5/10.3.1

Compactage filiforme

Nous allons étudier :

- 1) Le principe de compactage d'objets filiformes.
- 2) Le principe de décompactage et d'affichage de fichiers filiformes.

I. Le compacteur

Les dessins monochromes définis par leurs contours (dessins du genre « fil de fer ») pourront être énormément compactés (jusqu'à un facteur 20 !) par le programme qui va suivre.

Le procédé de compactage est très simple. Il consiste en :

- la définition d'un point quelconque appartenant au dessin,
- le codage de la direction dans laquelle il faut se déplacer pour atteindre le point suivant.

Le programme de compactage filiforme défini est écrit en BASIC et occupe les lignes 1200 à 1450.

Entrez le nom de l'écran à compacter. Cet écran aura été créé par le programme de tracé défini au chapitre 10.1 de la partie 5.

Déplacez ensuite le curseur graphique (grâce aux touches-flèches) jusqu'à rencontrer un point allumé sur le dessin.

Appuyez sur la touche « ENTER ». Le programme trace alors d'une autre couleur (PEN 2) le contour de la forme jusqu'à aboutir à une discontinuité. Arrivé à ce point, le tracé s'arrête. Il faut alors déplacer le curseur pour « sauter » la discontinuité. Dès que le curseur se trouve sur un autre point (voisin) du dessin, appuyez sur la touche « ENTER », et ainsi de suite jusqu'à ce que tout l'objet ait changé de couleur.

Appuyez alors deux fois sur la touche « ESC ». Le programme indique la place occupée par le fichier compacté et propose une sauvegarde magnétique ou un retour au compactage (appui sur « ENTER »).

Le programme de compactage est le suivant :

```
1010 REM Codage de formes
1020 REM *************
1030 '
1040 'Initialisation
1050 1
1060 'Prog. ASM Sauvegarde et affichage ecran
1070 FOR I=0 TO &17:READ A:POKE &2F00+I,A:NEXT
1080 DATA %21,0,%C0,%11,0,%40,1,%FF,%3F,%ED,%B0,%C9
1090 DATA &21,0,&40,&11,0,&C0,1,&FF,&3F,&ED,&B0,&C9
1100 '
1110 CN BREAK GOSUB 1670 'Sortie du programme
1120 INK 0,0:INK 1,10:INK 3,4,25:BORDER 0:MODE 1
1130 INPUT "Nom de l'ecran a coder ";N$:LOAD N$,&COOO
1140 W=10:AG=&3000 'Adresse graphique
1150 GOTO 1490 'Positionnement en debut de Forme
1160 AG=&3000:V1=INT(X/256):V2=X-V1*256:V3=INT(Y)/256:V4=Y-V3*256:P0KE AG,V1:P0K
E AG+1, V2: POKE AG+2, V3: POKE AG+3, V4: AG=&3003 'Entete
1170 '
1180 ' Codage de la forme en memoire
1190 '
1200 mx=x:my=y
1210 PLOT X,Y,2
1220 W=9' 'Init du calcul
1230 IF TEST(X+2,Y)=1 THEN U=X+2:V=Y:D=0:GOSUB 1430
1240 IF TEST(X+2,Y+2)=1 THEN U=X+2:V=Y+2:D=1:GOSUB 1430
1250 IF TEST(X,Y+2)=1 THEN U=X:V=Y+2:D=2:GOSUB 1430
1260 IF TEST(X-2,Y+2)=1 THEN U=X-2:V=Y+2:D=3:GOSUB 1430
1270 IF TEST(X-2,Y)=1 THEN U=X-2:V=Y:D=4:GOSUB 1430
1280 IF TEST(X-2,Y-2)=1 THEN U=X-2:V=Y-2:D=5:GOSUB 1430
1290 IF TEST(X,Y-2)=1 THEN U=X:V=Y-2:D=6:GOSUB 1430
1300 IF TEST(X+2,Y-2)=1 THEN U=X+2:V=Y-2:D=7:GOSUB 1430
1310 IF W=9 THEN 1490
1320 X=WX:Y=WY:PT1=0
```

```
1330 IF G=1 THEN G=0 ELSE G=1
1340 IF G=1 THEN OCT=16*wD ELSE OCT=OCT+wD:AG=AG+1:POKE AG,OCT
1350 IF W=O THEN PLOT x,y,2:GOTO 1370 'Saut de plume
1360 GOTO 1210
1370 IF G=1 THEN OCT=OCT OR %80 ELSE OCT=OCT OR 8
1380 IF g=1 THEN ag=ag+1
1390 POKE AG, OCT: GOTO 1490
1400 '
1410 'Calcul optimal du prochain point
1420 '
1430 W1=-(TEST(U+2,V)=1)-(TEST(U+2,V+2)=1)-(TEST(U,V+2)=1)-(TEST(U,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2,V+2)=1)-(TEST(U+2
ST(U-2,V)=1)-(TEST(U-2,V-2)=1)-(TEST(U,V-2)=1)-(TEST(U,V-2)=1)
(U+2,V-2)=1)
1440 IF W1<W THEN W=W1:WX=U:WY=V:WD=D
1450 RETURN
1460 '
1470 'Positionnement du curseur
1480 /
1490 WX=0:WY=0
1500 IF PT1=1 THEN AG=AG+1:POKE AG, %88 'Point unique
1510 cou=TEST(x,y):PLOT x,y,3
1520 A$=INKEY$: IF A$="" THEN 1520
1530 A=ASC(A$)
1540 PLOT X,Y,COU
1550 IF A=240 THEN Y=Y+2:WY=WY+2
1560 IF A=241 THEN Y=Y-2:WY=WY-2
1570 IF A=242 THEN X=X-2:WX=WX-2
1580 IF A=243 THEN X=X+2:WX=WX+2
1590 IF a<>13 THEN 1510
1600 IF WX>=0 THEN AX=WX/2 ELSE AX=(-WX/2) OR &80
1610 IF WY>=0 THEN AY=WY/2 ELSE AY=(-WY/2) OR &80
1620 AG=AG+1:POKE AG,AX:AG=AG+1:POKE AG,AY:g=0:ag=ag+1
1630 PT1=1:GOTO 1200
```

1640 'Sortie du programme
1660 '
1670 CALL &2F00 'Sauvegarde ecran
1680 CLS:PRINT"La forme occupe la memoire situee"
1690 PRINT"entre &3000 et ";HEX\$(AG+1);"."
1700 PRINT:INPUT"Nom de la sauvegarde (ou ENTER) ";R\$
1710 IF LEN(R\$)=0 THEN CALL &2F0C:RETURN 'Pas de sauvegarde
1720 POKE AG+1,&FF:SAVE R\$,B,&3000,AG+2-&3000 'Sauvegarde
1730 END

Lignes 1070 à 1090 : Chargement des sous-programmes Assembleur

Lignes 1110 à 1160: Initialisation du programme

Lignes 1200 à 1390: Codage de la forme

Lignes 1430 à 1450: Calcul optimal du prochain point

Lignes 1490 à 1630: Positionnement du curseur graphique sur le

prochain départ

Ligne 1710 : Retour au compactage si appui sur ENTER

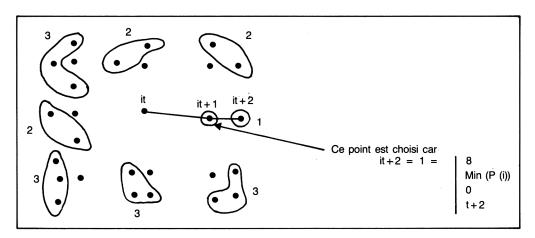
Ligne 1720 : ou sortie avec sauvegarde du fichier

compacté

Une technique intéressante employée dans ce programme est la recherche du prochain point à allumer en créant le moins possible de discontinuités. Cette technique est basée sur le principe suivant :

Tout point de l'écran peut être entouré de huit façons différentes :

o un point quelconque de l'écran

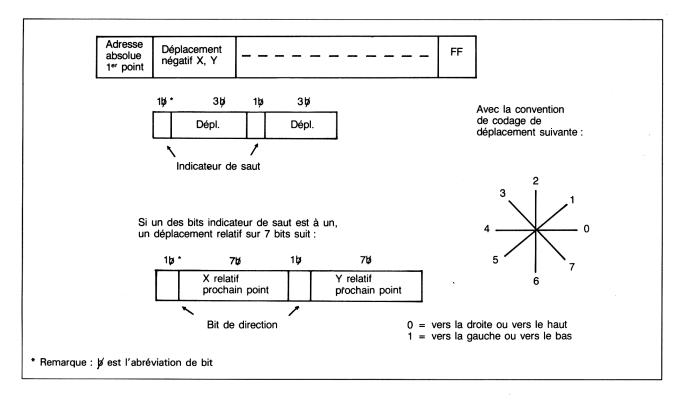

Appelons « t » le contexte actuel, « t+1 » le contexte après un déplacement, et « t+n » le contexte après n déplacements.

Si, pour chacun de ces huit points, nous calculons le nombre de points immédiatement contigus P(i) (et donc le nombre de déplacements possibles en t+2), il apparaît que :

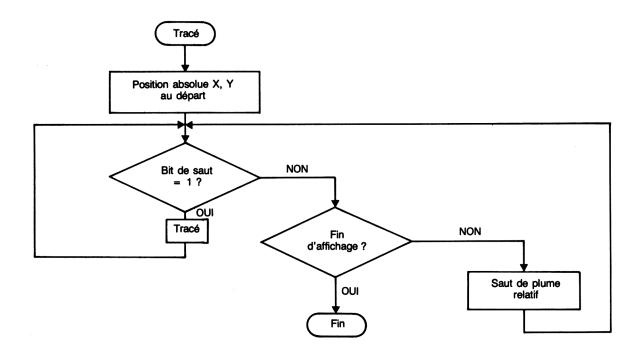
8 Min (P(i)) i=0

donnera le point i ayant le moins de chance de provoquer une discontinuité (Calcul de Min (P(i)) effectué ligne 1440, et calcul de P(i) effectué ligne 1430).

Partie 5 : Graphisme



Remarque importante :


La forme devra OBLIGATOIREMENT être dessinée en PEN 1. Référezvous aux lignes 1230 à 1300 du listing qui explique le pourquoi de la chose : le calcul du prochain point est effectué en comparant le résultat de la fonction TEST (qui donne la couleur d'un point) à 1.

Le programme défini ci-dessus utilise des sous-programmes écrits en langage d'assemblage pour l'affichage des dessins filiformes.

L'utilisation du langage d'assemblage est quasi obligatoire pour réduire le temps d'affichage qui, malgré tout, n'est pas négligeable (une seconde pour 2 000 points). Le principe est simple. Le fichier compacté généré par le programme précédent possède la structure suivante :

Partant de la structure de ce fichier, voyons comment écrire le programme de tracé.

d'où le programme d'assemblage suivant :

```
1
2
                  ; Afficheur de formes 4 bits
3
 4
                  ; Entree: HL=à de la forme
5
                  ; Sortie: Tts registres ecrases
                  ; Pt d'entree: AFO
6
                              ORG 9000H
8
9
                              LOAD 9000H
10
                 FORM:
                              DS
                                                       ;à Forme
11
                                    2
12
                 RT:
                              DS
                                    1
13
                 TSAUT:
                              EQU $
```

Partie 5 : Graphisme

1.4	9003	D090		DW	DIRO	
	9005			DW	DIR1	
	9007			DW	DIR2	
	9009			DW	DIR3	
	900B			DW	DIR4	
	9000			DW	DIR5	
	900F			DW	DIR6	
	9011			DW	DIR7	
22			;			
23			AFO:	EQU	*	;Point d'entree
24	9013	220090		L_D	(FORM),HL	;Sauvegarde à forme
		FD2A0090		L.D	IY,(FORM)	,
		FD5600		LD	D,(IY+0)	
		FD5E01		L.D	E,(IY+1)	
28	9020	FD6602		L.D	H,(IY+2)	
		FD6E03		L.D	L,(IY+3)	
		CDEABB		CALL	оввеан	;Plot absolu
31			ij.			
32	9029	DD2A0090		LD	IX,(FORM)	
33	902D	DD23		INC	IX	
34	902F	DD23		INC	IX	
35	9031	DD23		INC	IX	
36	9033	DD23		INC	ΙX	;IX=à 1er octet forme
37			<u> </u>			
38			AF000:	EQU	\$	
39	9035	DD7E00		LD	A,(IX+0)	
40			AFOO:	EQU	\$	
41	9038	FE88		CP	88H	
42	903A	2841		JR	Z,AFO1	
43	903C	E670		AND	70H	
44	903E	CB2F		SRA	А	
45	9040	CB2F		SRA	А	
46	9042	CB2F		SRA	А	

47	9044	CB2F		SRA	А	
48	9046	87		ADD	A,A	
49	9047	87		ADD	A,A	
50	9048	87		ADD	A,A	;Quartet fort X 8
51	9049	2A0390		LD	HL,(TSAUT)	
52	904C	0600		LD	в,о	
53	904E	4F		LD'	C,A	
54	904F	09		ADD	HL,BC	
55	9050	3E00		LD	A,0	
56	9052	320 29 0		LD	(RT),A	;Memo retour
57	9055	E9		JP	(HL)	;Trait quartet fort
58	1		AFO2:	EQU	\$	
59	9056	DD7E00		LD	A,(IX+0)	
60	9059	CB7F		віт	7,A	
61	905B	2020		JR	NZ,AFO1	;Saut de plume
62	905D	E607		AND	7	
63	905F	87		ADD	Α,Α	
64	9060	87		ADD	A,A	
65	9061	87		ADD	A,A	;Quartet faible X 8
66	9062	280390		LD	HL,(TSAUT)	
67	9065	0600		LD	в,0	
68	9067	4F		LD	C,A	
69	9068	09		ADD	HL.,BC	
70	9069	3E01		LD	A,1	
. 7:	906B	320290		LD	(RT),A	;Memo retour
72	906E	E9		JP	(HL)	;Trait quartet faible
7.	5		;			
7	ļ		AFO3:	EON	\$	
75	5 906F	DD7E00		L.D	A,(IX+0)	
7	9072	CB5F		BIT	3,A	
7	7 9074	2007		JR	NZ,AFO1	;Saut de plume
7	3 9076	DDS2		INC	IX	

					•				
79	9078	DD7E00		LD	A,(IX+0)				
80	907B	18BB		JR	AFO0				
81			į						
82			AFO1:	EQU	*				
83	907D	DD23		INC	ΙX				
84	907F	DD7E00		LD	A,(IX+0)				
85	9082	FEFF		CP	OFFH				
86	9084	C8		RET	Z				
87	9085	CB7F		BIT	7,A				
88	9087	200B		JR	NZ,AFO11	;X negațif			
89	9089	6F		LD	L,A				
90	908A	2600		LD	н,о				
91	908C	37		SCF					
92	908D	3F		CCF					
93	908E	ED6A		ADC	HL,HL				
94	9090	54		LD	D,H				
95	9091	50		LD	E,L	;Sauvegarde			
96	9092	1812		JR	AFO12				
97			AFO11:	EQU	\$				
98	9094	E67F		AND	7FH				
99	9096	6F		LD	L,A				
100	9097	2600		LD	н,о				
101	9099	37		SCF					
102	909A	3F		CCF					
103	909B	ED6A		ADC	HL,HL				
104	909D	54		LD	D,H				
105	909E	5D		LD	E,L				
106	909F	210000		LD	HL,0				
107	90A2	ED52		SBC	HL,DE				
108	90A4	54		LD	D,H				
109	90A5	5D		L.D	E,L	 ;Sauvegarde	depl.	X re	1
110			5						

111		AF012:	EQU	\$	
112 90A6	DD7E01		LD	A,(IX+1)	
113 90A9	CB7F		BIT	7,A	
114 90AB	2009		JR	NZ,AFO13	;Y negatif
115 90AD	6F		LD	L,A	
116 90AE	2600		LD	н,о	
117 90B0	37		SCF		
118 90B1	3F		CCF		
119 9 0B2	ED6A		ADC	HL,HL	
120 9 0B4	1810		JR	AF014	
121		AF013:	EQU	\$	
122 9086	E67F		AND	7FH	
123 9088	6F		LD	L,A	
124 90B9	2600		LD	н,о	
125 90BB	37		SCF		
126 90BC	3F		CCF		
127 90BD	ED6A		ADC	HL,HL	
128 90BF	44		LD	в,н	
129 9000	4D		LD	C,L	
130 9001	210000		LD	HL,0	
131 9004	ED42		SBC	HL,BC	
132		AF014:	EQU	\$	
133 9006	CDEDBB		CALL	OBBEDH	;Plot relatif
134 9009	DD23		INC	IX	
135 90CB	DD23		INC	‡×	
136 90CD	C33590		JP	AF000	;Passage a la suite
137		;			
138		DIRO:	EQU	\$	
139 90D0	110200		LD	DE,2	
140 90D3	210000		LD	HL,0	
141 90D6	1836		JR	DIRE	
142		;			

143	DIR1:	EQU	\$
144 90D8 110200		בם	DE,2
145 90DB 210200		L_D	HL,2
146 90DE 182E		JR	DIR8
147	;		
148	DIR2:	EQU	\$
149 90E0 110000		LD	DE,O
150 90E3 210200		LD	HL,2
151 90E6 1826		JR	DIR8
152	;		
153	DIR3:	EQU	\$
154 90E8 11FEFF		L.D	DE,OFFFEH
155 90EB 210200		<u> </u> LD	HL,2
156 90EE 181E		JR	DIR8
157	;		
158	DIR4:	EQU	\$
159 90F0 11FEFF		LD	DE,OFFFEH
160 90F3 210000		LD	HL,0
161 90F6 1816		JR	DIR8
162	;		
163	DIR5:	EQU	\$
164 90F8 11FEFF		LD	DE, OFFFEH
165 90FB 21FEFF		L_D	HL,OFFFEH
166 9 0FE 180E		JR	DIR8
167	;		
168	DIR6:	EQU	\$
169 9100 110000		LD,	DE,O
170 9103 21FEFF		LD	HL,OFFFEH
171 9106 1806		JR	DIR8
172	;		
173	DIR7:	EQU	\$
174 9108 110200		LD	DE,2

```
175 910B 21FEFF
                                L.D
                                     HL, OFFFEH
176
                   DIR8:
                                EQU $
177
178 910E CDEDBB
                                CALL OBBEDH
179 9111 3A0290
                                LD
                                     A, (RT)
180 9114 CB47
                                BIT
                                    0,A
181 9116 CA5690
                                JP
                                     Z,AFO2
182 9119 C36F90
                                JP
                                     AF03
183
                                END
```

Remarque:

Ce programme utilise la routine du FIRMWARE « PLOT RELATIVE ». Reportez-vous en au chapitre 2.7 de la partie 4 pour avoir plus de détails.

II. Le Décompacteur/Afficheur

Ce programme écrit en BASIC intègre le sous-programme précédent et permet d'afficher simplement une forme à l'écran.

Pour l'utiliser, entrez le nom de la forme à afficher et son implantation en mémoire.

Cette implantation sera toujours &3000 pour une utilisation standard du programme de codage. Pour pouvoir afficher plusieurs formes, il faudra leur donner des adresses d'implantation différentes. Dans ce cas, modifiez le programme de codage lignes 1160, 1690 et 1720 en conséquence. Après avoir chargé la ou les formes, leur dessin apparaît à l'écran.

Le programme d'affichage est le suivant :

```
1100 /
1110 'Chargement du S/P ASM afficheur de formes
1120 ′
1130 FOR I=%9003 TO %911B: READ A: POKE I, A: NEXT I
1140 DATA &DO,&90,&D8,&90,&E0,&90,&E8,&90,&F0,&90,&F8,&90,&0,&91,&8,&91
1150 DATA &22,&0,&90,&FD,&2A,&0,&90,&FD,&56,&0,&FD,&5E,&1,&FD,&66,&2,&FD,&6E,&3,
&CD, &EA, & BB, &DD, &2A, &0, &90, &DD, &23, &DD, &23, &DD, &23,
&DD,&23,&DD,&7E,&0,&FE,&88,&28,&41,&E6,&70,&CB,&2F,&CB,&2F,&CB,&2F,&CB,&2F,&87,&
87, &87, &2A, &3, &90, &6, &0, &4F, &9, &3E, &0, &32
1160 DATA &2,&90,&E9,&DD,&7E,&0,&CB,&7F,&20,&20,&E6,&7,&87,&87,&87,&2A,&3,&90,&6
, %0, &4F, &9, &3E, &1, &32, &2, &90, &E9, &DD, &7E, &0, &CB, &5F,
%20,%7,%DD,%23,%DD,%7E,%0,%18,%BB,%DD,%23,%DD,%7E,%0,%FE,%FF,%C8,%CB,%7F,%20,%B,
&6F,&26,&0,&37,&3F,&ED,&6A,&54,&5D,&18
1170 DATA &12,%E6,&7F,&6F,&26,&0,&37,&3F,&ED,&6A,&54,&5D,&21,&0,&0,&ED,&52,&54,&
5D, &DD, &7E, &1, &CB, &7F, &20, &9, &6F, &26, &0, &37, &3F, &ED,
%6A,&18,&10,&E6,&7F,&6F,&26,&0,&37,&3F,&ED,&6A,&44,&4D,&21,&0,&0,&ED,&42,&CD,&ED
, &BE, &DD, &23, &DD, &23, &C3, &35, &90, &11, &2
1190 DATA &0,&21,&0,&0,&18,&36,&11,&2,&0,&21,&2,&0,&18,&2E,&11,&0,&0,&21,&2,&0,&
18,826,811,8FE,8FF,821,82,80,818,81E,811,8FE,8FF,821
,&0,&0,&18,&16,&11,&FE,&FF,&21,&FE,&FF,&18,&E,&11,&0,&0,&21,&FE,&FF,&18,&6,&11,&
2,&0,&21,&FE,&FF,&CD,&ED,&BB,&3A,&2,&90
1190 DATA &CB,&47,&CA,&56,&90,&C3,&6F,&90
1200 FOR I=0 TO 6:READ A:POKE &9200+I,A:NEXT 'Commande de l'afficheur
1210 DATA %21,0,%30,%CD,%13,%90,%C9
1220 '
1230 'Saisie des formes a afficher
1240 ′
1250 NF=NF+1 'Numero de forme
1260 LOCATE 1,10:INPUT"Nom de la forme";N$
1270 INPUT"Implantation memoire"; IM(NF)
1280 LOAD N#, IM(NF) 'Chargement forme
1290 INPUT"Position sur l'ecran: X=";X
1300 INPUT"
                                  Y="; Y
1310 A1=INT(X/256):A2=X-A1*256:A3=INT(Y/256):A4=Y-A3*256
1320 POKE IM(NF)+1,A2:POKE IM(NF)+3,A4:POKE IM(NF),A1:POKE IM(NF)+2,A3
1330 PRINT:INPUT"Une autre forme (O/N) ";R$:R$=UPPER$(R$)
```

```
1340 IF R$<>"O" AND R$<>"N" THEN 1330
1350 IF R#="0" THEN 1250
1360 /
1370 'Affichage de la (des) forme(s)
1380 '
1390 CLS:NF=1 'Affichage forme 1
1400 WHILE IM(NF)<>0
       MSB=INT(IM(NF)/256):LSB=IM(NF)-MSB*256 'à sur 8 bits
1410
1420
       POKE &9201,LSB:POKE &9202,MSB 'Interface afficheur
       CALL &9200 'Affichage
1430
1440
       NF=NF+1
1450 WEND
1460 END
```

Lignes 1060 à 1090 : Présentation

Lignes 1130 à 1190 : Chargement du sous-programme afficheur

Lignes 1200 à 1210 : Chargement de l'interface

BASIC/ASSEMBLEUR

Lignes 1250 à 1350 : Saisie des formes à afficher

Lignes 1390 à 1460 : Affichage des formes.

Les sous-programmes écrits en langage d'assemblage utilisés sont :

- le programme d'affichage défini dans le compacteur filiforme,
- un programme d'interfaçage avec le BASIC qui consiste à donner dans HL la première adresse de la forme à afficher. Cette adresse est décomposée en poids fort et poids faible Ligne 1300.