazy’ and a space. You will then have the desired effect.

In Overtype mode, the character you type replaces the one where the cursor is. So
in Overtype mode if you started with4A black cat’ and tried to change it to4A fat

37

Chapter 5 Word Processing

black cat’, you would end up with'A fatck cat’.

Tab and ENTER keys
You will find that you frequently use these two keys. There are two ways that these can
work.

If you are in insert mode pressing the tab key will insert a tab character and move any text
on the right of the cursor to the next tab stop. The ENTER key will insert a carriage
return and move any text on the right of the cursor onto the next line.

When you are in overtype mode pressing the tab key will move the cursor to the next tab
stop but leave your text untouched. The ENTER key will move the cursor to the start of
the next line, again leaving your text untouched.

Shift Enter and Shift Tab

Pressing the Shift key with either the Tab or ENTER keys reverses the way they work.

If you are in insert mode, both behave as though you were in overtype mode.

If you are in overtype mode, both behave as though you were in insert mode.

Your First Letter
Turn your Notepad on and press the Function and N keys together to start a new
document. Type in a name for your first letter -‘thankyou’ - and press the ENTER key.
Now you are in the word processor ready to start typing into your new document.

Dear Aunty Tawny

Thank you for my Christmas present. I really needed the bat’s wing potion. I hope you
are right because I really do want a hairy chest. I’ll rub it in every night but I do wish you
could do something about the smell.

Hope to see you before Easter.

Love

Vic

38

Chapter 5 Word Processing

Now press the STOP key. This will leave the word processor and save your document for
you. You can go back to it at any time by pressing Function L, choosing the document
from the list displayed and then pressing the ENTER key.

Printing Your First Letter

Now that you have typed a document into your Notepad, you will probably want to print
it out. This section is designed to get you going. If you run into trouble you will need to
read The Printing section for more details on how to get your printer working.

1 Connect a cable between your Notepad and printer. You should have either a
serial or parallel printer cable, depending on which your printer needs.

2 Select the Print document Menu with Function and P.

3 Select the Printer menu with the Menu key.

4 Press the Up Cursor key to select the Printer Configuration Menu.

5 Change the Printer setting to the type of printer you have, if you are not sure,
leave it set to*simple’ for now.

6 Change the Printer Port to Serial if the connection to your printer is with a
serial cable.

7 Leave the Menu with the STOP key.

8 Switch on the printer, make sure that the paper is ready and the on-line light is
ON.

9 Move the cursor over ‘Thank you‘ and press the ENTER key.

Your printer should now be printing out the letter.

If you get the message -‘Plug in or switch on the printer and press ENTER or press STOP
to cancel...’ the printer is not working. Do as it says and if nothing appears to be wrong,
go to the Printing section later.

Your First Printout

Once the document has been printed, providing you have got your printer to work, you
will see how it has been laid out by the word processor. The word processor has a set of

39

Chapter 5 Word Processing

default settings for controlling the layout of documents. You do not have to change these
settings. However, as you get to know the word processor in more depth, you will find
that you may want to alter some settings and*customise’ what your documents look. like.

Telling the Word Processor What to do
The name of the word processor in the Notepad is Protext. You need to tell Protext what
to do by entering commands. You can enter commands in several different ways.

The menu screen lists some commands; the template lists some more. There are a range
of commands not listed anywhere and there are some commands that can be included
within your text In fact some commands can be used in two or three different ways.

Commands do a multitude of different things. Some commands move the cursor around
the document much quicker than the Cursor keys. These allow you to type text into
different places. There are commands to copy or move sections of text from one place to
another and there are commands to control how your document will look when it is
printed.

We will be covering the commands in groups that do similar jobs. So for example we
will include all the commands concerned with controlling the look of your printed
document in one section.

This approach has one main advantage and one possible disadvantage. The advantage is
that it will make finding a command to do a specific job straightforward. You will
always know where to look when you need help. The possible disadvantage is that of
necessity we will be describing some complicated commands early on. However, if you
remember that you don’t have to learn everything immediately, we are sure that this
approach will help you in the long term.

First we need to cover how to get to the different commands.

Using Menus
A menu is just a list of possible choices. The choice may offer a direct action, for
example‘tum word wrap on/offi, or it may lead to another sub-menu with a further set of
possible choices.

A menu choice can frequently be made directly by pressing a special key combination.
So instead of entering a menu, and then possibly a sub-menu, and choosing what to do,
you can press two or three keys together to make your choice from within your document
If you wanted to know how many words there were in your document, you would press

40

Chapter 5 Word Processing

Function and the‘=’ key both together.

If you wanted to clear any markers you have placed in your text you have a choice how
you do it. You can either:

go into the word processor menu, select4editing commands’ and then select‘clear
markers’ or press Control and K.

If you Find yourself in a menu by mistake, pressing the STOP key will return you to
wherever you were in your document.

There are three menus that you will use frequently. We will quickly cover these and
explain the types of choices that you can make using them. You will Find the detailed
description in the relevant sections later in this book. We will explain any unfamiliar
terms as we come across them.

The Word Processor Menu

To get to the word processor menu you press the Menu key.

M - Macro record stort/end
□ - Display rta
C - Copy block

I : fciRt IfolS
T * Text Formatting .,.
H - Create Header F - Create Footer

cros
or docunent
reen

The editing commands cover selecting a character, moving around your document, some
block operations, the user dictionary, inserting the date and inserting the time.

The style commands allow you to change the way the characters in your document will be
printed.

The text formatting commands insert ruler lines into your text, insert special characters
and markers and format paragraphs.

The Word Processor menu also allows you to create headers and footers, handle Macros,
copy or print a block of text and print your document to the screen.

The Configure Menu

To get to the ConFigure menu press Function and 3. This is shown on the template
underneath the screen.

41

Chapter 5 Word Processing

Overtype or to change* T to move, Sr«p to Finish (On) 0r|(On)Word urop Right JustiFy Deoimal character Key repeat startup delay ((08th secs) Key repeat period (100tn secs)Cursor Flash period (100th secs)

On))
(50)
(5)
(50)

The Configure menu tells Protext how you want it to behave. You can change things like
insert or overtype mode, how fast the keys should repeat if you hold them down and
whether you want special characters displayed on the screen. There are more choices
within the menu than will fit on the screen in one go. As you move the cursor down from
the last choice on page one, page two will be displayed

These settings have default values that Protext will use if you don’t tell it otherwise. You
don’t have to change any of them. These values are used for all the documents that you
work on. So if you change a value in this screen when typing in one document, all
documents will have the new settings.

The Layout Menu

To get to the Layout menu you press Function and 7. This is shown on the template
underneath the screen.

Qv|r^ype or *♦ to change*
Topjiargfn C11nest (3)
Header rrwrgIn CI irtes)
Footer nxargin (lines)
Bottom margin (lines)
Side margin (chars)
Line spacIng (11nes)

to move, Sto Finishfete
(2)
(2)

111
(I)

This menu allows you to tell Protext how you want your document to be printed. It
controls things like the number of lines on a page or how many blank lines to leave at the
top of a new page.

As with the configure menu, these settings have default values that Protext will use unless
you change them However, the settings in the layout menu are saved with your
document. This means that changing these settings will affect your current document and
any new documents that you start, but will not affect any existing documents already on
your Notepad

The Nowhere Commands

There are several commands that don’t appear on the Template or any of the menus.
Don’t panic. Just keep this book by your side. You will quickly pick up the commands

42

Chapter 5 Word Processing

that you use frequently. The ones you only use occasionally you will probably have to
look up when you need them.

Command Lines
All commands to alter the settings of the word processor haveV as the first character on
the line. This tells Protext that it should not print the line but action the command
instead.

The characters in the command can usually be in either UPPER or lower case. It is
generally a good idea to stay in UPPER case since this makes the commands obvious
when you are reading your document on the screen.

You will not always see the effect of the commands immediately. Some commands are
only actioned on the next new page and some only come to life during printing. As we
describe each command we will tell you when it comes into effect.

TIP - Lines Missing in your Printed Document?

If you have lines of text missing from your printout, check on your Notepad to see if
you have any‘>’ characters at the beginning of a line. If so delete them, the line
should then be printed.

TIP - Don’t UseV Characters in Word Processing Documents

The beauty of word processing is that you can make as many changes as you like to
a document. To accommodate these changes Protext is reformatting your document
(repositioning all the words) as you go. This means that you cannot guarantee
where any character will be in the final version of the document. If you use the
character ‘>‘ you could Find it working its way to the beginning of the line. There
would then be a line missing in the printed copy of your document. So it is probably
better not to use theV character.

Now that we have told you how to make a command work, let’s start working through the
groups of commands and describing them in detail.

There is usually more than one way to access each command. When this is the case we
command andwill give you the quickest route. Generally one route will be via a menu

thus you won’t have to remember how to get to it. The second route will be faster, a
special key combination that you will need to learn.

43

Chapter 5 Word Processing

What is a Ruler Line?
A Ruler line allows you to change the settings for your margins and tab stops at any point
in your document.

Turning the Ruler line ON (Control V R)

Normally, the current ruler line is hidden from view to prevent using one of those seven
valuable lines on the screen. If you are changing rulers often, it can be helpful to display
the current ruler line to remind yourself which one you are using.

There is a short cut key sequence of Control V and R, to4Show ruler*. This is a toggle
function. If the ruler line is hidden, Control V R will show it. If it is already on view.
Control V R will hide it.

The Default Ruler Line (Control D)
This command will copy the default ruler line into your text. You can then change the
ruler line to suit the layout you want for this document.

When you enter the Word Processor to start a new document. Protext uses the default
ruler line. It determines where the Left Margin and Right Margins are and includes three
preset tab stops.

The default ruler line is:

R>

If the first line in your document is your own ruler line, Protext will use this as the default
mler line.

Creating a Ruler Line

The Ruler line is formed from a set of different characters. The position and number of
these characters can be changed to give a different layout.

These characters are;

V which tells Protext that this line is a command line; it is not part of the text.

-* which fills all the spaces between any other characters in the line.

44

Chapter 5 Word Processing

T which shows where a Tab stop will be

‘L’ which shows the left margin mark. It is only used when your text does
not start from the first column on the left-hand side.

‘ R’ which is a right align mark for the line.

V which aligns the decimal points in a column of numbers.

You can create a ruler line by typing in the different characters, or you can modify a ruler
line that you have already.

Suppose we wanted to enter a document that was only forty characters wide instead of the
normal seventy characters.

By pressing Control D the default ruler line would be copied into our document.

R>

Then we just have to modify it by moving the cursor onto the line and deleting characters
until it looks like this:

R>

Any text typed in after our new ruler line would be limited to forty characters on each
line.

TIP On Ruler Lines

Although it does not matter whether you use UPPER or lower case, don’t use the
lower case‘1’. It looks very similar to the‘!’ and you will get confused.

The*!’ shows where a tab stop is placed. Any text written below the ruler line will use
these tab stops. Each time you press the Tab key Pro text will insert a tab character into
your text and move the cursor to the next tab stop. Tab characters are not normally
visible but you can see their effect and you can delete them just as you would a visible
character.

45

Chapter 5 Word Processing

Indenting Text With the Ruler line
Suppose you wanted to print a set of terms and conditions using your Notepad. The
general layout would need to look something like this:

1.1 You will pay the bearer when he asks for payment, blah blah blah and even more
text in the hope that the reader doesn’t bother to look at it any more.

1.2 And notwithstanding even more long words, hereby, and we wouldn’t mind going
to Scotland one day.

Paragraph numbers start at the far left of the page but all the text is aligned to seven
characters in from the left edge. The following mler line would indent the text for you.

R>

After you have entered the new ruler line, the cursor will be positioned at the left of the
screen. This is where you would type the paragraph numbers in our example. When you
press the Tab key the cursor will jump to line up with the‘L’ in the ruler line. This is
where you type in the paragraph text. As you type, Protext will automatically line up the
left edge of the paragraph for you underneath the‘L\

When you have finished one paragraph and you want to enter the next paragraph number,
use the cursor keys to move the cursor back over to the left of the screen and the process
starts again. A quick way of doing this is with the Control and Left Cursor keys together.

You can change the ruler line at any point in your document simply by creating a new
one.

Only text below a ruler line is affected by it Any text above a ruler line will be affected
by the previous one.

Copying the Previous Ruler (Control R)
We don’t like typing, so any quick way of getting something to save time is going to get
our wholehearted approval. Rather than typing in a ruler line we’ll copy the previous
ruler line into our document and then modify it As we have seen above, we can copy the
default ruler line into our text by pressing Control D. The key combination Control R
will copy the previous mler line into our text. The first time it is used this will be the
default ruler line, since we haven’t yet changed it. But, once you start adding your own
mler lines in. Control R will give you your previous line.

46

Chapter 5 Word Processing

The Status Bar (Function 8 or Control VI)
The Status Bar in Protext normally shows you the document name followed by the page
that you are on. After that there is a long message'Press Stop to finish or print’ and the
time. By now you would probably know that the STOP key is the way out We could
replace that message with more useful information to help us with the page layout

This command will add the following information to the status bar -

The cursor position: page number, line and column numbers
Whether insert is turned on or off
Whether text is right justified or not (RJ shown if on)
Whether word wrap is turned on or not (WW shown if on)
The time
Whether the caps lock is on or not (C shown if caps lock on)

The command operates as a toggle. If the status bar is off and the‘Press Stop...’ message
is shown. Function 8 will turn the status bar on. Pressing Function 8 again will turn it off.

Where You Are in The Document
At any one time you can only see seven lines of your document. This is a little
inconvenient but you can keep track of where you are by reference to the page, line and
column numbers shown on the Status bar.

By default a standard page in Protext has 66 lines that are 70 characters wide. Each
character on a line occupies one column. If the Status bar tells you that the cursor is on
page 1, line 17 and column 34, the next character that you type will appear as the thirty-
fourth character on the seventeenth line of the first page. All pretty sensible really.

Generally it is of little interest where you are on any particular page but it can become
important in some circumstances.

Suppose you wanted to include a table of values in your document. You may not want
the table split between two pages. To check if you have enough space to include the table
on the current page you would need to know the current line number.

Having typed in your table and several pages of text after it, you may want to go back to
the table. You could just keep moving the cursor up your document until you got there,
but if you knew what page the table was on, you could tell Protext to go straight there.

47

Chapter 5 Word Processing

Insert on/off (Control 4 or Control Tab)
The Status Bar will tell you whether insert is on or off. You can change the setting of
insert by pressing Control 4. It acts as a toggle switch - press once for on, press again for
off.

Whether Insert is on or not determines whether the next character you type is inserted into
the current line or whether it just overtypes what was there before.

Right Justify (Control J)
If Right Justify is turned on the Status Bar will include the letters* RJ’ about three-quarters
of the way along. Right Justify is another toggle switch available from the configure
menu.

Definition - Right Justify and soft spaces

Right Justify means that all the lines on the page are made the same length.
Normally, when you type a page with a typewriter, the lines will be different lengths
and the right-hand edge will be uneven.

Protext adds‘soft spaces’ between words in the line so that the right-hand edge of
the text is straightened up, like the left-hand edge normally is.

Soft spaces are temporary spaces that Protext uses to pad out the line. Because they
are temporary Protext can add them in or take them out as you edit the line.

Word Wrap (Control W)

If Word Wrap is turned on* WW* will appear on the Status Bar three-quarters of the way
along.

Word Wrap is also a toggle switch.

TIP Typing a Long Line Unintentionally

Turning Word Wrap off will allow you to type your document in one very long line.
If you find you are doing this unintentionally, turn Word Wrap on.

48

Chapter 5 Word Processing

The Time
This should be showing the right time. If it is wrong, you’d better set the clock again.

Cap Lock On
A capital C will be shown at the end of the Status bar if the Caps Lock is oa

49

Chapter 6

Your Second Letter
Let’s write another letter and get to know some more of the commands on the way. The
first thing that would be useful would be a letterhead with your name and address on it
Once we have done that you can use it on future letters as well.

Opening a New Document (Function N)
To select a new document from the Main Menu you first press the Function and Left
Cursor keys to select the word processor menu and then the Left Cursor key again.

Alternatively you can use the short cut key sequence of Function N from anywhere in the
Notepad.

Choosing a Name

What’s in a name? You must give all your documents a name so that you can find them
again later. It needs to be a name that will mean something to you not only now but when
you want to return to the document in six months time. You can have a name of up to
twelve letters, including spaces, on the Notepad.

PC Compatible Document Names

Other computers have taken the PC standard for document names. They, and the
equipment that works with them, can only cope with names that are eight characters long.
No spaces can be included but you can separate words with the underline character. PC
compatible names can have an‘extension’ on the end. This is an additional three
characters separated from the name by a full stop. ‘MANE. 123’ would be a perfectly
acceptable filename.

A name that meets the standard requirements would in fact be twelve characters long
(eight for the name, one for the full stop and three for the extension) which fits in nicely
with your Notepad If you are likely to ever want to transfer your documents to another
computer, or to a disk drive, it may be a good idea to restrict yourself to document names
that are eight characters long. You can always use an extension on the end to tell you
what sort of document it is. You could useMtr* for letters or‘.rpt’ for reports for example.

If you don’t worry about the PC standard now, you may well live to regret it. If in the
future you do get a desktop computer, the only way you could put your Notepad

50

Chapter 6 Your Second Letter

documents onto it would be to labouriously change all the names by hand.

To give you some examples of Notepad and PC compatible names; a document
called*Labyrinth’ would be valid on the Notepad but not on another computer, while a
document called‘Maze’ would be valid on any PC compatible computer as well as the
Notepad.

Other Things You Can Do to a Document Name

You can use numbers in document names on PC’s and your Notepad. You could add
numbers to the document name to show different versions of your text

If you want to use a name that is too long, removing the vowels (aeiou) can help you
shorten it. The name will still be understandable even like that. Always remember,
however, that the important thing is that you understand the name.

Your Letterhead

Since we are going to create a letterhead that we can use for all our future letters, we’re
going to call this document*letterhd.doc.’ Type that in after the* Please type a name for
the new document’ and press the ENTER key.

The first thing we need in a letterhead is our address. We typed that information into the
Address Book so we don’t need to enter it again - the Notepad can transfer it into our
document for us.

TIP Put Something in a New Document, or it Will Disappear

When you first create a new document it is empty. If you leave it and go somewhere
else in the Notepad there is nothing for Protext to save for you. Although you have
given it a name, your new document doesn’t exist If you want to be able to come
back to the document again and don’t just want to abandon it, you must put
something into it

Pressing the Space bar once is enough to tell Protext that we really do want this
document

Transfering an Address into a Document
From your new document you can select the Address Book by pressing the Function and
D keys. Select the address that you want using the Browse or Find commands. If you

51

Chapter 6 Your Second Letter

cannot find your address, use the Add command and type it in. When you have your
address on the screen, select the Transfer command from the Address Book menu and
your address will be transferred back into your new document in Protext starting at the
point where your cursor was. If you press the space you will need to remove the spare
space.

Moving The Address to the Right

Normally an address contained in a letterhead appears on the right-hand side of the paper.
You can use a Ruler Line to move your address over.

Ruler Lines need to go immediately above the text you want to realign. First you need to
move the cursor above the address which is where the Ruler Line needs to go. You move
the cursor there with the Cursor keys. Once the cursor is there, press Control D to put the
default Ruler Line into the document

R!-!->

It might be helpful to turn the Status Bar on by pressing Function and 8 so that we can see
where we are on the line You will also need to turn Insert off by pressing Control and 4
so that we can overtype what is already there.

Use the cursor keys to move the cursor to column 42 on the Ruler Line(the Status Bar
will tell you when you are there) and then type‘L\

•U R

Then overtype all the characters between theV symbol at the beginning of the line and
the left of the‘L\ with spaces.

You should now have a line that looks like this.

Lr R>

Now turn Insert back on again before you forget it with the Control and 4 keys.

To actually move your address to the right-hand side, move the cursor down to the first
line of your address and press the Control and F keys together. This formats the line
according to our new ruler. You will see the fust line of the address move over to start
underneath the‘L\

Press the Control and Left Cursor keys together to move the cursor to the start of the
second line of your address and repeat the above process.

52

Chapter 6 Your Second Letter

You should repeat this key sequence until the whole address is on the right-hand edge of
the page. If you want it further over to the right or left, change the Ruler Line above the
address and then reformat it again.

At the bottom of the address, you ought to put back a default ruler line, so that anything
you type below the address will start back in column 1. You can get this by putting the
cursor at the bottom and using the Control D command. Hey presto, there is a new ruler
line.

Making Your Master Copy

You don’t want to do this all again when you type another letter do you? Let’s save this
document, which is done automatically when you leave ProtexL

Using Your Master

Now let’s load our letterhead into another document. Sstart another new document
(Function N) and call it4testl.ltr’. We can now insert the other document into this one.

Insert Document (Function 2, select document, I)
This command allows you to insert one document into another. We are going to use it to
insert our letterhead into the new document4testl.ltr’.

Press the Function and 2 keys together and you will be presented with a list of the names
of other documents stored in your Notepad. Move the cursor to the name of the
document with your letterhead in,‘Ietterhd.doc’, and press the Menu key.

You will be presented with a menu of commands titled4Document operations’ with the
document name you have selected. We will cover all the individual commands in detail
later, but for the moment just press theT key for Insert.

You will be returned to your‘testl.ltr’ document with the‘letterhd.doc’ document inserted
where the cursor was.

It is now easy for you to insert4 letterhd.doc’ into every letter you write on your Notepad
from now oa

Chapter 6 Your Second Letter

Continuing the Letter
How about putting in today’s date? We need a couple of blank lines and then the date
over on the far right of the screen

Insert Line (Control 2 or Control I)
There are two ways of placing blank lines in your document. One way is to use the Insert
line command (Control 2) shown on the template. If, however, you have4Insert On’ then
you just press the ENTER key.

Right Align
If you Tab across to the right-hand side of your ruler line (where the‘R’ is) anything that
is typed there will be right aligned. Alternatively, if you have already typed something
and you want to move it over to the right, place the cursor at the beginning of the line and
Tab across. If you are moving text that you have already typed, don’t go right to the end
because you need to leave enough space to fit it on the line.

The‘R’ Stop on the Ruler Line

Although we are using the‘R’ as the end of the line, there is nothing to stop you having
more than one‘R’ stop in your ruler line. Text typed at any of those stops will be right
aligned

Adding Today’s Date (Symbol D)
There is a quick way of inserting today’s date. Here is what you do. Move the cursor just
below your address. Insert two blank lines. Move the cursor over to the right by pressing
the Tab key several times until it is just past the‘R’ in the ruler line. Then press Symbol
and‘D\ Easy isn’t it?

TIP - Adding The Time (Symbol T)

There is also a quick way of adding the time into your text as well. You could use
this for sending a fax, or even for a list of what you’ve done in a day.

54

Chapter 6 Your Second Letter

The Rest of the Letter
Now you can write the rest of the letter. Make sure that you are below the‘Default Ruler
line* you have in your letter before typing the rest of the letter otherwise you will have a
very narrow strip of writing.

Dear Somebody I know,

Well, I went out and got myself an Amstrad Notepad computer and quite an interesting
book on it. It is taking a long time to get through because the authors keep introducing
new commands.

Oh dear, here is the start of another paragraph, where I use what he calls the ENTER key
a couple of times. It is surprising that when the text reaches the end of the line, it jumps
down to the next line taking any whole words with it.

Well, I had better go, here comes another one of those commands ‘Centring’ text. How
am I going to remember all this lot? I must be lucky, this time, there is a'Centre’
command on the template, so I’ll type the text first, then use the command Control =.

Kind regards,

My name

Mopping Up the Format Commands

Word Count (Function =)
This command simply counts all the words there are in your document. See if the number
of words here agrees with the actual number of words in your letter.

Format text (Control F)
While typing in text, Protext is constantly formatting the text for you. But if you go back
later and delete characters or words you may find that the text needs to be reformatted. If

55

Chapter 6 Your Second Letter

you move the cursor to the start of a paragraph pressing Control and F will reformat the
whole paragraph for you.

If you have added or changed a ruler line above a piece of text you will need to
implement the changes by reformatting the text. This is how we moved the address
across to the right when creating our letterhead.

Format Complete Document (Word processor

menu, Text formatting, F)
Unlike Control F, which only formats a line or a paragraph at a time, this command
formats the whole document in one go. Take care when using it because you have no
control over what it does to your document while reformatting.

Centre Text (Control = or Control C)

This centres the text between the left and right margin settings. Make sure that the cursor
is on the line you wish to centre before issuing the command.

The command does not take into account what sort of printing you may be using. If you
are using double width printing for example, then this command will not centre the text
correctly. It may need human intervention, putting in extra spaces or changing the
margin settings, to get the effect you require.

Macros
Wouldn’t it be good if there was a way of pressing a couple of keys and the Notepad
would type out some well used phrases? For example:

Kind Regards,
(a couple of carriage returns),
Yours sincerely, (Centre the text),
(a few more carriage returns),
followed by your name, underlined and centred again.

Well there is a way and it’s called a Macro.
Think of a Macro as a tape/cassette recorder that can record your keystrokes and play
them back when you want to. You are not limited to one Macro either. You can store
two different Macros on most of the keys on the keyboard. One is saved against each key
on its own and another is saved against the same key together with the Shift key.

56

Chapter 6 Your Second Letter

Displaying the existing Macros (Word processor

menu, D)
This command will show you all your stored Macros, a screenfull at a time. There are
some pre-recorded Macros already in the Notepad. These cover the date and time and
many standard foreign characters. If you do not need any of these pre-recorded macros
you can store your own instead

Here is a list of the preprogrammed macros -

aSym-a
Sym-c
Sym-d
Sym-e
Sym-h
Sym-m
Sym-n
Sym-o
Sym-p
Sym-q
Sym-s
Sym-t
Sym-u
Sym-A
Sym-C
Sym-E
Sym-N
Sym-0
Sym-S
Sym-U
Sym-<
Sym->
Sym-1
Sym-?

9
^788^ the date

as
h
u
h
6
(decimal 20)
h
R
the time-789^
U
A
5
R
N
O
R
U
«
»

1
l

Recording Your Own Macros (Shift Control M)
You can only record a Macro in the Word Processor. You will be presented with the
message‘Press Symbol and letter, then key sequence:’. Now is the time to show the
Notepad which keystroke you wish to use to call your new macro. Perhaps you could use

57

Chapter 6 Your Second Letter

Symbol Y for‘Yours sincerely’ for example.

Once you press the Symbol and another key. Protext will start recording your macro for
you. You will see an‘R’ on the right-hand end of the information bar. This is to remind
you that you are in Record mode. Now whatever you type, as well as being typed into
your document, will also be recorded into the Macro.

Try typing the following -

Yours sincerely
(Enter key)
(Enter key)

When you have finished, press the keys that you used to start the Macro again to get out
of record mode.

Using Your New Macro
After recording a macro, you can play it back simply by pressing the symbol key
followed by the other key you used to record the Macro. For the example above, Symbol
Y would playback*Yours sincerely’ followed by two carriage returns.

You should place the cursor where you wish the Macro to run before you run it. You can
play back your macro in a document, and in any other Notepad program like the Address
Book, Alarm, the List, BBC BASIC or the Diary.

If you made a mistake when recording your macro, don’t worry, simply overwrite it with
the correct version.

Macros and Reset
Unfortunately, if you have to reset your Notepad you will lose all the Macros that you
have created. There is no facility to save your macros to a document so make a note of
your macros in a word processor document Then if the worst happened, you could create
them all again.

Special Characters and Accents
Many additional characters including those with European accents are available. You can
select these in different ways.

58

Chapter 6 Your Second Letter

Some of the more common characters are available as macros using the Symbol key
followed by one other key. We have shown these in the list of existing macros above.

If the accented character is not in the list above but you know exactly what you want, you
can press a key sequence below to get directly to iL

If you don’t know which character you want you can see the whole available list by
pressing the Symbol and Menu keys together.

To access a special character directly you have to press the Symbol key and the minus
key together. Then, still holding the Symbol key, press another key followed by the
character you want the accent with. Got that?

Suppose you want an‘a umlaut’ -

press the Symbol key and*-*
keep pressing the Symbol key but now press ‘2’
let go of both keys and press*a’

and your special character turns up on the screen. It isn’t quite as difficult to do as it
sounds and if you need the characters regularly you soon remember which keys to press.

The possible accents and their valid characters are as follows -

Accent Keys Valid letters

Sym*-’ then Sym‘2’
Sym*-’ thenSym‘5’
Sym*-’ then Sym*6’
Sym*-’ then SymV
Sym*-’ then Sym‘Y

aeiouAOUUmlaut
Ring
Circumflex
Acute
Grave

aA
aeiou
aeiouE
aeiou

Select which accent you want first, then select the letter you want to use it with.

Picking Your Special Character (Symbol Menu)
You can select these and other characters in the Symbol Menu. This menu will show you
all the different characters including all those covered above that can be displayed on the
screen. To select any of them, move the cursor over the desired one and press the
ENTER key.

59

Chapter 6 Your Second Letter

m a a a 4 4 4. j. to nov
()*+*- /0|2§,)56789: tf to InserteflBCDEFGHI JKLHNOPQRSTUVHHZ \r_ to exit

1 obcdePgh i jk I «nopqrg£uvyxyz<»> t?!! ? i*HJ iss t!; ?! iioprir2(j)iri0f!?»(<?n=!ls fJT* *-4 ■

If, when you print these characters they don’t look the same, see the Printer section.

Drawing Boxes with Lines and

Characters
There are several characters displayed on the Symbol Menu that allow you to draw either
single or double horizontal or vertical lines on the screen. These, with comers and other
joining line characters, can even be used to draw boxes.

Using the Symbol Menu to select them individually would be both labourious and
impractical, unless you were desperate. So there is an easier way to access the box
drawing characters using the cursor keys.

Box Drawing Modes

You can either draw boxes with lines or characters. If you select Line mode you can
choose to have your boxes drawn with single or double lines. If you select Character
Mode, you can choose characters or Arrows to make up your boxes. Character mode
allows you to select any character on the keyboard, while Arrows just draws the box with
a series of small arrows.

If you are in line mode, Protext will correctly insert comers and‘T’ shapes where
appropriate. In Character mode, however, no special action is taken when lines cross.

After selecting the mode you want, you can draw the box by moving the cursor with the
Cursor keys while holding down the Symbol key. Wherever the cursor moves to it will
leave a trail of the chosen character behind it.

Box Drawing with Single lines
Let’s do the easy one first. Move the cursor to where you wish to start drawing, hold
down the Symbol key and draw with the cursor keys. You will leave a trail of line
characters behind you. The correct characters will be inserted automatically as you
change the direction of the cursor and as you cross previous lines.

60

Chapter 6 Your Second Letter

Box Drawing with Double Lines (Shift Control D)
By pressing the Shift, Control and ‘D’ keys together you can switch to the double line
mode. This behaves in the same way as the single line mode apart from the characters
used to form the lines.

The command is a toggle and so using it again returns you to single line mode.

Box Drawing with Characters (Shift Control C)
If you press this command once you will switch to displaying arrow symbols when the
Symbol and cursor keys are pressed. This command has to be used twice to make use of
characters for drawing lines.

After pressing the Shift, Control and‘C’ keys twice you will be asked to press the
character you want to use to draw with (the question is in the information bar at the top of
the screen). Press any character you wish to use to draw with and then start drawing in
the same way as before.

You cannot select a character from the symbol menu but you can select an accent
followed by a letter.

To Return to Line Drawing Mode (Shift Control L)
Use this command twice to get back to drawing lines with lines rather than characters.

Lines or Boxes Not Printing?
If, when you print these boxes they don’t look the same, see the Printer section.

61

Chapter 7
Page Formatting Commands

Most of the page formatting commands are listed as command lines. You should place
them at the beginning of the document if you want then to affect the whole document If
you only want them to affect part of your document then you put the command line at the
beginning of the relevant section and another command to reverse the action at the end of
the section.

Some page formatting commands are in the Print Options menu. Any formatting
commands in the document will override the setting in the print options menu.

First some general points regarding command lines.

Some command lines can switch things ON or OFF and we will show these followed
by‘ON/OFF\ You need to include the command followed by either‘ON’ or‘OFF’ as
appropriate. Other commands require a number to be included with them. We will show
these followed by‘n\ You need to include the command followed by an actual number,
for example 50.

Tie last type of command operates directly on the text that follows it. We will show
hese followed by‘text\ You would include the actual text that you wanted the command

iO operate on. For example:

>CE would centre the line
would set the page length to 50 lines.
would turn on the‘Format While Printing * command.

>PL 50
>FPON

Some command lines appear to do the same thing as commands we have already
described above. A good example is centring text. However there is a subtle difference
between them even when they look the same at First glance.

Commands used directly on the text that you type in are implemented immediately and
then forgotten. If you have centred a line of text with Control‘s’ and then you go back
and change the text, it will no longer be centred. However, if you add the command line
>CE‘text’ to your document, the text will always be centred no matter how often you
alter it. However the centring only takes place when you print it out.

Headers find Footers
Headers and Footers are extra lines of text that, if defined, can be added at the top and

62

Chapter 7 Page Formatting Commands

bottom of every page automatically. For example if you were writing a report you may
want its title in the header line and the page number in the footer.

Define Header Text and Turn Headers On (>HE‘text’)
Define Footer Text and Turn Footers On (>FO‘text’)

You can define one header line and/or one footer line to be active at any one time. The
default is for no headers or footers.

Turn Headers On/Off (>HE ON/OFF)
Turn Footers On/Off (>FO ON/OFF)

You can turn Headers and Footers off and then back on anywhere within your text
without altering their contents. This command is only actioned on the next page which
means that you must issue the command one page before you require it.

Page Numbers in Headers and Footers
You can print the current page number in the Header and/or Footer by positioning the
character % in eithcr/both of those lines. If you need an actual % character in the line you
need to put in two, one will then be printed.

If you wanted to print the page number at the bottom of every page in the document, you
could include the following command line -

Page number %>FO

Odd and Even Pages

Protext has an additional feature that allows you to print different headers and footers on
odd and even pages. This enables you to lay out a small booklet. You could print the
page number on the outside edge of both left-hand and right-hand pages.

Define Odd Page Header Text and Turn Headers On
(>OH‘text)
Define Odd page Footer Text and Turn Footers On
(>OF‘text*)

Page one is normally a right-hand page, so if we wanted to use our footer from above we
could modify it such that the page number was printed on the right thus -

63

Chapter 7 Page Formatting Commands

Page number %>OF

Define Even Page Header Text and Turn Headers On
(>EH‘text)
Define Even Page Footer Text and Turn Footers On
(>EF‘text)

A left-hand page would need the page number printed on the left -

>EF Page number %

Designing a Header or Footer Line
To design and type either a header or footer line, begin by just typing it in a blank line at
the top of your document. Arrange the text as you wish, including any centring or
justification, and then add the header or footer command at the start of the line.

Print Control Commands
Page Number of Next Page (>PN n)

Normally the first page printed is numbered one and each time a new page is printed in
the same document the page number is incremented by one. However, if you want to
change this scheme you can use >PN to change the page number to anything you wish up
to‘999\

Continuous/Single Sheet Printing (>CP ON/OFF)
When a printer uses single sheets, you may want to stop Notepad sending text to the
printer after each page. This would allow you time to get the next sheet into your printer.
Setting >CP to OFF will cause Protext to display‘Press SPACE to print’ on the screen at
the start of the print run and at the start of each page. Pressing any other character (apart
from Space) will skip that page. You could use this facility to print a random selection of
pages.

If you use an automatic sheet feeder on your printer, Continuous Printing should be set to
ON.

The default setting is ON.

64

Chapter 7 Page Formatting Commands

Number of Copies (>NC n)
Do you want to print several copies at the same time? Just put the number of copies you
want here.

This command is ignored if there is a data document defined. See Mail Merge for details
of a data document.

Setting this value to zero prints an infinite number of copies. Pressing the STOP key
stops the print (fortunately).

The default value is one.

Line Spacing (>LS n)
This defines the number of Linefeed characters there are for every printed line. You can
use half line feeds (e.g. have one and a half line spacing) if your printer supports it. There
is only one way to find out and that is to try it. An example is >LS 1.5.

The default value is one.

Which Pages to Print

Start at Page Number (>SA n)

This sets the number of the first page in the document The default value is one.

End Printing at Page Number (>EA n)

This sets the number of the last page to be printed in the document The default value is
the last page.

Print Even Pages Only (>PE ON/OFF)
Print Odd Pages Only (>PO ON/OFF)

If you place either of these commands at the start of your document you can print on both
sides of the paper. Print all the odd pages first then turn all your sheets over, (making
sure that they are still in the correct order), and print the even pages.

Setting either of these commands to OFF will print all the pages, which is the defaulL

65

Chapter 7 Page Formatting Commands

Enable/Disable New Page at The End of Printing

(>NP ON/OFF)
This command ejects the last page of your document out of the printer. It is normally
turned ON. Set this command to OFF if you want the last page to remain in your printer
after printing the document.

Page Throw (>PA or Control P)

Even Page Throw (>EP)
Odd Page Throw (>OP)

The Page Throw command breaks your document up into pages. It allows you to say
where you want to end a page in your document. Page throws are automatically put in by
the word processor when it has worked out that you have no more lines left on that page.
It is shown by a row of three lines of dashes across the screen.

Paragraphs or tables that you want to stay together can be split by page throws. The word
processor doesn’t know the significance of the text that you type. It will just chop your
document into the number of lines on a page as specified on the Layout menu.

vVith the page throw commands, you can decide where the end of the page is. To keep a
paragraph together that has been broken up by a page throw, put a page throw command
at the top of it. This will mean that the page will be broken above the paragraph. The
whole of the paragraph will be put on the next page. You could use Control P to type the
command in quickly.

If you want a particular page to start on a right-hand or left-hand page you would use the
Odd or Even Page Throw commands instead. If the page you have selected to be on the
right-hand side falls on an even number (which would put it on the left normally). Protext
will move the text onto the next page leaving that page blank.

Conditional Page Throws
Each of the above three page throw commands can optionally include a number. This
number tells Protext to check how many lines there are left on the page. If there are fewer
lines than the number you have put in, the page will be broken where the command is.
This is useful when you do not want a paragraph split in the middle.

When you are working on a document, you do not know where anything is going to be by
the time you have finished editing. If you had a 25 line paragraph that you wanted kept

66

Chapter 7 Page Formatting Commands

together, putting the command >PA 25 just above it would ensure that it would all stay
together on one page. The Conditional Page Throw will only have an effect if there is not
enough room left for the whole paragraph. It will start a new page at the beginning of the
paragraph.

Form feeds Enable/Disabled (>FF ON/OFF)
The form feed character tells your printer that it has reached the end of the page and it
must move to the top of the next one. This is a useful command if you are using either a
laser printer or a printer with a sheet feeder. The default setting is OFF.

TIP - Help With Page Lengths and Formfeeds

There are some tell tale signs that point to an incorrect setting for page length
and/or formfeed commands. Let’s try to understand what the printer and your
word processor are trying to do.

The important point to remember is that the word processor only knows about the
page length. This is the number of lines of text that will fit on a page. The printer,
however, knows about the page length and the paper length. The paper length is thi
physical length of each sheet of paper. The page length and the paper length are no
necessarily the same.

There are two ways that the word processor can tell the printer to move to the next
page.

One way is to give the printer multiple Line Feed characters. These add the correct
number of blank lines to finish one page and move onto the next For this to work
correctly, the page length that Protext is using must agree with the actual length of
the paper. If the two values don’t agree the first line of text on a new page won’t
start at the top of a new sheet of paper.

The other way for Protext to move to the next page is for it to send the printer a
Form Feed character. Form Feed characters tell the printer to move onto the next
page. In this case the printer has control of the page length. For this to work
correctly the printer needs to know the length of the paper you are using.

You may need to consult your printer’s manual to find out how to change the paper
length. Normally you can either change the printer’s default paper length setting
with switches/buttons, or you can send the printer a special command from the word
processor (see Outputting codes to the printer).

67

Chapter 7 Page Formatting Commands

It may sound crazy to have two different ways of moving to the next page but there
are circumstances where this is necessary. Suppose you wanted to print address
labels. Typically there are at least eight labels on each sheet of paper. Rather than
printing just one address on each sheet, you can tell the word processor that the
page is very short It will think that it is moving to a new sheet of paper after each
page but in fact it is only moving down your single sheet The printer will be able to
move to the next sheet after your eight labels have been printed.

To test the printer’s paper length setting put a sheet of paper into the printer then,
with the printer‘off-line’, press the formfeed button. If the paper length setting is
correct the printer will fully eject one sheet of paper and feed the next sheet through
ready to start printing on the first line.

If the next page is not at the top, or the previous page has not been ejected, then you
have the page length set incorrectly. Remember, for A4 paper the page length is 11 -
2/3 inches.

Formatting Commands used with

Mail Merge
There are several commands that are normally only used when mail merging. Mail
merging is a topic dealt with in a separate chapter but we have included the formatting
commands here for completeness.

When using mail merge words and extra lines are inserted into the text during printing.
The final layout will not therefore always be the same as that displayed on the screen.
Using the Formatting, Centre Line and conditional Page Throw commands that work
while printing is in progress, you can make sure that the printout stays the way you want
it

Most of the formatting commands that we have already covered act immediately on the
text as you type it in. If you type a line of text and then issue the command to centre it
(Control =) the text is immediately centred. If you go back to that line and edit the text,
the line will no longer be centred. You would have to issue the command again.

The commands to format while print behave differently. There are only actioned at the
time of printing. Using the same example of centring text, if you included the command
>CE above the line to be centred, Protext would perform the centring at the time the line
was printed. Therefore you could edit the text to your heart’s content, knowing that it
would always be centred on the printout

68

Chapter 7 Page Formatting Commands

Formatting Whilst Printing On/Off (>FP
ON/OFF)

You use this with the Right Justification command if you. want your text to be formatted
during a Mail Merge.

You must remember to turn it OFF at the start of any tables, however, and ON again at
the end of the table. If you forget you could find that reformatting has destroyed your
table’s layout.

Right Justification On/Off (>RJ ON/OFF)
This command works in the same way as Control J apart from the fact that it will re­
justify during printing. It will only take effect if you have included the >FP command to
turn on formatting while printing. The default value is the same setting as in the
Configure menu within Protext.

Centre Line (>CE‘text’)

Use this command instead of Control C if you wish to centre your text when printing.

Special Hidden Characters
There are other characters that you can use that tell Protext to do different things when
formatting the text.

View Tabs and Returns (Control V T)
You can display these characters by pressing the Control V and T keys. Pressing them
again will turn it off.

Insert Space (Control Space)
When you are in‘Overtype’ mode, you can use this command to insert spaces
into your document.

69

Chapter 7 Page Formatting Commands

Special Formatting Characters
There are some special formatting characters that are used with the word processor.

Soft and Hard Returns
There are two types of carriage return characters that Protext uses to mark where the end
of line is. They are soft and hard return characters.

If you turn Word Wrap ON, the word processor is constantly formatting your text. When
you reach the end of one line, it inserts a Soft Return character. It needs this character so
that if you decide to change the length of the line and reformat the text, it knows which
character it should change.

This is different to the character that is used when you press the ENTER key. This is
called a‘Hard Return’ and is used to mark the end of a paragraph or a line in a list.

These characters are not normally displayed but they can be shown on the screen by
selecting View Tabs and Returns (Control V T).

Non-break space (Control N space)
You can use this character to* glue’ two words together with a space. This stops the two
words from being split across two lines. It also prevents any‘soft spaces’ being added
between the words if you have selected the Right Justification command. You can use
non-break spaces, for example, when typing a sentence or word that you want*s paced
out’.

To select this character, use Control N followed by a space.

You can also select this command from the Text Formatting menu.

View Hard Spaces (Control V S)

Hard spaces are put into your text when you press the space bar. You normally see them
just as spaces between words but they are an actual character.

To display the hard spaces as a character, use this command. It is a toggle, so you can
change it back with the same command.

70

Chapter 7 Page Formatting Commands

Using Hyphens
When a hyphen1-’ is used between two words in the text, if the hyphen falls near the end
of the line it will normally be used to split the line with a‘Soft Return’. You may not
want this to happen, so there are some special ways how you can change this.

Non-break Hyphens (Control N -)

You can use a hyphen to glue two words together in a visible form. Do this by using
a‘Non-break Hyphen’. To select this character, use Control N followed by a hyphen1-’.

Soft Hyphens (Control H)
Sometimes, it is quite acceptable to split a hyphenated word across two lines.
Unfortunately, the word processor doesn’t normally do that because it can only‘wrap’
whole words between different lines. You can use Soft Hyphens to tell the word
processor where it can split the word in two.

The good thing about a soft hyphen is that you can’t see it if the word is anywhere on the
line except the very end. It only becomes visible when the word needs to be split
between two lines.

To select this character, use Control H. The hyphen will be shown inverted on the screen
but will only be printed if it is at the end of the line.

71

Chapter 8
Using the Style Attributes

Using the what? On the Notepad, what we would have called print commands are
called4Style Attributes’. These are things like underlining, bold, italics and so on that can
be used to make your document look more professional.

Normally when you start printing text, it is in ordinary text. This is technically known
as‘pica’ and is ten characters per inch. Whether you can use other types of print depends
on what type of printer you have. We are going to assume that you have a printer that can
print all these for now.

Selecting Bold, Underlining or Italic

Print (Control 7, 8, -)
You select a Style Attribute by pressing the relevant key sequence at the beginning and
end of the text you want the attribute to apply to, Some of these marks can be selected
two different ways. These attributes, like Bold, Underline and Italics are shown on the
smplate. Use the shown key sequences (Control 7,8 and -) to select them quickly.

rhese and all the other attributes are in the Style Attributes menu. You can see a list of
all the possible attributes by pressing the Menu key followed by S.

amani
PKBIB
U - Condensed
f : ftitToL - EnLcaroed

P - ProportionaI
□ - Qua Iity

Subscri
SupersortpT
Underlfne?:U -

These are, Bold (emphasised), Condensed print, Elite (twelve characters per inch), Italic,
EnLarged, Proportional, Quality (near letter quality NLQ), Subscript, Superscript and
Underline.

Short Cut Style Attributes (Control X)

Alternatively there is a short cut key sequence for selecting these attribute codes. It is
designed for those who have good memories. Use Control X followed by one of the
following letters:

72

Chapter 8 Using the Style Attributes

Bold
Condensed
Elite
Italic
enLarged
Proportional

Quality
Subscript
superscripT
Underline

b q
sc
te
ui

1
P

View Codes On/Off (Control V V)

When you use these*Style attributes’ you have a choice about how they are displayed on
the screen. With the View codes turned on, if you select underline for example, you will
see an invertedV at the beginning and end of the text you have marked for underlining.
If you turn the View codes off, you will see the text underlined on the screen. The Codes
on/off command is on the template. Press Function 4 to toggle this command.

Scrolling
As the display is normally smaller than the document you are typing, Protext needs to
scroll your text so that you can see what you are working on.

There are two types of scrolling that Protext uses. These are Vertical Scrolling and
Horizontal Scrolling.

Vertical Scrolling (Shift Cursor Up or Cursor

Down)
As you type more and more lines of text into your document any text above the line you
are on will be moved up the screen until it disappears off the top. This effect is
called* Vertical’ scrolling.

You can use the Up/Down Cursor keys to scroll through the entire document The cursor
can move to lines that have already been scrolled of the top or bottom of the screen. You
can move the text on the screen so that you can see any point in your document

Sometimes, it is useful to leave the cursor where it is but scroll the text up or down so that
you can read the text surrounding it. You can do this by pressing the shift key with the up
or down cursor keys.

73

Chapter 8 Using the Stylo Attributes

Horizontal Scrolling

This type of scrolling is not used as often as vertical scrolling because the default ruler is
set to the width of the screen. With Word Wrap ON, the text stays within the screen size.

When the document is wider than the screen, or Word Wrap is turned OFF, then
horizontal scrolling will take place. If you fmd that you lose the left-hand side of your
text, this is due to horizontal scrolling. To get back to the left-hand side again use the
Shift and Enter keys.

Turbocharging the Cursor Keys
When a document becomes larger, having to move the cursor a single line up or down
and a single character left or right becomes tedious. Is there a faster way? Fortunately
the answer is yes.

The diagrams below show both the cursor movements on the screen as well as moving
around the document.

Cursor Document Commands

Begining of Document Control [

Control (Previous Page

t Previous Paragraph
Control <

I Next Paragraph
Control >

Next Page Control)

End of Document Control]

74

Chapter 8 Using the Style Attributes

Cursor Screen Commands

Control fScreen Up

Scroll 4 Shift t End
of Line

Word
Shift-* Control-*

V Word
Control*- Shift «-

Scroll 4 Shift *

r Control lScreen Down

If you know where you warn to move to there are commands that will help you get there a
great deal faster than by just using the cursor keys.

Page Mode (Control Shift P)

Page mode will change the information displayed on the Status Bar. Normally the Status
Bar shows where the cursor is by Page No, Line No and Column, Page mode changes it
to Character Number, Global Line number and Column. In this mode you can’t move
forward and backwards a page with Control 9 or Control 0 command.

You can use it to show the global line number for use with the following command.

Goto Line / Page / Column (Control G Ln / Pn /
Cn)
If you know where you wish to move to in your document,‘Goto’ will help you move
around your document quickly. It will either move your cursor to the top of the page
number you have asked for, or to the line number or column on the page you are now on.

The line number is not normally displayed on the Status Bar but it can be displayed by
turning off the Page mode.

75

Chapter 8 Using the Style Attributes

If, for example, you wish to go to the top of Page 4, you would type Control GP4.

Markers
There are several marker commands that allow you to leave bookmarks in your document
so that you can quickly return to them at any time. Think of it like a number of
differently coloured balls of wool that you can use to find your way back to the correct
marker.

There are four types of markers that you can use. They are absolute, multiple, margin and
block markers.

When you set a marker it is shown as an inverted number 0 - 9, ?, [or] depending on
which character you have selected. To remove any markers, use the delete key to delete
the inverted character.

TIP Markers Are Only Shown When Codes Are On

All markers you put in are saved in your document. If you have your‘Codes on/ofP
set to OFF (Function 4), you will not see your markers even though they are still
there. So if you lose them, remember this tip.

Absolute Markers (Control @ 0 to 9)

You have ten absolute markers (numbered 0 to 9), which allow you to define absolute
positions in your text to which you can return. The first time that this command is used
with a number, it sets the marker. Subsequent uses of the same command then return you
to that marker.

Multiple Markers (Control @ ?)

Multiple markers are selected by pressing the*?' after Control You can have any
number of these markers within your document.

You can use multiple markers to allow you to move quickly to common points in your
document. For example, if you added a multiple marker at the start of every main
paragraph, the commands detailed below would allow you to skip through the document a
paragraph at a time.

76

Chapter 8 Using the Style Attributes

Goto Previous Marker (Control Shift 5)
Goto Next Marker (Control Shift 6)

These two commands allow you to jump to all the markers you have set in order. It is the
only way that you can get to your'Multiple markers’.

A‘bug’ in early versions of the Notepad prevented the Right Shift key working with
Control 5. This is not a serious problem since it is more convenient to use the Left Shift
anyway.

Goto Margin Markers (Control @ L or R)
This moves the cursor to the left or right margin.

TIP Use Goto Left Marker to Move To a New Left Margin

Control and Left Cursor always moves the cursor hard over to the left of the screen.
Control (8> L moves the cursor to your left-hand margin. This is very useful when
you have redefined your left-hand margin with a new Ruler Line and need to move
there.

Goto Block Markers (Control @ [or])
We haven’t covered1 Blocks’ yet, but you can use this command in a marked block to
goto the beginning (Control (2) [) or the end (Control @]) of a marked block.

Although there are separate commands to mark a block, the first time that this command
is used, it also marks the block. So you have plenty of choice on which key strokes you
use.

Goto Last position (Control L)

Protext remembers the last two places that your cursor was within the document.
Repeated use of the command Control L will move you backwards and forwards between
these two points.

Now you know how to move, let’s dance!

Well, we’ve covered many different ways of moving around the document. Let’s look at
a different set of commands that actually do things to your document.

77

Chapter 8 Using the Style Attributes

The Delete Commands
Just like moving the cursor, there are quicker ways of deleting the text in the document
than just using the two delete keys.

Delete line (Control 3)
Delete to Start of Line (Control <- Del)
Delete to End of Line (Control Del ->)
Delete character before cursor (<- Del)
Delete character at cursor (Del ->)
Delete word left (Shift <- Del)
Delete word right (Shift Del ->)

Undelete (Control U)
There is also an Undelete command that remembers what you have just deleted and puts
it back where the cursor is. This helps if you have deleted something by mistake.

When you delete anything (including a‘Block’ of text, see later) other than a single
character, the text is stored in a temporary memory until you use another delete
command. If you leave the cursor alone after you have deleted something, undelete will
put it back where it was.

If you move the cursor and then use the Undelete command, what you deleted will be
inserted at the new cursor position. You can use this to move or even make several
copies of the text that you deleted.

Special Insertion and Deletion Commands
We have already covered commands that insert and delete lines, (look at your template if
you’ve forgotten them). Here are a few that are slightly different.

Transpose Characters (Control A)

Do you ever type letters the wrong way round? Here is a good command to swap these
letters around. Try mistyping would as wuold, then move the cursor over theV and do
the command above and by magic the uo changes to ou.

Changing Cases

There are occasions when you may have wished to either change something that you have

78

Chapter 8 Using the Style Attributes

already typed into CAPITALS or visa-versa. Here are the two commands to use.

Lower to Upper Case (Control /)

Move the cursor to the start of the text you wish to change. Hold down the Control key
and press the / key until you reach the end of what you wish to change.

Upper to lower case (Control \)

Here it is the other way round as well.

A good way of remembering these commands is with the direction of the line. Lower to
upper case starts at the bottom left to the top right. You could imagine that it can make
letters larger. The same is true the other way round.

79

Chapter 9

Blocks
One of the most powerful functions of any word processor is the ability to work with
blocks. This allows you to mark a bit of text that you have already typed and then do
something with it, like deleting, moving or copying it.

As this is a two-stage operation, we will first start by marking the block, then when it is
marked do something with it.

Mark Block (Function 9 or Control Z)

There are two different key strokes that do the same thing. You need to mark the
beginning and the end of the block of text that you want to do something with. Place the
cursor at the beginning or the end of the block, use the command, and then do the same
thing again for the other end

Once you have used the mark block command twice, you will see that the text within the
block is now shown as inverted text. At the beginning there is the character [and the end
of the block there is the character]. You don’t need to worry about these characters as
hey are not actually in your document. They are just used to highlight the beginning and
end of the block.

Clear Block (Control K)
If you make a mistake marking a block, the simplest way of putting it right is to clear it
by unmarking it and then marking it up again. You can also use this command if you
have finished using a block.

What You Can do With a Marked Block
Once you have marked a block, there are six things you can do with it (apart from
clearing it as above).

80

Chapter 9 Blocks

Yes, this command deletes Ihe block. If you didn't maen todnlcttnU afteriQ
remember the Undelete command Control U : r»

Block Delete
(Fraction Del)

Black Word Count
(Word process or menu.
Editing, Count words)

This allows you to count the number of words

Copy Block
(Function 0)

You can copy a block of text from one place m the doconmnt to^^
block wxU be copied to wherever the cursor is when y<ra«&u» th^ command.

This is different to the copy command available by pressing Function (X This; j •
command Wfll copy either your matied block orybui: whetf* document to ;
another document' •' ■ > 'T’ -. ■ 3--: ■ .■ ':'v *'% ■' ; '■■■''I

Copy Block/Document
(Word processor menu
Copy Block)

It is particularly useful for moving sections of text between documents and in
fact is the onluy way to make a copy a document in the Ncttyad

Use this command if you only wantto Print part of document. ^•Bibck Print
(Word processor menu,
PrM Block)

Block Move
(Control M)

This command will move a block to wherever the cursor is when you issue the
command. . ■,1;

Search, Find & Replace
These commands are very useful when writing large documents. You know that you may
have covered a particular subject but you can’t remember where you did so. Using*Find’
will help you, as you can move forward or backwards within your document looking for
every occurrence of a word or phrase.

Replace is really a Find and Replace. You look for a word and replace it with another
word. This can be used to change the spelling of somebody’s name throughout the whole
document. It is useful if you need to change a word several times.

With both these commands the searching starts from where your cursor is when you use
the command.

TIP Get the Spelling Right When Using Find and Replace

When looking for a word, part of a word, or a phrase, make sure you spell it the
same way you used in the text otherwise Protext will not find it

The thing to remember with these two commands is that they will only do what you
tell them to do. So if you have typed‘Jane’ and the correct spelling is‘Jayne’, you
could find Jane and replace with Jayne. It will only replace the ones that you have

81

Chapter 9 Blocks

spelt like that It will not recognise anything that you have spelt differently even if
you didn’t mean to. It is therefore a good idea, unless you are an immaculate typist,
to use this command globally only after you have proofread your document

Find (Function 5)
When you select this command Protext will ask you to enter the string to search for with
the message‘FIND string:'. No, this is not the time to look for the ball of string that the
cat was playing with a week ago. You can type in a word, part of a word or even a phrase
for Protext to search for.

If you asked it for an* a* for example. Find would find every singleV, even those within a
word. If you asked it for1 a *, that is an*a’ with a space on either side of it, your choice
would be narrower and Find would only find an‘a’ on its own. Alternatively, you could
choose‘Whole word’ which would look for your match in a single word.

Pressing the ENTER key shows you the following options - You can use any
combination of these to help narrow down your search.

A-All

Normally when Find finds what you have asked for it stops on the first match.

Selecting* AH’ will put Find into express mode so that it will not stop until it has found all
the occurrences of your search string. Thus Protext counts the number of times your
search string appears in the document starting from wherever the cursor was to the end.

B-Backwards

Backwards puts this operation into reverse. Instead of looking forward in the document
for your search string, Find goes backwards from where you are to the beginning of the
document.

Using this option with Find or Find Previous will cause them to do the opposite to what
you expect. Find Previous will Find forward and Find will Find backwards. Keeps you
on your toes though.

C-match Case

Normally Find doesn’t care whether what you are looking for is in upper or lower case.
If you are particular, use this option and make sure that you have typed the correct case in

82

Chapter 9 Blocks

your‘Find siring’ section. This is very useful when used with Replace as you can ask for
a word without any capital letters and replace it with one that has.

For example, Find‘brighton’ and replace with‘Brighton’.

G-Global

Use Global if you wish to check the complete document rather than just from where the
cursor is to either end of the document.

W-whoIe word

To restrict your choice during a search even further, choosing this option will only select
your match if it is a whole word. For example if you are searching for'and’ the Find
command would normally find words like'sand’ as well. Using'whole word’ would only
find‘and\

n-Nth Occurrence

This command counts the number of matches (between one and 255) it finds before
stopping. This could be used for example to search for every second quotation mark.

Special Characters

When using Find to look for certain characters and printer codes, you need to put an
exclamation mark in front of them. This is because these characters are used differently
in'Find’ or'Find and Replace’. Here is a list of these differences.

Printer control codes ! followed by the letter of the printer code.

Question mark
exclamation mark
hard return
soft hyphen
non-break hyphen
non-break space
search for a specific code

?

space
number

Using ? in Find
If you are not sure of a letter or a group of letters, you can use the1?’ character to indicate
the unknown letter. For example, if you wanted to find'could’ but you couldn’t

83

Chapter 9 Blocks

remember how you spelt it, you could use‘e???d’ which will fmd any five letter word
beginning with a‘c’ and ending with a‘d\

Replace (Function 6)
Replace works just like Find except that you get an additional line‘REPLACE with*
asking you what you wish to replace the word or string with that you are searching for.
After using this, you will get the same options as described above.

The only point to be wary of is that if you use the* AH’ option you need to be sure that the
command will do exactly what you think it will.

Other Find Commands

Find Next (Control 6)
Find Previous (Control 5)

Once you have used aFind or aReplace, you can use either of these commands to repeat
the command without having to enter the search string again.

84

Chapter 10

Spell Checker
After typing a document, it is not a bad idea to run the Spell Checker as it can often find
words that are either misspelt or mistyped. It WILL NOT find ALL your mistakes as a
spell checker only looks at each word you have typed and compares it to two dictionaries.
It has a main dictionary that has a large number of words already included and a user
dictionary that is initially empty.

What the Spell Checker Does
If the spell checker cannot find a match between a word in your document and one of its
dictionaries it will let you know. It lists your options for that word and waits for you to
select an option. Then it continues checking the rest of the text.

Spell checking can be stopped at any time by pressing the STOP key.

It will not tell you if you had put* bet’ instead of but’ as those are both valid words. It
will fmd a spelling mistake if you had typed‘bwt’ (which may look like but) and will give
you a choice of options.

The spell checker will look out for words where capital letters have been put inside the
word. For example the spell checker will want to change‘tHEy* to'they’.

Spell Checker Commands
There are three commands that start the spell checker.

Spot! check the
complete document
(Function

Spell check word to
the right of cursor
(Control 1 or Control Q)

Spefi check the
document from the
cursor (Control S)

Use the ’Spell Text* command after you have typed to youx complete
document and you want to spell check everything.

Use the ‘Spell Word* command while you are typing and you are not awe;
of the spelling of a particular word. If the spelling is'ccnect, you will
get a message on the menu bar,‘Word is in dictionary*.

You can check part of a document by using ControlS to start checking ::
from where the cursor is and then pressing the Stop key when you have ; ■
reached the end of the section to check.

85

Chapter 10 Spell Checker

Spell Checker Rules
Here are a few rules that the spell checker follows.

Foreign letters used in words are recognised and the words can be added to the user’s
dictionary.

All possessive apostrophes (‘s) are ignored but contractions of two words (can’t, won’t,
haven’t) are stored as separate words in their own right. The main dictionary contains
most of the common contractions.

Words beginning with numbers (1st, 2nd, 3rd) are ignored.

What Happens When the Spell Checker Finds a
Mistake?
You get a choice of four options. These are:

I - Ignore word
L - Lookup word
E - Edit Word
S - Store Word

I - Ignore Word

This does as it says; it ignores that word and makes no changes at all. If you select this
option it means that you are happy with the spelling even if the spell checker isn’t.

L - Lookup Word

This allows the spelling checker to have a look in both dictionaries and make some
intelligent guesses at what the word might be. Initially you should see the*Looking .. .*
message followed by a list of close matches or nothing at all.

You use the Cursor up or down keys to select the correct word (if it is there) followed by
the ENTER key. The word that was wrong in your text will then be replaced by the word
that you have selected

If the word you wanted is not on the list, then press the Stop key to exit the selection.
You will then get the following options‘E - Edit word’ and‘Enter - Continue’. If you
choose‘Continue’ then the spell checker will leave the wrong word alone.

86

Chapter 10 Spell Checker

E - Edit Word

Edit Word will show you the wrong word in a small window so that you can correct it
When you press ENTER, the spell checker will check the word you have edited before
moving onto the next mistake.

S - Store Word

This command adds the selected word to your own user dictionary. This word could be
your name or a special word that is not used often. It is a good idea to build up your user
dictionary as it will save you time in the future.

User Dictionary
After storing some new words with the above command, you can use the following
commands to view the words you have entered or to delete them.

View User Dictionary (Word processor menu, Editing,
View user dictionary)

This command will show you all the words you have put into your user dictionary.

Remove Word From User Dictionary (Word processor
menu, Editing, Remove word)

You need to type the word to delete from the user dictionary and press the ENTER key.
It is‘Case sensitive’ so make sure that if the word in the dictionary starts with a capital
letter, you do likewise when entering the word to delete.

87

Chapter 11

The List (Function L)
The list is where all your documents or files are stored. You can select any of your
documents/files that you have created in your Notepad. If you want to re-read, print or do
some more work on a document, you need to get the Select menu on the screen.

From the Main menu of the Notepad you use Function and Left Cursor keys to select the
Word Processor menu and then the Right Cursor key.

Alternatively you can use the short cut key sequence (Function L) from any other
program in the Notepad.

When you leave the Word Processor, Protext automatically saves your document for you
under the name you gave the new document before you started typing. The new name
gets added to the List.

Definition - Documents and Files

There is no difference between a document and a file. Generally we have used the
word document because it is more descriptive of the‘thing’ that holds the text.
Other computer systems tend to use the word file.

There are times when the word file makes more sense. The Address Book for
example holds a list of names and addresses in a manner analogous to a paper filing
system. BASIC programs are stored in a file and the programs can store
information to a file.

The distinction we use is that documents can be loaded into the word processor; files
are used to save other types of information.

You just need to remember that in reality both words mean the same thing.

88

Chapter 11 The List

Select a Document

To select a document to use with the Word Processor from the list, just move the black
bar cursor over the name you want and press the ENTER key.

As well as selecting an existing document, there are several other things that you can do
from the List. The important thing is to select the document first and then press the Menu
key to select what you want to do with it.

Document Operations Menu

T » Transfer Punotions .. F - Format memory cardI - Insert0 - Delete
P - Print R - Rename

When you have entered this menu make sure that the name of the document you wish to
operate on appears at the top of the screen.

Here is what you can do and what you should not do with your documents.

E - Edit

This command performs the same function as hitting the ENTER key from within the List.

I - Insert - DO NOT USE THIS COMMAND

DO NOT USE THIS COMMAND. The Insert command should only be used to insert
one document into another. If you have reached the List from the Main menu there will
not be a document open to insert the one you have just selected into. The result will be at
worst a computer crash or at best a warning. YOU HAVE BEEN WARNED.

Definition - Bugs and Crashes

Complex programs written for computers like the Notepad owe their existence to a
team of programmers who design and write the programs. No matter how much
testing is done on a program they can never be completely certain they have found
all the bugs. This is true for all large computer programs.

Sometimes bugs manifest themselves in trivial ways that cause no serious problems.
A good example within Protext is the fact that you cannot use the Right Shift key to
access the‘Find Previous’ command.

89

Chapter 11 The List

Unfortunately there are times when a bug is serious and this is the case with the
insert command in the List If you use the command as it was intended to be used it
works correctly, but if you select it without having another document to insert into
you may lose some or all your documents in the Notepad. Then you would start
wishing you’d done a backup.

While writing this book on the Notepad, we’ve come across a few bugs and have
highlighted the problems they can cause. This does not mean that we’ve found them
all; you will probably find more if you are inquisitive.

Crashes are the disasters of the computer world. They come in different guises but
the results are normally the same. You will not be able to do anything with your
Notepad until you have done a Reset You will have definitely lost the document you
were working on and if you are unlucky you will have lost all your other documents
as well.

D * Deleting Documents

As you type in more documents in your Notepad you are filling its available memory.
You can release this memory for new documents by deleting any old documents that you
no longer require.

P - Print
Here is another place that you can print documents from as well as the Print File menu.

R - Rename

Rename allows you to change the name of a document.

F - Format Memory Card

When you get a memory card to store even more files on to you need to format it first
More about that later.

T - Transfer

Transfer brings up another menu with more commands on it. These are used when you
transfer documents to another computer. We will cover these in the Serial Terminal
section later.

90

Chapter 11 The List

TIP - Only Copy a Block or Document From the Word Processor

You can’t copy a document from the List. You must select the document you want
first and then go into the Word Processor. Selecting4 Copy block or Document’ will
allow you to make the copy.

Showing Other Files

The most useful way of showing the list of documents in your Notepad is to show only
the name of the document. This allows you to see thirty-five names at a time when you
enter the List. In this case only documents that have been created by the word processor
are displayed. Files containing BASIC programs or your Address Book are hidden from
view, as is the size of each document.

You can change the way documents are displayed by setting the‘Document sizes and date
display’ option in the System Settings menu to anything other than‘Not shown’. The List
will then include more information about each document and show all the documents in
the Notepad. The disadvantage is that you will only be able to see the names of fourteen
documents at a time.

Z U Z0-11-9100 iinesAddress bookbank loan car service Pi lei _Forg®t

,0I H ll'iil
NCI 00 book
Progl. bas
projecti
project2

2 U 20-11-92 17:00
1 U 20-11-92 16:58
2 U 20-11-92 17:04

2 U 20-11-92 16:59
2 U 20-11-92 17:02
2 U 20-11-92 17:05
2 U 20-11-92 17:05

data
Don't

WARNING - Don’t Try to Select a File That Isn’t a Document

After changing‘Document sizes and date display’ to show all the files, be careful
NOT to select any of these other types of files with your word processor because it
could have disastrous results.

If, for example, you selected a BBC BASIC file from inside Protext the file would be
corrupted and you couldn’t use it again.

To avoid this from happening you could change the setting back to‘Not shown’
which will prevent you from selecting any other files as they would not be shown on
the list.

91

Chapter 11 The List

Only Select documents created by the word processor.

The extra information shown by the List is the document size expressed as a number of
bytes, whether the document is stored on a memory card, whether it is in Upper memory
or Lower memory and the time and date that the document was created.

Memory

Your Notepad has just under 49K bytes (IK is 1024 characters) of memory that has been
split into two areas. These areas are called4Upper’ and ‘Lower’ memory. If you plug a
memory card into your Notepad you are adding extra memory in which to store
documents.

Each character that you type (including spaces) into your document takes up one byte of
memory. The memory is used in blocks of 256 bytes. You will notice the number of
bytes of‘Free memory’ jumping down in steps of 256 as a document gets larger.

Lower memory is used by the programs within the Notepad to carry out your instructions.
Documents are stored in upper memory but if this area becomes full then lower memory
starts to get used for documents as well.

When you enter the word processor to edit a document Protext needs an area of lower
memory to operate in. This area must be large enough to hold your whole document.

The number of bytes used for each document is followed by a ‘U’ for upper memory, a
‘L’ for lower memory or a ‘O’ for the card. This information can help you to decide
which files to get rid of when you are low on memory.

Running Out of Memory

When you get the4memory full’ message it is time to delete some old documents. It does
not matter if you delete the documents from upper or lower memory. If you have freed
up some space in upper memory by deleting a document and you then edit a document
previously stored in lower memory, Protext will move the document to upper memory for
you.

Your Diary entries are also stored as files. Deleting them in the diary will also clear more
space.

If you no longer require a particular document, you can just delete it altogether. If you

92

Chapter 11 The List

want to save the document there are several ways to copy it from your Notepad.

Memory cards can remember what has been saved onto them even when they are
removed from the Notepad. You could keep one card just to hold all your important
documents.

If you have access to another computer, in particular a PC, transferring a document onto
that computer’s storage system is a cheaper approach than keeping an extra memory card.

You can even connect the Notepad to a stand alone disk drive to give you as much
storage as you wish.

We will be covering transferring your documents to another computer later.

How Big Can Your Document Be

No matter how much memory a computer has, there is always a limit on how big a
document can be. Protext uses the largest continuous block in the lower memory. The
largest document that you can have is 38144 bytes, which is roughly eighteen A4 sheets.

How to Print Multiple Documents

If the restriction in document size is‘cramping your style’ there is a way of getting round
it. You could get more memory by buying an extra memory card. That wouldn’t mean
that any one document could be larger than 38144 bytes but it would mean that you could
have more of them.

There is a way of joining documents together and printing a really long document from
several smaller ones. You can use the Insert command. Look out for details in
the‘Commands’ section later.

93

Chapter 12

Printing
Print Test Page
Using all the commands we have covered so far, a good tool to make is a‘Print Test
Page’. This does several things.

It checks that your printer and Notepad are set up correctly.

It finds out where your text is positioned on the page. This can be used for lining up
where address labels are on the paper, where addresses need to be for use in window
envelopes or lining up pre-printed forms.

The ideal way of doing this is by printing the test page on a transparent sheet (the sort
they use for overhead projectors). Then you can see what you want the text printed on as
well as where it will be printed.

The position of your text on the page depends on two things. First the word processor
you are using and secondly the printer you have. Writing a test page with the word
processor and then printing it with your printer will show you where characters will be
printed on the paper.

How Wide Can Your Printer Print?
Most printers can print up to eighty characters on a line in normal mode or one hundred
and thirty-two characters on a line in condensed mode. What is the best way to find out?
Send the printer a line that is far too long and see how many characters fit on the line.
When your printer can’t print any more characters on the line it will either put the
remainder on the following line or throw it away.

Typing a Wider Line
The default right margin is normally set at 70. We need to widen this to see when the
printer runs out of characters. You need to decide which mode you would like to test
your printer in before making the long line that follows.

Start a new document called‘longline’ and change the ruler line so that you have either
eighty or one hundred and thirty-two characters in the line.

94

Chapter 12 Printing

Can you remember all the necessary commands yet? Here’s a reminder.

Add a ruler line into the text (Control R), move the cursor onto the rler line and Goto
(Control G) column 132 (cl32) or Column 80 (c80). Put an‘R’ there, turn Insert on/off to
OFF (check the Status Bar) and Goto (Control G) column 70 (c70). Overtype the whole
line with4-’ until you reach the new‘R’ at column 132 or 80. Remember to change back
Insert on/off back to ON when you have finished.

All you need to do now is to type in some text that uses the new width of the document
and print it. A simple sequence of numbers will allow you to count the printed width
easily.

When you know the number of characters that you can type across the page you need to
find out how long the page is. Again, use the trick of typing more lines than the printer
will print on the sheet. Seeing which line remains at the bottom of the sheet will tell you
the number of lines your printer can print on a page.

Page Layout (Function 7)

Overtype
Page length (Iires)Top margin (Iine$) Header margin (! ines) Footer margin (lines) Bottom margin (lines)Side margin (chars)Line spacing (Iines)

or f 4 to change.* to move/ Stog^to Finish

12)
(3)
15)
(1)

Let’s see how Protext lays out the text on the page.

Protext uses a default set of values for all the margin settings. This means that the first
character on each line of text is not printed hard over to the left of the sheet of paper as
you may have expected. The default value for the side margin is‘5\ This causes five
spaces to be printed at the start of every line.

The same is true at the top and bottom of Lhe page because there are margins there as
well. At the top of the page there is the Top Margin that is set to three lines. This is
followed by two lines for the Header Margin that is used for any header text. At the
bottom there is a similar set called the Footer Margin and the Bottom Margin of two and
three lines respectively.

TIP - Page Length Warning

Do not set the Page length to zero or greater than 126 lines. Protext will ignore your
setting of zero page length and will use your previous setting. If you use a page

95

Chapter 12 Printing

length greater than 127, you will discover that the page length will be set to that
number less 128 lines. This effect is similar to a mileometer in a car, when it reads
99999999. One mile later and you have a new car because the mileometer has run
out of numbers.

Getting Rid of All the Margins

The next thing you need to do is to get rid the margins for the test page. That will tell you
the number of columns and lines that your printer will print on the page without having to
worry what the margins are set to.

There are two ways of doing this. Either set all the margins in the Layout menu to zero or
use the >ZM - Zero Margins command at the top of the document.

Fill the Page With Numbers

Copy your line of numbers from the page width test above about eighty times so that you
have more than a pagefull and then print the page.

>ZM
1234567890123456. .678901234567890123456789012

You can use the test page to print on different sizes of paper like filofax or other non­
standard sizes of paper. Printing numbers across the sheet gives you the coordinates (line
and column) to position different parts of your letter. Using the line drawing mode you
can even make up a ruler looking line as shown in the screen shot opposite.

Designing Your Page Layout

After you have printed your test page, you can design your own page layout by changing
the page length and margins to suit your own preferences.

Test Whether Your Printer Can Print Lines
By adding a few boxes on your test page, you can also test whether your printer can print
the lines as well. In our example, we have positioned the lines round the space for the
address that you want to use with window envelopes.

If these lines print, there is a good chance that the other characters in the symbol menu
will print also.

96

Chapter 12 Printing

o o

o o

o o
12345678901234567890123456789012345678901234567890123456789012345678901234567890
13045678901234567890123456789012345678901234567890123456789012345678901234567M0
123456789012345678901234567890123456789012345678901234S67890123456789012345671*90
12345678901234567890123456789012345678901234567890123456789012345678901234567890
12045678901234567890123456789012345678901234567890123456789012345678901234567890
123456789012345678901234567890123456789012345678901234567890123456789012345675*90
12345678901234567890123456789012345678901234567890123456789012345678901234567890
1X54567890123456789012345678901234S678901234S67890123456789012345678901234567MO
12345678901234567890123456789012345678901234567890123456789012345678901234567890

O o

o o

o o
Numbers repeated down the complete page.o o

o o

o o

o o

o o

o o

o o

o o

imyiiiy,“ymyii'y"iyi‘'y'i'y,"yii'yi“yi“ai“yi

XJ u

O You can even make up a ruler with the Box Drawing Commands O
if you want to.

o o

o o

o o

o o

Test Page

97

Chapter 12 Printing

Advanced Printer Commands
You can add the following commands to your documents. They are all printer related.
Whether you can use them or not will depend on the type of printer you are using and
whether it supports any of the functions listed here. The other point we would like to
make is that you would probably not use these straight away. If this is your first time
through the book you may like to miss this bit out!

Most of the functions to do with the printer are already set in the printer driver and are
selected in the Printer Configuration menu. However, if you wish to send different codes
to your printer, you can include them in the document.

Definition - Printer Driver

The Printer Configuration menu allows you to tell your Notepad what type of
printer you will be using. The choices are Simple, Canon BJlOe, Epson 24 pin,
Epson 9 pin, IBM 24 pin and LaserJet.

The Notepad contains a printer driver for each of these types of printer. The
printer driver holds information such as what codes are needed to feed the next
sheet of paper or to turn underline on and off.

Because the Notepad has a range of built-in drivers you don’t normally have to be
concerned with the nuances of controlling your printer.

If your printer is not one of those catered for by a built-in driver, or you want to use
a feature on your printer that is not supported by the driver, you may need to use
some of the following commands to get the most from your printout.

Printer Codes

In some printer manuals there are helpful sections on how to use printer codes. If you
have a printer manual that just lists the codes, you will have to put up with our helpful
suggestions instead.

Different Numbers That Mean the Same Thing

Before finding some codes to work with, we will explain about the numbering systems
that the codes are written in.

You may remember that the Romans had a different numbering system to the one that we

98

Chapter 12 Printing

have now. Number 12 was written as xii for example. The numbers look different, but
they are the same value.

The codes in the printer manual are usually described in one of three different ways;
decimal, hexadecimal or ASCII. Fortunately we don’t need to understand them to be able
to use them.
Protext can understand all three different types of numbers, but you do need to show
winch sort you are using when typing in the codes. Let’s look at a few codes in a printer
manual. It is time to get a strong cup of coffee (beer if you must).

Set Double Height Example

Here is a command that our printer can use in three different emulations. Let’s look at
these one by one, that way we can also test that it works as well. This is what the manual
has in it.

Quote from Manual
Epson FX-850 Mode

set double height <ESC>w<n>

By means of this code sequence the characters of the subsequent text are
specified with double height.

<ESC>w followed by 1, sets double height printing. To reset the double
height to the normal height, specify <n> by 0.

Quote Ends

That looks very straight forward doesn’t it? So how do we use the information?

Escape

The <ESO is an ASCII Escape character. To type this into your command line use
either the decimal number 27 or hexadecimal equivalent &1B. The lower case w is also
an ASCII character, just put “w” in the line. Finally the number one or zero is a number
so type that in too. These codes may be separated with a space or a comma. So here are
the results.

27,”w”, 1 will turn double height on
27,”w”,0 will turn double height off

Let’s do that again with a different printer.

99

Chapter 12 Printing

TIP - What are ASCII Tables?

An ASCII table is the list of codes that the printer uses to print out the characters.
For example, a capital A is decimal 65. The standard ASCII table finishes at
decimal 127, but there are a possible 256 codes available. There is an ASCII table in
the Appendices.

Quote from manual
IBM Proprinter XL24e Mode

<ESC>[@<nlxn2xml>...<m4>set double height

By means of this code sequence the characters of the subsequent text are specified with
double width, double height or both combined. Additionally line spacing can be
controlled by this code sequence.

nl and n2 specify the number of mode bytes contained in the sequence. Usually nl is
defined by 4, n2 by 0.

The mode bytes ml and m2 are without function, i.e. they are assigned code
<NULL>(hex.OO).

The mode bytes m3 and m4 control the print parameters:

m3 controls line spacing (high-order half byte) and character height (low-order half­
byte).

m4 controls the character width. Only the low-order half-byte is functional in the mode
byte.

For detailed information on modes bytes m3 and m4, see next paagraph.

Definition-Mode

Mode-byte m3:

The high-order half byte contains the multiplier 1 or 2 for line spacing, for example

multiplier - 1 m3 = bin.0001 0001
multiplier = 2 m3 - bin.0010 0001

100

Chapter 12 Printing

The low-order half-byte contains the multiplier 1 or 2 for line spacing, for example

multiplier = 1 m3 - bin.QOOl 0001
multiplier = 2 m3 = bin.OOOl 0010

If one of the half-height assigned 0 (Zero), LeMn.OOOO, the current values of line
spacing or character height remain unchanged.

m3m3 m3 Line
feed

Character
height(dec) (hex.) (bin.)

0 00 0000 0000
0000 0001
0000 0010
0001 0000
0001 0001
0001 0010
00100000
0010 0001
0010 0010

unchanged
unchanged
unchanged
single
single
single
double
double
double

unchanged
standard
double
unchanged
standard
double
unchanged
standard
double

011
2 02
16 10
17 11
18 12
32 20
33 21
34 22

Mode-byte<m4>:

m4 m4 m4
(dec) (hex.) (bin.)

Character
width

0 00 0000 0000 unchanged
1 01 0000 0001 standard
2 02 0000 0010 double

The high-order half-byte is ignored, the low-order half-byte contains the multiplier 1 or 2
for character width

Quote End

Gosh, remind me not to get an IBM Proprimer XL24e printer! Does this description look
bad? Well, yes and no. There certainly is a lot of it. That is because the same command
changes the width of the characters as well as their height.

Let’s just go for the double height, like the other commands we have used before. To
start with there is the <ESC> code again. This is followed by the [and @ that we put in
quotes. Now for the <n> and <m> bits.

101

Chapter 12 Printing

The <n> bits are there to tell the printer how many mode bytes we are going to send. In
the text it is stated that they are normally 4 and 0 which makes a bit of sense as we are
going to use all four mode bytes. So four and zero are the next numbers to go onto the
line.

The text describes the mode bytes ml and m2 as*without function’. In plain English that
means they don’t do anything so we will use a zero for each.

To use mode bytes m3 and m4 we need to look at the tables. The option we want to use
is double height line feed, which would move the paper up two lines, and double height
characters. This is the last entry in the table for mode byte m3 and it tells us to use the
number 34 decimal (22 in hexadecimal). Finally, there is the mode byte m4 that alters the
character width, which we are going to leave unchanged. The number here is a zero.

So by substituting the numbers we have just worked out into the Escape code quoted in
the Proprinter manual we arrive at -

<ESC>[@<n 1 ><n2><mlxm2><m3><m4>

27,[,@,4,0,0,0,34,0

Easy, isn’t it?

Finally, let’s look at a laser printer’s code. There isn’t a double height command here,
but we can change the point size of the font that is selected.

Quote from manual
Point Size (primary font) ESC(s#V
Point Size (secondary font) ESQsttV

Function Selects the primary or secondary character font height. Value #
equals the height in points, and may include decimal fractions.

The following are typical values for font height:

Value Font Height

7 point (Not available using the resident fonts)
8 point (Not available using the resident fonts)
85 point
10 point
12 point
14.4 point (Not available using the resident fonts)

102

Chapter 12 Printing

Description

Character height is based on points with larger fonts having a higher point size than
smaller ones (12 point Courier is larger than 83 point Courier). If you select a point size
that is not available, the printer uses a font with the closest point size.

For scaleable fonts the value field is from 0.25 to 999.75 points in increments of 0.25
point.

One point equals 1172 inch.

Quote end

Well here is an easy one. To change the point size to 24 point just use

27,(,s,”2”,”4”,V

Output Code to Printer (>OC n n)

Here is the command that you put in front of the code to send to your printer.

The command line to change a laser printer to double height becomes -

>OC 27",T, "S", "2", "4", V
Multiple Commands

There is nothing to stop you issuing multiple commands to the printer. Normally, you
just keep adding the next command straight after the previous one.

Laser printers follow a different rule. The last character in each command is usually a
capital letter. To join two commands together you change the previous command’s last
letter to lower case and continue the next command without the escape character
sequence.

For example, if you wanted to combine the two commands ESC&[10E and ESC&[6D,
you would end up with the sequence ESC&[l0e6D.

TIP Gotcha Printer Codes

There are several tricks that printer manufactures get up to when designing codes.
Their favourite ones include using the following:

using a lower case L that looks like a number one

103

Chapter 12 Printing

using a capital 0 that look like a number zero
a number (0-9), which is used as an ASCII code instead of a number, which
needs to be put into quotes.

Printer Code Not Working

There are more wrong printer codes than there are right ones. You need not be afraid of
getting it wrong. There are no self destruct codes. All that happens when the code is
wrong is that the printer doesn’t do what you expected. It might stop working when it
reaches the code, or it might print different characters (including pan of the code) onto
the paper.

Before throwing your printer out of the window, just take one last look at the printer
manual. Perhaps there was a small phrase in the description that you didn’t understand
the first lime through.

If you find some of the code being printed, then the letters or codes before that are
probably wrong. If all else fails, there is another trick that you can use.

Hex Dump

A good way to find what Notepad is really sending to your printer is to put the printer
into Hex Dump mode. How to put your printer into this mode is explained in your
printers manual. It should then print out both the ASCII characters and the hexadecimal
number.

To test a code put the printer in Hex Dump mode and write a three line document For
example:

The start before the code

>OC - put the code string here

Here is the changed text

At the start of the printed document you will see the initialisation codes that Notepad
sends to the printer. Your text should follow that.

The escape character in hex is IB and you will also see some 0D and 0A numbers that are
linefeed and return codes.

By printing out a small amount of text with your code(s) you could find out what is

104

Chapter 12 Printing

wrong with your code. If you find that the correct code is being sent to the printer from
your Notepad, then it is time to get in touch with your printer supplier for advice.

Lines and Foreign Characters Don’t Print

If your printer does not print lines, there is a good chance that it is not using the correct
table. You should compare the printer’s ASCII table to the Notepad’s ASCII table. They
should be identical for the first half, with possible changes in the second half of the table.

Often, the printer has several tables that it can use. Make sure that the correct one is
selected and that the Printer character set in the Printer Configuration menu is set to IBM
on the Notepad.

Microspacing and Proportional Printing

Microspacing and Proportional Printing have to be turned on from within your document
By default they are turned off. Furthermore, you will only see any effect from them if
you have right justified your document.

With ordinary character spacing the spare space is collected on the left and right of the
line. When microspacing is turned on, the amount of space that soft spaces take up is
redistributed evenly between every word in that line. This makes the text look better, and
can be used on printers that do not support proportional printing.

Proportional priming is even better than microspacing. Instead of allocating the same
space for each character, proportional printing changes the amount of space each
character uses. It might be obvious, but an‘ms takes up more space than an‘i’ when you
write it. When you print them normally there is a lot of space on either side of an‘i’ but
the‘m* looks a bit squashed.

Define Microspace Code Sequence (>MC n n)

The commands for microspacing and proportional printing should already be defmed in
your printer driver. If microspacing doesn’t work, then add the commands into your
document.

The Microspace Code defines the sequence of codes that moves the print head by the
smallest amount. Other names that it can be known as include Horizontal Mode
Increment and Graphics 120 dpi.

A typical example would be >MC 27,L, 1,0,0

105

Chapter 12 Printing

Define Character Width (> CW)

This defines the width of a character when microspacing. The default number is twelve.
Other examples are ten for elite, seven for condensed and fourteen for condensed
enlarged.

MicroSpacing On/Off (>MS ON/OFF)

This turns Microspacing on and off. The default is off.

Proportional Printing On/Off (>PP ON/OFF)

This is selected by turning it ON with this command and using the Style attribute^*
command at the start and end of text you wish to be printed.

If your printer supports proportional printing the Notepad has to alter the number of
characters that it can print on each line while printing. If you had a line offs you would
get more of those on a line than would if you had a line of m*s.

This command has been designed for use with proportional daisywheel or laser printers.
Dot matrix printers can work very slowly in this mode. Fixed pitch daisywheel and non­
proportional dot matrix printers do not use this command.

106

Chapter 13

Layout
Configure Menu (Function 3)

One of the commands listed on the template is Configure. Select this by holding the
function key down first and then the number 3. There are two menus that can be viewed
here. The first one is shown straight away and is called Editing Options menu. To select
the View Options menu instead move the cursor up one line. To change any of the
default settings move the cursor to the required line and change‘No’ to‘Yes’ with the left
or right cursor keys. Press Stop to return to your document.

Overtype4lit It or 4- 4 to change* t 4 to move^ Stop to Finishnsert on Word urap Right Justify Dec I mol character Key repeat startup delay Key repeat period (100tn s Cursor Flash period (100th

S8nin((100th secs) (50) secs) i secs)
(5)
(50)

Insert on/off, Word wrap and Right we have already covered earlier.

Decimal Character

The decimal character (.) is the character that is used for the decimal point. In the UK
this is usually a full stop, but in other countries a comma is often used. If you use a
different character, change the full stop to the character you use.

Key Repeat Startup Delay (100th secs)

When you press and hold a key down the Word Processor waits for a certain length of
time before it starts repeating the character again.

If you do not want a repeating character you can set this to a maximum of 1000 (10
seconds) before the character is repeated.

By changing the time delay you can customise Notepad to your typing speed.

107

Chapter 13 Layout

Key Repeat Period (100th secs)

Once the word processor has started repeating a key the repeat rate is controlled by this
setting. The lower the number - the faster a key will repeat.

Cursor Flash Period (100th secs)

This number just changes the speed the cursor flashes.

—1 IIIWMfflffffl Press 4 to change/ t,4 to move/ Stop to Finish
Shou printer oodes? (No) Ncfl
Show spaces? (No)
Show tabs onql return*?
Shou status information?
Shou ruler

!Hsi
(No)

View Options Menu

All these options are simple YES/NO settings which determine whether the particular
information is shown in your document.

Often in Protext, you will find there are subtle differences in using what may be at first
sight the same command. This is particularly true when dealing with these menus. Once
you change any of the settings here, all your future new documents will use this set up.

Page Layout
When a document is typed into your Notepad, what you see typed on the screen is what
will be printed in the active area of the page. The margins around the sheet of paper are
not normally printed on, or shown on the screen.

This means that although you type from the left-hand edge of the screen, the primed text
will be placed five characters to the right. This is due to the side margin that is set to five
unless you have changed it.

There are margins all around the sheet of paper that you can alter from the Page Layout
menu.

108

Chapter 13 Layout

Page Layout Menu

py llli^l B^j^UU^Q H II I or * to change
Top margin CIlnes)
Header margin (I jnes)Footer margin lI n«t)Bottom margin (lines)Side margin (ohars) ne spec Ing (IInesI

Finishto move* Stisi(3)
(2)

lI

To select this menu press the Function and the 7 keys.

I Top
Margin

r Header
1 Margin

Header Text

ATEXT AREA SHOWN
ONSCREENSide

Margin

Page
Length

-R.(!->
If there is no left margin indicated on the ruler line,
the text will be printed against the side margin. To
centralise the text the right margin must be property
positioned.

text
priming

area

If a left margin is indicated on tkeruteflihe* the
main text will be printed with extra spaces
between it and the side margin.

1
Bottom
Margin

Footer TextPooler
Margin

109

Chapter 13 Layout

Why Change These Settings?

The default settings in this menu have been designed for use with A4 paper. Should you
want to use a different size paper, or just change the look of your printout, you will need
to change these settings.

A good way to plan a new layout is to use the*Print Test Page’ to see where all your
margins should be placed. This can be easier than trying to calculate how much space
each line takes up.

Change the Menu or Use the Commands

When you change the settings in the Page Layout menu, they will be used on your current
document and any new ones you create in the future. So you should have these set to
your standard layout preferences.

If you are printing just one document that needs a different layout, it is a good idea to use
the page layout commands instead. These commands will be saved with the document
and will be executed when printing takes place. They will leave your standard layout
settings alone.

Template Files
You may decide to take this even further by creating separate template files, which contain
the various page layout and margin settings in the document. These files can either be
loaded into any document before you start typing or used with the Insert command.

Examples of Template files

Letter template

>CO letter template
>SM 10
>PL 72
>CP OFF

; - Side margin 10
; - Page length 72 (for 12 inch paper)

; - Continuous printing off (single sheet)
-R>

Filofax Template

If you are using continuous paper with holes down the edge, you can use this layout It
will also enable you to use the holes down the side to fix the page into the book.

110

Chapter 13 Layout

There are two layouts. One uses single line spacing and the other uses half line spacing,
to try to get more information on the sheet When using this version, change your Style
Attributes in the document to condensed and superscript (if possible).

>CO filofax template - ordinary version
>LS 1
>SM 0
>PL 19
>CP ON
>FP ON

; - single line spacing
; - Side margin 0
; - Page length 19 (for filofax paper)

; - Continuous printing on (continuous sheet)
; - Format text whilst printing

■R

>CO filofax template - tight version
>LS 0.5
>SM 0
>PL 38
>CP OFF
>FP ON

; - half a line spacing
; - Side margin 0
; - Page length 19*2 (for filofax paper)
; - Continuous printing on (continuous sheet)
; - Format text whilst printing

R>
>CO set condensed (Control X c) and superscript (Control X t)

Page Layout Commands
The following commands are used with a number after them that is indicated by the‘n\
They do the same thing whether they are changed in the Layout menu or as a command.

Top Margin (>TM n)

Starting at the top of the page the top margin allows you to define how many blank lines
you want at the top. Some printers are not able to print the first few lines, especially if
they use a sheet feeder.

The other good use for this command is if you are using preprinted paper, say with your
name and address already shown. You must experiment with the number of blank lines
you need to set together with the next command if you use headers in your document.

The default value is three.

Header Margin (>HM n)

The header margin comes after the top margin. If you have defined a header it is two
lines long, otherwise it is ignored.

Ill

Chapter 13 Layout

Side Margin (>SM n)

The side margin refers to the number of blank spaces that the Word Processor prints on
the left-hand edge of the sheet. It is called the side margin to stop you thinking of it as
the left margin. The left and right margins are defined separately by the ruler line.

The default value is five.

Odd side Margin (>OM n)
Even side Margin (>EM n)

These commands are used instead of the side margin command if you want a different
side margin on odd and even pages. This is usually used when printing pages for a book
to keep the margins further apart in the centre of the spine. You must be content with the
same right-hand margin in the ruler line though.

The default value for both these margins is five.

Footer Margin (>FM n)

rhis is like the header margin only for the footer. If the footer is not used then neither is
this margin.

The default value is two.

Bottom Margin (>BM n)

Last but not least is the bottom margin. Again, some printers lose their grip on the paper
at the bottom.

The default value is three.

Page Length (>PL n)

The page length is the total number of lines that could be printed on the paper you are
using. This should include the top and header margins, the text that you type and the
footer and bottom margins.

Zero Margins (>ZM)

A quick command to get rid of all the margins in one go. Good for creating draft copies

112

Chapter 13 Layout

of documents and the‘Printer Test Page’. By removing all the margins to start with, you
can then decide where to place them.

Miscellaneous Commands
This section contains several easy-to-use commands that display messages on the screen
while you are printing. We have also included some other commands here that don’t
belong to any other section.

Comment Line (>CO text or »> text)

Comment lines are used to remind you what you were doing within your document. They
don’t get printed, but remain in the text when you save your document.

You could use “>CO I could never get this code to work, leave it alone” in front of
another command. You could use‘»>’ in front of another command as a temporary
patch, perhaps until you could get the code to work.

You can also add a comment after using a command by using a*;’ mark between the
command and your comment. You could use this to remind you why you were using that
command.

Whether designing a mail merge document, or simply leaving a note, comment lines are
worth their weight in gold, should you remember to use them in the first place.

Messages

Rather than throwing paper aeroplanes round the room while printing a document, you
can send messages to the Notepad’s screen to tell you how it is getting on. We will be
covering other aspects of displaying messages to the screen when we discuss Mail
Merging.

Clear Screen and Display Message (>CS text)

This is a good command to use at the start of any messages, as it clears the screen so that
messages start at the top.

Display Message (>DM text)

This is the message command. You could use it to display a message like

‘>DM half way through’, or‘>DM not much longer

113

Chapter 13 Layout

Watt and Display Text (>WT text)

Using a Wait command with an optional message will give you a choice of actions. If
you press any key except Stop, the printing will continue. The Stop key will return you to
your document where the Wait command was placed.

Stop Printing and Display Text (>ST text)

This command immediately stops the printing and returns you to the Stop statement in the
document.

Insert Document (>IN document name)

The Insert document command is very important for those users who wish to print
documents greater than the 38K restriction that the Notepad gives. But you don’t need to
write a large document to benefit from using this command. We talked about creating a
template document to hold your page formatting instructions. The Insert Document
command allows you to include a standard set of layout instructions whenever you need
them. You don’t have to type them in again every time. There is nothing to stop you
even printing a one page letter from several smaller files.

Here is a small example to show how to use Insert on your Notepad. The following lines
are typed into a document and become a print list. The documents that are listed will be
printed in sequence. You just tell the Notepad to print the list of documents. Page
numbers in headers or footers will be counted as if the print document were one large
document.

>CO Print out document for Main Newsletter
>IN header.doc ; this is my address header
>IN Istqtr.ltr ; the news in January to March
>IN 2ndqtr.ltr ; the news in April to June
>IN 3rdqtr.ltr ; the news in July to September
>IN 4thqtr.lLr ; the news in October to December
>IN alWnow.ltr ; All for now - close
>IN lovefrom.ltr ; Love from ending

If you didn’t want to print any of the quarters, you could just leave them out of the main
list.

114

Chapter 14

Mail Merge
Mail Merge gives you the ability to combine elements from several different files and/or
the keyboard and send them to several different places. The finished product from the
Mail Merge process can be sent to either the screen, another file or the printer. Why
would anybody want to use such a program?

The most common example is writing a mail shot letter to several different addresses,
where the addresses are stored in one file while the main letter is stored in another file.
Many companies use this method for customer enquiries. The names and addresses are
typed into a data file during the day, then shortly before the postman is due to pick up the
mail, the letters are printed with each person’s name and address on it. That should give
the impression to the customers that an individual letter has been written to them.

Mail Merge can be used for other applications as well. It can generate address labels,
issue invoices and calculate totals or even generate a data file.

Definition - Data File

A file like the Address Book file (but you can’t use the Address Book directly) that
stores information in a predetermined format.

As the Notepad has BBC BASIC, there are applications where you could use that to do
the same thing as you could do with Mail Merge. Many key ideas are the same for both
Mail Merge and BASIC, things like variables, operators and conditionals like If Then
Else. We have covered these here as well as in BASIC so that you don’t have to keep
jumping into the BASIC section while you are trying to read about Mail Merge.

Precautions When Using Mail Merge

Here is yet another reminder about making backups. With Mail Merge you are writing
programs. These programs use commands that, if used incorrectly, will crash your
Notepad. The result is that you will lose all your files Gust like we did). The same may
also be true if your Notepad runs‘Out of Memory’. Once your Notepad has no more
space in memory to work in, it will not respond to any key presses. If this happens, all
you can do is to turn it off and then on again. If you are lucky you will only have lost the
document you were working on last. It is possible, however, that all your documents will
have vanished from the list. Please reduce the risk of losing your documents and files by
keeping copies. See the Introduction for details of how to do a Backup.

115

Chapter 14 Mai! Merge

Designing a control document
There are several steps in writing a mail merge file, which we are now going to call the
control document.

Using Comment Lines and Insert in Mail Merge

It is a good idea with Mail Merge to write some brief notes to describe what you want to
do before diving into the commands. If you make the notes into a list, you could use
them as comment lines in your control document. Comment lines are notes and
reminders that you write into a Control Document to remind yourself what the program
should be doing. They are useful when you return to the Control Document later to
modify it.

There are groups of commands that are repeated in each Control Document that form
naturally into modules. One module will contain the instructions to call up a data file.
While the instructions that tell your Control Document what the data file holds in what
order can be written as a totally separate module. Each module will be stored in a
separate file. You can then use the Insert command to join all the modules together. This
keeps mail merge files smaller and easier to use.

As you design more of these modules you can build quite complicated Control
Documents without having to start from scratch every time.

Testing

Most Control Documents start life out-of-control. To bring them back under control you
need to test each module. There are a few commands that can help you.

To test your mail merge file, there is a useful facility called Print to Screen. This saves
printing on lots of paper before you have finally got your document correct. You can put
Wait statements (with or without a message) into your Control Document so that while
you are printing to the screen you have time to read each screenfull before it scrolls off
the top at the speed of sound.

The Display Messages command can also help when you are testing your Control
Document because it can tell you where the program is instead of where you think it
might be.

Check If It is Worth Doing Mail Merge

When we first started writing control documents, it quickly becomes apparent how long it

116

Chapter 14 Mail Merge

took to make everything work. At the beginning if we had three letters to write we would
use Mail Merge. Now if we only have a few letters to write we don’t bother because it is
quicker to copy the file and change the names and addresses manually.

If you are sending a particular letter often, Mail Merge comes into its own.

Keep Your Control Documents Friendly

When designing a Control Document, the Display Message command will show you on
the screen what is being printed. This makes the difference between seeing what the
document is doing and wondering if anything is happening. We will use this command
often in the examples - so here it is.

Display Message (>DM text)

Just type in the text you want to display at this point.

There are other commands already covered that can indirectly display messages on the
screen. These are‘Clear Screen’,‘Wait’ and‘Stop\ Some examples include:

>CS This message will be displayed at the top of the screen
>WT Change the paper, press any key to continue or'Stop' to Stop
>ST This is the end of the mail merge control document

Where Should You Start?
Let’s start with a simple example - sending three letters using mail merge. Yes, you are
right, normally you wouldn’t use this to send just three letters, but you can always add
more addresses later. The first thing we need is a data file. This should contain the name
and address of the people we want to send the letters to.

Designing Your Data File

Before making up a data file, you need to plan its structure before you start typing in
anything. You need to decide how many fields there are in a record. We have decided to
use the same number of fields that the address book uses.

Definition - Fields and Records

Let’s define a couple of words that are database terminology.

A record is one entry made into the database. In this case the name, address, the

117

Chapter 14 Mail Merge

telephone and fax numbers.

Each segment of a record is called a field. The fields are the name, four address lines, the
telephone number and finally the fax number. So we have seven fields in one record, and
as we are going to create three different addresses, there will be three records.

Input for Mail merge

There are three ways of getting the necessary data into your Control Document. First
there is the command file itself, followed by the data file. You can also input data from
the keyboard while the document is being printed.

Data File

The data file is a separate document that contains the data that you wish to use with the
Control Document. The data that we are using here is names and addresses, but it could
also be other information like invoice numbers and amounts.

Your data file becomes your database; that is the base where all your data is held.

Making up a Data File

There are three ways of making your data file.

The simplest is just to type the addresses into the file, which is what we are going
to do now. Of course this would not normally justify the use of Mail Merge.

Secondly you could use the same names and addresses that are in the Address
book.

and

Thirdly we could make up a control document that allows you to type in the
different fields and add them to your data file. We will cover this after we have
described all the mail merge commands.

Typing The Address Directly

To type the names addresses in directly, start a new document and call it typeaddr.dta.
Then just type in some names and addresses in seven lines.

118

Chapter 14 Mail Merge

Jon Day
Kuma Computers Limited
Unit 12 Horseshoe Park
Horseshoe Road
PANGBOURNE Berkshire RG8 7JW
0734 844335
0734 844339

Witch of The North
Deadly Nightshade Cottage
Web Lane
Greater Cockoospit
Scarpa Flow Shetland SD234 76qd
08642 45398786
08642 45390765

John Smith
1000 High Street
Braintree
Essex CM7 8QN

0222 215555 Car Phone 0850 555123
0222 215556

You could replace the above names and addresses with some of your own instead. If you
have a short address, remember to leave a blank line so that the field numbers still line up.
Let’s look at the last address again to illustrate what we mean.

Field 1
Field 2
Field 3
Field 4
Field 5
Field 6
Field 7

John Smith
1000 High Street
Braintree
Essex CM7 8QN

0222 215555 Car Phone 0850 555123
0222 215556

You will notice that field 5 is blank in this case. If you hadn’t left it blank but put the
phone number there instead, you would find that the phone number would be printed as
part of the address. Not a feature that you would be proud of.

Using Addresses from the Notepads

Unfortunately, you are not able to use the ADDRESS BOOK file with your names and
addresses directly with Mail Merge. If you want to use them with Mail Merge, you need
to transfer each address separately to the data file. We covered transferring addresses into
documents earlier.

119

Chapter 14 Mail Merge

Building Up The Control Document

We talked earlier about saving different modules of the complete Control Document into
small files. You can then join them together using the Insert command.

Here is the list of modules;

Defme the data file
Print our letterhead
Print the address of each person
Print the rest of the letter

All we have to do now is to work through the list.

Defining the Data File
Now that we have a small data file, it is time to start writing our Command Document.
This is the file that should be in charge of the whole operation. Let’s start by giving the
information about our data file.

Open another new document and call it addrdf.def, which is short for address data file
definition.

Define Data File (>DF filename)

This tells the control document the name of the data file. Remember what we called it?
That’s it typeaddr.dta, so the first line of tthe control document should read:

>DF typeaddr.dta

Note When you are in advanced mode is that you can use more than one data file in the
control document, but you need to close the data file first before defining another one.

Variables
When decsribing something to an unintelligent computer, you need to tell it everything.
To start with, it is necessary to define what items you want t o work with. In a cookery
book, this may be the ingredients like four tomatoes and a loaf of bread. To repair a car,
fopur spark plugs and so on. In a computer the data is stored as variables.

The three variables we mentioned above, need to be defined first before the value they
have can be printed.

120

Chapter 14 Mail Merge

Tomatoes = 4
loaf = 1
Spark Plug = 4

The items or variables that need defining for names and addresses are the field names thar
we have just covered.

Once a variable has been created, the value that it contains can be printed by using the
variable name between two‘&* characters.

What’s in a name?

When defining anything, we need to think of a name for what we are defining. It usually
helps if the name that we come up with has some meaning of what it is describing so that
you will remember what it means or represents.

Since you can call a variable anything, choosing a name is quite easy. Look at one of our
records in our data file for example.

John Smith
1000 High Street
Braintree
Essex CM7 8QN

Field 1
Field 2
Field 3
Field 4
Field 5
Field 6
Field 7

0222 215555 Car Phone 0850 555123
0222 215556
blank line

We have seven variables and a blank line to define here. We could defme them as:

Field 1, Field2, Field3, Field4, Field5, Field6, Field7 and dummy for the
blank line.

Is this a good choice of names? They could be improved, by changing the names to
indicate what each field represents. Say, Name, Addrl, Addr2, Addr3, Addr4, Tel_No,
Fax_no and dummy.

Variable Name Rules

You cannot have a space in a variable name, nor start one with a number. As with
document names you can use the underscore character to join one or more words together
in a name so it looks like one word. Although you can make a variable name up to 255
characters long, it is a good idea to keep them short. This does two things. First you do
not have to type many characters each time you call them and secondly shorter names use

121

Chapter 14 Mail Merge

less of the Notepad’s memory.

Variables not found - message

If you use a variable that you haven't created yet, you will get the Unknown variable
message when you print the file.

TIP • Do Not Leave Variable Values Between &s in the Comment Lines

If you want a variable’s value printed you have to put the variable name between
&s. Putting &addrl& in your Control Document would tell Mail Merge to find the
variable and print it’s value.

Although Mail Merge is supposed to ignore everything in a comment line, it will
recognise and try to print the variable’s value. If it is a variable that you have
already created there isn’t a problem. Mail Merge will try to print the variable
value but then it will realise that it is a comment line and ignore it. If, however, that
variable has not been created beforehand, it will stop your Control Document in its
tracks and give you an*Unknown variable’ message.

Reading Variables in the Control Document

Back to our data file. There are two different commands to read data from a file and
assign it to variables. Both commands clear the values that the variables are holding to
make way for new values. But they stop reading new values for different reasons.

Read Variables - (>RV name)

>RV just reads data and assigns it to a list of named variables until it reads a blank line.
Any unread variables in the list are set to be blank. This is the simplest approach but it
has a serious drawback when dealing with addresses. Address data frequently includes a
blank line within a valid address. For example:

John Major
10 Downing Street
London

W1 1AB

If we use a command line something like:

>RV name, addrl, addr2, addr3, postcode

122

Chapter 14 Mail Merge

the first three variables would have the correct values assigned to them. But the variables
addr3 and postcode would be left blank because of the blank line in the address data.

Read Variables Unconditionally - (>RU name)

>RU assigns data from a file to variables in the same way as >RV. The difference is in
the way that blank lines are treated. >RU always reads as many items from the file as
there are variable names in the list. It is quite happy to read a blank line.

You would use >RV if your data file has varying numbers of fields for each record with a
blank line at the end of the record. You would use >RU if your data file had the same
number of fields in each record and/or included blank lines in the data.

In our example we have the same number of lines (one for each field) for each record.
This means that we should use the >RU command.

Read Variables and pad with nulls - (>RV name)

If you need to use >RV because of differing record lengths but need to have the flexibility
of including blank lines in the data, you can start each blank line with a dollar character.
The*$’ character tells Mail Merge that this is a blank field within a record and not the
start of a new record.

John Smith
1000 High Street
Braintree
Essex CM7 8QN
$
0222 215555 Car Phone 0850 555123

Another Way of Using The >RV Command

There is another way of using the >RV command without putting the‘$’ into blank lines
in the records. If you split the command line into several shorter RV lines and end each
line with the variable that might be blank, Protext will read the record correctly.

For example, if you thought that Addr3, Addr4, Tel_No and Fax^no would be blank, you
could re-write the RV line as follows:

>RV Name Addrl Addr2 Addr3
>RV Addr4
>RV Tel_No
>RV Fax_no
>RV dummy

123

Chapter 14 Mail Merge

Close Data File - (>CF)

This command closes the data file when you need to use several different data files in the
same command document. You would use this for example if you were pulling
information out of more than one data file. The data files don’t need to be in the same
format provided you change your >RU or >RV to reflect the change of variables in the
new data file.

Our first Control Document should look like this:

Name of Document addrdf.def

>CO Address Definition file
>DM Reading Address Data File
>DF typeaddr.dta
>CO ** Read the variables **
>RU Name Addrl Addr2 Addr3 Addr4 Tel_No Faxjno dummy

; this displays a message
; define the data file

You can add as many comments as you like to remind yourself what these commands are
doing.

Adding Your Letterhead

Adding your letterhead to the Control Document so that it will be printed is easy. You
just need to add‘letterhd.doc’ to the end of the list of files to be printed in the Control
Document Just to remind ytou, this document should have been created previously when
you wrote ‘the fust letter1.

Print the Address to Each Person

Now for the interesting bit - printing the variables that we have read from the data file.
When you want a variable to be printed, you should put an‘&’ character at the start and
the end of that variable’s name.

Time to get another new document and call it praddr.mmg - short for Print the address of
each person. If you type in:

&Name&
&Addrl&
&Addr2&
&Addr3&
&Addr4&
it will print the name and address.

124

Chapter 14 Mail Merge

Print the Rest of the Letter

You can repeat these variables as many times as you like within the letter, so you to can
now write a letter that says:

Dear Mr Smith,

Yes, Mr Smith, you are one of the chosen few at 45 Orchard Drive that have won
the Golf GTI should you attend a meeting near the north pole on Tuesday.

You would type the letter into the control document, replacing the words with the
variable names. That would make it look like this.

Get another new document, call it restltr short for Print the rest of the letter and type in
the following.

Dear &Name&,

Yes, &Name&, you are one of the chosen few at &Addrl& that have won the
Golf GTI should you attend a meeting near the north pole on Tuesday.

Testing & Putting It All Together
That’s it. All that remains now is to make a file to call up these files that we have just
created. You are not expecting it to work first time are you? It is always a good idea to
test your Control Documents by printing it to the screen.

As the Notepad’s screen can only display eight lines, printing the complete page to the
screen is difficult to read. Unless you have a set of eyes that can roll vertically we
suggest making an additional screen print layout file for testing purposes.

Here is the file, complete with comments, using commands already covered.

Name of document ScrPrintTEST

>WT Press any key to continue . . .;Wait to display previous
messages
>CS ***
>DM * This file changes the page length of any document so *
>DM * that it can be displayed on the screen in viewable chunks *

ScrPrintTEST document selected. *
REMOVE DOCUMENT FROM LIST WHEN FINISHED TESTING *

>DM ***

>DM *
>DM *

125

Chapter 14 Mall Merge

XX> There is a full-stop in the next line
>DM
>WT Press a key to TEST or'Stop' twice to STOP ;Wait to display
previous messages
>CS Testing mail merge document
XX) Clear both the top and bottom margins

; Top Margin
; Bottom Margin
; Set the page length to seven lines
; Continuous printing off, pauses between pages

; Clear the screen

>TM 0
>FM 0
>PL 7
X3P off

First Mail Merge file

Remember our list earlier of what we wanted to do? Well here is the final list of files that
you can use to print your first Control Document. The ScrPrintTEST line at the
beginning of the document, is used to test the Control Document first. This should be
removed when testing is complete.

Name of new document Mailml

>IN ScrPrintTEST ; FOR TESTING ONLY
>IN addrdf.def /Define the data file
>IN letterhd.doc /Print our letterhead
>IN praddr.mmg /Print the address to each person
>IN restltr /Print the rest of the letter

Testing, Testing, Testing ...

To test this mail merge document, use Prim to Screen - Menu P first. You should see
each letter being printed on the screen in small chunks, pausing every eight lines.
Pressing the space bar moves you to the next eight lines until all the addresses in the data
file have been printed. If any part of the letter goes wrong, try to identify which of the
files is causing the problem.

If different parts of the address are being printed incorrectly, check that the data file fields
are in the right order.

When you are happy that everything is all right, remove the test line, connect the printer
and print out those letters.

126

Chapter 15

Address Labels
When you need to print lots of letters, it is often cheaper to get the letters photocopied
and print self adhesive labels to stick onto the envelopes. At first sight this seems easy as
printing address labels is just like printing multiple letters (as above) without the letter.

There are, however, a few differences that need to be discussed before looking at some
more commands.

Practical Printer Problems

Not all printers can print labels. When using dot matrix printers you should set the paper
thickness near to the maximum setting. This is usually set by a lever that moves the print
head away from the roller. If the setting is too close, print smudging or even label
jamming can occur.

Printer labels come on a variety of sizes and types of sheets. It is important with these
labels that your printer can print consistently at the same place on each sheet every time.
This is not always possible with printers that rely on the manual insertion of sheets .

If you have a tractor feed on your printer, then you should get the labels with the
perforations down the edge.

If your primer has a sheet feeder, then use single sheets of labels that are designed for
laser printers.

Depending on the size of the label, you can gel sheets that have one, two or even three
labels across the width of the sheet. To start with we will just consider how to print one
label at a time on a sheet with two rows of labels.

Positioning the Print on the Label

If you print a‘Test page’ its will give you the information you need to correctly position
the addresses.

Page Layout for Labels

Unlike a letter, where we can use the default settings for page layouts, labels are different.
They are smaller and there are several of them on the sheet.

127

Chapter 15 Address Labels

Ruler Line Settings

67890123456789012345678901234567890123456789012345678901234567890123456
12345678901234567890123456789012345678901234567890123456789012345678

H h Side Margin

OO

oo
oo

$7890
23456789012345678901234567890123456V %90
23456789012345678901234567890123456 '890

1234(567890123456789012345678901234567890^
1234 >67890123456789012345678901234567890
1234 >67890123456789012345678901234567890
1234 567890123456789012345678901234567890
1234 >67890123456789012345678901234567890
1234567890123456789012345678901234567890
1334 56789012345678901234567890123456789C 234S6789012345678901234S678901234S6 '890
12346678901234567890123456789012345678901234567890123456789012345678901234567 o90

1/1 SftTftQfll9 vlvi/KQri 1 7 lils

23456789012345678901234567890123456 '890
23456789012345678901234567890123456 '
23456789012345678901234567890123456 '
23456789012345678901234567890123456 '890

t
Page
length

o o

o o

o o

Sample Address Label Page

128

Chapter 15 Address Labels

Altering the Page Length to the Length of a Label

When printing the Mail Merge letter, we got one address on every page. You don’t want
that to happen when printing labels because you would only print one and miss out the
other labels on the sheet. To make the Word Processor print each label, change the page
length to the pitch of the label. The pitch of the label is the sum of the label height plus
the space between each label.

Depending on the labels and printer that you are using, you may have to change the page
length setting. Some printers are happy with the Word Processor just sending blank lines
to move to the next page (or label in this case). Other printers require the correct page
length to be set and a form-feed character to be sent to tell it when to move to the next
page. In that case you need to let the Word Processor and the printer know the page
length.

On the Word Processor it’s easy, just use the >PL Page Length command.

To find out which way your printer prefers to change the page length try the Line Feed
option first since it is easier. If that fails, you’ll need to change the page length on the
printer.

In the following examples the pitch of the labels is nine lines deep.

Line Feed Option

Name of document labbll.set

; (zero margin) - no margins required
>RJ OFF: right justify OFF
>FP ON ; page formatting ON
>PL 9 ; set the page length to 9 lines
>FF OFF; Don't send the form feed character after each label

; Side nargin

>ZM

>SM 1

Form Feed Option

If the Line Feed option doesn’t work properly you may need to use this option instead.
You need to send the printer the codes to change the page length. You will need to
consult your printer manual to find the correct code. After the code has been sent (using
the >OC command), you can check that you have set it correctly by

129

Chapter 15 Address Labels

Putting the printer off-line,

and

Pressing the form feed button.

The printer should just move the paper up to the start of the next label If it doesn’t, then
you have sent the wrong code. See details on using the >OC command and sending codes
to printers for more information.

Here is our file to set up the page length using Form Feed.

Name of document labl.set

; (zero margin) - no margins required
>RJ OFF: right justify OFF
>FP ON ; page formatting ON
>PL 9 ; set the page length to 9 lines
»> CHANGE PAGE LENGTH TO 9 LINES ON PRINTER

>ZM

XXI #XQ #1B #4F #1B #43 #09 ; these are Epson printer codes
>SM 1 ; Side margin

Chopping Long Address Lines

When printing an address in a letter the length of each address line does not matter.
When printing an address on a label, we need to cut off any long lines that may not fit
You do this by splitting variables. Before you can split your variables, however, you
need to know about some more about variables.

More About Variables

So far we have only covered using variables in a data file, where we can put an address
line (Addrl) into a variable and then print it. It is also possible to create variables in the
control document and manipulate them. You can add other characters and combine the
value of two variables into one. Equally you can split a variable’s values. You can even
separate one of your address lines into variables that hold individual words or characters.

There are two more commands (in addition to the RU and RV commands that you use
with a data file) that allow you to work with variables and their values. One is AV that
enables you to create a variable and/or give it a value with the keyboard while the Control
Document is actually working. You can also create variables as constants.

When inputting values for variables from the keyboard it is essential that messages appear

130

Chapter 15 Address Labels

on the screen. Then you know what the control document is waiting for when it stops in
the middle of printing. These messages must be as clear as possible to whoever is going
to use the Control Document.

Ask for Variable - (>AV message var)

This is the command that you should use to tell the Control Document to get the value of
a variable from the keyboard. You can type in an optional message and the name that
you want this variable known by. The message is then displayed on the screen as a
prompt when the Control Document reaches the AV command. What is typed while the
Control Document is being printed is stored as the value for that variable.

Use the following example to show that this works by printing it to the screen. There is
nothing to stop you adding this line to the previous Mail Merge letter. You do this by
placing the >AV line at the top of the letter and the &date& where you want the date to
be printed in the letter.

>AV "Today's Date? (Sym'D') " date
&date&
>ST

If you leave out the message part of the command, the prompt will become the name of
the variable followed by a question mark. In the example above you will get the prompt,
date?

Restricting the Number of Characters in a Variable

If you place a number between 0 and 255 after the variable name you restrict the number
of characters that can be typed by that number. Here is another example:

>AV "Try typing more than 5 characters here!" test 5
>DM You typed &test& didn't you
>ST

Notice that you can also display variables on the screen by using the >DM display
message command with the variable.

Setting Multiple Variables on the Same Line.

You can create multiple variables by separating them with a space, comma or a full stop
and adding them to the same line, just like the Read Variable line. The following
commands:

131

Chapter 15 Address Labels

>DM Type in the Name, Address (4 lines), Telephone and Fax Number
>AV Name , Addr 1, Addr 2, Addr3, Addr4, Tel_No, Fax_no

Type in the Name, Address (4 lines). Telephone and Fax Number
Name?
Addrl?
Addr2?
Addr3?
Addr4?
Tel_No?
Fax no?

If you have a blank line in an address press the Enter key after the prompt for that
variable’s value. That will leave the particular variable empty.

Set Variables to a value - (>SV name value)

This command creates a variable that is a constant. A constant variable can contain

a string of text
another variable's value

or
a number or a mathematical expression

An expression can involve other variable values that we will cover later in detail.

How do you use this? Suppose you want to make a variable called‘name’ to have'Betty
Norma StJohnStephens’ in it, you would type the command:

>SV name="Betty Norma StJohnStephens"

This has the same effect as using variables in the data file. After this variable has been
defined, you can use &name& to print out Betty Norma StJohnStephens wherever you
want in the document.

Why should you use this method rather than just typing out the value in the first place?
Well you might have a variable that is repeated several times like;

>SV year_end="30th September 1992"
>SV policy_no="Q45/8965/2491"
>SV count-1

You can change the values inside these variables very easily. By putting ALL your
variables at the beginning of the text or altogether they will be easy to find. You don’t

132

Chapter 15 Address Labels

have to search through the document for each occurrence of the word or phrase.

Adding and Splitting Variables

Now you know how to define the values of variables, you can use the same command
(>SV) to add and split them up.

Adding to Variables

Adding variables does different things depending on what the variables are holding.

Adding Text Variables

If you add two variables containing text together, the second value will be joined onto the
end of the first. Try out the following examples.

»> Defining some variables to play with
>SV first_name="Vic"
>SV middle_name=''Ian"
>SV surname="Gerhardi"
>SV space=" "
>SV full_name=first_name+space+middle_name+space+surname
>DM The final result is &full name&

The answer you should get when printing these commands to the screen is

The final result is Vic Ian Gerhardi.

Why not replace the variables with your own? You may notice that one of the variables
called space has been defined and called up twice to give the space between the three
words. Without the space, all the variables would be joined together into one long word.

Adding Number Variables

If your variables are numbers, they are added.

»> Use the Print to Screen facility when printing this document
»> Defining some variables to play with
>SV first_num=12
>SV second_num=3 4
>SV third__num=56
>SV add_num=first_num+ second_nuirt+third__num
>DM The final result is &add num&

133

Chapter 15 Address Labels

The answer you should get when printing these commands to the screen this time is:

The final result is 102.00

You will notice that when working with numbers, they get displayed to two decimal
places. You can stop these extra digits from being shown by using the following
command before the final result line.

>SV add. num=add num[wl]

which turns add_num into one word i.e. 102. More details coming up.

If one of the variables that you add is text, Protext will regard the numbers as text and
join them one after the other.

»> Use the Print to Screen facility when printing this document
>» Defining some variables to play with
>SV first_num=12
>SV second_num=34
>SV third_num=56
>SV string="Hello "
>SV add__num=string+first_num+ second_num+third_num
>DM The final result is &add num&

The answer you should get when printing these commands to the screen this time is:

The final result is Hello 123456

Splitting Variables

Remember, we wanted to chop off long address lines? Well, we’re here at last.

This is done by specifying which word or character in the variable you want to split or
even chop in the following way.

var[a:b] from character ‘a’ to character^’ inclusive
var[a:j from character ‘a’ to the end
var[a] character1 a’ only
var[W1] first word only - useful with numbers
var[Wa:b] from word1 a’ to word‘b’ inclusive
varfWa:] from word1 a’to the end
var[Wa] word‘a’ only
var[w-l] the last word only

134

Chapter 15 Address Labels

Words are defined as any group of letters or numbers separated by a space, a full-stop, or
a comma. This means that you can use [wl] to stop numbers from being printed with two
decimal places as shown in the 102 example above.

Let’s look at a few examples.

Using a variable called‘name’ which contains'Betty Norma StJohnStephens’,
you would get the following results.

name[4:9]
name[11:)
name[3]
name[Wl:2]
name[W2:)
name[W-l]

is‘ty Nor’
is‘a StJohnStephens’
isY
is* Betty Norma’
is‘Norma StJohnStephens’
is* StJohnStephens’

We can put the result of the split into another variable:

gives'Betty StJohnStephens’
gives'Norma StJohnStephens’
gives'Norm StJohnStephens’
gives'Betty Norma’
gives'Miss StJohnStephens’

>SV newname-name[Wl]+" "+name[W-l]
>SV newname=name[W2;]
>SV newname=name[1:4]+" "+name[W-l]
>SV forenames^name[Wl:2)
>SV newname="Miss"+name[W-l]

Chopping Long Address Lines - continued

The following file puts into practise what we have just covered it will cut the address
lines to just thirty characters.

Note, you may need to change the value of the Labelw variable to a different number that
corresponds to the width of the labels that you are using. Get the width from your Label
Test Page.

Name of document chopline

>DM Chop off long address lines
»> Put the label width in the following variable

; Label Width>SV Labelw=30
»> Chop all the variables in the file to be the width of the label
>SV Name=Name[1:&Labelw&}
>SV Addrl=Addrl[1:&Labelw&)
>SV Addr2=Addr2[1:&Labelw&]
>SV Addr3=Addr3 [1: &Labelw&]

135

Chapter 15 Address Labels

>SV Addr4=Addr4[1:&Labelw&]

Printing the Label

Well we are nearly there. All we have to do now is to write an address label. Not too
difficult as it is just like writing the address on the letter. The >PA command is used at
the end of the address to move the printer to the next page, which is of course the next
label.

You will notice that a ruler line has been added. This is used to line up the left-hand
margin for the label. Again, you may need to change where the left-hand margin or the
Side Margin command in labbll.set or labl.set is for your labels. The TAB marks will be
used in the next example - printing two labels side by side.

Name of document addlabel.

»>ppjNTING STARTS HERE*************************************
>DM Going to print Label to &Name& at &Addrl&
»>

!---- !> -R
&Name&
&Addrl&
&Addr2&
6Addr3&
&Addr4&
>PA

Printing the Single Address Label - Finale

Just like the letter, we have created the modules as we went along. Now we need to make
a list file to call up the modules. When testing on the screen, put the‘ScrPrintTEST after
the labbll.set line, so that it will override the label page layout.

Name of document praddlabl

>IN addrdf.def /Define the data file
>IN labbll.set ;Set up label page layout (or labl.set)
>IN ScrPrintTEST ; FOR TESTING ONLY - REMOVE WHEN FINISHED
>IN chopline
>IN printbl

/Chop off long address lines
/Print the address label with blank lines

Printing Two Labels Side by Side

There is only one problem with the above example. There are normally two labels side

136

Chapter 15 Address Labels

by side on the sheet as shown on the sample address label page. If you have lots of labels
to print and you don’t want to worry about the proper way, there is a cheeky way of doing
it. Print all the labels down the left-hand side, turn the sheets round the other way and
print the remaining labels up side down on the other side.

A better way would be to print both the left and right-hand labels in one go. There is a
way but to do it, we need to consider some more problems that need to be resolved.

When printing the address, you may notice that if there is nothing defined in a variable,
like a blank address line, it is not printed. This is desirable when printing addresses on
letters or single labels. However, when printing labels side by side, a blank line in one
address will cause a problem.

There are two things that are needed. First, to stop blank lines from NOT being printed
(Protext default is not to print blank variables). Secondly, a method that looks for any
blank address lines when the label is being printed and replaces any found with a space of
a specified length.

Print Blank Lines

When printing variables, we normally use the‘&’ character on either side of the variable
name to show Protext that the contents of the variable should be printed. If you use the*!*
character instead, then even if the variable is blank, it will still be printed.

To show this you could copy and modify the previous addlabell file to the following file.

Name of document printbl

»>PR I NT ING STARTS HF.RF1* *************************** *********
>DM Going to print label WITH BLANK LINES to &Name& at &Addrl&
»>

■R!!>
IName!
!Addrl!
!Addr2!
!Addr3!
!Addr4!
>PA

Running this file, you will notice that any blank variables would now be printed as blank
lines.

137

Chapter 15 Address Labels

Name of document praddlabbll

;Define the data file
;Set up label page layout (or labl.set)

>IN addrdf.def
>IN labbll.set
>IN ScrPrintTEST ; FOR TESTING ONLY
>IN chopline
>IN printbl

;Chop off long address lines
;Print the address label

Shuffling Address Lines

Now it is time to use a method that looks for any blank address lines when the label is
being printed. It will replace the blank line with the line below.

It is given the grand name of Conditionals!

Conditionals

Whenever you want to do something (on your Notepad) that needs a decision to be made,
you need to use conditionals. First there is the test, which can be regarded as the
question, followed by what to do if that test is true or false.

Fortunately there are only these two answers true or false. There are no ‘maybes‘ or ‘I’ll
think about it’.

The Test

Before looking at the commands, let’s look at what we are testing to make a decision.
This test is usually described in‘computer speak’ as a condition. There are two things
that need to be compared to do a test. The answer to the test will be true or false. Let’s
look at a few examples.

mother = mother TRUE
mother = father FALSE
2+2 = 4 TRUE

There are EIGHT possible comparisons that can be made. These are:

equal to
not equal to

less than
less than or equal to

greater than
greater than or equal to

o
<
<=
>
>=

138

Chapter 15 Address Labels

IN is contained in (e.g. “br” EN “Brett” is true)
(doesn’t care which case text is in)

NOTIN is not contained in

The IF Commands

When Protext has processed our previous examples of control documents, every
command line in the document has been executed. The command lines are executed in
the order in which we have included them in the control document The IF command line
allows us to change the order that the control document is executed depending on the
result of a test.

There are three parts to an IF command. The IF itself starts the process and includes the
test that needs to be performed. All the command lines following the IF will be executed
if the test is TRUE. The ELSE command tells Pro text what to do if the test was FALSE.
All the command lines following the ELSE will be executed if the test was FALSE. The
END IF command tells Protext where the end of the IF command is. For example, the
following few command lines would cause a different message to be printed depending
on what the variable‘colour’ holds:

>IF colour = “red”
»> this is our TRUE block of command lines
>» show a message for a red jumper
>DM Your jumper is red
>EL
»> this is our FALSE block of command lines
»> do this bit if jumper is not red
>DM Your jumper is not red
>EI
>» finished the IF command

You don’t have to include any command lines in either the TRUE or FALSE blocks. If
we wanted to change the above example so that nothing was printed when‘colour’ was
any value other than‘red’, we could just leave out the ELSE part of the IF command.

>IF colour = “red”
»> this is our TRUE block of command lines
»> show a message for a red jumper
>DM Your jumper is red
>EI
»> finished the IF command without doing a FALSE block

We could equally well reverse the situation so that a message was only printed when the

139

Chapter 15 Address Labels

variable was not4red’.

>IF colour = "red"
>EL
»> this is our FALSE block of command lines
»> do this bit if jumper is not red
>DM Your jumper is not red
>EI
>» finished the IF command without doing a TRUE block

Let’s create a Control Document to play with the different comparisons using the IF
commands. To use any of the IF commands you simply pick which command you want
to use, followed by the condition. We will type the different variables and conditions
from the keyboard and display messages from within the true and false blocks using the
ELSE command.

Name of document playcond.

»> Use the Print to Screen facility when printing this control
document
»> to play with conditionals (and get to know them)
>CS Test two variables - Document playcond
>DM Type in two things to compare with one another
>DM Remember to put text in ''quotes"
>» There is a full stop in the next line to print a blank line.
>DM
>AV wordl word2 "Comparison? "comp
>IF & wordl & &cornp& &word2&
»> this is our TRUE block of command lines
>DM the test was TRUE
>DM &wordl& &comp& &word2&
>EL
»> this is our FALSE block of command lines
>DM the test was FALSE
>DM &wordl& &comp& &word2&
>EI

; Start of the comparison

; If it's true, print this
; Else

; print this
; end of the IF comparison

Use the Print Screen facility to run this Control Document. You can use it to test out any
comparisons you wish. Here are some to get you going.

140

Chapter 15 Address Labels

wordl word2 Comparison Answer

2 2 TRUE
FALSE
TRUE
TRUE
TRUE
TRUE

“mum”
“mother”

“dad”
“mother”

=

2+2 4
“TIP” “MULTIPLE” IN
«))

The last one on the list is similar to the question that we originally wanted to ask. We
needed a way of looking for blank lines in an address when a label was being printed
Before we return to our address labels let’s just look at the remaining IF commands and
nesting.

Special Condition Commands
IF variable is Defined - (ID v)
IF variable is Undefined - (IU v)

These two commands are a special form of the IF command since they can test whether a
variable has been created by any of the AV, RU, RV or SV commands.

They are useful when used with Ask Variable commands since if a variable has already
been defined you need not ask for it again. For example at the beginning of a letter that
you are going to use with Mail Merge, you could test to see if the variable‘date’ is
defined. If it isn’t, then you could use the Ask Variable command to ask for the date.

Updating ScrPrintTEST

Are you fed up watching the message that is displayed when inserting the ScrPrintTEST
document? Let’s modify the document and use the one of those special condition
commands to only show the message the first time through.

; has tha flag boon dafinod yet? Yea jump to end if
; Elae

>SV flag=l ; No . . better aet it and display maasagea
>WT Press any key to continue . . . ;Wait to display previous
messages

>DM * This file changes the page length of any document so
>DM * that it can be displayed on the screen in viewable chunks *
>DM *
>DM *
>DM ***
»> There is a full-stop in the next line

>33) flag
>EL

*

ScrPrintTEST document selected.
REMOVE DOCUMENT FROM MAIN LIST WHEN FINISHED TESTING

*
*

141

Chapter 15 Address Labels

>DM
»> wait to display the previous message
>WT Press a key to TEST or'Stop' twice to STOP

/Clear the screen>CS Testing mail merge document
; End of massages block

XX) Clear both the top and bottom margins
>£I

>TM 0
>FM 0
>PL 7
XT’ off

; Set the page length to seven lines
; Continuous printing off, pauses between pages

You need only add four extra lines (we’ve marked them by putting them in bold) to the
document The first time the Control Document is printed the variable‘flag’ has not been
defined. The test is false so the block after the ELSE is printed, which sets the flag and
prints the messages. Next time round the*flag* variable has been defined and there is
nothing in the true block, so printing continues from the END IF command line.

IF Data File is Exhausted (IE)

This command checks to see if the Control Document has reached the end of the data file.
You can use this at the end of the file to print a summary and tell you that it has finished.

SKip IF Condition True (SK cond)

This block of text would be ignored if the condition was true.

REMEMBER, all these IF commands need an END IF command at the end of the block.

REPEAT.. UNTIL Condition (RP)

The two commands REPEAT and UNTIL allow you to perform a block of command
lines until a condition becomes TRUE.

Use REPEAT to mark the beginning of the text block and the UNTIL command to mark
the end. The REPEAT command cannot be nested What’s nesting? Don’t worry about
it yet. We’ll cover it later.

Unlike the IF command where you put the condition at the beginning, with REPEAT the
condition is placed in the UNTIL command. If the condition is FALSE, UNTIL will
return to the previous REPEAT command. In the following example, which is an
extension of the conditional example above, we have given UNTIL a condition that
cannot be satisfied so that it will always return to the REPEAT command. This means
that the control document carries on repeating until the STOP key is pressed twice.

142

Chapter 15 Address Labels

»> Use the Print to Screen facility when printing this control
document
»> to play with conditionals (and get to know them)
>SV repeat = 1
>RP

; Set a repeat flag
; Make this part repeating

>CS Test two variables - Document playcond
>DM Type in two things to compare with one another
>DM Remember to put text in "quotes"
»> There is a full stop in the next line to print a blank line.
>DM
>AV wordl word2 "Comparison? "comp
>IF &wordl& &comp& &word2&
>DM TRUE &wordl& &comp& &word2&
>EL

; Start of the comparison
; If it's true, print this
; Else
; print this
; end of the IF comparison

>DM FALSE &wordl& &comp& &word2&
>EI
>WT Press STOP TWICE to END or any other key to continue ...

; end of this repeating part>UN repeat = 0

Nesting

Nesting is when you have an IF block within another IF block. Using nesting you can ask
several IF statements and then do what you want with the answers. Here is a document
that shows how to use nesting.

Suppose wc want to Find a man who doesn’t have a car but has thought of buying one.
We could just ask three questions and select the result as appropriate. But, if the answer
to the first question is that the user is female, there is no point asking the other two
questions. Similarly, if the user already has a car there is no point asking the last
question.

By nesting three IF commands we need only ask those questions that are relevant.

>» Use the Print to Screen facility when printing this document
»> The control document will stop only if you are male, do not have
a car
»> and have thought of buying one.
other
»> sections if you like.
>SV count - 0
>RP
>CS Please answer questions
>AV "Are you Male or Female? (M/F)" MF
>IF MF[1] - "M"
»> only ask this question if the user is male
>AV "Have you got a car? (Y/N)" CAR

You can add your own bits in

; put into loop
; repeat
; clear screen

; (IF level 1) You are male

143

Chapter 15 Address Labels

; (IF level 2) You are male and>IF CAR[1] - "N"
don't have a car
»> only ask this question if the user is a earless male
>AV "Have you thought of buying one ? (Y/N)" CARYN
>IF CARYN [1] = "Y"
>DM I have an E-Type for sale

; {IF level 3} Thought of buying one

; STOP HERE
; (El level 3) end of buying one
; {El level 2) end of male and no

>ST
>EI
>EI
car
>EI
>DM Sorry to have bothered you
>WT Press any key to have another go or Stop twice to leave

; back in the loop

; (El level 1) end of male

>UN count = 1

You will notice that every time an IF statement is added, you go down a level. The
maximum number of levels that you can use is seven. Every level of IF needs its own
END IF.

Shuffling Address Lines - continued

After that slight diversion, back to the problem at hand. We want to print address labels
and we need a way of making sure that there are no blank lines printed in the middle of an
address.

We need to check each line of the address for being blank. If it is blank, change the
variable to the next one down, then make that one a blank line. This is repeated for each
line in the address. To make quite sure that no blank lines are left within the address, this
is repeated three times.

Name of document shaddlnl

>»Sort out blank lines in the address THREE times
>DM Shuffling First Address lines
>SV count = 3
>RP
>If Addrl=""
>SV Addrl=Addr2
>SV Addr2=

; set count to three
; start of Repeat Block
; if there is a blank line (undefined)
; make the next line down this variable
; and make the next line down - blank
; end this IF statement
; Repeat for all the other address lines

ft ff
>EI
>If Addr2=""
>SV Addr2=Addr3
>SV Addr3="//
>EI

; Another address line>If Addr3=

144

Chapter 15 Address Labels

>SV Addr3=Addr4
>SV Addr4= tut

>EI
>SV count = count-1
>UN count = 0

; done a shuffle, take one away from count
; end of repeat block

Testing the Shuffle

All that we need to do now is to test the shuffle by adding the line >IN shaddlnl into the
previous list file.

Name of document testshuf

>CS Testing Shuffle address labels with NO blank lines
>IN addrdf.def
>IN labbll.set
>IN ScrPrintTEST ; FOR TESTING ONLY ...
>IN chopline
>IN shaddlnl
>IN printbl
>WT Press any key to continue . .

; Define the Data File (for the first address)
; Set up label page layout (or labl.set)

; Chop address lines (for first address)

; Print label with blank lines

Printing two Addresses continued
How can we print two addresses side by side from our data file?

By adding some new variables using the >RU command we can effectively fool Protext
into thinking that we have double the number of variables in a record to print on a page.
We both know that what we really have is a pair of records that need to be printed on a
page.

There is no difference, look at the following file.

Name of document 2addrdf.def

>CO 2nd Address Definition file
>DM Reading 2nd Address Definition file ...

; If end of data file>IE
>DM End of data file detected ; Display message
>SV Name2= ; Set the 2nd set of variables

; to null to prevent previous
; address being printed again

Addr21=""
>SV Addr22=s//,/ Addr23=////
>SV Addr24="‘
>SV Tel No2-

// //

Fax no2=""
; Else if there is some data in the>EL

file

145

Chapter 15 Address Labels

>C0 * Add some more variables for the second address *
>RU Name2 Addr21 Addr22 Addr23 Addr24 Tel_No2 Fax_no2 dummy

; End of the If Exhausted command>EI

This document appears to work backwards, as the command that we are using is called
>IE‘If Exhausted’ and not*If there is any Data left in the data file.’ This means that it can
make more sense when reading the fust time, to start from the ELSE command and then
the rest of it from the beginning.

The first thing this document does is to check if you’ve reached the end of the data file (If
Exhausted). If you have then all the second address variables (that you haven’t yet
defined the first time round) are set to a‘null’ value to prevent the previous second
address from being printed again.

After the ELSE command (which is where you should start) a similar >RU line to the
previous >RU line is added but with different variables names for the second address.
These names are used to print the second address label.

Additional Files for the Second Addresses

Now we have got the variables for the second address, we need get rid of the blank lines
and chop the lines, just like we did in the first address.

The quickest way of doing this is to Open a new document and copy the document used
with the fust address and alter the variable names. Here are the additional files.

Name of document shaddln2

»>Sort out blank lines in the address THREE times
>DM Shuffling Second Address lines
>SV count=3 ; set count to three

; start of Repeat Block
; if there is a blank line (undefined)
; make the next line down this variable
; and make the next line down - blank
; end this IF statement
; Repeat for all the other address lines

>RP
>If Addr21=""
>SV Addr21-Addr22
>SV Addr22=rut

>EI
>If Addr22=""
>SV Addr 2 2 ^Addr 2 3
>SV Addr23=// it
>EI
>If Addr23=""
>SV Addr23=Addr24
>SV Addr24=""

; Another address line

>EI

146

Chapter 15 Address Labels

>SV count = count-1
>UN count = 0

; done a shuffle, take one away from count
; end of repeat block

Name of document chopline2

>DM Chop off long address lines (second address)
»> Put the label width in the following variable
>SV Labelw=30 ; Label Width
»> Chop all the variables in the file to be the width of the label
>SV Name2=Name2[1:&Labelw&]
>SV Addr2l=Addr21(1:&Labelw& 3
>SV Addr22=Addr22[1:&Labelw&]
>SV Addr23=Addr23[1:&Labelw&]
>SV Addr24-Addr24[1:&Labelw&}

Printing the Two Labels

When printing two labels side by side it is very important to use the Ruler Line with the
TAB marks set for the end of the first label and the start of the second label. Then USE
the TAB character, not multiple spaces to separate the text.

It is also possible to draw boxes around the address as shown in the following screen shot

Without the boxes the printing document should look like this.

5

i*

Name of document addlbbx2

STARTS HERE*************************************
; If 2nd address is blank>IF Addr21-

>DM ONLY Printing Label to &Name& at &Addrl& and a blank
; Else display following message

>DM Printing Labels to &Name& at &Addrl& and &Name2& at &Addr21&
; End If

>EL

>EI

147

Chapter 15 Address Labels

!Ri----- 1
!Name2!
!Addr21!
!Addr22!
!Addr23!
!Addr24!

!Name!
!Addrl!
!Addr21
!Addr3!
!Addr4!
>pa

Printing the Double Address Label - Finale

All you do now is to add these additional documents that we have written so far into yet
another list file. The beauty of using a list file is that you can build up quite a
complicated Control Document from several simple documents. Any improvements
made to the simple documents will be automatically included when the list file is printed.

Name of document 21ab

MIS Printing TWO address labels - side by side
>IN addxdf.def
>IN 2addrdf.def ;
>IN labbll.set
>IN shaddlnl
>IN shaddln2
>IN chopline
>IN chopline2
>IN addlbbx2

Define the Data File {for the first address)
Define the Data File (for the second address)
Set up label page layout {or labl.set)
Shuffle address lines {for the first address)
Shuffle address lines {for the second address)
Chop address lines {for first address)
Chop address lines (for second address)
Print TWO labels in boxes

;

;

148

Chapter 16
Working with Numbers

As well as using text, it is also possible to do mathematical calculations with Mail Merge.
We have already seen in the* Adding to Variables’ section that we can add numbers with
the‘+’ character. You can also subtract, multiply and divide using the*-’,*** and‘/’
operators. For example, to convert centigrade to fahrenheit:

Centigrade to Fahrenheit and visa versa
»> Use the Print to Screen facility when printing this document
»> This demonstrates how you can convert Centigrade to Fahrenheit
»> Expression is
>SV count =* -1
>RP
>CS Fahrenheit to Centigrade
>AV "Number to convert? " fah
>SV cent * fah-32 * 5/9
>DM the answer is ¢i
»>
»> This demonstrates how you can convert Fahrenheit to Centigrade
»> Expression is F = (C * 1.8) +32
>DM Centigrade to Fahrenheit
>AV "Number to convert? " cent
>SV fah = cent * 1.8+32
>DM the answer is &fah&
>WT
>UN count =1

C - F-32 * 5/9

Brackets
You cannot use brackets to force Mail Merge to do a calculation in a certain order. You
can get round this by splitting the calculation into smaller pans and using temporary
variables.

For example taking a small part out of the document above you could force Protext to do
the bracket first by doing this:

»> This demonstrates how you can convert Fahrenheit to Centigrade
»> Expression is F =* (C * 1.8) +32
>DM Centigrade to Fahrenheit
>AV "Number to convert? " cent
>SV bracket » cent * 1.8

149

Chapter 16 Working with Numbers

>SV fah bracket + 32
>DM the answer is &fah&

In this example however, it makes no difference, just my luck!

Minimum and Maximum Numbers

As with most computers there is a maximum number that you can count up to before the
mileometer effect takes place. In Mai! Merge the upper and lower limits are:

Maximum
Minimum

2,147,483.64
-4,292,819,813.5

You can prove it to yourself (just like we did) with the following Control Document.

>» Use the Print to Screen facility when printing this document
; Set a large number to start with
; Start of Repeat Loop
; display short message (number only)
; Test where numbers go though zero
; add a bit to count

>SV count =* 2147470
>RP
>DM &counts
>IF count => 0
>SV count “ count + 0.01
>EL
>ST FAILED . . ; Stop when failed
>EI
>UN count = 1
>ST Failed

150

Chapter 17
Going Mathematical with Forms

Mail Merge can be very useful for dealing with pre-printed forms that need to be Filled
out at regular intervals using calculations. The following document shows how an
expense form (which had to be sent monthly) could be prepared while it is being printed.
You do this by typing in the various information from the keyboard.

Use the Test Page again to locate the exact position of where the printer will print on the
form. When using pre-printed forms you may Find that the spacing of the lines is
different to those normally used by your printer. If this is the case, you need to change
the line spacing or character height on the printer to the same spacing as your form. You
should find the primer code in the printer manual to change this. Use the >OC command
to send this code to your printer when printing another copy of the test page and the
document used with the form.

The document is fully commented and uses commands that we have already covered. If
you find some funny characters printed on the screen, this is due to the document not
being properly formatted. Delete the funny characters (although you won’t be able to see
them on the screen) around the area that they are printed and then reformat the paragraph
with Control F.

REMEMBER to use ruler lines and the TAB key in-between the printed variable names
so that they get correctly lined up on the form when printed. NEVER use multiple spaces
to line the text up because it doesn’t work when formatting.

Name of document mathform

; TESTING remove line when finished testing
; Set the printer code for the correct line height/

; spacing (if needed)
; set to zero margins

★A***

* THIS FORM IS FOR EXPENSES FORM USD 16 *
* AFTER THE FORM HAS BEEN PRINTED - TURN IT OVER TO *
* PRINT THE ADDRESS FOR WINDOW ENVELOPE 16-11-92 VG *
*x*x***

>IN SCRPRINTTEST
»>OC
»>
>zm 0
>DM
>DM
>DM
>DM
>DM
>WT Press any key to continue . .
»>

Default Messages for variables ***>» **'
>SV CLAIM1/ "Various Business Meetings"
>SV CLAIM2,CLAIM1
>SV DATE, "See Date on enclosed lists"

; To save time typing
; the same thing
; every time, you

151

Chapter 17 Going Mathematical with Forms

; can set global
; variables.

>SV RAIL, "See enc.list and tickets"
>SV ACCOM,"See enclosed Receipts"
>SV MEALS,"See enclosed Receipts"
»>

* * *Screen MESSAGES START HERE***»>
»> * Message shows what is printed on *
»> * the form for each line *

* * *»> ***
»>
>CS "Claim for expenses incurred by me attending a meeting of"
>AV "Default message &CLAIM1& - Change it? Y/N " YN ; Change Message?
>IF YN="Y" ; YES - Display

the length ofIt>DM "23 Chars [
line
>AV "LINE 1
>DM "33 Chars (
>AV "LINE 2

and no. of chars.
Notice the number
at the end of >AV
line.
Clear Screen
Another change?

:",CLAIM1 23 ;
It ;

:",CLAIM2 33 ;
>EI ;
>CS ;
>AV "on (date) &DATE& - Change it? Y/N
>IF YN="Y"
>DM Use'Syro' 'D' for TODAY'S date
>DM "23 Chars [
>AV "on (date) :", DATE

" YN ;

199 T1

23
>EI
>CS
>AV "First/Second class rail fare to London from . .&RAIL& - Change it?
Y/N
" YN
>IF YN="Y"
>DM First/Second class rail fare to London from
>DM "23 Chars [
>AV "LINE 1

II

:",RAIL 23
>EI
>AV "Total Amount for RAIL Travel? ",RAILAM ; First Number to be

; entered.>CS
>AV "Accommodation &ACCOM& - Change it? Y/N
>IF YN="Y"
>DM Accommodation
>DM "45 Chars [
>AV "LINE 1

" YN

tt

ACCOM 45
>EI
>AV "Total Amount for Accommodation? ",ACCOMAM
>CS
>AV "Meals &MEALS& - Change it? Y/N
>IF YN~"Y"
>DM Meals

; Another amount!

" YN

152

Chapter 17 Going Mathematical with Forms

>DM "45 Chars [
>AV "LINE 1

If

MEALS 45
>EI
>AV "Total Amount for Meals? ",MEALSAM
>CS
>DM Other Expenses (Line 1)
>DM "45 Chars [
>AV "LINE 1
>AV "Total Amount for Expenses? '\0THEXAM1

71

:,,/OTHEXl 45

>CS
>DM Other Expenses (Line 2)
>DM ”45 Chars [
>AV "LINE 1
>AV "Total Amount for Expenses? ",0THEXAM2

II

:",0THEX2 45

»>
* * * SET all UNUSED figures used to 0»>

»>
>IF RAILAM="" ; If you pressed
the
>SV RAILAM, 0
a 'O'
>EI
would
>IF ACCOMAM^"’'

; Return Key for

; amount, this

; have put a'null'
in
>SV ACCOMAM, 0 ; the variable. W<

; check them all>EI
here
>IF MEALSAM="" ; and if there is a
null
>SV MEALSAM, 0 ; replace them with
a
>EI ; zero.
>IF 0THEXAM1=
>SV 0THEXAM1,0

IT II

>EI
>IF 0THEXAM2=
>SV 0THEXAM2,0
>EI
»> *** ADD UP THE FIGURES FOR TOTAL
>SV TOTAL=&RAI LAM&+&ACC0MAM&+&MEALSAM& + &0THEXAM1 & + &0THEXAM2&
»>
»> *** PRINTING STARTS HERE ***
>FP OFF ; as we want to print variables at the position shown.

* * *

»>
The following page has been mapped with the test page, and
the pre-printed form so that the variables are printed at

»>
»>

153

Chapter 17 Going Mathematical with Forms

the right place.»>
»>

Ruler lines are used to show where the text is to be printed»>
-R>

Your name
and Address to be printed
in a pre-printed box on the form

Post code TW56 7TR
>SV count = 9 ; There are 9 lines until we print again, to save paper

; we'll repeat printing a blank line>RP
>$V count = count-1

; until we reach the end>UN count = 0
-R>

SCLAIMlS
i •R> Ir

SCLAIM2&
>» ** Notice the full-stop within the ruler line that is used to **
»> * line up the decimal points for the numbers below the line. *
>» * Use the TAB key to separate the words and numbers and use
»> ** the Format command to line up left margins.

SDATES

*
* *

.-R>
&RAILS
— .-R

&RAILAMS
>

&ACCOM& SACCOMAMS

&MEALS& &MEALSAMS

S0THEX1& S0THEXAM1&

&0THEX2& S0THEXAM2&

&TOTALS
>pa

r — i — i
»> ** The other side of the form was blank, so this could be used
»> * to print the address of where it had to sent each month.
»> ** Fold the form - use a window envelope.
»>
>WT Turn Sheet Over for the address
>SV count = 43 ; There are 43 lines until we print the address, to save

-R
* *

*
* ★

154

Chapter 17 Going Mathematical with Forme

space in this control document
>RP
>SV count = count-1

; we'll repeat printing a blank line

; until we reach the end>UN count = 0
> L----------- R

To the Expenses Dept
Another address
to a different place
saves time writing the envelope

>pa
END* * * * * *»>

155

Chapter 18

Calculating VAT
There may be times when you want to calculate the Value Added Tax when adding up a
list of items in a Control Document. What is often overlooked is the rounding error that
can occur when multiplying two numbers together. The following document shows how
to resolve that error.

»> Use the Print to Screen facility when printing this document
»> Mail merge document to calculate the Value Added Tax to a net
amount.
»>
>SV count = 1
>RP ; let's put this in a loop

; Input an amount
; 10th of %

>AV amount
>SV vat_rate = 1.75
>SV vat_amount = vat_rate * amount
>SV vat__amount = vat_amount + 0.005 ; Add a half penny to VAT amount

; Multiply net amount by 10>SV amount = amount * 10
>SV total = amount + vat amount
»>
»> Convert Total and VAT to the correct figure to display
>»
>SV vat_amount = vat_amount / 10
>SV total = total/10

; Divide both the VAT amount
; and total by 10

»>
»> Display message
»>
>DM vat amount = &vat amounts Amount = & amounts Total = S totals

; End of repeat block>UN count = 0

That is the end of the mathematical functions, now for something completely different.

156

Chapter 19

Printing to Files
We have only been looking at Mail Merge with a view to printing the Control Document
to the printer or the Notepad’s screen. You can also print a Control Document to a file.

A file is just like a Word Processor document. You have to be careful when choosing a
name for the file that your Mail Merge Control Document is going to print to. If you
choose a name that you have used before for a document, the Control Document will
overwrite whatever was in the document, no questions asked.

The following commands will Print to a File as well as to the screen or the printer. If you
only want to print the Control Document to the File, you should use the Print to Screen
option or unplug the printer.

Open File for Writing (appending) (>WF file)

To select the name of the file you wish to print to, use this command before using any of
the commands that write to a file. Opening a file does not mean that the file will be
written to where this command is placed. See the >WF ON/OFF commands.

If you put an1 A’ at the end of the WF command line, then the printed data
will be added to the end of an existing file.

Writing to File on/off (WF ON/OFF)

The >WF ON/OFF command marks the start and finishing points of the section of the
control document that you want sent to a file. Everything in the Control Document
(commands, printer control codes, rulers and text) are sent to the file.

Write Message to File - used with WF (WM text)

This is similar to the >DM command that sends messages to the screen, except this one
sends it to the file without using the >WF ON/OFF commands.

Write File Close (WC)

This command is used to close the file at the end of the Control Document. You can only
have one file open at a time so you must close one before opening another one.

157

Chapter 19 Printing to Files

Here are a few more examples:

Name of Document WF

»> Test for writing a file
»> Make sure you do not have a document called test and testl
before
»> printing this document
>WF test
>WM Message to file test
>WF ON
This should be sent to the file test
>WF OFF
>DM Display message . . .
>WT Press any key to continue . .
>WF ON
The second line to the file test
>WF OFF
>wc
>WF testl
>WM Display message testl
>WF ON
This should be sent to the file testl
>WF OFF
>DM Test document running . . . T1
>WT Press any key to continue . .
>WF ON
The second line to the file
>WF OFF
>WC

; screen message
; pause

; Close the file

; screen message
; pause

Testl

; Close the file

Here is a time saving file for those Notepad users that get caught in detention at the end
of the day.

Name of Document lOOlines

>SV count =100
>WF 100.out

; one hundred lines to write

>RP
>WF ON
I must lem how to spel and work hard at skool
>WF OFF
>SV count « count -1
>UN count » 0

158

Chapter 19 Printing to Fites

Writing a Log

You could use the Write Message to File command to maintain a log of whom you have
sent letters to. You must create a one line log File first before printing the First time
otherwise you will get theTile not found’ message.

; append to log file>WF log a
>WM Thank you letter sent to &name& on &date& &time&

Control Document to Add New Addresses to a Data File

Remember we said that you could write a Control Document to create an address data
File? No? Well here it is anyway. We are using the same variable names as we used
three years ago. Well it seems like it anyway.

Name of Document adddata

;set all margins to zero in the data file
;clear screen

>ZM
>CS
>DM "This will create an address data file - Answer all the lines"
>AV "Name of data file to append " data_file
>AV "Is this a NEW data file (Y/N)?" new
>IF new[11 ="y"
>DM Yes selected
>WF &data files
>EI
>RP
>AV "Enter name (or press enter key to finish} " Name
>IF name>""
>AV Addrl Addr2 Addr3 Addr4 Tel_No Fax_no
>SV dummy
>WF Sdata files a
>WF ON
! Name!
!Addrl!
!Addr2!
!Addr3!
!Addr4!
!Tel_No!
!Fax_no!
!dummy!
>WF OFF
>EI
>UN name-
>ST

/turn the write file ON

/turn the write file OFF

159

Chapter 19 Printing to Files

Converting Other Data Files

You could also use this technique to convert a data file that has been written in another
format into the format that we have been using. To do this you would replace the Ask
Variable line that asked you for the name and address on the screen with both the Defme
File and Read Variable lines so that the Control Document reads the other data file that
needs converting. For example:

; Data File Name to be converted>DF Different
>RU First name Name Name2 Name3 Addrl Addr2 Addr3 Addr4 ; the
variables in
>RU Bingo_No Tel_No Fax_no dummy
different Data File

; the

This file has more fields that our data file has. Printing this document now would create a
new data file leaving out the First_name, Name2 Name3 and Bingo_.No variables.

Conclusion
Well that’s it on Mail Merge and the Word Processor. You can go even further than we
have done, but time has caught up with us at last. Using Mail Merge you could create
other databases by modifying the file above to store invoices, cricket scores, your CD
disks and more.

If you have enjoyed Mail Merge (and if not, why not!) you should find the section on
BBC BASIC to be even more enthralling, allowing you to really start programming,
manipulating numbers as well as the way you think!

160

Chapter 20
Transferring Documents

Your Notepad can act as your only computer. You can type documents into it, edit them,
print them or just save them. You don’t have to connect to any other computer and you
don’t have to transfer any documents. But if you want to - it’s easy.

Why would you want to transfer a document to another computer? There are several
possible reasons.

Backups
If you want to keep a document safe it makes sense to have more than one copy of it
You could just print it out and keep the paper copy but this would mean having to type it
in again if anything went wrong with the original in your Notepad. This makes it sound
as though we expect something to go wrong. In fact that is exactly what we do expect.
Not very often and not to everybody. But some people will always forget to change the
batteries, some people will always drop the Notepad and break it, some Notepad’s will go
missing, some Notepad’s will go wrong. Backups are an insurance policy.

No space left

You can add a memory card into your Notepad to give you extra storage space but
eventually, if you keep lots of documents, you are bound to run out of space. Depending
on the type of information you are keeping you could well delete some of it. However it
would be much more convenient if you could save old documents onto a PC for example.

Somebody Else Needs It

When you have written your masterpiece on the life and habits of the Madagascon Snake
Rat you may well want to pass it on to colleagues or friends. You may be working from
home on documents that need to go onto an office system at work. Copying any
document straight into another Notepad or PC allows the easy transfer of information.

So there are lots of reasons to want to transfer a document. Before you take the plunge
you need to make two decisions. First you need to consider the format of the document
and secondly you need to consider the method of transfer.

161

Chapter 20 Transferring Documents

Document Format
No matter how they were created, all documents on all computers are likely to contain
more information than is immediately evident from just reading them. For a document
created in a word processor there may be information about how the titles are laid out,
about special paragraph settings or where bold text has been used. For a document
created in an address book there may be information about the order in which to search
for a name, hidden fields for secret data or special commands to control a modem. None
of this type of information is normally apparent but it all has to be stored in the document
and it is frequently stored differently on different computers. The way that this extra
information is stored is called the document format.

The documents that you are most likely to want to transfer to another computer are those
created with the word processor. This has been developed from the Protext word
processor produced by Arnor and uses their own document format to save your
documents in. Protext is available from Amor for a range of other computers (see the
appendix for Amor’s address). If you have Protext available, you can transfer your
document without needing to consider its format at all.

If you don’t have Protext available and you want to work further on your documents on a
PC, you will need to change the format of your documents. The formal will need to be
one that is readable by the word processor that is available to you. You can change the
format by altering an option in the System Settings screen. These settings are detailed
below.

Transfer Method
Here the choice is straightforward. You can purchase a Lapcat Link from Amor and thus
use the parallel connector on your Notepad or you can use the serial connector with a
simple cable and standard communications software.

Using the parallel transfer method has three advantages. The First is speed, although you
would need a fairly large document before it became an issue. The second is ease of use.
There are few settings to consider when using a parallel connection to another computer -
there is quite a lot to consider if you are using a serial link. The third advantage is the
cable. If you buy the Lapcat Link from Amor there is a cable supplied. If you wish to
use the serial transfer method you need to find the right a cable yourself.

However, as long as you have access to some form of communications software on your
PC the serial transfer is entirely adequate. Once you have used it a few times it doesn’t
seem so complicated and most computer outlets are likely to be able to sell you the right
cable cheaply.

162

Chapter 20 Transferring Documents

Setting Up for Transfer

You have to check that the settings in two different menu screens are correct before you
start transferring documents.

The System Settings menu screen is accessed by pressing the Menu key when you are at
the Notepad’s main title screen. The only setting that you need to check here is called
Document transfer port and format. These are the available settings:

will transfer your document via the serial connector and
convert it to a plain ASCII file ready to be loaded into almost any
available PC word processor.

Serial/ASCII

Serial/Protext will transfer your document via the serial connector but will not
change its format. You will need to have access to Protext on your PC
to be able to edit the document.

Lapcat/ASCII will transfer your document via the parallel connector and convert it
to a plain ASCII file ready to be loaded into almost any available PC
word processor.

Lapcat/Protext will transfer your document via the parallel connector but will not
change its format. You will need to have access to Protext on your PC
to be able to edit the document.

The Printer Configuration menu is accessed by pressing the Menu key from within the
Serial Terminal program. The serial terminal can be entered from anywhere within the
Notepad’s system by pressing the Function and S keys together.

If you have chosen to use the parallel connector to transfer your documents you do not
need to check any of the settings in the Printer Configuration menu. Full instructions for
using the parallel link are included with the Lapcat Link.

For serial transfer you need to check the following items. In each case it is simply a
matter of setting the Notepad value and the PC value to be the same.

This sets the speed of transfer - the higher the number - the faster the
transfer. Possible values are 300,600,1200, 2400,4800 or 9600.

Baud rate

Data/stop bits This determines how many data bits form each character and how
many stop bits are sent after each character. It is very rare that this
needs setting to other than 8/1, although if you are using some types of
modem you may need to change this to 8/2. Possible values are 8/1,

163

Chapter 20 Transferring Documents

8/1.5, 8/2,7/1,7/1.5+or 7/2.

This determines the parity check bit sent with each character. Again it
is very rare that this needs setting to other than None. Possible values
are None, Odd or Even.

Parity

You can set this to either on or off. When this option is turned on the
Notepad will use XON/XOFF handshaking to ensure that no
characters are lost during transfer. Most standard communications
packages available for the PC support this type of handshaking. It is
often called ‘Software handshaking’. Many PC packages also support
‘Hardware handshaking’. Alternative names used may be ‘CTS/RTS’
or ‘DTR/DSR’. Hardware handshaking has not been implemented on
the Notepad.

Handshake

What Goes at The Other End?

Again, the choice is straightforward. If you are using the Lapcat Link then your PC needs
to run the Lapcat software supplied by Amor.

If you are using a serial link then you need to provide the software. This is not as
difficult as it sounds. Most ‘Desktop’ packages such as ‘Smart’, ‘Lotus Works’ or
‘Microsoft Works’ include communications programs and ‘Windows’ has an inbuilt
Terminal Program. If you don’t have access to one of these packages there are a wide
range of ‘Shareware’ packages available at minimal cost.

Any software that you use on your PC will have some form of settings menu similar to
the Notepad’s. All you are trying to achieve is to have the same settings on the PC and
the Notepad. Precisely what the settings are is normally unimportant.

What About a Cable?

The cable provides the physical connection between your Notepad and the PC. If you are
using the Lapcat Link you will already have a cable. It is supplied with the transfer
software.

If you are using serial transfer you need tthe correct cable. The cable you need is known
as a ‘Null modem cable’ and is readily available from computer outlets. If you are in any
doubt about the cable show the following diagrams to your local supplier. You only need
to specify whether the serial connector on the back of your PC has a 9 or 25 pin plug.

164

Chapter 20 Transferring Documents

Notepad end
9 pin ‘D’ type

PC end
9 pin ‘D’ type

RX 2 3 TX
2 RX
6 DSR
5 GND
4 DTR
8 CTS
7 RTS

TX 3
DTR 4
GND 5
DSR 6
RTS 7 ■
CTS 8 -

Notepad end
9 pin ‘D’ type

PC end
25 pin ‘D’ type

RX 2~
TX 3-
DTR 4
GND 5
DSR 6
RTS 7 -
CTS 8 -

2 TX
3 RX
6 DSR
7 GND
20 DTR
5 CTS
4 RTS

Making Them Talk
Once you have connected the two computers with your cable you are ready to make them
talk to each other. The Notepad has a Terminal Program available by pressing the
Function and S keys together. When you are in the terminal on your Notepad and your
PC is running its communications package, pressing a key on the Notepad will cause a
character to be printed on the screen of the PC. Similarly, pressing a key on your PC will
cause a character to be printed on the screen of the Notepad. If this exchange of
characters doesn’t happen you need to check the option settings to make sure that both
computers are set up to the same values.

Once you have the two computers talking to each other you can transfer your documents.

Transfer Protocol

This is another one of those computer buzzwords. The protocol is the name given to any
extra commands or characters that two computers use to make sure each is in step with
the other. There are only two choices for the Notepad; either plain ASCII, which
effectively means none, or XModem.

165

Chapter 20 Transferring Documents

The XModem protocol is by far the preferable option if your PC communications
package supports it.

You will now have your two computers talking to each other and you will have sorted out
how you will transfer a document. The only thing left to do is
the actual transfer.

Plain ASCII Transfer

You can use this method as a last resort. When you ask the Notepad to send a document
using plain ASCII, it just sends each character from the document out through the serial
port. When the Notepad receives a plain ASCII document, it simply saves any characters
appearing at the serial port into a document.

Plain ASCII Send

1) Make sure that the Notepad and your PC are talking to each other from the
Terminal program in each computer.

2) Prepare the PC to receive a document. How you do this will depend on the
software package you are using. Alternatives to the word ‘Transfer’ sometimes
used are ‘Download’ or ‘Capture’.

3) In the Notepad go to the list of stored documents using Function L and position
the cursor over the document name to send.

4) Press the Menu key and select T to Transfer.

5) Select S to send and the Notepad will start sending the document. You can
press the STOP key at any time to halt the transfer.

6) When the whole document has been sent the Notepad will display the number
of characters transferred and ask you to press the STOP key. This will return you
to the list of stored documents.

7) Stop the PC communications package. How you do this will depend on the
package you are using. It may just be a case of hitting the ESC key on the PC or
you may need to select a menu option.

Plain ASCII Receive

1) Make sure that the Notepad and your PC are talking to each other from the
Terminal program in each computer.

166

Chapter 20 Transferring Documents

2) Prepare the Notepad to receive a document. Go to the list of stored documents
using Function L.

3) Press the Menu key and select T to Transfer.

4) Select R to receive and type in the name of the document you want to receive.
If the document already exists on your Notepad you will be asked to confirm that
you want to overwrite it.

5) Start the PC sending the document. Again, the way that this is done depends on
the package you are using. Common words used to describe the procedure are
‘Send Text File’ or ‘Upload’.

6) The transfer can be stopped at any time by pressing the STOP key. If
characters stop appearing at the serial port for more than 2.5 seconds the Notepad
assumes that the end of the document has been reached.

7) You will be asked to press the STOP key and this will take you back to the list
of stored documents.

XModem Transfer

XModem is a more secure method of transferring documents between two computers.
The details of the protocol are not important other than the fact that it allows the receiving
computer to check that all the characters it has received are correct. The XModem
protocol is well established and it is likely that any software package for the PC will
support it. You should always choose to use XModem if it is available to you.

The Notepad supports the XModem/Checksum variant of the protocol because it is the
older, and therefore more widely used, method of transfer. A slight disadvantage of this
method is that if your PC software automatically uses the XModem/CRC variant, there
will be a few seconds pause before transfer begins while the PC package switches to
using XModem/Checksum.

The XModem protocol always sends documents in ‘packets’ of 128 characters at a time.
The only effect of this is that it may appear that more characters have been sent than are
actually in the document. These extra characters are used to fill-up the last packet to 128
characters. They are removed automatically from your document the First time you load
it into the word processor.

167

Chapter 20 Transferring Documents

XModem Send

1) Make sure that the Notepad and your PC are talking to each other from the
Terminal program in each computer.

2) In the Notepad go to the list of stored documents using Function L and position
the cursor over the document name to send.

3) Press the Menu key and select T to Transfer but do not start the Notepad
sending just yet.

4) Prepare the PC to receive a document. How you do this will depend on the
software package you are using. You may find word ‘Download’ used instead of
‘transfer’.

5) On your Notepad Select X to begin the XModem transfer. You can press the
STOP key at any time to halt the transfer. While the document is being sent to the
PC a count of the numbers of characters transferred is displayed.

6) When the whole document has been sent, the Notepad will ask you to press any
key. This will return you to the list of stored documents.

7) The PC communications package will stop automatically.

XModem Receive

1) Make sure that the Notepad and your PC are talking to each other from the
Terminal program in each computer.

2) Prepare the Notepad to receive a document. Go to the list of stored documents
using Function L.

3) Press the Menu key and select T to Transfer.

4) Select R to receive and type in the name of the document you want to receive
but do not press the ENTER key just yet.

5) Start the PC sending the document. Again, the way that this is done depends on
the package you are using. Common words used to describe the procedure are
‘Protocol Send’ or ‘Upload’.

6) Once the PC has started sending the document press the ENTER key on your
Notepad.

168

Chapter 20 Transferring Documents

7) When the transfer is complete you will be asked to press the STOP key and this
will take you back to the list of stored documents.

Address Book Transfer

The Address Book uses a document to store your names and addresses that is a little
different to a normal word processing document. However you can still transfer it to and
from a PC by using special commands within the Transfer screen.

To be able to see the Address Book document you need to alter the setting of one of the
options in the System Settings Menu. Set the option called ‘Document date/size display’
to anything other than ‘Not shown’ and the Address Book will be listed with all your
other documents. You can then transfer it using the same method as above except that
you need to use the ‘Receive Address Book’ or ‘XModem Receive Address Book’
options instead of ‘Receive Document’.

Using a Modem
In principle it is possible to transfer documents between a notpad and another computer
via a telephone connection using a modem at each end. There are two main problems that
need to be overcome.

Whenever you leave the Terminal on your Notepad to go to any other part of the system
the Notepad turns off the serial port This is done to conseerve battery power. However,
many modems will disconnect from the telephone line if they detect the serial port being
turned off. The result of this is that you will lose your connection with the computer at the
other end. Some tytpes of modems have special commands to specifically prevent losing
the connection in this instance. Alternatively, it may be possible to ‘fool’ the modem into
believing the serial port is still turned on by extra wire links on the modem plug. In either
case, the exact method of solving the problem will depend on the particular modem.

The other problem when using modems concerns the software at the ‘non-Notepad’ end.
Since you are calling up the computer via telephone you will not be able to press any keys
on the computer. It must be ready to automatically answer the telephone and to be able to
be controlled by you from your Notepad. There certainly are such software packages
available to run on most computers, but they are not straightforward to use and will
require more ‘setting up1 than the simple transfer software mentioned above.

169

Chapter 20 Transferring Documents

The Memory Card
The Notepad has a limited amount of internal memory to store your documents. This
memory may be more than sufficient for many users but if you require more space the
main option open to you is to add a memory card.

Memory cards are available in a variety of sizes starting at 128K and currently going up
to IMeg, although the upper limit is being continuously extended. What do these sizes
mean in English?

The size refers to the amount of memory inside the card - not its physical size. That is
standard for all the cards and is the same for a whole range of computers, not just the
Notepad.

There are smaller cards advertised but the smallest card generally available is 128K. This
means that it can store one hundred and twenty-eight thousand characters. That may
sound a great deal of information but an average page of text in the word processor takes
up about two thousand characters, so a 128K card can store roughly sixty-four pages of
text

The IMeg memory card holds one million characters or about five hundred pages of text.
That is quite a lot of typing but don’t think that it is way beyond your requirements. You
may think that a 128K card will cover all you ever need but nobody will buy it back from
you if you find you need a larger one in the future. And the price difference between the
small cards and the large ones is not that great. You would be wise to go for the largest
card you can afford, and then just hope that you don’t catch the typing ‘bug’ and fill it.
end up filling it anyway.

Installing a Memory Card
When you buy a memory card, you should find that it is supplied with its own battery.
This allows the card to ‘remember’ the information it holds even when it is taken out of
the Notepad. You need to fit the battery before you insert the card into your Notepad.
This is just a case of removing a small draw in the end of the card, dropping the battery in
and replacing the draw.

Most cards have a tiny lock on the draw to prevent its accidental removal. All cards will
have a ‘write protect’ tab next to the battery draw. If the write protect tab is slid over to
the outside edge of the card, your Notepad will be unable to write to the card. This
feature can sometimes be useful for transferring documents between Notepads as we will
explain in a moment.

170

Chapter 20 Transferring Documents

The only thing to be wary of when you fit the card is to make sure that your Notepad is
turned off. The same applies if you are going to remove the card. It is possible to destroy
information on the card if the Notepad is turned on during insertion or removal.

Once you have plugged your new card into the Notepad the only requirement is to
‘Format’ it. This process clears the memory inside the card and prepares it for saving
documents. It can also be used to wipe clear any documents stored there so you need to
make sure that you don’t choose this option by mistake once you have started saving
information to it.

Formatting a Memory Card

The command to do this is available by pressing the Menu key once you are in the list of
stored documents on your Notepad. Select F to format and you will be asked to confirm
that this is really what you want to do. Theprocess will only take a few seconds and it
can’t be stopped once started. There is no way of recovering any information from a
memory card that has been accidentally formatted.

Using Your Card
In practice you don’t need to do anything to use your card once it is inserted and it has
been formatted. The word processor and the address book will both use a memory care
by preference if it is available. They will automatically store any documents you look ai
onto the card and delete them from the internal memory. You can use this fact to copy
documents onto a card to transfer to another Notepad.

Moving Documents Using a Card

Suppose that you have a document on one Notepad held in its internal memory that you
wish to transfer to another Notepad.

If you insert a memory card into the first Notepad, select the document into the word
processor then just press the STOP key, the document will be moved to the card for you.
The document is no longer in your Notepad - it is on the card. If you want to keep a copy
of the document in the original Notepad, slide the write protect tab over on the card and
select the document again.

When you press STOP this time, you will find you have two copies of the document - one
on the card and one in your Notepad.

171

Chapter 20 Transferring Documents

If you insert the card into another Notepad, still with the write protect tab on, and access
the document you want to copy, pressing STOP will take a copy of the document into the
second Notepad.

The Address Book on a Memory Card
As with the word processor the Address Book will automatically use a memory card if it
is available. If you have been using the address book with a card installed and then you
remove the card you will find that your address book is empty - all the information was
stored on the card.

If you add details into the address book without your card inserted, when you next insert
the card you have effectively created two address books - one saved on the card and one
saved in the internal memory of the Notepad. You can merge these two books into one
by simply accessing the address book and pressing the STOP key. Your Notepad will
then ask you if you want to merge the two books or leave them separate. There is no
harm in keeping the two books separate apart from the fact that you will only be able to
access the information stored in the internal memory of the Notepad.

Programming a Memory Card
This is very much a specialised function of the Notepad. It can store additional programs
directly onto a memory card and then run them as though they were part of the Notepad’s
inbuilt system.

This feature is aimed at software developers and is far beyond the scope of this book to
cover.

172

Chapter 21

BASIC
Why Bother?

"I’ve just bought this computer that I can use in five minutes. It does everything that I
want to do. Why on earth do I need BASIC, and what is it anyway?"

These are fairly sensible questions. Let us take each question in turn and see if we can
persuade you that it is worth playing with BASIC.

First, does the Notepad really do everything you would like it to? It is a very powerful
little box of magic with a range of ready-to-use functions but it doesn’t do everything.
No designer can include everything that everybody might want in a new design.

Suppose you wanted to know how much money to put aside each month to cover your
quarterly electricity bill. You could search out last year’s bills, add the four of them up
(if you found them that is), add a bit for inflation then divide by twelve. The Notepad’s
Calculator would do the maths for you so you would get a perfectly good answer. But
what happens when the next bill comes in and the figures have changed? You would then
need to do the calculation all over again.

A small BASIC program could allow you to store the old figures and any new ones as
they came in, as well as the calculation. It could then instantly produce a summary telling
you the best sum to save each month. Once written BASIC would make the whole
process very easy.

That is a trivial example but the point is that BASIC is very good at financial calculations,
especially if they need doing regularly. You could of course do them from scratch each
time but we’re sure that you can see the advantages of letting BASIC do the hard work
for you. All you have to do is tell Basic how to do the calculation once and your Notepad
will ‘remember’ how to do it again using different figures if necessary.

BASIC is also very useful when you want to do the same operation on a lot of
informauon. For example, suppose you use your Notepad to work on legal documents at
home. These documents typically have a blank line between each line of text. That is not
too difficult to cope with on a large PC screen, but on the Notepad you would only see
four lines of text at a time. Half the screen would be wasted. It would be more
convenient to write the document normally and put the blank lines in later. A BASIC
program could add the blank lines automatically for you when you wanted to print the
document out or transfer it to the office PC.

173

Chapter 21 Basic

Again, this is a trivial example, but hopefully you can see that there are no real limits to
the uses to which you can put a BASIC program. It may not be as fast at processing
information as other programming languages but it will get there and it is easy to pick up.

The last reason for learning about BASIC is perhaps the most compelling. It is great fun.
There are few things more rewarding than spending some time writing a program and
then seeing your computer do exactly what you planned.

What is BASIC?
Let’s start with the correct definition. ‘Beginners All-purpose Symbolic Instruction
Code.’ It’s much easier to say BASIC.

Now let us see a more useful definition. ‘BASIC is a way of telling a computer how to
do something’.

The biggest problem with computers is that they are unbelievably stupid. They don’t
know how to do anything. They can’t even talk with the real world. Left alone they
would sit silently in their little box, using batteries but not doing anything. A program is
a way of getting a computer to do something. Just like magic it brings the computer to
life.

Programs come in lots of different flavours. The programs you have been using on your
Notepad so far have told the computer what to do when you press the ‘ON’ button, what
to write on the display for you to read and what to do when you press a key. They are the
inbuilt programs that make up the operating system. Together they literally Operate the
System. The programs have been written especially for the Notepad in a language that
the computer can understand directly. The language is difficult to understand for any
normal human being.

BASIC is different because it is easy for a normal human being to understand. Many
individual instructions that make up the BASIC language are literally ‘English’. For
example ‘LOAD’ is the command to load a program, ‘SAVE’ to save a program, ‘LIST’
to list a program or ‘INKEY’ to read the keyboard.

However, don’t get the idea that BASIC is limited in what it can do because of its
‘understandability’. There are many full-blown professional computer programs written
in BASIC. Indeed, many years ago Bill Gates, the founder and chairman of the largest
software company in the world, made a simple challenge. He maintains that he can solve
a problem with a BASIC program faster then anyone can solve it with a different
language. He has never yet been proved wrong.

174

Chapter 21 Basic

Our Aims

The best way to learn how to program is to write programs. The best way to learn BASIC
is to write programs in BASIC. Our aim is not to teach you the language or programming
techniques to any great depth. Don’t worry - it isn’t going to get complicated. There are
many books on the subject and we don’t have the space here to even cover all the
commands in detail. We want to whet your appetite and allow you to start learning if you
want to.

In the following pages you will fmd lots of examples of programs. We recommend that
you type them into your Notepad and see what they do. Don’t leave it at that; try altering
them a little. See what you can make happen.

The Layout of the Examples
For each major topic or idea of BASIC that we will be covering we have adopted a
similar framework for the explanation.

First we will explain what the new concept or BASIC command does in Plain English,
usually with an analogy.

Then we will show you a short example program that makes use of the BASIC command.

Finally we explain the example program in detail highlighting any points to be wary of.

A Few Simple Rules
To start with, here are a few simple rules.

1 You can switch to BASIC from anywhere in the Notepad by pressing the
Function key followed by ‘B’.

2 You need to type the commands into BASIC in capital letters.

3 Each line of a BASIC program starts with a line number. At the end of each
command or line of commands you need to press the ENTER key.

4 BASIC won’t normally do anything until you tell it to ‘RUN’ a program.

5 THIS IS IMPORTANT, PLEASE NOTE you must remember to ‘SAVE’ your
program whenever you leave BASIC because it does not automatically save your
work when you leave it. If you forget to Save your work you will lose everything

175

Chapter 21 Basic

you did in that visit to Basic. There is a way around this however. If you set
‘Preserve context during power off’ to ‘yes’ in the System Settings menu your
Notepad will not lose your work even if you switch it off without saving your
BASIC file.

A Word of Reassurance
You are not going to destroy your computer by getting things wrong. The most likely
result of a mistake is that BASIC will say ‘ERROR’ and you can probably live with that.
You can’t damage your Notepad with any of the commands we arc going to use. There
are some commands however that could cause you to lose the contents of documents if
you make a mistake. We will highlight these where appropriate. If you have followed
our instructions earlier in this book you will have everything backed up anyway so there
shouldn’t be a problem even if you do lose something.

Your First Program
One day computers will understand the English language, in which case you could enter a
program like this:

‘This is the first version of my first program. Add the two numbers 3 and 4 together and
put the result on the screen. Then stop’.

Unfortunately computers cannot yet understand ‘English’ so we have to tell them what to
do in language they can understand.

10 REM The First One
20 PRINT 3+4
30 END

version 1

Ok, so what does that all mean then? First, try typing the program into your Notepad.

Step 1: Go into BASIC. Function ‘B’ will take you there from anywhere else in the
Notepad.

BASIC will respond with the following screen:

BBC BASIC (NCI00) Version 3.10
(C) Copyright R.T.Russell 1992
>

Step 2: Type in the program exactly as above. You need to press the ENTER key at the
end of each line.

176

Chapter 21 Basic

The screen should now look like this:

BBC BASIC (NC100) Version 3.10
(c) Copyright R.T.Russell 1992
>10 REM The First One
>20 PRINT 3+4
>30 END

version 1

>

Step 3: Run the program. To do this you just need to type ‘RUN’, on its own this time
without a line number, followed by the ENTER key.

Now you should see the number ‘7’ turn up on the screen. If you do, you have just
written your first successful program. If all BASIC does is to say something like ‘Error
in line 20’ check that you have typed in exactly what appears above. BASIC is very
unforgiving about typing mistakes.

LIST

You can sec exactly what you typed in by using the ‘LIST’ command. This simply lists
your program, starting from the lowest line number and stopping at the highest line
number. That is fine for short programs, but what happens when a program ‘grows’ to
more than eight lines. If you type ‘LIST’ followed by a line number, BASIC will list
only that line number. If you type ‘LIST’ followed by two numbers, BASIC lists all the
lines that fall between the two numbers. So, using the above example program:

would list the program
would list only line 20

would list lines 20 and 30

LIST
LIST 20
LIST 20,30

Line Numbers

The program contains three commands. BASIC knows the order in which to run the
commands because you have put a line number against each one. Without you telling it
otherwise, BASIC always starts at the lowest line number and works up. Had you entered
your first program like this:

30 END
20 PRINT 3+4
10 REM The First One version 1

the result would have been the same. So line numbers are important. They don’t have to
increase in steps of ten; the steps can be as large or as small as you like. Leaving gaps in

177

Chapter 21 Basic

the numbers allows you to alter the program without having to retype it all. For example,
you could add:

25 PRINT 45+61

and ‘RUN’ the program again. Now you have the results of two sums and you have only
had to enter one extra line.

Commands Used in Your First Program
The commands are close to English.

REM

‘REM’ is short for remark. You can type anything you like after ‘REM’ because BASIC
will ignore it. You use ‘REM’ lines to leave notes to yourself about the program, or that
particular bit of it. It is a good idea to get into the habit of adding lots of remarks to your
program. You may understand your thinking behind the program now, but you will have
forgotten in six months time. If you want to alter the program but you can’t quite
remember what it does you will have to work it out from scratch again. Plenty of remarks
make life easier.

PRINT

‘PRINT’ is one of the most powerful of BASIC’s commands. It is one of the main ways
that your BASIC program can produce some output. It would be pointless if you wrote a
program to work out a complicated calculation and then kept the answer secret. Your
program must output the answer to somewhere where you can use it. ‘PRINT’ lets you
put things on the screen, change what is in a document, send characters to the printer or
send characters to the serial port. Here we have just used it to add two numbers together
and print the answer onto the screen. We will cover the ways that ‘PRINT’ can output
information to places other than the screen later.

END

In the above example, we didn’t need the command ‘END’. When BASIC runs off the
end of a program, it stops anyway. However, it is good practice for you to decide where
the program should stop, rather than letting BASIC decide by accident. In later program
examples, you will see that the ‘END’ command becomes essential.

178

Chapter 21 Basic

The Next Step

If you have typed in the example, try changing the program and see what the results are.
You have seen how we added line 25; try adding some new lines, or changing the sum
that you want printed. What would you expect to be printed by the following line?

26 PRINT 8-4,8+4,73-46

The command is asking BASIC to print the answers to three sums one after the other.

The print command can be extended by adding messages. We could add line 15:

15 PRINT "The sum of 3 and 4 is

The semicolon is important. It tells BASIC not to move the cursor when it has finished
printing. This allows the answer, "7" here, to be printed on the same line as the message.
You could combine the message with the sum, as in:

27 PRINT "The sum of 5 and 4 is ";5+4

Saving Your Work

BASIC won’t save your work unless you tell it to. The command is quite straight
forward:

SAVE "PROG ONE"

The rules for naming a BASIC document are the same as for the rest of the Notepad As
always it is wise to give your document a name that shows what it is so that you can fmd
it again.

The next time you want to use this program, just enter BASIC and type:

LOAD "PROG ONE"

Variables
An important idea in programming is the use of variables. You can think of a variable as
simply ‘a place to store some information’. The easiest way to explain the use of
variables is to draw an analogy. Suppose you had three boxes, each with a blank sheet of
paper in it. Then suppose that you wrote ‘a’ on the front of the first box, 4b* on the front
of the second box and ‘sum’ on the front of the third box.

179

Chapter 21 Basic

10 REM Using variables
20 LET a - 27
30 LET b = 13
40 LET sum = a + b
50 PRINT sum
60 END

The variables in this program are ‘a’, ‘b’ and ‘sum’. The numbers after the equals signs
are the figures stored in each box. The command ‘LET’ assigns a value to a variable.
So:

20 LET a = 27 tells BASIC to store the value 27 in the variable 'a' .

30 LET b = 13 stores 13 in the variable 'b'.

These two lines are the same as you writing 27 on the sheet of paper in box ‘a’ and 13 on
the sheet of paper in box ‘b\

This is the line that does the work.40 LET sum *= a + b

It tells BASIC to take the value stored in variable ‘a’, add it to the value stored in variable
V and store the result in the variable ‘sum’. To go back to our analogy, you would look
at the number written on the sheet of paper in box ‘a’, add that to the number written on
the sheet of paper in box ‘b’ and write the answer on the sheet of paper in the box labelled
‘sum’.

50 PRINT sum

This will print the contents of variable ‘sum’, just like you reading the sheet of paper in
the box ‘sum’.

What To Call A Variable

The important concept to grasp is that BASIC is only concerned with what a variable
contains. It just uses the name as a way to find the contents so you can call the variable
anything you like. You can use this fact to your advantage because you can choose a
name that is convenient for you. So for example, if you are programming a calculation
using the rate of VAT, call the variable holding that rate ‘VAT_rate’, then you will
always know what it means. By carefully choosing your variable names, you can make
your programs much easier to write in the first place and make them far easier to change
in the future.

There are very few restrictions on variable names but you need to remember that they are
‘case sensitive’. This means for example that the variable names ‘TOTAL_SUM’ and

180

Chapter 21 Basic

‘Total_sum’ are different as far as BASIC is concerned. The underscore character can be
used to good effect to separate words; space is one of the few characters that cannot be
used in a name.

You need to make sure that you don’t confuse both yourself and BASIC by giving
variables names that are commands.

It is easier to read a BASIC program if you can immediately tell which words are BASIC
commands and which words that are variable names. A quick way of doing this is to use
Tower case’ letters for your variable names. This is the policy we have adopted in all the
example programs contained in this book.

Variables Never Forget

Variables don’t forget what they hold. They can only be overwritten by your program.
In the above program, just by using the contents of the variables V and ‘b\ you did not
destroy them. BASIC took copies of what the variables held and left the original contents
alone. So we could add:

55 LET sum = a - b
56 PRINT sum

When BASIC reaches line 55, variable ‘a’ still holds the value 27 and variable ‘b’ still
holds the value 13. This line will put a new value into variable ‘sum’. This is the same
as you writing a new number on the sheet of paper in the box labelled ‘sum’. The new
value is printed in line 56.

Variables on Both Sides

The same variables can appear on both sides of the equal’s sign. This doesn’t sound
sensible until you follow through what BASIC is actually doing. Suppose we added:

57 LET sum = sum + 5

Thinking of our boxes again, we want to look at the number written on the sheet of paper
in the box ‘sum’, add 5 to it and write the answer back on the sheet of paper in box ‘sum’.
We could do it, and so can BASIC. In fact, the most used BASIC line in history is
probably something like count = count + 1

So far we have assumed that a variable can hold anything we want, but that isn’t quite
true. There are three types of variables available in BASIC.

181

Chapter 21 Basic

Real Variables

These can hold normal everyday numbers and BASIC doesn’t need to be told anything
about them. You just use a variable name and BASIC creates somewhere to store the
contents of that variable. All the following numbers could be stored in real variables:

27,456.8, 752467, -37.9, -100.001

Integer Variables

These variables also store numbers, but they can only hold whole numbers. There are
two very good reasons for using integer variables wherever you can; speed and accuracy.

Speed comes about for two reasons. First, the space that BASIC needs to store an integer
variable is less than that required for storing a real variable. Because it takes less space, it
is quicker to fetch and store the contents. The second reason for increased speed is
simply that the maths is easier. It wouldn’t take you as long to add 54 and 78 as it would
to add 54.768 and 78.923. The same applies to BASIC.

Accuracy is available from the use of integer variables purely because they can only be
whole numbers. If you have defined a variable as an integer and assigned it the value of
2538, then its value is exactly 2538. It can never be 2537.99999999 or 2538.00000001.
[f you were keeping a count of the number of pints of milk you bought in a month, an
answer of 98.999997 would be totally unexpected. Since you know the answer must be a
whole number, it is much more sensible to use an integer variable to keep the count.

You don’t have to use an integer variable just because the contents will always be whole
numbers. You will improve the speed and accuracy of your programs if the contents of
the variable can only be a whole number.

How do you create an integer variable? You give it a name the same as you would if it
was a real variable but you add after the name.

count%, increment%, Total_num% — are all integer variables
sum, Total, rate, maximum are all real variables

String Variables

String variables can contain almost anything, but are usually used for text. So you could
store a name and address, the title of a book or a telephone number in a string variable.
The only limit on strings is that they cannot be more than 255 characters long. You tell
BASIC that a variable is a string variable by adding T after its name.

182

Chapter 21 Basic

Name$, Tel$, ROOMJMO$ are all string variables

The INPUT Command

So far our demonstration program has been of little practical value. It can add two
numbers and print the answer for us but we have to change the program to change the
numbers we want to add. It would be much more useful if the program could stay the
same but could operate on different information.

10 REM First program version 2
20 INPUT value_l
30 INPUT value_2
40 LET sum = value_l + value_2
50 PRINT sum
60 END

In our original program, we put the numbers into our variables using the BASIC ‘LET’
command. The INPUT command performs the same task as LET. Instead of assigning
the variable a value from the program, it takes the value from the Notepad’s keyboard.
You type the number in. You can type in any number you like.

When you RUN the program, a T appears on the screen. This is BASIC’s way of asking
for you to type something. In this example we have asked BASIC to ‘INPUT’ a real
variable (there is no or *$’ after the variable name) so you need to type a number.
BASIC will then print another T and you type in another number. The program adds the
two numbers together and prints the answer.

Keep it Friendly - Please

We have a useful program but it is very unfriendly. If somebody else tried to use our
program, they would not know what to do to get an answer. You may not even remember
what to do if you ran this program again in six months time. We need to add some
instructions for BASIC to print on the screen.

One way to add some instructions would be with the ‘PRINT’ command that we have
already used:

15 PRINT "Type in the first number"
25 PRINT "Type in the second number"
50 PRINT "The sum of the two numbers is",sum

Remember that BASIC will put these lines into the correct order based on the line
numbers. Our program would then read:

183

Chapter 21 Basic

10 REM First program version 2
15 PRINT "Type in the first number"
20 INPUT value__l
25 PRINT "Type in the second number"
30 INPUT value_2
40 LET sum = value_l + value_2
50 PRINT "The sum of the two nurrbers is",sum
60 END

There is a shorthand route to achieving the same results if we change the program to look
like this:

10 REM First program version 2
20 INPUT "Type in the first number",value_l
30 INPUT "Type in the second number",value_2
40 LET sum = value_l + value_2
50 PRINT "The sum of the two numbers is",sum
60 END

Here we are telling BASIC to print the instructions contained within the quotes and then
to input a value to put into a variable all in one go.

The GOTO Trap
When BASIC runs a program it starts at the lowest line number it can find, actions that
dne and then looks for the next highest line number it can find - unless you tell it
otherwise.

Traditionally, the most common way of telling BASIC to action a line other than the next
highest is the GOTO command. This literally tells BASIC to ‘GOTO’ another line. Once
BASIC gets there, it carries on running through the line numbers as before.

10 REM First program version 3
20 INPUT "Type in the first number",value_l
30 INPUT "Type in the second number",value_2
40 LET sum = value_l + value_2
50 PRINT "The sum of the two numbers is",sum
55 GOTO 20
60 END

Line 55 puts the program into an endless loop. BASIC asks for each number, prints the
sum and then goes back to ask for another two numbers. It will continue to go round this
loop until you press the ‘STOP’ key.

184

Chapter 21 Basic

In this example, using ‘GOTO’ is not a problem. But you need to be waiy of its use when
you start to write complicated programs. As your program becomes more complex it is
good practice, and ultimately becomes essential, to structure the program into manageable
sections. You can write and test each section independently before moving onto the next
section. If you tried to write a large program in one big lump both you and BASIC would
probably get lost.

The GOTO command allows you to jump from anywhere in your program to anywhere
else in your program. This potentially mins any structure that you have been following.
Does it really matter about structure? Try following this program:

10 GOTO 200
20 GOTO 100
30 PRINT "This is printed first"
40 GOTO 70
50 PRINT "This is printed last"
60 GOTO 150
70 GOTO 250
80 PRINT "This is not printed"
100 GOTO 50
150 END
200 GOTO 30
250 PRINT "This is printed next"
260 GOTO 20

The program works and does exactly what it is supposed to do. But it is a pain to follow.
Imagine what it would be like if this was a five hundred line program with lots of
processing between the GOTO commands. How would you ever find a mistake in the
program?

GOTO has its uses, but there are better ways of doing the same thing that don’t have the
pitfalls of GOTO. Indeed Richard Russell, the author of the BASIC in your Notepad,
claims never to use the GOTO command at all. We can only agree with his policy.

Halting Gracefully
By introducing ‘GOTO’ into version 3 of our program we have put the program into an
endless loop. The only way of stopping it is to press the STOP key on the Notepad. This
is not a very elegant way to halt proceedings. What we need is a ‘graceful’ exit route.

10 REM First program version 4
20 INPUT "Type in the first number",value_l
25 IF value__l = 999 THEN END
30 INPUT "Type in the second number",value_2

185

Chapter 21 Basic

40 LET sum = value_l + value_2
50 PRINT "The sum of the two numbers is",sum
55 GOTO 20

Line 25 is a test that BASIC can perform. It means ‘Do a test If the answer to the test is
true, do something. If the answer to the test is not true, do something else’.

In this example we have said:

If the variable ‘ value_l ’ is equal to nine hundred and ninety-nine, stop the program.

We haven’t told it what to do if the variable is not nine hundred and ninety-nine, so
BASIC will just carry on with the next line. We have effectively said:

If the variable ‘value_l* is equal to nine hundred and ninety-nine, stop the program.
Otherwise, carry on running the program.

What will the program actually do? It will ask for the first number and assign it to the
variable *value_l\ Then it will test to see if *value_r is equal to nine hundred and
ninety-nine. If it is equal, the program will stop. If it isn’t equal, the program will ask for
the second number, assign it to the variable ‘value_2’, print the sum of ‘value_l’ and
‘value_2’ and then go back and ask for the first number again. We can just keep on
typing in pairs of numbers to be added. When we have had enough, we can enter nine
hundred and ninety-nine as the first number and the program will stop.

The test that BASIC does in line 25 relies on BASIC’s ability to decide if the answer to a
question is true or not. Our question was ‘is the number held in value_l equal to nine
hundred and ninety-nine’? BASIC needs to decide if the answer is TRUE, that is
‘value_l' holds the number 999, or FALSE, that is ‘value_l ’ holds a number other than
999.

In this example we have used the number nine hundred and ninety-nine to end the
program but we could have used any number we liked. We just need to choose a number
that is convenient to us. Line 25 is testing whether the contents of the variable ‘value_l*
is equal to the number we have chosen to stop the program. If it is equal, the answer to
the test will be TRUE and the program will stop. If it isn’t equal the answer to the test
will be FALSE and the program will continue.

What is Truth?
In English the words true and false are not numbers; they don’t have a value. But
computers can’t understand abstract ideas like truth and falsehood. They can only work

186

Chapter 21 Baste

with numbers so we need to give a value to TRUE and a different value to FALSE. What
value does BASIC use for TRUE?

The simple answer is ‘not zero’. It will probably come as no surprise therefore to find out
that BASIC considers FALSE to be ‘zero’. If only life was this simple. Why?

The answer to that goes back to the very roots of computers and the way they store
numbers which is beyond the scope of this book. The correct answer is that TRUE is
actually represented by the number ‘-1*. Interested readers may like to refer to books
concerned with Binary Arithmetic’ and the logical ‘NOT’ function.

We don’t have to understand why it is so to use TRUE and FALSE in our programs.

The two values are so important that BASIC has commands just to set them for you.

10 REM Using TRUE and FALSE
20 LET flag = FALSE
30 IF flag = TRUE THEN PRINT "Flag is TRUE"
40 LET flag = TRUE
50 IF flag = TRUE THEN PRINT "Flag is TRUE"
60 END

Line 20 assigns the value of FALSE to the variable ‘flag’. In line 30 we perform a test
Remember how the test is worked out:

‘Do a test. If the answer to the test is true, do something. If the answer to the test is not
true, do something else’.

At line 30 we are asking BASIC this question:

Is the value in the variable ‘flag’ equal to TRUE?

The test is going to fail because we have just set ‘flag’ to be FALSE, so BASIC won’t
print our text. It will carry on to line 40. Here we have assigned ‘flag’ the value of
TRUE, so when ‘flag’ is tested again in line 50, the test will pass and the text will be
printed.

The job of the BASIC command ‘IF’ is to do a test. If the result of the test is TRUE,
BASIC will do something. But we could save BASIC the trouble of doing the test if we
know the answer. In both of the tests at line 30 and line 50 we ask:

Is ‘flag’ equal to TRUE?

187

Chapter 21 Basic

But in our program we have set the variable ‘flag* ourselves. Since BASIC is only
concerned about what a variable contains the question that we actually ask in line 30 is:

Is FALSE equal to TRUE?

The answer will always be FALSE so BASIC would get the same answer if we changed
the question to:

Is FALSE?

The question that we actually ask in line 50 is:

Is TRUE equal to TRUE?

The answer will always be TRUE so BASIC would get the same answer if we changed
the question to:

Is TRUE?

What is the point of a question like that? No point at all if we leave it there, but
remember that our variable ‘flag’ contains either TRUE or FALSE. So the question in
line 30 could be:

Is ‘flag’?

If the value in ‘flag’ is FALSE, we are asking:

Is FALSE?

So the two questions are the same.

Using this principle we can abbreviate the test in lines 30 and 50:

10 REM Using TRUE and FALSE
20 LET flag = FALSE
30 IF flag THEN PRINT "Flag is TRUE"
40 LET flag = TRUE
50 IF flag THEN PRINT "Flag is TRUE"
60 END

By bringing in the ‘ELSE’ part of the ‘IF’ command, we can make the output of the
program more helpful:

188

Chapter 21 Basic

10 REM Using TRUE and FALSE
20 LET flag - FALSE
30 IF flag THEN PRINT "Flag is TRUE” ELSE PRINT "Flag is FALSE"
40 LET flag = TRUE
50 IF flag THEN PRINT "Flag is TRUE" ELSE PRINT "Flag is FALSE"
60 END

At line 30 ‘flag’ is FALSE so BASIC will follow the ‘ELSE’ part of the ‘IF’ command
and print ‘Flag is FALSE’. At line 50 ‘flag’ is TRUE so BASIC will follow the ‘THEN’
part of the ‘IF’ command and print ‘Flag is TRUE’.

The Question Mark
BASIC is very particular about what you type in. You have to get the commands exactly
correct in order for them to work. This ‘correctness’ is called the ‘Syntax’ of the
command. You may already have seen the message:

'Mistake at line xx'

This is BASIC’s way of telling you that the syntax of the command is wrong. There are
two reasons why BASIC is so pedantic; speed and subtlety.

The speed advantage comes because BASIC only has to be able to recognise a tightl
defined range of commands. If it isn’t a command BASIC can immediately recognise, ii
must be wrong. If we left out the vowels in a phrase, y cld rcgnse wht w sd, but it would
take you longer to read it. It would be the same for BASIC.

The subtlety comes from the fact that very often a slight change in the command changes
the way it operates. The question mark with ‘INPUT’ is a good example of this.

20 INPUT "Type in the first number",value_l

This line prints the following text to the screen:

Type in the first number?

20 INPUT "Type in the first number"value_l

This line leaves off the question mark:

Type in the first number

The text between the quotation marks is called the ‘prompt string’. If you include a
comma between the prompt string and the variable name, BASIC prints a question mark;

189

Chapter 21 Basic

no comma - no question mark.

You can take this principle further. Suppose you just wanted to input a value without
either a prompt string or a question mark.

value 120 INPUT II 11

There are no characters between the two sets of quotation marks and no comma so
BASIC prints no prompt string and no question mark.

Arrays - Back to Variables Again
Suppose you wanted to test whether a dice was accurate or not. If you threw the dice one
hundred times you would expect a good dice to land on one face roughly the same
number of times as any other face, sixteen times in this case. Performing the test is easy.
All you do is to throw the dice and record which face is uppermost. After a hundred
throws you count the ‘hits’ for each face and decide about the dice accordingly.

How could we write a program to do the scoring for us? To start with let’s try to write a
set of instructions that we could give somebody else to follow.

I am going to give you a number between one and six. If the number is one, put a tick on
a sheet of paper. If the number is two, put a tick on a second sheet of paper. If the
number is three, four, five or six, put a tick on the third, fourth, fifth or sixth sheets of the
paper. When I have given you one hundred numbers tell me how many ticks you have
written on each sheet of paper.

To turn this into instructions for BASIC we first need to decide what we are going to call
our variables. We need to count the number of throws of the dice so let’s have a variable
called ‘throws’. We need to go round a loop to collect the one hundred results so we are
going to need a test to decide when to stop. We need to tell the program which face of
the dice to count this time round the loop - ‘this_face\ We need to count the number of
times the dice lands on each of the six faces - *count_facel’, ‘count_face2\.
‘count_face6\

10 REM Counting dice throws version 1
20 LET throws = 1
25 REM say which throw we are on
30 PRINT “Throw number ",throws

35 REM ask which number the dice landed on
40 INPUT "Which face is on top ",this_face

190

Chapter 21 Basic

45 REM keep a running count for each face

49 REM If the number is one, put a tick on the first sheet
50 IF this face = 1 THEN count facel = count facel + 1

59 REM If the number is two, put a tick on the second sheet
60 IF this face = 2 THEN count face2 => count face2 + 1

69 REM If the number is three, put a tick on the third sheet
70 IF this face = 3 THEN count face3 = count face3 + 1

79 REM If the number is four, put a tick on the fourth sheet
80 IF this face = 4 THEN count face4 = count face4 + 1

89 REM If the number is five, put a tick on the fifth sheet
90 IF this face = 5 THEN count faceS = count face5 + 1

99 REM If the number is six, put a tick on the sixth sheet
100 IF this face = 6 THEN count face6 = count face6 + 1

105 REM add one to the number of throws we have taken
110 throws = throws + 1

115 REM loop back for 100 throws
120 IF throws <101 THEN GOTO 30

125 REM now tell me how many ticks are on each sheet
130 PRINT "Counts for number 1 ",count_facel
140 PRINT "Counts for number 2 ",count_face2
150 PRINT "Counts for number 3 ", count_face3
160 PRINT "Counts for number 4 ",count_face4
170 PRINT "Counts for number 5 ",count_face5
180 PRINT "Counts for number 6 ",count_face6
190 END

In line 40 the program asks for the number on the dice which it assigns to the variable
‘this_face\ In lines 50 to 100 it tests the value of ‘thisjace’ against each of the possible
outcomes for the dice. The test will only be true for one line of code; all the rest will test
false. A count is incremented in the line that tests true.

In line 110 we keep a count of the number of times we have thrown the dice in the
variable ‘throws’. This variable is tested in line 120 and when it reaches one hundred and
one, we can print out our results.

The test uses one of BASIC’s ‘operators’. An ‘operator’ is simply a name for what you
do in a sum or a test. So for example, V and are both operators. Below is the full list

191

Chapter 21 Basic

of operators for numbers. We will deal with operators for strings later to avoid confusion.

Numeric Operators

+ adds two numbers together
e.g.4 + 3 = 7

takes the second number from the first
e.g. 4-3 = 7

/ divides the first number by the second
e.g. 10/2 = 5

* multiplies two numbers together
e.g. 5*2=10

A raises the first number to the power of the second number
e.g. 4 A 2 = 16 (four squared to you and me)
4 A 3 = 64 (similarly four cubed)

< tests for the first number being less than the second
e.g. 5 < 6 is TRUE
6 < 5 is FALSE

> tests for the first number being greater than the second
e.g. 5 > 6 is FALSE
6 > 5 is TRUE

o tests for two numbers being different
e.g. 5 <> 6 is TRUE
6o6is FALSE

= ests for two numbers being equal
e.g. 5 = 6 is FALSE
6 = 6 is TRUE

<= tests for the first number being less than or equal to the second number
e.g. 5 <= 6 is TRUE
6 <= 6 is TRUE

7 <= 6 is FALSE

=> tests for the first number being equal to or greater than the second number
e.g. 5 => 6 is FALSE

192

Chapter 21 Basic

6 => 6 is TRUE
7 => 6 is TRUE

Now, let’s go back to our program. It would work. It would do exactly what we asked it
to do. But just think of writing a similar program to test a dice with twenty faces. What
if we wanted to record separate counts for two hundred different things. We would need
two hundred different variable names. There must be an easier way to record lots of
information.

Suppose you had six boxes. On the label on the first box you write the number one. On
the label on the second box you write two and so on for all six. You then lay the boxes in
order in a straight line and label the whole group of boxes ‘count_face\ If you want to
store something in one of the boxes, you now need two pieces of information. First you
need to know which row of boxes to use and secondly how far along the row your box is.

This is the principle of BASIC’s arrays. Instead of having six variables with different
names, BASIC uses one name to refer to a row of variables. Since you tell it which array
to use and how far along the row to go, BASIC can identify the particular box you want.

BASIC has to be told about an array before you start to use it This is so that BASIC can
reserve enough space to line up all the boxes in one row. Each box in an array is called
an ‘array element’. Once you have told BASIC about the array, you can use any element
in the array by referring to the array name and the element number.

Let’s change our instructions for the dice counting program to make use of the principle
of position in a row.

I am going to give you a number between one and six. If the number is one, put a tick in
the first column on a sheet of paper. If the number is two, put a tick in the second column
on the sheet of paper. If the number is three, four, five or six, put a tick in the third,
fourth, fifth or the sixth column on the paper. When I have given you one hundred
numbers tell me how many ticks you have written in each column.

10 REM Counting dice throws version 2
15 REM tell BASIC to save space for six columns of ticks
20 DIM count_face(6)
30 LET throws = 1
40 PRINT "Throw number ", throws
50 INPUT "Which face is on top ",this_face
55 REM keep a running count for each face
59 REM add a tick to column 1,2,3,4,5 or 6
60 LET count_face(this_face) = count_face(this_face) + 1
65 REM keep a count of the number of throws
70 LET throws = throws + 1

193

Chapter 21 Basic

75 REM loop back for 100 throws
80 IF throws < 101 THEN GOTO 30
85 REM now print our results
90 LET print_this - 1
99 REM print the results for one column at a time
100 PRINT "Counts for number ",print_this,count_face(print_this)
110 LET print_this = print_this + 1
120 IF print_this < 7 THEN GOTO 100
130 END

Line 20 tells BASIC about about our array. We have reserved enough space for six
elements that BASIC will now know by the variable names countjace(l), count_face(2)
... count_face(6). These are our six columns of ticks.

Line 60 stores our count for us. It replaces the six lines of code we needed in our first
version of the program. To understand how BASIC knows where to store the count we
need to think of our row of boxes again.

Assume that the first time you throw the dice it lands on a six (you cheated didn’t you).
The variable ‘this_face’ will hold the number ‘6\ When BASIC reaches line 60, it
interprets the code as follows (remember *this_face’ holds the number ‘6’):

Dount face (6) = count face(6) + 1

We have pointed at the sixth box in the line of boxes called ‘count_face’. BASIC looks
at the number that the box contains, adds ‘ V to it and puts it back in the box. BASIC has
added a tick to the sixth column.

In line 80 we have looped back to get the next reading until the value stored in ‘throws’ is
equal to one hundred and one.

We have printed the results by pointing at each box in turn. We have set up a loop from
line 100 to 120. In line 100 we are asking BASIC to print the box number (‘print_this’)
and the contents of the box (‘count_face(print_this)’).

100 PRINT "Counts for number ",print__this,count_face(print_this)

The first time round the loop the variable ‘printjhis’ is T so BASIC interprets the code
as follows:

100 PRINT "Counts for number ",1,count face(l)

The second time round the loop we have added ‘1’ to the value of ‘printjhis’ so BASIC
interprets line 100 differently:

194

Chapter 21 Basic

100 PRINT ''Counts for number ", 2,courit_face (2)

When we have printed the contents of all six boxes the program will stop.

The Hidden Array Element

We always think of counting from one but BASIC starts counting from zero. When we
allocate space for an array using:

DIM count face(6)

BASIC has actually reserved enough space for the elements count_face(0), count_face(l)
... count_face(6). The result is that we always get one more element than the number we
have asked for. So we could have changed line 20 above to read:

20 DIM count_face (5)

and we would still have had enough space to store the six numbers for the dice.
However, it would have been a little inconvenient. When the dice landed with number
T face up, the program would have had to store the count in array element
‘count_face(0)\ The number ‘2’ would have had to be stored in array element
‘count„face(iy. This scheme would work just as well as the scheme we chose, but the
program would not have been as straight forward to understand. As a rule it is much
easier to ignore the extra array element provided by BASIC and make the relationship
between the information to be stored and the array element number as simple as possible.
(We stored the count for number *1* in ‘count_face(l)\ the count for number *2’ in
‘count_face(2)’ etc.)

The example programs that we have so far shown have all been relatively short and have
been written as one piece of code. They have involved some looping back to run sections
of the code more than once but we have always been able to show the whole program in
one go. As programs become more complex they soon get to the point where they are too
complicated to take in as one block of code. We need a way of splitting the programs
into sections that we can write and test on their own and then combine with other sections
to form the whole program.

This requirement is the essence of subroutines and procedures. They are a way of
separating a program into manageable chunks.

195

Chapter 21 Basic

Subroutines and Procedures
Suppose you have been asked to clean and service a car. A friend has offered to help
you. Your friend knows about how to service cars and you don’t, so you agree that you
will do the cleaning and tell him about anything that needs servicing. He will then
service what you have told him to.

You wash the car and then start to polish it When you get to the wheel on the driver’s
side at the front, you notice that it is flat. You call your friend over to fix the tyre and you
stop for a cup of tea. When he has finished, you carry on polishing. When you get to the
rear wheel on the driver’s side, you notice that it is flat as well. More tea for you, and
another job for your friend. By the time you have polished the whole car, your friend has
had to fix all four tyres.

Your prime task has been to clean the car. You weren’t concerned about tyres. You
don’t know whether the tyres just needed extra air in them or whether they had to be
replaced. In fact you don’t even care since your friend could sort it out and just let you
know when he had finished the job. You were free to concentrate on your primary task,
cleaning the car.

Your friend was acting like a subroutine in BASIC. A subroutine is a piece of program
code that just knows how to do a particular task. It is usually a task that is likely to be
necessary more than once. The main program doesn’t have to know how the subroutine
works; it just has to know that it works and how to find it.

When the main program needs that task performing it will call the subroutine. The
subroutine will take over complete control and perform the task. When it has finished it
will ‘RETURN’ control to the main program again. The subroutine can be called lots of
times or just once.

10 REM Using subroutines
20 INPUT "Input the first number ",value_l
30 IF value_l = 0 THEN END
40 INPUT "Input the second number ”,value_2
50 IF value_l = value_2 THEN GOSUB 100 ELSE GOSUB 200
60 PRINT "Back in main program"
70 GOTO 20

90 REM Print if numbers are equal
100 PRINT "The numbers are equal"
110 RETURN

190 REM Print if number are different
200 PRINT "The numbers are different"

196

Chapter 21 Basic

210 RETURN

Lines 20 to 70 are the main program. It asks for a number, checks to see if it is zero and
stops if it is. If the first number is not zero, the program asks for a second number and
tests to see if the two numbers are the same. The program loops back to asking for
another number after the subroutines have finished. The main program doesn’t know
what the subroutines do and it doesn’t care.

Line 50 determines which subroutine to call. If the numbers are equal, ‘GOSUB 100*
transfers control to the subroutine starting at line 100. If the numbers are different,
‘GOSUB 200’ transfers control to the subroutine starting at line 200.

When either subroutine has finished, in our case just printing a message, it transfers
control back to the main program with the ‘RETURN’ command.

To call the subroutine at line 100 we just had to use the BASIC command ‘GOSUB’
followed by the line number to run next. It is a very similar principle to the ‘GOTO’
command. The only difference is that when BASIC meets a ‘GOSUB’ command, it
remembers where it is in the program so that it can ‘RETURN’ again when we tell it to.

We can trace the path that BASIC would follow through this program:

Line 10 Ignore because of the ‘REM’ command.

Line 20 Print the message and wait for a number to be typed in which will be stored in the
variable ‘value_l ’. Assume the number ‘5’ is typed in.

Line 30 Test the contents of *value_r to see if they are zero. Since ‘value_l ’ holds the
number ‘5’, continue to line 40.

Line 40 Print the message and wait for a number to be typed in which will be stored in the
variable ‘value_2\ Assume the number ‘5’ is typed in.

Line 50 Test the contents of ‘value_l’ to see if they are the same as the contents of
‘value_2’. Since both variables contain the same number you need to go to the
subroutine starting at line 100. Before you go to the subroutine, remember the line
number you would have goneto, had it not been for the subroutine.

Line 100 Print a message.

Line 110 Return from the subroutine to where you would have gone had it not been for
the subroutine.

197

Chapter 21 Basic

Line 60 Print a message.

Line 70 Go to line 20

Subroutines have been around since the early days of computers and programming. They
are a very useful feature but they have several drawbacks. The first problem is to do with
re-usability of code.

When you write your first program everything is new to you. If you want your program
to perform a particular task you have to write the code to do the job. However, as you
continue to write other programs you will soon find yourself writing very similar ‘bits’ of
code. Although the program you happen to be writing at the time appears to have nothing
to do with any program you have previously written, you will find that some functions
required will be the same. For example, if your program has to ask for the date, you will
need a routine to ask for and check that date. The routine you write could be used in
other programs so it would be useful to make it as ‘general purpose’ as possible.
Although a subroutine would do the job it would make your life more difficult later.

Suppose you had written a date checking routine as a subroutine numbered from line
1000 to 1230. In the program for which it was originally written this would have fitted
perfecdy. But suppose you wanted to use the subroutine in another program. The second
program already has lines numbered 1000 to 1230, so you have to change the line
numbers in your subroutine to start at line 5000. Even if the subroutine was
straightforward, changing all the line numbers to fit in a new program would be
inconvenient and may well lead to errors, but think of the problems of its name. In the
last program, when you wanted to check a date, you called subroutine 1000. In this
program, when you want to perform the same task, you have to call subroutine 5000.
How long will it be before you type in the wrong number? On the examples we have
seen so far this may not be a very serious problem, but remember that a complex program
can easily grow to five hundred or a thousand lines of code. You won’t then be able to
remember where everything is.

The subroutine name is also meaningless. It doesn’t help when you are trying to trace
through a program if it keeps leaping off to lots of subroutines. Unless you have written
lots of remarks in the code you would have to follow through each subroutine to find out
what it did. Life would be much easier if you could give meaningful names to
subroutines. In fact you can, and they are called Procedures.

Procedures have two great advantages over subroutines: you can refer to them by name
and the variables used within them can be made private.

Why is a name so important? Consider these two lines of code:

198

Chapter 21 Bask:

1000 IF total = 0 THEN GOSUB 5000 ELSE GOSUB 6000

1000 IF total = 0 THEN PROC_no_entries ELSE PROC_print

They could both perform the same task. However, the second line of code is much easier
to follow. Procedures don’t care about line numbers. Provided that the procedure
appears somewhere in your program, BASIC will find it. So our date routine mentioned
above could be copied into a new program anywhere and we would not have to remember
the line number.

LOCAL Variables

Variables can be made private to a procedure by telling BASIC that they are ‘LOCAL’.
For example:

1200 DEF PROC_no_entries
1210 LOCAL month$,day$

... all our procedure code

1290 ENDPROC

In this case the two variables ‘month$’ and ‘day$’ are private to this particular procedure
each time it is run. They don’t interfere with any other variables in the program.

Why bother with private variables? Using our date checking routine as an example, it is
likely that in such a routine we would need variables to store the year, month and day that
the user had entered. Suppose we had written the code as a subroutine and called the
variables simply ‘year’, ‘month’ and ‘day’. The subroutine works as planned in our
original program and since we knew we had already used those variable names, we didn’t
confuse them with anything else.

Now we are writing our second program. We need the user to input a variable for the
month and not surprisingly we called it ‘month’. That isn't a problem because we don’t
have our date routine yet so there is no confusion. After writing some more of our second
program we find we need to check a date so we add the routine we wrote a while back
that we know works perfectly. Suddenly our program stops working the way we expect.
Eventually we find that the problem has been caused by two different variables having
the same name. Then we kick ourselves for being so stupid. This would never happen in
real life, would it? Oh yes it would, and it does.

As far as BASIC is concerned any reference to the same variable name means the same
variable. Pretty sensible really. The trouble is we don’t always want that If a variable is

199

Chapter 21 Basic

only ever used within a routine ‘en route’ to producing an answer, we don’t want
anything else except this routine to interfere with it’s value. Procedures allow us to make
a variable private. This means that only the procedure itself knows about the variable.
The rest of the program cannot affect the value of the variable and doesn’t even know it
exists.

This ability to make variables private may not seem important but it makes for clean easy
to read programs and in the case of reentrant procedures it is essential. We will cover
reentrant procedures later. For the moment just think about writing code that is easy to
read. That means using obvious names for your variables and that inevitably means
variable names that will clash with others elsewhere in the program. If you make the
variables private whenever possible, you will avoid any possibility of clashing.

Within reason you can call a procedure any name you like, provided that it doesn’t
contain any spaces. If you use the underscore character, you can produce meaningful
names that you will understand in future.

We can rewrite our subroutine example using procedures to see the difference in the
‘readability’:

10 REM Using procedures
20 INPUT "Input the first number ",value_l
30 IF value_l « 0 THEN END
40 INPUT "Input the second number 11,value_2
50 IF value_l = value_2 THEN PROC_is_equal

ELSE PROC is different
60 PRINT "Back in main program"
70 GOTO 20

100 DEF PROC_is_equal
110 PRINT "The numbers are equal"
120 ENDPROC

200 DEF PROC_is_different
210 PRINT "The numbers are different"
220 ENDPROC

In this new version the ‘REM’arks become superfluous by a sensible choice of procedure
names.

The mechanics of using procedures are quite straightforward. You have to define the
procedure somewhere in your program and then you just call it with the BASIC command
‘PROC’ followed by the procedure name. In the above example line 50 calls the
procedure.

200

Chapter 21 Basic

Line 100 starts the definition of the first procedure. Line 120 ends the definition. You
can put any code you like between the start and end of the definition.

We can trace the path that BASIC would follow through this program to see how it
differs from the program using subroutines:

Line 10 Ignore because of the ‘REM’ command.

Line 20 Print the message and wait for a number to be typed in which will be stored in the
variable *value_l\ Assume the number 45’ is typed in.

Line 30 Test the contents of ‘value_l’ to see if they are zero. Since ‘value_l* holds the
number ‘5’, continue to line 40.

Line 40 Print the message and wait for a number to be typed in which will be stored in the
variable ‘value_2\ Assume the number ‘5’ is typed in.

Line 50 Test the contents of ‘valuej’ to see if they are the same as the contents of
*value_2\ Since both variables contain the same number, you need to go to the
procedure called _is_equal. Before you go to the procedure, remember the line number
you would have gone to, had it not been for the procedure. You now need to find the
procedure. It can be anywhere in the program. All we know about it is its name. In this
example the procedure we want starts at line 100.

Line 100 This marks the start of a procedure. The line of code doesn’t actually ‘do’
anything other than allow BASIC to find the procedure we have called.

Line 110 Prim a message.

Line 120 End the procedure. You need to return to where you would have gone had it not
been for the procedure.

Line 60 Print a message.

Line 70 Go to line 20

There are few practical differences between using subroutines and using procedures.
Essentially they perform the same task but we tend to use procedures by preference
because of the advantages to be gained in having private variables and in having code that
is easier to follow.

There are no restrictions on the code that a procedure or a subroutine can contain but you
must always be careful to leave either type of routine at the end. This comment relates

201

Chapter 21 Basic

back to our dislike of the ‘GOTO’ command. You can get some very interesting ‘bugs’
in the program by jumping between procedures and subroutines. What’s a ‘bug’ then? A
short history lesson will explain.

Bugs

When computers were still a novelty kept by mad professors in ivory towers, the only
way to get information into or out of them was by paper tape. This was literally a long
strip of paper with lots of holes punched in it. The holes were placed along the tape so
that it meant something to the computers. All the programs were entered into the
computers by paper tape and programmers had to have their programs converted onto the
tape before the computers could accept them. If an extra hole were punched onto the tape
by mistake the program would go wrong. The story goes that if a program suddenly
stopped working the way it was meant to work, a bug, of the animal variety, was blamed
for having chewed an extra hole in the tape. It must have been a wonderful excuse for the
programmers. The name stuck and so nowadays if a program doesn’t work as expected,
the fault is called a bug.

Let us go back to creating bugs with procedures. Consider this example:

1000 DEF PROC first routine

lots of program

1460 IF total = 0 THEN GOTO 2570

.. some more program

2470 ENDPROC
2500 DEF PROC another routine

.. program again

2570 REM a valid line in this procedure

2620 ENDPROC

We have only shown a small part of the code and clearly the programmer intended that
line 1460 should have jumped to line 2470. But instead the program will jump into
another procedure. This is an easy mistake to make, especially if all the intervening lines
of code had been present. Remember that on the Notepad you can only see eight lines of
code at a time. The result of this ‘bug’ is that BASIC would get very confused about
where it was supposed to be. The program would not work as expected. It is essential

202

Chapter 21 Basic

that you leave a procedure exactly where you are supposed to.

Why Bother With Procedures?

There are lots of reasons. Here are the ones we feel are of most benefit:

1) The program is easier to read. You can follow the main flow of the program without
getting ‘bogged down’ in the detail.

2) You can keep related actions in one place. For example, if you have one procedure
that deals with all output to the screen you will know precisely where to look if you
want to make screen changes. You also know that you only have to look in one
place rather than scattered sections throughout your program.

3) The procedures can be written and tested one at a time thus breaking a large
programming task into lots of smaller and therefore easier tasks.

4) A procedure written for one program can easily be used in another program if it is
appropriate.

5) The program tends to be shorter. You only write the code to do a task once. If you
need to do the same task again, you just call the procedure again.

Have we persuaded you to use procedures yet? We hope so.

Get Rid of the GOTO’s

We have said several times that you should try to avoid the use of the BASIC command
‘GOTO’ but so far we haven’t given you any alternatives. So here they are. They can
broadly be described as ‘Loop control’ commands and have several distinct advantages
over the good old ‘GOTO’.

1) They make your program easier to read (doesn’t this reason turn up a lot - you will
soon find that it is the most important reason for most of the programming
techniques used).

2) They are line number independent. This means that you can move them without
causing any problems elsewhere in the program since they stay in the same logical
place in the program.

3) They make changing the program easier because the ‘loop control’ statements are
obvious and self-contained.

203

Chapter 21 Basic

There are two commands; FOR..NEXT and REPEAT..UNTIL. Usually either command
could be used to perform a given task but generally they are used to do different jobs.
FOR..NEXT is best used if you want to go round a loop a specific number of times that
you know at the start of the loop. REPEAT..UNTIL is best used if you want to keep
going round a loop until something happens but you don’t necessarily know when it will
happen.

FOR..NEXT

The ‘FOR’ command is a way of telling BASIC to start counting something for you
automatically. It marks the start of a loop of program code that you are telling BASIC is
going to repeat several times. You also have to tell BASIC the name of a variable to use
to keep the count, when to stop counting and how much to add or subtract to the count
each time round the loop.

So BASIC interprets this line:

FOR loop_count = 1 TO 100 STEP 1

as:

Remember where you are now. Set the variable ‘loop_counf to 1 and run the program
from here on. Next time you are back at this point increase the contents of *loop_count’
by ‘U and see if it is greater than ‘100’. If it isn’t, mn the program from here again. If
‘loop_count’ is greater than ‘100’ you have fmished this loop.

We can choose any variable name we like; we can choose any number to start at, any
number to finish at and any number to step up by.

The ‘NEXT’ command tells BASIC where the loop of program ends. BASIC interprets
the command as:

Go back to the line number we told you to remember and action the command you fmd
there.

10 REM Using a for next loop
20 FOR silly_name = 1 TO 100 STEP 1
30 PRINT "The current value of silly_name is
40 PRINT silly_name
50 NEXT silly_name
60 END

Line 20 starts off the FOR loop. It tells BASIC to use a variable ‘silly_name’, to give the

204

Chapter 21 Basic

variable the value of ‘V and to start going round a loop until ‘sillyjiame’ reaches the
upper limit of ‘100’. Each time round, the loop BASIC will add T to the contents of
‘sillyjiame’.

Lines 30 and 40 are the ‘body’ of the loop. They are what do the work. In our case they
just print the value of ‘sillyjiame’ but it could be any number of lines of program doing
any task that you want performing one hundred times.

Line 50 is where the loop ends. This tells BASIC to go back to the start of the program
loop. BASIC returns to line 20, adds ‘1’ to the value of ‘sillyjiame’ and tests to see if
‘sillyjiame’ is greater than ‘ 100’. If ‘sillyjiame’ is less than or equal to ‘100’ BASIC
runs the body of the loop again. When ‘sillyjiame’ reaches ‘101’ BASIC finishes the
loop - it goes to the first line of code after the NEXT command. In our case this will be
line 60.

BASIC emphasises the nature of the loop by adding extra spaces to the body of the loop.
If you LIST the example on your Notepad the screen will look like this:

10 REM Using a for next loop
20 FOR sillyjiame = 1 TO 100 STEP 1

PRINT "The current value of sillyjiame is
PRINT sillyjiame

50 NEXT sillyjiame
60 END

30
40

The FOR..NEXT command is not limited to counting in ones. In fact it isn’t even limited
to counting upwards.

10 REM Using a for next loop
20 FOR count = 100 TO 1 STEP -2.5
30 PRINT "The current value of count is
40 PRINT count
50 NEXT count
60 END

In this case we have started the count at ‘100’ and told BASIC that each STEP is ‘-2,5’.
That means that BASIC has to take ‘2.5’ away from count on each step. The first time
through the body of the loop BASIC will print ‘100’. The next time through it will print
‘97.5’ and so on down to ‘2.5’. At this point BASIC takes ‘2.5’ away from ‘count’ and
gets ‘O’, Since it is counting down and since the new value of ‘count’ is below the value
we have told it to stop at, BASIC jumps to the first line after NEXT.

If the loop is counting up, it is stopped when the controlling variable, ‘count in this case,
is higher than the upper limit contained in the FOR command.

205

Chapter 21 Basic

If the loop is counting down, it is stopped when the controlling variable is lower than the
lower limit contained in the FOR command.

You need to make sure that the loop will Finish when you expect it to. The following
program would only run the body of the loop once:

10 REM Using a for next loop
20 FOR count = 100 TO 1 STEP 1
30 PRINT "The current value of count is
40 PRINT count
50 NEXT count
60 END

We have set up a FOR..NEXT loop but it is going to count in the wrong direction. We
have started the loop with the variable ‘count’ holding the number ‘100’. We have told
BASIC to continue going round the loop until ‘count’ reaches the number1V but we have
told it to ‘add 1* each time round the loop. Left alone, the loop would never Finish.
However, BASIC would notice this error and end the loop immediately on reaching line
50. Therefore, the body of the loop would only be run once.

BASIC will make one assumption about a FOR..NEXT loop if we let it. The assumption
is that STEP is T. So we don’t need to add this to the line unless we want STEP to be
something other than ‘ 1\ It is good practice to always put a value for STEP because it is
then clear what we meant The following two lines of code would do the same thing
because of the assumption that BASIC makes:

20 FOR count - 18 TO 27 STEP 1

20 FOR count = 18 TO 27

Getting Out Too Soon

We might not always want a FOR..NEXT loop to run its full course, but we can’t just
jump out of the loop. That would confuse both BASIC and anyone reading the program.
We have to finish off the loop correctly. The surest way of doing this is simply to set the
control variable to a number higher than the upper limit.

10 REM Leaving a for next loop
20 FOR count = 1 TO 100 STEP 1

INPUT "Enter a number ", number
PRINT count,number
IF number < count THEN count =101

60 NEXT count
70 END

30
40
50

206

Chapter 21 Basic

This example will ask us to type in a number, print the current value of ‘count’ and the
number we typed in and then loop back and ask for another number. In fact as long as we
type in a number that is higher than or equal to the current value of ‘count’, BASIC will
keep asking for numbers until it has looped for one hundred times.

Line 50 provides us with an early escape route. If the number we type in is greater than
the current value of ‘count’, BASIC will store the value of ‘10F in ‘count’. Then when
the next STEP is taken, is this case adding ‘ 1*, the answer will be greater than the upper
limit contained in the FOR command. BASIC will Finish the loop and run line 70.

The above scheme would work and is a perfectly valid way of achieving a loop. Its only
real disadvantage is that it may not be obvious what is causing the loop to finish. In a real
program the line setting the loop control variable to the upper limit may be some distance
from the FOR or NEXT commands, so at first sight it is not clear what conditions stop the
loop.

In the circumstances where you want a loop to continue until a particular condition is met
it is much clearer to use the REPEAT..UNTIL command.

REPEAT..UNTIL

The ‘REPEAT’ command tells BASIC that we are going to repeat a loop of program code
several times. Unlike the ‘FOR’ command it does not tell BASIC anything about any
variables to use, when to stop the loop or what to do each time round the loop. We have
to do all that ourselves.

10 REM Using repeat until
20 count = 0
30 REPEAT
40 count = count + 1
50 INPUT "Enter a number ", number
60 PRINT count,number
70 UNTIL count - 100 OR number < count
80 END

Line 20 sets a variable ‘count’ to the value ‘O’. We have previously written this as ‘LET
count = O’, but assigning a value to a variable is such a common command that BASIC
assumes the presence of the word ‘LET’. Thus, the following two lines of code would do
the same thing; that is they assign the value of zero to the variable ‘count’:

20 LET count = 0

20 count = 0

207

Chapter 21 Basic

Most programmers don’t bother adding the command ‘LET’ since there is never any
confusion possible about what the line of code is doing.

Line 30 is telling BASIC that it has to REPEAT something but it doesn’t say how often or
what to do each time round the loop.

The body of the loop is pretty much as before except that we now have to add the STEP
ourselves; remember REPEAT..UNTDL doesn’t do it for us.

Line 70 tells BASIC when to stop REPEATing. It has to repeat the loop UNTIL either
the value in ‘count’ is 100 ‘OR’ the value in ‘number’ is less than the value in ‘count’.
We will discuss the ‘OR’ operator in a moment. The main advantage that
REPEAT..UNTIL has in this example is that the conditions for finishing the loop are both
in the same place. It is easy to see why the loop has finished. It must have stopped
because either the value in ‘count’ was ‘100’ or because the value in ‘number’ was less
than the value in ‘count’. We don’t have to search through the program to find any other
conditions.

If you list this example on your Notepad you will find that BASIC indents the body of the
loop again in just the same way as it did for the FOR..NEXT loop.

10 REM Using repeat until
20 count = 0
30 REPEAT
40 count = count + 1

INPUT "Enter a number ", number
PRINT count,number

70 UNTIL count = 100 OR number < count
80 END

50
60

Loops Within Loops

Loops can have other loops within them. This is called ‘nesting’ since one loop is nested
inside another. The only point to be aware of is that you must not mix up the different
levels of nesting. Consider this example:

10 REM Nested loops gone wrong
20 FOR outerJLoop - 1 TO 100 STEP 10
30 FOR inner_loop = 1 TO 10 STEP 1
40 PRINT outer_J_oop,inner_loop
50 NEXT outer_loop
60 NEXT inner_loop
70 END

208

Chapter 21 Basic

In line 50 we have ended the body of the outer loop before we have ended the body of the
inner loop. If you LIST the example in BASIC the program structure will become more
obvious:

10 REM Nested loops gone wrong
20 FOR outer_loop = 1 TO 100 STEP 10
30 FOR inner_loop = 1 TO 10 STEP 1

PRINT outer_loop,inner_loop
50 NEXT outer_loop
60 NEXT inner_loop
70 END

40

The outer loop should consist of lines 20 to 60; the inner loop should be lines 30 to 50.
But we have instructed BASIC to take the next step in the outer loop while BASIC still
thinks it is in the inner loop.

10 REM Nested loops corrected
20 FOR outer_loop = 1 TO 100 STEP 10
30 FOR inner_loop = 1 TO 10 STEP 1

PRINT outer__loop, xnnerJLoop
50 NEXT inner_loop
60 NEXT outer_loop
70 END

40

The REPEAT..UNTEL example above used an operator we haven’t covered yet It is one
of a group of operators known as the ‘Logical Operators’.

Logical Operators

BASIC’s set of logical operators can be used in two very different ways. We are only
interested in one of these, the use of logical operators to combine several tests to produce
a single answer.

All of the logical operators have ‘English’ like names and behave very much as one
would expect from a strict interpretation of the English word.

AND

Suppose we were conducting a survey of examination results from a group of children.
We may want to work out the percentage of children that achieved a ‘grade 1 ’ in both the
Maths and the English examinations. We are combining the results of two tests to
produce a single result. We are only interested in those children that passed in Maths
AND passed in English. The following BASIC line would combine the results:

209

Chapter 21 Basic

1000 IF maths_mark = 1 AND english_mark =■ 1 THEN PRINT "Well done"

The test that BASIC performs in line 1000 is effectively in two parts. First it checks to
see if the variable ‘maths_mark’ contains the number ‘1\ then it checks to see if the
variable ‘english_mark’ contains the number *1*. Only if both tests are TRUE is ‘Well
done’ printed. We can extend the use of AND by adding more tests.

Suppose we now want to know if any children did well in Maths, English and French.

1000 IF maths_mark *= 1 AND english_mark = 1 AND f renchjmark *= 1 THEN
PRINT "Very well done"

This time, just getting a pass mark in Maths and English is not good enough; the test
requires a pass mark in Maths AND English AND French.

OR
A sequence of tests joined by the OR logical operator is much easier to pass. Now we are
just looking for one of the results to be TRUE. If we wanted to see the children who were
good at either Maths OR English, the following line would show them up:

1100 IF inaths_mark - 1 OR english_mark = 1 THEN PRINT "Pretty good"

This time BASIC will print our message if either of the examination results were ‘grade
U. Again we can extend the test by adding more conditions:

1150 IF maths__mark = 1 OR englisiwnark = 1 OR french_mark = 1 THEN
PRINT "Could do better"

Here the child only needs to get a pass grade in one subject to receive a comment from
the program.

Note that extra passes are not excluded so a child getting any of the following results
would receive the comment:

grade 1 in English, some other grades in French and Maths
grade 1 in Maths, some other grades in English and French
grade 1 in French, some other grades in Maths and English
grade 1 in English AND Maths, some other grade in French
grade 1 in English AND French, some other grade in Maths
grade 1 in Maths AND French, some other grade in English
grade 1 in Maths AND English AND French

210

Chapter 21 Basic

The OR operator looks for one or more TRUE tests to be satisfied.

EOR
This is short for ‘Exclusive OR’. It is very similar to the logical OR operator except that
only one test is allowed to be TRUE.

Consider the following two lines:

1100 IF maths__mark - 1 OR english_jnark = 1 THEN PRINT "Pretty good"
1200 IF maths__mark = 1 EOR english_mark = 1 THEN PRINT "Pretty good"

As we have seen above, in line 1100 we would get a message printed if either of the two
tests proved to be true or if both of the tests proved to be true. In line 1200 however, we
only get a message printed in Lhe case where one of the two tests is true. We won’t get a
message if they are both true. The ‘Exclusive ‘OR’ operator has excluded the case when
both tests are true.

When we extend the principle it becomes rather more difficult to analyse the results. This
is because the EOR operator can only work on two tests at a time. If there are more than
two tests linked by EOR, the tests are broken down into pairs working from the left. The
easiest way to illustrate this is to work through some examples. We can change line
1200 to read:

1200 IF maths_mark = 1 EOR englishjnark = 1 EOR french_mark = 1 THEN
PRINT "Could do better"

Suppose a student obtained grade ‘U in Maths and grade ‘2’ in English and French. The
sequence of decisions that BASIC would take when processing line 1200 would be:

Result is TRUE
Result is FALSE

Do the first test: Is maths mark = 1?
Do the next test: Is english_mark = 1?

Since we now have two results combine them to produce a single result using EOR:
Result is TRUETRUE EOR FALSE

Do the next test: Is french mark = 1? Result is FALSE
Since we now have two results combine them to produce a single result using EOR:

Result is TRUETRUE EOR FALSE

Here the result, TRUE, is as expected and would have been the same had we used OR
instead of EOR.

What if the student obtained grade ‘ V in Maths and English and grade *2’ in French?

211

Chapter 21 Basic

Result is TRUE
Result is TRUE

Do the first test: Is maths jnark = 1?
Do the next test: Is english_mark =1?

Since we now have two results combine them to produce a single result using EOR:
Result is FALSETRUE EOR TRUE
Result is FALSEDo the next test: Is french_mark = 1?

Since we now have two results combine them to produce a single result using EOR:
Result is FALSEFALSE EOR FALSE

This is exactly what we want We are trying to catch those students that only obtained
one grade T. So the line of BASIC has correctly analysed the results for us when this
student obtained two grade ‘ 1 * marks.

But there is a drawback. Look at what happens if the student obtains three grade ‘ 1 *
marks.

Result is TRUE
Result is TRUE

Do the first test: Is maths_mark = 1 ?
Do the next test: Is english_mark = 1 ?

Since we now have two results combine them to produce a single result using EOR:
Result is FALSETRUE EOR TRUE
Result is TRUEDo the next test: Is french_mark = 1 ?

Since we now have two results combine them to produce a single result using EOR:
Result is TRUEFALSE EOR TRUE

This is not the answer we want. If a student obtained grade *1* for Maths, English and
French, line 1200 would print "Could do better".

Unfortunately, if there are an odd number of tests joined by EOR and all the tests are
TRUE, the answer will always be wrong. However this is not a serious problem since we
already know how to check for all the tests being TRUE by using the AND operator.
Hence as long as we remember the problem we can always get round it.

If the child obtained grade 1 in both Maths and English, the use of EOR would exclude
BASIC from printing the comment.

The use of AND and OR can be extended to combine many tests in the same line. This is
not true for EOR. The results are straightforward if you combine two tests with EOR.
We have just seen how to combine three tests by making sure that the case of all the tests
being TRUE was trapped first. But you cannot combine more than three tests with EOR.
Unfortunately the results from combining four or more tests are inconsistent - if there are
an odd number of TRUE answers EOR will always give the wrong result. However, as
long as we stay within the known limitations of the command, the results will always be
as expected

212

Chapter 21 Basic

The EOR operator looks for one, and only one, TRUE test to be satisfied (but remember
to check for all TRUE first and don’t combine more then three tests).

NOT

The logical operator NOT simply reverses the action of any of the previous operators.
Consider the following two lines of code:

1X50 IF maths_mark = 1 OR englishjmark = 1 OR french_mark « 1
THEN PRINT "Could do better"

1160 IF NOT (maths_mark - 1 OR english_mark = 1 OR
french_mark = 1} THEN PRINT "No grade l's!"

As we saw above, line 1150 would print "Could do better" if a child received a grade 1 in
Maths OR English OR French. Line 1160 reverses the test and so would print the unkind
remark if the child didn’t get any grade l’s.

The brackets are important. They tell BASIC to work out the result of everything inside
the bracket before actioning the NOT operator. If we took the brackets away, the NOT
operator would only affect the result of the first test (Is maths_mark = 1?).

In this example it would have been more efficient to have added an ELSE to the first IF
command in line 1100.

Logical Operator Summary

If two or more tests in an IF command are joined by the logical operator AND, all the
tests must be true before the THEN path is followed.

If two or more tests in an IF command are joined by the logical operator OR, one or more
of the tests must be true for the THEN path to be followed.

If two or more tests in an IF command are joined by the logical operator EOR, one and
only one of the tests must be true for the THEN path to be followed unless there are an
odd number of tests and they are all true.

The NOT logical operator reverses the effect of any of the above.

To Continue The Program
To illustrate the use of the logical commands we will complete the program to grade the
children’s results.

213

Chapter 21 Basic

We want the program to print one of four possible messages depending on the results of
the grades. The messages are as follow:

No grade l’s should print "No grade l's!"
One grade 1 should print "Could do better"
Two grade l’s should print "Pretty good"
Three grade l’s should print "Very well done"

We can split the program up into two sections: input and output. The input section has to
ask for the three grades and store them somewhere. The output section has to decide
which message to print and then print it. Clearly only one message should be printed for
each child Let’s start with the main flow of the program.

10 REM Grading program
15 REM set a flag to go round the loop until stopped
20 the_end = FALSE
30 REPEAT
4 0 PROC_get_grades
50 PROC_print_mes s age
55 REM have we been stopped yet?
60 UNTIL the_end
70 END

We have set up a straightforward loop to act as our main program. We have used the
variable ‘the_end’ to control a REPEAT..UNTIL command. As long as this variable is
FALSE BASIC will continue to go round our loop. Within the REPEAT..UNTIL loop
we have our two sections - one to deal with input (PROC_get_grades) and one to deal
with output (PROC_print_message). All we have effectively done is to split our
complicated program into two smaller and less complicated sections. We can deal with
each section in turn, making life much easier.

100 DEF PROC__get_grades
105 REM ask for the grades - give a reminder how to stop
110 INPUT "English mark (0 to end) *',english__mark
115 REM test for us to stop program
120 IF english_mark - 0 THEN the_end = TRUE:ENDPROC
130 INPUT "Maths mark
140 INPUT "French mark
150 ENDPROC

", maths_mark
", french mark

This procedure has two jobs to perform. The obvious job is to ask the user to enter the
grades ready for processing. The less obvious job is to allow the user to end the program
if he so wishes. We have taken the arbitrary decision that a grade of ‘O’ for English will
cause the program to stop. Line 110 tells the user of this fact and line 120 checks to see if

214

Chapter 21 Basic

the user does want to stop. If the user entered ‘0’ then this procedure must finish, making
sure that the main program knows the user wants to stop. Remember that the main
program is using the variable *the_end’ to control the REPEAT..UNTIL loop so if we set
this variable to TRUE the main program will stop.

If the user entered a valid grade for English, we cany on to ask for the grades for Maths
and French then end the procedure.

200 DEF PROC_j?rintjmessage
205 REM make sure we don't print if we have been stopped
210 IF the_end THEN ENDPROC
215 REM check for all three grade l's
220 IF english_mark = 1 AND maths_mark = 1 AND french_mark = 1

THEN PROC_great:ENDPROC
225 REM check for a single grade 1
230 IF english__mark = 1 EOR maths_rnark = 1 EOR french_mark = 1

THEN PROC_do_bet ter:ENDPROC
235 REM check for a pair of grade l's
240 IF english_mark - 1 OR maths_mark = 1 OR french_mark = 1

THEN PROC_good:ENDPROC
250 PROC_poor
260 ENDPROC

The job of this procedure is to print different messages depending on how good th
grades were. As usual we have split the job into two parts - that of deciding which
message to print and that of printing the message.

The decision making process uses the logical operators to control which of the priming
procedures are called. The logical flow of the decision can be summarised as follows:

Check to see if all the grades were ‘ V and if so call the procedure _great and fmish (line
220).

Check to see if there was a single grade ‘ 1 ’ and if so call the procedure _do_better and
finish (line 230). Note that we can safely use the EOR operator here since the previous
line trapped the only condition that would cause EOR to go wrong.

When we get to here, we have removed students with three grade 1 ’s and we have
removed students with a single grade 1. Thus if any mark grade is a 1 there must be two
grade 1 ’s. If so call procedure _good and fmish (line 240).

If the program reaches this point it must mean that there were no grade ‘1’ marks so call
the procedure _poor and finish.

215

Chapter 21 Basic

The variable ‘the_end’ was set to TRUE by the procedure _geLgrades if the user entered
‘0’ as the grade for English. Thus line 210 stops our procedure __print_message from
printing a message if the user has signalled the program to stop.

300 DEF PROC_poor
310 PRINT "No grade l's!"
320 ENDPROC

400 DEF PROC_do_better
410 PRINT "Could do better"
420 ENDPROC

500 DEF PROC_good
510 PRINT "Pretty good"
520 ENDPROC

600 DEF PROC_great
610 PRINT "Very well done"
620 ENDPROC

The four procedures to actually print out the right message are very simple. So why
bother with separate procedures anyway? In this example there isn’t really much point
|>ut it does give us added flexibility.

Suppose later we wanted to collect statistics on the number of students obtaining each
message. We would have to add variables to count the number of times each message
was printed and how many students’ results were entered. That would be easy to do in
our example because it is very structured and thus expandable. We haven’t limited the
job the program can do just because at the moment the job is easy.

There are two new points to note in the above example. The first one is the use of the
coloncharacter on lines 120, 220,230 and 240.

So far in all our examples we have only ever had one command on a line, but this need
not be the case. BASIC only needs the line numbers in a program to figure out the order
in which to execute the commands. If two commands will always be executed one after
the other we can place them on the same line separated by a colon. We can extend this
principle even further. Indeed the only limit on the length of a line is 255 characters, so
the following two pieces of program code are identical:

10 A = 1
20 B = 2
30 C = A + B
40 PRINT C
50 C - C + B

216

Chapter 21 Basic

60 PRINT C

10 A - 1:B = 2:C = A + B:PRINT C:C = C + BtPRlNT C

In the above case it makes very little difference which style we choose to write the code
in. It is often convenient to keep several related commands on a single line to emphasise
that they are related but there is little real benefit to code clarity. However the real power
of the colon comes when used with an IF command.

120 IF english_mark = 0 THEN the_end = TRUE:ENDPROC

BASIC interprets this line as follows:

Look at the contents of the variable ‘englishjnark’ and see if it equals ‘O’. If it doesn’t,
go on to the next line. If it does then set the variable ‘the_end’ to TRUE and then end the
procedure.

In other words, we have linked two commands to be performed in the case where the IF
command is true. Both the setting of the variable and ENDPROC depend on the IF
command.

As always we can extend the concept:

1000 IF this_count = 100 THEN PRINT "all done":end_flag = TRUE
:sum = sum + 1 :PROC_clear_up: ENDPROC

In this case, if the value of ‘this_count’ is equal to ‘100’ we will print a message, set a
flag, add one to another variable, do a procedure and then end this procedure. All these
commands rely on the IF command. None of these commands will be processed if the IF
lest is FALSE.

The second new idea that we have introduced in the grading program above is the use of
flags. Flags are just variables. There is nothing special about them but they do make for
clear programs. In our case we have a variable called ‘the_end’ and we start by giving it
the value of FALSE. At the end of each loop of the main program, this variable is tested.
If its value is still FALSE, the program loops back to ask for more grades. If its value is
TRUE, the program stops.

We set the variable to TRUE in line 120 if the user has entered a grade of ‘O’.

There are two main advantages of using variables as flags. First, as you no doubt expect
by now, is program clarity. If your main program loop keeps repeating until a variable
called something like ‘the_end’ is set to TRUE, it is rather obvious what stops the

217

Chapter 21 Basic

program. Similarly, if several procedures can only be run after some initialisation has
been done, testing a flag called ‘mit.done* would highlight that point precisely.

The second advantage of flags is that you can control different parts of the program very
methodically. Suppose you had a program that wrote information into the memory of the
Notepad. You would need to ensure that there was still enough room in the memory to
carry on. A flag called something like *mem_fuir could signal a problem to lots of
different procedures throughout the program if you ran out of memory. These other
procedures may not have anything directly to do with memory use, but they may need to
know of a problem. The flag would be controlled by the procedure that was writing to
memory and would be read by any other procedure that needed to know.

The Three Modes of BASIC
Officially BASIC has three very different operating modes. We haven’t said which mode
BASIC has been in at any given time because this is only important to BASIC - we don’t
need to know as long as we realise what BASIC will do next.

The three modes are called ‘Immediate’, ‘Program’ and ‘Edit’.

Why Three Modes?

Essentially the three modes are just a way of telling BASIC what to do next. In
Immediate mode the next command always comes to BASIC from the keyboard. In
Program mode the next command always comes from the next line of the program that
BASIC is currently running. In Edit mode the next command comes from the keyboard
but BASIC has to save what you have edited first.

You never need to think in terms of switching modes. You will just type ‘RUN’ or
‘EDIT’ or press the STOP key; you will know exactly what BASIC is going to do next
and BASIC will do as it’s told (well most of the time anyway).

Immediate Mode

When you first enter BASIC by pressing Function B it will be in the Immediate mode.
You can tell this because BASIC puts a *>* on the screen waiting for your instructions.
This is the mode where you do things like SAVE a file, LOAD a file or type in the lines
of your program.

BASIC will always respond ‘Immediate’ly to your commands.

218

Chapter 21 Basic

Program Mode

Once you have either typed in or ‘LOAD’ed a program you can tell BASIC to ‘RUN’ the
program. You are actually telling BASIC to switch to its Program Mode.

This is where BASIC runs your program. Your program has complete control over what
is printed on the screen and what keys to expect from the keyboard.

Edit Mode

If you type in a line of your program and make a typing mistake you can correct the
mistake by just re-typing the line. For a short line this is probably the quickest way of
correcting it. If, however the line of code is very long you can tell BASIC to switch to its
‘Edit Mode’ to allow you to correct the error.

Editing Your Program

To edit a line you just type ‘EDIT followed by the number of the line you want to edit.
If you want to change something in line 40, you just type EDIT 40 and BASIC will
present the line for you to change. Although EDIT is not a ‘full-blown’ text editor like
your Notepad’s Word Processor it will allow you to quickly correct the odd typing
mistake.

Once you have told BASIC which line to edit, it displays the line at the top of the screei
and places the cursor before the start of the line. As you type characters they are inserted
where the cursor is. The following keys move the cursor and/or delete characters:

Del > - deletes the character on which the cursor rests closing up the rest of the
line

< Del - deletes the character immediately to the left of the cursor, closing up the
rest of the line

Right Cursor - moves the cursor one character to the right, stopping after the last
character on the line

Left Cursor - moves the cursor one character to the left, stopping at the start of the
line

ENTER - finishes editing this line and returns BASIC to its immediate mode

STOP - this leaves the editor without putting any of the changes you have typed

219

Chapter 21 Basic

into your program.

As well as changing your program a line at a time EDIT is also a useful way of copying
lines of code. For example, if you EDIT 200 and just change its line number to 210 you
will find that you now have two identical lines of program, one numbered 200 and the
other numbered 210.

If you want to remove a line from your program you just type its line number followed by
the ENTER key.

Switching modes

You don’t really need to think about it. The rules for switching modes are straightforward
and will soon become automatic. However, for the record, here they are:

When you enter BASIC you will be in Immediate Mode.

To switch to Edit Mode you type ‘EDIT’ followed by the line number you want to edit.

To switch back to Immediate mode without changing anything on the line you’re editing,
press the STOP key. This ignores any changes you may have made to the line.

To switch back to Immediate mode keeping any changes you’ve made to the line you’re
editing, press the ENTER key.

To switch to Program Mode you type ‘RUN’.

To switch back to Immediate Mode you press the STOP key twice. This just stops the
program running wherever it happens to be.

BASIC will also stop running a program if it finds a line of program code that it cannot
understand. It will then display a message telling you which line number had the error.

WARNING - The Panic Button
You need to be pretty careful about pressing the Function key by mistake. This
could well be described as the ‘Panic escape route’. It will stop any program
running and the Notepad will go off to the application that you directed it to, e.g.
pressing Function C will take you to the Calendar. But in going to another
application the Notepad will throw away any changes you made to the current
BASIC program. It is a quick way out but beware! If you have made any changes
to your program and not saved them, the changes will be lost.

220

Chapter 21 Basic

TIP - A Sneak Preview of BASIC Commands

Apart from actually typing in your program, the most useful aspect of the
Immediate mode is that you can see what BASIC will do. Many commands that are
available to a BASIC program can be entered in the immediate mode and will get an
immediate response.

If you type PRINT 3+4 without a line number BASIC will immediately print the
answer, hence the name immediate mode. You can print out the current values of
variables. So for example if you ran the following program:

10 REM What does a variable hold
20 first = 34
30 second = 65
40 total — first + second
50 END

and then type ‘PRINT first’, BASIC would respond by printing 34 on the screen.
Although the program has stopped and BASIC is in Immediate Mode, it hasn’t
forgotten what was in each variable. So the variable ‘second’ still holds the number
‘65’ and the variable ‘total’ stills holds the number ‘99’.

The variables will only lose their contents when either you ‘RUN’ the program agair
or you ‘LOAD’ in a new program.

This is particularly useful if you are trying to remove bugs from a program. If you
run the program, press the STOP key twice when the program goes wrong and then
print the values of variables, it can give you a clue as to the cause of the problem.

Moving On

We have covered enough of the commands available in BASIC for you to be able to start
writing useful programs. So that is precisely what we are going to do next. We will
continue to add new commands as we go through the example but in the next section we
will be concentrating on the mechanics of putting together a program to do a specific job.

The Hotel Reception Desk

Suppose you ran a hotel. The hotel has four floors and on each floor there are twenty
rooms. Behind the reception desk are a set of shelves where you keep messages for the
guests. There are four shelves and each shelf is divided into boxes. Each box is labelled
with a room number, from one to twenty, reading from left to right. The bottom shelf is

221

Chapter 21 Basic

labelled ‘First floor’ and the top shelf is labelled ‘Fourth floor’.

When somebody wants to leave a message for one of your guests, you write the message
on a sheet of paper and place it in the box corresponding to the room the guest is staying
in.

If the guest from room 15 on the second floor asks for any messages, you can look along
the second shelf to box 15 and take out anything you fmd for him.

We want to replace the shelves in our hotel with a computer system that will store
messages for guests. The program must allow us to input a message for a particular
guest, store that message until we ask for it and print out the message to the screen when
we tell it to.

Before we start to write the program we need to plan what it will do and broadly how it
will work. As programs become more complex, the planning stages become more
important.

The Program Specification

or a commercial program the Program Specification is a detailed document that
escribes what the program will do. It details what input information it will collect, how

the information is stored and what output the program will generate. It will frequently
include detailed descriptions of how the various parts of the program will operate and
how they will interact with the other parts of the program. It will always include any
assumptions that have been made about the information it must handle or the limits on the
functionality required.

We don’t need all that in a formal document, but it is important to think about what you
want the program to do before you start writing it. You don’t even have to write the
specification down, but it would help to get things clear in your own mind if you wrote a
few lines describing the purpose of the program.

If you don’t plan, you will probably end up with a program that will

1) be difficult to get working properly because you have had to ‘tack on’ little bits here
and there as you’ve thought of them

2) probably not do what you wanted it to because you have run out of time and/or
patience to finish it

3) be difficult to change or adapt to a new use

222

Chapter 21 Basic

So, to our specification.

We have already stated our principal objective - to replace an existing manual hotel
message system. Before we consider how the program will operate we need to consider
the assumptions we will make and what information will be available to us.

First, we will always know the room number for the guest; secondly the information can
be thrown away once it has been shown once; thirdly that there will only ever be a
maximum of one message per guest at once and that the message will be short; and lastly
that this is the only use for the computer. These assumptions are pretty restrictive in the
real world, particularly the last one, but they will help us to get started quickly. The
assumptions can be modified later to extend the usefulness of the program.

Two Dimensional Arrays
We haven’t yet said exactly how we are going to store the messages. We know that there
are four floors and on each floor there are twenty rooms so we know that there will be up
to eighty messages to store. There are several possible ways of storing the information.

We could have eighty different variables, each with a different name, and then decide
where to save the information by having a long list of ‘IF..THEN' commands. Thi
would work but it isn’t really practical for the amount of data we have to deal with.

We have already covered the concept of arrays and they would seem a good candidate for
use here. Remember that arrays arc a way of pointing to one in a line of boxes by simply
telling BASIC how far along the line the box is. We have eighty messages to store so we
could have an array with eighty boxes. This would allow us to store all the information
we need but it wouldn’t be very convenient. Where would we put a message for the guest
in room IS on the 4th floor? The answer is in box 78 but it isn’t immediately obvious.
We want to design our program so that everything is obvious wherever possible.

If we think back to our existing manual system for saving the messages we already have
a very efficient and obvious way of deciding where to store the information. We have
four rows of twenty boxes corresponding to the four floors of twenty rooms. To find a
message for the guest in room 18 on the fourth floor we are using two pieces of
information. The floor number points at a row of boxes; the room number points at a
particular box in the row. Our information has been stored in two dimensions - the
vertical dimension determines which floor we need and the horizontal dimension
determines which room we need.

BASIC can copy this format exactly with a ‘two-dimensional’ array. The command:

223

Chapter 21 Basic

DIM message{4,20)

reserves enough space for four rows of twenty boxes. If we want to look at the message
for our guest in room 18 on the fourth floor we just have to point BASIC to the right
place:

PRINT message(4,18)

We are effectively saying:

Print the contents of the eighteenth box in row four.

For our example a two-dimensional array containing 4 rows of 20 boxes is the ideal way
to store the information. We do need to make one slight change to cope with the fact that
the messages are plain text The statement above:

DIM message (4,20)

would reserve enough space for our 80 boxes (in 4 rows of 20) but we have told BASIC
that each box will contain a real variable (there is no % or $ after the name). A real
variable can only store numbers; it can’t store text. Text is stored in strings so we need to
tell BASIC that our array will hold strings:

DIM message? (4,20)

Now we can think about how the program will operate.

The program is really in two halves. We need a way of collecting the messages and
storing them for later retrieval and we need a way of retrieving the messages and printing
them on the screen. Apart from the fact that both halves of the program are working with
the same information, the messages, they are completely separate. We can write and test
them as individual programs and then combine them at the end when they are both
working as we wish. Sections of a large program that can be written on their own like
this are called ‘program modules’. A program module may be a single procedure or a
subroutine. However, it normally consists of a group of several procedures that together
perform a clearly defmed task.

We are going to have an ‘information input module’ and an ‘information output module’.
The two modules will together form our program.

We can now write down the essentials of how our program will operate:

1) Decide what to do, either input messages or output messages.

224

Chapter 21 Basic

2) If we are inputting messages, get the floor and room numbers followed by the message
and store the message.

3) If we are outputting, get the floor and room numbers, print the message and then clear
the message.

Now we can start writing our program; we know what it has to do and roughly how it is
going to do it.

How do you Write a Large Program?
There are as many answers to this as there are programmers but we can give you a few
guidelines.

1) Break the task up into lots of smaller tasks. If you try to do everything at once you will
soon get hopelessly lost in the complexity of the program.

2) Keep sections of the program dealing with the same thing in the same place. It makes
it easier to find a bug and to alter the program in future.

3) Don’t worry about the detail until you have got the main outline sorted out.

4) Test each subroutine or procedure thoroughly before you use it in the main program.

5) Assume the user of your program is stupid and that he wants to ‘break’ your program
by typing the wrong things in. In practice neither of these assumptions are often valid but
if you think that they arc while you are programming your program will work far more
reliably when finished.

6) Avoid writing long stretches of program. Keep each section short, if possible short
enough to read the whole procedure in one screen.

7) Wherever possible make sure that if a procedure is designed to collect some
information, the same procedure is responsible for checking that the information is
correct. By trapping invalid input as soon as possible, with the procedure that collects it,
the general reliability of the program is greatly improved.

First we need to decide what our main program has to do. The obvious task is to decide
whether to input a message or to output a message but we will also need to set up some
variables before running the program. This ‘setting up’ is called initialisation and some
form of initialisation procedure will be found in almost all programs.

225

Chapter 21 Basic

We have enough information to write our program.

10 REM Hotel Reception Desk Message Saver Version 1
20 PROC_welcome_screen
30 PROC_initialise
40 the_end = FALSE
50 REPEAT

PR.OCj3et_deci.sion
IF decision « 1 THEN PROC_do_input ELSE PROC_do_output

80 UNTIL the_end
90 END

60
70

There it is. Wasn’t that easy. That is our main program written. It doesn’t do anything
yet but it is the complete overall structure.

All we have done is to break to complex task down into five easier tasks, these being:

PROC_welcome_screen - say something helpful on the screen

PROC_initialise - set up any variables that we need in the program

PROC_get_decision - find out what the user wants to do

PROC_do Jnput - input and store a message

PROC_do_output - print and clear a message

We have created a program loop between lines 50 and 80 with a ‘REPEAT..UNTIL’
command. In fact the loop will never end because in line 40 we set the controlling
variable ‘the_end’ to FALSE and we never set it to TRUE. The ‘UNTIL’ command in
line 80 tests the value of ‘the_end’ against TRUE so the program will always loop back to
line 40.

This is an unusual way to control a program but it has the advantage of making our first
attempt very straightforward because we don’t have to worry about re-starting the
program. In a normal application we would want to be able to stop this program, go off
and do something else with the computer and then come back and cari^ on with the
messaging system. This requirement causes several complications that we will cover
later. So for the moment we will assume that the Notepad is dedicated to the task of
storing and retrieving messages.

The loop of program code between lines 40 and 80 only has to do two things. It needs to
collect a decision from the user, which we will store in the variable ‘decision’, and it needs
to either call a procedure to input a message or to call a procedure to output a message.

226

Chapter 21 Basic

Effectively we now have to write five small programs to act as the procedures for our
main program and we have already stated what each program must do.

PROC_welcome_screen

When somebody starts running a program they expect to see something happen
immediately. If the program has to search for documents and then prepare them for use,
or if there are lots of variables to initialise before use, it can take several seconds before
the program is ready to do useful work. Therefore it is always a good idea to put
something on the screen straight-away so that the user knows the program is running and
what it is doing. In our example there is not very much to do before the real work starts
so we don’t really need to bother about any delays before the program is ready to use.
However, good habits are best formed early so we will write a short procedure to say
hello to the user.

1000 DEF PROC_welcome_screen
1010 PROC_banner
1040 PRINT TAB(28,2) "VERSION 1"
1060 PRINT TAB(24,4) "please wait
1070 ENDPROC

1100 DEF PROC_banner
1110 CLS
1120 PRINT TAB(15,0) "HOTEL RECEPTION DESK MESSAGING SYSTEM"
1130 ENDPROC

We have split this procedure into two parts because we will want to use our banner in
several places. It is therefore sensible to have a single routine to print the banner.

We have also introduced two new commands. The first one, ‘CLS’, simply clears the
Notepad’s screen. The ‘TAB’ command however is much more powerful and needs a
short explanation.

TAB

The ‘TAB’ command allows the program to place the cursor anywhere on the screen.
The cursor marks the place where anything printed on the screen will be positioned. It is
the same as the cursor in the Notepad Word Processor. Thus ‘TAB’ provides a means of
organising the screen layout to suit the particular application. To tell BASIC where to put
the cursor, you need to supply a column number and a line number.

Column numbers run from 0 to 79; line numbers run from 0 to 7. Thus to place the
cursor at the top left of the screen you would write:

227

Chapter 21 Basic

TAB(Of 0)

and to place the cursor at the bottom right of the screen you would write:

TAB (79,7)

The ‘TAB’ command can be used to position the cursor prior to either a ‘PRINT’
command or an ‘INPUT’ command For example, line 1120 above is telling BASIC to
move the cursor to column 15 on the top line of the screen and then prim the banner
message.

Once the procedure _welcome_screen has finished, the screen will show the following:

HOTEL RECEPTION DESK MESSAGING SYSTEM

VERSION 1

please wait

PROCJnitialise

In this program we don’t have any variables that need setting to special values before the
program can run. Hence we don’t need to do much initialisation. However we do need to
tell BASIC about the array we will be using to store the messages in. This is the purpose
of line 2010. We don’t need to worry about what is in the array to start with: BASIC
takes care of that for us. Whenever an array is ‘DIM’ensioned BASIC always sets all the
array elements to either zero, for a real or integer array, or an empty string, for a string
array.

This routine then just positions the cursor and calls a procedure to ask the user to press
the ENTER key.

2000 DEF PRtXjLnitialise
2010 DIM message?(4,20)
2020 PRINT TAB(19,4);
2030 PROC_get_enter
2040 ENDPROC

We have called another procedure to wait for the user to press the ENTER key. We will
cover the definition of the procedure _get_enter later.

228

Chapter 21 Basic

PROC_get_decisIon

This procedure has to ask the user what he wants to do. We have used the number 1 to
mean input (see the IF statement in the main program). We haven’t specified a number to
use for output so we will use the number 2. So this procedure has to set the variable
‘decision’ to the value of 1 or 2 depending on whether the user wants to input or output a
message.

Since any other numbers apart from 1 and 2 are invalid, the procedure must reject them.

3000 DEF PROC_get_decision
3005 REM use a variable to signal when we have a good decision
3010 got_decision = FALSE
3015 REM sit in a loop until we have a decision
3020 REPEAT
3025
3030
3040

REM clear the screen and put up our heading
PROC banner
PRINT TAB(12,2)

"Please enter requirement
PRINT TAB(39,3) "Print message - 2
REM get a digit
PROC__get_digit
REM has the user pressed 1 or 2
IF this_digit =49

OR this_digit = 50 THEN got_decision « TRUE

Input message - 1"
3050
3055
3060
3065
3070

3080 UNTIL got_decision
3085 REM the user pressed either 1 or 2 so return the answer
3090 decision = this_digit - 48
3100 ENDPROC

Lines 3020 to 3080 form a loop which is only left when the value in the variable
‘got__decision’ is TRUE. To begin with we set this variable to be equal to FALSE. It is
only set to TRUE when the value of the variable ‘ this__digit’ is either 49 or 50. This
means that if the user presses a key other than ‘1’ or ‘2’ in response to our question, the
question will be asked again.

We have called a procedure to get the digit. For the moment we don’t care how this is
done as long as the procedure returns a number.

There are some magic numbers that need some explanation. Line 3070 does not look as
though it’s testing for the keys 41* and ‘2’ but it is.

229

Chapter 21 Basic

The ASCII Code

Computers can only deal with numbers. In the real world we have lots of different
symbols in addition to just numbers that we use to communicate with. Apart from the
letters of the alphabet we have all the punctuation characters, maths symbols etc. So that
computers can deal with these different symbols they have to be represented by numbers.

Over the years there have been many different ways in which the symbols have been
translated into numbers but by far the most common, and more importantly for us the
method used in the Notepad is the code known as ASCII.

ASCn stands for the American Standard Code for Information Interchange. All we need
to realise is that it is a standard way of saying what number means the letter ‘A’, what
number means the letter ‘B\ etc. In fact all of the keys on the Notepad’s keyboard are
translated into a number before the computer can do anything with them.

When you press the key ‘A’ with the SHIFT key held down as well, the computer sees
the number ‘65’. When you press ‘SHIFT’ and ‘B’ the computer sees the number ‘66’.
For reference we have included a list of the complete ASCII CODE as an appendix but
for now all we need to know is that when you press the key ‘ 1* on it’s own, the computer
sees the number 49. So we can translate line 3070 of our program into English as
follows:

If the user pressed the Notepad key labelled ‘1’ OR if he pressed the Notepad key
labelled ‘2’ then put the value ‘TRUE’ into the variable ‘got_decision’.

3070 IF this_digit =49
OR this_digit = 50 THEN got_decision = TRUE

Line 3090 sets our variable ‘decision’ to the value of ‘this_digit’ less ‘48’. Remember
that we had decided that we wanted this procedure to set the value of ‘this_digit’ to either
1 or 2 depending on which key the user pressed. Since the ASCII code for the key * 1’ is
49 and the ASCII code for the key ‘2’ is 50, by taking 48 from the ASCII code we have
arrived at the required answer.

PROC_do_input

The requirement for this procedure is to ask the user for a room number and a floor
number and then to store the message for the appropriate guest.

4000 DEF PROC_do_input
4005 REM put up our header again
4010 PROC banner

230

Chapter 21 Basic

4015 REM make sure the user knows what the program is doing
4020 PRINT TAB(22,2) "READY TO STORE YOUR MESSAGE"
4025 REM ask for the room number and put into the variable 'room'
4030 PROC_get_room
4035 REM ask for the floor and put into the variable 'floor'
4040 PROC_get__floor
4050 PRINT TAB(16,6) "What is the message";
4060 INPUT message$(floor,room)
4065 REM add some reassurance
4070 PRINT TAB(7,7) "The message has been stored -
4080 PROC_get_enter
4090 ENDPROC

We have defined two new procedures; j>et_room and _get_floor. These must each ask
the user for the necessary information and check to make sure that it is in range.

Line 4060 does the job of both collecting the message for a particular guest and of storing
the message in the correct array element. Since we don’t need to do anything to the
message for the guest, all we have to tell BASIC is where to put it.

PROC_do_output

The requirement for this procedure is very similar to that for PROC_do_input, We need
to ask the user for a room number and a floor number and then print any message on the
screen.

5000 DEF PROC_do__output
5005 REM put up our header again
5010 PROC_banner
5015 REM make sure the user knows what the program is doing
5020 PRINT TAB(22,2) "CHECKING FOR STORED MESSAGES"
5025 REM ask for the room number and put into the variable 'room'
5030 PROC_get_room
5035 REM ask for the floor and put into the variable 'floor'
5040 PROC_get_floor
5045 REM test for no message for this guest
5050 IF messages(floor,room) « "" THEN PRCC_no_message

ELSE PROC_message
5060 ENDPROC

Line 5050 is the only one that does any real work in this procedure. We need to decide
whether or not there is a message for this guest. If there is then we need to print it. If
there is no message we want to say something helpful on the screen. Line 5050 takes this
decision and calls either PROC_no_message or PROC_message as appropriate.

231

Chapter 21 Basic

To understand how the test works we need to clarify precisely what a string is.

What Is a String

A string is a sequence of up to 255 characters. The characters can be anything we wish.
There are no ‘special5 characters that signify the start or end of a string. When we store a
sequence of characters in a string variable, BASIC saves the string for us together with
the number of characters in the string. So for example:

10 my_string$ = "This is a string"

causes BASIC to put the character sequence "This is a string" in the variable ‘my^string’
and to store the length of the string, 16 in this case, with the variable name.

Having assigned a line of text to our string variable there are lots of operations that we
can perform on the text. We will be covering these in detail later but for the moment we
will just consider printing the suing.

20 PRINT my_string$

This tells BASIC to look for the variable ‘my_string’ and print whatever happens to be in
the variable. BASIC knows how many characters it needs to print because it stored the
length of the string when it stored the actual text. So in this example BASIC knows it has
to print 16 characters.

30 nry_string$ = "This"
40 PRINT niy__string$

In line 30 we have given the variable a different sequence of characters. Line 40 prints it
for us and again BASIC knows how long the string is - only 4 character now.

50 my_string$ = "T"
60 PRINT my_string$

Line 60 only has to print 1 character.

70 my__string$ = ""
80 PRINT rny_string$

Line 80 has nothing to print. But the suing still exists. As far as BASIC is concerned it
is just an empty suing variable. In fact the concept of an empty suing is so important that
it even has a special name - a NULL suing. Line 70 set the variable ‘my_string$’ to be a
NULL suing.

232

Chapter 21 Basic

Returning to our program, line 5050 is checking to see if messages(floor,room) is a
NULL string. If it is then there is no message for this particular guest so
PROC_no_message is called. If message$(floor,room) is not a NULL string, there must
be a message so PROC_message is called.

Having called the correct procedure to print to the screen, PROC_do_output has finished
its job.

PROC_get_digit

The definition for this procedure is quite straightforward. It simply has to collect one of
the keys ‘0’ to ‘9’ from the Notepad’s keyboard.

Since we want the user to enter a number, we could use BASIC’s INPUT command in a
routine something like this:

6000 DEF PROC_get_digit
6010 INPUT this_digit
6020 ENDPROC

This would work fine but would be a little irritating for the user. Having pressed a
number key he would then have to press the ENTER key. We can produce a much better
result by effectively reading the keyboard directly.

6000 DEF PROC_get_digit
6010 got_digit = FALSE
6020 REPEAT
6030
6040

key = INKEY(0)
IF key > 47 AND key < 58 THEN got_digit = TRUE

6050 UNTIL got_dig.it
6060 this_digit = key
6070 ENDPROC

First notice that we are back with those ASCII codes again. They do tend to crop up
regularly. Here line 6040 is checking to make sure that the ASCII code of the key that
the user pressed is higher than 47 and lower than 58. 47 is the ASCII code immediately
lower than that for the key ‘O’; 58 is the ASCII code immediately higher than that for the
key ‘9’. So line 6040 just checks to make sure the user really did press a digit

INKEY

The command in line 6030 looks directly at the keyboard. If the user has not pressed a
key, this command returns the number ‘minus 1’. In our example the test in line 6040
would fail and BASIC would repeat the loop for us.

233

Chapter 21 Basic

When the user does press a key, the command INKEY returns the ASCII code for that
key immediately - it doesn’t wait around for the ENTER key to be pressed.

The number in the brackets after INKEY tells BASIC how long to look at the keyboard
before giving up if no key is pressed. This number is in hundredths of a second.

means don't wait at all
means wait for 1 second before giving up
means wait for 1 minute before giving up

INKEY(0)
INKEY(100)
INKEY(6000)

There is a very similar command, GET, that does the same job as INKEY but will wait
indefinitely for a key to be pressed. For a discussion of the different uses of these two
commands see the section concerning INKEYS later.

PROC_get_room, PROC_get_floor

These two procedures are very similar. They each have to ask the user for a number and
then check that it is valid. As with all the input routines, they should only return to the
section of program that called them when they have received good data. The sooner bad
data is trapped out of a program the better.

100 DEF PROC__get__room
110 valid^room = FALSE
020 REPEAT

7030
7040
7050
7060 UNTIL valid_room
7070 ENDPROC

PRINT TAB(4/4) "What is the guests room number
INPUT TAB(35,4),room
IF room > 0 AND room <21 THEN valid room = TRUE

8000 DEF PROC_get_floor
8010 valid_floor - FALSE
8020 REPEAT
8030
8040
8050
8060 UNTIL valid_floor
8070 ENDPROC

PRINT TAB(20,5) "On which floor
INPUT TAB(35,5),floor
IF floor > 0 AND floor < 5 THEN valid floor = TRUE

PROC_no_message

The procedure that is called when there is no message for the guest simply has to point
this out to the user. By calling PROC_get_enter we are assured that the user has time to
read our message before the screen is cleared ready for the next operation.

234

Chapter 21 Basic

9000 DEF PROC_no_message
9010 PRINT TAB(4,6) "There is no message for this guest -
9015 REM make sure the user reads this by waiting for a key
9020 PROC_get_enter
9030 ENDPROC

PROCLmessage

Now we get to the whole point of the program - displaying a previously stored message
for our guest.

10000 DEF PROC_message
10010 PRINT TAB(5,6) "The message for this guest is:

message$(floor,room)
10020 PRINT TAB(19,7)
10025 REM make sure the user reads this by waiting for a key
10030 PROC_get_enter
10040 message$(floor, room) = ""
10050 ENDPROC

Apart from actually displaying the guest’s message the only other job this procedure has
to do is to clear the variable containing the message. This is achieved by setting the
variable to a NULL string - remember that this is just telling BASIC that the string no
longer has anything in it but that it does still exist.

PROC_get_enter

On to the last procedure in this example. Its definition is easy - wait for the user to press
the ENTER key. It uses the INKEY command just like PROC_geLdigit and again has to
test against an ASCII code. Here the magic number produced by the ENTER key is 13.

10100 DEF PROC_get_enter
10110 PRINT "Press the ENTER key when ready";
10120 got_enter = FALSE
10130 REPEAT
10140
10150
10160 UNTIL got_enter
10170 ENDPROC

key = INKEY(0)
IF key =13 THEN got_enter = TRUE

Summing Up the Hotel Message Example
We now have a complete application program. We defined a requirement and wrote a
structured program that met ts the specification. If you are new to BASIC and have

235

Chapter 21 Basic

followed through each procedure you deserve congratulations. But before you get too
carried away we should consider what the problems are with our program.

1) It isn’t really very helpful to the user. If the user types in an invalid room number for
example, our program doesn’t tell him what the problem is - it just asks again.

2) It can only store one message at a time for each guest.

3) There is no way to look at a message without clearing it from memory.

4) There is no way to go back and change a message without first removing it and then
re-entering it completely.

5) If you stop the program and use your Notepad to write a letter or check the diary, when
you run the program again all the old messages will have been lost.

Looking on the bright side however, because the program is structured, we can address
these problems without having to re-think our whole strategy. Indeed most of the above
problems could well be corrected by using commands that we have already discussed and
you may like to consider how this could be done.

The only difficult nut to crack is the problem of how you stop the program, go off and do
something else with your Notepad and then come back to the program with all the
messages still intact. To solve this we need to save our information to a file - a subject
we will cover later.

Playing With Strings

Working with numbers and generally‘doing sums' is a common experience for most
people, but the idea that you can do analogous operations with lines of text may be new.

Any operation on a string is normally referred to as a function and the BASIC within your
Notepad has a wide range of string functions.

Before we cover the functions we will review what we mean by a string.

A string is literally a sequence of characters that BASIC stores in memory and knows by
the name of the string variable to which we assigned the characters. In order for BASIC
to be able to work with the string, it needs to know how long the string is. Thus
whenever we assign a sequence of characters to a string variable, BASIC always stores
the string length as well. Under normal circumstances we are never aware of this but if
we need to know BASIC has a way for us to find out.

236

Chapter 21 Basic

LEN

When we give the string function LEN a variable name it will return the length of the
string for us.

10 first_string$ = "This is a string"
20 second_stringS = "Here is another string"
30 your_stringS = ""
40 PRINT LEN(first_string$);
50 PRINT LEN(second_stringS);
60 PRINT LEN(your_stringS)

When you RUN this program you should see the following on the screen:

22 o16

The variable* first_string$’ holds 16 characters, the variable‘second_string$’ holds 22
characters and the variable‘your_string$’ doesn’t hold any characters.

The number that LEN returns is just that - a number, so we can use it just like any other
number.

70 total_lengtb = LEN(first_stringS) + LEN(second_stringS) +
LEN (your_strmgS)

80 PRINT total length

This should print the number 38.

Adding Strings Together

Strings are not added in the same way as numbers. It would make little sense trying to
add "This is a string" to "Here is another string". When two strings are added there are
just joined. So the lines

90 your_stnngS ■= first_ strings + second_stringS
100 PRINT your_stringS

would show

This is a stringHere is another string

on the screen. BASIC has joined the second string onto the end of the first string and put
the resultant string into the variable‘your_string$\

As usual we can extend the principal. If we changed line 90 thus

237

Chapter 21 Basic

90 your_string$ = first_string$ + " " + second_string$

the screen would show

This is a string Here is another string

BASIC has added a space to the end of the first string and then added the second string.
Remember that the two variables‘first_string$’ and‘second_string$’ will not have been
changed by this operation. Only the contents of the variable4your„string$’ has been
altered.

Subtracting Strings

BASIC can't subtract strings. It can split them, but there is nothing analogous to the
sum4 A = B - 2' as far as strings are concerned.

There are three functions that can split up a string - one takes the left-hand end, one takes
the right-hand end and one takes the middle.

LEFT$, RIGHTS, MID$

10 a_string$ = "Here is where we start"
20 b_string$ = LEFT? (a_stringS,4)
30 c_string$ = RIGHTS{a_string$,5)
40 d_stringS = MIDS(a_stringS,9,5)
50 PRINT b_stringS: PRINT c_stringS: PRINT d_stringS

After running this program our screen would show

Here
start
where

Each of these functions needs to know what string it has to work on and how many
characters to take. MIDS also needs to know where to start from.

Line 20 tells BASIC to use the variable4a_string$\ take the 4 leftmost characters of the
string and put them into the variable4 b_string$’. Similarly, line 30 tells BASIC to use the
variable4 a_string$’, take the 5 rightmost characters of the string and put them into the
variable4 c_string$\

Line 40 needs an extra piece of information. The MIDS function needs to know where to
start. In our case we started at the 9th character and assigned 5 characters to the
variable4 d_string$\

238

Chapter 21 Basic

If the string that we have told these functions to work on is not long enough, BASIC will
just try it’s best. So for example if we changed line 10 to:

10 a string$ = "AA"

and tried the program again, we would get:

AA
AA

BASIC will print as many characters as it can so we get two lots of AA’s followed by a
blank line. LEFTS and RIGHTS were able to prim something but MIDS had nothing to
print. We have told it to start at the 9th character and there isn’t a 9th character.

A variation when using MIDS is to only supply the start position. The function will then
return all the characters from the start position to the end of the string. For example:

10 a stringS = "Here is where we start"
20 d^stringS = MIDS(a_stringS, 9)
50 PRINT d_string$

would print the following to the screen:

where we start

The numbers that we give to the string functions don’t have to be fixed; they can be
variables themselves. Indeed we don’t even need to give the functions a string variable;
the string can be included in the command.

10 FOR test_loop - 1 TO 19 STEP 3
PRINT LEFTS ("abodefghi jklmnopqrstuvw", test__loop)

30 NEXT test_loop
20

This program would print

a
abed
abedefg
abode fghij
abodefghijklm
abodefghijk1mnop
abcdefghijklmnopqrs

The first time round the loop the variable‘test_loop’ has the value of 1’ so line 20
effectively reads:

239

Chapter 21 Basic

PRINT LEFT$ ("abcdefghi jklrnnopqrstuvw", 1)20

This tells BASIC to prim 1 character starting from the left of the string. The next time
round the loop the variable*testJopp* has the value of 4’ (the STEP part of the FOR ..
NEXT added‘3’) so line 20 now reads:

20 PRINT U2FT${"abcdefghijklrnnopqrstuvw", 4)

We have asked BASIC to print 4 characters starting from the left of the string. The loop
will continue until the value of testjoop’ is greater than* 19’.

Comparing Strings

Checking that two strings are the same is exactly analogous to checking that two numbers
are the same.

1000 IF numl = num2 THEN PRINT "The numbers are the same"
1010 IF a$ = b$ THEN PRINT "The strings are the same"

When BASIC processes line 1010 it is actually checking two different things about the
strings. The first test is to make sure that the two strings are the same length. If they are
different lengths then the test will fail before BASIC has even looked at any of the
:haracters.

Assuming that the two strings are the same length, then BASIC looks at each character in
turn to make sure it is the same in both strings. The first character in one string is
checked against the first character in the other string. If the first characters are the same,
BASIC checks the second characters and so on to the end of the string. If BASIC gets to
the end without finding a difference, the test will pass and in our case a message will be
printed.

The characters have to be identical in each position. The test is'case sensitive’ so the
following two strings are different:

"this is a string" and "THIS IS A STRING"

Checking that two strings are different is not the same as checking that two numbers are
different

When BASIC compares two numbers to test if one is greater than the other it only has to
consider one thing - which number is the greater. When BASIC compares two strings it
has to consider the length of each string as well as what is in each string.

240

Chapter 21 Basic

We will consider the contents of the strings to begin with. Suppose we had the following
test program to show us how strings are compared:

10 REM Test program for string compares
20 INPUT "First string",a$
30 INPUT "Second string",b$
40 IF aS < b$ THEN PRINT "Second string is greater"
50 IF a$ > b$ THEN PRINT "First string is greater”
60 IF a$ = bS THEN PRINT "Strings are equal"
70 GOTO 20

This program will just ask us to type in two strings, compare them and then loop back to
the start again. We can stop the program by pressing theSTOP key.

Using the test program we can show how BASIC performs the comparison.

Entering "abc" and "abc" will produce "Strings are equal". Both strings are the same
length and they have the same characters.

Entering "abc" and "xyz" will produce "Second string is greater". Both strings are the
same length so the comparison has been based purely on the contents of the strings. Why
has BASIC decided that "xyz" is greater than "abc"? The reason goes back to the ASCII
CODE we described earlier.

Remember that a computer cannot understand letters - it can only understand numbers.
The ASCII CODE defines a number for each letter on the Notepad keyboard as well as
numbers for lots of characters not present on the Notepad keyboard. When you press the
key'a* BASIC sees the number 97. When you press the letterib’ BASIC sees the number
98. It is these numbers that BASIC is comparing when checking our strings.

If we write our two strings not as characters but as their ASCII CODEs we can see why
BASIC printed "Second string is greater".

The ASCII CODEs for "abc" are 97,98,99
The ASCII CODEs for "xyz" are 120,121,122

BASIC compared the first ASCII CODE from our first string with the first ASCII CODE
from our second string. In this case the test ended because4120’ is greater than‘97’ so
BASIC gave us our message.

Entering "abc" and "abd" will produce "Second string is greater". This time the ASCII
CODEs for each of the first two characters in the strings are equal. It is only on the third
character that the ASCII CODE from the second string is higher than that from the first
string.

241

Chapter 21 Basic

Entering "abc" and "ABC" will produce "First string is greater". Looking at the ASCII
CODEs again:

The ASCD CODES for "abc" are 97,98,99
The ASCH CODEs for "ABC" are 65,66,67

Lower case letters have higher ASCII CODEs than capital letters.

Now lets add the complication of length to our comparisons. The rules for comparing the
individual characters are the same but now the test will be stopped for one of two reasons.
First, if the code for a character in one string is greater than that for the corresponding
character in the second string, BASIC has found the difference. Secondly, if the end of
one string is reached before the end of the other string, the longer string is greater.

Using our test program again, entering "abc" and "ab" will produce "First is greater". The
first two characters in each string are the same so the test rests on what to do about the
extra character in the first string. Effectively BASIC has said that since there is no third
character in the second string, it’s ASCII CODE is zero. BASIC then compares the
ASCD CODE for "c" against‘0’ and thus prints "First is greater".

The general rule is that if two strings have the same characters up to the point where one
of the strings ends, then the longer string is the greater.

entering "ABC" and "ab" will produce "Second string is greater". Here we have the
situation that although the first string is longer than the second string, the length never
gets considered. The test has already been determined before the end of the second string
is reached because the ASCII CODEs are different.

We can summarise these results in a table as follows:

First string Second string Result

abc abc strings are equal
second is greater
first is greater
first is greater
first is greater
second is greater
first is greater

abc xyz
abc ABC
abc XYZ

ABCab
ab abc

ABCDEFGHUab

242

Chapter 21 Basic

Searching Within a String

It is often useful to be able to look for one string inside another string. BASIC provides a
powerful function able to do this for us.

INSTR

10 first_string$ = "This is a string"
20 second_string$ = "a s"
30 got_it = INSTR(first_string$,second_string$)

The INSTR function searches one string variable to see if it contains a second string. If
the second string is found the function returns the position that the second string starts aL
If the second string isn’t found the function returns the value zero. Unless we tell it
otherwise, INSTR will always start searching from the first character in the first string.

In our example we have set the first string to "This is a string". Our second string is "a s".
INSTR will find this second string starting at position 9 in the variable1 first_string’ and
will therefore set the value of gotjf to‘9\

By giving INSTR some extra information (another parameter) we can tell it to start
searching at some point other than the first character in the fust string.

INSTR(first_string?,second_string$,6)30 got_it

This time INSTR will not start looking for the second string until it has reached position
six in the first string. A typical use of this extra parameter is to check for more than one
occurrence of the second string in the first string. Suppose we had the following program
example:

10 first_string$ =■ "This is a string"
20 second_string$ = "is"
30 got_it_l - INSTR(first_stringS,second_stringS)
40 got_it_2 = INSTR{first_string$,second_string$,got_it_l + 1)

This time our second string occurs twice in the first suing. As above line 30 will fmd the
occurrence, now at position 3. But the second suing is also at position 6. This will be
found by line 40 which doesn’t start searching until one character later than line 30. If we
had left off the extra parameter in line 40 INSTR would have found the first occurrence
again because it always starts at the first character in the fust string.

This is very much‘special case’ programming - the example took account of the fact that
there were two occurrences of the second string in the first suing. What we need is a
more general approach to checking for one string inside another.

243

Chapter 21 Basic

Suppose we were writing a program that had to be able to accept the current month, typed
in using letters, as input from the user. We would need a way to check that the user had
indeed entered a valid month. If we had a list of the twelve months as a single string, we
could use the INSTR function to make sure that we had received valid input from the
user.

100 REM Get a valid month from the keyboard
105 REM make a string with all the months in
110
months^1:January:February:March:April:May:June:July:August:September:Oct o
ber:November:December"
120 INPUT "Type in the month ";user$
125 REM we need to count the number of times user$ is found
130 found = Orstart = 1
140 REPEAT

REM see if user$ is good
position = INSTR(month$,user$,start)
IF position > 0 THEN PROC_found ELSE PROC_not_found

170 UNTIL found > 79
180 IF found = 0 THEN PRINT "Not found"
190 IF found = 1 THEN PRINT "Found at ";save_pos
200 IF found > 1 THEN PRINT "Not enough characters"
210 GOTO 120

145
150
160

Line 110 sets up our string for us. We have separated each month by a colon to help us
check later on that the data is good. Line 120 prompts the user to enter the month and
puts the user's input into the string variable4 user$’.

From the programmer’s point of view it would be easiest if we made the user type in the
whole name for the month he wanted. However this would not be terribly‘user friendly’
so we are going to allow the user to just type in enough characters to uniquely identify the
correct month. For some months this is easy -‘O’ would give us October;‘S’ would give
us September. ButT on it’s own is not good enough - does the user mean January, June
or July. If we can be sure that the variable‘user$’ only occurs once in the list of months
then we know what the user means. If user$’ occurs more than once we need to ask for
more information. Hence the need for the loop between lines 140 and 170.

We begin the test by setting the variable‘found’ to zero in line 130. We also set a
position to start searching - the variable‘start\ Then we start a REPEAT..UNTIL loop
which controls where INSTR will begin looking for‘user$’ in‘month$\ If INSTR is
successful the value of position’ will be greater than‘0’ so PROC„found will be called. If
INSTR failed to fuufuserS’ the value of position’ will be‘0’ and hence PROC_not_found
will be called. The loop will end when the value of the variable'starf is greater than‘79’.
Where did‘79’ come from then? It is the position in‘month$’ where the last month
begins. If we don’t find a match when we start from here, we won’t find a match any
later.

244

Chapter 21 Basic

Lines 180 to 200 prim out the result of the test If the value of found’ is still zero at the
end of the loop, no occurrences of user$’ were found in‘month$’ so the user must have
typed in invalid data. If the value of found’ is* 1 only one occurrence ofuser$’ was
found so we can be sure we know what the user meant. If found’ is greater than' 1’ then
we can’t be sure ~‘user$’ was found more than once.

The two procedures change the value of the variable'start’.

300 DEF PROC_found
305 REM record the fact that we found a match
310 found = found + 1
315 REM save the place where the match was found
320 save_pos = position
325 REM we can start the next search loop from where the match was found
330 start = position + 1
340 ENDPROC

When we find an occurrence of user$’ in'months’ there are several variables to change.
The value of found’ has to be incremented to record our match; we need to remember
where this match occurred so that we can tell the user if there is only a single match; and
we can move the start of the next search to after the point where the match was found.
Note that line 330 sets the new value of start’ to the current match position plus one so
that we don’t find the same match twice.

400 DEF PROC_not_found
410 start = 80
420 ENDPROC

If we don’t find a match for‘user$’ this procedure only has one job to do. Since a match
wasn’t found from the current start there can’t be a match anywhere further
along'month$’ so we can stop the loop from going round again. All we need to do is to
set the variable controlling the loop,‘start’, to a number greater than we have given in our
UNTIL statement -‘80’.

If you type this example in to your Notepad and'RUN’ it you will find that it works
correctly if you give it good data. If you type in*S* it will print "Found at 52”. If you
type in'J’ it will prim "Not enough characters". However the program does have a
fundamental flaw - try typing in'eb’ and the program will print "Found at 11". Not quite
what we wanted.

The problem lies in the fact that we haven’t trapped parts of months. As it stands the
program will tell us we have good data if it can find a single match against any group of
characters typed on the keyboard. Perhaps the reader would like to consider how to
correct this flaw - HINT: the colons we added to'monthS’ can tell you when you are at
the start of a month but beware of the user typing in something like

245

Chapter 21 Basic

Changing the Variable Type
We have already talked about real and integer variables and lists of characters that can be
stored in string variables. We have also covered the ASCII CODE and the way that each
character is stored as a number. Since each character in a string is in fact just a number, it
should come as no surprise that we can switch between strings and numbers. BASIC has
two commands to allow us to do this.

CHR$ and ASC

These two commands perform opposite functions: CHR$ will convert a number to a
string and ASC will convert a string to a number. There are however very tight
constraints on when this will work.

The ASCII CODE only has two hundred and fifty-six possible values running from‘0’
to‘255*. Therefore when we use CHRS to convert a number to a string wc can only give
it a number between‘0’ and‘255’. In fact BASIC will make an attempt at whatever
number we give it, but the results are only meaningful if we stay within the valid range.

10 FOR my_char = 65 TO 90
20 PRINT CHR$(my_char)
30 NEXT my_char

This would print all the capital letters of the alphabet. The ASCII CODE for the letter*A’
is‘65’ and the ASCII CODE for the letter‘Z’ is‘90\ (see the appendix for a full list of the
ASCH CODEs).

Similarly the ASC function can only accept a string one character long to convert to a
number. If we give it a longer string it will just convert the first character in the string for
us.

10 my_string$ = "A very long string that ASC cannot cope with"
20 PRINT ASC(my_string?)

This will only print the number‘65’, being the value of the first character in the string. If
we wanted to find out the ASCII CODE for a character other than the first character we
would need to isolate the correct character first.

The following example steps through each character in the string printing out its ASCII
CODE.

5 REM find the ASCII CODE
10 my_string$ = "A very long string that ASC cannot cope with"
15 REM find out how long the string is
20 length = LEN(my_string$)

246

Chapter 12 Printing

Define Character Width (> CW)

This defines the width of a character when microspacing. The default number is twelve.
Other examples are ten for elite, seven for condensed and fourteen for condensed
enlarged.

MicroSpacing On/Off <>MS ON/OFF)

This turns Microspacing on and off. The default is off.

Proportional Printing On/Off (>PP ON/OFF)

This is selected by turning it ON with this command and using the Style attributed*
command at the start and end of text you wish to be printed.

If your printer supports proportional printing the Notepad has to alter the number of
characters that it can print on each line while printing. If you had a line of i’s you would
get more of those on a line than would if you had a line of m’s.

This command has been designed for use wiLh proportional daisywheel or laser printers.
Dot matrix printers can work very slowly in this mode. Fixed pitch daisywheel and non­
proportional dot matrix printers do not use this command.

106

Chapter 12 Printing

wrong with your code. If you find that the correct code is being sent to the primer from
your Notepad, then it is time to get in touch with your printer supplier for advice.

lines and Foreign Characters Don’t Print

If your printer does not print lines, there is a good chance that it is not using the correct
table. You should compare the printer’s ASCII table to the Notepad’s ASCII table. They
should be identical for the first half, with possible changes in the second half of the table.

Often, the printer has several tables that it can use. Make sure that the correct one is
selected and that the Printer character set in the Printer Configuration menu is set to IBM
on the Notepad.

Microspacing and Proportional Printing

Microspacing and Proportional Printing have to be turned on from within your document.
By default they are turned off. Furthermore, you will only see any effect from them if
you have right justified your document.

With ordinary character spacing the spare space is collected on the left and right of the
line. When microspacing is turned on, the amount of space that soft spaces take up is
redistributed evenly between every word in that line. This makes the text look better, and
can be used on printers that do not support proportional printing.

Proportional printing is even better than microspacing. Instead of allocating the same
space for each character, proportional printing changes the amount of space each
character uses. It might be obvious, but an‘m’ takes up more space than an‘i’ when you
write it. When you print them normally there is a lot of space on either side of an‘i’ but
the‘m’ looks a bit squashed.

Define Microspace Code Sequence (>MC n n)

The commands for microspacing and proportional printing should already be defined in
your printer driver. If microspacing doesn’t work, then add the commands into your
document

The Microspace Code defines the sequence of codes that moves the print head by the
smallest amount. Other names that it can be known as include Horizontal Mode
Increment and Graphics 120 dpi.

A typical example would be >MC 27,L, 1,0,0

105

Chapter 12 Printing

using a capital 0 that look like a number zero
a number (0-9), which is used as an ASCII code instead of a number, which
needs to be put into quotes.

Printer Code Not Working

There are more wrong printer codes than there are right ones. You need not be afraid of
getting it wrong. There are no self destruct codes. All that happens when the code is
wrong is that the printer doesn’t do what you expected. It might stop working when it
reaches the code, or it might print different characters (including part of the code) onto
the paper.

Before throwing your printer out of the window, just take one last look at the printer
manual. Perhaps there was a small phrase in the description that you didn’t understand
the first time through.

If you find some of the code being primed, then the letters or codes before that are
probably wrong. If all else fails, there is another trick that you can use.

Hex Dump

A good way to find what Notepad is really sending to your printer is to put the printer
into Hex Dump mode. How to put your printer into this mode is explained in your
printer's manual. It should then print out both the ASCII characters and the hexadecimal
number.

To test a code pul the printer in Hex Dump mode and write a three line document. For
example:

The start before the code

>OC - put the code suing here

Here is the changed text

At the start of the printed document you will see the initialisation codes that Notepad
sends to the printer. Your text should follow that.

The escape character in hex is IB and you will also see some OD and OA numbers that are
linefeed and return codes.

By printing out a small amount of text with your code(s) you could find out what is

104

Chapter 12 Printing

Description

Character height is based on points with larger fonts having a higher point size than
smaller ones (12 point Courier is larger than 85 point Courier). If you select a point size
that is not available, the printer uses a font with the closest point size.

For scaleable fonts the value field is from 0.25 to 999.75 points in increments of 0.25
point.

One point equals 1172 inch.

Quote end

Well here is an easy one. To change the point size to 24 point just use

27,(a"2””4",V

Output Code to Printer (>OC n n)

Here is the command that you put in front of the code to send to your printer.

The command line to change a laser printer to double height becomes -

>OC 27VT. "S", "2M, "4", V
Multiple Commands

There is nothing to stop you issuing multiple commands to the printer. Normally, you
just keep adding the next command straight after the previous one.

Laser printers follow a different rule. The last character in each command is usually a
capital letter. To join two commands together you change the previous command’s last
letter to lower case and continue the next command without the escape character
sequence.

For example, if you wanted to combine the two commands ESC&[10E and ESC&[6D,
you would end up with the sequence ESC&[10e6D.

TIP Gotcha Printer Codes

There are several tricks that printer manufactures get up to when designing codes.
Their favourite ones include using the following:

using a lower case L that looks like a number one

103

Chapter 12 Printing

The <n> bits are there to tell the printer how many mode bytes we are going to send. In
the text it is stated that they are normally 4 and 0 which makes a bit of sense as we are
going to use all four mode bytes. So four and zero are the next numbers to go onto the
line.

The text describes the mode bytes ml and m2 as‘without function’. In plain English that
means they don’t do anything so we will use a zero for each.

To use mode bytes m3 and m4 we need to look at the tables. The option we want to use
is double height line feed, which would move the paper up two lines, and double height
characters. This is the last entry in the table for mode byte m3 and it tells us to use the
number 34 decimal (22 in hexadecimal). Finally, there is the mode byte m4 that alters the
character width, which we are going to leave unchanged. The number here is a zero.

So by substituting the numbers we have just worked out into the Escape code quoted in
the Proprinter manual we arrive at -

<ESC>[@ <n 1 xn2xm 1 xm2xm3xm4>

27, [,@,4,0,0,0,34,0

Easy, isn’t it?

Finally, let’s look at a laser printer’s code. There isn’t a double height command here,
but we can change the point size of the font that is selected.

Quote from manual
Point Size (primary font) ESC(s#V
Point Size (secondary font) ESC)s#V

Function Selects the primary or secondary character font height. Value #
equals the height in points, and may include decimal fractions.

The following are typical values for font height:

Value Font Height

7 point (Not available using the resident fonts)
8 point (Not available using the resident fonts)
8J point
10 point
12 point
14.4 point (Not available using the resident fonts)

102

Chapter 12 Printing

The low-order half-byte contains the multiplier 1 or 2 for line spacing, for example

multiplier = 1 m3 - bin.OOOl 0001
multiplier = 2 m3 = bin.OOOl 0010

If one of the half-height assigned 0 (Zero), i.e.Mn.OOOO, the current values of line
spacing or character height remain unchanged.

Character
height

m3 m3 m3 Line
feed(dec) (hex.) (bin.)

unchanged
unchanged
unchanged
single
single
single
double
double
double

unchanged
standard
double
unchanged
standard
double
unchanged
standard
double

00 0000 0000
0000 0001
0000 0010
0001 0000
0001 0001
0001 0010
00100000
00100001
00100010

0
1 01
2 02
16 10
17 11
18 12

2032
2133

34 22

Mode-byte<m4>:

m4 m4 m4
(dec) (hex.) (bin.)

Character
width

0 00 0000 0000 unchanged
1 01 0000 0001 standard
2 02 0000 0010 double

The high-order half-byte is ignored, the low-order half-byte contains the multiplier 1 or 2
for character width

Quote End

Gosh, remind me not to get an IBM Proprinter XL24e printer! Does this description look
bad? Well, yes and no. There certainly is a lot of it. That is because the same command
changes the width of the characters as well as their height.

Let’s just go for the double height, like the other commands we have used before. To
start with there is the <ESC> code again. This is followed by the [and @ that we put in
quotes. Now for the <n> and <m> bits.

101

Chapter 12 Printing

TIP - What are ASCII Tables?

An ASCII table is the list of codes that the printer uses to print out the characters.
For example, a capital A is decimal 65. The standard ASCII table finishes at
decimal 127, but there are a possible 256 codes available. There is an ASCII table in
the Appendices.

Quote from manual
IBM Proprinter XL24e Mode

<E$C>[@<nlxn2><ml>...<m4>set double height

By means of this code sequence the characters of the subsequent text are specified with
double width, double height or both combined. Additionally line spacing can be
controlled by this code sequence.

nl and n2 specify the number of mode bytes contained in the sequence. Usually nl is
defined by 4, n2 by 0.

The mode bytes ml and m2 are without function, i.e. they are assigned codi
<NULL>(hex.OO).

The mode bytes m3 and m4 control the print parameters:

m3 controls line spacing (high-order half-byte) and character height (low-order half­
byte).

m4 controls the character width. Only the low-order half-byte is functional in the mode
byte.

For detailed information on modes bytes m3 and m4, see next paagraph.

Definition-Mode

Mode-byte m3:

The high-order half-byte contains the multiplier 1 or 2 for line spacing, for example

multiplier = 1 m3 = bin.QOOl 0001
multiplier = 2 m3 - bin.0010 0001

100

Chapter 12 Printing

have now. Number 12 was written as xii for example. The numbers look different, but
they are the same value.

The codes in the printer manual are usually described in one of three different ways;
decimal, hexadecimal or ASCII. Fortunately we don’t need to understand them to be able
to use them.
Protext can understand all three different types of numbers, but you do need to show
which sort you are using when typing in the codes. Let’s look at a few codes in a printer
manual. It is time to get a strong cup of coffee (beer if you must).

Set Double Height Example

Here is a command that our printer can use in three different emulations. Let’s look at
these one by one, that way we can also test that it works as well. This is what the manual
has in it

Quote from Manual
Epson FX-850 Mode

set double height <ESC>w<n>

By means of this code sequence the characters of the subsequent text are
specified with double height.

<ESC>w followed by 1, sets double height printing. To reset the double
height to the normal height, specify <n> by 0.

Quote Ends

That looks very straight forward doesn’t it? So how do we use the information?

Escape

The <ESO is an ASCII Escape character. To type this into your command line use
either the decimal number 27 or hexadecimal equivalent &1B. The lower case w is also
an ASCII character, just put “w” in the line. Finally the number one or zero is a number
so type that in too. These codes may be separated with a space or a comma. So here are
the results.

27,”w”, 1 will turn double height on
27,”w” 0 will turn double height off

Let’s do that again with a different printer.

99

Chapter 12 Printing

Advanced Printer Commands

You can add the followmg commands to your documents. They are all primer related
Whether you can use them or not will depend on the type of printer you are using and
whether ,t supports any of die functions listed here. The other point we would like to
make » tot you would probably not use these straight away. If this is your first time
through the book you may like to miss this bit out!

Most of the functions to do with the printer are already set in the printer driver and
selected in the Printer Configuration menu. However, if you wish to send different codes
to your printer, you can include them in the document

are

Definition - Printer Driver

The Printer Configuration menu allows you to tell your Notepad what type of
printer you will be using. The choices are Simple, Canon BJlOe, Epson 24 pin,
Epson 9 pin, IBM 24 pin and LaserJet

The Notepad contains a printer driver for each of these types of printer. Tty
printer driver holds information such as what codes are needed to feed the
sheet of paper or to turn underline on and off.

Because the Notepad has a range of built-in drivers you don’t normally have to be
concerned with the nuances of controlling your printer.

If your printer is not one of those catered for by a built-in driver, or you want to use
a feature on your printer that is not supported by the driver, you may need to use
some of the following commands to get the most from your printout.

nex

Printer Codes
In some printer manuals there are helpful sections on how to use printer codes. If you
have a printer manual that just lists the codes, you will have to put up with our helpful
suggestions instead.

Different Numbers That Mean the Same Thing

Before finding some codes to work with, we will explain about the numbering systems
that the codes are written in.

You may remember that the Romans had a different numbering system to the one that we

98

Chapter 12 Printing

oo

oo

oo
1234567890123 4567890123456789012345678901234567890123456789012345678901234567890
120456789O123456789O123456789O123456789OI23456789O123456789O123456789O1234567MO
1234567890123456789012345678901234567890123456789012345678901234S678901234567890
12345678901234567890123456789012345678901234567890123456789012345678901234567890
13B45678901234567890123456789012345678901234567890123456789012345678901234567890
1S45678901234567890123456789012345678901234567890123456789012345678901234567890
12345678901234567890123456789012345678901234567890123456789012345678901234567890
12345678901234567890123456789012345678901234567890123456789012345678901234567890
1345678901234567890123456789012345678901234567890123456789012345678901234567890

Oo

oo

oo
Numbers repeated down the complete page. oo

oo

oo

o o

o o

o o

o o

o

u u

O You can even make up a ruler with the Box Drawing Commands O
if you want to.

O o

o o

o o

o o

Test Page

97

Chapter 12 Printing

rsrr, isr - -«»« s»tr - - - - - • x-;r i—run

Getting Rid of All the Margins

The next thing you need to do is to get rid the margins for the test page That will tell vou
the number of columns and lines that your printer will print on the page without having to
worry what the margins are set to. 6

There are two ways of doing this. Either set all the margins in the Layout menu to zero or
use the >ZM - Zero Margins command at the top of the document.

Fill the Page With Numbers

Copy your line of numbers from the page width test above about eighty times so that you
have more than a pagefull and then print the page.

>ZM
,6789012345678901234567890121234567890123456.

You can use the test page to print on different sizes of paper like filofax or other non­
standard sizes of paper. Printing numbers across the sheet gives you the coordinates (line
and column) to position different parts of your letter. Using the line drawing mode you
can even make up a ruler looking line as shown in the screen shot opposite.

Designing Your Page Layout
After you have printed your test page, you can design your own page layout by changing
the page length and margins to suit your own preferences.

Test Whether Your Printer Can Print Lines
By adding a few boxes on your test page, you can also test whether your printer can print
the lines as well. In our example, we have positioned the lines round the space for the
address that you want to use with window envelopes.

If these lines print, there is a good chance that the other characters in the symbol menu
will print also.

96

Chapter 12 Printing

Can you remember all the necessary commands yet? Here’s a reminder.

Add a ruler line into the text (Control R), move the cursor onto the rler line and Goto
(Control G) column 132 (cl32) or Column 80 (c80). Put an‘R’ there, turn Insert on/off to
OFF (check the Status Bar) and Goto (Control G) column 70 (c70). Overtype the whole
line with4-’ until you reach the new‘R’ at column 132 or 80. Remember to change back
Insert on/off back to ON when you have finished.

All you need to do now is to type in some text that uses the new width of the document
and print it A simple sequence of numbers will allow you to count the printed width
easily.

When you know the number of characters that you can type across the page you need to
fmd out how long the page is. Again, use the trick of typing more lines than the printer
will print on the sheet. Seeing which line remains at the bottom of the sheet will tell you
the number of lines your printer can print on a page.

Page Layout (Function 7)

BSWBMffTop margin (Iine$) Header margin t1 nes) Footer margin II(nes)
Bottom margin (lines) Side margin (chars)Line spocing (Iines)

Overtype or 4- 4 to change/ t 4 to move/ Sto lines) (66) I to Finishh
(2)(3)(5)(1)

Let’s see how Protext lays out the text on the page.

Protext uses a default set of values for all the margin settings. This means that the first
character on each line of text is not printed hard over to the left of the sheet of paper as
you may have expected. The default value for the side margin is‘5\ This causes five
spaces to be printed at the start of every line.

The same is true at the top and bottom of the page because there are margins there as
well. At the top of the page there is the Top Margin that is set to three lines. This is
followed by two lines for the Header Margin that is used for any header text. At the
bottom there is a similar set called the Footer Margin and the Bottom Margin of two and
three lines respectively.

TIP - Page Length Warning

Do not set the Page length to zero or greater than 126 lines. Protext will ignore your
setting of zero page length and will use your previous setting. If you use a page

95

Chapter 12

Printing
Print Test Page
Using all the commands we have covered so far, a good tool to make is a‘Print Test
Page’. This does several things.

It checks that your printer and Notepad are set up correctly.

It finds out where your text is positioned on the page. This can be used for lining up
where address labels are on the paper, where addresses need to be for use in window
envelopes or lining up pre-printed forms.

The ideal way of doing this is by priming the test page on a transparent sheet (the sort
they use for overhead projectors). Then you can see what you want the text printed on as
well as where it will be printed.

The position of your text on the page depends on two things. First the word processor
you are using and secondly the printer you have. Writing a test page with the word
processor and then printing it with your printer will show you where characters will be
printed on the paper.

How Wide Can Your Printer Print?
Most printers can print up to eighty characters on a line in normal mode or one hundred
and thirty-two characters on a line in condensed mode. What is the best way to find out?
Send the printer a line that is far too long and see how many characters fit on the line.
When your printer can’t print any more characters on the line it will either put the
remainder on the following line or throw it away.

Typing a Wider Line
The default right margin is normally set at 70. We need to widen this to see when the
printer runs out of characters. You need to decide which mode you would like to test
your printer in before making the long line that follows.

Start a new document called* longline’ and change the ruler line so that you have either
eighty or one hundred and thirty-two characters in the line.

94

Chapter 11 The List

want to save the document there are several ways to copy it from your Notepad.

Memory cards can remember what has been saved onto them even when they are
removed from the Notepad. You could keep one card just to hold all your important
documents.

If you have access to another computer, in particular a PC, transferring a document onto
that computer’s storage system is a cheaper approach than keeping an extra memory card.

You can even connect the Notepad to a stand alone disk drive to give you as much
storage as you wish.

We will be covering transferring your documents to another computer later.

How Big Can Your Document Be

No matter how much memory a computer has, there is always a limit on how big a
document can be. Protext uses the largesL continuous block in the lower memory. The
largest document that you can have is 38144 bytes, which is roughly eighteen A4 sheets.

How to Print Multiple Documents

If the restriction in document size is‘cramping your style’ there is a way of getting round
it. You could get more memory by buying an extra memory card. That wouldn’t mean
that any one document could be larger than 38144 bytes but it would mean that you could
have more of them.

There is a way of joining documents together and printing a really long document from
several smaller ones. You can use the Insert command. Look out for details in
the'Commands’ section later.

93

Chapter 11 The List

Only Select documents created by the word processor.

The extra information shown by the List is the document size expressed as a number of
bytes, whether the document is stored on a memory card, whether it is in Upper memory
or Lower memory and the time and date that the document was created.

Memory

Your Notepad has just under 49K bytes (IK is 1024 characters) of memory that has been
split into two areas. These areas are called‘Upper’ and ‘Lower’ memory. If you plug a
memory card into your Notepad you are adding extra memory in which to store
documents.

Each character that you type (including spaces) into your document takes up one byte of
memory. The memory is used in blocks of 256 bytes. You will notice the number of
bytes oFFrce memory’ jumping down in steps of 256 as a document gets larger.

Lower memory is used by the programs within the Notepad to cany out your instructions.
Documents are stored in upper memory but if this area becomes full then lower memory
starts to get used for documents as well.

When you enter the word processor to edit a document Protext needs an area of lower
memory to operate in. This area must be large enough to hold your whole document

The number of bytes used for each document is followed by a ‘U* for upper memory, a
L for lower memory or a *C* for the card. This information can help you to decide
which files to get rid of when you are low on memory.

Running Out of Memory

When you get the1 memory full’ message it is time to delete some old documents. It does
not matter if you delete the documents from upper or lower memory. If you have freed
up some space in upper memory by deleting a document and you then edit a document
previously stored in lower memory, Protext will move the document to upper memory for
you.

Your Diary entries are also stored as Files. Deleting them in the diary will also clear more
space.

If you no longer require a particular document, you can just delete it altogether. If you

92

Chapter 11 The List

TIP - Only Copy a Block or Document From the Word Processor

You can’t copy a document from the List You must select the document you want
first and then go into the Word Processor. Selecting4Copy block or Document’ will
allow you to make the copy.

Showing Other Files
The most useful way of showing the list of documents in your Notepad is to show only
the name of the document. This allows you to see thirty-five names at a time when you
enter the List In this case only documents that have been created by the word processor
are displayed. Files containing BASIC programs or your Address Book are hidden from
view, as is the size of each document

You can change the way documents are displayed by setting the‘Documeni sizes and date
display’ option in the System Settings menu to anything other than‘Not shown’. The List
will then include more information about each document and show all the documents in
the Notepad. The disadvantage is that you will only be able to see the names of fourteen
documents at a time.

fiw i ines
ftODRESS BOOK
bonk loon
cor service
data Pi I el
Oon't_Forq»t

,e3 B Hill fete
NCI00 book
Progl.bos
project 1
project2

2 U 20-1

u 18-1l-!i lliSI
2 U 20-11-92 17:00
1 U 20-11-92 16:58
2 U 20-11-92 17104

2 U 20-11-92 16:59
2 U 20-11-92 17102
2 U 20-11-92 17:05
2 U 20-11-92 17:05

WARNING - Don’t Try to Select a File That Isn’t a Document

After changing‘Document sizes and date display’ to show all the files, be careful
NOT to select any of these other types of files with your word processor because it
could have disastrous results.

If, for example, you selected a BBC BASIC file from inside Protext the file would be
corrupted and you couldn’t use it again.

To avoid this from happening you could change the setting back to‘Not shown’
which will prevent you from selecting any other files as they would not be shown on
the list

91

Chapter 11 The List

Unfortunately there are times when a bug is serious and this is the ease with the
insert command in the List If you use the command as it was intended to be used it
works correctly, but if you select it without having another document to insert into
you may lose some or all your documents in the Notepad. Then you would start
wishing you’d done a backup.

While writing this book on the Notepad, we’ve come across a few bugs and have
highlighted the problems they can cause. This does not mean that we’ve found them
all; you will probably find more if you are inquisitive.

Crashes are the disasters of the computer world. They come in different guises but
the results are normally the same. You will not be able to do anything with your
Notepad until you have done a Reset You will have definitely lost the document you
were working on and if you are unlucky you will have lost all your other documents
as well.

D - Deleting Documents

As you type in more documents in your Notepad you are filling its available memory.
You can release this memory for new documents by deleting any old documents that you
no longer require.

F - Print

Here is another place that you can print documents from as well as the Print File menu.

R - Rename

Rename allows you to change the name of a document.

F - Format Memory Card

When you get a memory card to store even more files on to you need to format it first.
More about that later.

T - Transfer

Transfer brings up another menu with more commands on it. These are used when you
transfer documents to another computer. We will cover these in the Serial Terminal
section later.

90

Chapter 11 The List

Select a Document
To select a document to use with the Word Processor from the list, just move the black
bar cursor over the name you want and press the ENTER key.

As well as selecting an existing document, there are several other things that you can do
from the List The important thing is to select the document first and then press the Menu
key to select what you want to do with it.

Document Operations Menu

T » Transfer funotions ... F - Format memory oard
0 - Delete
P - Print
R - Rename

When you have entered this menu make sure that the name of the document you wish to
operate on appears at the top of the screen.

Here is what you can do and what you should not do with your documents.

E-Edit

This command performs the same function as hitting the ENTER key from within the List.

I - Insert - DO NOT USE THIS COMMAND

DO NOT USE THIS COMMAND. The Insert command should only be used to insert
one document into another. If you have reached the List from the Main menu there will
not be a document open to insert the one you have just selected into. The result will be at
worst a computer crash or at best a warning. YOU HAVE BEEN WARNED.

Definition - Bugs and Crashes

Complex programs written for computers like the Notepad owe their existence to a
team of programmers who design and write the programs. No matter how much
testing is done on a program they can never be completely certain they have found
all the bugs. This is true for all large computer programs.

Sometimes bugs manifest themselves in trivial ways that cause no serious problems.
A good example within Protext is the fact that you cannot use the Right Shift key to
access the‘Find Previous’ command.

89

Chapter 11

The List (Function L)
The list is where all your documents or files are stored. You can select any of your
documents/files that you have created in your Notepad. If you want to re-read, print or do
some more work on a document, you need to get the Select menu on the screen.

From the Main menu of the Notepad you use Function and Left Cursor keys to select the
Word Processor menu and then the Right Cursor key.

Alternatively you can use the short cut key sequence (Function L) from any other
program in the Notepad.

When you leave the Word Processor, Protext automatically saves your document for you
under the name you gave the new document before you started typing. The new name
gets added to the List.

Definition - Documents and Files

There is no difference between a document and a file. Generally we have used the
word document because it is more descriptive of the‘thing’ that holds the text
Other computer systems tend to use the word file.

There are times when the word file makes more sense. The Address Book for
example holds a list of names and addresses in a manner analogous to a paper filing
system. BASIC programs are stored in a file and the programs can store
information to a file.

The distinction we use is that documents can be loaded into the word processor; files
are used to save other types of information.

You just need to remember that in reality both words mean the same thing._______

88

Chapter 10 Spell Checker

E - Edit Word

Edit Word will show you the wrong word in a small window so that you can correct it
When you press ENTER, the spell checker will check the word you have edited before
moving onto the next mistake.

S - Store Word

This command adds the selected word to your own user dictionary. This word could be
your name or a special word that is not used oftea It is a good idea to build up your user
dictionary as it will save you time in the future.

User Dictionary
After storing some new words with the above command, you can use the following
commands to view the words you have entered or to delete them.

View User Dictionary (Word processor menu, Editing,
View user dictionary)

This command will show you all the words you have put into your user dictionary.

Remove Word From User Dictionary (Word processor
menu. Editing, Remove word)

You need to type the word to delete from the user dictionary and press the ENTER key.
It is*Case sensitive’ so make sure that if the word in the dictionary starts with a capital
letter, you do likewise when entering the word to delete.

87

Chapter 10 Spell Checker

Spell Checker Rules

Here are a few rules that the spell checker follows.

Foreign letters used in words are recognised and the words can be added to the user’s
dictionary.

All possessive apostrophes (*s) are ignored but contractions of two words (can’t, won’t,
haven’t) are stored as separate words in their own right The main dictionary contains
most of the common contractions.

Words beginning with numbers (1st, 2nd, 3rd) are ignored.

What Happens When the Spell Checker Finds a
Mistake?

You get a choice of four options. These are:

I - Ignore word
L - Lookup word
E - Edit Word
S - Store Word

I - Ignore Word

This does as it says; it ignores that word and makes no changes at all. If you select this
option it means that you are happy with the spelling even if the spell checker isn’t.

L - Lookup Word

This allows the spelling checker to have a look in both dictionaries and make some
intelligent guesses at what the word might be. Initially you should see the*Looking
message followed by a list of close matches or nothing at all.

You use the Cursor up or down keys to select the correct word (if it is there) followed by
the ENTER key. The word that was wrong in your text will then be replaced by the word
that you have selected

If the word you wanted is not on the list, then press the Stop key to exit the selection.
You will then get the following options‘E - Edit word and Enter - Continue’. If you
choose‘Continue’ then the spell checker will leave the wrong word alone.

86

Chapter 10

Spell Checker
After typing a document, it is not a bad idea to run the Spell Checker as it can often find
words that are either misspelt or mistyped. It WELL NOT find ALL your mistakes as a
spell checker only looks at each word you have typed and compares it to two dictionaries.
It has a main dictionary that has a large number of words already included and a user
dictionary that is initially empty.

What the Spell Checker Does
If the spell checker cannot find a match between a word in your document and one of its
dictionaries it will let you know. It lists your options for that word and waits for you to
select an option. Then it continues checking the rest of the text.

Spell checking can be stopped at any time by pressing the STOP key.

It will not tell you if you had put4 bet’ instead ofbut’ as those are both valid words. It
will find a spelling mistake if you had typed4 bwt’ (which may look like but) and will give
you a choice of options.

The spell checker will look out for words where capital letters have been put inside the
word. For example the spell checker will want to change‘tHEy’ to‘lhey\

Spell Checker Commands
There are three commands that start the spell checker.

Use the ’Spell Text* command after you have typed in your complete
document and you want to spell check everything.

SpofldieclcUie
complete document
(Ftroctloal)

Spo8 check word to
the right of cursor
(Control 1 or Control Q)

Use the ‘Spell Word* command white you are typing and you are not sure
of the spelling of a particular word. If the spelling is correct, you will
get a message on the menu bar, ’Word is in dictionary*.

You can check part of a document by using Control S to start checking
from where the cursor is and then pressing the Slop key when yon have
reached the end of the section to check.

S|KS» check m
doctt»«irtfroB* the
cursor (Control S> j

85

Chapter 9 Blocks

remember how you spelt it, you could use‘c???d’ which will find any five letter word
beginning with a‘c’ and ending with a‘d\

Replace (Function 6)

Replace works just like Find except that you get an additional line'REPLACE with’
asking you what you wish to replace the word or string with that you are searching for.
After using this, you will get the same options as described above.

The only point to be wary of is that if you use the* AH’ option you need to be sure that the
command will do exactly what you think it will.

Other Find Commands

Find Next (Control 6)
Find Previous (Control 5)

Once you have used aFind or aReplace, you can use either of these commands to repeat
the command without having to enter the search string again.

84

Chapter 9 Blocks

your‘Find string’ section. This is very useful when used with Replace as you can ask for
a word without any capital letters and replace it with one that has.

For example, Find‘brighton’ and replace with'Brighton’.

G-Global

Use Global if you wish to check the complete document rather than just from where the
cursor is to either end of the document.

W-whole word

To restrict your choice during a search even further, choosing this option will only select
your match if it is a whole word. For example if you are searching fori and’ the Find
command would normally find words like'sand’ as well. Using'whole word’ would only
find’and’.

n-Nth Occurrence

This command counts the number of matches (between one and 255) it finds before
stopping. This could be used for example to search for every second quotation mark.

Special Characters

When using Find to look for certain characters and printer codes, you need to put an
exclamation mark in front of them. This is because these characters are used differently
in'Find’ oriFind and Replace’. Here is a list of these differences.

Printer control codes ! followed by the letter of the printer code.

Question mark
exclamation mark
hard return
soft hyphen
non-break hyphen
non-break space
search for a specific code

?

space
number

Using ? in Find
If you are not sure of a letter or a group of letters, you can use the*?’ character to indicate
the unknown letter. For example, if you wanted to fmd‘could’ but you couldn’t

83

Chapter 9 Blocks

spelt like that It will not recognise anything that you have spelt differently even if
you didn’t mean to. It is therefore a good idea, unless you are an immaculate typist,
to use this command globally only after you have proofread your document

Find (Function 5)
When you select this command Protext will ask you to enter the string to search for with
the message1 FIND string:’. No, this is not the time to look for the ball of string that the
cat was playing with a week ago. You can type in a word, part of a word or even a phrase
for Protext to search for.

If you asked it for an*a* for example, Find would find every single*a’, even those within a
word. If you asked it for* a *, that is an'a’ with a space on either side of it, your choice
would be narrower and Find would only find an*a’ on its own. Alternatively, you could
choose* Whole word’ which would look for your match in a single word.

Pressing the ENTER key shows you the following options - You can use any
combination of these to help narrow down your search.

A-All

Normally when Find finds what you have asked for it stops on the first match.

Selecting* AH’ will put Find into express mode so that it will not stop until it has found all
the occurrences of your search string. Thus Protext counts the number of times your
search string appears in the document starting from wherever the cursor was to the end.

B-Backwards

Backwards puts this operation into reverse. Instead of looking forward in the document
for your search string, Find goes backwards from where you are to the beginning of the
document.

Using this option with Find or Find Previous will cause them to do the opposite to what
you expect. Find Previous will Find forward and Find will Find backwards. Keeps you
on your toes though.

C-match Case

Normally Find doesn’t care whether what you are looking for is in upper or lower case.
If you are particular, use this option and make sure that you have typed the correct case in

82

Chapter 9 Blocks

Yes, this command deletes the block. If you .didn't maen to delete it after all!
remember the Undelete command Control U

Block Delate
(Function Del)

This allows you to count the number of words you have m the marked block.Block Word Count
(Word processor xnenu-
Editiag, Count words)

You can copy a block of text from one place in the document to another. The
block will be copied to wherever the cursor is when you enter this command.

Copy Block
(Function 0)

This is different to the copy command available by pressing Function 0. This
command wiU copy either your marked block or your whole document to
another document.

Copy Block/Document
(Word processor menu
Copy Block)

& is particularly useful for moving seeders of text between documents and in
factis the onluy way to make a copy of a document in the Notepad

Use tins command if you only want to Print part of your document.Block Print
(Word processor menu,
Print Block)

This command will move a block to wherever the cursor is when you issue the
command.

Block Move
(Control M)

Search, Find & Replace
Fhese commands are very useful when writing large documents. You know that you may
have covered a particular subject but you can’t remember where you did so. Using‘Find’
will help you, as you can move forward or backwards within your document looking for
every occurrence of a word or phrase.

Replace is really a Find and Replace. You look for a word and replace it with another
word. This can be used to change the spelling of somebody’s name throughout the whole
document. It is useful if you need to change a word several times.

With both these commands the searching starts from where your cursor is when you use
the command.

TIP Get the Spelling Right When Using Find and Replace

When looking for a word, part of a word, or a phrase, make sure you spell it the
same way you used in the text otherwise Protext will not find it

The thing to remember with these two commands is that they will only do what you
tell them to do. So if you have typed‘Jane’ and the correct spelling is‘Jayne*, you
could find Jane and replace with Jayne. It will only replace the ones that you have

81

Chapter 9

Blocks
One of the most powerful functions of any word processor is the ability to work with
blocks. This allows you to mark a bit of text that you have already typed and then do
something with it, like deleting, moving or copying ii

As this is a two-stage operation, we will first start by marking the block, then when it is
marked do something with it.

Mark Block (Function 9 or Control Z)

There are two different key strokes that do the same thing. You need to mark the
beginning and the end of the block of text that you want to do something with. Place the
cursor at the beginning or the end of the block, use the command, and then do the same
thing again for the other end.

Once you have used the mark block command twice, you will see that the text within the
block is now shown as inverted text. At the beginning there is the character [and the end
of the block there is the character]. You don’t need to worry about these characters as
they are not actually in your document. They are just used to highlight the beginning and
end of the block.

Clear Block (Control K)
If you make a mistake marking a block, the simplest way of putting it right is to clear it
by unmarking it and then marking it up again. You can also use this command if you
have finished using a block.

What You Can do With a Marked Block
Once you have marked a block, there are six things you can do with it (apart from
clearing it as above).

80

Chapter 8 Using the Style Attributes

already typed into CAPITALS or visa-versa. Here are the two commands to use.

Lower to Upper Case (Control /)

Move the cursor to the start of the text you wish to change. Hold down the Control key
and press the / key until you reach the end of what you wish to change.

Upper to lower case (Control \)

Here it is the other way round as well.

A good way of remembering these commands is with the direction of the line. Lower to
upper case starts at the bottom left to the top right. You could imagine that it can make
letters larger. The same is true the other way round.

79

Chapter 8 Using the Style Attributes

The Delete Commands
Just like moving the cursor, there are quicker ways of deleting the text in the document
than just using the two delete keys.

Delete line (Control 3)
Delete to Start of Line (Control <- Del)
Delete to End of Line (Control Del ->)
Delete character before cursor (<- Del)
Delete character at cursor (Del ->)
Delete word left (Shift <- Del)
Delete word right (Shift Del ->)

Undelete (Control U)

There is also an Undelete command that remembers what you have just deleted and puts
it back where the cursor is. This helps if you have deleted something by mistake.

When you delete anything (including a‘Block’ of text, see later) other than a single
character, the text is stored in a temporary memory until you use another delete
command. If you leave the cursor alone after you have deleted something, undelete will
put it back where it was.

If you move the cursor and then use the Undelete command, what you deleted will be
inserted at the new cursor position. You can use this to move or even make several
copies of the text that you deleted.

Special Insertion and Deletion Commands
We have already covered commands that insert and delete lines, (look at your template if
you’ve forgotten them). Here are a few that are slightly different

Transpose Characters (Control A)

Do you ever type letters the wrong way round? Here is a good command to swap these
letters around. Try mistyping would as wuold, then move the cursor over the‘u’ and do
the command above and by magic the uo changes to ou.

Changing Cases

There are occasions when you may have wished to either change something that you have

78

Chapter 8 Using the Style Attributes

Goto Previous Marker (Control Shift 5)
Goto Next Marker (Control Shift 6)

These two commands allow you to jump to all the markers you have set in order. It is the
only way that you can get to your'Multiple markers’.

A'bug’ in early versions of the Notepad prevented the Right Shift key working with
Control 5. This is not a serious problem since it is more convenient to use the Left Shift
anyway.

Goto Margin Markers (Control @ L or R)
This moves the cursor to the left or right margin.

TIP Use Goto Left Marker to Move To a New Left Margin

Control and Left Cursor always moves the cursor hard over to the left of the screen.
Control @ L moves the cursor to your left-hand margin. This is very useful when
you have redefined your left-hand margin with a new Ruler Line and need to move
there.

Goto Block Markers (Control @ (or])
We haven’t covered‘Blocks’ yet, but you can use this command in a marked block to
goto the beginning (Control (2) [) or the end (Control @)) of a marked block.

Although there are separate commands to mark a block, the first time that this command
is used, it also marks the block. So you have plenty of choice on which key strokes you
use.

Goto Last position (Control L)

Protext remembers the last two places that your cursor was within the document.
Repeated use of the command Control L will move you backwards and forwards between
these two points.

Now you know how to move, let’s dance!

Well, we’ve covered many different ways of moving around the document. Let’s look at
a different set of commands that actually do things to your document.

77

Chapter 8 Using the Style Attributes

If, for example, you wish to go to the top of Page 4, you would type Control GP4.

Markers
There are several marker commands that allow you to leave bookmarks in your document
so that you can quickly return to them at any time. Think of it like a number of
differently coloured balls of wool that you can use to find your way back to the correct
marker.

There are four types of markers that you can use. They are absolute, multiple, margin and
block markers.

When you set a marker it is shown as an inverted number 0 - 9, ?, [or] depending on
which character you have selected. To remove any markers, use the delete key to delete
the inverted character.

TIP Markers Are Only Shown When Codes Are On

All markers you put in are saved in your document If you have your‘Codes on/ofP
set to OFF (Function 4), you will not see your markers even though they are still
there. So if you lose them, remember this tip.

Absolute Markers (Control @ 0 to 9)

You have ten absolute markers (numbered 0 to 9), which allow you to define absolute
positions in your text to which you can return. The first time that this command is used
with a number, it sets the marker. Subsequent uses of the same command then return you
to that marker.

Multiple Markers (Control @ ?)

Multiple markers are selected by pressing the4?’ after Control @. You can have any
number of these markers within your document.

You can use multiple markers to allow you to move quickly to common points in your
document. For example, if you added a multiple marker at the start of every main
paragraph, the commands detailed below would allow you to skip through the document a
paragraph at a time.

76

Chapter 8 Using the Style Attributes

Cursor Screen Commands

Control fScreen Up

Scroll 4 Shift t EndBeginning
of line of Line

Word_5
Shift-* Control-*

Word
Controls Shift *-

>*

Scroll! Shift *

r Control !Screen Down

If you know where you want to move to there are commands that will help you get there a
great deal faster than by just using the cursor keys.

Page Mode (Control Shift P)
Page mode will change the information displayed on the Status Bar, Normally the Status
Bar shows where the cursor is by Page No, Line No and Column, Page mode changes it
to Character Number, Global Line number and Column. In this mode you can’t move
forward and backwards a page with Control 9 or Control 0 command.

You can use it to show the global line number for use with the following command.

Goto Line / Page / Column (Control G Ln / Pn /
Cn)
If you know where you wish to move to in your document,‘Goto’ will help you move
around your document quickly. It will either move your cursor to the top of the page
number you have asked for, or to the line number or column on the page you are now on.

The line number is not normally displayed on the Status Bar but it can be displayed by
turning off the Page mode.

75

Chapter 8 Using the Style Attributes

Horizontal Scrolling
This type of scrolling is not used as often as vertical scrolling because the default ruler is
set to the width of the screen. With Word Wrap ON, the text stays within the screen size.

When the document is wider than the screen, or Word Wrap is turned OFF, then
horizontal scrolling will take place. If you find that you lose the left-hand side of your
text, this is due to horizontal scrolling. To get back to the left-hand side again use the
Shift and Enter keys.

Turbocharging the Cursor Keys
When a document becomes larger, having to move the cursor a single line up or down
and a single character left or right becomes tedious. Is there a faster way? Fortunately
the answer is yes.

The diagrams below show both the cursor movements on the screen as well as moving
around the document.

Cursor Document Commands

Begining of Document Control [

Control (Previous Page

t Previous Paragraph
Control <

Next Paragraph
Control >I

Next Page Control)

Control]End of Document

74

Chapter 8 Using the Style Attributes

Quality
Subscript
superscripT
Underline

Bold
Condensed
Elite
Italic
enLarged
Proportional

b q
sc
te
u1

1
P

View Codes On/Off (Control V V)

When you use these‘Style attributes’ you have a choice about how they are displayed on
the screen. With the View codes turned on, if you select underline for example, you will
see an invertedV at the beginning and end of the text you have marked for underlining.
If you turn the View codes off, you will see the text underlined on the screen. The Codes
on/off command is on the template. Press Function 4 to toggle this command.

Scrolling
As the display is normally smaller than the document you are typing, Protext needs to
scroll your text so that you can see what you are working on.

There are two types of scrolling that Protext uses. These are Vertical Scrolling and
Horizontal Scrolling.

Vertical Scrolling (Shift Cursor Up or Cursor
Down)
As you type more and more lines of text into your document any text above the line you
are on will be moved up the screen until it disappears off the top. This effect is
called4Vertical’ scrolling.

You can use the Up/Down Cursor keys to scroll through the entire document. The cursor
can move to lines that have already been scrolled of the top or bottom of the screen. You
can move the text on the screen so that you can see any point in your document.

Sometimes, it is useful to leave the cursor where it is but scroll the text up or down so that
you can read the text surrounding it. You can do this by pressing the shift key with the up
or down cursor keys.

73

Chapter 8
Using the Style Attributes

Using the what? On the Notepad, what we would have called print commands
called*Style Attributes’. These are things like underlining, bold, italics and so on that can
be used to make your document look more professional.

Normally when you start printing text, it is in ordinary text This is technically known
as‘pica’ and is ten characters per inch Whether you can use other types of print depends
on what type of printer you have. We are going to assume that you have a printer that can
print all these for now.

are

Selecting Bold, Underlining or Italic

Print (Control 7, 8, -)
You select a Style Attribute by pressing the relevant key sequence at the beginning and
end of the text you want the attribute to apply to. Some of these marks can be selected
two different ways. These attributes, like Bold, Underline and Italics are shown on the
template. Use the shown key sequences (Control 7,8 and -) to select them quickly.

These and all the other attributes are in the Style Attributes menu. You can see a list of
all the possible attributes by pressing the Menu key followed by S.

ki jtc;
P - Proportional Q - Quality S - Subscript „ I - SupersoripT U - Under!Inc

■Mi)U - Condensed
i : fiitToL - EnLarged

These are, Bold (emphasised), Condensed print, Elite (twelve characters per inch), Italic,
EnLarged, Proportional, Quality (near letter quality NLQ), Subscript, Superscript and
Underline.

Short Cut Style Attributes (Control X)
Alternatively there is a short cut key sequence for selecting these attribute codes. It is
designed for those who have good memories. Use Control X followed by one of the
following letters:

72

Chapter 7 Page Formatting Commands

Using Hyphens
When a hyphen4-’ is used between two words in the text, if the hyphen falls near the end
of the line it will normally be used to split the line with a'Soft Return’. You may not
want this to happen, so there are some special ways how you can change this.

Non-break Hyphens (Control N -)
You can use a hyphen to glue two words together in a visible form. Do this by using
a‘Non-break Hyphen’. To select this character, use Control N followed by a hyphen4-’.

Soft Hyphens (Control H)
Sometimes, it is quite acceptable to split a hyphenated word across two lines.
Unfortunately, the word processor doesn’t normally do that because it can only‘wrap’
whole words between different lines. You can use Soft Hyphens to tell the word
processor where it can split the word in two.

The good thing about a soft hyphen is that you can’t see it if the word is anywhere on the
line except the very end. It only becomes visible when the word needs to be split
between two lines.

To select this character, use Control H. The hyphen will be shown inverted on the screen
but will only be printed if it is at the end of the line.

71

Chapter 7 Page Formatting Commands

Special Formatting Characters
There are some special formatting characters that are used with the word processor.

Soft and Hard Returns

There are two types of carriage return characters that Protext uses to mark where the end
of line is. They are soft and hard return characters.

If you turn Word Wrap ON, the word processor is constantly formatting your text When
you reach the end of one line, it inserts a Soft Return character. It needs this character so
that if you decide to change the length of the line and reformat the text, it knows which
character it should change.

This is different to the character that is used when you press the ENTER key. This is
called a‘Hard Return’ and is used to mark the end of a paragraph or a line in a list

These characters are not normally displayed but they can be shown on the screen by
selecting View Tabs and Returns (Control V T).

Non-break space (Control N space)
You can use this character to*glue* two words together with a space. This stops the two
words from being split across two lines. It also prevents any'soft spaces’ being added
between the words if you have selected the Right Justification command. You can use
non-break spaces, for example, when typing a sentence or word that you want's paced
o u t\

To select this character, use Control N followed by a space.

You can also select this command from the Text Formatting menu.

View Hard Spaces (Control V S)
Hard spaces are put into your text when you press the space bar. You normally see them
just as spaces between words but they are an actual character.

To display the hard spaces as a character, use this command. It is a toggle, so you can
change it back with the same command.

70

Chapter 7 Page Formatting Commands

Formatting Whilst Printing On/Off (>FP

ON/OFF)
You use this with the Right Justification command if you want your text to be formatted
during a Mail Merge.

You must remember to turn it OFF at the start of any tables, however, and ON again at
the end of the table. If you forget you could find that reformatting has destroyed your
table’s layout.

Right Justification On/Off (>RJ ON/OFF)
This command works in the same way as Control J apart from the fact that it will re­
justify during printing. It will only take effect if you have included the >FP command to
turn on formatting while printing. The default value is the same setting as in the
Configure menu within Protext.

Centre Line (>CE‘text’)
Use this command instead of Control C if you wish to centre your text when printing.

Special Hidden Characters
There are other characters that you can use that tell Protext to do different things when
formatting the text.

View Tabs and Returns (Control V T)
You can display these characters by pressing the Control V and T keys. Pressing them
again will turn it off.

Insert Space (Control Space)
When you are in‘Overtype’ mode, you can use this command to insert spaces
into your document.

69

Chapter 7 Page Formatting Commands

It may sound cra2y to have two different ways of moving to the next page but there
are circumstances where this is necessary. Suppose you wanted to print address
labels. Typically there are at least eight labels on each sheet of paper. Rather than
printing just one address on each sheet, you can tell the word processor that the
page is very short. It will think that it is moving to a new sheet of paper after each
page but in fact it is only moving down your single sheet The printer will be able to
move to the next sheet after your eight labels have been printed.

To test the printer’s paper length setting put a sheet of paper into the printer then,
with the printer‘off-line’, press the formfeed button. If the paper length setting is
correct the printer will fully eject one sheet of paper and feed the next sheet through
ready to start printing on the first line.

If the next page is not at the top, or the previous page has not been ejected, then you
have the page length set incorrectly. Remember, for A4 paper the page length is 11 -
2/3 inches.

Formatting Commands used with

Mail Merge
There are several commands that are normally only used when mail merging. Mail
merging is a topic dealt with in a separate chapter but we have included the formatting
commands here for completeness.

When using mail merge words and extra lines are inserted into the text during printing.
The final layout will not therefore always be the same as that displayed on the screen.
Using the Formatting, Centre Line and conditional Page Throw commands that work
while printing is in progress, you can make sure that the printout stays the way you want
it.

Most of the formatting commands that we have already covered act immediately on the
text as you type it in. If you type a line of text and then issue the command to centre it
(Control =) the text is immediately centred. If you go back to that line and edit the text,
the line will no longer be centred. You would have to issue the command again.

The commands to format while print behave differently. There are only actioned at the
time of printing. Using the same example of centring text, if you included the command
>CE above the line to be centred, Protext would perform the centring at the time the line

printed. Therefore you could edit the text to your heart’s content, knowing that it
would always be centred on the printout.
was

68

Chapter 7 Page Formatting Commands

together, putting the command >PA 25 just above it would ensure that it would all stay
together on one page. The Conditional Page Throw will only have an effect if there is not
enough room left for the whole paragraph. It will start a new page at the beginning of the
paragraph.

Form feeds Enable/Disabled (>FF ON/OFF)
The form feed character tells your printer thaL it has reached the end of the page and it
must move to the top of the next one. This is a useful command if you are using either a
laser printer or a printer with a sheet feeder. The default setting is OFF.

TIP - Help With Page Lengths and Formfeeds

There are some tell tale signs that point to an incorrect setting for page length
and/or formfeed commands. Let’s try to understand what the printer and your
word processor are trying to do.

The important point to remember is that the word processor only knows about the
page length. This is the number of lines of text that will fit on a page. The printer,
however, knows about the page length and the paper length. The paper length is the
physical length of each sheet of paper. The page length and the paper length are not
necessarily the same.

There are two ways that the word processor can tell the printer to move to the next
page.

One way is to give the printer multiple Line Feed characters. These add the correct
number of blank lines to finish one page and move onto the next. For this to work
correctly, the page length that Protext is using must agree with the actual length of
the paper. If the two values don’t agree the first line of text on a new page won’t
start at the top of a new sheet of paper.

The other way for Protext to move to the next page is for it to send the printer a
Form Feed character. Form Feed characters tell the printer to move onto the next
page. In this case the printer has control of the page length. For this to work
correctly the printer needs to know the length of the paper you are using.

You may need to consult your printer’s manual to find out how to change the paper
length. Normally you can either change the printer’s default paper length setting
with switches/buttons, or you can send the printer a special command from the word
processor (see Outputting codes to the printer).

67

Chapter 21 Basic

In either ease the user is prompted for the room number and the floor number. If a
message is to be stored it is then typed in. If the message is being retrieved it is printed to
the screen. The program then returns to the main menu screen.

What we wish to do now is to save the messages to a file rather than to an array. This
will allow the user to stop and start the program whenever he wishes while maintaining
all the saved messages. In fact we need to make very few changes to the original
program to achieve this new feature - one of the main benefits of a structured approach to
program writing.

We have listed the full example below for clarity, although many of the original
procedures did not change. However to make the use of the‘PTR’ command more
general we have used a command not yet covered.

FN

‘FN’ defines a new function for BASIC to use. You include the program to perform the
function within your program. Functions are closely related to procedures in the way
they operate. They both do very similar jobs. Indeed in many cases you could use either
to carry out a particular task. The differences are mainly to do with how each command
is used. A function is able to return a value to the BASIC line that called it; a procedure
cannot. Typically a function is a short piece of program code, often only one line long,
that does a very specific and frequently required task. A procedure is typically longer and
may control a variety of tasks.

BASIC already has a wide range of built-in functions:4LENYASC’ and‘VAL’ are
examples. With the'FN1 command you can add as many new functions as you wish.

For example, suppose your program had to frequently determine the average of two
numbers. It is a simple calculation that you could include in your code whenever you
needed it, but if you defined a function to do the job you would just call the function each
time.

10 REM using a new function
20 REPEAT

INPUT "Enter two numbers ", numl, num2
PRINT "The average is ",FN_average(numl, num2)

50 UNTIL FALSE
60 END

30
40

100 DBF FN_average(nl,n2) = (nl+n2)/2

Line 40 calls the function within a print statement. When BASIC processes this line it
passes the value of the variables4numl’ and‘num2’ to the function and prints whatever

287

Chapter 21 Basic

the function returns.

Line 100 defines the function. This definition can appear anywhere within the program
and can be called any convenient name. The definition tells BASIC what the function
expects to receive, in this case two numbers, and what it will return. The function returns
whatever is to the right of the equals sign. In this case that is the average that we want.

Reentrant Functions

BASIC has to be told about any parameters that are passed to a function. These
parameters are called formal parameters and are local to the function. Because the
parameters are only known to the function, the function can call itself.

The easiest way to think of this feature is to imagine that each time the function is called
a new copy of the function and all the local variables it uses is created. The new copy of
the function does not interact with the old copy in any way. You can have as many
copies of a function active at the same time as you like but of course you do have to finish
running all the copies otherwise you can produce some very interesting bugs.

We covered some of the advantages of using local variables earlier but here is an example
where local variables and the ability of a function to be called recursively are essential to
allow a simple function to perform a complex task. Consider the task of converting an
integer into a string.

Why do we need a recursive program to convert an integer to a string? Suppose we want
to change the number' 123’ to a string. If we do the following calculation:

123 MOD 10

we would get the answer of 3’ (the remainder after 10 has been divided into 123 as many
times as possible). This is one of the digits we want so we can add it to our string. If we
then divide'123’ by' 10’ and do the same trick:

12 MOD 10

we would get the answer'2’ which can again be added to our string. Repeat the procedure
again to arrive at:

1 MOD 10

and add*r to our string. That all sounds great and has produced the three digits‘3’,‘2’
and' 1 ’ for us to add to our string. But they are in the wrong order. We need to generate
the digits backwards.

288

Chapter 21 Basic

10 REM using a recursive function
20 INPUT "Enter an integer ", anything
30 digit = FN_convert(anything)
40 our_string$ = our_strlng$ + CHR$(digit)
50 PRINT "Converted to a string ";our_string$
60 END

100 DEF FN_convert(a)
110 IF INT (a/10) THEN digit = FN_convert(INT(a/10)):our_stringS

= our_string$ + CHR$(digit)
130 =(a MOD 10) + 48

The formal parameter passed to a function is local so each time the function is called it
has its own copy of the variable. This allows a function to call itself as we have done
here. The easiest way to see how‘.convert’ works is to trace through an example.

Suppose you entered the number4123’ in line 20. The first time _convert is called it is
given* 123’ as its parameter. When this is divided by* 10’ in line 110 the result is not zero.
As far as BASIC is concerned this means that it is TRUE so the THEN part of the IF
statement is followed. This calls .convert again but now with a parameter of* 12’. The
second copy of .convert does the test in line 110 and again follows the THEN part of the
IF statement and calls .convert with the parameter of 1 ’. The test in line 110 of the third
copy of .convert will fail since the integer of 1’ divided by* 10’ is zero. Hence the third
copy of .convert will return to its caller in line 130 and pass back the number‘49’. This
is the ASCII CODE for the character* 1’.

We are now back in the second copy of .convert which can add the ASCII CODE for the
character*I’ to the string variable‘our„string$’ and return to its caller passing the
number*50’. This is the ASCII CODE for the character‘2’.

Back in the first copy of .convert it can add the ASCII CODE for the character‘2’ to the
string variable* our.stringS’ and return to its caller passing the number‘51\

We have wound our way back to the main program which can add the ASCII CODE for
the character‘3’ to the string variable and print it.

Using this function we have added the three characters to our string in the correct order.
The concept of reentrant functions can be difficult to grasp at first which is why we have
chosen a simple example. Indeed BASIC will do precisely the same job as our function
.convert with the command STR$.

The potential for a function to be able to call itself recursively can be extremely useful
when handling complex calculations. The only real pitfall to watch out for is to make
sure that all the copies of a function that you start are able to complete.

289

Chapter 21 Basic

Back to our reception desk. In the program listing below we have only explained the
changes from the original version. Hopefully you are now familiar enough with the
commands to be able to follow the rest of the program flow. On the way through we have
added a few new commands which are explained as we go.

10 REM Hotel Reception Desk Message Saver Version 2
20 PROC_welcome_screen
30 PROC_initiali.se
40 the_end = FALSE
50 REPEAT
60 PROC_get_decision

ON decision PROC_do_input, PROC_do_output
80 UNTIL the_end = TRUE
90 END

10

Line 70 has the new command*ON’. This simply allows a switch between different
subroutines or procedures. If the variable used with‘ON’ has the value of* 1\ BASIC will
go to the first procedure listed. If the variable has the value of 2’. BASIC will go to the
second procedure listed. You can include as many procedures in your list as you wish, up
to the maximum linelength of 255 characters.

If the variable has a value which is higher than the number of procedures in the list,
BASIC will produce an error.

You can trap this possibility by adding an‘ELSE’ part to the*ON* command which would
be executed if BASIC cannot match the variable value to the list.

10 ON decision GOSUB 100,2000,350,100 ELSE PRINT "Wrong value"

If decision’ had the value* 1’ the subroutine at line 100 would be called. A value of 3'
would cause the subroutine at line 350 to be called. Notice that the routines don’t have to
be different for each value of the variable. In this example if the variable is either* 1’
or‘4’ then the subroutine at line 100 is called. If*decision’ holds any number other than 1
to 4 our own error message is printed rather than BASIC’s error message.

‘ON’ can be used with‘GOTO’,‘GOSUB’ or‘PROC\ For the reasons already highlighted
we generally stay with just using‘ON’ for procedure calls.

1000 DEF PROC_initialise
1010 handle = OPENUP("MESSAGE")
1020 IF handle = 0 THEN PROC make file
1030 PRINT TAB(19,4)
1040 PROC_get_enter
1050 ENDPRCXC

;

We have had to re-write our initialisation procedure. Previously we just needed to

290

Chapter 21 Basic

dimension an array large enough to hold all the messages. Instead we now have to open
the file where the messages have been kept We also need to be aware of the fact that the
first time this program is run there won’t be a file to open! Line 1010 tries to open
file. If it fails the variable‘handle’ will contain the value‘0’ in which case we call another
procedure to create the file for us.

our

1100 DEF PROC make file
1110 handle = OPENOUT("MESSAGE")
1120 m$=STRING$(40," ")
1130 FOR floor = 1 TO 4
1140
1145

FOR room = 1 TO 20
REM step through each entry in our file putting

something into the record
PTR#handle=F N_make_pt r
REM mark this entry as empty

(ASCII CODE for'E' is 69)

1150
1155

BPUTfrhandle, 69
REM now write a blank record

1160
1165
1170
1180
1190 NEXT floor
1200 CLOSEShandle
1205 REM open the file ready for updating
1210 handle = OPENUP("MESSAGE")
1220 ENDPROC

PRINTShandle, m$
NEXT room

The job of this new procedure is to create an empty file for us the first time we run the
program. It is important that the file is in the correct format to store the messages. The
format we have chosen is straightforward.

Each room on each floor will have its own record in the file. Each record will consist of
two parts; a flag to say whether or not there is a message and then the message itself.
Note that even when there is no message, the record must still be there otherwise we
wouldn’t know where the next record started. We have used the character*E’ to mean
that the record is empty. Later we will use‘F’ when we write a message to iL

Line 1150 sets the file pointer to the correct place for us. Strictly speaking we don’t need
to call this function here since we are writing to the file sequentially and thus the pointer
would always be in the correct place. However for consistency we have called it anyway.

1300 DEF FN_make_ptr
1310 =(42 * (room -1)) + (20 * 42 * (floor - 1))

This function has to return a value to point to the start of the record for any room on any
floor. Where do the magic numbers come from? To find out we need to analyse the
record a little more.

291

Chapter 21 Basic

We have said that we are using a one character flag to show whether the record has a
message or not. We have set an arbitrary limit on the length of any message of 40
characters. When BASIC prints a string to a file it always includes an extra character to
mark the end of the string. So one record will consist of a one character flag, a forty
character message and a one character end-of-string marker. Hence each record will be
42 characters long.

The record for room 1 on floor I will start at pointer position‘0\ The record for room 2
on floor 1 will start 42 characters later at pointer position‘42’. Likewise the record for
room 3 on floor 1 will start at pointer position*84’.

So if we only had one floor to think about we could calculate where the record for a room
started by taking 1 from the room number and multiplying by the record length.

file pointer = 42 * (room - 1)

However this would only work for the first floor. If the room we need is on the second
floor we need to add one floor’s worth of records as well. Since there are 20 rooms on
each floor we can move the pointer by one floor’s worth of rooms thus:

file pointer = 20 * 42 * (floor - 1)

Hence the position of any room on any floor will be given by the formula:
file pointer = (42 * (room - 1)) +■ (20 * 42 * (floor - 1))

This is the formula that FN_make_ptr uses.

2000 DEP PROC_welcome_screen
2010 PROC_banner
2040 PRINT TAB(28,2) "VERSION 2"
2060 PRINT TAB(24, 4) "please wait
2070 ENDPROC

2100 DEF PROC_banner
2110 CLS
2120 PRINT TAB(15,0) "HOTEL RECEPTION DESK MESSAGING SYSTEM"
2130 ENDPROC

3000 DEF PROC_get_decision
3010 got_decision = FALSE
3020 REPEAT
3025
3030
3040
3050
3060
3070 UNTIL got_decision

PROC banner
PRINT TAB(12,2) "Please enter requirement
PRINT TAB(39,3) "Print message - 2
PROC_get_digit
IF this_digit = 49 OR this_digit = 50 THEN got_decision = TRUE

Input message - 1"

292

Chapter 21 Basic

3075 REM make sure we return either 1 or 2
3080 decision = thisjdigit - 48
3090 ENDPROC

4000 DEF PROCjdo_input
4005 PROC_banner
4010 PRINT TAB(22,2) "INPUTTING A MESSAGE"
4020 PROC_get_room
4030 PROC_get_f1oor
4040 PRINT TAB (16, 6) "What is the message";-.INPUT m$
4045 REM the message must be 40 characters long
4050 m$=LEFTS(m$+STRING${40," "),40)
4055 REM move the file pointer to the start of this record
4060 PTR#handle=FN_make_ptr
4065 REM mark this record as having a message in
4070 BPUTtfhandle,70
4075 REM write the message to the file
4080 PRlNT#handle,m$
4090 PRINT TAB(7,7) "The message has been stored -
4100 PROC_get_enter
4110 ENDPROC

There are a few changes to this procedure to cope with using a file. Line 4050 makes
sure that the message is always exactly forty characters long. This is necessary to ensure
that we can always go to the start of a record. The line works by first adding forty spaces
to the end of the message and then uses the first forty characters of the new longer
message.

Line 4060 puts the file pointer to the start of the correct record for this message. Line
4070 writes the character4F (ASCII CODE 70) to the flag and then line 4080 stores the
message. Note that we have not checked to see if a message was already there - we just
overwrite any existing message.

5000 DEF PROC_do_output
5005 PROC_banner
5010 PRINT TAB(22,2) "OUTPUTTING A MESSAGE"
5020 PROC_get_room
5030 PR0C_get_floor
5035 REM point at the record for this room
5040 PTR#handle=FNjnake_ptr
5045 REM get the flag
5050 empty=BGETShandle
5055 REM get the message
5060 INPUT#handle,m$
5070 IF empty = 69 THEN PROC_no_message ELSE PROC_message
5080 ENDPROC

We have made similar changes to the procedure for retrieving a message. Line 5070
checks the value of our flag/empty’, to see if there is a message for this guest and calls
the relevant procedure accordingly.

293

Chapter 21 Basic

6000 DEF PROC_get_digit
6010 got_digit = FALSE
6020 REPEAT
6030
6040
6050 UNTIL got__digit
6060 this_digit = key
6070 ENDPROC

key = INKEY(0)
IF key > 47 AND key < 58 THEN got_digit = TRUE

7000 DEF PROC_get_room
7010 valid_room = FALSE
7020 REPEAT
7030
7035
7040
7050 UNTIL valid_room
7060 ENDPROC

PRINT TAB{4,4) "What is the guests room number
INPUT TAB(35,4),room
IF room > 0 AND room <21 THEN valid room = TRUE

8000 DEF PROC_get_floor
8010 valid_floor = FALSE
8020 REPEAT
8030
8035
8040
8050 UNTIL valid_floor
8060 ENDPROC

PRINT TAB(20,5) "On which floor
INPUT TAB(35,5),floor
IF floor > 0 AND floor < 5 THEN valid floor = TRUE

9000 DEF PROC_no_message
9010 PRINT TAB(4,6) "There is no message for this guest -
9020 PROC_get_enter
9030 ENDPROC

10000 DEF PROC_message
10010 PRINT TAB{5,6) "The message for this guest is: ";m$
10020 PRINT TAB(5,7) "Do you want to delete it (Y/N)
10030 IF FN_get_y_n =78 THEN ENDPROC
10035 REM put the pointer back to the start of this record
10040 PTR#handle=FN_make__ptr
10045 REM mark the record as empty
10050 BPUT#handle,69
10060 ENDPROC

The only necessary change to this procedure was to line 10010 - instead of printing the
contents of an array element it now has to print the string read from our file. However we
have also taken the opportunity of allowing the user just to look at a message without
deleting iL If the function* j>et__y_n’ returns*^ (ASCII CODE 78) then we end the
procedure without deleting the message.

If the user pressed* Y’ in answer to our question then we only have to mark the record as
empty - we do not need to overwrite the message.

294

Chapter 21 Basic

10100 DEF PROC_get__enter
10110 PRINT "Press the ENTER key when ready”;
10120 REPEAT UNTIL INKEY(0) = 13
10130 ENDPROC

We have not changed the functionality of this procedure but we have shortened it by
doing all the work in line 10120. BASIC will just keep repeating this one line until the
value returned by‘INKEY’ is equal to* 13* (the ENTER key).

10200 DEF FN_get_y_n
10210 LOCAL answer
10220 REPEAT
10230
10240
10250 UNTIL answer = 78 OR answer = 89
10260 ^answer

answer = INKEY(0)
IF answer > 96 AND answer < 123 THEN answer = answer - 32

This is the last new function. It is designed to return either‘Y’ or‘N’ depending on which
key the user presses. The program flow will be familiar to you: line 10230 gets a key;
line 10240 changes it to upper case if necessary and line 10250 checks that it is one of the
two keys we want.

We have defined the variable1 answer’ as local because it will never be used outside this
function. Line 10260 returns the answer directly to the caller.

We have now removed most of the criticisms of our Hotel Reception Desk program. It is
not yet ideal. There is still the possibility of the user getting unhelpful error messages by
pressing the wrong keys; we still only allow one message per guest; there is no way to
scan through all the stored messages. But the program would be usable and as you have
seen it could always be extended in the future.

Pretend Files
As far as BASIC is concerned files don’t have to be documents held within the Notepad.
They can equally well be either the serial communications port or the printer port

If you entered the following program:

10 REM send characters to the printer
20 any_name p OPENOUT("LPT:")
30 REPEAT
40 INPUT a_string$
50 PRINT#any_name,a_string$
60 UNTIL FALSE

any data that you typed on the keyboard would be printed to your printer. Likewise

295

Chapter 21 Basic

opening a file called "COM:" would send the data to the serial port.

It would make little sense to try to open the printer port for input but it does make sense
to do so for the serial port. Indeed this is by far the easiest way of allowing BASIC to
handle the port if your application requires it

Handling Errors
BASIC will produce many different types of errors depending on exactly what has gone
wrong. The types of errors you will be most familiar with are those that BASIC produces
when you use the wrong command or when you miss-type a command. The occurrence
of these errors will reduce as you leam more about BASIC and as long as you test you
program thoroughly they will not occur at all once the program is finished. However
there is always a possibility of BASIC producing some types of errors if the user enters
the wrong information. You have no way of stopping these - they depend on the user -
but you can trap and deal with them from within your program.

ON ERROR

The command‘ON ERROR’ stops BASIC putting its own error message on the screen
when something goes wrong. It allows your program to take control and print a message
that is relevant to the particular situation.

The command doesn’t4do’ anything in itself. But BASIC remembers that the command
was present in the program and then, if an error occurs, BASIC goes to wherever the‘ON
ERROR’ command directed.

10 REM using ON ERROR
20 ON ERROR GOTO 100
30 INPUT "Enter a number ";a_number
40 ON a_number GOTO 50, 60,70
50 PRINT "Seen 1":GOTO 30
60 PRINT "Seen 2":GOTO 30
70 PRINT "Seen 3":GOTO 30

100 IF ERR a 17 THEN END
110 PRINT "Error line
120 PRINT "Error number ";ERR
130 GOTO 30

”;ERL

The command in line 20 tells BASIC that if an error should occur it must jump to line
100. As long as you type in the numbers417lT or‘3’ when requested the program will
just print them to the screen and ask for the next number. But when you type a number
outside this range or you type a letter the program will jump to line 100 and start running
code from there. In our case we have just printed the line number that caused the error

296

Chapter 21 Basic

using the function*ERL’ and then printed an error number using the function*ERR’. The
test in line 100 makes sure that we can stop the program when we want to. (ERR is equal
to 17 when you press the* STOP’ key - see the list below)

The two new functions,4ERL’ and*ERR’ allow your program to find out what caused the
error. You could then decide on what action was necessary. This may just be a case of
printing a relevant message for the user and allowing him to retry an operation or maybe
you need to perform a calculation differently. If the error is such that the program cannot
run you can at least stop with a sensible message on the screen.

The possible error numbers that the function'ERR’ may return are as follow:

I Out of range
4 Mistake
5 Missing,
6 Type mismatch
7 No FN
9 Missing"
10 Bad DIM
II DIM space
12 Not LOCAL
13 No PROC
14 Array
15 Subscript
16 Syntax error
17 Escape
18 Division by zero
19 String too long
20 Too big
21 -ve root
22 Log range

23 Accuracy lost
24 Exp range
6 No such variable
27 Missing)
28 Bad HEX
29 No such FN/PROC
30 Bad call
31 Arguments
32 No FOR
33 Can’t match FOR
34 FOR variable
36 No TO
38 NoGOSUB
39 ON syntax
40 ON range
41 No such line
42 Out of DATA
43 No REPEAT
45 Missing#

You can have more than one ‘ON ERROR’ within a program. BASIC will action the
most recent command if an error occurs. This allows you to trap different types of errors
in different places in your program. For example, any error caused by insufficient space
while you are initialising your program effectively prevents the program from running.
But once your initialisation is finished you are only interested in those errors that could
happen due to bad input from the user. So you may well have the first* ON ERROR’ at
the start of your initialisation and then a second*ON ERROR’ when you’ve got going.

If you want to stop the action of BASIC’s error trap you just include the command‘ON
ERROR OFF’ and BASIC will return to handling any errors itself.

297

Chapter 21 Basic

REPORT

It is unlikely that your program will be able to cope with most types of errors - those
caused by faults in the program for example. In this case you just need to tell the user
that something has gone seriously wrong and to stop. ‘REPORT’ will print the message
that BASIC would have produced had you not had the'ON ERROR’ command.

1000 REPORT

Avoiding the Errors in the First Place

Error trapping can be useful under some circumstances but in practice it is far better to
write your program in such a way that errors cannot occur. The main problem with'ON
ERROR’ is that it is line number dependent. We discussed the problems that this brings
when we covered the'GOTO’ command. In particular with this command you can
produce some wonderful bugs by leaping off to process an error and then returning to the
wrong place in your program.

As long as you take care when designing your program you can effectively eliminate the
possibility of errors while the program is running.

As an example, you can always make sure that you never get a‘Division by zero’ error;

10 REM this would error if the second number was zero
20 INPUT "First number first_number
30 INPUT "Second number ";second_number
40 PRINT first_number/second_number
50 END

10 REM this doesn't
20 INPUT "First number ";first_number
30 INPUT "Second number ";second_number
40 IF second_number = 0 THEN PRINT "no zeros here" ELSE

PRINT first number/second number
50 END

Wrapping up the Commands
There are a few commands left that don’t fall conveniently into any of the subjects so far
covered

298

Chapter 21 Basic

TIME

The value of4TIME’ is incremented 100 times each second. You can therefore use it
either to wait for a specific period or to time an event. For example if you wanted a
program to pause for one second between displaying two messages on the screen:

10 PRINT "This message is printed immediately"
20 TIME = 0
30 REPEAT UNTIL TIME > 99
40 PRINT "This message is print 1 second later"
50 END

You have to set TIME equal to a known value to begin with although it doesn’t have to
be zero. We could have started by setting it to‘5000’ and waited until it reached4 5100’.

Line 30 will keep repeating until the value of‘TIME’ is greater than‘99*. The use of the
operator‘greater than’ is important. If you checked for‘TIME’ being equal to a number,
the test might always fail because the loop may take more than one hundreth of a second
to run. In this example the loop is very short so there would be no problem testing for
equality, but consider the following:

10 REM a long timed loop
20 TIME = 0
30 REPEAT

.. lots of program code

200 UNTIL TIME =100
210 END

Here we have set up a similar loop to the first example except that we have assumed that
the program has more code to run inside the loop. How could the timer fail to be equal to
100 in line 200? Suppose that on the last but one go round the loop the value of TIME’
was‘99’. The loop would be run again. But what if the loop takes longer than one
hundreth of a second? The next time that line 200 is executed the value of TIME’ may
be* 101’, causing the loop to be run again. In fact the program may never finish. If we
change line 200 thus:

200 UNTIL TIME > 99

the loop will always finish correctly.

299

Chapter 21 Basic

TIME$

This is a similar command to‘HME’ except that it deals with real time. It returns the
time and date that the Notepad is set to or it allows you to change the setting of the
Notepad time and date.

The format of the string is as follows:

Sun.25 Oct 1992,11:55:36

You can use the string functions to split up TIMES if you only want part of it.

10 now$ = TIMES
15 REM print the hours and minutes
20 PRINT "The time is ";MID$(now$,17,5);
30 months = "JanFebMarAprMayJunJulAugSepOctNovDec"
35 REM split out the text of the month
40 texts = MID$(now$, 8,3)
45 REM find the text month in all months
50 place - INSTR(months,text$)
55 REM convert the position in the string to numeric month
60 the_month = INT(place/3) + 1
65 REM create the date as a string
70 dateS = MIDS(now$,5,2) + "/" + STRS(the_month) + "/" +

MID$(now$,14,2)
80 PRINT " on dateS
90 END

Line 50 uses INSTR to find where the text month returned by‘TIMES’ is in our list of all
the months. Line 60 then converts this to a number in the range41’ to412’. Hence the
result of running the program is to print the time and date in the more usual format of:

The time is 11:55 on 25/10/92

You can set4TIMES’ equal to a string that you have formed in order to change the time
and date within the Notepad but you need to be careful to ensure that your string is in the
correct format.

10 new_time$ * "Mon.26 Oct 1992,12:03:27"
20 TIMES = new_time$
30 END

SOUND

This command makes a sound on the Notepad’s speaker. The Notepad has two sound
channels that can be played simultaneously. You need to give4SOUND’ four parameters

300

Chapter 21 Basic

which have the following possible ranges:

SOUND channel, volume, pitch, duration

must be*l’ or*2*
ignored so just use*0’
from 4 to 256 in steps of 4 (100 is middle c)
-1 to 32768

channel
volume
pitch
duration

The duration is measured in twentieths of a second so a value of 10 would last for half a
second. If you give a channel a duration of-1* it will continue playing the note
indefinitely. Thus you can play two notes together by starting one channel off with a
duration of‘-l \ starting the other channel off for the required duration and then stopping
the first channel by giving it a duration of O’.

10 SOUND 1,0,100,10

would play middle‘C’ on sound channel one for half a second.

10 SOUND 1,0,100,-1
20 SOUND 2,0,148,40
30 SOUND 1,0,0,0

would play two‘C’s one octave apart for two seconds.

CLEAR

Whenever you start to*RUN’ a BASIC program all the variables are cleared to either
zero, in the case of reals and integers, or a NULL string in the case of strings. It is
occasionally useful to be able to do the same task from within your program and this is
precisely what the command*CLEAR’ does. It effectively resets BASIC to the state it
was in when you started the program.

OSCLI

This command, which stands for Operating System Command Line Interpreter (bet
you’re glad we told you that) allows you to execute some Notepad commands directly
from BASIC. The command:

10 OSCLI("BYE")

would leave BASIC and return you to the main menu of your Notepad. The possible
commands are:

301

Chapter 21 Basic

BYE
both return you to the Operating SystemQUIT

CAT
both list all the stored filesDIR

DELETE filename
ERASE filename both delete the specified file

ESC
both turn on the action of the STOP key
(this is the normal state of affairs)

ESC ON

ESC OFF causes the STOP key to return the ASCII CODE
27 to a program instead of stopping the program

reads a file as though it were being typed on
the keyboard

EXEC filename

KEY n string redefines a key - see explanation below

LOAD filename aaaa loads the specified filename into memory
at the hexadecimal address aaaa

PRINTER n selects the printer as parallel if n = 0 or serial if n = 1

RENAME old, new renames oldfile to newfile

SAVE filename aaaa bbbb saves an image of memory to a file starting at address
aaaa and ending at address bbbb

SAVE filename aaaa +1111 saves an image of memory to a file starting at address
aaaa for 1111 bytes

SPOOL (filename) copies everything that will be printed to the screen to
filename

SPOOL filename stops copying screen output to filename

I adds a comment - anything after I is ignored

All of these commands can be used directly from BASIC in its immediate mode by
prefixing them with a‘star’. For example if you wanted a copy of your BASIC program

302

Chapter 21 Basic

to load into the word processor you could enter the following commands:

"SPOOL "test"
LIST
*SPOOL

This would start copying everything that was printed on the screen to the file'test’, list the
file and hence write it to the file and then close the file.

Key definition

In the word processor on your Notepad you can define Macros for commonly used
phrases that are actioned whenever you press the Symbol key together with one of the
other keys on the keyboard. BASIC allows you to set these macros directly from within a
program. You could for example have alternate sets of macros for doing different jobs
and then write a BASIC program to load each set in as you needed them.

When you redefine a key in this way you need to tell BASIC which key to use and what
you want the key to do.

10 OSCLI "KEY 41 Hello everyone"

This line would cause‘Hello everyone’ to be inserted into whatever you were typing
whenever you pressed the Symbol key with the letter*A’.

You can include the ENTER key in the string by adding*IM’.

10 OSCLI "KEY 41 Yours sincerely|M|M|MDave HampsonIM"

The value for key can be in the range 0 to 127 but the useful ranges are:

41 to 66 corresponds to* A’ to*Z’
67 to 92 corresponds to* a’ toV

The Machine Code Interface

There are a range of commands that allow you to add machine code to your BASIC
program. However we do not intend to cover these in any detail for two reasons. First, to
do justice to them would require at least as much coverage as we have already given to
BASIC itself. The second reason for effectively ignoring them is that they are potentially
disastrous in an environment such as the Notepad.

The BASIC in your Notepad was originally written for the BBC Micro and as such

303

Chapter 21 Basic

included the ability to add machine code. On the BBC machine it was not too much of a
problem if users of the BASIC made a mistake with their machine code and caused the
computer to crash. You just had to turn it off and start again. It was unlikely that you
would cause damage to documents on the disk no matter what you did.

On the Notepad however the situation is very different. This computer holds all its
information permanently in memory. Any minor mistake in a piece of machine code
could well wipe out the entire contents of your machine. There would be no way of
recovering anything. So be warned. The facility is there if you wish to use it be we
strongly recommend against any experimentation.

PUT

This command allows you to directly output data to one of the hardware ports within the
Notepad. These hardware ports typically control functions such as which memory is
currently available to the Z80 microprocessor and what interrupts are currently active. If
you output incorrect data to any of these ports you WILL CRASH YOUR Notepad.

10 PUT 128,32

would output‘32’ to port address4128’.

CALL, USR

These allow you to directly call a memory address to begin running a machine code
program. You would have to have already loaded the machine code into the area of
memory before calling it

10 CALL 4864:REM call to machine code program
20 answer = USR(4864):REM call machine code but get a result

HIMEM, LOMEM

You can change the area of memory that BASIC will use for its variables by moving
HIMEM down or by moving LOMEM up. This gives you somewhere to store your
machine code routines.

10 top = HIMEMrREM get the current top of BASIC's memory
20 HIMEM = top - 200:REM move it down a bit
30 bottom = LGMEMrREM get the current base of BASIC's variables
40 LOMEM = bottom + 200:REM move it up a bit

304

Chapter 21 Basic

PAGE

This does for a BASIC program what LOMEM does for variables.

10 base = PAGE:REM get the start of BASIC
20 PAGE = base + 2Q0:REM move it up a bit

The VDU Emulator

Whenever you prim anything from within a BASIC program BASIC does not put the
information directly onto the screen. Instead it sends your output to a software emulator
of the BBC Micro’s VDU drivers. You never need to be aware of this feature except to
the extent that the emulator provides a number of useful additional services. This allows
your program to have a great deal of control over what appears on the screen.

The BASIC command'VDU’ can be used to send screen control codes to the emulator to
cause a variety of effects.

In the following list any parameters to‘VDUr not given are either ignored or just print
characters from the ASCII character set.

VDU l,n The byte‘n’ is sent to the printer if it is enabled, otherwise^’ is
ignored, ‘n’ can be in the range4Q’ to‘255’ and will work even when the screen is
disabled.

VDU 2 Enables the printer such that all subsequent printable characters that are
sent to the screen are echoed to the printer as well. A few non-printable characters
are also passed to the printer:- BEL (7), BS (8), HT (9), LF (10), VT (11), FF (12)
and CR (13). Any characters that form part of another VDU command are not
passed to the printer.

VDU 3 Disables the printer.

VDU 4 Enables the text cursor. This is the default condition whenever you
enter BASIC.

VDU 5 Disables the text cursor such that it is hidden.

VDU 6 Enables the screen display.

VDU 7 Sounds the Notepad buzzer.

VDU 8 Moves the text cursor one character to the left If the cursor was at the

305

Chapter 21 Basic

left margin of the text window, it is moved to the right margin of the previous line.
If it was also on the top line of the window it is moved to the bottom line.

VDU 9 Moves the text cursor one character to the right. If the cursor was at the
right margin of the text window, it is moved to the left margin of the next line. If
it was also on the bottom line of the window it is moved to the top line.

VDU 10 Moves the text cursor down one line. If the cursor was on the bottom
line of the text window, the window is scrolled up by one line.

VDU 11 Moves the text cursor up one line. If it was on the top line of the text
window it is moved to the bottom line.

VDU 12 Clears the text window to all spaces and moves the text cursor to the
top left comer of the window.

VDU 13 Moves the text cursor to the left margin of the window on the current
line.

VDU 14 Enables inverse text. All subsequent characters will be displayed in
reverse.

VDU 15 Disables inverse text.

VDU 16 Clears the graphics window to all pixels off.

VDU 17 Enables bold text All subsequent characters will be displayed in bold.

VDU 18 Disables bold text

VDU 19 Enables underline. All subsequent characters will be underlined.

VDU 20 Disables underline.

VDU 21 Disables screen output. Use this with care! All subsequent VDU
commands except numbers 1 to 6 are ignored and nothing is printed on the screen.
If the printer is enabled the following list of VDU commands will be sent to the
printer: 7,8,9,10,11, 12 and 13.

VDU 24, x-left, y-bottom, x-right, y-top

Sets new co-ordinates for the graphics window. The window does not have to
occupy the whole physical screen area. The valid ranges are‘0’ on the left to‘479’

306

Chapter 21 Bask:

on the right for the x co-ordinates and‘0’ at the bottom to‘63’ at the top for the y
co-ordinates.

VDU 25,n,x,y

This is identical to the BASIC command PLOT n,x,y.

VDU 26 Resets the text and graphics window to their default conditions. These
are that both windows occupy the full screen area, the text cursor is at the top left,
the graphics cursor is at 0,0 and the graphics origin is at 0,0.

VDU 27,n Sends the character^’ directly to the screen without interpreting it as a
control code. This allows you to print characters that would otherwise cause an
action by the emulator.

VDU 28, x-left, y-bottom, x-right, y-top

Sets new co-ordinates for the text window. The window does not have to occupy
the whole physical screen area. The valid ranges are‘0’ on the left to*79’ on the
right for the x co-ordinates and‘0’ at the top to*7’ at the bottom for the y co­
ordinates.

VDU 29,x,y

Moves the graphics origin the the co-ordinates given by x and y. The valid ranges
are‘0’ on the left to‘479’ on the right for the x co-ordinates and‘0’ at the bottom
to‘63’ at the top for the y co-ordinates.

VDU 30 Moves the text cursor to the top left of the text window.

VDU 31,x,y

This is identical to the BASIC command TAB(x,y).

VDU 127 Moves the text cursor one character to the left and deletes the
character there.

The Practicalities of Writing a Program

You can’t write a large BASIC program from within BASIC. The builtin editor isn t up
to it. Indeed that was not the purpose of the editor since the Notepad has a perfectly good
word processor.

307

Chapter 21 Basic

Having said that, most of the examples in this chapter where written within BASIC but
for a large program it would be impractical.

So how do you get a file from your word processor into BASIC? It turns out to be very
simple as long as you follow two easy rules.

The first rule is to write your program without any line numbers. That way you can add
and delete lines of code without having to bother whether or not the line numbers match
up. BASIC can add the line numbers for you automatically when you load the program.
This is yet another good reason not to use'GOTO’s.

The second rule is not to use any of the word processor commands to highlight text or
centre lines. Just type in your program without any embellishments. That way BASIC
will be able to understand everything that you load into it.

To demonstrate the principal type in the following into a document called‘test’ in your
word processor:

NEW
AUTO
FOR test_loop = 1 TO 10
PRINT "Hello"
NEXT test_loop
END

Now pressFunction and‘B’ to take you to BASIC and type‘*HXEC test’. BASIC will
load your file as though you were typing it in at the keyboard, only very much faster.
When the file has been loaded you need to press the‘STOP’ key to drop out of
the* AUTO’ command and your program is ready to*RUN*.

You can use this technique on even very large programs although these may take a few
seconds to load.

‘AUTO’ is one of the editing commands we have yet to cover. It tells BASIC to
automatically generate the next line number for you. By default BASIC will start
numbering at line 10 and go up in steps of 10 but you can change this if you wish.

AUTO 100,20

would start at line number 100 and increment in steps of 20.

BASIC can also renumber your program for you.

RENUMBER 1000,100

308

Chapter 21 Basic

would renumber all the lines of your program to start at line 1000 and go up in steps of
100.

You can delete a single line by just typing in its number followed by the‘ENTER’ key.
You can delete more than one line thus:

DELETE 100,145

would delete all the lines from 100 up to and including line 145. You can delete lines
from the start of a program by using40’ as the first parameter.

DELETE 0,30

would delete all lines up to and including line 30.

You can load and run another program from the current program by using the'CHAIN’
command, but in this case the second program must have been saved from BASIC. You
cannot *EXEC a second program into BASIC.

2000 CHAIN "test2"

would load and then run the program‘test2’.

As a final point on loading files into BASIC it is possible to automatically load and run a
program whenever you enter BASIC if that program is called1 AUTO’ and if it has been
previously saved from BASIC. This would be a useful feature if you had written an
application such as the Hotel Reception Desk. Your user would never be faced with
having to load the file himself.

He could use the Notepad functions such as the Diary or Address Book and then
whenever he pressed the keysFunction and‘B’ your program would automatically run.

Summing Up

If you have read all the way through this chapter - congratulations. If you have just
skipped to this last section then you don’t know what you are missing.

BASIC is the most widely known and used programming language in the world.
Microsoft have just launched a new version called Visual BASIC that is designed to run
on the latest, most powerful PC’s. The BASIC language will be around for many years to
come. It is still being extended and there is no doubt that this will continue.

We hope that we have given you a taste of BASIC’s capabilities. We haven’t been able

309

Chapter 21 Basic

to cover all the commands in great detail but we have given you a good start.

We can assure you that it really is worth the effort of trying to write your own programs.

Good luck!

310

BBC BASIC Keywords

var = ABS(n)
var = ACS(n)

ABSoluie value of n
ARC-cosine of n
- Not supported -
AND two numeric arguments
ASCii value of 1st char in string
Arc SiNe of var in radians
Arc TaNgent of var in radians
AUTOmatic line numbers from start in step
Gets next char from opened file (n)
Puts value to an opened file (n)
Calls a machine code subroutine
Loads and runs program in s
String var set to ASCII code n
CLEARs all dynamic variables
CLears Graphics screen to 'white'
CLOSEs the opened file (n)
CLears Screen to spaces
- Not supported -
COSine of the angle n in radians
COUNTS char sent to display on line
Used for constant(s) DATA with READ
DEFinition of a named PROCedure

ABS
ACS
ADVAL

var - n AND n
var = ASC(s)
var = ASN(n)
var = ATN(n)
AUTO start step
BGETtfn
BPUT#n,value
CALL add, param
CHAIN s
ar = CHR$(n)

AND
ASC
ASN
ATN
AUTO
BGET
BPUT
CALL
CHAIN
CHRS
CLEAR
CLG

CLOSEtfnCLOSE
CLS

COLOR
var = COS(n)
var = COUNT
DATA constant..
DEF PROCname
DEF FNname
var = DEG(n)
DELETE start Fin
DIM var, size
var = n DIV n
DRAW x,y
IF cond THEN ELSE

COLOUR
COS
COUNT
DATA
DEF

Converts n from radians to DEGrees
DELETES range of lines from start to fin
Reserves space for an array of items
Divides n by n. Use MOD for remainder
DRAWs line from current position to x,y
Used to provide alternative if cond false
Marks the END of a BASIC program
Marks the end of a procedure definition
- Not supported -
End Of File (n) if var is true (-1)

Exclusive OR of n to n
ERror of Line number that caused error
ERRor detected and given number

DEG
DELETE
DIM
DIV
DRAW
ELSE
END
ENDPROC
ENVELOPE

var = EOF#n
var = n EOR n
var = ERL
var - ERR

Out of range
Mistake
Missing,

Type mismatch
No FN
Missing “
Bad DIM
DIM space

EOF
EOR
ERL
ERR
1
4
5
6
7
9
10
11

311

BBC Basic Keywords

Not LOCAL
NoPROC
Array
Subscript
Syntax error
Escape
Division by zero
String too long
Too big
-ve root
Log range
Accuracy lost
Exp range
No such variable
Missing)
Bad HEX
No such FN/PROC
Bad call
Arguments
No FOR
Can’t match FOR
FOR variable
No TO
No GOSUB
ON Syntax
ON range
No such line
Out of DATA
No REPEAT
Missing #

12
13
14
15
16
17
18
19
20
21
22
23
24
26
27
28
29
30
31
32
33
34
36
38
39
40
41
42
43
45

ERROR
ERROR
EVAL

ON ERROR GOTO
ON ERROR OFF
var = EVAL
var = EXP(n)
var = EXT(n)
var = FALSE
var = FNname
var = sn TO en step

Used to trap ERRORs

Passes string to BASIC expression handler
n raised to the power of e
Length of file (n)
Used in conditionals IF and UNTIL
Used to define and name a function
Start Loop from Start n TO End n in Steps
- Not supported -
GETs ASCII value of next key pressed
GETs string variable of next key pressed
Jumps to line until next RETURN command
Jumps to line
Set/Find out what the new high address
is in memory. Best avoided.
Used to conditionally execute statements
Like GET - waits time in 1/100th seconds

EXP
EXT
FALSE
FN
FOR
GCOL

var GET
varS = GETS

GOSUB line
GOTO line
HIMEM = n
var = HIMEM
EFcond THEN
var = INKEY (time)

GET
GETS
GOSUB
GOTO
HIMEM
HIMEM
IF
INKEY

312

BBC Basic Keywords

var$ = INKEY$(time)
INPUT “prompt”, var
INPUT LINE var$
INPUT#n, var
var = INSTR(s,fmd,n)
var = INT(n)
var$ - LEFT$(s$,n)
var = LEN(s$)
LET var = value

Like GETS - waits time in 1/100th seconds
INPUT from keyboard prompt on screen
INPUT string and assign to var$
INPUT variable from File(n)
String is search in find, points to n
Converts real number to lower integer
Takes the LEFTmost no chars in string
No of characters in string
Assigns value to a variable
See INPUT LINE
LISTs program from line n to n
Eight formats of LIST, n = 0-7
Natural Log of number
LOADs prog_name (in quotes or string var)
Defines var used only within PROC or FUNC
Log (to base 10) of number
Set/Find out where dynamic structures
are placed in memory. Best avoided.
Sets var$ = s$ starting at st for n
Divides n by n and gives remainder
- Not supported -
MOVEs graphic cursor to (x,y)
Gears current program from memory
Marks the end of a FOR loop (var)
Sets var = bit by bit inversion of n
Recovers program if used after NEW
Used to GOTO or GOSUB depending on var
Opens Doc/File (named s) to read
Opens Doc/File (named s) to write
Combined effect of OPENIN and OPENOUT
Sets var = logical bitwise of two n
String passed to the operating system
Set/Find out starting address of
current program area. Best avoided.
Sets var to Pi
Various graphical commands
Sets var = current state of pixel (x,y)
Sets var = current horz cursor position
Prints var (various options)
Used to invoke defined procedure
Set/Read random access point to File (n)

INKEYS
INPUT
INPUT LINE
INPUT#
INSTR
INT
LEFTS
LEN
LET
LINE

LIST n,n
LISTO n
var = LN(n)
LOAD progjname
LOCAL var
var = LOG(n)
LOMEM = var
var = LOMEM
var$ = MID$(s$,st,n)
var = n MOD n

LIST
LISTO
LN
LOAD
LOCAL
LOG
LOMEM
LOMEM
MIDS
MOD
MODE
MOVE MOVEx.y

NEWNEW
NEXT var
var = NOT n

NEXT
NOT
OLD OLD

ON var GOTO line
var = OPENIN(s)
var = OPENOUT(s)
var = OPENUP(s)
var - n OR n
OSCLI(s)
var = PAGE
PAGE = var
var = PI
PLOT x,y
POINT x.y
var = POS
PRINT var
PROCname
PTR#n = var
var = PTR#n
PUT port,var
var = RAD(n)
READ var
REM comment
RENUMBER st,step
REPEAT

ON
OPENIN
OPENOUT
OPENUP
OR
OSCLI
PAGE
PAGE
PI
PLOT
POINT
POS
PRINT
PROC
PTR
PTO

Outputs to I/O device. Best avoided
Converts degrees to radians
READs data from a DATA statement
REM ark or comment fine in program
RENUMBERS program lines from st in step
Begins loop that ends with UNTIL

PUT
RAD
READ
REM
RENUMBER
REPEAT

313

BBC Basic Keywords

REPORTS message used ON ERROR GOTOREPORTREPORT
trap

Moves pointer to a line when READing DATA
End of GOSUB routine
Takes the RIGHTmost no chars in string
RaNDom number generated from 1 to n
Starts running program in memory
Saves current program to a file
Sets var = -1 if n is -ve, 0 if +ve
SINe of the angle n in radians
Ch 1/2, vol not used, pitch, duration
Prints or Inputs n number of spaces

RESTORE line
RETURN

RESTORE
RETURN
RIGHTS var$ = RIGHT$(s$,n)

var = RND(n)RND
RUNRUN
SAVE prog_name
var = SGN(n)
var = SIN(n)
SOUND ch.vol.p.d
PRINT SPC(n)
INPUT SPC(n)
var = SQR(n)
FOR var st TO f STEP

SAVE
SGN
SIN
SOUND
SPC
SPC

SQaRe root of a number
Allows a FOR NEXT var to be increased
or decreased in steps greater than 1
Like END but prints message where STOP
ets a string = n
Sets var$ = n repetitions of s
Prints or displays message on screen at
location (x,y)
TANgent of the angle n in radians
Optional statement after IF command
Sets/Reads elapsed time in 1/100 second

SQR
STEP
STEP

STOP
var$ - STR$(n)
var$ = STRING$(n,s)
PRINT TAB(x,y)
INPUT TAB (x,y)
var = TAN(n)
IF cond THEN
TIME = var
var = TIME
TIMES = var
var = TIMES
FOR var = st TO f
TRACE ON/OFF (n)
var - TRUE
UNTIL cond
var = USR(n)
var = VAL(s)
VDU(n)
var - VPOS
WIDTH(n)

STOP
STRS
STRINGS
TAB
TAB
TAN
THEN
TIME
TIME
TIMES
TIMES

Sets/Reads current date and time in Fixed
format
Used in FOR statement
Prints line numbers program is executing
Sets var = -1 used in IF and UNTIL
Ends loop returns to REPEAT cond TRUE
Calls a machine code routine at add no
Converts string into a numeric value
Sends n to BASIC’s terminal emulator
Sets var = current vert cursor position
Sets the width of print zones

TO
TRACE
TRUE
UNTIL
USR
VAL
VDU
VPOS
WIDTH

Key

number
string
condition
variable
start
finish

n
s
cond
var
st
f

314

Stored commands
Key

a filename
an integer between 0 and 255
a variable identifier
an optional parameter
a parameter that may occur 0 or more times
a string expression
a string of characters, optionally in quotes
a conditional string expression
the command takes effect immediately

f
n
v
(X)

{X}
expr
text
cond
*

Paper layout commands

f 7 Page Layout Menu Defaults

>BM n
* >EM n

>FM n
>HM n

* >OM n
>PL n

* >SM n
>TM n
>ZM

Bottom margin
Even side margin
Footer margin
Header margin
Odd side margin
Page length
Side margin
Top margin
Zero margins

3

2
2

66
5
3

Page formatting commands

>CE text
>CP on/off
>EA nn
>EF text
>EH text

* >EP (n)
>FF on/off
>FO text
>FO on/off

Centre line
Continuous/Single sheet printing
End at page number
Define even footer text and turn footer on
Define even header text and turn headers on
Even page throw (can be conditional)
Form feeds enabled/disabled
Define footer text and turn footer on
Turn footer on/off

315

Stored Commands

Formatting whilst printing on/off
Defme header text and turn headers on
Turn headers on/off
Line spacing
Number of copies
Enable/disable new page at the end of printing
Defme odd footer text and turn footer on
Define odd header text and turn headers on
Odd page throw (can be conditional)
Page throw (can be conditional)
Print even pages only
Page number of next page
Print odd pages only
Right justifying on/off
Start at page number

>FP on/off
>HE text
>HE on/off

* >LSn
>NC n
>NP on/off
>OF text
>OH text
>OP (n)
>PA (n)
>PE on/off
>PN nn
>PO on/off

* >RJ on/off
>sann

Miscellaneous commands
Comment line
Comment line
Clear screen and display text
Display message
Insert file
Stop printing and display text
Write file close
Open file for writing (appending)
Writing to file on/off
Write text to file - used with WF
Wait and display text

* >CO test
* »>
* >CS text
* >DM text
* >INf
* >ST text
* >WC
* >WF f (A)
* >WF on/off
* >WMtext
* >WT text

Printer control commands

* >CW n
* >MCn (n)
* >MS on/off
* >OCn{n}
* >PP on/off

Define microspace character width
Define microspace code sequence
Microspacing on/off
Output codes to printer
Proportional spacing on/off

316

Stored Commands

Variable and data input - mail merging
Ask for variables
Close data file
Define data file
Read variables unconditionally
Read variables and pad with nulls
Set variables

* >AV v (v)
* >CF
* >DF f {f}
* >RU v {v)
* >RV v {v}
* >SV v=expr

Conditional printing and mail merging
End of ID, IE, IF or IU block
Else - print block if previous IF condition false
Print block if variable defined
Print block if data file exhausted
Print block if condition true
Print block if variable undefined
Repeat - until the following UN condition is true
Skip printing if condition true
Until condition is true - repeat from RP command

* >EI
* >EL
* >IDv
* >IE
* >IF cond
* >IU v
* >RP
* >SKcond
* >UN cond

317

Key commands
This list shows all Protext key commands and token numbers. Some commands can be
selected two different ways. We have shown both keystrokes or Menu combinations so
you can make your choice which to use.

Where we show a keystroke e.g. AsL, the Control, Shift and L keys should be pressed
together. A menu command e.g. Menu E K, the keys should be pressed one after another.

Token numbers are Protext key command numbers and are not normally used by users.
They are listed for reference as you do see them when displaying Macros e.g. Sym-d
A788A.

DescriptionToken KeyToken Key

Block commands
MenuC
Menu E K

Copy Block or Document
Clear Block Markers
Move Block
Set Block marker
Delete Block
Copy Block
Count words in block

523 A K
525 A M
538 AZ
744 A Del
746 FO
933 Menu E B

f-
F9
FDel ->

Cursor movement
519 AG
524 A L
539 A[
541 A]
730 A<
731 A>
732 A(
733 A)
740 sTab
747 A space
748 s Enter
752 Up Arrow
753 Down Arrow

Menu E G Goto Line, Page or Column
goto Last position
Move to start of Document
Move to end of Document
Back paragraph
Forward paragraph
Back page
Forward page
move to next Tab
Insert a Space
Move to left margin on next line
Cursor up
Cursor down

318

Key Commands

Cursor left
Cursor right
scroll up one line
scroll down one line
move word left
move word right
scroll up one screenful
scroll down one screenful
move to start of line
move to end of line

754 Left Arrow
755 Right Arrow
756 s Up Arrow
757 s Down Arrow
758 s Left Arrow
759 s Right Arrow
760 A Up Arrow
761 A Down Arrow
762 A Left Arrow
763 A Right Arrow

Extra characters
halfSymH

Sym Q
Sym!
Sym <
Sym >
Sym ?
Sym c or C
Sym e or E
Sym S
Sym n or N
Sym o or 0

quarter
Inverted exclamation mark
Open quotes (French)
Close quotes (French)
Inverted question mark
cedilla
ae diphthong
double s (German)
n tilde
o slash

accents are followed by a letter

705 Sym ‘
707 Sym “
709 Sym %
710 SymA
711 Sym\

accent grave
accent diaeresis/umlaut
accent ring
accent circumflex
accent acute
Line drawing single/double
line/character drawing
line/character drawing
line/character drawing
line/character drawing
Line drawing mode on/off
Line drawing with character
Choose character

AsD
Sym Up Arrow
Sym Down Arrow
Sym Right Arrow
Sym Left Arrow

776 AsL
777 AsC

Sym-Menu 915 Menu E C

319

Key Commands

Formatting and rulers
Insert Page Break >PA
Centre Line
Default Ruler
Format to End of Paragraph
Justify On/Off - Configure (On)
Copy previous Ruler but one
Word wrap on/off - Con (On)
Format whole paragraph
Create Header
Create Footer
Format text

990 APaP

A +515 AC
516 AD
518 AF
522 AJ
530 AR
535 AW
720 AF
984 Menu H
985 Menu F
991 Menu T F

Menu T D

Menu T R

Find and Replace, text
Find
Replace
Find next
Find previous

f 5
f 6
A6
A 5

Find and Replace, marker
512 A@

A@ n
A(2>?
A@]

Set or Goto marker
Set/Go to marker (0 - 9)
Insert multiple marker
Go to] block marker
Go to [block marker
Go to Left margin
Go to Right margin
next Marker
previous Marker
previous Find
Next Find
Codes on/off (for markers)

940 Menu T M

A@ {
A@L
A@R

727 As6
728 As5
729 A5
736 A6

f 4

Insertion and deletion
737 A4 ATab Insert mode on/off - Con (On)

Insert Document
Insert Line

f 2
A 2521 AI

320

Key Commands

Swap adjacent characters
Delete to End of Line
Delete forwards
Delete backwards
Clear Text
Delete word backwards
Delete to start of line
Delete word right
Delete Line
Undo last delete operation

513 AA
517 AE
545 Del ->
639 <-Del
722 f<-Del
723 s <-Del
724 A<-Del
741 s Del
742 A 3
533 AU

A DEL

Menu E U

Miscellany
Enter command mode (not implemented)
File Hide (do not use)
Current Date
Current Time
Menu key

AsStop
AsH

Menu E D
Menu E T

788 Sym - D
789 Sym - T
902 Menu
988 AsS Screen Dump

Other commands
Soft hyphen
Non-break hyphen
Non-break space
Macro Record
Macro Invoke
Display Macro
Convert to lower case
Convert to Upper case
Non-break space/hyphen
Page Mode On/Off
View - various options
Status line on/off - Con (No)
Ruler line hidden/visible - Con (No)
Hard spaces hidden/visible - Con (No)
Tabs and Returns hidden/visible - Con
Control codes hidden/visible
Word count in Document
Escape

Menu T S
Menu T H
Menu T N
Menu M

739 A H
938
939

774 AsM
Sym - letter

983 Menu D
540 A\
743 A/
526 A N
528 AsP
534 AV

f 8avi
A V R
A VS
AVT
A V V
f =

764 Stop

321

Key Commands

Printing
Insert BOLD code
Insert ITALIC code
Insert UNDERLINE code
Enter printer control code
Insert CONDENSED code
Insert ELITE code
Insert ENLARGED code
Insert PROPORTIONAL code
Insert QUALITY code
Insert SUBSCRIPT code
Insert SUPERSCRIPT code
Print Block
Print to Screen

Menu S B
Menu S I
Menu S U

A 7 834
841A _

A8 853
536 AX
835 Menu SC
837 MenuSE
843 Menu S L
848 MenuSP
849 Menu S Q
851 MenuSS
852 Menu ST
919 Menu B
987 Menu P

Spell checking
Spell text in Document
Spell Check single word
Spell Check from cursor to end
Remove word from User Dictionary
Display User Dictionary

f 1
529 A Q
531 AS
922 MenuER
931 MenuEV

A1

Codes are

f Function
A Control
s Shift

'Con’ at the end of the description refers to the Configure menues f 3,
The value in brackets are the default value from either the editing or view options.

322

The Printer
Why are There so Many Types of Printers?
In the beginning when computers began to appear the world was unprepared when it
came to printing. Whose job was it anyway? Computer manufacturers felt it wasn’t
theirs, and the nearest thing to a printer seemed an electric typewriter. Of course then
typewriter manufacturers thought that computers were always going to be large and
cumbersome and small printers were never thought necessary.

The result is that there are three different things that we need to be aware of.

First there is the method of printing that the printer uses. This affects the look of the
printout as well as the different sorts of printout that can be produced from that printer.

Secondly there is the physical means of connecting the printer to the computer.

And thirdly there is the‘standard’ that the printer may be able to use (or emulate in
computer terms). These are non-printable codes (defined by the printer manufacturer)
that the computer uses to tell the printer to change its print. For example when you want
to print something in BOLD characters your Notepad has to tell the printer to switch to
printing bold. A code is sent when the change is required, then the text to be printed in
bold, then a different code to tell the printer to stop printing in bold.

When choosing a printer you should ask yourself what is more important: the Final quality
of the printout or the price?

What your readers see is the Final printout. They do not know that you had used the
Notepad to type the document do they? For all they know you could have been using the
most expensive computer in the world.

The trap that many users fall into is that they think they should start with a cheap printer
with poor quality printout, and get a better printerTater on’. The trouble is that primers
never give you the opportunity to change them later as they keep going on and on. Some
of us had to wait Five years before our First nine pin printer gave up working. So choose
with care.

The other thing to consider is whether you get a printer with a sheet feeder or not? Most
printers employ what is called a* tractor’ feed, which uses continuous sheets of paper with
holes down the edges. This is Fine for doing address labels but do you want to thread this
paper through the printer every time you need to change the type of paper you use?

323

Printers

A sheet feeder that uses ordinary A4 size paper is a lot easier to use than continuous paper
but it is only usually available as*an optional extra’. The temptation here is not to bother
to get it to start with and get it later. Unfortunately, printer manufactures have a habit of
changing models every year or so. Unless you are quick, there is a good chance that
when you decide to get a sheet feeder, your supplier will not be able to get it for you. The
answer is if you think you might want a sheet feeder, get it with the printer.

Before we get too involved in what we should do with these different sorts of printers,
let’s first look at how printers work with your Notepad.

How printers work
After you have written a document in your Notepad, it is stored in the* List’ as a series of
numbers. Each character that you typed in to Pro text has been stored as a number. These
numbers are the same as shown in the ASCII table and are the same numbers that the
printer uses to print your text. This is why everything works so well (most of the time).

When you tell your Notepad to prim a document it sends these numbers to the printer
down a cable. When the printer receives a number, depending what sort of printer it is, it
either has to convert that number into a series of dots or get a hammer to prim out a letter
at the appropriate time.

Fonts and Printer Attributes
All printers have at least one font, which refers to the look of each character, and a
number of printer attributes, which refers to things like bold or underline. If the printer is
able to print in a higher resolution, that is print more dots per inch, you will find the
printout looking better and you are likely to be able to choose from more fonts.

All these different fonts and primer commands can be sent from the Notepad to your
printer but whether you can use any of these functions will depend on your printer. Some
printers for example are unable to underline text, so even if you used the underline text
attribute in your document, the printer would not be able to print it.

A very important document for every printer is the printer manual. This should have
details in it that explain which codes and character fonts the primer uses. Please do not
be tempted into getting a primer without its manual.

Let’s now look at some of the different types of printers available.

324

Printers

Different Types of Printers
The Dot Matrix printer
Starting at the bottom, the dot matrix printer is generally the cheapest. Printing is
achieved by a print head that has several pins mounted vertically, the height of a normal
printed line. Characters are made up from many small dots that get printed while the
print head travels along each line. The result is characters that look like those displayed
on the screen of your Notepad (which are also made up from dots).

There are several variations on dot matrix printers. Nine, eighteen or twenty-four pin
printers refer to the number of vertical dots there are. The twenty-four pin printer will
give a better quality printout than the nine pin because of the higher definition, but they
also use a lot more printer ribbon.

As this printer uses dots to produce characters it also lends itself to printing other
characters besides normal text, such as boxes on the Notepad and even graphics with
other computers. Some twenty-four pin printers can give a printout similar to the
definition of laser printers.

The dot matrix printer is a percussion instrument and is also known as‘the rat in the box’
because of the noise it generates.

Thermal printers work in a similar fashion to dot matrix except that they use special
thermal paper. This gives a printout like a fax machine as well as needing more
expensive paper.

Daisy Wheel Printer
In 1984 daisy wheel printers were all the rave because they did not use characters made
out of dots. They worked by using a wheel that contained all the characters.

When a character was printed, the wheel spun round to the right place and a hammer then
banged on the wheel to prim the selected character. This resulted in a typewritten printed
output. To change the typeface, you just change the daisy wheel.

These printers are not so popular now because of their cost but they are still in use.

Ink or Bubble Jet Printers
Ink Jet and Bubble Jet printers are quiet and work by squirting little droplets of ink onto

325

Printers

the paper. The print quality is a lot better than the dot matrix printer, which at first sight
is surprising since the characters are still made up from dots.

The paper quality used with these printers is quite important. It should neither be too
absorbent, like blotting paper, or have a shiny finish on it. The technology is still
changing to improve the range of different papers that it can use.

When these printers run out of ink, the complete print head and ink reservoir is changed.
This ensures that good print quality is maintained and that any improvements made to the
ink or bubble jet technology can be used by both new and existing users.

Unfortunately, changing the ink cartridge is more expensive than just changing printer
ribbons.

This technology is very popular for portable computer users as there are several battery
powered inkjet printers on the market.

Laser Printers

Not so long ago, having a laser printer meant having to part with several thousand
pounds. The price has fallen and these printers are currently regarded as the best. They
work like a photocopier machine, but instead of having optics to scan a sheet of paper that
you wish to copy, a laser scans the complete page from your computer onto a drum which
then prints it onto the paper.

These printers are quiet and fast. The print definition on normal laser printers is about
three hundred dots per inch which means that you can no longer see the dots. The latest
top quality laser printers have a resolution of six hundred dots to the inch. This gives a
printout that is comparable with typeset printing in terms of quality. If print quality is
important and you can afford one, forget the rest, go for a laser printer.

Serial or Parallel Connection
We need to connect our printer to the Notepad, but there are two different systems that
printers can use. Just like video recorders, you need to know which system your printer is
using. Sometimes printers can use either system, in which case choose the parallel
option; it is simpler to set up and to use.

326

Printers

How to Tell What Type of Connection Your
Printer Uses

There should be an indication in your printer manual of the interface your printer uses.
Most printers are now parallel or Centronics interface printers. The printer connection to
the computer should have a socket on it like a tongue and groove with strips of gold
contacts.

If your printer is a serial printer, names to look out for are RS-232 or even RS 232-C and
the connector on the primer will look like the parallel printer connection on your
Notepad.

Getting the Correct Cable

As you can see, these standards do not even use the same connector on each end of the
cable you need to use. If you have a parallel printer, the cable you require is a 25 way'D’
connector to a‘Cenlronics’ connector cable. If you have a serial printer, then the cable
you require is a 9 way‘D’ connector to a 25 way'D’ connector. Both these cables are
used with Personal Computers and most computer outlets should be able to advise you on
which cable to use.

The Trouble with Serial Printers
If you have a serial printer you will find that there are many options that you can change
in an attempt to get the Notepad and the printer talking to each other. It really doesn’t
matter what you choose providing that both your Notepad and the printer are set up to the
same values.

The Notepad’s default values are 9600 baud, which refers to the speed, 8 data bits, 1 stop
bit, No parity and Handshaking On. All this information may look a bit gobblygook, but
if you dive into your printer manual you should find the same sort of information in there
under the serial port or RS-232 section.

Mix and Match

The way to get your printer working correctly is by changing the primer’s settings to be
the same as the computers, or the other way round.

^ you are planning to use a modem with your Notepad, change the printer to the same
settings as the modem. Then you won’t have to remember to keep swapping the values
on your Notepad each time you switch between printer and modem.

327

Printers

On your Notepad the way to look at or change the settings is to select the printer
(Function P) and then the Menu key. Using the Cursor Up key (to select the second
screen) should display the printer settings. As you are using a serial printer you should
change the‘Printer Port’ from‘paraller to'serial’ then check with your printer manual and
the settings on the printer to establish what else if anything needs changing in this menu.
Again, manufactures use different words that mean the same thing.

The speed, (in Baud’s), data bits (7 or 8), the number of stop bits (None, 1, 1-1/2 or 2) or
the parity bits (None, odd or even) should be easy to find. Handshaking can also be
known as Xon/Xoff and should be left turned on, otherwise you may find that part of your
document goes missing when you print it out.

There are different ways of changing the settings on your printer. You should check with
the printer manual to find out how to do this.

Parallel Printer
If you have a parallel printer, you only need to make sure that the1 Printer Interface’ is set
to ‘Parallel’; nothing else needs setting. All other options are for the serial interface
only.

Printer Type Setting

Yes, we are nearly there. All that remains is to tell the Notepad what sort of printer you
are using so that it can send the correct codes to your printer.

The default setting for the printer is‘Simple\ which is the last setting that you should use
because‘Simple’ will not send any printer codes, only the characters. Better safe that
sorry I suppose, this setting should only be used if all else fails. The choices of printers
you have are the BJlOe, which is the popular bubble jet printer, Epson 24 pin, Epson 9
pin and IBM 24 pin, which are the dot matrix printers and finally the Laser Jet.

You should also be aware that although the manufacturers name appears with these
printer drivers that does not mean that you can only use Epson or IBM printers with your
Notepad.

Emulations

When .we had a Star printer it used an‘Epson FX-80’ printer emulation that meant that the
computer could think that it was printing to an‘Epson 9 pin’ printer. On our laser printer
we can also change the printer emulator to an‘Epson FX-80’ printer.

328

Printers

So here is yet another mix and match situation where you can change the type of printer
emulation you are using at the printer’s end and the printer driver at the Notepad’s end to
get a combination that works.

Use the printer'test page’ to check that you have the correct settings for your printer.
Once you have found the settings that work, take the opportunity to write them down.
Then if you need to reset the Notepad you will not have to do these tests again just
because you hadn’t made a note of them.

You will have to dive into that printer manual again to find out what printer emulations
you have (if any) but on the Notepad use the printer’s menu again to change the printer
setting.

It’s Not That Bad
Although we have highlighted many different things to do with printers, most users will
have a parallel printer and find a printer setting that matches what they already have.
This has been written for those users who are possibly having a hard time trying to get
their printer working. It is only when things go wrong that we wish we knew the
answers.

329

ASCII Table
144 160!176 192 208 224 240DEC 0 32 48 64 80 96 112 12816

COHEX 00 40 50 60 80 AO BO DO EO FODEC 10 20 30 70 90

£ I k L JL0 0 SP 0 0 ?p► =P a

_L1 1 u I £© 1 ±A◄ ! Q q asa T

i2 %2 § 6b2© B & r >R r T T

h IL3 3 a u# 3 5C!! S <c s TI

L r4 /) 4 d a o$ D♦ T E5 t n

+ J5 5 % 5 a o§ E U Ne u oF

1&6 6 6 f4 uF V a& V ur

lb7 7 1 uG W 29g w T a1

Ik +8 t8 e o8 I H h c(X 3>x y

o i j i9 itab e9 9 ' I iY) ey r
JLLF10 eA J Z QU★ : 3 z r

■h yfB k I11 8 K [6<+<r- 0 1 T

\ J lbic %12 1L I £ n< coIr

J ICR13 D 2M 0 4)] } ie m

A JL=1 I-b ^E14 €N Pt> n « ir
o
A JJ=/ /15 F ? no*> T O 1

330

Diagnostic Test - 'Function’ 'Symbol’
(whilst turning ON)

There is a full set of diagnostic software on your Notepad. Use this if you suspect that
something is wrong or just if you want to make sure that your Notepad passes the test.

You should bear in mind that if your Notepad isn’t working at all, you cannot run this
test. To start the test, hold down the Function and Symbol keys while turning the
Notepad on.

The first screen you should see is the 'Press a key to start diagnostic test (Stop to skip)...
‘ screen. My version has 'ROM vl .00 (c) Amstrad 0 Apr 1992, written by Gavin, Mark
and Ray at Amor’ written on the bottom of the screen.

If you want to bottle out at this stage, press the 'STOP’ key now to return to the Main
menu.

The screen
The first test should make the screen black all over. If you find some white spots on it,
clean the screen with a moist cloth and if that doesn’t clear them, you may have a faulty
screen. Press the space bar for the next test.

The next screen test shows all the possible characters that can be displayed. This is
similar to the Symbol menu. There should be a character missing to the left of the T.
That is the space character. There is a Table of Characters available in the Notepad in the
Appendix and in the manual on page 201 if you suspect some characters have gone
missing. The characters are displayed in the numerical order of the table.

With all these tests, pressing the 'Space’ key repeats the test. Pressing the 'ENTER’ key
moves to the next test.

Memory/battery/parallel status byte
This test checks a status byte inside the Notepad. If all is well it will return the result
'FT.

Reeil time clock test
The line under 'set’ should have the current date and time.

331

Diagnostic Test

Real time clock test
Set
1992 08 29 19:02:03
1990 01 01 00:00:00

ROM Test
This test reads all the internal program memory of the Notepad and checks to make sure
that it is present and correct.

ROM test
00 PASS 01 PASS 02 PASS 03 PASS 04 PASS 05 PASS 06 PASS 07 PASS
08
PASS 0A PASS 0C PASS 0E PASS
PASS

Internal Ram Test
This checks the area of the Notepad’s memory that is used for saving your work.

RAM Test
PASS

Keyboard test
The normal programs inside the Notepad read the keyboard and convert what they see to
the character that you pressed. This test displays the actual number that represents each
key rather than the character you see displayed. The values returned for each key are
shown below.

Stop 0001
1 0002
2 0003
3 0004
4 0005
5 0006
6 0007

0008
8 0009
9 OOOA
0 OOOB

000C
= OOOD

CapL 00IE
001F
1020

d 1021
f 1022
g 1023
h 1024

1025
k 1026
1 1027
; 1028
' 1029
102A

TAB 0010
q 0011

0012
0013
0014

t 0015
y 0016

0017
i 0018

0019
p 001A
[001B
] 001C

LSh 142B
102C
102D
102E
102F
1030
1031
1032
1033
1034
1035
1436
1037

Func 1138
Cont 1239
Sym 183A
Sp 103B
\ 103C
Mnu 103D

103E
103F

Darr 1040

a z
w s x
e c
r v

b
<-n

j7 ->u m
/

o
/
RSh
Uarr

332

Diagnostic Test

Del> 000E Ret 001D
Del< 000F

Shift key x4xx
Function xlxx
Control x2xx
Sym x8xx

The way the Notepad deals with multiple key combinations like Shift, Function, Control
or Symbol when used with another key is quite interesting. The values of these numbers
are added to give a new number for the combination.

For example the Stop key gives 0001. If it used with the Shift key, the number is 0401
which is 0001 and 0400 added together.

Parallel port test
Connect a printer to the parallel port and run the test. The printer will print a row of
different characters starting with the The order of these characters is the same as in
the 'Table of characters’ except that the first few 'unprintable characters’ are missed out.

Sound test - channel A and B
The sound test gives two different notes from the speaker.

Complete

When the test is completed, you can either select all the tests to be run again by pressing
the ENTER key or return to the Main menu with any other key.

333

Useful Names and Addresses
Whenever a new product is launched, it is often difficult to get in touch with anybody for
advice or accessories. To help you on your way, here is a list of useful names and
addresses.

This list was compiled at the end of 1992. Companies may be doing different things or
the list may be out of date by the time you contact them.

Amstrad PLC
Brentwood House
169 Kings Road
BRENTWOOD
Essex
CM14 4EF

Tel. 0277 228888
Fax 0277 211350 / 0277 208065

Manufacturers of the Notepad

Amor Limited
611 Lincoln Road
PETERBOROUGH
PEI 3HA

Tel. 0733 68909
Fax 0733 67299

Authors of the software (except BBC BASIC) on the Notepad.
Protext.

CompuServe Information Services (UK) Limited
15/16 Lower Park Row
PO Box 676
BRISTOL
BS99 1YN

Tel. 0800289 378
0272255111

Fax 0272 252210

334

Useful Names and Addresses

If you have a modem and want to use Electronic Mail, ring CompuServe for further
details.

Data Protection Registrar (Office Of The)
Wycliffe House
Water Lane
WILMSLOW
Cheshire
SK9 5AF

Tel. 0625 535711
Fax 0625 524510
Telex 265871

If you are a Limited Company and store names on a computer (even like the Notepad), it
is a legal requirement that you should register. Certain groups are exempt, if in doubt
give them a call.

Rakewell Limited
24 Putnams Drive,
Aston Clinton,
Aylesbury,
Bucks
HP22 5HH

Notepad Training Days. Interested? Call for dates. Memory Cards

Richard Russell MA CEng MIEE
59 Campbell Road
GRAVESEND
Kent
DA110JZ

Author of BBC BASIC on the Notepad.

335

Index
ASN.254
Assembler programming, 304
Assigning TRUE or FALSE, 187,188
ATN.254
Attributes - style, 72
AUTO, 308
Auto-repest, 31
Auto mi tic line numbering, 308

running, 309
mm on, 23

Automsticslly living BASIC, 175
Avoiding errors, 298

Notes -
1) All BASIC commands tie shown in apilil letters
2) A list of BASIC keywords Is included onpiges 311 -314
3) A]iR of stored camramds ia included on psges 315-317
4} A liR of key commands is included cn pages 318 -322
5) A liR of Tips is included itthe end of this index

Abandon, 7
ABS, 255
Absolute marker, 76
Absolute value, 255
Accents, 59
ACS. 254
Adding i new address, 29 BicJcup, 4,5,161,176

Backward page, 75
BASIC, 173 - 309
BASIC program - in List, 91
Batteries, 4, 5

an alarm message, 22
instructions to the Wcrd Processor, 43
lines - BASIC, 177
memory, 170
new functions - BASIC, 287 - 289
strings, 237
the datc/dme - Word Processor, 54
today's date - Mail Merge, 131
variables - Mail Merge, 133
your dictionary, 87

alkaline, 4
lithium, 4
nicad,4

Battery compartment - memory card, 170
compartments, 16
for memory card, 170

Baud rate, 163
BGET, 283 - 285
Blank line* in address, 137

line* in data, 123
memory card, 171

Address - right justified, 52
Address book, 29

- adding to, 29
- as a data file, 119
- browse, 30
- delete, 30
•edit, 30
- find, 30
- in List, 91
- trawler, 30
on a memory card, 171
k transfer, 169

Address labels, 115, 127-134
Address lines • truncating 130
Addresses - blank lines, 137
Alamo - altering, 23

Block copy, 81
delete, 81
mark - clearing 80
marker, 76
move, 81
print, 81
transfer, 81
word count, 81

Blocks of text, 80
Bold text,72
Bottom margin, 95,112
Boxes - drawing them, 60,61
BPUT, 283 - 285
Branch instruction, 185,290,291
British summer time, 24
Browse threwgh addresses, 30
Bubble jet printer, 325
Bugs, 202

- changing 23
-deleting. 23
-editing. 23
- message, 22
- once only, 22
- removing 23
- repeating 22
- setting 22

Alarm going off, 23
Alarm list, 23
Alarms, 21 - 23
Aligning text on the right, 54
Alkaline batteries, 4
Alter a document, 89
Altering mem settings, 9

able, 164
Cilculitions during Mail Merge, 149
Calculator, 31, 32

constant, 31
memory, 31

Calendar, 26
CALL, 304
Calling a function, 288,289the time and dale, 15

where you are, 24
your password, 19

machine code programs. 304
Cancelling alarms, 23

Are cosine, 254 an entry - calculator, 32
tine, 254
tangent, 254

Capital* - changing to, 78
Caps lock key, 11

Amy element, 192
Amy*, 190,191,223,224

lock on, 47,49
00,12

- one dimensional, 190,191
- two dimensional, 225

Capture, 165
Card memory, 92
Case - changing, 78
Centre text, 55, 69
CHAIN, 309
Change the place name, 25

ASC, 246 - 248,258
ASCII code, 230, 242, 243,246 - 248

cm version, 163
Ask far variable - Mail Merge, 131

336

Index

Constant value - calculator, 31,33
Context saving, 14
Continuous printing, 64
Contrast control, 7
Control codes - screen, 305 - 307

document, 115
document - testing, 116
key,11

Controlling loops, 204 - 206
Controlling print width, 262
Conversions - metric and imperial, 34
Copy ad drew into document, 51

block, 81

Changing a number to a string, 258
a program, 219
an address in address book, 30
batteries, 5
case, 78, 248.249
characters, 248, 249
degrees to radians - RAD, 254
document format, 162
number format - BASIC, 162
how STR5 works, 269
line numbers, 308
modes - BASIC, 220
page numbers, 64
radians to degrees - DEG, 254
the place name, 24
the prompt, 189
the time and date, 15
the time difference, 25
time zones, 24,25
to an integer, 257
number type • BASIC, 246 - 248
what is printed, 268 - 271
your password, 19

Chiracter transposition, 78
width, 106

Characters - special, 59
Check spelling, 85,86

word, 85,86
Checking a file exists, 282
Checksum • XModem, 167
Choosing a document, 89

a name, 50,51
to reset, 17

previous ruler line, 46
Copying a document, 53

documents to a memory card, 171
the screen to a file, 302,303

COS, 254
Cosine - COS, 254
COUNT, 262
Counting words, 55
CRC-XModem, 167
Creating a data flic, 118

alenerhead, 51
a ruler 1 ine, 44
• variable, 182

CTS and RTS, 164
Cursor, 36

flash - rate, 108
homo, 273
keys, 10
left, 7
movements, 74
position, 47,261,262CURS, 246 - 248

CLEAR, 301
Clear block mark, 80 Daisy wheel printer, 325

DATA, 259 - 261
Data bits, 163
DaU Geld, 117
Data file, 115

graphics screen, 273
memory card, 171
screen, 117,227

Clearing memory, 17
Clearing memory - calculator, 32
CLG.273
CLOSB, 281
□ose data file, 124
Close file - Mail Merge, 157
Close files, 281
CLS.227
Col cat, 217
Column, 75
Column - going to, 75

number, 47
Columns - using Tab, 37
Cdumns and lines, 227
COM, 295
Combining statements on a line, 217
Comma's in iiput, 251, 252
Command I ines, 43,62
Comment line, 113,115
Communications program, 164
Canparing strings. 240 - 243
Comparing variables - Mail Merge, 138-141
Comparisons, 192
Conpaliblc document names, 50
Canpound statements, 248
Concatenating strings, 237
Condensed characters, 72
Cmditianal new page, 66

printing. 187,188
printing - Mail Merge, 138

Ccnfiguration menu - printer, 163
Configure Menu, 42, 107

blank lines, 123
closing, 124
creating, 118
defining, 120
designing, 117
end of, 142

Data record, 117
Database, 117
Date, 15

- getting and setting - BASIC, 300
- in a document, 54
of document, 92

Decimal character, 107
places in variables, 134

Default. 13
ruler, 52
ruler line, 44
settings, 18

Defining a data file, 120
an array, 193 - 195
function, 287 • 289
keys, 302,303

Definitions, 3
DEG, 254
Degrees, 254
DELETE. 308
Delete block, 81

character/worcWme, 78
keys, 10

Deleting a diary entry. 27
addresses, 30

337

Index

Errors - mistake it line, 189
Err on - syntax, 189
ESC - turn on/off, 302
EVAL, 2S8
Even - parity, 164

alarms, 23
documents. 90
documents on a memory card, 171
files, 302
from dictionary, 87
markers, 76

Designing a data file, 117
Diagnostic test, 18
Diary, 26
Diary entries, 26
Difference in time, 25
Different address bocks, 172
DIM, 193 -195,223 - 225
Dimensitning an array - DIM, 193 -195
Disk, 4
Display message, 113,117
Displaying macros, 57
DIV.257
Document date and size display, 169

disappears, 51
format, 162
formatting. 56
insert, 53
receive, 166
send, 165
size, 92
transfer, 161
transfer pert and format, 163

and odd pages, 63, 64
margin, 112
page throw, 66
pages - printing, 65

Exclusive OR, 211,212
Existing macros, 57
EXP, 254,255
Exponential format for print, 269 * 271
EXT, 285
Extending the IF statement, 217
Extra array element, 195
Extra memory, 16,170

FALSE, 187,188
Ffctch a key, 234,235
F»eld - data, 117,118
Filo access, 280

end, 282
handle, 280
pointer, 286,287, 292
size, 92,285
transfer, 162

Files, 278 • 285
Documents and filet, 88, 89
Doing s reset, 17
Doing maths on characters, 248, 249
Dot matrix printer, 325
Double height, 99
Double line drawing, 61
Download, 165
DRAW. 274,275
Drawing boxes, 60,61
Drawing lines, 60, 61,274,275
DSR and DTR, 164

- byte at a time, 283 * 285
- closing, 281
- controlling where to read from, 286, 287, 292
- deleting, 302
- opening, 280
- opening for input, 282
- opening for update, 283
- renaming, 302
and documents, 88, 89

Find, 82-84
next, 84
previous, 84

Edit a document, 89 Finding a marker, 77
a name, 29
a telephone number, 29
an address, 30
the percent, 34
where you arc in a document, 47

Fixed format for print - BASIC, 269 • 271
Rags, 217,218
Rash rate - cursor, 108
Rat batteries, 5
Row control, 290, 291
FN, 287 - 289
Fonts, 72,324
Footer margin, 112
Footers tad headers, 62 - 64
FOR-NEXT, 205,206
Forced reset, 17
Forcing a new lino, 267
Foreign characters, 59
Form feed option - Mail Merge, 129
Form feeds, 67, 68
Form filling with Mail Merge, 151 - 155
Format, 268
Format document, 56

an address, 30
an alarm, 23
mode-BASIC, 219
word, 86

Editing a program, 219
commands, 219
place name, 24
time zooes, 24
your dictionary, 87

Elite characters. 72
ELSE-IF-THEN, 185
ELSE - Mail Merge, 139-143
Empty document, 51
Empty string, 233
Emulations, 328
END, 178
END IF, 139-143
End of file, 282
End ofline - deleting to, 78
Ending a FOR - NEXT loop, 206
Enlarged characters, 72
Enter key, 7,37,38
EOF, 282
EOR, 211,212
Equal operator, 192
ERL, 296, 297
ERR, 296,297
Error line, 296,297
Error message, 298
Errors - handling them, 296,297

of ■ document, 162
of time 1V24,14

Formatting a memory card, 171
a page, 62
characters, 70
on,69
atting text, 44,55

338

Index

with Mail Merge, 68 the d*tc, 54
the time, 54

Inspecting variable contents, 221
Installing a memory card, 170
INSTR, 243 - 248
INT.257
Integer variables, 182
Integers, 257
Internal fuse, 5
Internal memory, 170
Italics, 72

Forward page, 75
Ponctionkey, 11
Functions - adding your own, 287 - 289
Fuse, 5
General format for print, 269 - 271
General purpose number format, 199
GET. 235
GETS, 250
Getting the lime, 300
Getting to the main menu, 12
GOSUB, 196 - 202
GOTO, 184
Goto a marker, 77
Goto last position, 77
Goto page, 75
GOTO'* * removing them, 203
Graphical output, 272,273
Graphics effects, 275 - 278
Greater than operator, 192
Gtcater than or equal operator, 192
Green keys, 31
Greenwich mean time, 24

Joining strings, 237
Joining variables - Mail Merge, 134
Justifying output, 264 - 266

Key definition, 302,303
repeat, 107

Keyboard input, 183
Keys - ahoit cuts, 9

-special,7,9 -11

Label length, 129
Label position, 127,128
Lapcat, 162
Large documents, 93Halting gracefully, 185

Handshake, 164
Hard carriage returns, 70

hyphens, 71
reset, 17
spaces, 70

Hardware handshaking, 164
Header margin, 111
Headers and footers, 62 - 64
Hex dump, 104
Hexadecimal numbers, 266
Hidden characters, 69

programs, 225, 307
Laser printer, 326
Last position • goto, 77
Layout, 108
Layout Menu, 42
Layout of BASIC examples, 175
Leading spaces, 251,252
Loam word, 86
Leaving a menu, 10

BASIC, 301
loops esxly, 206
procedures correctly, 202documents, 91

information, 162 Left arrow, 7
LEFTS, 238 - 240
Left-hand page, 63, 64
LEN, 237
Length of a file, 285

High beep, 17
HIMEM, 304
Home cursor, 273
Horizontal scrolling, 74
Hyphens - hard, 71 of a string, 237

of page, 67, 68,112
IF-Mail Merge, 139-143
IP-THEN, 217
IF - THEN - ELSE, 185
Ignore word, 86
Immediate mode, 218,220
Imperial conversions, 34
Import block, 81
Including data in your program, 259 - 261
Increasing by a percent, 34
Indenting text, 45
Initial settings, 13
Inkjet printer, 325
INKEY, 234,235
INKEYS, 249,250
INPUT, 183
INPUT LINE, 251,252
Inputting from a file, 232

strings, 249

Less than operator, 192
Less than or equal operator, 192
LET, 180,207
Line, 75

-going to, 75
delete, 78
feed option - Mail Merge, 129
number, 47
number*. 177
spacing, 65

Lines - drawing, 274,275
- drawing them, 60,61
- not printing, 105
and columns, 227

Linking commands, 217
LIST, 177
List of alarms, 23

of documents, 88,89
of files. 302
of items to print, 263

Insert, 37
btrert a document, 89

Listing a program, 177document, 114
Insert on, 47,48
Inserting a document, 53

single lines, 177
time zones, 24

Lithium batteries, 4
LN, 254,255
Loading a program, 179

a space, 69
addresses in address book, 29
lines, 177

339

Index

around the calendar, 26
BASIC. 305
document! with a memory card, 171
memory, 304
text to the centre, 55
the cur*or, 74,227,261.262
the graphic! curacr, 274,275

Loading program* - chain in BASIC, 307
LOCAL. 199 - 201. 261, 262
Locking your notepad, 18
Logarithms, 254,255
Logical operator*. 209 - 216
Logical operator* - summary, 213
LOMEM, 304
Long address line*, 130
Long line*. 48,94
Lookup word, 86
Loop control. 204 - 206
Loop* within loop*, 208, 209
Losing characters, 164
Low beep, 17

Multiple copies - printing, 65
diary entries, 28
marker, 76
statement!, 217
strings, 252

Name a document, 50,51
Naming variable*, 180memory, 161

Lower case to case, 79
Lower memory, 92
LPT, 295

variable* - Mail Merge. 121
Narrow screen, 262
Natural logs, 254, 255
Near letter quality characters, 72
Nesting, 208, 209
Nesting - Mail Merge, 143
New document, 50

Machine code, 303,304
Macro*, 56, S7
Macros and reset, 58
Mail Merge, 29,115 memory card, 171

page after print, 66
page during print, 66

testing - pause screen. 126
text formstring, 68

Main menu, 12
Main* adaptor, 4,5,16
Major keys, 7,9 - 11
Making * noise, 300,301
Manipulating strings, 236
Margin marker, 76
Margins, 95,109-112
Mark block, 80
Marker - goto, 77
Marker - previous, 77
Markers, 76
Maths function*, 253
Maximum document size, 93
Maximum range in Mail Merge, 150
Memory - calculator, 31

- out 0^ 92
card, 4,16.170-172
card and the address hook. 171
shortage, 161
types, 92
used, 92

Menu - Configure, 42,107
- Layout, 42
- Word Processes, 41

Next, 77,204 -206
Next find, 84
Next marker - move to, 77
Nicad batteries, 4
NLQ characters, 72
No margins, 96,112
No memory left, 170
No space left, 161
Nat exclusive OR, 210
Non-bresk hyphens, 71
Non-breik space, 70
Noo-printab!e characters, 248
Ncne - parity, 164
None - protocol, 165
Nc< equal operator, 192
Not shown - system setting menu, 169
Null modem cable, 164
Null string, 233
Numbering lines, 177
Numbers from strings, 258
Numeric operators, 192

Odd - parity, 164
Odd and oven pages, 63, 64
Odd margin, 112
Odd page throw, 66
Odd pages - printing, 65
ON - GOSUB, 290,291
ON-GOTO, 290,291
ON - PROC, 290,291
ON ERROR, 296,297
On switch, 7
One dimensional mays, 190,191
One finger operation, 14
Open file - Mail Merge, 157
OPEN IN, 282
Opening a file for output, 280
Opening a file for update, 283
Opening a new document, 50
OPENOUT, 280
OPENUP, 283
Operating system commands, 301 - 303
Operators, 192
Operators - logical, 209 - 216
OR, 210
Order of running, 184

Menu key, 9
Menus - bow to use, 40,41

- leaving them, 10
- selecting from, 9

Merging address books, 172
Message in alarm, 22
Meaaages, 113
Metric conversions, 34
Microspacing, 105
MEH, 238 - 240,247. 248
Minimum range in Mail Merge, 150
Missed appointment, 27
Missing lines, 43
Misting your diary dates, 27
MOD. 257
Modem transfer, 169
Modes - changing, 220
Mode# of BASIC, 218
Modulus. 257
MOVE, 274,275
Move block, 81
Moving tppotramenfl, 27

340

Index

Original stale, 17
OSCLI. 301 - 303
Out of memory, 92,161
Out of room, 161
Output printer codes, 98 -104
Output to a file, 157
Outputting to a port, 304
Outputting variables ■ Mail Merge, 125
Outstanding alarms, 23
Overtype, 37

Print - add new line, 267
block, 81
control, 263 -271
formatting, 263 - 267
left-justified, 264 - 266
list, 263
right-justified, 264 - 266
test page, 94
time messages, 113
two address Labels, 144 - 148
zones, 264 - 267

Padding with spaces, 252
PAGE, 305
Page • going to, 75

Printable characters, 248
Printer, 16

- selection, 302
attributes, 324
codes, 98- 104
codes - showing. 108
commands, 96
configuration menu, 163
driver, 98
type setting, 328
width, 94

formatting, 62
forward, 75
layout, 95,108
layout commands, 108, 111
length, 67, 68, 112,129
margins, 95,109, 111
mode, 75
number, 75
number - changing, 64
numbers, 62 * 64
numbers - which to print, 65
setup, 95
throw after print, 66
throw during print, 66
titles, 62 - 64

Printers - types ofi 323
Printing, 94,95,113

- line spacing, 65
- tingle sheets, 64
a document, 90
address labels, 127 -136
blank lines, 137
continuously, 64
graphics, 272 * 278
in hexadecimal, 266
lines, 96
multiple copies, 65
some pages, 65
to a &le- in BASIC, 281
to files - in Mail Merge, 157
tw o address labels, 136
variables - Mail Merge, 125
your diary, 27
your letter, 39

Private variables, 199 - 201
PROC, 196 - 202
Procedures, 196 ■ 202,287,288, 289

- leaving them correctly, 202
- why use them, 203

Parallel cable, 164
connection - printer, 326
link. 162
port - access front BASIC, 295
socket, 16
to ASCII, 163
to pretext, 163

Parity •• Odd, 164
Part of a itring, 238 - 240
Partial list, 177
Password, 10,18.19

- changing it, 19
- deleting it, 19
- setting ono, 19

Paste block, 81
Pausing MaO Merge screen, 126
PC names, 50
Percentages, 34
Physical connection, 164
PI, 253
Pixel - on. 275
Pixels, 273
Place name - changing, 24
Racing the cursor - in BASIC, 227
Plain ASCfi, 165
Plain ASCII document, 163
Playing notes. 300, 301
PLOT, 275 »278
POINT, 275
POS, 261,262
Position oflabel, 127,128
Positioning within a file. 286,287,292
Power off delay, 14
Power saving, 14
Power switch, 7
Pre-printed farms, 151 - 155
Preprogrammed macros, 57
Preserve context, 14, 27
Preset settings, 13
Previous find, 84
Previous marker - goto, 77
HUNT. 178

Program changes, 219
flow, 185

Program loading, 179
Program loops - Mail Merge, 142
Program mode - in BASIC, 219

saving, 179
specification, 222.223
speed,182

Programming a memory card, 172
Prompt fca input, 189
Prompt string, 190
Proportional characters, 72

printing, 105
Protecting your information, 18
Protecting your memory card, 171
Pretext, 40
Protocol, 165

- checksum. 167
- CRC, 167
send, 168

FTR, 286, 287,292
PUT. 304

Quality characters, 72
Question mark, 189

341

Index

RUN, 176.219
Running mother program, 309
Running from mains, 5
Running order, 184
Running out of memory, 92
Running lyttem commands from BASIC, 301 - 303

Quilling BASIC. 301
Quotient. 257

RAD, 254
Radians, 254
Random access. 280, 286,287.292

numbers. 256
Re-staiting a program, 226
Re-usability, 199
READ. 259 - 261
Reading the keyboard, 234,235

variables - Mail Merge. 122

Safe transfer, 167
Saved alarms, 23
Saving data to files, 278 * 285

documents on a memory card, 171
names and addresses, 29
power, 7
your work, 179

Scanning the address bode, 30
Screen brightness, 7

control, 7
control codes, 305 - 307
position, 261.262

Real variables, 181
Receive document, 166

XModcm, 168
Receiving the address book, 169
Record - data, 117
Recording a new macro, 57
Recording keystrokes, 56,57
Redefining keys, 302, 303
Reducing by a percent, 34
Reentrant function, 288, 289
Releasing memory, 27
REM, 178
Remainder, 257
Remarks, 178
Remote connection, 169
Remove margins, 112
Removing a diary entry, 27

a document, 90
addresses, 30
alarms, 23
from dictionary, 87
GOTO commands, 203
loti of lines, 308
margins, 96
your password, 19

Renaming a document, 90
files, 302

Scrolling, 73,74
Search, 82-84
Searching for a name, 30

strings, 243 - 245
the address book, 30

Secret document, 10,18
key, 9

Secure link, 167
Seeing newlines and TABs, 69
Selecting a diary date, 26

a document, 89
items, 9
special characters, 59
the printer, 302
where you ate, 24

Send document, 165
Send XModcm, 167
Sending the address book, 169
Sequential access, 280
Serial cable, 164

RENUMBER, 308
REPEAT - UNTIL, 207, 208
Repeal rale - keys, 107
REPEAT UNTIL - Mail Merge, 142
Repealing alarms, 22

connection - printer, 326
link, 162
port - access from BASIC, 295
socket, 16
terminal, 163
to ASCII. 163loops, 204 - 206

Replace, 82 - 84
REPORT, 298
Reset, 17,18

toprotext, 163
Set doublo height, 99
Setting a marker, 76

- effect on macro*, 58 a password, 19
a variable, 132
an alarm, 22
the time, 300
the time and date, 15
up for transfer, 163

Settings - changing them, 9
SGN.255
Shareware, 164
Shift Enter, 38
Shift keys, 11
Shift Tab. 38
Short cut keys, 9
Show address book, 91

Resetting variables, 301
your passwwd, 20

Rest of a string - MIEXj, 238 - 240
RESTORE, 260,261
Returning to the same point, 14
Right justify on, 47,48
RIGHTS, 238 - 240
Right-align, 54
Right-hand page, 63, 64
ffijhf.jpififinK/ip 69
Right-justify an address, 52
RND.256
Rounding error in Mail Merge, 156
RTS and CTS, 164
Ruler - showing, 106

printer codes, 108
ruler, 108
ruler line,44
spaces, 108
staxus information, 108
Labs and returns, 108

- copy previous, 46
- creating. 44
- default, 44
- extra width, 94
- indenting text, 45 Side margin, 112

Sign of a number, 2S5
SIN, 254

Ruler lines, 44,52
Rule* of BASIC, 175

342

Index

Sine-SIN, 254
Single line drawing, 60,61
Single sheet printing, 64
Size of document, 92
Soft carriage returns, 70

hyphens, 71
reset, 17
spaces, 4$, 70

Software handshaking, 164
SOUND, 300,301
Space - inserting, 69

Syntax, 189
System settings menu, 13,14,163,169
System time, 300

TAB, 227
Tab key, 10, 38

stop, 37
Tabs and returns - showing, 108
Take one string from another, 238 - 240
TAN. 254
Tangent-TAN,254
Telephone number search, 29
Template files, 110
Terminal program, 163
Test page - printing, 94

software, 18

- non-break, 70
available, 92

Spaces - hard, 70
- showing, 108

Spacing columns, 37
of lines, 65 Testing a value, 185

Spare batteries, 5
SPC.252
Special characters, 59.248

control documents, 116
for TRUE, 187,188
the notepad, 18
variables, 192characters • not printing, 105

keys, 7.9 -11
Specification of a program, 222, 223
Speed, 163

Text fonts, 72
formatting, 55

The clock, 15
The colon, 217
The hidden array element, 195
The information bar, 12
The template, 15
The timo, 47,49, 300
THEN - CP - ELSE, 185
Time, 15,299

of execution, 189
Speeding up your program, 182
Spell checker, 36, 85, 86
Splitting paragraphs, 66

variables - Mail Merge, 134,135
Spool file. 302,303
SQR.257
Square root, 34, 257
Standard headings, 51
Start a new document, SO
Stirt of line - deleting from, 78
Starting BASIC, 176
Status bar, 47
Status information - showing, 108
STEP, 204 - 206
Sticky shift keys, 14
Step bits, 163
Stop control document, 117

key,?
printing, 114

Stopping* program, 185
Store word, 86
Stored documents, 88, 89
STRS, 258
Strange behaviour, 17
String - converting from a number, 258

- converting to a number, 258
- how long, 237
- null, 233
- part of, 238 • 240
arrays, 223,225
variables, 182

Strings, 232,233,236,252
- adding, 237
- comparing, 240 - 243
- from the keyboard, 249
- searching in, 243 - 245
- subtracting, 238 - 240

- in a document, 54
delay, 299
difference, 21,25
display format, 14
manager, 21
of alarm, 22
zones, 21,24,25

TIMES, 300
Tips, 3
Today's date, 12
Top margin, 95, 111
Transfer address, 30

address into document, 51
block, 81
method, 162
port, 163
protocol, 165

Transferring between notepads with a memory card, 171
documents, 161,162
the address book, 169

Transpose characters, 78
Trignomctric functions, 253
TRUE, 187,188
Truncating address lines, 130
Truncating variables, 134,135
Truth, 186
Turn a pixel on, 275
Turn capitals on or off, 11
Turn on every day, 27
Turning it on, 7
Turning on automatically, 23
Turning the ESC key on, 302
Two address books, 172
Two dimensional arrays, 223 - 225
Type changes - in BAS IC, 246 - 248
Types of memory, 92

Style attributes, 72
Subroutines, 196 - 202
Subscript characters, 72
Subtracting strings, 238 - 240
Summer time, 24
Superscript characters, 72
Swap characters, 78
Switching modes, 220
Symbol key, 12

of printers, 323

Unauthorised access, 18
Undelete, 78

343

Index

Underline, 72
Updating your address book, 29
Upload, 167
Upper case to lower case, 79

memory, 92

single bytes to a file, 283 - 285
to the serial port, 295

XModcm, 165
XModcm receive, 168
XModcm send, 167
XModcm transfer, 167
Xon -Xoff, 164

User dictionary, 87
Using a constant - calculator, 33

a master document, 53
a memory card, 171
a modem, 169
a new macro, 58
a ruler line, 52
mem cry - calculator, 33
menus, 40,41
special characters, 248
Tab*. 37
the mains, 5

Zero margin command, 112

TIPS

Changing Batteries, 5
The Hidden Fuse, 5
Short Cut Commands, 9
Altering Setting* in a Menu, 9
Number* and Letter* are Different, 13
Get a Printer, 16
Alarm - Once You Press D, 22
Are You Still at the Right Time?, 25
The Calondar Moves in Mysterious Ways, 27
You Can Miss Your Diary Dates, 27
Lines Missing in Your Printed Document?, 43
Don’t Use'>',43
On Ruler Lines, 45
Typing a Long Line Unintentionally, 48
Put Something in a New Document, 51
Adding The Time, 54
Help With Page Lengths and Formfeeds, 67
Markets Are Only Shown When Codes Are On, 76
Use Gmo Left Marker to Move to a New Left Margin, 77
Get The Spelling Right When Using Find and Replace, 81
Only Copy a Block or Document From the Word Processor, 91
Page Length Warning, 95
Gotcha Printer Codes, 103
Do Not Leave Variable Values Between &$, 122
A Sneak Preview of BASIC Commands, 221

USR, 304

VAJL, 258
Variable, 263.268 - 271

- giving a value, 132
accuracy, 182
array*. 190.191
not found, 122

Variables, 179
- at print time, 131
- decimal places, 134
- integer, 182
-Mad Merge, 120
-real. 181
- string, 182
on both sides, 181
remember, 181

VDU commands, 305 - 307
Version number, 18
Vertical scrolling, 73,74
Viewing character attributes, 73

hidden characters, 69
your dictionary, 87

VPOS. 261,262

Wait - when merging, 117
for a delay, 299
message, 114

Waiting for a key, 234
What does a variable hold, 221
What is a string?, 232
What is BASIC?, 174
What to call a variable, 180
Where are you, 24
Which error, 296,297
Why use a ward processor?, 35
Why use procedures?, 203
Wide characters, 106
WIDTH. 262
Width of printer, 94
Wildcard searches, 84
Wipe memory card, 171
Wiping your documents, 17
Word check, 85, 86

cairn, 55
count block, 81
key, 7
Processor commands, 40
Processor menu, 41
wrap, 37,70
wrap on, 47,48

Write protect tab, 170,171
to file - Mail Merge, 157 -160

Writing a large program, 225, 307

344

S&S Computer Advice
Software DesignersEducation Consultants

Specialists in data transfer software for the Amstrad NCI00.
Transfer software is available to link the NCI00 to:

Archimedes

BBC B / Master

Macintosh

IBM compatibles

PC Microsoft Windows

Memory card based software is also available.
Titles to date include

Sketchpad
NC Turtle - a LOGO trainer

Foliage - A database

Double height - a Large text processor

T-Touch - The Typing Tutor

Under development
NC Term - Teminal software

NC -base - A relational database
For further details contact us at:

8 Anchor Close, Hathern, Loughborough, Leics LEI2 5HP

m mm m mm m ___ _____
M 5c

NC100 ACCESSORIES FROM RANGER
I

Ranger specialise in providing accessories and support for sub­
notebook computers, including Psion series 3, Cambridge Z88, Tandy
WP-2 and, of course, NCI00. Ranger has an active development
programmefor NCI 00 related products, which include the following:

RangerDisk3
The ultimate NCI00 accessory, RangerDisk gives unlimited storage of NCI00
files on IBM PC-compatible 720K or 1.44M byte diskettes. RangerDisk3 is
extremely easy to use, requires no computer experience and comes complete with
NCI 00 software, cable and AC adapter.

Facilities include formatting of new disks and the creation and use of sub­
directories, if required. The disk drive is completely compatible with all IBM-PC's
that have 3.5M drives and allows files to be copied from PC to NCI00 and vice
versa.

RangerTerm
RangerTerm allows NC100 to communicate with dial-up mailboxes via a modem
connection. The terminal is compatible with the VT52 standard and provides the
popular XMODEM CRC/Checksum protocol for file transfer.

RangerTerm is also ideal for transferring files to other computer systems using a
direct RS-232 connection at speeds up to 19,200 baud. The terminal is compatible
with any computer capable of running XMODEM, including IBM-PC under DOS or
Windows and Apple Macintosh.

Corporate Applications
Ranger has a comprehensive software development environment for NC100 and
can provide custom application development for specific end user applications.

Other Products
Ranger supports NCI 00 with a full range of memory cards, cables, printers, spare
parts and other accessories intended to complement the basic machine. Ranger
also intends to offer an upgrade service to users as future versions of the NCI00
operating system become available, subject to applicability. Please enquire for
details.

:
!

Ranger Computers Ltd.
Ranger House • 2 Meeting Lane • Duston • Northampton • NN5 6JG

England
Telephone (0604) 589200 * FAX (0604) 589505

All trademarks are the property of their registered owners NCMAG1292 j

