NLQ 401
Matrix
Drucker

5 Schneider

(B) PRINTER MECHANISM

CONTENTS

1. General Composition 1
2. Principles of Operation 1
2.1 Print Mechanism 1
2.2 Carriage Drive Mechanism 2
2.3 Paper Feed and Release Mechanism 3
2.4 Ribbon Feed Mechanism 7
2.5 Control Electronics 9
3. Replacement of Each Part/Assembly 10
3.1 Covers 10
3.2 Print Head 14
3.3 Logic P.C.B. 17
3.4 Transformer 18
3.5 Noise Filter 19
3.6 Power Switch 20
3.7 Power Cord 21
3.8 Timing Belt (T-Belt) 22
3.9 Carriage (CR) Motor 23
3.10 Line Feed (LF) Motor 24
3.11 Platen Assembly 25
3.12 Paper Empty (PE)/Home Position (HP) Switch 26
3.13 Switch Circuit Board 27
4. Adjustment 28
4.1 Head and Platen Gap Adjustment 28
4.2 T-Belt Tension Adjustment 28
5. Lubrication 29

1. General Composition

This printer consists of the following major six blocks:

1) Print mechanism
2) Carriage Drive Mechanism
3) Paper Feed and Release Mechanism
4) Ribbon Feed Mechanism
5) Electronic Control Section
6) Cover Units
2. Principles of Operation

2.1 Print Mechanism

This printer is a bidirectional impact wire dot printer. A character is formed by 9×9 dot matrix.
The print head consists of nine solenoids arranged circularly on a core frame, nine armatures operated by the solenoids, nine print wires, and a wire guide. The nine print wires are arranged vertically by the wire guide at the front end precisely.

As the carriage mounting the print head travels at the printing speed, printing is performed as follows:

1) Character generator transfers print command pulses, which drive the corresponding solenoids.
2) When each of the solenoids is energized, the corresponding armature forces the print wire against the ink ribbon.
3) The impact against the ribbon and paper produces a dot on the paper.

The print timing is determined by the drive pulses of the pulse motor driven by the carriage.
Nine solenoids are selectively driven according to the ROM (CG) data for each column. When a solenoid is deenergized, the corresponding print wire returns to the original position by the compression spring force.

2.2 Carriage Drive Mechanism

The carriage (CR) motor rotation is transmitted via a motor gear to the carriage drive pulley which is linked with the carriage idle pulley by a timing belt (T-belt) MM310-3.2.

Since the T-belt is secured to the carriage with a pressure plate, clockwise or counterclockwise rotation of the CR motor causes the carriage to move leftward or rightward, being supported and guided by a guide bar and frame plate.

- Home Position (HP) Switch

A Home position (HP) switch is installed on the left end of the frame. When the carriage reaches the left end of its movable range, the projecting part (A) of the carriage pushes this HP switch, thereby detecting carriage home position.

2.3 Paper Feed and Release Mechanism

2.3.1 Paper Feed Mechanism

As shown below, rotation of the line feed (LF) motor is transmitted via a motor gear and line feed idle gear to the platen knob gear. Since the platen knob is fixed with the platen, the platen rotates when the LF motor runs.

Three paper feed rollers are located just below the platen. Since they are pressed against the platen by three springs when the paper release lever is set to the CLOSE position, forms inserted between the platen and the paper feed rollers are fed when the platen rotates.

[Paper is fed.]

When the line feed switch is pressed once with the ONLINE lamp not lighting, the paper is advanced by one line. If the line feed switch is held down, the paper is advanced continuously line by line.

2.3.2 Paper Release Mechanism

As shown below, when the paper release lever is set to the OPEN position, the paper release shaft is rotated via the release gear. This causes three springs holding the paper feed rollers to be released, thus separating the paper feed rollers from the platen.
This state allows correct paper loading and lateral paper position adjustment.
[Paper is released.]

- Paper Empty (PE) Switch

This printer is equipped with a paper empty (PE) switch in the paper path. When paper is loaded, the PE switch actuator is held down, which permits printing. If there is an absence of paper, the PE switch actuator goes up and opens the PE switch, by which the paper empty state is detected and printing is prohibited.

[Paper is loaded.]

2.4 Ribbon Feed Mechanism

The carriage (CR) motor rotation is transmitted to the carriage idle pulley via a motor gear, carriage drive pulley, and T-belt MM310-3.2. The rotation is further transmitted via an idle pulley shaft fixed to the idle pulley, and a ribbon idle gear to the ribbon drive gear.
The idle pulley and the ribbon drive gear rotate only in the forward direction (only when the carriage moves from left to right) using each spring clutch installed in their shafts.

When the ribbon cassette is mounted on the cassette holder of the body cover, the ribbon take-up gear-A meshes with the ribbon drive gear on the frame unit. When the ribbon take-up gear-A rotates, the ribbon take-up gear-B also rotates, feeding the ribbon pinched between those gears.

The proper tension of the ribbon is maintained by the tension spring inside the ribbon cassette.

2.5 Control Electronics

The electronic control section consists of two P.C.B.s; main CPU P.C.B. and switch P.C.B. For the block diagram of the printer electronics, refer to Chap. C, Control Electronics.

2.5.1 Main CPU P.C.B.

Main CPU P.C.B. is equipped with a one-chip CPU, ROM, I/O ports, clock pulse generator, parallel or serial interface circuit, print head drive circuit, paper feed drive circuit, carriage motor drive circuit, reset circuit, home position detect circuit, and voltage stabilizer.
(1) One-Chip CPU

This is an N-MOS type CPU, which controls the entire electronic system including parallel and serial interfaces, print head drive, carriage and paper feed stepping motors, and indicator LEDs. The CPU also checks ON LINE key and LF key status, their transitions, and system environment.
(2) ROM

The ROM is an 8 K byte memory which stores μ computer programs and a character generator.
(3) I/O Ports

I/O ports multiplex the CPU's I/O trunk. Output ports are used to output drive signals from the CPU to the head drive circuit, paper feed motor drive circuit, carriage motor drive circuit, and serial/parallel interface circuit. Input ports are used to input DIP SW status data and home position detect signal to the CPU
(4) Clock Pulse Generator

The clock pulse generator is built in the CPU chip described above, which operates with external parts. It supplies a highly stabilized clock pulse (11 MHz) with external ceramic oscillator and ceramic capacitor
(5) Interface Circuits

There are two types of interface circuits: 8-bit parallel (Centronics) and serial interfaces.
(6) Print Head Drive, Paper Feed Drive, Carriage Motor Drive Circuits

Control signals from the CPU are given through these circuits to each component.
(7) Reset Circuit

This circuit generates and sends a RES signal to the CPU when the power switch is turned on and off.
(8) Home Position Detect Circuit (Limit Switch) This circuit detects whether the carriage is at the home position or not.
(9) Voltage Stabilizer

This circuit generates $+5,+24$ and ± 9 volt DC outputs rectified and filtered by a diode bridge and capacitor, from the $A C$ source. The +5 volts are stabilized by the 3 -terminal regulator.
2.5.2 Switch P.C.B.

This P.C.B. has ON LINE and LF keys, and indicator LEDs (red and green).

3. Replacement of Each Part/Assembly

This section describes the replacement procedures for each major part or assembly.

Warning: Always unplug the printer power cord from the AC outlet before assembling or disassembling parts.
3.1 Covers

DISASSEMBLY

Caution: When disconnecting connectors, do not pull the wires but the connector body.
(1) Raise the top cover (A) from the front side to unlock, and remove the top cover by pulling it forward.

(A) Top Cover

(2) Remove the two body cover mounting screws © .

(3) Raising the front side of the body cover (B) slightly, disconnect the switch circuit board harness connector (C).

The body cover (B) can be removed from the bottom cover.
(4) Remove the two frame mounting screws (b).

(6) Move the print head to the right end, and pull out the tab for the connector of the print head assembly to detach the connector. (See Section 3.2 Print Head.)

(7) Detach each connector of the CR motor (G), paper empty/home position (PE/HP) harness assembly (\mathbb{H}) and LF motor $(\mathrm{I}$.

The frame unit (E) and the bottom cover (F) are separated.

Caution: When connecting cables, set the connector correctly along the lead guide.
(8) Holding the frame unit (E) above the bottom cover \mathbb{F}, connect each connector of the CR motor (G), PE/HP harness assembly $(\mathbb{H}$ and LF motor (I).
(9) Taking care not to pinch the lead wires between the frame unit and the bottom cover, reposition the frame unit on the bottom cover.
(10) Tighten the two frame mounting screws (b).
(11) Insert the head cable into the head connector. (See Section 3.2 Print Head.)
(12) Tighten the two frame mounting screws (b).
(13) Reposition the electrostatic wire, and tighten the screw (c).
(14) Fit the rear end of the body cover to the rear end of the bottom cover, and close the body cover.
(15) With the front side of the body cover raised, insert the switch circuit board harness connector (C) .
(16) Taking care not to pinch the wires, reposition the body cover.
(17) Tighten the two body cover mounting screws (a).
(18) Reposition the top cover in the reverse order of the removal procedure.

Note:
A bottom cover is equipped with knockouts on the rear side for interface connection. The knockouts are cut away when the logic P.C.B. is installed in the factory.
If only a bottom cover is replaced, cut out the knockouts according to the interface to be attached.
For CDCC, cut out knockout (A) using a nipper. For RS 232C, cut out knockout (B).

(Rear View of Bottom Cover)

3.2 Print Head

INSTALLING

(1) Remove the top cover, following cover removal procedures described in Section 3.1.
(2) Remove the ribbon cassette, if mounted.
(3) Move the print head to the right end.
(4) Insert a small flat screwdriver or ball-point pen between the flat cable and the folded tab from the left, and pull out the tab.

(5) Hold the tab by hand, and pull the cable upward.
(6) Slide the pressure plate to the right.

- Unless the print head can be pulled out, retry while sliding the head fixing spring toward the platen by using a pointed tool such as tweezers, as shown beiow.

INSTALLING
(8) Place a new print head on the carriage, but do not push down the head completely.

(9) Guide the cable between the carriage and the cable receiver.
(10) After setting the pressure plate, secure it into position by sliding it to the left.

- Make sure that the lower end of the pressure plate is placed in the cable receiver.

(11) Press the print head downward completely.
(12) Insert the flat cable into the connector with the tab folded.

(13) Make sure that the cable is arranged properly and the carriage moves smoothly right and left.
(14) To assure proper print head installation, perform the self test. (See Instruction Manual Section 3.2 Performing Self Test.)

DISASSEMBLY

(1) Remove the top cover, body cover and frame unit, following cover removal procedures described in Section 3.1

(2) Disconnect the connector for transformer assembly (A).

Caution: When disconnecting connectors, do not pull the wires but the connector body.
(3) Remove logic P.C.B. mounting screw (a).
(4) While manually widening two P.C.B. holders (B) in the direction of the arrows, remove the P.C.B. by raising it upward and forward.

ASSEMBLY

(5) Fit the two holes of a new P.C.B. to each boss (C) on the rear side of the bottom cover, and then lower the P.C.B.

Caution: Make sure that the P.C.B. is firmly fixed to the holders (B).
(5) Tighten logic P.C.B. mounting screw (a).
(6) Connect the connector of the transformer assembly (A).
(7) Reposition the frame unit, body cover and top cover following cover installation procedures described in Section 3.1.

3.4 Transformer Assembly

REMOVAL

(1) Remove the top cover and body cover, following cover removal procedures described in Section 3.1.

Transformer Assembly

(2) Disconnect the transformer connector (A) from the P.C.B.
(3) Extract the two fasten terminals (1) and (3) from the noise filter.
(4) Remove the two transformer mounting screws (a).
(5) Slide the transformer slightly backward, and remove the transformer.

Install a new transformer assembly in the reverse sequence of the removal procedure.

3.5 Noise Filter

REMOVAL

(1) Remove the top cover and body cover, following cover removal procedures described in Section 3.1 .

(2) Extract the five fasten terminals 1 to 5 (1 and 3 for transformer, 2 for ground, 4 for power cord, and 5 for power switch).
(3) Remove the mounting screw (b).
(4) Sliding the noise filter upward, remove it.

Install a new noise filter in the reverse sequence of the removal procedure.

REMOVAL

(1) Remove the top cover and body cover, following cover removal procedures described in Section 3.1.

(2) Remove the noise filter mounting screw (b) , and hold the noise filter upward.
(3) While slacking the two pawls fixing the power switch toward the front, extract the power switch toward the rear.

Caution: Excessively bending of the pawls may cause them to break.
(4) Extract the two fasten terminals 6 and 7 (6 for noise filter and 7 for power cord).

Install a new power switch in the reverse sequence of the removal procedure.

REMOVAL

(1) Remove the top cover and body cover, following cover removal procedures described in Section 3.1.
(d)

(2) Remove the noise filter mounting screw (b) , and move the noise filter upward.
(3) Extract the two fasten terminals (4) and (7) ((4) for noise filter and (7) for power switch).
(4) Remove the screw (C) for ground terminal.
(5) Remove the two cord holder screws (d), and pull out the cord from the hole on the rear side of the bottom cover.

Install a new power cord in the reverse sequence of the removal procedure.

REMOVAL
(1) Following cover removal procedures described in Section 3.1, remove the top cover and body cover, and separate the frame unit from the bottom cover.
(2) Remove the print head following print head removal procedures described in Section 3.2 Print Head.

(3) Remove the ribbon feed (RF) unit mounting slews (a), and RF unit.
(4) Remove the frame plate mounting screw (b).
(5) Sliding the frame plate (A) left, pull it forward.
(6) Take off the T-belt (B).

Install a new T-belt in the reverse sequence of the removal procedure.

Caution: After replacement, always adjust the belt tension. (See Section 4.2 T-Belt Tension Adjustment.)

3.9 Carriage (CR) Motor

REMOVAL

(1) Following cover removal procedures described in Section 3.1, remove the top cover and body cover, and separate the frame unit from the bottom cover.

(2) Remove the two motor mounting screws (a), and the CR motor from the frame unit.
(3) Remove snap ring (e).
(4) Pull out plain washer (d), carriage I pulley flange (c), and carriage drive pulley (b) from the motor shaft.
(5) Install parts (b) , (C), (d) and (e) removed in step (4) onto a new CR motor.

Install the new CR motor in the reverse sequence of the removal procedure.
Caution: After replacement, always adjust the belt tension. (See Section 4.2 T-Belt Tension Adjustment.)

REMOVAL

(1) Following cover removal procedures described in Section 3.1, remove the top cover and body cover, and separate the frame unit from the bottom cover.

(2) Turn the frame unit upside down.
(3) Remove the two LF motor mounting screws (a).
(4) Take off the LF motor from the frame unit and the LF idle gear.

INSTALLATION

(5) Engaging the motor gear with the LF idle gear and the platen knob gear, install a new LF motor to the frame unit.
(6) Tighten the two LF motor mounting screws (a).

Caution: When installing the LF motor, be sure to press the motor toward the platen and then tighten the screws.
(1) Following cover removal procedures described in Section 3.1, remove the top cover and body cover, and separate the frame unit from the bottom cover.

(2) Opening the pawls of each platen shaft bearing outward, remove the platen assembly upward.

Install a new platen assembly in the reverse sequence of the removal procedure.
Caution: Make sure that the pawls of each platen shaft bearing are firmly inserted to the frame.
(1) Following cover removal procedures described in Section 3.1, remove the top cover and body cover, and separate the frame unit from the bottom cover.
(2) Turn the frame unit upside down.

(3) Opening the pawls of the PE switch holder (a) in the direction of the arrows, remove the PE switch holder from the frame unit.
(4) Opening the pawls of the PE switch holder (a) outward, remove the PE switch © from the holder.
(5) Remove the HP switch mounting screw (b), and remove the HP switch (B) .

Install a new PE/HP switch assembly in the reverse sequence of the removal procedure.

Caution: Make sure that the pawls of the PE switch holder are holding the PE switch and the frame unit firmly.

3.13 Switch Panel Assembly

(1) Remove the top cover and body cover following cover removal procedures described in Section 3.1.
(2) Turn the body cover upside down.

(3) Opening the four pawls outward, take off the switch panel assembly.

Install a new switch panel assembly in the reverse sequence of the removal procedure.

Caution: Make sure that the switch circuit board is firmly fixed to the body cover by the pawls.

4. Adjustment

This section describes the mechanical adjustment procedures for the head and platen gap, and T-belt tension.

4.1 Head and Platen Gap Adjustment

Improper gap between the head and platen causes poor print quality such as faint or smeared printouts.

If such is the case, adjust the head and platen gap with the head-platen gap adjustment cams located on both sides of the frame, making the gap from 0.4 to 0.48 mm .

4.2 T-Belt Tension Adjustment

Improper T-belt tension may cause belt tooth skipping or carriage travel overload. After T-belt or CR motor replacement, always adjust the belt tension as described below:
(1) Move the carriage to the left end of the frame.
(2) Loosen the two CR motor mounting screws.
(3) Moving the CR motor, adjust the belt tension so that the belt flexture becomes 8 to 10 mm when a vertical load of 100 g is applied at the center of the belt span.
(4) Fasten the CR motor mounting screws.

5. Lubrication

(A) Lubricate the following points with silicone oil KF961 (100 cs) manufactured by Shin-etsu Silicone Ltd. or its equivalent.

Apply small amounts of oil to each lubrication point uniformly so that the oil does not drip.

1) Entire surface of the guide bar

2) Surface of the shaft to be fit in the LF idle gear

(B) Lubricate the following points with grease B:
3) Paper Feed (PF) Roller Assembly

- Guide (a) for the paper feed (PF) roller shaft assembly (2 points each PF roller assembly)
- PF roller shaft surface (b) in contact with the roller holding spring (2 points each PF roller assembly)
(b)

2)

CR Motor Shaft Fitting the Carriage Drive Pulley

- Grease the CR motor shaft.
- Rotating the carriage drive pulley, fit it to the CR motor shaft.

Idle Pulley Unit Assembly

- Surface of the shaft (d) to be fit in the ribbon drive gear (a).
- Grease the shaft (d).
- Set the washer (c) and the spring clutch (b) to the shaft (d), and grease over the spring clutch so as to be buried in grease.
- Fit the ribbon drive gear (a) to the shaft (d).
- Surface of the shaft (f) to be fit in the ribbon idle gear (e).
- Grease the shaft (\oplus), and then fit the ribbon idle gear (e) to the shaft.
- Surface of the carriage idle pulley shaft (g) to be fit in the ribbon feed clutch gear \mathbb{k}
- Grease the carriage idle pulley shaft (g).
- Mount the shaft (B) into the I pulley holder (h).
- Set the washer (i) and the spring clutch (1) to the shaft (G), and grease over the spring clutch so as to be buried in grease.
- Fit the ribbon feed clutch gear (\mathbb{k} to the shaft (g) .

(C) CONTROL ELECTRONICS

CONTENTS

1. Configuration 1
2. CPU 2
3. CPU and its Related Circuits 5
4. Interface Circuits 7
4.1 Centronics Interface Circuit 7
5. Switch Panel 11
6. Limit Switch 12
7. Paper Feed Drive Circuit 13
8. Carriage Drive Circuit 14
9. Print Head Drive Circuit 15
10. DIP SW 18
11. Reset Circuit 19
12. Power Supply Unit 20
Appendix: Wiring Scheme 21

PRINCIPLES OF OPERATION

1. Configuration

Figure 1.1 Block Diagram of Printer Electronics

- This printer has either a B488013 or B488009 Logic circuit board.
(1) P.C.B. B488013 has a μ PD7810 CPU and external ROM.
(2) P.C.B. B488009 has a μ PD7809 CPU and internal masked ROM. It has no external ROM circuit.

2. CPU

This printer adopts a μ PD7810 CPU or μ PD7809 CPU (both manufactured by NEC). The μ PD7810 and μ PD7809 are controlled by an external ROM and by an 8 K byte internal masked ROM built in the CPU, respectively.
P.C.B. B488013 has an external ROM circuit, and is controlled by μ PD7810 CPU and the external ROM. P.C.B. B488009 has no external ROM circuit, and is controlled by only μ PD7809 CPU. Each CPU incorporates 256 byte RAM in it. These two CPUs are not hardware-compatible each other. An $\mathbf{8}$ bit A/D converter on the μ PD7810 is substituted for a 16 level comparator on the μ PD7809. However, the basic operations of these CPUs are identical.

Figure 2.1 shows pin connections of each CPU.
μ PD7810 on P.C.B. B488013

PA7-0	Port A	MODEO, 1	Mode0, 1
PB7-0	Port B	X1, $\times 2$	Crystal
PC7-0	Port C	AN7-0	Analog Input
PD7-0	Port D	$\overline{\mathrm{RD}}$	Read Strobe
PF7-0	Port F	$\overline{W R}$	Write Strobe
NMI	Non Maskable Interrupt	ALE	Address Latch Enable
INT1	Interrupt Request	$\overline{\text { RESET }}$	Reset

μ PD7809 on P.C.B. B488009

PAO $0-1$	64	$\ldots \mathrm{Vcc}$
PA1 0 - 2	63	$\bigcirc \vee D D$
PA2 0 - 3	62	\longrightarrow PD7
PA3 $0-4$	61	\bigcirc PD6
PA4 $0-5$	60	\bigcirc PD5
PA5 0 - 6	59	\bigcirc PD4
PA6 0	58	\bigcirc PD3
PA7 0	57	\bigcirc PD2
PBO - - 9	56	\bigcirc PD1
PB1 -10	55	\bigcirc PDO
PB2 $0-11$	54	\bigcirc PF7
PB3 -12	53	\bigcirc PF6
PB4 $0-13$	52	\bigcirc PF5
PB5 $0-14$	51	\bigcirc PF4
PB6 $0-15$	50	\bigcirc PF3
PB7 $0-16$	49	\bigcirc PF2
$\mathrm{PCO} / \mathrm{T} \times \mathrm{D}$ - 17	48	\bigcirc PF1
$\mathrm{PC1} 1 / \mathrm{R} \times \mathrm{D} 0-18$	47	\bigcirc PFO
PC2/SCK -19	46	\bigcirc ALE
PC3/INT2 -20	45	\bigcirc WR
PC4/TO -21	44	\bigcirc RD
PS5/Cl -22	43	\bigcirc HLDA
PC6/COO 023	42	\bigcirc HOLD
$\mathrm{PC7/CO1}-24$	41	\bigcirc PT7
NMI - 25	40	- PT6
INT1 - 26	39	\bigcirc PT5
MODE1 - 27	38	\bigcirc PT4
RESET - 28	37	\bigcirc PT3
MODEO - 29	36	\bigcirc PT2
$\times 2$ - ${ }^{30}$	35	\bigcirc PT1
X1 a ${ }^{31}$	34	\bigcirc PTO
Vss a 32	33	$\bigcirc V_{T H}$
Port A	PT7-0	Port T
Port B	RD	Read Strobe
Port C	WR	Write Strobe
Port D	ALE	Address Latch Enable
Port F	RESET	Reset
Non Maskable Interrupt	\checkmark TH	Threshold Voltage
Interrupt Request	HOLD	Hold Request
1 : ModeO, 1	HLDA	Held Acknowledge

Figure 2.1 Pin Connections (Top View)

Table 2.1 Pin Names and Functions (μ PD7810)

Pin No.	Name	1/0	Function
1-8	PAO - PA7	I/O	Port A
9-16	PB0 - PB7	1/O	Port B
17-24	PC0 - PC7	1/O	Port C
25	$\overline{\mathrm{NMI}}$	Input	Non Maskable Interrupt
26	INT1	Input	Interrupt Request
27	MODE1	I/O	Mode 1
28	RESET	Input	Reset
29	MODEO	I/O	Mode 0
30-31	X2-X1		Crystal
32	Vss		Ground
33	AVss		Signal Ground for A/D Converter
34-41	ANO - AN7	Input	Analog Input
42	Varef	Input	Reference Voltage
43	AV cc		Power Source for A/D Converter
44	$\overline{\mathrm{RD}}$	Output	Read Strobe
45	$\overline{W R}$	Output	Write Strobe
46	ALE	Output	Address Latch Enable
47-54	PFO - PF7	I/O	Port F
55-62	PD0 - PD7	I/O	Port D
63	VDD		+5V for RAM
64	Vcc		+5V

Table 2.2 Pin Names and Functions (μ PD7809)

Pin No.	Name	1/0	Function
1-8	PAO - PA7	I/O	Port A
9-16	PB0 - PB7	I/O	Port B
17	PCO/TXD	1/0	Port C
18	PC1/RXD	1/0	
19	PC2/ $\overline{\text { SCK }}$	1/0	
20	PC3/INT2	1/O	
21	PC4/TO	1/0	
22	PC5/CI	1/0	
23	PC6/COO	1/0	
24	PC7/CO1	1/0	
25	$\overline{\mathrm{NMI}}$	Input	Non Maskable Interrupt
26	INT1	Input	Interrupt Request
27	MODE1	1/O	Mode 1
28	RESET	Input	Reset
29	MODE0	I/O	Mode 0
30-31	X2 - X1		Crystal
32	$\mathrm{V}_{\text {ss }}$		Ground
33	$V_{\text {TH }}$	Input	Threshold Voltage
34-41	PTO - PT7	Input	Port T
42	HOLD	Input	Hold Request
43	HLDA	Output	Hold Acknowledge
44	$\overline{\mathrm{RD}}$	Output	Read Strobe
45	$\overline{\mathrm{WR}}$	Output	Write Strobe
46	ALE	Output	Address Latch Enable
47-54	PF0 - PF7	1/O	Port F
55-54	PD0 - PD7	I/O	Port D
63	VDD		+5V for RAM
64	Vcc		Ground

3. CPU and its Related Circuits

M50780 (Compatible with TMS1025N2LC manufactured by Texas Instruments) is used as an extension port of CPU. This extension port acts as an output port when the MS pin is High; and it acts as an input port when the MS pin is Low.

Four bits controllable in one group can be selected by address pins S0, S1 and S2. R0, R1, R2 and R3 are data pins for the CPU. STD pin transmits data latch signals to the output ports when this extension port acts as an output port. And when this extension port acts as an input port, turning CE pin High transfers data to CPU.

Figure 3.1 Paper Feed Drive Circuit

Figure 3.1 shows a paper feed drive circuit on P.C.B. B488013. P.C.B. B488009 also has the same circuit. The M50780 extension port has $28(7 \times 4)$ ports. Four ports of P2X group are used in the above example. Address pins S0, S1 and S2 are set to 2, and data is set on the data pins R0, R1, R2 and R3. Turning STD pin Low from High causes the data on the data pins to be latched and output to Ports P20, P21, P22 and P23.

As mentioned before, P.C.B. B488013 is controlled by an external ROM. The ROM circuit is shown in Figure 3.2.

Figure 3.2 External ROM Circuit

The capacity of the ROM is usually 8 K bytes, but it is expandable to 16 K bytes. The access time must be not more than 350 ns. Ports PDO ~ PD7 have multiplexing capability of address data, and low-order addresses are latched in 74LS373 by an ALE signal.
No circuit using data bus exists except for this circuit.
P.C.B. B488009 has not this circuit.
4. Interface Circuits

This printer has a Centronic Interface as a standard feature. Optional RS-232C Interface is also available.
4.1 Centronics Interface Circuit

Figure 4.1 Centronics Interface Circuit

Figure 4.1 shows a Centronics Interface circuit on P.C.B. B488013. This configuration is identical with that on P.C.B. B488009.
Eight bit data input from the connector J 1 is latched in IC74LS374 by DATA STROBE signal. At the same time, F/F IC74LS74 is also set to 1 . The output of the DATA F/F is connected to Interrupt pin INT1 of CPU, and also causes BUSY signal to turn High. CPU reads in the latched data of the 74LS374 by the INT1 interruption. After CPU completes the data read operation, the DATA F/F is cleared by
an $\overline{\mathrm{SCA}}$ signal. Then, BUSY is turned to Low, and $\overline{\mathrm{ACKNLG}}$ is transmitted.

$\overline{\text { ACKNLG }}$

Figure 4.2 Centronics Interface Timing

The BUSY time is approximately 350μ s if the data is alphanumeric Kana data, and the pulse width of the $\overline{\mathrm{ACKNLG}}$ is approximately 6μ.

When there is no paper in the printer, PE signal is turned to High, with more three lines feeding after hardware detects the paper out status. $\overline{\text { FAULT }}$ signal is turned to Low when PE, SELECT OFF or MOTOR ERROR occurs. $\overline{\text { INIT }}$ signal is fed to reset circuits

5. Switch Panel

Figure 5.1 Switch Panel and its Related Circuits

The above diagram shows a switch panel and its related circuits of P.C.B. B488013 using input extension port.
On P.C.B. B488009, input signals are connected to I/O ports of the CPU.

ONLINE SW signal is latched and input into IC74LS74 in order to reduce the CPU occupation. ONLSW, which is input to another port, inputs switch status at power on.

The moment $\overline{\text { LFSW }}$ signal is turned to Low (in offline status), one line paper feed is performed.
Continuity of Low status for approx. 0.5 sec . turns the printer into the continuous forms feed mode. The mode is continued until $\overline{\mathrm{LFSW}}$ signal is turned to High.

If only $\overline{\operatorname{LFSW}}$ signal is Low at power on, the printer turns into the self printing mode. If $\overline{\mathrm{LFSW}}$ signal is Low and ONLSW signal is High, the printer is kept in HEX DUMP mode.
"ON LINE" LED indicates online status. If there is not any malfunction in the printer at power on, the printer is in online state automatically.
"ERROR" LED comes on at PE status, and blinks on and off at MOTOR ERROR.
"POWER" LED comes on by only +5 V .
6. Limit Switch

Figure 6.1 Limit Switch and its Related Circuits

The above figure shows a limit switch and its related circuits of P.C.B. B488013 using input extension port. On P.C.B. B488009, input signals are connected to I/O ports of the CPU. Connector P10 shown in this figure is not used.
$\overline{\text { HPSW }}$ signal is turned to Low when the carriage is sensed at the left end.
PESW signal is turned to High when there is no paper in the printer.
A carriage is automatically moved to the left end at power on or reset. In this operation, if it takes longer than the specified time, MOTOR ERROR occurs.

After the carriage is normally sensed at the left end, the carriage is moved right up to the position immediately preceding the print start position. If the carriage has been sensed at the left end longer than the specified time, MOTOR ERROR occurs.

7. Paper Feed Drive Circuit

See Figure 3.1 for a paper feed drive circuit.
The LF motor is a PM type stepping motor (200 pps) utilizing $2-2$ phase excitation system. While the motor is stopped, the holding torque depends on the detent torque of the motor.

The paper feed rate is $1 / 216^{\prime \prime}$ per step, or $1 / 6^{\prime \prime}$ for 36 steps.

\bar{B}	\bar{A}	B	A
1	1	0	0
0	1	1	0
0	0	1	1
1	0	0	1

Paper feed operation is performed by the excitation order shown on the left.

In this circuit, 8 pulse slew up/down system is utilized basically. Driver IC M54567 can be replaced with its second source TD62308AP.

Basic Circuit Diagram

Figure 7.1 Paper Feed Drive IC

8. Carriage Drive Circuit

Figure 8.1 shows a carriage drive circuit on P.C.B. B488013. The same circuit is configured also on P.C.B. B488009.

Figure 8.1 Carriage Drive Circuit

The CR motor is a PM type stepping motor. The exciting system is $2-2$ phase excitation.

VCMP signal is usually +5 V . CRPLS signal is turned to Low, and the motor is supplied with holding current from +8 V power source while the motor is stopped.

The carriage feed rate is $1 / 60^{\prime \prime}$ per step, and 300 pps at the pica pitch printing.

In the case of the excitation order described in Sect. 7 Paper Feed Drive Circuit, the carriage is moved in a reverse direction.

In this circut, 8 pulse slew up/down system is utilized basically. CRPLS signal is turned to High, and the motore is driven by +24 V power source while the motor is rotating.

Same drive IC is used on the paper feed drive circuit.
Pica size is $1 / 10^{\prime \prime}$, and one pica letter printing requires 6 steps.

9. Print Head Drive Circuit

Figure 9.1 shows a head drive circuit of P.C.B. B488013.
The same circuit is configured on P.C.B. B488009 except for some port names of CPU.

Figure 9.1 Head Drive Circuit
The head solenoid is driven by keeping $\overline{\mathrm{HPLS}}$ signal Low after the data is set on output port with negative logic.

At this time Vcc pins of the driver IC are activated.
It means that the both head solenoid drive transistors at the power source side and at the ground side are always concurrently activated.

The transistor TR12 at the power source side is equipped with a thermal sense resistor (PTH). When the PTH with a positive thermal coefficient senses approx. $60^{\circ} \mathrm{C}$, the voltage level of the A / D converter input port AN6 soars to 2.5 V . While the AN6 maintains 2.5 V , BUSY time is extended approx. 0.5 sec . after printing in order to protect the print head from overheating.

Since the +24 V power source is non-stabilized, it is required to properly adjust the head drive time according to the power source voltage in order to stabilize the print quality. For this purpose, the A / D converter input
port AN7 is used. Deviation of the 24 V power source divided by the Zener diode and resistors is applied to the AN7 pin of the CPU as shown below.

Figure 9.2 A/D Converter Input Port
Figure 9.2 shows an A/D converter input port on the P.C.B. B488013 with μ PD7810 CPU. The input pins "AN" for A/D converter ports are named "PT" for comparator input ports on P.C.B. B488009 with $\mu \mathrm{PD} 7809 \mathrm{CPU}$.

Figure 9.3 Right Pulse Width to +24V Power Source Voltage

Figure 9.4 Head Drive Timing

Three ms cycle of HPLS signal is equal to full dot timing, and the center timing is for half dot printing.
10. DIP SW

Figure 10.2 DIP SW

DIP SW is for function selection. It should be noted that SW\#7 and SW\#8 are wire-ORed to the parallel interface connector J1.

Refer to each manual, since definitions of other switches differ depending on each specification.
The switch state exchanges are only allowed in power-off state.
P.C.B. B488013 has an input extension port, while on P.C.B. B488009 DIP SW signals are directly input to CPU.
11. Reset Circuit

Figure 11.1 Reset Circuit
During any of the following periods, $\overline{\text { RESET }}$ signal is turned to Low, and CPU is in initial status.
(1) Charging time to C 30 through R 20 at power-on.
(2) Period during +5 V power source voltage $<4.0 \mathrm{~V}$ at power-off.
(3) Period while INIT signal from interface remains Low. (20 ms or more required)

The width of the $\overline{\operatorname{RESET}}$ signal at power-on is approximately 50 ms .
Figure 11.1 shows a reset circuit of P.C.B. B488013. The same circuit is configured on P.C.B. B488009.

Note: Both CLMP and CLMP signals are not used usually.

12. Power Supply Unit

+24 V power source is non-stabilized. The output voltage is approximately 27 V at nominal input and no load, and is approximately 24 V when self-printing is performed at nominal input.
+5 V power source is stabilized by 3 -terminal regulator 3052 . The output voltage is usually $5 \pm 5 \% \mathrm{~V}$.
+8 V power source is fed from input of the regulator.
The output voltage is approximately 7.5 V at nominal input.
-8 V power source is required for optional serial interface installation. The output voltage is approximately -9 V at nominal input.

The power switch has break capability. Even if the breaker is fired and the AC input is cut off, the indicator remains ON. This status is released by the switch operation, OFF and ON.

The power transformer has input taps. Unused lead wires of the taps must be completely stored in the pocket of the transformer.

(D) TROUBLESHOOTING

Failure Mode		Check Procedures	Probable Fault Locations
(1) Inoperable at Power ON ('POWER" LED is OFF)		Ols the power cable connected properly ? Is the fuse normal ? Are power outputs normal ?	Faulty connection from power cable to the connector of the power transformer. Fault in fuse on the Logic circuit board. Fault in the regulator 3052.
(2) Inoperable at Power ON ("POWER" LED is ON.)		OIs "ERROR" LED flickered? Ols +24 V power source normal ? - Does MOTOR ERROR occur ?	[If flickered] -MOTOR ERROR including CR drive circuit and motor itself. [If +24 V source has been failed.] Fault in fuse on the Logic circuit board. Fault in the bridge rectifier or the power transformer. [Otherwise] - Fault in reset circuits or CPU.
(3) Print head does not come to the print start position.			Faults in the positions described in (2) or in HP switch.
(4) Misprinting		O Is the interface cable connected properly?	- Fault in the interface circuit.
(5) Carriage is moving but no printing.		O Is the head cable connected properly?	- Wrong connection of the head cable - Fault in the head drive circuit, particularly in the HPLS signal circuit.
(6) No impact on certain pin(s)		After the head replacement, is it still wrong?	- Fault in the print head - Fault in the head drive IC or in the prestage expansion ports. * Reference Data Resistance of the head solenoid coils is approx. 33Ω to common pins 5 and 6 .
(7)	LF motor is out of control.	- Any heavy load in the related mechanism ? -Any slip on the related gears ?	[If there are not such mechanical faults] - Fault in the paper feed drive IC on Logic circuit board. - Fault in the extension port. *Reference Data Terminal to terminal (green to common) resistance of LF motor is approx. 160Ω.
(8)	CR motor is out of control.	- Any heavy load in the related mechanism or ribbon path ? -Any slip on the related gears?	[If there are not such mechanical faults] - Fault in the carriage drive circuit. *Reference Data Terminal to terminal (red to common) resistance of CR motor is approx. 130Ω.
(9)	Serial input is inoperable even with serial I/O option.	- Is DIP SW1 specified properly ? o<Particularly, is No. 8 off ?>	[If DIP SW1 is properly specified.] Fault in the RS-232 circuit or -8 V power source. - Fault in the serial I/O port of CPU (rarely)

Schneider Rundfunkwerke GmbH \& Co
Türkheim/Unterallgäu

Silvastraße 1 Postfach 120

Fernruf (08245) 51-0
Fernschreiber 0539128

ERSATZTEILLISTE
GUELTIG AB 30.10.85

2728500-72400 DRUCKER NLQ 401
BLATT

BEST-NUMMER ARTIKELBEZEICHNUNG

2922700-501
2922900-429
2923400-4181
2923500-4217
2976200-4186
2923700-429
2921900-429
2976300-429
2976400-429
2976500-501
2976600-3282
2976700-4152
2976800-501
2976900-418
2977000-429
2977100-501
2925200-501
2925300-429
-925400-502
2925500-502
2925600-327 SCHALTER (PAPIERENDE)
2925700-3243 TRANS FORMATOR
2925800-3251 STOERSPANNUNGSFILTER
2925900-3272 NETZSCHALTER
2926000-4161 FEDER
2926100-3411 NETZANSCHLUSSKABEL
2926200-3251 FERRITKERN KPL.
2926300-501 DRUCKKOPF KPL.
2926400-424 GEHAEUSE-UNTERTEIL
2926500-424 GEHAEUSE-OBERTEIL
2926600-424 ABDECKUNG
2926700-433 SCHALTERABDECKUNG
2926800-72800 BENUTZER-HANDBUCH
NLQ 401
FK NLQ 401

ZEICH	
POSEIS	$0 . M S T$
	41,90
1	12,80
2	3,85
3	0,50
5	1,20
7	0,95
9	0,75
$3-1$	3,90
$3-2$	0,60
	85,60
$4-1$	79,50
$4-9$	12,70
	14,30
$5-1$	9,20
$5-2$	0,60
$6-1$	57,80
	55,50
$6-4$	39,00
$7-1$	26,70
$7-2$	518,20

12,20
U32291001
U32151001
U32160001
U23175000
U32294001
U32517001
U23324001
U23107002
U23113001
U23114001
U23117001
596504001
10-1
73.30

10-
47.50

10-5 $\quad 9.60$
10-14 0,80
11.50
12.60

11-1 57.90
12-1 49.10
12-2 31 -00
12-3 28,80
12-5 $9 \cdot 20$
14,80
$562906001 \quad 14-1 \quad 10,50$

ZEICH PREIS POS. O.MST

PrEISAENDERUNGEN VORBEHALTEN

