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Insights

Industrial robots can now visually recognise objects and learn new 
tasks by imitating human actions

The term ‘robot’ is derived from the Czech word 
for work, robota. It was coined by playwright 
Karel Capek in his 1920 play R. U.R. (Rossum’s 
Universal Robots) and was subsequently 
enthusiastically adopted by science fiction writers. 
Despite the many fictional accounts of the powers 
of robots, they are nothing more than an 
electromechanical extension of the computer, 
with all a computer’s limitations and failings.

Their origins are to be found in the machine 
shops of the fifties, where the theory of numerical 
control of machine tools was first applied. These 
first efforts were predictably crude: machines that 
were controlled by five-hole paper tape (the sort 
used by telex machines), which at best could only 
move one fixed tool from point to point around 
the object they were working on.

The next step in their development was the 
introduction of the ability to change tools in mid
job. This was accomplished by the use of a 
‘carousel’ or rotating rack of tools, all with 
identical fixings, which could be selected and 
fitted to the tool holder under program control.

Even with this refinement, a particular machine 
could perform only one type of task: a lathe was 
still a lathe, even though it could perhaps do all the 
turning jobs required in a particular process. At 
around the same time, remotely-controlled hands 
and arms were being developed to work in 
dangerous environments — beneath the ocean, 
for example, or in laboratories handling 
radioactive materials. These manipulative devices 
were merely extensions of the operator’s own 
hands, but computers were soon used to control 
them directly. The robots that have since been 
developed are more accurately referred to as 
‘robot arms’, as they consist of one tool holder 
mounted on an extending or articulated arm.

If we wish to understand how robots are 
programmed, we must first consider them in 
relation to the space in which they operate. Most 
industrial robots are fixed in position, so the space 
will be a sphere that is flattened at the bottom, and 
we can think about the question of control of the 
robot as a simple exercise in three-dimensional 
geometry. The centre of the spheroid will be the 
robot’s ‘shoulder’ joint, and the radius will be the 
length of the extended arm, measured from the 
‘shoulder’ to the tip of the ‘fingers’ — the gripper 
or tool holder. Any point within this space can be 
expressed as three co-ordinates: for example, as 
distances north/south, east/west and up/down, 
from a ‘datum point’ or zero position. In this case

the co-ordinates are known as Cartesian, after the 
17th-century French mathematician Rene 
Descartes. Alternatively, the position can be 
expressed in spherical co-ordinates. In everyday 
language this could be, say: ‘at a distance of two 
metres in a direction north-east and thirty degrees 
above the horizontal’. The datum point in this case 
is the robot’s ‘shoulder’.

However, the problem of programming the 
robot involves giving it a set of instructions about 
moving from place to place, and so there is yet a 
third method of positioning the tool holder.

C e llu lo id  H e ro

R 2D 2, th e  e n d e a rin g  ro b o t fro m  

‘S ta r W a rs ’ w a s  in fa c t 

c o n tro lle d  by a h u m a n  o p e ra to r. 

Its  d e s ig n , h o w e v e r, re fle c te d  

w h a t m a n y  p e o p le  th in k  ro b o ts  

o u g h t to  lo o k  like
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Insights

B a tte r y -P o w e r e d  R o b o t

The H ero -1  is  a c o m p le te ly  s e lf-  

c o n ta in e d  b a tte ry -p o w e re d  

ro b o t th a t c o m b in e s  s o m e  o f 

th e  fu n c t io n s  o f a tu r t le  w ith  th e  

m a n ip u la t iv e  a b il i ty  o f  a ro b o t 

a rm . C o s tin g  s o m e  £ 2 ,5 0 0  —  

o r  £ 1 ,6 0 0  in k it  fo rm  —  it  m ig h t 

a p p e a r, a t f i r s t  g la n ce , to  b e a n  

e xp e n s ive  to y . B u t, i t  is in  fa c t, a 

re m a rk a b ly  f le x ib le  c o m p u te r  

s y s te m  in  its  o w n  r ig h t,  w ith  

su ch  a d va n ce d  fe a tu re s  as 

speech  s y n th e s is , l ig h t  leve l 

s e n s o rs , a u d ito ry  in p u t and , 

(beca use  i t ’s m o b ile ) ,  an 

u ltra s o n ic  ra n g e  f in d e r  th a t  a lso  

d o u b le s  as a m o v e m e n t 

d e te c to r

Known as point-to-point positioning, this requires 
the datum point to move with the tool holder.

Typically, industrial robots are accurate to 
within one millimetre. Even the simpler models — 
available for a few hundred pounds and capable 
of being used with any home computer that has 
eight-bit parallel output — are accurate to within 
two millimetres. That observation in itself is 
interesting given that the cost differential is at least 
50-1.

There are two generally accepted methods of 
driving robot arms. For those with a low payload, 
stepper motors (electric motors that move by a 
predetermined amount each time current is 
applied to them, as used in disk drives to position 
the read/write head) are sufficient. But for robot

arms used on a production line, where heavier 
weights need to be manoeuvred, it is more 
common to employ hydraulic rams to move the 
various parts of the arm around their fulcra (the 
points around which they pivot). It is quite a 
simple matter to measure the volume of hydraulic 
fluid being passed into the rams, and to deduce 
from that the movement at the other end, to well 
within the operational requirements of accuracy.

Industrial robots invariably contain a purpose- 
built minicomputer (or a large capacity 
microcomputer in later models) that does nothing 
but control the arm, and run a programming 
language designed for that purpose. As there is no 
requirement to do more than indicate co
ordinates, and issue simple commands like CLOSE 
GRIPPER or OPEN GRIPPER, the programming 
language contains no instructions for handling 
text. Program instructions are entered through an 
enlarged numeric keypad attached to the 
computer by means of a long ‘umbilical cord’, so 
that the operator may move around the robot arm 
while entering the instructions. The more 
advanced versions of these ‘pendant panels,’ as 
they are called, include a precision joystick.

Another programming method, known as 
‘Follow Me’, is especially useful in tasks that do 
not require particularly accurate tool placement, 
such as paint spraying. Here the robot arm 
includes a provision for the operator to grasp the 
tool holder, directly move it around the job, and 
have those movements entered directly into the 
computer’s memory. The robot will then repeat 
those movements every time the program is 
executed.

In all these methods, the position being defined 
is that of the tool holder itself. The operator is not 
concerned with the relative positions of the 
individual sections of the robot. The

ELBOW

V
.M:
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SHOULDER

RIST EXTENSION

7

A n g u la r

M o v e m e n t
One o f th e  m o s t d if f ic u lt  

a s p e c ts  o f p ro g ra m m in g  a 

ro b o t a rm  is c o n v e r t in g  th e  

g e o m e try . W e are  used  to  

s p e c ify in g  p o s it io n s  u s in g  

C a rte s ia n  o r  x ,y ,z  c o 

o rd in a te s . W h a t th e  ro b o t 

needs  a re  a n g le s  fo r  the  

‘e lb o w ’ jo in t ,  th e  ‘s h o u ld e r ’ 

jo in t ,  th e  ‘w a is t ’ ro ta t io n , and  

th e  d is ta n c e  th a t th e  w r is t  

m u s t e x te n d . In s im p le r  

s y s te m s  th e  p ro g ra m m e rs  

m u s t g ive  th e  v a lu e s  fo r  a ll 

fo u r . M o re  s o p h is t ic a te d  

ro b o ts  can  p e r fo rm  a ll th e  

c o n v e rs io n s  f ro m  C a rte s ia n  

c o -o rd in a te s

WAIST
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Insights

programming language resident in the robot’s 
control computer works out what they should be. 
It also performs any necessary optimisation, 
ensuring that the tool moves from one place to 
another by the shortest possible route. The 
orientation of the tool holder is controlled 
automatically, maintaining both horizontal and 
vertical relative positions unless instructed 
otherwise. The speed of point-to-point movement 
is also automatic: the tool holder is disengaged 
slowly, moves rapidly to within a short distance of

workpiece was in position, and then allowed to 
continue. Of course, this isn’t foolproof either, 
and for situations where complete reliability is 
required, it is possible to install an image 
recognition system based on charge-coupled 
device (CCD) television cameras. These cameras 
focus the image directly onto an array processing 
microchip (a chip split up into a hundred or more 
individual photosensors, each capable ' of 
registering not just black or white but also a range 
of intermediate tones). Each individual sensor

the destination point, and then slows down to re
engage the workpiece at the new site.

The robots we have discussed so far are capable 
only of ‘blind obedience’, repeating the same task 
at exactly the same location, irrespective of 
external influences. Their main use is in the 
engineering industry, especially in the production 
of motor vehicles. This has long been organised 
into production lines, in which the component or 
partially completed vehicle is always precisely 
located in space and time. This is vitally important 
to the successful operation of a robot production 
process, for if the component is wrongly 
positioned, the robot will not adapt its activity 
accordingly. In an attempt to overcome this, a 
variety of sensors can be fitted to the tool holder. 
The simplest of these can be an ordinary on/off 
microswitch. Contingency plans can be built into 
the control program (a WAIT command, for 
instance), to be executed if the switch is not 
brought into contact with the workpiece, but more 
sophisticated plans will require human 
intervention.

An alternative to pressure sensing might 
involve the use of a light sensor. If a light source 
were positioned so as to be obscured from the 
sensor on the tool holder by the workpiece, the 
tool holder could be stopped before it reached 
collision point, put into WAIT mode until the

requires perhaps one byte of memory to define the 
contrast in the grey scale. Initially each object is 
‘photographed’ a number of times, and a learning 
program averages out the values. At run time, the 
CCD camera makes an image of the object, which 
is then compared with the reference image in 
memory. If the two match, then the operation can 
go ahead. By this method it is possible to check 
that the correct workpiece is present, and that its 
position and attitude are correct.

A further use of this image processing system is 
in the selection of components from a ‘mixed bag’. 
This ‘picking and placing’, as it is known, is an 
increasingly common application for small robots 
as an adjunct to a regular production line. In 
addition to the production process itself, industrial 
robots are commonly used in the testing and 
quality control stages, often in pairs to allow a 
greater degree of flexibility in the positioning of 
the product.

We started by considering the robot in fiction — 
and with good reason. There are few better 
examples of truth following fantasy than in the 
development of the industrial robot, and there is 
no reason why robots should not eventually 
become the self-contained and ‘self-motivated’ 
entities of science fiction. This will not happen, 
however, until Artificial Intelligence is more than 
just a concept.

F a c to ry  A c t

R o b o t a rm s , like  th e  o n e  seen 

here a t w o rk  in a d ie  c a s tin g  

s h o p , are ta k in g  o ve r m o re  and 

m o re  o f  th e  d ir ty , d a n g e ro u s  

and  re p e tit iv e  jo b s  to  be fo u n d  

in in d u s try . The c le a n in g  o f 

c a s tin g s  p re p a ra to ry  to  th e ir  

b e in g  m a c h in e d  is a g o o d  

e x a m p le . T he  c a s tin g , fre sh  

fro m  th e  m o u ld , is m u ch  to o  h o t 

fo r  h u m a n  h a n d s , a n d  w o u ld  

n o rm a lly  be p u t to  o n e  s id e  to  

c o o l. T he  ro b o t, how eve r, is  n o t 

s u s c e p tib le  to  h e a t so  can dea l 

w ith  it  im m e d ia te ly  and  

d e s p a tc h  i t  on  to  th e  n e x t 

o p e ra tio n
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Sound And Light

A close look at sound generation 
on the Vic-20...

In each case X is a whole number between 135 and 
241(0 switches that oscillator off), which refers to 
a table of equivalent note values on page 7 3 of the 
booklet supplied with each Vic-20. Before the 
selected frequency can be heard the volume level 
must be set, as follows:

The Vic - 20 was one of the first home computers to 
appear in the UK. As a consequence, its facilities 
may appear to be a little lacking in comparison 
with more recent computers. Additionally, 
Commodore don’t make it particularly easy to 
construct sound or music programs as Vic-20 
b a sic , in common with Commodore 64 b a sic , has 
no commands that relate specifically to sound. All 
sound control is achieved by a series of POKEs into 
memory locations. This principle also applies to 
the Commodore 64 and the techniques outlined 
here for the Vic-20 would be useful to the 
Commodore 64 user. The degree of sound control 
available is limited to volume (equivalent to 
envelope with A = D = R = 0 ), frequency on three 
oscillators and -a noise generator. Output is 
available via the television speaker alone. In 
addition, due to inaccuracies in the way the Vic- 
20 selects frequencies it is impossible to obtain the 
correct pitch for all notes on the musical scale.

With only these capabilities the Vic-20 has little 
value for music making; although with thought, 
patience and a little knowledge of basic  

programming these limited features can be used to 
create ‘tunes’ of two and three note chords.

S o u n d  C o n tro l
The Vic-20 is supplied with three square wave 
oscillators and a noise generator. Each oscillator 
covers approximately three octaves of sound, 
offset in frequency as follows:

|0 sc .1 Osc.2 Osc.3 | Freq. Range (Hz) 0ctave|
• (65.41-123.47) 1
• • (130.81-246.94) 2
• • • (261.63-493.88) 3

• • (523.25-987.77) 4
• (1046.5-1975.53) 5

This arrangement allows the user to cover five 
octaves in total with at least one oscillator 
available in each octave. Octave 3, which starts at 
middle C and contains the standard reference A  at 
440Hz, is available to all three oscillators.

Control of the oscillators is exercised by 
changing the contents of five memory locations as 
follows:

Memory Location Oscillator
POKE 36874.X 1
POKE 36875.X 2
POKE 36876.X 3
POKE 36877.X noise

POKE 36878 ,V

where V can be set between 0(off) and 15(loud) 
affecting all oscillators and noise. For example:

POKE 36874 ,219:P0KE 36875 ,219:P0KE  
36876 ,219:P0KE 36878 ,7

This plays reference A  at 440Hz on oscillator 1, A 
an octave higher on oscillator 2 and A an octave 
higher still on oscillator 3, all at a mid-range 
volume of 7. Don’t forget to POKE each location to 
0 to turn them off!

N o te s  A n d  P a u s e s
Without a duration for each note and the correct 
pauses between them, a sequence of notes blurs 
one into another. To facilitate these ‘wait’ periods, 
one of two methods can be used to make the 
computer ‘mark time’ between POKEs. The first 
method is FOR...NEXT loops where the pause is 
timed by a long empty loop such as:

10 POKE 36878,7  
20 POKE 36876,203  
30 FOR P-1 TO 200  
40 NEXT P 
50 POKE 36878,0  
60 POKE 36876,0

This sequence of commands plays the note D # for 
200 FOR...NEXT steps. However, this method 
depends on careful external timing of the loop for 
accuracy. An easier and more elegant *Jvay to set 
durations and pauses is by using the Vic-20’s 
built-in clock, which counts in 60ths of a second 
(j iffys) and can be referenced within a program 
using the variable Tl. This is extremely useful, as a 
command can be constructed to ‘wait’ for an 
accurately measured period of time, as follows:

10 POKE 36878,7  
20 POKE 3 6 8 7 6 ,2 0 3 :D -TI 
30 IF T l - D <  15 THEN 30 
40 POKE 36878,0  
50 POKE 36876,0

These commands play the same note as before but 
for a period of 15 jiffys (a quarter of a second). D is 
set at the value of Tl when the sound is switched on. 
Line 30 counts off 15 jiffys before proceeding to 
line 40. Tunes can be constructed by using the 
same principle to pause before playing a different 
note, and so on. Next time we look at the Vic-20 in 
the Sound And Light series, we’ll investigate how 
to play tunes.
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...and graphics capabilities of the
Dragon 32

The Dragon 32 computer features a particular 
dialect of ba sic  known as ‘Microsoft Extended 
Colour Basic’. Several other computers on the 
market are also based on this version of b a sic , 

most notably the Tandy range of colour 
computers. Microsoft ba sic  is easy to use and has a 
good range of commands to draw lines, circles, 
and other geometric shapes. Once drawn, these 
shapes m^y be coloured in to give impressive 
screen displays for little programming effort.

The Dragon 32 has seven levels of resolution, 
giving the user the ability to work with the screen 
divided into 512 individual points at the lowest 
level, and up to 49,152 points at the highest. There 
are eight colours available, but the choice may be 
limited to four or even two colours when working 
in high resolution.

M o d e s  O f R e s o lu tio n
The normal 16 rows by 32 columns character 
screen forms the lowest level of resolution and the 
PRINT® command enables a character to be
placed in any one of the 512 screen locations. As 
well as the normal character set there are also 16 
low resolution graphics characters available in 
eight colours.

The next mode of resolution divides the screen 
into 32 rows and 64 columns. The size of each 
square in this mode is therefore a quarter of that of 
a normal character. Points of this size can be 
plotted on the screen by the SET command and 
may be rubbed out by the RESET command.

Both of the above modes can be displayed at the 
same time and are termed the low resolution text 
screens. There are also five levels of high 
resolution screens, but these cannot be displayed 
simultaneously or with the low level screens. The 
five high resolution modes offer choices based on 
the standard of resolution and the number of 
colours available and are selected using the PMODE 
command.

PMODE Resolution Colours Available |

0 128*96 2
1 128*96 4
2 128*192 2
3 128*192 4
4 256*192 2

account when writing large basic programs that 
also use high resolution displays.

Although there are only a limited number of 
colours available in high resolution, the Dragon 
does have a facility for selecting one of two colour 
sets. This is accomplished by the SCREEN 
command. For example, SCREEN 1,0 selects a high 
resolution screen and colour set 0. SCREEN 1,1 
again selects a high resolution screen but this time 
an alternative colour set is used.

PAINT
This command is very useful in assisting the 
programmer to produce interesting pictures. 
Using PAINT causes the computer to start 
colouring in the screen from a given point until 
a boundary line is reached. This means that 
circles, triangles and any other closed shape can 
be filled in simply.

DRAW
DRAW mimics the movement of the pencil on 
the screen, allowing the user to draw lines in 
any one of four directions. The DRAW 
command will also allow the completed picture 
to be rotated or enlarged.

GET and PUT
GET instructs the computer to store a screen 
display in its memory and PUT causes such a 
display to be reprinted on the screen.

PSET and PRESET
These commands are the high resolution 
equivalents of SET and RESET discussed earlier 
and switch a particular point on the screen 
either on or off. The colour of the point can also 
be determined.

LINE
The LINE command joins two specified points 
together with a straight line in high resolution.

CIRCLE
CIRCLE allows the user to draw high resolution 
circles with a given centre and radius. Fractions 
of a whole circle may also be drawn to form arcs 
and the circular shape may be condensed to 
produce ellipses.

There is, of course, a trade-off between resolution, 
colour and the amount of memory needed to store 
the screen information and this must be taken into

The Dragon 32 is a reasonably priced computer 
with many advanced commands to aid graphics 
programming. It is more suited to uses that involve 
static displays rather than those that require fast- 
moving action. The high resolution mode 
commands, in particular, make this an ideal 
computer for the adventurous-minded child. The 
Dragon’s main drawback is its inability to display 
both text and high resolution graphics on the 
screen simultaneously. This means that it cannot 
be used to display statistical data in the form of bar 
charts or pie charts.

C o lo u r C o m m a n d

T h is  d is p la y  is ty p ic a l o f  th e  

e ffe c ts  th a t can  be a ch ie ve d  on  a 

D ra g o n  u s in g  ju s t  a fe w  o f  its  

h ig h  leve l c o m m a n d s

H ig h  R e s o lu tio n

H ere is  a s h o r t  p ro g ra m  fo r  th e  

D ra g o n  3 2  to  d e m o n s tra te  

s o m e  o f its  h ig h  re s o lu t io n  

c a p a b ilit ie s . The p ro g ra m  uses 

P M O D E  3; th is  is  n o t th e  h ig h e s t 

m o d e  b u t i t  d o e s  a llo w  s o m e  

use o f  c o lo u r.

10 PCLS:PM0DE3,1 
20 SCREEN 1,0 
30 COLOR 0 ,1  
40 FOR X=0 TO 127 STEP 10 
50 LINE(X,85)—(127,85—X /3 ), 

PSET
60 L IN E (X ,85)-(127,85+X /3), 

PSET
70 LINE(255—X,85)—(127,85— 

X/3),PSET
80 L IN E (2 5 5 -X ,8 5 )-(1 27,85+ 

X /3), PSET 
90 NEXT X
100 CIRCLE(127,85),128,4,0.3 
110 CIRCLE(127,85),30,4,3 
120 PAINT(130,30),3,4 
130 PAINT(130,130),3,4 
140 GOTO 140 
150 END
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B u b b le  S o rt

T h is  d ia g ra m  illu s tra te s  the  

B u b b le  S o rt fo r  a re d u ce d  hand  

o f n in e  c a rd s  (T  is th e  Ten ca rd ). 

The o rd e re d  p a rt o f th e  hand 

g ro w s  fro m  th e  r ig h t-h a n d  end 

w ith  each pa ss . T he  1 and  2 

u n d e rn e a th  th e  h a n d  o f ca rds  

in d ic a te s  th e  tw o  ca rd s  c u rre n tly  

b e in g  c o m p a re d

Begin Sort
2 8 9 3 T 5 K 6 7  Begin Pass 1 
1 2
8 2 9 3 T 5 K 6 7 

1 2
8 9 2 3 T 5 K 6 7 

1 2
8 9 3 2 T 5 K 6 7 

1 2
8 9 3 T 2 5 K 6 7

1 2
8 9 3 T 5 2 K 6 7

1 2
8 9 3 T 5 K 2 6 7

1 2
8 9 3 T 5 K 6 2 7

1 2
8 9 3 T 5 K 6 7 2  End Pass 1
9 8 T 5 K 6 7 3 2 End Pass 2
9 T 8 K 6 7 5 3 2 End Pass 3
T 9 K 8 7 6 5 3 2  EndPass4 
T K 9 8 7 6 5 3 2 EndPass5
K T 9 8 7 6 5 3 2 End pass 6
End Sort

In s e r t io n  S o rt

W ith  th e  In s e rt io n  S o rt, the  

o rde red  p a r t o f th e  l is t  g ro w s  

fro m  th e  le ft-h a n d  end . C ards 

are m oved  d ire c t ly  to  th e ir  

c o rre c t p o s it io n  in th e  lis t as 

th e y  are  in s p e c te d

Begin Sort
2 8 9 3 T 5 K 6 7 
2 1
8 2 9 3 T 5 K 6 7 
2 1
9 8 2 3 T 5 K 6 7

2 1
9 8 3 2 T 5 K 6 7 
2 1 
T 9 8 3 2 5 K 6 7 

2 1
T 9 8 5 3 2 K 6 7  
2 1 
K T 9 8 5 3 2 6 7

2 1
K T 9 8 6 5 3 2 7

2 1 
K T 9 8 7 6 5 3 2 
End Sort

The ability to sort information into order is essential to most 
programs, and there are many ways of doing it

Sorting is one of the most widely used computer 
operations, but it is a task at which computers are, 
by their own standards, highly inefficient. 
According to operational research, between 30 
and 40 per cent of all computing time is spent in 
sorting, and if you add the associated tasks of 
merging data and searching for specific items, then 
the figure probably rises above 50 per cent.

Programmers have probably spent as much 
time inventing sort algorithms (general methods 
of solving problems) as computers have spent 
doing the actual sorting. Advanced sorting 
methods are extremely difficult to analyse, but it is 
quite easy to understand the simplest methods 
computers use to sort data with the aid of the 
example of sorting a pack of playing cards.

Lay 13 cards of the same suit on a table. 
Arrange them in a line, in no particular order, but 
the Ace and the Two should not be at the right- 
hand end of the line. The cards are to be sorted into 
descending order (King, Queen, Jack...A ce), 
starting at the left. This is an almost trivial task for 
us, and requires so little thought that it is difficult to 
describe exactly how we might do it. If, however, 
you were to specify that only one card can be 
moved at a time, that no card can be placed on top 
of another, and that the cards are to cover as little 
of the table as possible, the task becomes a lot less 
trivial, and an efficient method is hard to 
determine. In this analogy the cards are pieces of 
data, the maximum surface covered corresponds 
to the computer memory required, and you are the 
program. How do you solve the problem?

1) Put a coin below the leftmost card to act as a 
position marker and to remind you where you are 
in the sort. Compare the marked card with the card 
to its right. Are they in descending order? If they 
are not, swap their positions, leaving the coin 
where it is, and obeying the rule of only moving 
one card at a time and not placing cards on top of 
each other. Notice what you have to do to swap 
them.

2) When the two cards are in order, move the 
coin one place to the right and repeat Step 1. You 
are now in a loop that will end once you move the 
coin into the rightmost position. Reaching this 
position is called making a ‘pass’ through the 
cards.

3) At the end of the first pass look at the cards. 
The Ace, which is the lowest card in the suit, has 
found its way to the rightmost end of the line, and 
so is in its correct place. If you make a further pass 
through the cards, as detailed in Steps 1 and 2, the

Two card will be moved to its correct place. This is 
repeated, through pass after pass, until the whole 
suit is in descending order.

You may have noticed several drawbacks to this 
method. It is very tedious; it is not economical, as 
simply exchanging the positions of two cards 
requires three different operations; and, above all, 
many of the comparisons made between different 
cards are unnecessary. For example, after one pass 
the Ace is in its correct place, so there’s no point 
moving the coin into position 13 (where no 
comparison is possible, anyway). On the second 
pass, because the card on the right is in its correct 
place, there was no need to move the pointer to 
position 12. In general, each pass will end one 
place to the left of the endpoint of the previous 
pass.

Knowing where to stop is another problem. A 
computer will continue comparing cards 
indefinitely unless it is told to stop. The only sure 
rule is: stop after a pass with no swaps. In other 
words, if you’ve gone through the data without 
altering its order, then it must be in order.

The method of sorting we have investigated is 
called the ‘Bubble Sort’. Its advantages include 
simple programming techniques, little use of extra 
memory and reasonable efficiency with small 
amounts of partially ordered data. These are the 
criteria by which a sort algorithm must be judged, 
although when the data to be sorted is extensive, 
speed may have to be sacrificed for economy of 
memory simply because computer memory may 
not accommodate both the raw data and a sorted 
copy. For this reason, we’ll ignore algorithms that 
require taking data from one array and moving it 
to the sorted position in a second array. The 
second method of simple sorting is based more 
directly on the way that we would sort cards.

1) Lay the shuffled cards out again and place a 
penny coin beneath the second card from the left. 
Whichever card the penny is beneath at the 
beginning of each pass, we will call the ‘penny 
card’.

2) Push the penny card out of the line, leaving a 
gap, and place a twopenny coin beneath the card’s 
immediate left. Call this card the twopenny card.

3) Compare the penny card with the twopenny 
card. If they’re in order, then push the penny card 
back into place and skip to Step 4. If they’re not in 
order, then push the twopenny card into the gap 
and move the twopenny coin one place to the left 
to mark a new twopenny card (if the twopenny 
card is at the extreme left, this will not apply, so

!
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G ra n d  S la m
O ne w a y  to  i l lu s tra te  a B u b b le  S o r t  is  w ith  a c o m p le te  s u it  o f 

c a rd s  th a t  have  to  be s o rte d  so  th a t  th e  K in g  e n d s  up  on  th e  le ft 

a n d  th e  A ce  on  th e  r ig h t.  F irs t th e  le f tm o s t tw o  c a rd s  are 

c o m p a re d , a n d  b e ca u se  th e y  are  fo u n d  to  be o u t  o f  o rde r, th e y  

are s w o p p e d  over. T h e n  th e  s e c o n d  a n d  th ird  c a rd s  are 

c o m p a re d , a n d  a g a in  s w o p p e d . B y th e  f i f th  c o m p a r is o n , th is  s o r t

m e th o d  has  p icke d  up  th e  A ce, a n d  in  a ll s u b s e q u e n t 

c o m p a r is o n s , th e  Ace is  s w o p p e d  fro m  le f t  to  r ig h t,  u n t il a t th e  

end  o f th e  f i r s t  ‘ p a ss ’ i t  has  ‘b u b b le d ’ its  w a y  to  th e  r ig h t -h a n d  

end . By re p e a tin g  th is  w h o le  p ro c e s s  fo r  th e  s e c o n d  pa ss , th e  

tw o  w il l  end  up  n e x t to  th e  Ace. H ow ever, it  m a y  ta k e  up  to  12 

su ch  p a sse s  b e fo re  a ll th e  c a rd s  are in  o rd e r

place the penny card in the gap and proceed to 
Step 4).

Compare this twopenny card with the penny 
card (the displaced one). Now repeat Step 3 until 
the correct position for the penny card is found.

4) Move the penny one position to the right and 
repeat Steps 2 and 3. When you can’t move the 
penny any further right, the cards will all be in 
order.

This is called an ‘Insertion Sort’, and is very 
similar to the way people sort a hand of cards. 
Although it is a little harder to program than a
Bubble Sort it is a far more efficient method. Later%

in the course, we will look at some more complex 
algorithms for sorting data.
9 REM*********************
10 REM* SORT ALGORITHMS *
11 REM*********************
100 INPUT"HOW MANY ITEMS TO BE SORTED"jLT 
150 IF LT< 3 THEN LET LT = 3 
200 LET LT =INT(LT)
250 DIM R(LT),C(LT)
300 LET Z=0:LET Q=0:LET P=0
350 LET I=l:LET 0=0:LET II=2:LET TH=2
400 INPUT"HOW MANY TESTS "JN
450 FOR CT=I TO N
500 GOSUB 4000
550 FOR SR=I TO TH
600 GOSUB 5000
650 PRINT:PRINT:PRINT:PRINT
700 PRINT "TEST #"JCT+SR/10
750 INPUT"HIT RETURN TO BEGIN SORT";AS
800 PRINT "THE UNSORTED LIST IS"
850 GOSUB 3000
900 ON SR GOSUB 6000,7000
950 PRINT "THE SORTED LIST IS"
1000 GOSUB 3000 
1050 NEXT SR 
1100 NEXT CT 
1150 END
2999 REM*********************
3000 REM* PRINT THE LIST *
3001 REM*********************
3100 FOR K=I TO LT
3200 PRINT R(K);

3300
3400
3500
3999
4000
4001 
4100 
4200 
43C^p 

4400 
4500

5000
5001 
5100 
5200 
5300 
5400 
5500
5999
6000 
6001 
6050 
6100 
6150 
6200 
6250 
6300

6350
6400
6450
6500

7000
7001 
7050 
7100 
7200 
7300 
7400 
7500 
7600 
7700 
7800 
7850 
7900

NEXT K
PRINT
RETURN
REM*********************
REM* RND GENERATOR * 
REM*********************
RANDOMIZE
FOR K=I TO LT
LET C (K) = INT(100*RND)
NEXT K 
RETURN
R EM*********************
REM* RND REGENERATOR *
R EM*********************
FOR K=I TO LT 
LET R(K)=C(K)
NEXT K 
p r i n t:PRINT 
RETURN
REM********** ***********
REM* BUBBLE *
R E M*********************
PRINT "BUBBLE SORT - GO !!!!!
FOR P=LT-I TO I STEP-I 
LET F=-I 
FOR Q=I TO P 
LET Z=Q+I
IF R (Q)< R (Z) THEN LET D=R(Q) :

LET R(Q)=R(Z):LET R(Z)=D:LET F=0 
NEXT Q
IF F=-I THEN LET P=I 
NEXT P
PRINT "BUBBLE SORT - STOP !f!!! 
RETURN
REM*********************
REM* INSERTION *
REM*********************
PRINT "INSERTION SORT - GO !!!!!
FOR P=II TO LT 
LET D=R(P)
FOR Q=P -TO II STEP-1 
LET R ( Q )*=R ( Q - I )
IF D< = R (Q) THEN LET R (Q)=D:LET Q=II 
NEXT Q
IF D>R (I) THEN LET R (I)=D 
NEXT P
PRINT "INSERTION SORT - STOP !!!!! 
RETURN

H ig h -S p e e d  S o rt

T h is  BASIC  p ro g ra m  

d e m o n s tra te s  th e  d iffe re n c e  in 

e ff ic ie n c y  b e tw e e n  a B u b b le  

S o rt a n d  In s e r t io n  S o rt. The 

code  has  been w r it te n  w ith  

speed  in  m in d , so  w e have n o t 

d o c u m e n te d  th e  o p e ra tio n  o f 

th e  ro u tin e s . T he  lis t in g  s h o u ld  

ru n  on  m o s t m a c h in e s , b u t see 

page 215 fo r  ON . . .  G O SUB 

fla v o u rs , a n d  page 175 fo r  RND 

a n d  R A N D O M IZ E
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People have long been fascinated by mazes — and maze games on 
the home computer are no exception

*
-

Mazes have always been a source of fascination 
and enjoyment to both young and old alike, 
whether they are big enough to get lost in, or 
small enough to hold in the palm of the hand. The 
maze has, in fact, become the basis of a huge 
variety of computer games, ranging from a very 
simple two-dimensional aerial view of a maze, 
right up to extremely complex mazes in three 
dimensions. The latter sort actually simulate a 
view of the maze from within, so that the player is 
encouraged to imagine that he is inside a real 
maze. To help him get his bearings, or confuse 
him even further, some of these three- 
dimensional mazes also combine brief glimpses of 
an aerial view of the maze.

S ire n  C ity

T h is  C o m m o d o re  64  g a m e  is  a 

d e v e lo p m e n t on  th e  t ra d it io n a l 

‘ a e ria l v ie w ’ g a m e . A p o lic e  ca r 

p a tro ls  a c ity , c o m p le te  w ith  ro a d s  

and  b u ild in g s

R in g  o f  D a rk n e s s

T h o u g h  th is  g a m e  fo r  th e  D ra g o n  

is  re a lly  an A d v e n tu re  -  s ty le  

g a m e , i t  c o n ta in s  a th re e - 

d im e n s io n a l m aze  as o n e  o f its  

m a jo r  e le m e n ts . P its  a n d  la d d e rs  

a llo w  y o u  to  m o ve  up  and  d o w n

W a y  O u t

A  re a lis t ic  th re e -d im e n s io n a l 

im a g e  can  be a ch ie ve d  on  a 

S p e c tru m  w ith  W a y  O ut. M o ve  th e  

jo y s t ic k  fra c t io n a lly ,  a n d  y o u r  v ie w  

w il l  ch a n g e  a lso

R in g  o f  D a rk n e s s

As mazes have become more sophisticated in 
their visual and sound effects, so have the 
imaginations of their programmers been allowed 
to wander. A  player wishing to take a leisurely 
stroll around a maze should avoid those that 
conceal man-eating monsters. An example of 
such games is 3D Glooper (available for the 
Commodore 64), in which the player searches the 
maze for special floor tiles, and can be attacked at 
any moment- by screen-filling monsters. The 
impending arrival of these creatures is 
announced, however, by the steady munching 
sounds from their approaching jaws.

Atic Atac (Spectrum) is a fully animated chase 
in which the player can assume any of three 
different characters. The maze is a multi-level 
series of pits, stairways and large dungeons 
through which you race against time. The 
dungeons are occupied by a variety of graphically 
depicted creatures and objects.

A  program that comes close to simulating what

it actually feels like to be travelling through a 
maze is Way Out. The view is in true three- 
dimensional perspective, and as you move your 
joystick fractionally to the left or right the scene 
shifts proportionately in that direction.

Let us now consider some of the basic 
programming techniques used in constructing 
mazes.
Siren Hitv

M a k in g  M a z e s
The usual way of storing information about a 
maze is by using a two-dimensional array — 
M$(R0W,COLUMN), for example. Each cell of the 
array would define the characteristics of that cell 
of the maze. You could, for example, use a string 
of four characters to represent south, west, north 
and east. Zero could indicate the absence of a 
wall and one the presence of a wall. Thus, if 
M$(5,6) contained the string “1011” this would 
indicate that the cell in row five, column six was
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3

bounded by walls to the south, north and east.
To save on memory space, the array could be 

numeric rather than string, and the four-digit 
number regarded as a binary number. In our 
example above, the cell containing north, east 
and south walls would contain the number 11
( 1011) .

All cells would start with four walls. By 
randomly generating the entrance from anywhere 
along the perimeter, the next cell could be chosen 
at random from any of the three adjacent cells. 
When that cell is chosen, the sequence continues 
— randomly selecting a cell from any of the three 
adjacent cells, disregarding the one you have just 
come from.

As each new direction is chosen, the 
appropriate ‘wall’ is removed from the cell you 
are about to leave and the cell you are about to 
enter. Checks must be made to ensure you don’t 
move outside the boundaries of the maze (unless 
the particular perimeter cell is to be the exit 
point), or create closed circuits (all parts of a 
maze should be accessible from any other part).

sibilities), two adjacent walls (four possibilities), 
three adjacent walls (four possibilities).

Using the appropriate binary number (0-15) 
for each of these, it is possible to ‘rotate’ the 
number left or right to obtain the appropriate 
view faced by the player. For example, a north 
wall could be represented by 2 (0010), south wall 
by 8 (1000), east wall by 1 (0001) and west wall 
by 4 (0100). If the player facing north in a ‘west 
wall only’ room (4) turned to face the west, his 
view of the room would now be one bounded by a 
north wall (since facing forward in a three- 
dimensional display is always to the ‘north’). As 
the player turned to his left (the west), moving the 
bit pattern one place to the right supplies the 
description we want, i.e. west wall binary 0100 
(decimal 4) becomes binary 0010 (decimal 2 — a 
north wall!) The bits are moved in the opposite 
direction when turning right, twice for an about 
turn. It is necessary, of course, to include a system 
for ‘wrapping around’ the bits that are lost from 
the left- or right-hand end of the half-byte during 
this process, otherwise the identifying

A n t A tta c k

W h e n  th is  g a m e  is ru n  on  th e  

S p e c tru m , th e  c o m p u te r ’s screen  

a c ts  as a w in d o w  o n to  a la rge  

m a z e -lik e  f ie ld  o f p la y . A s th e  p lay  

m o ve s , th e  sc re e n  w il l  m ove , 

re ve a lin g  m o re  o f th e  scene

When a cell that has fewer than four walls (i.e. 
a cell that has already been visited) is 
encountered, the program must choose another 
of the remaining adjacent cells. If all adjacent cells 
have been visited, die program has to ‘step back’ 
to the previous cell visited and take a new branch.

Another method of recording the charac
teristics of a cell is by a more sophisticated use of 
binary numbering, which is especially useful for 
displaying three-dimensional perspectives. 
There are 16 possible ways a cell can be built: no 
walls, walls on all sides, a single wall (four 
possibilities), walls on opposite sides (two pos-

characteristics of a cell will be changed each time 
the player turns within it. A cell originally defined 
as 0011, for instance (walls to the north and east), 
must become 0110 if the player turns to the right, 
and 1100 if he turns completely around.

In machine code, there are special instructions 
for rotating binary numbers 16ft and right. In 
ba sic , a four-bit binary number expressed as a 
decimal number in the range 0-15 can be shifted 
left by multiplying the number by two, and then 
subtracting 15 if the result exceeds 15. To rotate 
right: divide by two if it is an even number, or add 
15 and then divide by two for an odd number.
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It comes from a company 
famous for their toys, but the 
Aquarius is a serious computer 
at a bargain price

With its Z80 processor and button-type 
keyboard, the Mattel Aquarius is in the Spectrum 
class of microcomputer. However, in many ways 
it is a much more flexible machine, largely 
because its built-in expansion bus has been well- 
exploited by its designers.

A variety of expansion modules can be 
connected through this bus, ranging from small 
RAMpacks of 4 Kbytes to a large expansion 
chassis. Perhaps the most useful of these is the 
‘small expansion chassis’, which has two slots for 
extra memory or program packs, as well as two 
extra sound channels and two hand controllers. 
Plugging a 16 Kbyte RAMpack in one slot and a 
proprietary ROMpack, such as Finplan, in the 
other would give a quite versatile system. .

The 4 Kbytes of RAM  built into the machine is 
hardly generous, but with expansion of up to 64 
Kbytes of RAM with the large expansion chassis, 
it’s possible to run as large a machine as any home 
computer.

The keyboard and display of the Aquarius, 
however, lack the quality of larger machines. 
There’s no space bar, and the keys don’t respond 
very sensitively or quickly, so it’s not suitable for 
touch-typing. The 24 line by 40 character screen, 
though bigger than some, is not adequate for 
small business use.

The display has 16 colours that can be used for 
either the text or the background. Though lacking 
user-definable characters, it has 256 displayable 
symbols, including upper and lower case letters,

M in i E x p a n d e r

T h is  d e v ice  fe a tu re s  tw o  c a r tr id g e  p o r ts ,  a llo w in g  a p ro g ra m  

c a r tr id g e  a n d  m e m o ry  p a ck  to  be c o n n e c te d  s im u lta n e o u s ly . It 

a ls o  fe a tu re s  th e  tw o  ‘ h a n d  c o n tro lle rs ’ a n d  th re e  a d d it io n a l 

s o u n d  c h a n n e ls

co

CO
CO

o

T h e  A q u a r iu s  K e y b o a rd

T he  k e y b o a rd  is  o n e  o f  th e  

w e a k e r p o in ts  o f th e  A q u a r iu s . 

T h o u g h  c la im e d  to  be a 

‘ s ta n d a rd ’ Q W ER TY la y o u t, i t  is 

o n ly  ju s t  d e s e rv in g  o f  th e  nam e . 

T h e re  is  n o  sp a ce  bar, o n ly  one  

S H IF T  key, R E TU R N  is  in  an 

u n c o n v e n t io n a l p o s it io n  a n d  th e  

s p a c in g  is n ’t  q u ite  th e  s a m e  as 

on  a ty p e w r ite r

R F  C o n n e c to r

T V -c o m p a tib le  o u tp u t  a p p e a rs  

here  —  th e re  is  no  p ro v is io n  fo r  

m o n ito r  o u tp u t

P o w e r  C o n n e c to r

P o w e r is  a p p lie d  he re  fro m  a 

s m a ll t ra n s fo rm e r

T he  b u il t - in  4 K  o f  u s e r m e m o ry  

is  c o n ta in e d  in  th e s e  c h ip s

A q u a r iu s  P r in te r

T h is  lo w -c o s t  p r in te r  u se s  a th e rm a l p r in t in g  m e c h a n is m  a n d  so  

re q u ire s  s p e c ia l th e rm a l paper. I t  ca n  p r in t  a t a ra te  o f  80  

c h a ra c te rs  p e r  s e c o n d , a c ro s s  a to ta l w id th  o f  4 0  c o lu m n s . A 

fo u r - c o lo u r  p r in te r /p lo t te r  is  a ls o  a v a ila b le

and a selection of graphics symbols. It can also be 
used as a 320 X  192 pixel high-resolution screen. 
The display is output to the television, with no 
provision for monitor output. The quality is 
average with a noticeable bias towards blue 
shades and slightly blurred characters, but the 
picture is steady and bright, with a good range of 
colour.

Sound is available on this machine, although it 
lacks the sophisticated envelope and waveform 
controls found on others. A fairly standard 
Microsoft basic  is built in, but Extended basic  and 
an Aquarius lo g o  are promised.

One of the most interesting add-ons planned 
for the Aquarius is the BSR X-10 system, which 
can control a range of household appliances. This 
system allows up to 255 different electrical 
devices to be controlled in response to signals 
generated by a central unit. No additional wiring 
is needed, since these signals are in the form of 
pulses sent down the domestic ring main. The 
pulses aren’t large enough to make any difference 
to the mains current, but an X-10 detector 
plugged into any mains wall socket can pick up 
the code and alter the current supplied to its local 
appliance according to the command sent.

The controller unit is programmed in weekly

R O M

T h e  s ta n d a rd  M ic ro s o f t  8K  

BAS IC  is  h e ld  in  th e s e  ch ip s . 

T h e  e x te n s io n s  th a t  have  been 

a d d e d  to  h a n d le  th e  g ra p h ic s  

a n d  s o u n d  ta k e  up  th e  re s t o f 

th e  RO M  space

cycles by the Aquarius, and during this 
programming operation the computer is 
unavailable for other uses. Provided file preset 
program is satisfactory, the computer is free for 
ordinary use at any other time.

M o d u la to r  I

T he  sc re e n  d is p la y  s ig n a l is 

c o n v e rte d  in to  a s ta n d a rd  TV 

s ig n a l,  a n d  a p p e a rs  on 

C h a n n e l 36
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A Q U A R IU S

P r in te r  C o n n e c to r

A  u n iq u e  M a tte l-d e s ig n e d  

p r in te r  in te r fa c e  c o n n e c ts  

th ro u g h  th is  s o c k e t, w h ic h  is 

s u ita b le  o n ly  fo r  th e  tw o  p r in te rs  

s u p p lie d  b y  M a tte l

E x p a n s io n  b u s

A  v a r ie ty  o f a d d -o n s  can  be 

p lu g g e d  in  here . T h e se  range  

fro m  a s in g le  4 K  R A M  m o d u le  

to  an e x p a n s io n  c h a s s is , w h ic h  

can  ta k e  seve ra l 16K  R A M  packs  

as w e ll as a s e le c tio n  o f  u s e fu l 

p ro g ra m s  in  R O M packs

*»T-

PRICE

SIZE
345 x 150 x55mm
CLOCKSPEED

1 5 M H z
MEMORY .

10 Kbytes of ROM, plus 4 Kbytes 
of RAM, expandable to 64 Kbytes
VIDEO DISPLAY
24 lines of 40 characters, 16 
colours with background and 
foreground independently 
settable; 256 pre-defined 
characters but no user-definable 
characters
INTERFACES
Cassette, printer, expansion bus
LANGUAGES SUPPLIED
Microsoft BASIC
OTHER LANGUAGES AVAILABLE
Microsoft Extended BASIC and 
Aquarius LOGO have been 
promised by Mattel. These will be 
in ROMpackform
COMES WITH
Installation manual and BASIC 
manual, TV lead
KEYBOARD

49 button-style keys. The reset 
button is physically shielded to 
prevent it from being accidentally 
pressed
DOCUMENTATION

The documentation is particularly 
good for beginners, with a useful 
set of flip-cards that describe 
each major function of the 
machine and the built-in BASIC. 
There is a shortage of technical 
detail, but for the market that the 
Aquarius is aimed at it sets a 
good example

C P U

T he  p ro c e s s o r  is  a Z 8 0 , w h ic h  

ru n s  a t a c lo c k  fre q u e n c y  o f 3 .5  

M H z

C R T  C o n tr o lle r

D e s ig n in g  th e  e le c tro n ic s  th a t  

c o n tro l th e  v id e o  d is p la y  is  n o w  

th e  m o s t im p o r ta n t  a s p e c t o f 

c o m p u te r  d e s ig n . T h is  

c o n tro lle r  c h ip  is  la rg e r th a n  th e  

m ic ro p ro c e s s o r  its e lf

S e c u r ity  C h ip

T h is  c u s to m -d e s ig n e d  c h ip  is 

in te n d e d  to  m a ke  it  v e ry  d if f ic u lt  

fo r  a n y o n e  o th e r  th a n  th e  

m a n u fa c tu re rs  to  p ro d u ce  

p ro g ra m  c a r tr id g e s  th a t  w i l l  run  

o n  th e  A q u a r iu s

T a p e  C o n n e c to r

T h e  ta p e  in te r fa c e  is  a D IN -ty p e  

s o c k e t a n d  has  c o n n e c tio n s  fo r  

c o n tro ll in g  th e  ta p e -re c o rd e r 

m o to r

THE HOME COMPUTER COURSE 291



Basic Programming

As a long program is developed, its structure takes on the 
appearance of a tree, with more branches at each successive stage
of refinement

V

In the last instalment of the Basic Programming 
course, we took a look at some of the problems 
involved in searching through a list to find a 
specific item — assuming that the list had already 
been sorted into order. This is a topic to which we 
will return in more detail when the time comes to 
start writing search routines. In the meantime, 
however, we will develop the theme of top-down 
programming to produce code for the second two 
parts of the main program. This contains four calls 
to subroutines or procedures:

MAIN PROGRAM
BEGIN

INITIALISE (procedure)
GREET (pro.cedure)
CHOOSE (procedure)
EXECUTE (procedure

END

The first procedure, ‘ INITIALISE*, will involve 
numerous fairly complex activities — setting up 
arrays, reading data into them, performing various 
checks and so on — and we will leave the details of 
this procedure until later. The next two parts of the 
main program comprise the GREET and CHOOSE 
procedures. In developing these procedures, we 
will suggest a methodology that helps prevent the 
many layers involved in top-down program 
development from becoming disorganised and 
confusing.

The problem with the top-down refinement 
approach to program development is that the 
number of steps needed before we are ready to 
start coding into a high level language is 
indeterminate. Two or three steps may be enough 
for simple procedures, but more difficult 
procedures may require many steps before the 
problem has been sufficiently analysed to allow 
‘source code’ (as the high level language program is 
called) to be written. This means that writing a 
program using this method is similar to drawing a 
tree lying on its side. As the ‘branches’ proliferate 
(that is, as the refinements become more detailed) 
they take up more space on the page. Eventually, it 
becomes impossible to fit everything onto a single 
sheet, and that is the point where it becomes easy 
to lose track of what’s going on.

One very effective way to organise the 
documentation of the program is to number the 
stages of its development systematically. We have 
used Roman numerals to indicate the level of 
refinement and Arabic numerals to indicate the 
subsection of the program. A separate sheet of

loose-leaf paper is then used for each level of 
refinement and the pages for each program block 
or module can be easily kept together. Here is the 
numbering system for our program:

I MAIN PROGRAM
BEGIN

1. INITIALISE
2. GREET
3. CHOOSE
4. EXECUTE

END

As mentioned above, we are leaving the 
development of INITIALISE for the moment, and 
concentrating on developing the GREET and 
CHOOSE procedures.

II2 (GREET)
BEGIN

1. Display greeting message
2. LOOP (until space bar is pressed)

ENDLOOP
3. Call ‘ CHOOSE*

END

III 2 (GREET) 1 (display message)
BEGIN

1. Clear screen
2. PRINT greeting message

END

III 2 (GREET) 2 (LOOP wait for space bar)
BEGIN

1. LOOP (until space bar is pressed)
IF space bar is pressed 
THEN

ENDLOOP
END

III 2 (GREET) 3 (call ‘CHOOSE*)
BEGIN

1. GOSUB ‘ CHOOSE*
END

At this point it should be clear that 111-2-1 and III-2-3 
are ready to be coded directly into basic , but%iat 

■2-2 needs another stage of refinement:

IV 2 (GREET) 2 (LOOP)
BEGIN

1. LOOP (until space bar is pressed)
IF INKEYS is not space THEN continue 

ENDLOOP
END

We are now at the point where all the coding into
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basic for GREET can be tackled with little further 
refinement:

IV 2 (GREET) 1 (display message) BASIC CODE
R E M 'G R E E T* SUBROUTINE 
PRINT 
PRINT 
PRINT 
PRINT
PRINT TAB(12);“ 'W ELCOME TO T H E *” 
PRINTTAB(9);“*H 0 M E  COMPUTER COURSE*” 
PRINT TAB(6);“*C0M PUTERISED ADDRESS 

BOOK*”
PRINT
PRINT TAB(5);“(PRESS SPACE BAR TO CONTINUE)”

V 2 (GREET) 2 (LOOP wait for space bar) BASIC CODE
LETL = 0 
FOR L = 1 TO 1 
IF INKEYS 
NEXT L

’’ THEN LETL = 0

IV 2 (GREET) 3 (call ’CHOOSE*) BASIC CODE
GOSUB 'CHOOSE*
RETURN

&

Notice that we have now started to initialise 
variables in the various routines that we write, by 
using statements of the form LET I = 0. Strictly 
speaking, this is unnecessary in some of the 
circumstances in which we have used it. 
Nevertheless, it is a good habit to get into if you can 
remember, and if you have enough RAM space 
available. There are three reasons: first because 
having a list of LET statements at the start of any 
routine serves as a useful reminder of what local 
variables that routine uses. Secondly, because you 
cannot be sure of what was left in a variable from 
the last time it was used in a routine (though this 
does not always matter). Thirdly, as we shall be 
explaining to you later in the course, putting in 
statements of the form LET I = 0 in the right order 
can speed up the execution of a program.

We have changed the way in which we use a 
FOR...NEXT loop to simulate a DO...WHILE or 
REPEAT..UNTIL structure from previous 
instalments of the course. Instead of using FOR I = 0 
T01 or FOR I = 0 to 1 STEP 0, we are now using FOR I = 
1 to 1. This will run correctly on all the home 
computers we regularly cover, where the other 
methods required ‘Basic Flavours’ for various 
machines. FOR I = 1 TO 1...NEXT I will execute the 
loop just once. However, if anywhere in the body 
of the loop I is set to 0 then the loop will execute 
again, and so on. We can either insert a LET I = 0 
statement as the result of an exit condition failing 
or we can set I to 0 immediately after the FOR 
statement, and set it to 1 if the exit condition 
succeeds. Thus, both the following loops achieve 
the same objective:

FOR 1 = 1 TO 1
IF INKEYS
NEXT I

or

” THEN LET I = 0

FOR I = 1 TO 1 
LET I = 0 
IF INKEYS 
NEXT I

’’ THEN LET 1 = 1

The basic  code we have just produced is all that is 
needed for the complete GREET block in the main 
program. We haven’t put in line numbers because 
we can’t really do that until all the program 
modules are ready for final coding. For instance, 
we do not know at this stage what the appropriate 
line numbers are for the GOSUB commands. If you 
want to test the module at this stage, it will be 
necessary to create some dummy inputs and 
dummy subroutines. Some points to note about 
this program fragment are the use of the TAB 
function and the ‘clear screen’ statements. TAB 
moves the cursor along the line by the number (the 
‘argument’) specified in the brackets. The 
numbers we have given will print the message 
neatly centred in a screen 40 characters wide. If 
your display has less than this (for example, the 
Spectrum displays 32 characters per line) or more 
(larger computers usually display 80 characters), 
these TAB arguments will need to be altered 
accordingly. The instruction to clear the screen in 
many versions of basic  is CLS, but the version of 
Microsoft basic  used to develop this program does 
not support this. Instead, we have used PRINT 
CHR$(12), since our machine uses ASCII 12 as its 
‘clear screen’ non-printable character — others 
commonly use ASCII 24 for the same function.

10 REM DUM M Y MAIN PROGRAM 
20 PRINT CHR$(12)
3 0 GOSUB 100 
40 END
100 R E M 'G R E E T * SUBROUTINE 
110 PRINT 
120 PRINT 
130 PRINT 
140 PRINT
150 PRINT TAB(12);“*W ELC0M E TO T H E *”
160 PRINTTAB(9);“*H 0 M E  COMPUTER COURSE*” 
170 PRINTTAB(6);“*C0M PUTERISED ADDRESS 

BOOK*”
180 PRINT
190 PRINT TAB(5);“(PRESS SPACE BAR TO 

CONTINUE)”
195 LET L = 0 
200 FOR L = 1 TO 1 
210 IF INKEYS 
220 NEXTL  
230 PRINT CHR$(12)
240 GOSUB 1000 
250 RETURN
1000 REM D U M M Y SUBROUTINE 
1010 PRINT “D U M M Y SUBROUTINE”
1020 RETURN

We will now use exactly the same approach to 
refine the CHOOSE procedure.

II3 (CHOOSE)
BEGIN

1. PRINT menu

U ” THEN LET L = 0
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2. INPUT CHOICE
3. Call CHOICE subroutine 

END

III 3 (CHOOSE )1 (PRINT menu)
BEGIN

1. Clear screen
2. PRINT menu and prompt 

END

III 3 (CHOOSE) 2 (INPUT CHOICE)
BEGIN

1. INPUT CHOICE
2. Check that CHOICE is within range 

END

III 3 (CHOOSE) 3 (call CHOICE)
BEGIN

1. CASE OF CHOICE 
ENDCASE 

END

-3-1 (PRINT menu) can now be coded into basic:

IV 3 (CHOOSE) 1 (PRINT menu) BASIC CODE
REM CLEAR SCREEN 
PRINT CHR$(12): REM OR CLS’
PRINT
PRINT
PRINT
PRINT
PRINT “1. FIND RECORD (FROM NAME)” 
PRINT “2. FIND RECORD (FROM INCOMPLETE

NAME)”
PRINT “3. FIND RECORD (FROM TOWN)" 
PRINT ‘‘4. FIND RECORD (FROM INITIALS)” 
PRINT “5. LIST ALL RECORDS”
PRINT “6. ADD NEW RECORD”
PRINT “7. CHANGE RECORD”
PRINT “8. DELETE RECORD”
PRINT “9. EXIT & SAVE”

111-3-2 (INPUT CHOICE) and 111-3-3 (call CHOICE),
however, need further refinement. Let’s look first 
at the next level of development of 111-3-2.

Assigning a numeric value to the variable 
CHOICE is perfectly simple: after the prompt, an 
INPUT CHOICE command will do this. However, 
there are only nine possible choices. What would 
happen if we mistakenly entered a 0, or 99? Since 
the CHOICE we make will determine which part of 
the program is called next, we want to be sure that 
unwanted errors are not caused, so we need to 
perform a ‘range checking’ procedure. This is a 
small routine that checks to see if the number input 
is within the acceptable range before allowing the 
program to continue. Here is a sample routine 
designed to trap an erroneous input.

RANGE CHECKING ROUTINE

1 REM ROUTINE 
10 LET L = 0 
20 FOR L = 1 TO 1
30 INPUT “ENTER 1 - 9 ”; CHOICE 
40 IF CHOICE < 1  THEN LET L = 0 
50 IF CHOICE > 9  THEN LET L = 0 
60 NEXT L

70 PRINT “CHOICE WAS ”;CH0ICE 
80 END

Many versions of basic  can make this routine 
simpler by including a boolean operator in the test
like this:

10 LET L = 0 
20 FOR L = 1 TO 1 
30 INPUT “ENTER 1 - 9 ”;CH0ICE 
40 IF CHOICE <  1 OR CHOICE > 9  THEN LET L = 0
50 NEXTL
60 PRINT “CHOICE WAS ”;CH0ICE 
70 END

These routines also illustrate another point about 
the INPUT statement. INPUT causes the program to 
stop and wait for an input from the keyboard. 
B a sic  does not know when the whole number has 
been entered until the RETURN key has been 
pressed, so you will also have to remember to press 
RETURN after entering the number.

A more ‘user friendly’ approach would, be to 
have the program continue as soon as a valid 
number had been entered. This is possible using 
the IN KEYS function. Here, basic  reads a character 
from the keyboard whenever IN KEYS is 
encountered. The program does not stop, 
however, and will proceed to the next part of the 
program without pausing. It is usual, therefore, for 
IN KEYS to be used within loops. The loop to che 
for a key being pressed can be IF INKEYS «
TH EN... — in other words, if the key being pressed 
is ‘nothing’ (that is, no key is being pressed), go 
back and check again. A suitable loop for our
purposes would be:

LET I = 0 
FOR I - 1  TO 1 
LET AS = IN KEYS 
IFA $ =  “” THEN LET I = 0 
NEXT I

The only disadvantage of using IN KEYS is that it 
returns a character from the keyboard, rather than 
a numeric. When there is a CASE OF construct, 
where one out of several choices are made (a 
multi-conditional branch), it is easier in basic  to 
use numbers rather than characters. This is where 
ba sic ’s NUM or VAL functions come in. They 
convert numbers in character strings into ‘real’ 
numbers (that is, numeric values, not ASCII codes 
representing numerals). They are used like this:

LET N = VAL(A$) o r  LET N = NUM (A$)

By using the NUM orVALfunctions, we can have the 
program convert inputs, using INKEYS, into 
numeric variables. This removes the need to use 
the RETURN key after the number key has been 
pressed. Out-of-range checking is still advisable, 
however.

The following program fragment involves two 
loops, one nested within the other. The inner loop 
waits for a key to be pressed; the outer loop 
converts the string to a number and checks that it is 
within range:
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FOR L = 1 TO 1
PRINT “ENTER CHOICE (1 -9 ) ” 

FOR 1=1 TO 1 
LET A$ = IN KEYS 
IFA $ =  “” THEN LET I = 0 

NEXT I
LET CHOICE = VAL(A$)

IF CHOICE < 1  THEN LETL  
IF CHOICE > 9  THEN LETL  

NEXT L

=  0 
= 0

460 RETURN
470 PRINT “DUM M Y SUBROUTINE 9 ”
480 RETURN

In the next instalment, we will look at file 
structures and begin refining the INITIALISE 
procedure.

Basic Flavours

Finally, we reproduce a complete program in basic  

for the ‘CHOICE* module, including dummy input 
and subroutines for testing purposes. We should 
stress again that the fine numbers are for testing 
purposes only, and will need to be replaced when 
the final program is put together.

10 PRINT CHR$(12)
20 PRINT “SELECT ONE OF THE FOLLOWING”
30 PRINT 
40 PRINT 
50 PRINT
60 PRINT “1. FIND RECORD (FROM NAME)”
70 PRINT “2. FIND NAMES (FROM INCOMPLETE 

NAME)”
80 PRINT “3. FIND RECORDS (FROM TOW N)”
90 PRINT “4. FIND RECORD (FROM INITIALS)”
100 PRINT “5. LIST ALL RECORDS”
110 PRINT “6. ADD NEW RECORD”
120 PRINT “7. CHANGE RECORD”
130 PRINT “ 8. DELETE RECORD”
140 PRINT “9. EXIT & SAVE”
150 PRINT
160 PRINT
170 LET L = 0
180 LET I -  0
190 FOR L = 1 TO 1
200 PRINT “ENTER CHOICE (1 -9 ) ”
210 FOR 1 = 1 TO 1 
220 LET AS = INKEYS 
230 IF A$ = THEN LET I = 0 
240 NEXT I
250 LET CHOICE = VAL(A$)
260 IFCHOICE < 1  THEN LET L =  0 
270 IF CHOICE > 9  THEN LET L = 0 
280 NEXT L
290 ON CHOICE GOSUB 310,330,350,370,390,410, 

430,450,470  
300 END
310 PRINT “D U M M Y SUBROUTINE 1"
320 RETURN
330 PRINT “D U M M Y SUBROUTINE 2 ”
340 RETURN
350 PRINT “DUM M Y SUBROUTINE 3 ”
360 RETURN
370 PRINT “D U M M Y SUBROUTINE 4 ”
380 RETURN
390 PRINT “D U M M Y  SUBROUTINE 5 ”
400 RETURN
410 PRINT “D U M M Y SUBROUTINE 6 ”
420 RETURN
430 PRINT “DUM M Y SUBROUTINE 7 ”
440 RETURN
450 PRINT “D U M M Y SUBROUTINE 8 ”

SPECTRUM

TAB
i

In th e  d u m m y  m a in  p ro g ra m , a n d  th ro u g h o u t,  

rep lace  P R IN T  C H R $ (1 2 ) b y  CLS, a n d  END by 

STOP.

R A N G E  C H E C K IN G  R O U T IN E

1 R EM  R O U TIN E  

10 LET L =  0 

2 0  FOR L =  1 T 0 1 

30  IN P U T “ ENTER 1 - 9  ” ;CHOICE 

4 0  IF CHOICE < 1  TH E N  LET L =  0 

5 0  IFC H O IC E  > 9 TH EN  LET L =  0 

6 0  N E X T L

7 0  P R IN T “ CHOICE W A S  ” ;CHO ICE 

8 0  STOP

F IN A L  L IS T IN G

10 CLS

th e n  c o p y  th e  l is t  in  th e  m a in  te x t  u n t il:

2 4 0  N EXT I

2 5 0  LET CHOICE =  CODE A $ - 4 8  

2 6 0  IF C H 0 IC E < 1  TH EN  LET L= 0  

2 7 0  IF C H 0 IC E > 9  TH EN  LET L=0 

2 8 0  N E X T L

2 9 0  G O S U B  (C H O IC E *2 0  + 2 9 0 )

3 0 0  STOP

th e n  c o p y  th e  m a in  l is t  f ro m  lin e  310 to  lin e  

4 8 0 .

S o m e  v e rs io n s  o f  th e  O ric -1  do  n o t o b e y  th e  

TAB c o m m a n d , even th o u g h  i t  is p a r t  o f O ric -1  

BASIC : in  th is  case , in s e r t  th is  lin e  a t th e  s ta r t 

o f th e  p ro g ra m :

5 LET S $ = “

B e tw een  th e  q u o te s  in  th is  lin e  th e re  s h o u ld  be 

as m a n y  s p a ce s  as th e re  are  c h a ra c te rs  o n  a 

c o m p le te  sc re e n  lin e  —  4 0  fo r  an O ric -1 . T hen  

w h e n e v e r th e  p ro g ra m  sa ys  TA B (12) re p la ce  it 

b y  LE F T $ (S $ ,12 ), c o p y in g  th e  n u m b e r  in  th e  

TAB s ta te m e n t in to  th e  LE F T $ ( ) fu n c t io n .

On th e  O ric -1 , th e  D ra g o n  3 2 , th e  L yn x  a n d  th e  

BBC M ic ro , re p la ce  P R IN T  C H R $ (1 2 ) b y  CLS. 

On th e  C o m m o d o re  6 4  a n d  th e  V ic -2 0  rep lace  

C H R $ (1 2 ) b y  P R IN T “ s h iftk e y + C L R /H O M E  

k e y ” : th is  s h o u ld  re s u lt  in  a ‘ reve rse  f ie ld  

h e a r t ’ b e in g  p r in te d . See th e  m a n u a l i f  y o u ’re 

p u zz le d .

T h is  is  n o t a v a ila b le  on  th e  Lyn x , b u t can be 

re p la ce d  b y  lin e  2 9 0  in  th e  f in a l S p e c tru m  

lis t in g  above .

See ‘ B a s ic  F la v o u rs ’ page  2 5 7 .

See ‘ B a s ic  F la v o u rs ’ page  175, and 

C o m m o d o re  o w n e rs  re p la ce  LET A $ = IN K E Y $  

b y  G ET A S , and  re p la ce  IF IN K E Y $ = “ ” TH EN  

by:

GET A $ : IF A $ = “ ” THEN

V>A« *• - ■

o
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Insights

i
▲

Computer designers want to 
abandon the keyboard in favour 
of something easier to use. One 
approach is the mouse

Not long ago computers could only be accessed 
through large electromechanical typewriters 
called ‘teletypes’. These were noisy, cumbersome 
and unreliable devices that have since been 
replaced by the swift and silent Visual Display 
Unit (VDU) with keyboard. The VDU 
eliminated many of the problems associated with 
the teletypes — not least of which was the 
production of large amounts of punched tape 
waste paper as the information was keyed in. 
However, both the mechanical terminal and the 
VDU-plus-keyboard are restricted by their 
character-by-character, line-by-line format. The 
user cannot move quickly around the screen — 
selecting items from a menu here, altering data 
there, or changing files and programs —-without 
being faced with the limitations of the keyed 
cursor format. Freedom from the keyboard is 
attained when using graphics terminals or playing 
computer games with trackballs and joysticks, but 
how can a serious user benefit from these?

Most of the home computers currently 
available are equipped with four direction cursor 
controls that can be moved around a program 
listing or a text document to the position where an 
amendment needs to be made. But the cursor can 
be moved only in character- or line-sized steps; 
the user cannot move it directly to its destination. 
If the text cursor could be moved like a graphics 
cursor, which can be freely manipulated under 
the control of a joystick or trackball, movement of 
data would be considerably faster.

T h re e  B lin d  M ic e

M a n y  o f th e  m o s t re c e n t b u s in e s s  m ic ro c o m p u te rs  fe a tu re  a 

m o u s e  as s ta n d a rd , a n d  s o m e  c o m p a n ie s  o f fe r  u n its  as a d d -o n s  

to  e x is tin g  m a c h in e s . M o s t w o rk  b y  m e a n s  o f a ro ta t in g  b a ll on  

th e  u n d e rs id e , a n d  fe a tu re  e ith e r  one , tw o  o r  th re e  ‘S E LE C T ’ 

b u tto n s  on th e  to p

X
o

X
O0

CL
Q_

CO
occ
o

u_
o

CO

o
LU
O

o

M a in  B a ll ■ ■

A  la rg e  s tee l b a ll-b e a r in g  res ts  

on th e  s u rfa c e  a c ro s s  w h ic h  th e  

m o u s e  is m o ve d . On s o m e  m ic e  

th e  b a ll is  m a d e  fro m  hard  

ru b b e r to  p re v e n t it  fro m  

s lip p in g

E n c o d in g  W h e e ls

T hese  tw o  w h e e ls  m ake  

c o n s ta n t c o n ta c t w ith  th e  b a ll to  

p ic k  up  its  m o v e m e n t in  tw o  

d ire c t io n s . T he  w h e e ls  are 

m o u n te d  on s h a fts ; a t th e  end o f 

th e s e  s h a fts  are e n c o d in g  

d e v ice s  th a t p ro d u c e  e le c tr ic a l 

p u ls e s  as th e  s h a fts  are tu rn e d

B u tto n s  — — — — —

T he  fu n c t io n  o f th e  tw o  b u tto n s  

w il l  d e p e n d  on  th e  s o ftw a re  

package  in  use. U su a lly , o n e  is 

used  to  s e le c t an ite m , a n d  th e  

o th e r  to  m ove  o b je c ts  a ro u n d  

th e  screen

M ic ro s w itc h e s

T hese  are  m o u n te d  on  th e  PCB 

b e n e a th  th e  b u tto n s , and 

re q u ire  o n ly  a t in y  m o v e m e n t to  

m ake  o r  b re a k  th e  c irc u it

A solution to this problem was first explored in 
the 1960’s at the Stanford Research Institute in 
California; and the first ‘mouse’ — as the new 
kind of controller that was developed was called 
— was patented in 1970. The device was given the 
name ‘mouse’ because of its appearance: a mouse 
is small enough to fit into the palm of the hand; it 
has a ‘tail’ (the cable); and the first devices usually 
had two ‘ears’ (control buttons). Conventional 
trackballs and joysticks aren’t used because the 
precision that they provide in positioning the 
cursor isn’t needed.

The mouse operates by detecting its motion 
across any flat surface in the up/down and left/ 
right directions, as well as combinations of the 
two. These movements are directly converted to 
movements of the cursor —
often called

— or pomter, as it is 
on the screen. There are two main

methods of generating the electrical signals from 
the movement of the mouse. In both cases, the 
underside of the mouse features a large ball that 
rests on the surface across which the mouse is 
being moved.

The rotation of the mouse’s ball-bearing is 
transferred to internal cylindrical rollers. In one 
system, the ends of these cylinders are fitted with 
code wheels that have alternating tracks of 
conducting and non-conducting material. The 
pulses received are counted by the mouse’s 
operating software and enable it to give a direct 
reading for the cursor’s position on the screen. In

R u b b e r  G ro m m e t

T he  m o u s e  m u s t be fre e  to  be 

m o ve d  a ro u n d  th e  d e sk , a n d  th e  

ru b b e r g ro m m e t is  p a r t ic u la r ly  

im p o r ta n t  in  p re v e n tin g  s tra in  

on th e  c o n n e c tio n  b e tw e e n  the  

ca b le  and  PCB
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Insights

In te g r a te d  C irc u it

In m o l t  m ic e , th e  p ro c e s s in g  o f 

th e  e le c tro n ic  s ig n a ls  is  c a rr ie d  

o u t b y  an in te r fa c e  card  

m o u n te d  in s id e  th e  c o m p u te r. 

Here, how eve r, a c u s to m - 

d e s ig n e d  c h ip  is  used  to  c o n v e rt 

th e  s ig n a ls  in to  R S 232  (se ria l)  

fo rm

P O B

A s in  m o s t c o m p u te r  d e v ice s , 

m o u n tin g  a ll c o m p o n e n ts  on  a 

P rin te d  C irc u it  B oa rd  m a ke s  fo r  

e a s ie r c o n s tru c t io n  and 

in c re a se d  re lia b ility

In te r fa c e

M o s t m ic e  use  th e ir  o w n  s p e c ia l 

in te rfa c e  (d u b b e d  a 

‘ m o u s e tra p ’ ) b u t th is  o n e  can 

p lu g  in to  a n y  R S 2 3 2  p o r t,  u s in g  

th e  s ta n d a rd  2 5 -w a y  c o n n e c to r

the other system, two slotted discs are fitted to the 
rollers. A light is continuously directed at the 
discs and the beam is detected optically on the 
other side of them by a photocell. The pulses of 
light passing through the slots are then converted 
to electrical signals, which are treated in the same 
way as those of the mechanical system.

There are other systems, as well. In one case, 
for example, the mouse is used in conjunction 
with a special pad covered with a pattern of dots. 
A light inside the mouse’s body illuminates the 
area of the pad covered by the mouse and this 
pattern is detected by a special optical processing 
chip. Any movement of the mouse will change 
the pattern that the chip detects and it can 
instantly calculate how far the device has moved 
in any direction. This system has the advantage of 
having no moving parts, but it is much more 
expensive than the others.

Once the cursor has been moved to the 
required place on the screen its position can be 
entered into the computer by pressing one of the 
‘ears’ (buttons) on the mouse. The number of 
buttons fitted varies from one manufacturer to 
another. Some systems use as many as three; 
Microsoft have chosen to fit two, while the Apple 
Lisa mouse has only one. The buttons can also be 
used to select items from a menu — programs 
such as Microsoft’s MultiTool Word use this 
facility — and give the mouse control of the 
normal cursor motion. These devices can be used 
with highly sophisticated software such as that 
provided on the Apple Lisa. Here the button is 
pressed once to select an ‘icon’ (see page 262) 
from a screen menu, and twice to open out that 
particular application.

The main advantage of all mice, and the 
software that has been produced to complement 
them, is that they can be used by those who have 
no keyboard skills. Rather than having to type in 
the name of a program or press certain letters or 
numbers to select a function, the user simply 
moves the mouse so that the screen cursor points 
to the application or course of action that is 
required, and presses a button to activate it.

Unfortunately, the mouse doesn’t completely 
eliminate the need for a keyboard — new text and 
numbers still have to be fed into the computer — 
but it does make the manipulation of that 
information much simpler. Tests conducted by 
Apple during the development of the Lisa 
showed that a user entirely unfamiliar with a 
computer can learn to work with the Lisa’s 
mouse-driven software in as little as 15 minutes. 
Similar software running on a conventional 
system takes nearly 20 hours to become familiar 
with, mainly because of the problems involved in 
learning to use the keyboard, and the need to 
learn lengthy and complicated commands. 
Electronic mice will soon be an integral part of 
home computers. They are efficient and simple to 
use and they don’t frighten the faint-hearted as 
much as the sight of a traditional qw erty  

keyboard.
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Passwords To Computing

When data is passed from one computer to another it runs the risk of 
becoming corrupted. Hamming codes can detect and correct these 
errors

E x c lu s iv e -O r

A s im p le  E x c lu s iv e -O r ga te  has 

tw o  in p u ts  and  o n e  o u tp u t. If 

b o th  in p u ts  are a t lo g ic a l 0  then  

th e  o u tp u t is  0 . If e ith e r  in p u t is 

1 th e n  th e  o u tp u t is  1. H ow ever, 

if  b o th  in p u ts  are 1 th e n  the  

o u tp u t is 0 . T h is  la s t c o n d it io n  

d if fe re n tia te s  th e  O r g a te  fro m  

th e  E x-O r ( fo r  s h o r t) .  The 

o p e ra tio n  can  be re p re se n te d  by 

a tru th  ta b le . W h e re  an Ex-O r 

has m o re  th a n  tw o  in p u ts , th e  

o u tp u t w il l  be 1 if  th e re  is  an odd  

n u m b e r o f 1 s a t th e  in p u t. S uch 

d e v ice s  are th e  m e a n s  by w h ic h  

p a r ity  and  e rro r-c h e c k in g  b its  

a re  created

We must all have heard stories about computers 
making dreadful mistakes — like mailing 500 
copies of the same company leaflet to one person. 
The truth is, of course, that the machine is not to 
blame: the mistake will have originated from a 
human failing, perhaps as simple as a typing error. 
The computer merely serves to amplify the 
problem. Occasionally, errors arise because the 
applications program hasn’t been written to cope 
with all eventualities — as in the case of computer
generated final demands for gas bills of £0.00.

Sometimes, though, computers make mistakes 
that can’t be attributed to human intervention, 
and these are usually manifested in the form of 
‘bit errors’. A bit error occurs when a single bit in a 
section of data is transposed from a 1 to a 0 or 
vice-versa. Bit errors can be caused when a 
hardware component, such as a RAM chip, fails. 
That’s why many home computers go through a 
‘diagnostic’ error checking software routine 
whenever the power is turned on.

Most bit errors, however, are ‘soft errors’ — bits 
get ‘flipped’ even though all the RAM has passed 
the diagnostic test. Home computers are designed 
to operate in domestic environments, but during a 
summer heatwave it is quite possible for the 
temperature to exceed the operating temperature 
range of the components. Damage is unlikely to 
be permanent, but bit errors may result in a 
character on the screen suddenly changing from 
an ‘A’ to a ‘B’, for example, or if the bit happens to 
form part of an important pointer, it may ‘crash’ 
the program, requiring the computer to be reset.

Bit errors can also arise during periods of high 
sunspot activity, when sub-atomic particles can 
penetrate the atmosphere and interfere with the 
flow of electrons in a miniature circuit. In 
applications such as military systems, industrial 
control, scientific experimentation or 
international banking, errors could bring 
disastrous consequences, so a variety of methods

have been adopted to detect them.
The simplest is parity checking (see page 253). 

An alternative method is the ‘checksum’, which is 
widely used when writing data onto magnetic tape 
or disk. Data is typically handled in blocks of 128 
bytes, the last of which to be read or written will 
be a checksum byte. This byte represents the sum 
of all the other bytes (each having a value in the 
range 0 to 255) modulo 256 — meaning the 
remainder of the sum when divided by 256. 
Here’s an example:

Data: 114,67,83... (121 other values)...
36,154,198
Total of these 127 bytes =  16,673
Total divided by 256 =  65, remainder 33
Therefore checksum =  33

The total of the bytes (16,673) is equal to 65 lots 
of 256 plus a remainder of 33 — the value that is 
written into the 128th byte as a checksum. When 
the computer reads the block back again, it 
performs its own checksum calculation on the 
data and if this value differs from 33 then it knows 
that a bit error has occurred in the recording 
process.

With both parity and checksum, the computer 
has no way of knowing which bit of the data has 
been corrupted. If the error occurred in 
transmission, then the receiving computer can 
request a particular byte or block of bytes to be 
transmitted again; in the case of a recording error, 
there may well be no way of retrieving the 
uncorrupted data.

Where errors would be unacceptable, a system 
must be used that will both detect and correct 
them. Hamming codes, named after their 
inventor R W Hamming of Bell Telephone 
Laboratories, perform this function.

All error correction systems work on the 
principle of redundancy. Human languages 
contain a high degree of redundancy — if a typing
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Passwords To Computing

error occurs in a manuscript, or a crackle 
obliterates words in a telephone conversation, it is 
often possible to recreate the words by 
considering the context of the sentence. 
Sometimes we build in extra redundancy for use 
in ‘noisy’ environments: the use of ‘alpha’, ‘bravo’, 
and ‘charlie’ in place of ‘a’, ‘b’, and ‘c’ in 
radiotelephony, for example.

Suppose that on our computer we send a word 
of x bits in length, consisting of y bits of real data 
and z redundant bits (i.e. x =  y +  z). In our 
explanation of parity we had a value of seven for y 
and one for z. For Hamming codes, z will need to 
be proportionately larger. Now let’s assume that a 
single-bit error can occur in any of the x bits (our z 
redundant bits are of course just as prone to error 
as the y data bits). If the chance of a bit error in a 
word is, say, one in a million, then the chance of 
two errors in a word is one in a million million, so 
we’ll ignore this possibility.

When the data is received at the other end, 
there will be x+1 eventualities. Either there will 
be no errors, or the first data bit will be in error, 
and so on up to the xth bit. Now, with z redundant 
bits we can represent 2Z situations, so that for the 
word to be proof against one bit error:

2 y+z+1

If y is seven (for ASCII codes), then z will need to 
be four. If y is four (as in our example in the 
panel) then z will need to be three. However, if y is 
16 then z need be increased only to 5. It follows 
that Hamming codes are far more efficient for 
longer word-lengths than for short ones.

In a Hamming code, each of the redundant bits 
acts as an even-parity check on a different 
combination of bits in the word. If any bit is 
flipped in transmission then one or more of the 
check bits will be wrong and the combination of 
these bits will point to the erroneous bit in the 
word (see example). The receiving computer’s 
software can then simply flip that bit back again.

The key to the way that Hamming codes work 
is the different combinations of bits upon which 
each Hamming bit acts as a parity check. The total 
number of bits is effectively divided into several 
different but overlapping sets — devised so that 
no two bits appear in the same combination of 
sets. The receiving computer performs parity 
checks on the same sets as the sending device did 
to create the Hamming code. If any one of the 
bits, including the Hamming bits, has been flipped 
in transmission, then one or more of these sets will 
not pass the parity test. The combination of tests 
failed points to a unique bit.

Some computers employ Hamming codes 
even for their internal memory operations. When 
this is the case, it is possible to remove one whole 
RAM chip and watch the computer continue to 
function! Some military computers take the 
principle of redundancy to the extreme of 
duplicating every single component in the 
computer, and comparing the results from the two 
halves after each operation.

H o w  A  H a m m in g  C o d e  W o rk s

Data Hamming Code

0 1 1 1 1 0 0

TR U E FALSE FALSE

T h is  p r in c ip le  w il l  s t i l l  w o rk  even if  i t  is  o n e  o f  th e  

H a m m in g  b its  th a t  g e ts  c o r ru p te d . If a ll th re e  te s ts  fa il,  

fo r  e x a m p le , 111 w o u ld  in d ic a te  th a t  th e  r ig h tm o s t  b it 

w a s  c o r ru p t,  w h e re a s  if  a ll th re e  pa ss , th e re  has  been no 

e rro r. T h is  ty p e  o f  c o r re c t in g  code  fa ils  o n ly  i f  th e re  is 

m o re  th a n  o n e  e rro r  in  th e  seven  b its

S u p p o s e  w e  w is h  to  s e n d  th e s e  

fo u r  b its  o f da ta

To th e m  w e  m u s t add  a th re e  b it 

H a m m in g  co d e , a u n iq u e  

p a tte rn  o f  b its  g e n e ra te d  b y  th e  

c o m p u te r  to  fu l f i l l  th e  fo l lo w in g  

c o n d it io n s :

L o o k in g  a t ju s t  th e s e  fo u r  o f th e  

seven , th e re  m u s t be an even 

n u m b e r  o f  1s v is ib le

S im ila r ly , o u t o f th e s e  fo u r  th e re  

m u s t be an even n u m b e r  o f 1 s

A n d  in  th is  s e t o f b its , th e re  

m u s t be an even n u m b e r  o f 1 s, 

to o . W o rk in g  o u t th e  th re e  b its  

th a t w il l  f i t  th e s e  c o n d it io n s  

re q u ire s  th e  c o m p u te r  to  so lve  

th re e  s im u lta n e o u s  e q u a tio n s

B u t le t ’s s u p p o s e  th a t d u r in g  

tra n s m is s io n , th e  th ird  b it  fro m  

th e  le ft is  c o r ru p te d , i.e . is 

f l ip p e d  fro m  1 to O

If th e  re c e iv in g  c o m p u te r  

p e r fo rm s  th e  f i r s t  o f th e  th re e  

te s ts  on  th e  da ta , it  n o w  fa ils  

b e ca u se  th e re  is  an o d d  n u m b e r 

o f 1s v is ib le . T h is  te l ls  u s  th a t 

th e re  has been an e rro r, b u t w e 

s t i l l  d o n ’t  k n o w  w h ic h  b it  w as 

a ffe c te d

*- S im ila r ly , th e  s e c o n d  te s t 

p ro d u c e s  a fa ls e  re s u lt

H ow ever, th e  da ta  s t i l l  passes  

th e  th ird  te s t —  an even n u m b e r 

o f 1s is v is ib le

It is th e  c o m b in a t io n  o f te s ts  

passed  and  fa ile d  th a t  in d ic a te s  

th e  b it  in  e rro r. If w e  e x p re ss  a 

fa ile d  te s t as a 1 a n d  a passed  

te s t as a 0, th e n  w r it in g  th e  

re s u lts  in reverse  o rde r, w e ge t 

th e  b in a ry  fo r  th re e  —  in d ic a t in g  

th a t  th e  th ird  b it  w a s  c o rru p te d , 

and  s h o u ld  be f l ip p e d  back  fro m  

0 to  1
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Pioneers In Computing

The child prodigy whose study of 
mathematics resulted in the birth 
of the science of cybernetics

S p e e d  R e s tr ic tio n

W ie n e r w as fa s c in a te d  by the  

idea o f th e  s te a m  g o v e rn o r —  

one  o f th e  best and  s im p le s t 

e xa m p le s  o f n e g a tive  feedback . 

Two w e ig h ts  are co n n e c te d  by 

p iv o tin g  a rm s  to  a s p in n in g  

sh a ft, w h ic h  is in  tu rn  co n n e c te d  

to  th e  fly w h e e l o f  th e  s team  

eng ine . A s th e  speed  o f the  

e n g ine  inc reases , th e  w e ig h ts  

w il l  f ly  o u tw a rd . T h is  m o ve m e n t, 

by m ean s  o f a s u ita b le  lin ka g e , 

s h u ts  o ff  th e  th ro tt le  o f the  

e n g ine  s lig h tly . T h is  has th e  

e ffe c t o f s ta b ilis in g  th e  speed  of 

the  e n g in e  at any  level se t b y  th e  

ope ra to r. M o d e rn  c o m p u te rs  can 

im p le m e n t fa r  m ore  

s o p h is tic a te d  typ e s  o f c o n tro l, 

b u t th e  p r in c ip le  is s t i l l  th e  sam e

Norbert Wiener was bom in 1894 in Missouri, 
USA. After taking a degree in mathematics at the 
age of 14 and receiving a doctorate in logic at 18, 
he went to study with David Hilbert at Gottingen, 
Germany.

Wiener’s contribution to computer science 
came late in his life. For many years he worked at 
the Massachusetts Institute of Technology, 
studying the new probabilistic physics, and 
concentrating on the statistical study of the 
motion of particles in a liquid (a phenomenon 
known as Brownian movement). The particle 
movements were so unpredictable that it was 
impossible to describe them using the traditional 
physics of deterministic forces. So a ‘probabilistic’ 
method, by which only the probable location of a 
particular particle at a given time could be 
predicted, was the best that could be applied.

When the Second World War broke out he 
offered his services to the US government and 
began work on the mathematical problems 
implicit in aiming a gun at a moving target. The 
development of automatic gunsight guidance 
systems, his studies in probabilistic physics and his 
broader interest in subjects ranging from 
philosophy to neurology all came together in 
1948 when he published a book entitled 
Cybernetics.

Cybernetics is the study of the self-governing 
controls that are found in stable systems, be they 
mechanical, electrical or biological. It was Wiener 
who saw that information as a quantity was as 
important as energy or matter: copper wire, for 
example, can be studied for the energy it can 
transmit or the information it can communicate. 
The revolution that the computer promises is 
based in part on this idea: a shift in the source of 
power from the ownership of land, industry or 
business to the control of information. His 
contribution to computer science was not a piece 
of hardware but the creation of an intellectual 
environment in which computers and automata 
could be developed.

The word ‘cybernetics’ is derived from a Latin 
word meaning ‘governor’. Wiener had studied the 
‘governor’ of James Watt’s steam engine, which 
automatically regulated the machine’s speed, and 
he realised that for computers to develop they 
must be made to imitate the ability of human 
beings to regulate their own activities.

The thermostat in a house is an example of a 
control system. It regulates the heating according 
to fluctuations in temperature above or below an 
optimum level. A human is needed only to set this 
level. Wiener called this faculty for self-regulation 
and control ‘negative feedback’ — ‘feedback’ 
because the output of the system (the heat) affects 
the future behaviour of the system and ‘negative’ 
because the changes the thermostat brings about 
are made to restore the temperature to the one set.

A system that can do this and also choose its 
own temperature (and other goals) is called a 
‘positive feedback’ system. When an automaton 
can do all this and reproduce itself as well, then it 
approaches the human condition.

Wiener’s theory of cybernetics could be 
regarded as a super science — a science of 
sciences — and it has encouraged research into 
many areas of control systems and systems that 
deal with information. Everything is information. 
What we know about the changes in the world 
comes to us through our eyes and ears and other 
sensory receivers, which are devices for selecting 
only certain data from a totality that would 
otherwise engulf us.

Information can also be studied in a statistical 
way, independent of any meaning it may have. 
For example, by observing the frequency with 
which certain symbols occur it is possible to break 
many types of codes. In the English language the 
letter ‘e’ occurs most often, and the letter ‘t’ is the 
second most frequently used. By analysing large 
samples of a code and comparing the results with 
typical samples of English, it is possible to identify 
key letters and thus begin deciphering the code.

Wiener died in 1964, before the 
microcomputer revolution began, yet he foresaw 
and wrote about many of the problems that would 
arise in this new technology.
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H o m e  com pu ters . D o  th e y  send  y o u r b ra in  to  

s le e p -o r  keep  y o u r m in d  on  its toes?

A t Sinclair, w e 're  in n o  d o u b t. To us, a 

h o m e  c o m p u te r is a  m e n ta l g y m , as 

im p o rta n t an  a id  to  m e n ta l fitness as a  set o f 

w eights  to  a b o d y -b u ild e r.

P rov ided , o f course, it o ffe rs  a  w h o le  

b a tte ry  o f  g e n u in e  m e n ta l challenges.

T h e  S p ec tru m  does ju s t t h a t  

Its e d u c a tio n  p ro g ra m s  tu rn  b o rin g  

chores in to  a b s o rb in g  con tests  -  n o t lea rn in g  

to  spell 'acq u iescen t, b u t rescu ing  a princess  

fro m  a sorcerer in colour, so u n d , an d  

m o v e m e n t!

T h e  a rcad e  g am es  w o u ld  te s t an  

a ll-n ig h t a rc a d e  f r e a k - th e y 'r e  v e ry  fast, very  

com plex , v e ry  s tim u la tin g .

A n d  th e  m in d -s tre tc h e rs  a re  tru ly  

fiendish. A d v e n tu re  g a m e s  th a t  v e ry  fe w  

p eo p le  in th e  w o r ld  h ave  cracked. Chess to  

grand  m as te r s tandards . F ligh t s im u la tio n  

w ith  a co ckp it fu ll o f  in s tru m e n ts  o p e ra tin g  

in d ep en d en tly . G e n u in e  3 D  c o m p u te r design.

N o  o th e r  h o m e  c o m p u te r  in th e  w o rld  

can m a tc h  th e  S p ec tru m  ch a llen g e  -  because  

no  o th e r c o m p u te r has so m u ch  so ftw are  o f 

such o u ts ta n d in g  q u a lity  to  run.

For th e  M e n ta th le te s  o f  to d a y  an d  

to m o rro w , th e  S inclair S p e c tru m  is g ym , 

a p p ara tu s  an d  tra in in g  schedule , in o n e  n e a t  

package. A n d  y o u  can b u y  o n e  fo r  u n d e r
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will prove inval

❖  Buy volumes 1 and 2 together tor 
£6.90 ( including P&P). Simply till in the order

ourinvoice.
*  It you prefer to buy the binders 

separately please send usyour cheque/postal 
order tor £3.95 (including P&P). We will send 
you volume 1 only Then you m ay order volume 
2 in the same way - when it suits you!

O verseas readers Thi m  |
binder otter applies to readers in the
UK, Eire and Australia only. Readers in Australia s h o u ld ^ ^ ^  
complete the special loose insert in Issue 1 and see additional 
binder information on the inside front cover. Readers in New 
Zealand and South Africa and some other countries can obtain 
their bindersnow. For details please see inside the front cover.
Binders may be subject to import duty and/or local tax.

NEXT TO YOUR COMPUTER...YOUR COURSE MANUALS




