
ISSN 0265-2919

fT lA STER inB YO U R HDfTlE C D ITIPU TER in 5 4 ULIEEKS

r -T iw r-rA ^ ^ flj

1 _____

C O N T E N T S

Osborne-1 The computer that triggered off
the trend towards portability and reduced
the price of the business micro

410

Magic Spell In order to store 30,000 words
on a disk, spelling checker programs must
compress the data

Application Form Application generators
can reduce the work of writing a program by
at least 90 per cent

Basic Programming

Search Warrant Adding a subroutine for
record searching means that our database is
nearly complete

404

406

>
416

N e x t W e e k
•We review ttw Commodore
PET, considered by many to be
the first personal computer

•Computer Aided Design
requires very sophisticated
narawara. many or me software
techniques used, however, are
now appearing in home
computer packages

• Optical disc technology is now
used in both video and audio
players. Though ft is currently a
read-only device, it will soon be
appearing as a computer
penpnerai

• & * :.y

Kids’Stuff Today’s toys contain similar
components to your home computer

Single Handed The Microwriter can create
the entire alphabet using just five keys

401

414

Passwords To Computing

Sorting Code We look at why the Shell Sort
can be an efficient way to sort an array

9

413
Pioneers In Computing

Ma Bell Many of the developments in the
modem computer can be traced back to a
single research laboratory

420

Sounds Incredible...Light Relief We take a
further look at the sophisticated features of
the BBC’s sound and the Commodore 64’s
graphics

#

408

B a o rflichardPawson; Constant Editor̂ 3 a retti Jefferson; Ait Director David Whelan; P re*^ E d tto r Catherine Cardwell; Staff Writer Roger Ford; Picture Editor Claudia Zeff; DestaiwHazel Bennington; Art Assistant Liz Dixon; Sub
Editors Robert Pickering Keith Parish; Researcher Melanie Davis; Contributors Tim Heath, Henry Budgett, Brian Morris, Lisa Kelly, Steven Colwill, Richard King, Geoffrey Naim sffireup Art Director Perry Neville- Managing Director
Stephen^Engiand; Consultant David Tebbutt; Published by Ortos Publishing Ltd: Editorial Director Brian Innes; Project Development Peter Brookesmith; Executive Editor Chris Cooper; Production (tamHiiatorlan Paton- Circulation
Lulr u ij In 6 ^ fc !£ n b ^ pnwt<,c<̂ ** BuBCh Partwortci ̂ EWtortal Office 85 Charlotte Street, London W1; © 1963 by Ofbte PpbHsWng Lid: Typeset by Utdverse; Reproduction by Mute Morgan

HOME COMPUTER COURSE - Price UK 80p IR £1.00 AUS $1.95 NZ $2.25 SA R1.95 SINGAPORE $4.50 USA and CANADA $1.95
How to obtain your copies of HOME COMPUTER COURSE - Copies are obtainable by placing a regular order at your newsagent.
Back Nutnbers UK and Eire - Back numbers are obtainable from your newsagent or from HOME COMPUTER COURSE. Back numbers, Orbis Publishing Limited, 20/22 Bedfordbury, LONDON WC2N 4BT at cover price AUSTRALIA- Back
numbers are obtainable from HOME COMPUTER COURSE. Back numbers, Gordon & Gotch (Aus) Ltd, 114 William Street, P0 Box 767G Melbourne, Vic 3001, SOUTH AFRICA, NEWZEALAND, EUROPE & MALTA- Back numbers are available at
cover price from your newsagent. In case of difficulty write to the address in your country given for binders. South African readers should add sales tax.
How to obtain binders tor HOME COMPUTER COURSE - UK and Eire: Please send £3.95 per binder if you do not wish to take advantage of our special offer detailed in Issues 4,5 and 6. EUROPE: Write with remittance of £5.00 per binder (incl.
P M . p a y a ? !e t0 ° ? IS Publ,shin9 Limited, 20/22 Bedfordbury, LONDON WC2N 4BT. MALTA: Binders are obtainable through your local newsagent price £3.95. In case of difficulty write to HOME COMPUTER COURSE BINDERS, Miller (Malta)
Ltd. M.A. Vassalh Street, Valletta, Malta. AUSTRALIA: For details of how to obtain your binders see inserts in early issues or write to HOME COMPUTER COURSE BINDERS, First Post Pty Ltd, 23 Chandos Street, St. Leonards, NSW 2065. The
binders supplied are those illustrated in the magazine. NEWZEALAND: Binders are available through your local newsagent or from HOME COMPUTER COURSE BINDERS, Gordon & Gotch (NZ) Ltd, POBox 1595, Wellington SOUTH AFRICA-
Binders are available through any branch of Central Newsagency. In case of difficulty write to HOME COMPUTER COURSE BINDERS, Intermag, PO Box 57394, Springfield 2137.
Note - Binders and back numbers are obtainable subject to availability of stocks. Whilst every attempt is made to keep the price of the issues and binders constant, the publishers reserve the right to increase the stated prices at any time when
circumstances dictate. Binders depicted in this publication are those produced for the UK market only and may not necessarily be identical to binders produced for sale outside the UK. Binders and issues may be subject to import duty and/or
local taxes, which are not included in the above prices unless stated. I j l l

COVER PHOTOGRAPHY BY CHRIS STEVENS

Insights

Young Minds
C h ild re n , it se e m s, a re m o re

re c e p tiv e to th e n e w te c h n o lo g y

th a n m a n y a d u lts , w h o re a c t

a g a in s t th e idea o f h a v in g to

lea rn n e w ideas . T he v e rs a t il ity

o f th e m ic ro p ro c e s s o r m eans

th a t th e re is v ir tu a lly no lo w e r

age l im it fo r e le c tro n ic to y s and

e d u c a tio n a l d e v ice s

T h e la te s t e d u c a tio n a l ‘to y s ’
c o n ta in a s m u c h p ro c e s s in g

p o w e r a s y o u r h o m e c o m p u te r

a n d u s e s im ila r p ro g ra m m in g

te c h n iq u e s

In addition to forming the heart of all
microcomputers, microprocessors have become a
standard feature of many domestic appliances,
such as sewing machines, washing machines, and
even door locks. Toy manufacturers have
experimented with microprocessors as well,
especially in the control of model cars and railway
trains. However, at least one computer
manufacturer — Texas Instruments — has found
the production of microprocessor-based teaching
toys to be very rewarding. TFs first venture into
this market was a calculator-like unit that posed
problems in simple arithmetic. The Little
Professor proved to be consistently popular, and
even when superseded by Speak & Maths, still
sold in significant quantities.

Speak & Maths was the second Texas
Instruments educational toy to make use of the TI
speech synthesis chip. This was also used in the
TI99/4 A home computer, which was taken off the
market in late 1983 when Texas Instruments
decided to withdraw from low-cost domestic
computing. Speak & Spell, launched in 1978, has
a vocabulary of a few hundred words. The unit has
a full alphabetic keyboard (as well as some
additional keys) made up of a multi-layer
membrane similar to Sinclair’s ZX81. On pressing

the Enquiry key, the user is audibly prompted to
spell a word. Each key depression is displayed by
means of Light Emitting Diodes until the word is
complete. Speak & Spell then tells the user
(audibly) whether or not the spelling is correct.

Speak & Maths works in a similar way, but
poses arithmetic problems. These two highly
innovative products have succeeded in gaining a
large share of the market for educational toys, and
have taken Texas Instruments into a field quite
different from the standard consumer electronics
in which it started.

A third TI speaking toy, Touch & Tell, is
perhaps more recreational than educational. It
makes use of a number of plastic overlays, each
printed with a pattern or picture and uniquely
identified by a magnetic encoding. When the child
touches an area of the picture, Touch & Tell
identifies the selected object audibly.

While synthesised speech is by far the most
sophisticated computing technique used by toy
and games makers, the most popular application is
for small versions of some of the most popular
arcade games. There are perhaps as many varieties
of this sort of game as there are arcade games
proper. Another area where the microcomputer
has made an impact on the toy market is in self-
guided cars and trucks. Perhaps the best known is
the Big Trak, which is programmed by entering
instructions on a keypad mounted on its upper
surface. The toy resembles a turtle (see page 176),
and can also be controlled from a microcomputer,
by way of its parallel port.

Other microprocessor-based toys include:
Simon, which asks the child to repeat a random
sequence of musical notes and flashing lights;
Playskool’s Maximus, an arithmetic trainer similar
to Little Professor; and a variety of robots. Toys
for older children (and adults) include: Electroni-
Kit, Mykit Systems and Radionics which, as their
names suggest, are electronic construction kits
that use encapsulated components that can be
plugged into a baseboard to make up a variety of
simple devices.

• r • f
» ' i* m ?

• r - r •

Electroni-Krt
A s its n a m e im p lie s , E le c tro n i-

k it is a c o n s tru c t io n k it th a t is

used to c rea te a v a r ie ty o f

e le c tro n ic d e v ice s , su ch as

t ra n s is to r ra d io s , a m p lif ie rs and

s o o n . Its c o m p o n e n ts are

e n c a p s u la te d in c le a r p la s tic ,

and are p lu g g e d in to a

b a s e b o a rd (fo llo w in g s c h e m a tic

d ia g ra m s s u p p lie d w ith th e k it)

to b u ild up th e d e s ire d re su lt.

The m o s t s o p h is t ic a te d k it in

th e ra n g e in c lu d e s th e

c o m p o n e n ts fo r a ru d im e n ta ry

m ic ro c o m p u te r , w h ic h is

d e s ig n e d to teach v e ry s im p le

m a c h in e c o d e o p e ra tio n s . B u t

w ith o n ly 9 6 by te s o f m e m o ry it

can h a rd ly be ca lle d a h o m e

c o m p u te r

a * * # m

9

THE HOME COMPUTER COURSE 4 0 1

CO
UR

TE
SY

 O
F

PE
RS

O
NA

L
CO

M
PU

TE
R

W
O

RL
D

Insights

M B E le c tro n ic s ’ S im o n is a m ic ro p ro c e s s o r -

based v e rs io n o f th e p la y g ro u n d g a m e ‘S im o n

S ays ’ . T he u n it g e n e ra te s a s e q u e n c e o f

m u s ic a l n o te s , e ach o n e a c c o m p a n ie d b y a

f la s h in g lig h t. T h e fo u r c o lo u re d q u a d ra n ts on

th e to p s u r fa c e a c t a s s w itc h e s fo r b o th th e

to n e s a n d th e l ig h ts . T h e o b je c t o f th e g a m e is

to d u p lic a te th e s e q u e n ce e x a c tly

Texas Instruments
T i e n te re d th e e d u c a tio n a l m a rk e t in th e m id

s e v e n tie s w ith T h e L it t le P ro fe sso r, a

c a lc u la to r - l ik e d e v ic e th a t p o s e d p ro b le m s in

a r ith m e t ic . B e fo re th e e n d o f th e d e ca d e Texas

h a d b e g u n to m a rk e t a s p e ll in g tu to r th a t

m a d e u se o f its sp e e ch s y n th e s is c h ip .

P re s s in g a ke y re s u lts in S p e a k & S p e ll a s k in g

fo r a w o rd to be s p e lle d . M o re re c e n tly th e se

te c h n iq u e s have been a p p lie d to s im p le

a r ith m e t ic g a m e s , a n d v e ry b a s ic s to ry te ll in g

d e v ic e s fo r th e y o u n g e r c h ild

402 THE HOME COMPUTER COURSE

.VA-. v X iv . - .v .w

v

% .

Insights

v * .
• •

1 $

Robo-1
T o m y ’s R obo -1 is a ro b o t a rm o f c o n v e n tio n a l

d e s ig n c o n tro lle d b y m e a n s o f tw o jo y s t ic k s . I t

i s n o t c a p a b le o f o p e ra tin g u n d e r p ro g ra m

c o n tro l. T he s ta r t l in g th in g a b o u t i t is th e c o s t

— le s s th a n te n p e r c e n t o f th e p r ic e o f th e

le a s t e xp e n s iv e te a c h in g ro b o t a rm (see page

314). O f c o u rs e , th e c o n s tru c t io n is m u c h le ss

ro b u s t, as in je c t io n -m o u ld e d p la s t ic is used

in s te a d o f s h e e t m e ta l. T he a rm re lie s on

v is u a l fe e d b a c k a n d c o n tro l b y th e user, ra th e r

th a n u s in g p re c is e s te p p e r m o to rs . A g a in ,

w ith in g e n u ity , th e R obo -1 c o u ld be in te r fa c e d

to a h o m e c o m p u te r

r4 - > , " .

m m

&

X

BigTrak
W h ile i t m a y re s e m b le a T onka Toy, o r o n e o f

th e o th e r ro b u s t to y v e h ic le s fo r th e y o u n g e r

c h ild , B ig T rak is in fa c t a f lo o r ro b o t in

d is g u is e . C o m p le te ly s e lf-c o n ta in e d , it is

p ro g ra m m e d b y e n te r in g d ire c t io n and

d is ta n c e c o d e s o n a ke yp a d m o u n te d o n its

to p s u rfa c e . W ith a l i t t le in g e n u ity , a

c o n v e n tio n a l h o m e m ic ro c o m p u te r ca n be

in te r fa c e d w ith B ig T rak v ia a p a ra lle l o r s e r ia l

p o rt. T he v e h ic le c o u ld th e n be g u id e d u n d e r

p ro g ra m c o n tro l, w h ic h w o u ld in tro d u c e th e

p o s s ib il i ty o f b ra n c h in g in to a d if fe re n t s u b

p ro g ra m s h o u ld a p a r t ic u la r s e t o f c o n d it io n s

v be e n c o u n te re d

1 \V

THE HOME COMPUTER COURSE 403

IA
N

M
cK

IN
N

EL
L

S p e llin g c h e c k e r p ro g ra m s a re

a v a ila b le fo r m a n y w o rd

p ro c e s s o rs , a n d s ty le a n d

g ra m m a r c h e c k e rs a re a ls o
s ta rtin g to a p p e a r

Computer designers are still a long way off
creating machines with the ability to generate and
manipulate natural languages, such as English.
One of the intended applications for the fifth
generation of computers, which should appear in
the 1990’s, is machine translation between, say,
English and Japanese. Machine translation
facilities already exist for relatively simple prose
such as government reports and proceedings,
though the draft produced by the mainframe
computer invariably has to be corrected and
polished by hand. Stories of errors abound: the
quotation ‘The spirit is willing but the flesh is
weak’ is said to have been translated from English
to Russian and back again by two different
programs, with the final result of ‘The wine is
agreeable, but the meat is spoiled’!

Such apocryphal stories illustrate a very
important point — the difficulties encountered
when a computer is processing data without
understanding what it means. A problem often
posed to students of computer science is to
consider how a computer could distinguish
between the meanings of the following two
sentences:

TIME FLIES LIKE AN ARROW
FRUIT FLIES LIKE A BANANA

The construction of both sentences appears
identical, but in the first instance FLIES is a verb,
whilst in the second it forms part of a noun phrase.
The only reason why we can tell them apart is
through experience. It is possible to simulate
experience on a computer, given enough memory,
but this comes under the field of artificial
intelligence, and research in this area is not very
advanced. What we are really talking about here is
the difference between ‘syntax’ and ‘semantics’.
Syntax, meaning the rules concerning the
construction processes used in a language, is a
fairly easy subject for computers to get to grips
with (as all home programmers who have
encountered SYNTAX ERROR? messages know).
Semantics, however, concerns the meaning which
those phrases and constructs convey.

In die 1950’s, Noam Chomsky developed the
basis for contemporary theory about human
languages and the rules of grammar, and although
he was not directly involved with the computing
sciences, his theories are directly pertinent, both to
machine translation and to the writing of
interpreters and compilers for programming
languages.

One of the by-products of his research has been
the creation of various software tools to assist in
the writing of text. In addition to word processing
packages, which assist in the creation, editing and
printing of text, there are programs to proof-read
documents for spelling and typing mistakes, and
even to check on the grammar and style of writing.
Though none of the contemporary products
contain anything outstanding in the way of
artificial intelligence, it is instructive to look at
their operation — both in terms of the way they are
presented to the user and how they are internally
programmed.

All spelling checker programs make use of a
dictionary held on disk, which typically stores
between 25,000 and 50,000 words. If you intend
buying such a product, incidentally, check that the
dictionary has been compiled for English use —
many originate in the USA and use American
spelling. Most packages will allow you to add
items to the dictionary, such as unusual jargon
terms that you may use, or the names of
companies and products that you wish to have
checked.

A problem arises, however, in finding adequate
memory space for a full dictionary. You will
remember that one eight-bit byte can hold a single
alphanumeric character using the ASCII code. So,
even allowing an optimistic average of just five
characters per word, a 30,000 word^dictionary
would require 150 Kbytes of storage, which is very
much larger than most single disk drives for home
computers. Fortunately, this kind of data can be
quite easily compressed, by using two techniques.

First, if we assume that our dictionary need only
contain lower case letters (a routine in the spelling
program will handle the conversions), and
numeric digits and some punctuation symbols will
not be needed, then these can be removed by the
program. Subsequently, we could construct our
entire dictionary using a maximum of 32 different
characters, instead of the full ASCII range of 128
(or 256 if you include graphics symbols). We
could therefore reduce the storage requirement of
each character from eight to five bits. The word
‘computer’, for example, could be stored in a total
of 40 bits, or five bytes. The first five bits of the first
byte would specify the letter ‘c’, and the next three
bits, plus the first two of the second byte, would
specify ‘o’, and so on.

The second technique employed within spelling
checkers is called ‘tokenising’. This works on the
premise that certain combinations of characters
appear so frequently that they could be
represented as, perhaps, a single byte. This would
be ‘flagged’ in some way to indicate that it was a
token for a group of characters and not a single
character. Your home computer almost certainly
uses tokenising in basic — each keyword, like
PRINT or NEXT, is stored in RAM as a single byte to
save space.

404 THE HOME COMPUTER COURSE

In a spelling checker dictionary, tokenising is
used at the front of words. Consider, for example,
the large collection of words that begin with auto-,
non-, dis- or con-. The VizaSpell package, which
runs with the VizaWrite word processor on the
Commodore 64, makes use of both compression
and tokenising to squeeze a 30,000 word
dictionary into a mere 65 Kbytes on disk.

The most dificult task of a spelling checker,
however, is to look up all the words from a
document in its dictionary. A binary search could
be used (see page 416), but for a thousand word
document this could take hours. Ideally, the word
processor should check each word as it is typed,
but this is impractical in programming terms and
therefore a document will usually be checked as a
whole, either on disk or (on larger machines) in
RAM. The program works through the document
and compiles a list of the words it contains in
alphabetical order. It is not unusual for more than
50 per cent of a large report to be made up from
just 100 different words.

Most spelling checkers use this process to
provide a useful additional report on the usage of
words in your document — which may help you to
spot unnecessary repetition. A simple algorithm

a <j a i n s t.
. ail<l
arrows
. be
.1

die
end
f lesh fortune

i n
is
Hind
wore
n<itura 1
no

• . ’Z

a
awe rhaifilet

Of: :
. opposing
. or

£2*

then works its way through this list and the
dictionary list simultaneously, looking for
matches. In this way, the time taken to complete
the search will be greatly reduced and constant —
four minutes in the case of VizaSpell, irrespective
of the document’s length.

Words that are not found in the dictionary will
either be printed out as a list, or highlighted within
the original document. For each highlighted word,
the user is presented with three options:

1) The word has been mis-spelled or mis-typed
and should be corrected;
2) The word is correct and should be added to
the program’s dictionary;
3) The word is correct, but is unlikely to be used
again (e.g. it is part of an address), so it should
be left alone, and not added to the dictionary.

Grammar and style checkers work in a similar
manner. The former work on a limited number of
rules (such as looking for a capital letter at the start
of every sentence) and, consequently, there are

many grammatical inaccuracies that won’t be
picked up. Style checkers are still in their infancy,
and most of the packages currently available
simply make use of a large dictionary of examples
in order to identify bad syntax and expressions.
Generally, these packages will suggest better ways
of phrasing the clumsy constructions that they
find, by referring to their dictionaries. They will
also usually pick up an excessive use of a word
phrase within a paragraph, or the use of long and
inelegant sentences.

io be, . or not .to be: *
that. is. the . quset ion: <1
Wether . 'X is . nobler . in the ninu*

to suffer*
fho . ?»l i n <j s .and arrows of .outragous^
..fortune*
O r .to take arMS.against.a .sea*
. of.truob1es*
lin<l .by opposing, end then?*
..To.die, to.sleep;*
Ho More-ami by a .sloeep.to say*
.w e .end*

The.heartake.and.the.thoudsand*
..natural.shocks*
That flesh is hier to, tis a*

consstiMation *
Devout ley . t o .b e .wished.*

<Knd of Page)

O

Writing a simple form of spelling, grammar or
style checker in ba sic can be a very interesting
exercise even for an inexperienced programmer —
though you will need a fairly good knowledge of
the string-handling functions on your machine. As
software sophistication increases, it would seem
reasonable to expect word processing packages to
come with such functions built-in, and more as
well. Ah yes, what every writer would adore:
‘COMMAND > GENERATE ARTICLE, LENGTH 1200
WORDS, BEGIN’

To Be Or Not To Be
T h in k h o w m u c h e a s ie r E ng lish

L ite ra tu re w o u ld be if s p e llin g

c h e c k e r p ro g ra m s w e re a llo w e d

in to th e e xa m ro o m ! W e can use

H a m le t’s s o li lo q u y to il lu s tra te

h o w o n e s u c h p ro g ra m

(V iza S p e ll) w o rk s . F irs t, th e te x t

is ty p e d in to th e c o m p u te r u s in g

a w o rd p ro c e s s o r. T h e n th e

s p e llin g c h e c k e r is in v o k e d w ith

a c o u p le o f s im p le c o m m a n d s ,

and th is c re a te s an a lp h a b e tic

l is t o f a ll th e w o rd s u se d , a lso

in d ic a t in g th e ir fre q u e n c y o f

use. T h is l is t is ch e cke d a g a in s t

th e d ic t io n a ry on d is k , and

u n re c o g n is e d w o rd s are

h ig h lig h te d . W h e n f i r s t used ,

th e p ro g ra m m a y h ig h lig h t

s o m e s e e m in g ly c o m m o n

w o rd s , b u t th e s e can be add ed

to th e d ic t io n a ry fo r la te r use

THE HOME COMPUTER COURSE 405

A p p lic a tio n g e n e ra to rs a re s im ila r to a u to m a tic p ro g ra m g e n e ra to rs ,
b u t th e y h a v e g a m e s a s w e ll a s b u s in e s s a p p lic a tio n s

In the last instalment of T h e H o m e C o m p u t e r

C o u r s e , we looked at a type of computer
program that would, given a set of specifications
by the user, produce a program capable of
performing the intended application. Such
program generators can be purchased for most
business micros, and a few packages are available
for home computers, though the type of
applications to which they are suited mean that at
least one disk drive is mandatory.

A far more common way of generating
programs to perform specific requirements
involves using packages called ‘applications
generators’. Unlike program generators, these
produce programs that are not free standing, but
require the original applications generator
package in order to run. Let’s consider the
creation of a program to handle invoicing using
both of these types of generator, in order to
highlight their differences.

If we were to use a program generator, the
software would first be loaded from disk into the
computer. When the user had answered all the
questions relating to the files, records, fields,
mathematical relationships, screen layouts and
printed reports required (i.e. had specified the
required applications program), the generator
would ask for a blank disk to be inserted into the

disk drive. It would then save the new program it
had generated on this second disk. This process
could be repeated, and a copy of the invoicing
program made for each branch of the company.

By contrast, an applications generator initially
seems less satisfactory. When you have
completed the specification stage, the necessary
routines will be recorded on the same disk as the
generator. Alternatively, it could record the
program on a separate disk, but it would do this
in such a way that the original generator disk will
still be needed in order to run the application.
Although a single copy of the original package
could be used to produce an unlimited number of
different applications, it follows that they must all
be used in the same physical location as the
generator disk. If you want to make your
application available to others, they will need to
purchase a copy of the generator, as well. Of
course, such generators employ several methods
of program protection, in order to make
unauthorised copying very difficult.

A n application generator is really just a
sophisticated general purpose program. When
you specify your application, you are simply
assigning values to a number of important
variables within the generator, called
‘parameters’. These control the flow of the
program, the structure of the data, and layouts
for screen and printer. When the application is
saved on disk, what is actually being stored is a
list of these variables or parameters. This list —
sometimes referred to as an ‘application module’
— is therefore just like a set of instructions that
tell the application generator how to perform a
particular application.

Some packages take this a stage further, and
allow you to specify your application in a form of
very high level language (similar to the pseudo
language that we first use when developing a new
routine in the Basic Programming course). This
listing will be interpreted by the generator; and
this may in turn be interpreted by the b a sic

interpreter if the generating program is written in
b a sic , which creates an interesting case of
software hierarchy (see page 66).

It is not uncommon for applications modules
to be created and marketed by companies other
than the authors of the original generator. For
example, dBase II (the most popular of the
sophisticated database packages available for
microcomputers) can really be regarded as an
applications generator, containing modules

*

406 THE HOME COMPUTER COURSE

Software

it

?

consisting of strings of high level database
commands. Modules for slightly esoteric
applications (such as an accounting system
dedicated to stockbrokers) can be constructed
without having to write the program from
scratch. In view of the limited size of the market,
a stockbroker package that runs under dBase II
may well be better than one written in b a s ic ,

because the program’s author will have been able
to concentrate all his efforts on the operation of
the program, rather than the writing of the code.
The parts of the program most susceptible to
bugs (for example, the file handling) will have
been written by the generator’s authors and
tested in different applications by thousands of
users.

But the main difference between a program
generator and an application generator is in their
user-friendliness. The final program created by
the former type of package will consist entirely of
artificially-written code, which will probably be
in a language such as b a sic . Such code will be
inferior, both in efficiency and style, to code
generated by humans. With the application
generator, however, perhaps as much as 99 per
cent of the final program will consist of code
written by the software house, and this will
probably be in machine code as well. This is the
case with Silicon Office, one of the most
sophisticated and easy to use application
generators available for business
microcomputers. The resulting program will be
faster and more efficient, incorporate checking
procedures to detect operator errors, and
produce clearly laid-out menu-driven screen
displays.

Furthermore, application generators are not
restricted to business programs. Perhaps the best
example of a non-business package is the Pinball
Construction Set (see page 241), in which the
application module is effectively specified by
laying out the elements of the required pinball
table.

There is, in fact, a great deal of overlap

between this subject and object oriented
programming, which we have discussed before
(see page 242), but which may be broadly
summarised as: encouraging the programmer to
implement his applications purely by specifying
the objectives required of the program. Even
simple spreadsheet programs, available for home
computers such as the Sinclair Spectrum, can be
regarded as application generators — you simply
specify the relationship between the various
fields, and the package does all the routine work
for you.

Magpie — produced by Audiogenic for the
Commodore 64 with one disk drive — is an
application generator that is geared towards
business or other serious applications. This is
another package that makes good use of visual
object oriented programming: relationships
between items of data in different records are
specified when designing the layout of those
records.

Although they are not strictly regarded as
application generators, an increasing number of
packages are now incorporating some of these
principles. When first run, such ‘parameter-
driven’ programs will ask the user a whole series
of questions and record the answers on disk
alongside the program. This information will
determine some of the details of the program’s
operation. An invoicing program, for example,
would ask questions relating to the information
that the company likes to have included in each
invoice, and the standard credit periods that it
allows. An arcade game might ask how many
aliens, bases and rockets the user would like to
start with, or even give him the opportunity to
design the invaders.

Increasingly, software is being designed to
protect the user from having to learn
programming, while at the same time providing a
high degree of flexibility in operation. A situation
where the software adjusts itself to fit the user’s
requirements (rather than the user adjusting to
the software) is a highly desirable goal.

irrit-riiii

A f t A A
A A A A
A A A A
A A A A
A f t A A
A A A A
A A A A
A A A A
A A A A
A A A A
A A A A
A A A A
A A A A
A A A A
A A A A
A A A A
A A A A
A A A A

D O D D
D D D O
D D D D
D D D D
D D D D
D D D D
D D D D
D D D D n v o a c

D D D D D D D
D D D D D D D
D D D D D D D
D D D D D D D
D D D D D D D
D D D D D D D
D D D D D D D

P P P P
P P P P
P P P P
P P P P
P P P P
P P P P

- W » 2L*
A* f *

• 4 (. L

C v J Hi

M a g p ie O n T h e C o m m o d o re 6 4
T h e f i r s t s ta g e in c re a tin g an a p p lic a t io n is to s p e c ify th e N ex t, a ll th e c a lc u la t io n s a n d p ro c e s s in g are s p e c if ie d in

la y o u t o f a ll fo rm s , t ra n s a c t io n s a n d re p o rts , s u c h as th e fo rm o f a l is t o f in s tru c t io n s in a h ig h leve l

th is p r ic e lis t . B y f i l l in g th e c o lu m n s w ith le tte rs (A ,D ,P) p ro g ra m m in g la n g u a g e , to be in te rp re te d b y M a g p ie ,

th e u s e r s p e c if ie s w h ic h f ie ld s f ro m th e d a ta b a s e are to S h o w n he re are th e ro u tin e s to a m e n d th e p r ic e s a n d to

be u sed re ca ll (G ET) th e m fro m d is k

M a g p ie is m e n u -d r iv e n . A s a n y o p t io n is se le c te d (e .g .

CREATE), a n o th e r w il l a p p e a r b e s id e it, s h o w in g a ll th e

CREATE o p t io n s . T h is sc re e n d is p la y s th e re s u lt o f

s e le c tin g CREATE, th e n D IS K , th e n DELETE, th e n th e f ile

to be d e le te d , in th is ca se PRICE L IS T

THE HOME COMPUTER COURSE 407

IA
N

M
cK

IN
N

EL
L

CO
UR

TE
SY

 O
F

SO
FT

Sound And Light
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ I

T h e B B C M o d e l B ’s E N V E L O P E

c o m m a n d g iv e s a lm o s t u n lim ite d

c o n tro l

In an earlier part of the course, the format of the
BBC Micro’s SOUND command was discussed.
However, it is only when it is used in conjunction
with the versatile ENVELOPE command that the
sound capabilities of the BBC are fully explored.
ENVELOPE enables the user to shape up to four
sounds to the extent that quite passable
emulations of conventional instruments can be
programmed. In addition, sound effects for games
can be refined to sound much more like the
explosions or gunfire that they represent.

ENVELOPE is constructed as follows:

ENVELOPE N,T,PS1,PS2,PS3,NS1,NS2,NS3,
AR,DR,SR,RR,FAL,FDL

The first parameter, N, sets the envelope number
and serves to identify the envelope to the related
SOUND or SOUND & commands. One of up to four
envelopes can be substituted for the fixed volume
(V) set with a negative number (0 to -15, see page
388) by SOUND.

T (0 to 127) & (128 to 255)

This is the master timing control for the command.
It sets the duration of each ‘step’ in the
construction of the envelope in hundredths of a
second. Therefore, T=5 means that each envelope
step lasts for five hundredths of a second (0.05
seconds). By adding 128 to the step duration

required, the auto-repeat of the pitch envelope will
be suppressed, so that T set to 5 +128 = 133 gives a
step duration of five hundredths of a second in a
pitch envelope that occurs once within the note.

P itc h E n v e lo p e

TIME IN
1/100 SECOND

The use of the term ‘pitch envelope’ may seem a
little confusing as envelope has previously been
used in terms of volume, but in this case it refers to
the variation of pitch over the duration of a note.
This facility has little value in musical terms unless
a ‘vibrato’ is required, but it can be useful to give
sound effects interesting ‘warbles’. As shown in the
diagram, the pitch envelope is divided into three
sections. The response of each section can be set
by the associated PS and NS number as follows:

than requiring eight pixels to move a character
from one cell to the next. Up to eight sprites can be
displayed at any one time on the screen and each
sprite has the following individually
programmable characteristics:

U s in g s p rite s o n th e

C o m m o d o re 6 4

One of the most exciting features of the
Commodore 64 is its ability to use sprites. Sprites
are built up in the same way as a user-defined
graphic character, but are much larger, consisting
of 21 rows of 24 pixels. Sprites are not displayed in
the normal character screen matrix and this allows
them to be moved a single pixel at a time, rather

S h a p e A n d C o lo u r
A sprite is defined in much the same way as an
eight by eight pixel character, but 63 bytes are
needed to hold the patterns encoded in binary
form. Once the shape has been defined in this way,
it is held in a block of 63 consecutive locations.
Each sprite has a data pointer that points to the
area from which the sprite derives its shape. This
means that more than one sprite can ‘look’ at the
same area of memory; i.e. sprites can be identical.
Also, a sprite can change its shape by switching its
pointer to look at a different area of memory.

Each sprite may be coloured in any one of the
16 colours given. Sprites can also be multi
coloured with the usual penalty of halving
horizontal resolution.

S iz e A n d M o v e m e n t
Sprites can be expanded horizontally or vertically,
or in both directions, to double the original size. A
fully expanded sprite is 48 X 42 pixels. Again there

408 THE HOME COMPUTER COURSE

Sound And Light ©

PS1, PS2 & PS3 (-128 to 127)

PS refers to Pitch Step. At the start of the
associated note, pitch is set by the SOUND
command. PS1 sets the positive or negative change
of pitch per step in the first section, PS2 for the
second section, and PS3 for the third section. In a
similar manner to SOUND, PS is set in quarter
semitones.

NS1, NS2 & NS3 (0 to 255)
NS refers to Number of Steps per section; and in
conjunction with PS selects the rate at which pitch
changes in a section and also the duration of the
whole pitch envelope. The PS and NS values for the
above example are as follows:

T = 1 PS1 = -1 0 NS1 = 15
PS2 = +10 NS2 = 10
PS3 = -10 NS3 = 5

In this case, pitch is set by SOUND = 160. This results
in:

ENVELOPE 1,1,-10,10,-10,15,10,5,0,0,0,0,0,0

is a price to be paid, in that resolution is halved in
the direction of expansion.

A sprite can move one pixel at a time and the
old position is automatically erased. Sprites can
also move in and out of the normal viewing area of
the screen.

P r io r it y A n d C o llis io n
When two sprites cross each other’s path, one
appears to pass in front of the other. If there are
any holes in the sprite that is passing in front, the
sprite behind will show through. Priority can be
used to achieve some interesting three-
dimensional effects. Each sprite is given a number
from 0 to 7 and the simple rule governing priority
is that lower-numbered sprites appear to move in
front of higher-numbered ones. Usually, sprites
appear to move in front of any normal characters
on the screen, but they can be programmed to
move behind as well. Again this feature can be
used to give the impression of depth on the screen.

When two sprites cross each other this is
signalled in a collision register. PEEKing this
register can give the programmer details of which
sprites have been involved. There is another
similar register that signals when a sprite has been
in collision with any background characters.

As a consequence of die availability of these
features, writing programs to control fast-moving
games in ba sic is now possible. Unfortunately,
there are no special ba sic commands to control
sprite features; everything has to be done by a
succession of POKEs into the Commodore 64’s
memory. An alternative and easier method of
creating sprites is to invest in a Simon’s basic

cartridge.

The duration of the envelope is given as
(NS1+NS2+NS3)xT, which in this case is
(15+10+5)X 1 = 0.3 seconds. Normally, the pitch
envelope will automatically repeat 'over the
duration of a note unless disabled by the timing
parameter, T.

In the next instalment of the Sound And Light
course we will return to the sound features of the
BBC Micro and explain the operation of the
volume envelope.

Simon’s Basic
For a p p ro x im a te ly £ 5 0 , i t is

p o s s ib le to p u rc h a s e a p lu g - in

c a r tr id g e to e x te n d th e h ig h

re s o lu t io n a n d s p r ite h a n d lin g

c a p a b ilit ie s a v a ila b le to th e

BASIC p ro g ra m m e r. The

c a r tr id g e c o m e s c o m p le te

w ith a w e ig h ty m a n u a l

d e ta ilin g th e 114 extra

c o m m a n d s . T hese in c lu d e

c o m m a n d s to tu rn on h ig h

re s o lu t io n m o d e , se le c t

b a c k g ro u n d a n d fo re g ro u n d

c o lo u rs , a n d to d ra w c irc le s ,

e llip s e s , re c ta n g le s and

s tra ig h t lin e s . S p r ite h a n d lin g

in s tru c t io n s in c lu d e :

a s s is ta n c e w ith s p r ite d e s ig n

a n d c re a tio n , c o m m a n d s to

s w itc h s p r ite s on and o ff , and

w a ys o f p o s it io n in g th e m on

th e screen

Step Two
T h e se lin e s m a y be a d d e d to th e

S u p e rm a rk e t p ro g ra m lis t in g

g ive n o n page 3 5 9 . T h is s e c tio n

o f th e p ro g ra m u se s tw o

e x p a n d e d , m u lt i-c o lo u re d

s p r ite s to m a ke up th e h u m a n

f ig u re a n d a fu r th e r e xp a n d e d

s p r ite to m a ke u p th e s h o p p in g

tro lle y . T he s p r ite d a ta p o in te rs

a re m a n ip u la te d s o th a t th e

w o m a n c h a n g e s sh a p e . T h is

g iv e s th e e ffe c t o f th e f ig u re

d a n c in g a s i t c ro s s e s th e

sc reen . To use th e s u p e rm a rk e t

p ro g ra m , as a s u b ro u tin e in th is

p ro g ra m , ch a n g e lin e 3 2 7 0 to

read: 3 2 7 0 R ETU R N

30 REM SPRITES 64 **
100 PRINT"."]"
110 V-53248
120 REM--- READ SPRITE HATH---
138 FORI=122S8T012350•READA•POKEI, H:NEXT
140 FORI = 12352T012414 = READA:POKEI, A ;NEXT
150 FOR I =832T0894 •’ RE AD A: POKE I, A: NEXT
160 FORI=896T0958:READR•POKEI,A:NEXT
170 FOR1=12416T012478•READA;POKEI,A:NEXT
180 REM--- EXPAND SPRITES---
190 POKEV+23,7 '• POKEV+29, 7
200 REM--- COLOR SPRITES---
21O POKEV+39,10:POKEV+40,10
220 POKEV+41, 1
230 REM— MULTI COLOR-
240 POKEV+28,3:POKEV+37,7:POKEV+38,9
300 REM--- MEMORY POINTERS---
31O POKE2040,132:POKE2041,133:RQKE2042,194
320 REM--- SET V COORDS---
330 V0=150:V1=V0+42:V2=V0+34
340 POKEV+1,Y0:POKEV+3,V1:POKEV+5,V2
400 REM--- TURN ON SPRITES---
410 POKEV+21,7
500 GOSUB3000:REM OMIT IF NO SUBROUTINE
1000 X0=20
1O10 POKE2040,13:P0KE2041,14
1020 POKEY,XU:POKEV+2,X0:P0KEV+4,X0+48
1030 FORI=1TO500:NEXT
1040 PQKE2040,192:POKE2041,193
1050 X0=X0+5
1060 POKEY,XO:POKEV+2,X0;PQKEV+4,XU+48
1070 FORI=1T0500:NEXT
1080 X0=X0+5 ,
1090 IFX0>20OTHEN1110
1100 GOTO1010
1110 FORJ=lTO10
1120 POKE2040,13:PQKE2041,14
1130 FORI=1TO50:NEXT
1140 POKE2040,192:ROKE2041,133
1150 FORI = 1T050:NEXT
1160 NEXT
1170 GOTO1170
3000 REM--- DATA WOMAN TOP---
3010 DATA0,0,0,0,21,0,0,21,0,0,22,0,0,86,0
3020 DATA0,86,0,0,86,0,0,40,0,0,252,0
9030 DATA15,255,0,255,255,0,255,255,0
9040 DATA195,255,0,195,255,0,195,243,254
9050 DATA207,243,254
9060 DATA143,240,0,143,252,0,15,252,0
3070 DATA15,252,0,15,252,0
9100 REM---DATA WOMAN BOTTOM---
9110 DATA15,252,0,15,252,0,15,252,0
9120 DATA15,252,0,5,84,0,5,84,O,5,84,0
9130 DATA5,84,0,10,40,0,234,40,0,234,40,0
9140 DATA234,40,0,192,40,0,192,40,0,0,40,0
9150 DATA0,40,0,0,63,0,0,63,0,0,0,0,0,0,0
9160 DATA0,0,0
9200 REM--- DATA WOMAN TOP #2---
321O DATA©,0,0,0,20,32,32,85,32,32,105,48,48,105,48
9220 DATA48,105,48,48,105,48,48,40,48,48,252,48
9230 DATA63,255,248,63,255,240,63,255,0
3240 DATA3,255,0,3,255,0,3,240,0
3250 DATA15,240,0
3260 DATA15,240,0,15,252,0,15,252,0
9270 DATA15,252,0,15,252,0
9300 REM--- DATA WOMAN BOTTOM #2---
9310 DATA15,252,O,15,252,0,15,252,0
3320 DATA15,252,0,5,84,O,5,84,0,5,84,0
9330 DATA5,84,0,10,40,0,58,168,O,58,168,0
9340 DATA58,0,0,58,0,0,10,0,0,10,0,0
3350 DATA10,0,0,15,192,0,15,192,O,0,0,0,0,0,0
9360 DATA©,0,0
3400 REM--- TROLLEY DATA---
941O DATA132,O,0,224,O,0,118,0
9420 DATA©,55,192,0,32,60,0,53
3430 DATA87,240,32,0,15,53,85,85
9449 DATA32,8,3,53,85,85,0,0,3
3450 DATA21,85,85,31,255,255,24,0
3460 DATA0,12,0,0,12,0,0,31,255
9470 DATA24d,31,255,255,1,0,2,7
9480 DATA0,14,7,0,14

THE HOME COMPUTER COURSE 409

Dual Density Disk
Each d r iv e has a n o m in a l

c a p a c ity o f 2 0 0 K b y te s , b u t th is

is re d u ce d to 184 K b y te s a fte r

fo rm a tt in g

Microprocessor
T he O sb o rn e -1 uses Z i lo g ’s

Z 8 0 A m ic ro p ro c e s s o r, ru n n in g

a t 4 M H z

Motorola 68
T h e se c h ip s c o n tro l th e

o p e ra tio n o f th e R S 232

s ta n d a rd s e r ia l p o r t

Motorola 6821
T h is in te g ra te d c ir c u it is used to

s u p p o r t th e IEEE 488 p a ra lle l

in p u t /o u tp u t p o r t

RS232 Serial Port -

IEEE488 Parallel Port

Modem Port

Keyboard Connector

System ROM

Hardware Focus

T h is is th e firs t m ic ro c o m p u te r

d e s ig n e d to b e p o rta b le , a n d th e
firs t to b e s u p p lie d w ith s o ftw a re

in c lu d e d in th e p ric e

Although it is not strictly classed as a home
computer, the Osborne-1 is a particularly
interesting machine because it was the first
completely self-contained portable micro
computer. With its two built-in disk drives and
small monitor, the Osborne offers its user the
ability to carry his own data processing capability
with him, wherever he may go. The only thing that
the machine lacks is an internal battery pack, but
the manufacturer reasoned that this would
increase the overall weight of the machine beyond
reasonable bounds — it already weighs 10.5kg
(23.51bs). There is, however, a DC socket on the
front panel, along with the other interface
connections. The machine needs both 12v and 5v
inputs: the former for the disk drives, the latter for
the logic.

The Osborne’s high price — about £1,000 — also
makes it hard to class as a home computer — though
this does include approximately £600 worth of
some of the best established business software
available. This includes: Microsoft’s c b a sic , a
compiled version of the ba sic language, which
allows much faster operation of programs;
Supercalc, widely acknowledged as the best of the
first generation spreadsheet programs; Wordstar
zr.i M rihierge, the best selling of the
transportable (not limited to any one type of
machine) word processing packages; and, perhaps
best of all, the Digital Research C P/M (Control
Program/Monitor) operating system, which
allows a vast range of software packages to be run
on any machine that uses it.

The Osborne-1, in common with the Apple II
(see page 349), requires its operating system to be
loaded from disk. In addition to overseeing the
internal operation of the computer, the CP/M
system allows most housekeeping routines —
making back-up copies of files and whole disks,
initialisation of new disks, cataloguing disk
contents, and so on — to be accomplished directly.
But the C P/M system has other strengths as weU.
First of all, software can be written for the
operating system, independently of the machines
on which it operates. To the software house this
means a much larger potential market, hence a
great deal more money can be spent on
production, which in turn ensures a higher quality
package. Secondly, to a skilled C P/M user, the

achine type is almost irrelevant, and this allows
hardware to be upgraded and enhanced without
the onerous task of re-entering data files and
converting programs. For a short period, Osborne

410 THE HOME COMPUTER COURSE

Hardware Focus

64 Kbyte RAM

Monitor Brightness Control

Numeric Keypad

Monitor Connector

O S B O R N E -1

£945 (£1145 for 80-col version)
S IZ E

510x325x225mm
W E IG H T

10.5kg
C P U

Z80A
C L O C K S P E E D

4MHz
M E M O R Y

64 Kbytes RAM
4 Kbytes ROM

24 rows of 52 characters visible
out of an actual 128x32 display
IN T E R F A C E S

RS232, IEEE, Modem
L A N G U A G E S U P P L IE D

BASIC, Z80 Assembler
O T H E R L A N G U A G E S A V A IL A B L E

Any that will run under CP/M
C O M E S W IT H

CP/M, Wordstar, CBASIC,
MBASIC, Mailmerge,
Supercalc, Manuals

K E Y B O A R D

Typewriter-style, 69 keys
including numeric keypad
D O C U M E N T A T IO N

Adam Osborne sold his publishing
company to McGraw-Hill in order
to finance the production of
Osborne computers, so it’s not
surprising that the quality of the
manual is very high indeed. The
only failing is the lack of a
comprehensive index

C o n tr o l P r o g r a m /M o n ito r
M a in fra m e a n d m in i-c o m p u te rs have b e n e fite d fro m th e

e x is te n c e o f m a c h in e - in d e p e n d e n t o p e ra tin g s y s te m s eve r s in c e

th e s e c o n d g e n e ra tio n o f m a c h in e s w a s in tro d u c e d in th e m id

s ix t ie s , b u t i t w a s to be a d o ze n y e a rs b e fo re s u c h c o n tro l

s y s te m s w e re a v a ila b le fo r m ic ro c o m p u te rs . D ig ita l R e se a rch ’s

C P /M (C o n tro l P ro g ra m /M o n ito r) w a s th e f i r s t o f th e s e s y s te m s .

D e s ig n e d fo r In te l ’s 8 0 8 0 a n d th e Z ilo g Z 8 0 s e rie s o f

m ic ro p ro c e s s o rs , i t has a range o f u t i l i ty a n d h o u s e k e e p in g

p ro g ra m s , a n d a ls o d e fin e s th e w a y s in w h ic h ru n n in g

p ro g ra m s m a y be in te r ru p te d a n d c o n tin u e d .

A n o th e r m a jo r a d v a n ta g e lie s in th e d e f in it io n o f f i le

s tru c tu re s a n d la y o u ts , w h ic h th e C P /M a ls o h a n d le s . U s in g an

in te rc h a n g e p ro g ra m s u c h as BSTAM , w h ic h re d u c e s f i le s o f a n y

s o r t to th e ir m o s t b a s ic fo rm , i t is p o s s ib le to tra n s fe r p ro g ra m s

w r it te n fo r C P /M b e tw e e n m a c h in e s , ir re s p e c tiv e o f th e ir ty p e o r

s p e c if ic a t io n . T h is m e a n s th a t a h u g e a m o u n t o f s o ftw a re is

a v a ila b le to th e C P /M u se r

THE HOME COMPUTER COURSE 411

4

even included in the purchase price Ashton-Tate’s
dBase II — the most powerful of all the
microcomputer-based database management
programs, which normally sells for £350.

Unfortunately for Osborne, most of the US
business community concentrated its attention on
the IBM Personal Computer, a 16-bit machine
based on Intel’s 8088 microprocessor. Intended as
an interim solution — it boasts 16 bit addressing,
but only eight bit data transfer — the 8088 became
a de facto industry standard simply by virtue of
IBM choosing it to power its first entry into the
microcomputer market.

The IBM PC uses a specially devised operating
system called PC-DOS. In an effort to compete,
Digital Research launched two new versions of the
CP/M operating system: Concurrent CP/M ,
which allows true multi-user multi-programming;
and CP/M 86, designed for Intel’s 8086 chip,
which incorporated 16-bit addressing and 16-bit
data transfer.

Unfortunately, all these developments came
too late to prevent the Osborne-1 from being
swamped by market forces, and in 1983 the
Osborne Computer Corporation — the parent
company in the United States — went into
voluntary liquidation. With its 64 Kbyte memory
(60 Kbytes available to the user) and twin 183
Kbyte disk drives, the Osborne-1 is still a
reasonably powerful computing machine. Add to
that its built-in RS232 and IEEE ports, the
modem port and its ability to run from a battery
pack, and it’s easy to see why the computer was an
instant best seller, and why it is still popular with
users even after the demise of its manufacturer.

One very interesting feature of the Osborne-1,
which is shared to some degree by Epson’s HX-20
(see page 169), is the provision of a ‘virtual screen’
more than three times as large as the 52 column by
24 row display provided. The use of the control
key (a standard CP/M requirement) and the
cursor keys allows the display to move around the
actual screen memory. To a great extent this
removes most of the disadvantages imposed by the
small physical size (8.75 X 6.6 centimetres, 3.5 X
2.6 inches) of the screen, although non-users often
express surprise that a display whose characters
are a mere two millimetres (1/10 inch) high should
be legible, let alone comfortable to use.

In fact, few users are unable to come to terms
with this miniaturisation, although Osborne did
provide an external monitor connector that
duplicates the contents of the small screen on a
larger additional unit. Indeed, far from
considering the character size to be too small,
there was an appreciable demand from users for
the entire four Kbyte virtual screen (128 columns
by 32 rows) to be displayed at all times, and
Osborne manufactured a modification to just that
specification. This allows users to choose one of
three screen ‘widths’: 52 characters, 96 characters
or the full 128, and even at the highest density the
characters are still well-defined and readable.

The Osborne- l ’s keyboard, which clips on to

the computer’s front panel as a ‘lid', rendering it
weatherproof, is a 69 key unit. It has normal
typewriter-style keys, with the addition of Control
and Escape keys, plus a 12-key numeric pad on
the right- hand side that I includes extra full stop
and enter keys. Using a C P/M program called
SETUP, the functions of the numeric keys (when
used in conjunction with the Control key) can be
user-defined to a maximum of 96 characters. This
feature is particularly useful if a word, phrase or
command string is to be used frequently. The
results of the SETUP program are written on each
disk, rather than being stored in memory, so the
functions can be pre-programmed separately for
each different software package. The computer
automatically sets its functions each time the
operating system is loaded.

In addition to the standard 96 upper and lower
case characters, there are 32 pre-defined graphics
characters available, though these can only be
accessed through an applications program.

Because the Osborne-1 uses 6800 series
support chips, rather than their counterparts from
the 8080 family (as one would expect of a CP/M
machine), the keyboard polling method is slightly
different. There is a portion of memory set aside to
interpret key depressions, and the system ROM
continually checks to see if a key has been
depressed. There is no decoding logic in the
keyboard itself. It is this implementation which
allows easy programming of the function keys,
and because these functions are stored in the
Random Access Memory, they can be accessed
and changed from within a program.

Though the Osborne Computer Corporation
went into voluntary liquidation, the British
division set up as a separate company and
continued to trade. Whatever the future holds for
this machine, its quality is undeniable.

412 THE HOME COMPUTER COURSE

Passwords To Computing

'**:*//:*&, v-;! . V--•• >\

T h e S h e ll S o rt is m o re e ffic ie n t th a n e ith e r th e B u b b le o r In s e rtio n

S o rts fo r lo n g a rra y s . It w o rk s b y d iv id in g th e d a ta in to a s e rie s o f

‘c h a in s ’

On page 286 we looked at two methods of sorting
an array into order — the Bubble and Insertion
Sorts. Generally, the Bubble Sort is easier to carry
out, but the Insertion Sort is faster. Experience of
these two methods shows that what takes the time
is swapping cards around over short distances: it’s
usually far better to swap once over a long distance
than several times over short distances.

7999 REM*********************
8000 REM* SHELL *
8001 REM*********************
8025 PRINT "SHELL SORT - GO !!!!!"
8050 LET LK=LT
8100 FOR 2=0 TO I STEP 0
8150 LET LK=INT(LK/11)
8200 FOR LB=I TO LK
8250 LET LL=LB+LK
8300 FOR P=LL TO LT STEP LK
8350 LET D=R(P)
8400 FOR Q=P TO LL STEP-LK
8450 LET R (Q)=R(Q-LK)
8500 IF D<=R(Q) THEN LET R (Q)=D:LET Q=LL
8550 NEXT Q
8600 IF D >R(LB) THEN LET R<LB)=D
8650 NEXT P
8700 NEXT LB
8750 IF LK=I THEN LET 2=1
8800 NEXT 2
8850 PRINT "SHELL SORT - STOP !!!!!"
8900 RETURN

to get the position of the next card, adding the Link
to get the position of the next card, and so on until
the end of the array has been reached or exceeded.
The first chain, therefore, comprises the cards in
positions One, Seven, and Thirteen; the second
chain is the cards in positions Two and Eight; the
third is the cards in positions Three and Nine. The
last chain is the cards in positions Six (the present
value of the Link) and Twelve.

3) Now, having marked the boundaries with the
five- and ten pence pieces, push the cards that
comprise the first chain out of the array so that you
can see them in isolation, and sort them into order
using either the Bubble or Insertion Sort as
described on page 286 (the listing with this article
uses the Insertion method).

4) Push the ordered chain back into the gaps in
the array, and repeat the above with the next chain,
and the next, and so on, until all the chains whose
leftmost cards lie between the five- and ten-pence
pieces have been sorted.

5) When all the chains have been sorted, divide
the Link by two, ignoring any remainder. If the
Link is now less than one then the array will be
sorted. Otherwise, repeat from Step Two above

To add th is ro u t in e to th e s o r t in g d e m o n s tra t io n p ro g ra m o n page with the new value of the Link.
2 8 7 , c h a n g e lin e 3 5 0 to :

3 5 0 LET 1=1 .LE T 0 = 0 :L E T ll= + :L E T T H = 3

a n d c h a n g e lin e 9 0 0 to :

9 0 0 ON SR G O S U B 6 0 0 0 ,7 0 0 0 ,8 0 0 0

A better method than either of these two is
called the ‘Shell Sort’ (named after its creator, D
Shell). This method ensures that the disorder in
the array is reduced early in the sort (so that items
are not a long way from their true positions), and
enables swaps to operate over relatively long
distances. Here is a method for this sort:

1) Lay out all the cards of one suit in any order.
They are to be sorted into descending order so that
the King will be the leftmost card, and the Ace the

tost. Count the cards, divide that number (in
this case, 13) by two, ignoring any remainder, and
write the result (i.e. six) on a piece of paper
labelled ‘The Link’.

2) Place a fivepence piece under the leftmost
card (call this Position One), and a tenpence piece
in the Link position (i.e. Position Six in the first
instance). All of the cards from the First to the
Link position are each to be the leftmost end cards
in a series of ‘chains’ of cards. The number of
chains will equal the current value of the Link.
Each chain is formed by starting with its end card,
adding the Link to the end card’s position number

S h e ll S o rt P a n e l

P osition No. U nk Value Com m ents

1 2 3 4 5 6 7 8 9
2 8 9 3 T 5 K 6 7 (9/2)=>4 Begin Pass

m m |

★ + i- i $ ★ + I ' M * Form chains
T 7

— ▼

2 Sort Chain 1
8 5 Sort Chain 2

K 9 Sort Chain 3
6 3 Sort Chain 4

T 8 K 6 7 5 9 3 2 Begin Pass
T 8 K 6 7 5 9 3 2 (4 /2)=>2 End of Pass
* + * + * + * + * Form Chains
K T 9 7 2 Sort Chain 1

8 6 5 3 Sort Chain 2
K 8 T 6 9 5 7 3 2 End of Pass |
K 8 T 6 9 5 7 3 2 (2/2)=>1 Begin Pass I
* * * * * * * * * Form Chain 1
K T 9 8 7 6 5 3 2 End of Pass)

Shell Sort
T he e xa m p le o f th e S h e ll S o r t fo r

a redu ced h a n d th a t w e s h o w in

th e pane l d e m o n s tra te s its

u n iq u e m e th o d o f d iv id in g the

a rra y in to a se rie s o f ch a in s

(w ith s p a c in g s based on th e

c u rre n t L in k n u m b e r). These

c h a in s are se p a ra te ly s o rte d , in

th is case u s in g th e In s e rtio n

m e th o d , b e fo re a p a ss is

c o m p le te d .

T he p ro g ra m lis t in g fo r a

S h e ll S o r t g ive n here m u s t be

used in c o n ju n c t io n w ith th e

te s tb e d p ro g ra m on page 287 .

W h e n w e te s te d it, th e re w a s a

s ig n if ic a n t im p ro v e m e n t ove r

th e o th e r s o r t in g m e th o d s o nce

th e n u m b e r o f ite m s to be s o rte d

exceeded 40

THE HOME COMPUTER COURSE 413

Insights

T h e ly iic ro w rite r is a p o rta b le

w o rd p ro c e s s o r th a t c a n b e

o p e ra te d w ith o n ly o n e h a n d .
T h e s ix -b u tto n k e y b o a rd m a y

s o o n b e u s e d o n c o m p u te rs
• : ••* y;

Having a word processor at the office, or a home
computer with a word processing program, can be
an excellent idea. Apart from taking the drudgery
out of producing routine paperwork and letters,
they can help with program documentation,
quickly produce copies of notices, or handle the
contents of an address book. Indeed, they can
become so useful that whenever anything needs to
be written down, your fingers will tend to drift
toward the keyboard rather than pen and paper. A
problem arises, however, when you want to take
notes away from the home or office in a form that a
computer can understand.

There is a growing market in portable computer
systems like Tandy’s Model 100 and the Epson
HX-20. While these have the advantage of being
able to act as portable word processors, or remote
terminals for bigger systems, they are hardly as
handy as a notepad or dictaphone. What about a
word processing system that is small enough to
carry in your pocket? A system so compact that it
is battery powered and only needs one hand to
use, yet can be connected to a printer or even
another computer.

Such a device, called a Microwriter, has been
available for nearly four years. Originally
conceived by Cy Endfield, an expatriate
American, it shuns the QWERTY keyboard in
favour of a unique system of multiple key presses
using only six push-button keys. The concept first
arose out of a desire to create a hand-held game
based on words, for which even a miniature
keyboard would be both too big and too
expensive. The obvious answer was to create a
special kind of keyboard that used just a few keys
with enough combinations to specify all the
alphanumeric symbols. The breakthrough came
with the invention of a symbolic code system that’s
unique to the Microwriter.

At first sight it seems impossible that the letters
of the alphabet, not to mention numeric and
punctuation symbols, can be created by
combinations of just six keys, but these are indeed
sufficient. And a few hours is all it takes to learn
the common combinations. Indeed, the makers

Cassette Interface
T h is w o rk s w ith a

re c o rd e r

Output Port
T h is p o r t p ro v id e s an R S 232

in te r fa c e to a p r in te r, c o m p u te r,

o r a c o u s tic co u p le r. W ith an

e x te rn a l a d a p to r, i t can a lso

d is p la y on a TV o r m o n ito r

#

/

Liquid Crystal Display
T h o u g h fe a tu r in g o n ly 16

c h a ra c te r p o s it io n s , th e

c h a ra c te rs a re fo rm e d on a la rge

m a tr ix fo r le g ib il i ty

MicroswncnBS
T hese d e v ice s are u sed to

m in im is e th e p re s s u re needed

to a c tiv a te th e b u tto n s

claim, with some justification, that it is a lot easier
to learn than a QWERTY keyboard. The
combination of keys required for each of the
letters is based on the physical shape of the letter, a
code that is often found easier to learn by non
typists. Because only one hand is needed, the
Microwriter also opens the way to word
processing for those disabled people who can’t
handle the multiple key presses often needed on a
conventional kevboard to generate commands.

A >.\V.

T he m a c h in e c o m e s w ith 8 K as

s ta n d a rd , b u t la rg e r c h ip s can

be f it te d in to th e s a m e s o c k e ts

to in c re a se th is c a p a c ity

□ □ j- j □ □

414 THE HOME COMPUTER COURSE

Hi
lliiiB Insights

mm On/Off Switch
S w itc h in g o f f a n d on w il l n o t

lose d a ta , a n d y o u can

im m e d ia te ly re s u m e w r it in g th e

sa m e d o c u m e n t

Clock Crystal

Internally, the Microwriter is designed to be as
portable as possible. Both the internal
microprocessor and its memory are CMOS
(Complementary Metal Oxide Silicon) devices,
which help reduce the power consumption.
Enough power for 30 hours of use is provided by a
rechargeable Ni-Cad pack. To display die
characters, a 14-character LCD display (which
scrolls horizontally as text is entered) is built into
the unit, but a television set can be connected
through an optional interface. This allows on
screen editing of the stored text to be achieved
once the user has returned to the home or office.

&

Ni-Cad Batteries
T hese c e lls are re ch a rg e d b y

m e a n s o f an e x te rn a l

t ra n s fo rm e r

As well as an RS232 serial interface for
connection to a printer, the Microwriter is
equipped with a cassette interface, which allows
the text stored in its memory to be permanently
saved or loaded back. The serial interface also
enables the Microwriter to be used as a single-
handed terminal to an ordinary computer or word
processor. Documents keyed in while away from
the home or office can be loaded into a full-sized
system for more complete editing or
manipulation.

Text within the Microwriter can be partitioned
into separate documents, and this enables several
blocks of unrelated text to be entered and dealt
with separately. Simple editing facilities are
provided: text can be added or deleted and it is
possible to move large blocks around by using the
cassette interface as a temporary buffer.

The designer’s intention was that the six-key
Microwriter keyboard would be incorporated into
other electronic devices. For all its good qualities,
however, the Microwriter has had only limited
appeal, and it remains to be seen whether home
computer manufacturers will take up the idea.

CPU
B o th CPU a n d R A M are C M O S

(C o m p le m e n ta ry M e ta l O x ide

S ilic o n) d e v ice s to reduce

p o w e r c o n s u m p tio n

Power Socket
For re c h a rg in g o r m a in s

o p e ra tio n w ith an e x te rn a l

t ra n s fo rm e r

Expansion Interface
For fu tu re e x p a n s io n , th is p o r t

in c lu d e s th e m ic ro p ro c e s s o r ’s

a d d re s s a n d d a ta lin e s

EPM
The w o rd p ro c e s s in g p ro g ra m

and s o p h is t ic a te d

c o m m u n ic a t io n s s o ftw a re is

in c o rp o ra te d in to a s in g le

EPR O M , w h ic h is c h e a p e r to

p ro d u c e in s m a ll q u a n tit ie s th a n

ROM

A Bunch Of Fives
M ic ro w r ite r ’s d o c u m e n ta t io n

in c lu d e s m n e m o n ic s and

il lu s tra t io n s to h e lp th e u se r

lea rn th e d if fe re n t c o m b in a t io n s

o f keys n e c e s s a ry to c rea te th e

a lp h a b e t. T h e s ix th ke y is used

in c o m b in a t io n w ith th e o th e rs

to p ro v id e fu r th e r p u n c tu a t io n

a n d e d it in g c o m m a n d s

THE HOME COMPUTER COURSE 415

LI
Z

DI
XO

N

ic Programming

T h e tim e ta k e n to lo c a te a p a rtic u la r re c o rd c a n b e g re a tly re d u c e d

u s in g th e ‘b in a ry s e a rc h ’ — p ro v id e d th a t th e file h a s a lre a d y b e e n

s o rte d in to a n a p p ro p r ia te o rd e r

The three most important activities in the address
book program — adding new records, saving the
file on tape or disk, and reading in the file from
mass storage when the program is first run — have
now been developed. But an address book is no
use if you can only add information and cannot
extract any. What is needed next is a routine to find
a record.

Finding a complete record from a name is likely
to be the most frequent activity, and that’s why the
first option on the choice menu (*CH00SE*)isFIND
RECORD (FROM NAME). Searching is a highly
important activity in many computer programs,
especially in database programs where specific
items of data often need to be retrieved from a file.
Broadly speaking, there are two search methods —
linear and binary. A linear search looks at each
element in an array, starting at the beginning, and
carries on until the particular item is located. If the
data items in the array are in an unsorted state, a
linear search is the only type that can be
guaranteed to work. The time to locate the item
using a linear search in an array of N items has an
average value proportional to N / 2. If there are few
items to be searched through, N /2 may be
perfectly acceptable, but as the number of items
increases, the time taken to perform the search
may become excessive.

If the data in the file is known to be in a sorted
state, however, there’s a far more efficient
searching method, known as the ‘binary search’,
which works in the following way. Suppose you
want to find the definition of the word
‘leptodactylous’ in a dictionary. You don’t start at
the first page and see if it’s there, and go on to the
second page if it’s not, working your way through
the dictionary until you find it. Instead, you put
your thumb roughly in the middle of the book,
open the page and see what’s there. If the page you
open happens to start with ‘metatarsal’, you know
you’ve gone too far, so the second half of the book
is irrelevant and the word you want will be
somewhere in the first half of the book. You then
repeat the process, treating the page you originally
opened as though it were die end of the dictionary.
Again you split the first part of the dictionary in
two and open the page to find ‘dolabriform’. This
time you know that die page selected is too ‘low’
and (for the purposes of our search for
‘leptodactylous’) can be considered as though it
were the first page — all earlier pages are irrelevant
as they are known to be too ‘low’ in the sense that

‘1’ is ‘higher’ than ‘d’. The ‘first’ and ‘last’ pages of
the dictionary can now be considered as the ones
starting with ‘dolabriform’ and ‘metatarsal’
respectively. Again you put your thumb in the
middle of the ‘relevant’ section and open up at
‘ketogenesis’. Again this is too ‘low’ so the word we
are looking for must lie between this page and the
‘metatarsal’ page. Repeating this process often
enough is guaranteed to locate the word we are
looking for — as long as it is in the dictionary!

In the example we have just considered,
‘leptodactylous’ was the ‘search key’. The search
key is the entry we are trying to find. Each time we
examine a record, we will compare the search key
against the ‘record key’ to locate the ‘target’ or
‘victim’. Together with the record key we can
expect to find what is called ‘additional
information’, logically enough. The additional
information for the record key ‘leptodactylous’
would be the dictionary definition of the word —
in this case, slender - toed.

The analogy with searching through a file in a
database for a target record is a close one,
provided that the records have been previously
sorted as the entries in a dictionary have. Think
how difficult a dictionary would be to use if the
entries were in the order the lexicographer first
thought of them!

The search routine required for our address
book will need to be more complicated than we
might first appreciate for reasons that will become
apparent. The first thing the search routine — let’s
call it *SCHREC* for the time being — will do is
request the name to be searched for. This is called
the search key. Suppose that somewhere in the file
there is a record for a person called Peter Jones.
The record for this person will have a field (with
the name in standardised form) containing JONES
PETER. The search routine might prompt us with a
message such as WHO ARE YOU LOOKING FOR?, and
we would respond with PETER JON ES, or perhaps P.
JONES or Pete Jones. Before this gets too
complicated, let’s assume that we respond with the
full name, Peter Jones. The first thing the search
routine will do will be to convert this response to
the standardised form, JONES PETER. Next, it will
compare our input, the search key, with the various
contents of the MODNAMS fields. If the program
were using a linear search, the search key would be
compared with each MODNAMS field in sequence
until a match was found or until it was discovered
that an exact match did not exist.

416 THE HOME COMPUTER COURSE

Basic Programming

As we have already noted, however, a linear
search is not efficient compared with a binary
search if the data is already sorted. The search

BTM = 1 and LET TOP * SIZE -1 (remember that SIZE
is always one larger than the number of records
currently in the address book).

Suppose that there are 21 valid entries in the
startingwithanlFRM0D = 1THENG0SUB*SRTREC

value of MID, the position of the middle element,
can be derived in b a s i c from INT((BTM + T0P)/2). Ifhighest will be MODFLD$(SIZE -1). To conduct the

search, we will need three variables: BTM for the
bottom of the array (M0DFLD$(1) at the
beginning); TOP for the top of the array
(MODFLD$(SIZE -1) at the beginning); and MID for

value will be 11

the whole file is valid and find the mid point
INT((BTM+T0P)/2) inside a loop that is terminated

Using the dictionary analogy, we can assume
that BTM = ARRAY(1) and TOP = ARRAY(SIZE -1). In

the MID value of the array is too small, we know
that ARRAY(MID) is the lowest part of the array we

search starts with the ‘smallest5 element and ends
with the ‘largest5 element. We can therefore LET

■ i iui— l-

ABRAMS SUE

ABRAMS SUE

A d d re s s B o o k

ABRAMS SUE

MINNELL IAN

FORD ROGER

MINNELL IAN

WHELAN DAVE

FORD ROGER

NEVILLE PERRY

il!EUU!U

II MINNELL IAN !

5 0 WHELAN DAVE

• j & A d d re s s B o o k

1 ABRAMS SUE

I

12 FORD ROGER

18 NEVILLE PERRY

4 J ONES PETER B
« ----- 1

2 5 MINNELL IAN

5 0 WHELAN DAVE J

> Basic Programming

need to consider, so BTM could be set to MID.
Slightly more efficient, however, is to set BTM to
MID +1, since we already know that ARRAY (MID) is
not equal to the search key. Similarly, IF
ARRAY(MID) > SCHKEYS, TOP maybe set to MID -1.

As an interim step towards developing a fully
working routine, the program shown can take a
dummy input (which needs to be in exactly the
same format as the MODFLDS fields) and will either
print RECORD NOT FOUND if there is no match, or
RECORD IS NO (MID) if there is a match. As the
routine starts with line number 13000, it can be
added on to the end of the program as presented
on page 399, and will work as long as line 4040 is
changed to IF CHOI = 1 THEN G0SUB 13000.

Line 13240 contains the STOP statement. This
will stop the program temporarily as soon as the
RECORD NOT FOUND or RECORD IS NO (MID)
messages are displayed. The program can be re
started at the same line number, without losing
data, by typing CO NT. Without STOP, the program
would rush on to the RETURN statement in line
13250 and the message would appear too briefly
to be legible.

Let’s consider this program fragment in more
detail. Line 13100 sets BTM to 1, the position of the
lowest element in the MODFLDS array. TOP is set to
SIZE-1 in line 13110. This is the position in the
MODFLDS arrays where the highest element is
located. Line 13120 initialises a loop that will only
be terminated when either a match is found or no
match is known to exist.

Line 13130 finds the mid point of the array by
halving the sum of the bottom and top index of the
array (I NT is used to round off the division, so that
MID cannot assume a value such as 1.5). There’s a
chance that the contents of MODFLDS(MID) will be
the same as the search key (SCHKEYS), but if they
are not the same, as is likely, L will be set to 0,
ensuring that the loop will be repeated. If the test in
line 13140 fails, MODFLDS(MID) will either be lower
or higher in value than SCHKEYS. The value of BTM
will then be set to one more than the old value of
MID (line 13150), or the value of TOP will be set to
one less than the old value of MID. The reason the
value of MID itself is not used is that the failure of
the test in line 13140 has already demonstrated
that MODFLDS(MID) is not the target we are
searching for and there is no point in looking at
that element of the array next time round the loop.

If no match is found, the value of BTM will
eventually exceed the value of TOP. The loop can
be terminated (line 13170) and a RECORD NOT
FOUND message printed (line 13200).

This program fragment is presented for
demonstration purposes and to enable the search
routine to be tested. As it stands, its use is rather
limited. Without the STOP in line 13240 we
wouldn’t even have time to see the message
flashed on the screen. What is required is a display
of the full record, as it was originally typed in.
Once the record number is known, it is a simple
matter to retrieve any of the additional
information required — NAMFLDS, STRFLDS etc.

Below the display of the record, we would
probably want a message such as PRESS SPACE BAR
TO CO NTIN U E (back to the main menu) and perhaps
further options such as PRESS “P” TO PRINT.

Not so easy, unfortunately, is deciding how to
handle the input of *FNDREC*. In the program
fragment, the input expected (in line 13020) must
be in the standardised form — JONES PETER, for
example. This is clearly not good enough. People
don’t think of names in inverse order, and it’s an
unreasonable burden on the user to have to enter
the name in upper case letters. Additionally, the
slightest deviation between the name input
originally would result in a RECORD NOT FOUND.
The first two problems could, one would expect,
be handled by *M0DNAM\ The third problem of
how to cope with an approximate match is far
more interesting, but very much harder to solve.

Before considering this problem, let us see why
* M0DNAM * will not solve the first two problems. If
you go back and look at *M0DNAM*, which starts
at line 10200, you will discover a good illustration
of one of the commonest traps into which
programmers fall — lack of generality. This
subroutine ought to be able to handle conversions
from ‘normal’ names to ‘standardised’ names
whenever this operation was needed. Even
though it was written as a separate subroutine, it
was clearly written with *ADDREC* in mind. It
assumes that the name to be converted will always
reside in NAMFLDS(SIZE) and that after conversion
the modified name will always be stored in
MODFLDS(SIZE). Faced with this situation, the
programmer has three choices: either completely
rewrite *M0DNAM* to make it general, which
would in turn involve further changes in other
parts of the program. Or write an almost identical
routine just to handle the input for *FNDREC*,
which represents wasted effort and takes up more
space in memory. Or resort to some bad
programming technique to allow the unmodified
* M0DNAM * routine to be used. This last alternative
is in some ways the least attractive. It will solve the
problem, but the actual working of the part of the
program that has been modified is likely to be
unclear, even to the writer of the program, and a
nightmare to anyone else trying to use the
program.

The moral of the story is: make subroutines as
general as possible, so that they can be called by
any part of the program.

To illustrate bad programming technique, or
‘dirty’ programming as it is often called, and to
show how unclear it can make the program,
consider line 13020 of the program fragment,
INPUT “INPUT KEY ”;SCHKEY$ and then look at the
modification or ‘fix’ that would allow *M0DNAM*
to be used:

13020 INPUT “INPUT KEY”;NAMFLD$(SIZE)
13030 G0SUB 10200: REM *M0DNAM*

SUBROUTINE
13040 LET SCHKEYS = MODFLDS(SIZE)
13050...

418 THE HOME COMPUTER COURSE

Basic Programming

Luckily, SIZE is always one bigger in value than the
highest valid record. In other words, there is no
record at position SIZE in the arrays, so this fix will
not modify any existing record. But without some
extensive REMs explaining what’s going on, think
how confusing these three lines would be to
someone who had not been involved in the
development of the program!

Back to the more interesting problem of dealing
with ‘near misses’. Suppose we had entered
someone’s name as Pete Jones during an *ADDREC*
operation, but as Peter Jones during *FNDREC*.
These would be converted to the standardised
forms JONES PETE and JONES PETER respectively,
and no match would be found during the search,
even though the record we wanted was there. We
will not attempt to solve this problem, because a
satisfactory solution would represent a major
programming task. For readers interested in
experimenting, however, here are some pointers:

BEGIN {search array for exact match}
IF exact match found

THEN PRINT full record
ELSE search array for close-match

IF close-match found
THEN PRINT record for close-match
ELSE PRINT “NO RECORD FOUND”

ENDIF
ENDIF

END
The procedure for close-match could be something
along the lines of:

BEGIN {close-match}
Search array for exact surname match
IF exact surname match

THEN search forenames for max-match
PRINT record for max-match
ELSE search surnames for max-match

IF surname max-match found
THEN PRINT record for max-match

ENDIF
ENDIF

END

The procedure for max-match could be roughly
defined as finding the target string with the
maximum number of characters in common with
those in the key string. Or it could accept a
situation in which the key string was wholly
contained within the target string, or vice versa.
There are no simple solutions, but plenty of scope
for enterprising programming.

There is one ‘side effect’ of the program
fragment presented. Suppose the following
sequence of events takes place. There are ten
records in the data file. You run the program and
then use *ADDREC* to add a new record, followed
by *FNDREC* to locate a record. When ‘ EXPROG* is
finally run, to save the file and terminate the
program, the record you added will not be saved
(although all the other records will be). This is a
direct result of something that happened in the
execution of *FNDREC*. Can you see why the

record added will not be saved?
In the next instalment of the course we will

explain how to prevent this loss of data; show what
the CURR variable is used for, and describe how to
delete or modify a record. Other options on the
main menu (*FNDTWN* etc.) are closely similar to
routines we have already worked out. Readers will
be left to implement them for themselves if they
are required.

Finally, consider what would happen if there
were exactly 50 records in the data file and the
modified *FNDREC* routine (that calls *M0DNAM*)
were used. (Hint: SIZE will have the value 51.)

Basic Flavours
r

i
■ i « a r r r 1

SPECTRUM

______ j

For S in c la ir m a ch in e s , th e fo llo w in g

m o d if ic a t io n s are requ ired :

130 00 REM *F N D R E C * TE S T V E R S IO N

13010 IF R M 0 D - 1 TH EN G O S U B 11200
13020 PR IN T “ IN P U T KEY”

13030 IN P U T S$
13100 LET B TM - 1

13110 LET T O P - S IZ E - 1

13120 FOR L - 1 T 0 1

13130 LET M ID - IN T ((B T M + T 0 P)/2)

13140 IF M S (M ID)

13150 IF M $ (M ID)

M ID + 1

13160 IF M $ (M ID)

-1
13170 IF B TM > TO P TH EN LET L - 1

13180 N EXT L

S S T H E N LET L - 0

S S T H E N LET B T M -

S S T H E N LET T O P - M ID

13200 IF B TM > TO P TH E N P R IN T “ RECORD

NOT FO U N D ”

13210 IF B TM < - TO P TH EN P R IN T “ RECORD

IS NO ” ;M ID

13240 STOP

132 50 RETURN
::' !<:; •. #

N o tice once a g a in th e p ro b le m o f s in g le - le tte r

s tr in g v a ria b le nam es: here S $ and M $ have

been s u b s titu te d fo r SCHKEYS, M 0 D F L D S

Erratum
In th e ZX81 a n d S p e c tru m

B as ic F la vo u rs on page 257 ,

lin e s 9 9 9 0 to 9 9 9 2 s h o u ld n o t

have been in c lu d e d in S tep 3

1 3 0 0 0 R E M V E R S I O N O F * F N D R E C * F O R T E S T I N G

1 3 0 1 0 I F R M O D = 1 T H E N G O S U B 1 1 2 0 0

1 3 0 2 0 I N P U T ’’ I N P U T K E Y ” ; S C H K E Y $

1 3 0 3 0 REM

1 3 0 4 0 R E M

1 3 0 5 0 R E M

1 3 0 6 0 R E M

1 3 0 7 0 REM

1 3 0 8 0 R E M

1 3 0 9 0 REM

1 3 1 0 0 L E T B T M = 1

1 3 1 1 0 L E T T O P = S I Z E - 1

1 3 1 2 0 F O R L = 1 T O 1

1 3 1 3 0 L E T M I D = I N T ((B T M + T O P) / 2)

1 3 1 4 0 I F M 0 D F L D $ (M I D) < > S C H K E Y $ T H E N L = 0

1 3 1 5 0 I F M 0 D F L D $ (M I D) < S C H K E Y $ T H E N B T M =: M I D + 1

1 3 1 6 0 I F M 0 D F L D $ (M I D) > S C H K E Y S T H E N T O P =: M I D - 1

1 3 1 7 0 I F B T M > T O P T H E N L = 1

1 3 1 8 0 N E X T L

1 3 1 9 0 REM

1 3 2 0 0 I F B T M > T O P T H E N P R I N T ’’ R E C O R D N O T F O U N D ’’

1 3 2 1 0 I F B T M < = T O P T H E N P R I N T ’’ R E C O R D I S NO ” ; M I D

1 3 2 2 0 R E M

1 3 2 3 0 REM

1 3 2 4 0 S T O P

1 3 2 5 0 R E T U R N

CD

THE HOME COMPUTER COURSE 419

Pioneers In Computing

The Bells Are Ringing
Bell L a b o ra to r ie s ta ke s its n a m e

fro m A le x a n d e r G raham Bell

(1 8 4 7 -1 9 2 2), w h o is g e n e ra lly

c re d ite d w ith th e in v e n tio n o f the

te le p h o n e in 1876. It is g e n e ra lly

be lieved th a t th e f i r s t w o rd s ever

tra n s m itte d o ve r w ire s by

e le c tr ic a l m e a n s w ere fro m Bell

to h is a s s is ta n t, s itu a te d in the

n e x t ro o m ; th e y w ere ‘ C om e

here, M r W a tso n , I w a n t y o u ! ’

B e ll L a b o ra to r ie s h a s b e e n

re s p o n s ib le fo r n u m e ro u s
d e v e lo p m e n ts in th e h is to ry o f

th e c o m p u te r — b o th in h a rd w a re

a n d s o ftw a re

A hundred years ago, Queen Victoria was greatly
amused by a new invention that allowed her to
speak with her ministers in London from the Isle of
Wight. The telephone has been greatly improved
since those days of the hand-cranked set through
research and development, and one of the spin
offs from this work has been the computer. In the
early stages of the telephone’s development, the
American Telephone and Telegraph Company
decided to set up an organisation that would
research ways of improving the telephone system.
Thus, in 1925, Bell Laboratories (known as ‘Ma
Bell’) was bom at Murray Hill, New Jersey.

Bell Labs is an unusual institution since it is
solely devoted to doing research, and yet is owned
by a corporation whose only purpose is to make
profit. The scientists are deliberately kept away
from the day to day engineering problems
encountered in running such a business because
Bell consider research to be a long term
speculative investment. Gifted scientists are
allowed to pursue those aspects of research that
they think are important because, the corporation

believes, a few of their ideas will be worth the
investment. Over the years, Bell Labs has
collected two Nobel prizes' and made discoveries
in quite diverse areas of scientific research. Here,
we consider some aspects of their research that
were particularly relevant to the development of
the computer.

By the 1930’s, telephone systems were
becoming increasingly automatic and
sophisticated. Messages were sent in analogue
form over the telephone cables and the calls were
connected using information contained in a digital
dialling code. The number dialled was first
converted at the exchange from an analogue signal
into a sequence of digital pulses. This was
temporarily stored in a memory made out of relay
switches until the connection was completed by a
bank of crossbar switches. These counted the
pulses in the dialling code and converted them into
co-ordinates on an electromechanical
switchboard. All the ingredients of a computer
were included — they were just waiting for the
right person to come along.

George Stibitz was a mathematician employed
by Bell who noticed the similarity between
‘counting’ pulses and adding them together.
Working at home on his kitchen table with some
old crossbar switches and electromechanical
relays, he made the first relay computer circuits.

Stibitz then began working with an experienced
switching engineer, Samuel B Williams, who had
been building switching circuits for 25 years, and
the two men created a Complex Number
Calculator (complex numbers involve the so-
called ‘imaginary’ numbers — the square roots of
negative numbers — and are needed to obtain
complete solutions to polynomial equations).
Work was begun in 1937, and the device
consumed 450 relays and 10 crossbar switches. It
operated in binary notation and was able to divide
two eight-digit numbers in 30 seconds. The
Complex Number Calculator became operational
on 8 January 1940, and in September of the same
year it was demonstrated to the American
Mathematical Society at Dartmouth College
(where b a s i c was later formulated). The calculator
had the facility of remote and multiple access
through typewriter keyboards connected by
telephone wires to the calculating mechanism in
New York. People were particularly impressed by
its ‘human’ form of operation: after the calculator
was asked a question it would seem to pause for
some seconds before giving the answer!

Many minor hardware devices also originated
at Bell, such as the floating air-cushions used in
magnetic tape heads, and negative feedback
amplifiers. But the most famous invention was the
transistor, created in 1947 by Bardeen, Brattain
and Shockley (see page 47). It was the transistor
that made possible the second generation of
computers.

420 THE HOME COMPUTER COURSE

H o m e c o m p u te rs . D o th e y send y o u r b ra in to

s leep - o r k e e p y o u r m in d o n its toes?

A t S inclair, w e 're in n o d o u b t. To us, a

h o m e c o m p u te r is a m e n ta l g ym , as

im p o rta n t an a id to m e n ta l fitness as a set o f

w e ig h ts to a b o d y -b u ild e r.

P ro v id e d , o f course, it o ffe rs a w h o le

b a tte ry o f g e n u in e m e n ta l challenges.

T h e S p e c tru m d o es ju s t th a t.

Its e d u c a tio n p ro g ram s tu rn b o rin g

chores in to a b s o rb in g contests - n o t le a rn in g

to spell 'a c q u ie s c e n t, b u t rescu ing a princess

fro m a so rcerer in co lour, sound , an d

m o v e m e n t!

T h e a rc a d e g am es w o u ld tes t an

a ll-n ig h t a rc a d e fre a k - th e y 're v e ry fa s t very

c o m p le x , v e ry s tim u la tin g .

A n d th e m in d -s tre tc h e rs a re tru ly

fien d ish . A d v e n tu re g am es th a t v e ry fe w

p e o p le in th e w o r ld h a v e cracked. Chess to

g ra n d m a s te r s tan d ard s . F ligh t s im u la tio n

w ith a c o c k p it fu ll o f in s tru m e n ts o p e ra tin g

in d e p e n d e n tly . G e n u in e 3 D c o m p u te r design.

N o o th e r h o m e c o m p u te r in th e w o rld

can m a tc h th e S p e c tru m ch a llen g e - because

n o o th e r c o m p u te r has so m uch so ftw are o f

such o u ts ta n d in g q u a lity to run.

For th e M e n ta th le te s o f to d a y and

to m o rro w , th e S incla ir S p ec tru m is g ym ,

a p p a ra tu s a n d tra in in g schedule, in o n e n e a t

p ackag e. A n d y o u can b u y o n e fo r u n d e r

£ 1 0 0 .

: , V .T

LI '

• ; / .

> \ !

•Vj

m
:

-V V

x/;.

'A'< e- \

m

-
:

i <W-<:

I

■

m m ,

m y
m

ffi

X

n

* •

§ l l« l

$

Ifelhi 3m
mn
□

’ •

•V

/ i *

’ 'y 'i,?'- / -■:; - -*«i>‘{V •?'£!*i'

Mw

,-?:S

, - c -

« T

Nfci

• «.*: t r A;

N o w th a t y o u r c o lle c tio n ot H o m e
C o m p u te r C o u rse is g ro w in g , it m a k e s so u n d
sense to ta k e a d v a n ta g e o f this o p p o rtu n ity to
o rd e r th e tw o s p e c ia lly d e s ig n e d H o m e
C o m p u te r C o u rse b in d ers .

T h e b in d e rs h a v e b e e n c o m m is s io n e d
to store a l l th e issues in this 24 p a r t series.

A t th e e n d o f th e co u rse th e tw o
v o lu m e b in d e r set w il l p ro v e in v a lu a b le in
c o n v e rtin g y o u r c o p ie s o f this u n iq u e series in to
a p e rm a n e n t w o rk o f re fe re n c e .

Buy tw o to g eth er a n d save £ 1.00

❖ B uy v o lu m e s 1 a n d 2 to g e th e r for
£ 6 .9 0 (in c lu d in g P & P). S im p ly fill in th e o rd e r
fo rm a n d th ese w il l b e fo rw a rd e d to y o u w ith
o u r in v o ic e .

❖ Ify o u p re fe r to b u y th e b in d e rs
s e p a ra te ly p le a s e sen d us y o u r c h e q u e /p o s ta l
o rd e r for £ 3 .9 5 (in c lu d in g P & P). W e w il l sen d
y o u v o lu m e 1 o n ly T h en y o u m a y o rd e r v o lu m e
2 in th e s a m e w a y - w h e n it suits y o u !

O verseas re a d e rs : This binder oiier applies to readers in the
UK, Eire and Australia only. Readers in Australia should
complete the special loose insert in Issue 1 and see additional
binder information on the inside front cover. Readers in New
Zealand and South Africa and some other countries can obtain
their binders now. For details please see inside the front cover.
Binders may be subject to import duty and/or local tax.

