
ISSN 0265-2919

© 80p

' ’ i ! J • 1 1 / . i j . o ' f • * * • » • • • • —
• • . . . • • • • • • • - • • • * , / . E . j . •• *•

H a rd w a re

Outer Limits Even an inexpensive home
computer like the Sinclair ZX81 can evolve
into a sophisticated data processing system

Tandy MC-10 This compact machine offers
good colour at a low price

326

330
S o ftw a re

Top Gear We explore a variety of techniques ^ 2 8
for writing more efficient Basic and speeding
up your programming

B asic P ro g ra m m in g >
Changing Places We look at ways to
manipulate the database we have created in
our Basic Programming course

In s ig h ts

Sitting Pretty Alternative designs for
computer keyboards and screens could
make them more pleasant to use

Hot Rods Not all joysticks are attached to a
fixed base unit

P a s s w o rd s T o C o m p u tin g

Track Record A Disk Operating System
keeps a record of the track and sector
numbers of every block of data

Konrad Zuse Like other early computers,
Zuse’s machines were developed for military
purposes

340

Sound Systems... The Light Program
An introduction to the graphics facilities on
the BBC Micro and a further look at sound
on the Me- 20

334

Editor Richard Pawson; Consultant Editor Gareth Jefferson; Art Director David Whelan; Production Editor Catherine Cardwell; Staff Witter Roger Ford; Picture Editor Claudia Zeff; Designer Hazel Bennington; Art Assistants Liz Dixon,
Safu Maria Gilbert; Sub Editors Robert Pickering, Keith Parish; Researcher Melanie Davis; Contributors Tim Heath, Henry Budgett, Brian Morris, Lisa Kelly, Steven Colwill, Richard King, Geoff Nairns; Group Art Director Perry
Neville; Managing Director Stephen England; Consultant David Tebbutt; Published byOrbis Publishing Ltd: Editorial Director Brian Innes; Project Development Peter Brookesmith; Executive Editor Chris Cooper; Production Co-ordinator
Ian Paton; Circulation Director David Breed; Marketing Director Michael Joyce; Designed and produced by Bunch Partworks Ltd; Editorial Office 85 Charlotte Street, London W1; © 1983 by Oitts Publishing Ltd: Typeset by Universe;
Reproduction by MuHis Morgan Ltd; Printed in Great Britain by Artisan Press Ltd, Leicester

HOME COMPUTER COURSE - Price UK 80p IR £1.00 AUS $1.95 NZ $2.25 SA R1.95 SINGAPORE $4.50 USA and CANADA $1.95
How to obtain your copies of HOME COMPUTER COURSE - Copies are obtainable by placing a regular order at your newsagent.
Back Numbers UK and Eire - Back numbers are obtainable from your newsagent or from HOME COMPUTER COURSE. Back numbers, Orbis Publishing Limited, 20/22 Bedfordbury, LONDON WC2N 4BT at cover price. AUSTRALIA Back
numbersare obtainable from HOME COMPUTER COURSE. Back numbers, Gordon & Gotch (Aus) Ltd, 114 William Street, PO Box 767G Melbourne, Vic 3001. SOUTH AFRICA, NEWZEALAND, EUROPE & MALTA: Back numbers areavailable at
cover price from your newsagent. In case of difficulty write to the address in your country given for binders. South African readers should add sales tax.
How to obtain binders for HOME COMPUTER COURSE-U K and Eire: Please send £3.95 per binder if you do not wish to take advantage of our special offer detailed in Issues 4,5 and 6. EUROPE: Write with remittance of £5.00 per binder (incl.
p&p) payable to Orbis Publishing Limited, 20/22 Bedfordbury, LONDON WC2N 4BT. MALTA: Binders are obtainable through your local newsagent price £3.95. In case of difficulty write to HOME COMPUTER COURSE BINDERS, Miller (Malta)
Ltd, M. A. Vassalli Street, Valletta, Malta. AUSTRALIA: For details of how to obtain your binders see inserts in early issues or write to HOME COMPUTER COURSE BINDERS, First Post Pty Ltd, 23 Chandos Street, St. Leonards, NSW 2065. The
binders supplied are those illustrated in the magazine. NEW ZEALAND: Binders are available through your local newsagent or from HOME COMPUTER COURSE BINDERS, Gordons Gotch (NZ) Ltd, POBox 1595. Wellington. SOUTH AFRICA:
Binders are available through any branch of Central Newsagency. In case of difficulty write to HOME COMPUTER COURSE BINDERS, Intermag, PO Box 57394, Springfield 2137.
Note - Binders and back numbers are obtainable subject to availability of stocks. Whilst every attempt is made to keep the price of the issues and binders constant, the publishers reserve the right to increase the siated prices at any time when
circumstances dictate. Binders depicted in this publication are those produced for the UK market only and may not necessarily be identical to binders produced for sale outside the UK. Binders and issues may be subject to import duty and/or
local taxes, which are not included in the above prices unless stated.

RO
Y

IN
G

R
AM

In s ig h ts

‘E rg o n o m ic s ’ is th e s c ie n c e o f m a k in g m a c h in e s m o re p le a s a n t to

u s e . W ith c o m p u te rs , re s e a rc h h a s b e e n c o n c e n tra te d o n th e

s c re e n a n d k e y b o a rd

There are two aspects of design: aesthetics, or
beauty in form and appearance; and ergonomics,
which is the study of the relationship between
workers and their environment. No matter how
well something functions, we will be unhappy
using it if it is ugly in appearance. Similarly, the
environment in which we are working must not be
distracting or uncomfortable.

As a factor in the choice of which
microcomputer to buy, the ergonomic quality will
probably be less of a consideration than the price
and performance of the machine. It is, however,
worthwhile to give some thought to the physical
environment in which you use the computer. First
of all, do you work at something that resembles an
office workstation, with adequate desk space on a
working surface set at the right height for you? Or
do you simply plug your home computer into the
family television set and work with it on your lap,
or, worse still, lying on the ground in front of the
television set?

Computer programming is quite complicated
enough on its own, without making it more
difficult by working in a completely unsuitable
environment. There are many ways in which you

can create a more comfortable workstation. Let us
start by considering what can be done to make the
screen more comfortable to read. If you are using a
domestic television set, then you will be unable to
benefit from recent developments that help
reduce or eliminate screen glare in monitors.
These include filters to minimise reflection and
specially coloured screen phosphors. But you can
improve the quality of display on a television set
by placing a filter over the screen. Simple coloured
filters are easy enough to obtain, and it is also
possible to use a polarising filter, which eliminates
reflections. These methods help to achieve high
contrast at low brightness levels, and thus avoid
unnecessary eyestrain.

External lighting levels are also important.
When working at night it is considerably better to
use a low-set desk lamp that illuminates the
keyboard and any notes from which you are
working, but leaves the screen in comparative
darkness. The distance from eye to screen is also
important — the body should be approximately an
arm’s-length from the screen. The display itself
should be tiltable, so that the plane of the screen is
at 90 degrees to the line from your eye to the

Body language
W h ile th e h u m a n b o d y m a y va ry

in s ize a n d sh ap e , th e

p ro p o r t io n s s ta y fa ir ly c o n s ta n t,

as a n y s tu d e n t o f f ig u re d ra w in g

s o o n re a lise s . T h e s tu d y o f

e rg o n o m ic s m a ke s use o f th is

c o n s is te n c y to d e fin e g e n e ra l

ru le s fo r la y in g o u t w o rk in g

e n v iro n m e n ts . W ith a h o m e

c o m p u te r o r a V D U th e se

s u g g e s t th a t th e sc re e n s h o u ld

be a t a rm ’ s le n g th (to m in im is e

ch a n g e s in eye fo c u s w h e n

lo o k in g b a c k w a rd s and

fo rw a rd s b e tw e e n sc re e n and

s o u rc e d o c u m e n t) . T he p o s it io n

o f th e k e y b o a rd is a ls o d ic ta te d

by th e s e sa m e ru le s

THE HOME COMPUTER COURSE 321

In s ig h ts

centre of the screen. This can be easily achieved by
placing a book or two under the front of the set.
However, you may encounter another problem at
this point — your own reflection in the screen. A
filter with a matt surface will remove this quite
effectively.

Once the screen has been made comfortable to
use, we can go on to consider the physical layout
and attributes of the keyboard. The most
important factors are the height of the keys above
the desk on which the keyboard is placed, and the
angle of the rows of keys relative to each other. In
ideal circumstances, the keyboard will be low
enough for the operator’s wrists and forearms to
rest flat on the desk in front of it, and it should be
adjustable for rake. Unfortunately, few home
microcomputers are designed with the required
low profile. Sinclair’s ZX series, the Oric-1 and
the Jupiter Ace are exceptions, but they all have
even greater problems with their keyboards
because of their use of either multi-layer
membranes or moulded rubber sheets in place of
sprung keys. Multi-layer membranes have no
Teel’ whatsoever, and in the case of the ZX80 and
81, are spaced in such a way as to defy anyone to
touch-type on them. The combination of these
factors makes entering long programs an
exhausting task. The Oric-1 and Spectrum
attempt to circumvent this problem by producing
an audible signal that a key has been depressed
sufficiently to make contact. But that is hardly an
adequate compensation. There are a number of
companies supplying alternative keyboards — full
size, with sprung keys — for the Sinclair
computers, but the well designed examples are
expensive. They also maintain the single key entry
convention devised by Sinclair to speed operation
in b a sic , which is a constant source of irritation for
even a semi-skilled typist.

The ideal layout of a keyboard requires the
rows of keys, as viewed from the side, to be
arranged as if to form part of the circumference of

The Shorthand Machine
W here th e re is a need to re co rd

speech , and th e s te n o g ra p h e r

has no m ean s o f s lo w in g th e

sp e a ke r d o w n , a d e v ice k n o w n

as a P a la n type is o ften

e m p lo ye d . S h o rth a n d m a c h in e s

o f th is ty p e use a s h o rth a n d

v e rs io n o f th e p h o n e tic s p e llin g

a drum. This would minimise the directional
movement of the typist’s fingers. The only home
computers that fit this specification are: the BBC
Micro, the Commodore 64 (as well as the later
Vic-20s), and the Apple II.

The layout of the keyboard itself has long been

a major bone of contention with designers. When
typewriters first became available in the 19th
century, there were as many different keyboard
layouts as there were manufacturers, but in
general the most frequently used character keys
were grouped together at the centre of the
keyboard. When the ‘typebasket’ was introduced,
in the 1870’s, manufacturers discovered that even
quite slow typists could cause the type bars to jam
against each other. The problem occurred most
frequently with words such as ‘ten’, where the
commonly used letters in the English language
(which were conveniently placed next to each
other on the keyboard) were used in rapid
Succession. The solution adopted was to move
those letters most often found adjacent to each
other in words, further apart in the typebasket —
hence the now standard QWERTY keyboard,
designed by Scholes and Gliden in the United
States. There is no reason at all why an electronic
keyboard should be constrained by this layout
except to maintain a standard approach — an
interesting example of a de facto global standard
becoming undesirable and yet impossible to
change.

However, some efforts to develop alternative
keyboards have been made. In 1977, Mrs Lillian
G. Malt employed the flexibility inherent in
electronics hardware to produce a keyboard
shaped to fit the hand, which is considerably less
tiring to use than the standard design. It is also
much quicker in operation — reports of 300 and
more words per minute are commonplace.
Unfortunately, it has not succeeded in breaking
the QWERTY stranglehold on keyboard layout.

One very useful feature that this keyboard
(called the Maltron) shares with many
microcomputers is detachability. Most home
computers do not have built-in monitors and are
themselves small enough to be moved around, but
this is not the case with many microcomputers
designed for office use. Increasingly, keyboards
are being designed to be as slim as possible and are
attached to the microcomputer by an umbilical
cord. IBM’s PC Junior has gone one step further:
the communications link between the keyboard
and the microcomputer is similar to television and
video recorder remote controls, and works by
means of infra-red light.

Because ergonomics is not a totally objective
science — it is the study of how workers relate to
their working environment, and that relationship
tends to change from time to time — it is not
possible to give hard and fast rules. The keynote is
long-term comfort.This requires the arrangement
of tools and equipment so that all your energies
can be devoted to the task in hand, without it being
necessary to change position constantly, and
without becoming unduly tired.

There are several further things that the home
computer user can experiment with in order to
improve his working environment. When we
discussed Apple’s Lisa (see page 261), we noted
that there were alternatives to the keyboard when

L
*

322 THE HOME COMPUTER COURSE

H W-M
iisliilapi

MmWM:
H r * ; t w / / ■ ■

In s ig h ts

Key Strokes
B e fo re e le c tro n ic k e y b o a rd s

w e re d e v is e d , each ke y on th e

ty p e w r ite r had to be p h y s ic a lly

c o n n e c te d to th e t in y c h a ra c te r

shaped c a s tin g th a t m a d e th e

im p re s s io n on th e p a p e r. T h is

im p o s e d c o n s tra in ts on the

la y o u t o f th e ke y b o a rd , fo r it

w a s e s s e n tia l to keep c o m m o n ly

used keys se p a ra te d so th a t th e

ba rs th a t c a rr ie d th e c h a ra c te rs

w o u ld n o t c la sh . T h o u g h th is is

no lo n g e r n e ce ssa ry , w e s t i l l

re ta in th e fa m il ia r Q W ER TY

la yo u t. K e yb o a rd s s u c h as th e

M a ltro n , w h ic h p la ce s keys

a c c o rd in g to th e ir fre q u e n c y o f

use, have n o t p ro ve d p o p u la r

program that performs this operation on cassette,
because when you switch your machine off (or
reset it), the value of each character will revert to
the original!

Finally, if your interests extend to simple
carpentry, you might consider constructing a
purpose-built workstation, with the keyboard
recessed into the worktop and the television set or
monitor conveniently angled. Commercial
versions of the workstation usually provide
additional space for mass storage (disk or cassette
drives) on shelves located under the worktop, and
allow all the leads to be hidden away. Ergonomics
is basically applied common sense, but a little
thought will be repaid by a significant reduction in
backache and eyestrain.

working with menu-driven software. You might
care to attempt an inexpensive version of this
using a joystick or trackball, and gauge for yourself
the benefits. Of course, you will need to write
some small programs to work with, but by using
PEEK and POKE within the confines of screen
memory this is not a difficult task.

Alternatively, if your computer allows you to
re-specify the value for any particular key, you
might care to rearrange the keyboard, sticking
labels over the keys to indicate their new values. In
this case it is perhaps easiest to PEEK the value of
the eight bytes that make up the character into an
array with eight variables, change the values
within the array, and then POKE them back again.
You could POKE the eight bytes that make up the
character straight into the space allocated for the
character that you wish to replace, but if you use
this method remember to save the first set of
values in a temporary array and then move each
character to its new position in order. Save the

F u t u r e

A l t e r n a t iv e s
M a n y c o m p u te r d e s ig n e rs

w o u ld d isp e n se w ith

ke y b o a rd s c o m p le te ly if th e y

c o u ld . N e w e r ty p e s o f

m ic ro c o m p u te r , w ith la rg e r

m e m o ry and fa s te r

p ro c e s s in g spee ds , a llo w

o th e r d e v ice s su ch as

jo y s t ic k s , t ra c k b a lls a n d m ice

to be used in s te a d , w ith

a p p ro p r ia te s o ftw a re

THE HOME COMPUTER COURSE 323

KEVIN JO
N

ES

T h e fu n c tio n o f th e D is k O p e ra tin g S y s te m (D O S) is to k e e p ta b s o n
w h e re e v e ry th in g is k e p t o n th e d is k . W ith o u t a D O S , p ro g ra m m in g
w o u ld b e v e ry h a rd w o rk

Before a computer is able to run any kind of
applications program, it first needs its own
internal set of programs to manage the various
parts of its system, and to make sense of the
instructions that comprise the user’s program.
This internal set of programs is called the
Operating System (OS), and on most home
computers this resides permanently inside the
computer in the form of ROM memory.
Generally, we are totally unaware that the
Operating System is functioning, which is why we
refer to it as being ‘transparent in operation’.

If your system includes a disk drive then a large
part of that OS will be concerned with the various
disk operations. We call that set of routines the
Disk Operating System, or DOS. You might see
those three letters used in the names of
proprietary products — Microsoft’s operating
system, for example, is called MSDOS. A DOS
will typically come in one of three forms. It may
comprise part of the ROM inside the computer.
An example of this is the Sinclair Spectrum,
which has the commands for operating the
Microdrive (not really a disk, of course, but
similar in operation) built in.

but offer considerable advantages over ‘non-
intelligent’ disk units. For instance, they don’t eat
up valuable user memory, and can be left to
execute a complex disk operation while the
computer itself continues with the applications
program.

Thirdly, the DOS may reside inside the
computer RAM. This technique is increasingly
popular in business systems, in which the disk
drives are built into the computer, and there is
plenty of RAM available (say, more than 128
Kbytes as standard). For the manufacturer, this
has the advantage of eliminating the need to
create a completely new set of ROMs every time
there is a minor modification to the DOS, and the
user benefits from a choice of one of a number of
proprietary operating systems that will run on the
same hardware.

But how does the DOS get into RAM in the
first place? This question immediately arises when
the system is switched on. The DOS needs to be
transferred from the disk into RAM, but if there is
no DOS in the computer to tell it how to control
the disk, how can it load something into RAM? A
program cannot ‘pull itself into RAM by its own

DIRECTORY

/

DISK SURFACE

R ing o f T ru th
T he m a g n e tic re c o rd in g s u rfa ce

on a d is k is d iv id e d up in to

c o n c e n tr ic tra c k s a n d ra d ia l

s e c to rs . T he in te rs e c tio n o f a

t ra c k a n d s e c to r is ca lle d a

b lo c k , s to r in g ty p ic a lly 1 2 8

by tes . T he fu n c t io n o f th e DOS,

w ith th e h e lp o f a d ire c to ry a n d a

B lo c k A v a ila b ility M ap , is to

keep ta b s on w h a t is s to re d in

each b lo c k

READ/WRITEHEAD

SECTOR

c/>

Another type stores the DOS in ROM within
the disk unit itself. This is only applicable when
the disk is an ‘intelligent’ device (such as the
Commodore Disk Unit), meaning that it
incorporates its own microprocessor ROM and
RAM. These are more expensive to manufacture,

bootstraps’, so the computer has to have a tiny
program built into ROM, which it executes
whenever the machine is switched on. This
program is called the ‘bootstrap’ (from the
analogy above) and is itself a very simple form of
DOS. The bootstrap’s job is simply to find the

324 THE HOME COMPUTER COURSE

: .

P a s s w o rd s T o C o m p u tin g•y iflSlpSlillill
liailSlillil

main DOS on the disk, and transfer it byte by byte
into RAM, whereupon that DOS can take over
and perform some far more sophisticated
functions. This process of switching the computer
on, then waiting for the DOS to take over, is
called ‘booting-up’. When it is finished, a greeting
is printed on the screen with a prompt to indicate
that the computer is ready for a command from
the user.

Whichever form the DOS in a system takes, its
main function is looking after the locations of the
contents of the disk. You may remember that a
disk (see page 114) is divided into concentric
rings, called tracks, which are in turn divided into
sectors; and the intersection of a track and sector
is called a block. A block can typically hold 128
bytes of information, and is the smallest unit that
the disk can read or write at a time. One of the
main reasons for having a DOS is to enable the
computer to remember the exact location of
everything on the disk. This task is more awesome
than it sounds. Let’s suppose our disk drive has a
capacity of 320 Kbytes — enough to store 20
programs of 16 Kbytes each. With each block
holding 128 bytes, loading one of those programs
without the benefit of a DOS would require you to
specify 128 different blocks, each with its own
track and sector number!

In order to perform this function, the DOS
keeps a disk directory. This is usually located in
the middle track of the disk because it has to be
referenced frequently, and this minimises the
distance the read/write head has to move. The
speed of operation of a disk is far more dependent
on the time taken to move the head from track to
track than on the speed at which the disk spins.

The directory is a list of all the files (which may
be programs or files of data) currently on the disk,
with details of the file name, file type, and a list of
the blocks (each specified by track and sector)
where that file is stored. There may be some other
entries, such as the date when a back-up copy of
the file was last made, or a list of the users who
can access a particular file.

When a new file is to be stored, the DOS must
first look up something called the Free Sector List
or the Block Availability Map (BAM). This has a
single bit corresponding to every block on the
disk, and as a block is used the value of its bit is
changed from zero to one. Some home computers
with disk drives feature a utility program that

displays the BAM on the screen, and you can
watch the entries being made as you save a
program. When a file is erased, the DOS doesn’t
bother to wipe clean all the blocks used in that
file; it simply changes the entries in the BAM to
indicate that the contents of those blocks are now
unwanted.

R oom T o S pare SECTORS
TRACKS

DIRECTORY
TRACK

B e fo re th e DOS can s to re a new f i le a n d m a ke an e n try in th e

d ire c to ry , i t m u s t f i r s t c o n s u lt th e B lo c k A v a ila b ility M ap (B A M)

o r Free S e c to r L is t. T h is is a s e c tio n o f m e m o ry in w h ic h each b it

c o rre s p o n d s to a b lo c k on th e d is k . A b in a ry 1 in d ic a te s th a t th e

b lo c k is in use, 0 th a t it is fre e (w e ’ve s h o w n it as s o lid o r e m p ty

s q u a re s). N o tice th a t th e in n e rm o s t tra c k s (a t th e b o tto m o f th e

m a p) have fe w e r s e c to rs th a n th e o th e rs , because th e y are so

m u c h s h o r te r

Another feature of this system is that files are
not stored, as would be expected, in consecutive
neighbouring blocks. Suppose, for example, that
a track consists of 12 sectors, numbered 1 to 12
clockwise. The first 128 bytes of a program might
be found in sector 1, the second in sector 7, the
third in sector 2 and so on. This is because there is
a small time lapse while a block’s contents are
transferred to the memory buffer used to write
each block. If the DOS had to write consecutive
sectors, it would have to wait for one complete
revolution of the disk between each write — thus
slowing the system down. Furthermore, a disk

that has been in use for some time, with files that
change in length each day, will end up with a
BAM looking like a piece of Gruyere cheese, and
new files will have to be fitted into the holes.

A Disk Operating System has many other
functions, including formatting new disks
(marking out the tracks and sectors on a blank
disk and creating an empty directory), making
back-up copies, and ‘tidying-up’ full disks. More
sophisticated versions include a variety of data
handling structures (see page 204).

I.Q. Test
S o m e d is k d r iv e s c o n ta in th e ir

o w n m ic ro p ro c e s s o r a n d R A M .

T hese a re ca lle d ‘ in te ll ig e n t ’

d r iv e s , and th e DOS is

in c o rp o ra te d in th e fo rm o f

R O M . W h e re ‘n o n - in te ll ig e n t ’

d r iv e s a re used , th e DOS is

s to re d in s id e th e c o m p u te r

THE HOME COMPUTER COURSE 325

In s ta n d a rd fo rm th e ZX81 has

o n ly o n e K by te o f R A M , a n d 123

b y te s o f th a t are ta k e n u p b y

s y s te m v a r ia b le s . C o n se q u e n tly ,

m e m o ry e x p a n s io n is p e rh a p s

th e f i r s t re q u ire m e n t o f a new

ow n e r. S in c la ir ’s o w n m e m o ry

u p g ra d e s h o w n here c o m e s in

o n ly o n e fo rm — 16 K b y te s —

b u t a lte rn a tiv e s su ch as th e

C hee tah v e rs io n o ffe r as m u c h

as 64 K b y te s , — — — v

H a rd w a re

T h e Z X 8 1 is s till th e c h e a p e s t c o m p u te r a v a ila b le . B u t w ith th e r ig h t
a d d -o n s it c a n b e e x p a n d e d in to a v e ry s o p h is tic a te d m a c h in e

Sinclair’s ZX81 offers the best value for money of
any microcomputer on the market today, even in
its basic form. But there are a surprising number
of add-on units available which can turn it into a
remarkably sophisticated microcomputer system.
These include high resolution colour graphics,
speech synthesis and communications
capabilities. Of course, the computer itself has
some deficiencies, but these can be overcome by
the addition of a variety of readily available items
such as professional standard keyboards, extra
Random Access Memory and programmable
joystick controllers.

- ■ i - W M v

Forth ROM
S in c la ir ZX m ic ro c o m p u te rs use

a ra th e r id io s y n c ra t ic v e rs io n o f

BASIC , and w h ile i t is n o t

p o s s ib le to in s ta ll a d if fe re n t

d ia le c t, o n e can ch a n g e th e

la n g u a g e c o m p le te ly — to

FORTH, fo r e x a m p le . T he re are

tw o w a ys o f d o in g th is : e ith e r by

lo a d in g th e n e w la n g u a g e in to

R A M fro m ca sse tte , w h ic h

m e a n s th a t th e c o m p u te r w il l

re v e rt to BASIC each t im e i t is

s w itc h e d o n o r rese t; o r by

s w o p p in g th e BASIC RO M fo r

a n o th e r. T h is F O R T H -in -R O M

fro m D a v id H u sb a n d goes

fu r th e r th a n m o s t — i t a llo w s

te n o r m o re p ro g ra m s to ru n on

th e c o m p u te r s im u lta n e o u s ly .

T h is fa c i l i ty can o n ly be fu l ly

e x p lo ite d in c o n tro l

a p p lic a t io n s , w h e re severa l

d e v ice s m u s t be p ro g ra m m e d

in d e p e n d e n tly

Acoustic Couplers
M o d u la to r /d e m o d u la to rs c o m e

in tw o fo rm s : d ire c t c o n n e c tio n

m o d e m s , w h ic h re q u ire an

a d d it io n a l ja c k p lu g c o n n e c to r

in to th e te le p h o n e s y s te m , and

a c o u s tic c o u p le rs s u c h as th e

M ic ro -M y te 6 0 , s h o w n here,

th a t use th e te le p h o n e h a n d s e t

its e lf.

D ire c t-c o n n e c t m o d e m s ,

w h ic h are g e n e ra lly ra th e r m o re

e xp e n s ive , ge n e ra te and

re c o g n is e e le c tro n ic s ig n a ls th a t

re p re s e n t th e Os a n d 1s o f th e

in fo rm a t io n b e in g rece ived o r

tra n s m itte d . A c o u s tic c o u p le rs ,

w h ic h m a y be b a tte ry pow e re d ,

tra n s la te th e Os a n d 1s in to

a u d ib le to n e s fo r t ra n s m is s io n

o ve r th e te le p h o n e n e tw o rk , and

p e r fo rm th e s a m e p ro c e s s in

reverse to rece ive in fo rm a tio n

Also Available...
In a d d it io n to th e u n its s h o w n

here , th e re are o th e r d e v ice s

a v a ila b le to e n h a n c e th e ZX81 ’s

p e r fo rm a n c e . A c o lo u r ca rd , fo r

e x a m p le , w i l l p ro v id e up to 16

c o lo u rs on th e TV d is p la y , a n d a

s o u n d g e n e ra to r w i l l g iv e th re e

p ro g ra m m a b le ‘v o ic e s ’. B i

d ire c t io n a l p o r ts can s u p p o r t up

to 16 in p u t /o u tp u t d e v ic e s a t

once . Far f ro m b e in g a s m a ll

and u n s o p h is t ic a te d h o m e

c o m p u te r b e s t s u ite d fo r p la y in g

g a m e s a n d le a rn in g th e

ru d im e n ts o f BASIC

p ro g ra m m in g , S in c la ir ’s ZX81

can be e xp a n d e d to m e e t th e fu l l

p o te n tia l o f its Z 8 0

m ic ro p ro c e s s o r

326 THE HOME COMPUTER COURSE

Speech Synthesis
A n o th e r in te re s tin g e x tra fro m

C heetah is th e S w e e t T a lke r

speech s y n th e s is u n it. ,S w e e t

T a lke r uses an a llo p h o n ic

s y s te m , a n d h e n ce is m u c h less

c o m p le x to p ro g ra m th a n u n its

th a t w o rk in p h o n e m e s

(a llo p h o n e s are g ro u p s o f lik e -

s o u n d in g p h o n e m e s). T h e re are

o th e r s im ila r u n its a v a ila b le fo r

ZX81 a n d m a n y o th e r h o m e

Joystick Controller And Joystick
G iven th a t m a n y o f th e ZX81 s

s o ld m u s t be used fo r g a m e s

p la y in g , i t is p e rh a p s ra th e r

s tra n g e th a t S in c la ir has n o t

p ro d u c e d its o w n jo y s t ic k s and

c o n tro lle rs . H ow ever, a w id e

v a r ie ty are a v a ila b le , a n d th e se

are e ith e r n o n -p ro g ra m m a b le ,

w h ic h s p e c ify fo r yo u w h ic h key

s tro ke s w il l be m a d e b y th e

jo y s t ic k , o r p ro g ra m m a b le ,

w h e re th e u s e r d e c id e s w h ic h

keys w il l be s im u la te d . The

m o d e l s h o w n here , f ro m AGF

H ardw are , is p ro g ra m m e d by

m o v in g c o n n e c tin g ca b le s

a ro u n d . O th e rs are p ro g ra m m e d

th ro u g h th e c o m p u te r. T h is one

w il l a cce p t a n y s w itc h - ty p e

jo y s t ic k , a n d a lso a tra c k b a ll

ZX Printer
S in c la ir ’s o w n Z X P r in te r uses

a lu m in is e d p a p e r th a t is

s e n s it iv e to e le c tr ic ity . Ins tead

o f p r in t in g in a c o n v e n tio n a l

m a n n e r, th e p r in t head rem oves

th e a lu m in is e d c o a tin g to reveal

a d a rk e r s u r fa c e b e n e a th . W h ile

re a s o n a b ly fa s t in o p e ra tio n , th e

l im ite d p a p e r ty p e a n d w id th are

m a jo r p ro b le m s . It is p o s s ib le to

use a n o rm a l p r in te r, how ever,

v ia an in te r fa c e ca rd . C ards are

a v a ila b le to s u p p o r t R S 2 3 2 and

C e n tro n ic s in te rfa c e s

Hebot
T he H e b o t tu r t le , a v a ila b le

e ith e r re a d y -m a d e o r in k it fo rm ,

is o n e o f th e m o re s o p h is tic a te d

o f th e d e d ic a te d f lo o r ro b o ts . It

c o m e s c o m p le te w ith s o ftw a re

to d r iv e it, a n d th e re a re a

v a r ie ty o f e x tra s a v a ila b le su ch

as p h o to s e n s o rs , w h ic h can be

used in c o n ju n c t io n w ith

re fle c tin g ta p e s tu c k d o w n o n to

th e f lo o r , to m a ke th e ro b o t

fo l lo w a p re d e te rm in e d pa th

Keyboards
The m u lt i- la y e r m e m b ra n e

ke yb o a rd is p e rh a p s th e ZX81 ’s

le a s t s a t is fa c to ry fe a tu re , so it is

h a rd ly s u rp r is in g th a t a n u m b e r

o f c o m p a n ie s o f fe r a lte rn a tiv e

fu ll-s iz e ke y b o a rd s w ith

c o n v e n tio n a l s p ru n g keys. The

M a p s o ftZ X 8 1 ke y b o a rd , s h o w n

here, is a v a ila b le fro m M a p lin

E le c tro n ic s e ith e r as a k it o r

re a d y -b u ilt.

In a d d it io n to th e n o rm a l

ch a ra c te r se t, th e M a p s o ft

ke yb o a rd p ro v id e s th re e extra

keys. For less th a n £ 3 0 it is a

v e ry u s e fu l a d d it io n to a n y ZX81,

th o u g h s im ila r p ro d u c ts can

c o s t m o re th a n tw ic e as m u ch .

A n o th e r a p p ro a ch is a s t ic k -o n

ke yb o a rd th e sa m e s ize as th e .

Z X 8 1 ’s o w n , w h ic h is used in

c o n ju n c t io n w ith th e o r ig in a l. It

m a ke s lo c a tin g a p a r t ic u la r key

ra th e r eas ie r, b u t has no o th e r

e ffe c t

THE HOME COMPUTER COURSE 327

B y p a y in g c a re fu l a tte n tio n to v a r ia b le s a n d p ro g ra m s tru c tu re , y o u

c a n s p e e d u p th e o p e ra tio n o f a lm o s t a n y B a s ic p ro g ra m

B a sic is, despite what its critics say, a versatile
language and a powerful educational aid. You can
write any program in b a sic , provided your
machine has enough memory and the execution
time is not important. However, because basic is
usually interpreted rather than compiled (see
page 184), it can be painfully slow in executing
programs — especially those that require the same
instruction to be translated and executed
repeatedly.

Sorting, for example, is a highly repetitive
process: the procedure is carried out within a
loop, and there are smaller loops nested inside the
main loop (see page 286). If 100 items are to be
sorted, the program may make between 2,500
and 5,000 iterations of the loop. A basic sort will
always be slow, but the way the code is written can
make a significant difference to the speed of
execution. If an instruction is to be repeated 5,000
times, and if coding it properly can save one
hundredth of a second of execution time for each
repetition, then there will be a total saving of 50
seconds — a considerable improvement for the
user.

To observe the difference that good and bad
coding can make, you will need a timing
mechanism and a ‘testbed’ program. If you own a
Commodore computer, you can use the system
clock, with the associated variables Tl$ and Tl, as
part of the testbed program. If your computer
doesn’t have an accessible clock, you’ll have to use
a stopwatch to time the code in execution. It is
also a good idea to make your program ‘beep’ at
you when it starts and finishes, so that you’ll know
when it’s operating.

The testbed program looks like this:

1000 L=500
2000 PRINT “***go***”:REM “BEEP”

instructions here
2100 Tl$=“000000”
2200 FOR K=1 TO L

2900 NEXT K:T9=TI
2950 REM “ BEEP” instructions here
3000 PRINT “ * * * * * * S T 0 P * * * * * * ”
3100 PRINT “That took (T9/60); “ seconds”

Lines 2100 and 3100 are for Commodore users.
For other machines, delete or replace them with
appropriate code. The space between lines 2200
and 2900 is where we will put the code to be
timed. Notice that the timings will refer to L
repetitions where L is the limit of the loop. Testing

only one execution of a piece of code would be
very inaccurate because the system clock
measures only in 60ths of a second, and there is a
timing overhead imposed by the code of the
testbed program as well.

Here are some general rules for writing
efficient b a sic , roughly in order of importance:

1. Avoid all arithmetic in loops.

Exponentiation (x3, meaning ‘x raised to the
power of 3’, for example), and mathematical
functions (cos(y), meaning ‘the cosine of the
angle y’, for example) are particularly slow.
Multiplication and division are slower processes
than addition and subtraction, but even the
quickest of these operations (addition) is
relatively slow.

In the testbed program insert these lines:

900 Z-1.1
2300 X=ZT3

and run it. On our test machine 500 repetitions
took 27.95 seconds. Now replace line 2300 with:

a dramatic

2300 X=Z*Z*Z

and run it. This took 3.55 seconds —
difference!

Further investigation will reveal the level of
exponentiation at which it becomes worthwhile
replacing repeated multiplication by the
exponentiation function. On our computer this
was at the 18th power (when X=Zt18).
Remember, however, that to calculate Z2-3, for
example, repeated multiplication would be
useless, whereas the exponentiation function (t)
works for all real numbers, including negative
ones.

Use the testbed program to see how long the
other arithmetic processes take, and compare
alternatives. Is it quicker to divide a number by 2,
or multiply it by 0.5, for example?

2. Use variables rather than numerical
constants.

Every time a numerical constant (7,280 for
example) occurs in a basic instruction, time is
spent translating the number into usable form.
Try this line:

2300 X=X+7280

On our machine that took 4.63 seconds to
execute 500 repetitions, whereas:

328 THE HOME COMPUTER COURSE

S o ftw a re

900 C=7280
2300 X=X+C

took 2.75 seconds to do the same number of
repetitions.

3. If you must use the GOTO statement, jump
forward in your program rather than back. If
you must jump back, however, jump to the
start of the program rather than back a few
lines.

The same is true for G 0 S U B. On meeting aGOTOor
GOSUB instruction the basic interpreter compares
the target line number with the current line
number. If the target is greater than the current,
the interpreter simply searches forward, line by
line, until it is found. But if the target is less than
the current, then the search always begins from
the very first line of the program. This means that
it may be more efficient to place subroutines and
frequently used sections at either end of a
program. Add 56 REM lines at the start of the
program, to make it up to typical length, and try:

2300 GOTO 2400
2400 GOTO 2500
2500 GOTO 2900

This took 2.33 seconds for 500 repetitions,
whereas:

2300 GOTO 2500
2400 GOTO 2900
2500 GOTO 2400

took 4.85 seconds.

4. Initialise all variables in order of access
frequency.

Variable names are stored by the interpreter in a
symbol table in the order in which they first
appear in a program. The later a variable occurs in
the table, the longer it takes to find it and access its
contents. For the same reason you should avoid
using a new variable in a program where you can
resort to one previously used by the program but
currently not in use.

If a variable is used inside nested loops — as is
common in sorting — that variable is accessed
frequently, so initialise it at the start of the
program before any other variable, with a dummy
value if need be:

1000 L=500:C=7280:X=0:Z=1.1
2300 A=0

took 2.2 seconds for 500 repetitions, whereas:

1000 A=0:L=500:C=7280:X=0:Z=1.1
2300 A=0

took 2.06 seconds.

TOP OF MEMORY
BYTE NO. 65535

Memory Map
T h is a s im p lif ie d m e m o ry

m a p o f a ty p ic a l h o m e

c o m p u te r . M o s t

m ic ro p ro c e s s o rs can a d d re s s

up to 6 4 K (6 5 5 3 6 b y te s),

w h ic h w il l be d iv id e d up in to

R O M , R A M , a n d unused

space . W h e n c o n s id e r in g th e

speed o f a BASIC p ro g ra m ,

o n e o f th e m o s t im p o r ta n t

fa c to rs is th e w a y in w h ic h

s tr in g s are s to re d . W h e n e ve r

th e c o n te n ts o f a s tr in g are

a lte re d , a c o m p le te n e w c o p y

o f th e s tr in g w il l be m a d e in

m e m o ry . E ve n tu a lly , a ll th e

fre e m e m o ry w il l be used up

a n d BASIC w il l have to in v o k e

th e G a rbage C o lle c to r, w h ic h

t id ie s up th e s tr in g m e m o ry .

T h is m ig h t ta ke seve ra l

s e c o n d s , and in a p ro g ra m

th a t m a n ip u la te s a lo t o f

s tr in g s , th is c o u ld s lo w d o w n

th e p ro g ra m c o n s id e ra b ly

OPERATING
SYSTEM

SCREEN
MEMORY

STRING
DATA

o o o ^
FREE MEMORY

NUMERIC
VARIABLES

BASIC
PROGRAM

TEXT

BYTE NO. 0
BOTTOM OF MEMORY

SYSTEM
DATA

T h is is th e s e t o f s ta n d a rd

p ro g ra m s he ld in R O M , w h ic h

th e c o m p u te r needs to

o p e ra te in te rn a lly

Each b y te o f th is R AM

c o rre s p o n d s to a c h a ra c te r

p o s it io n on th e sc re e n

W h e n a s tr in g is d e fin e d o r

a lte re d , th e c h a ra c te rs w il l be

s to re d in th is s e c tio n o f R AM

A s th e v a r ia b le l is t o r th e

le n g th o f s tr in g s in c re a se s ,

th e fre e m e m o ry is used up

N u m e ric v a r ia b le s ty p ic a lly

o c c u p y seven by te s each : tw o

fo r th e v a r ia b le nam e , and fiv e

to h o ld th e n u m b e r in

f lo a t in g -p o in t fo rm a t

The te x t o f a p ro g ra m is

s to re d here , u s u a lly in the

fo rm o f ASC II codes.

H o w e ve r, to save m e m o ry ,

k e y w o rd s lik e P R IN T and

IN P U T are s to re d as o n e byte.

T h is is ca lle d to k e n is in g

A ll c o m p u te rs use up s o m e o f

th e ir R A M fo r in te rn a l

v a r ia b le s and b u ffe rs fo r

ca sse tte and ke yb o a rd

the contents of string memory. This procedure can
take a lot of time.

A general demonstration of this is difficult to
write because computers vary so much in their
memory management: you have to fill up most of
the user memory with data — a large numeric
array will do — then perform string manipulations
that will cause the Garbage Collector to be called.
On our machine we entered:

40 POKE 52,32:P0KE 56,32:CLR

to re d u c e sev e re ly th e a m o u n t o f m e m o ry

a v a ila b le to basic p ro g ra m s , a n d th e n e n te re d :

1000 L=500:DIMT$(L)
1100 FOR K=1 TO L
1200 T$(K)=“A”+“ B”
1300 PRINT K
1400 NEXT K

which uses up a lot of string memory and provides
a string array for later use. The PRINT statement is
executed in every iteration, displaying the value of
the loop counter. When we ran this version of the
testbed program, the printing repeatedly paused
as the Garbage Collector was called to rearrange
memory. Sometimes the pause lasted more than
three seconds. The program continues:

5. Avoid using strings.

String operations use up memory in ways that
arithmetic does not, and a system program called
the Garbage Collector may have to be called
every now and again by the interpreter to tidy up

2300 A$=LEFT$(T$(L),1):B$=A$+RIGHT$(T$(L),1)

and this took 30.03 seconds for 500 repetitions.
When we ran the same program with much more
memory available, garbage collection was not
visible, and the timed loop took 8.66 seconds.

THE HOME COMPUTER COURSE 329

LIZ DIXO
N

A lth o u g h c le a r ly d e s ig n e d to b e

lo w in p r ic e th is c o m p u te r o ffe rs

g o o d c o lo u r, a n d m a n y fe a tu re s

o f m o re e x p e n s iv e m a c h in e s

Reset Button
B ecause i t ’s la rge a n d b r ig h t

red , th e rese t b u tto n is m u ch

e a s ie r to f in d th a n on so m e

o th e r m a c h in e s . W h e n u s in g

th e M C -10 , ta k e care n o t to

b u m p th e b a ck o f th e m a c h in e

to o ha rd be re

Cassette Interface
R em o te c o n tro l is p ro v id e d

th ro u g h th is f iv e -p in D IN p lu g

on p in s 1 a n d 3. S ig n a l in p u t is

on p in 4 , o u tp u t on 5, a n d th e

s ig n a l g ro u n d is on p in 2

System Bus
T h is is n o t e xp la in e d in the

m a n u a l, th o u g h it is o b v io u s ly

in te n d e d to be used w ith so m e

u n s p e c if ie d e x p a n s io n u n its .

There are, how eve r, e n o u g h _

lin e s to h a n d le s o m e c o m p le x

dev ice s
ROM----------
T h is is s o ld e re d f i r m ly o n to th e

b o a rd , a n d so is n o t lik e ly to be

rep la ce d w ith u p g ra d e s o r

a lte rn a tiv e s . The M ic ro s o ft

BASIC is s to re d on th e 8 K by tes

o f ROM

The Tandy MC-10 is a compact little machine
that achieves a lot using a few sophisticated chips.
The keyboard is a button-type, though slightly
larger than others of that kind, and possesses a
proper space bar. Other features make the
machine quite easy to use. Single-key b a s ic

keyword entry, for example, is achieved by
holding the CONTROL key down while pressing the
desired function key. The machine also defaults to
‘all capitals’ mode when it’s switched on, and the
lower case mode is a toggle — activated by
pressing SHIFT 0, and de-activated by pressing the
same keys again.

The screen display is smaller than that of most
other home computers. There are only 16 lines of
32 characters, and only fairly low resolution
graphics can be achieved. The display has other
shortcomings as well, including rather limited
colour facilities, although the quality of the colour
is very good. Most surprisingly, it will not display
lower case characters, which are recognised but
shown as inverse upper case letters instead. Text
can only be green on black or vice versa, and
though the block-graphic symbols may be in any
one of nine colours, either the letter or the

Tandy MC-10 Keyboard
T he ke yb o a rd is a b u tto n - ty p e ,

b u t i t ’s b e tte r th a n m any. The

keys are hard p la s t ic w ith

e n g ra ve d le g e n d s th a t ta ke

lo n g e r to w e a r o ff , and th e re ’s a

real space bar. U n fo rtu n a te ly ,

th e re ’s o n ly one S H IFT key,

w h ic h is p la ce d on th e r ig h t-

hand s id e , a n d th e la rge b u tto n

on th e le ft is th e m o re

c o n v e n ie n tly p o s it io n e d

C O N TR O L key. The fee l o f the

keys is c o m fo r ta b le , b u t th e y

are n o t s u ita b le fo r s p e e d

ty p in g

RS232 Interface -
T h is is a lso a D IN p lu g , b u t is

c o n s tru c te d o f fo u r p in s . C a rr ie r

d e te c t is on p in 1, rece ive da ta

on p in 2, g ro u n d is on p in 3 and

tra n s m it d a ta on p in 4

CPU.
U n u su a lly , th e T and y M C -10

uses a 6 8 0 3 p ro ce sso r, ra th e r

th a n o n e o f th e m o re p o p u la r

ty p e s . T h is p ro c e s s o r is a

m e m b e r o f o n e o f the o ld e r

fa m ilie s , and is n ’t as w e ll-

k n o w n as th e 6 5 0 2 o r Z 80 .

H ow ever, i t ’s a u s e fu l 8 -b it ch ip

w ith a re a s o n a b le in s tru c t io n

se t

Static RAM
T he n o m in a l 4 K b y te s o f use r

R A M is h e ld oh th e se tw o

2 K by tes x 8 - b i t s ta t ic R AM

c h ip s , as are th e sc re e n R AM

a n d s o m e s y s te m v a ria b le s

/

mfm?■ 4

w V -
.. r ™ ^

6847 VDP
In common with many other

m a c h in e s , th e sc re e n is

c o n tro lle d b y a s p e c ia l ch ip ,

w h ic h in th is case is th e MC

6 8 4 7 V id e o D is p la y P rocesso r.

T h is c h ip is th e sa m e as th a t

used in th e D ra g o n 32 , and (in

th e o ry at leas t) can be

p ro g ra m m e d fo r d if fe re n t

sc re e n fo rm a ts . In p ra c tic e ,

how ever, th is is s e ld o m d o n e

*N >

M

330 THE HOME COMPUTER COURSE

H a rd w a re Focus

Heat Sink
The T riac p o w e r re g u la tin g

t ra n s is to r b e c o m e s v e ry h o t

w h e n i t ’s ru n n in g , and th e hea t

is d is s ip a te d by th is la rge p iece

o f m e ta l

TV Modulator
T h is c o n v e rts th e da ta streaiYi

p ro d u c e d b y th e v id e o c irc u it ry

in to a C h an ne l 3 6 TV s ig n a l, b u t

w ith no s o u n d on th e TV s ig n a l.

T h is is th e o n ly screen o u tp u t,

a n d th e re is no m o n ito r s o c k e t

on th e m a c h in e

Power Socket
T h is is a n o rm a l lo w v o lta g e c o

ax ia l s o c k e t. In c o m m o n w ith a ll

m a c h in e s o f th is typ e , th e Tandy

M C -10 ta k e s its p o w e r fro m a

s m a ll lo w v o lta g e tra n s fo rm e r

p lu g g e d in to a w a ll so cke t

TANDY M C -10

Power Switch
S in ce th e M C -10 has a rese t

b u tto n , th is doe s n o t need to be

used as an a lte rn a tiv e , as on

so m e m a c h in e s

PRICE
£49.95
SIZE
210 x178 x51m m
CPU
6803
CLOCKSPEED
4.4 MHz
MEMORY
8 Kbytes ROM
4 Kbytes RAM
VIDEO DISPLAY
16 lines of 32 characters, 9
colours with only background
settable. 75 pre-defined
characters
INTERFACES
RS232 serial, cassette
LANGUAGES SUPPLIED
BASIC
OTHER LANGUAGES AVAILABLE
NONE
COMES WITH
Operation and BASIC reference
manuals, TV lead
KEYBOARD
48 button-style keys
DOCUMENTATION
Clear, competent and well-
designed but rather lacking in
technical information. The only
major failing is the absence of an
index. A quick-reference card is
included, which gives enough
details about the BASIC for an
experienced person to start
working the machine without
delay

Crystal
4 .4 M H z is th e fre q u e n c y

g e n e ra te d b y th e m a s te r c lo c k ,

w h ic h is s u b d iv id e d in to s lo w e r

p u ls e s and used th ro u g h o u t th e

m a c h in e

background must be black. Consequently, it’s not
possible to produce a blue shape on a red
background, even in the graphics mode!

The sound function also has limitations. There
is only one channel available, which allows
minimal variations in pitch and duration only.
Input/output facilities are to cassette (including
remote control), television and an RS232 serial
port. The serial port can be used as a data transfer
line to and from other computers or, alternatively,
to drive a printer. It can also be used to create a
network with other Tandy MC- 10s.

Games do not seem to have been a high
priority with the machine’s designers, who
provided nothing in the way of paddle or joystick

ports, nor any of the special graphics and sound
controller chips found in other machines more
suited to games playing.

Some expansion possibilities are clearly
intended for the future, however, since there is a
rather mysterious system-bus ending in an edge
connector, which is covered by a screwed-on
plate. Apart from stating that ‘this slot is reserved
for future memory expansion kits’, the manual
says nothing else about it, and provides no clues as
to what accessories will be available to plug into it.

The documentation for the M C-10 is typical of
that provided for Tandy’s other machines: a rather
aloof style of writing with few breaks in a fairly
solid text.

As a low-cost machine, it is worth considering,
but when reading the specifications remember
that while it may have a nominal four Kbytes of
RAM, only 3,142 bytes are available to the user,
since the screen-RAM and some system variables
have to come out of this allocation.

THE HOME COMPUTER COURSE 331

In s ig h ts
\

T w o n e w k in d s o f jo y s tic k s
a p p e a r to h a v e n o m o v in g p a rts .
O n e u s e s m e rc u ry s w itc h e s , th e
o th e r p ic k s u p e le c tro m a g n e tic

s ig n a ls fro m y o u r b o d y

The personal computer industry is used to rapid
technological developments, and these changes
are not confined to the computers themselves —
peripherals and add-ons are also subject to swift
refinements. For instance, in the short time since
we first discussed the mechanism of a joystick (see
page 56), two completely new types have been
marketed. The most recently developed joysticks
have, in fact, almost entirely broken away from
the conventional mechanical system described
previously.

A device called Le Stik was the first analogue
joystick to reject the usual signalling mechanisms.
Le Stik consists of a contoured handgrip, fitted
with a top-mounted fire button and a side-
mounted pause control. Unlike other devices,
which are mounted on base units, the joystick is
simply held in the air and tipped from the vertical
in the direction required, and the corresponding
image on the screen moves accordingly.

The mechanism at the heart of Le Stik consists
filled with mercury,

om the vertical the
direction and makes

electrical

1
Bra-v’ '

Hands On
The T r ic k s t ic k re lie s o n ‘ m a in s

h u m ’ , w h ic h is th e

e le c tro m a g n e tic ra d ia t io n g ive n

o ff b y th e r in g m a in in eve ry

h o u se . Y o u r b o d y a c ts as an

a e ria l to m a in s h u m , a n d th e

s e n s o rs on th e s t ic k p ic k up

d if fe re n t le ve ls o f h u m

a c c o rd in g to th e p re s s u re

e xe rte d b y y o u r f in g e rs

332 THE HOME COMPUTER COURSE

T ricks tick

Horizontal Movement Controls
By ro c k in g th e th u m b be tw een

th e s e tw o p a d s , th e fo rw a rd and

b a c k w a rd m o tio n can be

c o n tro lle d

Vertical Movement Controls
T he to p pad c o n tro ls u p w a rd

m o t io n , th e lo w e r one c o n tro ls

d o w n w a rd m o tio n

Sensitivity Control
T h is a llo w s th e T r ic k s t ic k to be

a d ju s te d to each in d iv id u a l

p la y e r ’s e ff ic ie n c y as an a e ria l

Fire Buttons
Each g e n e ra te s an in d e p e n d e n t

s ig n a l, so yo u c o u ld d ro p

b o m b s w ith th e b o tto m o n e and

fire la s e r c a n n o n w ith th e o th e r

a t th e sa m e t im e

* In s ig h ts

Fire Button
The f ire b u tto n is id e a lly p laced

fo r fa s t g a m e s a c tio n

Le S tik

Handgrip ■ ■ ■ ■
T h is is o n e o f th e fe w a v a ila b le

jo y s t ic k s w ith a c o n to u re d

h a n d g r ip s u ita b le fo r b o th le ft-

a n d r ig h t-h a n d e d u se rs

Pause Button ■■ ■■ ■ -
The pause b u tto n , f it te d in to the

h a n d g r ip , a llo w s th e p la y e r to

ta ke a b re a k fro m th e a c tio n

be tw een a lie n a tta c k s , s im p ly b y

sq u e e z in g th e g r ip

had closed. Moving the handgrip back to a
vertical position allows the mercury to flow back
into the tubes, thus breaking the contact. The
response of the system is considerably better than
that of previous joysticks. Indeed it is often too
sensitive, especially if the game being played is
written for use with the conventional types of
joystick.

The latest method of converting hand
movements into signals that a computer can
understand is used by East London Robotics’
Trickstick. This joystick is unique in the electrical
effect it employs: it uses the human body as an
aerial to pick up mains hum (the harmless
electromagnetic radiation emitted by the ring
main in any room). Trickstick consists of a sealed
tube in a plastic casing, which is held vertically in
both hands. There are three pairs of touchpads set
into the surface of the tube: one pair controls the
forward and backward motion; another pair
controls the up and down movement; and the
remaining pair are the fire buttons.

The mains hum that the human body picks up
is transmitted through these touchpads to
sensitive circuitry, where the pulses are converted
into signals that provide the computer with
directional information. The signals can also be
analysed to show how far the movement should
be taken. The harder one presses a pad, the
stronger the signal and the more rapid the output
to the computer. In this way, the Trickstick
combines the proportional control of the
analogue joystick with the fast direct digital
control of a switch-based unit. Because different
people will affect the circuits in different ways, the
Trickstick has to be adjusted for individual
sensitivity. This is done by means of a knob
mounted in one end of the device.

The idea is certainly intriguing, and the
manufacturers have applied for a patent on the
technique. However, the reliability and
performance of the device have yet to be proven.

Mercury Switches
Each m e rc u ry s w itc h c o n s is ts o f

a sea led tu b e c o n ta in in g a b lo b

o f m e rc u ry th a t c lo s e s an

e le c tr ic a l c ir c u it w h e n t ilte d .

M e rc u ry is used b e ca u se o f its

d e n s ity , and because th e b lo b

w il l te n d to s t ic k to g e th e r ra th e r

th a n b re a k up in to s m a lle r b lo b s

Connecting Lead
T he c o n n e c tin g lead

w ith a s ta n d a rd A ta ri

th a t is c o m p a tib le w ith

range o f h o m e c o m p u te rs

THE HOME COMPUT ER COURSE 333

I

Sound A nd L ig h t

P lay ing Tunes
To construct a tune you must hrst assemble the
required notes. These could be, for example, the
notes of the first line of ‘Oh, I do like to be beside
the seaside’. In the correct order these can be
selected as:

D# E F D# C A# G# G G# D# D#

A s e c o n d lo o k a t th e V ic -2 0 ’s

s o u n d c a p a b ilit ie s

Last time we looked at the Vic-20 in the Sound
And Light series we learnt how the machine’s
three oscillators can be controlled by POKEing
memory locations; how to set the volume levels;
and how to control the duration of a note. We
investigated how the duration of the notes and the
pauses between them can be determined by the
use of FO R... N EXT loops or, more efficiently, by
using the Vic-20’s clock to count in jiffys (60ths of
a second). Management of these three musical
elements — frequency, volume and timing —
enables you to build simple tunes on the Vic-20
and produce useful sound effects.

Using the techniques described on page 284, the
duration of the notes and pauses can be set by
using the Tl facility. Our tune can therefore be
played by RUNning the following program (notice
the use of variables to simplify the selection of
POKES):

10 V = 36878
20 FOR I - 1 TO 11
30 READ N: REM "NOTE*
40 POKE V,7:P=TI: REM *V 0 L 0 N *
50 IFTI-P < 15THEN 50: REM "PAUSE*
60 POKE V-3,N:D=TI: REM "PLAY NOTE*
70 IFTI-D < 20 THEN 70: REM "DURATION*
80 POKE V-3,0: REM *ST0P NOTE*
90 N EXT I
100 DATA 203, 207, 209, 203: REM "NOTE VALUES*
110 DATA 195,187,179,175
120 DATA 179, 203, 203
130 POKE V,0: REM "VOLOFF*
140 END

F irs t s te p s w ith th e B B C ’s

s o p h is tic a te d g ra p h ic s

The BBC Micro is one of the most popular home
computers in Britain. Truly stunning graphics
effects can be simply achieved in a few lines of
b a s ic , and the speed at which displays are
produced on the screen using b a s ic is also
impressive.

There are several high resolution commands in
BBC b a s ic , including instructions to draw straight
lines, plot points, and plot and fill triangles. This
last function is used to colour in shapes as a series
of small triangles as there is no PAI NT-type
command available. The BBC Micro also lacks a
b a s ic command to draw circles and ellipses, and
has no sprite programming capability. However, it
does have several unusual and interesting features
that the majority of its rivals do not possess. These
include the ability to mix text and graphics on the
screen, separately controllable text and graphics
cursors, and access to the part of the machine
operating system that controls screen display,
from within a b a s ic program. This is accomplished
by the set of VDU or screen commands. Text and
graphics ‘windows’ can also be defined on the
screen, enabling the user to divide up the display
into separate sections for graphics and text.

Different colours can be defined for each window
and each may also be cleared independently.

D isp lay M odes
The BBC Micro has eight graphics modes, three of
which support text displays only. There is a choice
of 20, 40, or 80 characters across the screen,
depending on which mode has been selected.
Two, four or 16 colours are available, again
depending on the mode selected, but a pleasing
feature of the limited colour modes is that two or
four colours to be used in that mode are not fixed
and can be selected by the programmer from the
16 generally available.

M 0 D E 7 is different from all the others in that the
standard set of ASCII characters and associated
codes are not used. Instead, the display is made up
of Teletext characters. Normal graphics
commands, such as PLOT and DRAW, do not work
in MODE 7.

The following table shows the resolution and
colour choices specified by selection of any mode:

Mode Text Graphics Colours
0 80X 32 640 X 256 2
1 40X 32 320 X 256 4
2 20X 32 160 X 256 16
3 80X 25 2 (black & white)
4 40X 32 320 X 256 2
5 20X 32 160 X 256 4
6 40X 25 2 (black & white)
7 40X 25 T eletext________

334 THE HOME COMPUTER COURSE

*

S ound A nd L ig h t

This program simply plays the notes in the correct
sequence with equal durations and pauses.
Consequently, the resulting tune is somewhat
stilted. With experimentation you can construct
more complex programs that provide different
intervals and durations for individual notes.

Sound E ffe c ts
By using two or three oscillators it is possible to
play simple chords. The program below plays the
chord of D major (F#, A and D) starting with the
F# on its own, and adding the A and D after set
delays of one second each. The chord then
continues for a further two seconds.

10 POKE 36878,7
20 POKE 36874,233:D=TI
30 IFTI-D < 60 THEN 30
40 POKE 36875,219:D=TI
50 IFTI-D < 6 0 THEN 50
60 POKE 36875,147:D=TI
70 IFTI-D < 120 THEN 70
80 POKE 36878,0: POKE 36874,0
90 POKE 36875,0: POKE 36876,0
100 END

A lot can be done, however, to make the tone of
these sounds more interesting. For instance, the
volume can be varied over the duration of a note —
rising and falling according to a variable. For
example:

100 V = 36878
110 FOR 1=1 TO 12
120 POKE V,I

130 NEXT I
140 POKE V,0

This causes the volume to rise in steps of 1 to a
peak of 12, where the total range is from 0 (off) to
15 (loud). Volume can be ‘pulsed’ by alternating a
high and low volume setting, as well. The
frequency can be similarly varied to ‘bend’ a note
by changing line 120 above to:

POKE V-3,203+1

It is also worth trying different combinations of
noise, oscillator frequencies and volumes. This
can often result in a more pleasing tone. Whether
making music or adding sound effects to games,
the aim in computing is to reduce boredom by
avoiding the constant repetition of monotonous
notes.

We have shown how the simple sound facilities
on the Vic-20 can be manipulated to produce
interesting tones and note sequences. The main
problem is the lack of sound commands, which
involves the use of complex basic statements to
carry out relatively simple tasks: This results in
long program routines that prevent the basic

interpreter from processing the code in between
notes quickly enough. The only simple way to
avoid this problem is to invest in one of the many
commercial software packages that supply extra
commands for music programming.
Commodore’s Super Expander cartridge provides
a useful range of sound commands, as well as a
facility for storing tunes written with the aid of the
cartridge. However, if you require more than
rudimentary sound or music facilities from a home
computer it would be necessary to investigate
other models, such as the BBC Micro, the
Commodore 64, the Dragon 32 or the Oric-1.

The high resolution screen is defined with its
origin in the bottom left-hand comer of the screen,
regardless of the mode selected. Vertical values
range from 0 to 1023, and horizontal values range
from 0 to 1279. This consistent method of
mapping the screen becomes very convenient
when you decide to change the display from one
mode to another. Incidentally, if the mode of
display is changed during the course of a program
then the screen is automatically cleared.

Background, text and graphics colours are set
using the COLOUR and GCOL commands. The BBC
Micro uses the interesting idea of logical and
actual colours to allow the user to select a limited
set of colours from the 16 allowed. To illustrate
this it is best to use the example of using colour in
MODE 0 where only two colours can be specified.
Two possible foreground colours are given the
logical colour numbers 0 and 1, and unless the
computer is instructed to da otherwise, it takes 0
as black and 1 as white. The COLOUR command
selects the text foreground colour. COLOUR 1
would select logical colour number 1 as the text
colour, but it is possible to reset the logical text
colour using one of the VDU commands. VDU19

defines the logical colour. To set logical colour 1 to
green (actual colour number 2) the following
command is needed:

V D U 19 ,1 ,2 , 0, 0, 0,

The three noughts on the end have no significance
and are there for future expansion of the system.

The GCOL command has two numbers
associated with it. The second number is the
logical colour number for graphics display, the
first relates to the way in which that colour is used
on the screen. For the command GCOL a, b values of
a can range from 0 to 4 allowing the user to specify
whether the point or line should be displayed in
the logical foreground colour, whether it should
be ANDed, ORed or exclusive ORed with the colour
already present, or whether the original colour
should be inverted.

In a future part of the Sound And Light course
we will return to the BBC Micro and explain high
resolution capabilities, defining characters, and
look more closely at the set of VDU commands.

THE HOME COMPUTER COURSE 335

A fte r lo o k in g a t h o w to in s e r t n e w re c o rd s , w e m o v e o n to w a y s o f
re tr ie v in g th e m . A s a n tic ip a te d , w e f irs t e n c o u n te r th e p ro b le m o f

fin d in g a n e x a c t m a tc h

We ended the last instalment with an exercise for
you to write a database-type program that
allowed data to be entered into it. Let’s look at
some of the steps involved in entering a new
record as a way of continuing our examination of
what is involved in the INITIALIS E stage of our main
program. First, let’s assume that there are the
following fields and corresponding arrays:

FIELD ARRAY
1 NAME field NAMFLDS
2 MODIFIED NAME field MODFLDS
3 STREET field STRFLDS
4 TOWN field TWNFLDS
5 COUNTY field CNTFLDS
6 PHONE NUMBER field TELFLDS
7 INDEX field NDXFLDS

The meaning of most of these fields should be
reasonably clear, with the possible exception of
fields 2 and 7. Let’s first consider the MODIFIED
NAME field. When we initially looked at the
problem of the data format for the name, we
debated whether to have the name format tightly
specified (rigid) or loosely specified (fuzzy) and
we opted for the latter. Since the way a name can
be entered is extremely variable, a rigid format
would have made search and sort routines very
difficult. To solve this we decided that all names
would be converted to a standardised format: all
letters converted to upper case, all non-alphabetic
characters (such as spaces, full stops, apostrophes,
etc.) removed and that there would be only a
single space between the forename (if any) and
the surname.

The need to standardise names like this arises
because the sort and search routines have to have
some way of comparing like with like. On the
other hand, when we retrieve a name and address
from the database, we want to have the data
presented in the form it was originally entered.
There are two ways of handling this problem:
either each name filed is converted into standard
form only when sorts and searches are taking
place, or the name field can be converted into
standard form and stored as a separate field so
that sort and search routines can have instant
access to standardised names.

There are advantages and disadvantages in
both approaches. Converting the name fields
temporarily when they are wanted by other
routines saves memory space, since less data
needs to be stored in the file. On the other hand,
this procedure is extremely time-consuming.

However, if a separate field is reserved for the
standardised form of the name, the conversion
will need to be performed only once for each
record. And although extra memory is consumed,
searches and sorts will be executed quicker.

The other field that may cause confusion is the
INDEX field. This is really included as a spare field
to allow for future expansion or modification of
the database without the need for major rewriting
of the program. Its inclusion introduces the topic
of ‘binding’ — a term that means the fixing of data
and processing relationships. All the fields or
elements in each of the records are bound because
they have the same index (the same element
number or subscript in their respective arrays),
and because all the fields in a record will be stored
in a file together. This can make the addition of
new data types or relationships at a later stage a
difficult task, possibly involving the complete
reorganisation of the file structure and a major re
writing of the program. The incorporation of the
IN D EX field at this stage will make future changes
to the program much simpler.

Before attempting to add a new record to the
database, we will make a few assumptions about
the structure of the files. First, we will limit the
number of records to 50 (even though this is really
too small for a useful address book — we’ll find
out how to handle large amounts of data later).
We will also assume that all the data has already
been transferred — as part of the INITIALISE
procedure — into arrays.

When a new record is added, it is simplest to
add it to the end of the file (that is, to the first
empty element in each array). There is a good
chance that the new record will be out of order
with the others, but that is a problem we can
investigate later. The first thing to do, therefore,
will be to find out how big the array is. Since this is
a piece of information likely to be useful in many
parts of the program, the best place to do it is in
INITIALISE. TTiis is a clear case of the need for a
global variable (that is, a variable that can be used
in any part of the program). We will call it SIZE.
Another global variable likely to be useful is the
index of the current record. Since no record will
be current when the program is first run, assigning
an initial value to CUR R will have to wait until the
program does something to the data. CURR can,
however, be initialised to zero in the
INITIALISATION procedure. Initialising a variable to
zero is not strictly necessary in b a s ic as this is done
automatically. It is, however, good practice and

COURSE

should always be done for local variables to
prevent ‘side effects’ from the use of the same
variable elsewhere in the program.

When the program is first run, various types of
initialisation will take place and data will be
loaded from disk or tape and transferred to string
variables. The CHOOSE menu will then be
presented. If the user chooses option 6 (to add a
record to the file), the value of variable CHOICE
returned will be 6, and this will call the sub
program ADDREC. ADDREC will assume that SIZE
has already had a value assigned to it and so it can
start prompting for inputs (note: this also assumes
that INITIALISE has already correctly DIMensioned
the necessary arrays).

Adding a new record also means that the file is
now, potentially at least, out of order. Since a sort
may take some time, it may not be necessary to
sort the records after each addition has been made
— that is a decision we shall defer for the moment.
Instead, we will set a flag to indicate that a new
record has been added.

We are now in a position to start making a
tentative list of possible arrays, variables and flags
that may be needed by the program.

ARRAYS
NAMFLDS (name field)
MODFLDS (modified name field)
TWNFLDS (town field)
CNTFLDS (county field)
TELFLDS (telephone number field)
NDXFLDS (index field)

VARIABLES
SIZE (current size of file)
CURR (index of current record)

FLAGS
RADD (new record added)
SORT (sorted since record modification)
SAVE (save executed since record

RMOD
•

m odification)
(m odification made since last save)

is likely that in the course of developing the
program a few more arrays will be needed.
Certainly more variables will be needed. As for
the flags, it is apparent that although others will be
necessary, the four given above may not all be
required. There will be no need either to save or
sort the file (assuming it is already saved and
sorted) unless a modification has taken place, so
RMOD is possibly the only flag really needed. But if
we do decide to use all four flags, the
INITIALISATION sub-program should set them all to
their appropriate values. As further practice in
top-down program refinement, let’s see how easy
it is to code ‘ ADDREC*.

14 (EXECUTE) 6 (ADDREC)
BEGIN

Locate current size of file
Prompt fo r inputs
Assign inputs to ends of arrays
Set RMOD flag

END

I I 4 (EXECUTE) 6 (ADDREC)
BEGIN

(size of file is SIZE)
(prompt for inputs)
Clear screen
Print prompt message for firs t array(SIZE)
Input data to array(SIZE)
(prom pt and input fo r all arrays)
Set RMOD to 1

END

All this is straightforward and does not involve
loops or other complicated structures. The next
step can be direct coding into ba sic . The only
points to note are that SIZE is a variable set during
the execution of INITIALISE and does not need to
be coded as part of this section.

Ill 4 (EXECUTE) 6 (ADDREC) BASIC CODE
CLS: REM OR USE PRINT CHR$(24) ETC TO CLEAR

SCREEN
INPUT "ENTER NAME” ;NAMFLD$(SIZE)
INPUT "ENTER STREET” ;STRFLD$(SIZE)
INPUT “ ENTER TOWN” ;TWNFLD$(SIZE)
INPUT “ ENTER COUNTY” ;CNTFLD$(SIZE)
INPUT “ ENTER TELEPHONE NUMBER” ;

TELFLDS(SIZE)
LET RM0D=1
LET NDXFLD$=STR$(SIZE)
GOSUB ‘ MODNAME*
RETURN

The third to last line sets the NDXFLDS field to the
value of SIZE (converted into a string by STR$), so
that it can act as an index at a later stage. The
subroutine ‘ MODNAME*, called just before the end
of the program, is none other than the program
described in detail on page 254. A few slight
changes will be needed to that program, but these
are just details. This subroutine has the function of
taking the ordinary (fuzzy) name input and
converting it into a standard form. The output
from this subroutine will be an element (SIZE) in
an array called MODFLDS. All name searches and
sorts can now be conducted on the elements in
MODFLDS, and since the element will have the
same index as the other fields in the record, it will
be easy to display the name and address as they
were originally entered. In other words, the search
will be made on MODFLDS but the display will
come from NAMFLDS.

That’s about all that’s involved in adding a new
record to the file, although we have not made
allowances for any error checking, or provision
for what would happen if there is no more space
left in the array. Since all our programs are being
written in modular form, modifications and
improvements such as these can easily be made
later without having to rewrite the whole
program.

The sub-programs MODREC and DELREC (to
modify and delete records respectively) are fairly
similar to ADDREC, except that before they can be
executed we have to locate the record we want to
change. Consequently, both of these sub-

THE HOME

B asic P ro g ram m in g

m

: ; - y .

‘. * X -

programs will start by calling FINDREC. This sub
program is based on a search routine similar to the
one described on page 273. The chief difference
this time is that (in all probability) no two data
items will be identical, since few people have
completely identical names.

There are two ways a search can be conducted.
One is to search through an unordered pile. This
makes the searches slower than they need to be. In
the worst case, the routine might have to search
through all of the data items before locating the
item being searched for. Searching through an
unordered pile does have the advantage, however,
that sort routines are not required every time a
record is added, deleted or modified.

If the data is ordered in some way — either
numerically or alphabetically, for example — the
program will have to search through only a small
fraction of the items in the list. The longer the list
is, the more efficient a binary search becomes
compared with searching through an un-ordered
pile. In fact, if there is enough data in the file to
warrant it, the sorting of the records after a
modification can be speeded up by conducting a
preliminary search to locate the first and last
occurrence in the array of the initial letter of the
surname in the record involved.

Another way to speed up the sort routine
might be to maintain a look-up table of the
locations in the array of the first occurrence of
each letter of the alphabet. This table, however,
would need to be carefully maintained (updated)
whenever any changes were made to the data.

The subject of searching and sorting is one of
the largest areas in programming, and books have
been devoted to it. We will not attempt to find the
optimal solution for our address book program
since this depends on a large number of factors,
including the number of records in the file and
whether or not disk drives are available.

A program in pseudo-language for a search
through the elements in the MODFLDS array is now
given. The string variable KEYS is the key for the
search. The term ‘key’ here means the identifying
group of characters used to specify which record
(or records) is required.

Prompt fo r name to be searched
LET KEYS = name (to be searched)
LET BTM = 1
LET SEARCHING = 0
LET TOP = SIZE
LOOP while (BTM < = TOP) AND (SEARCHING = 0)

LET MID = INT ((BTM + T0P)/2)
IF KEYS = MODFLDS(MID)

THEN
PRINT NAMFLDS(MID)
PRINT STRFLDS(MID)
PRINT TWNFLDS(MID)
PRINT CNTFLDS(MID)
PRINT TELFLDS(MID)
LET SEARCHING = 1

ELSE
IF KEY$>M O DFLD$(M ID)

THEN LET BTM -M ID + 1
ELSE LET TOP = MID-1

ENDIF
ENDIF

ENDLOOP
IF SEARCHING = 0 THEN PRINT “ RECORD NOT

FOUND”
END

This piece of pseudo-language is closely based on
the program used for searching football scores on
page 275, but you will see that it does have a
suitable output if the record cannot be found (the
last PRINT statement), which will be executed only
if the loop fails to locate an exact match between
KEYS and MODFLDS(MID).

Unfortunately, an exact match is rather
unlikely, even if the name and telephone number
you want is in the database. This is because the IF
KEYS = MODFLDS statement is totally inflexible; it
does not allow for the slightest difference between
the character string input by the user in response
to the prompt and the character string stored in
MODFLDS(MID). In an ordinary address book, the
eye scans down the page and is able to allow for
all sorts of small differences in the actual
representation of the record and what you are
looking for. The computer cannot do this.

There are, however, ways of avoiding this,
although they all involve extra programming
effort and will take a little more time to run. The
first improvement would be to check only the
surname first, and for this reason it makes sense
for the name stored in MODFLDS to be in the form
SURNAME (space) FORENAME. We developed a
routine for reversing the order of a name earlier in
the Basic Programming course (see ‘Basic
Flavours’) and this can be incorporated as a
subroutine within the ADDREC routine when the
MODFLDS field is created.

Having successfully located the first occurrence
of the required surname, the FINDREC routine
should then check the forename part of that
element to see if it is identical to the name input
(KEYS). If it is, there is no problem — the record
has been located. If it is not, however, the problem
starts to get complicated, and we have to plan our
strategy carefully. We could, for example, search
through all the forenames, and if an exact match is
not found, start looking for an approximate
match. The difficulty here is: what exactly
constitutes an approximate match?

Instead of the “ RECORD NOT FOUND” message in
the program above, it might be better to give a
message like “ EXACT MATCH NOT FOUND, TRY FOR A
CLOSE MATCH? (Y /N)?” What do the words ‘close
match’ mean? Is Bobby a close match to Robert?
How about Robrt? Both of these represent
possible inputs in the FINDREC program. Let’s try
to define what we mean by a close match and then
start to develop a program in b a s ic to find the
closest match to an input string.

Suppose the string in memory was ROBERT.
Which of the following is the closer match: ROB or
RBRT? The second gets four letters right out of six,

338 THE HOME COMPUTER COURSE

B asic P ro g ram m in g

*

while the first gets only three out of six. On the
other hand, the first has three letters in correct
sequence, while the second has only two.

The choice is largely arbitrary. We will opt for
giving priority to an exact match between KEY$
and a substring of the name in memory. If no
exact match with a substring can be found, the
program will try to get the largest number of
common letters. Here’s the program stated in
terms of input and output:

INPUT
A character string
OUTPUT
The closest match to the input string

The following program, in a pseudo-language
close to b a sic , will search through the strings in an
array and examine the first ‘n’ letters in each,
where ‘n’ is the number of letters in the key (KEYS).
If there is no match, a message to that effect will
be printed:

DIM ARRAYS(4)
FOR L = 1 TO 4
READ ARRAY$(L)
NEXT L
DATA “ ROBERT” , “ RICHARD” , “ ROBIANA” ,

“ ROBERTA”
LET KEYS = “ RON”
LET LKEY = LEN(KEYS)
LET SEARCHING = 0
LOOP FOR INDEX = 1 TO 4

IF KEYS = LEFT$(ARRAY$(INDEX),LKEY)
HEN PRINT “ MATCH IS ” ;ARRAY$(INDEX)

LET SEARCHING - INDEX
ENDIF

ENDLOOP
IF SEARCHING = 0

THEN PRINT KEYS; “ IS NOTAN EXACT MATCH
OF ANY”

PRINT “ FIRST ” ;LKEY; “ CHARACTERS”

After this, the program could go on to look at
groups of characters LKEY long, starting with the
second character in each string. If none of these
matches, groups starting with the third character
could be searched, and so on. Finally, if none of
the triplets of characters in the strings matches, the
program could try to find which string had the
largest number of letters in common with KEYS.
This is left as an exercise for the reader.

We could in fact write pages on the subject of
‘fuzzy’ matching, and the different techniques
employed in commercial database packages.
Most offer the ability to search on the first few
characters in the field, like the code we have just
been developing. Others will retrieve a record if
the specified sequence of characters appears
anywhere in the field, or indeed anywhere in the
record. A ‘wildcard’ facility is particularly useful,
so that specifying: J?N would find JONES, or JANE
but not JOHN. The most sophisticated form of
fuzzy matching works phonetically, so that
entering SMITH would also find SMYTHE.

Basic Flavours
n

Z X 8 1
S P E C TR U M

Jg
L E F T S

r
R IG H T S

J

r

J

INSTR
L

T h is is th e l is t in g o f th e p ro g ra m to reve rse

th e o rd e r o f F irs tn a m e a n d S u rn a m e , f i r s t

p u b lis h e d on page 136:

100 CLS

2 0 0 P R IN T “ ENTER N A M E IN TH E F O R M ”

3 0 0 P R IN T “ F IR S TN A M E S U R N A M E ”

4 0 0 P R IN T “ E.G. J IL L T H O M P S O N ”

5 0 0 IN P U T “ ENTER N A M E ” ;N $

6 0 0 G O S U B 9 5 0 0

7 0 0 P R IN T “ N A M E IN STAN D AR D FO RM IS ”

8 0 0 P R IN T N $

1000 STOP

9 5 0 0 REM S /R TO REVERSE N A M E ORDER

9 5 2 0 G O SU B 9 6 0 0

9 5 4 0 IF P =0 TH EN R ETU R N

9 5 6 0 LET N $ = S $ + “ , ” +F$

9 5 8 0 RETURN

9 6 0 0 REM S /R TO S LIC E N $ AT A SPACE

9 6 2 0 LET N =LE N (N $)

9 6 3 0 LET P=0

9 6 4 0 FOR K=1 TO N

"T H E N L E T P = K

’’ TH E N L E T K = N

9 6 5 0 IF N $ (K)= “

9 6 5 5 IF N $ (K)= “

9 6 6 0 N EXT K

9 6 7 0 IF P = 0 TH E N RETURN

9 6 8 0 LET F $ = N $ (TO P -1)

9 7 0 0 LET S $ = N $ (P + 1 TO)

9 7 2 0 RETURN

On th e C o m m o d o re 6 4 , V ic -2 0 , O ric -1 , a n d

Lynx , rep lace lin e s 9 6 0 0 to 9 7 2 0 o f th e

S p e c tru m lis t in g b y th e s e lin e s :

9 6 0 0 REM S /R TO S LIC E N $ AT A SPACE

9 6 2 0 LET N =LE N (N $)

9 6 3 0 LET P=0

9 6 4 0 FOR K -1 TO N

9 6 5 0 IF M ID $ (N $,K ,1) * “

LET K=N

9 6 6 0 N EXT K

9 6 7 0 IF P =0 TH EN R ETU R N

9 6 8 0 LET F $ = L E F T $ (N $,P -1)

9 7 0 0 LET S $ = R IG H T $ (N $,N -P)

9 7 2 0 RETURN

TH E N LET P=K:

On th e D ra g o n 32 and th e BBC M ic ro , re p la ce

lin e s 9 6 0 0 to 9 7 2 0 o f th e S p e c tru m lis t in g by

th e s e lin e s :

9 6 0 0 REM S /R TO S LIC E N $ AT A SPACE

9 6 2 0 LET N =LE N (N $)

9 6 4 0 LET P = IN S T R (N $,“ ”)

9 6 7 0 IF P =0 THEN RETURN

9 6 8 0 LET F $ = L E F T $ (N $,P -1)

9 7 0 0 LET S $ = R IG H T $ (N $,N -P)

9 7 2 0 RETURN

A s w e have m e n tio n e d b e fo re , IN STR is a

u s e fu l fu n c t io n , p a r t ic u la r ly w h e n d e a lin g

w ith d a ta b a s e -ty p e a p p lic a t io n s s u c h as th is .

If y o u r m a c h in e has IN S TR , th e n y o u m a y like

to a tte m p t a m o re s o p h is t ic a te d fo rm o f

‘fu z z y ’ m a tc h in g .

On th e BBC M ic ro , re p la ce lin e 5 0 0 o f th e

S p e c tru m lis t in g by:

5 0 0 IN P U T “ ENTER N A M E ” , N $

THE HOME COMPUTER COURSE 339

©
T

H
E

 IM
P

E
R

IA
L

W
AR

 M
U

SE
U

M

P io n e e rs In C o m p u tin g

Doodle Bug
Z u s e ’s c o m p u te rs w e re

d e ve lo p e d to re p la ce te a m s o f

te c h n ic ia n s w o rk in g w ith s lid e

ru le s on a e ro n a u tic a l

c a lc u la t io n s . In p a r t ic u la r , th e y

w e re a p p lie d to th e d e s ig n o f the

V1 and V 2 (p ic tu re d) f ly in g

b o m b s used so h e a v ily in the

S eco nd W o r ld W ar

o

CO

I
CO

CO

CO

oo

W h ile v o n N e u m a n n w a s d o in g
h is p io n e e r in g w o rk in th e U S A ,
Z u s e w a s a c h ie v in g s im ila r

re s u lts in G e rm a n y

Inventions are often made simultaneously in
different parts of the world from ideas that have
been developed independently of each other. In
the 1940’s, while the first valve computer
(ENIAC) was being developed in America, a
German engineer, Konrad Zuse, was at work on a
programmable calculator — arguably the world’s
first computer.

Zuse was bom in Berlin on 22 June 1910. After
attending the city’s Technical University he
worked as an aeronautical engineer for the
Henschel Aircraft Company, developing wing
design. The basic mathematical principles
involved in strengthening aircraft wings to
withstand the stresses of high-speed flying had
been laid down in the 1920’s. But the individual
calculations needed for the production of each
pair of wings required teams of people working
with mechanical adding machines and slide rules.
Zuse soon came to appreciate the need for a
machine that could do this time-consuming work
rapidly. Working with friends in his parents’ flat in
the evenings, he set about building a computer
that could perform this task.

His first machine, the Z l, was a mechanical
device that could perform the four elementary
arithmetic operations, calculate square roots and
convert decimal numbers to binary notation and
vice versa. Although unaware of the achievements

of Charles Babbage (see page 220), whose
Difference Engine had been created to perform
the laborious calculations needed for nautical
tables, he had arrived at many similar conclusions
and some that were far in advance. Zuse’s major
breakthrough was in recognising that a lever was a
switch that could be put in one of two positions —
on and off — and could therefore be used either as
a means of storing data or as a control device.

Zuse pursued the idea of representing both data
and instructions in binary form, and in 1941 he set
out to build an electromagnetic computer, which
he called the Z2. Involved in the war effort, the
German government at first showed little interest
in his invention. However, its military potential
was eventually recognised and funds were
provided for him to develop the new Z3. This was
to be an electrical computer, with electrical wiring
in place of the mechanical linkages that he had
used in the earlier machines, and which allowed
for a more compact and elegant design.

Zuse built the Z3 despite major handicaps. The
Allied bombing of Berlin forced him to move his
workshop several times. He was called up twice,
only to be returned from the eastern front to
continue his work. The wartime shortage of
materials forced him to improvise by scavenging
components from telephone switching gear and
using old cinema film, punched with codes of eight
holes per frame, in place of paper tape.

The Z3 could store 64 words, each of 22 bits in
length. Information was input through a keyboard
and the results displayed visually on an
arrangement of lamps mounted on a board. Sadly,
the Z3 was destroyed, along with Zuse’s earlier
computers, in the saturation bombing of Berlin in
1945.

One of the computers was adapted by the
Henschel Aircraft Company to help in the
construction of the HS-293 flying bomb. This was
an unmanned plane that was launched from an
airborne bomber and guided to its target by radio
control.

Zuse’s last wartime computer, the Z4, had the
length of its words increased to 32 bits. It was
evacuated to Gottingen as the Allies approached
Berlin. Eventually it ended up in Basle,
Switzerland, where it operated until 1954 — one of
the most important computers working in Europe
at the time.

Zuse was unable to manufacture computers in
post-war Germany, so he concentrated on the
theory of computers. He developed a sophistic
ated language called Plankalkiil that could deal
logically with both mathematics and more general
information. When he was able to manufacture
computers again he formed the Zuse Company,
which was Germany’s major computer
manufacturer until 1969, when it was absorbed
into the Siemens Corporation. Professor Zuse is
still working in the computer industry.

340 THE HOME COMPUTER COURSE

*r

Home computers. Do they send your brain to
sleep - or keep your mind on its toes?

At Sinclair, we're in no doubt To us, a
home computer is a mental gym, as
important an aid to mental fitness as a set of
weights to a body-builder.

Provided, of course, it offers a whole
battery of genuine mental challenges.

The Spectrum does just that
Its education programs turn boring

chores into absorbing contests - not learning
to spell 'acquiescent, but rescuing a princess
from a sorcerer in colour, sound, and
movement!

The arcade games would test an
all-night arcade freak-they're very fast very
complex, very stimulating.

And the mind-stretchers are truly
fiendish. Adventure games that very few
people in the world have cracked. Chess to
grand master standards. Flight simulation
with a cockpit full of instruments operating
independently. Genuine 3D computer design

No other home computer in the world
can match the Spectrum challenge - because
no other computer has so much software of
such outstanding quality to run.

For the Mentathletes of today and
tomorrow, the Sinclair Spectrum is gym,
apparatus and training schedule, in one neat
package. And you can buy one for under
£100. 1

;::v :

M m

Ski m
r-m

K

m

m - m . 3
. . .

m

❖ Buy volumes 1 an d 2 together for
£6. v;) l ncluding P&P). Simply till in the order
form a nd these will be forwarded to you with
our invoice. - £1f

■ .'iv s. fcvVk v \ * •' *■’.. •. .v v v \ *V H > V s '. ‘.v-V-’. '■ v', ̂

❖ If you prefer to buy the binders
separately please send us your cheque/postal
order for £3.95 (including P&P). We will send
you volume 1 only Then you m ay order volume
2 in the sam e w ay- when it suits you!

O verseas re a d e rs : This
binder offer applies to readers in the
UK, Eire and Australia only Readers in Australia should^^^®
complete the special loose insert in Issue 1 and see additional
binder information on the inside front cover. Readers in New
Zealand and South Africa and some other countries can obtain
their binders now. For details please see inside the front cover.
Binders may be subject to import duty and/or local tax.

o;v;

> *7

».'<vV*vk* * a tsi ■

NEXT TO YOUR COMPUTER...YOUR COURSE MANUALS

