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Com puters have many 
applications in the world of 
gam bling. Pools program s
are even available for hom e 
com puters

Gambling is all about probability, although most 
gamblers would prefer to say that it was about 
winning. Such an assertion is unfounded, of 
course, for the vast majority of gamblers lose 
consistently, and sometimes heavily. They do so 
largely because the odds are against them and in 
favour of the casino, the bookmaker and the pools 
operate* . To evaluate whether computers could 
help to redress the balance we must first consider 
these odds.

Stripped of their outward trappings, all games 
of chance boil down to betting on the outcome of a 
chance event. Usually this is generated by some 
random device, such as a ball spun in a roulette 
wheel, or a card drawn from a carefully shuffled 
pack. If the parameters — the number of cards, say 
— are known, probability theory permits certain 
predictions to be made about the likelihood of the 
chance event occurring. For example, the roulette 
wheel used in British casinos has 37 slots 
numbered from 0 to 36. There are thus 18 odd and 
18 even numbered slots into which the ball might 
fall, plus the zero. The probability of the ball 
landing in a slot bearing an odd number can 
therefore be expressed as 18/37, or 0.4864864, or 
a little better than 48.6%. This is somewhat less

than the evens chance of a coin landing head 
upwards; the difference, accounted for by the 
presence of the zero slot, representing the house’s 
‘edge’ or profit margin.

It is this ‘edge’ that makes games of chance, and 
most other forms of gambling, so unrewarding. 
Despite the claims occasionally advanced by 
purveyors of gambling systems, there is nothing 
that a computer can do to improve the basic odds 
in a given game. Indeed, one leading authority, 
Professor Hans Sagan, has calculated that in the 
long run it is impossible to win at any casino game, 
except possibly blackjack (also known as 
vingt-et-un).

Such theoretical objections have failed to 
discourage enthusiastic inventors, and home 
computer owners are now being offered a variety 
of allegedly fool-proof gambling systems, some of 
which even appear to work. In the case of casino 
gaming systems, these almost invariably prove to 
be variations on ‘doubling up’, a procedure that 
suffers from the disadvantage of requiring an 
infinite amount of stake money to succeed. There 
is a further problem as well: though not technically 
illegal, the management of casinos both in the UK 
and USA will not allow computers of any kind to 
be used. Computers are arguably of greater assist­
ance where skill or strategy are involved. The 
computer can be used to instil the necessary 
discipline into the player, and to act as a memory 
aid. However, the value of such assistance tends to 
be in inverse proportion to the skill of the player.

Unfortunately, the skill element involved in 
most popular forms of gambling is minimal.

A Day At The Races
Horse racing is an interesting 
application of home computers, 
but strictly for those who know 
what they are doing. At least 
one breeder makes use of an 
Apple II microcomputer to keep 
a database of the lineage of all 
his horses, thereby using the 
computer to attempt to produce 
winners
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Football pools offer a case in point. The most 
sophisticated pools prediction program is 
Professor Frank George’s celebrated F4 Football 
Forecast, which is available in versions suitable for 
most popular home computers. Based on ten 
years of statistical analysis, the program attributes 
a value to the average performance of each team. 
When adjusted by weighting for long term form 
(drawn from the league tables), short term form, 
and last match result, a comparison of these 
performance figures enables the program to 
predict the probable result of a given match.

With Liverpool playing at home to Brighton, 
the result might be a foregone conclusion, but the 
program comes into its own when predicting the 
outcome of a game between more evenly matched 
teams. This is not to say that this system is a sure­
fire winner. Statistical analysis suggests that using 
Professor George’s program approximately 
trebles the probability of success. ‘I concede that 
the chances against winning are still huge, but 
surely it is better to gamble as intelligently as you 
can?’ he asks.

Even given this assistance, the odds remain 
unfavourable. Littlewoods, one of the largest of 
the pools promoters, say that none of their big 
prizes has ever been won by anyone who had used 
a personal computer. ‘If there was a system that 
really worked, we would know about it, and there 
isn’t,’ states Littlewoods’ spokesman, Tony 
Hodges. Although entry marking is done using 
special automatic machines, the company itself 
use computers only for record keeping.

Horse-racing appears to offer, if anything, even 
greater scope to the programmer. One Darlington 
schoolboy has created a home computer program 
to forecast winners. Originally written for the 
Sinclair ZX-81, and now upgraded to run on the 
Spectrum, David Stewart’s program has been 
successful a number of times. Although David’s 
tips are broadcast by several of the BBC local radio 
stations, he has not amassed a personal fortune.

Wheeling And Dealing
On a roulette wheel it is the 
number zero that provides the 
profit for the casino. Nothing 
can be done to improve the 
player’s basic odds, so 
programs devised for such 
games must concentrate on 
system s for betting

Perhaps significantly, racing professionals have 
largely rejected the use of computers. Official 
handicapping is still done manually by the Jockey 
Club (although the data is stored on computer). 
Timeform, the bible of the racegoer, also compiles 
most of its data manually. ‘We only use the 
computer for calculating the standard time figures 
for each horse, taking into account wind

Pooled Resources
Several packages are available 
for home computers that claim 
to improve your chances at 
winning the pools, and a great 
many programmers have 
attempted to write their own. 
The better ones make use of a 
vast database of information on 
previous matches, and can

prove valuable in predicting the 
outcome of marginal matches. 
As with all forms of Computer 
Assisted Gambling (CAG) such 
programs can only increase 
your chances marginally, and 
packages thus come complete 
with disclaimers from the 
suppliers

deflections,’ explains the publication’s Managing 
Director, Reginald Griffin. ‘There is no such thing 
as a true computerised handicapping system 
available anywhere. The problem is that 
computers simply can’t cope with the 
extraordinary results that crop up every day.’

Computers are increasingly used on the other 
side of the betting shop counter, although not for 
calculating the odds. Staff employed by the large 
bookmaking chains are trained to use special 
dedicated calculators for computing the returns 
on bets. The credit side of the business is becoming 
increasingly computerised. A  punter with an 
account at one of the chain bookmakers can 
simply telephone his bet direct to their computer 
centre. The details are keyed in and the account 
debited with the value of the bet. If the chosen 
horse performs as anticipated, the winnings are 
calculated and credited to the customer’s account 
file.

Most bookies are sceptical of computer 
systems. ‘No one has ever come up with one that 
wins consistently — or we wouldn’t be here’ says 
William Hill’s spokesman, Graham Sharpe. 
Nonetheless, it was his firm that staged one of the 
most extraordinary and controversial computer 
simulations of all time. Form details of the classic 
Derby winners of the past were incorporated into 
a specially commissioned program. Newspaper 
readers were then invited to predict the first six. 
The controversy arose over the placing of the great 
Italian horse, Ribop, which never lost a race. The 
computer placed it fourth!

Perhaps the most famous ‘gambling’ computer 
of all is ERNIE (Electronic Random Number

___ X

Indicator Equipment), the machine that picks the 
winning premium bond prize numbers. It is 
arguable whether ERNIE is really a computer at
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all; but although it is not programmable, it does 
execute a program. The machine was developed 
by Plessey in 1973 to replace the original machine, 
built in 1957. Its function is to randomly generate 
some 200,000 numbers and write them onto 
magnetic tape. These numbers are generated from 
a series starting at the lowest premium bond serial 
number ever issued, and ending with the highest. 
The tape is then loaded into an ICL mainframe 
computer, which compares the numbers with a 
tape listing the numbers of those bonds that have 
already been repaid. Once these ineligible 
numbers have been eliminated, the computer can 
print out prize warrants and letters to the winners.

Since commissioning, the two ERNIEs have 
generated the numbers for 22.2 million prizes 
worth £1,181,843,400. Sounds good? Not really; 
the chance of a bond winning a prize in the 
monthly draw is just one in 15,000.

Another often encountered game of chance 
appears daily in our newspapers. The chances of 
winning one of the million pound prizes offered in 
newspaper promotions is even more remote. The
numbers on the cards distributed to readers are 12 
digits long. A 12 digit sequence running from 
000000000000 to 999999999999 offers a million 
million separate combinations. Statistically, the 
odds against a particular number coming up on a 
given morning would be slightly better than a 
million million to one, since the newspaper 
concerned publishes two numbers each day. On 
this basis, it must be extremely doubtful whether

the newspaper will ever have to pay out the big 
prize.

The situation can best be visualised Dy 
imagining a bag containing two and a half million 
white balls, representing the competitors (the 
number of cards in circulation), and a million 
million black balls for the total number of possible 
combinations. Needless to say, the chances of 
pulling a white one out the first time are pretty 
remote. Moreover, the odds do not significantly 
improve even when a year’s worth have been 
pulled out. Statisticians compute the chances of 
the newspaper ever having to part with a million 
pounds at just one in 667.

Twist Of Fate
Pontoon (blackjack or ‘vingt-et- 
un’) is available as a game on 
most home computers, and 
provides some of the best scope 
for writing winning programs. 
The ability to memorise the 
cards already played increases a 
player’s chances of success, 
though as casinos won’t allow 
computers at the tables, the 
celebrated feats have all 
involved concealed computers 
(in one case strapped to a 
player’s leg underneath his 
trousers) or radio links to 
external machines

1

Loading The Dice
Gambling’s most essential ingredient, random 
number generation, can be easily simulated on 
a personal computer. Most versions of ba sic  

provide a random number generator function. 
In many cases the numbers so generated are not 
truly random, however, as the following short 
program demonstrates:

10 LET A= RND 
20 LET B = RND 
30 LET C = RND 
40 PRINT A, B, C

In each of the first three lines a supposedly 
random number is assigned to the variables A, B 
and C. These are then printed out. This might 
give the following results (expect yours to differ 
though):

; .014007 .964370 .457397

But if you re-run the program, most 
microcomputers will display the same sequence 
again. What is happening is this: when we ask 
for R N D, the computer responds with the next in 
a fixed sequence of numbers. Typically this 
might comprise the one million six-digit 
fractions between 0.000000 and 0.999999, 
each occurring once in the complete cycle — 
but not, of course, in sequence.

Certain b a sic s  use a slightly different syntax, 
requiring an expression in parenthesis, called 
an ‘argument’. This takes the form LET A = RND 
(X). The effect is very similar: RND and RND (X) 
can both be used in the same way as other 
variables.

Some b a sic s  also feature a RANDOMIZE 
function, which causes the sequence to start at 
an unpredictable point. Inserting the 
RANDOMIZE command early on in any program 
where R N D is to be used ensures that a different 
sequence of numbers will be generated each 
time the program is R U N.

To simulate the casting of a dice we require 
integers in the range 1 to 6. It is, however, 
necessary to eliminate fractions. This is done by 
using the INTeger function. PRINT INT(6.99) 
produces the result 6 just as surely as PRINT INT 
(6.01) does. Anything after the decimal point is 
entirely discarded.

Since the largest number that RND can 
generate is .999999 (which, when expressed as 
an integer, acquires a value of 0), a little 
multiplication is required. The time honoured 
formula is:

LET A = INT(6*RND)+1

We multiply by six because a die has six faces. 
The ‘plus one’ is simply to ensure that the results 
range from 1 to 6, and not from 0 to 5.
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Continuing our introduction to m achine code, we look at the m any  
different form s in which program s can be expressed — from  binary  
to Assem bly language

One of the conceptual difficulties that most 
newcomers experience with machine code is that 
the programs can take various forms. Any data 
stored in computer memory ultimately takes the 
form of eight-bit binary numbers. However, when 
these are listed out on paper, they occupy a lot of 
space, are difficult to read and remember, and are 
prone to typing mistakes. So instead we usually 
make use of hexadecimal numbers. This has the

Addressing M odes
Among the most powerful 
concepts in machine code 
programming are the 
addressing modes — the 
different ways of retrieving 
data

23A0
23A1
23A2

* • • •••»••••••

LD A  U $ 6 T }

LD A  $23A1

05
•r-:

• • • •
• • • •.• • • • • • • • • • •

I"JV? .•
• «■ • • •• • • • •

Immediate Mode
LDA #$01 will load the actual 
v a lu e d  (hex) into the 
accumulator

Direct Mode
LDAS23A1 will load the 
contents of the byte of memory 
at location S23A1 into the 
accumulator

05

LD A  $23A1 ,X

04 X Register

23A1
23A2
23A3
23A4
23A5

-
• • • • • • • •*

09
40

• • • •••••.• •••••» • • • • •
•*•*•*•*•*•*•*•*•*•*•*•*•
• ••••••••••••. . . . . . . . . . .

• • •  • • • •

Indexed Mode
LDA S23A1.X will load into the 
accumulator the contents of 
the byte with the hexadecimal 
address computed by adding 
the value in the X register to 
S23A1. Thus if X contains $04, 
the contents of location $23A5 
will be loaded

09

Indirect Mode

advantage that the contents of any byte can be 
expressed as a two-digit number, and any address 
in the computer’s memory range (0 to 65535 in 
decimal) can be represented by four digits.

When we write a hex number on paper we 
usually precede it with a $ sign to distinguish it 
from a decimal number, although the sign does 
not feature in the computer’s memory when the 
program has been entered. Secondly, when an 
opcode has a two-byte operand (e.g. LDA $3F80) 
the two bytes are entered into the machine in the 
opposite order — i.e. the low byte followed by the 
high byte. In the example given, therefore, the 
three bytes would be AD (the hex representation of 
the LDA opcode in 6502 language) followed by 80, 
followed by 3F. This makes things easier for the 
processor, but it can be confusing for the user.

Usually a machine code program is printed as a 
‘hex dump’ — a long list of two-digit hexadecimal 
values. In addition, a starting address will be given 
(either in hex or decimal) and the first hex value 
must be loaded into this location, the second into 
the next location, and so on. Loading can be 
achieved by means of the ba sic  POKE command. If 
the starting address is $1000 (4096 in decimal) and 
the hex dump is:

AD (173 in decimal)
80 (128 in decimal)
3F (63 in decimal)

the program can be loaded with the three ba sic  

statements:

POKE 4096,173
POKE 4097,128
POKE 4098,63

Note how we have to convert all the values from 
hex to decimal before they can be used in the 
POKE statement — inside the machine they will be 
stored in binary.

For longer hex dumps it is normal to use a short 
b a sic  program called a ‘machine code loader’. 
This asks for the start address and then the hex 
values. As each is entered, the short ba sic  routine 
converts the hex value to decimal, and POKEs it 
into the next location. Alternatively, the hex 
dump can be READ by the. program from DATA 
statements.

Once the machine code has been loaded, the 
b a sic  loader program can be dispensed with. It’s 
therefore important to load the machine code 
somewhere in memory where it won’t be 
‘trampled over’ by the ba sic  program, nor be
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obliterated by ba sic  statements such as N E W.
Most home computers have some basic  

command to tell the machine to stop executing 
b a sic  and begin executing the machine code 
program that starts at a specific location. One 
form of this command is SYS 4096 (RETURN), 
meaning ‘transfer control to the system starting at 
decimal location 4096’; another is CALL $E651, 
meaning ‘call the machine code routine starting at 
hex location E651

The machine code subroutine or program will 
then execute this system or routine (it may or may 
not produce any visible results, depending on the 
nature of the program). If it is correctly written 
and incorporates the proper terminating 
procedure, control will be passed back to b a sic . 

This means, incidentally, that it is possible to call 
machine code subroutines from several places in 
the operation of a ba sic  program, whenever a 
function needs to be performed at high speed.

One of the difficulties of programming in 
machine code is that if you have made a mistake 
in your code, the computer won’t come back with 
a nice helpful SYNTAX ERROR. It will more than 
likely ‘crash’ instead: the machine won’t respond 
to anything you type. This isn’t harmful to the 
computer, but you will have to reset it (oi; switch 
the machine off and then on again), and that 
usually means having to enter the program again 
from scratch. That’s why you can’t experiment in 
machine code as you can in ba sic  — the operation 
of the program must be thoroughly checked on 
paper before it is entered into the computer.

However, a software device that can assist 
greatly in the entering and checking of machine 
code is the ‘machine code monitor’ (which has 
nothing to do with a monitor screen). This is built

into the ROMs of a few computers but is 
generally purchased as a cassette or cartridge- 
based package. A machine code monitor is a 
simple operating system that will display on the 
screen the contents of any requested section of 
memory. These (hex) values can simply be altered 
or written over, so a monitor is by far the fastest 
way of entering a hex dump. Moreover, it usually 
allows you to load and save machine code 
programs directly onto cassette, without the need 
for the ba sic  loader program. The most advanced 
machine code utility programs (the machine code 
equivalent to ba sic  tool kits — see page 444) show 
the contents of each of the processor’s internal 
registers.

Hex dumps are a convenient way of expressing 
machine code, but they aren’t easy to read. Unless 
you happen to remember the hexadecimal 
equivalent of all the various opcodes, it’s almost 
impossible to distinguish the opcodes from the 
operands. So programs are usually written using 
the three-letter mnemonics that we introduced in 
the previous article (page 449), and these are then 
translated into hex using a table of codes from the 
microprocessor’s handbook.

However, a more sophisticated form of 
machine code monitor will allow you to type in 
the program in mnemonics, performing the 
conversions automatically. This is called a ‘spot 
assembler’ because it will assemble the 
mnemonics into numbers on the spot.

This leads us on to the final form in which 
machine code can be expressed — Assembly 
language — which not only makes use of 
mnemonics for the opcodes but can handle names 
(or labels) instead of hex numbers for the 
operands. Thus, if location $07B2 contains the 
current number of missiles fired in a game,-we can 
load this into the accumulator with the 
instruction:

LDAMISSIL

At the start of the program we will have to specify 
the location of MISSIL=$07B2, and that this 
location should initially contain the value of $09 
(nine missiles).

When we have finished developing this 
program in Assembly language (called the ‘source 
code’ of the program), we run a utility program 
called an assembler. TTiis works through the code, 
replacing mnemonics and any labels with their 
hex equivalent, thereby creating a new version 
called the ‘object code’. This code can then be 
entered into the computer’s memory and run. The 
process is not dissimilar to compiling (see page 
84), though in this case there is a one-to-one 
correspondence between the source and object 
code.

Assembly language, being a higher-level 
language than machine code, is considerably 
easier to write, but there is no loss in performance. 
However, assembler packages will usually only 
work with a disk drive, and so are not available to 
all home computer users.

Opcodes
Here are some more opcodes 
that a typical microprocessor 
would feature

JS R
Jump SubRoutine
This function is equivalent to 
BASIC’s GOSUB. JSR $354D 
will change the contents of the 
program counter (PC) register 
so that it executes the code 
from $354D onwards

R T S
ReTum from Subroutine
On encountering RTS, the 
processor will jump back to the 
location from which the 
subroutine was called (i.e. 
equivalent to RETURN in 
BASIC). RTS has no operand 
because the return address will 
have automatically been stored 
in a special area of memory 
called the Stack

B M I
Branch if Minus
This is one of several forms of 
conditional branching in 
machine code (in BASIC,
IF. . .THEN GOTO is a 
conditional branch). If the 
result of the last operation 
resulted in a negative value in 
the accumulator, program 
execution will jump to a 
specified address. BPL 
specifies Branch if PLus

L D X
LoaO X register
X is another single byte 
register within the processor, 
and while it cannot perform 
arithmetic in the same way as 
the accumulator, it is used for 
‘indexed addressing’ (see 
panel). LDX loads a value into 
X, and STX (STore X) will store 
it back in memory

IN X
INcrement X
By adding 1 to the value of X 
(DEX — DEcrement X — will 
subtract 1), and using indexed 
addressing, it is possible to 
step through a number of 
locations in memory, 
performing the same process 
on each
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Hom e com puters have 
developed enorm ously over the  
last five years, but w hat will the  
next five years bring? Com pare  
our ideas with your predictions

What will the home computer of the 1990’s look 
like and how will it function? These are the 
questions that this section will attempt to answer, 
by considering in turn some of the main 
components and systems of tomorrow’s machine. 
Many of the ideas are based on technologies that 
are just coming on the market (perhaps in other 
fields than computing), while others represent 
what we believe to be likely developments.

One of the most fundamental features of our 
hypothetical design is modularity. Having 
purchased the base unit, the user will have a wide 
range of options for expanding the machine. 
Indeed, the user will virtually be able to design his 
own machine by selecting this graphics module 
and that sound facility. Of one thing we can be 
sure: the rate of change in the computer 
marketplace will continue to accelerate for many 
years to come.

The 32-bit m icroprocessor’s 
power will allow the display of 
information in a number of 
forms simultaneously. For 
instance, the main screen might 
show the view from the 
command seat of a spacecraft, 
while a subsidiary screen 
mounted on top of the 
keyboard/command console 
might display control 
information from the cockpit

Projector televisions have been 
available since the beginning of 
the 1980’s, but their scope is 
limited by the light-emitting 
power of the cathode ray tube. 
Advances in CRT technology are 
likely to bring us room-wide 
projection systems. Early 
projector televisions had to 
make use of special curved 
screens, but the latest models 
can already focus onto a flat 
surface

2 Keyboard

Despite the innate inefficiency of 
the QWERTY keyboard, it is 
unlikely that serious attempts 
will be made to establish an 
alternative layout. Fully sprung 
typewriter-style keys are by far 
the most popular — though Hall 
effect keys, which use magnets 
instead of springs, are likely to 
become commonplace. The 
electronic switches themselves 
may well be replaced by a 
system that relies on the keys 
interrupting a matrix of laser 
beams
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4 Alternative Processors

In addition to the main 32-bit 
processor, it is likely that the 
micro of the 1990’s will be host 
to additional processors in the 
form of plug-in modules. Some 
of the processing — for 
example, the operation of a 
particular peripheral or sorting a 
file of data — can then be 
‘subcontracted’ by the main 
processor to the most suitable 
sub-processor. Alternatively, 
inexpensive plug-in modules 
could emulate the classic 
computers of the 1980’s, so that 
software from any other 
computer could be run without 
modification

5 Random Access Memory

The 32-bit processor can 
address up to alm ost 4,300 
million memory locations — a 
far cry from the 65,536-byte 
limit imposed by the eight-bit 
processors that brought 
microcomputers into the home

6 Communications

While dish aerials for the 
reception of signals from 
satellites will be commonplace 
by the 1990’san d  most 
telephone channels will be 
digitised, rather than relying on 
analogue signals, there will still 
be a need to regulate the speed 
of transm ission and reception. 
These communications 
controllers will perform some of 
the control functions.of today’s 
modulator/demodulators

The increased load and the 
multiplicity of devices 
connected to the microcomputer 
are likely to require a 
significantly greater power 
supply than those in use today.
It will incorporate smoothing 
circuits and rechargeable battery 
back-up, so that mains 
fluctuations or power failures do 
not cause data to be lost or 
corrupted

8 Portable Screen

Flat-screen technology — 
probably involving a fast-acting 
liquid crystal matrix and 
perhaps connected to the 
central processor by an infra-red 
(or even microwave) link — may 
be employed to display text and 
graphic matter. If this device 
were touch-sensitive, too, it 
could double as a menu- 
selection board and bit-pad or 
digitiser

In s ig h ts

The Compact Disk ROM, which 
uses a laser beam to read 
optically-encoded information, 
is likely to replace conventional 
ROM cartridges because of its 
much greater capacity — a 
typical CDROM will hold four 
megabytes

By the end of the decade floppy 
diskettes should have evolved to 
compete directly with 
Winchester disks, both in speed 
and data-packing densities. At 
the same time they should 
reduce in diameter to less than 
the current minimum of 3 ins

11 Front Panel

On the early computers, before 
the advent of high-level 
languages and keyboards, 
programs had to be entered in 
binary notation by means of the 
front panel — a line of lights and 
switches giving the user control 
over every bit of the address, 
data and control buses. For 
experienced machine code 
enthusiasts, a front panel can 
still be a useful tool, so this idea 
might re-emerge on future home 
computers.

12 Infra-Red Mice

The IBM PC-Junior already 
makes use of infra-red radiation 
to transfer data from keyboard 
to computer without a cable 
link. This technology could 
provide the interconnection 
between all peripherals, 
including mice, thereby 
eliminating the ‘spaghetti 
effect’. Both left-and right- 
handed models will, of course, 
be available

13 32-Bit Microprocessors

The first 32-bit microprocessor- 
based home computers 
appeared in 1983, but were 
forced to rely on 16- or even 
eight-bit data buses to maintain 
compatibility with existing 
memory and peripheral chips, 
and thus could not deliver the 
power they promised. With the 
introduction of devices such as 
Motorola’s 68032 chip, which 
offers 32-bit processing and 
32-bit data transfer, the speed 
and data-handling capabilities 
of these large-capacity 
microprocessors will become 
the accepted standard. Many 
minicomputers costing tens of 
thousands of pounds have 32- 
bit processors
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With the introduction of VLSI technology, we are now about to enter 
the Fourth Generation of com puters. But the Japanese are already  
specifying the Fifth Generation

.
•* :

Old men do not create revolutions, as the saying 
goes, and the director of the Japanese project to 
create the Fifth Generation of computers seems to 
have taken that to heart. In choosing 40 scientists 
from ten major corporations and government 
laboratories to work with him at the Institute for 
New Generation Computer Technology in Tokyo, 
Dr Kazuhiro Fuchi selected only those under the 
age of 35. The Institute was founded on 14 April 
1982 with a sum of £330 million (to be spent over 
ten years), and is a joint venture between 
government and industry. Companies such as 
Fujitsu, Sharp and Toshiba are taking part in this 
ambitious project, which intends to leap over the 
present state of computer technology and create 
machines far in advance of those that are presently 
being designed.

The coining of the term ‘Fifth Generation’ has 
itself focused attention on the major advances in 
computer design in the past, and stimulated 
imaginative possibilities for the future. The first 
generation of computers were characterised by the 
use of thermionic valves, but these were made 
obsolete by the invention of the transistor. Second 
generation transistor computers were in turn 
superseded by machines using Large Scale 
Integration (LSI) technology, which allowed many 
transistors to be built into a single chip. We are at 
present at the end of this third generation of 
computers, but the late 1980’s should see the 
fourth generation of VLSI chips become available. 
These Very Large Scale Integrated chips will have 
up to ten million transistors per chip, compared 
with the current limit of approximately a quarter of 
a million.

At present, International Business Machines 
annually spend over £1.1 billion on computer 
research and development, which makes the 
Japanese investment seem insignificant in 
comparison. The Japanese capital outlay is not 
purely profit-motivated, however.

The focus of science has shifted over the last 
hundred years from the harnessing of raw energy 
(in forms as various as electricity and the internal 
combustion engine) to the study of the most 
intangible form of wealth — information. Land, 
labour, capital and industry may have been the 
source of power in the past, but the future will 
favour those in control of information. 
Knowledge and the processing of information will 
be the keys to post-industrial society. So what is 
needed for this new society is an engine, a machine 
with automatic reasoning that can be applied to

any factual problem or area of human endeavour 
with the mathematical precision and certainty of a 
computer. The engine that is currently being built 
by the Japanese is called a Knowledge and 
Information Processing System, or KIPS.

Humans are very good at converting sensory 
signals into cognitive forms — the state of play in a 
game of chess can be seen at a glance — but when it 
comes to taking decisions that depend on large 
amounts of data we soon discover our limitations. 
The rules of chess can be explained in a few 
minutes, yet the game is so complex that 
grandmasters see only a dozen moves ahead. 
However, in principle every problem to which 
reasoning applies can be broken down into a series 
of simple steps, each of which can be decided by 
applying rules of inference. This set. of rules is 
known as predicate logic. Logical rules of 
inference apply to all problems, but for simple 
everyday decisions we aren’t conscious of them.

An expert needs more than a good brain — in 
the case of a doctor many years of training are 
required to accumulate medical knowledge. In the 
same way, a KIPS must have a data bank on which 
the rules of inference can operate. Furthermore, 
the system must be extremely user-friendly if the 
KIPS is not to demand its own breed of experts to 
operate it. A KIPS machine with which you can 
hold a conversation in the language of your choice 
must be a product of research into artificial 
intelligence — which is an extremely contentious 
area of study. Thus the targets that the Japanese 
have set themselves embrace a wide range of 
computer sciences: hardware, software,
interfaces, expert systems (see page 72) and the 
problems of artificial intelligence.

The Japanese project has been conceived to 
look beyond advances in chip technology. As the 
density of transistors in integrated circuits 
increases, electrons have less distance to travel 
between each component, and hence the circuits 
will operate faster. However, the Japanese realise 
that mere speed is not enough, which is why so 
much effort is being put into the software. In a

»
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game of chess, for example, there are so many 
possible sequences of moves (about 10120) that it 
has been estimated that the time needed to explore 
all the possibilities exceeds the remaining lifetime 
of our sun. The project has a target of producing a 
machine that can make 100 million logical 
inferences (i.e. can apply 100 million rules) per 
second. This is referred to as 100 million LIPS 
(Logical Inferences Per Second).

Another way in which speed could be improved 
would be by hard-wiring the software functions 
into the design of the chip, instead of loading them 
into memory and processing them by means of a 
general purpose chip. This erosion of the 
distinction between hardware and software is one 
of the most interesting aims of the project. There 
already exist ‘associative’ memories that have 
logical search circuits built into the memory cells. 
These devices can locate a piece of data from the 
meaning of the data alone — without the need to 
specify a memory address.

Such advances will speed up the interaction of 
the logical processors with the data banks. Hard­
wiring programming routines into a computer is 
reminiscent of early computers such as ENIAC 
(see page 140), but the Fifth Generation machines 
will diverge from the architecture of von Neumann 
in one fundamental respect. They will feature 
many distinct processors all working 
simultaneously (in parallel), rather than having 
just one central processing unit. This requires 
much more care in the timing and control of 
internal operations but will remove the restriction 
on speed that the sequential execution of 
instructions imposes. The internal language 
chosen for the KIPS is Pr o l o g , which is a language 
developed in France and Britain and based on 
predicate logic. But KIPS will have the ability to 
communicate in many tongues with its users.

Translation of continuous human speech is 
another of the project’s goals, with an immediate 
aim of 95 per cent accuracy. At present the ability 
to recognise even individual words from different 
speakers lags far behind the manifest success of 
synthetic speech. However, the NEC Corporation 
of Japan has already succeeded in creating a 
machine that can recognise continuous speech. A 
limitation of this system is that it can recognise the 
voice of only one individual, and each word must 
be previously recorded so that the computer can 
remember and later recognise the speech pattern.

As to the written word: the project is preparing a 
100,000 word Japanese/English dictionary and 
program that it is hoped will permit a translation 
accuracy of 90 per cent.

Japan has precedents in successful long-term 
research projects: the PIPS (Pattern Information 
Processing Systems) project of the 1970’s is 
proving useful in the development of visual data 
banks and user-friendly interfaces. A KIPS will 
have to be able to look at an image and extract the 
salient features and outlines in order to make any 
preliminary sense of it. On the Tokyo 
underground there is already a machine that can

do this: it scans passageways with a video camera 
and produces a flow pattern of passengers through 
the subway system.

Information technology represented an $88 
billion business in the USA in 1983, and with 
employment in the manufacturing industry likely 
to decline in the same way as that in agriculture did 
earlier this century (from 40 per cent of the work­
force on the land at the turn of the century to three 
per cent today), the community will move further 
towards an information society. In the light of this, 
Japan is doing something very ambitious with its 
Fifth Generation project. The plan is optimistic 
and includes a number of ‘scheduled’ 
breakthroughs that may or may not materialise 
(after all, the expected breakthrough in controlled 
nuclear fusion is still awaited). But it is a positive 
approach from a trading nation not dissimilar to 
our own. However, unlike Britain, whose 
investment in research and development has fallen 
over the last decade (from 2.32 per cent to 2.09 
per cent of the GNP), Japan is speculatively 
investing in the future.

G eneration
Game
Round One
The first generation of 
electronic computers was 
developed around the 
technology of the thermionic 
valve. They had very little in 
the way of on-line memory, 
and data was generally stored 
on punched cards
Round Two
The second generation 
evolved out of the transistor, 
which increased the memory 
capacity, though off-line 
storage (in the form of 
magnetic tape) was still used
Round Three
The invention of the integrated 
circuit increased computer 
power dramatically, and was 
ultimately responsible for the 
microcomputer — 
characterised by the floppy 
diskdrive
Round Four
We are now moving from the 
third to the fourth generation, 
which will be based on VLSI 
chip technology. The RAM 
memory will be so large that 
off-line storage will become 
less important
Round Five
The Fifth Generation of 
computers, being developed 
primarily in Japan, is really 
concerned with software 
rather than hardware.
However, it is based on the 
assumption that user memory 
will be so large that program 
size will cease to be a 
consideration
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A robust physical construction  
and superb high resolution  
graphics have m ade this 
m icrocom puter very popular in 
schools and with the m ilitary

The products of Research Machines Limited 
represent one of the most enduring classes of 
computer available. Although these machines are 
not particularly innovative, nor especially 
competitively priced, they are extremely solidly 
designed and constructed, well-supported and 
extraordinarily reliable. The company’s most 
popular computer, the RML 380Z, won’t be 
found in many homes but, as one of the most 
common educational machines, it represents for 
many children their first experience of computing.

Compared with most machines the 380Z is 
huge: the main circuit boards are kept in a robust 
19 inch (48cm) wide casing, complete with 
handles at the sides. Removing the lid of this ‘black 
box’ reveals why it’s so big, as nearly a quarter of 
the space inside is taken up by the power supply. 
Though sheathed in metal, its weight makes it 
clear that this is not an advanced switching-type 
power supply unit, but a solid iron-cored 
transformer with enormous capacitators. This 
may seem old-fashioned, but it has the 
considerable advantage of being almost 
impossible to overload or otherwise damage.

It is perhaps this reliability that has made the 
380Z popular at the Ministry of Defence, where a 
large number are used for stock control and similar 
chores. In those schools and colleges that offer 
higher-level maths, physics and science, the 
machine is particularly favoured for its high 
resolution graphics, which prove useful for 
pictorial demonstrations of various aspects of the 
curricula.

The High Resolution Graphics (HRG) package 
is a set of machine code routines that are called 
from the user’s program, and which can alter the 
display generated by the HRG card. This must be 
present in order to produce graphics at all; and 
although it was originally introduced some years 
ago, it remains one of the better systems available. 
By altering the contents of certain memory 
locations the card can generate displays at several 
resolutions in the normal colours (red, yellow, 
green, blue, magenta, cyan). Depending on the 
resolution chosen, which can range from 160 x 96 
to 320 x 192, these six colours plus white can be 
given up to 255 different levels of brightness, thus 
increasing the range of colours to 1,786 (seven 
times 255, plus black). Alternatively, it is possible 
to use some of the bits normally intended for 
specifying intensity to produce multiple pages of 
graphics, though the number of different 
intensities will be correspondingly lower.

Disk Drive Controller Board —
As well as carrying a specialised 
disk controller chip, this board 
has a Z80 clock/timer chip 
(CTC), and an 8521 serial Input/ 
Output chip, which together 
provide impressive 
communications facilities

Bus Terminator Board
This is situated at the far end of 
the bus to the CPU board, and 
guards against interference on 
the various electrical lines

A full set of these calls, plus a number of others 
for handling such related matters as printer dumps 
(copying the screen to paper), are provided as 
extended versions of the RML b a s ic . This dialect 
is much like Microsoft b a sic , and most keywords 
are used in an identical fashion. The only major 
exception is the use of text labels for calling 
subroutines, rather than an address in decimal.

However, the interpreter plus HRG package 
together occupy a considerable amount of

Monitor
To take full advantage of the 
380Z’s facilities, a colour 
monitor, with an RGB 
interface, is essential. The 
machine can be purchased 
with 40 or 80 screen columns 
as standard, and this 
determ ines the type of 
monitor needed

co
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Keyboard
The keyboard supplied with 
the RML 380Z is mounted in a 
small but weighty metal box. 
The keys are arranged in a 
fairly standard pattern, and 
are of high quality, with a solid 
but pleasantly light touch. 
They are obviously designed 
to withstand heavy use, a 
factor that makes the 
keyboard an ideal choice for 
the classroom co

CO
CO

o
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RAM Board
The main CPU board cannot 
hold enough RAM to provide a 
usable system, so further RAM 
may be added, up to the 
addressing limit of the Z80, 
which is 64 Kbytes

VDU Board
The display generator is not part 
of the main board, as in smaller 
machines, but a separate device 
that is sent controlling signals 
by the CPU. Video display units 
are available with either 40 or 80 
columns

CPU Board
This carries the Z80 CPU, part of 
the RAM, the ROM, and most of 
the essential parts needed to run 
the machine, such as a keyboard 
port

Z80 Bus Connections

Power Supply
Huge, heavy and very hard to 
hurt

Reset Button

lock
This allows the machine to be 
locked on to prevent anyone 
from interfering with critical 
programs

Research 
M achines 380Z

_ _ _______

PRICE
£2,062 (5in disk system) 
£3,395 (8in disk system) 
Educational discounts available

—_

SIZE
5 9 5 x 4 2 5  x215mm
CPU
Z80
CLOCKSPEED
4 MHz
MEMORY
Up to 6 Kbytes ROM 
56 Kbytes RAM

... ......

VIDEO DISPLAY
24 lines of 40 or 80 characters, 
seven colours with up to 255 
shades. Graphics resolution of 
320x192  and 160x96
INTERFACES
RS232 serial, cassette, parallel 
printer
LANGUAGE SUPPLIED
Research Machines extended 
BASIC
OTHER LANGUAGES AVAILABLE
ALGOL, FORTRAN, and CP/M 
standards
COMES WITH
Manuals for installation, CP/M, 
disk system, cassette system and 
BASIC utility programs on disk
KEYBOARD

DOCUMENTATION
Excellent, though a little dry. The 
information is comprehensive and 
easily referenced

Because the power supply has 
the capacity to handle several 
add-on boards without 
modification, a fan is needed to 
assist cooling

Two Disk Drives

memory, and may not leave sufficient room for 
sophisticated user programs. For this reason, three 
versions of the ba sic  are provided, with either all, 
some or none of the HRG package included, 
depending on how constraining your memory 
requirements are.

The use of the HRG package is not limited to 
b a sic , and as a simple machine code file it can be 
accessed from any language. Since the 380Z is 
generally run under CP/M  (see page 410), this 
means that a wide range of languages are 
available, but the machine is highly unusual in the 
microcomputer world in having a version of Al g o l

configured to run on it.
This language, which many European scientists

prefer to f o r t r a n  (the language favoured in North 
America for science purposes), resembles pa sc a l  

and is particularly strong in complex 
mathematical calculations, such as those involved 
in structural design. This is another factor that 
makes the machine attractive to educationists.
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The Com m odore 64’s Basic 
doesn’t match up to  its 
rem arkable sound facilities

Among the current range of home computers, the 
Commodore 64 is supplied with the most 
sophisticated sound-making facilities. These are 
attributable to a specialised chip called the Sound 
Interface Device — or SID, as it is better known.

SID provides capabilities similar to that of a 
commercial monophonic synthesiser. There are 
three oscillators with an eight-octave range (0- 
3900Hz in 65,536 steps); a master volume 
control, from 0 to 15; four waveforms for each 
oscillator (triangle, sawtooth, variable pulse and 
noise); oscillator synchronisation; and envelope 
generators allowing ADSR control for each 
oscillator. Further features include: ring
modulation; programmable filter with low pass, 
band pass, high pass, notch output (which blocks 
out a narrow band of frequencies) and variable 
resonance; envelope filtering; two analogue-to- 
digital potentiometer interfaces that can be used to 
control SID facilities; and an external audio input, 
which enables additional SID chips to be linked 
together. Other audio signals can be input, filtered

and mixed with the standard SID outputs.
It would be impossible to detail the operation of 

each of these features here (several good books are 
available), but we can explain what all these 
phrases mean. First of all, oscillator 
synchronisation causes two signals (in this case 
two specified voices) to be harmonically locked 
together, making a single, more complex tone out 
of the two separate signals.

Modulation is the modification of one signal by 
another, affecting either the frequency or 
amplitude (volume) of the sound. Ring 
modulation is the amplitude modulation of one 
voice by another. This results in a tone that is clear 
but has a jarring, discordant effect and can be used 
to produce bell-like sounds similar to those of steel 
drums. Such sounds are said to have inharmonic 
overtones.

Filters enable specified frequency ranges to be 
eliminated from a signal. The different types of 
filtering possible on the Commodore 64 have 
effects that are suggested by their names: low pass 
filters cut out frequencies higher than a specified 
frequency; band pass filters eliminate frequencies 
above and below a specified ‘band’ of frequencies; 
notch filters are the inverse of band pass filters — 
they cut out a specified band; high pass filters cut

Player-M issile graphics are one 
of the strong points of the Atari 
m achines

P layer-M issile  G raphics
Player-Missile or ‘PM’ graphics form an important 
part of the Atari’s graphics capabilities. TTiey are 
similar in nature to the sprite graphics available on 
the Commodore 64 (see page 408) and the Sord 
M5, allowing the programmer to design and 
control up to eight different high resolution 
shapes. These movable shapes operate 
independently of any background display and 
may be programmed to move either in front of or 
behind any other shapes drawn on the screen. This 
allows the programmer to add a third dimension to 
the screen effects. PM graphics can be moved

smoothly, at speed, across the screen and so are 
ideal for fast-moving arcade games. They can also 
be used to create more colourful static displays 
than are possible using the normal graphics 
modes, as PM objects can be coloured 
independently of each other and of the 
background display.

As with all sprite graphics, the secret of PM 
graphics’ facilities lies in dedicated hardware. 
Special registers are designed to control the 
movement, colour and screen display of the PM 
objects. All the programmer has to do is place 
certain values in these registers to manipulate the 
objects. In b a sic  this is done using the POKE 
command. Once a number is POKEd into the 
relevant register then the Atari’s own hardware 
takes over the rest of the work. This is done at 
machine code speed and is therefore much faster 
than if the process was controlled from b a sic .

Let us now look at the creation of PM objects 
and the registers that control them. Players are 
designed from a vertical strip, eight pixels wide 
and 128 or 256 pixels high. Each row across the 
strip is represented as a single byte in the 
computer’s memory. By POKEing suitable binary 
codes it is possible to define the shape of a player 
using a similar method to that used to create user- 
defined characters (see page 246). Up to four 
players may be defined in this way, each taking up
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10 SID=54272
20 POKESID+23,0
30 POKESID+24,15
40 POKESlD+5,40
50 POKESID+6,201
60 FOR N=1T05
70 READ FH,FL,D
80 P0KESID+1.FH:

POKESID.FL:
REITPLAY
NOTE*

90 POKESID+4,33
100 FORMT0300*

D:NEXT I
110 POKESID+4,32
120 FORMT0100:

NEXT I
130 NEXTN
140 FORN1T02000:

NEXT I
150 POKESID+24,0
160 REM**FH FLD*
170 DATA 57,172,1
180 DATA 64,188,1
190 DATA 51,97,1
200 DATA 25,177,1
210 DATA 38,126,2
220 END

out frequencies lower than a specified one; and 
variable resonance can be applied to all the above 
filters to emphasise the frequencies around the 
cut-off points. Envelope filtering is a special case: 
it has a different effect from the others in that 
digitised ADSR values set for envelope 3 can be 
read from the SID chip and applied to a signal in 
such a way that the harmonic structure changes 
throughout the course of a note. It works like a 
variable filter.

These sophisticated features enable you to build 
highly complex sounds into interesting effects 
and convincing emulations of conventional 
instruments. The daunting aspect of SID is that 
CBM b a s ic  V2, the dialect supplied with the 64, 
provides no commands dedicated to sound at all. 
Control is exercised by PEEKing from and POKEing 
into the 29 SID control registers. A lot of b a s ic  
code is therefore needed to generate even simple 
effects, and in some cases b a s ic  isn’t fast enough to 
do full justice to the full range of SID’s possibilities.

A full description of the SID control registers 
would require more space than a complete issue of 
T h e  H o m e  C o m p u t e r  C o u r s e , but it is possible to 
play notes with pleasing tones as shown in the 
program on the left.

Although the program is 22 lines long, it plays 
merely five notes of a simple tune on one 
oscillator. Line 20 disconnects the filter from the 
oscillators; line 30 sets the master volume at its 
maximum; and lines 40 and 50 specify a piano­
like envelope. Line 80 sets the note frequency; 90 
and 100 start and stop the ADSR cycle and select 
a sawtooth wave for voice 1; and timing is 
achieved with FOR. .. NEXT loops in lines 100,120 
and 140.

Programming sound on the Commodore 64 in 
b a s ic  is a major effort in terms of both learning and 
writing code. Moreover, it can be a very frustrating 
exercise, as the only way to discover if a more 
complex set of b a s ic  statements will run in an 
acceptable time is by trial and error. If you want 
simpler methods of sound generation it is worth 
investigating the many sound editing programs 
that are commercially available. These are usually 
written in machine code and make the most of the 
marvellous features of the Commodore 64.

its own 256 or 128 bytes of memory.
Each of the four players has a missile figure 

associated with it that is two bits wide. To create 
players and missiles it is necessary to POKE the bit 
patterns that define their shape into a certain area 
of memory. The area of RAM used can be chosen 
by the programmer but the computer must be 
informed by setting a pointer to the beginning of 
the area.

If the programmer elects to use single-pixel 
vertical resolution then twice as much memory is 
required than for two-pixel vertical resolution. 
The following program designs player 0 in two- 
pixel vertical resolution as a space ship:

10 R EM *** DEFINE A PLAYER***
20 P=PEEK(106) -8:REM SETS P TO 2K BELOW 

TOP OF RAM
30 POKE 54279,P:REM SETS POINTER TO PM 

AREA
40 BASE = 256*P:REM SETS PM AREA BASE 

ADDRESS
50 FOR I « BASE+512 TO BASE+640 
60 POKE l,0:REM CLEAR PLAYER 0 AREA 
70 NEXT I
80 FOR I = BASE+512+50 TO BASE+530+50 
90 READ A:P0KE l,A:REM DEFINE FIGURE 

100 NEXT I
110 DATA 16,16,16,56,40,56,40,56,40 
120 DATA 56,56,186,186,146,186,254,186,146

Each player figure has several registers associated 
with it. These registers control colour, horizontal 
position and size. The last of these enables the

programmer to increase the width of a player by a 
factor of two or four. Further registers control 
player-to-background priority. Missiles take on 
the colour of their parent player but missile size 
can be changed independently. For games 
applications a series of registers is set aside to 
detect on-screen collisions between players, 
missiles and background. However, there is no 
vertical position register for missiles or players. 
Vertical movement must be achieved by moving 
the contents of each location that holds the bit 
patterns for the figure up through the area of 
memory set aside for that player. This is a fairly 
straightforward task in Assembly language but 
would be relatively slow in b a s i c . It is a good idea 
to try to make characters that move vertically as 
short and stubby as possible.

Player-Missile graphics considerably extend the 
Atari’s graphics potential, although they are not as 
versatile or as easy to use as the Commodore 64’s 
sprites. Here is a continuation of the program 
started earlier, to colour the space ship and move it 
from left to right across the screen.

130 POKE 559,46:REM ENABLE PM 2 LINE 
DISPLAY

140 POKE 53277,3:REM ENABLE PM DISPLAY 
150 POKE 704,88:REM COLOUR PLAYER 0 PINK 
160 GRAPHICS 0
170 SETC0L0UR 2,8,2:REM SET BACKGROUND TO 

DARK BLUE 
180 FOR I = 0 TO 320
190 POKE 53248,l:REM SET HORIZONTAL 

POSITION 
200 NEXT I 
210 END

Rocket PM
Before a player object can be 
defined, it must first be drawn 
out and the decimal values for 
each row of pixels calculated
Player Strip

128 64 32 16 8 4 2 1
0
16
16
16
56
40
56
40
56
40
56
56
186
186
146
186
254
186
146
0
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To conclude our course, we take a critical look at the Basic 
language, and at som e of the alternatives to  it

As a postscript to our Basic Programming course, 
we would like to discuss briefly some of the 
strengths and weaknesses of ba sic  compared with 
other programming languages.

B a sic  is an off-shoot of f o r t r a n , one of the 
earliest programming languages. Unlike most 
other languages, ba sic  is interpreted. This means 
that when a ba sic  program is executed, a special 
program elsewhere in the computer’s memory 
interprets the code line by line and converts the 
ba sic  statements into machine code. Here’s what 
would happen in a short ba sic  program like this:

10CLS
20 PRINT “TYPE IN A NUMBER”
30 INPUTX
40 PRINT “TYPE IN A SECOND NUMBER”
50 INPUT Y
60 “PRINT “THE PRODUCT OFTHETWO NUMBERS

IS:
70 PRINTX*Y 
80 PRINT
90 PRINT “ DO YOU WANT ANOTHER GO?”
100 PRINT “ PRESS Y  TO TRY AGAIN”
110 PRINT “OR‘N’ TO END”
120 FOR X = 1 TO 1 
130 LET A$ = INKEYS
140 IF A$ <  >  “Y” AND A$ <  > “N” THEN X = 0 
150 N EXT X
160 IF A$ = “Y" THEN GOTO 10 
170 END

When the ba sic  interpreter encountered line 10 it 
would work out the machine code needed to clear 
the screen. For line 20 it would work out the 
machine code instructions necessary for sending 
the TYPE IN A NUMBER message to the screen. For 
line 30 it would set up the memory space needed 
to store a real number, wait for input from the 
keyboard and then convert the number typed in 
into binary and store it in the space allocated to 
variable X. All this would be repeated for lines 40 
to 60. If the user wanted to repeat the program by 
typing Y, the interpreter would branch back to line 
10 and repeat all the calculations and 
computations again.

Most languages other than ba sic  are 
‘compiled’. This means that after the program has 
been written it is processed by a ‘compiler’ before 
it can be run. The compiler is a separate program 
that goes through the ‘source code’ (the original 
program) and produces a second version of it in 
machine code. When the compiled program is 
run, it is likely to work very much faster than an

interpreted program because all the time- 
consuming translations into machine code have 
already been done.

If compiled programs work so much faster than 
interpreted programs, you might wonder why all 
programming languages don’t use compilers. 
There are several advantages to using interpreted 
programs, such as b a s ic . Most of these stem from 
the fact that it is an interactive language, which is 
one that can be tested and de-bugged ‘at the 
keyboard’ while the program is being developed. 
B a s ic , for example, allows the STOP command to 
be inserted at any point in the program. When the 
interpreter encounters a STOP statement, it stops 
interpreting the program and allows ‘commands’ 
to be issued from the keyboard.

Commands are instructions that can be directly 
executed by the interpreter when the program is 
not running. B a sic  is provided with a large 
number of these and they can be invaluable in de­
bugging. After a ba sic  program has been 
executed (i.e. the interpreter has encountered the 
END statement) or when the interpreter 
encounters a STOP statement, it is possible to 
PRINT the values of all the variables. Try running 
the address book program, for example. Run the 
program and type 9 to exit from the program. If it 
runs all the way through without any error 
messages appearing, it should end with the ba sic  

prompt (this is usually an OK, >  or *). Then type 
PRINT R M 0 D < C R > . The interpreter should print 
a 0 on the screen (provided you have not added 
any records!). Then try PRINT S IZ E < C R > . The 
interpreter will print a number on the screen one 
larger than the number of records you have in the 
data file.

Basic’s Advantages
B a sic  is often called the ideal language for the 
inexperienced programmer because it allows 
bugs to be removed at the keyboard. It has 
another great advantage: it is comparatively easy 
to learn. For example, in the Basic Programming 
course, we have covered all the fundamentals and 
many of the advanced aspects of b a sic  in just 8 6  

pages. Syntax errors such as 40 PRNT A(12) will 
usually result in easily understandable error 
messages when the program is executed, such as 
SYNTAX ERROR IN 40. A  glance at the line number 
referred to usually makes it clear where the error 
lies, and rectifying the error is usually no more 
difficult than typing E D IT 40< C R >  (followed by a
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few editing commands) or re-typing the correct 
line. Whenever the b a sic  interpreter encounters 
an error in syntax or logic it stops the execution of 
the program and reports the error. Fixing the bugs 
is as simple as trying a new line in place of the 
erroneous line, and typing RUN<CR> again.

Basic’s D isadvantages
The b a sic  programming language has a number 
of disadvantages, however, some of which are 
subtle and some glaring. Because it is interpreted 
(although a few compiled versions of ba sic  do 
exist) it runs very slowly. If speed is not very 
critical (as in a program to calculate your current 
bank balance, for example) the slowness of 
interpreted b a sic  will be of no consequence. If, on 
the other hand, speed is of the essence (as in a 
screen animation program using graphics, or a 
‘clock’ used to time reactions in a laboratory 
experiment) interpreted ba sic  is likely to be far 
too slow.

If you need speed in your programs, there are 
two routes to follow: programming in either 
machine code or Assembly language (see page 
448) — a difficult and time consuming process — 
or programming in a compiled language such as 
p a s c a l  or f o r t h . Compiled languages are not 
difficult to learn, but the source code (the original 
program) is almost sure to contain bugs, which 
the compiler will find when it tries to compile the 
program. These are difficult to rectify, compared 
with bugs in b a sic . After corrections have been 
made to the source code, the program will have to 
be compiled all over again. Most compilers take 
two or three ‘passes’ through the source code, and 
each pass is likely to result in error messages, each 
of which will have to be corrected before the 
program can be re-compiled.

Producing a correctly compiled program is 
likely to be a far more time consuming processs 
than achieving a working program in interpreted 
b a s ic . On the other hand, ba sic  is likely to lead 
the novice programmer from the ‘straight and 
narrow’ by allowing bad programming techniques 
that highly structured languages such as p a sc a l  

would reject. B a sic  allows the programmer to 
write very careless programs, full of GOTOs for 
example, and these bad habits can make the 
transition to more advanced languages difficult.

W hat Next A fte r Basic?
B a s ic  is a flexible language, and one that is not 
difficult to learn. It has excellent string handling 
facilities, but is slow and fails to take full 
advantage of the power of a home computer. On 
the other hand, more modem languages, such as 
p a s c a l  and f o r t h , offer programming facilities 
either difficult or impossible in b a s ic .

Pascal was also devised as a teaching 
language, and specifically designed to encourage 
the development of well constructed, ‘structured’ 
programs. Pascal is a compiled language, which

means that users encounter numerous errors 
picked up by the compiler (after the source code 
has been written and before the compiled ‘object 
code’ can be run), and this can be very frustrating. 
Novice p a sc a l  programmers also tend to find the 
restraints of the language, such as the need to 
declare all variables at the beginning of the 
program (and to state what type they are — real, 
integer, etc.), to be an impediment to free and 
flexible programming.

On the other hand, p a sc a l  demands that the 
programmer thinks through the logic of the 
program properly before writing. Programs in 
p a sc a l  are likely to throw up numerous syntactical 
errors in the source code. But they are also more 
likely to be well designed and less likely to contain 
fundamental logical errors.

F o r t h  has recently become a very popular 
alternative to ba sic  as a programming language on 
home micros. Although fo r th  is not as difficult to 
learn as Assembly or machine code language, it 
must be said that it is far less ‘intuitive’ than either 
ba sic  or p a sc a l . Even so, fo r th  has many unique 
merits that make it a contender as the 
programmer’s second language.

Although fo r t h  is a high level language, it runs 
nearly as fast as machine code, owing to the 
unique way it works. Whereas languages such as 
b a sic  have a fixed number of statements and 
commands, fo r th  users can define their own 
vocabulary.

The keyword PRINT in ba sic  means that any 
character following it enclosed in double quotes 
will be printed on the screen. Nothing the 
programmer does can alter this. In f o r t h , PRINT 
could be defined to produce, say, a listing on the 
screen of the hexadecimal equivalents of the 
ASCII codes, printed in a vertical column, of the 
characters in a string.

F o r th  gives the programmer the power to 
define any word to mean whatever is wanted and 
to produce the desired results whenever it is used 
from then on. Not only is fo r t h  extremely flexible 
in this way, but it also produces programs that can 
be compiled to object code (see page 184) which 
are nearly as compact and fast running as machine 
language programs.

Although there are many programming 
languages available, most hobbyists moving on 
from b a sic  will be inclined to choose from 
Assembly language, p a sc a l  and f o r t h . Very 
briefly, the advantages and disadvantages of each 
can be summarised thus:

BASIC
Easy to learn
Easy to remember
Easy to de-bug
Slow in execution
Uses lots of memory
Does not encourage structured programming

Assembly Language:
Not very easy to learn
Not very easy to remember
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Difficult to de-bug 
Very fast in execution
Gives complete control over the microprocessor 

PASCAL
Moderately easy to learn 
Moderately easy to remember 
De-bugging more difficult than in BASIC 
Encourages better programming techniques 
Execution faster than BASIC but slower than 
Assembly
Needs to be compiled, which takes time; once 
correctly compiled, runs nearly as fast as Assembly 
Gives fair control over the microprocessor, but less 
than Assembly; string handling not as easy as in 
BASIC
FORTH
Not very easy to learn; easier for complete beginners,
not so easy for BASIC programmers
Moderately easy to remember
De-bugging in interpreter mode very easy
Can be compiled; executes almost as quickly as
Assembly language
Gives complete control over the microprocessor 
Very economical on memory 
Easier to learn than Assembly language, though less 
'intuitive' than BASIC

Basic Flavours
r
LYNX 96

1 REM ‘ CREATE DATA FILE*
2 DIM N$(30)
3 LET N$=“@FIRST”
4 DIM F$(15)
5 LET F$=“DUMMY”
6 LET Z=2
7 EXTBACK1
8 EXTSTORE 1,Z,N$,N$,N$
9 EXTSTORE 1 ,F$,F$,F$,F$
10 INPUT “INSERT DATA TAPE, PRESS 

RECORD, & TYPE T ”;A$
11 SSAVE1, “ADDBKDAT”
12 PRINT “STOP THE TAPE, AND REWIND”
13 END
NB This is the initialising program for the 96K 
Lynx; we have no information on cassette file 
handling for the other models.
Main Program Variables
Copy the Spectrum list with these substitutions 
for the numeric variables:
Replace: SIZE byZ

RMOD byR 
SRTD byD 
CURR byC 
CHOI by H 
BTM byb 
MD by m 
TP byt

and make the following line changes, 
substitutions, and deletions:
1100 REM *CREARR* S/R 
1110 DIM N$(30)(50)
1120 DIM M$(30)(50)
1130 DIM S$(30)(50)
1140 DIM T$(15)(50)
1150 DIM C$(15)(50)
1160 DIM R$(15)(50)
1170 DIM X$(15)(50)
1180 DIM Z$(30)

1210 LET Z=0 
1220 LET R=0 
1230 LET D=1 
1240 LET C=0 
1250 LET Z$=‘ 
1260 LET Q$= 
1300 RETURN

FIRST

1400 REM *RDINFL* S/R 
1405 PRINT “INSERT DATA TAPE AND PRESS 

PLAY”
1410 GOSUB 3100 
1420 SL0AD1, “ADDBKDAT”
1430 PRINT “STOP THE TAPE”
1440 GOSUB 3100 
1450 EXTBACK 1 
1460 EXTFETCH 1,Z 
1470 FOR K=1 TOZ-1 
1480 EXTFETCH 1,

N$(K),M$(K),S$(K),T$(K),C$(K),R$(K)- 
,X$(K)

1490 NEXT K 
1500 LET Q$=N$(1)
1510 RETURN

3120 IF K E Y N 0 3 2 T H E N  LET L=0

3780 LET A$=KEY$

3810 LET H=VAL(A$)
3820 IF (H< 1 )  OR (H > 9 )  THEN LET L=0

4500 REM *MODNAM* S/R 
4510 REM CONVERT TO U/CASE 
4520 LET D$=UPC$(N$(Z))

(delete lines 4530-4590)

4600 LET P$=“”
4601 LET A$=“”
4602 LETT=LEN(D$)
4603 LET S=0 
#
4610 REM LOCATE LAST SPACE

4630 IF M ID$(D$,L,1K ” THEN LET S=L

4670 IF M ID $(D $,L ,1)>“@” THEN LET 
P$-P$+MID$(D$,L,1)

4710 IF M ID $(D $,L ,1)>“@” THEN LET 
A$=A$+MID$(D$,L,1)

Lines 5410 to 5460 must be reduced to single 
statements, for example:
5410 LET U$=N$(L):LET N$(L)=N$(T): 

N$(T)=U$ becomes
5410 LET U$=N$(L)
5411 LET N$(L)=N$(T)
5412 LET N$(T)=U$
and so on, no changes otherwise.

5600 REM *SAVREC* S/R 
5605 PRINT “INSERT DATA TAPE AND PRESS 

RECORD”
5610 GOSUB 3100 
5620 EXTBACK 1 
5630 EXTSTORE 1,Z 
5640 FOR K=1 TO Z-1 
5650 EXTSTORE 1,

N$(K),M$(K),S$(K),T$(K),C$(K),R$(K)-
,X$(K)

5660 SSAVE 1, “ADDBKDAT”
5670 PRINT “STOP THE TAPE”
5680 GOSUB 3100 
5690 RETURN

5855 LET X=0
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5860 LET m-INT((b+t)/2)
5870 IF M$(m)=U$ THEN LETX=1 
5880 IF U $> M $(m ) THEN LET b-m+1

6080 LET AS-KEYS

6110 IF A$=“ ” THEN RETURN 
6120 GOSUB 6200 
6130 RETURN

“ ") THEN LET 1=1

i
D R A G O N  3 2

BBC MICRO

J

COMMODORE
6 4

ii

V IC -2 0

6730 FOR 1=1 TO 1 
6735 LET l=0 
6740 LET A$=KEY$
6750 IF (A$=E$) OR (A$- 
6760 NEXT I
This fragment must be reproduced at lines 
6880-6910, 6990-7030, 7110-7140, 7220- 
7250, 7640-7670

Initialising Program
This is the initialising program for the Dragon 
32.

1 REM * CREATE DATA FILE*
2 LET Z=2
3 LET N$=“@FIRST”
4 OPEN “O”, # -1 , “ADBKDAT”
5 INPUT “INSERT DATA TAPE, PRESS 

RECORD, & TYPE *Y’”;A$
6 PRINT# —1,Z,N$,N$,N$,N$,N$,N$,N$
7 CLOSE # -1
8 PRINT “STOP THE TAPE, AND REWIND”
9 STOP
On the BBC Micro replace lines 4 ,6  and 7 by:
4 F1=OPENOUT(“ADBKDAT”)
6 PRINT #F1,Z,N$,N$,N$,N$,N$,N$,N$
7 CLOSE#F1
On the Commodore 64 and Vic-20 replace lines 
4 ,6  and 7 by:
4 OPEN 1,1,2,“ADBKDAT”
6 PRINT #1,Z:PRINT #1,N$:PRINT #1,N$: 

PRINT #1,N$:PRINT #1,N$:PRINT #1,N$: 
PRINT #1 ,N$:PRINT#1 ,N$

7 CLOSE 1
Main Program Variables
On the Dragon, the Commodores, and the BBC 
Micro copy the Spectrum list (published in full 
on page 458) with these substitutions for the 
numeric variables.
Replace: SIZE byZ

RMOD by R
SRTD byD
CURR byC
CHOI by H
BTM by BT
MD by MD
TP by TP

and make the following line changes, 
substitutions, and deletions:
1100 REM *CREARR* S/R 
1110 DIM N$(50)
1 t20  DIM M$(50)
1130 DIM S$(50)
1140 DIM T$(50)
1150 DIM C$(50)
1160 DIM R$(50)
1170 DIM X$(50)
Delete lines 1180-1190
1210 LET Z=0 
1220 LET R=0 
1230 LET D=1 
1240 LET C=0 
1250 LET Z$=“@FIRST”
1260 LET Q$=“”

1300 RETURN
This is the Dragon 32 version of subroutine 
1400:
1400 REM *RDINFL* S/R 
1410 OPEN “I”,# -1 , “ADBKDAT”
1420 PRINT “INSERT DATA TAPE AND PRESS 

PLAY”
1430 GOSUB 3100 
1440 INPUT# —1 ,Z 
1450 FOR K=1 TO Z-1
1460 INPUT# —1 ,N$(K),M$(K),S$(K),T$(K),- 

C$(K),R$(K),X$(K)
1470 NEXT K 
1480 Q$=N$(1)
1490 CLOSE#—1
1500 PRINT “STOP THE TAPE”
1510 GOSUB 3100 
1520 RETURN
In the preceding list, on the BBC Micro replace 
line 1410 by:
1410 F1=OPENIN(“ADBKDAT”)
and replace #-1 by #F1 in lines 1440,1460, 
1490
In the preceding list, on the Commodore 64 
and Vic-20 replace line 1410 by:
1410 OPEN 1,1,0,“ADBKDAT”
Replace # -1  by #1 in lines 1440 and 1460, 
and replace 1490 by:

1490 CLOSE 1
On the BBC Micro replace INKEYS by 
INKEYS(O) throughout; and replace 
INPUT*1., m essage .. ”;A$ by 
INPUT*1., m essage..",A S. On the 
Commodores replace LET A$=INKEYS by GET 
AS throughout; and replace IF INKEYS. . .  by 
GET GTS: IF G TS...
On the BBC Micro, the Dragon, and the 
Commodores in subroutine 4500 replace all 
references to D$(L) by MID$(D$,L,1). Replace 
CODE. . .  by ASC(...). Replace FIRST by LAST 
in line 4610.
D elete: LET L=T from the end of line 4630.
This is the Dragon version of subroutine 5600; 
for BBC and Commodore variations see the 
Initialising Program notes above.
5600 REM *SAVREC* S/R 
5610 OPEN “0 ”,# -1 , “ADBKDAT"
5620 PRINT “INSERT DATA TAPE AND PRESS 

RECORD"
5630 GOSUB 3100 
5640 PRINT# —1 ,Z 
5650 FOR K=1 TO Z-1
5660 PRINT# —1 ,Z,N$(K),MS(K),SS(K),T$(K)- 

,C$(K),R$(K),XS(K)
5670 NEXT K
5680 CLOSE # -1
5690 PRINT “STOP THE TAPE”
5693 GOSUB 3100 
5695 RETURN
In subroutine 6200 on the BBC Micro insert:

6205 VDU 2 
6275 VDU 3
and replace LPRINT by PRINT.
On the Commodores insert:
6205 OPEN 4,4:CMD 4 
6275 PRINT#4:CL0SE4
and replace LPRINT by PRINT.
On the Dragon replace LPRINT by PRINT#-2.
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In the history of the m icrocom puter, developm ents in hardware and  
software are inextricably linked, and it is as much a story about 
personalities as products

There have been several episodes in history in 
which the pace of technological change has left 
people bewildered. But nothing to date — not 
even the progress of flight, from the Wright 
brothers to lunar exploration — can match the 
speed of the microelectronics revolution. The 
progress from the first primitive microprocessors 
to today’s 16-bit designs, from the first 
microsystems to today’s desktop mainframes, has 
taken just a decade. And the speed of 
development is still increasing.

Around 1971, several of the new chipmaking 
firms in California concluded that the main 
functions of a computer could be housed on a 
single sliver of silicon. There were no grandiose 
plans for a revolution then, and no talk of 
‘information technology’. The idea was to 
produce a small and cheap computer that might 
be used to control factory machines or lifts, and 
the first microprocessors were well suited to such 
tasks.

One of these chipmakers, Intel, is generally 
credited with producing the first microprocessor, 
called the 4004. The ‘fours’ in the number refer to 
its power: it was a four-bit processor handling 
data in blocks of four binary digits. It could only 
use small quantities of memory — just enough for 
a lift control program, for example.

By 1972 Intel had developed the 8008 chip, an 
eight-bit processor, and hobbyists began to think 
about building computers for themselves around 
the new chip. Articles in American hobby 
electronics magazines described how to do it, and 
although the resulting computers did not have 
monitor screens, proper keyboards or other 
sophisticated aids, they were the first home 
machines. It was from one of these hobby projects 
that what could be called the first commercial 
home microcomputer, the Altair 8800, evolved. 
This was available only in kit form, however.

Then in the next year, came the first ‘real’ 
microprocessor, the 8080, again from Intel. This 
operated on eight-bit blocks of data and could 
handle up to 64 Kbytes of memory for bigger 
programs. By this time the other chip firms were 
starting to catch up. Motorola’s 6800 chip did 
much the same as the 8080. It had similar 
hardware characteristics but required different 
instructions to make it work. This is the point 
where software compatibility problems started: 
programs written for the 8080 would not run on 
the 6800, and vice versa.

At the same time, other firms had developed
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similar processors, among them National 
Semiconductor, Signetics and Advanced Micro 
Devices. But the next major prime mover was 
MOS Technology, where one of the leading 
characters in our story, Chuck Peddle (see page 
180), was working. Peddle was at MOS 
Technology when the company developed a 
processor very like Motorola’s 6800, called the 
6500. In fact, it was so close to the 6800 that 
changes had to be made and the revised chip was 
eventually given the name 6502.

Founding Fathers
Though Chuck Peddle designed 
both the Commodore PET and 
the 6502 m icroprocessor that it 
was based around, the 
contribution of Bill Gates, as the 
author of the Microsoft BASIC 
built into the PET’s ROM, was 
equally important

o

u m

Chuck Peddle

Commodore was already well-known in 
Canada for office machinery and electronic 
calculators. Peddle joined the firm with the idea of 
developing a personal computer complete with 
screen, keyboard, cassettes for program storage, 
and everything else a real computer should have 
— all built, of course, around the 6502 processor. 
The machine emerged in 1976 as the PET 2001, a 
friendly name chosen to convey the idea that the 
computer was not too advanced for the home 
user.

But as the first PET was becoming available, 
two more innovators were preparing to market a 
computer from a Californian garage. Steve 
Wozniak (see page 155) had always wanted to 
own a computer, and joining the Homebrew 
Computer Club showed him it could be done. He 
designed a computer on a single circuit board, and 
with his friend Steve Jobs-began making and
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selling these. They called their board the Apple I. 
Housed in a box with a keyboard, the machine 
eventually transformed itself into the enormously 
successful Apple II. This machine emerged just 
after the Peddle PET and spawned a cottage 
industry of software and hardware manufacture.

The Tandy Corporation of Fort Worth, Texas, 
had ideas of its own for the small computer 
market. The corporation was, and remains, a 
manufacturer of a wide variety of electrical goods 
such as hi-fi, synthesisers and radios, selling them 
through its chain of stores. The home computer 
represented a natural extension of its range, and 
in the Radio Shack shops it already had a 
distribution network across the US. The result 
was the TRS-80 Model 1, another huge success in 
the US market. TRS simply stands for Tandy 
Radio Shack, but the 80 refers to the 
microprocessor used, the Zilog Z80. Zilog was 
yet another new chip firm, and had produced a 
processor similar to the Intel 8080 but with 
substantial improvements.

With the TRS-80 Model 1 having a Z80 
microprocessor, and the Apple II and 
Commodore PET having 6502s, home 
computers began to exhibit a diversity in

The Company’s Core
Steve Wozniak designed and 
built the first Apple 1 (an 
uncased PCB) in his garage. 
When the design was modified 
and encased, creating the Appl 
II, his friend Steve Jobs turned 
Apple into the commercial 
success that it now i

Steve Jobs

hardware. But along with this first major 
consumer choice came the associated problems of 
machine incompatibility and non-standard 
software. The kind of microprocessor used in the 
early machines is significant because the chip 
determines the choice of software that becomes 
available from third parties. While the hardware 
was being developed, standards in software were 
being set as well.

In 1972 a young man called Gary Kildall was a 
consultant to Intel. His firm, Microprocessor 
Application Associates, was working on a 
computer language that Intel engineers could use 
to write software for the new microprocessor 
chips that Intel was manufacturing. Kildall 
thought it possible to link up a microprocessor 
with memory to an 8in floppy disk drive and to a 
teletype, in order to give each engineer a 
computer of his own. But Intel preferred to 
continue its practice of sharing a mainframe 
machine among its engineers.

Kildall and his friend John Torode, in another 
Californian garage, put together a system 
themselves. Torode built the hardware to make 
the floppy disk work with the processor, and 
Kildall wrote the software that enabled the 
processor to handle the disk. The program was 
called CP/M  (Control Program/Micro-
computers), a name derived from Kildall’s work 
with Intel’s programming language, which was 
called PL/M  (Programming Language/
Microcomputers).

The first disk operating system for micros was 
taken up quickly by hardware manufacturers

Steve W ozniak

wanting to put disk drives on their machines. The 
software influenced design too: CP/M  would run 
only on the 8080 and faster 8085 processors from 
Intel, and on the similar Z80 from Zilog. The Z80 
became the standard chip for any CP/M  
machine, and CP/M  compatibility the goal for 
software firms.

Apart from operating systems, home 
computers needed a programming language in 
which people could write their programs. B a s i c , 
developed at Dartmouth College, USA, as an 
easy-to-leam language, was an obvious choice.

Bill Gates, a graduate in Seattle, produced a 
ba sic  interpreter for micros, a translation program

Gary Kildall
The latest operating system s are 
developed by large team s of 
programmers, but CP/M was 
written by Gary Kildall single- 
handedly. Even some of the later 
versions reflected the fact that it 
was developed for very crude 
hardware

Adam Osborne
Described by some as a 
‘poacher-turned-gamekeeper’, 
Adam Osborne was for many 
years a leading microcomputer 
journalist, before starting his 
own company and producing 
the world’s first portable 
computer
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Herman Hauser

that fitted in a limited-memory chip and could be 
incorporated into a home machine. Gates’ 
company, Microsoft, became as much the 
standard producer in languages as Digital 
Research became in operating systems, and his 
fortune was made.

With these developments, advances in 
hardware and applications software quickly 
followed. Dan Bricklin and Bob Frankston 
produced the first micro spreadsheet program, 
VisiCalc, at their Software Arts company. 
Distributed by Personal Software on the Apple II, 
this became the best-selling applications package 
ever, and to emphasise its connection Personal 
Software changed its name to VisiCorp. WordStar 
was produced by Seymour Rubinstein’s MicroPro 
and became the major best-seller in the CP/M  
word processor market.

The hardware that these packages were 
running on became cheaper and more powerful. 
Adam Osborne, who began as a technical writer, 
journalist and software publisher after moving to 
the US from Britain, launched a successful 
business computer with a large amount of 
expensive software included in the already

encouraging more and more people to choose the 
machine.

The IBM PC brings together several of the 
pioneers from the early days of the micro industry. 
The microprocessor comes fom Intel, the 
originator of that technology; the operating 
systems come from Bill Gates’ Microsoft, 
diversifying from languages, and from Gary 
Kildall’s Digital Research; and two of the first 
software packages put on the machine were 
VisiCalc and WordStar.

From Uttle Acorns.. .
Though less innovative in price 
than Sinclair, the contribution of 
Chris Curry and Herman Hauser 
(as designers and directors of 
Acorn computers) has been no 
less valid. The Acorn Atom, BBC 
Microcomputer, and the 
Electron are all seen as 
m ilestones in their own right

Sir Clive Sinclair
Following his innovative 
products in hi-fi, calculators, 
miniature radios, pocket TVs 
and digital watches, the 
unparalleled success of his 
microcomputers (ZX80, ZX81, 
and the Spectrum) earned him a 
knighthood in 1983

Small Beginnings
Surprisingly, the technology of 
microcomputers developed
more from the sophisticated
programmable calculators 
(such as this Hewlett-Packard 
HP65) than from the earlier 
generation of minicomputers

competitive price. And, of course, there is Sir 
Clive Sinclair, who set new price levels with the 
ZX80, ZX81 and ZX Spectrum, and has made 
home computing possible for millions of first­
time users.

The standard for microcomputers in the last 
two years has been set by IBM with the IBM PC. 
Launched in 1982, this machine is proving 
increasingly popular. Virtually every software 
house and hardware peripherals maker is now 
producing material for the PC, and that in turn is

Steve Wozniak and Steve Jobs still run Apple, 
on the whole in direct competition with IBM, and 
are pinning their company’s hopes on the 
revolutionary technology in the Lisa (see page 
261) and Macintosh (a cut-down version of the 
Lisa at around £2,000). Chuck Peddle started his 
own company, Sirius, and took a big slice of the 
UK business before IBM arrived, though his 
company has since encountered financial

The Big One
IBM’s acceptance of the 
microcomputer’s viability didn’t 
come until 1982, but it still had 
the predicted effect. Almost 
every new business 
microcomputer now boasts IBM 
PC compatibility to capitalise on 
the huge base of software

But Peddle will surely be back. The short 
history of micro business shows that the 
originators are also the survivors — even when the 
multinationals try to take over the game.
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Now that your collection of Home 
Computer Course is growing, it makes sound 
sense to take advantage ot this opportunity to 
order the two specially designed Home 
Computer Course binders.

The binders have been commissioned 
to store all the issues in this 24 part series.

At the end ot the course the two 
volume binder set will prove invaluable in 
converting your copies of this unique series into 
a  permanent work of ref erence.

Buy two together and save £1.00
❖  Buy volumes 1 and 2 together for 

£6.90 (including P&P). Simply fill in the order 
form and these will be forwarded to you with 
our invoice.

❖  I f you prefer to buy the binders 
separately please send us your cheque/postal 
order for £3.95 (including P&P). We will send 
you volume 1 only Then you may order volume 
2 in the same way -  when it suits you!

Overseas readers: This binder oiler applies to readers in the 
UK, Eire and Australia only. Readers in Australia should 
complete the special loose insert in Issue 1 and see additional 
binder information on the inside front cover. Readers in New \
Zealand and South Africa and some other countries can obtain 
their binders now. For details please see inside the front cover.
Binders may be subject to import duty and/or local tax.






