A

THE FIRMWARE GUIDE.

by Bob Taylor and Thomas Defoe

The essential programmers’ guide includes:

+ a complete memory map of all system variables

+ descriptions of all the firmware calls and indirections

+ a list of the entire Z80-commands and their op-codes

- a chart for conversion of 6128 to 464 memory addresses
'+ the 'undocumented' maths firmware routines

* binary—decimal-hexadecimal conversion tables

‘%

Produced by the original authors of Print-Out

for the Amstrad CPC ar

THE FIRMWARE GUIDE

- Also available...

A program tape and disc have been produced to accompany this guide. Each contains a set
of programs that have been designed to make using your CPC or Plus computer easier — in
particular, these include several routines to enable you to program your computer in Machine
Code. The list of programs is printed below:

* a full-featured assembler, which uses standard Z80 mnemonics — the source code is
incorporated into a BASIC listing in order to enable routines to be easily edited, saved
and called

* an extensive monitor, which allows you to single step through a machine code routine,
or to set the computer to simulate running the program, complex branching is possible,
and it is possible to alter any registers; the program also disassembles code and allows
you to investigate your CPC's memory and settings

* the ROMCALL and RAMCALL programs from this guide are also included

* a program to time the number of T-states taken by an instruction

- * an RSX that provides the 464 with an AUTO command similar to that used on the 6128
(instead of an asterisk being printed if a line already exists, the contents of the line are
displayed and are ready for editing)

* programs to enable or disable ROMs, name discs for easy reference, provide an on-
screen clock, list any peripherals that may be attached to your CPC or Plus, and a routine
to allow Plus owners to use their 8-bit printer port fully

* also includes a useful selection of short routines

When bought individually, the program tape costs £2.50 and the program disc costs £4.50,
and both of these prices include postage and packing. For more details, either ask the place
- where you bought this guide, or contact the publishers direct.

Published by

Bob Taylor & Thomas Defoe
8 Maze Green Road
Bishop's Stortford
Herts CM23 2PJ

No material may be reproduced in whole or in part without the written consent.
of the copyright holders. The only exceptions to this are the programs, which
may be entered for the sole use of the owner of this publication.

Copyright © Thomas Defoe and Bob Taylor, 1992

PAGE 2

a

INTRODUCTION —

Introduction

WELCOME TO THE FIRMWARE GUIDE

Computer programming is one of the most satisfying hobbies as it is a rare opportunity to invent,
develop and test your own ideas and see them come to fruition. Competent programming is a skill which
is not easy to master, but once learnt, it will give hours of pleasure — there are many people who spend
hours inventing new coding tricks, solving complex problems or just trying out an idea.

Fortunately, when Amstrad developed the CPC and Plus computers, they let the user access many of
the computer’s routines and use the Firmware in their own programs. Experienced programmers will no
doubt write faster routines which are more efficient, or have some special feature, yet these extra facilities
can easily be patched in using the Firmware Jumpblock.

For many years, Amstrad produced the definitive guide to the insides of the CPC but sale of this was
stopped almost three years ago. Since then, the Firmware Manual has been regarded as an antique by those
who are fortunate enough to own a copy. Nevertheless, the original guide had some omissions, notably
the absence of information on the system variables and the Z80 processor inside every CPC or Plus.

This guide is not intended to explain how to program in machine code, but we hope that it will supply . -
the information needed to make the most of the Amstrad's capabilities when writing your own programs.

Bob Taylor and Thomas Defoe, 1992

The Firmware Guide — Index

MEMORY MAPS...coocccovomreesnressseessssssssmessssessssssssssssssmeessesmseseos page 4
FIRMWARE SUMMARY veneese. page 23
THE CPC FIRMWARE GUIDE ...cucuuiiinissssssensassssensssssssssssasssssssssssasssses page 26
THE MATHS FIRMWARE ctsusnssassesneasnenseseseresnentesesssstanssssssssrnsnes page 57
THE BIOS & AMSDOS FIRMWAREcuouuiinnmmrrnsnnrnssssesesesesssesssssssseces page 62
Z80 INSTRUCTION SETcucuuercreuscesasssssnssnssssamsessasssssssssssssassssossasessssssssess page 64
APPENDIX A: BASIC TOKENS ..ecvcrrerssecsssensasassensasasessassssasesssssessscsssssssnsens page 72
APPENDIX B: CPC POrt addIreSsescceevereersresearssesesesssorsessoscssssonsnsasasaes page 73
APPENDIX C: 464 to 6128 Conversion Chartoeeueeeeereeecsesssnenseens page 74
APPENDIX D: ROMCALL and RAMCALL seenesnenesasnaes page 76

APPENDIX E: Miscellaneous routinescoouecueessereerecsesessassssnsssesssans page 78

N
o
m
)
I

— THE FIRMWARE GUIDE

Use of memory by the Operating System

The following list of memory addresses and their uses has been compiled over a number of years,
mainly from personal investigation. It does not claim to be definitive, since no accurate source seems to
be available to the average computer user, and so may be inaccurate or deficient at certain points; also,
some of the areas described have uses additional to those listed. We have tried to make it as accurate as
possible, to enable others to use to the full those facilities which present themselves via this information.

 Addresses and values are present in.memory with the low byte first

 The term ‘above’ means higher in memory

» Areas with numbers of bytes of either &00 or &FF given in brackets, may be safe to use for machine
code routines etc, as may the tape area, and the Sound ENT and ENT areas if these are unused

» The first column given is the address (for the 6128) of the memory being considered, while the second
‘column gives the equivalent 464 address — unfortunately the 464 differs from the 6128 for most
addresses, so if one address is omitted, the system variable is not available for that machine.

» The next column gives the size allocated in bytes. Addresses on the right hand side enclosed in brackets
are of System Variables which hold the address of the bytes being explained. With addresses or values
anywhere in the text, the value shown is for the 6128; a value in italics is for the 464 only

Overview of the CPC's memory

&FFFF -
UPPER ROMs (often BASIC)
switched in when needed
Stack, Firmware and Jumpblock
&B100
BASIC workspace
...... : ackgrounddata i &500 bytes used by AMSDOS if present
User Defined Graphics
Space for Machine Code routines
HIMEM Strings area
. FREE SPACE Used by AMSDOS for loading and saving
Arrays area
Variables & DEF FNs area
Program area
&0170 Lower ROM
Foreground workspace
&0040
Restart (RST) routines area
&0000

PAGE 4

MEMORY MAPS

I

6128 464 Size Comments on the memory locations
&0000 &0000 &40 Restart block:
&0000 &0000 RST 0: complete machine reset
&0008 &0008 .RST 1: LOW JUMP: in-line two byte address: b0 to b13=address; bld4=Low ROM disabled;
b15=Upper ROM disabled
&000B &000B LOW PCHL: HL has address as RST 1
&000E &O000E PCBC INSTRUCTION: BC has address to jump to
&0010 &0010 RST 2: SIDE CALL: in-line two byte address: b0 to b13=address—&C000; b14 to b15=offset
to required ROM (used between sequenced Foreground ROMs)
&0013 &0013 SIDE PCHL: HL has address as RST 2
&0016 &0016 PCDE INSTRUCTION: DE has address to jump to
&0018 &0018 RST 3: FAR CALL: in-line three byte address block: bytes 1 and 2 hold the address; byte 3 holds
the ROM select address
&001B &O001B FAR PCHL.: as RST 3, but HL has address; C has ROM select
&001E &O001E PCHL INSTRUCTION: HL has address to jump to
&0020 &0020 RST 4: RAM LAM: LD A,(HL) from RAM with ROMs disabled
&0023 &0023 FAR CALL: as RST 3, but HL has address of three byte address block
&0028 &0028 RST 5: FIRM JUMP: in-line two byte address to jump to
&0030 &0030 RST 6: User restart; default to RST 0
&0038 &0038 RST 7: Interrupt entry (KB/Time etc)
&003B &003B External interrupt (default to RET)
&0040 &0040 &130 ROM lower foreground area: BASIC input area (tokenised) (&AE62 - &AE7F)
&016F &O16F end of BASIC input area (&AE64 - &AESI)
&0170 &0170 BASIC working area for program, variables, etc (see opposite)
&0170 &0170 Program area
Variables and DEF FNs area (&AE66,&AE68 - &AE83,&AESS)
Arrays area (&AEBA — &AES7)
Free space (&AE6C - &AES9)
end of free space (&B071 - &BO8D)
Strings area
end of Strings area (=HIMEM) (&AESE,&B073 ~ &AE7B,&BOSF)
Space for user machine code routines
end of user space, byte before user defined graphics area (&AE7D)
n*8 User defined graphics area (&B736 — &B296)
end of UDG area (&AEG60 — &B096)
ROM Upper reserved area, expandible during KL ROM WALK, including:
*4 ROM chaining blocks (arranged as follows):
&AGFC &A6FC 4 AMSDOS chaining block:
&A6FC &A6FC 2 address of next ROM block in chain (or &0000 if the last in chain)
&A6FE &A6FE 1 ROM Select address
&AG6FF &A6FF 1 &00
&AT700 &A700 &S00 AMSDOS reserved area (&BE7D,&BBES8 — &BE7D,&B1B8)
— ' this area is moved down if any ROMs have numbers greater than eight (6128 only)
&A700 &A700 1 current drive number (0=A; 1=B)
&A701 &A701 1 current USER number
&A702 &A702 1 flag?
&A703 &AT03 2 address?
&AT05 &AT05 1 flag?
&AT06 &AT06 2 address?

<> means ‘not the value or bit which follows’
b0 signifies bit 0, etc '
addresses on the right are of System Variables that hold the address of the byte being explained (for the 464 they are in italics)

HB means ‘the most significant byte’ and LB means ‘the least significant byte’

PAGES [—

—— THE FIRMWARE GUIDE

6128

&A708
&AT09
&A709
&ATO0A
&AT12
&AT12
&A713
&AT15
&A716
&AT18
&AT19
&AT729

&AT2A
&AT2B

&A72C
&AT2D
&AT2D
&AT2E
&AT36
&AT39
&AT3A
&A73B
&A73C
&A73D
&A74D
&ATAE
&AT4F

&A750
&A751
&ATS53

&A755
&ATS55
&ATS56
&ATSE
&A761
&AT67
&AT768
&AT6A
&AT6C
&AT76D
&AT6F
&A770
&AT95
&AT98

&AT9A
&AT9B
&A79D

464

&AT08
&AT09
&A709
&AT0A
&AT712
&A712
&AT13
&A715
&A716
&AT18
&AT19
&AT29

&AT2A
&AT2B

&AT2C
&AT2D
&AT2D
&AT2E
&A736
&AT39
&AT3A
&A73B
&A73C
&A73D
&A74D
&AT4E
&AT4F

&A750
&A751
&A7T53

&ATS5
&A7S55
&AT56
&A7TSE
&A761
&A767
&AT768
&AT6A
&AT6C
&A76D
&AT6F
&A7T70
&AT95
&AT798

&AT9A
&A79B
&A79D

Size

1
&20

1
8
3
1
1
1
2
1
16
1

1
1

[y

&20

00 ==
(o)}

Pk ot otk ot ok et e ()

[y

&45

NW%NN)—!NNHO\WW»—

—] PAGESs

Comments on the memory locations

OPENIN flag (& FF=closed; <>&FF=opened)
Copy of current or last Disc Directory entry for OPENIN/LOAD:
USER number
filename (padded with spaces)
file extension (BAS, BIN, BAK, etc) including:
b7 set = Read Only
b7 set = System (ie not listed by CAT or DIR)
16K block sequence number for this directory entry (O for first block; if <>0 part of a larger file)
unused
length of this block in 128 byte records
sequence of Disc Block numbers containing file — &00 as end marker
number of 128 byte records loaded so far; before loading proper:
&00 for ASCII (ie nothing loaded yet); &01 for BIN or BAS files (ie header record loaded)

OPENOUT flag (&FF=closed; <&FF=opened)

Copy of current or last Disc Directory entry for OPENOUT/SAVE:
USER number

filename (padded with spaces)

file extension (.$$$ while open; correct extension when finished)

flag (&00=open; &FF=closed, ie finished)

flag (&00=open; &FF=closed)

number of 128 byte records saved so far

sequence of Disc Block numbers containing file — &00 as end marker
number of 128 byte records saved so far

flag (&00=OPENIN; &01=In Char; &02=In Direct (whole file))
address of 2K buffer for ASCII, or of start of current/last block if BIN or BAS file
address of next byte to read for ASCII, or of 2K buffer for BAS or BIN file

first &45 bytes of BAS/BIN file (extended header) or of extended header made for ASCII file
USER number

filename (padded)

extension

unused

file type (&00=BASIC; &01=protected BASIC; &02=Binary; &16=ASCII)
unused

address to load file into (=actual destination), or buffer for an ASCII file
unused for disc

length of file in bytes (&0000 for ASCII files)

execution address for a BIN file

unused

length of actual file in bytes (as &A76D) — BAS and BIN only

simple checksum of first 67 bytes of header (LB first) — BAS and BIN only

flag (&00=OPENOUT; &01=Out Char; &02=0Out Direct (whole file))
address of 2K block if an ASCII file, or of current/last block saved if a BAS or BIN file
address of next byte to write for ASCII files, or of 2K buffer for BAS and BIN files

MEMORY MAPS —

6128 464 Size Comments on the memory locations

&AT9F &AT9F &45 first &45 bytes of BAS/BIN file (ie extended header)

&AT9F &AT9F 1 USER number

&ATA0 &ATAO0 8 filename (padded)

&ATA8 &ATA8 3 extension

&ATAB &ATAB 1 flag (&00=Open)

&ATAC &ATAC 1

&ATAD &ATAD 1 flag (&00=Open)

&ATAE &ATAE 3 unused

&A7B1 &A7B1 1 file type (&00=BASIC; &0l=protected BASIC; &02=Binary; &16=ASCII)

&ATB2 &ATB2 2 unused

&A7B4 &A7B4 2 address to save file from (for BAS or BIN files), or of buffer for ASCII files

&A7B6 &ATB6 1 unused for disc

&ATB7 &ATB7 2 length of file in bytes

&ATB9 &ATB9 2 execution address for BIN files

&ATBB &A7BB &25 unused

&ATDF &A7TDF 3 length of actual file in bytes (as at &A7B7) — BAS and BIN only

&ATE2 &ATE2 2 simple checksum of first 67 bytes of header (LB first) — BAS and BIN only

&ATE4 &ATE4 &80 buffer area for records sent to or loaded from Disc, or used in forming filename and extension

&A864 &AB64 14*3 Tape Jumpblock is stored here by AMSDOS — is moved to &BC77 etc after ITAPE

&A88B &A88B 3 far address used by AMSDOS RST 3s at &BC77 etc (&CD30,&07)

&A890 &A890 &19 Drive A Extended Disc Parameter Block (XDPB): (&BEA2,&A91A%)

&A890 &A890 2 number of 128 byte records per track

&A892 &A892 1 log,(Block size)-7 (&03=1024 bytes; &04=2048 bytes)

&A893 &A893 1 (Block size)/ 1281 (&07=1024 bytes; &0F=2048 bytes)

&A894 &A894 1 (Block size)/1024 (if total of blocks <256, else /2048)—1

&AB95 &AB9S 2 numbser of blocks per disc side (excluding reserved tracks)

&AB97 &A897 2 number of (directory entries)-1

&A899 &A899 2 bit significant value of number of blocks for directory (&0080=1; &00C0=2)

&A89B &A89B 2 number of bits in checksum = ((&A894)+1)/4

&ABID &A89D 2 number of reserved tracks (&00=Data; &01=IBM; &02=System)

&ABIF &A89F 1 numbser of first sector (&01=IBM; &41=System; &C1=Data)

&ABA0 &ABA0 1 number of sectors per track (Data=9; System=9; IBM=8)

&A8A1 &ABAl 1 gap length (Read/Write)

&ABA2 &A8A2 1 gap length (Format)

&ABA3 &ABA3 1 format filler byte (&ES5)

&ABA4 &A8A4 1 log,(sector size)-7 (&02=512; &03=1024)

&ABAS &ABAS 1 records per sector

&ABA6 &A8A6 1 current track (not for use)

&ABA7 &ABA7 1 O=not aligned (not for use)

&ABA8 &ABA8 1 Auto select flag (&00=Auto select; &FF= don’t alter)

&ABA9 &ABA9 (&AIICH)

&A8B9 &A8B9 (&A91E*)

&A8D0 &A8DO &19 Drive B Extended Disc Parameter Block (arranged as at &A890) (&A92A*)

&A8E9 &AS8E9 (&17 bytes of &FF) (&A92CH*)

&ABF9 &A8F9 (&A92E*)

&A900 &A900 (&12 bytes of &00)

&A910 &A910 (&BEA40*)
<> means ‘not the value or bit which follows’ ‘*’ means this address applies to all machines with a disc drive fitted

b0 means bit 0, b1 means bit 1, etc HB means ‘the most significant byte’ and LB means ‘the least significant byte’
addresses on the right are of System Variables that hold the address of the byte being explained (for the 464 they are in italics)

PAGE7 [—

——] THE FIRMWARE GUIDE

6128 464 Size Comments on the memory locations
&A918 &A918 2 address of area for reading directory entries for Drive A
&A91A &A91A 2 address of Drive A XDPB
&A91C &A91C 2 address of the byte after the end of Drive A XDPB
&A91E &A91E 2
&A920 &A920 (8 bytes of &00)
&A928 &A928 2 address of area for reading directory entries for Drive B
&ARA &A92A 2 address of Drive B XDPB
&A92C &A92C 2 address of the byte after the end of Drive B XDPB
&A92E &A92E 2
&A930 &A930 &80 block of directory entries, including last file loaded (&A918,&A928%)
&A9BO0 &A9BO &200 buffer for loading; usually contains last sector loaded (&BE62,&BE76*)
&ABBO &ABBO (&S50 bytes of &00)
&AC00 &ACO00 Start of BASIC Operating System reserved area:
&ACO0 &AC00 1 program line redundant spaces flag (O=keep extra spaces; <>0=remove extra spaces)
&ACO1 9%3 groups of 3 RET bytes (&C9) called by the Upper ROM
&ACO01 &ACIC 1 AUTO flag (0=off; <>0=0n)
&AC02 &ACID 2 number of the next line (6128) or of the current line (464) for AUTO
&AC04 &ACIF 2 step distance for AUTO
&AC06 &AC21 1
&ACO7 &AC22 1
&ACO08 1
&AC23 1
&AC09 &AC24 1 WIDTH (&84=132)
&ACOA &AC25 1
&ACOB 1
&ACOC &AC26 1 FOR/NEXT flag (0=NEXT not yet used; <>0=used)
&ACOD &AC27 5 FOR start value (real) — only two bytes are used if % or DEFINT variable
&AC12 &AC2C 2 address of “:” or of the end of program line byte after a NEXT command
&AC14 &AC2E 2 address of LB of the line number containing WEND
&AC16 &AC30 1 WHILE'WEND flag (&41=WEND not yet used; &04=used)
&AC17 &AC31 1 :
&AC18 &AC32 2
&ACIA &AC34 2
&ACIC &AC36 2 address (&B65B — &B511) of location holding ROM routine address for KB event block
&ACIE &AC38 &OC Event Block for ON SQ(1):
&ACIE &AC38 2 chain address to next event block; &0000 if last in chain, but &FFFF if unused
&AC20 &AC3A 1 count
&AC21 &AC3B 1 class: Far address, highest (ON SQ) priority, Normal & Synchronous event
&AC22 &AC3C 2 routine address (in BASIC ROM, &C926 - &C879)
&AC24 &AC3E 1 ROM Select number (&FD ie ROM 0 enabled, Lower ROM disabled)
&AC25 &AC3F 1 (first byte of user field)
&AC26 &AC40 2 address of the end of program line byte or *:” after ‘ON SQ(x) GOSUB line number’ statement
&AC28 &AC42 2 address of the end of program line byte of the line before the GOSUB routine
&AC2A &AC44 &0C Event block for ON SQ(2), arranged as (&ACI1E — &AC38) — second ON SQ priority
&AC36 &ACS50 &O0C Event block for ON SQ(4), arranged as (&AC1E — &AC38) — lowest ON SQ priority
&AC42 &ACSC &12 Ticker and Event Block for AFTER/EVERY Timer 0
&AC42 &ACSC 2 chain address to next event block (usually to another timer or &00FF)
&ACH4 &ACSE 2 ‘count down' count :
&AC46 &AC60 2 recharge count (for EVERY only — &0000 if AFTER)

—3 PAGEsSs

MEMORY MAPS

I

6128 464 Size Comments on the memory locations

&AC48 &AC62 2 chain address to next ticker block

&AC4A &ACHK4 1 count

&AC4B &AC65 1 class: Far address, lowest (timer) priority, Normal and Synchronous event

&AC4C &AC66 2 Routine address (in BASIC ROM, at &C926 - &C879)

&AC4E &AC68 1 ROM Select No (&FD ie ROM 0 enabled, Lower ROM disabled)

&AC4F &AC69 1 (first byte of user field)

&ACS0 &AC6A 2 address of the end of program line byte or ‘:” after statement in use when the timer 'timed-out'

&AC52 &AC6C 2 address of the end of program line byte of the line before the GOSUB routine

&AC54 &AC6E &12 Ticker and Event Block for AFTER/EVERY Timer 1 (3rd Timer priority)
arranged as &AC42 - &LAC5C

&AC66 &ACB0 &12 Ticker and Event Block for AFTER/EVERY Timer 2 (2nd Timer priority)
arranged as &AC42 - &ACS5C

&ACT8 &AC92 &12 Ticker and Event Block for AFTER/EVERY Timer 3 (highest priority)
arranged as &AC42 — &ACS5C

&ACBA &ACA4 &100 BASIC input area for lines (as typed in and not tokenised) or for INPUT

&ADSC &ADA6 2 address of line number LB in line containing error

&ADSE &ADA8 2 address of byte before statement containing error — ie of *:* or Line No HB

&AD90 &ADAA 1 ERR (Error No)

&AD91 1 DERR (Disc Error No)

&AD92 &ADAB 2 as (&ADSE — &ADAS) if error is in a program (ie not if in Direct Command Mode)

&AD9% &ADAD 2 as (&AD8C - &ADAG) if error is in a program (ie not if in Direct Command Mode)

&AD9 &ADAF 2 address of the length LB of line specified by the ‘ON ERROR GOTO’ command

&AD98 &ADB1 1

&AD9S &ADB2 &09 Current SOUND parameter block (see Firmware Jump &BCAA):

&AD99 &ADB2 1 channel and rendezvous status

&AD9A &ADB3 1 amplitude envelope (ENV) number

&ADSB &ADB4 1 tone envelope (ENT) number

&ADIC &ADBS5 2 tone period

&AD9E &ADB7 1 noise period

&ADYF &ADB8 1 initial amplitude

&ADAO &ADB9 2 duration, or envelope repeat count

&ADA2 &ADBB &10 Current Amplitude or Tone Envelope parameter block (see &BCBC or &BCBF)

&ADA2 &ADBB 1 number of sections (+&80 for a negative ENT number, ie the envelope is run until end of sound)

&ADA3 &ADBC 3 first section of the envelope:

&ADA3 &ADBC 1 step count (if <&80) otherwise envelope shape (not tone envelope)

&ADA4 &ADBD 1 step size (if step count<&80) otherwise envelope period (not tone envelope)

&ADAS &ADBE 1 pause time (if step count<&80) otherwise envelope period (not tone envelope)

&ADA6 &ADBF 3 second section of the envelope (as &ADA3 — &ADBC)

&ADA9 &ADC2 3 third section of the envelope (as &ADA3 - &ADBC)

&ADAC &ADC5 3 fourth section of the envelope (as &ADA3 - &ADBC)

&ADAF &ADC8 3 fifth section of the envelope (as &ADA3 — &ADBC)

&ADB2 &ADCB 5

&ADB7 &ADDO &36

&ADEB &AE04 2

&ADED &AEO06 6

<> means ‘not the value or bit which follows’ “** means this address applies to all machines with a disc drive fitted

b0 means bit 0, bl means bit 1, etc HB means ‘the most significant byte’ and LB means ‘the least significant byte’
addresses on the right are of System Variables that hold the address of the byte being explained (for the 464 they are in italics)

PAGE9 [

— THE FIRMWARE GUIDE

6128

&ADF3
&AEOD
&AEOE
&AE10
&AE12
&AE14
&AE1S
&AE17
&AE19
&AE1B
&AE1D
&AEIF
&AE20

&AE21
&AE22
&AE24
&AE26
&AE28
&AE29
&AE2A
&AE2C
&AE2D
&AE3A
&AE3A
&AE3E
&AEA3
&AEAE

&AES]
&AES2
&AE54

&AESS
&AES7
&AES8
&AESA
&AESC
&AESD

&AESE

&AE60
&AE62
&AE64
&AEG66
&AE6G8
&AEGA
&AE6C
&AEGE

464

&AEOC
&AE26
&AE27
&AE29
&AE2B
&AE2D
&AE2E
&AE30
&AE32
&AE34
&AE36
&AE38
&AE39

&AE3A
&AE3B
&AE3D
&AE3F
&AE41
&AEA2
&AEA3
&AEAS
&AFA6
&AES3
&AES3
&AES7
&AESD
&AE68

&AE6B
&AEG6E

&AE70

&AET2

&AE74 -

&AET5
&AET7
&AE79

&AETA

&AETB
&AETD

&AETF
&AES1
&AES83
&AE8S
&AES87
&AES89

Size

o))
*
—

U= = N = = NN N - o NN =N~

N =N =W

—_= NN =N

[38]

= RPN

—] PAGE10

Comments on the memory locations

table of DEFINT (&02), DEFSTR (&03) or DEFREAL/default (&05), for variables ‘a’ to ‘z’

address of line number LB of last BASIC line (or &FFFF)

address of byte before next DATA item (eg comma or space)

address of next space on GOSUB etc stack (see also &BO6F — &B0OSB)

address of byte before current statement (&003F if in Direct Command mode)

address of line number LB of line of current statement (&0000 if in Direct Command mode)
trace flag (O=TROFF; <~0=TRON)

flag used with Trace (&00 if in Direct Command mode; &01 if in a program)

address to load cassette file to

file type from cassette header

file length from cassette header

program protection flag (<>0 hides program as if protected)

buffer used to form binary or hexadecimal numbers before printing etc

start of buffer used to form hexadecimal numbers before printing etc

Key Number used with INKEY (providing the Key Number is written as a decimal)
last byte (usually &00 or &20) of the formed binary or hexadecimal number

buffer used to form decimal numbers before printing etc

last byte (usually &00 or &20) of the formed decimal number

temporary store for address after using (& AE68)

address of last used ROM or RSX JUMP instruction in its Jump Block

ROM Select number if address above is in ROM

BASIC Parser position, moved on to *:’, or the end of program line byte after a CALL or an RSX
the resetting address for machine Stack Pointer after a CALL or an RSX

ZONE value

HIMEM (set by MEMORY)

address of the byte before the UDG area (the end of the user M/C routine area or the Strings area)
if the UDG area is still present, otherwise the highest byte of Program etc area

address of highest byte of free RAM (ie last byte of UDG area)

address of start of ROM lower reserved area (used for tokenised lines)

address of end of ROM lower reserved area (byte before Program area)

as (&AE68 — &£AESS)

address of start of Variables and DEF FNs area

address of start of Arrays area (where next Variable or DEF FN entry is placed)

address of start of free space (where next Array entry is placed)

MEMORY MAPS —

6128

&AE70

464

&AEBC

Size

&1FF

- NN N N = —_ NN -

[V

1
+5

Comments on the memory locations

GOSUB, FOR and WHILE stack. Entries are added above any existing ones in use (mixed
as encountered) at address given by (& BO6F — &BOSB) and must be used up in the opposite
order. Completed entries are not deleted, just overwritten by the next new entry:

GOSUB (84 max capacity):
(byte of &00)
address of end of program line byte or *:” after GOSUB statement (the point to RETURN to)
address of line number HB of line containing GOSUB
byte of &06, ie the length of the GOSUB entry

FOR (21 max for Real FORs, 31 max for Integer FORs):
address of current value of control variable (in Variables area)
value of limit (ie the TO value) — there are two bytes only for Integer FORs
value of STEP — two bytes for Integer FORs
sign byte (&00 for positive; &01 for negative)
address of the end of program line byte, or *:” after the FOR statement (ie the address for the
NEXT loop to restart at)
address of line number LB of line containing FOR
address of byte after NEXT statement (ie the address to continue at when the limit is exceeded)
address of byte after NEXT statement again
length byte (&16 for Real FORs; &10 for Integer FORs)

WHILE (66 max capacity):

address of line number LB of line containing WHILE

address of the end of program line byte or *:* after WEND statement (ic the address to continue
at when the condition is false)

address of condition after the WHILE command

length byte of &07 — end of WHILE entry proper but:

value of condition (0 or -1 as a floating point value) only while the WHILE entry is the last
on the stack

NB: The free space on the stack is also used as a workspace by various routines for values and addresses and for Variable names

&BO6F &BO8B 2

address of the next space on the GOSUB etc stack (see also &AE19 — &AE32)

&B071 &BO8D 2 address of end of free space (the byte before the Strings area)
&B073 &BOSF 2 address of end of Strings area (=HIMEM) .
&B075 1 ’
&B091 1
&B092 2
&B076 &B09%4 2
&B078 &B09% 2 address of the highest byte of free RAM disregarding UDGs (usually &AG6FB — &ABFB)
&BO7A &B098 2
&B07C &B09%A 2 address for the next entry in the String Concatenation area
&BO7E &B09C 10*3 concatenation area holding descriptors of strings being used
&B09C &BOBA 1 length of last String used
&B09D &BOBB 2 address of last String used
&BOBD 2
&BOBF 2
&BO9F &BOC1 1 type byte used with the Virtual Accumulator (&02=Integer; &03=String; &05=Real)
&BOAO &BOC1 5 Virtual Accumulator used by the maths routines (two bytes for an Integer value; three bytes for
a String Descriptor; five bytes for a Real value):
<> means ‘not the value or bit which follows’ “*” means this address applies to all machines with a disc drive fitted

b0 means bit 0, bl means bit 1, etc HB means ‘the most significant byte’ and LB means ‘the least significant byte’
addresses on the right are of System Variables that hold the address of the byte being explained (for the 464 they are in italics)

PAGE 11 [—

— THE FIRMWARE GUIDE

6128

&BOAO
&B0OA2
&BOA3
&BOAS
&B100
&B102
&B104
&B109
&B10E
&B113
&Bl114
- &B115
&Bl116
&B117

&B118
&B118
&B119
&B11A
&B11B
&B11D

&B11F
&BI11F
&BI12F
&B130
&B131
&B132
&B134
&B136
&B137
&B139
&B13B

&B15F
&B160
&B162

&B164
&Bl64
&B174
&B175
&B176
&B177
&B179
&B17B
&B17C
&B17E
&B180
&B1A4
&B1BS
&B1B7
&B1BB
&B1BE

464

&B0C2
&B0C4
&BOC5
&BOC7
&B8EA
&B8E6
&B8ES
&B8ED
&B8F2
&B8F7
&B8DC
&B8DD
&B8DE
&B8DF

&B800
&B800
&B801
&B802
&B803
&B805

&B807
&B807
&B817
&B818
&B819
&B81A
&B81C
&BS1E
&B8I1F
&B821
&B823

&B847
&B848
&B84A

&B84C
&B84C
&B85C
&B85D
&B85E
&B85F
&B861

&B863

&B864
&B866

&B868

&B88C
&B89D
&B8IF
&B8A3
&BBA6

Size

[\

Pt e e s s NN

\NN'—‘D—"—'Q

R R
s &

(=

NN = NN -~ -

&24

N =

&40
&10

24
40

el -0 - L Bl A R

— PAGE12

Comments on the memory locations

&5B (&39) bytes of &FF
&07, &C6
&65, &89

DEG/RAD flag (&00=RAD; &FF=DEG)

Area used for Cassette handling:
cassette handling messages flag (O=enabled; <>0=disabled)

file IN flag (&00=closed; &02=IN file; &03=opened; &05=IN char)
address of 2K buffer for directories
address of 2K buffer for loading blocks of files — often as &B11B — &B803 _

IN Channel header:

filename (padded with NULs)

number of block being loaded, or next to be loaded

last block flag (&FF=last block; &00=not)

file type (&00=BASIC; &01=Protected BASIC; &02=Binary; &08=Screen; &16=ASCII)
length of this block

address to load this or the next block at, or the address of the byte after last one loaded
first block flag (&FF=first block; &00=not)

total length of file (all blocks)

execution address for BIN files (&0000 if not saved as such)

not allocated

file OUT flag (&00=closed; &02=IN file; &03=opened; &05=IN char)
address to start the next block save from, or the address of the buffer if it is OPENOUT
address of start of the last block saved, or the address of the buffer if it is OPENOUT

OUT Channel Header (details as IN Channel Header):
filename

number of the block being saved, or next to be saved

last block flag (&FF=last block; &00=not)

file type (as at &B131 - &B819)

length saved so far

address of start of area to save, or address of buffer if it is an OPENOUT instruction
first block flag (&FF=first block; &00=not)

total length of file to be saved

execution address for BIN files (&0000 if parameter not supplied)
not allocated

used to construct IN Channel header:

MEMORY MAPS

I

6128 464 Size Comments on the memory locations
&BI1B9 &BS51D base address for calculating relevant Sound Channel block
&B1BC &BS520 base address for calculating relevant Sound Channel ?
&B1BE &BS522 base address for calculating relevant Sound Channel ?
&B1D5 &B539 base address for calculating relevant Sound Channel ?
&B1E4 &BS8CC 1
&B1ES &B8CD 1 synchronisation byte
&B1E6 &B8CE 2 &35, &62
&B1E8 &B8DO 1
&B1E9 &B8D1 1 cassette precompensation (default &06; SPEED WRITE 1 &0C @ 4uS)
&B1EA &B8SD2 1 cassette ‘Half a Zero’ duration (default &53; SPEED WRITE 1 &29 @ 4uS)
&B1EB &B8D3 2
&B550 1 used by sound routines
&B551 1 used by sound routines
&B1ED 1 used by sound routines
&BIEE &B552 1 used by sound routines
&BIF0 &BB54 1 used by sound routines
&BB55 7 used by sound and cassette routines
&B1F8 &BS5S5C &3F Sound Channel A (1) data:
&B212 &B576 1 number of sounds still queuing
&B213 &B577 1 number of sounds originally queuing
&B217 &B57B 8 first or fifth sound in Channel 1 (A) queue:
&B217 &B57B 1 status: b0 to b2 = rendezvous with channel 1, 2 or 4; b3 = Hold; b4 = Flush
&B218 &BS7C 1 b0 to b3 = tone envelope number; b4 to b7 = volume envelope number (ie ENV number*16
&B219 &B57D 2 pitch '
&B21B &B57F 1 noise '
&B21C &B580 1 volume
&B21D &B581 2 duration (in 0.01 seconds)
&B21F &B583 8 second sound in Channel 1 queue (as &B217 — &B57B)
&B227 &B58B 8 third sound in Channel 1 queue (as &B217 - &B57B)
&B22F &B593 8 fourth sound in Channel 1 queue (as &B217 — &B57B)
&B237 &BS5S9B &3F Sound Channel B (2) data: — as described at & B1F8 — &B55C
&B256 &B5SBA 8 first or fifth sound in Channel 2 queue (as &B217 — &B57B)
&B25SE &B5C2 8 second sound in Channel 2 queue (as &B217 - &B57B)
&B266 &B5CA 8 third sound in Channel 2 queue (as &B217 — &B57B)
&B26E &B5SD2 8 fourth sound in Channel 2 queue (as &B217 - &BS7B)
&B276 &BSDA &3F Sound Channel C (4) data — as described at &B1F8 - &B55C
&B295 &BSF9 8 Lst/5th sound in Channel 4 queue (as &B217 — &B57B)
&B29D &B601 8 2nd sound in Channel 4 queue (as &B217 — &B57B)
&B2A5 &B609 8 3rd sound in Channel 4 queue (as &B217 - &B57B)
&B2AD &B611 8 4th sound in Channel 4 queue (as &B217 - &BS57B)
&B2A6 &B60A base address for calculating relevant ENV parameter block
&B2BS &B619 1 &3F
<> means ‘not the value or bit which follows’ “*” means this address applies to all machines with a disc drive fitted

b0 means bit 0, bl means bit 1, etc HB means ‘the most significant byte’ and LB means ‘the least significant byte’
addresses on the right are of System Variables that hold the address of the byte being explained (for the 464 they are in italics)

PAGE 13 [—

— THE FIRMWARE GUIDE

6128 464 Size Comments on the memory locations

&B2B6 &B61A 15*&10 ENYV parameter block area (each arranged as &ADA2(&ADBB)):

&B2B6 &B61A &10 ENV1

&B2C6 &B62A &10 ENV 2

&B2D6 &B63A &10 ENV3

&B2E6 &B64A &10 ENV 4

&B2F6 &B65A &10 ENV S

&B306 &B66A &10 ENV6

&B316 &B67A &10 ENV7

&B326 &B68A &10 ENV S8

&B336 &B69A &10 ENV9

&B346 &B6AA &10 ENV 10

&B356 &B6BA &10 ENV11

&B366 &B6CA &10 ENV 12

&B376 &B6DA &10 ENV 13

&B386 &B6EA &10 ENV 14

&B396 &B6FA &10 ENV 1S

&B396 &B6FA » base address for calculating relevant ENT parameter block

&B3A6 &B70A 15*%&10 ENT parameter block area (each arranged as &ADA2(&ADBB)):

&B3A6 &B70A &10 ENT1

&B3B6 &B71A &10 ENT2

&B3C6 &B72A &10 ENT3

&B3D6 &B73A &10 ENT4

&B3E6 &B74A &10 ENTS

&B3F6 &B75A &10 ENT6

&B406 &B76A &10 ENT7

&B416 &B77A &10 ENT8

&B426 &B78A &10 ENTO

&B436 &B79A &10 ENT 10

&B446 &B7AA &10 ENT11

&B456 &B7BA &10 ENT 12

&B466 &B7CA &10 ENT13

&B476 &B7DA &10 ENT 14

&B486 &B7EA &10 ENT15

&B496 &B34C &S50 Normal Key Table: (&B68B - &B541)
CurU CurR CurD f9 f6 f3 Enter f.
CurL Copy 7 f8 £5 f1 2 f0
Clr [Return] f4 \
A - @ p . : / .
0 9 o i 1 k m j
8 7 u y h j n space
6 5 r t g f b v
4 3 e w] d c X
1 2 Esc q Tab a Caps-lock z
[VT] [LF] [BS] {TAB] Fire 2 Fire 1 Del

&B4E6 &B39C &350 Shifted Key Table: (&B68D - &B543)
Cur U CurR CurD 9 fo f3 Enter f.
CurL Copy 7 f8 £5 f1 2 fo
ClIr { Retumn } f4 ‘
£ = I P + * ? >
-) 0] I L K M <
(’ U Y H I N space
& % R T G F B \%
$ # E W N D C X
! “ Esc Q > A Caps-lock Z

vT1] [LF] [BS] [TAB] Fire 2 Fire 1 Del

—] PAGE 14

6128

464

Size

&B536 &B3EC &50

MEMORY MAPS [=

Comments on the memory locations

Control Key Table: (&B68F — &B545)
CurU CurR CurD 9 f6 3 Enter f.
CurL Copy f7 8 f5 f1 2 f0

CIr (ESC) Return (GS) f4 FS)

(RS) (NUL) (DLE)

(US) (SD (HT) (FF) (VT) (CR)

(NAK) (EM) (BS) (LE) S0)
(DC2) (DC4) (BEL) (ACK) (STX) (SYN)
(ENQ) (ETB) (DC3) (EOT) (ETX) (CAN)

~ Esc (DC1) Ins/Ovrt (SOH) Shift-lock (SUB)
Del
&B586 &B43C 10*1 KB repeats table (each byte/bit applies to all three key tables): (&B691 - &B547)
1 byte is used per line of the tables; b0 to b7 give the columns (left to right), repeat if set
&B590 &B446 &98 DEF KEY’s definition area (for Keys &80 to &9F in sequence): (&B62B - &B4EI)
each definition has either a single byte of &00 if it is unused/unaltered, or:
byte 1: length of definition
bytes 2 to x: definition, either a single key or a string of keys
&B628 &B4DE 1 (&B62D - &B4E3)
&B629 &B4ADF 1
&B62A &B4E0 1
&B62B &B4E1 2 address of DEF KEY area
&B62D &B4E3 2 address of byte after end of DEF KEY area
&B62F &B4ES 1
&B630 &B4E6 1
&B631 &B4E7 1 Shift lock flag (&00=off; &FF=on)
&B632 &B4E8 1 Caps lock flag (&00=off; &FF=on)
&B633 &B4E9 1 KB repeat period (SPEED KEY — default &02 @ 0.02 seconds)
&B634 &B4EA 1 KB delay period (SPEED KEY — default &1E @ 0.02 seconds)
&B635 &B4EB 2*10 Tables used for key scanning; bits O to 7 give the table columns (from left to right):
&B635 &B4EB 1 CurU CurR CurD f9 f6 f3 Enter £
&B636 &B4EC 1 CurL Copy 7 f8 £5 f1 2 f0
&B637 &B4ED 1 CIr [Return] f4 Shift \ Control
&B638 &B4EE 1 A - @ P ; : / .
&B639 &B4EF 1 0 9 0] I L K M ,
&B63A &B4F0 1 8 7 8] Y H J N space
&B63B &B4F1 1 } { Down Up Left Right Fire 2 Fire 1 (joystick 1)
&B63B &B4F1 1 6 5 R T G F B A%
&B63C &B4F2 1 4 3 E w S D C X
&B63D &B4F3 1 1 2 Esc Q Tab A Caps-lock Z
&B63E &B4F4 1 } { Down Up Left Right Fire 2 Fire 1 (joystick 2)
&B63E &B4F4 1 Del
&B63F &B4F5 1 complement of &B635 — &B4EB
&B640 &B4F6 1 complement of &B636 — &B4EC
&B641 &B4F7 1 complement of &B637 - &B4ED
&B642 &B4F8 1 complement of &B638 — &B4EE
&B643 &B4F9 1 complement of &B639 — &B4EF
&B644 &B4FA 1 complement of &B63A — &B4F0
&B645 &B4FB 1 compiement of &B63B - &B4F1
&B646 &B4AFC 1 complement of &B63C — &B4F2
&B647 &B4FD 1 complement of &B63D — &B4F3
&B648 &B4FE 1 complement of &B63E — &B4F4
<> means ‘not the value or bit which follows’ “** means this address applies to all machines with a disc drive fitted

b0 means bit 0, bl means bit 1, etc HB means ‘the most significant byte’ and LB means ‘the least significant byte’
addresses on the rightare of System Variables that hold the address of the byte being explained (for the 464 they are in italics)

PAGE 15 —

— THE FIRMWARE GUIDE

6128 464 Size Comments on the memory locations
&B64B &B501
&B653 &B509 1
&B654 &BS0A 1
&B655 &BSOB 1
&B656 &BS0C 1
&B657 &BS0D 7 event block for KB handling, comprises:
&B657 &BS0D 2 chain address
&B659 &BSOF 1 count
&B65A &BS510 1 class: express event
&B65B &BS511 2 ROM routine address: &C492 - &C45E (&ACIC - &AC36)
&B65D &BS13 1 ROM select number: &FD
&B65E &B514 20*2 store for last keys pressed and each entry is as follows:
byte 1: +0 to + 10=key tables’ line number; if bit 5 is set then Shift is pressed; bit 7=Control
byte 2: b0 to b7=key tables’ column number — see &B496 — &B34C etc

&B67F &B67F 2 vestige from the 464?
&B686 &B53C 1
&B687 &BS3D 1 accumulated count of the number of keys pressed (MOD 20)
&B688 &BS3E 1 number of keys left in key buffer
&B689 &BS3F 1 accumulated count of the number of keys removed from the buffer (MOD 20)
&B68A &B540 1
&B68B &B541 2 address of the normal key table
&B68D &B543 2 address of the shifted key table
&B68BF &B545 2 address of the control key table
&B691 &B547 2 address of the KB repeats table
&B692 1
&B693 &B328 2 ORIGIN x
&B695 &B32A 2 ORIGIN y
&B697 &B32C 2 graphics text x position (pixel)
&B699 &B32E 2 graphics text y position (pixel)
&B69B &B330 2 graphics window x of one edge (pixel)
&B69D &B332 2 graphics window x of other edge (pixel)
&B6OF &B334 2 graphics window y of one side (pixel)
&B6A1 &B336 2 graphics window y of other side (pixel)
&B6A3 &B338 1 GRAPHICS PEN
&B6A4 &B339 1 GRAPHICS PAPER
&B6AS &B33A 4*2(14) used by line drawing (and other) routines, as follows:
&B6A7 &B33A 2 x+1()
&B6A9 &B33C 2 y2+1()
&B6AB &B33E 2 y/2-x()
&B6AD &B340 2

&B342 2
&B6AF &B344 1
&B6B0 &B345 1
&B6B1 &B346 1
&B6B2 1 first point on drawn line flag (<>0=to be plotted; O=don’t plot)
&B6B3 1 line MASK
&B6B4 1

&B207 2
&B6BS &B20C 1 current stream number

] PAGE16

MEMORY MAPS —

6128 464 Size Comments on the memory locations
&B6B6 &B20D 14(15) stream (window) O parameter block — arranged as &B726 —~ &B285
&B6C4 &B21C 14(15) stream (window) 1 parameter block — arranged as &B726 - &B285
&B6D2 &B22B 14(15) stream (window) 2 parameter block — arranged as &B726 — &B285
&B6E0 &B23A 14(15) stream (window) 3 parameter block — arranged as &B726 — &£B285
&B6EE &B249 14(15) stream (window) 4 parameter block — arranged as &B726 — &B285
&B6FC &B258 14(15) stream (window) S parameter block — arranged as &B726 — &B285
&B70A &B267 14(15) stream (window) 6 parameter block — arranged as &B726 — &B285
&B718 &B276 14(I5) stream (window) 7 parameter block — arranged as &B726 — &B285
&B726 &B285 14(/5) Current Stream (Window) parameter block:
&B726 &B285 1 cursor y position (line) with respect to the whole screen (starting from 0)
&B727 &B286 1 cursor x position (column) with respect to the whole screen (starting from 0)
&B728 &B287 1
&B729 &B288 1 window top line (y) with respect to the whole screen (starting from 0)
&B72A &B289 1 window left column (x) with respect to the whole screen (starting from 0)
&B72B &B28A 1 window bottom line (y) with respect to the whole screen (starting from 0)
&B72C &B28B 1 window right column (x) with respect to the whole screen (starting from 0)
&B72D &B28C 1 scroll count
&B72E &B28D 1 cursor flag (&01=disable; &02=off; &FD=on; &FE=enable)

&B28E 1
&B72F &B28F 1 current PEN number (encoded, not its INK number)
&B730 &B290 1 current PAPER number (encoded, not its INK number)
&B731 &B291 2 address of text background routine: opaque=& 1392 — &1391; transparent=&13A0 - &139F
&B733 &B293 1 graphics character writing flag (O=off; <>0=on)
&B734 &B294 1 ASCII number of the first character in User Defined Graphic (UDG) matrix table
&B735 &B295 1 UDG matrix table flag (&00=non-existent; &FF=present)
&B736 &B296 2 address of UDG matrix table
&B738 &B298 2
&B758 &B2B8 1
&B759 &B2B9 1
&B763 &B2C3 32*3 Control Code handling routine table — each code’s entry comprises: (&B8A2 - &B175)

byte 1: +0 to +9=number of parameters; +&80=re-run routine at a System Reset
bytes 2 and 3: address of the control code's handling routine
&B763 &B2C3 3 ASCO: &B0,&1513(&I4E2). NUL
&B766 &B2C6 3 ASC1: &B1,&1335(&1334): Print control code chararacter [,char]
&B769 &B2C9 3 ASC2: &B0,&1297(&I129A): Disable cursor
&B76C &B2CC 3 ASC3: &B80,&1286(&1289): Enable cursor
&B76F &B2CF 3 ASC4: &81,&0AE9(&OACA). Set mode [,mode]
&B772 &B2D2 3 ASCS5: &81,&1940(&1945): Print character using graphics mode [,char]
&B775 &B2D5 3 ASC6: &00,&1459(&1451): Enable VDU
&B778 &B2D8 3 ASC7: &B80,&14E1(&14D8): Beep
&B77B &B2DB 3 ASC8: &B0,&1519(&150A): Back-space
&B77E &B2DE 3 ASC9: &BO0,&151E(&I50F): Step-right
&B781 &B2E1 3 ASC 10: &80,&1523(&1514): Line feed
&B784 &B2E4 3 ASC 11: &80,&1528(&1519): Previous line
&B787 &B2E7 3 ASC 12: &80,&154F(&1540): Clear window and locate the text cursor at position 1,1
&B78A &B2EA 3 ASC 13: &80,&153F(&1530): RETURN
&B78D &B2ED 3 ASC 14: &81,&12AB(&12AE): Setpaper [,pen]
&B790 &B2F0 3 ASC 15: &81,&12A6(&12A9): Set pen [,pen]
&B793 &B2F3 3 ASC 16: &80,&155E(&I154F): Delete the character at the cursor position
<> means ‘not the value or bit which follows’ “*’ means this address applies to all machines with a disc drive fitted

b0 means bit 0, bl means bit 1, etc HB means ‘the most significant byte’ and LB means ‘the least significant byte’
addresses on the right are of System Variables that hold the address of the byte being explained (for the 464 they are in italics)

PAGE 17 =

—] THE FIRMWARE GUIDE

—] PAGE 18

6128 464 Size Comments on the memory locations
&B796 &B2F6 3 ASC 17: &B0,&1599(&I58E): Clear the line up to the current cursor position
&B799 &B2F9 3 ASC 18: &80,&158F(&1584): Clear from the cursor position to the end of the line
&B79C &B2FC 3 ASC 19: &RB0,&1578(&156D). Clear from start of the window to the cursor position
&B79F &B2FF 3 ASC20: &80,&1565(&1556): Clear from the cursor position to the end of a window
&B7A2 &B302 3 ASC21: &80,&1452(&144B): Disable VDU
&B7A5 &B305 3 ASC 22: &81,&14EC(&I4E3): Set text write mode [,mode]
&B7A8 &B308 3 ASC 23: &81,&0C55(&0C49): Set graphics draw mode {,mode]
&B7AB &B30B 3 ASC24: &80,&12C6(&I12C9): Exchange pen and paper
&B7AE &B30E 3 ASC 25: &89,&150D(&1504): Define user defined character [,char,8 rows of char]
&B7B1 &B311 3 ASC26: &84,&1501(&15F8): Define window [left,right,top,bottom]
&B7B4 &B314 3 ASC 27: &00,&14EB(&I14E2): ESC (=user)
&B7B7 &B317 3 ASC 28: &RB3,&14F1(&I4E8): Set the pen inks [,pen,ink 1,ink 2]
&B7BA- &B31A 3 ASC?29: &B2.&14FA(&I4F1). Set border colours [,ink 1,ink 2]
&B7BD &B31D 3 ASC30: &B0,&1539(&152A): Locate the text cursor at position 1,1
&B7CO0 &B320 3 ASC31: &82,&1547(&1538): Locate the text cursor at [,column,line]
&B7C3 &B1C8 1 MODE number
&B7C4 &BI1C9 2 screen offset
&B7C6 &BICB 1 screen base HB (LB taken as &00)
&B7C7 &BICC 3 graphics VDU write mode indirection — JP &0C74 - JP &0C6B
&BICF 8 list of bytes having only one bit set, from b7 down to b0
&B7D2 &BID7 1 first flash period (SPEED INK - default &0A @ 0.02 seconds)
&B7D3 &BID8 1 second flash period (SPEED INK - default &0A @ 0.02 seconds)
&B7D4 &B1D9 1+16*1 Border and Pens’ First Inks (as hardware numbers):
&B7D4 &B1D9 1 hw &04 =sw 1 (blue) border
&B7D5 &BIDA 1 hw &04 = sw 1 (blue) pen 0
&B7D6 &BIDB 1 hw &0A = sw 24 (bright yellow) penl
&B7D7 &BIDC 1 hw &13 =sw 20 (bright cyan) pen 2
&B7D8 &BIDD 1 hw &0C = sw 6 (bright red) pen3
&B7D9 &BIDE 1 hw &0B = sw 26 (bright white) pen 4
&B7DA &BIDF 1 hw &14 =sw 0 (black) pen S
&B7DB &BIEO 1 hw &15 = sw 2 (bright blue) pen 6
- &B7DC &BI1E1 1 hw &0D = sw 8 (bright magenta) pen7
&B7DD &BIE2 1 hw &06 = sw 10 (cyan) pen 8
&B7DE &BIE3 1 hw &1E = sw 12 (yellow) pen 9
&B7DF &B1E4 1 hw &1F = sw 14 (pale blue) pen 10
&B7E0 &BIE5S 1 hw &07 = sw 16 (pink) pen 11
&B7E1 &BIlE6 1 hw &12 =sw 18 (bright green) pen 12
&B7E2 &BIE7 1 hw &19 = sw 22 (pale green) pen 13
&B7E3 &BI1E8 1 hw &04 =sw | (blue) pen 14
&B7E4 &BIE9 1 hw &17 = sw 11 (sky blue) pen 15
&B7E5 &BIEA 1+16*1 Border and Pens’ Second Inks (as hardware numbers):
&B7E5 &BI1EA 1 hw &4 =swl (blue) border
&B7E6 &BIEB 1 hw &04 =swl (blue) pen 0
&B7E7 &BIEC 1 hw &0A =sw24 (bright yellow) pen 1
&B7E8 &BIED 1 hw &13 =sw 20 (bright cyan) pen 2
&B7E9 &BIEE 1 hw &0C =sw 6 (bright red) pen3
&B7EA &BIEF 1 hw &0B =sw 26 (bright white) pen 4
&B7EB &B1FO0 1 hw &14 =sw0 (black) pen S
&B7EC &BIF1 1 hw &15 =sw2 (bright blue) pen6
&B7ED &BIF2 1 hw &0D =sw 8 (bright magenta) pen?7
&B7EE &BIF3 1 hw &06 =sw 10 (cyan) pen 8
&B7EF &BI1F4 1 hw &1E =sw 12 (yellow) pen 9

MEMORY MAPS —

6128 464 Size Comments on the memory locations
&B7F0 &BI1F5 1 hw &1F =sw 14 (pale blue) pen 10
&B7F1 &B1F6 1 hw &07 =sw 16 (pink) pen 11
&B7F2 &BI1F7 1 hw &12 =sw 18 (bright green) pen 12
&B7F3 &BIF8 1 hw &19 =sw22 (pale green) pen 13
&B7F4 &BI1F9 1 hw &0A =sw24 (bright yellow) pen 14
&B7F5 &BIFA 1 hw &07 =sw 16 (pink) pen 15
&B7F6 &BI1FB 1
&B7F7 &BIFC 1
&B7F8 &BIFD 1
&B7F9 &BIFE 2 (&B8B9 - &BI8C)
&B7FB &B200 2 (&B82F - &B102)
&B7FD
&B802 1+1
&B804 1 number of entries in the Printer Translation table (normally 10)
&B805 20*2 Printer Translation Table; each entry comprises:
byte 1: screen code
byte 2: printer code
&B805 2 screen &A0 printer &5E (acute accent)
&B807 2 screen &A1l printer &5C (V)
&B809 2 screen &A2 printer &7B ({)
&B80B 2 screen &A3 printer &23 (#)
&B80D 2 screen &A6 printer &40 (@)
&B80F 2 screen &AB printer &7C (I)
&B811 2 screen &AC printer &7D (})
&B813 2 screen &AD printer &7E (~)
&B815 2 screen &AE printer &5D (])
&B817 2 screen &AF printer &SE ()
&B819 20 room for ten more translations
&B82D &B100 1
&B82E &B101 1
&B82F &B102 2
&B831 &B104 1
&B832 &B105 2 temporary store for stack pointer (SP) during interrupt handling
&B834 &B107 &70 temporary machine stack (from &B8B3 — &B186 downwards) during interrupt handling
&B8B4 &B187 4 TIME (stored with the LB first — four bytes give >166 days; three bytes give >15 hours)
&B8B8 &B18B 1
&B8B9 &BI18C 2
&B8BB &BI8E 2
&B8BD &B190 2 address of the first ticker block in chain (if any)
&B8BF &B192 1 KB scan flag (&00=scan not needed; &01=scan needed)
&B8CO &B193 2 address of the first event block in chain (if any)
&B8C2 &B195 1
&B8C3 &B196 &10 buffer for last RSX or RSX command name (last character has bit 7 set)
&B8D3 &Bl1A6 2 address of first ROM or RSX chaining block in chain (eg &ACFC — &ABFC)
&B8DS 1 RAM bank number
&B8D6 &B1A8 1 Upper ROM status (eg select number)
&B8D7 &B1A9 2 entry point of foreground ROM in use (eg &C006 for BASIC ROM)
&B8D9 &BIAB 1 foreground ROM select address (0 for the BASIC ROM)
<> means ‘not the value or bit which follows’ “*’ means this address applies to all machines with a disc drive fitted

b0 means bit 0, bl means bit 1, etc HB means ‘the most significant byte’ and LB means ‘the least significant byte’
addresses on the right are of System Variables that hold the address of the byte being explained (for the 464 they are in italics)

PAGE 19 [—

—— THE FIRMWARE GUIDE

6128 464 Size Comments on the memory locations
&B8DA 16¥2 ROM entry IY value (ie address table) — the 6128 has ROMs numbered from O to 15:
&BIAC 7%2 ROM entry IY value (ie the address table) — the 464 has ROMs 1 to 7 only:
&B8DA 2 ROM O IY (not for the 464)
&B8DC &B1AC 2 ROM11IY
&BS8DE &BIAE 2 ROM21IY
&BSE0O &B1BO 2 ROM3IY
&BSE2 &BI1B2 2 ROM 41IY
&B8E4 &B1B4 2 ROM 5TIY
&BBE6 &B1B6 2 ROM 6 IY
&BB8E8 &BIB8 2 ROM 7TY (usually &A700 for AMSDOS/CPM ROM)
&B8EA 2 ROM 8 IY (not 464)
&B8EC 2 ROM 9 IY (not 464)
&BSEE 2 ROM 10 IY (not 464)
&BS8FO 2 ROM 11 IY (not 464)
&B8F2 2 ROM 12 IY (not 464)
&B8F4 2 ROM 13 IY (not 464)
&BS8F6 2 ROM 14 IY (not 464)
&BS8F8 2 ROM 15TY (not 464)
&BSFA (6 bytes of &FF)
&B1BA (14 bytes of &00)
&B900 &B900 12*3 High Kernel Jumpblock — on the 464 this block is (11*3) bytes in size
&B924 &B921 &1CO0 routines used by the High Kernel Jumpblock — on the 464 this is &1C8 bytes in size
&BAF4 &BAE9 &1C(&17) bytes of &FF
&BB00 &BB0OO0 26*3 Key Manager Jumpblock
&BB4E &BB4E 36*3 Text VDU Jumpblock
&BBBA &BBBA 23*3 Graphics VDU Jumpblock
&BBFF &BBFF 34*%3 Screen Pack Jumpblock
&BC65 &BC65 22*%3 Cassette (and Disc if fitted) Manager Jumpblock
&BCA7 &BCA7 11*3 Sound Manager Jumpblock
&BCC8 &BCC8 25%3 Kernel Jumpblock
&BD13 &BD13 26*3 Machine Pack Jumpblock — on the 464 this block is (14*3) bytes in size
&BD61 &BD3D 32*3 Maths Jumpblock — on the 464 this block is (48*3) bytes in size
&BDCD &BDCD 14*3 Firmware Indirections — on the 464 this block is (13*3) bytes in size
&BDF7 &BDF4 (&09(&0C) bytes of &00 — the lower limit of Machine Stack if no Disc Drive
&BEOO &BE0O (&40 bytes of &FF)
&BE40 &BE40 &4x used by the AMSDOS ROM if a disc drive is fitted (otherwise &4x bytes of &FF)
&BEAO0 &BE40 2 (address &A910)
&BE42 &BE42 2 address of drive A XDPB
&BE4 &BE#M4 9 Disc Set Up timing block:
&BE4M4 &BEM4 2 motor on period (default &0032; fastest &0023 @ 20mS)
&BE46 &BE46 2 motor off period (default &00FA ; fastest £00C8 @ 20mS)
&BE48 &BE48 1 write current off period (default &AF @ 10uS)
&BE49 &BE49 1 head settle time (default &0F @ 1mS)
&BE4A &BE4A 1 step rate period (default &0C; fastest &0A @ 1mS)
&BE4B &BE4B 1 head unload delay (default &01)
&BE4C &BEAC 1 bO=non DMA mode; b1 to b7=head load delay (default &03)
&BEAD &BE4D 2
&BEAF &BEAF 4 Drive Header Information Block:
&BE4F &BE4AF 1 last track used
&BESO &BES0 1 head number (&00)
&BES1 &BE5S1 1 last sector used
&BES2 &BES2 1 log,(sector size)-7

—J PAGE20

MEMORY MAPS

6128 464 Size Comments on the memory locations

&BES3 &BES3 1

&BES4 &BEM 1

&BES5 &BE5S5 1

&BE56 &BES6 1

&BES8 &BES8 1

&BES9 &BES9 1

&BESD &BESD 1

&BESE &BESE 1

&BESF &BESF 1 disc motor flag (&00=off; &01=on — strangely reversed)
&BE60 &BEGO 2 address of buffer for directory entries block (&A930)

&BE62 &BE62 2 as &BE76 (ie &A9B0)

&BEM4 &BEM4 2

&BE66 &BE66 1 disc retries (default &10)

&BE67 &BE67 &1l AMSDOS Ticker and Event Block:

&BE67 BE67 2 ticker chaining address

&BE69 BE69 2 tick count

&BE6B BE6B 2 recharge count

&BE6D BE6D 2 event chaining address

&BE6F BEGF 1 count

&BE70 BE70 1 class (asynchronous event)

&BE71 BE71 2 ROM routine address (&C9D6)

&BE73 BE73 1 ROM select number (&07 ie the AMSDOS/CPM ROM)
&BE74 BE74 1 last sector number used

&BE75 BE7S 1

&BE76 BE76 2 address of 1/2K buffer, or of header info block (for WRITE SECTOR etc)
&BE78 &BE78 1 disc error message flag (&00=on; &FF=off — reversed again)
&BE7D &BE7D 2 address of AMSDOS reserved area (&A700)

&BETF &BE7F x area used by AMSDOS to copy routines into RAM for running
&BE80 &BES0 (&80 bytes of &FF) limit of machine stack if disc drive fitted
&BF0O0 &BFOO (&xy bytes of &00)

&BFxy machine stack (in theory this stack could extend down much further)
&BFFF &BFFF upper limit of machine stack

The area from &C000 to &FFFF is taken up by the screen memory — the layout of which is illustrated on the next page. Printed
below are diagrams which show how the CPC uses the bytes of screen memory in the different MODEs. For each byte: -

in MODE 2 (where there are two colours only, so each pixel needs only one bit — either on or off)
bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0
p0 pl p2 p3 p4 p5 p6 p7 (the pixels are arranged with p0 being the leftmost one, etc)

in MODE 1 (where four colours are available and so two bits are needed for each pixel — 1 byte represents 4 pixels)
bit7 bit6 bi5 bit4 bit3 bit2 bitl bit0
pO(1) pl(1) p2(1) p3(1) p0©) pl(0) p2(0) p3(0) (each pixel is twice as wide as in MODE 2)

in MODE 0 (where sixteen colours are possible and four bits are needed for each pixel — 1 byte represents 2 pixels)
bit7 bit6 bit5 bitd4 bit3 bit2 bitl bit0

p0(0) pl1(0) p0R) pl(2) pO(1) p1(1) pOB3) pl3) (each pixel is four times as wide as in MODE 2)

NB: the numbers in brackets show which bit of the pixel's pen number the screen byte bit refers to. For example in MODE 1,
the 4 most significant bits of the byte hold bit 1 of the pixel's pen value and the 4 least signifcant bits hold bit 0 of the pen value.

<> means ‘not the value or bit which follows’ “*” means this address applies to all machines with a disc drive fitted
b0 means bit 0, bl means bit 1, etc HB means ‘the most significant byte’ and LB means ‘the least significant byte’
addresses on the right are of System Variables that hold the address of the byte being explained (for the 464 they are in italics)

PAGE21 [—

‘= THE FIRMWARE GUIDE

6128 464 Size Comments on the memory locations

&C000 &C000 &4000 normal (upper) screen area. The alternative (lower) screen area is from &4000 to &7FFF. The
addresses of the starts of lines and rows in the normal screen area after a MODE instruction are:

LINE

VRTINS W~

25
spare start
spare end

ROWO ROW1

C000
C050
COAO
COFO
C140
C190
C1E0
C230
C280
C2D0
C320
C370
C3C0
C410
C460
C4B0
C500
C550
C5A0
CSKFO0
C640
C690
C6E0
C730
C780
C7D0
C7FF

C800
C850
C8A0
C8F0
CH0
C990
C9E0
CA30
CAS80
CADO
CB20
CB70
CBCO
CC10
CCe0
CCBO
CD00
CD50
CDAO
CDFO
CE40
CES0
CEEO
CF30
CF80
CFDO
CFFF

ROW 2
D000
D050
DOAO
DOFO
D140
D190
D1EO
D230
D280
D2D0
D320
D370
D3CO
D410
D460
D4B0
D500
D550
DSAO
D5FO
D640
D690
D6EO
D730
D780
D7D0
D7FF

ROW 3
D800
D850
D8AO
D8F0
D940
D990
DO9EO
DA30
DARO
DADO
DB20
DB70
DBCO
DC10
DC60
DCBO
DD00
DD50
DDAO
DDFO
DEAO
DE%
DEEO
DF30
DF80
DFDO
DFFF

ROW 4
E000
E050
EOAO
EOFO
E140
E190
E1EO
E230
E280
E2D0
E320
E370
E3CO0
E410
EA60
E4BO
ES00
ES50
ESA0
ESFO
E640
E690
E6EO
E730
E780
E7DO
E7FF

ROW 5
E800
E850
E8AOQ
E8F0
ES40
E990
ESEO
EA30
EARO
EADO
EB20
EB70
EBCO
EC10
EC60
ECBO
EDO0O
ED50
EDAO
ED50
EEA0
EES0
EEEQ
EF30
EF80
EFDO
EFFF

ROW 6
FO00
FO50
FOAO
FOFO
F140
F190
F1EO
F230
F280
F2D0
F320
F370
F3CO0
F410
F460
F4B0
F500
F550
F5A0
F550
F640
F690
F6EO
F730
F780
F7DO
F7FF

ROW 7
Fg00
F850
F8A0
F8F0
F940
F990
FOED
FA30
FA80
FADO
FB20
FB70
FBCO
FC10
FC60
FCBO
FDOO
FD50
FDAO
FD50
FEAQ
FE90
FEEO
FF30
FF80
FFDO
FFFF

Once the whole screen has been scrolled in any direction, the above table will become incorrect. On scrolling, all the above

addresses will have an offset (MOD &800) added, derived as follows:

+&02 per scroll to the left (=2, 1 or 1/2 character in MODE 2, MODE 1 or MODE O respectively)
~&02 per scroll to the right (=2, 1 or 1/2 character in MODE 2, MODE 1 or MODE 0 respectively)

+&50 per scroll up one line

—&50 per scroll down one line

If scrolled far enough, a screen row may sit across the boundaries of the screen memory area, whose bottom end will then
wrap around to join up with the top (ie byte &FFFF will be followed by byte &C000 assuming the normal screen area). If before
scrolling however, a window had been set up smaller than the whole screen then the table will remain accurate despite any

scrolling.

The ‘spare’ areas of screen memory are filled with bytes of the relevant PAPER value each time there is a full screen CLS,
and are not really available for other uses. After scrolling the spare areas may be used as screen with other bytes becoming spare.

e,

Please note that this section of the guide has been set out with
all the addresses in the leftmost column in the correct order
for the 6128. However, a Conversion Chart specifically for

the 464 is printed in Appendix C.

—J PAGE22

FIRMWARE SUMMARY [—

The Firmware Jumpblocks

The Firmware Jumpblock is the recommended method of communicating with the routines in the lower
ROM — it is used by BASIC, and it should also be used by other programs.

The reason for using the jumpblock is that the routines in the lower ROM are located at different
positions on the different machines. The entries in the jumpblock, however, are all in the same place —
the instructions in the jumpblock redirect the computer to the correct place in the lower ROM. Thus,
providing a program uses the jumpblock, it should work on any CPC or Plus computer.

By altering the firmware jumpblock it is possible to make the computer run a different routine from
normal. This could either be a different routine in the lower or upper ROM, or a routine written by the user
— this is known as ‘patching the jumpblock’. It is worth noting that because BASIC uses the firmware
jumpblock quite heavily, it is possible to alter the effect of BASIC commands.

The following example will change the effect of calling SCR SET MODE (&BCOE) — instead of
changing the mode, any calls to this location will print the letter ‘A’. The first thing to do is to assemble
the piece of code that will be used to print the letter — this is printed below and starts at &4000.

ORG &4000
ID A,65
CALL &BB5A
RET

The jumpblock entry for SCR SET MODE is now patched so that it re-routes all calls to &BCOE away
from the lower ROM and to our custom routine at &4000. This is done by changing the bytes at &BCOE,
&BCOF and &BC10 to &C3, &00, &40 respectively (ie JP &4000). Any calls to &BCOE or MODE
commands will now print the letter A instead of changing mode.

The indirections jumpblock contains a small number of routines which are called by the rest of the
firmware. By altering this jumpblock, it is possible to alter the way in which the firmware operates on a
large scale — thus it is not always necessary to patch large numbers of entries in the firmware jumpblock.

There are two jumpblocks which are to do with the Kernel (ie the high and low Kernel jumpblocks).
The high jumpblock allows ROM states and interrupts to be altered, and also controls the introduction of
RSXs. The low jumpblock contains general routines and restart instructions which are used by the
computer for its own purposes. '

The CPC Firmware
The Low Kernel Jumpblock The High Kernel Jumpblock

000 &0000 RESET ENTRY (RST 0) 000 &B900 KL UROM ENABLE
001 &0008 LOWIJUMP(RSTI) 001 &B903 KL UROM DISABLE
002 &000B KL LOW PCHL 002 &B96 KLLROM ENABLE
003 &O000E PCBC INSTRUCTION 003 &B909 KL L ROM DISABLE
004 &0010 SIDE CALL (RST 2) 004 &B90C KL ROM RESTORE
005 &0013 KL SIDE PCHL 005 &B90OF KL ROM SELECT

006 &0016 PCDE INSTRUCTION 006 &B912 KL CURR SELECTION
007 &0018 FAR CALL (RST 3) 007 &B915 KL PROBEROM

008 &001B KL FAR PCHL 008 &B918 KL ROM DESELECT
009 &O001E PCHL INSTRUCTION 009 &B91B KL LDIR

010 &0020 RAMLAM (RST4) 010 &BSIE KL LDDR

011 &0023 KLFARCALL 011 &B921 KL POLL SYNCHRONOUS
012 &0028 FIRM JUMP (RST 5) 014 &B92A KL SCAN NEEDED

013 &0030 USER RESTART (RST 6)
014 &0038 INTERRUPT ENTRY (RST 7)
015 &O003B EXT INTERRUPT

PAGE 23 ’:

——

THE FIRMWARE GUIDE

024
025

The Key Manager

&BB00
&BB03
&BB06
&BB09
&BBOC
&BBOF
&BB12
&BB15
&BB18
&BB1B
&BBIE
&BB21
&BB24
&BB27
&BB2A
&BB2D
&BB30
&BB33
&BB36
&BB39
&BB3C
&BB3F
&BB42
&BB45
&BB48
&BB4B

KM INITIALISE

KM RESET

KM WAIT CHAR
KM READ CHAR
KM CHAR RETURN
KM SET EXPAND
KM GET EXPAND
KM EXP BUFFER
KM WAIT KEY

KM READ KEY

KM TEST KEY

KM GET STATE

KM GET JOYSTICK
KM SET TRANSLATE
KM GET TRANSLATE
KM SET SHIFT

KM GET SHIFT

KM SET CONTROL
KM GET CONTROL
KM SET REPEAT
KM GET REPEAT
KM SET DELAY

KM GET DELAY

KM ARM BREAK
KM DISARM BREAK
KM BREAK EVENT

The Text VDU

026
027
028
029
030
031
032
033
034
‘035
036
037
038
‘039

041
042
043

045
047
049
050

051
052

&BB4E
&BBS51
&BB54
&BBS7
&BBSA
&BBS5D
&BB60
&BB63
&BB66
&BB69
&BB6C
&BB6F
&BB72
&BB75
&BB78
&BB7B
&BB7E
&BB81
&BB84
&BB87
&BB8A
&BB8D
&BB90
&BB93
&BB9%6
&BB99
&BBOC

TXT INITIALISE
TXT RESET

TXT VDU ENABLE
TXT VDU DISABLE
TXT OUTPUT

TXT WR CHAR

TXT RD CHAR

TXT SET GRAPHIC
TXT WIN ENABLE
TXT GET WINDOW
TXT CLEAR WINDOW
TXT SET COLUMN
TXT SET ROW

TXT SET CURSOR
TXT GET CURSOR
TXT CUR ENABLE
TXT CUR DISABLE
TXT CUR ON

TXT CUR OFF

TXT INVALIDATE
TXT PLACE CURSOR
TXT REMOVE CURSOR
TXT SET PEN

TXT GET PEN

TXT SET PAPER

TXT GET PAPER
TXT INVERSE

PAGE 24

053
054
055
056
057
058
059
060
061

&BBOF
&BBA2
&BBAS
&BBA8
&BBAB
&BBAE
&BBB1
&BBB4
&BBB7

TXT SET BACK

TXT GET BACK

TXT GET MATRIX
TXT SET MATRIX
TXT SET MTABLE
TXT GET MTABLE
TXT GET CONTROLS
TXT STR SELECT
TXT SWAP STREAMS

The Graphics YDU

070
071
072
073
074
075
076
077
078
079
080
081
082
083
084

&BBBA
&BBBD
&BBCO
&BBC3
&BBC6
&BBC9
&BBCC
&BBCF
&BBD2
&BBDS5
&BBDS8
&BBDB
&BBDE
&BBE1
&BBEA
&BBE7
&BBEA
&BBED
&BBFO
&BBF3
&BBF6
&BBFO
&BBFC

GRA INITIALISE

GRA RESET

GRA MOVE ABSOLUTE
GRA MOVE RELATIVE
GRA ASK CURSOR
GRA SET ORIGIN

GRA GET ORIGIN
GRA WIN WIDTH

GRA WIN HEIGHT
GRA GET W WIDTH
GRA GET W HEIGHT
GRA CLEAR WINDOW
GRA SET PEN

GRA GET PEN

GRA SET PAPER

GRA GET PAPER

GRA PLOT ABSOLUTE
GRA PLOT RELATIVE
GRA TEST ABSOLUTE
GRA TEST RELATIVE
GRA LINE ABSOLUTE
GRA LINE RELATIVE
GRA WR CHAR

The Screen Pack

085
086
087
0838
089
090
091
092

093
0%4
095
096
097
098
099
100

101
102
103
104

&BBFF
&BCO02
&BCO05
&BC08
&BCOB
&BCOE
&BCl11
&BC14
&BC17
&BCIA
&BC1D
&BC20
&BC23
&BC26
&BC29
&BC2C
&BC2F
&BC32
&BC35
&BC38

SCR INITIALISE
SCR RESET

SCR SET OFFSET
SCR SET BASE

SCR GET LOCATION
SCR SET MODE

SCR GET MODE
SCR CLEAR

SCR CHAR LIMITS
SCR CHAR POSITION
SCR DOT POSITION
SCR NEXT BYTE
SCR PREV BYTE
SCR NEXT LINE
SCR PREV LINE

SCR INK ENCODE
SCR INK DECODE
SCR SET INK

SCR GET INK

SCR SET BORDER

FIRMWARE SUMMARY

105 &BC3B SCR GET BORDER 165 &BCEF KL INIT EVENT

106 &BC3E SCR SET FLASHING 166 &BCF2 KL EVENT

107 &BC41 SCR GET FLASHING 167 &BCF5 KL SYNC REST

108 &BC44 SCRFILLBOX 168 &BCF8 KL DEL SYNCHRONOUS
109 &BC47 SCRFLOOD BOX 169 &BCFB KL NEXT SYNC

110 &BC4A SCR CHAR INVERT 170 &BCFE KL DOSYNC

111 &BC4D SCRHWROLL 171 &BD01 KL DONESYNC

112 &BC50 SCRSW ROLL 172 &BD04 KL EVENT DISABLE
113 &BC53 SCRUNPACK 173 &BD07 KL EVENT DISABLE
114 &BC56 SCRREPACK 174 &BDOA KL DISARM EVENT
115 &BC59 SCR ACCESS 175 &BDOD KL TIME PLEASE

116 &BC5C SCRPIXELS 176 &BD10 KL TIME SET

117 &BCSF SCR HORIZONTAL 177 &BD13 MC BOOT PROGRAM
118 &BC62 SCR VERTICAL 178 &BD16 MC START PROGRAM
119 &BC65 CASINITIALISE 179 &BD19 MC WAIT FLYBACK
120 &BC68 CAS SET SPEED 180 &BD1C MCSET MODE

121 &BC6B CAS NOISY 181 &BDIF MC SCREEN OFFSET
122 &BC6E CAS START MOTOR 182 &BD22 MC CLEAR INKS

123 &BC71 CASSTOPMOTOR 18 &BD25 MCSET INKS

124 &BC74 CAS RESTORE MOTOR 184 &BD28 MC RESET PRINTER
125 &BC77 CASIN OPEN 185 &BD2B MC PRINT CHAR

126 &BC7A CASIN CLOSE 186 &BD2E MC BUSY PRINTER
127 &BC7D CASIN ABANDON 187 &BD31 MC SEND PRINTER
128 &BC80 CASINCHAR 18 &BD34 MC SOUND REGISTER
129 &BC83 CASIN DIRECT 189 &BD37 JUMP RESTORE

130 &BC86 CASRETURN

131 &BC89 CASTEST EOF

132 &BC8C CASOUT OPEN 664 or 6128 Only

133 &BC8F CASOUT CLOSE

134 &BC92 CASOUT ABANDON 190 &BD3A KM SET LOCKS

135 &BC95 CASOUT CHAR | 191 &BD3D KM FLUSH

136 &BC98 CAS OUT DIRECT 192 &BD40 TXT ASK STATE

137 &BC9B CASCATALOG 193 &BD43 GRA DEFAULT

133 &BC9E CAS WRITE 194 &BD46 GRA SET BACK

139 &BCAl CAS READ 195 &BD49 GRA SET FIRST

140 &BCA4 CAS CHECK 196 &BD4C GRA SET LINE MASK
141 &BCA7 SOUND RESET 197 &BDAF GRA FROM USER

142 &BCAA SOUND QUEUE 198 &BD52 GRA FILL

143 &BCAD SOUND CHECK 199 &BD55 SCR SET POSITION
144 &BCBO SOUND ARM EVENT 200 &BD58 MC PRINT TRANSLATION
145 &BCB3 SOUND RELEASE 201 &BD5B KL BANK SWITCH

146 &BCB6 SOUND HOLD

147 &BCBY9 SOUND CONTINUE Firmware Indirections

148 &BCBC SOUND AMPL ENVELOPE
149 &BCBF SOUND TONE ENVELOPE
150 &BCC2 SOUND A ADDRESS

151 &BCCS5 SOUND T ADDRESS

152 &BCC8 KL CHOKE OFF

153 &BCCB KL ROM WALK

154 &BCCE KL INIT BACK

155 &BCD1 KL LOG EXT

15 &BCD4 KL FIND COMMAND

157 &BCD7 KL NEW FRAMEFLY

188 &BCDA KL ADD FRAME FLY

159 &BCDD KL DEL FRAMEFLY

160 &BCEO KL NEW FAST TICKER
161 &BCE3 KL ADD FAST TICKER
162 &BCE6 KL DEL FAST TICKER

163 &BCES KL ADD TICKER

164 &BCEC KL DEL TICKER

000 &BDCD TXT DRAW CURSOR
001 &BDDO TXT UNDRAW CURSOR
002 &BDD3 TXT WRITE CHAR
003 &BDD6 TXT UNWRITE

004 &BDD9 TXT OUT ACTION
005 &BDDC GRAPLOT

006 &BDDF GRA TEST

007 &BDE2 GRA LINE

008 &BDES SCRREAD

009 &BDE8 SCR WRITE

010 - &BDEB SCR MODE CLEAR
011 &BDEE KM TEST BREAK
012 &BDFlI MC WAIT PRINTER
013 &BDF4 KM SCANKEYS

PAGE 25

THE FIRMWARE GUIDE

The Firmware in Detail

Low Kernel Jumpblock

000

001

006

&0000

Action:

Entry:
Exit:
Notes:

& 0008

Action:

Entry:
Exit:
Notes:

&000B

Action:

Entry:
Exit:
Notes:

&000E

Action:

Entry:
Exit:

&0010

Action:

Entry:
Exit:
Notes:

&0013

Action:

Entry:
Exit:
Notes:

&0016

Action:

Entry:
Exit:

RESET ENTRY (RST 0)

Resets the computer as if it has just been switched on

No entry conditions

This routine is never returned from

After initialisation of the hardware and firmware, control is handed over to ROM O (usually BASIC)

LOW JUMP (RST 1)
Jumps to a routine in either the lower ROM or low RAM
No entry conditions — all the registers are passed to the destination routine unchanged
The registers are as set by the routine in the lower ROM or RAM or are returned unaltered
The RST 1 instruction is followed by a two byte low address, which is defined as follows:
if bit 15 is set, then the upper ROM is disabled
if bit 14 is set, then the lower ROM is disabled
bits 13 to O contain the address of the routine to jump to
This command is used by the majority of entries in the main firmware jumpblock

KL LOW PCHL
Jumps to a routine in either the lower ROM or low RAM
HL contains the low address — all the registers are passed to the destination routine unchanged
The registers are as set by the routine in the lower ROM or RAM or are returned unaltered
The two byte low address in the HL register pair is defined as follows:
if bit 15 is set, then the upper ROM is disabled
if bit 14 is set, then the lower ROM is disabled
bits 13 to O contain the address of the routine to jump to

PCBC INSTRUCTION

Jumps to the specified address

BC contains the address to jump to — all the registers are passed to the destination routine unaltered
The registers are as set by the destination routine or are returned unchanged

SIDE CALL (RST 2)
Calls a routine in ROM, in a group of upto four foreground ROMs
No entry conditions — all the registers apart from Y are passed to the destination routine unaltered
IY is corrupt, and the other registers are as set by the destination routine or are returned unchanged
The RST 2 instruction is followed by a two byte side address, which is defined as follows:
bits 14 and 15 give a number between 0 and 3, which is added to the main foreground ROM select address
— this is then used as the ROM select address
bits 0 to 13 contain the address to which is added &C000 — this gives the address of the routine to be called

KL SIDE PCHL
Calls a routine in another ROM
HL contains the side address — all the registers apart from I'Y are passed to the destination routine unaltered
IY is corrupt, and the other registers are as set by the destination routine or are returned unchanged
The two byte side address is defined as follows:
bits 14 and 15 give a number between 0 and 3, which is added to the main foreground ROM select address
— this is then used as the ROM select address
bits 0 to 13 contain the address to which is added &C000 — this gives the address of the routine to be called

PCDE INSTRUCTION

Jumps to the specified address

DE contains the address to jump to — all the registers are passed to the destination routine unaltered
The registers are as set by the destination routine or are returned unchanged

PAGE 26

FIRMWARE CALLS

1

010

011

012

013

014

&0018
Action:
Entry:
Exit:
Notes:

&001B
Action:
Entry:

Exit:
Notes:

&001E
Action:
Entry:
Exit:

& 0020
Action:
Entry:
Exit:
Notes:

&0023
Action:
Entry:

Exit:
Notes:

&0028
Action:
Entry:
Exit:
Notes:

&0030
Action:
Entry:
Exit:
Notes:

&0038
Action:
Entry:
Exit:
Notes:

FAR CALL (RST 3)
Calls a routine anywhere in RAM or ROM
No entry conditions — all the registers apart from IY are passed to the destination routine unaltered
IY is preserved, and the other registers are as set by the destination routine or are returned unchanged
The RST 3 instruction is followed by a two byte in-line address. At this address, there is a three byte far address,
which is defined as follows:
bytes 0 and 1 give the address of the routine to be called
byte 2 is the ROM select byte which has values as follows:
&00 to &FB — select the given upper ROM, enable the upper ROM and disable the lower ROM
&FC — no change to the ROM selection, enable the upper and lower ROMs .
&FD — no change to the ROM selection, enable the upper ROM and disable the lower ROM
&FE — no change to the ROM selection, disable the upper ROM and enable the lower ROM
&FF — no change to the ROM selection, disable the upper and lower ROMs
When it is returned from, the ROM selection and state are restored to their settings before the RST 3 command

KL FAR PCHL

Calls a routine, given by the far address in HL. & C, anywhere in RAM or ROM

HL holds the address of the routine to be called, and C holds the ROM select byte — all the registers apart
from IY are passed to the destination routine unaltered

1Y is preserved, and the other registers are as set by the destination routine-or are returned unchanged

See FAR CALL above for more details on the ROM select byte

PCHL INSTRUCTION

Jumps to the specified address

HL contains the address to jump to — all the registers are passed to the destination routine unaltered
The registers are as set by the destination routine or are returned unchanged

RAMLAM

Puts the contents of a RAM memory location into the A register

HL contains the address of the memory location

A holds the contents of the memory location, and all other registers are preserved
This routine always reads from RAM, even if the upper or lower ROM is enabled

KL FAR CALL

Calls a routine anywhere in RAM or ROM

HL holds the address of the three byte far address that is to be used — all the registers apart from IY are passed
to the destination routine unaltered

IY is preserved, and the other registers are as set by the destination routine or are returned unchanged

See FAR CALL above for more details on the three byte far address

FIRM JUMP (RST 5)

Jumps to a routine in either the lower ROM or the central 32K of RAM

No entry conditions — all the registers are passed to the destination routine unchanged

The registers are as set by the routine in the lower ROM or RAM or are returned unaltered

The RST 5 instruction is followed by a two byte address, which is the address to jump to; before the jump is
made, the lower ROM is enabled, and is disabled when the destination routine is returned from

USER RESTART (RST 6)

This is an RST instruction that may be set aside by the user for any purpose

Defined by the user

Defined by the user

The bytes from &0030 to &0037 are available for the user to put their own code in if they wish

INTERRUPT ENTRY (RST 7)

Deals with normal interrupts

No entry conditions

All registers are preserved

The RST 7 instruction must not be used by the user; any external interrupts that are generated by hardware
on the expansion port will be dealt with by the EXT INTERRUPT routine (see over)

PAGE 27 [—

THE FIRMWARE GUIDE

015 &003B EXT INTERRUPT

Action:
Entry:
Exit:
Notes:

This area is set aside for dealing with external interrupts that are generated by any extra hardware

No entry conditions

AF, BC, DE and HL are corrupt, and all other registers are preserved

If any external hardware is going to generate interrupts, then the user must patch the area from &003B to
&O003F so that the computer can deal with the external interrupt; when an extemal interrupt occurs, the lower
ROM is disabled and the code at &003B is called; the default external interrupt routine at &003B simply
returns, and this will cause the computer to hang because the interrupt will continue to exist

High Kernel Jumpblock

000 &B900 KL UROMENABLE
Action: Enables the current upper ROM
Entry: No entry conditions
Exit: A contains the previous state of the ROM, the flags are corrupt, and all other registers are preserved
Notes: After this routine has been called, all reading from addresses between &C000 and &FFFF refers to the upper
ROM, and not the top 16K of RAM which is usually the screen memory; any writing to these addresses still
affects the RAM as, by its nature, ROM cannot be written to
001 &B903 KL UROMDISABLE
Action: Disables the upper ROM
Entry: No entry conditions
Exit: A contains the previous state of the ROM, the flags are corrupt, and all other registers are preserved
Notes: After this routine has been called, all reading from addresses between &C000 and &FFFF refers to the top
16K of RAM which is usually the screen memory
002 &B906 KL L ROM ENABLE
Action: Enables the lower ROM
Entry: No entry conditions
Exit: A contains the previous state of the ROM, the flags are corrupt, and all other registers are preserved
Notes: After this routine has been called, all reading from addresses between &0000 and &4000 refers to the lower
ROM, and not the bottom 16K of RAM; any writing to these addresses still affects the RAM as a ROM cannot
be written to; the lower ROM is automatically enabled when a firmware routine is called, and is then disabled
when the routine returns
003 &B909 KL L ROMDISABLE
Action: Disables the lower ROM
Entry: No entry conditions
Exit: A contains the previous state of the ROM, the flags are corrupt, and all other registers are preserved
Notes: After this routine has been called, all reading from addresses between &0000 and &4000 refers to the bottom
16K of RAM; the lower ROM is automatically enabled when a firmware routine is called, and is then disabled
when the routine returns
004 &B90C KL ROM RESTORE
Action: Restores the ROM to its previous state
Entry: A contains the previous state of the ROM
Exit: AF is corrupt, and all other registers are preserved
Notes: The previous four routines all return values in the A register which are suitable for use by KL ROM RESTORE
005 &B90F KL ROM SELECT
Action: Selects an upper ROM and also enables it
Entry: C contains the ROM select address of the required ROM
Exit: C contains the ROM select address of the previous ROM, and B contains the state of the previous ROM
006 &B912 KL CURR SELECTION
Action: Gets the ROM select address of the current ROM
Entry: No entry conditions
Exit: A contains the ROM select address of the current ROM, and all other registers are preserved
—] PAGE2Z2s

FIRMWARE CALLS |—

007 &B915
Action:
Entry:
Exit:

Notes:

008 &B918
Action:
Entry:
Exit:
Notes:

009 &BY91B
Action:
Entry:

Exit:

010 &B91E
Action:
Entry:

Exit:

011 &B921
Action:
Entry:
Exit:

014 &B92A
Action:
Entry:
Exit:
Notes:

KL PROBE ROM
Gets the class and version of a specified ROM
C contains the ROM select address of the required ROM
A contains the class of the ROM, H holds the version number, L holds the mark number, B and the flags are
corrupt, and all other registers are preserved
The ROM class may be one of the following:
&00 — aforeground ROM
&01 — a background ROM
&02 — an extension foreground ROM
&80 — the built in ROM (ie the BASIC ROM)

KL ROM DESELECT

Selects the previous upper ROM and sets its state

C contains the ROM select address of the ROM to be reselected, and B contains the state of the required ROM
C contains the ROM select address of the current ROM, B is corrupt, and all others are preserved

This routine reverses the action of KL ROM SELECT, and uses the values that it returns in B and C

KL LDIR

Switches off the upper and lower ROMSs, and moves a block of memory

As for a standard LDIR instruction (ie DE holds the destination location, HL points to the first byte to be
moved, and BC holds the length of the block to be moved)

F, BC, DE and HL are set as for a normal LDIR instruction, and all other registers are preserved

KL LDDR

Switches off the upper and lower ROMs, and moves a block of memory

As for a standard LDDR instruction (ie DE holds the first destination location, HL points to the highest byte
in memory to be moved, and BC holds the number of bytes to be moved)

F, BC, DE and HL are set as for a normal LDDR instruction, and all other registers are preserved

KL POLL SYNCHRONOUS
Tests whether an event with a higher priority than the current event is waiting to be dealt with
No entry conditions
If there is a higher priority event, then Carry is false;
if there is no higher priority event, then Carry is true;
in either case, A and the other flags are corrupt, and all other registers are preserved

KL SCAN NEEDED

Ensures that the keyboard is scanned when the next ticker interrupt occurs

No entry conditions '

AF and HL are corrupt, and all other registers are preserved

This routine is useful for scanning the keyboard when the interrupts are disabled and normal key scanning is
not occurring

The Key Manager

000 &BBO0O
Action:

Entry:
Exit:

001 &BB03
Action:
Entry:
Exit:
Notes:

KM INITIALISE

Initialises the Key Manager and sets up everything as it is when the computer is first switched on; the key buffer
is emptied, Shift and Caps lock are turned off and all the expansion and translation tables are reset to normal;
also see the routine KM RESET below

No entry conditions

AF, BC, DE and HL corrupt, and all other registers are preserved

KM RESET

Resets the Key Manager; the key buffer is emptied and all current keys/characters are ignored

No entry conditions

AF, BC, DE and HL are corrupt, and all other registers are preserved

See also KM INITIALISE above; on the 664 or 6128, the key buffer can also be cleared separately by calling
the KM FLUSH routine

PAGE29 [—

THE FIRMWARE GUIDE

007

010

&BB06
Action:
Entry:
Exit:

&BB09
Action:
Entry:
Exit:

&BBOC
Action:
Entry:
Exit:

&BBOF
Action:
Entry:
Exit:

&BB12
Action:
Entry:
Exit:

&BB15
Action:
Entry:
Exit:

Notes:

&BB18
Action:
Entry:
Exit:

&BB1B
Action:
Entry:
Exit:

Notes:

&BBI1E
Action:
Entry:
Exit:

Notes:

KM WAIT CHAR

Waits for the next character from the keyboard buffer

No entry conditions

Carry is true, A holds the character value, the other flags are corrupt, and all other registers are preserved

KM READ CHAR
Tests to see if a character is available from the keyboard buffer, but doesn’t wait for one to become available
No entry conditions
If a character was available, then Carry is true, and A contains the character;
otherwise Carry is false, and A is corrupt;
in both cases, the other registers are preserved

KM CHAR RETURN

Saves a character for the next use of KM WAIT CHAR or KM READ CHAR
A contains the ASCII code of the character to be put back

All registers are preserved

KM SET EXPAND
Assigns a string to a key code
B holds the key code; C holds the length of the string; HL contains the address of the string (must be in RAM)
If it is OK, then Carry is true;
otherwise Carry is false;
in either case, A, BC, DE and HL are corrupt, and all other registers are preserved

KM GET EXPAND
Reads a character from an expanded string of characters
A holds an expansion token (ie a key code) and L holds the character position number (starts from 0)
If itis OK, then Carry is true, and A holds the character;
otherwise Carry is false, and A is corrupt;
in either case, DE and flags are corrupt, and the other registers are preserved

KM EXP BUFFER
Sets aside a buffer area for character expansion strings
DE holds the address of the buffer and HL holds the length of the buffer
If itis OK, then Carry is true; -
otherwise Carry is false;
in either case, A, BC, DE and HL are corrupt
The buffer must be in the central 32K of RAM and must be at least 49 bytes long

KM WAIT KEY

Waits for a key to be pressed — this routine does not expand any expansion tokens

No entry conditions

Carry is true, A holds the character or expansion token, and all other registers are preserved

KM READ KEY

Tests whether a key is available from the keyboard

No entry conditions

If a key is available, then Carry is true, and A contains the character;
otherwise Carry is false, and A is corrupt;
in either case, the other registers are preserved

Any expansion tokens are not expanded

KM TEST KEY
Tests if a particular key (or joystick direction or button) is pressed
A contains the key/joystick number
If the requested key is pressed, then Zero is false;

otherwise Zero is true;

for both, Carry is false, A and HL are corrupt, C holds the Shift and Control status, and others are preserved
After calling this, C will hold the state of shift and control — if bit 7 is set then Control was pressed, and if
bit 5 is set then Shift was pressed

PAGE 30

FIRMWARE CALLS [—

011

012

013

014

015

016

017

018

019

&BB21
Action:
Entry:
Exit:

&BB24
Action:
Entry:
Exit:
Notes:

&BB27
Action:
Entry:
Exit:
Notes:

&BB2A
Action:
Entry:
Exit:
Notes:

&BB2D
Action:
Entry:
Exit:
Notes:

&BB30
Action:
Entry:
Exit:
Notes:

&BB33
Action:
Entry:
Exit:
Notes:

&BB36
Action:
Entry:
Exit:
Notes:

&BB39
Action:
Entry:
Exit:

KM GET STATE

Gets the state of the Shift and Caps locks

No entry conditions

If L holds &FF then the shift lock is on, but if L holds &00 then the Shift lock is off;
if H holds &FF then the caps lock is on, and if H holds &00 then the Caps lock is off;
whatever the outcome, all the other registers are preserved

KM GET JOYSTICK
Reads the present state of any joysticks attached
No entry conditions
H and A contains the state of joystick 0, L holds that state of joystick 1, and all others are preserved
The joystick states are bit significant and are as follows:
Bit0 — Up Bit 1 — Down Bit2 — Left Bit3 — Right
Bit4 — Fire 2 Bit5 — Fire 1 Bit 6 — Spare Bit 7 — Always zero
The bits are set when the corresponding buttons or directions are operated

KM SET TRANSLATE
Sets the token or character that is assigned to a key when neither Shift nor Control are pressed
A contains the key number and B contains the new token or character
AF and HL are corrupt, and all other registers are preserved
Special values for B are as follows:
&80 to &9F — these values correspond to the expansion tokens
&FD — this causes the caps lock to toggle on and off
&FE — this causes the shift lock to toggle on and off
&FF — causes this key to be ignored

KM GET TRANSLATE

Finds out what token or character will be assigned to a key when neither Shift nor Control are pressed
A contains the key number

A contains the token/character that is assigned, HL and flags are corrupt, and all others are preserved
See KM SET TRANSLATE for special values that can be returned

KM SET SHIFT

Sets the token or character that will be assigned to a key when Shift is pressed as well
A contains the key number and B contains the new token or character

AF and HL are corrupt, and all others are preserved

See KM SET TRANSLATE for special values that can be set

KM GET SHIFT

Finds out what token/character will be assigned to a key when Shift is pressed as well

A contains the key number

A contains the token/character that is assigned, HL and flags are corrupt, and all others are preserved
See KM SET TRANSLATE for special values that can be returned

KM SET CONTROL

Sets the token or character that will be assigned to a key when Control is pressed as well
A contains the key number and B contains the new token/character

AF and HL are corrupt, and all others are preserved

See KM SET TRANSLATE for special values that can be set

KM GET CONTROL ‘

Finds out what token or character will be assigned to a key when Control is pressed as well

A contains the key number

A contains the token/character that is assigned, HL and flags are corrupt and all others are preserved
See KM SET TRANSLATE for special values that can be set

KM SET REPEAT

Sets whether a key may repeat or not

A contains the key number, B contains &00 if there is no repeat and &FF is it is to repeat
AF, BC and HL are corrupt, and all others are preserved

PAGE 31 [—

THE FIRMWARE GUIDE

021

022

023

024

025

&BB3C KM GET REPEAT
Action: Finds out whether a key is set to repeat or not
Entry: A contains a key number
Exit: If the key repeats, then Zero is false;
if the key does not repeat, then Zero is true;
in either case, A, HL and flags are corrupt, Carry is false, and all other registers are preserved

&BB3F KM SET DELAY

Action: Sets the time that elapses before the first repeat, and also set the repeat speed

Entry: H contains the time before the first repeat, and L holds the time between repeats (repeat speed)
Exit: AF is corrupt, and all others are preserved

Notes: The values for the times are given in 1/50th seconds, and a value of O counts as 256

&BB42 KM GET DELAY

Action: Finds out the time that elapses before the first repeat and also the repeat speed

Entry: No entry conditions

Exit: H contains the time before the first repeat, and L holds the time between repeats, and all others are preserved

&BB45 KM ARM BREAK

Action: Arms the Break mechanism

Entry: DE holds the address of the Break handling routine, C holds the ROM select address for this routine
Exit: AF, BC, DE and HL are corrupt, and all the other registers are preserved

&BB48 KM DISARM BREAK

Action: Disables the Break mechanism

Entry: No entry conditions

Exit: AF and HL are corrupt, and all the other registers are preserved

&BB4B KM BREAK EVENT

Action: Generates a Break interrupt if a Break routine has been specified by KM ARM BREAK
Entry: No entry conditions

Exit: AF and HL are corrupt, and all other registers are preserved

The Text VDU

026

&BB4E TXT INITIALISE

Action: Initialise the text VDU to its settings when the computer is switched on, includes resetting all the text VDU
indirections, selecting Stream 0, resetting the text paper to pen 0 and the text pen to pen 1, moving the cursor
to the top left corner of the screen and setting the writing mode to be opaque

Entry: No entry conditions

Exit: AF, BC, DE and HL are corrupt, and all others are preserved

CHARACTER COORDINATES AND POSITIONS

The CPC handbook's and the original Firmware Manual ambiguously used the term ‘row’ to indicate both a character line,
and any one of the rows of pixels which go to make up a displayed character. In this guide, the term line' is used to indicate
a character line (as in everyday usage), and a 'row' to indicate any of the eight horizontal rows of pixels which make up
a character line.

Character positions are expressed using three systems of coordinates:

* logical coordinates are those related to 1,1 at the top left of the screen; used in BASIC only to set a window's size,
or in the Firmware

* physical coordinates again relate to the top left of the screen, but the character position in the top left is here expressed
as being 0,0; used only by the Firmware

* window (normal) coordinates are those used in BASIC and are relative to 1,1 at the top left of the current window:;
they only coincide with logical coordinates when the window extends into the top left corner of the screen

PAGE 32

FIRMWARE CALLS

I

027

028

029

030

031

032

033

034

035

036

&BBS51
Action:
Entry:
Exit:

&BB54
Action:
Entry:
Exit:

&BB57
Action:
Entry:
Exit:

&BBSA
Action:
Entry:
Exit:
Notes:

&BBSD
Action:
Entry:
Exit:
Notes:

&BB60
Action:
Entry:
Exit:

Notes:

&BB63
Action:
Entry:
Exit:
Notes:

&BB66
Action:
Entry:

Exit:
Notes:

&BB69
Action:
Entry:
Exit:

&BB6C
Action:
Entry:
Exit:

TXT RESET

Resets the text VDU indirections and the control code table

No entry conditions

AF, BC, DE and HL are corrupt, and all the other registers are preserved

TXT VDU ENABLE :

Allows characters to be printed on the screen in the current stream
No entry conditions

AF is corrupt, and all other registers are preserved

TXT VDU DISABLE

Prevents characters from being printed to the current stream
No entry conditions

AF is corrupt, and all the other registers are preserved

TXT OUTPUT

Output a character or control code (&00 to & 1F) to the screen

A contains the character to output

All registers are preserved

Any control codes are obeyed and nothing is printed if the VDU is disabled; characters are printed using the
TXT OUT ACTION routine; if using graphics printing mode, then control codes are printed and not obeyed

TXT WR CHAR

Print a character at the current cursor position — control codes are printed and not obeyed
A contains the character to be printed

AF, BC, DE and HL are corrupt, and all others are preserved

This routine uses the TXT WRITE CHAR indirection to put the character on the screen

TXT RD CHAR

Read a character from the screen at the current cursor position

No entry conditions

If it was successful then A contains the character that was read from the screen and Carry is true;
otherwise Carry is false, and A holds 0;
in either case, the other flags are corrupt, and all registers are preserved

This routine uses the TXT UNWRITE indirection

TXT SET GRAPHIC

Enables or disables graphics print character mode

To switch graphics printing mode on, A must be non-zero; to turn it off, A must contain zero

AF corrupt, and all other registers are preserved

When turned on, control codes are printed and not obeyed; characters are printed by GRA WR CHAR

TXT WIN ENABLE

Sets the boundaries of the current text window — uses physcial coordinates

H holds the column number of one edge, D holds the column number of the other edge, L holds the line number
of one edge, and E holds the line number of the other edge

AF, BC, DE and HL are corrupt

The window is not cleared but the cursor is moved to the top left corner of the window

TXT GET WINDOW

Returns the size of the current window — returns physical coordinates

No entry conditions

H holds the column number of the left edge, D holds the column number of the right edge, L holds the line
number of the top edge, E holds the line number of the bottom edge, A is corrupt, Carry is false if the window
covers the entire screen, and the other registers are always preserved

TXT CLEAR WINDOW

Clears the window (of the current stream) and moves the cursor to the top left corner of the window
No entry conditions

AF, BC, DE and HL are corrupt, and all others are preserved

PAGE 33 [—

THE FIRMWARE GUIDE

037 &BB6F TXT SET COLUMN
Action: Sets the cursor’s horizontal position
Entry: A contains the logical column number to move the cursor to
Exit: AF and HL are corrupt, and all the other registers are preserved
Notes: See also TXT SET CURSOR
038 &BB72 TXT SET ROW
Action: Sets the cursor’s vertical position
Entry: A contains the logical line number to move the cursor to
Exit: AF and HL are corrupt, and all others are preserved
Notes: See also TXT SET CURSOR
039 &BB75 TXT SET CURSOR
Action: Sets the cursor’s vertical and horizontal position
Entry: H contains the logical column number and L contains the logical line number
Exit: AF and HL are corrupt, and all the others are preserved
Notes: See also TXT SET COLUMN and TXT SET ROW
040 &BB78 TXT GET CURSOR
Action: Gets the cursor’s current position
Entry: No entry conditions
Exit: H holds the logical column number, L holds the logical line number, and A contains the roll count, the flags
are corrupt, and all the other registers are preserved
Notes: The roll count is increased when the screen is scrolled down, and is decreased when it is scrolled up
041 &BB7B TXT CUR ENABLE
Action: Allows the text cursor to be displayed (if it is allowed by TXT CUR ON) — intended for use by the user
Entry: No entry conditions
Exit: AF is corrupt, and all other registers are preserved
042 &BB7E TXT CUR DISABLE
Action: Prevents the text cursor from being displayed — intended for use by the user
Entry: No entry conditions
Exit: AF is corrupt, and all others are preserved
043 &BB81 TXT CUR ON
Action: Allows the text cursor to be displayed — intended for use by the operating system
Entry: No entry conditions
Exit: All registers and flags are preserved
04 &BB84 TXT CUR OFF v
Action: Prevents the text cursor from being displayed — intended for use by the operating system
Entry: No entry conditions
Exit: All registers and flags are preserved
045 &BB87 TXT VALIDATE
Action: Checks whether a cursor position is within the current window
Entry: H contains the logical column number to check, and L holds the logical line number
Exit: H holds the logical column number where the next character will be printed, L holds the logical line number;
if printing at this position would make the window scroll up, then Carry is false and B holds &FF;
if printing at this position would make the window scroll down, then Carry is false and B contains &00;
if printing at the specified cursor position would not scroll the window, then Carry is true and B is corrupt;
always, A and the other flags are corrupt, and all others are preserved
046 &BBSA TXT PLACE CURSOR
Action: Puts a ‘cursor blob’ on the screen at the current cursor position
Entry: No entry conditions
Exit: AF is corrupt, and all other registers are preserved
Notes: Itis possible to have more than one cursor in a window (see also TXT DRAW CURSOR); do not use this
routine twice without using TXT REMOVE CURSOR between
—— PAGE34

FIRMWARE CALLS —

047 &BBSD TXT REMOVE CURSOR
Action: Removes a ‘cursor blob’ from the current cursor position
Entry: No entry conditions
Exit: AF is corrupt, and all the others are preserved
Notes: This should be used only to remove cursors created by TXT PLACE CURSOR, but see also TXT UNDRAW
CURSOR

048 &XBB90 TXT SET PEN
Action: Sets the foreground PEN for the current stream
Entry: A contains the PEN number to use
Exit: AF and HL are corrupt, and all other registers are preserved

049 &BB93 TXT GET PEN
Action: Gets the foreground PEN for the current stream
Entry: No entry conditions
Exit: A contains the PEN number, the flags are corrupt, and all other registers are preserved

050 &BB96 TXT SET PAPER
Action: Sets the background PAPER for the current stream
Entry: A contains the PEN number to use
Exit: AF and HL are corrupt, and all other registers are preserved

051 &BBY99 TXT GET PAPER
Action: Gets the background PAPER for the current stream
Entry: No entry conditions
Exit: A contains the PEN number, the flags are corrupt, and all other registers are preserved

052 &BB9C TXT INVERSE
Action: Swaps the current PEN and PAPER colours over for the current stream
Entry: No entry conditions
Exit: AF and HL are corrupt, and all others are preserved

053 &BBYF TXT SET BACK
Action: Sets the character write mode to either opaque or transparent
Entry: For transparent mode, A must be non-zero; for opaque mode, A has to hold zero
Exit: AF and HL are corrupt, and all other registers are preserved
Notes: Setting the character write mode has no effects on the graphics VDU

054 &BBA2 TXT GET BACK
Action: Gets the character write mode for the current stream
Entry: No entry conditions
Exit: If in transparent mode, A is non-zero;
in opaque mode, A is zero;
in either case DE, HL and flags are corrupt, and the other registers are preserved

PEN AND INK

The term 'ink' is used by the handbooks and guides to designate both pen and the colour it contains and writes with. To
differentiate in this guide, the following system will be used:
* 'Pen' is one of the 16, 4 or 2 PENs available in Modes 0, 1 or 2 respectively
* Foreground pen' is one of these pens selected to print the next character with; when the foreground pen is changed,
only future printing is affected
* Paper’ is one of the pens selected as background for the next character
* 'Colour' is one of 26 colours (inks) which a pen writes with, or a paper shows as background to a character; when a
pen's colour is changed, all existing characters in that pen are changed as well as all future ones
* 'Encoded pen' is a special value accorded to a pen for use by the Firmware; it can be used as a mask to set all of a byte's
pixels to that pen
* 'Hardware colour' is a special value accorded to a colour for use by the Hardware (colour is created by the hardware
only, although it is selected by the software)

PAGE35 [—

—] THE FIRMWARE GUIDE

055 &BBAS
Action:
Entry:
Exit:

Notes:

056 &BBAS
Action:
Entry:
Exit:

TXT GET MATRIX
Gets the address of a character matrix
A contains the character whose matrix is to be found
If itis a user-defined matrix, then Carry is true;

if it is in the lower ROM then Carry is false;

in either event, HL. contains the address of the matrix, A and other flags are corrupt, and others are preserved
The character matrix is stored in 8 bytes; the first byte is for the top row of the character, and the last byte refers
to the bottom row of the character; bit 7 of a byte refers to the leftmost pixel of a line, and bit O refers to the
rightmost pixel in Mode 2. For Modes 0 and 1, see page 21

TXT SET MATRIX
Installs a matrix for a user-defined character
A contains the character which is being defined and HL contains the address of the matrix to be used
If the character is user-definable then Carry is true;
otherwise Carry is false, and no action is taken;
in both cases AF, BC, DE and HL are corrupt, and all other registers are preserved

057 &BBAB TXT SET M TABLE

Action:
Entry:
Exit:

Sets the address of a user-defined matrix table
DE is the first character in the table and HL is the table’s address (in the central 32K of RAM)
If there are no existing tables then Carry is false, and A and HL are both corrupt;

otherwise Carry is true, A is the first character and HL is the table’s address;

in both cases BC, DE and the other flags are corrupt

058 &BBAE TXT GET M TABLE

Action:
Entry:
Exit:

059 &BBB1
Action:
Entry:
Exit:
Notes:

060 &BBB4
Action:
Entry:
Exit:

‘061 &BBB7
Action:
Entry:
Exit:
Notes:

Gets the address of a user-defined matrix table
No entry conditions
See TXT SET M TABLE above for details of the values that can be returned

TXT GET CONTROLS
Gets the address of the control code table
No entry conditions
HL contains the address of the table, and all others are preserved
The table has 32 entries, and each entry has three bytes:
byte 1 is the number of parameters needed by the control code
bytes 2 and 3 are the address of the routine, in the Lower ROM, to execute the control code

TXT STR SELECT

Selects a new VDU text stream

A contains the value of the stream to change to

A contains the previously selected stream, HL and the flags are corrupt, and all others are preserved

TXT SWAP STREAMS

Swaps the states of two stream attribute tables

B contains a stream number, and C contains the other stream number

AF, BC, DE and HL are corrupt, and all other registers are preserved

The foreground pen and paper, the window size, the cursor position, the character write mode and graphic
character mode are all exchanged between the two streams

The Graphics VDU

062 &BBBA GRA INITIALISE

Action:
Entry:
Exit:
Notes:

Initialises the graphics VDU to its default set-up (ie its set-up when the computer is switched on)

No entry conditions

AF, BC, DE and HL are corrupt, and all other registers are preserved

Sets the graphics indirections to their defaults, sets the graphic paper to text pen 0 and the graphic pen to text
pen 1, reset the graphics origin and move the graphics cursor to the bottom left of the screen, reset the graphics
window and write mode to their defaults

— PAGE 36

FIRMWARE CALLS —

063 &BBBD GRA RESET

Action: Resets the graphics VDU

Entry: No entry conditions

Exit: AF, BC, DE and HL are corrupt, and all others are preserved

Notes: Resets the graphics indirections and the graphics write mode to their defaults

064 &BBC0 GRA MOVE ABSOLUTE

Action: Moves the graphics cursor to an absolute screen position
Entry: DE contains the user X-coordinate and HL holds the user Y -coordinate
Exit: AF, BC, DE and HL are corrupt, and all other registers are preserved

065 &BBC3 GRA MOVE RELATIVE

Action: Moves the graphics cursor to a point relative to its present screen position
Entry: DE contains the X-distance to move and HL holds the Y -distance
Exit: AF, BC, DE and HL are corrupt, and all others are preserved

066 &BBC6 GRA ASK CURSOR

Action: Gets the graphics cursor’s current position
Entry: No entry conditions
Exit: DE holds the user X-coordinate, HL holds the user Y-coordinate, AF is corrupt, and all others are preserved

067 &BBC9 GRA SET ORIGIN

Action: Sets the graphics user origin’s screen position
Entry: DE contains the standard X-coordinate and HL holds the standard Y-coordinate .
Exit: AF, BC, DE and HL are corrupt, and all other registers are preserved

068 &BBCC GRA GET ORIGIN

Action: Gets the graphics user origin’s screen position
Entry: No entry conditions
Exit: DE contains the standard X-coordinate and HL holds the standard Y-coordinate, and all others are preserved

069 &BBCF GRA WIN WIDTH

Action: Sets the left and right edges of the graphics window

Entry: DE contains the standard X-coordinate of one edge and HL holds the standard X-coordinate of the other side

Exit: AF, BC, DE and HL are corrupt, and all the other registers are preserved

Notes: The default window covers the entire screen and is restored to its default when the mode is changed; used in
conjunction with GRA WIN HEIGHT

070 &BBD2 GRA WIN HEIGHT

Action: Sets the top and bottom edges of the graphics window

Entry: DE contains the standard Y -coordinate of one side and HL holds the standard Y -coordinate of the other side
Exit: AF, BC, DE and HL are corrupt, and all others are preserved

Notes: See GRA WIN WIDTH for further details

GRAPHICS COORDINATES

Graphics position coordinates are expressed using three systems (each of which defines a "point’):

* User coordinates are those relative to the user Origin (as set by BASIC's ORIGIN command or by the Firmware's
GRA SET ORIGIN routine) which becomes 0,0; this system accords with 'absolute’ coordinates used in BASIC, but
is also used by the Firmware

* Relative coordinates are relative to the current graphics position

* Standard coordinates relate to 0,0 at the bottom left of the screen, and are used only for setting the Ori gin or the size
of the graphics window, and are independent of both of these

In addition, pixel coordinates are defined using the following system:
* Base coordinates relate to 0,0 at the bottom left of the screen, but they relate exclusively to pixels, and so they are
calculated as follows:
X base coordinate = (x standard coordinate)/8 or /4 or /2 (for Modes 0, 1 or 2 respectively)
y base coordinate = (y standard coordinate)/2 (for all Modes)

PAGE 37 [—

THE FIRMWARE GUIDE

071 &BBD5 GRA GET W WIDTH
Action: Gets the left and right edges of the graphics window
Entry: No entry conditions
Exit: DE contains the standard X-coordinate of the left edge and HL contains the standard X-coordinate of the right
edge, AF is corrupt, and all other registers are preserved
072 &BBD8 GRA GET W HEIGHT
Action: Gets the top and bottom edges of the graphics window
Entry: No entry conditions
Exit: DE contains the standard Y -coordinate of the top edge and HL contains the standard Y -coordinate of the
bottom edge, AF is corrupt, and all other registers are preserved
073 &BBDB GRA CLEAR WINDOW
Action: Clears the graphics window to the graphics paper colour and moves the cursor back to the user origin
Entry: No entry conditions
Exit: AF, BC, DE and HL are corrupt, and all other registers are preserved
074 &BBDE GRA SET PEN
Action: Sets the graphics PEN
Entry: A contains the required text PEN number
Exit: AF is corrupt, and all other registers are preserved
075 &BBE1 GRA GET PEN
Action: Gets the graphics PEN
Entry: No entry conditions
Exit: A contains the text PEN number, the flags are corrupt, and all other registers are preserved
076 &BBE4 GRA SET PAPER
Action: Sets the graphics PAPER
Entry: A contains the required text PEN number
Exit: AF corrupt, and all others are preserved
077 &BBE7 GRA GET PAPER
Action: Gets the graphics PAPER
Entry: No entry conditions
Exit: A contains the text PEN number, the flags are corrupt, and all others are preserved
078 &BBEA GRA PLOT ABSOLUTE
Action: Plots a point at an absolute user coordinate, using the GRA PLOT indirection
Entry: DE contains the user X-coordinate and HL holds the user Y -coordinate
Exit: AF, BC, DE and HL are corrupt, and all others are preserved
079 &BBED GRA PLOT RELATIVE
Action: Plots a point at a position relative to the current graphics cursor, using the GRA PLOT indirection
Entry: DE contains the relative X-coordinate and HL contains the relative Y-coordinate
Exit: AF, BC, DE and HL are corrupt, and all other registers are preserved
080 &BBFO0 GRA TEST ABSOLUTE
Action: Moves to an absolute position, and tests the point there using the GRA TEST indirection
Entry: DE contains the user X-coordinate and HL holds the user Y-coordinate for the point you wish to test
Exit: A contains the pen at the point, and BC, DE, HL and flags are corrupt, and all others are preserved
GRAPHICS PEN AND PAPER

* Graphics Pen is one of the available text pens, selected for drawing lines with; it can be different from the current
foreground (text) pen

* Graphics Paper is one of the available text pens, selected to act as a background when printing characters in Graphics
write mode; it can be different from the current text pen

* The colours these produce are those set for the text pen in use, using BASIC's INK command or SCR SET INK

PAGE 38

FIRMWARE CALLS [—

081

083

084

&BBF3
Action:
Entry:
Exit:

&BBF6
Action:
Entry:
Exit:
Notes:

&BBF9
Action:
Entry:
Exit:
Notes:

&BBFC
Action:
Entry:
Exit:
Notes:

GRA TEST RELATIVE

Moves to a position relative to the current position, and tests the point there using the GRA TEST indirection
DE contains the relative X-coordinate and HL contains the relative Y-coordinate

A contains the pen at the point, and BC, DE, HL and flags are corrupt, and all others are preserved

GRA LINE ABSOLUTE

Draws a line from the current graphics position to an absolute position, using GRA LINE

DE contains the user X-coordinate and HL holds the user Y-coordinate of the end point

AF, BC, DE and HL are corrupt, and all others are preserved

The line will be plotted in the current graphics pen colour (may be masked to produce a dotted line on a 6178)

GRA LINE RELATIVE

Draws a line from the current graphics position to a relative screen position, using GRA LINE
DE contains the relative X-coordinate and HL contains the relative Y-coordinate

AF, BC, DE and HL are corrupt, and all other registers are preserved

See GRA LINE ABSOLUTE above for details of how the line is plotted

GRA WR CHAR

Writes a character onto the screen at the current graphics position .

A contains the character to be put onto the screen

AF, BC, DE and HL are corrupt, and all the other registers are preserved

As in BASIC, all characters including control codes are printed; the character is printed with its top left comer
at the current graphics position; the graphics position is moved one character width to the right so that it is ready
for another character to be printed

The Screen Pack

085 &BBFF SCR INITIALISE

086

087

088

089

Action:
Entry:
Exit:
Notes:

&BCO02
Action:
Entry:
Exit:

&BCO05
Action:
Entry:
Exit:
Notes:

&BC08
Action:
Entry:
Exit:
Notes:

&BCOB
Action:
Entry:
Exit:

Initialises the Screen Pack to the default values used when the computer is first switched on

No entry conditions

AF, BC, DE and HL are corrupt, and all others are preserved

All screen indirections are restored to their default settings, as are inks and flashing speeds; the mode is
switched to MODE 1 and the screen is cleared with PEN 0; the screen address is moved to &C000 and the
screen offset is set to zero

SCR RESET

Resets the Screen Pack’s indirections, flashing speeds and inks to their default values
No entry conditions

AF, BC, DE and HL are corrupt, and all other registers are preserved

SCR SET OFFSET

Sets the screen offset to the specified values — this can cause the screen to scroll

HL contains the required offset, which should be even

AF and HL are corrupt, and all others are preserved

The screen offset is reset to O whenever its mode is set, or it is cleared by SCR CLEAR (but not BASIC's CLS)

SCR SET BASE

Sets the location in memory of the screen — effectively can only be &C000 or &4000

A contains the most significant byte of the screen address required

AF and HL are corrupt, and all other registers are preserved

The screen memory can only be set at 16K intervals (ie &0000, &4000, &8000 &C000) and when the
computer is first switched on the 16K of screen memory is located at &C000

SCR GET LOCATION

Gets the location of the screen memory and also the screen offset

No entry conditions

A holds the most significant byte of the screen address, HL holds the current offset, and all others are preserved

PAGE 39 [—

THE FIRMWARE GUIDE

091

092

093

096

&BCOE
Action:
Entry:
Exit:
Notes:

&BC11
Action:
Entry:
Exit:

&BC14
Action:
Entry:
Exit:

&BC17
Action:
Entry:
Exit:

&BCl1A
Action:
Entry:
Exit:

&BC1D
Action:
Entry:
Exit:

&BC20
Action:
Entry:
Exit:

&BC23
Action:

Entry:
Exit:

&BC26
Action:
Entry:
Exit:

&BC29
Action:
Entry:
Exit:

SCR SET MODE

Sets the screen mode

A contains the mode number — it has the same value and characteristics as in BASIC

AF, BC, DE and HL are corrupt, and all others are preserved ‘

The windows are set to cover the whole screen and the graphics origin is set to the bottom left corner of the
screen; in addition, the current stream is set to zero, and the screen offset is zeroed

SCR GET MODE
Gets the current screen mode
No entry conditions
If the mode is 0, then Carry is true, Zero is false, and A contains 0;
if the mode is 1, then Carry is false, Zero is true, and A contains 1;
if the mode is 2, then Carry is false, Zero is false, and A contains 2;
in all cases the other flags are corrupt and all the other registers are preserved

SCR CLEAR

Clears the whole of the screen

No entry conditions

AF, BC, DE and HL are corrupt, and all others are preserved

SCR CHAR LIMITS

Gets the size of the whole screen in terms of the numbers of characters that can be displayed

No entry conditions

B contains the number of characters across the screen, C contains the number of characters down the screen,
AF is corrupt, and all other registers are preserved

SCR CHAR POSITION

Gets the memory address of the top left corner of a specified character position

H contains the character physical column and L contains the character physical row

HL contains the memory address of the top left corer of the character, B holds the width in bytes of a character
in the present mode, AF is corrupt, and all other registers are preserved

SCR DOT POSITION

Gets the memory address of a pixel at a specified screen position

DE contains the base X-coordinate of the pixel, and HL contains the base Y-coordinate

HL contains the memory address of the pixel, C contains the bit mask for this pixel, B contains the number
of pixels stored in a byte minus 1, AF and DE are corrupt, and all others are preserved

SCR NEXT BYTE

Calculates the screen address of the byte to the right of the specified screen address (may be on the next line)
HL contains the screen address

HL holds the screen address of the byte to the right of the original screen address, AF is corrupt, all others are
preserved

SCR PREV BYTE

Calculates the screen address of the byte to the left of the specified screen address (this address may actually
be on the previous line)

HL contains the screen address

HL holds the screen address of the byte to the left of the original address, AF is corrupt, all others are preserved

SCR NEXT LINE

Calculates the screen address of the byte below the specified screen address

HL contains the screen address

HL contains the screen address of the byte below the original screen address, AF is corrupt, and all the other
registers are preserved

SCR PREV LINE

Calculates the screen address of the byte above the specified screen address

HL contains the screen address

HL holds the screen address of the byte above the original address, AF is corrupt, and all others are preserved

PAGE 40

FIRMWARE CALLS —

100

101

102

103

104

105

106

107

108

109

&BC2C
Action:

Entry:
Exit:
Notes:

&BC2F
Action:
Entry:
Exit:

&BC32
Action:
Entry:
Exit:

&BC35
Action:
Entry:
Exit:

&BC38
Action:
Entry:
Exit:

&BC3B
Action:
Entry:
Exit:

&BC3E
Action:
Entry:
Exit:
Notes:

&BC41
Action:
Entry:
Exit:

&BC44
Action:
Entry:

Exit:
&BC47

Action:
Entry:

Exit:
Notes:

SCR INK ENCODE

Converts a PEN to provide a mask which, if applied to a screen byte, will convert all of the pixels in the byte
to the appropriate PEN

A contains a PEN number

A contains the encoded value of the PEN, the flags are corrupt, and all other registers are preserved

The mask returned is different in each of the screen modes (see page 21)

SCR INK DECODE

Converts a PEN mask into the PEN number (see SCR INK ENCODE for the reverse process)
A contains the encoded value of the PEN

A contains the PEN number, the flags are corrupt, and all others are preserved

SCR SET INK

Sets the colours of a PEN — if the two values supplied are different then the colours will alternate (flash)
A contains the PEN number, B contains the first colour, and C holds the second colour

AF, BC, DE and HL are corrupt, and all others are preserved

SCR GET INK

Gets the colours of a PEN

A contains the PEN number

B contains the first colour, C holds the second colour, and AF, DE and HL are corrupt, and all others ar<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>