

BASIC 2 Plus

Locomotive Software's BASIC
for the Amstrad PC1512/1640 and other PCs
running Digital Research's GEM Environment Manager

User Guide and Quick Reference

LOCOMOTIVE
a SOFTWARE

L

mllsdevelopmm and impmvement, and itis acknowledged Lhat lhere may be errors or omissions in this manual.

8909

Preface

IMPORTANT:

This User Guide and Quick Reference is one of two instruction manuals ‘supplied
with BASIC 2 Plus. The other is the Language Reference Manual.

The User Guide section of this manual explains how to use the BASIC 2 Plus
program. It describes how to enter programs into your computer, how to save them,
and so on. There is also a complete description of BASIC 2 Plus’s powerful mouse-
driven editor, and a large section on the debugging tools available.

The User Guide does not give a full description of how the commands work. For
that, you must refer to the Language Reference Manual, the second book supplied
with BASIC 2 Plus. This descibes the language in great detail. However, the User
Guide does give a 'Quick Reference' summary of the syntax of all the commands
available in BASIC 2 Plus, each with brief explanation of what they do.

If you have programmed in BASIC 2, the predecessor of BASIC 2 Plus, you will
notice some new facilities. Such structures as the SELECT CASE statement and
the block IF statement make structured programming much easier. Routines are
now implemented, and it is now possible for your program to be split into different
program units — a main program and several modules. Read Chapters 5, 6, and 7 in
theLanguage Reference Manual for details.

When programming, you will see that you now have a powerful mouse-driven ‘cut-
and-paste’ editor to work with. There are lots of facilitics for debugging your
programs, too. But perhaps the first thing you’ll notice, especially if you are running
very large programs, is the speed of BASIC 2 Plus. One of the standard test
programs runs over six times faster in BASIC 2 Plus than in BASIC 2.

Before running any BASIC 2 program under BASIC 2 Plus, you are advisedfirst to
scan through the program in the Edit window to see if any of the variables are being
shown in capital letter. If any are, then you will need to change the name of this
variable because this name is now used as a BASIC 2 Keyword.

You are also advised to use BASIC 2 Plus’s Check-out option to ‘Pre-scan’

your program before running it (as described in the section on ‘Programming’ in
Chapter 1 of the User Guide).

gopo N 3 A SIC 2 Plus

e HEE

Contents

1 BASIC’s Basics 1
Typing commands directly 3
Programming 4
Leaving Basic 2 Plus 6
Accelerators 6

2 The Editor 7
Selecting text 8
Search and Replace 10
Merge 12
Outlining 12
Other features 13

3 File Management 15
The Current Workspace Component 15
The File menu 16
Workspace view 19

4 Debugging 23
Starting and stopping the Program 23
Direct Command Debugging 24
Debug Points 25
Tracing 27
Traceback 29
Syntax Summary 31-74
BASIC 2 Plus Keywords 75
Licence
Index

gooo NN 3 A SIC 2 Plus : User Guide & Quick Reference

8909

mmmmm Chapter] .

BASIC's Basics

BASIC 2 Plus works with GEM, the window manager on your computer. This guide
assumes that you have GEM installed on your computer and that you have some experience
of using it; specifically, it assumes that you know how to select, scroll, resize, and close
windows, how to pull down menus and select options from them, and that you understand
how to select files from a disc using the Item Selector Dialog. If you aren't familiar with
these tasks, read about GEM in the manual that came with your computer.

ke,
&
=
5
[p]
>
k=
=
@
(&

Assuming, then, that you are reasonably familiar with GEM and the features it offers, make a
back-up copy of your BASIC 2 Plus disc, load GEM, and then double click on the file
B2PLUS.APP to load BASIC. You should see the BASIC 2 Plus screen; it looks like this:

File View Program Debug Edit Search Windows B2PLUS
M| Dialogue D Results—{
Direct Command; Clear
Loconotive BASIC 2 Plus
(c) Copyright 1989
Loconotive Software Ltd
All Rights Reserved

Eapty Rrogan

8009 NN BASIC 2 Plus : User Guide & Quick Reference 1

If you see BASIC 2 Plus start to open but you are almost immediately returncd to the GEM
desktop, you probably haven't got enough memory available. Try removing fonts from your
system, or freeing memory in other ways. (You can discover how much free memory there is
available by typing PRINT FRE in the Dialogue window.)

- There are various things to note about the screen. As with most GEM applications, there is a
- menu bar at the top of the screen providing assorted commands which are always available
for you to use.

Notice the windows on the screen. Generally when BASIC 2 Plus starts up, there are four of
these, though one of them (Results-2) is covered up by the Edit window and the Dialogue
window. (If you are short of memory, Results-2 may not be displayed at all. This isn't a
serious problem, though it may restrict you a little if you need to make full use of BASIC 2
Plus’s ontput facilities.)

 The four windows are:
The Dialogue window. This is for typing commands directly into BASIC 2 Plus.

The Edit window. When you load BASIC 2 Plus this is headed Empty Program. This is
the window where you type your programs in and edit them.

Results-1 and Resulis-2. These are for displaying output. While you are becoming
familiar with BASIC 2 Plus you will probably just use Results-1, though as explained in the
Reference Guide, in the right circumstances Resulls-2 is faster and holds more information.

These windows are standard GEM windows and they can be moved and resized in the usual
way. If you close them, you can open them again by sclecting the appropriate option from the
Windows menu. If you choose the menu option to show a certain window when that window
is already visible and active, it has the same effect as clicking on the 'grow box' in the top
right-hand comer of the window.

The Dialogue window has an information line just below its name bar. This displays a
message 1o show what BASIC 2 Plus is curently doing. When you load the program, the
status line reads Direct Command; Clear. This shows that BASIC 2 Plus is ready to
receive commands directly into its Dialogue window, and that none of the Dialogue
window's variables is currently assigned.

N Chapter 1: BASIC's Basics

FRE ,
Use FRE is a function which returns the amount of unused memory. E
~ Syntax . FRE : &
=
' s
- CLEAR S

Use CLEAR discards all variables.
Syntax CLEAR :
Note ~ CLEAR may only be in Direct Mode.

Typing commands directly

Commands which you type directly into the Dialogue window are executed as soon as you
press [€]. Any output from these commands will appear in the Results-1 window, by
default. Try this, if you like, by experimenting with simple commands like

print pi
birdcount = 24
print “There are"; birdcount ; "blackbirds in a" ; pi

In this way you can use the Dialogue window like a calculator. Notice, incidentally, that as
soon as any variables are assigned, the variable space is no longer 'clear' and so the
information line changes from Direct Command; Clear toDirect Command.

Unlike some BASICs, you cannot write a program by typing numbered statements in this
way: programs have to be typed and edited in the Edit window.

Once a program has been written, though, you can use the Dialogue window to examine the
value of the program's variables after it has finished running, or while it is temporarily
stopped in the middle of a run. This is an important technique for debugging, and it will be
explained in Chapter 4 of this part of the manual.

rogramming

To write a simple program, click on the Edit window (the one with Empty Program in the
title bar) to make it active, and then enter the text of your code. If you make mistakes, you can
erase them with the key or you can use BASIC 2 Plus's sophisticated built-in editor
described in Chapter 2.

Notice how each line appears in the Edit window exactly as you type it; upper and lower case
letters appear as they are input from the keyboard. But as soon as you press (€] (or move the
cursor to a new line by any other means) BASIC 2 Plus's keywords are transformed into
capital letters, while your invented names and identifiers are transformed into lower case.
Notice also how carriage retum is displayed as V.

When your program is ready, select Run from the Program menu. The first thing BASIC 2
Plus does is pre-scan the program, checking for syntax and other simple errors. This means
that elementary errors in your code will be discovered very quickly, even if they appear in a

rarely executed part of the program.

If there are any pre-scan errors, a message will appear in the Dialogue window, and in the
Edit window the cursor will move to the first offending line. You can then correct the error,

and select Run again,

When you have removed all the pre-scan errors, selecting Run will start to run the program.
This time the program will stop at run-time errors which the pre-scan could not discover:

. symax
~ Description

L g 2% 3
(/4 . TR

" RUN

- overagain.

RUN 'sta_rls,éxecutfng the current p’?_’o_gram.
RUN | e
‘RU,N may be executed in a program, terminating the: p'rogr:am and starting it all

Use

~Eom

- Symax 01T

. Ng'tgw-'EDIT may only be in Direct Mode.

‘EDIT takes you into the edit window.

8909

L
P Chapter 1: BASIC's Basics

File View Program Debug Edit Search WNindows B2PLUS

__%LFE] Resnlre—i
Running Full s{¥ DISCOUNT.BAS Progran

\TESTING\BEAU| OPTION ARITHMETIC DECIMALv

Load Progran discount = 45~

TESTING\DISC{*
;un WlE, sun_of_rounded = Bv

159.37 159.3g|rounded_sum = Bv

% Progran END |
® Run READ countv

® Error in ¢ Pr{fOR 1 =1
b Division by z{ READ ful

k=
D
=
©
—
wn
o
=
=
=
<)
S

Continue discoun t) / 108)v
rounded icev
sun_of | ted price, 2)v
NEXT~
rounded_sum = rounded_sun /v
? rounded_sun; sun-df_roundedv
/ EHD' k
o DATA Sv
Note cursor DATA 98.92, 87.14, 15.84, 21.25, 74.61~

errors such as division by zero, or references to a non-existent file, for example. When a run-
time error is discovered, the program halts and an Alert is displayed with a brief indication of
what the problem is. As with syntax errors, the cursor will position itself near the offending
statement in the Edit window. For example, see the picture on the following page.

When a program stops because of a run-time error, you can be sure that execution has at least
started, and so in tracking down the bug it may be helpful if to inspect the program's
variables. (You can do this by entering PRINT vaniable-name into the Dialogue window.)
Changing the program will mean losing the contents of these variables, and you may not wish
to do this; so before you can edit your program after a run-time bug, a dialogue appears
wamning you that you are about to destroy the value held in your program's variables.

If you need to pre-scan a program without running it, select the option Check out on the
Program menu.

If the program runs successfully, it will finish by displaying an Alert with the words
Program END. Clear the dialogue by clicking on OK.

go00 I BASIC 2 Plus : User Guide & Quick Reference S

To leave I?ASIC 2 Plus, select Qui t from the File menu. If any of your work has not been
saved to disc, you will be given the opportunity to save it.

OUIT or SYSTEM may be executed in a program termlnatlng the program and
lhen leavmg BASIC 2 Plus.. £ o

In common with other GEM-based programs, many of the menu options can be executed
from the keyboard instead of using the mouse. If a menu option is followed by the name of a
key, that key has the same effect as the menu option. Run, for example, is followed by 9 in
the Edit menu; so pressing the function key [5] has the same effect as selecting Run from the
menu. A caret (*) before a key indicates that the key should be pressed with held down.
A diamond @ shows that [ar] should be held down.

Accelerators for commands in the Windows menu are not available when a program is
running, and for this reason they are not displayed in the menu. They are:

(10 Show Results-1

= Show Results-2

Show Edit or Results-3

= Show Dialogue or Results-4

]+ [Hide Results-1

+ [Hide Results-2

+ Hide Edit or Results-3

ot +[®) Hide Dialogue or Results-4
oy [A] + Show Edit

Ssind @)+ Show Dialogue

Show Edit also displays the Dialogue window.

Shou Results-3 and Show Results-4 are notavailable unless these windows have been
-~ opened on a stream. See Chapter 9 of the Reference Manual o see how to do this.

8909

Ly
el

mmm— Chapler? .

The Editor

BASIC 2 Plus includes a powerful editor which takes full advantage of the facilities that
GEM affords. Many changes have been made since the previous version and these have
brought it into linc with other editors which run in a similar environment. If you have used
the BASIC 2 editor, you will find this new version quicker and easier to use. If you have
never used a ‘cut & paste’ editor before, you will find it to be a straightforward and natural
method of entering and amending your text.

All editing is done in one window — the Edit window. This can be used to give a number of
different views of the program (sclected from the View menu, as we shall see later) but all
changes are made in the text view that BASIC 2 Plus starts in.

The Edit window is initially is called Empty Program, but this title changes to reflect any
files you've loaded or saved. It must be the active window before you can use it, so if the
window’s title is dimmed, click the mouse anywhere in the window to activate it. (You can
also activate the window by selecting Show Edit in the Windows menu (or by pressing [&]);
in fact, if the window has been closed, you have to activate it in this way.)

The text displayed in the window is simply the text of the program unit you are editing. If the
window is not wide enough to hold any of the lines, they will automatically wrap round to the
next line of the window and a small mark will appear at the beginning and the end of the
broken line. This does not imply a new line of the program; program lines are always
separated with typed carriage retum characters, which are displayed on the screenas V.

Inserting text is quite straightforward. Click at the point in the program where you wish to
insert the extra text; the cursor will move to that place. Now simply type the additional text,
and it will be added at the position marked by the cursor.

The Carriage return symbols behave quite logically when you insert text. If you want to
append more characters to the end of a line, you must take care to put the insertion point
before the carriage return symbol, or the characters will be inserted after the camiage return,
that is, at the start of the next line.

The two delete keys can be used to delete characters in two different directions as you'd
expect: the key removes the character just before the cursor (that is, the character
v you’ve just typed), whereas the [key removes the character just after it.

3909 NN BASIC 2 Plus : User Guide & Quick Reference 7

! LR LN
i !.;';‘. 2L

‘Selecting text

One important facility which the editor provides is a means to handle whole blocks of text
quickly and conveniently. This is one area where the editor has been changed from BASIC 2.
Instead of selecting the beginning and end of the block separately, they are selected by
‘dragging’ the pointer across text (o select a continuous block, as described in the next few

paragraphs.

Selecting a block

Begin by positioning the pointer at one end of the block you wish to select. Click the left-
hand mouse button, but do not release it. Now ‘drag’ the mouse across the text (without
releasing the button) and as you do so you will see that the block of text between the pointer
and the place you originally clicked will become highlighted. (The exact colour change will
depend on the system you are using.) Move the pointer to the other end of the block of text,
and release the button. The whole block will stay highlighted, and the block is now selected
and ready for you to operate on.

M| DISCOUNT.BAS Progran
OPTION ARITHMETIC DECIMALv

discount = 45+

v

sun_of _rounded = B+

rounded_sun = Bv

v

READ countv
{1:8i =1 T0 count~
READ full pricev

discounted price = full_price # ((160 - discount) / 100)~
QL ENT G + discounted_pricev
sun_of_rounded = sum_of rounded + ROUND(discounted_price, 2)v
NERT~

rounded_sum = ROUND (rounded_sum, 2)~

? rounded_sun; sum_of_rounded~

v

ENDv

DATA S

DATA 99.92, 87.14, 15.84, 21.25, 74.61~

N $909

N Chapter 2: The Editor

If you position the pointer inaccurately and find that the selected block is not what you want,
clear the selection by clicking and releasing the mouse button anywhere on the window. The

highlighting will clear as you do this. (On colour monitors there may be some flickering of
colours as you do this.)

Selecting a Large Block

If you need to select more text than will fit into the window, select the start of the block as
described above. Then, with the mouse button still held down, move the pointer beyond the
top or bottom edge of the window. The text will scroll, highlighting as it goes. When enough
text is in view, release the mouse button at the other end of your selected block. (When the
text is scrolling, it will move rather faster if the cursor is well outside the window. If you
want it to scroll slowly only move the cursor slightly beyond the edge.)

If the block you want to select is very large, there is an alternative technique. Using the
method already described, select a small piece of text at one end of the block. Then move to
the other end using the scroll bars, and press the [&] key as you click the mouse button in the
appropriate place. All the text from the small block to the Shift-click will be selected, and
will be highlighted on the screen.

Deleting a Block

Cut and Paste

To delete a block of text, select it and then press either of the delete keys. When a block of
text is selected, and both have the same effect. Or, to replace the block with
different text, select the block and then type. Typing when there is a block selected replaces
the block with whatever is typed.

Instead of deleting a block of text, you may want to transfer it to another part of the program.
The way to do this is by ‘cutting and pasting’ using two of the options availab'e on the Edit
menu.

Begin by selecting the block of text, as explained above. Do not delete it, but select Cut
from the Edit menu. You will see the text disappear from your program. It has not been
annihilated, though; it has been moved to a special area called the Clipboard. (Later, we shall
see how to inspect the contents of the Clipboard and edit them directly.)

Position the cursor at the point where you want the text moved to. Select Paste (again from
the Edit menu) and the contents of the clipboard will be inserted at the point selected.

8000 NN BASIC 2 Plus : User Guide & Quick Reference

Pasting text does not delete it from the clipboard, so you can paste it again in many different
places if you like.

If you want to copy a block of text without deleting it from its original position, select it in the
usual way and then choose Copy from the Edit menu. This replaces the Clipboard’s
contents with a copy of the selected text. The new contents of the Clipboard can be pasted
wherever you like in the program.

In fact, the Clipboard is maintained when one file is saved and another loaded, so you can use
this technique to transfer lines of code from one program to another.

If you explicitly want to empty the Clipboard of text, the Edit menu’s Clear option does
this. This is different from the way Cl1ear works on some other ‘Cut and Paste’ systems.

Search and Replace

; Ir common with many editors, there is a facility for finding a text string and, if necessary,
L substituting another. All the options in connection with this are available through the Search
e menu.

To find a specified string, choose Search from the menu. BASIC 2 Plus displays a dialogue
box prompting you to insert the string to search for:

FRE NS T KL
RN v

Search
Search for: |
l Whole words | | Backwards

Type the search string into the box, select the direction you wish to search in, and click on the
Search box. BASIC 2 Plus will search from the current position of the cursor until it finds the
string,

Pressing the (@] key has the same effect as clicking on the SEARCH button. Because of this
there is no way to search for a string containing a carriage return.

8909

— Chapter 2: The Editor

Replacing

If you choose the Whole Words option instead of Everywhere in the dialogue box, only
whole words will be found. This means that the specified string will only be found if it
appears in the program delimited by characters other than letters (including Greek and
accented lctters), numbers, and the underline character. Note that this does not restrict the

range of characters which may be included in a search string; it simply defines the characters
which delimit a word.

For example, if a line of the program read
LET fredericks$.details.title$ = “The Great”

If the Whole Words option was selected, Search would not find this line if the search
string was fred, but it would find it if the search string was frederick or fredericks.
This is because in the first case frederi ck is delimited by a space character before and a $
behind, and in the second case frederick$ is delimited by a space in front and a full stop
behind. Since the space character, the dollar, and the full stop are all characters which can be
used to delimit whole words, both frederick and fredericks$ can be found by Search
with the Whole Words option.

If the editor finds an occurrence of the string but not the specific occurrence you need, you
can repeat the search (starting from the end of the string found by the first search) by
selecting Search again from the Edit menu.

Note that, since the repeated search starts from the end of the string found by the first search,
the two strings cannot overlap. For example, searching for issi will stop at the word
Mississippi. If you then choose Search again, the editor will not find the second
occurrence of issi in Mi ssissippi, because the search starts after the second letter 1 in the
word.

Replacing is similar to search except that when it finds the string the editor will substitute
another. When you choose Replace. . ., you will be prompted for the two strings.

Replace... includes the option of Manual or Automatic replacement. Automatic
replaces all the occurrences of the first string with the second without further ado. Manual
stops at each occurrence and asks you whether you wish to replace or not.

Replace..., like Search again, continues its search from the end of the previous
string.

8909 NG BASIC 2 Plus : User Guide & Quick Reference

11

Outlining

The Merge option on the Edit menu is used to insert text from one file into another. When
you select Merge, a dialogue box will prompt you for a file to insert. This must be a text file;
it can have been prepared using the BASIC 2 Plus editor itself or another text editor.

Large programs in BASIC 2 Plus may well include a number of routines — subprograms and
functions. (How these fit into the structure of a program is explained in Chapter 6 of the
Language Reference) When there are a great many routines in a program, it can be difficult
to keep track of them all, so to help with this, the editor provides the QOutline view of a
program or module.

If, when you are editing a program or module, you select the Out1ine option in the View
menu, the first line of every routine in that program or module is displayed in the Edit
window. The order these lines are displayed in corresponds to the order in which the routines
are declared in the file.

Outline view provides a convenient way of skipping around a file when editing it; if you need
to change a line in one of the routines, there is no need to hunt up and down the file, trying to
find where the routine is declared. Simply select the Outline view and double-click on the
routine you wish to edit. You will be returned to editing mode, with the routine of your
choice displayed in the window.

You cannot edit directly with the QOutline view selected, but you can copy text to the
Clipboard. This is particularly useful when routines are exported to and from modules; to
make sure the routine’s name is declared correctly in the IMPORT block, select the Outline
view and Copy the name to the clipboard. From there, it can be pasted directly to the
importing module, and you can be sure of not introducing typing errors.

When the Outline view is displayed, the List. .. option in the File menu changesto List
Outline. ... Selecting it will print a copy the Outline view of the program.

There is an accelerator for sclecting the Outline view; instead of selecting Outline in the
View menu, press (7] to achieve the same effect. returns you to normal editing.

8909

I— Chapter 2: The Editor
Other Features

Options

Insert Mode

Auto-Indent

Tab Interval

Selecting Options on the Edit menu gives you access to three facilities offered by the editor:
the means to turn off Insert mode, and the Auto-indent facility; it also allows you to set the tab
interval. These facilites are described in the next three sections.

Normally, when you type text into the Edit window, the characters you type are inserted at
the cursor, and the rest of the line shuffles along to make room for the insertion. This is
generally what you will want. Sometimes, though, it is more convenient for the characters
typed in to overwrite the characters already on the screen. BASIC 2 Plus allows you to do
this by turning off Insert mode. This is done by choosing Options from the Edit menu, and
then selecting Insert Off,

Or, to save using the menus, you can toggle Insert mode (that is, turn it on if it’s off, and off if
it’s on) by pressing the [ins] key.

Some of the new block structures in BASIC 2 Plus (compound IF statements, FOR loops, and
so on) are much easier to read if the body of the loop is indented by a couple of spaces. To
make it more convenient to type leading spaces at the start of every line, BASIC 2 Plus
provides the Auto-indent option.

When Auto-Indent is turned on, every time a carriage return is inserted into the program it is
automatically followed by enough blank spaces to ensure that the first character typed on the
new line is directly under the first character of the previous line. If the previous line had no
leading spaces, no spaces will be generated at the start of the new line. Any or all of the
spaces can be deleted if they are not required.

When you press the (=] key, the editor inserts enough spaces to take the cursor to the next tab
stop. By default, tab stops are every two character widths across the screen, but you can
adjust this to whatever value you want by changing the value via Options on the Edit menu.

The editor always inserts spaces, not tab characters; this means that you can remove excess
space a character at a time if you wish.

8909 NN BASIC 2 Plus : User Guide & Quick Reference

e
S
=
w

4
=
[

13

Renumber. .. is a facility available under the Edit menu. It is not normally needed with
BASIC 2 Plus, since BASIC 2 Plus uses line numbers very little. However, should you need

(or prefer) to write a program with line numbers, Renumber . . . provides the easiest way to
- do this.

When you sclect Renumber. . ., a dialogue box appears with three options: Remove, As Is,
and Add. You can specify the line number of the first numbered line and the step size, that s,
the difference between each line number and the next.

Choosing Remove, As Is,orAdd will rationalise the line numbers in your program Add will
number all the lines in the program; As Is will number only those lines which already have
numbers, and Remove will number only those lines which are referenced by GOT0, GOSUB or
other BASIC 2 Plus commands. In all three cases the numbering will start at the number
specified by First 1ine, and will continue in steps specified by Line No Step.

Rationalising line numbers means more than just renumbering the lines; it also means that
references to lines throughout the program are kept consistent. For example, if the program
contains the line

GOTO 255

it will be changed to make sure control still passes to the correct place. If line 255 has been
renumbered to 120, then the above line will be altered to

GOTO 120

mmmm Chapler 3

File Management

This chapter describes the way BASIC 2 Plus manages files — how to load and save files to
disc, and how to list them to the printer. This is done with commands from the File menu.
The chapter also explains the other commands on that menu, such as Load and Run...and
A1l new.

There is then a description of the "Workspace view' of your program, an overall view of the
structure which gives access to the main program and its modules. It is the means of
changing the clipboard directly, and it allows you to edit the Debug command screen, an
essential tool for debugging whose use will be explained in the next chapter.

The Current Workspace Component

Before an explanation of the File menu can be given, though, it is necessary to give a loose
description of an important concept: the Current Workspace Component. (The precise
description is given later in this chapter.)

There are twelve Workspace Components in all — 'slots' in your computer's memory into
which a block of text can be loaded. At any time, one of these Workspace Components is the
Current Workspace Component, and it is this that many of the File menu's options work on.

If you are new to BASIC 2 Plus, you can think of the Curreni Workspace Component as an
area of your computer's memory where your program is stored. Later, when you have more
experience and need to write programs with modules and use the Debug command screen,
you should read the last section of this chapter to get an accurate grasp of the full picture.

[00 S BASIC 2 Plus : User Guide & Quick Reference 15

‘File menu

~ The File menu appears as shown in the margin.

Some of the options may be dimmed, of course, to indicate that they are not available.
Save. . . forinstance, is not available until there is something in memory to save.

Save...

Save. .. isused to save the content of the Current Workspace Component to a disc file. If it
has not been saved previously and was not loaded from a disc file, you will be prompted for
the name of the file to save it in with this dialogue:

ITEM SELECTOR

Directory: C:\INDIVID\MST\#.BAS

M| * BAS Selection: VARTRY .BAS

$DUMPS__ .
o 4 EAAMPLES.
-3 ' ¢ OLDBASE .
CoWS .BAS
ERORLIST.BAS
e, FILETEST.BAS
e ol FROGS .BAS
LOAD .BAS
1) .BAS

Cancel

If you have saved previously, or if you did load the Current Workspace Component from a
file, the edited version will be saved under the same name. In either case you are warned that
BASIC 2 Plus is about to save the file. This gives you the chance to cancel the operation at
the last minute, or to save under a different name.

8909

M TTT TN

N Chapter 3: File Management

Save as...

To save the content of the Current Workspace Component under a new name, select Save
as. ... This will always prompt you for the name of the file to save in.

If the file name you choose already exists, BASIC 2 Plus displays a warning:

[

About to Save VARTRY.BAS Program as
C:\INDIVID\MST\VARTRY.BAS

WARNING: file already exists.
YOK" will oversrite it. Cancel

You are then given the opportunity to save under a different name, or abort the save
altogether.

Save all

Whereas Save. .. saves the contents of the Current Workspace Component, Save all
saves the contents of all the Workspace Components which are reserved for programs or
modules. It does this regardless of the Current Workspace Component. (It does not save the
Debug command screen or the Clipboard.)

ot
=]
=y
£
@
o>
<
=
<
=
2
e

Load Program...

The option Load Program. .. changes, depending on the Current Workspace Component.
If the Current Workspace Component is a module, for instance, this option will change to
Load Module.... Oritcanappearas Load Debug...,orlLoad Clipboard....

However the option appears, when you select it you will be presented with a dialogue from
which you should choose a file. This file will then be loaded into the Current Workspace
Component. If loading would overwrite unsaved text, you are wamned and given the choice
of saving, of discarding, or of cancelling the whole operation.

oo NG BASIC 2 Plus : User Guide & Quick Reference 17

e S o e o—

LU L ENVRRESN

AR e 5 3

New

New clears the Current Workspace Component so that it is available for you to type in fresh
text. As with Load Program... you are warned if New is about to annihilate anything
which has not been saved to disc.

A1l new is similar, except that instead of clearing the Current Workspace Component, it
clears all the Workspace Components which are reserved for programs or modules. It does
this regardless of the Current Workspace Component.

Load and Run

Load and run... is similar to Load... , except that the file you load is run
immediately. The only program units you can load and run are main programs: you cannot
run a module directly. For this reason Load and run... always loads into the main
program, imrespective of the Current Workspace Component.

List...

List... normally sends the contents of the Current Workspace Component to the printcr.
When you select it, the following dialogue is displayed:

fbout to List VARTRY.BAS Progran

Renark: !
Printer: PRH Lines per page: S8
Paper Length: 66
Paper Width: 132
Use line Feeds

You can adjust the number of lines per page, the paper length, and the paper width from this
dialogue. You can also specify a remark to be printed at the head of the listing.

The options Use Form Feeds and Use Line Feeds control what BASIC 2 Plus sends to
the printer when a new page is needed. If the former option is selected, a form feed character
18 sent; if the latter option is selected, BASIC 2 Plus sends enough line feed characters to take
the printer to the top of the next page.

8909

P Chapter 3: File Management

However, List... is slightly different from other options in the File menu; it changes
according to the view you have selected.

Different views are selected from the View menu. If you select the 'standard’ view (the
second one on the View menu) or the Workspace view, List... works exactly as
described above.

But if you have either selected Outline view (described in the previous chapter) or Traceback

view (described in the next) the List... item changes to List Outline... or List |
Traceback. .. respectively. When you select these options, BASIC 2 Plus does not list the ‘
Current Workspace Component; instead, it lists the outline, or the traceback, of your

program. In fact, what is listed to the printer in these circumstances is the contents of the Edit

screen.

Quit

Quite straightforwardly, Quit quits BASIC 2 Plus. If there are any programs or modules still
unsaved you are given the chance to save them before finally quitting.

Workspace view

As was bricfly mentioned above, BASIC 2 Plus programs may comprise several ‘program
units’: one main program and a number of modules (up to nine of which can be active at
once). Each program unit is stored in a separate file. The workspace view of your program
shows the names of all the program units together with the files they are stored in. It also
gives access to the 'Debug command screen’ and direct access to the Clipboard. There are
thus twelve possible "Workspace Components' which hold the main program, up to nine
modules, the Debug command screen and the Clipboard. (The Debug command screen
contains a list of extra commands which you can have executed at any point in your program.
Its use will be explained in the next chapter.)

File Management

Selecting Workspace from the View menu will display the Workspace view of your
program in the Edit window. (If the Edit window is closed you won't be able o see this
view without selecting Show Edit from the Windows menu.)

8909 I BASIC 2 Plus : User Guide & Quick Reference 19

M

Yorkspace

WORKDEM.BAS Progran
MAINMOD.BAS Module
lBﬂLﬂULE.BﬂS Module
PATA. TXT Module
Enpty-4 Modulev
Empty-9 . Modulev
Empty-6 Modulev
Empty-7 Modulev
Empty-8 Modulev
Empty-9 Modulev
: Debug
Clipboard

* C:\INDIVID\MST\WORKDEM.BAS~
C:\INDIVID\MST\MAINMOD . BAS~
C:\INDIVID\MST\CALCULE . BAS~

* C:\INDIVID\HST\DATA. TRT~

C:\INDIVID\MST\QUICKBUG .BAS ¥

*v

The Workspace view consists of twelve lines, one for each possible workspace component,

and each line has three parts.

The first is the name of the program or module currently occupying the component (in the
case of the Debug command screen and the Clipboard this first part of the line is left blank).

The second part of the line shows what kind of component it is. It can be any of:

Program
Module Binary Module

Debug
Clipboard

(Binary modules are modules written not in BASIC 2 Plus, but directly in machine code.

Their use is explained in the Language Reference.)

The third part of the line gives the name of the file that the component's contents were last
saved o or loaded from. If any changes have been made (ie. the version held in the
computer's memory is different from the version held on disc) the filename is preceded with

an asterisk.

8909

N, Chapter 3: File Management

Of the twelve possible workspace components, the Current Workspace Component is the one
marked by the cursor. Changing the Current Workspace Component is simply a matter of
clicking the mouse to move the cursor (o a new line. It is irrelevant where on the line the
CUrsor appears.

Double-clicking on a line of the workspace view will make that component the current
component, and immediately display its contents on the Edit screen. Or you can always
display the contents of the Current Workspace Component by selecting the second option on
the View menu. This option changes to reflect what the Current Workspace Component is;
as you move the cursor in the workspace view this option will change to Program, Module,
Debug, or Clipboard as appropriate.

You cannot edit a component directly in workspace view, though you can use Copy to
transfer information to the Clipboard. And for obvious reasons, you cannot use Cut,
Copy. or Paste when you are editing the Clipboard directly.

File Management

3909 I B ASIC 2 Plus : User Guide & Quick Reference 21

Jmmmmm Chapter 4 _ ;

Debugging

This chapter introduces BASIC 2 Plus's debugging tools, facilities which enable you to test
your programs thoroughly and efficiently, as well as to track down and correct the bugs.

Starting and Stopping the Program

The most necessary of all the debugging tools supplied with BASIC 2 Plus is the means to
stop a program at any time. There are a number of ways to do this, depending on exactly what
you want.

The simplest way to halt a progam temporarily is just to move the pointer into the menu bar.
This is a feature of GEM rather than BASIC 2 Plus, and it applies to any program which runs
under GEM. When the program is to continue, just move the pointer back into the main part
of the screen.

Since this is a feature of GEM, you can't issue any BASIC 2 Plus commands when the
program is stopped in this way. Instead, BASIC 2 Plus allows a User Break. When the
program is running, you can either select Stop from the Program menu, or press [&j-C.
The program will stop running and an Alert will appear on the screen with the word Break.
Click on OK to clear this. The cursor in the Edit window will be positioned at the command
which was being executed at the time of the break, so that, for example, you can see which
particular part of the program was taking so long.

When you want to continue, you can select either Continue from the Program menu,
(which will let the program carry on from the point where it was interrupted) or Re-run,
which will re-run the program from the beginning.

o
=
O
5
a
(a8
Q

NT may only be runin DirectMode.

w00 I B ASIC 2 Plus : User Guide & Quick Reference. 23

' Direct Command Debugging

One of the most important features of the User Break is that you can issu¢ commands while
the program is temporarily halted. Provided you haven't altered the code at all, you can type
commands into the Dialogue window and they will be executed immediately. This is
enormously useful for finding out the values of variables, checking on the amount of free
memory, etc. The only restriction is that you cannot execute statements which transfer
control: GOTO, for example, or SUB and FUNCTION calls.

While it is quite permissible to use the PRINT command to interrogate variables, PRINT
will send its output to the default stream. (This is the Results-1 window unless you change it.)
If an essential part of your program concemns the layout of output, it may be inconvenient 10
perform your debug testing with PRINT statements,

Instead, there is the ? command. This is an easy way of finding out the value of a variable
without disturbing the Results windows. (It's also quicker to type than PRINT.) The syntax
is:

? vanable-name

and this will display the value of the variable in the Dialogue window. You can also use the ?
command in your program, if you wish; it is one way of putting trace statements into your
code. However, there is a much better way which uses the Debug command screen, as we
shall see in a few sections.

A very useful feature of BASIC 2 Plus is that variables retain their value even after the
program has finished running. You can interrogate them with the ? command until you either
amend the program, or execute one of the commands LOAD, NEW, or CLEAR. LOAD and NEW
will be explained in the next chapter. CLEAR is available specifically to clear the values of all
variables. When you execute it you will see the Information line change back to Direct
Command; Clear.

8909

I fuﬂmﬁ!

00 O 111 v Debugging
Debug Points

Debug points are special markers that you can put into your program to make BASIC 2 Plus
carry out certain actions. They perform the job which in other BASICs is done by trace
statements — special statements put into the program which are only used to track down
errors. Debug points are better than trace statements for four reasons:

» Debug statements can be inserted and removed without restarting a program.

» Alla program's debug points can be activated, deactivated, or removed with one
command.

« The commands executed by debug statements do not need to be changed individually.
» Debug statements can turn tracing on and off. (The section on Tracing explains this fully.)

There are two stages to using debug points; defining and inserting them, and running the
program with Debug enabled.

Inserting and deleting Debug Points

To insert a debug point, put the cursor where you want to insert it, and select Set Debug
Point... from the Debug menu. A dialogue will appear giving you two choices of three
options each.

o]

Set Debug Point
Tracing unchanged
ﬂctmn Turn of f tracing
No action Turn on tracing

One choice concemns tracing; it will be explained in the next section.

The other choice concerns what you want to happen when the program reaches the debug
point. You can choose between:
» STOP

e Action:1

« Noaction

8909 I BASIC 2 Plus : User Guide & Quicl: Reference *28

The first and last are self-explanatory. The second, if selected, means that at the debug point
the program will carry out Debug Action number 1. There is a cursor immediately after the

figure 1 enabling you to change it to another number. You can specify any Action number
from 1 to 62.

The action itself is specified in the Debug command screen, which is accessed via the
Workspace view of the program as follows:

Select Workspace from the View menu, and double click on the Debug line. The Edit
window will change to show a window (initially blank) headed with the title Debug. Into this
screen you can type BASIC 2 Plus commands, each beginning with a line number from 1 to
62. You cannot use commands which change the flow of control of the program — GOTOs or
routine calls, for example —but you can have any other command which will fit onto one line:
IF statements and even SELECT statements are permitted provided you do not exceed the
limit of 255 characters.

M| Debug ¢
1 PRINT discountv

2 PRINT nane$.person.salary~
18 IF discount <> B THEN PRINT discountv

v

1»

|

You can save the Debug command screen to a file if you wish. Select it in the Workspace
view to make it the current workspace component and then choose Save... from the File
menu. You can then load it again at another time by selecting the Debug command screen,
and choosing Load Debug. .. from the File menu.

To delete a debug point, move the cursor to it and select Clear Debug Point from the Debug
menu. Clear all Debug, also on the Debug menu, removes all the debug points from the
current workspace component.

Note that you can only have one debug point on each statement of the program, and you
cannot have debug points at all on blank lines.

8909

N Chapter 4: Debugging

Using Debug Points

Tracing

In the Program menu there are seven options which control the debugging of the program:
Full speed (or Debug disabled)

Debug enabled

Show Trace —- TROFF

Show Trace - TRON

Single Step

«TROFF>> enabled

«TROFF>; disabled

The first option is Full speed only if there are no debug points in the current workspace
component; it changes to Debug disabled assoon as you add any. If cither of these options
is selected, all debug points are totally ignored. (Of course, if Full speed is selected,
there are no debug points to ignore.) The difference between Full speed and Debug
disabled is that when there are debug points in the program, BASIC 2 Plus has to invest a
small amount of time looking for them in order to ignore them. Debug disabled thus runs
slightly slower than Full speed.

Debug enabled means that the program obeys STOP and Action ccmmands in debug
points, but ignores any commands concerning the tracing.

The remaining options are described in the next section, where tracing is explained fully.

Often when debugging it is useful to be able to follow the flow of control around a program,
watching to see which branch of an IF statement is taken, for example, or following a chain
of subprograms or modules.

Program tracing provides the way to do this. When tracing is switched on, the program runs
very slowly so that the statement being processed can be displayed in the Edit window. The
cursor is always shown on this line, so by following the position of the cursor you can watch
the flow of control directly. If something happens which you want to investigate, you can
quickly move the cursor to the menu bar, select Stop, and then enter some direct debug
commands.

8909 NN B ASIC 2 Plus : User Guide & Quick Reference

o)
C
(=)}
(o))
=
O
D
a

27

LUAL]

§i1
\

HE

e

s

e o et et e P AL AV LR T R SRR T
- - R T T
e

LI

ROV 0

Single Step

; T(lrn trace on and off

There are two ways to turn tracing on and off: directly, from the Debug menu, or by means of
Debug points in the program.

The menu options which control tracing are Show Trace - TROFF and Show Trace -
TRON. Show Trace - TRON tums tracing on, and Show Trace - TROFF turns it off
again. The difference between Show Trace - TROFF and Debug enabled is that the
former allows the tracing to be changed using debug points, whereas the latter always ignores
all tracing commands.

The tracing options in debug points should now be self-explanatory. Turn on tracing
turns tracing on (provided that one of the Show Trace options is selected in the Program
menu) and Turn of f tracing tums it off again. If the tracing is changed by a debug
point inside a subprogram or module, it reverts to its original value on exit.

However, debug points which turn tracing off can be overridden. The last two items on the
Program menu are <<TROFF>> enabled and <<TROFF>> disabled.When the second of
these is selected, all <<TROFF>> debug points are ignored.

Single step mode enables you to execute your program one statement at a time.

If you start a program by selecting the second item on the Program menu—Start Step -
the option Single Step will automatically be selected in the lower part of that menu before
the pre-scan of the program. If the pre-scan finds no errors in the program, Start Step
will change to Step, and you will be able to 'step through the program, one statement at a
time, by repeatedly selecting Step (or more likely using its accelerator key [Fio)).

In fact, you can select this option at any time the program is stopped. Hit (%), and BASIC 2
Plus will go into single step mode. Single Step will be selected in the lower part of the
program menu, and one statement will be executed. When you no longer wish to single step,
select one of the other options (Full Speed, Debug Disabled, Debug Enabled,
Show Trace - TROFF or Show Trace TRON) and then select Continue, and the
program will continue in your chosen mode.

If you select Cont inue without choosing one of the above options, Debug Enabled will
automatically be selected for you.

8909

N Chapter 4: Debugging

Debug points still operate when the program is in single step mode. Specifically, any
<<TROFF>> and <<TRON>> points will take the program out of single step mode and back
in again. This means that, for example, you can put a <<TROFF>> point at the beginning of
each of your routines, so that when single stepping through a program, the trace will skip
through the routines at full speed, returning to single step again when control returns to the
main program.

If you wish to disable this feature, (so that the program continues to single step even if it hits
a <<TROFF>>) select <<TROFF>> disabled at the foot of the Program menu.

Traceback

Traceback (not to be confused with trace) is another way of viewing the structure of a
program. However, it is different from the Workspace view or the Outline view in that it is
only meaningful while the program is temporarily stopped.

When you stop a program and select Traceback from the View menu, BASIC 2 Plus
displays the names of all the active routines, modules, and subroutines (including calls to
error handling routines and DEF functions) in the order of their calling. Routines which are
active on more than one level (because of recursion) are displayed an appropriate number of
times.

The names are preceded by two numbers separated by a slash. The second of these is the
number of levels currently active; the first indicates the position of each routine in the
hierarchy.

M| Trace-back
1/18 Progranv
Module rm_mainv
Module test_pantv
2/10 MODULE rm_mainv
3/18 SUB main_renu Module ra_nainv
4/18 SUB run_tests Module rn_mainv
5/18 SUB do_test Modle ra_mainv
6/18 SUB common_core Module rn_mainv
7/18 SUB special_part Module test_partv
8/10 SUB print_str Module ra_mainv
9/10 SUB write_out Module ra_mainv
18/18 SUB consolidate_output Module rm_mainv

Debugging

Bl e ——————

In the example on the previous page, for instance, the main program has loaded two modules,
rm_main and test_part. Of these, rm_main has been called from the main program,
and is still active. We can see this, since MODULE rm_main is marked as the second active
call out of ten.

This module has called main_menu, a subprogram which is to be found in MODULE

rm_main, rm_main has called run_tests, and so the traceback continues, listing all ten
active calls.

Variables in context

When you're viewing a traceback, you can determine the context in which any ? commands

arc executed. To do this, put the cursor onto the name of the routine or module you want to

investigate. This makes any ? commands yield the value of variables in the context of that

routine or module — that is, the value they hold in that routine or module. This context is
: always displayed in the information line, just below the title bar of the Dialogue window.

So by using traceback you can examine the value of a variable in an active routine even if it
has the same name as a variable in a nested routine. Furthermore, in a recursive routine you
can examine the value of a variable at each level of the recursion process.

If you select a routine in this way, and then switch from the traceback view to the standard
editing view, the edit window will show the 'traceback context', that is, it will show the
sclected routine with the cursor positioned immediately after the statement which called the
next routine in the chain. (Obviously this does not apply to the last routine in the chain, since

it doesn't contain an active call. Instead, the cursor is positioned immediately after the last
executed statement.)

Traceback is only meaningful if a program is temporarily halied. If you resume execution
while there is a traceback in view, the traceback window will clear; it will display the new
traceback stack if the program is stopped again before it terminates.

8909

Y
Syntax Summary

ABS (see Chapter 3)
Use ABS is a function which returns the absolute value of its argument.

Syntax ABS(argument)
where argument is a numeric-expression.

ACOS (see Chapter 3)
Use ACOS is a function which returns the angle whose cosine takes the given value.
Syntax ACOS (argument)

Syntax Sumnwarj N

where argument is a numeric-expression, giving a value in the range —1..+1. ¥
ADDKEY (see Chapter 13) L
Use ADDKEY adds a new key for the current record. 3
Syntax ADDKEY [#stream-number{,] new-key [[.] LOCK lock-type] b
where new-key is: KEY key-value [[,] INDEX index-number] 3
where key-value is an expression, giving a value compatible with the index's key type W
index-number is an integer-expression, giving a value in the range 1..20. 3
ADDREC (see Chapter 13) 258 _
Use ADDREC adds a new record to a Keyed File. L

Syntax ADDREC [#]stream-number, string-expression [,] key [[.] LOCK lock-type]
where keyis: KEY key-value [[,] INDEX index-number]
where key-value is an expression, giving a value compatible with the index's key type
index-number is an integer-expression, giving a value in the range 1..20.

ALERT (see Chapter 14)

Use ALERT produces an alert box on the screen.
Syntax ALERT icon [,] TEXT textline [, text-line]... [,] BUTTON button-spec{, button-spec]...
where: icon is an inleger-expression giving a value in the range 0..3, specitying which icon is
to be used.
Eachtext-ine is a string-expression, giving one line ot text tor the body of the alert box.
Each button-spec is [RETURN] string-expression , giving the legend for one button.

Note: References given to the appropriate chapler of the Language Reference Guide. :
g0y I BASIC 2 Plus : User Guide & Quick Reference 31

ASC (see Chapter 4)

ASC is a function which converts characlers to their numeric character code
representation.

ASC (argument)

ASIN (see Chapter 3)

ASIN is a function which returns the angle whose sine takes the given value.
ASIN(argument)

argument is @ numeric-expression, giving a value in the range —1..+1.

ATAN & ATN (see Chapter 3)

Use These functions return the angle whose tangent takes the given value.
Syntax ATAN(argument)
ATN(argument)
where argumentis a numeric-expression.

ATAN2 (see Chapter 3)

Use ATAN2 is a function which returns the angle between the x axis and the line from
the origin to the given point.

Syntax ATAN2(x, y)
where xand y are numeric-expressions.

BINS (see Chapter 4)

Use BINS is a function which converts an integer value to a string of binary digits.
Syntax BINS$(argument [, min-digits])
where argument and min-digils are integer-expressions; min-digits must be in the range 0..32.

BOX (see Chapter 12)

Use BOX draws a box on a graphics device.
Syntax BOX [itstream-number,] point, width, height [[,] attribute]...

BUTTON (see Chapter 14)

Use BUTTON is a function which returns the state of the mouse button.
Syntax BUTTON [(button-number)]

where button-number is an integer-expression, giving a value in the range 1..15.

o sa e g s ootioin s o
e o D 2 B A ST S, LT SR
e m—————— e o

8909

i
P P £ e e e ST

g R | y7i:c Ssranasry

CALL (see Chapter 6)

Use CALL isused toinvoke a subprogram.
Syntax [CALL] sub-identifier [(] actual-parameter|, actual-parameter]...[)]
where sub-identifier is a numeric-identifier corresponding to the sub-identifier of a SUB.

actual-parameter is expression
or general-variable
or actual-array

actual-array is amay-name[()],
or string-general-variable . record-name . vector-field-name [()]

CALL MODULE (see Chapter 7)

Use CALL MODULE invokes the body of a module.
Syntax . CALL MODULE module-identifier [(actual-parameter [, actual-parameter]...) |
where actual-listis actual-parameter[, actual-parameter]...
actual-parameter is expression
or general-variable
or actual-array

actual-array is amay-name(()],
or string-general-variable . record-name . vector-field-name [()]

CEILING & CEIL (see Chapter 3)

Use These functions return the value of their argument rounded to an integer.
Rounding is upwards, that is, towards plus infinity.
Syntax CEILING(argument)
CEI L (argument)
where argumentis a numeric-expression.

CHDIR & CD (see Chapter 15)

Use These statements change the current directory.

Syntax CHDIR file-name
CD rest-ot-line

where rest-of-line is everything up to the end of the line

CHDIRS$ (see Chapter 15)

Use CHDIRS is a function which returns the current directory.
Syntax CHDIR$[(dave)]
where dnve is a sting-expression, giving a single character string.
300 N §ASIC 2 Plus : User Guide & Quick Reference 33

>
o
]
=
=
=}
(%p]
b
O
-
j
>
w

7 e SRR e

oo
T -

-

YT e

BT i M

i e

Use
Syntax
where

Use

Syntax
where

Use

Syﬁtax :

where

Use
Syntax
or

Use
Syntax

CHRS (see Ch'apter 4)

CHRS$ is a function which converts a character code to a single character string.
CHRS$ (argument)
argument is an integer-expression in the range 0..255.

CINT (see Chapter 3)

CINT is a function which returns the value of its argument rounded to an integer.
Rounding is towards the nearest integer, with halves being rounded away from
zero. The result must be in the range -2147483648..+2147483647.

CINT (argument)
argument is a numeric-expression.

CIRCLE (see Chapter 12)

CIRCLE draws part or all of a circle on a graphics device.
CIRCLE fitstream-number,] point, radius [[,] attribute]...
attibute is: PART start-angle, end-angle

or: FILL [ONLY] WITH fil-style]

or: WIDTH line-width

or: STYLE line-style

or: START line-start-style

or: END lJine-end-style

or: COLOUR colour-number

or: COLOR colour-number

or: MODE write-mode
radius is an integer-expression, giving a positive, non-zero value.
start-angle and end-angle are numeric-expressions, giving positive, or zero, values.

CLOSE (see Chapter 8)

CLOSE closes streams.
CLOSE
CLOSE [f#/stream-number [, I stream-number]...

CLOSE WINDOW (see Chapter 14)

CLOSE WINDOW closes the specified window.
CLOSE WINDOW window-number
window-number is an integer-expression, giving a value in the range 1..4.

8909

CLEAR (see User Guide Chapter 1)

Use CLEAR discards all variables.
Syntax CLEAR

CLEAR RESET (see Chapter 9)

Use CLEAR RESET sets all windows to their initial state, and, in Direct Mode, discards
all variables.

Syntax CLEAR RESET

CLS (see Chapters 11 & 12)

Use CLS clears a virtual screen.

Syntax CLS [RESET]
or CLS [kstream-number [[,] RESET]

CONSOLIDATE (see Chapter 13)

Use As soon as a keyed file is changed it is marked *inconsistent™. CONSOLIDATE
causes all outstanding information to be written to the file, and clears the
"inconsistent marker.

Syntax CONSOLIDATE [{]stream-number
CONST (see Chapter 2)

Use CONST declares and sets named constants.
Syntax CONST simple-variable = expression [. simple-vaniable = expression...
CONT (see User Guide Chapter 4)

Use CONT resumes program execution (if possible).
Syntax CONT

COS (see Chapter 3)
Use COS is a function which returns the cosine of its argument.

Syntax COS (argument) _
where argument is a numeric-expression.

CURRENCY$ (see Chapter 11)

Use CURRENCYS$ is a function which returns the current "currency string".
Syntax CURRENCY$

sooy NN BASIC 2 Plus : User Guide & Quick Reference

e Bk e AR i« % oot 4 » = oo e casas

et N A . AN

R iy Emad e

e

JL LRI A

Use

Syntax
where

Use
Syntax
where
Use
Syntax

where

Use
Syntax
where

Use
Syntax

DATA (see Chapter 2)
DATA is used to include numeric or string data in the code of the program itself,
rather than inputting it at run time.
DATA [oata-literal][, [dala-literal]] ...
data-literal is [sign] numeric-literal
or string-literal
or first-char [[character]... last-char]
signis + or -
first-char is any printable character excluding space, comma & double quotes
character is any printable character excluding comma
lasl-char is any printable character excluding space & comma

DATE (see Chapter 3)

DATE is a function which converts a date in the form of a string to a date as a
number of days since 31st December 1898.

DATE[(argument) |
argumentis a string-expression.

DATES (see Chapter 4)

DATES is a function which converts a date as a number of days since 31st
December 1899 to a date in the form of a string

DATES$[(argument)]
argument is an infeger-expression, giving a positive, non-zero, value.

DECLARE (see Chapter 2)

DECLARE declares simple variables and arrays.
DECLARE declared-object [, declared-object |...
declared-object is simple-variable

or formal-array

DECLARE CONST (see Chapter 7)

DECLARE CONST declares named constants.
DECLARE CONST simple-variable [, simple-variable]...

8909

S Syntax Summary
DECS (see Chapter 4)

Use DECS$ is a function which converts a numeric value to a formatted decimal string.
Syntax DEC$(argument , template)
where argument is a numeric-expression. and template is a string-expression.

DEF (see Chapter 6)

Use DEF is used to define an expression function.
Syntax DEF function-identifier [(parameter [, parameter]...)] = result-expression

where function-identifier is an identifier, and result-expression is an expression of the same type.
Each parameter must be a simple-variable.

DEG (see Chapter 3)

Use DEG is a function to converts angles in radians to degrees.
Syntax DEG(argument)
where argument is a numeric-expression.

DEL (see Chapter 15)
Use DEL deletes files. (See also ERASE and KILL)
Syntax DEL rest-of-line i

where file-filter is a string-expression
rest-of-line is everything up to the end of the line

Syntax Summary

A A L L

i

;

DELKEY (see Chapter 13) ‘

Use DELKEY deletes a key for the current record. : ‘f
Syntax DELKEY f#jsteam-numberf,] key [[.] LOCK lock-type] e

where key is: KEY key-value [[.] INDEX index-number]
or: AT position-string
where key-value is an expression, giving a value compatible with the index's key type
index-number is an integer-expression, giving a value in the range 1..20.
position-string is a string-expression, giving a value once returned by POSITIONS.

so0) I 5 ASIC 2 Plus : User Guide & Quick Reference 37

Use
Syntax
where

Use
Syntax
Use

Syntax
where

Use
Syntax

Use

Syntax

DIM (see Chapter 2)

DIM is used to specify the size and number of elements in one or more arrays.
D1IM array-declaration [, array-declaration] ...

amay-declaration is array-name (dimension-bounds [, dimension-bounds | ...) [storage-class]
amay-name is an identifier giving the name, and type, of the array

dimension-bounds is flower-bound TO Jupper-bound

where lower-bound and upper-bound are both infeger-expressions giving values in the
range -32768..32767 and lower-bound < upper-bound .

storage-class is integer-class [KEY]

or IEEE4 orIEEES

or FIXED length
whereinteger-class is one of BYTE, UBYTE, WORD, UWORD, INTEGER
length is an integer-expression giving a value in the range 1..4096.

DIMENSIONS (see Chapter 2)

DIMENSIONS is a function used to determine the number of dimensions of ar.
array.
DIMENSIONS (actual-array)

DIR (see Chapter 15)

DIR produces directory listings. (See also FILES.)
DIR rest-of-line
rest-of-ine is everything up to the end of the line

DISPLAY (see Chapter 15)

DISPLAY lists the contents of a file. (See also TYPE.)
DISPLAY [ftstream-number, | file-name
DISTANCE (see Chapter 12)

DISTANCE is a function which returns the distance from the cursor to a given
point, in user coordinates.

DISTANCE(ffstream-number,] point)

8909

DO, LOOP (see Chapter 5)

Use The DO statement is used for repeating a sequence of statements when the
repetition is governed by some condition which may be tested before or after the
execution of the loop.

Syntax DO [terminating-condition] = loopbody : LOOP [terminating-condition
where terminating-conditions are either
WHILE truth-value
or UNTIL truth-value

loopbody is a sequence of BASIC 2 Plus statements, separated in the usual way
with colons or new lines.

DRIVE (see Chapter 15)

Use DRIVE sets the current drive.
Syntax DRIVE dnve
where drive is a string-expression, giving a single character string.

EDIT (see User Guide Chapter 1)

Use EDIT takes you into the edit window.
Syntax EDIT

ELLIPSE (see Chapter 12)

Use ELLIPSE draws part or all of a circle on a graphics device.
Syntax ELLIPSE fFstream-number,] point, x-radius, aspect [[,] attribute]...
where attibute is: PART start-angle, end-angle

or: FILL [ONLY] MWITH fill-style]

or: WIDTH line-width

or: STYLE line-style

or: START line-start-style

or: END line-end-style

or: COLOUR colour-number

or: COLOR colour-number

or: MODE wrife-mode
x-7adius is an integer-expression, giving a positive, hon-zero value.
aspect is a numeric-expression, giving a positive, non-zero value.
start-angle and end-angle are numeric-expressions, giving positive, or zero, values.

-
| .
©
E
E
fom |
%
b4
3]
L
=
c
o
2

et g
e R Rt

o I BASIC 2 Plus : User Guide & Quick Reference

ELLIPTICAL PIE (see Chapter 12)

Use ELLIPTICAL PIE draws a elliptical "pie" section on a graphics device.
Syntax ELLIPTICAL PIE [fstream-number,] point, x-adivs, start-angle, end-angle,
aspect [[,] attribute]...
where attribute is: FILL [ONLY] MWITH fil-style]
or: WIDTH line-width
or: STYLE line-style
or: COLOUR colour-number
or: COLOR colour-number
or: MODE write-mode
x-radius is an infeger-expression, giving a positive, non-zero value.
aspect is a numeric-expression, giving a positive, non-zero value.
start-angle and end-angle are numeric-expressions, giving positive, or zero, values.
END (see Chapter 5)
Use END is used to terminate execution of the program when it has completed its
allotted tasks, as opposed to STOP, which is used in debugging.
Syntax END
ENVIRONS (see Chapter 15)
Use ENVIRONS is a function which information from the "environment” in the form of a
string
Syntax ENVIRONS (argument)
where argument is either an infeger-expression, giving a positive, non-zero, value.
or a string-expression.
EOF (see Chapter 10)
Use EOF is a function, which returns TRUE if there is nothing more to be input from the
given stream.
Syntax EOF (f#]stream-number)
EPS (see Chapter 3)
Use EPS is used to give a measure of the significance of a number.
Syntax EPS (argument)
where argument is a numeric-expression.

- 5509

. Syntax Summary

Use
Syntax
where

Use
Syntax

Use
Syntax

Use
Syntax

Use

Syntax
or
Use

Syntax

Use

Syntax
or

go0y NN BASIC 2 Plus : User Guide & Quick Reference

ERASE (see Chapter 15)

ERASE deletes files. (See also KILL and DEL.) =
ERASE rest-of-line £
rest-of-line is everything up to the end of the line ;‘::,
wn
ERR (see Chapter 16) 3
ERR is a function which returns the number of the latest error. Q%
ERR
ERROR (see Chapter 16)

ERROR raises an error.
ERROR integer-expression

ERRORS$ (see Chapter 16)

ERRORS$ is a function which returns the message associated with an error number.
ERRORS$ (integer-expression)

EXIT DO, EXIT FOR (see Chapter 5)

EXIT DO and EXIT FOR are used to get out of a loop from the middle without 14
waiting for the loop to complete. EXIT DO and EXIT FOR are used to leave D0 i
and FOR loops respectively
EXIT DO i
EXIT FOR .

EXIT MODULE (see Chapter 7) H
EXIT MODULE is used to leave a module before the final END MODULE R
statement.

EXIT MODULE

EXIT SUB, EXIT FUNCTION (see Chapter 6)
EXIT SUB and EXIT FUNCTION are used to terminate a subprogram or mutme
function before the terminating END SUB or END FUNCTION is reached.

EXIT SUB
EXIT FUNCTION

- e " z ARRESSS
T N = 1 oref) oy AR I M Sl e I ke A
SRR RRRAR S TE e e o
EY e

Use
Syntax
where

Use
Syntax
where

Use
Syntax
or

Use
Syntax
Use

Syntax
where

EXP (see Chapter 3)

EXP is the exponentiation function, the inverse of the natural logarithm.
EXP (argument)

argument is a numeric-expression.

EXPORT (see Chapter 7)

EXPORT makes a program's global variables available to any modules it calls.
EXPORT exported-object[, exported-object] ...

exported-object is simple-variable or formal-array

formal-array is array-identifier ([, | ...)

EXTENT (see Chapter 12)

The EXTENT function returns the length a string will be when printed.
EXTENT (ffstream-number, | string-expression)
EXTENT (ffstream-number(,] print-function ([,] print-function]... [,] string-expression)

FALSE (see Chapter 3)

FALSE is a function which always returns 0, the value which BASIC 2 Plus deems

to represent the Boolean value ‘false’. (See also OFF.)
FALSE

FD (see Chapter 12)

FD moves the cursor forward a given distance. (See also FORWARD.)
[MOVE] FD [stream-number,] distance [[,] attribute]...
attribute is: WIDTH line-width
or: STYLE line-style
or: START line-start-style
or: END line-end-style
or: COLOUR colour-number
or: COLOR colour-number
or: MODE wrile-mode
distance is an integer-expression, giving a positive, non-zero value.

8909

SN

. Syntax Summary

FILES (see Chapter 15)

Use FILES produces directory listings. (See aiso DIR.)
Syntax FILES [stream-number, | (file-filter]
where file-filter is a string-expression

FIND$ & FINDDIRS (see Chapter 15)

Use These functions are provided for finding files and directories.
Syntax FINDS$(file-fiter [, ordinal])
FINDDIRS (file-filter [, ordinal])
where file-filter is a string-expression

ordinal is an integer-expression, giving a value in the range 1..32767

FIX (see Chapter 3)
Use FIX is a function which returns the value ofitsargument rounded to an integer.
Rounding is towards zero. (See also TRUNC.)
Syntax FIX(argument)
where argument is a numeric-expression.

FLOOD (see Chapter 12)
Use FLOOD fills an area bounded by a given colour.
Syntax FLOOD fstream-number,] point, [, boundary-colour] [[,] attribute]...
where attribute is: FILL WITH fik-style -
or: COLOUR colour-number i
or: COLOR colour-number
or: MODE wnie-mode
boundary-colour is a colour-number.
NB: FLOOD may have no effect, depending on the device driver.

FLOOR (see Chapter 3)

Use The FLOOR function returns the value of itsr argument rounded to an integer.
Rounding is downwards, that is, towards minus infinity. (See also INT.)
Syntax FLOOR(argument)

where argument is a numeric-expression.

>
P -
@
E
=
=}
wn
>
—
c
>
wn

R

gooo NN BASIC 2 Plus : User Guide & Quick Reference 43 s

Rl N T R
T e E

PE ST T

Use
Syntax
where

Use

Syntax
where

Use
Syntax

where

FONTS$ (see Chapter 12)

FONTS$ is a function which returns the name of a font.
FONTS$ (flfstream-number,] font-ordinal)
font-ordinal is an integer-expression, giving a positive, non-zero value.

FOR (see Chapter 5)

The FOR statement is used to repeat a group of statements where the number of
repetitions is known or can be calculated at the time the loop is entered.

FOR loopcounter = start TO end [STEP stepsize] : loopbody :NEXT...

loopcounter is a simple-variable, not a VAR or ref formal parameter.

start, end, and slepsize are numeric expressions

loopbody is a sequence of BASIC 2 Plus statements, separated in the usual way
with colons or new lines.

FORWARD (see Chapter 12)

FORWARD moves the cursor forward a given distance. (See aiso FD.)
[MOVE] FORWARD [itstream-number,] distance [[,] aftribute]...
[MOVE] FD flfstream-number,] distance [[,] attribute]...
attribute is: WIDTH line-width

or: STYLE line-style

or: START line-start-style

or: END line-end-style

or: COLOUR colour-number

or: COLOR colour-number

or: MODE write-mode
distance is an integer-expression, giving a positive, non-zero value.

FRAC (see Chapter 3)

FRAC is a function which returns the fraction part of the value of its argument.
FRAC (argument)
argument is a numeric-expression.

FRE (see User Guide Chapter 1)

FRE is a function which returns the amount of unused memory.
FRE

ep— Bnetnt d Bud

8909

R Syniax Summary

Use
Syntax

Use
Syntax

where

Use
Syntax
where

Use
Syntax

Use
Syntax

FREEFILE (see Chapter 8)

FREEFILE is a function which returns on unused stream number.
FREEFILE

FUNCTION (see Chapter 6)

FUNCTION is used to define a routine function.
FUNCTION function-identifier [(formal-list)] [EXPORT] :
function-body :
END FUNCTION
function-identifier is identifier,
formal-list is formal-functionlist [separator formal-functionlist] ...
formal-functionlist is VAL simple-var-list
or CONST simple-var-list
or [VAR] formal-var-list

>
—
Q
=
=
S
w
>
53
=
>
wn

simple-var-list is identifier[, identifier] ...
formal-var-list is formal-var[, formal-var] ...
formal-var is identifier or formal-array
formal-array is array-identifier ([,]...)

separator is ; or ,
function-body is a sequence of BASIC 2 Plus statements.

GET (see Chapter 13)

GET gets data from Random or Keyed Files.

GET [f}stream-number, string-general-variable [[,] position] [[.] LOCK lock-type]
position is as described in POSITION.

GOSUB (see Chapter 6)

GOSUB is used to call a subroutine elsewhere in the program.
GOSUB location
GOSUB can be spelt as two words thus: GO SUB.

GOTO (see Chapter 5)
GOTO is used to jump unconditionally to another part of the program.

GOTO location
GOTO may be spelt as two words thus: GO TO

%.
N
%L
.

i

Use
Syntax
where

D R TN T TS _“.__‘..*L..._-..-r-s-.-‘-‘-'n......‘.... B

Use
Syntax

Use
i Syntax

Use
Syntax

Use

Syntax
where

GRAPHICS (see Chapter 12)

GRAPHICS sets graphics output attributes.
GRAPHICS [itstream-number] [[,] atiribute]...
attribute is: CURSOR cursor-type
or: FILL [STYLE] WITH] fill-style
or: [LINE] WIDTH line-width
or: [LINE] STYLE line-style
or: [LINE] START line-start-style
or: [LINE] END line-end-style
or: MARKER marker-number
or: MARKER SIZE marker-size
or: COLOUR colour-number
or: COLOR colour-number
or: MODE write-mode
where cursor-fype is an integer-expression, giving a value in the range 1..3.

GRAPHICS...RESTORE (see Chapter 12)

GRAPHICS..RESTORE turns on or off window contents restore.
GRAPHICS fitstream-number[,]] RESTORE fruth-value

GRAPHICS...UPDATE (see Chapter 12)

GRAPHICS_UPDATE forces graphics output to be acted on.
GRAPHICS ([lfstream-numberf,]] UPDATE [NEW)

HEADING (see Chapter 12)

HEADING is a function which returns the current heading.
HEADING((fifJstream-number)]

HEXS$ (see Chapter 4)

HEXS$ is a function which converts an integer value to a string of hexadecimal
digits.

HEX$ (argument [, min-digits])

argument and min-digits are inleger-expressions; min-digits must give a value in the range
0..32.

[5909

N Syntax Summary

Use

Syntax
or
where

Use

Syntax

where

Use

Syntax

where

IF (single line version) (see Chapter 5)

This version of the IF statement is used to choose between two courses of
action. It is retained only for compatibility with earlier versions of BASIC.

IF testvalue [colons | THEN [instructions] [[colons] ELSE elseinstructions |

IF testvalue [colons]GOTO location[[colons |ELSE elseinstructions |

testvalue is a lruth-value

instructions and elseinstructions are either (a) a line number, or (b) a sequence of
BASIC statements, each separated by colons

colons is a sequence of one or more colons, but not new lines.

IF...END IF (see Chapter 5)

IF...END IF is used to choose between various courses of action depending on
the values of various expressions.

IF testvalue1 [: J THEN [:] statements1 [:]

[ELSEIF testvalue2 [:] THEN [z] statements2 [: |]

[ELSEIF testvalue3[: JTHEN [: | statements3[:]]

[ELSE [:] elsestatements [:]]

END IF

the testvalues are truth-values, and statementst, stalements2,... and elseslatements are
sequences of BASIC 2 Plus statements, separated with colons or new lines in the
usual way.

IMPORT (see Chapter 7)

IMPORT is used to specify the routines, constants and variables which are

imported into a program unit from a module.

IMPORT [MODULE module-identifier[(formaldist)]] :

[import-declaration :] ...

END IMPORT

module-identifier is a numeric-identifier,

import-declarationis SUB sub-identifier{ (formal-ist)]
or FUNCTION function-identifier[(formaHist)]
or DECLARE CONST simple-var-ist
or DECLARE formal-var-list

sub-identifier is numeric-identifier

function-identifier is identifier

go00 NN BASIC 2 Plus : User Guide & Quick Reference

>
—
@
=
=
3
wn
¢
&
=
>
w

J.’é/

o

22

T

7

s

Use
Syntax

Use
Syntax

Use
Syntax

Use

Syntax
or
where

Use
Syntax
where

formal-ist is formal-sublist [separator formal-sublist] ...
formal-sublist is VAL simple-var-list

or CONST simple-var-list

or [VAR] formal-var-list
simple-var-list is identifier[, identifier] ...
formal-vardist is ormal-var[, formal-var]...

formal-var is identifier or formal-array
formal-array is amay-identifier ([,]...)
separalor ISE=-10rs,

INKEY (see Chapter 10)

INKEY is a function which returns a numeric value corresponding to a key press.
INKEY

INKEY$ (see Chapter 10)

INKEYS$ is a function which returns a string value corresponding to a key press.
INKEY$

INPUT (see Chapter 10)

INPUT inputs numeric or string values from sequential input devices.

INPUT flstream-number],]] [AT (column; line)] [;] [prompt] general—variable [,
general-variable]... [;]

INPUTS$ (see Chapter 10)

INPUTS$ is a function which returns a string containing a given number of
characters read from a given stream.

INPUTS (stream-number, count)

INPUTS$ (count, [it]stream-number)

count is an integer-expression, giving a value in the range 1..4096.

INSTR (see Chapter 4)

INSTR is a function which is used to find out if one string is a substring of another.
INSTR([start ,] search-string , target-string)

start is an integer-expressionin the range 1..4096, and search-string and target-string are
string-expressions.

8909

N Syntax Summary

Use

Syntax
where

Use
Syntax

Use
Syntax

Use

Syntax
where

Use
Syntax
where

Use

Syntax
or

2 i?‘
L
gooy N B A SIC 2 Plus : User Guide & Qulck Reference 4».9, %1;

INT (see Chapter 3)

The INT function returns the value of itsr argument rounded to an integer.
Rounding is downwards, that is, towards minus infinity. (See also FLOOR.)

INT (argument)
argument is a numeric-expression.

KEY (see Chapter 13)

KEY is a function which returns the current key value for a Keyed File.
KEY (fit]stream-number)

KEY$ (see Chapter 13)
KEY$ is a function which returns the current key value for a Keyed File.
KEY$ (fifstream-number)

KEYSPEC (see Chapter 13)
KEYSPEC creates a new.index in a Keyed File, and declares the type of key for
the index.
KEYSPEC #stream-number [,] INDEX index-number [key-spec] [unique] i
index-number is an integer-expression, giving a value in the range 1..20. '
key-spec is:BYTE, UBYTE, WORD, UWORD or INTEGER

or: FIXED string-length
where string-length is an integer-expression, giving a value in the range 1..30.
unique is:[,] UNIQUE truth-value

KILL (see Chapter 15)

KILL deletes files. (See also DEL and ERASE.)
KILL file-filter
file-fiter is a string-expression

LABEL (see Chapter 1)

LABEL is used to define a named loaction.

LABEL label
label:

| >
8§
C
BS
E
=
wn
B <
(30
=
>
wn

st N —

I

L

Use

Syntax
where

Use
Syntax
where

Use
Syntax
where

Use
Syntax
where

Use
Syntax
where

Use
Syntax

LBOUND (see Chapter 2)

The LBOUND function may be used to determine the lower bound of one of the
dimensions of an array. (See also LOWER.)

LOWER(actual-amay [, index-number])
index-number must be an integer-expression.in the range 1 to 7.

LCASES$ (see Chapter 4)

The LCASES function converst characters to lower case. (See also LOWERS$.)
LCASES$ (argument)
argument is a slring-expression

LEFT (see Chapter 12)

LEFT changes the current heading. (See also LT, RIGHT and RT.)
LEFT [kstream-number,] angle-change

angle-change is a numeric-expression.

LEFTS$ (see Chapter 4)

LEFTS$ is a function to truncate a string by selecting only its leftmost characters.
LEFTS$ (argument , length)

argument is a string-expression and length is an infeger-expression returning a value in the
range 0..4096.

LEN (see Chapter 4)

LEN is a function to find the length of a string. (How long is a piece of string?)
LEN(argument)

argument is a string-expression

LET (see Chapter 2)

LET assigns the value of an expression to a general—variable.
[LET] general-variable = expression

i Syntax Summary

Use

Syntax
where

Use
Syntax
where

Use
Syntax
where

Use
Syntax

Use
Syntax

LINE (see Chapter 12)
LINE draws a line between two points, possibly via a number of intermediate
points.
LINE BFstream-number,] point, [point,]... point [[,] attribute]...
attribute is: WIDTH line-width

or: STYLE line-style

or: START line-start-style

or: END line-end-style

or: COLOUR colour-number

or: COLOR colour-number

or: MODE write-mode

LINE INPUT (see Chapter 10)

LINE INPUT inputs a complete line from sequential input devices.

LINE INPUT ftstream-number(,]] (AT (column; line)] [] [prompt] string-general-variable [;]

the [,] following the stream-number is required if none of AT, PROMPT or the first [3]
are present.

column and line are integer-expressions giving the screen position at which to start the
prompt etc.

prompt is prompt-string prompt-separator,
where prompt-string is PROMPT string-expression or string-literal
and prompt-separator is , Or ;.

LOAD MODULE (see Chapter 7)

LOAD MODULE is used to load a module into memory.
LOAD MODULE module-identifier , filename

module-identifier is numeric-identifier

filename is string-expression

LOC (see Chapter 13)

LOC is a function which returns the current record number.
LOC (fi#Jstream-number)

LOCATE (see Chapters 11 & 14)

LOCATE moves to a given character and line position.
LOCATE [ftstream-number,] column; line

sooo NN B ASIC 2 Plus : User Guide & Quick Reference

>
.
©
=
=
=
w
>
L
o=
>
(dp]

51

4

e T

A

T

LOCK (see Chapter 13)

Use LOCK sets a new record lock.
Syntax LOCK f#]stream-number, lock-type [[,] position]
LOCK [itIstream-number [[,] position] [,] LOCK lock-type
where position is as described in POSITION.

LOF (see Chapter 13)

Use LOF returns the length of afile.
Syntax LOF (fi#jstream-number)

LOG (see Chapter 3)

Use LOG is a function which returns the logarithm to base e of its argument - the
natural logarithm.

Syntax LOG(argument)
where argument is a numeric-expression, giving a positive, non-zero, value.

LOG2 (see Chapter 3)

Use LO0G2 is a function which returns the logarithm to base 2 of its argument.

Syntax LO0G2 (argument)
where argument is a numeric-expression, giving a positive, non-zero, value.

LOG10 (see Chapter 3)

Use LO0G10 is a function which returns the logarithm to base 10 of its argument.

Syntax L0G10(argument)
where argumentis a numeric-expression, giving a positive, non-zero, value.

LOWER (see Chapter 2)

Use The LOWER function may be used to determine the lower bound of one of the
dimensions of an array. (See also LBOUND.)

Syntax LBOUND(actual-array [, index-number |)
where index-number must be an integer-expression.in the range 1 to 7.

LOWERS$ (see Chapter 4)

Use The LOWERS functionconverts characters to lower case. (See also LCASES$.)
Syntax LOWERS (argument)
: where argument is a string-expression
. 5909
"_" EES niad TS e St - I-

. Syntax Summary

LPRINT (see Chapter 11)

Use LPRINT is just like print, except that the output is always to stream 0.
Syntax LPRINT [print-item]...

LSET (see Chapter 4)

Use LSET is used to assign to a string-general-variable without changing the length of the
string it holds.

Syntax LSET string-general-variable = string-expression

LT (see Chapter 12)

Use LT changes the current heading. (See also LEFT, RIGHT and RT.)
Syntax LT [stream-number,] angle-change
where angle-changeis a numeric-expression.

LTRIMS$ (see Chapter 4)

Use LTRIMS is a function to remove leading spaces from strings.
Syntax LTRIM$ (argument)
where argumentis a string-expression

MAX (see Chapter 3)

Use MAX is a function which returns the value of its largest argument.
Syntax MAX(argument, argument(, argument ...)
where argument is numeric-expression.

MAXNUM (see Chapter 3)

Use MAXNUM is a function which returns the largest representable number.
Syntax MAXNUM

MD (see Chapter 15)

Use MD makes a new directory. (See also MKDIR.)
Syntax MD rest-of-line
where rest-of-line is everything up to the end of the line

>
A
©
E
=
S
[9p]
>
=
o
>
p]

3

Doy o
Ry

G

o

so00 I | ASIC 2 Plus : User Guide & Quick Reference 93

Use
Syntax
where

Use
Syntax
where

Use
Syntax
where

Use
Syntax
where

Use

Syntax

Use

MID$ — Function (see Chapter 4)
MIDS$ is a function to select a substring from a given string.
MID$ (argument, start[, length])

argument is a string-expression

start and length are integer-expressions. slart must give a value greater than zero; length
must give a value greater than or equal to zero. Neither may be greater than 4096.

MID$ — Statement (see Chapter 4)
MID$ assigns a string to a substring.
MIDS$ (string-general-variable, start[, length]) = string-expression

start and length are integer-expressions. start must give a value greater than zero; length
must give a value greater than or equal to zero. Neither may be greater than 4096.

MIN (see Chapter 3)

MIN is a function which returns the value of its smallest argument.
MIN(argument, argument(, argument...)
argument is numeric-expression.

MKDIR (see Chapter 15)

These statements make a new directory. (See also MD.)
MD rest-of-line
rest-of-line is everything up to the end of the line

MODULE (see Chapter 7)

MODULE is used to define a module — a program unit which may be accessed and
executed by a BASIC 2 Plus program.

MODULE module-identifier [(formallist)]
module-body
END MODULE

MOVE (see Chapter 11)

MOVE moves the graphics cursor.
MOVE fstream-number,] point

8909

S Syntax Summary

NAME (see Chapter 15)

Use NAME changes the name of a file. (See also REN.)
Syntax NAME old-fle-name AS new-file-name
where old-file-name and new-file-name are file-name's

NEXT (see Chapter 5)
Use Terminates the sequence of statements which make up the body of a FOR loop.
Syntax NEXT [loopcounter1][, [loopcounter2]]{, [loopcounter3]]...
OFF (see Chapter 3)

Use OFF is a function which always returns 0, the value which BASIC 2 Plus deems to
represent the Boolean value 'false’. (See also FALSE.)

Syntax OFF

=
<
E
=
=
)
>
=
c
>
)

ON (see Chapter 3)

Use ON is a function which always retumns —1. (See also TRUE.)
Syntax ON

ON ERROR (see Chapter 16)

Use ON ERROR specifies what action is to be taken in the event of an error.
Syntax ON ERROR STOP
or ON ERROR GOTO /ocation
or ON ERROR EXIT place

where place is MODULE, SUB or FUNCTION, as appropriate.

ON...GOSUB (see Chapter 6)

Use Like ON...GOTO, this statement is a relic from older BASICs, included to make
BASIC 2 plus compatible.

Syntax ON condition GOSUB [location?] [, [location2]] [, [location3]] ...
where condition is an integer-expression
location1, location2, location3, ... etc are locations.

R T

Use

Syntax
where

Use
55 Syntax
or
or
or
or
or
or
or

Use
Syntax
where

Use

Syntax

where

US|

4]

ON...GOTO (see Chapter 5)

ON...GOTO is a relic from older BASICs, included to make BASIC 2 plus
compatible.

ON condition GOTO [locationt][, [location2]][, [location3]] ...

condition is an inleger-expression

location, location2, location3, ... elc are locations.

OPEN (see Chapter 8)

OPEN associates a given stream with a device or file.

OPEN [{stream-number [,] WINDOW window-number

OPEN [{fJstream-number [,] INPUT filename [[,] LOCK lock-type]

OPEN [f#]stream-number [,] [exist] OUTPUT filename [[,] LOCK lock-type]
OPEN [i#]stream-number [,] [exist] APPEND filename [[,] LOCK Jock-type]
OPEN [itJstream-number [,] [exist] RANDOM random-spec [[.] LOCK lock-type]
OPEN [istream-number [,] [exist] GRAPHICS filename graphics-spec

OPEN [#]stream-number [,] PRINT [printer-number]

OPEN ([i]stream-number [,] DEVICE device-number

OPEN...APPEND (see Chapter 8)

OPEN file for output. (See also OPEN...OQUTPUT.)
OPEN (iHjstream-number [,] [exist] APPEND filename [[,] LOCK lock-type]
existis NEW or OLD

OPEN...DEVICE & OPEN...GRAPHICS (see Chapter 8)
These forms of OPEN associate a given stream with a GEM graphics device or a
Metatile.

OPEN [iH]stream-number [,] DEVICE device-number

OPEN fi#jstream-number [,] [exist] GRAPHICS filename graphics-spec

existis NEW or OLD

device-number is an infeger-expression, giving a value in the range 0..32767.
graphics-specis [[,] SIZE m-width, m-height] [[,] SPACE p-width[, p-height]]

m-width and m-height are numeric-expressions, giving positive, non-zero, values.
p-width and p-height are integer-expressions, giving values in the range 1..32768.

I Syntax Summary

OPEN...INPUT (see Chapter 8)

Use OPEN file for input.
Syntax OPEN ff]stream-number [,] INPUT fiename [[,] LOCK lock-type]

OPEN...OUTPUT (see Chapter 8)

Use OPEN file for output. (See also OPEN...APPEND.)

Syntax OPEN [i]stream-number [,] [exist] OUTPUT filename ([.] LOCK lock-type]
where existis NEW or OLD

OPEN...PRINT (see Chapter 8)

Use OPEN..PRINT associates a given stream with a simple printer device.
Syntax OPEN [##stream-number [,] PRINT ([printer-number]
where print-number is an integer-expression, giving a value in the range 0..5 :

>
e
o
E
=
=
w
>
=
c
>
[¥p]

0 = PRN
1.3 = LPT1toLPT3
4.5 = COM1toCOM2

OPEN...RANDOM (see Chapter 13)

Use OPEN..RANDOM associates a given stream with a random or keyed file.
Syntax OPEN [}stream-number [,] [exist] RANDOM random-spec [[,] LOCK lock-type]
where random-spec is filename [[,] INDEX filename] [[.] LENGTH record-length]
record-length is an infeger-expression, giving a value in the range 1..4096.

OPEN...WINDOW (see Chapter 8)

Use OPEN.WINDOW associates a given stream with a given screen window.
Syntax OPEN [f)stream-number [,] WINDOW window-number
where window-number is an integer-expression, giving a value in the range 1..4.

OSERR (see Chapter 16)

Use OSERR is a function which gives more information about the latest "operating
system dependent” error.

Syntax OSERR

gooy NI BASIC 2 Plus : User Guide & Quick Reference

Use

Syntax

Use
Syntax
where

Use
Syntax
where

Use
Syntax
where

Use
Syntax
where

Pl (see Chapter 3)

PI is a function which returns the representable value closest to the mathematical
constant .

PI

PIE (see Chapter 12)
PIE draws a circular "pie" section on a graphics device.
PIE flstream-number,] point, radius, start-angle, end-angle [[,] attribute]...
atiibute is: FILL [ONLY] WITH fill-style]
or: WIDTH line-width
or: STYLE line-style
or: COLOUR colour-number
or: COLOR colour-number
or: MODE write-mode
radius is an infeger-expression, giving a positive, non-zero value.
slart-angle and end-angle are numeric-expressions, giving positive, or zero, values.

PLOT (see Chapter 12)
PLOT plots "markers" at the points given.
PLOT fstream-number,] point [, poini]... [[,] attribute]...
altribute. is: MARKER marker-number
or: SIZE marker-size
or: COLOUR colour-number
or: COLOR colour-number
or: MODE wrife-mode

POINT (see Chapter 12)
POINT sets a new current heading.
POINT [itstream-number,] angle
angle is a numeric-expression.

POINTSIZE (see Chapter 12)

POINTSIZE is a function which returns an available size of a font.
POINTSIZEC(fistream-number,] font-ordinal, point-size)

font-ordinal and point-size are inleger-expressions, giving positive, non-zero values.

N 8909

. Syntax Summary

Use
Syntax
- Use

Syntax
where

Use
Syntax
Use

Syntax
where

POS (see Chapters 9 & 12)

These function return the current cursor position in characters and lines. (See
also VPOS)

POS/(fifIstream-number)]
POSITION (see Chapter 13)

POSITION moves to a new position in a Random or Keyed file.
POSITION [#]stream-number [,] position [[,] LOCK lock-type]
position is: NEXT
or: AT record-number
or: AT position-string
or: KEY key-value [[,] INDEX index-number]
or: INDEX index-number
where key-value is an expression, giving a value compatible with the index's key type.
index-number is an integer-expression, giving a value in the range 1..20.
position-string is a string-expression, giving a value once returned by POSITIONS.

POSITION$ (see Chapter 13)

POSITIONS is a function which returns a string which unambiguously specifies
the current position.

POSITIONS ([f#]stream-number)
PRINT (see Chapter 11)

PRINT outputs numbers and strings.
PRINT [istream-number],]] [print-item]...
the [,] following the stream-number is required if the first print-item is an expression.
each print-item may be: expression
or separator
or print-command- see Print Commands box
or print-function — see Print Functions box
or USING string-expression ;
provided that no expression immediately follows another.
separatoris , or ;

gooo NN B A SIC 2 Plus : User Guide & Quick Reference

%

[

Use
Syntax

Use
Syntax

TR AT LT i 7 S SRR SR

Use
Syntax

Use
Syntax
where

Use
Syntax

-
—
—
—

PRINT COMMANDS (see Chapter 11)

These may be used in PRINT or LPRINT statements.

AT (column; line)
TAB (infeger-expression)
ADJUST (integer-expression)

PRINT FUNCTIONS (see Chapter 11)

These may be used in PRINT or LPRINT statements, and in the EXTENT function.

ZONE (integer-expression)

MARGI N (integer-expression)

EFFECTS (integer-expression, inleger-expression)
MODE (write-mode)

COLOUR(colour-number)

COLOR(colour-number)

FONT (font-ordinal)

POINTS (point-size)

ANGLE (infeger-expression)

PROGPATH$ & PROGFILES$ (see Chapter 7)

These functions return the current file name of the main program.

PROGPATHS
PROGFILES

PUT (see Chapter 13)

PUT puts data to Random or Keyed Files.
PUT f}jstream-number, string-expression [[,] position] [[,] LOCK lock-type]
position is as described in POSITION.

QUIT (see User Guide Chapter 1)
SYSTEM takes you out of BASIC 2 Plus. (See also SYSTEM.)
SYSTEM

8909

I Syntax Summary

Use
Syntax
where

Use

Syntax
where

Use

Syntax
where

Use
Syntax

Use
Syntax
where

RAD (see Chapter 3)

RAD is a function to converts angles in degrees to radians.
RAD (argument)

argument is a numeric-expression.

RANDOMIZE (see Chapter 3)

RANDOMIZE is used to set the seed for BASIC 2 Plus’s pseudo-random number
generator.

RANDOMIZE [seed-value]

seed-value is a numeric-expression.

RD (see Chapter 15)

These statements delete (remove) a directory. (See also RMDIR.)
RD rest-of-line

rest-of-line is everything up to the end of the line

READ (see Chapter 2)

READ is used to read data from a DATA statement into general-vanables.
READ general-variable [, general-variable] ...

RECORD (see Chapter 2)

RECORD is used to specify a record structure which can be imposed on strings.
RECORD record-name ; field-definition[, field-definition] ...
field-definition is: numeric-field-name [vector-field] [storage-class]
or: string-field-name [vector-field] F1XED length
numeric-field-name is a numeric-identifier, giving the name of a numeric field
string-field-name is a string-identifier, giving the name of string field
vector-field is (dimension-bounds)
or [dimension-bounds]
where dimension-bounds is as in DIM.
slorage-class is integer-class [KEY]
or IEEE4 orIEEES
where inleger-ciass is one of BYTE, UBYTE, WORD, UWORD, INTEGER
length is an integer-expression giving a value in the range 1..4096.

ooy NN BASIC 2 Plus : User Guide & Quick Reference

R

o AL

62

Use
Syntax
where

Use

Syntax
where

Use
Syntax
where

Use

Syntax

Use
Syntax
or

or

or

or
where

REN (see Chapter 15)

REN changes the name of a file. (See also NAME.)

REN rest-of-line
rest-ofine is everything up to the end of the line

REPEAT (see Chapter 5)

The REPEAT statement is used for repeating a sequence of statements when the
repetition is governed by some condition which may be tested before or after the

execution of the loop.

REPEAT : loopbody : UNTIL condition

condition is a truth-value

loopbody is a sequence of BASIC 2 Plus statements, separated in the usual way
with colons or new lines.

REPOSITION (see Chapter 13)

REPOSITION moves to a new position in a Keyed file, without changing record.
REPOSITION f#]stream-number [,] key [[.] LOCK lock-type]

key is: KEY key-value [[,] INDEX index-number]

where key-value is an expression, giving a value compatible with the index's key type
index-number is an integer-expression, giving a value in the range 1..20.

RESTORE (see Chapter 2)

RESTORE is used to explicitly move the pointer which indicates the next DATA item
to be read in.

RESTORE [/ocation]

RESUME (see Chapter 16)

RESUME signals the end of "error state”.

RESUME

RESUME NEXT

RESUME EXIT place

RESUME /ocation

RESUME STOP

place is MODULE, SUB or FUNCTION, as appropriate.

8909

— Syntax Summary

RETURN (see Chapter 6)

Use RETURN is used to terminate a subroutine.
Syntax RETURN

RIGHT (see Chapter 12)
Use These statements change the current heading. (See also RT, LEFT and LT.)
Syntax RIGHT [ifstream-number,] angle-change
where angle-change is a numeric-expression.

RIGHTS (see Chapter 4)

Use RIGHTS$ is a function to truncate a string by selecting only its rightmost
characters.

Syntax RIGHTS$ (argument , length)

where argument is a string-expression and length is an integer-expression returning a value in the
range 0..4096.

RMDIR (see Chapter 15)

Use RMDIR deletes (removes) a directory. (See also RMDIR.)
Syntax RD rest-of-line
where rest-of-line is everything up to the end of the line

RND (see Chapter 3)
Use RND is a function which retums a pseudo-random number.
Syntax RND{(argument)]
where argument is an infeger-expression, giving a value in the range 1..65535.

ROUND (see Chapter 3)

Use ROUND is function which retums the value of its argument rounded to a specific
number of decimal places.
Syntax ROUND(argument|, rounding])

where argument is a numeric-expression and rounding is an integer-expression.

>
B
<
=
=
=
w
>
o
=
=
>
n

so0y N B ASIC 2 Plus : User Guide & Quick Reference 63

e S R P s y -
e e e e S L AN S - R e -

64

Use
Syntax
Use

Syntax
where

Use
Syntax
where

Use
Syntax

Use
Syntax

where

RSET (see Chapter 4)

RSET is used to assign to a string-general-variable without changing the length of the
string it holds.

RSET string-general-variable = string-expression

RT (see Chapter 12)

RT changes the current heading. (See also RIGHT, :LEFT and LT.)
RT FFstream-number,] angle-change

angle-change is a numeric-expression.

RTRIMS$ (see Chapter 4)

RTRIMS is afunction to remove trailing spaces from strings.
RTRIMS (argument)

argument is a slring-expression

RUN (see User Guide Chapter 1)
RUN starts executing the current program.
RUN

SCREEN (see Chapter 9)
SCREEN sets the type and size of a Virtual Screen
SCREEN [itstream-number [,]] GRAPHICS ([size] [[,] window-attribute]...
SCREEN [flfstream-number [,]] TEXT [size] [[,] window-attribute]...
SCREEN Jfstream-number [,]] TEXT FLEXIBLE [[,] window-attribute]...
size is width [FIXED], height [FIXED]
window-altribute is: MAXIMUM width, height

or: MINIMUM width, height

or: UNIT width, height

or: INFORMATION fruth-value
width and height are integer-expressions, giving positive, non-zero values.

8909

— Syntax Summary
SELECT CASE (see Chapter 5)

Use SELECT CASE is used to choose one course of action from several, the choice
being determined by the value of a given expression.

Syntax SELECT CASE selector-expression [:] ;
[CASE testvalues1 [, testvaluesia][, festvaluesib]... : statementsi : |
[CASE testvalues2 [, testvalues2a][, testvalues2b] ... : stalements2 : |

[CASE ELSE : elsestatements :]
END SELECT

where statements1, statements2, stalements3, ..., and elsestatements are sequences of BASIC
statements separated by colons or new lines in the usual way

testvalues may be either of the form
expression [TO end-expression |
or 1S relation limit-expression
where all the expressions must be of the same type as seleclor-expression.

SELECTOR (see Chapter 15)

Use SELECTOR runs an “item" selector dialogue.
Syntax SELECTOR directory-string [, selection-string]
or SELECTOR , selection-string

SELPATH$ & SELFILE$ & SELWILDS$ (see Chapter 15)

Use These functions return parts of the values stored for the SELECTOR dialogue.
Syntax SELPATH$
SELFILES
SELWILDS

>
B
©
&
=
3
w
>
3
c
>
w

gooo M B ASIC 2 Plus : User Guide & Quick Reference 05

Use
Syntax

Use
Syntax
where

Use
Syntax
where

¥ Use
i Syntax
where

(. ——

G e

SET (see Chapter 12)

SET changes the text output attributes for a given stream.
SET [istream-number[,]] text-attribute [[, Jtext-attribute]...
where each text-attribute may be one of :

ZONE zone-size

MARGIN margin-position

EFFECTS effects-on, effects-off

MODE write-mode

COLOUR colour-number

COLOR colour-number

FONT font-ordinal

POINTS point-size

ANGLE fext-angle

WRAP truth-value

SGN (see Chapter 3)
SGN is a function which returns the sign of the value of its argument.

SGN (argument)
argument is a numeric-expression.

SHAPE (see Chapter 12)
SHAPE draws a polygon shape.
SHAPE fitstream-number,] point, point, point [, poinf... [[,] attribute]...
attribute is: FILL [ONLY] MITH fill-style]
or: WIDTH line-width
or: STYLE line-style
or: COLOUR colour-number
or: COLOR colour-number
or: MODE write-mode

SHARED (see Chapter 6)
SHARED makes global variables directly available to routines.
SHARED shared-object[, shared-object]...

formal-var is simple-variable or array-identifier ([,] ...)or aray-identifier [[,] ...]

. Syntax Summary

SIN (see Chapter 3)
Use SIN is a function which returns the sine of its argument.
Syntax SIN(argument)
where argument is a numeric-expression.

SQR (see Chapter 3)
Use SQR is a function which returns the (positive) square root of its argument.
Syntax SQR(argument)
where argument is a numeric-expression. returning a positive, or zero value.

STOP (see Chapter 5)

Use STOP is used to halt the execution of the program in a condition where the
variables can be inspected or altered.

Syntax STOP

>
<

=

£

=
w

P

s

c

>
wn

STRS (see Chapter 3) :%

Use STR$ is a function to convert a numeric value to string form. \‘g&\%
Syntax STR$ (argument) %
RH

where argument is a numeric-expression. R

o
2

STREAM (see Chapter 8)

Use The STREAM statement changes the default stream. The STREAM function retums
the current stream.

Statement Syntax STREAM [{f/stream-number
Function Syntax STREAM

STRINGS (see Chapter 4)
Use STRINGS is a function to generate a string of repeated characters.
Syntax STRINGS (length , argument)

where length is an integer-expression in the range 0..4096 and argument is a non-null string-
expression or an integer-expression giving a value in the range 0..255.

go00 NN B ASIC 2 Plus : User Guide & Quick Reference 67

Use
Syntax

where

li§ Use

Syntax

Use
Syntax

Use
Syntax
where

Use
Syntax
NB:

SN .

Use
Syntax
or

or

or
where

HaRRLL_

68

SUB (see Chapter 6)

SUB is used to define a subprogram.

SUB sub-identifier [(formaldist)] [EXPORT]

sub-body :

END SUB

sub-identifier is a name

sub-body is a sequence of BASIC 2 Plus statements, separated with colons or new
lines in the usual way.

SWAP (see Chapter 2)

SWAP exchanges the values of two general variables.
SWAP general-variable , general-variable

SYSTEM (see User Guide Chapter 1)
SYSTEM takes you out of BASIC 2 Plus. (See also QUIT.)
SYSTEM

TAN (see Chapter 3)
TAN is a function which returns the tangent of its argument.

TAN (argument)
argument is a numeric-expression.

TEST (see Chapters 9 & 12)
TEST is a function which returns the colour of a point on a Graphics Screen.

TEST (flfstream-number,] point)
TEST may have no effect, depending on the device driver.

TEXT (see Chapter 11)

TEXT performs various operations available on text screens.
TEXT [itstream-number,] CLEAR clear-area

TEXT [stream-number,] DELETE [LINE]

TEXT [ftstream-number,] INSERT [LINE]

TEXT fFstream-number,] FEED count

clear-areais one of EOL, BOL, LINE, EOS, BOS, SCREEN

count is an integer-expression.

8909

e R R T

Use

Syntax

Use

Syntax

Use

Syntax

Use
Syntax

Use
Syntax

Use
Syntax

where

Use
Syntax
where

TIME (see Chapter 3)

TIME is a function which returns the number of hundredths of a second which
have elapsed since midnight, to the nearest hundredth.
TIME

TIMES$ (see Chapter 4)

TIMES is a function which returns the number of hundredths of a second which
have elapsed since midnight, to the nearest hundredth, in the form of a string.
TIMES

TIMER (see Chapter 3)

TIMER is a function which gives the number of seconds which have elapsed since
midnight.

TIMER

TOWARD (see Chapter 12)

TOWARD is a function which returns the heading from the cursor to a given point.
TOWARD(fiEstream-number,] point)

TRUE (see Chapter 3)

TRUE is a functios which always returns —1. (See also ON.)

TRUE

TRUNC (see Chapter 3)

TRUNC is a function which returns the value of their argument rounded to an
integer. Rounding is towards zero. (See also FIX.)

TRUNC (argument)
argument is a numeric-expression.

TYPE (see Chapter 15)

TYPE lists the contents of a file. (See also DISPLAY.)
TYPE rest-of-line

rest-of-ine is everything up to the end of the line.

goos NN BASIC 2 Plus : User Guide & Quick Reference

=
A
<
=
£
=
wn
>
AL
=
>
w

69

Zl

‘(f
i
e

i
i

':p’

R

v

N

S

%

Use

Syntax
where

Use
Syntax
where

Use
Syntax

Use

Syntax

Use

Syntax

Use

i Syntax

: where
Use

Syntax

UBOUND (see Chapter 2)

UBOUND may used to determine the upper bound of one of the dimensions of an
array. (See also UPPER.)

UBOUND(actual-aray [, index-number])

index-number must be an infeger-expression.in the range 1 to 7.

UCASES$ (see Chapter 4)
UCASES$ converts characters to upper case. (See also UPPERS$.)

UCASES (argument)
argument is a string-expression

UNIQUE (see Chapter 13)

UNIQUE is a function which returns the next "unique” number for a Keyed File.
UNIQUE(fif/stream-number)

UNLOAD (see Chapter 7)

UNLOAD MODULE is used to unload a module.
UNLOAD MODULE module-identifier

UPPER (see Chapter 2)

UPPER may used to determine the upper bound of one of the dimensions of an
array. (See also UBOUND.)

UPPER(actual-array [, index-number])

UPPERS$ (see Chapter 4)

UPPER$ converts characters to upper case. (See also UCASE$.)
UPPERS (argument)

argument is a string-expression

USER...ORIGIN (see Chapter 12)

USER_ORIGIN changes where the origin of user coordinate space appears on the
device.

USER [ifstream-number] ORIGIN point

70 N 5909

I Syntax Summary
USER...SPACE (see Chapter 12)

Use USER..SPACE sets the extent of the user coordinate space.
Syntax USER fffstream-number] SPACE width[, height]
where widith and height are inleger-expressions, giving positive, non-zero values.
where index-number must be an integer-expression.in the range 1 to 7.

VAL (see Chapter 3)

Use VAL converts the string representation of a number to its numeric value.
Syntax VAL (argument)
where argumentis a string-expression.

VERSION (see Chapter 15)

Use VERSION is a function which returns vesrion information.

Syntax VERSION(query)
where query is an integer-expression, giving a value in the range 0..4.

VPOS (see Chapters 9 & 12)
Use VPOS returns the current cursor position in characters and lines. (See also POS)
Syntax VPOS[([{]stream-number)]

WHILE (see Chapter 5)

Use The WHILE statement is used for repeating a sequence of statements when the
repetition is governed by some condition which may be tested before or after the
execution of the loop.

Syntax WHILE condition : loopbody : WEND
where conditionis a truth-value

loopbody is a sequence of BASIC 2 Plus statements, separated in the usual way
with colons or new lines.

WHOLES$ (see Chapter 4)
Use WHOLES is a function which returns the whole of a fixed-length string.
Syntax WHOLES (argument)
where argumentis a slring-expression

i >
=
<
=
£
5
w
>
L
o
>
w

sooo NN B A SIC 2 Plus : User Guide & Quick Reference 71

Use
Syntax
or

or

or

or

or

11| B § or
(or
or
where

Use

Syntax

Use

Syntax

Use

Syntax

/.

WINDOW (see Chapter 14)

WINDOW statements change the size, position etc. of Screen Windows.
WINDOW [ifstream-number] CLOSE

WINDOW [lstream-number] FULL truth-value

WINDOW [ffstream-number] OPEN

WINDOW fitstream-number] SIZE width, height

WINDOW fstream-number] PLACE point

WINDOW [ftstream-number] TITLE string-expression

WINDOW [istream-number] INFORMATION string-expression
WINDOW [istream-number] MOUSE mouse-form

WINDOW FFstream-number] CURSOR truth-value

WINDOW fstream-number] SCROLL point

mouse-form is an integer-expression, giving a value in the range 0..7
width and height are integer-expressions, giving a value 1..5000

XACTUAL & YACTUAL (see Chapter 14)

XACTUAL and YACTUAL are functions which retum the actual size of a window, in
screen device pixels.

XACTUAL[([#]stream-number)]

YACTUAL{(f{f}stream-number)]

XBAR & YBAR (see Chapter 14)

XBAR and YBAR are functions which return the actual size of the scroll barsof a
window, in screen device pixels.

XBAR[(fif]stream-number)]

YBAR(([{]stream-number)]

XCELL & YCELL (see Chapter 12)

XCELL and YCELL are functions which retumn the size of a character cell, in user
coordinates.

XCELL{(fifjstream-number) |

YCELL[(/i#]stream-number)]

8909

— Syntax Summary

XDEVICE & YDEVICE (see Chapters 9 & 12)

Use XDEVICE and YDEVICE are functions which retum the size of a graphics device,
in device pixels.

Syntax XDEVICE([([i#]stream-number)]
YDEV ICE[([ft]stream-number)]

XMETRES & YMETRES (see Chapters 9 & 12)

Use XMETRES and YMETRES are functions which retumn the size of a graphics device,
in metres.
Syntax XMETRES[([#]stream-number)]

YMETRES[(it Jstream-number)]
XMOUSE & YMOUSE (see Chapter 14)

Use These functions return the current position of the mouse pointer, in screen device
pixels.

>
e
©
E
E
=
(5]
>
e
=
>
wn

Syntax XMOUSE B
YMOUSE

XPIXEL & YPIXEL (see Chapters 9 & 12)
Use XPIXEL and YPIXEL are functions which retum the size of a device pixel, in user
coordinates.
Syntax XPIXEL[([f#]stream-number)]
Y PIXEL[([i]stream-number) |

XPLACE & YPLACE (see Chapter 14)

Use XPLACE and YPLACE are functions which retumn the position of the bottom left
hand corner of a window, in screen device pixels.
Syntax XPLACE[([#]stream-number)]

Y P LACE[([##]stream-number)]
XPOS & YPOS (see Chapters 9 & 12)

Use XP0S and YPOS are functions which returmn the current cursor position, in user
coordinates.

Syntax XPOS[(f{f/stream-number)]
YPOS([i#]stream-number)]

N

R

gopy NI B ASIC 2 Plus : User Guide & Quick Reference 73

e ¢
i
> - ;
- R L A i S5 e e ey

Use

Syntax

Use

Syntax

Use

Syntax

Use

Syntax

Use
Syntax

Use
Syntax

XSCROLL & YSCROLL (see Chapter 14)

XSCROLL and YSCROLL are functions which retumn the position of the window on
the virtual screen, in user coordinates.

XSCROLL{{f#]stream-number)]

Y SCROLL/(fif]stream-number)]

XUSABLE & YUSABLE (see Chapter 9)

XUSABLE and YUSABLE are functions which return the usable size of a graphics
device, in device pixels.

XUSABLE((fit]stream-number)]

YUSABLE[([#]stream-number) |

XVIRTUAL & YVIRTUAL (see Chapter 9)

XVIRTUAL and YVIRTUAL are functions which return the size of a graphics virtual
screen, or other graphics device, in user coordinates..

XVIRTUAL[([#t]stream-number)]
YVIRTUAL[(fiH/stream-number)]

XWINDOW & YWINDOW (see Chapter 14)

XWINDOW and YWINDOW are functions which retum the size of a window, in screen
device pixels.

XWINDOW[(fitJstream-number)]

YWINDOW/(fit]stream-number)]

YASPECT (see Chapters 9 & 12)
YASPECT is a function which gives the aspect ratio of a user coordinate pixel.
YASPECT/([#]stream-number)]

ZONE (see Chapter 11)
ZONE sets the print zone size for the Dialogue Screen.
ZONE 2Zzone-size

8909

jlllIIlIIIIlIllllIIlllIlllllllllIlIllIllllllllllllIIIllllllIlIIllllllIllIIlIlIIIIIIIIIIIIIIIIIIIIIIII«i;

Keywords
ABS CINT
ACOS CIRCLE
ADDKEY CLEAR
ADDREC CLOSE
ADJUST CLS
ALERT COLOR
AND COLOUR
ANGLE CONSOLIDATE
APPEND CONT
ARC C0S
AS CURRENCY$
ASC CURSOR
ASIN DATA
AT DATE
ATAN DATES
ATAN2 DECS
ATN DECIMAL
BINS DECLARE
BOL DEF
BOX DEG
BUTTON DEGREES
BYTE DEL
CALL DELETE
CASE DELKEY
CD DEVICE
CEIL DIM
CEILING DIMENSIONS
CHDIR DIR
CHDIRS DISPLAY
CHR$ DISTANCE

sopy I A SIC 2 Pius : User Guide & Quick Reference

DO

DRIVE
EDIT
EFFECTS
ELLIPSE
ELLIPTICAL
ELSE
ELSEIF
END
ENVIRONS
EOF

EOL

EOS

EPS
ERASE
ERR
ERROR
ERROR$
EXIT

EXP
EXPORT
EXTENT
FALSE

FD

FEED
FILES
FILL
FIND$
FINDDIRS
FIX

FIXED
FLEXIBLE
FLOOD
FLOOR
FONT
FONTS$
FOR
FORWARD
FRAC

FRE
FREEFILE
FULL
FUNCTION
GET
GOSuB

GO

GOTO
GRAPHICS
HEADING
HEX$

IF
IMPORT
INDEX
INF
INFORMATION
INKEY
INKEY$
INPUT
INPUTS
INSERT

INSTR
INT
INTEGER
IS

KEY
KEYUS
KEYSPEC
KILL
LABEL
LBOUND
LCASE$
LEFT
LEFTS
LEN
LENGTH
LET
LINE
LOAD
LocC
LOCATE
LOCK
LOF
LOG
LOG10
Looe
LOWER
LONERS
LPRINT
LSET
LTRIMS

»
o
L
e
>

=
e
x
o
=3
o
~
Q
w
<<
m

75

76

MARGIN
MARKER
MAX
MAXTMUM
MAXNUM
MIN
MINIMUM
MD
MIDS$
MKDIR
MOD
MODE
MODULE
MOUSE
MOVE
NAME
NEW
NEXT
NOT
OFF
OLD
ON
ONLY
OPEN
OPTION
OR
ORIGIN
OSERR
OUTPUT
PART
P1
PIE
PLACE

PLOT
POINT
POINTS
POINTSIZE
POS
POSITION
POSITIONS
PRINT
PROMPT
PUT

QUuIT

RAD
RADIAN
RANDOM
RANDOMIZE
RD

READ
RECORD
REM

REN
REPEAT
REPOSITION
RESET
RESTORE
RESUME
RETURN
RIGHT
RIGHT$
RMDIR

RND

ROUND
ROUNDED
RSET

RT
RTRIMS
RUN
SCREEN
SCROLL
SELECT
SELECTOR
SELFILES
SELPATH$
SELWILDS
SET

SGN
SHAPE
SHARED
SIN

SIZE
SPACE
SQR
START
STEP
STOP
STR$
STREAM
STRINGS
STYLE
SUB

SWAP
SYSTEM
TAB

TAN
TEST
TEXT
THEN

TIME
TIMES
TIMER
TITLE
TO
TOWARD
TRAP
TRUE
TRUNC
TYPE
UBOUND
UBYTE
UCASES$
UNIQUE
UNIT
UNLOAD
UNTIL
UPDATE
UPPER
UPPERS
USER
USING
UWORD
VAL
VAR
VERSION
VPOS
WEND
WHILE
WHOLES$
WIDTH
WINDOW
WITH

WORD
WRAP
XACTUAL
XBAR
XCELL
XDEVICE
XMETRES
XOR
XPIXEL
XPLACE
XPOS
XSCROLL
XUSABLE
XVIRTUAL
XWINDOW
YACTUAL
YBAR
YCELL
YDEVICE
YMETRES
YOR
YPIYEL
YPLACE
YPOS
YSCROLL
YUSABLE
YVIRTUAL
YWINDOW
ZONE

8909

Important Notice

THE SOFTWARE CONTAINED IN THE DISKETTE PACKAGE IS SUPPLIED TO
YOU ON THE TERMS AND CONDITIONS INDICATED BELOW. THE OPENING
OF THIS PACKAGE INDICATES YOUR ACCEPTANCE OF THESE TERMS AND
CONDITIONS. IF SUCH TERMS AND CONDITIONS ARE NOT ACCEPTED BY
YOU, YOU MUST RETURN THE UNOPENED PACKAGE TO THE PLACE OF
PURCHASE AND YOUR MONEY WILL BE REFUNDED. NO REFUNDS WILL BE
GIVEN WHERE THE PACKAGE HAS BEEN OPENED UNLESS THE PRODUCT
ISEIljgw..TY AND SUCH REFUND BECOMES PAYABLE UNDER CLAUSE 7
B

In this notice, the terms:

‘Locomotive’ means Locomotive Software Limited

‘The Program’ means the programs known as B2PLUS.RSC and B2PLUS.APP on the
diskette supplied in the diskette package.

1. Copyright
Material within The Program is copyright Locomotive. :

Locomotive grants to the purchaser of this package a non-exclusive right to use The Program
in accordance with these terms and conditions. Such Licence may be transferred only in
accordance with Clause 3 below. Any other use or dealing not expressly authorised by these
terms and conditions is strictly prohibited.

2. Use

The Program may only be used on a single machine or terminal at any one time but may be
copied in support of that use. Any such copying is subject to there being no modification of
The Program and in particular to the copyright notices of Locomotive being preserved in the
copy. Save for copying as aforesaid, any other operations (including modification or
translation from machine readable form) are expressly prohibited.

3. Transfer z

The Program may be transferred to a third party provided the original and all copies are
transferred or otherwise destroyed and provided further these terms and conditions are]
produced to that third party and prior to the transfer that party agrees and undertakes to i
observe and continue to observe the same. Without such transfer and undertaking any]
application of The Program or copies thereof by any other person will not be authorised by
Locomotive and will be in breach of Locomotive’s copyright and other proprictary rights.

8909 I BASIC 2 Plus

g

4. Documentation

The documentation accompanying The Program is copyright Locomotive. However, no right
to reproduce that documentation in part or in whole is granted by Locomotive. Should
additional copies of the documentation be required for whatever reason, application must be
made in writing to Locomotive which will be considered in its discretion.

S. Breach

If the user for the time being acts in breach of any of these terms and conditions it shall
indemnify Locomotive against all loss suffered (including loss of profits) and the licence
granted hereunder shall be deemed to be terminated forthwith. On termination the user shall
deliver up to Locomotive all infringing and lawful copies of The Program.

6. Exclusions

Neither Locomotive nor any person authorised by it gives warranties or makes
representations that The Program is error free or will meet functions required by the user. It
shall be the responsibility of the user to satisfy itself that The Program meets the user’s
requircments. The Program is supplied on an ‘as is’ basis and save as expressly provided in
these conditions all warranties of any nature (and whether express or implied) are excluded.

7. Liability

Locomotive warrants that the diskette on which the program is stored is free from material
defect and through normal use will remain so for a period of 90 days after purchase. In the
event of any breach of this warranty (or statutory warranty or conditions incapable of
exclusion by these conditions) the responsibilities of Locomolive shall be limited to
replacing the enclosed program or to returning the price paid for the same as they shall
determine.

As the sole exception to the foregoing Locomotive will accept liability for death or personal
injury resulting from its negligence. In no circumstance shall Locomotive be liable for any
indirect or consequential costs damages or losses (including loss of business profits,
operating time or otherwise) arising out of the use or inability to use the enclosed program
and diskette whether or not the likelihood of damage was advised to Locomotive or its dealer.

This notice does not affect your statutory rights.

8909

g P

INDEX

Accelerators, 6
Action 1, 25
All new, 18
Anywhere, 10
Auto-indent, 13
Automatic, 11

B2PLUS.APP, 1
Block
deleting, 9
selecting, 8

Check out, 5

CLEAR, 3,10

Clear all Debug, 26
Clear Debug, 26
Clipboard, 9

CONT, 23

Continue, 23

Continue execution, 23
Copy, 10

Current Workspace Component, 15
Cut, 9

Debug Action, 25
Debug command screen, 25
Debug disabled, 27
Debug enabled, 27
Debug point, 25
insert, 25
remove, 26
Deleting text, 7
Dialogue, 2
Direct mode, 3

Edit, 2,4

FRE, 3
Full speed, 27

GEM, 1

Insert mode, 13

Insert off, 13

Insert on, 13

Inserting debug point, 25
Inserting text, 7

List Outline..., 19

List Traceback..., 19
List..., 18

Load and run..., 18

Load Clipboard..., 17
Load Debug..., 17

Load Module..., 17

Load Program..., 17
Loading BASIC 2 Plus, 1

Manual, 11
Memory
insufficient, 2
Merge, 12
Module, 19

New, 18

Options, 13
Outline view, 12
QOutline..., 12

Paste, 9
Pre-scan, 4
Print

Outline, 19
Program listing, 19
Traceback, 19
Print program, 18
Program unit, 19
Programming, 4

QUIT, 6

Renumber..., 14
Replace, 10
automatic, 11
manual, 11
Results, 2
RUN, 4

Save all, 17

Save as..., 17

Save..., 16

Search, 10

Search again, 11
Selecting text, 8

Show Trace - TROFF, 27
Show Trace - TRON, 27
Single Step, 28

Stop, 23

Stop execution, 23
SYSTEM, 6

Tab stops, 13
Traceback, 29
Tracing, 27

Turn off tracing, 28
Turn on tracing, 28

Variables in context, 30

‘Whole Words, 10
Window, 2

Workspace Component, 15
Workspace view, 19

<<TROFF>> disabled, 28
<<TROFF>> ¢nabled, 28
? command, 24

so00 N 3 A SIC 2 Plus : User Guide and Quick Reference

e T e e

8909

ISBN 185195 018 4

9%781851"950188

