
Microsoft®
GW-BASIC®

»

v
T3
3o
uv :
C/D

1

i1*

I

■ /
t

Microsoft.
GW-BASIC. Interpreter
User’s Guide

'

:
: Microsoft Corporation
;
■

i

Information in this document is subject to change without notice and does not
represent a commitment on the part of Microsoft Corporation. The software de
scribed in this document is furnished under a license agreement or nondisclosure
agreement. The software may be used or copied only in accordance with the terms
of the agreement. It is against the law to copy this software on magnetic tape, disk,
or any other medium for any purpose other than the purchaser’s personal use.

© Copyright Microsoft Corporation, 1986,1987. All rights reserved.

Portions copyright COMPAQ Computer Corporation, 1985

Simultaneously published in the United States and Canada.

Amstrad is the registered trademark of Amstrad Pic.

Microsoft©, MS-DOS©, GW-BASIC®, and the Microsoft logo are registered trademarks of
Microsoft Corporation.

Compaq® is a registered trademark of COMPAQ Computer Corporation.

DEC® is a registered trademark of Digital Equipment Corporation.

Document No. 410130001-330-R02-0787

L

Contents

1 Welcome to GW-BASIC 1

1.1 System Requirements 3
1.2 Preliminaries 3
1.3 Notational Conventions 3
1.4 Organization of This Manual 4
1.5 Bibliography 5

2 Getting Started With GW-BASIC 7

2.1 Loading GW-BASIC 9
2.2 Modes of Operation 9
2.3 The GW-BASIC Command Line Format 10
2.4 GW-BASIC Statements, Functions,

Commands, and Variables 14
2.5 Line Format 16
2.6 Returning to MS-DOS 18

3 Reviewing and Practicing GW-BASIC 19

3.1 Example for the Direct Mode 21
3.2 Examples for the Indirect Mode 22
3.3 Function Keys 24
3.4 Editing Lines 24
3.5 Saving Your Program File 25

4 The GW-BASIC Screen Editor 27

4.1 Editing Lines in New Files 29
4.2 Editing Lines in Saved Files 29
4.3 Special Keys 30
4.4 Function Keys 33

iii

w
Contents

5 Creating and Using Files 35
5.1 Program File Commands 37
5.2 Data Files 38
5.3 Random Access Files 41

.

: ;;

n
': 6 Constants, Variables,

Expressions and Operators 47
6.1 Constants 49
6.2 Variables 51
6.3 Type Conversion 54
6.4 Expressions and Operators 56

-
I \j j
?!
: i

;*
!

A Error Codes and Messages 65
1

B Mathematical Functions 73

C ASCII Character Codes 75

D Assembly Language
(Machine Code) Subroutines 77

D.l Memory Allocation 77
D.2 CALL Statement 78
D.3 USR Function Calls 82
D.4 Programs That Call

Assembly Language Programs 85\ 1
H .i

i E Converting BASIC Programs to GW-BASIC 89
E.l String Dimensions 89
E.2 Multiple Assignments 90
E.3 Multiple Statements 90
E.4 MAT Functions 90
E.5 FOR-NEXT Loops 91

)
i :

ivi

Contents

F Communications 93

F.l Opening Communications Files 93
F.2 Communications I/O 93
F.3 The COM I/O Functions 94
F.4 Possible Errors: 94
F.5 The INPUT$ Function 95
F.6 The TTY Sample Program 97
F.7 Notes on the TTY Sample Program 98

G Hexadecimal Equivalents 101

H Key Scan Codes 105

I Characters Recognized by GW-BASIC 107

Glossary 109

V

|> Figures
'

Figure D.l Stack Layout When the CALL Statement is Activated 77

Figure D.2 Stack Layout During Execution of a CALL Statement 78
Figure D.3 Number Types in the Floating-Point Accumulator 82

i
:
I

i

; •
:

!

i

ii

V

L vi

Tables

Table 4.1 GW-BASIC Function Key Assignments 34
Table 6.1 Relational Operators 58
Table 6.2 Results Returned by Logical Operations 59
Table G.l Decimal and Binary Equivalents

to Hexadecimal Values 99
Table G.2 Decimal Equivalents to Hexadecimal Values 100

vu

r7"
■

r i

},

j

.

■:

1.

Chapter 1
Welcome to GW-BASIC

1.1 System Requirements 3
1.2 Preliminaries 3
1.3 Notational Conventions 3
1.4 Organization of This Manual 4
1.5 Bibliography 5

l

■
r

I

I

'

i!
Ut=

Notational Conventions

Microsoft® GW-BASIC® is a simple, easy-to-leam, easy-to-use computer
programming language with English-like statements and mathematical
notations. With GW-BASIC you will be able to write both simple and complex
programs to run on your computer. You will also be able to modify existing
software that is written in GW-BASIC.

This guide is designed to help you use the GW-BASIC Interpreter with the
MS-DOS® operating system. Section 1.5 lists resources that will teach you
how to program.

1.1 System Requirements

This version of GW-BASIC requires MS-DOS version 3.2 or later.

1.2 Preliminaries

Your GW-BASIC files will be on the MS-DOS diskette located at the back
of the MS-DOS User's Reference. Be sure to make a working copy of the
diskette before you proceed.

Note
This manual is written for the user familiar with the MS-DOS operating
system. For more information on MS-DOS, refer to the Microsoft MS-DOS
3.2 User's Guide and User's Reference.

3

Welcome to GW-BASIC

1.3 Notational Conventions

Throughout this manual, the following conventions are used to distinguish
elements of text:

Used for commands, options, switches, and literal
portions of syntax that must appear exactly as
shown.
Used for filenames, variables, and placeholders that
represent the type of text to be entered by the user.

monospace Used for sample command lines, program code and
examples, and sample sessions.
Used for keys, key sequences, and acronyms.

Brackets surround optional command-line elements.

bold

italic

SMALL CAPS

1.4 Organization of This Manual

The GW-BASIC User's Guide is divided into six chapters, nine appendixes,
and a glossary:

Chapter 1, “Welcome to GW-BASIC,” describes this manual.

Chapter 2, “Getting Started With GW-BASIC,” is an elementary guideline on
how to begin programming.

Chapter 3, “Reviewing and Practicing GW-BASIC,” lets you use the principles
of GW-BASIC explained in Chapter 2.

Chapter 4, “The GW-BASIC Screen Editor,” discusses editing commands
that can be used when inputting or modifying a GW-BASIC program. It also
explains the unique properties of the ten redefmable function keys and of
other keys and keystroke combinations.

Chapter 5, “Creating and Using Files,” tells you how to create files and to
use the diskette input/output (I/O) procedures.

4

Bibliography

Chapter 6, “Constants, Variables, Expressions, and Operators,” defines the
elements of GW-BASIC and describes how you will use them.

Appendix A, “Error Codes and Messages,” is a summary of all the error
codes and error messages that you might encounter while using GW-BASIC.

Appendix B, “Mathematical Functions,” describes how to calculate certain
mathematical functions not intrinsic to GW-BASIC.

Appendix C, “ASCII Character Codes,” lists the ASCII character codes recog
nized by GW-BASIC.

Appendix D, “Assembly Language (Machine Code) Subroutines,” shows how
to include assembly language subroutines with GW-BASIC.

Appendix E, “Converting BASIC Programs to GW-BASIC,” provides pointers on
converting programs written in BASIC to GW-BASIC.

Appendix F, “Communications,” describes the GW-BASIC statements required
to support RS-232 asynchronous communications with other computers and
peripheral devices.

Appendix G, “Hexadecimal Equivalents,” lists decimal and binary
equivalents to hexadecimal values.

Appendix H, “Key Scan Codes,” lists and illustrates the key scan code
values used in GW-BASIC.

Appendix I, “Characters Recognized by GW-BASIC,” describes the GW-BASIC
character set.

The Glossary defines words and phrases commonly used in GW-BASIC and
data processing.

5

Welcome to GW-BASIC

1.5 Bibliography

This manual is a guide to the use of the GW-BASIC Interpreter: it makes no
attempt to teach the BASIC programming language. The following texts may
be useful for those who wish to learn BASIC programming:

Albrecht, Robert L., LeRoy Finkel, and Jerry Brown. BASIC. 2d ed. New
York: Wiley Interscience, 1978.

Coan, James. Basic BASIC. Rochelle Park, N.J.: Hayden Book Company,
1978.

Dwyer, Thomas A. and Margot Critchfleld. BASIC and the Personal
Computer. Reading, Mass.: Addison-Wesley Publishing Co., 1978.

Ettlin, Walter A. and Gregory Solberg. The MBASIC Handbook. Berkeley,
Calif.: Osbome/McGraw Hill, 1983.

Knecht, Ken. Microsoft BASIC. Portland, Oreg.: Dilithium Press, 1982.

6
A

Chapter 2
Getting Started

With GW-BASIC

2.1 Loading GW-BASIC 9
2.2 Modes of Operation 9
2.2.1 Direct Mode 10
2.2.2 Indirect Mode 10
2.3 The GW-BASIC Command Line Format 10
2.4 GW-BASIC Statements, Functions,

Commands, and Variables 14
2.4.1 Keywords 14
2.4.2 Commands 15
2.4.3 Statements 15
2.4.4 Functions 15
2.4.4.1 Numeric Functions 15

String Functions 16

User-Defined Functions 16
2.4.4.2
2.4.4.3
2.4.5 Variables 16
2.5 Line Format 16
2.6 Returning to MS-DOS 18

7

r"

:

p

.

!

:
.
:

.

'
;--- -

Getting Started With GW-BASIC

This chapter describes how to load GW-BASIC into your system. It also
explains the two different types of operation modes, line formats, and the
various elements of GW-BASIC.

2.1 Loading GW-BASIC

To use the GW-BASIC language, you must load it into the memory of your
computer from your working copy of the MS-DOS diskette. Use the following
procedure:

1. Turn on your computer.
2. Insert your working copy of the MS-DOS diskette into Drive A of

your computer, and press RETURN.
3. Type the following command after the A> prompt, and press

RETURN:
gwbasic

Once you enter GW-BASIC, the GW-BASIC prompt, Ok, will replace the MS-DOS
prompt, A>.

On the screen, the line XXXXX Bytes Free indicates how many bytes are
available for use in memory while using GW-BASIC.

The function key (F1-F10) assignments appear on the bottom line of the
screen. These function keys can be used to eliminate key strokes and save
you time. Chapter 4, “The GW-BASIC Screen Editor,” contains detailed infor
mation on function keys.

2.2 Modes of Operation

Once GW-BASIC is initialized (loaded), it displays the Ok prompt. Ok means
GW-BASIC is at command level, that is, it is ready to accept commands. At
this point, GW-BASIC may be used in either of two modes: direct mode or
indirect mode.

9

P!
Getting Started With GW-BASIC

2.2.1 Direct Mode
In the direct mode, GW-BASIC statements and commands are executed as
they are entered. Results of arithmetic and logical operations can be
displayed immediately and/or stored for later use, but the instructions
themselves are lost after execution. This mode is useful for debugging and
for using GW-BASIC as a calculator for quick computations that do not
require a complete program.

2.2.2 Indirect Mode
The indirect mode is used to enter programs. Program lines are always pre
ceded by line numbers, and are stored in memory. The program stored in
memory is executed by entering the RUN command.

2.3 The GW-BASIC Command Line Format

The GW-BASIC command line lets you change the environment or the condi
tions that apply while using GW-BASIC.

Note
When you specify modifications to the operating environment of GW-
BASIC, be sure to maintain the parameter sequence shown in the syntax
statement. To skip a parameter, insert a comma. This will let the com
puter know that you have no changes to that particular parameter.

GW-BASIC uses a command line of the following form:

gwhosic[filename][<stdin\[[>]>stdout][lt:n][H][ls:n][lc:h\[lm\[n][,n]\[ld]

filename is the name of a GW-BASIC program file. If this parameter is
present, GW-BASIC proceeds as if a RUN command had been given. If no
extension is provided for the filename, a default file extension of .BAS is
assumed. The .BAS extension indicates that the file is a GW-BASIC file. The
maximum number of characters a filename may contain is eight with a
decimal and three extension characters.

10

The GW-BASIC Command Line Format

<stdin redirects GW-BASIC’s standard input to be read from the specified file.
When used, it must appear before any switches.

This might be used when you have multiple files that might be used by
your program and you wish to specify a particular input file.

>stdout redirects GW-BASIC’s standard output to the specified file or device.
When used, it must appear before any switches. Using » before stdout
causes output to be appended.

GW-BASIC can be redirected to read from standard input (keyboard) and
write to standard output (screen) by providing the input and output
filenames on the command line as follows:

gwbasic program name <input file[>]>output file

An explanation of file redirection follows this discussion of the GW-BASIC
command line.

Switches appear frequently in command lines; they designate a specified
course of action for the command, as opposed to using the default for that
setting. A switch parameter is preceded by a slash (/).

H\n sets the maximum number of files that may be opened simultaneously
during the execution of a GW-BASIC program. Each file requires 194 bytes
for the File Control Block (FCB) plus 128 bytes for the data buffer. The data
buffer size may be altered with the Is: switch. If the If: switch is omitted,
the maximum number of open files defaults to 3. This switch is ignored
unless the /i switch is also specified on the command line.

/i makes GW-BASIC statically allocate space required for file operations,
based on the /s and /f switches.

/s:n sets the maximum record length allowed for use with files. The record
length option in the OPEN statement cannot exceed this value. If the /s:
switch is omitted, the record length defaults to 128 bytes. The maximum
record size is 32767.

Ic:n controls RS-232 communications. If RS-232 cards are present, /c:0 dis
ables RS-232 support, and any subsequent I/O attempts for each RS-232
card present. If the /c: switch is omitted, 256 bytes are allocated for the
receive buffer and 128 bytes for the transmit buffer for each card present.

11

",
Getting Started With GW-BASIC

The /c: switch has no affect when RS-232 cards are not present. The lc:n
switch allocates n bytes for the receive buffer and 128 bytes for the
transmit buffer for each RS-232 card present.

Im:n[,n] sets the highest memory location (first n) and maximum block size
(second n) used by GW-BASIC. GW-BASIC attempts to allocate 64K bytes of
memory for the data and stack segments. If machine language subroutines
are to be used with GW-BASIC programs, use the /m: switch to set the
highest location that GW-BASIC can use. The maximum block size is in mul
tiples of 16. It is used to reserve space for user programs (assembly lan
guage subroutines) beyond GW-BASIC’s workspace.

The default for maximum block size is the highest memory location. The
default for the highest memory location is 64K bytes unless maximum block
size is specified, in which case the default is the maximum block size (in
multiples of 16).

/d allows certain functions to return double-precision results. When the Id
switch is specified, approximately 3000 bytes of additional code space are
used. The functions affected are ATN, COS, EXP, LOG, SIN, SQR, and
TAN.

:

Note
All switch numbers may be specified as decimal, octal (preceded by &0),
or hexadecimal (preceded by &H).

Sample GW-BASIC command lines are as follows:

The following uses 64K bytes of memory and three files; loads and executes
the program file payroll.bas:

A> gwbasic PAYROLL

The following uses 64K bytes of memory and six files; loads and executes
the program file invent.bas:

A>gwbasic INVENT /F:6

12

The GW-BASIC Command Line Format

The following disables RS-232 support and uses only the first 32K bytes of
memory. 32K bytes above that are reserved for user programs:

A>gwbasic /C:0 /M:32768,4096

The following uses four files and allows a maximum record length of 512
bytes:

A>gwba5ic /F:4 /S:512

The following uses 64K bytes of memory and three files. Allocates 512 bytes
to RS-232 receive buffers and 128 bytes to transmit buffers, and loads and
executes the program file tty.bas:

A>gwbaaic TTY /C:512

For more information about RS-232 Communications, see Appendix F.

Redirection of Standard Input and Output

When redirected, all INPUT, LINE INPUT, INPUT$, and INKEY$ state
ments are read from the specified input file instead of the keyboard.

All PRINT statements write to the specified output file instead of the
screen.

Error messages go to standard output and to the screen.

File input from KYBD: is still read from the keyboard.

File output to SCRN: still outputs to the screen.

GW-BASIC continues to trap keys when the ON KEY n statement is used.

Typing CTRL-BREAK when output is redirected causes GW-BASIC to close any
open files, issue the message “Break in line nnnn” to standard output, exit
GW-BASIC, and return to MS-DOS.

When input is redirected, GW-BASIC continues to read from this source until
a CTRL-Z is detected. This condition can be tested with the end-of-file (EOF)
function. If the file is not terminated by a CTRL-Z, or if a GW-BASIC file input
statement tries to read past the end of file, then any open files are closed,
and GW-BASIC returns to MS-DOS.

13

r
Getting Started With GW-BASIC

For further information about these statements and other statements,
functions, commands, and variables mentioned in this text, refer to the
GW-BASIC User’s Reference.

Some examples of redirection follow.

GUBASIC MYPROG >DATA.OUT

Data read by the INPUT and LINE INPUT statements continues to come
from the keyboard. Data output by the PRINT statement goes into the
data.out file.

gwbasic MYPROG <DATA.IN

Data read by the INPUT and LINE INPUT statements comes from data.in.
Data output by PRINT continues to go to the screen.

gwbasic MYPROG <MYINPUT.DAT >MY0UTPUT.DAT

Data read by the INPUT and LINE INPUT statements now comes from the
file myinput.dat, and data output by the PRINT statements goes into
myoutput.dat.

gwbasic MYPROG <\SALES\JOHN\TRAMS.DAT >>\SALES\SALES.DAT

Data read by the INPUT and LINE INPUT statements now comes from the
file \sales\john\trans.dat. Data output by the PRINT statement is
appended to the file \sales\sales.dat.

2.4 GW-BASIC Statements, Functions,
Commands, and Variables

A GW-BASIC program is made up of several elements: keywords, commands,
statements, functions, and variables.

2.4.1 Keywords
GW-BASIC keywords, such as print, goto, and return have special signifi
cance for the GW-BASIC Interpreter. GW-BASIC interprets keywords as part of
statements or commands.

14

al___

Statements, Functions, Commands, and Variables

Keywords are also called reserved words. They cannot be used as variable
names, or the system will interpret them as commands. However, keywords
may be embedded within variable names.

Keywords are stored in the system as tokens (1- or 2-byte characters) for the
most efficient use of memory space.

2.4.2 Commands

Commands and statements are both executable instructions. The difference
between commands and statements is that commands are generally exe
cuted in the direct mode, or command level of the interpreter. They usually
perform some type of program maintenance such as editing, loading, or sav
ing programs. When GW-BASIC is invoked and the GW-BASIC prompt, Ok,
appears, the system assumes command level.

2.4.3 Statements
A statement, such as ON ERROR...GOTO, is a group of GW-BASIC keywords
generally used in GW-BASIC program lines as part of a program. When the
program is run, statements are executed when, and as, they appear.

2.4.4 Functions
The GW-BASIC Interpreter performs both numeric and string functions.

2.4.4.1 Numeric Functions

The GW-BASIC Interpreter can perform certain mathematical (arithmetical
or algebraic) calculations. For example, it calculates the sine (sin), cosine
(cos), or tangent (tan) of angle x.

Unless otherwise indicated, only integer and single-precision results are
returned by numeric functions.

15

Getting Started With GW-BASIC

2.4A.2 String Functions

String functions operate on strings. For example, TIME$ and DATE$ return
the time and date known by the system. If the current time and date are
entered during system start-up, the correct time and date are given (the
internal clock in the computer keeps track).

2.4.4.3 User-Defined Functions

Functions can be user-defined by means of the DEF FN statement. These
functions can be either string or numeric.

2.4.5 Variables
Certain groups of alphanumeric characters are assigned values and are
called variables. When variables are built into the GW-BASIC program they
provide information as they are executed.

For example, ERR defines the latest error which occurred in the program;
ERL gives the location of that error. Variables can also be defined and/or
redefined by the user or by program content.

All GW-BASIC commands, statements, functions, and variables are individu
ally described in the GW-BASIC User’s Reference.

2.5 Line Format

Each of the elements of GW-BASIC can make up sections of a program that
are called statements. These statements are very similar to sentences in
English. Statements are then put together in a logical manner to create
programs. The GW-BASIC User’s Reference describes all of the statements
available for use in GW-BASIC.

In a GW-BASIC program, lines have the following format:

nnnnn statement[statements]

nnnnn is a line number.

statement is a GW-BASIC statement.

16

Statements, Functions, Commands, and Variables

A GW-BASIC program line always begins with a line number and must con
tain at least one character, but no more than 255 characters. Line numbers
indicate the order in which the program lines are stored in memory, and
are also used as references when branching and editing. The program line
ends when you press the RETURN key.

Depending on the logic of your program, there may be more than one state
ment on a line. If so, each must be separated by a colon (:). Each of the
lines in a program should be preceded by a line number. This number may
be any whole integer from 0 to 65529. It is customary to use line numbers
such as 10, 20, 30, and 40, in order to leave room for any additional lines
that you may wish to include later. Since the computer will run the state
ments in numerical order, additional lines needn’t appear in consecutive
order on the screen: for example, if you entered line 35 after line 60, the
computer would still run line 35 after line 30 and before line 40. This tech
nique may save your reentering an entire program in order to include one
line that you have forgotten.

The width of your screen is 80 characters. If your statement exceeds this
width, the cursor will wrap to the next screen line automatically. Only
when you press the RETURN key will the computer acknowledge the end of
the line. Resist the temptation to press RETURN as you approach the edge of
the screen (or beyond). The computer will automatically wrap the line for
you. You can also press CTRL-RETURN, which causes the cursor to move to
the beginning of the next screen line without actually entering the line.
When you press RETURN, the entire logical line is passed to GW-BASIC for
storage in the program.

In GW-BASIC, any line of text that begins with a numeric character is con
sidered a program line and is processed in one of three ways after the
RETURN key is pressed:

A new line is added to the program. This occurs if the line number
is legal (within the range of 0 through 65529), and if at least one
alpha or special character follows the line number in the line.
An existing line is modified. This occurs if the line number matches
the line number of an existing line in the program. The existing
line is replaced with the text of the newly-entered line. This process
is called editing.

17

r
Getting Started With GW-BASIC

Note
Reuse of an existing line number causes all of the information
contained in the original line to be lost. Be careful when enter
ing numbers in the indirect mode. You may erase some program
lines by accident.

• An existing line is deleted. This occurs if the line number matches
the line number of an existing line, and the entered line contains
only a line number. If an attempt is made to delete a nonexistent
line, an “Undefined line number” error message is displayed.

2.6 Returning to MS-DOS

Before you return to MS-DOS, you must save the work you have entered
under GW-BASIC, or the work will be lost.

To return to MS-DOS, type the following after the Ok prompt, and press
RETURN:

5ystem

The system returns to MS-DOS, and the A> prompt appears on your screen.

18

Chapter 3
Reviewing and Practicing

GW-BASIC

3.1 Example for the Direct Mode 21
3.2 Examples for the Indirect Mode 22
3.3 Function Keys 24
3.4 Editing Lines 24
3.5 Saving Your Program File 25

19

Example for the Direct Mode

The practice sessions in this chapter will help you review what you have
learned. If you have not done so, this is a good time to turn on your com
puter and load the GW-BASIC Interpreter.

3.1 Example for the Direct Mode

You can use your computer in the direct mode to perform fundamental
arithmetic operations. GW-BASIC recognizes the following symbols as arith
metic operators:

GW-BASIC OperatorOperation
Addition
Subtraction
Multiplication
Division

+

/

To enter a problem, respond to the Ok prompt with a question mark (?),
followed by the statement of the problem you want to solve, and press the
RETURN key. In GW-BASIC, the question mark can be used interchangeably
with the keyword PRINT. The answer is then displayed.

Type the following and press the RETURN key:

72 + 2

GW-BASIC will display the answer on your screen:

72 + 2
4
Ok

To practice other arithmetic operations, replace the + sign with the desired
operator.

The GW-BASIC language is not restricted to arithmetic functions. You can
also enter complex algebraic and trigonometric functions. The formats for
these functions are provided in Chapter 6, “Constants, Variables, Expres
sions and Operators.”

21

Reviewing and Practicing GW-BASIC

3.2 Examples for the Indirect Mode

The GW-BASIC language can be used for functions other than simple alge
braic calculations. You can create a program that performs a series of oper
ations and then displays the answer. To begin programming, you create
lines of instructions called statements. Remember that there can be more
than one statement on a line, and that each line is preceded by a number.

For example, to create the command PRINT 2 + 3 as a statement, type the
following:

10 print 2+3

When you press the RETURN key, the cursor shifts to the next line, but noth
ing else happens. To make the computer perform the calculation, type the
following and press the RETURN key:

run

Your screen should look like this:

Ok
10 print 2+3
run

5
Ok

You have just written a program in GW-BASIC.

The computer reserves its calculation until specifically commanded to con
tinue (with the RUN command). This allows you to enter more lines of
instruction. When you type the RUN command, the computer does the
addition and displays the answer.

The following program has two lines of instructions. Type it in:

10 x=3
20 print 2+x

Now use the RUN command to have the computer calculate the answer.

Examples for the Indirect Mode

Your screen should look like this:

Ok
10 x = 3
20 print 2+x
run

5
Ok

The two features that distinguish a program from a calculation are

1. the numbered lines
2. the use of the RUN command

These features let the computer know that all the statements have been
typed and the computation can be carried out from beginning to end. It is
the numbering of the lines that first signals the computer that this is a pro
gram, not a calculation, and that it must not do the actual computation
until the RUN command is entered.

In other words, calculations are done under the direct mode. Programs are
written under the indirect mode.

To display the entire program again, type the LIST command and press the
RETURN key:

list

Your screen should look like this:

□ k
10 x = 3
20 print 2+x
run
□ k

5
Ok
list
1 0 X = 3
20 PRINT 2+X
Ok

You’ll notice a slight change in the program. The lowercase letters you
entered have been converted into uppercase letters. The LIST command
makes this change automatically.

23

Reviewing and Practicing GW-BASIC

3.3 Function Keys

Function keys are keys that have been assigned to frequently-used com
mands. The ten function keys are located on the left side of your keyboard.
A guide to these keys and their assigned commands appears on the bottom
of the GW-BASIC screen. To save time and keystrokes, you can press a func
tion key instead of typing a command name.

For example, to list your program again, you needn’t type the LIST com
mand; you can use the function key assigned to it, instead:

1. Press the Fi key.
2. Press RETURN.

Your program should appear on the screen.

To run the program, simply press the F2 key, which is assigned to the RUN
command.

As you learn more commands, you’ll learn how to use keys F3 through F10.
Chapter 4, ‘The GW-BASIC Screen Editor,” contains more information about
keys used in GW-BASIC.

3.4 Editing Lines
1

There are two basic ways to change lines. You can

• delete and replace them
• alter them with the EDIT command

I

To delete a line, simply type the line number and press the RETURN key.
For example, if you type 12 and press the RETURN key, line number 12 is
deleted from your program.

To use the EDIT command, type the command EDIT, followed by the
number of the line you want to change. For example, type the following
and press the RETURN key:

edit 10

24

Saving Your Program File

You can then use the following keys to perform editing:

Key Function

Moves the cursor within the statementCURSOR UP
CURSOR DOWN
CURSOR LEFT
CURSOR RIGHT

Deletes the character to the left of the cursor

Deletes the current character

Lets you insert characters to the left of the cursor

For example, to modify statement (line) 10 to read x = 4, use the cursor-
right control key to move the cursor under the 3, and then type a 4. The
number 4 replaces the number 3 in the statement.

Now press the RETURN key, and then the F2 key.

Your screen displays the following:

BACKSPACE

DELETE (DEL)
INSERT (INS)

□ k
1 0 X = 4
RUN

6
Ok

3.5 Saving Your Program File

Creating a program is like creating a data file. The program is a file that
contains specific instructions, or statements, for the computer. In order to
use the program again, you must save it, just as you would a data file.

To save a file in GW-BASIC, use the following procedure:

1. Press the F4 key.
The command word SAVE” appears on your screen.

2. Type a name for the program, and press the RETURN key. The file is
saved under the name you specified.

25

II
Reviewing and Practicing GW-BASIC

To recall a saved file, use the following procedure:

1. Press the F3 key.
The command load LOAD ” appears on your screen.

2. Type the name of the file.
3. Press RETURN.

The file is loaded into memory, and ready for you to list, edit, or run.

L_

Chapter 4
The GW-BASIC Screen Editor

4.1 Editing Lines in New Files 29
4.2 Editing Lines in Saved Files 29
4.2.1 Editing the Information in a Program Line 29
4.3 Special Keys 30
4.4 Function Keys 33

i

27

*:w

'

!

4 s

!

:!i2

:
■

;
■

:

1

;

:
■

5
I

,

i
i

i

Editing Lines in Saved Files

You can edit GW-BASIC program lines as you enter them, or after they have
been saved in a program file.

4.1 Editing Lines in New Files

If an incorrect character is entered as a line is being typed, it can be deleted
with the BACKSPACE or DEL keys, or with CTRL-H. After the character is
deleted, you can continue to type on the line.

The ESC key lets you delete a line that is in the process of being typed. In
other words, if you have not pressed the RETURN key, and you wish to delete
the current line of entry, press the ESC key.

To delete the entire program currently residing in memory, enter the NEW
command. NEW is usually used to clear memory prior to entering a new
program.

4.2 Editing Lines in Saved Files

After you have entered your GW-BASIC program and saved it, you may dis
cover that you need to make some changes. To make these modifications,
use the LIST statement to display the program lines that are affected:

1. Reload the program.
2. Type the LIST command, or press the Fl key.
3. Type the line number, or range of numbers, to be edited.

The lines will appear on your screen.

4.2.1 Editing the Information in a Program Line
You can make changes to the information in a line by positioning the
cursor where the change is to be made, and by doing one of the following:

• Typing over the characters that are already there.

29

F The GW-BASIC Screen Editor

Deleting characters to the left of the cursor, using the BACKSPACE
key.
Deleting characters at the cursor position using the DEL key on the
number pad.
Inserting characters at the cursor position by pressing the INS key
on the number pad. This moves the characters following the cursor
to the right making room for the new information.
Adding to or truncating characters at the end of the program line.

If you have changed more than one line, be sure to press RETURN on each
modified line. The modified lines will be stored in the proper numerical
sequence, even if the lines are not updated in numerical order.

Note
A program line will not actually have changes recorded within the
GW-BASIC program until the RETURN key is pressed with the cursor posi
tioned somewhere on the edited line.

You do not have to move the cursor to the end of the line before pressing
the RETURN key. The GW-BASIC Interpreter remembers where each line ends,
and transfers the whole line, even if RETURN is pressed while the cursor is
located in the middle or at the beginning of the line.

To truncate, or cut off, a line at the current cursor position, type CTRL-END
or CTRL-E, followed by pressing the RETURN key.

If you have originally saved your program to a program file, make sure that
you save the edited version of your program. If you do not do this, your
modifications will not be recorded.

4.3 Special Keys

The GW-BASIC Interpreter recognizes nine of the numeric keys on the right
side of your keyboard. It also recognizes the BACKSPACE key, ESC key, and
the CTRL key. The following keys and key sequences have special functions
in GW-BASIC:

30

Special Keys

FunctionKey

Deletes the last character typed, or deletes the
character to the left of the cursor. All charac
ters to the right of the cursor are moved left
one position. Subsequent characters and lines
within the current logical line are moved up
as with the DEL key.

Returns to the direct mode, without saving
changes made to the current line. It will also
exit auto line-numbering mode.

Moves the cursor to the beginning of the pre
vious word. The previous word is defined as
the next character to the left of the cursor in
the set A to Z or in the set 0 to 9.

Moves the cursor to the beginning of the next
word. The next word is defined as the next
character to the right of the cursor in the set
A to Z or in the set 0 to 9. In other words, the
cursor moves to the next number or letter
after a blank or other special character.

Moves the cursor down one line on the screen.

BACKSPACE or CTRL-H

CTRL-BREAK or CTRL-C

CTRL-CURSOR-LEFT or
CTRL-B

CTRL-CURSOR-RIGHT
or CTRL-F

CURSOR-DOWN or
CTRL--

Moves the cursor one position left. When the
cursor is advanced beyond the left edge of the
screen, it will wrap to the right side of the
screen on the preceding line.

Moves the cursor one position right. When the
cursor is advanced beyond the right edge of
the screen, it will wrap to the left side of the
screen on the following line.

Moves the cursor up one line on the screen.

Deletes the character positioned over the cur
sor. All characters to the right of the one
deleted are then moved one position left to fill
in where the deletion was made.

If a logical line extends beyond one physical
line, characters on subsequent lines are moved
left one position to fill in the previous space,
and the character in the first column of each
subsequent line is moved up to the end of the
preceding line.

CURSOR-LEFT or
CTRL-]

CURSOR-RIGHT or
CTRL-\

CURSOR-UP or CTRL-6

CTRL-BACKSPACE or
DEL

31

The GW-BASIC Screen Editor

DEL (delete) is the opposite of INS (insert).
Deleting text reduces logical line length.
Erases from the cursor position to the end of
the logical line. All physical screen lines are
erased until the terminating RETURN is found.
Moves the cursor to the end of the logical line.
Characters typed from this position are added
to the line.
Moves the cursor to the beginning of the next
screen line. This lets you create logical pro
gram lines which are longer than the physical
screen width. Logical lines may be up to 255
characters long. This function may also be
used as a line feed.
Enters a line into the GW-BASIC program. It
also moves the cursor to the next logical line.
Erases the entire logical line on which the
cursor is located.
Causes a beep to emit from your computer’s
speaker.
Moves the cursor to the upper left corner of
the screen. The screen contents are
unchanged.
Clears the screen and positions the cursor in
the upper left comer of the screen.
Turns the Insert Mode on and off.
Insert Mode is indicated by the cursor blotting
the lower half of the character position. In
Graphics Mode, the normal cursor covers the
whole character position. When Insert Mode is
active, only the lower half of the character
position is blanked by the cursor.
When Insert Mode is off, characters typed
replace existing characters on the line. The
SPACEBAR erases the character at the current
cursor position and moves the cursor one char
acter to the right. The CURSOR-RIGHT key
moves the cursor one character to the right,
but does not delete the character.

CTRL-END or CTRL-E

CTRL-N or END

CTRL-RETURN or
CTRL-J

CTRL-M or RETURN

CTRL-l or ESC

CTRL-G

CTRL-K or HOME

CTRL-HOME or CTRL-L

CTRL-R or INS

32

Function Keys

When Insert Mode is off, pressing the TAB key
moves the cursor over characters until the
next tab stop is reached. Tab stops occur every
eight character positions.
When Insert Mode is on, characters following
the cursor are moved to the right as typed
characters are inserted before them at the
current cursor position. After each keystroke,
the cursor moves one position to the right.
Line wrapping is observed. That is, as charac
ters move off the right side of the screen, they
are inserted from the left on subsequent lines.
Insertions increase logical line length.
When Insert Mode is on, pressing the TAB key
causes blanks to be inserted from current cur
sor position to the next tab stop. Line wrap
ping is observed as above.
Places the computer in a pause state. To
resume operation, press any other key.
Causes characters printed on the screen to
echo to the lineprinter (lptl:). In other words,
you will be printing what you type on the
screen. Pressing CTRL-PRTSC a second time
turns off the echoing of characters to lptl:.
Sends the current screen contents to the
printer, effectively creating a snapshot of the
screen.
Moves the cursor to the next tab stop. Tab
stops occur every eight columns.

CTRL-NUM LOCK or
CTRL-S

CTRL-PRTSC

SHIFT-PRTSC

CTRL-I or TAB

4.4 Function Keys

Certain keys or combinations of keys let you perform frequently-used com
mands or functions with a minimum number of keystrokes. These keys are
called function keys.

33

*r
The GW-BASIC Screen Editor

The special function keys that appear on the left side of your keyboard
can be temporarily redefined to meet the programming requirements and
specific functions that your program may require.

Function keys allow rapid entry of as many as 15 characters into a program
with one keystroke. These keys are located on the left side of your keyboard
and are labelled Fl through FlO. GW-BASIC has already assigned special func
tions to each of these keys. You will notice that after you load GW-BASIC,
these special key functions appear on the bottom line of your screen. These
key assignments have been selected for you as some of the most frequently
used commands.

Initially, the function keys are assigned the following special functions:

Table 4.1
GW-BASIC Function Key Assignments

Key Function Key Function

F6 ,“LPT1:”<-
F2 RUN<- F7 TRON<-
F3 LOAD” F8 TROFFc-
F4 SAVE” F9 KEY
F5 CONT<- FlO SCREEN 0,0,0<-

F1 LIST

Note
The <- following a function indicates that you needn’t press the RETURN
key after the function key. The selected command will be immediately
executed.

If you choose, you may change the assignments of these keys. Any one or
all of the 10 function keys may be redefined. For more information, see the
KEY and ON KEY statements in the GW-BASIC User’s Reference.

!

it 34

Chapter 5
Creating and Using Files

5.1 Program File Commands 37
5.2 Data Files 38
5.2.1 Creating a Sequential File 38
5.2.2 Accessing a Sequential File 40
5.2.3 Adding Data to a Sequential File 41
5.3 Random Access Files 41
5.3.1 Creating a Random Access File 42
5.3.2 Accessing a Random Access File 43

35

i

i

-
:

Program File Commands

There are two types of flies in MS-DOS systems:

• Program files, which contain the program or instructions for the
computer

• Data fileSy which contain information used or created by program
flies

5.1 Program File Commands

The following are the commands and statements most frequently used with
program files. The GW-BASIC User's Reference contains more information
on each of them.

SAVE filename^a][,p]

Writes to diskette the program currently residing in memory.

LOAD filename^r]

Loads the program from a diskette into memory. LOAD deletes the current
contents of memory and closes all files before loading the program.

RUN filename^r]

Loads the program from a diskette into memory and runs it immediately.
RUN deletes the current contents of memory and closes all files before load
ing the program.

MERGE filename

Loads the program from a diskette into memory, but does not delete the
current program already in memory.

KILL filename

Deletes the file from a diskette. This command can also be used with data
files.

NAME old filename AS new filename

Changes the name of a diskette file. Only the name of the file is changed.
The file is not modified, and it remains in the same space and position on
the disk. This command can also be used with data files.

37

I
Creating and Using Files

5.2 Data Files

GW-BASIC programs can work with two types of data files:

• Sequential files
• Random access files

Sequential files are easier to create than random access files, but are lim
ited in flexibility and speed when accessing data. Data written to a sequen
tial file is a series of ASCII characters. Data is stored, one item after another
(sequentially), in the order sent. Data is read back in the same way.

Creating and accessing random access files requires more program steps
than sequential files, but random files require less room on the disk,
because GW-BASIC stores them in a compressed format in the form of a
string.

The following sections discuss how to create and use these two types of
data files.

5.2.1 Creating a Sequential File
The following statements and functions are used with sequential files:

CLOSE LOF
EOF OPEN

PRINT#
PRINT# USING
UNLOCK
WRITE#

INPUT#
LINE INPUT#
LOC
LOCK

The following program steps are required to create a sequential file and
access the data in the file:

Open the file in output (O) mode. The current program will use this
file first for output:
OPEN "0”,#1 “filename”
Write data to the file using the PRINT# or WRITE# statement:
PRINT# 1,A$
PRINT# 1,B$
PRINT# 1,C$

1.

2.

38L

Data Files

3. To access the data in the file, you must close the file and reopen it
in input (I) mode:
CLOSE #1
OPEN “Y\#l “filename”

4. Use the INPUT# or LINE INPUT# statement to read data from the
sequential file into the program:
INPUT# 1 ,X$, Y$,Z$

i

Example 1 is a short program that creates a sequential file, data, from
information input at the terminal.

Example 1

1 0 OPEN "0",*1 /'DATA"
20 INPUT "NAME";N$
30 IF N$="D0NE" THEN END
40 INPUT "DEPARTMENT";D$
50 INPUT "DATE HI RED";H$
60 PR I NT*1 ,N$;","D$",";H$
70 PRINT:GOTO 20
RUN
NAME? MICKEY MOUSE
DEPARTMENT? AUDIO/VISUAL AIDS
DATE HIRED? 01/12/72

NAME? SHERLOCK HOLMES
DEPARTMENT? RESEARCH
DATE HIRED? 12/03/65

NAME? EBENEEZER SCROOGE
DEPARTMENT? ACCOUNTING
DATE HIRED? 04/27/78

NAME? SUPER MANN
DEPARTMENT? MAINTENANCE
DATE HIRED? 08/16/78

NAME? DONE
OK

39

H Creating and Using Files
.

■

5.2.2 Accessing a Sequential File

The program in Example 2 accesses the file data, created in the program in
Example 1, and displays the name of everyone hired in 1978.I

Example 2

10 OPEN "I",#1 /'DATA"
20 INPUT#!,N$,D$,H$
30 IF RIGHT$(H$ J2)=,,78" THEN PRINT N$
40 GOTO 20
50 CLOSE #1
RUN
EBENEEZER SCROOGE
SUPER MANN
Input past end in 20
Ok

The program in Example 2 reads, sequentially, every item in the file. When
all the data has been read, line 20 causes an “Input past end” error. To
avoid this error, insert line 15, which uses the EOF function to test for end
of file:

! 15 IF EOF(1) THEN END

and change line 40 to GOTO 15.

A program that creates a sequential file can also write formatted data to
the diskette with the PRINT# USING statement. For example, the follow
ing statement could be used to write numeric data to diskette without expli
cit delimiters:

PRINT#!,USING"####.##,";A,B,C,D

The comma at the end of the format string serves to separate the items in
the disk file.

The LOC function, when used with a sequential file, returns the number of
128-byte records that have been written to or read from the file since it was
opened.

40

ml m

Random Access Files

5.2.3 Adding Data to a Sequential File
When a sequential file is opened in 0 mode, the current contents are de
stroyed. To add data to an existing file without destroying its contents, open
the file in append (A) mode.

The program in Example 3 can be used to create, or to add onto a file called
names. This program illustrates the use of LINE INPUT. LINE INPUT will
read in characters until it sees a carriage return indicator, or until it has
read 255 characters. It does not stop at quotation marks or commas.

Example 3

10 DM ERROR GOTO 2000
20 OPEN "A",#\ /'NAMES"
110 REM ADD NEW ENTRIES TO FILE
120 INPUT "NAME";N$
130 IF N$="" THEN 200 'CARRIAGE RETURN EXITS INPUT LOOP
14 0 LINE INPUT "ADDRESS? "*,A$
150 LINE INPUT "BIRTHDAY? ";B$
160 PR I NT*1 ,N$
1 70 PRINTS , A$
180 PRINTS ,B$
190 PRINT:GOTO 120
200 CLOSE 91
2000 ON ERROR GOTO 0

In lines 10 and 2000 the ON ERROR GOTO statement is being used. This
statement enables error trapping and specifies the first line (2000) of the
error handling subroutine. Line 10 enables the error handling routine. Line
2000 disables the error handling routine and is the point where GW-BASIC
branches to print the error messages.

5.3 Random Access Files

Information in random access files is stored and accessed in distinct, num
bered units called records. Since the information is called by number, the
data can be called from any disk location; the program needn’t read the
entire disk, as when seeking sequential files, to locate data. GW-BASIC sup
ports large random files. The maximum logical record number is 232 -1.

41

f Creating and Using Files

The following statements and functions are used with random files:

CLOSE FIELD MKI$
MKS$
OPEN

LOCCVD
LOCKCVI

CVS LOF PUT
EOF LSET/RSET UNLOCK

MKD$ET

5.3.1 Creating a Random Access File
The following program steps are required to create a random data file:

1. Open the file for random access (R) mode. The following example
specifies a record length of 32 bytes. If the record length is omitted,
the default is 128 bytes.
OPEN “R”,# 1 “filename”£2

2. Use the FIELD statement to allocate space in the random buffer for
the variables that will be written to the random file:
FIELD# 1,20 AS N$,4 AS A$,8 AS P$
In this example, the first 20 positions (bytes) in the random file
buffer are allocated to the string variable N$. The next 4 positions
are allocated to A$; the next 8 to P$.

3. Use LSET or RSET to move the data into the random buffer fields
in left- or right-justified format (L = left SET; R = right SET).
Numeric values must be made into strings when placed in the
buffer. MKI$ converts an integer value into a string, MKS$ con
verts a single-precision value, and MKD$ converts a double
precision value.
LSET N$ = X$
LSET A$ = MKS$(AMT)
LSET P$=TEL$

4. Write the data from the buffer to the diskette using the PUT
statement:
PUT #l,CODE%

The program in Example 4 takes information keyed as input at the termi
nal and writes it to a random access data file. Each time the PUT state
ment is executed, a record is written to the file. In the example, the 2-digit
CODE% input in line 30 becomes the record number.:

42

in

Random Access Files

Note
Do not use a fielded string variable in an INPUT or LET statement.
This causes the pointer for that variable to point into string space
instead of the random file buffer.

Example 4

10 OPEN "R",#1 ,,,INF0FILE,,,32
20 FIELD#1,20 AS N$, 4 AS A$, 8 AS P$
30 INPUT "2-DIGIT CODE";CODEX
40 INPUT "NAME";X$
50 INPUT "AMOUNT";AMT
60 INPUT "PHONE";TEL$:PR I NT
70 LSET N$ = X$
80 LSET A$=MKS$(AMT)
90 LSET P$=TEL$
100 PUT ,C0DE*/.
110 GOTO 30

5.3.2 Accessing a Random Access File
The following program steps are required to access a random file:

1. Open the file in R mode:
OPEN “R”,#l,“/i/ename”,32

2. Use the FIELD statement to allocate space in the random buffer for
the variables that will be read from the file:
FIELD, #1, 20 AS N$, 4 AS A$, 8 AS P$
In this example, the first 20 positions (bytes) in the random file
buffer are allocated to the string variable N$. The next 4 positions
are allocated to A$; the next 8 to P$.

Note
In a program that performs both INPUT and OUTPUT on the
same random file, you can often use just one OPEN statement
and one FIELD statement.

43

f Creating and Using Files

3. Use the GET statement to move the desired record into the random
buffer:
GET #l,CODE%
The data in the buffer can now be accessed by the program.

4. Convert numeric values back to numbers using the convert func
tions: CVI for integers, CVS for single-precision values, and CVD
for double-precision values.
PRINT N$
PRINT CVS(A$)

i

■

The program in Example 5 accesses the random file, info file, that was
created in Example 4. By inputting the 3-digit code, the information associ
ated with that code is read from the file and displayed.

Example 5

10 OPEN "R",*1 ,,,INF0FILE,,,32
20 FIELD #1, 20 AS N$, 4 AS A$, 8 AS P$
30 INPUT "2-DIGIT C0DE";C0DE%
40 GET #1, CODEX
50 PRINT N$
60 PRINT USING "$$*##.##";CVS(A $)
70 PRINT PS:PR I NT
80 GOTO 30

With random files, the LOC function returns the current record number.
The current record number is the last record number used in a GET or PUT
statement. For example, the following line ends program execution if the
current record number in file#l is higher than 99:

IF LOC(1)#99 THEN END

Example 6 is an inventory program that illustrates random file access.
In this program, the record number is used as the part number, and it is
assumed that the inventory will contain no more than 100 different part
numbers.

Lines 900-960 initialize the data file by writing CHR$(255) as the first
character of each record. This is used later (line 270 and line 500) to deter
mine whether an entry already exists for that part number.

44

Random Access Files

Lines 130-220 display the different inventory functions that the program
performs. When you type in the desired function number, line 230 branches
to the appropriate subroutine.

Example 6

120 0PEN"R",*1,"INVEN.DAT",39
125 FIELDS,1 AS F$,30 AS D$, 2 AS Q$,2 AS R$,4 AS P$
130 PRINT:PRINT "FUNCTIONS:":PR I NT
135 PRINT 1 /'INITIALIZE FILE"
140 PRINT 2,"CREATE A NEW ENTRY"
150 PRINT 3,"DISPLAY INVENTORY FOR ONE PART"
160 PRINT 4,"ADD TO STOCK"
170 PRINT 5,"SUBTRACT FROM STOCK"
180 PRINT 6,"DISPLAY ALL ITEMS BELOW REORDER LEVEL"
220 PRINTiPRINT:INPUT"FUNCTI ON";FUNCTI ON
225 IF (FUNCTIONS)OR(FUNCTION>6) THEN PRINT "BAD FUNCTION
NUMBER":GOTO 130
230 ON FUNCTION GOSUB 900,250,390,480,560,680
240 GOTO 220
250 REM BUILD NEW ENTRY
260 GOSUB 840
270 IF ASC(F$) < > 255 THEN INPUT"OVERWRITE";A$:

IF A$ < > "Y" THEN RETURN
280 LSET F$ = CHR$(0)
290 INPUT "DESCRIPTION";DESC$
300 LSET D$=DESC$
310 INPUT "QUANTITY IN STOCK";Q%
320 LSET Q$=MKI $(Q%)
330 INPUT "REORDER LEVEL";R%
340 LSET R$=MKI $(R%)
350 INPUT "UNIT PRICE";P
360 LSET P$=MKS$(P)
370 PUT#1,PART%
380 RETURN
390 REM DISPLAY ENTRY
400 GOSUB 840
410 IF ASC(F$)=255 THEN PRINT "NULL ENTRY":RETURN
420 PRINT USING "PART NUMBER *##";PARTX
430 PRINT D$
440 PRINT USING "QUANTITY ON HAND #####";CVI(Q$)
450 PRINT USING "REORDER LEVEL #*###";CVI(R$)
460 PRINT USING "UNIT PRICE $$##.##";CVS(P$)
470 RETURN
480 REM ADD TO STOCK
490 GOSUB 840
500 IF ASC(F$)=255 THEN PRINT "NULL ENTRY":RETURN
510 PRINT D$:INPUT "QUANTITY TO ADD";A%

45

I Ureabng ana Using Files

520 QX=CVI(Q$)+AX
530 LSET Q$=MKI$(QX)
540 PUT#1,PARTX
550 RETURN
560 REM REMOVE FROM STOCK
570 GOSUB 840
580 IF ASC(F$)=255 THEN PRINT "NULL ENTRY":RETURN
590 PRINT D$
600 INPUT "QUANTITY TO SUBTRACT";S%
610 QX=CVI(Q$)
620 IF (QX-SX)<0 THEN PRINT "ONLY";QX;" IN STOCK" :GOTO 600
630 QX=QX-SX
640 IF QX= < CVI(R$) THEN PRINT "QUANTITY NOW";QX;
"REORDER LEVEL"; CVI(R$)
650 LSET Q$=MKI $(QX)
660 PUT#1,PARTX
670 RETURN
680 REM DISPLAY ITEMS BELOW REORDER LEVEL4
690 FOR 1=1 TO 100
710 GET#1,1
720 IF CVI(Q$)<CVI(R$) THEN PRINT D$;" QUANTITY";
CVI(Q$) TAB(50) "REORDER LEVEL";CVI(R$)
730 NEXT I
740 RETURN
840 INPUT "PART NUMBER";PARTX
850 IF(PARTX < 1)OR(PARTX > 100) THEN PRINT "BAD PART NUMBER":
GOTO 840 ELSE GET#1,PARTX:RETURN
890 END
900 REM INITIALIZE FILE
910 INPUT "ARE YOU SURE";B$:IF B$ < > "Y" THEN RETURN
920 LSET F$=CHR$(255)
930 FOR 1=1 TO 100
940 PUT#1,I
950 NEXT I
960 RETURN

46

Chapter 6
Constants, Variables,

Expressions and Operators

6.1 Constants 49
6.1.1 Single- and Double-Precision Form

for Numeric Constants 50
6.2 Variables 51
6.2.1 Variable Names and Declarations 51
6.2.2 Type Declaration Characters 51
6.2.3
6.2.4

Array Variables 52
Memory Space Requirements
for Variable Storage 53

6.3 Type Conversion 54
6.4 Expressions and Operators 56

Arithmetic Operators 56
Integer Division and Modulus Arithmetic 57

Overflow and Division by Zero 58

6.4.1
6.4.1.1
6.4.1.2
6.4.2 Relational Operators 58
6.4.3 Logical Operators 59
6.4.4 Functional Operators 61
6.4.5 String Operators 62

47

w

% : ,

1 i.

i

;
/
i

L

Constants

After you have learned the fundamentals of programming in GW-BASIC, you
will find that you will want to write more complex programs. The informa
tion in this chapter will help you learn more about the use of constants,
variables, expressions, and operators in GW-BASIC, and how they can be used
to develop more sophisticated programs.

6.1 Constants

Constants are static values the GW-BASIC Interpreter uses during execution
of your program. There are two types of constants: string and numeric.

A string constant is a sequence of 0 to 255 alphanumeric characters
enclosed in double quotation marks. The following are sample string
constants:

“HELLO”
“$25,000.00”
“Number of Employees”

Numeric constants can be positive or negative. When entering a numeric
constant in GW-BASIC, you should not type the commas. For instance, if
the number 10,000 were to be entered as a constant, it would be typed as
10000. There are five types of numeric constants: integer, fixed-point,
floating-point, hexadecimal, and octal.

Description

Whole numbers between -32768 and +32767.
They do not contain decimal points.
Positive or negative real numbers that contain
decimal points.
Positive or negative numbers represented in
exponential form (similar to scientific nota
tion). A floating-point constant consists of an
optionally-signed integer or fixed-point
number (the mantissa), followed by the letter
E and an optionally-signed integer (the
exponent).

Constant

Integer

Fixed-Point

Floating-Point
Constants

49

IIUURillll, VUIUBIU, Expressions and OperatorsI
The allowable range for floating-point con
stants is 3.0X10 “3Sr to 1.7X1038. For example:

235.988E-7 = .0000235988
2359E6 = 2359000000
Hexadecimal numbers with prefix &H.
For example:
&H76
&H32F
Octal numbers with the prefix &0 or &.
For example:
&0347
&1234

Hexadecimal

Octal

6.1.1 Single- and Double-Precision Form
for Numeric Constants

Numeric constants can be integers, single-precision or double-precision
numbers. Integer constants are stored as whole numbers only. Single
precision numeric constants are stored with 7 digits (although only 6 may
be accurate). Double-precision numeric constants are stored with 17 digits
of precision, and printed with as many as 16 digits.

A single-precision constant is any numeric constant with either

• seven or fewer digits
• exponential form using E
• a trailing exclamation point (!)

A double-precision constant is any numeric constant with either

• eight or more digits
• exponential form using D
• a trailing number sign (#)

j 50

I
Variables

The following are examples of single- and double-precision numeric
constants:

Single-Precision Constants Double-Precision Constants

46.8 345692811

— 1.09432D-06
3490.0#

7654321.1234

- 1.09E-06

3489.0
22.5!

6.2 Variables

Variables are the names that you have chosen to represent values used in a
GW-BASIC program. The value of a variable may be assigned specifically, or
may be the result of calculations in your program. If a variable is assigned
no value, GW-BASIC assumes the variable’s value to be zero.

6.2.1 Variable Names and Declarations
GW-BASIC variable names may be any length; up to 40 characters are signifi
cant. The characters allowed in a variable name are letters, numbers, and
the decimal point. The first character in the variable name must be a letter.
Special type declaration characters are also allowed.

Reserved words (all the words used as GW-BASIC commands, statements,
functions, and operators) can’t be used as variable names. However, if the
reserved word is embedded within the variable name, it will be allowed.

Variables may represent either numeric values or strings.

6.2.2 Type Declaration Characters
Type declaration characters indicate what a variable represents. The follow
ing type declaration characters are recognized:

51

I lllltll 1 IllllUieB, Expressions and OperatorsI

Character Type of Variable

$ String variable

Integer variable

Single-precision variable

Double-precision variable

The following are sample variable names for each type:

%

!
#

i

Variable Type Sample Name

String variable

Integer variable

Single-precision variable

Double-precision variable

The default type for a numeric variable name is single-precision. Double
precision, while very accurate, uses more memory space and more calcula
tion time. Single-precision is sufficiently accurate for most applications.
However, the seventh significant digit (if printed) will not always be accu
rate. You should be very careful when making conversions between integer,
single-precision, and double-precision variables.

The following variable is a single-precision value by default:

N$
LIMIT%
MINIMUM!
PI#

ABC

Variables beginning with FN are assumed to be calls to a user-defined
function.

The GW-BASIC statements DEFINT, DEFSTR, DEFSNG, and DEFDBL may
be included in a program to declare the types of values for certain variable
names.

6.2.3 Array Variables
An array is a group or table of values referenced by the same variable
name. Each element in an array is referenced by an array variable that
is a subscripted integer or an integer expression. The subscript is enclosed
within parentheses. An array variable name has as many subscripts as
there are dimensions in the array.

52

Variables

For example,

V(10)

references a value in a one-dimensional array, while

T(1,4)

references a value in a two-dimensional array.

The maximum number of dimensions for an array in GW-BASIC is 255. The
maximum number of elements per dimension is 32767.

Note
If you are using an array with a subscript value greater than 10, you
should use the DIM statement. Refer to the GW-BASIC User’s Reference
for more information. If a subscript greater than the maximum specified
is used, you will receive the error message “Subscript out of range.”

Multidimensional arrays (more than one subscript separated by commas)
are useful for storing tabular data. For example, A(l,4) could be used to
represent a two-row, five-column array such as the following:

Co 1umn 0 2 31 4

Row
Row

0 1 0 20 30 40 50
1 60 70 80 90 100

In this example, element A(l,2) = 80 and A(0,3) = 40.

Rows and columns begin with 0, not 1, unless otherwise declared. For more
information, see the OPTION BASE statement in the GW-BASIC User’s
Reference.

6.2.4 Memory Space Requirements
for Variable Storage

The different types of variables require different amounts of storage.
Depending on the storage and memory capacity of your computer and
the size of the program that you are developing, these can be important
considerations.

53

Constants, Variables, Expressions and Operators

Required Bytes of StorageVariable

2Integer
Single-precision
Double-precision

4
8

Required Bytes of StorageArrays

2 per element
4 per element
8 per element

Integer
Single-precision
Double-precision

Strings:

Three bytes overhead, plus the present contents of the string as one byte for
each character in the string. Quotation marks marking the beginning and
end of each string are not counted.

6.3 Type Conversion

When necessary, GW-BASIC converts a numeric constant from one type of
variable to another, according to the following rules:

If a numeric constant of one type is set equal to a numeric variable
of a different type, the number is stored as the type declared in the
variable name. For example:
10 AX = 23.42
20 PRINT AX
RUN

23

If a string variable is set equal to a numeric value or vice versa,
a “Type Mismatch” error occurs.
During an expression evaluation, all of the operands in an arith
metic or relational operation are converted to the same degree of
precision; that is, that of the most precise operand. Also, the result
of an arithmetic operation is returned to this degree of precision.
For example:

J
54

E
Variables

10 D# = 6#/7
20 PRINT D#
RUN

.8571428571428571

The arithmetic is performed in double-precision, and the result is
returned in D# as a double-precision value. i

10 D = 6*/7
20 PRINT D
RUN

The arithmetic is performed in double-precision, and the result is
returned to D (single-precision variable) rounded and printed as a
single-precision value.

• Logical operators convert their operands to integers and return an
integer result. Operands must be within the range of - 32768 to
32767 or an “Overflow” error occurs.

• When a floating-point value is converted to an integer, the frac
tional portion is rounded. For example:
10 C% = 55.88
20 PRINT C7.
RUN

56
• If a double-precision variable is assigned a single-precision value,

only the first seven digits (rounded) of the converted number are
valid. This is because only seven digits of accuracy were supplied
with the single-precision value. The absolute value of the difference
between the printed double-precision number, and the original
single-precision value, is less than 6.3E-8 times the original single
precision value. For example:
10 A = 2.04
20 B# = A
30 PRINT A;B*
RUN
2.04 2.039999961853027

55

inn) 1 UlllUmS, Expressions and Operators

6*4 Expressions and Operators

An expression may be simply a string or numeric constant, a variable, or
it may combine constants and variables with operators to produce a single
value.

Operators perform mathematical or logical operations on values. The opera
tors provided by GW-BASIC are divided into four categories:

• Arithmetic
• Relational
• Logical
• Functional

6.4.1 Arithmetic Operators
The following are the arithmetic operators recognized by GW-BASIC. They
appear in order of precedence.

Operator Operation

Exponentiation
Negation
Multiplication
Floating-point Division
Addition
Subtraction

i
s

*

/
+

Operations within parentheses are performed first. Inside the parentheses,
the usual order of precedence is maintained.

The following are sample algebraic expressions and their GW-BASIC
counterparts:

j 56

Expressions and Operators

Algebraic
Expression

BASIC
Expression

X-Z (X-Y)/Z
Y

XY X*Y/Z
Z

X + Y (X + Y)/Z
z

(X2)Y (X“2)“Y

X^ XA(Y“Z)

X(-Y) X*(-Y)

Two consecutive operators must be separated by parentheses.

6.4.1.1 Integer Division and Modulus Arithmetic

Two additional arithmetic operators are available: integer division and
modulus arithmetic.

Integer division is denoted by the backslash (\). The operands are rounded
to integers (must be within the range of -32768 to 32767) before the divi
sion is performed, and the quotient is truncated to an integer.

The following are examples of integer division:

1 0 \ 4 = 2

25.68X6.99 = 3

In the order of occurrence within GW-BASIC, the integer division will be per
formed just after floating-point division.

Modulus arithmetic is denoted by the operator MOD. It gives the integer
value that is the remainder of an integer division.

The following are examples of modulus arithmetic:

10.4 MOD 4=2
(10/4=2 with a remainder 2)

25.68 MOD 6.99 = 5
(26/7=3 with a remainder 5)

57

Constants, Variables, Expressions and OperatorsI

In the order of occurrence within GW-BASIC, modulus arithmetic follows
integer division. The INT and FIX functions, described in the GW-BASIC
User's Reference, are also useful in modulus arithmetic.

6.4.1.2 Overflow and Division by Zero

If, during the evaluation of an expression, a division by zero is encountered,
the "Division by zero” error message appears, machine infinity with the
sign of the numerator is supplied as the result of the division, and execu
tion continues.

If the evaluation of an exponentiation results in zero being raised to a
negative power, the “Division by Zero” error message appears, positive ma
chine infinity is supplied as the result of the exponentiation, and execution
continues.

If overflow occurs, the “Overflow” error message appears, machine infinity
with the algebraically correct sign is supplied as the result, and execution
continues. The errors that occur in overflow and division by zero will not be
trapped by the error trapping function.

6.4.2 Relational Operators
Relational operators let you compare two values. The result of the com
parison is either true (-1) or false (0). This result can then be used to make
a decision regarding program flow.

Table 6.1 displays the relational operators.

Table 6.1
Relational Operators

Operator Relation Tested Expression

Equality
Inequality
Less than
Greater than
Less than or equal to

X = Y
XoY
X<Y
X>Y
X< = Y

Greater than or equal to X> = Y

<>
<
>
< =
> =

58

Expressions and Operators

The equal sign is also used to assign a value to a variable. See the LET
statement in the GW-BASIC User's Reference.

When arithmetic and relational operators are combined in one expression,
the arithmetic is always performed first:

X+Y < (T-1)/Z

This expression is true if the value of X plus Y is less than the value of
T-1 divided by Z.

I

6.4.3 Logical Operators
Logical operators perform tests on multiple relations, bit manipulation, or
boolean operations. The logical operator returns a bit-wise result which is
either true (not zero) or false (zero). In an expression, logical operations are
performed after arithmetic and relational operations. The outcome of a logi
cal operation is determined as shown in the following table. The operators
are listed in order of precedence.

Table 6.2
Results Returned by Logical Operations

Operation Value Value Result

NOT XNOT X

FT
TF

AND Y X AND YX

T T T
T F F
F T F
F F F

59

Constants, Variables, Expressions and Operators

Table 6.2 (continued)

Operation Value Value Result
■

OR X Y X OR Y
T T T
T TF
F T T
F F F

X XOR YXOR X Y
FT T

T F T
TF T
FF F

X EQV YYEQV X;

TT T
F FT
T FF

F F T

X IMP YX YIMP!
T TT

FT F
TF T
TF F

Just as the relational operators can be used to make decisions regarding
program flow, logical operators can connect two or more relations and
return a true or false value to be used in a decision. For example:

IF D<200 AND F<4 THEN 80
IF I>10 OR K<0 THEN 50
IF NOT P THEN 100
Logical operators convert their operands to 16-bit, signed, two’s complement
integers within the range of -32768 to +32767. If the operands are not
within this range, an error results. If both operands are supplied as 0 or

i

60

• r-r**r 111

Expressions and Operators

-1, logical operators return 0 or -1. The given operation is performed on
these integers in bits; that is, each bit of the result is determined by the
corresponding bits in the two operands.

Thus, it is possible to use logical operators to test bytes for a particular bit
pattern. For instance, the AND operator may be used to mask all but one of
the bits of a status byte at a machine I/O port. The OR operator may be
used to merge two bytes to create a particular binary value. The following
examples demonstrate how the logical operators work:

Explanation

63 = binary 111111 and 16=binary 10000, so
63 AND 16 = 16
15 = binary 1111 and 14 = binary 1110, so 15
AND 14 = 14 (binary 1110)
-l = binary 1111111111111111 and 8=binary
1000, so -1 AND 8 = 8
4 = binary 100 and 2 = binary 10, so 4 OR 2 = 6
(binary 110)
10 = binary 1010, so 1010 OR 1010 = 1010 (10)
-1 = binary 1111111111111111 and -2=binary
1111111111111110,so -1 OR -2 = -l. The bit
complement of 16 zeros is 16 ones, which is
the two’s complement representation of -1.
The two’s complement of any integer is the bit
complement plus one.

Example

63 AND 16 = 16

15 AND 14 = 14

-1 AND 8 = 8

4 OR 2 = 6

10 OR 10 = 10

-1 OR -2 = -l

NOT X = -(X+1)

6.4.4 Functional Operators
A function is used in an expression to call a predetermined operation that is
to be performed on an operand. GW-BASIC has intrinsic functions that reside
in the system, such as SQR (square root) or SIN (sine).

GW-BASIC also allows user-defined functions written by the programmer. See
the DEF FN statement in the GW-BASIC User's Reference.

61

r Constants, Variables, Expressions and Operators

6.4.5 String Operators
To compare strings, use the same relational operators used with numbers:

Operator Meaning

Equal to

Unequal
Less than

Greater than

Less than or equal to

Greater than or equal to

The GW-BASIC Interpreter compares strings by taking one character at a
time from each string and comparing their ASCII codes. If the ASCII codes in
each string are the same, the strings are equal. If the ASCII codes differ, the
lower code number will precede the higher code. If the interpreter reaches
the end of one string during string comparison, the shorter string is said to
be smaller, providing that both strings are the same up to that point. Lead
ing and trailing blanks are significant.

For example:

<>
<
>
< =
> =

"AA" < "AB"
••FILENAME" = "FILENAME"
"X*" > "X#"
"CL " > "CL"
"kg" > "KG"
"SMYTH" < "SMYTHE"
B$ < "9/12/78" where B$ = "8/12/78"

String comparisons can also be used to test string values or to alphabetize
strings. All string constants used in comparison expressions must be
enclosed in quotation marks.

Strings can be concatenated by using the plus (+) sign. For example:

10 A$-"FILE":B$»"NAME"
20 PRINT A$+B$
30 PRINT "NEW " + A$+B$
RUN
FILENAME
NEW FILENAME

■ -

Appendix A
Error Codes and Messages

Code: Message:

NEXT without FOR1
NEXT statement does not have a corresponding FOR state
ment. Check variable at FOR statement for a match with
the NEXT statement variable.

2 Syntax error

A line is encountered that contains an incorrect sequence of
characters (such as unmatched parentheses, a misspelled
command or statement, incorrect punctuation). This error
causes GW-BASIC to display the incorrect line in edit mode.

3 RETURN without GOSUB

A RETURN statement is encountered for which there is no
previous GOSUB statement.

4 Out of DATA

A READ statement is executed when there are no DATA
statements with unread data remaining in the program.

5 Illegal functioncall
An out-of-range parameter is passed to a math or string
function. An illegal function call error may also occur as the
result of

a negative or unreasonably large subscript
a negative or zero argument with LOG

a negative argument to SQR

a negative mantissa with a noninteger power

63

IIP1IU1U11Af
• a call to a USR function for which the starting

address has not yet been given
• an improper argument to MID?, LEFT$, RIGHT$,

INP, OUT, WAIT, PEEK, POKE, TAB, SPC,
STRING?, SPACE?, INSTR, or ON...GOTO

!
6 Overt 1ow

The result of a calculation is too large to be represented in
GW-BASIC’s number format. If underflow occurs, the result is
zero, and execution continues without an error.

Out of memory

A program is too large, has too many FOR loops, GOSUBs,
variables, or expressions that are too complicated. Use the
CLEAR statement to set aside more stack space or memory
area.

7

Undefined line number

A line reference in a GOTO, GOSUB, IF-THEN...ELSE, or
DELETE is a nonexistent line.

8

9 Subscript out of range
An array element is referenced either with a subscript that
is outside the dimensions of the array, or with the wrong
number of subscripts.

Duplicate Definition

Two DIM statements are given for the same array, or a DIM
statement is given for an array after the default dimension
of 10 has been established for that array.

Division by zero

A division by zero is encountered in an expression, or the
operation of involution results in zero being raised to a
negative power. Machine infinity with the sign of the
numerator is supplied as the result of the division, or posi
tive machine infinity is supplied as the result of the involu
tion, and execution continues.

10

11

il

i 64

Error Codes and Messages

I 11ega1 direct

A statement that is illegal in direct mode is entered as a
direct mode command.

12

Type mi smat ch

A string variable name is assigned a numeric value or vice
versa; a function that expects a numeric argument is given
a string argument or vice versa.

Out of string space

String variables have caused GW-BASIC to exceed the amount
of free memory remaining. GW-BASIC allocates string space
dynamically until it runs out of memory.

String too long

An attempt is made to create a string more than 255 charac
ters long.

String formula too complex
A string expression is too long or too complex. Break the
expression into smaller expressions.

Can ' t continue
An attempt is made to continue a program that

• has halted because of an error
• has been modified during a break in execution
• does not exist

13 I

1 4

1 5

16

1 7

Undefined user function
A USR function is called before the function definition
(DEF statement) is given.

18

No RESUME19
An error-trapping routine is entered but contains no
RESUME statement.

65

II!

20 RESUME without error

A RESUME statement is encountered before an error
trapping routine is entered.

Unprintable error

No error message is available for the existing error condi
tion. This is usually caused by an error with an undefined
error code.

21

22 Missing operand

An expression contains an operator with no operand follow
ing it.

Line buffer overflow

An attempt is made to input a line that has too many
characters.

■

23

Device Timeout
GW-BASIC did not receive information from an I/O device
within a predetermined amount of time.

24

Device Fault
Indicates a hardware error in the printer or interface card.

FOR Without NEXT
A FOR was encountered without a matching NEXT.

Out of Paper

The printer is out of paper; or, a printer fault.

Unprintable error
No error message is available for the existing error condi
tion. This is usually caused by an error with an undefined
error code.

25

26

27

28

29 WHILE without WEND
A WHILE statement does not have a matching WEND.

66

zr ~^r-

1
Error Codes and Messages

WENDwithout WHILE

A WEND was encountered without a mashing WHILE.

Unprintable error
No error message is available for the existing error condi
tion. This is usually caused by an error with an undefined
error code.

30

31 -49

F I ELD overt 1 ow

A FIELD statement is attempting to allocate more bytes
than were specified for the record length of a random file.

I nternal error

An internal malfunction has occurred in GW-BASIC. Report
to your dealer the conditions under which the message
appeared.

Bad file number

A statement or command references a file with a file
number that is not open or is out of range of file numbers
specified at initialization.

50

51

52

53 File not found
A LOAD, KILL, NAME, FILES, or OPEN statement refer
ences a file that does not exist on the current diskette.

54 Bad file mode
An attempt is made to use PUT, GET, or LOF with a
sequential file, to LOAD a random file, or to execute an
OPEN with a file mode other than I, 0, A, or R.

File already open

A sequential output mode OPEN is issued for a file that is
already open, or a KILL is given for a file that is open.

Unprintable error

An error message is not available for the error condition
which exists. This is usually caused by an error with an
undefined error code.

55

56

67

Appendix A:
■:

57 Device I/O Error
Usually a disk I/O error, but generalized to include all I/O
devices. It is a fatal error; that is, the operating system can
not recover from the error.

Filealready exists
The filename specified in a NAME statement is identical to
a filename already in use on the diskette.

Unprintable error
No error message is available for the existing error condi
tion. This is usually caused by an error with an undefined
error code.

58

:

59-60

61 Disk full
All disk storage space is in use.

Input past end
An INPUT statement is executed after all the data in the
file has been input, or for a null (empty) file. To avoid this
error, use the EOF function to detect the end of file.

Bad record number
In a PUT or GET statement, the record number is either
greater than the maximum allowed (16,777,215) or equal
to zero.

62

63

64 Bad f i 1 ename
An illegal form is used for the filename with LOAD, SAVE,
KILL, or OPEN; for example, a filename with too many
characters.

65 Unprintable error
No error message is available for the existing error condi
tion. This is usually caused by an error with an undefined
error code.

66 Direct statement in file
A direct statement is encountered while loading a ASCII-
format file. The LOAD is terminated.

68
—

.■

—ii miZTT, ' —■ i

Error Codes and Messages

Too many files

An attempt is made to create a new file (using SAVE or
OPEN) when all directory entries are full or the file specifi
cations are invalid.

67

Device Unavailable

An attempt is made to open a file to a nonexistent device.
It may be that hardware does not exist to support the device,
such as lpt2: or lpt3:, or is disabled by the user. This occurs
if an OPEN “COM1: statement is executed but the user dis
ables RS-232 support with the /c: switch directive on the
command line.

68

Communication buffer overflow
Occurs when a communications input statement is executed,
but the input queue is already full. Use an ON ERROR
GOTO statement to retry the input when this condition
occurs. Subsequent inputs attempt to clear this fault unless
characters continue to be received faster than the program
can process them. In this case several options are available:

® Increase the size of the COM receive buffer with the
/c: switch.

® Implement a hand-shaking protocol with the
host/satellite (such as: XON/XOFF, as demonstrated
in the TTY programming example) to turn transmit
off long enough to catch up.

® Use a lower baud rate for transmit and receive.

69

Permission Denied
This is one of three hard disk errors returned from the
diskette controller.

• An attempt has been made to write onto a diskette
that is write protected.

• Another process has attempted to access a file
already in use.

• The UNLOCK range specified does not match the
preceding LOCK statement.

70

69

VlUixA

Disk not Ready
Occurs when the diskette drive door is open or a diskette is
not in the drive. Use an ON ERROR GOTO statement to
recover.

71

72 Disk media error

Occurs when the diskette controller detects a hardware or
media fault. This usually indicates damaged media. Copy
any existing files to a new diskette and reformat the dam
aged diskette. FORMAT maps the bad tracks in the file allo
cation table. The remainder of the diskette is now usable.

73 Advanced Feature

An attempt was made to use a reserved word that is not
available in this version of GW-BASIC.

74 Rename across disks
Occurs when an attempt is made to rename a file to a new
name declared to be on a disk other than the disk specified
for the old name. The naming operation is not performed.

Path/File Access Error
During an OPEN, MKDIR, CHDIR, or RMDIR operation,
MS-DOS is unable to make a correct path-to-filename connec
tion. The operation is not completed.

Path not found
During an OPEN, MKDIR, CHDIR, or RMDIR operation,
MS-DOS is unable to find the path specified. The operation
is not completed.

75

76

!

I 70
L

s

Appendix B
Mathematical Functions

Mathematical functions not intrinsic to GW-BASIC can be calculated as
follows:

Function GW-BASIC Equivalent

Secant
Cosecant
Cotangent
Inverse Sine
Inverse
Cosine
Inverse
Secant
Inverse
Cosecant
Inverse
Cotangent
Hyperbolic
Sine
Hyperbolic
Cosine
Hyperbolic
Tangent
Hyperbolic
Secant
Hyperbolic
Cosecant
Hyperbolic
Cotangent

SEC(X) = l/COS(X)

CSC(X) = 1/SIN(X)

COT(X) = 1/TAN(X)

ARCSIN(X) = ATN(X/SQR(-X*X +1))

ARCCOS(X) = ATN (X/SQR(-X*X +1)) + tt/2

ARCSEC(X) = ATN(X/SQR(X*X-1)) + SGN(SGN(X)-1)* tt/2

ARCCSC(X) = ATN(X/SQR(X*X-1)) + SGN(X)-l)* ir/2

ARCCOT(X) = ATN(X) + tt/2

SINH(X) = (EXP(X)-EXP(-X))/2

COSH(X) = (EXP(X) + EXP(-X))/2

TANH(X) = (EXP(X)-EXP(-X))/(EXP(X) + EXP(-X))

SECH(X) = 2/(EXP(X) + EXP(-X))

CSCH(X) = 2/(EXP(X)-EXP(-X))

COTH(X) = EXP(-X)/(EXP(X)-EXP(-X))*2 +1

71

Appendix B

Inverse
Hyperbolic
Sine
Inverse
Hyperbolic
Cosine
Inverse
Hyperbolic
Tangent
Inverse
Hyperbolic
Cosecant
Inverse
Hyperbolic
Secant
Inverse
Hyperbolic
Cotangent

ARCSINH(X) = LOG{X/SQR(X*X + D)

ARCCOSH(X)=LOCKX+SQR(X*X-1))

ARCTANH(X) = LOG((l + X)/(l-X))/2

;
1 ARCCSCH(X)=LOG(SGN(X)*SQR(X*X +1) + 1)/X

•:
ARCSECH(X) = LOG(SQR(-X*X +1) + 1)/XI

;;
ARCCOTH(X) = LOG((X + l)/(X-l))/2

:

i

i .!

72
u__

■

Appendix C
ASCII Character Codes

Oct Hex
00H NUL
01H SOH
02H STX
03H ETX
04H EOT
05H ENQ
06H ACK
07H BEL
08H BS
09H HT
OAH LF
OBH VT
OCH FF
ODH CR
OEH SO
OFH SI
10H DLE
11H DC1
12H DC2
13H DC3
14H DC4
15H NAK
16H SYN
17H ETB
18H CAN
19H EM
1AH SUB
1BH ESC
1CH FS
1DH GS
1EH RS
1FH US

ChrDec Dec Oct ChrHex
000 000 032 20H SP040
001 001 033 041 21H !
002 002 034 042 22H ii

003 003 035 043 23H #
24H $004 004 036 044

005 005 037 045 25H %
006 006 038 046 26H &
007 007 039 047 27H
008 010 040 050 28H (

29H)009 Oil 041 051
010 012 052 2AH042 *
Oil 013 043 053 2BH +
012 2CH014 044 054
013 2DH015 045 055
014 2EH016 046 056
015 017 2FH /

30H 0
047 057

016 020 048 060
017 021 31H049 061 1
018 022 062 32H050 2
019 023 051 063 33H 3
020 024 052 064 34H 4
021 025 35H 5

36H 6
053 065

022 026 054 066
023 027 37H055 067 7
024 030 38H 8

39H 9
056 070

025 031 057 071
026 032 058 072 3AH
027 033 059 073 3BH
028 034 060 074 3CH <
029 035 061 075 3DH
030 036 062 3EH076 >
031 037 063 3FH ?077

Dec=Decimal, Oct=Octal, Hex = Hexadecimal(H), Chr = Character, LF = Line feed
FF = Form feed, CR = Carriage return, DEL = Rubout

73

f iipianu

Appendix C (continued)

Dec Oct Hex Chr Dec Oct ChrHex
100 40H @

41H A
42H B
43H C
44H D
45H E
46H F
47H G
48H H
49H I
4 AH J
4BH K
4CH L
4DH M
4EH N
4FH 0
50H P

064 096 140 60H101065 097 141 61H a102066 098 142 62H b
103067 099 143 63H c

068 104 100 144 64H d
069 105 101 145 65H e

106070 102 146 66H f
107071 103 147 67H S072 110 104 150 68H h

073 111 105 151 69H i
074 112 106 152 6AH J075 113 107 153 6BH k

6CH 1
. 076 114 108 154

077 115 109 155 6DH m
078 116 110 156 6EH n
079 117 111 157 6FH o
080 120 112 160 70H P081 121 51H Q 113 161 71H q082 122 52H R

53H S
54H T
55H U

114 162 72H r
083 123 115 163 73H s

124084 116 164 74H t
085 125 117 165 75H u
086 126 56H V 118 166 76H v
087 127 57H W

58H X
59H Y
5AH Z
5BH f

119 167 77H w
088 130 120 170 78H x
089 131 121 171 79H y090 132 122 172 7AH z
091 133 123 173 7BH {
092 134 5CH \ 124 174 7CH I
093 135 5DH] 125 175 7DH }
094 136 5EH 126 176 7EH
095 137 5FH 127 177 7FH DEL

I
■

Dec-Decimal, Oct=Octal, Hex = Hexadecimal(H), Chr = Character, LF = Line feed
FF=Form feed, CR = Carriage return, DEL = Rubout'

_L 74

. —

Appendix D
Assembly Language

(Machine Code) Subroutines

This appendix is written primarily for users experienced in assembly
language programming.

GW-BASIC lets you interface with assembly language subroutines by using
the USR function and the CALL statement.

The USR function allows assembly language subroutines to be called in the
same way GW-BASIC intrinsic functions are called. However, the CALL state
ment is recommended for interfacing machine language programs with GW-
BASIC. The CALL statement is compatible with more languages than the
USR function call, produces more readable source code, and can pass multi
ple arguments.

D.l Memory Allocation

Memory space must be set aside for an assembly language (or machine
code) subroutine before it can be loaded. There are three recommended ways
to set aside space for assembly language routines:

® Specify an array and use VARPTR to locate the start of the array
before every access.

• Use the /m switch in the command line. Get GW-BASIC’s Data seg
ment (DS), and add the size of DS to reference the reserved space
above the data segment.

• Execute a .COM file that stays resident, and store a pointer to it in
an unused interrupt vector location.

There are three recommended ways to load assembly language routines:

75

AIPIIUIIU

• BLOAD the file. Use DEBUG to load in an .EXE file that is in high
memory, run GW-BASIC, and BSAVE the .EXE file.

• Execute a .COM file that contains the routines. Save the pointer to
these routines in unused interrupt-vector locations, so that your
application in GW-BASIC can get the pointer and use the routine(s).

• Place the routine into the specified area.

If, when an assembly language subroutine is called, more stack space is
needed, GW-BASIC stack space can be saved, and a new stack set up for use
by the assembly language subroutine. The GW-BASIC stack space must be
restored, however, before returning from the subroutine.

D.2 CALL Statement

CALL variablename[(arguments)]

variablename contains the offset in the current segment of the subroutine
being called.

arguments are the variables or constants, separated by commas, that are to
be passed to the routine.

For each parameter in arguments, the 2-byte offset of the parameter’s loca
tion within the data segment (DS) is pushed onto the stack.

The GW-BASIC return address code segment (CS), and offset (IP) are pushed
onto the stack.

A long call to the segment address given in the last DEF SEG statement
and the offset given in variablename transfers control to the user’s routine.

The stack segment (SS), data segment (DS), extra segment (ES), and the
stack pointer (SP) must be preserved.

76

I

Assembly Language (Machine Code) Subroutines

Figure D.l shows the state of the stack at the time of the CALL statement:

Parameter 0
Parameter 1

High Addresses Each parameter is a 2-byte
pointer into memory

Parameter n

Return Segment Address

Stack PointerReturn Offset

Low Addresses

Figure D.l Stack Layout When the CALL Statement is Activated

The user’s routine now has control. Parameters may be referenced by mov
ing the stack pointer (SP) to the base pointer (BP) and adding a positive
offset to BP.

Upon entry, the segment registers DS, ES, and SS all point to the address
of the segment that contains the GW-BASIC interpreter code. The code seg
ment register CS contains the latest value supplied by DEF SEG. If no DEF
SEG has been specified, it then points to the same address as DS, ES, and
SS (the default DEF SEG).

77

Aumnuiuf 5

Figure D.2 shows the condition of the stack during execution of the called
subroutine:

.
; High Addresses Parameter 0

Parameter 1
Absent if any parameter is
referenced within a nested
procedureI

i

Parameter n

Absent in Local ProcedureReturn Segment Address

Return Offset +---- Stack Pointer

Old Stack Marker ----New Stack Marker

Only in re-entrant
procedure

Local Variables

This space may be used
during procedure execution

**----Stack pointer may change
during procedure execution

Low Addresses

Figure D.2 Stack Layout During Execution of a CALL Statement

The following seven rules must be observed when coding a subroutine:

1. The called routine may destroy the contents of the AX, BX, CX, DX,
SI, DI, and BP registers. They do not require restoration upon
return to GW-BASIC. However, all segment registers and the stack
pointer must be restored. Good programming practice dictates that
interrupts enabled or disabled be restored to the state observed upon
entry.

;
78

!
Assembly Language (Machine Code) Subroutines

The called program must know the number and length of the
parameters passed. References to parameters are positive offsets
added to BP, assuming the called routine moved the current stack
pointer into BP; that is, MOV BP,SP. When 3 parameters are
passed, the location of PO is at BP 4-10, PI is at BP+ 8, and P2
is at BP+ 6.
The called routine must do a RETURN n (n is two times the
number of parameters in the argument list) to adjust the stack to
the start of the calling sequence. Also, programs must be defined by
a PROC FAR statement.
Values are returned to GW-BASIC by including in the argument list
the variable name that receives the result.
If the argument is a string, the parameter offset points to three
bytes called the string descriptor. Byte 0 of the string descriptor con
tains the length of the string (0 to 255). Bytes 1 and 2, respectively,
are the lower and upper eight bits of the string starting address in
string space.

2.

3.

4.

5.

Note
The called routine must not change the contents of any of the
three bytes of the string descriptor.

Strings may be altered by user routines, but their length must not
be changed. GW-BASIC cannot correctly manipulate strings if their
lengths are modified by external routines.
If the argument is a string literal in the program, the string
descriptor points to program text. Be careful not to alter or destroy
your program this way. To avoid unpredictable results, add +”” to
the string literal in the program. For example, the following line
forces the string literal to be copied into string space allocated out
side of program memory space:
20 A$="BASIC"+
The string can then be modified without affecting the program.

6.

7.

ii ii

Examples:

100 DEF SEG=&H2000
110 ACC=AH7FA

79

Appendix D

120 CALL ACC(A,B$,C)

\\
Line 100 sets the segment to 2000 hex. The value of variable ACC is added
into the address as the low word after the DEF SEG value is left-shifted
four bits (this is a function of the microprocessor, not of GW-BASIC). Here,
ACC is set to &H7FA, so that the call to ACC executes the subroutine at
location 2000:7FA hex.

1

I

Upon entry, only 16 bytes (eight words) remain available within the allo
cated stack space. If the called program requires additional stack space,
then the user program must reset the stack pointer to a new allocated
space. Be sure to restore the stack pointer adjusted to the start of the call
ing sequence on return to GW-BASIC.

The following assembly language sequence demonstrates access of the
parameters passed and storage of a return result in the variable C.

-

Note
The called program must know the variable type for numeric parame
ters passed. In these examples, the following instruction copies only two
bytes:

M0VSW

This is adequate if variables A and C are integer. It would be necessary
to copy four bytes if they were single precision, or copy eight bytes if
they were double precision.

MOV BP,SP
MOV BX,8CBP3
MOV CL,CBX 3
MOV DX,1[BX 3
MOV SI,10[BP3
MOV DI,6[BP3
MOVSW
RET 6

Gets the current stack position in BP
Gets the address of B$ description
Gets the length of B$ in CL
Gets the address of B$ string descriptor in DX
Gets the address of A in SI
Gets the pointer to C in DI
Stores variable A in 'C'
Restores stack; returns

80

Assembly Language (Machine Code) Subroutines

D.3 USR Function Calls

Although the CALL statement is the recommended way of calling assembly
language subroutines, the USR function call is still available for compatibil
ity with previously-written programs.

Syntax:

USR [n](argument)

ft is a number from 0 to 9 which specifies the USR routine being called (see
DEF USR statement). If n is omitted, USRO is assumed.

argument is any numeric or string expression.

In GW-BASIC a DEF SEG statement should be executed prior to a USR func
tion call to ensure that the code segment points to the subroutine being
called. The segment address given in the DEF SEG statement determines
the starting segment of the subroutine.

For each USR function call, a corresponding DEF USR statement must
have been executed to define the USR function call offset. This offset and
the currently active DEF SEG address determine the starting address of the
subroutine.

When the USR function call is made, register AL contains the number type
flag (NTF), which specifies the type of argument given. The NTF value may
be one of the following:

Specifies

a two-byte integer (two’s complement format)
a string
a single-precision floating-point number

a double-precision floating-point number

If the argument of a USR function call is a number (AL<>73), the value of
the argument is placed in the floating-point accumulator (FAC). The FAC is
8 bytes long and is in the GW-BASIC data segment. Register BX will point at
the fifth byte of the FAC. Figure D.3 shows the representation of all the
GW-BASIC number types in the FAC:

NTF Value

2

3
4

8

81

I IWIIIMIU

least
significant

byte

most
significant

byte
Integer

least
significant

byte

exponent
minus

most
significant

byte
Single

Precision128

sign
byte

least
significant

byte

exponent
minus

most
significant

byte
Double

Precision128

sign
byte

Figure D.3 Number Types in the Floating-Point Accumulator

If the argument is a single-precision floating-point number:

• BX + 3 is the exponent, minus 128. The binary point is to the left of
the most significant bit of the mantissa.

• BX + 2 contains the highest seven bits of mantissa with leading 1
suppressed (implied). Bit 7 is the sign of the number (0 = positive,
1 = negative).

• BX +1 contains the middle 8 bits of the mantissa.
• BX + 0 contains the lowest 8 bits of the mantissa.

If the argument is an integer:

• BX +1 contains the upper eight bits of the argument.
• BX + 0 contains the lower eight bits of the argument.

If the argument is a double-precision floating-point number:

• BX + 0 through BX + 3 are the same as for single-precision floating
point.

• BX-1 to BX-4 contain four more bytes of mantissa. BX-4 contains
the lowest eight bits of the mantissa.

_
82

n

Assembly Language (Machine Code) Subroutines

If the argument is a string (indicated by the value 3 stored in the AL
register) the (DX) register pair points to three bytes called the string
descriptor. Byte 0 of the string descriptor contains the length of the string
(0 to 255). Bytes 1 and 2, respectively, are the lower- and upper-eight bits of
the string starting address in the GW-BASIC data segment.

If the argument is a string literal in the program, the string descriptor
points to program text. Be careful not to alter or destroy programs this way
(see the preceding CALL statement).

Usually, the value returned by a USR function call is the same type
(integer, string, single precision, or double precision) as the argument that
was passed to it. The registers that must be preserved are the same as in
the CALL statement.

A far return is required to exit the USR subroutine. The returned value
must be stored in the FAC.

D.4 Programs That Call
Assembly Language Programs

This section contains two sample GW-BASIC programs that

® load an assembly language routine to add two numbers together

© return the sum into memory

o remain resident in memory

The code segment and offset to the first routine is stored in interrupt vector
at 0:100H.

Example 1 calls an assembly language subroutine:

Example 1

10 DEF SEG=0
100 CS=PEEK(&H102)+PEEK(&H103)*256
200 0FFSET=PEEK(*H100)+PEEK(&H101)*256
250 DEF SEG

83

UlPLlllllU
I

300 C1X-2:C2X=3:C3X=0
400 TWOSUM-QFFSET
500 DEF SEG=CS
600 CALL TW0SUM(CU,C2%,C3X)
700 PRINT 03X
800 END

:

'

The assembly language subroutine called in the above program must be
assembled, linked, and converted to a .COM file. The program, when exe
cuted prior to the running of the GW-BASIC program, will remain in memory
until the system power is turned off, or the system is rebooted.

org 100H
double segment
assume cs:double

start:
usrprg

push bp
mov bp,s
mov si,[

mov ax,C si]
mov si , Cbp]+10

add ax,C si3

0100
0100

0100
0103
0103
0104
0106

EB 17 90 s tar 11jmp
proc far

55
8B EC
8B 76 08 bp] +8 *,get address of

•.parameter b
*,get value of b
*, get address of
;parameter a
;add value of
;a to value of
;b
;get address of
jparameter c
jstore sum in
jparameter c

0109
01 0B

8B 04
8B 76 0A

01 0E 03 04

0110 8B 7E 06 mov di,Cbp 1+6

0113 89 05 mov di,ax

0115
0116
0119

5D pop bp
ret 6

usrprg endp
ca 0006

;Program to put
•.procedure in memory
;and remain resident.
;The offset and
jsegment are stored
jin location 100-103H.

0119
0119
011 c
011 E

starti :
mov ax,0
mov ds,ax
mov bx,0100HL B8 0000

8E D8
BB 0100

;data segment to 0000H
;pointer to int vector
; 1 0 OH

0121
0125

83 7F 02
75 16

0 cmp word ptr C bx] , 0
jne quit ; program

•.already run, exit

84

HaBSWeaaMse

Assembly Language (Machine Code) Subroutines

83 3F 00
75 11

0127
012A

cmp word ptr2 [bx],0
jne quit ; program

;already run,
;exi t

;program offset

;data segment

B8 0103 R
89 07
8C c8
89 47 02

012C
012F
01 31
0133
01 36
0137
0138
013B
01 3D
01 3D
013F
01 3F

mov ax,offset usrprg
mov [bx 3 , ax
mov ax,c5
mov Cbx + 23 ,ax
push c5
pop ds
mov dx,offset veryend
int 27h

quit:
int 20h

0E
1 F
BA 0141 R
CD 27

CD 20
ver
dou ends

end start

Example 2 places the assembly language subroutine in the specified area:

Example 2

10 1=0:JC=0
100 DIM AX(23)
150 MEM%=VARPTR(A%(1))
200 FOR 1=1 TO 23
300 READ JC
400 POKE MEM%,JC
450 MEM%=MEM7. + 1
500 NEXT
600 C1% = 2:C27. = 3:C3*/. = 0
700 TW0SUM=VARPTR(A7.(1))
800 CALL TW0SUM(C1%,C2%,C37.)
900 PRINT C3%
950 END
1000 DATA &H55,&H8b,&Hec &H8b,&H76,&H08,&H8b,*H04,&H8b,4H76
1100 DATA &H0a,&H03,&H04,&H8b,&H7e,&H06,*H89,*H05,*H5d
1 200 DATA &Hca,&H06,&H00

85

1

id ;
'

Appendix E
Converting BASIC

Programs to GW-BASIC

Programs written in a BASIC language other than GW-BASIC may require
some minor adjustments before they can be run. The following sections
describe these adjustments.

E.l String Dimensions

Delete all statements used to declare the length of strings. A statement
such as the following:

DIM A$(I,J)

which dimensions a string array for J elements of length I, should be
converted to the following statement:

DIM A $(J)

Some GW-BASIC languages use a comma or ampersand (&) for string concate
nation. Each of these must be changed to a plus sign (+), which is the
operator for GW-BASIC string concatenation.

In GW-BASIC, the MID$, RIGHT$, and LEFT$ functions are used to take
substrings of strings. Forms such as A$(I) to access the Ith character in A$,
or A$(I,J) to take a substring of A$ from position I to position J, must be
changed as follows:

Other BASIC: GW-BASIC:

X$ = MID$(A$,I,1)
X$ = MID$(A$,I,J-I +1)

X$ = A$(I)
X$ = A$(I,J)

87

till U■ II
If the substring reference is on the left side of an assignment, and X$ is
used to replace characters in A$, convert as follows:

Other BASIC: GW-BASIC:

A$(I) = X$

A$(I,J)=X$
MID$(A$,I,1) = X$

MID$(A$,I,J-I +1) = X$

E.2 Multiple Assignments

Some GW-BASIC languages allow statements of the following form to set B
and C equal to zero:

10 LET B=C=0

GW-BASIC would interpret the second equal sign as a logical operator and set
B equal to -1 if C equaled 0. Convert this statement to two assignment
statements:

10 C=0:B=0

E.3 Multiple Statements

Some GW-BASIC languages use a backslash (\) to separate multiple state
ments on a line. With GW-BASIC, be sure all elements on a line are
separated by a colon (:).

E.4 MAT Functions

Programs using the MAT functions available in some GW-BASIC languages
must be rewritten using FOR-NEXT loops to execute properly.

88

Converting BASIC Programs to GW-BASIC

E.5 FOR-NEXT Loops

Some GW-BASIC languages will always execute a FOR-NEXT loop once,
regardless of the limits. GW-BASIC checks the limits first and does not exe
cute the loop if past limits.

89

Appendix F

Communications

This appendix describes the GW-BASIC statements necessary to support RS-
232 asynchronous communications with other computers and peripheral
devices.

F.l Opening Communications Files

The OPEN COM statement allocates a buffer for input and output in the
same manner as the OPEN statement opens disk files.

F.2 Communications I/O

Since the communications port is opened as a file, all I/O statements valid
for disk files are valid for COM.

COM sequential input statements are the same as those for disk files:

INPUT#
LINE INPUT#
INPUT$

COM sequential output statements are the same as those for diskette:

PRINT#
PRINT# USING

See the GW-BASIC User's Reference for more information on these
statements.

91

I Appendix Fi

F.3 The COM I/O Functions

The most difficult aspect of asynchronous communications is processing
characters as quickly as they are received. At rates above 2400 baud (bps),
it is necessary to suspend character transmission from the host long enough
for the receiver to catch up. This can be done by sending XOFF (CTRL-S) to
the host to temporarily suspend transmission, and XON (CTRL-Q) to resume,
if the application supports it.

GW-BASIC provides three functions which help to determine when an over
run condition is imminent:

Returns the number of characters in the input
queue waiting to be read. The input queue can hold
more than 255 characters (determined by the /c:
switch). If there are more than 255 characters in
the queue, LOC(x) returns 255. Since a string is
limited to 255 characters, this practical limit allevi
ates the need for the programmer to test for string
size before reading data into it.
Returns the amount of free space in the input
queue; that is
lc:(size)-number of characters in the input queue
LOF may be used to detect when the input queue is
reaching storage capacity.
True (-1), indicates that the input queue is empty.
False (0) is returned if any characters are waiting
to be read.

LOC(x)

LOF(x)

EOF(x)

F.4 Possible Errors:

A “Communications buffer overflow” error occurs if a read is attempted
after the input queue is full (that is, LOC(x) returns 0).

A “Device I/O” error occurs if any of the following line conditions are
detected on receive: overrun error (OE), framing error (FE), or break inter
rupt (BI). The error is reset by subsequent inputs, but the character causing
the error is lost.

92

Communications

A “Device fault” error occurs if data set ready (DSR) is lost during I/O.

A “Parity error” occurs if the PE (parity enable) option was used in the
OPEN COM statement and incorrect parity was received.

F.5 The INPUT$ Function

The INPUT$ function is preferred over the INPUT and LINE INPUT state
ments for reading COM files, because all ASCII characters may be significant
in communications. INPUT is least desirable because input stops when a
comma or an enter is seen. LINE INPUT terminates when an enter is seen.

INPUT$ allows all characters read to be assigned to a string.

INPUT$ returns x characters from the y file. The following statements then
are most efficient for reading a COM file:

10 WHILE NOT EOF(1)
20 A$=INPUT$(LOC(1) ,*1)
30 ...
40 ... Process data returned in A$...
50 . . .
60 WEND

This sequence of statements translates: As long as something is in the
input queue, return the number of characters in the queue and store them
in A$. If there are more than 255 characters, only 255 are returned at a
time to prevent string overflow. If this is the case, EOF(l) is false, and
input continues until the input queue is empty.

93

uipiiuiifI

GET and PUT Statements for COM Files

Purpose:

To allow fixed-length I/O for COM.

Syntax:

GET filenumber, nbytes PUT filenumber, nbytes

Comments:

filenumber is an integer expression returning a valid file number.

nbytes is an integer expression returning the number of bytes to be trans
ferred into or out of the file buffer, nbytes cannot exceed the value set by
the /s: switch when GW-BASIC was invoked.

Because of the low performance associated with telephone line commu
nications, it is recommended that GET and PUT not be used in such
applications.

Example:

The following TTY sample program is an exercise in communications I/O.
It is designed to enable your computer to be used as a conventional termi
nal. Besides full-duplex communications with a host, the TTY program
allows data to be downloaded to a file. Conversely, a file may be uploaded
(transmitted) to another machine.

In addition to demonstrating the elements of asynchronous communications,
this program is useful for transferring GW-BASIC programs and data to and
from a computer.

Note
This program is set up to communicate with a DEC® SYSTEM-20 espe
cially in the use of XON and XOFF. It may require modification to com
municate with other types of hardware.

94
i

Communications

F.6 The TTY Sample Program

10 SCREEN 0,0 : WIDTH 80
15 KEY OFF:CLS:CLOSE
20 DEFINT A-Z
25 LOCATE 25,1
30 PRINT STR I NG$ (60,11 ")
40 FALSE=0:TRUE=NOT FALSE
50 MENU=5 'Value of MENU Key (AE)
60 X0FF$=CHR$(19):X0N$=CHR$(17)
100 LOCATE 25,1 :PR I NT "Async TTY Prog
110 LOCATE 1,1 .-LINE INPUT "Speed?11;"S
120 COMFIL$ = "COM1 : ,+SPEED$ + ",E,7"
130 OPEN COMFILS AS *1
140 OPEN "SCRN:"FOR OUTPUT AS *2
200 PAUSE=FALSE
210 A$=INKEY$:IF A$=
220 IF ASC(A$)=MENU THEN 300 ELSE PRINT #1,A$;
230 IF EOF(1) THEN 210
240 IF LOC(1)>128 THEN PAUSE=TRUE:PR I NT #1,XOFF$;
250 A$=INPUT$(LOC(1) ,#1)
260 PRINT * 3 , A $;:IF LOC(1)> 0 THEN 240
270 IF PAUSE THEN PAUSE = FALSE:PR I NT #1,XON$;
280 GOTO 210
300 LOCATE 1 ,1 :PR I NT STRING$(30,32):LOCATE 1,1
310 LINE INPUT "FILE?";DSKFIL$
400 LOCATE 1,1:PRINT STRING$(30,32):LOCATE 1,1
410 LINE INPUT"(T)ransmit or (R)eceive?";TXRX$
420 IF TXRX$="T" THEN OPEN DSKFIL$ FOR INPUT AS *2:G0T0 1000
430 OPEN DSKFIL$ FOR OUTPUT AS #2
440 PRINT ft 1 , CHR$ (13) ;
500 IF EOF(1) THEN GOSUB 600
510 IF LOC(1)>128 THEN PAUSE=TRUE:PRINT #1,XOFF$s
520 A$= I NPUT $ (LOC (1) ,* 1)
530 PRINT ft 2,A$;:IF LOC (1) > 0 THEN 510
540 IF PAUSE THEN PAUSE = FALSE:PR I NT #1,XON$;
550 GOTO 500
600 FOR 1=1 TO 5000
610 IF NOT EOF(1) THEN 1=9999
620 NEXT I
630 IF I>9999 THEN RETURN
640 CLOSE ft 2. \ CLS: LOCATE 25,10:PRINT "* Download complete
650 RETURN 200
1000 NHILE NOT E0F(2)
1010 A$= I NPUT $ (1 , ft2)
1 020 PRINT ft 1 , A$;
1030 MEND
1 040 PRINT ft\ ,CHR$(28) -, AZ to make close file.

ram";
PEED$

it iiTHEN 230

95

1050 CLOSE #2:CLS:LOCATE 25,10-.PRINT "
1060 GOTO 200
9999 CLOSE:KEY ON

#*••Upload complete* «

F.7 Notes on the TTY Sample Program

Note
Asynchronous implies character I/O as opposed to line or block I/O.
Therefore, all prints (either to the COM file or screen) are terminated
with a semicolon (;). This retards the return line feed normally issued
at the end of the PRINT statement.

Line Number Comments

Sets the SCREEN to black and white alpha
mode and sets the width to 80.
Turns off the soft key display, clears the
screen, and makes sure that all files are
closed.
Defines all numeric variables as integer,
primarily for the benefit of the subroutine at
600-620. Any program looking for speed optim
ization should use integer counters in loops
where possible.
Defines boolean true and false.
Defines the ASCII (ASC) value of the MENU
key.
Defines the ASCII XON and XOFF characters.
Prints program ID and asks for baud rate
(speed). Opens communications to file number
1, even parity, 7 data bits.
This section performs full-duplex I/O between
the video screen and the device connected to
the RS-232 connector as follows:

10

15

20

40
50

60
100-130

200-280

96.
I
u_

Communications

1. Read a character from the keyboard into
A$. INKEY$ returns a null string if no
character is waiting.

2. If a keyboard character is available, wait
ing, then:
If the character is the MENU key, the
operator is ready to down-load a file. Get
filename.
If the character (A$) is not the MENU key,
send it by writing to the communications
file (PRINT #1...).

3. If no character is waiting, check to see if
any characters are being received.

4. At 230, see if any characters are waiting
in COM buffer. If not, go back and check
the keyboard.

5. At 240, if more than 128 characters are
waiting, set PAUSE flag to indicate that
input is being suspended. Send XOFF to
host, stopping further transmission.

6. At 250-260, read and display contents of
COM buffer on screen until empty. Con
tinue to monitor size of COM buffer (in
240). Suspend transmission if reception
falls behind.

7. Resume host transmission by sending
XON only if suspended by previous XOFF.

8. Repeat process until the MENU key is
pressed.

Get disk filename to be down-loaded to. Open
the file as number 2.
Asks if file named is to be transmitted (up
loaded) or received (down-loaded).
Receive routine. Sends a RETURN to the host to
begin the down-load. This program assumes
that the last command sent to the host was to
begin such a transfer and was missing only
the terminating return. If a DEC system is the
host, such a command might be

!

300-320

400-420

430

97

COPY TTY:=MANUAL.MEM (MENU Key)
if the MENU key was struck instead of RETURN.
When no more characters are being received,
(LOC(x) returns 0), the program performs a
timeout routine.
If more than 128 characters are waiting, sig
nal a pause and send XOFF to the host.
Read all characters in COM queue (LOC(x))
and write them to diskette (PRINT #2...) until
reception is caught up to transmission.
If a pause is issued, restart host by sending
XON and clearing the pause flag. Continue
the process until no characters are received for
a predetermined time.
Time-out subroutine. The FOR loop count was
determined by experimentation. If no charac
ter is received from the host for 17-20 seconds,
transmission is assumed complete. If any char
acter is received during this time (line 610),
then set n well above the FOR loop range to
exit loop and return to caller. If host transmis
sion is complete, close the disk file and resume
regular activities.
Transmit routine. Until end of disk file, read
one character into A$ with INPUT$ state
ment. Send character to COM device in 1020.
Send a AZ at end of file in 1040 in case receiv
ing device needs one to close its file. Lines
1050 and 1060 close disk file, print completion
message, and go back to conversation mode in
line 200.
Presently not executed. As an exercise, add
some lines to the routine 400-420 to exit the
program via line 9999. This line closes the
COM file left open and restores the function
key display.

500

510

520-530

540-550

600-650

1000-1060

9999

98

*

Appendix G
Hexadecimal Equivalents

Table G.l lists decimal and binary equivalents to hexadecimal values.

Table G.l
Decimal and Binary Equivalents
to Hexadecimal Values

Hexadecimal
Value

Equals
Decimal:

Equals
Binary:

0 0 0000
1 00011
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 110113
E 111014
F 111115

99

:
Table G.2 lists decimal equivalents to h

Table G.2

Decimal Equivalents to Hexadeci

exadecimal values.

mal Values
Hexadecimal
Value Equals

Decimal: Hexadecimal Equals
Value: Decimal:

0 0 80 1281 1
2 2
3 3
4 4 90 1445 5
6 6
7 7
8 8 AO 1609 9
A 10
B 11
C 12 BO 176D 13
E 14
F 15
10 16 CO 19211 17
12 18
13 19
14 20 DO 20815 21
16 22
17 23
18 24 E0 22419 25
1A 26
IB 27
1C 28 F0 240ID 29 100 256IE 30 200 512IF 31 300 76820 32 400 1024500 1280600 1536

700 1792

100

Hexadecimal Equivalents

Table G.2 (continued)

Hexadecimal Equals
Value

Hexadecimal Equals
Decimal:Decimal: Value:

30 48 800 2048
900 2304
A00 2560
BOO 2816

40 64 COO 3072
D00 3328
E00 3584
F00 3840

50 80 1000 4096
2000 8192
3000 12288

16384
20480
24576
28672
32768
36864
40960
45056
49152
53248
57344
61440

4000
60 96 5000

6000
7000
8000

70 112 9000
A000
B000
C000
D000
E000
F000

101

afl

m.

H*

H

__

JggffBtBD.

Appendix H

Key Scan Codes

Keytop Legend Scancode

01ESC
1/! 02
2/@ 03
3/# 04

05
5/% 06
6/* 07
7/& 08
8/* 09
9/(0A
0/) OB
-/ oc

0D—/ +
BACKSPACE 0E

OFTAB
Q 10
w 11
E 12
R 13
T 14
Y 15
U 16
I 17
O 18
P 19
[/{ 1A
]/} IB

1CENTER
CTRL ID
A IE
S IF
D 20
F 21
G 22
H 23
J 24

103

Keytop Legend Scancode

K 25
L 26
* 27
7" 28
r 29
Left SHIFT 2A

26/1
2CZ
2DX
2EC
2FV
30B

N 31
32M
33,/<
35in

Right SHIFT
*/PRTSC

36
37
38ALT.
39SPACEBAR

CAPS LOCK 3A
3BFI
3CF2
3DF3
3EF4
3FF5
40F6
41F7
42F8
43F9
44F10
45NUMLOCK

SCROLL LOCK
7/HOME
8/CURSOR UP
9/PGUP

46
47
48
49

104

Key Scan Codes

Keytop Legend Scancode

4A
4/CURSOR LEFT 4B

4C5
6/CURSOR RIGHT 4D

4E+
4F1/END

2/CURSOR down 50
3/PGDN
0/INS
./DEL

51
52
53

105

i

Appendix I
Characters Recognized

by GW-BASIC

The GW-BASIC character set includes all characters that are legal in
GW-BASIC commands, statements, functions, and variables. The set
comprises alphabetic, numeric, and special characters.

The alphabetic characters in GW-BASIC are the uppercase and lowercase
letters of the alphabet.

The numeric characters in GW-BASIC are the digits 0 through 9.

The following special characters and terminal keys are recognized by
GW-BASIC:

Description

Blank.
Equal sign or assignment symbol.
Plus sign or string concatenation.
Minus sign.
Asterisk or multiplication symbol.
Slash or division symbol.
Caret, exponentiation symbol, or CTRL key.
Left parenthesis.
Right parenthesis.
Percent or integer declaration.
Number sign or double-precision declaration.
Dollar sign or string declaration.
Exclamation point or single-precision declaration.

Character

+

/

(
)
%

#
$
!

107

Appendix k

[Left bracket.
Right bracket.
Comma.
Double quotation marks or string delimiter.
Period, dot, or decimal point.
Single quotation mark, apostrophe, or remark
indicator.
Semicolon or carriage return suppressor.
Colon or line statement delimiter.
Ampersand or descriptor for hexadecimal and octal
number conversion.
Question mark.
Less than symbol.
Greater than symbol.
Backslash or integer division symbol.
“At” sign.
Underscore.
Deletes last character typed.
Erases the current logical line from the screen.
Moves print position to next tab stop. Tab stops are
every eight columns.
Moves cursor to next physical line.
Terminates input to a line and moves cursor to
beginning of the next line, or executes statement
in direct mode.

]

«»

&

?
<
>

\

@

BACKSPACE
ESC
TAB

CURSOR
RETURN

108

Glossary

abend
An acronym for abnormal end of task. An abend is the termination of
computer processing on a job or task prior to its completion because of
an error condition that cannot be resolved by programmed recovery
procedures.

access
The process of seeking, reading, or writing data on a storage unit,

access methods
Techniques and programs used to move data between main memory and
input/output devices.

accuracy
The degree of freedom from error. Accuracy is often confused with
precision, which refers to the degree of preciseness of a measurement.

acronym
A word formed by the initial letters of words or by initial letters plus
parts of several words. Acronyms are widely used in computer tech
nology. For example, COBOL is an acronym for COmmon Business
Oriented Language.

active partition
A section of the computer’s memory that houses the operating system
being used.

address
A name, label, or number identifying a register, location or unit where
information is stored.

algebraic language
A language whose statements are structured to resemble the structure
of algebraic expression. Fortran is a good example of an algebraic
language.

109

I

algorithm

A set of well-defined rules or procedures to be followed in order to
obtain the solution of a problem in a finite number of steps. An algo
rithm can involve arithmetic, algebraic, logical and other types of pro
cedures and instructions. An algorithm can be simple or complex. How
ever, all algorithms must produce a solution within a finite number of
steps. Algorithms are fundamental when using a computer to solve
problems, because the computer must be supplied with a specific set of
instructions that yields a solution in a reasonable length of time.

alphabetic
Data representation by alphabetical characters in contrast to numerical;
the letters of the alphabet.

alphanumeric
A contraction of the words alphabetic and numeric; a set of characters
including letters, numerals, and special symbols.

application
The system or problem to which a computer is applied. Reference is
often made to an application as being either of the computational type,
in which arithmetic computations predominate, or of the data processing
type, in which data handling operations predominate.

application program
A computer program designed to meet specific user needs.

argument

.

A type of variable whose value is not a direct function of
another variable. It can represent the location of a number in a
mathematical operation, or the number with which a function
works to produce its results.
A known reference factor that is required to find a desired item
(function) in a table. For example, in the square root function
SQRT(X), X is the argument. The value of X determines the
square root value returned by this function.

1.

2.

110

Algorithm — Asynchronous Communication

array

An organized collection of data in which the argument is posi
tioned before the function.
A group of items or elements in which the position of each item
or element is significant. A multiplication table is a good exam
ple of an array.

1.

2.

ASCII
Acronym for American Standard Code for Information Interchange.
ASCII is a standardized 8-bit code used by most computers for
interfacing.
ASCII was developed by the American National Standards Institute
(ANSI). It uses 7 binary bits for information and the 8th bit for parity
purposes.

assembler
A computer program that produces a machine-language program which
may then be directly executed by the computer.

assembly language
A symbolic language that is machine-oriented rather than problem-
oriented. A program in an assembly language is converted by an assem
bler to a machine-language program. Symbols representing storage loca
tions are converted to numerical storage locations; symbolic operation
codes are converted to numeric operation codes.

asynchronous

1. Not having a regular time or clocked relationship. See
synchronous.

2. A type of computer operation in which a new instruction is ini
tiated when the former instruction is completed. Thus, there is
no regular time schedule, or clock, with respect to instruction
sequence. The current instruction must be complete before the
next is begun, regardless of the length of time the current
instruction takes.

asynchronous communication
A way of transmitting data serially from one device to another, in
which each transmitted character is preceded by a start bit and followed
by a stop bit. This is also called start/stop transmission.

Ill

back up

!• A. second copy of data on a diskette or other medium, ensuring
recovery from loss or destruction of the original media.

2. On-site or remote equipment available to complete an operation
in the event of primary equipment failure.

BASIC
Acronym for Beginner’s All-purpose Symbolic Instruction Code. BASIC is
a computer programming language developed at Dartmouth College as
an instructional tool in teaching fundamental programming concepts.
This language has since gained wide acceptance as a time-sharing
language and is considered one of the easiest programming languages
to learn.

batch processing
A method of operating a computer so that a single program or set of
related programs must be completed before the next type of program
is begun.

baud
A unit of measurement of data processing speed. The speed in bauds is
the number of signal elements per second. Since a signal element can
represent more than one bit, baud is not synonymous with bits-per-
second. Typical baud rates are 110, 300, 1200, 2400, 4800, and 9600.

binary

A characteristic or property involving a choice or condition in
which there are two possibilities.
A numbering system which uses 2 as its base instead of 10 as in
the decimal system. The binary system uses only two digits, 0
and 1, in its written form.
A device whose design uses only two possible states or levels to
perform its functions. A computer executes programs in binary
form.

1.

2.

3.

binary digit
A quantity which is expressed in the binary digits of 0 and 1.

112
•v____

Back up — Byte

bit
A contraction of “binary digit”. A bit can either be 0 or 1, and is the
smallest unit of information recognizable by a computer.

block
An amount of storage space or data, of arbitrary length, usually con
tiguous, and often composed of several similar records, all of which are
handled as a unit.

boolean logic
A field of mathematical analysis in which comparisons are made. A pro
grammed instruction can cause a comparison of two fields of data, and
modify one of those fields or another field as a result of comparison.
This system was formulated by British mathematician George Boole
(1815-1864). Some boolean operators are OR, AND, NOT, XOR, EQV,
and IMP.

boot
A machine procedure that allows a system to begin operations at the
desired level by means of its own initiation. The first few instructions
are loaded into a computer from an input device. These instructions
allow the rest of the system to be loaded. The word boot is abbreviated
from the word bootstrap.

bps
Bits per second.

buffer
A temporary storage area from which data is transferred to or from
various devices.

built-in clock
A real-time clock that lets your programs use the time of day and date.
Built into MS-DOS, it lets you set the timing of a program. It can be used
to keep a personal calendar, and it automatically measures elapsed
time.

byte
An element of data which is composed of eight data bits plus a parity
bit, and represents either one alphabetic or special character, two
decimal digits, or eight binary bits. Byte is also used to refer to a

113

■J

sequence of eight binary digits handled as a unit. It is usually encoded
in the ASCII format.

calculation

A series of numbers and mathematical signs that, when entered into a
computer, is executed according to a series of instructions.

central processor (CPU)
The heart of the computer system, where data is manipulated and
calculations are performed. The CPU contains a control unit to interpret
and execute the program and an arithmetic-logic unit to perform
computations and logical processes. It also routes information, controls
input and output, and temporarily stores data.

chaining
The use of a pointer in a record to indicate the address of another record
logically related to the first.

character
Any single letter of the alphabet, numeral, punctuation mark, or other
symbol that a computer can read, write, and store. Character is
synonymous with the term byte.

COBOL
Acronym for COmmon Business-Oriented Language, a computer
language suitable for writing complicated business applications pro
grams. It was developed by CODASYL, a committee representing the
U. S. Department of Defense, certain computer manufacturers, and
major users of data processing equipment. COBOL is designed to express
data manipulations and processing problems in English narrative form,
in a precise and standard manner.

code

To write instructions for a computer system

To classify data according to arbitrary tables
To use a machine language
To program

1.
2.
3.
4.

114
___ V

Calculation — Coprocessor

command
A pulse, signal, word, or series of letters that tells a computer to start,
stop, or continue an operation in an instruction. Command is often used
incorrectly as a synonym for instruction.

compatible
A description of data, programs or equipment that can be used between
different kinds of computers or equipment.

compiler
A computer program that translates a program written in a problem-
oriented language into a program of instructions similar to, or in, the
language of the computer.

computer network
A geographically dispersed configuration of computer equipment con
nected by communication lines and capable of load sharing, distributive
processing, and automatic communication between the computers
within the network.

!

:r

!
i •

!
;

!
;concatenate

To join together data sets, such as files, in a series to form one data set,
such as one new file. The term concatenate literally means “to link
together.” A concatenated data set is a collection of logically connected
data sets.

:configuration
In hardware, a group of interrelated devices that constitute a system. In
software, the total of the software modules and their interrelationships.

:
■

constant
A never-changing value or data item.

coprocessor
A microprocessor device connected to a central microprocessor that per
forms specialized computations (such as floating-point arithmetic) much
more efficiently than the CPU alone.

115

cursor

A blinking line or box on a computer screen that indicates the next
location for data entry.!

data
A general term used to signify all the basic information elements that
can be produced or processed by a computer. See information.

data element
The smallest named physical data unit.

data file
A collection of related data records organized in a specific manner. Data
files contain computer records which contain information, as opposed to
containing data handling information or a program.

debug
The process of checking the logic of a computer program to isolate and
remove mistakes from the program or other software.

default
An action or value that the computer automatically assumes, unless
a different instruction or value is given.

delimit
To establish parameters; to set a minimum and a maximum.

delimiter
A character that marks the beginning or end of a unit of data on a
storage medium. Commas, semi-colons, periods, and spaces are used
as delimiters to separate and organize items of data.

detail file
A data file composed of records having similar characteristics, but con
taining data which is relatively changeable by nature, such as employee
weekly payroll data. Compare to master file.

device
A piece of hardware that can perform a specific function. A printer is an
example of a device.

116

Cursor — End-of-File Mark (EOF)

diagnostic programs
Special programs used to align equipment or isolate equipment
malfunctions.

;directory
A table that gives the name, location, size, and the creation or last revi
sion date for each file on the storage media.

diskette
A flat, flexible platter coated with magnetic material, enclosed in a pro
tective envelope, and used for storage of software and data.

Disk Operating System
A collection of procedures and techniques that enable the computer
to operate using a disk drive system for data entry and storage. Disk
Operating System is usually abbreviated to DOS.

'

;

;
:

!

DOS
The acronym for Disk Operating System. DOS rhymes with “boss.”

double-density
A type of diskette that has twice the storage capacity of standard
single-density diskettes.

double-precision
The use of two computer words to represent each number. This tech
nique allows the use of twice as many digits as are normally available
and is used when extra precision is needed in calculations.

i

i

;
;

!

double-sided
A term that refers to a diskette that can contain data on both surfaces
of the diskette.

drive
A device that holds and manipulates magnetic media so that the CPU
can read data from or write data to them.

end-of-file mark (EOF)
A symbol or machine equivalent that indicates that the last record of a
file has been read.

117

Glossary

erase
To remove or replace magnetized spots from a storage medium.

error message
An audible or visual indication of hardware or software malfunction or
of an illegal data-entry attempt.

execute
To carry out an instruction or perform a routine.

exponent
A symbol written above a factor and on the right, telling how many
times the factor is repeated. In the example of A2, A is the factor and 2
is the exponent. A2 means A times A (A x A).

extension
A one-to-three-character set that follows a filename. The extension
further defines or clarifies the filename. It is separated from the
filename by a period!.).

field
An area of a record that is allocated for a specific category of data.

file
A collection of related data or programs that is treated as a unit by the
computer.

file protection
The devices or procedures that prevent unintentional erasure of data on
a storage device, such as a diskette.

file structure
A conceptual representation of how data values, records, and files are
related to each other. The structure usually implies how the data is
stored and how the data must be processed.

filename
The unique name, usually assigned by a user, that identifies one file for
all subsequent operations that use that file.

118

Erase — Global Search

fixed disk
A hard disk enclosed in a permanently-sealed housing that protects
it from environmental interference. Used for storage of data.

floating-point arithmetic
A method of calculation in which the computer or program automat
ically records, and accounts for, the location of the radix point. The
programmer need not consider the radix location.

floating-point routine
A set of program instructions that permits a floating-point mathemat
ics operation in a computer which lacks the feature of automatically
accounting for the radix point.

format
A predetermined arrangement of data that structures the storage of
information on an external storage device.

function
A computer action, as defined by a specific instruction. Some GW-BASIC
functions are COS, EOF, INSTR, LEFT$, and TAN.

function keys
Specific keys on the keyboard that, when pressed, instruct the computer
to perform a particular operation. The function of the keys is deter
mined by the applications program being used.

GIGO
An informal term that indicates sloppy data processing; an acronym for
Garbage In Garbage Out. The term GIGO is normally used to make the
point that if the input data is bad (garbage in) then the output data will
also be bad (garbage out).

global search
Used in reference to a variable (character or command), a global search
causes the computer to locate all occurrences of that variable.

119

Glossary
.

graphics

A hardware/software capability to display objects in pictures, rather
than words, usually on a graphic (CRT) display terminal with line
drawing capability and permitting interaction, such as the use of a light
pen.

hard copy
A printed copy of computer output in a readable form, such as reports,
checks, or plotted graphs.

hardware
The physical equipment that comprises a system.

hexadecimal
A number system with a base, or radix, of 16. The symbols used in this
system are the decimal digits 0 through 9 and six additional digits
which are generally represented as A, B, C, D, E, and F.

hidden files
Files that cannot be seen during normal directory searches.

hierarchical directories
See tree-structured directories.

\
i
s:

■

■:

housekeeping functions
Routine operations that must be performed before the actual processing
begins or after it is complete.

information
Facts and knowledge derived from data. The computer operates on and
generates data. The meaning derived from the data is information; that
is, information results from data. The two words are not synonymous,
although they are often used interchangeably.

interpreter
A program that reads, translates and executes a user’s program, such as
one written in the BASIC language, one line at a time. A compiler, on
the other hand, reads and translates the entire user’s program before
executing it.

120

Graphics — Logarithm

input
r

1. The process or device concerning the entry of data into a
computer.

2. Actual data being entered into a computer.
i

input/output
A general term for devices that communicate with a computer.
Input/output is usually abbreviated as I/O.

instruction
A program step that tells the computer what to do next. Instruction is
often used incorrectly as a synonym for command.

integer
'A complete entity, having no fractional part. The whole or natural

number. For example, 65 is an integer; 65.1 is not. !

integrated circuit
A complete electronic circuit contained in a small semiconductor
component.

interface
An information interchange path that allows parts of a computer, com
puters, and external equipment (such as printers, monitors, or modems),
or two or more computers to communicate or interact. :

I/O
The acronym for input/output.

job
A collection of tasks viewed by the computer as a unit.

K
The symbol signifying the quantity 210, which is equal to 1024. K is
sometimes confused with the symbol k (kilo), which is equal to 1000.

logarithm
A logarithm of a given number is the value of the exponent indicating
the power required to raise a specified constant, known as the base, to

121

UlUBILry

produce that given number. That is, if B is the base, N is the given
number and L is the logarithm, then BL = N. Since 103 = 1000, the
logarithm to the base 10 of 1000 is 3.

loop
A series of computer instructions that are executed repeatedly until
a desired result is obtained or a predetermined condition is met. The
ability to loop and reuse instructions eliminates countless repetitious
instructions and is one of the most important attributes of stored
programs.

M
The symbol signifying the quantity 1,000,000 (106). When used to
denote storage, it more precisely refers to 1,048,576 (220).

mantissa
The fractional or decimal part of a logarithm of a number. For example,
the logarithm of 163 is 2.212. The mantissa is 0.212, and the charac
teristic is 2.0.
In floating-point numbers, the mantissa is the number part. For exam
ple, the number 24 can be written as 24,2 where 24 is the mantissa and
2 is the exponent. The floating-point number is read as .24 x 102, or 24.

master file
A data file composed of records having similar characteristics that
rarely change. A good example of a master file would be an employee
name and address file that also contains social security numbers and
hiring dates.

media
The plural of medium,

medium
The physical material on which data is recorded and stored. Magnetic
tape, punched cards, and diskettes are examples of media.

memory
The high-speed work area in the computer where data can be held,
copied, and retrieved.

122

Loop — Operand

menu
A list of choices from which an operator can select a task or operation to
be performed by the computer.

microprocessor
A semiconductor central processing unit (CPU) in a computer,

modem
Acronym for modulator demodulator. A modem converts data from a
computer to analog signals that can be transmitted through telephone
lines, or converts the signals from telephone lines into a form the com
puter can use.

MS-DOS
Acronym for Microsoft Disk Operating System.

nested programs or subroutines
A program or subroutine that is incorporated into a larger routine to
permit ready execution or access of each level of the routine. For exam
ple, nesting loops involves incorporating one loop of instructions into
another loop.

:

:
null

Empty or having no members. This is in contrast to a blank or zero,
which indicates the presence of no information. For example, in the
number 540, zero contains needed information.

numeric
A reference to numerals as opposed to letters or other symbols,

octal number system
A representation of values or quantities with octal numbers. The octal
number system uses eight digits: 0, 1, 2, 3, 4, 5, 6, and 7, with each
position in an octal numeral representing a power of 8. The octal system
is used in computing as a simple means of expressing binary quantities.

operand
A quantity or data item involved in an operation. An operand is usually
designated by the address portion of an instruction, but it may also be a
result, a parameter, or an indication of the name or location of the next
instruction to be executed.

123

uiusuiyI
operating system

An organized group of computer instructions that manage the overall
operation of the computer.

operator
A symbol indicating an operation and itself the subject of the operation.
It indicates the process that is being performed. For example, + is addi
tion, - is subtraction, x is multiplication, and / is division.

option
An add-on device that expands a system’s capabilities.

output
Computer results, or data that has been processed.

parallel output
The method by which all bits of a binary word are transmitted
simultaneously.

parameter
A variable that is given a value for a specific program or run. A defin
able characteristic of an item, device, or system.

parity
An extra-bit of code that is used to detect data errors in memory by
making the sum of the active bit in a data word either an odd or an
even number.

partition
An area on a fixed disk set aside for a specific purpose, such as a loca
tion for an operating system.

peripheral
An external input/output, or storage device.

pixel
The acronym for picture element. A pixel is a single dot on a monitor
that can be addressed by a single bit.

124

!
Operating System — Random-Access Memory i

port
The entry channel to and from the central computer for connection of a
communications line or other peripheral device.

;
i

power
The functional area of a system that transforms an external power
source into internal DC supply voltage.

program
A series of instructions or statements in a form acceptable to a com
puter, designed to cause the computer to execute a series of operations.
Computer programs include software such as operating systems, assem
blers, compilers, interpreters, data management systems, utility pro
grams, sort-merge programs, and maintenance/diagnostic programs, as
well as application programs such as payroll, inventory control, and
engineering analysis programs.

prompt
A character or series of characters that appear on the screen to request
input from the user.

RAM
Acronym for random-access memory.

radian
The natural unit of measure of the angle between two intersecting
half-lines on the angles from one half-line to another intersecting half
line. It is the angle subtended by an arc of a circle equal in length to
the radius of the circle. As the circumference of a circle is equal to 2tt
times its radius, the number of radians in an angle of 360° or in a com
plete turn is 2ir.

radix
A number that is arbitrarily made the fundamental number of a system
of numbers; a base. Thus, 10 is the radix, or base, of the common sys
tem of logarithms, and also of the decimal system of enumeration.

random-access memory
The system’s high-speed work area that provides access to memory
storage locations by using a system of vertical and horizontal coordi
nates. The computer can write information into or read information

125

Glossary

from the random-access memory. Random-access memory is often
called RAM.

raster unit
On a graphic display screen, a raster unit is the horizontal or vertical
distance between two adjacent addressable points on the screen.

read-only memory
A type of memory that contains permanent data or instructions. The
computer can read from but not write to the read-only memory. Read
only memory is often called ROM.

real number
An ordinary number, either rational or irrational; a number in which
there is no imaginary part, a number generated from the single unit, 1;
any point in a continuum of natural numbers filled in with all rationals
and all irrationals and extended indefinitely, both positive and
negative.

real time

1. The actual time required to solve a problem.
2. The process of solving a problem during the actual time that a

related physical process takes place so that results can be used
to guide the physical process.

remote
A term used to refer to devices that are located at sites away from the
central computer.

reverse video
A display of characters on a background, opposite of the usual display.

ROM
Acronym for read-only memory.

RS-232
A standard communications interface between a modem and terminal
devices that complies with EIA Standard RS-232.

126

Raster Unit—Statement

serial output
Sending only one bit at a time to and from interconnected devices,

single-density
The standard recording density of a diskette. Single-density diskettes
can store approximately 3400 bits per inch (bpi).

single-precision value
The number of words or storage positions used to denote a number in
a computer. Single-precision arithmetic is the use of one word per
number, double-precision arithmetic is the use of two words per num
ber, and so on. For variable word-length computers, precision is the
number of digits used to denote a number. The higher the precision,
the greater the number of decimal places that can be carried.

single-sided
A term used to describe a diskette that contains data on one side only.

software
A string of instructions that, when executed, direct the computer to per
form certain functions.

stack architecture
An architecture wherein any portion of the external memory can be
used as a last-in, first-out stack to store/retrieve the contents of the
accumulator, the flags, or any of the data registers. Many units contain
a 16-bit stack pointer to control the addressing of this external stack.
One of the major advantages of the stack is that multiple-level inter
rupts can be handled easily, since complete system status can be saved
when an interrupt occurs and then be restored after the interrupt.
Another major advantage is that almost unlimited subroutine nesting is
possible.

statement
A high-level language instruction to the computer to perform some
sequence of operations.

127

r
Glossary

synchronous
A type of computer operation in which the execution of each instruction
or each event is controlled by a clock signal: evenly spaced pulses that
enable the logic gates for the execution of each logic step. A synchro
nous operation can cause time delays by causing waiting for clock sig
nals although all other signals at a particular logic gate were available.
See asynchronous.

i

switch
An instruction, added to a command, that designates a course of action,
other than default, for the command process to follow.

syntax
Rules of statement structure in a programming language.

system
A collection of hardware, software, and firmware that is interconnected
to operate as a unit.

task
A machine run; a program in execution.

toggle
Alternation of function between two stable states.

track
A specific area on a moving-storage medium, such as a diskette, disk, or
tape cartridge, that can be accessed by the drive heads.

tree-structured directory
A file-organization structure, consisting of directories and subdirectories
that, when diagrammed, resembles a tree.

truncation
To end a computation according to a specified rule; for example, to drop
numbers at the end of a line instead of rounding them off, or to drop
characters at the end of a line when a file is copied.

128

Synchronous — Upgrade

upgrade
To expand a system by installing options or using revised software,

utility function
Computer programs, dedicated to one particular task, that are helpful
in using the computer. For example, FDISK, for setting up partitions on
the fixed disk.

variable
A quantity that can assume any of a set of values as a result of process
ing data.

volume label
The name for the contents of a diskette or a partition on a fixed disk.

word
The set of bits comprising the largest unit that the computer can handle
in a single operation.

write-protect notch
A cut-out opening in the sealed envelope of a diskette that, when
covered, prevents writing or adding text to the diskette, but allows
information to be read from the diskette.

129

Index

Constants, numeric (continued)
types of, 49

CTRL-6, 31
CTRL-B, 31
CTRL-BACKSPACE, 31
CTRL-BREAK, 13, 31
CTRL-C, 31
CTRL-E, 32
CTRL-END, 32
CTRL-F, 31
CTRL-G, 32
CTRL-H, 31
CTRL-HOME, 32
CTRL-I, 33
CTRL-J, 32
CTRL-K, 32
CTRL-L, 32
CTRL-1, 31
CTRL-M, 32
CTRL-N, 32
CTRL-NUM LOCK, 33
CTRL-PRTSC, 33
CTRL-R, 32
CTRL-S, 33
CTRL-Z, 13
CTRL-[, 32
CTRL-], 31
CTRL-\, 31
CURSOR-UP, 31

Array
defined, 52
size limits, 53

ASCII character codes, 73
Asynchronous, 111

Bad file mode, 67
Bad file number, 67
Bad filename, 68
Bad record number, 68

/c switch, 11
CALL statement

assembly language interface, 75
syntax, 76

Can’t continue, 65
Command

defined, 15
kill, 37
load, 37
merge, 37
name, 37
run, 37
save, 37

Communication
asynchronous

defined, 111
support, 91

GET statement, 94
I/O functions, 92
I/O statements, 91
INPUT$ function, 93
opening files, 91
possible errors, 92
PUT statement, 94

Communication buffer overflow, 69
Constants, numeric

defined, 49
double-precision defined, 50
examples of double-precision, 51
examples of single-precision, 51
single-precision defined, 50

/d switch, 12
Delete a line, 24
Device Fault, 66
Device I/O Error, 68
Device Timeout, 66
Device Unavailable, 69
Direct statement in file, 68
Disk full, 68
Disk media error, 70
Disk not Ready, 70
Division by zero, 64
Duplicate Definition, 64

131

Ladex

EDIT command
keys used with, 25

EDLIN command
example, 24

ESC key, 32
Expression, 56

Insert mode, 32
Internal error, 67

Keyword, 14
KILL command, 37

/f switch, 11
FI key, 24
F2 key, 24
F3 key, 26
F4 key, 25
FIELD overflow, 67
File already exists, 68
File already open, 67
File not found, 67
FOR Without NEXT, 66
Function

used with random access file, 42
used with sequential files, 38

Function keys
assignments, 34
defined, 34
reassigned, 34
shown on screen, 9

Function, numeric, 15
Function, string, 16

Line, 24
Line buffer overflow, 66
LIST command, 23
LOAD command, 37

/m switch, 12
Memory

allocation for assembly language, 75
needed for storage, 54

MERGE command, 37
Missing operand, 66
Modes

direct
examples, 21
uses of, 10

indirect
examples, 22
uses of, 10

insert, 32

GW-BASIC
assembly language interface, 75
loading, 9
memory available, 9
special characters recognized, 107

GW-BASIC command
examples, 12
parameters described, 10
redirected, 11,14
syntax, 10

GW-BASIC, converting to
FOR-NEXT loops, 89
MAT functions, 88
multiple assignments, 88
multiple statements, 88
string dimensions, 87

NAME command, 37
No RESUME, 65

OPEN COM statement, 91
Operator

defined, 124
Operators

arithmetic, 56
defined, 56
four categories, 56
functional, 62
logical, 59
relational, 59
string, 63

Out of DATA, 63
Out of memory, 64
Out of paper, 66
Out of string space, 65
Overflow, 64

Illegal function call, 63
Input past end, 68

132

Index

Path not found, 70
Path/File Access Error, 70
Permission Denied, 69
Program

distinguished from calculation, 23
Program line

format, 16
format requirements, 17

String constant (continued)
defined, 49

String formula too complex, 65
String too long, 65
Subscript out of range, 64
Switch

/c, 11
/d, 12
/f, 11
/m, 12
/s, 11
specifying numbers for, 12

Syntax error, 63

Quitting GW-BASIC, 18

Random access file
accessing, 43
defined, 38
example, 43, 44, 45
functions used with, 42
program steps required, 42
statements used with, 42

Recall a program file, 26
Redirection, 14
Rename across disks, 70
Reserved word. See Keyword
RESUME without error, 66
RETURN without GOSUB, 63
RUN command, 37

used in indirect mode, 10

TAB key, 33
Too many files, 69
TTY sample program, 95

notes on, 96
Type mismatch, 65

Undefined line number, 64
Undefined user function, 65
Unprintable error, 66, 67, 68
USR function call, 75

syntax, 81

Variable
array defined, 52
conversion done by GW-BASIC, 54
declaration symbols, 52
four types of, 52
memory storage requirements, 54
samples, 52

Variable, fielded string
not used in INPUT or LET

/s switch, 11
Save a program file, 25
SAVE command, 37
Sequential file

accessing, 40
adding data, 41
defined, 38
example, 39, 40, 41
functions used with, 38
program steps required, 38
statements used with, 38

SHIFT-PRTSC
prints screen, 33

Statement, 127
CALL, 76
defined, 15, 16
OPEN COM, 91
used with random access file, 42
used with sequential files, 38

String constant

statements, 43
Variables

defined, 16

WEND without WHILE, 67
WHILE without WEND, 66

133

Microsoft

GW-BASIC, Interpreter
User’s Reference

Microsoft Corporation

Information in this document is subject to change without notice and does not
represent a commitment on the part of Microsoft Corporation. The software de
scribed in this document is furnished under a license agreement or nondisclosure
agreement. The software may be used or copied only in accordance with the terms
of the agreement. It is against the law to copy this software on magnetic tape, disk,
or any other medium for any purpose other than the purchaser’s personal use.

i

© Copyright Microsoft Corporation, 1986, 1987. All rights reserved.

Portions copyright COMPAQ Computer Corporation, 1985

Simultaneously published in the United States and Canada.

Microsoft®, MS-DOS®, GW-BASIC®, and the Microsoft logo are registered trademarks of
Microsoft Corporation.

EGA® and IBM® are registered trademarks of International Business Machines Corporation.

Document No. 410130013-330-R02-0787

Introduction

This manual is an alphabetical reference to GW-BASIC instructions: state
ments, functions, commands, and variables.

The name and type of each instruction is listed at the top of the page, and
is followed by:

The purpose of the instruction
The complete notation of the instruction
Pertinent information about the instruction, and
what happens when it is encountered by GW-BASIC
An illustration of the instruction as it might appear
in a program
Any special information about the instruction

Purpose
Syntax
Comments

Examples

Notes

1

ABS Function

ABS Function

Purpose:

To return the absolute value of the expression n.

Syntax:

ABS(n)

Comments:

n must be a numeric expression.

Examples:

PRINT ABS(7*(-5))
35
Ok

Prints 35 as the result of the action.

2

ASC Function

ASC Function

Purpose:

To return a numeric value that is the ASCII code for the first character of
the string x$.

Syntax:

ASC(x$)

Comments:

If x$ is null, an “Illegal Function Call” error is returned.

If x$ begins with an uppercase letter, the value returned will be within the
range of 65 to 90.

If x$ begins with a lowercase letter, the range is 97 to 122.

Numbers 0 to 9 return 48 to 57, sequentially.

See the CHR$ function for ASCII-to-string conversion.

See Appendix C in the GW-BASIC User’s Guide for ASCII codes.

Examples:

10 X$=MTEN"
20 PRINT ASC(X$)
RUN

84
Ok

84 is the ASCII code for the letter T.

3

AIn Function

ATN Function

Purpose:

To return the arctangent of x, when x is expressed in radians.

Syntax:

: ATN(x)

Comments:

The result is within the range of -tt/2 to tt/2.

The expression x may be any numeric type. The evaluation of ATN is per
formed in single precision unless the /d switch is used when GW-BASIC is
executed.

To convert from degrees to radians, multiply by tt/180.

Examples:

10 INPUT X
20 PRINT ATN(X)
RUN
? 3
1.249046
Ok

Prints the arctangent of 3 radians (1.249046).

4

AUTO Command

AUTO Command

Purpose:

To generate and increment line numbers automatically each time you press
the RETURN key.

Syntax:

AUTO [line number][,[increment]]
AUTO .[,[increment]]

Comments:

AUTO is useful for program entry because it makes typing line numbers
unnecessary.

AUTO begins numbering at line number and increments each subsequent
line number by increment. The default for both values is 10.

The period (.) can be used as a substitute for line number to indicate the
current line.

If line number is followed by a comma, and increment is not specified, the
last increment specified in an AUTO command is assumed.

If AUTO generates a line number that is already being used, an asterisk
appears after the number to warn that any input will replace the existing
line. However, pressing RETURN immediately after the asterisk saves the
line and generates the next line number.

AUTO is terminated by entering CTRL-BREAK or CTRL-C. GW-BASIC will then
return to command level.

Note
The line in which CTRL-BREAK or CTRL-C is entered is not saved. To be
sure that you save all desired text, use CTRL-BREAK and CTRL-C only on
lines by themselves.

5

AUTO Command

Examples:

AUTO 100,50

Generates line numbers 100,150, 200, and so on.

AUTO

Generates line numbers 10, 20, 30, 40, and so on.

6

BEEP Statement ?•

BEEP Statement

Purpose:

To sound the speaker at 800 Hz (800 cycles per second) for one-quarter
of a second.

Syntax:

BEEP

Comments:

BEEP, CTRL-G, and PRINT CHR$(7) have the same effect.

Examples:

2340 IF X>20 THEN BEEP

If X is out of range, the computer beeps.

7

BLOAD Command:

BLOAD Command

Purpose:

To load an image file anywhere in user memory.

Syntax:

BLOAD filename[yoffset\

Comments:

filename is a valid string expression containing the device and filename.

offset is a valid numeric expression within the range of 0 to 65535. This is
the offset into the segment, declared by the last DEF SEG statement, where
loading is to start.

If offset is omitted, the offset specified at BSAVE is assumed; that is, the
file is loaded into the same location it was saved from.

Note
BLOAD does not perform an address range check. It is possible to
BLOAD anywhere in memory. You must not BLOAD over the GW-BASIC
stack space, a GW-BASIC program, or the GW-BASIC variable area.

While BLOAD and BSAVE are useful for loading and saving machine
language programs, they are not restricted to them. The DEF SEG state
ment lets you specify any segment as the source or target for BLOAD and
BSAVE. For example, this allows the video screen buffer to be read from
or written to the diskette. BLOAD and BSAVE are useful in saving and
displaying graphic images.

8

BLOAD Command

Examples:

10 DEF SEG=&HB80 0
20 BLOAD"PICTURE",0

(This example may not work in some screen modes.)

The DEF SEG statement in line 10 points the segment at the screen buffer.

The DEF SEG statement in line 10 and the offset of 0 in line 20 guarantee
that the correct address is used.

The BLOAD command in line 20 loads the file named picture into the
screen buffer.

Note
The BSAVE example in the next section illustrates how the file named
picture is saved.

9

BSAVE Command

BSAVE Command

Purpose:

To save portions of user memory on the specified device.

Syntax:

BSAVE filename,offset,length

Comments:

filename is a valid string expression containing the filename.

offset is a valid numeric expression within the range of 0 to 65535. This
is the offset into the segment, declared by the last DEF SEG statement,
where saving is to start.

length is a valid numeric expression within the range of 0 to 65535, specify
ing the length of the memory image to be saved.

If filename is less than one character, a “Bad File Number” error is issued
and the load is aborted.

Execute a DEF SEG statement before the BSAVE. The last known DEF
SEG address is always used for the save.

The DEF SEG statement must be used to set up the segment address to the
start of the screen buffer. An offset of 0 and a length of 16384 specify that
the entire 16K screen buffer is to be saved.

Examples:

10 DEF SEG=*HB800
20 BSAVE"PICTURE",0,16384

The DEF SEG statement in line 10 points the segment at the screen buffer.

The BSAVE command in line 20 saves the screen buffer in the file named
picture.

10

CALL Statement

CALL Statement

Purpose:

To call an assembly (or machine) language subroutine.

Syntax:

CALL numvar[(variables)]

Comments:

numvar is the starting point in memory of the subroutine being called as an
offset into the current segment.

variables are the variables or constants, separated by commas and enclosed
in parentheses, that are to be passed to the routine.

The CALL statement is recommended for interfacing assembly language
programs with GW-BASIC. Although the USR function may also be used,
CALL is compatible with more languages, produces a more readable source
code, and can pass multiple arguments.

Invocation of the CALL statement causes the following to occur:

Each parameter location in the variable is pushed onto the stack.
The parameter location is a 2-byte offset into GW-BASIC’s data
segment.
The return address code segment (CS) and the offset are pushed
onto the stack.
Control is transferred to the user routine by the segment address
given in the last DEF SEG statement and the offset given in the
variable name.
The user routine now has control. Parameters may be referenced by
moving the stack pointer (SP) to the base pointer (BP) and adding a
positive offset to BP.
The called routine may destroy the contents of any registers.
The called program must know how many parameters were passed.
Parameters are referenced by adding a positive offset to BP, assum
ing the called routine moved the current stack pointer into BP
(that is, MOV BP,SP).

o

o

©

©

11

CALL Statement

The called program must know the variable type for numeric
parameters passed.
The called routine must do a RET n, where n is the number of
parameters in the variable times 2. This is necessary in order to
adjust the stack to the point at the start of the calling sequence.
Values are returned to GW-BASIC by including in the argument list
the name of the variable that is to receive the result.
If the argument is a string, the parameter offset points to three
bytes called the string descriptor. Byte 0 of the string descriptor con
tains the length of the string (0 to 255). Bytes 1 and 2, respectively,
are the lower- and upper-eight bits of the string starting address in
the string space.
If the argument is a string literal in the program, the string de
scriptor points to program text. Be careful not to alter or destroy
a program this way. To avoid unpredictable results, add +
the string literal in the program, as in the following:
20 A$="BASIC"+
This forces the string literal to be copied into the string space. Now
the string may be modified without affecting the program.

» » to

mi

Note
Strings may be altered by user routines, but their length must
not be changed. GW-BASIC cannot correctly erase strings if their
lengths are modified by external routines.

For more information on the CALL statement and USR function, see Ap
pendix D in the GW-BASIC User's Guide.

Example 1:

100 DEF SEG=4H2000
110 ARK-0
120 CALL ARK(A,B$,C)

12

CALL Statement

Line 100 sets the segment to hex 2000. ARK is set to zero so that the call to
ARK executes the subroutine at location 2000:0.

Example 2:

The following sequence of 8086 Assembly Language demonstrates access of
the parameters passed and stored in variable C:

PUSH BP
MOV BP,SP
MOV BX,8[BP]
MOV CL,[BX]
MOV DX,1CBX 3

Gets current stack position in BP.
Gets address of B$ descriptor.
Gets length of B$ in CL.
Gets address of B$ text in DX.

Gets address of A in SI.
Gets pointer to C in DI.
Stores variable A in C.
Restores stack and returns.

MOV SI,10 CBP 3
MOV DI,6[BP]
M0VSW
RET 6

MOVSW copies only two bytes. This is sufficient if variables A and C are
integer. Four bytes must be copied if they are single precision; eight bytes,
if they are double precision.

Example 3:

100 DEF SEG=&H20 00
110 ACC=&H7FA
120 CALL ACC(A,B$,C)

Line 100 sets the segment to hex 2000. The value of variable ACC is added
into the address as the low word after the DEF SEG value is shifted four
bits to the left (this is a function of the microprocessor, not of GW-BASIC).
Here, ACC is set to &H7FA, so that the call to ACC executes the subrou
tine at the location hex 2000:7FA (absolute address hex 207FA).

13

CDBL Function

CDBL Function

Purpose:

To convert x to a double-precision number.

Syntax:

CDBL(x)

Comments:

x must be a numeric expression.

Example:

10 A=454.67
20 PRINT A;CDBL(A)
RUN
454.67 454.6700134277344
Ok

Prints a double-precision version of the single-precision value stored in the
variable named A.

The last 11 numbers in the double-precision number have no meaning in
this example, since A was previously defined to only two-decimal place
accuracy.

Note
See the CINT and CSNG functions for converting numbers to integer
and single-precision, respectively.

14

*

CHAIN Statement

CHAIN Statement

Purpose:

To transfer control to the specified program and pass (chain) variables
to it from the current program.

Syntax:

CHAIN[MERGE1 /ilenamef,[/melt,[ALL][,DELETE range]])

Comments:

MERGE overlays the current program with the called program.

Note
The called program must be an ASCII file (previously saved with the a
option) if it is to be merged (see the MERGE command).

filename is the name of the program that is called to be chained to. The
.BAS extension is assumed unless another is specified.

line is a line number or an expression that corresponds to a line number in
the called program. It is the starting point for execution of the called pro
gram. For example, the following begins execution of PROG1 at line 1000:

10 CHAIN "PR0G1", 1000

If line is omitted, execution begins at the first line.

line is not affected by a RENUM command. However, the line numbers in
the specified range are affected by a RENUM command.

ALL specifies that every variable in the current program is chained to the
called program. For example:

20 CHAIN "PR0G1 ",1000, ALL

15

U1UU1U Element

°P^on *s omitted, the current program must contain
COMMON statement to list the variables that are passed.

CHAIN executes a RESTORE before it runs the program that it is to be
chained to. The READ statement then gets the first item in the DATA
statement. Reading will not resume where it left off in the program that
is being chained.

After an overlay is executed and used for a specific purpose, it is usually
desirable to delete it so that a new overlay may be brought in. To do this,
use the DELETE command.

The CHAIN statement with the MERGE command leaves the files open and
preserves the current option base setting.

If the MERGE command is omitted, the OPTION BASE setting is pre
served, and CHAIN preserves no variable types or user-defined functions
for use by the chained program. That is, any DEFINT, DEFSNG, DEFDBL,
DEFSTR, or DEF FN statement containing shared variables must be re
stated in the chained program.

When using the MERGE command, place user-defined functions before any
CHAIN MERGE statements in the program. Otherwise, they will be unde
fined after the merge is complete.

a

*

i

16

CHDIR Command

CHDIR Command

Purpose:

To change from one working directory to another.

Syntax:

CHDIR pathname

Comments:

pathname is a string expression of up to 63 characters.

To make sales the working directory on Drive A: and inventory the working
directory on Drive B: (assume A: is the default drive), type the following
commands:

CHDIR "SALES"
CHDIR "B:INVENTORY"

17

CHR$ Function

CHR$ Function

Purpose:

To convert an ASCII code to its equivalent character.

Syntax:

CHR$(n)

Comments:

n is a value from 0 to 255.

CHR$ is commonly used to send a special character to the terminal or
printer. For example, you could send CHR$(7) to sound a beep through the
speaker as a preface to an error message, or you could send a form feed,
CHR$(12), to the printer.

See the ASC function for ASCn-to-numeric conversion.

ASCII Codes are listed in Appendix C of the GW-BAS1C User's Guide.

Examples:

PRINT CHR$(66);
B
Ok

This prints the ASCII character code 66, which is the uppercase letter B.

PRINT CHRS(13);

This command prints a carriage return.

18

CINT Function

CINT Function

Purpose:

To round numbers with fractional portions to the next whole number
or integer.

Syntax:

CINTOt)

Comments:

If x is not within the range of -32768 to 32767, an “Overflow” error occurs.

See the FIX and INT functions, both of which return integers.

Examples:

PRINT CI NT(45.67)
46
Ok

45.67 is rounded up to 46.

Note
See the CDBL and CSNG functions for converting numbers to the
double-precision and single-precision data types, respectively.

19

CIRCLE Statement

CIRCLE Statement

Purpose:

To draw a circle, ellipse, and angles on the screen during use of the
Graphics mode.

Syntax:

ClRCLE(xcenterycenter),radius[,[color][,[stari],[end][,aspect]]]

Comments:

xcenter and ycenter are the x- and y- coordinates of the center of the ellipse,
and radius is the radius (measured along the major axis) of the ellipse. The
quantities xcenter and ycenter can be expressions. The center attributes can
use either absolute or relative coordinates.

color specifies the color of the ellipse. Its value depends on the current
screen mode.

See the COLOR and SCREEN statements for more information on using
colors in the different screen modes.

In the high-resolution mode, 0 indicates black and 1 indicates white.
The default for the high-resolution mode is 1.

The start and end angle parameters are radian arguments between -2 *tt
and 2*ir that specify where the drawing of the ellipse is to begin and end. If
start or end is negative, the ellipse is connected to the center point with a
line, and the angles are treated as if they are positive (note that this is dif
ferent from adding 2* it).

aspect describes the ratio of the x radius to the y radius (x:y). The default
aspect ratio depends on the screen mode, but gives a visual circle in either
graphics mode, assuming a standard monitor screen aspect ratio of 4:3.

If the aspect ratio is less than 1, then the radius is given in x-pixels. If it is
greater than 1, the radius is given in y-pixels.

20

CIRCLE Statement

In many cases, an aspect ratio of 1 gives better ellipses in the medium-
resolution mode. This also causes the ellipse to be drawn faster. The start
angle may be less than the end angle.

Example 1:

10 SCREEN1: CIRCLE(100,100), 50

Draws a circle of radius 50, centered at graphics points lOOx and lOOy.

Example 2:

1 ' This will draw 17 ellipses
10 CLS
20 SCREEN 1
30 FOR R=160 TO 0 STEP-10
40 CIRCLE (100,100),R
50 NEXT

5/18> i > >

Example 3:

10 'This will draw 5 spheres
20 GOTO 160
50 IF VERT GOTO 100
60 CIRCLE (X , Y) ,R,C
70 FOR I = 1 TO 5
80 CIRCLE (X ,Y) ,R,C
90 IF VERT THEN RETURN
1 00 CIRCLE (X ,Y) ,R,C
1 1 0 CIRCLE (X ,Y) ,R,C
120 CIRCLE (X , Y) ,R,C
130 CIRCLE (X , Y) ,R,C
140 IF VERT GOTO 60
150 RETURN
160 CLS:SCREEN 1:COLOR 0,1:KEY OFF:VERT=0
170 X=160:Y=100:C=1:R=50:G0SUB 50
180 X=30:Y=30:C=2:R=30:GOSUB 50
190 X=30:Y=169:GOSUB 50
200 X=289:Y=30:GOSUB 50
210 X=289:Y=169:GOSUB 50
220 LINE (30,30)-(289,169),1
230 LINE (30,169)-(289,30),1
240 LINE (30,169)-(289,30),1 ,B
250 Z$=INKEY$: IF Z$=

.07j > i

I *.2:NEXT Ij >)

1 .3i » >
1 .9» » >
3.6
9.8j » i

ii ii THEN 250
RUN

21

CIRCLE Statement

CLEAR Command

Purpose:

To set all numeric variables to zero, all string variables to null, and to close
all open files. Options set the end of memory and reserve the amount of
string and stack space available for use by GW-BASIC.

Syntax:

ChEABl,[expression!][,expression2)]

Comments:

expressionl is a memory location that, if specified, sets the maximum
number of bytes available for use by GW-BASIC.

expression2 sets aside stack space for GW-BASIC. The default is the previous
stack space size. When GW-BASIC is first executed, the stack space is set to
512 bytes, or one-eighth of the available memory, whichever is smaller.

GW-BASIC allocates string space dynamically. An “Out of String Space” error
occurs only if there is no free memory left for GW-BASIC to use.

The CLEAR command:

Closes all files
Clears all COMMON and user variables
Resets the stack and string space
Releases all disk buffers
Turns off any sound
Resets sound to music foreground
Resets PEN to off
Resets STRIG to off
Disables ON ERROR trapping

22

.

CLEAR Command

Examples:

CLEAR

Zeroes variables and nulls all strings.

CLEAR 32768

Zeroes variables, nulls strings, protects memory above 32768, does not
change the stack space.

2000CLEAR i i

Zeroes variables, nulls strings, allocates 2000 bytes for stack space, and
uses all available memory in the segment.

CLEAR ,32768,2000

Zeroes variables, nulls strings, protects memory above 32768, and allocates
2000 bytes for stack space.

23

CLOSE Statement;
:

CLOSE Statement

Purpose:

To terminate input/output to a disk file or a device.

Syntax:

CLOSE [[#]filenumber[,[#]filenumber]...\

Comments:

filenumber is the number under which the file was opened.

The association between a particular file or device and file number ter
minates upon execution of a CLOSE statement. The file or device can then
be reopened using the same or a different file number.

A CLOSE statement with no file number specified closes all open files
and devices.

A CLOSE statement sent to a file or device opened for sequential output
writes the final buffer of output to that file or device.

The END, NEW, RESET, SYSTEM, or RUN and LOAD (without r option)
statements always close all files or devices automatically. STOP does not
close files.

Examples:

250 CLOSE

This closes all open devices and files.

300 CLOSE 1,#2,#3

Closes all files and devices associated with file numbers 1, 2, and 3.

24

CLS Statement

CLS Statement

Purpose:

To clear the screen.

Syntax:

CLS [n]

Comments:

n is one of the following values:

EffectValue of n

Clears the screen of all text and graphics

Clears only the graphics viewport
Clears only the text window

If the graphics viewport is active, CLS without argument clears only the
viewport. If the graphics viewport is inactive, CLS clears the text window.

If the screen is in alpha mode, the active page is cleared to the currently
selected background color (see the SCREEN and COLOR statements).

If the screen is in graphics mode, the entire screen buffer is cleared to back
ground color.

The screen may also be cleared by pressing CTRL-HOME, or by changing the
screen mode with the SCREEN or WIDTH statements.

0
1
2

CLS returns the cursor to the upper-left comer of the screen, and sets the
last point referenced to the center of the screen.

If the VIEW statement has been used, CLS clears only the last viewport
specified.

25

CLS Statement

Examples:

1 CLS

This clears the screen.

'

!
i

i

COLOR Statement

COLOR Statement

Purpose:

To select display colors

Syntax:

COLOR [foreground][,[background][,border]]
COLOR [background^,[palette]]
COLOR [foreground^,[background]]

Comments:

In general, COLOR allows you to select the foreground and background
colors for the display. In SCREEN 0 a border color can also be selected. In
SCREEN 1 no foreground color can be selected, but one of two four-color
palettes can be selected for use with graphics statements. The different
syntaxes and effects that apply to the various screen modes are described
below:

EffectMode

Modifies the current default text foreground and back
ground colors, and the screen border. The foreground
color must be an integer expression in the range
0-31. It is used to determine the “foreground” color
in text mode, which is the default color of text. Six
teen colors can be selected with the integers 0-15.
A blinking version of each color can be selected by
adding 16 to the color number; for example, a blink
ing color 7 is equal to 7 + 16, or 23. Thus, the legal
integer range for foreground is 0 — 31.
The background color must be an integer expression
in the range 0-7, and is the color of the background
for each text character. Blinking colors are not per
mitted.
The border color is an integer expression in the range
0-15, and is the color used when drawing the screen
border. Blinking colors are not permitted.

SCREEN 0

27

COLOR Statement

If no arguments are provided to COLOR, then the
default color for background and border is black (color
0), and for foreground, is as described in the SCREEN
statement reference pages.

In mode 1, the COLOR statement has a unique syntax
that includes a palette argument, which is an odd or
even integer expression. This argument determines
the set of display colors to use when displaying partic
ular color numbers.
For hardware configurations that do not have an
IBM® Enhanced Graphics Adapter (EGA), the default
color settings for the palette parameter are equivalent
to the following:

SCREEN 1

'Same as the next three PALETTE
'statements
'1 = green, 2 = red, 3 = yellow

'Same as the next three PALETTE
' statements
'1 = cyan, 2 = magenta, 3 = hi.
'intens. white

COLOR ,0

COLOR ,1

With the EGA, the default color settings for the
palette parameter are equivalent to the following:

'Same as the next three PALETTE
' statements
'Attribute 1 = color 3 (green)
'Attribute 2 = color 5 (red)
'Attribute 3 = color 6 (brown)

'Same as the next three PALETTE
'statement s
'Attribute 1 = color 3 (cyan)
'Attribute 2 = color 5 (magenta)
'Attribute 3 = color 15 (white)

COLOR ,0

PALETTE 1,2
PALETTE 2,4
PALETTE 3,6

COLOR ,1

PALETTE 1,3
PALETTE 2,5
PALETTE 3,7

Note that a COLOR statement will override previous
PALETTE statements.

SCREEN 2 No effect. An “Illegal function call” error occurs if
COLOR is used in this mode.

28

COLOR Statement

In these modes, no border color can be specified. The
graphics background is given by the background color
number, which must be in the valid range of color
numbers appropriate to the screen mode. See the
SCREEN statement reference pages for more details.
The foreground color argument is the default line
drawing color.

Arguments outside valid numeric ranges result in “Illegal function call”
errors.

SCREEN 7—
SCREEN 10

The foreground color may be the same as the background color, making
displayed characters invisible. The default background color is black, or
color number 0, for all display hardware configurations and all screen
modes.

With the Enhanced Graphics Adapter (EGA) installed, the PALETTE state
ment gives you flexibility in assigning different display colors to the actual
color-number ranges for the foreground, background, and border colors dis
cussed above. See the PALETTE statement reference pages for more details.

For more information, see CIRCLE, DRAW, LINE, PAINT, PALETTE,
PRESET, PSET, SCREEN

Examples:

The following series of examples show COLOR statements and their effects
in the various screen modes:

SCREEN 0
COLOR 1,2,3 ' foreground=1 , backgrounds, border=3

SCREEN 1
COLOR 1 ,0
COLOR 2,1

'foregrounds, even palette number
' foreground = 2, odd palette number

SCREEN 7
COLOR 3,5 'foreground=3, background=5

SCREEN 8
COLOR 6,7 ' foreground=6, background = 7

SCREEN 9
COLOR 1 ,2 ' f or egr ound = 1 , backgrounds

29

COM(n) Statement

COM(n) Statement

Purpose:

To enable or disable trapping of communications activity to the specified
communications adapter.

;
; Syntax:
'

COMOi) ON
COM(/i) OFF
COM(ti) STOP

Comments:

n is the number of the communications adapter 1 or 2.

Execute a COM(n) ON statement before an ON COM(n) statement to allow
trapping. After COM(n) ON, if a nonzero number is specified in the ON
COM(n) statement, BASIC checks every new statement to see if any char
acters have come in the communications adapter.

With COM(n) OFF, no trapping takes place, and all communications
activity will be lost.

With COM(n) STOP, no trapping takes place. However, any communication
that takes place will be remembered so that immediate trapping will occur
when COM(n) ON is executed.

30

COMMON Statement

COMMON Statement

Purpose:

To pass variables to a chained program.

Syntax:

COMMON variables

Comments:

variables are one or more variables, separated by commas, that you want
to pass to the chained program.

The COMMON statement is used in conjunction with the CHAIN
statement.

COMMON statements may appear anywhere in a program, although
it is recommended that they appear at the beginning.

Any number of COMMON statements may appear in a program, but the
same variable cannot appear in more than one COMMON statement. To
pass all variables using the CHAIN statement, use the ALL option, and
omit the COMMON statement.

Place parentheses after the variable name to indicate array variables.

Examples:

100 COMMON A, B, C, D(),G$
110 CHAIN "A:PR0G3M

This example chains to program PROG3 on disk drive A:, and passes the
array D along with the variables A, B, C, and string G$.

31

CONT Command

CONT Command

Purpose:

To continue program execution after a break.

Syntax:

CONT

Comments:
!

Resumes program execution after CTRL-BREAK, STOP, or END halts a pro
gram. Execution continues at the point where the break happened. If the
break took place during an INPUT statement, execution continues after
reprinting the prompt.

CONT is useful in debugging, in that it lets you set break points with the
STOP statement, modify variables using direct statements, continue pro
gram execution, or use GOTO to resume execution at a particular line
number.

|

:
i

If a program line is modified, CONT will be invalid.

32

COS Function

COS Function

Purpose:

To return the cosine of the range of x.

Syntax:

COS(x)

Comments:

x must be the radians. COS is the trigonometric cosine function. To convert
from degrees to radians, multiply by tt/180.

COSCz) is calculated in single-precision unless the /d switch is used when
GW-BASIC is executed.

Example 1:

10 X = 2 * COS(.4)
20 PRINT X
RUN

1.842122
Ok

Example 2:

10 PI=3.141593
20 PRINT COS(PI)
30 DEGREES=180
40 RADIANS=DEGREES*PI/180
SO PRINT COS(RADIANS)
RUN
-1
-1
OK

33

CSNG Function

CSNG Function

Purpose:

To convert x to a single-precision number.

Syntax:

CSNG (x)

i Comments:

x must be a numeric expression (see the CINT and CDBL functions).

Examples:

10 A#=975.3421222#
20 PRINT A#; CSNG(A*)
RUN

975.3421975.3421222
Ok

34

CSRLIN Variable

CSRLIN Variable

Purpose:

To return the current line (row) position of the cursor.

Syntax:

y = CSRLIN

Comments:

y is a numeric variable receiving the value returned. The value returned
is within the range of 1 to 25.

The CSRLIN Variable returns the vertical coordinate of the cursor on the
active page (see the SCREEN statement).

x = POS(O) returns the column location of the cursor. The value returned
is within the range of 1 to 40, or 1 to 80, depending on the current screen
width (see the POS function).

Examples:

10 Y=CSRLIN
20 X=P0S(0)
30 LOCATE 24,1
40 PRINT •'HELLO"
50 LOCATE Y,X
RUN
HELLO
Ok

The CSRLIN Variable in line 10 records the current line.

The POS function in line 20 records the current column.

In line 40, the PRINT statement displays the comment “HELLO” on the
24th line of the screen.

The LOCATE statement in line 50 restores the position of the cursor to the
original line and column.

35

CVI, CVS, CVD Functions

CVI, CVS, CVD Functions

Purpose:

To convert string values to numeric values.

Syntax:

CVI (2-byte string)
CVS(4-6yte string)
CVD(8-byte string)

Comments:

Numeric values read in from a random-access disk file must be converted
from strings back into numbers if they are to be arithmetically manipu
lated.

CVI converts a 2-byte string to an integer. MKI$ is its complement.

CVS converts a 4-byte string to a single-precision number. MKS$ is its
complement.

CVD converts an 8-byte string to a double-precision number. MKD$ is its
complement.

V

..

(See MKI$, MKS$, and MKD$.)

Examples:

70 FIELD #1,4 AS N$, 12 AS B$...
80 GET #1
90 Y=CVS(N$)

36

CVI, CVS, CVD Functions

Line 80 reads a field from file #1 (the field read is defined in line 70), and
converts the first four bytes (N$) into a single-precision number assigned to
the variable Y.

Since a single-precision number can contain as many as seven ASCII charac
ters (seven bytes), when writing a file using MKS$ conversion, and reading
with the CVS conversion, as many as three bytes per number recorded are
saved on the storage medium. Even more may be saved if double-precision
numbers are required. MKD$ and CVD conversions would be used in this
case.

37

DATA Statement

DATA Statement

Purpose:

To store the numeric and string constants that are accessed by the program
READ statement(s).

Syntax:

DATA constants

Comments:

constants are numeric constants in any format (fixed point, floating-point,
or integer), separated by commas. No expressions are allowed in the list.

String constants in DATA statements must be surrounded by double quota
tion marks only if they contain commas, colons, or significant leading or
trailing spaces. Otherwise, quotation marks are not needed.

DATA statements are not executable and may be placed anywhere in the
program. A DATA statement can contain as many constants as will fit on
a line (separated by commas), and any number of DATA statements can be
used in a program.

READ statements access the DATA statements in order (by line number).
The data contained therein may be thought of as one continuous list of
items, regardless of how many items are on a line or where the lines are
placed in the program. The variable type (numeric or string) given in the
READ statement must agree with the corresponding constant in the DATA
statement, or a “Type Mismatch” error occurs.

DATA statements may be reread from the beginning by use of the
RESTORE statement.

For further information and examples, see the RESTORE statement and
the READ statement.

38

DATA Statement

Example 1:

80 FOR 1=1 TO 10
90 READ A(I)
100 NEXT I
110 DATA 3.08,5.19,3.12,3.98,4.24
120 DATA 5.08,5.55,4.00,3.16,3.37

This program segment reads the values from the DATA statements into
array A. After execution, the value of A(l) is 3.08, and so on. The DATA
statements (lines 110-120) may be placed anywhere in the program; they
may even be placed ahead of the READ statement.

Example 2:

5 PRINT
10 PRINT "CITY","STATE","ZIP"
20 READ C$,S$,Z
30 DATA "DENVER,","COLORADO",80211
40 PRINT C$,S$,Z
RUN

STATE
COLORADO

ZIPCITY
DENVER, 8021 1
Ok

This program reads string and numeric data from the DATA statement
in line 30.

39

DATE$ Statement and Variable

DATE$ Statement and Variable

Purpose:

To set or retrieve the current date.

Syntax:

As a statement:

DATE$ = v$

As a variable:

v$=DATES

Comments:
: v$ is a valid string literal or variable.

v$ can be any of the following formats when assigning the date:

mm-dd-yy
mm/dd/yy
mm-dd-yyyy
mm/dd/yyyy

If v$ is not a valid string, a “Type Mismatch” error results. Previous values
are retained.

If any of the values are out of range or missing, an “Illegal Function Call”
error is issued. Any previous date is retained.

The current date (as assigned when the operating system was initialized)
is fetched and assigned to the string variable if DATE$ is the expression
in a LET or PRINT statement.

The current date is stored if DATE$ is the target of a string assignment.

40

DATE$ Statement and Variable

With v$ = DATE$, DATE$ returns a 10-character string in the form mm-
dd-yyyy. mm is the month (01 to 12), dd is the day (01 to 31), and yyyy
is the year (1980 to 2099).

Examples:

v$=DATE $
Ok
PRINT V$
01 -01-1985
Ok

41

DEF FN Statement

DEF FN Statement

Purpose:

To define and name a function written by the user.

Syntax:

DEF FNname[arguments] expression
■

*
: Comments:

name must be a legal variable name. This name, preceded by FN, becomes
the name of the function.

arguments consists of those variable names in the function definition that
are to be replaced when the function is called. The items in the list are
separated by commas.

expression is an expression that performs the operation of the function.
It is limited to one statement

In the DEF FN statement, arguments serve only to define the function;
they do not affect program variables that have the same name. A variable
name used in a function definition may or may not appear in the argument.
If it does, the value of the parameter is supplied when the function is
called. Otherwise, the current value of the variable is used.

The variables in the argument represent, on a one-to-one basis, the argu
ment variables or values that are to be given in the function call.

User-defined functions may be numeric or string. If a type is specified in
the function name, the value of the expression is forced to that type before
it is returned to the calling statement. If a type is specified in the function
name and the argument type does not match, a “Type Mismatch” error
occurs.

A user-defined function may be defined more than once in a program by
repeating the DEF FN statement.

42

DEF FN Statement

A DEF FN statement must be executed before the function it defines may
be called. If a function is called before it has been defined, an “Undefined
User Function” error occurs.

DEF FN is illegal in the direct mode.

Recursive functions are not supported in the DEF FN statement.

Examples:

400 R=1:S = 2
410 DEF FNAB(X,Y)=XA3/YA2
420 T=FNAB(R,S)

Line 410 defines the user-defined function FNAB. The function is called in
line 420. When executed, the variable T will contain the value R3 divided
by S2, or .25.

43

DEFINT/SNG/DBL/STR Statements

DEFINT/SNG/DBL/STR Statements
IPurpose:

To declare variable types as integer, single-precision, double-precision,
or string.

Syntax:

DEFfype letters

Comments:

type is INT (integer), SNG (single-precision number), DBL (double-precision
number), or STR (string of 0-255 characters).

letters are letters (separated by commas) or range of letters of the alphabet.

A DEFfype statement declares that variable names beginning with the
letter(s) specify that type of variable. However, a type declaration character
(%,!,#,$) always takes precedence over a DEFfype statement in the typing of
a variable.

If no type declaration statements are encountered, BASIC assumes all vari
ables are single-precision. Single-precision is the default value.

Examples:

10 DEFDBL L-P

All variables beginning with the letters L, M, N, O, or P will be double
precision variables.

10 DEFSTR A
20 A-M120#M

All variables beginning with the letter A will be string variables. The $
declaration is unnecessary in this example.

10 DEFINT I-N,W-Z
20 W$-M120#M

44

I

DEFINT/SNG/DBL/STR Statements

All variables beginning with the letters I, J, K, L, M, N, W, X, Y, or Z will
be integer variables. W$ in Line 20 establishes a string variable beginning
with the letter W. However, the variable W will remain an integer else
where in the program.

i

45

DEF SEG Statement

DEF SEG Statement

iPurpose:

To assign the current segment address to be referenced by a subsequent
BLOAD, BSAVE, CALL, PEEK, POKE, or USR.

Syntax:

DEF SEG [address]

Comments:

address is a numeric expression within the range of 0 to 65535.

The address specified is saved for use as the segment required by BLOAD,
BSAVE, PEEK, POKE, and CALL statements.

Entry of any value outside the address range (0-65535) results in an
‘Illegal Function Call” error, and the previous value is retained.

If the address option is omitted, the segment to be used is set to GW-BASlC’s
data segment (DS). This is the initial default value.

If you specify the address option, base it on a 16-byte boundary.

Segment addresses are shifted 4 bits to the left; so to get the segment
address, divide the memory location by 16.

For BLOAD, BSAVE, PEEK, POKE, or CALL statements, the value is
shifted left four bits (this is done by the microprocessor, not by GW-BASIC)
to form the code segment address for the subsequent call instruction
(see the BLOAD, BSAVE, CALL, PEEK, and POKE statements).

GW-BASIC does not perform additional checking to assure that the resultant
segment address is valid.

46

I

DEF SEG Statement

Examples:

10 DEF SEG=$rHB800

Sets segment to screen buffer.

20 DEF SEG

Restores segment to BASIC DS.

Note
DEF and SEG must be separated by a space. Otherwise, GW-BASIC will
interpret the statement DEFSEG= 100 to mean, “assign the value 100
to the variable DEFSEG.”

47

DEF USR Statement

DEF USR Statement

Purpose:

To specify the starting address of an assembly language subroutine to be
called from memory by the USR function.

Syntax:

DEF USR[/i] = integer

Comments:

n may be any digit from 0 to 9. The digit corresponds to the USR routine
address being specified. If n is omitted, DEF USRO is assumed.

integer is the offset address of the USR routine. If more than 10 USR rou
tines are required, DEF USR[/i] may appear in the program as many times
as necessary to redefine the USR[n] starting address.

Add the current segment value to the integer to get the starting address of
the user routine.

When an Assembly Language Subroutine is called, the GW-BASIC program
execution is paused, and control is transferred to the Assembly Language
program. When that program is executed, control is returned to the
GW-BASIC program at the point of interruption.

Examples:

190 DEF SEG=0
200 DEF USR0=24000
210 X=USR0(YA2/2.82)

Lines 190 and 200 set the absolute address.

48

DEF USR Statement

Line 210 calls the USR routine located at that address, and passes the
integer value of the expression contained within the parentheses to the
user program (see USR).

Note
This statement is given here primarily to provide compatibility with
other GW-BASIC implementations. The more versatile CALL statement
should be used if this downward compatibility is unimportant.

49

DELETE Command

DELETE Command

Purpose:

To delete program lines or line ranges.
j

Syntax:

DELETE [line number 1][-line number2\
DELETE line numberl -

Comments:

line numberl is the first line to be deleted.

line number2 is the last line to be deleted.

GW-BASIC always returns to command level after a DELETE command is
executed. Unless at least one line number is given, an “Illegal Function
Call” error occurs.

The period (.) may be used to substitute for either line number to indicate
the current line.

Examples:

DELETE 40

Deletes line 40.

DELETE 40-100

Deletes lines 40 through 100, inclusively.

DELETE -40

Deletes all lines up to and including line 40.

DELETE 40-

Deletes all lines from line 40 to the end of the program.

50

DIM Statement

DIM Statement

Purpose:

To specify the maximum values for array variable subscripts and allocate
storage accordingly.

Syntax:

DIM variable(subscripts)[,variable(subscripts)\...

Comments:

If an array variable name is used without a DIM statement, the maximum
value of its subscript(s) is assumed to be 10. If a subscript greater than the
maximum specified is used, a “Subscript out of range” error occurs.

The maximum number of dimensions for an array is 255.

The minimum value for a subscript is always 0, unless otherwise specified
with the OPTION BASE statement.

An array, once dimensioned, cannot be redimensioned within the program
without first executing a CLEAR or ERASE statement.

The DIM statement sets all the elements of the specified arrays to an initial
value of zero.

Examples:

10 DIM A(20)
20 FOR 1=0 TO 20
30 READ A(I)
40 NEXT I

This example reads 21 DATA statements elsewhere in the program and
assigns their values to A(0) through A(20), sequentially and inclusively. If
the A array is single-precision (default accuracy) then line 10 will allocate
84 bytes of memory to this array (4 bytes times 21 elements).

51

DRAW Statement

DRAW Statement

Purpose:

To draw a figure.

!
Syntax:

DRAW string expression

Comments:

The DRAW statement combines most of the capabilities of the other graph
ics statements into an object definition language called the Graphics Macro
Language (GML). A GML command is a single character within a string,
optionally followed by one or more arguments.

The DRAW statement is valid only in graphics mode.

Movement Commands

Each of the following movement commands begins movement from the
current graphics position. This is usually the coordinate of the last graphics
point plotted with another GML command, LINE, or PSET. The current
position defaults to the center of the screen (160,100 in medium resolution;
320,100 in high resolution) when a program is run. Movement commands
move for a distance of scale factor */i, where the default for n is 1; thus,
they move one point if n is omitted and the default scale factor is used.

Command Moves

\Jn up
Dn down:
Ln left
Rn right

diagonally up and right
diagonally down and right

En
Fn

52

DRAW Statement

diagonally down and left
diagonally up and left

This command moves as specified by the following argument:

Move absolute or relative. If x is preceded by a +
or -, x and y are added to the current graphics
position, and connected to the current position by a
line. Otherwise, a line is drawn to point xy from
the current position.

The following prefix commands may precede any of the above movement
commands:

Gn
H n

Mxj

Move, but plot no points.
Move, but return to original position when done.

B
N

The following commands are also available:

Set angle n. n may range from 0 to 3, where 0 is 0°,
1 is 90°, 2 is 180°, and 3 is 270°. Figures rotated 90°
or 270° are scaled so that they will appear the same
size as with 0° or 180° on a monitor screen with the
standard aspect ratio of 4:3.
Turn angle n. n can be any value from negative 360
to positive 360. If the value specified by n is posi
tive, it turns the angle counterclockwise. If the
value specified by n is negative, it turns clockwise.
Set color n. See the COLOR, PALETTE, and
SCREEN statements for discussions of valid colors,
numbers, and attributes.
Set scale factor, n may range from 1 to 255. n is
divided by 4 to derive the scale factor. The scale
factor is multiplied by the distances given with U,
D, L, R, E, F, G, H, or relative M commands to get
the actual distance traveled. The default for S is 4.
Execute substring. This command executes a second
substring from a string, much like GOSUB. One
string executes another, which executes a third,
and so on.
string is a variable assigned to a string of move
ment commands.

An

TA n

C n

S n

xstring; variable

53

DRAW Statement

Specifies the colors for a graphics figure and creates
a filled-in figure.
paint specifies what color you want the figure filled
in with.

boundary specifies the border color (outline).
See the COLOR, PALETTE, and SCREEN state
ments for discussions of valid colors, numbers, and
attributes.
You must specify values for both paint and
boundary when used.
This command (JPpaint,boundary) does not paint
color tiling.

Ppaint, boundary

i

i

Numeric Arguments:

Numeric arguments can be constants like “123” or “ = variablewhere
variable is the name of a variable.

When you use the second syntax, “ = variablethe semicolon must be used.
Otherwise, the semicolon is optional between commands.

You can also specify variables using VARPTR$(uaria6/e).

Example 1:

To draw a box in medium resolution:

10 SCREEN 1
20 A-20
30 DRAM ••U-A;R=IA;D»A;L=A;"
RUN

54

DRAW Statement

Example 2:

The aspect ratio to draw a square on a standard screen is 4:3, as shown
below:

To draw a 96-pixel-wide square on a 640 x 200 pixel screen (SCREEN 2), do
the following calculations:

Horizontal value = 96
Vertical value = 96*(200/640)*(4/3)

or

Vertical value = 40
Horizontal value = 40*(640/200)*(3/4)

The horizontal values equals 4/3 of the vertical values.

Example 3:

To draw a triangle in medium resolution:

10 CLS
20 SCREEN 1
30 PSET (60,125)
40 DRAM "E100; F100; L199"
RUN

55

EDIT Command

EDIT Command

Purpose:

To display a specified line, and to position the cursor under the first digit of
the line number, so that the line may be edited.

Syntax:

EDIT line number
EDIT.

Comments:

line number is the number of a line existing in the program.

A period (.) refers to the current line. The following command enters EDIT
at the current line:

EDIT .

When a line is entered, it becomes the current line.

The current line is always the last line referenced by an EDIT statement,
LIST command, or error message.

If line number refers to a line that does not exist in the program, an “Unde
fined Line Number” error occurs.

Examples:

EDIT 150

Displays program line number 150 for editing.

56

END Statement

END Statement

Purpose:

To terminate program execution, close all files, and return to command
level.

Syntax:

END

Comments:

END statements may be placed anywhere in the program to terminate
execution.

Unlike the STOP statement, END does not cause a “Break in line xxxx”
message to be printed.

An END statement at the end of a program is optional. GW-BASIC always
returns to command level after an END is executed.

END closes all files.

Examples:

520 IF K> 1 0 0 0 THEN END ELSE GOTO 20

Ends the program and returns to command level whenever the value
of K exceeds 1000.

57

ENVIRON Statement

ENVIRON Statement

Purpose:

To allow the user to modify parameters in GW-BASIC’s environment string
table. This may be to change the path parameter for a child process, (see
ENVIRON$, SHELL, and the MS-DOS utilities PATH command), or to pass
parameters to a child by inventing a new environment parameter.

Syntax:

ENVIRON string

Comments:

string is a valid string expression containing the new environment string
parameter.

string must be of the following form

parmid=text

where parmid is the name of the parameter, such as PATH.

parmid must be separated from text by an equal sign or a blank. ENVIRON
takes everything to the left of the first blank or equal sign as the parmid;
everything following is taken as text.

text is the new parameter text. If text is a null string, or consists only of a
single semicolon, then the parameter (including parmid =) is removed from
the environment string table, and the table is compressed, text must not
contain any embedded blanks.

If parmid does not exist, then string is added at the end of the environment
string table.

If parmid does exist, it is deleted, the environment string table is com
pressed, and the new string is added at the end.

58

ENVIRON Statement

Examples:

Assuming the environment string table is empty, the following statement
will create a default path to the root directory on Disk A:

ENVIRON "PATH-A:\M

If your work subdirectory were john, you would be able to get DEBUG from
the root.

A new parameter may be added:

ENVIRON "C0MSPEC=A : \COMMAND. COM"

The environment string table now contains

PATH=A:\;C0MSPEC=A:\C0MMAND.COM

The path may be changed to a new value:

ENVIRON "PATH=A:\SALES;A:\ACCOUNTING"

The path parameter may be appended by using the ENVTRON$ function
with the ENVIRON statement:

ENVIRON MPATH = " + ENV I R0N$ ("PATH11) +" ;B: \ SAMPLES"

Finally, delete the parameter COMSPEC:

ENVIRON ,,C0MSPEC=;M

The environment string table now contains

PATH = A:\SALES;A:\ACC0UNT ING;B:\SAMPLES

59

ENVIRON? Function

ENVIRON? Function

Purpose:

To allow the user to retrieve the specified environment string from the
environment table.

Syntax:

v$=ENVIRON$(parmicO
v$ = ENVIRON$(n*/iparm)

\

Comments:

parmid is a valid string expression containing the parameter to search for.

nthparm is an integer expression in the range of 1 to 255.

If a string argument is used, ENVIRON? returns a string containing the
text following parmid = from the environment string table.

If parmid is not found, then a null string is returned.

If a numeric argument is used, ENVIRON? returns a string containing the
nth parameter from the environment string table.

If there is no nth parameter, then a null string is returned.

The ENVIRON? function distinguishes between upper- and lowercase.

Examples:

The following lines:

ENVIRON “PATH®A:\SALES;A:\AC0UNTING;B:\MKT:11 'Create entry
PRINT ENVIRONS("PATH") 'Print entry

will print the following string:

A:\SALES;A:\ACCOUNT ING;B:\MKT

60

ENVIRON$ Function

The following line will print the first string in the environment:

PRINT ENVIR0N$(1)

The following program saves the environment string table in an array so
that it can be modified for a child process. After the child process completes,
the environment is restored.

DIN ENVTBLS(10) "
NPARMS= 1
WHILE LEN(ENVIRON$(NPARMS)) #0
ENVTBL$ (NPARMS)= ENVIRQN$(NPARMS)
NPARMS= NPARMS + 1
WEND
NPARMS= NPARMS-1
WHILE LEN(ENVIR0N$(1))#0
A$=MID$(ENVIR0N$(1),1,INSTR (ENVIRDN$(1))
ENVIRON A$ + ";"
WEND
ENVIRON "MYCHILDPARM1=S0RT BY NAME"
ENVIRON "MYCHILDPARM2 = LI ST BY NAME"

1 0
20
30
40
50
60
70
72
73
74
75
90
100

1000 SHELL "MYCHILD
1 002 WHILE LEN(ENVIRON$(1))#0
1003 A$=MID$(ENVIR0N$(1),1,INSTR(ENVIRON$ (1),"="))
1004 ENVIRON A$+";"
1005 WEND
1010 FOR 1=1 TO NPARMS
1 020 ENVIRON ENVTBL$(I)
1030 NEXT I

II s RUNS "MYCHILD.EXE"

The DIM statement in line 10 assumes no more than 10 parameters will
be accessed.

In line 20, the initial number of parameters is established as 1.

In lines 30 through 70, a series of statements are used to adjust and correct
the paramenter numbers.

Line 71 deletes the present environment.

61

ENVIRON! Function

Lines 72 through 80 create a new environment. Line 74 deletes the string.

Lines 80 through 100 store the new environment.

Lines 1000 through 1030 repeat the procedure by deleting the present
environment and restore the parameters established in the first part of the
program.

i

62

EOF Function

EOF Function

Purpose:

To return -1 (true) when the end of a sequential or a communications file
has been reached, or to return 0 if end of file (EOF) has not been found.

Syntax:

v = EOF (file number)

Comments:

If a GET is done past the end of the file, EOF returns -1. This may be
used to find the size of a file using a binary search or other algorithm.
With communications files, a -1 indicates that the buffer is empty.

Use EOF to test for the end of the file while inputting to avoid ‘Input Past
End” errors.

Examples:

1 0 OPEN "I'M /'DATA"
20 C = 0
30 IF EOF(1) THEN 100
40 INPUTS ,M(C)
50 C=C+1:GOTO 30
100 END
RUN

The file named DATA is read into the M array until the end of the file is
reached, then the program branches to line 100.

63

.
ERASE Statement

!
!

ERASE Statement

Purpose:

To eliminate arrays from a program.

Syntax:

ERASE list of array variables

Comments:

Arrays may be redimensioned after they are erased, or the memory space
previously allocated to the array may be used for other purposes.

If an attempt is made to redimension an array without first erasing it,
an error occurs.

Examples:

200 DIM B (250)

450 ERASE A , B
460 DIM B(3,4)

Arrays A and B are eliminated from the program. The B array is redimen
sioned to a 3-column by 4-row array (12 elements), all of which are set to a
zero value.

64

ERDEV and ERDEV$ Variables

ERDEV and ERDEV$ Variables

Purpose:

To return the actual value (ERDEV) of a device error, and the name of the
device (ERDEV$) causing the error.

Syntax:

ERDEV
ERDEV$

Comments:

ERDEV will contain the error code from interrupt 24H in the lower 8 bits.
Bits 8 to 15 from the attribute word in the Device Header Block are mapped
directly into the upper 8 bits.

ERDEV$ will contain the 8-byte character device name if the error was on
a character device. It will contain the 2-byte block device name (A:, B:, etc.)
if the device was not a character device.

Examples:

Installed device driver lpt2: caused a “Printer out of paper” error via
INT 24H.

ERDEV contains the error number 9 in the lower 8 bits, while the upper 8
bits contain the upper byte of the Device Header word attributes.

ERDEV$ contains "LPT2:

65

ERR and ERL Variables

ERR and ERL Variables
;.

Purpose:

; To return the error code (ERR) and line number (ERL) associated with
an error.

Syntax:

v=ERR
v = ERL

Comments:

The variable ERR contains the error code for the last occurrence of an
error. All the error codes and their definitions are listed in Appendix A
of the GW-BASIC User’s Guide.

The variable ERL contains the line number of the line in which the error
was detected.

The ERR and ERL Variables are usually used in IF-THEN, or ON
ERROR...GOTO, or GOSUB statements to direct program flow in error
trapping.

If the statement that caused the error was a direct mode statement, ERL
will contain 65535. To test if an error occurred in a direct mode statement,
use a line of the following form:

IF 65535=ERL THEN ...

Otherwise, use the following:

10 IF ERR=error code THEN...GOSUB 4000
20 IF ERL=1ine number THEN...GOSUB 4010

66

ERR and ERL Variables

Note
If the line number is not on the right side of the relational operator,
it cannot be renumbered by RENUM.

Because ERL and ERR are reserved variables, neither may appear to the
left of the equal sign in a LET (assignment) statement.

67

!
ERROR Statement

ERROR Statement

Purpose:

To simulate the occurrence of an error, or to allow the user to define
error codes.

Syntax:••

ERROR integer expression

Comments:

The value of integer expression must be greater than 0 and less than 255.

If the value of integer expression equals an error code already in use by
GW-BASIC, the ERROR statement simulates the occurrence of that error,
and the corresponding error message is printed.

A user-defined error code must use a value greater than any used by the
GW-BASIC error codes. There are 76 GW-BASIC error codes at present. It is
preferable to use a code number high enough to remain valid when more
error codes are added to GW-BASIC.

User-defined error codes may be used in an error-trapping routine.

If an ERROR statement specifies a code for which no error message has
been defined, GW-BASIC responds with the message “Unprintable Error.”

Execution of an ERROR statement for which there is no error-trapping
routine causes an error message to be printed and execution to halt.

For a complete list of the error codes and messages already defined in
GW-BASIC, refer to Appendix A in the GW-BASIC User's Guide.

Examples:

The following examples simulate error 15 (the code for “String too long”):

LIST
10 S = 10
20 T=5

68

ERROR Statement

30 ERROR S+T
40 END
Ok
RUN
String too long in 30

Or, in direct mode:

Ok
ERROR 15 (you type this line)
String too long (gw-basic types this line)
Ok

The following example includes a user-defined error code message.

110 ON ERROR GOTO 400
120 INPUT "WHAT IS YOUR BET";B
130 IF B>5000 THEN ERROR 210

400 IF ERR=210 THEN PRINT "HOUSE LIMIT IS $5000"
410 IF ERL=130 THEN RESUME 120

69

EXP Function

EXP Function

Purpose:

To return e (the base of natural logarithms) to the power of x.
■_

:

Syntax:

EXPOc)

Comments:

x must be less than 88.02969.

If EXP overflows, the “Overflow” error message appears; machine infinity
with the appropriate sign is supplied as the result, and execution continues.

EXPftc) is calculated in single-precision, unless the /d switch is used when
GW-BASIC is executed.

Examples:

10 X = 5
20 PRINT EXP(X-1)
RUN

54.59815
Ok

Prints the value of e to the 4th power.

70

EXTERR Function

EXTERR Function

Purpose:

To return extended error information.

Syntax:

EXTERR(n)

Comments:

EXTERR returns “extended” error information provided by versions of
DOS 3.0 and greater. For versions of DOS earlier than 3.0, EXTERR always
returns zero. The single integer argument must be in the range 0-3
as follows:

Value of n Return Value

Extended error code

Extended error class

Extended error suggested action

Extended error locus

0
1
2
3

The values returned are not defined by GW-BASIC, but by DOS. Refer to the
MS-DOS Programmer's Reference (version 3.0 or later) for a description
of the values returned by the DOS extended error function.

The extended error code is actually retrieved and saved by GW-BASIC each
time appropriate DOS functions are performed. Thus, when an EXTERR
function call is made, these saved values are returned.

71

FIELD Statement

FIELD Statement

Purpose:

To allocate space for variables in a random file buffer.
i

Syntax:

FIELD [#] filenum, width AS stringvar [,width AS stringvar]...

Comments:

filenum is the number under which the file was opened.

width is the number of characters to be allocated to the string variable.

string variable is a string variable that will be used for random file access.

A FIELD statement must have been executed before you can

• get data out of a random buffer after a GET statement
• enter data before a PUT statement

For example, the following line allocates the first 20 positions (bytes) in the
random file buffer to the string variable N$, the next 10 positions to ID$,
and the next 40 positions to ADD$:

FIELD 1, 20 AS N$, 10 AS ID$, 40 AS ADD$

FIELD only allocates space; it does not place any data in the random file
buffer.

The total number of bytes allocated in a FIELD statement must not exceed
the record length specified when the file was opened. Otherwise, a “Field
overflow” error occurs (the default record length is 128).

Any number of FIELD statements may be executed for the same file, and
all FIELD statements executed are in effect at the same time.

72

FIELD Statement

Note
Do not use a fielded variable name in an INPUT or LET statement.
Once a variable name is fielded, it points to the correct place in the
random file buffer. If a subsequent INPUT or LET statement with
that variable name is executed, the variable’s pointer is moved to
string space (see the LSET/RSET and GET statements).

73

FILES Commandj

FILES Command

Purpose:

To print the names of the files residing on the specified drive.

Syntax:

FILES [pathname]

Comments:

If pathname is omitted, the command lists all files in the current directory
of the selected drive, pathname may contain question marks (?) to match
any character in the filename or extension. An asterisk (*) as the first char
acter of the filename or extension will match any file or any extension.

This syntax also displays the name of the directory and the number of bytes
in the file. When a tree-structured directory is used, two special symbols
also appear.

Subdirectories are denoted by <DIR> following the directory name.

Examples:

FILES
FILES "«.BAS”
FILES "B:».
FILES "TEST?.BAS"

FILES now allows pathnames. The directory for the specified path is
displayed. If an explicit path is not given, the current directory is assumed.

FILES "ACCTS\"

Lists all files in the directory named accts that are on the diskette in Drive
B: and have the extension of .pay.

FILES "B:ACCTS*.PAY"

Lists all files in the directory named accts that are on the diskette in Drive
B: and have the extension of .PAY.

74

*

FIX Function

FIX Function

Purpose:

To truncate x to a whole number.

Syntax:

FIXCc)

Comments:

FIX does not round off numbers, it simply eliminates the decimal point and
all characters to the right of the decimal point.

FIXOc) is equivalent to SGN(x)*INT(ABS(x)). The major difference between
FIX and INT is that FIX does not return the next lower number for nega
tive x.

FIX is useful in modulus arithmetic.

Examples:

PRINT FI X(58.75)
58

Ok

PRINT FI X(-58.75)
-58

Ok

75

FOR and NEXT Statements

FOR and NEXT Statements

Purpose:

To execute a series of instructions a specified number of times in a loop.

Syntax:

FOR variable—x TO y [STEP z]

NEXT [variable][,variable...]

Comments:

variable is used as a counter.

x, v, and z are numeric expressions.

STEP z specifies the counter increment for each loop.

The first numeric expression (x) is the initial value of the counter. The
second numeric expression (y) is the final value of the counter.

Program lines following the FOR statement are executed until the NEXT
statement is encountered. Then, the counter is incremented by the amount
specified by STEP.

If STEP is not specified, the increment is assumed to be 1.

A check is performed to see if the value of the counter is now greater than
the final value (y). If it is not greater, GW-BASIC branches back to the state
ment after the FOR statement, and the process is repeated. If it is greater,
execution continues with the statement following the NEXT statement.
This is a FOR-NEXT loop.

The body of the loop is skipped if the initial value of the loop times the sign
of the step exceeds the final value times the sign of the step.

76

FOR and NEXT Statements

If STEP is negative, the final value of the counter is set to be less than the
initial value. The counter is decremented each time through the loop, and
the loop is executed until the counter is less than the final value.

Nested Loops

FOR-NEXT loops may be nested; that is, a FOR-NEXT loop may be placed
within the context of another FOR-NEXT loop. When loops are nested, each
loop must have a unique variable name as its counter.

The NEXT statement for the inside loop must appear before that for the
outside loop.

If nested loops have the same end point, a single NEXT statement may be
used for all of them.

The variable(s) in the NEXT statement may be omitted, in which case the
NEXT statement will match the most recent FOR statement.

If a NEXT statement is encountered before its corresponding FOR state
ment, a “NEXT without FOR” error message is issued and execution is
terminated.

Examples:

The following example prints integer values of the variable 1% from 1 to 10
in steps of z. For fastest execution, I is declared as an integer by the % sign.

10 K=10
20 FOR I%=1 TO K STEP 2
30 PRINT 1%

60 NEXT
RUN

1
3
5
7
9

Ok

77

FOR and NEXT Statements

In the following example, the loop does not execute because the initial
value of the loop exceeds the final value. Nothing is printed by this
example.

10 R=0
20 FOR S=1 TO R
30 PRINT S
40 NEXT S

In the next example, the loop executes 10 times. The final value for the loop
variable is always set before the initial value is set.

10 S=5
20 FOR S=1 TO S+5
30 PRINT S;
40 NEXT
RUN

1 2345678910
Ok

78

FRE Function

FRE Function

Purpose:

To return the number of available bytes in allocated string memory.

Syntax:

FRE(x$)
FRECc)

Comments:

Arguments (*$) and (a:) are dummy arguments.

Before FRE (x$) returns the amount of space available in allocated string
memory, GW-BASIC initiates a “garbage collection” activity. Data in string
memory space is collected and reorganized, and unused portions of frag
mented strings are discarded to make room for new input.

If FRE is not used, GW-BASIC initiates an automatic garbage collection
activity when all string memory space is used up. GW-BASIC will not initiate
garbage collection until all free memory has been used. Garbage collection
may take 1 to 1.5 minutes.

FRE(“”) or any string forces a garbage collection before returning the
number of free bytes. Therefore, using FRE(“”) periodically will result in
shorter delays for each garbage collection.

It should be noted that the CTRL-BREAK function cannot be used during this
housecleaning process.

Examples:
PRINT FRE (0)

1 4542
Ok

Your computer may return a different value.

79

GET Statement (Files)

GET Statement (Files)

Purpose:

To read a record from a random disk file into a random buffer.

Syntax:

GET [#]file numbed,record number]

Comments:

file number is the number under which the file was opened.

record number is the number of the record, within the range of 1 to
16,777,215.

If record number is omitted, the next record (after the last GET) is read into
the buffer.

After a GET statement, INPUT# and LINE INPUT# may be used to read
characters from the random file buffer.

GET may also be used for communications files, record number is the
number of bytes to be read from the communications buffer, record number
cannot exceed the buffer length set in the OPEN COM(n) statement.

Examples:

The following example opens the vendor file for random access, defines the
fields, reads a record, then displays it:

10 OPEN "R'\1 ,"A:VENDOR.FIL"
20 FIELD 1,30 AS VENDNAMES$,20 AS ADDR$,1S AS CITY$
30 GET 1
40 PRINT VENDNAMESS,ADDR$,CITY$
50 CLOSE 1

This example opens the file vendor.fil for random access, with fields defined
in line 20. In line 30, the GET statement reads a record into the file buffer.
Line 40 displays the information from the record just read. Line 50 closes
the file.

80

GET Statement (Graphics)

GET Statement (Graphics)

Purpose:

To transfer graphics images from the screen.

Syntax:

GET (xl,yl)-(x2,y2),array name

Comments:

The PUT and GET statements are used to transfer graphics images to and
from the screen. PUT and GET make animation and high-speed object
motion possible in either graphics mode.

The GET statement transfers the screen image bounded by the rectangle
described by the specified points into the array. The rectangle is defined
the same way as the rectangle drawn by the LINE statement using the
,B option.

The array is used simply as a place to hold the image, and can be of any
type except string. It must be dimensioned large enough to hold the entire
image. The contents of the array after a GET will be meaningless when
interpreted directly (unless the array is of the type integer, as shown
below).

The storage format in the array is as follows:

• 2 bytes given x dimension in bits
• 2 bytes given y dimension in bits
• the array data itself

The data for each row of pixels is left-justified on a byte boundary. If less
than a multiple of eight bits is stored, the rest of the byte will be filled out
with zeros. The required array size in bytes is as follows:

4 + INT((x* bitsperpixel + 7)/8)*y

81

GET Statement (Graphics)

See the SCREEN statement for bitsperpixel values for different
modes.

The bytes-per-element of an array are as follows:

• 2 for integer
• 4 for single-precision
• 8 for double-precision

The number of bytes required to get a 10 by 12 image into an integer array
is 4 + INT((10*2 + 7)/8)*12, or 40 bytes. An integer array with at least 20
elements is necessary.

If OPTION BASE equals zero, an integer array can be used to examine the
x and y dimensions and the data. The x dimension is in element 0 of the
array, and the y dimension is in element 1. Integers are stored low byte
first, then high byte, but data is transferred high byte first (leftmost), then
low byte.

It is possible to get an image in one mode and put it in another, although
the effect may be quite strange because of the way points are represented in
each mode.

screen

Examples:

10 CLS:SCREEN 1
20 PSET(130,120)
30 DRAW MU25;E7;R20;D32;L6;U12;L14"
40 DRAW MD12;L6":PSET(137,102)
50 DRAW "U4;E4;R8;D8;L12"
60 PSET(137,88)
70 DRAW "E4;R20;D32;G4":PAINT(139,87)
80 DIM A(500)
90 GET (125,130)-(170,80),A
100 FOR 1=1 TO 1000:NEXT I
110 PUT (20,20),A,PSET
120 FOR 1=1 TO 1000:NEXT I
130 GET (125,130)-(170,80),A
140 FOR 1=1 TO 1000:NEXT I
150 PUT (220,130),A,PRESET

82

GOSUB...RETURN Statement

GOSUB...RETURN Statement

Purpose:

To branch to, and return from, a subroutine.

Syntax:

GOSUB line number

RETURN [line number\

Comments:

line number is the first line number of the subroutine.

A subroutine may be called any number of times in a program, and a sub
routine may be called from within another subroutine. Such nesting of sub
routines is limited only by available memory.

A RETURN statement in a subroutine causes GW-BASIC to return to the
statement following the most recent GOSUB statement. A subroutine can
contain more than one RETURN statement, should logic dictate a RETURN
at different points in the subroutine.

Subroutines can appear anywhere in the program, but must be readily dis
tinguishable from the main program.

To prevent inadvertent entry, precede the subroutine by a STOP, END, or
GOTO statement to direct program control around the subroutine.

Examples:
10 GOSUB 40
20 PRINT "BACK FROM SUBROUTINE"
30 END
40 PRINT "SUBROUTINE";
50 PRINT " IN";
60 PRINT " PROGRESS"
70 RETURN

83

GOSUB...RETURN Statement

RUN
SUBROUTINE IN PROGRESS
BACK FROM SUBROUTINE
Ok

The END statement in line 30 prevents re-execution of the subroutine.

i

84

GOTO Statement

GOTO Statement

Purpose:

To branch unconditionally out of the normal program sequence to a speci
fied line number.

Syntax:

GOTO line number

Comments:

line number is any valid line number within the program.

If line number is an executable statement, that statement and those follow
ing are executed. If it is a nonexecutable statement, execution proceeds at
the first executable statement encountered after line number.

Examples:

10 READ R
20 PRINT "R =";R;
30 A = 3.14 *R A 2
40 PRINT "AREA = ";A
50 GOTO 10
60 DATA 5,7,12
RUN

AREA = 78.5
AREA = 153.86
AREA = 452.16

R = 5
R = 7
R = 12
□at of data in 10
Ok

The “out of data” advisory is generated when the program attempts to read
a fourth DATA statement (which does not exist) in line 60.

85

HEX$ Function

HEX$ Function

Purpose:

To return a string that represents the hexadecimal value of the numeric
argument.

Syntax:

u$=HEX$(x)

Comments:

HEX$ converts decimal values within the range of -32768 to +65535 into
a hexadecimal string expression within the range of 0 to FFFF.

Hexadecimal numbers are numbers to the base 16, rather than base 10
(decimal numbers). Appendixes C and G in the GW-BASIC User's Guide
contain more information on hexadecimals and their equivalents.

x is rounded to an integer before HEX$(x) is evaluated. See the OCT$ func
tion for octal conversions.

If x is negative, 2’s (binary) complement form is used.

Examples:

10 CLS:INPUT "INPUT DECIMAL NUMBER";X
20 A$=HEX$(X)
30 PRINT X "DECIMAL IS "A$" HEXADECIMAL"
RUN
INPUT DECIMAL NUMBER? 32

32 DECIMAL IS 20 HEXADECIMAL
Ok

86

IF Statement

IF Statement

Purpose:

To make a decision regarding program flow based on the result returned by
an expression.

Syntax:

IF expression[,] THEN statements)!,][ELSE statements)]
IF expression[,] GOTO line nwm6er[[,l ELSE statements)]

Comments:

If the result of expression is nonzero (logical true), the THEN or GOTO line
number is executed.

If the result of expression is zero (false), the THEN or GOTO line number is
ignored and the ELSE line number, if present, is executed. Otherwise, exe
cution continues with the next executable statement. A comma is allowed
before THEN and ELSE.

THEN and ELSE may be followed by either a line number for branching,
or one or more statements to be executed.

GOTO is always followed by a line number.

If the statement does not contain the same number of ELSE’s and THEN’s
line number, each ELSE is matched with the closest unmatched THEN. For
example:

IF A=B THEN IF B=C THEN PRINT "A=C" ELSE PRINT "A < > CM
will not print “A < > C” when A < > B.

If an IF...THEN statement is followed by a line number in the direct mode,
an “Undefined line number” error results, unless a statement with the
specified line number was previously entered in the indirect mode.

Because IF...THEN...ELSE is all one statement, the ELSE clause cannot be
on a separate line. All must be on one line.

87

IF Statement

Nesting of IF Statements

IF...THEN...ELSE statements may be nested. Nesting is limited only by the
length of the line. For example, the following is a legal statement:

100 IF X > Y THEN PRINT "GREATER" ELSE IF Y > X THEN&
PRINT "LESS THAN"

200 ELSE PRINT "EQUAL"
110

Testing Equality

When using IF to test equality for a value that is the result of a floating
point computation, remember that the internal representation of the value
may not be exact. Therefore, test against the range over which the accuracy
of the value may vary.

For example, to test a computed variable A against the value 1.0, use the
following statement:

100 IF ABS (A-1.0)<1.0E-G THEN ...

This test returns true if the value of A is 1.0 with a relative error of less
than 1.0E-6.

■

:;

i

Examples:

The following statement gets record number N, if N is not zero.

200 IF N THEN GET#1 ,N

In the following example, a test determines if N is greater than 10 and less
than 20. If N is within this range, DB is calculated and execution branches
to line 300. If N is not within this range, execution continues with line 110.

100 IF(N<20) and (N>10) THEN DB=1979-1:GOTO 300
110 PRINT "OUT OF RANGE"
The next statement causes printed output to go either to the terminal or to
the line printer, depending on the value of a variable (IOFLAG). If IOFLAG
is zero, output goes to the line printer; otherwise, output goes to the ter
minal.

210 IF IOFLAG THEN PRINT A$ ELSE LPRINT A$

88

INKEY$ Variable

INKEY$ Variable

Purpose:

To return one character read from the keyboard.

Syntax:

y$ = INKEY$

Comments:

If no character is pending in the keyboard buffer, a null string (length zero)
is returned.

If several characters are pending, only the first is returned. The string will
be one or two characters in length.

Two character strings are used to return the extended codes described in
Appendix C of the GW-BASIC User’s Guide. The first character of a two
character code is zero.

No characters are displayed on the screen, and all characters except the
following are passed to the program:

CTRL-BREAK
CTRL-NUM-LOCK
CTRL-ALT-DEL
CTRL-PRTSC
PRTSC

Examples:

10 CLS: PR INT"PRESS RETURN
20 TIMELIMITS = 1000
30 GDSUB 1010
40 IF TIMEOUT’/. THEN PRINT "TOO LONG" ELSE PRINT "GOOD SHOU"
50 PRINT RESPONSE!
60 END

89

INKEY* Variable

1000 REM TIMED INPUT SUBROUTINE
1010 RESPONSE$=
1020 FOR NX = 1 TO TIMELIMITX
1030 A$= INKEY$:IF LEN(A$)=0 THEN 1060
1040 IF ASC(A*)=13 THEN TIMEOUTX=0:RETURN
1050 RESPONSE*=RESPONSE$+A$
1060 NEXT NX
1070 TIMEOUTX=1:RETURN

■ III

When this program is executed, and if the RETURN key is pressed before
1000 loops are completed, then “GOOD SHOW” is printed on the screen.
Otherwise, ‘TOO LONG” is printed.

Since an INKEY$ statement scans the keyboard only once, place INKEY$
statements within loops to provide adequate response times for the
operator.

>

90

INP Function

INP Function

Purpose:

To return the byte read from machine port n.

Syntax:

INP(n)

Comments:

n represents a valid machine port number within the range of 0 to 65535.

The INP function is one way in which a peripheral device may communi
cate with a GW-BASIC program.

INP is the complementary function to the OUT statement.

Examples:

100 A=INP(56)

Upon execution, variable A contains the value present on port 56. The
number returned will be within the range of 0 to 255, decimal.

The assembly language equivalent to this statement is

MOV DX,56
IN AL,DX

91

INPUT Statement

INPUT Statement

Purpose:

To prepare the program for input from the terminal during program
execution.

Syntax:

INPUT[;][promp2 string;] list of variables
INPUT[;][promp£ string,] list of variables

Comments:

prompt string is a request for data to be supplied during program execution.

list of variables contains the variable(s) that stores the data in the prompt
string.

Each data item in the prompt string must be surrounded by double quota
tion marks, followed by a semicolon or comma and the name of the variable
to which it will be assigned. If more than one variable is given, data items
must be separated by commas.

The data entered is assigned to the variable list. The number of data items
supplied must be the same as the number of variables in the list.

The variable names in the list may be numeric or string variable names
(including subscripted variables). The type of each data item input must
agree with the type specified by the variable name.

Too many or too few data items, or the wrong type of values (for example,
numeric instead of string), causes the messsage “?Redo from start” to be
printed. No assignment of input values is made until an acceptable response
is given.

A comma may be used instead of a semicolon after prompt string to
suppress the question mark. For example, the following line prints the
prompt with no question mark:

INPUT "ENTER BIRTHDATE",B$

92

INPUT Statement

If the prompt string is preceded by a semicolon, the RETURN key pressed by
the operator is suppressed. During program execution, data on that line is
displayed, and data from the next PRINT statement is added to the line.

When an INPUT statement is encountered during program execution, the
program halts, the prompt string is displayed, and the operator types in the
requested data. Strings that input to an INPUT statement need not be sur
rounded by double quotation marks unless they contain commas or leading
or trailing blanks.

When the operator presses the RETURN key, program execution continues.

INPUT and LINE INPUT statements have built-in PRINT statements.
When an INPUT statement with a quoted string is encountered during pro
gram execution, the quoted string is printed automatically (see the PRINT
statement).

The principal difference between the INPUT and LINE INPUT statements
is that LINE INPUT accepts special characters (such as commas) within a
string, without requiring double quotation marks, while the INPUT state
ment requires double quotation marks.

Example 1:

To find the square of a number:

10 INPUT X
20 PRINT X "SQUARED IS" XA2
30 END
RUN
?

The operator types a number (5) in response to the question mark:

5 SQUARED IS 25
Ok

Example 2:

To find the area of a circle when the radius is known:

10 PI=3.1 4
20 INPUT "WHAT IS THE RADIUS";R
30 A=PI *RA2

93

INPUT Statement

40 PRINT "THE AREA OF THE CIRCLE IS";A
50 PRINT
60 GOTO 20
RUN
NHAT IS THE RADIUS? 7.4
THE AREA OF THE CIRCLE IS 171.9464

Note that line 20 in the above example makes use of the built-in PRINT
statement contained within INPUT.

94

INPUT# Statement

INPUT# Statement

Purpose:

To read data items from a sequential file and assign them to program
variables.

Syntax:

INPUT# file number, variable list

Comments:

file number is the number used when the file was opened for input.

variable list contains the variable names to be assigned to the items in
the file.

The data items in the file appear just as they would if data were being
typed on the keyboard in response to an INPUT statement.

The variable type must match the type specified by the variable name.

With INPUT#, no question mark is printed, as it is with INPUT.

Numeric Values

For numeric values, leading spaces and line feeds are ignored. The first
character encountered (not a space or line feed) is assumed to be the start
of a number. The number terminates on a space, carriage return, line feed,
or comma.

Strings

If GW-BASIC is scanning the sequential data file for a string, leading spaces
and line feeds are ignored.

If the first character is a double quotation mark (”), the string will consist
of all characters read between the first double quotation mark and the
second. A quoted string may not contain a double quotation mark as a char
acter. The second double quotation mark always terminates the string.

95

INPUT# Statement

If the first character of the string is not a double quotation mark, the string
terminates on a comma, carriage return, or line feed, or after 255 charac
ters have been read.

If the end of the file is reached when a numeric or string item is being
INPUT, the item is terminated.

INPUT# can also be used with random files.

96

INPUT$ Function

INPUT$ Function

Purpose:

To return a string of x characters read from the keyboard, or from file
number.

Syntax:

INPUT$Oc[,[#]/i/e number)]

Comments:

If the keyboard is used for input, no characters will appear on the screen.
All control characters (except CTRL-BREAK) are passed through. CTRL-BREAK
interrupts the execution of the INPUT$ function.

The INPUT$ function is preferred over INPUT and LINE INPUT state
ments for reading communications files, because all ASCII characters may be
significant in communications. INPUT is the least desirable because input
stops when a comma or carriage return is seen. LINE INPUT terminates
when a carriage return is seen.

INPUT$ allows all characters read to be assigned to a string. INPUT$ will
return x characters from the file number or keyboard.

For more information about communications, refer to Appendix F in the
GW-BASIC User's Guide.

Example 1:

The following example lists the contents of a sequential file in hexadecimal:

10 OPEN"I",1,"DATA"
20 IF EOF(1) THEN 50
30 PRINT HEX$(ASC(INPUTS(1 ,#1))) ;
40 GOTO 20
50 PRINT
60 END

97

INPUTS Function

Example 2:

In the following program, the program pauses, awaiting a keyboard entry
of either P or S. Line 130 continues to loop back to line 100 if the input is
other than P or S.

100 PRINT "TYPE P TO PROCEED OR S TO STOP"
110 X$=INPUT$(1)
120 IF X$="P" THEN 500
130 IF X$="S" THEN 700 ELSE 100

i
i

:

98

INSTR Function

INSTR Function

Purpose:

To search for the first occurrence of string y$ in x$, and return the position
at which the string is found.

Syntax:

INSTR([rc,]x$,y$)

Comments:

Optional offset n sets the position for starting the search. The default value
for n is 1.

If n equals zero, the error message “Illegal argument in line number” is
returned.

n must be within the range of 1 to 255. If n is out of this range, an “Illegal
Function Call” error is returned.

INSTR returns 0 if

• n>LEN(x$)
• x$ is null
• y$ cannot be found

If y$ is null, INSTR returns n.

x$ and y$ may be string variables, string expressions, or string literals.

Examples:

10 X$="ABCDEBXYZ"
20 Y$-MBM
30 PRINT INSTR(X$,Y$);INSTR(4,X$,Y$)
RUN

62
Ok

99

INSTR Function

The interpreter searches the string "ABCDFBXYZ" and finds the first
occurrence of the character B at position 2 in the string. It then starts
another search at position 4 (D) and finds the second match at position
6 (B). The last three characters are ignored, since all conditions set out
in line 30 were satisfied.

t

100

INT Function

INT Function

Purpose:

To truncate an expression to a whole number.

Syntax:

INTCc)

Comments:

Negative numbers return the next lowest number.

The FIX and CINT functions also return integer values.

Examples:

PRINT I NT(98.89)
98

□ k

PRINT I NT(-12.11)
-13
□ k

101

IOCTL Statement

IOCTL Statement

Purpose:

To allow GW-BASIC to send a “control data” string to a character device
driver anytime after the driver has been opened.

Syntax:

IOCTL[#]/i/e number,string

Comments:

file number is the file number open to the device driver.

string is a valid string expression containing characters that control
the device.

IOCTL commands are generally 2 to 3 characters followed by an optional
alphanumeric argument. An IOCTL string may be up to 255 bytes long,
with commands within the string separated by semicolons.

Examples:

If a user had installed a driver to replace lptl, and that driver was able
to set page length (the number of lines to print on a page before issuing a
form feed), then the following lines would open the new lptl driver and set
the page length to 66 lines:

OPEN "LPT 1 :11 FOR OUTPUT AS #1
IOCTL #1,"PL66"

The following statements open lptl with an initial page length of 56 lines:

OPEN "\DEV\LPT1" FOR OUTPUT AS #1
IOCTL #1f"PL56"

102

IOCTL$ Function

IOCTL$ Function

Purpose:

To allow GW-BASIC to read a “control data” string from an open character
device driver.

Syntax:

IOCTL$([#]/i/e number)

Comments:

file number is the file number open to the device.

The IOCTL$ function is generally used to get acknowledgment that an
IOCTL statement succeeded or failed. It is also used to get device informa
tion, such as device width after an IOCTL statement requests it.

Examples:

10 'GW is a possible command
20 #for get device width
30 OPEN "\DEV\MYLPT" AS#1
40 IDCTYL#1,"GW"
50 'Save it in WID
60 WI D=VAL (I OCTL$ (ff 1))

103

KEY Statement

KEY Statement

Purpose:

To allow rapid entry of as many as 15 characters into a program with one
keystroke by redefining GW-BASIC special function keys.

Syntax:

KEY key number,string expression
KEY n,CHR$(hexcode) + CHR$(sccm code)
KEY ON
KEY OFF
KEY LIST

Comments:

key number is the number of the key to be redefined, key number may range
from 1-20.

string expression is the key assignment. Any valid string of 1 to 15 charac
ters may be used. If a string is longer than 15 characters, only the first 15
will be assigned. Constants must be enclosed in double quotation marks.

scan code is the variable defining the key you want to trap. Appendix H in
the GW-BASIC User’s Guide lists the scan codes for the keyboard keys.

hexcode is the hexadecimal code assigned to the key shown below:

HexcodeKey

&H80
&H40
&H20
&H08
&H04
&H01, &H02, &H03

EXTENDED
CAPS LOCK

NUM LOCK
ALT
CTRL
SHIFT

104

KEY Statement

Hexcodes may be added together, such as in &H03, which is both shift keys.

Initially, the function keys are assigned the following special functions:
FI LIST F2 RUN<-

F3 LOAD" F4 SAVE"
F5 CONTc- F6 ,"LPT1:"<-
F7 TRON<- F8 TROFFc-

F10 SCREEN 000<-F9 KEY

Note
<- (arrow) means that you do not have to press RETURN after each of
these keys has been pressed.

Any one or all of the 10 keys may be redefined. When the key is pressed,
the data assigned to it will be input to the program.

KEY key number /'string expression"

Assigns the string expression to the specified key.

KEY LIST

Lists all 10 key values on the screen. All 15 characters of each value
are displayed.

KEY ON

Displays the first six characters of the key values on the 25th line of the
screen. When the display width is set at 40, five of the 10 keys are dis
played. When the width is set at 80, all 10 are displayed.

KEY OFF

Erases the key display from the 25th line, making that line available for
program use. KEY OFF does not disable the function keys.

105

KEY Statement

If the value for key number is not within the range of 1 to 10, or 15 to 20,
an “Illegal function call” error occurs. The previous KEY assignment
is retained.

Assigning a null string (length 0) disables the key as a function key.

When a function key is redefined, the INKEY$ function returns one charac
ter of the assigned string per invocation. If the function key is disabled,
INKEY$ returns a string of two characters: the first is binary zero; the
second is the key scan code.

Examples:

10 KEY 1 , "MENU"+CHR$ (13)
;

Displays a menu selected by the operator each time key 1 is pressed.

1 KEY OFF

Turns off the key display.

10 DATA KEY1 , KEY2 , KEY3,KEY4,KEY5
20 FOR N=1 TO 5:READ S0FTKEYS$(n)
30 KEY N , SOFTKEYS!(I)
40 NEXT N
50 KEY ON

:

Displays new function keys on line 25 of the screen.
III!20 KEY 1 ,

Disables function key 1.

106

KEY(n) Statement

KEY(n) Statement

Purpose:

To initiate and terminate key capture in a GW-BASIC program.

Syntax:

KEY(n) ON
KEY(ti) OFF
KEY(n) STOP

Comments:

n is a number from 1 to 20 that indicates which key is to be captured.
Keys are numbered as follows:

KeyKey Number

Function keys FI through F10
CURSOR-UP
CURSOR-LEFT
CURSOR-RIGHT
CURSOR-DOWN
Keys defined in the following format (see KEY
statement): KEY rc,CHR$(/iexco<£e) + CHR$(sca/i
code)

1-10
11
12
13
14
15-20

Execution of the KEY(n) ON statement is required to activate keystroke
capture from the function keys or cursor control keys. When the KEY(n)
ON statement is activated and enabled, GW-BASIC checks each new state
ment to see if the specified key is pressed. If so, GW-BASIC performs a
GOSUB to the line number specified in the ON KEY(n) statement. An
ON KEY(n) statement must precede a KEY(n) statement.

When KEY(rc) OFF is executed, no key capture occurs and no keystrokes
are retained.

107

KEY(n) Statement

If KEY(n) STOP is executed, no key capture occurs, but if a specified key
is pressed, the keystroke is retained so that immediate keystroke capture
occurs when a KEY(n) ON is executed.

For further information on key trapping, see the ON KEY (n) statement.

108

KILL Command

KILL Command

Purpose:

To delete a file from a disk.

Syntax:

KILL filename

Comments:

filename can be a program file, sequential file, or random-access data file.

KILL is used for all types of disk files, including program, random data,
and sequential data files.

Note
You must specify the filename’s extension when using the KILL com
mand. Remember that files saved in GW-BASIC are given the default
extension .bas.

If a KILL command is given for a file that is currently open, a ‘Tile already
open” error occurs.

Examples:

The following command deletes the GW-BASIC file data, and makes the space
available for reallocation to another file:

200 KILL "DATA1.BAS"

The following command deletes the GW-BASIC file raining from the subdirec
tory dogs:

KILL ,,CATS\DOGS\RAINING.BASn

109

LEFT$ Function

LEFT$ Function

Purpose:

To return a string that comprises the leftmost n characters of x$.

Syntax:

LEFT$(x$,n)

Comments:

n must be within the range of 0 to 255. If n is greater than LEN(x$), the
entire string (x$) will be returned. If n equals zero, the null string (length
zero) is returned (see the MID$ and RIGHT$ substring functions).

Examples:

10 A$=,,BASICM
20 B$-LEFT$(A$,3)
30 PRINT B$
RUN
BAS
□ k

The leftmost three letters of the string “BASIC” are printed on the screen.

110

LEN Function

LEN Function

Purpose:

To return the number of characters in x$.

Syntax:

LEN(x$)

Comments:

Nonprinting characters and blanks are counted.

Examples:

x$ is any string expression.

10 X $ = "P0RTLAND, OREGON"
20 PRINT LEN(X$)
16
Ok

Note that the comma and space are included in the character count of 16.

Ill

LET Statement

LET Statement

Purpose:

To assign the value of an expression to a variable.

Syntax:

[LET] variable-expression

Comments:

The word LET is optional; that is, the equal sign is sufficient when assign
ing an expression to a variable name.

The LET statement is seldom used. It is included here to ensure compati
bility with previous versions of BASIC that require it.

When using LET, remember that the type of the variable and the type of
the expression must match. If they don’t, a “Type mismatch” error occurs.

Example 1:

The following example lets you have downward compatibility with an older
system. If this downward compatibility is not required, use the second
example, as it requires less memory.

110 LET D-12
120 LET E=12A2
130 LET F = 12M
140 LET SUM=D+E+F

112

LET Statement

Example 2:

110 D=12
120 E=12A2
130 F=12M
140 SUM=D+E+F

113

LINE Statement

LINE Statement

Purpose:

To draw lines and boxes on the screen.

Syntax:

LINE [(xljl)]-(x2,y2) [,[attribute][,B\F]][jStyle]]

Comments:

xljl and x2y2 specify the end points of a line.

Resolution mode is determined by the SCREEN statement.

attribute specifies color or intensity of the displayed pixel (see the COLOR
and PALETTE statements).

B (box) draws a box with the points (xlyl) and (x2,y2) at opposite corners.

BF (filled box) draws a box (as ,B) and fills in the interior with points.

Note
If attribute is not specified, two commas must be used before B or BF.

LINE supports the additional argument style, style is a 16-bit integer mask
used when putting down pixels on the screen. This is called line-styling.

Each time LINE stores a point on the screen, it uses the current circulating
bit in style. If that bit is 0, no store will be done. If the bit is 1, then a nor
mal store is done. After each point, the next bit position in style is selected.

Since a 0 bit in style does not clear out the old contents, you may wish
to draw a background line before a styled line, in order to force a known
background.

114

LINE Statement

style is used for normal lines and boxes, but is illegal for filled boxes.

If the BF parameter is used with the style parameter, a “Syntax” error
will occur.

When out-of-range values are given in the LINE statement, the coordinates
that are out of range are not visible on the screen. This is called
line-clipping.

In the syntax shown here, the coordinate form STEP (x offsets offset) is not
shown. However, this form can be used wherever a coordinate is used.

In a LINE statement, if the relative form is used on the second coordinate,
it is relative to the first coordinate.

After a LINE statement, the last referenced point is x2j2.

The simplest form of LINE is the following:

LINE -(xz,yz)

This draws a line from the last point referenced to the point (xz,yz) in the
foreground color.

Examples:

LINE (0,100)-(639,100)

Draws a horizontal line that divides the screen in half from top to bottom in
SCREEN 2.

LINE (160,0)-(160,199)

Draws a vertical line that divides the screen in half from left to right in
SCREEN 1; makes a one-quarter/three-quarter division in SCREEN 2.

LINE (0,0)-(319,199)

Draws a diagonal line from the top left to lower right comer of the screen
in SCREEN 1, and from the upper left comer to the center bottom of the
screen in SCREEN 2.

115

LINE Statement

LINE (10,10)-(20,20) ,2

Draws a line in color 2 if SCREEN 1 was previously specified (see the
COLOR statement).

10 CLS
20 LINE -(RND*319,RND*199),RND*4
30 GOTO 20

Draws lines forever using random attributes.

10 FOR X=0 TO 319
20 LINE (X , 0)-(X,199),X AND 1
30 NEXT

Draws an alternating pattern: line on, line off.

10 CLS
20 LINE -(RND*639,RND*199),RND*2,BF
30 GOTO 20

Draws lines all over the screen.

LINE (0,0)-(1 00,1 75) , ,B

Draws a square box in the upper left comer of the screen.

LINE (0,0)—(100,175),,BF

Draws the same box and fills it in.

LINE (0,0)—(100,175),2,BF

Draws the same filled box in magenta in SCREEN 1.

LINE (0,0)-(100,350),,B

Draws the same box if SCREEN 2 is specified.

400 SCREEN 1
410 LINE(160,100)-(160,199) &HCCCC» » >

Draws a vertical dotted line down the center of the screen in SCREEN 1.

116

LINE Statement

220 SCREEN 2
230 LINE(300,100)-(400,50) B,&HAAAA» j

Draws a rectangle with a dotted line in SCREEN 2.

LINE (0,0)—(160,100),3,,&HFF0 0

Draws a dotted line from the upper left corner to the screen center.

117

LINE INPUT Statement

LINE INPUT Statement

Purpose:

To input an entire line (up to 255 characters) from the keyboard into a
string variable, ignoring delimiters.

Syntax:

LINE INPUT [iWprompt string]]string variable

Comments:

prompt string is a string literal, displayed on the screen, that allows user
input during program execution.

A question mark is not printed unless it is part of prompt string.

string variable accepts all input from the end of the prompt to the carriage
return. Trailing blanks are ignored.

LINE INPUT is almost the same as the INPUT statement, except that it
accepts special characters (such as commas) in operator input during pro
gram execution.

If a line-feed/carriage return sequence (this order only) is encountered, both
characters are input and echoed. Data input continues.

If LINE INPUT is immediately followed by a semicolon, pressing the
RETURN key will not move the cursor to the next line.

A LINE INPUT may be escaped by typing CTRL-BREAK. GW-BASIC returns
to command level and displays Ok.

Typing CONT resumes execution at the LINE INPUT line.

118

LINE INPUT Statement

Example:

100 LINE INPUT A$

Program execution pauses at line 100, and all keyboard characters typed
thereafter are input to string A$ until RETURN, CTRL-M, CTRL-C, or
CTRL-BREAK is entered.

119

LINE INPUT# Statement

LINE INPUT# Statement

Purpose:

To read an entire line (up to 255 characters), without delimiters, from a
sequential disk file to a string variable.

Syntax:

LINE INPUT# file number, string variable

Comments:

file number is the number under which the file was opened.

string variable is the variable name to which the line will be assigned.

LINE INPUT# reads all characters in the sequential file up to a carriage
return. If a line feed/carriage return sequence (this order only) is encoun
tered, it is input.

LINE INPUT# is especially useful if each line of a data file has been bro
ken into fields, or if a GW-BASIC program saved in ASCII mode is being read
as data by another program.

Examples:

1 0 OPEN "0",1 /'INFO"
20 LINE INPUT "CUSTOMER INFORMATI ON?";C$
30 PRINT#1, C$
40 CLOSE 1
50 OPEN "I",1 , "INFO"
60 LINE INPUTS , C$
70 PRINT C$
80 CLOSE 1
RUN
CUSTOMER INFORMATION?

If the operator enters

LINDA JONES 234,4 MEMPHIS

J 120

LINE INPUT# Statement

then the program continues with the following:

LINDA JONES 234,4 MEMPHIS
Ok

121

LIST Command

LIST Command

Purpose:

To list all or part of a program to the screen, line printer, or file.

Syntax:

LIST [linenumber][-linenumber][,filename]
LIST [linenumber-][,filename]

Comments:

linenumber is a valid line number within the range of 0 to 65529.

If filename is omitted, the specified lines are listed to the screen.

Use the hyphen to specify a line range. If the line range is omitted, the
entire program is listed, linenumber- lists that line and all higher num
bered lines, -linenumber lists lines from the beginning of the program
through the specified line.

The period (.) can replace either linenumber to indicate the current line.

Any listing may be interrupted by pressing CTRL-BREAK.

Examples:

LIST

Lists all lines in the program.

LIST -20

Lists lines 1 through 20.

LIST 10-20

Lists lines 10 through 20.

122

LIST Command

LIST 20-

Lists lines 20 through the end of the program.

123

LUST Command

LLIST Command

Purpose:

To list all or part of the program currently in memory to the line printer.

Syntax:

LLIST [linenumber][-linenumber]
LLIST [linenumber-]

Comments:

GW-BASIC always returns to command level after a LLIST is executed. The
line range options for LLIST are the same as for LIST.

Examples:

See the examples in the LIST statement.

124
I

LOAD Command

LOAD Command

Purpose:

To load a file from diskette into memory.

Syntax:

LOAD filename^r]

Comments:

filename is the filename used when the file was saved. If the extension was
omitted, .bas will be used.

LOAD closes all open files and deletes all variables and program lines
currently residing in memory before it loads the designated program.

If the r option is used with LOAD, the program runs after it is loaded, and
all open data files are kept open.

LOAD with the r option lets you chain several programs (or segments of the
same program). Information can be passed between the programs using the
disk data files.

Examples:

LOAD "STRTRK",R

Loads the file strtrk.bas and runs it, retaining all open files and variables
from a previous program intact.

125

LOC Function

LOC Function

Purpose:

To return the current position in the file.

Syntax:

LOC {file number)

Comments:

file number is the file number used when the file was opened.

When transmitting or receiving a file through a communications port, LOC
returns the number of characters in the input buffer waiting to be read.
The default size for the input buffer is 256 characters, but can be changed
with the /c: option on the GW-BASIC command line. If there are more than
255 characters in the buffer, LOC returns 255. Since a string is limited to
255 characters, this practical limit alleviates the need to test for string size
before reading data into it. If fewer than 255 characters remain in the
buffer, then LOC returns the actual count.

With random disk files, LOC returns the record number just read from,
or written to, with a GET or PUT statement.

With sequential files, LOC returns the number of 128-byte blocks read
from, or written to, the file since it was opened. When the sequential file is
opened for input, GW-BASIC initially reads the first sector of the file. In this
case, the LOC function returns the character 1 before any input is allowed.

If the file was opened but no disk input/output was performed, LOC returns
a zero.

Examples:

200 IF LOC(1)#50 THEN STOP

The program stops after 51 records are read or written.

126

LOCATE Statement

LOCATE Statement

Purpose:

To move the cursor to the specified position on the active screen. Optional
parameters cause the cursor to blink on and off, and define the start and
stop raster lines for the cursor. A raster line is the vertical or horizontal
distance between two adjacent, addressable points on your screen.

Syntax:

LOCATE [roo;][,[co/][,[carsor][,[start] [,stop]]]]

Comments:

row is the screen line number, a numeric expression within the range of
1 to 25.

col is the screen column number, a numeric expression within the range of
1 to 40, or 1 to 80, depending upon screen width.

cursor is a boolean value indicating whether the cursor is visible; zero is off,
nonzero is on.

start is the cursor start scan line, a numeric expression within the range of
0 to 31.

stop is the cursor stop scan line, a numeric expression within the range of
0 to 31.

When the cursor is moved to the specified position, subsequent PRINT
statements begin placing characters at this location. Optionally, the
LOCATE statement may be used to start the cursor blinking on or off,
or change the size of the blinking cursor.

Any values entered outside of these ranges results in “Illegal function call”
errors. Previous values are retained.

As you set up the parameters for the LOCATE statement, you may find
that you do not wish to change one or more of the existing specifications.
To omit a parameter from this LOCATE statement, insert a comma for
the parameter that is being skipped. If the omitted parameter(s) occurs at
the end of the statement, you do not have to type the comma.

127

Wr ' ; LOCATE Statement

If the start scan line parameter is given and the stop scan line parameter is
omitted, stop assumes the start value.

Examples:

10 LOCATE 1,1

Moves the cursor to the home position in the upper left corner.

20 LOCATE ,,1

Makes the cursor visible. Its position remains unchanged. Notice that the
first two parameters are not used. A comma has been inserted for each
omitted parameter.

30 LOCATE ,, ,7

Cursor position and visibility remain unchanged. Sets the cursor to appear
at the bottom of the character starting and ending on scan line 7.

40 LOCATE 5,1,1,0,7

Moves the cursor to line 5, column 1, and turns the cursor on. The cursor
covers an entire character cell, starting at scan line 0 and ending on scan
line 7.

128

LOCK Statement

LOCK Statement

Purpose:

To restrict the access to all or part of a file that has been opened by another
process. This is used in a multi-device environment, often referred to as a
network or network environment.

Syntax:

LOCK [#]n f,[record number] [TO record number]]

Comments:

n is the number that was assigned to the file as it was originally numbered
in the program.

record number is the number of the individual record that is to be locked.
Or, if a range of records are to be locked, record number designates the
beginning and ending record of the specified range.

The range of legal record numbers is 1 to 232- 1. The limit on record size
is 32767 bytes.

The record range specified must be from lower to (the same or) higher
record numbers.

If a starting record number is not specified, the record number 1 is
assumed.

If an ending record number is not specified, then only the specified record
is locked.

The following are examples of legal LOCK statements:

locks the entire file n

locks record X only

locks records 1 through Y

locks records X through Y

With a random-access file, the entire opened file, or a range of records

LOCK #n

LOCK #/i, X

LOCK #w, TO 7

LOCK #/i, X TO y

129

LOCK Statement

within an opened file, may be locked, thus denying access to those records
to any other process that has also opened the file.

With a sequential access file that has been opened for input or output, the
entire file is locked, regardless of any record range specified. This is not
considered an error. The specification of a range in the LOCK statement
regarding the sequential file will simply be disregarded.

The LOCK statement should be executed on a file or record range within
a file before attempting to read or write to that file.

The locked file or record range should be unlocked before the file is closed.
Failure to execute the UNLOCK statement can jeopardize future access to
that file in a network environment.

It is expected that the time in which files or regions within files are locked
will be short, and thus the suggested usage of the LOCK statement is
within short-term paired LOCK/UNLOCK statements.

Examples:

The following sequence demonstrates how the LOCK/UNLOCK statements
should be used:

LOCK #1, 1 TO 4
LOCK *\ , 5 TO 8
UNLOCK *1, 1 TO 4
UNLOCK *\ , 5 TO 8

The following example is illegal:

LOCK #1, 1 TO 4
LOCK #1, 5 TO 8
UNLOCK *1, 1 TO 8

130

LOF Function

LOF Function

Purpose:

To return the length (number of bytes) allocated to the file.

Syntax:

hOFifile number)

Comments:

file number is the number of the file that the file was opened under.

With communications files, LOF returns the amount of free space in the
input buffers.

Examples:

The following sequence gets the last record of the random-access file file.big,
and assumes that the file was created with a default record length of 128
bytes:

10 OPEN "R",1 ,"FILE.BIG"
20 GET #1,LOF(1)/128

131

LOG Function

LOG Function

Purpose:

To return the natural logarithm of x.

Syntax:

LOGCc)

Comments:

x must be a number greater than zero.

LOGGc) is calculated in single-precision, unless the /d switch is used when
GW-BASIC is executed.

Examples:

PRINT LOG(2)
.6931471
PRINT LOG(1)
0

L
X

132

LPOS Function

LPOS Function

Purpose:

To return the current position of the line printer print head within the line
printer buffer.

Syntax:

LPOS(x)

Comments:

LPOS does not necessarily give the physical position of the print head,

x is a dummy argument.

If the printer has less than the 132 characters-per-line capability, it may
issue internal line feeds and not inform the computer internal line printer
buffer. If this has happened, the value returned by LPOS(x) may be incor
rect. LPOS(x) simply counts the number of printable characters since the
last line feed was issued.

Examples:

The following line causes a carriage return after the 60th character is
printed on a line:

100 IF LPOS(X)#60 THEN LPRINT CHR$(13)

133

LPRINT and LPRINT USING Statements

LPRINT and LPRINT USING Statements

Purpose:

To print data at the line printer.

Syntax:

LPRINT [list of expressions]^]
LPRINT USING string exp; list of expressions^]

Comments:

list of expressions consists of the string or numeric expression separated
by semicolons.

string expressions is a string literal or variable consisting of special format
ting characters. The formating characters determine the field and the for
mat of printed strings or numbers.

These statements are the same as PRINT and PRINT USING, except that
output goes to the line printer. For more information about string and
numeric fields and the variables used in them, see the PRINT and PRINT
USING statements.

The LPRINT and LPRINT USING statements assume that your printer is
an 80-character-wide printer.

To reset the number of characters that you can print across the printed
page (assuming that your printer is wider than 80 characters), see the
WIDTH statement.

134

LSET and ESET Statements

LSET and RSET Statements

Purpose:

To move data from memory to a random-file buffer and left- or right-justify
it in preparation for a PUT statement.

Syntax:

LSET string variable = string expression
RSET string variable = string expression

Comments:

If string expression requires fewer bytes than were fielded to string variable,
LSET left-justifies the string in the field, and RSET right-justifies the
string (spaces are used to pad the extra positions).

If the string is too long for the field, characters are dropped from the right.

To convert numeric values to strings before the LSET or RSET statement is
used, see the MKI$, MKS$, and MKD$ functions.

LSET or RSET may also be used with a nonfielded string variable to left-
justify or right-justify a string in a given field.

Examples:

110 A$ = SPACE $(20)
120 RSET A$=N$

These two statements right-justify the string N$ in a 20-character field.
This can be valuable for formatting printed output.

135

MERGE Command

MERGE Command

Purpose:

To merge the lines from an ASCII program file into the program already
in memory.

Syntax:

MERGE filename

Comments:

filename is a valid string expression containing the filename. If no exten
sion is specified, then GW-BASIC assumes an extension of .bas.

The diskette is searched for the named file. If found, the program lines on
the diskette are merged with the lines in memory. After the MERGE com
mand, the merged program resides in memory, and GW-BASIC returns to the
direct mode.

If the program being merged was not saved in ASCII code with the a option
to the SAVE command, a “Bad file mode” error is issued. The program in
memory remains unchanged.

If any line numbers in the file have the same number as lines in the pro
gram in memory, the lines from the file replace the corresponding lines
in memory.

Examples:

MERGE "SUBRTN"

Merges the file subrtn.bas with the program currently in memory, provided
subrtn was previously saved with the a option. If some of the program lines
are the same as those in the subrtn.bas file being merged, then the original
program lines are replaced by the lines from subrtn.bas.

136

MID$ Function

MID$ Function

Purpose:

To return a string of m characters from v$, beginning with the nth
character.

Syntax:

MID$(x$,/z[,m])

Comments:

n must be within the range of 1 to 255.

m must be within the range of 0 to 255.

If m is omitted, or if there are fewer than m characters to the right of n,
all rightmost characters beginning with n are returned.

If n>LEN(x$), the MID$ function returns a null string.

If m equals 0, the MID$ function returns a null string.

If either n or m is out of range, an “Illegal function call error” is returned.

For more information and examples, see the LEFT$ and RIGHT$ functions.

Examples:

10 A$="G00D"
20 B$="M0RNING EVENING AFTERNOON"
30 PRINT A$-,MID$ (B$,8,8)
RUN
GOOD EVENING
Ok

Line 30 concatenates (joins) the A$ string to another string with a length of
eight characters, beginning at position 8 within the B$ string.

137

MID$ Statement

MID$ Statement

Purpose:

To replace a portion of one string with another string.

Syntax:

MLD${stringexpl ,n[,m]) = stringexp2

Comments:

Both n and m are integer expressions.

stringexpl and stringexp2 are string expressions.

The characters in stringexpl, beginning at position n, are replaced by the
characters in stringexp2.

The optional m refers to the number of characters from stringexp2 that are
used in the replacement. If m is omitted, all of stringexp2 is used.

Whether m is omitted or included, the replacement of characters never goes
beyond the original length of stringexpl.

Examples:

10 AI-MKANSAS CITY, M0U
20 MIDI (A$, 1 4) =,,KS"
30 PRINT A$
RUN
KANSAS CITY, KS
Ok

Line 20 overwrites “MO” in the A$ string with “KS”.

138

MKDIR Command

MKDIR Command

Purpose:

To create a subdirectory.

Syntax:

MKDIR pathname

Comments:

pathname is a string expression, not exceeding 63 characters, identifying
the subdirectory to be created.

Examples:

MKDIR "C:SALESXJOHN"

Creates the subdirectory john within the directory sales.

139

MKI$, MKS$, MKD$ Functions

MKI$, MKS$, MKD$ Functions

Purpose:

To convert numeric values to string values.

Syntax:

MKI$(mteger expression)
MKS$(single-precision expression)
MKD$(double-precision expression)

Comments:

MKI$ converts an integer to a 2-byte string.

MKS$ converts a single-precision number to a 4-byte string.

MKD$ converts a double-precision number to an 8-byte string.

Any numeric value placed in a random file buffer with an LSET or a RSET
statement must be converted to a string (see CVI, CVS, CVD for the com
plementary functions).

These functions differ from STR$ because they change the interpretations
of the bytes, not the bytes themselves.

Examples:

90 AMT=(K+T)
100 FIELD #1,8 AS D$,20 AS N$
110 LSET D$=MKS$(ANT)
120 LSET N$=A$
130 PUT #1

140

NAME Command

NAME Command

Purpose:

To change the name of a disk file.

Syntax:

NAME old filename AS new filename

Comments:

old filename must exist and new filename must not exist; otherwise, an
error results.

After a NAME command, the file exists on the same diskette, in the same
disk location, with the new name.

Examples:

NAME "ACCTS" AS "LEDGER"
Ok

The file formerly named accts will now be named ledger. The file content
and physical location on the diskette is unchanged.

141

NEW Command

NEW Command

Purpose:

To delete the program currently in memory and clear all variables.

Syntax:

NEW

Comments:

NEW is entered at command level to clear memory before entering a
new program. GW-BASIC always returns to command level after a NEW
is executed.

Examples:

NEW
OK

or

980 PRINT "Do You Wish To Quit (Y/N)
990 ANS$=INKEYS : IF ANS$ = ""THEN 990
1000 IF ANS$="Y" THEN NEW
1010 IF ANS$="N" THEN 980
1020 GOTO 990

142

OCT$ Function

OCT$ Function

Purpose:

To convert a decimal value to an octal value.

Syntax:

OCT$(*)

Comments:

x is rounded to an integer before OCT$(x) is evaluated.

This statement converts a decimal value within the range of - 32768
to + 65535 to an octal string expression.

Octal numbers are numbers to base 8 rather than base 10 (decimal
numbers).

See the HEX$ function for hexadecimal conversion.

Examples:

10 PRINT OCT$(18)
RUN
22
□ k

Decimal 18 equals octal 22.

143

ON COM(n)—ON TIMER(n) Statements

ON COM(n), ON KEY(n), ON PEN, ON PLAY(n),
ON STRIG(n), and ON TIMER(n) Statements

Purpose:

To create an event trap line number for a specified event (such as communi
cations, pressing function or cursor control keys, using the light pen, or
using joysticks).

Syntax:

ON event specifier GOSUB line number

Comments:

The syntax shown sets up an event trap line number for the specified event.
A line number of 0 disables trapping for this event.

Once trap line numbers have been set, event trapping itself can be con
trolled with the following syntax lines:

event specifier ON When an event is ON, and a nonzero line
number is specified for the trap, then every time
BASIC starts a new statement, it checks to see if
the specified event has occurred. If it has, BASIC
performs a GOSUB to the line specified in the
ON statement.
When an event is OFF, no trapping occurs and
the event is not remembered, even if it occurs.

event specifier STOP When an event is stopped, no trapping can occur,
but if the event happens, it is remembered so an
immediate trap occurs when an event specifier
ON is executed.

event specifier OFF

When a trap is made for a particular event, the trap automatically causes a
stop on that event, so recursive traps can never take place.

The return from the trap routine automatically does an ON unless an
explicit OFF has been performed inside the trap routine.

144

ON COM(n)—ON TIMER(n) Statements

When an error trap takes place, this automatically disables all trapping.

Trapping will never take place when BASIC is not executing a program.

The following are valid values for event specifier.

n is the number of the COM channel (1 or 2).
n is a function key number 1-20. 1 through 10
are the function keys FI through F10. 11
through 14 are the cursor control keys as fol
lows:
11 = Cursor Up
12 = Cursor Left
15-20 are user-defined keys.
Since there is only one pen, no number is
given.

n is an integer expression in the range of
1-32. Values outside this range result in “Ille
gal function call” errors.
n is 0, 2, 4, or 6. (0 = trigger Al; 4 = trigger A2;
2 = trigger Bl; 6 = trigger B2).

n is a numeric expression within the range of
1 to 86,400. A value outside of this range
results in an “Illegal function call” error.

RETURN line number This optional form of RETURN is primarily
intended for use with event trapping. The
event-trapping routine may want to go back
into the GW-BASIC program at a fixed line
number while still eliminating the GOSUB
entry that the trap created.
Use of the nonlocal RETURN must be done
with care. Any other GOSUB, WHILE, or FOR
that was active at the time of the trap
remains active.
If the trap comes out of a subroutine, any
attempt to continue loops outside the subrou
tine results in a “NEXT without FOR” error.

COM(n)
KEY (n)

13 = Cursor Right
14 = Cursor Down

PEN

PLAY(n)

STRIG(n)

TIMER(n)

145

ON COM(n)—ON TIMER(n) Statements

Special Notes About Each Type of Trap

COM Trapping

Typically, the COM trap routine will read an entire message from the COM
port before returning.

It is recommended that you not use the COM trap for single character
messages, since at high baud rates the overhead of trapping and reading
for each individual character may allow the interrupt buffer for COM
to overflow.

KEY Trapping

Trappable keys 15 to 20 are defined by the following statement:

KEY(rc),CHR$[/iercocfe] + CHR$[scan code]

n is an integer expression within the range of 15 to 20 defining the key to
be trapped.

hexcode is the mask for the latched key: (CAPS LOCK, NUM LOCK, ALT, CTRL,
LEFT SHIFT, RIGHT SHIFT)

scan code is the number identifying one of the 83 keys to trap. Refer to
Appendix H in the GW-BASIC User’s Guide for key scan codes.

The appropriate bit in hexcode must be set in order to trap a key that is
shifted, control-shifted, or alt-shifted, hexcode values are as follows:

Hexcode Indicates thatMask

Key is extended
CAPS LOCK is active
NUM LOCK is active
The ALT key is pressed
The CTRL key is pressed
The left SHIFT key is pressed
The right SHIFT key is pressed

&H80
&H40
&H20
&H08
&H04
&H02
&H01

EXTENDED
CAPS LOCK
NUM LOCK
ALT
CTRL
LEFT SHIFT
RIGHT SHIFT

146

ON COM(n)—ON TIMER(n) Statements

For trapping shifted keys, you may use the value &H01, &H02, or &H03.
The left and right SHIFT keys are coupled when &H03 is used.

Refer to the KEY(rc) statement for more information.

No type of trapping is activated when GW-BASIC is in direct mode. Function
keys resume their standard expansion meaning during input.

A key that causes a trap is not available for examination with the INPUT
or INKEY$ statement, so the trap routine for each key must be different if
a different function is desired.

If CTRL-PRTSC is trapped, the line printer echo toggle is processed first.
Defining CTRL-PRTSC as a key trap does not prevent characters from being
echoed to the printer if CTRL-PRTSC is pressed.

Function keys 1 through 14 are predefined. Therefore, setting scan codes
59-68, 72, 75, 77, or 80 has no effect.

PLAY(n) Trapping

A PLAY event trap is issued only when playing background music
(PLAY*'MB. .). PLAY event music traps are not issued when running in
MUSIC foreground (default case, or PLAV'MF . .).

Choose conservative values for n. An ON PLAY(32).. statement will cause
event traps so often that there will be little time to execute the rest of your
program.

The ON PLAY(n) statement causes an event trap when the background
music queue goes from n to n — 1 notes.

STRIG Trapping

Using STRIG(n) ON activates the interrupt routine that checks the trigger
status. Downstrokes that cause trapping will not set STRIG(O), STRIG(2),
STRIG(4), or STRIG(6) functions.

147

ON COM(n)—ON TIMER(n) Statements

TIMER(n) Trapping

An ON TIMER(ti) event trapping statement is used with applications need
ing an internal timer. The trap occurs when n seconds have elapsed since
the TIMER ON statement.

Example 1:

This is a very simple terminal program.

10 REM "ON COM(n)" EXAMPLE
20 OPEN "COM1:9600,0,7“ AS #1
30 ON COM(1) GOSUB 80
40 C0M(1) ON
SO REM TRANSMIT CHARACTERS FROM KEYBOARD
60 A$ = INKEYS : IF A$=""THEN SO
70 PRINT *\ , AS; :GOTO SO
80 REM DISPLAY RECEIVE CHARACTERS
90 ALL=LOC(1):IF ALL<1 THEN RETURN
100 B$=INPUTS(ALL , *1):PRINT BS;:RETURN

Example 2:

Prevents a CTRL-BREAK or system reset during a program.

10 KEY 15,CHR$(4)+CHR$(70) REM Trap ABREAK
20 KEY 16,CHRS(12)+CHRS(83) REM Trap system reset
30 ON KEY(15) GOSUB 1000
40 ON KEY(16) GOSUB 2000
50 KEY(15) ON
60 KEY(16) ON

1000 PRINT "I'm sorry, I can't let you do that"
1010 RETURN
2000 ATTEMPS=ATTEMPS+1
2010 ON ATTEMPS GOTO 2100,2200,2300,2400,2500
2100 PRINT "Mary had a little lamb":RETURN
2200 PRINT "Its fleece was white as snow":RETURN
2300 PRINT "And everywhere that Mary
2400 PRINT "The lamb was sure to go":RETURN
2500 KEY(16) OFF REM If they hit us once more..
2510 RETURN REM then BASIC dies...

went":RETURN

148

ON COM(n)—ON TIMER(n) Statements

Example 3:

Displays the time of day on line 1 every minute.

10 ON TIMER(60) GOSUB 10000
20 TIMER ON

10000 0LDR0W=CSRLIN REM Saves the current row
10010 0LDC0L=P0S(0) REM Saves the current column
1 0020 LOCATE 1 ,1 :PR I NT TIME$
10030 LOCATE OLDROW,OLDCOL REM Restores row and column
10040 RETURN

149

ON ERROR GOTO Statement

ON ERROR GOTO Statement

Purpose:

To enable error trapping and specify the first line of the error-handling
subroutine.

Syntax:

ON ERROR GOTO line number

Comments:

Once error trapping has been enabled, all errors detected by GW-BASIC,
including direct mode errors (for example, syntax errors), cause GW-BASIC to
branch to the line in the program that begins the specified error-handling
subroutine.

GW-BASIC branches to the line specified by the ON ERROR statement until
a RESUME statement is found.

If line number does not exist, an “Undefined line” error results.

To disable error trapping, execute the following statement:

ON ERROR GOTO 0

Subsequent errors print an error message and halt execution.

An ON ERROR GOTO 0 statement in an error-trapping subroutine causes
GW-BASIC to stop and print the error message for the error that caused the
trap. It is recommended that all error-trapping subroutines execute an ON
ERROR GOTO 0 if an error is encountered for which there is no recovery
action.

If an error occurs during execution of an error-handling subroutine, the GW-
BASIC error message is printed and execution terminated. Error trapping
does not occur within the error-handling subroutine.

150

ON ERROR GOTO Statement

Examples:

10 ON ERROR GOTO 1000

1000 A = ERR:B=ERL
1010 PRINT A,B
1020 RESUME NEXT

Line 1010 prints the type and location of the error on the screen (see the
ERR and ERL variables).

Line 1020 causes program execution to continue with the line following the
error.

151

ON ... GOSUB and ON ... GOTO Statements

ON ... GOSUB and ON ... GOTO Statements

Purpose:

To branch to one of several specified line numbers, depending on the value
returned when an expression is evaluated.

Syntax:

ON expression GOTO line numbers
ON expression GOSUB line numbers

Comments:

In the ON ... GOTO statement, the value of expression determines which
line number in the list will be used for branching. For example, if the value
is 3, the third line number in the list will be the destination of the branch.
If the value is a noninteger, the fractional portion is rounded.

In the ON ... GOSUB statement, each line number in the list must be the
first line number of a subroutine.

If the value of expression is zero or greater than the number of items in the
list (but less than or equal to 255), GW-BASIC continues with the next exe
cutable statement.

If the value of expression is negative, or greater than 255, an “Illegal func
tion call” error occurs.

Examples:

100 IF R<1 or R>4 then print "ERROR":END

If the integer value of R is less than 1, or greater than 4, program execu
tion ends.

200 ON R GOTO 150,300,320,390

If R = 1, the program goes to line 150.

If R = 2, the program branches to line 300 and continues from there. If R = 3,
the branch will be to line 320, and so on.

152

OPEN Statement

OPEN Statement

Purpose:

To establish input/output (I/O) to a file or device.

Syntax:

OPEN mode,[#]file numberyfilename[,reclen\

OPEN filename [FOR mocZe][ACCESS access][lock] AS [#]/z/e number [LEN = reclen]

Comments:

filename is the name of the file.

mode (first syntax) is a string expression with one of the following
characters:

Specifies

Sequential output mode

Sequential input mode

Random input/output mode

Position to end of file

Expression

O
I
R
A

mode (second syntax) determines the initial positioning within the file, and
the action to be taken if the file does not exist. If the FOR mode clause is
omitted, the initial position is at the beginning of the file. If the file is not
found, one is created. This is the random I/O mode. That is, records may be
read or written at any position within the file. The valid modes and actions
taken are as follows:

Position to the beginning of the file. A “File not
found” error is given if the file does not exist.
Position to the beginning of the file. If the file does
not exist, one is created.

INPUT

OUTPUT

153

OPEN Statement

APPEND Position to the end of the file. If the file does not
exist, one is created.
Specifies random input or output mode.

mode must be a string constant. Do not enclose mode in double quotation
marks, access can be one of the following:

RANDOM

READ

WRITE

READ WRITE

file number is a number between 1 and the maximum number of files
allowed. The number associates an I/O buffer with a disk file or device.
This association exists until a CLOSE or CLOSE file number statement
is executed.

reclen is an integer expression within the range of 1-32767 that sets the
record length to be used for random files. If omitted, the record length
defaults to 128-byte records.

When reclen is used for sequential files, the default is 128 bytes, and reclen
cannot exceed the value specified by the Is switch.

A disk file must be opened before any disk I/O operation can be performed
on that file. OPEN allocates a buffer for I/O to the file and determines the
mode of access that is used with the buffer.

More than one file can be opened for input or random access at one time
with different file numbers. For example, the following statements are
allowed:

□PEN "BsTEMP" FOR INPUT AS *\
OPEN "BjTEMP" FOR INPUT AS #2

However, a file may be opened only once for output or appending. For
example, the following statements are illegal:

OPEN "TEMP" FOR OUTPUT AS #1
OPEN ,,TEMPM FOR OUTPUT AS #2

154

OPEN Statement

Note
Be sure to close all files before removing diskettes from the disk drives
(see CLOSE and RESET).

A device may be one of the following:

Disk Drive
Keyboard (input only)
Screen (output only)
Line Printer 1
Line Printer 2
Line Printer 3
RS-232 Communications 1
RS-232 Communications 2

A:,B:,C:...
KYBD:
SCRN:
LPT1:
LPT2:
LPT3:
COM1:
COM2:

For each device, the following OPEN modes are allowed:

Input Only

Output Only

Output Only

Output Only

Output Only
Input, Output, or Random Only

Input, Output, or Random Only

KYBD:
SCRN:
LPT1:
LPT2:
LPT3:
COM1:
COM2:

Disk files allow all modes.

When a disk file is opened for APPEND, the position is initially at the
end of the file, and the record number is set to the last record of the file
(LOF(x)/128). PRINT, WRITE, or PUT then extends the file. The program
may position elsewhere in the file with a GET statement. If this is done,
the mode is changed to random and the position moves to the record
indicated.

155

OPEN Statement

Once the position is moved from the end of the file, additional records may
be appended to the file by executing a GET #x, LOF(x)/reclen statement.
This positions the file pointer at the end of the file in preparation for
appending.

Any values entered outside of the ranges given result in “Illegal function
call” errors. The files are not opened.

If the file is opened as INPUT, attempts to write to the File result in “Bad
file mode” errors.

If the file is opened as OUTPUT, attempts to read the File result in “Bad
file mode” errors.

Opening a file for OUTPUT or APPEND fails if the file is already open in
any mode.

Since it is possible to reference the same file in a subdirectory via different
paths, it is nearly impossible for GW-BASIC to know that it is the same File
simply by looking at the path. For this reason, GW-BASIC does not let you
open the file for OUTPUT or APPEND if it is on the same disk, even if the
path is different. For example if mary is your working directory, the follow
ing statements all refer to the same file:

□PEN "REPORT"
OPEN "\SALES\MARY\REPORT"
OPEN "..\MARY\REPORT"
OPEN .\MARY\REPORT"

At any one time, it is possible to have a particular diskette filename open
under more than one file number. Each file number has a different buffer,
so several records from the same file may be kept in memory for quick
access. This allows different modes to be used for different purposes; or,
for program clarity, different file numbers to be used for different modes
of access.

If the LEN = reclen option is used, reclen may not exceed the value set by
the Isvreclen switch option in the command line.

In a network environment, the use of the OPEN statement is based upon
two different sets of circumstances:

• Devices may be shared on a network for specific purposes only, so
that OPEN statements may be restricted to specific modes among
those which might be requested, such as: INPUT, OUTPUT,
APPEND, and default (Random).

156

OPEN Statement

• Files may be restricted by the implementation of an OPEN state
ment that allows a process to specify locking to the successfully
opened File. The locking determines a guaranteed exclusivity range
on that file by the process while the OPEN statement is in effect.

lock can be one of the following:

“deny none” mode. No restrictions are placed on the
read/write accessibility of the file to another pro
cess, except that the default mode is not allowed by
any of the modes including SHARED.
“deny read” mode. Once a file is opened with the
LOCK READ access, no other process is granted
read-access to that file. An attempt to open a file
with this access will be unsuccessful if the file is
currently open in default mode or with a read
access.
“deny write” mode. A file successfully opened with
LOCK WRITE access may not be opened for a write
access by another process. An attempt to open a file
with this access will be unsuccessful if the file has
been opened in default mode, or with a write access
by another process.
“deny all” or “exclusive” mode. If a file is success
fully opened with this access, the process has
exclusive access to the file. A file that is currently
open in this mode cannot be opened again in any
mode by any process.
“compatibility” mode, in which the compatibility
with other BASICS is understood. No access is speci
fied. The file may be opened any number of times
by a process, provided that the file is not currently
opened by another process. Other processes are
denied access to the file while it is open under
default access. Therefore, it is functionally
exclusive.

SHARED

LOCK READ

LOCK WRITE

LOCK READ
WRITE

default

When an attempt is made to open a file that has been previously accessed
by another process, the error “Permission Denied” will result. An example
of a situation generating this error is when a process attempts to OPEN
SHARED on a file that is already OPEN LOCK READ WRITE by
another process.

157

OPEN Statement

If an OPEN statement fails because the mode is incompatible with net
work-installed sharing access to a device, the error generated is “Path/File
Access Error.” An example of this is when a process is attempting to OPEN
a file for output on a directory that has been shared for read only.

For more information about using files in a networking environment, see
the LOCK and UNLOCK statements.

Examples:

10 OPEN MI”,2INVEN"

Opens file 2, invert, for sequential input.

158

OPEN ”COM(n) Statement

OPEN ”COM(n) Statement

Purpose:

To allocate a buffer to support RS-232 asynchronous communications with
other computers and peripheral devices in the same manner as OPEN for
disk files.

Syntax:

OPEN " COM[ri\:[speed\[,parity][,data] [,stop][,RS][,CS[n]][,DS[n]]
[,CD[n]][,LF] [,PE]M AS [#]filenum [LEN = number]

Comments:

COM[n] is a valid communications device: coml: or com2:.

speed is a literal integer specifying the transmit/receive baud rate.

Valid speeds are as follows:

75, 110, 150, 300, 600, 1200, 1800, 2400, 4800, and 9600. The default
is 300 bps.

parity is a one-character literal specifying the parity for transmitting and
receiving.

Valid characters specifying parity are as follows:

SPACE. Parity bit always transmitted and received as
space (0 bit).
MARK. Parity bit always transmitted and received as
mark (1 bit).
ODD. Odd transmit parity; odd receive parity checking.
Default is even.
EVEN. Even transmit parity; even receive parity checking.
Even is default.
NONE. No transmit parity; no receive parity checking.

data is a literal integer indicating the number of transmit/receive data bits.

S

M

O

E

N

159

OPEN ”COM(n) Statement

Valid values for the number of data bits are 4, 5, 6, 7, and 8, the default is
7 bits.

Note
Four data bits with no parity is illegal; eight data bits with any parity
is illegal.

stop is a literal integer expression returning a valid file number.

Valid values for number of stop bits are 1 and 2. If omitted, 75 and 110 bps
transmit two stop bits. All others transmit one stop bit.

plenum is a number between 1 and the maximum number of files allowed.
A communications device may be opened to only one file number at a time.

The plenum is associated with the file for as long as the file is open, and is
used to refer other COM I/O statements to the file.

Any coding errors within the filename string result in “Bad file name”
errors. An indication as to which parameters are in error is not given.

number is the maximum number of bytes that can be read from the com
munications buffer when using the GET or PUT default of 128 bytes.

A “Device timeout” error occurs if “data set ready” (DSR) is not detected.

The RS, CS, DS, DC, LF, and PE options affect the line signals as follows:

Option Function

RS suppresses RTS (request to send)
controls CTS (clear to send)
controls DSR (data set ready)
controls CD (carrier detect)
sends a line feed at each return
enables parity checking

CS[n]
DS[n]
CD[n]
LF
PE

160

OPEN ”COM(n) Statement

n is the number of milliseconds to wait (0-65535) for that signal before a
device timeout error occurs. Defaults are: CS1000, DS1000, and CDO. If RS
was specified, then CSO is the default. If n is omitted, then timeout is set
to 0.

See Appendix F in the GW-BASIC User's Guide for more information about
communications.

Examples:

In the following, File 1 is opened for communications with all defaults:
speed at 300 bps, even parity, seven data bits, and one stop bit.

1 0 OPEN "com AS 1

In the following, File 2 is opened for communications at 2400 bps. Parity
and number of data bits are defaulted.

20 OPEN "C0M1 :2400" AS *2

In the following, File 1 is opened for asynchronous I/O at 1200 bits/second.
No parity is to be produced or checked.

10 OPEN "C0M1 :1 200 ,N,8" AS *\

161

OPTION BASE Statement

OPTION BASE Statement

Purpose:

To declare the minimum value for array subscripts.

Syntax:

OPTION BASE n

Comments:

n is 1 or 0. The default base is 0.

If the statement OPTION BASE 1 is executed, the lowest value an array
subscript can have is 1.

An array subscript may never have a negative value.

OPTION BASE gives an error only if you change the base value. This
allows chained programs to have OPTION BASE statements as long as
the value is not changed from the initial setting.

Note
You must code the OPTION BASE statement before you can define or
use any arrays. If an attempt is made to change the option base value
after any arrays are in use, an error results.

162

OUT Statement

OUT Statement

Purpose:

To send a byte to a machine output port.

Syntax:

OUT hj

Comments:

h and j are integer expressions, h may be within the range of 0 to 65535.
j may be within the range of 0 to 255. h is a machine port number, and j
is the data to be transmitted.

OUT is the complementary statement to the INP function.

Examples:

100 OUT 12345,225

Outputs the decimal value 225 to port number 12345. In assembly
language, this is equivalent to the following:

MOV DX,12345
MOV AL,255
OUT DX,AL

163

PAINT Statement

PAINT Statement

Purpose:

To fill in a graphics figure with the selected attribute.

Syntax:

PAINT (x start j start)[,paint attribute[,border attribute][,bckgrnd attribute]]

Comments:

The PAINT statement fills in an arbitrary graphics figure of the specified
border attribute with the specified paint attribute. If paint attribute is not
given, it will default to the foreground attribute (3 or 1). border attribute
defaults to paint attribute. See the COLOR and PALETTE statements for
more information.

PAINT must start on a nonborder point; otherwise, PAINT will have
no effect.

PAINT can fill any figure, but painting jagged edges or very complex fig
ures may result in an “Out of memory” error. The CLEAR statement may
be used to increase the amount of stack space available.

Points that are specified outside the limits of the screen will not be plotted
and no error will occur.

See the SCREEN statement for a description of the different screen modes.

Paint Tiling

PAINT tiling is similar to LINE styling. Like LINE, PAINT looks at a
tiling mask each time a point is put down on the screen.

If paint attribute is omitted, the standard foreground attribute is used.

If paint attribute is a numeric formula, then the number must be a valid
color, and it is used to paint the area as before.

164

PAINT Statement

If paint attribute is a string formula, then tiling is performed as follows:

The tile mask is always eight bits wide and may be from 1 to 64 bytes long.
Each byte in the tile string masks eight bits along the x axis when putting
down points. Each byte of the tile string is rotated as required to align
along the y axis, such that:

tile_byte_mask=y MOD tile_length

where y is the position of the graphics cursor on the y axis.

tile_length is the length in bytes of the tile string defined by the user
(1 to 64 bytes).

This is done so that the tile pattern is replicated uniformly over the entire
screen (as if a PAINT (0,0).. were used).

x Increases -■*> Bit of Tile Byte
87654321

tXiXiXiXiXiXiXiXi
ixSxixixSxixSxixi
SXiX1, XiXiXiXSXiX'

Tile byte 1
Tile byte 2
Tile byte 3

0,0
0,1
0,2

SxSxixSxIxixSxSxS Tile byte 64
(maximum allowed)

0,63

In high-resolution mode (SCREEN 2), the screen can be painted with Xs by
the following statement:

PAINT (320,1 00) ,CHR$(&H81)+CHR$(&H42)+CHR$(4H24) +
CHR$(&H18)+CHR$(&H18)+CHR$(&H24)+CHR$(&H81)

This appears on the screen as follows:

x increases - - >

CHR$(&H81)
CHR$(&H42)
CHR$(&H24)
CHR$(&H18)
CHR$(&H18)
CHR$(&H24)
CHR$(&H42)
CHR$(4H81)

Tile byte 1
Tile byte 2
Tile byte 3
Tile byte 4
Tile byte 5
Tile byte 6
Tile byte 7
Tile byte 8

0,0 xx
0,1 xX
0,2 xX
0,3 X I X

X i X0,4
0,5 xX
0,6 xX
0,7 x X

165

PAINT Statement
.

Since there are two bits per pixel in medium-resolution mode (SCREEN 1),
each byte of the tile pattern describes only four pixels. In this case, every
two bits of the tile byte describes one of the four possible colors associated
with each of the four pixels to be put down.

bckgrnd attribute specifies the background tile pattern or color byte to skip
when checking for boundary termination, bckgrnd attribute is a string for
mula returning one character. When omitted, the default is CHR$(0).

Occasionally, you may want to paint tile over an already painted area that
is the same color as two consecutive lines in the tile pattern. PAINT quits
when it encounters two consecutive lines of the same color as the point
being set (the point is surrounded). It is not possible to draw alternating
blue and red lines on a red background without bckgrnd attribute.
PAINT stops as soon as the first red pixel is drawn. By specifying red
(CHR$(&HAA)) as the background attribute, the red line is drawn over
the red background.

You cannot specify more than two consecutive bytes in the tile string that
match the background attribute. Specifying more than two results in an
“Illegal function call” error.

Examples:

10 CLS
20 SCREEN 1
30 LINE (0,0) -(1 00,150),2,B
40 PAINT (50,50),1,2
50 LOCATE 20,1

The PAINT statement in line 40 fills in the box drawn in line 30 with
color 1.

i

166

PALETTE, PALETTE USING Statements

PALETTE, PALETTE USING Statements

Purpose:

Changes one or more of the colors in the palette

Syntax:

PALETTE [attribute,color]
PALETTE USING integer-array-name (arrayindex)

Comments:

The PALETTE statement works only for systems equipped with the IBM®
Enhanced Graphics Adapter (EGA). A GW-BASIC palette contains a set of
colors, with each color specified by an attribute. Each attribute is paired
with an actual display color. This color determines the actual visual color
on the screen, and is dependent on the setting of your screen mode and your
actual physical hardware display.

PALETTE with no arguments sets the palette to a known initial setting.
This setting is the same as the setting when colors are first initialized.

If arguments are specified, color will be displayed whenever attribute is
specified in any statement that specifies a color. Any color changes on the
screen occur immediately. Note that when graphics statements use color
arguments, they are actually referring to attributes and not actual colors.
PALETTE pairs attributes with actual colors.

For example, assume that the current palette consists of colors 0, 1, 2,
and 3. The following DRAW statement:

DRAW "C3L100"

selects attribute 3, and draws a line of 100 pixels using the color associated
with the attribute 3, in this case, also 3. If the following statement:

PALETTE 3,2

is executed, then the color associated with attribute 3 is changed to color 2.
All text or graphics currently displayed on the screen using attribute 3 are
instantaneously changed to color 2. All text or graphics subsequently dis
played with attribute 3 will also be displayed in color 2. The new palette of
colors will contain 0, 1, 2, and 2.

167

PALETTE, PALETTE USING Statements

With the USING option, all entries in the palette can be modified in one
PALETTE statement. The integer-array-name argument is the name of an
integer array, and the arrayindex specifies the index of the first array ele
ment in the integer-array-name to use in setting your palette. Each
attribute in the palette is assigned a corresponding color from this integer
array. The array must be dimensioned large enough to set all the palette
entries after arrayindex. For example, if you are assigning colors to all 16
attributes, and the index of the first array element given in your PALETTE
USING statement is 5, then the array must be dimensioned to hold at least
20 elements (since the number of elements from 5-20, inclusive, is 16):

DIM PAL%(20)

PALETTE USING PAL%(5)

If the color argument in an array entry is -1, then the mapping for the
associated attribute is not changed. All other negative numbers are illegal
values for color.

You can use the color argument in the COLOR statement to set the default
text color. (Remember that color arguments in other BASIC statements are
actually what are called attributes in this discussion.) This color argument
specifies the way that text characters appear on the display screen. Under
a common initial palette setting, points colored with the attribute 0 appear
as black on the display screen. Using the PALETTE statement, you could,
for example, change the mapping of attribute 0 from black to white.

Remember that a PALETTE statement executed without any parameters
assigns all attributes their default colors.

168

PALETTE, PALETTE USING Statements

The following table lists attribute and color ranges for various monitor types
and screen modes:

Table 1
SCREEN Color and Attribute Ranges

Color
Range

Monitor
Attached

Attribute
Adapter Range

SCREEN
Mode

MDPA NA NAMonochrome
Monochrome
Color
Color/Enhancedd
Color
Color/Enhancedd
Color
Color/Enhancedd
Color/Enhancedd
Color/Enhancedd
Enhancedd
Enhancedd
Monochrome

0
EGA 0-20-15

0-31a
0-15

CGA NA
0-31aEGA

CGA NA 0-31
EGA 0-3 0-15
CGA NA 0-12
EGA 0-1 0-15

0-15
0-15
0-15
0-63

EGA 0-15
0-15

7
EGA8
EGAb
EGAC

0-39
0-15

EGA 0-3 0-810

a Attributes 16 - 31 refer to blinking versions of colors 0 — 15
b With 64K of EGA memory
c With greater than 64K of EGA memory
d IBM Enhanced Color Display
NA = Not Applicable
CGA = IBM Color Graphics Adapter
EGA = IBM Enhanced Graphics Adapter
MDPA = IBM Monochrome Display and Printer Adapter

See the SCREEN statement reference page for the list of colors available
for various SCREEN mode, monitor, and graphics adapter combinations.

169

PALETTE, PALETTE USING Statements

Examples:

PALETTE 0,2 'Changes all points colored with attribute 0
'to color 2

'Does not modify the palette

'Changes each palette entry. Since the
'array is initialized to zero when it
'is first declared, all attributes are=
'now mapped to display color zero. The
'screen will now appear as one single
'color. However, it will still be
'possible to execute BASIC statements.

'Sets each palette entry to its appropriate
'initial display color. Actual initial colors
'depend on your screen hardware configuration.

PALETTE 0,-1

PALETTE USING AX(0)

PALETTE

170

PCOPY

PCOPY Command

Purpose:

To copy one screen page to another in all screen modes.

Syntax:

PCOPY sourcepage, destinationpage

Comments:

The sourcepage is an integer expression in the range 0 to n, where n is
determined by the current video-memory size and the size per page for
the current screen mode.

The destinationpage has the same requirements as the sourcepage.

For more information, see CLEAR and SCREEN.

Examples:

This copies the contents of page 1 to page 2:

PCOPY 1,2

171

PEEK Function

PEEK Function

Purpose:

To read from a specified memory location.

Syntax:

PEEK(a)

Comments:

Returns the byte (decimal integer within the range of 0 to 255) read from
the specified memory location a. a must be within the range of 0 to 65535.

The DEF SEG statement last executed determines the absolute address that
will be peeked into.

PEEK is the complementary function to the POKE statement.

Examples:

10 A=PEEK(&H5A00)

The value of the byte, stored in user-assigned hex offset memory location
5A00 (23040 decimal), will be stored in the variable A.

172

PEN Statement and Function

PEN Statement and Function

Purpose:

To read the light pen.

Syntax:

As a statement:

PEN ON
PEN OFF
PEN STOP

As a function:

x = P(n)

Comments:

x is the numeric variable receiving the PEN value.

n is an integer within the range of 0 to 9.

PEN ON enables the PEN read function.

PEN OFF disables the PEN read function.

PEN STOP disables trapping. It remembers the event so that immediate
trapping occurs when PEN ON is executed.

x = PEN(n) reads the light pen coordinates.

The PEN function is initially off. A PEN ON statement must be executed
before any PEN read function calls can be made, or a PEN read function
call results in an “Illegal function call” error.

Light pen coordinates:

If PEN was down since last poll, returns -1; if not,
returns 0.

n = 0

173

PEN Statement and Function

Returns the x-pixel coordinate when PEN was last
activated. The range is within 0 to 319 for medium
resolution, 0 to 639 for high resolution.
Returns the y-pixel coordinate when PEN was last
activated. The range is within 0 to 199.
Returns the current PEN switch value. Returns -1
if down, 0 if up.
Returns the last known valid x-pixel coordinate.
The range is within 0 to 319 for medium resolution,
or 0 to 639 for high resolution.
Returns the last known valid y-pixel coordinate.
The range is within 0 to 199.
Returns the character row position when PEN was
last activated. The range is within 1 to 24.
Returns the character column position when PEN
was last activated. The range is within 1 to 40, or 1
to 80, depending on the screen width.
Returns the last known valid character row. The
range is within 1 to 24.
Returns the last known valid character column
position. The range is within 1 to 40, or 1 to 80,
depending on the screen width.

For execution speed improvements, turn the pen off with a PEN OFF state
ment for those programs not using the light pen.

When the pen is in the border area of the screen, the values returned will
be inaccurate.

n = 1

n = 2

n = 3

n = 4

n = 5

n = 6

n = 7

n = 8

n = 9

Examples:

50 PEN ON
60 FOR 1=1 to 500
70 X=PEN(0):X1=PEN(3)
80 Print X,X1
90 NEXT
100 PEN OFF

I

This example prints the pen value since the last poll and the current value.

174

PLAY Statement

PLAY Statement

Purpose:

To play music by embedding a music macro language into the string
data type.

Syntax:

PLAY string expression

Comments:

The single-character commands in PLAY are as follows:

A-G are notes. # or + following a note produces
a sharp; - produces a flat.
Any note followed by #, +, or - must refer to
a black key on a piano.

Sets the length of each note. L4 is a quarter note,
LI is a whole note, and so on. n may be from 1
to 64.
Length may also follow the note to change the
length for that note only. A16 is equivalent to
L16A.

A-G [#, + ,-]

Un)

Music foreground. PLAY and SOUND statements
are to run in foreground. That is, each subsequent
note or sound is not started until the previous note
or sound is finished. This is the initial default.

MF

Music background. PLAY and SOUND statements
are to run in background. That is, each note or
sound is placed in a buffer allowing the BASIC pro
gram to continue execution while music plays in
the background. As many as 32 notes (or rests)
can be played in background at one time.

MB

175

PLAY Statement

MN Music normal. Each note plays seven-eighths of the
time determined by L (length).

Music legato. Each note plays the full period
set by L.

Music staccato. Each note plays three-quarters
of the time determined by L.

Play note n. n may range from 0 to 84. In the 7
possible octaves, there are 84 notes, n set to 0
indicates a rest.

ML

MS

N(n)

Octave 0 sets the current octave. There are 7
octaves (0 through 6). Default is 4. Middle C is
at the beginning of octave 3.

Pause. P may range from 1-64.
Tempo. T sets the number of L4s in a minute.
n may range from 32-255. Default is 120.

A period after a note increases the playing time
of the note by 3/2 times the period determined by
L (length of the note) times T (tempo). Multiple
periods can appear after a note, and the playing
time is scaled accordingly. For example, A. will
cause the note A to play one and one half times the
playing time determined by L (length of the note)
times T (the tempo); two periods placed after A (A..)
will cause the note to be played at 9/4 times its
ascribed value; an A with three periods (A...) at
27/8, etc.
Periods may also appear after a P (pause), and
increase the pause length as described above.

Executes a substring, where string is a variable
assigned to a string of PLAY commands.
Because of the slow clock interrupt rate, some notes
do not play at higher tempos; for example, 1.64 at
T255. These note/tempo combinations must be
determined through experimentation.

<X»)

P (n)
T (n)

. (period)

Xstring;

176

PLAY Statement

A greater-than symbol preceding the note n plays
the note in the next higher octave.
A less-than symbol preceding the note n plays the
note in the next lower octave.

>n

<n

Note
Numeric arguments follow the same syntax described under the DRAW
statement.

n as an argument can be a constant, or it can be a variable with = in front
of it (= variable). A semicolon is required after the variable and also after
the variable in Xstring.

177

PLAY(n) Function

PLAY(n) Function

Purpose:

To return the number of notes currently in the background music queue.

Syntax:

PLAY(n)

Comments:

n is a dummy argument, and may be any value.

PLAY(n) returns 0 when in music foreground mode.

The maximum returned value of x is 32.

Examples:

10 9 when 4 notes are left in
' queue play another tune

30 PLAY "MBABCDABCDABCD"
40 IF PLAY (0) =4 then 200

20

200 PLAY "MBCDEFCDEF"

I

178

PMAP Function (Graphics)

PMAP Function (Graphics)

Purpose:

To map expressions to logical or physical coordinates.

Syntax:

x=PMAP (exp Junction)

Comments:

This function is valid for graphics modes only.

x is the physical coordinate of the point that is to be mapped.

exp is a numeric variable or expression.

Function Maps

logical expressions to physical x

logical expressions to physical y

physical expressions to logical x

physical expressions to logical y

0
1
2
3

PMAP is used with WINDOW and VIEW to translate coordinates.

179

POINT Function

POINT Function

Purpose:

To read the color or attribute value of a pixel from the screen.

Syntax:

POINTCcjO
POINT(/b/icft'on)

Comments:

In the first syntax, x and y are coordinates of the point to be examined.

If the point given is out of range, the value -1 is returned.

See the COLOR and PALETTE statements for valid color and attribute
values.

POINT with one argument allows you to retrieve the current graphics
coordinates.

POINT {function) returns the value of the current x or y graphics coordi
nates as follows:

Function Returns

the current physical x coordinate.
the current physical y coordinate.
the current logical x coordinate if WINDOW is
active; otherwise, it returns the current physical x
coordinate as in 0 above.
the current logical y coordinate if WINDOW is
active; otherwise, it returns the current physical y
coordinate as in 1 above.

0
1
2

I 3

180

POINT Function

Example 1:

10 SCREEN 1
20 FOR C=0 TO 3
30 PSET (10,10),C
40 IF POI NT(10,10)< > C THEN PRINT "BROKEN BASIC-”
50 NEXT C
RUN

Example 2:

The following inverts the current state of a point:

10 SCREEN 2
20 IF POI NT(I,I)< > 0 THEN PRESET(I,I) ELSE PSET(1,1)
RUN

Example 3:

The following is another way to invert a point:

20 PSET (I , I) ,1-POI NT(I,I)
RUN

181

POKE Statement

POKE Statement

Purpose:

To write (poke) a byte of data into a memory location.

Syntax:

POKE a,6

Comments:

a and b are integer expressions.

The integer expression a is the offset address of the memory location to
be poked. The DEF SEG statement last executed determines the address.
GW-BASIC does not check any offsets that are specified.

The integer expression b is the data to be poked.

6 must be within the range of 0 to 255. a must be within the range of 0
to 65535.

The complementary function to POKE is PEEK. The argument to PEEK is
an address from which a byte is to be read.

POKE and PEEK are useful for efficient data storage, for loading assembly
language subroutines, and for passing arguments and results to and from
assembly language subroutines.

Examples:

20 POKE &H5A00,AHFF
! Places the decimal value 255 (&HFF) into the hex offset location (23040

decimal). See the PEEK function example.

182

POS Function

POS Function

Purpose:

To return the current cursor position.

Syntax:

POS(c)

Comments:

The leftmost position is 1.

c is a dummy argument.

Examples:

10 CLS
20 MIDTH 80
30 A$= INKEY$:IF A$=""THEN GOTO 30 ELSE PRINT A$;
40 IF POS(X)>10 THEN PRINT CHR$(13);
50 GOTO 30

Causes a carriage return after the 10th character is printed on each line of
the screen.

183

If],

PRESET and PSET Statements

PRESET and PSET Statements

Purpose:

To display a point at a specified place on the screen during use of the
graphics mode.

Syntax:

PRESET(xo,)[»co/or]
PSET(x,y)[, color]

Comments:

(xy) represents the coordinates of the point.

color is the color of the point.

Coordinates can be given in either absolute or relative form.

Absolute Form

(<absolute x,absolute y) is more common and refers directly to a point without
regard to the last point referenced. For example:

(10,10)

Relative Form

STEP {x offset,y offset) is a point relative to the most recent point refer
enced. For example:

STEP(10,10)

Coordinate values can be beyond the edge of the screen. However, values
outside the integer range (-32768 to 32767) cause an “Overflow” error.

(0,0) is always the upper-left comer and (0,199) is the lower-left corner in
both high resolution and medium resolution.

1841

PRESET and PSET Statements

See the COLOR and PALETTE statements for more information.

If the value for color is greater than 3, an “Illegal function call” error
is returned.

Example 1:

The following draws a diagonal line from (0,0) to (100,100).

10 CLS
20 SCREEN 1
30 FOR 1=0 TO 100
40 PSET (1,1)
50 NEXT
60 LOCATE 14,1

Example 2:

The following clears out the line by setting each pixel to 0.

40 FOR 1=100 TO 0 STEP -1
50 PSET(I,I),0
60 NEXT I

185

PRINT Statement

PRINT Statement

Purpose:

To output a display to the screen.

Syntax:

PRINT [list of expressions]^]
?[list of expressions][;\

Comments:

If list of expressions is omitted, a blank line is displayed.

If list of expressions is included, the values of the expressions are displayed.
Expressions in the list may be numeric and/or string expressions, separated
by commas, spaces, or semicolons. String constants in the list must be
enclosed in double quotation marks.

For more information about strings, see the STRING$ function.

A question mark (?) may be used in place of the word PRINT when using
the GW-BASIC program editor.

Print Positions

GW-BASIC divides the line into print zones of 14 spaces. The position of each
item printed is determined by the punctuation used to separate the items in
the list:

Separator Print Position

Beginning of next zone

Immediately after last value

Immediately after last valuespace(s)

186

PRINT Statement

If a comma, semicolon, or SPC or TAB function ends an expression list, the
next PRINT statement begins printing on the same line, accordingly spaced.
If the expression list ends without a comma, semicolon, or SPC or TAB
function, a carriage return is placed at the end of the lines (GW-BASIC places
the cursor at the beginning of the next line).

A carriage return/line feed is automatically inserted after printing width
characters, where the width is 40 or 80, as defined in the WIDTH state
ment. This results in two lines being skipped when you print exactly 40 (or
80) characters, unless the PRINT statement ends in a semicolon.

When numbers are printed on the screen, the numbers are always followed
by a space. Positive numbers are preceded by a space. Negative numbers
are preceded by a minus (-) sign. Single-precision numbers are represented
with seven or fewer digits in a fixed-point or integer format.

See the LPRINT and LPRINT USING statements for information on send
ing data to be printed on a printer.

Examples:

10 X$= STRING$(10,45)
20 PRINT X $"M0NTHLY REPORT" X$
............ ---MONTHLY REPORT---------
Ok

45 is the decimal equivalent of the ASCII symbol for the minus (—) sign.

187

p

PRINT USING Statement

PRINT USING Statement

Purpose:

To print strings or numbers using a specified format.

Syntax:

PRINT USING string expressions;list of expressions^]

Comments:

string expressions is a string literal or variable consisting of special for
matting characters. The formatting characters determine the field and the
format of printed strings or numbers.

list of expressions consists of the string or numeric expressions separated
by semicolons.

String Fields

The following three characters may be used to format the string field:

Specifies that only the first character in the string
is to be printed.

!

Specifies that 2 + n characters from the string are to
be printed.
If the backslashes are typed with no spaces, two
characters are printed; if the backslashes are typed
with one space, three characters are printed, and
so on.

\n spaces\

If the string is longer than the field, the extra char
acters are ignored. If the field is longer than the
string, the string is left-justified in the field and
padded with spaces on the right. For example:
10 A$="L00K":B$=,,0UTM
30 PRINT USING "!";A$;B$
40 PRINT US ING"\ \M;A$;B$
SO PRINT US INGM\

i

\" ; A$;B$ •,"!!"
RUN

; 188:

PRINT USING Statement

RUN
LO
LOOKOUT
LOOK OUT!!

Specifies a variable length string field. When the
field is specified with &, the string is output exactly
as input. For example:

&

10 A$ = "LOOK":B$ = ,,OUTM
20 PRINT USING M!M;A$
30 PRINT USING
RUN
LOUT

Numeric Fields

The following special characters may be used to format the numeric field:

A pound sign is used to represent each digit posi
tion. Digit positions are always filled. If the number
to be printed has fewer digits than positions speci
fied, the number is right-justified (preceded by
spaces) in the field.
A decimal point may be inserted at any position in
the field. If the format string specifies that a digit
is to precede the decimal point, the digit always is
printed (as 0 if necessary). Numbers are rounded as
necessary. For example:
PRINT USING .78
0.78

#

OK

PRINT USING "###.*#"•,987.654
987.65
OK

PRINT USING "##.##" -,10.2,5.3,66.789, ,234
10.20 5.30 66.79 0.23
In the last example, three spaces were inserted at
the end of the format string to separate the printed
values on the line.

189

r

PRINT USING Statement

A plus sign at the beginning or end of the format
string causes the sign of the number (plus or
minus) to be printed before or after the number.

A minus sign at the end of the format field causes
negative numbers to be printed with a trailing
minus sign. For example:
PRINT US ING"+##.##"5-68.95,2.4,55.6,-9
-68.95 +2.40 +55.60 -0.90

+

!

OK

PRINT USING"##.##-"j-68.95,22.449,-7.01
68.95 22.45 7.01-
OK

A double asterisk at the beginning of the format
string causes leading spaces in the numeric field to
be filled with asterisks. The ** also specifies two
more digit positions. For example:
PRINT USING "**#.#•''512.39,-0.9,765.1
♦12.4*

**

-09765.1
Ok

A double dollar sign at the beginning of the format
string causes a dollar sign to be printed to the
immediate left of the formatted number. The $$
specifies two more digit positions, one of which is
the dollar sign. The exponential format cannot be
used with $$. Negative numbers cannot be used
unless the minus sign trails to the right. For
example:
PRINT USING "$$###.##”;456.78
$456.78

$$

Ok

The **$ at the beginning of the format string com
bines the effects of the above two symbols. Leading
spaces are filled with asterisks, and a dollar sign is
printed before the number. **$ specifies three more
digit positions, one of which is the dollar sign. For
example:
PRINT USING "**$##.##"52.34
***$2.34

**$

;

190

PRINT USING Statement

A comma to the left of the decimal point in the for
mat string causes a comma to be printed to the left
of every third digit to the left of the decimal point.
A comma at the end of the format string is printed
as part of the string.
PRINT USING ##";1234.5
1234.50
Ok

Four carets may be placed after the digit position
characters to specify exponential format. The four
carets allow space for E + xx to be printed. Any
decimal point position may be specified. The signifi
cant digits are left-justified, and the exponent is
adjusted. Unless a leading + or trailing + or - is
specified, one digit position is used to the left of the
decimal point to print a space or a minus sign. For
example:
PRINT USING "##.*#AAAA";234.56
2.35E+02
Ok

PRINT USING ,,.####AAAA-,,;888888
Ok

PRINT USING "+.#*AAAA,,;123
+.12E+03
Ok
Note that in the above examples the comma is not
used as a delimiter with the exponential format.

An underscore in the format string causes the next
character to be output as a literal character. For
example:
PRINT USING MJ##. ##JM; 12.34
112.34!
Ok
The literal character itself may be an underscore by
placing ,,_M in the format string.

191

I
PRINT USING Statement

i A percent sign is printed in front of the number if
the number to be printed is larger than the speci
fied numeric field. If rounding causes the number
to exceed the field, a percent sign is printed in front
of the rounded number. For example:
PRINT USING 111.22
%111.22

•I • .; .999PRINT USING
X1 .00
If the number of digits specified exceeds 24, an
“Illegal function call” error results.

'

l

!

I~ 192

PRINT# and PRINT# USING Statements

PRINT# and PRINT# USING Statements

Purpose:

To write data to a sequential disk file.

Syntax:

PRINT#/i/e number,[USINGsfrmg
expressions;]list of expressions

Comments:

file number is the number used when the file was opened for output.

string expressions consists of the formatting characters described in the
PRINT USING statement.

list of expressions consists of the numeric and/or string expressions to be
written to the file.

Double quotation marks are used as delimiters for numeric and/or string
expressions. The first double quotation mark opens the line for input; the
second double quotation mark closes it.

If numeric or string expressions are to be printed as they are input, they
must be surrounded by double quotation marks. If the double quotation
marks are omitted, the value assigned to the numeric or string expression
is printed. If no value has been assigned, 0 is assumed. The double quota
tion marks do not appear on the screen. For example:

10 PR I NT*1 , A
0

10 A=26
20 PR I NT*1 ,A
26

10 A=26
20 PR I NT*1 ,"A"
A

193

r
PRINT# and PRINT# USING Statements

•- '

If double quotation marks are required within a string, use CHR$(34) (the
. ASCII character for double quotation marks). For example:

100 PRINTS,"He said ,"Hel lo" , I think"
He said, 0, I think

because the machine assigns the value 0 the variable “Hello.”

100 PRINT#1, "He said, "CHR$(34)
"Hello,"CHR$(34) " I think."
He said, "Hello," I think

If the strings contain commas, semicolons, or significant leading blanks,
surround them with double quotation marks. The following example will
input “CAMERA” to A$, and “AUTOMATIC 93604-1” to B$:

10 A$="CAMERA,AUTOMAT IC":B$="93604-1"
20 PRINTS ,A$;B$
30 INPUTS ,A$,B$

To separate these strings properly, write successive double quotation marks
using CHR$(34). For example:

40 PR I NT#1,CHR$(34);A$;CHR$(34);CHR$(34);B$; CHR$(34)

"CAMERA,AUTOMATIC

The PRINT# statement may also be used with the USING option to control
the format of the disk file. For example:

PRINT#! ,US ING"$$###.##."; J;K;L

:.
:

mi93604-1"

PRINT# does not compress data on the diskette. An image of the data is
written to the diskette, just as it would be displayed on the terminal screen
with a PRINT statement. For this reason, be sure to delimit the data on the
diskette so that it is input correctly from the diskette.

In list of expressions, numeric expressions must be delimited by semicolons.
For example:

PR INT#1 , A ; B; C ; X ; Y *, Z

If commas are used as delimiters, the extra blanks inserted between print
fields will also be written to the diskette. Commas have no effect, however,
if used with the exponential format.

194

*
PRINT# and PRINT# USING Statements

String expressions must be separated by semicolons in the list. To format
the string expressions correctly on the diskette, use explicit delimiters in
list of expressions. For example, the following:

10 A$-,,CAMERA,,:B$ = ,,93604-1"
20 PR I NT#1 ,A$,B$

gives a diskette image of:

CAMERA93604-1

Because there are no delimiters, this would not be input as two separate
strings. To correct the problem, insert explicit delimiters into the PRINT#
statement as follows:

30 PR I NT#1 ,A$;",";B$

This gives the following diskette image, which can be read back into two
string variables:

CAMERA,93604-1

195

PUT Statement (Files)

PUT Statement (Files)

Purpose:

To write a record from a random buffer to a random disk file.

Syntax:

PUT[#J/z/e numbed,record number]

Comments:

file number is the number under which the file was opened.

record number is the number of the record. If it is omitted, the record has
the next available record number (after the last PUT).

The largest possible record number is 232_i. This will allow you to have
large files with short record lengths. The smallest possible record number
is 1.

The PRINT#, PRINT# USING, LSET, RSET, or WRITE# statement may
be used to put characters in the random file buffer before a PUT statement.

In the case of WRITE#, GW-BASIC pads the buffer with spaces up to an
enter.

Any attempt to read or write past the end of the buffer causes a “Field
overflow” error.

PUT can be used for communications files. Here record number is the
number of bytes written to the file. Record number must be less than or
equal to the length of the buffer set in the OPEN “COM(n) statement.

196

PUT Statement (Graphics)

PUT Statement (Graphics)

Purpose:

To transfer graphics images to the screen.

Syntax:

PUT{x,y),array\,action verb]

Comments:

action verb may be PSET, PRESET, AND, OR, or XOR.

(x,y) are the coordinates of the top-left corner of the image to be transferred.

The PUT and GET statements transfer graphics images to and from the
screen. PUT and GET make possible animation and high-speed object
motion in either graphics mode.

The PUT statement transfers the image stored in the array onto the screen.
The specified point is the coordinate of the upper-left comer of the image.
An “Illegal function call” error results if the image to be transferred is too
large to fit onto the screen.

The action verb is used to interact the transferred image with the image
already on the screen. PSET transfers the data onto the screen verbatim.

PRESET is the same as PSET except that an inverse image (black on
white) is produced.

AND transfers the image only if an image already exists under the
transferred image.

OR superimposes the image onto the existing image.

XOR is a special mode often used for animation. XOR causes the points
on the screen to be inverted where a point exists in the array image.
This behavior is exactly like the cursor on the screen.

197

PUT Statement (Graphics)

XOR is especially useful for animation. When an image is put against a
complex background twice, the background is restored unchanged. An object
can be moved around the screen without obliterating the background.

The default action mode is XOR.

For more information about effects within the different modes, see the
COLOR, PALETTE, and SCREEN statements.

Animation of an object is usually performed as follows:

1. Put the object(s) on the screen.
2. Recalculate the new position of the object(s).
3. Put the object(s) on the screen a second time at the old location(s) to

remove the old image(s).
4. Return to Step 1, this time putting the object(s) at the new location.

Movement done this way leaves the background unchanged. Flicker can be
cut down by minimizing the time between Steps 4 and 1, and by making
sure that there is enough time delay between Steps 1 and 3. If more than
one object is being animated, process every object at once, one step at
a time.

If it is not important to preserve the background, animation can be per
formed using the PSET action verb.

Leave a border around the image (when it is first gotten) as large or larger
than the maximum distance the object will move. Thus, when an object is
moved, this border effectively erases any points. This method may be some
what faster than the method using XOR described above since only one
PUT is required to move an object. However, the image to be PUT must
be larger than the existing image.

Examples:
i 10 CLS:SCREEN 1

20 PSET (130,120)
30 DRAW "U25;E7;R20;D32;L6;U12;L14"
40 DRAW MD12 5L6":PSET(137,1 02)
50 DRAW MU4;E4;R8;D8;L12"
60 PSET (137,88)
70 DRAW "E4; R20;D32;G4":PA I NT (131,119)
80 DIM A (500)
90 GET (125,130)-(170,80),A

198

I

PUT Statement (Graphics)

100 FOR 1= 1 TO 1000:NEXT I
110 PUT (20,20),A , PSET
120 FOR 1= 1 TO 1 000 :NEXT i
130 GET (125,130)-(170,80),A
140 FOR 1= 1 TO 1 000 : NEXT I
150 PUT (220,130),A,PRESET

199

RANDOMIZE Statement

RANDOMIZE Statement

Purpose:

To reseed the random number generator.

Syntax:

RANDOMIZE [expression]
RANDOMIZE TIMER

Comments:

If expression is omitted, GW-BASIC suspends program execution and asks for
a value by displaying the following line:

Random number seed (-32768 to 32767)7

If the random number generator is not reseeded, the RND function returns
the same sequence of random numbers each time the program is run.

To change the sequence of random numbers every time the program is run,
place a RANDOMIZE statement at the beginning of the program, and
change the argument with each run (see RND function).

RANDOMIZE with no arguments will prompt you for a new seed. RAN
DOMIZE [expression] will not force floating-point values to integer.
expression may be any numeric formula.

To get a new random seed without prompting, use the new numeric TIMER
function as follows:

RANDOMIZE TIMER

Example 1:

The internal clock can be set at intervals.

10 RANDOMIZE TIMER
20 FOR 1=1 to 5
30 PRINT RND;
40 NEXT I

200

RANDOMIZE Statement

RUN
.88598 .484668 .586328 .119426 .709225
Ok

RUN
.803506 .162462 .929364 .292443 .322921
Ok

Example 2:

The internal clock can be used for random number seed.

N=VAL(MID$(TIME$,7,2))
10 RANDOMIZE N
20 PRINT N
30 PRINT RND

'get seconds for seed
'install number
'print seconds
'print random number generated

5

RUN
36
.2466638
Ok
RUN

37
.6530511
Ok
RUN

38
5.943847E+02

Ok
RUN

40
.8722131

iOk '

201

’ !
READ Statement

READ Statement

Purpose:

To read values from a DATA statement and assign them to variables.

Syntax:

READ list of variables

Comments:

A READ statement must always be used with a DATA statement.

READ statements assign variables to DATA statement values on a one-to-
one basis.

READ statement variables may be numeric or string, and the values
read must agree with the variable types specified. If they do not agree,
a “Syntax” error results.

A single READ statement may access one or more DATA statements.
They are accessed in order. Several READ statements may access the same
DATA statement.

If the number of variables in list of variables exceeds the number of ele
ments in the DATA statement(s), an “Out of data” message is printed.

If the number of variables specified is fewer than the number of elements
in the DATA statement(s), subsequent READ statements begin reading
data at the first unread element. If there are no subsequent READ state
ments, the extra data is ignored.

To reread DATA statements from the start, use the RESTORE statement.

;
202!J

I

READ Statement

Examples:

80 FOR 1=1 TO 10
90 READ A(I)
100 NEXT I
110 DATA 3.08,5.19,3.12,3.98,4.24
120 DATA 5.08,5.55,4.00,3.16,3.37

This program segment reads the values from the DATA statements into
array A. After execution, the value of A(l) is 3.08, and so on. The DATA
statement (lines 110-120) may be placed anywhere in the program; they
may even be placed ahead of the READ statement.

5 PRINT
10 PRINT "CITY","STATE","ZIP"
20 READ C$,S$,Z
30 DATA "DENVER,", "COLORADO",8021 1
40 PRINT C$,S$,Z
RUN

ZIPCITY
DENVER,COLORADO 8021 1

STATE

Ok

This program reads string and numeric data from the DATA statement
in line 30.

203

REM Statement

REM Statement

Purpose:

To allow explanatory remarks to be inserted in a program.
!
;
■

Syntax:

REM [comment]
'[comment]

j
:

Comments:

REM statements are not executed, but are output exactly as entered when
the program is listed.

Once a REM or its abbreviation, an apostrophe (’), is encountered, the pro
gram ignores everything else until the next line number or program end is
encountered.

REM statements may be branched into from a GOTO or GOSUB statement,
and execution continues with the first executable statement after the REM
statement. However, the program runs faster if the branch is made to the
first statement.

!

Remarks may be added to the end of a line by preceding the remark with
an apostrophe (’) instead of REM.

Note
Do not use REM in a DATA statement because it will be considered
to be legal data.

204

REM Statement

Examples:

120 REM CALCULATE AVERAGE VELOCITY
130 FOR 1=1 TO 20
440 SUM=SUM+V(I)
450 NEXT I

or

129 FOR 1=1 TO 20 'CALCULATED AVERAGE VELOCITY
130 SUM=SUM+V(I)
140 NEXT I

205

T

RENUM Command

: RENUM Command;

Purpose:

To renumber program lines.

Syntax:

RENUMbiew; number]y[old number][,incremeniR]]

Comments:

new number is the first line number to be used in the new sequence.
The default is 10.

old number is the line in the current program where renumbering is to
begin. The default is the first line of the program.

increment is the increment to be used in the new sequence. The default
is 10.

RENUM also changes all line number references following ELSE, GOTO,
GOSUB, THEN, ON...GOTO, ON...GOSUB, RESTORE, RESUME, and ERL
statements to reflect the new line numbers. If a nonexistent line number
appears after one of these statements, the error message “Undefined line
x in y” appears. The incorrect line number reference x is not changed by
RENUM, but line number y may be changed.

RENUM cannot be used to change the order of program lines (for example,
RENUM 15,30 when the program has three lines numbered 10, 20 and 30)
or to create line numbers greater than 65529. An “Illegal function call”
error results.

i

Examples:

RENUM

Renumbers the entire program. The first new line number will be 10. Lines
increment by 10.

206

RENUM Command

RENUM 300,,50

Renumbers the entire program. The first new line number will be 300.
Lines increment by 50.

RENUM 1000,900,20

Renumbers the lines from 900 up so they start with line number 1000 and
are incremented by 20.

207

RESET Command

RESET Command

Purpose:

To close all disk files and write the directory information to a diskette
before it is removed from a disk drive.

Syntax:

RESET

Comments:

Always execute a RESET command before removing a diskette from a disk
drive. Otherwise, when the diskette is used again, it will not have the
current directory information written on the directory track.

RESET closes all open files on all drives and writes the directory track
to every diskette with open files.

:

|

208

RESTORE Statement

RESTORE Statement

Purpose:

To allow DATA statements to be reread from a specified line.

Syntax:

RESTORE[/me number]

Comments:

If line number is specified, the next READ statement accesses the first item
in the specified DATA statement.

If line number is omitted, the next READ statement accesses the first item
in the first DATA statement.

Examples:

10 READ A , B,C,
20 RESTORE
30 READ D,E,F
40 DATA 57,68,79

Assigns the value 57 to both A and D variables, 68 to B and E, and so on.

209

M
RESUME Statement

RESUME Statement

Purpose:

To continue program execution after an error-recovery procedure has
been performed.

Syntax:

RESUME
RESUME 0
RESUME NEXT
RESUME line number

Comments:

Any one of the four formats shown above may be used, depending upon
where execution is to resume:

ResultSyntax

Execution resumes at the statement that
caused an error.
Execution resumes at the statement
immediately following the one that
caused an error.
Execution resumes at the specified line
number.

RESUME or RESUME 0

RESUME NEXT

RESUME line number

A RESUME statement that is not in an error trapping routine causes
a“RESUME without error” message to be printed.

210

RESUME Statement

Examples:

10 ON ERROR GOTO 900

900 IF (ERR=230)AND(ERL=90) THEN PRINT "TRY AGAIN":RESUME 80

If an error occurs after line 10 is executed, the action indicated in line 900
is taken and the program continues at line 80.

211
i\ .

*

RETURN Statement

RETURN Statement

Purpose:

To return from a subroutine.

Syntax:

RETURN [line number]

Comments:

The RETURN statement causes GW-BASIC to branch back to the statement
following the most recent GOSUB statement. A subroutine may contain
more than one RETURN statement to return from different points in the
subroutine. Subroutines may appear anywhere in the program.

RETURN line number is primarily intended for use with event trapping. It
sends the event-trapping routine back into the GW-BASIC program at a fixed
line number while still eliminating the GOSUB entry that the trap created.

When a trap is made for a particular event, the trap automatically causes
a STOP on that event so that recursive traps can never take place. The
RETURN from the trap routine automatically does an ON unless an expli
cit OFF has been performed inside the trap routine.

The nonlocal RETURN must be used with care. Any GOSUB, WHILE,
or FOR statement active at the time of the trap remains active.

212

RIGHTO FUNCTION

RIGHT$ FUNCTION

Purpose:

To return the rightmost i characters of string x$.

Syntax:

RIGHT$(x$,i)

Comments:

If i is equal to or greater than LEN(x$), RIGHT$ returns x$. If i equals
zero, the null string (length zero) is returned (see the MID$ and LEFT$
functions).

Examples:

10 A$ = "DISK BASIC"
20 PRINT RIGHT$(A$,5)
RUN
BASIC
□ k

Prints the rightmost five characters in the A$ string.

213
__

RMDIR Command

RMDIR Command

Purpose:

To delete a subdirectory.

Syntax:

RMDIR pathname

Comments:

pathname is a string expression, not exceeding 63 characters, identifying
the subdirectory to be removed from its parent.

The subdirectory to be deleted must be empty of all files except and
or a “Path file/access” error is given.

Examples:

Referring to the sample directory structure illustrated in CHDIR, the
following command deletes the subdirectory report:

RMDIR MSALES\JOHN\REPORT"

214

RND Function

RND Function

Purpose:

To return a random number between 0 and 1.

Syntax:

RND[(x)]

Comments:

The same sequence of random numbers is generated each time the program
is run unless the random number generator is reseeded (see the RANDOM
IZE statement). If x is equal to zero, then the last number is repeated.

If x is greater than 0, or if x is omitted, the next random number in the
sequence is generated.

To get a random number within the range of zero through n, use the follow
ing formula:

INT(RND*(n +1))

The random number generator may be seeded by using a negative value
for x.

Examples:

10 FOR 1=1 TO 5
20 PRINT I NT(RND*101) ;
30 NEXT
RUN
53 30 31 51 5
Ok

Generates five pseudo-random numbers within the range of 0-100.

215

RUN Command

RUN Command

Purpose:

To execute the program currently in memory, or to load a file from the
diskette into memory and run it.

Syntax:

RUN [line number][,r]
RUN filename^rl

Comments:

RUN or RUN line number runs the program currently in memory.

If line number is specified, execution begins on that line. Otherwise, execu
tion begins at the lower line number.

If there is no program in memory when RUN is executed, GW-BASIC returns
to command level.

RUN filename closes all open files and deletes the current memory contents
before loading the specified file from disk into memory and executing it.

The r option keeps all data files open.

If you are using the speaker on the computer, please note that executing
the RUN command will turn off any sound that is currently running and
will reset to Music Foreground. Also, the PEN and STRIG statements are
reset to OFF.

Examples:

RUN NEWFIL,R

Runs NEWFIL without closing data files.

216

SAVE Command

SAVE Command

Purpose:

To save a program file on diskette.

Syntax:

SAVE filename,[,a]
SAVE filename,[,p]

Comments:

filename is a quoted string that follows the normal MS-DOS naming conven
tions. If filename already exists, the file will be written over. If the exten
sion is omitted, .bas will be used.

The a option saves the file in ASCII format. Otherwise, GW-BASIC saves the
file in a compressed binary format. ASCII format takes more space on the
diskette, but some diskette access commands (for example, the MERGE
command and some MS-DOS commands, such as TYPE) may require an
ASCII format file.

The p option protects the file by saving it in an encoded binary format.
When a protected file is later run or loaded, any attempt to list or edit it
fails. When the p option is used, make an additional copy under another
name or diskette to facilitate future program maintenance.

Examples:

The following command saves the file com2.bas in the ASCII format:

SAVE COM2,A

The following command saves the file prog.bas in binary format, and pro
tects access:

SAVE PROG,P

217
—*

SCREEN Function

SCREEN Function

Purpose:

To return the ASCII code (0-255) for the character at the specified row (line)
and column on the screen.

Syntax:

x=SCREEN(row,co/[,z])

Comments:

x is a numeric variable receiving the ASCII code returned.

row is a valid numeric expression within the range 1 to 25.

col is a valid numeric expression 1 to 40, or 1 to 80, depending upon screen
width setting. See the WIDTH statement.

z is a valid numeric expression with a true or false value. It may be used
only in alpha mode.

The ordinal of the character at the specified coordinates is stored in the
numeric variable. In alpha mode, if the optional parameter z is given and
is true (nonzero), the color attribute for the character is returned instead
of the ASCII code for the character (see the COLOR statement).

Any values entered outside of the range indicated result in an “Illegal func
tion call” error. Row 25 may be referenced only if the function key is off.

Examples:

100 X-SCREEN (10,10)

If the character at 10,10 is A, then X is 65.

110 X« SCREEN (1 ,1 ,1)

Returns the color attribute of the character in the upper-left comer of the
screen.

218

'SCREEN Statement

SCREEN Statement

Purpose:

To set the specifications for the display screen.

Syntax:

SCREEN [mode] [y[colorswitcK\][,[apage]][,[vpage]]

Comments:

The SCREEN statement is chiefly used to select a screen mode appropriate
for a particular display-hardware configuration. Supported hardware confi
gurations and screen modes are described below.

MDPA with Monochrome Display: Mode 0

The IBM Monochrome Display and Printer Adapter (MDPA) is used to con
nect only to a monochrome display. Programs written for this configuration
must be text mode only.

r**lCGA with Color Display: Modes 0, 1, and 2

The IBM Color Graphics Adapter (CGA) and Color Display are typically
paired with each other. This hardware configuration permits the running
of text mode programs, and both medium-resolution and high-resolution
graphics programs.

\

EGA with Color Display: Modes 0, 1, 2, 7, and 8

The five screen modes 0, 1, 2, 7, and 8 allow you to interface to the IBM
Color Display when it is connected to an IBM Enhanced Graphics Adapter
(EGA). If EGA switches are set for CGA compatibility, programs written for
modes 1 and 2 will run just as they would with the CGA. Modes 7 and 8 are
similar to modes 1 and 2, except that a wider range of colors is available in
modes 7 and 8.

219

m
SCREEN Statement

U\.

EGA with Enhanced Color Display: Modes 0,1, 2, 7, and 8

With the EGA/IBM Enhanced Color Display configuration, modes 0, 1, 2, 7,
and 8 are virtually identical to their EGA/Color Display counterparts. Two
possible differences are as follows:

1. In mode 0, the border color cannot be the same as for the EGA/Color
Display because the border cannot be set on an Enhanced Color
Display when it is in 640 x 350 text mode.

2. The quality of the text is better on the Enhanced Color Display (an
8 x 14 character box for Enhanced Color Display versus an 8 x 8
character box for Color Display).

EGA with Enhanced Color Display: Mode 9

The full capability of the Enhanced Color Display is taken advantage of in
this mode. Mode 9 allows the highest resolution possible for the EGA/En
hanced Color Display configuration. Programs written for this mode will
not work for any other hardware configuration.

EGA with Monochrome Display: Mode 10

The IBM Monochrome Display can be used to display monochrome graphics
at a very high resolution in this mode. Programs written for this mode will
not work for any other hardware configuration.

Arguments

The mode argument is an integer expression with legal values 0, 1, 2, 7, 8,
9, and 10. All other values are illegal. Selection of a mode argument
depends primarily on your program’s anticipated display hardware, as
described above.

Each of the SCREEN modes is described individually in the
following paragraphs.

220

SCREEN Statement

SCREEN 0

• Text mode only
• Either 40 x 25 or 80 x 25 text format with character-box size of

8 x 8 (8 x 14 with EGA)
• Assignment of 16 colors to any of 2 attributes
• Assignment of 16 colors to any of 16 attributes (with EGA)

SCREEN 1

• 320 x 200 pixel medium-resolution graphics
• 80 x 25 text format with character-box size of 8 x 8
• Assignment of 16 colors to any of 4 attributes
• Supports both EGA and CGA
• 2 bits per pixel

SCREEN 2

• 640 x 200 pixel high-resolution graphics
• 40 x 25 text format with character-box size of 8 x 8
• Assignment of 16 colors to any of 2 attributes
• Supports both EGA and CGA
• 1 bit per pixel

SCREEN 7

• 320 x 200 pixel medium-resolution graphics
• 40 x 25 text format with character-box size of 8 x 8
• 2, 4, or 8 memory pages with 64K, 128K, or 256K of memory,

respectively, installed on the EGA
• Assignment of any of 16 colors to 16 attributes
• EGA required
• 4 bits per pixel

221

SCREEN Statement

SCREEN 8
; • 640 x 200 pixel high-resolution graphics

• 80 x 25 text format with character-box size of 8 x 8
• 1, 2, or 4 memory pages with 64K, 128K, or 256K of memory,

respectively, installed on the EGA
• Assignment of any of 16 colors to 16 attributes
• EGA required
• 4 bits per pixel

SCREEN 9

• 640 x 350 pixel enhanced-resolution graphics
• 80 x 25 text format with character-box size of 8 x 14
• Assignment of either 64 colors to 16 attributes (more than 64K of

EGA memory), or 16 colors to 4 attributes (64K of EGA memory)
• Two display pages if 256K of EGA memory installed
• EGA required
• 2 bits per pixel (64K EGA memory)

4 bits per pixel (more than 64K EGA memory)

SCREEN 10

• 640 x 350 enhanced-resolution graphics
• 80 x 25 text format with character-box size of 8 x 14
• Two display pages if 256K of EGA memory installed
• Assignment of up to 9 pseudo-colors to 4 attributes.
• EGA required
• 2 bits per pixel

222

SCREEN Statement

The following are default attributes for SCREEN 10, monochrome display:

Attribute Value Displayed Pseudo-Color
0 Off

On, normal intensity

Blink
On, high intensity

The following are color values for SCREEN 10, monochrome display:

Color Value Displayed Pseudo-Color

1
2
3

Off0
Blink, off to on
Blink, off to high intensity
Blink, on to off

1
2
3

On4
Blink, on to high intensity

Blink, high intensity to off
Blink, high intensity to on

High intensity

For both composite monitors and TVs, the colorswitch is a numeric expres
sion that is either true (nonzero) or false (zero). A value of zero disables
color and permits display of black and white images only. A nonzero value
permits color. The meaning of the colorswitch argument is inverted in
SCREEN mode 0.

5
6
7
8

For hardware configurations that include an EGA and enough memory to
support multiple-screen pages, two arguments are available. These apage
and vpage arguments determine the “active” and “visual” memory pages.
The active page is the area in memory where graphics statements are writ
ten; the visual page is the area of memory that is displayed on the screen.

Animation can be achieved by alternating the display of graphics pages.
The goal is to display the visual page with completed graphics output, while
executing graphics statements in one or more active pages. A page is dis
played only when graphics output to that page is complete. Thus, the
following program fragment is typical:

223

n —
SCREEN Statement

SCREEN 7, ,1 ,2 'work in page 1, show page 2

. Graphics output to page 1

. while viewing page 2

SCREEN 7,,2,1 'work in page 2, show page 1

. Graphics output to page 2

. while viewing page 1

The number of pages available depends on the SCREEN mode and the
amount of available memory, as described in the following table:

Table 2
SCREEN Mode Specifications

Attribute Color EGA
Range Range Memory Pages Size

Page
Mode Resolution

0- 15a
0-15a

NA 2KNA 140 - column text
80 - column text
320 x 200
640 x 200
320 x 200

0
NA 4KNA L

0-3*
0-lb
0-15

1
NA 16K0-3 11
NA 16K10-12
64K 2 32K0-157
128K
256K

4
8

64K 64K0-15 1640 x 200 0-158
128K 2
256K 4
64K 64K0-15

0-63
0-63

1640 x 350 0-39
128K
256K
128K
256K

128K10-15
0-15 2

128K0-3 0-8 110 640 x 350
2

a Numbers in the range 16-31 are
blinking versions of the colors 0-15.

b Attributes applicable only with EGA.

:
224■ i

i

1
SCREEN Statement

Attributes and Colors

For various screen modes and display hardware configurations, different
attribute and color settings exist. (See the PALETTE statement for a dis
cussion of attribute and color number.) The majority of these attribute and
color configurations are summarized in the following table:

Table 3

Default Attributes and Colors for Most Screen Modes

Monochrome DisplayAttributes for Mode Color Display

1,9 2 0,7,8,9b Number0 ColorNumber0 Color

OffBlack
Blue
Green

00 0 00 a(Underlined)
On a
On a
On a
On a
On a
On a

11
2 12

Cyan3 13
Red 14 4
Magenta
Brown
White
Gray
Light Blue

15 5
16 6
17 7

Off088
High intensity
(underlined)
High intensity
High intensity
High intensity
High intensity
High intensity

99

Light Green
Light Cyan
Light Red
Light Magenta
Yellow
High-intensity
White

210 10
211 111
212 12
2132 13
214 14

Off03 1 15 15 tjj Off when used for background.
b With EGA memory > 64K.
c Only for mode 0 monochrome.

225

SCREEN Statement

The default foreground colors for the various modes are given in the follow
ing table:

Table 4
Default Foreground Colors.

Default foreground colorDefault foreground attribute

aColor/Extended®
Display

Color/Extended
Display

Monochrome
Display

Monochrome
Display

Screen
mode

: 17770
NA15NA31
NA15NA2 1
NA15NA157!
NA15NA8 15:

3b NA63NA9
NA 83NA10

? IBM Enhanced Color Display
b 15 if greater than 64K of EGA memory
NA = Not Applicable

i

226

SGN Function !
i

SGN Function

Purpose:

To return the sign of x.

Syntax:

SGN(x)

Comments:

x is any numeric expression.

If x is positive, SGN(x) returns 1.
If x is 0, SGN(x) returns 0.
If x is negative, SGN(x) returns -1.

This statement is similar to, but not the same as, SIN(x), which returns a
trigonometric function in radians, rather than in ones and zeros.

Examples:

10 INPUT "Enter value",x
20 ON SGN(X)+2 GOTO 100,200,300

GW-BASIC branches to 100 if X is negative, 200 if X is 0, and 300 if X is
positive.

227

i
SHELL Statement

!

SHELL Statement

Purpose:

To load and execute another program or batch file. When the program fin
ishes, control returns to the GW-BASIC program at the statement following
the SHELL statement. A program executed under the control of GW-BASIC is
referred to as a child process.

Syntax:

SHELL [string]

Comments:

string is a valid string expression containing the name of a program to run
and (optionally) command arguments.

The program name in string may have any extension that MS-DOS COM-
MAND.COM supports. If no extension is supplied, COMMAND will look
for a .COM file, then an .EXE file, and finally, a .BAT file. If none is found,
SHELL will issue a “File not found” error.

;
:
!

Any text separated from the program name by at least one blank space will
be processed by COMMAND as program parameters.

GW-BASIC remains in memory while the child process is running. When the
child process finishes, GW-BASIC continues at the statement following the
SHELL statement.

1

SHELL with no string will go to MS-DOS. You may now do anything that
COMMAND allows. When ready to return to GW-BASIC, type the MS-DOS
command EXIT.

Examples:

SHELL
A>D I R
A>EXIT
Ok

228

SHELL Statement

Write some data to be sorted, use SHELL SORT to sort it, then read the
sorted data to write a report.

□ PEN "SORTIN.DAT” FOR OUTPUT AS #1
'write data to be sorted

1 0
20

1 000
1010
1 020
1 030

CLOSE 1
SHELL "SORT <S0RTIN.DAT >SORTOUT.DAT"
OPEN "SORTOUT.DAT" FOR INPUT AS #1

'Process the sorted data

229
>___i

SIN Function

SIN Functionj \
■ i

Purpose:

To calculate the trigonometric sine of x, in radians.
I

:
i

Syntax:;

SIN(x)

Comments:• \

i SIN(x) is calculated in single-precision unless the /d switch is used when
GW-BASIC is executed.i

To obtain SINOc) when x is in degrees, use SIN(jc*tt/180).

Examples:
: PRINT SIN(1.5)

.9974951
Ok!

The sine of 1.5 radians is .9974951 (single-precision).

:

230

SOUND Statement

SOUND Statement

Purpose:

To generate sound through the speaker.

Syntax:

SOUND freq,duration

Comments:

freq is the desired frequency in Hertz (cycles per second), freq is a numeric
expression within the range of 37 to 32767.

duration is the desired duration in clock ticks. Clock ticks occur 18.2 times
per second, duration must be a numeric expression within the range of
0 to 65535.

Values below .022 produce an infinite sound until the next SOUND or
PLAY statement is executed.

If duration is zero, any active SOUND statement is turned off. If no
SOUND statement is running, a duration of zero has no effect.

The sound is executed in foreground or background depending on the PLAY
statement.

Examples:

The following example creates random sounds of short duration:

2500 SOUND RND*1000+37,2
2600 GOTO 2500

231

SOUND Statement
w

The following table shows the relationship of notes and their frequencies
in the two octaves adjacent to middle C.

• •

.n
Table 5
Relationships of Notes and Frequencies

Note Frequency Note Frequency

C C*130.810
146.830
164.810
174.610
196.000
220.000
246.940
261.630
293.660
329.630
349.230
392.000
440.000
493.880

523.250
587.330
659.260
698.460
783.990
880.000
987.770

1046.500
1174.700
1318.500
1396.900
1568.000
1760.000
1975.500

DD
E E
F F
G G
A A

BB
CC
DD
EE
FF
GG
AA
BB

: ♦Middle C.

By doubling or halving the frequency, the coinciding note values can be
estimated for the preceding and following octaves.

To produce periods of silence, use the following statement:

SOUND 32767 ,duration

To calculate the duration of one beat, divide beats per minute into the
number of clock ticks in a minute (1092).

232

SOUND Statement

The following table illustrates tempos requested by clock ticks:

Table 6

Tempos Requested by Clock Ticks

Beats/ Ticks/
Minute BeatTempo Notation

very slow Larghissimo
Largo
Larghetto
Grave
Lento
Adagio

40-66
60-66

27.3-18.2
18.2-16.55

66-76 16.55-14.37

slow Adagietto
Andante 76-108 14.37-10.11

medium Andantino
Moderate 108-120 10.11-9.1

Allegretto
Allegro
Vivace
Veloce
Presto

fast
120-168 9.1-6.5

168-208 6.5-5.25

very fast Prestissimo

233

SPACE! Function

SPACE$ Function;
!

1
Purpose:

To return a string of x spaces.

■

;
i

il Syntax:

SPACE$(x)

Comments:

x is rounded to an integer and must be within the range of 0 to 255 (see the
SPC function).

Examples:

10 FOR N=1 TO 5
20 X$-SPACE$(N)
30 PRINT X$;N
40 NEXT N
RUN
1

2
3

4
5

Ok

Line 20 adds one space for each loop execution.

234

r H

i SPC Functioni

SPC Function;

Purpose:

To skip a specified number of spaces in a PRINT or an LPRINT statement.

Syntax:

SPC(n)

Comments:

n must be within the range of 0 to 255.

If n is greater than the defined width of the printer or the screen, the value
used will be n MOD width.

A semicolon is assumed to follow the SPC(n) command.

SPC can only be used with the PRINT, LPRINT, and PRINT# statements
(see the SPACE$ function).

Examples:

PRINT "OVER" SPC(15) "THERE"
THEREOVER

Ok

235

SQR Function

SQR Function

Purpose:

Returns the square root of x.

Syntax:

SQR(x)

Comments:

x must be greater than or equal to 0.

SQR(x) is computed in single-precision unless the /d switch is used when
GW-BASIC is executed.

Examples:

10 FOR X=10 TO 25 STEP 5
20 PRINT X; SQR(X)
30 NEXT
RUN

3.162278
3.872984
4.472136

10
15
20
25 5
Ok

236

STICK Function

STICK Function

Purpose:

To return the x and y coordinates of two joysticks.

Syntax:

x = STICK(n)

Comments:

x is a numeric variable for storing the result.

n is a valid numeric expression within the range of 0 to 3.

Coordinate ReturnedValue of n

x coordinate of joystick A. Stores the x and y
values for both joysticks for the following three
function calls.
y coordinate of joystick A.
x coordinate of joystick B.
y coordinate of joystick B.

0

1
2
3

237

jjt _

STOP Statement

STOP Statement

Purpose:

To terminate program execution and return to command level.

.
■ Syntax:;

STOP;

Comments:

STOP statements may be used anywhere in a program to terminate exe
cution. When a STOP is encountered, the following message is printed:

; Break in line nnnnn
■ •

Unlike the END statement, the STOP statement does not close files.

GW-BASIC always returns to command level after a STOP is executed.
Execution is resumed by issuing a CONT command.

;

!
■

Examples:

10 INPUT A,B,C
20 K=AA2*5.3:L=BA3/.26
30 STOP
40 M=C*K+100:PRINT M

i
I
j

RUN
i ? 1 ,2,3

BREAK IN 30:
:

Ok
PRINT L
30.76923! Ok
CONT
115.9
Ok

.

238

STR$ Function

STR$ Function

Purpose:

To return a string representation of the value of x.

Syntax:

STR$(x)

Comments:

STR$(x) is the complementary function to VAL(x$) (see the VAL function).

Examples:

5 REM ARITHMETIC FOR KIDS
10 INPUT "TYPE A NUMBER";N
20 ON LEN(STR$(N)) GOSUB 30,40,50

This program branches to various subroutines, depending on the number
of characters typed before the RETURN key is pressed.

239

STRIG Statement and Function

STRIG Statement and Function

Purpose:

To return the status of the joystick triggers.!

Syntax:

; As a statement:
■

STRIG ON
STRIG OFFI

As a function:

x=STRIG(n)

Comments:

x is a numeric variable for storing the result.

n is a valid numeric expression within the range of 0 to 7.

STRIG ON must be executed before any STRIG(n) function calls may be
made. Once STRIG ON is executed, GW-BASIC will check to see if a button
has been pressed before every statement is executed. STRIG OFF disables
the checking.

n is a numeric expression within the range of 0 to 7 that returns the
following values:

Value of n

i
i

Returns

0 -1 if trigger A1 was pressed since the last
STRIG(O) statement; returns 0, if not.
-1 if trigger A1 is currently pressed; returns 0,
if not.
-1 if trigger B1 was pressed since the last
STRIG(2) statement; returns 0, if not.

1

2

240

I
STRIG Statement and Function

3 -1 if trigger B1 is currently pressed; returns 0,
if not.
-1 if trigger A2 was pressed since the last
STRIG(4) statement; returns 0, if not.
-1 if trigger A2 is currently pressed; returns 0,
if not.

4

5

241

STRIGKn) Statement

STRIG(n) Statement

Purpose:

To allow the use of a joystick by enabling or disabling the trapping
of its buttons.

Syntax:

STRIGKn) ON
STRIGKn) OFF
STRIG(n) STOP

Comments:

n is 0, 2, 4, or 6, corresponding to the buttons on the joystick, where

0 is button A1
2 is button B1
4 is button A2
6 is button B2

Examples:

STRIG(n) ON

Enables trapping of the joystick buttons. After this statement is executed,
GW-BASIC checks to see if this button has been pressed before executing
following statements.

STRIGCn) OFF

Disables GW-BASIC from checking the state of the button.

STRIG(n) STOP

Disables trapping of a given button through the ON STRIG(n) statement.
But any pressings are remembered so that trapping may take place once it
is re-enabled.

242

STRING$ Function

STRING$ Function

Purpose:

To return

• a string of length n whose characters all have ASCII code j, or
• the first character of x$

Syntax:

STRING $(nj)
STRING$(n^c$)

Comments:

STRING$ is also useful for printing top and bottom borders on the screen or
the printer.

n and j are integer expressions in the range of 0 to 255.

Examples:

10 X$ = STRING$(10,45)
20 PRINT X$ "MONTHLY REPORT" X$
RUN

MONTHLY REPORT
Ok

45 is the decimal equivalent of the ASCII symbol for the minus (-) sign.

Appendix C in the GW-BASIC User’s Guide lists ASCII character codes.

243

SWAP Statement

SWAP Statement

Purpose:

To exchange the values of two variables.

Syntax:

SWAP variable! >variable2

Comments:

Any type variable may be swapped (integer, single-precision, double
precision, string), but the two variables must be of the same type or a
‘Type mismatch” error results.

Examples:

LIST
10 AS="0NE 11:BS="ALL ":CS="F0R M
20 PRINT AS C$ B$
30 SWAP AS, BS
40 PRINT AS CS BS
RUN
Ok
ONE FOR ALL
ALL FOR ONE
Ok

Line 30 swaps the values in the A$ and B$ strings.

244

SYSTEM Command
’

;SYSTEM Command

Purpose:

To return to MS-DOS.

Syntax:

SYSTEM

Comments:

Save your program before pressing RETURN, or the program will be lost.

The SYSTEM command closes all the files before it returns to MS-DOS.
If you entered GW-BASIC through a batch file from MS-DOS, the SYSTEM
command returns you to the batch file, which continues executing at the
point it left off.

Examples:

SYSTEM
A>

245
k

TAB Function

TAB Function

Purpose:

Spaces to position n on the screen.

Syntax:
:

TAB(n);

Comments:

If the current print position is already beyond space n, TAB goes to that
position on the next line.

Space 1 is the leftmost position. The rightmost position is the screen width.

n must be within the range of 1 to 255.

If the TAB function is at the end of a list of data items, GW-BASIC will not
return the cursor to the next line. It is as though the TAB function has an
implied semicolon after it.

TAB may be used only in PRINT, LPRINT, or PRINT# statements (see the
SPC function).

I

Examples:

10 PRINT "NAME" TAB(25) "AMOUNT": PRINT
20 READ A$,B$
30 PRINT A $ TAB(25) B$
40 DATA "G. T. JONES","$25.00"
RUN
NAME AMOUNT

G. T. JONES $25.00
Ok

246

TAN Function

TAN Function

Purpose:

To calculate the trigonometric tangent of x, in radians.

Syntax:

TANCc)

Comments:

TAN(jc) is calculated in single-precision unless the /d switch is used when
GW-BASIC is executed.

If TAN overflows, the “Overflow” error message is displayed; machine
infinity with the appropriate sign is supplied as the result, and
execution continues.

To obtain TAN(x) when x is in degrees, use TAN(x*tt/180).

Examples:

10 Y = TAN(X)

When executed, Y will contain the value of the tangent of X radians.

247

TIME$ Statement and Variable

TIME$ Statement and Variable

Purpose:

To set or retrieve the current time.

Syntax:

As a statement:i
TIME$ = string exp

As a variable:.

string exp = TIMES

Comments:

string exp is a valid string literal or variable that lets you set hours {hh),
hours and minutes (hh:mm), or hours, minutes, and seconds (hh:mm:ss).

hh sets the hour (0-23). Minutes and seconds default to 00.

hh:mm sets the hour and minutes (0-59). Seconds default to 00.

hh:mm:ss sets the hour, minutes, and seconds (0-59).

If string exp is not a valid string, a ‘Type mismatch” error results.

As you enter any of the above values, you may omit the leading zero, if any.
You must, however, enter at least one digit. If you wanted to set the time
as a half hour after midnight, you could enter TIME$ = “0:30”, but not
TIME$= “:30”.

If any of the values are out of range, an “Illegal function call” error is
issued. The previous time is retained.

The current time is stored if TIME$ is the target of a string assignment.

248

TIME$ Statement and Variable

The current time is fetched and assigned to the string variable if TIME$ is
the expression in a LET or PRINT statement.

If string exp = TIME$, TIME$ returns an 8-character string in the form
hh:mm:ss.

Examples:

The following example sets the time at 8:00 A.M.:

TIMES = H08:00M
Ok
PRINT TIMES
08:00:05
Ok

The following program displays the current date and time on the 25th line
of the screen and will sound on the minute and half minute.

10 KEY OFF: SCREEN 0:WIDTH 80:CLS
20 LOCATE 25,5
30 PRINT DATES,TIMES;
40 SEC=VAL(MID$(TIME$,7,2))
50 IF SEC=SSEC THEN 20 ELSE SSEC=SEC
60 IF SEC=0 THEN 1010
70 IF SEC=30 THEN 1020
80 IF SEC<57 THEN 20

1000 SOUND 1000,2:GOTO 20
1010 SOUND 2000,8:GOTO 20
1020 SOUND 400,4:GOTO 20

249

TIMER Function

TIMER Function

Purpose:

To return single-precision floating-point numbers representing the elapsed
number of seconds since midnight or system reset.

Syntax:

v=TIMER

Comments:i
! Fractions of seconds are calculated to the nearest degree possible. TIMER is

read-only.

'!
!

i

i

250

I

TRON/TROFF Commands

TRON/TROFF Commands

Purpose:

To trace the execution of program statements.

Syntax:

TRON
TROFF

Comments:

As an aid in debugging, the TRON (trace on) command enables a trace flag
that prints each line number of the program as it is executed. The numbers
appear enclosed in square brackets.

TRON may be executed in either the direct or indirect mode.

The trace flag is disabled with the TROFF (trace off) command, or when
a NEW command is executed.

Examples:

TRON
Ok
10 K = 1 0
20 FOR J=1 TO 2
30 L=K + 10
40 PRINT J;K;L
50 K=K+10
60 NEXT
70 END
RUN
M 0][20]C 30]C 40 3 1 1 0 20
[50][603[30]C 40] 2 20 30
[50][60][70]
Ok
TROFF
Ok

251

UNLOCK Statement

UNLOCK Statement

Purpose:

To release locks that have been applied to an opened file. This is used
in a multi-device environment, often referred to as a network or network
environment

Syntax:

UNLOCK [#]/i [,[record number] [TO record number]]

Comments

n is the number that was assigned to the file as it was originally numbered
in the program.

record number is the number of the individual record that is to be unlocked.
Or, if a range of records are to be unlocked, record number designates the
beginning and ending record of the specified range.

The range of legal record numbers is 1 to 232-1. The limit on record size
is 32767 bytes.

The record range specified must be from lower to (the same or) higher
record numbers.

If a starting record number is not specified, the record number 1 is
assumed.

If an ending record number is not specified, then only the specified record
is unlocked.

The following are legal UNLOCK statements:

UNLOCK #n

UNLOCK #/i, X
UNLOCK #ti, TO Y unlocks records 1 through Y

UNLOCK #ti, X TO Y unlocks records X through Y

unlocks the entire file n
unlocks record X only

The locked file or record range should be unlocked before the file is closed.

252

UNLOCK Statement

Failure to execute the UNLOCK statement can jeopardize future access to
that file in a network environment.

In the case of files opened in random mode, if a range of record numbers is
specified, this range must match exactly the record number range given in
the LOCK statement.

The “Permission denied” message will appear if a syntactically correct
UNLOCK request cannot be granted. The UNLOCK statement must match
exactly the paired LOCK statement.

It is expected that the time in which files or regions within files are locked
will be short, and thus the suggested usage of the LOCK statement is
within short-term paired LOCK/UNLOCK statements.

Examples:

The following demonstrates how the LOCK/UNLOCK statements should
be used:

LOCK #1 , 1 TO 4
LOCK 01, 5 TO 8
UNLOCK #1, 1 TO 4
UNLOCK *\ , 5 TO 8

The following example is illegal:

LOCK 01, 1 TO 4
LOCK #1 , 5 TO 8
UNLOCK 0\ , 1 TO 8

253

USR Function

USR Function

Purpose:

To call an assembly language subroutine.

Syntax:

v=USR[n](argument)

Comments:

n specifies which USR routine is being called.

argument can be any numeric or string expression.

Although the CALL statement is recommended for calling assembly
language subroutines, the USR function call may also be used. See Appen
dix D in the GW-BASIC User's Guide for a comparison of CALL and USR
and for a detailed discussion of calling assembly language subroutines.

Only values 0-9 are valid for n. If n is omitted, USRO is assumed (see DEF
USR for the rules governing n).

If a segment other than the default segment (GW-BASIC data segment, DS)
is used, a DEF SEG statement must be executed prior to a USR call. This
ensures that the code segment points to the subroutine being called.

The segment address given in the DEF SEG statement determines the
starting segment of the subroutine.

For each USR function, a corresponding DEF USR statement must have
been executed to define the USR call offset. This offset and the currently
active DEF SEG segment address determine the starting address of the
subroutine.

1
,

If more than 10 user routines are required, the value(s) of DEF USR may
be redefined for the other starting addresses as many times as needed.

The type (numeric or string) of the variable receiving the function call must
be consistent with the argument passed. If no argument is required by the
assembly language routine, then a dummy argument must be supplied.

254

VAL Function

VAL Function

Purpose:

Returns the numerical value of string x$.

Syntax:

VAL(x$)

Comments:

The VAL function also strips leading blanks, tabs, and line feeds from the
argument string. For example, the following line returns -3:

VAL (11 -3")

The STR$ function (for numeric to string conversion) is the complement
to the VAL(x$) function.

If the first character of x$ is not numeric, the VAL(x$) function will return
zero.

Examples:

10 READ MANES,CITY$,STATES,ZIPS
20 IF VAL(ZIPS)<90000 OR VAL(ZI PS)>96699 THEN
PRINT NAMES TAB(25) "OUT OF STATE"
30 IF VAL(ZIP$)>=90801 AND VAL(ZI PS)<=90815 THEN
PRINT NAMES TAB(25) "LONG BEACH"

255

VARPTR Function

VARPTR Function

Purpose:

To return the address in memory of the variable or file control block (FCB).

Syntax:

VARPTR(yaria6/e name)
VARPTR{*file number)

Comments:

VARPTR is usually used to obtain the address of a variable or array so it
can be passed to an assembly language subroutine. A function call of the
following form:

VARPTR(A(0))

is usually specified when passing an array, so that the lowest-addressed
element of the array is returned.

All simple variables should be assigned before calling VARPTR for an
array, because the addresses of the arrays change whenever a new simple
variable is assigned.

VARPTR (#/i/e number) returns the starting address of the GW-BASIC File
Control Block assigned to file number.

VARPTR (variable name) returns the address of the first byte of data identi
fied with the variable name.

A value must be assigned to variable name prior to execution of VARPTR;
otherwise, an “Illegal function call” error results.

Any type variable name may be used (numeric, string, or array), and the
address returned will be an integer within the range of 32767 to -32768.
If a negative address is returned, it is added to 65536 to obtain the actual
address.

256

VARPTR Function

Offsets to information in the FCB from the address returned by VARPTR
are shown in the following table:

Table 7

Offsets to FCB Information

Offset Length Name Description

Mode The mode in which the file was opened:
Input only
Output only
Random I/O

16 Append only
32 Internal use
64 Future use
128 Internal use
Diskette file control block.
Number of sectors read or written for
sequential access.
The last record number +1 read or
written for random files.
Number of bytes in sector when read
or written.
Number of bytes left in INPUT buffer.
Reserved for future expansion.
Device Number:
0-9 Disks A: through J:
255 KYBD:
254 SCRN:
253 LPT1:
252 CASl:
251 COM1:
250 COM2:
249 LPT2:
248 LPT3:
Device width.
Position in buffer for PRINT.
Internal use during BLOAD/BSAVE.
Not used for data files.
Output position used during tab
expansion.

0 1
1
2
4

FCB381
CURLOC39 2

ORNOFS41 1

NMLOFS42 1
43 3

DEVICE46 1

WIDTH47 1
POS48 1
FLAGS49 1

OUTPOS50 1

257

VARPTR Function

51 128 Physical data buffer. Used to transfer
data between DOS and BASIC. Use
this offset to examine data in
sequential I/O mode.
Variable length record size. Default is
128. Set by length option in OPEN
statement.
Current physical record number.
Current logical record number.
Future use.
Disk files only. Output position for
PRINT, INPUT, and WRITE.
Actual FIELD data buffer. Size is
determined by S: switch. VRECL bytes
are transferred between BUFFER and
FIELD on I/O operations. Use this
offset to examine file data in random
I/O mode.

BUFFER:

;
: 179 2 VRECL
i

PHYREC
LOGREC

181 2
: 183 2

***185 1
OUTPOS2186

FIELD188 n!

Example 1:

100 X=VARPTR(Y)

When executed, the variable X will contain an address that points to the
storage space assigned to the variable Y.

|

Example 2:
10 OPEN "DATA.FILM AS #1
20 FCBADR = VARPTR(#1)
30 DATADR = FCBADR+188
40 A$ = PEEK(DATADR)

In line 20, FCBADR contains the start of FCB.

In line 30, DATADR contains the address of the data buffer.

In line 40, A$ contains the first byte in the data buffer.

258

VARPTR$ Function

VARPTR$ Function

Purpose:

To return a character form of the offset of a variable in memory.

Syntax:

VARPTR$(uar/a&Ze)

Comments:

variable is the name of a variable that exists in the program.

Note
Assign all simple variables before calling VARPTR$ for an array ele
ment, because the array addresses change when a new simple variable
is assigned.

VARPTR$ returns a three-byte string of the following form:

Byte 2Byte 1Byte 0

Byte 0 contains one of the following variable types:

integer

string
single-precision

double-precision

Byte 1 contains the 8086 address format, and is the least significant byte.
Byte 2 contains the 8086 address format, and is the most significant byte.

2
3
4

8

259

VARPTR$ Function

Examples:

100 X = USR(VARPTRS(Y))

260

VIEW Statement

VIEW Statement

Purpose:

To define a physical viewport limit from xl,yl (upper-left x,y coordinates) to
x2,y2 (lower-right x,y coordinates).

Syntax:

VIEW [[SCREENHCti ,yl)-(x2,y2) UfiUMbonlerJNl

Comments:

RUN or VIEW with no arguments define the entire screen as the viewport.

(xl,yl) are the upper-left coordinates.

(x2,y2) are the lower-right coordinates.

The fill attribute lets you fill the view area with color.

The border attribute lets you draw a line surrounding the viewport if space
for a border is available. If border is omitted, no border is drawn.

The x and y coordinates must be within the physical bounds of the screen
and must define the rectangle within the screen that graphics map into.
The x and y coordinate pairs will be sorted, with the smallest values placed
first.

Points are plotted relative to the viewpoint if the screen argument is omit
ted; that is, xl and yl are added to the x and y coordinates before the point
is plotted.

It is possible to have a varied number of pairs of x and y. The only restric
tion is that xl cannot equal x2, and yl cannot equal y2.

Points are plotted absolutely if the SCREEN argument is present. Only
points within the current viewpoint will be plotted.

When using VIEW, the CLS statement clears only the current viewport. To
clear the entire screen, you must use VIEW to disable the viewports. Then
use CLS to clear the screen. CLS does not move the cursor to home. Press
CTRL-HOME to send the cursor home, and clear the screen.

261

VIEW Statement

Examples:

The following defines a viewport such that the statement PSET(0,0),3 would
set down a point at the physical screen location 10,10.

VIEW (10,10)—(200,100)

The following defines a viewport such that the point designated by the
statement PSET(0,0),3 would not appear because 0,0 is outside of the
viewport. PSET(10,10),3 would be within the viewport.

VIEW SCREEN (1 0,1 0)-(200,1 00)

262

VIEW PRINT Statement

VIEW PRINT Statement

Purpose:

To set the boundaries of the screen text window.

Syntax:

VIEW PRINT [topline TO bottomline]

Comments:

VIEW PRINT without topline and bottomline parameters initializes the
whole screen area as the text window. The whole screen area consists of
lines 1 to 24; by default, line 25 is not used.

Statements and functions that operate within the defined text window
include CLS, LOCATE, PRINT, and SCREEN.

The screen editor will limit functions such as scroll and cursor movement
to the text window.

For more information, see VIEW.

263

WAIT Statement.
-
2

WAIT Statement.
3

Purpose:

To suspend program execution while monitoring the status of a machine
input port.

-

Syntax:

WAIT port number, n[J]

Comments:.
.

port number represents a valid machine port number within the range
of 0 to 65535.

n and j are integer expressions in the range of 0 to 255.

The WAIT statement causes execution to be suspended until a specified
machine input port develops a specified bit pattern.

The data read at the port is XORed with the integer expression jr, and then
ANDed with n.

If the result is zero, GW-BASIC loops back and reads the data at the port
again. If the result is nonzero, execution continues with the next statement.

When executed, the WAIT statement tests the byte n for set bits. If any of
the bits is set, then the program continues with the next statement in the
program. WAIT does not wait for an entire pattern of bits to appear, but
only for one of them to occur.

It is possible to enter an infinite loop with the WAIT statement. You can
exit the loop by pressing CTRL-BREAK, or by resetting the system.

If j is omitted, zero is assumed.

Examples:

100 WAIT 32,2

Suspends machine operation until port 32 receives 2 as input.

264

WHILE-WEND Statement

WHILE-WEND Statement

Purpose:

To execute a series of statements in a loop as long as a given condition
is true.

Syntax:

WHILE expression

[loop statements]

WEND

Comments:

If expression is nonzero (true), loop statements are executed until the
WEND statement is encountered. GW-BASIC then returns to the WHILE
statement and checks expression. If it is still true, the process is repeated.

If it is not true, execution resumes with the statement following the WEND
statement.

WHILE and WEND loops may be nested to any level. Each WEND matches
the most recent WHILE.

An unmatched WHILE statement causes a “WHILE without WEND” error.
An unmatched WEND statement causes a “WEND without WHILE” error.

265

WHILE-WEND Statement

Examples:
90 'BUBBLE SORT ARRAY A$
100 FLIPS = 1
110 NHILE FLIPS
115 FLIPS=0
120 FOR N=1 TO J-1
130 IF A$(N)>A$(N+1) THEM SNAP A$(N),A$(N+1):FLIPS=1
140 NEXT N
150 NEND

206

WIDTH Statement

WIDTH Statement

Purpose:

To set the printed line width in number of characters for the screen and
line printer.

Syntax:

WIDTH size
WIDTH file number, size
WIDTH "dev", size

Comments:

size, an integer within the range of 0 to 255, is the new width.

file number is the number of the file that is open.

dev is a valid string expression identifying the device. Valid devices are
SCRN:, LPT1:, LPT2:, LPT3:, COM1:, and COM2:.

Changing Screen Width

The following statements are used to set the screen width. Only a 40-
or 80-column width is allowed.

WIDTH size
WIDTH "SCRN:'\size

See the SCREEN statement for more information.

Changing SCREEN mode affects screen width only when moving between
SCREEN 2 and SCREEN 1 or SCREEN 0.

Note
Changing the screen width clears the screen and sets the border screen
color to black.

267

WIDTH Statement

Changing Lineprinter Width

The following WIDTH statement is used as a deferred width assignment for
the lineprinter. This statement stores the new width value without actually
changing the current width setting:

WIDTH "LPT1size

A statement of the following form recognizes this stored width value:

□PEN "LPT1:" FOR OUTPUT AS number

and uses it while the file is open:

WIDTH file number,size

If the file is open to lptl:, lineprinter width is immediately changed to the
new size specified. This allows the width to be changed at will while the file
is open. This form of WIDTH has meaning only for lptl:. After outputting
the indicated number of characters from the open file, GW-BASIC inserts a
carriage return at the end of the line and wraps the output, if the width is
less than the length of the record.

Valid widths for the lineprinter are 1 through 255.

Specifying WIDTH 255 for the lineprinter (lptl:) enables line wrapping.
This has the effect of infinite width.

Any value entered outside of these ranges results in an “Illegal function
call” error. The previous value is retained.

Using the WIDTH statement on a communications file causes a carriage
return to be sent after the number of characters specified by the size
attribute. It does not alter either the receive or transmit buffer.

Examples:

1 0 WIDTH "LPT1 :11,75
20 OPEN "LPT1:" FOR OUTPUT AS #1

6020 WIDTH *1,40

Line 10 stores a line printer width of 75 characters per line.

268

WIDTH Statement

Line 20 opens file #1 to the line printer and sets the width to 75 for subse
quent PRINT #1, statements.

Line 6020 changes the current line printer width to 40 characters per line.

269

WINDOW Statement

WINDOW Statement

Purpose:

To draw lines, graphics, and objects in space not bounded by the physical
limits of the screen.

Syntax:

WINDOW[[SCREEN](xI yl)-(x2,y2)]

Comments:

(xl ji) and (x2y2) are the coordinates defined by the user. These coordi
nates, called the world coordinates, may be any single-precision, floating
point number. They define the world coordinate space that graphics state
ments map into the physical coordinate space, as defined by the VIEW
statement.

WINDOW is the rectangular region in the world coordinate space. It allows
zoom and pan. It allows the user to draw lines, graphics, and objects in
space not bounded by the physical limits of the screen. To do this the user
specifies the world coordinate pairs (xljl) and (x2y2). GW-BASIC then con
verts the world coordinate pairs into the appropriate physical coordinate
pairs for subsequent display within screen space.

WINDOW inverts, with the screen attribute omitted, the y coordinate on
subsequent graphics statements. This places the (xljl) coordinate in the
lower-left and the (xl,y2) coordinate in the upper-right corner of the screen.
This allows the screen to be viewed in true Cartesian coordinates.

The coordinates are not inverted when the SCREEN attribute is included.
This places the (xlyl) coordinate in the upper-left comer and the (x2,y2)
coordinate in the lower-right comer of the screen.

The WINDOW statement sorts the x and y argument pairs into ascending
order. For example

WINDOW (50,50)—(10,10)

becomes

WINDOW (10,10)—(50,50)

270

WINDOW Statement

Or

WINDOW (-2,2)-(2,-2)

becomes

WINDOW (-2,-2)-(2,2)

All coordinate pairs of x and y are valid, except that xl cannot equal x2 and
yl cannot equal y2.

WINDOW with no arguments disables previous window statements.

Example 1:

If you type the following:

NEW
SCREEN 2

the screen uses the standard coordinate attributes as follows:

0,0320,0639,0

\/y increases
320,100

0,199320,100639,199

Example 2:

If you type the following:

WINDOW (-1 ,-1)-(1 ,1)

the screen uses the Cartesian coordinates as defined in the following
statement:

-1 ,10,11 ,1
/\y increases

0,0

\/y decreases
-1 ,10,11 ,1

271

WINDOW Statement

Example 3:

If you type the following:

WINDOW SCREEN (-1 ,-1)-(1 ,1)

the screen uses the non-inverted coordinate as defined in the following
statement:

-1 ,-10,-11 ,-1
/y decreases

0,0

\/y increases
-1,10,11,1

RUN, SCREEN, and WINDOW with no attributes disable any WINDOW
definitions and return the screen to its normal physical coordinates.

272

I

WRITE Statement

WRITE Statement

Purpose:

To output data to the screen.

Syntax:

WRITE[/is£ of expressions]

Comments:

If list of expressions is omitted, a blank line is output. If list of expressions
is included, the values of the expressions are output at the terminal. The
expressions in the list may be numeric and/or string expressions, and must
be separated by commas or semicolons.

When printed items are output, each item will be separated from the last by
a comma. Printed strings are delimited by double quotation marks. After
the last item in the list is printed, GW-BASIC inserts a carriage return/line
feed.

The difference between WRITE and PRINT is that WRITE inserts commas
between displayed items and delimits strings with double quotation marks.
Positive numbers are not preceded by blank spaces.

WRITE outputs numeric values using the same format as the PRINT
statement.

Examples:

10 A = 80 :B=90 :C$="THAT'S ALL"
20 WRITE A,B,C$
RUN
80, 90,"THAT'S ALL"
□ k

273

WRITE# Statement

WRITE# Statement

Purpose:

To write data to a sequential file.

Syntax:

WRITE ffilenum, list of expressions

Comments:

filenum is the number under which the file was opened for output.

list of expressions is a list of string and/or numeric expressions separated by
commas or semicolons.

The WRITE# and PRINT# statements differ in that WRITE# inserts com
mas between the items as they are written and delimits strings with quota
tion marks, making explicit delimiters in the list unnecessary. Another
difference is that WRITE# does not put a blank in front of a positive
number. After the last item in the list is written, a carriage return/line feed
sequence is inserted.

Examples:

Let A$ = “CAMERA” and B$ = “93604-1”. The following statement:

WRITE#1,A$,B$

writes the following image to disk:

"CAMERA", "93604-1"

A subsequent INPUT$ statement, such as the following, would input
“CAMERA” to A$ and “93604-1” to B$:

INPUT#1,A$,B$

274

■

:
■

'

I

_____ :_

' &
ife::

■

h<

i

■

.
i

■■m

