Z80 timings on Amstrad CPC - Cheat sheet

This document is a visual layout made by cpcitor/findyway from data at http://www.cpctech.org.uk/docs/instrtim.html

Instruction timings

The main clock in the CPC is 16 Mhz This is provided to the Gate-Array which generates the other clocks

The Gate Array has the following roles:
generation of a 1 Mhz clock for the CRTC and AY-3-8912 generation of a 4 Mhz clock for the CPU
arbitrates access to the RAM between the CPU and the video hardware (CRTC and Gate-Array)

Every microsecond:

The CRTC generates a memory address using it's MA and RA signal outputs

The Gate-Array fetches two bytes for each address
The video hardware is given priority so that the display is not disrupted

The Gate-Array generates the "READY" signal which is connected to the "/WAIT" input signal of the CPU. This signal is used to stop the CPU accessing while the video-hardware is accessing it. As a result, all instruction timings are stretched so that they are all multiples of a microsecond ($1 \mu \mathrm{~s}$), and this gives an effective CPU clock of 3.3Mhz.

Key:	condition code (z,nz,c,nc,p,m,po,pe)
cc	8 -bit register (B,C,D,E,H,L,A)
r	Bit number (0,1,2,3,4,5,6,7)
b	8 bit value
n	16 bit value
nnnn	8 bit displacement
dd	16 -bit register (HL,DE,BC) or SP (except for PUSH and POP)
rp	condition not satisfied

Other timings

Time between acknowledge of a interrupt and execution of a interrupt

Mode 0: (depends on instruction)
Mode 1: 5
Mode 2: 19

1 monitor scanline: 64 microseconds
1 50Hz monitor frame: 19968 microseconds.

NOTES:

(note 1) This timing applies when there are multiple DD or FD prefix's together.

