AMETRAD

PERIPHERAL - TECHNICAL MANUAL (C) 6-86, DK TRONICS LTD EDITION 2

CONTENTS

PAGE

Introotuction

3

Chapt	er 1: Graphics Lightpen	1-6
1.1	Installation	1--1
1,2,1	Software loading details (cessette)	$1 \cdots 1$
1.2 .2	Ooftwne loading details (ROM)	1-2
1.3	Ruming the package - Easics	12
1.4	Filling in shapes	1-E
1.5	Drating cutves and tomples stapes	1-
1.6	Circher and rectargles	1-9
1, E, 1	Circle drauing	1-10
1.E.2	Rectampe drawing	1-10
1.7	Copyma expanding and shrinking	1-11
1.7.1	How to enlarge an object.	$1-12$
1.7.2	How to reduce en ototect	1-13
1.8	Enterimp text	$1-14$
1.9	Fine detail and aiteretions	1.16
1.10	Using tape and dise trives	1 17
1,11	Secking up your graphics packape (cassette versjon)	$1 \cdot 17$
1.11 .1	To load without ruming (ressette version)	1.17
1,11,2	To seve to tape (cassette version)	1-19
1.11.3	To seve to dise (cassette version)	$1-18$
1.12	Locding and savirug	$1-19$
1.13	Using printers	1-24
1.13.1	Epson frinten Expmple	$1-20$
1, 1.2	Amstrad punnter example	1-21
1,13,	Advanced instructions for printouts	\| $\cdot 1$
1.14	ysing screans in your own progran	1-24
1.15	Using the graphics lightpen in your oun prograf	-t
1.15	Feview of graphics parkape iommands	1-2\%
1.17	Menu schemetic	$1-3$

Chapter 2: Speech synthesizer 2-1

2.1	Ingtallation	2-2
2.2	Setting up end using the steren amplifier	$2-2$
2,3	Speech synthesis	$\dot{2}$ - 3
2.4. 1	Software loading details (cessette)	23
2.4 .2	Software loading details (ROM)	- 3
2.5	EASIC command extensions	$\underline{2-4}$
2.E	Epeech synthesizer	2-5
2.6 .1	Speech control birect. from EAEIC	
2.6,2	The IFEEO command	- E
$2, E, E$	Text to speeth converter	2-
2, E, 4	Text to speech buffers	2- S
2.E.5	Frint mode sommands	$2-9$
2,E.E	The 19 PED rommand	2-16

CONTENTS
PAGE
2.7 Machine soute control $2-10$
2.7 .1 Text to speerh machine code calls 2-11
z.e Allophone table $2-12$
2.G Dictionary $2-14$
Chapter 3: 64K and 256K Memory expansion $3-1$
3.1 Installation 3-2
$3.2 \quad U s i n g$ your extra RAM 3-3
3.3 RAM test 9-3
3.4 Extended EASIC commands 3-3
3.5 Wintows and pulldown menus 2- 4
3,5,1 More windowing -5
3.E Arrays, variables and strings 3-E
B.E.l More arrays, variables and Etrings 3-10
3.E.2 String storage 3-10
3.7 Animation and picture stwus 3-12
3.9 Advanced progremming 3-14
3. 9 Feeking ond puking 3-16
3,10 Frograming without ReXs 3-17
3.11 Tectmical details 3-15
3.11.1 The loat address 3-19
3.11,2 Saving te disc $8-18$
$3.11,3$ Increasing CF/M 2.2 TFA 3-18
6.11.4 Using CF/M Z.2 $3-20$
3.12 Error messages $3-20$
3.16 Fieferance of Rex commands 3-21
3,14 Tecnical details (hardware organisation 3-22
3.15 Customising your CP/M FLus system disc $3-2$
Chapter 4: 64K and 256K Silicon Disc 4-1
4.1 Installation 4-2
4.2 First steps 4-3
4.3 Compatability 4- 5
4.4 Using your silicon disc in CF/M 2.2 4- 6
4.4.1 Using your silicon disc in CF/M FLUs 4- 7
4.5 Advanced motes4-8

Introduction

This hamual contains all the current deatils of peripherals for the Anstrat 464 ，EG4 and El2 eomputers that are available from DK＇tronics，

All peripherals are supplied with comprehensive software in cassette， disc ar fom format amj are usually controlled through EASIC via Resident System Extensions，（fisx＇s），As such the new commende are preceeded by the（EAR）I symbol which is obtained by pressing the SHIFT：key tropether with the ge key．

Throughout this manual all command key entries are shown enclosed in the symbols＜？$i \in$ EENTER．

The commend keys are given as follows ：－
＜ENTEF
CLR
CTRL
SHIFT〉
COLFY
＜ESC
（TAB）

A1l text，numeric entries are inchesed within the symbels＇＇，je type in＇llightpen＇．

If the user is required to enter values for the figx commands then these are enclosed in the brackets [] ．

When ever the weer $2 s$ required to enter gata for the variows fex＇s then the syntax is as given in the example below：－

SGavew，［ window number ］，［ bank：］
Therefore the user would actually type in the following：－
press 〈SHIFT〉 togethen with the ekey，to obtain the（bar）syntrol，
then type in＇savew， 5,2 ＇then press（ENTER）
where window number $=5$ and bank $=2$

GRAPHICS LIGHT PEN


```
An, Film va,SlimG.
&atumes 1molude:-
```

```
colour palette
'mudge' control for I piciel accuracy
brusht cholce
text hamdling
user defined sprites
magnify
strimk
circles
rectangles
1ines
curves
calour fill
tape and disc facilities
pictume storage amet retrieval
pen calibration utilit:y
printer durip
```


GRAPHICS LIGHTPEN MANALAL

WAFNING

This unit must be used in accordance with these instructions, Never plug in or remove the interface without first disconnecting the power from the computer. Failure to follow these instructions may result in damage to the interface or the computer.

1.1 INSTALLATION

To set bp your Graphics Lightpen, TUFN OFF THE FOWER TO YDUR AMSTRAO, then pledg the intertace into the disc port on the CfG 4EA or the
 fit the aisc orive intanface onto the bact of yotir lightfen via the throwgh comectri. Attacti the lightpen itself to the jack socket. an the left side of the interface.

The DK'Tromics Graphics Lightpen is compatible witt the Amstrad dise drive (ODI-i) and the DK'Tromes speech unit, ans amy sombination of the thiree sen te used.

Now turn on your computer. The computer strould indialise mormelly, If it thes bot, switch off the power to the computer by the switch on the monitor and check thet all the connections have been mede correctly. Now switeto on agein, Due to the construction of the momochame monitor, you hay have to wait a short while before switching on while the monitor resets power to the romputer, this is puite normat.

1,2,1 SOFTWARE LOADING DETAILS (rassette)

Your biaphics Lightpen ran be used directly from EASIC or marhine-code progrens of your own, but the graphics pactioge suppled blidstretes what. can be achieven with the lightpen and serves as a useful demonstration of its powers. It is also a powenftif propranim ita own right as shown by the artwork on the packaging, whirh was arawn using the Graphacs Lightpen.

To loat, simply plate the cassette in the tape arove, press <pLAY\%, and type 'RUN "". and press CENTEF: The program will now loat into the conputer.

If you have an Amstrad bisc arive atoamed to your Eomputer tren you need to type 'lTAFE' and press ENTER' Now type 'RUN ""' and fress EENTEF, The procedtre for loguing on the Amstrad EEd is similar except. you need to attach an external fassette thit berore wing the above instruttons. Fud ingtructions om bading tafus may be found in yout Amstrat manuel.
 protected, so that users uith dise dives may copy the software to dise.

1.2.2 SOFTWARE LOADING DETAILS (ROM)

All that is required to run the FOM software is to type in "lliphtpen" then press ENTER〉.

1.3 RUNNING THE PACKAGE - BASICS

Once the progran is rum, the screen will clear to a white background with a blue border and a menu will appear, A menu is a list of tasks which the computer can carry out, Instead of you having to tell the computer whet to do by using symbols and words ilike in BASIC), it enables you to select from a sertein number of functions, compare this to the menu you might. find in a restaurant. The menu saves you having to ask for meals which are not available, and reminds you of the kinds of Gishes that you can have, Similarly when you want the computer to draw a circle or adit some screen, you simply select an item from the menu. To make the things easier to remenber, all the choices are in the form of pirtures, These express whet the fumction is without using lots of text!

This is the first of several menus whicti hold up to five choices representan as pictures or 'ikons'. Fointing the lightpen to each ikon will make a set of white trackets appear around the ikon. This indicates which choice you require, When the brackets are around the ikon you require, press either SENTEF key to nake your choice. Remeniber to leave the lightpen pointing at the ikon while you press SENTER:

If you wish, the selection can also be made by pressing the number keys ' 1 ' through to 's' and then SEnTEF'. This is useful for making choices before the pen has been calibrated. You can ghange your mind once you have pressed a number key, but you camot. use the lightpen to select an ik:on apain until the next menu appears. Once <ENTEF; has been pressed your choire is made, however pressing <ESC> will get you back to where you were.

Fractice pointing the lightpen at the ikons to make choices and see where you get to! Remeniber $E E C$, will always get you back to the last ment.

When you are familiar with choosing ikons, press <ESC〉 until the very first menu appears on the sereen, This is the LOADING and SAVENG menu and allows you to boed and save pictures you have drawn to tape or disc. The mend will look different depending on whether you have a disc drive attached:-

	Load from cassette
	Save to cassette
	Load from disc
	Save to disc
$\stackrel{\rightharpoonup}{\mathrm{NEXT}}$	NEXT MENU

Tape only

Foint to the lest ikon 'NEXT' or press 's'. Then press ENTEFA. A now menu will ョppaer with just three ikons:-

The first ikon will clear the screen's contents and should be carefuliy SSed! The second allows you to enter the lightpen ralibration routine. Foint the lightmen at the calibrate ikon and press ENFEfy to confirm your cholce.

A target lise the ikon itself will appear on the srreen. Now hald the lightpen up apainst tha screen in the centre, if all is well the target. will hover directiy under the top of the pen, Increase or decrease the bibghtmess and/or montrast on your monitor or TV until tr. target follows the pen to all corners of the screen, for tost response fold the pen perpendicular to the screan, touching the glass and keep your arm well supported to prevent your hand shaking.

Dnce you have got the target to follow the pen, reduce the brightness until you get buest results with minimum brightness, The target may 'jitter' to a greater or lesser gegree but this does not matter as you will see when ssing the 'nudge' feeture.

The tappet may seem to be a short isstance away from the tip of the lightpen，If so，you can adiust the centre uf the pen by using the Amstrat＇s rursor keys：－

Hold the pen very steady and press the respective directions to move the cross binder the tip of the pen．Press \＆ENER try record this new Setting gi＜ESC\％to leave the setting Hmchanged，You can pecalibrate at． any time during using the program．

Your lightpen is now fully functional and calitreted，Do not worry if it diose not seen accurate enowh for fine line drawing－using the OK＇Tronics＇nudge＇feature the pen can draw as accurately as you wisti：－

The lest mond will reappuar．Gelect the＇NEXT＇ifon and press＜ENTEF〉 to fonfirm your ctoice．A new mena will appear：－

	DRAW MODE
	$\begin{aligned} & \text { FILL } \\ & \text { MODE } \end{aligned}$
3	PAINTBOX PALETTE
Yespor	$\begin{aligned} & \text { BRUSH } \\ & \text { SIZE } \end{aligned}$
$\stackrel{\text { NEXT }}{\square}$	NEXT MENU

You are now in the third menu．Pressing＜ESC＞will make the previous menu appear．Fress $\langle E C$ ，again and the first menu will appear． Fressing 《ESC〉 again will not take you to any further menus．Select． ＇NEXT＇to get into the second menu，then＇NEXT＇again to get back to the thirg menu．

＊＊＊REMEMBER＊＊＊

Fressing 〈ESC〉 whilst a menu is on the screen will take you PACK one menu，

Fressing 〈ESC〉 whilst you are performing some action on the screen （eg Calibrating，Drawing）will simply make the current menu reappear．

In all cases，selecting＇NEXT＇selects and displays the next merw．
There are five min menus and several sub－fands．You now know enough to flick through the five menus and back again but do not select any function as yet．

Go back to the third menu and select the third ikon，a paint palette．A paint bow will be displayed（different tones on the monochrome monitor）， Use the lightpen or number keys（＇l＇to＇\dot{b}＇）tos select a colour／tome from the box．The paint box is surrounded by a yellow boarder，you can use this to select the darker colours by pointing the pen to the border next to the required colour．

＊＊＊REMEMBER＊＊＊

The lightpen needs light to work－it will not pick up on dark colours or tones．

Select a bright colour／tone and press ENTEF to confirfio your choice， If you press EEG then the colour will reman the same and you will return to the last ment．

Now select the fourth akon，the poncil ikon．A menu of poncil sizes will appear and you can select amy size you want！The bottom ikon 15 a spray ean！this produces a splatter effect like an airbrush．Fress ©ENTER to select your pencil．

When you return to the third menu，point the lightoen to the first ikon and press EENTER to confirm your choice．You are now in draw mode！

There should now be a clear screen with a single small cross under the lightpen．This cross represents where the computer＇sees＇the lightpen． Pressing ENTER will drew a blob using the pencil and colour／tone you selected，Move the pen around the screen and press \＆ENTER：ajain．More blobs will appear！If you keep the Large ENTEFP key pressed down，then repoated blobs will appear and in this way you can shade in areas of screen．

Now press the space bar．A continuous line will bue orawn from the last point to the tip of the lightpen．If you are using a thin pencil then you can keep the space bar pressed and draw sequence of lines quite quickly．If you are using a thick pencil then you may have to move the lightpen more slowly．

When you are fed up, try pressing sESC and changing the colours and pencil sizes as outined beforehand, Also try clearing the screen by, pressing 《ESC〉 twice and going back to the serond mend.

When you have finished making petterns on the screen using the drewing mode, clear the screen then enter traw ninde ayain. Now nove the pen to the top right hand corner of the screen without pressing any dey, Now press one of the cursor keys and notice what happens.

The cross has now halted in one position and can ondy be moved by using the four cursor keys. This is the 'nudge' feature which means you can move the cross to a single pixel. Fressing sEATER: or the SFACEEAR willstill have the same effect as before, If you press copy then the cross will once more move with the light.pen. Try to draw some shapes by noving the cross, pressing cENTEF then moving the cross to another point, use the 'nurge' feature to move the cross to an exact position for say a square or a triangle. Now press the GFACEEAF to sraw a line to that point. Finally, use the 'nudge' to link the final edoe gif your shape to the starting point.

1.4 FILLING IN SHAPES

When you have your shape on the sereen you may wish to fill iif the centre with a colour/tone. Fress SEC> to re-enter the third menu, Then select the serond ikon, the tap! After you press ©ENTER, the menu will disappear and the cross will reappear. Move the cross so that it is inside the shape and press <ENTER , If you want to fill in small shapes where it is difficult to move the tip of the light pen into the centre of the shape, then move the cross close to the shape, then use the 'nudge' feature to move the cross into the exact area to be filled. Then press <ENTEF as before.

Watch out for shapes which have 'a leak'! Any shape which is not fully enclosed will let the ink spill out until it fills the whole screen, You can still press eESO to stop a fill whilst it is in action, it is worth remembering that whatever colour exists at the point where you start filling is taken as background colour. Hence you can remove objects by filling in a shape with white colour.

The best way to learn how to use fill is to experinent with lots ef different shapes drawn in draw mode, then fill them in. Remember to change the paint colour and pencil size. You may even like to try and fill the outline of a shape. If you use a thick line, then you can change the colour of the outline in one fill command,

1.5 dRAWING CURVES AND COMFLEX SHAPES

Select tre fourth menu:-

For argwitg complex ghepues or curves, the software makes use of rubtuer bams' stretched tutuexin 'drawing pins'. For instance, a curve can be coneddered as a Eeries of short lines:-

Or Evan:-

The Graphiss packape allows you to detine a shape gon the gereen using one rubter tand and up to twenty drawing pins. This feature is most. useftil because just as real drawing pine can be removed, so can the maghnary computer drawing pins.

Once you are happy with the shape you have arewn, the computer renoves the rubber band and pins then outiines the shape in the curpent pencil and crlour/tone.

Go bact to the secomy fond and clear the screan. Then return to thas mend and selert the first ikon. Fress EENTER to contirm your choice, A cross like the one used in draw and fill mode will appear in the tuttom left of the screen, The first effect that you may notice is trat. the cross does mot. follow the lightpen. This is buectuse the cross is bintialiy bockey in position and will only move to the lightepen when GQfy: \leq pressed, Try keeping ©COFY\% pressed and waving the lightpen an the screen, The cross represents where the first drawing pan or the stavt of a shape' will go Let the <COFY〉 key gu and the eross will lock into position. It can now be finely adisated by bsing the burgor kevs.

When you heve the aross just whene you want it, press entere The cross mow becones a pin, and one end of tre ruber tand is flacy to the screen. If yout now fress SCOPY> again while moving trie lightpan on the screen, you will see a line from the first pin to the cross at the tip of the lightpen. The lime will not affect anything already on the sireen, Fress <ENTEF after the line 25 rorrect, Thas will 1 neert the second pin inta place and the rubter wand is held between the two pus. If you press <uby again a second line will come from the last drawing Fin, As you continue putting pins drom, the shepe grows, Up to twenty pins can form the rubar band into many eomplex shapea.

Fir very small shapes you mey mot even want to wise the lughtaen tor positioming gi the somall cross.

If you mate a mistake in the stape you have drawn, press ©DEL to remove the drawing ping in the reverse order to what you placed them.

Once your shape is finished, press <EgC\% tor enter the fourth mend, you may now wish to select a colour and a pencil to wse, then select ikon number two outiline rubber band, Un pressing EENTEFP the ment will briefly disappear, the computer will romove the rubber band, and then outiane the path of the rubter bend with the pencil and colour you have just chosen.

The rubber band, although invisible, is still active, and can be reused, Try chovsing a different pencil, then select the gecond ikon and outhon the rutwer bamd in a different pancil, vou can repeat this as many times as you like, until you use the ruberer band mode again by choosing ikgn number ghe,

Try wing the rubber band to drew some shapes on the soreen and see if you can fill them in different colours.

If you rum out of rubber banse, then return to the menu and outine that section of the shape, then continue the rest of the line by entering ikon one again.

NoTE: If you define a rubber band and do not use it, when you select. the rubber bend ikon ajain, the last rubber band will still be in use and you may have to press <DEL; to remove it.

1.6 Circles and rectangles

Select the fifth menu:-

Cincles and rectamples can puickly tue draun by using the rubuer band to specify details about these shapes as follows:-

CIRCLE:-

FECTANGLE (or SquAKE):-

1.6.1 CIRCLE DRAWING

Enter ruboer band mode fikon 1 , menu 43, Move the cross to where you want the centre of the circle to be. REy pressing COFY or wing the nudge deys), Tren fix that centre point by pressing EENTEFP. Now stretch out a robber band to become the desired radise, ftiat ia. the cross is a puint on the cifcumference of the circie). Now fix a secomid pun UEIn ENTER, than FMess EEC,

Gnce the radus is defined, select the 'NEXT' ikon tio enter the iftio menu. Now selert the carcle ikon on the top of the manu. The computer will now drew e cifcle around the defined radus in the sumben punctl and colour.

Note thet the computer will reftse to drew a Eivcle it it goes oft the screen, If the somputer does refuse to draw a circla, try shoptening the radius, gr moving the centre.

1.6.2 RECTANGLE DRAWING

The procedure is almost the same as for the circle atore, exceft that the two points defined are the ents of ome of the diagonal limes though the rectangle. When you entse the fifth menu, select the second ikoni (the rectangle) ans press <ENTER, The Eomputer will how draw a rectangle around the aiagonal you have just definel, in the edrrent. pencil and colour, It deas mot matter which direction your diagual goes, as loug as it 15 not a horizantal or verticel line:

MENU REFETITION:-
You may have noticed trat the pencil and palette ikons appear an mone than one ment, Thas is just tio make selerting of colou and pencil Easier.

1.7 COPYING, EXPANDING AND SHRINKING

Iften when you have Arawn one complicated ghape on the gereen, you want to mote copies of it. Gopies can be easily made, or gven copies which are bigper or smaller than the original.

To gemonstrate this facility, first ciear the screen, then draw a circle in the centre of the sereen fsee soction l, G.j. Now enter menu five and select the third ikon. Fress ENTEF to confirm your choice. A sub-memu will appear sontainimg only two ikons:-

The first ikon represents the copy with passithe magnify. The secont ikon is the copy with possible shoink,

Select the first ikon, and press 〈ENTER〉, The ment will disappear and your circle will be on the screan, Somewhere on the screen will be a set. of preen (lighter on monochrome f lasting corner brackets.

Fress <QOFY and move the lightpen on the screen. The brackets can be positioned in the same way as the rubber band cross, Use the cursor keys to fix the fimal position of the brackets.

The brackets surround the block which you want to copy. Try to get your circle into the sentre of the brackets, If the circle is too big iwhich it probably will be! , then try the following:-

1. Press down the shift key with one finger, then press the cursor keys.
2. Press down the <CTRL\} key with one finger, then press the cursor keys.

You stould have moticed that the size of the brackets actually changed, and in this way try to get the cicle to fit into the brackets.

Even after you have changed the size of the brackets, you may move them by pressing the cursor keys unstifted, or moving the lightaen while pressing copyy, Notice how the brackets will not go off the etga of the screen.

Now that yout have the area of screen you want to copy defined, you need to tell the romputer where to copy it to.
 when you first piess <DEl? they are on top of each other), keep <COFY> Firessed and move the ligttpen on the screen, Notice now thet the second cursor ts blue (or ders on momprhrome) and fleshimg and that the first EEt of brackets is no lomger flashing, Hence it is Easy to tell which bracket is under lightpen control by which get is flaghing. Pressing ©DEL; apain will swap back and forth between the two cupsors. Now when you aiter the size of brackets, you will effect the size of both cursors.

Move the second set of brackets to a different fosition, using the 'mudge' feeture for final setting. Now press <ENTER户. The computer will copy the area of screen in the first set of brackets into the secord set of brackets,

When the copy is complete (the speed of copy depends on how large the brackets are, the original green/lipht set of brarkets will reappear and you can to another copy. Fress Gecy tr exit when you have finished, The green/light brackets stay in the seme place at the same size, so for multiple copies, simply press <DEL 'T0' rursor to a new position and press \&ENTER',

Fress usco to retum to the fifth menu as normal when you have finished with copying.

1.7.1 HOW TO ENLARGE AN OBJECT

Ciear the sereen and araw a very small rectangle in the bottom left of the scresn (about six ficels high by Eight wide) (see section (.6.2). When you are in ment five, selert the third ikon fthe one with two copy cursor brackets), Now select. the top ikon in the next menu, ethe one showing a small grean/light mopy Eursor and an arrow pointing to a lamoer blue/dark copy cursor), As before, move the gleen/light set of brackets so that they just surround the rectangle you have orawn. ©o not make the cursor too big yet.).

Now split the brackets up by fressing <DEL’ and move the blue/dark set Df brackets to the Eentre of the screen. If you were to press 《ENTER now, you would make a copy of your rectangle, However, before pressing EENTER, press the '2' key. This stams for double size. The blue/dark set of brackets now doubles in size. Fress \&ENTER now and see what happens, The computer should heve copied the rectangle into the blue/dark brackets et souble it original size.

Try repeating the above instructions, but press '3' instead of '2', '3' stends for treble size. Try once more using '4' for quadrude size

The keys '1' to '4' get the magnification factor where '|' 1.5 the same size as original

When you are defining the positions of the two cursors try setting megnification '4', then increasing the physical sixe of the cursors by pressing SHIFT and the culsor keys. As you increase the size of the green/light 'from' cursor, the size of the blue/dark 'TO' cursor arows accordingly, when the blueddark cursor gets too tig it will revert ta a bower magnifitation, eventually the two cursors will be the same size. Eecause of this youd may need to do some copies in two more stapes, However if you then shrink the physical size of the green/light set of brackets, then the bluedark set will attain the maximum magnification up to that whirti you have set.

1.7.2 HOW TO REDUCE AN OBJECT

The methou feed the shrink an obvect is similar to expenting an object but you need to use the second ikon on the copying sub-wenu.

NOTE: In this mode the area of screen is copied from the blueidart set of prackets to the green/light set, Do not fioix up the two or else vou nay lose your picture by copying a blank spare onto your picture!!!!

Draw a lange rectangle in the centre of the screen using the thickest. pencil (the fourth ikon on the pencil mend) (see sertion 1, E, 2). Now enter the copying sub-menu and select the second ikon, ia large blue/dark cursor with an arrow pointing to a smaller green/light sets. The menu will disappear as mormai. The green/light cursor is still the smaller of the two cursors, Fress a number ' 1 ' to '4' for revurtion factor. '4' is four times smaller while 'l' is the same slze. Now press COEl> to allow you to finve the blueidark cursor around your rectangle, use the SHIFT key and the cursor keys to enlarge the size of the brackets.

Use the <CTRL〉 key and cursor keys to reduce the size of the brackets. Now press CDEL> again and move the green/light set of brackets to where you want the area of screen to go. Fress eENTEF\% and the restangle will be shrunk into the green/light copy cursor

It does not matter if the two sets of brackets overlep, however you mey lose the original shape if the 'TD' cursor rovers it.

The best way to get to know the copying 三ystem is by trial and error. You may wipe out a few drawings on the way but this is better than losing a screen you may have spent hours designing. Femenber if you are unsure, press ©ESC and start again rather than forgetting whether you are in expand or shrink monde! Once you can use the copy cursors skilfully you will be surprised just how useful and 'simple' they become.

1. 8 ENTERING TEXT

If yout want tol label any of your arawings then use the text fature. When you are in the fifth menu, select the ABC ikon, and pess SENTER to confirm your choice. A sub-ment containing thres ikons appears:-

Gelect a suitable colour/tone using the thind ikon, then select the first ikon for horizontal text. After you press ENTER the mom will disappear and a single block cursor (like the AmSTRAD'S EASTC one) will appear this represents where text will appear. Move the cursor by nolding <Cofy> down, and moving the lightpen around the srreen, You can finely place the text by using the cursor keys to nudge the cursor one pixel at a time. Now type what you want to wite using the keyboard, All the standard characters are available as mormal, The text will appear on the screen but if you want to adjust its position, simply use the same method as outhined above. In this way text can be finely positioned and the amount of required space can be gauged. Once you are happy with the text, press \&ENTER; and the computer will ink in the text Fermanently. If you make a mistake, press 《DEL〉 to remove the letters one by one, Pressing <ESC, will abort and any text not inked in will be lost.

The same applies for vertical text. Try Eelecting the second ikon on the sub-menu.

Interesting effects can be obtained by writing text twice, offsetting the second piece by one pixel vertirally and horizontally using the cursor keys to nudge the test cursor. Try writing in two different colours to give the text a feeling of depth.

To femove text that has been permanently inked in, re-write the same text in the background colour.

You may wish to use characters from the Amstrad character set which are not evadable from the kaytoard. For example characters 1 Go and iel are sseful for frencti text. Thenter these characters you neen to look up the character's code in your Amstrad mamual, When you require a special character, while antering mormal text press staE and then enter the chapacter's code using THFEE numerical digits. For example the Gharacter mumber 160 is entered as:-

> TAESIEO

You to not heed ta press \&ENTEF for the cherarter to appar. Pressing (DEL) uill delete the character as nornal. NDT⿷: even if tho code of tre character is one of two digits, you still need to type out THFEE digits, using precating zeros if necessary. For example the chararter number 4 is entered as:-

TAEP004
If you make a fistake in entering the digits, then fress space and start again oy pressing <TAB.

1.9 FINE DETAIL AND ALTERATIONS

When you are trying to traw very fine detail on the screen, where every pixel may be in a different colour, it would be nice if a section of screen could be magnified to a suitable size,

Foy this reason a 'scratch pad' has been used to allow very fine detail to te applied to the whole soreen.

Draw a small circle on the screen (ome with a redius of about f flosle), (Gee section I, E, l) Now select the last ikon in the fifth menu (the one that looks like a pad), Another sub-menu will appear as follows:-

Use the top ikion and press \&ENTEF, (This represents ascean to ped), The ment will disappear and a red or dark bracket cursor will appear similar to the copy cupsor mode (see section 1,7). These brackets can be moved using the COFY, bey and the lightpen, oir by binim the cursor keys to mudge the brackets to a single pixel. Notice that this set of Draciets is a single size only. Move the brackets sy tiat they surround the Gircie, iff your circle is tom big, then you mey need to re-draw it. When yous heve the circle in the centre, press \&ENTER>, the sectuon of screen is mow 'blown' up to a siza where fine detall can Easily be done.

At the very bottom of the screen is a band containing the ink colour . Press the keys ' 1 ' through to ' θ ' on your keyboard to select a colour whthin the scrater-pad ONLY, If you press the key labelied \&CLF then a special thansparent colour will be used fsown as vertical barsy. This colour wall mot be cofied froft the fad and hence will let the original colobrs on the scresm ghow though, Now point the lightpen at the Screen by pressing <ENTEF户, you will be dble to plot. pixels in the current cobour, Use white to blank out any mistakes.

Ferhaps easier the wse than the lightpen in this mode are the chron keys, Jラe these to move the flashing cursor around. Dnce they are bessed they lock out the lightpen dntil scopy is pressed.

Using the lightpen or the cursor keys, alter the ciricle, Nou piegs ESC\% and the sth-ment will reappear. Now select the third ikon ithis Represents par to the screan and press EENTEF to confirm your choice. The red tractets reappear and pressing <ENTER copies the contents of the scratctifal to the area of screen inside the brackets, if you don't move the brackets, then your circle will be 'upotated", If you move the brackets by holding down cofys and usimg the lightoen or by muluing the brackets, then maltiple copies of the circle can be created.

Now press ESC; and select the second iton on the sub-niemu. This returns you to the scratch-pad, You could now re-edit. the cipale, or Even atart again.

If you want to create youn own higinresolution object then clear the whole pad to a background colour: gelect. any colour using the 'l' to 'G' keys da good idea woula be to use white, key '1'', then press <cTRL) and cTAE: together, The screen will blenk to the selected colour, Now select another colour and wse the lightpen or cursor keys to draw a graphar ouject, Dnce you have finished press <ESC; and select the third ikon to filace the contents of the scratchoma onto the arreen. Fress SENTER and move the brackets around. Fress <ENTER> again to place the object anywhere on the screen,

You may alpeady have a complicated background onto which you want to place an object without the background being removed amound the object. If this is the case then simply design your highresolution ooject an a transparent backgromb (selected by pressing (ClFi). If you have pucked up an object from the screen with a set background then whist in enit wode change this backoround to transparent <CLfy or select the same colour as the background and press SHIFT> and '未'. This is to save you the trouble of manailly shanging all the background to clear.

The uae of the seratch pas, although seeminly complicated helps to make alterations to parts of the screen very quickly and acturatedy. Fractice using the pick-ip, edit and put-down serpance to edit your pictures, Also be careful not to forget you are in fut-down mode when you try to pirt something bip, the result 15 the writing over of what you oniginaliy wanted to edit (and much displeasure to say the least!).

1. 10 using tape and disc drives

The graphics package supports both tape and Amstrad drsc araves, If you have no disc drive connected then the software acknowledges the fact and does not allow you to try and use discs.

There are two sections atout tape and disc which will be of interest, and those are (1) saving the Graphics Fackage itself (including putting the seftware omto dise from the tape) and (2) saving puctures you create.

The first one 1 se considered next,

1. 11 bACKING-UP YOUR GRAPHICS PACKAGE (cassette version)

The goftware is NuT protected because users with dise drives may want to tranafer the software to thear discs. Secondy the software 15 saved USing SFED WRITE 0 ; users may wish to resave a copy in SFEED WRLTE 1 . Finally keping a back-up is always recommended, and saves the troutio of ordering a second copy when you leave the tape on a magnet!

1. 11.1 TO LOAD WITHOUT RUNNING:- (cassette version)

In all cases, the Graphics Fackage needs to be loaded into the computer as gultined belaw.

1. If your disc 15 attached then type 'TTape' and press ENTEF:.
2. Type "Ldad "LFER"' and press ENTER.
3. Fut the tape in the tape drive and rewind the tape. Press flay then press any key. Do not release the PLAV key unless a TAFE Effidi gecurs, in which case refer to the Amstrad manual for loading hints.
4. When the computer has finished type 'S5 STOF' and press ©NTER ,
5. Now t.ype 'RUN' and press sENTEF'.
E. The tape will start to rum agein and about four minates should pass.
6. Finally type '35' and press 《ENTEF?,

The complete program sa row in the eotiputer,
1.11.2 TO. SAVE TO TAPE: - (cassette version)

1. Select the speed of tape you want to wse:-

TyFU 'GFEED WRITE 0' for slow, safe sAVE, Type 'SFEED WRITE I' for fast SAVE.
2. Flace a blant cassette into the drive, it meeds to have at least five minutes of tape on it for left on itj,
3. Type:--

SAVE "LFEN": SAVE "GFAFH", E, G000, 7E00: SAVE,
"FFOG", E, $276 E$, 9750 and press <ENTERS.
4. Fress flay and fecofoy then any key, you widl need to prese any kEy twice again for eart gection.
1.11.3 TO SAVE TO DISC: -Cassette version)

2. Fut a aisc in your arive which has at least isk free on it. Make sure the write protect tab is off.
3. Type:-

GAVE "LFEN": SAVE "GRAFH", E, E000, 7E00; SAVE "PROG", E, 227ES, 9750 and press UENTERS.

NOTE: You may wish to use EFEED WRITE 1 when seving pictures see section 1, i2), If so, bufore saving a copy of tho program onto tape or disc, and this line:-

35 SPEED WRITE I
Now save the program as outlined above,

1. 12 LDADING AND SAVING

Once you have rompleted a picture, it can be stored on tape or disc far later vee (see section 1.14), The very first menu contains the ikons which control saying ahd loading. Fress <ESC ess many times as needed to return to the first menu, whether you have a dise orive or mot, the first two iknomereresent tape to computer (Load), and computer to tape (Sove). If you have a disc urive attarhed then you have the option of using tape or dise amo there are two more ikons representing disc to computer (boad), and the computer to disc (seve).

Tr seve your pacture select the second ifon (tafe) ar the fourth ikon (dise only). The romputer will ask you for a neme, to be typed from the keyboard, uniy ietters and numbers are allowed. If you wse dise then a dipertory contaning ary other pictures and amount of free memory will be displayed. \&if you wented directory only, press eESC: to abort at this stage, Omes you type in the name, the computer will save the whole picture, For tape this will take Eome time, amb the computer will inform you haw many blocks it has saved. Un disc, the somputer will return to the fian fiemu after a short time, unless an error octurs. If a tisc erpor does octur then a message will be displayed, you hay either Gorrect it for non-fatal errors en, read errors etc or press any key and the first ment will reappear then you may need to change the dise and re-save to picture.

It is wise to save sompliceted pictures froguently fespecially if you hove a disc) in rase you make a mistake. llike filling the screen $2 \rightarrow$ whitel' it takes ondy tha minutes to save a screen using sFEED WFTTE i

On the disc drive, pictures mey be saved with the same name and the Eomputer will rename the old version using the EAk astension, consult your manual if you are mifailiar with the AMETRAD Disc gperating تystem.

To bog the ficture from tape select ikon one, or ikon three if you are using disc, If you are using tape then the computer will load the first binary file on the cassette onto the screen. This need not mave ben one seved by this package. If all goes well, eight blocks will Iond into the computer. The computer will report on its prouress as normal, Any arpors will be reportey and the action you need to take Depents wron the error ev, if the disc read error occurs then the message "try Fietry or Cancel" 15 gisplayed.

Note that the files which are output are stamara binary files and can be used in your own BABIC or machine eode programs, (See section 1,11 and 1.12.)

1． 13 USING PRINTERS

To atotain a hard cooy of youp pictures lor any others you may have created without this package），it is necessary to load the serond prouram on the tape supplied with your graphics Lightpren．This program does mot suppupt any specific printer but it converta the colour azta on the screen into a form which printers accept their date．This data can then be very quictly output from a EASic progran designed to suit youf frinter．Two example EABIC programs are includad for Epgon and ArgTfEAD printers．From these and your own printer manual it is hoped that any pionter，which can tue controlled normally from your computer，can be used th produce a screan sopy．

Alag those users with expension paraliel printer ports，hemy of which Hse elight bits ingtead of seven，ran very easily use these ports instead of the Amstrad one，This is possithe because all the printer handing 13 artually bone from EASIC．

1．13．1 EFSON PRINTER EXAMPLE：－

Before you can mate any coples you need to have saved your pirture on tape or Hisc，Now reset the computer and follow these instrurtions：－

1．Comect up your pirinter and make sure that it is upring correctly，alse connect the disc onive if you are going to bue using ばラ『』，

2．Switch on and type＇MEMORY g9g9＇and press SENTEF？．

3．LDat the serond program on the software cassette．It is foum at the end of either side，Fast forward the cassette until you are mearly at the and of the cassette and type＇LDAD＂DUMPMC＂and press SENTEK，If the frognem fals tw load then rewind the tape and try agair．

4．Type in the following program mading sure you copy it exactiy：－

```
10 MEMORY 999%:MDOE Q
20S=5;FOKE 40403,S;FOLE 40004,6
30 INFUT "NAME OF SCREEN"; Y$:LDAD Y$
40 CALL 40GG0; REM REMEMEER TO LOAD DUMFMC FIFGT! (STAGE S)
S0 WIDTH 2S5:FRINT #S, CHF&(z7);"A";OHF$(4);
60 [j=25; IF 5%2 THEN D=50
7% L=S*2+2;IF S>2 THEN L=L-E
80 C=10000:FOR I=1 TO 0:LA=C:FOR I=1 TO L
G0 PRINT #S,CHF"$(27);"K";CHR$(80);CHR$(0);:FDR K=1 T0 80
100 FRUNT #B,CHR($PEEK(C)/T5);:C=C+1:NEXT K,I
10 FRINT #E:C=LA
120 FOF I=1 TO L:FRINT #B,CHF生(27);"K゙";CHF生(80);CHF$(6);
100 FOR K=1 TO 20:FFINT #E,CHR$(FEEKCCO AND 1S);
140 O=C+1: NEXT K,I:PKINT #B;NEXT I
150 END
```

ᄃ. Type 'RUN' and press <ENTEF',
E. In reply to the prompt 'NANE OF SCREEN' type the name under wrich you saved the screen, or just press SENTER if you are using tape
7. The screen will lagat and after a pause the printer will firint out. your sereen using a shading effect to show the different rolours.
8. (You may wish to gAve the atove program yourself to save retyping it every time you need to use ity,

1.13.2 AMSTRAD PRINTER EXAMFLE:-

The proceture is almost the same as for the EFGON printer ercept that the program for step 4 is as follous: -

```
10 MEMORY 5999:MDOE 0
29 S=S;FONE AG00%,S;FOEE A0004,
30 INFUT"NAME DF SCREEN";Y&LOAO Y$
40 CALL 40000
CG WIDTH 25S
E0 DIM D(8,5):FDR I=I TO &:FOR I=1 TO 5; FEAD D(I,J): NEXT I,I
70 DATA 127,1,0,1,1,128,128,50,2,6,192,54,31,4,0
80 OATA 224, 2,15,8,6,240,15,7,16,0,248,8,3,32,0
G0 UATA 252,4,1, E4,6,254,2,0,1,9
100 C=70060:S=1:L=1
```



```
    AND D(S,O))&-(S,4));;C=C+1;NEXT I, I
130 FFINT #S;C=C4S0*OCS,5); S=S+1; IF S=` THEN S=1
149 L=L+i;IF L=5E THEN ETDP
1506070 110
```


1.13.3 ADUANCED INSTRUCTIONS FDR PRINTOUTS

While the EASIC propram in the two above examples looks comolicated, most of the hard work of converting the screen into data has already been tone by the machine-code propran you first loaded. the EAcIt prouram simply outputs the data to the printer after sending the respertive printer's control codes, If you have one of the above printers then you need not worry about the mext section, towever you may have a different printer or simply be interested so let's go through the EFGOM printer prograf step by step to see what is happening:-

After setting MODE 0, the propram sets two variables in the machine-code program. The variable 5 sets the sixe of printout, Location 400日s is then altered to that value to inform the machine code of the sice you want,

On the EFBON there are a possible $4 B 0$ (in single density mode) pixels across the paper. This means that is the capable of displaying the laroest size of output possible from the machine code program. On ottiep printers towever there may be less fimels across and hence a smaller size may need to be used. Try different values of s (bto 5) bn your EFSON printer to illustrate the effect,

The screen has dimensions of lso pixels across the screen and 2og pixels down the screen, The machine cone software can convert these to six different sices on the printer, The possible dimensioms are:-
$S=0160$ puxels across and 200 pixels down
$E=1320$ pixels across and 200 pixels down
$S=2400$ pixels across and 200 pixels down
$S=3160$ pixels across and 400 pixels down
$E=4320$ pixels arross and 400 pixels down
$S=5400$ pixels across and 400 pixels down
For your printer you will meed to loot up in your printer mandal bous many pixels yout printer is eapable of printing in one row. Then gelert a value of G that is smaller or equal to that meximuin value.

As any printer prints, the head will print a number of dots in a VEFTICAL coumm, so this is how the deta from the screen is converted. gtarting from location 10000 in menory, data is created where each byte represents one vertical column. The printer then hes to be informed that the data $1 s$ on its way, and the BASIC propram nesds to sumpy send the data from memory to the porinter.

Tho location 40064 neads to contain either a 0 op a 1 , 0 ' specifies thet the most significant bit of the data is the bottom dot while 'i' means that the most significant bit of the deta is the top bit, If you ane unsure, ues a and it will be clear whetror you need to use a i because the printout will be upside town!

Line so loads the screen from tepe or dise. Notee that the move θ comand makes sure thet the screen has hot scrolled. That, is the screan alweys sterts at 49152 in memory.

Line 40 calls the machine code routine and fills the memory of the Amstrad from 10000 onwards, the actual amount of data depends on the size value 5 . For $S=5$, 24k of memory is meedat,

Line 54 comands the Efoon to move just 4 pixels tetween bvery line. You may meed to consult your printer mandal to find out how to set the distance between rows. In some cases it may not tre possible to set. a 4 pixel line setting, In this case you may have to set a 7 pixel line setting and output 7 picels of data at a time, meaning that the bottom row of picels in each line will be lost.

It is necessary to mote that the Amstrad's CENTFORICE parallel port usus only 7 bits, While this is industry standard, the EFGUN and many other printers use 8 bits.

With only 7 bits you may realise thet is impossible to send 8 pixels of dsta in one instruction to the printer. Hence on the EPGON band more than lifely on your printery it is necessary to send the top four bits and then the twottom four bits seperately.

In line so a variable 0 is salsulated. D stands for depth and is either
 in line 20 , On the next line L is calculated, L is the number of tiocks of go bytes of data. Hence if you use the largest size of printout (480 pixels) then value of L is E. The data is putput as blocks of po bytes and not as a block of 4 gob bytes for one reason, when the ampunt of data to be printed $1 s$ sent to the EPGON, then EFSON requires a lou emd high byte value.

If 406 ware comverted to low and high byte values you would get 224 low and 1 Migh, ie ($1025 E+224=480$),

Due to the 7 bit CENTCONGCS port, it is impossible to send the value 24 , Hence it is sefer tor sent blocks of 80 .

Atter all these variables have been craater, the program sets of to 1066 to count through the remory from 10600 onwards.

There is a. loop (J) going through each row up to 25 (or 50 if dioble teight is wsed). Then there is a second loop (I) going through each bloek of 20 bytes.

Finally the fininter is told that it is to print gut go bytes of high-
 supply this from your own printer mamual.

NOTE: Some printers use bit 7 being a 1 to designate high-resolution deta. If this is the cese with your printer, then your printer will not produce highmesolution with the AMSTEAD at all.

Oo bytes are now read from memory and sent out to the printer, Note how the top 4 bits are selected by dividing by le. Finally a carriage return and lineferd $i=$ sent.

Line 120 onwards repeats the same data but this time the bottom 4 bits are sent by masking out the high 4 bits. (Do not worry if you are unfailiar with '/iE and 'AND 15', just believe they seprerate the top and bottom 4 bits!)

So that's all there is to it!!! If you are confused, try reading your printer mandel thoroughly, especially the sections on high-resolution Frinting. Try using some of the examples in the manual and change the EFSoN program to contain sections relevant to your printer. Also instead of kesp loading a screen from tape or disc, delete line so and replace it with this line:-

NEXT I:PRINT:NEXT I

This wil print some different coloured letters on the streen as test. screen.

The authors sincerely hope that presenting the printer routines in this form whll allow greater flexibility to use any printer which supports tigh resohtion graphics.

We hope that it can be appreciated that there are hundreds of ititerent. printers which can be usey with youp Anstrad and a single printer routine coubl never support all of them, The above informetion should make lt possiole to support your printer, with as little pffort on your pert as possitile,

1.14 USING SCREENS IN VOUR OWN PROGRAMS

the screens which are saved from the Graphics Fackage as standard binary f1〕es.

Irese can be boaded into your programs simply dy using a line such as:-
4 MOUE θ
5G LDAO "NAME"

Where the 'MAME' is what you called the screen when you saved it,
The colours used in the Graphirs Package are not the same as the colours assigned when the computer is first. switched on, Hence you heed tor redetine the lats before you see the pictures in the correit colours:-

20 DATA 26, 18, $9,17,8,11,13,22,0,24,5,2,14,19,2,3$
If you like you can logd the screen into other aneas of membry by edoding a loat adoress on the emb of tre above statement:-

36 MEMOFY 19999
40 DAD "NAME", 26000

Thus will load in a screen at 20006 in memofy if you are doing this, remember that youn EASIC program has less memory than normal.

You could even write a short machine code program tho move the picture to the screen when you reed it like the one below:-
 76 DATA $33,32,78,1,6,54,17,0,192,237,176,261$
90 CALL 19950

This will move the screen which has been loaded at 20000 pato the screen, You may even like to blank all the inks before you make the transfer to make the picture appear immediately,

EO FOR $1=0$ TO $15 ;$ INK I, Q:NEXT

Then switch INks back on again:-
100 RESTOFE 20:FOR $I=6$ TD IS:TEAD A:INE 1 , A:NEXT 1
if you own a disc drive then you could write a propram similar to the one below which presemts a mumber of pictures on acheen almost dite e 5lide stow.

```
10 MENOFY 1ESO0;POKE 16350,62:POKE 16351,192;FOKE IES52,195;
    FORE 1635S,20S:POKE IESE4, &BC;CALL IEOSO
```



```
30 FRINT" OLSELIAY PROGRAM"
40 FHTNT"
    ----------------------------"
50 FRINT"
EO S=5:FEM NHMEES GF SCREENS TO EE DISFLAYED
70 0IM N+(S)
C6 Nक (1)="HOUSE"; REM NAMES OF SCREEMG ON DISC
90 N4(2)="%4IF"
100 Nक (3)="SFEECH"
110 No (4)="CHAR!"
120 N$(5)="CAR:"
$0 PEN 2
140 FRINT:PRINT:PRINT;FRINT "DELAY EETLEEN SCREENS (10 - EOGO
    GECS)";FKINT:FEN S;INFUT "
150 IF D\triangle\MT(D) OF DCIO UR DPE000 THEN IA0
160 D=D-5
I76 MODE G:FESTORE 170:FOR I=0 TO 15:FEAD A:INK I, A:NEXT I:
    DATA 2E,10, 7,17, B,11,13,22,0,24,E,2,14,19,2,3
180 NG=0:FT=1
IG0 LOCATE 1, TS,FRINT " SCREENS FOLLOW!"
200 FDR I=1 T0 S
210 SL=16364;IF NG=1 THEN SL=49152
206 T=TLME;LOAD N&(I), SL;IF FT=1 THEN FT=0;GOTO 240
200 WHTLE\TIME-T /%00<D: WEND
240 FOKE 15S51, 192;IF NS=0 THEN POKE 16351,54
250 CALL 1GS50;FEM SWAF SCREEN EEING DISFLAYEO
250 NS=NS+1:1F NS=2 THEN NS=6
270 NEXT I:GOTO 200
```


1. 15 USING THE GRAPHICS LIGHTPEN IN YOUR OWN PROGRAM

Your program could be as complicated as this Graphics Farkape or as simple as a telephone directly frogram, but both are improved by using a lightpen to save using the keyborid for choices.

Listed below are two prograns, one in BABlC and one in machine code to allow you to read the position of the lightpen on the screan,

IN EABIC:-

$10010 \mathrm{~L}=\mathrm{H} * 25 \mathrm{E}+\mathrm{L}-12252 ; \mathrm{Y}=\mathrm{L} / 40 ; \mathrm{X}=\mathrm{L}-\mathrm{Y} \ddagger 40$
10920 RETURN

A GOEUE loboo, would return X and Y coordinates of the position of the lightpen. x ranges from 6 to 29 and y renges from 9 to 24 . This seale is irrespective of which mode you use, although when in mODE 1 , Eacr graduation represents one character square.
(The value lazgz may have to te aitereg by one on two to suit youn monitor or television, ?

IN MACHINE GODE:-

```
COOFDINATES: LD EC, 1COOH ; set register pair to icog
    LD A, 17
    OणT (C),A
    LD EC, 1F00H
    INL,(C) ; read low onder position
    LD EC, 1000H
    LOA,1E
    01] (C),A
    LC EC, IFOOH
    INH,(C) ; read high order position
    LD DE,12292
    AND A
    SEG HL,DE ; rempve constant offset
    LO EC,D
    LDOE,40 ; divide by 40
LOOF: AND A
    SBC HL,DE
    IR C,FINISH
    INC: C: C is Y position
    JFi LODP
FINISH: ADD HL,DE
    LD E,L ; E: is remaimder =x
    RET
```

This routine returns the x and Y coordinates in the EC register pair, where $\mathrm{B}=\mathrm{X}$ and $\mathrm{C}=\mathrm{Y}$.

The two routines above could simply be included in a propram which uses menus or need to select choices from anywhere on the screen．

EXAMPLE：－
The program below is a simple reflex tester．Type it in carefully then Plun it．

Atter the titie disappears，four boxes will toe drawn．The word HEFE will appear in one of the boxes and you heed to point the lightpen to that word as quickiy as you can．Ten tiraes the computer will select a bo：at ramom，The total time will then be given，the lower the score， the tetter you have done．Dur lowest was 2,85 seconds！

Try ofanging parts of it，if you want，or exporiment with writing Frograms of your rum，

T0 MDDE $1:$ EOFDEF $9:$ INK $0,26:$ INK 1,$0 ;$ INK 2,$12 ;$ INK 3,20
20 FRINT，＂TEST YOUR REFLEXES＂
SO $\mathrm{FOR} \mathrm{I}=1$ TO 2000 ：NEXT：CLS
 STEF 320；FOR Y＝1E TO 2TE ETEF 200：MOVE $X+1, Y+1$ ；DFAW $X+1+250, Y+1, C$ ：ORAW $X+I+250, Y+1+150, C:$ DRAW $X+1, Y+1+150, C$ ： DRAW $X+1, Y+I, C$ ：NEXT Y, X, I
56 PEN T：$V=5$ ：FOR $N=1$ TO 10：REN NUMEER DF TESTS
E． $\mathrm{V} /=$ INT（RND＊4）：IF $\mathrm{V}=\mathrm{V} 1$ THEN E． 6
$70 \mathrm{FDR} I=1$ TO INT（FND＋5009）+1506 ：NEXT I
 PRTNT＂HERE！＂
$907=T \mathrm{TME}$
T00 LOCATE 1E， 13 ；PRINT INT（TIME－T）／S）／100；＂＂：GOEUE 10000：JF $(Y-1 \subset Y$ ANO $Y+Z \times Y)$ AND $(X-5 \subset X 1$ AND $X+1 \geqslant X 1)$ THEN 120
1706070100
120 LOCATE XI，Y1：FRINT＂＂：REM 5 SFACES
$130 \mathrm{TT}=\mathrm{TT}+\mathrm{CTME}-\mathrm{T})$ ：NEXT N
149 LOCATES，13：PRTNT＂YOUR TIME WAS＂；INTCTT／S）／106；＂SECONDS，＂
150 for $\mathrm{T}=1$ TO 3000：NEXT：LOCATE 1， 13 ：
FRINT＂＂：REM 5 EPACES
160 RUN 50
T0000 0UT \＆ $1000,17: L=I N F(\&) F 00) ;$ OUT\＆ $1000,1 E: H=1 N F(\& 1 F 60)$
$10010 L=H 256+L-12292: Y=L / 49: X=L-Y ⿻ ⿻ 一 𠃋 十 240$
10026 RETURN

GRAPHICS LIGHTPEN

MENU 1
MENU 2

MENJ 4

MENU 5

SPEECH SYMTHESIZER

The [ft'tronics speech synthesizen uses the popular sfozes speech chip, which gives it an amost infinite vocabulary. It is supplied with a tost to speech convertor for ease of speech output creation. Every thing you wisti to be spoten is entered in normal English without having to use special control cones or characters. It is therefore extremely easy to use, The voicing of the words is completely user transparent and the computer can carry on with its momal ruming of a prograth wile the speect chip is talking. The sperch output from the SFOZSE is mono and directed to buth speakers vaa a powerful! sterec amplifier,

STEREO QUTPUT

To utilise the Amstrad stereo output on the back of the computer trie butenface nas its own built in stereo amplifier which is comberen tor two high puadity $4^{\prime \prime}$ speakers, This gives ali sound output a totally new dimengion and greatly improves the sound puality and volume over the computer' 3 anternsl speaker, All programs thet use sound in any way wil now te output, through the interface, The interface is also supplien with volume snd balance controls.

SPEECH SYNTHESIS

The spaect synthesis utilises parts of the spoten word known as allophomes. These are actual soums that go to make up spench, The GFOLCE allophome speech synthests technique provides the ability to syothesize an aimust unimites vocabutary. Fifty-nine discrete speerh soums (allophomes) and five pauses are stured in the speech rhip's internal ROM,

TEXT TO SPEECH

Altumph thepe are only 2 f letters in the alphabet, letters bave a totaliy different sound when used in gifferent words. For example, the "e" in "hay" $i \leq$ muct, Longer and Eofter than in "hat". When you speak you automiaticaly make adjustments berause you show just how the word should soumd. This is mot puite 50 easy with a computer.
The machine code software bupplied is mainly developed to this moue af operation, of which 3 , bk is used for tables which contan the rules and exraptions to the English Lamguage, For exampie i pefore E except after C. Hiss therefore allows the wser to enter words to to spoken in normal Engilsh.

NEW BASIC COMMANDS

There are 10 mew Easic commande which control all the functions of the interface, making the synthesizer very easy to use, ie to say "Amstrad" you whil enter: 10 FRINT "Amstrad'". You can even control the speed at which it talks, ar use the synthesizer to create sound effects on a fourth sound chammel.

SPEECH SYNTHESIZFR MANUAL

WAFNING

This unit must be used in accordance with these instructions, Never plug in or remove the interface without first disconmecting the power from the computer. Failure to follow these instructions may result in damage to the interface or the computer.

2.1 installation

The dack plug on the short flying lead must be comected to the stereo output on the rear of the computer mext to the joystick sorket, The speech interface can only be comected to the floppy disc/ expansion fort. The speakers are plugged into the left and right sockets on the interface, the left sorket is the left channel, the right socket is the right channel bas viewed from the front of the interface). The computer can now be switched on.

2.2 SETTING UP AND USING THE STEREO AMPLIFIER

The volume control is located the right hand side of the interface for the $\mathrm{CFC} 4 E, 4$ and on the left hand side of the interface for the GFC ETLE To rheck the volume setting type in the following line of progran as a airect comathend.
$50 \mathrm{NN}) ~ 2,50,3060$ (Enter),

You can now anjust the volume to the required level,

Tust below the volume control is a smeil tole, this is the balance between the left and the right chanmels and is fartory set and should not require adjustment.

To check the balance type in the foliowing program.

10 SOUND 1,50,100: REM Left chammel.
26 SOUND 4,50, 106 ; REM Fight chanmel,
36 GOTO 16
RUN ENTER:

You should hear the tone change between the left and right spoakers, if it is mecessary to adjust the balance you should use a small strewdriver, The internal speaker on the Anstrad should be turned bown (right-hand end for the 4E4, rear right for the 612θ computer) as the mono output coubd distract from the effects of the stereo output.

Any sound that previously came out of the mono internal speaker will now be sent out via the interface in stereo. All programs thet use the sound in any way (ie commercial software) will now output through the interface,

2.3 SPEECH SYNTHESIS

The Anstrad speech synthesis utilises parts of the spoken word known as allophones. These are artual souns that go to make up speech, The gpoese allophone speech synthesis technique provides the ability to synthesize an unimited vocabulary. Fifty-nine discrete speech sounds (allophones) and five pauses are stoned in the speacti chips internal rotii, In the past, Speen Synthesis has required lange data bases to store words because every word had to have its own set of data. This methou of speechi synthesis is slightly clearer than the sfoese speech ship but would renuire at least 5 mega bytes of memory to store the English Languge. This is obvously not practical. Therefore, fon the home computer the sFoast is the ideal chif.

2.4.1 SOFTWARE LOADING DETAILS (cessette)

The software cassette supplied with your Amstiad Speech synthesizer has been recorded in speed write θ and speed write 1 . To load press the grem controi key and enter (the mameric key pad enter). Wote that if you ara Lsing the cPC egd then you will require an external cassette pilayer

The software is in two parts the first part is the relocater, this enables you to lowd and run the software in the leged to z9000 part of trie basic fremory map. This is because other software may be ruming in high memory (ie dise software). The second part its the mactine code to run the text to gpent comverter, this is $4 k$ in length.

After the first fart has loaded the screen will chear and ask you for the load adress, This should be a high address in the range of 1634 to 3000 (3000 is a good adoress). The routines will automatically lower Himem $=0$ that basir will not run into the machune code it is important to remember the load adtress if you intend using speech from machine code,

Doce the second part has loaded the machine code will perforni the initialisation routine and print the copyright fiessage on the screen.

2.4.2 SOFTWARE LDADING DETAILS (ROM)

On power-up the Roni should identify itself with the sign-on messape :-
SPEECH FOM VER, 1,1
All that is required to initialise the Speech fom is ta type in "Ispeat:" then press <ENTERD.

This will also test the unit by saying "DK'tronics aprech synthesizer" and displaying the extra commands.

2.5 BASIC COMMAND EXTENSIONS

There are 10 new tasic commands and an example of their use is given below.

ISPDN Turn on the interrupt to read the buffer, (speech on)
1FFOF Turn of the interrupt. and stop reading the buffer, (speeri aff)
HEED, Th This is wsed to fead the speach buffer direct and also for sound Eftects The IFEED, \quad comand is followes by a maximum of 20 sata items sepereted by commas.
flys This conmend chears the sperti and text buffers,
boben Thes romand eontrols the spend at which the worts ane spoken. n. $1 s$ e nember from 0 to 15 .
loump, sets eccess to 'text to speecti tsing print "'sox'" oniy ie 1.sting etc will mot be spoten.

ILUTM, 2 SEts access to 'text ta Epeect' from all print mutputs, Anythimg that outputs to the screen ie Listings, Sy月tax enrous, ready will be spowen, (BUT WITHOUT FFINTING THEM ON ECREEN).
louTM, 3 As lDuTM, Eut text is spoken and pininted on the somen.
NuTE: loum, a and louTm, zan only be stoppen by tra trest key.

Note dundng extensive pranting in 100142 on 3 , the eomputar may seen to be uncemonsive to the ereat dey. This is tue to the speech buffer beung fuil and Fasir uaiting until thare is some more space.

To get get af this keep the EfEAk key pressed until Easic scans for it, then the computar will peint EREAK followby by READY while rontinuing to asy the sontents of the butfer which may contimue for up tor a minte.

The two remaning commans are only available on the Fom vepsion, Thay are:-

HEFT, Retums the velue of the free memary in the speech buffer, Tils is なey as follows :-
$1000 \mathrm{a} \%=0$
1010 1left, oa\%
1920 primt $\begin{gathered}*\end{gathered}$
With the buffers empty the result would be 250 oytos.

GAY,
This command is the nomal way of getting the unit to speak. It wses the text to speech convertors, The correct syntax for the command is:-

E日G, Eize computers: Isay, "the cat sat on the mat"

2.6 SPEECH SYNTHESIZER

The speech synthesizer can be used in various modes.
a) DIFECT- WITHOUT SOFTWAFE SUFFLIED.
b) UEING IFEED COMMAND.
c) USING THE TEXT TO SFEEGH CONVERTER,
d) UEING FRINTING MODE COMMANO:

2.6.1 SPEECH CONTROL DIRECT FROM BASIC

The speert ship is in the $1 / 0$ memory map at location \&FEFE. It is possible to send data straight to thiz location but the correct allophones must be worked out and converted to data. Also the program must find out when the speech chip has finished saying each alloptone by reading fromi/0 locations sfefe and wating until its value is less than $12 e$.

The following simple example shous a program to do this, to send this data to the speech chip.

10 FOR $x=10$ B:REM Length of data statement,
20 IF INP(3FPFE)>127 THEN 20:REM Wait.
for chip ready sionel.
30 READ A
40 TUT \&FEFE, A
50 NEXT X:STOP
E6 DATA 2E, $16,55,17,39,2 E, 21,9$ REM Amstrad
This example is using the speech chip in its crudest form and reaures that the conponent parts of the text to be spoken are converted to deta. 10 do this use the allophone tate on page 47 , also see the dictionary on pape 4 . An example of the word "COMFUTER" $15:-$

WORO C D M P U T E R
DATA $42,15,16,9,49,22,13,51,0$
NOTE: That at the end of the sata we send a 0 to the speech chid, this is to stop the last sound from sounding forever.

2.6.2 USING THE IFEED COMMAND

Thas rendres that the software supplied is first ioded (cassette version).
 enter riw deta into the speech buffer and output it under interrmpt control Cle transparent. Dince the gate is fad into the buffer fthis is done in fractions of a secondy the computer can carry on with its mext tast, It is
 the text 13 sonverted into deta by using the allophone table, see silophone tatie section $2, B$,)

Examble:-
19 FOn
1FEFD, $2,19,4,42,20,4,17,99,26,5 E, 12,41,5 \mathrm{E}$,
$4,45,12,1 E, 12,17,12,21,6$
When you enter the above the computer will sey Der Trondes bo:-
Qee the dictionery on pege 4 f for other pemples or construct your own, The maximum number of parameters that the ffeed comand can aceept is 30 , The mone of opration is math easiar than the mipect basic moje but still roguras that you comvert the text into allophones, It fas been included in the softwape mainly for soum effects and can De looked upon as the fountry somd chanmei.

Examble

Wil. Prouture a pulseting sound
(FEED, $41,41,41,6$
Will produce e finocking somitu
You san try any numbers from s-6a for different effects.

2.6.3 TEXT TO SPEECH CONVERTER

The martine-rode software supplied is manly devotent to this mode of GFietion, Dt the AK bf machime code 3 ift is used as tables which contain the rules and excaptions of the English Language.

This is theretare the most important mode and allows speech to tue entered in mormal English without amy convertimg of data by the user, The software riust first be loeded.

The text to sperech uses two new commands :-
1sFon This rommand tume on the speectin interrupts.
GFOF This commend tums off the speech interrupts.

FRTNT "Anstrad"
The above exemple is the syntax for using text to speech.
The ' Ghanacter after the first speach mark is the control character which tells the computer that what follows is mot to be printed on the screen but to be sent to the spesth routines.

The antond ' character is the end mark.
Al text bo be sent to the speech fhip in this mode must be Enchoed by these character玉.

The " chanacter is the shifted sey which is to the ripht of the ? fey

The text to apeech converter is best explainad by the following examples,
Enter this progrem into the romputer:-
10 IGFOR:REM Tum on Spersh interrupts.
20 FRTNT "THIG IG TALKTNG"
OO FRIMT "ANO SO LS THIS""

Line if is oniy necessary at the start of the progiani.
Note: Graphies characters within the text to be sproken will be ignored or produce umusus representations,

The fext to speech can handie gex of all English words. fhere are a few with radse the text to speech slight problems. This is mainly berause whie there are rules for constructing words ie i before e excep after c, thera Ene more exceptions to the rules of the English Lamuege. These finotems san all be gvercome by slighty fissepelling of the word. Type in the fallowing.

15 FON

FFINT "'EILICON""

This word sounds wrong, However, type in

PRENT "SHILCKDN""

The word now sounds correct although it has been misspelt, with sone words 1t. may be necessary to experiment with speliing although this should be rare, Speech ran also be sent to the speech chip using atring variables or Even string Expressions.

EXAMFLE:-
$19 \mathrm{EET} A ⿱=\mathrm{A}=\mathrm{SFEECH} \cdot$
20 1SFON
GO FFINT AO

Speech can be wsed from the input statement, Eg:-
10 1SFON
20 INFUT "'WHAT 15 YOUR NAME ": A车
Gpeech ran be tsed using string expressions, eg:-
1018 FON
20 FITK $[=5.5$ T0 90

40 NEXT L

2.6.4 TEXT TO SPEECH BUFFERS

The text to speech convertor uses two ran bufters, the tact bufter to hold the words and the speerh buffer to hold the data to be outputted by interrupts to the speech chip.

The text buffer can hoid 1 wo characters while the speech buffer is bigger and can nold osb allophones, It is possible to fill the text buffer zid if this is allowed to occur trien ary choracters sent to the buffer whie it is full will tie lost,

The speecti buffer will hold about 45 seconds whith of speech and will continue to tale after the program has stopped or the brajk key has bean used. There are two why of stopping this, after all 45 seconus of unwenter speerf could be a bit nauseating.

If you type in ":FLUS" \&ENTER
This will Empty the buffers ani stop all talking.
OF
"ISFOF" ENTER?
this will stop the telking but leave the buffers with data stijl in them and the last allophome still sounding.

This could be useful for handling Ereaks from EASIC,

EXAMFLE

10 15PON
OQ DN EKEAK GDSUE EO

40 IF FEEK(2G014) (200 THEN 40:REM F
50601036
E6 ISPOF: REM Halt Epeat ing of allophomes

8G 【 $\ddagger=$ INKEY
GO If I牛=" "THEN STOF : FEM Abort when the SFACEEAF is presser,
100 IF, T\$ ="" THEN 20
110 1 SPON: FEM Festant speakimg of alloptiones.
120 RETURW

Whis walue is load addregs + 14 which you first typed in atring lagding. It contains the amount of spece remaining in the bufter, see sertion 2,7 on tuachine-code, ?

2.6.5 PRINT MODE COMMANDS

10UTM,
 and syntax errors ete will not be spoken. This is the detaut setting on first. Loding end bsing the softwere, This command is bily of any ieal use to cancei IOUTM, or IDUTM, 3 .

IOUTM.2
This command allows access to text to speect ronversion from all print outputs. Anything thet outputs to the soren ie listinge, syntax errors ete will, be spoken. The outputs will hot however, beprinted, youren use the gomman to gey your listinge insteat of printing trem to the sereat. fhis form gi listing is faily stow es the routine will fill the oufters and then wat until there is some more romm in the buffer and fill $1 t$ again atc. To stop this routine press the break key and type "IFLUS" then entefy : you're fed up with the speach.

EXARFLE

To say a 1isting
OOTM, 2 (ENTEF)
LIST (ENTER)

1 DUTM, 2
This command is similar to loum, 2 but the output will be pronted on the screan as well as ouing spokem, To stop this routine press the bieak tey and tyFE into the computer "IFLUS" then ENTEF to stop the speech.

EXAMFLE
To say and print a listing
IOUTM, 3 ENTEF
LIST EENTEF:
IOUTM, 2 and l口uTm, 3 will weit tsm spare in the buffer,
|DUTM, 1 whll not wait ans fumy efferts can octur if some deta is lost after the butfer filis up.

2.6.6 THE ISPED COMMAND

The LEFE日, con crais the speed at which the speech chip will talk, This is useful as slightly sbower soumb on complicated words are easier to understand. Type in the following.

19 GFON ; FtM Turn on spewsh interrupts,
20 SFED,
SO FKINT "TMIS IS FAST"
40 FDR $X=7$ TO S006:NEXT X
59 IFED, 15
EQ FRLNT "THYS IS SLOW""
The number thet you bse after the lSFED comman has to be ju the range frotio θ tols.

The speed can te changed at any point in the prograth so you cen switchifron
 command.

EXAMFE: -
10 ISPON : FEM TLim on speech interrupts.
20 1SFED, 1
30 IFEED, 2E, 1E, 55, 17, ЗЭ, 2E, 21, 0
40 FDR $X=1$ TD S090:NEXT X
56 1SFED, 10
E. IFEED , 42, 29, 1E, $9,49,31,17,52,0$

2.7 MACHINE CODE CONTROL

The speech 6 an be used from machine code in two differemt ways. The safest. way is to send data straight to the speech chip at $1 / 0$ memory address sfere as the speech chip never moves in the $1 / 6$ memory map. To use the text to speert routines requires more care as the gpeech softwere can be loaded in at different addresses.

2.7.1 TEXT TO SPEECH MACHINE CODE CALLS

```
GEIGIM TNDTIALTSE ROUTINE
GKIGMN + Z DUTFUTS ALLOFHONE IN ACCUMULATOR TO EUFFER
DGTGTN + 4 OUTPUT STRING FORNTEO TO EY HZ ENDEO EY ZERO EYIE,
OFTGN4 + E = IGON
BKIGON + E = 1GFOF
OMGIN + 10 = IFLUS
OKIGIN + 12 = SPED SFEEO IN ACCMMOIATOF
ORIGIM + TA NUMEEE OF FFEE FOETTJONS IN EUFFEF:
DRIGIN = LDAO ADORESS FOR GOFTWARE
If you logded tha goftware at 39000 then the ISPON routine js at gogog,
EXAMFLE IF TEXT TO SPEECH IN MACHINE-CODE
```

 CALL ORTGTN+E
 LD HL., STRING
 CALL ORIGIN+4
 ATT
 GTRIAG: DEFE, "DAUJD", 0

The last character in the string must be θ

If the lemgth of the string is rather long you can check that there 15 then enough space in the buffer by LD A, (DRIGIN+14) the amount of fres space is in tre accumblator.

EXAMFLE OF CHANGING THE SPEED

LI A, 10
CABL ORLGIN+T2
RET

ROTE IF YOU DIGABLE INTEFRUPTS GOI) THEN THE SPEECH CHIF WILL STOF TALKING UNTIL THEY AFE ENAELED AGAIN (EI) AND ANY ALLOPHONE FRESENTLY EEING SFOKEN MAY GONTJNUE SOUNDING UNTIL THE (EI) IS ISSUED,
SO YOU ARE AOVESE TO DUTPUT A ZEFO DIRECTLY TO THE SFEECH CHIF.

EASIC EXAMPLE

OUT $8 F E F E, \theta$.
MACHINE CODE EXAMPLE

LO BC, $\mathrm{AFBFE}\left(\mathrm{HEX}^{\prime}\right)$
$\operatorname{LO} \mathrm{A}, \mathrm{\theta}$
DUT (C), A

2.8 allofhone table

Fouses

	FAl © 16 me)	Use before voiced stops and afficetes
1	FA2 (30ms)	use before voicedstops and afficates
2	FAS (56nc)	beione voiceless stops and voirad fricetives alas betwem words
3	FAA (100nt)	tuetween elauses and sentences
4	PAS (200ns)	between clauses and sentences

Shont Vowels - These can be repeated

7 EH	E	Lend
12 IH	1	fitting
15 AX	t	Surceed
2 Al	A)	aught
24 AA	0	cot
It AE	A	fat.
36 UH	00	coot

1.gng Vowels

5 OY	UiY	t.oy
H AY	r	5ky
19 IY	t	See
20. EY	EA	great
2 CH	0	to
31	D0	ined
G Ab	0	rut
58 Uw	DW	Ginw
E2EL	L	engle

r-Colrumed Vowals

(mimasylatales)	4\% $\times 7$	A1	riair
	¢ ES	ER	computer
	52 ERZ	IR	bild
(non-monosyllaties)	5 OH	口及	store
	59 AF	Afi	farf
	E0 YR	R	clear

Atfrlcates

$$
\begin{array}{lll}
10 \mathrm{IH} & \mathrm{~J} & \text { jury } \\
\mathrm{So} \mathrm{OH} & \mathrm{OH} & \text { shumen }
\end{array}
$$

Resomants

14	FR1	F	read
39	RFE	F	brain
45	YY1	U	computer
25	$Y \succ 2$	Y	yez
45	Lit	L	luck.
46	WW	W	wool

Voiced Fricatives

18	DH3	TH	they
5	DH2	TH	athe
25	VY	V	Even
43	$2 Z$	2	T00
	2 H	GE	berpe

Vodect Fricetives

Vaicty Stops

	E¢ 1	B	rit
	EE2	E	big
	001	b	could
	D02	D	at
	6 G	G4	guest
	GG2	\square	80
	693	1 G	wig

Voiceless etops

	Tll	T	1 ts
	1T2	T	to
42	kK1	C	computer
41	kK 2	K	sky
3	FF	P	Put

Nasal

1	MM	M	milk
11	NNi	N	earn
56	NH_{2}	N	170
44	NG	NG	Dans

2.9 DICTIONARY

alarm
bathe
bething
tread
celendar
ctown
cherked
checkers
chert:
collide
cookie
sorrest
correrting
crown
dedngter
divided
engage
engajes
enraye
Enidyes
Escape
Escapes
Bqual.
Error
fir
freezer
freezing
gaupe
马autes
Fello
hour
intrigut
intrigues investigate
investigater
investigates
key
legislat.ing
legislated
letter
1itt.1
memories
month
nipped
nips
pin
pinning pledge pledges plus
$15,45,59,15$
E $3,20,54$
E3,20,54,12,44
$28,39,7,7,1,21$
$42,26,26,49,7,11,2,38,51$
$42,45,22,11$
$50,7,7,3,41,2,13$
$56,7,7,3,42,51,43$
$56,7,7,3,42,55$
B, 15, 45, 6, 21
E, 30, 42,19
$42,52,7,7,2,41,2,17$
$42,52,7,7,2,41,2,12,12,44$
42,39,32,11
$3,23,13,51$
$3,12,39,6,2,3,12,2,21$
$7,7,1,11,26,20,2,10$
$7,7,1,11,36,20,2,10,12,43$
$7,11,14,20,2,10$
$7,11,14,20,2,16,12,43$
$7,55,55,3,42,7,3,3$
$7,5,55,3,42,2,2,9,55$
$19,2,3,5,48,15,62$
$7,47,56$
46,52
$46,40,14,19,43,51$
$46,46,14,19,43,12,44$
E6,20, 2, 10
$36,26,2,16,12,43$
$27,7,45,15,58$
2,51
$12,11,3,13,39,19,1,34$
$12,11,3,13,39,19,1,34,43$
$12,12,11,55,7,7,55,2,3,13,12,1,3,20,2,15$
$12,12,11,35,7,7,55,2,3,13,12,1,36,20,2,13,51$
$12,12,11,35,7,7,7,55,2,3,15,12,1,35,29,2,17,55$
42,19
$45,7,7,2,10,10,55,55,45,20,2,2,13,12,44$
$45,7,7,2,10,10,55,55,45,20,2,3,15,12,21$
$45,7,7,3,13,51$
$45,12,12,3,13,52$
$16,7,7,52,19,43$
$16,11,12$
$11,12,12,2,3,9,3,17$
$11,12,12,2,3,9,55$
9,12,12,11
$9,12,12,11,44$
$9,45,7,7,3,10$
$9,45,7,7,3,16,12,4: 3$
$9,45,15,15,5,55$

rays	14,7,20,43
red	14,7,7,1,21
robots	$14,53,2,63,24,3,17,55$
second	[5, $55,7,3,42,12,11,2,21$
sincere	$55,55,12,12,11,55,55,56$
sincarity	$55,55,12,12,11,55,55,7,7,14,12,2,3,13,19$
speak	$55,55,3,19,3,4]$
Epel1ed	$55,55,3,9,7,7,62,3,21$
speltars	$55,55,3,9,7,7,62,52,43$
spells	$55,55,3,9,7,7,62,43$
startert	[8, $5,3,12,59,3,12,12,1,21$
startiru	$55,55,3,13,59,3,13,12,44$
3 \%op	$55,55,3,17,24,24,3,9$
Stoppei	$55,55,2,17,24,24,3,9,51$
stops	$55,55,3,17,24,24,3,9,55$
sumiect	$55,55,15,2,25,2,10,7,7,3,41,3,3$
Sweeted	$55,55,46,7,7,3,13,12,3,21$
swauters	$55,55,46,7,7,3,13,61$
5403ts	LE, 55, 4E, 7, 7, 3, 13,55
Switcter	$55,5,48,12,12,3,50,3,13$
mwtrting	$55,55,43,12,12,3,56,12,44$
Systems	$55,55,12,12,55,2,18,7,15,45$
talked	$13,23,23,3,41,3,13$
tslkers	$13,23,2,3,42,51,43$
talcs	13,23,23,41,55
threaded	$29,14,7,7,2,21,12,2,21$
threaters	$29,14,7,7,2,39,51,43$
threads	$23,74,7,7,2,39,48$
time	$13,24,6,16$
untle	15, 4A, 3 , 02
whater	46,20, 45, 51
whams	$46,20,62,43$
year	$25,6 \%$

64K and 256K MEMDRY EXPANSIONS

These units are available for the CPG $4 E 4, E \in 4$ and Ei2g computers
Ey wsing the GAk upgrade the 464 and G64 computers will have the same amount and configuration of FAM as the CPC ETZS, The $25 \in \mathcal{G}$ gives an extra 192k on top of this!. The Expansion will allow the use of CF/M FLUS (R) as supplied with tre CPC Elze with its massive Elk TFA opening up an even larger software base for Amstrad users. There is also a utility for increasing the TPA on CF/M 2,2 to EIK,

The Ram can be accessed by means of bank switrhing using a single $1 / 0$ purt. Memory is ectually suitched in and out of the Eak 2 E a adoress space in lek sub-blocks, as are the ROMG, The port setermines which particular combination of the original four lek sut-blocks and any new sub-blocks fiom the expansion FAM will occupy the Eak andress space at any time, control of the IM purt can be from either EAsIC Gr machinecode.

To use the additional E4K/2cxt of FAM, the expansion is smpolied with bank switrhimg software eathough it can be switched without this software),

The software adds some extre EASIC commads, RSXs, which make it possible to use the serome Eak cor 3rd, 4 th and sth in the case of the 2sek Expension) for storege for screens, windows, graphics and EAEIC: arrays, This ability means that you can write much larger BASIC programs, as most of the memory on the unexpended Cfcuf.4/ef. $i s$ normally uset for arrays, yariables and graphics.

The additional EASIC commands are:-

IBANK, n ISWAP	Map a bank of 16 K directly into memory space. Alternate between the low an high screens.
ILOW	Change to the low screen.
1HIGH	Change to the high screen. (Default screen).
ISAVES, n	Store a screen to a 16K bank.
I LOADS, n	Retrieve a screen from a l6k bank.
ISAVEW, w, n	Store a windows's contents into expansion RAM.
ILOAD, w, n	Load a window with data from the expansion RAM.
ISAVED, $n, 5,1$	Transfer original RAM to expansion RAM.
ILOADO, $0,5,1$	Load original RAM from expansion RAM.
IPEEK, $\mathrm{n}, \mathrm{s}, \mathrm{v}$	Fead the value of a byte in expansion RAM.
IPGKE, $\mathrm{n}, 5, \mathrm{~V}$	Change a byte in the expansion RAM.

These commands metse suct features as pull down menus, full screen animation and large spread-sfoet type programs or Data-Eases very easily Progremmed from GAGIC as never tofore possible on the thexpanded CFGAEA, EF. 4 romputers.

BANK SWITCHED BAM MANUAL EDR GAK \& 256K EXPANSIONS

WARNING

Ensure that the power to your Amstrad computer is switched off before you fit the interface to the expansion socket. Failure to comply with these instructions may cause permanent damage to the FAM pack of the computer.

3.1 Installation

Power down youn Amstrad computer, Flug trie Ram pack into tre socket on

 'Epminsm', Otraer Expansions suth as the Ansipad Dise intertace for the GrG AEA, Ut'tronacs Lightper and Speech Gynthesiser, or Fofm Exansuns can be ifted into the expansion socket on the batk of tha FAM pact, Now switct gn the computer,

The computer should power up as momat. If it fails to do so, cterte that all tre commethons are correctly made, Note that all De'tionics poodurs have a key location on the connector to ensurs that there ban be no aligntient problems. GTHEF interfaces may not have this feymay ithe Amstrat asse linterfare is the most familar erampley, Hence any combertion probiems will usuelly lie between the fam pect an thege
 insertrug trag RAM pert into the computer, This will give you a better view when luming up the pins.
 patterns sll over the screen! B , the monitor fay rut out the powet to the ermputer, On the colour monitor, just Ewitet the MONITOF off amel then attempt to recomect as atove. The monochomm monitor may have to remein ziwtichor oft for several secomds before power will te reinstated to the compiter.
14. Ls vepy undikely that the oomputer will fail to power up with the Ram pack alone, If this is the rase, then the fault will probebly lie with the RAM peck, $\&$ Feturn the FAm pack to DK'tronies if this is the case.

* IT [G ESGENTAE THAT YDU GUMFIETE YOUR WAGRANTY REGIGTRATIDN GARO ANU
 DEALER (UR DAYY).

3. 2 USING VOUR EXTRA RAM

There are two ways to use the extre RAM, There is a cassettidisr gupplied with the FAM paek containing extensions to EASiC. Here bhe extrae FAm cen be used simply from EAGIC programs. Alternatively, the FAM is accessibie both from EASMC and machime code using the buf comand, The experienced programer will be able to wse the ham for whatevar he plesses and write custom software for thet purpose. Cotherejal progrens will no doubt use this approech,

The seroni method is describey in detail in sertion 3,16 . The first way is explaned in the following chapters:-

Whth the tomputer set up as above, load the RGX sottuare from the sassettolojat Eupplied:

If the cassette is being uned om disc systens type 'lTAFE' and press EHTER
b) Type 'FUN "EANE" amd press <EMTEFP,
c) The boming sequence is described in detal in your Anstrad user manuel.
d) bfun the prograh has finistaed loading, you will be asked to enter
 71.
e) The computar will test the Fian and then print out how much fim you have got, then the computer memory will be blear ready for your pwn prograns,
The rassette tape sontains the same prourams on both sides so that it one side faile to lioad, the other is there as a backup.

Quesquent progams on the sassette are extrarts from this menual which may be loadma from tope if you to not want to type them out.

3.3 RAM TEST

When the Rcx coue is first loased, it idoes an extensive fiAm test. Ghould the RAM mot fumction correctly the prouram will inform you that an error has been foumd. Along with this, it will frint out diagostic information to help in the repair of the FAM pack.

In the unlikely event that an error is foum, please note tro infomation that is given and return the RAM pack for replacement or repair, (See warranty registration mote frage $3-2$,)

3.4 EXTENDED BASIC COMMANDS

There are a total of twelve extra commands provided by the rexs on tape, Gone may have parameters, some will not, Sometimes the comand may have different formats and numbers of paraneters, We have tried to discuss each mommand in its simplest form and later sections will hescribe adred parameters which make the command more flexible and economic on memory.
you may have noticed that durimg the RAM test, the somputar primted out the number bif the 'bank; it was testing, Each bank is lete of memory. For the EAK Expansion there are 4 banksubile the 2 sbk FAM Fack has if banks. Ta Eccess a Farticular part of the expansions's mempry there has to be a bank number and possibly a bank adaress,

For Example, type:- 'ISAVES, 1 ' amod press SENTER
The computer will respond with FEABY, bhet you heve tome is to etore what wes on the Ecreen inta bank I.

Now cleer the strean using GLS. To get the seraen's gontents back, type:- ' 1 OAOS, 1 ' End press ENTEP?

You cen save as many screans as you have memory for. That means fodx screenis gh the EAK FiAM and sixteen Ecreene for the zsek fitm.

Grean displays coubd ba rreated from another propram ar drawn dsima a
 bse throughot the program. sereen displavs which take a bong time to create withm a program, for Example mazes, cen be created once, tren stored for instant use whenever neressery.

The inmmana can be sumbariger:-
lsate, lvan! seve sata to bank:
110 ans, ltant I laad data from benk

3.5 WINDOWS AND PULLDOWN MENUS

Ine of the features thet metes the Anetrag's windows less flexible then those an iarger business machines, 15 the fact that the contente of a window whach overlaps another are lost when the other window is wed,

There ere two new conmands which allow the contents of windows to tue saved and relsaded from RAM. This will allow the wse of true pulldown menus, thet can Gover text, but not rembve it.

```
EXAMF'LE:-
```

NEW
10 MOUE 1
20 FUF: $1=9.95$ TO 1 STEF 9.05 : REM Oraw grid on sereen
30 MOVE G49\%i, 0 : DRAW E46*i, 400
40 MOVE 0,400\%i : DRAW E.49,400\%i
EO NEXT I
E6 WHILE INEEY\&="" : WEND : FEM Wait for a key press

80 PEN\# 1,2 : PAPEF\# 1,3
90 1SAVEW, 1, 1 ; FEM Gave contents of winotow into Finm
100 CL O\# : FEM Clear window

110 WHEE INrEvf="" : REM Watt for 2nd key press
120 PRINTAT, "This is a mindow"
130 WEND
'ac ithaDu, I, ; FEM restore whonow's contents
150 GOT0 E0

The above frograit uses tur new combends; lLOADW and ISAVEW, As you are piobety zwane, there are eight whomous ($0-7$) which can be defined. The first permbeter is the refergnce to e window. The secomb is the bank number,
|QAvEd, [winuow nomber], [tank seve wirdow to bant:

Gee the chepters in the wser manual atout whow for fore betals.

3.5.1 MORE WINDOWING

A window of any size, Even the whole gcreen, will fit anta a single bant.
 or will vay in size like the above example. On the other hend it your whotur was defined as 16×10 in Mode i, then the amount nt numory
 bytes are neened tsee below!. This to dse a whole bank woud mean wsijing Dver lat of memory.

To Hed wth this prociem, the FiGx whotow Emmant san take an Exta parameter to itefine where you want the window's contents to reshe in the Fin tank. In the io x lo window you eguld face the data anywhe buthesen and 147 B 3 , The command can be witten:-

ISAvEW, [window number], [tank], Ctenk address]

The bent address an an eddress between Q and feso, The amoun of data in bytes wsed bo store a wimow heeds to be taken away from the top vabue and this leaves the range between which the deta can tue stored. If you put the data at the bottom of the ram bank, at address b, then the fumbry from teog to leses is free for ottier whotows or data arrays.

HOW TO GA CUIATE A WINODW'S SIEE
In order to have more then bTe whon per bank, you need to know how much memory trae window will take up. If the window will vary in size between two dimits, use the righer of the two Depenting on which mode you are using, the figures are calculated as below.

In each case: x is the left nost x cooridinate
X2 is the right most courdinate
yl is the top y courdinate
Y 2 is the bottom y roprdinate
mOUE 0
$\operatorname{s[2E}=(X 2-X]+1) * 4 *(Y 2-Y)+1) * E$
MUDE 1

MODE 2

The computer will give an error if the window is too large to fit in the space you have allotted for it, Also if the size is mis-calculated the windows may geverlap in the bank: and ceute strange efferts.

EXAMFLE 2:-

```
    10 FEN 1 : FAFEF 6 : MODE 1
    20 size=14 * 2 * 10 * -
    So LOCATE 1,is : FRINT " 'n' for new window 'd' to remove window"
    40 WINDOW 1,14,1,10 : FAFES S : OLE
    se barikdodese=0 : level=0
    60 fRINT#Level, "Uindow":level
    70 RevFress$=LOWEFक(INHEY$)
    go TF keypres5%="口" THEN gOGUE llG
    g0 IF kEypressq="は" THEN GOSUE 190
100 G000 E0
il6 If LEvEI=7 THEN FETUFN
O0 level=leqe!+!
```



```
14% IGAVEW, level, l, bankaddress
ls) tankaduress=bankaddress+size
iob FEN#level,g : FAFER#level, Clevel And l)+!
170 GLS#level
100 RETUFN
196 IF level=g THEN FETURN
260 bankaddress=bankaddress - size
210 ILOADW, level, l, bamkaddress
zag Level=level-1
20 FETUFN
```

The atove progran only uses one bank of Ram but all 8 undows are definet. The variable 'level' is used to stand for the level of windows and the variable 'barkadress' points to the next free place in the bank RAM.

3.6 ARRAYS, VARIABLES AND STRINGS

There are two general purpose data moving commends to allow data from the prograbio be moved to and from the Fam pack.

These two commands are:-
ISAVE, [bank], [Start location], [length], [bank address] LLOADD, [bank]; [Etart location], [length], [bank address]

The first parameter references which bank you want to use, The start bocation is a memory adoress where there is some data. The amount of data is given as the lempth. Dptionally a bank address can be given to allow more than me type of data to be stored in the fiAM.

Lt js poasible to save all kinds gf data uning these commands, but we wil firstiy discuss how to save simple mamerical arrays these being the essiest to understand.

Say for Example thet your. program deals with stock control of up tog eo itema, You may bave a strimg array bontainimg the names and a numerical array rontemming the mumer of each item you tave in stork.

Ths would bse sbout lk for the names and ooc bytes ior the stock fighes, However whet if you update the stock vajue every week and you want to keep the last year of stock on reorme or even the last flve

These rouly be comfortably stored on disc, or even tape for a year's stock; and the data read every time a calculetion was neeoed, but you wil probably agree that a lom time would be spent waiting fop readiag the deta eath time a distributiom i= calculated for each lam.

Obvously, it would be easier to load all the reeords into RAm, then atcess the deta immedrately:-
 ISC of yaluable RAM which coubd be used for proprams, define and array 'stack(G0)', Read all the data from dise a werk at a time, and store each wew of data into benk FAM, To do this you neet to know two thmgs, Gne, whote dous the arrey lie in memory and two, how many bytes is it necessary to save?

1) Where is an array stored?

The address gif any valiztle can be quickly foum using the 'o' betare a variable, For example, dimension the aboye array:-

9IM 5 50ct (E6)

Now typa; FRINT Bstock(b)
The computer will repiy by giving the memory address where the tarst element of the array is stores. Tiry:-

FRINT bstock (1)
The muber returned will te five higher in velue, This is the adoress of the secont variable.

The 'o' prefix will work in front of any variable, The first item of an arrey 15 pbviously 'estock(b). If you are using multi-bimensional arreys, the first item is 'estock (0, 0)' or 'ostock (0, 0, 0,0) bepending on the number of dimensions.

2) How long is an array?

First of all, different types of array take different mumbre bf bytex per element, Fop real number, there zre \leq bytes oser element, intaner arrays take 2 bytes per ejement. String arrays ete of vatioble bentto, Ant will be deal.t. with later.

Next. the number af dimensions and elements needs to be taten into acount. Femember that elements stant from 9 , This means that an armat of 'stort(gQ)' has Ei elements, Whether on not you prefer to use the o Element is 4 to to vou, but if vou forget it, there oodd be bome
 number of elements in every dimension, simply matiply fopether all the dimensions to fing out the total nubuer of elements in all binensons,

For example: 'storkiegi' has a tiatal of Et alementr,

To find the thtal mempry, mbitiply the total number of elements by the anoumt gf memory neaded by eart element,


```
    'stGrk(10,5,12)' takEs 05% * 2 = I71E bybes in all.
```

The arriy we are tsing is 304 bytes bong, ant starts at astortop, it a single bank of Fam we cen store gec bytes atout 5 times. The bent adoress starts at and goes up in steps of ogs bytes: -

9305 Eib 31 T i2g 152 S etc.
We stiall stone waet ? at tank adoness goc, weak 2 at adress fit ant at Sn far all ta wets.

Data for test purposes enubt be written onto dise or tape by the propem below. Dnce the test file is written, keep it for we while you ate developima your orghem.

10 DFENDUT "stork, Aet"
20 FDF week $=1$ TO 52
30 FOR $t \in n=1$ TO EO

49 NEXT item
E. 9 NEXT WEEK:

79 CLIGEOUT
89 END

Now type＇MEW＇and enter the following progrant－

```
    10 DIM stock(E6)
    20 TNFUT "read file (y/b)";ans方
```



```
    40 REM rest pf program
l006 FEM subroutine to read date from disc,
1010 DPENIN "今tock, det"
1020 FOR week=1 TO 52
1030 F[R item=1 TO EO
1040 INFUT#G, strock(item)
10S0 NEXT item
1050 ISAVED,4,0stock(0),EIf5,week+305
1670 NEXT week
1980 CLUSEIN
1036 FETUFN
```

The above propram could be used to read the file from disc or tape， Once the file is in bank RAM，the contents will stay there for wise tuntil the computer $i s$ switched off，sh some other data is fut in that bat． This means that data meed only be read once from disc，then the program can be rerun without losing the data．This cound also be useful too if you wish to write a muber of programs to use the same data，

Once the data is in memory，you can access each week＇s data simply by reloading the stock array，Ady the section below to draw a bar graph for a given section．

100 MODE 2
119 LDCATE 1,1
120 INFUT＂Which item to analyse＂，itemno
130 IF itemmocl OR itemnose THEN 120
140 CLE ：LDCATE 80， 1
150 FRINT＂Bar Chart For Item＂；itemmo
160 LOCATE 19,25
170 FRINT＂Jan Feb Mar Apr May Jun Jul Aug Bep Oet Nov Dec＂：
FEM 3 spaces between each．
190 FOF 100F＝9 T0 4
190 LOCATE 1，24－100p：5

216 NEXT loop

MOVE E44，24 ：DRAW 49,24
230 FOR 1 100p＝1 TO 4
240 MOVE $48,100 \square 160+24$ ；DFAW $60,100 p+86+24$
250 NEXT 100 P
260 FDR week＝1 TO EO
270 If week／2＝wesk／2 THEN $n=1$ ELSE $n=2$

300 FOR xcoord＝1 TO 11 STEP 1
310 MOVE $43+x \operatorname{cogrdtweed}+11$ ，ycond +26 ：
DFAW $4 Э+$ xcoond＋weak末11，2E
220 NEXT x xonnd
350 NEXT wEEK：GOTO 110

3.6.1 MORE ARRAYS, VARIABLES AND STRINGS

If you have a program that uses all the momory of the computer due to needing a large array, you can use the bank FAM for storing deta without even dimensioning an array,

For example if you have a two dimeneional arrey 'sales\% (ofe, 36)' to store the anounts of certain types of stock you gell for each day in one year, Even though you are using intergers, the array uses over zato of mempry.

Instead of having the whole array in EASIC mempy, each element. tan tre arcessed by using a subroutine to read out a value, and one to stone a value.

```
10600 REM load 'storex' from tank memory usimu 'yeay' & 'type'.
10010 p=< year木E1+typab*2
106%0 bank=1 ; IF p >=1E000 THEN p=p-TE606 : Dank=z
106%0 ILOADD, bank, 0stor=%, 2, 
T0040 FETUFN
H000 rem ropy 'store%' to bank using 'year' g type'
11010 p=C y@arkz!+type )*z
11020 bank=1 : IF p = =0000 THEN p=p-19600 ; tank=z
|Gg0 !SAVED, bank, estore%,z, \rho
T1046 HETUFN
```

Tw tents are used, 1 and 2 , and the variables 'year' and 'type' are used to reference which element. is required. On line logeo and 1100 g , there are just. z bytes moved to and from the bank fim berause we are
 an integer is stored in two bytes. If recl variables were bsed, bytes would need to be used insteed, kines 10020 and 11020 decide whether the element is in the first tank sor tre seronid.

If the array $i=$ to be filled with deta from tape or disc, there is mo need to injtially clear the values to nil. If you went ajl elements preset to zeno then the easiest way is to save a blank screen into each bank: at the stert of the program:-

10 MDDE 1 : PAPEF 9 : CLE
20 IGAVES, 1
30 1SAVES,2

3.6.2 string storage

The major robstacle in storing strings is that they can vary in length and can be stored anywhere in memory, including in a EASiC program. Gme mettod of storing string arrays is outlined below. However you may find an easier way to store strings than the one described below when youd consider exactily what you want to do,

Gupose thet you wanted to stope 500 names, up to ab charartars bong eacti. A Eant $1=$ seperated into units of memory 21 bytes each so that. strings ian be randohly accessed. In each $2 l$ byte segment there 15 one strimg and onz byte ta say tow many letters there are in that stirnu, That means that we will tse a total of just over lor, if we use the variabife 'mathe' to gpecify the strimg we want then we can enter two
 Etore the contents of 'names' inta fiAM bank nufuer i:-

Zoton REM assugn 'names' to strimg nomber 'name'
2 2016 ty =" \quad : REM zt graces

atogh hem etrre 'hames' in bant as element 'mana'

21046 RETUR
 fam. The ing chenacter is set to the length of 'named', The lattei

 chaterens are sopied out and 'nemes' is set to the raph length by lootime at the finst rhararten.

Eifing strapat whtu come intr its own if ell the words were of the Same bength because there would be me wasteage For example a wor quaz
 hact for eath benpth ot word. A loader poogram would set up the itata hnto the FAM, tren another coub be chalded and we up tw gek of fam tor program.
 lettans and 50 ad tha spund of access to a particular wod.

3.7 ANIMATION AND PICTURE SHOWS

We have geen row screens and windows ran be strared and retrieved. Anjmathom 15 the act of futting pictumes on the Erreth puickly enough so that. the Eyes see something move. With EAK pe zEEt of memory whale sereent fan be stored away, then put on the screen to produre emmation.
rou ma, Tava notacey an section of trat when a sereen wads onto the screen, you cen see each line appear, To illustrate, type in trie


```
    10 MOUE 1
    * BROER a
    G40F [Q1=0 T0%
    40 INK 601,0
    50 NEXT 6-1
    E0 FDR GOL=O TD 3
    70 FAFEF G日 : GE
    O) Grvts, col+1
    60 4+Y! [U]
```



```
110 FLN 1 : FAFER 6
TO NHILE INHEY&=""
130 FOR screm=} 10 4
140 LLEFDIS =treen
H% NEXI SCTEEn
OG WE!4D
170 Em?
```

 up in sequence. Unfortamataly, the effert is a striped pattern,
 ta create the srncan display, then lmstantly gisplay it,

Threx new lastrustugs thet aly the to be done are:-

bietore the commants can be understood jt is mesessary to know haw the Amstrat's sriten san be used. The hormal soreen is located at 49be, Howevi tre Anstred is capatle ot viewing a screen anywhere in memory in its bloks. The first block at 0 and the thiro block at 3ates arta aifficult to use for screen as tre computer uses these as part of the Ensit inturpreter, The bloct of memory at least is free for bee as long as EAGiCs HIMEM is lowered tre Delow ifges. Using this, we have celled the ordginel screen the high sereen and the new screen at legit is called the low streen. To go from one to the other just use:-

```
How to set tre low screen in action
IHIGH ta reset. the high screen
ISWAF to swap from low to high and vice-versa
```

Whenever the swap $1 s$ made, the compter is tobs and all further taxt and graptics appear on the selected screen,

Fo use this facility of swopping from one sereen to another lostantly the screen and windau tommands can heve an edder feratieter wrichitell三 the romputer to load of save the data to and from tre atomote sureat.

The new torms gan be written:-

 screen that is presently being displayed, Alternetively, 14 the velue is ome the tomputer will load and save deta from the screen wrict 1 s ant being dusplayed, when the work 15 mone, the computer ban owap scieans and the effect is that the Enten apmens to crange mistandy.

In the above program type these innes:-
5 HEMOFY IESGS: 1 HEGH
 146 llome sepeen, 1 : SuAF

 instant ly.

Lhe tou the fact that tre bank memory fuoves mota the abdiess space at let. it takes longer for the thanster of sireens to be made to the bw sciaen then to the tight screen. Hence lime los delays trie comptuer as it 15 to loat the high sereen. This means the time each scieen is an the gorean remains the same. Try removing lime log to see the ditference
三 Picture ghow effect, Alternetively, you could select screens when à key is pressed,

Dr a shail scale, a whodow could be befoned and graphas couda be rapidly displagen without resorting to swappang zremers.

Note, that af less use is the fact that tre contents of screens and wimows can be savey from a sereen which is mot on argolizy simply by adding a one for the swap farameter. For Exampe if you want to load a Series of screens from tape or disc, lode them 1 moto the low tikkj screen. Mesmepes genarated by the tipe system need not be switrhed off as the screen's contents will mot be chamged in the low fienory screan.

```
19 LOAD "screent", IGSE4 : ISAVES, 3 ;
```

The above will load a screen then save it to bank 3 . The serean the user sees can heve sonething else on it.

3. s ADVANCED PROGRAMMING

This section antroutuces one new command and some other progemation gsperts which youd may find useftil.

The new corrifind is:-
fabkAAM, [enpuiry], [variable]
The command allowe certain constants to be found by the progham you are writing. For Exaple it san return the muber of batks avalable to the pagrain as this will change depending on whether you ame using the bats FAM pack or the 2SEk FAM pact. The 'Enpuiry' valus 13 a number to a which selects what you want to kmow, The answer is plaeg in an ldegen variatia defined by the second paraneter.

```
1000 a%=0 : IACHFAM, , Ca% ., will asmign a% to the amwunt of fam
|60 E%=0 : |AGKRAM, 2, Na% . wilI asEigh a% to the number of
names
```



```
whether thate := a problem with the RAm
```

The last comman can be bsed to mate mufe trie Ram is there and ready to Whe it in yod programe you to not want to fove to lode the fox baber


```
    20 MODE : : FFCNT "FPogram LGading!"
    30 1=H1MEM
    49 MEMDFY 9999
    50 !ug0 "rEx", 10006
```



```
    70 FORE 10002, I-INT( Y/2SE )&25E
    B0 FOKE (000%, INT( [/2EE )
    90 FKINT (HF&(S0);(HFit(21);
    100 CALI logem
    10 FFINT EHF&OOO\:CHEDCE);
    120a%=0 : |ASKFiAm, 三, 涼
    O% 1+ E% THEN FRINT "RAM is faulty" : ENL
    146 CLEAR : MEMDRY FEEK! 10002 +FFEKC 1000S )*2SE-1
    |GOCHAIN "parta"
```

7he frogran above will load the Figx machine coude and put 1 t. into memory. Nothing wall be pirinted on the serean unless the RAM proves to be fally or not even there! The program 'partz' would be the bult of tre progran, Loadng the program in two parts saves reloadimg the rox code Every tirie the frogram is rum,

The coge has to be loaded in at 1000 in memory before it is relocated for use. The 15 dit value in locations 10002 and 1000 is the plate you want the coute to be located at. Another ie bit value in loacetions 10064 and 10005 contains the length of the code whirh is moved higher in fiemory, Nearly lk of the propram is suly heed once - the relocetan and the FAM test programs, and honce this part is not moved higher in Bam,

If you want to use user defined graphiss then adt the following lines:-

10 SYMEDI AFTEF 2SE.
IS SYMBOL AFTER O
The value in jine iso will be different depending on fow many user det inet graphices you want.

In your poogran you may want to heve a number of difterent siyles of Gharater set, After you issue a SHBOL AFTER GOmand, HIEMEM 15 Get just below the bevr defined grephics. Hence it is possible to use tre HDAD and IGADE commande to move graphies to and from the graphics chenacters.

If you have a propram thet defines the cheracter set, the definitions an be saved and bated into bank Fifu so that a proprem may have mulifle thetecteq sets,

```
    70 STmBOL AFTEF D
    20 chars=4IMED+!
    G0 BEF dofine symbols here
14g0 GAvE "set., gra", E, chars, 2048
```

This progran wil seve you charatuer set onto dise or taoe

On your final progren you may wsil to load a number of sets:-
10 -YMBTL AFTE 9
20 Lhan $5=H$ HEM + ?

The reason the variable 'thers' is set the is because the velue of HIMEM sluns when the disc an tape is accessed.

Durimg the program, a subriutine could be saed to sefact a character SEt:-

1600 fitm given the variatie 'cet', load the characters

1 W\% RETURN
Mote thet the veriable 'exet' is used, In the above loading sequence gets \mid to 3 will be valid. Mone or less could be added as it suits you.

All of this settimg wh ban be done on the loeder frogram, just once. When the program is subsequently mathere is mon need to re-load the Eank FiAm.

The satting of chans can bre frum whenever meeded by:-
कw AEAR : SYMEOL AFTEF 6 : Chars $=$ HMMEM+
!ha wil! memoe any dist buffers that have teen set mparo 'rhers' will inctard feill to the cterecters.

3. 9 fEEKING AND POKING

 and champed tyte ty byte.

```
IFTtE, i tent ], [ tent addrese ], [ valuk ]
fPEt, ; bank ], [ bank atcress ], [ variable ]
```

Frut wats in a simige way to the original Foke, You newd to supply a bunk numar in abotion to the momal adoress and value, The bent: entress is in the tange to lsog or oto tot,
frek is a commend rather than the ownal funtion. the benk and bent sdotess are the seme as for frofe ta find out the value, you need to Sypy y an integer variable in a similar way to the lAchRam command.

16 atue\%二6
क IFEES, $3, ~ T a g a, ~ o v a l u e \%$

Tre atove will read the byte inom location ogac in bank mumer 3 , The
 1\}-st. its comtents ban be rtarged to the byte renuired.

HEF\& and fobre are not really commans for the tegimer, in fact they rave ondy bem inctuded for the mome edvencod progadmon who wistes to the the bent RAM in his bwn wav.

Another advenced command whith has toen included for the experienced Fnogrammen is EEANL.

> feant, [bank rumber]

The comband is followed by ane parameter, If this parameter is mot present, a xero is assumed, The bank referenced is mapped into the address space at lek to gek, A bank number of Eare will map the ariginal FAm back in, numbers ito the maximum bank number will map that, bank intr to address spere, If a bank is mapped in, the computar uill wae the bank memory isteat of the normal RAM, However, the sereen will still be tetem from the ariginal fiam if llow was issued. The advantage of this is that the whole memory can be used for propraming instead of teving to set the top of memory to leges. The disadvantage is that if the frogran is halted while the low seremen is being displayed, the conputer will write screen data into the EASTC propram - causing chaos.
 rist sreating a jarge program wsing them．Gave the guram frepuent ly in case vou make a mistake and lose voup work，

3．10 PROGRAMMING WITHOUT RSXS

With no fig software the programer can still atcess the mamy from the
 fuemory man of the Anstrad is mecessery．

三et the tog of memory to legse，Mechime oode is fres to use biny memory that it can momally emept the block mentioned，

The extre RAM is mapped inta the eddresses lesed to 327E\％in le，
 nowally woudd it is inaduisable to tse the bent fom tor methane rote
 Aevertheless，piompas can be witten tor ran in tentes amd moded in the onigunal lek bloct thet is banked out，but it is necessary to do the
 extremely difficuit to bse the bambet ram for extra prombas，but mot mposeltie，but we shall leves thet pussitility up to yous

The way that banks are selected is definey belou：－
 DUT \＆7FO日， $19 E+($ bant AND 3 ）$+($ Dank AND $29+2$ MOTE：the bent numbers in this EEse ETART AT o

For Gut Expansibns the banks ane 0 to 3 ，0n the 25er，benk numberg gro 9 tolt．

To reset the original bent：－
DUT $27 F 60,192$
IN MACHINE GODE：फhere the bank number is in tie accumalator，（A）
SELECT：FUCH EG：
；Select tank A S与ve all registers excopt g
LD C，A ：and flags）
AND 3 ；bank AND 3 ；＋
LD E，A
LD A, C
ANO $2 \theta \quad$ ；bank AND 2B） 2
ADO A，A
OF E
QR $196 \quad ;+196$
LD EC，97F0日H $\quad ; \mathrm{EC}=87 F 69$
OHT（C），A
FOP EC
RET

Again the bank number in the accumulator starts at θ. The reset the original bank:-

FEEET: FUGH EC: ;save rer.
LD EC, 97 Fg gh ; select control port
LD A, 192 ;select code for original bank
DUT (C), ; restore bank:
FOF EC ; restore reg.
FET

3.11 TECHNICAL DETAILS

3.11.1 The Load Address

The software which Joads trom tape is relocetable, However tha areas af memory in which the program can go is limited to between 22750 and the top of memory. This is because the bamked FAm appears in the biock 16ig4 to 32767 . Sob previous rhapter for explanation of why! belou the lek boundary, the Fige cotmand tatole will no longer funtion. Hence, Huring relocation, the code is loaded at looge in memory and moves to a Flace higher in memory, Fressing sentefy while loading, will automatically select the highemt locetion available, Alternatively you may wist to load the code to a lower address and reserve some spare for your own prourams.

3.11.2 Saving to Disc

The software on the cassette is NoT protected, Hence to save it onto disc on even onto amother tape at speed write is a metter of loading the data into memory, then saving it.
i) Type ' 1 TAFE' and press 《ENTER (for disc systems'
2) LOAU "bank"
3) MEMDFY 9999
4) LOAD "rs*", 16000
C) TYFE ' $101 S C$ on set SPEED WRITE as desired
(E) GAVE "bank:"
7) SAvE "rsx", E, i0600, 4000

3.11.3 INCREASING CP/M 2.2 TPA

Fiun the pmogram called "TFA" from Eithen cassette or disc, depending if you have a 464/EE4 or Elze computer, When instrurted to, place a ef z, \bar{z} system itisc into idrive A.

The frogram will 17ow write a file called INCTFA, COM onto vour system -ise.

Enot up CF/M 2.2 then immediately after the 'A'' pront type in 'INCTFA' then press EENTEF , Vour system bisc will now be altered to ran with a ElK TFA.

Commercial Program Compatability

The Ram expansion is compatible with the banked RAM supplied as standard with the ffcelze. This means that a number of programs wirtten for the CPCEIZ will now work on the CPC4EA and CPCEG4 range of computers.

In fact the Rex software provided will work on the CFCEl2e,
The babk switching software in its supplied state will only access zsek of banked memory, that is IE banks, If you add more memory the Rex software can be told to access a full stek of banked metnory (3z banks) by foring location 1000 with 1 . See section 3,6 for explanation of how to load the fox software on its own.

55 FOKE 10005, 1
This line will de the trick!
If a comercial prografi fails to wort on your CFC AEA/EG4 than try the supgestions below.

1) The software inay be using the new firnware vector at \&e0se. If thas is the case, try raming the ReX program before rumnong your application program.

Gone proprams which will fumstion correctly after the fox softwaretape has been loaded in are Tasman's Tasword (fi) word processor, Tas- spell and Tasprint for the cFCsize, In conjunction with these, Campell Systems Mastertile le will provide a Guk filespace and interfaces with lasmans's software,
2) Some software, whether loaded from disc/tape or booted from a beckground foly will check the fom identity ty using the firmware call ze9le.

There is one more command included in the Rex software on tape whichwill cause a OPCAEA or EG4 to emulate the ROM identity of the CPCEIZE.

Type 'IEMULATE' and press EENTEF;
Any proprams that call the Fom identity routine will now be informed that the computer is a CFGGle and may now work correctly.
3) The sotitwre may use some features of the CFCEl28 fiOM which are unavailable on the CFCAEA and CFCGE4 machines. In this instance, you may be able to get information on how the prouram can be altered to work on the CPC4E4 or EEA from the manufacturers of the prografi in question.

3.11.4 Using CF/M 2.2 (R)

 normat with tre Extra memory fittet. However if you ram the IncTPA, COM atality the Tfo avalable to CFM 2,2 will be increased to Elk,
 free ta ise the Extre menory, see section 3.16 for detais of how to bese the extrat menory from marhime code.

3. 12 ERROR MESSAGES

Whole you are using the fox softwate there whil be some octajobns when the :-mputer soes mot moderstand or camot earry out what you hava instucted. The softume may issut some erron messoges in adition to the normal messages that the computer will give. The errors and why they are thkely to occur ane outimed below:-

Eaj bavk Eombend Given if you have given trae wrong number of parmeters or if a variatile is not present. where there shmuld be one
 on your systemi.

Ead bant farame ber rad have referenced a cank which can never be fatted to the romputer.

EAE bonk adives The abiress you heve given is out of range: bonk addresses rampe from θ to leges.

Veble invalio The bank adoress may be too large iof the block of data defimed, The farameter for ASHRAM is other tran 1, 2 or 9 The size or a biock to be saved is larger that lek.

End whotow definition
The whatow referenced in isfuew or ilondu is above 7.

3， 13 REFERENCE OF RSX COMMANDS

All the additymal combands are listeg below as a reminder to thelr functions and syntax

GCREENS

$$
\begin{aligned}
& \text { ISAVES, }[\text { bank }],[\text { swap }] \\
& \text { LDADS, }[\text { bank }],[\text { swap }]
\end{aligned}
$$

W NDUWS

data elucks

ANIMAIION

```
H0u (Lou Serear)
(HIGH (HEgin gereen)
1SwAF (Altenmete Detugen High and Luw Scremens
```

OTHER

```
PufE, [ Dank I, [ benk godres5 I, & vahwe I
IPEEK, [ bank ], [ bank aritress ], [ vardable ]
| EANF: [ Eank ]
```



```
Z = emror borured?)
```


DEFINITIUNS

［ Eant：］Bank mumber 1－4 Ditefor EAk ent 25EK こめpansions．
［ Dank adress ］Address witrin bane o to itose，
［ 三wap ］6 or onitted means act on buegent screan， 1 means act an alterniate Ecreen
［ stant location ］amd L Iength $]$ Define a block of original memory．
［ variable］

Give the location of an intever variatule to be assigned for exaffle 6b\％

3.14 Technical details hardware organisation)

These interfaces add aither a single block (EAk) or four blorbs i4 x E.4K) of RAM to an existing CFCAE. E, E4 or Elize,

Thus, if eak (ome blork) is added to a 4E4, the total memory is two blocks, legk.

For a guven set-uF, calculate the total mumber gf Eik blocks, thas will determine which of the block select Endes mentioned later are reteyant to your system, The blocks are refersed to by number, biock one is tie oripinal Eak, block two is Equivalent to the secomo block pheaent in the G!cs, and so on.

Menory is actualiy switched in and out of the Euk zen adoress sede an lek sutobocks (as are the Foms), Which particular combination of the
 beyond the original E4k, is Galled the memory map, the map is Jetermined by an g-tit code byte sent to the gate array control port,
 codes ieferes only to the remaining six bits, 0ewo.

Control Codes

tits טe-Do control the way lek sub-blocts are arranges in the zeo meffory spare, biť DS-DG control selection of whichever 'new' Guk block is to tre used.

Bits D2-D0 - 16K Map Codes

These tits select one of the eight maps into the E4k as folbus:-

$\operatorname{CODE} \quad$| | 1 | 2 | 3 | 4 | 5 | E | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

SUBELOCK

$C 000-F F F F$	3	$3 *$	$3 *$	$3 *$	3	3	3	3
$8000-B F F F$	2	2	$2 *$	2	2	2	2	2
$4000-7 F F F$	1	1	$1 *$	3	$0 *$	$1 *$	$2 *$	$3 *$
$0000-3 F F F$	0	0	$0 *$	0	0	0	0	0

 in the obvipus way. The star (ix) indicates that the memory is froma 'hew' block, ae block 2 or higher, otherwise the 'ordginal', block i, is implied.

Thus, code 0 selects the original, unmaped Eik, code z selects a completely new block of EAK, the other codes ara a mixture,

Notes

1. On fower-up, code 6 is salected.
2. The vou circuitry adwace reads from the original Euk block 1), andepenoently of the code.
3. If coute 3 is used, reats from 24000 to g7FFF, Di OFC 4E.4/E.E4 machines, will oniy return the correct. data if the upper fomm is disabled, This is at variance with OPG Eleg operation, but is unlikely to be a significant sifterence.
 prognans, they are intended for vou or data access only.

Eits D5-D3, EAK Block Select Codes
D5 DA OE ELOCK
$\dot{0} \dot{\theta} \quad 2$ (ie, 'new' memory sub-tocks came from thock z, as in CFC E12S)

0010
$\begin{array}{llll}0 & 1 & 9 & 4 \\ 0 & 1 & 1 & 5\end{array}$

Which of the above codes are relevant to your machine depends on total membry (see previous remarks).

Notes

1. On powertup, code $\theta, 0,0$ is selected.
2. Eits u5, DA, OS above 'count up' as blorks are solerted. This may assist the programer,
3. if $2 \times 250 k$ memory expanders are fitter to the machine, and option links are set appropriately, all patterns on DS-DS can be used, giving a macimum of ciak extra memory.

3. 15 CUSTOMISING YOUR CP/M FLUS SYSTEM DISC

Converting A 464 Keyboard Scan To That Of A 6128.
Gome fim flus programs will not run correctly on the $4 \in \mathbb{4}$ computer because of the way the 6123 scans the keybord.

The folinuing prooram and ingtructions convert fforl, ofM FLUE into thinking thet it is rumning on a Eles,

1, Mate a working copy of both sides of your system disc (sides 1 and $2)$.
a) Use yout 5 tendard GF'iM 2,2 System disc and type 'loFM'.
b) Fon Sumpe drive systams use DTGCOFY. For Jual drives use COPVOISC. (Femember to do Doth sides).
() Fut voun oripinal system disc away in a sate plare to keep as a batbour intase your worting diss is dathaged,
\therefore Fut 'EAAt' and 'Rox' onto side 1 of the working disc.
a) Follow the instructions in the manual to get a copy onto disc. Altemntively, ase 'FlLECOFY EANK, EAS' and 'FILECOFY RGX, EIN' if you have transterod the suftware to disc already.
a. Feset the merhine then enter GF/m FLus, Dnly ome drive is necessary tut if you have two you must disconnect the second drive because alj the changes are to be mede on the working disc and witt a simole drive the romputer ran use both sides.

```
a Fug "EAMK" then fuess ENTER in respunse to LOAD ADORESE",
```

ti Type in 'IEMAATE:GFM' tren pRESS ENTEFA.

4 Pye in the following, pressing sfitery after every line umbess otherwise written. Turi the disc over when the computer asks:-

```
    E0 FATCH, AGM
1
    OFG 100%H
    yRA A
    GTA OHDEFH
    IMO a
    EMT!
    &TE` dO not FHESS {ENTEP\
e
    EO ffor IlE,gUE
i
FAICH
    CIFL? , &o mot [HESS <ENTEF>
O
    (Inseft dise rontgining MAC.COM FILE)
B:MAC FATOH
B:HEXCOM FATCH
ERAF FATCH, HEX
ERA FATCH.SYM
ERA FATCH. PRN
EFAP PATCH, ASM
```

5. It is possible to alter the GF/M FLus dise to pogt de withot loading the bx'thonics EANK pronram first. Typu the followng lif you want your syetem diec altered in this way;

E: SAVE
E:ED GIOCFMEMS
SIE
9
CTRL> GO not press ENTER
G10CFMB, EMS
Y
100
$E .500$

The dise uill now bont up without Efile beinu run

64/256K SILICON OISC

 Mormal dise drive attachea. Data can be transterray onta the silicon
 at vastiy hameseed speed, especially on syotens with only ohe norial drive, Suppor sottware is cutaned in an expansion romp.

1) Fiom Bnsll uncer Angous,
Z) titnत CFM

1) From BASIC:

 momel Amatred ilse dives.

 Ravan to sontindelly trange dises.

2) From CP/M :

 digt, This program then caller from OF/M will inplemant an adatatulat
 to run whenever you but anto O fit.

 FIP utility Es nommal.

Tre silvon disc is espacaady usetul tur simgle dive trim systeniz as the dise containing the fropran is otten nearly full and neads to siay in the olve. The silicom dise ofters a cheap secomo arive tor seirots Eushness applicatimas.

E4k Silicon dise

Thas as avalable to elze wsers without the need for further expansion as it utilises the secohd efk gf bated RAM, which is fitted as standerd, as a Fialii D1sc.

At.4-4.4 UScrs wil need to tit tre DK'tronics EAk FAM pack,
The E4K silicon aisc operating system cannot be used with CP/M FLUS because they would thoth be trying to use the second G4k of memory.

SHLICDN DISC MANUAL

WAFNING

Ensure that the power to your Amstrad computer is switcted DFF before you fit the Silicon Disc to the expansion socket. Failure to comply withi these instruttions may cause permanent damage to the device or the computer.

4.1 Installation

Thar mandet owvers two versione at the sillom dise, the EAK and the Ete.

 of dea umere the (fo EEdFELE are UFWFO bompatible. You may however

 -y y telir HOM.

WWer Jown the amputer and tit the sidicon Dise unitco omothe teat

The Silicon Disc will only work in conjunction with the normal disc system. On the CPG $4 E 4$ the FDI-1 MUST be fitted, 0ther expansions may Le titten mita the expanaion gocket on the rear of the silicon Dise, now swleri in the computer,

The computer stould power up ss normal, If it felle to so so, check that all the conmections are corpectly mate. Note that all DK'tronics Firubus fiave a key location on the conmector to ensure that there can De no allgment piobiems, DTHER interfares may mot use this keyway itha Aristras disc intertace is the most familiar example). Hence amy combetion protiens will wadally lie oetween the silicon Disc and these expansions, If this is the case, try reconnecting the interfaces eefure luserting the siliorn Disc onto the expansion slot, This will give you a better view when lining up the pins.

If the computer DOEG fall to power the tue to miseldimment proviens thu monitor may cut but the pouser to the gomputer tanitj the fombluf is
 into the momator to protect the computer and inteffeces. un the cricur monitor just switch the moNiTOR off, recommet the undts as goove, treut Ewitch bit again. The monochrome rontor will have to reform sultcried off for quite a few seconds before the reaet 15 s beared Heconnert as above, weit for few setomis, then switch the monitur back on,
 up witr the silicom disc abone. If this $1 \equiv$ the case, then the fent.
 OK'troncs if this $1 s$ the case,

 BLELER OHE GNLYA.

4. 2 FIRST STEPS

Type 'iSDISC' and the computer will imblement the silion aplve.
 available to the gystem;-

Try typrog 'IE:GAT Br 'IG:CAT',
Ald the ecmands whath are mormally used in basic tor the standel arives now apply also to the salicon alst. The baty ditterence you ミhould notze 15 the ditferemes in access tame tor thles amd forgrems.

 that's E4/2SER!

Obvausly that is not a lot of goou, you want to put progiama whe the silicon disc and tatse them off. There are two commands which allow bulk data to be moved from a momal disc iondre Al to the silicon dise amb viceーverミa:-

lGAVEULSC Put dete betik onto a nornal dise
 move all your date to the silion drive. The second would be beat at the end to mode all the iata bate to a momal dise, (Femember the contents of the silicon disc are lost if the computer is switched off!,

 tre systefi will lock up.

Tre 'lsavelloc command alse trateters all the files fomitre ondon
 the s:l:ran dise, some EAt falee ete will tave to be rembuet ifet, it you what to selactively save files it is best ta use fif in ofm.
 store the asse catalog so that the transfer is completed as tast as
 are best bsed before at after a prograining sessiom.

Femember also that each disc copy will FEFLACE the original contents of the drive you're copying to even if no files are present on the insc being copied. The ' $150 I 5 C^{\prime}$ ' command must te issued after using the 'HOADDISC', 'ISAVEDISC' commands if you want to contioue waing the Salicon drive.
 simply by usum the standare boab and sfve tommans, Try hathay sumz

 find the EASit area belng HSed, If you respong with 'n' tich they will abort back to EAclC, atherwise they ulli carry on, If, rowever, you add an optiomal paraneter of 1 then the check will mot pe mate and the comands whil tatee action stramprit away.

The IGAVEDiBG commana tan also tere a parameter of 2 which tells it to save all files onto a normal disc except the cop files. Thas as usetul If you have ton much deta on the silleon disc so thet it would fill the hoifial disc, You may not mind besing coples of your com files as triese are often storey seperately on your system, disc.

4.3 COMFATIBILITY

Eagic prograna ueing:-
ghve load, merge, ohain, run", Chain merge, cat, dFENin, ufengut,

AB \#9. Enf
wil) thetton as nomal, it the frogrem was written to access only drive A then it will need to be altered to allow for drive E an $\{$ atematively the drive lettey eould be Epecified:-

```
#g SAUE"C:FROGRAM, EAS" or fun"E:DEMO"
```

All the standerd external comends as Eupolied with arrong will fine 1 ton:-
(A, IE, IC (dual drive only), blec (in and bera,

 omands will fomethon on the silicon dise moness the drive letter is specified,

The Gilicon Dise will activate the aristrad's error trapping if this is set up and the error number returned by Denf and Efr are the same.

Gome errons cenoot arcur on the silicon Disc:-
DER - IA9: Dise changed with files open
and brue: disc missing
Orive: disc is write proterted
Drive: read fall
Orive: write fail
The silicon disc cannot be removed, so there is no protlem with loguing the disc on or writing files to it. Eecause the tisc is RAM there can be no reat or write errors, The noroal disc drives will issue all the ermor mescages that it mormally does.

The command lTAFE will switch in the tape unit as normal: 10150 will sutith both the momal dige dirvers) and the sillom disc bark in,

The filenames are identical for both normal and silicon arives, the system will tefaut to EAS or . Eif extensions where applicable, also , 牲中 files are created before flles are chosed and , EAk files for one level backup.

4.4 USING YOUR SILICON DISC IN CP/M 2.2

 ngets to be strred on e coey et your system disc. bith the computet 345 مumed up and a copy of your syctem disc in drive A, if you heve not blyeady got a copy of your system dise to use then mate a copy as anst !po 1 : Ametion s manal:-
'yas 'IStTCM' and press EENPR
Tho romotar will write a file onto tre gystem dise

Has will move the top of of/m that go thet theng is sone spare menny tr, the erbjef to mat Ihas rhange will not affect the menority of

 wont armiv dess

If yo mow tvp 'SOISC' the computer will stemt up with the gilicha


```
    Fog 'Gr:O
```

The finst ousstign setur will ast is to set up the initial command tuffar, Gelert 'n' option so that you ran Ehange tha gtant up buffer,
 Comman whemever CFM is entered. Answer ' γ ' to all the other questions and ' y 'te altenjing the system itar. Note tiat the 't' key 15 loteted on the sens bey as the 'f' LEy,

It, जy三tem dust is now finjshed. Try Fesettimg and troting CPM to see

Unce codse fas tem artivated, an extre drive will be avallable as drive \rightarrow or G tonending on whethen you tave a second mormel drive.

Al the standery Cfw brogens will now use the silicon disc if yout Gerify tha silifon drive's letter.

4.4.1 USING YOUR SILICON DISC IN CPIM PLUS

NOTE that the EAK Silicon Diec camot be used under GF/M FLys beczuse thene will be a conflicting access to tre banted fam.

Eefore the 2cek Gilicon tise con bu used umder Co/m fubs a baton to the
 drive as C: The following steps are mecessary:-

1) Create a mew dise with a ropy of tre bms file
2) From GAgIC type in 'ISETCPMPLUS' then press ENTES. Thas will fiar= a cory of the petchen, com file onto the dise.
 Least 2GE f Mee !
 patrher progrem will. now cherte a new version of the ams file Erasing the ald ropy at the same time.
 Gin atrametically es trive $:$:

The capacity of this disc will be one of the following :-
a) ishs - if only a zsek [f'tromics memory expansion is availatie
b) 254k - if onty the brttronics silionn disc fam is available

 diec are availatele,
 the system and ronfigures it acoopdingly.
The RAM disc directory is automaticaliy initialised to contain no files the first time this mew ams file is ran. However, it the tiles heve been placed in the fam disc on a previous occasion, the directory is not formatten, escuming the computer hes mot been switched off, itis aldews
 files still present in drive C:

4.5 ADVANCED NOTES

Enth wider AMGOOS and GFM the individual file's write disable and system status are complipd with.

The use of the silicon tisc from marhine code ran be easily implemented by using Fas ralls to the external rommands ond by using tre tessette calls as documented in tipe Amstrad manual. All the intertaces are the same so existing software sould fun fine, the externel eomonds which read end write to specific sectore, formst and move the heat an the normat twe dolves (ClfLA to GTFLL) will not fumetion on the silicon drive and in fact may jssue an arror messepe thet the drive is mot present. Any direct reating and witimg ean be tane by bank sudtring the satzext of mempry into the main momory map lek at a ine.

The fet memory bloct $2=$ swithter 27 and out of the meth memory mad,
 87000,

There are 4 tianks of ifk for the Eak banken RAp and lit banks of igk faw

G4K Silicon Disc

196, 197, 196, 109
Therefore if you wast to select a bent you wold use the following a-

256k Silicon Disc

$26,24,24,231,286,29,29,29,244,245,246,24,252,25,254,255$
There is a simple formbla to ralrulate the ronnect value for the Fank: you went:-

Therefore if you wigh to selert a bank vou wold wee the followima :-
GHT \&7FgO, VALUE
To restore the oniqimal lef bloct VALIE would be set to 192.

The fist bank rolds the

Chtronks Limited,

Longs Industrial Estate, Englands Lane, Gorleston, Great Yarmouth, Norfoik NR31 6BE, England. Tel: (0493) 602926 (5 Lines).

Printed by Lowestoft Printing Co. Ltd., Walton Road Tel: (0502) 2502.

