"AMSTRAD _ —

EXPANSION

SYSTEM

Introduction

The Maplin ROM card allows
you to add up to eight 2-16K
ROMs on the Amstrad CPC 464,
664 and 6128. ROMs may be 2, 4,
8 or 16K in size and ‘bytewyde’
compatible EPROMs can also be
used, providing they meet the
Amstrad requirement of 200ns
access time or faster. Many
slower 250ns devices may well
work but are likely to produce
unpredictable results especially
whenPLOTing or DRAWing to the
screen. So always try to use the
faster versions for 100% relia-
bility.

ROM Types

Maplin’s range of 2716 to
27128 EPROMs can be used with
the card as, depending on pack-
age size, they are pin compatible
with each other. Most commer-
cially available ROMs are of the
8K and 16K variety and pin
configurated as the 2764 (8K) and
27128 (16K) EPROMSs. It should
be pointed out that some ROM/
EPROMs are not directly pin
compatible (Bytewyde) and will
not run with this system.

Always ensure devices are
correct before using them and
meet the pin requirements in
Figure 4 (more about this later).

hy Dave Goodman and
John Attfield

Input Expansion
Data PE"QS Decoupling v CONTROLLER BUFFER R4 /o
7 100uF CaPaCitors yoonp 4K7 Extension
+5V O 1 " V. Ret.
B A B -
i EEE-YT iy 100nF 100nF
(Sound) oV O- [P e s o A O +5V (I/PI
(Clk) OV O G2¢3Ca oo 4 12 cig Lo ov um
1uF Tant. 100uF o oV +5V wF T e e o
=74 LS 32 Pi 7 18 JK1 c7
5 165 274 he 30 pine 7 14 v {] ekt ov 100uF ov
! n PEN | {Butfer] o
ROMDIS O- m:‘:“ 8 3 +5V OV o
i R1 ic3 2 ICs57,8=74HC244 Pins 20 110,19
[1
Lo 2k2 1 O ROMDIS
M50 139 O BA15
ORGO Sl . O BIORQ
WRO- % O BWR
ROMEN O- | 181557 —O ROMEN
1 +5V
| | L s [Buffer]
! 2
| 3
| 6
HAT ! 4
WO——]
RAMDIS o-ﬁ
RAMDIS O— | L4 512 BIOSEL
EXP O—fmmmnl SIL 4k7 Rz
|
| |
| : R6 R?7 R8 R9 R10 R1T
= 2 Lo | L L el
e et 1el28 [20 20 20 0 0 50 S - i
D10] 12 - -] .. | | = o] B D1 3] 17 O b1
02 O—— 13 1+ 1 2 | I 8 L I 4 | 1 5 | | 6 [1 7 |l 4 1ce | O b2
D30 ! 15 3 5| 74 HC [15 O3
D4 O—1 16 D4 6] 245 |14 O Dpa
250- 17 a5 L L | || ||] 0s 7 13 O
8 - =] — e — - - D6 8 12 o D6
DoO— 19 D7 9| 1 07
D70 — — — - - B 3 L) SRS
10 . || - i - | | §a0 215518 5 g0
A0O- — — H Y
MO 2 —— — —] — — i AL 17553 —O BA1
8 A2 416
a20 — — — — am— — — 7 BA2
A0 7 L — — — — — — H 15055 a0
A4O- L] et — — — — — | BA4
e} 5 —] — L] e o] — 5 1357 O BAS
AS A6 v a2
46 O- 4 . 7 BAG
A7O 3 — o L — — e — A7 "{}9 O BA7
a8 18
A80- 25 — — — — — — — . s B BAS
49 O 24 —] — — — — — A2 E——o0 e
0O 21 e | I I — SR L 8>€.0 Bato
g 1 5 A2 6o 0 BAD
RBO- 2j YR — — — - 1 L=} - | | §8RD Qb‘&o BRD
14 =]
icla 1 1]] 1
! 26] |23 28] |23 26] |23 26] |23 26] |28 26] |23 6] |23 76 |23 oV R2
1 | ov l l 4k7 BA11
Link
ANO-— et (i G A G 5 GHERS F 5 G (h F (h CHN (
A3O- ‘,L;-: 1 1 1 1 1 1 \ 1 - BAT3
A4 O 3 BAM
SOUND O~ o O SOUND
WREG O- 10k 17l’>3 O BMREQ
i O- 2[55180 sMi
AFSAO- ‘{}15 -O BRFSH
WO O INT
BUSRD O O BUSRD
BUSAK O- -O BUSAK
READY O- —O READY
BUSRESET O O BUS RESET
RESET O- -O RESET
CURSOR O— O CURSOR
L/PENO -O L/PEN
Zoko—fm 23>0 s/cLock
Figure 1. Circuit
H H . . . g
Circuit address &DF00. All ROMs fitted lines help to realise this critical ROM
Descri pti on (0-7 inthis case) occupy the timing period unde'r controlqu the Classi fica ti on
Amstrad U.L.A. chip. Condition

Referring to the circuit dia-
gram of Figure 1, the layout can
be viewed in two sections sep-
arated by a vertical, black line.
The left section contains external
ROM decoding components and
the right section shows 1/0 buffer-
ing components. The external
ROM section will be discussed
first.

ROM Decoder

Facilities for extending ROMs
have been provided in the
Amstrad by the ROMEN (ROM
enable) line, ROMDIS (ROM
disable) line and Output Port

2

same memory space as the
Amstrad video RAM (Random
Access Memory) starting at
address &C000. Obviously, video
memory and extension ROMs
cannot both be accessed at the
same time, and it follows that
none of the eight extension ROMs
can be accessed at the same
time, so a method of interrogation
must be applied:

(A) To determine if and where
any ROMs have been fitted.

(B) To perform this operation
when the video display RAM
is not being accessed.

ROM enable and disable

(A) is met during ‘turn on’ or
system reset (EMS), where part of
the initialisation routine addresses
the I/0 port at &DF00. At this port,
data values 0 to 7 are written to
IC2, which is a three to eight,
latching decoder IC. IC1d and
IC1c gate the IORQ, WR and A13
lines, and when ROMEN is active
(low), a single data code or ‘ROM
position address’ is presented to
the one-of-eight decoder IC2. If an
appropriate selection is made,
then the associated ROM 0 -7
(Figure 5) is selected, and the
internal BASIC ROM is disabled
vialC3and D1.

At this stage, it becomes
necessary to digress a little into
ROM classifications. Within the
Amstrad the operating system and
BASIC, although residentin a
single ROM, can be viewed as two
separate sections. The section
containing BASIC can be
switched in or out of use comp-
letely and usually resides at ROM
address 0 (zero).

When BASIC is interrogated
during EMS, the first data byte is
examined and to be recognised as
a BASIC ROM the byte must be
&80. This Hex value tells the
operating system that a Fore-

50 WAY BUS EXPANSION OUTPUT FROM AMSTRAD A1

ROM’S 1 TO7 TYPE
SELECT MATRIX

[FOR DISC DRIVE - ETC. |
523 S23
+5V 5V
IDCy ic8 L MEXTSKTA 524 526
e IC7 IDC FLEXICABLE INPUT FROM 4911:\,’ A13
AMSTRAD 52 1l 2 415167 i
IDCA + c1 T
1 1 1 O
& | w0 | [@ A 4 N 4
co
¥ .y ROM ROM ROM ROM ROM ROM ROM
1 2 3 4 5 6 7
50 WAY
IDC 1/0
EXTENSION
TO MOTHER
BOARD
cs
1 2 3 4 5 6 7
vy *©
2
ice 1 trenQ o | 0 ¢
51 OVO A1 -
CONTROLLER PCB GDOSF +5v() S23 28 PIN SOCKETS
+5V from NAPLIN O = ~~ FOR :- 2716, 2732,
PSU. o 2764 & 27128
EXTERNAL 1 + 1 1C4 + 1 1c2 SWITCH R1 S26 ROM EPROM TYPES.
SUPPLY TO Ic1 0 0
SUEFER O O 1 ; 11C3 A1
SECTION 3
c7
3
4
6
| 7
‘ SiL
ROM DECODER ROM’S 0TO7 ROM O TYPE
L’:{S%nggg“s <——| SECTION SERVICE SWITCH SELECT MATRIX
SECTION

Figure 2. ROM Card overlay

ground program called BASIC is
present, and provided that no
other Foreground ROM is fitted,
BASIC is entered and the appro-
priate message displayed on the
monitor. A Foreground ROM con-
tains the interpretive software and
is always entered first.

Unlike a Foreground BASIC
program, other Foreground prog-
rams can receive priority and be
entered first, thus replacing
BASIC and taking over operation
of the system. Examples of Fore-
ground programs can be FORTH,
PASCAL or Disk Utility ROMs,
and many are commercially avail-
able. To receive entry priority over
BASIC, the Foreground ROM
must have its very first data byte
value set at &00 (zero) and be
fitted externally in ROM position 0.
Further Foreground ROMs must
be fitted from ROM position 1
upwards to position 7.

When a Foreground ROM is
thus fitted at ROM address 0 (and
S0 selected ‘on’), it is entered and
BASIC is transferred to ROM
address 1, or, to the next unused
address following further Fore-
ground ROMs, if fitted.

Two other types of ROM can
be fitted, known as Background
ROMs and Extension ROMs. Both
types function in a different way to
Foreground ROMs, and a Back-
ground ROM has its first data byte
set to &01, while Extension ROMs
have the first byte value set to
&02. These classification codes
and ROM types are explained in
greater detail further on in this
booklet.

To continue with the circuit
description, IC2 had previously
decoded the data bus (D0 to D2)
and an active low signal is
presented via switch S0 to ROM 0
(if SO is selected ‘on’). At this time,
the RD (read) line is active, and
ROM 0 is read from address
&C000. Classification codes are
examined, and if none are avail-
able, a second data byte is written
to Output Port &DFQ0 for decod-
ing by IC2. In this way, all ROMs
are interrogated - unless a Fore-
ground ROM is found - and each
oneis ‘LOGGED IN’.

A Foreground ROM fitted and
switch selected at position 0 will
‘Auto-Boot’ in place of BASIC, and
one of its first responsibilities is to

At2<s2] A12<s2]
T U
A7=S3 {1 24[}-526 #+5V A7<S3 {1 24526 # +5V ROM
No.
Ae=-sa {2 23[}-s25->A8 A6<-s4]2 23[}-525--48 o | OFF 1ON Select any position
2716 2782 —o1 — 0-7 [1-8on switch]
A5<S5-{|3 22 [}-S24-»A9 A5<S5 |3 22 [} S24A9 (_o/,'o-) to place associated
ROM in service [ON]
21 [}-523 # +5V 211523 #AMN 1 42—o70o—4¢— RHS.Out of service
! [OFF] - LHS before,
20 [}-822-+RD 20 [}-s22+=RD 5 ! power up.
—93 —l’-o—
~~——18 [} s21-=10 ¥\19} $21-+A10 () DO NOT USE
i
3 ROM position 7 [8 on
—"4_°:/° ™ switch| on 664,6128
\; 1 or 464 when DD1
sy tad bt *2 405 oo ¢ DiscDrive is fitted.
\w =4 | Leave switch 8 in
s1{]1 28[}-s28 s1-{]1 28[}-s28 X “OFF’ position.
5
2 46 —07 O——
A2<s2 {2 27[}-s27 A2<—s2-]|2 i 27 [}-s27 6 !
2764 7 X
A7=s3-[]3 26[}-s26 N/U AT<—S3-{]3 26 [1-526 #A13 LB PR o
A6<sa—{ |4 25 }-s25-»A8 A6<—sa{ 4 25 [}-S25-+=A8 !
L4807 o0—d—
As5<s5-[|5 24 [}-s24—>A9 As<—s5-{ 5 24 [} s2a—»A9 |
23 [}-523 # A11 23 [}-523 #A11
22 [}-S22-+RD 22 [}-s22-=RD
21[}-s21—=A10 21 [}-s21—+A10
See Fig.6 \

Figure 4. ROM types

ROM Type
Select Matrix

Figure 6 shows four different
matrix connections for the four
types of ROM which can be used
on this card. Connect links be-
tween pads and solder them on
the component side 2 as follows:

ROM Type Matrix Links
2K-2716 S23to +5V
and S26 to +5V
4K-2732 S23to Al1
and S26to +5V
8K-2746 S23to A11only

T6K—-27128 S23to A11
and S26to A13

ROM 0 matrix is alongside
the actual ROM socket position
while ROMs 1 to 7 have their
matrix at the top right hand edge
of the board.

If you wish to fit ROMs having
different identification markings, it
is highly advisable to check with
the supplier or a manufacturers
data sheet to confirm that they are
pin for pin compatible with the
versions listed. If they are not
compatible then do not use them,
as either ROM or computer may
be damaged.

Output Expansion

The ROM card has two
expansion outputs, one comes
directly from the Amstrad expan-
sion port socket and can be used
for ‘add-ons’ like the DD1 Disk
Drive Interface (on CPC 464
only!), and the other output comes

from the Buffer section.

Main CPU busses are buf-
fered by IC’s 4 to 8 for connection
via an IDC transheader cable to
the motherboard. The Amstrad
has 128 I/0 port addresses avail-
able for user purposes, specified
as &F8EOQ to &F8FF, &F9EQ to
&F9FF, &FAEQ to &FAFF, and
&FBEO to &FBFF. No other port
address should be used extern-
ally, and IC4 decodes these four
block addresses from IORQ, A5 to
A7, and A10 lines.

The data bus is buffered by a
two way data selector IC6 with
transfer direction (Read or Write)
being controlled by the OR Gate
IC1b. For example, writing a data
byte &FF to I/O address &F8EQ
would extend the Amstrad data
bus (D0 - D7), via IC8, out to the
motherboard, as BRD will be high
from IC1b.

The byte &FF will be avail-
able on the data bus from IC6
outputs. The BIOSEL (Buffer /O
Select) control line is active low for
any of the four block I/O addr-
esses, and during a read cycle
IC1b gate output is low reversing
the data bus direction through IC6
to the Amstrad.

/O Addressing

Amstrad have allowed a max-
imum of 128 user ports for
external use as shown in Table 1.

The BIOSEL control line is
active for any one of these
addresses, but only during 1/0
request times. It remains inactive
(high) during CPU memory cycles.

Figure 5. DIL switch

Light Pen

A 3.5mm stereo jack socket
can be fitted and wired onto the
ROM Card as in Figure 16. Nothing
special has been added here, as
the socket is only wired to +5V,
0V and the Amstrad L’'PEN term-
inal on the Bus Expansion Socket,
making access to this input easier.
Light pens usually incorporate a
photo-sensitive diode or transistor
which, when placed onto the
monitor screen, detects the raster
phosphors as they are lit up by the
CRT beam. Tiny pulses produced
by the sensor are then amplified
and shaped into definite square
wave signals, which should be of
a positive going waveform to be
compatible with the L'PEN input
on the Amstrad.

To use the pen facility reg-
uires specialised programming
and an in depth knowledge of the

6845 display controller IC, as
certain registers must be invoked
for screen co-ordinate informa-
tion. This information only relates
to character cell resolution and not
to pixel size, so it is somewhat
limited for High-Res’ graphics use.

Power Supplies

All components making up
the controller section of the ROM
card receive +5V and OV supply
directly from the Amstrad regu-
lator. The buffer part of this project
requires a separate supply which
is developed at the motherboard
end of the extension output, and is
made available along the 50-way
IDC cable. The PSU module
(available May 1986, details in
Vol. 5 Issue 19 of the ‘Maplin
Magazine’), produces various
voltages to drive the buffer,
together with future plug-in mod-

BINARY
Ais
111110XX111
A15to A11 must be high.
A10 must be low.
A9 — 8 upper byte block address.

UPPER BYTE DECODING

(H) A10 A9 A8 A7 A6
F8 0 0 0 14
F9 0 0 1 11
FA 0 1 0 12551
FB 0 1 1 11

Available addresses are:

A
1
1
1
1

&F8EQ to FF, &F9EO to FF, &FAEOQ to FF, &FBEO to FF.

XXX XX
A7 to 5 must be high.
A4 to AQ lower byte address.

LOWER BYTE DECODING

5 A4 A3 A2 A1 A0 (H)

0 0 0 0O 0 EO

All 31 addresses to
available

11 1 1 A FF

Table 1

White spot
or Indent
ROM Socket ROM Socket
S = L A~ I
Leave top 1 28 28 ()
two rows 1 @ @ 28 1 E :]
PN T 2 |® ©) 27 2]]| 27
Insert—+— 4— — —|— i i
P1 here 3Ot T 2a[|s2e 3|0 26| s26
j E :l Common 8x%4-7Tk Resistor
4 25 4 25 lead leads
4 EPROM EPROM
s|[] 2716 (2k] []|24 5({[] 2764 (8kl []| 24
2732 (4kl 27128(16k] 5 g
6| 21[]| s23 6 23[7]| s23 ; Figure 7. SIL resistor
24 pin 28 pin
package 710 1] 22 710 1| 22 |package
s E :] 2 . E 3 o ECB t sid Align socket leads
9| 1|20 9| 1| 20 S?S:Epgnen Side over track fingers
10 (] |19 10 | [] 1|19
10 1|18 1| [] 1|18
12| (17 12 ([{17
13|] 1|16 13| |16 omm 2 x25 way socket
14|[]12 13[]]15 14 14 15|15
- -——1_ Bend leads to PCB
fingers and solder
From Fig.4 PCB
SIDE 2 E
L 74 F A
SIDE 1
Solder 25 leads
2716 2732 2764 27128 first on SIDE 1
— A11— —a11— o=
Link Link Link
= 523 —s23 —[of=
Link
v— ——]
Link Link
526 — [o]—s26 —[ofm
Link
s3] [5]—ass —[F
A = Address line No.
5V = +5V Supply
S = Socket pin No.[also ROM pin No.-8/16k only} Fit eg(tendi!?oard as
required. Disc Drive
Module, etc.
Figure 6. Matrix connections Figure 8. Expansion
ules fitted to the motherboard, but | the Bus Extension socket and Construction upon turning the pcb over for
there is no reason why any +5V Extendicard are included. Details soldering.

DC power supply cannot be used

if so desired. Power for the light

pen is also derived from the
Amstrad, making a separate

supply unneccessary for this device.

ROM Card
Versions

Three versions of the project
are available as follows:

(1) External ROM Controller
Kit only.

(2) Motherboard Kit only.

(3) Ready-built Controller and
Buffer.

Version (3) is available
with all pcbs and cables
assembled, but does not in-
clude a motherboard, track
pins, veropins, or 64-way
sockets and PSU.

The version (1) controller is
available for adding up to 128K
_of ROM only. The buffering
components and cables are
not supplied with this kit, but

6

if you intend to expand the
module for I/0 use and will be
adding further modules as they
become available, then
version (2) must be added.
This kit contains all buffer
components, 50-way IDC con-
nector cable and motherboard.
The 64-way sockets, plug-in
modules and PSU are not
supplied with the kit. (See
current issue of the'Maplin
Magazine’, or write for details
of future projects.)

As an aid to testing the
controller project, a pre-prog-
rammed EPROM is available (see
Parts List), containing several
RSX utilities. These routines are
also described in the latter part of
the section dealing with ROM
programming, showing a com-
plete external ROM assembly
listing. The test ROM can be
called from BASIC using the

ROM Controller Assembly

Locate and identify resistor
R1, SIL resistor pack R5-R12 and
diode D1. The SIL package is
detailed in Figure 7. Fit R1 and the
SIL array onto the pcb following
the legend on side 2; a small spot
at one end of the package must be
orientated with the spot on the
legend.

Fit D1 by carefully bending
each lead both sides of the glass
envelope. The glass body is easily
cracked and caution should be
exercised while doing this. Insert
D1 with the black band lined up
with the white bar on the legend.

Next mount the IC sockets in
positions IC1 (14-pin), IC2 (16-
pin) and IC3 (14-pin), with the
slotted end aligned to the solid
white block on the legend. This
end denotes IC pin 1 position.

Bend a few leads over under-
neath the pcb on each socket, in

SHIFT @ symbol (!).

order to prevent them falling out

Now mount eight 28-pin IC
sockets in positions 0 to 7 and,
likewise, orientate them to the
legend and secure as before.

Now carefully solder all leads
to the board, and snip off any
excess wire ends. It may be
advisable to solder one or two
pins of the socket first to begin
with, and then heat these with the
iron whilst pressing the socket to
the board to ensure that it is flat on
the pcb.

Insert the octal SPST DIL
switch, which can be any way
around, but you may find it
preferable to orientate it with
switch 8 position towards the
bottom edge of the board. Solder
the switch in place.

Insert the miniature electro-
lytic capacitor C6 and PC electro-
lytic C1. The negative leads are
denoted with a minus sign or bar,
‘~’, on the package body, and the
positive lead is usually the longest
of the two.

Insert 2x25 transition
connector from underside

Solder all 50 pins
on this side

ey

(Side 1] (Side 2]
1\5 49
1
25~ -==---===--==T50 -
ROM rom|| rom|[rom|| Rom|| Rom
1 allls || e | 7
|
] 1
: GDOSF : BOM
Component ! | o
Side I 1
SIDE 2 ! 1
| 1
| ,H1||HH|M[HWm
. 0 way IDC
Red dinpe il M]thlllw\iulu\i\'
2 x25 Edge Conn.
v
A28 40
2 50

Fit Polarising Key
between connectors
21 and 23.

Insert 1/0 2x25W Transcon

plug on SIDE 2 and solder o
on SIDE 1
- :] 1/0 Buffer
To Components
Motherboard 5?D"éay IC4 to IC8
edge connector
-

Red strip

10

Figure 9. Fitting Transcable

Fit tantalum capacitors C2 to
C4, again taking note of the
polarisation symbols (the positive
lead is adjacent to the '+’ sign),
and finally, insert disc capacitor
C5. Electrolytic or polarised cap-
acitors must be fitted correctly
according to their markings, as
they will not function if reversed in
circuit, and indeed may well
violently burst open under these
conditions!

Solder all remaining leads
onto the board, and remove
excess wire ends with side
cutters.

Extending the
Expansion Port

Refer to Figure 8 for pictorial
details of this section. Take the
2 x 25-way edge connector

socket, and slide the terminal
solder pins (not the contacts) over
each finger in the area marked
‘EXT. SKT on the legend. On the
soldering side (side 1) of the pcb,
carefully solder both outside leads
only, at this stage, to their
respective positions as shown.
Now measure from the edge
of the pcb to the outermost edge
of the socket, and adjust the
positioning by alternately re-heat-
ing the solder joints at each end
until the outside edge of the
socket is 20mm parallel to the
pcb. Resolder both terminals until
this measurement is approx-
imately correct, then solder the
remaining 23 terminals on side 1.
When completed, all term-
inals should lie flat onto the pcb,
side 1 only. On side 2, use a
screwdriver to bend each terminal

Figure 10. Connecting to motherboard

down onto the fingers’, so that
they stay in this position without
springing up when released.
Again, solder all 25 terminals as
before on side 2.

Before continuing, carefully
check for shorts between term-
inals, using a resistance meter
between all 50 leads to make sure
this section is clear of any
soldering errors. Also check for
continuity between each track and
its respective socket contact.
Resolder dry joints and clear any
solder bridges.

It is recommended that every
soldered joint be cleaned with a
suitable pcb cleaning solvent and
stiff brush to remove solder
splashes and flux. Doing so helps
with inspection and fault identifi-
cation which should be done at
this point.

Short IDC

Transcable

Figure 9 shows the slightly
unorthodox method of fitting the
short IDC cable for connecting the
ROM Card to the Amstrad. The
thin, 50-way header plug is fitted
to the dotted IDC socket position
from beneath the pcb on side 1
(on the soldering side), and
soldered to the board on the
component side (side 2). The red
striped edge of the cable should
be to the left and in line with pin
positions 1 and 2 on the legend as
shown. Both drawings should
assist with this operation.

After soldering, clean the
joints as before, and check for
short circuits and continuity as
previously described. The
assembly is now ready to be

BACK

.
© @
EP

AN =

PCB Mounting
p||lars

Box. Bottom
section [Grey |

B2
-

Slotted

U@k

Box Front

Lipped =0
edge edge
| insert 4BA xV4” FRONT Apply pressure |
spacer into pillar until firm |
| moulding | Grey box
| section
|

| N

T
1 Fit spacers to all

A

four mounting pillars (P]

4 x 1/2” No. 4
Self tapping screws

|
2 gig,A/BACK\‘é_ﬂ

. v
E@ % PCB Side q} @;
. DEEEREG
Plo ROM’s E ¢ 5
L® U es
f . FRONT J|
= {
h; W :U
I Box Front 2 |

Figure 11. Mounting pillar positions

Figure 12. Mounting the pcb

installed into the case supplied, or
to have the buffering components
fitted.

Buffer and
Motherboard
Assembly

Locate and insert the three
resistors R2 to R4. Mount four 20-
pin IC sockets in positions IC5 to
IC8, and a 16-pin IC socket in
position IC4. Ensure the notched
end of each socket lines up with
each white block on the legend,
and solder all component leads on
the track side of the pcb, side 1.

Mount capacitors C7 and
C10, again noting the polarising
symbols for correct positioning as
mentioned earlier, and fit both disk
capacitors C8 and C9. Solder all
remaining leads in position, and
cut off excess wire ends.

Finally, fit the 50-way IDC
transition header into the IDC
Extension I/O position on the
lefthand side of the pcb, but this
time insert from the top or
component side, side 2, of the
pcb. The red striped edge of the
cable must go to the end of the
connector whose position is
marked ‘+5V from PSU’, and not
to the ‘0V’ end! If all is correct then
solder all terminals on side 1.

Both sections of the ROM
Card are now complete and ready
for installation into the case.

Motherboard
Construction

Not very much assembly
work is required with the mother-
board, as can be seen from Figure
14. There are 26 track pins and 3
vero-pins required for insertion
into the pcb as shown. Push each
track pin into the ringed holes on
side 2, closest to the card edge
connector. Each of 23 track pads
and +5V, +V and 0V pads require
a through-pin. Snap off each pin
from the strip afterinsertion, and
then use a hot soldering iron to
push each pin head down onto the
board. You must solder each pin
to both side 2 and side 1 pads.

The three veropins are in-
serted into the holes OV, +V and
+5V at the IDC position end of the
peb. Fit the longer ends from side
1 and gently push them home.
Solder with a hot soldering iron on
both sides 1 and 2.

The motherboard can take up
to 6 x 64-way receptacle sockets
which are inserted from side 2.
Note that stamped into the plastic
body of each receptacle on the
terminals side are the letters ‘a’,
‘b’and ‘c’. Insert these sockets
with the ‘a’ and ‘¢’ in alignment
with ‘a1’ and ‘c1’ on the legend, as
shown in Figure 14. If these
sockets are fitted in reverse then

8

Back Panel

Slide into slots

Lipped
edge

Front Panel O

¢ Slide into slots ¢

FRONT

fixing bolts (4 off]

%‘\ Mounting feet and /

Figure 13. Fitting the Front and Rear Panels

modules inserted into them will be
connected back to front — with
disastrous results!

A 50-way IDC transition con-
nection allows motherboards to be
connected together using the
short transheader cable as fitted
to the controller pcb. When joining
motherboards in this way, mount
the transheader plug on side 2
with the red stripe of the IDC cable
facing towards the bottom 5V’
terminal pin. The 2 x 25-way plug
will then fit onto the second
motherboard card edge con-
nector. Alternatively, connection
can be made between boards
using IDC or ribbon cable, by

soldering each wire to both card
edge finger and transheader hole
position.

Note that the pcb side 2
fingers are common to the left-
most row of 25 holes on all
sockets on the pcb. The side 1
fingers are therefore commoned
to the right-most rows of holes on
all seven socket positions (as
viewed from side 2). Power supply
connections are made to the three
veropins, and both OV and +5V
are extended along the ribbon
cable to the buffer section of the
ROM Card, and to the mother-
board transheader position.

The +V terminal is not ex-

tended in this way, but is common
to all 6 receptacle socket posi-
tions. Some row commoning be-
tween each receptacle position
only exists on ‘a3, ‘c3’, ‘a4’ and
‘c4'. Also, ‘a28’ to ‘a31’ and ‘c28’
to ‘c31’ are commoned through to
6 positions only, but do not appear
at any edge connectors. A Buffer-
extension cable should be fitted
via the 2 x 25-way IDC connector,
with the red stripe along the cable
at the bottom edge next to ‘+5V’
track pin. A locating peg can be
inserted into the IDC connector
socket between the positions of
pins 21 and 23 of the top row of
pin numbers, and pins 22 and 24

Mounting
holes

PN N B

ov
IPSUI +VIPSU]
DIN 41612
Receptacle
[2x32 way]
Max. 6 per)
motherboard

Insert 3xVero pins
from this side
[solder both sides]

+5V [PSU]

ol
o

Al—e
SOUND —e
D7 —e

D5 —e

D3 —e
Di—e
M1—e
IORQ —e
CLK —e
WR —e
MREQ —e
BUSRD —e
READY —e
RESET —e
CURSOR —eo
I0SEL —e

DIN 41612

e— RFSH
e—RD

e— ROMEN
&— OV
o—INT

e— BUSACK
e— BUSREST
e— ROMDIS
e—L.PEN

insert 26
track pins
this side

[soider both
sides|

|

Connecting cable
to 1/0 Buffer

2 x25 way edge connector

Red '

stripe

74

Figure 14. Motherboard pin functions

of the bottom row of pin numbers;
which will line up with a slot cut
into the motherboard card edge
connector.

Figure 15 shows both ROM
Card and motherboard terminal
designations for reference pur-
poses, and also shows veropin
and receptacle fitting.

Box Mounting
Assembly

The Vero box supplied with
the kit is separated into two halves
by removing 4 screws located in
the feet. Refer to Figure 11 and
position the bottom grey section
with the slotted (recessed) edge to
the right, and the lipped edge to
the left. Press a V4in. spacer into
each of the 4 mounting pillar
recesses — these are the inner
pillars — and position the ROM
Card as shown in Figure 12, with
side 2 facing upwards, and the
short IDC cable leading out
towards the front of the box.

The Buffer IDC cable can be
twisted underneath the pcb and
brought out from the front or back
of the box as desired, or it can be
extended out from the left. It may
be found necessary to run a file
over the left hand, lipped edge of
the box bottom section in order to
avoid pinching the cable when
assembling the box in this
manner.

Secure the ROM Card by
inserting 4 x self tapping screws
into the pcb mounting holes, and
through each spacer/pillar. Do not
overtighten these screws as the
pillars are only soft plastic. Slot a
front panel over the IDC cable and
fit the 3.5mm stereo socket (JK1)
as shown in Figure 13.

The back panel can now be
fitted. Wire the 3.5mm socket
(JK1) to the light pen pads on the
pcb, as shown in Figure 16,
soldering the leads directly to the
pads for L'PEN, OV and +5V
respectively.

Testing

Do not fit any ICs at this
stage. Ensure switches S0—S7
are set in the ‘off position and,
with the power turned off, insert
the IDC 2 x 25-way expansion
socket into the main expansion
port at the rear of the Amstrad.

Switch on the computer via
the monitor and check for a
normal screen display message,
and that key, tape or disk func-
tions are working correctly.

Switch off power and insert
IC1(74LS32), IC2 (74HCT137)
and IC3 (74HC30). Switch on
again and check that all is as
before.

If you have a suitably prog-
rammed ROM then fit this in

DIN 41612
RECEPTACLE
[2x32WAY |

FIT ON
THIS

SIDE OF
PCB

-t

| .-
lllll

MOTHERBOARD
EDGE CONNECTOR TERMINAL DESIGNATIONS

TRACK
—»[/]+—SIDE @
C—~vero
3:/ PINS
ov bov OV| o oOV
A15 B VREF A15| o o VREF
A13 0 Al4 A3 | o oAl4
At 0 A12 Al1| o o0A12
A9 0 A10 A9] o o0A10
A7 0 A8 A7 | o oA8
A5 O A6 A5| o o0A6 MAIN
A3 O A4 A3 | o oA4 PCB
Al 0 A2 Al| o o0A2 GDOSF
SOUND 0O AC SOUND | ¢ ©AO0 SIDE 2
D7 o ov D7| o o0V
D5 0 D6 D5| o oD6
D3 0 D4 D3| o oD4
D1 Qg pb2 Di| o oD2
M1d p DO Mi| o oDO
IORQ g P RFSH IORQ | o oRFSH
CLK 0 RD CLK| o oRD
WR] 0 ROMEN WR| o oROMEN
MREQ O p oV MREQ| o o0V
BUSRD O O INT BUSRD | o olINT
READY N BUSACK READY | o o BUSACK
RESET O BUS RESET RESET| o oBUS RESET
CURSOR 0 ROMDIS CURSOR | o o ROMDIS
IOSEL 0L PEN IOSEL | o oL.PEN
+5V O+5V +5V| o o +5V [IN]
[OUT] (OUT] lIN]
= @
VERO PIN

EXT. ROM CARD

TRANS CONNECTOR TERMINAL

DESIGNATIONS

Figure 15. Motherboard and ROM Card terminal designations

accordance with the guidelines
given in the paragraphs entitled
‘ROM Type’ and ‘ROM Type
Select Matrix’ to be found near the
beginning of this pamphlet (Fig-
ures 4 and 6), but do not fit any
ROMs without first turning the
power off!

If a CPC664 or C128 micro is
being used, then do not use ROM
position 7 at all. The same rule
applies to CPC464 owners who
are using a DD1 disk drive and
interface module. 464 machines
without a disk drive fitted can quite
happily use ROM position 7
without any problems.

After determining the ROM
size (2, 4, 8 or 16K), strap the
matrix pads as necessary. If our
Test ROM is to be used, then fit
this into position 1, leaving socket
pins S1, S2 and S27, S28 open.
Strap the matrix 1 pads for a 2K-
2716 type ROM (S23 and S26 to
+5V) and select switch S1 (on the
legend — not the body!) to the ‘on’
position. Turn on the power and a
second message should appear
on the display, after the Amstrad
copyright paragraph:

“Maplin Test ROM”
BASIC 1.1

(Version numbers may differ).

Press the SHIFT and @
keys and type | HELP followed
by [ENTER].

The monitor should immed-
iately produce the Maplin Test
ROM Menu display as shown in
Table 2.

This help screen

M-A-P-L-I'N
XXXXXXXXXXX
AMSTRAD TEST
SERIES ROM
ROMpeekK..........cccooovoveeriann. ! ROMP, ADDR%, @VAR%
Resetinks.........cccoooeiiieien, 1 RINK
Scrollup routing.................... 1 SCROLU, VAR%
Scroll down.........ccocooveeiiiinens 1 SCROLD, VAR%
Walt ..o ! WAIT, VAR%
Epson screen dump............... i EPDUMP
Copy character..................... ! COPYC, X%, Y%, @VAR%
Screenbase ... | BASE, VAR%
Screenoffset...........c.cccccoeee ! OFFSET, VAR%
Joystick 1., 1 JOY1, @X%, @Y%, @T%
Joystick 2., 1 JOY2, @X%, @Y%, @T%

i HELP

Press ENTER to return to BASIC >

Table 2.

The Maplin Test ROM mes-
sage will always be displayed
after EMS, provided it has been
fitted and the appropriate posi-
tional switch selected. Try placing
switch S1 (for ROM 1) in the ‘off’
position and reset the computer.
The start up message will
not be there! Type | HELP as
before, and the prompt "Unknown
command” will be displayed.

As may be gathered from
this, ROMs can be fitted, but
made unavailable to the operating
system if they are not switch
selected, at any time.

If the Test (background) ROM
is now fitted in position 0, or switch
S0 is selected ‘on’ in addition to
switch S1, then only part of the
initialising message will be dis-
played after EMS (reset or turn
on). This is because BASIC is
being switched off, but at the
same time is not being replaced
by a Foreground program. Our
Test ROM is programmed as a
Background ROM!

Return the ROM and selector
switches to normal and enter the
BASIC extension command

i HELP for the menu again.

Twelve routines are displayed and
the parameters required for
accessing each routine are
printed alongside.

Press [ENTER] to clear the
display, and type | SCROLD, 23.
Both rows of print will immediately
scroll down to the bottom of the
display, paper area, after
[ENTER] is pressed. Now enter

i SCROLU, 23. Both rows will
scroll upwards to the top of the
paper area. These extension
commands can be used directly
from the keyboard or from within
BASIC and Machine Code prog-
rams. They occupy very little RAM
space in the Amstrad, and BASIC
programs can be typed in as
normal with the ROM fitted and
selected.

Some of the commands, as
with SCROL, require information
to be passed to the routine and
others pass information back, as
do the JOYSTICK routines.

The | RINK or ‘Reset inks’ com-
mand does not pass information
back and forth, only acting directly
on the Amstrad colour registers.

Return to BASIC if not there
already, and change screen inks
by entering INK 1,10 and INK 0,6.
Obviously, green screen monitors
will only show a change in
luminance level, but colour screen
monitors will show the effects well.
With paper and pen inks altered,
enter 1 RINK. All colour registers
willimmediately return to their
default values as they would
normally after EMS.

Points to remember: Always
link the matrix to suit the ROM
being used (256K and 512K
ROMs cannot be used). Use the
appropriate switch to enable
access to the ROM. Position zero
should only be used for Fore-
ground programs. Position 7 is
normally used by the disk drive
C.P.M. ROM. An explanation of
Test ROM routines follows this
section under the title ‘Using Test
ROM Routines From BASIC'.

If the Test ROM (or your own
ROM) has been successfully
accessed and used, then we can
safely assume that the ROM Card
is generally free of faults.

Amstrad CPC464 users who
have a disk drive (DD1) may insert
the extendi-card into the expan-
sion socket at the rear of the ROM
card, and plug in the disk interface
module. Check that all disk func-
tions perform normally. It may
become necessary to clean the
plug-in contact ‘fingers’ on the
extendicard from time to time. A
suitable pcb cleaning solvent or
cellulose thinners does the job
well when applied to the card with
a soft cloth.

Continue testing that the
ROM functions in positions 2 to 6

10

(and 7 if disk drive is not fitted),
but remember to strap the matrix
accordingly, and select only one
switch (SO —7) ‘on’ at any time.
Unfortunately, if you do not have a
ROM to try in the card, then not
much can be done to prove the
circuitry is working, unless an
oscilloscope is available.

To test the card with the aid of
an oscilloscope, connect the ROM
Card to the Amstrad after
inserting the three ICs as des-
cribed earlier in paragraph 3 of
‘Testing'. Place all eight switches
(S0-7) in the ‘off position, and
type in the following BASIC prog-
ram — after power-up of course!

10 J=0
20 OUT (&DF@o), J
30 GOTO10

Place the scope probe on IC2
pin 15 (decoded ROM position 0)
and RUN the program. A negative
pulse signal of approximately 1S
should be evident. Break the
program (ESCAPE) upon which a
+5V DC level is displayed. This
test can be repeated for J values
of 0to 6 (not 7 if disk drive fitted!)
in the program, and the IC2
decoder output (ROM position)
checked for each value on pins 15
to9.

IC1a pin 3 can be checked for
anegative pulse RD signal from
the CPU and also on ROM
sockets 0 to 7, pin 22

Testing the

Buffer Circuitry

Fit ICs 4 to 8 into their
respective sockets, with pin 1
orientated according to the leg-
end, and insert the ROM Card into
the Amstrad Expansion Port.
Assuming that a previously
assembled motherboard pcb is
available, plug the long 2 x 25-way
extension cable onto the mother-
board card edge connector
(Figure 14). The buffer section
requires +5V and OV to supply the
ICs. Connect a suitable 5V DC
source to veropins 0V and +5V
(but not +V) on the motherboard.

Turn on the Amstrad power
only, and check that everything
functions as normal. Connect the
negative probe of a voltmeter to
the OV pin 10 of IC8, and the
positive probe to IC8 pin 20. A
reading of +3V to +4V approx-
imately should be obtained.
Switch on the 5V buffer supply,
and measure the voltage at IC8
again, which should now be the
PSU voltage.

An oscilloscope can be used
to view waveforms on all of the
control and data lines (Figure 15).
Some of the terminals, e.g.
SOUND, RESET and BUS RD are
not normally active, that is to say

 @n
0

OV = [Sleeve]
+5V = [Tip]

FKO3D
Wiring to .

PCB pins

[Ring]+>L’pen

Stereo
3-5mm chassis
Jack socket

Front panel { |]
[CUmE
Lock ring
Tip
FJOSH ~<+—— Rin
\ ; g
Sleeve
[Ring}+ L’pen
+5V [Tip] [Sleeve] =0V GND
Supply
out
Somm | T2
Jack plug Light pen

Required light pen output

———-tV
T ERLEERLEL T,
Positive going pulse at

TTL levels developed from
display scan spots.

Figure 16. Light pen connection

they are at constant voltage level
(TTL), which does not necessarily
mean that a particular buffer is
faulty. Alternatively, the BIOSEL
and data bus DO - D7 can be
checked with the aid of a diode
(type 1N4148) and 8 x 10K
resistors.

For this method, switch off all
power and wire one end of each
resistor to each data line D0 — D7
inturn. This is best achieved by
fitting the resistor vertically into
the appropriate hole, from Side 2
of the motherboard at the IDC
output position. D7 is the eleventh
hole down along the left hand row,
and D6 is twelve holes down on
the right hand row (see Figure 15)
from the positions of the OV and
+V pins.

Once all eight resistors have
been soldered to the eight data
lines, twist the remaining eight
resistor leads together and term-
inate them at the PSU +5V
terminal. Switch on all power
again and type in the test prog-
ram.

Test Program

10 MODE 1

20 LOCATE 18,12
30 PRINT 255 — INP
(&F8EQ); CHR$(32)
40 GOTO 20

Run the program, whereupon
‘0’ should be printed on the
display. On side 1 of the mother-
board, connect the cathode end
(bar end) of the test diode to the
BIOSEL track pin (first track pin up
from the position of +5V track
pin), and the diode’s anode lead to
DO. The number ‘1’ should now be
displayed.

Repeat this on D1 to D7, and
check forD1 =1,D2 =2, D3 = 4,
D4 =8,D5=16,D6 = 32 and D7
= 64. Change program line 30 to
input address &FIEQ and repeat
the test. Input addresses &FAEQ
and &FBEO should also be ins-
erted into line 30 to check that the
IC6 decoder functions are correct.

Future Expansion

Euro card size modules will
become available through 1988,
details of which can be found in
‘Electronics, the Maplin
Magazine’, or by writing to Maplin.
Projects such as the PSU, the 6 x
8 (48 bit) I/O Card, and Eprom
Programmer (for developing your
own external ROMs!) will be made
available in kit form and many
existing projects such as the
‘Video Digitizer' and ‘Satellite
Receiver’ will be discussed for
connection to the Amstrad com-
puter using the ROM Card facility.

Using the Test

ROM from BASIC
TERMINOLOGY
ADDR% Integer Address.
VAR% Integer Variable.
@VAR% The Integer
Address of
a Variable.
U, The ‘Shifted @’
Symbol.
&l Represents
aHEX Value.
%o i Represents an
Integer Value
#oiii Represents a
HEX Value in
Assembly Listings.

The integer variables X% and
Y% have been used to represent
screen coordinates, although
they could just as easily have
been any integer variable.

Introduction

A number of routines have
been programmed into the ‘Test
ROM’ that will enable the con-
structor to test the functions of the
Maplin ‘ROM Card’ and illustrate
the methods of passing informa-
tion back and forth between the
Foreground program (BASIC) and
the ROM.

Each routine is called using
the * 1 * symbol (shift key and ‘@’)
followed by the command word,
and where parameters are called
for, these are tagged on to the end
separated by commas.

Routines and
Demo Programs

i HELP

Display the ROM menu on
the screen.
For example, Just type in—

i HELP then [RETURN]

i ROMP, ADDR%, @VAR
Read a byte from this ROM at
the address given. Use this
routine to explore the ROM. See
example 1.

i RINK

Reset all the inks to their
default values. See example 2.

i SCROLU, VAR%

Scroll the whole screen up
the number of lines to the value of
the integer variable. The bottom
line is cleared to the current paper
ink. The top line will be lost.

i SCROLD, VAR%

Same as the scroll up routine
except that the top line is cleared
to the current paper ink and the
bottom line will be lost. See
example 3.

Example 1.

10 C%=0 : P%=0 :

30 IF C%>8
50 END
FOR B=A-8 TO A
{ROMP, B, @P%

110 NEXT B:C%=1
RETURN

PRINT
20 FOR A=49152 TO 51200 :
THEN PRINT"
40 !ROMP,A,@P%:PRINT HEXS$(P%,2);"

"co00 ";
C%=C%+1

IF P% >31 AND P%<127 THEN PRINT CHR$(P%);:

";:GOSUB 100:PRINT:PRINT HEXS$(A,4);" ";
";:NEXT A

ELSE PRINT ".";

Example 2.

10 CLS

40 FOR B=0 TO 26
50 |WAIT,10

60 INK 1,-B+26
70 INK 0,B

75 BORDER -B+26

100
110

i RINK

30 LOCATE 15,12:PRINT"COLOURS"

80 NEXT B:LOCATE 15,14:PRINT"WAITING"
90 [WAIT,200:LOCATE 16,16:PRINT" |RINK"

I{WAIT,200:GOTO 10

Example 3.

5 MODE 1

11 !WAIT,100
20 ISCROLU,10
30 !SCROLD, 20
40 ISCROLU,10
50 IWAIT,100
60 GOTO 20

10 LOCATE 8,12:PRINT
"SCROLLING JUST SCROLLING"

Example 4.

10 REM Five second delay.

20 PRINT" WAITING 5 SECONDS"
30 {WAIT,500

40 PRINT "Finished"

Example 5.

30 !EPDUMP
40 GOTO 40

10 LOAD"FAVORITE.PIC",&C000:REM Not a shaded dump sorry.

50 REM You will have to use ESC to get out of this one.

i WAIT, VAR%

Wait for a period dependent
on the value of the integer
variable. A value of 100 will give a
delay of approximately 1 second.
The variable must not have a zero
value, or very long waits will
result. See example 4.

i EPDUMP

Gives a high resolution dump
to an Epson compatible printer
(sorry not DMP1). The routine will
print anything from the screen that
is not the current paper colour.
Setting the paper colour prior to
calling this routine may be used to
printin inverse. If the printer is not
on line, the routine will wait until it
is. Escape is not possible unless
the printer is on line. To escape
when the printer is on line, hold
down the escape key until BASIC

Example 6.

10 P%=0

12 FOR ¥Y%$=1] TO 25
15 FOR X%=1 TO 20
20 !|COPYC,X%,Y%,Q@P%
30 LOCATE X%+20,Y%
40 PRINT CHRS(P%)
50 NEXT X%,Y%

is re-entered. The routine will

- return automatically when the

transfer is complete. See example
5

1 COPYC, X%, Y%, @VAR%

This routine returns the ASCII
value of the character at the text
screen coordinates X% and Y%.
664 and 6128 owners already
have this routine progammed as
part of BASIC.

Example 6 will copy the left
side of the screen to the right side
of amode 1 screen.

i BASE, VAR%

The screen memory may be
placed in any area of RAM but it
must start on a 16K boundary.
This routine will allow you to alter
the start address of the screen
RAM. The integer variable should
be loaded with the value of the

11

most significant byte (MSB) of the
2-byte start address of the req-
uired screen, e.g. the default
screen address is at &C000, and
so the MSB is &C0. The only other
useful address is at HEX 4000
(MSB &40). Be careful as other
addresses may corrupt data. See
example 7.

i OFFSET, VAR%

The screen base may be set
on a 16k boundary. The offset
routine allows the screen start
address to be set in two byte
increments offset from the screen
base. The value of the integer
variable may be in the range O to
255. See example 8.

1 JOY1, @X%, @Y%, @T%
1 JOY2, @X%, @Y%, @T%
The routines JOY1 & 2, when
called, will update the X and Y co-
ordinates depending on which
direction the joystick is being
pushed. It will also return the
value ‘1’ if the trigger is pressed.
All three variables must have a
value before being called.
(Normally the last screen co-
ordinate.) If both joysticks are
being used, different variable
names should be assigned for
each stick. With a joystick fitted,
try example 9.

ROM

Programming

Itis assumed that the prog-
rammer is conversant with mac-
hine code programming at least to
the level of writing their own RSX
programs in RAM. There are
many good books that provide
information on the operating
system of the Amstrad 464, 664
and 6128, not least Soft 158 ‘The
Complete CPC 464 Operating
System Firmware Specification’
published by Amsoft. This publica-
tion was found to be invaluable
when preparing software for our
range of Amstrad projects.

Although not absolutely nec-
essary, a good ‘assembler’,
capable at least of assembling to
cassette or disk the machine code
addressed from #C000 upwards,
will be found most useful for the
preparation of ROM based prog-
rams.

You will need access to an
EPROM programmer and eraser.
Ideally, if large amounts of code
are to be put into ROM, the
EPROM programmer should be
able to take code directly from the
memory of the Amstrad or from
cassette or disk, and transfer it to
the ROM. A suitable programmer
will soon be available from Maplin.

ROM Format

There are three recognised
12

Example 7.

i BASE, &40 [ENTER]

Type any characters you wish on the screen.

| BASE, &CO [ENTER]

Now type in this program.

10 {BASE,&40
20 IWAIT,100
30 !BASE,&CO
40 |WAIT,100

50 GOTO 10

Example 8.

20 CAT

40 'OFFSET,A%
50 (WAIT,20

30 FOR A%=1 TO 40

Example 9.

10 X%=0:Y%=0:T%=0
20 }JOY1,@X%,@Y%,@T%

60 NEXT A% 30 PLOT X%,Y%,1
40 IF T%$=1 THEN END
Type in; MODE 1 [ENTERI] 50 GOTO 20
; LIST [ENTER]
: RUN [ENTER]
types of ROM based programs: Of this block of four bytes, routines in ROM that are to be

Foreground
Extension
Background

An example of a Foreground
ROM is the on board BASIC, and
although it physically shares the
same ROM with the operating
system, the 16K bytes that contain
the BASIC program are treated by
the computer as a separate ROM.
Itis the responsibility of the
Foreground ROM to take control
of the computer, and to carry out
all the house-keeping of the
system.

If there is insufficient room in
a Foreground ROM to contain the
whole program, then additional
ROMs can be added, and these
are known as Extension ROMs.

To write a Foreground prog-
ram requires a high level of
competence in machine code
programming, and a thorough
understanding of the computer. It
is not within the scope of this
pampbhlet to cover this particular
aspect of external ROMs, and we
will confine our efforts to demon-
strating background ROMs only.

External ROMs overlay the
default screen area of RAM
starting at #C000, up to, depend-
ing on the size of ROM, #FFFF.
The first few memory locations of
an external ROM must follow a set
pattern:

€000
Co01
Coo2
€003

ROM Type

ROM Mark

ROM Version
ROM Modification

only the first is of any significance
to the operating system — the
ROM Type. The ‘Mark’, ‘Version’,
and ‘Modification’ are chosen at
the programmer’s convenience.

*(C000)
Type #00 = Foreground ROM
Type #01 = Background ROM
Type #02 = Foreground
Extension
Type #80 = On board BASIC
(Foreground ROM
with bit 7 set)
C004 Address of Command
Table
(low byte)
C005 Address of Command
Table
(high byte)
C006 Command Jump Block
C007 Command Jump Block
C009 Command Jump Block
CO0A Command Jump Block

The length of the Command
Jump Block will depend on the
number of routines in the ROM
that are to be called from BASIC.

The Command Jump Block
consists of a number of calls to the
routines programmed into the
extension ROM.

Command Table

C00B Command Name
C00C Command Name
C00D Command Name
CO0E Command Name
COOF #00

The length of the Command Table
will depend on the number of

called from BASIC, the null byte
(#00) terminating the Command
Table.

The Command Table is a list
of the names of the routines that
can be called from BASIC. The
last byte of each name has the
seventh bit set to indicate to the
operating system that it is the last
character of the name.

Each call in the Jump Block
points to the location of its own
associated machine code routine
in the expansion ROM, and not to
the commands in the Command
Table, however, the calls must
follow in the same order as in the
list of commands. The Command
Table is terminated in a null byte
(00).

An assembler listing of the
opening bytes of a Background
ROM may resemble that shown in
Listing 1.

DEFM, DEFB, etc., are
assembler directives and may
vary from assembler to assem-
bler. Consult your assembler
manual.

Passing

Parameters

Parameters may be passed
to an expansion ROM by the
same method used by BASIC.
The values are tagged onto the
end of the command word each
separated by a comma. BASIC
will create a stack of the values

BCO02 70 RESINK: EQU #BCO2 ;Reset the screen pack
BB75 80 SETCUR: EQU #BB75 ;Set the cursor position
BB60 90 GETCHA: EQU #BB60 :Read character at cursor
BCO08 100 SETBAS: EQU #BCO8 ;Set the screen base
BCOB 110 GETBAS: EQU #BCOB :Get the screen base and
B912 120 GETROM: EQU #B912 :Get ROM address
130
Cc000 140 ORG #C000
150 ;
c000 01 160 START: DEFB #01 :Background ROM
c001 01 170 DEFB #01 :Mark 1
c002 02 180 DEFB #02 ;Version 2
c003 03 190 DEFB #03 :Modification 3
200 ;
c004 15co0 210 JBLOCK: DEFW COMND :Address of comnd table
C006 C334cCO0 220 Jp INIT ;Jump block start
C009 C33ECO 230 Jp RINK
C00C C342co0 240 Jp COPYC
CO0OF C35BCO 250 JP BASE
C012 C36BCO 260 JP OLDBAS
270 ;
C015 4558414D 280 COMND: DEFM "EXAMPLE RO" ;Command table
COlF CD 290 DEFB "M"+#80 :Note! The last letter
C020 52494E 300 DEFM "RIN" ;of each command name
c023 CB 310 DEFB "K"+#80 ;has bit 7 set to
Cc024 434F5059 320 DEFM "COPY" :indicate that it is the
Cc028 <3 ' 330 DEFB "C"+#80 ;last.
C029 424153 340 DEFM "BAS"
c02C C¢C5 350 DEFB "E"+#80
C02D 4F4c4442 360 DEFM "OLDBA"
c032 D3 370 DEFB "S"+#80
c033 00 380 DEFB #00 :Comnd table end marker
390 ;
Listing 1.
and point the IX register to the last A BASIC variable does not ROM routine is called, the IY sages, etc. The user should not be

entry. A point to note here is that
each integer value on the stack
will take up two bytes of the
Amstrad’s RAM (least significant
byte first).

The ROM may retrieve
values passed to it from BASIC by
loading the Z80 registers with the
contents of memory locations
pointed to by the IX registers:

LD D, (IX+3) First entry on the
stack

LDE, (IX+2)

LD H, (IX+1)

LD L, (IX+0) Last entry on the
stack

NB. The alternate register set is
used by the operating system and
,should not be used by the
programmer.

A ROM may pass information
back to BASIC via variables. The
@ symbol, when placed in front of
avariable, will return the address
in memory where the variable has
stored its current value.

For example:—-

10 P%=0:PRINT @P%

The number printed on the
screen is the address in RAM
where the variable has stored the
value zero, and not the actual
stored value. A variable’s address
cannot be relied on to always be
the same, as it is allocated
dynamically.

have an address until it has been
given a value, any value will do,
even ‘0. A variable cannot be
used for returning information
from a machine code routine until
it has an address.

For example:—

10 P%=0: POKE @P%,255: 7P%

In this example we have first
set P% to zero (0), then POKEd
the address of P% with the value
255, and then PRINTed P%. P%
now holds the value 255.

As before, when a command
is called BASIC creates a stack
pointed to by the IX register, only
this time if any of the variables
have the @ symbol in front of
them then the address of the
variable is placed on the stack,
and not the value! The ROM
program can now use this address
in which to place any information it
may wish to send back to the
BASIC program. This method of
passing parameters via the IX
registers is the same for RSX
programs as well as external
ROM programs.

Many ROM based programs
will require an area of RAM to
store run time variables etc., but
because RAM space is allocated
dynamically, it is not possible to
reserve a few bytes and be sure
that other ROM or RAM programs
will not overwrite them. When a

register will be pointing to the
bottom of an area of RAM that has
been set aside by the ROM for its
own use. We will see how this
area is reserved in the next
section.

If you already have a number
of RAM RSXs that you intend to
put into ROM, you will have to set
up the first few bytes as shown
earlier. Your next step will be to
re-allocate the variable space. For
each separate variable in the
routine, you must replace the fixed
address with an address pointed
to by the IY register:

Variable 1 = (IY+0) Low byte
(IY+1) High byte

16-bit variable

Variable 2 = (IY+2) Low byte
(IY+3) High byte

16-bit variable

Variable 3 = (IY+4)

8-bit variable
Variable 4 = (IY+5)

8-bit variable

Initialisation

Routine
Reserving RAM Space

When the Foreground prog-
ram initialises the external ROMs,
the first routine in each ROM is
entered and run. This is known as
the initialisation routine and it is
responsible for reserving RAM
space, putting out start up mes-

able to access this routine, and
placing spaces in the command
name is one method of preven-
tion. (BASIC will not accept
spaces in a command but the
operating system will.)

When the initialisation routine
is entered the following inform-
ation is held in the Z80 registers.
DE contains the address of the

lowest byte of RAM available.

HL contains the address of the
highest byte of RAM available.

One of the first actions that
the initialisation routine should
take is to check the position of the
ROM. This serves two purposes.
One is to allow the ROM to
provide information for setting up

- side calls (calling routines be-

tween ROMs), and the other is to
allow for variations in the ROM
logging routine in different operat-
ing systems. (The 464 tries to log
in 8 ROMs whereas the 664
attempts to login 16.) The
operating system routine, KL
CURR SELECTION #B912, when
called from a ROM will return with
the ROM select address in the A
register. If the select address is
greater than 7 then the initialis-
ation routine should not reserve
any RAM and clear the carry flag
before returning control to the
operating system. If the ROM
select address is between 0 and 7

13

C034 B7 400 INIT: OR A ;Clear the carry flag
C035 CD12B9 401 CALL GETROM ;Check ROM Address
C038 CBS5F 402 BIT 3,A ;Greater than 8 ?
c03Aa CoO 403 RET NZ :Return if it 1is
CO3B 2B 404 DEC HL :Reserve 1 byte RAM
c03Cc 37 405 SCF ;Set the carry flag
C03D C9 410 RET ;Return to Op/Sys
420 ;
Listing 2.
CO3E CDO02BC 430 RINK: CALL RESINK ;Reset the screen pack
C041 9 440 RET ;also resets inks to
450 ; ;default values
Listing 3.
C042 FEO3 460 COPYC: CP 3 :Check for 3 parameters
Cc044 CO 470 RET NZ ;Return if not
C045 DD6601 480 LD H,(IX+1) ;Get return address HI
C048 DD6EOO 490. LD L,{(IX+0) ;Get return address LO
C04B E5 500 PUSH HL ;Save it
C04C DD6604 510 LD H,(IX+4) ;Get X coordinate
CO4F DD6EQ02 520 LD L,(IX+2) ;Get y coordinate
C052 CD75BB 530 CALL SETCUR ;Set the cursor
C055 CD60BB 540 CALL GETCHA ;Get the character
C058 El1 550 POP HL ;Get return address
c059 77 560 LD (HL) ,A ;Put the char in it
c05a ¢C9 570 RET ;Return to caller
580 ;
Listing 4.

the routine may go ahead and
reserve RAM. :

The block of memory be-
tween DE and HL will vary
depending on the requirements of
other external ROMs that may
have been initialised before the
current ROM. The initialisation
routine may now reserve RAM
space by modifying HL, DE, or
both. To set aside say 5 bytes of
RAM at the top of the memory
pool, simply subtract 5 from the
value of HL. To reserve memory

at the lower end of the pool, add
the required amount to DE.

If your initialisation routine is
required to do things other than
just reserving memory, then it may
be necessary to push HL and DE.
Itis the values contained in these
registers, when the routine returns
to the operating system, that are
used to reserve memory. From
now on, whenever a routine in this
ROM s called, the IY registers will
point to the address you gave the
HL registers. Access to the lower

PLUG IN
EURO CARDS

l (M l _—
_____{::::jéiiii_ EXT. ROM
CARD

BUS EXTENSION
BOARD

,/ 2 x 25 WAY

MOTHER
BOARD

N
\
/(\\\
CONNECTING
IDC CABLE

PCB
61/2'x 4 V2" o

LIGHT PEN h

INPUT

CASE

IDC FLEXICABLE

EXPANSION PORT

CPC 464, 664, 6128

AMSTRAD

System overview

14

area of memory, reserved by
altering DE, is a little more difficult
and involves the use of pointers
set up in the upper area. It is not
automatic.

If no RAM space or other
action is required by the ROM on
initialisation, the routine should
still check its select address and
set the carry flag before returning
control to the operating system.

Working
Examples

Once the principles involved
in the passing of parameters back
and fourth between BASIC and
ROM routines are understood,
there is very little difference
between programming for RAM or
ROM. The next few programming
examples are designed to dem-
onstrate the principles which up to
now we have only talked about.

The initialising routine label-
led INIT in Listing 2 is the first
routine in the ROM and is entered
and run automatically by the
operating system on EMS (if the
ROM is selected).

The first action the routine
labelled INIT takes is to OR the A
register, this has the effect of
clearing the carry flag. A call is
then made to the lower ROM
routine that returns the ROM
select address in the A register.
Bit 3 of the A register is checked to
ensure that the select address is
not between 8 and 16, if it is then
the routine returns control to the

operating system. If the ROM
select address is between 0 and 7
then the routine goes ahead and
reserves one byte of RAM by
decrementing the HL register pair,
the carry flag is set and control is
passed back to the operating
system via the RET directive.

Listing 3 is probably one of
the shortest ROM routines you will
use. RINK calls the routine in the
lower operating system ROM, via
the system jump block, that resets
the screen pack. One of the
advantages of this routine is that
the inks are all reset to their
default values. Very useful if you
accidentally blank out your screen
while experimenting with the inks.

If the routine has been called
by BASIC, then the return will be
to BASIC, but a point to note here
is that most routines in the ROM
can be called by other routines in
the same ROM, simply by a call to
the routine’s address. In these
cases, the return will be to the
calling routine.

Routines in one ROM may be
called from another ROM, but the
method used is known as a
‘Sideways Call’. This is explained
in Amsoft's Soft 158.

Listing 4 shows the first of the
routines that actually passes
parameters.

Many of you that have the
664 and 6128 will know this
routine, it gets a character from
the current cursor position on the
screen and returns it in a variable
to BASIC. This particular routine

C05B FEO1 590 BASE: CP 1 :Check one parameter
C05D CO 600 RET Nz ;Return if not
CO5E CDOBBC 610 CALL GETBAS ;Get the current base
Cc061 FD7700 620 LD (IY+0) ,A ;Save it in (IY+0)
cC064 DD7EO00 630 LD A,(IX+0) ;Get user base
Cc067 CDO8BC 640 CALL SETBAS ;Set it
coea C9 650 RET ;Return to caller
660 ;
Listing 5.
CO6B FD7EO00 670 OLDBAS: LD A, (IY+0) ;Load a with old base
CO6E CDO08BC 680 CALL SETBAS ;:Set base with old
c071 C9 690 RET ;:Return to caller
Listing 6.

requires 3 parameters and is
called using the following
command:

| COPYC,VAR%,VAR%,@VAR%

Where VAR% represents an
integer variable and @VAR%, as
explained earlier, represents the
address of an integer variable.

When this command is
called, BASIC creates a stack of
the parameters, with the IX reg-
ister pair pointing to the last entry.
In this case, the last parameter to
be put on the stack will be the
address of the variable for the
return of the character’s value to
BASIC. The address will be
passed as a 16-bit number, so it
must be held in two memory
locations, the low byte being
followed by the high byte.

The IX register pair will now
be pointing to the low byte of the
address, it therefore follows that
IX+1 points to the high byte. The
same principle applies to the
other parameters. Each variable
is a 16-bit number and is stored in
two memory locations. This may
be a little difficult to follow at first,
but if you remember that most

_stacks are built from the top
downwards, it makes sense that
the last value added is the lowest
in memory, and therefore IX+0 is
pointing to the entry lowest in
memory.

In the COPYC routine, the
first action is to check that the
correct number of parameters
have been passed. Fortunately,
when BASIC is creating the stack
of parameters, it keeps a check of
the number and before calling the
routine, loads this value into the A
register. If we know how many
parameters there should be, a
simple compare within the routine
can check for the correct number
and return if an error is detected.

The next action of the routine
is to load the register pair HL with
the address of the character
returning variable, then save iton

the system stack. The Xand Y co-
ordinates of the cursor are then
loaded into HL. We appear to
have skipped IX+3, but
remember that the largest X co-
ordinate value will not be greater
than 80 in decimal, and the
largest Y value not greater than
25, and each of these values will
fitinto one 8-bit byte. There is little
point in defining the most signifi-
cant byte as in each case, it will
be zero.

H and L now contain the X
and Y co-ordinates respectively
and the system routine to set the
cursor (#BB75) can now be
called. The system routine to geta
character from the screen at the
current cursor position (#BB60)
has no entry conditions, and can
be called immediately after. On
returning, the A register holds the
ASClI value of the character found
at the cursor co-ordinates. The
address of the variable we are

BASIC is then POPed off the
system stack into HL, and the
value in A register is then loaded
into the address pointed to by HL.
Areturn is then made to BASIC.

These next two routines
demonstrate the use of the IY
register pair, and use the byte of
RAM that we reserved during the
initialising routine.

Listing 5, BASE, when called
by BASIC, will have one para-
meter, the MSB of the screen
base address. The routine first
checks to see that there is only
one parameter and returns to
BASIC if there is not. If all is well, a
call is then made to the system
routine that gets the current base
address, and this is then stored as
avariable in the byte of RAM we
reserved during initialisation. A
point to note here is that BASIC
(the foreground program) sets the
IX registers, but the operating
system sets the IY registers.

included purely as a demonstra-
tion and should not be used in
programs of your own without
providing some means of check-
ing that I'Y+0 contains a valid
screen base address. You could
corrupt data areas if a value other
than &CO or &40 is passed to it.

The routine takes the MSB of
the required screen base address
from the location pointed to by the
1Y register pair plus the displace-
ment, and loads it into the A
register. In this demonstration, the
routine BASE will have placed the
MSB of the screen base address
in (IY+0), and should have been
called at least once before using
OLDBAS.

The system routine to set the
base is then called, and a return is
made to BASIC.

Listing 7 is a compilation of
the other assembler listings and is
taken from a working ROM. You
could, if you wish, use this as your

using to return the character to Listing 6, OLDBAS, has been | first ROM program.
EXTERNAL ROM CARD PARTS LIST
RESISTORS All 0.6W 1% metal film unless specified OPTIONAL
R1 2k2 1 (M2 EPROM 2716 (QQO7H)
R5-12 4k7 SIL 1 (RA29G) EPROM 2732 (QQo8J)
CAPACITORS EPROM 2764 (QQO9K)
Ci 100uF 10V PC Electrolytic 1 (FF10L) EPROM 27128 (YH88Y)
Co-4 1uF 35V Tantalum 3 (WWe0Q) Test ROM 2716/M11 (UF73Q)
C5 100nF Minidisc 1 (YR75S)
cé 100uF 16V PC Minelec 1 (RA55K) MOTHE RBOOARD PARTS LIST
SEMICONDUCTORS SSSISTORSAS\LI 0.6W 1% metal film 1 i
D1 0A47 1 (QH70M) R3 10k 1 (M10K)
IC1 740532 1 (YF21X) R4 e 1 (MaK7)
IC2 74HCT137 1 (UBszK)
IC3 74HC30 1 (UB14Q) gAPACITORS = e e
7 100w inelec 1 55K)
M'SCE'—'-ANESnLt’g" oo + GoosR) 039 100nF Minidisc 2 (YR75S)
Extendiboard PCB 4 (GB99H) C10 ~ 1uF 35V Tantalum 1 (WWe60Q)
14-way DIL socket 2 (BL18U) SEMICONDUCTORS
16-way DIL socket 1 (BL19V) IC4 745138 1 (YF53H)
28-way DIL socket 8 (BL21X) IC5,7,8 74HC244 3 (UBB5V)
St DIL switch SPST Octal 1 (XX27E) IC6 74HC245 1 (UB67X)
Box vero 201 1 (LLOSF) MISCELLANEOUS
Peorpmnat } FFAAsBQBv\Q Motherboard PCB 1 (GDO4E)
Sl | o 2x05-way Transheader 1 (FT66W)
pacerdBACAR. - (FW31J) IDC Polarising key 1 (QY73Q)
Self tap screws No 4x'zin. 1Pkt (BFE6W) 16-way DIL socket 1 (BL19V)
50-way Amstrad cable 1 (FA86T) 20-way DIL socket 4 (HQ77J)
2x25-way edgeconn 1 (FA87U) Veropins 2145 1Pkt (FL24B)
IDC polarising key 1 (QY73Q) Trackpins 1Pkt (FL82D)
JK1 3.5mm Stereo jack skt 1 (FKO3D)
PL1 3.5mm Stereo jack plg 1 (FJ99H) OPTIONAL
Amstrad pamphlet 1 (XH65V) 64-way PCB rec (FJ47B)

15

10 :****************************
20 ;* EXTERNAL ROM PROGRAMMING *
30 ;* ————====== * —oo—=——————— *
40 ;* WORKING EXAMPLE *
41 ;+* Version 110286/3 *
50 :****************************
60 ;
BCO2 70 RESINK: EQU #BCO02 ;Reset the screen pack
BB75 80 SETCUR: EQU #BB75 ;Set the cursor position
BB60 90 GETCHA: EQU #BB60 ;Read character at cursor
BCO08 100 SETBAS: EQU #BC08 ;Set the screen base
BCOB 110 GETBAS: EQU #BCOB ;Get the screen base and
B912 120 GETROM: EQU #B912 ;Get ROM address
130
c000 140 ORG #C000
150 ;
c000 01 160 START: DEFB #01 :Background ROM
- C001 01 170 DEFB #01 :Mark 1
Cc002 02 180 DEFB #02 ;Version 2
c003 03 190 DEFB #03 ;Modification 3
200 ;
c004 15cCo0 210 JBLOCK: DEFW COMND ;Address of comnd table
c006 (C334cC0 220 Jp INIT ;Jump block start
Cc009 C33ECO 230 JP RINK
C00C C342co 240 JP COPYC
COOF C35BCO 250 JP BASE
C012 C36BCO 260 Jp OLDBAS
270 ;
C015 4558414D 280 COMND: DEFM "EXAMPLE RO" ;Command table
COlF CD 290 DEFB "M"+#80 :Note! The last letter
C020 52494E 300 DEFM "RIN" ;0of each command name
c023 CB 310 DEFB "K"+#80 ;has bit 7 set to
C024 434F5059 320 DEFM "COPY" ;indicate that it is the
c028 C3 330 DEFB "C"+#80 :last.
c029 424153 340 DEFM "BAS"
C02C .. °C5 350 DEFB "E"+#80
C02D 4F4C4442 360 DEFM "OLDBA"
c032 D3 370 DEFB "S"+#80
c033 00 380 DEFB #00 ;Comnd table end marker
390 ;
c034 B7 400 INIT: OR A ;Clear the carry flag
Cc035 <CDbh12B9 401 CALL GETROM ;Check ROM Address
C038 CBS5F 402 BIT 3 ,A& ;Greater than 8 ?
c03a cCo 403 RET NZ :Return if it is
CO3B 2B 404 DEC HL ;Reserve 1 byte RAM
co03c 37 405 SCF ;Set the carry flag
C03D C9 410 RET :Return to Op/Sys
420 ;
CO3E CDO02BC 430 RINK: CALL RESINK ;:Reset the screen pack
C041 C9 440 RET ;also resets inks to
450 ; ;default values
C042 FEO3 460 COPYC: CP 3 ;Check for 3 parameters
c044 cCoO 470 RET NZ :Return if not
C045 DD6601 480 LD H,(IX+1) ;Get return address HI
C048 DD6EO0O 490 LD L,(IX+0) ;Get return address LO
C04B E5 500 PUSH HL ; :Save it
C04C DD6604 510 LD H,(IX+4) ;Get X coordinate
CO04F DD6EO02 520 LD L, (IX+2) ;Get y coordinate
C052 CD75BB 530 CALL SETCUR ;Set the cursor
C055 CD60BB 540 CALL GETCHA ;Get the character
c058 E1 550 POP HL ;Get return address
c059 77 560 g LD (HL) ,A ;Put the char in it
c05aA C9 570 RET ;Return to caller
580 ;
C05B FEO1 590 BASE: cp 1 ;Check one parameter
C05D CO 600 RET NZ sReturn if not
CO5E CDOBBC 610 CALL GETBAS ;Get the current base
C061 FD7700 620 LD (1Y+0),A ;Save it in (IY+0)
C064 DD7EOQ0 630 LD A, (IX+0) ;Get user base
C067 CDOS8BC 640 CALL SETBAS ;Set it
Cc06A C9 650 RET ;Return to6 caller
660 ;
CO06B FD7E00 670 OLDBAS: LD A,(IY+0) ;Load a with old base
CO6E CDOS8BC 680 CALL SETBAS ;Set base with old
c071 C9 690 RET ;Return to caller

Listing 7. -
16

)
Ma‘pll) PRODUCT INFORMATION

ELECTRONIC SUPPLIES LTD

AMSTRAD ROM CARD 9 May 1986

CORRIGENDUM

AMSTRAD EXPANSION SYSTEM PAMPHLET XH65V
Page 9 Sub heading "TESTING"

Paragraph 1
" Do not fit any ICs at this stage"

Should read;
" Do not fit any ICs except IC3"

Paragraph 3
" Switch off power and 1insert ICl (74L5832), IC2
(74HCT137) and IC3 (74HC30).

Should read:;

" Switch off power and insert ICl (74LS32) and IC2
(74HCT137).

MOD 1

If the Amstrad is subject to crashing during
initialisation

The ROMDIS PCB track between the cathode of D1 and the
I/0 expansion bus should be disconnected by cutting the
track at the point marked on figure 1 below. None of our
future expansion project will require this line and it 1is
advisable to carry the modification as a matter of course.

60-1

_] oy Owoomimg s CONTROLLER BUFFER ~ ‘o
e L_j 100u€ 100nE T k7 «
AT Tl
) 00F
{Sound 10V O 1 - ry +SV /el
N Ay —— - e e
H : 1 = 74 LS 32 Pine 7 4 F3 1 cr :
1C3 = 74 HC 30 Piee 7w Y [} ewr ov 00F
ot Foreur [k [ol E«
i-_—‘l oy a1 3 2 ICNS78 = MHC244 Pira 20 1019 o
: : 1 22 JJ_J* O romos
; A !) 1>t A
== I o
P FRO——t T D gt
f NOMEN O- H— 13T O rouEN
! IRl [L
!
i cs L I 11 Il 11 |
: 1 2 3 6 7
O
i e 1 CuT TRACK 0 c2
: Here
| +5V from S?NTROLLER PCB GDOSF
' PSU. PLIN
j 1 1c2 SWITCH
] “10M¥|0r
|
 Fic

