
ISSN 0265-2919

C O N TEN TS

Aquarius We take a look at a new micro
aimed at the younger generation

Order Of Play Sorting is a very important
computer function. We examine some of the
different methods available

Amazing Facts Maze games like PacMan
have swept the world, yet the programming
techniques they use are quite simple

Basic Programming

Branching Out It’s time to refine the menu
procedure for our computerised address
book program

Your Obedient Servant From fictional
beginnings, robots became fact. We look at
some aspects of their operation

Mice And Men As menu-driven software
becomes more common, alternatives to the
keyboard become more practical

Passwords To Computing

Detective Work We examine some ways of
avoiding the problems of corruption during
data transmission

Norbert Wiener BSc at 14, PhD at 18,
Wiener single-handedly developed the
science of cybernetics

Sounding Out Vic...Lighting Up Dragon
Some practical programming hints for these
two popular home computers

290

286

288

>

292

N e x t W e e k
• W e e x a m in e th e S h a rp M Z -7

a lo w c o s t h o m e -a n d -b u s in e s s

c o m p u te r w ith b u ilt - in p r in te r a n d

c a s s e tte p la y e r

In e x p e n s iv e ro b o t a rm s a re

n o w b e c o m in g a v a ila b le fo r a

w id e ra n g e o f h o m e c o m p u te rs .

W e lo o k a t th e C o ln e R o b o tic s

A rm d ro id

A m o d e m c a n o p e n u p a w h o le

n e w w o rld fo r th e h o m e c o m p u te r

u s e r . W e s u g g e s t s o m e

a p p lic a tio n s

281

296

9

298

300

#

284

'R'cbajS.Pawson; Consultant Editor Gareth Jefferson; Art Director David Whelan; Production Editor Catherine Cardwell; Staff Writer Roger Ford; Picture Editor Claudia Zeff; Designer Hazel Bennington; Art Assistants Liz Dixon
Safu Maria Gilbert, Sub Editors Robert Pickering, Keith Parish; Researcher Melanie Davis; Contributors Tim Heath, Henry Budgett, Brian Morris, Lisa Kelly, Steven Colwill, Richard King, Bob Chappell; Group Art Director Perry
Neville; Ma^ingDireclor Stephen England; Consultant David Tebbutt; Pubbshed by Orbis Publishing Ud: Editorial Director Brian I nnes; Project Development Peter Brookesmith; Executive Editor Chris Cooper; Production Co-ordinator

K 8ct°r P.a,v|d .Br.ee.d.i ^ A e ^ D if^ o r M ic h ^ Joyce;_ Designed and produced by Bunch Partworics Ltd; Editorial Office 85 Charlotte Street, London W1, © 1983 by Oibis Publishing Ltd: Typeset by Universe;
mproaucnon oy mums Morgan Ltd; Printed Hi Glut Britain by Artisan Press Ltd, Leicester

HOME COMPUTER COURSE - Price UK 80p IR £1.00 AUS $1.95 NZ $2.25 SA R1.95 SINGAPORE $4.50 USA and CANADA.S1.95
How to obtain your copies of HOME COMPUTER COURSE - Copies are obtainable by placing a regular order at your newsagent.
Back Numbers UK and Eire - Back numbers are obtainable from your newsagent or from HOME COMPUTER COURSE. Back numbers, Orbis Publishing Limited, 20/22 Bedfordbury, LONDON WC2N 4BT at cover price. AUSTRALIA Back
numbers are obtainable from HOME COMPUTER COURSE. Back numbers, Gordon & Gotch (Aus) Ltd, 114 William Street, PO Box 767G Melbourne, Vic 3001. SOUTH AFRICA, NEWZEALAND, EUROPE & MALTA Back numbers are available at
cover price from your newsagent. In case of difficulty write to the address in your country given for binders. South African readers should add sales tax.
How to obtain binders for HOME COMPUTER COURSE - UK and Eire: Please send £3.95 per binder if you do not wish to take advantage of our special offer detailed in Issues 4,5 and 6. EUROPE: Write with remittance of £5.00 per binder (mcl.
p&p) payable to Orbis Publishing Limited, 20/22 Bedfordbury, LONDON WC2N 4BT. MALTA: Binders are obtainable through your local newsagent price £3.95. In case of difficulty write to HOME COMPUTER COURSE BINDERS, Miller (Malta)
Ltd, M. A. Vassalli Street, Valletta, Malta. AUSTRALIA: For details of how to obtain your binders see inserts in early issues or write to HOME COMPUTER COURSE BINDERS, First Post Pty Ltd, 23 Chandos Street, St. Leonards. NSW 2065. The
binders supplied are those illustrated in the magazine. NEW ZEALAND: Binders are available through your local newsagent or from HOME COMPUTER COURSE BINDERS, Gordon & Gotch (NZ) Ltd, PO Box 1595. Wellington. SOUTH AFRICA
Binders are available through any branch of Central Newsagency. In case of difficulty write to HOME COMPUTER COURSE BINDERS, Intermag, PO Box 57394, Springfield 2137.
Note - Binders and back numbers are obtainable subject to availability of stocks. Whilst every attempt is made to keep the price of the issues and binders constant, the publishers reserve the right to increase the stated prices at any time when
circumstances dictate. Binders depicted in this publication are those produced for the UK market only and may not necessarily be identical to binders produced for sale outside the UK. Binders and issues may be subject to import duty and/or
local taxes, which are not included in the above prices unless stated.

Insights

Industrial robots can now visually recognise objects and learn new
tasks by imitating human actions

The term ‘robot’ is derived from the Czech word
for work, robota. It was coined by playwright
Karel Capek in his 1920 play R. U.R. (Rossum’s
Universal Robots) and was subsequently
enthusiastically adopted by science fiction writers.
Despite the many fictional accounts of the powers
of robots, they are nothing more than an
electromechanical extension of the computer,
with all a computer’s limitations and failings.

Their origins are to be found in the machine
shops of the fifties, where the theory of numerical
control of machine tools was first applied. These
first efforts were predictably crude: machines that
were controlled by five-hole paper tape (the sort
used by telex machines), which at best could only
move one fixed tool from point to point around
the object they were working on.

The next step in their development was the
introduction of the ability to change tools in mid
job. This was accomplished by the use of a
‘carousel’ or rotating rack of tools, all with
identical fixings, which could be selected and
fitted to the tool holder under program control.

Even with this refinement, a particular machine
could perform only one type of task: a lathe was
still a lathe, even though it could perhaps do all the
turning jobs required in a particular process. At
around the same time, remotely-controlled hands
and arms were being developed to work in
dangerous environments — beneath the ocean,
for example, or in laboratories handling
radioactive materials. These manipulative devices
were merely extensions of the operator’s own
hands, but computers were soon used to control
them directly. The robots that have since been
developed are more accurately referred to as
‘robot arms’, as they consist of one tool holder
mounted on an extending or articulated arm.

If we wish to understand how robots are
programmed, we must first consider them in
relation to the space in which they operate. Most
industrial robots are fixed in position, so the space
will be a sphere that is flattened at the bottom, and
we can think about the question of control of the
robot as a simple exercise in three-dimensional
geometry. The centre of the spheroid will be the
robot’s ‘shoulder’ joint, and the radius will be the
length of the extended arm, measured from the
‘shoulder’ to the tip of the ‘fingers’ — the gripper
or tool holder. Any point within this space can be
expressed as three co-ordinates: for example, as
distances north/south, east/west and up/down,
from a ‘datum point’ or zero position. In this case

the co-ordinates are known as Cartesian, after the
17th-century French mathematician Rene
Descartes. Alternatively, the position can be
expressed in spherical co-ordinates. In everyday
language this could be, say: ‘at a distance of two
metres in a direction north-east and thirty degrees
above the horizontal’. The datum point in this case
is the robot’s ‘shoulder’.

However, the problem of programming the
robot involves giving it a set of instructions about
moving from place to place, and so there is yet a
third method of positioning the tool holder.

C e llu lo id H e ro

R 2D 2, th e e n d e a rin g ro b o t fro m

‘S ta r W a rs ’ w a s in fa c t

c o n tro lle d by a h u m a n o p e ra to r.

Its d e s ig n , h o w e v e r, re fle c te d

w h a t m a n y p e o p le th in k ro b o ts

o u g h t to lo o k like

THE HOME COMPUTER COURSE 281

Insights

B a tte r y -P o w e r e d R o b o t

The H ero -1 is a c o m p le te ly s e lf-

c o n ta in e d b a tte ry -p o w e re d

ro b o t th a t c o m b in e s s o m e o f

th e fu n c t io n s o f a tu r t le w ith th e

m a n ip u la t iv e a b il i ty o f a ro b o t

a rm . C o s tin g s o m e £ 2 ,5 0 0 —

o r £ 1 ,6 0 0 in k it fo rm — it m ig h t

a p p e a r, a t f i r s t g la n ce , to b e a n

e xp e n s ive to y . B u t, i t is in fa c t, a

re m a rk a b ly f le x ib le c o m p u te r

s y s te m in its o w n r ig h t, w ith

su ch a d va n ce d fe a tu re s as

speech s y n th e s is , l ig h t leve l

s e n s o rs , a u d ito ry in p u t and ,

(beca use i t ’s m o b ile) , an

u ltra s o n ic ra n g e f in d e r th a t a lso

d o u b le s as a m o v e m e n t

d e te c to r

Known as point-to-point positioning, this requires
the datum point to move with the tool holder.

Typically, industrial robots are accurate to
within one millimetre. Even the simpler models —
available for a few hundred pounds and capable
of being used with any home computer that has
eight-bit parallel output — are accurate to within
two millimetres. That observation in itself is
interesting given that the cost differential is at least
50-1.

There are two generally accepted methods of
driving robot arms. For those with a low payload,
stepper motors (electric motors that move by a
predetermined amount each time current is
applied to them, as used in disk drives to position
the read/write head) are sufficient. But for robot

arms used on a production line, where heavier
weights need to be manoeuvred, it is more
common to employ hydraulic rams to move the
various parts of the arm around their fulcra (the
points around which they pivot). It is quite a
simple matter to measure the volume of hydraulic
fluid being passed into the rams, and to deduce
from that the movement at the other end, to well
within the operational requirements of accuracy.

Industrial robots invariably contain a purpose-
built minicomputer (or a large capacity
microcomputer in later models) that does nothing
but control the arm, and run a programming
language designed for that purpose. As there is no
requirement to do more than indicate co
ordinates, and issue simple commands like CLOSE
GRIPPER or OPEN GRIPPER, the programming
language contains no instructions for handling
text. Program instructions are entered through an
enlarged numeric keypad attached to the
computer by means of a long ‘umbilical cord’, so
that the operator may move around the robot arm
while entering the instructions. The more
advanced versions of these ‘pendant panels,’ as
they are called, include a precision joystick.

Another programming method, known as
‘Follow Me’, is especially useful in tasks that do
not require particularly accurate tool placement,
such as paint spraying. Here the robot arm
includes a provision for the operator to grasp the
tool holder, directly move it around the job, and
have those movements entered directly into the
computer’s memory. The robot will then repeat
those movements every time the program is
executed.

In all these methods, the position being defined
is that of the tool holder itself. The operator is not
concerned with the relative positions of the
individual sections of the robot. The

ELBOW

V
.M:

s

SHOULDER

RIST EXTENSION

7

A n g u la r

M o v e m e n t
One o f th e m o s t d if f ic u lt

a s p e c ts o f p ro g ra m m in g a

ro b o t a rm is c o n v e r t in g th e

g e o m e try . W e are used to

s p e c ify in g p o s it io n s u s in g

C a rte s ia n o r x ,y ,z c o

o rd in a te s . W h a t th e ro b o t

needs a re a n g le s fo r the

‘e lb o w ’ jo in t , th e ‘s h o u ld e r ’

jo in t , th e ‘w a is t ’ ro ta t io n , and

th e d is ta n c e th a t th e w r is t

m u s t e x te n d . In s im p le r

s y s te m s th e p ro g ra m m e rs

m u s t g ive th e v a lu e s fo r a ll

fo u r . M o re s o p h is t ic a te d

ro b o ts can p e r fo rm a ll th e

c o n v e rs io n s f ro m C a rte s ia n

c o -o rd in a te s

WAIST

282 THE HOME COMPUTER COURSE

BO
B

FR
EE

M
AN

Insights

programming language resident in the robot’s
control computer works out what they should be.
It also performs any necessary optimisation,
ensuring that the tool moves from one place to
another by the shortest possible route. The
orientation of the tool holder is controlled
automatically, maintaining both horizontal and
vertical relative positions unless instructed
otherwise. The speed of point-to-point movement
is also automatic: the tool holder is disengaged
slowly, moves rapidly to within a short distance of

workpiece was in position, and then allowed to
continue. Of course, this isn’t foolproof either,
and for situations where complete reliability is
required, it is possible to install an image
recognition system based on charge-coupled
device (CCD) television cameras. These cameras
focus the image directly onto an array processing
microchip (a chip split up into a hundred or more
individual photosensors, each capable ' of
registering not just black or white but also a range
of intermediate tones). Each individual sensor

the destination point, and then slows down to re
engage the workpiece at the new site.

The robots we have discussed so far are capable
only of ‘blind obedience’, repeating the same task
at exactly the same location, irrespective of
external influences. Their main use is in the
engineering industry, especially in the production
of motor vehicles. This has long been organised
into production lines, in which the component or
partially completed vehicle is always precisely
located in space and time. This is vitally important
to the successful operation of a robot production
process, for if the component is wrongly
positioned, the robot will not adapt its activity
accordingly. In an attempt to overcome this, a
variety of sensors can be fitted to the tool holder.
The simplest of these can be an ordinary on/off
microswitch. Contingency plans can be built into
the control program (a WAIT command, for
instance), to be executed if the switch is not
brought into contact with the workpiece, but more
sophisticated plans will require human
intervention.

An alternative to pressure sensing might
involve the use of a light sensor. If a light source
were positioned so as to be obscured from the
sensor on the tool holder by the workpiece, the
tool holder could be stopped before it reached
collision point, put into WAIT mode until the

requires perhaps one byte of memory to define the
contrast in the grey scale. Initially each object is
‘photographed’ a number of times, and a learning
program averages out the values. At run time, the
CCD camera makes an image of the object, which
is then compared with the reference image in
memory. If the two match, then the operation can
go ahead. By this method it is possible to check
that the correct workpiece is present, and that its
position and attitude are correct.

A further use of this image processing system is
in the selection of components from a ‘mixed bag’.
This ‘picking and placing’, as it is known, is an
increasingly common application for small robots
as an adjunct to a regular production line. In
addition to the production process itself, industrial
robots are commonly used in the testing and
quality control stages, often in pairs to allow a
greater degree of flexibility in the positioning of
the product.

We started by considering the robot in fiction —
and with good reason. There are few better
examples of truth following fantasy than in the
development of the industrial robot, and there is
no reason why robots should not eventually
become the self-contained and ‘self-motivated’
entities of science fiction. This will not happen,
however, until Artificial Intelligence is more than
just a concept.

F a c to ry A c t

R o b o t a rm s , like th e o n e seen

here a t w o rk in a d ie c a s tin g

s h o p , are ta k in g o ve r m o re and

m o re o f th e d ir ty , d a n g e ro u s

and re p e tit iv e jo b s to be fo u n d

in in d u s try . The c le a n in g o f

c a s tin g s p re p a ra to ry to th e ir

b e in g m a c h in e d is a g o o d

e x a m p le . T he c a s tin g , fre sh

fro m th e m o u ld , is m u ch to o h o t

fo r h u m a n h a n d s , a n d w o u ld

n o rm a lly be p u t to o n e s id e to

c o o l. T he ro b o t, how eve r, is n o t

s u s c e p tib le to h e a t so can dea l

w ith it im m e d ia te ly and

d e s p a tc h i t on to th e n e x t

o p e ra tio n

THE HOME COMPUTER COURSE 283

Sound And Light

A close look at sound generation
on the Vic-20...

In each case X is a whole number between 135 and
241(0 switches that oscillator off), which refers to
a table of equivalent note values on page 7 3 of the
booklet supplied with each Vic-20. Before the
selected frequency can be heard the volume level
must be set, as follows:

The Vic - 20 was one of the first home computers to
appear in the UK. As a consequence, its facilities
may appear to be a little lacking in comparison
with more recent computers. Additionally,
Commodore don’t make it particularly easy to
construct sound or music programs as Vic-20
b a sic , in common with Commodore 64 b a sic , has
no commands that relate specifically to sound. All
sound control is achieved by a series of POKEs into
memory locations. This principle also applies to
the Commodore 64 and the techniques outlined
here for the Vic-20 would be useful to the
Commodore 64 user. The degree of sound control
available is limited to volume (equivalent to
envelope with A = D = R = 0), frequency on three
oscillators and -a noise generator. Output is
available via the television speaker alone. In
addition, due to inaccuracies in the way the Vic-
20 selects frequencies it is impossible to obtain the
correct pitch for all notes on the musical scale.

With only these capabilities the Vic-20 has little
value for music making; although with thought,
patience and a little knowledge of basic

programming these limited features can be used to
create ‘tunes’ of two and three note chords.

S o u n d C o n tro l
The Vic-20 is supplied with three square wave
oscillators and a noise generator. Each oscillator
covers approximately three octaves of sound,
offset in frequency as follows:

|0 sc .1 Osc.2 Osc.3 | Freq. Range (Hz) 0ctave|
• (65.41-123.47) 1
• • (130.81-246.94) 2
• • • (261.63-493.88) 3

• • (523.25-987.77) 4
• (1046.5-1975.53) 5

This arrangement allows the user to cover five
octaves in total with at least one oscillator
available in each octave. Octave 3, which starts at
middle C and contains the standard reference A at
440Hz, is available to all three oscillators.

Control of the oscillators is exercised by
changing the contents of five memory locations as
follows:

Memory Location Oscillator
POKE 36874.X 1
POKE 36875.X 2
POKE 36876.X 3
POKE 36877.X noise

POKE 36878 ,V

where V can be set between 0(off) and 15(loud)
affecting all oscillators and noise. For example:

POKE 36874 ,219:P0KE 36875 ,219:P0KE
36876 ,219:P0KE 36878 ,7

This plays reference A at 440Hz on oscillator 1, A
an octave higher on oscillator 2 and A an octave
higher still on oscillator 3, all at a mid-range
volume of 7. Don’t forget to POKE each location to
0 to turn them off!

N o te s A n d P a u s e s
Without a duration for each note and the correct
pauses between them, a sequence of notes blurs
one into another. To facilitate these ‘wait’ periods,
one of two methods can be used to make the
computer ‘mark time’ between POKEs. The first
method is FOR...NEXT loops where the pause is
timed by a long empty loop such as:

10 POKE 36878,7
20 POKE 36876,203
30 FOR P-1 TO 200
40 NEXT P
50 POKE 36878,0
60 POKE 36876,0

This sequence of commands plays the note D # for
200 FOR...NEXT steps. However, this method
depends on careful external timing of the loop for
accuracy. An easier and more elegant *Jvay to set
durations and pauses is by using the Vic-20’s
built-in clock, which counts in 60ths of a second
(j iffys) and can be referenced within a program
using the variable Tl. This is extremely useful, as a
command can be constructed to ‘wait’ for an
accurately measured period of time, as follows:

10 POKE 36878,7
20 POKE 3 6 8 7 6 ,2 0 3 :D -TI
30 IF T l - D < 15 THEN 30
40 POKE 36878,0
50 POKE 36876,0

These commands play the same note as before but
for a period of 15 jiffys (a quarter of a second). D is
set at the value of Tl when the sound is switched on.
Line 30 counts off 15 jiffys before proceeding to
line 40. Tunes can be constructed by using the
same principle to pause before playing a different
note, and so on. Next time we look at the Vic-20 in
the Sound And Light series, we’ll investigate how
to play tunes.

284 THE HOME COMPUTER COURSE

... ~ . . - ~ - , , *

...and graphics capabilities of the
Dragon 32

The Dragon 32 computer features a particular
dialect of ba sic known as ‘Microsoft Extended
Colour Basic’. Several other computers on the
market are also based on this version of b a sic ,

most notably the Tandy range of colour
computers. Microsoft ba sic is easy to use and has a
good range of commands to draw lines, circles,
and other geometric shapes. Once drawn, these
shapes m^y be coloured in to give impressive
screen displays for little programming effort.

The Dragon 32 has seven levels of resolution,
giving the user the ability to work with the screen
divided into 512 individual points at the lowest
level, and up to 49,152 points at the highest. There
are eight colours available, but the choice may be
limited to four or even two colours when working
in high resolution.

M o d e s O f R e s o lu tio n
The normal 16 rows by 32 columns character
screen forms the lowest level of resolution and the
PRINT® command enables a character to be
placed in any one of the 512 screen locations. As
well as the normal character set there are also 16
low resolution graphics characters available in
eight colours.

The next mode of resolution divides the screen
into 32 rows and 64 columns. The size of each
square in this mode is therefore a quarter of that of
a normal character. Points of this size can be
plotted on the screen by the SET command and
may be rubbed out by the RESET command.

Both of the above modes can be displayed at the
same time and are termed the low resolution text
screens. There are also five levels of high
resolution screens, but these cannot be displayed
simultaneously or with the low level screens. The
five high resolution modes offer choices based on
the standard of resolution and the number of
colours available and are selected using the PMODE
command.

PMODE Resolution Colours Available |

0 128*96 2
1 128*96 4
2 128*192 2
3 128*192 4
4 256*192 2

account when writing large basic programs that
also use high resolution displays.

Although there are only a limited number of
colours available in high resolution, the Dragon
does have a facility for selecting one of two colour
sets. This is accomplished by the SCREEN
command. For example, SCREEN 1,0 selects a high
resolution screen and colour set 0. SCREEN 1,1
again selects a high resolution screen but this time
an alternative colour set is used.

PAINT
This command is very useful in assisting the
programmer to produce interesting pictures.
Using PAINT causes the computer to start
colouring in the screen from a given point until
a boundary line is reached. This means that
circles, triangles and any other closed shape can
be filled in simply.

DRAW
DRAW mimics the movement of the pencil on
the screen, allowing the user to draw lines in
any one of four directions. The DRAW
command will also allow the completed picture
to be rotated or enlarged.

GET and PUT
GET instructs the computer to store a screen
display in its memory and PUT causes such a
display to be reprinted on the screen.

PSET and PRESET
These commands are the high resolution
equivalents of SET and RESET discussed earlier
and switch a particular point on the screen
either on or off. The colour of the point can also
be determined.

LINE
The LINE command joins two specified points
together with a straight line in high resolution.

CIRCLE
CIRCLE allows the user to draw high resolution
circles with a given centre and radius. Fractions
of a whole circle may also be drawn to form arcs
and the circular shape may be condensed to
produce ellipses.

There is, of course, a trade-off between resolution,
colour and the amount of memory needed to store
the screen information and this must be taken into

The Dragon 32 is a reasonably priced computer
with many advanced commands to aid graphics
programming. It is more suited to uses that involve
static displays rather than those that require fast-
moving action. The high resolution mode
commands, in particular, make this an ideal
computer for the adventurous-minded child. The
Dragon’s main drawback is its inability to display
both text and high resolution graphics on the
screen simultaneously. This means that it cannot
be used to display statistical data in the form of bar
charts or pie charts.

C o lo u r C o m m a n d

T h is d is p la y is ty p ic a l o f th e

e ffe c ts th a t can be a ch ie ve d on a

D ra g o n u s in g ju s t a fe w o f its

h ig h leve l c o m m a n d s

H ig h R e s o lu tio n

H ere is a s h o r t p ro g ra m fo r th e

D ra g o n 3 2 to d e m o n s tra te

s o m e o f its h ig h re s o lu t io n

c a p a b ilit ie s . The p ro g ra m uses

P M O D E 3; th is is n o t th e h ig h e s t

m o d e b u t i t d o e s a llo w s o m e

use o f c o lo u r.

10 PCLS:PM0DE3,1
20 SCREEN 1,0
30 COLOR 0 ,1
40 FOR X=0 TO 127 STEP 10
50 LINE(X,85)—(127,85—X /3),

PSET
60 L IN E (X ,85)-(127,85+X /3),

PSET
70 LINE(255—X,85)—(127,85—

X/3),PSET
80 L IN E (2 5 5 -X ,8 5)-(1 27,85+

X /3), PSET
90 NEXT X
100 CIRCLE(127,85),128,4,0.3
110 CIRCLE(127,85),30,4,3
120 PAINT(130,30),3,4
130 PAINT(130,130),3,4
140 GOTO 140
150 END

THE HOME COMPUTER COURSE 285

IA
N

M
cK

IN
N

EL
L

Software

B u b b le S o rt

T h is d ia g ra m illu s tra te s the

B u b b le S o rt fo r a re d u ce d hand

o f n in e c a rd s (T is th e Ten ca rd).

The o rd e re d p a rt o f th e hand

g ro w s fro m th e r ig h t-h a n d end

w ith each pa ss . T he 1 and 2

u n d e rn e a th th e h a n d o f ca rds

in d ic a te s th e tw o ca rd s c u rre n tly

b e in g c o m p a re d

Begin Sort
2 8 9 3 T 5 K 6 7 Begin Pass 1
1 2
8 2 9 3 T 5 K 6 7

1 2
8 9 2 3 T 5 K 6 7

1 2
8 9 3 2 T 5 K 6 7

1 2
8 9 3 T 2 5 K 6 7

1 2
8 9 3 T 5 2 K 6 7

1 2
8 9 3 T 5 K 2 6 7

1 2
8 9 3 T 5 K 6 2 7

1 2
8 9 3 T 5 K 6 7 2 End Pass 1
9 8 T 5 K 6 7 3 2 End Pass 2
9 T 8 K 6 7 5 3 2 End Pass 3
T 9 K 8 7 6 5 3 2 EndPass4
T K 9 8 7 6 5 3 2 EndPass5
K T 9 8 7 6 5 3 2 End pass 6
End Sort

In s e r t io n S o rt

W ith th e In s e rt io n S o rt, the

o rde red p a r t o f th e l is t g ro w s

fro m th e le ft-h a n d end . C ards

are m oved d ire c t ly to th e ir

c o rre c t p o s it io n in th e lis t as

th e y are in s p e c te d

Begin Sort
2 8 9 3 T 5 K 6 7
2 1
8 2 9 3 T 5 K 6 7
2 1
9 8 2 3 T 5 K 6 7

2 1
9 8 3 2 T 5 K 6 7
2 1
T 9 8 3 2 5 K 6 7

2 1
T 9 8 5 3 2 K 6 7
2 1
K T 9 8 5 3 2 6 7

2 1
K T 9 8 6 5 3 2 7

2 1
K T 9 8 7 6 5 3 2
End Sort

The ability to sort information into order is essential to most
programs, and there are many ways of doing it

Sorting is one of the most widely used computer
operations, but it is a task at which computers are,
by their own standards, highly inefficient.
According to operational research, between 30
and 40 per cent of all computing time is spent in
sorting, and if you add the associated tasks of
merging data and searching for specific items, then
the figure probably rises above 50 per cent.

Programmers have probably spent as much
time inventing sort algorithms (general methods
of solving problems) as computers have spent
doing the actual sorting. Advanced sorting
methods are extremely difficult to analyse, but it is
quite easy to understand the simplest methods
computers use to sort data with the aid of the
example of sorting a pack of playing cards.

Lay 13 cards of the same suit on a table.
Arrange them in a line, in no particular order, but
the Ace and the Two should not be at the right-
hand end of the line. The cards are to be sorted into
descending order (King, Queen, Jack...A ce),
starting at the left. This is an almost trivial task for
us, and requires so little thought that it is difficult to
describe exactly how we might do it. If, however,
you were to specify that only one card can be
moved at a time, that no card can be placed on top
of another, and that the cards are to cover as little
of the table as possible, the task becomes a lot less
trivial, and an efficient method is hard to
determine. In this analogy the cards are pieces of
data, the maximum surface covered corresponds
to the computer memory required, and you are the
program. How do you solve the problem?

1) Put a coin below the leftmost card to act as a
position marker and to remind you where you are
in the sort. Compare the marked card with the card
to its right. Are they in descending order? If they
are not, swap their positions, leaving the coin
where it is, and obeying the rule of only moving
one card at a time and not placing cards on top of
each other. Notice what you have to do to swap
them.

2) When the two cards are in order, move the
coin one place to the right and repeat Step 1. You
are now in a loop that will end once you move the
coin into the rightmost position. Reaching this
position is called making a ‘pass’ through the
cards.

3) At the end of the first pass look at the cards.
The Ace, which is the lowest card in the suit, has
found its way to the rightmost end of the line, and
so is in its correct place. If you make a further pass
through the cards, as detailed in Steps 1 and 2, the

Two card will be moved to its correct place. This is
repeated, through pass after pass, until the whole
suit is in descending order.

You may have noticed several drawbacks to this
method. It is very tedious; it is not economical, as
simply exchanging the positions of two cards
requires three different operations; and, above all,
many of the comparisons made between different
cards are unnecessary. For example, after one pass
the Ace is in its correct place, so there’s no point
moving the coin into position 13 (where no
comparison is possible, anyway). On the second
pass, because the card on the right is in its correct
place, there was no need to move the pointer to
position 12. In general, each pass will end one
place to the left of the endpoint of the previous
pass.

Knowing where to stop is another problem. A
computer will continue comparing cards
indefinitely unless it is told to stop. The only sure
rule is: stop after a pass with no swaps. In other
words, if you’ve gone through the data without
altering its order, then it must be in order.

The method of sorting we have investigated is
called the ‘Bubble Sort’. Its advantages include
simple programming techniques, little use of extra
memory and reasonable efficiency with small
amounts of partially ordered data. These are the
criteria by which a sort algorithm must be judged,
although when the data to be sorted is extensive,
speed may have to be sacrificed for economy of
memory simply because computer memory may
not accommodate both the raw data and a sorted
copy. For this reason, we’ll ignore algorithms that
require taking data from one array and moving it
to the sorted position in a second array. The
second method of simple sorting is based more
directly on the way that we would sort cards.

1) Lay the shuffled cards out again and place a
penny coin beneath the second card from the left.
Whichever card the penny is beneath at the
beginning of each pass, we will call the ‘penny
card’.

2) Push the penny card out of the line, leaving a
gap, and place a twopenny coin beneath the card’s
immediate left. Call this card the twopenny card.

3) Compare the penny card with the twopenny
card. If they’re in order, then push the penny card
back into place and skip to Step 4. If they’re not in
order, then push the twopenny card into the gap
and move the twopenny coin one place to the left
to mark a new twopenny card (if the twopenny
card is at the extreme left, this will not apply, so

!

286 THE HOME COMPUTER COURSE

Software

-■31

'

;;

6 m m 6
¥ ▼ ▼ ¥

10 m *10¥ ^ - ¥ ¥
r »

* ¥ ¥ 2 * ¥ ¥ *
4 MM MM 4
¥ ▼ ▼ ¥

I0 w * I 0
¥ * * ¥ ¥ *

2 mm 2 ¥ ▼ ¥ * ¥ ¥ * n 8 i * ¥ ¥ »

A A
V V

l a v

U
A A * A A
01 • *01

A A A A
6 * m 6

G ra n d S la m
O ne w a y to i l lu s tra te a B u b b le S o r t is w ith a c o m p le te s u it o f

c a rd s th a t have to be s o rte d so th a t th e K in g e n d s up on th e le ft

a n d th e A ce on th e r ig h t. F irs t th e le f tm o s t tw o c a rd s are

c o m p a re d , a n d b e ca u se th e y are fo u n d to be o u t o f o rde r, th e y

are s w o p p e d over. T h e n th e s e c o n d a n d th ird c a rd s are

c o m p a re d , a n d a g a in s w o p p e d . B y th e f i f th c o m p a r is o n , th is s o r t

m e th o d has p icke d up th e A ce, a n d in a ll s u b s e q u e n t

c o m p a r is o n s , th e Ace is s w o p p e d fro m le f t to r ig h t, u n t il a t th e

end o f th e f i r s t ‘ p a ss ’ i t has ‘b u b b le d ’ its w a y to th e r ig h t -h a n d

end . By re p e a tin g th is w h o le p ro c e s s fo r th e s e c o n d pa ss , th e

tw o w il l end up n e x t to th e Ace. H ow ever, it m a y ta k e up to 12

su ch p a sse s b e fo re a ll th e c a rd s are in o rd e r

place the penny card in the gap and proceed to
Step 4).

Compare this twopenny card with the penny
card (the displaced one). Now repeat Step 3 until
the correct position for the penny card is found.

4) Move the penny one position to the right and
repeat Steps 2 and 3. When you can’t move the
penny any further right, the cards will all be in
order.

This is called an ‘Insertion Sort’, and is very
similar to the way people sort a hand of cards.
Although it is a little harder to program than a
Bubble Sort it is a far more efficient method. Later%

in the course, we will look at some more complex
algorithms for sorting data.
9 REM*********************
10 REM* SORT ALGORITHMS *
11 REM*********************
100 INPUT"HOW MANY ITEMS TO BE SORTED"jLT
150 IF LT< 3 THEN LET LT = 3
200 LET LT =INT(LT)
250 DIM R(LT),C(LT)
300 LET Z=0:LET Q=0:LET P=0
350 LET I=l:LET 0=0:LET II=2:LET TH=2
400 INPUT"HOW MANY TESTS "JN
450 FOR CT=I TO N
500 GOSUB 4000
550 FOR SR=I TO TH
600 GOSUB 5000
650 PRINT:PRINT:PRINT:PRINT
700 PRINT "TEST #"JCT+SR/10
750 INPUT"HIT RETURN TO BEGIN SORT";AS
800 PRINT "THE UNSORTED LIST IS"
850 GOSUB 3000
900 ON SR GOSUB 6000,7000
950 PRINT "THE SORTED LIST IS"
1000 GOSUB 3000
1050 NEXT SR
1100 NEXT CT
1150 END
2999 REM*********************
3000 REM* PRINT THE LIST *
3001 REM*********************
3100 FOR K=I TO LT
3200 PRINT R(K);

3300
3400
3500
3999
4000
4001
4100
4200
43C^p

4400
4500

5000
5001
5100
5200
5300
5400
5500
5999
6000
6001
6050
6100
6150
6200
6250
6300

6350
6400
6450
6500

7000
7001
7050
7100
7200
7300
7400
7500
7600
7700
7800
7850
7900

NEXT K
PRINT
RETURN
REM*********************
REM* RND GENERATOR *
REM*********************
RANDOMIZE
FOR K=I TO LT
LET C (K) = INT(100*RND)
NEXT K
RETURN
R EM*********************
REM* RND REGENERATOR *
R EM*********************
FOR K=I TO LT
LET R(K)=C(K)
NEXT K
p r i n t:PRINT
RETURN
REM********** ***********
REM* BUBBLE *
R E M*********************
PRINT "BUBBLE SORT - GO !!!!!
FOR P=LT-I TO I STEP-I
LET F=-I
FOR Q=I TO P
LET Z=Q+I
IF R (Q)< R (Z) THEN LET D=R(Q) :

LET R(Q)=R(Z):LET R(Z)=D:LET F=0
NEXT Q
IF F=-I THEN LET P=I
NEXT P
PRINT "BUBBLE SORT - STOP !f!!!
RETURN
REM*********************
REM* INSERTION *
REM*********************
PRINT "INSERTION SORT - GO !!!!!
FOR P=II TO LT
LET D=R(P)
FOR Q=P -TO II STEP-1
LET R (Q)*=R (Q - I)
IF D< = R (Q) THEN LET R (Q)=D:LET Q=II
NEXT Q
IF D>R (I) THEN LET R (I)=D
NEXT P
PRINT "INSERTION SORT - STOP !!!!!
RETURN

H ig h -S p e e d S o rt

T h is BASIC p ro g ra m

d e m o n s tra te s th e d iffe re n c e in

e ff ic ie n c y b e tw e e n a B u b b le

S o rt a n d In s e r t io n S o rt. The

code has been w r it te n w ith

speed in m in d , so w e have n o t

d o c u m e n te d th e o p e ra tio n o f

th e ro u tin e s . T he lis t in g s h o u ld

ru n on m o s t m a c h in e s , b u t see

page 215 fo r ON . . . G O SUB

fla v o u rs , a n d page 175 fo r RND

a n d R A N D O M IZ E

THE HOME COMPUTER COURSE 287

TO
N

Y
LO

DG
E

I l l

Software

People have long been fascinated by mazes — and maze games on
the home computer are no exception

*
-

Mazes have always been a source of fascination
and enjoyment to both young and old alike,
whether they are big enough to get lost in, or
small enough to hold in the palm of the hand. The
maze has, in fact, become the basis of a huge
variety of computer games, ranging from a very
simple two-dimensional aerial view of a maze,
right up to extremely complex mazes in three
dimensions. The latter sort actually simulate a
view of the maze from within, so that the player is
encouraged to imagine that he is inside a real
maze. To help him get his bearings, or confuse
him even further, some of these three-
dimensional mazes also combine brief glimpses of
an aerial view of the maze.

S ire n C ity

T h is C o m m o d o re 64 g a m e is a

d e v e lo p m e n t on th e t ra d it io n a l

‘ a e ria l v ie w ’ g a m e . A p o lic e ca r

p a tro ls a c ity , c o m p le te w ith ro a d s

and b u ild in g s

R in g o f D a rk n e s s

T h o u g h th is g a m e fo r th e D ra g o n

is re a lly an A d v e n tu re - s ty le

g a m e , i t c o n ta in s a th re e -

d im e n s io n a l m aze as o n e o f its

m a jo r e le m e n ts . P its a n d la d d e rs

a llo w y o u to m o ve up and d o w n

W a y O u t

A re a lis t ic th re e -d im e n s io n a l

im a g e can be a ch ie ve d on a

S p e c tru m w ith W a y O ut. M o ve th e

jo y s t ic k fra c t io n a lly , a n d y o u r v ie w

w il l ch a n g e a lso

R in g o f D a rk n e s s

As mazes have become more sophisticated in
their visual and sound effects, so have the
imaginations of their programmers been allowed
to wander. A player wishing to take a leisurely
stroll around a maze should avoid those that
conceal man-eating monsters. An example of
such games is 3D Glooper (available for the
Commodore 64), in which the player searches the
maze for special floor tiles, and can be attacked at
any moment- by screen-filling monsters. The
impending arrival of these creatures is
announced, however, by the steady munching
sounds from their approaching jaws.

Atic Atac (Spectrum) is a fully animated chase
in which the player can assume any of three
different characters. The maze is a multi-level
series of pits, stairways and large dungeons
through which you race against time. The
dungeons are occupied by a variety of graphically
depicted creatures and objects.

A program that comes close to simulating what

it actually feels like to be travelling through a
maze is Way Out. The view is in true three-
dimensional perspective, and as you move your
joystick fractionally to the left or right the scene
shifts proportionately in that direction.

Let us now consider some of the basic
programming techniques used in constructing
mazes.
Siren Hitv

M a k in g M a z e s
The usual way of storing information about a
maze is by using a two-dimensional array —
M$(R0W,COLUMN), for example. Each cell of the
array would define the characteristics of that cell
of the maze. You could, for example, use a string
of four characters to represent south, west, north
and east. Zero could indicate the absence of a
wall and one the presence of a wall. Thus, if
M$(5,6) contained the string “1011” this would
indicate that the cell in row five, column six was

288 THE HOME COMPUTER COURSE

IA
N

M
cK

IN
N

E
LL

Software

3

bounded by walls to the south, north and east.
To save on memory space, the array could be

numeric rather than string, and the four-digit
number regarded as a binary number. In our
example above, the cell containing north, east
and south walls would contain the number 11
(1011) .

All cells would start with four walls. By
randomly generating the entrance from anywhere
along the perimeter, the next cell could be chosen
at random from any of the three adjacent cells.
When that cell is chosen, the sequence continues
— randomly selecting a cell from any of the three
adjacent cells, disregarding the one you have just
come from.

As each new direction is chosen, the
appropriate ‘wall’ is removed from the cell you
are about to leave and the cell you are about to
enter. Checks must be made to ensure you don’t
move outside the boundaries of the maze (unless
the particular perimeter cell is to be the exit
point), or create closed circuits (all parts of a
maze should be accessible from any other part).

sibilities), two adjacent walls (four possibilities),
three adjacent walls (four possibilities).

Using the appropriate binary number (0-15)
for each of these, it is possible to ‘rotate’ the
number left or right to obtain the appropriate
view faced by the player. For example, a north
wall could be represented by 2 (0010), south wall
by 8 (1000), east wall by 1 (0001) and west wall
by 4 (0100). If the player facing north in a ‘west
wall only’ room (4) turned to face the west, his
view of the room would now be one bounded by a
north wall (since facing forward in a three-
dimensional display is always to the ‘north’). As
the player turned to his left (the west), moving the
bit pattern one place to the right supplies the
description we want, i.e. west wall binary 0100
(decimal 4) becomes binary 0010 (decimal 2 — a
north wall!) The bits are moved in the opposite
direction when turning right, twice for an about
turn. It is necessary, of course, to include a system
for ‘wrapping around’ the bits that are lost from
the left- or right-hand end of the half-byte during
this process, otherwise the identifying

A n t A tta c k

W h e n th is g a m e is ru n on th e

S p e c tru m , th e c o m p u te r ’s screen

a c ts as a w in d o w o n to a la rge

m a z e -lik e f ie ld o f p la y . A s th e p lay

m o ve s , th e sc re e n w il l m ove ,

re ve a lin g m o re o f th e scene

When a cell that has fewer than four walls (i.e.
a cell that has already been visited) is
encountered, the program must choose another
of the remaining adjacent cells. If all adjacent cells
have been visited, die program has to ‘step back’
to the previous cell visited and take a new branch.

Another method of recording the charac
teristics of a cell is by a more sophisticated use of
binary numbering, which is especially useful for
displaying three-dimensional perspectives.
There are 16 possible ways a cell can be built: no
walls, walls on all sides, a single wall (four
possibilities), walls on opposite sides (two pos-

characteristics of a cell will be changed each time
the player turns within it. A cell originally defined
as 0011, for instance (walls to the north and east),
must become 0110 if the player turns to the right,
and 1100 if he turns completely around.

In machine code, there are special instructions
for rotating binary numbers 16ft and right. In
ba sic , a four-bit binary number expressed as a
decimal number in the range 0-15 can be shifted
left by multiplying the number by two, and then
subtracting 15 if the result exceeds 15. To rotate
right: divide by two if it is an even number, or add
15 and then divide by two for an odd number.

THE HOME COMPUTER COURSE 289

Hardware Focus

It comes from a company
famous for their toys, but the
Aquarius is a serious computer
at a bargain price

With its Z80 processor and button-type
keyboard, the Mattel Aquarius is in the Spectrum
class of microcomputer. However, in many ways
it is a much more flexible machine, largely
because its built-in expansion bus has been well-
exploited by its designers.

A variety of expansion modules can be
connected through this bus, ranging from small
RAMpacks of 4 Kbytes to a large expansion
chassis. Perhaps the most useful of these is the
‘small expansion chassis’, which has two slots for
extra memory or program packs, as well as two
extra sound channels and two hand controllers.
Plugging a 16 Kbyte RAMpack in one slot and a
proprietary ROMpack, such as Finplan, in the
other would give a quite versatile system. .

The 4 Kbytes of RAM built into the machine is
hardly generous, but with expansion of up to 64
Kbytes of RAM with the large expansion chassis,
it’s possible to run as large a machine as any home
computer.

The keyboard and display of the Aquarius,
however, lack the quality of larger machines.
There’s no space bar, and the keys don’t respond
very sensitively or quickly, so it’s not suitable for
touch-typing. The 24 line by 40 character screen,
though bigger than some, is not adequate for
small business use.

The display has 16 colours that can be used for
either the text or the background. Though lacking
user-definable characters, it has 256 displayable
symbols, including upper and lower case letters,

M in i E x p a n d e r

T h is d e v ice fe a tu re s tw o c a r tr id g e p o r ts , a llo w in g a p ro g ra m

c a r tr id g e a n d m e m o ry p a ck to be c o n n e c te d s im u lta n e o u s ly . It

a ls o fe a tu re s th e tw o ‘ h a n d c o n tro lle rs ’ a n d th re e a d d it io n a l

s o u n d c h a n n e ls

co

CO
CO

o

T h e A q u a r iu s K e y b o a rd

T he k e y b o a rd is o n e o f th e

w e a k e r p o in ts o f th e A q u a r iu s .

T h o u g h c la im e d to be a

‘ s ta n d a rd ’ Q W ER TY la y o u t, i t is

o n ly ju s t d e s e rv in g o f th e nam e .

T h e re is n o sp a ce bar, o n ly one

S H IF T key, R E TU R N is in an

u n c o n v e n t io n a l p o s it io n a n d th e

s p a c in g is n ’t q u ite th e s a m e as

on a ty p e w r ite r

R F C o n n e c to r

T V -c o m p a tib le o u tp u t a p p e a rs

here — th e re is no p ro v is io n fo r

m o n ito r o u tp u t

P o w e r C o n n e c to r

P o w e r is a p p lie d he re fro m a

s m a ll t ra n s fo rm e r

T he b u il t - in 4 K o f u s e r m e m o ry

is c o n ta in e d in th e s e c h ip s

A q u a r iu s P r in te r

T h is lo w -c o s t p r in te r u se s a th e rm a l p r in t in g m e c h a n is m a n d so

re q u ire s s p e c ia l th e rm a l paper. I t ca n p r in t a t a ra te o f 80

c h a ra c te rs p e r s e c o n d , a c ro s s a to ta l w id th o f 4 0 c o lu m n s . A

fo u r - c o lo u r p r in te r /p lo t te r is a ls o a v a ila b le

and a selection of graphics symbols. It can also be
used as a 320 X 192 pixel high-resolution screen.
The display is output to the television, with no
provision for monitor output. The quality is
average with a noticeable bias towards blue
shades and slightly blurred characters, but the
picture is steady and bright, with a good range of
colour.

Sound is available on this machine, although it
lacks the sophisticated envelope and waveform
controls found on others. A fairly standard
Microsoft basic is built in, but Extended basic and
an Aquarius lo g o are promised.

One of the most interesting add-ons planned
for the Aquarius is the BSR X-10 system, which
can control a range of household appliances. This
system allows up to 255 different electrical
devices to be controlled in response to signals
generated by a central unit. No additional wiring
is needed, since these signals are in the form of
pulses sent down the domestic ring main. The
pulses aren’t large enough to make any difference
to the mains current, but an X-10 detector
plugged into any mains wall socket can pick up
the code and alter the current supplied to its local
appliance according to the command sent.

The controller unit is programmed in weekly

R O M

T h e s ta n d a rd M ic ro s o f t 8K

BAS IC is h e ld in th e s e ch ip s .

T h e e x te n s io n s th a t have been

a d d e d to h a n d le th e g ra p h ic s

a n d s o u n d ta k e up th e re s t o f

th e RO M space

cycles by the Aquarius, and during this
programming operation the computer is
unavailable for other uses. Provided file preset
program is satisfactory, the computer is free for
ordinary use at any other time.

M o d u la to r I

T he sc re e n d is p la y s ig n a l is

c o n v e rte d in to a s ta n d a rd TV

s ig n a l, a n d a p p e a rs on

C h a n n e l 36

290 THE HOME COMPUTER COURSE

Hardware Focus

A Q U A R IU S

P r in te r C o n n e c to r

A u n iq u e M a tte l-d e s ig n e d

p r in te r in te r fa c e c o n n e c ts

th ro u g h th is s o c k e t, w h ic h is

s u ita b le o n ly fo r th e tw o p r in te rs

s u p p lie d b y M a tte l

E x p a n s io n b u s

A v a r ie ty o f a d d -o n s can be

p lu g g e d in here . T h e se range

fro m a s in g le 4 K R A M m o d u le

to an e x p a n s io n c h a s s is , w h ic h

can ta k e seve ra l 16K R A M packs

as w e ll as a s e le c tio n o f u s e fu l

p ro g ra m s in R O M packs

*»T-

PRICE

SIZE
345 x 150 x55mm
CLOCKSPEED

1 5 M H z
MEMORY .

10 Kbytes of ROM, plus 4 Kbytes
of RAM, expandable to 64 Kbytes
VIDEO DISPLAY
24 lines of 40 characters, 16
colours with background and
foreground independently
settable; 256 pre-defined
characters but no user-definable
characters
INTERFACES
Cassette, printer, expansion bus
LANGUAGES SUPPLIED
Microsoft BASIC
OTHER LANGUAGES AVAILABLE
Microsoft Extended BASIC and
Aquarius LOGO have been
promised by Mattel. These will be
in ROMpackform
COMES WITH
Installation manual and BASIC
manual, TV lead
KEYBOARD

49 button-style keys. The reset
button is physically shielded to
prevent it from being accidentally
pressed
DOCUMENTATION

The documentation is particularly
good for beginners, with a useful
set of flip-cards that describe
each major function of the
machine and the built-in BASIC.
There is a shortage of technical
detail, but for the market that the
Aquarius is aimed at it sets a
good example

C P U

T he p ro c e s s o r is a Z 8 0 , w h ic h

ru n s a t a c lo c k fre q u e n c y o f 3 .5

M H z

C R T C o n tr o lle r

D e s ig n in g th e e le c tro n ic s th a t

c o n tro l th e v id e o d is p la y is n o w

th e m o s t im p o r ta n t a s p e c t o f

c o m p u te r d e s ig n . T h is

c o n tro lle r c h ip is la rg e r th a n th e

m ic ro p ro c e s s o r its e lf

S e c u r ity C h ip

T h is c u s to m -d e s ig n e d c h ip is

in te n d e d to m a ke it v e ry d if f ic u lt

fo r a n y o n e o th e r th a n th e

m a n u fa c tu re rs to p ro d u ce

p ro g ra m c a r tr id g e s th a t w i l l run

o n th e A q u a r iu s

T a p e C o n n e c to r

T h e ta p e in te r fa c e is a D IN -ty p e

s o c k e t a n d has c o n n e c tio n s fo r

c o n tro ll in g th e ta p e -re c o rd e r

m o to r

THE HOME COMPUTER COURSE 291

Basic Programming

As a long program is developed, its structure takes on the
appearance of a tree, with more branches at each successive stage
of refinement

V

In the last instalment of the Basic Programming
course, we took a look at some of the problems
involved in searching through a list to find a
specific item — assuming that the list had already
been sorted into order. This is a topic to which we
will return in more detail when the time comes to
start writing search routines. In the meantime,
however, we will develop the theme of top-down
programming to produce code for the second two
parts of the main program. This contains four calls
to subroutines or procedures:

MAIN PROGRAM
BEGIN

INITIALISE (procedure)
GREET (pro.cedure)
CHOOSE (procedure)
EXECUTE (procedure

END

The first procedure, ‘ INITIALISE*, will involve
numerous fairly complex activities — setting up
arrays, reading data into them, performing various
checks and so on — and we will leave the details of
this procedure until later. The next two parts of the
main program comprise the GREET and CHOOSE
procedures. In developing these procedures, we
will suggest a methodology that helps prevent the
many layers involved in top-down program
development from becoming disorganised and
confusing.

The problem with the top-down refinement
approach to program development is that the
number of steps needed before we are ready to
start coding into a high level language is
indeterminate. Two or three steps may be enough
for simple procedures, but more difficult
procedures may require many steps before the
problem has been sufficiently analysed to allow
‘source code’ (as the high level language program is
called) to be written. This means that writing a
program using this method is similar to drawing a
tree lying on its side. As the ‘branches’ proliferate
(that is, as the refinements become more detailed)
they take up more space on the page. Eventually, it
becomes impossible to fit everything onto a single
sheet, and that is the point where it becomes easy
to lose track of what’s going on.

One very effective way to organise the
documentation of the program is to number the
stages of its development systematically. We have
used Roman numerals to indicate the level of
refinement and Arabic numerals to indicate the
subsection of the program. A separate sheet of

loose-leaf paper is then used for each level of
refinement and the pages for each program block
or module can be easily kept together. Here is the
numbering system for our program:

I MAIN PROGRAM
BEGIN

1. INITIALISE
2. GREET
3. CHOOSE
4. EXECUTE

END

As mentioned above, we are leaving the
development of INITIALISE for the moment, and
concentrating on developing the GREET and
CHOOSE procedures.

II2 (GREET)
BEGIN

1. Display greeting message
2. LOOP (until space bar is pressed)

ENDLOOP
3. Call ‘ CHOOSE*

END

III 2 (GREET) 1 (display message)
BEGIN

1. Clear screen
2. PRINT greeting message

END

III 2 (GREET) 2 (LOOP wait for space bar)
BEGIN

1. LOOP (until space bar is pressed)
IF space bar is pressed
THEN

ENDLOOP
END

III 2 (GREET) 3 (call ‘CHOOSE*)
BEGIN

1. GOSUB ‘ CHOOSE*
END

At this point it should be clear that 111-2-1 and III-2-3
are ready to be coded directly into basic , but%iat

■2-2 needs another stage of refinement:

IV 2 (GREET) 2 (LOOP)
BEGIN

1. LOOP (until space bar is pressed)
IF INKEYS is not space THEN continue

ENDLOOP
END

We are now at the point where all the coding into

292 THE HOME COMPUTER COURSE

Basic Programming

basic for GREET can be tackled with little further
refinement:

IV 2 (GREET) 1 (display message) BASIC CODE
R E M 'G R E E T* SUBROUTINE
PRINT
PRINT
PRINT
PRINT
PRINT TAB(12);“ 'W ELCOME TO T H E *”
PRINTTAB(9);“*H 0 M E COMPUTER COURSE*”
PRINT TAB(6);“*C0M PUTERISED ADDRESS

BOOK*”
PRINT
PRINT TAB(5);“(PRESS SPACE BAR TO CONTINUE)”

V 2 (GREET) 2 (LOOP wait for space bar) BASIC CODE
LETL = 0
FOR L = 1 TO 1
IF INKEYS
NEXT L

’’ THEN LETL = 0

IV 2 (GREET) 3 (call ’CHOOSE*) BASIC CODE
GOSUB 'CHOOSE*
RETURN

&

Notice that we have now started to initialise
variables in the various routines that we write, by
using statements of the form LET I = 0. Strictly
speaking, this is unnecessary in some of the
circumstances in which we have used it.
Nevertheless, it is a good habit to get into if you can
remember, and if you have enough RAM space
available. There are three reasons: first because
having a list of LET statements at the start of any
routine serves as a useful reminder of what local
variables that routine uses. Secondly, because you
cannot be sure of what was left in a variable from
the last time it was used in a routine (though this
does not always matter). Thirdly, as we shall be
explaining to you later in the course, putting in
statements of the form LET I = 0 in the right order
can speed up the execution of a program.

We have changed the way in which we use a
FOR...NEXT loop to simulate a DO...WHILE or
REPEAT..UNTIL structure from previous
instalments of the course. Instead of using FOR I = 0
T01 or FOR I = 0 to 1 STEP 0, we are now using FOR I =
1 to 1. This will run correctly on all the home
computers we regularly cover, where the other
methods required ‘Basic Flavours’ for various
machines. FOR I = 1 TO 1...NEXT I will execute the
loop just once. However, if anywhere in the body
of the loop I is set to 0 then the loop will execute
again, and so on. We can either insert a LET I = 0
statement as the result of an exit condition failing
or we can set I to 0 immediately after the FOR
statement, and set it to 1 if the exit condition
succeeds. Thus, both the following loops achieve
the same objective:

FOR 1 = 1 TO 1
IF INKEYS
NEXT I

or

” THEN LET I = 0

FOR I = 1 TO 1
LET I = 0
IF INKEYS
NEXT I

’’ THEN LET 1 = 1

The basic code we have just produced is all that is
needed for the complete GREET block in the main
program. We haven’t put in line numbers because
we can’t really do that until all the program
modules are ready for final coding. For instance,
we do not know at this stage what the appropriate
line numbers are for the GOSUB commands. If you
want to test the module at this stage, it will be
necessary to create some dummy inputs and
dummy subroutines. Some points to note about
this program fragment are the use of the TAB
function and the ‘clear screen’ statements. TAB
moves the cursor along the line by the number (the
‘argument’) specified in the brackets. The
numbers we have given will print the message
neatly centred in a screen 40 characters wide. If
your display has less than this (for example, the
Spectrum displays 32 characters per line) or more
(larger computers usually display 80 characters),
these TAB arguments will need to be altered
accordingly. The instruction to clear the screen in
many versions of basic is CLS, but the version of
Microsoft basic used to develop this program does
not support this. Instead, we have used PRINT
CHR$(12), since our machine uses ASCII 12 as its
‘clear screen’ non-printable character — others
commonly use ASCII 24 for the same function.

10 REM DUM M Y MAIN PROGRAM
20 PRINT CHR$(12)
3 0 GOSUB 100
40 END
100 R E M 'G R E E T * SUBROUTINE
110 PRINT
120 PRINT
130 PRINT
140 PRINT
150 PRINT TAB(12);“*W ELC0M E TO T H E *”
160 PRINTTAB(9);“*H 0 M E COMPUTER COURSE*”
170 PRINTTAB(6);“*C0M PUTERISED ADDRESS

BOOK*”
180 PRINT
190 PRINT TAB(5);“(PRESS SPACE BAR TO

CONTINUE)”
195 LET L = 0
200 FOR L = 1 TO 1
210 IF INKEYS
220 NEXTL
230 PRINT CHR$(12)
240 GOSUB 1000
250 RETURN
1000 REM D U M M Y SUBROUTINE
1010 PRINT “D U M M Y SUBROUTINE”
1020 RETURN

We will now use exactly the same approach to
refine the CHOOSE procedure.

II3 (CHOOSE)
BEGIN

1. PRINT menu

U ” THEN LET L = 0

THE HOME COMPUTER COURSE 293

Basic Programming

2. INPUT CHOICE
3. Call CHOICE subroutine

END

III 3 (CHOOSE)1 (PRINT menu)
BEGIN

1. Clear screen
2. PRINT menu and prompt

END

III 3 (CHOOSE) 2 (INPUT CHOICE)
BEGIN

1. INPUT CHOICE
2. Check that CHOICE is within range

END

III 3 (CHOOSE) 3 (call CHOICE)
BEGIN

1. CASE OF CHOICE
ENDCASE

END

-3-1 (PRINT menu) can now be coded into basic:

IV 3 (CHOOSE) 1 (PRINT menu) BASIC CODE
REM CLEAR SCREEN
PRINT CHR$(12): REM OR CLS’
PRINT
PRINT
PRINT
PRINT
PRINT “1. FIND RECORD (FROM NAME)”
PRINT “2. FIND RECORD (FROM INCOMPLETE

NAME)”
PRINT “3. FIND RECORD (FROM TOWN)"
PRINT ‘‘4. FIND RECORD (FROM INITIALS)”
PRINT “5. LIST ALL RECORDS”
PRINT “6. ADD NEW RECORD”
PRINT “7. CHANGE RECORD”
PRINT “8. DELETE RECORD”
PRINT “9. EXIT & SAVE”

111-3-2 (INPUT CHOICE) and 111-3-3 (call CHOICE),
however, need further refinement. Let’s look first
at the next level of development of 111-3-2.

Assigning a numeric value to the variable
CHOICE is perfectly simple: after the prompt, an
INPUT CHOICE command will do this. However,
there are only nine possible choices. What would
happen if we mistakenly entered a 0, or 99? Since
the CHOICE we make will determine which part of
the program is called next, we want to be sure that
unwanted errors are not caused, so we need to
perform a ‘range checking’ procedure. This is a
small routine that checks to see if the number input
is within the acceptable range before allowing the
program to continue. Here is a sample routine
designed to trap an erroneous input.

RANGE CHECKING ROUTINE

1 REM ROUTINE
10 LET L = 0
20 FOR L = 1 TO 1
30 INPUT “ENTER 1 - 9 ”; CHOICE
40 IF CHOICE < 1 THEN LET L = 0
50 IF CHOICE > 9 THEN LET L = 0
60 NEXT L

70 PRINT “CHOICE WAS ”;CH0ICE
80 END

Many versions of basic can make this routine
simpler by including a boolean operator in the test
like this:

10 LET L = 0
20 FOR L = 1 TO 1
30 INPUT “ENTER 1 - 9 ”;CH0ICE
40 IF CHOICE < 1 OR CHOICE > 9 THEN LET L = 0
50 NEXTL
60 PRINT “CHOICE WAS ”;CH0ICE
70 END

These routines also illustrate another point about
the INPUT statement. INPUT causes the program to
stop and wait for an input from the keyboard.
B a sic does not know when the whole number has
been entered until the RETURN key has been
pressed, so you will also have to remember to press
RETURN after entering the number.

A more ‘user friendly’ approach would, be to
have the program continue as soon as a valid
number had been entered. This is possible using
the IN KEYS function. Here, basic reads a character
from the keyboard whenever IN KEYS is
encountered. The program does not stop,
however, and will proceed to the next part of the
program without pausing. It is usual, therefore, for
IN KEYS to be used within loops. The loop to che
for a key being pressed can be IF INKEYS «
TH EN... — in other words, if the key being pressed
is ‘nothing’ (that is, no key is being pressed), go
back and check again. A suitable loop for our
purposes would be:

LET I = 0
FOR I - 1 TO 1
LET AS = IN KEYS
IFA $ = “” THEN LET I = 0
NEXT I

The only disadvantage of using IN KEYS is that it
returns a character from the keyboard, rather than
a numeric. When there is a CASE OF construct,
where one out of several choices are made (a
multi-conditional branch), it is easier in basic to
use numbers rather than characters. This is where
ba sic ’s NUM or VAL functions come in. They
convert numbers in character strings into ‘real’
numbers (that is, numeric values, not ASCII codes
representing numerals). They are used like this:

LET N = VAL(A$) o r LET N = NUM (A$)

By using the NUM orVALfunctions, we can have the
program convert inputs, using INKEYS, into
numeric variables. This removes the need to use
the RETURN key after the number key has been
pressed. Out-of-range checking is still advisable,
however.

The following program fragment involves two
loops, one nested within the other. The inner loop
waits for a key to be pressed; the outer loop
converts the string to a number and checks that it is
within range:

294 THE HOME COMPUTER COURSE

Basic Programming >

FOR L = 1 TO 1
PRINT “ENTER CHOICE (1 -9) ”

FOR 1=1 TO 1
LET A$ = IN KEYS
IFA $ = “” THEN LET I = 0

NEXT I
LET CHOICE = VAL(A$)

IF CHOICE < 1 THEN LETL
IF CHOICE > 9 THEN LETL

NEXT L

= 0
= 0

460 RETURN
470 PRINT “DUM M Y SUBROUTINE 9 ”
480 RETURN

In the next instalment, we will look at file
structures and begin refining the INITIALISE
procedure.

Basic Flavours

Finally, we reproduce a complete program in basic

for the ‘CHOICE* module, including dummy input
and subroutines for testing purposes. We should
stress again that the fine numbers are for testing
purposes only, and will need to be replaced when
the final program is put together.

10 PRINT CHR$(12)
20 PRINT “SELECT ONE OF THE FOLLOWING”
30 PRINT
40 PRINT
50 PRINT
60 PRINT “1. FIND RECORD (FROM NAME)”
70 PRINT “2. FIND NAMES (FROM INCOMPLETE

NAME)”
80 PRINT “3. FIND RECORDS (FROM TOW N)”
90 PRINT “4. FIND RECORD (FROM INITIALS)”
100 PRINT “5. LIST ALL RECORDS”
110 PRINT “6. ADD NEW RECORD”
120 PRINT “7. CHANGE RECORD”
130 PRINT “ 8. DELETE RECORD”
140 PRINT “9. EXIT & SAVE”
150 PRINT
160 PRINT
170 LET L = 0
180 LET I - 0
190 FOR L = 1 TO 1
200 PRINT “ENTER CHOICE (1 -9) ”
210 FOR 1 = 1 TO 1
220 LET AS = INKEYS
230 IF A$ = THEN LET I = 0
240 NEXT I
250 LET CHOICE = VAL(A$)
260 IFCHOICE < 1 THEN LET L = 0
270 IF CHOICE > 9 THEN LET L = 0
280 NEXT L
290 ON CHOICE GOSUB 310,330,350,370,390,410,

430,450,470
300 END
310 PRINT “D U M M Y SUBROUTINE 1"
320 RETURN
330 PRINT “D U M M Y SUBROUTINE 2 ”
340 RETURN
350 PRINT “DUM M Y SUBROUTINE 3 ”
360 RETURN
370 PRINT “D U M M Y SUBROUTINE 4 ”
380 RETURN
390 PRINT “D U M M Y SUBROUTINE 5 ”
400 RETURN
410 PRINT “D U M M Y SUBROUTINE 6 ”
420 RETURN
430 PRINT “DUM M Y SUBROUTINE 7 ”
440 RETURN
450 PRINT “D U M M Y SUBROUTINE 8 ”

SPECTRUM

TAB
i

In th e d u m m y m a in p ro g ra m , a n d th ro u g h o u t,

rep lace P R IN T C H R $ (1 2) b y CLS, a n d END by

STOP.

R A N G E C H E C K IN G R O U T IN E

1 R EM R O U TIN E

10 LET L = 0

2 0 FOR L = 1 T 0 1

30 IN P U T “ ENTER 1 - 9 ” ;CHOICE

4 0 IF CHOICE < 1 TH E N LET L = 0

5 0 IFC H O IC E > 9 TH EN LET L = 0

6 0 N E X T L

7 0 P R IN T “ CHOICE W A S ” ;CHO ICE

8 0 STOP

F IN A L L IS T IN G

10 CLS

th e n c o p y th e l is t in th e m a in te x t u n t il:

2 4 0 N EXT I

2 5 0 LET CHOICE = CODE A $ - 4 8

2 6 0 IF C H 0 IC E < 1 TH EN LET L= 0

2 7 0 IF C H 0 IC E > 9 TH EN LET L=0

2 8 0 N E X T L

2 9 0 G O S U B (C H O IC E *2 0 + 2 9 0)

3 0 0 STOP

th e n c o p y th e m a in l is t f ro m lin e 310 to lin e

4 8 0 .

S o m e v e rs io n s o f th e O ric -1 do n o t o b e y th e

TAB c o m m a n d , even th o u g h i t is p a r t o f O ric -1

BASIC : in th is case , in s e r t th is lin e a t th e s ta r t

o f th e p ro g ra m :

5 LET S $ = “

B e tw een th e q u o te s in th is lin e th e re s h o u ld be

as m a n y s p a ce s as th e re are c h a ra c te rs o n a

c o m p le te sc re e n lin e — 4 0 fo r an O ric -1 . T hen

w h e n e v e r th e p ro g ra m sa ys TA B (12) re p la ce it

b y LE F T $ (S $,12), c o p y in g th e n u m b e r in th e

TAB s ta te m e n t in to th e LE F T $ () fu n c t io n .

On th e O ric -1 , th e D ra g o n 3 2 , th e L yn x a n d th e

BBC M ic ro , re p la ce P R IN T C H R $ (1 2) b y CLS.

On th e C o m m o d o re 6 4 a n d th e V ic -2 0 rep lace

C H R $ (1 2) b y P R IN T “ s h iftk e y + C L R /H O M E

k e y ” : th is s h o u ld re s u lt in a ‘ reve rse f ie ld

h e a r t ’ b e in g p r in te d . See th e m a n u a l i f y o u ’re

p u zz le d .

T h is is n o t a v a ila b le on th e Lyn x , b u t can be

re p la ce d b y lin e 2 9 0 in th e f in a l S p e c tru m

lis t in g above .

See ‘ B a s ic F la v o u rs ’ page 2 5 7 .

See ‘ B a s ic F la v o u rs ’ page 175, and

C o m m o d o re o w n e rs re p la ce LET A $ = IN K E Y $

b y G ET A S , and re p la ce IF IN K E Y $ = “ ” TH EN

by:

GET A $: IF A $ = “ ” THEN

V>A« *• - ■

o

THE HOME COMPUTER COURSE 295

Insights

i
▲

Computer designers want to
abandon the keyboard in favour
of something easier to use. One
approach is the mouse

Not long ago computers could only be accessed
through large electromechanical typewriters
called ‘teletypes’. These were noisy, cumbersome
and unreliable devices that have since been
replaced by the swift and silent Visual Display
Unit (VDU) with keyboard. The VDU
eliminated many of the problems associated with
the teletypes — not least of which was the
production of large amounts of punched tape
waste paper as the information was keyed in.
However, both the mechanical terminal and the
VDU-plus-keyboard are restricted by their
character-by-character, line-by-line format. The
user cannot move quickly around the screen —
selecting items from a menu here, altering data
there, or changing files and programs —-without
being faced with the limitations of the keyed
cursor format. Freedom from the keyboard is
attained when using graphics terminals or playing
computer games with trackballs and joysticks, but
how can a serious user benefit from these?

Most of the home computers currently
available are equipped with four direction cursor
controls that can be moved around a program
listing or a text document to the position where an
amendment needs to be made. But the cursor can
be moved only in character- or line-sized steps;
the user cannot move it directly to its destination.
If the text cursor could be moved like a graphics
cursor, which can be freely manipulated under
the control of a joystick or trackball, movement of
data would be considerably faster.

T h re e B lin d M ic e

M a n y o f th e m o s t re c e n t b u s in e s s m ic ro c o m p u te rs fe a tu re a

m o u s e as s ta n d a rd , a n d s o m e c o m p a n ie s o f fe r u n its as a d d -o n s

to e x is tin g m a c h in e s . M o s t w o rk b y m e a n s o f a ro ta t in g b a ll on

th e u n d e rs id e , a n d fe a tu re e ith e r one , tw o o r th re e ‘S E LE C T ’

b u tto n s on th e to p

X
o

X
O0

CL
Q_

CO
occ
o

u_
o

CO

o
LU
O

o

M a in B a ll ■ ■

A la rg e s tee l b a ll-b e a r in g res ts

on th e s u rfa c e a c ro s s w h ic h th e

m o u s e is m o ve d . On s o m e m ic e

th e b a ll is m a d e fro m hard

ru b b e r to p re v e n t it fro m

s lip p in g

E n c o d in g W h e e ls

T hese tw o w h e e ls m ake

c o n s ta n t c o n ta c t w ith th e b a ll to

p ic k up its m o v e m e n t in tw o

d ire c t io n s . T he w h e e ls are

m o u n te d on s h a fts ; a t th e end o f

th e s e s h a fts are e n c o d in g

d e v ice s th a t p ro d u c e e le c tr ic a l

p u ls e s as th e s h a fts are tu rn e d

B u tto n s — — — — —

T he fu n c t io n o f th e tw o b u tto n s

w il l d e p e n d on th e s o ftw a re

package in use. U su a lly , o n e is

used to s e le c t an ite m , a n d th e

o th e r to m ove o b je c ts a ro u n d

th e screen

M ic ro s w itc h e s

T hese are m o u n te d on th e PCB

b e n e a th th e b u tto n s , and

re q u ire o n ly a t in y m o v e m e n t to

m ake o r b re a k th e c irc u it

A solution to this problem was first explored in
the 1960’s at the Stanford Research Institute in
California; and the first ‘mouse’ — as the new
kind of controller that was developed was called
— was patented in 1970. The device was given the
name ‘mouse’ because of its appearance: a mouse
is small enough to fit into the palm of the hand; it
has a ‘tail’ (the cable); and the first devices usually
had two ‘ears’ (control buttons). Conventional
trackballs and joysticks aren’t used because the
precision that they provide in positioning the
cursor isn’t needed.

The mouse operates by detecting its motion
across any flat surface in the up/down and left/
right directions, as well as combinations of the
two. These movements are directly converted to
movements of the cursor —
often called

— or pomter, as it is
on the screen. There are two main

methods of generating the electrical signals from
the movement of the mouse. In both cases, the
underside of the mouse features a large ball that
rests on the surface across which the mouse is
being moved.

The rotation of the mouse’s ball-bearing is
transferred to internal cylindrical rollers. In one
system, the ends of these cylinders are fitted with
code wheels that have alternating tracks of
conducting and non-conducting material. The
pulses received are counted by the mouse’s
operating software and enable it to give a direct
reading for the cursor’s position on the screen. In

R u b b e r G ro m m e t

T he m o u s e m u s t be fre e to be

m o ve d a ro u n d th e d e sk , a n d th e

ru b b e r g ro m m e t is p a r t ic u la r ly

im p o r ta n t in p re v e n tin g s tra in

on th e c o n n e c tio n b e tw e e n the

ca b le and PCB

296 THE HOME COMPUTER COURSE

Insights

In te g r a te d C irc u it

In m o l t m ic e , th e p ro c e s s in g o f

th e e le c tro n ic s ig n a ls is c a rr ie d

o u t b y an in te r fa c e card

m o u n te d in s id e th e c o m p u te r.

Here, how eve r, a c u s to m -

d e s ig n e d c h ip is used to c o n v e rt

th e s ig n a ls in to R S 232 (se ria l)

fo rm

P O B

A s in m o s t c o m p u te r d e v ice s ,

m o u n tin g a ll c o m p o n e n ts on a

P rin te d C irc u it B oa rd m a ke s fo r

e a s ie r c o n s tru c t io n and

in c re a se d re lia b ility

In te r fa c e

M o s t m ic e use th e ir o w n s p e c ia l

in te rfa c e (d u b b e d a

‘ m o u s e tra p ’) b u t th is o n e can

p lu g in to a n y R S 2 3 2 p o r t, u s in g

th e s ta n d a rd 2 5 -w a y c o n n e c to r

the other system, two slotted discs are fitted to the
rollers. A light is continuously directed at the
discs and the beam is detected optically on the
other side of them by a photocell. The pulses of
light passing through the slots are then converted
to electrical signals, which are treated in the same
way as those of the mechanical system.

There are other systems, as well. In one case,
for example, the mouse is used in conjunction
with a special pad covered with a pattern of dots.
A light inside the mouse’s body illuminates the
area of the pad covered by the mouse and this
pattern is detected by a special optical processing
chip. Any movement of the mouse will change
the pattern that the chip detects and it can
instantly calculate how far the device has moved
in any direction. This system has the advantage of
having no moving parts, but it is much more
expensive than the others.

Once the cursor has been moved to the
required place on the screen its position can be
entered into the computer by pressing one of the
‘ears’ (buttons) on the mouse. The number of
buttons fitted varies from one manufacturer to
another. Some systems use as many as three;
Microsoft have chosen to fit two, while the Apple
Lisa mouse has only one. The buttons can also be
used to select items from a menu — programs
such as Microsoft’s MultiTool Word use this
facility — and give the mouse control of the
normal cursor motion. These devices can be used
with highly sophisticated software such as that
provided on the Apple Lisa. Here the button is
pressed once to select an ‘icon’ (see page 262)
from a screen menu, and twice to open out that
particular application.

The main advantage of all mice, and the
software that has been produced to complement
them, is that they can be used by those who have
no keyboard skills. Rather than having to type in
the name of a program or press certain letters or
numbers to select a function, the user simply
moves the mouse so that the screen cursor points
to the application or course of action that is
required, and presses a button to activate it.

Unfortunately, the mouse doesn’t completely
eliminate the need for a keyboard — new text and
numbers still have to be fed into the computer —
but it does make the manipulation of that
information much simpler. Tests conducted by
Apple during the development of the Lisa
showed that a user entirely unfamiliar with a
computer can learn to work with the Lisa’s
mouse-driven software in as little as 15 minutes.
Similar software running on a conventional
system takes nearly 20 hours to become familiar
with, mainly because of the problems involved in
learning to use the keyboard, and the need to
learn lengthy and complicated commands.
Electronic mice will soon be an integral part of
home computers. They are efficient and simple to
use and they don’t frighten the faint-hearted as
much as the sight of a traditional qw erty

keyboard.

THE HOME COMPUTER COURSE 297

Passwords To Computing

When data is passed from one computer to another it runs the risk of
becoming corrupted. Hamming codes can detect and correct these
errors

E x c lu s iv e -O r

A s im p le E x c lu s iv e -O r ga te has

tw o in p u ts and o n e o u tp u t. If

b o th in p u ts are a t lo g ic a l 0 then

th e o u tp u t is 0 . If e ith e r in p u t is

1 th e n th e o u tp u t is 1. H ow ever,

if b o th in p u ts are 1 th e n the

o u tp u t is 0 . T h is la s t c o n d it io n

d if fe re n tia te s th e O r g a te fro m

th e E x-O r (fo r s h o r t) . The

o p e ra tio n can be re p re se n te d by

a tru th ta b le . W h e re an Ex-O r

has m o re th a n tw o in p u ts , th e

o u tp u t w il l be 1 if th e re is an odd

n u m b e r o f 1 s a t th e in p u t. S uch

d e v ice s are th e m e a n s by w h ic h

p a r ity and e rro r-c h e c k in g b its

a re created

We must all have heard stories about computers
making dreadful mistakes — like mailing 500
copies of the same company leaflet to one person.
The truth is, of course, that the machine is not to
blame: the mistake will have originated from a
human failing, perhaps as simple as a typing error.
The computer merely serves to amplify the
problem. Occasionally, errors arise because the
applications program hasn’t been written to cope
with all eventualities — as in the case of computer
generated final demands for gas bills of £0.00.

Sometimes, though, computers make mistakes
that can’t be attributed to human intervention,
and these are usually manifested in the form of
‘bit errors’. A bit error occurs when a single bit in a
section of data is transposed from a 1 to a 0 or
vice-versa. Bit errors can be caused when a
hardware component, such as a RAM chip, fails.
That’s why many home computers go through a
‘diagnostic’ error checking software routine
whenever the power is turned on.

Most bit errors, however, are ‘soft errors’ — bits
get ‘flipped’ even though all the RAM has passed
the diagnostic test. Home computers are designed
to operate in domestic environments, but during a
summer heatwave it is quite possible for the
temperature to exceed the operating temperature
range of the components. Damage is unlikely to
be permanent, but bit errors may result in a
character on the screen suddenly changing from
an ‘A’ to a ‘B’, for example, or if the bit happens to
form part of an important pointer, it may ‘crash’
the program, requiring the computer to be reset.

Bit errors can also arise during periods of high
sunspot activity, when sub-atomic particles can
penetrate the atmosphere and interfere with the
flow of electrons in a miniature circuit. In
applications such as military systems, industrial
control, scientific experimentation or
international banking, errors could bring
disastrous consequences, so a variety of methods

have been adopted to detect them.
The simplest is parity checking (see page 253).

An alternative method is the ‘checksum’, which is
widely used when writing data onto magnetic tape
or disk. Data is typically handled in blocks of 128
bytes, the last of which to be read or written will
be a checksum byte. This byte represents the sum
of all the other bytes (each having a value in the
range 0 to 255) modulo 256 — meaning the
remainder of the sum when divided by 256.
Here’s an example:

Data: 114,67,83... (121 other values)...
36,154,198
Total of these 127 bytes = 16,673
Total divided by 256 = 65, remainder 33
Therefore checksum = 33

The total of the bytes (16,673) is equal to 65 lots
of 256 plus a remainder of 33 — the value that is
written into the 128th byte as a checksum. When
the computer reads the block back again, it
performs its own checksum calculation on the
data and if this value differs from 33 then it knows
that a bit error has occurred in the recording
process.

With both parity and checksum, the computer
has no way of knowing which bit of the data has
been corrupted. If the error occurred in
transmission, then the receiving computer can
request a particular byte or block of bytes to be
transmitted again; in the case of a recording error,
there may well be no way of retrieving the
uncorrupted data.

Where errors would be unacceptable, a system
must be used that will both detect and correct
them. Hamming codes, named after their
inventor R W Hamming of Bell Telephone
Laboratories, perform this function.

All error correction systems work on the
principle of redundancy. Human languages
contain a high degree of redundancy — if a typing

298 THE HOME COMPUTER COURSE

Passwords To Computing

error occurs in a manuscript, or a crackle
obliterates words in a telephone conversation, it is
often possible to recreate the words by
considering the context of the sentence.
Sometimes we build in extra redundancy for use
in ‘noisy’ environments: the use of ‘alpha’, ‘bravo’,
and ‘charlie’ in place of ‘a’, ‘b’, and ‘c’ in
radiotelephony, for example.

Suppose that on our computer we send a word
of x bits in length, consisting of y bits of real data
and z redundant bits (i.e. x = y + z). In our
explanation of parity we had a value of seven for y
and one for z. For Hamming codes, z will need to
be proportionately larger. Now let’s assume that a
single-bit error can occur in any of the x bits (our z
redundant bits are of course just as prone to error
as the y data bits). If the chance of a bit error in a
word is, say, one in a million, then the chance of
two errors in a word is one in a million million, so
we’ll ignore this possibility.

When the data is received at the other end,
there will be x+1 eventualities. Either there will
be no errors, or the first data bit will be in error,
and so on up to the xth bit. Now, with z redundant
bits we can represent 2Z situations, so that for the
word to be proof against one bit error:

2 y+z+1

If y is seven (for ASCII codes), then z will need to
be four. If y is four (as in our example in the
panel) then z will need to be three. However, if y is
16 then z need be increased only to 5. It follows
that Hamming codes are far more efficient for
longer word-lengths than for short ones.

In a Hamming code, each of the redundant bits
acts as an even-parity check on a different
combination of bits in the word. If any bit is
flipped in transmission then one or more of the
check bits will be wrong and the combination of
these bits will point to the erroneous bit in the
word (see example). The receiving computer’s
software can then simply flip that bit back again.

The key to the way that Hamming codes work
is the different combinations of bits upon which
each Hamming bit acts as a parity check. The total
number of bits is effectively divided into several
different but overlapping sets — devised so that
no two bits appear in the same combination of
sets. The receiving computer performs parity
checks on the same sets as the sending device did
to create the Hamming code. If any one of the
bits, including the Hamming bits, has been flipped
in transmission, then one or more of these sets will
not pass the parity test. The combination of tests
failed points to a unique bit.

Some computers employ Hamming codes
even for their internal memory operations. When
this is the case, it is possible to remove one whole
RAM chip and watch the computer continue to
function! Some military computers take the
principle of redundancy to the extreme of
duplicating every single component in the
computer, and comparing the results from the two
halves after each operation.

H o w A H a m m in g C o d e W o rk s

Data Hamming Code

0 1 1 1 1 0 0

TR U E FALSE FALSE

T h is p r in c ip le w il l s t i l l w o rk even if i t is o n e o f th e

H a m m in g b its th a t g e ts c o r ru p te d . If a ll th re e te s ts fa il,

fo r e x a m p le , 111 w o u ld in d ic a te th a t th e r ig h tm o s t b it

w a s c o r ru p t, w h e re a s if a ll th re e pa ss , th e re has been no

e rro r. T h is ty p e o f c o r re c t in g code fa ils o n ly i f th e re is

m o re th a n o n e e rro r in th e seven b its

S u p p o s e w e w is h to s e n d th e s e

fo u r b its o f da ta

To th e m w e m u s t add a th re e b it

H a m m in g co d e , a u n iq u e

p a tte rn o f b its g e n e ra te d b y th e

c o m p u te r to fu l f i l l th e fo l lo w in g

c o n d it io n s :

L o o k in g a t ju s t th e s e fo u r o f th e

seven , th e re m u s t be an even

n u m b e r o f 1s v is ib le

S im ila r ly , o u t o f th e s e fo u r th e re

m u s t be an even n u m b e r o f 1 s

A n d in th is s e t o f b its , th e re

m u s t be an even n u m b e r o f 1 s,

to o . W o rk in g o u t th e th re e b its

th a t w il l f i t th e s e c o n d it io n s

re q u ire s th e c o m p u te r to so lve

th re e s im u lta n e o u s e q u a tio n s

B u t le t ’s s u p p o s e th a t d u r in g

tra n s m is s io n , th e th ird b it fro m

th e le ft is c o r ru p te d , i.e . is

f l ip p e d fro m 1 to O

If th e re c e iv in g c o m p u te r

p e r fo rm s th e f i r s t o f th e th re e

te s ts on th e da ta , it n o w fa ils

b e ca u se th e re is an o d d n u m b e r

o f 1s v is ib le . T h is te l ls u s th a t

th e re has been an e rro r, b u t w e

s t i l l d o n ’t k n o w w h ic h b it w as

a ffe c te d

*- S im ila r ly , th e s e c o n d te s t

p ro d u c e s a fa ls e re s u lt

H ow ever, th e da ta s t i l l passes

th e th ird te s t — an even n u m b e r

o f 1s is v is ib le

It is th e c o m b in a t io n o f te s ts

passed and fa ile d th a t in d ic a te s

th e b it in e rro r. If w e e x p re ss a

fa ile d te s t as a 1 a n d a passed

te s t as a 0, th e n w r it in g th e

re s u lts in reverse o rde r, w e ge t

th e b in a ry fo r th re e — in d ic a t in g

th a t th e th ird b it w a s c o rru p te d ,

and s h o u ld be f l ip p e d back fro m

0 to 1

THE HOME COMPUTER COURSE 299

Pioneers In Computing

The child prodigy whose study of
mathematics resulted in the birth
of the science of cybernetics

S p e e d R e s tr ic tio n

W ie n e r w as fa s c in a te d by the

idea o f th e s te a m g o v e rn o r —

one o f th e best and s im p le s t

e xa m p le s o f n e g a tive feedback .

Two w e ig h ts are co n n e c te d by

p iv o tin g a rm s to a s p in n in g

sh a ft, w h ic h is in tu rn co n n e c te d

to th e fly w h e e l o f th e s team

eng ine . A s th e speed o f the

e n g ine inc reases , th e w e ig h ts

w il l f ly o u tw a rd . T h is m o ve m e n t,

by m ean s o f a s u ita b le lin ka g e ,

s h u ts o ff th e th ro tt le o f the

e n g ine s lig h tly . T h is has th e

e ffe c t o f s ta b ilis in g th e speed of

the e n g in e at any level se t b y th e

ope ra to r. M o d e rn c o m p u te rs can

im p le m e n t fa r m ore

s o p h is tic a te d typ e s o f c o n tro l,

b u t th e p r in c ip le is s t i l l th e sam e

Norbert Wiener was bom in 1894 in Missouri,
USA. After taking a degree in mathematics at the
age of 14 and receiving a doctorate in logic at 18,
he went to study with David Hilbert at Gottingen,
Germany.

Wiener’s contribution to computer science
came late in his life. For many years he worked at
the Massachusetts Institute of Technology,
studying the new probabilistic physics, and
concentrating on the statistical study of the
motion of particles in a liquid (a phenomenon
known as Brownian movement). The particle
movements were so unpredictable that it was
impossible to describe them using the traditional
physics of deterministic forces. So a ‘probabilistic’
method, by which only the probable location of a
particular particle at a given time could be
predicted, was the best that could be applied.

When the Second World War broke out he
offered his services to the US government and
began work on the mathematical problems
implicit in aiming a gun at a moving target. The
development of automatic gunsight guidance
systems, his studies in probabilistic physics and his
broader interest in subjects ranging from
philosophy to neurology all came together in
1948 when he published a book entitled
Cybernetics.

Cybernetics is the study of the self-governing
controls that are found in stable systems, be they
mechanical, electrical or biological. It was Wiener
who saw that information as a quantity was as
important as energy or matter: copper wire, for
example, can be studied for the energy it can
transmit or the information it can communicate.
The revolution that the computer promises is
based in part on this idea: a shift in the source of
power from the ownership of land, industry or
business to the control of information. His
contribution to computer science was not a piece
of hardware but the creation of an intellectual
environment in which computers and automata
could be developed.

The word ‘cybernetics’ is derived from a Latin
word meaning ‘governor’. Wiener had studied the
‘governor’ of James Watt’s steam engine, which
automatically regulated the machine’s speed, and
he realised that for computers to develop they
must be made to imitate the ability of human
beings to regulate their own activities.

The thermostat in a house is an example of a
control system. It regulates the heating according
to fluctuations in temperature above or below an
optimum level. A human is needed only to set this
level. Wiener called this faculty for self-regulation
and control ‘negative feedback’ — ‘feedback’
because the output of the system (the heat) affects
the future behaviour of the system and ‘negative’
because the changes the thermostat brings about
are made to restore the temperature to the one set.

A system that can do this and also choose its
own temperature (and other goals) is called a
‘positive feedback’ system. When an automaton
can do all this and reproduce itself as well, then it
approaches the human condition.

Wiener’s theory of cybernetics could be
regarded as a super science — a science of
sciences — and it has encouraged research into
many areas of control systems and systems that
deal with information. Everything is information.
What we know about the changes in the world
comes to us through our eyes and ears and other
sensory receivers, which are devices for selecting
only certain data from a totality that would
otherwise engulf us.

Information can also be studied in a statistical
way, independent of any meaning it may have.
For example, by observing the frequency with
which certain symbols occur it is possible to break
many types of codes. In the English language the
letter ‘e’ occurs most often, and the letter ‘t’ is the
second most frequently used. By analysing large
samples of a code and comparing the results with
typical samples of English, it is possible to identify
key letters and thus begin deciphering the code.

Wiener died in 1964, before the
microcomputer revolution began, yet he foresaw
and wrote about many of the problems that would
arise in this new technology.

300 THE HOME COMPUTER COURSE

;

H o m e com pu ters . D o th e y send y o u r b ra in to

s le e p -o r keep y o u r m in d on its toes?

A t Sinclair, w e 're in n o d o u b t. To us, a

h o m e c o m p u te r is a m e n ta l g y m , as

im p o rta n t an a id to m e n ta l fitness as a set o f

w eights to a b o d y -b u ild e r.

P rov ided , o f course, it o ffe rs a w h o le

b a tte ry o f g e n u in e m e n ta l challenges.

T h e S p ec tru m does ju s t t h a t

Its e d u c a tio n p ro g ra m s tu rn b o rin g

chores in to a b s o rb in g con tests - n o t lea rn in g

to spell 'acq u iescen t, b u t rescu ing a princess

fro m a sorcerer in colour, so u n d , an d

m o v e m e n t!

T h e a rcad e g am es w o u ld te s t an

a ll-n ig h t a rc a d e f r e a k - th e y 'r e v e ry fast, very

com plex , v e ry s tim u la tin g .

A n d th e m in d -s tre tc h e rs a re tru ly

fiendish. A d v e n tu re g a m e s th a t v e ry fe w

p eo p le in th e w o r ld h ave cracked. Chess to

grand m as te r s tandards . F ligh t s im u la tio n

w ith a co ckp it fu ll o f in s tru m e n ts o p e ra tin g

in d ep en d en tly . G e n u in e 3 D c o m p u te r design.

N o o th e r h o m e c o m p u te r in th e w o rld

can m a tc h th e S p ec tru m ch a llen g e - because

no o th e r c o m p u te r has so m u ch so ftw are o f

such o u ts ta n d in g q u a lity to run.

For th e M e n ta th le te s o f to d a y an d

to m o rro w , th e S inclair S p e c tru m is g ym ,

a p p ara tu s an d tra in in g schedule , in o n e n e a t

package. A n d y o u can b u y o n e fo r u n d e r

£ 100. i B H S

i

'0:
ft■

0 }If
ippi
I P

jmm

SF* V

■ .mm i :

%

will prove inval

❖ Buy volumes 1 and 2 together tor
£6.90 (including P&P). Simply till in the order

ourinvoice.
* It you prefer to buy the binders

separately please send usyour cheque/postal
order tor £3.95 (including P&P). We will send
you volume 1 only Then you m ay order volume
2 in the same way - when it suits you!

O verseas readers Thi m |
binder otter applies to readers in the
UK, Eire and Australia only. Readers in Australia s h o u ld ^ ^ ^
complete the special loose insert in Issue 1 and see additional
binder information on the inside front cover. Readers in New
Zealand and South Africa and some other countries can obtain
their bindersnow. For details please see inside the front cover.
Binders may be subject to import duty and/or local tax.

NEXT TO YOUR COMPUTER...YOUR COURSE MANUALS

