
CONTROL

APPLICATION © 0 © 0 \
0 0 0 0 0

FIT FOR THE FUTURE A n overview
the increasing relevance of computers to
our everyday lives

1
HARDWARE

BEST OPTION A n introduction to disk
drives, and how they work

COMMODORE 64 We examine this
popular home computer and look at its
portable counterpart, the SX-64

10

SOFTWARE s a a u l l l
0

ATTACKED BY ANTS A maze-chase
game universally acclaimed

THE ALGEBRA OF DECISION
MAKING The first step towards
understanding program design

JARGON

FROM ACCESS TO A D A The first part
of a glossary of computing’s terms

PROGRAMMING PROJECTS

THE SPECTRUM OF ZX BASIC A look
at the characteristics of this b a s i c dialect

8

INTRODUCING FIRST CONCEPTS
Commencing a course of instruction in this
lowest common denominator of computer
programming

16

PROFILE

BILL GATES - SETTING THE
STANDARD An insight into one of the
world’s most prolific suppliers of software

N ext W eek
• We continue our BASIC
conversion course for
Spectrum users,
concentrating on functions
and control structures.

• Widely acclaimed as the
best of the microcomputer-
based wordprocessing
packages, MicroPro’s
Wordstar can turn any CP/M
based machine into a very
powerful text processor.

• Amongst the educational
uses of computers, one
application is particularly
attractive to the home user -
examination revision
software. We look at this fast­
expanding field.

-Am -v v-. v
% * %

• t 1 w

a - ^

t- ' \t-

\ .

, ^ ^ ^
4 ^
V* .
\w A

it 0;-. &&

* w
A V

Overseas readers: this special o ffe r applies
to readers in the U.K., Eire and Australia only.

COVER PHOTOGRAPHY BY IAN McKINNELL TRINITRON COURTESY OF SONY SUPERROBOT 28 COURTESY OF HARRODS

Editor Jonathan Hilton; Consultant Editors Gareth Jefferson, Richard Pawson; Art Director David Whelan; Deputy Editor Roger Ford; Production Editor Catherine Cardwell; Staff Writer Brian Morris; Picture Editor Claudia Zeff; Designer
Hazel Bennington; Sub Editors Robert Pickering, Keith Parish; Art Assistant Liz Dixon; Editorial Assistant Stephen Malone; Researcher Melanie Davis; Contributors Lisa Kelly, Steven Colwill, Martin Hayman; Group Art Director Perry
Neville; Managing Director Stephen England; Published by Orbis Publishing Ltd: Editorial Director Brian Innes; Project Development Peter Brookesmith; Executive Editor Chris Cooper; Production Co-ordinator Ian Paton; Circulation
Director David Breed; Marketing Director Michael Joyce; Designed and produced by Bunch Partworks Ltd; Editorial Office 85 Charlotte Street, London W1; © 1984 by Orbis Publishing Ltd: Typeset by Universe; Reproduction by Muiiis Morgan
Ud; Printed in Great Britain by Artisan Press Ltd, Leicester

HOME COMPUTER ADVANCED COURSE - Price UK 80p IR £1.00 AUS $1.95 NZ $2.25 SA R1.95 SINGAPORE $4.50 USA and CANADA $1.95 „ „ nA £
How to obtain your copies of HOME COMPUTER ADVANCED COURSE - Copies are obtainable by placing a regular order at your newsagent, or by taking out a subscription. Subscription rates: for six months (26 issues) £23.80; for one year (52
issues) £47.60. Send your order and remittance to Punch Subscription Services, Watling Street, Bletchley, Milton Keynes, Bucks MK2 2BW, being sure to state the number of the first issue required.
Back Numbers UK and Eire - Back numbers are obtainable from your newsagent or from HOME COMPUTER ADVANCED COURSE. Back numbers, Orbis Publishing Limited, 20/22 Bedfordbury, LONDON WC2N 4BT at cover price.
AUSTRALIA: Back numbers are obtainable from HOME COMPUTER ADVANCED COURSE. Back numbers, Gordon & Gotch (Aus) Ltd, 114 William Street, PO Box 767G Melbourne, Vic 3001. SOUTH AFRICA, NEW ZEALAND, EUROPE &
MALTA: Back numbers are available at cover price from your newsagent. In case of difficulty write to the address in your country given for binders. South African readers should add sales tax.
How to obtain binders for HOME COMPUTER ADVANCED COURSE - UK and Eire: Details of how to obtain your binders (and of our special offer) are in issue 5. EUROPE: Write with remittance of £5.00 per binder (incl. p& p) payable to Orbis
Publishing Limited, 20/22 Bedfordbury, LONDON WC2N 4BT. MALTA: Binders are obtainable through your local newsagent price £3.95. In case of difficulty write to HOME COMPUTER ADVANCED COURSE BINDERS, Miller (Malta) Ltd, M.A.
Vassalli Street, Valletta, Malta. AUSTRALIA: For details of how to obtain your binders see inserts in early issues or write to HOME COMPUTER ADVANCED COURSE BINDERS, First Post Pty Ltd, 23 Chandos Street, St. Leonards, NSW 2065.
The binders supplied are those illustrated in the magazine. NEW ZEALAND: Binders are available through your local newsagent or from HOME COMPUTER ADVANCED COURSE BINDERS, Gordon & Gotch (NZ) Ltd, PO Box 1595, Wellington.
SOUTH AFRICA: Binders are available through any branch of Central Newsagency. In case of difficulty write to HOME COMPUTER ADVANCED COURSE BINDERS, Intermag, PO Box 57394, Springfield 2137.
Note - Binders and back numbers are obtainable subject to availability of stocks. Whilst every attempt is made to keep the price of the issues and binders constant, the publishers reserve the right to increase the stated prices at any time when
circumstances dictate. Binders depicted in this publication are those produced for the UK market only and may not necessarily be identical to binders produced for sale outside the UK. Binders and issues may be subject to import duty and/or
local taxes, which are not included in the above prices unless stated.

PAUL CHAVE

I 3 S m 0 3 Q33MVAaV 33XQdWOO 3PMOH 3RI

d |8 i| jb8j 6 b si a s jn o o A p n js

0 iu o g 9 A!SU0 4 0 jd u jo 3 ‘ p 0 oed

||0M V ‘SUjJUnBp 0JOLU U0A0
s i >iSBi 0 p j J0 LUOOM0 U 0 q j joj jn q

‘jjojjb 0|qBJ0pisuoo e spuBW0p
u o ije n jis s q i jo jSB 0 jq E

6u jd 00> j -0A!SU0JX0 0JOLU PUB

0JOLU 0LUOD0q SJU0LUdO|0A0p

PUB S06UBqO JB0A A j0A 0

puB — Aj b io o s jn o jo ouqBj.
0 q j jo }JBd |b j 60 } u i u b 0 iu o 3 0 q

SBq J 0 jn d iu o o 0 q ; ‘0pB O 0p

B U B q j SS0|) 0 0 S jn o o 0 q ju |

pasmBoaag ag pu\/ aoueApv

jou ‘][u j^jjb ‘si ji *8nbijsXui b qjiM q M opus sn
jo Aubui JBqj OAisuaqaiduioo o s - jbd puB A jop ej
‘8DIJJO ‘8UIOIJ - JU8UIUOJIAU8 ABpAlOA8 jn o OJUI
juouiqoBOious sji p u e jsbj o s uooq sBq Axtopuqooj

jsjnduiOD jo oouBApB AjBuoijnpAai o q x
£5[JOM p o q o s jp q j qjiM u isq j d p q puB Adbjojij

jsjn d iu oo jojsoj o j sbm 1U9UIJS9AUT oqj JO ju p d
oqj jBqj |88j noA ji ‘8uib§ j^jjb ouibS ABjd oj ansop
jubjsuod jp q j qjiM odoo noA op Moq ‘uaip ju p
9ABq noA JI ^80ud UI UMOp 9UIOD SJ8JUUd
p^ugai aioui p u n jibm noA ppoqs jo ‘mou
ja p u d b poou Ageai noA o q ^juapgjns oq oAup
odBj ajpssBO b giM j q 6 9APP >[STp b Anq J8sn sqj
p p o q s i?du\ uo suiBiSojd jo so8pujiB3 ^Aououi
joj onjBA jsoq sqj jajjo so§B5[OBd aiBAvgos qoiqAV
^sp88u s4J8sn oqj oj ojqBDgddB jsoui si auo qoxqAV
•oSbrSubj SuimuiBiSojd suo ueqj aioui sjsjjo
uopsonb ui QurqDBUi oqj sdBqjoj ^jxou jeqM
‘dSmqd sqj ua>[Bj SuiABq p u y *a>iApB qqBqai
jnoqjiM ppoui JBpogjBd b uo appap oj qnogjip
sji ‘Aubui os are aioqx ^JOjnduiOD 9Aisu8dx8ui

u b Anq p u B jno o q £jsjg op oj jBq^w

£8DIApB p o sB tq u n

jo j u m j J s o o u m o j p q j jb p uB 8 u ip uavo j p q j u i

s a v p s u io q j o jB o n p o j s n u i o q M s js iA q q o q o q j p uB

sjn o jB u iB o q j o p a isq A V ’^ j o m X oqj qoiq /A qjiM

ju o u id m b o o q j j o s a s q d d n s s q j p uB s jo X o |d u i8

q o q j u io jj j j o d d n s p o d x s ubo Q jd ood o s o q j

JSB8] jb jn q ‘g u q n d u io o u i s j u s u id o p A o p jsqjbj

o q j q ip ^ d n d 8 8 q o j - sjsXjb u b su io jsXs puB

s jo u iu iB J § o jd o q j ‘s jo jB J s d o a q j - s jB u o is s o jo jd

j s j n d u io o s q j jo j q S n o u s q n o g j ip s j j

ip a f q n s aqj jo S3 p p ca |d iu o 3 oq j
q) iu sd u S o} o iu o .i S u p n d u io s jo p p i j aq j

o)] 3 iu o 3M3 u aqj so o p M oq o § 'd ju d u a tk a
ju a sa id j ia q j u i 8 u iq ;\u B o) u o i j e p j

3 |HH SJBaq j.iofqns jeq j jo jd aou oo a jp u a

a q i uoqvv ^ q e p a d sa ‘p a d s m d S u p u n e p
b S3 |d p u |j d Aisnq uiojj p a fq n s u o u
b § u ;u jb 3 | p u ij 3§ b |o o q 3 s j 3ao 3 |d o o d JSOJ\I

N O ixvonddv/N oixonaoH X N i
i—

2 r

APPLICJETION/INTRODUCTION

PASCAL
T h is is c o n s id e re d to be th e

m o s t p ro fe s s io n a l o f th e

p o p u la r la n g u a g e s

LOGO
T h o u g h p r im a r ily in te n d e d as

a le a rn in g la n g u a g e fo r use

w ith y o u n g c h ild re n , LOGO

is a ls o ve ry s a t is fy in g fo r th e

a d va n ce d p ro g ra m m e r
BASIC
T h is is s t il l th e m o s t p o p u la r

la n g u a g e fo r h o m e

c o m p u t in g

FORTH
T h is la n g u a g e fa lls b e tw e e n

h ig h leve l la n g u a g e s and

m a c h in e co d e , a nd is

th e re fo re p o p u la r a m o n g s t

e x p e rie n c e d p ro g ra m m e rs

Compiler
A c o m p ile r p ro d u c e s a

s e p a ra te c o p y o f a p ro g ra m in

m a c h in e c o d e

Interpreter
A n in te rp re te r is one m e th o d

fo r c o n v e r t in g BASIC in to

m a c h in e co d e lin e b y l in e

Machine Code
T h o u g h d if f ic u l t to w r ite ,

m a c h in e c o d e ca n be v e ry

re w a rd in g , as no t im e is

w a s te d on in te rp re t in g
Assembler
M a c h in e c o d e is u s u a lly

w r it te n in th e fo rm o f

A s s e m b ly la n g u a g e , w h ic h

u ses a lp h a n u m e r ic la b e ls and

s y m b o ls in s te a d o T n u m b e rs

mm HOME COMP
DVANCED COURSE
e le a rn in g a w h o le v

w p ro g ra m m in g la

th a t ca n be u se d as

;ernatives to BASIC
lo o k in g

p ro g ra m s a n d u t i l i t ie s

needed

ru n n in g Qh th e C P U .®

a O v ^ n c e d jio m e c o m p

i s e i M ^ es th e lan g

w o rk in g in a c c o rd in g

a tt ire o f t f ie p ro b le m o r

::::::::::

::::::::::::
iiiiisiSSTij?

m r J '
L*==?-rH l

easy to come to terms with a ‘motive force’ that is
invisible in action, unlike the satisfying spectacle
of, say, a car engine or a hydraulic pump in
operation.

True, more and more people are being trained
to operate computers and computer terminals.
But there is a huge difference between training
and education. Training implies learning a task by
rote. Education allows a leap beyond the bounds
of the mere task at hand into a broad
understanding of how the systems work, their
potential and limitations.

To many people working in the computer
industry and in schools and colleges the answer
seems to be a planned course of computer
education presented in such a way as to be

understandable to all from the outset. Individual
instruction manuals for specific machines cannot
provide a balanced overview that relates one type
of computer to another. Nor will they point out
the pitfalls inherent in the multiplicity of
machines available, or advise you fully on how to
make the most of your purchase. After all, what
sort of manufacturer is going to give free publicity
to his rivals’ products?

Following a properly planned home study
course, perhaps backed up by a weekly session at
an Adult Evening Institute (many of which offer
introductory courses in computing and computer
programming), is a convenient and inexpensive
way to a sound education in computing.

The object of such a course should not simply

2 THE HOME COMPUTER ADVANCED COURSE

KE
VI

N
JO

NE
S

be to learn how to program and operate a home
computer, but to gain a wider appreciation of
how computers are used in everyday life. As well
as providing instruction in programming and
basic systems analysis, it should offer an overview
of all the computers in use at the moment rather
than concentrate on the machine one happens to
be using. It should introduce the peripherals and
extras available for all of them, with an
explanation of their operating principles. To
place the computer in context, one must examine
in depth the tasks to which it is now applied and
the software that makes those applications
possible. Finally, the course should include
elements of formal logic, number systems and
something of the history of computing and
computers. In short, a home study course should
cover all the topics that would be dealt with in a
conventional course in computer studies.

In T he H ome Computer A dvanced Course
we have set out to provide the material for just
such a course. Building on the average home
computer user’s knowledge of basic and some
machine-specific experience of computer
graphics and sound synthesis, we aim to take you
through the other high-level languages found in
microcomputers - pascal, forth, logo and c, for
example - and to provide grounding in machine
code programming, the key that unlocks the
power of the microprocessor.

A knowledge of machine code enables us to
examine the ways in which the higher level
languages are defined. Then, when we have
studied the way in which compilers and
interpreters work, we can amalgamate these two
branches of knowledge to start defining our own
language and writing a compiler for it.

We won’t neglect b a s ic , however. We’ll look at
the refinements of the language and work
through projects that will result in the generation
of useful applications software and screen-based
and Adventure games.

In addition to the internal functions of the
computer, we’ll explore file-handling methods,
both on tape and on floppy disk, using the
experience gained in defining data structures and
hierarchies within the computer’s internal
memory. In this way we can expand the capacity
of even the smallest home computer into a serious
information processing system.

Bearing in mind that it’s not enough to study a
subject in isolation, we will consider in depth the
wide choice of software packages now available -
spreadsheets, word processors, database
managers and the like - with a view both to
understanding their operation and methods and
to learning more about professional
programming techniques, in order to include
these in our own programming.

Some attention will be given to basic
electronics, examining the function and design of
individual components and the ways in which
they are combined to make up computers and
their peripherals. We’ll look at the machines

themselves, too: the popular microcomputers,
both for home and business use, and their
peripherals, examining their price and
specification, and assessing their impact on
computing in general. We won’t neglect the
human side of the computer industry, however.
The people who design the software and build the
machines, and even the computer users who have
made a contribution to the field, will have space
in the course devoted to them.

If you are interested in learning about
computers with a view to increasing your
employment opportunities, then a home study
course can be an effective replacement for the
first module or two of a formal course in
computer studies. Because it allows the student to
proceed at his or her own pace, it is of equal value
to the fast learner, as well as those who perhaps
need a little more time to come to grips with what
is, after all, a complex subject.

Finally, if you simply wish to be better
informed about a technology that is set to change
society in the course of your lifetime, then T he
H ome Computer A dvanced Course offers a
comprehensive guide. In addition to the
fundamentals of computer study, we shall be
examining the impact of the new technology on
society at large. How will the advent of computers
in our everyday lives change the way people
relate to each other? What political changes will
result from an ‘information explosion’ made
possible by the low-cost microprocessor? It is
difficult to obtain reasonable answers to these
questions. Newspaper articles and television
programmes tend to trivialise them, many
computer publications seem to make them more
complicated than they need be. The H ome
Computer A dvanced Course sets out to give you
access to the essential information to answer
them for yourself.

A Leap Forward
A n n o u n c e d to th e w o r ld ’s p ress

a t th e b e g in n in g o f 1984, b u t n o t

s c h e d u le d fo r d e liv e ry u n til w e ll

in to th e s p r in g , S in c la ir ’s

Q u a n tu m Leap b ro ke th a t

c o m p a n y ’s lo n g a s s o c ia t io n

w ith th e Z 8 0 m ic ro p ro c e s s o r .

F itted in s te a d w ith a v e rs io n o f

M o to ro la ’s 32 b it 6 8 0 0 0 , it has

128 K b y te s o f R A M (w ith a

fu r th e r 512 K b y te s a v a ila b le),

and tw o Q L M ic ro d r iv e s b u ilt - in .

A ls o a b a n d o n e d is S in c la ir ’s

id io s y n c ra t ic s in g le -k e y -e n try

BASIC

THE HOME COMPUTER ADVANCED COURSE 3

IA
N

M
cK

IN
NE

LL

_ ! ► HARDWARE/USING DISKS

BEST OPTION

Remember not to put floppy
disks close to onyttiing tnat
contains o magnet. Even
something as seemingly
innocuous as the telephone
contains electromagnets
(they are used to ring the
hell), and a domestic hi-fi
speaker has very powerful
ones mdoed ^ ^ e * * * * '* ^

BBC Disk Drive
B e fo re d is k d r iv e s o f th is ty p e

can be used w ith th e BBC M o d e l

B, th e DO S (D is k O p e ra tin g

S y s te m) R O M m u s t be in s ta lle d

in th e m a c h in e its e lf.

‘ In te ll ig e n t ’ d is k d r iv e s , on th e

o th e r h a n d , c o m e e q u ip p e d w ith

a DOS c h ip a lre a d y o n -b o a rd

Until recently, floppy disk drives and so-
called stringy floppies were beyond the
budget of most home users, but advances in
disk technology have reduced the relative
cost of purchase, while the advent of the
Sinclair Microdrive has bridged the gap. In
view of the power of such devices it is woxth
looking at them in some detail.

Microcomputers are highly versatile tools for
manipulating data. However, data manipulation is
of little use without a means of storing information
when a particular set of data is not required for the
moment or when the computer is switched off.
This can be achieved in a number of ways. Anyone
aware of the real potential of home computing will
have acknowledged the limitations of the ROM
cartridge and ordinary cassette tape as methods of
permanent storage and will wish to investigate the
more sophisticated facilities of magnetic disks.

But before discussing the merits of disks we will
consider the alternative systems.

CARTRIDGE
This method of storage is of little use to the
programmer. Most cartridges contain a type of
PROM (Programmable Read Only Memory) that
provides only a means of inputting data to the
computer, usually in the form of games written in
complex and lengthy machine code, or extra
facilities such as extensions to b a s ic . It is possible,
however, for cartridges to contain Electrically
Erasable PROMs (EEPROMs) that can be
written to and read from in a similar manner to
internal RAM but which are ‘non-volatile’ in that
the information is retained when they are removed
from the computer or the computer is switched off.

Similarly, cartridges are available for some
computers containing low-power CMOS
(Complementary Metal Oxide Semiconductor)
RAM chips that retain stored information via a
battery contained within the cartridge.

The main argument against EEPROM and
CMOS RAM storage is that they are expensive —
collecting a modest library of such cartridges
would cost at least as much as an appropriate
floppy disk drive.

CASSETTE TAPE
Originally provided because disk drives were very
expensive, cassette tapes are still by far the most
popular storage media, mainly because they are
cheap, freely available and portable audio cassette
players and tape cassettes are familiar to most
people. Usually any cassette player of reasonable
quality will suffice, although some manufacturers
— notably Commodore and Atari — only allow
you to use their own specially designed units.

Programs and data are stored in binary form as
sequential files via the cassette unit’s normal
record facility, using different tones to represent Os
and Is. Normally, identified information such as
the file name (and possibly the internal memory
address from which the file is copied) is recorded
first, followed by the file itself, one bit at a time in
one-byte blocks that are further formatted into
256-byte segments. Many computers incorporate
an error-checking facility in each segment known
as a ‘checksum’, which can be compared with
calculations made within the computer during
verification to ensure that there have been no
recording errors.

Typical commands are SAVE to record files and
LOAD to play back and retrieve them. Some

-■ systems provide additional cassette commands for
| various special functions, including a facility to
1 read a tape and produce a catalogue of the file
I names stored, and command formats for storing

and retrieving different types of data.
The low cost and easily understood command

format of tape cassette storage is offset by a
number of major inconveniences:

1. In the majority of cases the user is required to
operate the cassette unit controls manually for
storage and retrieval and this often demands
careful timing of button pressing and accurate
volume setting.

2. As information is stored sequentially,
retrieval of a specific file (except in the case of the
software-controlled Hobbit cassette recorder and
the Epson HX-20’s built-in micro cassette)
involves either careful monitoring of an accurate
tape counter (if one is supplied!) to enable fast

4 THE HOME COMPUTER ADVANCED COURSE

USING DISKS/HARDWARE

forward/rewind to a point just before the desired
file, or a search by the computer for the file name
from the beginning of the tape. Sequential storage
also means that it is impossible to store data
efficiently that needs to be read in small sections
from any point in a file without processing the
whole fife. The type of storage that can achieve this
is known as ‘random access’ and is necessary for
any effective database filing system such as
address listings or stock control entries.

3. The above, in conjunction with the small
number of bits that are stored/retrieved per
second using cassette storage — typically between
300 and 1,200 bits — means that a cassette tape
system is excruciatingly slow in operation. Quite
small programs of, say, five Kbytes could take
between one and three minutes to load or save.
This also means that it is inconvenient to make
back-up copies of programs, although this is highly
recommended.

4. Even when it has been recorded correctly in
the first instance, data can be corrupted after an
unpredictable number of replays, owing to wear
by the tape head.

5. Because the characteristics of cassette players
can vary from manufacturer to manufacturer, data
recorded on one model may not play back on
another. In addition, cassette tape is frequently
damaged by the crude tape transport systems of
many portable cassette units and breaks easily.

FLO PPY D ISK
Compared with the cassette and cartridge storage
systems, disk storage has few major drawbacks.
Floppy disk drives are complex and delicate ia
their construction, and expensive — from £150
upwards. Floppy disks themselves are also costly
at between £2.50 and £4 each. But the user gains a
reliable, flexible and fast means of storing large
amounts of data, operating at 50 to 200 times the
speed of tape storage and retrieval.

All disk drives have a form of Disk Operating
System (DOS), which contains a routine that
formats the distribution of information on a disk
into tracks. There are usually between 35 and 80
tracks per side, each track divided into a varying
number of arcs called sectors. There are fewer
sectors on the shorter tracks near the middle of the
disk than on the long outer tracks. Each sector
consists of a block of data, usually 256 bytes.

The DOS ‘remembers’ where all the
information contained on the disk is stored. This is
usually achieved by the creation of a Block
Availability Map (BAM), either stored on the disk
or held in memory, and a catalogue or directory.
The BAM holds a record of the blocks currently in
use and those free for new storage. The catalogue
is a list of the file names, file types and track and
sector locations for each file. It is usually held on
the central track and can be loaded into computer
memory for reference. The DOS positions the
read/write head after reference to the BAM, and
catalogues and manages the storage and retrieval
of data.

The layout of the information in tracks and
sectors and the accurate positioning of the read/
write head enables the DOS to offer random
access filing. Data can be recorded and extracted
in chunks as small as a byte at a time, if required. In
broad terms, differences between disk drives are
confined to the amount of data that can be stored
— typically between 100 and 400 Kbytes; the
speed at which data can be transferred; and the
means by which the user can control storage and
retrieval using DOS.

InASpm
F lo p p y d is k e tte s are c o m p o s e d

o f M y la r, o r a s im ila r s tre tc h and

te a r re s is ta n t p la s t ic sh e e t,

co a te d w ith a m e ta llic o x id e

c a p a b le o f h o ld in g a m a g n e tic

c h a rg e . E n c lo s e d in s id e a

p ro te c tiv e sq u a re p la s tic

e n v e lo p e , th e d is k is s p u n fro m

th e h u b . T h e re c o rd in g s u rfa c e

is a c c e s s ib le to th e re a d /w r ite

head th ro u g h th e s lo t s h o w n a t

th e b o tto m o f th e il lu s tra t io n

There are three main methods of implementing
a DOS. The most efficient is to include it in ROM
form within the disk drive, under the control of the
drive’s own microprocessor with associated RAM.
This is known as an ‘intelligent’ disk drive; on
receipt of an instruction from the central processor
it can process complex disk-handling routines
independently, allowing the processor to continue
running a program. All current Commodore disk
drives are intelligent in this manner and use no
internal computer memory in operation.

A more popular system is the type that loads the
DOS from disk into computer RAM on command
or automatically when the computer is switched
on. The third method includes a form of DOS in
the computer’s own operating system. Spectrums
have this facility and Acorn Computers supply a
DOS for the BBC Micro called the Disk Filing
System that provides limited disk control. Disk­
handling routines include SAVE and LOAD
commands, a CAT (or directory) command, a
command to format a disk (or tape cartridge) and
various random access and sequential file creating,
handling and deleting commands.

1 PROTECTIVE ENVELOPE

2 PROTECT/PERMIT SLOT

3 SECTOR

4 REGISTRATION HOLE

5 TRACK

6 ACCESS SLOT

THE HOME COMPUTER ADVANCED COURSE 5

ATTACKED BY ANTS

1 My Hero!
On th e f i r s t p a ss th ro u g h th e

g a m e , th e ‘v ic t im ’ is

c o n v e n ie n tly p la ce d a d ja c e n t

to th e g a te w a y to th e c ity . A

q u ic k h o p o v e r th e p ro te c tiv e

w a ll, and th e p ro ta g o n is t —

m a le o r fe m a le — is g ree ted

w ith a c ry o f ‘ M y he ro — take

m e a w a y fro m a ll t h is ! ’

2 Formi-d a ble Ant-iclimax
S o m e tim e s , th e fa c t th a t a n ts

ca n ’t c l im b s ta irs is v e ry

u s e fu l in d e e d — th o u g h w h y

o u r h e ro has c lim b e d q u ite so

h ig h , one can o n ly s p e c u la te .

C lim b in g o b s ta c le s like th is

a llo w s th e p ro ta g o n is t to lo b

g re n a d e s a t th e a tta c k in g a n ts

w ith o u t fe a r o f re tr ib u t io n , b u t

re m e m b e r th a t yo u are

p la y in g a g a in s t th e c lo c k

The significance of Quicksilva’s Ant
Atttack, a three-dimensional maze game
designed for the ZX Spectrum with 48
Kbytes of RAM, lies not in its obvious
graphic quality, but in the subtle application
of the algorithm that generates the fabric of
its maze-like playing ground.

Software writers and publishers have never been
satisfied with the protection accorded them by the
copyright laws - hence the many and various
attempts to safeguard programs from being
copied. The author of this game, Sandy White, has
attempted to prevent his work from being
plagiarised, by using another method - applying
for letters patent on the software technique that
produces the screen graphics. Since the 1977
Patents Act specifically denies protection of this
sort to computer programs (noting that they
cannot be considered to be inventions), one is led
to the conclusion that the patent in question covers
a mathematical formula or algorithm.

This in itself is interesting because one would
not normally require a complex algorithm for a
game of this sort. What is it about Ant Attack that
requires a radically new approach to software
protection?

Ant Attack is also unusual in that it is not
descended directly from any arcade game. Most
popular games for home computers have their
roots in the conceptions of Atari, Taito and the
other manufacturers of dedicated games
machines. Ant Attack was conceived by a
graduate from the Edinburgh College of Art who
protests his ignorance of the arcade games
tradition. Sandy White had never previously
written games software and his efforts at market
research were restricted to inquiring of friends
what it was they liked about such games.

His remarkably forward-looking package was,
surprisingly, rejected by Sinclair Research, who
could not evaluate the videotape of Ant Attack
that White sent them because, they said, they had
no video cassette recorder!

The first novel feature of Ant Attack that a user
will encounter is that it allows the player to choose
the sex of the chief protagonist. And the first
oversight follows hard on its heels. Whether you
opt to be a girl or a boy, the opening frame of the
game, which sets the scene in 30 or so words,
explains how you hear a call of distress ‘irresistable
(sic) to a hero like you’. One can forgive the
spelling mistake, but the program’s inability to
substitute ‘heroine’ for ‘hero’ is evidence of a lack
of attention to detail. Further evidence is to come.

The protagonist, chased by monster ants, can
defend himself (or, of course, herself) by throwing
grenades. Unfortunately, there is no consistency in

the effect these grenades have on the ants. While
this might result from a deliberate randomising
factor, it is more likely to be the result of
indiscriminate programming. Moving the
protagonist anti-clockwise through 90 degrees is
achieved by pressing the Spectrum’s M key, and
the Symbol Shift key next to it turns the figure the
other way. The Spectrum’s moulded rubber
membrane keys do not give proper control over
this transformation, which .invariably results in
frustration for the player.

It would appear that Ant Attack was developed
in advance of the launch of Sinclair’s Interface 2,
which accepts two Atari-standard joysticks. The
game would benefit greatly from being updated to
utilise these peripherals, though it would need two
joysticks to handle the command structure.

In addition to revolving the token, moving it
forward, making it jump or throw grenades (you
can also choose between four distances of throw),
the player can choose one of four points of view—

6 THE HOME COMPUTER ADVANCED COURSE

IA
N

M
cK

IN
NE

LL

CO
UR

TE
SY

 O
F

SO
FT

ANT ATTACK/SOFTWARE <S>

each centred on the token.
It is this section of the program’s graphics

generation that sets it apart from most other games
occupying less than 48 Kbytes. The
transformation is virtually instantaneous,
completely overshadowing the normal run of 3D
graphics generators available for Spectrum. The
ability to change points of view is essential to the
game. Without it a considerable portion of the
playing ground would often be hidden from view.

The author is understandably unwilling to
reveal too much about the working methods that
he and his collaborator Angela Sutherland have
adopted. He does imply, however, that the playing
ground is not, as one would expect, held as a 128 X

128 X 6 array. Evidence of this is apparent if,
rather than entering the city, the player token is
made to turn round and head off into the desert.
After a short walk, he or she comes to another city,
and then another, and so on.

And so to the object of the game itself. It is set in
the City of Antescher (named by the game’s
authors in tribute to the Dutch artist and designer
M. C. Escher, who drew ingenious delusive
structures that were impossible to actually build).
Standing outside its gates, you hear the cries of a
person in distress. You jump over the low wall into
the city and go off in search of the victim, jumping
onto obstacles or turning to avoid them as you go.
The city appears in isometric projection and no
attempt is made to keep faith with perspective.

Only a small portion of the city is in view at any

one time, the frame scrolling across as the figure
moves left, right, up or down. The scrolling action
is excellent, as is the animation of the figures. Full
marks, too, for a good sense of humour in the
treatment of the animation.

It soon becomes apparent that the city is
populated by huge ants whose bite, though not
immediately fatal, will cause death if you suffer
enough of them. If an ant becomes aware of you, it
will follow you. You can shake it off if you are
skilled enough, otherwise you have to resort to the
rather unreliable grenade. Don’t throw it at the
wall immediately in front of you, because you
could blow yourself up.

On the first pass through the game the figure to
be rescued is in full view opposite the gate. On
successive passes it gets harder to find, and harder
to reach. It is invariably located above ground
level. The rescuer may jump up only one level at a
time, so if the victim is not directly accessible from
the ground - by a stairway, for instance - the
rescuer is in real trouble. The only way is to wait till
the ants attack at a suitable spot, paralyse one, and
jump onto its back, using it as the first step up.

The rescuer can also get a ‘leg up’ in this way
from the victim, should it be necessary - the ants
won’t attack the victim. The pass finishes when
rescuer and victim are both outside the city.

Despite its few failings, Ant Attack is worthy of
the accolades that greeted it when it appeared on
the market just before Christmas 1983. It is a fine
example to all would-be software authors.

Master Minds
A n t A tta c k w a s a f i r s t a t te m p t a t

c o m m e rc ia l s o ftw a re w r it in g fo r

its a u th o r, S a n d y W h ite . S andy,

ju s t 23 yea rs o ld w h e n th e

p a cka g e f ir s t a pp ea re d in la te

1983, had g ra d u a te d fro m

E d in b u rg h C o lleg e o f A r t w ith a

degree in s c u lp tu re w h e n he

c o n c e iv e d th e n o tio n o f c re a tin g

a g a m e s p ro g ra m fo r h o m e

m ic ro c o m p u te rs . A fr ie n d ,

A n g e la S u th e r la n d , c o lla b o ra te d

in th e d e s ig n o f th e s tru c tu re s

th a t m ake up th e c ity o f

A n te s c h e r

R idd le O f The S ands
T h is p la n o f th e e n tire c ity o f S u th e r la n d have g iv e n n a m e s

A n te s c h e r w a s c o n s tru c te d to th e c h ie f s tru c tu re s , b u t

a fte r p a in s ta k in g ly

p h o to g ra p h in g th e m o n ito r

sc reen h u n d re d s o f t im e s ,

m a k in g a c o m p lic a te d

p h o to m o n ta g e o f th e re s u lts ,

a n d th e n c o m m is s io n in g an

a r t is t ’s im p re s s io n o f th e

scene . A u th o rs W h ite and

a ls o n o te th a t a c o p y r ig h t

n o tic e — © S W — a p p e a rs in

th e to p le f t-h a n d c o rn e r !

1. THE WATCHTOWER
2. PHOSPHOR HENGE
3. THE QUAI
4. TABLE ANTCHAIR
5. THE FORUM
6. THE ANTICHAMBER
7. SKAZYANDOR
8. THE PYRAMID
9. THE ANCIENT

10. OXYMINE

11. THE MONUMENT
12. ANT EDEN
13. ARGON’S LEAP
14. ARTANT’S VILLA
15. THE ANTIMATTER CUBE
16. DROXTRAP
17. ADRIANT’S WALL
18. BONZAI WALK
19. THESQUARENA
20. THE CRYPT

THE HOME COMPUTER ADVANCED COURSE 7

KE
VI

N
JO

NE
S

CO
UR

TE
SY

 O
F

YO
UR

 S
PE

CT
RU

M

IA
N

M
cK

IN
NE

LL

COMPUTER SCIENCE/BOOLEAN LOGIC

m

THE ALGEBRA OF
DECISION MAKING
Computers carry out their given functions
by passing a series of high or low voltages
around electronic circuits. These voltages
can be interpreted in terms of the binary
digits (or bits) 1 and 0. Some functions, such
as addition, require specially designed
circuits to produce specific outputs for any
given input. These are termed ‘logic’ circuits.

Boolean algebra, the branch of mathematics
concerned with true/false logic, is the theoretical
basis from which computer architecture is
physically realised. The concepts and rules of
Boolean algebra are few and easily understood.

In the first instalments of this course, we will
study in detail the theoretical and practical aspects
of logic circuit design, together with examples of
the basic circuits at work inside your own home
computer. The rules of Boolean algebra are based
on three simple logical operations: AND, OR and
NOT These three logical operations conform
closely to the way we use these words in everyday
English. Look at this statement:

If it is fine AND it is a Saturday, David will go
for a walk.

If David is to go walking or not depends on two
things: whether it is fine, and whether it is a
Saturday. In coming to a decision about going for a
walk, David is only concerned with whether the
statements ‘it is fine’ and ‘it is a Saturday’ are true
or false. There are four possible combinations and
only one will result in David taking a walk. A table
which shows all the possible combinations of a
series of statements is called a ‘truth table’. Here is
the truth table for our logical AND statement:

IT IS FINE ITIS A SATURDAY DAVID WILL GO FOR A WALK
FALSE FALSE FALSE
FALSE TRUE FALSE
TRUE FALSE FALSE
TRUE TRUE TRUE

A similar process can be undertaken to illustrate
the function of the logical operation OR. Consider
this statement:

%
If Jack OR Jill can go, John will go to the match.

Once again there are two conditions that will
determine whether or not John goes to the match:
whether Jack can go, or whether Jill can go. In the
same way as the AND statement, we can construct
a truth table for the OR statement. Since there are
two conditions, each of which may be true or false,
there are again four possible combinations. The
truth table for the statement will look like this:

JACK CAN GO JILL CAN GO JOHN WILL GO TO THE MATCH
FALSE FALSE FALSE
FALSE TRUE TRUE
TRUE FALSE TRUE
TRUE TRUE TRUE

The third logical operation (NOT) performs a
very simple function. Consider this statement:

If it is NOT dark then I will go out.

This time the only condition to consider is whether
it is dark. This may be true or false; hence there are
only two possible conditions for our truth table.

IT IS DARK 1 WILL GO OUT
FALSE TRUE
TRUE FALSE

L O G I C G A T E S
The simple electronic devices that make up
computer logic circuits are called ‘logic gates’. The
three simplest logic gates mimic the function of the
logical operations AND, OR and NOT. These
gates function by representing a TRUE condition
by the binary digit 1, and the FALSE condition by
the binary digit 0. So, for each logic gate we can
construct a truth table showing all the input
combinations together with the resulting output.
Each gate has a circuit symbol associated with it
and can be written as a Boolean expression.

The truth table and diagram for the AND gate
with inputs A and B and output C is:

A B C THE AND GATE

0 0 0 A
Aiun i C

R
0 1 0 AJvU 1 uJ

1 0 0

1 1 1

The function of the AND gate can be described in
words as: ‘the output will be 1 if both inputs are 1,
and 0 otherwise’. The Boolean notation for the
output from an AND gate is A.B.

The truth table and diagram for the OR gate is:

A B C THE OR GATE

0 0 0 A - - - - - 3 ^ ^

0 1 1 j O R y — C

1 0 1 B - - - - - - L ^

1 1 1

8 THE HOME COMPUTER ADVANCED COURSE

LIZ
 DI
XO
N

■ M H H

LOGIC/COMPUTER SCIENCE
■ M i l

The OR gate can be described by the following
statement: T he output will be 1 if either or both of
the inputs are 1’. The Boolean expression for the
output from an OR gate is A+B.

Unlike AND and OR, the NOT gate has only
one input and one output. The truth table is the
simplest of the three:

A B

A —

. THE NOT GATE

N O T ^ X)- - - - B0 1

1 0

In words, the NOT gate is expressed as: ‘the output
will be the opposite of the input’. The Boolean
expression for the output from a NOT gate is A.

C O M B IN IN G LOGIC GATES
Just as several logical statements can be linked
together, we can link together logic gates to make
combinational and sequential logic circuits. These
are in turn combined to produce the computer
architecture. Any logic circuit can be represented
by a truth table that describes what output can be
expected for any possible combination of inputs.
Look at this simple logic circuit:

In this circuit there are two inputs, A and B, and
one output, C. To help to construct the truth table
for the circuit the output from the first gate has
been labelled X. As there are two inputs to the
circuit this means that there are four possible
combinations of input.

A B X C

0 0 0 1

0 1 0 1

1 0 0 1

1 1 1 0

The output from the AND gate, X, is put through
the NOT gate to produce the final output, C.

Here is a more complicated circuit and its truth
table. Notice that, as there are only two inputs, the
number of possible input combinations is still four.
The second half of this truth table (columns P, Q
and C) is a rearrangement of part of an OR gate
truth table.

A B P Q C

0 0 1 0 1

0 1 1 0 1

1 0 0 0 0

1 1 0 1 1

The use of truth tables is not limited to two input
and one output circuits but can be extended to any
circuit. Here is an example of a three input, two
output circuit.

As there are three inputs to this circuit we must
consider eight possible combinations:

X Y Z M N s T

0 0 0 0 1 1 1

0 0 1 0 1 1 1

0 1 0 0 0 1 0

0 1 1 0 0 1 . 1

1 0 0 0 1 1 1

1 0 1 0 1 1 1

1 1 0 1 0 0 0

1 1 1 1 0 0 1

EXERCISE 1
1) C onstruct a tru th table fo r the fo llo w in g s itua tion :
‘Jam es m ay drive a car if he has passed his d riv ing
test OR he is accom panied by a qualified d rive r’.

2) C o n s tru c ta tru th ta b le fo r th is s itua tion : ‘A program
can be loaded in to a com puter if there is a cassette
player OR a d isk drive available AND the program is
NOT w ritten to run on a d ifferent com pu te r’ .

3) C onstruct a tru th table fo r th is log ic c ircu it:

THE HOME COMPUTER ADVANCED COURSE 9

At £200, the Commodore 64 contains a lot
of hardware — 64 Kbytes of memory,
sophisticated sound and graphics facilities.
It is a very suitable machine for the serious
home computer enthusiast, and with the
addition of suitable peripherals, could be
used for small business applications ,too.
The design makes use of ‘bank switching’ to
squeeze the memory into the space
available.

The physical similarity between the Commodore
64 and the Vic-20 is deceptive. Although there is a
measure of software compatibility between the
two, in hardware terms the 64 represents a
considerable advance. Let’s begin by looking at
the 64 Kbyte of RAM from which the computer
derives its name. This feature is a considerable
advantage in selling terms since it was, until the
advent of the 16-bit microprocessor, as much
RAM as was available on any business
microcomputer. However, there is a certain
amount of difficulty associated with equipping a
home computer with this much memory. Though
an eight-bit microprocessor such as the widely^
used 6502 can address a total of 64 Kbytes, this
must include all the ROM and the input/output
chips for controlling keyboard, screen and
peripherals in addition to the RAM.

The answer lies in ‘bank switching’, a technique
whereby sections of memory are switched into and
out of the addressable memory map as they are
needed. There is no theoretical limit to the total
amount of memory that a computer can
incorporate using this method, but because the
microprocessor can still only address 64 Kbytes at

B ox O f T ric ks
T he S X -6 4 is a s e lf -c o n ta in e d p o r ta b le v e rs io n o f th e

C o m m o d o re 6 4 , w h ic h ca n be p u rc h a s e d in a v a r ie ty o f d if fe re n t

c o n f ig u ra t io n s . T h e m o s t p o p u la r v e rs io n fe a tu re s o ne d is k d r iv e

(th e s p a ce a bove can be u sed fo r s to r in g d is k e tte s) and a five

in c h c o lo u r m o n ito r . T h e S X -6 4 w il l ru n d is k o r c a r tr id g e based

s o ftw a re f ro m th e s ta n d a rd C o m m o d o re 6 4 w ith o u t

m o d if ic a t io n .

In m a n y re s p e c ts i t is o n e o f th e b e s t d e s ig n e d lu g g a b le

c o m p u te rs - a p h ra s e c o in e d to d is t in g u is h th e m fro m t r u ly

p o r ta b le m a c h in e s s u c h as th e E p son H X -2 0 and T a n d y M o d e l

100. T he k e y b o a rd fe a tu re s fu l ly s c u lp tu re d keys w ith th e

g ra p h ic s le g e n d s in s c r ib e d on th e fro n t, and it is d e ta c h a b le

fro m th e m a in u n it . T he re is a s lo t in th e to p o f th e c a s in g to ta ke

RO M c a r tr id g e s ; w h e n n o t o c c u p ie d th e o p e n in g is cove red b y a

f la p to keep o u t d u s t.

T he c a s in g its e lf is b o th ru g g e d and c o m p a c t, re s e m b lin g th e

p o r ta b le te s t e q u ip m e n t u sed *by s e rv ic e e n g in e e rs , p a r t ic u la r ly

in th e w a y th a t th e c a rry in g h a n d le d o u b le s up as a s ta n d . T he

h a n d le is r id g e d to p re v e n t i t f ro m s lip p in g on th e d e s k , th o u g h

th is m a k e s it s l ig h t ly u n c o m fo r ta b le to ca rry . O ve ra ll, th e

p h y s ic a l d e s ig n is th e b e s t to have c o m e fro m C o m m o d o re to

d a te , a n d is m a rre d o n ly b y th e fa c t th a t th e m a in s c a b le and

p lu g c a n n o t be s to re d a n y w h e re in s id e th e c a s in g

10 THE HOME COMPUTER ADVANCED COURSE

SX
-6

4
CO

UR
TE

SY
 O

F
CO

M
M

OD
OR

E

pricelist ♦» I
enter fields,
save pas* auto. I

trices _ . »r
ni of Procedure

' Attend prices
get page auto.

Brices . _ •*
se Fore* 2

pricelist «F
enter fields
save page auto.

r rices *■nd of Procedure

' Get prices
get page auto,

r,;ie« r-* F
pnd(of* Procedure

any one time, the more memory there is, the more
switching of banks there will need to be, and that
will subsequently reduce efficiency.

What this amounts to on the Commodore 64 is
that if you want to run a program in b a s ic , the
ROMs containing the b a s ic interpreter will need
to be switched in, and this will reduce the amount
of available RAM to 40 Kbytes (and system
variables and screen RAM will still need to come
out of this allocation).

Though bank switching has been added to quite
a few home computers by way of a modification, it
is achieved on the Commodore 64 by using a
special microprocessor. The 6510 is very similar to
the 6502 that has proved so popular in home
computer design. The instruction set is identical,
and it features an eight-bit data bus, 16-bit address
bus, and various control signals. However, it also
sports an eight-bit programmable input/output
port. This means that there are eight additional
pins on the chip, each of which can be set to 1 or 0,
or can be used to read values placed onto them by
an external device. Normally such ports are
implemented by means of a special chip (called a
PIO, P1A or VIA depending on the
manufacturer), and a typical home computer will
include several of these to handle the keyboard
and peripheral ports.

The port appears as the lowest two memory
locations in the map ($0000 and $0001). The
former is for reading and writing the individual
bits, while the latter location indicates whether
each bit is set as an input or an output. Having this
port built into the microprocessor means that the
6510 would be ideal for incorporation into
numerous domestic devices — from dishwashers
to programmable toys. On the Commodore 64, it
is used to select between the banks of memory (see

j panel). You could do this with b a s ic POKE
| statements, but there is a distinct possibility of
“ Washing’ the system, forcing you to reset the

computer. Most memory switches are therefore

B usiness M ile a g e
A la ra e p ro p o r t io n o f th e C o m m o a o rA la rg e p ro p o r t io n o f th e C o m m o d o re 6 4 ’s s o ftw a re base can be

sa id to have been in h e r ite d fro m its p re d e c e s s o rs , th e PET and

V ic -2 0 . T h e BASIC in te rp re te r is m o re o r le ss id e n t ic a l on a ll

th re e m a c h in e s , and th e re is m u c h c o m m o n g ro u n d in th e d is k

o p e ra tin g s y s te m s , to o . B ecause th e b u s in e s s s o ftw a re

d e v e lo p e d fo r th e PET range c o u ld o n ly be used on

C o m m o d o re ’s m a c h in e s , it is h a rd ly s u rp r is in g th a t th e s o ftw a re

d e v e lo p e rs w e re so q u ic k to ta k e a d v a n ta g e o f th e p o te n tia l n e w

m a rk e t o p e n e d up b y th e 6 4 .

For b u s in e s s a p p lic a t io n , th e re is a w id e c h o ic e o f w o rd

p ro c e s s in g p a cka g e s , seve ra l o f w h ic h have s p e llin g c h e cke rs .

T w o o f th e m o s t p o p u la r e x a m p le s a re E a s y W rite /E a s y S p e ll f ro m

C o m m o d o re , a n d V iz a W rite /V iz a S p e ll. Tw o o th e r p o p u la r

p a c k a g e s , b u t w ith o u t th e s p e llin g o p t io n , are P a p e rc lip 6 4 and

W o rd c ra f t 4 0 . T h e la t te r is d if fe re n t f ro m m o s t w o rd p ro c e s s o rs ,

in th a t th e sc re e n d is p la y s th e te x t in th e fo rm a t in w h ic h i t w il l

f in a l ly be p r in te d , w h i ls t m o s t o th e rs d is p la y ‘e m b e d d e d

c o n tro ls ’ — s in g le c h a ra c te r s y m b o ls to s ig n ify a c a rr ia g e re tu rn ,

o r th a t a h e a d in g is to be c e n tre d on th e page .

S p re a d s h e e ts a re a v a ila b le s ta r t in g f ro m ju s t a fe w p o u n d s .

O ne p a cka g e , h o w e ve r, is w o r th s p e c ia l m e n tio n . A t o v e r £ 1 0 0

C a lc R e s u lt is m o re e x p e n s iv e th a n m o s t s p re a d s h e e ts fo r lo w -

c o s t m ic ro s , b u t i t w o rk s in fu l l c o lo u r, in c lu d e s a fa c i l i t y fo r

d is p la y in g b a rc h a r ts o f th e f ig u re s in a n y c o lu m n on th e

s p re a d s h e e t, and w o rk s th re e d im e n s io n a lly . T h a t is to say,

se ve ra l p a g e s o f m e m o ry can be h e ld in m e m o ry a t o n c e , a nd it

is p o s s ib le to a d d to g e th e r f ig u re s fro m a ll th e s e s h e e ts .

M a g p ie , to o , is a fa ir ly o u ts ta n d in g p ie ce o f s o ftw a re —

fa l l in g in to th e c a te g o ry o f a p p lic a t io n s g e n e ra to rs . A n

a p p lic a t io n is d e fin e d b y d ra w in g th e la y o u ts fo r sc re e n re c o rd s

and p r in te d fo rm s on th e sc re e n , and th e n s p e c ify in g th e

re la t io n s h ip s b e tw e e n th e f ie ld s w ith in th o s e d o c u m e n ts :

V A T = T 0 T A L *1 5 % , fo r e x a m p le

COMMODORE 64

PRICE

Approx £200

DIMENSIONS

404x216x75mm

6510

MEMORY

64K RAM, of which 39K is
available for BASIC programs.
20K of ROM including the
character generator

SCREEN

25 rows of 40 columns. In low
resolution, 16 colours are
available from the keyboard for
characters, border and
background. Maximum high
resolution is 320x200 pixels. Up
to eight sprites can be defined and
used

INTERFACES

Joysticks (2) plus light pen,
RS232 (adaptor needed), 8-bit
parallel, cassette, serial (for disk
and printer), composite monitor,
audio input and output, TV,
cartridges

LANGUAGES AVAILABLE

BASIC, FORTH, LOGO, 6502
Assembly language

KEYBOARD

Typewriter-style, with cursor keys
and four programmable function
keys

DOCUMENTATION

The computer comes with an
adequate instruction manual, but
to take full advantage of the
functions, you should purchase
the Programmer’s Reference
Guide, or one of the many
independently published guides
to the Commodore 64

STRENGTHS

Large standard memory. Sprite
graphics. Sophisticated sound
control. Quality keyboard. Good
range of peripherals. More
business software available than
for most home computers

WEAKNESSES

Requires manufacturer’s cassette
unit. BASIC weak on useful
commands (unless you purchase
a cartridge add-on). Limited
choice of graphics modes and
resolutions. Disk unit slow

___ ___ _— »TM7*virrn miTDCC 11

nuuiu/ ¥1111711 0UWI61
A c o m p o s ite v id e o s ig n a l is

p ro v id e d to d r iv e a c o lo u r

m o n ito r (th o u g h n o t an RGB

m o n ito r) , and th e re is a

se p a ra te a u d io o u tp u t th a t can

c o n n e c t w ith a h i - f i s y s te m .

T he re is a ls o an a u d io in p u t lin e

th a t a llo w s yo u to m ix re co rd e d

m u s ic w ith s y n th e s is e d s o u n d s

TV Output
U n like th e V ic -2 0 , th e

C o m m o d o re 6 4 c o n ta in s a b u ilt-

in RF m o d u la to r , so th a t th e

o u tp u t can be c o n n e c te d

d ire c t ly to a TV

Cassette Port
A ll C o m m o d o re c o m p u te rs

re q u ire th e m a n u fa c tu re r ’s

c a s s e tte u n it. W h e n it w a s f i r s t

m a rk e te d , th e C o m m o d o re

s y s te m w a s fa s te r and m o re

re lia b le th a n a d o m e s t ic u n it.

N o w th e o p p o s ite is tru e

Serial Bus
T h is is a s p e c ia l in te r fa c e

d e s ig n e d b y C o m m o d o re to

d r iv e severa l d e v ic e s (in c lu d in g

th e ir d is k s and p r in te rs)

s im u lta n e o u s ly . T he p ro to c o l is

s im ila r to th e IEEE48 s ta n d a rd ,

e x c e p t th a t th e re is ju s t one

(s e r ia l) d a ta lin e in s te a d o f e ig h t

p a ra lle l o n e s

User Port
T h is p o r t h as tw o fu n c t io n s .

F irs t, it can im p le m e n t a fu l l

R S 2 3 2 s e r ia l in te r fa c e , th o u g h

an a d d -o n is n eeded to c o n v e r t

th e 6 4 ’s v o lta g e s to th o s e used

on m o s t s e r ia l d e v ic e s , i t can

a ls o d o u b le up as a p a ra lle l p o r t

th a t can be used fo r

e x p e r im e n ta t io n

Cartridge Port
If a RO M c a r tr id g e (u p to 16

K b y te s) is p lu g g e d in here, it

w il l e ffe c t iv e ly o v e rr id e a n y

o th e r m e m o ry th a t o c c u p ie s th e

sa m e lo c a tio n s . If th e f i r s t n in e

b y te s o f th e R O M c o n ta in a

s p e c if ie d s e q u e n ce o f v a lu e s

th e n th e p ro g ra m w il l

‘a u to m a t ic a lly s ta r t ’ w h e n

s w itc h e d o n . T h is is h o w g a m e s

c a r tr id g e s w o rk

Memory Map
T h e 6 4 K o f a v a ila b le m e m o ry

sp ace is d iv id e d up in to s ix

zo n e s , th re e o f w h ic h are

u s u a lly c o n fig u re d as R A M . T he

o th e r th re e c o n ta in R O M s fo r

th e BASIC , th e o p e ra tin g

s y s te m , and th e I/O c h ip s , b u t

fo r each one th e re is a ‘ s h a d o w ’

area o f R A M th a t can be

s w itc h e d in u n d e r s o ftw a re

c o n tro l. T h is is o n ly p ra c tic a b le ,

h ow eve r, w h e n u s in g m a c h in e

co d e and th e R O M is n ’t needed

I, . • j - t. - •> k •. -» r» (I » 4

i R A M s i i i

iRAMlil!
* t f n > -tr u ' . r

Zonel
P e rm a n e n tly c o n ta in s 3 2 K o f

R A M

Zone 2
N o rm a lly 8 K R A M . If an 8 K RO M

c a r tr id g e is in s e rte d th is w il l

o v e rr id e th e R A M

Zone 3
N o rm a lly 8 K R O M , c o n ta in in g

th e BASIC in te rp re te r . It w il l be

o v e rr id d e n if a 1QK c a r tr id g e is

in s e rte d . A lte rn a tiv e ly , 8K o f

R A M can be s w itc h e d in to

rep la ce th e RO M

Zone 4
P e rm a n e n tly 4 K o f R A M

Zone 5
N o rm a lly c o n ta in s a ll th e I/O

c h ip s and s o m e R A M . U n d e r

s o ftw a re c o n tro l, h ow eve r, th e

R O M -b a se d c h a ra c te r g e n e ra to r

can be s w itc h e d in here

Zone 6
W h e n th e m a c h in e is s w itc h e d

o n , th is c o n ta in s 8 K o f R O M ,

in c lu d in g th e K e rna l - a m in im a l

o p e ra tin g s y s te m d e s ig n e d to

be used on a ll fu tu re

C o m m o d o re h a rd w a re . W h e n

u s in g m a c h in e co d e it can be

rep la ce d w ith 8 K o f R A M

performed in machine code.
Three other chips between them account for the

rest of the 64’s features. There is a 6526 CIA
(Complex Interface Adaptor), which is a more
sophisticated version of the PLAs and VLAs
previously mentioned. In addition to the usual
programmable input/output lines, it includes
timers and shift registers to convert between serial
and parallel data. There is also a 24-hour clock
with a programmable alarm, of which the b a sic

interpreter appears to make no use at all.
The graphics and video display are handled by

another chip, the 6566, which is a further
development of the Video Interface Chip, from
which the Commodore Vic-20 derives its name.
This delivers different modes for both textual and
high resolution graphics displays, and the sprite
graphics have been well documented. Though it
can handle only eight sprites at once (compared
with 32 on the Memotech MTX512, for example),
it is possible to simulate rather more. Sprites are
defined as a block of bytes in memory, and their
location is indicated by POKEing the address into
the Vic-II chip’s registers. It is relatively easy to
switch the pointer rapidly and repeatedly between
different sets of values to simulate more than eight
units.

The 6581 chip is referred to as the SID, or
Sound Interface Device, and contains functions a
great deal more advanced than some of the early
purpose-designed music synthesisers. As well as
full ADSR control over the volume envelope of
each sound, the functions include filtering,
different waveforms and ring modulation
modifying one sound with another.

12 THE HOME COMPUTER ADVANCED COURSE

ACCESS T IM E
This refers to the time taken to locate a particular
item from within a whole collection of data. The
term is most commonly used when referring to the
length of time needed to locate any particular
record within a file — especially in database
applications. For many business applications, the
efficiency of a program will be far more strongly
determined by the average access time of the disk
than by the clock speed of the CPU.

The access time is quite different from the ‘data
transfer rate’ — which is the speed at which bits will
be transmitted from disk to computer once the
item has been found. On the Sinclair Microdrive,
for example, the average access time of a piece of
data is 3.5 seconds. The minimum is zero, if the
data is opposite the read-head mechanism when
the request is made; and the maximum is seven
seconds, if it has to wait for a complete circulation
of the tape loop. This is very slow when compared
with a floppy or hard disk unit, where the average
might be nearer to half a second. However, the
data transfer rate of the Microdrive (16 Kbytes per
second) is very fast, and is as good as any disk.

ACCUMULATOR
Inside a microprocessor or CPU there are several
registers. These are individual bytes of memory
that perform all the arithmetic and logical
functions of the processor. Probably the most
active and important of these is the accumulator,
which is linked directly into the Arithmetic Logic
Unit (ALU). The chief function of the
accumulator is its ability to accumulate values:
that is to say the contents of a byte can be simply
added into, or subtracted from, this register. To the
b a s ic programmer, the accumulator is both
invisible and inaccessible (although it will be used
by the b a s ic interpreter thousands of times every
second). To the machine code programmer,
however, the majority of instructions in every
program written will involve some manipulation
of the accumulator.

A CO USTIC CO UPLER
The transmission characteristics of a telephone
line are such that it can only be used to transmit
frequencies in the range 300 Hz to 3400 Hz — the
range required to transmit normal speech
intelligibly. This ‘bandwidth’ also determines the
maximum rate at which binary data can be
transmitted. Some system is needed, therefore, to

ensure that the signal to be sent always falls within
this range. This is called ‘modulation’.

One system of modulation represents a binary
zero as a tone in one frequency (let’s say 1000 Hz),
and a binary one is represented by another tone in
a different frequency (e.g. 2000 Hz). The device
for converting between binary data signals and
these audio frequencies is called a ‘modem’
(MOdulator/DEModulator). For best results the
modem should be wired directly into the
telephone line, but this can only be done for a
permanent installation. For portable applications
(such as salesmen transmitting the day’s figures
back to central office, or journalists sending copy
to their editors) an acoustic coupler is necessary.

An acoustic coupler is simply a modem with
two rubber cups (one for the mouthpiece and one
for the earpiece) into which a telephone handset is
pushed. Were you to remove the handset during a
transmission, you would be able to hear the data
being transmitted in the form of tones. However,
by interrupting the flow of data, you would create
errors in the received data.

A CRO NYM
b a sic is an acronym, so is PET, and FIFO, RAM,
EPROM and SNAFU. An acronym is a word
formed by taking the initial letter from each word
in a description or title. Acronyms seem to be very
popular in the computer industry, both for
buzzwords and for proprietary names for
products. One suspects, however, that often the
final acronym has been thought up first, and then
the component words have been fitted to that.
Who would really want to call a programming
language Beginner’s All-purpose Symbolic
Instruction Code, or a new computer the Locally
Integrated Software Architecture?

ADA
In the late 1970s, C.I.I. Honeywell Bull in France
designed and specified a programming language
primarily for use by the U.S. Defense Department.
It was intended to replace all the other
programming languages they were using at the
time, and was therefore also intended to vary as
little as possible between machines. The language
is very highly structured — it is described by some
as a kind of super p a s c a l , but by others as
‘unwieldy’. It is named in honour of Countess Ada
Lovelace, who was a close friend and companion
of Charles Babbage and is credited with being the
first programmer.

THE HOME COMPUTER ADVANCED COURSE 13

PROGRAMMING PROJECTS/SPECTRUM BASIC

THE SPECTRUM OF
ZX BASIC
B asic has become the standard language of
microcomputers, but almost every machine
has its own variation — or dialect. In this
series of articles we will be looking at some
of these variations and their functions, as
well as explaining how they can be
‘translated’ from one dialect to another.
This first article looks at the most widely
used dialect — Sinclair basic .

We begin with variable names — always a source
of confusion between b a sic dialects. In Sinclair
b a s ic , string variable names must have only one
letter, and there is no distinction between upper
and lower case letters. This means that the
variables a$ and A$ refer to the same memory
location. String array names follow the same rules
as simple variables, and pre-empt them, so that
once you’ve DIMensioned the string array H$, all
further mentions of H$ in the program will be
taken as referring to the array H$. This follows
from the fact that Sinclair b a s ic regards all string
variables as array-type variables, some of them
formally DIMensioned, and others not.

Numeric variable names are less constrained
than those of string variables: they must begin with
a letter, and they must consist of letters or digits,
but they may be any length. They may include
spaces, and they may be a mixture of upper and
lower case letters, but although these factors are
helpful to the programmer, they are of no
significance to the machine, which will ignore
them. Some valid numeric variable names are:

qwert, ub40, advanced computer course

and the following are exactly equivalent:

QWERT, UB 40, Advanced Computer Course

Numeric array names must be single letters, but
this does not preclude numeric variables of the
same name: the array variable v(8) is quite distinct
from the simple numerical variable v. Single-letter
non-array numerical variables such as v must be
used as the counters of FOR.. . NEXT loops, so FOR
V=1 to 9 . . . NEXT V is legal, but FOR loop=1 TO 9 is
illegal.

The main differences between the Sinclair
dialect and other b a s ic s lie in the treatment of
string quantities. Let us start with the effect of the
DIM statement. In Sinclair b a s ic , when the
statement DIM a$(12) is executed, 12 bytes of
memory are set aside exclusively for the use of the
variable a$, and these bytes are initialised with
spaces. Each of these bytes can be referred to as a
subscripted variable, or the whole 12 bytes can be

referred to collectively as a$. The length of this
variable will always be 12, and assignments to it
will be padded with spaces or truncated on the
right as necessary to preserve this length. Suppose
we write:

DIM a$(12): LET a$=“ 123456789”

then a$ will actually contain the characters
‘123456789’ followed by three spaces, making 12
characters in all. If we write instead:

DIM a$(12):LET a$=“ABCDEFGHIJKLMN”
then aS will actually contain only the 12 characters
‘ABCDEFGHUKL’ — the string quantity ‘ABCD
EFGHUKLMN’ has been truncated on the right
to fit into the DIMensioned length of a$. If we now
write:

LET a$(2 TO 5)=“1234”
then a$ will contain ‘A1234FGHUKL’. This shows
the power of Sinclair string handling — all strings
are treated as single-dimension string arrays, the
arrays can be subscripted or not, and individual
elements of an array can be accessed — singly or as
part of a sub-string — by subscripts. It also shows
another major divergence from other versions of
b a s ic . Elsewhere DIM a$(12) creates 12 separate
string variables called a$(1), a$(2), etc., each of
which has the length of the expression assigned to
it. If nothing has been assigned to a particular
string variable, then its length is 0, and it contains
only the null string,

In other b a s ic s this way of handling strings
requires the various string functions, LEFTS,
RIGHTS, MIDS, and sometimes INSTR, to enable
sub-string manipulation and string-slicing in the
way demonstrated. But this is not so in Sinclair
b a s ic . The Sinclair equivalents of these string
functions are:

LEFT$(A$,N) - A$(TO N)

(meaning the N leftmost characters of AS);

RIGHT$(A$,N) = A$(LEN A$-N+1 TO)

(meaning the N rightmost characters of AS); and

MID$(A$,P,N) - A$(P TO P+N-1)

(meaning the N characters from position P
onwards in AS).

LET S=INSTR(A$,“teststring”)
(

(meaning find the starting position in AS of the
substring “teststring”) can be replaced by:

LET Y$=A$:LET Z$=“teststring”:GOSUB 9900:LET
S=P0SN

9900 LET ZL=LEN Z$:LET SL=LEN Y$-ZL+1:LET

14 THE HOME COMPUTER ADVANCED COURSE

POSN=0
9910 FOR K=1 TO SL
9920 IF Y$(KTO K+ZL-1)=Z$THEN LET POSN=K:LET

K=SL
9930 NEXT K:RETURN

Notice in this subroutine that the string variable Y$
is treated as a subscripted array-type variable, even
though it has not been DIMensioned. Since in
Sinclair b a s ic all string variables are array-type
variables, a string variable that is not DIMensioned
is implicitly a variable-length single-dimension
array of single characters; if it is DIMensioned, its
element length is fixed by the last number in the
DIM statement. Whereas in other b a s ic s DIM x$(8,7)
creates a two-dimension array, in Sinclair b a s ic it
creates a single-dimension array of eight elements,
each of them fixed in length at seven characters.

The strict attention paid to the length of
DIMensioned string variables by Sinclair b a sic

means that seemingly simple statements can have
differing effects, depending upon whether a DIM
statement has been executed or not. If a$ is a
simple string variable, then LET a$=“” makes the
contents of a$ equal to the null string (“”) and the
length of a$ equal to zero. If DIM a$(7) has been
executed previously, however, then LET a$=“”
makes the contents of a$ equal to seven spaces,
and the length of a$ equal to seven (which it will
always be, following the DIM statement).
Furthermore, in such a case, even though LET a$=“ ”
has been executed, a test such as:

IF a$=“” THEN PRINT “null-string”

will fail, and nothing will be printed — a$ is equal
to seven spaces, not the null-string.

If you need to test string array elements in this
way, then it’s probably best to set aside a string
variable for the purpose, DIM ension it to the length
of the longest array variable used in the program,
and test your array variables against it, like this:

100 DIM a$(12,34)
120 DIM b$(7,56)
140 DIM N$(56)
150 REM N$ will be used as the empty string

580 IF b$(3)=N$(TO 56) THEN PRINT “empty”
590 IF a$(11)=N$(TO 34) THEN PRINT “empty”

Here N$ is used only as the empty string, and if it
wasn’t used in this way then the tests in lines 580-
590 would have to use literals, thus:

580 IF b$(3)=“ ” THEN PRINT “empty”
585 REM 56 spaces between the quotes

This is inconvenient and prone to error. An
alternative to using N$ in this way is to DIMension
all array variables with one more element than
they need, and use that last element as an empty
string for tests of that array, so that line 590 might
be:

590 IF a$(11)-a$(12) THEN PRINT “empty”

SPECTRUM BASIC/PROGRAMMING PROJECTS

SuperBASIC
W h ile S in c la ir ’s S u p e rB A S IC has a c o n s id e ra b ly e n h a n c e d range

o f c o m m a n d s o v e r ZX BASIC , th e m o s t s ig n if ic a n t fe a tu re is its

a b a n d o n m e n t o f th e s in g le -k e y rese rved w o rd e n try s y s te m

c o m m o n to th e Z X 8 0 , ZX81 and S p e c tru m . T h is w a s o r ig in a l ly

in tro d u c e d as an e c o n o m y m e a su re fo r u s e rs (it w as fe lt th a t

p re s s in g a s in g le key ra th e r th a n ty p in g a w h o le w o rd w o u ld

p rove a ttra c t iv e) . T h e js y s te m d ic ta te d th a t a v a r ie ty o f d if fe re n t

‘ m o d e s ’ w o u ld be n e c e s s a ry to a llo w th e e n try o f s in g le

c h a ra c te rs to be d if fe re n tia te d fro m th e e n try o f key w o rd s . T h is

s y s te m w a s a ttra c t iv e to S in c la ir u s e rs w h o had n e ve r p re v io u s ly

e n c o u n te re d a k e y b o a rd , b u t fo r th o s e w h o had used a ty p e w r ite r

it p ro ve d to be a s o u rc e o f f ru s t ra t io n

assuming that a$(12) is never used and so contains
only spaces.

Notice lastly that, in Sinclair b a s ic , the first
element in any array has the subscript one,
whereas in some other b a s ic s the first element in
an array has subscript zero. In the next instalment
of the course, we will conclude this look at
Spectrum b a s ic .

Procrustean Strings
T he m y th ic a l G reek c h a ra c te r

P ro c ru s te s w a s an in n k e e p e r

w h o k e p t o n ly o ne size o f

bed , and s tre tc h e d o r

t ru n c a te d h is g u e s ts to f i t it

5 0 d i m A $ (1 2) D IM A $ (1 2) in S p e c tru m

3 _ 4 _ 5 _ 6 _ 7 _ ^ 8 - ^ 9 ^ 1 0 - ^ 1 1 ^ - 1 2 , BASIC c re a te s a f ix e d - le n g th

/ / -S\ s tr in g v a r ia b le , A $, w h ic h

in i t ia l ly c o n ta in s 12 sp ace s

1 0 0 L E T A $ = “ A B C D E F G H IJ K L M N O P ”

2 - ^ _ 3 - ^ 4 ^ _ 5 - y - 6 - , - 7 - r - 8 tt- 9 -7 -1 0 -7 -1 1 -t- 12-

A B ! c D E F G H 1 J K L

If you t r y to a s s ig n a s tr in g

q u a n t ity lo n g e r th a n 12

c h a ra c te rs to A $, it w il l be

tru n c a te d a t th e r ig h t to f i tL J i r u n c a t

mm ' n t0 A S

1 5 0 L E T A $ = “ * ? ! + ”

-10̂ -11̂ -12

* 9
■

i
■ + E F G H 1 J K L 7

If you a s s ig n a s h o r te r s tr in g

q u a n t ity to A $, it is s to re d

le f t - ju s t if ie d in A $. The

re m a in in g c h a ra c te rs o f A $

are u n a ffe c te d

2 0 0 L E T A $ = “ ”

3^-4 - r - 5 6 7̂ 8 ^ 9^10^11 12■
S e tt in g A $ equa l to “ ” , th e

n u ll- s t r in g , s h o u ld red uce its

le n g th to 0, and its c o n te n ts

to “ in s te a d , its le n g th

re m a in s a t 12 c h a ra c te rs , and

it is f i l le d w ith sp a ce s

COLUZO

>
LU

THE HOME COMPUTER ADVANCED COURSE 15

MACHINE CODE/PART ONE

INTRODUCING
FIRST CONCEPTS
Machine code programming is the key to the
real power of the microprocessor, allowing
the programmer direct control over all the
machine’s functions. This first part of a
comprehensive course, covering both 6502
and Z80 operation codes, will lead to a full
understanding of the fundamentals of
computer programming.

Machine code is a programming language, and it
looks like this:

INSTK: SBC SD9FA.X .O utport flag value

or like this:

DE23 FD FA D9

or like this:

11011110 00100011 11111101 11111010 11011001

Sometimes it looks like this:

1240 LET ACC=ACC-FLAG (X)

and sometimes like this:

PERFORM FIAG-ADJUST THROUGH L00P1

It’s all code of a sort, and since it’s destined for a
computing machine it’s called machine code. To
the machine it doesn’t actually look like anything
at all, being simply a pattern of voltage levels or a
current of electricity.

What we usually mean when we say machine
code is Assembly language, and the first example
we gave in this article is an instruction in 6502
Assembly language. The point of giving all the
other examples was to demonstrate that there is no
specific machine language as such, only a number
of different ways of representing a sequence of
electrical events, and representing them in ways
that we find more or less easy to understand. So
the first thing to learn about machine code (or
Assembly language - we won’t worry about the
distinction for the moment), is that it’s just another
programming language. However, the
programming must always come before the
language: whether you write your programs in
IBM Assembler, Atari b a s ic , or Venusian
PsychoBabble, you have to solve the
programming problem in your mind before you
touch a keyboard. The programming language m
which you then express your solution will
obviously influence the form of the final program.
Indeed you may choose among various possible
languages precisely to make the coding of your
program easier, or shorter, or more readable. But
the solution must always come first: content must

THE HOME COMPUTER ADVANCED COURSE

precede form.
In that case, why call it machine code, and why

bother to use it at all? We give the language this
name because its instruction set corresponds
exactly with the set of ‘primitive’ or fundamental
operations that a particular microprocessor can
perform. We use the machine code when it is
important to direct the operation of the
microprocessor exactly, step-by-step, rather than
allowing a program language interpreter to control
it in a more general way.

The commonest reason for wanting to use it is
speed: if your program addresses the processor
more or less directly, then you avoid the relatively
lengthy business of program translation. In other
words, by cutting out the middleman you save
time. Program execution time, that is. The actual
coding, testing, debugging, modification and
maintenance of a machine code program is likely
to take at least twice as long as the same operations
would on a high-level language program. The
unfriendliness and intractability of machine code
stimulated the development of languages such as
c o b o l and b a s ic .

If the set of machine code instructions is the set
of processor operations, then what are these
operations, and what does the processor do? In
the simplest terms the Central Processing Unit
(CPU) of a computer is a switch that controls the
flow of current in a computer system between and
among the components of that system. Those
components are the memory, the Arithmetic
Logic Unit (ALU), and the Input/Output
devices. When you press a key on the keyboard,
you are inputting some information; in the
machine, however, you are simply generating a
pattern of voltages in the keyboard unit. The CPU
switches that pattern from the keyboard to part of
the memory, then switches a corresponding
pattern from elsewhere in memory to the screen so
that a character pattern appears on the screen. To
you this process may seem like operating a
typewriter, but in a typewriter there is a
mechanical connection between hitting a key and
printing a character, whereas in a computer that
linkage exists only because the CPU switches the
right voltage patterns from place to place.
Sometimes pressing a key doesn’t cause a single
character to appear on the screen: the keypress
may destroy an asteroid, or save a program, or
delete a disk file, or print a letter. The operation
depends on how and where the CPU switches the
electric current.

In this simplistic view the CPU is at the heart of
the system, and all information (or electrical
current) must pass through it from one component

I HI Hi 1

: . .

Illli»':>< ,' : w''' *•! - ' % •*
' ' ■

■ I
■ v : : ■:■■■: ■

■ ■ ■ ■ ■ ■ ■ ■ I

... :i: .. ; . : ! S . . ! ! ̂ i :> = 15 ! • h"! • ... : ̂

PART ONE/MACHINE CODE i

to another. In fact, the CPU and the system are
more complicated than that, but it’s not a
misleading view. You can think of the CPU as a
master controller that sets lesser switches
throughout the system to control the flow of
electricity, and thus controls the flow of
information indirectly, rather than routing all
information physically through itself.

The effects of the CPU’s switching operations
can be classified for our purposes as: arithmetic
operations, logical operations, memory
operations, and control operations. These
operations are all the results of switching
information through different paths in the system
and in the CPU, and to the CPU they all seem like
the same sort of thing.

Arithmetic operations are really the most
important feature of the machine. The CPU can
add two numbers together, or subtract one from
the other. Subtraction is achieved by representing
one of the numbers as a negative number and
adding that negative number to the other number;
7+5=12 really means:

(plus 7) added to (plus 5) equals (plus 12).

7—5=2 really means:

(plus 7) added to (minus 5) equals (plus 2).

Multiplication and division are regarded as
repeated additions or subtractions, so the CPU
can be programmed to simulate these processes as
well. If the CPU can cope with the four rules of
arithmetic, then it can cope with any
mathematical process. It is well to remember,
however, that all its mathematical potential relies
on the ability simply to add two numbers.

Logical operations for our present purposes
can be described as the ability to compare two
numbers: not merely in terms of relative size, but
also in terms of the pattern of their digits. It’s easy
to see that seven is bigger than five because we can
take five away from seven and still have a positive
result. The CPU has the ability to do that sort of
comparison, and it can also compare 189 with 102
and recognise that both numbers have the same
digit in the hundreds column. It may not seem a
very useful ability as yet, but its use will become
more evident later.

The CPU can perform essentially two memory
operations: it can copy information from a
memory location into its own internal memory,
and it can copy information from its internal
memory to another memory location. By doing
these two things one after another it can therefore
copy information from any part of memory to any
other part of memory. For the memory to be any
use, the CPU must be able to do both these things,
and these two operations are all it needs for
complete management of the memory.

Control operations are really decisions about
the sequence in which the CPU performs the
other operations we have described here. It’s not
important at the moment to understand them any
better than that: if you accept that the CPU can

make decisions about its own operation, then that
is sufficient at this stage.

So the CPU can do arithmetic, it can compare
numbers, it can move information around in
memory, and it can decide its own sequence of
operations. This is a simple list of procedures, and
yet it completely descibes or specifies an ideal
computing machine! If the CPU can do those four
things, then by doing them in the right sequences
it can perform any computable task. The right
sequence, of course, is the computer program for
the particular task, and that’s where we as
programmers come in. If the CPU had the ability
to generate its own operation sequences, then
there would be no need for us.

You may not be convinced that the four types
of operation we have described are a sufficient
description of a conceptual computer, so let’s
think about a b a sic program in terms of the
general operations performed. What are these
fundamental operations? In any program you
have variables, which are simply the names of
places in memory where information is stored.
Most programs perform some sort of arithmetic
upon some of these variables. Having done the
arithmetic, a program will often compare two
pieces of information and as a result will execute
one set of instructions or another. Information
usually comes into a program from the user at the
keyboard, and goes out to the user via the screen.

Except for the sentence about input and
output, this description contains no more than the
four elemental CPU operations put into different
words. And, if you accept for the moment that to
the CPU all Input/Output devices are just special
areas of memory, then the picture of the ideal
computer executing actual programs is complete.
Consequently, the execution of a program can be
described as a directed flow of information into,
around, and out of the computer; you supply
some information via the keyboard, that
information is manipulated by your program, and
some information appears on the screen.

If the idealised computer is just a CPU and
some memory, then before going any further we
should investigate computer memory: what is it,
and how does it work?

Imagine a simple electrical circuit consisting of
a battery, a switch, and a light bulb: if the switch is
closed the light goes on, and stays on until the
battery runs down or until the switch is opened.
Then the condition of the light bulb — ON or
OFF — is a piece of information, and the whole
circuit is a memory device recording that
information. Suppose now that the switch is
placed at the entrance to a factory, and the light is
placed in the Manager’s office. When the first
employee arrives at the factory, he or she closes
the switch at the entrance, and the Manager in the
office can see that the light is on and therefore
knows that someone has turned up for work. The
Manager doesn’t have to be in the office when the
light goes on; he or she can look at the light bulb
at any time to find out whether someone has

THE HOME COMPUTER ADVANCED COURSE 17

m
m

MACHINE CODE/PART ONE

arrived. The information that someone has turned
up for work is stored in the circuit.

That’s almost exactly how information is stored
in computer memory: all information reduces to
the presence or absence of electricity in a circuit.
Naturally there’s more to it than that, so let’s
improve the management information system.
Suppose we have four separate switch/bulb
circuits (the four switches in a row at the door, and
the four bulbs in a corresponding row in the
office), so that closing the leftmost switch
illuminates the leftmost bulb, and so on. Now
imagine that every employee is told to close the
switches in a unique way, so that when Catherine
arrives she closes the first and second switches
and opens the third and fourth; Richard closes the
fourth switch and opens all the others; Bobby
closes the first and third and opens the second and
fourth; and so on for all the employees. The lights
in the office now show the Manager which of the
employees has turned up for work.

Suppose that the OFF position of each switch is
labelled 0, and the ON position is labelled 1:
therefore Catherine has to set the switches 1100
(first two switches ON, third and fourth OFF),
Richard has to make the pattern 0001 (fourth
switch ON, the others OFF) and Bobby has to set
1010 (first and third ON, the other two OFF). If
the Manager reads each light bulb as 1 if it’s ON,
and 0 if it’s OFF, then both the employees and the
Manager will be speaking the same identification
language. ‘0001’ means ‘Richard ’ to both people.

How many unique patterns of switches are
there? Each switch can be in one of two positions,
and there are four switches, so there are
2X2X2X2=16 different patterns. Let’s consider
all the possibilities:

0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111,
iooo, iooi, ioio, io n , lioo, lio i, m o , m i

Try as you like, you can’t make any more patterns
than these, and there are 16 of them.

Notice how quickly we’ve moved from the
concrete picture of light bulbs in a room, to the
abstract matter of patterns of l ’s and 0’s. If we can
abstract a little further we can turn these patterns
into numbers.

Think about counting and writing down as you
count. You can count from nought to nine very
easily because each of those numbers has a unique
name and a symbol to represent it. But what do
you write down after nine? You have a name, ten,
for that number, but no separate symbol to
represent it. Therefore you must re-use some of
the other symbols: 10, 11, 12, and so on until 99,
when you run out of possibilities again, so the next
number has three columns (100). This seems
trivial, but you may remember how difficult it was
when you learned it at school: all that squared
paper with Hundreds Tens and Units written at
the top of each sum? You now know that the
number 152 means “1 in the Hundreds, 5 in the
Tens, 2 in the Units”, or 100+50+2=152.
Counting works like this because we have ten

digits (0,1,2,3,...,9) which we arrange to
represent all possible numbers.

How does counting work, however, if there are
only two digits: 0 and 1? We can count to 1 easily,
but how can we represent the next number? We
have run out of unique digits, so we must re-use
what we have (just as we did when counting with
ten digits), and write the next number as 10. Now
we know that the next number is called ‘two’, so in
this system 10 represents the number two. The
next number as we count is three, and we must
write that as 11. Then what? We’ve run out of two-
digit combinations, so the next number, four,
must be represented as 100; five must be 101, six
is 110, and seven is 111. Here, we are counting in
decimal numbers (nought, one, two, etc), but
we’re writing these down in binary numbers
(0,1,10,11,100,101,...).

In the same way as a decimal number such as
152 means: (1X100)+ (5X10)+ (2X1), the binary
number 101 means: (1X4)+(0X2)+(1X1).
Instead of having hundreds, tens, and units
columns for our numbers, we must use columns
marked: fours, twos, and units. In a decimal
number the value of a digit is multiplied by ten for
every column it moves to the left; in a binary
number the value of a digit is multiplied by two
for every column it moves to the left.

So that’s the binary system: just a different way
of representing numbers. If you know Roman
numerals you don’t find it hard to accept that
there are VII dwarfs in Snow White ; so why not
write 111 dwarfs? The actual number of dwarfs is
not changed by the way we represent it, but it is a
good idea to say the binary number as ‘binary one
one one’, and to write it as ‘ 111 b’ so that you don’t
confuse it with a decimal representation.

Now we can return to our original analogy of
how the factory workers switch patterns, and
decide on a method of making these a little easier
to use. The most sensible thing to do is to treat
these patterns as four-digit binary numbers. This
means that Catherine’s signal is 1100 binary,
which is 12 decimal. Richard’s signal is 0001
binary (1 decimal), and Bobby’s signal is 1010
binary (10 decimal). When the Manager looks at
a pattern of lights in the office, he or she can read
it as a binary number, convert it to its decimal
equivalent, and look down the list of employees to
see who that number corresponds to. Thus we can
say that information is stored in the current of
electricity, and the switches make it meaningful.

Our analogy has given a simple picture of how
information is represented in a computer: to the
computer it’s just patterns of voltages (i.e. lights
are ON or OFF), but we humans find it easier to
consider those patterns as binary numbers. It’s all
a matter of representation. If you now think of
1010 as the code meaning ‘Bobby’, then you may
start to see how all of this relates to machine code
itself. In the next instalment of the Machine Code
course, we will look at how binary numbers are
used to represent information inside your home
computer.

18 THE HOME COMPUTER ADVANCED COURSE

*•

c.

Speeding Ahead
‘hese three short programs,
ine for ZX Spectrum, one for
he BBC Micro and the other for
he Commodore 64,
lemonstrate the difference in
ipeed of operation between
JASIC and Machine Code by
lisplaying either the entire
iharacter set (Commodore and
5BC), or colour blocks
Spectrum), on the screen

REM* DO NOT LIST LINE

reM**** m /c *********

, MODE 4•*
’ ™ t07THEN

So’ S T w - u f t S S ’ c - -

,0 255 STEPL
ERSION “:f 0:CTL0S l5:F0P B=0 TO 2 -

300 FOR L (SA+11 =H“
400 ?(SA)=LS. . + u .=HF

i s l s s s f c w « n
1700 VDU 30 ^

S l " T̂ : r - r T R T = ^ -
30010 X-l .LS=VSTR-2S6*HS-L

[I Z lit ,48,4,240,2,

3 0 ‘ “

; \ S S > V ,n -c

;02" REM SAVE BEFORE ,.»*.***-******

50300 ^************tt**************
S r r * .

30400 R^ D0 RUNNING ***************

1 0 r e m ***s p e c t r u m m /C ^
n REM* DO NOT L I S T L I N E ^

_CMv after running PRO'-

“ ■ S b b s s s s s s s s .

r . r eK, P T R) * » 2 5 6 * P E E K » P T R * H > + 7

200 BORDER 2 ,08,33,0,0,
350 DATA 1,0,3,1 >
,237,176,201

400 FOR X=° TO 11
500 READ NC
600 POKE SA+X,MC
700 NEXT X
1000 LET 0FFSET=0
1100 FOR x=0 TO 1 STE
1200 POKE SA+7,OFFSET

i S s

1600 NEXT X

1700 STOP

156)

1600 NEK i '>

i ; ° 4 r E; r * * * * * ^

i s ? pp rr°o o

ilo2 RFM*********************

-l 00
JOi RE,y1*Ci

*eM£ r * ° W L?*********^
200 P R l 4 * * * * * * * * * ! CC°DE nF****

i .0000 ̂
wniTe 8 t-o/vG„

60q

200
c c
p 0p

O f CpP* fs ;

_ #

' pE:M CLS

= M

A/VD
900

^ i0° P*INTPT4 C>255 Cc=;0

300p°* 4 * to u*n p°* nacCs

100 P0„F 9;P0R B-0 Tr,_ ° Kp Sa , ^ - To 7 Sec _

Cc CC+ 1
T P

CC,
IF

as,V**SlON ,-

cc> P + 0P-CL
r ^E/V

i4 00
[3oo p 0K£
16Qo r PA Lp,P0/<p Sa+,
°U0 POKe Rr ,LF;pO/<P * 1>HS i70o Ovo p*+l_u~

255

COD‘e

srpp

'oo
1 pOo
9Oo

6Oo0o

SVs Aa p 0 *£

STOP
T B, Lp

CM . Mp

° U°00 c.PM

^ D £ R ,

60020 po4 280:s c -4 * 8>;0r=S5*4*
“-°4° '-s=o • 4 ’CB; p°^ J ;-cs=s; cb^ 6.'.sw; r «

6 o i o 0
7» , ' °ATa
n! 65’2, IPO ?’88S

:2 So
6<?e;

sc,

6 0 i
■197

10
°«T«22io5l

CH
'LF

Cs CL: :0
-s^

2^2 ;
169,

Hp;
0,

:HS

j J97,25i ^ 30,25i60ipn ̂ ,208,7 f 1*208Q data -- ^ 6 s . ,̂&.
^_

i 7 0,
*3 ;

J65,

9. 7
< ,<?0’ 6°1 5 G ■23 197, 65.

?57

6° l6 0
6017q
6 °1 Q 0

‘S ; ;

: ' - * ” T * * ,? * * *

pEAD
p0p
pSAD

<qA ,2 Z

25a
20q f

' 2 3o, 252,

R6 , 230,
By

Me
:Aa

ÊXt By;P°K£
TO 2Z

2 50 ,

J65 j

'2 0 8 ,

i 33

B53

22

MC

IHt c-

THE HOME COMPUTER ADVANCED COURSE 19

4 tnnM

I GUIDING PRINCIPLES51
In 1970, at the age of 28,
Shiina Takayoshi abandoned
a promising career in the
military and formed the Sord
Corporation (1982 sales: $40
million). He immediately
formulated 11 guiding
principles to help him govern
his new computing business.
These included:
’The company’s foremost
obligation is to humanity.
’The company must do its
best to determine what
products and services are
best for society, and provide
these at a reasonable cost.
’There must be no division
between labour and
management. All persons in
the company must respect
one another and co-operate
for the benefit of all

BILL GATES-SETTING
THE STANDARD
Microsoft has become, in one short
decade, the world’s most influential
supplier of microcomputer software. It was
courted by the world’s biggest supplier of
computers, IBM, and effectively helped
shape the specification of the IBM PC, the
world’s largest-selling personal computer.

The Microsoft company, now a multi-million
dollar operation, is a classic story of enthusiasts
made good. Bill Gates, at 28 the chairman of the
board, was in 1972 only a talented amateur.

At Seattle High School, where the parent-
teacher association had the foresight to equip the
students with a timesharing terminal attached to
the popular DEC PDP-11 minicomputer, Bill
learned about the workings of computers. He
went to Harvard University and on his
graduation went into business back in Bellevue
with schoolfriend Paul Allen. The firm they set
up was called Traff-O-Data, and their work was
to monitor traffic flow for the Seattle public
authorities. It was a momentous period in the
development of the microcomputer: the first
microprocessors were making an appearance and
those with imagination and enthusiasm saw a
great future for devices such as Intel’s 4004 and,
later, 8008 chip. Bill was by now thoroughly
familiar with the DEC PDP-11 and one of his
first jobs was to track down bugs in this
computer. It occurred to him that it would be a
good idea to adapt its b a s ic for use on the 8080.
He had no development system, and the first
occasion on which the code and the machine
were mated was when Gates took the tapes down
to Altair in Albuquerque, New Mexico.
Incredibly, it ran first time. Thus was bom m b a s ic ,

which has ever since been the standard to beat.
Microsoft was becoming known as a software

house with expertise at fitting new computers
with operating systems - filling the empty box, as
it were — and IBM contacted Gates to ask for his

advice on how to specify and equip a single-user
personal computer. Initially, Gates suggested that
Gary Kildall of Digital Research, riding high on
the burgeoning success of CP/M , was the man
for the job. But eventually IBM came back to
Microsoft. Microsoft rewrote p a s c a l , f o r t r a n

and m b a sic for the 16-bit implementation, and
also came up with the GW (for ‘gee-whizz’) b a sic

with its extended music and graphics capabilities.
At the same time, Gates realised that an untidy

but powerful multi-user OS by Bell Laboratories
could be usefully adapted for the more powerful
micros based on the new 16/32-bit
microprocessors, and transformed Unix into
Xenix. Both Tandy and Apple adopted Xenix in
their own 16/32 bit models in 1983. It even
transpires that Microsoft did much of the work
for Apple’s newest creation, Mackintosh.

Microsoft has a firm footing in the hobby
market, too. In 1981 it set up ASCII-Microsoft
with a keen young Japanese, Kay Nishu, to sell
their OS and b a sic to far Eastern manufacturers
of the new generation of lap-held micros like the
NEC PC 8201 and Tandy Model 100. Out of the
Japanese manufacturers’ desire for a common
standard, not only in languages, but in interfaces
to desirable home peripherals such as colour
plotters and printers, lightpens, joysticks,
trackballs, robot arms, FM tuners and so forth,
came the common MSX standard. Now, it seems,
we shall soon have a standard common disk
format from Microsoft that will enable data to be
transferred among the three principal operating
environments — MSX, MS-DOS, and Xenix.
With its emphasis on software that is easy to use,
illustrated in such phenomenal advances as
screen windows and the mouse, Microsoft would
appear to have a bright future ahead of it.

In d u s try S ta n d a rd
BASIC — B e g in n e rs ’ A ll-p u rp o s e S y m b o lic In s tru c t io n C ode —

w a s d e v e lo p e d in 1965 a t D a r tm o u th C o lleg e , US, by J K em eny

and T K u rtz , and th u s p re d a te s th e m ic ro p ro c e s s o r by a t leas t

seven ye a rs . W h ile m a n y d ia le c ts o f th is la n g u a g e have been

fo rm u la te d , M B A S IC , M ic ro s o f t ’s o w n v e rs io n , has c o m e to be

re c o g n is e d as th e in d u s try s ta n d a rd .

M ic ro s o f t e s ta b lis h e d its re p u ta tio n w ith th e s u c c e s s o f

M B A S IC , and has c o n tin u e d to th r iv e by p ro d u c in g a s e r io u s

c h a lle n g e r to D ig ita l R e s e a rc h ’s C P /M in M S -D O S , an o p e ra tin g

s y s te m d e s ig n e d to be a p p lic a b le to a w id e range o f

m ic ro c o m p u te rs .

F o llo w in g th e lead g ive n by X e ro x ’s S ta r te rm in a l s y s te m , and

d e v e lo p e d by A p p le w ith L isa , M ic ro s o f t has n o w d iv e rs if ie d

s l ig h t ly a nd p ro d u c e d a p a cka g e th a t c o m b in e s s o ftw a re w ith a

h a rd w a re d e v ic e n e c e s s a ry to its o p e ra tio n - M S -W IN D O W S

and th e m o u s e . M ic ro s o f t ’s m o u s e , like th a t o f its tw o

c o m p e t ito rs , u ses a t ra c k b a ll- l ik e a rra n g e m e n t c o u p le d w ith tw o

s e le c to rs to m ove th e c u rs o r a ro u n d th e sc reen

20 THE HOME COMPUTER ADVANCED COURSE

The Home Computer Advanced
Course will take you far beyond the
novice stage, w idening your
knowledge and making you a more
sophisticated user.

To help you keep your copies
immaculate, we will be making a very

special free binder offer in Issue 5 - be
sure not to miss it!

Overseas readers: this special o ffe r applies
to readers in the U.K., Eire and Australia only.
Binders may be subject to im po rt d u ty
and/or local tax.

.

noNTROj

