5/11

Tracé de cercles

Les CPC ne possèdent pas d'instruction de tracé de cercles en Basic. Nous allons bien vite combler cette lacune à l'aide de la RSX ICIRCLE. Tout d'abord, un peu de théorie.

La méthode la plus classique pour tracer un cercle consiste à utiliser ses équations :

$$X = XC + R \times COS$$
 (alpha)
 $Y = YC + R \times SIN$ (alpha)

où XC et YC sont les coordonnées du centre du cercle, R est le rayon du cercle, et alpha est un angle variant entre 0 et 360 degrés. Cette méthode de tracé est relativement simple. Son seul inconvénient est sa relative lenteur, même en assembleur.

Heureusement, le mathématicien Bresenham a découvert un algorithme qui offre deux avantages :

- les coordonnées sont calculées à l'aide d'opérations entières ;
- les opérations pour calculer chaque point consistent en de simples additions, et sont donc très rapidement effectuées.

Nous n'allons pas retracer le cheminement logique qui a permis à Bresenham de définir l'algorithme. Nous utiliserons simplement le résultat :

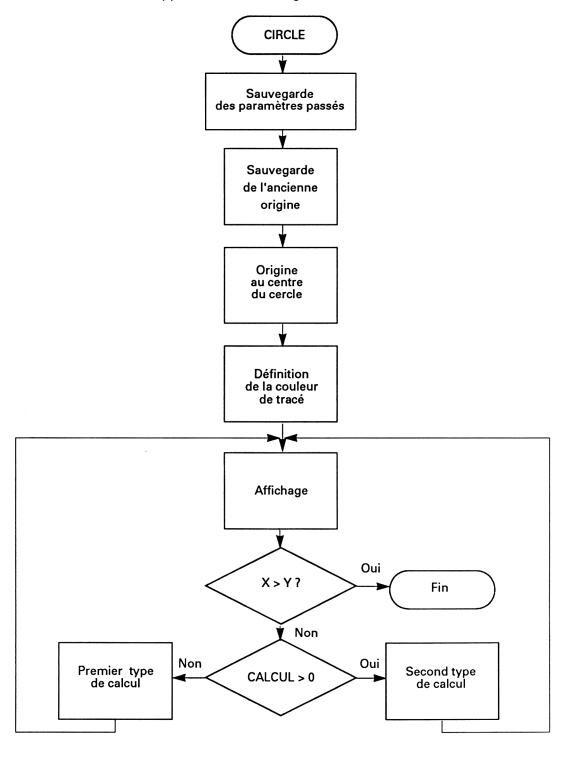
Les coordonnées du premier point du cercle sont X=0, Y=R.

La valeur 3-2 x R est affectée à la variable CALC. Si cette valeur est positive, la prochaine valeur de CALC est (X-Y)x4+10+CALC et l'ordonnée du prochain point est incrémentée. Dans le cas contraire, la prochaine valeur de CALC est Xx4+6+CALC. Quelle que soit la valeur de CALC, l'abscisse est incrémentée. Les couples de points suivants appartiennent au cercle : (X, Y), (X, -Y), (-X, Y), (-X, -Y), (Y, X), (Y, -X), (-Y, X), (-Y, -X).

La description du cercle est complète lorsque X-Y devient positif.

Le petit programme Basic suivant applique à la lettre cet algorithme :

Afin de rendre le tracé de cercles plus accessible a un programme Basic, nous allons définir la RSX | CIRCLE dont la syntaxe est la suivante :


CIRCLE, X, Y, R, C

où X et Y sont les coordonnées du cercle, R est le rayon du cercle, et C la couleur de tracé.

Partie 5: Graphisme

LA RSX EN DÉTAIL

La RSX **¡CIRCLE** est bien entendu écrite en Assembleur. Sa logique apparaît dans l'ordinogramme suivant :

La définition de la RSX (lignes 42 à 46) fait désormais partie des opérations classiques. Reportez-vous si nécessaire aux autres RSX de l'ouvrage pour avoir plus de détails à son sujet.

La routine de traitement de la RSX se trouve à l'adresse CIRCLE. Les premières actions effectuées par cette routine consistent en la mémorisation des paramètres qui lui sont passés. Ces paramètres sont pointés par le registre IX :

- la couleur de tracé est stockée dans la variable COUL (lignes 53 et 54);
- le rayon du cercle dans la variable RAYON (lignes 55 à 57) ;
- les coordonnées du centre du cercle dans les variables X et Y (lignes 58 à 63).

L'origine graphique de l'écran étant redéfinie, le programme sauvegarde ensuite l'ancienne origine qui est lue à l'aide de la macro GRA GET ORIGIN du FIRMWARE (lignes 69 à 71).

La nouvelle origine est définie au centre du cercle à l'aide de la macro **GRA SET ORIGIN** du FIRMWARE (lignes 77 à 79).

Les coordonnées du point de départ sont initialisées (X=0, Y=R) lignes 85 à 89.

La couleur de tracé est initialisée à l'aide de la variable COUL et de la macro GRA SET PEN du FIRMWARE (lignes 90 et 91).

La boucle de calcul **BIS** est très proche de celle réalisée en Basic. Notez cependant que les multiplications par 4 ont été effectuées à l'aide de décalages et rotations logiques (lignes 109 et 112 et 130 à 133).

Les points calculés sont affichés à l'aide de la macro GRA PLOT ABS du FIRMWARE entre les lignes 149 et 209. De nombreuses instructions PUSH et POP utilisent la pile pour augmenter la vitesse de calcul.

Le programme se termine par la restitution de l'ancienne origine graphique (lignes 215 à 219).

Le listing de la RSX est le suivant :

				•		
1				OR G	9000H	
2				LOAD	9000H	
3			;			
4			; RSX CIRCL	E		
5			; Format :	CIRCL	_E,X,Y,R,C	
6			; Entree :	X=Abso	cisse du rayon	
7			;	Y=Orda	onnee du rayon	
8			;	R=Rayo	on	
9			;	C=Coul	leur	
10			; Sortie :	Affich	nage du cercle	
11			;			
12			;			
13			;			
14			;			
15			; Declarati	on de	s constantes	
16			; et des va	riable	es du programme	
17			;			
18			;			
19			LOGEXT:	EQU	ØBCD1H	;KL LOG EXT
20			GETORI:	EQU	ØBBCCH	;GRA GET ORIGIN
21			SETORI:	EQU	ФВВС9Н	;GRA SET ORIGIN
22			PLOTABS:	EQU	ØBBEAH	GRA PLOT ABS
23			SETPEN:	EQU	ØBBDEH	;GRA SET PEN
24			BUF:	DS	4	; ZONE RAM POUR LOG EXT
25	9004	0990	PTRTAB:	DW	TABLE	;Pointeur TABLE
26	9006	C3279Ø		JF	CIRCLE	;Affichage du cercle
27	9009	43495243	TABLE:	DB	"CIRCL"	

27	900D	4 C				
	700E			DB	"E"+8ØH	
	900F			DB	0	;Fin de table
30			X:	DS	2	;Abscisse centre
31			Y:	DS	2	;Urdonnee centre
32			XORI:	DS	2	;Abs ancienne origine
33			YORI:	DS	2	;Ord ancienne origine
34			RAYON:	DS	2	;Rayon du cercle
35			CALC:	DS	2	;Var intermediaire
36			COUL:	DS	1	;Couleur de trace
37			;			
38			;			
39			; Definition	n de :	la RSX	
4Ø			;			
41			;			
41 42				EQU	\$;Point d'entree
42	901D	010490				<pre>;Point d'entree ;Ptr table definition</pre>
42 43		010490 210090		LD	BC,PTRTAB	
42 43 44	9020			LD LD	BC,PTRTAB	;Ptr table definition
42 43 44 45	9020	210090 CDD1BC		LD LD	BC,PTRTAB HL,BUF	;Ptr table definition ;Buffer pour LOG EXT
42 43 44 45	9020 9023	210090 CDD1BC		LD LD CALL	BC,PTRTAB HL,BUF	;Ptr table definition ;Buffer pour LOG EXT
42 43 44 45 46	9020 9023	210090 CDD1BC	DEFRSX:	LD LD CALL	BC,PTRTAB HL,BUF	;Ptr table definition ;Buffer pour LOG EXT
42 43 44 45 46 47	9020 9023	210090 CDD1BC	DEFRSX:	LD LD CALL RET	BC,PTRTAB HL,BUF LOGEXT	;Ptr table definition ;Buffer pour LOG EXT
42 43 44 45 46 47 48	9020 9023	210090 CDD1BC	DEFRSX:	LD LD CALL RET	BC,PTRTAB HL,BUF LOGEXT	;Ptr table definition ;Buffer pour LOG EXT
42 43 44 45 46 47 48 49	9020 9023	210090 CDD1BC	DEFRSX:	LD LD CALL RET	BC,PTRTAB HL,BUF LOGEXT	;Ptr table definition ;Buffer pour LOG EXT
42 43 44 45 46 47 48 49 50	9020 9023	210090 CDD1BC	perrex:	LD LD CALL RET	BC,PTRTAB HL,BUF LOGEXT	;Ptr table definition ;Buffer pour LOG EXT

54	902A	321090		LD	(COUL),A	
55	902D	2 0 9940		LD	H,(IX+3)	
56	9030	DD6EØ2		LD	L,(IX+2)	
57	9033	221890		LD	(RAYON),HL	;Sauv Rayon
58	9036	DD6605		LD	H,(IX+5)	
59	9039	DD6EØ4		LD	L,(IX+4)	
60	903C	221290		LD	(Y),HL	;Sauv Ordonnee
61	903F	DD6607		LD	H,(IX+7)	
62	9042	DD6E06		LD	L,(IX+6)	
63	9045	221090		LD	(X),HL	;Sauv Abscisse
64			;			
65			;			
66			; Sauvegarde	anc	ienne origine	
67			;			
68			;			
69	9048	CDCCBB		CALL	GETORI	;GRA GET ORIGIN
70	9048	ED531490		LD	(XORI),DE	
71	904F	221690		LD	(YORI),HL	
72			;			
73			;			
74			; Definition	n nou	velle origine	
75			;			
76			;			
77	9052	ED5B1090		LD	DE,(X)	
78	9056	2A1290		LD	HL,(Y)	
79	9059	CDC9BB		CALL	SETORI	;GRA SET ORIGIN
80			;			

81			;			
82			; Initialisa	ations	s diverses	
83			;			
84			;			
85	9Ø5C	210000		LD	HL,0	
86	905F	221090		LD	(X),HL	
87	9062	221A9Ø		LD	(CALC),HL	
88	9065	2A1890		LD	HL, (RAYON)	
89	9068	221290		LD	(Y),HL	
90	906B	3A1C9Ø		LD	A,(COUL)	
91	906E	CDDEBB		CALL	SETPEN	;Couleur de trace
92			;			
93			BIS:	EÖN	\$;Boucle principale
94	9071	CDD490		CALL	AFFICHE	;Aff de 8 points
95	9074	2A1090		LD	HL,(X)	
96	9077	ED5B1290		LD	DE, (Y)	
97	907B	AF		XOR	А	
98	9 0 7C	ED52		SBC	HL,DE	
99	907E	F23A91		JP	P,FIN	;Fin du programme
100			;			
101	9081	2A1A9Ø		L.D	HL, (CALC)	
102	9Ø84	110000		LD	DE,Ø	
103	9087	AF		XOR	Α	
104	9088	ED52		SBC	HL, DE	
105	908A	F2AD90		JP	P,SECOND	;2eme type de calcul
106			;			
107			PREMIER:	EQU	\$;1er type de calcul
108	908D	2A1090		LD	HL,(X)	

109 9090 CB25		SLA	L.	
110 9092 CB14		RL	н	
111 9094 CB25		SLA	L	
112 9096 CB14		RL	н	; X * 4
113 9098 110600		LD	DE,6	
114 909B 19		ADD	HL, DE	; X*4+6
115 909C ED5B1A90		LD	DE,(CALC)	
116 90A0 19		ADD	HL,DE	; X*4+6+CALC
117 90A1 221A90		LD	(CALC),HL	
118	;			
119	SUITE:	EQU	\$	
120 90A4 2A1090		LD	HL,(X)	
121 90A7 23		INC	HL	
122 90A8 221090		LD	(X),HL	; X+1
123 90AB 18C4		JR	BIS	;Suite du traitement
124	;			
125	SECOND:	EQU	\$;2eme type de calcul
126 90AD 2A1090		LD	HL,(X)	
127 90B0 ED5B1290	ð	LD	DE,(Y)	
128 9084 AF		XOR	A	
129 90B5 ED52		SBC	HL,DE	
130 90B7 CB25		SLA	L	
131 90B9 CB14		RL	н	
132 90BB CB25		SLA	L	
133 90BD CB14		RL	н	; (X-Y)*4
134 90BF 110A00		LD	DE,10	
135 90C2 19		ADD	HL, DE	; (X-Y)*4+1Ø

136 90C3 ED5B1A90		LD	DE, (CALC)	
137 90C7 19		ADD	HL,DE	; (X-Y)*4+10+CALC
138 90C8 221A90		LD	(CALC),HL	
139 90CB 2A1290		LD	HL, (Y)	
140 90CE 2B		DEC	HL	
141 90CF 221290		LD	(Y),HL	
142 90D2 18D0		JR	SUITE	
143	;			
144	;			
145	; Affichage	des p	ooints calcules	
146	;			
147	;			
148	AFFICHE:	EQU	\$	
149 90D4 2A1290		LD	HL,(Y)	
150 90D7 ED5B1090		LD	DE,(X)	
151 90DB D5		PUSH	DE	
152 90DC E5		PUSH	HL.	
153 90DD E5		PUSH	HL	
154 90DE D5		PUSH	DE	
155	;			
156 90DF 210000		LD	HL,Ø	
157 90E2 ED5B1290		L.D	DE, (Y)	
158 90E6 AF		XOR	A	
159 90E7 ED52		SBC	HL,DE	
160 90E9 ED5B1090		LD	DE,(X)	
161 90ED D5		PUSH	DE	
162 90EE E5		PUSH	HL	

163 90EF E5 PUSH HL 164 90F0 D5 PUSH DE	
144 BOED DE BUGU DE	
164 90F0 D5 PUSH DE	;-Y,X
165 ;	
166 90F1 210000 LD HL,0	
167 90F4 ED5B1090 LD DE,(X)	
168 90F8 AF XOR A	
169 90F9 ED52 SBC HL,DE	
170 90FB ED5B1290 LD DE,(Y)	
171 90FF E5 PUSH HL	
172 9100 D5 FUSH DE	;-X,Y
173 9101 D5 PUSH DE	
174 9102 E5 PUSH HL	; Y , -X
175 ;	
176 9103 E5 PUSH HL	; -X
177 9104 210000 LD HL,0	
178 9107 ED5B1290 LD DE,(Y)	
179 910B AF XOR A	
180 910C ED52 SBC HL,DE	
181 910E E5 PUSH HL	
182 910F D1 FOP DE	; -Y
183 9110 E1 POP HL	; -X
184 9111 E5 PUSH HL	
185 9112 D5 PUSH DE	;-X,-Y
186 ;	
187 9113 CDEARB CALL PLOTAB	; -Y, -X
188 9116 E1 POP HL	
189 9117 D1 POP DE	

190	9118	CDEABB		CALL	PLOTABS	;-x,-
191	911B	E1		POP	HL	
192	911C	D1		POP	DE	
193	911D	CDEABB		CALL	PLOTABS	; Y , -X
194	9120	E1		POP	HL	
195	9121	D1		POP	DE	
196	9122	CDEABB		CALL	PLOTABS	;-X,Y
197	9125	E1		POP	HL	
198	9126	D1		POP	DE	
199	9127	CDEABB		CALL	PLOTABS	;-Y,X
200	912A	E1		POP	HL	
201	912B	D1		POP	DE	
202	912C	CDEABB		CALL	PLOTABS	; X ,-Y
203	912F	E1		POP	HL	
204	9130	D1		POP	DE	
205	9131	CDEABB		CALL	PLOTABS	; Y , X
2016	9134	E1		POP	HL	
207	9135	Di		POP	DE	
208	9136	CDEABB		CALL	PLOTABS	; X , Y
209	9139	C9		RET		
210			;			
211			;			
212			; Restitutio	on de	l'origine	
213			;			
214			;			
215			FIN:	EQU	\$	
216	913A	ED5B1490		LD	DE,(XORI)	

217 913E 2A1	1690	LD HL,(YORI)		
218 9141 CDC	29BB	CALL SETORI	; GF	RA SET ORIGIN
219 9144 C9		RET		
220		END		
AFFICHE	90D4 BUF	9000 BIS	9071 CALC	901A
COUL	901C CIRCLE	9027 DEFRSX	901D FIN	913A
GETORI	BBCC LOGEXT	BCD1 PLOTABS	BBEA PTRTA	B 9004
PREMIER	908D RAYON	9018 SETORI	BBC9 SETPE	N BBDE
SUITE	90A4 SECOND	90AD TABLE	9009 X	9010
XORI	9014 Y	9012 YORI	9016	

Comme toujours, voici la version chargeur Basic, bien plus pratique à utiliser :

```
1000 REM -----
1010 REM Chargeur BASIC de la RSX de trace de cercles
1030 REM
1040 FOR i=&9000 TO &9144
1050
      READ a≸
      まニ"&"+a事
1060
1070
      POKE i, VAL(a*)
1080 NEXT i
1090 CALL &901D
1100 END
1110 REM - - - - - - - - - - - -
1120 REM Donnees du programme de trace
1130 REM - - - - - - - - - - - -
1140 REM
1150 DATA FC,A6,4,90,9,90,C3,27,90,43,49,52,43,4C,C5,0
1160 DATA C,0,B,0,0,0,0,0,11,0,C,0,2,1,4,90
1170 DATA 21,0,90,CD,D1,BC,C9,DD,7E,0,32,1C,90,DD,66,3
1180 DATA DD,6E,2,22,18,90,DD,66,5,DD,6E,4,22,12,90,DD
1190 DATA 66,7,DD,6E,6,22,10,90,CD,CC,BB,ED,53,14,90,22
1200 DATA 16,90,ED,5B,10,90,2A,12,90,CD,C9,BB,21,0,0,22
1210 DATA 10,90,22,1A,90,2A,18,90,22,12,90,3A,1C,90,CD,DE
1220 DATA BB,CD,D4,90,2A,10,90,ED,5B,12,90,AF,ED,52,F2,3A
1230 DATA 91,2A,1A,90,11,0,0,AF,ED,52,F2,AD,90,2A,10,90
1240 DATA CB,25,CB,14,CB,25,CB,14,11,6,0,19,ED,5B,1A,90
1250 DATA 19,22,1A,90,2A,10,90,23,22,10,90,18,C4,2A,10,90
1260 DATA ED,5B,12,90,AF,ED,52,CB,25,CB,14,CB,25,CB,14,11
1270 DATA A,0,19,ED,5B,1A,90,19,22,1A,90,2A,12,90,2B,22
1280 DATA 12,90,18,D0,2A,12,90,ED,5B,10,90,D5,E5,E5,D5,21
1290 DATA 0,0,ED,5B,12,90,AF,ED,52,ED,5B,10,90,D5,E5,E5
1300 DATA D5,21,0,0,ED,5B,10,90,AF,ED,52,ED,5B,12,90,E5
1310 DATA D5,D5,E5,E5,21,0,0,ED,5B,12,90,AF,ED,52,E5,D1
1320 DATA E1,E5,D5,CD,EA,BB,E1,D1,CD,EA,BB,E1,D1,CD,EA,BB
1330 DATA E1,D1,CD,EA,BB,E1,D1,CD,EA,BB,E1,D1,CD,EA,BB,E1
1340 DATA D1,CD,EA,BB,E1,D1,CD,EA,BB,C9,ED,5B,14,90,2A,16
1350 DATA 90,CD,C9,BB,C9,0,0,0,0,0,0,0,0,0,0,0,0
```

et les données de checksum correspondantes :

Le petit programme de démonstration suivant montre qu'il est très simple d'utiliser la RSX | CIRCLE :

```
100 REM -----
110 REM Programme de demonstration
120 REM -----
130 REM
140 MODE 1
150 FOR I=1 TO 50
    X=INT(RND(1)*600)
170
     Y=INT (RND(1)*400)
     R=INT(RND(1)*100)
180
     C = INT(RND(1)*3)+1
190
200
     :CIRCLE,X,Y,R,C
210 NEXT I
```

Avant de pouvoir utiliser l'CIRCLE, il faut bien entendu l'avoir installée, par exemple avec le chargeur Basic précédent.