
ISSN 0265 -2919

• T h e R e s e a rc h M a c h in e s

3 8 Q Z is o n e o f t h e m o s t

p o p u la r m a c h in e s in s c h o o ls

T h e re a s o n s f o r i t s p o p u la r ity

in c lu d e h ig h re s o lu tio n

• W e lo o k a t th e h o m e

c o m p u te r o f th e fu tu r e a n d

th e f a c il i t ie s i t ’s lik e ly to

in c lu d e . S o m e w il l m a k e u s e

o f r a d ic a l n e w te c h n o lo g y ,

w h ile o th e rs w il l r e in tr o d u c e

m a c h in e s

S t S S K - j g

y i t e » ° the address in you, country given for binders. South M r t J ^ g S ^ ' 5 g Dt ! ; S 0 ,t lH AFR'CA' NEW ZEAUND' EUR0PE 8 MAETA- Back " " ■ * « are available a.

s c s s S S k & S S S S B m s s

COVER PHOTOGRAPHY BY MARCUS WILSON-SMITH

Sinclair QL The machine that embodies all
the latest home computer features

Tools Of The Trade Software add-ons that
transform your micro’s potential by
extending its Basic

Code Cracking Deciphering codes is one of
the most enduring applications of computers

B a s ic P ro g ra m m in g

A Matter Of Style Now that we’ve
completed the address book program, we
look at some of Basic’s more sophisticated
features

War And Peace With battle simulations you
can test your tactical skills against friend, foe
or computer

Word Of Command How computers can be
programmed to recognise human speech

Sound Principles.. . Light Refreshments
The Atari has a special chip for producing
sound, and the Oric-1 has flexible graphics
capabilities

P a s s w o rd s T o C o m p u tin g 9■
Machine Code Basic is versatile and easy to
understand, but machine code is the most
direct way to address your micro’s memory

P io n e e rs In C o m p u tin g

448

University Challenge Manchester a c n
dominated the race to build the world’s first ' CU
stored program computer

S o u n d A n d L ig h t - H i -f

In s ig h ts

In this fictitious scenario, a bombing
raid is expected on Luton airfield, so
a British squadron is dispatched to
patrol the skies above it

In fact both waves of German planes
converge on London where they are
intecepted by a smaller British force,
which inflicts heavy losses on them

Y ou c a n n o w p u rc h a s e g a m e s

th a t w ill te s t y o u r s k ills a s m ilita ry

s tra te g is t a n d ta c tic ia n in b o th

h is to ric a l a n d fa n ta s y b a ttle

s im u la tio n s
•y>y .7. />•/,

Today modem generals place a great deal of
importance on the war games that they play to test
planned responses to anticipated attack or ‘Threat
Scenarios’. To play these sophisticated games
complex hardware and software systems have
been developed to simulate all the known aspects
of a potential conflict, such as the initial
deployment of friendly and enemy forces, supply
states, availability of reserves, and so on. The
system also allows for adverse weather conditions,
changes in enemy tactics, the effects of fifth

ENEMY ACTIUITY! RAIDS EXPECTED SOON

B a tt le O f B r ita in

F ig h te r C o m m a n d (fro m

S tra te g ic S im u la t io n s Inc . fo r

th e A p p le) is ty p ic a l o f the

s o p h is tic a te d s tra te g ic w a r

g a m e s a v a ila b le fo r

m ic ro c o m p u te rs . B e fo re the

g a m e c o m m e n c e s , th e p la ye r

m u s t s e le c t fro m a ve ry w id e

range o f o p t io n s , in c lu d in g the

ty p e o f a irc ra ft used and th e

w ea ther. P lay is d is p la y e d in the

fo rm o f m o v in g s y m b o ls on the

m ap , w ith a d d it io n a l

in fo rm a t io n d is p la y e d as te x t.

T he p a c k a g in g and

d o c u m e n ta t io n in c lu d e a p r in te d

m a p w ith c a rd b o a rd p ie ce s fo r

a d d it io n a l v is u a l re fe rence

column activities, or any number of variables that
could possibly affect the successful execution of a
military operation. One of the main functions of

T H E H O M E C O M P U T E R C O U R SE 441

KE
VI

N
JO

NE
S

T a c t ic a l A rm o u r C o m m a n d

TAC (fro m A va lo n H ill) is

a va ila b le fo r th e A ta ri, A p p le ,

IB M PC a n d C o m m o d o re 64

c o m p u te rs and s im u la te s

a rm o u re d c o n f l ic t d u r in g th e

S eco nd W o rld W ar. TAC can be

p layed b y one o r tw o p laye rs

w h o se le c t fro m f iv e d iffe re n t

s c e n a rio s , and m a n ip u la te

B r it is h , A m e ric a n , R u ss ia n and

G e rm an fo rc e s

the NORAD radar defence system in the
Cheyenne Mountains, Wyoming (featured in the
film War Games) is to continually assess, update,
and evaluate the relative capabilities of the United
States and the Soviet Union and to aid in the
preparation of a response to any new
developments.

Of course, war gaming for the amateur general
has been somewhat less sophisticated. In order to
create the’ appropriate degree of complexity, the
war gamer has had to resort to sheets of tables,
voluminous books of rules and innumerable dice.
The sheer amount of hard work necessary to play
war games has tended to restrict their appeal to a
relatively small group of enthusiasts. However,
with the arrival of the home computer and the
availability of war game programs, all the tedious
‘staff work’ has disappeared and left in its place an
absorbing game that offers both excitement and
challenge, the equal of any other type of computer
game currently on the market.

An immense variety of games are available. It is
possible to recreate or simulate practically any
type of warfare from the Ancient Greek to a
theoretical clash between NATO and the Warsaw

or attempt to outwit Hitler by thwarting his
invasion of Russia in 1941, The games set in outer
space offer even more opportunity for invention.
Not only do you manoeuvre fleets of starships
round the galaxy, you also specify the type of ships
you want. Compromises have to be made, of
course. If you want more speed you may have to
sacrifice weapon systems, and better protective
screens could reduce the fuel supply. You have to

'

Jiv

*>
■ M - y
\ A

/
4.

t
o

C/3

C O
L U
H -cc
o

o

rwJL a

v _
"4r S s

? (? i

W \ s

* W *
N.

le g io n n a ir e

T h is s im u la t io n o f w a rfa re

b e tw e e n C a e sa r’s fo rc e s (yo u)

and th e b a rb a r ia n s (the

c o m p u te r — A p p le o r A ta r i) is

p layed in rea l t im e . In fa n try ,

c a v a lry a n d o th e r fo rc e s are

re p re se n te d b y s y m b o ls , w h ic h

can be se le c te d a n d m o ve d by

m e a n s o f th e jo y s t ic k -c o n tro lle d

c u rs o r (w h ite sq u a re). T he g a m e

is p ro d u c e d b y A va lo n H ill

EDUI--£ RDS :^46Q

Pact sometime in the future. You can fight air
battles, sea battles, wars in outer space, and even
wars between mythological empires. The scope is
limitless.

Historical games give you the chance to
discover where Napoleon went wrong at Waterloo

choose the compromise that best suits your style of
fighting a campaign.

Unlike their conventional counterparts,
computer strategy games need no special skill or
knowledge, and most come with short notes and
hints for beginners. However, it’s worth knowing

442 T H E H O M E C O M PU T E R C O U R SE

In s ig h ts

that some games are classified as introductory,
intermediate or advanced. If you are thinking of
taking up strategy gaming you might be better
advised to start at the introductory level, and pick
up the basic concepts of war gaming and strategic
simulation before advancing to games at the
higher levels.

The game format varies to suit the differing
needs of the various types of warfare represented.
But, in general, the games are played across large
maps. Where the map is too large to be displayed
on a single screen, then the screen usually acts as a
window that can be moved (by means of a
joystick) across the map. For an historical
simulation the game designers will have tried to
reproduce, as faithfully as possible, the terrain
over which the original battle was fought. In
‘Computer Bismarck’ by SSI, the action takes
place mainly in the North Atlantic, and this did not
pose too many problems in terms of graphics
design. On the other hand, for another SSI game,
‘Battle for Normandy’, the designers’ task was far
more difficult. Not only did the general terrain
have to be correct but so did specific features such
as the beaches and the coast, the towns, villages
and rivers. For non-historical games the designer
has more scope to produce variety for the player to
make full use of the forces he has available, but
even here the designer must be careful to include
sufficient checks and balances to prevent the game
becoming too easy for one side or the other.

The map also has a grid superimposed on it.
This grid subdivides the map in the same way that
a chess board is divided into squares, though the
grid on a war games map is often hexagonal rather
than square. Each square or hexagon is given a
value according to the type of terrain contained
within it. This value represents the degree of
difficulty a unit would have moving into or
through that particular area. The effort of moving
through the area would cause the movement
allowance of the unit to be reduced by the
corresponding value. When the movement
allowance of the unit equals zero, or is less than the
value of the area it is proposing to enter, it may not
move any further that turn.

The game is usually divided into a number of
‘game turns’ that represent elapsed time, and each
player is given a number of objectives that must be
accomplished in the time available in order to win
the game. In most cases it is not necessary, or even
possible, to achieve all the objectives set. So the
first decision the player has to make is to assess his
chances and determine his strategic priorities
accordingly. In such scenarios the role of the
opponent is often to stop the attacker from gaining
his set objectives. Once again it is probably not
possible to protect everything, so the defender
must decide when to abandon hopeless positions,
how long to cling to strongholds, and whether or
not to take the risk of launching counter-attacks to
regain lost positions or disrupt his opponent’s
preparations for k fresh attack.

The player communicates with the program

through the graphic and textual representation of
the forces under his command that are on the map.
The graphic display represents the location of a
particular unit on die battlefield and the textual
display supplies information relating to the unit’s
combat efficiency, and movement allowance. The
player moves his units by nominating them with a
cursor or by having the computer present them to
him in rotation. Once a unit has been nominated,
the command to move the unit is given. In the case
of a map with a hexagonal grid, 1 would send the
unit north, 2 would send it north-east, and so on
around the points of the compass. An increasing
number of these games work with joysticks or
trackballs, in which case the unit can, simply be
‘picked up’ and moved in the desired direction. To
terminate the movement of an individual unit the
command FINISH or F is often used. Even then
some games will allow the player to renominate
the unit and move it again, unless its movement
allowance has been exhausted. When all
movement has been completed, the player
indicates the fact to the computer with the
command EXECUTE or E. The computer will then
initiate the combat phase.

E a s te rn F ro n t

In th is g a m e th e p la y e r ta k e s on th e ro le o f th e

G e rm an a rm y t ry in g to reach M o s c o w in 1941,

w h ils t th e c o m p u te r p la y s th e d e fe n d in g R u s s ia n

fo rc e s . W r it te n b y C h ris C ra w fo rd a n d d is tr ib u te d

b y A ta r i, it in c o rp o ra te s ra d ica l n e w fe a tu re s ,

su ch as ‘f in e s c ro l l in g ’

O ne o f th e m o s t v is u a lly p le a s in g fe a tu re s o f

E aste rn F ron t is th e w a y th e m a p c h a n g e s as th e

ye a r p ro g re sse s . In a u tu m n th e fo re s ts d e fo lia te ,

and th e n in w in te r th e r iv e rs freeze u p and th e

g ro u n d is cove red in sn o w . I t is c o n s id e re d

e x tre m e ly d if f ic u lt to reach M o s c o w in th is g a m e

During the combat phase the computer will
indicate the friendly units that are in a position to
engage the enemy and provide information about
the relative strengths of the units involved. On the
basis of this information, the player may accept or
reject each combat suggestion as it is offered to
him. Once all the combat has been resolved, and
the effects calculated and displayed, the second
player begins his turn.

For many people, the fascination of strategic
games arises from there being no one ‘correct’
solution to the problems that are posed by the
game. The player’s enjoyment is derived from
overcoming the physical and logistical problems of
the terrain that he is operating in as well as meeting
the intellectual challenge of using the resources
available to defeat the enemy. Naturally, every
strategist would like to win by using the most
daring schemes and carefully laid traps, but above
all the strategist wants to win!

T H E H O M E C O M P U T E R C O U R SE 443

IA
N

M
cK

IN
NE

LL

CO
UR

TE
SY

 O
F

SO
FT

T o o l k its a re s o ftw a re p a c k a g e s th a t w ill e n h a n c e a lim ite d d ia le c t o f

B a s ic a n d o ffe r d e -b u g g in g fa c ilit ie s to th e p ro g ra m m e r

W o rk in g T o o ls

T h e se are s o m e o f th e to o l k its

a n d BASIC e x te n s io n p a cka g e s

th a t a re a v a ila b le fo r s o m e o f

th e m o s t p o p u la r h o m e

c o m p u te rs . P ackages fo r

c re a tin g a s p r ite fa c i l i t y on

c o m p u te rs th a t d o n ’t fe a tu re

th e m a s s ta n d a rd are b e c o m in g

in c re a s in g ly p o p u la r

Early home computers, such as the Apple II and
Commodore PET, had limited capabilities and
were designed primarily to manipulate numbers
and text. The b a s i c supplied for these machines
was required only to provide commands and
routines for these purposes. As a result, many
‘utility’ or ‘tool kit’ programs were written, usually
in machine code, that operated from outside the
b a s i c programming area. These provided
programming aids in the form of additional direct
commands that could help in program
construction and de-bugging.

Engineers have since come up with a multitude
of graphics and sound capabilities, as a result of
the explosion of interest in arcade-type games on
home computers. Each new model introduces
more extensive features that are soon
incorporated in professionally written software.

Tool K its
[su pe r tool

KIT
Available for the 16K and 48K
Spectrum, from Nectarine

SPECTRUM
EXTENDED
RASIC

I For the 48K Spectrum, from CP
Software

SPECTRUM
KEYDEFINE

For the 48K Spectrum, from
Scientific Software

PROGRAMMER’S
AID

For the Vic-20, from Commodore

BUTI For the Vic-20, from Audiogenic

TOOLBOX I For the BBC Models A and B, from I
BBC Software

[SPRITE MAGIC Available for the Dragon 32, from
Merlin Micro Systems

SPRITE
GRAPHICS

For the 48K Spectrum, from
B 'Sides Software

SPRITE
MASTER

For the BBC Model B, from Micro I
Dealer UK I

However, with one or two exceptions, the built-in
b a s i c provides little or no improvement on the
earliest versions. This results in the user working
out routines, often using repeated PEEKs and
POKEs, to incorporate these new features into the
range of available commands. As a consequence,
there are now many utilities, tool kits and
extensions to b a s i c available for most of the
popular machines. In general, these either give
easier access to existing facilities (e.g. sprite or
sound editors), extend software facilities (e.g.
sprite creators), or provide simple aids to b a s i c

programming.
Extensions such as these can be located in

RAM, internal ROM or on ROM cartridge. A
ROM extension is preferable to one loaded into
RAM, as it does not take up any user memory and
is protected from inadvertent erasure. Generally, a
program written with the aid of a tool kit will run
only on another computer that is similarly
equipped. However, there are utilities available
that will generate free-standing progra
will then run on an unexpanded version of the
computer. This is the basis of most graphics and
sprite editors, as well as some sound editors.

Useful features to look for in b a s i c extensions
are special graphics commands (such as PAINT
DRAW, PLOT, CIRCLE etc.) and sound commands
(like SOUND, PLAY, MUSIC, ENVELOPE etc., or words
that describe a sound effect, like BANG or ZAP).
Other useful facilities are structured programming
commands, such as REPEAT... UNTIL and
IF ... THEN. . . ELSE. Statements such as these enable
the user to write programs that progress in a logical
sequence, and avoid the untidy and difficult to
understand code that results from an
indiscriminate use of GOTO.

S im on ’s BASIC
Currently, the most complete extension to the
b a s i c language is ‘Simon’s b a s i c ’, which is available
on the Commodore 64 in the form of a ROM
cartridge. The standard Commodore b a s i c , built
into the 64, is rather antiquated, in that it provides
a bare minimum of dedicated commands and no
structured programming commands. Although'it
does have advanced hardware features, such as a
comprehensive sound synthesiser, high resolution
graphics and sprite graphics, b a s i c control over
these functions is via PEEK and POKE. Simon’s b a s i c

provides a considerable extension to Commodore
b a s i c , by way of the following extra facilities:

444 T H E H O M E C O M P U T E R C O U R SE

S o ftw a re

T 1 T T T T

J S
njiese jnandsj are reore

BASICwill incliidf

» t i i ♦ t 4 t ♦ T i f t T i i t T t f t i i f t t i t t T
T T T T T~T TTT { t t T 4 ¥ H f H If I III T I Till I I H 1 I I I H I
TTii ■ i I i T'i tit T ■ I T T ii'T i T II I T H f i t T H T~Ti i ■ T t T
4 y I ♦ 4 4 4 Y T y 4 4 T T T M 4 4 y r 4 | | I | ♦ 4 | 44 | tiWi t TTI tit

I r4*TT*TTy4 rtiTTiiiii till it T T T ■ "f f'fII t I i II I t t IT t'i I I I 1 I
4 4 4 4*4 ' ill T t I I 1 | I f i I

t t 1

i l

Wi :
K v V r * 11 i t * t ! ! 1 1 * *

!• - • ♦ ♦

::::
■rr * * * *

♦ ♦ ■ ♦ ♦

I f H f t

4 4#-

DISK

Y*l f I 1 I f f} 4 t 11 t t t ti

i ! !

t M M

1 t

t | ♦ j ♦ * ♦

-4-4

ion

*44 ♦
* ♦

^ ., , . 1 H I i l i i ; i i j

H U i i! I p l p p .
to c o m m a n d s f o r

s tra ig h t lin e s in h ig

o n g r a p h ic ^ th e re m a y H ite-

a fa c i l i ty to D R A W fro m
' t t l l l i M l i M l t 4 ^ 4 4 ^^4 ♦ 4 4 ♦ f ♦ t t t ’ t * ^ T * T T f I t T T t ¥ t T

I ; p b | n K - t M I H t t j !M i ! 1 ill[nfTT

, 1 .,«. nTiTiTTfi-
U , ; , j n ; r i t i 4
1 1.1 1 X i j . X 1 1 4 4 4 4 4 4

DRAW | 1 4 - ■

w, r J m _
4 i j r r r r u

T r t l t f f i
tt :

: :f
1 4 4 4 4 4 4 4 1

: : : : : : : :

I * 1 * I I . . ♦ . 1 ♦ . * * fTO

t* ■ 1 TttmtT tt

4 4
4 ▼ 44 t t 44“

♦ 4 4 4

iu || t f tH B
I 1 f t I I I t T ¥ I T * I I

ntt-KW4 ♦ 4 4 M ♦ t ♦
! t t lM ' l 4 | 4 4 4 4
♦ t t ♦ 4 ♦ ♦ ♦ t

screen

* 1 4 1 1 1 r r 4 1 , 1 1 1 . » j
. . . I . .. ♦ I ...,

-x- • r r I » t • • 1 • * •♦ '♦ y »
4-4 T T i 1 t ft i t 4 4 4*
4 4 4 4 ♦ 4 I 4 4 - t4 f-t-4

ia n
14

-------- r th e a.

o u tw a rd s fro i

, . 14 1 1
p t i te r

k t t ♦

PAINT
-1

4 f

♦-4-4 4-4 ♦ - 4 4

, A I a

iVV

ttfft.t ...

as:!: :
n . . . I . . . T T i u m r u

11| I f 11 TTT L

TIT: f: i

lllltttttB

ITT

-

• •

m m ^ 2 ?

4 +

1 1 ^

4 4
♦ 444^44444

t m f f f t r i -■ 1 iJ-lI 111111IT1
4411(4f 1II11 LI4

■
44

♦ f t ♦— 4

illH liiiii

144.14x444. 41x4.
m m m 141 l 1 I I I m «

: : : :.::!

> 1 4 * tI 1 t t t
T II t T ITT T I

•44

1111111

: ::::::
XU

44
.. *.

i l l l 444-»- 44-

CIRCLE
-44-

444

I E ^ § § 5 ^

v J rrr
' A J

-4-4 4-

. I : r : •

| | | | | |m)nu

: : : ii
I L | 1

4 4 4 4 4 1 4

• »

err lK :y

n n ii

v a ry g rea t

m a c h in e ,» »

firm I Iirf

4 -W

V. 4 .

1 yy.Z'Ay-.• I X . I 11 IJIvifllii VfJxf

BSi ;

-V.

[MUSIC

+ ♦
1

• I

i

« t 4

111

+H
-♦4 4 4̂

X XL

1114 1 ilii

W t t i

m l

4 4

A B c_ e
H-tttn i l

t

rrr

1111

TH If

t

keeps an

I j i; tfrd ite M of M nahies; M | |
1 ty p e s and s ize s o f a ll f i l e s ' *

I w il l u s u a lly le t

f e w th e d ire c to ry

te l w ith o u t lo s in g th e p ro g ra m Ml i i i i i
T n * ,« TTTTTTIITTTI

(1) A comprehensive set of programming aids,
including functions that give extra control over
program listing, de-bugging and security aids
(protection against unauthorised copying of your
programs).

(2) Additional string handling and text
manipulation commands.

(3) Extra arithmetic operators and numeric
conversion commands.

(4) Simplified disk handling commands.
(5) High resolution graphics commands that

allow text to be mixed with point plotting and
shape drawing. This includes a facility to colour in
outlines.

(6) Low resolution graphics and screen
handling commands that can duplicate assigned
graphic areas and manipulate the screen area with
ease. This also enables the contents of any screen
to be saved on disk, tape or printer.

(7) Easy to use sprite creator and editor.
(8) Structured programming using procedure

commands such as PROC, CALL and EXEC; plus loop
and condition testing routines, like REPEAT...
UNTIL, LOOP... EXIT, IF... END LOOP and IF.. .THEN
... ELSE, which generally eliminate the need for
GOTOs and GOSUBs.

(9) Sound creation routines that allow the full
range of the 64’s sound capabilities to be accessed
using simple sound shaping and playing
commands.

(10) Simple light pen, joystick and paddle
commands.

It is very unusual for an extension to include such a
complete range of additional routines. Most
packages supply utilities and commands for one
specific programming area. For example, the
Super Expander cartridge from Commodore for
the Vic-20 provides a simple range of high
resolution graphics and music commands only.
The most popular extensions are those that
include aids in program construction. These
generally provide single key entry commands and
various automatic routines that simplify line
numbering, editing and de-bugging in the direct
mode.

It is commonplace for utilities and extensions to
allow the built-in capabilities of a computer to be
accessed more easily. Routines that add
significantly to a home computer’s capabilities are
harder to find, but ingenious packages are
becoming available. For example, the many
advantages of sprite graphics for fast action
arcade-type games have inspired some
enterprising companies to write sprite-creating
utilities for computers that don’t have this feature.

The b a s i c utilities, tool kits and extensions we
have outlined make up a small fraction of the
improvements and aids available. Although the
present tendency among manufacturers is towards
providing comprehensive and advanced versions
of b a s i c , there will always be a need for software
aids to help make programming a creative
pleasure rather than a heavy chore.

T H E H O M E C O M P U T E R C O U R S E 445

S p e e c h re c o g n itio n s y s te m s a re b e in g in c re a s in g ly u s e d in

c o m m e rc ia l a n d s e c u r ity a p p lic a tio n s . H o w e v e r, th e ir p o w e rs a re

re s tr ic te d b y th e c o m p u te r ’s m e m o ry c a p a c ity

For a computer to be of any use it must have a
workable means of allowing commands and
information to be fed into it. The ‘interface’ that
we normally use to communicate with a home
computer is a keyboard (though mice and
joysticks are possible alternatives). By using a
keyboard, however, we find that we are forced to
communicate with the system by means of an
artificial language. Commands such as CLS,
DIRECTORY, RUN, LOAD and SAVE may be
meaningful to the operating system but they aren’t
‘natural’.

The natural communication system for humans
is speech, not typing messages on keyboards and
watching the replies on television sets. If a
computer could be made to understand spoken
commands — even if they were phrased in the
same way as the ones given through a keyboard —
it would be far easier to use, especially by those
with a physical handicap. Before any computer
system can ‘understand’ spoken words, it must
first process the sound input: the analogue signals
must be analysed and turned into a digital form
that the computer can deal with. Although it
seems to be an easy thing to generate
electronically, speech is a remarkably complex
combination of sounds.

Dreams of instant and complete speech
recognition (as typified by the computer HAL in
2001 — A Space Odyssey) are unlikely to be
fulfilled for many years yet, if ever. The voice input
typewriter is equally distant; yet the technology for
both this and the ‘understanding’ computer

already exists. But neither is available at low cost,
because there is a major difficulty in creating
speech recognition systems: words can sound the
same but have different meanings, depending on
the context that they appear in. The processing
power needed to solve tins problem is simply not
available at a reasonable price.

Although researchers have created systems that
approach this goal, they have discovered that
increasing the number of speakers who can be
recognised by the computer has the effect of
reducing the number of words that can be
recognised at any one time. Typically, a multi­
speaker recognition system will allow between 20
and 30 words to be recognised at a time, with a
success rate of around 85 to 90 per cent.

The potential uses of speech recognition
systems are considerable. The German Post Office
uses one to assist with sorting mail; and there are
now many applications in aerospace, both military
and civil, where pilots have literally not enough
hands and feet to control their aeroplanes. In all
these situations the number of words that can be
recognised at any one time is limited to around 20.
However, this doesn’t mean that the overall system
is restricted. The user is selecting one of the 20
words from a ‘menu’, and each recognised
command produces a further menu of words to
choose from. Only when the complete sequence
has been successfully recognised will any action be
taken by the computer. In the case of the sorting
office the first level of sort could be by state, and
once the correct state is selected the next sort could

P arts Of
Speech
O ne te c h n iq u e o f speech

re c o g n it io n s im p ly in v o lv e s

d ig it is in g th e s ig n a l and

p e r fo rm in g e x te n s iv e ‘p a tte rn

re c o g n it io n ’ a n a ly s is . A m o re

e ff ic ie n t m e th o d is to use

h a rd w a re p re -p ro c e s s in g , in

w h ic h a n u m b e r o f

in d e p e n d e n t c irc u its m e a su re

th e s ig n a l fo r v o ic e d s o u n d

(e .g . v o w e ls) , f r ic a t iv e s (s , f , t ,

e tc) , a n d s h o r t p e r io d s o f

s ile n c e (e .g . be tw een

s y lla b le s) . T he o u tp u t fro m

each o f th e s e f i l te r in g d e v ic e s

is a s tr in g o f 1s a n d Os, w h ic h

th e c o m p u te r c o m p a re s w ith a

lib ra ry o f s to re d e x a m p le s ,

s e le c tin g th e n e a re s t m a tc h as

th e w o rd i t re c o g n is e s

VO ICED

SILENT

FRICATIVE

446 T H E H O M E C O M PU T E R C O U R SE

KE
VI

N
JO

NE
S

In s ig h ts

be by town, then by village, etc. Only at the lowest
level would the item finally be sent on its way, thus
ensuring the maximum reliability of the operation.

V oice A n a lys is
Speech recognition is usually tackled in one of two
ways. The ‘quick’ way is simply to feed all the
speech through an analogue-to-digital convertor,
and use the power of the computer to perform all
the analysis. Unfortunately, this method has a
number of drawbacks, most notably the time
taken to perform the analysis. Systems using this
method can take up to two or three seconds to
recognise the input. For speech recognition to be
of any real use the computer must ‘understand’ the
speech as fast as another human, and the number
crunching approach rarely achieves this.

The other method is to use pre-processing.
Rather than analyse the speech signal
mathematically, it is possible to do much of the
work with standard electronics. What is then
delivered to the computer is information about the
spoken input: the frequency content, pitch,
energy, etc. Frequencies can be measured by
filtering the signal and detecting the level in each
frequency band, rather like using tone controls on
a hi-fi to ‘bring out’ the bass drum. Because all this
electronic processing is done at the same time as
the original speech signal is fed to the circuits, the
analysis is almost instantaneous. Performing a
similar operation on the digital data from an A /D
convertor would require several computers
working on the numbers at once. The pre­
processing method is still at the research stage —
no commercial system using it has yet been
marketed — but it certainly appears to have more
potential.

Once the information about frequency content,
pitch, energy, etc. has been extracted from the
original signal (regardless of the method), the
actual recognition is performed by comparing the
current set of figures with a number of models
stored in the computer’s memory. These models
are created by ‘training’ the recognition system.
The words that are to be recognised are spoken
into the system one at a time and the resulting
information is stored in a digital ‘library’ of
examples. The complete set of words is then
spoken again and the computer compares the
input with its current model. If they agree, the
second set of information is added to the first to
form a more complete version of the model. This
can be a continuous process, constandy adding
new information to the library for more and more
speakers.

To recognise a spoken word, the computer must
match the pattern of information from the input
with one or more of the models stored in the
current library. In many cases, several possible
matches will be found as parts of other words will
match the input pattern. The first two syllables of
‘international’, for example, are the same as those
of ‘interoreter’. At the end of the search, one word

should stand out as being more perfectiy matched
than any of the other possibilities, and this is the
one that the computer will interpret the input as
being.

Speech recognition facilities are certain to find
many applications in the future, but they are likely
to be most readily used as a ‘front-end’ for
complex software packages, such as databases,
where the commands are selected from an on­
screen menu. This type of application will remove
the single biggest obstacle to computer usage by
non-experts: the keyboard.. Viewdata systems
such as Prestel have reduced the input device to a
simple numeric keypad, but this substantially
limits the amount of interaction that a user can
achieve. A speech-driven interface that can
recognise a standard set of database interrogation
commands, as well as numeric symbols and the
letters of the alphabet, would provide a powerful
facility that requires little, if any, conventional

iputer training to use.
There are now commercially available

recognition units that can be plugged into home
computers, but these are very unsophisticated
devices. Systems like ‘Big Ears’ and Heuristic Inc’s
‘Speech Lab’ use a lot of processing power to
recognise just a few words spoken by one person.
What is needed before speech recognition can
become really useful is an ability to recognise
words spoken by any person, regardless of dialect
or accent. The limiting factor, at this stage, is the
amount of memory available to hold the models.
One interesting possibility is that of using a video
disc to hold a standard set of models: this would
use hardly any internal memory and the reduction
in sneed would be barelv noticeable.

E n v iro n m e n ta l C o n tro l

M o s t re c e n t a p p lic a t io n s o f

sp e e ch re c o g n it io n are o f an

e d u c a tio n a l n a tu re . O ne o f th e se

is c a lle d th e ‘ l im ite d

e n v iro n m e n t ’, w h ic h in v o lv e s a

c o m p u te r, a ro b o t a rm , a n d a

n u m b e r o f s im p le o b je c ts th a t

th e a rm can m a n ip u la te .

S p e a k in g in to a m ic ro p h o n e ,

th e u s e r can in s tru c t th e a rm to

‘PLACE THE EGG IN TH E EGG

C U P ’. T he c o m p u te r w i l l have to

in te rp re t th e c o m m a n d s , and

lo o k u p th e p o s it io n s o f th e

o b je c ts in its m e m o ry

T H E H O M E C O M PU T E R C O U R SE 447

L e a rn in g m a c h in e c o d e re q u ire s

a c o n s id e ra b le c o n c e p tu a l ju m p

fro m B a s ic , b u t it o ffe rs a

m a s s iv e in c re a s e in s p e e d a n d

e ffic ie n c y

A S tep A t A T im e
T he m a c h in e c o d e p ro g ra m is

s to re d in o n e area o f m e m o ry ,

th o u g h th e da ta th a t it

o p e ra te s o n m a y w e ll be

e lse w h e re in m e m o ry . N ote

th a t th e o p e ra n d s (e .g .$ 3 F 8 0)

are s to re d in th e fo rm o f tw o

b y te s , w ith th e lo w e r by te

($ 8 0) b e fo re th e h ig h e r by te

($ 3 F)

Memory Address

Program
—'lA-

LDA

80

T he p ro g ra m c o u n te r (PC) is a

re g is te r w ith in th e CPU th a t

p o in ts to th e in s tru c t io n b e in g

exe cu te d

3F

ADC

81

3F

STA

93

04

$ 0 4 9 3

$ 3 F 8 0

$3F81

A ll m a c h in e c o d e p ro g ra m s

are m a d e u p fro m s im p le

o p e ra tio n s th a t t ra n s fe r by te s

o f m e m o ry in to th e C P U ’s

in te rn a l re g is te rs , p ro c e s s

th e m , a n d re tu rn th e m to a

lo c a t io n in m e m o ry . T h is

d ia g ra m s h o w s th e p ro g ra m

needed to a d d th e c o n te n ts o f

tw o lo c a tio n s , a n d s to re th e

re s u lt in a th ird

H a $ 0 4 9 3

i

CPU

. \ V

03
I LDA $ 3 F 8 0

05
1 AD C $3F81

aA

\ w

• •

s>:

The f ir s t in s tru c t io n lo a d s th e

c o n te n ts o f lo c a tio n $ 3 F 8 0

(i.e . th e va lu e 0 3) in to th e

a c c u m u la to r . The se co n d

a d d s th e c o n te n ts o f $3F81

(i.e . th e va lu e 0 5) to the

a c c u m u la to r. The th ird s to re s

th e c o n te n ts o f the

a c c u m u la to r (n o w 0 8) in

m e m o ry lo c a tio n $ 0 4 9 3

So far in T h e H o m e C o m p u t e r C o u r s e , all our
programming has been centred around the
language b a s i c , because it is both versatile and
easy to use. However, as your experience grows,
and the programming projects you tackle become
more adventurous, it will not be long before you
encounter the limitations of this language. You
will soon find that graphics can’t be moved around
the screen as fast as you would like, and that you
often have to resort to the confusing PEEK and
POKE commands to make the best use of your
machine’s facilities.

By contrast, programming in machine code
imposes very few constraints on what you can do,
and compared with b a s i c , gives the impression of
almost infinite speed. However, comparatively
few home computer owners make the jump from
b a s i c to machine code, partly because using
machine code is a far more labour-intensive

co

programming process, and also because it is
conceptually quite different from b a s i c or any
other high level language. Nevertheless, it is
extremely worthwhile to have an understanding of
machine code; and in this article, the first of two,
we look at the fundamental procedures involved
in using it.

Machine code, as we have explained before, is
the language understood by the microprocessor
(the CPU) that forms the heart of your computer.
This microprocessor can only perform very simple
functions (it can add two digits of a number, for
example, but can’t multiply them). It does,
however, perform these functions at very high
speeds. Every operation of a microprocessor is
specified in terms of the number of ‘clock cycles’
taken. If the CPU in your computer runs at 1
MHz, then a clock cycle is one microsecond, and
an operation that takes four ‘clock cycles’ to
perform does so in four millionths of a second.

As a consequence, any program written in
machine code will consist of a large number of
instructions, and any function must be built up ‘by
hand’ from simple operations. All machine code
programming consists of manipulating individual
bits or bytes of memory, using simple logic
functions like AND, OR and NOT, and elementary
binary arithmetic.

This is one reason why writing machine code is a
slow task; the other is that it is the programmer’s
responsibility to know where everything is kept in
memory. In b a s i c , whenever a statement like LET
A=5 is encountered, it is the job of the b a s i c

interpreter to find a space in memory to store that
variable. Furthermore, whenever A is referenced
later in the program, it will remember where to
look for the necessary data. When you first start
programming in machine code you discover that
you have to specify an address (a memory
location) for every piece of data you need to store,
and it is up to you to ensure that it is not
accidentally overwritten with other pieces of data.

Let’s look at what machine code consists of.
(Incidentally, all our examples will refer to eight-
bit CPUs, such as the Z80 and 6502; 16-bit
devices work in a similar manner but process twice
as many bits with each operation). The
microprocessor is connected to the computer’s
memory by two busses (a bus is merely a group of
wires or lines): the address bus and the data bus
(see page 144). There is also something called the
control bus, but this provides timing signals for the
CPU and is not used by the programmer.

The address bus is 16 bits wide, and by placing a
pattern of bits on this bus, the CPU can select any
of the 65,536 bytes in its ‘memory map’ (see page
329). In a typical home computer, some of these
locations will consist of RAM, some of ROM,
some of special input/output chips, and some will
be unused. If the CPU wants to read a memory
location (one of the lines in the control bus

i\

448 T H E H O M E C O M P U T E R C O U R SE

P a s s w o rd s T o C o m p u tin g

indicates whether a read or write is to be
performed), then the selected byte will place its
contents on the data bus, in the form of a pattern of
eight bits. Similarly, the CPU can write a pattern of
eight bits into any chosen location. The CPU has
no knowledge of which parts of memory are ROM
and RAM, so getting the addresses right is another
crucial responsibility of the programmer.

Inside die microprocessor, there are perhaps
half a dozen ‘registers’, which are like individual

emory locations and are used for storing
temporary results and performing the logic and
binary arithmetic functions. Most of these
registers are equivalent to one byte of memory,
though some are 16 bits wide. One of the latter
type is called the Program Counter (PC) register,
and this contains the address in memory of the
machine code instruction that is currently being
performed. You can think of this as being similar
to the line number in a b a s i c program.

Another of the most important registers (but
this time just eight bits wide) is the ‘accumulator’.
As the name suggests, this register can accumulate
totals (that is to say, bytes can be added to it or
subtracted from it), and indeed this is usually the
only register that can perform any kind of
arithmetic. So, a very simple machine code
program might be specified as follows:

1) Load the accumulator with the contents of
emory location $3F80. Addresses in machine

code are usually written in hexadecimal (see page
179). Hexadecimal numbers are indicated in
writing by prefixing a special sign, usually a $.

2) Add to the accumulator the contents of
memory location $3F81, allowing for the fact that
the result may be larger than can be stored in a
single byte — in which case there will be a ‘carry
bif as well.

3) Store the new contents of the accumulator
(i.e. the result) in memory location $0493.

Each of these constitutes a machine code
instruction, and the program would normally be
written thus:

LDA $3F80 (LoaD Accumulator)
ADC $3F81 (ADd with Carry)
STA $0493 (STore Accumulator)

The comments in brackets, like b a s i c REMark
statements, have no effect. The first entry on each
line is called the ‘opcode’, and this indicates the
nature of the operation. The second column
contains the ‘operand’ — the details of, or
whereabouts of, die data that is to be operated on.
A microprocessor will usually feature several
dozen possible opcodes (that is to say, it can
perform several dozen types of simple operation),
and each opcode will occupy just one byte of
memory when it has been entered into the
machine.

An opcode can therefore by specified as a
number in the range 0-255 (or, more properly, in
the hex range $00 to $FF). However, while a
program is being developed, it is more usual to
make the listing more readable by using three

letter mnemonics, such as LDA, ADC and STA.
Each of the three operands shown consists of a

hex number in the range $0000 to $FFFF, and uses
up two bytes of program memory space. However,
some operands are just one byte long, and some
opcodes don’t have operands at all. The short
program that we have given would therefore
occupy a total of only nine bytes — not including
the three memory locations ($3F80, $3F81, and
$0493) that the program will operate on. For this
trivial exercise, the following b a s i c program would
achieve exactly the same effect, but would occupy
nearly 50 bytes and perform the operation at least
a hundred times slower, because of all the time
taken by the interpreter to translate it:

10 A = PEEK (16256)
20 A = A +PEEK (16257)
30 POKE 1171,A

N.B. The locations used by this particular program
may not be suitable for your machine.

In the next instalment of T h e H o m e C o m p u t e r

C o u r s e , we’ll look at how machine code is entered
into a home computer and run, and the different
ways in which machine code is expressed.

LD A — L o a D A c c u m u la to r

T ra n s fe rs th e c o n te n ts o f a

s in g le m e m o ry lo c a t io n (b y te)

in to th e in te rn a l a c c u m u la to r

re g is te r

S TA — S T o re A c c u m u la to r

P e rfo rm s th e o p p o s ite p ro ce ss

to LDA

A D C — A D d w ith C a rry

A d d s th e c o n te n ts o f a m e m o ry

f \ I lo c a tio n to th e c u r re n t c o n te n ts

o f th e a c c u m u la to r , c re a tin g a

c a rry b it if n e ce ssa ry

S B C — S u B tra c t w ith C a rry

T h is is th e in ve rse fu n c t io n o f

AD C

J M P - J u m p

T ra n s fe rs p ro g ra m o p e ra tio n to

a n e w lo c a tio n . T h is is s im ila r in

o p e ra tio n to a BAS IC GOTO

s ta te m e n t

O p c o d e s

T hese are ju s t a fe w o f th e

o p c o d e s (typ e s o f o p e ra tio n o r

in s tru c t io n) th a t a ty p ic a l

m ic ro p ro c e s s o r can execu te

T H E H O M E C O M P U T E R C O U R SE 449

KE
VI

N
JO

NE
S

H a rd w a re F o c u s

T h e Q u a n tu m L e a p o ffe rs th e

m o s t a d v a n c e d m ic ro p ro c e s s o r

o n a n y h o m e c o m p u te r, a n d th e

p o te n tia l fo r h a lf a m e g a b y te o f

m e m o ry

All Sir Clive Sinclair’s innovations in the field of
home computers have represented quantum leaps
both in terms of technology and value for money,
but his latest microcomputer is the first of his
machines to take that description as its name: the
Sinclair Quantum Leap (QL). At £399, it is aimed
at a growing number of users who are either
serious computer enthusiasts or have business as
well as home applications in mind. As such, it
represents very serious competition for machines
like the Commodore 64 and BBC Model B,
though in terms of technical specification it is
dramatically superior.

It is quite apparent that the QL has been
designed by stringing together all the components
and features that currently represent the height of
computer fashion. Making a break from the usual
choice of Z80 or 6502, the CPU is a member of
the Motorola 68000 family, which is currently the
most sophisticated microprocessor found in any
microcomputer and used in machines like Apple’s
Lisa (see page 261). However, the CPU is a

QL S o ftw a re

s 3? U:*dt i*z

* 0 5) •c w r v

QL Q u ill is a w o rd p ro c e s s in g p a cka g e th a t

d is p la y s th e te x t o n th e sc re e n in th e sa m e

fo rm a t a s i t w i l l be p r in te d

QL A b a cu s is a s p re a d s h e e t w ith th e u n u s u a l

fe a tu re th a t c e lls ca n be re fe rre d to b y n a m e

in s te a d o f ju s t c o -o rd in a te s

E x p a n s io n In te r fa c e

P e rip h e ra ls , a n d up to 0 .5

M e g a b y te s o f R A M can be

c o u p le d on here

R O M C a r tr id g e S lo t

U p to 3 2 K o f a d d it io n a l ROM

can be p lu g g e d in here

J o y s tic k P o rts

QL A rch ive is a d a ta b a s e p a cka g e . R eco rd

la y o u ts ca n be d e s ig n e d b y th e user, w ith th e a id

o f a sc re e n e d ito r

QL Easel is a g ra p h ic s u t i l i t y d e s ig n e d fo r

p ro d u c in g g ra p h s a n d c h a rts , h a n d lin g a s p e c ts

o f d e s ig n lik e s c a lin g a u to m a tic a lly

6 8 0 0 8 M ic ro p ro c e s s o r

T h is p ro c e s s o r fe a tu re s in te rn a l

16- and 3 2 -b it re g is te rs , w ith an

8 -b it e x te rn a l d a ta bus

C u s to m C h ip s

An in c re a s in g n u m b e r o f new

c o m p u te rs fe a tu re a c u s to m -

d e s ig n e d c h ip . T he QL has tw o ,

to h a n d le th e d is p la y and

v a r io u s in te r fa c e s

68008, which means that though its internal
registers are 16-bit (and it can perform many
functions across a full 32 bits), its external data bus
is only eight bits wide. This will slow the operation
of the CPU very slightly, because the loading and
storing of the registers will have to be done in
halves. But this also means that the cost of the
memory chips is kept down, and economics is
often a prime consideration in Sinclair’s choice of
components.

The QL comes with 128 Kbytes of RAM as
standard, but will be expandable to 512 Kbytes (or
‘half a meg’, as it is termed) with future add-ons.
This large memory is particularly useful for
business applications, as it reduces the frequency
with which the program must refer to off-line
storage. This storage consists of two Microdrives
built into the casing, offering around 100 Kbytes
each. Though this does make the QL a self-

450 T H E H O M E C O M P U T E R C O U R SE

H a rd w a re F o c u s

T V S o c k e t

T he QL w il l w o rk w ith a TV set,

b u t w i l l n o rm a lly o n ly d is p la y

4 0 o r 6 0 c o lu m n s , w h e re 8 5 are

p o s s ib le w ith a m o n ito r

S e r ia l P o r ts

Two R S 2 3 2 p o r ts are

in c o rp o ra te d , s u ita b le fo r

d r iv in g a p r in te r a n d a m o d e m .

T he m o re c o m m o n (C e n tro n ic s)

p r in te r in te r fa c e m u s t be

p u rch a se d a s an a d d -o n

n ito r P o rt

U n lik e th e S p e c tru m , th e QL can

d r iv e an RGB m o n ito r d ire c tly ,

and in d e e d th is is needed to

ta ke a d va n ta g e o f th e m a x im u m

re s o lu t io n o f 5 1 2 x 2 5 6 p ix e ls in

fo u r c o lo u rs

r k In te r fa c e

U p to 6 4 Q Ls a n d S p e c tru m s

(th e la t te r w ith In te rfa c e 1

a d d e d) ca n be lin k e d to g e th e r

in to a L o ca l A rea N e tw o rk

S in c la ir QL

CLOCK SPEED
7.5 MHz
MEMORY
128K RAM, expandable to 512K
32K ROM, expandable to 64K

25 lines of 85 characters (with
monitor), high resolution
graphics: 512x256 pixels (4
colours), 256x256 (8 colours)

Serial RS232 (2), Joysticks (2),
Microdrives, LAN, TV, RGB
monitor

everal are planned, most notably
the ‘C’ language

Instruction manual, four
applications programs
DOCUMENTATION

high standard, comes in a
ringbound folder, and includes
manuals for the standard software

Each o f th e s e u se s a t in y w a fe r

c a r tr id g e , c o n ta in in g a

c o n t in u o u s lo o p o f ta p e to s to re

u p to 100K each

S e c o n d M ic ro p ro c e s s o r

T h is In te l 8 0 4 9 c o n tro ls th e

k e y b o a rd , s o u n d , a n d se ria l

p o r ts , le a v in g th e 6 8 0 0 8 fre e fo r

ru n n in g u s e r p ro g ra m s

p h o to g ra p h s h o w s t h e P C B

o f a p r e -p r o d u c tio n Q L , s o

e le m e n ts o r m e o e s ig n m a y

c h a n g e f o r t h e p ro d u c tio n

m o d e ls

contained business system, the Microdrives must
be viewed as something of a weak point when
compared with the remarkably efficient processor.
It takes an average of 3.5 seconds to locate a data
item on the Microdrive, compared with perhaps
half a second for the new generation of mini
floppy drives.

Sinclair say that they intend to produce an
interface to a hard (Winchester) disk unit, but
there are no plans for floppy disks — though some
independent manufacturer will undoubtedly offer
them. Without disks, unfortunately, the QL will be
unable to run the Unix operating system, which is
usually considered to be one of the main reasons
for choosing a Motorola 68000 CPU, and is tipped
to replace C P/M as the standard operating system
for business software.

The QL comes with four business packages as
standard, all developed by the software house

r iv e E x te n s io n S lo t

L ike th e S p e c tru m , th e QL can

h a n d le up to e ig h t m ic ro d r iv e s

Psion. Quill is a word processor; Abacus, a
spreadsheet package; Archive, a database; and
Easel a graphics package. Ail run under the
resident operating system, which Sinclair have
dubbed QDOS. The popularity that this machine
is likely to achieve means that a lot of software will
be developed for it, though it will not be easy for
software houses to transfer their existing packages
onto the QL. Still, it might be argued that if
Sinclair adopted industry standards, its products
would not have the market lead that they do have.

The resident b a s i c has been upgraded from the
Spectrum version, and as if the name Quantum
Leap weren’t immodest enough, Sinclair have
called this SuperBASic. It includes facilities for
handling procedures (thereby encouraging
structured programming) and for accessing the
operating system from within a b a s i c prograi
Both the b a s i c and QDOS are contained in the 32
Kbytes of ROM as standard.

The Sinclair QL is without doubt a very
impressive machine and, perhaps more important,
has sufficient expansion possibilities to guard
against obsolescence. It is a fitting addition to a
long line of Sinclair milestones: the ZX80, the
ZX81, and the Spectrum.

K e y b o a rd

T h o u g h th e k e y b o a rd is based

on a m e m b ra n e c o n s tru c t io n

(th e re b y g u a rd in g i t a g a in s t

co ffe e s p illa g e s , e tc .) i t fe a tu re s

65 fu ll- t ra v e l keys , a n d th e ‘fe e l ’

is eve ry b it as g o o d as s o m e o f

th e m o s t e xp e n s iv e b u s in e s s

m a c h in e s . T he re are fo u r c u rs o r

c o n tro l keys, a n d five

p ro g ra m m a b le fu n c t io n keys.

The c o p y r ig h t s y m b o l and

p o u n d s ig n are a ls o in c lu d e d

T H E H O M E C O M P U T E R C O U R SE 451

T h e s o u n d fu n c tio n s o f th e A ta ri

m o d e ls in c lu d e fo u r

in d e p e n d e n t v o ic e s

The Atari sound facilities are good — as can be
heard in many of the cartridge games — though
the means of controlling them are a little
idiosyncratic. Four independent square wave
oscillators are provided, each with a range of three
octaves. As a bonus, the oscillator output can be
distorted in seven ways to colour the sound. These
facilities are easily accessible from b a s i c via the
SOUND command provided, but this doesn’t make
full use of the extra features of the Atari sound chip
POKEY, which with high-pass filters and special
modes of operation can extensively modify the
sound produced. As a consequence, the full range
of sound control can be fully exploited only by
using complex POKEs or machine code, which is
beyond the scope of this part of the course. Output
is via the television speaker only.

SOUND
This is a very simple command with the following
format:

SOUND O.P.D.V

0

P
D
V

Oscillator (0-3)
Pitch (0-255)
Distortion (even numbers 0
Volume (1-15)

-14)

Each SOUND command can select only one
oscillator, so it is impossible to start more than one
oscillator at a time. This is not normally a problem,
but if music is programmed using all oscillators for
four-part harmonies the delay is noticeable.

Pitch is calculated a little strangely and as a
consequence some frequencies are inaccurate.
Frequency decreases as the pitch number
increases, giving an effective range from ‘C’ at 29
(1046.5Hz) to ‘C’ at 243 (130.81Hz). The
following table indicates some of the pitch
numbers for music note symbols. A full list is given
in the Atari b a s i c reference manual.

0ctave-1
(Mid) C --121

B --128
A - -144
G --162
F - -182
E - -193
D --217
C - -243

Octave-3
C - -2 9
B --3 1
A - -3 5
G - -4 0
F - -4 5
E - -4 7
D --5 3
C - -6 0

The distortion parameter ‘P’ is equivalent to the
noise channel on most computers but it is far more
versatile. Each even number causes a different
arrangement of random pulses to be mixed with
the standard oscillator output. Curiously, 10 gives

The 28 lines, each
The Oric’s

A q u ic k lo o k a t th e O r ic ’s

g ra p h ic s s h o w s m a n y

s im ila r itie s w ith th e S p e c tru m

The Oric-1 home computer was released in the
middle of 1983 and is designed as an obvious rival
to Sinclair’s ZX Spectrum. The Oric offers four
modes of display. Only one mode, however,
enables the use of high resolution graphics. There
are eight colours available; foreground and
background colours respectively being set by the
commands INK and PAPER. Oric b a s i c includes
several special high resolution commands to aid
the graphics programmer.

screen is made up of
containing 40 character spaces,
characters are not designed using the usual eight
by eight pixel grid, but are constructed on an eight
by six grid. In high resolution mode the screen has
240X200 pixel resolution, the bottom three lines
being reserved for information such as error
messages. There is no PAI NT-type command, but
with a little thought it is possible to accomplish the
function using the FILL command. As with the
Spectrum (see page 392) it is possible to mix high
resolution graphics and text together on the same
screen, but the Oric allows each line inside a
character square to be coloured individually,
whereas the Spectrum allows only one colour to be
specified within any one character square.

Now let us look in more detail at the low
resolution modes offered by the Oric-1. The Oric
has three low resolution modes: TEXT, LORESO, and
L0RES1. The only difference between LORESO and
L0RES1 is that they use different character sets. In
the TEXT mode, letters can be positioned
horizontally by the TAB command. In the two
LORES modes, however, this facility is improved to

452 T H E H O M E C O M P U T E R C O U R SE

a distortion-free sigdal, not 0, as might be
expected. With experimentation the careful use of
distorted sounds can provide interesting tones and
is particularly useful for special effects.

Volume ‘V’ can be set between 1 and 15 and a
reasonable average level would be 7 or 8. Note
that there is no convenient way of timing the
duration of notes or the pauses between them. The
usual method under these circumstances is to use
carefully timed FOR...TO...NEXT loops.

To illustrate the use of SOUND, the following
commands play an undistorted ‘G ’ in octave 3 on
oscillator 1 at a volume of 8 for 50 FOR...TO...NEXT
steps:

10 REM *DIXIE*
20 FOR W T O 7
30 READ N:REM *N0TE*
40 SOUND 3,N,10,7:REM*PLAY NOTE*
50 FOR P=1T 0400 :NEXT P:REM*PAUSE*
60 NEXT I
70 DATA 219,162,128,144
80 DATA 162,193,162
90 END

It is possible to access the sound capabilities of the
Atari’s POKEY chip from b a s i c by POKEing numbers
into memory locations 53760 to 53763. With this
method, sound routines run faster and all
oscillators can be started at one time. All

10 SOUND 1,40,10,8
20 FOR N=1T050:NEXT N
30 END

The END in line 30 turns all oscillators off.
Alternatively, a new SOUND command for the
same oscillator stops the old note and immediately
plays the new one. A program to play a simple
tune could be constructed like this:

information necessary to accomplish this, plus
more adventurous machine code techniques, are
contained in De Re Atari, available from the Atari
Program Exchange (APX), and also the excellent
Atari Sound A nd Graphics, published by John
Wiley & Son.

allow the user to specify vertical as well as
horizontal positions using the PL0Tx,y,A$
command, where x and y are the co-ordinates of a
particular character position and A$ is the word or
phrase to be PRINTed. The following short
program demonstrates how this facility may be
used to write a name vertically.

10 REM VERTICAL LETTERS
20 CLS
30 LORESO
40 A $=“STEVE”III....

:: xi'vMwc*

*:x;|p|

50 FOR X=1T05
60 B$=MID$(A$,X,1)
70 PL0T16,11+X,B$

ip* .:::«

. •-i-

/X >v

90 END
••"«.* • ■' • » • ■ /.’..'o 'i’.J.'. f >,,v / . .•.•••* . . . ' . « . • , * •' ■. .v.'.* V . . . ' S. . . * »^'^* ** .* *■< .•ASN.' v) • . .% ■ , ‘ ■ v V

The command HIRES allows the user to enter the
Oric’s high resolution mode. In HIRES mode the
screen has its origin in the top left-hand comer of
the screen.

There are several commands in Oric b a s i c to
help specifically with graphics: CURSETx,y,k
positions the cursor at the point with co-ordinates

The third number ‘k’ allows different
ctions to be employed with CURSET.

Value Of k
0
1
2
3

Function
plots pixel in background colour
plots pixel in foreground colour
inverts colours
does nothing

CURMOVx,y,k is similar to CURSET, except that the
cursor movement is relative to its previous
position. DRAWx,y,k draws a straight line from the
current cursor position to a point x units across and
y units up. CIRCLEr.k is a command that will draw a
circle of radius ‘r’ on the screen. PATTERNn is an
unusual and interesting command. PATTERN
breaks up lines or circles drawn into a series of dots
or dashes. The exact pattern is defined by the
number ‘n’, which lies in the range 0 to 255. The
Oric takes this number and uses the bit pattern of
its binary equivalent to produce a repeating
pattern of dots, dashes or spaces. Here are two
examples to illustrate its use:

Value Of n Binary Equivalent Pattern Produced
170
15

10101010
00001111

Finally, there is the command FILLa.b.n. Each row
of every character space on the Oric screen has a
number associated with it that relates to the
foreground and background colours, the character
present and whether the character is flashing or
not. This number is known as the ‘attribute’ of that
row. FILLa,b,n fills ‘b’ character cells by ‘a’ rows with
the attributes represented by the number ‘n’.

10 REM CONE
20 HIRES
30 CURSET120,0,3
40 PAPER3: INK4
50 FOR R=1T065
60 PATTERN 200-R
70CU RM O V0,2,3
80 CIRCLE R.1
90 NEXT R
100 END

C o n e P A T T E R N

T h is p ro g ra m d e m o n s tra te s

s o m e o f th e h ig h re s o lu t io n

c a p a b ilit ie s o f th e O ric -1 . A c o n e

sh a p e is d ra w n u s in g a s e t o f

c irc le s o f in c re a s in g ra d iu s .

N o te a ls o th e use o f th e

PATTERN c o m m a n d to b re a k up

th e c irc u m fe re n c e o f th e c irc le s

a s th e y are d ra w n

T H E H O M E C O M P U T E R C O U R SE 453

E n c ry p tio n w a s o n e o f th e e a r lie s t a p p lic a tio n s o f c o m p u te rs .

N o w a d a y s , d e v is in g a n d c ra c k in g a s im p le c o d e is w ith in th e p o w e rs

o f th e B a s ic p ro g ra m m e r

AD our communications with others are codified.
Whether we use speech or written language, both
are presented in such a way as to be intelligible
only if the person receiving the message can
interpret the code. The same is true of our
conversations with computers. Most home
computers rely on a dialect of b a s i c in order to be
accessible to people, but we know that the
machine itself does not use this language to
perform its functions: it must first interpret the

ents into a purely numerical form that
it can then use to set up the switching sequences
defined in the program, and thus produce the
desired results. Codes of this sort — human and

— are easily accessible
jryday lives. Anyone can learn Frenc

____ i , b a s i c or f o r t r a n , given the effort ai
will.

D ata C om pression
C o m p u te r u s e rs w h o need to s to re la rg e n u m b e rs o f te x t f i le s are

c o n s ta n t ly s e a rc h in g fo r w a ys to c o m p re s s th e d a ta in th o s e

f i le s . O ne w a y to ach ieve th is is b y to k e n is a t io n . In m u c h th e

s a m e w a y a s S in c la ir ’s ZX s e r ie s o f m ic ro c o m p u te rs p ro d u c e a

w h o le BAS IC re se rve d w o rd a t th e to u c h o f a s in g le key, a to k e n

can be s u b s t itu te d fo r a c o m m o n ly -u s e d w o rd o r p h ra se .

In a d d it io n , e n c o d in g te c h n iq u e s are a ls o used to c o m p re s s

th e d a ta even fu r th e r . C o m p a c t, a U n ix u t ility , is g e n e ra lly

re c k o n e d to c o m p re s s te x t f i le s b y an ave rage o f 3 8 p e r c e n t, and

C lip , w h ic h ru n s u n d e r C P /M , re g u la r ly ach ie ve s even b e tte r

re s u lts . C o m p a c to r, w h ic h ru n s o n th e C o m m o d o re 6 4 , p e r fo rm s

th e s a m e fu n c t io n fo r BAS IC p ro g ra m s b y re m o v in g R E M s,

u n n e c e s s a ry s p a ce s a n d so on

But there is another type of encoding (more
accurately called ‘encryption’) that has the very
opposite of communication as its objective: its
purpose is to deny understanding to aU but the
small group for whom the communication is
intended. Until the second half of the 20th
century, the transmission of information in a form
not generaUy inteUigible was restricted to
governments and a few large industrial interests.
But more recently, with the ever increasing use of
vulnerable public telephone lines for the exchange
of information, most of it with some commercial
value, the practice of encryption has become more
commonplace.

Cyphers and codes range from the very simple
— the addition or subtraction of a given value to
every byte, perhaps, or the formatted substitution
of one character for another wherever it occurs —
to the immensely complex cyphers that are being
worked on in the most recent advances in number
theory. These cyphers contain no element of
repetition whatsoever, and hence are not

vulnerable to frequency analysis decoding
methods.

The simplest of aU meaningful encryption
techniques is perhaps Caesar’s Cypher (which was
probably first used at the time of the Roman
Empire). The decryption of Caesar’s Cypher
requires only the message and a knowledge of the
key, so there are no bulky code books or
documents to be concealed, and no sophisticated

achines required. Here is a simple message
encrypted in Caesar’s Cypher:

FMKC AMKNSRCP AMSPQC

We can make a few assumptions about these
encoded words because of the way in which the
encyphered groups are spaced out (though, of
course, this could be intended to create
confusion!). The most obvious thing that strikes us
is that the message consists of three words: the first
has four letters, the second has eight and the last
has six. We can also assume that the second and
third words begin with the same letter, and that the
first and last \Vords end with the same letter. The
common ending letter here (C) is also one of the
two letters in the message with the highest

he other is M). This observation is of
j value to the cryptanalyst — at least,

as long as he knows which language he is working
with. In English, the letter that occurs most
frequently is E, foDowed by T.

With a sample as smaU as the one we have here
(a total of only 17 letters, which any statistician wiD
teU you is an insufficiently large sample upon
which to base any analysis), our results are likely to
be faDible. But let’s try frequency substitution
anyway, and see if the results are meaningful. Let’s
substitute the E for the C first:

FMKe AMKNSReP AMSPQe

The message is still meaningless, but there are
other clues. What about the relationship between
the original letter and the one we substituted for it?
C is two places in front of E in the alphabet. What
happens if we put the rest of the message through
the same transformation? Two places behind M
(our other most commonly occurring letter) is O,
so let’s try adding that piece of information:

FoKe AoKNSReP AoSPQe

In the first word we now have: ‘(something) vowel
(something) vowel’, which is a valid English
construction. Furthermore, the final vowel is E,
which is a common occurrence in English, so

454 T H E H O M E C O M P U T E R C O U R SE

S o ftw a re

perhaps we’re on the right track. Let’s put the rest
of the message through the transformation. Two
behind F is H; two behind K is M; and so our first
word could be H O M E . . .

Caesar’s Cypher, then, is a substitution code
that relies on ‘sliding’ the alphabet up or down a

ber of places to detei
value of each character. It can be refined further by
using a string of key transformations — 24225, for
example. In this case the first letter would be
shifted two places, the second four, the third two,
and so on. When the end of the key string is

C aesar’s C ypher
T h is p ro g ra m (w r it te n in C o m m o d o re BASIC) w il l e n co d e te x t

in to C a e s a r ’s C y p h e r u s in g a f iv e e le m e n t m u lt i- k e y s tr in g . The

m e s s a g e a p p e a rs in p la in te x t a s i t is b e in g e n te re d , a n d w h e n

R E T U R N is p re sse d th e e n c ry p te d v e rs io n is p r in te d . The

m e s s a g e s h o u ld be e n te re d w ith o u t s p a ce s o r p u n c tu a tio n

10 INPUT “ENTER A FIVE FIGURE KEY”;K$
20 INPUT “ENTER THE MESSAGE”;M$
30 FOR 1=1 TO LEN(M$)
40 LET J=l — INT(l/5)*5+1
50 REM * * * ROTATES THROUGH KEY
60 LET M=ASC(MID$(M$,I,1)) - VAL(MID$(K$,

J,D)
70 IF M < 6 5 THEN LET M=M+26
80 PRINT CHR$(M);
90 N EXT I
F or th e S p e c tru m , lin e 6 0 s h o u ld be rep la ce d w ith :

60 LET M=C0DE(M$(l)) - VAL(K$(J))_ _ _ _ _ _ _ _ _

reached, we loop back to the beginning again
Using this key string, our sa
be:

FKKC XMINSOCN AMPPOC

In this instance, frequency analysis will be entirely
useless because there is no uniformity to the
substitution — a letter will have different
substitutes depending upon its position in the
overall message. Another simple self-contained
cypher renders the same message thus:

H PRUOECMUE OREMOTCS

If we look closely, we can see that this string of
characters is in fact an anagram of HOME
COMPUTER COURSE, c
spaces between the words. Here, we are simply
trying to determine the encrypting algorithm,
given samples of both plain text and encrypted
text — a surprisingly common procedure. If the
cypher is to be understandable by the recipient of
the message, then the jumbling up of the letters
must be in some way predictable. This particular
cypher, known as the Bar Fence for reasons that
will soon become obvious, also requires the
decoder to know the key — in this case it is 3. Let
us take the first five characters and write them out
with three spaces between:

Recognise anything? Well try this then: write out
the plain text message on three lines, going down
and up between the lines, thus:

H * P R U
O E C M U E * O R E

M O T C S

The asterisks represent the spaces between words,
and the method of encryption is plain.

The examples that we have cited so far have all
been cyphers — defined as a method of secret
writing using substitution or transformation of
letters according to a key. Codes are rather
different in that they tend to substitute whole
blocks for other, normally
allowing data compression at the same time).
Their drawback is that they require both parties to
possess a code book before messages can be
communicated. One example of this technique
uses a commonly available novel, newspaper or
other piece of text and indicates the words that go
to make up the message by simply giving the
sequence number in which they occur. A piece of
text like:

‘Johnny went home and asked his mother if
he might play a computer game. “Of course!”,
said his mother.’

could be the key to the code 3,10,3. Perhaps vou
can deduce the

iputer of any type is of tremendous value
when attempting to either encrypt or decrypt
messages in cypher. A prime requirement of
Caesar’s Cypher, for example, is the ability to
move through an alphanumeric string, adding or
subtracting a constant to the ASCII value of each
character, which can then be printed. That
constant must be capable of amendment when the
program is run, and should make the alphabet
wrap around (that is, looking up A where the key is
one. should eive Z). Thus:

PDWPO WHH BKHGO

C ry p ta n a ly s is

O ne o f th e e a r lie s t u se s o f

c o m p u te rs w a s to c ra c k th e ve ry

c o m p le x m u lt i- k e y s u b s t itu t io n

c o d e s in u se b y b o th s id e s

d u r in g th e S e co n d W o r ld W ar.

T he G e rm a n s h a d d e v e lo p e d a

m a c h in e c a lle d E N IG M A th a t

g e n e ra te d its o w n c y p h e rs . The

im m e n s e ly c o m p lic a te d

c ry p to g ra m s th a t re su lte d

ca u se d th e A llie s to d e vo te a

g re a t dea l o f e f fo r t to th e ir

in te rp re ta t io n . S u c c e s s f in a lly

c a m e to th e C o lo s s u s g ro u p ,

w o rk in g a t B le tc h le y P ark , o f

w h ic h A la n T u r in g w a s a

p ro m in e n t m e m b e r

EWf 'fr• f A
i f ’f f Jim *

if I

*

W/Mm
& W0 &vmt:

I A

H H / / mmHr Mm
kw ■A I^m (f

*« i-

&

% ^

X:,

22

T H E H O M E C O M P U T E R C O U R SE 455

B a s ic P ro g ra m m in g

N o w th a t w e h a v e c o v e re d th e fu n d a m e n ta l ru le s o f B a s ic , w e c a n

c o n c e n tra te o n im p o rta n t a s p e c ts o f p ro g ra m m in g s ty le a n d s o m e

n e w c o m m a n d s to p e rfe c t p ro g ra m m in g te c h n iq u e

1

■

The computerised address book program we have
developed in previous instalments of the course
uses many of the more important features of the
b a s i c language, but certainly not all of them. In the
concluding parts of the Basic Programming course
we will look at where b a s i c can take you next if you
wish to become an advanced programmer.
Unfortunately, this cannot be exhaustive, and
readers are advised to refer to the owner’s manual,
or one of the many supplementary books that
have been published for most of the popular home
computers, for more extensive analysis of their
machine’s version of b a s i c .

M a ch in e Language P rogram s
Most versions of b a s i c allow routines written in
machine language to be included as part of the
program. Broadly, there are two ways of doing
this. The simplest is to use PEEK and POKE. PEEK is a
statement used to examine specific memory
addresses. For example, LET X = PEEK(1000) will get
the value stored in address location 1000 and assign
it to the variable X. Executing PRINT X will then
print the value that was (and still is) in location
1000. Here is a short program that will PEEK at the
contents of 16 memory locations and print the
out on the screen:

10 INPUT “ENTER ‘PEEK’ START ADDRESSES
20 PRINT
30 FOR L = 1 TO 16
40 LET A = PEEK(S)
50 PRINT “LOCATION ”;S;“ CONTAINS: ”;A
60 LET S = S + 1
70 NEXT L
80 PRINT “PRESS SPACE BAR TO EXAMINE NEXT 16

LOCATIONS”
90 PRINT “OR RETURN TO END”
100 FOR I = 1 TO 1
110 LET C$ = INKEYS
120 IF C$ < > CHR$(13) AND C$ < > “ ” THEN

I = 0
130 NEXT I '
140 IF C$ = CHR$(13) THEN GOTO 160
150 GOTO 30
160 END ,

The loop in lines 100 to 130 checks the input from
the keyboard and then either goes to the end of the
program, if the character typed was a RETURN (13
in ASCII), or back to the beginning, skipping the
INPUT statement.

If desired, the ASCII character of the memory
location can also be printed by using PRINT

CHR$(A). But be careful, as ASCII values lower
than decimal 32 (ASCII for the ‘space’ character)
are not uniformly defined. All ASCII values from
0 to 31 represent non-printable characters or
special functions, such as cursor controls. About
the only agreement between different computer

lanufacturers is that ASCII 13 is usually the
carriage return and ASCII 7 sounds the internal
speaker or produces a ‘beep’.

POKE is the converse of PEEK. It allows you to
write any value from 0 up to 255 in any RAM

ory location. This facility must be used with
extreme caution, however, as writing to a part of
memory that is already being used by the program
can cause unexpected or catastrophic results.
Routines written in machine code can be POKEd to
the appropriate addresses and invoked when the
program is run by the CALL statement. How to
write programs in machine code is beyond the
scope of a course on b a s i c . Suffice it to say that
machine code runs very much more quickly than
even the best b a s i c dialects. In situations where
speed of execution is essential, or where great
precision is required, machine code is by far the
better alternative.

M oving The C ursor
___ v ________r now allow locations on the
screen to be addressed directly, but even if your
machine does not support this, it is possible to
move the cursor to the left, right, up and down the
screen relatively easily. First you need to know
what ASCII codes are used to represent the cursor
control keys. The following short program will ask
you to type a key and will then report the ASCII
value corresponding to that key:

1 REM FINDINGTHE ASCII CODES F0RTHECURS0R
KEYS

10 PRINT “PRESS A KEY”;
20 FOR I = 1 TO 1
30 LET K$ = INKEYS
40 IF K$ = THEN I = 0
50 N EXT I
60 PRINT ASC(K$)
70 GOTO 10
80 END

This routine will also allow you to find the code for
the RETURN key (usually 13), ESCape (usually 27)
and the space key (usually 32), in addition to the
codes for the cursor control keys. The Sord M23
computer, on which the programs in the Basic
Programming course were developed, uses the

456 T H E H O M E C O M P U T E R C O U R SE

B a s ic P ro g ra m m in g

values 8 for cursor left, 28 for cursor right, 29 for
cursor up and 30 for cursor down. Your computer
will probably use different values. Substituting the
values you have found for your computer’s cursor
control codes in the program above, try the
following program:

10 PRINT CHR$(12): REM USE CLS OR
APPROPRIATE CODE

20 FOR L = 1 TO 39
30 PRINT
40 N EXT L
50 FOR L = 1 TO 22
60 PRINT CHR$(8); :REM USE ‘CURSOR LEFT’ CODE
70 NEXTL
80 FOR L = 1 TO 4
90 PRINT
100 NEXT L
110 END

This should print a line on the screen looking like:
* * * * * * * * * * * * * * * * * m m m

* * * * * * * * * * * * * * * * * *

Lines 20 to 40 would simply have printed a line of
39 stars. However, lines 50 to 70 ‘printed’ the
cursor left ‘character’ 22 times, so the cursor
moved back along the line 22 places. Lines 80 to
100 then printed @ four times and the program
then ended. Programming techniques such as this
allow the programmer to move the cursor around
the screen to print new characters in new positions
that may not be known until the values are
calculated in the program. This technique has the
advantage of enabling ordinary screen characters
to be used to plot simple graphs, without resorting
to the computer’s special graphics facilities (if it
has any).

To see how this kind of cursor control can be
used to produce graphs as an output from your
programs, try the following short program:

10 PRINT “THIS PROGRAM PRINTS A BAR GRAPH OF
3 VARIABLES”

20 INPUT “INPUT THE THREE VALUES X.Y.Z
30 PRINT
40 FOR L = 1 TO 2
50 FOR A = 1 TO X
60 P R IN T "*”; .
70 NEXT A
80 PRINT CHR$(13)
90 N EXT L
100 FOR L = 1 TO 2
110 FOR A = 1 TO Y
120 PRINT
130 NEXT A
140 PRINT CHR$(13)
150 NEXT L
160 FOR L = 1 TO 2
170 FOR A = 1 TO Z
180 PRINT “# ”;
190 NEXT A
200 PRINT CHR$(13)
210 NEXT L
220 PRINT
230 END

The program prints out a bar graph of the three

variables. The bars are printed in horizontal rows,
starting from the left and following the ‘natural’
cursor movement. Notice that a PRINT CHR$(13) is
needed in lines 80,140 and 200. They are needed
because semi-colons at th e . end of PRINT
statements suppress carriage returns (13 is the
ASCII code for < C R >).

M ore A b o u t V a riab les
So far we have treated variables as though there
were only two kinds (numeric and string). In fact,
there are several types of numeric variables
recognised by b a s i c , and a good programmer will
always specify the right type to economise on
memory and ensure correctness.

When a variable is declared in a programming
language, a certain amount of memory space will
be automatically allocated to store that variable. If
the program knows that the variable will always be
an integer, (e.g. LET SCORE = TOTAL + BONUS —
PENALTY) less memory needs to be set aside for the
variable. If we have a variable that can take an
infinite number of different values (e.g. LET AREA =
PI * RADIUS * RADIUS), more memory space will
have to be allocated.

In the development of our computerised
address book*, we became familiar with the
convention of specifying string variables by using
the $ sign after the variable name (e.g. LET
SCHKEYS - MODFLDS(SIZE)). Variables without the
‘dollar’ sign were assumed to be ordinary numeric
variables. However, similar conventions can be
used after variable names to specify the type of
numeric variable. A variable name with no
specifier is assumed to be a real numeric variable
of single precision. Other signs recognised by most
b a s i c s include: % to specify an integer variable,! to
specify a single precision variable, and # to specify
a double precision variable (i.e. the variable can
store twice as many significant digits). Here is a
fragment of a hypothetical program that uses these
signs:

70 LET PLAYERS = “JOHN”: REM A STRING
VARIABLE

80 LET SC0RE% = 0: REM AN INTEGER VARIABLE
90 LET PI! = 3.1416: REM A SINGLE PRECISION

VARIABLE
100 LET AREA# = P I*R *R : REM DOUBLE PRECISION

VARIABLE
110 LET GOES = 6: REM ASSUMED TO BE SINGLE

PRECISION REAL

Having said that, it must be pointed out that not all
b a s i c s support all these variable types. The
Spectrum, for example, does not have integer
variables. Integers are simply stored as single
precision real numbers. Neither does it support
double precision numbers. However, single
precision numbers in Spectrum b a s i c are
calculated to nine significant figures, against only
seven significant figures in Microsoft b a s i c . The
BBC Micro does support variables of the integer
type and single precision reals calculated to nine

T H E H O M E C O M P U T E R C O U R SE 45

B a s ic P ro g ra m m in g

significant figures. Microsoft b a s i c supports
double precision variables to 16 significant places.

Computers that do accept integer variables
usually allocate two bytes to store the number,
which can be in the range -32,768 to 32,767. This
range is usually perfectly adequate for such
variables as scores, numbers of employees, FOR
... N EXT loop counts and other numbers likely to
have only integer values. Since only two bytes are
used to store the number, using integer variables if
they are available will save on memory, although in
many b a s i c s this is true only for integer arrays, and
not for individual variables.

The final part of the Basic Programming course
will consider the advantages and disadvantages of
b a s i c as a language.

S p e c tru m A d d re s s B o o k

T h is is th e fu l l S p e c tru m v e rs io n

o f th e A d d re s s B o o k p ro g ra m .

B a s ic F la v o u rs fo r th e Lynx ,

D ra g o n 32 , BBC M ic ro ,

C o m m o d o re 6 4 a n d V ic -2 0 w il l

be p u b lis h e d in th e n e x t issu e ,

a n d w il l re fe r to th is l is t in g .

Z X 8 1 M o d if ic a t io n s

R ep lace th e SAVREC s u b ro u tin e

a t lin e 5 6 0 0 w ith :

5 6 0 0 * R EM S A V R E C *

5 6 1 0 P R IN T “ IN SER T TAPE,

PRESS P LA Y A N D RECORD,

A N D H IT N E W L IN E ”

5 6 2 0 IN P U T A $

5 6 3 0 S A V E “ A D D B K ”

5 6 9 0 RETURN

T h is w il l save th e w h o le

p ro g ra m to g e th e r w ith its da ta .

W h e n u s in g it th e re a fte r,

execu te it b y ty p in g GOTO 10,

n e ve r b y ty p in g R U N , w h ic h w ill

se t a ll v a r ia b le s to zero .

D e le te th e R D IN FL

s u b ro u tin e , lin e s 1 4 0 0 - 1 5 4 0 ,

and lin e 1 0 2 0 .

Each c o m m a n d m u s t have a

se p a ra te p ro g ra m lin e , so th a t

lin e 6 7 7 0 , fo r e x a m p le , m u s t be

re w r it te n as:

6 7 7 0 IF A $ = E$ THEN

P R IN T “ N EW N A M E ”

6 7 7 5 IF A $ = E$ THEN

IN P U T N $ (C U R R)

A s p r in te d th is p ro g ra m w il l

o c c u p y m o s t o f th e m e m o ry o f

a 1 6 K Z X 8 1 . T o save space ,

REM lin e s can be d e le te d and

P R IN T s ta te m e n ts s h o rte n e d .

T he n u m b e r o f re c o rd s fo r

w h ic h space is in it ia lly rese rved

can be re d u ce d b y m o d ify in g

th e p a ra m e te r 50 in lin e s 1 1 1 0 -

- 1 1 6 0 . L in e 1 1 7 0 and a ll lin e s

re fe rr in g to X $ () — in te n d e d fo r

fu tu re e x p a n s io n — m a y be

de le ted .

Basic Flavours
On th e L y n x in th e f i r s t p ro g ra m re p la ce lin e s

1 1 0 ,1 2 0 a n d 140 by:

110 C =KEYN

120 IF (C < > 1 3) A N D (C < > 3 2) TH E N 1=0

140 IF C -1 3 TH E N G O T 0 160

T h e th ird p ro g ra m w il l R U N , b u t w il l n o t

p ro d u c e th e d e s ire d re s u lt o n th e D ra g o n , th e

BBC, a n d th e L yn x

On th e BBC M ic ro re p la ce P E E K (S) b y ?S

1 REM *CREATE DATA FILE*
2 DIM N*(50,30)
3 LET N*(1)-"3FIRST"
5 SAME "NFLD" DATA N*(>
6 INPUT"REWIND TAPE, PRESS PLAY,
7 VERIFY "NFLD" DATA N*()
8 STOP

HIT ENTER'";A*

T h is is th e in it ia l is in g p ro g ra m th a t c re a te s th e a rra y on ta p e fo r

th e f i r s t t im e . W h e n y o u have ru n th is p ro g ra m , re w in d th e D ata

Tape, LOAD th e M a in P ro g ra m (l is t in g b e lo w) a n d R U N . You w il l

n o t need th e in it ia l is in g p ro g ra m a g a in u n le s s y o u w a n t to c rea te

a n e w a d d re s s b o o k f ile .

10 REM ,'MAINPG/
20 REM *INITIL*
30 GOSUB 1000
40 REM *GREETS*
50 GOSUB 3000
60 FOR M=1 TO 1
70 LET M=0
80 REM *CHOOSE*
90 GOSUB 3500
100 REM *EXECUT*
110 GOSUB 4000
120 IF CHOI=9 THEN LET M=1
130 NEXT M
140 STOP

1000 REMv *INITIL* S/R
1010 GOSUB 1100
1020 GOSUB 1400
1030 GOSUB 1600
1090 RETURN

1100 REM *CREARR* S/R
1110 DIM N*(50,30>
1120 DIM M*<50,30)
1130 DIM S*(50., 30)
1140 DIM T*(50,15)
1150 DIM C*(50,15)
1160 DIM R*(50,15)
1170 DIM X*(50,30)
1180 DIM B*(30):DIM Z*(30)
1190 DIM U*(30):DIM W*<15>
1210 LET SIZE=0

1220 LET RM0D=0
1230 LET SRTD=1
1240 LET CURR=0
1250 LET Z*="3FIRST"
1260 LET G*=B*
1300 RETURN

1400
1405

1410
1420
1430
1440
1450
1460
1470
1480
1485
1490
1500
1510
1520
1530
1540

REM *RDINFL* S/R
INPUT"INSERT DATA TAPE, PRESS PLAY, & HIT
ENTER'";A*
LOAD "NFLD" DATA N*()
IF N*(l)-Z* THEN LET Q*=Z*:RETURN
LOAD
LOAD
LOAD
LOAD
LOAD
LOAD
INPUT
REM

MFLD" DATA M*()
SFLD" DATA S*()
TFLD" DATA T*()
CFLD" DATA C*()
TELFLD" DATA R*()
NDXFLD" DATA X*(>
STOP THE TAPE, & HIT 'ENTER'";A*

'FLSIZE'

II

•I
II

II

II

LET SIZE=51
FOR L=1 TO 50
IF N*(L)=B* THEN LET SIZE=L:LET L=50
NEXT L
RETURN

1600 REM *SETFLG* S/R
1640 IF Q*=Z* THEN LET SIZE=1
1690 RETURN

3000
3010
3020
3060
30 70
3080
3090
3100
3110
31 20
3130
31 40
3150

3500
3520
3540
3550
3560
3570
3600
3610
3620
3630
3640
3650
3660
3670
3680
3690
3710
3750
3760
3770
3780
3790
3800
3810
3820
3840
3850

3860
3870
3880
3890
3900
3910
3920
3930
3940
3950
3990

4000
4040
4050
40 60
4070
4080
4090
4100
4110
41 20
4140

4200
4210
4220
4230
4240
4250
4260
4270
4280
4290
4300
4310
4320
4350

REM *GREETS*
CLS
PRINT:PRINT:PRINT:PRINT
PRINT TAB<8);"*WELCOME TO THE*"

HOME COMPUTER COURSE*"
•COMPUTERISED ADDRESS BOOK*

II

••

II(PRESS SPACE-BAR TO CONTINUE)

THEN LET L=0

PRINT TABC5)
PRINT TAB< 2)
PRINT
PRINT TAB<1)
FOR L=1 TO 1
IF INKEY* < >"
NEXT L
CLS
RETURN

REM *CHOOSE* S/R
IF G*=Z* THEN GOSUB 3860:RETURN
REM 'CHMENU'
CLS
PRINT"SELECT ONE OF THE FOLLOWING"
PRINT:PRINT:PRINT

II

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT

n

n

II

ll

II

ll

II

1 .
2 .

3.
4.
5.
6 .

7.
8 .

9.

II

ll

THERE ARE NO RECORDS IN"
THE FILE. YOU WILL HAVE"
TO START BY ADDING A RECORD

FIND RECORD (FROM NAME)"
FIND NAMES (FROM INCOMPLETE NAME)"
FIND RECORDS (FROM TOWN)"
FIND RECORD (FROM INITIAL)"
LIST ALL RECORDS"
ADD NEW RECORD"
CHANGE RECORD"
DELETE RECORD"
EXIT AND SAME"

PRINT-.PRINT
REM 'INCHOI'
PRINT"ENTER CHOICE (1-9)"
FOR L=1 TO 1
FOR 1=1 TO 1
LET A*=INKEY*
IF A*="" THEN LET 1=0
NEXT I
LET CHOI=CODE A*-48
IF (CHOI<1> OR (CHOI>9) THEN LET L=0
NEXT L
RETURN

REM *FIRSTM* S/R
LET CH0I=6
CLS
PRINT
PRINT TAB(4)
PRINT TAB(2)
PRINT TAB(2)
PRINT
REM *CONTINUE*
GOSUB 3100
RETURN

REM *EXECUT* S/R
IF CHOI=l THEN GOSUB 5700
REM 2 -IS *FNDNMS*
REM 3 IS *FNDTWN*
REM 4 IS *FNDINT*
REM 5 IS *LSTREC*
IF CH0I=6 THEN GOSUB 4200
IF CH0I=7 THEN GOSUB 6600
IF CH0I=8 THEN GOSUB 7500
IF CHOI=9 THEN GOSUB 5000
RETURN

REM *ADDREC* S/R
CLS

ENTER NAME";N*(SIZE>
ENTER STREET";S*(SIZE)
ENTER TOWN";T*(SIZE)
ENTER COUNTY";C*(SIZ E)
ENTER PHONE NUMBER";R*(SIZE)

LET RMOD=1:LET SRTD=0
LET X*(SIZE)=STR*(SIZE)
LET Q*=""
GOSUB 4500
LET. CHOI =0
LET SIZE=SIZE+1
RETURN

INPUT
INPUT
INPUT
INPUT
INPUT

ll

ll
II

II
ll

4500 REM *MODNAM* S/R
4510 REM CONVERT TO U/CASE
4520 LET D*=N* (SIZE) : LET P%-
4530 FOR L=1 TO LEN(D*)

II II

458 T H E H O M E C O M P U T E R C O U R SE

B a s ic P ro g ra m m in g

4540
4550
4560
4570
4580
4590
4600

4610
4620
4630
4640
4650
4660
4670
4680
4690
4700
4710
4720
4730
4740
4750

5000
5010
5020
5030
5040

LET AS=D*(L)
LET T=C0DE AS
IF T >=97 THEN
LET AS=CHRS T
LET PS=PS+AS
NEXT L
LET DS=PS:LET
:LET 8=0
REM LOCATE
FOR L=1 TO
IF DS(L)="
NEXT L
REM REMOVE
FOR L=1 TO

LET T=T-32

PS="“:LET AS="":LET T=LEN(DS)

FIRST SPACE
T
" THEN LET S=L:LET L=T

RUBBISH, PUT FORENAME IN PS
S-l

IF CODE(DS(L))>64 THEN LET PS=PS+DS(L)
NEXT L
REM REMOVE RUBBISH, PUT SURNAME IN AS
FOR L=S+1 TO LEN(DS)
IF CODE(DS(L))>64 THEN LET AS=AS+DS(L)
NEXT L
LET MS(SIZE)=AS +" "♦ PS
LET PS="":LET AS="":LET S=0
RETURN

REM *EXPR0G* S/R
IF (RMOD=0> AND (SRTD=1) THEN RETURN
IF < RMOD=1> AND (SRTD=0) THEN GOSUB 5200
GOSUB 5600
RETURN

5200 REM *SRTREC* S/R
5210 FOR K=1 TO 1
5220 LET S=0
5230 FOR L=1 TO SIZE-2
5240 LET T=L +1
5250 IF MS(L)>MS(T) THEN GOSUB 5400
5260 NEXT L
5270 IF S=1 THEN LET K=0
5280 NEXT K
5290 LET SRTD=1
5300 RETURN

5400
5410
5420
5430
5440
5450
5460
5470
5480
5490
5500

5600
5605
5610
5620
5630
5640
5650
5660
5670
5680
5690

5700
5710
5720
5730
5740
5750
5760
5770
5780
5790
5800
5810
5820
5830
5840
5850
5860
5870
5880
5890
5900
5910
5920
5930
5940
5950
5960
5970
5980
5990
6000
6010
6020
6030
6040
6050
6060
6070
6080
6090
6100
61 10
6120

6200
6210
6220
6230
6240

REM *SWPREC*
LET US=NS(L) :LET NS(L)
LET US=MS(L) :LET MS(L>
LET US=SS(L):LET SS(L)
LET UJS=TS< L) : LET TS(L>
LET WS=CS(L):LET CS(L)
LET LIS=RS(L) : LET RS(L)
LET XS(L)=STRS(L)
LET XS<T>=STRS(T)
LET S=1
RETURN

=NS(T):LET NS(T)=US
=MS(T) : LET MS(T)=US
=SS(T) :LET SS(T)=US
=TS < T):LET TS(T)=WS
=CS(T) :LET CS(T)=WS
=RS(T):LET RS(T)=WS

»

REM *SAVREC* S/R
INPUT"INSERT RECORDING TAPE & HIT 'ENTER'";AS
SAVE
SAVE
SAVE
SAVE
SAVE
SAVE
SAVE

NFLD
"MFLD
" SFLD
"TFLD
" CFLD

ll

H

"SEARCHING FOR A RECORD"
;"BY NAME"

"TYPE IN THE FULL NAME"
"IN FIRSTNAME SURNAME ORDEP"

" ; N S (S IZ E)

DATA NS <)
DATA MS ()
DATA SSO
DATA TSO
DATA CSC)

"TELFLD" DATA RSO
"NDXFLD" DATA XSO

INPUT"STOP THE TAPE & HIT 'ENTER'";AS
RETURN

REM *FNDREC* S/R
CLS
IF SRTD=0 THEN GOSUB 5200
PRINT:PRINT
PRINT TAB< 5);
PRINT TAB(12)
PRINT
PRINT TAB(5);
PRINT TAB(3>;
PRINT:PRINT
INPUT"NAME IS
GOSUB 4500
LET US=MS(SIZE)
LET BTM=1
LET TP=SIZE-1
FOR X=1 TO 1
LET MD=INT((BTM+TP)/2)
IF MS(MD)< > US THEN LET X=0
IF MS(MD)< US THEN LET BTM=MD+1
IF MS(MD)> US THEN LET TP=MD-1
IF BTM>TP THEN LET X=1
NEXT X
IF BTM>TP THEN LET CURR=0
IF BTM<= TP THEN LET CURR=MD
IF CURR=0 THEN GOSUB 6400:RETURN
CLS
PRINT
PRINT TAB(9);"*RECORD FOUND*"
PRINT
PRINT"NAME:",NS(CURR)
PRINT"STREET:“,SS(CURR)
PRINT"TOWN:" ,TS(CURR)
PRINT"COUNTY: " ,CS(CURR)
PRINT"PHONE:",RS(CURR)
PRINT
PRINT TAB< 3)
PRINT TAB(3)
FOR 1=1 TO 1
LET AS=INKEYS
IF AS="" THEN
NEXT I
IF ASO" " THEN GOSUB 6200
RETURN

REM *LSTCUR* S/R
LPRINT
LPRINT"NAME",NS(CURR)
LPRINT"STREET",SS(CURR)
LPRINT"TOWN",TS(CURR)

ll

ll

PRESS ANY LETTER TO PRINT"
OR SPACE-BAR TO CONTINUE"

LET 1=0

6250
6260
6270
6280

6400
6410
6420
6430
6440
6450
6460
6470

6600
6610
6620
6630
6640
6650
6660
6670
6680
6690
6700
6710
6720
6730
6740
6750
6760
6770
6780
6790
6800
6810
6820
6830
6840
6850
6860
6870
6880
6890
6900
6910
6920
6930
6940
6950
6960
6970
6980
6990
7010
70 20
70 30
7040
7050
7060
7070
7080
7090
7100
7110
7120
7130
7140
7150
7160
7170
7180
7190
7200
7210
7220
7230
7240
7250
7260
7270
7280

7500
7510
7520
7530
7540
7550
7560
7570
7580
7590
7600
7610
7620
7630
7640
7650
7660
7670
7680
7690
7700
7710
7720
7730
7740
7750
7760
7770
7780
7790
7800
7810

LPRINT"COUNTY",CS(CURR)
LPRINT"PHONE",RS <CURR >
LPRINT:LPRINT
RETURN

REM *NOTREC* S/R
CLS
PRINT TAB(7);“*RECORD NOT FOUND*"
PRINT TAB< 4);"*IN FORM ";NS(SIZE>;
PRINT
REM 'CONTINUE'
GOSUB 3100
RETURN

II

REM *M0DREC* S/R
CLS
PR I NT:PRI NT:PRI NT
LET ES=CHRS 13
PRINT TAB< 6);"*TO MODIFY A RECORD*"
PRINT TAB< 3);“*FIRST LOCATE THAT RECORD*"
GOSUB 5720
IF CURR=0 THEN RETURN
PRINT
PRINT TAB<10 >;"MODIFY NAME ?"
PRINT
PRINT TAB(1);"PRESS 'ENTER' TO ENTER NEW NAME"
PRINT TAB< 2>;“OR SPACE-BAR FOR NEXT FIELD"
FOR 1=1 TO 1
LET AS=INKEYS
IF (ASOES) AND (ASO" ") THEN LET 1 = 0
NEXT I
IF AS=ES THEN INPUT"NEW NAME";NS(CURR>
IF AS=ES THEN LET RMOD=l
IF AS=ES THEN LET SRTD=0
IF AS=ES THEN LET NS(SIZE)=NS(CURR)
IF AS=ES THEN GOSUB 4500
IF AS=ES THEN LET MS(CURR)=MS(SIZE)
PRINT
PRINT TAB(8);"MODIFY STREET ?"
PRINT
PRINT TAB(1);"PRESS 'ENTER' TO ENTER NEW STREET"
PRINT TAB(2);"OR SPACE-BAR FOR NEXT FIELD"
FOR 1=1 TO 1
LET AS=INKEYS
IF (ASOES) AND (ASO" ") THEN LET 1=0
NEXT I
IF AS=ES THEN LET RMOD=l
IF AS=ES THEN INPUT"NEW STREET:;SS(CURR)
PRINT
PRINT TAB(10);"MODIFY TOWN ?"
PRINT
PRINT TAB(1);"PRESS 'ENTER' TO ENTER NEW TOWN"
PRINT TAB(2);"OR SPACE-BAR FOR NEXT FIELD"
FOR 1=1 TO 1
LET AS=INKEYS
IF (ASOES) AND (ASO" “) THEN LET 1=0
NEXT I
IF AS=ES THEN LET RM0D=1
IF AS=ES THEN INPUT"NEW TOWN";TS(CURR)
PRINT
PRINT TAB(9);"MODIFY COUNTY ?"
PRINT
PRINT TAB(2);"PRESS 'ENTER' FOR NEW COUNTY"
PRINT TAB(2);“OR SPACE-BAR FOR NEXT FIELD"
FOR 1=1 TO 1
LET AS=INKEYS
IF (ASOES) AND (ASO" “) THEN LET 1=0
NEXT I
IF AS=ES THEN LET RMOD=l
IF AS=ES THEN INPUT“NEW COUNTYCS(CURR)
PRINT
PRINT TAB(4);"MODIFY PHONE NO. ?“
PRINT
PRINT TAB(1);"PRESS 'ENTER' FOR NEW PHONE NO"
PRINT TAB(2);"OR SPACE-BAR FOR NEXT FIELD"
FOR 1=1 TO 1
LET AS=INKEYS
IF (ASOES) AND (ASO" ") THEN LET 1=0
NEXT I
IF AS=ES THEN LET RMOD=l
IF AS=ES THEN INPUT"NEW NUMBER";RS(CURR)
RETURN

REM *DELREC* S/R
CLS
PRINT:PRINT:PRINT:PRINT
LET ES=CHRS 13
PRINT TAB(6);"*TO DELETE A RECORD*"
PRINT TA6(3);“*FIRST LOCATE THE DESIRED RECORD*"
GOSUB 5720 »
IF CURR=0 THEN RETURN
PRINT
PRINT "DO YOU WANT TO DELETE THIS RECORD ?"
PRINT " *WARNING* - NO SECOND CHANCES !"
PRINT

"PRESS 'ENTER' TO DELETE"
"OR SPACE-BAR TO CONTINUE"

PRINT TAB(5);
PRINT TA8(4);
FOR 1=1 TO 1
LET AS=INKEYS
IF (ASOES) AND
NEXT I
IF AS=" " THEN RETURN
FOR L=CURR TO SIZE-2
LET T=L+1
LET NS(L)=NS(T)
LET MS(L)=MS(T)
LET SS(L)=SS(T)
LET TS(L)=TS(T)
LET CS(L)=CS(T)
LET RS(L)=RS(T)
LET XS(L)=XS(T)
NEXT L
LET RMOD=l
LET SIZE=SIZE-1
RETURN

(ASO" “) THEN LET 1=0

T H E H O M E C O M P U T E R C O U R SE 459

TO
NY

 L
OD

GE

P io n e e rs In C o m p u tin g

:?<■ ft-:-'-, ■ I
T h e w o r ld ’s firs t p ro g ra m m a b le c o m p u te r w a s d e v e lo p e d a t

M a n c h e s te r U n iv e rs ity
■

M a n c h e s te r M a r k 1

H a v in g s u c c e s s fu lly ru n a

p ro g ra m in J u n e 1948, th e

M a n c h e s te r M a rk 1 can c la im to

be th e w o r ld ’s f i r s t s to re d

p ro g ra m c o m p u te r. F e rra n ti,

th e n a lo c a l c o m p a n y , w ere

c o m m is s io n e d to d e ve lo p a

c o m m e rc ia l v e rs io n o f th e

c o m p u te r, w h ic h c a m e o n to th e

m a rk e t in e a r ly 1951

After the Second World War had ended,
Manchester University appointed two new
professors. Following his code-breaking work
with Colossus, the world’s first electromechanical
computer, at Bletchley Park, Max Newman
became professor of mathematics; and a radar
engineer, F C Williams, was appointed head of
electrical engineering. Williams brought with him
a young assistant, Tom Kilbum, who was familiar
with the problems of pulse electronic-memory
devices, which he had encountered in his wartime
work with radar. Kilbum was later to become the
first professor of the new discipline of computer
studies at Manchester University.

During a tour of radar establishments in the
United States in 1946, Williams had been shown
the prototype of the valve computer ENIAC (see
page 46), and on his return to England he
persuaded the Royal Society to invest £35,000 in a
‘Calculating Machine Laboratory’ at Manchester.
The University was not alone in the race to build a
stored program computer. The University of
Pennsylvania was constructing the EDVAC, work
on the EDSAC was under way at Cambridge
University, and the development of the ACE
continued at the National Physical Laboratory
(see page 88). All these other projects, however,
were using a memory store constructed of mercury
delay line tubes. The Manchester team were
building their machine around a memory device
that Williams had invented using a cathode ray
tube (CRT). By the autumn of 1947, Williams had
succeeded in retaining 2,048 bits for several hours.

Using a ‘Williams tube’, the Manchester Mark I
computer successfully ran a program in June
1948, thus becoming the world’s first stored
program computer. The Mark I could execute an
instruction in 1.2 milliseconds. By using a CRT to
store information, the memory had the advantage

460 T H E H O M E C O M P U T E R C O U R SE

of being random access, and the contents of the
main store or the control register could be visually
displayed.

Once the feasibility of using a Williams tube for
memory storage was established, an enhanced
Mark I was built that could perform work on
optics design problems and die generation of
prime numbers. The government chief scientist,
Sir Ben Lockspeiser, was so impressed by the
performance of the computer that he arranged for
a commercial version of the Mark I to be built by a
local Manchester company. The Ferranti Mark I
became available in February 1951, preceding
UNIVAC by five months and establishing itself as
the first commercially available computer.

An important innovation on the Ferranti Mark
I was its ability to modify instructions during
processing using another store called the ‘B’ tube.
At the required moment this could add its contents
into the control register and thus modify the code
of the original instruction. This principle speeded
up the processing of programs. IBM used some of
the Manchester patents in their early computers,
and on a visit to their corporate headquarters in
New York, where the company motto (THINK)
was emblazoned everywhere, Williams was asked
how the Manchester team had succeeded in
building a computer where all the resources of
IBM had failed. ‘We just didn’t stop to think too
much!’ Williams quickly replied.

The arrival of Alan Turing (see page 200) at
Manchester in 1948, greatly stimulated
programming activities. In 1950 Turing produced
the first Manchester programming manual. Two
years later, the Manchester team had the idea of
building a more compact and economic
computer. Their plans were accelerated by the
invention of the transistor, and in November 1953
the world’s first transistor computer became
operational at Manchester.

The late 1950’s saw America surging ahead in
computer technology, resulting in the British
government’s decision to invest in a project that
would help Britain regain the lead. The Atlas
computer, built under the direction of Tom
Kilbum, was commissioned in December 1962. It
used a 48-bit word with single address format, a 16
Kbyte main store and an eight Kbyte read-only
drum memory. Models were sold to the Atomic
Energy Research Establishment at Harwell, and
British Petroleum, and for many years the Atlas
computer was considered to be the most advanced
in existence.

H o m e c o m p u te r s . D o t h e y s e n d y o u r b r a in t o

s l e e p - o r k e e p y o u r m in d o n its to e s ?

A t S in c la ir , w e 'r e in n o d o u b t . T o us , a

h o m e c o m p u t e r is a m e n t a l g y m , a s

im p o r t a n t a n a id t o m e n t a l f i tn e s s a s a s e t o f

w e ig h t s t o a b o d y - b u i ld e r .

P r o v id e d , o f c o u rs e , it o f fe r s a w h o le

b a t t e r y o f g e n u in e m e n t a l c h a lle n g e s .

T h e S p e c t r u m d o e s ju s t t h a t

Its e d u c a t io n p r o g r a m s t u r n b o r in g

c h o r e s in t o a b s o r b in g c o n te s ts - n o t le a r n in g

t o s p e ll 'a c q u ie s c e n t , b u t r e s c u in g a p r in c e s s

f r o m a s o r c e r e r in c o lo u r , s o u n d , a n d

m o v e m e n t !

T h e a r c a d e g a m e s w o u ld t e s t a n

a l l - n ig h t a r c a d e f r e a k - t h e y 'r e v e r y fa s t , v e r y

c o m p le x , v e r y s t im u la t in g .

A n d t h e m in d - s t r e t c h e r s a r e t r u ly

f ie n d is h . A d v e n t u r e g a m e s t h a t v e r y f e w

p e o p le in t h e w o r ld h a v e c r a c k e d . C h e s s t o

g r a n d m a s t e r s ta n d a r d s . F l ig h t s im u la t io n

w i t h a c o c k p it fu l l o f in s t r u m e n t s o p e r a t in g

in d e p e n d e n t ly . G e n u in e 3 D c o m p u t e r d e s ig n .

N o o t h e r h o m e c o m p u t e r in t h e w o r ld

c a n m a t c h t h e S p e c t r u m c h a l le n g e - b e c a u s e

n o o t h e r c o m p u t e r h a s s o m u c h s o f tw a r e o f

s u c h o u ts ta n d in g q u a l i ty t o ru n .

F o r t h e M e n t a t h le t e s o f t o d a y a n d

t o m o r r o w , t h e S in c la ir S p e c t r u m is g y m ,

a p p a r a t u s a n d t r a in in g s c h e d u le , in o n e n e a t

p a c k a g e . A n d y o u c a n b u y o n e f o r u n d e r

£100. m i l l

§SK
m

m
mmPit mm

it!

i

