'|_ I'.“"‘. ¥
ey

github.com /dasta400/ACPCPE

dasta400/ACPCPE

dasta400 :

- _

dastad00/ACPCPE e

Amstrad CPC Printer Emulator

A1 ®o0 w7 71
Contributor Issues Stars Fork
README.md

ACPCPE v2.0 (A CPC Printer Emulator)

m

}
]

WV-""‘-("I'[

The (exchange the A for Amstrad, Arduino, Awesome, Awful or whatever you want) CPC Printer Emulator
is a hardware and software project that allows to connect the Amstrad CPC's Printer port to a PC that

1/5

https://github.com/dasta400/ACPCPE
https://github.com/asmCcoder/ACPCPE/blob/master/ACPCPE_v2.jpg
https://en.wikipedia.org/wiki/Amstrad_CPC

acts as Epson-compatible dot matrix printer and generates files instead of printing on paper.
CPC's Printer Port (Parallel) => Arduino pins => Arduino USB (Serial) => PC USB Serial port

With the ACPCPE it is possible to print from a real Amstrad CPC to a PC that acts as virtual printer and
generates Text, HTML and Markdown files. This README was written on a real Amstrad CPC6128
using Protext and then printed as Markdown file on a Linux machine.

It can be used not only for word processor documents, but also for exporting BASIC programs to a PC
and use them on an emulator. Simply print the program using Locomotive BASIC command LI/ST #8 and
then take the .txt file from your PC into the emulator (e.g. WinAPE's Auto Type option).

But why printing from an Amstrad CPC in 2019?

| know it sounds a bit crazy, but | still use sometimes my Amstrad CPC6128 for word processing. Yes, I'm
a bit crazy. I'm not going into details to try to justify myself. It simply works for me and | enjoy it. Did |
mention that this README file was written on a real Amstrad CPC6128 with Protext?

How it works?

The Amstrad CPC Printer Port is connected to an Arduino that reads the /Strobe and 7 Data signals. The
Arduino software translates the 7 data bits into a single 8-bit byte and transmits it through the USB cable
to a connected PC running a Python program that interprets the data and generates text files.

What's needed?

e Amstrad CPC (I only tested with CPC6128).
¢ Arduino-compatible board (I used Teensy 2.0).
e 34pin edge connector (I scavenged one from an old PC floppy cable).
e PC with USB port (so something modern-ish).
e Python 3.x
o pySerial (https://pyserial.readthedocs.io)
o USB cable to connect Arduino to PC.
e Push-button + 1K resistor for the Online/Offline.
e LED + 450 ohm resistor.

The Amstrad CPC

As mentioned above, the Amstrad CPC uses a 7-bit data bus for the printer instead of the more typical 8-
bit, which forms a full byte. Recently | looked at the schematics and | think the reason behind this seems
to be that the CPC is using a 74LS273 (octal flip-flop) for the Data and Strobe signals. Being of octal type
means it can only carry eight signals. So my guess is that the designers at Amstrad had to sacrifice one
Data signal to add the Strobe signal, because they already run out of output signals on the 8255 PPI
which would have been my first choice, and thus ended up with 7 signals for the Data which it's enough
for a character set of just 128.

Also, strangely Amstrad decided despite using a 34-pin edge connector to not use any of the typical
Centronics signals and reduce the whole interface to 9 pins (/Strobe, Busy and 7 data). This means there

2/5

https://pyserial.readthedocs.io/

is no way for the Amstrad to; know when the printer is out of paper, send a reset, send a linefeed or even
use the Ack signal.

They could have used instead a 9-pin edge connector or even a D-sub 9- pin connector.

For a detailed pinout of the Printer Port, check the Amstrad CPC's User Instructions manual or visit
www.cpcwiki.eu/index.php/Connector:Printer_port

The Arduino
Connected to the Amstrad CPC's Printer Port and to a listening PC through a Serial port:

¢ uses Interrupt Service Routines to detect when the signal /Strobe goes low, and when the signal
Online/Offline has changed.

¢ Once /Strobe goes low, reads all 7 pins for data, translates them into an 8-bit byte and send it
through the serial port to a listening PC.

¢ When Online signal is detected, sends the Select printer ESC/P command and sets the printer as
Ready.

e When Offline signal is detected, sends the Deselect printer ESC/P command and sets the printer
as Busy.

I think it should work with any Arduino, but as we only need 9 pins anything above Arduino Micro or Nano
is a bit of an overkill. In my case | only have MEGA2560, Uno and Leonardo, so instead | ended up using

a Teensy 2.0 (http://pjrc.com) | had lying around.
The Python program

ACPCPE.py processes the bytes received from the Serial Port and generates different text files (.txt,
.html, .md).

It is compatible with Epson Standard Code for Printers (ESC/P).

Word processors for the Amstrad CPC (e.g. Protext, Amsword, Tasword) send ESC/P codes to make a
printer to print different types of fonts, set the size of margins, jump page, etc.

The received 8-bit bytes are processed as follows:

¢ If the byte corresponds to a Select printer command, it adds all following bytes to a buffer in
memory.

¢ If the byte corresponds to a Deselect printer, it stops listening, starts interpreting each byte from the
buffer and finally generates the output file(s).

e For each received byte, if it represents a printable ASCII character, it's simply written to the output
file.

o If the byte represents an ESC/P command, it's interpreted and output is flagged for generating
HTML (and/or Markdown) file as result.

Python usage

python ACPCPE.py -h

3/5

http://www.cpcwiki.eu/index.php/Connector:Printer_port
http://pjrc.com/

positional arguments:

port

(v

optional arguments:

_h'
-e,

-4,

-nf,

-nl,

-r,

-md,

-v,

v

Supported ESC/P codes so far

10
17
19
13
27
27
277
277
27
27
27
27
277
277
27
27

v

64
45
45
52
53
69
70
71
72
83
83
87

—help
—echo
-quiet
--nofile
—--nolog
-raw
—--markdown

-version

48
49

48
49

What's next?

serial port to listen from.

show this help message and exit

output data to screen too

Suppress non—-error messages

do not output to file

do not create a log file

generate a file (.raw) with the received hex wvalues
output file will be Markdown instead of HTML

show program's version number and exit

Line Feed

Select

printer

Deselect printer

Carriage Return

Initialise printer

Cancel
Select
Select
Cancel
Selleeit
Cancel
Select
Cancel
Select
Selleeit

Cancel

underlining
underlining

italic mode

italic mode

emphasised (bold) mode
emphasised (bold) mode
double strike mode
double strike mode
superscript

subscript

superscript/subscript

e To add more supported ESC/P commands.
e Support for graphics?

Changelog

4/5

¢ v1.0 - debounce button using an NE555 in bistable mode.
e v2.0 - sofware debounce button. NE555 removed.

5/5

	https://github.com/dasta400/ACPCPE

ACPCPE-master/ACPCPE.ino

/*
 * ACPCPE v2.0 - Amstrad CPC Printer Emulator
 *
 * v1.0 - debounce button using an NE555 in bistable mode.
 * v2.0 - software debounce button. NE555 removed
 *
 * Having an Arduino connected to the Amstrad CPC's printer port,
 * this program simply converts the parallel data coming from the
 * printer port to hexadecimal values and sends them through the
 * serial port of the Arduino to a listening PC.
 *
 * This program also checks the status of a push-button used as
 * Online/Offline button, and turns on/off an LED to indicate
 * Online/Offline status.
 *
 * Instead of an Arduino, this program uses Teensy 2.0, but any
 * Arduino can be used. It's just a matter of redefining the pins.
 *
 * CPC's Printer Port (Parallel) => Teensy USB (Serial Hex data) => PC USB Serial Port
 *
 * A provided Pyhton program will read the hexadecimal bytes received
 * on the USB Serial port and translate them to generate different text files.
 *
 */

/* ---------------------------LICENSE NOTICE--------------------------------
 * MIT License
 *
 * Copyright (c) 2019 David Asta
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

 /*
 * Amstrad CPC Printer Port
 *
 * The CPC's printer port has only 7 bits of data, therefore can only print 128
 * different characters instead of the 256 allowed by a 8-bit data port. 7-bit
 * data port is enough for printing English 7-bit ASCII character sets, but
 * doesn't allow to print bitmap graphics.
 *
 * http://www.cpcwiki.eu/index.php/Connector:Printer_port
 * PIN 1 = /STROBE PIN 2 = D0
 * PIN 3 = D1 PIN 4 = D2
 * PIN 5 = D3 PIN 6 = D4
 * PIN 7 = D5 PIN 8 = D6
 * PIN 11 = BUSY
 * PINS 9, 14, 16, 19 to 26, 28 and 33 = GND
 * PINS 10, 12, 13, 15, 17, 18, 27, 29, 30, 31, 32, 34, 35, 36 = Not Connected
 *
 * /Strobe goes from high to low for 0.5 ms to indicate that the Data pins
 * (D0..D6) are holding valid data.
 *
 * The BUSY signal is set by the printer and instructs the Amstrad CPC to
 * wait until the printer can receive more data. Low when printer is ready
 * to accept data
 *
 * The communication with the Pyhton program works as follows:
 * - At the press of the push-button:
 * - the LED lights up to indicate that the "printer is Online
 * - the Arduino sends the ESC/P command 17 (Select Printer)
 * - and starts listening from the Amstrad CPC Printer port.
 * - At the second press of the push-button:
 * - the LED turns off to indicate that the "printer is Offline
 * - the Arduino sends the ESC/P command 19 (Deselect Printer)
 * - and stops to listen from the Amstrad CPC Printer port.
 * - The Python program uses these two commands to open and close the files.
 *
 * - In other words (or How to print setep-by-step:
 * - When ready to print press the push-button and ensure that the Online LED is ON.
 * - Print from the Amstrad CPC (from BASIC, word processor, etc.).
 * - Once printing is finished, press the push-button again. LED should go off.
 * - The Python program running on the PC will dump all received bytes into file(s).
 *
 */

///
// Teensy 2.0's digital pins usable for interrupts (5, 6, 7, 8)
#define PRN_STRB 5 // /Strobe
#define ONOFF_BTN 6 // Online/Offline signal through push-button

#define PRN_D0 0 // Data 0
#define PRN_D1 1 // Data 1
#define PRN_D2 2 // Data 2
#define PRN_D3 3 // Data 3
#define PRN_D4 4 // Data 4
#define PRN_D5 7 // Data 5
#define PRN_D6 8 // Data 6

#define PRN_BUSY 9 // Busy = HIGH / Ready = LOW
#define ONOFF_LED 10 // Indicator of "printer" Online/Offline

#define COM_SPEED 115200 // Speed of the COM port between Arduino and PC

///
byte data = 0; // Variable for converting parallel data (D0..D6) as a single byte
char buf[2]; // Variable for converting byte to hex using sprintf
bool wasOnline = false; // Variable for storing Online/Offline push-button state
unsigned long debounceDelay = 150; // delay time to avoid bounce from the push-button
unsigned long lastDebounce = 0; // time since push-button was last pressed

///
void setup() {
 pinMode(PRN_BUSY, OUTPUT);
 digitalWrite(PRN_BUSY, 1); // Tell CPC that we're busy setting up everything

 pinMode(ONOFF_LED, OUTPUT);
 digitalWrite(ONOFF_LED, LOW);

 pinMode(PRN_D0, INPUT);
 pinMode(PRN_D1, INPUT);
 pinMode(PRN_D2, INPUT);
 pinMode(PRN_D3, INPUT);
 pinMode(PRN_D4, INPUT);
 pinMode(PRN_D5, INPUT);
 pinMode(PRN_D6, INPUT);

 pinMode(PRN_STRB, INPUT_PULLUP);
 attachInterrupt(digitalPinToInterrupt(PRN_STRB), readCPCbyte, LOW);
 pinMode(ONOFF_BTN, INPUT_PULLUP);
 attachInterrupt(digitalPinToInterrupt(ONOFF_BTN), btnPressed, CHANGE);

 digitalWrite(11, HIGH); // turn the Teensy's internal LED on

 Serial.begin(COM_SPEED);
 Serial.print(25, HEX); // ESC 19 = Deselect printer
}

///
void readCPCbyte(){
 // This function is called when /Strobe is Low (detected by Arduino ISR)

 // Receive Byte
 bitWrite(data, 0, digitalRead(PRN_D0));
 bitWrite(data, 1, digitalRead(PRN_D1));
 bitWrite(data, 2, digitalRead(PRN_D2));
 bitWrite(data, 3, digitalRead(PRN_D3));
 bitWrite(data, 4, digitalRead(PRN_D4));
 bitWrite(data, 5, digitalRead(PRN_D5));
 bitWrite(data, 6, digitalRead(PRN_D6));
 // print byte as hexadecimal value to the USB Serial port
 sprintf(buf, "%02x", data);
 Serial.print(buf);
}

///
void btnPressed(){
 // This function is called each time Online/Offline is Low (detected by Arduino ISR)
 digitalWrite(PRN_BUSY, HIGH); // Printer is Offline, tell the CPC that can't send data

 if((millis() - lastDebounce) > debounceDelay){
 // timer is been stable for long enough time to consider it not a bounce

 if(digitalRead(ONOFF_BTN) == LOW){
 if(wasOnline){
 // Switch from Online to Offline
 wasOnline = false;
 Serial.print(25, HEX); // ESC 19 = Deselect printer
 }else{
 // Switch from Offline to Online
 wasOnline = true;
 Serial.print(23, HEX); // ESC 17 = Select printer
// digitalWrite(PRN_BUSY, LOW); // Printer is Online, tell the CPC that we're ready for data
 }
 }

 lastDebounce = millis(); // reset debounce timer
 }

 digitalWrite(ONOFF_LED, wasOnline);
 digitalWrite(PRN_BUSY, !wasOnline);
}

///
void loop() {}

ACPCPE-master/ACPCPE.py

"""
ACPCPE - A CPC Printer Emulator

With the provided Arduino Sketch, the Amstrad CPC's Printer Port parallel data
is translated into hexadecimal bytes that are sent from the Arduino's USB Serial
Port to a PC running this Python program, which processes the received bytes to
make a file that emulates a printer output.

This program is compatible with Epson Standard Code for Printers (ESC/P).

Word processors for the Amstrad CPC (e.g. Protext, Amsword, Tasword) send ESC/P codes
to make a printer (a matrix printer) to print different types of font, set the size
of margins, jump page, etc.

How it works:
	If the bytes received contain ESC/P codes (e.g. wordprocessor text), this program
	will generate an HTML (.html) file as output, where the ESC/P codes are substituted
	by HTML mark-up codes (e.g. for bold text). Markdown files can also be generated.

If the bytes received do not contain any ESC/P (e.g. a BASIC program print or plain text),
this program will generate a simple text (.txt) file.

The communication with the Arduino program works as follows:
	- At the press of the push-button (LED goes ON to indicate ONLINE), the Arduino sends
		the ESC/P command 17 (Select Printer) and starts listening from the Amstrad CPC Printer port.
	- At another press of the push-button (LED goes OFF to indicate OFFLINE), the Arduino sends
		the ESC/P command 19 (Deselect Printer) and stops to listen from the Amstrad CPC Printer port.
	- This Python program uses these two commands to open and close the files.

Supported ESC/P codes so far:
	10			Line Feed
	13			Carriage Return
	17			Select printer
	19			Deselect printer
	27 64		Initialise Printer
	27 45 48	Cancel underlining
	27 45 49	Select underlining
	27 52		Select italic mode
	27 53		Cancel italic mode
	27 69		Select emphasised (bold) mode
	27 70		Cancel emphasised (bold) mode
	27 71		Select double strike mode
	27 72		Cancel double strike mode
	27 83 48	Select superscript
	27 83 49	Select subscript
	27 87		Cancel superscript/subscript

ToDo ESC/P codes:
	27 107 48	Select NLQ Roman font
	27 107 49	Select NLQ Sans Serif font

---------------------------LICENSE NOTICE--------------------------------
MIT License

Copyright (c) 2019 David Asta

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"""

import sys
import serial
import time
import datetime
import argparse
from serial.tools.list_ports import comports

__version__ = "v0.1.0"

class acpcpe:
	##
	# class init
	def __init__(self, port, echo, quiet, nofile, nolog, raw, markdown):
		self.port = port
		self.doEcho = echo
		self.beQuiet = quiet
		self.doFile = not nofile
		self.doLog = not nolog
		self.doRaw = raw
		self.doMarkdown = markdown
		self.baudrate = 115200
		self.ser = serial.Serial()
		self.buffer = []
		self.bufferoutput = []
		self.haveESC = False

		if(self.doMarkdown):
			self.doHTML = False
		else:
			self.doHTML = True

		if(self.doLog):
			logfile = open("ACPCPE.log", "w")
			logfile.close()

	##
	# Set serial values and open port for start receiving data
	def setserial(self):
		try:
			self.ser.baudrate = self.baudrate
			self.ser.port = self.port
			self.ser.open()
			if self.doLog:
				self.log2file("ACPCPE started.")
			if(not self.beQuiet):
				print("\nACPCPE is listening now from port: " + self.ser.name)
				print("Press Ctrl+Break to stop.")
				sys.stdout.flush()
		except Exception as e:
			print("\n")
			print(e)
			print("\nAvailable ports:")
			comlist = comports()
			for port in comlist:
				print(port)
			print("\n")
			sys.stdout.flush()
			sys.exit(1)

	##
	# Start listening and adding bytes to buffer array
	def listen(self):
		ibyte = 0
		rcvddata = False
		isListening = True
		printerIsOnline = False
		self.buffer.clear()

		while(isListening):
			rcvbyte = self.ser.read(2)
			ibyte = int(rcvbyte, 16)
#			print(ibyte)
#			sys.stdout.flush()

			if(printerIsOnline):
				if(ibyte == 25):
					self.log2file("Printer went offline")
					sys.stdout.flush()
					printerIsOnline = False
					isListening = False
				else:
					# Add received data to a buffer
					self.buffer.append(rcvbyte)
					
					if(rcvddata == False):
						self.log2file("Received data. Press (once CPC is finished) OFFLINE button to dump to file.")
						sys.stdout.flush()
						rcvddata = True
			else:
				if(ibyte == 23):
					self.log2file("Printer is ONLINE")
					sys.stdout.flush()
					printerIsOnline = True

	##
	# Process received data
	def processData(self):
		buf_line = ""
		gotCR = False
		gotESC = False
		gotUnder = False
		gotSubSupscrp = False
		wasSubscrp = False
		wasSupscrp = False
		gotPrintable = False
		self.haveESC = False
		ibyte = 0;
		self.bufferoutput.clear()

		for b in self.buffer:
			ibyte = int(b, 16)

			if gotESC: # Code after ESC
				if gotUnder:
					if ibyte == 48: # Cancel underlining
						if self.doHTML and self.haveESC:
							self.bufferoutput.append("</u>")
						gotUnder = False
						gotESC = False
					elif ibyte == 49: # Select underlining
						if self.doHTML and self.haveESC:
							self.bufferoutput.append("<u>")
						gotUnder = False
						gotESC = False
				elif gotSubSupscrp:
					if ibyte == 48: # Select Superscript
						if self.doHTML and self.haveESC:
							self.bufferoutput.append("<sup>")
						wasSupscrp = True
						gotSubSupscrp = False
						gotESC = False
					elif ibyte == 49: # Select Subscript
						if self.doHTML and self.haveESC:
							self.bufferoutput.append("<sub>")
						wasSubscrp = True
						gotSubSupscrp = False
						gotESC = False
				elif ibyte == 45: # Underlining
					gotUnder = True
				elif ibyte == 52: # Select italic mode
					if self.doHTML and self.haveESC:
						self.bufferoutput.append("<i>")
					elif self.doMarkdown and self.haveESC:
						self.bufferoutput.append("*")
					gotESC = False
				elif ibyte == 53: # Cancel italic mode
					if self.doHTML and self.haveESC:
						self.bufferoutput.append("</i>")
					elif self.doMarkdown and self.haveESC:
						self.bufferoutput.append("*")
					gotESC = False
				elif ibyte == 64: # Initialise printer
					gotESC = False
				elif ibyte == 69: # Select emphasised (bold) mode
					if self.doHTML and self.haveESC:
						self.bufferoutput.append("")
					elif self.doMarkdown and self.haveESC:
						self.bufferoutput.append("**")
					gotESC = False
				elif ibyte == 70: # Cancel emphasised (bold) mode
					if self.doHTML and self.haveESC:
						self.bufferoutput.append("")
					elif self.doMarkdown and self.haveESC:
						self.bufferoutput.append("**")
					gotESC = False
				elif ibyte == 71: # Select double strike mode
					if self.doHTML and self.haveESC:
						self.bufferoutput.append("<strike>")
					gotESC = False
				elif ibyte == 72: # Cancel double strike mode
					if self.doHTML and self.haveESC:
						self.bufferoutput.append("</strike>")
					gotESC = False
				elif ibyte == 83: # Subscript/Superscript
					gotSubSupscrp = True
				elif ibyte == 84: # Cancel Subscript/Superscript
					if wasSubscrp: # Cancel Subscript
						if self.doHTML and self.haveESC:
							self.bufferoutput.append("</sub>")
					elif wasSupscrp: # Cancel Superscript
						if self.doHTML and self.haveESC:
							self.bufferoutput.append("</sup>")
			elif ibyte >= 32 and ibyte <= 126: # Printable ASCII
				self.bufferoutput.append(chr(ibyte))
			elif ibyte == 13: # Carriage Return
				gotCR = True
			elif ibyte == 27: # ESC
				self.haveESC = True
				gotESC = True
			elif ibyte == 10 and gotCR: # Line Feed after CR
				if self.doHTML and self.haveESC:
					# We use the invalid </br> tag,
					# to differenciate from real
 inserted
					# on the text
					self.bufferoutput.append("</br>")
				else:
					self.bufferoutput.append("\n")
				gotCR = False
			else:
				self.bufferoutput.append(chr(ibyte))

	##
	# Output to file and/or screen
	def generateOutput(self):
		wholeText = ''.join(self.bufferoutput)
		
		if self.doFile:
			filename = datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S')

			if self.haveESC:
				if self.doHTML:
					# Check if <title> was in the text
					whereTitle = wholeText.find('<title>')
					if(whereTitle >= 0):
						whereEndTitle = wholeText.find('</title>')
						title = wholeText[whereTitle + 7:whereEndTitle]
						# Replace </br> with

						wholeText = wholeText.replace("</br>", "\n")
					else:
						title = "Printed from Amstrad CPC with ACPCPE on " + filename
						# Replace </br> with

						wholeText = wholeText.replace("</br>", "
")

					self.log2file("Generating HTML file: " + filename + ".html")
					outputfile = open(filename + ".html", "w")
					# Add HMTL Header to file
					outputfile.write("<html><head><title>" + title + "</title></head><body>")
				elif self.doMarkdown:
					self.log2file("Generating Markdown file: " + filename + ".md")
					outputfile = open(filename + ".md", "w")
			else:
				self.log2file("Generating Text file: " + filename + ".txt")
				outputfile = open(filename + ".txt", "w")

			# Add body to file
			#for bo in self.bufferoutput:
			#	outputfile.write(bo)
			outputfile.write(wholeText)
			
			if self.doHTML and self.haveESC:
				# Add HMTL Footer to file
				outputfile.write("</body></html>")

			outputfile.close()
		
		if self.doEcho:
			#for bo in self.bufferoutput:
			#	print(bo, end='')
			#	#print(bo)
				print(wholeText)
				sys.stdout.flush()
		
		# Generate RAW file
		if self.doRaw:
			outputraw = open(filename + ".raw", "w")
			for b in self.buffer:
				outputraw.write(b.decode('ascii'))
			outputraw.close()

	##
	# Output to LOG file and screen
	def log2file(self, logstr):
		timestamp = datetime.datetime.fromtimestamp(time.time()).strftime('%d/%m/%Y %H:%M:%S')
		
		if(not self.beQuiet):
			print(timestamp + " - " + logstr)
			sys.stdout.flush()

		if(self.doLog):
			logfile = open("ACPCPE.log", "a")
			logfile.write("\n" + timestamp + " - " + logstr)
			logfile.close()

##
Program entry point when executed
if __name__ == '__main__':
	# Check that parameter have been received
	parser = argparse.ArgumentParser(prog="ACPCPE")
	parser.add_argument("port", help="serial port to listen from", type=str)
	group = parser.add_mutually_exclusive_group(required=False)
	group.add_argument("-e", "--echo", help="output data to screen too", action="store_true")
	group.add_argument("-q", "--quiet", help="suppress non-error messages", action="store_true")
	parser.add_argument("-nf", "--nofile", help="do not output to file", action="store_true")
	parser.add_argument("-nl", "--nolog", help="do not create a log file", action="store_true")
	parser.add_argument("-r", "--raw", help="generate a file (.raw) with the received hex values", action="store_true")
	parser.add_argument("-md", "--markdown", help="output file will be Markdown instead of HTML", action="store_true")
	parser.add_argument("-v", "--version", action="version", version="%(prog)s {version}".format(version=__version__))

	args = parser.parse_args()

	emul = acpcpe(args.port, args.echo, args.quiet, args.nofile, args.nolog, args.raw, args.markdown)
	emul.setserial()
	
	while True:
		emul.listen()
		if(len(emul.buffer) >0):
			emul.processData()
			emul.generateOutput()

ACPCPE-master/LICENSE

MIT License

Copyright (c) 2019 Dave Asta

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

ACPCPE-master/README.md

ACPCPE v2.0 (A CPC Printer Emulator)

![ACPCPE v2.0](https://github.com/asmCcoder/ACPCPE/blob/master/ACPCPE_v2.jpg "ACPCPE v2.0")

The (exchange the A for *Amstrad*, *Arduino*, *Awesome*, *Awful* or whatever
you want) CPC Printer Emulator is a hardware and software project that
allows to connect the [Amstrad CPC](https://en.wikipedia.org/wiki/Amstrad_CPC)'s Printer port to a PC that acts as Epson-compatible dot matrix printer and generates files instead of printing on paper.

> CPC's Printer Port (Parallel) => Arduino pins => Arduino USB
(Serial) => PC USB Serial port

With the ACPCPE it is possible to *print* from a real Amstrad CPC to a
PC that acts as virtual printer and generates Text, HTML and Markdown
files. **This README was written on a real Amstrad CPC6128 using Protext
and then *printed* as Markdown file on a Linux machine**.

It can be used not only for word processor documents, but also for
exporting BASIC programs to a PC and use them on an emulator. Simply
print the program using Locomotive BASIC command *LIST #8* and then
take the .txt file from your PC into the emulator (e.g. WinAPE's Auto
Type option).

But why printing from an Amstrad CPC in 2019?

I know it sounds a bit crazy, but I still use sometimes my Amstrad
CPC6128 for word processing. Yes, I'm a bit crazy. I'm not going into
details to try to justify myself. It simply works for me and I enjoy
it. Did I mention that this README file was written on a real Amstrad
CPC6128 with Protext?

How it works?

The Amstrad CPC Printer Port is connected to an Arduino that reads the
/Strobe and 7 Data signals. The Arduino software translates the 7 data bits
into a single 8-bit byte and transmits it through the USB cable to a
connected PC running a Python program that interprets the data and
generates text files.

What's needed?
* Amstrad CPC (I only tested with CPC6128).
* Arduino-compatible board (I used Teensy 2.0).
* 34pin edge connector (I scavenged one from an old PC floppy cable).
* PC with USB port (so something modern-ish).
* Python 3.x
	* pySerial (https://pyserial.readthedocs.io)
	* USB cable to connect Arduino to PC.
* Push-button + 1K resistor for the Online/Offline.
* LED + 450 ohm resistor.

The Amstrad CPC

As mentioned above, the Amstrad CPC uses a 7-bit data bus for the printer
instead of the more typical 8-bit, which forms a full byte. Recently I looked
at the schematics and I think the reason behind this seems to be that the CPC is using a 74LS273 (octal flip-flop) for the Data and Strobe signals. Being of octal type means it can only carry eight signals. So my guess is that the designers at Amstrad had to sacrifice one Data signal to add the Strobe signal, because they already run out of output signals on the 8255 PPI which would have been my first choice, and thus ended up with 7 signals for the Data which it's enough for a character set of just 128.

Also, strangely Amstrad decided despite using a 34-pin edge connector to not use
any of the typical Centronics signals and reduce the whole interface to 9 pins
(/Strobe, Busy and 7 data). This means there is no way for the Amstrad to; know when the printer is out of paper, send a reset, send a linefeed or even use the Ack signal.

They could have used instead a 9-pin edge connector or even a D-sub 9-
pin connector.

For a detailed pinout of the Printer Port, check the Amstrad CPC's
User Instructions manual or visit
www.cpcwiki.eu/index.php/Connector:Printer_port

The Arduino

Connected to the Amstrad CPC's Printer Port and to a listening PC
through a Serial port:
* uses Interrupt Service Routines to detect when the signal /Strobe goes
low, and when the signal Online/Offline has changed.
* Once /Strobe goes low, reads all 7 pins for data, translates them
into an 8-bit byte and send it through the serial port to a listening
PC.
* When Online signal is detected, sends the *Select printer* ESC/P
command and sets the *printer* as Ready.
* When Offline signal is detected, sends the *Deselect printer* ESC/P
command and sets the *printer* as Busy.

I think it should work with any Arduino, but as we only need 9 pins
anything above Arduino Micro or Nano is a bit of an overkill. In my
case I only have MEGA2560, Uno and Leonardo, so instead I ended up
using a Teensy 2.0 (http://pjrc.com) I had lying around.

The Python program

ACPCPE.py processes the bytes received from the Serial Port and
generates different text files (.txt, .html, .md).

It is compatible with *Epson Standard Code for Printers* (ESC/P).

Word processors for the Amstrad CPC (e.g. Protext, Amsword, Tasword)
send ESC/P codes to make a printer to print different types of fonts,
set the size of margins, jump page, etc.

The received 8-bit bytes are processed as follows:
* If the byte corresponds to a *Select printer* command, it adds all
following bytes to a buffer in memory.
* If the byte corresponds to a *Deselect printer*, it stops listening,
starts interpreting each byte from the buffer and finally generates
the output file(s).
* For each received byte, if it represents a printable ASCII
character, it's simply written to the output file.
* If the byte represents an ESC/P command, it's interpreted and output
is flagged for generating HTML (and/or Markdown) file as result.

Python usage

python ACPCPE.py -h

positional arguments:

	 port serial port to listen from.

optional arguments:

	 -h, --help show this help message and exit
	 -e, --echo output data to screen too
	 -q, --quiet suppress non-error messages
	 -nf, --nofile do not output to file
	 -nl, --nolog do not create a log file
	 -r, --raw generate a file (.raw) with the received hex values
	 -md, --markdown output file will be Markdown instead of HTML
	 -v, --version show program's version number and exit

Supported ESC/P codes so far

	 10 Line Feed
	 17 Select printer
	 19 Deselect printer
	 13 Carriage Return
	 27 64 Initialise printer
	 27 45 48 Cancel underlining
	 27 45 49 Select underlining
	 27 52 Select italic mode
	 27 53 Cancel italic mode
	 27 69 Select emphasised (bold) mode
	 27 70 Cancel emphasised (bold) mode
	 27 71 Select double strike mode
	 27 72 Cancel double strike mode
	 27 83 48 Select superscript
	 27 83 49 Select subscript
	 27 87 Cancel superscript/subscript

What's next?
* To add more supported ESC/P commands.
* Support for graphics?

Changelog
* v1.0 - debounce button using an NE555 in bistable mode.
* v2.0 - sofware debounce button. NE555 removed.

