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FIT FOR THE FUTURE A n overview 
the increasing relevance of computers to 
our everyday lives
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HARDWARE

BEST OPTION A n introduction to disk 
drives, and how they work

COMMODORE 64 We examine this 
popular home computer and look at its 
portable counterpart, the SX-64
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SOFTWARE s a a  u l l l
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ATTACKED BY ANTS A  maze-chase 
game universally acclaimed

THE ALGEBRA OF DECISION  
MAKING The first step towards 
understanding program design

JARGON

FROM ACCESS TO A D A  The first part 
of a glossary of computing’s terms

PROGRAMMING PROJECTS

THE SPECTRUM OF ZX BASIC A  look 
at the characteristics of this b a s i c  dialect
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INTRODUCING FIRST CONCEPTS
Commencing a course of instruction in this 
lowest common denominator of computer 
programming

16

PROFILE

BILL GATES -  SETTING THE 
STANDARD An insight into one of the 
world’s most prolific suppliers of software

N ext W eek
•  We continue our BASIC 
conversion course for 
Spectrum users, 
concentrating on functions 
and control structures.

•  Widely acclaimed as the 
best of the microcomputer- 
based wordprocessing 
packages, MicroPro’s 
Wordstar can turn any CP/M 
based machine into a very 
powerful text processor.

•  Amongst the educational 
uses of computers, one 
application is particularly 
attractive to the home user -  
examination revision 
software. We look at this fast­
expanding field.
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APPLICJETION/INTRODUCTION

PASCAL
T h is  is  c o n s id e re d  to  be th e  

m o s t p ro fe s s io n a l o f th e  

p o p u la r  la n g u a g e s

LOGO
T h o u g h  p r im a r ily  in te n d e d  as 

a le a rn in g  la n g u a g e  fo r  use 

w ith  y o u n g  c h ild re n , LOGO 

is  a ls o  ve ry  s a t is fy in g  fo r  th e  

a d va n ce d  p ro g ra m m e r
BASIC
T h is  is  s t il l th e  m o s t p o p u la r  

la n g u a g e  fo r  h o m e  

c o m p u t in g

FORTH
T h is  la n g u a g e  fa lls  b e tw e e n  

h ig h  leve l la n g u a g e s  and  

m a c h in e  co d e , a nd  is 

th e re fo re  p o p u la r  a m o n g s t 

e x p e rie n c e d  p ro g ra m m e rs

Compiler
A  c o m p ile r  p ro d u c e s  a 

s e p a ra te  c o p y  o f a p ro g ra m  in 

m a c h in e  c o d e

Interpreter
A n  in te rp re te r  is one  m e th o d  

fo r  c o n v e r t in g  BASIC  in to  

m a c h in e  co d e  lin e  b y l in e

Machine Code
T h o u g h  d if f ic u l t  to  w r ite ,  

m a c h in e  c o d e  ca n  be v e ry  

re w a rd in g , as no  t im e  is 

w a s te d  on  in te rp re t in g
Assembler
M a c h in e  c o d e  is  u s u a lly  

w r it te n  in  th e  fo rm  o f 

A s s e m b ly  la n g u a g e , w h ic h  

u ses  a lp h a n u m e r ic  la b e ls  and 

s y m b o ls  in s te a d  o T n u m b e rs

mm HOME COMP
DVANCED COURSE
e le a rn in g  a w h o le  v

w  p ro g ra m m in g  la

th a t ca n  be u se d  as

;ernatives to BASIC
lo o k in g

p ro g ra m s  a n d  u t i l i t ie s

needed

ru n n in g  Qh th e  C P U .®

a O v ^ n c e d jio m e  c o m p

i s e i M ^ es th e  lan g

w o rk in g  in  a c c o rd in g

a tt ire  o f  t f ie  p ro b le m  o r
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easy to come to terms with a ‘motive force’ that is 
invisible in action, unlike the satisfying spectacle 
of, say, a car engine or a hydraulic pump in 
operation.

True, more and more people are being trained 
to operate computers and computer terminals. 
But there is a huge difference between training 
and education. Training implies learning a task by 
rote. Education allows a leap beyond the bounds 
of the mere task at hand into a broad 
understanding of how the systems work, their 
potential and limitations.

To many people working in the computer 
industry and in schools and colleges the answer 
seems to be a planned course of computer 
education presented in such a way as to be

understandable to all from the outset. Individual 
instruction manuals for specific machines cannot 
provide a balanced overview that relates one type 
of computer to another. Nor will they point out 
the pitfalls inherent in the multiplicity of 
machines available, or advise you fully on how to 
make the most of your purchase. After all, what 
sort of manufacturer is going to give free publicity 
to his rivals’ products?

Following a properly planned home study 
course, perhaps backed up by a weekly session at 
an Adult Evening Institute (many of which offer 
introductory courses in computing and computer 
programming), is a convenient and inexpensive 
way to a sound education in computing.

The object of such a course should not simply

2 THE HOME COMPUTER ADVANCED COURSE
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be to learn how to program and operate a home 
computer, but to gain a wider appreciation of 
how computers are used in everyday life. As well 
as providing instruction in programming and 
basic systems analysis, it should offer an overview 
of all the computers in use at the moment rather 
than concentrate on the machine one happens to 
be using. It should introduce the peripherals and 
extras available for all of them, with an 
explanation of their operating principles. To 
place the computer in context, one must examine 
in depth the tasks to which it is now applied and 
the software that makes those applications 
possible. Finally, the course should include 
elements of formal logic, number systems and 
something of the history of computing and 
computers. In short, a home study course should 
cover all the topics that would be dealt with in a 
conventional course in computer studies.

In T he H ome Computer A dvanced Course 
we have set out to provide the material for just 
such a course. Building on the average home 
computer user’s knowledge of basic and some 
machine-specific experience of computer 
graphics and sound synthesis, we aim to take you 
through the other high-level languages found in 
microcomputers -  pascal, forth, logo and c, for 
example -  and to provide grounding in machine 
code programming, the key that unlocks the 
power of the microprocessor.

A knowledge of machine code enables us to 
examine the ways in which the higher level 
languages are defined. Then, when we have 
studied the way in which compilers and 
interpreters work, we can amalgamate these two 
branches of knowledge to start defining our own 
language and writing a compiler for it.

We won’t neglect b a s ic , however. We’ll look at 
the refinements of the language and work 
through projects that will result in the generation 
of useful applications software and screen-based 
and Adventure games.

In addition to the internal functions of the 
computer, we’ll explore file-handling methods, 
both on tape and on floppy disk, using the 
experience gained in defining data structures and 
hierarchies within the computer’s internal 
memory. In this way we can expand the capacity 
of even the smallest home computer into a serious 
information processing system.

Bearing in mind that it’s not enough to study a 
subject in isolation, we will consider in depth the 
wide choice of software packages now available -  
spreadsheets, word processors, database 
managers and the like -  with a view both to 
understanding their operation and methods and 
to learning more about professional 
programming techniques, in order to include 
these in our own programming.

Some attention will be given to basic 
electronics, examining the function and design of 
individual components and the ways in which 
they are combined to make up computers and 
their peripherals. We’ll look at the machines

themselves, too: the popular microcomputers, 
both for home and business use, and their 
peripherals, examining their price and 
specification, and assessing their impact on 
computing in general. We won’t neglect the 
human side of the computer industry, however. 
The people who design the software and build the 
machines, and even the computer users who have 
made a contribution to the field, will have space 
in the course devoted to them.

If you are interested in learning about 
computers with a view to increasing your 
employment opportunities, then a home study 
course can be an effective replacement for the 
first module or two of a formal course in 
computer studies. Because it allows the student to 
proceed at his or her own pace, it is of equal value 
to the fast learner, as well as those who perhaps 
need a little more time to come to grips with what 
is, after all, a complex subject.

Finally, if you simply wish to be better 
informed about a technology that is set to change 
society in the course of your lifetime, then T he 
H ome Computer A dvanced Course offers a 
comprehensive guide. In addition to the 
fundamentals of computer study, we shall be 
examining the impact of the new technology on 
society at large. How will the advent of computers 
in our everyday lives change the way people 
relate to each other? What political changes will 
result from an ‘information explosion’ made 
possible by the low-cost microprocessor? It is 
difficult to obtain reasonable answers to these 
questions. Newspaper articles and television 
programmes tend to trivialise them, many 
computer publications seem to make them more 
complicated than they need be. The H ome 
Computer A dvanced Course sets out to give you 
access to the essential information to answer 
them for yourself.

A Leap Forward
A n n o u n c e d  to  th e  w o r ld ’s p ress  

a t th e  b e g in n in g  o f 1984, b u t n o t 

s c h e d u le d  fo r  d e liv e ry  u n til w e ll 

in to  th e  s p r in g , S in c la ir ’s 

Q u a n tu m  Leap b ro ke  th a t 

c o m p a n y ’s lo n g  a s s o c ia t io n  

w ith  th e  Z 8 0  m ic ro p ro c e s s o r . 

F itted  in s te a d  w ith  a v e rs io n  o f 

M o to ro la ’s 32  b it  6 8 0 0 0 , it has 

128 K b y te s  o f R A M  (w ith  a 

fu r th e r  512 K b y te s  a v a ila b le ), 

and  tw o  Q L M ic ro d r iv e s  b u ilt - in .  

A ls o  a b a n d o n e d  is  S in c la ir ’s 

id io s y n c ra t ic  s in g le -k e y -e n try  

BASIC
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_ ! ► HARDWARE/USING DISKS

BEST OPTION

Remember not to put floppy 
disks close to onyttiing tnat 
contains o magnet. Even 
something as seemingly 
innocuous as the telephone 
contains electromagnets 
(they are used to ring the 
hell), and a domestic hi-fi 
speaker has very powerful 
ones mdoed ^ ^ e * * * * '* ^

BBC Disk Drive
B e fo re  d is k  d r iv e s  o f th is  ty p e  

can  be used  w ith  th e  BBC M o d e l 

B, th e  DO S (D is k  O p e ra tin g  

S y s te m ) R O M  m u s t be in s ta lle d  

in  th e  m a c h in e  its e lf.

‘ In te ll ig e n t ’ d is k  d r iv e s , on  th e  

o th e r  h a n d , c o m e  e q u ip p e d  w ith  

a DOS c h ip  a lre a d y  o n -b o a rd

Until recently, floppy disk drives and so- 
called stringy floppies were beyond the 
budget of most home users, but advances in 
disk technology have reduced the relative 
cost of purchase, while the advent of the 
Sinclair Microdrive has bridged the gap. In 
view of the power of such devices it is woxth 
looking at them in some detail.

Microcomputers are highly versatile tools for 
manipulating data. However, data manipulation is 
of little use without a means of storing information 
when a particular set of data is not required for the 
moment or when the computer is switched off. 
This can be achieved in a number of ways. Anyone 
aware of the real potential of home computing will 
have acknowledged the limitations of the ROM 
cartridge and ordinary cassette tape as methods of 
permanent storage and will wish to investigate the 
more sophisticated facilities of magnetic disks.

But before discussing the merits of disks we will 
consider the alternative systems.

CARTRIDGE
This method of storage is of little use to the 
programmer. Most cartridges contain a type of 
PROM (Programmable Read Only Memory) that 
provides only a means of inputting data to the 
computer, usually in the form of games written in 
complex and lengthy machine code, or extra 
facilities such as extensions to b a s ic . It is possible, 
however, for cartridges to contain Electrically 
Erasable PROMs (EEPROMs) that can be 
written to and read from in a similar manner to 
internal RAM but which are ‘non-volatile’ in that 
the information is retained when they are removed 
from the computer or the computer is switched off.

Similarly, cartridges are available for some 
computers containing low-power CMOS 
(Complementary Metal Oxide Semiconductor) 
RAM chips that retain stored information via a 
battery contained within the cartridge.

The main argument against EEPROM and 
CMOS RAM storage is that they are expensive — 
collecting a modest library of such cartridges 
would cost at least as much as an appropriate 
floppy disk drive.

CASSETTE TAPE
Originally provided because disk drives were very 
expensive, cassette tapes are still by far the most 
popular storage media, mainly because they are 
cheap, freely available and portable audio cassette 
players and tape cassettes are familiar to most 
people. Usually any cassette player of reasonable 
quality will suffice, although some manufacturers 
— notably Commodore and Atari — only allow 
you to use their own specially designed units.

Programs and data are stored in binary form as 
sequential files via the cassette unit’s normal 
record facility, using different tones to represent Os 
and Is. Normally, identified information such as 
the file name (and possibly the internal memory 
address from which the file is copied) is recorded 
first, followed by the file itself, one bit at a time in 
one-byte blocks that are further formatted into 
256-byte segments. Many computers incorporate 
an error-checking facility in each segment known 
as a ‘checksum’, which can be compared with 
calculations made within the computer during 
verification to ensure that there have been no 
recording errors.

Typical commands are SAVE to record files and 
LOAD to play back and retrieve them. Some 

-■ systems provide additional cassette commands for 
|  various special functions, including a facility to 
1 read a tape and produce a catalogue of the file 
I  names stored, and command formats for storing 

and retrieving different types of data.
The low cost and easily understood command 

format of tape cassette storage is offset by a 
number of major inconveniences:

1. In the majority of cases the user is required to 
operate the cassette unit controls manually for 
storage and retrieval and this often demands 
careful timing of button pressing and accurate 
volume setting.

2. As information is stored sequentially, 
retrieval of a specific file (except in the case of the 
software-controlled Hobbit cassette recorder and 
the Epson HX-20’s built-in micro cassette) 
involves either careful monitoring of an accurate 
tape counter (if one is supplied!) to enable fast

4 THE HOME COMPUTER ADVANCED COURSE



USING DISKS/HARDWARE

forward/rewind to a point just before the desired 
file, or a search by the computer for the file name 
from the beginning of the tape. Sequential storage 
also means that it is impossible to store data 
efficiently that needs to be read in small sections 
from any point in a file without processing the 
whole fife. The type of storage that can achieve this 
is known as ‘random access’ and is necessary for 
any effective database filing system such as 
address listings or stock control entries.

3. The above, in conjunction with the small 
number of bits that are stored/retrieved per 
second using cassette storage — typically between 
300 and 1,200 bits — means that a cassette tape 
system is excruciatingly slow in operation. Quite 
small programs of, say, five Kbytes could take 
between one and three minutes to load or save. 
This also means that it is inconvenient to make 
back-up copies of programs, although this is highly 
recommended.

4. Even when it has been recorded correctly in 
the first instance, data can be corrupted after an 
unpredictable number of replays, owing to wear 
by the tape head.

5. Because the characteristics of cassette players 
can vary from manufacturer to manufacturer, data 
recorded on one model may not play back on 
another. In addition, cassette tape is frequently 
damaged by the crude tape transport systems of 
many portable cassette units and breaks easily.

FLO PPY D ISK
Compared with the cassette and cartridge storage 
systems, disk storage has few major drawbacks. 
Floppy disk drives are complex and delicate ia  
their construction, and expensive — from £150 
upwards. Floppy disks themselves are also costly 
at between £2.50 and £4 each. But the user gains a 
reliable, flexible and fast means of storing large 
amounts of data, operating at 50 to 200 times the 
speed of tape storage and retrieval.

All disk drives have a form of Disk Operating 
System (DOS), which contains a routine that 
formats the distribution of information on a disk 
into tracks. There are usually between 35 and 80 
tracks per side, each track divided into a varying 
number of arcs called sectors. There are fewer 
sectors on the shorter tracks near the middle of the 
disk than on the long outer tracks. Each sector 
consists of a block of data, usually 256 bytes.

The DOS ‘remembers’ where all the 
information contained on the disk is stored. This is 
usually achieved by the creation of a Block 
Availability Map (BAM), either stored on the disk 
or held in memory, and a catalogue or directory. 
The BAM holds a record of the blocks currently in 
use and those free for new storage. The catalogue 
is a list of the file names, file types and track and 
sector locations for each file. It is usually held on 
the central track and can be loaded into computer 
memory for reference. The DOS positions the 
read/write head after reference to the BAM, and 
catalogues and manages the storage and retrieval 
of data.

The layout of the information in tracks and 
sectors and the accurate positioning of the read/ 
write head enables the DOS to offer random 
access filing. Data can be recorded and extracted 
in chunks as small as a byte at a time, if required. In 
broad terms, differences between disk drives are 
confined to the amount of data that can be stored 
— typically between 100 and 400 Kbytes; the 
speed at which data can be transferred; and the 
means by which the user can control storage and 
retrieval using DOS.

InASpm
F lo p p y  d is k e tte s  are c o m p o s e d  

o f M y la r, o r  a s im ila r  s tre tc h  and  

te a r  re s is ta n t p la s t ic  sh e e t, 

co a te d  w ith  a m e ta llic  o x id e  

c a p a b le  o f  h o ld in g  a m a g n e tic  

c h a rg e . E n c lo s e d  in s id e  a 

p ro te c tiv e  sq u a re  p la s tic  

e n v e lo p e , th e  d is k  is  s p u n  fro m  

th e  h u b . T h e  re c o rd in g  s u rfa c e  

is  a c c e s s ib le  to  th e  re a d /w r ite  

head  th ro u g h  th e  s lo t  s h o w n  a t 

th e  b o tto m  o f th e  il lu s tra t io n

There are three main methods of implementing 
a DOS. The most efficient is to include it in ROM 
form within the disk drive, under the control of the 
drive’s own microprocessor with associated RAM. 
This is known as an ‘intelligent’ disk drive; on 
receipt of an instruction from the central processor 
it can process complex disk-handling routines 
independently, allowing the processor to continue 
running a program. All current Commodore disk 
drives are intelligent in this manner and use no 
internal computer memory in operation.

A more popular system is the type that loads the 
DOS from disk into computer RAM on command 
or automatically when the computer is switched 
on. The third method includes a form of DOS in 
the computer’s own operating system. Spectrums 
have this facility and Acorn Computers supply a 
DOS for the BBC Micro called the Disk Filing 
System that provides limited disk control. Disk­
handling routines include SAVE and LOAD 
commands, a CAT (or directory) command, a 
command to format a disk (or tape cartridge) and 
various random access and sequential file creating, 
handling and deleting commands.

1 PROTECTIVE ENVELOPE

2 PROTECT/PERMIT SLOT

3 SECTOR

4 REGISTRATION HOLE

5 TRACK

6 ACCESS SLOT
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ATTACKED BY ANTS

1 My Hero!
On th e  f i r s t  p a ss  th ro u g h  th e  

g a m e , th e  ‘v ic t im ’ is 

c o n v e n ie n tly  p la ce d  a d ja c e n t 

to  th e  g a te w a y  to  th e  c ity . A 

q u ic k  h o p  o v e r th e  p ro te c tiv e  

w a ll,  and  th e  p ro ta g o n is t  —  

m a le  o r  fe m a le  —  is  g ree ted  

w ith  a c ry  o f  ‘ M y  he ro  —  take  

m e a w a y  fro m  a ll t h is ! ’

2 Formi-d a ble Ant-iclimax
S o m e tim e s , th e  fa c t th a t a n ts  

ca n ’t  c l im b  s ta irs  is  v e ry  

u s e fu l in d e e d  —  th o u g h  w h y  

o u r  h e ro  has c lim b e d  q u ite  so 

h ig h , one  can  o n ly  s p e c u la te . 

C lim b in g  o b s ta c le s  like  th is  

a llo w s  th e  p ro ta g o n is t  to  lo b  

g re n a d e s  a t th e  a tta c k in g  a n ts  

w ith o u t  fe a r  o f re tr ib u t io n , b u t 

re m e m b e r th a t yo u  are 

p la y in g  a g a in s t th e  c lo c k

The significance of Quicksilva’s Ant 
Atttack, a three-dimensional maze game 
designed for the ZX Spectrum with 48 
Kbytes of RAM, lies not in its obvious 
graphic quality, but in the subtle application 
of the algorithm that generates the fabric of 
its maze-like playing ground.

Software writers and publishers have never been 
satisfied with the protection accorded them by the 
copyright laws -  hence the many and various 
attempts to safeguard programs from being 
copied. The author of this game, Sandy White, has 
attempted to prevent his work from being 
plagiarised, by using another method -  applying 
for letters patent on the software technique that 
produces the screen graphics. Since the 1977 
Patents Act specifically denies protection of this 
sort to computer programs (noting that they 
cannot be considered to be inventions), one is led 
to the conclusion that the patent in question covers 
a mathematical formula or algorithm.

This in itself is interesting because one would 
not normally require a complex algorithm for a 
game of this sort. What is it about Ant Attack that 
requires a radically new approach to software 
protection?

Ant Attack is also unusual in that it is not 
descended directly from any arcade game. Most 
popular games for home computers have their 
roots in the conceptions of Atari, Taito and the 
other manufacturers of dedicated games 
machines. Ant Attack was conceived by a 
graduate from the Edinburgh College of Art who 
protests his ignorance of the arcade games 
tradition. Sandy White had never previously 
written games software and his efforts at market 
research were restricted to inquiring of friends 
what it was they liked about such games.

His remarkably forward-looking package was, 
surprisingly, rejected by Sinclair Research, who 
could not evaluate the videotape of Ant Attack 
that White sent them because, they said, they had
no video cassette recorder!

The first novel feature of Ant Attack that a user 
will encounter is that it allows the player to choose 
the sex of the chief protagonist. And the first 
oversight follows hard on its heels. Whether you 
opt to be a girl or a boy, the opening frame of the 
game, which sets the scene in 30 or so words, 
explains how you hear a call of distress ‘irresistable 
(sic) to a hero like you’. One can forgive the 
spelling mistake, but the program’s inability to 
substitute ‘heroine’ for ‘hero’ is evidence of a lack 
of attention to detail. Further evidence is to come.

The protagonist, chased by monster ants, can 
defend himself (or, of course, herself) by throwing 
grenades. Unfortunately, there is no consistency in

the effect these grenades have on the ants. While 
this might result from a deliberate randomising 
factor, it is more likely to be the result of 
indiscriminate programming. Moving the 
protagonist anti-clockwise through 90 degrees is 
achieved by pressing the Spectrum’s M key, and 
the Symbol Shift key next to it turns the figure the 
other way. The Spectrum’s moulded rubber 
membrane keys do not give proper control over 
this transformation, which .invariably results in 
frustration for the player.

It would appear that Ant Attack was developed 
in advance of the launch of Sinclair’s Interface 2, 
which accepts two Atari-standard joysticks. The 
game would benefit greatly from being updated to 
utilise these peripherals, though it would need two 
joysticks to handle the command structure.

In addition to revolving the token, moving it 
forward, making it jump or throw grenades (you 
can also choose between four distances of throw), 
the player can choose one of four points of view—

6 THE HOME COMPUTER ADVANCED COURSE
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ANT ATTACK/SOFTWARE <S>

each centred on the token.
It is this section of the program’s graphics 

generation that sets it apart from most other games 
occupying less than 48 Kbytes. The 
transformation is virtually instantaneous, 
completely overshadowing the normal run of 3D 
graphics generators available for Spectrum. The 
ability to change points of view is essential to the 
game. Without it a considerable portion of the 
playing ground would often be hidden from view.

The author is understandably unwilling to 
reveal too much about the working methods that 
he and his collaborator Angela Sutherland have 
adopted. He does imply, however, that the playing 
ground is not, as one would expect, held as a 128 X  

128 X  6 array. Evidence of this is apparent if, 
rather than entering the city, the player token is 
made to turn round and head off into the desert. 
After a short walk, he or she comes to another city, 
and then another, and so on.

And so to the object of the game itself. It is set in 
the City of Antescher (named by the game’s 
authors in tribute to the Dutch artist and designer 
M. C. Escher, who drew ingenious delusive 
structures that were impossible to actually build). 
Standing outside its gates, you hear the cries of a 
person in distress. You jump over the low wall into 
the city and go off in search of the victim, jumping 
onto obstacles or turning to avoid them as you go. 
The city appears in isometric projection and no 
attempt is made to keep faith with perspective.

Only a small portion of the city is in view at any

one time, the frame scrolling across as the figure 
moves left, right, up or down. The scrolling action 
is excellent, as is the animation of the figures. Full 
marks, too, for a good sense of humour in the 
treatment of the animation.

It soon becomes apparent that the city is 
populated by huge ants whose bite, though not 
immediately fatal, will cause death if you suffer 
enough of them. If an ant becomes aware of you, it 
will follow you. You can shake it off if you are 
skilled enough, otherwise you have to resort to the 
rather unreliable grenade. Don’t throw it at the 
wall immediately in front of you, because you 
could blow yourself up.

On the first pass through the game the figure to 
be rescued is in full view opposite the gate. On 
successive passes it gets harder to find, and harder 
to reach. It is invariably located above ground 
level. The rescuer may jump up only one level at a 
time, so if the victim is not directly accessible from 
the ground -  by a stairway, for instance -  the 
rescuer is in real trouble. The only way is to wait till 
the ants attack at a suitable spot, paralyse one, and 
jump onto its back, using it as the first step up.

The rescuer can also get a ‘leg up’ in this way 
from the victim, should it be necessary -  the ants 
won’t attack the victim. The pass finishes when 
rescuer and victim are both outside the city.

Despite its few failings, Ant Attack is worthy of 
the accolades that greeted it when it appeared on 
the market just before Christmas 1983. It is a fine 
example to all would-be software authors.

Master Minds
A n t A tta c k  w a s  a f i r s t  a t te m p t a t 

c o m m e rc ia l s o ftw a re  w r it in g  fo r 

its  a u th o r, S a n d y  W h ite . S andy, 

ju s t  23  yea rs  o ld  w h e n  th e  

p a cka g e  f ir s t  a pp ea re d  in  la te  

1983, had  g ra d u a te d  fro m  

E d in b u rg h  C o lleg e  o f A r t  w ith  a 

degree  in  s c u lp tu re  w h e n  he 

c o n c e iv e d  th e  n o tio n  o f  c re a tin g  

a g a m e s  p ro g ra m  fo r  h o m e  

m ic ro c o m p u te rs . A fr ie n d , 

A n g e la  S u th e r la n d , c o lla b o ra te d  

in  th e  d e s ig n  o f th e  s tru c tu re s  

th a t  m ake  up  th e  c ity  o f 

A n te s c h e r

R idd le  O f The S ands
T h is  p la n  o f th e  e n tire  c ity  o f  S u th e r la n d  have  g iv e n  n a m e s  

A n te s c h e r w a s  c o n s tru c te d  to  th e  c h ie f s tru c tu re s , b u t

a fte r  p a in s ta k in g ly  

p h o to g ra p h in g  th e  m o n ito r  

sc reen  h u n d re d s  o f t im e s , 

m a k in g  a c o m p lic a te d  

p h o to m o n ta g e  o f th e  re s u lts , 

a n d  th e n  c o m m is s io n in g  an 

a r t is t ’s im p re s s io n  o f th e  

scene . A u th o rs  W h ite  and

a ls o  n o te  th a t  a c o p y r ig h t  

n o tic e  —  ©  S W  —  a p p e a rs  in 

th e  to p  le f t-h a n d  c o rn e r !

1. THE WATCHTOWER
2. PHOSPHOR HENGE
3. THE QUAI
4. TABLE ANTCHAIR
5. THE FORUM
6. THE ANTICHAMBER
7. SKAZYANDOR
8. THE PYRAMID
9. THE ANCIENT 

10. OXYMINE

11. THE MONUMENT
12. ANT EDEN
13. ARGON’S LEAP
14. ARTANT’S VILLA
15. THE ANTIMATTER CUBE
16. DROXTRAP
17. ADRIANT’S WALL
18. BONZAI WALK
19. THESQUARENA
20. THE CRYPT
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COMPUTER SCIENCE/BOOLEAN LOGIC

m

THE ALGEBRA OF 
DECISION MAKING
Computers carry out their given functions 
by passing a series of high or low voltages 
around electronic circuits. These voltages 
can be interpreted in terms of the binary 
digits (or bits) 1 and 0. Some functions, such 
as addition, require specially designed 
circuits to produce specific outputs for any 
given input. These are termed ‘logic’ circuits.

Boolean algebra, the branch of mathematics 
concerned with true/false logic, is the theoretical 
basis from which computer architecture is 
physically realised. The concepts and rules of 
Boolean algebra are few and easily understood.

In the first instalments of this course, we will 
study in detail the theoretical and practical aspects 
of logic circuit design, together with examples of 
the basic circuits at work inside your own home 
computer. The rules of Boolean algebra are based 
on three simple logical operations: AND, OR and 
NOT These three logical operations conform 
closely to the way we use these words in everyday 
English. Look at this statement:

If it is fine AND it is a Saturday, David will go
for a walk.

If David is to go walking or not depends on two 
things: whether it is fine, and whether it is a 
Saturday. In coming to a decision about going for a 
walk, David is only concerned with whether the 
statements ‘it is fine’ and ‘it is a Saturday’ are true 
or false. There are four possible combinations and 
only one will result in David taking a walk. A table 
which shows all the possible combinations of a 
series of statements is called a ‘truth table’. Here is 
the truth table for our logical AND statement:

IT IS FINE ITIS A SATURDAY DAVID WILL GO FOR A WALK
FALSE FALSE FALSE
FALSE TRUE FALSE
TRUE FALSE FALSE
TRUE TRUE TRUE

A similar process can be undertaken to illustrate 
the function of the logical operation OR. Consider 
this statement:

%
If Jack OR Jill can go, John will go to the match.

Once again there are two conditions that will 
determine whether or not John goes to the match: 
whether Jack can go, or whether Jill can go. In the 
same way as the AND statement, we can construct 
a truth table for the OR statement. Since there are 
two conditions, each of which may be true or false, 
there are again four possible combinations. The 
truth table for the statement will look like this:

JACK CAN GO JILL CAN GO JOHN WILL GO TO THE MATCH
FALSE FALSE FALSE
FALSE TRUE TRUE
TRUE FALSE TRUE
TRUE TRUE TRUE

The third logical operation (NOT) performs a 
very simple function. Consider this statement:

If it is NOT dark then I will go out.

This time the only condition to consider is whether 
it is dark. This may be true or false; hence there are 
only two possible conditions for our truth table.

IT IS DARK 1 WILL GO OUT
FALSE TRUE
TRUE FALSE

L O G I C  G A T E S
The simple electronic devices that make up 
computer logic circuits are called ‘logic gates’. The 
three simplest logic gates mimic the function of the 
logical operations AND, OR and NOT. These 
gates function by representing a TRUE condition 
by the binary digit 1, and the FALSE condition by 
the binary digit 0. So, for each logic gate we can 
construct a truth table showing all the input 
combinations together with the resulting output. 
Each gate has a circuit symbol associated with it 
and can be written as a Boolean expression.

The truth table and diagram for the AND gate 
with inputs A and B and output C is:

A B C THE AND GATE

0 0 0 A
Aiun i C

R
0 1 0 AJvU 1 uJ

1 0 0

1 1 1

The function of the AND gate can be described in 
words as: ‘the output will be 1 if both inputs are 1, 
and 0 otherwise’. The Boolean notation for the 
output from an AND gate is A.B.

The truth table and diagram for the OR gate is:

A B C THE OR GATE

0 0 0 A - - - - - 3 ^ ^

0 1 1 j O R y — C

1 0 1 B - - - - -  - L ^

1 1 1
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The OR gate can be described by the following 
statement: T he output will be 1 if either or both of 
the inputs are 1’. The Boolean expression for the 
output from an OR gate is A+B.

Unlike AND and OR, the NOT gate has only 
one input and one output. The truth table is the 
simplest of the three:

A B

A —

.  THE NOT GATE

N O T ^ X )- - - - B0 1

1 0

In words, the NOT gate is expressed as: ‘the output 
will be the opposite of the input’. The Boolean 
expression for the output from a NOT gate is A.

C O M B IN IN G  LOGIC GATES
Just as several logical statements can be linked 
together, we can link together logic gates to make 
combinational and sequential logic circuits. These 
are in turn combined to produce the computer 
architecture. Any logic circuit can be represented 
by a truth table that describes what output can be 
expected for any possible combination of inputs. 
Look at this simple logic circuit:

In this circuit there are two inputs, A and B, and 
one output, C. To help to construct the truth table 
for the circuit the output from the first gate has 
been labelled X. As there are two inputs to the 
circuit this means that there are four possible 
combinations of input.

A B X C

0 0 0 1

0 1 0 1

1 0 0 1

1 1 1 0

The output from the AND gate, X, is put through 
the NOT gate to produce the final output, C.

Here is a more complicated circuit and its truth 
table. Notice that, as there are only two inputs, the 
number of possible input combinations is still four. 
The second half of this truth table (columns P, Q 
and C) is a rearrangement of part of an OR gate 
truth table.

A B P Q C

0 0 1 0 1

0 1 1 0 1

1 0 0 0 0

1 1 0 1 1

The use of truth tables is not limited to two input 
and one output circuits but can be extended to any 
circuit. Here is an example of a three input, two 
output circuit.

As there are three inputs to this circuit we must 
consider eight possible combinations:

X Y Z M N s T

0 0 0 0 1 1 1

0 0 1 0 1 1 1

0 1 0 0 0 1 0

0 1 1 0 0 1 . 1

1 0 0 0 1 1 1

1 0 1 0 1 1 1

1 1 0 1 0 0 0

1 1 1 1 0 0 1

EXERCISE 1
1) C onstruct a tru th  table fo r  the fo llo w in g  s itua tion : 
‘Jam es m ay drive a car if he has passed his d riv ing  
test OR he is accom panied by a qualified d rive r’.

2) C o n s tru c ta tru th  ta b le fo r th is  s itua tion : ‘A  program  
can be loaded in to a com puter if there is a cassette 
player OR a d isk drive available AND the program  is 
NOT w ritten  to run on a d ifferent com pu te r’ .

3) C onstruct a tru th  table fo r th is  log ic  c ircu it:
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At £200, the Commodore 64 contains a lot 
of hardware — 64 Kbytes of memory, 
sophisticated sound and graphics facilities. 
It is a very suitable machine for the serious 
home computer enthusiast, and with the 
addition of suitable peripherals, could be 
used for small business applications ,too. 
The design makes use of ‘bank switching’ to 
squeeze the memory into the space 
available.

The physical similarity between the Commodore 
64 and the Vic-20 is deceptive. Although there is a 
measure of software compatibility between the 
two, in hardware terms the 64 represents a 
considerable advance. Let’s begin by looking at 
the 64 Kbyte of RAM from which the computer 
derives its name. This feature is a considerable 
advantage in selling terms since it was, until the 
advent of the 16-bit microprocessor, as much 
RAM as was available on any business 
microcomputer. However, there is a certain 
amount of difficulty associated with equipping a 
home computer with this much memory. Though 
an eight-bit microprocessor such as the widely^ 
used 6502 can address a total of 64 Kbytes, this 
must include all the ROM and the input/output 
chips for controlling keyboard, screen and 
peripherals in addition to the RAM.

The answer lies in ‘bank switching’, a technique 
whereby sections of memory are switched into and 
out of the addressable memory map as they are 
needed. There is no theoretical limit to the total 
amount of memory that a computer can 
incorporate using this method, but because the 
microprocessor can still only address 64 Kbytes at

B ox O f T ric ks
T he  S X -6 4  is  a s e lf -c o n ta in e d  p o r ta b le  v e rs io n  o f th e  

C o m m o d o re  6 4 , w h ic h  ca n  be p u rc h a s e d  in  a v a r ie ty  o f  d if fe re n t 

c o n f ig u ra t io n s . T h e  m o s t p o p u la r  v e rs io n  fe a tu re s  o ne  d is k  d r iv e  

( th e  s p a ce  a bove  can  be u sed  fo r  s to r in g  d is k e tte s )  and  a five  

in c h  c o lo u r  m o n ito r .  T h e  S X -6 4  w il l  ru n  d is k  o r  c a r tr id g e  based  

s o ftw a re  f ro m  th e  s ta n d a rd  C o m m o d o re  6 4  w ith o u t  

m o d if ic a t io n .

In  m a n y  re s p e c ts  i t  is  o n e  o f th e  b e s t d e s ig n e d  lu g g a b le  

c o m p u te rs  -  a p h ra s e  c o in e d  to  d is t in g u is h  th e m  fro m  t r u ly  

p o r ta b le  m a c h in e s  s u c h  as th e  E p son  H X -2 0  and  T a n d y  M o d e l 

100. T he  k e y b o a rd  fe a tu re s  fu l ly  s c u lp tu re d  keys  w ith  th e  

g ra p h ic s  le g e n d s  in s c r ib e d  on  th e  fro n t,  and  it is  d e ta c h a b le  

fro m  th e  m a in  u n it .  T he re  is  a s lo t  in  th e  to p  o f th e  c a s in g  to  ta ke  

RO M  c a r tr id g e s ; w h e n  n o t o c c u p ie d  th e  o p e n in g  is  cove red  b y  a

f la p  to  keep  o u t d u s t.

T he  c a s in g  its e lf  is  b o th  ru g g e d  and  c o m p a c t, re s e m b lin g  th e  

p o r ta b le  te s t e q u ip m e n t u sed *by  s e rv ic e  e n g in e e rs , p a r t ic u la r ly  

in  th e  w a y  th a t  th e  c a rry in g  h a n d le  d o u b le s  up  as a s ta n d . T he  

h a n d le  is  r id g e d  to  p re v e n t i t  f ro m  s lip p in g  on  th e  d e s k , th o u g h  

th is  m a k e s  it  s l ig h t ly  u n c o m fo r ta b le  to  ca rry . O ve ra ll, th e  

p h y s ic a l d e s ig n  is  th e  b e s t to  have  c o m e  fro m  C o m m o d o re  to  

d a te , a n d  is  m a rre d  o n ly  b y  th e  fa c t th a t  th e  m a in s  c a b le  and 

p lu g  c a n n o t be s to re d  a n y w h e re  in s id e  th e  c a s in g
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pricelist ♦» I
enter fields, 
save pas* auto. I

trices _  .  »r
ni of Procedure

' Attend prices 
get page auto.

Brices . _ •*
se Fore* 2 

pricelist «F
enter fields 
save page auto.

r rices *■nd of Procedure

' Get prices 
get page auto,

r,;ie« r-*  F
pnd(of* Procedure

any one time, the more memory there is, the more 
switching of banks there will need to be, and that 
will subsequently reduce efficiency.

What this amounts to on the Commodore 64 is 
that if you want to run a program in b a s ic , the 
ROMs containing the b a s ic  interpreter will need 
to be switched in, and this will reduce the amount 
of available RAM to 40 Kbytes (and system 
variables and screen RAM will still need to come 
out of this allocation).

Though bank switching has been added to quite 
a few home computers by way of a modification, it 
is achieved on the Commodore 64 by using a 
special microprocessor. The 6510 is very similar to 
the 6502 that has proved so popular in home 
computer design. The instruction set is identical, 
and it features an eight-bit data bus, 16-bit address 
bus, and various control signals. However, it also 
sports an eight-bit programmable input/output 
port. This means that there are eight additional 
pins on the chip, each of which can be set to 1 or 0, 
or can be used to read values placed onto them by 
an external device. Normally such ports are 
implemented by means of a special chip (called a 
PIO, P1A or VIA depending on the 
manufacturer), and a typical home computer will 
include several of these to handle the keyboard 
and peripheral ports.

The port appears as the lowest two memory 
locations in the map ($0000 and $0001). The 
former is for reading and writing the individual 
bits, while the latter location indicates whether 
each bit is set as an input or an output. Having this 
port built into the microprocessor means that the 
6510 would be ideal for incorporation into 
numerous domestic devices — from dishwashers 
to programmable toys. On the Commodore 64, it 
is used to select between the banks of memory (see 

j  panel). You could do this with b a s ic  POKE 
|  statements, but there is a distinct possibility of 
“ Washing’ the system, forcing you to reset the 

computer. Most memory switches are therefore

B usiness M ile a g e
A  la ra e  p ro p o r t io n  o f th e  C o m m o a o rA  la rg e  p ro p o r t io n  o f th e  C o m m o d o re  6 4 ’s s o ftw a re  base  can  be 

sa id  to  have  been  in h e r ite d  fro m  its  p re d e c e s s o rs , th e  PET and  

V ic -2 0 . T h e  BASIC  in te rp re te r  is  m o re  o r  le ss  id e n t ic a l on  a ll 

th re e  m a c h in e s , and  th e re  is  m u c h  c o m m o n  g ro u n d  in  th e  d is k  

o p e ra tin g  s y s te m s , to o . B ecause  th e  b u s in e s s  s o ftw a re  

d e v e lo p e d  fo r  th e  PET range  c o u ld  o n ly  be used  on  

C o m m o d o re ’s m a c h in e s , it  is  h a rd ly  s u rp r is in g  th a t  th e  s o ftw a re  

d e v e lo p e rs  w e re  so  q u ic k  to  ta k e  a d v a n ta g e  o f th e  p o te n tia l n e w  

m a rk e t o p e n e d  up  b y  th e  6 4 .

For b u s in e s s  a p p lic a t io n , th e re  is  a w id e  c h o ic e  o f  w o rd  

p ro c e s s in g  p a cka g e s , seve ra l o f  w h ic h  have  s p e llin g  c h e cke rs . 

T w o  o f  th e  m o s t p o p u la r  e x a m p le s  a re  E a s y W rite /E a s y S p e ll f ro m  

C o m m o d o re , a n d  V iz a W rite /V iz a S p e ll.  Tw o o th e r  p o p u la r  

p a c k a g e s , b u t w ith o u t  th e  s p e llin g  o p t io n , are P a p e rc lip  6 4  and  

W o rd c ra f t  4 0 . T h e  la t te r  is  d if fe re n t f ro m  m o s t w o rd  p ro c e s s o rs , 

in  th a t  th e  sc re e n  d is p la y s  th e  te x t in  th e  fo rm a t  in  w h ic h  i t  w il l  

f in a l ly  be p r in te d , w h i ls t  m o s t o th e rs  d is p la y  ‘e m b e d d e d  

c o n tro ls ’ —  s in g le  c h a ra c te r  s y m b o ls  to  s ig n ify  a c a rr ia g e  re tu rn , 

o r  th a t  a h e a d in g  is  to  be c e n tre d  on  th e  page .

S p re a d s h e e ts  a re  a v a ila b le  s ta r t in g  f ro m  ju s t  a fe w  p o u n d s . 

O ne p a cka g e , h o w e ve r, is  w o r th  s p e c ia l m e n tio n . A t o v e r £ 1 0 0  

C a lc R e s u lt is  m o re  e x p e n s iv e  th a n  m o s t s p re a d s h e e ts  fo r  lo w -  

c o s t m ic ro s , b u t i t  w o rk s  in  fu l l  c o lo u r, in c lu d e s  a fa c i l i t y  fo r

d is p la y in g  b a rc h a r ts  o f  th e  f ig u re s  in  a n y  c o lu m n  on  th e  

s p re a d s h e e t, and  w o rk s  th re e  d im e n s io n a lly . T h a t is  to  say, 

se ve ra l p a g e s  o f m e m o ry  can  be h e ld  in  m e m o ry  a t o n c e , a nd  it  

is  p o s s ib le  to  a d d  to g e th e r  f ig u re s  fro m  a ll th e s e  s h e e ts .

M a g p ie , to o , is  a fa ir ly  o u ts ta n d in g  p ie ce  o f s o ftw a re  —  

fa l l in g  in to  th e  c a te g o ry  o f a p p lic a t io n s  g e n e ra to rs . A n 

a p p lic a t io n  is  d e fin e d  b y  d ra w in g  th e  la y o u ts  fo r  sc re e n  re c o rd s  

and  p r in te d  fo rm s  on  th e  sc re e n , and  th e n  s p e c ify in g  th e  

re la t io n s h ip s  b e tw e e n  th e  f ie ld s  w ith in  th o s e  d o c u m e n ts : 

V A T = T 0 T A L *1 5 % , fo r  e x a m p le

COMMODORE 64

PRICE

Approx £200

DIMENSIONS

404x216x75mm

6510

MEMORY

64K RAM, of which 39K is 
available for BASIC programs. 
20K of ROM including the 
character generator

SCREEN

25 rows of 40 columns. In low 
resolution, 16 colours are 
available from the keyboard for 
characters, border and 
background. Maximum high 
resolution is 320x200 pixels. Up 
to eight sprites can be defined and 
used

INTERFACES

Joysticks (2) plus light pen, 
RS232 (adaptor needed), 8-bit 
parallel, cassette, serial (for disk 
and printer), composite monitor, 
audio input and output, TV, 
cartridges

LANGUAGES AVAILABLE

BASIC, FORTH, LOGO, 6502 
Assembly language

KEYBOARD

Typewriter-style, with cursor keys 
and four programmable function 
keys

DOCUMENTATION

The computer comes with an 
adequate instruction manual, but 
to take full advantage of the 
functions, you should purchase 
the Programmer’s Reference 
Guide, or one of the many 
independently published guides 
to the Commodore 64

STRENGTHS

Large standard memory. Sprite 
graphics. Sophisticated sound 
control. Quality keyboard. Good 
range of peripherals. More 
business software available than 
for most home computers

WEAKNESSES

Requires manufacturer’s cassette 
unit. BASIC weak on useful 
commands (unless you purchase 
a cartridge add-on). Limited 
choice of graphics modes and 
resolutions. Disk unit slow
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A c o m p o s ite  v id e o  s ig n a l is 

p ro v id e d  to  d r iv e  a c o lo u r  

m o n ito r  ( th o u g h  n o t an RGB 

m o n ito r ) ,  and  th e re  is  a 

se p a ra te  a u d io  o u tp u t  th a t  can  

c o n n e c t w ith  a h i - f i  s y s te m . 

T he re  is a ls o  an a u d io  in p u t lin e  

th a t a llo w s  yo u  to  m ix  re co rd e d  

m u s ic  w ith  s y n th e s is e d  s o u n d s

TV Output
U n like  th e  V ic -2 0 , th e  

C o m m o d o re  6 4  c o n ta in s  a b u ilt-  

in  RF m o d u la to r , so  th a t  th e  

o u tp u t  can  be c o n n e c te d  

d ire c t ly  to  a TV

Cassette Port
A ll C o m m o d o re  c o m p u te rs  

re q u ire  th e  m a n u fa c tu re r ’s 

c a s s e tte  u n it.  W h e n  it  w a s  f i r s t  

m a rk e te d , th e  C o m m o d o re  

s y s te m  w a s  fa s te r  and  m o re  

re lia b le  th a n  a d o m e s t ic  u n it. 

N o w  th e  o p p o s ite  is  tru e

Serial Bus
T h is  is  a s p e c ia l in te r fa c e  

d e s ig n e d  b y  C o m m o d o re  to  

d r iv e  severa l d e v ic e s  ( in c lu d in g  

th e ir  d is k s  and  p r in te rs )  

s im u lta n e o u s ly . T he  p ro to c o l is  

s im ila r  to  th e  IEEE48 s ta n d a rd , 

e x c e p t th a t th e re  is  ju s t  one  

(s e r ia l)  d a ta  lin e  in s te a d  o f e ig h t 

p a ra lle l o n e s

User Port
T h is  p o r t  h as  tw o  fu n c t io n s .  

F irs t, it  can  im p le m e n t a fu l l  

R S 2 3 2  s e r ia l in te r fa c e , th o u g h  

an a d d -o n  is n eeded  to  c o n v e r t 

th e  6 4 ’s v o lta g e s  to  th o s e  used  

on  m o s t s e r ia l d e v ic e s , i t  can  

a ls o  d o u b le  up  as a p a ra lle l p o r t 

th a t  can  be used  fo r  

e x p e r im e n ta t io n

Cartridge Port
If a RO M  c a r tr id g e  (u p  to  16 

K b y te s ) is  p lu g g e d  in  here, it 

w il l  e ffe c t iv e ly  o v e rr id e  a n y  

o th e r  m e m o ry  th a t  o c c u p ie s  th e  

sa m e  lo c a tio n s . If th e  f i r s t  n in e  

b y te s  o f th e  R O M  c o n ta in  a 

s p e c if ie d  s e q u e n ce  o f v a lu e s  

th e n  th e  p ro g ra m  w il l  

‘a u to m a t ic a lly  s ta r t ’ w h e n  

s w itc h e d  o n . T h is  is  h o w  g a m e s  

c a r tr id g e s  w o rk

Memory Map
T h e 6 4 K o f  a v a ila b le  m e m o ry  

sp ace  is d iv id e d  up in to  s ix  

zo n e s , th re e  o f w h ic h  are 

u s u a lly  c o n fig u re d  as R A M . T he  

o th e r  th re e  c o n ta in  R O M s fo r  

th e  BASIC , th e  o p e ra tin g  

s y s te m , and  th e  I/O  c h ip s , b u t 

fo r  each one  th e re  is  a ‘ s h a d o w ’ 

area o f R A M  th a t  can  be 

s w itc h e d  in  u n d e r s o ftw a re  

c o n tro l.  T h is  is  o n ly  p ra c tic a b le , 

h ow eve r, w h e n  u s in g  m a c h in e  

co d e  and  th e  R O M  is n ’t  needed

I, .  • j  -  t. - •> k •. -» r» (I » 4

i R A M s i i i

iRAMlil!
*  t f n >  -tr u ' . r

Zonel
P e rm a n e n tly  c o n ta in s  3 2 K  o f 

R A M

Zone 2
N o rm a lly  8 K  R A M . If an 8 K  RO M  

c a r tr id g e  is  in s e rte d  th is  w il l  

o v e rr id e  th e  R A M

Zone 3
N o rm a lly  8 K  R O M , c o n ta in in g  

th e  BASIC  in te rp re te r . It w il l  be 

o v e rr id d e n  if a 1QK c a r tr id g e  is 

in s e rte d . A lte rn a tiv e ly , 8K  o f 

R A M  can  be s w itc h e d  in  to  

rep la ce  th e  RO M

Zone 4
P e rm a n e n tly  4 K  o f R A M  

Zone 5
N o rm a lly  c o n ta in s  a ll th e  I/O  

c h ip s  and  s o m e  R A M . U n d e r 

s o ftw a re  c o n tro l,  h ow eve r, th e  

R O M -b a se d  c h a ra c te r  g e n e ra to r  

can  be s w itc h e d  in  here

Zone 6
W h e n  th e  m a c h in e  is  s w itc h e d  

o n , th is  c o n ta in s  8 K  o f R O M , 

in c lu d in g  th e  K e rna l -  a m in im a l 

o p e ra tin g  s y s te m  d e s ig n e d  to  

be used  on  a ll fu tu re  

C o m m o d o re  h a rd w a re . W h e n  

u s in g  m a c h in e  co d e  it  can  be 

rep la ce d  w ith  8 K  o f R A M

performed in machine code.
Three other chips between them account for the 

rest of the 64’s features. There is a 6526 CIA 
(Complex Interface Adaptor), which is a more 
sophisticated version of the PLAs and VLAs 
previously mentioned. In addition to the usual 
programmable input/output lines, it includes 
timers and shift registers to convert between serial 
and parallel data. There is also a 24-hour clock 
with a programmable alarm, of which the b a sic  

interpreter appears to make no use at all.
The graphics and video display are handled by 

another chip, the 6566, which is a further 
development of the Video Interface Chip, from 
which the Commodore Vic-20 derives its name. 
This delivers different modes for both textual and 
high resolution graphics displays, and the sprite 
graphics have been well documented. Though it 
can handle only eight sprites at once (compared 
with 32 on the Memotech MTX512, for example), 
it is possible to simulate rather more. Sprites are 
defined as a block of bytes in memory, and their 
location is indicated by POKEing the address into 
the Vic-II chip’s registers. It is relatively easy to 
switch the pointer rapidly and repeatedly between 
different sets of values to simulate more than eight 
units.

The 6581 chip is referred to as the SID, or 
Sound Interface Device, and contains functions a 
great deal more advanced than some of the early 
purpose-designed music synthesisers. As well as 
full ADSR control over the volume envelope of 
each sound, the functions include filtering, 
different waveforms and ring modulation 
modifying one sound with another.
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ACCESS T IM E
This refers to the time taken to locate a particular 
item from within a whole collection of data. The 
term is most commonly used when referring to the 
length of time needed to locate any particular 
record within a file — especially in database 
applications. For many business applications, the 
efficiency of a program will be far more strongly 
determined by the average access time of the disk 
than by the clock speed of the CPU.

The access time is quite different from the ‘data 
transfer rate’ — which is the speed at which bits will 
be transmitted from disk to computer once the 
item has been found. On the Sinclair Microdrive, 
for example, the average access time of a piece of 
data is 3.5 seconds. The minimum is zero, if the 
data is opposite the read-head mechanism when 
the request is made; and the maximum is seven 
seconds, if it has to wait for a complete circulation 
of the tape loop. This is very slow when compared 
with a floppy or hard disk unit, where the average 
might be nearer to half a second. However, the 
data transfer rate of the Microdrive (16 Kbytes per 
second) is very fast, and is as good as any disk.

ACCUMULATOR
Inside a microprocessor or CPU there are several 
registers. These are individual bytes of memory 
that perform all the arithmetic and logical 
functions of the processor. Probably the most 
active and important of these is the accumulator, 
which is linked directly into the Arithmetic Logic 
Unit (ALU). The chief function of the 
accumulator is its ability to accumulate values: 
that is to say the contents of a byte can be simply 
added into, or subtracted from, this register. To the 
b a s ic  programmer, the accumulator is both 
invisible and inaccessible (although it will be used 
by the b a s ic  interpreter thousands of times every 
second). To the machine code programmer, 
however, the majority of instructions in every 
program written will involve some manipulation 
of the accumulator.

A CO USTIC  CO UPLER
The transmission characteristics of a telephone 
line are such that it can only be used to transmit 
frequencies in the range 300 Hz to 3400 Hz — the 
range required to transmit normal speech 
intelligibly. This ‘bandwidth’ also determines the 
maximum rate at which binary data can be 
transmitted. Some system is needed, therefore, to

ensure that the signal to be sent always falls within 
this range. This is called ‘modulation’.

One system of modulation represents a binary 
zero as a tone in one frequency (let’s say 1000 Hz), 
and a binary one is represented by another tone in 
a different frequency (e.g. 2000 Hz). The device 
for converting between binary data signals and 
these audio frequencies is called a ‘modem’ 
(MOdulator/DEModulator). For best results the 
modem should be wired directly into the 
telephone line, but this can only be done for a 
permanent installation. For portable applications 
(such as salesmen transmitting the day’s figures 
back to central office, or journalists sending copy 
to their editors) an acoustic coupler is necessary.

An acoustic coupler is simply a modem with 
two rubber cups (one for the mouthpiece and one 
for the earpiece) into which a telephone handset is 
pushed. Were you to remove the handset during a 
transmission, you would be able to hear the data 
being transmitted in the form of tones. However, 
by interrupting the flow of data, you would create 
errors in the received data.

A CRO NYM
b a sic  is an acronym, so is PET, and FIFO, RAM, 
EPROM and SNAFU. An acronym is a word 
formed by taking the initial letter from each word 
in a description or title. Acronyms seem to be very 
popular in the computer industry, both for 
buzzwords and for proprietary names for 
products. One suspects, however, that often the 
final acronym has been thought up first, and then 
the component words have been fitted to that. 
Who would really want to call a programming 
language Beginner’s All-purpose Symbolic 
Instruction Code, or a new computer the Locally 
Integrated Software Architecture?

ADA
In the late 1970s, C.I.I. Honeywell Bull in France 
designed and specified a programming language 
primarily for use by the U.S. Defense Department. 
It was intended to replace all the other 
programming languages they were using at the 
time, and was therefore also intended to vary as 
little as possible between machines. The language 
is very highly structured — it is described by some 
as a kind of super p a s c a l , but by others as 
‘unwieldy’. It is named in honour of Countess Ada 
Lovelace, who was a close friend and companion 
of Charles Babbage and is credited with being the 
first programmer.
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PROGRAMMING PROJECTS/SPECTRUM BASIC

THE SPECTRUM OF 
ZX BASIC
B asic  has become the standard language of 
microcomputers, but almost every machine 
has its own variation — or dialect. In this 
series of articles we will be looking at some 
of these variations and their functions, as 
well as explaining how they can be 
‘translated’ from one dialect to another. 
This first article looks at the most widely 
used dialect — Sinclair basic .

We begin with variable names — always a source 
of confusion between b a sic  dialects. In Sinclair 
b a s ic , string variable names must have only one 
letter, and there is no distinction between upper 
and lower case letters. This means that the 
variables a$ and A$ refer to the same memory 
location. String array names follow the same rules 
as simple variables, and pre-empt them, so that 
once you’ve DIMensioned the string array H$, all 
further mentions of H$ in the program will be 
taken as referring to the array H$. This follows 
from the fact that Sinclair b a s ic  regards all string 
variables as array-type variables, some of them 
formally DIMensioned, and others not.

Numeric variable names are less constrained 
than those of string variables: they must begin with 
a letter, and they must consist of letters or digits, 
but they may be any length. They may include 
spaces, and they may be a mixture of upper and 
lower case letters, but although these factors are 
helpful to the programmer, they are of no 
significance to the machine, which will ignore 
them. Some valid numeric variable names are:

qwert, ub40, advanced computer course 

and the following are exactly equivalent:

QWERT, UB 40, Advanced Computer Course

Numeric array names must be single letters, but 
this does not preclude numeric variables of the 
same name: the array variable v(8) is quite distinct 
from the simple numerical variable v. Single-letter 
non-array numerical variables such as v must be 
used as the counters of FOR.. .  NEXT loops, so FOR 
V=1 to 9 . . .  NEXT V is legal, but FOR loop=1 TO 9 is 
illegal.

The main differences between the Sinclair 
dialect and other b a s ic s  lie in the treatment of 
string quantities. Let us start with the effect of the 
DIM statement. In Sinclair b a s ic , when the 
statement DIM a$(12) is executed, 12 bytes of 
memory are set aside exclusively for the use of the 
variable a$, and these bytes are initialised with 
spaces. Each of these bytes can be referred to as a 
subscripted variable, or the whole 12 bytes can be

referred to collectively as a$. The length of this 
variable will always be 12, and assignments to it 
will be padded with spaces or truncated on the 
right as necessary to preserve this length. Suppose 
we write:

DIM a$(12): LET a$=“ 123456789”

then a$ will actually contain the characters 
‘123456789’ followed by three spaces, making 12 
characters in all. If we write instead:

DIM a$(12):LET a$=“ABCDEFGHIJKLMN”
then aS will actually contain only the 12 characters 
‘ABCDEFGHUKL’ — the string quantity ‘ABCD 
EFGHUKLMN’ has been truncated on the right 
to fit into the DIMensioned length of a$. If we now 
write:

LET a$(2 TO 5)=“1234”
then a$ will contain ‘A1234FGHUKL’. This shows 
the power of Sinclair string handling — all strings 
are treated as single-dimension string arrays, the 
arrays can be subscripted or not, and individual 
elements of an array can be accessed — singly or as 
part of a sub-string — by subscripts. It also shows 
another major divergence from other versions of 
b a s ic . Elsewhere DIM a$(12) creates 12 separate 
string variables called a$(1), a$(2), etc., each of 
which has the length of the expression assigned to 
it. If nothing has been assigned to a particular 
string variable, then its length is 0, and it contains 
only the null string,

In other b a s ic s  this way of handling strings 
requires the various string functions, LEFTS, 
RIGHTS, MIDS, and sometimes INSTR, to enable 
sub-string manipulation and string-slicing in the 
way demonstrated. But this is not so in Sinclair 
b a s ic . The Sinclair equivalents of these string 
functions are:

LEFT$(A$,N) -  A$( TO N)

(meaning the N leftmost characters of AS);

RIGHT$(A$,N) = A$(LEN A$-N+1 TO )

(meaning the N rightmost characters of AS); and

MID$(A$,P,N) -  A$(P TO P+N-1)

(meaning the N characters from position P 
onwards in AS).

LET S=INSTR(A$,“teststring”)
(

(meaning find the starting position in AS of the 
substring “teststring”) can be replaced by:

LET Y$=A$:LET Z$=“teststring”:GOSUB 9900:LET 
S=P0SN

9900 LET ZL=LEN Z$:LET SL=LEN Y$-ZL+1:LET
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POSN=0
9910 FOR K=1 TO SL
9920 IF Y$(KTO K+ZL-1 )=Z$THEN LET POSN=K:LET 

K=SL
9930 NEXT K:RETURN

Notice in this subroutine that the string variable Y$ 
is treated as a subscripted array-type variable, even 
though it has not been DIMensioned. Since in 
Sinclair b a s ic  all string variables are array-type 
variables, a string variable that is not DIMensioned 
is implicitly a variable-length single-dimension 
array of single characters; if it is DIMensioned, its 
element length is fixed by the last number in the 
DIM statement. Whereas in other b a s ic s  DIM x$(8,7) 
creates a two-dimension array, in Sinclair b a s ic  it 
creates a single-dimension array of eight elements, 
each of them fixed in length at seven characters.

The strict attention paid to the length of 
DIMensioned string variables by Sinclair b a sic  

means that seemingly simple statements can have 
differing effects, depending upon whether a DIM 
statement has been executed or not. If a$ is a 
simple string variable, then LET a$=“” makes the 
contents of a$ equal to the null string (“”) and the 
length of a$ equal to zero. If DIM a$(7) has been 
executed previously, however, then LET a$=“” 
makes the contents of a$ equal to seven spaces, 
and the length of a$ equal to seven (which it will 
always be, following the DIM statement). 
Furthermore, in such a case, even though LET a$=“ ” 
has been executed, a test such as:

IF a$=“” THEN PRINT “null-string”

will fail, and nothing will be printed — a$ is equal 
to seven spaces, not the null-string.

If you need to test string array elements in this 
way, then it’s probably best to set aside a string 
variable for the purpose, DIM ension it to the length 
of the longest array variable used in the program, 
and test your array variables against it, like this:

100 DIM a$(12,34)
120 DIM b$(7,56)
140 DIM N$(56)
150 REM N$ will be used as the empty string

580 IF b$(3)=N$( TO 56) THEN PRINT “empty” 
590 IF a$(11)=N$( TO 34) THEN PRINT “empty”

Here N$ is used only as the empty string, and if it 
wasn’t used in this way then the tests in lines 580- 
590 would have to use literals, thus:

580 IF b$(3)=“ ” THEN PRINT “empty”
585 REM 56 spaces between the quotes

This is inconvenient and prone to error. An 
alternative to using N$ in this way is to DIMension 
all array variables with one more element than 
they need, and use that last element as an empty 
string for tests of that array, so that line 590 might 
be:

590 IF a$(11)-a$(12) THEN PRINT “empty”

SPECTRUM BASIC/PROGRAMMING PROJECTS

SuperBASIC
W h ile  S in c la ir ’s S u p e rB A S IC  has a c o n s id e ra b ly  e n h a n c e d  range  

o f c o m m a n d s  o v e r ZX  BASIC , th e  m o s t s ig n if ic a n t  fe a tu re  is  its  

a b a n d o n m e n t o f th e  s in g le -k e y  rese rved  w o rd  e n try  s y s te m  

c o m m o n  to  th e  Z X 8 0 , ZX81 and  S p e c tru m . T h is  w a s  o r ig in a l ly  

in tro d u c e d  as an e c o n o m y  m e a su re  fo r  u s e rs  ( it  w as  fe lt  th a t 

p re s s in g  a s in g le  key  ra th e r  th a n  ty p in g  a w h o le  w o rd  w o u ld  

p rove  a ttra c t iv e ) . T h e js y s te m  d ic ta te d  th a t  a v a r ie ty  o f d if fe re n t 

‘ m o d e s ’ w o u ld  be n e c e s s a ry  to  a llo w  th e  e n try  o f s in g le  

c h a ra c te rs  to  be d if fe re n tia te d  fro m  th e  e n try  o f key  w o rd s . T h is  

s y s te m  w a s  a ttra c t iv e  to  S in c la ir  u s e rs  w h o  had  n e ve r p re v io u s ly  

e n c o u n te re d  a k e y b o a rd , b u t fo r  th o s e  w h o  had  used  a ty p e w r ite r  

it p ro ve d  to  be a s o u rc e  o f f ru s t ra t io n

assuming that a$(12) is never used and so contains 
only spaces.

Notice lastly that, in Sinclair b a s ic , the first 
element in any array has the subscript one, 
whereas in some other b a s ic s  the first element in 
an array has subscript zero. In the next instalment 
of the course, we will conclude this look at 
Spectrum b a s ic .

Procrustean Strings
T he  m y th ic a l G reek c h a ra c te r 

P ro c ru s te s  w a s  an in n k e e p e r 

w h o  k e p t o n ly  o ne  size o f 

bed , and  s tre tc h e d  o r 

t ru n c a te d  h is  g u e s ts  to  f i t  it

5 0  d i m  A $ ( 1 2 ) D IM  A $ (1 2 ) in S p e c tru m

3 _ 4 _ 5 _ 6 _ 7 _ ^ 8 - ^  9 ^ 1 0 - ^ 1 1 ^ - 1 2 ,  BASIC  c re a te s  a f ix e d - le n g th

/  /  -S\ s tr in g  v a r ia b le , A $ , w h ic h

in i t ia l ly  c o n ta in s  12 sp ace s

1 0 0  L E T  A $ =  “ A B C D E F G H IJ K L M N O P ”

2 - ^ _ 3 - ^ 4 ^ _ 5  - y - 6 - , - 7  - r - 8  tt- 9 -7 -1 0 -7 -1 1 -t- 12-

A B ! c D E F G H 1 J K L

If you  t r y  to  a s s ig n  a s tr in g  

q u a n t ity  lo n g e r  th a n  12 

c h a ra c te rs  to  A $ , it w il l  be 

tru n c a te d  a t th e  r ig h t  to  f i tL  J i r u n c a t  

mm ' n t0  A S

1 5 0  L E T  A $  =  “ * ? !  +  ”

-10̂ -11̂ -12

* 9
■

i
■ + E F G H 1 J K L 7

If you  a s s ig n  a s h o r te r  s tr in g  

q u a n t ity  to  A $ , it  is  s to re d  

le f t - ju s t if ie d  in  A $ . The 

re m a in in g  c h a ra c te rs  o f A $  

are u n a ffe c te d

2 0 0  L E T  A $ =  “  ”

3^-4 - r - 5 6 7̂  8 ^  9^10^11 12■
S e tt in g  A $  equa l to  “ ” , th e  

n u ll- s t r in g ,  s h o u ld  red uce  its  

le n g th  to  0, and  its  c o n te n ts  

to  “ in s te a d , its  le n g th  

re m a in s  a t 12 c h a ra c te rs , and 

it  is  f i l le d  w ith  sp a ce s

COLUZO

>
LU
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MACHINE CODE/PART ONE

INTRODUCING 
FIRST CONCEPTS
Machine code programming is the key to the 
real power of the microprocessor, allowing 
the programmer direct control over all the 
machine’s functions. This first part of a 
comprehensive course, covering both 6502 
and Z80 operation codes, will lead to a full 
understanding of the fundamentals of 
computer programming.

Machine code is a programming language, and it 
looks like this:

INSTK: SBC SD9FA.X .O utport flag value

or like this:

DE23 FD FA D9 

or like this:

11011110 00100011 11111101 11111010 11011001 

Sometimes it looks like this:

1240 LET ACC=ACC-FLAG (X) 

and sometimes like this:

PERFORM FIAG-ADJUST THROUGH L00P1

It’s all code of a sort, and since it’s destined for a 
computing machine it’s called machine code. To 
the machine it doesn’t actually look like anything 
at all, being simply a pattern of voltage levels or a 
current of electricity.

What we usually mean when we say machine 
code is Assembly language, and the first example 
we gave in this article is an instruction in 6502 
Assembly language. The point of giving all the 
other examples was to demonstrate that there is no 
specific machine language as such, only a number 
of different ways of representing a sequence of 
electrical events, and representing them in ways 
that we find more or less easy to understand. So 
the first thing to learn about machine code (or 
Assembly language -  we won’t worry about the 
distinction for the moment), is that it’s just another 
programming language. However, the
programming must always come before the 
language: whether you write your programs in 
IBM Assembler, Atari b a s ic , or Venusian 
PsychoBabble, you have to solve the
programming problem in your mind before you 
touch a keyboard. The programming language m 
which you then express your solution will 
obviously influence the form of the final program. 
Indeed you may choose among various possible 
languages precisely to make the coding of your 
program easier, or shorter, or more readable. But 
the solution must always come first: content must

THE HOME COMPUTER ADVANCED COURSE

precede form.
In that case, why call it machine code, and why 

bother to use it at all? We give the language this 
name because its instruction set corresponds 
exactly with the set of ‘primitive’ or fundamental 
operations that a particular microprocessor can 
perform. We use the machine code when it is 
important to direct the operation of the 
microprocessor exactly, step-by-step, rather than 
allowing a program language interpreter to control 
it in a more general way.

The commonest reason for wanting to use it is 
speed: if your program addresses the processor 
more or less directly, then you avoid the relatively 
lengthy business of program translation. In other 
words, by cutting out the middleman you save 
time. Program execution time, that is. The actual 
coding, testing, debugging, modification and 
maintenance of a machine code program is likely 
to take at least twice as long as the same operations 
would on a high-level language program. The 
unfriendliness and intractability of machine code 
stimulated the development of languages such as 
c o b o l  and b a s ic .

If the set of machine code instructions is the set 
of processor operations, then what are these 
operations, and what does the processor do? In 
the simplest terms the Central Processing Unit 
(CPU) of a computer is a switch that controls the 
flow of current in a computer system between and 
among the components of that system. Those 
components are the memory, the Arithmetic 
Logic Unit (ALU), and the Input/Output 
devices. When you press a key on the keyboard, 
you are inputting some information; in the 
machine, however, you are simply generating a 
pattern of voltages in the keyboard unit. The CPU 
switches that pattern from the keyboard to part of 
the memory, then switches a corresponding 
pattern from elsewhere in memory to the screen so 
that a character pattern appears on the screen. To 
you this process may seem like operating a 
typewriter, but in a typewriter there is a 
mechanical connection between hitting a key and 
printing a character, whereas in a computer that 
linkage exists only because the CPU switches the 
right voltage patterns from place to place. 
Sometimes pressing a key doesn’t cause a single 
character to appear on the screen: the keypress 
may destroy an asteroid, or save a program, or 
delete a disk file, or print a letter. The operation 
depends on how and where the CPU switches the 
electric current.

In this simplistic view the CPU is at the heart of 
the system, and all information (or electrical 
current) must pass through it from one component
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to another. In fact, the CPU and the system are 
more complicated than that, but it’s not a 
misleading view. You can think of the CPU as a 
master controller that sets lesser switches 
throughout the system to control the flow of 
electricity, and thus controls the flow of 
information indirectly, rather than routing all 
information physically through itself.

The effects of the CPU’s switching operations 
can be classified for our purposes as: arithmetic 
operations, logical operations, memory 
operations, and control operations. These 
operations are all the results of switching 
information through different paths in the system 
and in the CPU, and to the CPU they all seem like 
the same sort of thing.

Arithmetic operations are really the most 
important feature of the machine. The CPU can 
add two numbers together, or subtract one from 
the other. Subtraction is achieved by representing 
one of the numbers as a negative number and 
adding that negative number to the other number; 
7+5=12 really means:

(plus 7) added to (plus 5) equals (plus 12).

7—5=2 really means:

(plus 7) added to (minus 5) equals (plus 2).

Multiplication and division are regarded as 
repeated additions or subtractions, so the CPU 
can be programmed to simulate these processes as 
well. If the CPU can cope with the four rules of 
arithmetic, then it can cope with any 
mathematical process. It is well to remember, 
however, that all its mathematical potential relies 
on the ability simply to add two numbers.

Logical operations for our present purposes 
can be described as the ability to compare two 
numbers: not merely in terms of relative size, but 
also in terms of the pattern of their digits. It’s easy 
to see that seven is bigger than five because we can 
take five away from seven and still have a positive 
result. The CPU has the ability to do that sort of 
comparison, and it can also compare 189 with 102 
and recognise that both numbers have the same 
digit in the hundreds column. It may not seem a 
very useful ability as yet, but its use will become 
more evident later.

The CPU can perform essentially two memory 
operations: it can copy information from a 
memory location into its own internal memory, 
and it can copy information from its internal 
memory to another memory location. By doing 
these two things one after another it can therefore 
copy information from any part of memory to any 
other part of memory. For the memory to be any 
use, the CPU must be able to do both these things, 
and these two operations are all it needs for 
complete management of the memory.

Control operations are really decisions about 
the sequence in which the CPU performs the 
other operations we have described here. It’s not 
important at the moment to understand them any 
better than that: if you accept that the CPU can

make decisions about its own operation, then that 
is sufficient at this stage.

So the CPU can do arithmetic, it can compare 
numbers, it can move information around in 
memory, and it can decide its own sequence of 
operations. This is a simple list of procedures, and 
yet it completely descibes or specifies an ideal 
computing machine! If the CPU can do those four 
things, then by doing them in the right sequences 
it can perform any computable task. The right 
sequence, of course, is the computer program for 
the particular task, and that’s where we as 
programmers come in. If the CPU had the ability 
to generate its own operation sequences, then 
there would be no need for us.

You may not be convinced that the four types 
of operation we have described are a sufficient 
description of a conceptual computer, so let’s 
think about a b a sic  program in terms of the 
general operations performed. What are these 
fundamental operations? In any program you 
have variables, which are simply the names of 
places in memory where information is stored.
Most programs perform some sort of arithmetic 
upon some of these variables. Having done the 
arithmetic, a program will often compare two 
pieces of information and as a result will execute 
one set of instructions or another. Information 
usually comes into a program from the user at the 
keyboard, and goes out to the user via the screen.

Except for the sentence about input and 
output, this description contains no more than the 
four elemental CPU operations put into different 
words. And, if you accept for the moment that to 
the CPU all Input/Output devices are just special 
areas of memory, then the picture of the ideal 
computer executing actual programs is complete.
Consequently, the execution of a program can be 
described as a directed flow of information into, 
around, and out of the computer; you supply 
some information via the keyboard, that 
information is manipulated by your program, and 
some information appears on the screen.

If the idealised computer is just a CPU and 
some memory, then before going any further we 
should investigate computer memory: what is it, 
and how does it work?

Imagine a simple electrical circuit consisting of 
a battery, a switch, and a light bulb: if the switch is 
closed the light goes on, and stays on until the 
battery runs down or until the switch is opened.
Then the condition of the light bulb — ON or 
OFF — is a piece of information, and the whole 
circuit is a memory device recording that 
information. Suppose now that the switch is 
placed at the entrance to a factory, and the light is 
placed in the Manager’s office. When the first 
employee arrives at the factory, he or she closes 
the switch at the entrance, and the Manager in the 
office can see that the light is on and therefore 
knows that someone has turned up for work. The 
Manager doesn’t have to be in the office when the 
light goes on; he or she can look at the light bulb 
at any time to find out whether someone has
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arrived. The information that someone has turned 
up for work is stored in the circuit.

That’s almost exactly how information is stored 
in computer memory: all information reduces to 
the presence or absence of electricity in a circuit. 
Naturally there’s more to it than that, so let’s 
improve the management information system. 
Suppose we have four separate switch/bulb 
circuits (the four switches in a row at the door, and 
the four bulbs in a corresponding row in the 
office), so that closing the leftmost switch 
illuminates the leftmost bulb, and so on. Now 
imagine that every employee is told to close the 
switches in a unique way, so that when Catherine 
arrives she closes the first and second switches 
and opens the third and fourth; Richard closes the 
fourth switch and opens all the others; Bobby 
closes the first and third and opens the second and 
fourth; and so on for all the employees. The lights 
in the office now show the Manager which of the 
employees has turned up for work.

Suppose that the OFF position of each switch is 
labelled 0, and the ON position is labelled 1: 
therefore Catherine has to set the switches 1100 
(first two switches ON, third and fourth OFF), 
Richard has to make the pattern 0001 (fourth 
switch ON, the others OFF) and Bobby has to set 
1010 (first and third ON, the other two OFF). If 
the Manager reads each light bulb as 1 if it’s ON, 
and 0 if it’s OFF, then both the employees and the 
Manager will be speaking the same identification 
language. ‘0001’ means ‘Richard ’ to both people.

How many unique patterns of switches are 
there? Each switch can be in one of two positions, 
and there are four switches, so there are 
2X2X2X2=16 different patterns. Let’s consider 
all the possibilities:

0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 
iooo, iooi, ioio, io n , lioo, lio i, m o , m i

Try as you like, you can’t make any more patterns
than these, and there are 16 of them.

Notice how quickly we’ve moved from the 
concrete picture of light bulbs in a room, to the 
abstract matter of patterns of l ’s and 0’s. If we can 
abstract a little further we can turn these patterns 
into numbers.

Think about counting and writing down as you 
count. You can count from nought to nine very 
easily because each of those numbers has a unique 
name and a symbol to represent it. But what do 
you write down after nine? You have a name, ten, 
for that number, but no separate symbol to 
represent it. Therefore you must re-use some of 
the other symbols: 10, 11, 12, and so on until 99, 
when you run out of possibilities again, so the next 
number has three columns (100). This seems 
trivial, but you may remember how difficult it was 
when you learned it at school: all that squared 
paper with Hundreds Tens and Units written at 
the top of each sum? You now know that the 
number 152 means “1 in the Hundreds, 5 in the 
Tens, 2 in the Units”, or 100+50+2=152. 
Counting works like this because we have ten

digits (0,1,2,3,...,9) which we arrange to 
represent all possible numbers.

How does counting work, however, if there are 
only two digits: 0 and 1? We can count to 1 easily, 
but how can we represent the next number? We 
have run out of unique digits, so we must re-use 
what we have (just as we did when counting with 
ten digits), and write the next number as 10. Now 
we know that the next number is called ‘two’, so in 
this system 10 represents the number two. The 
next number as we count is three, and we must 
write that as 11. Then what? We’ve run out of two- 
digit combinations, so the next number, four, 
must be represented as 100; five must be 101, six 
is 110, and seven is 111. Here, we are counting in 
decimal numbers (nought, one, two, etc), but 
we’re writing these down in binary numbers 
(0,1,10,11,100,101,...).

In the same way as a decimal number such as 
152 means: ( 1X100)+ (5X10)+ (2X1), the binary 
number 101 means: (1X4)+(0X2)+(1X1).
Instead of having hundreds, tens, and units 
columns for our numbers, we must use columns 
marked: fours, twos, and units. In a decimal 
number the value of a digit is multiplied by ten for 
every column it moves to the left; in a binary 
number the value of a digit is multiplied by two 
for every column it moves to the left.

So that’s the binary system: just a different way 
of representing numbers. If you know Roman 
numerals you don’t find it hard to accept that 
there are VII dwarfs in Snow White ; so why not 
write 111 dwarfs? The actual number of dwarfs is 
not changed by the way we represent it, but it is a 
good idea to say the binary number as ‘binary one 
one one’, and to write it as ‘ 111 b’ so that you don’t 
confuse it with a decimal representation.

Now we can return to our original analogy of 
how the factory workers switch patterns, and 
decide on a method of making these a little easier 
to use. The most sensible thing to do is to treat 
these patterns as four-digit binary numbers. This 
means that Catherine’s signal is 1100 binary, 
which is 12 decimal. Richard’s signal is 0001 
binary (1 decimal), and Bobby’s signal is 1010 
binary (10 decimal). When the Manager looks at 
a pattern of lights in the office, he or she can read 
it as a binary number, convert it to its decimal 
equivalent, and look down the list of employees to 
see who that number corresponds to. Thus we can 
say that information is stored in the current of 
electricity, and the switches make it meaningful.

Our analogy has given a simple picture of how 
information is represented in a computer: to the 
computer it’s just patterns of voltages (i.e. lights 
are ON or OFF), but we humans find it easier to 
consider those patterns as binary numbers. It’s all 
a matter of representation. If you now think of 
1010 as the code meaning ‘Bobby’, then you may 
start to see how all of this relates to machine code 
itself. In the next instalment of the Machine Code 
course, we will look at how binary numbers are 
used to represent information inside your home 
computer.
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c.

Speeding Ahead
‘hese three short programs, 
ine for ZX Spectrum, one for 
he BBC Micro and the other for 
he Commodore 64, 
lemonstrate the difference in 
ipeed of operation between 
JASIC and Machine Code by 
lisplaying either the entire 
iharacter set (Commodore and 
5BC), or colour blocks 
Spectrum), on the screen

REM* DO NOT LIST LINE

reM**** m /c *********

, MODE 4•*
’ ™  t07THEN

So’ S T w ...... - u f t S S ’ c - -

,0 255 STEPL
ERSION “:f 0:CTL0S l5:F0P B=0 TO 2 -

300 FOR L (SA+11 =H“
400 ?(SA)=LS. . + u .=HF

i s  l s s s f c w « n
1700 VDU 30 ^

S l " T̂ : r - r T R T = ^ -
30010 X-l .LS=VSTR-2S6*HS-L

[ I Z  lit ,48,4,240,2,

3 0 ‘ “

; \ S S > V ,n -c

;02" REM SAVE BEFORE ,.»*.***-******

50300 ^************tt**************
S  r r * .

30400 R^ D0 RUNNING ***************

1 0  r e m ***s p e c t r u m  m /C ^  
n  REM* DO NOT L I S T L I N E  ^

_CMv after running PRO'-

“ ■  S b b s s s s s s s s .

r . r eK, P T R ) * » 2 5 6 * P E E K » P T R * H > + 7

200 BORDER 2 ,08,33,0,0,
350 DATA 1,0,3,1 >
,237,176,201

400 FOR X=° TO 11 
500 READ NC 
600 POKE SA+X,MC 
700 NEXT X 
1000 LET 0FFSET=0 
1100 FOR x=0 TO 1 STE 
1200 POKE SA+7,OFFSET

i S  s

1600 NEXT X 

1700 STOP

156)

1600 NEK i '>

i ; ° 4  r E; r * * * * * ^

i s ?  pp rr°o o

ilo2 RFM*********************

-l 00 
JOi RE,y1*Ci

*eM£ r * ° W L?*********^
200 P R l 4 * * * * * * * * * ! CC°DE nF****

i  .0000 ̂
wniTe 8 t-o/vG„

60q

200
c c
p 0p

O f CpP* fs ;

_ #
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= M
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900
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Cc CC+ 1 
T P

CC,
IF
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cc> P + 0P-CL 
r ^E/V

i4 00
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255

COD‘e
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'oo 
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SVs Aa p 0 *£

STOP
T B, Lp
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° U°00  c.PM

^ D £ R ,

60020 po4 280:s c -4 * 8>;0r=S5*4*
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ÊXt By;P°K£
TO 2Z

2 50 ,

J65 j

'2 0 8 ,

i 33

B53

22

MC

IHt c-

THE HOME COMPUTER ADVANCED COURSE 19

4 tnnM



I GUIDING PRINCIPLES51
In 1970, at the age of 28, 
Shiina Takayoshi abandoned 
a promising career in the 
military and formed the Sord 
Corporation (1982 sales: $40 
million). He immediately 
formulated 11 guiding 
principles to help him govern 
his new computing business. 
These included:
’The company’s foremost 
obligation is to humanity. 
’The company must do its 
best to determine what 
products and services are 
best for society, and provide 
these at a reasonable cost. 
’There must be no division 
between labour and 
management. All persons in 
the company must respect 
one another and co-operate 
for the benefit of all

BILL GATES-SETTING 
THE STANDARD
Microsoft has become, in one short 
decade, the world’s most influential 
supplier of microcomputer software. It was 
courted by the world’s biggest supplier of 
computers, IBM, and effectively helped 
shape the specification of the IBM PC, the 
world’s largest-selling personal computer.

The Microsoft company, now a multi-million 
dollar operation, is a classic story of enthusiasts 
made good. Bill Gates, at 28 the chairman of the 
board, was in 1972 only a talented amateur.

At Seattle High School, where the parent- 
teacher association had the foresight to equip the 
students with a timesharing terminal attached to 
the popular DEC PDP-11 minicomputer, Bill 
learned about the workings of computers. He 
went to Harvard University and on his 
graduation went into business back in Bellevue 
with schoolfriend Paul Allen. The firm they set 
up was called Traff-O-Data, and their work was 
to monitor traffic flow for the Seattle public 
authorities. It was a momentous period in the 
development of the microcomputer: the first 
microprocessors were making an appearance and 
those with imagination and enthusiasm saw a 
great future for devices such as Intel’s 4004 and, 
later, 8008 chip. Bill was by now thoroughly 
familiar with the DEC PDP-11 and one of his 
first jobs was to track down bugs in this 
computer. It occurred to him that it would be a 
good idea to adapt its b a s ic  for use on the 8080. 
He had no development system, and the first 
occasion on which the code and the machine 
were mated was when Gates took the tapes down 
to Altair in Albuquerque, New Mexico. 
Incredibly, it ran first time. Thus was bom m b a s ic , 

which has ever since been the standard to beat.
Microsoft was becoming known as a software 

house with expertise at fitting new computers 
with operating systems -  filling the empty box, as 
it were — and IBM contacted Gates to ask for his

advice on how to specify and equip a single-user 
personal computer. Initially, Gates suggested that 
Gary Kildall of Digital Research, riding high on 
the burgeoning success of CP/M , was the man 
for the job. But eventually IBM came back to 
Microsoft. Microsoft rewrote p a s c a l , f o r t r a n  

and m b a sic  for the 16-bit implementation, and 
also came up with the GW (for ‘gee-whizz’) b a sic  

with its extended music and graphics capabilities.
At the same time, Gates realised that an untidy 

but powerful multi-user OS by Bell Laboratories 
could be usefully adapted for the more powerful 
micros based on the new 16/32-bit 
microprocessors, and transformed Unix into 
Xenix. Both Tandy and Apple adopted Xenix in 
their own 16/32 bit models in 1983. It even 
transpires that Microsoft did much of the work 
for Apple’s newest creation, Mackintosh.

Microsoft has a firm footing in the hobby 
market, too. In 1981 it set up ASCII-Microsoft 
with a keen young Japanese, Kay Nishu, to sell 
their OS and b a sic  to far Eastern manufacturers 
of the new generation of lap-held micros like the 
NEC PC 8201 and Tandy Model 100. Out of the 
Japanese manufacturers’ desire for a common 
standard, not only in languages, but in interfaces 
to desirable home peripherals such as colour 
plotters and printers, lightpens, joysticks, 
trackballs, robot arms, FM tuners and so forth, 
came the common MSX standard. Now, it seems, 
we shall soon have a standard common disk 
format from Microsoft that will enable data to be 
transferred among the three principal operating 
environments — MSX, MS-DOS, and Xenix. 
With its emphasis on software that is easy to use, 
illustrated in such phenomenal advances as 
screen windows and the mouse, Microsoft would 
appear to have a bright future ahead of it.

In d u s try  S ta n d a rd
BASIC  —  B e g in n e rs ’ A ll-p u rp o s e  S y m b o lic  In s tru c t io n  C ode —  

w a s  d e v e lo p e d  in  1965 a t D a r tm o u th  C o lleg e , US, by  J K em eny 

and  T K u rtz , and  th u s  p re d a te s  th e  m ic ro p ro c e s s o r  by  a t leas t 

seven  ye a rs . W h ile  m a n y  d ia le c ts  o f th is  la n g u a g e  have been 

fo rm u la te d , M B A S IC , M ic ro s o f t ’s o w n  v e rs io n , has  c o m e  to  be

re c o g n is e d  as th e  in d u s try  s ta n d a rd .

M ic ro s o f t  e s ta b lis h e d  its  re p u ta tio n  w ith  th e  s u c c e s s  o f 

M B A S IC , and  has  c o n tin u e d  to  th r iv e  by p ro d u c in g  a s e r io u s  

c h a lle n g e r  to  D ig ita l R e s e a rc h ’s C P /M  in  M S -D O S , an o p e ra tin g  

s y s te m  d e s ig n e d  to  be a p p lic a b le  to  a w id e  range  o f 

m ic ro c o m p u te rs .

F o llo w in g  th e  lead  g ive n  by X e ro x ’s S ta r te rm in a l s y s te m , and 

d e v e lo p e d  by  A p p le  w ith  L isa , M ic ro s o f t  has n o w  d iv e rs if ie d  

s l ig h t ly  a nd  p ro d u c e d  a p a cka g e  th a t c o m b in e s  s o ftw a re  w ith  a 

h a rd w a re  d e v ic e  n e c e s s a ry  to  its  o p e ra tio n  -  M S -W IN D O W S  

and  th e  m o u s e . M ic ro s o f t ’s m o u s e , like  th a t  o f its  tw o  

c o m p e t ito rs ,  u ses  a t ra c k b a ll- l ik e  a rra n g e m e n t c o u p le d  w ith  tw o  

s e le c to rs  to  m ove  th e  c u rs o r  a ro u n d  th e  sc reen
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The Home Computer Advanced 
Course will take you far beyond the 
novice stage, w idening your 
knowledge and making you a more 
sophisticated user.

To help you keep your copies 
immaculate, we will be making a very

special free binder offer in Issue 5 -  be 
sure not to miss it!

Overseas readers: this special o ffe r applies 
to  readers in the U.K., Eire and Australia only. 
Binders may be subject to  im po rt d u ty  
and/or local tax.
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