
IS S N 0 2 6 5 - 2 9 1 9

Q 8 0 p

mABTERinG YOUR HDmE CDmPUTER in E4 WEEKS

m

isklm
m

w f

I S

a.
C0^ e « lte 6

3
3

lA

■ * « • * . . *

"eorr, e u « tf,»

*tion

Xna g t t

37* 3oun<i
u 8 0 S r

P i o n t t r s . in cm* * ,'/7
L

/

#
*

■K

$
I

/ # ' * 1

AHM!

t i. w

ublication
2.25 SA R1.95 Sing $4.50 USA & Can $1.95

S

2

* >

«n

S ^ .

- /

li I

-0>

\N

ofl(0

x «

SJn

= Aj I

_

CONTENTS

Hardware Focus

Acorn Electron We look at the third
generation Acorn home computer

Make Believe Simulation in the classroom
helps keep school costs down and provides
valuable assistance to pupil and teacher

Basic Programming

Dummy Run We must now create dummy
data files for our address book before we can
run the program

376

N e x t W e e k
• We examine Memotech’s MTX
— 16 colours; four sound
channels with hi-fi connector;
BASIC, LOGO and Assembler as
standard, with PASCAL as a
ROM-based extra — all for less
than £300

Uncommitted Logic Arrays,
found in most second generation
microcomputers, make the
computer designer’s job much
easier and the end product much
less expensive

A complete index to THE HOME
COMPUTER COURSE will appear
with Issue 24

Call My Bluff Computer games can be
much more challenging than Space Invaders
or PacMan
Best Bet We examine ways in which home
computers can be used as an aid to decision
making, both at home and at work
Jet Propelled Fast, silent printers that offer
full colour are now available for most home
computers at a reasonable price

368

372

Passwords To Computing ■ '
Memory Maps We explain how space in
memory is allocated to different tasks by the
microcomputer’s operating system

364

Pioneers In Computing $
Double Shuffle A brief history of the
tabulator — precursor to the computer 380
Sound And Light

V

Sound Proof. . . Light Entertainment We
look at the Dragon 32’s sound generation
and further aspects of the BBC Model B’s
graphics

374

Editor Richard Pawson; Consultant Editor Gareth Jefferson; ArtOirector David Whelan; Production Editor Catherine Cardwell; StaffWriter Roger Ford; Picture Editor Claudia Zeff; Designer Hazel Bennington; ArtAssistant Liz Dixon; Sub
Editors Robert Pickering, Keith Parish; Researcher Melanie Davis; Contributors Tim Heath, Henry Budgett, Brian Morris, Lisa Kelly, Steven Colwill, Richard King, Geoffrey Nairns; Group Art Director Perry Neville; Managing Director
Stephen England; Consultant David Tebbutt; Published by Orbis Publishing Ltd: Editorial Director Brian Innes; Project Development Peter Brookesmith; Executive Editor Chris Cooper; Production Co-ordinator Ian Paton; Circulation
Director David Breed; Marketing Director Michael Joyce; Designed and produced by Bunch Partworks Ltd; Editorial Office 85 Charlotte Street, London W1; © 1983 by Orbis Publishing Ltd: Typeset by Universe; Reproduction by Mullis Morgan
Ltd; Printed in Great Britain by Artisan Press Ltd, Leicester

HOME COMPUTER COURSE - Price UK 80p IR £1.00 AUS $1.95 NZ S2.25 SA R1.95 SINGAPORE $4.50 USA and CANADA $1.95
How to obtain your copies of HOME COMPUTER COURSE - Copies are obtainable by placing a regular order at your newsagent.
Back Numbers UK and Eire - Back numbers are obtainable from your newsagent or from HOME COMPUTER COURSE. Back numbers, Orbis Publishing Limited, 20/22 Bedfordbury, LONDON WC2N 4BT at cover price. AUSTRALIA Back
numbers are obtainable from HOME COMPUTER COURSE. Back numbers, Gordon & Gotch (Aus) Ltd, 114 William Street, P0 Box 767G Melbourne, Vic 3001. SOUTH AFRICA, NEW ZEALAND, EUROPE & MALTA: Back numbers are available at
cover price from your newsagent. In case of difficulty write to the address in your country given for binders. South African readers should add sales tax.
How to obtain binders for HOME COMPUTER COURSE - UK and Eire: Please send £3.95 per binder if you do not wish to take advantage of our special offer detailed in Issues 4,5 and 6. EUROPE: Write with remittance of £5.00 per binder (incl.
p&p) payable to Orbis Publishing Limited, 20/22 Bedfordbury, LONDON WC2N 4BT. MALTA: Binders are obtainable through your local newsagent price £3.95. In case of difficulty write to HOME COMPUTER COURSE BINDERS, Miller (Malta)
-td. M. A. Vassalli Street, Valletta, Malta. AUSTRALIA: For details of how to obtain your binders see inserts in early issues or write to HOME COMPUTER COURSE BINDERS, First Post Pty Ltd, 23 Chandos Street, St. Leonards, NSW 2065. The
binders supplied are those illustrated in the magazine. NEW ZEALAND: Binders are available through your local newsagent or from HOME COMPUTER COURSE BINDERS, Gordon & Gotch (NZ) Ltd, PO Box 1595. Wellington. SOUTH AFRICA:
Binders are available through any branch of Central Newsagency. In case of difficulty write to HOME COMPUTER COURSE BINDERS, Intermag, PO Box 57394, Springfield 2137.
Note - Binders and back numbers are obtainable subject to availability of stocks. Whilst every attempt is made to keep the price of the issues and binders constant, the publishers reserve the right to increase the stated prices at any time when
circumstances dictate. Binders depicted in this publication are those produced for the UK market only and may not necessarily be identical to binders produced for sale outside the UK. Binders and issues may be subject to import duty and/or
local taxes, which are not included in the above prices unless stated.

COVER PHOTOGRAPH BY IAN McKINNELL; CHESS SET COURTESY OF HARRODS

Insights

Chess-playing program s are difficult to write, but it is possible even
for beginners to construct a simple, ‘intelligent’ gam e program

4

i

Invisible Hand
D ed ica ted c h e s s -p la y in g

m a c h in e s c o n ta in th e sam e

c o m p o n e n ts as h o m e

c o m p u te rs : a CPU, R A M , and

th e p ro g ra m in RO M , and d if fe r

o n ly in th e m e th o d o f in p u t and

o u tp u t. The P h a n to m , s h o w n

here, uses a s e rv o -m e c h a n is m

and m a g n e ts th a t e n a b le the

c o m p u te r to m ove th e chess

p iece s a u to m a tic a lly . W hen , fo r

exa m p le , a k n ig h t ju m p s over

a n o th e r p iece , a s o p h is tic a te d

a lg o r ith m is e m p lo ye d th a t

rem oves a n y o b s tru c t io n and

then rep laces it a fte r th e m ove

Many people, when they begin writing their own
computer programs, dream of the day when they
will know enough to be able to write a program
that plays chess. This is not because chess
programs are unavailable, of course. Such
programs abound in number, both as packages
available for home computers and in the form of
dedicated chess-playing machines. But writing
chess programs can become an obsession, even
among programmers who are not particularly
keen on chess as a game. A possible reason for this
is that we regard the game as being a highly
intellectual pursuit, and therefore a computer that
can play chess is a step towards creating an
intelligent machine. It would be very difficult to
explain to you how to write a complete chess
program from scratch, however. But we can
explain some of the principles on which
computerised ‘intelligent’ games are constructed,
and to a level where you could write a fairly
sophisticated program in b a sic .

It should be remembered, however, that the
‘games’ we are concerned with are not arcade
games, adventures or simulations, all of which

require different programming techniques and
different imaginative skills. We’ll begin our
discussion of intelligent games with what you
might consider to be a trivial example, but one that
demonstrates many of the principles of intelligent
game writing.

Most children (as well as grown-up children) are
familiar with the game Scissors-Paper-Stone. The
rules are simple: both players must think of one of
these three objects, and then simultaneously hold
up a hand in a shape representing the chosen
object. The winner is determined according to
three rules: scissors beats paper (by cutting), paper
beats stone (by covering), and stone beats scissors
(by blunting them).

To anyone who has followed the Basic
Programming course, it should be a simple
exercise to write a program to play the computer’s
part and keep the score. The R N D function is used
to select one element from a three-element string
array containing ‘SCISSORS’, ‘PAPER’ and ‘STONE’.
The chosen element is then PRINTed when the
space bar is pressed. The player types in his own
choice (the program relies on his honesty), and the

THE HOME COMPUTER COURSE 361

Insights

program calculates who won, displaying the result
and an accumulating score for itself and its
opponent. If the RND function is truly random,
then the scores should even out over a large
number of rounds, no matter what strategy the
player adopts. Now we need to determine how we
can improve the computer’s strategy to ensure that
it will win over a large number of rounds.

When we looked at random functions (see page
2 0 9) , we learnt that generating a truly random
sequence of numbers is an impossible task for both
humans and computers, though the latter make a
much better approximation. Over many rounds of
our game the human player will invariably favour
one of the objects more than the others. You can
write a subroutine in your program that keeps
track of the player’s choices, using an array with
three elements called, let’s say, C H 0 IC E (1) ,
C H 0 IC E (2) , and C H 0 IC E (3). Each time the player
makes a choice, one is added to the total in the
corresponding array element. The computer can
then establish which object is more often presented
by its opponent, and play the object that beats this
preferred choice.

the game. So rather than keep a record of his
opponent’s choices since the start of the game, it
would be better that the program simply recorded,
let’s say, the last 20 choices. This will require a
CHOICE array of 20-by t̂hree elements, and a more
sophisticated subroutine to add up the three
columns and hence predict the best choice for the
computer’s next turn.

However, the most serious shortcoming of this
algorithm becomes apparent if the player deduces
the computer’s strategy. Then it is relatively easy
for him to play in a way that ensures that the
computer will lose on more than half the turns. The
player could, for example, consistently play the
same object, and then switch to another
unexpectedly, and so on. What we need is a
different algorithm that avoids these problems.
Nevertheless, it would be worthwhile developing
programs that use both the fully random and the
modified random methods, and observing the
scores when these are used by unsuspecting
players.

Because humans are incapable of making a
totally irrational or random decision, it follows that

W in n in g

P o s it io n
‘ P o s it io n e v a lu a tio n ’ is

fu n d a m e n ta l to a n y boa rd

g a m e p ro g ra m — even if th e

g a m e is as s im p le as n o u g h ts

and c ro s s e s . In th is case, th e

b o a rd is rep rese n ted as a

th re e b y th re e array, the

p la y e r ’s n o u g h ts b y th e va lue

one , a n d th e c o m p u te r ’s

c ro s s e s b y a fo u r. U s in g these

va lu e s , a n y p o s it io n can be

e va lu a te d b y a d d in g up the

to ta ls fo r every row , c o lu m n

a n d d ia g o n a l. A to ta l o f 12 in

a n y o f th e s e lin e s in d ic a te s

th a t th e c o m p u te r has w o n ;

th re e m e a n s th a t th e p la ye r

has w o n ; a to ta l o f e ig h t

s h o w s th a t tw o c ro s s e s have

been p layed and th e c o m p u te r

can w in ; a n d so on . The

va lu e s o n e and fo u r a re used

because th e s e e n su re th a t

eve ry c o m b in a t io n o f n o u g h ts

and c ro s s e s g ive s a u n iq u e

to ta l

Three problems arise with this method. Firstly, if
the computer consistently plays the same object
then the player is very quickly going to take
advantage of this. Therefore, the computer must
generally be made to choose from the three objects
using the RND function, while a routine should be
added to ensure that it will more frequently choose
the object that will beat the player’s most preferred
choice.

The second problem is that the player will tend
to change his favourite object over the course of

every choice must be a function of the previous
choices. That function may be extremely
complicated, and the player almost certainly isn’t
aware of it, but if the computer can work out a
good approximation to that function, then it
should be able to win fairly consistently. Because
each player will have an individual subconscious
formula, and will probably change this formula
over the course of a long game, the program must
be made to interpret the formula while it is playing.
Programs that can learn like this are called

362 THE HOME COMPUTER COURSE

LI
Z

DI
XO

N

Insights ikkii

7
i.

‘heuristic’ programs.
An heuristic program enables the computer to

detect alterations in its opponent’s strategy, and
modify its algorithm accordingly. Such a program
would have to keep a record of, let’s say, the last 50
choices of both opponents, in an array. It
constantly scans through this track record applying
a statistical technique known as ‘correlation’.

This involves the computer in making hundreds
of comparisons between the player’s choice and his
previous choice, or the one before that, or the
choice made five turns ago. The computer
performs the same operation on its own choices.
Let’s consider the correlation between the player’s
move and his previous move, for example. We’ll
call Scissors — element 1, Paper — element 2, and
Stone — element 3. First we must set up a three by
three array, called say C0RR1, because it represents
our first correlation test. Now we must work
through our game history, looking at the player’s
choices for the last 50 moves. Every time he
followed Scissors (1) by Stone (3), we add one to
the element C0RR1 (1,3); when Stone (3) is
followed by Paper (2), one is added to element
C0RR1 (3,2) and so on.

If the player is making truly random choices,
then there should be approximately equal values in
each element of C0RR1 — but this is very unlikely
to be the case. So, if the player chose Paper last,
then the element in row 2 (Paper) of C0RR1 with
the largest value will give us the best guess as to
what he will choose next. The greater the
difference between the elements in any row, the
better the correlation is, and the more reliable the
prediction will be. However, it is possible that there
will be little correlation between the player’s choice
and his previous choice, in which case we must also
perform correlation calculations on the second to
last choice, or between the player’s choice and the
computer’s previous choice.

A problem arises if the various correlation
routines all predict different results for the player’s
next move. The program has to decide which is the
most reliable advice. In this simple game, all it
needs to do is see which test has the most
pronounced correlation. For example, the C0RR1
array might predict the following probabilities:
Scissors 51%, Paper 29%, Stone 20%; whereas
C0RR2 (which, say, compares the player’s choice
with the computer’s last choice) might give:
Scissors 24%, Paper 60%, Stone 16%. Clearly
C0RR2 has the better correlation, so its prediction
should be selected. An intelligent games program
will in fact frequently consist of a number of
subroutines, each working on different strategies,
and each advising the main routine of the best
move. The playing routine can regard these
subroutines as a ‘committee’, and act on a majority
decision. But as the game proceeds, it can award
marks to each routine according to whether its
advice was good or not.

If there does turn out to be some correlation
between the player’s moves or choices and the
previous moves of the computer, then it is possible

5 CLS
10 D IM C 1 (3 ,3) .C 2 (3 ,3) ,C 3 (3 ,3)
2 0 C R = 0
30 FOR 1=1 TO 3
4 0 IF C1 (P L ,I) > C R T H E N B G =I:C R =C 1 (P L ,I)
5 0 IF C 2 (P P ,I) > C R T H E N B G = I:C R = C 2 (P P ,I)
60 IF C 3 (P 3 ,I) > C R T H E N B G = I:C R = C 3 (P 3 ',I)
7 0 N E X T I
8 0 C T=B G -1
9 0 IF BG=1 T H E N C T=3

100 GET PT: IF P T = 0 T H E N 100
110 R E M L IN E 100 W A IT S FOR A D IG IT TO
120 R E M BE P R E S S E D .
130 IF C T=PT-1 T H E N C S=C S+1
140 IF C T = P T -2 T H E N P S =P S +1
150 IF C T=P T+1 T H E N P S =P S +1
160 IF C T = P T + 2 T H E N C S=C S+1
170 CLS
180 P R IN T “Y O U R CHO ICE: ”;PT
190 P R IN T “M Y C HO ICE: ” ;CT
2 0 0 P R IN T “Y O U R SC O R E IS ”;PS
210 P R IN T “M Y S C O R E IS ”;CS
2 2 0 C1 (P L ,P T)= C 1 (P L ,P T)+ 1
2 3 0 C 2 (P P ,P T)= C 2 (P P ,P T)+ 1
2 4 0 C 3 (P 3 ,P T)= C 3 (P 3 ,P T)+ 1
2 5 0 P 3 = P P
2 6 0 P P = P L
2 7 0 P L =P T
2 8 0 GOTO 2 0

to program in some kind of ‘bluffing’ factor that
will deliberately mislead the player. This works
best in gambling games, where the stakes increase
as the game continues, and it is worthwhile losing
the early rounds to win the later ones.

At the State University of New York at Buffalo
(reported in Scientific American, July 1978) a
collection of poker-playing programs (all of them
with a learning capability) were set against each
other for several thousand games. The overall
winner was a program called the Adaptive
Evaluator of Opponents (AEO), which made an
initial judgement about the strength of its
opponents’ hands, and modified this estimate as
each game proceeded. The SBI program, ‘Sells
and Buys Images’, did surprisingly badly — its
technique was to bluff in order to ‘seU’ a false image
to its opponents, or effectively to ‘buy’ the playing
style of others. The Bayesian Player (BP) tried to
make inductive inferences, and improve its play by
comparing the predicted consequences of its
actions with the actual consequences. Finally, the
Adaptive Aspiration Level (AAL) program
attempted to mimic a feature believed to exist in
human playing: adapting the level of aspiration
(that is, the degree of risk it is prepared to take)
according to its past record and current status.

No two chess programs or other artificially
intelligent routines work in exactly the same way.
But by experimenting with the techniques we’ve
outlined here on progressively more complicated
games, you may eventually be able to join the
exclusive club of chess program writers.

Slow Learner
T h is p ro g ra m , based on the

g a m e S c is s o rs — P aper —

S to ne , illu s tra te s h o w a

p ro g ra m can ‘ le a rn ’ as a gam e

p ro g re sse s . T he c o m p u te r

se le c ts f ro m th e n u m b e rs 1,2

and 3, c o m p a re s its ch o ice

w ith th e one yo u have ty p e d in

and a d ju s ts th e sco re . The

GET s ta te m e n t has been used

so th a t yo u can s im p ly p ress

th e th re e n u m b e r keys in rap id

s u c c e s s io n . If yo u a tte m p t to

m ake y o u r sequ ence ra n d o m ,

you s h o u ld f in d th a t a fte r a

c o u p le o f h u n d re d key

p resses, th e c o m p u te r ’s sco re

w il l p u ll ahead. It is p o s s ib le

to fo o l th is p ro g ra m and

hence c o n tin u e to w in , b u t

m o re s o p h is tic a te d ro u tin e s

can be add ed to it to p reven t

yo u fro m d o in g th is

THE HOME COMPUTER COURSE 363

■ : « . W s Jg ‘ , i i ’ i ' * •

High-level languages like Basic m anage m em ory autom atically ;
otherwise we need a detailed layout of the m em ory in order to find
our way around the com puter

<y&2
■W .-v *

The CPU at the heart of a computer has an
addressing range that determines the maximum
number of memory locations it can access, and for
most home computers this is 64 Kbytes. That
memory space must contain all the RAM and
ROM that comes with the machine, any expansion
RAM or ROM that can be added on, and all the
special interfacing chips and ports, which are
regarded by the CPU as memory locations as well.
One of the most important aspects of the design of
a computer is the ‘memory map’ — the list or
diagram that specifies which parts of the memory
space are allocated to each of the machine’s
functions. If your programming is restricted to

System Overhead
A c o m p u te r w ith 4 K b y te s o f

R A M m a y in fa c t have o n ly 3

K b y te s a v a ila b le to th e u se r fo r

p ro g ra m s . The d iffe re n c e is th e

s y s te m o v e rh e a d , a s e c tio n o f

th e R A M th a t is rese rved b y the

o p e ra tin g s y s te m w h e n e v e r the

m a c h in e is s w itc h e d on . P art o f

th is is used fo r s y s te m

v a r ia b le s , s u c h as te m p o ra ry

v a lu e s w h e n c o m p u tin g

c o m p le x e x p re s s io n s , and

p o in te rs to w h e re v a r io u s th in g s

are c u r re n t ly h e ld in m e m o ry

Empty
S pace fo r e x p a n s io n R A M m u s t

be rese rved in th e m e m o ry m ap .

S o m e s y s te m s p e rm it m o re

th a n 6 4 K b y te s to be add ed on ,

b u t th is is g e n e ra l ly ‘ ban k

s w itc h e d ’ — a s p e c ia l c irc u it

s w itc h e s th e re le va n t s e c tio n o f

R A M in to , a n d o u t o f, th e

m e m o ry m a p as needed

n -

5

User RAM
T he s ize o f th is d e te rm in e s th e

s o p h is t ic a t io n o f th e p ro g ra m s

th a t yo u can ru n , and is p e rh a p s

one o f th e m o s t im p o r ta n t

c o n s id e ra t io n s w h e n b u y in g a

h o m e c o m p u te r

z 5cn ! m
oz 1 omo l -<

5

> 1 >
3) 1
> !] £CP CD
i rn \ ni
0) 1 CO

basic then you don’t need to know about the
memory map in any detail. But if you venture into
machine code, or have ideas about building your
own hardware add-ons, then it becomes of vital
importance.

On these pages we show what a typical memory
map contains. Our example is closer to a 6502-
based system than one based on a Z80, but most
features are common to both. Some
manufacturers print a complete map in the user’s
handbook, while others remain very tight-lipped
about the design. However, you will usually find
that some user group has managed to work it all
out by experimentation.

Stack
T h is rese rved s e c tio n o f

m e m o ry is fo r th e e x c lu s iv e use

o f th e CPU and is o rg a n is e d as a

LIFO (L a s t In /F irs t O ut) da ta

s tru c tu re . A b y te can be e ith e r

'p u s h e d ’ o n to th e to p o f the

s ta ck o r ‘ p o p p e d ’ f ro m th e to p

back in to th e CPU. W h e n a

G O SU B ro u tin e is p e r fo rm e d in

BASIC, fo r e x a m p le , th e CPU

w il l p u sh o n to th e to p o f the

s ta c k th e lo c a tio n in m e m o ry to

w h ic h it e v e n tu a lly has to

R E TU R N . The s ta ck is

e x te n s iv e ly used w hen

e v a lu a tin g a r ith m e tic

e x p re s s io n s , and in

F O R . . . NEXT lo o p s

Buffers
A ke yb o a rd b u ffe r m u s t be

rese rved in m e m o ry so th a t

c h a ra c te rs a re n ’t lo s t if th e y are

en te red fa s te r th a n th e p ro g ra m

can p ro c e s s th e m . A ca sse tte

b u ffe r is a lso re q u ire d , because

m o s t o p e ra tin g s y s te m s w r ite

da ta to c a s s e tte in b lo c k s

Strings
If th e BASIC on y o u r c o m p u te r

re qu ires you to s p e c ify the

le n g th o f a ll s tr in g s in advance ,

th e n th e y w il l be s to re d in a

ta b le in th e sam e w a y as

d im e n s io n e d v a r ia b le s . If,

how ever, it has ‘d y n a m ic

s tr in g s ' th a t can ch a n g e in

le n g th , th e n th e a c tu a l d a ta w ill

be s to re d se p a ra te ly in an area

o f m e m o ry th a t is c o n s ta n t ly

c h a n g in g in s ize. A t in te rv a ls ,

th e o p e ra tin g s y s te m w ill

in s tig a te a ‘g a rb a g e c o lle c t io n '

th a t s im p ly c le a n s up th e s tr in g

area and re m o ve s da ta th a t is

o b so le te

364 THE HOME COMPUTER COURSE

r

1
r,

Passwords To Computing 9

System RAM
S om e c o m p u te rs have s y s te m

RAM th a t is n o t lis te d as p a rt o f

the u se r R A M . T h is is g e n e ra lly

used fo r th e sc re e n R A M (w h e re

one by te c o rre s p o n d s to each

ch a ra c te r lo c a t io n on th e

sc reen) and th e c o lo u r R AM

(w h e re one by te s p e c if ie s th e

fo re g ro u n d a n d b a c k g ro u n d

c o lo u rs fo r a s in g le c h a ra c te r

p o s it io n) . C o m p u te rs w ith a

w id e v a r ie ty o f g ra p h ic s m o d e s

and re s o lu t io n s w il l need to use

m e m o ry fro m th e u s e r R A M ,

and th is re s u lts in a m u c h la rg e r

sys te m o v e rh e a d . In a g a m e s

p ro g ra m , fo r e x a m p le , th e

g ra p h ic s can re p re s e n t the

g re a te s t p a rt o f th e m e m o ry

re q u ire m e n t

Empty
W h e n yo u use a p ro g ra m fro m a

c a r tr id g e , i t a p p e a rs in th e

m e m o ry m a p as e x p a n s io n

R O M . S o m e m a c h in e s have

spa re RO M s o c k e ts on th e

p r in te d c ir c u it b o a rd fo r

p lu g g in g in a d d it io n a l

la n g u a g e s . T hese w il l a lso be

rese rved in th e m e m o ry m ap

Input/Output Chips
T he CPU can c o m m u n ic a te o n ly

w ith d e v ice s th a t a p p e a r as

lo c a tio n s in th e m e m o ry m a p ,

so a ll in te r fa c e p o r ts a n d o th e r

c h ip s m u s t be in c lu d e d on the

m ap . T hese w il l in c lu d e th e

in te r fa c e s fo r ke yb o a rd ,

ca sse tte de ck , th e v id e o

c o n tro lle r, and e x te rn a l

in te r fa c e s su ch as th e p rin te r.

T he CPU g e n e ra lly a d d re sse s

m e m o ry in th e fo rm o f b lo c k s

(ty p ic a lly 4 K b y te s each).

T h e re fo re , th e In p u t/O u tp u t

c h ip s m a y o c c u p y 4 K b y te s o f

th e m e m o ry m a p , even th o u g h

o n ly a dozen o r so lo c a tio n s are

a c tu a lly used

System ROM
In a h o m e c o m p u te r, RO M is

used to s to re in fo rm a tio n th a t is

a lw a ys needed and neve r

ch a n g e s . The m o s t fu n d a m e n ta l

c o m p o n e n t o f th e RO M is th e

o p e ra tin g s y s te m , w h ic h is th e

se t o f m a c h in e c o d e p ro g ra m s

th a t lo o k a fte r th e o p e ra tio n o f

th e c o m p u te r. T hese p ro g ra m s

p e r fo rm fu n c t io n s su ch as

s c a n n in g th e ke yb o a rd , and

s to r in g o r re tr ie v in g in fo rm a tio n

on ca sse tte . A n o th e r

c o m p o n e n t is th e BASIC

in te rp re te r, w h ic h tra n s la te s

p ro g ra m s fro m BASIC in to the

lo w -le v e l in s tru c t io n s

u n d e rs to o d b y th e CPU

%
-z.

\ ©■A

s
u

V m
$

i

Video Controller
The m o s t s o p h is t ic a te d

g ra p h ic s , su ch as s p r ite s and

m u lt ip le -m o d e re s o lu t io n , are

in c re a s in g ly h a n d le d in

h a rd w a re ra th e r th a n in th e

s o ftw a re . The v id e o

c o n tro lle r (s) w i l l a p p e a r in the

m e m o ry m a p as a d o ze n o r so

s in g le -b y te re g is te rs , w h ic h

d e te rm in e eve ry v is u a l

c o m p o n e n t, f ro m th e

b a c k g ro u n d screen c o lo u r to th e

exa c t p o s it io n o f each s p r ite

Sound Controller
C rude so u n d e ffe c ts can be

ach ie ved in s o ftw a re , b u t

c o m p u te rs w ith m u lt ip le vo ice s ,

o r w ith A D S R s o u n d c o n tro l,

in v a r ia b ly have a d e d ic a te d

s o u n d c o n tro lle r — th e o u tp u t

o f w h ic h is fed in to a s m a ll

a m p lif ie r

P e rip h e ra l In te rfa c e A d a p to rs

are used to h a n d le m o s t s im p le

in te r fa c in g w ith ke yb o a rd s ,

ca s s e tte s , jo y s t ic k s and

p r in te rs . The m o s t

s o p h is t ic a te d c h ip s (su ch as the

6 5 2 2 V e rs a tile In te rfa c e

A d a p to r) can c o n v e r t be tw een

p a ra lle l a n d s e r ia l d a ta , and

have b u ilt - in t im e rs , w h ic h can

be used in p ro g ra m m in g o r to

c o n tro l t ra n s m is s io n ra tes

Character Generator
T h is is th e b e s t e x a m p le o f ROM

m e m o ry b e in g used to s to re

da ta ra th e r th a n p ro g ra m s — in

th is case th e p a tte rn s o f b its

th a t d e fin e h o w th e ch a ra c te rs

a p p e a r on th e sc reen . S o m e

c o m p u te rs a llo w a ll o r p a rt o f

th e c h a ra c te r se t to be co p ie d

in to R A M , a n d th is p e rm its

o th e r c h a ra c te rs to be d e fin e d

by th e use r

Kernel
T h e ‘ k e rn e l’ (i t has a d if fe re n t

n a m e on a lm o s t eve ry m a ch in e)

is th e h e a rt o f th e o p e ra tin g

s y s te m . W h e n th e m a c h in e is

s w itc h e d o n , th e CPU w ill

a u to m a tic a lly ju m p to th is

lo c a tio n and b e g in e xe cu tin g

th e ke rn e l p ro g ra m . It w il l

sea rch th ro u g h th e R AM area to

d e te rm in e h o w m u c h m e m o ry is

a v a ila b le , and ch e ck to see if a

p ro g ra m c a r tr id g e is p lu g g e d in.

T he ke rn e l a lso h a n d le s the

m o s t e le m e n ta ry fo rm s o f in p u t

and o u tp u t

THE HOME COMPUTER COURSE 365

Sim ulation software allows
experim ents to be perform ed
w ithout apparatus, specim ens or
m aterials, and it is suitable for
use at hom e or in the classroom

Simulation programs, such as the familiar
arcade games that put you at the controls of a
racing car or aeroplane, are designed to give
you an experience as close as possible to the real
thing. There is, however, a wide range of
simulation software available that aims to
educate rather than just exhilarate. Simulation
programs are very useful in many areas of
school curricula; and especially in those
subjects (such as science) where practical
experimentation is too dangerous, time
consuming, expensive or complicated.

Simulation programs can be used as
educational tools in the home as well. For
example, in a program called Car Journey,
children can use their arithmetic and reasoning
skills to ‘drive’ a car around Britain. Simulation
programs are perhaps the most exciting type of
educational software currently marketed.
Unfortunately, they are available only for a
small range of machines — the BBC Micro, the
Spectrum, the RML 380Z, and the Apple —
the machines most favoured in schools.

E ye

P i s t a ii c e o i o t> i o r; t
eye = 23 c w
Type of glasses
Hone

l r o w

Normal sight

Light from point on
obj ect

GOMMHHDS
END F OCUS
GLOSSES HELP
LIGHT OBJECT
SIGHT

I r ■•

I
■

i 1

X .

Press the first letter of a command

This program demonstrates how the eye works,
and how the various parts need to be correctly
adjusted in order to see clearly. It simulates the
path that light rays take from an object to the
retina (the back of the eye where images are
formed). You act as the brain, controlling such
elements as the object distance, the size of the
iris and the focal length of the lens, in order to

focus the image on the retina. You are
presented with a cutaway diagram of the eye on
the screen, with the relevant parts labelled. By
using the command LIGHT, the path of a beam of
light can be plotted from an object to the eye. If
the other variables are correctly chosen you
should get the message IN FOCUS. If not it wiU be
BLURRED.

Once you have mastered the functioning of a
normal eye, defects such as short sight can be
simulated. When it is discovered that it is
impossible to focus on a distant object, you
must add an extra lens in front of the eye. If
correctly chosen, this lens restores normal
vision and you have just prescribed your first
pair of glasses. Although developed primarily
for physics and biology lessons, this program is
often used in general computer literacy
courses, to introduce computers to young
people. Given the simplicity of the subject
matter, the excellent error-trapping and the
ease of use, it is easy to understand why. The
program is produced by Longmans for the
BBC Micro.

4

B a llo o n in g

Ballooning is a home education program for
children of eight to twelve years. It is available
for the Spectrum from Heinemann
Educational Software. The user is at the
controls of a hot air balloon, and has to fly it. On
the screen you see a cross-section of the
countryside, with the balloon initially sitting on
the ground. Also shown are four instruments:
rate of climb/fall indicator, air temperature
gauge, altimeter and fuel gauge. There are just
two controls: a gas burner to heat the air and
make the balloon rise, and a vent that lets the air
escape and the balloon descend.

A simple ‘flying lesson’ teaches the user how
to use the instruments and controls to take off,
fly and land the balloon. After mastering this,
you can fly your own ‘mission’. This consists of

366 THE HOME COMPUTER COURSE

Software

%

landing the balloon at selected locations
(marked with an X) where the balloonist
receives some instructions. For example, one
task is to ‘help farmer rescue sheep’ — the
sheep are to be found in a field marked with an
S. If the balloon runs out of fuel, it must land to
take on extra gas cylinders.

After a few false starts, crashing into trees
and so on, you soon learn how to control the
balloon accurately, by using short bursts of the
burner. Also, it is not long before you learn to
watch the instruments so as to predict when to
use the vent or burner. Perhaps the most
important benefit is learning to control a system
that incorporates a substantial ‘time-lag’.

This program, as well as being a realistic
simulation, is great fun to use and probably one
of the few subjects that has appeal to girls as
well as boys.

C a r J o u rn e y

Available from Heinemann Educational
Software for the Spectrum, this is a home
education program in which the user takes on
the role of owner of a small delivery service.
Various decisions have to be made with regard
to which delivery contract to accept, how fast to
drive, and what type of vehicle to use. In doing
this the user has to perform calculations
involving money, distance, time and even
petrol consumption. A map of Britain is
displayed, showing 15 cities and the major
motorways. A speedometer, milometer, fuel
gauge and a clock are also shown.

The first task is to decide which city to start
from, and then you have to choose a contract
you think you can fulfil from a list of a dozen.
For example, one contract is to pick up a
consignment of diamonds from Bristol at 1200
hours and deliver it to Dover before 1800 hours
on the same day. To do this, you must hire a car,
drive it to Bristol, pick up the diamonds and
drive down to Dover. If you’re successful, you
are paid £400, plus a £ 10 bonus if you are early,
and can then choose another contract. Money
has to be spent on overnight stops, vehicle

repairs, petrol and speeding fines, and if you do
not fulfil a contract you incur a hefty £ 100 fine.
If a heavy load is accepted, the car has to be
swapped for a larger van, which costs more to
hire, consumes more petrol and is slower.

As well as developing a knowledge of
vehicles and roads, Car Journey also helps
extend the more abstract skills of decision
making and logical thought. It even teaches
simple economic theory because, in weighing
up the pros and cons of a certain contract, the
user is performing cost/benefit analysis.

S u rv iv a l

If you have ever wondered what it must be like
to be a lion (or even a mouse) then Survival is
for you. It enables you to play the part of one of
six animals (hawk, robin, lion, mouse, fly or
butterfly) and experience some of the problems
of their day to day existence and the decisions
they have to make to stay alive.

The world is represented by a grid of squares
on the screen, and you move around this grid
(your position being shown as the letter A) by
pressing keys on the keyboard. Your main
concerns are to find food (the squares marked
by an 0) and to avoid predators (marked by an
X). As you move nearer a marked square, a
close-up grid on the right of the screen shows
exactly what predator or food you have
encountered. Also shown are two meters that
indicate how much energy and water you have
left. If your energy level gets low you quickly
have to find some food, and if the water runs
out you have to move next to a blue square (a
river); if, however, you accidentally ‘fall’ into a
blue square you will drown.

Some animals have a harder time than
others: the butterfly’s only source of food is
flowers, and these can be difficult to find. The
hawk, however, can survive on snails, flies and
mice but can fall prey to a human hunter.
Through using Survival, you can learn how
various species fit into the food chain and
appreciate some of the problems faced in
surviving in the wild.

THE HOME COMPUTER COURSE 367

IA
N

M
cK

IN
NE

LL

Finding optim um solutions to problem s is som etim es
straightforward, but often it requires advanced m athem atics.
Com puters take the job in their stride

Perfect Fit
A rra n g in g p a tte rn s o n a s h e e t o f

m a te r ia l in o rd e r to m in im is e

w a s ta g e is a g o o d e x a m p le o f

c o m p u te r is e d o p t im is a t io n . One

su ch a p p lic a t io n is in c u tt in g

sh e e t m e ta l, a n o th e r is

ta i lo r in g . Here th e c o m p u te r

d is p la y s its s u g g e s te d la y o u t on

th e sc reen , and an e x p e rie n c e d

o p e ra to r can th e n m a ke m in o r

a d ju s tm e n ts w ith th e a id o f a

lig h tp e n

In every decision we make there is invariably a
compromise — for example, between cost and
effectiveness, or cost and time. We are unlikely to
obtain absolute maximum output for absolute
minimum cost. The ‘optimum’ result will fall
somewhere between the two.

If we take as an example the choice between two
brands of washing powder, the reasoning behind
the decision might go something like this: ‘If I buy
this washing powder, it will cost me 48 pence for
150 grams, but if I buy that one, it will cost 90
pence for 300 grams. But what if I must use 20 per
cent more of the less expensive washing powder to
obtain the same result? Which brand is cheaper
then?’ When everything is reduced to a common
form — in this case to percentage differences
between products — the answer is easy to predict,
even before any mathematical calculation is
performed.

The concept of ‘weighting’ a calculation by a
constant value is quite normal, and works well
when the differences between similar components
(the price, for example, or the physical weight),
are themselves constant. But when these
differences change at different rates, then the
mathematics becomes more complex, and we
must resort to a form of calculus (in which we solve
a number of equations that use the same terms

simultaneously) in order to arrive at the right
answer. Where the number of terms is small, we
might choose to enter them into a matrix, and then
manipulate it. Another way is to guess at the
answer, and then modify the guess successively
until it fulfils all the conditions. Of course, the
better the guess, the less time the process will take.

Optimisation techniques such as these are
essential to commerce and industry, and are
universally applied, especially in manufacturing
and construction. Linear Programming, Critical
Path Analysis, and PERT (Programme
Evaluation Research Technique), are just some of
the names given to this optimising method. They
predate the computer era by some 30 years in their
original forms, and previously required a great
deal of manpower to come up with a correct
answer in an acceptably short period of time.
Applications of this type are quite suitable for
home computers, but one should bear in mind that
matrix (two-dimensional array) operation
requires rather a lot of memory space, and that the
matrix arithmetic is in itself quite complex.
Fortunately, there are a number of software
packages for small microcomputer systems, so the
technique is readily available.

One commercial area that has benefited
considerably from optimisation is that of clothes

368 THE HOME COMPUTER COURSE

KE
VI

N
JO

NE
S

O
R

IG
IN

AL
 P

HO
TO

G
RA

PH
 C

O
UR

TE
SY

 O
F

BU
RT

O
NS

 T
AI

LO
RI

NG

Insights

1

cn

manufacturing. Cloth normally comes in standard
units of width — and sometimes of length as well
— and the manufacturers’ problem is to minimise
waste when cutting the cloth, while paying
attention to factors like the direction of the nap of
the fabric (the way the pile lies).

In one of the most advanced manufacturing
tailors in Europe the placing of piece-patterns into
a given length of material for the production of
made-to-measure suits is worked out using
optimising techniques, and the suggested result is
shown on a visual display unit. At this point, using
object-oriented programming methods (see page
262), the computer operator is requested to
exercise his judgement and experience in an
attempt to improve on the computer’s calculation.
The operator makes an improvement, on average,
one time in five.

Because the requirements of each job, or each
garment, are different, this is an excellent example
of the intelligent use of low-level computerised
optimisation combined with the experience of the
operator. More comprehensive methods are used
in industries that repeatedly cut identical objects
from sheet material, where the full process of
optimisation is allowed to run its course. Because
the cutting or stamping operation forms part of a
production line, the identical operation will be
performed thousands of times. In this case, the
cost of the optimisation process divided by the
number of units manufactured is more than
covered by the savings in wastage.

Critical Path Analysis, as its name suggests, is a
method of determining the most important job
stream in a manufacturing or construction process
— that is, the part of the job with the greatest
potential for holding up everything else if it is not
completed on schedule. It is very firmly time-

based, the period required for the execution of a
segment being its value in the CPA diagram or
table. Its most common use is during the planning
stage of construction projects, so that the builders
can allocate men and materials to the various
aspects of the project in the right order —
plumbing before floorboards, painters after
plasterers. Once again, there are software
packages available for a wide variety of
microcomputers.

While the mathematics of the optimising
process may be rather daunting to the untrained,
there can be no denying the success and strength of
the technique itself. It is one of the few ‘number
crunching’ tasks commonly carried out on small
microcomputers, and is an important component
in artificially-intelligent systems, replicating (as it
so often does) applied common sense.

Motorway Madness
A p a rt fro m s o c ia l fa c to rs , the

d e s ig n and ro u tin g o f

m o to rw a y s , w h e th e r in to w n o r

in th e co u n try , is ve ry d e p e n d e n t

on o p t im is in g te c h n iq u e s . The

a rc h ite c t w il l be m o s t co n ce rn e d

w ith th e g ra d ie n t o f h ills and

s h a rp n e s s o f b e n ds , b u t th e

fa rm e r w h o s e la n d is ta ke n over

has a ra th e r d if fe re n t se t o f

c r ite r ia . W h e n a new road is

be ing p la n n e d a vas t a m o u n t o f

da ta is ga the red , w h ic h se rves to

m ake up a co m p re h e n s ive

m o d e l o f th e s itu a tio n . T h is

m o d e l is th e n used fo r a va rie ty

o f p u rp o s e s , fro m g ra p h ic

re p re se n ta tio n s to rou te

o p t im is a t io n

THE HOME COMPUTER COURSE 369

CO
UR

TE
SY

 O
F

TH
E

M
IN

IS
TR

Y
OF

 T
RA

NS
PO

RT

JU
D

Y
G

O
LD

HI
LL

Hardware Focus

i ▲

In the two years that elapsed
between Acorn’s BBC Model B
and Electron, m icrocom puter
technology has developed
dram atically

The Acorn Electron is an elegant computer that
lives up to its initial impression of being a robust
and well designed machine. As a scaled down
version of the BBC Micro, it isn’t quite as
impressive in performance, but feels more
comfortable to use. Most of the features of the
BBC Micro have been incorporated into the
Electron. For example, the SOUND command is
used in conjunction with the ENVELOPE command
to synthesise different types of musical
instruments on both machines.

All of the BBC Micro’s graphics modes are
available on the Electron, with the exception of
Teletext (MODE 7), which is generated in the BBC
machine by a special chip. This chip is not
available on the Electron’s circuit board, and so
Teletext-like displays can only be produced by
redefining most of the characters and imitating
Teletext using MODE 6 (which is, however,
restricted to two colours). This is a pity, because
the Telextext mode on the BBC Micro is a very
economical way of producing quite complex
displays without using a lot of memory.

Input and output facilities are also less
impressive than on the BBC Micro. Visual output
is via TV channel 36, as well as through composite
video and RGB sockets to monochrome or colour
monitors. But apart from the cassette port there is
no immediately usable interface.

Expansion is clearly possible through a large
edge connector at the back of the machine.
Unfortunately, this protrudes from beneath a

Dynamic Duo
The b ra in s b e h in d the E le c tro n w ere C h ris C u rry (le ft) and

H e rm an H a u se r (r ig h t) , w h o w ere a lso la rg e ly re s p o n s ib le fo r th e

d e s ig n o f th e BBC M ic ro . C u rry w as a d e v e lo p m e n t e n g in e e r

w o rk in g fo r C live S in c la ir, w h e n he e m p lo y e d H auser. T he tw o

m en s u b s e q u e n tly fo u n d e d A co rn

O
CD

>-

Master Clock Crystal

TV Signal Control Crystal
A m a jo r reason fo r th e s ta b ility

o f th e im a g e g e n e ra te d by the

E le c tro n is th e fa c t th a t it has a

s p e c ia l se p a ra te c ry s ta l, w h ic h

is used to t im e th e d is p la y

TV Modulator And

Output Socket

Composite Video Socket

Cassette Socket.

Cassette Motor Relay.
T he v o lta g e used in th e m o to r o f

a c a s s e tte deck is h ig h e r th a n

th e c o m p u te r can h a n d le , so it

is is o la te d fro m th e c o m p u te r ’s

e le c tro n ic s by th is m in ia tu re

re lay

RGB Socket

Speaker

ledge in the casing, and on an unexpanded
machine the only protection provided for it is a
plastic cover. No details are given in the manual
about what signals it produces, nor any suggestion
as to what may be connected to it. But it is clearly
intended that some kind of expansion box will
plug into it because there are threaded brass
sockets moulded into the casing nearby, which are
used to provide a mechanical link between the
computer and the add-on.

The built-in ba sic is the now well-known BBC
dialect; but this has been considerably expanded
and here has many features that make the machine

Keyboard Connector
T he n u m b e r o f p in s (2 2) revea ls

th a t th e k e y b o a rd ’s o u tp u t is n o t

d e co d e d in to A S C II. If i t w ere

d e c o d e d , th e re w o u ld be o n ly 10

p in s a t m o s t (e ig h t fo r th e da ta ,

p lu s th e 5 v and th e g ro u n d).

T h is is p ro b a b ly a fu n c t io n of

th e ULA

370 THE HOME COMPUTER COURSE

Keyboard
T he ke yb o a rd is a m o n g th e best

o f a n y h o m e c o m p u te r, w ith real

ty p e w r ite r -s ty le keys o f ve ry

h ig h q u a lity . In p ra c tic e the

ke yb o a rd is v e ry s im ila r to th a t

on th e BBC M ic ro . T he re are no

sepa ra te fu n c t io n keys, b u t th e

sam e fa c il i t ie s are p ro v id e d by

th e Caps L o c k key, w h ic h if

p ressed in ta n d e m w ith a

n u m b e r key, c o n v e rts it in to a

fu n c t io n key.

T h is is e x te n d e d to th e le tte r

keys and th re e o f th e

p u n c tu a tio n keys, w h ic h

p ro d u c e BASIC k e y w o rd s if th e y

are p ressed w h ile th e C aps Lock

is he ld d o w n

Blank 28-Pin Area
T h is 2 8 -p in area , m a rk e d o u t fo r

a c h ip a n d w ith an u n f il le d lin k

nearby, w o u ld s u g g e s t th a t

e ith e r a d d it io n a l b a n k s w itc h e d

ROM m a y be a d d e d , o r th a t a

d if fe re n t ty p e o f c h ip m a y be

used

Expansion Connector
N o d e ta ils o f p in v a lu e s o r

s ig n a l t im in g s a re 'g iv e n , b u t it is

o b v io u s th a t m o s t o f th e sys te m

b u s w il l be a v a ila b le th ro u g h

th is c o n n e c to r, as w e ll as TTL

and p o w e r lin e s . T h e re fo re ,

c o n s id e ra b le e x p a n s io n s h o u ld

be p o s s ib le

CPU
C o n tro llin g th e m a c h in e is a

s ta n d a rd 6 5 0 2 A p ro ce sso r,

c lo c k e d a t 1.79 M H z. T h is

a c tu a lly m a ke s th e d e c is io n s ,

s o m e th in g w h ic h th e LILA

c a n n o t do by its e lf

RAM
B ytes are lo a d e d fro m R A M in to

th e CPU in tw o ha lves . F irs t, the

lo w e r fo u r b its are accesse d

(one b it c o m in g fro m each o f

th e fo u r c h ip s) , fo llo w e d by th e

u p p e r fo u r. In m o s t m a c h in e s a ll

e ig h t b its o f each b y te w o u ld be

s to re d in th e s a m e ch ip

Uncommitted Logic Array
T h is is th e b ig g e s t U L A e v e r

m a n u fa c tu re d . A p a rt fro m the

ULA, th e 6 5 0 2 CPU, th e ROM

and th e R A M , th e re are o n ly

n in e o th e r c h ip s on th e boa rd ,

a ll o f w h ic h are s ta n d a rd TTL

lo g ic , each p ro v id in g ju s t a

h a n d fu l o f lo g ic ga tes

■ i Power Conditioning Circuitry
The A c o rn E le c tro n is u n u s u a l in

re q u ir in g a 19v AC s u p p ly . T h is

has th e a d va n ta g e o f b e in g

m o re s ta b le , b u t needs a m o re

c o m p le x c irc u it to m o d ify it fo r

c o m p u te r usage

a pleasure to use. Particularly useful is the OSCLI
routine, which allows a ba sic program to send
commands directly to the operating system, and
this permits experienced users to remove some of
the constraints of ba sic . The assembler package,
which is a feature unique to BBC b a sic , has also
been expanded. It has additional keywords for
defining variable storage and string printing, both
of which are a chore in Assembly language.

In performance the Acorn Electron is better
than average. The picture is very steady and sharp,
with good clear colour and definition. When some
serious expansion facilities, such as disk drives, are
available, the Electron will certainly become a
justifiably popular machine.

A c o rn E le c tro n

PRICE
£199
SIZE
340x160x65m m
CPU
6502
CLOCKSPEED
1.79MHz
MEMORY
64 Kbytes of ROM
32 Kbytes of RAM (with no
on-board expansion)
VIDEO DISPLAY
Up to 32 lines of 80 characters.
Eight colours with background
and foreground independently
settable. 127 pre-defined
characters and 255 user-definable
characters
INTERFACES
Channel 36 TV, composite video,
TTL RGB, cassette, system bus
(undocumented)
LANGUAGES SUPPLIED
BBC BASIC with in-line assembler
OTHER LANGUAGES AVAILABLE
Should run some other AcornSoft
languages such as FORTH and
LISP, provided that they are RAM-
based. ROM-based languages
such as BCPL and PASCAL are
incompatible with the unexpanded
machine
COMES WITH
Installation and BASIC manual, TV
lead, power transformer,
introductory cassette
KEYBOARD
56 typewriter-style keys. Single
key BASIC keyword entry. 10 user-
definable function keys
DOCUMENTATION
Simply excellent. There is plenty
of real detail available for the
experimenter or the serious
programmer. Every BASIC
keyword is separately explained;
and there is a good section on the
Assembly language, which is very
important considering the in-line
assembler. The functions of the
operation system are also well
described. Thanks to this wealth
of information, most tasks should
be relatively easy to accomplish
with the machine

THE HOME COMPUTER COURSE 371

*

Insights
■

Full colour printed output is
available at a realistic price,
thanks to a printer that sprays
coloured inks onto the paper,
one dot at a tim e

m

The different types of printing mechanism
available to the home computer user produce print
of variable quality. The best results are achieved by
full-character impact printers (the daisy wheel is
an excellent example of this type); and the poorest
reproduction comes from electrostatic and
thermal printers. However, the dot matrix printer
(see page 74), though noisy and producing
typography of only moderate quality, is the most
popular system for home computer use.

When printer/plotter devices like the Tandy
CGP 115 first appeared, the limitations of the dot
matrix printers became more apparent. The
printer/plotter machines use miniature ballpoint
pens to create complete characters and line
graphics on the paper, and these are often in four
colours. But the printers most likely to surpass the
popularity of the dot matrix printer operate on the
principle of firing a stream of microscopic drops of
ink in controlled patterns at a sheet of paper. These
machines are called ‘ink jet’ printers.

Already well established in the industrial and
commercial sectors (alongside the equally
sophisticated laser printer); these devices are now
beginning to make an appearance on the home
computer market. The system works by pumping
liquid ink from a reservoir to the tip of a very fine
jet. Here minute droplets of ink are charged to a
high voltage before being ejected. The valve
mechanism is commonly made of piezoelectric
material, which allows the droplets to be shaped by
very high frequency vibrations.

As the droplet leaves the jet it is suspended by an
electric field, which also propels it towards the
paper. The sheet of paper is stretched over a sheet
of metal (and not a hard rubber roller or platen as it
would be with an impact printer). The metal sheet
is charged to the opposite potential to that held by
the droplet and, as opposite charges attract, helps
to pull the ink into the paper. This technique may
seem unreliable, but surprisingly little mess occurs.
About the worst that can happen is the jet getting
clogged or the ink drops becoming oversized.

In principle an ink jet printer works in the same
way as a dot matrix printer with only one hammer.
The string of ASCII characters arriving at the
printer is stored in a buffer until either it is full or a
Carriage Return is received. The printer then
examines the characters one by one and looks up
their corresponding patterns in ROM. Generally,
each character will be made up of a number of dots
arranged on an eight by eight grid, and the printer
builds these patterns up on the paper. It takes eight
372 THE HOME COMPUTER COURSE

111

G u id e d M is s ile s
T he f i r s t in k je t p r in te rs used a

m o re s o p h is t ic a te d s y s te m

and w e re v e ry e xp e n s ive .

In s id e th e nozz le , a

p ie z o e le c tr ic d e v ic e e m itte d a

c o n s ta n t s tre a m o f ch a rg e d

in k d ro p le ts . T h e se c o u ld be

g u id e d v e r t ic a lly b y tw o

e le c tro d e s , as th e head m o ve d

a c ro s s th e paper. W h e n no

m a rk w a s re q u ire d , th e

d ro p le ts c o u ld be s te e re d in to

a s c o o p a n d th e n re cyc le d

b a ck in to th e m a in re s e rv o ir

ELECTRO DES

Priming Pump
T h is m a n u a l p u m p

fo rc e in k th ro u g h th e

s h o u ld th e y s ta r t to

c lo g g e d , o r s im p ly to g e t th e

in k f lo w in g

Circuit Board
T h is p r in te r c o n ta in s its o w n

6 8 0 9 m ic ro p ro c e s s o r, RO M and

R A M . A ll th e in c o m in g da ta

needs to be b u ffe re d , because

th e m e c h a n is m p r in ts o n ly one

lin e o f d o ts w ith each pass o f th e

head—

Print Head Lock
An in k je t m e c h a n is m is fa r

m o re d e lic a te th a n o th e r

p r in t in g d e v ic e s , and th e

head m u s t be locked in th e

re s t p o s it io n w h e n n o t in use

T he c o rre c t o p e ra tin g

p ro c e d u re used im m e d ia te ly

a fte r i t is tu rn e d on is n o t

c o m p lic a te d , b u t fa ilu re to

o b se rve i t c o u ld re s u lt in

d a m a g e to th e m a ch in e

Sparkling Characters
An in te re s tin g v a r ia t io n on th e th e m e o f l iq u id in k je t p r in te rs is th e ‘d ry

in k ’ p r in te r. A v a ila b le b o th as an O live tti p ro d u c t a n d as A c o rn ’s

d e d ic a te d p r in te r fo r th e BBC M ic ro , th e u n it is based on th e p r in c ip le o f

s p a rk e ro s io n . P r in te rs o f th is ty p e u s u a lly e m p lo y a h ig h v o lta g e s p a rk

to b u rn a h o le in s p e c ia l s ilv e re d p a p e r (th e ZX P r in te r is a ty p ic a l

e x a m p le). T he O liv e tti s y s te m , how eve r, u se s th e s p a rk to c a r ry m in u te

p a r t ic le s o f c a rb o n fro m th e t ip o f a re p la ce a b le rod to m a ke an

im p re s s io n o n th e paper.

T he p r in te r has seve ra l a d v a n ta g e s o ve r c o n v e n tio n a l m a tr ix

p r in te rs : i t is a lm o s t s ile n t, th e p r in th e a d is v e ry l ig h t (d o in g a w a y w ith

th e need fo r p o w e rfu l m o to rs) , a n d a lm o s t a n y k in d o f p a p e r w il l w o rk

w ith th e s y s te m . T he o n ly rea l d ra w b a c k s are th a t th e p r in t in g speed is

s lo w , th e head p r in ts o n ly o n e lin e o f d o ts on each p a ss a c ro s s th e

paper, and th e ‘ in k ’ te n d s to s m u d g e

■

passes of the printing head to create each line of
characters, but this is speeded up by allowing the
printer to operate in both directions. While the first
buffer’s worth of characters is being printed out in
this way, the next buffer is being filled for printing
as soon as the first one is empty. The only
difference between the ink jet and the matrix
unihammer is that the former fires electrically
charged droplets of ink at a page, while the latter
imprints a needle through an ink covered ribbon.

In their commercial form, ink jet printers can

produce a printed sheet in just a few seconds. The
quality of printout, however, can depend on the
paper quality: the more absorbent the paper, the
more the ink soaks in and blurs the image. At their
best, inkjet printers can produce an output quality
several times better than that of a dot matrix
printer. For large volume business printing they
are perfectly adequate. If you need high quality
and high speed printing, then the laser printer
(which works on the same principles as a
photocopier) is the only answer.

Metal Electrode
Im m e d ia te ly b e h in d th e p a p e r

is a m e ta l sh e e t, w h ic h is

cha rg ed w ith th e o p p o s ite

p o te n tia l to th a t a p p lie d to th e

in k d ro p le ts . T h is ca u se s th e

d ro p le ts to a cce le ra te to w a rd s

th e pape r

Print Head
T h is c o n ta in s fo u r nozz les

(o n e fo r each o f th e in k s) and

p ie z o e le c tr ic c e lls , w h ic h

p ro v id e p u ls e s o f p re ssu re

th a t c rea te th e b lo b s o f in k

Ink Packs
S p e c ia l in k has to be used to

p re ve n t th e je ts fro m

c o n s ta n t ly b lo c k in g . B lack in k

c o m e s in a se p a ra te p a ck to

th e red , b lu e and ye llo w ,

because it is used m o re o fte n

Drive Motors
T h e tra v e rs e o f th e p r in t head is

a ch ie ve d w ith a c o n v e n tio n a l

m o to r, w h ile th e p a p e r advance

is d r iv e n b y a s te p p e r m o to r —

as on a d o t m a tr ix p r in te r

Flexible Unks
M o s t p r in te rs fe a tu re f le x ib le

r ib b o n c a b le s be tw een th e PCB

and p r in th e a d . An in k je t has

th e a d d it io n a l p ro b le m o f

fe e d in g fo u r d if fe re n t in k s to a

fa s t-m o v in g d ev ice

The latest, and possibly most interesting,
application of the ink jet principle is that used by
Tandy in the CGP 220 machine. Here, at last, the
home computer user can find true colour printing.
As well as printing in blade, the Tandy CGP 220
contains separate reservoirs and nozzles for
magenta (red-blue), cyan (blue-green) and yellow
inks. These colours may be unfamiliar to those
used to working with colour graphics on a
television screen, but they are the painter’s
equivalent of red, green and blue, and it is possible
to produce the entire spectrum by mixing them
together.

Compared to the colour printing achieved from
multi-coloured ribbons fitted to matrix printers,
the results from the Tandy system are considerably
better. The penalty for this is, surprisingly, not the
price, but the fact that the paper used has to be
absorbent, and therefore the printout can be rather
blurred. Perhaps this is not really such a big price to
pay for a full colour printout of your work.

THE HOME COMPUTER COURSE 373

Sound And Light

Sound synthesis using the
Dragon 32

The Dragon 32 is supplied with only a single
square wave oscillator for programming sound,
but the wonderfully simple sound commands
allowed by Microsoft Extended Colour ba sic

enable the construction of music strings that play a
passable tune with one command. Unfortunately,
there is no means of generating noise. This is very
strange as it is difficult to imagine an arcade-type
game that does not require noise at some point to
make the sound effects interesting.

The SOUND command is useful for sound effects
only and the format is as follows:

SOUND P.D

where: P = Pitch (1-255) and D = Duration (1-
255). Pitch is highly inaccurate and bears little
relation to a standard musical scale, though middle
C can be approximated with the value 89 and
reference A at 440Hz is about 159. Duration is
similarly inexact but 16 is near to one second, 32
roughly equivalent to two seconds and so on.

This program shows how SOUND can be used for
a special effect; in this case, with a little
imagination, a UFO taking off:

10 FOR P-10 TO 170 STEP 10
20 FOR D-16 TO 1 STEP -1

The second instalm ent of the
graphics capabilities of the BBC
Model B

BBC ba sic does not provide the full range of high
resolution commands that are available on some
microcomputers. For example, there are no CIRCLE
or PAINT commands. However, it is possible to
simulate most facilities using a few lines of BBC
BASIC.

The graphics screen has the same co-ordinates
regardless of the level of resolution selected, and
the axes have their origin in the bottom left-hand
comer.The following commands provide control
over the graphics screen:

MOVEx.y

30 SOUND P,D
40 N EXT D
50 NEXT P

PLAY can set an exact pitch, duration and volume
for a note. It can also specify a string of such notes
to be PLAYed with a selected pause between them at
a variable tempo. This makes the construction of
tunes with different note lengths and pauses very
easy — all PLAYed with this single command:

PLAY “T;0;V;L;N;P”

where: T = Tempo (Tl—T255); 0 = Octave (OI
OS); V - Volume (V0-V15); L = Length of note
(L1-L255); N = Note value (1—12 or note letter);
and P = Pause before next note (P1-P255).

It isn’t strictly necessary to use the semi-colons
between parameters but it would be wise to
include them for clarity. The example is very much
an arbitrary representation as the parameters can
be set in any order. T, 0, V, and L retain their values
until specified otherwise. In fact, T, 0, V, L, and P
default to T2,02, W15, L4and P0 respectively, unless
otherwise specified, so it isn’t always necessary to
include them in the PLAY statement.

Where timing is involved, as in L and P, the
values specified can be thought of as ‘notes’, and
fractions of ‘notes’ where L1 or P1 is a whole note,
L2 or P2 a half note and so on. The actual timing of
these is selected by the tempo parameter T, where
T1 is slow (a note has a long duration) and T255 is

This command moves the graphics cursor to the
point with (x,y) co-ordinates, but does not draw a
line. Note that the graphics cursor can move
completely independently of the text cursor.

DRAWx,y
As the name suggests, DRAW draws a line from the
current graphics cursor position to the point on the
screen with the (x,y) co-ordinates.

PL0Tk,x,y
PLOT is a multi-purpose command; its function is
governed by the value given to the variable k:

V a lu e o f k F u n c tio n

0 move relative to last point
1 draw line from origin in foreground

colour
2 draw line from origin in inverse

colour
3 draw line from origin in background

colour
4 same as MOVE
5 same as D RAW
6 same as D RAW but in inverse colour
7 same as D RAW but in background

colour

374 THE HOME COMPUTER COURSE

#

©

t

very fast (a note has a short duration). In addition,
note lengths can be more flexibly defined by the
addition of dots such as LL.or L5. where each dot
increases the note length by half its normal value.
Therefore L1... = 1+ f +■ \ + r= 2\ notes and L5. =
1 + w = w note.

There is no absolute way in which the
relationship between note and tempo can be
represented. The values required can vary for each
tune and are best selected by trial and error. This
may be a little time consuming but it makes the
command very flexible.

The parameter 0 specifies the octave in which
the next note is to be played. 01 starts with C at
131Hz and 05 ends with B at 2093Hz. Middle C
begins 02 which is the default octave. Within an
octave, notes can be specified in two ways. In the
first case a number can be used that corresponds to
a musical note as follows:

1 2 3 4 5 6
c C# D D# E F
7 8 9 10 11 12

F# G G# A A# B

This makes it possible to specify a note as a variable
within a selected octave. Alternatively, the
required note letter can be used directly to make
the statement easier to understand in a listing.

The above explanations are best illustrated with
an example. The following command plays F (6)
in the default octave 02, for half a note length (L2)
at default volume V15. It then pauses for a quarter

note length (L1) at volume V20. Tempo is set at T3:

PLAY “T3;L2;6;P4;03;V20;L1;A#”
< F > < A# >

pause

In addition, the T, 0, V, and L parameters can be
varied by preset amounts from within the
command by the addition of a suffix:

S u ffix E ffe c t

+ Adds one to current value
Subtracts one from current value

> Multiplies current value by two
< Divides current value by two

The format is: T+, T-, T > or T< for each
parameter.

The most useful Dragon facility is the ability to
PLAY tunes using substrings. These are first
defined, and then PLAYed in any order or repeated:

10 A$=“F;A#;G”
20 B$=“C;D#;F;P4;XA$;”
30 PLAY B$

This defines A$ and then includes it in B$ as
substring XA$. The resulting tune is C—D#—F—
P4—F—A#—G. This technique can be continued as
necessary where sequences of notes are repeated a
number of times within a piece of music. In all
cases the semi-colon following a substring must be
included, as in XA$, above.

Higher numbers repeat these eight functions but
with extra effects, such as dotted lines instead of
solid lines. Values of k between 80 and 87 fulfil a
particularly useful function. PLOT80,x,y joins the
point (x,y) to the two previously plotted points to
form a triangle. The triangle is then filled in with
the current foreground colour. This provides the
only simple means of PAINTing graphic shapes.

VDU x is equivalent to the more usual basic

command PRINT CHR$(x). We saw in the
introduction to graphics on the BBC Micro that
VDU can be followed by a series of numbers. VDU
v,w,x,y,z is equivalent to:

P R IN T C H R $ (v);C H R $ (w);C H R $ (x);C H R $ (y);
C H R $ (z) .

The VDU commands allow the user access to the
part of the BBC’s operating system that controls
graphics and screen display. Although VDU
commands may be used within b a sic programs
they actually work independently of the language
employed. Thus the same VDU commands could
be used for a graphics display in p a sc a l or any
other language offered for the BBC. Each of the
ba sic graphics facilities so far discussed can also be
implemented by the appropriate VDU command.

Defining characters is very easy on the BBC

Micro. VDU 23 controls this function. In the section
on user-defined graphics (see page 247) we
learned that normal ASCII codes are constructed
from a block of eight by eight pixels. The pixels that
are visible can be represented by a 1 in binary and
those not visible by a 0. Each row of eight bits can
then be converted to its decimal equivalent, giving
a total of eight decimal numbers to define a
character. VDU 23 allows the user to redefine the
character with an ASCII code between 224 and
255. For example:

10 R E M D EFIN E A CHARACTER
2 0 M O D E 2
3 0 V D U 23,240,16 ,56 ,124 ,146 ,16 ,16 ,16 ,0
4 0 P R IN T C H R $ (2 4 0)
5 0 END

This short piece of program redefines the character
with ASCII code 240 to create an arrow shape.
The last eight numbers define this new shape, and
line 40 PRINTS the character on the screen.

VDU 24 and VDU 28 respectively control the
creation of graphics and text ‘windows’ on the
screen. Using these functions, graphics and text
output to the screen can be limited to definable
areas. This can be particularly useful when
designing interactive programs where a split screen
is desirable. All that is required to define a graphics
window is to specify the co-ordinates of the bottom
left- and top right-hand comers.

M0DE1
T h is s h o r t p ro g ra m lis t in g d raw s

a c o lo u r fu l s p ira l f lo w e r on the

screen u s in g M O D E 1 re s o lu tio n .

N o te th e use o f fH led in tr ia n g le s

to p ro d u ce th e f lo w e r pe ta ls .

10 REM FLOWER

2 0 C L S

3 0 M O D E 1

4 0 FOR D=1 TO 3

5 0 A = 6 0 0 : B = 500

60 M 0V E A ,B

7 0 FOR 0 * 1 TO 5 5 0 STEP3

8 0 G C O LO ,R N D (3)

90 S=(C/(RND(5)+10))
100 X = S *5 *S IN (C /1 6)+ A

110 Y = S *5 *C 0 S (C /1 6)+ B

120 P L 0 T 8 5 ,X ,Y

130 NEXT C

140 NEXT D

150 END

The s p ira l p a tte rn is p ro d u ce d by

th e c o m b in a tio n o f s in e and

co s in e in lin e s 100 a n d 110.

N o rm a lly th is re la tio n s h ip

be tw een th e x a n d y c o -o rd in a te s

p ro d u ce s a c irc le b u t the

FO R ...N E X T lo o p g ra d u a lly

inc reases th e ra d iu s C p ro d u c in g

th e s p ira l e ffe c t. T he c o

o rd in a te s o f th e ce n tre o f th e

s p ira l, A a n d B, m a y be a lte red to

re -p o s it io n th e f lo w e r

THE HOME COMPUTER COURSE 375

ic Programming

first necessary to create them
and then fill them with

At the end of the last instalment of the course,
readers were left with the problem of solving this
apparent dilemma: how can we make a program
read in a file that does not exist (on tape or disk)
when the program is first run? The initial activity
we are likely to want the program to perform will
be to read in the data file and assign this data to
arrays or variables. Yet, if we insist on writing to the
file first, whenever the program is run, we will have
to be very careful in the programming not to lose
all the data in the file. As we discovered last time,
attempting to open a non-existent file will either
simply not work, or else cause the program to
‘crash’ (stop functioning).

Fortunately, there’s a very simple solution.
Many commercial software packages include an
‘install’ or ‘set-up’ program that has to be run
before the program proper can be used, and this is
the approach that we shall adopt. Such programs
typically allow the user to do a small amount of
‘customising’ (such as selecting whether the printer
to be used will be an Epson or a Brother, parallel or
serial, and so on), but they also create data files that
will later be used by the main program.
Remember, unlike program files, data files can be
accessed by any program (see page 316).

To solve our problem and allow *RDINFL* (the
routine that reads in the file and assigns the data to
the arrays) to be performed, we can write a very
simple set-up program that does nothing more
than open a file and write a dummy value into it.
We will choose a value that can be subsequently
recognised by the program proper as not being a
valid address book record. A suitable value would
be the character string @FIRST, because no name or
address, no matter how obscure its origin, is likely
to start with this particular string. *RDINFL* will
have to be slightly modified so that when it opens
and reads in from the file, it tests for this value
before going any further. If your computer doesn’t
have the @ symbol, then you will have to replace it
with ‘! ’ or another character — as long as this is a
string that won’t occur naturally in your address
book. First, however, here is the set-up program:

10 R E M T H IS P R O G R A M CREATES A DATA FILE
20 R E M FOR U SE BY T H E A D D R E S S BOOK

P R O G R A M
30 R E M IT W R IT E S A D U M M Y RECO RD THAT CAN
40 R E M BE U S E D BY * R D IN F L *
50 R EM
6 0 REM
7 0 O PEN “0 ”,# 1 , “ADBK.DAT"
8 0 P R IN T # 1 , “© F IR S T ”

9 0 CLOSE # 1
100 END

As mentioned previously in the Basic
Programming course, the details of reading and
writing files differ considerably from one version
of ba sic to another, but the principle is almost
always the same. First, the file must be declared
OPEN before it can be used for either input or
output. Then the direction of data flow is declared,
either IN or OUT. Next a ‘channel’ number is
assigned to the file. This allows more than one file
to be open and in use at the same time (for the time
being, however, we will use only one file). Finally,
the name of the file we wish to use must be
declared.

Line 70 in the program (left) is in Microsoft
basic and is similar in principle to the OPEN
statements used by most ba sic s (BBC ba sic is
somewhat different — see page 319). OPEN, of
course, declares that a file is to be OPENed and 0’
says that data will be output. # 1 is the number we
are assigning to the file for this operation; a
different file number could be used later if needed.
ADBK.DAT' is the name we have given to the file.

Line 80 simply writes a single record to the file.
The syntax of writing data to a file is usually (in
most ba sic s) exactly the same as the syntax used
for PRINTing, except that the PRINT statement must
be followed by the file number — #1 in this case.

Line 90 CLOSEs the file. Files may be left open
for as long as needed in the program, but ‘open’
files are very vulnerable and should be CLOSEd as
soon as possible within the program in order to
protect the data in them. If, for example, you were
to accidentally switch off the computer while the
file was open, you could find that data has been lost
when you next read the file.

There is some confusion over the way the terms
record and file are used in computers, and this
confusion is worst when we are talking about
databases, on the one hand, and data files on the
other. In a database, the file is a whole set of related
information. Using the analogy of an office filing
cabinet, the file could be a drawer labelled
PERSONNEL. This file could comprise one
record (a card in a folder) on each person in the
company. Each record (card) would contain a
number of fields, identical for each record,
containing such information as NAME, SEX,
AGE, SALARY, YEARS OF SERVICE etc.

If the PERSONNEL file were computerised, all
the information would be treated in exactly the

376 THE HOME COMPUTER COURSE

Basic Programming

same way conceptually — one file containing
many records, each record containing many fields
— just like our computerised address book.

A sequential file on a disk or cassette tape,
however, doesn’t care how the information in it is
used or organised by the program. Data files just
contain a series of data items, and each individual
item of data is called a record. A single record in a
data file wouldn’t, therefore, normally correspond
to a record in the database sense of the word.

It’s up to the program to read in records from the
data file and assign them to variables or arrays.
These variables and arrays need to be organised to
form a ‘conceptual’ record containing a limited set
of related information. There is no one-to-one
relationship between the records in a data file and
the records comprising a database.

Once the set-up program has been run it should
never be needed again. In fact, if it ever were run
again it would destroy any ‘legitimate’ data you
might have entered in the address book database.
We will see why this would happen when we look
at the modified *RDINFL* program.

When the program is run it does not ‘know’ if
there is legitimate data in the data file or not. The
first thing *RDINFL* does is to OPEN the ‘ADBK.DAT’
file and read in the first record (or data item). This
is not read into an element in an array, as you might
expect, but into a special string variable we have
called TESTS. Before any other records are read in,
TESTS is checked to see if it contains the string
@FIRST. If TESTS does contain @FIRST, the program
knows there is no valid data in the file and so there
is no point in trying to read in any more data and
assign it to arrays. Consequently, the file can be
closed and the rest of the program can continue.
Since there is no valid data in the file, the user can
do nothing useful until at least one record has been
entered and so the value of TESTS can also be used
to force the program to go to the *ADDREC*
subroutine so that at least one valid record will be
added before anything else can be done.

If, on the other hand, the value of TESTS is not
FIRST, the program can assume that there is valid

data in the file and can start assigning the data to
the appropriate arrays. The modified *RDINFL*
subroutine follows:

m

1400
1410
1420
1430

1440
1450

1460
1470
1480
1490

1500
1510

1520
1530
1540

REM * R D I N F L * SUBROUTINE
OPEN " I " , # 1 , "AD B K.D A T"
INPUT # 1 , TEST$
I F TESTS = "@ FIRST" THEN GOTO 1 5 3 0 : REM
CLOSE AND RETURN
LET NAMFLD$(1) = TEST$
INPUT # 1 , M0DFLD$(1) , STRFLDS(1) , TWNFLD$
(1) , C N T F L D $ (1) , T E L F L D $ (1)
INPUT # 1 , NDXFLD$(1)
LET S IZ E = 2
FOR L = 2 TO 50
INPUT # 1 , NAMFLD$(L) , M 0 D F L D $ (L) , STRFLD$
(L) , T W N F L D $ (L) , CNTFLD$(L)
INPUT # 1 , T E L F L D $ (L) , N D X F L D $ (L)
REM SPACE FOR CALL TO ' S I Z E *
SUBROUTINE
NEXT L
CLOSE #1
RETURN

Line 1420 assigns a single record from the
ADBK.DAT file to the variable TESTS. The next line

GOTO is used to jump to the line that closes the file
(line 1530) and then the subroutine RETURNS to the
calling program. No further attempts are made to
read in data. Assuming that there is no valid data in
the file, program control will be returned to
* INITIL*, which then calls * SETFLG *. All this routine
does at the moment is to set the value of SIZE to 1 if
TESTS = @FIRST. The code for *SETFLG* is given
below. Note that there are several RE Ms to allow
space for further flag setting should we want to do
this later.

1600
1610
1620
1630
1640
1650
1660
1670
1680
1690

SETFLG
SETS FLAGS AFTER * R D IN F L *

REM
REM
REM
REM
I F TESTS = "@FIRST" THEN LET S IZE
REM
REM
REM
REM
RETURN

= 0

SETFLG then RETURNS to *INITIL\ which in turn
RETURNS to the main program. *MAINPG* then calls
GREETS, which displays the greeting message.
* G R EETS * does not need any modification from the
previously published version of it.

The next routine called by the main program is
CH00SE. A very small modification to the
* CHOOSE* subroutine on page 357 will establish a
way of forcing the user to add a record if the
program is being run for the first time.

3500 REM -CHOOSE* SUBROUTINE
3510 REM
3520 I F TESTS =: "@FIRST" THEN G0SUB 3860
3530 I F TESTS = "@f i r s t m THEN r e t u r n

3540 REM ' CHMENU'
3550 PRINT C H R $ (12)
3560 PRINT "SELECT ONE OF THE FOLLOWING
3570 PRINT
3580 PRINT
3590 PRINT •

3600 PRINT "1 . FIND RECORD (FROM NAME)"
3610 PRINT " 2 . FIND NAMES (FROM INC0MPLE

NAME)”
3620 PRINT " 3 . FIND RECORDS (FROM TOWN)"
3630 PRINT " 4 . FIND RECORD (FROM I N I T I A L
3640 PRINT " 5 . L I S T ALL RECORDS"
3650 PRINT " 6 . ADD NEW RECORD"
3660 PRINT " 7 . CHANGE RECORD"
3670 PRINT " 8 . DELETE RECORD"
3680 PRINT " 9 . EXIT & SAVE"
3690 PRINT
3700 PRINT
3710 REM ’ I N C H 0 I ’
3720 REM
3730 LET L = 0
3740 LET I = 0
3 7 50 FOR L = 0 TO 1
3760 PRINT "ENTER CHOICE (1 - 9) "
3770 FOR I = 1 TO 1
3780 LET A$ = INKEYS
3790 I F A$ _ »? M THEN I = 0
3800 NEXT I
3810 LET CHOI = V A L (A $)
3820 I F CHOI <1 THEN L = 0 ELSE L = 1
3830 I F CHOI >9 THEN L = 0
3840 NEXT L
3850 RETURN

Two lines have been added. The first tests TESTS.
This variable still contains the value read into it in
the *RDINFL* routine. If it is @FIRST we know that
there is no valid data in the file and so the only
appropriate option is ADDREC, which is number 6.
If the test is passed, control is passed to * FI RSTM *, a
routine that displays an appropriate message and
sets the CHOI variable to 6. When the subroutine

r

w

then checks this to see if its value is @ FIRST. If it is, a returns to line 3530, TESTS is tested again (it is

THE HOME COMPUTER COURSE 377

bound to pass) and the subroutine RETURNS to the
main program skipping the rest of the * CHOOSE*
subroutine since it is inappropriate.

You may have wondered why TESTS is tested
twice. This is to prevent the subroutine RETURNing
to the wrong point in the program. Without line
3530, the program would continue on down the
rest of * CH 00SE*, presenting the choice menu even
though it is not needed. It also avoids the use of
GOTOs, though IFTESTS = “©FIRST” THEN GOTO 3850
would work just as well. GOTOs make the program
messy and difficult to follow (programs making
excessive use of GOTOs are referred to as ‘spaghetti
coding’).

Before going on to look at * FI RSTM *, readers are
referred back to *RDINFL* and the GOTO in line
1430. Since we have consistently argued against
using GOTO, why has one been used here? It would
have been perfectly easy to CLOSE the file and
RETURN by simply testing the value of TESTS in two
separate lines. We used a GOTO here instead to
illustrate one of the few instances where its use is
excusable. This is within a very short and
identifiable program segment, and its function is
obvious (and made more so by the REM comment).
GOTOs should never be used to jump out of a loop
(this can leave the value of variables in an
unpredictable state), never used to jump out of a
subroutine (this will confuse the RETURN
instruction unless a matching jump back into the
subroutine is used), and never used to jump to
remote regions of the program (this makes the
program all but impossible to follow).

The * FI RSTM* subroutine is simple and
straightforward: the screen is cleared and a
message is displayed informing the user that a
record will have to be entered. Line 3870 sets CHOI
to 6 so that when control is passed back to
EXECUT the *ADDREC* routine will be executed

3860

3870
3880
3890
3900
3910
3920

3930
3940

3950
3960
3970
3980
3990

itically. The code for * FI RSTM* follows:
REM * F IR S T M * SUBROUTINE (D ISPLAY
MESSAGE)
LET CHOI = 6
PRINT C H R $ (1 2) : REM CLEAR SCREEN
PRINT
PRINT T A B (8) ; "THERE ARE NO RECORDS I N "
PRINT TAB(8) ; "THE F I L E . YOU WILL HAVE"
PRINT T A B (6) ; "TO START BY ADDING A
RECORD"
PRINT
PRINT T A B (5) ; " (PRESS SPACE-BAR TO
CONTINUE)"
FOR B = 1 TO
I F INKEY$ <>
NEXT B
PRINT CHR$(12)
RETURN

1
t t ?! THEN B = 0

REM CLEAR SCREEN

The *ADDREC* subroutine, given on page 379, has
two small but important changes from the version
we encountered before. After the fields have been
entered as elements in the various string arrays, the
variable SIZE is incremented and TESTS is set to a
null string (see lines 10090 and 10100). SIZE is an
important variable used in various parts of the
program so that it knows which records are being
operated on. SIZE was originally set to 0 as part of
the *CREARR* subroutine. Later, in *SETFLG*, it is
set to 1 if TESTS = “©FIRST”. This is done so that

when *ADDREC* is first executed, the INPUT
statements will put the data into the first element of
each array. In other words, INPUT “ENTER
NAME”;NAMFLDS(SIZE) is equivalent to INPUT
“ENTER NAME”;NAMFLDS(1).

Line 10090 increments SIZE, so that it now
becomes2. If *ADDREC* is executed again, data will
be entered into the second element of each array.
Finally, *ADDREC* sets TESTS to “ ” in line 10100.
This is done because a record has now been
entered (though not yet stored in the tape or disk
data file). If *CH00SE* is executed again, as it must
be to save the data and exit the program, we will
not want to be forced to add a new record again. If
TESTS were not cleared, the program would get
stuck in an endless loop, and the only way to get
out of it would be to reset or unplug the computer,
and all the data would be lost.

By setting TESTS to a null string, the tests in lines
3520 and 3530 of * CHOOSE* will fail and allow the
options menu to be displayed. What then happens
to SIZE will depend on which routine is executed.
So far we have only ensured that SIZE = 1 if there is
no valid data in the file, and that this is incremented
by 1 each time a record is added. But what would
happen if there had been a number of valid records
in the file? To answer this we’ll have to look at
RDINFL again.

Line 1420 reads the first data item into TESTS. If
it is not @ FI RST, it is assumed to be a valid data item.
The records in the file are always in the same order,
namely: NAMFLD, M0DFLD, STRFLD, TWNFLD,
CNTFLD, TELFLD, NDXFLD, NAMFLD, M0DFLD, etc. If
the first record read out is valid data, it must belong
in the first element of the NAM FLDS array, so line
1440 transfers this data from TESTS to NAM FLDS (1).
The next two lines fill up the first elements in the
other five arrays. We now know that we have at
least one complete (database) record, so SIZE is set
to 2. This value must be one greater than the
number of valid records read into the arrays,
otherwise *ADDREC* would write new data into
elements already containing valid data.

Then a loop from 2 to 50 reads the records into
all six arrays, incrementing the index L each time
round. We have already made the decision to
restrict our program to dealing with files of 50
names and addresses, and the DIM statements in
the *CREARR* subroutine allocated space for this.
However, when you first start using the program,
you are unlikely to have a complete file of 50
entries, so we will need a routine in the program
that can detect when this is the case, set the variable
SIZE accordingly, and abort the reading-in loop.

Consequently, we have included line 1510 to
provide a call to a ‘SIZE’ subroutine, which we will
be developing later in the course. There are three
ways in which this problem could be handled.
First, when we write the data to tape, we could
arrange that the first record to be written is the
variable SIZE. The *RDINFL* subroutine could then
be modified to read in SIZE first and then set up a
loop of the form FOR L=1 TO SIZE to read in the
records. The second, and preferable, method

fER COURSE

Basic Programming

(since it doesn’t clash with our earlier test for
FIRST in line 1430) is to set up a procedure to be

executed after all the records have been written, in
which a special flag (of the form @END, perhaps)
can be written at the end. A test can then be
inserted into *RD IN FI

END is encountered.m
to abort the loop when

The third method is to make use of the EOF (End
Of File) function offered on some computers,
which is really an automated version of the second
method. These computers have an EOF flag, which
is normally set to 0 that is, FALSE but takes on
another value (typically 1 to represent TRUE) when
the end of file has been reached. Some ba sic s allow
the EOF flag to be tested as a ba sic variable; in
which case, a construct of the form:

W H IL E NO T E O F(N) (N is th e file n u m b er)
DO

IN P U T # N , d a ta to read in)
E N D W H IL E

will handle the problem. On other machines, the
EOF flag is represented as a single bit that must be
accessed using the PEEK statement. To find out if
your machine has an EOF function, you will need to
consult the instruction manual. Because it differs
so greatly between machines, we will not be using
EOF in our program. But as an exercise, readers
might like to attempt to modify the *RDINFL*
subroutine for all three possible methods of
dealing with files of less than 50 entries.

Generally, it is always a great deal easier to write
programs that deal with files of fixed length, but
tackling the problem of ‘dynamic length’ files at
this early stage will enable us to modify the
program later to cope with files with more than 50
entries.

4000 REM *EXECUT* SUBROUTINE
4010 REM
4019 I F CHOI = 6 THEN G0SUB 1 0 0 0 0 : REM

FOOTNOTE
4020 REM NORMALLY ’ ON CHOI G0SUB e t c ’

SEE FOOTNOTE
4030 REM
4040 REM 1 IS *FNDREC*
4050 R.EM 2 IS *FNDNMS*
4060 REM 3 IS *FNDTWN*
4070 REM 4 IS * F N D I N T *
4080 REM 5 IS * MODREC*
4090 REM 6 IS * ADDREC*
4100 REM 7 IS *M0DREC*
4110 REM 8 IS *DELREC*
4120 REM 9 IS * EX PROG*
4130 REM
4140 RETURN

SEE

The *EXECUT* routine would not normally have
line 4019 (hence the odd line number), and line
4020 would normally be either:

ON CHOI G 0 S U B n u m b e r,n u m b e r,n u m b e r etc

or a series of:

IF CHOI = 1 T H E N G 0 S U B n u m b e r
IF CHO I = 2 T H E N G 0 S U B n u m b e r etc

Line 4019 is included so that the program will work
even though the other *EXECUT* subroutines have
not yet been coded .

10 REM ’ MAINPG’
20 REM * I N I T I L *
30 G0SUB 1000
40 REM *GREETS*
50 G0SUB 3000
60 REM *CH00SE*
70 G0SUB 3500
80 REM *EXECUT*
90 G0SUB 4000
100 END

1 0 0 0
1010
1020
1030
1040
1050
1060
1070
1080
1090

REM * I N I T I L * SUBROUTINE
G0SUB
G0SUB
G0SUB
REM
REM
REM
REM
REM
RETURN

1 1 0 0:
1 4 0 0 :
1 6 0 0 :

REM *CREARR*
REM * R D I N F L *
REM *SETFLG*

(CREATE ARRAYS) SUBROUTINE
(READ IN F I L E) SUBROUTINE
(SET FLAGS) SUBROUTINE

1100 REM *CREARR* (CREATE ARRAYS) SUBROUTINE
1110 DIM NAMFLD$(5 0)
1120 DIM M0DFLD$(5 0)
1130 DIM TWNFLD$(5 0)
1140 DIM CNTFLD$(5 0)
1150 DIM TELFLD $(5 0)
1160 DIM NDXFLD$(5 0)
1170 REM
1180 REM
1190 REM
1200 REM
1210 LET S IZ E = 0
1220 LET RM0D = 0
1230 LET SVED = 0
1240 LET CURR = 0
1250 REM
1260 REM
1270 REM
1280 REM
1290 REM
1300 RETURN

10000 REM *ADDREC* SUBROUTINE
10010 PRINT CHR$(1 2) : REM CLEAR SCREEN
10020 INPUT "ENTER NAME" ;NAMFLD$(S IZE)
10030 INPUT "ENTER S TR E E T " ; STRFLD$(S IZ E)
10040 INPUT "ENTER TOWN";TWNFLD$(SIZE)
10050 INPUT "ENTER COUNTY"; CNTFLD$(S IZ E)
10060 INPUT "ENTER TELEPHONE NUMBER"; TELFLD$(S I Z E)
10070 LET RMOD = 1: REM 'RECORD MODIFIED ' FLAG SET
10080 LET N D XFLD$(S IZE) = S T R $ (S I Z E)
10090 LET S IZE = S IZ E + 1 *
10100 LET TESTS = ’’ "
10110 REM INSERT CALL TO *M0DNAM* HERE
10120 REM
10130 REM
10140 REM
10150 RETURN

Basic Flavours
r

SPECTRUM

OPEN
CLOSE

B ecause th e S p e c tru m has th e fa c i l i ty fo r

s a v in g o r lo a d in g w h o le a rra y s u s in g the

c o m m a n d SAVE-DATA, as e x p la in e d on page

318, th e * R D IN F L * s u b ro u tin e w il l be

c o m p le te ly d if fe re n t — re a d in g in each o f the

a rra ys (N A M F L D S , M O D FLD S e tc .) in

s u c c e s s io n . W h e n w e b e g in w r it in g th e da ta

in th e n e x t in s ta lm e n t, w e w il l p u b lis h a

c o m p le te v e rs io n o f th e re le va n t s u b ro u tin e s

fo r th is m a c h in e . In th e m e a n tim e , as an

e xe rc ise , S p e c tru m o w n e rs can ta c k le th e

p ro b le m o f h o w to c rea te th e d u m m y file

c o n ta in in g @ FIRST, as w e ll as d e te rm in in g

h o w m a n y v a lid e n tr ie s th e re are in th e array,

w h e n re a d in g th e f i le in .

Sinclair machines do not accept program line
numbers above 9999. In the full Spectrum
listing that will appear in Issue 23 the
ADDREC subroutine begins at line 4200 and
line numbers increase in steps of 10
See ‘ B a s ic F la v o u rs ’ page 319.

THE HOME COMPUTER COURSE 379

Pioneers In Computing

James Powers
P ow ers ’ m a c h in e s w ere p u re ly

m e c h a n ic a l and d e d ic a te d to a

s in g le a p p lic a t io n .H e

n e ve rth e le ss p ro v id e d fie rc e

c o m p e t it io n fo r H o lle r ith

Herman Hollerith
H o lle r ith in v e n te d the

e le c tro m e c h a n ic a l ca rd reader,

w h ic h w a s la te r d e ve lo p e d in to

th e ta b u la to r

Herm an Hollerith and Jam es
Powers both developed
tabulating m achines. Their
rivalry dom inated the world of
com puting for six decades

The machines that Herman Hollerith (see page
240) invented to process the results of the 1890
United States census developed into a range of
general purpose data processing equipment
known as ‘tabulators’. Until the introduction of the
first commercial computers in the 1950’s,
tabulators were essential to the growth of industry
and business. In Pittsburgh in the 1930’s, for
example, a leading department store
experimented with a system of customer accounts
in which 250 terminals throughout the store were
connected by telephone lines to a central bank of
tabulators. Goods were priced with punched tags
and the information was automatically sent to the
tabulators, which then recorded the sale and
prepared an invoice for the customer. When the
customer’s credit rating had been checked,
authorisation for the sale was sent to the terminal
through an ‘on-line’ typewriter.

Business competition, in fact, provided the
initial stimulus for the development of tabulators.
Hollerith’s monopoly over the provision of census
equipment was broken in 1910 when the Census
Bureau invited James Powers to provide
alternative machines. Powers offered a system of
tabulators that were totally mechanical and
therefore did not infringe the patents of Hollerith’s
electromechanical devices. TTie rivalry between
the two men, and the two companies they later

formed, spurred on the growth of data processing
machines.

In 1902, Hollerith designed a plug board (rather
like a telephone cord switchboard), which could
select the columns of the punched card that were to
be added up and then output. In this way,
Hollerith’s machine had a programming capability
that his rival’s machines lacked; Powers always
produced machines dedicated to specific
applications. In 1924, Powers patented a way of
representing alphanumeric data on punched cards
by using a single hole in each column for a number,
and a combination of holes to represent a letter.
Hollerith quickly responded with his own system:
the now standard 80-column card. Each column
of this card contained 12 rows of holes that were
‘read’ by wire brushes completing an electrical
circuit with a metal contact beneath the card. Some
advanced systems used a light detector for this
purpose.

The first tabulators could only count or
accumulate totals, but later more advanced
mathematical functions were provided for
manipulating data. Unlike computers, which were
invented by scientists for mathematical purposes,
the tabulator was created to be an information
processor. People were quickly inspired to work
out applications for the new machines. Special
tabulators were adapted for use in computing
tables, in wave analysis, and in astronomy —
tabulators identified the planet Pluto in 1930.
Tabulators eventually became sophisticated
enough to deal interactively with large amounts of
data — IBM patented one that could keep records
on the transactions of 10,000 bank accounts. But
their greatest impact was in collating data on a
scale never seen before.

T a b u la to r M a c h in e s
T he ta b u la to r in its h e yd a y in th e e a r ly 1 9 5 0 ’s c o n s is te d o f e ig h t

sepa ra te u n its . D ata w a s p u t o n to each ca rd by a ‘ca rd p u n c h ',

w h ic h c o u ld p ro c e s s 2 0 0 ca rd s an h o u r. A se p a ra te ‘v e r if ie r ’

checked th e a c c u ra c y o f th e p u n ch o p e ra to r, a n d w h e n th e ca rds

b e ca m e w o rn a ‘ re p ro d u c in g p u n c h ’ c re a te d n e w c o p ie s . An

‘ in te rp re te r ’ p r in te d an e x p la n a tio n o f th e da ta above each

c o lu m n fo r easy re fe rence .

T he ‘ta b u la to r ’ its e lf a c c u m u la te d to ta ls o f d a ta in the

c o lu m n s , and o u tp u t th e re s u lts a t a ra te o f 9 ,0 0 0 c a rd s p e r hou r.

T h is ta b u la to r w a s o fte n c o n n e c te d to a ‘ m u lt ip ly in g p u n c h ’ th a t

p ro v id e d m o re s o p h is t ic a te d m a th e m a tic a l fu n c t io n s . The

‘c o l la to r ’ c o u ld c o m p a re th e da ta in tw o s ta c k s o f c a rd s o r m e rg e

tw o s ta c k s to g e th e r. F ina lly , th e ‘ s o r te r ’ c o u ld ta k e a s ta c k o f

c a rd s and s o r t th e m in to 13 p ile s — o n e fo r each o f th e 12 ho les ,

and one fo r a b la n k c o lu m n .

T he o p e ra tio n o f th e ta b u la to r c o u ld be c h a n g e d w ith c o n tro l

co d e s (in th e 11th and 12 th p o s it io n s) , and c o n tro l c a rd s w ere

b r ig h t ly c o lo u re d to m a rk th e m o u t in a s ta ck . W h e n a c o n tro l

ca rd w a s e n c o u n te re d , th e ta b u la to r w o u ld b e g in a new

o p e ra tio n — su ch as c o u n tin g a d if fe re n t f ie ld . In c e n su s w o rk ,

an e x a m p le o f a f ie ld w o u ld be th e d a ta re la tin g to a h o u se , o r a

s tre e t, o r a c ity . A t each ch a n g e o f f ie ld th e ta b u la to r w o u ld p r in t

o u t a s u b to ta l — in o u r e x a m p le th is w o u ld p ro v id e the

p o p u la t io n o f each h o u se , s tre e t o r c ity . S o m e o f th e te c h n iq u e s

o f d a ta p ro c e s s in g w ere c a rr ie d o ve r f ro m ta b u la to rs in to th e

e a r ly c o m p u te r la n g u a g e s

380 THE HOME COMPUTER COURSE

BB
C

HU
LT

0N
 P

IC
TU

RE
 L

IB
RA

RY

■

■ ■ V

1

H o m e co m p u ters . D o th e y send y o u r b ra in to

s le e p - o r keep y o u r m in d on its toes?

A t Sinclair, w e 're in n o d o u b t To us, a

h o m e c o m p u te r is a m e n ta l g ym , as

im p o rta n t an a id to m e n ta l fitness as a set o f

w e ig h ts to a b o d y -b u ild e r.

P ro v id ed , o f course, it o ffe rs a w h o le

b a tte ry o f g e n u in e m e n ta l challenges.

T h e S p e c tru m d o es ju s t th a t.

Its e d u c a tio n p ro g ra m s tu rn b o rin g

chores in to a b s o rb in g c o n te s ts -n o t lea rn in g

to spell 'acq u iescen t, b u t rescu ing a princess

fro m a sorcerer in co lour, sound, an d

m o v e m e n t!

T h e a rc a d e g a m e s w o u ld tes t an

a ll-n ig h t a rcad e fre a k - th e y 're v e ry fa s t very

c o m p le x , v e ry s tim u la tin g .

A n d th e m in d -s tre tc h e rs are tru ly

fiend ish . A d v e n tu re g am es th a t v e ry fe w

p e o p le in th e w o r ld h a v e cracked. Chess to

g ra n d m a s te r s tandards . F light s im u la tio n

w ith a co ckp it fu ll o f in s tru m e n ts o p e ra tin g

in d e p e n d e n tly . G e n u in e 3 D c o m p u te r design.

N o o th e r h o m e c o m p u te r in th e w o rld

can m a tc h th e S p e c tru m c h a lle n g e -b e c a u s e

n o o th e r c o m p u te r has so m u ch softw are o f

such o u ts ta n d in g q u a lity to run.

For th e M e n ta th le te s o f to d a y and

to m o rro w , th e S inclair S p e c tru m is gym ,

a p p a ra tu s a n d tra in in g schedule, in o n e n e a t

package. A n d y o u can b u y o n e fo r u n d er

£ 100. m

■mmi

JpFft

Wmm

■ . ■'

. ;

V

I

m

1 ' A - : / •'imwm:-

mm

■ -—f

w

-t

y i . y

0RB1S i 3̂RB6

Now that your collection of Home
Computer Course is growing, it makes sound
sense to take advantage of this opportunity to
order the two specially designed Home
Computer Course binders.

The binders have been commissioned
to store all the issues in this 24 part series.

At the end of the course the two
volume binder set will prove invaluable in
converting your copies of this unique series into
a permanent work of reference.

Buy two together and save £ 1.00
❖ Buy volumes 1 and 2 together for

£6.90 (including P&P). Simply fill in the order
form and these will be forwarded to you with
our invoice.

❖ If you prefer to buy the binders
separately please send us your cheque/postal
order for£3.95 (including P&P). We will send
you volume 1 only Then you may order volume
2 in the same way - when it suits you!

Overseas readers: This binder otter applies to readers in the
UK, Eire and Australia only. Readers in Australia should
complete the special loose insert in Issue 1 and see additional
binder information on the inside front cover. Readers in New
Zealand and South Africa and some other countries can obtain
their bindersnow. For details please see inside the front cover.
Binders may be subject to import duty and/or focal tax.

