
ISSN 0265 -2919

Q 80P

$1.95 N Z $ 2 . 2 5 *i USA & C a n $1.95

CONTENTS

Line Of Sight Graphics packages for the
home computer have profited from advances
made in Computer Aided Design

Laser Show The next generation of mass-
storage devices for home computers will use
laser technology

Sound Ideas...Light Waves We conclude our
look at the BBC’s sound commands and take
a first peek at the graphics on the Atari
models

COVER PHOTOGRAPH: IAN McKINNELL

Editor Richard Pawson: Consultant Editor Gareth Jefferson; Art Director David Whelan; Production Editor Catherine Cardwell; StaffWriter Roger Ford; PictureEdltor Claudia Zeff; Designer Hazel Bennington; Art Assistant Liz Dixon; Sub
Editors Robert Pickering, Keith Parish; Researcher Melanie Davis; Contributors Tim Heath, Henry Budgett, Brian Morris, Lisa Kelly, Steven Colwill, Richard King; Group Art Director Perry Neville; Managing Director Stephen
England; Published by Orbis Publishing Ltd: Editorial DirectorBrian Innes; ProjectDevelopmentPeterBrookesmith; Executive Editor Chris Cooper; Production Co-ordinator Ian Paton; Circulation Director David Breed; Marketing Director
Michael Joyce: Designed and produced by Bunch Partworks Ltd; Editorial Office 85 Charlotte Street, London W1;©1984by0rbisPublishingLtd:TypesetbyUniverse;nBproductionbyMullisMorganLtd;PrintedinGreatBritainbyArtisanPress
Ltd, Leicester

HOME COMPUTER COURSE - Price UK 80p IR £1.00 AUS $1.95 NZ $2.25 SA R1.95 SINGAPORE $4.50 USA and CANADA $1.95
How to obtain your copies of HOME COMPUTER COURSE - Copies are obtainable by placing a regular order at your newsagent.
Back Numbers UK and Eire - Back numbers are obtainable from your newsagent or from HOME COMPUTER COURSE. Back numbers, Orbis Publishing Limited, 20/22 Bedfordbury, LONDON WC2N 4BT at cover price. AUSTRALIA: Back
— . L . - . I I A I I r A A i A P M A A I i r s A r • • a a a a . • * * « • . . « « « ^ ^ « — _ . . . « /

numbers are obtainable from HOME COMPUTER COURSE. Back numbers, Gordon & Gotch (Aus) Ltd, 114 William Street, PO Box 767G Melbourne, Vic 3001. SOUTH AFRICA, NEWZEALAND, EUROPE & MALTA: Back numbers are available at
cover price from your newsagent. In case of difficulty write to the address in your country given for binders. South African readers should add sales tax.
How to obtain binders for HOME COMPUTER COURSE-UK and Eire: Please send £3.95 per binder if you do not wish to take advantage of our special offer detailed in Issues 4,5 and 6. EUROPE: Write with remittance of £5.00 per binder (incl.
p&p) payable to Orbis Publishing Limited, 20/22 Bedfordbury, LONDON WC2N4BT. MALTA: Binders are obtainable through your local newsagent price £3.95. In case of difficulty write to HOME COMPUTER COURSE BINDERS, Miller (Malta)
Ltd, M. A. Vassalli Street, Valletta, Malta. AUSTRALIA: For details of how to obtain your binders see inserts in early issues or write to HOME COMPUTER COURSE BINDERS, First Post Pty Ltd, 23 Chandos Street, St. Leonards, NSW 2065. The
binders supplied are those illustrated in the magazine. NEW ZEALAND: Binders are available through your local newsagent or from HOME COMPUTER COURSE BINDERS, Gordon & Gotch (NZ) Ltd, PO Box 1595, Wellington. SOUTH AFRICA:
Binders are available through any branch of Central Newsagency. In case of difficulty write to HOME COMPUTER COURSE BINDERS, Intermag, PO Box 57394, Springfield 2137.
Note - Binders and back numbers are obtainable subject to availability of stocks. Whilst every attempt is made to keep the price of the issues and binders constant, the publishers reserve the right to increase the stated prices at any time when
circumstances dictate. Binders depicted in this publication are those produced for the UK market only and may not necessarily be identical to binders produced for sale outside the UK. Binders and issues may be subject to import duty and/or
local taxes, which are not included in the above prices unless stated.

Passwords To Computing

H a rd w a re F o cu s

Commodore PET 4032 The hardware of
this first personal computer has greatly
advanced since it was originally marketed

Subversive Elements We suggest ways of
improving your de-bugging technique

Basic Programming

Finishing Touches A facility for deleting
records is the final module to be added to our
address book program

S o ftw a re

Insights

Next Week

•The QL (Quantum Leap) is the
latest in a long line of
outstanding technological
achievements from Sinclair
Research. Its CPU is as powerful
as some mainframe computers

•Machine code is itself a
quantum leap up from BASIC,
both in terms of speed of
operation and difficulty of
learning. We take an
introductoiy look at the subject

Grace Hopper The woman who first devised
the concept of a high level language

Sound And Light

Getting It Taped The Turing machine is a
theroretical computer that determines
whether a problem is computable

Newspeak Bit, byte, nybble and gulp are just
some of the computer terms that have
interesting origins

428

Pioneers In Computing

Insights

Computer Aided Design involves complex calculation and high-
quality graphical output. Some of the same principles are employed
in packages for home computers

4

4

The idea of applying computers to the process of
industrial design was first suggested in the early
sixties (at the Massachusetts Institute of
Technology). However, it was not until a decade
later that computer technology enabled the
designer to see and interact with a graphic
representation of his work, presented on a monitor
screen and accessible via a digitiser or light pen,
exactly as if he were at a drawing board. These
essential peripherals — the digitiser, light pen and
plotter — are the basic tools of the Computer
Aided Designer’s art. With them it is possible to
create images in just the same way as an animator
does (see page 181), by ‘drawing’ on a digitising
tablet. The designer can modify that image,
perhaps using a light pen, incorporating pre
drawn components and sub-assemblies, and then
produce a copy of the finished drawing on a
plotter. The computer becomes a drafting system
similar in principle to a word processor, but
working with images instead of text.

We have seen that the quality of the image
produced on a computer’s monitor depends on
two things: the resolving ability of the monitor
(that is, the size of an individual picture element or
pixel), and the power and memory size of the

computer driving that monitor. When we looked
at computer generated images, we saw much the
same requirement — a monitor that could resolve
to something like 1,000 X 1,200 pixels, and a
computer capable of processing these 1.2 million
picture elements in less than l/24 th of a second.

It is useful to continue the analogy between the
Computer Aided Design package and the word
processor. Instead of moving paragraphs,
sentences or individual words around a piece of
text — amending, inserting or deleting these at will
— the CAD program can be used to move
elements of a drawing around the page. The effect
may be different, but the principle is exactly the
same.

The problem for the program is: how to store
this image in such a way as to allow it to be altered
and manipulated. If we were to make a physical
model of an object, we would use one of two basic
methods — additive or subtractive. The additive
method is rather like modelling in clay: building
up the object piece by piece until we arrive at the
final shape. The subtractive method is like that
used by the sculptor, who takes away material to
achieve the same result. The computer’s analogy
for a solid block of material is a three-dimensional

Apple Blossom
N o m a tte r h o w s o p h is t ic a te d

th e s o ftw a re , th e m o s t

im p o r ta n t c o m p o n e n t o f a

C o m p u te r A id e d D e s ig n

p a cka g e is th e d e s ig n e r u s in g it.

V e rs a w r ite r , th e re s u lts o f

w h ic h a re s h o w n here , ru n s on

an A p p le II a n d re q u ire s tw o d is k

d r iv e s and a d ig it is e r . The

f lo w e r to o k an e xp e rie n ce d u se r

s o m e c o n s id e ra b le t im e to e n te r

in to th e m a c h in e

THE HOME COMPUTER COURSE 421

DI
G

IT
IS

ER
 B

Y
CO

N
NY

 J
U

D
E

SC
RE

EN
 S

HO
T

BY
 IA

N
M

cK
IN

N
EL

L
CO

UR
TE

SY
 O

F
SO

FT

Insights

MI9nj fu Rt due* Pi ClUft
N««r r* r CRR6 ftHP'T-iiew
Ou i t 4-t* * ♦-* •

N e a r
O u » t

M«9ni fV
Far Cfi
« - t - * - *

V Reduce Picture CAPS SMFT-slOW*-1
a ll!

l MRCKA&*C'0« • 4 5 POT 176,180 Z ■ +00310 MFfG =002.45 ROT 141,176 +00310

\ I M P G - 0 0 * .

array. Consequently, the size and performance of
the computer involved becomes important. If the
array is large enough to enable one whole byte to
be allocated to the definition of each pixel or
element of the image, then the amount of
information that we can retain about the single
element is quite large (256 separate pieces when
using an eight-bit processor, a great deal more for
16- or 32-bit devices). But the problems of
creating this much storage space are practically
insoluble, and so we are forced into a compromise

Professional Touch
N o t a ll g ra p h ic s a n d CAD

s o ftw a re is e x p e n s iv e .

P s io n ’s V U -3 D fo r th e 48

K by te S in c la ir S p e c tru m

o ffe rs m o s t o f th e fa c il i t ie s

fo u n d in p ro fe s s io n a l

p a c k a g e s (th o u g h , o f c o u rs e ,

to a m u c h le s s re fin e d

d e g re e), a n d c o s ts le ss th a n

£10

Hot Dog
lo R e s e a rc h ’s P lu to s y s te m

b r in g s h ig h re s o lu t io n im a g e

g e n e ra tio n to a w id e ra n g e o f

s m a ll m ic ro c o m p u te rs w ith the

a d d it io n o f a fa s t p ro c e s s o r and

e x tra m e m o ry . T he b a s ic

s y s te m c o s ts o n ly £ 5 0 0 and

g iv e s e ig h t f ix e d c o lo u rs a n d a

re s o lv in g p o w e r o f 6 7 0 * 5 7 6

p ix e ls

— but one that is generally quite acceptable.
Instead of allocating one whole byte to each
element, it is sufficient to allocate a single bit, if all
we want to do is indicate the presence or absence
of an element at this position on the model.

Computer Aided Design software shares many
attributes with Computer Generated Image
packages: curve smoothing, hidden element
removal, shading, block filling and re-colouring,
for example. It only requires the repeated solution
of a simple equation for a series of values to form a
curve. If we specify the starting and finishing
points for a given line, and the maximum distance

away from that straight line that the curve will
reach, then we have provided one solution to the
equation. We can work backwards from that
solution to deduce the equation itself, and then
proceed to solve it for the rest of the series of
values, thus forming the curve.

This ability to compose a drawing from
standard component parts is the real strength of
CAD systems. No longer is it necessary to re-draw
common individual components. When they have
been defined once, that definition can be recalled
as often as required and incorporated into new
drawings. One particularly good example of this is

422 THE HOME COMPUTER COURSE

CO
UR

TE
SY

 O
F

AP
PL

IC
O

N

the use of computers to assist with the designing of
future generations of computers.

Printed circuit board design, for example, is
quite complex, involving optimising techniques in
order to arrange components and their
interconnection paths in the most economical way
possible (bearing in mind that connection paths
can never cross). The designer is often forced to
fall back on trial and error — and it is here that
CAD packages are particularly useful. All the
individual components are stored as pre-defined
images, and are called up as and when required. It
is a simple matter to try out a particular design on
the visual display unit to see if it meets all the
criteria before committing it to paper as part of a
working drawing. By this method it is possible to
assemble a design, and even test out the efficiency
of a variety of different solutions, in the time it
would otherwise take to complete a single draft.

Integrated circuits are designed in almost
exactly the same way, but due to the density of
components and connecting pathways, a further
software feature is necessary: the ability to
magnify a part of the drawing, work on it at the
enlarged scale and then place it in position again
within the overall design. This effect is now an
important part of the CAD repertoire, and has
added considerably to the efficiency of the system.
By its use, the specification of a complete object
can be held in just one drawing, and the scale can
be adjusted to meet the viewer’s requirements.

And it’s not only the scale that can be varied in
this way. If we take the case of a more complex
object — a car, for example — we are presented
with a variety of sub-systems that go together to

make up the whole: the electrical system, the
hydraulic system, the exhaust, the suspension, and
so on. While the aesthetic designer will be
concerned with the overall package, individual
engineers are more likely to be interested in just
one sub-system. It is a simple matter to keep each
sub-system in a different colour, and then extract
the objects of just that one colour from the whole
drawing. That is not to say that the drawing must
always be a coloured mixture — the coding can be
suppressed at will when not required.

It is the ability to retain the complete
specification of an object (not just its form and

appearance, but also information on the material
of which it is constructed, its weight, cost, etc.) that
is the real breakthrough. Retrieving information
about the shape and size of the object is only one
function of the system, which can be regarded as a
visually orientated database. By asking different
questions of that database it is possible to: place
orders to suppliers; schedule sub-assembly and
component manufacture; integrate production
lines to ensure that components arrive exactly
where and when they are required; analyse costs;
monitor manufacturing efficiency: and much
more as well. It is tempting to speculate that the
next step will be a regular system of direct
computer control of manufacture, and with the
burgeoning use of robots in the industrial process,
that next step is not such a large one.

Most of the applications we have discussed here
require mainframe computers or else very
powerful minicomputers, but that is not to say that
even small microcomputers cannot play a useful
part in the design process. There is a wide variety
of CAD software available for machines running
under CP/M, for example, and most
manufacturers offer at least one package, even for
computers as relatively unsophisticated as the
Sinclair ZX81. As we noted, the size and speed of
the computer dictates the quality of the stored
image, but the home user’s requirements are
unlikely to be as stringent as those of the
professional designer, so it is quite feasible to
achieve exciting results for a modest outlay.

Just Imagine...
The b a c k g ro u n d to th is s h o t

f ro m th e L u c a s f ilm s p ro d u c tio n

‘ R oad To P o in t R e ye s ’ w a s

la rg e ly c o m p o s e d b y fra c ta ls , a

new and in g e n io u s CAD

te c h n iq u e . F ra c ta ls are

p h e n o m e n a th a t in c re a s e in

c o m p le x ity th e m o re c lo s e ly

th e y are v ie w e d . The h il ls and

m o u n ta in s in th e b a c k g ro u n d

s ta rte d life as s im p le p o ly g o n s ,

d e s c r ib e d w ith in th e m e m o ry o f

a c o m p u te r . Each p o ly g o n w a s

th e n m a d e s u c c e s s iv e ly m o re

c o m p le x b y th e a d d it io n o f

its o w n sh a p e to each

o f its s id e s , a n d th e p ro c e s s

repea ted w ith a d e g re e o f

ra n d o m is a t io n . The

d e v e lo p m e n t in sh a p e o f th e

s n o w fla k e , s h o w n b e lo w , f ro m

a s im p le tr ia n g le , i l lu s tra te s th is

p r in c ip le

Wired Up
The f i r s t s ta g e in c re a tin g an

im a g e o r d e s ig n in th re e

d im e n s io n s is k n o w n as ‘w ire

f r a m in g ’ . The im a g e is d e fin e d

as a se rie s o f p o in t c o

o rd in a te s , a p p ro p r ia te ly jo in e d

by s tra ig h t lin e s . T hese lin e s

can be m a n ip u la te d u s in g the

c u rv e s m o o th in g a lg o r ith m ,

h id d e n lin e s re m o v e d , and then

th e p la n e s f i l le d in w ith c o lo u r

and sh a d e d as n e c e s s a ry to

in c re a se th e i l lu s io n o f d e p th

THE HOME COMPUTER COURSE 423

9 Passwords To Computing

The Turing machine is a purely theoretical device, used for deciding
whether a problem is computable or not

So far in T h e H o m e C o m p u t e r C o u r s e , we have
tended to emphasise practical subjects, and
things to do on your home computer. In this
article, however, we’re going to take a look at the
theoretical side of computers: the field that is
called ‘computer science’. This is to computing
what pure mathematics is to engineering — a
highly theoretical subject, but one from which
the practical ideas ultimately derive.

The Turing machine, for example, is a purely
theoretical idea, developed by Alan Turing (see
page 200) to assist in the study of algorithms and
computability. It is really the minimal possible
computer, so that if it is possible to prove that a
particular problem could not be solved using a-
Turing machine, then that problem could be said
to be ‘non-computable’. Turing decided that
such a minimal computer would need three
facilities: an external storage for recording and
storing input and output information; a means
for reading from and writing to that storage; and
a control unit to determine the actions to be
undertaken.

A Turing machine is therefore usually defined
as having a tape (if it helps, think of it as a
magnetic tape), which is infinite in length (that is
to say: however much tape is needed to solve a
problem, there will always be enough^. The tape
is divided up into squares, which will either be
blank or contain a symbol. A tape
head mechanism that can read or write the
symbols in the squares moves along the tape,
receiving its instructions from a control unit that
tells it what symbols to write and the direction in
which to move next.

The control unit contains an execution
program, and in this respect a Turing machine
can be considered to have been ‘built’
specifically to perform one application, since
there is no provision in the specification for
loading or altering a program. We use the term
‘built’ advisedly, since the only Turing machines
that have ever been physically constructed have
been purely for educational purposes. However,
it is a relatively simple exercise to write a b a sic

program that will simulate the operation of a
Turing machine on a home computer.

The control program in a Turing machine is
made up of a collection of ‘quintuples’, or
statements that contain five elements. Which
quintuple is executed at any stage depends on
two factors: the symbol in the square currently
underneath the tape head, and the ‘state’ or

‘condition’ of the machine. This state is a purely
arbitrary quality: we can specify that the
machine starts off in state Sa, and when it
reaches the special state H then it halts, the
computation being finished. In between, the
state will change many times according to
instructions from the quintuples. The state
merely reflects what has happened in the
computation so far, and serves to select which
quintuple is executed next (again, if it helps,
think of it as a flag variable in b a s ic

programming).
The five elements of each quintuple are:

1) The current state of the machine;
2) The symbol in the square of tape
underneath the head;
3) The symbol to be written in that square
(this is the same as 2 if no change to the data is
required);
4) The state that the machine should now go
into; and
5) The direction in which the tape head
should move — left or right.

The quintuple (Sa,5,3,Sb,R), for example, will
be executed whenever the machine is in state Sa
and the tape head reads a 5. The 5 will then be
replaced by a 3, the machine changed from state
Sa to Sb, and the tape head moved one square to
the right.

Designing a theoretical Turing machine to
perform a particular task involves specifying the
format in which your input data will be presented
to the machine on tape, the format of the output
data on tape when the computation is finished
(i.e. the machine is in state H), and the set of
quintuples needed to execute the algorithm.

In our panel, we have designed a Turing
machine to perform the AND function. We will set
up the two input bits (each a 1 or a 0) in adjacent
squares, followed by a question mark symbol,
which is to be replaced by the answer (again a 1
or a 0, depending on the two inputs). For
decorum, we have added an asterisk symbol at
either end of the data area, and will start the
machine going in state Sa on the left-most
asterisk, finishing on the right-hand one.

A total of ten quintuples are needed to specify
this machine, though as you can see from the
worked example (1 AND 1 = 1), only five are used
for any run. If you try the same machine out for,
say, 0 AND 1, you will find that a different set of
quintuples will be selected from the ten.

424 THE HOME COMPUTER COURSE

Passwords To Computing

Turing Machine
T h is e xa m p le s h o w s th e c o n s tru c t io n o f a T u rin g

m a c h in e to p e r fo rm th e A N D fu n c t io n . T he tw o

in p u t b its are s e t up in a d ja c e n t squa res ,

fo llo w e d by a q u e s tio n m a rk , w h ic h w il l be

rep la ce d by th e re s u lt. Tw o a s te r is k s a re p laced

a t th e e n d s o f th e d a ta a rea to a c t as d e lim ite rs .

T he ten q u in tu p le s b e lo w s p e c ify th e o p e ra tio n o f

th e m a c h in e , th o u g h fo r a n y w o rk e d e x a m p le (in

th is case 1 A N D 1), o n ly f iv e o f th e te n w il l be

used

CO > * * SA R |

CO > 0 0 Se RI

CO > I I CO o U
0 0 So Rj

SB I I Sou
Sc 0 0 Som

CO o I I sE RI
SD 9

■ 0 SFj y

GO m 9
■ I SF R

SF * * H R

T he m a c h in e s ta r ts o f f in s ta te SA w ith th e head

p o s it io n e d o ve r th e le f tm o s t a s te r is k . T he o n ly

e ffe c t o f th is q u in tu p le is to m ove th e tape head

to th e r ig h t

S. ii i1 sc R l
X

< x x x a x y x x y Y i

If th e n e x t sq u a re c

q u in tu p le w il l be se

in to s ta te S c and is

O h a d been read, th

________ 1________

r / y y x x

o n ta in s a

sleeted, a r

in s tru c te t

le o u tc o m

x v w v y

1, th e n th i

id th e mac

J to m ove

e w o u ld b

x x x x x x w

S

:h ine goes

r ig h t. If a

e S B

sc
x x > " x x x

i[sE i
x x x

R ;
x m

W ith th e m a c h in e in s ta te S c , a 1 in th e se co n d

sq u a re re s u lts in S E. For a ll o th e r e v e n tu a lit ie s ,

th e m a c h in e w o u ld go in to S D

y y y y y y x y x x y y x x y y y y y y y x

R ead ing a q u e s tio n m a rk , it is the s ta te o f the

m a c h in e , S E o r S D, th a t d e te rm in e s w h e th e r a 1

o r a 0 is w r it te n in its p la ce as th e re su lt. E ithe r

way, th e m a c h in e is p u t in to s ta te S F

* *
XX
XX

" x w w v m w w v y w v y y y x y y y y x x

T he m a c h in e n o w e n te rs th e h a lt s ta te (H) over

th e se co n d a s te r is k . You can te s t o u t th e '

o p e ra tio n on p a p e r fo r 1 A N D O , 0 A N D 1, and

0 A N D 0

m .

*

c

*

*

* II II 9■ *

s
<

F

>
* II I 98 *

H
£

* If II *

THE HOME COMPUTER COURSE 425

KE
VI

N
JO

NE
S

Sound And Light

--- .i,;.......... jXOS4U/ . t m . *«^u l . .*j. - •

Continuing our look at the BBC
Micro’s sophisticated
ENVELOPE command

••Tk ; ifflgaHEBEBE

In the previous instalment of the Sound And Light
course we introduced the BBC Micro’s ENVELOPE
command. This is one of the most powerful
commands available to the b a sic programmer

.when used with the SOUND command, discussed
on page 358. We now continue our explanation of
ENVELOPE by looking at ‘volume envelope’.

In the following line of programming
parameters, N to NS3 are concerned with the pitch
envelope, and these were dealt with on page 408.

ENVELOPE N,T,PS1,PS2,PS3,NS1,NS2,NS3,AR,DR,
SR, RR,FAL,FDL

The remaining parameters are all concerned with
the volume envelope, between them setting peak
volumes and rate of change of volume over the
duration of the note set by the associated SOUND
command.

AR & DR (-127 to 127) + FAL & FDL (0 to 126)

Atari’s graphics set a trend that
other manufacturers have
followed

The Atari 400 and 800 home computers are well
known for their plug-in cartridge systems, but the
machines themselves also have fairly sophisticated
graphics facilities available in b a s ic . These
facilities, common to both machines, support nine
levels of screen display. — three text modes
(offering different character sizes) and six graphics
modes. The maximum resolution obtainable is
320 x 192 dots.

There are 16 colours to choose from on the
Atari computers, but the maximum number that
can be displayed at any one time is five. The
standard ASCII upper and lower character sets
are available, as well as 37 special Atari graphics
characters. These characters may be used in PRINT
statements to build up low resolution displays and
tables. The Ataris also allow cursor movement to

AR sets the Attack Rate of the note. Although the
software allows a negative value, in practical terms
the range is 1 to 127. This relates to the number of
volume changes per time step and continues to rise
until the Final Attack Level (FAL) of volume is
reached, which indicates the beginning of the
decay phase. Decay Rate is controlled in a similar
manner by DR, usually a negative value, causing
volume to fall until it reaches the Final Decay
Level (FDL). Although software allows a range of 0
to 126 for final volume levels, current hardware
only allows 0 to 16, so a FAL value of 50 would be
automatically scaled down and rounded off to a
volume of 6.

SR & RR (-127 to 0)

The Sustain Rate (SR) and Release Rate (R R) also
refer to volume changes per time step although
both must take negative values. Sustain continues
until the duration set by the SOUND command is
complete. This means that if the Attack time and
Decay time together are greater than or equal to
the set Duration time, there will be no Sustain

using cursor control characters within PRINT
statements to position the text that follows on the
screen. The cursor control characters allow up/
down or backwards/forwards movement of the
cursor.

One of the most attractive features of the Ataris
is their ability to use sprite-style graphics, known
as ‘Player-Missile’ (PM) graphics, which allow the
user to write fast-moving arcade games in b a s ic .

There are, however, no special b a sic commands to
use PM graphics, and all the necessary work has to
be done by manipulating the memory locations in
RAM, using PEEK and POKE. Player-Missile
graphics will be discussed more fully in a later part
of the course.

Display Modes
Modes 0, 1 and 2 are for text display. When the
machine is switched on, the display is set to mode 0
and the screen is formatted into 24 rows, each
containing 40 character spaces. In this mode the
display characters are based on the standard eight
by eight ASCII format. Characters PRINTed in
mode 1 are twice the width of mode 0 characters,
but are still the same height; whilst mode 2
characters are twice the height and width of those
in mode 0.

With the exception of mode 0, all graphics
modes have a split screen, the bottom few lines
being reserved for miscellaneous data such as
error messages. To PRINT to the main body of the
screen in modes 1 and 2, a device number must be

be controlled from a b a sic program. This is done specified. PRINT#6 allows text to be PRINTed to the
426 THE HOME COMPUTER COURSE

£

*

Sound And Light ©

phase, even if it has been programmed in. Release
begins when Duration is complete. Volume falls to
zero at the set rate unless a new note is started on
the same oscillator, which means that Release is
cut off unless ‘H’ has been set to ‘1 ’ by means of a
new SOUND & command.

Volum e Envelope

T = 6 A R = 60
D R = -5

S R =0
R R = -5

FAL=120
FDL=40

SOUND duration =40 (twoseconds)
Resulting in:

ENVELOPE 1,6,0,0,0,0,0,0,60,-5,0,-5,120,40
The following program employs all the sound
associated BBC b a sic commands to play a well
known sequence of notes with the piano volume
envelope, and a short triangular repeated pitch
envelope on the final chord.

★ ★10 REM**COSMIC
20 ENVELOPE 1,6,0,0,0,0,0,0,60,-5,0,-5,120,40
30 ENVELOPE 2,6,1,-1,1,1,2,1,60,-5,0,-5,120,40
40 FOR M T04.READ N
50 SOUND 1,1,N,20:REM**PLAYAB G G“
60 SOUND &1001,0,0,5:NEXT I
70 SOUND &201,2,77,40:REM**FINAL‘ *
80 SOUND &202,2,89,40:REM**D MAJOR**
90 SOUND &203,2,109,40:REM“ CHORD
100 DATA 137,145,129,85:REM**A B G G“

★ ★

graphics part of the screen. Modes 3 to 8 are
graphics modes and allow points and lines to be
plotted on the screen with varying degrees of
resolution and a choice of colours. This table
shows the complete range of options available to
the user:

MODE TYPE ROWS COLS COLOURS

0 te x t 24 4 0 2

1 te x t 20 20 5

2 te x t 10 20 5

3 g ra p h ic s 20 40 4

4 g ra p h ic s 40 80 2

5 g ra p h ic s 40 80 4

6 g ra p h ic s 80 160 2

7 g ra p h ic s 80 160 4

8 g ra p h ic s 160 3 2 0 1

The choice of mode will depend on how much
memory there is available for screen display. Mode
5, for example, requires almost twice as much
memory to support four colours as mode 4 needs
to support two.

Basic Commands
There are a number of commands in Atari b a sic to
help with graphics. These commands also work in
modified form in the three text modes.

SETCOLOR a,b,c
There are five colour registers to control the use of
colour on the screen, but not all of them are used in
every mode. SETCOLOR is used to select the colours
used by these five registers. In this command a is
the colour register number, 0-4; b is the colour
number to be used, 0-15; and c enables each
colour to be displayed in one of eight levels of
brightness, by choosing an even number between
0 and 14.

COLOR n
This command works in two ways, depending on
whether a text or a graphics mode has been
selected. In modes 0,1, and 2, n is a number in the
range 0 to 255. In its binary form this number is
made up of eight bits: the first six bits relate to the
ASCII code of the character being PLOTted, and
the other two bits are reserved for the colour
information about the character.

In the graphics modes, n takes on a value
between 0 and 3, and is used to select a particular
colour control register when PLOTting a point.

PLOT x,y
The origin of the Atari screen is placed in the top
left-hand comer of the screen. PLOT illuminates the
graphics point with co-ordinates (x,y). Similarly,
the POSITION command:

POSITION x,y
places an invisible cursor at the point (x,y) on the
screen.

DRAWTO x,y
draws a straight (or as straight as is possible in the
lower resolution modes) line from the old cursor
position to the point (x,y). Finally the line:

X10 18,#6,0,0,MS:”
employs the Atari input/output command X10,
which allows the user to fill or paint a shape drawn
on the screen. It is rather complicated, but can
produce some good results if used carefully. Once
a closed shape has been drawn on the screen, then
the cursor should be set to the bottom left-hand
comer of the area that is to be coloured in. The
colouring will start from the top of the shape and
will fill it in, between the boundaries, until the
cursor position is reached at the bottom. The
colour is set by POKE 765,C where C is 1, 2, or 3, as
used in the COLOR command.

XL Size
A ta ri g ra p h ic s can be q u ite

in te re s tin g b u t are n o t p a r t ic u la r ly

e a sy to use. L im ite d c o lo u r cho ice

and th e lack o f m a n y o f th e

‘s ta n d a rd ’ h ig h re s o lu tio n

c o m m a n d s , su ch as CIRCLE,

m e a n th a t th e p ro g ra m m e r has to

w o rk fa ir ly h a rd to ach ieve g o o d

re s u lts . A ta ri doe s have th e

a d va n ta g e , how ever, o f a la rge

range o f te x t m o d e s . T he fo llo w in g

p ro g ra m d e m o n s tra te s th e use o f

d o u b le s ize ch a ra c te rs , in

c o n ju n c t io n w ith th e PO SITIO N

c o m m a n d , to P R IN T a fa m il ia r

m e s s a g e on th e screen :

10 R E M * BIG LETTERS *

2 0 G R A P H IC S 2+16

3 0 SETCO LO RO .3,6

4 0 FOR X = 19T 08 STEP-1

5 0 P O S IT IO N X,1

6 0 FOR J -1 T 0 1 0 0 : N EXT J

7 0 P R IN T # 6 ; “ H O M E ”

8 0 N E X T X

9 0 FOR X = 1 9 T 0 6 STEP-1

100 PO SIT IO N X ,3

100 FOR J = 1 T 0 1 0 0 : N EXT J

120 P R IN T # 6 ;

“ C O M PU TER ”

130 N E X T X

140 FOR X = 1 3 T 0 7 STEP-1

150 P O S IT IO N X ,9

160 FOR J = 1 T 0 1 0 0 : NEXTJ

170 P R IN T # 6 ; “ COURSE ”

180 N E X T X

190 SETCOLOR 0 ,5 ,5

2 0 0 FOR Y -9 T 0 5 STEP-1

210 P O S IT IO N 7 ,Y

2 2 0 P R IN T # 6 ; “ COURSE ”

2 3 0 N E X T Y

2 4 0 G O T 0240

N o te th a t w h e n a m o d e is

s e le c te d ,th e s p lit sc reen e ffe c t

can be o v e rr id d e n b y a d d in g

16 to th e m o d e n u m b e r

THE HOME COMPUTER COURSE 427

9 Passwords T o Computing

The world of computers has
generated some imaginative
language. These ‘buzzwords’
often have interesting origins

Many of the terms that are used to describe
aspects of computing have rather obscure
origins. Every trade has its jargon (code words
and phrases that are especially used by the
people involved in that trade), and none more
so than the computer industry. In fact,
computer people even have a jargon word for
their jargon: they call them ‘buzzwords’.

The word BUZZWORD first surfaced in the
late 1960’s, when someone in Honeywell’s
publicity department developed a game called a
‘Buzzword Generator’. The game was centred
on three columns of ten words each, numbered
0—9. The first column contained adjectives, and
the other columns consisted of nouns that could
stand in apposition. You simply thought of a
three figure number, looked up the appropriate
words, and there you had an utterly meaningless
phrase, such as ‘interactive system module’. This
could then be used to pepper conversation with
your friends and colleagues, in order to baffle
and confuse them.

W . 1m

BOOT is a contraction of bootstrap: as in ‘to pull
oneself up by one’s bootstraps’. A bootstrap
loader is a routine that is automatically run
whenever a computer is powered-up (N.B. for
the dedicated computer user, it’s not sufficient to
say ‘switched on’). In machines that do not have
an operating system in ROM, the boot routine
must contain instructions to call in that operating
system from disk, or else the machine could not
be used.

When it comes to people greeting their computer
system, perhaps for the first time, yet another
jargon word has evolved. Many commercial
organisations employ a firm of computer
consultants to install hardware and software so
that the client can take it over in working order.
This is known as TURNKEY operation, because
all the client has to do is turn the key and drive
away.

BIT is a buzzword in its own right. Though most
dictionaries declare it to be a contraction of
‘Binary digiT’, it seems equally likely that it is
just an extension of its common meaning: ‘a
small piece of something’. It’s worth bearing in
mind, though, that in American slang a bit is also
an eighth part of a dollar, and is always spoken of
in twos: ‘two bits’, for example, is a quarter — 25
cents.

Bit often appears as a prefix: as in ‘bit-slicing’,
a term used to explain how certain rather
sophisticated microprocesssors can be
constructed out of two, four, or eight bit
‘building blocks’, resulting in devices wim’
capacities as large as 32 bits. Computing wisdom
has it that programs left unused for a long ti? -e
will develop additional and unsolvable bugs, ar id
this imaginary phenomenon is referred to as ‘bit-
decay9.

HARDWARE SOFTWARE are in
themselves buzzwords (‘hard’ meaning tangible
and ‘soft’ the opposite), but there are two other
types of ‘ware’ as well. FIRMWARE meaning
software that is encapsulated in hardware (such
as in the ROM or EPROM), and LIVEWARE,
which refers to all those people fortunate enough
to work with and use computers!

BASIC itself is a buzzword, standing for
Beginners’ All-purpose Symbolic Instruction
Code; though, as with so many acronyms, one
suspects that the word was thought of before the
phrase.

BAUD — the rate at which data is transmitted —
is named after Emile Baudot, the inventor of a
telegraphic code that initially rivalled the more
successful one devised by Samuel Morse.

428 THE HOME COMPUTER COURSE

7

‘y f

> \ A

/

' \
.wfl

BYTE is an often encountered computer term,
and though it is no more than 30 years old, its
origins are already lost in obscurity. Until the
eight-bit microprocessor appeared, a byte was
enough bits to encode a single character —
sometimes six, sometimes eight. At that time,
computers rarely used a word of less than 24 bits;
and some machines, chiefly those designed for
scientific applications, went as high as 64 bits.
The eccentric spelling of byte has led to the
coining of the term NYBBLE — half a byte!
Straining the analogy a little further, a GULP is a
small group of bytes.

The media are always very quick to latch on to
imaginative pieces of jargon, and in recent years
they have taken to making up some of their own.
The subject of computer crime is particularly
fertile ground for buzzword generation: LOGIC
BOMBS and TROJAN HORSES are two of the
methods supposedly used for fraudulent
purposes. The former describes a piece of code
that is written into an applications program but
which remains dormant (has no effect) until the
program has been running for a sufficient length
of time for the fraud (moving money from one
account to another perhaps) to go undetected. A
Trojan Horse, we are led to believe, is a program
which is disguised as another program in order to
gain entry to the system.

A similar expression, but one referrring to an
authentic practice, is TIME BOMB. This
describes a particularly ingenious technique for
protecting business software against piracy. It is
a piece of code within the package, which would
normally be disabled when the system is installed
by the bona fide dealer. On a pirated copy,
however, the Time Bomb will wait until a certain
date is reached (often April 1), by which time
there is a good chance that the company will be
heavily dependent on the package. The day after
the bomb has ‘exploded’, not only will the user’s
files have been turned into garbage, but the copy
of the program will also have been destroyed
(unless the disk was protected against being
overwritten).

lMm Passwords To Computing

GARBAGE is a word that occurs in several
phrases in a computer user’s dictionary of
jargon. For example, the acronym GIGO stands
for ‘Garbage In, Garbage Out’, and this is really
just a reminder that computers are only
processing information, and therefore you can’t
expect accurate results if you don’t feed in
accurate data in the first place.

GARBAGE COLLECTION is the name given
to an internal process that may well be used in
your home computer, if it uses a version of b a s ic

that permits dynamic strings (i.e. strings that can
change in length during a program). Every time a
string increases in length, a complete new copy
will be made in RAM. So if there are a lot of
statements of the form LET A$=A$+“* ”
(particularly within loops) then it won’t take long
for the memory to fill up completely. At this
point, the program execution will automatically
come to a temporary halt, and a routine in ROM
called the ‘garbage collector’ will tidy up the
string area, and remove all the sections of strings
that have been left over from previous
manipulation. Though the program will resume
when the garbage collector has finished, the
process can take seconds or even minutes,
during which the computer will cease all
operations.

Many computing buzzwords derive from
analogy. When a business deal has been agreed,
for example, the participants may well shake
hands: so in computing terms a HANDSHAKE
is the name given to the electronic signal that
signifies that an exchange of data is complete.

0.Integrated

1.Interactive

2. Buffered

3. Digitised

4.Stochastic

5. Peripheral

6. Heuristic

7. Relational

8. Customised

9. Programmable

Generator Hum
T he te rm ‘ b u z z w o rd ’ w a s f i r s t used to d e s c r ib e a s im p le g a m e th a t

c o u ld c re a te m e a n in g le s s b u t c o n v in c in g te c h n o lo g ic a l ja rg o n

p h ra s e s . Y o u can d e v is e y o u r o w n ‘ b u z z w o rd g e n e ra to r ’ b y th in k in g

up th re e c o lu m n s o f te n w o rd s each , as w e have d o n e here . C h o o s in g

a th re e d ig it ra n d o m n u m b e r w il l ‘g e n e ra te ’ a re s o u n d in g p h ra se

THE HOME COMPUTER COURSE 429

0.Database 0.Network

1.Situational 1.Capability

2.Top-down 2.System

3.Diagnostic 3.Algorithm

4.Addressing 4.Processor

5.Linear 5.Array

6.Graphic 6.Module

7.Alphanumeric 7.Facility

8.Image 8.Hierarchy

9.Schematic 9.Generator

m m

Hardware Focus

PET Keyboard And Monitor
T he f i r s t PETs had a n o n -s ta n d a rd k e y b o a rd , th e la te r o n e s m o re

c lo s e ly a p p ro x im a te th e s ty le o f a ty p e w r ite r a n d fe a tu re th e

g ra p h ic s y m b o ls o n th e f r o n t o f th e keys (e xce p t th e b u s in e s s

m o d e ls) . A ll PETs fe a tu re b u il t - in m o n ito rs : th e la te r o n e s have

12" (3 0 c m) sc re e n s , w ith g reen on b la c k d is p la y s a n d a c h o ic e

o f 4 0 o r 8 0 c h a ra c te r c o lu m n s

The Commodore PET was the
first personal computer. Since its
introduction, however, the
machine’s hardware has
advanced considerably

In many ways the Commodore PET (an acronym
of Personal Electronic Transactor) was the
machine that started the whole microcomputer
boom. When it was released in 1977, it set such a
high standard that it’s possible to regard some
more recent machines as retrograde steps , in
comparison. The original machine’s metal casing
serves as an excellent example of its superiority.
Apart from the Memotech and the more
expensive business machines, the cases of most
recent computers are moulded from plastic, and
these range in quality from the barely adequate to
the shoddy. The PET’s built-in power supply is
another detail that separates it from many of its
competitors in the home market.

Timer Chip
W h e n a c o m p u te r is s w itc h e d

on , th e c irc u its ta k e a w h ile to

s ta b ilis e . T h is t im e r w a its fo r a

fra c t io n o f a s e c o n d , a fte r w h ic h

it re se ts th e m ic ro p ro c e s s o r to

th e s ta r t o f th e BAS IC in te rp re te r

User Port
T h is in te r fa c e c o n ta in s a

n u m b e r o f u s e fu l lin e s ,

in c lu d in g an e ig h t-b it p a ra lle l

p o rt, a n d c o n n e c tio n s fo r

in te r fa c in g an e x te rn a l m o n ito r.

It is p a r t ic u la r ly s u ita b le fo r

in te r fa c in g h o m e -d e s ig n e d

e le c tro n ic s p ro je c ts

IEEE488 Port
T he PET w a s th e o n ly o n e o f th e

e a r ly m ic ro c o m p u te rs to in c lu d e

th is p a ra lle l in te r fa c e . B ecause

it c o u ld a d d re s s up to 15

p e r ip h e ra ls , it w a s u sed to d rive

b o th d is k s a n d p r in te rs . The

IE E E 488 is a ls o th e s ta n d a rd

used fo r in te r fa c in g s c ie n t if ic

la b o ra to ry e q u ip m e n t

Although eight-bit, as well as 16-bit, machines
had been available for at least two years before the
PET was released, these were either kits or simple
‘minimal systems’ consisting only of chips on a
PCB. The PET was the first readily available
microcomputer that could truly be described as
‘plug-in-and-go’. The very early versions of the
PET had a built-in tape recorder with motor
control, a built-in monitor, and ROM b a sic . All
that a new user had to do to start work was to plug
it in and turn it on, and almost immediately a
reassuring message:

COMMODORE BASIC VER. 1.0
7167 BYTES FREE
READY

6522
T h is V e rs a tile In te r fa c e A d a p to r

is s im ila r to th e 6 5 2 0 , b u t

c o n ta in s a s h if t re g is te r fo r

c o n v e r t in g b e tw e e n s e r ia l and

p a ra lle l d a ta , as w e ll as tw o

p ro g ra m m a b le t im e rs th a t can

be used to c o n tro l e x te rn a l

e q u ip m e n t

would appear. The user could then start typing,
and this work could be safely stored on cassette,
without the need to plug various components
together or load system programs from tape (or
worse, to have to enter them on a HEX keypad,
which wasn’t uncommon in those days).

Commodore b a sic has been through several
revisions during its lifetime, and the latest version
(4), though based on the original, has been so
extended as to make it into a new dialect.

Another major and unique feature of the PET is
the character set. Containing both the complete
ASCII set and a large variety of block graphics,
this has been put to some remarkably creative uses
by PET owners, despite the relatively low
resolution of the characters. However, a major
problem of the machine was that the codes
generated by the keyboard don’t match the ASCII
set, nor are they arranged in any standard order.

The heavy use of these block graphics has been
reinforced by the availability of a range of printers

6520
T hese P IA s (P e rip h e ra l In te rface

A d a p to rs) ta k e care o f m o s t o f

th e in te r fa c in g , in c lu d in g the

c a s s e tte s a n d ke yb o a rd

6502
T he PET w a s d e s ig n e d b y

C o m m o d o re ’s C h u ck P edd le , so

i t is h a rd ly s u rp r is in g th a t i t is

b a se d on a 6 5 0 2

m ic ro p ro c e s s o r, w h ic h he a lso

d e s ig n e d . T h o u g h b u s in e s s

c o m p u te rs have o p te d fo r o th e r

p ro c e s s o rs , th e 6 5 0 2 s t i l l

re m a in s p o p u la r a m o n g s t h o m e

c o m p u te rs

430 THE HOME COMPUTER COURSE

Hardware Focus

Cassette Port
A s p e c ia lly m o d if ie d

C o m m o d o re c a s s e tte d e ck m u s t

be used . W h e n th e PET w a s f ir s t

in tro d u c e d , th e C o m m o d o re

c a s s e tte d e ck gave a b e tte r

p e r fo rm a n c e th a n a d o m e s tic

u n it, b u t th a t s itu a t io n has n o w

been reversed

T he PET f i r s t p u t th e c o m p le te

BAS IC and o p e ra tin g s y s te m in

R O M , and s ta r te d a tre n d th a t

a lm o s t e ve ry h o m e c o m p u te r

has fo llo w e d

Second Cassette Port
T he o r ig in a l PETs h a d a b u ilt - in

c a s s e tte de ck . N o w th is p o r t can

be used to add a s e c o n d u n it,

a n d th is a llo w s d a ta to be read

fro m o n e ta p e , m o d if ie d , and

th e n w r it te n to a n o th e r

Piezo-Electric Speaker
L a te r m o d e ls in c o rp o ra te d th is

d e v ice , w h ic h c o u ld , fo r

e x a m p le , be p ro g ra m m e d to

p ro d u c e a ‘w a rb le ’ w h e n th e

u s e r m a k e s an e rro n e o u s e n try

4 8 0 x 4 4 0 x 3 0 0 m m

COMMODORE PET
PRICE
From abou t £300

]

32 Kbytes RAM

20 Kbytes ROM

25 lines o f 40 characters. B u ilt- in

12" (30 cm) green p h o sp h o r

m on ito r. 256 d isp layab le

characte rs and g ra p h ics sym bo ls ,

o r lo w re so lu tio n (5 0 x8 0) g ra p h ics

INTERFACES
IE E E 4 8 8 ,8 -b it para lle l user po rt,

cassette (2)

LANGUAGE SUPPLIED
BASIC, M ach ine Language

M o n ito r

OTHER LANGUAGES AVAILABLE
PASCAL, COM AL, LISP

COMES WITH
In s tru c tio n m anua l

KEYBOARD
T yp e w rite r-s ty le keyboard,

fe a tu rin g 64 in d iv id u a l keys w ith

g ra p h ics s ym b o ls in sc rib e d on

the fro n t. A separate n u m e ric

keypad in c lu d e s ca lcu la to r

fu n c tio n keys

DOCUMENTATION
C om m odore have never been

acc la im ed fo r the q u a lity o f th e ir

d o cu m e n ta tio n , a lth o u g h th is has

m uch im p roved s ince the early

days

Keyboard Connector

PETs c o m e w ith a n y th in g fro m 8

K b y te s to 3 2 K b y te s as

s ta n d a rd . B y m e a n s o f a s p e c ia l

m o d if ic a t io n th is can be

e x te n d e d to 9 6 K b y te s

Character Generator
In a d d it io n to 6 4 a lp h a n u m e r ic

c h a ra c te rs , th e PET can

g e n e ra te 6 4 g ra p h ic s s y m b o ls .

A lte rn a tiv e ly , te x t can be

d is p la y e d in u p p e r a n d lo w e r

case

that will reproduce them in hard copy without the
need for complex bit programming of the printer
head. Of course, this means that a limited number
of printers are suitable for use with the PET, and
most, if not all, are Commodore products.

As a result of these various idiosyncrasies, and
although there is a considerable amount of
software available for the machine, little of this has
been translated to other machines. Few programs
have been converted from other machines to the
PET as well, because they generally involve too
much effort to convert, and it is easier simply to
rewrite them. Consequently, the machine has
become somewhat ‘isolated’ in its own little world,
and is scarcely affected by changes in the industry
as a whole. Though the PET’s days of glory are
now over, it still remains a popular machine in
schools, and home computer manufacturers
would do well not to forget the features of the PET
that really triggered off the microcomputer
revolution.

THE HOME COMPUTER COURSE 431

Software

With careful planning and a step-
by-step approach, the time taken
to de-bug a program can be
dramatically reduced

As you become more skilled at writing
programs, you will also tend to become more
accomplished at ‘de-bugging’ them. The
syntactical mistakes and errors in logic, which
even the most experienced computer
programmers can make, become less frequent
and less problematic as your experience
increases. Here are some hints to help you avoid
programming errors and become more efficient
at de-bugging your code.

The first place to begin is at the precise point
where a program begins — in your head! If the
concept of a program is badly thought out at the
beginning, then it is sure to be infested with bugs
when it is written.

It is a far better idea to begin writing a program
by first stating the problem as clearly as possible
to yourself or someone else. Then divide the
problem into logically complete parts — Input,
Output, Algorithms, Data Structures, Processes,
etc. — and consider each of those parts as a
separate problem. If necessary, break down each
of these problems into its component problems,
and so on, until the original problem is a
structured collection of sub-problems, each of
which is easy for you to program. A formal
approach, such as using a pseudo-language or a
flowchart, is essential in the design stage as a way
of keeping track of, and preserving, the program
structure as a whole. You must try to stay away
from the keyboard until you can honestly say
that you know how to program every part of the
problem This is called the top-down approach
to programming, and the method can
dramatically cut your de-bugging time.

Splitting problems into solvable tasks will lead
you to write programs that are really collections
of subroutines or procedures linked by a
skeleton main program. This makes finding bugs
easier, and it enables you to build a library of
bug-free subroutines for use in later programs.
The alternative is called ‘re-inventing the wheel’:
every time you write a program that sorts data,
for example, you re-solve the problem of how to
write a sort routine, and probably rewrite the
same old bugs, as well! It is much easier to write
and debug it once, save it, and recall it whenever
you need it thereafter.

As far as b a s ic allows, always try to use
appropriate variable names, even if they have to
be abbreviated. NET=GR0SS—TAX, for example,
explains itself; and NT=GR—TX isn’t* a bad
substitute; but N=G—T is extremely ambiguous,

and gives no clue as to what variables are
involved. It’s good practice to keep a variable
table, which shows you all the variables used in
the program and what they’re for. This can lead
you to standardise your use of variables (such as,
always using certain single letter variables as
loop counters), and stops you using the same
variable for different purposes. Similarly, it’s
good practice to store constant values in

Pest Control

100 GOTO 2 0 0 :X*="THAT'S ALL FOLKS"

T h is s ta te m e n t w il l never

be execu ted , as th e GOTO

c o m m a n d s k ip s ove r it

These tw o lin e s are in the

w ro n g order. L ine 100

s h o u ld have: GOTO 190 120 1 = 1 2 : K=1984

140 FOR K=1 TO LT

K is su p p o se d to c o n ta in a

c o n s ta n t, b u t th is

s ta te m e n t w il l e lim in a te it

Because the quo tes a r e -

m is s in g fro m here, the

NEXT w il l n o t be executed 160 PR I NT "LJHO NEEDS STRUCTURE ?;N*:NEXT

ISO RESTORE T h is s h o u ld read: RETURN

190 FOR L=1 TO I

S yn tax E rro r: the c o lo n ': ’

s h o u ld be a s e m i-c o lo n

200 INPUT" ENTER YOUR NAME":N*

220 INPUT" ENTER YOUR AGE"; LT

T h is w ill cause b ig tro u b le .

It s h o u ld p ro b a b ly read:

G O S U B 140

GOSUB 100
m

260 PRINT IF YOU' R E " ; L T ; "NOW"

/

280 PRINT"YOU WERE BORN IN" ; K-LT

The q u o ta tio n m a rks are

m is s in g

T h is w il l re su lt in som e

m e a n in g le ss num ber,

because K has been

changed in va lue s ince

lin e 120

300 YR*=K-LT

The c lo se b racke t is

m isp la ce d , ca u s in g the

c a lc u la tio n to fa il. T h is

s h o u ld read: IN T (Y R /4)*4

S yn ta x E rro r: th is sh o u ld be

Y R -K -L T

320 LY=INT<YR>/4»4

There is no lin e 370!

340 IF LY=YR THEN IF INT<LY/10 0 > * 1 00=LY THEN GOTO 370

/ — T h is s h o u ld be "

GOTO 4 2 0 m eans

ju m p in g o u t o f the

F O R ...N E X T loop

380 PRINT YR WAS A LEAP YEAR": GOTO 420

390 PRINT "YR WAS NOT A LEAP YEAR

400 NEXT T h is m a y need th e nam e

o f th e lo o p va ria b le : i.e.

N E X T L

420 PRINT X*

X $ has n o t been in it ia lis e d ,

so th is s ta te m e n t w ill do

n o th in g
440 STEP S yn ta x E rro r: th is s h o u ld be

a STOP

432 THE HOME COMPUTER COURSE

To n e w p ro g ra m m e rs , b u g s

o fte n seem to ta k e on a n im a te

c h a ra c te r is t ic s , su ch as h id in g

fro m th e p ro g ra m m e r and

d e lib e ra te ly u n d e rm in in g a ll

h is e ffo r ts to f in d th e m .

H ow ever, th e f i r s t b u g (a t le a s t

th e o n e fro m w h ic h th e te rm is

d e r iv e d) re a lly w a s a n im a te . In

t ry in g to e lim in a te an e rro r

fro m a p ro g ra m she w as

d e v e lo p in g on th e H a rva rd

M rk II in 1945, C a p ta in G race

H o p p e r d is c o v e re d th a t a la rge

m o th had g o t c a u g h t up in th e

e le c tro m e c h a n ic a l w o rk in g o f

th e c o m p u te r and w a s c a u s in g

th e fa u lt . A s a re s u lt o f th a t

in c id e n t, th e te rm ‘ de

b u g g in g ’ w a s co in e d

Software

variables at the start of the program, and refer
back to these variables thereafter. This makes
the program faster and neater, and it means that
you can change these values without having to
hunt through the program for every occurrence.

Even with the sort of formal approach that we
have outlined here, it’s difficult to eliminate bugs
entirely, so it’s important to adopt a disciplined
method for finding and eradicating them. The
commonest bugs are syntax errors, and you can
usually correct them as soon as you encounter
them. But this is not always the case. Consider:

10 PRINT“BIG BUGS HAVE LITTLE BUGS UPON”
20 PRINT“THEIR BACKS TO BITE THEM”

Such lines often cause an error message when
executed if they’re not keyed in as two separate
lines. Line 10 contains 40 characters, so when
you type it on a 40-column screen, the cursor
finishes up at the start of the next screen line,
which can cause you to forget to hit RETURN on
line 10 before you start typing line 20. If so, then
what look like two perfect lines in your program
will actually be one line with a syntax error (the
number 20) in the middle of it. One way of
trapping these errors is to list suspect lines
individually rather than as part of a piece of
program.

Error messages, when they’re
incomprehensible, can be misleading. Take for
example:

25 DATA 10.2,34,56.9,0.008,15.6
30 FOR K-1 TO 5: READ N(K):NEXT K

This may fail to execute because of an alleged
syntax error in line 30; whereas the error is
actually in the data on line 25 (One of the zeros
has been mis-keyed as the letter 0).

Coding errors that don’t result in syntax errors
are the commonest bugs, and usually also the
hardest to find. In this case, it is vital to be
methodical. Begin by trying to find out roughly
where the bug is in the program. This is
reasonably easy with well-structured modular
programs, and can be made easier by the TRACE
utility, which causes the current program line
number to be printed on the screen as it is
executed. If your machine doesn’t allow this,
then you can create TRACE statements
periodically throughout the program (PRINT
“LINE 150” at the beginning of line 150, for
example). Similarly, you can use the STOP
command to halt program execution at
significant places in the program so that you can
examine the values of crucial variables. You can
do this in direct mode using PRINT, or you can
write a subroutine onto the end of your program:

11000 REM PRINT THE VARIABLES
11100 PRINT“SC0RE,SIZE,FLAGS”
11200 PRINT SC;SZ;F1;F2
11300 PRINT“B0ARD ARRAY”
11400 FOR K-1 TO 10.PRINT BD$(K):NEXT K

Consequently, when the program comes across a
STOP command, you can type GOTO 11000, and

not

have the current state of the variables displayed.
You can even change them (by typing, say,
SZ=17 and pressing RETURN), and then restart
the program with the CONTinue command.

When you’ve found that the bug is lurking
within certain lines, or in a particular variable,
then you should be close to eliminating it, but
tread carefully! Try one remedy at a time so that
you can see what its exact effect on execution is.
It’s very easy to make several changes between
runs, perhaps getting rid of one bug, but creating
one or more new ones, and then forgetting
exactly what it was you did!

Loops and branches, especially when they’re
nested, are particularly fertile ground for bugs,
and require special care in both writing and de
bugging. Consider this piece of code:

460 IF S M < 0 AND S C < > - 1 THEN IF S O O OR
SM=SC-F9 THEN LT=500

470 FOR C1-1 TO LT:F0R C2=LTT0 C1 STEP-1
480 SC=SM+SC*C2
490 NEXT C2:SM=0:NEXT C1

What does this all mean? Even if you know what
it’s meant to do, would you know if it were
succeeding or failing? Putting statements inside
a loop when they should be outside is a sure way
to encourage bugs. And so is failing to cover all
possible conditions when writing IF. . .THEN
statements. A special case of this occurs when
you write multiple statements after IF . . .THEN.
For example:

655 IF A$=“” THEN GOTO 980:A$=B$
660 PRINT A$

The statement A$=B$ will never be executed
because either A$=“”, in which case control
passes to line 980, or A$ < > “ ”, in which case the
rest of line 655 is ignored.

Experience is the best teacher of de-bugging,
but a step-by-step approach and a disciplined
method are invaluable aids. Take your time, and
- above all - DON’T PANIC!

THE HOME COMPUTER COURSE 433

TO
NY

 L
OD

GE

Insights
r

Optical (laser) disc technology
opens up two major applications
for home computers: interactive
video and mass storage

■■

Whenever one overhears a conversation about
home computers, the first statistic quoted is
invariably that of memory size. Certainly, the
internal storage capacity of the computer is
important, but the capacity of its mass storage
system is likely to prove more critical in the long
term. After a couple of months, the enthusiastic
home computer user will have accumulated a
considerable number of cassettes, or several boxes
of disks. Yet most of these programs are never
modified, and they would be better stored in
ROM cartridges than on delicate magnetic media.
What would be very useful is some form of digital
storage system that was read-only like a cartridge,
but had a much greater capacity.

Such a system does exist— in the form of the
optical laser disc. Currently, though, this system is
used in the home only as an alternative to the video
cassette recorder for showing pre-recorded
material. Another use of the same technology is
the compact audio disc, which is replacing the
turntable and stylus format of hi-fi systems.

The difference between these two types of
systems (apart from the diameters of their discs) is
in their methods of operation. Whereas a video
disc is an analogue system, a compact audio disc
stores its information in digital form — i.e. as a
sequence of ones and zeros. This information is
turned back into the original audio signal by a
digital-to-analogue convertor, which is the
electronic opposite of the process that created the
information in the first place. Because there are so
many stray electric fields in the domestic
environment, it is impractical to use magnetic
media like floppy disks for video recording. In any
case, the amount of information on an optical disc
can run into millions of megabytes, and that is
much more than even a Winchester disk can hold.

There are several optical laser disc systems
available, but the most successful to date is that
introduced by Philips. This system uses a 14 inch
(35 cm) plastic disc, which is really only a
protective envelope. The information itself is
buried deep inside the plastic as a series of pits in a
sheet of metal foil. As on a floppy disk, the stored
information is catalogued on the video disc, so
that, given the right sort of disc player, it is possible
to move instantly to any single piece of
information. Once the read head is in the desired
location, the information is read back from the disc
by the laser beam. The light passes through the
plastic and falls on the surface of the metal foil. A
light sensitive cell then reads the information as the

WM*< r*k>: am

■m m

light is reflected from the pits in the foil. The
information is recorded on a single spiral track,
with one frame of the video for every revolution.
This gives a total of 54,000 frames on each side of
the disc, or 36 minutes of playing time.

The main potential uses for optical discs in the
field of computers fall into two areas. The first, and
already available, development is that of
‘interactive video’. A transmitted television
programme is non-interactive — the viewer has no
control over the order in which the scenes are
presented. With interactive video, however,
textual and visual information is stored on a video
disc, which is connected to a computer. The disc
can then be used as a reference library, with the
displayed text superimposed pver the video
pictures on a conventional television screen. In
response to prompts from the computer, the user
can select specific ‘tracks’ or ‘scenes’ on the video
disc to be played. Alternatively, the disc can be
used as a training aid, with live action or stills being
displayed on a television and the trainee’s answers
to relevant questions input to the computer, which
can monitor and report on the user’s performance.
Interfaces between a domestic video disc and a
home computer are still not widely available,
though many enthusiasts have constructed their
own. Philips do, however, market a professional
model of their Laser Vision, which can cope with
interactive video on its own, or can interface with a
computer by means of an IEEE488 or RS232
port.

The other area in which optical disc technology
is likely to be exploited is the provision of
computer software. Imagine, for example, the
advantages of supplying a computer with all its
systems software — word processor, database,
spreadsheet, and several dozen games — on a
single, incorruptible disk. This is likely to take the
format of the compact audio disc, but as yet no
compact disc player has been fitted with a
computer interface. With such a huge market
potential it is reasonable to expect domestic
compact disc players with such interfaces within a
very short time, as well as dedicated compact disc
players for personal computers. Sony and Philips
have already announced their intention to
produce a dedicated disc player for computers,
called CDROM.

□n ear Motor
T he s e rv o -m e c h a n is m fo r1

m o v in g th e t ra c k in g a rm a c ro s s

th e d is c is s im p ly a c o il,

w o rk in g a g a in s t a l ig h t s p r in g .

T he a rra n g e m e n t is v e ry s im ila r

to th a t fo u n d in m o v in g -c o il

m e te rs , s u c h as c u r re n t o r v o lt

m e te rs

Tracking Arm
The a rm is p iv o te d c e n tra lly ,

a n d is b o th f in e ly b a la n c e d and

fre e ly p iv o te d The re a d in g head

c o n s e q u e n t ly t ra c e s a n a rc

a c ro s s th e d is c

Motor
The ro ta t io n speed o f th e d is c is

v e ry a c c u ra te ly c o n tro lle d u s in g

fe e d b a c k c ir c u it r y . A s th e a rm

m o v e s f ro m th e in s id e to th e

o u ts id e o f th e d is c , th e speed

w il l c h a n g e f ro m 5 0 0 to 2 0 0

r p m to keep th e re c o rd in g

d e n s ity c o n s ta n t

434 THE HOME COMPUTER COURSE

Insights

focusing Coil
f This miniature coil acts as a

servo-mechanism, keeping the
light beam in sharp focus

Laser Diode
T h is d e v ice is s im ila r to a

c o n v e n tio n a l LED, b u t e m its

in v is ib le in fra - re d l ig h t

Error Correction Circuitry
A h ig h leve l o f ‘ re d u n d a n c y ’ is

b u ilt in to th e re c o rd in g , so th a t

a n y b it e r ro rs d o n o t re s u lt in

c o r ru p te d s o u n d . In th e o ry , a

2 m m h o le c o u ld be d r il le d

a n y w h e re in th e d is c w ith o u t

User Controls
T he c o n tro ls a re gea red to w a rd s

s e le c tin g tra c k s and

p ro g ra m m e s on a m u s ic d is c .

Lens
The b e a m o f l ig h t is a c c u ra te ly

fo c u s e d o n to th e fo i l in s id e th e

d is k , so th a t a n y d u s t o r d ir t on

th e s u rfa c e w il l u s u a lly be o u t o f

fo c u s a n d th e re fo re ig n o re d

Disc
In fo rm a t io n is e n c o d e d d ig ita lly

in th e fo rm o f p its , e tch ed

p h o to g ra p h ic a lly o n to fo i l . The

p its a re o n ly 0 .5 m ic ro m e tre s

(0 .0 0 0 5 m m) w id e , by

0.1 m ic ro m e tre s

THE HOME COMPUTER COURSE 435

> Basic Programming

By removing the anomalies caused by stringing together the
modules, and adding a few more facilities, our address book
program is now complete

In the last instalment of the course, readers were
left with the problem of working out why running
the address book program, then adding a record
(using *ADDREC*), then locating a record (using
* FINDREC*), and then exiting from the program
(using * EXPROG *) would result in the added record
not being saved. The problem arose through the
use of the variable R M 0 D as a flag to indicate that a
record had been modified (implying that the file
might be out of order). The *SRTREC* subroutine
would sort the file into alphabetical order, and
then set R M 0 D to 0 on the assumption that the file is
in order. Executing * EXPROG * checked to see if the
file was in order (RMOD = 0) and didn’t bother to
save the file if it was in a sorted condition.

Adding a record (using *ADDREC*) would set
RMOD to 1 (since a record had been modified, i.e. a
new record had been added), but *SRTREC* would
set RMOD to 0, indicating that the file had been
sorted. What is really needed, however,
irrespective of whether the file has been sorted or
not, is a flag that signals that a record has been
modified and a separate flag to show if the file is in
a sorted condition or not. Then, subroutines that
need to know that the file is sorted can check the
‘sorted’ flag, and subroutines that need to know if
any record has been modified can check the
‘modified’ flag.

Suitable names for the two flags would be
RMOD, to show if a record has been modified, and
SRTD, to show if the file has been sorted.

When the program was presented on page 399,
line 1230 contained the statement LET SVED = 0.
The SVED variable has not been used so far, but
when the line was included, it was realised that
RMOD alone would not be enough. The variable
name SVED was chosen with the idea that certain
conditions would have to be true before a save (to
tape or disk) would be necessary.

A more appropriate name for this flag would be
SRTD (to indicate that the file is in a sorted
condition). The original line 1230 has been
changed to:

1230 LET SRTD = 1

There are now four possible states regarding the
condition of the data file. These are:

RMOD SRTD
0 0 Not modified, not sorted (illegal)
1 0 Modified, not sorted
0 1 Not modified, sorted
1 1 Modified, sorted

RMOD=0 and SRTD=0 is illegal because the program
ensures that the data file is always sorted before it
is saved. When the program is run, RMOD is set to 0
(line 1220) to indicate that no modifications have
taken place, and SRTD is set to 1 (line 1230) to
indicate that the file is sorted.

Any operation that modifies a record (such as
ADDREC, *DELREC*or *M0DREC*)setsRM0Dto1
and this flag is not reset by any subsequent
operation. SRTD, which is initially set to 1, is reset to
0 by any activity that might mean the data has
become out of order (such as in *M0DREC* if the
name field is altered). Any activity that needs to
assume the data is sorted (such as *FINDREC*)
always checks SRTD and calls the sort routine if
SRTD = 0. By using these two flags, instead of just
RMOD, the program is able to terminate without
saving the data file if no modifications have taken
place during the current run of the program. It will
not be ‘tricked into’ terminating without saving if a
sort takes place after a record modification.

The other variable not used so far is CURR. This
variable is used to save the ‘current’ position in the
array of a record after one has been located by the
search routine. CU R R is not cleared after a value has
been assigned to it; it is used to carry information
about the target record to other routines in the
program. The end of the * FINDREC* (search)
routine has been modified in lines 3320 and 3330
to set the value of C U R R: to 0 if the search failed to
find the target record; and to MID if the search was
ciipppccflll

Line 13340 branches to the *N0TREC*
subroutine if CURR is 0. This displays a message
saying that the record has not been found and
displays the search key ,NAMFLD$(SIZE). *N0TREC*
returns to the main menu after the space bar has
been pressed. *N0TREC* could be modified quite
easily to give the user the opportunity to:

PRESS RETURN TO TRY AGAIN OR
• SPACE BAR TO CONTINUE

It might appear that the easiest way to achieve this
would be to call *FINDREC* again if RETURN were
pressed. However, calling a subroutine from
within itself, whilst not illegal in b a s ic , ‘confuses’
the return address and will cause the subroutine to
be repeated again even when you don’t want it to.
There are ways of getting round this problem, but
the programming starts to get a bit tricky!

An easier way would be to have used a flag
(such as NREC for not record) and reset it in
N0TREC, allow the subroutine to return in the

436 THE HOME COMPUTER COURSE

normal way, and force a jump back to * EXECUT* in
the main program, for example: 95 IF NREC=OTHEN
80. This approach was tried, and worked. But the
coding started to look untidy. In accordance with
our principle of avoiding GOTOs, we decided to
keep things simple and just return to the main
menu if a record is not found by *FNDREC*.

A small addition to the line 10490 in
M0DNAM should be noted. Numeric variable S
should also be reset (LET S=0). Failure to do so can,
under certain unusual circumstances, cause
M0DNAM to malfunction.

The other routine implemented in this final
version of the program is*M0DREC*. This routine
first locates the record to be modified by calling
FNDREC (line 14120). This line calls line 13030,
not 13000, in order to suppress *FN DR EC *’s clear
screen statement. If the record cannot be located,
the program will return to the main menu in the
usual way (in line 14130). If the record is located,
the target record is left displayed on the screen and
users are instructed to:

MODIFY NAME?
PRESS RETURN TO ENTER NEW NAME
OR SPACE BAR FOR NEXT FIELD

The routine that finds out which of the two options
is required can be found in lines 14190 to 14280.

Lines 14190 to 14220 constitute a simple loop
that terminates only if either the space bar or
RETURN is pressed. If A$ is NOT CHR$(13) (the
ASCII value for a carriage return) AND NOT a space
(you could also use CHR$(32) instead of “ ”) I will
be reset and the loop will repeat. If the key pressed
was RETURN (i.e. the name field is to be changed)
the next few lines will fill the NAMFLDS(CURR) with
the new name, set RM0D, reset SRTD, call
M0DNAM and fill MODFLDS(CURR) with the
standardised name created by *M0DNAM* and
located in MODFLDS(SIZE).

The rest of *M0DNAM* works in exactly the
same way. Note, however, that modifying the
other fields does set RM0D but does not reset SRTD
(see line 14490, for example). The reason for this
is that only changing the name field implies that
the data file may be out of order, since the file is
ordered by name. Changing any other field merely
indicates that a record has been changed (RM0D =
1) and that the file must be saved when the
program is terminated.

The other routine implemented is *DELREC* —
to delete a record. This is very straightforward.
First it clears the screen (line 15020) and displays a
message explaining what’s going on. It then calls
FINDREC to locate the record to be deleted. A
choice is then offered: to press RETURN to delete
the record or the SPACE BAR to return to the main
menu. A warning message is also displayed (line
15160). An even better approach might be to
respond with anAREYOUSURE? message if R ET U R N
is pressed and then only delete the record if the Y
key is pressed (i.e. IF IN KEYS = “Y ” THEN ...).

DELREC does not reset the SRTD flag. Since the
file is already in alphabetical order by name,

deleting a complete record will not upset this
order. It does, however, mean that the file has been
modified and so RM0D is reset in line 15340 and
SIZE is reduced by one in line 13550 to take
account of the fact that the file now has one fewer
valid records. All the records are moved ‘down
one’ in lines 15260 to 15320.

You may also have noticed that *FNDREC*
includes a conditional call to a subroutine called
LSTCUR to print out the CURRent record located
by *FNDREC*. If you don’t have a printer, simply
replace line 13540 with a REM for future
implementation and omit lines 13600 to 13690.

This completes the address book program. We
have carried out all the major options presented in
the main menu: finding a record, adding a record,
changing a record, deleting a record, and exiting
from the program. The purpose of the
computerised address book has been to illustrate
how a programmer should set about specifying,
designing and implementing a program. An
essential modification by anyone who intends the
program as a piece of application software will be
to check for — and trap — the problem that would
arise if SIZE were ever to equal 51. This would
happen as soon as there were 50 record s in the file.

In the next instalment of the Basic
Programming course we will discuss programming
style and cover a few of the more advanced aspects
of the b a sic language.

B asic Flavours
T h is c o m m a n d is n o t a v a ila b le o n th e

C o m m o d o re 6 4 , V ic -2 0 , BBC M ic ro , o r D ragon

32.

On th e BBC M ic ro w ith a p a ra lle l p r in te r in s e rt

th e fo l lo w in g lin e s :

136 05 V D U 2

136 80 V D U 3

T hese e n a b le and d is a b le th e p r in te r in tu rn .

S u b s titu te P R IN T fo r LP R IN T in lin e s 13610 to

13670 . For m o re in fo rm a t io n see th e u se r

m a n u a l.

On th e C o m m o d o re s in s e r t th e s e lin e s :

13605 OPEN 4 ,4 :C M D 4

136 80 P R IN T # 4 : CLOSE 4

T hese e n a b le a n d d is a b le th e p r in te r in tu rn .

S u b s titu te P R IN T fo r L P R IN T in lin e s 13610 to

13670 .

On th e D ra g o n 32 in s e r t th e s e lin e s :

13605 0 P E N “ 0 ” , - 2

136 80 CLOSE - 2

T hese e n a b le and d is a b le th e p r in te r in tu rn .

S u b s titu te P R IN T - 2 , (th e c o m m a here is p a rt

o f th e c o m m a n d) to r L P R IN T in lin e s 13610 to

13670.

f
T he a d d re s s b o o k p ro g ra m w il l be p u b lis h e d

in fu l l in th e n e x t in s ta lm e n t o f th e B as ic

P ro g ra m m in g c o u rse .

THE HOME

> Basic Programming

1

Address Book Program
10 REM ' MAINPG'
20 REM * I NI T I L *
30 GOSUB 1000
40 REM *GREETS*
50 GOSUB 3000
60 REM *CHOOSE*
70 GOSUB 3500
80 REM *EXECUT*
90 GOSUB 4000
100 I F CHOI <> 9 THEN 60
110 END
1000 REM * I NIT I L* SUBROUTINE
1010 GOSUB 1100: REM *CRF.ARR* (CREATE ARRAYS) SUBROUTINE
1020 GOSUB 1400: REM *RDINFL* (READ IN FI LE) SUBROUTINE
1030 GOSUB 1600: REM *SETFLG* (SET FLAGS) SUBROUTINE
1040 REM
1 0 5 0 REM
1060 REM
1070 REM
1080 REM
1090 RETURN
1100 REM *CREARR* (CREATE ARRAYS) SUBROUTINE
1110 DIM NAMFLD$(50)
1120 DIM MODFLD$(50)
1130 DIM STRFLD$(50)
1140 DIM TWNFLD$(50)
1150 DIM CNTFLD$(50)
1160 DIM TELFLD$(50)
1170 DIM NDXFLD$(50)
1180 REM
1190 REM
1200 REM
1210 LET SIZE = 0
1220 LET RMOD = 0
1230 LET SRTD = 1
1240 LET CURR = 0
1250 REM
1260 REM
1270 REM
1280 REM
1290 REM
1300 RETURN
1400 REM *RDINFL* SUBROUTINE
1410 OPEN " I " , # l ,"ADBK.DAT"
1420 INPUT # 1 , TESTS
1430 I F TESTS = "@FIRST" THEN GOTO 1 5 4 0 : REM CLOSE AND RETURN
1440 LET NAMFLDS(l) = TESTS
14 50 INPUT # 1 , MODFLDS (l) . S T R F L D S (l) , TWNFLDS (1) , CNTFLDS (1) , TF.LFLDS (1)
1460 INPUT # 1 ,NDXFLD$(1)
1470 LET SIZE = 2
1480 FOR L = 2 TO 50
1490 INPUT # 1 ,NAMFLD$(L).MODFLDS(L) , S T R F L D $ (L) , TWNFLDS(L) .CNTFLDS(L)
1500 INPUT # 1 ,TELFLD$(L) ,NDXFLD$(L)
1510 LET SIZE = SIZE + 1
1520 I F EOF(1) = -1 THEN LET L = 50
1530 NEXT L
1540 CLOSE #1
1550 RETURN
1600 REM *SETFLG* SUBROUTINE
1610 REM SETS FLAGS AFTER *RDINFL*
1620 REM
1630 REM
1640 I F TESTS = "@FIRST" THEN LET SIZE = 1
1650 REM
1660 REM
1670 REM
1680 REM
1690 RETURN
3000 RhM *GRF,F.TS* SUBROUTINE
3010 PRINT CHR$(12):RF,M CLEAR SCREEN
3020 PRINT
3030 PRINT
3040 PRINT
3050 PRINT
3 0 6 0 PRINT TAB(1 2) ; " * WELCOME TO THE*"
3070 PRINT TAB(9) ; "*HOME COMPUTER COURSE*"
3080 PRINT T A B (6) ; ' ^COMPUTERISED ADDRESS BOOK*"
3090 PRINT
3100 PRINT T A B (5) ; " (PRESS SPACE-BAR TO CONTINUE)"
3110 FOR L = 1 TO 1
3120 I F INKEYS <> " " THEN L = 0
3130 NEXT L
3140 PRINT CHR$(12)
3 1 5 0 RETURN
3500 REM *CHOOSE* SUBROUTINE
3 5 1 0 REM
3520 I F TESTS = "@FIRST" THEN GOSUB 3 8 6 0 : REM *FIRSTM* SUBROUTINE
3530 I F TESTS = "@FIRST" THEN RETURN
3540 REM ' CHMENU '
3550 PRINT CHR$ (12)
3560 PRINT "SELECT ONE OF THE FOLLOWING"
3570 PRINT
3580 PRINT
3590 PRINT
3600 PRINT " 1 . FIND RECORD (FROM NAME)"
3610 PRINT " 2 . FIND NAMES (FROM INCOMPLETE NAME)"
3620 PRINT " 3 . FIND RECORDS (FROM TOWN)"
3630 PRINT " 4 . FIND RECORD (FROM I N I T I A L) "
3640 PRINT " 5 . LIST ALL RECORDS"
3650 PRINT " 6 . ADD NEW RECORD"
3660 PRINT " 7 . CHANGE RECORD"
3670 PRINT " 8 . DELETE RECORD"
3680 PRINT " 9 . EXIT & SAVE"
3690 PRINT
3700 PRINT
3710 REM ' INCHOI '
3720 REM
3730 LET L = 0
3740 LET I = 0
3750 FOR L = 1 TO 1
3760 PRINT "ENTER CHOICE (1 - 9) "
3770 FOR I = 1 TO 1

3780
3790
3800
3810
3820
3830
3840
3850
3860
3870
3880
3890
3900
3910
3920
3930
3940
3950
3960
3970
3980
3990
4000
4 0 1 0
4020
4030
4040
4 0 5 0 REM
4060 REM

INKEYS
I t I t THEN 1 = 0

V AL(A $)
THEN L =
THEN L =

0
0

LET A$
I F A$ =
NEXT I
LET CHOI =
I F CHOI <1
I F CHOI >9
NEXT L
RETURN
REM *FIRSTM* SUBROUTINE (DISPLAY MESSAGE)
LET CHOI = 6
PRINT CHR$(1 2) : REM CLEAR SCREEN
PRINT

"THERE ARE NO RECORDS IN"
"THE F I LE. YOU WILL HAVE"
"TO START BY ADDING A RECORD"

PRINT T A B (8)
PRINT T A B (8)
PRINT T A B (6)
PRINT
PRINT TAB(5)
FOR B = 1 TO
I F INKEYS <>

"(PRESS SPACE-BAR TO CONTINUE)"
1

THEN B = 0II II

NEXT B
PRINT CHR$(1 2) : REM CLEAR SCREEN
RETURN
REM *F,XECUT* SUBROUTINE
REM
REM
REM
I F CHOI =

2 IS
3 IS

4 0 7 0 REM 4 IS
408& REM 5 IS
4 0 9 0 IF CHOI =

I F CHOI =
IF CHOI =
I F CHOI =
REM

4100
4110
4120
4130
4140
10000
10010
10020
10030
10040
10050
10060
10070
10080
10090

1 THEN GOSUB
FNDNMS
* FNDTWN*
FNDINT
LSTREC
6 THEN GOSUB
7 THEN GOSUB
8 THEN GOSUB
9 THEN GOSUB

1 3 0 0 0 : REM *FNDREC*

10000
14000
15000
1 1 0 0 0

REM * ADDREC*
REM *MODREC*
REM *DELREC*
REM *EXPROG*

RETURN
REM * ADDREC* SUBROUTINE
PRINT CHR$(1 2) : REM CLEAR SCREEN
INPUT "ENTER NAME"; NAMFLDS(S I Z E)

STREET";STRFLD$(SIZE)
TOWN";TWNFLD$(SIZE)
COUNTY";CNTFLD$(SIZE)
TELEPHONE NUMBER"; TELFLDS(S I Z E)

LET SRTD = 0 : REM MODIFIED & NOT SORTED
= STR$(S I Z E)

INPUT
INPUT
INPUT
INPUT

"ENTER
"ENTER
"ENTER
"ENTER

LET RMOD = 1
LET NDXFLDS(SIZE)
LET TESTS = ""

10100 GOSUB 1 0 2 0 0 : REM
10110 LET CHOI = 0
10120 LET SIZE = SIZE +
10130 REM
10140 REM
10150 RETURN

REM *MODNAM* ROUTINE
REM CONVERTS CONTENTS OF NAMFLDS TO UPPER CASE,

REMOVES RUBBISH, AND STORES IN THE ORDER:
SURNAME+SPACE+FORENAME IN MODFLDS

MODN AM

1

10200
10210
10220
10230
10240
10250
10260
10270
10280
10290
10300
10310
10320
10330
10340
10350
10360
10370
10380
10390
10400
10410
10420
10430

REM
REM
REM
LET
FOR

N $ = NAMFLDS(SIZE)
L = 1 TO LEN(N$)

LET TEMPS = M I D $ (N $, L , 1)
LET T = ASC(TEMPS)
IF T >= 97 THEN T = T - 32
LET TEMPS = CHR$(T)

PS + TEMPS

THEN S = L

CNAMS + M I D $ (N $, L , 1)

LET P$ =
NEXT L
LET N$ = PS
REM LOCATE LAST SPACE
FOR L = 1 TO LF,N(N$)
IF M I D $ (N $, L , 1) = " "
NEXT L
REM REMOVE RUBBISH AND STORE FORENAME
REM IN CNAMS
FOR L = 1 TO S - 1
IF A S C (M I D $ (N $, L , 1)) > 64 THEN CNAMS =
NEXT L
REM REMOVE RUBBISH AND STORE SURNAME

10440 REM IN SNAMS
10450 FOR L = S + 1 TO LEN(N$)

I F A S C (MI D$ (N$, L , 1)) > 64 THEN SNAM$ = SNAMS + M I D $ (N $, L , 1)
NEXT L
LET MODFLDS(SI ZE) = SNAMS
LET P$ = " " : LET N$ = " " :
LET S = 0
RETURN

EXPROG SUBROUTINE
SORTS AND SAVES FILE
I F ANY RECORD HAS BEEN
MODIFIED (RMOD = 1)
OR NOT SORTED (SRTD = 0)
RMOD = 0 AND SRTD = 0 IS

10460
10470
10480
10490

+
LET

II II + CNAMS
SNAMS = "" LET CNAMS II II

10500
11000 REM
11010 REM
11020 REM
11030 REM
11040 REM
11050 REM
11060 REM
11070 I F RMOD = 0 AND SRTD = 1 THEN
11080 I F RMOD = 1 AND SRTD = 0 THEN
11090 GOSUB 1 2 0 0 0 : REM *SAVREC*
11100 RETURN

ILLEGAL

RETURN
GOSUB 1 1 2 0 0 : REM *SRTREC*

11200 REM
11210 REM
11220 REM

SRTREC SUBROUTINE
SORTS ALL RECORDS BY MODFLDS INTO
ALPHABETICAL ORDER AND UPDATES NDXFLD

11230
11240
11250
11260
11270
11280
11290
11300

REM
REM
LET
FOR

S =
L =

0
1 TO

I F MODFLDS(L)
NEXT L
I F S = 1 THEN
REM

11310 REM
11320 LET SRTD = 1:
11330 REM
11340 RETURN
11350 REM *SWPREC*
11360 LET TNAMFDS =
11370 LET TMODFDS =
11380 LET TSTRFDS =

SIZE - 2
> MODFLDS(L + 1) THEN GOSUB 11350

11250

REM SETS ' F I L E SORTED' FLAG

SUBROUTINE
NAMFLD$(L)
MODFLDS(L)
STRFLDS(L)

438 THE HOME COMPUTER COURSE

Basic Programming

11390 LET TTWNFDS = TWNFLDS(L)
11400 LET TCNTFDS = CNTFLDS(L)
11410 LET TTELFDS = TELFLDS(L)
11420 REM
11430 LET N AMFLDS(L) = NAMFLDS(L + 1)
11440 LET MODFLDS(L) = MODFLD$(L + 1)
11450 LET STRFLDS(L) = STRFLDS(L + 1)
11460 LET TWNFLDS(L) = TWNFLDS(L + 1)
11470 LET CNTFLDS(L) CNTFLDS(L + 1)
11480 LET TELFLDS(L) = TELFLD$(L + 1)
11490 LET NDXFLDS(L) = STR$(L)
11500 REM
11510 LET N AMFLDS(L + 1) = TNAMFDS
11520 LET MODFLDS(L + I) = TMODFDS
11530 LET STRFLDS(L + 1) = TSTRFDS
11540 LET TWNFLD$(L + 1) = TTWNFDS
11550 LET CNTFLDS(L + 1) = TCNTFDS
11560 LET TELFLDS(L + 1) = TTELFDS
11570 LET NDXFLDS(L + 1) = STR$(L ■f 1
11580 LET S = 1
11590 REM
11600
12000
12010
12020
12030
12040
12050
12060
12070
12080
12090
12100
12110
12120
12130
12140
12150
13000
13010
13020
13030
13040
13050
13060
13070
13080
13090
13100
13110
13120
13130
13140
13150
13160
13170
13180
13190
13200
13210
13220
13230
13240
13250
13260
13270
13280
13290
13300
13310
13320
13330
13340

13350
13360
1 3370
13380
13390
13400
13410
13420
13430
13440
13450
13460
1 3470
13480
13490
13500
13510
13520
13530
13540
13550
13600
13610
13620
13630
13640
13650
13660
13670
13680
13690
13700
13710
13720
13730
13740
13750
13760
13770
13780
13790
14000

= 1 TO SIZE -
#1 , N AMFLD$(L)
1 , CNTFLD$(L)

1
" , " ; M0DFLD$(L)
" , " ; TELFLD$(L)

" , " ; STRFLD$(L)
" ,"NDXFLD$(L)

RETURN
REM *SAVREC* SUBROUTINE
REM
REM
OPEN " 0 " , # 1 ,"ADBK.DAT"
REM
FOR L
PRINT
PRINT
NEXT L
REM
REM
REM
REM
CLOSE #1
REM
RETURN
REM *FNDREC* (FIND RECORD) SUBROUTINE
PRINT CHR$(1 2) : REM CLEAR SCREEN
REM
I F SRTD = 0 THEN GOSUB 1 1 2 0 0 : REM *SRTREC*
PRINT
PRINT
PRINT T A B (9) ; "SEARCHING FOR A RECORD"
PRINT TAB(1 6) ;"BY NAME"
PRINT
PRINT TAB(9) ; "TYPE IN THE FULL NAME"
PRINT T A B (7) ; " I N FIRSTNAME SURNAME ORDER"
PRINT
PRINT
REM
INPUT
GOSUB

I t , "TWNFLD$(L)

"NAME
10200

LET SCHKEY$
REM
REM
REM
REM
REM
LET BTM = 1
LET TOP =
FOR L = 1
LET MID =

I S " ; N AMFLD$(S I Z E)
REM *MODNAM* SUBROUTINE

= MODFLD$(SIZE)

SIZE - 1
TO 1
INT<(BTM + TOP) / 2)

I F MODFLD$(MID) <> SCHKEY $ THEN L = 0
I F MODFLD$(MID) < SCHKEY $ THEN BTM = MID + 1
I F MODFLD$(MID) > SCHKEY $ THEN TOP = MID - 1
I F BTM > TOP THEN L = 1
NEXT L
REM
IF BTM > TOP THEN LET CURR = 0
I F BTM <= TOP THEN LET CURR = MID
I F CURR = 0 THEN GOSUB 13700 : REM *NOTREC*

I F CURR = 0 THEN RETURN
REM
REM
PRINT CHR$(12)
PRINT
PRINT TAB(1 3) ; "*RECORD FOUND*"
PRINT

"NAME:",NAMFLD$(CURR)
"STREET:" ,STRFLD$(CURR)
"TOWN: " , TWNFLD$(CURR)
" COUNTY:",CNTFLD$(CURR)
"PHONE:",TELFLD$(CURR)

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT TAB(7) ; "PRESS ANY LETTER TO PRINT"
PRINT T A B (7) ; " 0 R SPACE-BAR TO CONTINUE"
FOR I = 1 TO 1
LET A$ = INKEY$
I F A$ = " " THEN I = 0
NEXT I
I F A$ <> " " THEN GOSUB 1 3 6 0 0 : REM *LSTCUR*
RETURN
REM *LSTCUR* (LI S T CURRENT RECORD) SUBROUTINE
LPRINT

"NAME:",NAMFLD$(CURR)
"STREET: " , STRFLD$(CURR)
"TOWN:",TWNFLD$(CURR)
" COUNTY:",CNTFLD$(CURR)
"PHONE:",TELFLDS(CURR)

SUBROUTINE

LPRINT
LPRINT
LPRINT
LPRINT
LPRINT
LPRINT
LPRINT
RETURN
REM *NOTREC* (RECORD NOT FOUND)
PRINT CHRS(12) : REM CLEAR SCREEN
PRINT TAB(1 1) ; "*RECORD NOT FOUND*"
PRINT TAB(4) ; " * I N THE FORM: " ; N AMFLDS (SIZF,) ; "
PRINT
PRINT TAB(5)
FOR I = 1 TO
IF INKEYS <>
NEXT I
RETURN
REM *MODREC* (MODIFY RECORD) SUBROUTINE

*»

" (PRESS SPACE-BAR TO CONTINUE)"
1
" " THEN I = 0

14010
1^020
14030
14040
14050
14060
14070
14080
14090
14100
14110
14120
14130
14140
14150
14160
14170
14180
14190
14200
14210
14220
14230
14240
14250
14260
14270
14280
14290
14300
14310
14320
14330
14340
14350
14360
14370
14380
14390
14400
14410
14420
14430
14440
14450
14460
14470
14480
14490
14500
14510
14520
14530
14540
14550
14560
14570
14580
14590
14600
14610
14620
14630
14640
14650
14660
14670
14680
14690
14700
14710
14720
14730
14740
14750
15000
15010
15020
15030
15040
15050
15060
15070
15080
15090
15100
15110
15120
15130
15140
15150
15160
15170
15180
15190
15200
15210
15220
1 5230
15240
15250
15260
1 5270
15280
15290
15300
15310
15320
15330
15340
1 5350
15360
1 5370
15380
15390

I F AS
I F AS
I F AS

REM
PRINT CHR$(1 2) : REM CLEAR SCREEN
PRINT
PRINT
PRINT
PRINT
PRINT T A B (I O) ; " * T 0 MODIFY A RECORD*"
PRINT TAB(3) ; "*FI RST LOCATE THE DESIRED RECORD*"
REM
REM
REM
GOSUB 1 3 0 3 0 : REM * FNDREC* SUBROUTINE WITHOUT CLS
I F CURR = 0 THEN RETURN: REM RECORD NOT FOUND
PRINT
PRINT TAB(1 4) ; "MODIFY NAME?"
PRINT
PRINT TAB(5)- . "PRESS RETURN TO ENTER NEW NAME"
PRINT T A B (6) ; " 0 R SPACE-BAR FOR NEXT FIELD"

FOR I = 1 TO 1
I FT A £ - TNKFVK
I F AS <> CHR$(13) AND A$ <> " " THEN I = 0
NEXT I
IF AS = C H R S U 3) THEN INPUT "NEW N AME" ; N AMFLDS (CURR)

= CHR$(1 3) THEN RMOD = 1
= CHR$(13) THEN SRTD = 0
= CHR$(1 3) THEN NAMFLDS(S I Z E) = NAMFLDS(CURR)

IF AS = CHR$(1 3) THEN GOSUB 1 0 2 0 0 : REM *MODNAM* SUBROUTINE
I F AS = CHR$(1 3) THEN LET MODFLDS(CURR) = MODFLDS(SIZE)
PRINT
PRINT TAB(1 3) ; "MODIFY STREET?"
PRINT
PRINT TAB(5) ; "PRESS RETURN TO ENTER NEW STREET"
PRINT T A B (6) ; " 0 R SPACE-BAR FOR NEXT FIELD"
FOR I = 1 TO 1
LET AS = INKEYS
IF AS <> CHR$(13) AND AS <> " " THEN I = 0
NEXT I
I F AS = CHR$(1 3) THEN RMOD = 1
I F AS = CHR$(1 3) THEN INPUT "NEW STREET"; STRFLDS(CURR)
PRINT
PRINT TAB(1 3) ; "MODIFY TOWN?"
PRINT
PRINT T AB(5) ; " P RESS RETURN TO ENTER NEW TOWN"
PRINT T A B (6) ; " 0 R SPACE-BAR FOR NEXT FIELD"
FOR I = 1 TO 1
LET AS = INKEYS
I F AS <> CHR$(1 3) AND AS <> " " THEN I = 0
NEXT I
IF AS = CHR$(13) THEN RMOD = 1
I F AS = CHR$(1 3) THEN INPUT "NEW TOWN"; TWNFLDS(CURR)
PRINT
PRINT TAB(1 2) ; "MODIFY COUNTY?"
PRINT
PRINT T A B (4) ; "PRESS RETURN TO ENTER NEW COUNTY"
PRINT T A B (6) ; " 0 R SPACE-BAR FOR NEXT FIELD"
FOR I = 1 TO 1
LET AS = INKEYS
I F AS <> CHR$(13) AND A$ <> " " THEN I = 0
NEXT I
IF AS = CHR$(1 3) THEN RMOD = 1
I F AS = CHR $ (1 3) THEN INPUT "NEW COUNTY"; CNTFLDS(CURR)
PRINT
PRINT TAB(8) ; "MODIFY TELEPHONE NUMBER?"
PRINT
PRINT "PRESS RETURN TO ENTER NEW TELEPHONE NUMBER"
PRINT T A B (8) ; " 0 R SPACE-BAR TO CONTINUE"
FOR I = 1 TO 1
LET AS = INKEYS
I F AS <> CHRS(1 3) AND AS <> " " THEN I
NEXT I
IF AS = CHR $ (1 3) THEN RMOD = 1
I F AS = CHRS(13) THEN INPUT "NEW NUMBER" ; TELFLDS(CURR)
REM
REM
RETURN
REM *DELREC* (DELETE RECORD) SUBROUTINE
REM
PRINT CHR $ (1 2) : REM CLEAR SCREEN
PRINT
PRINT
PRINT
PRINT
PRINT T A B (1 0) ; " * T O DELETE A RECORD*"
PRINT T A B (3) ; " * F I R S T LOCATE THE DESIRED RECORD*"
REM
REM
REM
GOSUB 1 3 0 3 0 : REM
I F CURR = 0 THEN
PRINT
PRINT TAB(3)
PRINT TAB(5)
PRINT
PRINT TAB(9)
PRINT TAB(8)
FOR I = 1 TO

0

* FNDREC* SUBROUTINE WITHOUT CLS
RETURN: REM RECORD NOT FOUND

"DO YOU WANT TO DELETE THIS RECORD?"
"*WARNING* - - NO SECOND CHANCES"

"PRESS RETURN TO DELETE"
"OR SPACE-BAR TO CONTINUE"
1

LET AS = INKEYS
I F AS <> CHR$(13) AND A$ <>
NEXT I
IF AS = " " THEN RETURN
FOR L = CURR TO SIZE - 2

t» I t THEN I 0

LET NAMFLDS(L) =
LET MODFLDS(L) =
LET STRFLDS(L) =
LET TWNFLDS(L) =
LET CNTFLDS(L) =
LET TELFLDS(L) =
LET NDXFLDS(L) =
NEXT L
LET RMOD = 1
LET SIZE = SIZE - 1
REM
REM
REM
RETURN

NAMFLD$(L + 1)
MODFLDS(L + 1)
STRFLDS(L + 1)
TWNFLDS(L + 1)
CNTFLDS(L + 1)
TELFLDS(L + 1)
STR $ (L)

THE HOME COMPUTER COURSE 439

Pioneers In Computing

Grace Hopper was largely responsible for the development of high
level languages, and identifying the first bug!

Computer science is generally regarded as a
strictly male preserve. But, increasingly, women
are taking their place alongside men, as equals, in
the development and application of computers. A
woman pioneer of computing was Grace Hopper,
whose most significant contributions were in the
field of software — she created the first compiler
and helped invent the language c o b o l . But she
was also the first person to isolate a ‘bug’ in a
computer, and successfully ‘de-bug’ it.

After doing postgraduate work at Yale, Grace
Hopper returned to her original university, Vassar,
as a member of the mathematics faculty. Here she
remained until the age of 39, when she was called
up for war service with the Naval Ordinance
Computation Project. In 1945, she was ordered to
go to Harvard University to assist a physicist,
Howard Aiken, in the building of a computer.
Aiken had approached IBM in 1937 with the idea
of constructing a computer using adapted
tabulating equipment. His first computer,
although mechanical in design, was successful
enough to encourage IBM to invest in an
improved model that would use
electromechanical relays. The machine that was
subsequently developed was known as the
Harvard Mark II.

In these early days, machines had to be
programmed by rewiring them for each new task.
Thus, in the hot summer of 1945, Grace Hopper
found herself literally enmeshed in the wiring of
the computer. Ballistic computing facilities were
urgently needed for the war effort, and

Commander Aiken would often come into the
workshop and demand: ‘Why aren’t you making
numbers, Hopper?’ After one troublesome
breakdown of the computer, when the fault was
eventually found to be a moth that had flown in
through the open windows and been hammered to
death in a relay switch, Grace tersely replied: ‘We
are debugging the machine!’ This first recorded
‘bug’ was carefully removed from the relay with a
pair of tweezers and is preserved at the Naval
Museum in Virginia in the log book of the Harvard
Mark II. It is glued beside the entry for 15.45 on 9
September 1945.

In the same year another computer, ENLAC
(see page 46), was being built by two engineers,
John Mauchly and Presper Eckert. After the war,
the two men set up their own business to
manufacture a commercial version of the
machine, and invited Grace to join their team. Her
main contribution to the development of this
computer, called UNIVAC (UNIVersal
Accounting machine), was in creating software
for it. And it was during her attempts to construct
programs for business use on UNPVAC that Grace
first sought out ways to short-cut the need for
rewriting certain subroutines that recurred over
and over again. By employing what was then
considered the remarkable idea that a computer
could write its own programs, Grace created the
first programming language, together with the
compiler needed to translate it into machine code.
This was given the name ‘A -O ’. When this
compiler was first presented it caused incredulity
amongst computer professionals who thought
their machines could only perform arithmetic or
manipulate symbols. They were amazed to see a
computer jump to a subroutine in its library store
on encountering an imperative verb at the
beginning of what was almost a normal English
sentence.

In May 1959, Captain Hopper was invited by
the Pentagon to join a working committee that was
to attempt to create and standardise a single
language for computers in commercial use. In less
than a year the committee produced the first
version of the COmmon Business Oriented
Language (c o b o l) . Grace contributed a great deal
to the committee’s attempt to distil the best aspects
of each of the existing languages and thus create a
language acceptable to the industry through its
sheer quality. It is a measure of the success of the
committee’s work that c o b o l is still one of the most
widely used languages today.

440 THE HOME COMPUTER COURSE

volumes 1 and 2 togethei
gP8cP). Simply fill in the o
will be forwarded to you

❖ Ifyouprelertobuythe binders

order for £3.95 (including P&P). We will send
you volume 1 only Then you may order volume
2 in the same way - when it suits you!

Overseas readers: This
binder oiier applies to readers in the
UK, Eire and Australia only Readers in Australia should ^
complete the special loose insert in Issue 1 and see additional
binder information on the inside front cover. Readers in New
Zealand and South Africa and some other countries can obtain
their binders now. For details please see inside the front cover.
Binders may be subject to import duty and/or local tax.

i 19 |

1 . _

NEXT TO YOUR COMPUTER...YOUR COURSE MANUALS

m

■

.-$r

vvy/V

Home computers. Do they send your brain to
steep - or keep your mind on its toes?

At Sinclair, we're in no doubt To us, a
home computer is a mental gym, as
important an aid to mental fitness as a set of
weights to a body-builder.

Provided, of course, it offers a whole
battery of genuine mental challenges.

The Spectrum does just that
Its education programs turn boring

chores into absorbing contests-not learning
to spell 'acquiescent, but rescuing a princess
from a sorcerer in colour, sound, and
movement!

The arcade games would test an
all-night arcade freak - they're very fast very
complex, very stimulating

And the mind-stretchers are truly
fiendish. Adventure games that very few
people in the world have cracked. Chess to
grand master standards. Flight simulation
with a cockpit full of instruments operating
independently. Genuine 3D computer design.

No other home computer in the world
can match the Spectrum challenge - because
no other computer has so much software of
such outstanding quality to run.

For the Mentathletes of today and
tomorrow, the Sinclair Spectrum is gym,
apparatus and training schedule, in one neat
package. And you can buy one for under
£ 100.

t >

