
/

ISSN 0265-2919

© 8 0 p

35-..

V

rrSS»
** *

/

>v

irr*'

" m

■m
s

* • <

-V

\V

181 C o m p u t e r A n i m a t i o n
184 I n t e r p r e t e r s And C o m p i l e r s
186 S p e e c h S y n t h e s i s
188 PEEK And POKE
189 T e x a s I n s t r u m e n t s T I 9 9 / 4 A
192 S o f t w a r e P i r a c y
194 B a s i c P r o g r a m m i n g
198 P l o t t e r s
200 P i o n e e r s I n C o m p u t i n g

ROB0COM B i t S t i k

< -**V

s r

\ m

4k

X

An © R B I S P u b l i c a t i o n
IR £1 Aus $1.95 NZ $2.25 SA R1.95 Sing $4.50 USA & Can $1.95

C O N T E N T S

Texas Instruments’ 99/4A This home
computer reveals a very high standard of
construction, but uses some old technology

Alternative Translation Compilers and
interpreters are two different ways of
converting Basic to machine code

Forging Ahead Piracy is a constant threat to
software writers
Basic P rogram m ing

Another Dimension Continuing our course
on programming we look at two-
dimensional arrays for tables and charts

P assw ords To C om puting

Peek and Poke These two commands can be
used on most home computers to go ‘beyond
Basic’

Pioneers In Computing

Alan Turing A mathematical genius who did
much work on the theory of computation

189

184

192
<

194

Moving Pictures Animation has come a long ■jO'j
way since the Zoetrope . u

Talking Back With the use of a speech
synthesiser a computer can be programmed
to respond verbally
Intricate Plot A printer is not usually
adequate for graphics. Using pens a plotter
produces high quality drawings

186

198
9

188

200
Digital Doodles Graphical wizards will be INSIDE
interested in the ROBO 1000 for the Apple BACK
II computer COVER

N e x t W e e k
The Sinclair 2X81, first

mass-marketed micro and
performing miracles on just
four chips, can still be viewed
as a triumph of design

Flight simulators for pilot
training make heavy use of
computers and cost thousands
of pounds. Some of the work
put into their development is
now appearing in the form of
sophisticated games for the
micro

• One way of sending data
from your computer to another
over the telephone is by
means of an acoustic coupler.
We explain how this device
works

Editor Richard Pawson; Consultant Editor Gareth Jefferson; Art Director David Whelan; Production Editor Catherine Cardwell; Staff Writer Roger Ford; Picture Editor Claudia Zeff; Designer Hazel Bennington; Art Assistants Liz Dixon,
Safu Maria Gilbert; Sub Editor Tracy Ebbetts; Researcher Melanie Davis; Contributors Tim Heath, Richard King, Henry Budgett, Brian Morris, Mel Pullen; Group Art Director Perry Neville; Managing Director Stephen England; Consultant
David Tebbutt; Published by Orbis Publishing Ltd: Editorial Director Brian Innes; Project Development Peter Brookesmith; Executive Editor Chris Cooper; Production Co-ordinator Ian Paton; Circulation Director David Breed; Marketing
Director Michael Joyce; Designed and produced by Bunch Partworks Ltd; Editorial Office 39 Goodge Street, London W1; © 1983 by Orbis Publishing Ltd: Typeset by Universe; Reproduction by Mullis Morgan Ltd; Printed in Great Britain by
Artisan Press Ltd, Leicester

HOME COMPUTER COURSE - Price UK 80p IR £1.00 AUS $1.95 NZ $2.25 SA R1.95 SINGAPORE $4.50 USA and CANADA $1.95
How to obtain your copies of HOME COMPUTER COURSE - Copies are obtainable by placing a regular order at your newsagent.
Back Numbers UK and Eire - Back numbers are obtainable from your newsagent or from HOME COMPUTER COURSE. Back numbers, Orbis Publishing Limited, 20/22 Bedfordbury, LONDON WC2N 4BT at cover price. AUSTRALIA: Back
numbers are obtainable from HOME COMPUTER COURSE. Back numbers, Gordon & Gotch (Aus) Ltd, 114 William Street, P0 Box 767G Melbourne, Vic 3001. SOUTH AFRICA, NEW ZEALAND, EUROPE & MALTA: Back numbers are available at
cover price from your newsagent. In case of difficulty write to the address in your country given for binders. South African readers should add sales tax.
How to obtain binders for HOME COMPUTER COURSE - UK and Eire: Details of how to obtain your binders (and of our special offer) are in issues 4 ,5 ,6 , and 8. EUROPE: Write with remittance of £5.00 per binder (mcl. p&p) payable to Orbis
Publishing Limited, 20/22 Bedfordbury, LONDON WC2N 4BT. MALTA: Binders are obtainable through your local newsagent price £3.95. In case of difficulty write to HOME COMPUTER COURSE BINDERS, Miller (Malta) Ltd, M.A. Vassalli
Street, Valletta, Malta. AUSTRALIA: For details of how to obtain your binders see inserts in early issues or write to HOME COMPUTER COURSE BINDERS, First Post Pty Ltd, 23 Chandos Street, St. Leonards, NSW 2065. The binders supplied
are those illustrated in the magazine. NEW ZEALAND: Binders are available through your local newsagent or from HOME COMPUTER COURSE BINDERS, Gordon & Gotch (NZ) Ltd, P0 Box 1595, Wellington. SOUTH AFRICA: Binders are
available through any branch of Central Newsagency. In case of difficulty write to HOME COMPUTER COURSE BINDERS, Intermag, PO Box 57394, Springfield 2137.
Note-B inders and back numbers are obtainable subject to availability of stocks. Whilst every attempt is made to keep the price of the issues and binders constant, the publishers reserve the right to increase the stated prices at any time when
circumstances dictate. Binders depicted in this publication are those produced for the UK market only and may not necessarily be identical to binders produced for sale outside the UK. Binders and issues may be subject to import duty and/or
local taxes, which are not included in the above prices unless stated.

■

mm
&SIi®|§ Ins ights

■:• ////.

Take the graphics on your computer, multiply the quality by a
thousand, and you have a computer animation system

■fit:::*: >>: *

mm

•!w
:: ■::

The entire process of producing moving pictures,
whether on film or for television, relies on the
brain’s inability to ‘freeze’ an image. By presenting
the eye with a rapid succession of images an
impression of motion is created.

The first attempts at producing the illusion of
movement in pictures involved piercing a drum
with slots, pasting a strip of drawings around its
inside, and spinning the drum. Looking through
the slots, one sees a crude representation of one
picture or ‘frame’ after another. The Zoetrope, as
it was called, predates the science of photography,
but naturally photographs soon replaced the
drawings on the inside of the drum. The next
stage, the motion picture, required relatively fast
acting photographic emulsions, capable of
recording an image in less than one sixteenth of a
second, since the early films were projected at 16
frames per second.

S im u la t in g M o v e m e n t
Strangely, it was quite some time before the film
industry conceived the idea of hand-drawing each
frame, photographing the drawings and then
projecting the result to produce animated
cartoons. Bearing in mind that each second’s
viewing requires the creation of 24 separate
drawings (the projection speed of modem film), it
is clear that the production of even a five-minute
film requires a tremendous amount of work —
7,200 frames in this case. It is not surprising that
the style of illustration is formalised — the most
important requirement is precise repeatability. It
wouldn’t do to have Bugs Bunny looking different
from one second to the next!

Repetitive and precise tasks like these are
readily performed by machines. When the
computer takes over the job of animation —
adjusting speed of movement, changing
perspectives and geometry, lighting and shading,
changes in volume, rhythm and pace — the artist is
then free to concentrate on the quality of the
image. At this point animation changes to being a
true graphic art, where the artist’s time is spent in
creating the image that the computer will cause to
move.

In its simplest form, this process uses sprite
graphics (see page 152) to create the ‘cast of
characters’, which are then transferred onto the
screen and moved about, producing the sort of
animation used in simple video games. To create
the illusion of change as well as movement (for

example, someone walking) it is necessary to
repeatedly substitute one sprite for another. As we
saw, the creation of sprites is a comparatively slow
business, given the graphic quality of the results,
and the image has to be nothing more than a very
simple two-dimensional representation.

The next stage of animation requires the
animator/ programmer to construct an algorithm
that introduces a feeling of depth into the image
according to the rules of perspective. Objects can
then be defined on the screen in terms of their X, Y

Frame By Frame
Conventional an im ation, like
these fram es from T h e Pink
Panther’, requires the artist to
draw each picture separately
— though com m on features
need not be redraw n unless
they change their appearance
or position. Transparent film
is used so that the entire
im age can be m ade up from a
series of overlays. The artist
will concentrate his attention
on the key fram es of the
sequence, leaving the
intervening sections to be
filled in by assistants known
as ‘in -betw eeners ’. The
finished draw ings are then
photographed using a
rostrum cam era, in the order
that they w ill be seen

THE HOME COMPUTER COURSE 181

Ins ights Wm

Magic Colouring Box
Until recently, the m ethod of
originating artw ork for film
and television stills and
anim ated sequences followed
closely that used for
m agazines — the design was
executed on paper or
transparent film , and then
photographed. Q uantel’s
Paint Box system , however,
cuts out the use of paper
com pletely, com posing the
artwork digitally w ithin the
com puter and then recording
it directly onto videotape

and Z coordinates. At this point it is extremely
useful if the program does not reproduce ‘hidden’
lines, and by this means introduces opacity into
what has been, up to now, a ‘wire frame’ model or
representation.

The next desirable refinement is for ‘curve
smoothing’. A curved line is specified by only
three points — both ends, and the point farthest
away from the straight line between them. Of
course, a complex curve (an ‘S’, for example)
needs to be split up into its simple components in
order for this procedure to work adequately, and
it’s important to have some simple way of
indicating to the machine that the line in question
is a curve that requires smoothing, and not just a
straight angled line.

Next comes the ability to introduce light and
shade into the drawing. First of all it is necessary to
specify the position of the light source. The part of
the drawn object that lies facing the source will
then be highlighted, and progressive shading
added to help define the object’s shape.

Sophisticated software will allow the use of more
than one light source and cope with the reflection
of light off one object onto another.

Along with shading goes the use of colour.
Even the simplest of home computers now offers
eight or perhaps 16 colours, but professional
quality graphics computers generally allow at least
4,096. Some are limited simply by the number of
binary digits in the computer’s ‘word’. If this is 24
bits for example, the computer has some 16.7
million colour options. The shading and colouring
facilities are combined into one.

Let’s now look at the problem of simulating

movement. It is relatively easy to reduce
movement to its individual components if we
think of it as a problem in continuous solid
geometry, even when the object represented is as
complex as a human hand. The determining factor
is the size and power of the computer that is being
used. Bear in mind, however, that in order to
produce a high-quality image, we will require a
monitor capable of resolving something like 1,000
X 1,200 pixels. Each one of these pixels will
require at least one eight-bit byte to hold the
information that defines its colour and brightness.
That means more than a megabyte per screen.
Generation of high-quality moving pictures is
therefore not possible on home computers.
Indeed, professional animators use some of the
largest and most powerful computers in the world,
and their fees reflect this, being upwards of £1,000
per second of final film.

© 1983
digital productions

If we take as our starting point a simple object,
like a cube, it is relatively easy to understand how
we can cause it to move around the screen,
tumbling, perhaps, as it goes. A cube can be
defined by the coordinates of the eight comers
alone, but exactly the same principle applies to
more complex objects. The only difference is the
amount of memory required to store all the
coordinates and the processor power needed to
be able to manipulate that information fast
enough to generate ‘real time’ movement. In this
application, like all others, there is the inevitable
trade-off between quality and the amount of
available space and power. The smaller the
drawing unit one defines, the greater will be the

182 THE HOME COMPUTER COURSE

Ins ights

storage requirements. But it is essential to work in
the smallest possible detail to achieve a high
quality of reproduction.

A domestic television set — with around 625 X
1,000 pixels — is marginally more ‘coarse-grained’
than the high power monitor we spoke of earlier.
So we can be confident that any work in this detail
or better will look as realistic as an ordinary
television picture. Even with available techniques
we can create an accurate impression of reality by
means of animated pictures.

In order to create the image in this sort of detail
both sophisticated software and purpose-built or
specially adapted hardware are needed. The most
popular method uses a device known as a ‘bit-pad
digitiser’, which is rather like a large drawing board

that contains a wire matrix. This mesh is used to
sense the position of a stylus passed across it. The
computer then displays the resulting line or point
on the monitor screen. It is possible to trace from
existing artwork, draw freehand, or use
conventional drawing instruments, just as if one
were working on paper. The image is digitised (its
X-Y coordinates are worked out), written in
memory and displayed by the computer. The
character of the mark that appears on the screen
can be defined by the user, just as one might
choose to use a pencil, a pen or a brush. Likewise,
the colour can be defined by calling up the palette
— an array of colours at the bottom of the screen
looking much like an oil-painter’s palette. If the
colour one wishes to use is not standard, it can be
mixed, exactly as one would when using paint. The
stylus can also be used as an eraser, and ‘drawings’
can be laid over one another.

So, having created a single image, how does one

go about making it move? One method is simply
to mechanise the conventional process, by using
the computer system to file material, to colour
frames and perhaps to show roughly made-up
sequences. Even this approach will speed up the
task, but clever programming techniques make it
possible to do much more. Just as curves can be
automatically smoothed, so can whole blocks of
action be fabricated by specifying the first and last
frames of a sequence. This process, known as
‘tweening’, is performed in a conventional
animation studio by an assistant known as an ‘in-
betweener’. Indeed, most of the work of animation
is performed by assistants, and it is these that the
computer system replaces. We noted earlier that
the introduction of computers into the animation
process releases the artist to concentrate on the
quality of the image. Most of the hand animator’s
effort goes into creating the illusion of movement,
but this task is precisely definable on a computer.
Once the rules are stated, simply obeying them will
produce the desired result — once again, a sure
sign that the job is appropriate for
computerisation.

Seeing Is Believing
Using the u ltra-fast processing
pow er and huge storage
capacity of m odern com puters it
is possible to create on film or
on the TV screen an im age that
is actually indistinguishable
from a photograph. Then, using
program m ing techniques
developed for statistical and
num erical problem -solving, it is
possible to m anipulate these
created im ages in such a w ay as
to m ake the view er believe them
to be real

TRace ON
First of a new generation of
feature film s that use these
techniques of com puter-
assisted im age generation was
W alt Disney Productions'
T ro n '. Set partly in reality and
partly inside a giant com puter,
‘T ro n ’ uses a m ixture of
com puter-an im ated im agery
and special effects photography
to create a stunning realisation
of a fantasy world

THE HOME COMPUTER COURSE 183

C
O

U
R

TE
SY

 O
F

W
A

LT
 D

IS
N

EY
 L

TD
.

IA
N

 D
O

BB
IE

 A
T

R
ES

EA
R

C
H

 R
EC

O
R

D
IN

G
S

S o ftw are

Computers ‘think’ in machine code; programmers prefer to write in a
high level language such as Basic. Compilers and interpreters offer
different methods of translation between them

When computers were first developed they didn’t
have keyboards. Program instructions had to be
entered one step at a time by setting each of eight
switches to ‘up’ or ‘down’, to represent a single
operation. These patterns of‘up’ and ‘down’ were
examples of machine code.

It was logical to replace the switches by a
typewriter keyboard, and replace the patterns of
switch settings by real English words. The result
was the ‘high-level’ language such as basic,
replacing the low-level machine codes.

As processors, however, computers did not
change, but continued to work on the original
patterns of switches (and still do), so programmers
had to develop programs written in the original
low-level notation to translate these high-level
programs into patterns that the processors could
work on. These low-level programs came to be
called interpreters or compilers, according to their
method of translation.

In computing (as elsewhere), any gain in power
or speed has to be paid for — in money, time or
freedom of action. So it is with interpreters and
compilers. Together they provide all the program
translation facilities that a programmer needs.
Interpreters are strong in some areas and
compilers in others, but each pays for its
advantages with compensating disadvantages.

Interpreters, usually built into the home
computer, are the cheap way of translating high-
level language programs into something a
computer can understand. They don’t use up
much memory — leaving more space for your
programs.

Micros costing less than about £400 almost
invariably feature a basic interpreter: you type in a
basic program, type RUN, and either the program
works, or it stops with an error message from the
system — something like:

SYNTAX ERROR ON LINE 123

So you type LIST, find the error, correct it, type
RUN, and it either works or stops again, and so on.
Note that some of the more sophisticated basic
interpreters actually check for syntax errors as
each line is entered.

You may have done this sort of thing hundreds
of times without having given a thought to the
interpreter. Its chief virtue is precisely that it is an
invisible device that allows you to work on your
program without ever bothering about where it is
in memory or how to execute it — the program is at

your fingertips, and you can RUN it, LIST it, or EDIT
it immediately.

The interpreter is easy to use, but not very
sophisticated: every time you type RUN, the
interpreter has to find your b a s i c program in
memory and translate and execute it line by line. If
your program contains this loop:

400 LET N=0
500 PRINT N
600 LET N=N+1
700 IF N< 100 THEN GOTO 500

the interpreter has to translate and execute lines
500 to 700 a hundred times, as if it had never
encountered them before.

Compilers are different. They’re expensive,
difficult to write, and occupy and use a lot of
memory. They are almost always disk-based
software, so the user needs an expensive system.

What they offer is flexibility, power and speed;
faced with the four lines of b a s i c above, a compiler
would translate them all once, then execute that
code a hundred times.

This allows quite a saving in time - but at a
price. Suppose you have a b a s i c compiler and you
want to enter and run a b a s i c program.

First you load and run the File Creation
Program (called the Editor), which allows you to
type in the program and save it to disk as a ‘source
file’.

Files must be named so that you can find them
once you’ve created them (just like files in a real
filing cabinet), so the Editor asks you to name the
source file. File names often consist of two parts:
the first is a label, any name you choose - say
MYPR0G - and the second part is usually a three-
letter code indicating the nature of the file
contents; this code is the ‘extension’. A b a s i c file
might have the code BAS as its extension. Your
source file is now on disk under the name
MYPR0G.BAS. Now, typing:

COMPILE MYPR0G.BAS
will cause the com puter to LOAD and RUN the basic
com piler on a basic source file called MYPR0G.
BAS.

You wait a few seconds, depending on the
length of your program while the compiler
translates your program into an ‘object file’, which
it saves on disk under the name MYPR0G.0BJ- the
OBJ extension indicating that this is the object file,
a machine code translation of a source file.

184 THE HOME COMPUTER COURSE

S oftw are

Compiling A Program
W riting a com piled program
is not nearly as sim ple as
using the interpreter on your
hom e computer. However,
once you have the program
working, it w ill execute m any
tim es faster. This is the main
flow of events:

L

Type in your program in
BASIC

Save yoy
‘source „
disk

am as a
cassette or

Load ‘com piler’ program and
nam e of your source file

Compil
‘object
yo ursourc
code

es an
ersion of

e inm ach ine

If there have been errors in the
program , these will be
reported, and the source file
m ust be re-edited

While the compiler translates your file, it checks
it for syntax errors. If it finds any, then you’ll get a
message like this:

100 REED X:IFX=3(N+2) LET P=Q
1 2 3

FATAL ERROR:-
1) //REED// UNRECOGNISED COMMAND
2) //(//ILLEGAL OPERATOR HERE
3) ??‘THEN’ OR ‘GOTO’ EXPECTED HERE

You get this kind of message for every line that
contains an error. In other words, the error
reporting is far more comprehensive than on a
b a s i c interpreter. Now you must load and run the
Editor again, recall the source file from disk, make
the changes and try to compile again. If there are
no more errors you can type:

RUN MYPROG

and it either works as you expect or it doesn’t.
There are no syntax errors at this stage, because
you’ve corrected them, but you might still want to
change the program anyway, in which case you
load and run the Editor, change the source file,
recompile it...and so on.

The virtues of a compiler are not obvious in the
program development stage, though informative
error reporting is valuable. Compilers start to earn
their keep after you’ve got a working program and
typed RUN, which is precisely where interpreters
start to let you down.

Compiled programs are fast — anything from
five to 50 times faster than interpreted programs,
depending on the efficiency of the compiler, but
the compiled program’s speed *of execution is
bought at the expense of its speed of program
development.

Comparing compilers and interpreters by
contrasting typical sequences of user commands
like those above is unfair on compilers, since they
are written mostly for more powerful, less
specialised machines, the users of which might
want to write and run programs in many different
programming languages.

C o b o l (for writing commercial data processing
programs to handle accounts, payroll and
inventory), for example, was invented with
compilation in mind, whereas b a s i c really
demands an interpreter. If you’re going to
compare a Jensen with a Jeep, you ought to do so
on both ploughed fields and metalled roads.

Once you’ve developed and compiled a
program, you don’t need the source file except for
reference. So the source program can be fully
commented on and written with readability in
mind, while the object file may be a much smaller
file, occupying less space on disk and memory.

The fact that the object files created by a
compiler consist of unreadable machine code,
can, surprisingly, be an advantage. If you’re
marketing software you don’t sell the source file
but only the object file, which makes it much
harder to pirate, copy or alter.

1 j C ZOrtBIL

EINSTEIH
FJ1CH7 ?)UN

FT IOHS

CL,

nj/UDc -n-s
ST,TU

Slow
In an Adventure-style game
speed is not critical, and most
of the program consists of
m anipulating strings of text.
Therefore it is w ritten in
BASIC and interpreted as it
runs on the com puter

Faster
M any business program s
(particularly spreadsheets)
are difficult to write in
machine code because they
involve a lot of m athem atics.
However, an interpreted
language would be too slow,
so they are often written in
BASIC and then compiled

Fastest
For fast action arcade-style
gam es, which involve the
m anipulation of graphics,
even a com piled program
would not be nearly fast
enough. Such packages have
to be written directly in
m achine code — a slow and
painful task

THE HOME COMPUTER COURSE 185

In s igh ts

pT
«r—

.* - ' v-

' f -1' VJ

— i

*w| 4

it used to be pure science fiction. Now with a speech synthesiser
your computer really can talk to you. And it needn’t sound like a
Dalek, either

While the science of speech recognition has yet to
be fully developed, the generation of electronic
speech has been mastered. Until recently,
however, the computing power and memory
capacity needed to produce human-like
utterances were substantial. Now, with the aid of a
suitable add-on, almost every home computer and
electronic toy is capable of talking back. The rapid
advances in technology and the fall in the cost of
computer components have made the talking
computer commonplace.

When people talk, sounds of three distinctly
different types are produced. The first is ‘voiced’

1 or vowel-type sound — oo, ar, ee and so on. These

rrrrrr:n~

u:4-

I

The Flow Of Sound
Speech can be digitised and
stored in memory, either RAM
or ROM. Electrical output from
a microphone is passed
through an analogue-to-digital
convertor. The output from this
chip is a digital pattern of 1s
and Os. The speech can be
recreated using a digital-to-
analogue convertor, an
amplifier, and a loudspeaker

,-U.

tx

r '^4 ■*

t 2- «*'■'

are produced by the vibration of the vocal chords
in the throat, the frequency of this vibration
determining the vowel sound. The second is the
‘fricative’ or unvoiced sound, such as ss, sh, /and
ff. Here air from the lungs bypasses the vocal
cords and the frequency of the sound is
controlled by the positioning of the lips and
tongue. The third ‘sound’ is silence or — to be
more precise — the gaps occurring within words
like six, eight and so on. You may not realise that
there are gaps in these words, but if you try to
pronounce them slowly you will realise that it is
impossible to run smoothly from the sound of i
mto x.

B u ild in g B lo c k s O f S o u n d

There are two ways of generating speech-like
sounds electronically. The first, until recently the
most common, is that of synthesis by rule. By
analysing the frequencies contained within speech
it is possible to devise a system of rules that allows
us to create any given sound from its components.
For example, the word ‘too’ could be defined as so
many milliseconds of the mixture of frequencies
that make up the sound /, followed immediately by
the 0 0 frequencies.

These individual building blocks are called
‘phonemes’ and by using them in various
combinations any word can be constructed. The
individual characteristics of a human speaker tend
to be lost when speech is generated in this way, but
the words can be recognised and understood.
Because the rules for generating the phonemes are
built into the equipment itself, the user is able to
enter a list of the phonemes into the system. These
are reproduced through a small speaker. With a
little practice it is possible to generate complete
sentences instantly by calling up sequences of
phonemes, which can usually be stored in b a s i c

strings.
The second method of speech synthesis relies

i

i i 1 *k i
t \

Speech Microphone
i

A

A-to-D Digital
Convertor Signal

Memory D-to-A
Convertor

Loudspeaker
(plus amplifier)

T'v-
186 THE HOME COMPUTER COURSE

ti-t
•..A,-- •

KE
VI

N
JO

N
ES

on the human ear and brain to fill in gaps. For
example, the range of frequencies that can be
transmitted over a telephone line gives only one-
fifth the quality we would expect from a
reasonable hi-fi system, yet the speech we hear
through the ear-piece is perfectly understandable.
This is because our brain fills in the gaps.

The second method of synthesis, called
‘digitised speech’, uses the same phenomenon.
With the reduction in cost of computer memory it
is now possible to convert speech into digital
information by means of an analogue-to-digital
converter. The resulting data is then compressed
many hundreds of times and stored in a ROM —
thereby creating the gaps which your ear can
compensate for.

To cause any of the stored words to be spoken
we simply give the computer the address of that
word in the ROM, and the digital information is
recovered and converted back into sound.
Because the original speaker’s words are stored,
the personal characteristics remain. Acorn’s
speech chips for the BBC Micro, for example, can
be clearly identified as the voice of newscaster
Kenneth Kendall.

Some computers, notably the Sirius 1, feature
built in hardware and disk-based software to allow
the user to digitise his own voice using a
microphone. The resulting data is stored on disk
— one second of speech occupies about one
Kbyte — to be recalled from an applications
program as verbal messages and warnings.

The uses for speech synthesisers are so many
and varied that it is almost impossible to list them.
To start with, speech synthesis can replace taped
announcements at railway stations, airports and
other terminals. In the USA it is widely used on the
telephone system to inform callers of wrongly
dialled numbers, engaged numbers or withdrawn
services. Many automated ordering systems now
feature speech response. An order number is
keyed in to a computer, which speaks the
description as a double-check. The computer can
also inform the customer of the current stock level
or the likely waiting period so that the order may
be modified at the time it is placed.

Speech synthesis units are now incorporated
into cars — the BL Maestro, for example — as part
of the standard instrumentation. More than a
mere sales ploy, the synthesiser provides warnings
that the driver can hear and act on without having
to take his eyes off the road.

In the home computer and electronic games
market speech synthesis is used to enhance games:
scores are called out and warnings of enemy attack
can be given verbally, leaving the player free to
concentrate on the tactics of the game rather than
having to consult messages printed at the bottom
of the screen.

Finally, there are educational devices such as
Texas Instruments’ Speak’n’Spell, which recites a
word that must then be spelt correctly, and foreign
language dictionaries that speak the words as they
are displayed.

*'-V -W--H< t. J-

*

'•t--

r* * f ‘
?TT

F ig u re s O f S p e e c h
If we take a short and fam iliar English sentence

‘The cat sat on the m a t’

it is possible to break it down into a series of phonem es, as
follows:

T H E E / K A A T / S A A T / O H N / T H E E / M A A H T

Different chips require that phrases are broken down and
specified in different ways. For the sam e sentence, another chip
m ight require the following phonemes:

T H V E / K A T / S A T / U H 3 N / T H V E / MAT

The Votrax chip, for exam ple, contains som e 60 phonem es and
rules for using them , which can be directly accessed by a sim ple
num ber. To make the system m ore usable, a set of program s is
provided that allows the user to type in the utterance required in
the form of the phonem es it contains, as in the exam ple above.
However, w ith devices such as the Braid Speech Synthesiser or
V otrax’s own Personal Speech System , which incudes a
dedicated m icroprocessor and som e sophisticated software, the
user can type in the plain English text and get the spoken
equivalent back

mmk

S,.;. -m w ;

V

c m %

. ■ i. - -

A ■■ ’■■■■'
■ V <> * V "

-• r

AAH
W

t h e :

TO
N

Y
LO

DG
E

9 Passw ords To C om puting

A

These two commands are used whenever you want to program
something that Basic can’t cope with, but every machine uses them
differently

***** - <V*

POKEing
The POKE statem ent needs to be
used with care as it changes the
contents of m em ory locations
and this could affect the running
of the computer. No dam age can
be caused by this, but it could
mean the loss of a program .
Here are a few ‘safe’ POKE
statem ents for you to try.

On the Atari 400 or 800 ,
POKEing a 1 into location 751
will turn the screen cursor off;
try POKE 751,1.

On the Com m odore 64 , try
POKE 1024 ,1 .1024 is the
address of the first screen
location.

On the S inclair Spectrum ,
try:

100 FOR N = 0 T O 6 STEP 2
110 POKE U S R “A" +

N.BIN01010101
120 POKE U S R “A" + N +

1.BIN10101010
130 NEXT N
140 P R IN T “AAAAAAAA”

The As in line 140 m ust be typed
in the graphics m ode. Running
the program will produce a line
of m iniature checkerboard
sym bols. However, it should
also result in som e interesting
interference patterns on your TV
set

PEEK and POKE are two ‘statements’ from the basic 32
language used in more advanced programming
when individual bits and bytes need to be
manipulated in memory. The PEEK statement is
used to examine (peek at) the contents of a
specific address (location) in memory, and POKE
is used to store a number (ranging from 0 to 255)
in a specific memory location.

PEEK and POKE statements allow the basic
programmer to gain access to the inner workings
of the computer in a way that is not otherwise
possible. Normally, the built-in basic in your
computer takes care of the actual locations where
such things as variables and the data defining the
characters to be displayed on the screen are
stored. Although we do not usually worry about
where such things are in the memory,
occasionally we need to find out. The PEEK
statement allows us to do this.

A short program to examine any memory
location can easily be written:

10 REM LOOKING AT MEMORY LOCATIONS
20 PRINT “ENTER MEMORY LOCATION IN

DECIMAL”
30 INPUT M
40 P = PEEK(M)
50 PRINT “CONTENTS OF LOCATION ”;M;“ ARE ”;P
60 GOTO 20
70 END

• Y ’ “ — ” - V - “ — ” • > A , “ , I , “ ,

Kbytes requires 32767, and 48 Kbytes
requires 49151. A full listing of this program is:

10 REM PEEKING AND PRINTING ALL MEMORY
LOCATIONS

20 FOR X=0 TO 65535
30 LET Y=PEEK(X)
40 PRINT “LOCATION
50 PRINT CHR$(Y)
60 FOR D=1 TO 200
70 NEXT D
80 NEXT X
90 END

Although the CHR$ function converts decimal
numbers into their character equivalents,
printable characters are represented by the
numbers 32 to 127. Most computers use the
numbers between 128 and 255 (the largest
number representable in a single byte) for special
graphics characters. Many of the numbers
between 0 and 31 have special screen control
functions. When these are encountered in
memory as the program is run, they will be
converted by CHR$ into curious screen effects.
These may make the screen go blank, for
example, or cause the cursor to move to the top
left-hand comer of the screen.

The POKE statement is essentially the opposite
of PEEK. It allows you to ‘write’ a byte of data (any
number between 0 and 255) into any memory

This will print the contents of the specified
address expressed as a decimal number. (In fact,
of course, the computer stores it in binary.) If you
would like to see what the contents are equivalent
to in terms of ‘printable’ characters, basic
includes a function to convert decimal numbers
into their character equivalents. This is the CHR$
function and changing line 50 will print character
equivalents of the memory locations instead:

location. POKE must be used with care: if you
POKE a number into the wrong part of memory
you could ‘crash’ the computer by corrupting part
of an essential program. The only way to recover
from this is to reset the computer (switching it off
and then on, unless it has a reset button), and this
risks destroying one of your programs. Before
using POKE, therefore, check the manual to find
an area in the memory map designated a ‘user

50 PRINT “CONTENTS OF LOCATION ”;M;“ ARE
CHR$(P)

To examine the whole of memory, a FOR...NEXT
loop can be added by deleting line 30, changing
line 20 to FOR X = 0 TO 65535 and replacing line 60
with NEXT X.

To give enough time to see each character as it
is printed, you may need to add a delay loop after
the PRINT statement and before the NEXT X
statement. Note also that the upper limit of the
FOR...NEXT loop assumes you have a 64 Kbyte
memory. This number can be changed for smaller
memories: 16 Kbytes requires 16383 in decimal,

area’.
Most home computers make the video

memory (the memory used for storing the
characters to be displayed on the screen)
available to the user. Normally, the computer gets
the shape of the characters to be displayed from a
special ROM called a character generator, which
stores the patterns of dots for each character. But
it is usually also possible to use RAM as well.
When the pattern codes for characters are stored
in RAM, new patterns, specified as decimal
numbers, can be POKEd to the appropriate RAM
location and used to define completely new
displayable characters.

188 THE HOME COMPUTER COURSE

H ard w are Focus

Texas Instruments’ home computer is a Mercedes among
Volkswagens - it has a high standard of construction, but the
add-ons are expensive

In terms of design and construction, Texas
Instruments’ TI99/4A is one of the most
professional of home computers. TI’s withdrawal
from the home computer market was a blow to
hobbyists, but the machine is still being sold, and
devotees regard it as still worth the trouble of
seeking out.

It uses a 16-bit microprocessor, the TMS9900,
designed and made by Texas Instruments, who
make semiconductors, calculators, micro
processors and minicomputers. The TMS9900
was one of the first 16-bit chips but it failed to gain
widespread popularity.

The TI99/4A has a 48-key keyboard, which by
the general standards of home computer
keyboards is very good to type on. There is a space
to the right of it that receives the software
cartridges, which Texas refer to as ‘solid state
software’. A similar connector on the right-hand
edge of the case permits hardware expansion. The
expansion modules, which are large plastic boxes,
contain disk drive controllers, memory expansion

and a serial (RS232) interface and are connected
via an expansion box, a unit which is essential if
you wish to extend the machine.

The screen display is in 16 colours with high-
resolution graphics, and there is also a sound
generator capable of producing three
independent notes or ‘voices’ at once. However,
the lack of good documentation makes writing
machine code programs to use the graphics and
sound facilities fairly hard to learn.

Almost every hardware add-on costs £90 or
more and there are virtually no peripherals made
by suppliers other than Texas.

The computer is designed for new users to
computing, b a s i c being the resident language and
l o g o the most popular add-on language. In
America it has been widely used in schools, and
once competed with the Apple II for the position
of top-selling educational micro.

When it is switched on, a menu is displayed on
the screen offering the user a number of choices. If
a software cartridge is plugged into the computer

TI99/4A Keyboard
The keyboard is of a higher
standard than on m ost hom e
com puters, though som e users
have com m ented that the
‘bounce’ on each key is too stiff.
The num ber of keys is also
rather lim ited, presum ably to
m ake room for the cartridge slot
on the right-hand side. M ost of
the keys, therefore, double up
— pressing ‘C TR L’ and ‘E’ will
achieve the cursor-up function.
The ‘FCTN’ key turns the top
row into user-definable keys,
and it is possible to insert a strip
of plastic above th is row, on
which labels can be written

THE HOME COMPUTER COURSE 189

H ard w are Focus
■IHI

the user is presented with the option of running the
new software or of running basic. The built-in
basic is limited in its abilities, but an ‘extended’
basic cartridge is available, which brings the
facilities up to and beyond Microsoft standard,
giving formatted print commands (see page 53),
sprite graphics and the ability to operate a speech
synthesiser. The synthesiser costs £34.95 but
needs either the extended basic or the Speech
Editor cartridge to operate it.

The TI99/4 A has many hardware and software
extensions. Every sort of peripheral is available
and many programming languages can be
purchased. But although the basic computer is
cheap, most of the extras are expensive.
Nevertheless, the overall system is easy for novices
to use, and its robust construction makes it
popular with children.

The Joystick
Texas Instrum ents’ joysticks (they call them 'W ired Controllers’)
com e as a pair of units, w ired together onto one plug for
connection w ith the com puter. Inside each device are four
switches, which are not unlike the connectors underneath some
keyboards _

k

rV

Peripheral Expansion Box
This case contains a power supply, connections and space to
contain all the m odules for m em ory expansion, disks and printer
interfaces. These modules are large plastic cases that contain
circuit cards with an edge connector at the base, a ‘pow er o n ’
light at the front and any cables com ing out of the back. There
are eight ‘s lots’ in the box. The left-hand one has to contain the
m odule that connects the expansion box to the com puter and th e
right-hand slot has to be for the disk drive electronics m odule.
This leaves six slots for m em ory and serial port expansion. Only
one extra 32 Kbyte m em ory m odule can be added, which gives
52 Kbyte m axim um RAM. The serial interface m odule allows
serial devices, such as printers and m odem s that use the R S232
form at, to be connected to the T I9 9 /4 A

T I9 9 /4 A enthusiasts can keep
in touch through ‘T l U ser’,
c/o Galaxy Video, 60 High St,
M aidstone, Kent ME14 1SR

* ' X / X S / . v ,

Video Connection
This connector provides the
basic signals for generating PAL
(UK and Europe) and NTSC
(Am erican) television signals

RAM
The m achine com es with 16
Kbytes RAM as standard, which
can be expanded externally

Joystick Connectors
This single m ultip le pin
connector can cope w ith twin
joysticks m ade by Texas
them selves

Discrete Components
Another feature of com puters
such as this, which were
designed som e years ago
large num ber of discrete
com ponents, such as
transistors and resistors,
one chip can replace dozens of
these

o

ROM
The onboard ROM can be
supplem ented by m eans of
plug-in cartridges. For exam ple,
extended BASIC will enhance
the range of com m ands
available

On-Off Switch
This incorporates an LED
pow er-on indicator

190 THE HOME COMPUTER COURSE

■■■■■■■■■
H ard w are Focus

So

i?& Co
#

Cassette Port
The T I9 9 /4 A can w ork with two
dom estic cassette recorders,
and can control the m otor of
one of them . This m eans it can
cope w ith crude business
program s, which require the
copying of data from one deck
to another

CPU
T h e T M S 9 9 0 0 is an early
processor, which is w hy it is
physically large. All the address
and data lines as well as control
lines have separate
connections. M ore modern
processors share functions of
pins and so reduce te e to ta l
num ber on the chip. Unlike
other hom e com puters this is a
16 -b it m icroprocessor

Peripheral Port
This is just a PCB edge
connector that other units link
up w ith. Texas call it their CRU
(Com m unications Register
Unit) interface. Before the
general-purpose expansion unit
was introduced, individual
peripherals were plugged into
each other in a long line. This is
called ‘p iggy-backing ’

ROM Pack Connector
ROM packs, which Texas call
‘Solid state com m and m odules’
plug in here. The m echanism is
considerably m ore robust than
on m ost m achines

Scratchpad Memory
The chips m arked 6 8 1 0 are
special scratchpad m em ory
essential to the operation of the
9 9 0 0 . This m icroprocessor is
different from all other
m icroprocessors in having no
internal m em ory locations
(registers) and so needs to use
som e external m em ory. This
scratchpad m em ory is not
accessible to norm al program s

T I9 9 /4 A
PRICE
Obtainable from about £60

l

SIZE
380x260x70 mm

WEIGHT
1.8 Kg (4lbs)

CLOCKSPEED
1MHz

MEMORY
26 Kbytes ROM, 16K user RAM,
8K graphics RAM. There are an
extra 256 bytes of ‘scra tchpad ’
RAM not norm ally available to
the user. These are used fo r the
internal registers of the 9900, most
CPUs have them built in

VIDEO DISPLAY
Character d isp lay of 24 rows of
32 colum ns. There are 16
co lours w hich can be used as
foreground and background
colours. No user graphics are
available on the basic machine
but ind iv idual 8 x 8 character
cells can be defined w ith a
sequence of 16 characters

INTERFACES
Cassette, joystick , video (not
TV), a cartridge s lo t and a
connector fo r the expansion bus

LANGUAGES SUPPLIED
BASIC

OTHER LANGUAGES
Extended BASIC, Tl LOGO,
UCSD(University of California at
San Diego) PASCAL, Tl FORTH,
and Assembler

COMES WITH
Power supply adaptor, TV
adaptor, cassette connector and
manuals

KEYBOARD
Typew riter-sty le w ith 48 moving
keys, includ ing contro l and
function keys. The num eric keys
double as function keys,
depending on the added software
cartridges

DOCUMENTATION
There is one main manual w ith
an addendum fo rth e UK market,
w hich describes how to connect
up the com puter and how to use
the ‘solid state command
m odu les ’ . This in troduction is
very short and has many
d iagram s but no photographs.
There is a detailed lis t of
com m ands available in the
BASIC, a section giving some
example program s, and a short
g lossary at the end of the
manual

THE HOME COMPUTER COURSE 191

S oftw are

Piracy is the thorn in the flesh of the software industry. That’s why
suppliers go to such lengths to protect their programs

Slave Driver
Softw are cassettes, like music
cassettes, are duplicated using
a high-speed tape copier. This
consists of a m aster deck, into
which the original is placed, and
a num ber of slave units which
m ake recordings
sim ultaneously. Copying both
sides of a program cassette
takes a m atter of seconds.
Disks have to be copied
individually using norm al disk
drives

A Hundred To One
Just as it is technically illegal to
make copies of other people’s
m usic cassettes, copying of
program s represents software
piracy. Unfortunately for the
suppliers, piracy is not only
difficult to prevent, but equally
difficult to detect and prosecute.
Som e suppliers claim that for
every copy of their programs
bought legitim ately a hundred
illegal copies are made

Software piracy can be defined, simply, as the
unauthorised copying of programs. In common
with the music business, which the software
industry is starting to mirror, piracy happens in
different ways and at different levels. At the
lowest level, piracy is committed every time a
home computer user makes a copy of a program
that has been borrowed from a friend. Even the
fact that some programs (especially those written
in machine code) can’t be SAVEd using the normal
basic commands provides little deterrent,
because it is always possible to link two cassette
recorders together and copy the program from
one to the other — without the need for a
computer at all.

Some games suppliers claim that for every
copy of a title they sell, up to 100 illegal copies are
made. Though it might be argued that some of
them can well afford the loss, it must also be
remembered that there are a good many people
who earn their living from program royalties and
who don’t drive around in Rolls Royces!

There has been a great deal of controversy
concerning dealers who offer software on loan,
rent, or the try-before-you-buy schemes — since
they make it easier for those who copy programs.
Less scrupulous dealers will take this a stage
further, and give away pirated copies of popular
titles to someone buying a home computer to
increase its effective value.

192 THE HOME COMPUTER COURSE

There distributorare even cases of a
reproducing programs in quantity and selling
them to other dealers — not as risky as it sounds if
the package’s suppliers are in another country.
These products are therefore equivalent to
‘bootleg’ copies of well-known rock albums.

Hereafter, the piracy becomes more
sophisticated and more difficult to pin down.
Someone takes an existing program, for example,
makes some modifications to it and markets it as
his own. The new version may offer a substantial
improvement in performance or additional
facilities, or may simply feature a change to the
‘credits’ displayed when the program is first run,
and the layout of information on the screen, in
order that the package isn’t immediately
recognisable. This practice is more common with
business programs than games.

Whether this process of modification is
software piracy in the same sense as pure copying
is arguable, which is why so many people get
away with it. Software publishers receive little
protection from the law and the existing laws of
copyright do not protect programs from piracy or
modification. Copyright, it seems, applies only to
printed material (with special exceptions for
music) and therefore computer programs that are
stored only in RAM or on cassette are not
covered. As with most legal matters, precedents
have to be established and they take time and
money.

The most woolly area is where a company take
an idea from a popular program, and reproduce
their own version of it. Note that they aren’t
copying any of the program code, they are merely
taking accurate note of how the game appears on
the screen and reacts to the user’s input, and then
writing a program from scratch to achieve the
same effect. The most noteworthy example of this
lias been PacMan — the arcade game that started
out on coin-operated machines, was made
available on Atari’s own home computers and
Video Cartridge System, and subsequently
appeared in different variations from a score of
software publishers. Each looked slightly
different, but each featured the familiar little
creature gobbling his way around the maze. Over
a period of months Atari successfully managed to
eliminate most of these competitors, either by
court action or, in the case of smaller operations,
simply with the threat of court action.

Generally, software authors and suppliers have
to resort to means outside the legal system to
protect their program code and royalties. Some
suppliers take the laudable view that if they sell
their products cheaply enough, there is less
incentive for people to copy. On more
sophisticated programs, a well-produced manual
and attractive packaging afford some degree of
protection.

‘User-registration’ is one means by which more
expensive business software is protected: unless
you have returned the card from the owner’s
manual, you won’t be able to obtain help and

support on the telephone.
So-called ‘hard’ methods of protection usually

involve a matchbox-sized device, called a
‘dongle’, which must be plugged into one of the
computer’s interface ports in order for the
program to run. The dongle’s circuitry
incorporates a short electronic code, usually a
pattern of ones and zeros burnt into a ROM. At
frequent intervals the applications program
addresses the dongle; if it doesn’t receive the
correct code back it will refuse to continue. The
code may well be individual to each dongle,
which means that each copy of the package must
be matched to the dongle it will be sold with. The
only way to make illegal copies is by forging the
dongle, or re-writing the program code to remove
the sections that refer to the dongle — by no
means impossible, but well beyond the capability
of most home programmers.

A lot of research has been put into methods of
achieving the same protection, without additional
hardware. The idea, aptly known as ‘water
marking’, is to have a magnetic code
superimposed on the cassette or disk ‘behind’ the
recording of the program itself, which will not
transfer to a copy, so the program won’t run on
any disk or cassette other than the original.

The only economically viable ‘hard’ protection
for the games suppliers is the ROM cartridge,
which generally commands higher prices because
it avoids the long loading times of cassettes.
Nevertheless, even the cartridge is not
impregnable — devices now exist which can copy
a cartridge either onto a cassette, or onto a new
kind of cartridge that can be programmed or re
programmed by the user.

Software piracy is a cops-and-robbers style
battle with the protagonists constantly trying to
leapfrog each other in ingenuity. It is unlikely ever
to be eliminated; at best it can be made
sufficiently costly to be only a marginal activity.

Dongles
These are small hardware
devices used to protect certain
program s against illicit copying
Such program s will not run
unless the correct dongle is
plugged into one of the.
com puter's interfaces. The
electronics inside are usually
encased in solid resin, so it's
very difficult to interfere with
them

THE HOME COMPUTER COURSE 193

IA
N

M
cK

IN
N

EL
L

Basic P rogram m ing

One-dimensional arrays, as we have seen, store a collection of data
that have something in common. Two-dimensional arrays are used
for tables and charts

So far we have considered two types of variables,
simple variables and subscripted variables. Simple
variables are like memory locations where
numbers (or character strings) can be stored and
manipulated by referring to the variable ‘label’.
Simple variables can store just one value or string
and have ‘simple’ variable names — N, B2, X, Y3
are examples. Subscripted variables, sometimes
called one-dimensional arrays, can store a whole
list of values or strings. The number of values or
strings that can be held is specified at the
beginning of the program using the DIM statement.
For example, DIM A(16) establishes that the array
labelled A can contain 16 separate values. It should
be noted, however, that many basics accept A(0) as
the first element, so that DIM A(16) actually defines
17 elements. These ‘locations’ are referred to by
using the appropriate subscript. PRINT A(1) will
print the first element in the array; LET B = A(12)
assigns the value in the 12th element in the array to
variable B; LET A(3) = A(5) assigns the value of the
fifth element to the third element.

Sometimes, however, we need to be able to
manipulate data that is best presented as tables.
Note how closely this resembles a spreadsheet (see
page 158). Such data could range from tables of
football results to a breakdown of sales by item
and department in a store. As an example of a
typical table of data, consider this breakdown of
household expenditure over a one year period:

RENT PHONE ELECTR. FOOD CAR

JAN 260 .00 25 .10 4 1 .5 0 161 .30 5 0 .5 5
FEB 26 0 .0 0 35 .40 4 3 .7 5 145 .90 4 6 .2 0
MAR 260 .00 2 9 .0 5 50 .70 151 .20 4 3 .4 0
APR 26 0 .0 0 26 .20 4 4 .6 0 155 .30 4 9 .2 0
MAY 26 0 .0 0 19.30 3 9 .8 0 150 .95 4 8 .3 0
JUN 26 0 .0 0 2 0 .4 5 3 2 .6 0 14 7 .6 5 5 2 .3 0
JUL 26 0 .0 0 30 .50 2 6 .1 0 150 .35 58 .40
AUG 260 .00 2 9 .5 0 2 2 .4 0 148 .05 6 1 .2 0
SEP 26 0 .0 0 2 8 .2 5 2 4 .4 5 14 8 .6 0 5 9 .4 5
OCT 26 0 .0 0 31 .15 3 4 .5 0 154 .90 2 3 .5 0
NOV 26 0 .0 0 31 .05 3 9 .5 0 160 .05 4 5 .9 5
DEC 260 .00 2 8 .9 5 4 2 .2 0 21 0 .6 0 51 .25

Arranging the information in this way allows it to
be manipulated in a number of ways relatively
simply. It is easy, for example, to find the total
expenditure in March by simply adding up all the
figures in the row for March. It is just as easy to find
the total expenditure for the year on the telephone
or the car by adding up the vertical columns.
Similarly, it is easy to find monthly or yearly
averages. This table is called a two-dimensional
array. It has 12 rows and five columns.

Two-dimensional arrays such as this can also be

represented in basic in much the same way as
single-dimension arrays. The difference is that the
variable now needs two subscripts to reference
any location.

If we were writing a basic program using this
table of information, the simplest thing would be
to treat the whole table as a single two-
dimensional array. Just as with ordinary
subscripted arrays, we give it a variable name.
Let’s call it A (for ‘Array’). Again, as with ordinary
subscripted arrays, it will need to be DIMensioned.
As there are 12 rows and five columns, it is
dimensioned thus: DIM A(12,5). The order in which
the two subscripts are put is important; the
convention is that rows are specified first and
columns second. Our table above has 12 rows
(one for each month) and five columns (one for
each of the five categories of expenditure), it is
therefore a 12-by-5 array.

The DIM statement serves two essential
functions. It sets aside enough memory locations
in the computer’s memory for the array, and it
allows each of the locations to be specified by the
variable name followed, in brackets, by the row
and column positions. The DIM statement DIM
X(3,5), for example, would create a variable X able
to represent an array with three rows and five
columns.

Look at the table and assume that the
information has been entered as the elements in a
two-dimensional array labelled A. Find the values
present in A(1,1), A(1,5), A(2,1), A(3,3) and A(12,3).

It is possible to enter a table of information as an
array in part of a program by using LET statements,
for example.

30 LET A(1,2) = 25.1
40 LET A(1,3)= 41.5
50 LET A(1,4) = 161.30

610 LET A(12,5) = 51.25
But this is clearly a laborious way of doing things.
A far simpler method is to use either READ and
DATA statements or the INPUT statement with
nested FO R... N EXT loops. Let’s see how it could be
done using the READ statement:

10 DIM A(12,5)
20 FOR R = 1 TO 12
30 FOR C = 1 TO 5
40 READ A(R,C) -
50 NEXTC
60 NEXT R
70 DATA 260, 25.1,41.5,161.3, 50.55, 260, 35.4,

194 THE HOME COMPUTER COURSE

Basic P rogram m ing

43.75
80 DATA 145.9, 46.2, 260, 29.05, 50.7,151.2, 43.4,

260
90 DATA 26.2, 44.6,155.3, 49.2, 260, 19.3, 39.8,

150.95
100 DATA 48.3, 260, 20.45, 32.6, 147.65, 52.3,

260, 30.5
110 DATA 26.10, 150.35, 58.4, 260, 29.5, 22.4,

148.05,61.2, 260
120 DATA 28.25, 24.45, 148.6, 59.45, 260, 31.15,

34.5
130 DATA 154.9, 23.5, 260, 31.05, 39.5, 160.05,

45.95
140 DATA 260, 28.95, 42.2, 210.6, 51.25
150 END

There are a number of important points to note
about this program. The first is that the DIM
statement is right at the beginning of the program.
A DIM statement should be executed only once in a
program and so it is usual to place it near the
beginning or before any loops are executed. The
second point to note is that there are two
FOR...NEXT loops, one to set the ‘row’ part of the
subscript and one to set the ‘column’. These two
loops do not follow one after the other; they are
‘nested’ one inside the other. Notice the limits
chosen. FOR R = 1 T012 will increment the value for
the row from one to 12; FOR C = 1 TO 5 will
increment the value for the column from one to
five.

Right in the middle of the nested loop is the
READ statement. The crucial part of the program
is:

20 FOR R = 1 TO 12
30 FOR C = 1 TO 5
40 READ A(R,C)
50 NEXTC
60 NEXTR

The first time through, after lines 20 and 30 have
been executed, the values of R and C will both be
one, so line 40 will be equivalent to READ A(1,1).
The first item of data in the DATA statement is 260,
so this value will be assigned to the first row and
the first column of the array. The choice of eight
elements to each DATA statement is purely
arbitrary.

After that has happened, the NEXT C statement
sends the program back to line 30 and the value of
C is incremented to two. Line 40 is now equivalent
to READ A(1,2) and the next item of data, 25.1, will
be assigned to the first row and the second column
of the array. This process is repeated until C has
been incremented to 5. After that, the NEXT R
statement in line 60 returns the program to line 20
and R is incremented to two. Line 30 will set C to
one again and so now line 40 will be equivalent to
READ A(2,1).

Nesting loops in this way is very useful, but care
is needed. Each loop must be nested completely
within another loop and the order of the NEXT
statements must be carefully observed. Notice
how the first loop, FOR R, has the second NEXT
statement. When there are two loops, one nested

inside the other, the first loop is called the outer
loop and the second is called the inner loop. The
whole of the inner loop will always be completed
before the index of the outer loop is incremented.
It is possible to nest loops to as many ‘depths’ as
required by the program, but such programs can
become complex and difficult to follow and
debug. It is bad programming practice to put
branching instructions inside loops and GOTOs are
to be avoided.

Let’s look at the DATA statements. Notice that
commas are used to separate data items, but there
must be no comma before the first data item or
after the last. We have inserted spaces between
each data item, but this is not normal. Mistakes
when entering the data are easy to make and
difficult to spot later. As many DATA statements as
required may be used. Each new line needs to start
with a DATA statement. The data is read in one item
at a time, starting from the beginning of the first
DATA statement and working through until all the
items have been read. Be sure that the number of
data items is correct or you will get an error
message when the program is run.

The program presented so far does not actually
do anything except convert appropriate data into
a two-dimensional array. After the program has
been entered and RUN, nothing will apparently
happen and all you will see on the screen will be
the basic prompt. To test that the data is correctly
placed, try a few PRINT commands. (A command
in basic is a keyword that can be immediately
executed without having to be within a program
and does not therefore need a line number.
Examples are LIST, RUN, SAVE, AUTO, EDIT and
PRINT). PRINT A(1,1) <CR> should cause the
number 260 to appear on the screen. What will be
printed by the following commands?

PRINT A(12,1)
PRINT A(1,5)
PRINT A(5,1)
PRINT A(5,5)

To make the program do something useful, it will
need to be extended. As it stands it forms an
adequate basis for a ‘main program’. To use it as
part of a larger, more useful program, modules
can be written as subroutines to be called by
GOSUBs inserted at suitable points before the END
statement.

In the early stages of designing a household
accounts program, it is best to start with a simple
written description of the general requirements.
We might decide that we want to be able to have
totals and averages calculated for monthly
expenditure or by category (electricity, for
example). We can work out the details of how to
derive these results at a later stage. If there is a
choice to be made within the program about
which subroutines we wish to be executed we will
probably want to be prompted by a ‘menu’ which
will direct control to the appropriate subroutines
as a result of our response. An early sketch of the
program at this stage might look like this:

THE HOME COMPUTER COURSE 195

Basic P rogram m ing

MAIN PROGRAM
(DATA ENTRY)

MENU
(SELECT SUBROUTINES)

END
A little further refinement may show that we will
need subroutines to calculate totals for months or
for categories (MONTHTOTAL and CATTOTAL),
average monthly expenditure (MONTHAV) and
average yearly expenditure by category (CATAV).
The reason for using one-word names for these
subroutines is to help us to plan the program
without having to worry about details such as line
numbers at this stage. On reflection we may
decide that even the main menu selection part of
the program should be dealt with as a subroutine
in order to keep the main part of the program as a
separate module. The next stage of refinement of
the program will look like this:

MAIN PROGRAM (DATA ENTRY)
MENU (CALL SUBROUTINE)

END
★ ★ SUBROUTINES★ ★

1 MENU
2 TOTALS
3 AVERAGES

(2) TOTALS
4 MONTHTOTAL
5 CATTOTAL

(3) AVERAGES
6 MONTHAV
7 CATAV

This sketch of the program shows that the MENU
subroutine will give us a choice of either TOTALS or
AVERAGES. Both of these will themselves be
subroutines. The TOTALS subroutine will give a
further choice of MONTHTOTAL or CATTOTAL.
These will be the subroutines that perform the
actual calculations.

The AVERAGES subroutine will give a choice of
MONTHAV or CATAV, and again these will be
subroutines to perform the appropriate
calculations. At this stage it should be possible to
see whether our ‘program’ will do what we want,
without doing any actual coding (detailed
program writing in basic). If we can be satisfied
that ‘so far so good’, we are read'7 to tackle the
writing of the modules (subroutines) themselves.
The only change needed to the main program will
be a subroutine call before the E N D statement, so
we could add:

145G0SUB “ MENU★ ★

Note that we are still using ‘names’ for subroutines
rather than line numbers. Many languages,
pascal, for example, allow sub-programs to be
called by name, but most versions of basic do not
and actual line numbers are needed instead.
However, these ‘details’ can be incorporated later.

Let’s see how the MENU subroutine could be

written (line numbers have been omitted and you
can add appropriate ones if you wish to implement
this program).

REM THE “ MENU** SUBROUTINE
PRINT “WOULD YOU LIKE T(OTALS) OR

A(VERAGES)?”
PRINT “TYPE EITHER A OR T”
INPUT L$
IF L$ = “T” THEN GOSUB‘TOTALS*
IF L$ = “A" THEN GOSUB ‘AVERAGES*
RETURN
Note: we are marking the subroutines called by

enclosing them within *----* marks. You will
have to use line numbers instead. These can be
inserted when you are in a position to know what
they are.

Suppose you type T for TOTALS. The program
will then call the TOTALS subroutine. This will then
present another menu and could look like this:

REM THE “ TOTALS** SUBROUTINE
PRINT “WOULD YOU LIKE TOTALS FOR’’
PRINT “M(ONTH) OR C(ATEGORY)?”
PRINT “TYPE EITHER M OR C”
INPUTL$
IF L$ = “M” THEN GOSUB ‘MONTHTOTAL*
IF L$ = “C” THEN GOSUB 'CATTOTAL*
RETURN

Suppose you selected M for MONTHTOTAL. Let’s
see how we could write a module to calculate the
total expenditure for any month in the year.

REM THE “ MONTHTOTAL** SUBROUTINE
REM THIS CALCULATES TOTAL EXPENDITURE FOR
REM ANY MONTH
PRINT “SELECT MONTH-
PRINT “1 -JAN 2-FEB 3-MAR 4-APR 5-MAY"
PRINT “6-JUN 7-JUL 8-AUG 9-SEP”
PRINT “10-OCT11-NOV 12-DEC”
PRINT “TYPE A NUMBER FOR THE MONTH”
LET T = 0
INPUT M
FOR C = 1 TO 5
LET T = T + A(M,C)
NEXT C
PRINT “THE TOTAL EXPENDITURE FOR MONTH-
PRINT "NUMBER ”;M;“ IS ”;T
RETURN

The number representing the month is typed in
and the INPUT statement assigns the number to the
variable M (MONTH). M is used to specify the ‘row’
subscript of the two-dimensional array A. The
FOR-NEXT loop increments the value of C (column)
from one to five so the first time through the loop,
if we had selected three for March, the LET
statement would be equivalent to LET T=T + A(3,1).
The next time round it would be equivalent to LET
T = T + A(3,2) and so on.

This week we’ll leave you to write the other
subroutines, or try out the other exercises. Two-
dimensional arrays are ideal for any program that
involves tables of data, be they statistical, financial
or any other quantity.

196 THE HOME COMPUTER COURSE

Basic Program m ing

Answers To Exercises On Page 175 20 LET R = R + 1
30 IF INKEYS = “ ’’ THEN GOTO 60

RND Function 40 LET L = 0

40 IF R > 6 THEN LFT R = 1 50 NEXT L

Loop And Average 60 PR IN T “THE VALUE OF R AFTER 10 SECONDS IS
”;R5 FOR L = 1 TO 100

•

a

70 END
■

80 LET T = T + R IF...THEN
90 NEXT L 10 GOSUB 1000
100 LET A = T /1 00 20 PR IN T “GUESS THE N U M B E R ”
110 P R IN T A 30 FOR G = 1 TO 5
120 END 40 IN PU T N

Replace With Subroutine 50 IF N > R THEN GOTO 110
Delete lines 5 , 8 0 , 9 0 , 1 0 0 , and 110 in the solution above. Change lines 60 IF N < R THEN GOTO 130
10 to 70 to (say) 1 0 0 0 to 1070 . Check that line 40 is as in the RND 70 IF N = R THEN GOTO 150
Function solution above. Then add 1080 RETURN. Incorporate the 80 N E X T G
result into the m ain program . Change lines 50 and 130 in the main 90 PR IN T “NO MORE GOES. YOU LO SE!”
program to read 50 GOSUB 1000 and 130 GOSUB 1000. 100 GOTO 500
INKEYS 110 PR IN T “YOUR GUESS IS TOO LARGE”

10 PR IN T “TYPE ANY KEY” 120 GOTO 80
20 LET AS = IN KEYS 130 PR IN T “YOUR GUESS IS TOO S M A L L ”
30 IF AS = “” THEN GOTO 20 140 GOTO 80
4 0 P R IN T “THE KEY YOU H IT W A S ”;A$ 150 PR IN T “YOU ARE RIGHT,
50 END C O NG RA TULATIO N S”.

(On the Spectrum add: 15 IF INKEYS < > “” THEN GOTO 15) 500 END
Timing Loop 1000 REM **R A N D O M S U B R O U T IN E **

5 P R IN T “H IT T H E SPACE-BAR AFTER 10 SECO NDS” (Insert your subroutine here.)
10 FOR L = 0 TO 1 1020 RETURN

Errata
We regret that errors appeared
in the Basic Program m ing
course in Issues 5 and 7. Two of
the LET statem ents on page 99,
Issue 5, should have read:

LET X (5) = 31
L E T X (6) = 30

On page 100 we should have
said:

910 LET M = 2
On page 137, Issue 7, two lines
in the Basic Flavours box,
concerning the INSTR

com m and, should be revised
to read:

525 NEXT P
(for Com m odore m achines and
the O ric-1), and:

540 FOR P = 1 TO L
(for the ZX81 and Spectrum)

E x e rc is e s
■ A s s i g n i n g V a l u e s Write a program that assigns
values to the elements (‘Petrol’, ‘Service’ etc.) of
the matrix (see illustration below). Next, write a
subroutine that asks for a month, and an expense
heading, and prints the contents of the box thus
specified. Finally, write a subroutine that finds the
sum of each column, and places the result in the
bottom box, does the same across the rows, and
then calculates the grand total, which it stores in
the lower right box.
■ B u g s The following program would not run
properly and would produce an error message.
There are two mistakes. Find them and make
appropriate corrections.

•10 DIM A(3,4)
20 FOR R = 1 TO 3
30 FOR C = 1 TO 4
40 READ A(R,C)
50 NEXTC
60 NEXTR
70 FOR X = 1 TO 3
90 FOR Y = 1 TO 4
100 PRINT A(Y,X)
110 NEXT Y
120 N EXT X
130 DATA 2,4,6,8,10,12,14,16,18,20,22
140 END

PETROL

SERVICE

SPARES

CARWASH

INSURANCE

TAX

MOT

TOTAL

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC TOTAL
Car Expenses
The picture shows a grid of 8 x
13 squares. The rows represent
different elem ents of the cost of
running a car, and the colum ns
represent the different m onths
of the year. Follow the exercise
on ‘Assigning Values' to
calculate the vearly cost of
running a car

THE HOME COMPUTER COURSE 197

A plotter is the best means of producing high quality graphic output
from your computer. Working with fibre-tip pens, some can change
colour automatically

The ability to create printed copies of diagrams
that appear on a computer screen is an essential
requirement for many serious computer users.
Engineers, scientists, technical artists and
businessmen all need accurate diagrams and
charts that conventional printers are not capable
of producing. The only device that can create
these images is a plotter and, until recently, these
have been too expensive for the home computer
user.

However, with the introduction of devices like
the four-pen printer/plotter mechanism used in
the Tandy/CGP-115 and Oric MCP-40 printer,
graphical output is at last within reach of the
emptiest wallets. A whole range of plotters has
recently appeared on the market that offer
features previously only found in machines
costing thousands of pounds.

The need for a plotter is generally governed by
the type of output being generated by the
computer. An engineer or draughtsman will need
accurate drawings of equipment and installations,
a businessman might want charts and graphs
showing sales figures. Producing these on
conventional printers is a very laborious process
and the results will appear only in black and white.
The only other low cost option is to take a colour
photograph of the screen and while this might
suffice for business charts, it certainly won’t be
accurate enough for a designer or architect.

Plotters work in an entirely different way from
printers: they draw lines between two points
rather than creating their output from preformed
characters or patterns of dots. The basic principle
behind all the various systems is that of the X, Y
coordinate. Just as a graph can be plotted by
defining the coordinates through which the line
must pass, so any shape can be broken down into a
series of coordinates. To be able to join these
coordinates together in order to recreate the
shape, there must be some form of movement. So
the pen is fixed to a travelling gantry that can move
in the X direction (left and right) while the pen
moves along the gantry in the Y direction (ip and
down).

The traditional type of plotter is known as a ‘flat
bed’ plotter because the paper is fixed to a flat
plate with the gantry travelling over the top — this
is shown in the illustration. Its disadvantage is that
the plotter must be at least as big as the piece of
paper.

One method of reducing the size is to adopt a
large-scale version of the four-pen plotter idea
198 THE HOME COMPUTER COURSE

Pen Bank
Up to three pens can be
changed autom atically. The
gantry returns to the pen bank
and exchanges the pen in use
for the next colour required.
Further colours can be
exchanged m anually

Magnetic Clip
These hold the paper flat on the
bed of the plotter. They are
made from a flexib le m agnetic
m aterial

(see illustration), in which the paper moves in one
direction and the pen moves in the other.
Examples of this are the Strobe 100 and the
Hewlett Packard Sweetlips plotters. The
movement of the paper must be as precisely
controlled as the motion of the gantry in the flat
bed type, and is achieved by using a stepper
motor. A stepper motor is a very special type of
motor that only rotates by a fraction of a turn for
each pulse of power that is applied. It is mainly
found in disk drives, where it controls the
positioning of the head on the surface of the disk,
and in robot devices (see page 176).

Connecting a plotter to a computer is generally
the same as connecting a printer, at least in terms
of the interface. Plotters are usually available with
either serial (RS232) or parallel (Centronics or
IEEE488) interfaces, which can be connected to
the port normally used by a printer. The

Pen Holder
The currently selected pen is
clam ped — in th is case
m agnetically — into this holder,
which m oves down and places
the pen in contact w ith the paper

Ins ights

Pen Gantry
The gantry can be positioned at
any point across the page (the X
axis) and the pen holder is then
moved into position along its
length (the Y axis).
Com binations of left to right and
up and down m otions allow any
point on the page to be reached

programming is often a little more complicated in
that, instead of just sending the results of a
program to be printed, information about the way
the results are to be presented must also be sent.
This is generally done in much the same way as a
diagram would be built up on the screen.

Because of the complicated way in which
plotters build up their output they are usually
‘intelligent’. This means they have built-in
microprocessors that convert the characters and
instructions from the computer into a series of
coordinates, which the plotter then draws. Many
of the more sophisticated plotters also allow
complicated shapes such as circles and curves to
be drawn by simply supplying the starting points
— the plotter does the rest. The labelling of graphs

Stepper Motors
These m otors turn through a
few degrees for every electrical
pulse applied. W ith suitable
gearing they provide the fine
m ovem ent of the pen and gantry

Pen Lift Control
This allows the pen to be
m anually placed in contact or
lifted off the paper

and diagrams and the colouring-in of pie charts
and bar graphs are often automatic processes,
making the programming much simpler.

Many plotters come complete with software
that allows them to be used directly from within a
program rather like a paper copy of the screen. If
this type of program is not provided, the user will
have to work out the necessary routines to
translate screen information into the appropriate
codes in order to drive the plotter. Some plotters
don’t feature built-in character sets, so even the
codes for the letters and numbers will have to be
created. This does at least allow the user to design
his own characters and typefaces. Once a shape
has been generated, it can be plotted at any
position and in any orientation or size, so a library
of shapes can be built up for repeated use.
Routines to plot circles and curves and shapes in
sections of graphs are often very useful, especially
in the field of business graphics and these may also
have to be created. However, the principles of
creating a drawing from coordinates on the screen
are just the same as those required to create the
shape on paper, so the programming is usually
quite simple.

Circuit Board
Plotters are usually ‘ in te lligent’
devices - they can be given a
high-level com m and such as
‘draw a circle w ith specified
radius and centre’, and the
plotter works out how to move
the pen. The circuit board
contains its own
m icroprocessor, ROM and RAM

Interface Connection
Plotters connect to the
com puter by m eans of a
standard interface such as
R S 232 (serial) or Centronics
(paralle l). To the com puter it
appears just like a printer,
though different com m ands will
be needed to drive it

Pen Motion Controls
The pen can be m anually
positioned on the page by these
controls

T h e F o u r -P e n

P lo t t e r /

P r in te r
This m echanism captured the
attention of the micro industry
when it first appeared in the
Sharp CE-150 printer. Its
bigger brothers in the form of
Tandy’s C G P -115 and the Oric
M C P -40 have helped bring
low -cost colour printing to the
hom e com puter user.

Like all good ideas the
system is am azingly sim ple in
concept. A roll of paper is
pulled through the
m echanism by a spiked roller.
The paper is m oved both
backwards and forw ards in
very precise steps while a pen
carrier holding four m iniature
ballpoint pens moves across
the surface from left to right
and vice versa.

To create the output, which
can be text or graphical, the
pen carrier is rotated until the
correct colour is in position
and then the pen is pressed
against the paper. Horizontal
lines are created by the pen
m oving while the paper is
stationary, vertical lines use
the m ovem ent of the paper
with the pen fixed in place.
Com binations of the two
m ovem ents produce
diagonals and curves. The
quality of the printing is very
high, although the restricted
paper w idth makes it
unsuitable for word
processing and other serious
uses

THE HOME COMPUTER COURSE 199

Pioneers In Computing

k

This British mathematician gave his name to the accepted test for
machine intelligence. Much of his work, however, was for military
intelligence during the war

Mathematical Feat
Alan Turing (1 9 1 2 -1 9 5 4)
found inspiration and
relaxation through long
distance running. He was
intrigued by the effect of
physical exertion on
creativity and m ental agility

Can Machines Think?
To answer this question, Turing
proposed his fam ous test,
called the Im itation Gam e, but
which has subsequently
becom e known as the Turing
Test. A man is put into a room
that features a teleprinter
(keyboard-cum -prin ter). This is
linked to a teleprinter in another
room , operated by another man;
and also to the com puter under
test. The first m an is allowed to
ask any questions he likes of
either. If he is unable
consistently to determ ine when
he is com m unicating w ith the
m an and when with the
com puter, then the machine
may be deem ed to be intelligent.
After all, the argum ent goes, we
have no way of telling for certain
w hether other people do th ink or
are conscious, except by a
com parison of their reactions to
circum stances with our own

The young Alan Turing showed a remarkable
insight into science. He wrote to his mother from
school ‘I seem always to want to make things from
the thing that is commonest in nature’.
Mathematicians show their talent early and as
soon as Turing could read and write he was
factorising hymn numbers and designing
amphibious bicycles.

While his father was away in Madras working
in the Indian Civil Service, Turing was winning
school prizes and then the scholarship that took
him to King’s College, Cambridge. It was at
Cambridge, first as a student and then as a fellow
of King’s, that his interest began to focus on the
problems of mathematical logic.

In 1931 the Czech mathematician Kurt Godel
astonished the scientific world with the discovery
that there were mathematical theorems that were
true yet could never be proved. Alan Turing set
out to investigate those which could be proved.

He proposed a machine, the construction of
which he left to the imagination, that could carry
out mechanically the processes usually performed
by a mathematician. For each process there was
one machine — for example, a machine to add,
another to divide, and a third to integrate and so
forth. These machines later came to be known as

Turing investigated the workings of these
imaginary machines and came to a remarkable
conclusion. Rather than each mathematical
process needing a separate machine, it was
possible to design a ‘universal’ device that could
be made to imitate any other of the specialist
machines by being ‘programmed’. Turing had
stumbled upon the theory of the programmable
computer.

When the Second World War broke out
Turing was quickly recruited from the academic
world to the Government School of Codes and
Ciphers at Bletchley Park, Buckinghamshire.
Had it not been for the war, his machines might
have remained imaginary, but Bletchley Park was
involved with the highly secret and urgent work
of breaking German military codes.

Because these codes could be changed each
day, machines were needed to crack the ciphers
before new ones were introduced. Bletchley Park
became a huge information processing centre. In
the middle of the war Turing was sent to America
to establish secure codes for transatlantic
communications between the Allies.

The secret nature of his work at this time
means that few records of his movements are
available. However, it is widely supposed that he
met Von Neumann while at Princeton, New
Jersey. Towards the end of the war Turing was
asked to draw up plans for an all-British
computer for the National Physical Laboratory,
to be called ACE.

The Automatic Computing Engine was named
partly in honour of Babbage’s Analytical Engine.
Like this pioneering machine, ACE took a long
time to be constructed, but in many ways it was
far in advance of ENIAC (see page 46).
Frustrated at the slow progress, Turing resigned
and moved to Manchester where he joined the
university’s computer project. At the same time
he became a consultant to the Ferranti company
and subsequently became involved in the first
computers to be built in Britain.

Turing was an eccentric who pursued what he
knew to be important without regard for social
conventions or legal constraints. A friend said he
was ‘divinely retarded’ when it came to seeing
faults in others, but his scientific genius was
flawless. In 1952 he was convicted on charges
relating to homosexuality, and committed suicide
two years later. Who can tell what a contribution
Turing might have made to artificial intelligence,
had he still been alive today?

200 THE HOME COMPUTER COURSE

V\\ » 1
V ' V \ v' \ . IV \
v,Av.\VfvVvS\

:<xc v ^ ĉ v; a ^ % \ ^ ^

A A I n® , \ T s ‘ * £ \
V g ? p B $ * $■ c$«- V / & '

\& Z 0 * ^ \ W 4e A ^ S ef i< f ^ \V '^ \ ;4 - -

■• ^A J ŝ SA-'*O f <!««;!:><Aa? ,\\

, /v % 'V:- V 5 a^ ^ t d&., i • *’*, \ VSc

f • 'V •A) \

THE HOME
* *

<>*•+' -

COMPUTER COURSE
BINDER

A BASIC NECESSITY
To help you keep your copies immaculate we have
made a very special hinder offer. Details of this offer
and a special order form are —

with this issue. f

v-T*WK»

* “ * • •*

y. . a ’ V

/ /

Overseas readers:
This binder offer applies to readers in the UK, Eire and

Australia only. Readers in Australia should complete the special loose insert in
Issue 1 and see additional binder information on the inside front cover. Readers

in New Zealand and South Africa and some other countries can obtain their
binders now. For details please see inside the front cover.

%

Binders may be subject to import duty and/or local tax.

.YOUR COURSE MANUALS!

