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C O N T E N T S

Texas Instruments’ 99/4A This home 
computer reveals a very high standard of 
construction, but uses some old technology

Alternative Translation Compilers and 
interpreters are two different ways of
converting Basic to machine code

Forging Ahead Piracy is a constant threat to 
software writers
Basic P rogram m ing

Another Dimension Continuing our course 
on programming we look at two- 
dimensional arrays for tables and charts

P assw ords To C om puting

Peek and Poke These two commands can be 
used on most home computers to go ‘beyond 
Basic’

Pioneers In Computing

Alan Turing A mathematical genius who did 
much work on the theory of computation
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Moving Pictures Animation has come a long ■jO'j 
way since the Zoetrope . u

Talking Back With the use of a speech 
synthesiser a computer can be programmed 
to respond verbally
Intricate Plot A printer is not usually 
adequate for graphics. Using pens a plotter 
produces high quality drawings
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Digital Doodles Graphical wizards will be INSIDE
interested in the ROBO 1000 for the Apple BACK 
II computer COVER

N e x t W e e k
The Sinclair 2X81, first 

mass-marketed micro and 
performing miracles on just 
four chips, can still be viewed 
as a triumph of design

Flight simulators for pilot 
training make heavy use of 
computers and cost thousands 
of pounds. Some of the work 
put into their development is 
now appearing in the form of 
sophisticated games for the 
micro

•  One way of sending data 
from your computer to another 
over the telephone is by 
means of an acoustic coupler. 
We explain how this device 
works
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Take the graphics on your computer, multiply the quality by a 
thousand, and you have a computer animation system
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The entire process of producing moving pictures, 
whether on film or for television, relies on the 
brain’s inability to ‘freeze’ an image. By presenting 
the eye with a rapid succession of images an 
impression of motion is created.

The first attempts at producing the illusion of 
movement in pictures involved piercing a drum 
with slots, pasting a strip of drawings around its 
inside, and spinning the drum. Looking through 
the slots, one sees a crude representation of one 
picture or ‘frame’ after another. The Zoetrope, as 
it was called, predates the science of photography, 
but naturally photographs soon replaced the 
drawings on the inside of the drum. The next 
stage, the motion picture, required relatively fast
acting photographic emulsions, capable of 
recording an image in less than one sixteenth of a 
second, since the early films were projected at 16 
frames per second.

S im u la t in g  M o v e m e n t
Strangely, it was quite some time before the film 
industry conceived the idea of hand-drawing each 
frame, photographing the drawings and then 
projecting the result to produce animated 
cartoons. Bearing in mind that each second’s 
viewing requires the creation of 24 separate 
drawings (the projection speed of modem film), it 
is clear that the production of even a five-minute 
film requires a tremendous amount of work — 
7,200 frames in this case. It is not surprising that 
the style of illustration is formalised — the most 
important requirement is precise repeatability. It 
wouldn’t do to have Bugs Bunny looking different 
from one second to the next!

Repetitive and precise tasks like these are 
readily performed by machines. When the 
computer takes over the job of animation — 
adjusting speed of movement, changing 
perspectives and geometry, lighting and shading, 
changes in volume, rhythm and pace — the artist is 
then free to concentrate on the quality of the 
image. At this point animation changes to being a 
true graphic art, where the artist’s time is spent in 
creating the image that the computer will cause to 
move.

In its simplest form, this process uses sprite 
graphics (see page 152) to create the ‘cast of 
characters’, which are then transferred onto the 
screen and moved about, producing the sort of 
animation used in simple video games. To create 
the illusion of change as well as movement (for

example, someone walking) it is necessary to 
repeatedly substitute one sprite for another. As we 
saw, the creation of sprites is a comparatively slow 
business, given the graphic quality of the results, 
and the image has to be nothing more than a very 
simple two-dimensional representation.

The next stage of animation requires the 
animator/ programmer to construct an algorithm
that introduces a feeling of depth into the image 
according to the rules of perspective. Objects can 
then be defined on the screen in terms of their X, Y

Frame By Frame
Conventional an im ation, like 
these fram es from  T h e  Pink 
Panther’, requires the artist to 
draw  each picture separately  
—  though com m on features  
need not be redraw n unless 
they change their appearance  
or position. Transparent film  
is used so that the entire  
im age can be m ade up from  a 
series of overlays. The artist 
will concentrate his attention  
on the key fram es of the 
sequence, leaving the 
intervening sections to be 
filled in by assistants known  
as ‘in -betw eeners ’. The 
finished draw ings are then 
photographed using a 
rostrum  cam era, in the order 
that they w ill be seen
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Magic Colouring Box
Until recently, the m ethod of 
originating artw ork for film  
and television stills and 
anim ated sequences followed  
closely that used for 
m agazines —  the design was 
executed on paper or 
transparent film , and then 
photographed. Q uantel’s 
Paint Box system , however, 
cuts out the use of paper 
com pletely, com posing the 
artwork digitally w ithin the 
com puter and then recording  
it directly onto videotape

and Z coordinates. At this point it is extremely 
useful if the program does not reproduce ‘hidden’ 
lines, and by this means introduces opacity into 
what has been, up to now, a ‘wire frame’ model or 
representation.

The next desirable refinement is for ‘curve 
smoothing’. A curved line is specified by only 
three points — both ends, and the point farthest 
away from the straight line between them. Of 
course, a complex curve (an ‘S’, for example) 
needs to be split up into its simple components in 
order for this procedure to work adequately, and 
it’s important to have some simple way of 
indicating to the machine that the line in question 
is a curve that requires smoothing, and not just a 
straight angled line.

Next comes the ability to introduce light and 
shade into the drawing. First of all it is necessary to 
specify the position of the light source. The part of 
the drawn object that lies facing the source will 
then be highlighted, and progressive shading 
added to help define the object’s shape.

Sophisticated software will allow the use of more 
than one light source and cope with the reflection 
of light off one object onto another.

Along with shading goes the use of colour. 
Even the simplest of home computers now offers 
eight or perhaps 16 colours, but professional 
quality graphics computers generally allow at least 
4,096. Some are limited simply by the number of 
binary digits in the computer’s ‘word’. If this is 24 
bits for example, the computer has some 16.7 
million colour options. The shading and colouring 
facilities are combined into one.

Let’s now look at the problem of simulating

movement. It is relatively easy to reduce 
movement to its individual components if we 
think of it as a problem in continuous solid 
geometry, even when the object represented is as 
complex as a human hand. The determining factor 
is the size and power of the computer that is being 
used. Bear in mind, however, that in order to 
produce a high-quality image, we will require a 
monitor capable of resolving something like 1,000 
X 1,200 pixels. Each one of these pixels will 
require at least one eight-bit byte to hold the 
information that defines its colour and brightness. 
That means more than a megabyte per screen. 
Generation of high-quality moving pictures is 
therefore not possible on home computers. 
Indeed, professional animators use some of the 
largest and most powerful computers in the world, 
and their fees reflect this, being upwards of £1,000 
per second of final film.

©  1983
digital productions

If we take as our starting point a simple object, 
like a cube, it is relatively easy to understand how 
we can cause it to move around the screen,
tumbling, perhaps, as it goes. A cube can be 
defined by the coordinates of the eight comers
alone, but exactly the same principle applies to 
more complex objects. The only difference is the 
amount of memory required to store all the 
coordinates and the processor power needed to 
be able to manipulate that information fast 
enough to generate ‘real time’ movement. In this 
application, like all others, there is the inevitable 
trade-off between quality and the amount of 
available space and power. The smaller the 
drawing unit one defines, the greater will be the
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storage requirements. But it is essential to work in 
the smallest possible detail to achieve a high 
quality of reproduction.

A domestic television set — with around 625 X 
1,000 pixels — is marginally more ‘coarse-grained’ 
than the high power monitor we spoke of earlier. 
So we can be confident that any work in this detail 
or better will look as realistic as an ordinary 
television picture. Even with available techniques 
we can create an accurate impression of reality by 
means of animated pictures.

In order to create the image in this sort of detail 
both sophisticated software and purpose-built or 
specially adapted hardware are needed. The most 
popular method uses a device known as a ‘bit-pad 
digitiser’, which is rather like a large drawing board

that contains a wire matrix. This mesh is used to 
sense the position of a stylus passed across it. The 
computer then displays the resulting line or point 
on the monitor screen. It is possible to trace from 
existing artwork, draw freehand, or use 
conventional drawing instruments, just as if one 
were working on paper. The image is digitised (its 
X-Y coordinates are worked out), written in 
memory and displayed by the computer. The 
character of the mark that appears on the screen 
can be defined by the user, just as one might 
choose to use a pencil, a pen or a brush. Likewise, 
the colour can be defined by calling up the palette 
— an array of colours at the bottom of the screen 
looking much like an oil-painter’s palette. If the 
colour one wishes to use is not standard, it can be 
mixed, exactly as one would when using paint. The 
stylus can also be used as an eraser, and ‘drawings’ 
can be laid over one another.

So, having created a single image, how does one

go about making it move? One method is simply 
to mechanise the conventional process, by using 
the computer system to file material, to colour 
frames and perhaps to show roughly made-up 
sequences. Even this approach will speed up the 
task, but clever programming techniques make it 
possible to do much more. Just as curves can be 
automatically smoothed, so can whole blocks of 
action be fabricated by specifying the first and last 
frames of a sequence. This process, known as 
‘tweening’, is performed in a conventional 
animation studio by an assistant known as an ‘in- 
betweener’. Indeed, most of the work of animation 
is performed by assistants, and it is these that the 
computer system replaces. We noted earlier that 
the introduction of computers into the animation 
process releases the artist to concentrate on the 
quality of the image. Most of the hand animator’s 
effort goes into creating the illusion of movement, 
but this task is precisely definable on a computer. 
Once the rules are stated, simply obeying them will 
produce the desired result — once again, a sure 
sign that the job is appropriate for 
computerisation.

Seeing Is Believing
Using the u ltra-fast processing  
pow er and huge storage  
capacity of m odern com puters it 
is possible to create on film  or 
on the TV screen an im age that 
is actually indistinguishable  
from  a photograph. Then, using 
program m ing techniques  
developed for statistical and 
num erical problem -solving, it is 
possible to m anipulate these 
created im ages in such a w ay as 
to m ake the view er believe them  
to be real

TRace ON
First of a new generation of 
feature film s that use these 
techniques of com puter- 
assisted im age generation was 
W alt Disney Productions'
T ro n '. Set partly in reality and 
partly inside a giant com puter, 
‘T ro n ’ uses a m ixture of 
com puter-an im ated  im agery  
and special effects photography  
to create a stunning realisation  
of a fantasy world
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S o ftw are

Computers ‘think’ in machine code; programmers prefer to write in a 
high level language such as Basic. Compilers and interpreters offer 
different methods of translation between them

When computers were first developed they didn’t 
have keyboards. Program instructions had to be 
entered one step at a time by setting each of eight 
switches to ‘up’ or ‘down’, to represent a single 
operation. These patterns of‘up’ and ‘down’ were 
examples of machine code.

It was logical to replace the switches by a 
typewriter keyboard, and replace the patterns of 
switch settings by real English words. The result 
was the ‘high-level’ language such as basic, 
replacing the low-level machine codes.

As processors, however, computers did not 
change, but continued to work on the original 
patterns of switches (and still do), so programmers 
had to develop programs written in the original 
low-level notation to translate these high-level 
programs into patterns that the processors could 
work on. These low-level programs came to be 
called interpreters or compilers, according to their 
method of translation.

In computing (as elsewhere), any gain in power 
or speed has to be paid for — in money, time or 
freedom of action. So it is with interpreters and 
compilers. Together they provide all the program 
translation facilities that a programmer needs. 
Interpreters are strong in some areas and 
compilers in others, but each pays for its 
advantages with compensating disadvantages.

Interpreters, usually built into the home 
computer, are the cheap way of translating high- 
level language programs into something a 
computer can understand. They don’t use up 
much memory — leaving more space for your 
programs.

Micros costing less than about £400 almost 
invariably feature a basic interpreter: you type in a 
basic program, type RUN, and either the program 
works, or it stops with an error message from the 
system — something like:

SYNTAX ERROR ON LINE 123

So you type LIST, find the error, correct it, type 
RUN, and it either works or stops again, and so on. 
Note that some of the more sophisticated basic 
interpreters actually check for syntax errors as 
each line is entered.

You may have done this sort of thing hundreds 
of times without having given a thought to the 
interpreter. Its chief virtue is precisely that it is an 
invisible device that allows you to work on your 
program without ever bothering about where it is 
in memory or how to execute it — the program is at

your fingertips, and you can RUN it, LIST it, or EDIT 
it immediately.

The interpreter is easy to use, but not very 
sophisticated: every time you type RUN, the 
interpreter has to find your b a s i c  program in 
memory and translate and execute it line by line. If 
your program contains this loop:

400 LET N=0
500 PRINT N
600 LET N=N+1
700 IF N<  100 THEN GOTO 500

the interpreter has to translate and execute lines 
500 to 700 a hundred times, as if it had never 
encountered them before.

Compilers are different. They’re expensive, 
difficult to write, and occupy and use a lot of 
memory. They are almost always disk-based 
software, so the user needs an expensive system.

What they offer is flexibility, power and speed; 
faced with the four lines of b a s i c  above, a compiler 
would translate them all once, then execute that 
code a hundred times.

This allows quite a saving in time -  but at a 
price. Suppose you have a b a s i c  compiler and you 
want to enter and run a b a s i c  program.

First you load and run the File Creation 
Program (called the Editor), which allows you to 
type in the program and save it to disk as a ‘source 
file’.

Files must be named so that you can find them 
once you’ve created them (just like files in a real 
filing cabinet), so the Editor asks you to name the 
source file. File names often consist of two parts: 
the first is a label, any name you choose -  say 
MYPR0G -  and the second part is usually a three- 
letter code indicating the nature of the file 
contents; this code is the ‘extension’. A b a s i c  file 
might have the code BAS as its extension. Your 
source file is now on disk under the name 
MYPR0G.BAS. Now, typing:

COMPILE MYPR0G.BAS
will cause the com puter to  LOAD and  RUN the  basic 
com piler on a basic source file called MYPR0G. 
BAS.

You wait a few seconds, depending on the 
length of your program while the compiler 
translates your program into an ‘object file’, which 
it saves on disk under the name MYPR0G.0BJ- the 
OBJ extension indicating that this is the object file, 
a machine code translation of a source file.
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Compiling A Program
W riting a com piled program  
is not nearly as sim ple as 
using the interpreter on your 
hom e computer. However, 
once you have the program  
working, it w ill execute m any  
tim es faster. This is the main 
flow  of events:

L

Type in your program in 
BASIC

Save yoy 
‘source „ 
disk

am  as a 
cassette or

Load ‘com piler’ program and 
nam e of your source file

Compil 
‘object 
yo ursourc  
code

es an 
ersion of 

e inm ach ine

If there have been errors in the 
program , these will be 
reported, and the source file 
m ust be re-edited

While the compiler translates your file, it checks 
it for syntax errors. If it finds any, then you’ll get a 
message like this:

100 REED X:IFX=3(N+2) LET P=Q 
1 2 3

FATAL ERROR:-
1) //REED// UNRECOGNISED COMMAND
2) //(//ILLEGAL OPERATOR HERE
3) ??‘THEN’ OR ‘GOTO’ EXPECTED HERE

You get this kind of message for every line that 
contains an error. In other words, the error 
reporting is far more comprehensive than on a 
b a s i c  interpreter. Now you must load and run the 
Editor again, recall the source file from disk, make 
the changes and try to compile again. If there are 
no more errors you can type:

RUN MYPROG

and it either works as you expect or it doesn’t. 
There are no syntax errors at this stage, because 
you’ve corrected them, but you might still want to 
change the program anyway, in which case you 
load and run the Editor, change the source file, 
recompile it...and so on.

The virtues of a compiler are not obvious in the 
program development stage, though informative 
error reporting is valuable. Compilers start to earn 
their keep after you’ve got a working program and 
typed RUN, which is precisely where interpreters 
start to let you down.

Compiled programs are fast — anything from 
five to 50 times faster than interpreted programs, 
depending on the efficiency of the compiler, but 
the compiled program’s speed *of execution is 
bought at the expense of its speed of program 
development.

Comparing compilers and interpreters by 
contrasting typical sequences of user commands 
like those above is unfair on compilers, since they 
are written mostly for more powerful, less 
specialised machines, the users of which might 
want to write and run programs in many different 
programming languages.

C o b o l  (for writing commercial data processing 
programs to handle accounts, payroll and 
inventory), for example, was invented with 
compilation in mind, whereas b a s i c  really 
demands an interpreter. If you’re going to 
compare a Jensen with a Jeep, you ought to do so 
on both ploughed fields and metalled roads.

Once you’ve developed and compiled a 
program, you don’t need the source file except for 
reference. So the source program can be fully 
commented on and written with readability in 
mind, while the object file may be a much smaller 
file, occupying less space on disk and memory.

The fact that the object files created by a 
compiler consist of unreadable machine code, 
can, surprisingly, be an advantage. If you’re 
marketing software you don’t sell the source file 
but only the object file, which makes it much 
harder to pirate, copy or alter.
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Slow
In an Adventure-style game  
speed is not critical, and most 
of the program  consists of 
m anipulating strings of text. 
Therefore it is w ritten in 
BASIC and interpreted as it 
runs on the com puter

Faster
M any business program s  
(particularly spreadsheets) 
are difficult to write in 
machine code because they 
involve a lot of m athem atics. 
However, an interpreted  
language would be too slow, 
so they are often written in 
BASIC and then compiled

Fastest
For fast action arcade-style  
gam es, which involve the 
m anipulation of graphics, 
even a com piled program  
would not be nearly fast 
enough. Such packages have 
to be written directly in 
m achine code — a slow and 
painful task
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it used to be pure science fiction. Now with a speech synthesiser
your computer really can talk to you. And it needn’t sound like a
Dalek, either

While the science of speech recognition has yet to 
be fully developed, the generation of electronic 
speech has been mastered. Until recently, 
however, the computing power and memory 
capacity needed to produce human-like 
utterances were substantial. Now, with the aid of a
suitable add-on, almost every home computer and 
electronic toy is capable of talking back. The rapid 
advances in technology and the fall in the cost of 
computer components have made the talking
computer commonplace.

When people talk, sounds of three distinctly 
different types are produced. The first is ‘voiced’ 

1 or vowel-type sound — oo, ar, ee and so on. These

rrrrrr:n~

u:4-

I

The Flow Of Sound
Speech can be digitised and 
stored in memory, either RAM 
or ROM. Electrical output from  
a microphone is passed 
through an analogue-to-digital 
convertor. The output from  this 
chip is a digital pattern of 1s 
and Os. The speech can be 
recreated using a digital-to- 
analogue convertor, an 
amplifier, and a loudspeaker

,-U.
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are produced by the vibration of the vocal chords 
in the throat, the frequency of this vibration 
determining the vowel sound. The second is the 
‘fricative’ or unvoiced sound, such as ss, sh, /and 
ff. Here air from the lungs bypasses the vocal 
cords and the frequency of the sound is
controlled by the positioning of the lips and 
tongue. The third ‘sound’ is silence or — to be 
more precise — the gaps occurring within words 
like six, eight and so on. You may not realise that 
there are gaps in these words, but if you try to 
pronounce them slowly you will realise that it is 
impossible to run smoothly from the sound of i
mto x.

B u ild in g  B lo c k s  O f S o u n d

There are two ways of generating speech-like 
sounds electronically. The first, until recently the 
most common, is that of synthesis by rule. By 
analysing the frequencies contained within speech 
it is possible to devise a system of rules that allows 
us to create any given sound from its components. 
For example, the word ‘too’ could be defined as so 
many milliseconds of the mixture of frequencies 
that make up the sound /, followed immediately by 
the 0 0  frequencies.

These individual building blocks are called 
‘phonemes’ and by using them in various 
combinations any word can be constructed. The 
individual characteristics of a human speaker tend 
to be lost when speech is generated in this way, but 
the words can be recognised and understood. 
Because the rules for generating the phonemes are 
built into the equipment itself, the user is able to 
enter a list of the phonemes into the system. These 
are reproduced through a small speaker. With a 
little practice it is possible to generate complete 
sentences instantly by calling up sequences of 
phonemes, which can usually be stored in b a s i c

strings.
The second method of speech synthesis relies

i

i i 1 *k i
t  \

Speech Microphone
i

A

A-to-D Digital 
Convertor Signal
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on the human ear and brain to fill in gaps. For 
example, the range of frequencies that can be 
transmitted over a telephone line gives only one- 
fifth the quality we would expect from a 
reasonable hi-fi system, yet the speech we hear 
through the ear-piece is perfectly understandable. 
This is because our brain fills in the gaps.

The second method of synthesis, called 
‘digitised speech’, uses the same phenomenon. 
With the reduction in cost of computer memory it 
is now possible to convert speech into digital 
information by means of an analogue-to-digital 
converter. The resulting data is then compressed 
many hundreds of times and stored in a ROM — 
thereby creating the gaps which your ear can 
compensate for.

To cause any of the stored words to be spoken 
we simply give the computer the address of that 
word in the ROM, and the digital information is 
recovered and converted back into sound. 
Because the original speaker’s words are stored, 
the personal characteristics remain. Acorn’s 
speech chips for the BBC Micro, for example, can 
be clearly identified as the voice of newscaster 
Kenneth Kendall.

Some computers, notably the Sirius 1, feature 
built in hardware and disk-based software to allow 
the user to digitise his own voice using a 
microphone. The resulting data is stored on disk 
— one second of speech occupies about one 
Kbyte — to be recalled from an applications 
program as verbal messages and warnings.

The uses for speech synthesisers are so many 
and varied that it is almost impossible to list them. 
To start with, speech synthesis can replace taped 
announcements at railway stations, airports and
other terminals. In the USA it is widely used on the 
telephone system to inform callers of wrongly 
dialled numbers, engaged numbers or withdrawn 
services. Many automated ordering systems now 
feature speech response. An order number is 
keyed in to a computer, which speaks the 
description as a double-check. The computer can 
also inform the customer of the current stock level 
or the likely waiting period so that the order may 
be modified at the time it is placed.

Speech synthesis units are now incorporated 
into cars — the BL Maestro, for example — as part 
of the standard instrumentation. More than a 
mere sales ploy, the synthesiser provides warnings 
that the driver can hear and act on without having 
to take his eyes off the road.

In the home computer and electronic games 
market speech synthesis is used to enhance games: 
scores are called out and warnings of enemy attack 
can be given verbally, leaving the player free to 
concentrate on the tactics of the game rather than 
having to consult messages printed at the bottom 
of the screen.

Finally, there are educational devices such as 
Texas Instruments’ Speak’n’Spell, which recites a 
word that must then be spelt correctly, and foreign 
language dictionaries that speak the words as they 
are displayed.
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F ig u re s  O f S p e e c h
If we take a short and fam iliar English sentence 

‘The cat sat on the m a t’

it is possible to break it down into a series of phonem es, as 
follows:

T H E E / K A A T / S A A T / O H N / T H E E / M A A H T

Different chips require that phrases are broken down and 
specified in different ways. For the sam e sentence, another chip 
m ight require the following phonemes:

T H V E / K A T / S A T / U H 3 N / T H V E /  MAT

The Votrax chip, for exam ple, contains som e 60 phonem es and 
rules for using them , which can be directly accessed by a sim ple  
num ber. To make the system m ore usable, a set of program s is 
provided that allows the user to type in the utterance required in 
the form  of the phonem es it contains, as in the exam ple above. 
However, w ith devices such as the Braid Speech Synthesiser or 
V otrax’s own Personal Speech System , which incudes a 
dedicated m icroprocessor and som e sophisticated software, the 
user can type in the plain English text and get the spoken 
equivalent back
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9 Passw ords To C om puting

A

These two commands are used whenever you want to program 
something that Basic can’t cope with, but every machine uses them 
differently

***** - <V*

POKEing
The POKE statem ent needs to be 
used with care as it changes the 
contents of m em ory locations  
and this could affect the running  
of the computer. No dam age can 
be caused by this, but it could 
mean the loss of a program .
Here are a few  ‘safe’ POKE 
statem ents for you to try.

On the Atari 400  or 800 , 
POKEing a 1 into location 751 
will turn the screen cursor off; 
try POKE 751,1.

On the Com m odore 64 , try  
POKE 1024 ,1 .1024  is the 
address of the first screen 
location.

On the S inclair Spectrum , 
try:

100 FOR N = 0 T O  6 STEP 2
110 POKE U S R “A" +  

N.BIN01010101
120 POKE U S R “A" + N + 

1.BIN10101010
130 NEXT N
140 P R IN T “AAAAAAAA”

The As in line 140 m ust be typed  
in the graphics m ode. Running  
the program  will produce a line 
of m iniature checkerboard  
sym bols. However, it should 
also result in som e interesting  
interference patterns on your TV 
set

PEEK and POKE are two ‘statements’ from the basic 32 
language used in more advanced programming 
when individual bits and bytes need to be 
manipulated in memory. The PEEK statement is 
used to examine (peek at) the contents of a 
specific address (location) in memory, and POKE 
is used to store a number (ranging from 0 to 255) 
in a specific memory location.

PEEK and POKE statements allow the basic 
programmer to gain access to the inner workings 
of the computer in a way that is not otherwise 
possible. Normally, the built-in basic in your 
computer takes care of the actual locations where 
such things as variables and the data defining the 
characters to be displayed on the screen are 
stored. Although we do not usually worry about 
where such things are in the memory, 
occasionally we need to find out. The PEEK 
statement allows us to do this.

A short program to examine any memory 
location can easily be written:

10 REM LOOKING AT MEMORY LOCATIONS 
20 PRINT “ENTER MEMORY LOCATION IN 

DECIMAL”
30 INPUT M 
40 P = PEEK(M)
50 PRINT “CONTENTS OF LOCATION ”;M;“ ARE ”;P 
60 GOTO 20 
70 END

• Y ’ “ — ” - V - “ — ” • > A , “  , I  , “  ,

Kbytes requires 32767, and 48 Kbytes 
requires 49151. A full listing of this program is:

10 REM PEEKING AND PRINTING ALL MEMORY 
LOCATIONS 

20 FOR X=0 TO 65535 
30 LET Y=PEEK(X)
40 PRINT “LOCATION 
50 PRINT CHR$(Y)
60 FOR D=1 TO 200 
70 NEXT D 
80 NEXT X 
90 END

Although the CHR$ function converts decimal 
numbers into their character equivalents, 
printable characters are represented by the 
numbers 32 to 127. Most computers use the 
numbers between 128 and 255 (the largest 
number representable in a single byte) for special 
graphics characters. Many of the numbers 
between 0 and 31 have special screen control 
functions. When these are encountered in 
memory as the program is run, they will be 
converted by CHR$ into curious screen effects. 
These may make the screen go blank, for 
example, or cause the cursor to move to the top 
left-hand comer of the screen.

The POKE statement is essentially the opposite 
of PEEK. It allows you to ‘write’ a byte of data (any 
number between 0 and 255) into any memory

This will print the contents of the specified 
address expressed as a decimal number. (In fact, 
of course, the computer stores it in binary.) If you 
would like to see what the contents are equivalent 
to in terms of ‘printable’ characters, basic 
includes a function to convert decimal numbers 
into their character equivalents. This is the CHR$ 
function and changing line 50 will print character 
equivalents of the memory locations instead:

location. POKE must be used with care: if you 
POKE a number into the wrong part of memory 
you could ‘crash’ the computer by corrupting part 
of an essential program. The only way to recover 
from this is to reset the computer (switching it off 
and then on, unless it has a reset button), and this 
risks destroying one of your programs. Before 
using POKE, therefore, check the manual to find 
an area in the memory map designated a ‘user

50 PRINT “CONTENTS OF LOCATION ”;M;“ ARE 
CHR$(P)

To examine the whole of memory, a FOR...NEXT 
loop can be added by deleting line 30, changing 
line 20 to FOR X = 0 TO 65535 and replacing line 60 
with NEXT X.

To give enough time to see each character as it 
is printed, you may need to add a delay loop after 
the PRINT statement and before the NEXT X 
statement. Note also that the upper limit of the 
FOR...NEXT loop assumes you have a 64 Kbyte 
memory. This number can be changed for smaller 
memories: 16 Kbytes requires 16383 in decimal,

area’.
Most home computers make the video 

memory (the memory used for storing the 
characters to be displayed on the screen) 
available to the user. Normally, the computer gets 
the shape of the characters to be displayed from a 
special ROM called a character generator, which 
stores the patterns of dots for each character. But 
it is usually also possible to use RAM as well. 
When the pattern codes for characters are stored 
in RAM, new patterns, specified as decimal 
numbers, can be POKEd to the appropriate RAM 
location and used to define completely new 
displayable characters.
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Texas Instruments’ home computer is a Mercedes among 
Volkswagens -  it has a high standard of construction, but the 
add-ons are expensive

In terms of design and construction, Texas 
Instruments’ TI99/4A is one of the most 
professional of home computers. TI’s withdrawal 
from the home computer market was a blow to 
hobbyists, but the machine is still being sold, and 
devotees regard it as still worth the trouble of 
seeking out.

It uses a 16-bit microprocessor, the TMS9900, 
designed and made by Texas Instruments, who 
make semiconductors, calculators, micro
processors and minicomputers. The TMS9900 
was one of the first 16-bit chips but it failed to gain 
widespread popularity.

The TI99/4A has a 48-key keyboard, which by 
the general standards of home computer 
keyboards is very good to type on. There is a space 
to the right of it that receives the software 
cartridges, which Texas refer to as ‘solid state 
software’. A similar connector on the right-hand 
edge of the case permits hardware expansion. The 
expansion modules, which are large plastic boxes, 
contain disk drive controllers, memory expansion

and a serial (RS232) interface and are connected 
via an expansion box, a unit which is essential if 
you wish to extend the machine.

The screen display is in 16 colours with high- 
resolution graphics, and there is also a sound 
generator capable of producing three 
independent notes or ‘voices’ at once. However, 
the lack of good documentation makes writing 
machine code programs to use the graphics and 
sound facilities fairly hard to learn.

Almost every hardware add-on costs £90 or 
more and there are virtually no peripherals made 
by suppliers other than Texas.

The computer is designed for new users to 
computing, b a s i c  being the resident language and 
l o g o  the most popular add-on language. In 
America it has been widely used in schools, and 
once competed with the Apple II for the position 
of top-selling educational micro.

When it is switched on, a menu is displayed on 
the screen offering the user a number of choices. If 
a software cartridge is plugged into the computer

TI99/4A Keyboard
The keyboard is of a higher 
standard than on m ost hom e  
com puters, though som e users 
have com m ented that the 
‘bounce’ on each key is too stiff. 
The num ber of keys is also 
rather lim ited, presum ably to 
m ake room  for the cartridge slot 
on the right-hand side. M ost of 
the keys, therefore, double up 
—  pressing ‘C TR L’ and ‘E’ will 
achieve the cursor-up function. 
The ‘FCTN’ key turns the top 
row into user-definable keys, 
and it is possible to insert a strip  
of plastic above th is row, on 
which labels can be written
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the user is presented with the option of running the 
new software or of running basic. The built-in 
basic is limited in its abilities, but an ‘extended’ 
basic cartridge is available, which brings the 
facilities up to and beyond Microsoft standard, 
giving formatted print commands (see page 53), 
sprite graphics and the ability to operate a speech 
synthesiser. The synthesiser costs £34.95 but 
needs either the extended basic or the Speech 
Editor cartridge to operate it.

The TI99/4 A has many hardware and software 
extensions. Every sort of peripheral is available 
and many programming languages can be 
purchased. But although the basic computer is 
cheap, most of the extras are expensive. 
Nevertheless, the overall system is easy for novices 
to use, and its robust construction makes it 
popular with children.

The Joystick
Texas Instrum ents’ joysticks (they call them  'W ired Controllers’) 
com e as a pair of units, w ired together onto one plug for 
connection w ith the com puter. Inside each device are four 
switches, which are not unlike the connectors underneath some 
keyboards _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

k

rV

Peripheral Expansion Box
This case contains a power supply, connections and space to 
contain all the m odules for m em ory expansion, disks and printer 
interfaces. These modules are large plastic cases that contain  
circuit cards with an edge connector at the base, a ‘pow er o n ’ 
light at the front and any cables com ing out of the back. There 
are eight ‘s lots’ in the box. The left-hand one has to contain the 
m odule that connects the expansion box to the com puter and th e  
right-hand slot has to be for the disk drive electronics m odule. 
This leaves six slots for m em ory and serial port expansion. Only 
one extra 32 Kbyte m em ory m odule can be added, which gives 
52 Kbyte m axim um  RAM. The serial interface m odule allows  
serial devices, such as printers and m odem s that use the R S232  
form at, to be connected to the T I9 9 /4 A

T I9 9 /4 A  enthusiasts can keep 
in touch through ‘T l U ser’, 
c/o  Galaxy Video, 60  High St, 
M aidstone, Kent ME14 1SR

* '  X / X  S  / . v ,

Video Connection
This connector provides the 
basic signals for generating PAL 
(UK and Europe) and NTSC 
(Am erican) television signals

RAM
The m achine com es with 16  
Kbytes RAM as standard, which  
can be expanded externally

Joystick Connectors
This single m ultip le pin 
connector can cope w ith twin  
joysticks m ade by Texas 
them selves

Discrete Components
Another feature of com puters  
such as this, which were 
designed som e years ago 
large num ber of discrete 
com ponents, such as 
transistors and resistors, 
one chip can replace dozens of 
these

o

ROM
The onboard ROM can be 
supplem ented by m eans of 
plug-in cartridges. For exam ple, 
extended BASIC will enhance 
the range of com m ands  
available

On-Off Switch
This incorporates an LED 
pow er-on indicator
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Cassette Port
The T I9 9 /4 A  can w ork with two  
dom estic cassette recorders, 
and can control the m otor of 
one of them . This m eans it can 
cope w ith crude business 
program s, which require the 
copying of data from  one deck 
to another

CPU
T h e T M S 9 9 0 0  is an early 
processor, which is w hy it is 
physically large. All the address  
and data lines as well as control 
lines have separate 
connections. M ore modern  
processors share functions of 
pins and so reduce te e to ta l 
num ber on the chip. Unlike 
other hom e com puters this is a 
16 -b it m icroprocessor

Peripheral Port
This is just a PCB edge 
connector that other units link 
up w ith. Texas call it their CRU 
(Com m unications Register 
Unit) interface. Before the 
general-purpose expansion unit 
was introduced, individual 
peripherals were plugged into 
each other in a long line. This is 
called ‘p iggy-backing ’

ROM Pack Connector
ROM packs, which Texas call 
‘Solid state com m and m odules’ 
plug in here. The m echanism  is 
considerably m ore robust than 
on m ost m achines

Scratchpad Memory
The chips m arked 6 8 1 0  are 
special scratchpad m em ory  
essential to the operation of the 
9 9 0 0 . This m icroprocessor is 
different from  all other 
m icroprocessors in having no 
internal m em ory locations  
(registers) and so needs to use 
som e external m em ory. This 
scratchpad m em ory is not 
accessible to norm al program s

T I9 9 /4  A
PRICE
Obtainable from  about £60

l

SIZE
380x260x70 mm

WEIGHT
1.8 Kg (4lbs)

CLOCKSPEED
1MHz

MEMORY
26 Kbytes ROM, 16K user RAM, 
8K graphics RAM. There are an 
extra 256 bytes of ‘scra tchpad ’ 
RAM not norm ally  available to 
the user. These are used fo r the 
internal registers of the 9900, most 
CPUs have them built in

VIDEO DISPLAY
Character d isp lay of 24 rows of 
32 colum ns. There are 16 
co lours w hich can be used as 
foreground and background 
colours. No user graphics are 
available on the basic machine 
but ind iv idual 8 x 8  character 
cells can be defined w ith  a 
sequence of 16 characters

INTERFACES
Cassette, joystick , video (not 
TV), a cartridge s lo t and a 
connector fo r the expansion bus

LANGUAGES SUPPLIED
BASIC

OTHER LANGUAGES
Extended BASIC, Tl LOGO, 
UCSD(University of California at 
San Diego) PASCAL, Tl FORTH, 
and Assembler

COMES WITH
Power supply adaptor, TV 
adaptor, cassette connector and 
manuals

KEYBOARD
Typew riter-sty le  w ith  48 moving 
keys, includ ing contro l and 
function keys. The num eric keys 
double as function keys, 
depending on the added software 
cartridges

DOCUMENTATION
There is one main manual w ith 
an addendum fo rth e  UK market, 
w hich describes how to connect 
up the com puter and how to use 
the ‘solid state command 
m odu les ’ . This in troduction  is 
very short and has many 
d iagram s but no photographs. 
There is a detailed lis t of 
com m ands available in the 
BASIC, a section giving some 
example program s, and a short 
g lossary at the end of the 
manual
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Piracy is the thorn in the flesh of the software industry. That’s why 
suppliers go to such lengths to protect their programs

Slave Driver
Softw are cassettes, like music 
cassettes, are duplicated using 
a high-speed tape copier. This 
consists of a m aster deck, into 
which the original is placed, and 
a num ber of slave units which 
m ake recordings  
sim ultaneously. Copying both 
sides of a program  cassette  
takes a m atter of seconds.
Disks have to be copied  
individually using norm al disk 
drives

A Hundred To One
Just as it is technically illegal to 
make copies of other people’s 
m usic cassettes, copying of 
program s represents software 
piracy. Unfortunately for the 
suppliers, piracy is not only 
difficult to prevent, but equally 
difficult to detect and prosecute. 
Som e suppliers claim  that for 
every copy of their programs 
bought legitim ately a hundred 
illegal copies are made

Software piracy can be defined, simply, as the 
unauthorised copying of programs. In common 
with the music business, which the software 
industry is starting to mirror, piracy happens in 
different ways and at different levels. At the 
lowest level, piracy is committed every time a 
home computer user makes a copy of a program 
that has been borrowed from a friend. Even the 
fact that some programs (especially those written 
in machine code) can’t be SAVEd using the normal 
basic commands provides little deterrent, 
because it is always possible to link two cassette 
recorders together and copy the program from 
one to the other — without the need for a 
computer at all.

Some games suppliers claim that for every 
copy of a title they sell, up to 100 illegal copies are 
made. Though it might be argued that some of 
them can well afford the loss, it must also be 
remembered that there are a good many people 
who earn their living from program royalties and 
who don’t drive around in Rolls Royces!

There has been a great deal of controversy 
concerning dealers who offer software on loan, 
rent, or the try-before-you-buy schemes — since 
they make it easier for those who copy programs. 
Less scrupulous dealers will take this a stage 
further, and give away pirated copies of popular 
titles to someone buying a home computer to 
increase its effective value.
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There distributorare even cases of a 
reproducing programs in quantity and selling 
them to other dealers — not as risky as it sounds if 
the package’s suppliers are in another country. 
These products are therefore equivalent to 
‘bootleg’ copies of well-known rock albums.

Hereafter, the piracy becomes more 
sophisticated and more difficult to pin down. 
Someone takes an existing program, for example, 
makes some modifications to it and markets it as 
his own. The new version may offer a substantial 
improvement in performance or additional 
facilities, or may simply feature a change to the 
‘credits’ displayed when the program is first run, 
and the layout of information on the screen, in 
order that the package isn’t immediately 
recognisable. This practice is more common with 
business programs than games.

Whether this process of modification is 
software piracy in the same sense as pure copying 
is arguable, which is why so many people get 
away with it. Software publishers receive little 
protection from the law and the existing laws of 
copyright do not protect programs from piracy or 
modification. Copyright, it seems, applies only to 
printed material (with special exceptions for 
music) and therefore computer programs that are 
stored only in RAM or on cassette are not 
covered. As with most legal matters, precedents 
have to be established and they take time and 
money.

The most woolly area is where a company take 
an idea from a popular program, and reproduce 
their own version of it. Note that they aren’t 
copying any of the program code, they are merely 
taking accurate note of how the game appears on 
the screen and reacts to the user’s input, and then 
writing a program from scratch to achieve the 
same effect. The most noteworthy example of this 
lias been PacMan — the arcade game that started 
out on coin-operated machines, was made 
available on Atari’s own home computers and 
Video Cartridge System, and subsequently 
appeared in different variations from a score of 
software publishers. Each looked slightly 
different, but each featured the familiar little 
creature gobbling his way around the maze. Over 
a period of months Atari successfully managed to 
eliminate most of these competitors, either by 
court action or, in the case of smaller operations, 
simply with the threat of court action.

Generally, software authors and suppliers have 
to resort to means outside the legal system to 
protect their program code and royalties. Some 
suppliers take the laudable view that if they sell 
their products cheaply enough, there is less 
incentive for people to copy. On more 
sophisticated programs, a well-produced manual 
and attractive packaging afford some degree of 
protection.

‘User-registration’ is one means by which more 
expensive business software is protected: unless 
you have returned the card from the owner’s 
manual, you won’t be able to obtain help and

support on the telephone.
So-called ‘hard’ methods of protection usually 

involve a matchbox-sized device, called a 
‘dongle’, which must be plugged into one of the 
computer’s interface ports in order for the 
program to run. The dongle’s circuitry 
incorporates a short electronic code, usually a 
pattern of ones and zeros burnt into a ROM. At 
frequent intervals the applications program 
addresses the dongle; if it doesn’t receive the 
correct code back it will refuse to continue. The 
code may well be individual to each dongle, 
which means that each copy of the package must 
be matched to the dongle it will be sold with. The 
only way to make illegal copies is by forging the 
dongle, or re-writing the program code to remove 
the sections that refer to the dongle — by no 
means impossible, but well beyond the capability 
of most home programmers.

A lot of research has been put into methods of 
achieving the same protection, without additional 
hardware. The idea, aptly known as ‘water
marking’, is to have a magnetic code 
superimposed on the cassette or disk ‘behind’ the 
recording of the program itself, which will not 
transfer to a copy, so the program won’t run on 
any disk or cassette other than the original.

The only economically viable ‘hard’ protection 
for the games suppliers is the ROM cartridge, 
which generally commands higher prices because 
it avoids the long loading times of cassettes. 
Nevertheless, even the cartridge is not 
impregnable — devices now exist which can copy 
a cartridge either onto a cassette, or onto a new 
kind of cartridge that can be programmed or re
programmed by the user.

Software piracy is a cops-and-robbers style 
battle with the protagonists constantly trying to 
leapfrog each other in ingenuity. It is unlikely ever 
to be eliminated; at best it can be made 
sufficiently costly to be only a marginal activity.

Dongles
These are small hardware  
devices used to protect certain  
program s against illicit copying  
Such program s will not run 
unless the correct dongle is 
plugged into one of the. 
com puter's interfaces. The 
electronics inside are usually 
encased in solid resin, so it's 
very difficult to interfere with  
them
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Basic P rogram m ing

One-dimensional arrays, as we have seen, store a collection of data 
that have something in common. Two-dimensional arrays are used 
for tables and charts

So far we have considered two types of variables, 
simple variables and subscripted variables. Simple 
variables are like memory locations where 
numbers (or character strings) can be stored and 
manipulated by referring to the variable ‘label’. 
Simple variables can store just one value or string 
and have ‘simple’ variable names — N, B2, X, Y3 
are examples. Subscripted variables, sometimes 
called one-dimensional arrays, can store a whole 
list of values or strings. The number of values or 
strings that can be held is specified at the 
beginning of the program using the DIM statement. 
For example, DIM A(16) establishes that the array 
labelled A can contain 16 separate values. It should 
be noted, however, that many basics accept A(0) as 
the first element, so that DIM A(16) actually defines 
17 elements. These ‘locations’ are referred to by 
using the appropriate subscript. PRINT A(1) will 
print the first element in the array; LET B = A(12) 
assigns the value in the 12th element in the array to 
variable B; LET A(3) = A(5) assigns the value of the 
fifth element to the third element.

Sometimes, however, we need to be able to 
manipulate data that is best presented as tables. 
Note how closely this resembles a spreadsheet (see 
page 158). Such data could range from tables of 
football results to a breakdown of sales by item 
and department in a store. As an example of a 
typical table of data, consider this breakdown of 
household expenditure over a one year period:

RENT PHONE ELECTR. FOOD CAR

JAN 260 .00 25 .10 4 1 .5 0 161 .30 5 0 .5 5
FEB 26 0 .0 0 35 .40 4 3 .7 5 145 .90 4 6 .2 0
MAR 260 .00 2 9 .0 5 50 .70 151 .20 4 3 .4 0
APR 26 0 .0 0 26 .20 4 4 .6 0 155 .30 4 9 .2 0
MAY 26 0 .0 0 19.30 3 9 .8 0 150 .95 4 8 .3 0
JUN 26 0 .0 0 2 0 .4 5 3 2 .6 0 14 7 .6 5 5 2 .3 0
JUL 26 0 .0 0 30 .50 2 6 .1 0 150 .35 58 .40
AUG 260 .00 2 9 .5 0 2 2 .4 0 148 .05 6 1 .2 0
SEP 26 0 .0 0 2 8 .2 5 2 4 .4 5 14 8 .6 0 5 9 .4 5
OCT 26 0 .0 0 31 .15 3 4 .5 0 154 .90 2 3 .5 0
NOV 26 0 .0 0 31 .05 3 9 .5 0 160 .05 4 5 .9 5
DEC 260 .00 2 8 .9 5 4 2 .2 0 21 0 .6 0 51 .25

Arranging the information in this way allows it to 
be manipulated in a number of ways relatively 
simply. It is easy, for example, to find the total 
expenditure in March by simply adding up all the 
figures in the row for March. It is just as easy to find 
the total expenditure for the year on the telephone 
or the car by adding up the vertical columns. 
Similarly, it is easy to find monthly or yearly 
averages. This table is called a two-dimensional 
array. It has 12 rows and five columns.

Two-dimensional arrays such as this can also be

represented in basic in much the same way as 
single-dimension arrays. The difference is that the 
variable now needs two subscripts to reference 
any location.

If we were writing a basic program using this 
table of information, the simplest thing would be 
to treat the whole table as a single two- 
dimensional array. Just as with ordinary 
subscripted arrays, we give it a variable name. 
Let’s call it A (for ‘Array’). Again, as with ordinary 
subscripted arrays, it will need to be DIMensioned. 
As there are 12 rows and five columns, it is 
dimensioned thus: DIM A(12,5). The order in which 
the two subscripts are put is important; the 
convention is that rows are specified first and 
columns second. Our table above has 12 rows 
(one for each month) and five columns (one for 
each of the five categories of expenditure), it is 
therefore a 12-by-5 array.

The DIM statement serves two essential 
functions. It sets aside enough memory locations 
in the computer’s memory for the array, and it 
allows each of the locations to be specified by the 
variable name followed, in brackets, by the row 
and column positions. The DIM statement DIM 
X(3,5), for example, would create a variable X able 
to represent an array with three rows and five 
columns.

Look at the table and assume that the 
information has been entered as the elements in a 
two-dimensional array labelled A. Find the values 
present in A(1,1), A(1,5), A(2,1), A(3,3) and A(12,3).

It is possible to enter a table of information as an 
array in part of a program by using LET statements, 
for example.

30 LET A(1,2) = 25.1
40 LET A(1,3)= 41.5
50 LET A(1,4) = 161.30

610 LET A(12,5) = 51.25
But this is clearly a laborious way of doing things. 
A far simpler method is to use either READ and 
DATA statements or the INPUT statement with 
nested FO R... N EXT loops. Let’s see how it could be 
done using the READ statement:

10 DIM A(12,5)
20 FOR R = 1 TO 12 
30 FOR C = 1 TO 5 
40 READ A(R,C) - 
50 NEXTC 
60 NEXT R
70 DATA 260, 25.1,41.5,161.3, 50.55, 260, 35.4,
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43.75
80 DATA 145.9, 46.2, 260, 29.05, 50.7,151.2, 43.4, 

260
90 DATA 26.2, 44.6,155.3, 49.2, 260, 19.3, 39.8,

150.95
100 DATA 48.3, 260, 20.45, 32.6, 147.65, 52.3,

260, 30.5
110 DATA 26.10, 150.35, 58.4, 260, 29.5, 22.4, 

148.05,61.2, 260
120 DATA 28.25, 24.45, 148.6, 59.45, 260, 31.15, 

34.5
130 DATA 154.9, 23.5, 260, 31.05, 39.5, 160.05,

45.95
140 DATA 260, 28.95, 42.2, 210.6, 51.25
150 END

There are a number of important points to note 
about this program. The first is that the DIM 
statement is right at the beginning of the program. 
A DIM statement should be executed only once in a 
program and so it is usual to place it near the 
beginning or before any loops are executed. The 
second point to note is that there are two 
FOR...NEXT loops, one to set the ‘row’ part of the 
subscript and one to set the ‘column’. These two 
loops do not follow one after the other; they are 
‘nested’ one inside the other. Notice the limits 
chosen. FOR R = 1 T012 will increment the value for 
the row from one to 12; FOR C = 1 TO 5 will 
increment the value for the column from one to 
five.

Right in the middle of the nested loop is the 
READ statement. The crucial part of the program
is:

20 FOR R = 1 TO 12
30 FOR C = 1 TO 5
40 READ A(R,C)
50 NEXTC
60 NEXTR

The first time through, after lines 20 and 30 have 
been executed, the values of R and C will both be 
one, so line 40 will be equivalent to READ A(1,1). 
The first item of data in the DATA statement is 260, 
so this value will be assigned to the first row and 
the first column of the array. The choice of eight 
elements to each DATA statement is purely 
arbitrary.

After that has happened, the NEXT C statement 
sends the program back to line 30 and the value of 
C is incremented to two. Line 40 is now equivalent 
to READ A(1,2) and the next item of data, 25.1, will 
be assigned to the first row and the second column 
of the array. This process is repeated until C has 
been incremented to 5. After that, the NEXT R 
statement in line 60 returns the program to line 20 
and R is incremented to two. Line 30 will set C to 
one again and so now line 40 will be equivalent to 
READ A(2,1).

Nesting loops in this way is very useful, but care 
is needed. Each loop must be nested completely 
within another loop and the order of the NEXT 
statements must be carefully observed. Notice 
how the first loop, FOR R, has the second NEXT 
statement. When there are two loops, one nested

inside the other, the first loop is called the outer 
loop and the second is called the inner loop. The 
whole of the inner loop will always be completed 
before the index of the outer loop is incremented. 
It is possible to nest loops to as many ‘depths’ as 
required by the program, but such programs can 
become complex and difficult to follow and 
debug. It is bad programming practice to put 
branching instructions inside loops and GOTOs are 
to be avoided.

Let’s look at the DATA statements. Notice that 
commas are used to separate data items, but there 
must be no comma before the first data item or 
after the last. We have inserted spaces between 
each data item, but this is not normal. Mistakes 
when entering the data are easy to make and 
difficult to spot later. As many DATA statements as 
required may be used. Each new line needs to start 
with a DATA statement. The data is read in one item 
at a time, starting from the beginning of the first 
DATA statement and working through until all the 
items have been read. Be sure that the number of 
data items is correct or you will get an error 
message when the program is run.

The program presented so far does not actually 
do anything except convert appropriate data into 
a two-dimensional array. After the program has 
been entered and RUN, nothing will apparently 
happen and all you will see on the screen will be 
the basic prompt. To test that the data is correctly 
placed, try a few PRINT commands. (A command 
in basic is a keyword that can be immediately 
executed without having to be within a program 
and does not therefore need a line number. 
Examples are LIST, RUN, SAVE, AUTO, EDIT and 
PRINT). PRINT A(1,1) <CR> should cause the 
number 260 to appear on the screen. What will be 
printed by the following commands?

PRINT A(12,1)
PRINT A(1,5)
PRINT A(5,1)
PRINT A(5,5)

To make the program do something useful, it will 
need to be extended. As it stands it forms an 
adequate basis for a ‘main program’. To use it as 
part of a larger, more useful program, modules 
can be written as subroutines to be called by 
GOSUBs inserted at suitable points before the END 
statement.

In the early stages of designing a household 
accounts program, it is best to start with a simple 
written description of the general requirements. 
We might decide that we want to be able to have 
totals and averages calculated for monthly 
expenditure or by category (electricity, for 
example). We can work out the details of how to 
derive these results at a later stage. If there is a 
choice to be made within the program about 
which subroutines we wish to be executed we will 
probably want to be prompted by a ‘menu’ which 
will direct control to the appropriate subroutines 
as a result of our response. An early sketch of the 
program at this stage might look like this:
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MAIN PROGRAM 
(DATA ENTRY)

MENU
(SELECT SUBROUTINES)

END
A little further refinement may show that we will 
need subroutines to calculate totals for months or 
for categories (MONTHTOTAL and CATTOTAL), 
average monthly expenditure (MONTHAV) and 
average yearly expenditure by category (CATAV). 
The reason for using one-word names for these 
subroutines is to help us to plan the program 
without having to worry about details such as line 
numbers at this stage. On reflection we may 
decide that even the main menu selection part of 
the program should be dealt with as a subroutine 
in order to keep the main part of the program as a 
separate module. The next stage of refinement of 
the program will look like this:

MAIN PROGRAM (DATA ENTRY)
MENU (CALL SUBROUTINE)

END
★  ★ SUBROUTINES★  ★

1 MENU
2 TOTALS
3 AVERAGES

(2) TOTALS
4 MONTHTOTAL
5 CATTOTAL

(3) AVERAGES
6 MONTHAV
7 CATAV

This sketch of the program shows that the MENU 
subroutine will give us a choice of either TOTALS or 
AVERAGES. Both of these will themselves be 
subroutines. The TOTALS subroutine will give a 
further choice of MONTHTOTAL or CATTOTAL. 
These will be the subroutines that perform the 
actual calculations.

The AVERAGES subroutine will give a choice of 
MONTHAV or CATAV, and again these will be 
subroutines to perform the appropriate 
calculations. At this stage it should be possible to 
see whether our ‘program’ will do what we want, 
without doing any actual coding (detailed 
program writing in basic). If we can be satisfied 
that ‘so far so good’, we are read'7 to tackle the 
writing of the modules (subroutines) themselves. 
The only change needed to the main program will 
be a subroutine call before the E N D statement, so 
we could add:

145G0SUB “ MENU★  ★

Note that we are still using ‘names’ for subroutines 
rather than line numbers. Many languages, 
pascal, for example, allow sub-programs to be 
called by name, but most versions of basic do not 
and actual line numbers are needed instead. 
However, these ‘details’ can be incorporated later.

Let’s see how the MENU subroutine could be

written (line numbers have been omitted and you 
can add appropriate ones if you wish to implement
this program).

REM THE “ MENU** SUBROUTINE 
PRINT “WOULD YOU LIKE T(OTALS) OR 

A(VERAGES)?”
PRINT “TYPE EITHER A OR T”
INPUT L$
IF L$ = “T” THEN GOSUB‘TOTALS*
IF L$ = “A" THEN GOSUB ‘AVERAGES*
RETURN
Note: we are marking the subroutines called by

enclosing them within *----* marks. You will
have to use line numbers instead. These can be 
inserted when you are in a position to know what 
they are.

Suppose you type T for TOTALS. The program 
will then call the TOTALS subroutine. This will then 
present another menu and could look like this:

REM THE “ TOTALS** SUBROUTINE 
PRINT “WOULD YOU LIKE TOTALS FOR’’
PRINT “M(ONTH) OR C(ATEGORY)?”
PRINT “TYPE EITHER M OR C”
INPUTL$
IF L$ = “M” THEN GOSUB ‘MONTHTOTAL*
IF L$ = “C” THEN GOSUB 'CATTOTAL*
RETURN

Suppose you selected M for MONTHTOTAL. Let’s 
see how we could write a module to calculate the 
total expenditure for any month in the year.

REM THE “ MONTHTOTAL** SUBROUTINE
REM THIS CALCULATES TOTAL EXPENDITURE FOR
REM ANY MONTH
PRINT “SELECT MONTH-
PRINT “1 -JAN 2-FEB 3-MAR 4-APR 5-MAY"
PRINT “6-JUN 7-JUL 8-AUG 9-SEP”
PRINT “10-OCT11-NOV 12-DEC”
PRINT “TYPE A NUMBER FOR THE MONTH”
LET T = 0 
INPUT M 
FOR C = 1 TO 5 
LET T = T + A(M,C)
NEXT C
PRINT “THE TOTAL EXPENDITURE FOR MONTH-
PRINT "NUMBER ”;M;“ IS ”;T
RETURN

The number representing the month is typed in 
and the INPUT statement assigns the number to the 
variable M (MONTH). M is used to specify the ‘row’ 
subscript of the two-dimensional array A. The 
FOR-NEXT loop increments the value of C (column) 
from one to five so the first time through the loop, 
if we had selected three for March, the LET 
statement would be equivalent to LET T=T + A(3,1). 
The next time round it would be equivalent to LET 
T = T + A(3,2) and so on.

This week we’ll leave you to write the other 
subroutines, or try out the other exercises. Two- 
dimensional arrays are ideal for any program that 
involves tables of data, be they statistical, financial 
or any other quantity.
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Answers To Exercises On Page 175 20  LET R = R + 1
30  IF INKEYS = “ ’’ THEN GOTO 60

RND Function 40  LET L = 0

40  IF R > 6  THEN LFT R = 1 50  NEXT L

Loop And Average 60 PR IN T “THE VALUE OF R AFTER 10 SECONDS IS
”;R5 FOR L =  1 TO 100

•

a

70  END
■

80  LET T = T  +  R IF...THEN
90  NEXT L 10 GOSUB 1000
100  LET A =  T /1 00 20  PR IN T “GUESS THE N U M B E R ”
110  P R IN T A 30  FOR G = 1 TO 5
120  END 40  IN PU T N

Replace With Subroutine 50 IF N > R  THEN GOTO 110
Delete lines 5 , 8 0 , 9 0 , 1 0 0 ,  and 110  in the solution above. Change lines 60 IF N < R  THEN GOTO 130
10 to 70 to (say) 1 0 0 0  to 1070 . Check that line 40  is as in the RND 70  IF N = R THEN GOTO 150
Function solution above. Then add 1080  RETURN. Incorporate the 80  N E X T G
result into the m ain program . Change lines 50  and 130 in the main 90  PR IN T “NO MORE GOES. YOU LO SE!”
program  to read 50 GOSUB 1000  and 130 GOSUB 1000. 100 GOTO 500
INKEYS 110 PR IN T “YOUR GUESS IS TOO LARGE”

10 PR IN T “TYPE ANY KEY” 120 GOTO 80
20  LET AS = IN KEYS 130 PR IN T “YOUR GUESS IS TOO S M A L L ”
30  IF AS = “” THEN GOTO 20 140  GOTO 80
4 0  P R IN T “THE KEY YOU H IT  W A S ”;A$ 150 PR IN T “YOU ARE RIGHT,
50  END C O NG RA TULATIO N S”.

(On the Spectrum  add: 15 IF INKEYS < > “” THEN GOTO 15) 500  END
Timing Loop 1000  REM **R A N D O M  S U B R O U T IN E **

5 P R IN T “H IT T H E  SPACE-BAR AFTER 10 SECO NDS” (Insert your subroutine here.)
10 FOR L =  0 TO 1 1020  RETURN

Errata
We regret that errors appeared  
in the Basic Program m ing  
course in Issues 5 and 7. Two of 
the LET statem ents on page 99, 
Issue 5, should have read:

LET X (5 ) =  31 
L E T X (6 ) = 30

On page 100 we should have 
said:

910 LET M = 2
On page 137, Issue 7, two lines 
in the Basic Flavours box, 
concerning the INSTR  

com m and, should be revised 
to read:

525  NEXT P
(for Com m odore m achines and 
the O ric-1), and:

540  FOR P = 1 TO L 
(for the ZX81 and Spectrum )

E x e rc is e s
■  A s s i g n i n g  V a l u e s  Write a program that assigns 
values to the elements (‘Petrol’, ‘Service’ etc.) of 
the matrix (see illustration below). Next, write a 
subroutine that asks for a month, and an expense 
heading, and prints the contents of the box thus 
specified. Finally, write a subroutine that finds the 
sum of each column, and places the result in the 
bottom box, does the same across the rows, and 
then calculates the grand total, which it stores in 
the lower right box.
■  B u g s  The following program would not run 
properly and would produce an error message.
There are two mistakes. Find them and make 
appropriate corrections.

•10 DIM A(3,4)
20 FOR R = 1 TO 3 
30 FOR C = 1 TO 4 
40 READ A(R,C)
50 NEXTC 
60 NEXTR 
70 FOR X = 1 TO 3 
90 FOR Y = 1 TO 4 
100 PRINT A(Y,X)
110 NEXT Y 
120 N EXT X
130 DATA 2,4,6,8,10,12,14,16,18,20,22 
140 END

PETROL

SERVICE

SPARES

CARWASH

INSURANCE

TAX

MOT

TOTAL

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC TOTAL
Car Expenses
The picture shows a grid of 8 x 
13 squares. The rows represent 
different elem ents of the cost of 
running a car, and the colum ns  
represent the different m onths  
of the year. Follow the exercise 
on ‘Assigning Values' to 
calculate the vearly cost of 
running a car

THE HOME COMPUTER COURSE 197



A plotter is the best means of producing high quality graphic output 
from your computer. Working with fibre-tip pens, some can change
colour automatically

The ability to create printed copies of diagrams 
that appear on a computer screen is an essential 
requirement for many serious computer users. 
Engineers, scientists, technical artists and 
businessmen all need accurate diagrams and 
charts that conventional printers are not capable 
of producing. The only device that can create 
these images is a plotter and, until recently, these 
have been too expensive for the home computer 
user.

However, with the introduction of devices like 
the four-pen printer/plotter mechanism used in 
the Tandy/CGP-115 and Oric MCP-40 printer, 
graphical output is at last within reach of the 
emptiest wallets. A whole range of plotters has 
recently appeared on the market that offer 
features previously only found in machines 
costing thousands of pounds.

The need for a plotter is generally governed by 
the type of output being generated by the 
computer. An engineer or draughtsman will need 
accurate drawings of equipment and installations, 
a businessman might want charts and graphs 
showing sales figures. Producing these on 
conventional printers is a very laborious process 
and the results will appear only in black and white. 
The only other low cost option is to take a colour 
photograph of the screen and while this might 
suffice for business charts, it certainly won’t be 
accurate enough for a designer or architect.

Plotters work in an entirely different way from 
printers: they draw lines between two points 
rather than creating their output from preformed 
characters or patterns of dots. The basic principle 
behind all the various systems is that of the X, Y 
coordinate. Just as a graph can be plotted by 
defining the coordinates through which the line 
must pass, so any shape can be broken down into a 
series of coordinates. To be able to join these 
coordinates together in order to recreate the 
shape, there must be some form of movement. So 
the pen is fixed to a travelling gantry that can move 
in the X direction (left and right) while the pen 
moves along the gantry in the Y direction ( ip and
down).

The traditional type of plotter is known as a ‘flat 
bed’ plotter because the paper is fixed to a flat 
plate with the gantry travelling over the top — this 
is shown in the illustration. Its disadvantage is that 
the plotter must be at least as big as the piece of 
paper.

One method of reducing the size is to adopt a 
large-scale version of the four-pen plotter idea
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Pen Bank
Up to three pens can be 
changed autom atically. The 
gantry returns to the pen bank 
and exchanges the pen in use 
for the next colour required. 
Further colours can be 
exchanged m anually

Magnetic Clip
These hold the paper flat on the 
bed of the plotter. They are 
made from  a flexib le m agnetic  
m aterial

(see illustration), in which the paper moves in one 
direction and the pen moves in the other. 
Examples of this are the Strobe 100 and the 
Hewlett Packard Sweetlips plotters. The 
movement of the paper must be as precisely 
controlled as the motion of the gantry in the flat 
bed type, and is achieved by using a stepper 
motor. A stepper motor is a very special type of 
motor that only rotates by a fraction of a turn for 
each pulse of power that is applied. It is mainly 
found in disk drives, where it controls the 
positioning of the head on the surface of the disk, 
and in robot devices (see page 176).

Connecting a plotter to a computer is generally 
the same as connecting a printer, at least in terms 
of the interface. Plotters are usually available with 
either serial (RS232) or parallel (Centronics or 
IEEE488) interfaces, which can be connected to 
the port normally used by a printer. The

Pen Holder
The currently selected pen is 
clam ped —  in th is case 
m agnetically —  into this holder, 
which m oves down and places 
the pen in contact w ith the paper



Ins ights

Pen Gantry
The gantry can be positioned at 
any point across the page (the X 
axis) and the pen holder is then 
moved into position along its 
length (the Y axis). 
Com binations of left to right and 
up and down m otions allow  any 
point on the page to be reached

programming is often a little more complicated in 
that, instead of just sending the results of a 
program to be printed, information about the way 
the results are to be presented must also be sent. 
This is generally done in much the same way as a 
diagram would be built up on the screen.

Because of the complicated way in which 
plotters build up their output they are usually 
‘intelligent’. This means they have built-in 
microprocessors that convert the characters and 
instructions from the computer into a series of 
coordinates, which the plotter then draws. Many 
of the more sophisticated plotters also allow 
complicated shapes such as circles and curves to 
be drawn by simply supplying the starting points 
— the plotter does the rest. The labelling of graphs

Stepper Motors
These m otors turn through a 
few  degrees for every electrical 
pulse applied. W ith suitable  
gearing they provide the fine 
m ovem ent of the pen and gantry

Pen Lift Control
This allows the pen to be 
m anually placed in contact or 
lifted off the paper

and diagrams and the colouring-in of pie charts 
and bar graphs are often automatic processes, 
making the programming much simpler.

Many plotters come complete with software 
that allows them to be used directly from within a 
program rather like a paper copy of the screen. If 
this type of program is not provided, the user will 
have to work out the necessary routines to 
translate screen information into the appropriate 
codes in order to drive the plotter. Some plotters 
don’t feature built-in character sets, so even the 
codes for the letters and numbers will have to be 
created. This does at least allow the user to design 
his own characters and typefaces. Once a shape 
has been generated, it can be plotted at any 
position and in any orientation or size, so a library 
of shapes can be built up for repeated use. 
Routines to plot circles and curves and shapes in 
sections of graphs are often very useful, especially 
in the field of business graphics and these may also 
have to be created. However, the principles of 
creating a drawing from coordinates on the screen 
are just the same as those required to create the 
shape on paper, so the programming is usually 
quite simple.

Circuit Board
Plotters are usually ‘ in te lligent’ 
devices -  they can be given a 
high-level com m and such as 
‘draw  a circle w ith specified  
radius and centre’, and the 
plotter works out how to move 
the pen. The circuit board 
contains its own 
m icroprocessor, ROM and RAM

Interface Connection
Plotters connect to the 
com puter by m eans of a 
standard interface such as 
R S 232 (serial) or Centronics 
(paralle l). To the com puter it 
appears just like a printer, 
though different com m ands will 
be needed to drive it

Pen Motion Controls
The pen can be m anually  
positioned on the page by these  
controls

T h e  F o u r -P e n

P lo t t e r /

P r in te r
This m echanism  captured the 
attention of the micro industry  
when it first appeared in the 
Sharp CE-150 printer. Its 
bigger brothers in the form  of 
Tandy’s C G P -115 and the Oric 
M C P -40  have helped bring 
low -cost colour printing to the 
hom e com puter user.

Like all good ideas the 
system is am azingly sim ple in 
concept. A roll of paper is 
pulled through the 
m echanism  by a spiked roller. 
The paper is m oved both 
backwards and forw ards in 
very precise steps while a pen 
carrier holding four m iniature  
ballpoint pens moves across 
the surface from  left to right 
and vice versa.

To create the output, which  
can be text or graphical, the 
pen carrier is rotated until the 
correct colour is in position  
and then the pen is pressed 
against the paper. Horizontal 
lines are created by the pen 
m oving while the paper is 
stationary, vertical lines use 
the m ovem ent of the paper 
with the pen fixed in place. 
Com binations of the two  
m ovem ents produce 
diagonals and curves. The 
quality of the printing is very 
high, although the restricted  
paper w idth makes it 
unsuitable for word 
processing and other serious 
uses
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Pioneers In Computing

k

This British mathematician gave his name to the accepted test for 
machine intelligence. Much of his work, however, was for military
intelligence during the war

Mathematical Feat
Alan Turing (1 9 1 2 -1 9 5 4 )  
found inspiration and 
relaxation through long
distance running. He was 
intrigued by the effect of 
physical exertion on 
creativity and m ental agility

Can Machines Think?
To answer this question, Turing  
proposed his fam ous test, 
called the Im itation Gam e, but 
which has subsequently  
becom e known as the Turing  
Test. A man is put into a room  
that features a teleprinter 
(keyboard-cum -prin ter). This is 
linked to a teleprinter in another 
room , operated by another man; 
and also to the com puter under 
test. The first m an is allowed to 
ask any questions he likes of 
either. If he is unable 
consistently to determ ine when  
he is com m unicating w ith the 
m an and when with the 
com puter, then the machine  
may be deem ed to be intelligent. 
After all, the argum ent goes, we 
have no way of telling for certain 
w hether other people do th ink or 
are conscious, except by a 
com parison of their reactions to 
circum stances with our own

The young Alan Turing showed a remarkable 
insight into science. He wrote to his mother from 
school ‘I seem always to want to make things from 
the thing that is commonest in nature’. 
Mathematicians show their talent early and as 
soon as Turing could read and write he was 
factorising hymn numbers and designing
amphibious bicycles.

While his father was away in Madras working 
in the Indian Civil Service, Turing was winning 
school prizes and then the scholarship that took 
him to King’s College, Cambridge. It was at 
Cambridge, first as a student and then as a fellow 
of King’s, that his interest began to focus on the
problems of mathematical logic.

In 1931 the Czech mathematician Kurt Godel 
astonished the scientific world with the discovery 
that there were mathematical theorems that were 
true yet could never be proved. Alan Turing set 
out to investigate those which could be proved.

He proposed a machine, the construction of 
which he left to the imagination, that could carry 
out mechanically the processes usually performed 
by a mathematician. For each process there was 
one machine — for example, a machine to add, 
another to divide, and a third to integrate and so 
forth. These machines later came to be known as

Turing investigated the workings of these 
imaginary machines and came to a remarkable 
conclusion. Rather than each mathematical 
process needing a separate machine, it was 
possible to design a ‘universal’ device that could 
be made to imitate any other of the specialist 
machines by being ‘programmed’. Turing had 
stumbled upon the theory of the programmable
computer.

When the Second World War broke out 
Turing was quickly recruited from the academic 
world to the Government School of Codes and 
Ciphers at Bletchley Park, Buckinghamshire. 
Had it not been for the war, his machines might 
have remained imaginary, but Bletchley Park was 
involved with the highly secret and urgent work 
of breaking German military codes.

Because these codes could be changed each 
day, machines were needed to crack the ciphers 
before new ones were introduced. Bletchley Park 
became a huge information processing centre. In 
the middle of the war Turing was sent to America 
to establish secure codes for transatlantic 
communications between the Allies.

The secret nature of his work at this time 
means that few records of his movements are 
available. However, it is widely supposed that he 
met Von Neumann while at Princeton, New 
Jersey. Towards the end of the war Turing was 
asked to draw up plans for an all-British 
computer for the National Physical Laboratory, 
to be called ACE.

The Automatic Computing Engine was named 
partly in honour of Babbage’s Analytical Engine. 
Like this pioneering machine, ACE took a long 
time to be constructed, but in many ways it was 
far in advance of ENIAC (see page 46). 
Frustrated at the slow progress, Turing resigned 
and moved to Manchester where he joined the 
university’s computer project. At the same time 
he became a consultant to the Ferranti company 
and subsequently became involved in the first
computers to be built in Britain.

Turing was an eccentric who pursued what he 
knew to be important without regard for social 
conventions or legal constraints. A friend said he 
was ‘divinely retarded’ when it came to seeing 
faults in others, but his scientific genius was 
flawless. In 1952 he was convicted on charges 
relating to homosexuality, and committed suicide 
two years later. Who can tell what a contribution 
Turing might have made to artificial intelligence,
had he still been alive today?
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