
ISSN 0265-2919

80p

fTlASTERiriG YOUR HOUIE CDfTlPLJTER in 5 4 UUEEKE
T lA Q J S

C o t p u t e r s a n d G a n b i i n g

M A C H I N E C O D E

C o m p u t e r of the F u t u r e

4--SS T h e F i f t h G e n e r a t i o n

search Machines

4 7 2 S o u n d and L i g h t

i c Prograttfliing

Calculated Risk Can a home computer help
you win the football pools? We investigate
the links between computers and gambling

B a s ic P ro g ra m m in g

Language Lab We round off our look at the
Basic programming language by considering
its overall strengths and weaknesses

Futuristic What major developments are
likely for home computers in the immediate
future?

466

P a s s w o rd s T o C o m p u tin g

Assembly Line Assembly language
translates directly to machine code, but is
much easier to read and develop

Generation Gap We look at the implications
oftheJapanese research proj ect to create the
Fifth Generation of computers

464

468

Firm Foundations Six key individuals laid
the foundations for the way in which the
microcomputer industry has developed

478

Sounds Ideal. . . Guiding Light We see why
the Commodore 64’s Basic doesn’t do justice
to its superb sound features, and in a second
look at the Atari machines, we investigate
Player-Missile graphics

#

472

p.478 1*
COVER PHOTOGRAPHY BY IAN McKINNELL

Editor Richard Pawson; Consultant Editor Gareth Jefferson; Art Director David Whelan; Production Editor Catherine Cardwell; Staff Writer Roger Ford; Picture Editor Claudia Zeff; Designer Hazel Bennington; ArtAssistant Liz Dixon; Sub
Editors Robert Pickering, Keith Parish; Researcher Melanie Davis; Contributors Tim Heath, Brian Morris, Lisa Kelly, Steven Colwill, Martin Andrewartha, Peter Jackson, Julian Allason, Richard King; Group Art Director Perry
Neville; Managing Director Stephen England; Published by Orbis Publishing Ltd: Editorial Director Brian Innes; Project Development Peter Brookesmith; Executive Editor Chris Cooper; Production Co-ordinator Ian Paton; Circulation
Director David Breed; Marireting Director Michael Joyce; Designed and produced by Bunch Partworics Ltd; Editorial Office 85 Charlotte Street, London W1; © 1984 by Orbis Publishing Ltd: Typeset by Universe; Reproduction by Mullis Morgan
Ltd; Printed in Great Britain by Artisan Press Ltd, Leicester

HOME COMPUTER COURSE - Price UK 80p IR £1.00 AUS $1.95 NZ $2.25 SA R1.95 SINGAPORE $4.50 USA and CANADA $1.95
How to obtain your copies of HOME COMPUTER COURSE - Copies are obtainable by placing a regular order at your newsagent.
Back Numbers UK and Eire - Back numbers are obtainable from your newsagent or from HOME COMPUTER COURSE. Back numbers, Orbis Publishing Limited, 20/22 Bedfordbury, LONDON WC2N 4BT at cover price AUSTRALIA Back
numbers are obtainable from HOME COMPUTER COURSE. Back numbers, Gordon & Gotch (Aus) Ltd, 114 William Street, PO Box 767G Melbourne, Vic 3001. SOUTH AFRICA, NEWZEALAND, EUROPE & MALTA: Back numbers are available at
cover price from your newsagent. In case of difficulty write to the address in your country given for binders. South African readers should add sales tax.
How to obtain binders for HOME COMPUTER COURSE - UK and Eire: Please send £3.95 per binder if you do not wish to take advantage of our special offer detailed in Issues 4,5 and 6. EUROPE: Write with remittance of £5.00 per binder (incl
p&p) payable to Orbis Publishing Limited, 20/22 Bedfordbury, LONDON WC2N4BT. MALTA: Binders are obtainable through your local newsagent price £3.95. In case of difficulty write to HOME COMPUTER COURSE BINDERS, Miller (Malta)
Ltd, M. A. Vassalli Street, Valletta, Malta. AUSTRALIA: For details of how to obtain your binders see inserts in early issues or write to HOME COMPUTER COURSE BINDERS, First Post Pty Ltd, 23 Chandos Street, St. Leonards, NSW 2065 The
binders supplied are those illustrated in the magazine. NEW ZEALAND: Binders are available through your local newsagent or from HOME COMPUTER COURSE BINDERS, Gordon & Gotch (NZ) Ltd, P0 Box 1595. Wellington. SOUTH AFRICA’
Binders are available through any branch of Central Newsagency. In case of difficulty write to HOME COMPUTER COURSE BINDERS, Intermag, PO Box 57394, Springfield 2137.
Note - Binders and back numbers are obtainable subject to availability of stocks. Whilst every attempt is made to keep the price of the issues and binders constant, the publishers reserve the right to increase the stated prices at any time when
circumstances dictate. Binders depicted in this publication are those produced for the UK market only and may not necessarily be identical to binders produced for sale outside the UK. Binders and issues may be subject to import duty and/or
local taxes, which are not included in the above p'rices unless stated.

4

m f Ai ̂ 4 j
IV ? «

y**'' ̂* i *

P

Com puters have many
applications in the world of
gam bling. Pools program s
are even available for hom e
com puters

Gambling is all about probability, although most
gamblers would prefer to say that it was about
winning. Such an assertion is unfounded, of
course, for the vast majority of gamblers lose
consistently, and sometimes heavily. They do so
largely because the odds are against them and in
favour of the casino, the bookmaker and the pools
operate* . To evaluate whether computers could
help to redress the balance we must first consider
these odds.

Stripped of their outward trappings, all games
of chance boil down to betting on the outcome of a
chance event. Usually this is generated by some
random device, such as a ball spun in a roulette
wheel, or a card drawn from a carefully shuffled
pack. If the parameters — the number of cards, say
— are known, probability theory permits certain
predictions to be made about the likelihood of the
chance event occurring. For example, the roulette
wheel used in British casinos has 37 slots
numbered from 0 to 36. There are thus 18 odd and
18 even numbered slots into which the ball might
fall, plus the zero. The probability of the ball
landing in a slot bearing an odd number can
therefore be expressed as 18/37, or 0.4864864, or
a little better than 48.6%. This is somewhat less

than the evens chance of a coin landing head
upwards; the difference, accounted for by the
presence of the zero slot, representing the house’s
‘edge’ or profit margin.

It is this ‘edge’ that makes games of chance, and
most other forms of gambling, so unrewarding.
Despite the claims occasionally advanced by
purveyors of gambling systems, there is nothing
that a computer can do to improve the basic odds
in a given game. Indeed, one leading authority,
Professor Hans Sagan, has calculated that in the
long run it is impossible to win at any casino game,
except possibly blackjack (also known as
vingt-et-un).

Such theoretical objections have failed to
discourage enthusiastic inventors, and home
computer owners are now being offered a variety
of allegedly fool-proof gambling systems, some of
which even appear to work. In the case of casino
gaming systems, these almost invariably prove to
be variations on ‘doubling up’, a procedure that
suffers from the disadvantage of requiring an
infinite amount of stake money to succeed. There
is a further problem as well: though not technically
illegal, the management of casinos both in the UK
and USA will not allow computers of any kind to
be used. Computers are arguably of greater assist­
ance where skill or strategy are involved. The
computer can be used to instil the necessary
discipline into the player, and to act as a memory
aid. However, the value of such assistance tends to
be in inverse proportion to the skill of the player.

Unfortunately, the skill element involved in
most popular forms of gambling is minimal.

A Day At The Races
Horse racing is an interesting
application of home computers,
but strictly for those who know
what they are doing. At least
one breeder makes use of an
Apple II microcomputer to keep
a database of the lineage of all
his horses, thereby using the
computer to attempt to produce
winners

THE HOME COMPUTER COURSE 461

RE
X

FE
AT

UR
ES

 L
T0

S o ftw a re

Football pools offer a case in point. The most
sophisticated pools prediction program is
Professor Frank George’s celebrated F4 Football
Forecast, which is available in versions suitable for
most popular home computers. Based on ten
years of statistical analysis, the program attributes
a value to the average performance of each team.
When adjusted by weighting for long term form
(drawn from the league tables), short term form,
and last match result, a comparison of these
performance figures enables the program to
predict the probable result of a given match.

With Liverpool playing at home to Brighton,
the result might be a foregone conclusion, but the
program comes into its own when predicting the
outcome of a game between more evenly matched
teams. This is not to say that this system is a sure­
fire winner. Statistical analysis suggests that using
Professor George’s program approximately
trebles the probability of success. ‘I concede that
the chances against winning are still huge, but
surely it is better to gamble as intelligently as you
can?’ he asks.

Even given this assistance, the odds remain
unfavourable. Littlewoods, one of the largest of
the pools promoters, say that none of their big
prizes has ever been won by anyone who had used
a personal computer. ‘If there was a system that
really worked, we would know about it, and there
isn’t,’ states Littlewoods’ spokesman, Tony
Hodges. Although entry marking is done using
special automatic machines, the company itself
use computers only for record keeping.

Horse-racing appears to offer, if anything, even
greater scope to the programmer. One Darlington
schoolboy has created a home computer program
to forecast winners. Originally written for the
Sinclair ZX-81, and now upgraded to run on the
Spectrum, David Stewart’s program has been
successful a number of times. Although David’s
tips are broadcast by several of the BBC local radio
stations, he has not amassed a personal fortune.

Wheeling And Dealing
On a roulette wheel it is the
number zero that provides the
profit for the casino. Nothing
can be done to improve the
player’s basic odds, so
programs devised for such
games must concentrate on
system s for betting

Perhaps significantly, racing professionals have
largely rejected the use of computers. Official
handicapping is still done manually by the Jockey
Club (although the data is stored on computer).
Timeform, the bible of the racegoer, also compiles
most of its data manually. ‘We only use the
computer for calculating the standard time figures
for each horse, taking into account wind

Pooled Resources
Several packages are available
for home computers that claim
to improve your chances at
winning the pools, and a great
many programmers have
attempted to write their own.
The better ones make use of a
vast database of information on
previous matches, and can

prove valuable in predicting the
outcome of marginal matches.
As with all forms of Computer
Assisted Gambling (CAG) such
programs can only increase
your chances marginally, and
packages thus come complete
with disclaimers from the
suppliers

deflections,’ explains the publication’s Managing
Director, Reginald Griffin. ‘There is no such thing
as a true computerised handicapping system
available anywhere. The problem is that
computers simply can’t cope with the
extraordinary results that crop up every day.’

Computers are increasingly used on the other
side of the betting shop counter, although not for
calculating the odds. Staff employed by the large
bookmaking chains are trained to use special
dedicated calculators for computing the returns
on bets. The credit side of the business is becoming
increasingly computerised. A punter with an
account at one of the chain bookmakers can
simply telephone his bet direct to their computer
centre. The details are keyed in and the account
debited with the value of the bet. If the chosen
horse performs as anticipated, the winnings are
calculated and credited to the customer’s account
file.

Most bookies are sceptical of computer
systems. ‘No one has ever come up with one that
wins consistently — or we wouldn’t be here’ says
William Hill’s spokesman, Graham Sharpe.
Nonetheless, it was his firm that staged one of the
most extraordinary and controversial computer
simulations of all time. Form details of the classic
Derby winners of the past were incorporated into
a specially commissioned program. Newspaper
readers were then invited to predict the first six.
The controversy arose over the placing of the great
Italian horse, Ribop, which never lost a race. The
computer placed it fourth!

Perhaps the most famous ‘gambling’ computer
of all is ERNIE (Electronic Random Number

___ X

Indicator Equipment), the machine that picks the
winning premium bond prize numbers. It is
arguable whether ERNIE is really a computer at

462 THE HOME COMPUTER COURSE

S o ftw a re

all; but although it is not programmable, it does
execute a program. The machine was developed
by Plessey in 1973 to replace the original machine,
built in 1957. Its function is to randomly generate
some 200,000 numbers and write them onto
magnetic tape. These numbers are generated from
a series starting at the lowest premium bond serial
number ever issued, and ending with the highest.
The tape is then loaded into an ICL mainframe
computer, which compares the numbers with a
tape listing the numbers of those bonds that have
already been repaid. Once these ineligible
numbers have been eliminated, the computer can
print out prize warrants and letters to the winners.

Since commissioning, the two ERNIEs have
generated the numbers for 22.2 million prizes
worth £1,181,843,400. Sounds good? Not really;
the chance of a bond winning a prize in the
monthly draw is just one in 15,000.

Another often encountered game of chance
appears daily in our newspapers. The chances of
winning one of the million pound prizes offered in
newspaper promotions is even more remote. The
numbers on the cards distributed to readers are 12
digits long. A 12 digit sequence running from
000000000000 to 999999999999 offers a million
million separate combinations. Statistically, the
odds against a particular number coming up on a
given morning would be slightly better than a
million million to one, since the newspaper
concerned publishes two numbers each day. On
this basis, it must be extremely doubtful whether

the newspaper will ever have to pay out the big
prize.

The situation can best be visualised Dy
imagining a bag containing two and a half million
white balls, representing the competitors (the
number of cards in circulation), and a million
million black balls for the total number of possible
combinations. Needless to say, the chances of
pulling a white one out the first time are pretty
remote. Moreover, the odds do not significantly
improve even when a year’s worth have been
pulled out. Statisticians compute the chances of
the newspaper ever having to part with a million
pounds at just one in 667.

Twist Of Fate
Pontoon (blackjack or ‘vingt-et-
un’) is available as a game on
most home computers, and
provides some of the best scope
for writing winning programs.
The ability to memorise the
cards already played increases a
player’s chances of success,
though as casinos won’t allow
computers at the tables, the
celebrated feats have all
involved concealed computers
(in one case strapped to a
player’s leg underneath his
trousers) or radio links to
external machines

1

Loading The Dice
Gambling’s most essential ingredient, random
number generation, can be easily simulated on
a personal computer. Most versions of ba sic

provide a random number generator function.
In many cases the numbers so generated are not
truly random, however, as the following short
program demonstrates:

10 LET A= RND
20 LET B = RND
30 LET C = RND
40 PRINT A, B, C

In each of the first three lines a supposedly
random number is assigned to the variables A, B
and C. These are then printed out. This might
give the following results (expect yours to differ
though):

; .014007 .964370 .457397

But if you re-run the program, most
microcomputers will display the same sequence
again. What is happening is this: when we ask
for R N D, the computer responds with the next in
a fixed sequence of numbers. Typically this
might comprise the one million six-digit
fractions between 0.000000 and 0.999999,
each occurring once in the complete cycle —
but not, of course, in sequence.

Certain b a sic s use a slightly different syntax,
requiring an expression in parenthesis, called
an ‘argument’. This takes the form LET A = RND
(X). The effect is very similar: RND and RND (X)
can both be used in the same way as other
variables.

Some b a sic s also feature a RANDOMIZE
function, which causes the sequence to start at
an unpredictable point. Inserting the
RANDOMIZE command early on in any program
where R N D is to be used ensures that a different
sequence of numbers will be generated each
time the program is R U N.

To simulate the casting of a dice we require
integers in the range 1 to 6. It is, however,
necessary to eliminate fractions. This is done by
using the INTeger function. PRINT INT(6.99)
produces the result 6 just as surely as PRINT INT
(6.01) does. Anything after the decimal point is
entirely discarded.

Since the largest number that RND can
generate is .999999 (which, when expressed as
an integer, acquires a value of 0), a little
multiplication is required. The time honoured
formula is:

LET A = INT(6*RND)+1

We multiply by six because a die has six faces.
The ‘plus one’ is simply to ensure that the results
range from 1 to 6, and not from 0 to 5.

THE HOME COMPUTER COURSE 463

P a s s w o rd s T o C o m p u tin g

Continuing our introduction to m achine code, we look at the m any
different form s in which program s can be expressed — from binary
to Assem bly language

One of the conceptual difficulties that most
newcomers experience with machine code is that
the programs can take various forms. Any data
stored in computer memory ultimately takes the
form of eight-bit binary numbers. However, when
these are listed out on paper, they occupy a lot of
space, are difficult to read and remember, and are
prone to typing mistakes. So instead we usually
make use of hexadecimal numbers. This has the

Addressing M odes
Among the most powerful
concepts in machine code
programming are the
addressing modes — the
different ways of retrieving
data

23A0
23A1
23A2

* • • •••»••••••

LD A U $ 6 T }

LD A $23A1

05
•r-:

• • • •
• • • •.• • • • • • • • • • •

I"JV? .•
• «■ • • •• • • • •

Immediate Mode
LDA #$01 will load the actual
v a lu e d (hex) into the
accumulator

Direct Mode
LDAS23A1 will load the
contents of the byte of memory
at location S23A1 into the
accumulator

05

LD A $23A1 ,X

04 X Register

23A1
23A2
23A3
23A4
23A5

-
• • • • • • • •*

09
40

• • • •••••.• •••••» • • • • •
•*•*•*•*•*•*•*•*•*•*•*•*•
• ••••••••••••.

• • • • • • •

Indexed Mode
LDA S23A1.X will load into the
accumulator the contents of
the byte with the hexadecimal
address computed by adding
the value in the X register to
S23A1. Thus if X contains $04,
the contents of location $23A5
will be loaded

09

Indirect Mode

advantage that the contents of any byte can be
expressed as a two-digit number, and any address
in the computer’s memory range (0 to 65535 in
decimal) can be represented by four digits.

When we write a hex number on paper we
usually precede it with a $ sign to distinguish it
from a decimal number, although the sign does
not feature in the computer’s memory when the
program has been entered. Secondly, when an
opcode has a two-byte operand (e.g. LDA $3F80)
the two bytes are entered into the machine in the
opposite order — i.e. the low byte followed by the
high byte. In the example given, therefore, the
three bytes would be AD (the hex representation of
the LDA opcode in 6502 language) followed by 80,
followed by 3F. This makes things easier for the
processor, but it can be confusing for the user.

Usually a machine code program is printed as a
‘hex dump’ — a long list of two-digit hexadecimal
values. In addition, a starting address will be given
(either in hex or decimal) and the first hex value
must be loaded into this location, the second into
the next location, and so on. Loading can be
achieved by means of the ba sic POKE command. If
the starting address is $1000 (4096 in decimal) and
the hex dump is:

AD (173 in decimal)
80 (128 in decimal)
3F (63 in decimal)

the program can be loaded with the three ba sic

statements:

POKE 4096,173
POKE 4097,128
POKE 4098,63

Note how we have to convert all the values from
hex to decimal before they can be used in the
POKE statement — inside the machine they will be
stored in binary.

For longer hex dumps it is normal to use a short
b a sic program called a ‘machine code loader’.
This asks for the start address and then the hex
values. As each is entered, the short ba sic routine
converts the hex value to decimal, and POKEs it
into the next location. Alternatively, the hex
dump can be READ by the. program from DATA
statements.

Once the machine code has been loaded, the
b a sic loader program can be dispensed with. It’s
therefore important to load the machine code
somewhere in memory where it won’t be
‘trampled over’ by the ba sic program, nor be

464 THE HOME COMPUTER COURSE

P a s s w o rd s T o C o m p u tin g

obliterated by ba sic statements such as N E W.
Most home computers have some basic

command to tell the machine to stop executing
b a sic and begin executing the machine code
program that starts at a specific location. One
form of this command is SYS 4096 (RETURN),
meaning ‘transfer control to the system starting at
decimal location 4096’; another is CALL $E651,
meaning ‘call the machine code routine starting at
hex location E651

The machine code subroutine or program will
then execute this system or routine (it may or may
not produce any visible results, depending on the
nature of the program). If it is correctly written
and incorporates the proper terminating
procedure, control will be passed back to b a sic .

This means, incidentally, that it is possible to call
machine code subroutines from several places in
the operation of a ba sic program, whenever a
function needs to be performed at high speed.

One of the difficulties of programming in
machine code is that if you have made a mistake
in your code, the computer won’t come back with
a nice helpful SYNTAX ERROR. It will more than
likely ‘crash’ instead: the machine won’t respond
to anything you type. This isn’t harmful to the
computer, but you will have to reset it (oi; switch
the machine off and then on again), and that
usually means having to enter the program again
from scratch. That’s why you can’t experiment in
machine code as you can in ba sic — the operation
of the program must be thoroughly checked on
paper before it is entered into the computer.

However, a software device that can assist
greatly in the entering and checking of machine
code is the ‘machine code monitor’ (which has
nothing to do with a monitor screen). This is built

into the ROMs of a few computers but is
generally purchased as a cassette or cartridge-
based package. A machine code monitor is a
simple operating system that will display on the
screen the contents of any requested section of
memory. These (hex) values can simply be altered
or written over, so a monitor is by far the fastest
way of entering a hex dump. Moreover, it usually
allows you to load and save machine code
programs directly onto cassette, without the need
for the ba sic loader program. The most advanced
machine code utility programs (the machine code
equivalent to ba sic tool kits — see page 444) show
the contents of each of the processor’s internal
registers.

Hex dumps are a convenient way of expressing
machine code, but they aren’t easy to read. Unless
you happen to remember the hexadecimal
equivalent of all the various opcodes, it’s almost
impossible to distinguish the opcodes from the
operands. So programs are usually written using
the three-letter mnemonics that we introduced in
the previous article (page 449), and these are then
translated into hex using a table of codes from the
microprocessor’s handbook.

However, a more sophisticated form of
machine code monitor will allow you to type in
the program in mnemonics, performing the
conversions automatically. This is called a ‘spot
assembler’ because it will assemble the
mnemonics into numbers on the spot.

This leads us on to the final form in which
machine code can be expressed — Assembly
language — which not only makes use of
mnemonics for the opcodes but can handle names
(or labels) instead of hex numbers for the
operands. Thus, if location $07B2 contains the
current number of missiles fired in a game,-we can
load this into the accumulator with the
instruction:

LDAMISSIL

At the start of the program we will have to specify
the location of MISSIL=$07B2, and that this
location should initially contain the value of $09
(nine missiles).

When we have finished developing this
program in Assembly language (called the ‘source
code’ of the program), we run a utility program
called an assembler. TTiis works through the code,
replacing mnemonics and any labels with their
hex equivalent, thereby creating a new version
called the ‘object code’. This code can then be
entered into the computer’s memory and run. The
process is not dissimilar to compiling (see page
84), though in this case there is a one-to-one
correspondence between the source and object
code.

Assembly language, being a higher-level
language than machine code, is considerably
easier to write, but there is no loss in performance.
However, assembler packages will usually only
work with a disk drive, and so are not available to
all home computer users.

Opcodes
Here are some more opcodes
that a typical microprocessor
would feature

JS R
Jump SubRoutine
This function is equivalent to
BASIC’s GOSUB. JSR $354D
will change the contents of the
program counter (PC) register
so that it executes the code
from $354D onwards

R T S
ReTum from Subroutine
On encountering RTS, the
processor will jump back to the
location from which the
subroutine was called (i.e.
equivalent to RETURN in
BASIC). RTS has no operand
because the return address will
have automatically been stored
in a special area of memory
called the Stack

B M I
Branch if Minus
This is one of several forms of
conditional branching in
machine code (in BASIC,
IF. . .THEN GOTO is a
conditional branch). If the
result of the last operation
resulted in a negative value in
the accumulator, program
execution will jump to a
specified address. BPL
specifies Branch if PLus

L D X
LoaO X register
X is another single byte
register within the processor,
and while it cannot perform
arithmetic in the same way as
the accumulator, it is used for
‘indexed addressing’ (see
panel). LDX loads a value into
X, and STX (STore X) will store
it back in memory

IN X
INcrement X
By adding 1 to the value of X
(DEX — DEcrement X — will
subtract 1), and using indexed
addressing, it is possible to
step through a number of
locations in memory,
performing the same process
on each

THE HOME COMPUTER COURSE 465

Hom e com puters have
developed enorm ously over the
last five years, but w hat will the
next five years bring? Com pare
our ideas with your predictions

What will the home computer of the 1990’s look
like and how will it function? These are the
questions that this section will attempt to answer,
by considering in turn some of the main
components and systems of tomorrow’s machine.
Many of the ideas are based on technologies that
are just coming on the market (perhaps in other
fields than computing), while others represent
what we believe to be likely developments.

One of the most fundamental features of our
hypothetical design is modularity. Having
purchased the base unit, the user will have a wide
range of options for expanding the machine.
Indeed, the user will virtually be able to design his
own machine by selecting this graphics module
and that sound facility. Of one thing we can be
sure: the rate of change in the computer
marketplace will continue to accelerate for many
years to come.

The 32-bit m icroprocessor’s
power will allow the display of
information in a number of
forms simultaneously. For
instance, the main screen might
show the view from the
command seat of a spacecraft,
while a subsidiary screen
mounted on top of the
keyboard/command console
might display control
information from the cockpit

Projector televisions have been
available since the beginning of
the 1980’s, but their scope is
limited by the light-emitting
power of the cathode ray tube.
Advances in CRT technology are
likely to bring us room-wide
projection systems. Early
projector televisions had to
make use of special curved
screens, but the latest models
can already focus onto a flat
surface

2 Keyboard

Despite the innate inefficiency of
the QWERTY keyboard, it is
unlikely that serious attempts
will be made to establish an
alternative layout. Fully sprung
typewriter-style keys are by far
the most popular — though Hall
effect keys, which use magnets
instead of springs, are likely to
become commonplace. The
electronic switches themselves
may well be replaced by a
system that relies on the keys
interrupting a matrix of laser
beams

466 THE HOME COMPUTER COURSE

4 Alternative Processors

In addition to the main 32-bit
processor, it is likely that the
micro of the 1990’s will be host
to additional processors in the
form of plug-in modules. Some
of the processing — for
example, the operation of a
particular peripheral or sorting a
file of data — can then be
‘subcontracted’ by the main
processor to the most suitable
sub-processor. Alternatively,
inexpensive plug-in modules
could emulate the classic
computers of the 1980’s, so that
software from any other
computer could be run without
modification

5 Random Access Memory

The 32-bit processor can
address up to alm ost 4,300
million memory locations — a
far cry from the 65,536-byte
limit imposed by the eight-bit
processors that brought
microcomputers into the home

6 Communications

While dish aerials for the
reception of signals from
satellites will be commonplace
by the 1990’san d most
telephone channels will be
digitised, rather than relying on
analogue signals, there will still
be a need to regulate the speed
of transm ission and reception.
These communications
controllers will perform some of
the control functions.of today’s
modulator/demodulators

The increased load and the
multiplicity of devices
connected to the microcomputer
are likely to require a
significantly greater power
supply than those in use today.
It will incorporate smoothing
circuits and rechargeable battery
back-up, so that mains
fluctuations or power failures do
not cause data to be lost or
corrupted

8 Portable Screen

Flat-screen technology —
probably involving a fast-acting
liquid crystal matrix and
perhaps connected to the
central processor by an infra-red
(or even microwave) link — may
be employed to display text and
graphic matter. If this device
were touch-sensitive, too, it
could double as a menu-
selection board and bit-pad or
digitiser

In s ig h ts

The Compact Disk ROM, which
uses a laser beam to read
optically-encoded information,
is likely to replace conventional
ROM cartridges because of its
much greater capacity — a
typical CDROM will hold four
megabytes

By the end of the decade floppy
diskettes should have evolved to
compete directly with
Winchester disks, both in speed
and data-packing densities. At
the same time they should
reduce in diameter to less than
the current minimum of 3 ins

11 Front Panel

On the early computers, before
the advent of high-level
languages and keyboards,
programs had to be entered in
binary notation by means of the
front panel — a line of lights and
switches giving the user control
over every bit of the address,
data and control buses. For
experienced machine code
enthusiasts, a front panel can
still be a useful tool, so this idea
might re-emerge on future home
computers.

12 Infra-Red Mice

The IBM PC-Junior already
makes use of infra-red radiation
to transfer data from keyboard
to computer without a cable
link. This technology could
provide the interconnection
between all peripherals,
including mice, thereby
eliminating the ‘spaghetti
effect’. Both left-and right-
handed models will, of course,
be available

13 32-Bit Microprocessors

The first 32-bit microprocessor-
based home computers
appeared in 1983, but were
forced to rely on 16- or even
eight-bit data buses to maintain
compatibility with existing
memory and peripheral chips,
and thus could not deliver the
power they promised. With the
introduction of devices such as
Motorola’s 68032 chip, which
offers 32-bit processing and
32-bit data transfer, the speed
and data-handling capabilities
of these large-capacity
microprocessors will become
the accepted standard. Many
minicomputers costing tens of
thousands of pounds have 32-
bit processors

THE HOME COMPUTER COURSE 467

■■■■■IIH V H H B H H H B H H H H H H H H H H H B H H H B H H H H H H H H H H H H H H I B H H H H H i l *«'-;:v̂v. r.*.J '. • •>■ >'«?■?'. ■

With the introduction of VLSI technology, we are now about to enter
the Fourth Generation of com puters. But the Japanese are already
specifying the Fifth Generation

.
•* :

Old men do not create revolutions, as the saying
goes, and the director of the Japanese project to
create the Fifth Generation of computers seems to
have taken that to heart. In choosing 40 scientists
from ten major corporations and government
laboratories to work with him at the Institute for
New Generation Computer Technology in Tokyo,
Dr Kazuhiro Fuchi selected only those under the
age of 35. The Institute was founded on 14 April
1982 with a sum of £330 million (to be spent over
ten years), and is a joint venture between
government and industry. Companies such as
Fujitsu, Sharp and Toshiba are taking part in this
ambitious project, which intends to leap over the
present state of computer technology and create
machines far in advance of those that are presently
being designed.

The coining of the term ‘Fifth Generation’ has
itself focused attention on the major advances in
computer design in the past, and stimulated
imaginative possibilities for the future. The first
generation of computers were characterised by the
use of thermionic valves, but these were made
obsolete by the invention of the transistor. Second
generation transistor computers were in turn
superseded by machines using Large Scale
Integration (LSI) technology, which allowed many
transistors to be built into a single chip. We are at
present at the end of this third generation of
computers, but the late 1980’s should see the
fourth generation of VLSI chips become available.
These Very Large Scale Integrated chips will have
up to ten million transistors per chip, compared
with the current limit of approximately a quarter of
a million.

At present, International Business Machines
annually spend over £1.1 billion on computer
research and development, which makes the
Japanese investment seem insignificant in
comparison. The Japanese capital outlay is not
purely profit-motivated, however.

The focus of science has shifted over the last
hundred years from the harnessing of raw energy
(in forms as various as electricity and the internal
combustion engine) to the study of the most
intangible form of wealth — information. Land,
labour, capital and industry may have been the
source of power in the past, but the future will
favour those in control of information.
Knowledge and the processing of information will
be the keys to post-industrial society. So what is
needed for this new society is an engine, a machine
with automatic reasoning that can be applied to

any factual problem or area of human endeavour
with the mathematical precision and certainty of a
computer. The engine that is currently being built
by the Japanese is called a Knowledge and
Information Processing System, or KIPS.

Humans are very good at converting sensory
signals into cognitive forms — the state of play in a
game of chess can be seen at a glance — but when it
comes to taking decisions that depend on large
amounts of data we soon discover our limitations.
The rules of chess can be explained in a few
minutes, yet the game is so complex that
grandmasters see only a dozen moves ahead.
However, in principle every problem to which
reasoning applies can be broken down into a series
of simple steps, each of which can be decided by
applying rules of inference. This set. of rules is
known as predicate logic. Logical rules of
inference apply to all problems, but for simple
everyday decisions we aren’t conscious of them.

An expert needs more than a good brain — in
the case of a doctor many years of training are
required to accumulate medical knowledge. In the
same way, a KIPS must have a data bank on which
the rules of inference can operate. Furthermore,
the system must be extremely user-friendly if the
KIPS is not to demand its own breed of experts to
operate it. A KIPS machine with which you can
hold a conversation in the language of your choice
must be a product of research into artificial
intelligence — which is an extremely contentious
area of study. Thus the targets that the Japanese
have set themselves embrace a wide range of
computer sciences: hardware, software,
interfaces, expert systems (see page 72) and the
problems of artificial intelligence.

The Japanese project has been conceived to
look beyond advances in chip technology. As the
density of transistors in integrated circuits
increases, electrons have less distance to travel
between each component, and hence the circuits
will operate faster. However, the Japanese realise
that mere speed is not enough, which is why so
much effort is being put into the software. In a

»
✓

468 THE HOME COMPUTER COURSE

P a s s w o rd s T o C o m p u tin g

game of chess, for example, there are so many
possible sequences of moves (about 10120) that it
has been estimated that the time needed to explore
all the possibilities exceeds the remaining lifetime
of our sun. The project has a target of producing a
machine that can make 100 million logical
inferences (i.e. can apply 100 million rules) per
second. This is referred to as 100 million LIPS
(Logical Inferences Per Second).

Another way in which speed could be improved
would be by hard-wiring the software functions
into the design of the chip, instead of loading them
into memory and processing them by means of a
general purpose chip. This erosion of the
distinction between hardware and software is one
of the most interesting aims of the project. There
already exist ‘associative’ memories that have
logical search circuits built into the memory cells.
These devices can locate a piece of data from the
meaning of the data alone — without the need to
specify a memory address.

Such advances will speed up the interaction of
the logical processors with the data banks. Hard­
wiring programming routines into a computer is
reminiscent of early computers such as ENIAC
(see page 140), but the Fifth Generation machines
will diverge from the architecture of von Neumann
in one fundamental respect. They will feature
many distinct processors all working
simultaneously (in parallel), rather than having
just one central processing unit. This requires
much more care in the timing and control of
internal operations but will remove the restriction
on speed that the sequential execution of
instructions imposes. The internal language
chosen for the KIPS is Pr o l o g , which is a language
developed in France and Britain and based on
predicate logic. But KIPS will have the ability to
communicate in many tongues with its users.

Translation of continuous human speech is
another of the project’s goals, with an immediate
aim of 95 per cent accuracy. At present the ability
to recognise even individual words from different
speakers lags far behind the manifest success of
synthetic speech. However, the NEC Corporation
of Japan has already succeeded in creating a
machine that can recognise continuous speech. A
limitation of this system is that it can recognise the
voice of only one individual, and each word must
be previously recorded so that the computer can
remember and later recognise the speech pattern.

As to the written word: the project is preparing a
100,000 word Japanese/English dictionary and
program that it is hoped will permit a translation
accuracy of 90 per cent.

Japan has precedents in successful long-term
research projects: the PIPS (Pattern Information
Processing Systems) project of the 1970’s is
proving useful in the development of visual data
banks and user-friendly interfaces. A KIPS will
have to be able to look at an image and extract the
salient features and outlines in order to make any
preliminary sense of it. On the Tokyo
underground there is already a machine that can

do this: it scans passageways with a video camera
and produces a flow pattern of passengers through
the subway system.

Information technology represented an $88
billion business in the USA in 1983, and with
employment in the manufacturing industry likely
to decline in the same way as that in agriculture did
earlier this century (from 40 per cent of the work­
force on the land at the turn of the century to three
per cent today), the community will move further
towards an information society. In the light of this,
Japan is doing something very ambitious with its
Fifth Generation project. The plan is optimistic
and includes a number of ‘scheduled’
breakthroughs that may or may not materialise
(after all, the expected breakthrough in controlled
nuclear fusion is still awaited). But it is a positive
approach from a trading nation not dissimilar to
our own. However, unlike Britain, whose
investment in research and development has fallen
over the last decade (from 2.32 per cent to 2.09
per cent of the GNP), Japan is speculatively
investing in the future.

G eneration
Game
Round One
The first generation of
electronic computers was
developed around the
technology of the thermionic
valve. They had very little in
the way of on-line memory,
and data was generally stored
on punched cards
Round Two
The second generation
evolved out of the transistor,
which increased the memory
capacity, though off-line
storage (in the form of
magnetic tape) was still used
Round Three
The invention of the integrated
circuit increased computer
power dramatically, and was
ultimately responsible for the
microcomputer —
characterised by the floppy
diskdrive
Round Four
We are now moving from the
third to the fourth generation,
which will be based on VLSI
chip technology. The RAM
memory will be so large that
off-line storage will become
less important
Round Five
The Fifth Generation of
computers, being developed
primarily in Japan, is really
concerned with software
rather than hardware.
However, it is based on the
assumption that user memory
will be so large that program
size will cease to be a
consideration

THE HOME COMPUTER COURSE 469

KE
VI

N
JO

NE
S

A robust physical construction
and superb high resolution
graphics have m ade this
m icrocom puter very popular in
schools and with the m ilitary

The products of Research Machines Limited
represent one of the most enduring classes of
computer available. Although these machines are
not particularly innovative, nor especially
competitively priced, they are extremely solidly
designed and constructed, well-supported and
extraordinarily reliable. The company’s most
popular computer, the RML 380Z, won’t be
found in many homes but, as one of the most
common educational machines, it represents for
many children their first experience of computing.

Compared with most machines the 380Z is
huge: the main circuit boards are kept in a robust
19 inch (48cm) wide casing, complete with
handles at the sides. Removing the lid of this ‘black
box’ reveals why it’s so big, as nearly a quarter of
the space inside is taken up by the power supply.
Though sheathed in metal, its weight makes it
clear that this is not an advanced switching-type
power supply unit, but a solid iron-cored
transformer with enormous capacitators. This
may seem old-fashioned, but it has the
considerable advantage of being almost
impossible to overload or otherwise damage.

It is perhaps this reliability that has made the
380Z popular at the Ministry of Defence, where a
large number are used for stock control and similar
chores. In those schools and colleges that offer
higher-level maths, physics and science, the
machine is particularly favoured for its high
resolution graphics, which prove useful for
pictorial demonstrations of various aspects of the
curricula.

The High Resolution Graphics (HRG) package
is a set of machine code routines that are called
from the user’s program, and which can alter the
display generated by the HRG card. This must be
present in order to produce graphics at all; and
although it was originally introduced some years
ago, it remains one of the better systems available.
By altering the contents of certain memory
locations the card can generate displays at several
resolutions in the normal colours (red, yellow,
green, blue, magenta, cyan). Depending on the
resolution chosen, which can range from 160 x 96
to 320 x 192, these six colours plus white can be
given up to 255 different levels of brightness, thus
increasing the range of colours to 1,786 (seven
times 255, plus black). Alternatively, it is possible
to use some of the bits normally intended for
specifying intensity to produce multiple pages of
graphics, though the number of different
intensities will be correspondingly lower.

Disk Drive Controller Board —
As well as carrying a specialised
disk controller chip, this board
has a Z80 clock/timer chip
(CTC), and an 8521 serial Input/
Output chip, which together
provide impressive
communications facilities

Bus Terminator Board
This is situated at the far end of
the bus to the CPU board, and
guards against interference on
the various electrical lines

A full set of these calls, plus a number of others
for handling such related matters as printer dumps
(copying the screen to paper), are provided as
extended versions of the RML b a s ic . This dialect
is much like Microsoft b a sic , and most keywords
are used in an identical fashion. The only major
exception is the use of text labels for calling
subroutines, rather than an address in decimal.

However, the interpreter plus HRG package
together occupy a considerable amount of

Monitor
To take full advantage of the
380Z’s facilities, a colour
monitor, with an RGB
interface, is essential. The
machine can be purchased
with 40 or 80 screen columns
as standard, and this
determ ines the type of
monitor needed

co

CO
CO
cc
o

Keyboard
The keyboard supplied with
the RML 380Z is mounted in a
small but weighty metal box.
The keys are arranged in a
fairly standard pattern, and
are of high quality, with a solid
but pleasantly light touch.
They are obviously designed
to withstand heavy use, a
factor that makes the
keyboard an ideal choice for
the classroom co

CO
CO

o

470 THE HOME COMPUTER COURSE

H a rd w a re F o cu s

RAM Board
The main CPU board cannot
hold enough RAM to provide a
usable system, so further RAM
may be added, up to the
addressing limit of the Z80,
which is 64 Kbytes

VDU Board
The display generator is not part
of the main board, as in smaller
machines, but a separate device
that is sent controlling signals
by the CPU. Video display units
are available with either 40 or 80
columns

CPU Board
This carries the Z80 CPU, part of
the RAM, the ROM, and most of
the essential parts needed to run
the machine, such as a keyboard
port

Z80 Bus Connections

Power Supply
Huge, heavy and very hard to
hurt

Reset Button

lock
This allows the machine to be
locked on to prevent anyone
from interfering with critical
programs

Research
M achines 380Z

_ _ _______

PRICE
£2,062 (5in disk system)
£3,395 (8in disk system)
Educational discounts available

—_

SIZE
5 9 5 x 4 2 5 x215mm
CPU
Z80
CLOCKSPEED
4 MHz
MEMORY
Up to 6 Kbytes ROM
56 Kbytes RAM

...

VIDEO DISPLAY
24 lines of 40 or 80 characters,
seven colours with up to 255
shades. Graphics resolution of
320x192 and 160x96
INTERFACES
RS232 serial, cassette, parallel
printer
LANGUAGE SUPPLIED
Research Machines extended
BASIC
OTHER LANGUAGES AVAILABLE
ALGOL, FORTRAN, and CP/M
standards
COMES WITH
Manuals for installation, CP/M,
disk system, cassette system and
BASIC utility programs on disk
KEYBOARD

DOCUMENTATION
Excellent, though a little dry. The
information is comprehensive and
easily referenced

Because the power supply has
the capacity to handle several
add-on boards without
modification, a fan is needed to
assist cooling

Two Disk Drives

memory, and may not leave sufficient room for
sophisticated user programs. For this reason, three
versions of the ba sic are provided, with either all,
some or none of the HRG package included,
depending on how constraining your memory
requirements are.

The use of the HRG package is not limited to
b a sic , and as a simple machine code file it can be
accessed from any language. Since the 380Z is
generally run under CP/M (see page 410), this
means that a wide range of languages are
available, but the machine is highly unusual in the
microcomputer world in having a version of Al g o l

configured to run on it.
This language, which many European scientists

prefer to f o r t r a n (the language favoured in North
America for science purposes), resembles pa sc a l

and is particularly strong in complex
mathematical calculations, such as those involved
in structural design. This is another factor that
makes the machine attractive to educationists.

THE HOME COMPUTER COURSE 471

■

The Com m odore 64’s Basic
doesn’t match up to its
rem arkable sound facilities

Among the current range of home computers, the
Commodore 64 is supplied with the most
sophisticated sound-making facilities. These are
attributable to a specialised chip called the Sound
Interface Device — or SID, as it is better known.

SID provides capabilities similar to that of a
commercial monophonic synthesiser. There are
three oscillators with an eight-octave range (0-
3900Hz in 65,536 steps); a master volume
control, from 0 to 15; four waveforms for each
oscillator (triangle, sawtooth, variable pulse and
noise); oscillator synchronisation; and envelope
generators allowing ADSR control for each
oscillator. Further features include: ring
modulation; programmable filter with low pass,
band pass, high pass, notch output (which blocks
out a narrow band of frequencies) and variable
resonance; envelope filtering; two analogue-to-
digital potentiometer interfaces that can be used to
control SID facilities; and an external audio input,
which enables additional SID chips to be linked
together. Other audio signals can be input, filtered

and mixed with the standard SID outputs.
It would be impossible to detail the operation of

each of these features here (several good books are
available), but we can explain what all these
phrases mean. First of all, oscillator
synchronisation causes two signals (in this case
two specified voices) to be harmonically locked
together, making a single, more complex tone out
of the two separate signals.

Modulation is the modification of one signal by
another, affecting either the frequency or
amplitude (volume) of the sound. Ring
modulation is the amplitude modulation of one
voice by another. This results in a tone that is clear
but has a jarring, discordant effect and can be used
to produce bell-like sounds similar to those of steel
drums. Such sounds are said to have inharmonic
overtones.

Filters enable specified frequency ranges to be
eliminated from a signal. The different types of
filtering possible on the Commodore 64 have
effects that are suggested by their names: low pass
filters cut out frequencies higher than a specified
frequency; band pass filters eliminate frequencies
above and below a specified ‘band’ of frequencies;
notch filters are the inverse of band pass filters —
they cut out a specified band; high pass filters cut

Player-M issile graphics are one
of the strong points of the Atari
m achines

P layer-M issile G raphics
Player-Missile or ‘PM’ graphics form an important
part of the Atari’s graphics capabilities. TTiey are
similar in nature to the sprite graphics available on
the Commodore 64 (see page 408) and the Sord
M5, allowing the programmer to design and
control up to eight different high resolution
shapes. These movable shapes operate
independently of any background display and
may be programmed to move either in front of or
behind any other shapes drawn on the screen. This
allows the programmer to add a third dimension to
the screen effects. PM graphics can be moved

smoothly, at speed, across the screen and so are
ideal for fast-moving arcade games. They can also
be used to create more colourful static displays
than are possible using the normal graphics
modes, as PM objects can be coloured
independently of each other and of the
background display.

As with all sprite graphics, the secret of PM
graphics’ facilities lies in dedicated hardware.
Special registers are designed to control the
movement, colour and screen display of the PM
objects. All the programmer has to do is place
certain values in these registers to manipulate the
objects. In b a sic this is done using the POKE
command. Once a number is POKEd into the
relevant register then the Atari’s own hardware
takes over the rest of the work. This is done at
machine code speed and is therefore much faster
than if the process was controlled from b a sic .

Let us now look at the creation of PM objects
and the registers that control them. Players are
designed from a vertical strip, eight pixels wide
and 128 or 256 pixels high. Each row across the
strip is represented as a single byte in the
computer’s memory. By POKEing suitable binary
codes it is possible to define the shape of a player
using a similar method to that used to create user-
defined characters (see page 246). Up to four
players may be defined in this way, each taking up

472. THE HOME COMPUTER COURSE

t

10 SID=54272
20 POKESID+23,0
30 POKESID+24,15
40 POKESlD+5,40
50 POKESID+6,201
60 FOR N=1T05
70 READ FH,FL,D
80 P0KESID+1.FH:

POKESID.FL:
REITPLAY
NOTE*

90 POKESID+4,33
100 FORMT0300*

D:NEXT I
110 POKESID+4,32
120 FORMT0100:

NEXT I
130 NEXTN
140 FORN1T02000:

NEXT I
150 POKESID+24,0
160 REM**FH FLD*
170 DATA 57,172,1
180 DATA 64,188,1
190 DATA 51,97,1
200 DATA 25,177,1
210 DATA 38,126,2
220 END

out frequencies lower than a specified one; and
variable resonance can be applied to all the above
filters to emphasise the frequencies around the
cut-off points. Envelope filtering is a special case:
it has a different effect from the others in that
digitised ADSR values set for envelope 3 can be
read from the SID chip and applied to a signal in
such a way that the harmonic structure changes
throughout the course of a note. It works like a
variable filter.

These sophisticated features enable you to build
highly complex sounds into interesting effects
and convincing emulations of conventional
instruments. The daunting aspect of SID is that
CBM b a s ic V2, the dialect supplied with the 64,
provides no commands dedicated to sound at all.
Control is exercised by PEEKing from and POKEing
into the 29 SID control registers. A lot of b a s ic
code is therefore needed to generate even simple
effects, and in some cases b a s ic isn’t fast enough to
do full justice to the full range of SID’s possibilities.

A full description of the SID control registers
would require more space than a complete issue of
T h e H o m e C o m p u t e r C o u r s e , but it is possible to
play notes with pleasing tones as shown in the
program on the left.

Although the program is 22 lines long, it plays
merely five notes of a simple tune on one
oscillator. Line 20 disconnects the filter from the
oscillators; line 30 sets the master volume at its
maximum; and lines 40 and 50 specify a piano­
like envelope. Line 80 sets the note frequency; 90
and 100 start and stop the ADSR cycle and select
a sawtooth wave for voice 1; and timing is
achieved with FOR. .. NEXT loops in lines 100,120
and 140.

Programming sound on the Commodore 64 in
b a s ic is a major effort in terms of both learning and
writing code. Moreover, it can be a very frustrating
exercise, as the only way to discover if a more
complex set of b a s ic statements will run in an
acceptable time is by trial and error. If you want
simpler methods of sound generation it is worth
investigating the many sound editing programs
that are commercially available. These are usually
written in machine code and make the most of the
marvellous features of the Commodore 64.

its own 256 or 128 bytes of memory.
Each of the four players has a missile figure

associated with it that is two bits wide. To create
players and missiles it is necessary to POKE the bit
patterns that define their shape into a certain area
of memory. The area of RAM used can be chosen
by the programmer but the computer must be
informed by setting a pointer to the beginning of
the area.

If the programmer elects to use single-pixel
vertical resolution then twice as much memory is
required than for two-pixel vertical resolution.
The following program designs player 0 in two-
pixel vertical resolution as a space ship:

10 R EM *** DEFINE A PLAYER***
20 P=PEEK(106) -8:REM SETS P TO 2K BELOW

TOP OF RAM
30 POKE 54279,P:REM SETS POINTER TO PM

AREA
40 BASE = 256*P:REM SETS PM AREA BASE

ADDRESS
50 FOR I « BASE+512 TO BASE+640
60 POKE l,0:REM CLEAR PLAYER 0 AREA
70 NEXT I
80 FOR I = BASE+512+50 TO BASE+530+50
90 READ A:P0KE l,A:REM DEFINE FIGURE

100 NEXT I
110 DATA 16,16,16,56,40,56,40,56,40
120 DATA 56,56,186,186,146,186,254,186,146

Each player figure has several registers associated
with it. These registers control colour, horizontal
position and size. The last of these enables the

programmer to increase the width of a player by a
factor of two or four. Further registers control
player-to-background priority. Missiles take on
the colour of their parent player but missile size
can be changed independently. For games
applications a series of registers is set aside to
detect on-screen collisions between players,
missiles and background. However, there is no
vertical position register for missiles or players.
Vertical movement must be achieved by moving
the contents of each location that holds the bit
patterns for the figure up through the area of
memory set aside for that player. This is a fairly
straightforward task in Assembly language but
would be relatively slow in b a s i c . It is a good idea
to try to make characters that move vertically as
short and stubby as possible.

Player-Missile graphics considerably extend the
Atari’s graphics potential, although they are not as
versatile or as easy to use as the Commodore 64’s
sprites. Here is a continuation of the program
started earlier, to colour the space ship and move it
from left to right across the screen.

130 POKE 559,46:REM ENABLE PM 2 LINE
DISPLAY

140 POKE 53277,3:REM ENABLE PM DISPLAY
150 POKE 704,88:REM COLOUR PLAYER 0 PINK
160 GRAPHICS 0
170 SETC0L0UR 2,8,2:REM SET BACKGROUND TO

DARK BLUE
180 FOR I = 0 TO 320
190 POKE 53248,l:REM SET HORIZONTAL

POSITION
200 NEXT I
210 END

Rocket PM
Before a player object can be
defined, it must first be drawn
out and the decimal values for
each row of pixels calculated
Player Strip

128 64 32 16 8 4 2 1
0
16
16
16
56
40
56
40
56
40
56
56
186
186
146
186
254
186
146
0

THE HOME COMPUTER COURSE 473

> B a s ic P ro g ra m m in g

To conclude our course, we take a critical look at the Basic
language, and at som e of the alternatives to it

As a postscript to our Basic Programming course,
we would like to discuss briefly some of the
strengths and weaknesses of ba sic compared with
other programming languages.

B a sic is an off-shoot of f o r t r a n , one of the
earliest programming languages. Unlike most
other languages, ba sic is interpreted. This means
that when a ba sic program is executed, a special
program elsewhere in the computer’s memory
interprets the code line by line and converts the
ba sic statements into machine code. Here’s what
would happen in a short ba sic program like this:

10CLS
20 PRINT “TYPE IN A NUMBER”
30 INPUTX
40 PRINT “TYPE IN A SECOND NUMBER”
50 INPUT Y
60 “PRINT “THE PRODUCT OFTHETWO NUMBERS

IS:
70 PRINTX*Y
80 PRINT
90 PRINT “ DO YOU WANT ANOTHER GO?”
100 PRINT “ PRESS Y TO TRY AGAIN”
110 PRINT “OR‘N’ TO END”
120 FOR X = 1 TO 1
130 LET A$ = INKEYS
140 IF A$ < > “Y” AND A$ < > “N” THEN X = 0
150 N EXT X
160 IF A$ = “Y" THEN GOTO 10
170 END

When the ba sic interpreter encountered line 10 it
would work out the machine code needed to clear
the screen. For line 20 it would work out the
machine code instructions necessary for sending
the TYPE IN A NUMBER message to the screen. For
line 30 it would set up the memory space needed
to store a real number, wait for input from the
keyboard and then convert the number typed in
into binary and store it in the space allocated to
variable X. All this would be repeated for lines 40
to 60. If the user wanted to repeat the program by
typing Y, the interpreter would branch back to line
10 and repeat all the calculations and
computations again.

Most languages other than ba sic are
‘compiled’. This means that after the program has
been written it is processed by a ‘compiler’ before
it can be run. The compiler is a separate program
that goes through the ‘source code’ (the original
program) and produces a second version of it in
machine code. When the compiled program is
run, it is likely to work very much faster than an

interpreted program because all the time-
consuming translations into machine code have
already been done.

If compiled programs work so much faster than
interpreted programs, you might wonder why all
programming languages don’t use compilers.
There are several advantages to using interpreted
programs, such as b a s ic . Most of these stem from
the fact that it is an interactive language, which is
one that can be tested and de-bugged ‘at the
keyboard’ while the program is being developed.
B a s ic , for example, allows the STOP command to
be inserted at any point in the program. When the
interpreter encounters a STOP statement, it stops
interpreting the program and allows ‘commands’
to be issued from the keyboard.

Commands are instructions that can be directly
executed by the interpreter when the program is
not running. B a sic is provided with a large
number of these and they can be invaluable in de­
bugging. After a ba sic program has been
executed (i.e. the interpreter has encountered the
END statement) or when the interpreter
encounters a STOP statement, it is possible to
PRINT the values of all the variables. Try running
the address book program, for example. Run the
program and type 9 to exit from the program. If it
runs all the way through without any error
messages appearing, it should end with the ba sic

prompt (this is usually an OK, > or *). Then type
PRINT R M 0 D < C R > . The interpreter should print
a 0 on the screen (provided you have not added
any records!). Then try PRINT S IZ E < C R > . The
interpreter will print a number on the screen one
larger than the number of records you have in the
data file.

Basic’s Advantages
B a sic is often called the ideal language for the
inexperienced programmer because it allows
bugs to be removed at the keyboard. It has
another great advantage: it is comparatively easy
to learn. For example, in the Basic Programming
course, we have covered all the fundamentals and
many of the advanced aspects of b a sic in just 8 6

pages. Syntax errors such as 40 PRNT A(12) will
usually result in easily understandable error
messages when the program is executed, such as
SYNTAX ERROR IN 40. A glance at the line number
referred to usually makes it clear where the error
lies, and rectifying the error is usually no more
difficult than typing E D IT 40< C R > (followed by a

474 THE HOME COMPUTER COURSE

B a s ic P ro g ra m m in g

few editing commands) or re-typing the correct
line. Whenever the b a sic interpreter encounters
an error in syntax or logic it stops the execution of
the program and reports the error. Fixing the bugs
is as simple as trying a new line in place of the
erroneous line, and typing RUN<CR> again.

Basic’s D isadvantages
The b a sic programming language has a number
of disadvantages, however, some of which are
subtle and some glaring. Because it is interpreted
(although a few compiled versions of ba sic do
exist) it runs very slowly. If speed is not very
critical (as in a program to calculate your current
bank balance, for example) the slowness of
interpreted b a sic will be of no consequence. If, on
the other hand, speed is of the essence (as in a
screen animation program using graphics, or a
‘clock’ used to time reactions in a laboratory
experiment) interpreted ba sic is likely to be far
too slow.

If you need speed in your programs, there are
two routes to follow: programming in either
machine code or Assembly language (see page
448) — a difficult and time consuming process —
or programming in a compiled language such as
p a s c a l or f o r t h . Compiled languages are not
difficult to learn, but the source code (the original
program) is almost sure to contain bugs, which
the compiler will find when it tries to compile the
program. These are difficult to rectify, compared
with bugs in b a sic . After corrections have been
made to the source code, the program will have to
be compiled all over again. Most compilers take
two or three ‘passes’ through the source code, and
each pass is likely to result in error messages, each
of which will have to be corrected before the
program can be re-compiled.

Producing a correctly compiled program is
likely to be a far more time consuming processs
than achieving a working program in interpreted
b a s ic . On the other hand, ba sic is likely to lead
the novice programmer from the ‘straight and
narrow’ by allowing bad programming techniques
that highly structured languages such as p a sc a l

would reject. B a sic allows the programmer to
write very careless programs, full of GOTOs for
example, and these bad habits can make the
transition to more advanced languages difficult.

W hat Next A fte r Basic?
B a s ic is a flexible language, and one that is not
difficult to learn. It has excellent string handling
facilities, but is slow and fails to take full
advantage of the power of a home computer. On
the other hand, more modem languages, such as
p a s c a l and f o r t h , offer programming facilities
either difficult or impossible in b a s ic .

Pascal was also devised as a teaching
language, and specifically designed to encourage
the development of well constructed, ‘structured’
programs. Pascal is a compiled language, which

means that users encounter numerous errors
picked up by the compiler (after the source code
has been written and before the compiled ‘object
code’ can be run), and this can be very frustrating.
Novice p a sc a l programmers also tend to find the
restraints of the language, such as the need to
declare all variables at the beginning of the
program (and to state what type they are — real,
integer, etc.), to be an impediment to free and
flexible programming.

On the other hand, p a sc a l demands that the
programmer thinks through the logic of the
program properly before writing. Programs in
p a sc a l are likely to throw up numerous syntactical
errors in the source code. But they are also more
likely to be well designed and less likely to contain
fundamental logical errors.

F o r t h has recently become a very popular
alternative to ba sic as a programming language on
home micros. Although fo r th is not as difficult to
learn as Assembly or machine code language, it
must be said that it is far less ‘intuitive’ than either
ba sic or p a sc a l . Even so, fo r th has many unique
merits that make it a contender as the
programmer’s second language.

Although fo r t h is a high level language, it runs
nearly as fast as machine code, owing to the
unique way it works. Whereas languages such as
b a sic have a fixed number of statements and
commands, fo r th users can define their own
vocabulary.

The keyword PRINT in ba sic means that any
character following it enclosed in double quotes
will be printed on the screen. Nothing the
programmer does can alter this. In f o r t h , PRINT
could be defined to produce, say, a listing on the
screen of the hexadecimal equivalents of the
ASCII codes, printed in a vertical column, of the
characters in a string.

F o r th gives the programmer the power to
define any word to mean whatever is wanted and
to produce the desired results whenever it is used
from then on. Not only is fo r t h extremely flexible
in this way, but it also produces programs that can
be compiled to object code (see page 184) which
are nearly as compact and fast running as machine
language programs.

Although there are many programming
languages available, most hobbyists moving on
from b a sic will be inclined to choose from
Assembly language, p a sc a l and f o r t h . Very
briefly, the advantages and disadvantages of each
can be summarised thus:

BASIC
Easy to learn
Easy to remember
Easy to de-bug
Slow in execution
Uses lots of memory
Does not encourage structured programming

Assembly Language:
Not very easy to learn
Not very easy to remember

THE HOME COMPUTER COURSE 475

B a s ic P ro g ra m m in g

Difficult to de-bug
Very fast in execution
Gives complete control over the microprocessor

PASCAL
Moderately easy to learn
Moderately easy to remember
De-bugging more difficult than in BASIC
Encourages better programming techniques
Execution faster than BASIC but slower than
Assembly
Needs to be compiled, which takes time; once
correctly compiled, runs nearly as fast as Assembly
Gives fair control over the microprocessor, but less
than Assembly; string handling not as easy as in
BASIC
FORTH
Not very easy to learn; easier for complete beginners,
not so easy for BASIC programmers
Moderately easy to remember
De-bugging in interpreter mode very easy
Can be compiled; executes almost as quickly as
Assembly language
Gives complete control over the microprocessor
Very economical on memory
Easier to learn than Assembly language, though less
'intuitive' than BASIC

Basic Flavours
r
LYNX 96

1 REM ‘ CREATE DATA FILE*
2 DIM N$(30)
3 LET N$=“@FIRST”
4 DIM F$(15)
5 LET F$=“DUMMY”
6 LET Z=2
7 EXTBACK1
8 EXTSTORE 1,Z,N$,N$,N$
9 EXTSTORE 1 ,F$,F$,F$,F$
10 INPUT “INSERT DATA TAPE, PRESS

RECORD, & TYPE T ”;A$
11 SSAVE1, “ADDBKDAT”
12 PRINT “STOP THE TAPE, AND REWIND”
13 END
NB This is the initialising program for the 96K
Lynx; we have no information on cassette file
handling for the other models.
Main Program Variables
Copy the Spectrum list with these substitutions
for the numeric variables:
Replace: SIZE byZ

RMOD byR
SRTD byD
CURR byC
CHOI by H
BTM byb
MD by m
TP byt

and make the following line changes,
substitutions, and deletions:
1100 REM *CREARR* S/R
1110 DIM N$(30)(50)
1120 DIM M$(30)(50)
1130 DIM S$(30)(50)
1140 DIM T$(15)(50)
1150 DIM C$(15)(50)
1160 DIM R$(15)(50)
1170 DIM X$(15)(50)
1180 DIM Z$(30)

1210 LET Z=0
1220 LET R=0
1230 LET D=1
1240 LET C=0
1250 LET Z$=‘
1260 LET Q$=
1300 RETURN

FIRST

1400 REM *RDINFL* S/R
1405 PRINT “INSERT DATA TAPE AND PRESS

PLAY”
1410 GOSUB 3100
1420 SL0AD1, “ADDBKDAT”
1430 PRINT “STOP THE TAPE”
1440 GOSUB 3100
1450 EXTBACK 1
1460 EXTFETCH 1,Z
1470 FOR K=1 TOZ-1
1480 EXTFETCH 1,

N$(K),M$(K),S$(K),T$(K),C$(K),R$(K)-
,X$(K)

1490 NEXT K
1500 LET Q$=N$(1)
1510 RETURN

3120 IF K E Y N 0 3 2 T H E N LET L=0

3780 LET A$=KEY$

3810 LET H=VAL(A$)
3820 IF (H< 1) OR (H > 9) THEN LET L=0

4500 REM *MODNAM* S/R
4510 REM CONVERT TO U/CASE
4520 LET D$=UPC$(N$(Z))

(delete lines 4530-4590)

4600 LET P$=“”
4601 LET A$=“”
4602 LETT=LEN(D$)
4603 LET S=0
#
4610 REM LOCATE LAST SPACE

4630 IF M ID$(D$,L,1K ” THEN LET S=L

4670 IF M ID $(D $,L ,1)>“@” THEN LET
P$-P$+MID$(D$,L,1)

4710 IF M ID $(D $,L ,1)>“@” THEN LET
A$=A$+MID$(D$,L,1)

Lines 5410 to 5460 must be reduced to single
statements, for example:
5410 LET U$=N$(L):LET N$(L)=N$(T):

N$(T)=U$ becomes
5410 LET U$=N$(L)
5411 LET N$(L)=N$(T)
5412 LET N$(T)=U$
and so on, no changes otherwise.

5600 REM *SAVREC* S/R
5605 PRINT “INSERT DATA TAPE AND PRESS

RECORD”
5610 GOSUB 3100
5620 EXTBACK 1
5630 EXTSTORE 1,Z
5640 FOR K=1 TO Z-1
5650 EXTSTORE 1,

N$(K),M$(K),S$(K),T$(K),C$(K),R$(K)-
,X$(K)

5660 SSAVE 1, “ADDBKDAT”
5670 PRINT “STOP THE TAPE”
5680 GOSUB 3100
5690 RETURN

5855 LET X=0

476 THE HOME COMPUTER COURSE

B a s ic P ro g ra m m in g >

5860 LET m-INT((b+t)/2)
5870 IF M$(m)=U$ THEN LETX=1
5880 IF U $> M $(m) THEN LET b-m+1

6080 LET AS-KEYS

6110 IF A$=“ ” THEN RETURN
6120 GOSUB 6200
6130 RETURN

“ ") THEN LET 1=1

i
D R A G O N 3 2

BBC MICRO

J

COMMODORE
6 4

ii

V IC -2 0

6730 FOR 1=1 TO 1
6735 LET l=0
6740 LET A$=KEY$
6750 IF (A$=E$) OR (A$-
6760 NEXT I
This fragment must be reproduced at lines
6880-6910, 6990-7030, 7110-7140, 7220-
7250, 7640-7670

Initialising Program
This is the initialising program for the Dragon
32.

1 REM * CREATE DATA FILE*
2 LET Z=2
3 LET N$=“@FIRST”
4 OPEN “O”, # -1 , “ADBKDAT”
5 INPUT “INSERT DATA TAPE, PRESS

RECORD, & TYPE *Y’”;A$
6 PRINT# —1,Z,N$,N$,N$,N$,N$,N$,N$
7 CLOSE # -1
8 PRINT “STOP THE TAPE, AND REWIND”
9 STOP
On the BBC Micro replace lines 4 ,6 and 7 by:
4 F1=OPENOUT(“ADBKDAT”)
6 PRINT #F1,Z,N$,N$,N$,N$,N$,N$,N$
7 CLOSE#F1
On the Commodore 64 and Vic-20 replace lines
4 ,6 and 7 by:
4 OPEN 1,1,2,“ADBKDAT”
6 PRINT #1,Z:PRINT #1,N$:PRINT #1,N$:

PRINT #1,N$:PRINT #1,N$:PRINT #1,N$:
PRINT #1 ,N$:PRINT#1 ,N$

7 CLOSE 1
Main Program Variables
On the Dragon, the Commodores, and the BBC
Micro copy the Spectrum list (published in full
on page 458) with these substitutions for the
numeric variables.
Replace: SIZE byZ

RMOD by R
SRTD byD
CURR byC
CHOI by H
BTM by BT
MD by MD
TP by TP

and make the following line changes,
substitutions, and deletions:
1100 REM *CREARR* S/R
1110 DIM N$(50)
1 t20 DIM M$(50)
1130 DIM S$(50)
1140 DIM T$(50)
1150 DIM C$(50)
1160 DIM R$(50)
1170 DIM X$(50)
Delete lines 1180-1190
1210 LET Z=0
1220 LET R=0
1230 LET D=1
1240 LET C=0
1250 LET Z$=“@FIRST”
1260 LET Q$=“”

1300 RETURN
This is the Dragon 32 version of subroutine
1400:
1400 REM *RDINFL* S/R
1410 OPEN “I”,# -1 , “ADBKDAT”
1420 PRINT “INSERT DATA TAPE AND PRESS

PLAY”
1430 GOSUB 3100
1440 INPUT# —1 ,Z
1450 FOR K=1 TO Z-1
1460 INPUT# —1 ,N$(K),M$(K),S$(K),T$(K),-

C$(K),R$(K),X$(K)
1470 NEXT K
1480 Q$=N$(1)
1490 CLOSE#—1
1500 PRINT “STOP THE TAPE”
1510 GOSUB 3100
1520 RETURN
In the preceding list, on the BBC Micro replace
line 1410 by:
1410 F1=OPENIN(“ADBKDAT”)
and replace #-1 by #F1 in lines 1440,1460,
1490
In the preceding list, on the Commodore 64
and Vic-20 replace line 1410 by:
1410 OPEN 1,1,0,“ADBKDAT”
Replace # -1 by #1 in lines 1440 and 1460,
and replace 1490 by:

1490 CLOSE 1
On the BBC Micro replace INKEYS by
INKEYS(O) throughout; and replace
INPUT*1., m essage .. ”;A$ by
INPUT*1., m essage..",A S. On the
Commodores replace LET A$=INKEYS by GET
AS throughout; and replace IF INKEYS. . . by
GET GTS: IF G TS...
On the BBC Micro, the Dragon, and the
Commodores in subroutine 4500 replace all
references to D$(L) by MID$(D$,L,1). Replace
CODE. . . by ASC(...). Replace FIRST by LAST
in line 4610.
D elete: LET L=T from the end of line 4630.
This is the Dragon version of subroutine 5600;
for BBC and Commodore variations see the
Initialising Program notes above.
5600 REM *SAVREC* S/R
5610 OPEN “0 ”,# -1 , “ADBKDAT"
5620 PRINT “INSERT DATA TAPE AND PRESS

RECORD"
5630 GOSUB 3100
5640 PRINT# —1 ,Z
5650 FOR K=1 TO Z-1
5660 PRINT# —1 ,Z,N$(K),MS(K),SS(K),T$(K)-

,C$(K),R$(K),XS(K)
5670 NEXT K
5680 CLOSE # -1
5690 PRINT “STOP THE TAPE”
5693 GOSUB 3100
5695 RETURN
In subroutine 6200 on the BBC Micro insert:

6205 VDU 2
6275 VDU 3
and replace LPRINT by PRINT.
On the Commodores insert:
6205 OPEN 4,4:CMD 4
6275 PRINT#4:CL0SE4
and replace LPRINT by PRINT.
On the Dragon replace LPRINT by PRINT#-2.

THE HOME COMPUTER COURSE 477

In the history of the m icrocom puter, developm ents in hardware and
software are inextricably linked, and it is as much a story about
personalities as products

There have been several episodes in history in
which the pace of technological change has left
people bewildered. But nothing to date — not
even the progress of flight, from the Wright
brothers to lunar exploration — can match the
speed of the microelectronics revolution. The
progress from the first primitive microprocessors
to today’s 16-bit designs, from the first
microsystems to today’s desktop mainframes, has
taken just a decade. And the speed of
development is still increasing.

Around 1971, several of the new chipmaking
firms in California concluded that the main
functions of a computer could be housed on a
single sliver of silicon. There were no grandiose
plans for a revolution then, and no talk of
‘information technology’. The idea was to
produce a small and cheap computer that might
be used to control factory machines or lifts, and
the first microprocessors were well suited to such
tasks.

One of these chipmakers, Intel, is generally
credited with producing the first microprocessor,
called the 4004. The ‘fours’ in the number refer to
its power: it was a four-bit processor handling
data in blocks of four binary digits. It could only
use small quantities of memory — just enough for
a lift control program, for example.

By 1972 Intel had developed the 8008 chip, an
eight-bit processor, and hobbyists began to think
about building computers for themselves around
the new chip. Articles in American hobby
electronics magazines described how to do it, and
although the resulting computers did not have
monitor screens, proper keyboards or other
sophisticated aids, they were the first home
machines. It was from one of these hobby projects
that what could be called the first commercial
home microcomputer, the Altair 8800, evolved.
This was available only in kit form, however.

Then in the next year, came the first ‘real’
microprocessor, the 8080, again from Intel. This
operated on eight-bit blocks of data and could
handle up to 64 Kbytes of memory for bigger
programs. By this time the other chip firms were
starting to catch up. Motorola’s 6800 chip did
much the same as the 8080. It had similar
hardware characteristics but required different
instructions to make it work. This is the point
where software compatibility problems started:
programs written for the 8080 would not run on
the 6800, and vice versa.

At the same time, other firms had developed

478 THE HOME COMPUTER COURSE

similar processors, among them National
Semiconductor, Signetics and Advanced Micro
Devices. But the next major prime mover was
MOS Technology, where one of the leading
characters in our story, Chuck Peddle (see page
180), was working. Peddle was at MOS
Technology when the company developed a
processor very like Motorola’s 6800, called the
6500. In fact, it was so close to the 6800 that
changes had to be made and the revised chip was
eventually given the name 6502.

Founding Fathers
Though Chuck Peddle designed
both the Commodore PET and
the 6502 m icroprocessor that it
was based around, the
contribution of Bill Gates, as the
author of the Microsoft BASIC
built into the PET’s ROM, was
equally important

o

u m

Chuck Peddle

Commodore was already well-known in
Canada for office machinery and electronic
calculators. Peddle joined the firm with the idea of
developing a personal computer complete with
screen, keyboard, cassettes for program storage,
and everything else a real computer should have
— all built, of course, around the 6502 processor.
The machine emerged in 1976 as the PET 2001, a
friendly name chosen to convey the idea that the
computer was not too advanced for the home
user.

But as the first PET was becoming available,
two more innovators were preparing to market a
computer from a Californian garage. Steve
Wozniak (see page 155) had always wanted to
own a computer, and joining the Homebrew
Computer Club showed him it could be done. He
designed a computer on a single circuit board, and
with his friend Steve Jobs-began making and

•m

- .*•

■m

B ill Gates

TO
NY

 S
LE

EP

mm
9* P io n e e rs In C o m p u tin g

selling these. They called their board the Apple I.
Housed in a box with a keyboard, the machine
eventually transformed itself into the enormously
successful Apple II. This machine emerged just
after the Peddle PET and spawned a cottage
industry of software and hardware manufacture.

The Tandy Corporation of Fort Worth, Texas,
had ideas of its own for the small computer
market. The corporation was, and remains, a
manufacturer of a wide variety of electrical goods
such as hi-fi, synthesisers and radios, selling them
through its chain of stores. The home computer
represented a natural extension of its range, and
in the Radio Shack shops it already had a
distribution network across the US. The result
was the TRS-80 Model 1, another huge success in
the US market. TRS simply stands for Tandy
Radio Shack, but the 80 refers to the
microprocessor used, the Zilog Z80. Zilog was
yet another new chip firm, and had produced a
processor similar to the Intel 8080 but with
substantial improvements.

With the TRS-80 Model 1 having a Z80
microprocessor, and the Apple II and
Commodore PET having 6502s, home
computers began to exhibit a diversity in

The Company’s Core
Steve Wozniak designed and
built the first Apple 1 (an
uncased PCB) in his garage.
When the design was modified
and encased, creating the Appl
II, his friend Steve Jobs turned
Apple into the commercial
success that it now i

Steve Jobs

hardware. But along with this first major
consumer choice came the associated problems of
machine incompatibility and non-standard
software. The kind of microprocessor used in the
early machines is significant because the chip
determines the choice of software that becomes
available from third parties. While the hardware
was being developed, standards in software were
being set as well.

In 1972 a young man called Gary Kildall was a
consultant to Intel. His firm, Microprocessor
Application Associates, was working on a
computer language that Intel engineers could use
to write software for the new microprocessor
chips that Intel was manufacturing. Kildall
thought it possible to link up a microprocessor
with memory to an 8in floppy disk drive and to a
teletype, in order to give each engineer a
computer of his own. But Intel preferred to
continue its practice of sharing a mainframe
machine among its engineers.

Kildall and his friend John Torode, in another
Californian garage, put together a system
themselves. Torode built the hardware to make
the floppy disk work with the processor, and
Kildall wrote the software that enabled the
processor to handle the disk. The program was
called CP/M (Control Program/Micro-
computers), a name derived from Kildall’s work
with Intel’s programming language, which was
called PL/M (Programming Language/
Microcomputers).

The first disk operating system for micros was
taken up quickly by hardware manufacturers

Steve W ozniak

wanting to put disk drives on their machines. The
software influenced design too: CP/M would run
only on the 8080 and faster 8085 processors from
Intel, and on the similar Z80 from Zilog. The Z80
became the standard chip for any CP/M
machine, and CP/M compatibility the goal for
software firms.

Apart from operating systems, home
computers needed a programming language in
which people could write their programs. B a s i c ,
developed at Dartmouth College, USA, as an
easy-to-leam language, was an obvious choice.

Bill Gates, a graduate in Seattle, produced a
ba sic interpreter for micros, a translation program

Gary Kildall
The latest operating system s are
developed by large team s of
programmers, but CP/M was
written by Gary Kildall single-
handedly. Even some of the later
versions reflected the fact that it
was developed for very crude
hardware

Adam Osborne
Described by some as a
‘poacher-turned-gamekeeper’,
Adam Osborne was for many
years a leading microcomputer
journalist, before starting his
own company and producing
the world’s first portable
computer

THE HOME COMPUTER COURSE 479

CO
UR

TE
SY

 O
F

O
SB

O
RN

E

CO
UR

TE
SY

 O
F

SI
NC

LA
IR

 R
ES

EA
RC

H

P io n e e rs In C o m p u tin g

Herman Hauser

that fitted in a limited-memory chip and could be
incorporated into a home machine. Gates’
company, Microsoft, became as much the
standard producer in languages as Digital
Research became in operating systems, and his
fortune was made.

With these developments, advances in
hardware and applications software quickly
followed. Dan Bricklin and Bob Frankston
produced the first micro spreadsheet program,
VisiCalc, at their Software Arts company.
Distributed by Personal Software on the Apple II,
this became the best-selling applications package
ever, and to emphasise its connection Personal
Software changed its name to VisiCorp. WordStar
was produced by Seymour Rubinstein’s MicroPro
and became the major best-seller in the CP/M
word processor market.

The hardware that these packages were
running on became cheaper and more powerful.
Adam Osborne, who began as a technical writer,
journalist and software publisher after moving to
the US from Britain, launched a successful
business computer with a large amount of
expensive software included in the already

encouraging more and more people to choose the
machine.

The IBM PC brings together several of the
pioneers from the early days of the micro industry.
The microprocessor comes fom Intel, the
originator of that technology; the operating
systems come from Bill Gates’ Microsoft,
diversifying from languages, and from Gary
Kildall’s Digital Research; and two of the first
software packages put on the machine were
VisiCalc and WordStar.

From Uttle Acorns.. .
Though less innovative in price
than Sinclair, the contribution of
Chris Curry and Herman Hauser
(as designers and directors of
Acorn computers) has been no
less valid. The Acorn Atom, BBC
Microcomputer, and the
Electron are all seen as
m ilestones in their own right

Sir Clive Sinclair
Following his innovative
products in hi-fi, calculators,
miniature radios, pocket TVs
and digital watches, the
unparalleled success of his
microcomputers (ZX80, ZX81,
and the Spectrum) earned him a
knighthood in 1983

Small Beginnings
Surprisingly, the technology of
microcomputers developed
more from the sophisticated
programmable calculators
(such as this Hewlett-Packard
HP65) than from the earlier
generation of minicomputers

competitive price. And, of course, there is Sir
Clive Sinclair, who set new price levels with the
ZX80, ZX81 and ZX Spectrum, and has made
home computing possible for millions of first­
time users.

The standard for microcomputers in the last
two years has been set by IBM with the IBM PC.
Launched in 1982, this machine is proving
increasingly popular. Virtually every software
house and hardware peripherals maker is now
producing material for the PC, and that in turn is

Steve Wozniak and Steve Jobs still run Apple,
on the whole in direct competition with IBM, and
are pinning their company’s hopes on the
revolutionary technology in the Lisa (see page
261) and Macintosh (a cut-down version of the
Lisa at around £2,000). Chuck Peddle started his
own company, Sirius, and took a big slice of the
UK business before IBM arrived, though his
company has since encountered financial

The Big One
IBM’s acceptance of the
microcomputer’s viability didn’t
come until 1982, but it still had
the predicted effect. Almost
every new business
microcomputer now boasts IBM
PC compatibility to capitalise on
the huge base of software

But Peddle will surely be back. The short
history of micro business shows that the
originators are also the survivors — even when the
multinationals try to take over the game.

480 THE HOME COMPUTER COURSE

JU
D

YG
O

LD
H

IL
L

JU
D

YG
O

LD
H

IL
L

t ‘ -I
r <*, W:. •••

v *A • * • • • Sft

■.v.v; ;*;

* . v’v. .. '. ;*>" -V V

wmmm

mV 'W-
'V -a.

;?-ki k.:-
i

n
□

\>W

•o

I I

*

,« \j ’

Now that your collection of Home
Computer Course is growing, it makes sound
sense to take advantage ot this opportunity to
order the two specially designed Home
Computer Course binders.

The binders have been commissioned
to store all the issues in this 24 part series.

At the end ot the course the two
volume binder set will prove invaluable in
converting your copies of this unique series into
a permanent work of ref erence.

Buy two together and save £1.00
❖ Buy volumes 1 and 2 together for

£6.90 (including P&P). Simply fill in the order
form and these will be forwarded to you with
our invoice.

❖ I f you prefer to buy the binders
separately please send us your cheque/postal
order for £3.95 (including P&P). We will send
you volume 1 only Then you may order volume
2 in the same way - when it suits you!

Overseas readers: This binder oiler applies to readers in the
UK, Eire and Australia only. Readers in Australia should
complete the special loose insert in Issue 1 and see additional
binder information on the inside front cover. Readers in New \
Zealand and South Africa and some other countries can obtain
their binders now. For details please see inside the front cover.
Binders may be subject to import duty and/or local tax.

