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The Pinball Construction Set — a rem arkable advance in software 
design — allows you to design and play your own pinball games on 
the screen of an Apple computer

Even in the fast-developing microcomputer 
industry, where one can reasonably expect 
remarkable new developments to be quite 
commonplace, it is still a rare thing to come across 
a product that is radically different both in concept 
and quality. Such a piece of software is Budgeco’s 
Pinball Construction Set (PCS). Running on a 48 
Kbyte Apple II, with one disk drive and a joystick, 
this package performs an apparently simple 
function. It gives the user a picture of a bare 
pinball table, and a menu of 38 different types of 
‘furniture’ that are used to equip it to the player’s 
own design. There is, in addition, a functions 
menu from which to choose the tools you can use.

Having filled the table according to your plan — 
you are allowed to position upto 128 pieces on the 
table, but there is no limit to the number of times 
you may use any one type — all that remains is to 
play the game. You do this by selecting yet 
another function with the joystick. Up to four 
players may take turns, but each is allowed only 
one ball, instead of the three on most pinball

hand ‘picks up’ the object indicated. The hand 
pulls it to its desired position on the table, and 
when you release the joystick button, the object is 
put firmly in place. .

The interesting thing here is that you are 
moving not only the collection of data that defines 
the shape of the object, but also the set of rules that 
will govern the way it behaves when you come to 
play the game. A flipper, for example, always 
movps through 45 degrees, first up and then back 
down again. A bumper always repels the ball 
whilst accelerating' it according to a definable 
‘kick’ factor. The ball obeys the Newtonian laws of 
motion, and falls down the table according to the 
laws of gravity.

But having said all this, there is one tool 
(suitably given the symbol of a planet in partial 
sunlight) that allows you to alter the parameters of 
the real world — gravitational force, for example, 
or even time! This function is also controlled by 
the joystick. The position of each value on a scale 
is altered, just as one would move a slide-type

Do-It-Yourself Games
The P in b a ll C o n s tru c tio n  Set 

d is p la y s  an e m p ty  ta b le ; .a 

v a r ie ty  o f ty p e s  o f  ‘ fu rn itu re ’ —  

b u m p e rs , ta rg e ts , ro ll-o v e rs , 

f l ip p e rs  and  so  o n ; a n d , in th e  

c o lu m n  on  th e  r ig h t,  th e  to o ls  

fo r  p la c in g  th e  o b je c ts  on  th e  

ta b le . T h is  c o lu m n  a lso  c o n ta in s  

fu n c t io n s  fo r  a d ju s t in g  th e  s ize, 

shape , c o lo u r  and  d e g re e  o f 

in te ra c tio n  o f th e  p ieces , as w e ll 

as fo r  s a v in g  f in is h e d  g a m e s  on 

d is k

machines, and there is no ‘free ball’ facility. At the 
end of the game, pressing ESCAPE gets you back to 
the menu. You are encouraged to go on 
developing the table after each game by the degree 
of feedback you get every time you play.

Both in its conception and execution, PCS 
points the way towards truly user-friendly 
software. As soon as the program is loaded (and 
this requires the user simply to insert the disk and 
press RETURN) virtually all the action is controlled 
from the joystick. The first tool to be used is a 
hand. It is moved so that it points to an object in 
the ‘furniture’ menu (such as a bumper or a 
flipper) and when you press the joystick button the

Kids’ Stuff
PCS even g ive s  yo u  a u th e n tic  

s o u n d s  and  th e  e q u iv a le n t o f 

f la s h in g  l ig h ts !  B u t i t ’s a c tu a lly  

m o re  fu n  to  d e v ise  a n d  b u ild  

g a m e s  th a n  to  p la y  th e m . N ow , 

if  it  had  a T IL T  b u ilt  in to  i t . . .
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audio volume control by ‘pushing’ it up or 
‘pulling’ it down.

All the other functions that one would expect in 
a well developed graphics package are also 
available. There are ‘tools’ for stretching and 
deforming lines by pulling them out between 
predetermined nodes (called ‘rubber-banding’); 
for painting the blocks with one of the colours 
from the palette; and for magnifying small 
portions of the graphic image so that you can work 
in greater detail.

It is not so much the individual functions and 
capabilities of the Pinball Construction Set that 
are important, however, as its overall operating 
philosophy. Object oriented programming — 
where each operating element of the software 
package carries with it details of how it will work 
and how it interacts with any of the other objects 
or elements — lends itself to the production of 
programs that need very little computing 
experience or aptitude on the part of their users. 
This programming method will be used almost 
exclusively in the fifth generation of computers 
currently being developed. Object oriented 
programming is hailed as the most important 
breakthrough in the field of software science since 
high level languages were first introduced in the 
late fifties.

Most home computers have quite sufficient 
memory capacity and processing power for their 
user’s needs. Any increase in that capacity and 
power is likely to be used to increase user 
friendliness. The truly remarkable thing about 
PCS is that it manages to achieve a high degree of 
user friendliness in only 48 Kbytes.

While object oriented programming applies 
itself readily to games and other graphics 
programs, it takes a little more programming 
ingenuity to introduce it into the field of business 
software. Though they do not use graphics as their

>*

Step By Step
T hese  fo u r  p ic tu re s  s h o w  

v a r io u s  s ta g e s  in  the  

c o n s tru c t io n  o f  a p in b a ll gam e . 

F irs t o f a ll th e  b a s ic  p ieces are 

in s ta lle d , th e n  a p o ly g o n  is 

add ed  to  fo rm  a c e n tra l is la n d . 

T he  p o ly g o n  is d e fo rm e d  and 

p a in te d  o ra n g e . F ina lly , s o m e  o f 

th e  o b je c ts  a re  t ie d  to g e th e r  (by  

m e a n s  o f an A N D  ga te ) so  th a t a 

b o n u s  is  s c o re d  w h e n  a ll th re e  

have been a c tiv a te d

Ready To Go
O nce th e  g a m e  is  c o m p o s e d  on 

th e  ta b le  it  can  be saved  on  d isk . 

B ecause  a ll th e  o p e ra tin g  

fu n c t io n s  ‘ t ra v e l’ w ith  th e  ta b le , 

th e  o r ig in a l s o ftw a re  package  

is n ’t  needed  to  re -ru n  th e  

p ro g ra m

%

%
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main means of communication, spreadsheet 
packages (like Visicalc and Supercalc) are object 
oriented to a certain degree, in that each field or 
cell can contain both a piece of data and the 
relationships that define it.

Another example is Apple’s Lisa system, which 
uses a ‘mouse’ to manoeuvre a pointer around the 
screen to select the program (represented by a 
graphic symbol) that you wish to run. The word 
processor, for example, is represented by a sheet 
of typing paper; the graph plotting program by a 
sheet of squared paper.

Perhaps the most fascinating of all its functions 
is the method Lisa uses to transfer data from one 
program to another. One of its ‘Icons’ (the name 
given to pictorial representations of functions on 
the screen) is a clipboard. If we wanted to take a 
small section of a spreadsheet and reproduce it as 
a graph, it is necessary only to define the window 
on the spreadsheet, transfer that window to the 
clipboard (which is a temporary storage area) and 
carry it across to the graph plotter program.

When we talked about arcade games (see page 
221), we noted that there were a number of 
generically different types. PCS could well form a 
new category. It is tempting to suppose that the 
next step the home computer games industry will 
take will be the production of Maze and Chase 
Construction Sets, Space Invaders Construction 
Sets, and so on; at which point many games 
program writers could find themselves redundant.

Objective Outlook
A s w e ll as b e in g  an  in t r ig u in g  

a n d  e d u c a tio n a l g a m e , th e  

P in b a ll C o n s tru c t io n  S e t is  a 

f in e  e x a m p le  o f  o b je c t 

o r ie n te d  p ro g ra m m in g . In 

n o rm a l p ro g ra m m in g , th e  

s tru c tu re  o f th e  da ta  is 

d e fin e d , a n d  th e n  p ro g ra m  

ro u t in e s  a re  w r it te n  to  

m a n ip u la te  th is .  In  o b je c t 

o r ie n te d  p ro g ra m m in g , th e  

c a lc u la t io n s  a n d  p ro c e d u re s  

are  in s e p a ra b le  f ro m  th e  da ta . 

In th e  p in b a ll p ro g ra m , 

m o v in g  th e  s y m b o l fo r  a 

p in b a ll m a c h in e ’s f l ip p e r  o n to  

th e  b o a rd  n o t o n ly  s e ts  u p  th e  

da ta  (in  th is  ca se , th e  sh a p e  

o f th e  f l ip p e r ) ,  b u t a rra n g e s  

fo r  th e  a s s o c ia te d  ro u t in e s  to  

be se t up  to  a c tiv a te  th e  

f lip p e r .

O b je c t o r ie n te d  

p ro g ra m m in g  le n d s  its e lf  to  

v is u a l a p p lic a t io n s . 

S p re a d s h e e ts  a re  a n o th e r  

e x a m p le : th e  f ie ld  th a t 

d is p la y s  a re s u lt  w i l l  a lso  

c o n ta in  th e  fo rm u la  to  g e t th a t 

re s u lt.

T he  c u r re n t  t re n d  fo r  

b u s in e s s  w o rk s ta t io n s  th a t 

s im u la te  th e  la y o u t o f ite m s  

on a d e s k to p  a ls o  d e r iv e s  

f ro m  th e  sa m e  idea . P o in t in g  

to  an  im a g e  o f a p ie ce  o f 

ty p in g  p a p e r on  th e  sc re e n  

a c tiv a te s  th e  w o rd  p ro c e s s o r, 

w h i ls t  p o in t in g  to  a m in ia tu re  

d ra w in g  o f  a f i l in g  c a b in e t w il l  

f i le  th e  re s u lts  a w a y
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Cruise missiles are a controversial subject, but they contain some 
interesting com puter technology — such as bubble memory — 
which will soon be appearing in home computers

i

When Neil Armstrong took his one small step 
onto the surface of the moon, it was largely due to 
computerised guidance systems. Of course, 
interplanetary rocketry relies on very precise 
engineering, but without computer hardware and 
software it would never be possible to perform 
positional calculations either fast enough, or with 
sufficient accuracy, to allow one object to engage 
with another at a vast distance — even an object as 
big as the moon.

When one considers current military 
requirements that call for the placement of 
warheads to within 20 or 30 metres (70 to 100 
feet) after a flight across a continent, then the 
scope of data processing power needed to 
perform the calculations becomes enormous.

Early military experience showed that the 
fundamental problem with missiles was that once 
fired, no correction was possible. The first major 
advance came with the development of simple 
guidance systems that were able to judge where 
the rocket was in relation to a point on the earth’s 
surface (the launch site) by deducing how far it 
had travelled, and in what direction. But even a 
first-class modem system of this type will be prone 
to significant error.

Another, and more accurate, method uses 
satellites in geo-stationary orbit as reference 
points. The main drawback to these systems is that 
the flightpath of the missile — and probably its 
target — are deducible by the enemy very soon 
after launch, given the capability of modem over- 
the-horizon radar systems. To combat this 
vulnerability, the ideal military requirement was 
for a low-flying missile with a small radar cross- 
section that could actually decide for itself the 
course it would fly to its target. And so the Cruise 
missile was bom.

The Cruise missile constantly updates its 
position by analysing the contours of the ground 
over which it is flying. This is done by matching a 
succession of height-above-ground readings, 
from an extremely accurate radar altimeter, with a 
contour map of the terrain stored in an on-board 
bubble memory.

This system, developed by McDonnell 
Douglas, is known as TERCOM (TERrain 
COntour Matching), or DPW-23. Each missile 
has stored in its bubble memory some 25 ‘route 
profiles’ that it compares with the terrain it is 
passing over. However, there are drawbacks to 
this. For example, the system is not usable over 
water as that has no permanent features. It is also

not reliably accurate over sand desert, where the 
terrain is in constant motion. Neither, one 
suspects, is it accurate in the depths of a North 
European winter, when the terrain will be 
significantly altered by the large seasonal 
snowfalls.

Cruise does not use this guidance system from 
the moment of launch. It remains inertial while the 
missile flies at altitude in friendly airspace. Once it 
is vulnerable to attack from the air or the ground, it 
dives to within 15m (50 ft) of the ground for its 
flight over enemy territory. Even though it may be 
up to a kilometre (1,100 yds) off course at this 
point, it is predicted that it will be sufficiently close 
to one of its 25 mapped routes to be able to 
relocate itself precisely.

When the missile nears its target it turns on a 
Terminal Correlator Unit which contains — once 
again in bubble memory — a detailed digital 
picture of the target area as it would be seen from 
an on-coming missile. Tests have shown that this 
system is likely to be accurate to within 18m (60 
ft), after a flight of some 2,800km (1,750 miles).

Self-Seeking Missile
T he  G enera l D y n a m ic s  

^ T o m a h a w k ’ G ro u n d  L a u n ch e d  

C ru ise  M is s ile  is  6 .4 0 m  (2 1 ft)  

lo n g , a n d  w e ig h s  le ss  th a n  one  

and  a q u a r te r  to n s  (1 ,2 0 0 k g ) .  

F ired  f ro m  a tu b e  m o u n te d  on  a 

m o b ile  la u n c h e r, i t  s ta r ts  life  as 

a c o n v e n tio n a l ro c k e t, b u t s o o n  

d e p lo y s  s m a ll w in g s  a n d  s e ttle s  

d o w n  to  lo w - le v e l f l ig h t  

p o w e re d  b y  a re m a rk a b ly  s m a ll 

and  c o m p a c t tu rb o - fa n  je t 

e n g in e

COURTESY OF NEW SCIENTIST

Bubble, Bubble
In  b u b b le  m e m o r ie s , ‘ b u b b le s ’ 

o f m a g n e tic  fo rc e  are  c re a te d  to  

fo rm  a T ,  a n d  n o t c re a te d  to  

re p re s e n t ‘O’ , on  a t in y  c h ip  o f 

g a rn e t. T he  a d v a n ta g e s  a re  th e  

p a c k in g  d e n s ity  —  c u r re n t ly  

o n e  m il l io n  b its , o r  1 2 8  K by tes  

p e r c h ip  — a n d  no  lo s s  o f 

c o n te n ts  w h e n  th e  p o w e r is 

tu rn e d  o ff. H o w e v e r, b u b b le  

m e m o r ie s  re a c t c o n s id e ra b ly  

m o re  s lo w ly  th a n  c o n v e n tio n a l 

R AM
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Indexing is one way of structuring large quantities of data, such as 
names and addresses. The Linked List or chain is an alternative with 
distinct advantages

Pointing The Way
A L in k e d  da ta  s tru c tu re  s ta r ts  

w ith  a s im p le  L is th e a d  v a r ia b le , 

w h ic h  p o in ts  to  th e  e le m e n t o f 

th e  m a in  a rra y  th a t  c o m e s  f ir s t  

in th e  lis t, in  th is  case  n u m b e r  2 

(A tk in s ) .  E x a m in in g  the  

c o n te n ts  o f e le m e n t n u m b e r  2 in 

th e  L o o k u p  a rra y  w il l  p o in t  us to  

n u m b e r  3 (C a rte r) , th e  n e x t 

e n try  in  th e  a lp h a b e tic a l lis t.

T h is  p ro c e s s  c o n t in u e s  u n t il w e  

reach  S m ith , w h e n  L o o k u p  (5) 

c o n ta in s  0, in d ic a t in g  th a t  th e  

end  o f th e  l is t  has  been reach ed

In a computer’s memory there is only data, byte 
after byte of it, stored in thousands of voltage 
patterns. Meaning is given to those bytes by the 
data structure that the central processor imposes. 
Those various data structures decide whether any 
particular byte is interpreted as part of an 
instruction, or as digits belonging to a larger 
number, or as a character code.

From the user’s point of view some kinds of 
data structure are virtually wired into computers. 
Programming languages usually demand that data 
be structured in a limited number of ways. B a s i c  

imposes the idea of numeric and string data types, 
and supplies variables and array structures for 
manipulating those types. Other languages 
usually support those and additional structures. 
The strength and variety of its data types are major 
components of a language’s power.

The b a s i c  data structures — variables and 
arrays — will be all that we need to simulate some 
other ways of looking at data.

The indexed array is a useful data structure, and 
easily implemented in b a s i c . It has its limitations, 
however, particularly when the data to which it 
refers is likely to change often and/or 
unpredictably.

Suppose British Telecom keeps a file of its new 
subscribers for eventual inclusion in the next issue 
of the telephone directory. Until that time, the 
names and addresses have to be kept in alphabetic 
order for easy reference, but the file is constantly 
growing, and the additions arrive unpredictably. 
On Monday the file NewSubS ( ) might look like 
this when it’s read into the array:

NewSubS ( ) Index ()

(1) Jones (2)
(2) Atkins (3)
(3) Carter (6)
(4) Rogers (D
(5) Smith (4)
(6) Drake (5)

The array I n d ex ( ) shows the order in which to read 
NewSubS ( ) so that the entries are in alphabetic 
order. Thus, the first item alphabetically is 
NewSubS (2), Atkins. The second item is NewSubS 
(3), Carter. In this example only the names are 
shown, but in fact a directory entry comprises 
name, initials, and address — typically about 60 
characters. Moving blocks of 60 characters 
around in memory is slow (as sorting requires
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many data moves) and wastes memory, so it is 
more efficient to leave NewSubS ( ) unsorted, and 
create Index ( ) instead. Now a new name, Bull, has 
to be added to the file, so the arrays look like this:

| NewSubS () I Index ()

(1) Jones (2)
(2) Atkins (7)
(3) Carter (3)
(4) Rogers (6)
(5) Smith (D
(6) Drake (4)
(7) Bull (5)

Notice that the contents of Index ( ) above the new 
insertion are unchanged, and its contents below 
the insertion are in the same order as previously, 
but have all been moved one place down in the 
array. Insertion to an index therefore requires: 
finding the position of the new element, moving 
every element between there and the end of the 
index down one, and writing in the new entry. This 
is preferable to doing the same thing with the 
actual data, NewSubS, but is still relatively slow, if 
the index is large.

Suppose, now, that we structure the data in a 
different way. Leave NewSubS ( ) unsorted 
because manipulating it is slow and expensive, and 
establish a parallel array called LookUp ( ), whose 
contents are simply numbers referring to positions 
in NewSubS ( ).

UstHead (2)
NewSubS () |LookUp() | Index ()

(1) Jones (4) (2)
(2) Atkins (3) (3)
(3) Carter (6) (6)
(4) Rogers (5) d)
(5) Smith (0) (4)
(6) Drake (D (5)

The first difference is that a simple variable called 
UstHead is needed: it points to NewSubS (2) which is 
alphabetically the first element of NewSubS ( ).The 
next difference is that the number (0) has been 
used in LookUp (5): this indicates that NewSubS (5) is 
alphabetically the last element of the array.

The next difference is the contents of Index ( ) 
and LookUp ( ). Index ( ) has to be read: ‘the first 
element is in NewSubS (2), the second is in NewSubS 
(3), the third is in NewSubS (6)’...etc. while UstHead 
( ) is read: ‘the first element is in NewSubS (2); Then 
LookUp (2) says that the next element is in NewSubS 
(3); LookUp (3) says that the next element is in 
NewSubS (6); and so on. LookUp (5) says that 
NewSubS (5) is the last element.

Index ( ) gives an absolute position for elements 
of the file, while LookUp ( ) gives only relative 
positions — any item in LookUp ( ) tells you only 
where to find the next element, and says nothing 
about absolute position. The number in Index (4) 
points to the fourth item in the alphabetically 
ordered file, whereas the number in LookUp (4)

points only to the item that comes after NewSubS 
(4) in the ordered file. LookUp ( ) implements the 
data structure called a ‘Linked List’. Reading a 
Linked List is like following a treasure hunt: at the 
start you’re told your first destination; when you 
get there you find a clue which points you to your 
next destination, and so on. Reading an Indexed 
Array is like being on a car rally: at the start you’re 
told all your destinations and the order in which to 
visit them.

The great advantage of the List structure is its 
flexibility. Consider the List after insertion of the 
new element, Bull:

UstHead (2)
NewSubS () LookUp ()

(1) Jones (4)
(2) Atkins (7)
(3) Carter (6)
(4) Rogers (5)
(5) Smith (0)
(6) Drake (D
(7) Bull (3)

The array LookUp ( ) has changed in only two 
places:
i) LookUp (2), which formerly pointed to NewSubS 

(3) as containing the next alphabetic element 
after NewSubS (2), now points to NewSubS (7) 
since it is now the next alphabetic element after 
NewSubS (2)

ii) LookUp (7), which was unused, now points to 
NewSub$(3) as the next item after NewSubS (7) 
in the alphabetic ordering.

This illustrates the general process of insertion to a 
Linked List: find the element of the list which 
should come just before the new element, and 
make that element point to the new element; then 
make the new element point to the element that it 
has displaced. These simple operations will be all 
that is required for insertion to a Linked List, and 
only the first of these is affected by the size of the 
List. Inserting an element to a List is like inserting 
a new link into a chain — decide where to put the 
link, break the chain, join the preceding link to the 
new one, and the new link to the succeeding link. 
Linked Lists are sometimes called Chained Lists. 
The numbers in LookUp ( ) — the links — are 
sometimes called Pointers.

A striking feature of Lists is their strong 
seriality; it is impossible to find an element in a List 
except by starting at the beginning and inspecting 
every element until the target is found. The List is 
implemented here by using arrays, which are 
designed to be Direct Access structures, but the 
List has effectively turned them into Sequential 
Files. In other languages, such as l is p  and p a s c a l , 

the List facility is built-in.
Lists are useful structures for handling dynamic 

data (data that regularly changes), and can be 
powerful tools when dealing with either natural 
language (as in speech recognition) or artificial 
language (when compiling programs), where the 
data itself naturally forms a list of elements.
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Sound And Light

Sound And Light is a new series 
that will teach you how to get the 
most from the sound and 
graphics facilities on your 
computer

As home computers have developed over the last 
few years the features provided have become 
more comprehensive. Games facilities have been 
of vital importance to the popularity of each new 
computer and much time and effort has gone into 
developing sophisticated colour graphics 
capabilities. Though not so obvious in 
importance, sound and music-making features 
have been developed to a similar degree. If you 
asked successful games writers how important 
sound routines were in their programs they would 
probably place them a close third behind the game 
concept and graphics. Intelligent use of sound 
effects and music add considerably to the

excitement and entertainment value of all arcade- 
type games.

In addition to games applications it is possible 
to further your knowledge of music by using the 
sound capabilities provided by your home 
computer. In many cases special music commands 
are provided in b a s i c  to enable you to write short 
programs to play quite complex tunes that even 
include chords. Some computers also provide 
ways to change the nature of the sound to make it 
more pleasing to the ear or approximate the 
sounds of conventional musical instruments. In all 
cases the computer keyboard can be configured, 
by means of a suitable program, to act in a similar 
manner to a piano keyboard, enabling you to play 
music in ‘real time’.

Even if you have little knowledge of 
programming it is possible to write short and 
simple programs that make reasonably 
sophisticated musical sounds. If you wish to use 
the sound facilities to their best advantage, most 
software houses produce comprehensive music 
programs that enable you to write and play tunes 
immediately. Whichever approach you take, it is 
useful to understand how your computer 
generates, shapes and controls its sound output.

L o w  a n d  H ig h  R e s o lu tio n
Graphics on microcomputers can be divided into 
two categories: low resolution and high
resolution. The difference between low and high 
resolution is best described by considering how a 
character (a letter, number or shape) is made up.

If you take a close look at a standard character 
printed on a television screen you can see that its 
shape is made up of a group of small squares. 
These squares are called picture elements, or 
‘pixels’, and every character or shape that appears 
on the screen is an arrangement of these in a 
pattern. On most home computers the characters 
are formed from a square of 64 pixels, grouped 
into eight rows of eight. The letter ‘A ’ can be made 
up of a pixel pattern like this:

Each illuminated pixel on the grid can be 
represented in the computer’s memory by a ‘1’ 
and each dark pixel by a ‘O’. Eight bits make a 
byte, so each row of the character grid may be 
stored in one single location of the computer’s 
memory. Thus it takes eight memory locations to 
hold a single character.

Graphic displays are sometimes made up of 
blocks the size of whole, half, or quarter character 
grids. Graphics designed using these large, simple 
building blocks are said to be of low resolution. On 
many home computers it is now possible to design 
graphic displays that are built up from single 
pixels. These are high resolution displays. A good 
way to demonstrate the difference between the 
two types is to^look at a plot of a sine curve, as 
illustrated, using both kinds of resolution.

BIT PATTERN

0 0 0 1
0 0 1 1
0 1 1 0  
0 1 1 1  
0 1 1 0  
0 1 1 0  
0 1 1 0  
0 0 0 0

1 0 0
1 1 0
0 1 1
1 1 1
0 1 1
0 1 1
0 1 1
0 0 0

\
\

\

1 I
\  HIGH RESOLUTION

/
/
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O s c illa to rs
Oscillators are electronic circuits that produce 
repetitive signals. When these signals are 
amplified and fed to a speaker they make sounds 
of a given pitch. The number of oscillators 
provided by home computers varies between one 
and four — the more oscillators you have the more 
notes you can play at once.

Three characteristics describe the sound 
created: frequency, envelope (which includes 
volume) and waveform. Frequency will be 
introduced in this instalment and envelope 
generators and waveform dealt with in the second.

F re q u e n c y
This is the most important characteristic that we 
need to control, as it determines the pitch of the 
sound. Frequency is the number of times a signal 
repeats itself every second and is measured in 
hertz (Hz, cycles per second). Sounds that can be 
heard by the human ear have frequencies greater 
than 20Hz but less than about 20,000Hz. 
Although we cannot hear frequencies below 20Hz

they can be used to modify the characteristics of an 
audible sound. This technique is called 
modulation and at present can be applied only on 
the Commodore 64 among home computers.

However, it is not necessary to delve deeply into 
frequencies. What you really need to know is how 
to play musical notes. The ease with which you can 
do this varies enormously from one machine to 
another. Some have b a s i c  commands that work 
out the frequencies for you so that you need only 
specify a pitch number or even a musical letter 
symbol — A, A #, B, and so on. Others make it 
much more difficult by providing only a table in 
the user manual where you look up the frequency 
corresponding to the required note and POKE the 
frequency value into a memory location. The table 
shows accurate conversions for the scale of middle 
C. It will also be useful for those wishing to 
program music in machine code, where b a s i c  is 
unable to help you calculate the frequencies.

Music Notes To Frequencies
Y ou  can  w o rk  o u t  th e  fre q u e n c y  

o f each  n o te  in  th e  s c a le  by 

m u lt ip ly in g  th e  fre q u e n c y  o f th e  

n o te  o n e  s e m ito n e  b e lo w  i t  by 

1 .0 5 9 4 6 3 1 . T h is  m a y  a p p e a r a 

lit t le  b a ff l in g  b u t i f  th e  

m u lt ip l ic a t io n  is c a rr ie d  o u t  12 

t im e s  th e  o r ig in a l f re q u e n c y  is 

d o u b le d . T h e re  a re  12 

s e m ito n e s  in  an o c ta v e  (the  

d iffe re n c e  b e tw e e n  tw o  no tes  

w ith  th e  sa m e  le tte r)  so  

d o u b lin g  th e  fre q u e n c y  m o ve s  

th e  s o u n d  up o n e  o c ta ve . T h is  

ta b le  p ro v id e s  a c c u ra te  

c o n v e rs io n s  fro m  m u s ic  no te  

s y m b o ls  ( fo r  th e  sca le  o f m id d le  

C) to  fre q u e n c ie s

dD
U S

A H B 'C

261.63
293.66 329.63 349.23

392 440
493.88

523.25

U s e r-D e fin e d  C h a ra c te rs
To create unusual and attractive screen displays it 
is often useful to have characters available that are 
different from the normal alphanumeric character 
set. The Vic-20 and Commodore 64 have a 
special set of graphic characters that can be used 
directly from the keyboard, but even these do not 
cover every eventuality. On most home 
computers it is possible to create new characters. 
This is usually achieved by redefining the binary 
patterns of the eight locations of memory in which 
a character is stored. In the process the old set of 
binary patterns is often lost, or ‘overwritten’, and 
the ‘user-defined’ character takes on some of the 
properties of the one it has replaced in memory. 
Thus the new character can be used in PRINT 
statements by simply pressing the key of the 
character it has replaced. Here is an example of a 
user-defined character, together with its 
associated binary codes:

PIXEL PATTERN

BIT PATTERN

128 64 32 16 8 4 2 1

1 0 0 1 1 0 0 1
0 1 0  1 1 0  1 0  
0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 1 0 0 1 0 0
0 0 1 0 0 1 0 0
0 1 1 0  0 1 1 0

The ease with which user-defined characters can 
be set up varies greatly according to the computer 
being used. For example, with the Sinclair 
Spectrum’s USR command, all that is required is to 
enter the appropriate binary patterns; whereas on 
the Commodore 64 the user first has to move the 
complete character set from ROM to RAM 
before POKEing in to memory the eight decimal 
equivalents of the bit patterns that make up the 
shape. However, several character-designing 
utility programs, available from independent
suppliers, make life easier for the Commodore 64 
owner.

To create larger figures it is possible to group 
two or more user-defined characters together. 
The alien figures shown (right) were constructed 
from four user-defined characters. The program, 
which runs on the Commodore 64, PRINTS the 
character groups on the screen in three different 
colours. The characters were created by using a 
short routine to move the normal character set 
from ROM to RAM and replace the graphics 
characters ^  , □  , A  , and ‘ ’ by
reading in decimal numbers from DATA statements 
and using POKE commands to place them in the 
appropriate locations. Full details of how you can 
do this will be given in a forthcoming instalment.

Even when sprites (see page 152) are available 
there is often a limit to the number that can be 
displayed at any one time on the screen, so user- 
defined graphics come in useful where many
similar shapes need to be displayed at the same 
time.

Extra Terrestrial
T hese  a lie n  c re a tu re s  w e re  

c re a te d  f ro m  fo u r  c h a ra c te rs , 

each d e fin e d  b y  th e  

p ro g ra m m e r. T h is  m e th o d  can 

be used  on  m a n y  m a c h in e s  th a t 

d o n ’t  have  s p r ite s
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Use of high-speed computers, both to process satellite images and 
analyse patterns of data, has made weather forecasts a great deal 
more accurate than they used to be

Pictures From Space
The M e te o sa t 2 w e a th e r 

s a te llite , la u n ch e d  in  J u n e  1981 , 

is in  a g e o s ta tio n a ry  o rb it  ( th a t 

is, it  does n o t m o ve  in  re la tio n  to  

th e  e a rth ) s o m e  3 5 ,8 8 0  Km  

(2 2 ,3 0 0  m ile s )  a b o ve  th e  

e q u a to r, on  th e  ze ro  m e r id ia n . It 

g a th e rs  in fo rm a tio n  fro m  a la rge  

n u m b e r o f e a rth  s ta tio n s

The results of many of the most complex data 
processing tasks are present in our everyday lives, 
often without us knowing about them. One of the 
most advanced computer applications, requiring 
greater data processing capacity than almost any 
other in the country, gives us daily information 
about our weather conditions and what we can 
expect from them. Given the complexity of 
weather forecasting, it is perhaps surprising that 
our forecasters come up with the right answers as 
often as they do. Computer aided prediction is an 
immense asset to them in dealing with the vast 
array of possibilities.

The climatographic factors that affect the 
weather patterns over the British Isles, and to a 
lesser extent the Atlantic seaboard of the 
European landmass, are extremely complex. 
Primarily, they are conditioned by our proximity 
to both the North Pole and the Atlantic Ocean. 
Being situated on the eastern side of the Atlantic,

we are more prone to the climatic effects created 
within its 2,500 mile width, because of the 
‘Coriolis effect’. This phenomenon is due to the 
earth’s west-to-east spin. It is best understood if 
we remember that at the equator an object on the 
earth’s surface is travelling at more than 1,600 
kilometres per hour (1,000 mph); and this 
powerful spinning motion, combined with the 
normal pole-to-equator wind patterns, creates the 
prevailing westerlies (winds that originate in the 
west) in the Northern Hemisphere. It is this 
constant onslaught of wet air — rising and falling 
according to local variations in temperature — 
that causes the predominant weather conditions in 
Britain.

Weather forecasters in the United Kingdom 
rely primarily on observations from data 
collection stations spaced at strategic locations in 
the Atlantic — weather ships, buoys, balloons and 
patrolling aircraft — to provide them with 
information about approaching conditions. They

7*
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then predict what will happen as these climatic 
phenomena approach the land mass, according to 
the known behaviour of similar phenomena in the 
past.

Before March 1979, when the Meteosat 1 
weather satellite was launched, the only method of 
prediction available to forecasters was to plot 
reports from the weather stations onto a map to 
build up an isobaric chart. Isobars are imaginary 
lines that join points of equal barometric pressure, 
rather as contour lines on a map join points of 
equal height. From these it is possible to decide on 
the speed and direction of warm and cold fronts — 
and their associated cyclones and anticyclones — 
and thus make what are best described as 
educated guesses about the expected weather 
conditions.

While isobaric charts are by far the most 
common, they are by no means the only maps that 
the Meteorological Office produces. From the 
vast weather database held in its computer system 
it can produce charts that show average

N u m b e r C ru n c h e rs
One o f th e  c h ie f uses  o f la rg e  c o m p u te rs  in  s c ie n t if ic  re se a rch  is 

to  p ro c e s s  p u re ly  n u m e r ic a l in fo rm a t io n  in  th e  fo rm  o f  v e ry  la rg e  

and  c o m p le x  e q u a tio n s . P u re  s c ie n c e  a p p lic a t io n s  s u c h  as 

n u c le a r p h y s ic s , a n d  a p p lie d  s c ie n c e  a p p lic a t io n s  s u c h  as 

m e te o ro lo g y  have  s im ila r  re q u ire m e n ts . W h ile  o n e  c o u ld  

p e r fo rm  c a lc u la t io n s  o f th is  c o m p le x ity  on  a h o m e  m ic ro , th e  

le n g th  o f t im e  ta k e n  w o u ld  be p ro h ib it iv e  —  as a re s u lt  n o t o n ly  

o f th e  n u m b e r  o f te rm s  in  th e  e q u a tio n , b u t a lso  o f th e  s h e e r 

m a g n itu d e  o f  th e  n u m b e rs  in v o lv e d , w h ic h  can  g o  to  30  o r  m o re  

d e c im a l p la ce s . In o rd e r  to  p e r fo rm  th is  fu n c t io n  in  a re a s o n a b le  

t im e , o n e  n e e d s  v e ry  fa s t  c o m p u te rs  w ith  v e ry  la rg e  a m o u n ts  o f 

m e m o ry

temperature, rainfalls, hours of sunshine per day, 
and so on.

The Meteorological Office still follows this 
procedure for its accurate charts of current 
conditions, but now also uses the images received 
from Meteosat. These are analogue signals which 
are digitised for processing and display by the 
computer in the form of artificially coloured maps. 
The images create a live picture of the weather 
pattern as it occurs. They are regenerated 
approximately every four minutes, so the 
forecaster is able to observe the creation of 
weather systems in real time.

Meteosat 2, which replaced the earlier satellite 
in June 1981, sits in a geostationary orbit some 
35,880 km (22,300 miles) above the Equator. It 
gathers data from a large number of earth stations 
spread out across the surface of the globe, and 
relays that information to anyone who wishes to 
subscribe to the system.

It would be theoretically possible to analyse and 
interpret this information (though not in real time) 
on a home computer by writing the received data 
to disk as it arrives from the satellite. However, the 
signal is an analogue one, so the conversion might

be difficult. You would also need to install your 
own dish aerial precisely aligned with the satellite.
The processing of these satellite images is only one 
very small function of the Meteorological Office’s 
computer system. Along with other similar 
organisations in other parts of the world, it 
maintains a global weather system model and 
extracts from this model a vast amount of 
statistical data. This forms the database of 
historical information from which trends in global

and local climate are plotted. It includes not only 
barometric data, but also details of wind speed 
and direction, rainfall, and temperature — not just 
at sea or ground level but also at specific altitudes.

Collection of this data is important for 
historical analysis. It is vital to agriculture, to many 
industries, and to the economy and ecology of 
whole continents, for it is only by this means that 
changes in climate can be recognised. Examples of 
this include the results of the progressive 
destruction of the Amazon rain forest and the 
increase in size of the polar ice-caps that could 
indicate the approach of another ice age.

Earth Stations
S a te llite  re c e iv in g  a e ria ls  

(k n o w n  as d ish  a e ria ls , a fte r 

th e ir  shape ) can  v a ry  im m e n s e ly  

in s ize  and  c o m p le x ity . The one 

s h o w n  here  is ca p a b le  o f bo th  

re c e iv in g  and  t ra n s m it t in g ,  and 

is n o t c o n fin e d  to  s ig n a ls  fro m  

g e o s ta tio n a ry  s a te llite s . It has 

s o p h is t ic a te d  c o m p u te r  c o n tro l 

th a t a llo w s  it  to  tra c k  an o rb it in g  

s a te llite  p re c is e ly

Isobaric Charts
The ‘w e a th e r m a p s ’ th a t w e  see 

on te le v is io n  o r in o u r 

n e w s p a p e rs  a re  a c tu a lly  ch a rts  

o f b a ro m e tr ic  p re ssu re . The 

c o n c e n tr ic  lin e s  jo in  p o in ts  o f 

equa l a ir  p re ssu re . W in d s  f lo w  

a n t i-c lo c k w is e  a ro u n d  a ‘ lo w ',  

c lo c k w is e  a ro u n d  a ‘ h ig h ’ (the  

re ve rse  in th e  s o u th e rn  

h e m is p h e re ), and  w in d  speed is 

d ire c t ly  re la ted  to  th e  d is ta n c e  

be tw een  th e  is o b a rs
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H a rd w a re  F o c u s
1

Though this machine features 
only four Kbytes of user memory 
as standard, its superb graphics 
facilities mean that the user can 
still write worthwhile programs

Most of the early home computers were designed 
in California, USA. More recently, British- 
designed machines have started to capture a large 
share of the worldwide market. However, it can 
only be a matter of time before the Japanese 
dominate the scene, as they have done in every 
other consumer electronic market. The Sord M5 is 
certainly not the first Japanese microcomputer, 
but it is the first to have made a significant impact 
on the home, as distinct from the business market.

It is a solid and compact machine similar in size 
to the Sinclair Spectrum, but is considerably 
heavier and feels much more robust. In many 
other respects it has similar capacities, with a 
Z80A CPU, single-key entry for b a s i c , and 
program/data storage on cassette. Internally, 
however, it’s much more sophisticated, as 
witnessed by the built-in Centronics printer port. 
But the two major differences are the size of the 
RAM memory — which at four Kbytes (expand
able to 36 Kbytes) is much smaller in the 
unexpanded machine — and the inclusion of 
dedicated graphics and sound chips.

The graphics are handled by a TI 9918,9928 or 
9929 (depending on the country in which the 
computer is sold), which gives a resolution of 192 
X 256 dots in up to 16 different colours. There are 
four main graphic modes, three of which may have 
up to 32 independently moving sprites, which can

The ROM Cartridge
O ne o f th e  b e s t fe a tu re s  o f th e  M 5  is th a t th e  la n g u a g e  can be 

ch a n g e d  b e ca u se  it  is  k e p t in a RO M  c a r tr id g e . T h re e  v e rs io n s  o f 

BASIC  are  a v a ila b le  fo r  th e  M 5 : BASIC-1 (s im p le , fo r  b e g in n e rs ) ; 

BAS IC -G  (v e ry  s tro n g  on  g ra p h ic s ) ;  a n d  B A S IC -F  (s c ie n t if ic  and 

m a th e m a tic a l) .  T h e re  is a ls o  a s p e c ia l u s e r-o r ie n te d , g e n e ra l-  

p u rp o s e  p ro g ra m  ca lle d  FALC, w h ic h  has  a c o m b in a t io n  o f 

sp re a d sh e e t, f i l in g  and  g ra p h ic s  fu n c t io n s ,  and  can be used  to  

d e ve lo p  s o p h is t ic a te d  a p p lic a t io n s  fo r  h o m e  o r  b u s in e s s  use

Printer Connector
A  C e n tro n ic s  c o m p a tib le  

p a ra lle l p r in te r  in te r fa c e  is 

a v a ila b le  a t th is  so cke t, 

a llo w in g  m a n y  w id e ly  a v a ila b le  

p r in te rs  to  be d ire c t ly  co n n e c te d  

to  th e  M 5

RF Connector
T V  c o m p a tib le  o u tp u t co m e s  

o u t o f here

Modulator
T he  o u tp u t f ro m  th e  V D P  is 

c o n v e rte d  in to  a s ta n d a rd  TV 

s ig n a l

Video Connector
The u n m o d u la te d  c o m p o s ite  

v id e o  s ig n a l f ro m  here  can be 

used  to  d r iv e  a m o n ito r

Audio Connector
The a u d io  o u tp u t can  be fed  in to  

an a m p lif ie r  f ro m  th is  s o c k e t

VDP
T he  Texas T M S  9 9 2 9  V ideo  

D is p la y  P ro c e s s o r ( in  th e  UK 

v e rs io n  o f th e  M 5 ) is 

re s p o n s ib le  fo r  c o n tro ll in g  the  

sc re e n , a n d  can h a n d le  up  to  32 

se p a ra te  s p r ite s

Joypad Connectors
The tw o  J o y p a d s  p lu g  in  here , 

fo r  g a m e s  p la y in g
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H a r d w a r e  F o c u s

The Joypads
The jo y p a d s  a re  th e  S o rd  e q u iv a le n t o f jo y s t ic k s . T h e y  w o rk  by 

s e n d in g  a s ig n a l fo r  each  o f  fo u r  d ia g o n a l d ire c t io n s . S in ce  these  

s ig n a ls  a c tu a lly  in te r ru p t  th e  C PU , no  m a tte r  w h a t ta s k  it  is 

e x e c u tin g , th e  re s p o n s e  t im e  is  v e ry  fa s t indeed

Power Connector
Power is supplied here from a 

small transformer

Custom Chip
T he  M 5 uses  a p iece  o f 

s o p h is t ic a te d  c u s to m  lo g ic  to  

a ch ie ve  its  a d va n ce d  fu n c t io n s  

a t a re a s o n a b le  p rice

ROM
T he  o n ly  b u ilt - in  p ro g ra m s  in 

th e  m a c h in e  are  a se t o f lo w - 

leve l c o n tro l p ro g ra m s , w h ic h  

are ca lle d  up by th e  use r 

p ro g ra m . T hese  ta ke  ca re  o f the  

d e ta ils  o f h a n d lin g  th e  sc re e n , 

k e y b o a rd  and  ca sse tte

The

RAM
The u s e r m e m o ry  is c o n ta in e d  

in th e se  tw o  la rg e  c h ip s , and  is 

se p a ra te  fro m  o th e r a reas  o f 

RAM

display upper and lower case letters, punctuation 
and numbers. It has line and block drawing 
symbols, as well as a very large range of accented 
lower case letters for use with foreign languages — 
and since any character can be redefined, the
possibilities are very wide indeed.

Other machines use the same graphics chips — 
in particular the T I99/4 A (see page 189) — and it 
is the use of such dedicated chips that makes the

CTC
M u c h  o f th e  c le a n n e s s  o f 

o p e ra tio n  o f th e  M 5  is  d e rive d  

fro m  th e  use o f th is  a d va n ce d  

C lo ck  T im e r  C o n tro lle r , w h ic h  

t im e s  and  tr ig g e rs  v a r io u s  

o p e ra tio n s  in th e  m a c h in e

„_____ _ _  ........... ......... r ___________ RAM
Since the screen memory is totally separate from 
the program memory, the only contents of the 
main RAM will be the actual program, plus, of 
course, the data needed by the variables.

Something that is currently being hotly argued 
over in the home computer industry is the
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M i

SORD M 5
PRICE

£145
SIZE

185 x70 x55mm
WEIGHT

1kg

CPU

Z80A
CLOCKSPEED

3.58MHz

MEMORY

8 Kbytes ROM
20 Kbytes RAM, of which 16 
Kbytes are used for graphic 
display.
With the addition of cartridges the 
ROM can be expanded to 16 Kbyte: 
and the RAM by 32 Kbytes

VIDEO DISPLAY

Up to 16 colours, which can be 
used on different ‘planes’. There 
are sprite graphics and four 
different screen modes: two 
graphic, one text and a ‘multi
colour’ mode
INTERFACES

Cassette, printer (Centronics), 
joypads, ROM cartridge, audio

LANGUAGE SUPPLIED

Language cartridge is integer 
Basic, BASIC-I

OTHER LANGUAGES AVAILABLE

BASIC-G (graphics), BASIC-F 
(floating-point BASIC), FALC (a 
spreadsheet and database 
language)

COMES WITh

Power supply adaptor, cassette 
leads, television lead, two joysticks 
with leads, BASIC-I cartridge and a 
cassette with two games

KEYBOARD

55 keys: eight shifts giving all 
alphanumeric characters, 28 
BASIC statements, and 64 graphic 
patterns

DOCUMENTATION

There is an 18-page User Guide 
that describes how to connect up 
the computer, how to load and play 
the two games, with a page 
dedicated to simple fault-finding. 
There is no description of the 
BASIC language or of using the 
cassette or other interfaces for any 
other purposes than for playing the 
games supplied

proposed ‘MSX standard’, developed by a group 
of major Japanese manufacturers, including Sord. 
The idea is that if manufacturers stick to these 
proposed standards for the design of home 
computers (covering both hardware and the 
dialect of b a s i c  to be used), it will be possible to 
write software that will run on all such machines, 
without modification. In terms of the graphics 
chips, the Sord M5 fulfils that standard.

However, MSX also specifies that the sound 
chip must be the AY-3-8910 from General 
Instruments. To make sounds, the Sord M5 (like 
the BBC Micro) uses a TI 76489 chip, which has 
better control over the range of sounds produced 
than the GI chip, though it is similar in having 
three tone channels and one noise channel. This 
means that the M5 is not a true MSX machine. 
However, it is sufficiently close to give an idea of 
what such machines will be like in use.

Three different versions of b a s i c , several 
utilities, some games and other applications can be 
supplied in ROM cartridge form, and since these 
may be up to 16 Kbytes in capacity, some useful 
programs may well appear for this machine.

The M5 may be a little more expensive than 
other computers of similar physical appearance, 
but the quality is definitely worth the extra cost.

The Sord M5 Keyboard
T he  ru b b e r k e y b o a rd  is s l ig h t ly  

la rg e r th a n  th e  S in c la ir  

S p e c tru m ’s, and  a lig h te r  to u c h  

m a ke s  it m o re  s u ita b le  fo r  

ty p in g . A to ta l o f 55  keys  can be 

used in a n u m b e r o f w a y s , to  

o b ta in  a lp h a n u m e r ic  

c h a ra c te rs , g ra p h ic  s y m b o ls , o r 

w h o le  BASIC  k e y w o rd s , by 

m e a n s  o f th e  FUNC key. A ll keys 

w il l  repea t a u to m a t ic a lly  if  he ld  

d o w n  —  w h ic h  is  v e ry  u s e fu l fo r  

sc re e n  e d it in g
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P a s s w o rd s  T o  C o m p u tin g 9
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‘Even parity’ ensures that the number of 1 bits in a byte is always 
even. This makes transmission errors easier to detect
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One of the main advantages of digital computers 
over analogue devices is that the errors and 
inaccuracies that occur in all electrical circuits do 
not accumulate as a signal is passed through many 
circuits (see page 239). However, when data is 
transmitted over any distance — whether by 
means of a serial interface and a pair of wires, or 
over a telephone line — the background electrical 
‘noise’ in the line can sometimes be enough to flip 
a single bit from 0 to 1, or vice versa. Normally, the 
receiving computer would have no way of 
knowing that this had happened, and would 
accept the erroneous data as being correct.

Look at what happens if one bit in the ASCII 
code for the letter Q becomes corrupted:

[ ] 1 0 1 0  0 01 (Transmitted ASCII code for Q)
[ ] 1 0 0 0 0 0 1 (Received ASCII code for A)

An error such as this in the transmission of data 
would, at the least, be a nuisance and could be 
potentially catastrophic. However, you will 
remember that ASCII codes are assigned only to 
values up to 127, which requires only seven bits 
(numbered 0 to 6). The Most Significant Bit (bit 
seven) is therefore often used as a ‘parity’ bit, to 
detect when an error has occurred.

There are two conventions for using parity bits: 
‘even parity’ and ‘odd parity’. We shall consider 
the former. ‘Even parity’ means that the parity bit 
(bit seven in an ASCII code) is set so that the total 
number of 1 bits in the byte is always an even 
number. Here’s how the letters A and Q would look 
with even parity:

[0] 1 0 0 0 0 0 1
(the ASCII code for A with even parity)

[1] 1 0 1 0 0 0 1
(the ASCII code for Q with even parity)

There are two 1 bits in the ASCII code for A, so the 
parity bit is made 0 so that the total of all eight bits 
is even. In the ASCII code for Q, there are three 1 
bits, so the parity bit is made a 1. This brings the 
total number of 1 bits to four, which is an even 
number.

Now let’s see what would happen if bit four in 
our ASCII letter Q became corrupted as in the 
example above.

[1] 1 0 0 0 0 0  1 (corrupted ASCII Q)

When the parity of the byte is checked (either by 
software or by special hardware) it is seen that the 
correct Q has an even number of Is in it (including

the parity bit). The corrupted Q, by contrast, 
accidentally had bit four changed from a 1 to a 0, 
but the original parity bit — bit seven — is still a 1. 
When the parity of this corrupted byte is checked, 
it will be found to have an odd number of 1 bits, 
and so this byte is known to be corrupted and can 
be rejected. If you think about it, you will see that 
even if the parity bit itself were to become 
corrupted in transmission, the fact that an error 
had occurred would still be picked up by the parity 
checking process, and the byte would be rejected.

If you look at the ASCII codes used in your own 
computer, you will probably find that bit seven 
(the Most Significant Bit, or MSB) is in fact used, 
but not as a parity bit. This is done to enable the 
computer to have an additional character set 
(usually a set of graphics characters), and because 
errors in data transmission inside a computer are 
very rare. Parity is normally used only when 
transmitting data over long distances, or when 
recording data onto a magnetic recording surface 
(such as tape or disk) which is equally susceptible 
to ‘bit errors’.

Parity checking is fine for indicating that a given 
byte has been transmitted incorrectly, but it does 
not indicate which bit in the byte was wrongly 
transmitted, so the error cannot be corrected by 
the receiving computer. Worse still, if two bits in a 
byte become corrupted, an incorrectly 
transmitted byte could be taken as a correct one.

But in cases where the receiving device detects 
an error, it can send back an error message and the 
software can arrange for the incorrect byte to be 
transmitted again. More sophisticated error 
detecting and correcting schemes have been 
devised that can pin-point which bit or bits were in 
error, enabling them to be corrected auto
matically. Error correcting codes are a subject that 
will be discussed later in the course.

LANGUAGE

Just Checking
T he  la s t d ig it  in  an In te rn a tio n a l 

S ta n d a rd  B o o k  N u m b e r (IS B N ) 

is a c h e c k  d ig it  —  e q u iv a le n t to  

p a r ity  in  a c o m p u te r . M u lt ip ly  

th e  f i r s t  d ig it  (0  he re ) b y  10 , th e  

s e c o n d  (5) by 9, and  so  o n , then  

add  th e  re s u lts  to g e th e r . Y ou  

w il l  f in d  th a t  th e  ch e ck  d ig it  has 

been se t s u c h  th a t  th e  re s u lt  is 

e x a c tly  d iv is ib le  by 11

PUBLISHER’S NUMBER

BOOK NUMBER

CHECK DIGIT
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Continuing our programming project to develop a computerised  
address book, we now look at how our file of data will need to be split
up into records and fields

We ended the previous instalment of the Basic 
Programming course by setting the task of refining 
the elements of the programming exercise through 
one or more layers of ‘pseudo-language’, up to the 
point where the examples could be coded into 
b a s i c . We will start by revising this exercise and 
giving some possible solutions. The first 
‘Statement of Objectives’ for the exercise was:

INPUT
A name (in any format)
OUTPUT
1. A forename
2. A surname

In our first level refinement we found that this 
could be brokerf down into six steps (later we 
found that the last step could be dispensed with). 
These were:

1. Read the name (*  READ ★ )
2. Convert all the letters to upper case (*  CONVERT *)
3. Find the last space (*  SPACE ★ )
4. Read the surname (*  READSURNAME *)
5. Read the forename (*  READFORENAME ★ )
6. Discard the non-alphabetics from the forename

steps (Convert all the letters to upper case) 
through a second and third level of refinement and 
created a short program in b a s i c  to do this task. 
We will now attempt this for the other steps:

2ND REFINEMENT
3. (Find last space)
BEGIN
LOOP while unscanned characters remain in NAMES

IF Character = “ ”
THEN note position in a variable 
ELSE do nothing 

ENDIF 
ENDLOOP 
END

3RD REFINEMENT
3. (Find last space)
BEGIN
READ FULLNAMES
LOOP (while unscanned characters remain)

FOR L = 1 to length of FULLNAMES 
READ character from FULLNAMES 
IF character = “ ”

THEN LET COUNT = position of character 
ELSE do nothing

We are treating all of these activities as 
subroutines and the name we have assigned to 
each subroutine is given in brackets. 
Unfortunately, most versions of b a s i c  are unable 
to call subroutines by name and it will be necessary 
when writing the final program to insert line 
numbers after the respective GOSUBs. During the 
development phase, however, it is much easier to 
refer to subroutines by name. These names can 
then later be incorporated in REM statements. We 
are indicating this use of named subroutines by 
putting the names within asterisks. In languages 
that can call subroutines by name (such as 
p a s c a l ) ,  subroutines like these are usually
referred to as ‘procedures’.

Even though your b a s i c  may not be able to 
handle procedures, it is recommended that you 
pretend it can while programming at the pseudo
language stage. Similarly, your version of b a s i c  

may not be able to handle long variable names 
such as COUNT or STREETNAMES, but at the 
pseudo-language level it is easier and clearer to 
assume that it can. Try to make them descriptive. 
It is much clearer to call a temporary variable for a 
string TEMPSTRINGS than to call it XV$. 
Fortunately, many versions of b a s i c  now allow 
longer variable names.

We have already developed the second of the

ENDIF
ENDLOOP
END

We are now in a position to code from pseudo
language into programming language:

10 INPUT “ INPUT FULL NAME FULLNAMES 
20 FOR L = 1 TO LEN (FULLNAMES)
30 LET CHARS = MID$ (FULLNAMES,L,1)
40 IF CHARS "THEN LET COUNT = L 
50 NEXT L
60 PRINT “ LAST SPACE IS IN POSITION ’’ ;C0UNT 
70 END

Note that line 10 is a dummy input for testing the 
routine; line 60  is a dummy output, also for 
testing; and line 70  will have to be changed to 
RETURN when the routine is used as a subroutine. 

Now let’s try the same process for step four:

2ND REFINEMENT
4. (Read surname)
BEGIN
Assign characters to right of last space to SURNAMES 
END

3RD REFINEMENT
4. (Read surname)
BEGIN

READ FULLNAMES
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Locate last space (call ★  SPACE ★  subroutine) 
LOOP while characters remain in string after space 

READ characters and add to SURNAMES 
ENDLOOP 

END

Before going on to code this into b a s i c , you should 
note some potential pitfalls. In locating the last 
space in the final refinement above, the pseudo
language calls for the use of the *SPACE* 
subroutine, but it would not be possible to write 
this out in b a s i c  and test it if the *SPACE* 
subroutine had not already been written. As a 
general rule, it is not worth coding each module 
into b a s i c  (or any other high level language) until 
the whole program has been developed in pseudo
language. However, if you do wish to test a 
module, you may need to write some dummy 
variable values as well as dummy inputs and 
outputs. In the example above, COUNT is the 
variable that holds the value of the position of the 
last space in FULLNAMES. In testing, we can cheat a 
little by assuming that the routine to do this works 
properly:

10 LET FULLNAMES = “TOM BROWN”
20 LET COUNT = 4
30 FOR L = COUNT + 1 TO LEN (FULLNAMES)
40 LET SURNAMES = SURNAMES + MID$ 

(FULLNAMES,L,1)
50 NEXT L
60 PRINT “SURNAME IS SURNAMES 
70 END

Here is the process for finding the forename (step 
five). Remember, we decided that a forename is a 
concatenation of all the alphabetic characters up 
to the last space in the name. Full stops, 
apostrophes, spaces and so on were to be 
discarded.

2 N D  R E F IN E M E N T

5. (Read forename)
BEGIN
LOOP while characters remain in FULLNAMES up to 

last space 
Scan characters 
IF character is not a letter 

THEN do nothing
ELSE add character to FORENAMES 

ENDIF 
ENDLOOP 
END

3 R D  R E F IN E M E N T

5. (Read forename)
BEGIN
LOOP while characters remain up to COUNT 

LET TEMPCFIARS = Lth character in string 
IFTEMPCHARS is not a letter 

THEN do nothing
ELSE LET FORENAMES = FORENAMES + 

TEMPCHARS 
ENDIF 

ENDLOOP

Now we are ready to code into b a s i c , but as an

intermediate stage, we are going to use un
numbered basic statements in a structured format 
so that you can compare the structure with the 
stage above:

C O D IN G

5. (Read forename)
REM BEGIN 
REM LOOP

FOR L = 1 TO COUNT- 1  
LET TEMPCHARS = MID$ (FULLNAMES,L,1) 
LET CHAR = ASC(TEMPCHAR$)
IF C H A R >64 THEN FORENAMES = 

FORENAMES+ CHR$(CHAR)
REM ENDIF

NEXT L: REM ENDLOOP 
REM END

In ordinary basic this would be:

10 FOR L = 1 TO COUNT- 1
20 LET TEMPCHARS = MID$(FULLNAME$,L,1)
30 LET CHAR = ASC(TEMPCHARS)
40 IF CHAR >  64 THEN FORENAMES -  FORENAMES

+ CHRS(CHAR)
50 NEXT L 
60 END

As it stands, however, this program would not 
work. There are three problems with it: COUNT 
needs to be assigned a value; there is no provision 
for inputing a name (assigning a string to 
FULLNAMES); and there is no ‘output’ in the form 
of a print statement for us to check if it has worked 
properly.

If this routine were part of a subroutine, the 
parameters passed to it (the input) and the 
parameters passed from it (the output) would 
have to be handled elsewhere in the program. This 
is a very important consideration: the flow of 
information within a program should always be 
carefully thought through before we begin to code 
into basic. This is particularly important when we 
are using variables (COUNT, for example) and the 
same variable name is used in different parts of the 
program. There is no point in calling a subroutine 
that uses a variable such as COUNT if the subroutine 
has no way of knowing what its value is supposed 
to be. If a subroutine initialises the value of CO U NT, 
that value will remain the same unless a new value 
is assigned later — perhaps in another subroutine. 
This is one reason why it is not good programming 
practice to jump out from the middle of a loop, 
since the value of the loop variable will be 
unknown. Consider the consequences of having 
these two program fragments as parts of different 
subroutines in a program:

P a r t  o f  s u b ro u tin e  X

FOR L = 1 TO LEN(WORDS)
LET CHARS = MID$(W0RD$,L,1)
IF CHARS = “ . ’’ THEN GOTO 1550 
NEXT L

P a r t  o f  s u b ro u tin e  Y

FOR Q = 1 TO LIMIT 
LET A(L) = P(Q)
NEXT Q
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This part of subroutine Y is reading values into a 
subscripted array, where the subscript is denoted 
by the variable L. If subroutine Y is called after 
subroutine X, and if the test condition in 
subroutine X has been met (that one of the 
characters is a “ . ”), the value of L would be 
completely unpredictable and so we would not 
know which element of the array values were 
being assigned to in subroutine Y. Apart from the 
error of branching out of a loop, this subroutine 
also uses a GOTO, and this practice should also be 
avoided. GOTOs lead to confusion and they should
be avoided wherever possible.

To avoid confusion when using variables, it is 
good practice to make a list of them at the pseudo
language stages of program development, 
together with notes saying what they are being 
used for. Some languages (but not b a s i c )  allow 
variables to be declared as ‘local’ or ‘global’ — that 
is, they have values that apply either in only part of 
a program (local) or throughout the whole 
program (global). Many variables, such as those 
used in loops (for example, the L in LET L = 1 T010), 
are almost always local, so it is often wise to 
initialise the value of the variable before it is used 
(for example, LET L = 0). Some languages, such as 
p a s c a l , insist oh this; and although b a s i c  always 
assumes the initial value of a variable is 0 (unless 
otherwise stated), initialising is still 
recommended.

So far we have formulated a reasonable 
definition of a name for the purposes of our 
computerised address book, and developed some 
routines that can handle names in various ways 
that we shall use in our complete program. Now 
let’s once again distance ourselves from the details 
of program coding and consider the structure of 
the ‘records’ in our address book ‘file’

The terms ‘record’, ‘file’ and ‘field’ have fairly 
specific meanings in the computer world. A file is 
a whole set of related information. In a computer 
system it would be an identifiable item stored on a 
floppy disk or on a cassette tape and it would have 
its own name, usually referred to as a filename. We 
can consider our entire address book as a file, and 
we shall call it AD BOOK.

Within a file we have records. These are also sets 
of related information. If we think of our address 
book as a card index box, the file would be the 
whole box full of cards and the records would be 
the individual cards — each one with its own 
name, address and telephone number.

Within each record we have fields. The fields 
can be considered as one or more rows of related 
information within the record. Each of the records 
in our AD BO OK file will have the following fields: 
NAME, ADDRESS and PHONENUMBER. A typical 
record would look like this:

Peter Edvadsen 
16A Holford Drive 
Worsley 
Manchester 
061-540 2588

In this record there are three fields: the name field, 
which comprises alphabetic letters (and, possibly, 
the apostrophe in names such as Peter O ’Toole); 
the address field, which comprises a few numbers 
and many letters; and the telephone number field, 
which comprises only numbers (ignoring the 
problem of whether or not to allow hyphens in 
numbers like 01-258 1191). Before we can begin 
to write a program to handle complex information 
such as this with flexibility, we must decide how to 
represent the data within the computer. One way 
might be to consider all the information within a 
record to be just one long character string. The 
problem with this approach is that extracting 
specific information is extremely difficult. Let’s 
assume that the following entry is just one long 
character string:

PERCIVALR. BURTON
1056 AVENUE OF THE AMERICAS
RIO DEL MONTENEGRO
CALIFORNIA
U.S.A.
(415) 884 5100

If we were searching the records to find the 
telephone number of PERCIVAL R. BURTON, would 
it be safe to assume that the last 14 characters in 
the record represented the number? What if we 
had included the international dialling code, like 
this: 0101 (415) 884 5100? Then the number 
would have had a total of 19 characters. To 
overcome this difficulty, the telephone number is 
assigned a separate field, and the program will give 
us all the characters (or numbers) in that field 
when requested.

The difficulty with this approach is that there 
has to be some way of relating the various separate 
fields, so that referring to one field (the name field, 
for example) can give us the other fields on the 
record, as well. One way this could be tackled is to 
have a further field associated with the record just 
for indexing purposes. If a record was, for 
example, the 15th record in the file, its index field 
would contain the number 15. This could then be 
used to point to the elements in a number of 
arrays. To illustrate this, let us suppose one record 
looked like this:

&

Jamie Appleton 
15 Pantbach Road 
Llandogo 
Gwent
0594 552303 
015

NAME field 
STREET field 
TOWN field 
COUNTY field 
PHONE NUMBER field 
INDEX field

If we knew the name of this person and wanted his 
telephone number, all we would have to do would 
be to search through the elements of the array 
holding the names until a match was found. We 
would then find which element of the array the 
name was in — in this case, number 15. Then all 
we would need to do would be to find the 15 th 
element in the PHONE NUMBER array to get the 
right telephone number.

If we had a number of friends in the Forest of
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Dean area, we might want the program to search
for everv occurrence of ‘Cinderford’ in the TOWN*

field. The program could search through the 
TOWN fields and note the location of each 
occurrence of Cinderford. All that would then be 
necessary, to print the names and addresses of all 
these friends, would be to retrieve all the elements 
having the same number from all the arrays for 
each ‘Cinderford’ record. Using this approach, 
there would be no need to inspect the IN D EX field, 
and the technique has the merit of being a 
relatively simple operation.

In the next instalment we will look at some of 
the problems involved in searching through lists to 
find specific items.

E x e rc is e
Assume that records with the following fields 

will be adequate for our computerised address 
book:

NAME field 
STREET field 
TOWN field 
COUNTY field 
PHONE NUMBER field

Suppose that one of the options offered by a menu 
in the computerised address book is:

5. CREATE A NEW ENTRY

You type 5 and the program branches to the part 
where new records are created (you may assume 
that there are no entries in the address book yet). 
Since the program is to be fully menu-driven, you 
will always be prompted for the entries expected 
— with prompts such as ENTER THE NAME, ENTER 
TH E STREET and so on. Here is a list of the expected 
results:

1. An element in an array for the name
2. An element in an array for the street
3. An element in an array for the town
4. An element in an array for the county
5. An element in an array for the phone number

Your task is to develop this, through a process of 
top-down programming using a pseudo
language, to a point where direct conversion into 
b a sic  becomes possible. The pseudo-language can 
follow your own rules; we only suggest that you 
use capital letters for keywords such as IF, LOOP 
and so on, and small letters for descriptions in 
ordinary English of the operations to take place.

Basic Flavours
r 3

Step 3

SPECTRUM

f

10  IN P U T  “ IN P U T  FU LL N A M E ” ;F$ 

15  LET C O U N T=0 

20  FOR L=1 TO LEN F$

3 0  LET C $ = F $ (L )

4 0  IF C $ = “ ’’ TH EN  LET C O U N T =  L 

5 0  N E X T L

6 0  P R IN T “ LA S T  SPACE IS IN 

P 0 S IT I0 N ” ;C 0 U N T  

7 0  STO P

9 9 9 0  DEF FN M $ (X $ ,P ,N )= X $ (P  TO 

P + N -1 )

9991  DEF FN L $ = X $ (  T O N )

9 9 9 2  DEF FN R $ = X $ (L E N  X S -N + 1  TO )
In th is  p ro g ra m m in g  p ro je c t, th e  s tr in g  

fu n c t io n s  M ID $ , LEFTS, R IG H TS  w il l  be m u ch  

used . T h e ir  e q u iv a le n ts  in  S in c la ir  BASIC  are: 

LE F T $ (F S ,N ) re p la ce  b y  F $ ( TO N)

R IG H T $ (F $ ,N ) re p la ce  by

F $ (L E N (F $ )-N + 1  TO ) 

M ID $ (F $ ,P ,N ) rep lace  by

F $ (P  TO P + N -1 )  

M ID $ (F $ ,P ,1 ) rep lace  b y  F $ (P )

N o te  th a t  s tr in g  v a r ia b le  n a m e s  on  th e

S p e c tru m  c a n n o t be m o re  th a n  o n e  le tte r  lo n g  

(p lu s  th e  “ $ ” ).

Step 4

5 LET S $ = “ ”

10 LET F $ = “ T 0 M  B R O W N ”

2 0  LET C 0 U N T = 4

30  FOR L= C 0 U N T + 1  TO LEN F$

4 0  LET S $ = S S + F S (L )

5 0  N E X T L

6 0  P R IN T  “ S U R N A M E  IS ” ;S $

7 0  STO P

Step 5

■

i

VARIABLES

Ll I

3 0  LET C H A R = C O D E T $

4 0  IF C H A R > 6 4  TH EN  LET C $= C S + C H R $  

CHAR 

50  N E X T L  

6 0  STOP

In th is  fra g m e n t,  th e  p ro b le m  o f s in g le  le tte r  

s tr in g  v a r ia b le  n a m e s  has a r is e n : F$ is th e  

S p e c tru m  e q u iv a le n t o f  th e  v a r ia b le  

F U LLN A M E S , so  CS has to  s ta n d  in  fo r  th e  

v a r ia b le  F O R E N A M E S ,

Part of subroutine X

FOR L=1 TO LEN W $

LET C $ = W $ (L )

IF C $ = “ . ”  TH EN  GOTO 1 5 5 0  

N EXT L

Part of subroutine Y

FOR Q=1 TO L IM IT  

LET A (L )= P (Q )

N EXT Q

Of th e  m o s t p o p u la r  h o m e  c o m p u te rs , o n ly  

th e  BBC M ic ro  s u p p o r ts  lo n g  v a r ia b le  n am e s  

s u c h  as F U LLN A M E S . T he  S p e c tru m  a llo w s  

lo n g  n u m e r ic  v a r ia b le  n a m e s , b u t o n ly  s in g le  

le tte r  s tr in g  v a r ia b le  n a m e s . T he  D ra g o n  32, 

V ic - 2 0 ,  a n d  C o m m o d o re  6 4  s u p p o r t  lo n g  

v a r ia b le  n a m e s , b u t o n ly  th e  f i r s t  tw o  

c h a ra c te rs  a re  s ig n if ic a n t,  so  th a t 

F U LLN A M E S  is  v a lid , b u t re fe rs  to  th e  sam e  

m e m o ry  lo c a tio n  as F U J IY A M A S : b o th  have 

th e  sa m e  f i r s t  tw o  c h a ra c te rs .

On th e  O ric -1  v a r ia b le  n a m e s  c a n n o t be 

m o re  th a n  tw o  c h a ra c te rs  ( f ir s t  a le tte r  th e n  a 

n u m b e r o r  a le tte r) ,  w h ile  th e  L y n x  a llo w s  o n ly  

s in g le  le tte r  v a r ia b le  n a m e s , th o u g h  b o th  

lo w e r-  a n d  u p p e r-c a s e  le tte rs  a re  v a lid  and  

d is t in c t.

5 LET C S = “ ”

10 FOR L=1 TO C O U N T -1  

20  L E T T $ = F $ (L )

r

Y

r
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Images drawn on paper can be 
transferred into your com puter 
by means of a digitiser or 
graphics tablet

Among the most powerful features found in the 
current generation of home computers are the 
graphics capabilities. With a few simple 
commands, designs and patterns can be created 
and colours changed. All this requires 
programming knowledge, as it is not yet possible 
to create an image on paper first and load it into 
the computer as a completed work. Light pens

Cross-hairs
C ro s s -h a irs  a n d  a m a g n ify in g  

g la s s  h e lp  to  p o s it io n  th e  c u rs o r  

m o re  a c c u ra te ly . R e s o lu tio n  to  

w ith in  0 .2 5 m m  is b y  no  m ean s  

u n c o m m o n

Data Entry Buttons
M o s t c u rs o rs  fe a tu re  m o re  th a n  

o n e  p u sh  b u tto n  —  th e  m ean s  

by w h ic h  th e  o p e ra to r  can 

in d ic a te  th a t  a p a r t ic u la r  p o in t 

needs  to  be re c o rd e d . In  an 

a lte rn a tiv e  m o d e , th e  d ig it is e r  

w il l  ta k e  c o n t in u o u s  re a d in g s  as 

th e  c u rs o r  is  m o ve d

%

Cursor —
T h is  d e v ice  is m o v e d  by hand  to  

tra c e  o v e r th e  im a g e  th a t  is 

b e in g  d ig it is e d

(see page 156) facilitate the editing an 
manipulation of an image once it is on the screen, 
but they cannot be used to copy a picture from a 
sheet of paper.

Designers of cars, aeroplanes and micro
processors as well as interior decorators, 
landscape gardeners and fashion designers can all 
benefit from a computer graphics system. Once 
the design is safely stored in the computer’s 
memory, additions and alterations can be tried 
without wasting valuable raw materials. So what is 
needed is an input device that can translate the 
lines and curves of the drawing or design into a 
language that a computer can understand.

In the professional market the ‘graphics tablet’ 
has been around for almost as long as the 
computer. However, low-cost alternatives for the 
home user have only recently become available. 
High-precision graphics tablets, also known as 
‘digitisers’ because they convert analogue shapes 
and images to digital information, use a wide 
variety of techniques to produce the required 
information. The most accurate systems can 
resolve an image to around 1 /  4mm (1 /1 00th of 
an inch) — sufficiently accurate for engineers and 
draughtsmen. All digitisers feature a flat 
baseboard, onto which the image drawn or 
painted on paper is laid. A stylus, which may be an 
ordinary pen or a sophisticated electronic device, 
is then traced over the image. The position of the 
stylus is detected by the digitiser and transmitted 
as a changing pair of co-ordinates to the

Emitting Coil-
A  h ig h - fre q u e n c y  s ig n a l is g ive n  

o u t b y  th is  c o il a n d  is  p icke d  up 

b y  th e  g r id

computer.
The two most accurate systems

capacitive — work by having a series of wire grids 
embedded in the baseboard of the tablet. In the 
magnetic system the stylus consists of a small 
magnifying glass with cross-hairs that is traced 
over the image. Surrounding the glass is a coil of 
wire that transmits a low-power, high-frequency 
signal. The signal is detected by the grids in the 
baseboard and provides a direct measure of the 
position of the stylus. The capacitive system works 
the other way around: a series of coded pulses is 
fed into a grid of wires and the signal is picked up 
by the stylus.

An alternative to these is the acoustic system. 
The stylus is electrostatically charged, and when 
touched to the baseboard, gives off a tiny spark. 
The time taken, for the acoustic wave created by 
the spark to reach two microphones, gives a 
measure of the stylus position. Amongst other 
things, this offers the possibility of digitising the 

magnetic and third dimensions, by means of a signal passing

Interface
D ig it is e rs  a re  u s u a lly  in te rfa c e d  

to  a c o m p u te r  b y  a s ta n d a rd  

s e r ia l o r  p a ra lle l p o r t

258 T H E  H O M E  C O M P U T E R  COURSE



M
h W /A v X w A V V V

In s ig h ts

Baseboard
The im a g e  to  be d ig it is e d  is 

p laced  f la t  on  th is  b o a rd . On 

so m e  s y s te m s , an e le c tro s ta tic  

ch a rg e  is a p p lie d  to  th e  b o a rd  to  

‘g lu e ’ th e  p a p e r te m p o ra r ily  f la t. 

It is v e ry  im p o r ta n t  th a t  th e  

im a g e  d o e s n ’t  m o v e  re la tiv e  to  

th e  boa rd

through the object.
At the lower end of the scale is the pressure- 

sensitive tablet: the image is placed on it and then 
traced with a stylus. This requires more pressure 
than the other systems. Two electrically 
conductive sheets are separated by a cellular 
insulator and two different high-frequency signals 
are fed into the layers. The signal detected by the 
stylus when it makes an electrical connection 
between the two sheets provides a measure of its 
position. Typical problems encountered with this 
type of system include changes in the surface

Mapping K Out
One o f th e  m o s t w id e s p re a d  

p ro fe s s io n a l uses  fo r  d ig it is e rs  

is c o lle c t in g  da ta  fro m  m a p s  

and  s u rv e y s . H ere, the  

c o m p u te r  is b e in g  used  to  

p re d ic t th e  lo c a tio n  o f new  

o ilf ie ld s  f ro m  d ig it is e d  

g e o lo g ic a l da ta

Processing Board
T h is  PCB c o n ta in s  a 

m ic ro p ro c e s s o r , s o m e  RO M  

and  s o m e  R A M . T h is  is  so  th a t  it 

can p re s e n t th e  c o m p u te r  w ith  

in fo rm a t io n  in  th e  fo rm  o f p a irs  

o f X -Y  c o -o rd in a te s

Receiving Grid
E m bedded  in  th e  b a s e b o a rd  is a. 

g r id  o f w ire s  th a t  can  p ic k  up  the  

s ig n a l g iv e n  o u t b y  th e  c o il.  T he  

s p a c in g  o f th e  g r id  is 

c o n s id e ra b ly  c o a rs e r  th a n  the  

f in e s t re s o lu t io n  o f  th e  d ig it is e r ,  

because  th e  p ro c e s s in g  c ir c u it r y  

can in te rp o la te  f ro m  th e  re la tiv e  

s tre n g th  o f th e  s ig n a l p ic k e d  up 

by a d ja c e n t w ire s

resistance due to damage or the differing pressure 
of a hand. Given the limited resolution of home 
computer graphics, the accuracy of this method is 
more than adequate for today’s home computers.

The cheapest and simplest digitisers are the 
pantographs — based on the principle of the old- 
fashioned drawing aid, constructed from linked 
arms. They use co-ordinate geometry to provide a 
direct measure of the position of the stylus. 
Variable resistances mounted at the two joints 
provide voltages proportional to the angles in the 
‘shoulder’ and ‘elbow’ of the jointed arm. The 
resolution of the pantograph is limited by the 
accuracy of both the variable resistances and the 
mechanical linkages; typically it is only around

five per cent. However, sophisticated pantographs 
based on optical measurement of the rotation of 
the joints can offer much better results although 
they still fall short of the capabilities of the 
magnetic and capacitive systems.

Optical tablets use an intersecting grid of infra
red beams to detect the position of a stylus. They 
are not nearly as sensitive as the other systems but 
are quite adequate for allowing a finger to be used 
to select an item from a program menu. In some 
applications the infra-red sources and detectors 
are placed around the edge of the visual display 
unit — providing a truly interactive screen on 
which images can be drawn simply by moving 
your finger.

The actual data produced by a graphics tablet 
or digitiser must be converted into information 
suitable for display on the screen and to this end 
most of the commercial products come with all the 
necessary software. However, just entering the 
data isn’t the end of the usefulness of graphics 
tablets. Once the information is stored in the 
computer the tablet can be used as an editing tool, 
allowing colour to be added or changed and 
shapes to be modified. The surface of the tablet 
can be programmed to act as a menu that selects 
standard options from the program so that the 
keyboard need only be used for selecting the main 
functions. Computer animation systems (see page 
181) all have a high-quality graphics tablet as their 
main form of input.

t
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Pioneers In Com puting

1 6 4 6

B o rn  on  J u ly  1 in  L e ip z ig  

1 6 6 1

E n ro ls  a t U n iv e rs ity  o f L e ip z ig  

and  a w a rd e d  deg re e  a t 17

1 6 6 0 ’s

W o rk s  as la w y e r and  

d ip lo m a t.  P u b lis h e s  p a p e r on  

T h e  A r t  o f C o m b in a t io n ’

1 6 7 2

In P a ris , he d e v e lo p s  th e  

p r in c ip le  o f S u f f ic ie n t  R eason

1 6 7 3

C a lc u la tin g  m a c h in e  

p re s e n te d  to  R oya l S o c ie ty  in 

E n g la n d

1 6 7 5

In v e n ts  c a lc u lu s  

in d e p e n d e n tly  o f N e w to n

1 6 7 6

C o n s id e rs  d y n a m ic s  th ro u g h  

th e  c o n c e p t o f  k in e tic  e n e rg y

1 6 7 8

A p p o in te d  lib ra r ia n  a n d  

a d v is e r  to  th e  D uke  o f 

H a n o ve r

1 6 7 9

D e v e lo p s  b in a ry  m a th e m a tic s

1 6 8 3

P u b lis h e s  p a m p h le t, T h e  

M o s t C h r is t ia n  W a r G o d ’ , an 

a tta c k  on  L o u is  X IV

1 6 9 0 ’s

H is  g e n e a lo g y  o f th e  H o u se  o f 

H a n o v e r e x p a n d s  in to  a 

H is to ry  o f th e  W o r ld .

D e ve lo p s  an  in te re s t in 

l in g u is t ic s  a n d  th e  o r ig in  o f 

la n g u a g e s

1 7 0 0

O rg a n is e s  B e rlin  A c a d e m y  o f 

S c ie n ce s

1 7 1 4

R e s p o n s ib le  fo r  e s ta b lis h in g  

th e  r ig h t  o f s u c c e s s io n  o f 

G eo rge  I to  th e  v a c a n t E n g lish  

th ro n e  a fte r  th e  d e a th  o f 

Q ueen A nne

1 7 1 6

D ies  in  H a n o v e r N o v e m b e r 14

■'Mm s , V*

Scientists involved in the fifth 
generation computers are taking 
an interest in the work of this 
17th century thinker

v .  vi

Gottfried Wilhelm Leibniz was the leading 
scientific light of his time — the period known as 
The Age of Reason. He was bom in the central 
European city of Leipzig in 1646 and died in 
Hanover in 1716. During his life of three score 
years and ten (the sort of exact figure you might 
expect from a mathematician), he invented 
calculus, worked on dynamics, and made 
contributions to geology, theology, history, 
linguistics and philosophy. Most important of all, 
he developed ideas that would be fundamental to 
the creation of the computer.

He began his travels at the age of 20, after the 
University at Leipzig refused to confer a doctorate 
of law on him because of his youth. Throughout 
his life, without any private means to support him, 
Leibniz was forced to take up work that hampered 
his scientific research. In his early twenties he 
worked as a lawyer and diplomat; later in life he 
was a librarian and adviser to royalty.

His interests were wide-ranging, and his 
cosmopolitan nature led to extensive travel in

T h e  L e ib n iz  C a lc u la to r

Europe talking with all the great thinkers of his 
time. Leibniz was a prolific letter writer, as well — 
engaging in correspondence with over 600 
people.

His first important contribution to philosophy 
came in 1672 when he formulated the principle of 
Sufficient Reason. This held, simply, that there 
must be a reason for everything, and ‘everything is 
for the best in the best of all possible worlds’.

Turning his attention to mathematics, he then 
set to work to perfect the Pascaline adding 
machine invented by Blaise Pascal in 1642 (see 
page 86). Leibniz sought to upgrade it so that it 
would be capable of both multiplication and 
division. He did so by designing a mechanical 
device called the Leibniz Cylinder (see below). 
Leibniz’s device was a major breakthrough for its 
time. Previously, because of the complexity of 
manipulating Roman numerals, multiplication 
had been taught only in the higher institutes of 
learning. A machine that could multiply 
mechanically made arithmetic more accessible. 
Once Leibniz had perfected this device, he moved 
on from base ten arithmetic to consider and 
formalise binary mathematics.

Leibniz’s greatest ambition was to devise a 
universal language that could use the clarity and 
precision of mathematics to solve any problem 
that mankind faced. His language was to use 
abstract symbols to represent the fundamental 
‘atoms’ of understanding, with a set of rules to 
manipulate these symbols. His attempt failed; but 
his ideas were taken up in a more modest way in 
the early 20th century by Bertrand Russell, who 
tried to explain mathematics in terms of a formal 
logical ‘language’.

In the last few years, interest has been rekindled 
in the work of Leibniz by the scientists involved in 
the long-term project to create the fifth generation 
of computers. These machines, it is hoped, will be 
able to solve any problems of human endeavour 
with the same speed and certainty that computers 
of today execute mathematical calculations. To do 
this they will require a new sort of language 
altogether.

v

SUBTRACTION ADDITION

j  I I
21 ^CUM ULATIVE RESULT

The ‘ L e ib n iz  C y lin d e r ’ is s t i l l  

used  in  m e c h a n ic a l 

c a lc u la to rs  to d a y . E very  t im e  

a c a lc u la t io n  is p e r fo rm e d  th e  

h a n d le  is c ra n k e d  once . 

A d d it io n  o r  s u b tra c t io n  is  f i r s t  

se le c te d  u s in g  o n e  o f  th e  tw o  

beve ls , a n d  th e n  th p  co g  is 

p o s it io n e d  o v e r th e  n u m b e r  to  

be a d d e d  to , o r  s u b tra c te d

fro m , th e  to ta l.  W h e n  th e  

c ra n k  is tu rn e d , th e  cog  

e n g a g e s  o n ly  th o s e  s p lin e s  

c o rre s p o n d in g  to  th e  n u m b e r. 

T he  m o tio n  is  th e n  tra n s fe rre d  

to  th e  d ia l. A  c a rry  fa c i l i ty  is 

p ro v id e d  th a t m o v e s  th e  te n s  

d ia l one  p la ce  fo rw a rd  on 

each  c o m p le te  re v o lu t io n  o f 

th e  u n its  w h e e l
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H o m e  c o m p u te rs . D o  th e y  se n d  y o u r  b ra in  to  

s le e p - o r  k e e p  y o u r  m in d  o n  its to e s ?

A t  S inc la ir, w e 're  in n o  d o u b t  T o  us, a  

h o m e  c o m p u te r  is a  m e n ta l g y m , as  

im p o r ta n t  a n  a id  to  m e n ta l fitn e s s  as a  se t o f  

w e ig h ts  to  a  b o d y -b u ild e r .

P ro v id e d , o f  co u rse , it  o ffe rs  a  w h o le  

b a tte ry  o f  g e n u in e  m e n ta l c h a lle n g e s .

T h e  S p e c tru m  d o e s  ju s t  t h a t

Its e d u c a tio n  p ro g ra m s  tu rn  b o r in g  

ch o res  in to  a b s o rb in g  c o n te s ts  -  n o t  le a rn in g  

to  sp e ll 'a c q u ie s c e n t, b u t  re s c u in g  a  p rincess  

f ro m  a  s o rc e re r in  co lo u r, s o u n d , a n d  

m o v e m e n t!

T h e  a rc a d e  g a m e s  w o u ld  te s t an  

a ll-n ig h t a rc a d e  f re a k  -  th e y 're  v e ry  fast, v e ry  

c o m p le x , v e ry  s t im u la tin g .

A n d  th e  m in d -s tre tc h e rs  a re  tru ly  

fie n d is h . A d v e n tu re  g a m e s  th a t  v e ry  fe w  

p e o p le  in th e  w o r ld  h a v e  c ra c k e d . C h ess  to  

g ra n d  m a s te r  s ta n d a rd s . F lig h t s im u la tio n  

w ith  a  c o c k p it fu ll o f  in s tru m e n ts  o p e ra t in g  

in d e p e n d e n tly . G e n u in e  3 D  c o m p u te r  d es ig n .

N o  o th e r  h o m e  c o m p u te r  in  th e  w o r ld  

can m a tc h  th e  S p e c tru m  c h a l le n g e -b e c a u s e  

n o  o th e r  c o m p u te r  h a s  so m u c h  s o ftw a re  o f  

such o u ts ta n d in g  q u a lity  to  run .

F o r th e  M e n ta th le te s  o f  to d a y  a n d  

to m o rro w , th e  S in c la ir  S p e c tru m  is g y m , 

a p p a ra tu s  a n d  tra in in g  s c h e d u le , in  o n e  n e a t  

p ackag e . A n d  y o u  can  b u y  o n e  fo r  u n d e r

£ 100. m
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N o w  th a t y o u r c o lle c tio n  of H o m e  
C o m p u te r C o u rs e  is g ro w in g , it m a k e s  so u n d  
sense to ta k e  a d v a n ta g e  o f this o p p o rtu n ity  to 
o rd e r th e  tw o  s p e c ia lly  d e s ig n e d  H o m e  
C o m p u te r C o u rs e  b in d ers .

T h e  b in d e rs  h a v e  b e e n  c o m m is s io n e d  
to store a l l  th e  issues in  this 24  p a r t  series.

A t th e  e n d  of th e  c o u rs e  th e  tw o  
v o lu m e  b in d e r  set w il l  p ro v e  in v a lu a b le  in  
c o n v e rtin g  y o u r c o p ie s  o f this u n iq u e  series in to  
a  p e rm a n e n t w o rk  o f re f e re n c e .

Buy tw o  to g e th e r a n d  s a v e  £  1.00

❖  B u y  v o lu m e s  1 a n d  2 to g e th e r for 
£ 6 .9 0  ( in c lu d in g  P & P ). S im p ly  fill in  th e  o rd e r  
fo rm  a n d  th ese  w il l  b e  fo rw a rd e d  to y o u  w ith  
o u r in v o ic e .

❖  If y o u  p re fe r  to b u y  th e  b in d e rs  
s e p a ra te ly  p le a s e  sen d  us y o u r c h e q u e /p o s ta l 
o rd e r for £ 3 . 195  ( in c lu d in g  P & P ) . W e  w il l  sen d  
y o u  v o lu m e  1 o n ly  T h en  y o u  m a y  o rd e r v o lu m e  
2 in  th e  s a m e  w a y  -  w h e n  it suits y o u !

O verseas re a d e rs : This binder offer applies to readers in the 
UK, Eire and Australia only. Readers in Australia should 
complete the special loose insert in Issue 1 and see additional 
binder information on the inside front cover. Readers in New 
Zealand and South Africa and some other countries can obtain 
their binders now. For details please see inside the front cover.
Binders may be subject to import duty and/or local tax.




