
ISSN 0265-2919

Sord M5 A low-cost micro from Japan with
excellent graphics and a promising future 250

Chain Mail We look at an alternative to the
indexed list for data structures 244

Basic Program m ing

Rank And File We continue our Basic
programming project by looking at ways in
which to organise data

>

254

Pinball Wizard A new program to design
your own computer games

Cruise Control The technology behind one
of the latest computerised missiles

Brighter Outlook Computers help to
forecast weather accurately

Tracing Paper An image can be represented
by X-Y co-ordinates. We examine one of the
ways in which this can be done

241

243

248

258

Passw ords T o Com puting

Against All Odds Parity checking, the oldest
method of detecting errors when sending
numbers, is still in use today

9

253

Pioneers In Com puting

Gottfried Leibniz Scientists are working to
perfect this 17th-century mathematician’s 260
idea of a language of logic

Sound And Light

Introducing Sound. . . And Light A new
series to help you make the most of your
computer’s special effects

$

246

N e x t W e e k
• We look at the Tandy Color
Computer, a home computer
that has been on the market for
some time and is well supported
by software and peripherals

Apple’s Lisa might just look
like an expensive business
microcomputer but its software
will revolutionise computing,
both in business and at home

CRTs (Cathode Ray Tubes)
form the heart of both
televisions and monitors.
However, there are other forms
of display, and we’ll be looking
at how some of them work

Editor Richard Pawson; Consultant Editor Gareth Jefferson; Art Director David Whelan; Production Editor Catherine Cardwell; Staff Writer Roger Ford; Picture Editor Claudia Zeff; Designer Hazel Bennington; Art Assistants Liz Dixon,
Safu Maria Gilbert; Sub Editors Tracy Ebbetts, Robert Pickering; Researcher Melanie Davis; Contributors Tim Heath, Henry Budgett, Brian Morris, Elizabeth Coley, Richard King; GroupArt Director Perry Neville; Managing Director Stephen
England: Consultant David Tebbutt; Published by Ortiis Publishing Ltd: Editorial Director Brian Innes; Project Development Peter Brookesmith; Executive Editor Chris Cooper; ProductionCo*ordinatorlanPaton, Circulation Director David
Breed; Marketing Director Michael Joyce; Designed and produced by Bunch Partworks Ltd; Editorial Office 39 Goodge Street, London W1; © 1983 by Ortiis Publishing Ltd: Typeset by Universe; Reproduction by Mullis Morgan Ltd; Printed in
Great Britain by Artisan Press Ltd, Leicester

HOME COMPUTER COURSE - Price UK 80p IR £1.00 AUS $1.95 NZ $2.25 SA R1.95 SINGAPORE $4.50 USA and CANADA $1.95
How to obtain your copies of HOME COMPUTER COURSE - Copies are obtainable by placing a regular order at your newsagent.
Back Numbers UK and Eire - Back numbers are obtainable from your newsagent or from HOME COMPUTER COURSE. Back numbers, Orbis Publishing Limited, 20/22 Bedfordbury, LONDON WC2N 4BT at cover price. AUSTRALIA Back
numbers are obtainable from HOME COMPUTER COURSE. Back numbers, Gordon & Gotch (Aus) Ltd, 114 William Street, PO Box 767G Melbourne, Vic 3001. SOUTH AFRICA, NEW ZEALAND. EUROPE & MALTA: Back numbers are available at
cover price from your newsagent. In case of difficulty write to the address in your country given for binders. South African readers should add sales tax.
How to obtain binders for HOME COMPUTER COURSE - UK and Eire: Please send £3.95 per binder if you do not wish to take advantage of our special offer detailed in Issues 4.5 and 6. EUROPE: Write with remittance of £5.00 per binder (incl.
p&p) payable to Orbis Publishing Limited, 20/22 Bedfordbury, LONDON WC2N4BT. MALTA: Binders areobtainable through your local newsagent price £3.95. In case of difficulty write to HOME COMPUTER COURSE BINDERS. Miller (Malta)
Ltd. M. A. Vassalli Street. Valletta, Malta. AUSTRALIA: For details of how to obtain your binders see inserts in early issues or write to HOME COMPUTER COURSE BINDERS, First Post Pty Ltd, 23 Chandos Street, St. Leonards. NSW 2065. The
binders supplied are those illustrated in the magazine. NEW ZEALAND: Binders are available through your local newsagent or from HOME COMPUTER COURSE BINDERS, Gordon & Gotch (NZ) Ltd, PO Box 1595. Wellington, SOUTH AFRICA
Binders are available through any branch of Central Newsagency. In case of difficulty write to HOME COMPUTER COURSE BINDERS, Intermag, PO Box 57394, Springfield 2137.
Note - Binders and back numbers are obtainable subject to availability of stocks. Whilst every attempt is made to keep the price of the issues and binders constant, the publishers reserve the right to increase the stated prices at any time when
circumstances dictate. Binders depicted in this publication are those produced for the UK market only and may not necessarily be identical to binders produced for sale outside the UK. Binders and issues may be subject to import duty and/or
local taxes, which are not included in the above prices unless stated.

In s ig h ts
f

The Pinball Construction Set — a rem arkable advance in software
design — allows you to design and play your own pinball games on
the screen of an Apple computer

Even in the fast-developing microcomputer
industry, where one can reasonably expect
remarkable new developments to be quite
commonplace, it is still a rare thing to come across
a product that is radically different both in concept
and quality. Such a piece of software is Budgeco’s
Pinball Construction Set (PCS). Running on a 48
Kbyte Apple II, with one disk drive and a joystick,
this package performs an apparently simple
function. It gives the user a picture of a bare
pinball table, and a menu of 38 different types of
‘furniture’ that are used to equip it to the player’s
own design. There is, in addition, a functions
menu from which to choose the tools you can use.

Having filled the table according to your plan —
you are allowed to position upto 128 pieces on the
table, but there is no limit to the number of times
you may use any one type — all that remains is to
play the game. You do this by selecting yet
another function with the joystick. Up to four
players may take turns, but each is allowed only
one ball, instead of the three on most pinball

hand ‘picks up’ the object indicated. The hand
pulls it to its desired position on the table, and
when you release the joystick button, the object is
put firmly in place. .

The interesting thing here is that you are
moving not only the collection of data that defines
the shape of the object, but also the set of rules that
will govern the way it behaves when you come to
play the game. A flipper, for example, always
movps through 45 degrees, first up and then back
down again. A bumper always repels the ball
whilst accelerating' it according to a definable
‘kick’ factor. The ball obeys the Newtonian laws of
motion, and falls down the table according to the
laws of gravity.

But having said all this, there is one tool
(suitably given the symbol of a planet in partial
sunlight) that allows you to alter the parameters of
the real world — gravitational force, for example,
or even time! This function is also controlled by
the joystick. The position of each value on a scale
is altered, just as one would move a slide-type

Do-It-Yourself Games
The P in b a ll C o n s tru c tio n Set

d is p la y s an e m p ty ta b le ; .a

v a r ie ty o f ty p e s o f ‘ fu rn itu re ’ —

b u m p e rs , ta rg e ts , ro ll-o v e rs ,

f l ip p e rs and so o n ; a n d , in th e

c o lu m n on th e r ig h t, th e to o ls

fo r p la c in g th e o b je c ts on th e

ta b le . T h is c o lu m n a lso c o n ta in s

fu n c t io n s fo r a d ju s t in g th e s ize,

shape , c o lo u r and d e g re e o f

in te ra c tio n o f th e p ieces , as w e ll

as fo r s a v in g f in is h e d g a m e s on

d is k

machines, and there is no ‘free ball’ facility. At the
end of the game, pressing ESCAPE gets you back to
the menu. You are encouraged to go on
developing the table after each game by the degree
of feedback you get every time you play.

Both in its conception and execution, PCS
points the way towards truly user-friendly
software. As soon as the program is loaded (and
this requires the user simply to insert the disk and
press RETURN) virtually all the action is controlled
from the joystick. The first tool to be used is a
hand. It is moved so that it points to an object in
the ‘furniture’ menu (such as a bumper or a
flipper) and when you press the joystick button the

Kids’ Stuff
PCS even g ive s yo u a u th e n tic

s o u n d s and th e e q u iv a le n t o f

f la s h in g l ig h ts ! B u t i t ’s a c tu a lly

m o re fu n to d e v ise a n d b u ild

g a m e s th a n to p la y th e m . N ow ,

if it had a T IL T b u ilt in to i t . . .

IA
N

M
cK

IN
N

EL
L

11

%

■

audio volume control by ‘pushing’ it up or
‘pulling’ it down.

All the other functions that one would expect in
a well developed graphics package are also
available. There are ‘tools’ for stretching and
deforming lines by pulling them out between
predetermined nodes (called ‘rubber-banding’);
for painting the blocks with one of the colours
from the palette; and for magnifying small
portions of the graphic image so that you can work
in greater detail.

It is not so much the individual functions and
capabilities of the Pinball Construction Set that
are important, however, as its overall operating
philosophy. Object oriented programming —
where each operating element of the software
package carries with it details of how it will work
and how it interacts with any of the other objects
or elements — lends itself to the production of
programs that need very little computing
experience or aptitude on the part of their users.
This programming method will be used almost
exclusively in the fifth generation of computers
currently being developed. Object oriented
programming is hailed as the most important
breakthrough in the field of software science since
high level languages were first introduced in the
late fifties.

Most home computers have quite sufficient
memory capacity and processing power for their
user’s needs. Any increase in that capacity and
power is likely to be used to increase user
friendliness. The truly remarkable thing about
PCS is that it manages to achieve a high degree of
user friendliness in only 48 Kbytes.

While object oriented programming applies
itself readily to games and other graphics
programs, it takes a little more programming
ingenuity to introduce it into the field of business
software. Though they do not use graphics as their

>*

Step By Step
T hese fo u r p ic tu re s s h o w

v a r io u s s ta g e s in the

c o n s tru c t io n o f a p in b a ll gam e .

F irs t o f a ll th e b a s ic p ieces are

in s ta lle d , th e n a p o ly g o n is

add ed to fo rm a c e n tra l is la n d .

T he p o ly g o n is d e fo rm e d and

p a in te d o ra n g e . F ina lly , s o m e o f

th e o b je c ts a re t ie d to g e th e r (by

m e a n s o f an A N D ga te) so th a t a

b o n u s is s c o re d w h e n a ll th re e

have been a c tiv a te d

Ready To Go
O nce th e g a m e is c o m p o s e d on

th e ta b le it can be saved on d isk .

B ecause a ll th e o p e ra tin g

fu n c t io n s ‘ t ra v e l’ w ith th e ta b le ,

th e o r ig in a l s o ftw a re package

is n ’t needed to re -ru n th e

p ro g ra m

%

%
MYtw

main means of communication, spreadsheet
packages (like Visicalc and Supercalc) are object
oriented to a certain degree, in that each field or
cell can contain both a piece of data and the
relationships that define it.

Another example is Apple’s Lisa system, which
uses a ‘mouse’ to manoeuvre a pointer around the
screen to select the program (represented by a
graphic symbol) that you wish to run. The word
processor, for example, is represented by a sheet
of typing paper; the graph plotting program by a
sheet of squared paper.

Perhaps the most fascinating of all its functions
is the method Lisa uses to transfer data from one
program to another. One of its ‘Icons’ (the name
given to pictorial representations of functions on
the screen) is a clipboard. If we wanted to take a
small section of a spreadsheet and reproduce it as
a graph, it is necessary only to define the window
on the spreadsheet, transfer that window to the
clipboard (which is a temporary storage area) and
carry it across to the graph plotter program.

When we talked about arcade games (see page
221), we noted that there were a number of
generically different types. PCS could well form a
new category. It is tempting to suppose that the
next step the home computer games industry will
take will be the production of Maze and Chase
Construction Sets, Space Invaders Construction
Sets, and so on; at which point many games
program writers could find themselves redundant.

Objective Outlook
A s w e ll as b e in g an in t r ig u in g

a n d e d u c a tio n a l g a m e , th e

P in b a ll C o n s tru c t io n S e t is a

f in e e x a m p le o f o b je c t

o r ie n te d p ro g ra m m in g . In

n o rm a l p ro g ra m m in g , th e

s tru c tu re o f th e da ta is

d e fin e d , a n d th e n p ro g ra m

ro u t in e s a re w r it te n to

m a n ip u la te th is . In o b je c t

o r ie n te d p ro g ra m m in g , th e

c a lc u la t io n s a n d p ro c e d u re s

are in s e p a ra b le f ro m th e da ta .

In th e p in b a ll p ro g ra m ,

m o v in g th e s y m b o l fo r a

p in b a ll m a c h in e ’s f l ip p e r o n to

th e b o a rd n o t o n ly s e ts u p th e

da ta (in th is ca se , th e sh a p e

o f th e f l ip p e r) , b u t a rra n g e s

fo r th e a s s o c ia te d ro u t in e s to

be se t up to a c tiv a te th e

f lip p e r .

O b je c t o r ie n te d

p ro g ra m m in g le n d s its e lf to

v is u a l a p p lic a t io n s .

S p re a d s h e e ts a re a n o th e r

e x a m p le : th e f ie ld th a t

d is p la y s a re s u lt w i l l a lso

c o n ta in th e fo rm u la to g e t th a t

re s u lt.

T he c u r re n t t re n d fo r

b u s in e s s w o rk s ta t io n s th a t

s im u la te th e la y o u t o f ite m s

on a d e s k to p a ls o d e r iv e s

f ro m th e sa m e idea . P o in t in g

to an im a g e o f a p ie ce o f

ty p in g p a p e r on th e sc re e n

a c tiv a te s th e w o rd p ro c e s s o r,

w h i ls t p o in t in g to a m in ia tu re

d ra w in g o f a f i l in g c a b in e t w il l

f i le th e re s u lts a w a y

242 T H E H O M E C O M P U T E R COURSE

CH
RI

S
ST

EV
EN

S

Cruise missiles are a controversial subject, but they contain some
interesting com puter technology — such as bubble memory —
which will soon be appearing in home computers

i

When Neil Armstrong took his one small step
onto the surface of the moon, it was largely due to
computerised guidance systems. Of course,
interplanetary rocketry relies on very precise
engineering, but without computer hardware and
software it would never be possible to perform
positional calculations either fast enough, or with
sufficient accuracy, to allow one object to engage
with another at a vast distance — even an object as
big as the moon.

When one considers current military
requirements that call for the placement of
warheads to within 20 or 30 metres (70 to 100
feet) after a flight across a continent, then the
scope of data processing power needed to
perform the calculations becomes enormous.

Early military experience showed that the
fundamental problem with missiles was that once
fired, no correction was possible. The first major
advance came with the development of simple
guidance systems that were able to judge where
the rocket was in relation to a point on the earth’s
surface (the launch site) by deducing how far it
had travelled, and in what direction. But even a
first-class modem system of this type will be prone
to significant error.

Another, and more accurate, method uses
satellites in geo-stationary orbit as reference
points. The main drawback to these systems is that
the flightpath of the missile — and probably its
target — are deducible by the enemy very soon
after launch, given the capability of modem over-
the-horizon radar systems. To combat this
vulnerability, the ideal military requirement was
for a low-flying missile with a small radar cross-
section that could actually decide for itself the
course it would fly to its target. And so the Cruise
missile was bom.

The Cruise missile constantly updates its
position by analysing the contours of the ground
over which it is flying. This is done by matching a
succession of height-above-ground readings,
from an extremely accurate radar altimeter, with a
contour map of the terrain stored in an on-board
bubble memory.

This system, developed by McDonnell
Douglas, is known as TERCOM (TERrain
COntour Matching), or DPW-23. Each missile
has stored in its bubble memory some 25 ‘route
profiles’ that it compares with the terrain it is
passing over. However, there are drawbacks to
this. For example, the system is not usable over
water as that has no permanent features. It is also

not reliably accurate over sand desert, where the
terrain is in constant motion. Neither, one
suspects, is it accurate in the depths of a North
European winter, when the terrain will be
significantly altered by the large seasonal
snowfalls.

Cruise does not use this guidance system from
the moment of launch. It remains inertial while the
missile flies at altitude in friendly airspace. Once it
is vulnerable to attack from the air or the ground, it
dives to within 15m (50 ft) of the ground for its
flight over enemy territory. Even though it may be
up to a kilometre (1,100 yds) off course at this
point, it is predicted that it will be sufficiently close
to one of its 25 mapped routes to be able to
relocate itself precisely.

When the missile nears its target it turns on a
Terminal Correlator Unit which contains — once
again in bubble memory — a detailed digital
picture of the target area as it would be seen from
an on-coming missile. Tests have shown that this
system is likely to be accurate to within 18m (60
ft), after a flight of some 2,800km (1,750 miles).

Self-Seeking Missile
T he G enera l D y n a m ic s

^ T o m a h a w k ’ G ro u n d L a u n ch e d

C ru ise M is s ile is 6 .4 0 m (2 1 ft)

lo n g , a n d w e ig h s le ss th a n one

and a q u a r te r to n s (1 ,2 0 0 k g) .

F ired f ro m a tu b e m o u n te d on a

m o b ile la u n c h e r, i t s ta r ts life as

a c o n v e n tio n a l ro c k e t, b u t s o o n

d e p lo y s s m a ll w in g s a n d s e ttle s

d o w n to lo w - le v e l f l ig h t

p o w e re d b y a re m a rk a b ly s m a ll

and c o m p a c t tu rb o - fa n je t

e n g in e

COURTESY OF NEW SCIENTIST

Bubble, Bubble
In b u b b le m e m o r ie s , ‘ b u b b le s ’

o f m a g n e tic fo rc e are c re a te d to

fo rm a T , a n d n o t c re a te d to

re p re s e n t ‘O’ , on a t in y c h ip o f

g a rn e t. T he a d v a n ta g e s a re th e

p a c k in g d e n s ity — c u r re n t ly

o n e m il l io n b its , o r 1 2 8 K by tes

p e r c h ip — a n d no lo s s o f

c o n te n ts w h e n th e p o w e r is

tu rn e d o ff. H o w e v e r, b u b b le

m e m o r ie s re a c t c o n s id e ra b ly

m o re s lo w ly th a n c o n v e n tio n a l

R AM

T H E H O M E C O M P U T E R CO URSE 243

TO
NY

 L
OD

GE

tcy//.

Indexing is one way of structuring large quantities of data, such as
names and addresses. The Linked List or chain is an alternative with
distinct advantages

Pointing The Way
A L in k e d da ta s tru c tu re s ta r ts

w ith a s im p le L is th e a d v a r ia b le ,

w h ic h p o in ts to th e e le m e n t o f

th e m a in a rra y th a t c o m e s f ir s t

in th e lis t, in th is case n u m b e r 2

(A tk in s) . E x a m in in g the

c o n te n ts o f e le m e n t n u m b e r 2 in

th e L o o k u p a rra y w il l p o in t us to

n u m b e r 3 (C a rte r) , th e n e x t

e n try in th e a lp h a b e tic a l lis t.

T h is p ro c e s s c o n t in u e s u n t il w e

reach S m ith , w h e n L o o k u p (5)

c o n ta in s 0, in d ic a t in g th a t th e

end o f th e l is t has been reach ed

In a computer’s memory there is only data, byte
after byte of it, stored in thousands of voltage
patterns. Meaning is given to those bytes by the
data structure that the central processor imposes.
Those various data structures decide whether any
particular byte is interpreted as part of an
instruction, or as digits belonging to a larger
number, or as a character code.

From the user’s point of view some kinds of
data structure are virtually wired into computers.
Programming languages usually demand that data
be structured in a limited number of ways. B a s i c

imposes the idea of numeric and string data types,
and supplies variables and array structures for
manipulating those types. Other languages
usually support those and additional structures.
The strength and variety of its data types are major
components of a language’s power.

The b a s i c data structures — variables and
arrays — will be all that we need to simulate some
other ways of looking at data.

The indexed array is a useful data structure, and
easily implemented in b a s i c . It has its limitations,
however, particularly when the data to which it
refers is likely to change often and/or
unpredictably.

Suppose British Telecom keeps a file of its new
subscribers for eventual inclusion in the next issue
of the telephone directory. Until that time, the
names and addresses have to be kept in alphabetic
order for easy reference, but the file is constantly
growing, and the additions arrive unpredictably.
On Monday the file NewSubS () might look like
this when it’s read into the array:

NewSubS () Index ()

(1) Jones (2)
(2) Atkins (3)
(3) Carter (6)
(4) Rogers (D
(5) Smith (4)
(6) Drake (5)

The array I n d ex () shows the order in which to read
NewSubS () so that the entries are in alphabetic
order. Thus, the first item alphabetically is
NewSubS (2), Atkins. The second item is NewSubS
(3), Carter. In this example only the names are
shown, but in fact a directory entry comprises
name, initials, and address — typically about 60
characters. Moving blocks of 60 characters
around in memory is slow (as sorting requires

244 T H E H O M E C O M P U T E R COURSE

rm

S o f tw a re

many data moves) and wastes memory, so it is
more efficient to leave NewSubS () unsorted, and
create Index () instead. Now a new name, Bull, has
to be added to the file, so the arrays look like this:

| NewSubS () I Index ()

(1) Jones (2)
(2) Atkins (7)
(3) Carter (3)
(4) Rogers (6)
(5) Smith (D
(6) Drake (4)
(7) Bull (5)

Notice that the contents of Index () above the new
insertion are unchanged, and its contents below
the insertion are in the same order as previously,
but have all been moved one place down in the
array. Insertion to an index therefore requires:
finding the position of the new element, moving
every element between there and the end of the
index down one, and writing in the new entry. This
is preferable to doing the same thing with the
actual data, NewSubS, but is still relatively slow, if
the index is large.

Suppose, now, that we structure the data in a
different way. Leave NewSubS () unsorted
because manipulating it is slow and expensive, and
establish a parallel array called LookUp (), whose
contents are simply numbers referring to positions
in NewSubS ().

UstHead (2)
NewSubS () |LookUp() | Index ()

(1) Jones (4) (2)
(2) Atkins (3) (3)
(3) Carter (6) (6)
(4) Rogers (5) d)
(5) Smith (0) (4)
(6) Drake (D (5)

The first difference is that a simple variable called
UstHead is needed: it points to NewSubS (2) which is
alphabetically the first element of NewSubS ().The
next difference is that the number (0) has been
used in LookUp (5): this indicates that NewSubS (5) is
alphabetically the last element of the array.

The next difference is the contents of Index ()
and LookUp (). Index () has to be read: ‘the first
element is in NewSubS (2), the second is in NewSubS
(3), the third is in NewSubS (6)’...etc. while UstHead
() is read: ‘the first element is in NewSubS (2); Then
LookUp (2) says that the next element is in NewSubS
(3); LookUp (3) says that the next element is in
NewSubS (6); and so on. LookUp (5) says that
NewSubS (5) is the last element.

Index () gives an absolute position for elements
of the file, while LookUp () gives only relative
positions — any item in LookUp () tells you only
where to find the next element, and says nothing
about absolute position. The number in Index (4)
points to the fourth item in the alphabetically
ordered file, whereas the number in LookUp (4)

points only to the item that comes after NewSubS
(4) in the ordered file. LookUp () implements the
data structure called a ‘Linked List’. Reading a
Linked List is like following a treasure hunt: at the
start you’re told your first destination; when you
get there you find a clue which points you to your
next destination, and so on. Reading an Indexed
Array is like being on a car rally: at the start you’re
told all your destinations and the order in which to
visit them.

The great advantage of the List structure is its
flexibility. Consider the List after insertion of the
new element, Bull:

UstHead (2)
NewSubS () LookUp ()

(1) Jones (4)
(2) Atkins (7)
(3) Carter (6)
(4) Rogers (5)
(5) Smith (0)
(6) Drake (D
(7) Bull (3)

The array LookUp () has changed in only two
places:
i) LookUp (2), which formerly pointed to NewSubS

(3) as containing the next alphabetic element
after NewSubS (2), now points to NewSubS (7)
since it is now the next alphabetic element after
NewSubS (2)

ii) LookUp (7), which was unused, now points to
NewSub$(3) as the next item after NewSubS (7)
in the alphabetic ordering.

This illustrates the general process of insertion to a
Linked List: find the element of the list which
should come just before the new element, and
make that element point to the new element; then
make the new element point to the element that it
has displaced. These simple operations will be all
that is required for insertion to a Linked List, and
only the first of these is affected by the size of the
List. Inserting an element to a List is like inserting
a new link into a chain — decide where to put the
link, break the chain, join the preceding link to the
new one, and the new link to the succeeding link.
Linked Lists are sometimes called Chained Lists.
The numbers in LookUp () — the links — are
sometimes called Pointers.

A striking feature of Lists is their strong
seriality; it is impossible to find an element in a List
except by starting at the beginning and inspecting
every element until the target is found. The List is
implemented here by using arrays, which are
designed to be Direct Access structures, but the
List has effectively turned them into Sequential
Files. In other languages, such as l is p and p a s c a l ,

the List facility is built-in.
Lists are useful structures for handling dynamic

data (data that regularly changes), and can be
powerful tools when dealing with either natural
language (as in speech recognition) or artificial
language (when compiling programs), where the
data itself naturally forms a list of elements.

T H E H O M E C O M P U T E R CO URSE 245

Sound And Light

Sound And Light is a new series
that will teach you how to get the
most from the sound and
graphics facilities on your
computer

As home computers have developed over the last
few years the features provided have become
more comprehensive. Games facilities have been
of vital importance to the popularity of each new
computer and much time and effort has gone into
developing sophisticated colour graphics
capabilities. Though not so obvious in
importance, sound and music-making features
have been developed to a similar degree. If you
asked successful games writers how important
sound routines were in their programs they would
probably place them a close third behind the game
concept and graphics. Intelligent use of sound
effects and music add considerably to the

excitement and entertainment value of all arcade-
type games.

In addition to games applications it is possible
to further your knowledge of music by using the
sound capabilities provided by your home
computer. In many cases special music commands
are provided in b a s i c to enable you to write short
programs to play quite complex tunes that even
include chords. Some computers also provide
ways to change the nature of the sound to make it
more pleasing to the ear or approximate the
sounds of conventional musical instruments. In all
cases the computer keyboard can be configured,
by means of a suitable program, to act in a similar
manner to a piano keyboard, enabling you to play
music in ‘real time’.

Even if you have little knowledge of
programming it is possible to write short and
simple programs that make reasonably
sophisticated musical sounds. If you wish to use
the sound facilities to their best advantage, most
software houses produce comprehensive music
programs that enable you to write and play tunes
immediately. Whichever approach you take, it is
useful to understand how your computer
generates, shapes and controls its sound output.

L o w a n d H ig h R e s o lu tio n
Graphics on microcomputers can be divided into
two categories: low resolution and high
resolution. The difference between low and high
resolution is best described by considering how a
character (a letter, number or shape) is made up.

If you take a close look at a standard character
printed on a television screen you can see that its
shape is made up of a group of small squares.
These squares are called picture elements, or
‘pixels’, and every character or shape that appears
on the screen is an arrangement of these in a
pattern. On most home computers the characters
are formed from a square of 64 pixels, grouped
into eight rows of eight. The letter ‘A ’ can be made
up of a pixel pattern like this:

Each illuminated pixel on the grid can be
represented in the computer’s memory by a ‘1’
and each dark pixel by a ‘O’. Eight bits make a
byte, so each row of the character grid may be
stored in one single location of the computer’s
memory. Thus it takes eight memory locations to
hold a single character.

Graphic displays are sometimes made up of
blocks the size of whole, half, or quarter character
grids. Graphics designed using these large, simple
building blocks are said to be of low resolution. On
many home computers it is now possible to design
graphic displays that are built up from single
pixels. These are high resolution displays. A good
way to demonstrate the difference between the
two types is to^look at a plot of a sine curve, as
illustrated, using both kinds of resolution.

BIT PATTERN

0 0 0 1
0 0 1 1
0 1 1 0
0 1 1 1
0 1 1 0
0 1 1 0
0 1 1 0
0 0 0 0

1 0 0
1 1 0
0 1 1
1 1 1
0 1 1
0 1 1
0 1 1
0 0 0

\
\

\

1 I
\ HIGH RESOLUTION

/
/

246 T H E H O M E C O M P U T E R COURSE

O s c illa to rs
Oscillators are electronic circuits that produce
repetitive signals. When these signals are
amplified and fed to a speaker they make sounds
of a given pitch. The number of oscillators
provided by home computers varies between one
and four — the more oscillators you have the more
notes you can play at once.

Three characteristics describe the sound
created: frequency, envelope (which includes
volume) and waveform. Frequency will be
introduced in this instalment and envelope
generators and waveform dealt with in the second.

F re q u e n c y
This is the most important characteristic that we
need to control, as it determines the pitch of the
sound. Frequency is the number of times a signal
repeats itself every second and is measured in
hertz (Hz, cycles per second). Sounds that can be
heard by the human ear have frequencies greater
than 20Hz but less than about 20,000Hz.
Although we cannot hear frequencies below 20Hz

they can be used to modify the characteristics of an
audible sound. This technique is called
modulation and at present can be applied only on
the Commodore 64 among home computers.

However, it is not necessary to delve deeply into
frequencies. What you really need to know is how
to play musical notes. The ease with which you can
do this varies enormously from one machine to
another. Some have b a s i c commands that work
out the frequencies for you so that you need only
specify a pitch number or even a musical letter
symbol — A, A #, B, and so on. Others make it
much more difficult by providing only a table in
the user manual where you look up the frequency
corresponding to the required note and POKE the
frequency value into a memory location. The table
shows accurate conversions for the scale of middle
C. It will also be useful for those wishing to
program music in machine code, where b a s i c is
unable to help you calculate the frequencies.

Music Notes To Frequencies
Y ou can w o rk o u t th e fre q u e n c y

o f each n o te in th e s c a le by

m u lt ip ly in g th e fre q u e n c y o f th e

n o te o n e s e m ito n e b e lo w i t by

1 .0 5 9 4 6 3 1 . T h is m a y a p p e a r a

lit t le b a ff l in g b u t i f th e

m u lt ip l ic a t io n is c a rr ie d o u t 12

t im e s th e o r ig in a l f re q u e n c y is

d o u b le d . T h e re a re 12

s e m ito n e s in an o c ta v e (the

d iffe re n c e b e tw e e n tw o no tes

w ith th e sa m e le tte r) so

d o u b lin g th e fre q u e n c y m o ve s

th e s o u n d up o n e o c ta ve . T h is

ta b le p ro v id e s a c c u ra te

c o n v e rs io n s fro m m u s ic no te

s y m b o ls (fo r th e sca le o f m id d le

C) to fre q u e n c ie s

dD
U S

A H B 'C

261.63
293.66 329.63 349.23

392 440
493.88

523.25

U s e r-D e fin e d C h a ra c te rs
To create unusual and attractive screen displays it
is often useful to have characters available that are
different from the normal alphanumeric character
set. The Vic-20 and Commodore 64 have a
special set of graphic characters that can be used
directly from the keyboard, but even these do not
cover every eventuality. On most home
computers it is possible to create new characters.
This is usually achieved by redefining the binary
patterns of the eight locations of memory in which
a character is stored. In the process the old set of
binary patterns is often lost, or ‘overwritten’, and
the ‘user-defined’ character takes on some of the
properties of the one it has replaced in memory.
Thus the new character can be used in PRINT
statements by simply pressing the key of the
character it has replaced. Here is an example of a
user-defined character, together with its
associated binary codes:

PIXEL PATTERN

BIT PATTERN

128 64 32 16 8 4 2 1

1 0 0 1 1 0 0 1
0 1 0 1 1 0 1 0
0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 1 0 0 1 0 0
0 0 1 0 0 1 0 0
0 1 1 0 0 1 1 0

The ease with which user-defined characters can
be set up varies greatly according to the computer
being used. For example, with the Sinclair
Spectrum’s USR command, all that is required is to
enter the appropriate binary patterns; whereas on
the Commodore 64 the user first has to move the
complete character set from ROM to RAM
before POKEing in to memory the eight decimal
equivalents of the bit patterns that make up the
shape. However, several character-designing
utility programs, available from independent
suppliers, make life easier for the Commodore 64
owner.

To create larger figures it is possible to group
two or more user-defined characters together.
The alien figures shown (right) were constructed
from four user-defined characters. The program,
which runs on the Commodore 64, PRINTS the
character groups on the screen in three different
colours. The characters were created by using a
short routine to move the normal character set
from ROM to RAM and replace the graphics
characters ^ , □ , A , and ‘ ’ by
reading in decimal numbers from DATA statements
and using POKE commands to place them in the
appropriate locations. Full details of how you can
do this will be given in a forthcoming instalment.

Even when sprites (see page 152) are available
there is often a limit to the number that can be
displayed at any one time on the screen, so user-
defined graphics come in useful where many
similar shapes need to be displayed at the same
time.

Extra Terrestrial
T hese a lie n c re a tu re s w e re

c re a te d f ro m fo u r c h a ra c te rs ,

each d e fin e d b y th e

p ro g ra m m e r. T h is m e th o d can

be used on m a n y m a c h in e s th a t

d o n ’t have s p r ite s

T H E H O M E C O M P U T E R CO URSE 247

IA
N

M
cK

IN
N

EL
L

......... ■ • • • • • / . •■ ■ ■ •///..%>. - - - s..... • V ' - - - - - - - - -s - f r. ■ / > . / (•) . ■ f I '' * • • ^ • , . V / ; • r ' ’ ' rr... • / s. - - - - r r r -. ■ • ./ ' - - - - - - - ------ r r r. .j.. V / / / . ..■ ‘ '//. < ------------- -, f ^ .

Use of high-speed computers, both to process satellite images and
analyse patterns of data, has made weather forecasts a great deal
more accurate than they used to be

Pictures From Space
The M e te o sa t 2 w e a th e r

s a te llite , la u n ch e d in J u n e 1981 ,

is in a g e o s ta tio n a ry o rb it (th a t

is, it does n o t m o ve in re la tio n to

th e e a rth) s o m e 3 5 ,8 8 0 Km

(2 2 ,3 0 0 m ile s) a b o ve th e

e q u a to r, on th e ze ro m e r id ia n . It

g a th e rs in fo rm a tio n fro m a la rge

n u m b e r o f e a rth s ta tio n s

The results of many of the most complex data
processing tasks are present in our everyday lives,
often without us knowing about them. One of the
most advanced computer applications, requiring
greater data processing capacity than almost any
other in the country, gives us daily information
about our weather conditions and what we can
expect from them. Given the complexity of
weather forecasting, it is perhaps surprising that
our forecasters come up with the right answers as
often as they do. Computer aided prediction is an
immense asset to them in dealing with the vast
array of possibilities.

The climatographic factors that affect the
weather patterns over the British Isles, and to a
lesser extent the Atlantic seaboard of the
European landmass, are extremely complex.
Primarily, they are conditioned by our proximity
to both the North Pole and the Atlantic Ocean.
Being situated on the eastern side of the Atlantic,

we are more prone to the climatic effects created
within its 2,500 mile width, because of the
‘Coriolis effect’. This phenomenon is due to the
earth’s west-to-east spin. It is best understood if
we remember that at the equator an object on the
earth’s surface is travelling at more than 1,600
kilometres per hour (1,000 mph); and this
powerful spinning motion, combined with the
normal pole-to-equator wind patterns, creates the
prevailing westerlies (winds that originate in the
west) in the Northern Hemisphere. It is this
constant onslaught of wet air — rising and falling
according to local variations in temperature —
that causes the predominant weather conditions in
Britain.

Weather forecasters in the United Kingdom
rely primarily on observations from data
collection stations spaced at strategic locations in
the Atlantic — weather ships, buoys, balloons and
patrolling aircraft — to provide them with
information about approaching conditions. They

7*

mm*

then predict what will happen as these climatic
phenomena approach the land mass, according to
the known behaviour of similar phenomena in the
past.

Before March 1979, when the Meteosat 1
weather satellite was launched, the only method of
prediction available to forecasters was to plot
reports from the weather stations onto a map to
build up an isobaric chart. Isobars are imaginary
lines that join points of equal barometric pressure,
rather as contour lines on a map join points of
equal height. From these it is possible to decide on
the speed and direction of warm and cold fronts —
and their associated cyclones and anticyclones —
and thus make what are best described as
educated guesses about the expected weather
conditions.

While isobaric charts are by far the most
common, they are by no means the only maps that
the Meteorological Office produces. From the
vast weather database held in its computer system
it can produce charts that show average

N u m b e r C ru n c h e rs
One o f th e c h ie f uses o f la rg e c o m p u te rs in s c ie n t if ic re se a rch is

to p ro c e s s p u re ly n u m e r ic a l in fo rm a t io n in th e fo rm o f v e ry la rg e

and c o m p le x e q u a tio n s . P u re s c ie n c e a p p lic a t io n s s u c h as

n u c le a r p h y s ic s , a n d a p p lie d s c ie n c e a p p lic a t io n s s u c h as

m e te o ro lo g y have s im ila r re q u ire m e n ts . W h ile o n e c o u ld

p e r fo rm c a lc u la t io n s o f th is c o m p le x ity on a h o m e m ic ro , th e

le n g th o f t im e ta k e n w o u ld be p ro h ib it iv e — as a re s u lt n o t o n ly

o f th e n u m b e r o f te rm s in th e e q u a tio n , b u t a lso o f th e s h e e r

m a g n itu d e o f th e n u m b e rs in v o lv e d , w h ic h can g o to 30 o r m o re

d e c im a l p la ce s . In o rd e r to p e r fo rm th is fu n c t io n in a re a s o n a b le

t im e , o n e n e e d s v e ry fa s t c o m p u te rs w ith v e ry la rg e a m o u n ts o f

m e m o ry

temperature, rainfalls, hours of sunshine per day,
and so on.

The Meteorological Office still follows this
procedure for its accurate charts of current
conditions, but now also uses the images received
from Meteosat. These are analogue signals which
are digitised for processing and display by the
computer in the form of artificially coloured maps.
The images create a live picture of the weather
pattern as it occurs. They are regenerated
approximately every four minutes, so the
forecaster is able to observe the creation of
weather systems in real time.

Meteosat 2, which replaced the earlier satellite
in June 1981, sits in a geostationary orbit some
35,880 km (22,300 miles) above the Equator. It
gathers data from a large number of earth stations
spread out across the surface of the globe, and
relays that information to anyone who wishes to
subscribe to the system.

It would be theoretically possible to analyse and
interpret this information (though not in real time)
on a home computer by writing the received data
to disk as it arrives from the satellite. However, the
signal is an analogue one, so the conversion might

be difficult. You would also need to install your
own dish aerial precisely aligned with the satellite.
The processing of these satellite images is only one
very small function of the Meteorological Office’s
computer system. Along with other similar
organisations in other parts of the world, it
maintains a global weather system model and
extracts from this model a vast amount of
statistical data. This forms the database of
historical information from which trends in global

and local climate are plotted. It includes not only
barometric data, but also details of wind speed
and direction, rainfall, and temperature — not just
at sea or ground level but also at specific altitudes.

Collection of this data is important for
historical analysis. It is vital to agriculture, to many
industries, and to the economy and ecology of
whole continents, for it is only by this means that
changes in climate can be recognised. Examples of
this include the results of the progressive
destruction of the Amazon rain forest and the
increase in size of the polar ice-caps that could
indicate the approach of another ice age.

Earth Stations
S a te llite re c e iv in g a e ria ls

(k n o w n as d ish a e ria ls , a fte r

th e ir shape) can v a ry im m e n s e ly

in s ize and c o m p le x ity . The one

s h o w n here is ca p a b le o f bo th

re c e iv in g and t ra n s m it t in g , and

is n o t c o n fin e d to s ig n a ls fro m

g e o s ta tio n a ry s a te llite s . It has

s o p h is t ic a te d c o m p u te r c o n tro l

th a t a llo w s it to tra c k an o rb it in g

s a te llite p re c is e ly

Isobaric Charts
The ‘w e a th e r m a p s ’ th a t w e see

on te le v is io n o r in o u r

n e w s p a p e rs a re a c tu a lly ch a rts

o f b a ro m e tr ic p re ssu re . The

c o n c e n tr ic lin e s jo in p o in ts o f

equa l a ir p re ssu re . W in d s f lo w

a n t i-c lo c k w is e a ro u n d a ‘ lo w ',

c lo c k w is e a ro u n d a ‘ h ig h ’ (the

re ve rse in th e s o u th e rn

h e m is p h e re), and w in d speed is

d ire c t ly re la ted to th e d is ta n c e

be tw een th e is o b a rs

T H E H O M E C O M P U T E R COURSE 249

CO
UR

TE
SY

 O
F

TH
E

M
ET

EO
RO

LO
G

IC
AL

 O
FF

IC
E

H a rd w a re F o c u s
1

Though this machine features
only four Kbytes of user memory
as standard, its superb graphics
facilities mean that the user can
still write worthwhile programs

Most of the early home computers were designed
in California, USA. More recently, British-
designed machines have started to capture a large
share of the worldwide market. However, it can
only be a matter of time before the Japanese
dominate the scene, as they have done in every
other consumer electronic market. The Sord M5 is
certainly not the first Japanese microcomputer,
but it is the first to have made a significant impact
on the home, as distinct from the business market.

It is a solid and compact machine similar in size
to the Sinclair Spectrum, but is considerably
heavier and feels much more robust. In many
other respects it has similar capacities, with a
Z80A CPU, single-key entry for b a s i c , and
program/data storage on cassette. Internally,
however, it’s much more sophisticated, as
witnessed by the built-in Centronics printer port.
But the two major differences are the size of the
RAM memory — which at four Kbytes (expand
able to 36 Kbytes) is much smaller in the
unexpanded machine — and the inclusion of
dedicated graphics and sound chips.

The graphics are handled by a TI 9918,9928 or
9929 (depending on the country in which the
computer is sold), which gives a resolution of 192
X 256 dots in up to 16 different colours. There are
four main graphic modes, three of which may have
up to 32 independently moving sprites, which can

The ROM Cartridge
O ne o f th e b e s t fe a tu re s o f th e M 5 is th a t th e la n g u a g e can be

ch a n g e d b e ca u se it is k e p t in a RO M c a r tr id g e . T h re e v e rs io n s o f

BASIC are a v a ila b le fo r th e M 5 : BASIC-1 (s im p le , fo r b e g in n e rs) ;

BAS IC -G (v e ry s tro n g on g ra p h ic s) ; a n d B A S IC -F (s c ie n t if ic and

m a th e m a tic a l) . T h e re is a ls o a s p e c ia l u s e r-o r ie n te d , g e n e ra l-

p u rp o s e p ro g ra m ca lle d FALC, w h ic h has a c o m b in a t io n o f

sp re a d sh e e t, f i l in g and g ra p h ic s fu n c t io n s , and can be used to

d e ve lo p s o p h is t ic a te d a p p lic a t io n s fo r h o m e o r b u s in e s s use

Printer Connector
A C e n tro n ic s c o m p a tib le

p a ra lle l p r in te r in te r fa c e is

a v a ila b le a t th is so cke t,

a llo w in g m a n y w id e ly a v a ila b le

p r in te rs to be d ire c t ly co n n e c te d

to th e M 5

RF Connector
T V c o m p a tib le o u tp u t co m e s

o u t o f here

Modulator
T he o u tp u t f ro m th e V D P is

c o n v e rte d in to a s ta n d a rd TV

s ig n a l

Video Connector
The u n m o d u la te d c o m p o s ite

v id e o s ig n a l f ro m here can be

used to d r iv e a m o n ito r

Audio Connector
The a u d io o u tp u t can be fed in to

an a m p lif ie r f ro m th is s o c k e t

VDP
T he Texas T M S 9 9 2 9 V ideo

D is p la y P ro c e s s o r (in th e UK

v e rs io n o f th e M 5) is

re s p o n s ib le fo r c o n tro ll in g the

sc re e n , a n d can h a n d le up to 32

se p a ra te s p r ite s

Joypad Connectors
The tw o J o y p a d s p lu g in here ,

fo r g a m e s p la y in g

250 T H E H O M E C O M P U T E R COURSE

mm

H a r d w a r e F o c u s

The Joypads
The jo y p a d s a re th e S o rd e q u iv a le n t o f jo y s t ic k s . T h e y w o rk by

s e n d in g a s ig n a l fo r each o f fo u r d ia g o n a l d ire c t io n s . S in ce these

s ig n a ls a c tu a lly in te r ru p t th e C PU , no m a tte r w h a t ta s k it is

e x e c u tin g , th e re s p o n s e t im e is v e ry fa s t indeed

Power Connector
Power is supplied here from a

small transformer

Custom Chip
T he M 5 uses a p iece o f

s o p h is t ic a te d c u s to m lo g ic to

a ch ie ve its a d va n ce d fu n c t io n s

a t a re a s o n a b le p rice

ROM
T he o n ly b u ilt - in p ro g ra m s in

th e m a c h in e are a se t o f lo w -

leve l c o n tro l p ro g ra m s , w h ic h

are ca lle d up by th e use r

p ro g ra m . T hese ta ke ca re o f the

d e ta ils o f h a n d lin g th e sc re e n ,

k e y b o a rd and ca sse tte

The

RAM
The u s e r m e m o ry is c o n ta in e d

in th e se tw o la rg e c h ip s , and is

se p a ra te fro m o th e r a reas o f

RAM

display upper and lower case letters, punctuation
and numbers. It has line and block drawing
symbols, as well as a very large range of accented
lower case letters for use with foreign languages —
and since any character can be redefined, the
possibilities are very wide indeed.

Other machines use the same graphics chips —
in particular the T I99/4 A (see page 189) — and it
is the use of such dedicated chips that makes the

CTC
M u c h o f th e c le a n n e s s o f

o p e ra tio n o f th e M 5 is d e rive d

fro m th e use o f th is a d va n ce d

C lo ck T im e r C o n tro lle r , w h ic h

t im e s and tr ig g e rs v a r io u s

o p e ra tio n s in th e m a c h in e

„_____ _ _ r ___________ RAM
Since the screen memory is totally separate from
the program memory, the only contents of the
main RAM will be the actual program, plus, of
course, the data needed by the variables.

Something that is currently being hotly argued
over in the home computer industry is the

T H E H O M E C O M P U T E R COURSE 251

mmmm m
H a rd w a re F o c u s

M i

SORD M 5
PRICE

£145
SIZE

185 x70 x55mm
WEIGHT

1kg

CPU

Z80A
CLOCKSPEED

3.58MHz

MEMORY

8 Kbytes ROM
20 Kbytes RAM, of which 16
Kbytes are used for graphic
display.
With the addition of cartridges the
ROM can be expanded to 16 Kbyte:
and the RAM by 32 Kbytes

VIDEO DISPLAY

Up to 16 colours, which can be
used on different ‘planes’. There
are sprite graphics and four
different screen modes: two
graphic, one text and a ‘multi
colour’ mode
INTERFACES

Cassette, printer (Centronics),
joypads, ROM cartridge, audio

LANGUAGE SUPPLIED

Language cartridge is integer
Basic, BASIC-I

OTHER LANGUAGES AVAILABLE

BASIC-G (graphics), BASIC-F
(floating-point BASIC), FALC (a
spreadsheet and database
language)

COMES WITh

Power supply adaptor, cassette
leads, television lead, two joysticks
with leads, BASIC-I cartridge and a
cassette with two games

KEYBOARD

55 keys: eight shifts giving all
alphanumeric characters, 28
BASIC statements, and 64 graphic
patterns

DOCUMENTATION

There is an 18-page User Guide
that describes how to connect up
the computer, how to load and play
the two games, with a page
dedicated to simple fault-finding.
There is no description of the
BASIC language or of using the
cassette or other interfaces for any
other purposes than for playing the
games supplied

proposed ‘MSX standard’, developed by a group
of major Japanese manufacturers, including Sord.
The idea is that if manufacturers stick to these
proposed standards for the design of home
computers (covering both hardware and the
dialect of b a s i c to be used), it will be possible to
write software that will run on all such machines,
without modification. In terms of the graphics
chips, the Sord M5 fulfils that standard.

However, MSX also specifies that the sound
chip must be the AY-3-8910 from General
Instruments. To make sounds, the Sord M5 (like
the BBC Micro) uses a TI 76489 chip, which has
better control over the range of sounds produced
than the GI chip, though it is similar in having
three tone channels and one noise channel. This
means that the M5 is not a true MSX machine.
However, it is sufficiently close to give an idea of
what such machines will be like in use.

Three different versions of b a s i c , several
utilities, some games and other applications can be
supplied in ROM cartridge form, and since these
may be up to 16 Kbytes in capacity, some useful
programs may well appear for this machine.

The M5 may be a little more expensive than
other computers of similar physical appearance,
but the quality is definitely worth the extra cost.

The Sord M5 Keyboard
T he ru b b e r k e y b o a rd is s l ig h t ly

la rg e r th a n th e S in c la ir

S p e c tru m ’s, and a lig h te r to u c h

m a ke s it m o re s u ita b le fo r

ty p in g . A to ta l o f 55 keys can be

used in a n u m b e r o f w a y s , to

o b ta in a lp h a n u m e r ic

c h a ra c te rs , g ra p h ic s y m b o ls , o r

w h o le BASIC k e y w o rd s , by

m e a n s o f th e FUNC key. A ll keys

w il l repea t a u to m a t ic a lly if he ld

d o w n — w h ic h is v e ry u s e fu l fo r

sc re e n e d it in g

252 T H E H O M E C O M P U T E R COURSE

CH
RI

S
ST

EV
EN

S

1
P a s s w o rd s T o C o m p u tin g 9

• . . .

i
▲

:
•.v4 ♦ * #> » * •* « / " w » "%&*•*' > *• < *%♦>*.««':

‘Even parity’ ensures that the number of 1 bits in a byte is always
even. This makes transmission errors easier to detect

■ SR j§9 . M f l ggj Ijggfi /'.., 2 ggjgjgjg / ■ ■ ' - .O. ggjj aWaffeS 2 jgj & 9 : y Q ■''’’ . :: . ' ■ - - i - , ^ L' V ' - V X. •S-:.':':;v-.

One of the main advantages of digital computers
over analogue devices is that the errors and
inaccuracies that occur in all electrical circuits do
not accumulate as a signal is passed through many
circuits (see page 239). However, when data is
transmitted over any distance — whether by
means of a serial interface and a pair of wires, or
over a telephone line — the background electrical
‘noise’ in the line can sometimes be enough to flip
a single bit from 0 to 1, or vice versa. Normally, the
receiving computer would have no way of
knowing that this had happened, and would
accept the erroneous data as being correct.

Look at what happens if one bit in the ASCII
code for the letter Q becomes corrupted:

[] 1 0 1 0 0 01 (Transmitted ASCII code for Q)
[] 1 0 0 0 0 0 1 (Received ASCII code for A)

An error such as this in the transmission of data
would, at the least, be a nuisance and could be
potentially catastrophic. However, you will
remember that ASCII codes are assigned only to
values up to 127, which requires only seven bits
(numbered 0 to 6). The Most Significant Bit (bit
seven) is therefore often used as a ‘parity’ bit, to
detect when an error has occurred.

There are two conventions for using parity bits:
‘even parity’ and ‘odd parity’. We shall consider
the former. ‘Even parity’ means that the parity bit
(bit seven in an ASCII code) is set so that the total
number of 1 bits in the byte is always an even
number. Here’s how the letters A and Q would look
with even parity:

[0] 1 0 0 0 0 0 1
(the ASCII code for A with even parity)

[1] 1 0 1 0 0 0 1
(the ASCII code for Q with even parity)

There are two 1 bits in the ASCII code for A, so the
parity bit is made 0 so that the total of all eight bits
is even. In the ASCII code for Q, there are three 1
bits, so the parity bit is made a 1. This brings the
total number of 1 bits to four, which is an even
number.

Now let’s see what would happen if bit four in
our ASCII letter Q became corrupted as in the
example above.

[1] 1 0 0 0 0 0 1 (corrupted ASCII Q)

When the parity of the byte is checked (either by
software or by special hardware) it is seen that the
correct Q has an even number of Is in it (including

the parity bit). The corrupted Q, by contrast,
accidentally had bit four changed from a 1 to a 0,
but the original parity bit — bit seven — is still a 1.
When the parity of this corrupted byte is checked,
it will be found to have an odd number of 1 bits,
and so this byte is known to be corrupted and can
be rejected. If you think about it, you will see that
even if the parity bit itself were to become
corrupted in transmission, the fact that an error
had occurred would still be picked up by the parity
checking process, and the byte would be rejected.

If you look at the ASCII codes used in your own
computer, you will probably find that bit seven
(the Most Significant Bit, or MSB) is in fact used,
but not as a parity bit. This is done to enable the
computer to have an additional character set
(usually a set of graphics characters), and because
errors in data transmission inside a computer are
very rare. Parity is normally used only when
transmitting data over long distances, or when
recording data onto a magnetic recording surface
(such as tape or disk) which is equally susceptible
to ‘bit errors’.

Parity checking is fine for indicating that a given
byte has been transmitted incorrectly, but it does
not indicate which bit in the byte was wrongly
transmitted, so the error cannot be corrected by
the receiving computer. Worse still, if two bits in a
byte become corrupted, an incorrectly
transmitted byte could be taken as a correct one.

But in cases where the receiving device detects
an error, it can send back an error message and the
software can arrange for the incorrect byte to be
transmitted again. More sophisticated error
detecting and correcting schemes have been
devised that can pin-point which bit or bits were in
error, enabling them to be corrected auto
matically. Error correcting codes are a subject that
will be discussed later in the course.

LANGUAGE

Just Checking
T he la s t d ig it in an In te rn a tio n a l

S ta n d a rd B o o k N u m b e r (IS B N)

is a c h e c k d ig it — e q u iv a le n t to

p a r ity in a c o m p u te r . M u lt ip ly

th e f i r s t d ig it (0 he re) b y 10 , th e

s e c o n d (5) by 9, and so o n , then

add th e re s u lts to g e th e r . Y ou

w il l f in d th a t th e ch e ck d ig it has

been se t s u c h th a t th e re s u lt is

e x a c tly d iv is ib le by 11

PUBLISHER’S NUMBER

BOOK NUMBER

CHECK DIGIT

B a s ic P ro g ra m m in g

Continuing our programming project to develop a computerised
address book, we now look at how our file of data will need to be split
up into records and fields

We ended the previous instalment of the Basic
Programming course by setting the task of refining
the elements of the programming exercise through
one or more layers of ‘pseudo-language’, up to the
point where the examples could be coded into
b a s i c . We will start by revising this exercise and
giving some possible solutions. The first
‘Statement of Objectives’ for the exercise was:

INPUT
A name (in any format)
OUTPUT
1. A forename
2. A surname

In our first level refinement we found that this
could be brokerf down into six steps (later we
found that the last step could be dispensed with).
These were:

1. Read the name (* READ ★)
2. Convert all the letters to upper case (* CONVERT *)
3. Find the last space (* SPACE ★)
4. Read the surname (* READSURNAME *)
5. Read the forename (* READFORENAME ★)
6. Discard the non-alphabetics from the forename

steps (Convert all the letters to upper case)
through a second and third level of refinement and
created a short program in b a s i c to do this task.
We will now attempt this for the other steps:

2ND REFINEMENT
3. (Find last space)
BEGIN
LOOP while unscanned characters remain in NAMES

IF Character = “ ”
THEN note position in a variable
ELSE do nothing

ENDIF
ENDLOOP
END

3RD REFINEMENT
3. (Find last space)
BEGIN
READ FULLNAMES
LOOP (while unscanned characters remain)

FOR L = 1 to length of FULLNAMES
READ character from FULLNAMES
IF character = “ ”

THEN LET COUNT = position of character
ELSE do nothing

We are treating all of these activities as
subroutines and the name we have assigned to
each subroutine is given in brackets.
Unfortunately, most versions of b a s i c are unable
to call subroutines by name and it will be necessary
when writing the final program to insert line
numbers after the respective GOSUBs. During the
development phase, however, it is much easier to
refer to subroutines by name. These names can
then later be incorporated in REM statements. We
are indicating this use of named subroutines by
putting the names within asterisks. In languages
that can call subroutines by name (such as
p a s c a l) , subroutines like these are usually
referred to as ‘procedures’.

Even though your b a s i c may not be able to
handle procedures, it is recommended that you
pretend it can while programming at the pseudo
language stage. Similarly, your version of b a s i c

may not be able to handle long variable names
such as COUNT or STREETNAMES, but at the
pseudo-language level it is easier and clearer to
assume that it can. Try to make them descriptive.
It is much clearer to call a temporary variable for a
string TEMPSTRINGS than to call it XV$.
Fortunately, many versions of b a s i c now allow
longer variable names.

We have already developed the second of the

ENDIF
ENDLOOP
END

We are now in a position to code from pseudo
language into programming language:

10 INPUT “ INPUT FULL NAME FULLNAMES
20 FOR L = 1 TO LEN (FULLNAMES)
30 LET CHARS = MID$ (FULLNAMES,L,1)
40 IF CHARS "THEN LET COUNT = L
50 NEXT L
60 PRINT “ LAST SPACE IS IN POSITION ’’ ;C0UNT
70 END

Note that line 10 is a dummy input for testing the
routine; line 60 is a dummy output, also for
testing; and line 70 will have to be changed to
RETURN when the routine is used as a subroutine.

Now let’s try the same process for step four:

2ND REFINEMENT
4. (Read surname)
BEGIN
Assign characters to right of last space to SURNAMES
END

3RD REFINEMENT
4. (Read surname)
BEGIN

READ FULLNAMES

254 T H E H O M E C O M P U T E R COURSE

B a s ic

Locate last space (call ★ SPACE ★ subroutine)
LOOP while characters remain in string after space

READ characters and add to SURNAMES
ENDLOOP

END

Before going on to code this into b a s i c , you should
note some potential pitfalls. In locating the last
space in the final refinement above, the pseudo
language calls for the use of the *SPACE*
subroutine, but it would not be possible to write
this out in b a s i c and test it if the *SPACE*
subroutine had not already been written. As a
general rule, it is not worth coding each module
into b a s i c (or any other high level language) until
the whole program has been developed in pseudo
language. However, if you do wish to test a
module, you may need to write some dummy
variable values as well as dummy inputs and
outputs. In the example above, COUNT is the
variable that holds the value of the position of the
last space in FULLNAMES. In testing, we can cheat a
little by assuming that the routine to do this works
properly:

10 LET FULLNAMES = “TOM BROWN”
20 LET COUNT = 4
30 FOR L = COUNT + 1 TO LEN (FULLNAMES)
40 LET SURNAMES = SURNAMES + MID$

(FULLNAMES,L,1)
50 NEXT L
60 PRINT “SURNAME IS SURNAMES
70 END

Here is the process for finding the forename (step
five). Remember, we decided that a forename is a
concatenation of all the alphabetic characters up
to the last space in the name. Full stops,
apostrophes, spaces and so on were to be
discarded.

2 N D R E F IN E M E N T

5. (Read forename)
BEGIN
LOOP while characters remain in FULLNAMES up to

last space
Scan characters
IF character is not a letter

THEN do nothing
ELSE add character to FORENAMES

ENDIF
ENDLOOP
END

3 R D R E F IN E M E N T

5. (Read forename)
BEGIN
LOOP while characters remain up to COUNT

LET TEMPCFIARS = Lth character in string
IFTEMPCHARS is not a letter

THEN do nothing
ELSE LET FORENAMES = FORENAMES +

TEMPCHARS
ENDIF

ENDLOOP

Now we are ready to code into b a s i c , but as an

intermediate stage, we are going to use un
numbered basic statements in a structured format
so that you can compare the structure with the
stage above:

C O D IN G

5. (Read forename)
REM BEGIN
REM LOOP

FOR L = 1 TO COUNT- 1
LET TEMPCHARS = MID$ (FULLNAMES,L,1)
LET CHAR = ASC(TEMPCHAR$)
IF C H A R >64 THEN FORENAMES =

FORENAMES+ CHR$(CHAR)
REM ENDIF

NEXT L: REM ENDLOOP
REM END

In ordinary basic this would be:

10 FOR L = 1 TO COUNT- 1
20 LET TEMPCHARS = MID$(FULLNAME$,L,1)
30 LET CHAR = ASC(TEMPCHARS)
40 IF CHAR > 64 THEN FORENAMES - FORENAMES

+ CHRS(CHAR)
50 NEXT L
60 END

As it stands, however, this program would not
work. There are three problems with it: COUNT
needs to be assigned a value; there is no provision
for inputing a name (assigning a string to
FULLNAMES); and there is no ‘output’ in the form
of a print statement for us to check if it has worked
properly.

If this routine were part of a subroutine, the
parameters passed to it (the input) and the
parameters passed from it (the output) would
have to be handled elsewhere in the program. This
is a very important consideration: the flow of
information within a program should always be
carefully thought through before we begin to code
into basic. This is particularly important when we
are using variables (COUNT, for example) and the
same variable name is used in different parts of the
program. There is no point in calling a subroutine
that uses a variable such as COUNT if the subroutine
has no way of knowing what its value is supposed
to be. If a subroutine initialises the value of CO U NT,
that value will remain the same unless a new value
is assigned later — perhaps in another subroutine.
This is one reason why it is not good programming
practice to jump out from the middle of a loop,
since the value of the loop variable will be
unknown. Consider the consequences of having
these two program fragments as parts of different
subroutines in a program:

P a r t o f s u b ro u tin e X

FOR L = 1 TO LEN(WORDS)
LET CHARS = MID$(W0RD$,L,1)
IF CHARS = “ . ’’ THEN GOTO 1550
NEXT L

P a r t o f s u b ro u tin e Y

FOR Q = 1 TO LIMIT
LET A(L) = P(Q)
NEXT Q

■ T H E H O M E

TO
NY

 L
OD

GE

B a s ic P ro g ra m m in g

This part of subroutine Y is reading values into a
subscripted array, where the subscript is denoted
by the variable L. If subroutine Y is called after
subroutine X, and if the test condition in
subroutine X has been met (that one of the
characters is a “ . ”), the value of L would be
completely unpredictable and so we would not
know which element of the array values were
being assigned to in subroutine Y. Apart from the
error of branching out of a loop, this subroutine
also uses a GOTO, and this practice should also be
avoided. GOTOs lead to confusion and they should
be avoided wherever possible.

To avoid confusion when using variables, it is
good practice to make a list of them at the pseudo
language stages of program development,
together with notes saying what they are being
used for. Some languages (but not b a s i c) allow
variables to be declared as ‘local’ or ‘global’ — that
is, they have values that apply either in only part of
a program (local) or throughout the whole
program (global). Many variables, such as those
used in loops (for example, the L in LET L = 1 T010),
are almost always local, so it is often wise to
initialise the value of the variable before it is used
(for example, LET L = 0). Some languages, such as
p a s c a l , insist oh this; and although b a s i c always
assumes the initial value of a variable is 0 (unless
otherwise stated), initialising is still
recommended.

So far we have formulated a reasonable
definition of a name for the purposes of our
computerised address book, and developed some
routines that can handle names in various ways
that we shall use in our complete program. Now
let’s once again distance ourselves from the details
of program coding and consider the structure of
the ‘records’ in our address book ‘file’

The terms ‘record’, ‘file’ and ‘field’ have fairly
specific meanings in the computer world. A file is
a whole set of related information. In a computer
system it would be an identifiable item stored on a
floppy disk or on a cassette tape and it would have
its own name, usually referred to as a filename. We
can consider our entire address book as a file, and
we shall call it AD BOOK.

Within a file we have records. These are also sets
of related information. If we think of our address
book as a card index box, the file would be the
whole box full of cards and the records would be
the individual cards — each one with its own
name, address and telephone number.

Within each record we have fields. The fields
can be considered as one or more rows of related
information within the record. Each of the records
in our AD BO OK file will have the following fields:
NAME, ADDRESS and PHONENUMBER. A typical
record would look like this:

Peter Edvadsen
16A Holford Drive
Worsley
Manchester
061-540 2588

In this record there are three fields: the name field,
which comprises alphabetic letters (and, possibly,
the apostrophe in names such as Peter O ’Toole);
the address field, which comprises a few numbers
and many letters; and the telephone number field,
which comprises only numbers (ignoring the
problem of whether or not to allow hyphens in
numbers like 01-258 1191). Before we can begin
to write a program to handle complex information
such as this with flexibility, we must decide how to
represent the data within the computer. One way
might be to consider all the information within a
record to be just one long character string. The
problem with this approach is that extracting
specific information is extremely difficult. Let’s
assume that the following entry is just one long
character string:

PERCIVALR. BURTON
1056 AVENUE OF THE AMERICAS
RIO DEL MONTENEGRO
CALIFORNIA
U.S.A.
(415) 884 5100

If we were searching the records to find the
telephone number of PERCIVAL R. BURTON, would
it be safe to assume that the last 14 characters in
the record represented the number? What if we
had included the international dialling code, like
this: 0101 (415) 884 5100? Then the number
would have had a total of 19 characters. To
overcome this difficulty, the telephone number is
assigned a separate field, and the program will give
us all the characters (or numbers) in that field
when requested.

The difficulty with this approach is that there
has to be some way of relating the various separate
fields, so that referring to one field (the name field,
for example) can give us the other fields on the
record, as well. One way this could be tackled is to
have a further field associated with the record just
for indexing purposes. If a record was, for
example, the 15th record in the file, its index field
would contain the number 15. This could then be
used to point to the elements in a number of
arrays. To illustrate this, let us suppose one record
looked like this:

&

Jamie Appleton
15 Pantbach Road
Llandogo
Gwent
0594 552303
015

NAME field
STREET field
TOWN field
COUNTY field
PHONE NUMBER field
INDEX field

If we knew the name of this person and wanted his
telephone number, all we would have to do would
be to search through the elements of the array
holding the names until a match was found. We
would then find which element of the array the
name was in — in this case, number 15. Then all
we would need to do would be to find the 15 th
element in the PHONE NUMBER array to get the
right telephone number.

If we had a number of friends in the Forest of

256 T H E H O M E C O M P U T E R COURSE

B a s ic P ro g ra m m in g I

Dean area, we might want the program to search
for everv occurrence of ‘Cinderford’ in the TOWN*

field. The program could search through the
TOWN fields and note the location of each
occurrence of Cinderford. All that would then be
necessary, to print the names and addresses of all
these friends, would be to retrieve all the elements
having the same number from all the arrays for
each ‘Cinderford’ record. Using this approach,
there would be no need to inspect the IN D EX field,
and the technique has the merit of being a
relatively simple operation.

In the next instalment we will look at some of
the problems involved in searching through lists to
find specific items.

E x e rc is e
Assume that records with the following fields

will be adequate for our computerised address
book:

NAME field
STREET field
TOWN field
COUNTY field
PHONE NUMBER field

Suppose that one of the options offered by a menu
in the computerised address book is:

5. CREATE A NEW ENTRY

You type 5 and the program branches to the part
where new records are created (you may assume
that there are no entries in the address book yet).
Since the program is to be fully menu-driven, you
will always be prompted for the entries expected
— with prompts such as ENTER THE NAME, ENTER
TH E STREET and so on. Here is a list of the expected
results:

1. An element in an array for the name
2. An element in an array for the street
3. An element in an array for the town
4. An element in an array for the county
5. An element in an array for the phone number

Your task is to develop this, through a process of
top-down programming using a pseudo
language, to a point where direct conversion into
b a sic becomes possible. The pseudo-language can
follow your own rules; we only suggest that you
use capital letters for keywords such as IF, LOOP
and so on, and small letters for descriptions in
ordinary English of the operations to take place.

Basic Flavours
r 3

Step 3

SPECTRUM

f

10 IN P U T “ IN P U T FU LL N A M E ” ;F$

15 LET C O U N T=0

20 FOR L=1 TO LEN F$

3 0 LET C $ = F $ (L)

4 0 IF C $ = “ ’’ TH EN LET C O U N T = L

5 0 N E X T L

6 0 P R IN T “ LA S T SPACE IS IN

P 0 S IT I0 N ” ;C 0 U N T

7 0 STO P

9 9 9 0 DEF FN M $ (X $,P ,N)= X $ (P TO

P + N -1)

9991 DEF FN L $ = X $ (T O N)

9 9 9 2 DEF FN R $ = X $ (L E N X S -N + 1 TO)
In th is p ro g ra m m in g p ro je c t, th e s tr in g

fu n c t io n s M ID $, LEFTS, R IG H TS w il l be m u ch

used . T h e ir e q u iv a le n ts in S in c la ir BASIC are:

LE F T $ (F S ,N) re p la ce b y F $ (TO N)

R IG H T $ (F $,N) re p la ce by

F $ (L E N (F $)-N + 1 TO)

M ID $ (F $,P ,N) rep lace by

F $ (P TO P + N -1)

M ID $ (F $,P ,1) rep lace b y F $ (P)

N o te th a t s tr in g v a r ia b le n a m e s on th e

S p e c tru m c a n n o t be m o re th a n o n e le tte r lo n g

(p lu s th e “ $ ”).

Step 4

5 LET S $ = “ ”

10 LET F $ = “ T 0 M B R O W N ”

2 0 LET C 0 U N T = 4

30 FOR L= C 0 U N T + 1 TO LEN F$

4 0 LET S $ = S S + F S (L)

5 0 N E X T L

6 0 P R IN T “ S U R N A M E IS ” ;S $

7 0 STO P

Step 5

■

i

VARIABLES

Ll I

3 0 LET C H A R = C O D E T $

4 0 IF C H A R > 6 4 TH EN LET C $= C S + C H R $

CHAR

50 N E X T L

6 0 STOP

In th is fra g m e n t, th e p ro b le m o f s in g le le tte r

s tr in g v a r ia b le n a m e s has a r is e n : F$ is th e

S p e c tru m e q u iv a le n t o f th e v a r ia b le

F U LLN A M E S , so CS has to s ta n d in fo r th e

v a r ia b le F O R E N A M E S ,

Part of subroutine X

FOR L=1 TO LEN W $

LET C $ = W $ (L)

IF C $ = “ . ” TH EN GOTO 1 5 5 0

N EXT L

Part of subroutine Y

FOR Q=1 TO L IM IT

LET A (L)= P (Q)

N EXT Q

Of th e m o s t p o p u la r h o m e c o m p u te rs , o n ly

th e BBC M ic ro s u p p o r ts lo n g v a r ia b le n am e s

s u c h as F U LLN A M E S . T he S p e c tru m a llo w s

lo n g n u m e r ic v a r ia b le n a m e s , b u t o n ly s in g le

le tte r s tr in g v a r ia b le n a m e s . T he D ra g o n 32,

V ic - 2 0 , a n d C o m m o d o re 6 4 s u p p o r t lo n g

v a r ia b le n a m e s , b u t o n ly th e f i r s t tw o

c h a ra c te rs a re s ig n if ic a n t, so th a t

F U LLN A M E S is v a lid , b u t re fe rs to th e sam e

m e m o ry lo c a tio n as F U J IY A M A S : b o th have

th e sa m e f i r s t tw o c h a ra c te rs .

On th e O ric -1 v a r ia b le n a m e s c a n n o t be

m o re th a n tw o c h a ra c te rs (f ir s t a le tte r th e n a

n u m b e r o r a le tte r) , w h ile th e L y n x a llo w s o n ly

s in g le le tte r v a r ia b le n a m e s , th o u g h b o th

lo w e r- a n d u p p e r-c a s e le tte rs a re v a lid and

d is t in c t.

5 LET C S = “ ”

10 FOR L=1 TO C O U N T -1

20 L E T T $ = F $ (L)

r

Y

r

T H E H O M E C O M P U T E R CO URSE 257

Images drawn on paper can be
transferred into your com puter
by means of a digitiser or
graphics tablet

Among the most powerful features found in the
current generation of home computers are the
graphics capabilities. With a few simple
commands, designs and patterns can be created
and colours changed. All this requires
programming knowledge, as it is not yet possible
to create an image on paper first and load it into
the computer as a completed work. Light pens

Cross-hairs
C ro s s -h a irs a n d a m a g n ify in g

g la s s h e lp to p o s it io n th e c u rs o r

m o re a c c u ra te ly . R e s o lu tio n to

w ith in 0 .2 5 m m is b y no m ean s

u n c o m m o n

Data Entry Buttons
M o s t c u rs o rs fe a tu re m o re th a n

o n e p u sh b u tto n — th e m ean s

by w h ic h th e o p e ra to r can

in d ic a te th a t a p a r t ic u la r p o in t

needs to be re c o rd e d . In an

a lte rn a tiv e m o d e , th e d ig it is e r

w il l ta k e c o n t in u o u s re a d in g s as

th e c u rs o r is m o ve d

%

Cursor —
T h is d e v ice is m o v e d by hand to

tra c e o v e r th e im a g e th a t is

b e in g d ig it is e d

(see page 156) facilitate the editing an
manipulation of an image once it is on the screen,
but they cannot be used to copy a picture from a
sheet of paper.

Designers of cars, aeroplanes and micro
processors as well as interior decorators,
landscape gardeners and fashion designers can all
benefit from a computer graphics system. Once
the design is safely stored in the computer’s
memory, additions and alterations can be tried
without wasting valuable raw materials. So what is
needed is an input device that can translate the
lines and curves of the drawing or design into a
language that a computer can understand.

In the professional market the ‘graphics tablet’
has been around for almost as long as the
computer. However, low-cost alternatives for the
home user have only recently become available.
High-precision graphics tablets, also known as
‘digitisers’ because they convert analogue shapes
and images to digital information, use a wide
variety of techniques to produce the required
information. The most accurate systems can
resolve an image to around 1 / 4mm (1 /1 00th of
an inch) — sufficiently accurate for engineers and
draughtsmen. All digitisers feature a flat
baseboard, onto which the image drawn or
painted on paper is laid. A stylus, which may be an
ordinary pen or a sophisticated electronic device,
is then traced over the image. The position of the
stylus is detected by the digitiser and transmitted
as a changing pair of co-ordinates to the

Emitting Coil-
A h ig h - fre q u e n c y s ig n a l is g ive n

o u t b y th is c o il a n d is p icke d up

b y th e g r id

computer.
The two most accurate systems

capacitive — work by having a series of wire grids
embedded in the baseboard of the tablet. In the
magnetic system the stylus consists of a small
magnifying glass with cross-hairs that is traced
over the image. Surrounding the glass is a coil of
wire that transmits a low-power, high-frequency
signal. The signal is detected by the grids in the
baseboard and provides a direct measure of the
position of the stylus. The capacitive system works
the other way around: a series of coded pulses is
fed into a grid of wires and the signal is picked up
by the stylus.

An alternative to these is the acoustic system.
The stylus is electrostatically charged, and when
touched to the baseboard, gives off a tiny spark.
The time taken, for the acoustic wave created by
the spark to reach two microphones, gives a
measure of the stylus position. Amongst other
things, this offers the possibility of digitising the

magnetic and third dimensions, by means of a signal passing

Interface
D ig it is e rs a re u s u a lly in te rfa c e d

to a c o m p u te r b y a s ta n d a rd

s e r ia l o r p a ra lle l p o r t

258 T H E H O M E C O M P U T E R COURSE

M
h W /A v X w A V V V

In s ig h ts

Baseboard
The im a g e to be d ig it is e d is

p laced f la t on th is b o a rd . On

so m e s y s te m s , an e le c tro s ta tic

ch a rg e is a p p lie d to th e b o a rd to

‘g lu e ’ th e p a p e r te m p o ra r ily f la t.

It is v e ry im p o r ta n t th a t th e

im a g e d o e s n ’t m o v e re la tiv e to

th e boa rd

through the object.
At the lower end of the scale is the pressure-

sensitive tablet: the image is placed on it and then
traced with a stylus. This requires more pressure
than the other systems. Two electrically
conductive sheets are separated by a cellular
insulator and two different high-frequency signals
are fed into the layers. The signal detected by the
stylus when it makes an electrical connection
between the two sheets provides a measure of its
position. Typical problems encountered with this
type of system include changes in the surface

Mapping K Out
One o f th e m o s t w id e s p re a d

p ro fe s s io n a l uses fo r d ig it is e rs

is c o lle c t in g da ta fro m m a p s

and s u rv e y s . H ere, the

c o m p u te r is b e in g used to

p re d ic t th e lo c a tio n o f new

o ilf ie ld s f ro m d ig it is e d

g e o lo g ic a l da ta

Processing Board
T h is PCB c o n ta in s a

m ic ro p ro c e s s o r , s o m e RO M

and s o m e R A M . T h is is so th a t it

can p re s e n t th e c o m p u te r w ith

in fo rm a t io n in th e fo rm o f p a irs

o f X -Y c o -o rd in a te s

Receiving Grid
E m bedded in th e b a s e b o a rd is a.

g r id o f w ire s th a t can p ic k up the

s ig n a l g iv e n o u t b y th e c o il. T he

s p a c in g o f th e g r id is

c o n s id e ra b ly c o a rs e r th a n the

f in e s t re s o lu t io n o f th e d ig it is e r ,

because th e p ro c e s s in g c ir c u it r y

can in te rp o la te f ro m th e re la tiv e

s tre n g th o f th e s ig n a l p ic k e d up

by a d ja c e n t w ire s

resistance due to damage or the differing pressure
of a hand. Given the limited resolution of home
computer graphics, the accuracy of this method is
more than adequate for today’s home computers.

The cheapest and simplest digitisers are the
pantographs — based on the principle of the old-
fashioned drawing aid, constructed from linked
arms. They use co-ordinate geometry to provide a
direct measure of the position of the stylus.
Variable resistances mounted at the two joints
provide voltages proportional to the angles in the
‘shoulder’ and ‘elbow’ of the jointed arm. The
resolution of the pantograph is limited by the
accuracy of both the variable resistances and the
mechanical linkages; typically it is only around

five per cent. However, sophisticated pantographs
based on optical measurement of the rotation of
the joints can offer much better results although
they still fall short of the capabilities of the
magnetic and capacitive systems.

Optical tablets use an intersecting grid of infra
red beams to detect the position of a stylus. They
are not nearly as sensitive as the other systems but
are quite adequate for allowing a finger to be used
to select an item from a program menu. In some
applications the infra-red sources and detectors
are placed around the edge of the visual display
unit — providing a truly interactive screen on
which images can be drawn simply by moving
your finger.

The actual data produced by a graphics tablet
or digitiser must be converted into information
suitable for display on the screen and to this end
most of the commercial products come with all the
necessary software. However, just entering the
data isn’t the end of the usefulness of graphics
tablets. Once the information is stored in the
computer the tablet can be used as an editing tool,
allowing colour to be added or changed and
shapes to be modified. The surface of the tablet
can be programmed to act as a menu that selects
standard options from the program so that the
keyboard need only be used for selecting the main
functions. Computer animation systems (see page
181) all have a high-quality graphics tablet as their
main form of input.

t
T H E H O M E C O M P U T E R C O U R SE 259

SI
M

O
N

 L
EW

IS

Pioneers In Com puting

1 6 4 6

B o rn on J u ly 1 in L e ip z ig

1 6 6 1

E n ro ls a t U n iv e rs ity o f L e ip z ig

and a w a rd e d deg re e a t 17

1 6 6 0 ’s

W o rk s as la w y e r and

d ip lo m a t. P u b lis h e s p a p e r on

T h e A r t o f C o m b in a t io n ’

1 6 7 2

In P a ris , he d e v e lo p s th e

p r in c ip le o f S u f f ic ie n t R eason

1 6 7 3

C a lc u la tin g m a c h in e

p re s e n te d to R oya l S o c ie ty in

E n g la n d

1 6 7 5

In v e n ts c a lc u lu s

in d e p e n d e n tly o f N e w to n

1 6 7 6

C o n s id e rs d y n a m ic s th ro u g h

th e c o n c e p t o f k in e tic e n e rg y

1 6 7 8

A p p o in te d lib ra r ia n a n d

a d v is e r to th e D uke o f

H a n o ve r

1 6 7 9

D e v e lo p s b in a ry m a th e m a tic s

1 6 8 3

P u b lis h e s p a m p h le t, T h e

M o s t C h r is t ia n W a r G o d ’ , an

a tta c k on L o u is X IV

1 6 9 0 ’s

H is g e n e a lo g y o f th e H o u se o f

H a n o v e r e x p a n d s in to a

H is to ry o f th e W o r ld .

D e ve lo p s an in te re s t in

l in g u is t ic s a n d th e o r ig in o f

la n g u a g e s

1 7 0 0

O rg a n is e s B e rlin A c a d e m y o f

S c ie n ce s

1 7 1 4

R e s p o n s ib le fo r e s ta b lis h in g

th e r ig h t o f s u c c e s s io n o f

G eo rge I to th e v a c a n t E n g lish

th ro n e a fte r th e d e a th o f

Q ueen A nne

1 7 1 6

D ies in H a n o v e r N o v e m b e r 14

■'Mm s , V*

Scientists involved in the fifth
generation computers are taking
an interest in the work of this
17th century thinker

v . vi

Gottfried Wilhelm Leibniz was the leading
scientific light of his time — the period known as
The Age of Reason. He was bom in the central
European city of Leipzig in 1646 and died in
Hanover in 1716. During his life of three score
years and ten (the sort of exact figure you might
expect from a mathematician), he invented
calculus, worked on dynamics, and made
contributions to geology, theology, history,
linguistics and philosophy. Most important of all,
he developed ideas that would be fundamental to
the creation of the computer.

He began his travels at the age of 20, after the
University at Leipzig refused to confer a doctorate
of law on him because of his youth. Throughout
his life, without any private means to support him,
Leibniz was forced to take up work that hampered
his scientific research. In his early twenties he
worked as a lawyer and diplomat; later in life he
was a librarian and adviser to royalty.

His interests were wide-ranging, and his
cosmopolitan nature led to extensive travel in

T h e L e ib n iz C a lc u la to r

Europe talking with all the great thinkers of his
time. Leibniz was a prolific letter writer, as well —
engaging in correspondence with over 600
people.

His first important contribution to philosophy
came in 1672 when he formulated the principle of
Sufficient Reason. This held, simply, that there
must be a reason for everything, and ‘everything is
for the best in the best of all possible worlds’.

Turning his attention to mathematics, he then
set to work to perfect the Pascaline adding
machine invented by Blaise Pascal in 1642 (see
page 86). Leibniz sought to upgrade it so that it
would be capable of both multiplication and
division. He did so by designing a mechanical
device called the Leibniz Cylinder (see below).
Leibniz’s device was a major breakthrough for its
time. Previously, because of the complexity of
manipulating Roman numerals, multiplication
had been taught only in the higher institutes of
learning. A machine that could multiply
mechanically made arithmetic more accessible.
Once Leibniz had perfected this device, he moved
on from base ten arithmetic to consider and
formalise binary mathematics.

Leibniz’s greatest ambition was to devise a
universal language that could use the clarity and
precision of mathematics to solve any problem
that mankind faced. His language was to use
abstract symbols to represent the fundamental
‘atoms’ of understanding, with a set of rules to
manipulate these symbols. His attempt failed; but
his ideas were taken up in a more modest way in
the early 20th century by Bertrand Russell, who
tried to explain mathematics in terms of a formal
logical ‘language’.

In the last few years, interest has been rekindled
in the work of Leibniz by the scientists involved in
the long-term project to create the fifth generation
of computers. These machines, it is hoped, will be
able to solve any problems of human endeavour
with the same speed and certainty that computers
of today execute mathematical calculations. To do
this they will require a new sort of language
altogether.

v

SUBTRACTION ADDITION

j I I
21 ^CUM ULATIVE RESULT

The ‘ L e ib n iz C y lin d e r ’ is s t i l l

used in m e c h a n ic a l

c a lc u la to rs to d a y . E very t im e

a c a lc u la t io n is p e r fo rm e d th e

h a n d le is c ra n k e d once .

A d d it io n o r s u b tra c t io n is f i r s t

se le c te d u s in g o n e o f th e tw o

beve ls , a n d th e n th p co g is

p o s it io n e d o v e r th e n u m b e r to

be a d d e d to , o r s u b tra c te d

fro m , th e to ta l. W h e n th e

c ra n k is tu rn e d , th e cog

e n g a g e s o n ly th o s e s p lin e s

c o rre s p o n d in g to th e n u m b e r.

T he m o tio n is th e n tra n s fe rre d

to th e d ia l. A c a rry fa c i l i ty is

p ro v id e d th a t m o v e s th e te n s

d ia l one p la ce fo rw a rd on

each c o m p le te re v o lu t io n o f

th e u n its w h e e l

260 T H E H O M E C O M P U T E R COURSE

KE
VI

N
JO

NE
S

*

H o m e c o m p u te rs . D o th e y se n d y o u r b ra in to

s le e p - o r k e e p y o u r m in d o n its to e s ?

A t S inc la ir, w e 're in n o d o u b t T o us, a

h o m e c o m p u te r is a m e n ta l g y m , as

im p o r ta n t a n a id to m e n ta l fitn e s s as a se t o f

w e ig h ts to a b o d y -b u ild e r .

P ro v id e d , o f co u rse , it o ffe rs a w h o le

b a tte ry o f g e n u in e m e n ta l c h a lle n g e s .

T h e S p e c tru m d o e s ju s t t h a t

Its e d u c a tio n p ro g ra m s tu rn b o r in g

ch o res in to a b s o rb in g c o n te s ts - n o t le a rn in g

to sp e ll 'a c q u ie s c e n t, b u t re s c u in g a p rincess

f ro m a s o rc e re r in co lo u r, s o u n d , a n d

m o v e m e n t!

T h e a rc a d e g a m e s w o u ld te s t an

a ll-n ig h t a rc a d e f re a k - th e y 're v e ry fast, v e ry

c o m p le x , v e ry s t im u la tin g .

A n d th e m in d -s tre tc h e rs a re tru ly

fie n d is h . A d v e n tu re g a m e s th a t v e ry fe w

p e o p le in th e w o r ld h a v e c ra c k e d . C h ess to

g ra n d m a s te r s ta n d a rd s . F lig h t s im u la tio n

w ith a c o c k p it fu ll o f in s tru m e n ts o p e ra t in g

in d e p e n d e n tly . G e n u in e 3 D c o m p u te r d es ig n .

N o o th e r h o m e c o m p u te r in th e w o r ld

can m a tc h th e S p e c tru m c h a l le n g e -b e c a u s e

n o o th e r c o m p u te r h a s so m u c h s o ftw a re o f

such o u ts ta n d in g q u a lity to run .

F o r th e M e n ta th le te s o f to d a y a n d

to m o rro w , th e S in c la ir S p e c tru m is g y m ,

a p p a ra tu s a n d tra in in g s c h e d u le , in o n e n e a t

p ackag e . A n d y o u can b u y o n e fo r u n d e r

£ 100. m

m m
m i

m- -
/

- ;

r

! A:
1 1 ■mmw.

m
i •« *• :;

; • •• :

v-;
it --

■
;

w m *

gp
• & v .

m

■

. . m

w m m
Mr

%

I

m m

■em m

3m
m l 1

72
in
.I I

,■>: nfa:v^^v.---4

!>* v* - ' *fc

N o w th a t y o u r c o lle c tio n of H o m e
C o m p u te r C o u rs e is g ro w in g , it m a k e s so u n d
sense to ta k e a d v a n ta g e o f this o p p o rtu n ity to
o rd e r th e tw o s p e c ia lly d e s ig n e d H o m e
C o m p u te r C o u rs e b in d ers .

T h e b in d e rs h a v e b e e n c o m m is s io n e d
to store a l l th e issues in this 24 p a r t series.

A t th e e n d of th e c o u rs e th e tw o
v o lu m e b in d e r set w il l p ro v e in v a lu a b le in
c o n v e rtin g y o u r c o p ie s o f this u n iq u e series in to
a p e rm a n e n t w o rk o f re f e re n c e .

Buy tw o to g e th e r a n d s a v e £ 1.00

❖ B u y v o lu m e s 1 a n d 2 to g e th e r for
£ 6 .9 0 (in c lu d in g P & P). S im p ly fill in th e o rd e r
fo rm a n d th ese w il l b e fo rw a rd e d to y o u w ith
o u r in v o ic e .

❖ If y o u p re fe r to b u y th e b in d e rs
s e p a ra te ly p le a s e sen d us y o u r c h e q u e /p o s ta l
o rd e r for £ 3 . 195 (in c lu d in g P & P) . W e w il l sen d
y o u v o lu m e 1 o n ly T h en y o u m a y o rd e r v o lu m e
2 in th e s a m e w a y - w h e n it suits y o u !

O verseas re a d e rs : This binder offer applies to readers in the
UK, Eire and Australia only. Readers in Australia should
complete the special loose insert in Issue 1 and see additional
binder information on the inside front cover. Readers in New
Zealand and South Africa and some other countries can obtain
their binders now. For details please see inside the front cover.
Binders may be subject to import duty and/or local tax.

