
.‘
I’

THE FIRMWARE GUIDE

2V‘5;5~?E?EII5E5E5E?E?;iE"55£5155iV . '

r

@;- - - u I’ I " c ’
A l I f

. ' - _ ' .- \... ’ L '¢
’:__. V 7 ‘"I i ___

I5.V§§g:ai&.:'-5=5V; 'E§§§V§:5:E:i V ' c _

. , 8 N l ":0 $11 3:1 to t 511 C4: ":3
 — cc» -.=. " "" ~.V t " i "I L 5'.’

" q -85 " .1 -on§~ * I |
. 3 95 ’ " s“0 l. 8

0 II Q.O 4 a

.s_

1”"the

~"‘ IfI1

_:I;l:l:1:1- a ‘ Q

I In

2 9'"

w liq‘!
‘IV J

I 9!#3
..=,_0

wN

3..-

NV;V‘Y

U
"52:;

J-

\
51$

S
:§;j:§:}1[§ -81!“, 3 : ‘

/‘V 4-
I

"tr-o

is
_'1'.

1‘.

-U

9'0

"‘ .

1

<
IF

‘II-0

‘n

I

I
"Q
D. ..

Q

by Bob Taylor and Thomas Defoe

ilii Q‘
§,7; J -I 1 .-1., _.

r
I
u
"I I1 LL

F

i
H“

€___

we

l‘ VT§ r~\""' ‘c
_ l:|n_\‘ ll‘ 40“ J

I

V ,-1:
..v '

V9
A ,V~ _

_ , D
‘ 1

U

_ .->6‘ r

' n
-o_ .

Q-
-. (

I

F‘

’"'~fi~=1. HA
View-,-:.

miss
_ I. ‘ l

_|1 .' . 5
’ av . _ .

. --_~ 4:

C n!s5*?
.0-

n°‘' Q38};‘ "_‘O_..-p-.9"

I.6_

M.‘°

:1'

"1 __V

e

‘inM

F.'sq..-n

'V°'v|m\
it ‘

5L-_'1'

i\'1'

i‘=33-5

5* “--in
5 '5 , E :

, . ' ' - ' ii. ' '
‘lb: ‘ _ ‘ ".' _ . :_ '- ‘Txw Ir---...0

" SID; an '. ' ' -'22"; -|

I

. ";_

a-

. 4 _ .

'.‘._'- 7.. ‘

'1
:_.‘:‘.,:,: M . flu I _ . _ ‘ r ‘I , _ O

V -""03 ¢ . V = ' °°- V »:. V r
iiiifiiéii » 2 31' ~=- ' *1 ' - . - ' :-- , 5 =~ .. ~ V V V 0' : -' :,, 9 :: V °=m ‘ c - ¢~ I '

, - _ ' Q I . ' ' " - ‘ ' ' _ '
53525:: . {I 7* ' " : " ' ° 0- i * V L ‘ .' J q ' 7

5 1,. < 1 ' '- s V Q 9 ."‘-' u '- _ .V If -, I 3 '0 V ‘Q Q. ,
Q Q ' . _ _ 5 Q6 -"9 ~5o...a'.~_-| .

, r ,'f c 91:‘: ° ' -3. g'°'='1~Oo av
u ¢ <.

1* 0" 8

5

1.

.3,‘nJn '

0.‘-‘

I

._.-J

"rm.

[man

"R13:

é

4\ue+'1.m¢,° "'°'°°O1s3g-W '_ .u l _ 3 Q. .
‘V ' _ U _ "'2 _ 07;!H : w_V. _ V. . 3'“ ‘ Q. _

' 0
_=o» 2|‘ L‘ ' D ' '3 -'1‘ '
‘H l ‘Iv: "mu, ' -:3,0" . _ .

M l- . M I I [\ I

0 4 Aw‘ __ . ,4

‘P . _ {I ‘ '

-.5 V _ - #9995" Egg,‘ _ V . __ ,. _ .3-. _. _5NV'g3~n°EllV so ‘ __ _ i. _ In
In E °“" ‘ " Itn-3 "I i

180 5 ‘D :8

- a complete memory map of all system variables

5ii”!255%?
‘IQ

The essential programmers’ guide includes-

- descriptions of all the firmware calls and indirections
- a list of the entire Z80~commands and their op-codes
- a chartfor conversion of V6128 to 464 memory addresses

-- the'undocumented' maths firmware routines
~ binan/—decima|--hexadecimal conversion tables .

'.'- V ¢

' . V -z
.<-‘ .‘-‘_'.

Produced by the original authors ofPrint-Out

'~

THE FIFIMWARE euros W

 Also available...
A program tape and disc have been produced to accompany this guide. Each contains a set

of programs that have been designed to make using your CPC or Plus computer easier — in
particular, these include several routines to enable you to program your computer in Machine
Code. The list of programs is printed below: P

~ a full-featured assembler, which uses standard Z80 mnemonics-- the source code is
incorporated into a BASIC listing in order to enable routines to be easily edited, saved
and called V P

~ an extensive monitor, which allows you to single step through a machine code routine,
or to set the computer to simulate running the program, complex branching is possible,
and it is possible to alter any registers; the program also disassembles code and allows
you to investigate your CPC'smemory and settings V L

v the ROMCALL and RAMCALL programs from this guide are also included
~ a program to time the number of T-states taken by an instruction
' an RSX that provides the 464 with an AUTO command similar to that used on the 6128

(instead of an asterisk being printed if a line already exists, the contents of the line are
s displayed and are ready for editing) A
' programs to enable or disable ROMs, name discs for easy reference, provide an on-
r screen clock, list any peripherals that may be attached to your CPC or Plus, and a routine

to allow Plus owners to use their 8-bit printer port fully 4
~ also includes a useful selection of short routines

' When bought individually, the program tape costs £2.50 and the program disc costs £4.50,
' and both of these prices include postage and packing. For more details, either ask the place

V ' where you bought this guide, or contact the publishers direct.

Published by

Bob Taylor & Thomas Defoe
8 Maze Green. Road
Bishop's Stortford
Herts CM23 2PJ

‘ ' ‘- ~ . - ‘ - . . _. ' - - - - ' - _‘ ; V ‘ » .» . 4 V " . _ . '_ , . . .

INTRODUCTION

Introduction i
 WELCOME TO THE FIRMWARE GUIDE

Computer programming is one of the most satisfying hobbies as it is a rare opportunity to invent,
develop and test your own ideas and see them come to fruition. Competent programming is a skill which
is not easy to master, but once learnt, it will give hours of pleasure — there are many people who spend
hours inventing new coding tricks, solving complex problems or just trying out an idea.

Fortunately, when Amstrad developed the CPC and Plus computers, they let the user access many of
the computer’ s routines and use the Firmware in their own programs. Experienced programmers will no
doubt write faster routines which are more efficient, or have some special feature, yet these extra facilities
can easily be patched in using the Firmware Jumpblock.

For many years, Amstrad produced the definitive guide to the insides of the CPC but sale of this was
stopped almost three years ago. Since then, the Firmware Manual has been regarded as an antique by those
who are fortunate enough to own a copy. Nevertheless, the original guide had some omissions, notably
the absence of information on the system variables and the Z80 processor inside every CPC or Plus.

This guide is not intended to explain how to program in machine code, but we hope that it will supply
the infonnation needed to make the most of the Amstrad's capabilities when writing your own programs.

Bob Taylor and Thomas Defoe, 1992

~

The Firmware Guide — Index
MEMORY MAPS ..page 4 4

FIRMWARE SUMMARY ..page 23
THE CPC FIRMWARE GUIDEpage 26

THE MATHS FIRMWAREpage 57

THE BIOS & AMSDOS FIRMWARE page 62

Z80 INSTRUCTION SETpage 64

APPENDIX A: BASIC Tokens ..page 72

APPENDIX B: CPC Port addresses ..page 73

APPENDIX C: 464 to 6128 Conversion Chartpage 74

APPENDIX D: ROMCALL and RAMCALLpage 76

APPENDIX‘ E: Miscellaneous routinespage 78

 PAGE3

Use of memory by the Operating System
The following list of memory addresses and their uses has been compiled over a number of years,

mainly from personal investigation. It does not claim to be definitive, since no accurate source seems to
‘be available to the average computer user, and so may be inaccurate or deficient at certain points; also,
some of the areas described have uses additional to those listed. We have tried to make it as accurate as
possible, to enable others to use to the full those facilities which present themselves via this information.

~ Addresses and values are present in. memory with the low byte first
' The term ‘above’ means higher in memory
1' Areas with numbers of bytes of either &OO or &FF given in brackets, may be safe to use for machine

code routines etc, as may the tape area, and the Sound ENT and ENT areas if these are unused
2- The first column given is the address (for the 6128) of the memory being considered, while the second
column gives the equivalent 464 address — unfortunately the 464 differs from the 6128 for most
addresses, so if one address is omitted, the system variable is not available for that machine.

~ The next column gives the size allocated in bytes. Addresses on the right hand side enclosed in brackets
are of System Variables which hold the address of the bytes being explained. With addresses or values
anywhere in the text, the value shown is for the 6128; a value in italics is for the 464 only

Overview of the CPC's memory

UPPER ROMs (often BASIC)
switched in when needed

13:31iii.?:l:1:3:?:3:3:?:?;i'?'1‘3:3:1:3'i;3:3:3"?:1:?:1i3:?:ii?'3:3"7i3:i:l:?:3I?:l.?‘?:1t3:3;3i3:l:?.7‘i:3t?.1'?:3:?‘?:7"T.?'l""3"*'*1'i:?.'. :?"?'7:?:3:~:3:' ?i““':‘:'1'

Stack, Firmware and Jumpblock
&B100

BASIC workspace
&AO(I)

0..-'I-.'I-I'I'I-l-Ii-I-

.l.j.f.:.1.11.2:q '-I~.'¢~I-I'l~l-Y-I-1'1-I-s
Pf-1-..~-1If-I-1:1-I'I*'rf<I'I-‘

Background data &50O bytes used by AMSDOS if present

User Defined Graphics

Space for Machme Code routines

HIMEM Strings area

FR SPACE Used by AMSDOS for IO8(llI1° and S&V1I1°U (I

Arrays area

Variables & DEF FNs area

_i___________________________,

Program area ~

l
V&()17() Lower ROM

Foreground workspace , -
&O040 I

Restart (RST) routines area I I
V&0OOO . _ r

6128

&OOOO
&OOOO
&0O08

&OO0B
&OOOE
&OO 10

&O013
&OO16
&OO18

&OO 1 B
&OO 1 E
&OO2O
&OO23
&OO28
&0O3O
&OO38
&OO3B

810040
&O16F
&O17O
&O17O

&A6FC
&A6FC
&A6FE
&A6FF

464

&OOOO
&0OOO
&OOO8

&OOOE
&OOOE
&OO1O

&O013
&()O16
&OO18

&OO 1B
&OO 1E
&OO2O
&0O23
&OO28
&OO3O
&OO38
&O03B

&OO40
&O16F
&O 170
&O17O

&A6FC
&A6FC
&A6FE
&A6FF

 MEMORY MAPS

Size Comments on the memory locations

&4O Restart block:
RST 0: complete machine reset

_ RST 1: LOW JUMP: in-line two byte address: b0 to bl3=address; bl4=Low ROM disabled;
bl5=Upper ROM disabled

LOW PCHL: HL has address as RST 1 I g
PCBC INSTRUCTION: BC has address to jump to
RST 2: SIDE CALL: in-line two byte address: b0 to b13=address-&C0OO; b14 to b l5=offset

to required ROM (used between sequenced Foreground ROMs)
SIDE PCHL: HL has address as RST 2
PCDE INSTRUCTION: DE has address to jump to
RST 3: FAR CALL: in-line three byte address block: bytes 1 and 2 hold the address; byte 3 holds

the ROM select address r
FAR PCHL: as RST 3, but HL has address; C has ROM select
PCHL INSTRUCTION: HL has address to jump to
RST 4: RAM LAM: LD A,(HL) from RAM with ROMs disabled
FAR CALL: as RST 3, but HL has address of three byte address block
RST 5: FIRM JUMP: in-line two byte address to jump to
RST 6: User restart; default to RST 0
RST 7: Intemipt entry (KB/Time etc)
Extemal interrupt (default to RET)

8:130 ROM lower foreground area: BASIC input area (tokeriised) (&AE62 — &AE7F)
end of BASIC input area (&AE64 - &AE81)

BASIC working area for program, variables, etc (see opposite)
Program area
Variables and DEF FNs area (&AE66,&AE68 - &AE83,&AE85)
Arrays area (&AE6A - &AE87)
Free space (&AE6C - &AE89)

end of free space (&BO71 - &B08D)
g Strings area I

end of Strings area (=HIMEM) (&AE5E,&B073 - &AE7B,&B08F)
Space for user machine code routines

end of user space, byte before user defined graphics area (&AE7D)
n*8 User defined graphics area (&B736 - &B296)

end of UDG area (&AE60 - &B096)

ROM Upper reserved area, expandible during KL ROM WALK, including:
r*4 ROM chaining blocks (arranged as follows): p .

AMSDOS chaining block:
address of next ROM block in chain (or &0O0O if the last in chain)
ROM Select address

i--~0-~l\)-Q a»8

&A7OO

&A7OO
&A7O 1
&A702
&A703
&A705
&A706

&A7OO

&A7OO
&A7O 1
&A702
&A703
&A705
&A706

&500 AMSDOS reserved area ' (&BE7D,&BBE8 - &BE7D, &BIB8)
I this area is moved down if any ROMs have numbers greater than eight (6128 only)

current drive number (O=A; 1=B) r
current USER number
flag?
address‘?
flag‘?
address?|\)r-~l\)r-~r-do--A

<> means ‘not the value or bit which follows’
b0 signifies bit 0, etc HB means ‘the most significant byte’ and LB means ‘the least significant byte’
addresses on the right are of System Variables that hold the address of the byte being explained (for the 464 they are in italics)

A THE FIRMWARE GUIDE

6128

:&A708
&A709
&A709
:&A7OA
&A7 12
&A7 12
&A7 13
&A7 15
&A7 16
&A7 18
&A7 19
&A729

&A72A
&A72B

&A72C
&A72D
&A72D
&A72E
&A736
&A739
:&A73A
V&A73B
&A73C
&A73D
&A74D
.&A74E
&A74F

&A75O
&A75 1
&A753

&A755
&A755
&A756
&A75E
&A76 1
&A767
&A768
&A76A
&A76C
&A76D
&A76F
&A77O
&A795
&A798

V&A79A
&A79B
&A79D

464

&A708
&A709
&A7O9
&A7OA
&A7 12
&A7 12
&A7 13
&A7 15
&A7 16
&A7 18
&A7 19
&A729

&A72A
&A72B

&A72C
&A72D
&A72D
&A72E
&A736
&A739
&A73A
&A73B
&A73C
&A73D
&A74D
&A74E
&A74F

&A75O
&A75 1
&A753

&A755
&A755
&A756
&A75E
&A76 1
&A767
&A768
&A76A
&A76C
&A76D
&A76F
&A77O
&A795
&A798

&A79A
&A79B
&A79D

Size Comments on the memory locations

1
&2O

i--an--dlqo-¢v-~i--UJOOi--1

1
1

i-ll-lb--*0--Ar-'ll—ll-ll-—*()~)ml--*Wl—l

°‘to

O

1
2
2

&45

t\)UJ@t\)Nv-~l\)t\>v--O\UJOOv--

NUr

1
2
2

OPENIN flag (&FF=closed; <>&FF=opened)
Copy of current or last Disc Directory entry for OPENIN/LOAD: y g
USER number
filename (padded with spaces)
file extension (BAS, BIN, BAK, etc) including:

b7 set = Read Only
b7 set: System (ie not listed by CAT or DH{)

16K block sequence number for this directory entry (O for first block; if <>0 pan of a larger file)
unused .
length of this block in 128 byte records A
sequence of Disc Block numbers containing file —V &OO as end marker
number of 128 byte records loaded so far; before loading proper:

&OO for ASCII (ie nothing loaded yet); &01 for BIN or BAS files (ie header record loaded)

OPENOUT flag (&FF=closed; <>&FF=opened)
Copy of current or last Disc Directory entry for OPENOUT/SAVE:
USER number
filename (padded with spaces)
file extension (.$$$ while open; correct extension when finished) _
flag (&0O=open; &FF=closed, ie finished)

flag (&0O=open; &FF=closed) j ,
number of 128 byte records saved so far
sequence of Disc Block numbers containing file — &OO as end marker
number of 128 byte records saved so far

 I

flag (&0O=OPENIN; &O1=In Char; &02=In Direct (whole file))
address of 2K buffer for ASCII, or of start of current/last block if BIN or BAS file
address of next byte to read for ASCII, or of 2K buffer for BAS or BIN file

first &45 bytes of BAS/BIN file (extended header) or of extended header made for ASCII file
USER number V
filename (padded)
extension
unused
file type (&00=BASIC; &O1=protected BASIC; &0Q=Bina1y; &16=ASCII)
unused
address to load file into (=actual destination), or buffer for an ASCII file
unused for disc
length of file in bytes (&O00O for ASCII files)
execution address for a BIN file
unused
length of actual file in bytes (as &A76D) — BAS and BIN only
simple checksum of first 67 bytes of header (LB first) — BAS and BIN only
 .

p

flag (&OO=OPENOUT; &Ol=Out Char; &02=Out Direct (whole file))
address of 2K block if an ASCH file, or of current/last block saved if a BAS or BIN file
address of next byte to write for ASCII files, or of 2K buffer for BAS and BIN files

6128

&A79F
&A79F
&A7A0
&A7A8
&A7AB
&A7AC
&A7AD
&A7AE
&A7B 1
&.A7B2
&A7B4
&A7B6
&A7B7
&A7B9
&A7BB
&A7DF
&A7E2

&A7E4

&A864
&A88B

&A890
&A890
&A892
&A893
&A894
&A895
&A897
&A899
&A89B
&A89D
&.A89F
&A8A0
&A8A1
&A8A2
&A8A3
&A8A4
&A8A5
&A8A6
&A8A7
&A8A8

&A8A9
&A8B9
&A8D0
&A8E9
&A8F9
&A9OO
&A9 10

464

&A79F
&A79F
&A7AO
&A7A8
&A7AB
&A7AC
&A7AD
&A7AE
&A7B 1
&A7B2
&A7B4
&A7B6
&A7B7
&A7B9
&A7BB
&A7DF
&A7E2

&A7E4

&A864
&A88B

&A890
&A890
&A892
&A893
&A894
&A895
&A897
&A899
&A89B
&A89D
&A89F
&A8A0
&A8A 1
&A8A2
&A8A3
&A8A4
&A8A5
&A8A6
&A8A7
&A8A8

&A8A9
&A8B9
&A8DO
&A8E9
&A8F9
&A9OO
&A9 10

MEMORY MAPS

Size Comments on the memory locations

&4S first 8:45 bytes of BAS/BIN f'ile (ie extended header)
USER number
filename (padded)
extension
flag (&OO:--Open)

flag (&00=Open) V
unused

[\JlQi-~|\)[\)i--0):-in--\r-~U-I00»-=

unused

unused for disc
length of file in bytes '
execution address for BIN files

&25 unused
3 length of actual file in bytes (as at &A7B7) - BAS and BIN only

file type (&00=BASIC; &01=protected BASIC; &02=Binary; &16=ASCII)

address to save file from (for BAS or BIN files), or of buffer for ASCII files

2 simple checksum of first 67 bytes of header (LB first) — BAS and BIN only

&80 buffer area for records sent to or loaded from Disc, or used in forming filename and extension

14*3 Tape Jumpblock is stored here by AMSDOS — is moved to &BC77 etc after ITAPE
3 far address used by AMSDOS RST 3s at &BC77 etc (&CD30,&07)

h—lh-Ib—4h-it-ii-lr—ir-lb-ih-l[\)[\)l\.)l\)l\)I-lb-ll—*l\)%

r-- \O Drive A Extended Disc Parameter Block (XDPB):
number of 128 byte records per track
log2(Block size)-7 (&03=1024 bytes; &O4=2048 bytes)
(Block size)! 128-1 (&07=1024 bytes; &0F=2048 bytes)
(Block size)! 1024 (if total of blocks Q56, else /2048)-1
number of blocks per disc side (excluding reserved tracks)
number of (directory entries)—1

number of bits in checksum ; ((&A894)+1)/4
number of reserved tracks (&00=Data; &01=IBM; &O2=System)
number of first sector (&01=IBM; &41=System; &C1=Data)
number of sectors per track (Data=9; System=9; IBM=8)~
gap length (Read/Write)
gap length (Format)
format filler byte (&E5)
log2(sector size)-7 (&02=5l2; &03=1024)
records per sector
current track (not for use)
O=not aligned (not for use)
Auto select flag (&OO=Auto select; &FF== don’t alter)

&19 y Drive B Extended Disc Parameter Block (arranged as at &A890)
(&17 bytes of &FF)

(&12 bytes of &OO)

(&BE42,&A9lA*)

bit significant value of number of blocks for directory (&0O80=1; &00C0=2)

(&A91C*)
(&A91E*)

_ (&A92A*)
(&A92C*)
(&A92E*)

(&BE40*)

<> means ‘not the value or bit which follows’ ‘*’ means this address applies to all machines with a disc drive fitted
b0 means bit O, bl means bit 1, etc HB means ‘the most significant byte’ and LB means ‘the least significant byte’
addresses on the right are of System Variables that hold the address of the byte being explained (for the 464 they are in italics)

PA GE 7

6128

&A9 18
&A91A
&A9 1C
&A9IE
&A92O
&A928
&A92A
&A92C
&A92E
&A930
&A9B0
&ABBO

&A9 18
&A9 1A
&A9 1C
&A9 1 E
&A920
&A928
&A92A
&A92C
&A92E
&A930
&A9B0

V THE FIRMWARE GUIDE

464 ’Size Comments on the memory locations

l\)l\Jl\Jl\J

l\)l\Jl\Jl\)ii

address of area for reading directory entries for Drive A
address of Drive A XDPB
address of the byte after the end of Drive A XDPB

(8 bytes of &OO)
address of area for reading directory entries for Drive B
address of Drive B XDPB
address of the byte after the end of Drive B XDPB V

block of directory entries, including last file loaded (&A918,&A928*)
&20O buffer for loading; usually contains last sector loaded (&BE62,&BE76*)

&ABBO (&50 bytes of &OO)

&AC00
&AC00

&AC01
&ACO2
&AC04
&AC06
&ACO7
&ACO8

&ACO9
&ACOA
&ACOB
&ACOC
&ACOD
&AC 12
&AC 14
&AC 16
&AC 17
&AC 18
&AC 1A
&AC 1C

&AC 1 E
&ACIE
&AC20
&AC2 1
&AC22
&AC24
&AC25
&AC26
&AC28

&AC2A

&AC36

&AC42
&AC42
&AC44
&AC46

PAGE 8

&AC00
&AC00
&AC01
&AC 1C
&AC 1D
&AC 1F
&AC21
&AC22

&AC23
&AC24
&AC25

&AC26
&AC27
&AC2C
&AC2E
&AC30
&AC3 1
&AC32
&AC34
&AC36

&AC38
&AC38
&AC3A
&AC3B
&AC3C
&AC3E
&AC3F
&AC4O
&AC42

&AC44

&AC50

&AC5C
&AC5C
&AC5E
&AC60

l\)l\)l\)P-*l—ll\)l\)(}|hflh-eh-lb-it-lh-Ab-flh-il\)l\)i-i(‘%h-1

Start of BASIC Operating System reserved area:
program line redundant spaces flag (0=keep extra spaces; <>0=remove extra spaces)
groups of 3 RET bytes (&C9) called by the Upper ROM
AUTO flag (0=off; <>O=on) V
number of the next line (6128) or of the current line (464) for AUTO
step distance for AUTO A

WIDTH (&s4=132)

FOR/NEXT flag (0=NEXT not yet used; <>0=used)
FOR start value (real) — only two bytes are used if % or DEFINT variable
address of ‘: ’ or of the end of program line byte after a NEXT command
address of LB of the line number containing WEND
WHILHWEND flag (&4l=WEND not yet used; &04=used)

address (&B65B - &B51l) of location holding ROM routine address for KB event block

&0C Event Block for ON SQ(1):

[\)\\Ji-—*l-*[\)i-It-—ll\)

chain address to next event block; &000O if last in chain, but &FFFF if unused
count
class: Far address, highest (ON SQ) priority, Normal & Synchronous event
routine address (in BASIC ROM, &C926 — &C879) ’
ROM Select number (&FD ie ROM 0 enabled, Lower ROM disabled)

(first byte of user field)
address of the end of program line byte or ‘: ’ after ‘ON SQ(x) GOSUB line number’ statement
address of the end of program line byte of the line before the GOSUB routine

&0C Event block for ON SQ(2), arranged as (&AC1E - &AC38) — second ON SQ priority

&0C Event block for ON SQ(4), arranged as (&AC1E - &AC38) — lowest ON SQ priority

l\)l\)l\)@

r-I IQ

Ticker and Event Block for AFTER/EVERY Timer 0
chain address to next event block (usually to another timer or &0OFF)
‘count down‘ count , . A
recharge count (for EVERY only - &0000 if AFTER)

l

6128

&AC48
&AC4A
&AC4B
&AC4C
&AC4E
&AC4F
&AC5O
&AC52

&AC54

&AC66

&AC78

&AC8A

&AD8C
&AD8E
&AD9O
&AD9 1
&AD92
&AD94
&AD96
&AD98

&AD99
&AD99
&AD9A
&AD9B
&AD9C
&AD9E
&AD9F
&ADAD

&ADA2
&ADA2
&ADA3
&ADA3
&ADA4
&ADA5
&ADA6
&ADA9
&ADAC
&ADAF

&ADB2
&ADB7
&ADEB
&ADED

<> means ‘not the value or bit which follows’ ‘*’ means this address applies to all machines with a disc drive fitted
b0 means bit 0, bl means bit 1, etc HB means ‘the most significant byte’ and LB means ‘the least significant byte’
addresses on the right are of System Variables that hold the address of the byte being explained (for the 464 they are in italics)

464

&AC62
&AC64
&AC65
&AC66
&AC68
&AC69
&AC6A
&AC6C

&AC6E

&AC80

&AC92

&ACA4

&ADA6
&ADA8
&ADAA

&ADAB
&ADAD
&ADAF
&ADB1

&ADB2
&ADB2
&ADB3
&ADB4
&ADB5
&ADB7
&ADB8
&ADB9

&ADBB
&ADBB
&ADBC
&ADBC
&ADED
&ADBB
&ADBF
&ADC2
&ADC5
&ADCB

&ADCB
&ADDO
&AE04
&AE06

Y V MEMORY MAPS

Size Comments on the memory locations

l\)l\)I-li—lI\)i-lb-l|\)

&l2

&l2

&l2

chain address to next ticker block A .
count
class: Far address, lowest (timer) priority, Normal and Synchronous event
Routine address (in BASIC ROM, at &C926 - &C879)
ROM Select No (&FD ie ROM 0 enabled, Lower ROM disabled)

(first byte of user field)
address of the end of program line byte or ‘:’ after statement in use when the timer ‘timed-out‘
address of the end of program line byte of the line before the GOSUB routine

Ticker and Event Block for AFTER/EVERY Timer 1 (3rd Timer priority)
arranged as &AC42 - &AC5C

Ticker and Event Block for AFTER/EVERY Timer 2 (2nd Timer priority)
arranged as &AC42 - &AC5C

Ticker and Event Block for AFTER/EVERY Timer 3 (highest priority)
arranged as &AC42 - &AC5C A

&100 BASIC input area for lines (as typed in and not tokeriised) or for INPUT

2
2
1
1
2
2
2
1

address of line number LB in line containing error
address of byte before statement containing error — ie of ‘:’ or Line No HB
ERR (Error No)
DERR (Disc Error No) i
as (&AD8E - &ADA8) if error is in a program (ie not if in Direct Command Mode)
as (&AD8C — &ADA6) if error is in a program (ie not if in Direct Command Mode)
address of the length LB of line specified by the ‘ON ERROR GOTO’ command

&09 Current SOUND parameter block (see Firrriware Jump &BCAA):

[Qt--l--I\)r--lv-10--\

&10
1
3
1
1
1
3
3

U->00

5
&36
2
6

channel and rendezvous status
amplitude envelope (ENV) number
tone envelope (ENT) number
tone period
noise period
initial amplitude
duration, or envelope repeat cotmt

Current Amplitude or Tone Envelope parameter block (see &BCBC or &BCBF)
number of sections (+&80 for a negative ENT number, ie the envelope is run imtil end of sound)
first section of the envelope:

step count (if <&80) otherwise envelope shape (not tone envelope)
step size (if step count<&80) otherwise envelope period (not tone envelope)
pause time (if step count<&80) otherwise envelope period (not tone envelope)

second section of the envelope (as &ADA3 - &ADBC)
third section of the envelope (as &ADA3 - &ADBC)
fourth section of the envelope (as &ADA3 - &ADBC)
fifth section of the envelope (as &ADA3 - &ADBC)

PA GE 9

LTHEFWMMMARECHMDEA
Size Comments on the memory locations6128

.&ADF3
&AEOD
&AEOE
&AE10
&.AE12
.V&AE14
&AEl5
:&AE17
V&AE19
&AElB
:&AE1D
&AE1F
V&AE20

&AE2 1
:&AE22
&AE24
&AE26
&AE28
&AE29
&AE2A
&AE2C
&AE2D
&AE3A
&AE3A
V&AE3E
V&AE43
&AE4E

&AE5 1
.&AE52
&AE54

&AE55
&AE57
V&AE58
&AE5A
&AE5C
&AE5D

&AE5E

&AE60
&AE62
&AE64
&AE66
&AE68
&AE6A
&AE6C
~&AE6E

 PAGE10

464

&AEOC
&AE26
&AE27
&AE29
&AE2B
&AE2D
&AE2E
&AE3O
&AE32
&AE34
&AE36
&AE38
&AE39

&AE3A
&AE3B
&AF3D
&AE3F
&AE41
&AE42
&AE43
&AE45
&AE46
&AE53
&AE53
&AE57
&AE5D
&AE68

&AE6B

&AE6E

&AE70

&AE72
&AE74
&AE75
&AE77
&AE79

&AE7A

&AE7B
&AE7D

&AE7F
&AE8 1
&AE83
&AE85
&AE87
&AE89

26*l table of DEFINT (&02), DEFSTR (&03) or DEFREAL/default (&05), for variables ‘a’ to ‘Z’

v-~>--l\)l\)t\)t\)l\Ji-—t~JNl\Ji-i

N»-~t\Ji-09

r--v--l\Jl\Jl\)»-~N

2
2

u-¢l\)l\)l\)l\)l\Jl\Jl\)

address of line number LB of last BASIC line (or &FFFF) p
address of byte before next DATA item (eg comma or space)
address of next space on GOSUB etc stack (see also &B06F - &B08B) P —
address of byte before current statement (&003F if in Direct Command mode)
address of line number LB of line of current statement (&0000 if in Direct Command mode)
trace flag (O=TROFF; <>0=TRON) ,
flag used with Trace (&OO if in Direct Command mode; &01 if in a program)

address to load cassette file to

file type from cassette header
file length from cassette header
program protection flag (<>0 hides program as if protected) T
buffer used to form binary or hexadecimal numbers before printing etc
start of buffer used to form hexadecimal numbers before printing etc
Key Number used with INKEY (providing the Key Number is written as a decimal)
last byte (usually &OO or &20) of the formed binary or hexadecimal number
buffer used to form decimal numbers before printing etc
last byte (usually &OO or &20) of the formed decimal number

temporary store for address after using (&AE68)

address of last used ROM or RSX JUMP instruction in its Jump Block
ROM Select number if address above is in ROM
BASIC Parser position, moved on to ‘: ’, or the end of program line byte after a CALL or an RSX
the resetting address for machine Stack Pointer after a CALL or an RSX
ZONE value

HIMEM (set by MEMORY) ,
address of the byte before the UDG area (the end of the user M}C routine area or the Strings area)
if the UDG area is still present, otherwise the highest byte of Program etc area

address of highest byte of free RAM (ie last byte of UDG area)
address of start of ROM lower reserved area (used for tokenised lines)
address of end of ROM lower reserved area (byte before Program area)
as (&AE68 - &AE85)
address of start of Variables and DEF FNs area
address of start of Arrays area (where next Variable or DEF FN entry is placed)
address of start of free space (where next Array entry is placed)

6128 464

&AE70 &AE8C

Size

&lFF

r-~l\)l\)i-~

ts)»-—t/it/its)

t—*l\)l\Jl\)

2
2

2
1
+5

 MEMORY MAPS A 2

Comments on the memory locations

GOSUB, FOR and WHILE stack. Entries are added above any existing ones in use (mixed
as encountered) at address given by (&BO6F — &B08B) and must be used up in the opposite
order. Completed entries are not deleted, just overwritten by the next new entry:

GOSUB (84 max capacity):
(byte of &OO)
address of end of program line byte or ‘: ’ after GOSUB statement (the point to RETURN to)
address of line number HB of line containing GOSUB
byte of &06, ie the length of the GOSUB entry

FOR (21 max for Real FORs, 31 max for Integer FORs): V
address of current value of control variable (in Variables area)
value of limit (ie the TO value) - there are two bytes only for Integer FORs
value of STEP -— two bytes forlnteger FORs
sign byte (&OO for positive; &O1 for negative)
address of the end of program line byte, or ‘: ’ after the FOR statement (ie the address for the
NEXT loop to restart at)

address of line number LB of line containing FOR :
address of byte after NEXT statement (ie the address to continue at when the lirriit is exceeded)
address of byte after NEXT statement again '
length byte (&16 for Real FORs; &l0 for Integer FORs)

WHILE (66 max capacity):
address of line number LB of line containing WHILE:
address of the end of program line byte or ‘: ’ after WEND statement (ie the address to continue

at when the condition is false) A
address of condition after the WHILE command
length byte of &07 — end of VVHILE entry proper but:
value of condition (0 or -1 as a floating point value) only while the WHILE entry is the last

on the stack

NB: The free space on the stack is also used as a workspace by various routines for values and addresses and for Variable names

&B06F

&B07 1
&B073
&B075

&B076
&BO78
&B07A
&B07C
&B07E
&BO9C
&B09D

&B09F
&BOA0

&BO8B 2 address of the next space on the GOSUB etc stack (see also &AE19 - &AE32)

&B08D
&B08F

&B09 1
&B092
&BO94
&B096
&B098
&BO9A
&BO9C
&BOBA
&BOBB
&BOBD
&BOBF
&BOCl
&BOCl Uri--t\Jl\Jt\>v--8l\Jl\>l\>l\>l\)~—*>-~t\>l\)

address of end of free space (the byte before the Strings area)
address of end of Strings area (=HIMEM)

address of the highest byte of free RAM disregarding UDGs (usually &A6FB -&ABFB)

address for the next entry in the String Concatenation area
concatenation area holding descriptors of strings being used
length of last String used
address of last String used

type byte used with the Virtual Accumulator (&02=Integer; &03=String; &O5=Real)
Virtual Accumulator used by the maths routines (two bytes for an Integer value; three bytes for

a String Descriptor; five bytes for a Real value):

<> means ‘not the value or bit which follows’ ‘*’ means this address applies to all machines with a disc drive fitted
b0 means bit 0, bl means bit 1, etc HB means ‘the most significant byte’ and LB means ‘the least significant byte’
addresses on the right are of System Variables that hold the address of the byte being explained (for the 464 they are in italics)

i i PAGE11

THE FIRMWARE sums

6128

&BOAO
&BOA2
&BOA3
&BOA5
&B 100
&B 102
&B 104
&B109
&B1OE
&B1 13
&B1 14
&Bl 15
&Bl 16
&B1 17

&B118
&B118
t&B119
&B11A
&B11B
&B11D

&B1 1F
&Bl1F
&B12F
&B 130
&B131
&B 132
&B 134
&B 136
&B 137
&B139
&B 13B

&B15F
&B16O
&Bl62

&B164
&B164
&B174
&B 175
&B 176
&B 177
&B179
&B 17B
&B 17C
&B 17E
&B18O
&B1A4
&B 1B5
&B 1B7
&B IBB
&B1BE

464

&BOC2
&BOC4
&BOC5
&BOC7
&B8E4
&B8E6
&B8E8
&B8ED
&B8F2
&B8F7
&B8DC
&B8DD
&B8DE
&B8DF

&B80O
&B80O
&B80 1
&B802
&B803
&B805

&B807
&B807
&B817
&B818
&B819
&B81A
&B81C
&B81E
&B81F
&B821
&B823

&B847
&B848
&B84A

&B84C
&B84C
&B85C
&B85D
&B85E
&B85F
&B86 1
&B863
&B864
&B866
&B868
&B88C
&B89D
&B89F
&B8A3
&B8A6

Size Comments on the memory locations

2
1
2

&5B (&39) bytes of &FF
&07, &C6
&65, &89

n-r-Ir-*0-*0-¢U|U1U|l\Jl\)

DEG/RAD flag (&O0=RAD; &FF=DEG)

&D2 Area used for Cassette handling:
cassette handling messages flag (0=enabled; <>O=disabled)

file IN flag (&00=closed; &02=IN file; &03=opened; &O5=IN char)
address of 2K buffer for directories
address of 2K buffer for loading blocks of files -- often as &B11B - &B803 _

&4O IN Channel header:
filename (padded with NULs) s
number of block being loaded, or next to be loaded
last block flag (&FF=last block; &0O=not) I
file type (&00=BASIC; &O1=Protected BASIC; &O2=Binary; &08=Screen; &16=ASCII)
length of this block ~
address to load this or the next block at, or the address of the byte after last one loaded
first block flag (&FF=first block; &0O=not)
total length of file (all blocks) N
execution address for BIN files (&OO00 if not saved as such)
not allocated 1

l\)l\)t-Ar-~|--

@l\>l\Jv-*t\)t\'Jr--r-v-ewlx)r-* -l>O

1 file OUT flag (&O0=closed; &O2=IN file; &03=opened; &O5=IN char)
2 address to start the next block save from, or the address of the buffer if it is OPENOUT
2 address of start of the last block saved, or the address of the buffer if it is OPENOUT

&4O OUT Channel Header (details as IN Channel Header):
&1O filename
1 number of the block being saved, or next to be saved
1 last block flag (&FF=last block; &OO:-not)

file type (as at &B131 - &B819)
length saved so far
address of start of area to save, or address of buffer if it is an OPENOUT instruction
first block flag (&FF=first block; &0O=not)
total length of file to be saved
execution address for BIN files (&O0OO if parameter not supplied)

&24 not allocated
&4O used to construct IN Channel header:

t\)l\>--t\>t\)»--

r-*0--|\)a-A

6128

&B1B9
&B1BC
&B1BE
&B1D5
&BlE4

&B1E5
&B IE6
&B1E8
&B1E9
&B1EA
&B1EB

&B1ED
&B1EE
&.B1FO

. 7

&B1F8
&B212
&B213
&B217
&B217
&.B2l8
&B219
&B2lB
&B21C
&B21D
&B21F
&B227
&B22F

&B237
&B256
&B25E
&B266
&B26E

&B276
&B295
&B29D
&B2A5
&B2AD

&B2A6
&B2B5

<> means ‘not the value or bit which follows’ ‘*’ means this address applies to all machines with a disc drive fitted
b() means bit 0, bl means bit 1, etc HB means ‘the most significant byte’ and LB means ‘the least significant byte’
addresses on the right are of System Variables that hold the address of the byte being explained (for the 464 they are in italics)

464

&B51D
&B520
&B522
&B539
&B8CC

&B8CD
&B8CE
&B8D0
&B8D1
&B8D2
&B8D3

&B55O
&B55 1

&B552
&BB54
&BB55

&B55C
&B576
&B577
&B57B
&B57B
&B57C
&B57D
&B57F
&B58O
&B58 1
&B583
&B58B
&B593

&B59B
&B5BA
&B5C2
&B5CA
&B5D2

&B5DA
&B5F9
&B6O 1
&B609
&B61 1

&B6OA
&B619

Size

1

Ix):--r--in--[Q0--\

\]r-~r--no-Ar-in--

QOOOOOl\)r-1r-mix):-10-&OO»--lo-~g

‘T1

O0OOOOOO&

‘Tl

&3F
8
8

0000

1

. .

MEMORY MAPS
Comments on the memory locations

base address for calculating relevant Sound Channel block
base address for calculating relevant Sound Channel ?
base address for calculating relevant Sotmd Channel ?
base address for calculating relevant Sound Channel ‘?

synchronisation byte
&55, &62

cassette precompensation (default &06; SPEED WRITE 1 &0C @ 4uS)
cassette ‘Half a Zero’ duration (default &53; SPEED WRITE 1 &29 @ 4uS)

used by sound routines
used by sound routines
used by sound routines
used by sotmd routines
used by sound routines
used by sound and cassette routines

Sound Channel A (1) data:
number of sounds still queuing
number of sounds originally queuing
first or fifth sound in Channel 1 (A) queue:

status: b0 to b2 = rendezvous with channel 1, 2 or 4; b3 = Hold; b4 = Flush
b0 to b3 = tone envelope number; b4 to b7 = volume envelope number (ie ENV number* 16)
pitch
noise '
volume
duration (in 0.01 seconds)

second sotmd in Channel 1 queue (as &B217 - &B57B)
third sound in Channel 1 queue (as &B2l7 - &B57B)
fourth sound in Charmel 1 queue (as &B217 - &B57B)

Sound Channel B (2) data: — as described at &B1F8 - &B55C
first or fifth sound in Channel 2 queue (as &B2l7 - &B57B)
second sound in Channel 2 queue (as &B217 - &B57B)
third sound in Channel 2 queue (as &B217 - &B57B)
fourth sound in Channel 2 queue (as &B217 - &B57B)

Sound Channel C (4),data - as described at &B1F8 - &B55C
lst/5th sound in Channel 4 queue (as &B217 - &B57B)
2nd sotmd in Channel 4 queue (as &B217 - &B57B)
3rd sound in Channel 4 queue (as &B217 - &B57B)
4th sound in Channel 4 queue (as &B217 - &B57B)

base address for calculating relevant ENV parameter block
&3F

PAGE 13

@6128

&B2B6
&B2B6
-&B2C6
&B2D6
&B2E6
&B2F6
:&B306
&B3 16
&B326
&B336
,&B346
,&B356
;&B366
&B376
&B386
.&B396
&B396
»&B3A6
&B3A6
&B3B6
&B3C6
&B3D6
&B3E6
&B3F6
&B406
&B416
&B426
&B436
&B44-6
i&-B456
:&B466
&B476
r&B486

464

&B61A
&B61A
&B62A
&B63A
&B64A
&B65A
&B66A
&B67A
&B68A
&B69A
&B6AA
&B6BA
&B6CA
&B6DA
&B6EA
&B6FA
&B6FA
&B7OA
&B7OA
&B71A
&B72A
&B73A
&B74A
&B75A
&B76A
&B77A
&B78A
&B79A
&B7AA
&B7BA
.&B7CA
&B7DA
&B7EA

Size Comments on the memory locations

15*&10 ENV parameter block area (each arranged as &ADA2(&ADBB)):
&10
&1O
&1O
&10
&1O
&1O
&lO
&lO
&1O
&1O
&IO
&1O
&1O
&10
&1O

&1O
&1O
&1O
&lO
&lO
&1O
&1O
&lO
&1O
&1O
&1O
&1O
&1O
&lO
&lO

4 1'1-15 FIRMWARE GUIDE t

ENV 1
ENV 2
ENV 3
ENV 4
ENV 5
ENV 6
ENV 7
ENV 8
ENV 9
ENV 10
ENV1l
ENV 12
ENV 13
ENV 14
ENV 15
base address for calculating relevant ENT parameter block

15*&1O ENT parameter block area (each arranged as &ADA2(&ADBB)):
ENT1
ENT2
ENT3
ENT4
ENT5
ENT6
ENT7
ENT8
ENT9
ENTIO
ENT1]
ENTl2
ENT13
ENT14
ENT15

&B496 &B34C &5O

&B4E6 &B39C &5O

Normal Key Table:
Cur U
Cur L
Clr

F-*~P~O\OOO>

Cur R
<3<>Py
[

\)UJU|\l\O
1

[VT] [LP]

Shifted Key Table:
Cur U
Cur L
Clr
£

Cur R
Copy
{

)

%
#

[VT]

Cur D
F7
Retum
@

"aaw~"*===C/JO h-J

Cur D
F7
Return
I

E“;-1m7dC!O

'g.og-<:'-'-0-'5-3%

aosH<~w~aeU)

f6
f5
f4

@U°=IlI—Ilo

Tab
Fire 2

"’@~’I~‘l"‘+'I=-'°'G?'5\'°
->
[TAB]

f3
fl

hp?-493G‘:-15¢-.i.7;-1

f3
fl

,’3.'!3>U"T1““W*

rel

re 2

(&B68B — &B54I)
Enter f.
f2 f0
\

<:-:::5\ <.

j
space

c x
Caps-lock z

Del

(&B68D - &B543)
Enter f. t
f2 f0
6

wzg-Q </xv
space

C X
Caps-lock Z
Fire 1 Del

6128 464 Size

&B536 &B3EC &50

&B586

&B590

&B628
&B629
&B62A
&B62B
&B62D
&B62F
&B630
&B63 1
&B632
&B633
&B634

&B635
&B635
&B636
&B637
&B638
&B639
&B63A
&B63B
&B63B
&B63C
&B63D
&B63E
&B63E
&B63F
&B640
&B641
&B642
&B643
&B644
&B645
&B646
&B647
&B648

&B43C

&B446

&B4DE
&B4DF
&B4EO
&B4El
&B4E3
&B4E5
&B4E6
&B4E7
&B4E8
&B4E9
&B4EA

&B4EB
&B4EB
&B4EC
&B4ED
&B4EB
&B4EF
&B4FO
&B4Fl
&B4Fl
&B4F2
&B4F3
&B4F4
&B4F4
&B4F5
&B4F6
&B4F7
&B4F8
&B4E9
&B4FA
&B4EB
&B4FC
&B4FD
&B4FE

10*l

&

t--=0-It--\|--It--1|--\[\)[\Jv-—~r—\t--I

2* 10

P-'57--it-‘F-17-5|--ii‘-*
4

—

4

4-

1

Q

4

4-

4

A

4

4

4

4

4

Q

4

Q

4

p-ap--a;_np-A;-A

98

\...,..a

} {

Comments on the memory locations

Control Key Table:
Cur U Cur R Cur D f9
Cur L Copy f7 f8
Clr (ESC) Return (GS)
(R5) (NUL) (DLE)
(U5) ($1) (HT)

(NAK)
(D€2)
(ENQ)

~ Esc

(EM)
(DC4)
(ETB)
(DU)

f6 f3
f5 fl
f4

(FF) (VT)
(BS) (LP)
(BEL) (ACK)
(D03) (EOT)
Ins/Ovrt (son)

‘é \ -

MEMORYMAPS 6

(&B68F - &B545)
Enter f.
f2 f0
(F5)

((31?)
($0)
(STX) (SYN)
(ETX) (CAN)
Shift-lock (SUB)
Del

KB repeats table (each byte/bit applies to all three key tables): (&B691 - &B547)
1 byte is used per line of the tables; b0 to b7 give the columns (left to right), repeat if set

DEF KEY’s definition area (for Keys &80 to &9F in sequence): (&B62B - &B4E1)
each definition has either a single byte of &OO if it is unused/unaltered, or:

byte 1: length of definition
bytes 2 to x: definition, either a single key or a string of keys

address of DEF KEY area
address of byte after end of DEF KEY area

Shift lock flag (&00=off; &FF=on)
Caps lock flag (&00=off; &FF=on)
KB repeat period (SPEED KEY — default &02 @ 0.02 seconds)
KB delay period (SPEED KEY -- default &lE @ 0.02 seconds)

(&B62D - &B4E3)

Tables used for key scanning; bits 0 to 7 give the table columns (from left to right):
f6 f3 fCur R Cur D f9

Cur L Copy f7 P8
Clr [Retum
/\

CurU

l\)UJkl1c\l\O'

‘U

mwco@

ae2ea<*e~(IQ(IQ E1"E’

0
8
Down Left
6
4
1 Esc
Down Up Left

complement of &B635 - &B4EB
complement of &B636 - &B4EC
complement of &B637 - &B4ED
complement of &B638 - &B4EE
complement of &B639 - &B4EF
complement of &B63A - &B4FO
complement of &B63B - &B4F1
complement of &B63C - &B4F2
complement of &B63D - &B4F3
complement of &B63E - &B4F4

f5
f4
0
9

L
H
Fire 2
G
S
Tab
Fire 2

f1
Shift

K
J
Fire 1
F
D
A
Fire 1

Enter .
f2 f0
\ Control
/ .
M ,
N space
(joystick 1)
B V
C X
Caps-lock Z
(joystick 2)

Del

<> means ‘not the value or bit which follows’ ‘*’ means this address applies to all machines with a disc drive fitted
b0 means bit 0, bl means bit 1, etc HB means ‘the most significant byte’ and LB means ‘the least significant byte’
addresses on the right are ofSystem Variables that hold the address of the byte being explained (for the 464 they are in italics)

PAGE 15

&B64B
&B653
&B.654
&B655
&B656
&B657
&B657
8:659
&B65A
&B65B
&B65D
&B65E

[&B67F

&B686
&B687
&B688
&B689
&B68A
&B68B
&B68D
&B68F
&B69l

&B692
&B693
&B695
&B697
;,&B699
-&B69B
&B69D
&B69F
&B6A1
&B6A3
;&B6A4

,&B6A5
&B6A7
&B6A9
&B6AB
&B6AD

&B6AF
&B6B0
&B6B 1
&B6B2
&B6B3
&B6B4 ‘

&B6B5

3 PAGE 16

464

&B50l
&B509
&B50A
&B50B
&B5OC
&B5OD
&B50D
&B50F
&B510
&B5l 1
&B513
&B514

&B67F

&B53C
&B53D
&B53E
&B53F
&B540
&B54l
&B543
&B545
&B547

&B328
&B32A
&B32C
&B32E
&B330
&B332
&B334
&B336
&B338
&B339

&B33A
&B33A
&B33C
&B33E
&B340
&B342
&B344
&B345
&B346

&B207
&B20C

 THE FIRMWARE sum]:

 612s Size Comments on the memory locations

(5):-¢l\.)t-~r--=|\)\]t--r-it-~t-~ -)6IQ

2

l\)l\)l\)l\)t--At--0-at--r—~

t--‘P--l\)l\)l\Jl\Jl\)l\Jl\Jl\)r—\

event block for KB handling, comprises:
chain address
count .
class: express event
ROM routine address: &C492 - &C45E (&AClC - &AC3®
ROM select number". &FD

store for last keys pressed and each entry is as follows:
byte l: +0 to + l0=key tables’ line number; if bit 5 is set then Shift is pressed; bit 7=Control
byte 2: b0 to b7=key tables’ column number -- see &B496 - &B34C etc

vestige from the 464?

-

accumulated count of the number of keys pressed (MOD 20)
number of keys left in key buffer 6
accumulated count of the number of keys removed from the buffer (MOD 20)

address of the normal key table
address of the shifted key table
address of the control key table
address of the KB repeats table

0

ORIGIN X A 1
ORIGIN y i
graphics text x position (pixel)
graphics text y position (pixel)
graphics window x of one edge (pixel)
graphics window x of other edge (pixel)
graphics window y of one side (pixel)
graphics window y of other side (pixel)
GRAPHICS PEN
GRAPHICS PAPER

4*2(14) used by line drawing (and other) routines, as follows:
2 .

r--‘[90---0-~v-~t--~t--v-¢l\Jl\)[\)[\)

x+l()
y/2+l()
Y/2-X()

first point on drawn line flag (<>0=to be plotted; 0=don’t plot)
line MASK

current stream number

6128

&B6B6
&B6C4
&B6D2
&B6E0
&B6EE
&B6FC
&B70A
&B718

&B726
&B726
&B727
&B728
&B729
&B72A
&B72B
&B72C
&B72D
&B72E

&B72F
&B730
&B73 1
&B733

&B734
&B735
&B736
&B738
&B758
&B759

464

&B20D
&B2 1C
&B22B
&B23A
&B249
&B258
&B267
&B276

&B285
&B285
&B286
&B287
&B288
&B289
&B28A
&B28B
&B28C
&B28D
&B28E
&B28E
&B290
&B29 1
&B293

&B294
&B295
&B296
&B298
&B2B8
&B2B9

MEMORY MAPS

Size Comments on the memory locations

l4(15) stream (window) 0 parameter block — arranged as &B726 - &B285
l4(15) stream (window) l parameter block —- arranged as &B726 - &B285
14(15) stream (window) 2 parameter block — arranged as &B726 - &B285
l4(15) stream (window) 3 parameter block - arranged as &B726 - &B285
14(15) stream (window) 4 parameter block — arranged as &B726 - &B285
l4(15) stream (window) 5 parameter block - arranged as &B726 - &B285
14(15) stream (window) 6 parameter block - arranged as &B726 - &B285
14(15) stream (window) 7 parameter block - arranged as &B726 - &B285

l4(15) Current Stream (Window) parameter block:

|--a[\)|-ag_¢g-sp-at-4p-my-4p-up-4|-my-mp-A

cursor y position (line)
cursor x position (column)

window top line (y)
window left column (x)
window bottom line (y)
window right column (x)
scroll count

:-Ar--l\)|\)r-Ar-—

address of UDG matrix table

with respect to the whole screen (starting from 0)
with respect to the whole screen (starting from 0)

with respect to the whole screen (starting from 0)
with respect to the whole screen (starting from O)
with respect to the whole screen (starting from 0)
with respect to the whole screen (starting from 0)

cursor flag (&0l=disable; &02=off; &FD=on; &FE=enable)

current PEN number (encoded, not its INK number)
current PAPER number (encoded, not its INK number)
address of text background routine: opaque=&l392 - &1391; transparent=&l3A0 - &139F
graphics character writing flag (0=off; <>0=on)

ASCII number of the first character in User Defined Graphic (UDG) matrix table
UDG matrix table flag (&00=non-existent; &FF=present)

&B763

&B763
&B766
&B769
&B76C
&B76F
&B772
&B775
&B778
&B77B
&B77E
&B781
&B784
&B787
&B78A
&B78D
&B790
&B793

&B2C3

&B2C3
&B2C6
&B2C9
&B2CC
&B2CF
&B2D2
&B2D5
&B2D8
&B2DB
&B2DE
&B2El
&B2E4
&B2E7
&B2EA
&B2ED
&B2F0
&B2P3

32*3 Control Code handling routine table —- each code’s entry comprises: (&B8A2 - &B1 75)
byte 1: +0 to +9=number of parameters; +&80=re-rtm routine at a System Reset
bytes 2 and 3: address of the control code’s handling routine

LDLQUJQDUJUJUJUJUJUJQMCMUJUJLHCHUJ

ASC 0: &80,&15l3(&14E2):
ASC 1: &8l,&l335(&I334):
ASC 2: &80,&l297(&I29A):
ASC 3: &80,&l286(&1289):
ASC 4:
ASC 5: &81,&l940(&1945):
ASC 6: &00,&l459(&1451)2
ASC 7: &80,&14El(&14D8):
ASC 8: &80,&l5l9(&150A):
ASC 9: &80,&15lE(&150F):
ASC 10: &80,&l523(&1514):
ASC ll: &80,&l528(&1519):
ASC 12: &80,&154F(&1540):
ASC 13: &80,&153F(&I530):

ASC 15; &8l,&l2A6(&I2A9):
ASC 16; &80,&l55E(&154F):

<> means ‘not the value or bit which follows’ ‘*’ means this address applies to all machines with a disc drive fitted
b0 means bit 0, bl means bit 1, etc HB means ‘the most significant byte’ and LB means ‘the least significant byte’
addresses on the right are of System Variables that hold the address of the byte being explained (for the 464 they are in italics)

&81,&0AE9(&0ACA):

ASC 14; &81,&12AB(&12AE):

NUL
Print control code chararacter [,char]
Disable cursor
Enable cursor
Set mode [,mode]
Print character using graphics mode [,char]
Enable VDU
Beep
Back-space
Step-right
Line feed
Previous line
Clear window and locate the text cursor at position 1,1
RETURN
Set paper [,pen]
Set pen [,pen]
Delete the character at the cursor position

PAGE 17

 ms FIRMWARE euros
6128

&B796
&B799
&B79C
&B79F
&B7A2
&B7A5
&B7A8
&B7AB
&B7AE
&B7B 1
&B7B4
&B7B7
&B7BA
&B7BD
&B7CO

&B7C3
&B7C4
&B7C6
&B7C7

&B7D2
&B7D3

&B7D4
&B7D4
&B7D5
&B7D6
&B7D7
&B7D8
&B7D9
&B7DA
&B7DB
&B7DC
&B7DD
&B7DE
&B7DF
&B7E0
&B7El
&B7E2
&B7EB
&B7E4

&B7E5
&B7E5
&B7E6
&B7E7
&B7E8
&B7E9
&B7EA
&B7EB
&B7EC
&B7ED
&B7EE
&B7EF

PA GE 18

464

&B2F6
&B2F9
&B2FC
&B2FF
&B302
&B305
&B308
&B30B
&B30E
&B3l I
&B3 14
&B3 I7
&B3 IA
&B3 ID
&B320

&B1C8
&BlC9
&BlCB
&BlCC
&B ICF
&B1D7
&BID8

&BID9
&B1D9
&BlDA
&BIDB
&BlDC
&BlDD
&B1DE
&BIDF
&BIEO
&BlEl
&B1E2
&BlE3
&BlE4
&B1E5
&BlE6
&B1E7
&BlE/8
&BIE9

&BlEA
&BIEA
&BIEB
&BIEC
&BIED
&BIEE
&BlEF
&BIFO
&BIF1
&BIF2
&BlF3
&BlF4

Size Comments on the memory locations

UJUJWUJUJWQMUJUJUJUJQQUJUJW

r-it-400000-\l\)r-~

I+l6*I Border and Pens’ First Inks (as hardware numbers)
hw &04 = sw I
hw &04 = sw I
hw &0A = sw 24
hw &I3 = sw 20
hw &OC = sw 6
hw &0B = sw 26
hw &I4 = sw 0
hw &I5 = sw 2
hw &0D = sw 8
hw &06 = sw 10
hw &1E = sw 12
hw &lF = sw 14
hw &07 = sw 16
hw &l2 -= sw I8
hw &I9 = sw 22

1

r--r—~r-rt--=r—~r-it--Ar-tr-rr-rt-r-Ar-~r--rt-r-r

1+ 16* I Border and Pens’ Second Inks (as hardware numbers)

p--ap-Ar-my--my-rp--up-4;-.-my-4p--ap-.1

ASC 17:
ASC 18:
ASC I9:
ASC 20:
ASC 21
ASC 22:
ASC 23
ASC 24:
ASC 25:
ASC 26:
ASC 27:
ASC 28:
ASC 29:
ASC 30:
ASC 31

&80,&1599(&158E):
&80,&158F(&1584):
&s0,&157s(&1560)¢
&s0,&1565(&1556);

: &80,&l452(&144B):

&89,&150D(&1504):
&84,&l50l(&15F8):
&00,&14EB(&14E2):
&83,& 14FI (&14E8):
&82,&l4FA(&14F1):
&80,&l539(&152A):

: &82,&1547(&1538):

MODE number
screen offset
screen base HB (LB taken as &00)
graphics VDU write mode indirection — JP &0C74 - JP &OC6B
list of bytes having only one bit set, from b7 down to b0 _
first flash period (SPEED INK - default &0A @ 0.02 seconds)
second flash period (SPEED INK - default &0A @ 0 02 seconds)

hw&04 =sw1
hw&I7 =sw1I

hw &04
hw &04
hw &0A
hw &13
hw &0C
hw &0B
hw &14
hw &I5
hw &0D
hw &06
hw &lE

(blue)
(blue)
(bright yellow)
(bright cyan)
(bright red)
(bright white)
(black)
(bright blue)
(bright magenta)
(wan)
(yellow)
(pale blue)
(pirlk)
(bright green)
(pale green)
(blue)
(sky blue)

= sw 1 (blue)
= sw 1 (blue)
= sw 24 (bright yellow)
= sw 20 (bright cyan)
= sw 6 (bright red)
= sw 26 (bright white)
= sw 0 (black)
= sw 2 (bright blue)
= sw 8 (bright magenta)
= sw 10 (cyan)
= sw 12 (yellow)

Clear the line up to the current cursor positron
Clear from the cursor positron to the end of the line L
Clear from start of the wmdow to the cursor position
Clear from the cursor positron to the end of a window
Disable VDU

&8I,&l4EC(&14E3): Set text write mode [,mode]
: &8I,&0C55(&0C49): Set graphics draw mode [,rnode]

&80,&12C6(&l2C9): Exchange pen and paper
Defme user defmed character [,char,8 rows of char]
Defme window [,left right top bottom]
ESC (=user)
Set the pen inks [pen,rnlt I lI1i\ 2]
Set border colours [,rnl-t l,rnk 2]
Locate the text cursor at positron 1 1
Locate the text cursor at [,column,hne]

border
pen 0
pen I
pen 2
pen 3
pen 4
pen 5
pen 6
pen 7
pen 8
pen 9
pen I0
pen I1
pen I2
pen I3
pen I4
pen 15

border
pen 0
pen 1
pen 2
pen3
pen4
pen 5
pen 6
pen 7
pen 8
pen 9

6128

&B7F0
&B7FI
&B7F2
&B7F3
&B7F4
&B7F5

&B7F6
&B7P7
&B7F8
&B7F9
&B7FB
&B7FD
&B802
&B804
&B805

&B805
&B807
&B809
&B80B
&B80D
&B80F
&B8l I
&B813
&B8I5
&B817
&B8I9

&B82D
&B82E
&B82F
&B83 I
&B832
&B834
&B8B4
&B8B8
&B8B9
&B8BB
&B8BD
&B8BF
&B8C0
&B8C2
&B8C3
&B8D3
&B8D5
&B8D6
&B8D7
&B8D9

464

&B1F5
&B IF6
&B l_I-77
&B ll-78
&B IF9
&B IFA

&B IFB
&B IFC
&B IFD
&B IFE
&B200

&Bl00
&BI0l
&B102
&BI04
&B105
&BI07
&BI87
&BI8B
&BI8C
&Bl8E
&B190
&Bl92
&Bl93
&Bl95
&BI96
&B IA6

&B IA8
&B IA9
&B IAB

Size

|-up-4|-4|-my-up-A

l\)l\)r—~r--rt--r

1+1
1
20*2

8l\)l\)l\)l\)l\Jl\)t\Jl\)l\)l\)

[Qt--[\)r—~r--r

&70

r—~l\)r--0--l\)@r--¢l\)>--l\)l\)l\)r-~.p

r-~ O

MEMORY MAPS

Comments on the memory locations

hw &IF = sw 14
hw &07 = sw 16
hw &l2 = sw I8
hw &l9 = sw 22
hw &0A = sw 24
hw &07 = sw I6

(pale blue)
(Pink)
(bright green)
(pale green)
(bright yellow)
(Pink)

pen 10
pen 11
pen 12
pen I3
pen I4
pen 15

(&B8B9 — &B18C)
(&B82F - &B102)

number of entries in the Printer Translation table (normally I0)
Printer Translation Table; each entry comprises:

byte I: screen code
byte 2: printer code

screen &A0 printer &5E (acute accent)
screen &A1 printer &5C (\)
screen &A2 printer &7B ({) »
screen &A3 printer &23 (#)
screen &A6 printer &4O (@)
screen &AB printer &7C (I)
screen &AC printer &7D (})
screen &AD printer &7E (~)
screen &AB printer &5D (])
screen &AF printer &5E (D
room for ten more translations

temporary store for stack pointer (SP) during interrupt handling
temporary machine stack (from &B8B3 — &B186 downwards) during interrupt handling 9
TIME (stored with the LB first — four bytes give >166 days; three bytes give >15 hours)

address of the first ticker block in chain (if any)
KB scan flag (&00=scan not needed; &0l=scan needed)
address of the first event block in chain (if any) A

buffer for last RSX or RSX command name (last character has bit 7 set)
address of first ROM or RSX chaining block in chain (eg &ACFC - &ABFC)
RAM bank number .
Upper ROM status (eg select number)
entry point of foreground ROM in use (eg &C006 for BASIC ROM)
foreground ROM select address (0 for the BASIC ROM)

<> means ‘not the value or bit which follows’ ‘*’ means this address applies to all machines with a disc drive fitted
b0 means bit 0, bl means bit 1, etc HB means ‘the most significant byte’ and LB means ‘the least significant byte’
addresses on the right are of System Variables that hold the address of the byte being explained (for the 464 they are in italics)

 2 PAGE19

THE FIRMWARE GUIDE p z , _

6128

&B8DA

&B8DA
&B8DC
&B8DE
&B8E0
&B8E2
&B8E4
&B8E6
&B8B8
&B8EA
&B8EC
&B8EE
&B8F0
&B8F2
&B8F4
&B8F6
&B8F8

464

&B1AC

&B IAC
&B IAE
&B 1B0
&B1B2
&B1B4
&B1B6
&B IB8

Size

I6*2
7*2
2
2

l\)l\)l\)l\Jl\)l\)l\)l\)l\)l\)l\)l\)l\Jl\J

Comments on the memory locations

ROM entry IY value (ie address table) - the 6128 has ROMs numbered from 0 to I5:
ROM entry IY value (ie the address table) — the 464 has ROMs I to 7 only: _
ROM 0 -IY (not for the 464)
ROM 1 IY
ROM 2 IY
ROM 3 IY
ROM 4 IY
ROM 5 IY
ROM 6 IY
ROM 7 IY (usually &A700 for AMSDOS/CPM ROM)
ROM 8 IY (not 464)
ROM 9 IY (not 464)
ROM I0 IY (not 464)
ROM ll IY (not 464)
ROM 12 IY (not 464)
ROM 13 IY (not 464)
ROM I4 IY (not 464)
ROM 15 IY (not 464)

&B8FA (6 bytes of &FF)
&B1BA (14 bytes of&00)

&B900
&B924
&BAE4
&BB00
&BB4E
&BBBA
&BBFF
&BC65
&BCA7
&BCC8
&BD13
&BD6 I
&BDCD
&BDF7
&BE00

&B900
&B92l
&BAE9
&BB00
&BB4E
&BBBA
&BBFF
&BC65
&BCA7
&BCC8
&BD13
&BD3D
&BDCD
&BDF4
&BE00

High Kernel Jumpblock - on the 464 this block is (11 *3) bytes in size TI2*3
&1C0 routines used by the High Kernel Jumpblock — on the 464 this is &1C8 bytes in size

26*3
36*3
23*3
34*3
22*3
I I*3
25*3
26*3
32*3
I4*3

&IC(&17) bytes of &FF
Key Manager Jumpblock
Text VDU Jumpblock
Graphics VDU Jumpblock
Screen Pack Jumpblock
Cassette (and Disc if fitted) Manager Jumpblock
Sound Manager Jumpblock
Kernel Jumpblock
Machine Pack Jumpblock — on the 464 this block is (14*3) bytes in size
Maths Jumpblock — on the 464 this block is (48*3) bytes in size
Firmware Indirections - on the 464 this block is (13*3) bytes in size

(&09(&0C) bytes of &00 — the lower limit of Machine Stack if no Disc Drive
(&40 bytes of &FF)

&BE40
&BE40
&BB42

&BE44
&BE44
&BE46
&BE48
&BE49
&BE4A
&BE4B
&BE4C
&BE4D
&BEAF
&BE4F
&BE50
&BE5l
&BE52

&BE40
&BE40
&BE42

&BE44
&BE44
&BE46
&BE48
&BE49
&BE4A
&BE4B
&BE4C
&BE4D
&BE4F
&BE4F
&BE50
&BE5l
&BE52

&4x
2
2

t--it--r~—~r-¢.[>.[\)r-er--rr-hr-Ar-~|\)[\)\Q

used by the AMSDOS ROM if a disc drive is fitted (otherwise &4x bytes of &FF)
(address &A9l0)
address of drive A XDPB

Disc Set Up timing block:
motor on period (default &0032; fastest &0023 @ 20mS)
motor off period (default &00FA; fastest &00C8 @ 20mS)
write current off period (default &AF @ l0uS)
head settle time (default &0F @ lmS)
step rate period (default &0C; fastest &0A @ lmS),
head unload delay (default &0l)
b0=non DMA mode; bl to b7=head load delay (default &03)

Drive Header Information Block:
last track used
head ntnnber (&00)
last sector used 8
log2(sector size)-7

6128

&BE53
&BE54
&BE55
&BE56
&BE58
&BE59
&BE5D
&BESE
&BE5l?
&BE60
&BE62
&BE64
&BE66

&BE67
&BE67
&BE69
&BE6B
&BE6D
&BE6F
&BE70
&BE71
&BE73
&BE74
&BE75
&BE76
&BE78
&BE7D
&BE7F
&BE80
&BF00
&BFxy
&BFFF

464

&BE53
&BE54
&BE55
&BE56
&BE58
&BE59
&BE5D
&BE5E
&BE5F
&BE60
&BE62
&BE64
&BE66

&BE67
BE67
BE69
BE6B
BED
BE6F
BE70
BE7I
BE73
BE74
BE75
BE76
&BE78
&BE7D

Size Comments on the memory locations

&ll AMSDOS Ticker and Event Block:
ticker chaining address
tick count
recharge count
event chaining address

><t\Jv-~t\.>t—~r--t-~t\)t-\--l\)t\Jt\Jt\)

disc motor flag (&00=off; &0l=on -- strangely reversed)
address of buffer for directory entries block (&A930)
as &BE76 (ie &A9B0)

disc retries (default &10)

COUIH

class (asynchronous event)
ROM routine address (&C9D6)
ROM select number (&07 ie the AMSDOS/CPM ROM)
last sector number used

MEMORY MAPS

address of 1/2K buffer, or of header info block (for WRITE SECTOR etc)
disc error message flag (&00=on; &FF=off - reversed again)
address of AMSDOS reserved area (&A700)

&BE7F area used by AMSDOS to copy routines into RAM for running
&BE80 (&80 bytes of &FF) limit of machine stack if disc drive fitted
&BF00 (&xy bytes of &00)

machine stack (in theory this stack could extend down much further)
&BFFF upper limit of machine stack

The area from &C000 to &FPFF is taken up by the screen memory -— the layout of which is illustrated on the next page. Printed
below are diagrams which show how the CPC uses the bytes of screen memory in the different MODEs. For each byte: 4

in MODE 2 (where there are two colours only, so each pixel needs only one bit - either on or off)
bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
p0 pl p2 p3 p4 p5 p6 p7 (the pixels are arranged with p0 being the leftmost one, etc)

in MODE 1 (where four colours are available and so two bits are needed for each pixel — 1 byte represents 4 pixels)
bit7 bit 6 bi 5 bit4 bit3 bit 2 bit l bit 0
p0(1) pl(l) p2(l) p3(l) p0(0) pl(0) p2(0) p3(0) (each pixel is twice as wide as in MODE 2)

in MODE 0 (where sixteen colours are possible and four bits are needed for each pixel - I byte represents 2 pixels)
bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
p0(0) pl(0) p0(2) pl(2) p0(l) pl(l) p0(3) pl(3) p (each pixel is four times as wide as in MODE 2)

NB: the numbers in brackets show which bit of the pixel's pen number the screen byte bit refers to. For example in MODE I,
the 4 most significant bits of the byte hold bit 1 of the pixel's pen value and the 4 least signifcant bits hold bit 0 of the pen value.

<> means ‘not the value or bit which follows’ ‘*’ means this address applies to all machines with a disc drive fitted
b0 means bit 0, bl means bit I, etc HB means ‘the most significant byte’ and LB means ‘the least significant byte’
addresses on the right are of System Variables that hold the address of the byte being explained (for the 464 they are in italics)

PA GE 21

M THE FIRMWARE GUIDE

6128 464 Size Comments on the memory locations

&C000 &C000 &4-000 normal (upper) screen area. The alternative (lower) screen area is from &4000 to &7FFF. The
addresses of the starts of lines and rows in the normal screen area after a MODE instruction are:

LINE

r--in--hr--It--rt--r-Ar-to-rt--r-\ \OO0\lO\Ul-§U~3l\)'-'“@\D00\]O\Ul-l§UJl\)'-*

20
2 I
22
23
24
25

spare start
spare end

ROW 0
C000
C050
COA0
COF0
C140
C 190
C IEO
CBO
C280
C2D0
C320
C370
C3C0
C410
C460
C4B0
C500
C550
C5A0
C5F0
C640
C690
C6E0
C730
C780
C7D0
C7FF

ROW 1
csoo
csso
C8AO
CSFO
c940
c990
c9150
CA3O
CA8O
CADO
CB2O
CB70
CBCO
cc10
cceo
CCBO
cooo
coso
CDAO
CDFO
c540
CE9O
CEEO
c1=30
CF80
CFDO
CFFF

ROW 2
D000
D050
DOAO
DOF0
D140
D190
DI E0
D230
D280
D2D0
D320
D370
D3C0
D410
D460
D4B0
D500
D550
D5A0
D5F0
D640
D690
D6E0
D730
D780
D7D0
D7FF

ROW 3
D800
D850
D8A0
D8F0
D940
D990
D9E0
DA30
DA80
DADO
DB20
DB70
DBCO
DC I0
DC60
DCBO
DD00
DD50
DDAO
DDFO
DE40
DE90
DEEO
DF30
DF80
DFDO
DFFF

ROW 4
E000
E050
EOAO
EOFO
E140
E190
EIEO
E230
F280
E2DO
E320
E370
E3C0
EA10
1-3460
E4BO
E500
E550
ESAO
ESFO
E640
E690
E6E0
E730
E780
E7D0
E7FF

ROW 5
E800
E850
E8A0
E8F0
E940
E990
E9E0
EA30
EA80
EADO
EB20
EB70
EBCO
EC 10
EC60
ECBO
ED00
ED50
EDAO
ED50
EE40
EE90
EEEO
EF30 t
EF80
EFDO
EFFF

ROW 6
F000
F050
FOA0
F0F0
F140
F190
Fl E0
F230
F280
F2D0
F320
F370
F3C0
F410
F460
F4B0
F500
F550
F5A0
F550
F640
F690
F6E0
F730
F780
F7D0
F7FF

ROW 7
F800
F850
F8A0
F8F0
F940
F990
F9E0
FA30
FA80
FADO
FB20
FB70
FBCO
FC 10
FC60
FCBO
FD00
FD50
FDAO
FD50
FB40
FE90
FEEO
FF30
FF80
FFDO
FFFF

Once the whole screen has been scrolled in any direction, the above table will become incorrect. On scrolling, all the above
addresses will have an offset (MOD &800) added, derived as follows:

+&02 per scroll to the left (=2, I or 1/2 character in MODE 2, MODE l or MODE 0 respectively) s
-&02 per scroll to the right (=2, I or 1/2 character in MODE 2, MODE I or MODE 0 respectively)
+&50 per scroll up one line
-&50 per scroll down one line

If scrolled far enough, a screen row may sit across the boundaries of the screen memory area, whose bottom end will then
wrap around to join up with the top (ie byte &FFFF will be followed by byte &C0()0 assuming the normal screen area). If before
scrolling however, a window had been set up ‘smaller than the whole screen then the table will remain accurate despite any
scrolling.

The ‘spare’ areas of screen memory are filled with bytes of the relevant PAPER value each time there is a full screen CLS,
and are not really available for other uses. After scrolling the spare areas may be used as screen with other bytes becoming spare.

Please note that this section of the guide has been set out with
all the addresses in the leftmost column in the correct order
for the 6128. However, a Conversion Chart specifically for

the 464 is printed in Appendix C.

 FIRMWARE SUMMARY

The Firmware Jumpblocks
The Firmware Jumpblock is the recommended method of communicating with the routines in the lower

ROM — it is used by BASIC, and it should also be used by other programs. .
The reason for using the jumpblock is that the routines in the lower ROM are located at different

positions on the different machines. The entries in the jumpblock, however, are all in the same place —
the instructions in the jumpblock redirect the computer to the correct place in the lower ROM. Thus,
providing a program uses the jumpblock, it should work on any CPC or Plus computer.

By altering the firmware jumpblock it is possible to make the computer run a different routine from
normal. This could either be a different routine in the lower or upper ROM, or a routine written by the user
— this is known as ‘patching the jumpblock’. It is worth noting that because BASIC uses the firmware
jumpblock quite heavily, it is possible to alter the effect of BASIC commands.

The following example will change the effect of calling SCR SE1" MODE (&BCOE) — instead of
changing the mode, any calls to this location will print the letter ‘A’. The first thing to do is to assemble
the piece of code that will be used to print the letter — this is printed below and starts at &4000.

ORG &4000
‘ LD A, 55

CALL &BB5A
RET

The jumpblock entry for SCR SET MODE is now patched so that it re-routes all calls to &BCOE away
from the lower ROM and to our custom routine at &4000. This is done by changing the bytes at &BCOE,
&BCOF and &BC10 to &C3, &00, &4O respectively (ie JP &4000). Any calls to &BCOE or MODE
commands will now print the letter A instead of changing mode.

The indirections jumpblock contains a small number of routines which are called by the rest of the
firmware. By altering this jumpblock, it is possible to alter the way in which the firmware operates on a
large scale - thus it is not always necessary to patch large numbers of entries in the firmware jumpblock.

There are two jumpblocks which are to do with the Kemel (ie the high and low Kemel jumpblocks).
The high jumpblock allows ROM states and intenupts to be altered, and also controls the introduction of
RSXs. The low jumpblock contains general routines and restart instructions which are used by the
computer for its own purposes.

The CPC Firmware
The Low Kernel Jumpblock The High Kernel Jumpblock

&0000
&0008
&000B
&000E
&00 10
&00l3
&0016
&00 18
&00 IB
&00IE
&0020
&0023
&OO28
&0030
&OO38
&003B

REsET ENTRY (RST 0)
LOW JUMP (RST 1)
KL Low PCHL
PCBC INSTRUCTION
SIDE CALL (RST 2)
KL SIDE PCHL
PCDE INSTRUCTION
FAR CALL (RST 3)
KL FAR PCHL
PCHL INSTRUCTION
RAM LAM (RST 4)
KL FAR CALL
FIRM JUMP (RST 5)
USER RESTART (RST 6)
INTERRUPT ENTRY (RST 7)
EXT INTERRUPT

&B900
&B903
&B906
&B909
&B90C
&B90F
&B9 12
&B915
&B9 I8
&B9lB
&B91E
&B921
&B92A

KL U ROM ENABLE
KL U ROM DISABLE
KL L ROM ENABLE
KL L ROM DISABLE
KL ROM RESTORE
KL ROM SELECT
KL CURR SELECTION
KL PROBE ROr\/I
KL ROM DESELECT
KL LDIR
KL LDDR
KL POLL SYNCHRONOUS
KL SCAN NEEDED

r

"045

Key Manager

§§§§§§§§§
009
010
0II
012
-013
014
015
016
017
018
019
-.020
£021
9022
OB
£024
025

&BB00
&BB03
&BB06
&BB09
&BBOC
&BBOF
&BB12
&BB15
&BB18
&BB IB
&BB1E
&BB2l
&BB24
&BB27
&BB2A
&BB2D
&BB30
&BB33
&BB36
&BB39
&BB3C
&BB3F
&BB42
&BB45
&BB48
&BB4B

KM INITIALISE
KM RESET
KM WAIT CHAR
KM READ CHAR
KM CHAR RETURN
KM SET EXPAND
KM GET EXPAND
KM EXP BUFFER
KM WAIT KEY
KM READ KEY
KM TEST KEY
KM GET STATE
KM GET JOYSTICK
KM SET TRANSLATE
KM GET TRANSLATE
KM SET SHIFT
KM GET SHIFT
KM SET CONTROL
KM GET CONTROL
KM SET REPEAT
KM GET REPEAT
KM SET DELAY
KM GET DELAY
KM ARM BREAK
KM DISARM BREAK
KM BREAK EVENT

The Text VDU
026
-027
028
029
030
03 1
032
033
034
"035
036
037
038
039
040
.041
T042
i3

.046
047
048
049
050
051
052

&BB4E
&BB5I
&BB54
&BB57
&BB5A
&BB5D
&BB60
&BB63
&BB66
&BB69
&BB6C
&BB6F
&BB72
&BB75
&BB78
&BB7B
&BB7E
&BB8l
&BB84
&BB87
&BB8A
&BB8D
&BB90
&BB93
&BB96
&BB99
&BB9C

TXT INITIALISE
TXT RESET
TXT VDU ENABLE
TXT VDU DISABLE
TXT OUTPUT
TXT WR CHAR
TXT RD CHAR
TXT SET GRAPHIC
TXT WIN ENABLE‘
TXT GET WINDOW
TXT CLEAR WINDOW
TXT SET COLUMN
TXT SET ROW
TXT SET CURSOR
TXT GET CURSOR
TXT CUR ENABLE
TXT CUR DISABLE
TXT CUR ON
TXT CUR OFF
TXT INVALIDATE
TXT PLACE CURSOR
TXT REMOVE CURSOR
TXT SET PEN
TXT GET PEN
TXT SET PAPER .
TXT GET PAPER
TXT INVERSE

&BB9F
&BBA2
&BBA5
&BBA8
&BBAB
&BBAE
&BBBI
&BBB4
&BBB7

&BBBA
&BBBD
&BBCO
&BBC3
&BBC6
&BBC9
&BBCC
&BBCF
&BBD2
&BBD5
&BBD
&BBDB
&BBDB
&BBEI
&BBE4
&BBE7
&BBEA
&BBBD
&BBH)
&BBE3
&BBR5
&BBH9
&BBFC

&BBFF
&BC02
&BC05
&BC08
&BCOB
&BCOE
&BC1 1
&BC I4
&BC I7
&BCIA
&BC ID
&BC20
&BC23
&BC26
&BC29
&BC2C
&BC2F
&BC32
&BC35
&BC38

TXT SET BACK
TXT GET BACK
TXT GET MATRIX
TXT SET MATRIX
TXT SET M TABLE
TXT GET M TABLE
TXT GET CONTROLS
TXT STR SELECT
TXT SWAP STREAMS

The Graphics VDU
GRA INITIALISE
GRA RESET
GRA MOVE ABSOLUTE
GRA MOVE RELATIVE
GRA ASK CURSOR
GRA SET ORIGIN
GRA GET ORIGIN
GRA WIN WIDTH
GRA WIN HEIGHT
GRA GET W WIDTH
GRA GET W HEIGHT
GRA CLEAR WINDOW
GRA SET PEN
GRA GET PEN
GRA SET PAPER
GRA GET PAPER
GRA PLOT ABSOLUTE
GRA PLOT RELATIVE
GRA TEST ABSOLUTE
GRA TEST RELATIVE
GRA LINE ABSOLUTE
GRA LINE RELATIVE
GRA WR CHAR

The Screen Pack
SCR INITIALISE
SCR RESET
SCR SET OFFSET
SCR SET BASE
SCR GET LOCATION
SCR SET MODE
SCR GET MODE
SCR CLEAR
SCR CHAR LIMITS
SCR CHAR POSITION
SCR DOT POSITION
SCR NEXT BYTE
SCR PREV BYTE
SCR NEXT LINE
SCR PREV LINE
SCR INK ENCODE
SCR INK DECODE
SCR SET INK
SCR GET INK
SCR SET BORDER

&BC3B
&BC3E
&BC4I
&BC44
&BC47
&BC4A
&BC4D
&BC50
&BC53
&BC56
&BC59
&BC5C
&BC5F
&BC62
&BC65
&BC68
&BC6B
&BC6E
&BC7I
&BC74
&BC77
&BC7A
&BC7D
&BC80
&BC83
&BC86
&BC89
&BC8C
&BC8F
&BC92
&BC95
&BC98
&BC9B
&BC9E
&BCA 1
&BCA4
&BCA7
&BCAA
&BCAD
&BCBO
&BCB3
&BCB6
&BCB9
&BCBC
&BCBF
&BCC2
&BCC5
&BCC8
&BCCB
&BCCE
&BCD1
&BCD4
&BCD7
&BCDA
&BCDD
&BCED
&BCE3
&BCE6
&BCE9
&BCEC

SCR GET BORDER
SCR SET FLASHING
scR GET FLASHING
scR FILL BOX
SCR FLOOD BOX
scR CHAR INVERT
scR HW ROLL
scR sw RoLL
scR UNPACK
SCR REPACK
SCR ACCESS
scR I->IxELs
scR HORIZONTAL
SCR VERTICAL
CAS INITIALISE
CAS SET SPEED
CAS NOISY
CAS START MOTOR
CAS STOP MOTOR
CAS RESTORE MOTOR
CAS IN OPEN
CAS IN CLOSE
CAS IN ABANDON
CAS IN CHAR
CAS IN DIRECT
CAS RETURN
CAS TEST EOF
CAS OUT OPEN
CAS OUT CLOSE
CAS OUT ABANDON
CAS OUT CHAR E
CAS OUT DIRECT
CAS CATALOG
CAS WRITE
CAS READ
CAS CHECK
SOUND RESET
SOUND QUEUE
SOUND CHECK
SOUND ARM EVENT
SOUND RELEASE
SOUND HOLD
SOUND CONTINUE
SOUND AMPL ENVELOPE
SOUND TONE ENVELOPE
SOUND A ADDRESS
SOUND T ADDRESS
KL CHOKE OFF
KL ROM WALK
KL INIT BACK

&BCEF
&BCF2
&BCF5
&BCF8
&BCF8
&BCFE
&BD0l
&BD04
&BD07
&BDOA
&BDOD
&BD1 0
&BDI3
&BD16
&BD19
&BDlC
&BDlF
&BD22
&BD25
&BD28
&BD2B
&BD2E
&BD3 l
&BD34
&BD37

&BD3A
&BD3D
&BD40
&BD43
&BD46
&BD49
&BD4C
&BD4F
&BD52
&BD55
&BD58
&BD5B

 FIRMWARE SUMMARY

KL INIT EVENT
KL EVEI\TT
KL SYNC REST
KL DEL SYNCHRONOUS
KL NEXT SYNC
KL DO SYNC
KL DONE SYNC
KL EVENT DISABLE
KL EVENT DISABLE
KL DISARM EVENT
KL TIME PLEASE
KL TIME SET
MC BOOT PROGRAM
MC START PROGRAM
MC WAIT FLYBACK
MC SET MODE
MC SCREEN OFFSET
MC CLEAR INKS
MC SET INKS
MC RESET PRINTER
MC PRINT CHAR
MC BUSY PRINTER
MC SEND PRINTER
MC SOUND REGISTER
JUMP RESTORE

, J.

664 or 6128 only
KM SET LOCKS
KM FLUSH
TXT ASK STATE
GRA DEFAULT
GRA SET BACK
GRA SET FIRST
GRA SET LINE MASK
GRA FROM USER
GRA FILL I
SCR SET POSITION
MC PRINT TRANSLATION .
KL BANK SWITCH

Firmware Indirections
&BDCD TXT DRAW CURSOR
&BDDO
&BDD3
&BDD6
&BDD9

TXT UNDRAW CURSOR
TXT WRITE CI-LAR
TXT UNWRITE
TXT OUT ACTION

KL LOG EXT
KL FIND COMMAND
KL NEW FRAME FLY
KL ADD FRAME FLY
KL DEL FRAME FLY
KL NEW FAST TICKER
KL ADD FAST TICKER
KL DEL FAST TICKER
KL ADD TICKER
KL DEL TICKER

&BDDC GRA PLOT
&BDDF GRA TEST
&BDE2 GRA LINE
&BDE5 SCR READ
&BDE8 SCR WRITE
&BDEB SCR MODE CLEAR
&BDEE KM TEST BREAK
&BDFl MC WAIT PRINTER
&BDF4 KM SCAN REY S7

PA GE 25

000

THE FIRMWARE GUIDE p

The Firmware in Detail

Low Kernel Jumpblock
&0000
Action:
Entry:
Exit:
Notes:

001 &0008
Action:
Entry:
Exit:
Notes:

002 &000B
Action:
Entry:
Exit:
Notes:

003 &000E
Action:
Entry:
Exit:

004 810010
’ Action:

Entry:
Exit:
Notes:

005 &0013
Action:
Entry:
Exit:
Notes:

006 &0016
Action:
Entry:
Exit:

RESET ENTRY (RST 0)
Resets the computer as if it has just been switched on
No entry conditions
This routine is never returned from
After initialisation of the hardware and firmware, control is handed over to ROM 0 (usually BASIC)

LOW JUMP (RST 1)
Jumps to a routine in either the lower ROM or low RAM
No entry conditions - all the registers are passed to the destination routine unchanged
The registers are as set by the routine in the lower ROM or RAM or are returned unaltered
The RST I instruction is followed by a two byte low address, which is defined as follows:

if bit 15 is set, then the upper ROM is disabled
if bit I4 is set, then the lower ROM is disabled
bits 13 to 0 contain the address of the routine to jump to v

This command is used by the majority of entries in the main fimrware jumpblock

KL LOW PCHL
Jumps to a routine in either the lower ROM or low RAM I E
HL contains the low address — all the registers are passed to the destination routine unchanged
The registers are as set by the routine in the lower ROM or RAM or are retumed unaltered
The two byte low address in the HL register pair is defmed as follows:

if bit I5 is set, then the upper ROM is disabled
if bit 14 is set, then the lower ROM is disabled
bits 13 to 0 contain the address of the routine to jump to

PCBC INSTRUCTION
Jumps to the specified address A
BC contains the address to jump to — all the registers are passed to the destination routine unaltered
The registers are as set by the destination routine or are retumed unchanged

SIDE CALL (RST 2)
Calls a routine in ROM, in a group of upto four foreground ROMs
No entry conditions - all the registers apart from IY are passed to the destination routine unaltered
IY is corrupt, and the other registers are as set by the destination routine or are returned unchanged
The RST 2 instruction is followed by a two byte side address, which is defined as follows:

bits 14 and I5 give a number between 0 and 3, which is added to the main foreground ROM select address
— this is then used as the ROM select address

bits 0 to 13 contain the address to which is added &C000 -- this gives the address of the routine to be called

KL SIDE PCHL
Calls a routine in another ROM
HL contains the side address - all the registers apart from IY are passed to the destination routine unaltered
IY is corrupt, and the other registers are as set by the destination routine or are returned unchanged
The two byte side address is defmed as follows:

bits 14 and I5 give a number between 0 and 3, which is added to the main foreground ROM select address
—- this is then used as the ROM select address

bits 0 to 13 contain the address to which is added &C000 — this gives the address of the routine to be called

PCDE INSTRUCTION
Jumps to the specified address
DE contains the address to jump to — all the registers are passed to the destination routine unaltered
The registers are as set by the destination routine or are returned unchanged

&0018
Action:
Entry:
Exit:
Notes:

&001B
Action:
Entry:

Exit:
Notes:

&001E
Action:
Entry:
Exit:

&0020
Action:
Entry:
Exit:
Notes:

&0023
Action:
Entry:

Exit:
Notes:

&0028
Action:
Entry:
Exit:
Notes:

&0030
Action:
Entry:
Exit:
Notes:

&0038
Action:
Entry:
Exit:
Notes:

FAR CALL (RST 3)

FIRMWARE CALLS

Calls a routine anywhere in RAM or ROM
No entry conditions — all the registers apart from IY are passed to the destination routine unaltered
IY is preserved, and the other registers are as set by the destination routine or are rettuned unchanged
The RST 3 instruction is followed by a two byte in-line address. At this address, there is a three byte far address,
which is defmed as follows:

bytes 0 and 1 give the address of the routine to be called
byte 2 is the ROM select byte which has values as follows:

&00 to &FB -
&FC -
&FD -
&FE —
&FF -

select the given upper ROM, enable the upper ROM and disable the lower ROM
no change to the ROM selection, enable the upper and lower ROMs _
no change to the ROM selection, enable the upper ROM and disable the lower ROM
no change to the ROM selection, disable the upper ROM and enable the lower ROM
no change to the ROM selection, disable the upper and lower ROMs

When it is returned from, the ROM selection and state are restored to their settings before the RST 3 command

KL FAR PCHL
Calls a routine, given by the far address in HL & C, anywhere in RAM or ROM
HL holds the address of the routine to be called, and C holds the ROM select byte — all the registers apart
from IY are passed to the destination routine unaltered
IY is preserved, and the other registers are as set by the destination routine-or are returned unchanged
See FAR CALL above for more details on the ROM select byte

PCHL INSTRUCTION
Jumps to the specified address
HL contains the address to jump to — all the registers are passed to the destination routine unaltered
The registers are as set by the destination routine or are returned unchanged

RAM LAM
Puts the contents of a RAM memory location into the A register
HL contains the address of the memory location
A holds the contents of the memory location, and all other registers are preserved
This routine always reads from RAM, even if the upper or lower ROM is enabled

KL FAR CALL
Calls a routine anywherein RAM or ROM
HL holds the address of the three byte far address that is to be used - all the registers apart from IY are passed
to the destination routine unaltered
IY is preserved, and the other registers are as set by the destination routine or are returned unchanged
See FAR CALL above for more details on the three byte far address

FIRM JUMP (RST 5)
Jumps to a routine in either the lower ROM or the central 32K of RAM
No entry conditions — all the registers are passed to the destination routine unchanged
The registers are as set by the routine in the lower ROM or RAM or are retumed unaltered
The RST 5 instruction is followed by a two byte address, which is the address to jump to; before the jump is
made, the lower ROM is enabled, and is disabled when the destination routine is returned from

USER RESTART (RST 6)
This is an RST instruction that may be set aside by the user for any purpose
Defined by the user
Defined by the user
The bytes from &0030 to &0037 are available for the user to put their own code in if they wish

INTERRUPT ENTRY (RST 7)
Deals with normal interrupts
No entry conditions
All registers are preserved
The RST 7 instruction must not be used by the user; any external interrupts that are generated by hardware
on the expansion port will be dealt with by the EXT INTERRUPT routine (see over)

 PAGE 27

 THE FIRMWARE GUIDE K p

015 &003B EXT INTERRUPT I
Action: This area is set aside for dealing with external interrupts that are generated by any extra hardware
Entry:
Exit:

No entry conditions
AF, BC, DE and HL are con'upt, and all other registers are preserved

Notes: If any extemal hardware is going to generate interrupts, then the user must patch the area from &003B to T
&003F so that the computer can deal with the external intenupt; when an external interrupt occurs, the lower
ROM is disabled and the code at &003B is called; the default external interrupt routine at &003B simply
retums, and this will cause the computer to hang because the interrupt will continue to exist

High Kernel Jumpblock
000 &B900

Action:
Entry:
Exit:
Notes:

001 &B903
Action:
Entry:
Exit:
Notes:

002 &B906
Action:
Entry:
Exit:
Notes:

003 &B909
Action:
Entry:
Exit:
Notes:

004 &B90C
Action:
Entry:
Exit:
Notes:

005 &B90F
Action:
Entry:
Exit:

006 &B912
Action:
Entry:
Exit:

KL U ROM ENABLE
Enables the current upper ROM
No entry conditions
A contains the previous state of the ROM, the flags are conupt, and all other registers are preserved
After this routine has been called, all reading from addresses between &C000 and &FFFF refers to the upper
ROM, and not the top 16K of RAM which is usually the screen memory; any writing to these addresses still
affects the RAM as, by its nature, ROM cannot be written to I

KL U ROM DISABLE
Disables the upper ROM
No entry conditions
A contains the previous state of the ROM, the flags are corrupt, and all other registers are preserved
After this routine has been called, all reading from addresses between &C000 and &FFFF refers to the top
16K of RAM which is usually the screen memory

KL L ROM ENABLE
Enables the lower ROM
No entry conditions
A contains the previous state of the ROM, the flags are comrpt, and all other registers are preserved
After this routine has been called, all reading from addresses between &0000 and &4000 refers to the lower
ROM, and not the bottom 16K of RAM; any writing to these addresses still affects the RAM as a ROM cannot
be written to; the lower ROM is automatically enabled when a fmnware routine is called, and is then disabled
when the routine returns

KL L ROM DISABLE
Disables the lower ROM
No entry conditions
A contains the previous state of the ROM, the flags are corrupt, and all other registers are preserved
After this routine has been called, all reading from addresses between &0000 and &4000 refers to the bottom
16K of RAM; the lower ROM is automatically enabled when a firmware routine is called, and is then disabled
when the routine retums

KL ROM RESTORE
Restores the ROM to its previous state
A contains the previous state of the ROM
AF is corrupt, and all other registers are preserved
The previous four routines all return values in the A register which are suitable for use by KL ROM RESTORE

KL ROM SELECT
Selects an upper ROM and also enables it
C contains the ROM select address of the required ROM I
C contains the ROM select address of the previous ROM, and B contains the state of the previous ROM

KL CURR SELECTION
Gets the ROM select address of the current ROM
No entry conditions
A contains the ROM select address of the current ROM, and all other registers are preserved

PAGE 2s L

FIRMWARE CALL5

007 &B915 KL PROBE ROM
Action: Gets the class and version of a specified ROM
Entry: C contains the ROM select address of the required ROM
Exit: A contains the class of the ROM, H holds the version number, L holds the mark ntunber, B and the flags are

corrupt, and all other registers are preserved
Notes: The ROM class may be one of the following:

&00 - a foreground ROM
&0l -— a background ROM
&02 -- an extension foreground ROM
&80 — the built in ROM (ie the BASIC ROM)

008 &B9l8 KL ROM DESELECT
Action: Selects the previous upper ROM and sets its state
Entry: C contains the ROM select address of the ROM to be reselected, and B contains the state of the required ROM
Exit: C contains the ROM select address of the current ROM, B is corrupt, and all others are preserved
Notes: This routine reverses the action of KL ROM SELECT, and uses the values that it returns in B and C

009 &B91B KL LDIR
Action: Switches off the upper and lower ROMs, and moves a block of memory

9 Entry: As for a standard LDIR instruction (ie DE holds the destination location, HL points to the first byte to be
moved, and BC holds the length of the block to be moved) 9

Exit: F, BC, DE and HL are set as for a normal LDIR instruction, and all other registers are preserved

010 &B91E KL LDDR
Action: Switches off the upper and lower ROMs, and moves a block of memory
Entry: As for a standard LDDR instruction (ie DE holds the first destination location, HL points to the highest byte

in memory to be moved, and BC holds the number of bytes to be moved)
Exit: F, BC, DE and HL are set as for a normal LDDR instruction, and all other registers are preserved

011 &B921 KL POLL SYNCHRONOUS j
Action: Tests whether an event with a higher priority than the current event is waiting to be dealt with p
Entry: No entry conditions
Exit: If there is a higher priority event, then Carry is false;

if there is no higher priority event, then Carry is true;
in either case, A and the other flags are corrupt, and all other registers are preserved

014 &B92A KL SCAN NEEDED
Action: Ensures that the keyboard is scanned when the next ticker intenupt occurs
Entry: No entry conditions '
Exit: AF and HL are conupt, and all other registers are preserved
Notes: This routine is useful for scanning the keyboard when the interrupts are disabled and normal key scanning is

not occurring

The Key Manager
000 &BB00 KM INITIALISE

Action: Initialises the Key Manager and sets up everything as it is when the computer is first switched on; the key buffer
is emptied, Shift and Caps lock are tumed off and all the expansion and translation tables are reset to normal;
also see the routine KM RESET below I

Entry: No entry conditions
Exit: AF, BC, DE and HL corrupt, and all other registers are preserved

001 &BB03 KM RESET
Action: Resets the Key Manager; the key buffer is emptied and all current keys/characters are ignored
Entry: No entry conditions
Exit: AF, BC, DE and HL are corrupt, and all other registers are preserved
Notes: See also KM INITIALISE above; on the 664 or 6128, the key buffer can also be cleared separately by calling

the KM FLUSH routine

2 I I PA GE 29

THE FIRMWARE GUIDE

&BB06 KM WAIT CHAR
Action: Waits for the next character from the keyboard buffer
Entry: Noentry conditions
Exit: Carry is true, A holds the character value, the other ‘flags are corrupt, and all other registers are preserved

&BB09 KM READ CHAR
Action: Tests to see if a character is available from the keyboard buffer, but doesn’t wait for one to become available
Entry: No entry conditions
Exit: If a character was available, then Carry is true, and A contains the character;

otherwise Carry is false, and A is conupt;
in both cases, the other registers are preserved

&BBOC KM CHAR RETURN
Action: Saves a character for the next use of KM WAIT CHAR or KM READ CHAR
Entry: A contains the ASCII code of the character to be put back
Exit: All registers are preserved g

&BBOF KM SET EXPAND
Action: Assigns a string to a key code
Entry: B holds the key code; C holds the length of the string; HL contains the address of the string (must be in RAM)
Exit: If it is OK, then Carry is true; p

otherwise Carry is false;
in either case, A, BC, DE and HL are corrupt, and all other registers are preserved

&BB12 KM GET EXPAND
Action: Reads a character from an expanded string of characters
Entry: A holds an expansion token (ie a key code) and L holds the character position number (starts from 0)
Exit: If it is OK, then Carry is true, and A holds the character;

otherwise Carry is false, and A is corrupt;
in either case, DE and flags are corrupt, and the other registers are preserved

&BB15 KM EXP BUFFER
Action: Sets aside a buffer area for character expansion strings
Entry: DE holds the address of the buffer and HL holds the length of the buffer
Exit: Ifit is OK, then Carry is true; - R

otherwise Carry is false;
in either case, A, BC, DE and HL are corrupt

Notes: The buffer must be in the central 32K of RAM and must be at least 49 bytes long

&BB18 KM WAIT KEY .
Action: Waits for a key to be pressed — this routine does not expand any expansion tokens
Entry: No entry conditions
Exit: Carry is true, A holds the character or expansion token, and all other registers are preserved

&BB1B KM READ KEY
Action: Tests whether a key is available from the keyboard
Entry: No entry conditions
Exit: If a key is available, then Carry is true, and A contains the character;

otherwise Carry is false, and A is conupt;
in either case, the other registers are preserved

Notes: Any expansion tokens are not expanded

&BB1E KM TEST KEY
Action: Tests if a particular key (or joystick direction or button) is pressed
Entry: A contains the key/joystick number
Exit: If the requested key is pressed, then Zero is false;

otherwise Zero is true;
for both, Carry is false, A and HL are corrupt, C holds the Shift and Control status, and others are preserved

Notes: After calling this, C will hold the state of shift and control — if bit 7 is set then Control was pressed, and if
bit 5 is set then Shift was pressed

011 &BB2l
Action:
Entry:
Exit:

012 &BB24
Action:

 Entry:
Exit:
Notes:

013 &BB27
Action:
Entry:
Exit:
Notes:

014 &BB2A
Action:
Entry:
Exit:
Notes:

015 &BB2D
Action:
Entry:
Exit:
Notes:

016 &BB30
Action:
Entry:
Exit:
Notes:

017 &BB33
Action:
Entry:
Exit:
Notes:

018 &BB36
Action:
Entry:
Exit:
Notes:

019 &BB39
Action:
Entry:
Exit:

, .

 s FIRMWARE CALLS

KM GET STATE
Gets the state of the Shift and Caps locks _
No entry conditions
If L holds &FF then the shift lock is on, but if L holds &00 then the Shift lock is off;

if H holds &FF then the caps lock is on, and if H holds &00 then the Caps lock is off;
whatever the outcome, all the other registers are preserved g

KM GET JOYSTICK
Reads the present state of any joysticks attached
No entry conditions
H and A contains the state of joystick 0, L holds that state of joystick 1, and all others are preserved
The joystick states are bit significant and are as follows:

BitO -- Up Bit 1 - Down Bit2 - Left Bit3 - Right
Bit4 -- Fire 2 Bit 5 - Fire 1 Bit 6 — Spare Bit 7 - Always zero

The bits are set when the corresponding buttons or directions are operated

KM SET TRANSLATE t
Sets the token or character that is assigned to a key when neither Shift nor Control are pressed
A contains the key number and B contains the new token or character
AF and HL are conupt, and all other registers are preserved
Special values for B are as follows:

&80 to &9F —- these values correspond to the expansion tokens
&FD — this causes the caps lock to toggle on and off
&FE — this causes the shift lock to toggle on and off
&FF — causes this key to be ignored

F-‘EKM GET TRANSLATE
Finds out what token or character will be assigned to a key when neither Shift nor Control are pressed
A contains the key number
A contains the token/character that is assigned, HL and flags are corrupt, and all others are preserved
See KM SET TRANSLATE for special values that can be retumed .

KM SET SHIFT
Sets the token or character that will be assigned to a key when Shift is pressed as well
A contains the key number and B contains the new token or character ,
AF and HL are corrupt, and all others are preserved .
See KM SET TRANSLATE for special values that can be set

KM GET SHIFT
Finds out what token/character will be assigned to a key when Shift is pressed as well
A contains the key number '
A contains the token/character that is assigned, HL and flags are corrupt, and all others are preserved
See KM SET TRANSLATE for special values that can be retumed

KM SET CONTROL
Sets the token or character that will be assigned to a key when Control is pressed as well
A contains the key number and B contains the new tokenlcharacter
AF and HL are conupt, and all others are preserved
See KM SET TRANSLATE for special values that can be set

KM GET CONTROL .
Finds out what token or character will be assigned to a key when Control is pressed as well
A contains the key number
A contains the tokenlcharacter that is assigned, HL and flags are corrupt and all others are preserved
See KM SET TRANSLATE for special values that can be set

KM SET REPEAT '
Sets whether a key may repeat or not
A contains the key number, B contains &00 if there is no repeat and &FF is it is to repeat
AF, BC and HL are corrupt, and all others are preserved

K ‘ PAGE31

THE FIRMWARE GUIDE

020 &BB3C KM GET REPEAT
Action: Finds out whether a key is set to repeat or not
Entry: A contains a key number
Exit: If the key repeats, then Zero is false; d

if the key does not repeat, then Zero is true; T
in either case, A, HL and flags are conupt, Carry is false, and all other registers are preserved

021 &BB3F KM SET DELAY I
Action: Sets the time that elapses before the first repeat, and also set the repeat speed
Entry: H contains the time before the first repeat, and L holds the time between repeats (repeat speed)
Exit: AF is corrupt, and all others are preserved
Notes: The values for the times are given in I/50th seconds, and a value of 0 cotmts as 256

022 &BB42 KM GET DELAY
Action: Finds out the time that elapses before the first repeat and also the repeat speed
Entry: No entry conditions s
Exit: H contains the time before the first repeat, and L holds the time between repeats, and all others are preserved

02.3 &BB45 KM ARM BREAK
Action: Arms the Break mechanism g
Entry: DE holds the address of the Break handling routine, C holds the ROM select address for this routine
Exit: AF, BC, DE and HL are corrupt, and all the other registers are preserved

024 &BB48 KM DISARM BREAK
Action: Disables the Break mechanism T
Entry: No entry conditions
Exit: AF and HL are corru.pt, and all the other registers are preserved

025 &BB4B KM BREAK EVENT
Action: Generates a Break intenupt if a Break routine has been specified by KM ARM BREAK
Entry: No entry conditions
Exit: AF and HL are corrupt, and all other registers are preserved

The Text VDU
026 &BB4E TXT INITIALISE

Action: Initialise the text VDU to its settings when the computer is switched on, includes resetting all the text VDU
indirections, selecting Stream 0, resetting the text paper to pen 0 and the text pen to pen 1, moving the cursor
to the top left comer of the screen and setting the writing mode to be opaque

Entry: No entry conditions
Exit: AF, BC, DE and HL are corrtrpt, and all others are preserved

CHARACTER COORDINATES AND POSITIONS

The CPC handbook's and the original Firmware Manual ambiguously used the term ‘row’ to indicate both a character line,
and any one of the rows of pixels which go to make up a displayed character. In this guide, the term ‘line’ is used to indicate
a character line (as in everyday usage), and a ‘row’ to indicate any of the eight horizontal rows of pixels which make up
a character line. .

Character positions are expressed using three systems of coordinates:
' logical coordinates are those related to 1,1 at the top left of the screen; used in BASIC only to set a window's size,

or in the Firmware
' physical coordinates again relate to the top left of the screen, but the character position in the top left is here expressed

as being 0,0; used only by the Firmware
~ window (normal) coordinates are those used in BASIC and are relative to 1,1 at the top left of the current window;

they only coincide with logical coordinates when thewindow extends into the top left comer of the screen

i I I FIRMWARECALLS
&BB51 TXT RESET I I
Action: Resets the text VDU indirections and the control code table
Entry: No entry conditions
Exit: AF, BC, DE and HL are corrupt, and all the other registers are preserved

&BB54 TXT VDU ENABLE '
Action: Allows characters to be printed on the screen in the current stream
Entry: No entry conditions
Exit: AF is conupt, and all other registers are preserved

&BB57 TXT VDU DISABLE
Action: Prevents characters from being printed to the current stream
Entry: No entry conditions
Exit: AF is corrupt, and all the other registers are preserved

&BB5A TXT OUTPUT
Action: Output a character or control code (&00 to &1F) to the screen
Entry: A contains the character to output
Exit: All registers are preserved
Notes: Any control codes are obeyed and nothing is printed if the VDU is disabled; characters are printed using the

TXT OUT ACTION routine; if using graphics printing mode, then control codes are printed and not obeyed

&BB5D TXT WR CHAR
Action: Print a character at the current cursor position — control codes are printed and not obeyed
Entry: A contains the character to be printed I
Exit: AF, BC, DE and HL are corrupt, and all others are preserved
Notes: This routine uses the TXT WRITE CHAR indirection to put the character on the screen

&BB60 TXT RD CHAR
Action: Read a character from the screen at the current cursor position
Entry: No entry conditions
Exit: If it was successful then A contains the character that was read from the screen and Carry is true;

otherwise Carry is false, and A holds 0;
in either case, the other flags are conupt, and all registers are preserved

Notes: This routine uses the TXT UNWRITE indirection

&BB63 TXT SET GRAPHIC
Action: Enables or disables graphics print character mode
Entry: To switch graphics printing mode on, A must be non-zero; to turn it off, A must contain zero
Exit: AF conupt, and all other registers are preserved
Notes: When turned on, control codes are printed and not obeyed; characters are printed by GRA WR CHAR

&BB66 TXT WIN ENABLE
Action: Sets the boundaries of the current text window - uses physcial coordinates
Entry: H holds the column number of one edge, D holds the column number of the other edge, L holds the litre number

of one edge, and E holds the line number of the other edge
Exit: AF, BC, DE and HL are corrupt
Notes: The window is not cleared but the cursor is moved to the top left comer of the window

&BB69 TXT GET WINDOW
Action: Returns the size of the current window -- returns physical coordinates
Entry: No entry conditions
Exit: H holds the colunm number of the left edge, D holds the column number of the right edge, L holds the line

number of the top edge, E holds the line number of the bottom edge, A is corrupt, Carry is false if the window
covers the entire screen, and the other registers are always preserved

&BB6C TXT CLEAR WINDOW
Action: Clears the window (of the current stream) and moves the cursor to the top left corner of the window
Entry: No entry conditions‘ '
Exit: AF, BC, DE and HL are corrupt, and all others are preserved

THE FIRMWARE euros
&BB6F TXT SET COLUMN
Action: Sets the cursor’s horizontal position
Entry: A contains the logical column number to move the cursor to
Exit: AF and HL are corrupt, and all the other registers are preserved
Notes: See also TXT SET CURSOR

&BB72 TXT SET ROW
Action: Sets the cursor’s vertical position
Entry: A contains the logical line number to move the cursor to
Exit: AF and HL are corrupt, and all others are preserved
Notes: See also TXT SET CURSOR

&BB75 TXT SET CURSOR
Action: Sets the cursor’s vertical and horizontal position .
Entry: H contains the logical column number and L contains the logical line number
Exit: AF and HL are corrupt, and all the others are preserved
Notes: See also TXT SET COLUMN and TXT SET ROW

&BB78 TXT GET CURSOR
Action: Gets the cursor’s current position
Entry: No entry conditions
Exit: H holds the logical column number, L holds the logical line number, and A contains the roll count, the flags

are conupt, and all the other registers are preserved v
Notes: The roll count is increased when the screen is scrolled down, and is decreased when it is scrolled up

&BB7B TXT CUR ENABLE
Action: Allows the text cursor to be displayed (if it is allowed by TXT CUR ON) — intended for use by the user
Entry: No entry conditions
Exit: AF is conupt, and all other registers are preserved

&BB7E TXT CUR DISABLE I
Action: Prevents the text cursor from being displayed -1 intended for use by the user
Entry: No entry conditions
Exit: AF is conupt, and all others are preserved

&BB8l TXT CUR ON
Action: Allows the text cursor to be displayed - intended for use by the operating system
Entry: No entry conditions
Exit: All registers and flags are preserved

&BB84 TXT CUR OFF . _
Action: Prevents the text cursor from being displayed — intended for use by the operating system
Entry: No entry conditions
Exit: All registers and flags are preserved

&BB87 TXT VALTDATE
Action: Checks whether a cursor position is within the current window
Entry: H contains the logical column number to check, and L holds the logical line number
Exit: H holds the logical column number where the next character will be printed, L holds the logical line number;

if printing at this position would make the window scroll up, then Carry is false and B holds &FF;
if printing at this position would make the window scroll down, then Carry is false and B contains &00;
if printing at the specified cursor position would not scroll the window, then Carry is true and B is corrupt;
always, A and the other flags are corrupt, and all others are preserved

&BB8A TXT PLACE CURSOR
Action: Puts a ‘cursor blob’ on the screen at the cturent cursor position
Entry: No entry conditions r
Exit: AF is conupt, and all other registers are preserved
Notes: It is possible to have more than one cursor in a window (see also TXT DRAW CURSOR); do not use this

routine twice without using TXT REMOVE CURSOR between

. ‘FIRMWARE CALLS

047 &BB8D TXT REMOVE CURSOR r
Action: Removes a ‘cursor blob’ from the current cursor position
Entry: No entry conditions p ‘ .
Exit: AF is conupt, and all the others are preserved
Notes: This should be used only to remove cursors created by TXT PLACE CURSOR, but see also TXT UNDRAW

CURSOR
\

048 &BB90 TXT SET PEN
Action: Sets the foreground PEN for the current stream
Entry: A contains the PEN number to use
Exit: AF and HL are corrupt, and all other registers are preserved

049 &BB93 TXT GET PEN
Action: Gets the foreground PEN for the current stream
Entry: No entry conditions
Exit: A contains the PEN number, the flags are corrupt, and all other registers are preserved

050 &BB96 TXT SET PAPER
Action: Sets the background PAPER for the current stream
Entry: A contains the PEN number to use
Exit: AF and HL are corrupt, and all other registers are preserved

051 &BB99 TXT GET PAPER
Action: Gets the background PAPER for the current stream .
Entry: No entry conditions
Exit: A contains the PEN number, the flags are corrupt, and all other registers are preserved

052 &BB9C TXT INVERSE
Action: Swaps the current PEN and PAPER colorus over for the current stream
Entry: No entry conditions .
Exit: AF and HL are corrupt, and all others are preserved

053 &BB9F TXT SET BACK
Action: Sets the character write mode to either opaque or transparent
Entry: For transparent mode, A must be non-zero; for opaque mode, A has to hold zero
Exit: AF and HL are corrupt, and all other registers are preserved
Notes: Setting the character write mode has no effects on the graphics VDU

054 &BBA2 TXT GET BACK
Action: Gets the character write mode for the current stream
Entry: No entry conditions
Exit: If in transparent mode, A is non-zero;

in opaque mode, A is zero; O
in either case DE, HL and flags are corrupt, and the other registers are preserved

PEN AND INK I

The term ‘ink’ is used by the handbooks and guides to designate both pen and the colour it contains and writes with. To
differentiate in this guide, the following system will be used:

' ‘Pen’ is one of the I6, 4 or 2 PENs available in Modes 0, I or 2 respectively
' ‘Foreground pen’ is one of these pens selected to print the next character with; when the foreground pen is changed,

only future printing is affected
' ‘Paper’ is one of the pens selected as background for the next character
' ‘Colour’ is one of 26 colours (inks) which a pen writes with, or a paper shows as background to a character; when a

pen's colour is changed, all existing characters in that pen are changed as well as all future ones
' ‘Encoded pen’ is a special value accorded to a pen for use by the Fnmware; it can be used as a mask to set all of a byte's I

pixels to that pen
' ‘Hardware colour’ is a special value accorded to a colour for use by the Hardware (colour is created by the hardware

only, although it is selected by the software)

 I ms FIRMWARE euros
&BBA5 TXT GET MATRIX
Action: Gets the address of a character matrix
Entry: A contains the character whose matrix is to be found
Exit: If it is a user-defmed matrix, then Carry is true; g

if it is in the lower ROM then Carry is false;
in either event, HL contains the address of the matrix, A and other flags are conupt, and others are preserved

Notes: The character matrix is stored in 8 bytes; the fnst byte is for the top row of the character, and the last byte refers
to the bottom row of the character; bit 7 of a byte refers to the leftmost pixel of a line, and bit 0 refers to the
rightmost pixel in Mode 2. For Modes 0 and 1, see page 21 ' K

056 &BBA8 TXT SET MATRIX .
Action: Installs a matrix for a user-defined character
Entry: A contains thecharacter which is being defined and HL contains the address of the matrix to be used
Exit: If the character is user-definable then Carry is true; 4

otherwise Carry is false, and no action is taken;
in both cases AF, BC, DE and HL are corrupt, and all other registers are preserved

057 &BBAB TXT SET M TABLE
Action: Sets the address of a user-defined matrix table
Entry: DE is the first character in the table and HL is the table’s address (in the central 32K of RAM)

 Exit: If there are no existing tables thenCarry is false, and A and HL are both conupt;
otherwise Carry is true, A is the first character and HL is the table’s address;
in both cases BC, DE and the other flags are corrupt

058 &BBAE TXT GET M TABLE
Action: Gets the address of a user-defined matrix table
Entry: No entry conditions
Exit: See TXT SET M TABLE above for details of the values that can be returned

059 &BBB1 TXT GET CONTROLS
Action: Gets the address of the control code table
Entry: No entry conditions R
Exit: HL contains the address of the table, and all others are preserved
Notes: The table has 32 entries, and each entry has three bytes:

byte 1 is the number of parameters needed by the control code
bytes 2 and 3 are the address of the routine, in the Lower ROM, to execute the control code

060 &BBB4 TXT STR SELECT
Action: Selects a new VDU text stream
Entry: A contains the value of the stream to change to
Exit: A contains the previously selected stream, HL and the flags are conupt, and all others are preserved

061 &BBB7 TXT SWAP STREAMS ‘
Action: Swaps the states of two stream attribute tables
Entry: B contains a stream number, and C contains the other stream number

p Exit: AF, BC, DE and HL are conupt, and all other registers are preserved
Notes: The foreground pen and paper, the window size, the cursor position, the character write mode and graphic

character mode are all exchanged between the two streams .

Graphics VDU
062 &BBBA GRA INITIALISE

Action: Initialises the graphics VDU to its default set-up (ie its set-up when the computer is switched on)
Entry: No entry conditions
Exit: AF, BC, DE and HL are conupt, and all other registers are preserved
Notes: Sets the graphics indirections to their defaults, sets the graphic paper to text pen 0 and the graphic pen to text

pen 1, reset the graphics origin and move the graphics cursor to the bottom left of the screen, reset the graphics
window and write mode to their defaults

It

I

’ I FIRMWARE CALLS
063 &BBBD GRA RESET

Action: Resets the graphics VDU
Entry: No entry conditions .
Exit: AF, BC, DE and HL are corrupt, and all others are preserved A
Notes: Resets the graphics indirections and the graphics write mode to their defaults

064 &BBCO GRA MOVE ABSOLUTE
Action: Moves the graphics cursor to an absolute screen position
Entry: DE contains the user X-coordinate and HL holds the user Y-coordinate
Exit: AF, BC, DE and HL are conupt, and all other registers are preseiyed

065 &BBC3 GRA MOVE RELATIVE
Action: Moves the graphics cursor to a point relative to its present screen position
Entry: DE contains the X-distance to move and HL holds the Y-distance
Exit: AF, BC, DE and HL are conupt, and all others are preserved

066 &BBC6 GRA ASK CURSOR
Action: Gets the graphics cursor’s current position
Entry: No entry conditions
Exit: DE holds the user X-coordinate, HL holds the user Y-coordinate, AF is corrupt, and all others are preserved

067 &BBC9 GRA SET ORIGIN
Action: Sets the graphics user origin’s screen position G
Entry: DE contains the standard X-coordinate and HL holds the standard Y-coordinate .
Exit: AF, BC, DE and HL are conupt, and all other registers are preserved I

068 &BBCC GRA GET ORIGIN
Action: Gets the graphics user origin’s screen position
Entry: No entry conditions j
Exit: DE contains the standard X-coordinate and HL holds the standard Y-coordinate, and all others are preserved

/In

069 &BBCF GRA WIN WIDTH I
Action: Sets the left and right edges of the graphics window
Entry: DE contains the standard X-coordinate of one edge and HL holds the standard X-coordinate of the other side
Exit: AF, BC, DE and HL are conupt, and all the other registers are preserved I
Notes: The default window covers the entire screen and is restored to its default when the mode is changed; used in

conjunction with GRA WIN HEIGHT I

070 &BBD2 GRA WIN HEIGHT
Action: Sets the top and bottom edges of the graphics window
Entry: DE contains the standard Y-coordinate of one side and HL holds the standard Y-coordinate of the other side
Exit: AF, BC, DE and HL are corrupt, and all others are preserved
Notes: See GRA WIN WIDTH for further details

GRAPHICS COORDINATES -

Graphics position coordinates are expressed using three systems (each of which defines a 'point’):
~ User coordinates are those relative to the user Origin (as set by BASIC's ORIGIN command or by the Firmware's

GRA SET ORIGIN routine) which becomes 0,0; this system accords with ‘absolute’ coordinates used in BASIC, but
is also used by the Firmware

' Relative coordinates are relative to the current graphics position
' Standard coordinates relate to 0,0 at the bottom left of the screen, and are used only for setting the Oiigin or the size
of the graphics window, and are independent of both of these

In addition, pixel coordinates are defined using the following system:
~ Base coordinates relate to 0,0 at the bottom left of the screen, but they relate exclusively to pixels, and so they are

calculated as follows:
x base coordinate = (x standard coordinate)/8 or /4 or /2 (for Modes 0, 1 or 2 respectively)
y base coordinate = (y standard coordinate)/2 (for all Modes)

 PAGE37.

THE FIRMWARE GUIDE

071 &BBD5 GRA GET W WIDTH
Action: Gets the left and right edges of the graphics window
Entry: No entry conditions 9
Exit: DE contains the standard X-coordinate of the left edge and HL contains the standard X-coordinate of the right

edge, AF is corrupt, and all other registers are preserved

072 &BBD8 GRA GET W HEIGHT
Action: Gets the top and bottom edges of the graphics window p
Entry: No entry conditions
Exit: DE contains the standard Y-coordinate of the top edge and HL contains the standard Y~coordinate of the

bottom edge, AF is conupt, and all other registers are preserved

073 &BBDB GRA CLEAR WINDOW
Action: Clears the graphics window to the graphics paper colour and moves the cursor back to the riser origin
Entry: No entry conditions
Exit: AF, BC, DE and HL are corrupt, and all other registers are preserved

074 &BBDE GRA SET PEN
Action: Sets the graphics PEN
Entry: A contains the required text PEN number
Exit: AF is corrupt, and all other registers are preserved

075 &BBEl GRA GET PEN
Action: Gets the graphics PEN
Entry: No entry conditions
Exit: A contains the text PEN number, the flags are conupt, and all other registers are preserved

076 &BBE4 GRA SET PAPER
Action: Sets the graphics PAPER
Entry: A contains the required text PEN number
Exit: AF conupt, and all others are preserved

077 &BBE7 GRA GET PAPER
Action: ‘Gets the graphics PAPER

 Entry: No entry conditions j
Exit: A contains the text PEN number, the flags are conupt, and all others are preserved '

078 &BBEA GRA PLOT ABSOLUTE
Action: Plots a point at an absolute user coordinate, using the GRA PLOT indirection
Entry: DE contains the user X-coordinate and HL holds the user Y-coordinate
Exit: AF, BC, DE and HL are corrupt, and all others are preserved

079 &BBED GRA PLOT RELATIVE
Action: Plots a point at a position relative to the current graphics cursor, using the GRA PLOT indirection
Entry: DE contains the relative X-coordinate and HL contains the relative Y-coordinate
Exit: I AF, BC, DE and HL are corrupt, and all other registers are preserved

080 &BBFO GRA TEST ABSOLUTE
Action: Moves to an absolute position, and tests the point there using the GRA TEST indirection
Entry: DE contains the user X-coordinate and HL holds the user Y-coordinate for the point you wish to test
Exit: A contains the pen at the point, and BC, DE, HL and flags are corrupt, and all others are preserved

GRAPHICS PEN AND PAPER

' Graphics Pen is one of the available text pens, selected for drawing lines with; it can be different from the current
foreground (text) pen j t

' Graphics Paper is one of the available text pens, selected to act as a background when printing characters in Graphics
write mode; it can be different from the current text pen

' The colours these produce are those set for the text pen in use, using BASIC's INK command or SCR SET INK

PAGE 38

\

I FIRMWARE CALLS 7

081 &BBF3 GRA TEST RELATIVE
Action: Moves to a position relative to the current position, and tests the point there using the GRA TEST indirection
Entry: DE contains the relative X-coordinate and HL contains the relative Y-coordinate
Exit: A contains the pen at the point, and BC, DE, HL and flags are corrupt, and all others are preserved

082 &BBF6 GRA LINE ABSOLUTE
Action: Draws a line from the current graphics position to an absolute position, using GRA LINE
Entry: DE contains the user X-coordinate and HL holds the user Y-coordinate of the end point
Exit: AF, BC, DE and HL are conupt, and all others are preserved -
Notes: The line will be plotted in the current graphics pen colour (may be masked to produce a dotted line on a 6128)

083 &BBF9 GRA LINE RELATIVE
Action: Draws a line from the current graphics position to a relative screen position, using GRA LINE
Entry: DE contains the relative X-coordinate and HL contains the relative Y-coordinate
Exit: AF, BC, DE and HL are conupt, and all other registers are preserved
Notes: See GRA LINE ABSOLUTE above for details of how the line is plotted

084 &BBFC GRA WR CHAR
Action: Writes a character onto the screen at the current graphics position _
Entry: A contains the character to be put onto the screen I
Exit: AF, BC, DE and HL are conupt, and all the other registers are preserved
Notes: As in BASIC, all characters including control codes are printed; the character is printed with its top left comer

at the current graphics position; the graphics position is moved one character width to the right so that it is ready
for another character to be printed 2

The Screen Pack
085 &BBFF SCR INITIALISE "

Action: Initialises the Screen Pack to the default values used when the computer is first switched on
Entry: No entry conditions R I
Exit: AF, BC, DE and HL are conupt, and all others are preserved
Notes: All screen indirections are restored to their default settings, as are inks and flashing speeds; the mode is

switched to MODE 1 and the screen is cleared with PEN 0; the screen address is moved to &C000 and the
screen offset is set to zero

086 &BC02 SCR RESET
Action: Resets the Screen Pack’s indirections, flashing speeds and inks to their default values A
Entry: No entry conditions
Exit: AF, BC, DE and HL are conupt, and all other registers are preserved

087 &BC05 SCR SET OFFSET
Action: Sets the screen offset to the specified values — this can cause the screen to scroll
Entry: HL contains the required offset, which should be even
Exit: AF and HL are conupt, and all others are preserved
Notes: The screen offset is reset to 0 whenever its mode is set, or it is cleared by SCR CLEAR (but not BASIC's CLS)

088 &BC08 SCR SET BASE
Action: Sets the location in memory of the screen — effectively can only be &C000 or &4000
Entry: A contains the most significant byte of the screen address required ‘
Exit: AF and HL are corrupt, and all other registers are preserved . v
Notes: The screen memory can only be set at 16K intervals (ie &0000, &4000, &8000, &C000) and when the

computer is first switched on the 16K of screen memory is located at &C000

089 &BCOB SCR GET LOCATION
Action: Gets the location of the screen memory and also the screen offset
Entry: No entry conditions K
Exit: A holds the most significant byte of the screen address, HL holds the current offset, and all others are preserved

092

093

094

095

098

THE FIRMWARE GUIDE

&BCOE
Action:
Entry:
Exit:
Notes:

&BC11
Action:
Entry:
Exit:

&BCl4
Action:
Entry:
Exit:

&BC17
Action:
Entry:
Exit:

&BC1A
Action:
Entry:
Exit:

&BC1D
Action:
Entry:
Exit:

&BC20
Action:
Entry:
Exit:

&BC23
Action:

Entry:
Exit:

&BC26
Action:
Entry:
Exit:

&BC29
Action:
Entry:
Exit:

SCR SET MODE
Sets the screen mode
A contains the mode number - it has the same value and characteristics as in BASIC
AF, BC, DE and HL are corrupt, and all others are preserved i
The windows are set to cover the whole screen and the graphics origin is set to the bottom left corner of the
screen; in addition, the current stream is set to zero, and the screen offset is zeroed

SCR GET MODE i
Gets the current screen mode
No entry conditions
If the mode is 0, then Carry is true, Zero is false, and A contains O;

if the mode is 1, then Carry is false, Zero is tnre, and A contains 1;
if the mode is 2, then Carry is false, Zero is false, and A contains 2;
in all cases the other flags are corrupt and all the other registers are preserved

SCR CLEAR
Clears the whole of the screen
No entry conditions
AF, BC, DE and HL are corrupt, and all others are preserved

SCR CHAR LINIITS
Gets the size of the whole screen in terms of the numbers of characters that can be displayed
No entry conditions
B contains the number of characters across the screen, C contains the number of characters down the screen,
AF is corrupt, and all other registers are preserved

SCR CHAR POSITION
Gets the memory address of the top left corner of a specified character position
H contains the character physical column and L contains the character physical row
HL contains the memory address of the top left comer of the character, B holds the width in bytes of a character
in the present mode, AF is conupt, and all other registers are preserved t

SCR DOT POSITION
Gets the memory address of a pixel at a specified screen position
DE contains the base X-coordinate of the pixel, and HL contains the base Y-coordinate
HL contains the memory address of the pixel, C contains the bit mask for this pixel, B contains the number
of pixels stored in a byte minus 1, AF and DE are corrupt, and all others are preserved

SCR NEXT BYTE 0
Calculates the screen address of the byte to the right of the specified screen address (may be on the next line)
HL contains the screen address L
HL holds the screen address of the byte to the right of the original screen addréss,AF is conupt, all others are
preserved

SCR PREV BYTE
Calculates the screen address of the byte to the left of the specified screen address (this address may actually
be on the previous line)
HL contains the screen address
I-IL holds the screen address of the byte to the left of the original address, AF is corrupt, all others are preserved

SCR NEXT LINE
Calculates the screen address of the byte below the specified screen address
HL contains the screen address
HL contains the screen address of the byte below the original screen address, AF is conupt, and all the other
registers are preserved

SCR PREV LINE
Calculates the screen address of the byte above the specified screen address I
HL contains the screen address
HL holds the screen address of the byte above the original address, AF is corrupt, and all others are preserved

PAGE40

&BC2C
Action:

Entry:
Exit:
Notes:

&BC2F
Action:
Entry:
Exit:

&BC32
Action:
Entry:
Exit:

&BC35
Action:
Entry:
Exit:

&BC38
Action:
Entry:
Exit:

&BC3B
Action:
Entry:
Exit:

&BC3E
Action:
Entry:
Exit:
Notes:

&BC41
Action:
Entry:
Exit:

&BC44
Action:
Entry:

Exit:

&BC47
Action:
Entry:

Exit:
Notes:

t I Y FIRMWARE cAu.s
SCR INK ENCODE
Converts a PEN to provide a mask which, if applied to a screen byte, will convert all of the pixels in the byte
to the appropriate PEN I A
A contains a PEN number
A contains the encoded value of the PEN , the flags are corrupt, and all other registers are preserved
The mask retumed is different in each of the screen modes (see page 21)

SCR INK DECODE
Converts a PEN mask into the PEN number (see SCR INK ENCODE for the reverse process)
A contains the encoded value of the PEN P
A contains the PEN number, the flags are conupt, and all others are preserved

SCR SET INK
Sets the colours of a PEN — if the two values supplied are different then the colours will alternate (flash)
A contains the PEN number, B contains the first colour, and C holds the second colour
AF, BC, DE and HL are corrupt, and all others are preserved t

SCR GET INK
Gets the colours of a PEN
A contains the PEN number
B contains the first colour, C holds the second colour, and AF, DE and HL are conupt, and all others are
preserved

SCR SET BORDER
Sets the colours of the border — again if two different values are supplied, the border will flash
B contains the first colour, and C contains the second colour
AF, BC, DE and HL are corrupt, and all others are preserved

SCR GET BORDER
Gets thecolours of the border ‘
No entry conditions
B contains the first colour, C holds the second colour, and AF, DE and HL are conupt, and all others are
preserved

SCR SET FLASHING I
Sets the speed with which the border’s and PENs’ colours flash
H holds the time that the first colour is displayed, L holds the time the second colour is displayed for i
AF and HL are corrupt, and all other registers are preserved
The length of time that each colour is shown is measured in 1/50ths of a second, and a value of O is taken to
mean 256 * 1/50 seconds — the default value is 10 * 1/50 seconds

SCR GET FLASHING
Gets the periods with which the colours of the border and PENs flash
No entry conditions
H holds the duration of the fu'st colour, L holds the duration of the second colour, AF is conupt, and all other
registers are preserved — see SCR SET FLASHING for the units of time used

SCR FILL BOX
Fills an area of the screen with an ink - this only works for ‘character-sized’ blocks of screen
A contains the mask for the ink that is to be used, H contains the left hand column of the area to fill, D contains
the right hand colunm, L holds the top line, and E holds the bottom line of the area (using physical coordinates)
AF, BC, DE and HL are corrupt, and all others are preserved p i

SCR FLOOD BOX
Fills an area of the screen with an ink -- this only works for ‘byte-sized’ blocks of screen
C contains the encoded PEN that is to be used, HL contains the screen address of the top left hand corner of
the area to fill, D contains the width of the area to be filled in bytes, and E contains the height of the area to
be filled in screen lines
AF, BC, DE and HL are corrupt, and all other registers are preserved
The whole of the area to be filled must lie on the screen otherwise unpredictable results may occur

PAGE41 A

113

115

THE FIRMWARE GUIDE 1

&BC4A
Action:
Entry:

Exit:

&BC4D
Action:
Entry:
Exit:
Notes:

&BC50
Action:
Entry:

Exit:
Notes:

&BC53
Action:

Entry:
Exit:

&BC56
Action:
Entry:

Exit:

&BC59
Action:
Entry:
Exit:
Notes:

&BC5C
Action:
Entry:

Exit:

&BC5F
Action:
Entry:

Exit:
Notes:

&BC62
Action:
Entry:

Exit:

SCR CHAR INVERT ,
Inverts a character’s colours; all pixels in one PEN's colour are printed in another PEN's colour, and vice versa
B contains one encoded PEN, C contains the other encoded PEN, H contains the physical colrunn number,
and L contains the physical line number of the character that is to be inverted
AF, BC, DE and HL are corrupt, and all the other registers are preserved

SCR HW ROLL
Scrolls the entire screen up or down by eight pixel rows (ie one character line)
B holds the direction that the screen will roll, A holds the encoded PAPER which the new line will appear in
AF, BC, DE and HL are corrupt, and all others are preserved ,
This alters the screen offset; to roll down, B must hold zero, and to roll upwards B must be non-zero

SCR SW ROLL
Scrolls part of the screen up or down by eight pixel lines - only for ‘character-sized’ blocks of the screen
B holds the direction to roll the screen, A holds the encoded PAPER which the new line will appear in, H holds
the left column of the area to scroll, D holds the right column, L holds the top line, E holds the bottom line
AF, BC, DE and HL are corrupt, and all other registers are preserved
The area of the screen is moved by copying it; to roll down, B must hold zero, and to roll upwards B must be
non-zero; this routine uses physical coordinates

SCR UNPACK ,
Changes a character matrix from its eight byte standard fonn into a set of pixel masks which are suitable for
the current mode - four *8 bytes are needed in mode O, two *8 bytes in mode 1, and 8 bytes in mode 2 i
HL contains the address of the matrix, and DE contains the address where the masks are to be stored
AF, BC, DE and HL are corrupt, and all other registers are preserved

SCR REPACK
Changes a set of pixel masks (for the current mode) into a standard eight byte character matrix
A contains the encoded foreground PEN to be matched against (ie the PEN that is to be regarded as being set
in the character), H holds the physical column of the character to be ‘repacked’, L holds the physical line of
the character, and DE contains the address of the area where the character matrix will be built
AF, BC, DE and HL are conupt, and all the others are preserved

SCR ACCESS
Sets the screen write mode for graphics
A contains the write mode (O=Fill, 1=XOR, 2=AND, 3=OR)
AF, BC, DE and HL are corrupt, and all other registers are preserved
The fill mode means that the ink that printing was requested in is the ink that appears on the screen; in XOR
mode, the specified ink is XORed with ink that is at that point on the screen already before printing; a similar
situation occurs with the AND and OR modes 1 ,

SCR PIXELS
Puts a pixel or pixels on the screen regardless of the write mode specified by SCR ACCESS above
B contains the mask of the PEN to be drawn with, C contains the pixel mask, and HL holds the screen address
of the pixel
AF is comrpt, and all others are preserved

SCR HORIZONTAL
Draws a horizontal line on the screen using the current graphics write mode t
A contains the encoded PEN to be drawn with, DE contains the base X-coordinate of the start of the line, BC
contains the end base X-coordinate, and HL contains the base Y-coordinate
AF, BC, DE and HL are corrupt, and all other registers are preserved
The start X-coordinate must be less than the end X-coordinate

SCR VERTICAL
Draws a vertical line on the screen using the current graphics write mode
A contains the encoded PEN to be drawn with, DE contains the base X~coordinate of the line, HL holds the
start base Y-coordinate, and BC contains the end base Y-coordinate - the start coordinate must be less than
the end coordinate
AF, BC, DE and HL are corrupt, and all the other registers are preserved

G PAGE42 g

The Cassette/AMSDOS Manager X
NOTE: Some of these routines are only applicable to the cassette manager; where a disc version exists it is

indicated by an asterisk (*) next to the command name. These disc version jumpblocks are automatically
installed by the Operating System on switch on.

119 &BC65 CAS INITIALISE
Action: Initialises the cassette manager
Entry: No entry conditions
Exit: AF, BC, DE and HL are corrupt, and all the other registers are preserved
Notes: Both read and write streams are closed; tape messages are switched on; the default speed is reselected

120 &BC68 CAS SET SPEED
Action: Sets the speed at which the cassette manager saves programs
Entry: HL holds the length of ‘half a zero’ bit, and A contains the amount of precompensation
Exit: AF and HL are corrupt
Notes: The value in HL is the length of time that half a zero bit is written as; a one bit is twice the length of a zero

bit; the default values (ie SPEED WRITE 0) are 333 microseconds (HL) and 25 microseconds (A)
for SPEED WRITE 1, the values are given as 107 microseconds and 50 microseconds respectively

121 &BC6B CAS NOISY t
Action: Enables or disables the display of cassette handling messages ,
Entry: To enable the messages then A must be O, otherwise the messages are disabled
Exit: AF is corrupt, and all other registers are preserved

122 &BC6E CAS START MOTOR
Action: Switches on the tape motor
Entry: No entry conditions
Exit: If the motor operates properly then Carry is true;

if ESC was pressed then Carry is false;
in either case, A contains the motor’s previous state, the flags are corrupt, and all others are preserved

123 &BC71 CAS STOP MOTOR
Action: Switches off the tape motor
Entry: No entry conditions
Exit: If the motor tums off then Carry is true;

if ESC was pressed then Carry is false;
in both cases, A holds the motor’s previous state, the other flags are comipt, all others are preserved

124 &BC74 CAS RESTORE MOTOR
Action: Resets the tape motor to its previous state
Entry: A contains the previous state of the motor (eg from CAS START MOTOR or CAS STOP MOTOR)
Exit: If the motor operates properly then Carry is true;

if ESC d th C ' fal 'was presse en arry 1S se,
in all cases, A and the other flags are corrupt and all others are preserved

rmat used for recording on tape

A DATA BLOCK 1 DATA BLOCK 2 DATA BLOCK... A TRAILER

of a data block, each tape block contams a maximum of eight data blocks although the last tape block may contam fewer
data blocks, the leader consists of 2048 bits set to 1 followed by 1 bit set to 0, and then a synchromsrng byte the trailer
consists of 32 bits set to 1 for an example of cassette headers, see &B11F (&B807 for the 464) m the memory map section

Fo

Each data block consists of 256 bytes and a two byte checksum in addition there is also a header which is the equivalent

For an example of disc headers, see &A755 (or &A755 for the 464) again in the memory map section of the guide

THE FIRMWARE GUIDE A

&BC77
Action:
Entry:

Exit:

Notes:

Disc:

&BC7A
Action:
Entry:
Exit:

Disc:

&BC7D
Action:
Entry:
Exit:
Disc:

&BC80
Action:
Entry:
Exit:

Disc:

&BC83
Action:
Entry:
Exit:

Notes:
Disc:

&BC86
Action:
Entry:
Exit:
Notes:
Disc:

CAS IN OPEN * ~
Opens an input buffer and reads the first block of the file _ ~ p ,
B contains the length of the filename, HL contains the filename’s address, and DE contains the address of the
2K buffer to use for reading the file r
If the file was opened successfully, then Carry is true, Zero is false, HL holds the address of a buffer containing
the file header data, DE holds the address of the destination for the file, BC holds the file length, and A holds
the file type;

if the read stream is already open then Carry and Zero are false, A contains an error number (66-11/6128 only)
and BC, DE and HL are conupt;
if ESC was pressed by the user, then Carry is false, Zero is true, A holds an error number (664/6128 only)
and BC, DE and HL are corrupt; ,
in all cases, IX and the other flags are conupt, and the others are preserved

A filename of zero length means ‘read the next fle on the tape’; the stream remains open until it is closed by
either CAS IN CLOSE or CAS IN ABANDON
Similar to tape except that if there is no header on the file, then a fake header is put into memory by this routine

CAS IN CLOSE *
Closes an input file
No entry conditions
If the file was closed successfully, then Carry is true and A is conupt;

if the read stream was not open, then Carry is false, and A holds an error code (664/6128 only);
in both cases, BC, DE, HL and the other flags are all corrupt

All the above applies, but also if the file failed to close for any other reason, then Carry is false, Zero is true
and A contains an error number; in all cases the drive motor is turned off immediately

CAS IN ABANDON *
Abandons an input file
No entry conditions
AF, BC, DE and HL are corrupt, and all others are preserved
All the above applies for the disc routine

CAS IN CHAR *
Reads in a single byte from a file
No entry conditions A
If a byte was read, then Carry is true, Zero is false, and A contains the byte read from the file;

if the end of file was reached, then Carry and Zero are false, A contains an error number (664/6128 only)
or is con'upt (for the 464); I
if ESC was pressed, then Carry is false, Zero is true, and A holds an error number (664/6128 only) or is
con'upt (for the 4-64);
in all cases, IX and the other flags are corrupt, and all others are preserved

All the above applies for the disc routine

CAS IN DIRECT *
Reads an entire file directly into memory
HL contains the address where the file is to be placed in RAM
If the operation was successful, then Carry is true, Zero is false, I-IL contains the entry address and A is corrupt;

if it was not open, then Carry and Zero are both false, HL is corrup't, and A holds an error code (664/6128)
or is comipt (464);
if ESC was pressed, Carry is false, Zero is true, HL is corrupt, and A holds an error code (664/6128 only);
in all cases, BC, DE and IX and the other flags are conupt, and the others are preserved

This routine cannot be used once CAS IN CHAR has been used
All the above applies to the disc routine

CAS RETURN *
Puts the last byte read back into the input buffer so that it can be read again at a later time
No entry conditions
All registers are preserved s
The routine can only return the last byte read and at least one byte must have been read
All the above applies to the disc routine I

PAGE 44

r FIRMWARE CALLS

131 &BC89 CAS TEST EOF *
Action: Tests whether the end of file has been encountered
Entry: No entry conditions
Exit: If the end of file has been reached, then Carry and Zero are false, and A is corrupt;

if the end of file has not been encountered, then Carry is true, Zero is false, and A is comipt;
if ESC was pressed then Carry is false, Zero is true and A contains an error number (664/6128 only);
in all cases, IX and the other flags are corrupt, and all others are preserved A 3

Disc: All the above applies to the disc routine

132 &_BC8C CAS OUT OPEN * A
Action: Opens an output file
Entry: B contains the length of the filename, HL contains the address of the filename, and DE holds the address of

the 2K buffer to be used ~ A
Exit: If the file was opened correctly, then Carry is true, Zero is false, HL holds the address of the buffer containing

the file header data that will be written to each block, arrdA is conupt;
if the write stream is already open, then and Zero are false, A holds air error number (664/6128) and
HL is corrupt;
if ESC was pressed then Carry is false, Zero is true, A holds an error number (664/6128) and HL is conupt;
in all cases, BC, DE, IX and the other flags are corrupt, and the others are preserved

Notes: The buffer is used to store the contents of a file block before it is actually written to tape
Disc: The same as for tape except that the filename must be present in its usual AMS DOS format

133 &BC8F CAS OUT CLOSE *
Action: Closes an output file
Entry: No entry conditions
Exit: If the file was closed successfully, then Carry is true, Zero is false, and A is corrupt;

if the write stream was not open, then Carry and Zero are false and"A holds an error code (664/6128 only);
ifESC was pressed then Carry is false, Zero is true, and A contains air error code (664/6128 only);
in all cases, BC, DE, HL, IX and the other flags are all corrupt

Notes: The last block of a file is written only when this routine is called; if writing the file is to be abandoned, then
CAS OUT ABANDON should be used instead ,

Disc: All the above applies to the disc routine

134 &BC92 CAS OUT ABANDON *
Action: Abandons an output file
Entry: No entry conditions i
Exit: AF, BC, DE and HL are corrupt, and all others are preserved
Notes: \Vhen using this routine, the current lastblock of the file is not written to the tape I
Disc: Similar to the tape routine; if more than 16K of a file has been written to the disc, then the first 16K of the file

will exist on the disc with a file extension of .$$$ because each 16K section of the file requires a separate
directory entry

135 &BC95 CAS OUT CHAR *
Action: Writes a single byte to a file
Entry: A contains the byte to be written to the file output buffer
Exit: If a byte was written to the buffer, then Carry is true, Zero is false, and A is corrupt;

if the file was not open, then Carry and Zero are false, and A contains an error number (664/6128 only) or
is corrupt (on the 464);
if ESC was pressed, then Carry: is false, Zero is true, and A contains an error number (664/6128 only) or
it is comipt (on the 464); .
in all cases, IX and the other flags are conupt, and all others are preserved

Notes: If the 2K buffer is full of data then it is written to the tape before the new character is placed in the buffer; it
is important to call CAS OUT CLOSE when all the data has been sent to the file so that the last block is written
to the tape

Disc: All the above applies to the disc routine

For a full list of error codes that may be returned from both tape and disc routines, please see page 46

, e

I ‘

136

137

138

139

n-is FIRMWARE cums A
&BC98
Action:
Entry:

Exit: 2

Notes:
Disc:

&BC9B
Action:
Entry:
Exit:

Notes:
Disc:

&BC9E
Action:
Entry:

Exit:

Notes:

&BCA1
Action:
Entry:
Exit:

Notes:

CAS OUT DIRECT *
Writes an entire file directly to tape
HL contains the address of the data which is to be written to tape, DE contains the length of this data, BC
contains the execution address, and A contains the file type
If the operation was successful, then Carry is true, Zero is false, and A is corrupt;

if the file was not open, Carry and Zero are false, A holds an error number (664/6128) or is corrupt (464);
if ESC was pressed, then Carry is false, Zero is true, and A holds an error code (664/6128 only);
in all cases BC, DE, HL, IX and the other flags are corrupt, and the others are preserved

This routine cannot be used once CAS OUT CHAR has been used
All the above applies to the disc routine

CAS CATALOG *
Creates a catalogue of all the files on the tape
DE contains the address of the 2K buffer to be used to store the information
If the operation was successful, then Carry is true, Zero is false, and A is corrupt;

if the read stream is already being used, then Carry and Zero are false, and A holds an error code (664/6128)
or is corrupt (for the 464);
in all cases, BC, DE, HL, IX and the other flags are corrupt and all others are preserved

This routine is only left when the ESC key is pressed (cassette only) and is identical to BASIC's CAT command
All the above applies, except that a sorted list of files is displayed; system files are not listed by this routine

CAS WRITE
Writes data to the tape in one long file (ie not in 2K blocks)
HL contains the address of thedatato be written to tape, DE contains the length of the data to be written, and
A contains the sync character
If the operation was successful, then Carry is true and A is conupt;

if an error occurred then Carry is false and A contains an error code;
in both cases, BC, DE, HL and IX are corrupt, and all other registers are preserved

For header records the sync character is &2C, and for data it is &l6; this routine starts and stops the cassette
motor and also tums off interrupts whilst writing data

CAS READ
Reads data from the tape in one long file (ie as originally written by CAS WRITE only)
HL holds the address to place the file, DE holds the length of the data, and A holds the expected sync character
If the operation was successful, then Carry is true and A is conupt;

if an error occurred then Can'y is false and A contains an error code; t
in both cases, BC, DE, HL and IX are conupt, and all other registers are preserved

For header records the sync character is &2C, and for data it is &l6; this routine starts and stops the cassette
motor and tums off interrupts whilst reading data

The full list of error codes that can be returned from the tape and disc routines are as follows:

TAPE: &OO
&O1
&02

DISC: if bit

&OO
&0E
&OF
&1O
&1l
&l2

if bit

bit 5
bit 2

The ESC key was pressed &03 The file data did not match that in memory
A bit was too long to read or write (overrun) &OE The stream is not open for reading or writing
A failure of the cassette deck was detected &OF The hard end of file marker was met

6 of the error isn't set, then it was detected by AMSDOS; if bit 7 is set, then it has been reported to the user

&13
&14
&15
&16

The ESC key was pressed
The stream is not open for reading or writing
The hard end of file marker was met
Bad command - incorrect filename
File already exists &1A
File doesn't exist I i

Directory is full
Disc is full
Disc has been changed while files were open
File is read-only
The CPM soft end of file marker was met

6 is set, then the error was detected by the disc controller, and the error is bit sensitive as follows:

Data error bit 4 Ovenun error bit 3 Drive is not ready
No data — can't find sector bit 1 Disc is write protected bit O Address mark missing

PA GE 46

Notes: For header records the sync character is &2C, and for data it is &l6; this routine starts and stops the cassette
motor and turns off interrupts whilst reading data; does not have to read the whole of a record, but must start
at the beginning

140 &BCA4 CAS CHECK
Action: Compares the contents of memory with a file record (ie header or data) on tape »
Entry: HL contains the address of the data to check, DE contains the length of the data, and A holds the sync character

that was used when the file was originally written to the tape
Exit: If the two are identical, then Carry is true and A is corrupt;

if an error occurred then Carry is false and A holds an error code;

FIRMWARE cAu.s

in all cases, BC, DE, HL, IX and other flags are corrupt, and all other registers are preserved _

The Sound Manager
141 &BCA7 SOUND RESET '

Action: Resets the sound manager by clearing the sound queues and abandoning any current sounds
Entry: No entry conditions
Exit: AF, BC, DE and HL are conupt, and all others are preserved

142 &BCAA SOUND QUEUE
Action: Adds a sound to the sound queue of a channel
Entry: HL contains the address of a series of bytes which defme the sound and are stored in the central 32K of RAM
Exit: , If the sound was successfully added to the queue, then Carry is true and HL is corrupt;

if one of the sound queues was full, then Carry is false and HL is preserved;
in either case, A, BC, DE, IX and the other flags are conupt, and all others are preserved

Notes: The bytes required to defme the sound are as follows:
— channel status byte (see the box below)byte O

byte 1
byte 2
bytes 3 & 4
byte 5
byte 6
bytes 7 & 8

volume envelope to use
tone envelope to use
tone period
noise period
start volume

143 &BCAD SOUND CHECK
Action: Gets the status of a sound channel
Entry: A contains the channel to test —- for channel A, bit O set; for channel B, bit 1 set; for chamiel C, bit 2 set

duration of the sound, or envelope repeat count

Exit: A contains the channel status, BC, DE, HL and flags are corrupt, and all others are preserved
Notes: The channel status returned is bit significant, as follows:

bits 0 to 2 — the number of free spaces in the sound queue
bit 3
bit 4
bit 5
bit6
bit 7

trying to rendezvous with channel A
trying to rendezvous with channel B
trying to rendezvous with channel C
holding the channel
producing a sotmd

144 &BCBO SOUND ARM EVENT
Action: Sets up an event which will be activated when a space occurs in a sound queue
Entry: A contains the channel to set the event up for (see SOUND CHECK for the bit values this can take), and HL

holds the address of the event block
Exit: AF, BC, DE and HL are conupt, and all other registers are preserved
Notes: The event block must be initialised by KL INIT EVENT and is disaimed when the event itself is run

The charmel status byte is bit significant, as follows:
' play on channel A '0 -

play on channel B
play on channel C
rendezvous with channel A

bit O
bit 1
bit 2
bit 3

bit 4
bit 5
bit 6
bit 7

rendezvous with chamiel B
rendezvous with channel C
hold the channel ,
flush (empty) the sound queue

PAGE 47

148

149

THE FIRMWARE GUIDE

" &BCB3 SOUND RELEASE
Action: Allows the playing of soimds on specific channels that had been stopped by SOUND HOLD
Entry: A contains the sound channels to be released (see SOUND CHECK for the bit values tlirs can take)
Exit: AF, BC, DE, HL and D(are corrupt, and all others are preserved

&BCE6 SOUND HOLD
Action: Immediately stops all sound output (on all channels)
Entry: No entry conditions
Exit: If a sound was being made, then Carry is true;

if no sound was being made, then Carry is false; L
in all cases, A, BC, HL and other flags are conupt, and all others are preserved

Notes: When the sounds are restarted, they will begin from exactly the same place that thev were stopped

&BCB9 SOUND CONTINUE
Action: Restarts all sound output (on all channels)
Entry: No entry conditions
Exit: AF, BC, DE and IX are corrupt, and all others are preserved

&BCBC SOUND AMPL ENVELOPE
Action: Sets up a volume envelope
Entry: A holds an envelope number (from 1 to 15), HL holds the address of a block of data for the envelope
Exit: If it was set up properly, Carry is true, HL holds the data block address +16 A and BC are corrupt

number is invalid, then Carry is false, and A B and HL are preserved,
in either case, DE and the other flags are corrupt, and all other registers are preserved

Notes: All the rules of enevelopes in BASIC also apply; the block of the data for the envelope is set up as follows

 if the envelope

byte O
bytes 1 to 3
bytes 4 to 6
bytes 7 to 9
bytes 10 to 12
bytes 13 to 15

Each section of the envelope has three bytes set out as follows
byte 0
byte 1
byte 2

or if it is a hardware envelope, then each section takes the following form
byte 0
bytes 1 and 2

number of sections in the envelope
first section of the envelope
second section of the envelope
third section of the envelope
fourth section of the envelope
fifth section of the envelope

— step coimt (with bit 7 set)
— step size
— pause time

— envelope shape (with bit 7 not set)
— envelope period

See also SOUND TONE ENVELOPE below

&BCBF SOUND TONE ENVELOPE ,
Action: Sets up a tone envelope i
Entry: A holds an envelope number (from 1 to 15), HL holds the address of a block of data for the envelope
Exit: If it was set up properly, Carry is true, HL holds the data block address +16, A and BC are corrupt

number is invalid, then Carry is false, and A B and HL are preserved,
in either case, DE and the other flags are corrupt, and all other registers are preserved

Notes: All the rules of envelopes in BASIC also apply; the block of the data for the envelope is set up as follows

if the envelope

byte O
bytes 1 to 3
bytes 4 to 6
bytes 7 to 9
bytes 10 to 12
bytes 13 to 15

Each section of the envelope has three bytes set out as follows
byte O
byte 1
byte 2

See also SOUND

PAGE 48

— number of sections in the envelope
first section of the envelope
second section of the envelope
third section of the envelope
fourth section of the envelope

- fifth section of the envelope

-- step count
— step size
— pause time
AMPL ENVELOPE above

150 &BCC2
Action:
Entry:
Exit:

151 &BCC5
Action:
Entry:
Exit:

 FIRMWARE CALLS,
SOUND A ADDRESS i ' I
Gets the address of the data block associated with a volume envelope A
A contains an envelope number (from 1 to 15)
If it was found, then Carry is true, HL holds the data block’s address, and BC holds its length;

if the envelope number is invalid, then Carry is false, HL is coriuptand BC is preserved;
in both cases, A and the other flags are conupt, and all others are preserved

SOUND T ADDRESS
Gets the address of the data block associated with a tone envelope
A contains an envelope number (from 1 to 15)
If it was found, then Carry is true, HL holds the data block’s address, and BC holds its length;

if the envelope number is invalid, then Carry is false, HL is corrupt and BC is preserved;
in both cases, A and the other flags are conupt, and all others are preserved

The Kernel
152 &BCC8

Action:
Entry:
Exit:

KL CHOKE OFF
Clears all event queues and timer lists, with the exception of keyboard scanning and sotmd routines
No entry conditions y 4
B contains the foreground ROM select address (if any), DE contains the ROM entry address, C holds the ROM
select address for a RAM foreground program, AF and HL are corrupt, and all others are preserved

153 &BCCB KL ROM WALK
Action:
Entry:
Exit:

Notes:

Finds and initialises all background ROMs
DE holds the address of the first usable byte of memory, HL holds the address of the last usable byte
DE holds the address of the new first usable byte of memory, HL holds the address of the new last usable byte,
AF and BC are corrupt, and all other registers are preserved I
This routine looks at the ROM select addresses from 0 to 15 (1 to 7 for the 464) and calls the initialisation
routine of any ROMs present; these routines may reserve memory by adjusting DE and HL before returning
control to KL ROM WALK, and the ROM is then added to the list of command handling routines

154 &BCCE KL INIT BACK
Action:
Entry:

Exit:

Notes:

155 &BCD1
Action:
Entry:

Exit:

156 &BCD4
Action:
Entry:
Exit:

Notes:

Finds and initialises a specific background ROM
C contains the ROM select address of the ROM, DE holds the address of the first usable byte of memory, HL
holds the address of the last usable byte of memory
DE holds the address of the new first usable byte of memory, HL holds the address of the new last usable byte,
AF and B are corrupt, and all other registers are preserved
The ROM select address must be in the range of 0 to 15 (or 1 to 7 for the 464) although address 7 is for the
AMSDOS/CPM ROM if present. The ROM’s initialisation routine is then called and some memory may be
reserved for the ROM by adjusting the values of DE and HL before returning control to KL INIT BACK

KL LOG EXT
Logs on a new RSX to the firmware - see the following page for more detail
BC contains the address of the RSX’s command table, HL contains the address of four bytes exclusively for
use by the finnware
DE is conupt, and all other registers are preserved

KL FIND COMMAND ,
Searches an RSX, background ROM or foreground ROM, to find a command in its table
HL contains the address of the command name (in RAM only) which is being searched for
If the name was found in a RSX or background ROM then Carry is true, C contains the ROM select address,
and HL contains the address of the routine;

if the command was not found, then Carry is false, C and HL are conupt;
in either case, A, B and DE are corrupt, and all others are preserved

The command names should be in upper case and the last character should have &80 added to it; the sequence
of searching is RSXs, then ROMs with lower numbers before ROMs with higher numbers

PA GE 49 A

 r1-is FIRNIWAFIE euros

RESIDENT SYSTEM EXTENSION (RSX) COMMAND TABLE:
'2 byte address of the Command Name Table
ilP xxxx - to the first command's handling routine
JP xxxx - to the second command's handling routine. ..
JP xxxx - to the last command's handling routine

1‘Command Name Table:
name of fn'st command names may be up to 16 characters long, and may be any characters

A name of second command. .. except lower case, space or comma; the last character of each name
name of last command must have bit 7 set (ie &80 added to it)
JDEFB &OO this is the end of table byte

On entering an RSX or called routine:
~ A holds the number of parameters passed
1' IX points to the low byte of the last parameter (if any)
' IY points to '2' or ‘end of line byte‘ after the RSX name or call in the BASIC line
4" B holds 32 minus the number of parameters passed
' C holds the ROM select number (or &FF if the RSX or called routine is in RAM)
-' DE holds the last parameter entered (if any), or the address of the Command Table entry for an RSX, or the called

routine entry point y

LAYOUT OF EVENT AND TICKER BLOCKS SET UP BY THE FIRMWARE:

Event block - see &AC1E (&AC38 for the 464) in the Memory Maps section for an example:
bytes O and 1 — Chaining address
‘byte 2 I — Count of events awaiting processing (the event is disarmed if bit 7 is set) "
byte 3 - 4 Event class (see KL INIT EVENT for more details) p from B
bytes 4 and 5 - Address of routine to service the event from DE
byte 6 — ROM select address from C
bytes 7+ -- area for use by the servicing routine if required

On entry to the event servicing routine, if the event routine is at a far address then HL will hold the address of the event
?~,block+5; if the event is at a near address then DE will hold the address of the event block +6 A

Ticker block - see &AC42 (&AC5C for the 464) in the Memory Maps section for an example:
bytes 0 and 1 - Ticker chaining address I
bytes 2 and 3 — Tick count from DE
bytes 4 and 5 -~ Recharge count from BC
bytes 6 to 12 - Event block (as described above) r
bytes 13+ — area for use by the servicing routine (if required)

Frame ‘flyback block:
bytes and 1 — Frame chaining address t
bytes 2 to 8 — Event block (as described above)
bytes 9+ — area for use by the servicing routine (if required)

Fast ticker block:
bytes O and 1 — Fast chaining address
bytes 2 to 8 — Event block (as described above)

 bytes 9+ — area for use by the serving routine (if required)

157 -&BCD7 KL NEW FRAIVIE FLY
Action: Sets up a frame flyback event block which will be acted on whenever a frame flyback occurs
Entry: HL contains the address of the event block in the central 32K of RAM, B contains the event class, C contains

the ROM select address (if any), and DE contains the address if the event routine
Exit: AF, DE and HL are corrupt, and all other registers are preserved

158 &BCDA KL ADD FRAME FLY
Action: Adds an existing but deleted frame flyback event block to the list of routines run when a frame flyback occurs
Entry: HL contains the address of the event block (in the central 32K of RAM)
Exit: AF, DE and HL are conupt, and all others are preserved i A

 I FIRMWAREHCALLS
&BCDD KL DEL FRAME FLY
Action: Removes a frame flyback event block from the list of routines which are rtin when a frame flyback occurs
Entry: HL contains the address of the event block
Exit: AF, DE and HL are conupt, and all others are preserved

&BCEO KL NEW FAST TICKER
Action: Sets up a fast ticker event block which will be run whenever the 1/300th second ticker interrupt occurs
Entry: HL contains the address of the event block (in the central 32K of RAM), B contains the event class, C contains

the ROM select address (if any), and DE contains the address of the event routine
Exit: AF, DE and HL are corrupt, and all other registers are preserved

&BCE3 KL ADD FAST TICKER
Action: Adds an existing but deleted fast ticker event block to the list of routines which are run when the 1/300tli sec

ticker intenupt occurs
Entry: HL contains the address of the event block
Exit: AF, DE and HL are conupt, and all the other registers are preserved

&BCE6 KL DEL FAST TICKER A
Action: Removes a fast ticker event block from the list of routines run when the 1/300tli sec ticker interrupt occurs
Entry: HLcontains the address of the event block
Exit: AF, DE and HL are corrupt, and all others are preserved

&BCE9 KL ADD TICKER
Action: Sets up a ticker event block which will be run whenever a 1/50th second ticker intenupt occurs
Entry: HL contains the address of the event block (in the central 32K of RAM), DE contains the initial value for the

counter, and BC holds the value that the counter will be given whenever it reaches zero
Exit: AF, BC, DE and HL are conupt, and all the other registers are preserved
Notes: Every 1/50th of a second all the tick blocks are looked at and their counter is decreased by 1; when the counter

reaches zero, the event is ‘kicked’ and the counter is loaded with the value in BC; any tick block with a counter
of 0 is ignored, and therefore if the value in BC is O, the event will be kicked only once and ignored after that

&BCEC KL DEL TICKER A
Action: Removes a ticker event block from the list of routines that are run when a 1/50th sec ticker intenupt occurs
Entry: HL contains the address of the event block
Exit: If the event block was found, then Carry is true, and DE holds the value remaining of the counter;

if the event block was not found, then Carry is false, and DE is corrupt;
in both cases, A, HL and the other flags are corrupt, and all other registers are preserved

&BCEF KL INIT EVENT
Action: Initialises an event block
Entry: HL contains the address of the event block (in the central 32K of RAM), B contains the class of event, and

C contains the ROM select address, and DE holds the address of the event routine
Exit: HL holds the address of the event block+7, and all other registers are preserved
Notes: The event class is derived as follows:

bit O — indicates a near address
bits 1 to 4 - hold the synchronous event priority
bit 5 —- always zero
bit 6 - if bit 6 is set, then it is an express event
bit 7 — if bit 7 is set, then it is an asynchronous event

Asynchronous events do not have priorities; if it is an express asynchronous event, then its event routine is
called from the interrupt path; if it is a normal asynchronous event, then its event routine is called just before
returning from the interrupt; if it is an express synchronous event, then it has a higher priority than normal
synchronous events, and it may not be disabled through use of KL EVENT DISABLE; if the near address bit
is set, then the routine is located in the central 32K of RAM and is called directly, so saving time; no event
may have a priority of zero

&BCF2 KL EVENT
Action: Kicks an event block p
Entry: HL contains the address of the event block
Exit: AF, BC, DE and HL are conupt, and all other registers are preserved

 THEFIRMWARE GUIDE
167 &BCF5 KL SYNC RESET

Action: Clears the synchronous event queue
Entry: No entry conditions
Exit: AF and HL are corrupt, and all other registers are preserved
Notes: When using this routine, all events that are waiting to be dealt with are simply discarded

168 &BCF8 KL DEL SYNCHRONOUS
Action: Removes a synchronous event from the event queue

 Entry: HL contains the address of the event block
Exit: AF, BC, DE and HL are conupt, and all other registers are preserved

169 &BCFB KL NEXT SYNC
Action: Finds out if there is a synchronous event with ahigher priority
Entry: No entry conditions
Exit: If there is an event to be processed, then Cany is true, HL contains the address of the event block, and A

contains the priority of the previous event; 1
if there is no event to be processed, then Carry is false, and A and HL are conupt;
in either case, DE is conupt, and all other registers are preserved ,

170 &BCFE KL DO SYNC
Action: Runs a synchronous event routine
Entry: HL contains the address of the event block
Exit: AF, BC, DE and HL are conupt, and all other registers are preserved
Notes: See KL DONE SYNC below

171 &BD01, KL DONE SYNC
Action: Finishes rtinning a synchronous event routine
Entry: A contains the priority of the previous event, and HL contains the address of the event block
Exit: AF, BC, DE and HL are conupt, and all other registers are preserved
Notes: When an event that is waiting to be processed has been found by KL NEXT SYNC, the event routine should

be run by KL DO SYNC; after this KL DONE SYNC should be called so that the event counter can be
decreased — if the counter is greater than zero then the event is placed back on the synchronous event queue

, ,

172 &BD04 KL EVENT DISABLE ' I
Action: Disables normal synchronous events
Entry: No entry conditions 1
Exit: HL is corrupt, and all other registers are preserved

173 &BD07 KL EVENT ENABLE
Action: Enables normal synchronous events 2
Entry: No entry conditions
Exit: HL is conupt, and all other registers are preserved

174 &BDOA KL DISARM EVENT
Action: Disarms a specific event and stops it from occurring
Entry: AHL contains the address of the event block
Exit: AF is conupt, and all other registers are preserved
Notes: This routine should be used to disarm only asynchronous events; see also KL DEL SYNCHRONOUS

175 &BDOD KL TIIWE PLEASE
Action: Retunis the time that has elapsed since the computer was switched on or reset (in 1/300ths of a second)
Entry: No entry conditions
Exit: DEHL contains the four byte count of the time elapsed, and all other registers are preserved
Notes: D holds the most significant byte of the time elapsed, and L holds the least significant ; the four byte count

overflows after approximately 166 days have elapsed

176 &BD10 KL TIME SET
Action: Sets the elapsed time (in 1/3()0ths of a second)
Entry: DEHL contains the four byte count of the time to set
Exit: AF is conupt, and all other registers are preserved

 t FIRMWARE oAu.s A

The Machine Pack
177 &BD13

Action:
Entry:
Exit:
Notes:

178 &BD16
Action:
Entry:
Exit:

179 &BD19
Action:
Entry:
Exit:
Notes:

180 &BD1C
 Action:

Entry:
Exit:
Notes:

181 &BD1F
Action:
Entry:
Exit:
Notes:

182 &BD22
Action:
Entry:
Exit:
Notes:

183 &BD25
Action:
Entry:
Exit:
Notes:

MC BOOT PROGRAM
Loads a program into RAM and then executes it
HL contains the address of the routine which is used to load the program
Control is handed over to the program and so the routine is not returned from
All events, sounds and intenupts are tumed off, the firmware indirections are returned to their default settings,
and the stack is reset; the routine to 11.111 the program should be in the central block of memory, and should obey
the following exit conditions: A

if the program was loaded successfully, then Carry is true, and HL contains the program entry point;
if the program failed to load, then Carry is false, and HL is conupt;
in either case, A, BC, DE, IX, IY and the other flags are all corrupt

Should the program fail to load, control is retumed to the previous foreground program

MC START PROGRAM
Runs a foreground program
HL contains the entry point for the program, and C contains the ROM selection number
Control is handed over to the program and so the routine is not returned from

MC WAIT FLYBACK
Waits turtil a frame flyback occurs
No entry conditions
All registers are preserved
When the frame flyback occurs the screen is not being written to and so the screen can be manipulated during
this period without any flickering or ghosting on the screen 6

in

MC SET MODE -»
Sets the screen mode
A contains the required mode '
AF is corrupt, and all other registers are preserved i I
Although this routine changes the screen mode it does not inform the routines which write to the screen that
the mode has been changed; therefore these routines will write to the screen as if the mode had not been
changed; however as the hardware is now interpreting these signals differently, unusual effects may occur

MC SCREEN OFFSET
Sets the screen offset
A contains the screen base, and HL contains the screen offset A
AF is corrupt, and all other registers are preserved r
As with MC SET MODE, this routine changes the hardware setting without telling the routines that write to
the screen; therefore these routines may cause unpredictable effects if called; the default screen base is &CO

MC CLEAR INKS
Sets all the PENs and the border to one colour, so making it seem as if the screen has been cleared
DE contains the address of the ink vector
AF is corrupt, and all other registers are preserved
The ink vector takes the following form:

byte 0 — holds the colour for the border
_byte 1 — holds the colour for all of the PENs

The values for the colours are all given as hardware values

MC SET INKS
Sets the colours of all the PENs and the border
DE contains the address of the ink vector
AF is corrupt, and all other registers are preserved
The ink vector takes the following form:

byte 0 — holds the colour for the border
byte 1 — holds the colour for PEN 0. .. r
byte 16 — holds the colour for PEN 15

The values for the colours are all given as hardware values; the routine sets all sixteen PENs

 PAGE 53

THE FIRMWARE GUIDE

184 &BD28 MC RESET PRINTER
Action: Sets the MC WAIT PRINTER indirection to its original routine
Entry: No entry conditions
Exit: AF, BC, DE and HL are conupt, and all others are preserved ,

185 &BD2B MC PRINT CHAR
Action: Sends a character to the printer and detects if it is busy for too long (more than 0.4 seconds)
Entry: A contains the character to be printed — only characters upto ASCII 127 can be printed
Exit: If the character was sent properly, then Carry is true;

if the printer was busy, then Carry is false;
in either case, A and the other flags are corrupt, and all other registers are preserved

Notes: This routine uses the MC WAIT PRINTER indirection

186 &BD2E MC BUSY PRINTER
Action: Tests to see if the printer is busy

n Entry: No entry conditions
Exit: If the printer is busy, then Carry is true;

if the printer is not busy, then Carry is false;
in both cases, the other flags are conupt, and all other registers are preserved

187 &BD31 MC SEND PRINTER
Action: Sends acharacter to the printer, which must not be busy ,
Entry: A contains the character to be printed -- only characters upto ASCII 127 can be printed
Exit: Carry is true, A and the other flags are conupt, and all other registers are preserved

188 &BD34 MC SOUND REGISTER
Action: Sends data to a sound chip register
Entry: A contains the register number, and C contains the data to be sent
Exit: AF and BC are conupt, and all other registers are preserved

189 &BD37 JUMP RESTORE I
Action: Restores the jumpblock to its default state
Entry: No entry conditions

I Exit: AF, BC, DE and HL are conupt, and all other registers are preserved
Notes: This routine does not affect the indirections jumpblock, but restores all entries in the main jumpblock

664 and 6128 only
190 &BD3A KM SET LOCKS

Action: Turns the shift and caps locks on and off
Entry: H contains the caps lock state, and L contains the shift lock state
Exit: AF is conupt, and all others are preserved
Notes: In this routine, &00 means tinned off, and &FF means tumed on

191 &BD3D KM FLUSH
Action: Empties the key buffer
Entry: No entry conditions ,
Exit: AF is conupt, and all other registers are preserved t
Notes: This routine also discards any current expansion string

192 &BD40 TXT ASK STATE
Action: Gets the VDU and cursor state
Entry: No entry conditions
Exit: A contains the VDU and cursor state, the flags are corrupt, and all others are preserved
Notes: The value in the A register is bit significant, as follows: e

if bit 0 is set, then the cursor is disabled, otherwise it is enabled
if bit 1 is set, then the cursor is turned off, otherwise it is on
if bit 7 is set, then the VDU is enabled, otherwise it is disabled

&BD43
Action:
Entry:
Exit:
Notes:

\

&BD46
Action:
Entry:
Exit:

&BD49
Action:
Entry:
Exit:

&BD4C
Action:
Entry:
Exit: '
Notes:

&BD4F
Action:
Entry:
Exit:

&BD52
Action:

Entry:
Exit:

Notes:

&BD55
Action:
Entry:
Exit:

&BD58
Action:
Entry:
Exit:

Notes:

&BD5B
Action:
Entry:
Exit:

 FIRMWARE CALLS
GRA DEFAULT '
Sets the graphics VDU to its default mode
No entry conditions '
AF, BC, DE and HL are corrupt, and all other registers are preserved
Sets the background to opaque, the first point of line is plotted, lines aren't dotted, and the write mode is force

GRA SET BACK
Sets the graphics background mode to either opaque or transparent
A holds zero if opaque mode is wanted, or holds &FF to select transparent mode
All registers are preserved

GRA SET FIRST
Sets whether the first point of a line is plotted or not
A holds zero if the first point is not to be plotted, or holds &FF if it is to be plotted
All registers are preserved A

GRA SET LINE MASK
Sets how the points in a line are plotted — ie defmes whether a line is dotted or not
A contains the line mask that will be used when drawing lines
All registers are preserved
The first point in the line corresponds to bit 7 of the line mask and after bit 0 the mask repeats; if a bit is set
then that point will be plotted; the mask is always applied from left to right, or from bottom to top

GRA FROM USER '
Converts user coordinates into base coordinates p
DE contains the user X coordinate, and HL contains the user Y coordinate A
DE holds the base X coordinate, and HL holds the base Y coordinate, AF is corrupt, and all others are preserved

GRA FILL
Fills an area of the screen starting from the current graphics position and extending until it reaches either the
edge of the window or a pixel set to the PEN
A holds a PEN to fill with, HL holds the address of the buffer, and DE holds the length of the buffer
If the area was filled properly, then Carry is true; '

if the area was not filled, then Carry is false;
in either case, A, BC, DE, HL and the other flags are conupt, and all others are preserved

The buffer is used to store complex areas to fill, which are remembered and filled when the basic shape has
been done; each entry in the buffer uses seven bytes and so the more complex the shape the larger the buffer;
if it rims out of space to store these complex areas, it will fill what it can and then retum with Carry false

SCR SET POSITION
Sets the screen base and offset without telling the hardware 9
A contains the screen base, and HL contains the screen offset
A contains the masked screen base, and HL contains the masked screen offset, the flags are conupt, and all
other registers are preserved H

MC PRINT TRANSLATION
Sets how ASCII characters will be translated before being sent to the printer
HL contains the address of the table
If the table is too long, then Carry is false (ie more than 20 entries);

if the table is correctly set out, then Carry is true;
in either case, A, BC, DE, HL and the other flags are conupt, and all others are preserved

The first byte in the table is the number of entries; each entry requires two bytes, as follows:
byte 0 -— the character to be translated
byte 1 — the character that is to be sent to the printer

If the character to be sent to the printer is &FF, then the character is ignored and nothing is sent

KL BANK SWITCH (6128 only)
Sets which RAM banks are being accessed by the Z80
A contains the organisation that is to be used
A contains the previous organisation, the flags are conupt, and all other registers are preserved

_' A ms FIRMWARE GUIDE

The Firmware Indirections
&BDCD TXT DRAW CURSOR
Action: Places the cursor on the screen, if the cursor is enabled
Entry: No entry conditions
Exit: AF is corrupt, and all other registers are preserved ,
Notes: The cursor is an inverse blob which appears at the current text position

&BDDO TXT UNDRAW CURSOR
Action: Removes the cursor from the screen, if the cursor is enabled
Entry: No entry conditions
Exit: AF is corrupt, and all the other registers are preserved

002 &BDD3 TXT WRITE CHAR
Action: Writes a character onto the screen
Entry: A holds the character to be written, H holds the physical column number, and L holds the physical line number
Exit: AF, BC, DE and HL are conupt, and all other registers are preserved

&BDD6 TXT UNWRITE
Action: Reads a character from the screen
Entry: H contains the physical column number, and L contains the physical line number to read from
Exit: If a character was found, then Carry is true, and A contains the character; ,

if no character was found, then Carry is false, and A contains zero;
in either case, BC, DE, HL and the other flags are conupt, and all other registers are preserved

Notes: This routine works by comparing the image on the screen with the character matrices; therefore if the character
matrices have been altered the routine may not fmd a readable a character A _

004 &BDD9 TXT OUT ACTION
Action: Writes a character to the screen or obeys a control code (&00 to &1F)

I Entry: A contains the character or code
Exit: AF, BC, DE and HL are conupt, and all other registers are preserved
Notes: Control codes may take a maximum of nine parameters; when a control code is found, the requiredsnumber

of parameters is read into the control code buffer, and then the control code is acted upon; if the graphics
character write mode is enabled, then characters and codes are printed using the graphics VDU; when using
the graphics VDU control codes are printed and not obeyed ~

-005 &BDDC GRA PLOT
Action: Plots a point in the current graphics PEN
Entry: DE contains the user X coordinate, and HL contains the user Y coordinate of the point
Exit: AF, BC, DE and HL are conupt, and all other registers are preserved -
Notes: p This routine uses the SCR WRITE indirection to write the point to the screen

006 &BDDF GRA TEST A r
Action: Tests a point and finds out what PEN it is set to
Entry: DE contains the user X coordinate, and HL contains the user Y coordinate of the point
Exit: A contains the PEN that the point is written in, BC, DE and HL are conupt, and all others are preserved
Notes: This routine uses the SCR READ indirection to test a point on the screen

&BDE2 GRA LINE
Action: Draws a line in the-ctirrent graphics PEN, from the current graphics position to the specified point
Entry: DE contains the user X coordinate, and HL contains the user Y coordinate for the endpoint
Exit: AF, BC, DE and HL are corrupt, and all others are preserved
Notes: This routine uses the SCR WRITE indirection to write the points of the line on the screen

008 ,&BDE5 SCR READ
Action: Reads a pixel from the screen and retums its decode a PEN
Entry: HL contains the screen address of the pixel, and C contains the mask for the pixel
Exit: A contains the decoded PEN of the pixel, the flags are conupt, and all others are preserved
Notes: The mask should be for a single pixel, and is dependent on the screen mode ,

&BDE8
Action:
Entry:
Exit:
Notes:

\

009

010
Action:
Entry:
Exit:

011
Action:
Entry:
Exit:
Notes:

012 &BDF1
Action:
Entry:
Exit:

013 &BDF4
Action:
Entry:
Exit:

 FIRMWARE CALLS

SCR WRITE
Writes one or more pixels to the screen
HL contains the screen address of the pixel, C contains the mask, and B contains the encoded PEN
AF is corrupt, and all other registers are preserved
The mask should determine which pixels in the screen byte are to be plotted

&BDEB SCR MODE CLEAR ,
Fills the entire screen memory with &OO, which clears the screen to PEN O
No entry conditions A
AF, BC, DE and HL are corrupt, and all the other registers are preserved

4

&BDEE KM TEST BREAK
Tests if the ESC key has been pressed, and acts accordingly
C contains the Shift and Control key states, and interrupts must be disabled
AF and HL are conupt, and all other registers are preserved
If bit 7 of C is set, then the Control key is pressed; if bit 5 of C is set, then the Shift key is pressed; if ESC,
Shift and Control are pressed at the same time, then it initiates a system reset; otherwise it reports a break event

MC WAIT PRINTER
Sends a character to the printer if it is not busy
A contains the character to be sent to the printer
If the character was printed successfully, then Carry is tme;

if the printer was busy for too long (more than 0.4 seconds), then Carry is false;
in either case, A and BC are corrupt, and all other registers are preserved

KM SCAN KEYS
Scans the keyboard every 1/50th of a second, and updates the status of all keys
All interrupts must be disabled
AF, BC, DE and HL are conupt, and all other registers are preserved

The Maths Firmware
000 &BD61

Action:
Entry:
Exit:

Notes:

001 &BD64
Action:
Entry:

Exit:

002 &BD67
Action:
Entry:
Exit:
Notes:

003 &BD6A
Action:
Entry:
Exit:

Notes:

MOVE REAL (&BD3D for the 464) 0 ‘
Copies the five bytes that are pointed to by DE to the location held in HL S
DE points to the source real value, and HL points to the destination
HL points to the real value in the destination, Carry is true if the move went properly, F is conupt, and all other
registers are preserved A I
For the 464 only, A holds the exponent byte of the real value when the routine is exited

INTEGER TO REAL (&BD40 for the 464)
Converts an integer value into a real value
HL holds the integer value, DE points to the destination for the real value, bit 7 of A holds the sign of the integer
value — it is taken to be negative if bit 7 is set A
HL points to the real value in the destination, AF and DE are corrupt, and all others are preserved

BINARY TO REAL (&BD43 for the 464) *
Converts a four byte binary value into a real value at the same location
HL points to the binary value, bit 7 of A holds the sign of the binary value — negative if it is set
HL points to the real value in lieu of the four byte binary value, AF is corrupt, and all others are preserved
A four byte binary value is an unsigned integer up to& and is stored with the-least significant byte
first, and with the most significant byte last A

REAL TO INTEGER (&BD46 for the 464)
Converts a real value, rounding it into an unsigned integer value held in HL
HL points to the real value
HL holds the integer value, Carly is true if the conversion worked successfully, the Sign flag holds the sign
of the integer (negative if it is set), A, IX and the other flags are conupt, and all other registers are preserved
This rounds the decimal part down if it is less than 0.5, but rounds up if it is greater than, or equal to 0.5

 PAGE 57

 THE FIRMWARE GUIDE
004 &BD6D

Action:
Entry:
Exit:

Notes:

005 &BD70
Action:

Entry:
Exit:

 Notes:

006 &BD73
Action:

Entry:
Exit:

Notes:

007 &BD76

&BD79
Action:
Entry:
Exit:

008

009 &BD7C
Action:
Entry:
Exit:

010 &BD82
Action:
Entry:
Exit:

011 &BD85
A Action:
Entry:

I Exit:

012: &BD88
Action:
Entry:

7 Exit:

013 &BD8E
Action:
Entry:
Exit:
Notes:

REAL TO BINARY (&BD49 for the 464) q
Converts a real value, rounding it into a four byte binary value at the same location
HL points to the real value '
HL points to the binary value in lieu of the real value, bit7 of B holds the sign for the binary value (it is negative
if bit 7 is set), AF, B and IX are corrupt, and all other registers are preserved
See REAL TO INTEGER for details of how the values are rounded up or down

REAL FIX (&BD4C for the 464)
Perfomis an equivalent of BASIC’s FIX function on a real value, leaving the result as a four bye binary value
at the same location
HL points to the real value ,
HL points to the binary value in lieu of the real value, bit 7 of B has the sign of the binary value (it is negative
if bit 7 is set), AF, B and IX are corrupt, and all others are preserved
FIX removes any decimal part of the value, rounding down whether positive or negative — see the BASIC
handbook for more details on the FIX command

REAL INT (&BD4F for the 464) t
Performs an equivalent of BASIC’s INT function on a real value, leaving the result as a four byte binary value
at the same location "
HL points to the real value q I
HL points to the binary value in lieu of the real value, bit 7 of B has the sign of the binary value (it is negative
if bit 7 is set), AF, B and DC are corrupt, and all others are preserved
INT removes any decimal part of the value, rotmding down if the number is positive, but rounding up if it is
negative

INTERNAL SUBROUTINE — not useful (&BD52 for the 464)

REAL *10*A (&BD55 for the 464) q
Multiplies a real value by ’ 10 to the power of the value in the A register’, leaving the result at the same location
HL points to the real value, and A holds the power of 10
HL points to the result, AF, BC, DE, IX and IY are corrupt

REAL ADDITION (&BD58 for the 464) 7
Adds two real values, and leaves the result in lieu of the first real number
HL points to the first real value, and DE points to the second real value
HL points to the result, AF, BC, DE, IX and IY are cornipt

REAL REVERSE SUBTRACTION (&BD5E for the 464)
Subtracts the first real value from the second real value, and leaves the result in lieu of the first number
HL points to the first real value, and DE points to the second real value I A
HL points to the result in place of the first real value, AF, BC, DE, IX and IY are corrupt

REAL MULTIPLICATION (&BD61 for the 464)
Multiplies two real values together, and leaves the result in lieu of the first number
HL points to the first real value, and DE points to the second real value ,
HL points to the result in place of the first real value, AF, BC, DE, IX and IY are corrupt

REAL DIVISION (&BD64 for the 464) , I. I
Divides the first real value by the second real value, and leaves the result in lieu of the first number
HL points to the first real value, and DE points to the second real value
HL points to the result in place of the first real value, AF, BC, DE, IX and IY are corrupt

REAL COl\/IPARISON (&BD6A for the 464) P
Compares two real values
HL points to the first real value, and DE points to the second real value
A holds the result of the comparison process, IX, IY and the other flags are conupt, and all others are preserved,
After this routine has been called, the value in A depends on the result of the comparison as follows:

. if the first real number is greater than the second real number, then A holds &O1
if the first real number is the same as the second real number, then A holds &OO
if the second real number is greater than the first real number, then A holds &FF ,

PA GE 58 F

 FIRMWARE ‘CALLS
&BD91 REAL UNARY MINUS (&BD6D for the 464) I
Action: Reverses the sign of a real value I
Entry: HL points to the\real value . F
Exit: HL points to the new value of the real number (which is stored in place of the original number), bit 7 of A holds

the sign of the result (it is negative if bit 7 is set), AF and IX are conupt, and all other registers are preserved

&BD94 REALSIGNUM/SGN (&BD70 for the 464)
Action: Tests a real value, and compares it with zero
Entry: HL points to the real value
Exit: A holds the result of this comparison process, IX and the other flags are corrupt, and all others are preserved
Notes: After this routine has been called, the value in A depends on the result of the comparison as follows:

if the real number is greater than O, then A holds &O1, Carry is false, and Zero is false
if the real number is the same as O, then A holds &OO, Carry is false, and Zero is true
if the real number is smaller than O, then A holds &FF, Carryis true, and Zero is false

&BD97 SET ANGLE MODE (&BD73 for the 464) A
Action: Sets the angular calculation mode to either degrees (DEG) or radians (RAD) q
Entry: A holds the mode setting — 0 for RAD, and any other value for DEG
Exit: All registers are preserved

&BD9A REAL PI (&BD76 for the 464)
Action: Places the real value of pi at a given memory location
Entry: HL holds the address at which the value of pi is to be placed I
Exit: AF and DE are corrupt, and all other registers are preserved q

&BD9D REAL SQR (&BD79 for the 464) I
Action: Calculates the square root of a real value, leaving the result in lieu ofI the real value
Entry: HL points to the real value ,
Exit: HL points to the result of the calculation, AF, BC, DE, IX and IY are corrupt

&BDAO REAL POWER (&BD7C for the 464) I I
Action: Raises the fnst real value to the power of the second real value, leaving the result inlieu of the first real value
Entry: HL points to the first real value, and DE points to the second real value I
Exit: HL points to the result of the calculation, AF, BC, DE, IX and IY are corrupt

&BDA3 REAL LOG (&BD7F for the 464) A
Action: Returns the naperian logarithm (to base e) of a real value, leaving the result in lieu of the real value
Entry: HL points to the real value -
Exit: HL points to the logarithm that has been calculated, AF, BC, DE, L‘{ and IY are comrpt

&BDA6 REAL LOG 10 (&BD82 for the 464) p I
Action: Retums the logarithm (to base 10) of a real value, leaving the result in lieu of the real value
Entry: HL points to the real value
Exit: HL points to the logarithm that has been calculated, AF, BC, DE, IX and IY are corrupt

&BDA9 REAL EXP (&BD85 for the 464)
Action: Returns the antilogarithm (base e) of _a real value, leaving the result in lieu of the real value
Entry: HL points to the real value
Exit: HL points to the antilogarithm that has been calculated, AF, BC, DE, IX and IY are corrupt
Notes: See the BASIC handbook for details of EXP

&BDAC REAL SINE (&BD88 for the 464)
Action: Returns the sine of a real value, leaving the result in lieu of the real value
Entry: HL points to the real value (ie an angle) A
Exit: HL points to the sine value that has been calculated, AF, BC, DE, IX and IY are corrupt

&BDAF REAL COSINE (&BD8B for the 464) I
Action: Returns the cosine of a real value, leaving the result in lieu of the real value
Entry: HL points to the real value (ie an angle) A
Exit: HL points to the cosine value that has been calculated, AF, BC, DE. IX and IY are corrupt A

-

- '

q THE FIRMWARE GUIDE »

025 &BDB2 REAL TANGENT (&BD8E for the 464)
Action: Returns the tangent of a real value, leaving the result in lieu of the real value
Entry: HL points to the real value (ie an angle)
Exit: HL points to the tangent value that has been calculated, AF, BC, DE, IX and IY are corrupt

026 &BDB5 REAL ARCTANGENT (&BD91 for the 464)
Action: Returns the arctangent of a real value, leaving the result in lieu of the real value
Entry: HL points to the real value (ie an angle)
Exit: I HL points to the arctangent value that has been calculated, AF, BC, DE, IX and IY are corrupt ,

All of the above routines to calculate sine, cosine, tangent and arctangent are slightly inaccuarate

027 &BDB8 INTERNAL SUBROUTINE — not useful (&BD94 for the 464) I

028 &BDBB INTERNAL SUBROUTINE - not useful (&BD97 for the 464)

029 &BDBE INTERNAL SUBROUTINE — not useful (&BD9A for the 464)

Maths Routines for the 464 only
&BD5B REAL SUBTRACTION
Action: Subtracts the second real value from the first real value, and leaves the result in lieu of the first number
Entry: HL points to the first real value, and DE points to the second real value 7
Exit: HL points to the result in place of the first real value, AF, BC, DE, IX and IY are corrupt

&BD67 REAL EXPONENT ADDITION
Action: Adds the value of the A register to the exponent byteof a real number
Entry: HL points to the real value, and A holds the value to be added ,
Exit: HL points to the result in place of the first real value, AF and IX are comrpt, and all others are preserved

&BD9D INTERNAL SUBROUTINE — not useful ,

&BDAO INTERNAL SUBROUTINE - not useful

&BDA3 INTERNAL SUBROUTINE - not useful

&BDA6 INTERNAL SUBROUTINE - not useful

&BDA9 INTERNAL SUBROUTINE — not useful

&BDAC INTEGER ADDITION
Action: Adds two signed integer values
Entry: HL holds the first integer value, and DE holds the second integer value

, Exit: HL holds the result of the addition, A holds &FF if there is an overflow but is preserved otherwise, the flags
S are corrupt, and all other registers are preserved

&BDAF INTEGER SUBTRACTION
Action: I Subtracts the second signed integer value from the first signed integer value
Entry: HL holds the first integer value, and DE holds the second integer value
Exit: HL holds the result of the subtraction, A holds &FF if there is an overflow but is preserved otherwise, the flags

are corrupt, and all the other registers are preserved

&BDB2 INTEGER REVERSE SUBTRACTION
Action: Subtracts the first signed integer value from the second signed integer value
Entry: , HL holds the first integer value, and DE holds the second integer value
Exit: p HL holds the result of the subtraction, AF and DE are conjupt, and all others are preserved

 PAGE60 ‘y t

 FIRMWARE CALLS

&BDB5 INTEGER MULTIPLICATION
Action: Multiplies two signed integer values together, and leaves the result in lieu of the first number
Entry: HL holds the first integer value, and DE holds the second integer value
Exit: HL holds the result of the multiplication, A holds &FF if there is an overflow but is conupted otherwise, the

flags, BC and DE are conupt, and the other registers are preserved
Notes: Multiplication of signed integers does not produce the same result as with rmsigned integers

r

&BDB8 INTEGER DIVISION Y
Action: Divides the first signed integer value by the second signed integer value
Entry: HL holds the first integer value, and DE holds the second integer value
Exit: HL holds the result of the division, DE holds the remainder, AF and BC are conupt, and all others are preserved
Notes: Division of signed integers does not produce the same result as with unsigned integers

&BDBB INTEGER DIVISION 2 .
Action: Divides the first signed integer value by the second signed integer value
Entry: HL holds the first integer value, and DE holds the second integer value
Exit: DE holds the result of the division, HL holds the remainder, AF and BC are conupt, and all others are preserved
Notes: Division of signed integers does not produce the same result as with unsigned integers

&BDBE INTERNAL SUBROUTINE - not useful F

&BDC1 INTERNAL SUBROUTINE - not useful

&BDC4 INTEGER COMPARISON
Action: Compares two signed integer values
Entry: HL holds the first integer value, and DE holds the second integer value
Exit: A holds the result of the comparison process, the flags are conupt, and all others are preserved
Notes: After this routine has been called, the value in A depends on the result of the comparison as follows:

if the first real number is greater than the second real number, then A holds &0l
if the fn'st real number is the same as the second real number, then A holds &00
if the second real number is greater than the first real number, then A holds &FF

With signed integers, the range of values nms from &8000 (-32768) via zero to &7FFF (+32767) and so any
value which is greater than &8000 is considered as being less than a value of &7FFF or less

&BDC7 INTEGER UNARY MINUS
Action: Reverses the sign of an integer value (by subtracting it from &l0000) _
Entry: HL holds the integer value I
Exit: HL holds the new value of the integer number, AF is conupt, and all other registers are preserved

&BDCA INTEGER SIGNUM/SGN ,,
Action: Tests a signed integer value
Entry: HL holds the integer value
Exit: A holds the result of this comparison process, the flags are corrupt, and all others are preserved
Notes: After this routine has been called, the value in A depends on the result of the comparison as follows:

A if the integer number is greater than 0 and is less than &8000, then A holds &0l I
if the integer number is the same as 0, then A holds &00 -
if the integer number is greater than &7FFF and less than or equal to &FFFF, then A holds &FF

See INTEGER COMPARISON for more details on the way that signed integers are laid out ,

Maths Subroutines for the 664 and 6128 only
&BD5E TEXT INPUT A A A
Action: Allows upto 255 characters to be input from the keyboard into a buffer \
Entry: HL points to the start of the buffer — a NUL character must be placed after any characters already present,

or at the start of the buffer if there is no text I A
Exit: A has the last key pressed, HL points to the start of the buffer, theflags are corrupt, and all others are preserved
Notes: This routine prints any existing contents of the buffer (upto the NUL character) and then echoes any keys used;

it allows full line editing with the cursor keys and DEL, etc; it is exited only by use of ENTER or ESC

 i e A :i nAose1,

 THE FIRMWARE GUIDE
»&BD7F REAL RND
Action: Creates a new RND real value at a location pointed to by HL 5
Entry: HL points to the destination for the result
Exit: HL points to the RND value, AF, BC, DE and IX registers are conupt; and all others are preserved

&BD8B REAL RND(0)
Action: Returns the last RND value created, and puts it in a location pointed to by HL
Entry: HL points to the place where the value is to be returned to
Exit: HL points to the value created, AF, DE and IX are conupt, and all other registers are preserved
Notes: See the BASIC handbook for more details on RND(0)
r

AMSDOS and BIOS Firmware
A !&C033 BIOS SET MESSAGE

Action: Enables or disables disc error messages
Entry: To enable messages, A holds 00; to disable messages, A holds &FF
Exit: A holds the previous state, HL and the flags are corrupt, and all others are preserved
Notes: Enabling and disabling the messages can also be achieved by poking &BE78 with &00 or &FF

B »&C036 BIOS SETUP DISC
Action: Sets the parameters which effect the disc speed
Entry: HL holds the address of the nine bytes which makeup the parameter block
Exit: AF, BC, DE and HL are corrupt, and all other registers are preserved

 Notes: The parameter block is arranged as follows: A
bytes 0 & 1
bytes 2 & 3
byte 4
byte 5
byte 6
byte 70
byte 8

the motor on time in 20mS units; the default is &0032;
the motor off time in 20mS units; the default is &00FA
the write off time in l0uS units; 5 the default is &AF;
the head settle time in lmS units; the default is &OF;
the step rate time in lmS units; the default is &0C;
the head unload delay; the default is f&01;
a byte of &03 and this should be left unaltered

C ,&C039 BIOS SELECT FORMAT
Action: Sets a format for a disc
Entry: A holds the type of format that is to be selected
Exit: AF, BC, DE and HL are conupt, and all the other registers are preserved
Notes: To select one of the normal disc formats, the following values should be put into the A register:

Data format — &C1
System format — &4l
IBM format — &01

This routine sets the extended disc parameter block (XDPB) at &A890 to &A8A8 -— to set other formats, the
XDPB must be altered directly I

D &C03C BIOS READ SECTOR 2
Action: Reads a sector from a disc into memory

, Entry: HL holds the address in memory where the sector will be read to, E holds the drive number (&00 for drive

the fastest is &0023
the fastest is &00C8
should not be changed
should not be changed
the fastest is &0A
should not be changed

A, and &01 for drive B), D holds the track number, and C holds the sector number
Exit: If the sector was read properly, then Carry is true, A holds 0, and HL is preserved;

if the read failed, then Carry is false, A holds an error number, and HL is conupt;
in either case, the other flags are corrupt, and all other registers are preserved

E &C03F BIOS WRITE SECTOR
Action: Writes a sector from memory onto disc
Entry: HL holds the address of memory which will be written to the disc, E holds the drive number (&00 for drive

K

A, and &0l for drive B), D holds the track number, and C holds the sector number
Exit: If the sector was written properly, then Carry is true, A holds 0, and HL is preserved;

if the write failed, then Carry is false, A holds an error number, and HL is conupt;
q in either case, the other flags are conupt, and all other registers are preserved

F &C042 BIOS FORMAT TRACK

 FIRMWARE cAu.s

Action: Formats a complete track, inserts sectors, and fills the track with bytes of &E5
Entry: HL contains the address of the header information buffer which holds the header information blocks E

contains the drive number (&00 for drive A, and &0l for drive B), and D holds the track number
Exit: if the formatting process was successful, then Carry is true, A holds 0, and HL is preserved;

if the formatting process failed, then Carry is false, A holds an error number, and HL is corrupt;
in either case, the other flags are conupt, and all the other registers are preserved

Notes: The header information block is laid out as follows
1

byte 0 — holds the track number
byte 1 —- holds the head number (set to zero)
byte 2 — holds the sector number
byte 3 — holds logz(sector size)-7 (usually either &02=5l2 bytes, or &03=1024 bytes) A

Header information blocks must be set up contiguously for every sector on the track, and in the sanre sequence
that they are to be laid down (eg &Cl, &C6, &C2, &C7, &C3, &C8, &C4, &C9, &C5)

G &C045 BIOS MOVE TRACK
Action: Moves the disc drive head to the specified track
Entry: E holds the drive number (&00 for drive A, and &0l for drive B), and D holds the track number
Exit: If the head was moved successfully, then Carry is true, A holds 0, and HL is preserved;

if the move failed, then Carry is false, A holds an error number, and HL is conupt;
in both cases, the other flags are corrupt, and all other registers are preserved

Notes: There is normally no need to call this routine as READ SECTOR, WRITE SECTOR and FORMAT TRACK
S automatically move the head to the correct position q

H &C048 BIOS GET STATUS
Action: Returns the status of the specified drive
Entry: A holds the drive number (&00 for drive A, and &0l for drive B)
Exit: If Carry is true, then A holds the status byte, and HL is preserved; y

if Carry is false, then A is conupt, and HL holds the address of the byte before the status byte;
in either case, the other flags are preserved, and all other registers are preserved

Notes: The status byte indicates the drive’s status as follows:
if bit 6 is set, then either the write protect is set or the disc is missing , p
if bit 5 is set, then the drive is ready and the disc is fitted (whether the disc is formatted or not)
if bit 4 is set, then the head is at track O

I &C04B BIOS SET RETRY COUNT
Action: Sets the number of times the operation is retried in the event of disc error
Entry: A holds the number of retries required
Exit: A holds the previous number of retries, HL and the flags are corrupt, and all others are preserved
Notes: The default setting is &10, and the minimum setting is &01; the number of retries can also be altered by poking

&BE66 with the required value

&C56C GET SECTOR DATA
Action: Gets the data of a sector on the current track
Entry: E holds the drive number
Exit: If a formatted disc is present, then Carry is true, and HL is preserved; r

if an unformatted disc is present or the disc is missing, then Carry is false, and HL holds the address of the
byte before the status byte;
in either case, A and the other flags are conupt, and all other registers are preserved

Notes: The track number is held at &BE4F, the head number is held as &BE50, the sector number is held at &BE5l
and the log2(sector size)-7 is held at &BE52; disc parameters do not need to be set to the format of the disc
this routine is best used with the disc error messages turned off

Index to information boxes
Character Coordinates & Positions
Pen and Ink
Graphics Coordinates
Tape and Disc Headers

page 32
page 35
page 37
page 43

Tape and Disc Errors page 46
Sound Channel Status Byte page 47
RSX, Event and Ticker Blocks page 50

Instruction Set for the Z80 Microprocessor
The following list contains all the nonnal machine code instructions for the microprocessor, plus a number
of undocumented ones. The latter comprise those which operate on the high or low bytes of the Index
registers (IX and IY) which are notated here as HIX, LIX, I—lIY and LIY — some assemblers may use the
form IXI-I, etc —- and a set of rotation instructions complementary to SRL, which are designated SLL.

The Opcodes and T states
Within the instructions, a number of abbreviations are used:

d = displacement (a value from -128 (&80) to +127 (&7F))
n = a single byte value (from 0 (&00) to 255 (&FF)) -
hilo = a double byte value (from -32769 (&8000) via 0 to 65535 (&FFFF))
addr = an address value (from 0 (&0000) to 65535 (&FFFF)) I I

(in the sequence of opcode bytes, ‘addr’ and ‘hilo’ are entered low byte first)

The next two columns detail the number of bytes applicable to each instruction, and the number of T states (clock pulses) that
each requires - some have two figures which are distinguised as follows:

f -- means ‘the number of T states required when the condition is false‘ A
t — means ‘the number of T states needed when the condition is true‘
= — means ‘the number of T states needed when either BC=0 and!or A matches the contents of HL‘
— means ‘the number of T states required when both the above conditions are false’
Z — means ‘the number of T states needed when B=0‘
nz — means ‘the number of T states required when B<>0'

The Flag Register
The last columns give the effect on the flag bits which each instructions causes:

‘? — means the setting of the bit is unpredicatable
- -— means the setting of the bit is unchanged
0 -- means that the flag bit is reset to zero
1 -- means that the flag bit is set to one

In addition, the Sign flag (bit 7) is also set:
7 - if bit 7 of the A register is set
15 —- if bit 15 of the HL register pair (ie bit 7 of the H register) is set
=7 — if bit 7 of the A register would be set by subtraction in lieu of CP

The Zero flag (bit 6) is also set:
z — if the A register or the HL register pair equals zero
= — if the A register matches the compared register or value
=A —- if the A register matches the contents of the address pointed to by HL
<>B — if the B register holds zero
<>b — if the bit tested is zero I

The Parity/Overflow flag (bit 2) is also set:
p — if the register concerned contains an even number of set bits

I v - if an overflow has occured in Two'sComplement arithmetic
BC - if BC is not zero
A80 - if the A register was &80 before this instruction was performed

~ i I-— to the contents of the rnicroprocessor's internal intenupt register
The Carry flag (bit 0) is also set: S

c -- if an addition resulted in a carry out of bit 7 (for a register) or bit 15 (for a register pair)
b —- if a subtraction required a borrow from bit 7 (for a register) or bit 15 (for a register pair)

— if the A register is less than the value or register that is being compared
— by the bit rotated in from bit 0 of the register concerned
—- by the bit rotated in from bit 7 of the register concerned
— if the Carry was reset (ie zero) before this instruction was performed

- A0 — if the A register was &00 before this instruction was performed

 PAGE64

wgg,/\

Instruction

ADC A,n
ADC A.A
ADC A,B
ADC A.C
ADC A,D
ADC A,E
ADC A,H
ADC A,L
ADC A,(HL)
ADC A,(IX+d)
ADC A,(IY+d)
ADC A,HIX
ADC A,LIX
ADC A,HIY
ADC A,LIY
ADC HL,BC
ADC HL,DE
ADC HL,HL
ADC HL,SP
ADD A,n
ADD A.A
ADD A,B
ADD A,C
ADD A,D
ADD A,E
ADD A,H
ADD A,L
ADD A,(HL)
ADD A,(IX+d)
ADD A,(IY+d)
ADD A,HIX
ADD A,LIX
ADD A,HIY
ADD A,LIY
ADD HL,BC
ADD HL,DE
ADD HL,HL
ADD HL,SP
ADD IX,BC
ADD IX,DE
ADD D(,HL
ADD IX,SP
ADD IY,BC
ADD IY,DE
ADD IY,HL
ADD IY,SP
ANDn
AND A
AND B
AND C
AND D
AND E
AND H
AND L
AND (HL)
AND (IX+d)
AND (IY+d)
AND HIX

Opcode Bytes Ts

CE n
8F
88
89
8A
8B
8C
8D
8E
DD8Ed
FD8Ed
DD 8C
DD 8D
FD 8C
FD 8D
ED 4A
ED 5A
ED 6A
ED 7A
C6 n
87
80
81
82
83
84
85 I
86
DD86d
FD86d
DD8684
DD8685
FD8684
FD8685
09
19
29
39
DD 09
DD 19
DD 29
DD 39
FD 09
FD 19
FD 29
FD 39
E6 n
A7
A0
A1
A2
A3
A4
A5
A6
DDA6d
FDA6d
DD A4 \)bJbJo--r--1r-rs--~>--r--in-no-~[\)l\)|\)[\)[\J|\)l\)l\)|\)r--re--rr--iv--l\.)l\)l\)l\)UJU-Ir-rr-1r-rr-¢r--r-Ar-»h—l\)I\)l\)l\)l\)l\)l\)l\)l\)bJUJh—r-—h~r-r—r-1»-ehdlx)

/

i

oooooo$$\1-|>4>-t>-l>4>4>-t>-\r§,{;‘,f;,{;_‘ooooooooQ'§Q'§\r-t=-|>-t=-t>4>-t>-t>\r
8
11
ll
ll
ll
I5
I5
15

oo$$\14>-r-4=-4>-l>4>4>\r5‘,{j‘,{;‘,'(;;§,

S

\r\r\r\r\r\r\r\r\r\r\r\r\r\r\r’5;QQja\r\r\r\r\1\r\r\r\r\r\r\1\r\r\r

\l\l\I\l\l\l\l\l\I\l\l\l

Z

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNN

P

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

<"U"U"C3"O"U"C3"O"O"U"U"C$

C

OOOOOOOOOOOOGOCOCOOO

Instruction

ANDILX
AND HIY
ANDIIY
BHOA
rnraa
rnrnc
rnrno
rnran
rnran
IHTQL
BIT 0,(HL)
BIT O,(IX+d)
Bnonrm)
rurra
rnrrs
rnrrc
IHTLD
Bnwrz
rnrrn
BIT l,L
BIT l,(HL)
BIT 1,(IX+d)
BIT 1,(IY+d)
BIT 2,A
BIT 2,B
BIT 2,C
BIT 2,D
BIT 2,E
BIT 2,H
BIT 2,L
BIT 2,(HL)
BIT 2,(IX+d)
BIT 2,(IY+d)
BIT 3,A
BIT 3,B
BIT 3,C
BIT 3,D
BIT 3,B
BIT 3,H
BIT 3,L
BIT 3,(HL)
BIT 3,(IX+d)
BIT 3,(IY+d)
BIT 4,A
BIT 4,B
BIT 4,C
BIT 4,D
BIT 4,E
BIT 4,H
BIT 4,L
BIT 4,(HL)
BIT 4,(IX+d)
BIT 4,(IY+d)
BIT 5,A
BIT 5,B
BIT 5,C
BIT 5,D
BIT 5,E

Opcode Bytes Ts

DD A5
FD A4
FD A5
CB 47
CB 40
CB 41
CB 42
CB 43
CB 44
CB 45
CB 46
CBDD46
CBFD46
CB 4F
CB 48
CB 49
CB 4A
CB 4B
CB 4C
CB 4D
CB 4E
CB DD 4E
CBFD4E
CB 57

.3,

CB50
CB51
CB52
CB53
CB54
CB55
CB56
CBDD56
CBFD56
CB5F
CB58
CB59
CB5A
CB5B
CBSC
CB5D
CB5E
CB DD SE
CB FD 5E
CB 67
CB 60
CB 61
CB 62
CB 63
CB 64
CB 65
CB 66
CB DD66
CBFD66
CB 6F
CB 68
CB 69
CB 6A
CB 6B

'C‘§§3oooooooooooooooooooo
20

fgoooooooooooooo
(20

20

goooooooooooooo
20
20

,’3oooooooooooooo
20
20

tjgoooooooooooooo
20
20

oooooooooo

S Z

z
z
z

<>b
<>b
<>b
<>b
<>b
<>b
<>b
<>b
<>b
<>b
<>b
<>b
<>b
<>b
<>b
<>b
<>b
<>b
<>b
<>b
<>b
<>b
<>b
<>b
<>b
<>b
<>b
<>b
<>b
<>b
<>b
<>b
<>b
<>b
<>b
<>b
<>b
<>b
<>b
<>b
<>b
<>b
<>b
<>b
<>b
<>b
<>b
<>b
<>b
<>b
<>b
<>b
<>b
<>b
<>b

zao opcooss
P C

C

C

C
Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

 ~ THE FIRMWARE GUIDE

Opcode Bytes TsInstruction

BIT 5,H
BIT 5,L
BIT 5,(I~IL)
BIT 5,(IX+d)
BIT 5,(IY+d)
BIT 6,A ' A
BIT 6,B
BIT 6,C
BIT 6,D
BIT 6.E
BIT 6,H
BIT 6,L
BIT 6,(HL)
BIT 6,(IX+d)
BIT 6,(IY+d)
BIT 7,A
BIT 7,B
BIT 7,C
BIT 7,D
BIT 7,E
BIT 7,H
BIT 7,L
BIT 7,(HL)
BIT 7,(IX+d)
BIT 7,(IY+d)
CALL addr
CALL nz,addr
CALL z,addr
CALL nc,addr
CALL c,addr
CALL po,addr
CALL pe,addr
CALL p,addr
CALL m,addr
CCF
CP n
CP A
CP B
CP C
CP D
CP E t
CP H
CP L
CP (HL)
CP (IX+d)
CP (IY+d)
CP HIX
CP LIX
CP HIY
CP LIY
CPD
CPDR
CPI
CPIR
CPL
DAA
DEC A
DEC B

CB 6C
CB 6D
CB 6E
CB DD 6E
CB FD 6E
CB 77
CB 70
CB 71
CB 72
CB 73
CB 74
CB 75
CB 76
CB DD 76
CB FD 76
CB7F
CB78
CB79
CB7A
CB7B,
CB7C
CB7D
CB7E
CBDD7E
CBFD7E
CDdrad
C4drad
CCdrad
D4drad
DCdrad
E4drad
ECdrad
F4drad
FCdrad
3F
FE n
BF
B8
B9
BA
BB
BC
BD
BE
DDBEd
FDBEd
DD BC
DD BD
FD BC
FD BD
ED A9
ED B9
ED A1
ED B2
2F
27
3D
05

PA GE 66

U)-P-§l\)l\Jl\)l\)l\)l\)l\)l\)-I>-P-l\)l\Jl\)l\)l\Jl\)l\Jl\J-P-l>l\Jl\)l\)

3
3
3
3
3
3
3
3

i\Jl\)l\Jl\)l\)l\)UJU~)r—~r-~r—~r-~r-r-~r-~>-\l\)r--

r--r--r--0--[\)\)

,'3oooooooooooooo8'<§§oooooooooooooog8,’3oooo
20
20
17

rI7fI0

rI7f10

rI7fIO
rl7fI0

rI7fIO

iI7rlO
rI7fIO

4
7

oooooooo55\r4>4=-r=4>4>-4>-4>-
I6

=l6#2I
I6

=l6#2I
4
4

-P-P»

S

'0'0'0'0'0'0'0'0'0'0'0'0'0-0'0'0'0'0'0'0'0'0'0'0'0

\l\l\l\l

""'*"'°'°\1\r\r\r\r\r\r\r\r\r~4

7
7
7

Z

<>b
<>b
<>b
<>b
<>b
<>b
<>b
<>b
<>b
<>b
<>b
<>b
<>b
<>b
<>b
<>b
<>b
<>b
<>b
<>b
<>b
<>b
<>b
<>b
<>b

3>II>Z1>3>

Z

Z

Z

P C

-0-0-<2'0-0-0-0-0-0-0-0-0-0-0-0-0-0-4:-0-0'0-:-0:0-0

<<<<<<<<<<<<<<

v
BC
BC
BC
BC

P
v
V

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

-

Q

Q

Q

Q

Q

Q

/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\>'1

C

Instruction

DEC C
DEC D
DEC E
DEC H
DEC L
DEC (HL)
DEC (IX+d)
DEC (IY+d)
DEC HIX
DEC LIX
DEC HIY
DEC LIY
DEC BC
DEC DE
DEC HL
DEC SP
DEC IX
DEC IY
DI
DJNZ d
EI
EX AF.AF
EX DE,HL
EX (SP),HL
EX (SP),IX
EX (SP),IY
EXX
HALT
IM 0
IM 1
IM 2
IN A,(n)
IN A,(C)
IN B,(C)
IN C,(C)
IN D,(C)
IN E,(C)
IN H,(C)
IN L,(C)
INC A
INC B
INC C
INC D
INC E
INC H
INC L
INC (HL)
INC (D(+d)
INC (IY+d)
INC HIX
INC LIX
INC HIY
INC LIY
INC BC
INC DE
INC HL
INC SP
INC IX

Opcode Bytes Ts

0D
15
ID
25
2D
35
DD 35d
FD35d
DD25
DD2D
FD25
FD2D
OB
1B
2B
3B
DD2B
FD2B
F3
10d
FB
08
EB
E3
DDEB
FDE3
D9
76
ED46
ED56
EDSE
DBn
ED78
ED40
ED48
ED50
ED58
ED60
ED68
3C
(M
0C
14
1C
24
2C
34
DD34
FD34
DD24
DD2C
FD24
FD2C
03
13
Z3
33
DD23 l\Jr--r-ll--in--l\)\)l\J|\)l\)l\)>-~r—-r-1r-rr-~r-r-~r-~[\.)[\)[\)[\,)[\)[\)l\)[\)|\)(\)l\)r--r-~[\J|\)v-~r-r-—v-¢l\)r—~l\)l\)r—r-r—r—l\)|\)[\)[\)bJUJ»¢>-—w—>-—r-—»-

gt»-t=-r>%4=-5*5o\o\o\o\oooooooofi§[j’;4=-4:-r=-JS-44
23

.'I+\-4>*>4=~4>4>~‘*rT3rT5'r355”r5r’3’;O°°°°°§'4=~C3

4>-

23
23

5o\o\o\o\oooooooo

S

\l\l\l\l\l\l\l\l\l\l\l\l

Z

NNNNNNNNNNNN

SI Z!

\l

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

NNNNNNNNNNNNNNNNNNNNN

P

<<<<<<<<<<<<

3 C

pl cl

<<<<<<<<<<<<<<'U"U"D"U"U"U"U

OOOOOOQ

i

“@159?-—';...

1

I

Instruction

INC IY
IND
INDR
INI
INIR
JP addr
JP nz,addr
JP z,addr
JP nc,addr
JP c,addr
JP po,addr
JP pe,addr
JP p,addr
JP m,addr
JP (HL)
JP (IX)
JP (IY)
JR d .
JR nz,d
JR z,d
JR nc,d
JR c,d
LD A,n
LD B,n
LD C,n
LD D,n
LD E,n
LD H,n
LD L,n
LD (HL),n
LD (IX+d),n
LD (IY+d),n
LD HIX
LD LIX
LD HIY
LD LIY
LD A.A
LD A,B
LD A,C
LD A,D
LD A,E
LD A,H
LD A,L
LD B,A
LD B,B
LD B,C
LD 13,1)
LD B,E
LD B,H
LD B,L
LD c.A
LD C,B
LD c,c
LD C,D
LD C,E
LD C,H
LD C,L
LD DA

Opcode Bytes Ts

FD23r
IHDAA
EDBA
EDA2
EDB2
C3mad
C2mad
CAdnm
D2mad
DAdnm
E2mad
EAdrad
F2mad
FAdnm
E9
DDE9
FDE9
18d
20d
28d
30d
38d
3En
06n
0En
16n
1En
26n
2En
36n
DD36dn
FD36dn
DD26n
DD2En
FD26n
FD2En
7F
78
79
7A
7B
7C
7D
47
M)
41
42
43
44
45
4F
48
49
4A
4B
4C
4D
57 '-'*—"-*'-—'-*--—--~'-*--->-~—----—>-—~—->—*>-—--—--~wwww-t>-t=-urorommrorororomroronroro»-ooo.>o.>oao.ro.rwwoar~>ror\>r\>ro

6166121

N Q

“#5888858

5\r\r\r\r\r

-I‘-I>4>-P-I>-I>-J>-F=4>-l>-I>-l>-i>-Ii-I3-Pr-P44-I>-i>

S

‘?
‘?
‘.7
‘.7

<>B
I

<>B
1
Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

1

Q

ZPC

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Instruction

LD D,B
moor:
LDEMD
moon
Lnrur
moor
uoax
LDEB
LDELI
UDED
LDEB
UDEH 5
LDEI,
uoua.
noun
mung:
LDHI)
moan
LDHJI
uonr
UDEA
LDLB
LDLLI
LDIJ)
LDLB
LDIJI
LDLL
Loanaa
Loanaa
LDGH)C
LDGH)D
uoansn
U3 (HL).H
LD (HL).L
LDaxHnA
LD (IX+d),B
LD (1x+6),c
Louxano
Louxann
LD (1x+6),rr
LD (IX+d),L
LD (IY+d),A
LD (IY+d),B
LD (IY+d),C
Loavano
LD (IY+d),E
LD (IY+d),H
LoaYanL
LD HIX,A
LDHKB
Lonmp
LD HIX,D
uonncn
LD HIY,A
LDHWB
LD HIY,C
LoHnu>
LDHNE

5 zao opcooss
Opcode Bytes Ts S Z P C

50 .

51
52
53
st
55
5F
5s
59
5A
5B
5c
so
67
60
61
62
65
61
65
6F I
6s
69
6A
6B
6c
60
77
70
71
72
73
74
75
Down
Domd
DD71d
DD72d
Dona
DDMd
DD75d
FD77d
FD70d
FD71d
FD72d
FD73d
FD74d
FD75d
DD67
DD60
DD61
0062
DD63
FD67
FD60
FD61
FD62
FD63

6'66\l\l\l\l\J\l\l-F-ll‘-Ii-I8-F-F-\-F-‘-F=-l=~4=-F—4=-I>-P—-F-F-F-4>-F=-F-i=-F-i=-F>~F-I=-i>-

\)l\Jl\)l\)l\)l\)l\Jl\)l\)l\)UJUIUJUJUJUJCMUJUJUJCAIUJUJUJI-4w—r-¢h—n~r—¢r-n—»~h—r-—r--rdr-\r-—r-—>-4»-r-—r-—r-—>-ur-Q0-nrdr-er-4:-—r—r-r-Q»-r-r-— oooooooooooooooooooo$

.'

-

-

-

-

-

-

-

-

-

-

-

-

-

-

..

-

-

-

..

-

-

-

..

-

..

-

-

_

-

-

_

..

-

-

_

-

_

..

..

..

..

-

..

-

-

..

..

-

_

-

-

-

-

-

-

..

PA GE 67

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

.-' ‘

Instruction

LD LIX,A
LD LIXJ3
LD L1X,C
LD LIX.D
LI_) LIX.E
LD LIY.A
LD LIY.B
LD LIY,C
ALD LIY,D
LD LIY J5
LD A,(HL)
LD B,(HL)
LD C,(HL)
LD D,(HL)
LD E,(HL)
LD H,(HL)
LD L,(HL)
LD A,(IX+d)
LD B,(D(+d)
LD C,(IX+d)
LD D,(D(+d)
LD E,(IX+d)
LD H,(D(+d)
LD L,(IX+d)
LD A,(IY+d)
LD B,(IY+d)
LD C,(IY+d)
LD D,(IY+d)
LD E,(IY+d)
LD H.(IY+d)
LD L,(IY+d)
LD A,HD(
LD B,HIX
LD C,HIX
LD D,HIX
LD B,HIX
LD A,HIY
LD B,HIY
LD C,HIY
LD D,HIY
LD E,HIY
LD A,LIX
LD B,LD(
LD C,LIX
LD D,LIX
LD E,LIX
LD A,LIY
LD B,LIY
LD C,LIY
LD D,LIY
LD E,LIY
LD HIX,HIX
LD HIX,LIX
LD HIY,HIY
LD HIY,LIY
LD LD(,HD(
LD LIX,LIX
Lo LIY,HIY

i V V THE FIRMWARE GUIDE

Opcode Bytes Ts S Z P C

DD 6F
DD 68
DD 69
DD 6A
DD 6B
FD 6F
FD 68
FD 69
FD 6A
FD 6B
7E
46
4E
56
SE
66
6E
DD7Ed
DD46d
DD4Ed
DD56d
DD5Ed
DD66d
DD6Ed
FD7Ed
FD46d
DD4Ed
FD56d
FD5Ed
FD66d
FD6Ed
DD7C
DD44
DD4C
DD54
DD5C
FD7C
FD44
FD4C
FD54
FD5C
DD7D
DD45
DD4D
DD55
DD5D
FD7D
FD45
FD4D
FD55
FD5D
DD64
DD65
FD64
FD65
DD6C
DD6D
FD6C

PAGE 68

rorororororororororororororowrowrorororuroror\>ruror\>o>u>oawwuo.>oauawo->o.>woo»-r--Q»-7--r-r-rorororororororororo oomooooooooooggggggfg$Q_;$$'{5‘$@\r\r\r\r\r\1\roooooooooooooooooooo

Instruction

LD LIY,LIY
LD A,(BC)
LD A,(DE)
LD A,(HL)
LD (BC).A
LD (DE),A
LD (HL).A
LD SP,HL
LD SP,IX
LD SP,IY
LD BC,hilo
LD DE,hilo
LD HL,hilo
LD SP,hilo
LD IX,hilo
LD IY,hilo
LD A,(addr)
LD HL,(addr)
LD IX,(addr)
LD IY,(addr)
LD BC,(addr)
LD DE,(addr)
LD HL,(addr)
LD SP,(addr)
LD (addr),A
LD (addr),HL
LD (addr),IX
LD (addr),IY
LD (addr),BC
LD (addr),DE
LD (addr),HL
LD (addr),SP
LD A,I
LD A,R
LD LA
LD RA
LDD
LDDR
LDI
LDIR
NEG
NOP
OR n
OR A
OR B
OR C
OR D
OR E
OR H
OR L
OR (HL)
OR (IX+d)
OR (IY+d)
OR HIX
OR HIY
OR LIX
OR LIY
OUT (n),A

Opcode Bytes Ts S

r-~>-ra-~r—r-in--0-~l\.)

FD 6D
0A
IA
7E
02
I2 '
77
F9
DDF9
FDF9
0llohi
lllohi
21lohi
31lohi UJUJU-Ib~>l\)l\J

DD21lohi 4
FD21lolri 4
3Adrad 3
2Adrad 3
DD2Adrad4
FD2Adrad4
ED4Bdrad4
ED5Bdrad4
ED6Bdrad4
ED7Bdrad4
32drad 3
22drad 3
DD22drad4
FD22drad 4
ED43drad 4
ED53drad 4
ED63drad 4
ED73drad 4
ED 57
ED 5F
ED 47
ED 4F
ED A8
ED B8
ED A0
ED B0
ED 44 l\Jl\Jl\-)l\Jl\)l\Jl\Jl\Jl\J

00
F6 n
B7
B0
B1
B2
B3
B4
B5
B6
DD B6 d
FD B6 d
DD B4
FD B4
DD B5
FD B5
D3 n l\)l\)l\)l\)l\)UJbJu--r-it-~v-~r--In-iv-lo--l\Jr-~

’5‘555’5‘5o~\r\r\r\r\r\roo
14
I4
l3
16
20
20
20
20
20
20
13
16
20
20
20
20
20

LL

’;oooooooo$$\1-|>4>-4=-4>-t=-t>~4>-\14>-oo{§:g€;5\o~o\o\o'5’

7'-AFF‘

7
7
Q

Q

Q

Q

Q

Q

7

\l\l\I\l\I\l\l\l\I\l\-I\l\l\l\l

Z

Z

Z

NNNNNNNNNNNNNNN

zPc

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

i 0
i 0

BC -
() _

BC -
0 -

A80 A0

"U'C3"O'U‘U"U“'U'C3"O"C3"O"C3"O"U"O OOOOOOOCDOOCDOOQO

Instruction

OUT (C),A
OLT (C),B
OUT (C),C
OUT (C),D
OUT (C),E
OUI (C),H
OUT (C),L
OTDR
OTIR
OUTD S
OUTI
POP AF
POP BC
POP DE
POP HL
POP IX
POP IY
PUSH AF
PUSH BC
PUSH DE
PUSH HL
PUSH IX
PUSH IY
RES 0,A
RES 0,B
RES 0,C
RES 0,D
RES 0,E
RES 0.H
RES 0,L
RES LA
RES 1,B
RES 1,C
RES l,D
RES 1,E
RES 1,H
RES l,L
RES 2,A
RES 2,B
RES 2,C
RES 2,D
RES 2,E
RES 2,H
RES 2,L
RES 3,A
RES 3,B
RES 3,C
RES 3,D
RES 3,E
RES 3,H
RES 3,L
RES 4,A
RES 4,B
RES 4,C
RES 4,D
RES 4,E
RES 4,H
RES 4,L

Opcode Bytes .Ts

ED 79
ED 41
ED 49
ED 51
ED 59
ED 61
ED 69
ED BB
ED B3
ED AB
ED A3
F1
C1
D1
E1
DD E1
FD E1
F5
C5
D5E5 ,

DD E5
FD E5
CB 87
CB 80
CB 81
CB 82
CB 83
CB 84
CB 85
CB 8F
CB 88
CB 89
CB 8A
CB 8B
CB 8C
CB 8D
CB 97
CB 90
CB 91
CB 92
CB 93
CB 94
CB 95
CB 9F
CB 98
CB 99
CB 9A
CB 9B
CB 9C
CB 9D
CB A7
CB A0
CB Al
CB A2
CB A3
CB A4
CB A5 \)l\Jl\)l\Jl\Ji\Jl\Jl\)l\)l\)l\Jl\)l\)l\Jl\Jl\Jl\)l\)lQl\)lQl\Jl\)l\Jl\>l\)l\Jl\)l\)l\Jl\Jl\)l\)l\)lQl\)i\)r—Q-r--r-¢[\J|\)r-sh-iv-r—~l\)l\)[\)[\)[\)|\)[\)|\)|\)|\)[_)

Q

LL

@@@Q\U\tQl\)l\)l\Jl\)l\Jl\)l\-)l\)

r-Ar-A

10
14
I4
11
11
11
ll
I5
15

00000000OO

'0'0'0'0

1
1

<>
<>
POP flags

O¢O6IQ

‘?

S Z P C Instruction

RES 5,A
RES 5,B
RES 5,C
RES 5,D
RES 5,E
RES 5,H
RES 5,L
RES 6,A
RES 6,B
RES 6,C
RES 6,D
RES 6,E
RES 6,H
RES 6,L
RES 7,A
RES 7,B
RES 7,C
RES 7,D
RES 7,E
RES 7,H
RES 7,L
RES 0,(HL)
RES l,(HL) 6
RES 2,(HL)
RES 3,(HL):
RES 4,(HL)
RES 5,(HL)
RES 6,(HL)

 zao opcooss
Opcode Bytes Ts S Z P C

CB AF
CB A8
CB A9
CB AA
CB AB
CB AC
CB AD
CB B7
CB B0
CB Bl
CB B2
CB B3
CB B4
CB B5
CB BF
CB B8
CB B9
CB BA
CB BB
CB BC
CB BD
CB 86
CB 8E
CB 96
CB 9E
CB A6
CB AE
CB B6 l\Jl\Jl\Jl\)l\Jl\)l\)l\)l\)l\Jl\)l\)l\)l\)l\)l\Jl\Jt\)l\)l\)l\)l\)l\JI\Jl\)l\)l\)l\)

RES 7,(HL)
RES 0,(IX+d)
RES 0,(IY+d)
RES 1,(IX+d)
RES 1,(IY+d)
RES 2,(IX+d)
RES 2,(IY+d)
RES 3,(IX+d)
RES 3,(IY+d)
RES 4,(IX+d)
RES 4,(IY+d)
RES 5,(IX+d)
RES 5,(IY+d)
RES 6,(IX+d)
RES 6,(IY+d)
RES 7,(IX+d)
RES 7,(IY+d)
RBI"
REI‘ NZ
REF Z
REI NC ,
REF C
RET PO
REF PE
RET P
RET M
REPI
REFN
RLA
RL A

CBBE 2
DDCBd86 4
FDCBd86 4
DDCBd8E4
FDCBd8E 4
DDCBd96 4
FDCBd96 4
DDCBd9E4
FDCBd9E 4
DDCBdA64
FDCBdA64
DDCBdAE4
FDCBdAE4
DDCBdB64
FDCBdB6 4
DDCBdBE4
FDCBdBE4
C9 1
C0 I
C8 A
D0
D8
E0
E8
F0
F8
ED4D
ED45
17
CB 17 i\)r--l\)l\)|-->-ir-~r-Ir-~>-r--A

Zjaaafjaaaoooooomoomoooooooooooooooooooooooooooooo
23
23

I3$I3!)38I)383
23
23
23
23
23
23
23
10

rI If8

rl If8

rl II8

rl If8

rl. If8

rl If8

rl If8

rl lf8

14
14
4

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q r7
8 7 Z p r7

PA GE 69

% THE FIRMWARE GUIDE

Instruction

RL B
C
D

RL L
RL (HL)
RL (D(+d)
RL (TY+d)
RLCA
RLC A
RLC B
RLC C
RLC D
RLC E
RLC H
RLC L
RLC (HL)
RLC (D(+d)
RLC (IY+d)

RR A
RR B
RR C
RR D
RR E
RR H
RR L
RR (HL)
RR (IX+d)
RR (IY+d)
RRCA
RRC A
RRC B
RRC C
RRC D
RRC E
RRC H
RRC L
RRC (HL)
RRC (D(+d)
RRC (IY+d)
RRD
RST O
RST 1,addr
RST 2,addr
RST 3,addr
RST 4
RST 5,addr
RST 6
RST 7
SBC A,n
SBC A.A
SBC A,B
SBC A,C
SBC A,D
SBC A,E

Opcode Bytes Ts

CB 10
CB 11
CB 12
CB 13
CB 14
CB 15
CB 16 l\)l\Jl\Jl\)l\)l\)l\)

DDCBd16 4
FDCBd16 4
O7. 1
CB O7
CB OO
CB O1
CB O2
CB O3
CB O4
CB O5
CB O6 l\)l\Jl\Jl\)l\)l\)l\)I\J

DDCBdO6 4
FDCBdO6
ED 6F
1F
CB IF
CB 18
CB 19
CB 1A
CB 1B
CB 1C
CB 1D
CB 1E

4
2

l\)l\Jl\)l\>l\)l\)l\)l\Jv-~
DDCBd1E4
FDCBd1E 4
OF 1
CB OF
CB O8
CB O9
CB OA
CB OB
CB OC
CB OD
CB OE

2

l\Jl\Jl\)l\)l\)l\)l\J

DDCBdOE4
FDCBdOE 4
ED 67
C7
CF dr ad
D7 dr ad
DF dr ad
E7
EF dr ad
F7
FF
DE n
9F
98
99
9A
913

PAGE 70

2
1

r--|--r--ll--\o--~l\)|--Ir--(.)Jv-~(.a~)UJ£.p~)

{§§$;oooooooooooooo4>-ijifigoooooooooooooo4:-'55{fi@§§,oooooooooooooo-1:-fjfiijaoooooooooooo
23
18
11

(11)
(11)
(11)
ll

(11)
11
11
7
4

-F=-41--P-P

S

\l\l-l\l\l\l\l\l\l

\l\l\l\l\l\l\l\l\l\l\l

\l\l\l\l\l\I\l\l\l\l

\l\l\I\l\l\l\l\l\l\J\l

\l\l\l\l\l\l

Z

NNNNNNNNN

NNNNNNNNNNN

NNNNNNNNNN

NNNNNNNNNNN

NNNNNN

P

"O’O"O"U"O"O"U"O"U

"U"Q’O"U"U"U"O"C3"O"U"U

"O"U"O"U"U'U"O"U"U"O

"U"O"O"O"U"C3"C3"O"O"U"O

<<<<<<

C

'11$3'11331§'31l‘|'l‘1l’13'11'l‘1'l‘1'l‘|'Z1l1'3'l‘1
Q

&E>Z:'E>&E>&E>E>&&E>2>62>E52>5&3E>'<‘:'
Q

Q

Q

Q

Q

Q

Q

Q

Q

O"U"U"U‘U"O"

Instruction

SBC A.H
SBC A,L
SBC A,(HL)
SBC A,(IX+d)
SBC A,(IY+d)
SBC A,HIX
SBC A,HIY
SBC A,LIX
SBC A,LIY
SBC HL,BC
SBC HL,DE
SBC HL,HL
SBC HL,SP
SCF
SET O,A
SET O,B
SET O,C
SET O,D
SET O,E
SET O,H
SET O,L
SET LA
SET l,B
SET 1,C
SET l,D
SET l,E
SET l,H
SET 1,L
SET 2,A
SET 2,B
SET 2,C
SET 2,D
SET 2,E
SET 2,H
SET 2,L
SET 3,A
SET 3,B
SET 3,C
SET 3,D
SET 3,E
SET 3,H
SET 3,L
SET 4,A
SET 4,B
SET 4,C
SET 4,D
SET 4,E
SET 4,H
SET 4,L
SET 5,A
SET 5,B
SET 5,C
SET 5,D
SET 5,E
SET 5,H
SET 5,L
SET 6,A
SET 6,B

Opcode Bytes Ts

owwwwzouwzomwuwmwwnwwnwuwmwwuwmuwwwnuuwnwuwwo:\>»-:~>|\>ao:\>|\>:\>:~>:\><»w»---»-- oo4=§;{;;$;f,‘,oooooooo$$\1-i=-:>

9c
91>
95
DD9Ed
FD 95 <1
DD 9c
FD 9c
DD9D
FD 91>
ED 42
ED 52
ED 62
ED 72
37
CB c7
CB co ..
CB c1
cs c2
CB c3
cs c4
cs cs
CB CF
CB cs
CB c9
CB CA
CB CB
CB CC C
CB CD
CB D7
CB DO
CB D1
CB D2
CB D3
CB D4
CB D5
CB DF A
CB D8 ..
CB D9
CB DA
CB DB
CB DC
CB DD
CB E7
CB EO
CB E1
CB E2
CB E3
CB E4
CB E5
CB EF
CB E8
CB E9
CB EA
CB EB
CB EC
CB ED
CB F7 I
CB FO ..

S

’f,‘_@{j,§‘,\1\1~1\1\|\1\1\1\1

Z

NNNNNNNNNNNNN

P

<<<<<<<<<<<<<

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

C

'-*O"U"U'O"CJ"U"U'O"U'O“U'O‘U“

Instruction

SET 6,C
SET 6,D
SET 6,E
SET 6,H
SET 6,L
SET 7,A
SET 7,B
SET 7,C
SET 7,D
SET 7,E
SET 7,H
SET 7,L
SET O,(HL)
SET 1,(HL)
SET 2,(HL)
SET 3,(HL)
SET 4,(HL)
SET 5,(HL)
SET 6,(HL)
SET 7,(HL)
SET O,(IX+d)
SET 1,(IX+d)
SET 2,(IX+d)
SET 3,(IX+d)
SET 4,(IX+d)
SET 5,(IX+d)
SET 6,(IX+d)
SET 7,(IX+d)
SET O,(IY+d)
SET 1,(IY+d)
SET 2,(IY+d)
SET 3,(IY+d)
SET 4,(IY+d)
SET 5,(IY+d)
SET 6,(IY+d)
SET 7,(IY+d)
SLA A
SLA B
SLA C
SLA D
SLA E
SLA H
SLA L
SLA (HL)
SLA (IX+d)
SLA (IY+d)
SLL A
SLL B
SLL C
SLL D
SLL E
SLL H
SLL L

Opcode Bytes Ts S Z P

l\)l\Jl\)l\Jl\)l\)l\)l\JI\)l\Jl\>l\>l\)l\)l\Jl\Jl\)l\)l\)

CB F1
CB F2
CB F3
CB F4
CB F5
CBFF
CB F8
CB F9
CB FA
CB FB
CB FC
CB FD
CB C6
CB CE
CBD6
CB DE
CB E6
CB EE
CB F6
CB FE 2
DD CBdC64
DD CB dCE4
DD CBdD64
DD CBdDE4
DD CBdE64
DD CBdEE4
DD CB dF6 4
DD CBdFE4
FDCBdC6 4
FDCBdCE4
FDCBdD6 4
FDCBdDE4
FDCBdE6 4
FDCB dEE 4
FDCB dF6 4
FDCBdFE 4
CB 27 2
CB 2O
CB 21
CB 22
CB 23
CB 24
CB 25
CB 26
DD CB d26 4
FDCB d26 4
CB 37 2
CB 30
CB 31
CB 32
CB 33
CB 34 -
CB 35

l\Jl\‘Jl\Jl\)l\)l\-)l\)

l\J\Jl\Jl\Jl\)l\)

aa’(;;*Q';f;a{;oooooommmoooommmoo
23
23
23
23
23
23
23
23
23
23
23
23
23

{'j,oooooooooooooo${)§{}$
23

oooooooooooooofifi \l\l\l\l\l\l\l\l\l\l\l\l\l\l\]\l\l NNNNNNNNNNNNNNNNN

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

’O"U"O"O"U"U"U"\'J"O"U"C3"U"U"C3"U"U"O

C

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

'l‘1$3'l‘4$'11'l‘1'l‘1$$3'l1"31'l‘1§'I11"ln

Instruction

SLL (HL)
SLL (IX+d)
SLL (IY+d)
SRAA
SRAB
SRAC
SRAD
SRAE
SRAH
SRAL
SRA (HL)
SRA (IX+d)
SRA (TY+d)
SRLA
SRLB
SRLC
SRLD
SRLE
SRLH
SRLL
SRL (HL)/
SRL (IX+d)
SRL (IY+d)
SUB n
SUB A
SUB B
SUB C
SUB D
SUB E
SUB H
SUB L

XORn
XORA
XORB
XORC
XORD
XORE
XORH
XORL
XOR (HL)
XOR (IX+d)
XOR (IY+d)
XOR HIX
XOR LIX
XOR HIY
XOR LIY

SUB (HL)
sun (IX+d)
SUB (IY+d)
SUB HIX
SUB HIY
SUB LIX
SUB LIY

I zao opcooss

POpcode Bytes Ts S

CB 36 2
DD CB d 36 4
FD CB d 36 4
CB 2F 2
CB 28
CB 29
CB 2A
CB 2B
CB 2C
CB 2D
CB 2E
DD CB d 2E 4
FD CB d 2E 4
CB 3F 2
CB 38 2
CB 39
CB 3A
CB 3B
CB 3C
CB 3D
CB 3E
DD CB d 3E 4
FD CB d 3E 4
D6 n 2
97 1
90
91
92
93 A
94
95 '
96
DD 96 d
FD 96 d
DD AC
FD AC
DD AD
FD AD
EE n
AF
A8
A9
AA
AB
AC
AD
AC
DD AC d
FD AC d
DD AC
DD AC
FD AD ..
FD AD

l\)l\)l\)l\Jl\)l\Jl\J

l\Jl\Jl\Jl\)l\)l\J

IQ\)l\)l\)UJbJ|--¢v-¢>-~r--r--nu-~r-Ar-~l\)l\)l\)l\)l\JUJUJ>-*v—>--o—~r-—r-Q0-~ oooooooo$$\14>-I»4>-#-»-I=>4=-4>-\1oooooooo’(5@\14>4=-4--I=-4>-4=-4:-\1$[)§@;ooooooooooooooZ)§[)’,’Q‘,oooooooooooooofi§[ja

Z

NNN "C3'U”U’U"U"U"U'U'O"U'U'U'U'U’U<<<<<-<<<<<<<<<<'U’D"U"U'O'U'U'U’U’U’U'U"U'D’U'O'O’O'U’U"CJ"O'U

C

oooooooooooooooo*c:-crcrcrc:-cs-cro-crc:4cr<ro-cs-E:5E>E>E>E>3>E>E>E>E>Z'>3E>E>EE>5E>E>'i1'l1'1|

The flag register is bit significant, and is defined as follows:
bit 7 — Sign bit 6 — Zero bit 5 - unused bit 4 — Half Carry (cannot test)
bit 3 — unused bit 2 — Parity/Overflow bit 1 -- Add/Subtract (cannot test) bit O — Carry

PAGE 71

18zsn
n the range

. a p .

~ ’ - a

PAGE 72

APPENDIX A: TABLES OF BASIC TOKENS
When the Operating System stores BASIC commands and functions in memory, it does not store them

as a string letters, but instead it uses a system of substitute values, which are called 7tokens'. ,
The 464 does not have some of these commands, and they are indicated by an asterisk (*); in addition,

it does not have certain combined commands. It does have MID$ as an undocumented command, and
although it recognises the function DEC$, it does not perform it.

End of Line marker
O1 ':' (statement separator) ,

2 Integer or '%' variable
String or '$' variable
Real or '!' variable

05 to OA are not used
DEFINT variable
DEFSTR variable
DEFREAL or undefined variable
O (nunber) .
1 (integer number)
2 (integer number)
3 (integer number)
4 (integer number)
5 (integer number)
6 (integer number)
7 (integer number)
8 (integer number)
9 (' te be), in ger num r
or used _
integer numbers i
from 10 to 255; the value is held
in the next byte of the program
integer numbers in the range frim
256 to 32767 -— the value is held
in the next 2 bytes of the program
binary numbers, &K -- the value
is contained in the next 2 bytes
of the program
hexadecimal numbers, & — the
value is held in the next 2 bytes
of the program
program line number converted
to the address before the start of
the program hne, and 1S held in
the next 2 bytes (found when
this part of has already been rim)
program lme number — still held
as a line number since this part
of the program has not been run
yet the value is held in the next
2 bytes
lI1[€°€l'S less than -32767 or
greater than 32767 and floating
point numbers, the value is held
in the next 5 bytes of the program
SPACE is used as a separator

4

BASIC COMMAND TOKENS
21 is not used
22 Quotation mark; delimits a suing
23 Hash '#'; for windows and strings
24 to 27 are not used
28 open bracket '(' A S
29 close bracket ')'
2A to 2B are not used
2C comma; used as separator in Print

items, and between parameters
2D hyphen; used with DEFINT, etc
2E to 3A are not used
3B semi-colon — used as a separator

for PRINT items
3C to 7B are not used
7C,OO ‘I’ — precedes an RSX command;

the byte of &OO is inserted when
the program is stored and will
not appear on listing the program

7D to 7F are not used
8O AFTER
81 AUTO
82 BORDER
83 CALL
84 CAT
85 CHAIN
86 CLEAR
87 CLG
88 CLOSEIN
89 CLOSEOUT
8A CLS
8B CONT
8C DATA
8D DEF
8E DEFINT
8F DEFREAL
9O DEFSTR
91 DEG
92 DELETE
93 DIM
94 DRAW
95 DRAWR
96 EDIT
01,97 ELSE (the &Ol byte is inserted

in the program when stored and
will not appear when listed)

98 V END -
99 ENT

9A
9B
9C
9D
9E
9F
AO
A1
A2
A3
A4
A5
A6
A7
A8
A9
AA
AB
AC
AD
AE
AF
BO
B1
B2
B3
B4
B5
B6
B7
B8
B9
BA
BB
BC
BD
BE
BF
O1 ,CO

C 1
C2
C3
C4
C5
C6
C7

ENV
ERASE
ERROR
EVERY
FOR
GOSUB or GO SUB
GOTO or GO TO
IF
INK
INPUT 9
KEY
LET
LINE
LIST
LOAD
LOCATE
MEMORY
MERGE
MID$ (function but no &FF byte)
MODE
MOVE
MOVER
NEXT
NEW
ON
ON BREAK
ON ERROR GOTO
ON SQ
OPENIN
OPENOUT
ORIGIN x
OUT
PAPER
PEN
PLOT
PLOTR
POKE
PRINT
short form of REM (apostrophe);
see ELSE for the &Ol byte
RAD
RANDOMIZE
READ
RELEASE
REM (written in full)
RENUM
RESTORE

1

“in<"\\wi

I

C8
C9
CA
CB
CC
CD
CE
CF
DO
D 1
D2
D3 '
D4
D5
D6
D7
D8
D9
DA

S—- these functions are all preceded by a byte of &FF

47 XPOS
, 48 YPOS
49 DERR *

OO
O 1
O2
O3
O4
O5
O6
O7
O8 t
O9
OA
OB
OC
OD
OE
OF
1O
1 1
12

APPENDIX B: CPC PORT ADDRESSES

RESUME
RETURN
RUN
SAVE
SOUND
SPEED
STOP
SYMBOL
TAG
TAGOFF
TROFF
TRON
WAIT
WEND
WHILE
WIDTH
WINDOW
VVRITE

DB
DC
DD
DE
DF
FD
E1

DIE1 t

FILL *
GRAPHICS *
MASK *
FRAME *
CURSOR *

E2 is not used
ERL (function but no &FF byte)‘
FN (command when used with
DEF token, and also a function)

E3
E4

E5
E6
E7
E8 to E9 are not used
EA
EB
EC

SPC
STEP
SWAP

TAB
THEN
TO

ZONE ED USING

ABS
ACS
ATN
CHR$
CINT
COS
CREAL
EXP
FIX
FRE
INKEY
INP
INT
JOY
LEN
LOG
LOG 1O
LOWER$
PEEK

r-in--r--o--it-mu-A OO\IO\Ul-PU)

19
1A
1B
1C
lD
IE to 3F are not used
40
4 1
42
43
44
45
46

REMAIN
SGN
SIN
SPACE$
SQ
SQR
STR$
TAN
UNT
UPPER$
VAL

EOF
ERR
HIMEM
INKEY$
PI
RND
TIME

PORT

&7Fxx
&BCxx
&BDxx
&BExx
&BFxx
&DFxx
&EFxx
&F4xx
&F5xx
&F7xx
&F8nn
&F9nn
&FAnn
&FBrm

OUTPUT

Video Gate Anay
CRTC address
CRTC data
Do not use
Do not use
Expansion ROM select
Printer port latch
PPI port A data
PPI port B data
PPI control
Expansion bus
Expansion bus
Expansion bus
Expansion bus

INPUT

Do not use Values for 'nn' are reserved as follows

EE
EF
FO
F 1
F2
F3
F4
F5
F6
F7
F8
F9
FA
FB
FC

if-lF§l€

I TOKENS & PORTS

>

A0/\V
+

>*

\
AND
MOD
OR
XOR
NOT
the prefix for a function

4A to 70 are not used
71
72
73
74
75
76
77
78
79
7A
7B
7C
7D
7E
7F

BINS
DECS *
HEX$s
INSTR
LEFT$
MAX
MIN
POS
RIGHT$
ROUND
STRINGS
TEST
TESTR
COPYCHR$ *
VPOS ,

Do not use &OO to &7B Do not use I
Do not use &7C to &7F Reserved for disc interface
Reserved (CRTC status) &80 to &BB Do not use _
CRTC data S &BC to &BF Undefined (future use)
Not used &CO to &DB Do not use
Do not use &DC to &DF Reserved for comms interfaces
PPI port A data &EO to &FE For user peripherals
PPI port B data &FF Reset peripherals
Undefined
Expansion bus
Expansion bus
Expansion bus
Expansion bus

Note: These addresses apply to the CPC range of
computers only, and may be incorrect for the Plus

 PAGE rs
computers

APPENDIX C: 464 to 6128 memory address

conversion chart
This appendix is designed to enable 464 owners to convert the addresses present in their machines (listed
in the left hand column) into the equivalent 6128 address, where one exists.

ACOO
ACO1-O3
ACO4-O6
ACO7-09
ACOA-OC
ACOD-OF
AC 10- 12
AC 13- 15
AC 16- 18
AC 19- 1B
AC 1C
AC 1D
AC 1F
AC21
AC22
AC23

AC24
AC25

AC26
AC27-2B
AC2C
AC2E
AC3O
AC3 1
AC32
AC34
AC36
AC38-43
AC3A
AC3B
AC3C
AC3E
AC3F
AC40
AC42
AC44-4F
ACSO-5B
AC5C-6D
AC5E
AC6O
AC62
AC64
AC66
AC68 .
AC69
AC6A
AC6C
AC6E-7F

ACOO

ACO1
ACO2
ACO4
ACO6
ACO7

ACO8
ACO9
ACOA
ACOB
ACOC
ACOD-11
AC12
ACI4
AC16
AC17
AC18
AC 1A
AC1C
ACIE-29
AC2O
AC21
AC22
AC24
AC25
AC26
AC28
AC2A-35
AC36-41
AC42-53
AC44
AC46
AC48
AC4A
AC4C I
AC4E
AC4F
AC5O
AC52
AC54-65

PA GE 74

AC80-9 1
AC92-A3
ACA4-DA2
ADA3-A5
ADA6
ADA8
ADAA

ADAB
ADAD
ADAF
ADB 1

ADB3
ADB4
ADB5
ADB7
ADB8
ADB9
ADBB-C
ADBC
ADBD
ADBE
ADBF-C 1
ADC2-C4
ADC5-C7
ADC8-CA
ADC8-CF
ADDO-E03
AE04
AEO6-OB
AEOC-25
AE26
AE27
AE29
AE2B
AE2D
AE2E
AE30
AF32
AE34
AF36
AE38
AE39
AE3A
AEBB
AF3D
AE3F
AE41
AE42

ADB2-BA

A

AC66-77
AC78-89
AC8A-D88
AD89-8B
AD8C
ADSE
AD90
AD9 1
AD92
AD94
AD96
AD98
AD99-Al
AD9A
AD9B
AD9C
AD9E
AD9F
ADAO
ADA2-B 1
ADA3
ADA4
ADA5
ADA6-A8
ADA9-AB
ADAC-AE
ADAF-B 1
ADB2-B6
ADB7-EA
ADEB
ADED-F2
ADF3-EOC
AEOD
AEOE
AE10
AE12
AE14
A515
A517
AE19
AEIB
AEID
AEIF
AE2O I
A521
A522
AE24
AE26
AE28
AE29

AE43
AE45
AE46-4A
AE4B-52

AE53-57
AE57
AE58
AE58-5B

AE5C-6A

AE68
AE6B-6D

AE6E I
AE6F
AE7O

AE72
AE74
AE75
AE77
AE79
AE7A

AE7B
AE7D
AE7F
AE81
AE83
AE85
AE87
AE89

AE8B-B08A
B08B
B08D
B08F
B09 1

B092
B094
BO96
BO98
BO9A
BO9C-B9
BOBA

AE2A
AE2C
AE2D-3 1

AE32-39
AE3A-3E
AE3E
AFBF

AFBF-43
AE44-5O
AE4C
AE4E
AE4F
AE5O

A551
A552
AE53
AE54
AE55
AE57
AE58
AE5A
AE5C

AESD
AESE
AE6O
AE62
AE64
AE66
AE68
AE6A
AE6C
AE6E
AE6F-
BO6F
B07 1
B073

B075

B076
B078
BO7A
BO7C

BO6E

BO7E-9B
BO9C

BOBB
BOBD
BOBF
BOCl
BOC2
BOCB
BOC4
BOC5
BOC7-FF

B100
B 101
B 102
B 104
B105
B 107-86
B 187-8A
B 189
B 18B
B 18C
B 18E
B 190
B192
B 193
B 194
B195
B 196-A5
B 1A6

B1A8
BIA9
B1AB

BIAC-B9
BIAE
B1B0
B1B2
BIB4
BIB6
B1B8
BIBA-C7

BlC8
BIC9

B ICB
B ICC-CE

B09D

B09F
BOAO
BOA 1
BOA2
BOA3

BOA5-FF

B82D
B82E
B82F
B831
B832
B834-B3
B8B4-B7
B8B6
B8B8
B8B9
BSBB
B8BD
B8BF
B8CO
B8C1
B8C2
BSCB-D2
B8D3
B8D5
BSD6 y
B8D7
B8D9
B8DA I
B8DC-E9
B8DE
B8E0
B8E2
B8E4
B8E6
B8E8

B8EA-F9
B8FA-FF

B7C3
B7C4
B7C5
B7C6
B7C7-C9

B1CF-D6

BID7
B1D8
B1D9-E9
BIEA-FA
BIFB
BIFC
BIFD
BIFE
B200

B202-06
B207
B208-OB
B20C
B2OD- 15
B216 A
B217- 1B
B21C-24
B225
B226-2A
B22B-33
B234
B235-39
B23A-42
B243
B244-48
B249-51
B252
B253-57
B258-60
B26 1
B262-66
B267-6F
B270
B271 -75
B276-7E
B27F
B280-84
B285 '
B286
B287
B288
B289
B28A
B28B
B28C
B28D
B28E
B28F
B290
B291
B293
B294

B7CA-D1
B7D2
B7D3
B7D4-E4
B71-15-F5
B7F6
B7F7
B7F8
B7F9
B7FB
B7FD
B7FE-801
B802
B804
B805-2C

B6B5
B6B6-BE

B6BF-C3
B6C4-CC

B6CD-D1
B6D2-DA

B6DB-DF
B6EO-E8

B6E9-ED
B6EE-F6

B6F7-FB
B6FC-704

B705-09
B7OA- 12

B7 13- 17
B718-20

B721 -25
B726
B727
B728
B729
B72A
B72B
B72C
B72D
B72E

B72F
B730
B73 1
B733
B734

B295
B296
B298
B29A-B7

B2B8
B2B9
B2BA-C2

B2C3-322
B323-27

B328
B32A
B32C
B32E
B330
B332
B334
B336
B338
B339
B33A
B33C
B33E
B340
B342
B344
B346

B347-4B
B34C-9B
B39C-EB
B3EC-43B
B43C-45
B446-DD
B4DE
B4DF
B4E0
B4E1
B4153
B4135
B4E6
B4E7
B4E8
B4E9

B735
B736
B738

B73A-57
B758
B759

B75A-62
B763 -C2

B692
B693
B695
B697
B699
B69B
B69D
B69F
B6A1
B6A3
B6A4

B6A5
B6A7
B6A9
B6AA
B6AB
B6AD
B6AE
B6AF
B6B0
B6B 1
B6B2
B6B3
B6B4

B496-E5
B4E6-535
B536-85
B586-8F
B590-627
B628
B629
B62A
B62B
B62D
B62F
B630
B63 1
B632
B633

B4EA
B4EB-FE
5455
5451
5453
5454
5455
5455
5501
B502-08

B509
B50A
B50B
B50C
B50D- 13
B51 1
B514-3B
B51D
B520 ‘
B522
B539

B53C
B53D
B53E
B53F
B540
B541
B543
B545
B547
B549-4F

B550
B551
B 1ED
B552
B553
B IEF
B554
B555-5B

B55C-9A
B576
B577
B57B
B57C
B57D
B57F
B580
B581
B583
B58B
B593
B59B-D9
B5DA-619
B60A
B619
B61A-709

Aoonsss TA51.5
B634
B635-48
B637
B63B
B63D
B63E
B63F
B649
B64B

564052
5653
5654 1
5655
5656
5657-51)
5655
5655-s5
(5159)
(515c)
(5155)
(5155)
5675
5686
5657
5685
5689
B68A
5685
5681)
5685 I
5691

BIEE

B1F0

B 1F1-F7
B 1F8-236
B212
B213
B217
B218
B219
B2lB
B21C
B21D
B21F
B227
B22F
B237-75
B276-B5
B2A6
B2B5
B2B6-3A5

B67F
B6FA
B70A-P9
B7FA-FF
B800
BB01
B802
B803
B805
B807-46
B817
B818
B819
B81A
B81C
B8 IE
B8 1F
B82 1
B823 -46
B847
B848
B84A
B84-C-8B
B85C
B85D
B85E
B85F
B861
B863
B864
B866
B868-8B
B88C-CB
B89D
B89F
B8A3
B8A6
B8CC
B8CD
B8CE

5850
5851
5852
5553
5555-53
5s1)c
5855
5555
B8DF

B8E4
B8E6
B8E8-EC
B8ED-F1
B8F2-F6
B8F7
B8F8-FF

(5675)
5396
B3A6-495

5118
5119
511A
5115
5111)
5115-55
5125
5130
5131
5132
5134
5136
5137
5139
5145-55
5155
5160
5162
B164-A3
5174
5175
5176
5177
5179
5175
5r7c I
5175
B180-A3
BIA4-E3
5155
5157
5155
5155
5154
5155
5156
5157
5155
5159
515A
5155

B114
B115
B116
B117

B100
B102
B 104-08
B 109-0D
B 10E- 12
B113

PA GE 75

 THE FIRMWARE sums 1

APPENDIX D: ROMCALL & RAMCALL loader
When we use a CALL command or an RSX from BASIC, we can pass up to 32 pieces of information

to the machine code routine by entering such data as parameters that follow the RSX or CALL instruction.
On entry to such a routine the parameters are held in a block of data. This block is arranged with the IX
register pointing to the last parameter present; earlier parameters are placed in sequence above this last
one, up to the first one we entered. On entry to these routines, the A register holds the number of parameters
that have been entered. Each parameter is represented by two bytes which could be:

a) The address of a string descriptor - at this address there will be three bytes of data to represent a
string expression (a string variable only, in the case of the 464). These three bytes are as follows:

byte 1: the length of the string .
bytes 2 and 3: the address of the start of the string — note that this address is not the same as that

1 of the string descriptor which points to the length byte above)
b) The address of the value of a numeric variable - this variable could be integer or real, so the value

will be present there in two or five byte form.
c) The value of a numeric expression — this will be in two byte fomr, even though any part of the

expression could be in Real/Floating point (five byte) form.

When we consider firmware calls, the situation becomes even more difficult. With these, any parameters
required (called entry conditions) need to be present in specific microprocessor registers and not as a block
of data to be picked out when needed. Some calls need no entry conditions and so can be called with no
problem (for example CALL &BD19), but usually this is not the case. .

There are some calls which only need a value in the A register; providing this value is less than 33, we
can take advantage of the fact mentioned earlier that, on entering a routine from BASIC, the A register
holds the number of parameters present. .

Try CALL &BCOE,0,0 to change the screen mode to MODE 2; then try CALL &BCOE to change it to
MODE 0. In the first case, there were 2 parameters present, so A held &02 on entry to the routine and this
made it select MODE 2. Thesecond call had no parameters and so A held &00, resulting in MODE 0.

With higher values required in A (up to 32), the command looks pretty unwieldy with all those
parameters, but you can still use this method for some calls. By the way, anything can be used here as a
parameter — ie a string (6128 only), a string variable, a numeric variable, or a number.

But what of the others. Unfortunately, the remaining registers are set by the Operating System for its
needs, and so there is very little scope allowed to us to utilise ROM routines in this way.

The RSX presented here allows each register to be loaded with the required values and has two versions:

1 IRAMCALL is for using firmware calls (whose entry points are all in RAM)
IROMCALL is for accessing any useful routines in the various ROMs

Values to go into registers are entered as optional parameters. Both have a similar sequence of parameters.
The only difference is that the first parameter for IROMCALL has to be the ROM select number of the
ROM which contains the required routine; to access routines in the Lower ROM, use a number of -1 here.
This is followed bythe actual address of the routine in ROM. With IRAMCALL, this address (of the
‘firmware entry point’ in RAM) will be the first parameter. ,

After these obligatory one or two parameters come the values we wish to place in the various registers.
The sequence of registers decided on — see the syntax section below — is not the standard alphabetical
one but instead it is on frequency of use. A

PAGE 76 I A

A . ROMCALL noumvs

On entry to an Upper ROM routine, the IY register is given the address of that ROM’s reserved work
area by the Operating System, so any IY values entered with IROMCALL may be lost; this option is
included in case the Lower ROM, or a RAM routine of your own, needs it.

Register parameters are optional with the proviso that if a certain _register’s parameter is required, then
all those before it must also be entered. Any value will do for these unwanted earlier registers; any later
unentered registers will be filled with &00OO. The first A register parameter also allows values to be
entered to simulate the flags (Carry, Zero, etc). If required,the relevant flag bit value should be multiplied
by 256 and this added to the A register value. Note that the values for the B, D and I-I registers will also
need to be multiplied by 256, but not those for C, E and L. A

The syntax of the RSXs
lROMCALL,ROM Select no,address of routine [[[[[[,FA (note the reversal of the usual AF)],HL],DE],BC],IY],IX]
|RAMCALL,address of the firmware call [[[[[[,FA],HL],DE],BC],IY],IX]

Passing register values out of the called routine could have been accommodated by use of the ‘@’
operator with numeric variables, but this would have increased the numberof parameters necessary, or
have forced the use of variables instead of numeric expressions. To keep. theparameter situation simple,
an output block at &BEFO has been used, which maintains the input parameter sequence: 2

&BEFO &BEF1 &BEF2 &BEF3 &BEF4 &BEF5 &BEF6 &BEF7 &BEF8/9 &BEFA/B
.A F L 1H E ID C B ' IY' BK

These locations may or may not hold valid data depending on the exit conditions of the called routine.
The loader routine for the RSXs is given below. 2 '

The BASIC Listing
10 REM ROM/RAM-CALL Loader by Bob Taylor (copyright 1991)
20 MEMORY &7FFF:RESTORE:PRINT:PRINT "Please wait a few secondsti
30 FOR lin=0 TO &BO/8-1:total=O:FOR n=0 TO 7:READ A$ p
40 byte=VAL("&"+a$):POKE &8000+lin*8+n,byte ,~
50 total=total+byte:NEXT n . .
60 READ a$:IF VAL("&"+a$)<>total THEN PRINT:PRINT "Error in line"lin*10+1l0:END
70 NEXT lin:IF PEEK(6)=&80 THEN POKE &80A4,&55:POKE &80A5,&CB " .
80 PRINT:PRINT "All M/C loaded":PRINT:PRINT "Press S to save M/C as ROMCALL.BIN":
PRINT "or any other key to continue":WHILE INKEY$="":WEND:IF INKEY(60)<>-1 THEN
SAVE "ROMCALL.BIN",B,&8000,&A9 A »
90 PRINT:PRINT "To load s initialise IROMCALL RSX just use:":PRINT "MEMORY HIMEM“
-&A9:a=HIMEM+l:LOAD"CHR$(34)"ROMCALL.BIN"CHR$(34)",a:CALL a":PRINT "with the disc
or tape inserted" '

1

100 END
110
120
130
140
150
160
170
180
190
200
210

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

D5,62,6B,36,C9,01,l8,00,2BA
09,EB,0l,28,00,09,72,2B,1C3
73,44,4D,E1,23,C3,Dl,BC,458
52,4F,4D,43,41,4C,CC,52,2DC
4l,4D,43,41,4C,CC,00,18,242
80,3D,F6,80,32,FF,BE,E6,508
3F,28,6C,47,2F,C6,08,28,23F
O9,30,64,21,00,00,E5,3D,lE0
20,FC,DD,66,0l,DD,6E,00,3AB
E5,DD,23,DD,23,10,F3,El,4C9
22,FD,BE,El,7C,65,6F,E5,4F3

220
230
240
250
260
270
280
290
300
310
320

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

FF,BE,CB,7F,28,l3,DD,7E,49D

O0,32,FF,BE,3C,3E,CF,28,360
0A,Fl,DD,El,DF@FD,BE,18/56B
OB,3E,C3,32,FC,BE,Fl,DD,4C6
El,CD,FC,BE,22,F2,BE,F5,62F
El,65,5F,22,FO,BE,ED,53,4C5
F4,BE,ED,43,F6,BE,FD,22,5B5
F8;BE,DD,22,FA,BE,C9,3E,574
2l,0E,00,21,93,CA,C3,1B,28B
00,00,00,00,00,00,00,00,000

.PACH577

 i11u;5uufiwuun5ennDs'

APPENDIX E: MISCELLANEOUS
BASIC Deprotection

I

10 REM DEPRO—LOADER copyright Bob Taylor 1989
20 RESTORE 1l0:PRINT:PRINT "Please wait a few seconds"
30 FOR lin=0 To &40/8—l:total=0:FOR n=0 TO 7:READ a$
40 byte=VAL("&"+a$):POKE &BE80+lin*8+n,byte
50 total=total+byte:NEXT n .
60 READ a$:IF VAL("&"+a$)<>total THEN PRINT:PRINT "Error in line"lin*lO+ll0:END
70 NEXT lin:IF PEEK(6)=&80 THEN POKE &BEB3,&45
80 PRINT:PRINT "All M/C loaded":PRINT:PRINT "Press 's' to save M/C as DEPRO.BIN":
WHILE INKEY$="":WEND:IF INKEY(60)<>-1 THEN sAvE "DEPRO BIN",B,&BEBO,&40
90 PRINT:PRINT "To load and initialise DEPRO just enter:":PRINT "LOAD"CHR$(34)
"DEPRO.BIN"CHR$(34)":CALL &BE80":PRINT "in direct command mode with the disc or
tape inserted at the correct place":PRINT "To switch off just enter CALL &BE80,0"
100 END .
110 57,3A,7A,5c,20,1c,F5,c3,424

C8,32,BB,BE,2A,7B,BC,22,3F6
BC,BE,3E,C3,2l,AD,BE,F5,4FC
E5,32,7A,BC,22,7B,BC,El,487
F1,C9,FE,C3,CO,3A,BB,BE,5EE
2A,BC,BE,l8,EA,CD,A5,BE,4D6
55,AF,32,2c,AE,51,cD,7A,4E8
BC,18,D7,00,00,00,00,00,lAB

120
130
140
150
160
170
180

DATA
DATA
DATA
.DATA
DATA
DATA
DATA
DATA

ROM Lister
10
20
30
40
so
so
70
so
90
roe
110

I31

130
140
150
160
170
180
190

MODE
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

DATA 3E,FF,l2,13,C9,00,00,00

2:lin=2
1l,45,80,0E,O0,CD,0F,B9
C5,0E,00,C5,CD,0F,B9,CD
lF,80,Cl,0C,79,FE,OF,C2
o5,s0,c1,cD,1s,59,c9,21
oo,co,06,o4,75,r5,e0,cs
12,23,13,1o,57,45,23,46
0A,FE,80,F2,3C,80,l2,03
l3,C3,30,80,D6,80,l2,l3

DATA end
add=&8000 9
READ a$:IF a$="end" THEN 160
POKE add,VAL("&"+a$):add=add+l
GOTO 130
PRINT "The ROMs available arez"
CALL &8000
add=&8045
FOR rom=l TO 15

Snippets 0

type=PEEK(add):mark=PEEK(add+l)
vers=PEEK(add+2):m=PEEK(add+3)
add=add+4;name$=""
c=PEEK(add) e 2
IF c=&FF THEN GOTO 270

200
2L
220
23
240
23
260

(')

()Cw)C)

iname$=name$+CHR$(c)
add=add+1:GOTO 230
add=add+l

28D LOCATE 3,lin:PRINT name$
291 LOCATE 14,lin:PRINT USING "#.";mark
30D PRINT USING "#";vers;:PRINT USING "#";m
31» IF type=0 THEN t$="FOREGROUND":GOTO 330
32G IF type=l THEN t$="BACKGROUND" ELSE t$=
"EXTENSION" 9
330 LOCATE l9,lin:PRINT t$;" ROM"
340 IF PEEK(add)=0 AND PEEK(add+l)=0 AND PEEK
(add+2)=O THEN END'
350 lin=lin+1:NEXT rom

(_)

[\) \J

(4)()cj)c)

(_)()

To unerase files — Poke &A701 with &E5, CAT the disc, and try to load the file you want. Save it back to USER O if
it loads correctly. If it fails to load, it is probably that it has already been written over by another file

To disable ESC — Poke &BDBE with &C9. To restore ESC, poke the same address with &C3

PAGE rs

3
¢
I

M‘

I

1.1:.. .r
I.'_
k .

i
‘Q

5

I‘

F
1

it
1

EE

{-
.14

i

E» ;
5'
I5.

I

~.~.

A

Special Z80'Instructions
DAA — This instruction adds or subtracts six to/from the A register nibbles according to the preceding instruction, andto the
states of various flags (the half carry flag, H, is bit 4 of the flags but there are no instructions available to the programmer for

-:

testing its contents):

EX AF,AF' — This swaps the normal and altemate register AF values; as a result, the flagbyte will be filled with another flag

Previous Instruction
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
SUB
SUB
SUB
SUB

ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
SBC
SBC
SBC
SBC

INC A
INC
INC
INC
INC
INC
INC
INC
INC
DEC NEG
DEC NEG
DEC NEG
DEC NEG 1--1-~OCDv-*1--1-~OOOOOOO 1--Or--0»-~.C>O--001--OO’J.'J

. . - ~ _ _ _
. 9 __\ |

: " ~rvuscEu_A~Eou§.. .

v.

9

high nibble low nibble added toA .- CafterDAA I
&00 00-9

0-s
0-9
A-F
9-F,
A-F
0-2

, 0-2
0-3
‘0-9
0-s
7-F
6-F

N 0-9
A-F
0-3
0-9 A
A_

 0-3
0-9.A F
0-3
0-9
6-F
0-9
6-F

&06fi 0

1---1-©©>--1-1--0--11--Ar--©

&0s,&60
ass

ass "
&s0
ass A
8166 .

'&00 I
&FA
&AO . X
&9A

value to that before the instruction (which can be retrieved by a furtherEX AF,AF') A A " 1 “ .

HALT — This instruction doesn't complete until a microprocessor interrupt signal is generated.

Rotation and Shift
RLC and RLCA —
RRC and RRCA —
RLandRLA
RRandRRA
SLA
SRA
SLL
SRL
RLD

RRD

rotate to the left, and move bit 7 into the Carry and into bit 0 y
rotate to the right, and move bit 0 into the Carry and into bit 7
rotate to the left, and move the Carry into bit 0, and move bit 7 into the Carry
rotate to the right, and move the Carry into bit 7, and move bit 0 into the Carry
shift left arithmetical, and reset bit 0 to zero, and move bit 7 into the Carry
shift right arithmetical, and leave bit 7 as it was, and move bit 0 into the Carry
shift left logical, and set bit 0 to one, and move bit 7 into the Carry -
shiftright logical, and reset bit 7 to zero, and move bit 0 into the Carry '
rotate the nibbles to the left, and bits 0 to 3 of A are moved to the contents of HL, and bits 0 to 3 of the
contents of HL are moved into bits 4 to 7 of the contents of HL, and 4 to 7 of the contents of HL
are moved to bits 0 to 3 of A . ’ 9
rotate the nibbles to the right, and bits 0 to 3 of A are moved to the contents of and bits 4 to 7 of
the contents of HL are moved to bits O to 3 of the contents of HL, and bits 0 to 3 of the contentsof HL
are moved into bits 0 to 3 of A

The CRTC Registers 1
To change the value of these registers, the register number should be output on address &BCxx and then the data output on
&BDxx (see Appendix B for more details on the CPC port addresses)

R0
R1
R2
R3
R4
R5
R6
R7

Horizontal Total 63 R8
Horizontal Displayed _ :40 R9
Horizontal Sync Pos. 46 R10
Sync Width 142 R11
Vertical Total 38 I R12
Vertical Total Adjust 0 e R13 Start Address (L) 9
Vertical Displayed A 25 ~ R14
Vertical Sync Position 30 R15

Interlace and Skew
Maximum Raster Addr
Cursor Start Raster
Cursor End Raster
Start Address (H)

1-ACursor Register (H)
Cursor Register (L)

I PAGE 79
._‘ \ V

HEXA/TIECIMALTO DECIMAL CONVERSION CHART
IEEXI *Z56THTC

:3E;z;rE:C3;3:;E;\orm>-rcntn$-L91044
18
19
20
21
22
24
25

Q-F

IHEXI

~ 01
02
03
04
05
06
07
08
09
OA
05
0c
0D
05
05

I 10
11
12
13
14

15
H16.

 17
18
19

6
27 1:5
28 .3”T ICE

31
ES

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63 '
64

:22
23
24
25
26
27
28
29
2A.
2B
2c
2D
25
25
30
31
32
33
34
35
3s
37
38

 39
3A
35
3c
3D
35
3540.

.6,

F
9

31 “"1?
32 20
33 21

*256

256
512
768:
1024
1280‘
1536
1792
2048
2304
25600
2816
3072
3328 I
3584
33404096
4352
4608
4864
5120
4376:
5632
5888'
6144‘
6400
6656
6912.
7168*
7424‘
7680
7936
8192*
8448
8704
8960
9216
9472
9728
9984
10240
10496
10752
11008
11264
11520
11776
12032
12288
12544
12800
13056
13312
13568
13824
14080
14336
14592
14848
15104
15360
15616
15872
16128
16384

[NBC

65
66
67
68 .

69
70
71 2
72
73
74
75
76
77
78
79 3
80
81
82
83
84
8586
87
88
89 ‘
90
91
92
93
94
95 ;
96
97
98 * 7
99.: ,
100
101
102
108
104;
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
12s
127
128

I

6-a~ .

_' Q.‘ ,- .1", i

Q .

16640
16896
17152
17408
17664
17920
18176
18432
18688
18944
19200
19456-
19712
19968

4‘-.20224
20480
207369

k .

20992
 ~ '-21248

21504
21760

-:1

22016
22272
22528
22784Q?1A
23Q4QEJ I
2329623552
023808
24064

A 24320 4 3
e 24576

I ‘24832
-25088~
25344
25600
25856
26112
26386
26624
26880T
27136
27392
27648:
27904
28160
28416
28672
28928
29184
29440
29696
29952
30208
30464
30720
30976
31232
31488
31744
32000
32256
32512
32768

DEC
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153154, ,-

155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
1
4

J

Q

¢

A

Q

Q

Q

Q

Q

<1

Q

Q

fa-A

83
84
85

F3-28338838

. _.,,

1"

HE
81.
82
83
84
85
8687
88
89
84
8B,
8C1
8T)
8E
8F
90
91
92,
93
946

95
96
97:
98
99:
9A.
9B

9T)
9E;
9F~
A0
/X1.

' ~.,a -Q

AV1
145
.A6
.A7
1A8
1&9
ADA
18B
A£I
AI)
18E
rAF
B0
B1
.B2
B3
B4
B5
B6
B7
B8
B9
BAr
IBB
BCI
BI)
BEE
BF
C0

' 4

*2s6
33024
33280
33536
33792
34048
34304
34560
34816
35072
35328
35584
35840
36096
36352
36608
36864
37120
37376
37632
37888,.-'"

38400
4

38656
38912
39168
39424
39.680
40192
40448
40704
40960
641216
41472
41728
41984
42240
42496
42752
43008
43264.
43520
43776
44032
44288
445-14
44800
45056
45312
45568
45824
46080
46336
46592
46848
47104
47360
47616
47872
48128
48384
48610
48896
49152

DEH3

193
194
195
196»
19$
198
199
200 A
201
202-
203
204
205
206
207
208
209
210
211
212 8
213
214
215
216
217
218
219
220
221
222
223
224
225 8
226
227
228
229
230
231
232
233-
234
235
236.
237
238
239
240
2411
242
243
244
245
246
247
248
249
290
251
.252
253
254
255
256

TUE

CH
(32
C3
(34
(I5
(I6
(I7
(38
(39
(bk
(;B
‘TC
CH)
(IE
CF
TX)
I)l
192
I13
D4
I35
I96
l)7
D8
99
[LA
I)B
[X3
D14)

.. IDE
IDF.
ED
E1
E2 .

8015983
E7
E8

EUX
.EB
5c
EH)
EH5
EF-
F0
F1
F2
F3
F4
F5
F6
F7
F8
F9
I¥\
FB
FC
IT)
FE
55
100

*2s6
49408
49664
49920
50176
50432
50688
50111-1
51 :00
51456
51712
51968
52224
52480
52736
52992
53248
53504
53760
54016
54272
54528
54784
55040
55296
55552
55808
56064
56320
56576
56832
57088
57244
57600
57856
58112
58368
58624
58880
59136
59392
59648
59904
60160
60416
60672
60928
61 184
61440
61696
61952
62208
62464
62720
62976
63232
63488
63744
61000
61256
61512
64768
65024
65280
65536

I

A

