
DR X
WATSON
k scries /

ASSEMBLY

Tim Herbertson

AMSTRAD ASSEMBLY LANGUAGE COURSE

F DR
WATSON
k series ¿

ß§§»

Tim Herbertson

JULY 1986

All programs in this book have been written expressly to illustrate
specific teaching points. They are not warranted as being suitable
for any particular application. Every care has been taken in the
writing and presentation of this book but no responsibility is
assumed by the author or publishers for any errors or ommisions
contained herein.

COPYRIGHT ©Glentop Publishers Ltd 1986
World Rights reserved. 2nd Edition.

No part of this publication may be copied, transmitted or stored in
a retrieval system or reproduced in any way including but not
limited to photography, photocopy, magnetic or other recording
means, without the prior permission from the publishers, with the
exception of material entered and executed on a computer system for
the reader's own use.

Edited by: Martin Thompson
Graphics: Samantha Borland and Hans Harbord
Wordprocessing: Jane Grant
Program by: Graham Rounce

ISBN 1 85181 112 5

Published by: Glentop Publishers Ltd
Standfast House
Bath Place
High Street Barnet
Herts EN5 5XE
Tel: 01 441 4130

Dr Watson is a Trademark of Glentop Publishers Ltd.
Z80 is a registered trademark of ZILOG Inc.

Introduction

This book forms part of the Dr Watson Assembly Language Series. It
has been written so as to provide a completely self-paced course
in Z80 Assembly Language Programming. Throughout the course, new
instructions are illustrated with example programs. Also,
numerous exercises have been included to help test the
understanding of the concepts involved.

After reading and working thorugh the first couple of chapters the
reader might find it helpful to read Appendix 6. This Appendix
summarises the use of the assembler, including how to save and
load programs on tape.

Whilst working your way through the book don't be afraid to
experiment and try out any ideas you have, you will not harm the
computer or Assembler in any way.

Well that's the speil finished: you now have ten action-packed
chapters, not to mention the appendices, to work through! I hope
you enjoy it.

T.Herbertson
LONDON
February 1985

Introduction

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Appendix 1

Appendix 2

Appendix 3

The idea of Assembly Language • Writing simple
Programs • Register-Register Addressing •
Immediate Mode Addressing.

Controlling programs • The Program Counter •
Jumps and Calls • The use of the Flags Register
• Symbolic Labels.

Register Pairs • Indirect Mode Addressing •
Direct Mode Addressing • Indexed Mode Addressing
• Symbolic Operation.

8 and 16 bit Addition and Subtraction • The
CArry Flag.

Binary Coded Decimal • The AND, OR and XOR
Logical Operations • Signed Numbers • One's
Complement • Two's Complement.

Multiplication and Division • The Rotate Group •
The Bit Set, Reset and Test Group.

The Stack and Stack Pointer.

Block Moves and Compares.

Interrupts • The Alternate Register Set • Input
and Output.

Resident System Extensions • Additional Graphics
Commands.

The Z80 Instruction Set.

Effects of Instructions on the Flags.

The Effects of Compares on the Overflow Sign and
Carry Flags.

Appendix 4 The Built in Routines.

Appendix 5 Binary, Binary-Coded and Hexadecimal Notations.

Appendix 6 Further Features of the Assembler.

Glossary

Solutions

Index.

Ç H A P "J" E R 1

Getting Started
Having used a computer before, you are probably well aware that
things called 'machine code' and 'assembly language' exist. Quite
simply, machine code is the language that the microprocessor chip,
a Z80, in your computer understands. As an example, take a simple
addition sum - adding one to 83.

In English you would say:

Add one to eighty three; what's the answer?

In BASIC you might say something like:

10 LET A=83
20 LET A=A+1
30 PRINT A

In Z80 machine code you could say:

3E 53
C6 1
CD 5A BB
C9

This is pretty-well unintelligible, isn't it? Well, that's why we
use assembly language. The same problem is given below in assembly
language along with a brief comment on each line.

LD A,83
ADD A,1
CALL 47962

Load the Accumulator 'A' with '83'
Add 1 to the Accumulator
Store the contents of A on the
screen

RET Return from the machine-code
subrout i ne

That's mOch easier to read than the machine code, isn't it? With
an assembler you can enter your program in assembly language and
be able to read though it and understand it more readily. All the
assembler does is to change the assembly language into machine
code. Thus, when it sees 'LD A' it changes this command into
machine code '3E' and puts this into memory in the right place.

1-1

The Z80 chip contains various registers, which are in effect
internal memory locations, where data can be stored. Most of the
ZSO's instructions use these registers. One of the most frequently
used registers is the accumulator. The accumulator is capable of
storing numbers from 0 to 255. Let's now look at an instruction
which allows us to LoaD a value into the accumulator. The
instruction for this is:-

LD A,n LoaD the Accumulator with the
immediate value n

You will notice that the letters chosen for the instruction
reflect what it accomplishes. Instructions of this form are called
'mnemonics'.

There are many different ways of getting numbers into and out of
the accumulator and other parts of the computer; these different
ways are known as 'addressing modes'. The method above, which uses
an unmodified typed-in number, is known as 'immediate-mode'
addressing.

The next instruction in the program is ADD:

ADD A,n ADD the immediate value n to the
Accumulator

This instruction takes the number following the comma, in the
example '1' (on page 1), and adds it to the value currently held
in the accumulator (A). The answer is left in the accumulator,
deleting the old number, in our case 83.

Looking back at the example, probably the most baffling
instruction is

CALL 47962

This tells the computer to store the contents of the accumulator,
84, on the screen - i.e. to display the contents. Whilst true,
this is really only half the story.

The computer has many built-in machine-code programs or 'routines'
stored in its chips. Without these, it would not be able to
understand BASIC, for instance. One of these routines is designed
to take a value from the accumulator and display it on a monitor.

1-2

To get at these routines in order to use them, CALL is used.
Inside the computer, the first instruction in every built-in
routine is stored in a specific memory location, these are
numbered from 0 to 65535. The number above, 47962, is the memory
location of the first instruction in the 'print the value in the
accumulator on the screen' routine.

Right then! Let's have a go at running a machine-code program!

A couple of points about the assembler: when you start to write a
program the assembler should be told where you want the program to
be placed in the computer's memory. For the moment the assembler
will decide where to store the program. It is told to do this by
the ENT command.

Thus the first line of the program will be:

10 ENT

program

Assembly language programs may be run (or called) from BASIC or
called from the assembler using the Call program option.

Either way you must tell the computer to return from machine code
to BASIC (the assembler program). The command that does this is
RET.

RET RETurn from machine-code subroutine

Right, to make the example into a program, we must:

1. Tell the assembler to decide where to store the
program.

2. LoaD immediate value '83' into the Accumulator,
i.e. 'LD A,83'

3. Add 1 to the contents of the accumulator. The
mnemonic for this is 'ADD A,l'

1-3

4. CALL up the built-in machine-code routine to display
the new value in the accumulator on the screen, i.e.
'CALL 47962'

5. RETurn from our machine-code p.’ogram to BASIC, i.e.
'RET'

6. Fell the assembler (not the Z80) that the program has
finished, using a

or

PROGRAM 1.1 (do not type this in just yet)

10 ENT
20 LD A,83
30 ADD A,1
40 CALL 47962
50 RET

Now to enter this:

a) Load the ASSEMBLER program in the computer as
follows:

1) Perform a full reset of the computer by holding
down the SHIFT, CTRL and ESC keys together, then
release them.

2) Fully rewind the tape (Side A).

3) Press CTRL and the small blue ENTER key, then
release them.

The following message should now appear on the
screen:

RUN"
Press PLAY then any key:

If it does not appear start from step 1 again.

4) Press the PLAY key on the data recorder and then
press the space bar.

5) A message will then appear on the screen after a
few seconds informing you that the assembler is
being loaded.

1-4

b) Press CAPS LOCK so you're typing in capital letters,
then type T without the quotes, of course, to begin
entering a new program. Enter 10 in response to the
prompt "Enter start and increment", then press
ENTER.

c) A 10 will appear; type in 'ENT' and then press the
ENTER key.

d) A new line number will now appear, 20. Type in the
next line of the program, 'LD A,83' and press the
ENTER key as before. Don't leave out the space
between the 'LD' and the 'A'. Also, do not insert a
space between the comma and the number, or indeed
anywhere else.

e) 30 will now appear. Type in 'ADD A,l', then the ENTER
key. Again, don't leave out the space between ADD and
A.

f) On line 40, type in 'CALL 47962' and then press the
ENTER key. There should be a space between CALL and
47962.

g) On line 50, type in 'RET' and then press the ENTER
key.

h) Now as we have finished typing in the program, and
want to return to the command mode, press © and then
the ENTER key.

i) Now press M to return to the menu, then L to list the
program, entering 10 as the starting line number.
(Note: you could have selected the List option
straight away without returning to the Menu.) The
program should now appear as below

10 ENT
20 LD A, 83
30 ADD A, 1
40 CALL 47962
50 RET

If for any reason it doesn't then select the replace
mode 'R' and replace the line(s) containing the
error(s). When your program appears as above, when
listed, press A for assemble. The assembler will now
assemble the program into machine code. Select option
2.

1-5

j) After the assembler has assembled the program it will
return to the ’>' prompt. If there were any errors in
the program the assembler would have informed you.
the replace or insert function would then be used to
correct these errors.

k) To see the program run, select the Call program
option.

In ease you're wondering why the program puts a capital T on the
screen and not the answer, 84, have a look at Appendix III in the
Amstrad Basic manual showing the 'ASCII character set'. You will
see that the code for 'T1 is 84.

ASCII stands for the American Standard Code for Information
Interchange, and every symbol which the computer can put on the
screen has its own ASCII code number. Thus when asked to put 84
onto the screen, the routine called using CALL 47962 puts
character number 84 onto the screen.

This is true in BASIC as well, even when doing a sum like 'PRINT
83+T. In this case, although the computer puts '84' on the
screen, it has had to find out what the characters '83+1' mean, do
the appropriate sum and convert the answer using the ASCII codes
for the characters '8' and '4'. This is in fact quite complicated
to do. The computer has a built-in routine which does this
automatically for BASIC.

Z80 Chip Architecture
The Z80 has various registers other than the accumulator, and a
simplified diagram of the arrangement is shown below, in Figure
1.1.

Simplified Z80 Architecture

FIGURE 1.1

1-6

The accumulator, or A register, you have already met. It is
somewhat special in that there are more Z80 instructions which can
operate on it than there are for the other registers.

All of the registers (just memory locations within the Z80 chip)
are 'eight-bit registers', that is, they can only store numbers
from 0 to 255. This may not seem terribly useful, but there are
ways of using the registers in combination to store much bigger
numbers, as will be seen later.

The H and L registers taken together are known as the 'primary
data pointer'. Registers B and C, and D and E when taken as pairs
are called 'secondary data pointers'. The main point about this
for now though is that instructions which use H and L are often
shorter when assembled into machine code, and therefore run
faster.

Immediate Addressing Of The Registers
Immediate addressing of the accumulator was discussed earlier,
where a number was loaded into the accumulator using the
instruction

LD A,83

Exactly the same form of instruction can be used to load numbers
from 0 to 255 into any of the other registers, e.g.

LD B,83

would load the number 83 into the B register.

In general,

LD r,n LoaD register r with the immediate
value n

The 'r' in the above box stands for any register, i.e. any one of
A, B, C, D, E, H, or L.

1-7

Register - Register Addressing
Not only can any register be loaded with a number, but any
register can be copied into any other register, or into the
accumulator. For example, Program 1\2 puts 43 into the L register,
copies this into the accumulator, and displays it on the screen -
an ASCII

PROGRAM 1.2

10 ENT
20 LD L,43 Intnediate-mode load of L with 4
30 LD A,L Load A with contents of L.
40 CALL 47962 Display the contents of the

accumulator.
50 RET Return to BASIC (the assembler)

Line 30 contains the new instruction:

LD A,L

This copies the contents of register L into the accumulator.

Another example could be:

LD B,E
or

LD C,A

In general,

LD rl,r2 Copy the contents of register r2
into register rl

Some authors refer to register-register addressing as 'inherent'
addressing, and others refer to it as 'implied' addressing. If
you refer to other books, beware of their terminology, as this can
lead to confusion.

Right then! Let's type in Program 1.2. If you make a mistake
typing in any line before pressing the ENTER key, just use the
DELETE key to rub out the mistake and type in the correct version.
If you notice a mistake on a line after you've pressed the ENTER
key, you can replace those lines after pressing © and before
assembling the program.

1-8

1. Load and run the assembler program unless it is loaded
already, in which ease return to the menu with the M
command, if necessary.

2. Select 'I' to begin entering the program, and press CAPS
LOCK to set it into capital letters mode.

3. Tell the assembler where in memory the program is to
start, i.e. type in 'ENT' and press the ENTER key.

4. Type in 'LD L,43' and press the ENTER key, (press the
ENTER key after each entry).

5. Type in 'LD A,L'
6. Type in 'CALL 47962'
7. Type in 'RET'
8. Press
9. Select 'L' to list the program: check it!

10. Select 'A' to assemble the program.
11. Select 'C to run the program.

After that, you should be capable of writing some programs on your
own. Have a go at the following short exercise. Don't forget to
put in the 'RET' instruction, as otherwise the computer will
trundle on through its memory after the program itself, looking
for instructions to execute. It will almost certainly find
something, and that something will cause the system to 'crash'. In
other words, there will be no option but to switch off and start
again from scratch - including reloading the assembler program.

EXERCISE 1.1

Using immediate mode addressing, load the
accumulator with 65, and then display this on
the screen. 65 is the ASCII code for capital
A. A possible answer is given in the solutions
chapter.

More About CALL 47962
If this call is used several times in succession, several things
can be displayed on the screen in consecutive screen locations.
Try this program:

1-9

PROGRAM 1.3

10 ENT
20 LD A,72
30 CALL 47962
40 LD A,69
50 CALL 47962
60 LD A,76
70 CALL 47962
80 GALL 47962
90 LD A,79
100 CALL 47962
110 RET

Load Accumulator with ASCII *H*
Display 'H'
Load Accumulator with 'E'
Display 'E'
Load Accumulator with 'L'
Display 'L'
Display 'L' again
Load Accumulator with 'O'
Display 'O'
Return to BASIC

That program should display the word 'HELLO' on the screen, after
it has been assembled and run.

EXERCISE 1.2

Write your name in the top left corner of the
screen. An answer for 'FRED' is given in the
solutions chapter.

That's the end of this chapter. It wasn't that bad was it? By now
you should know or be able to interpret the following:

LD A,n
LD rl,r2
RET
ENT
©
CALL 47962
ADD A,n
immediate mode addressing
register-register addressing.

How about this (r is any register)?

ADD A,r

1-10

Ç H A P E R 2

Jumping,Subroutines and Labels
Few real life programs proceed along a smooth uninterrupted path
without jumping or branching at some stage. This chapter looks at
these jump commands and their uses. After this, the chapter goes
on to examine the flags that enable these jumps to be controlled.
The chapter then looks at both unconditional and conditional calls
to subroutines. Symbolic labels are also introduced. These are a
very powerful and useful feature of the assembler and aid program
development considerably.

Unconditional Jumps
These tell the program to jump willy-nilly - no conditions.

The Z80 instruction set contains five such jumps; for the moment
we shall only be concerned with two of these. The other three will
be introduced later.

The first to be considered is:-

JP nn JumP to the specified address nn

For example, JP 200 means jump to memory location 200.

Put into a program JP will look like this:

2-1

Using JP in a program

FIGURE 2.1

Such a jump routine doesn't really achieve a lot but it could, for
instance, be used to patch a piece of code into a program. In
Figure 2.1 for instance, the commands 'ADD A,l,' 'CALL 47962' and
'JP 30005' have effectively been inserted into the program.

We shall now type this program into the computer. Remember to type
ENTER at the end of each line, and to select 'I' to start entering
a program, and enter the starting line number as 10.

Note that the first line in the program is not ENT. As the program
is jumping to specific memory locations, the exact start of the
program needs to be known. The ORG 30000 causes the assembler to
store the machine code starting at memory location 30000. See
Appendix 6 for more details.

2-2

PROGRAM 2.1

ORG 30000
LD A,83
JP 30006
RET
ADD A,1
CALL 47962
JP 30005

Now Assemble the program with Option A, select option 2.

The screen display of the program should now look something like
this:-

Memory
location

Line
number

Object
code

Source code

7530 10 ORG 30000

7530 20 3E53 LD. A, 83

7532 30 C33675 JP 30006

7535 40 C9 RET

7536 50 C601 ADD A,1

7538 60 CD 5 ABB CALL47962

753B 70 C33575 JP 30005

FIGURE 2.2

The first number in the memory location column doesn't seem to
correspond to 30000, where the program should begin. This is
because the memory locations are represented in Hexadecimal. Don't
worry about this for now, just remember that 30000 is 7530 in
Hexadecimal, 30006 is 7536 and 30005 is 7535.

When jumps are used in this way it is necessary to tell the
program where to jump to, i.e. an address, hence JP 30006.
Calculating these addresses is quite straightforward as long as it
is done systematically, as will be explained below.

2-3

Looking at Figure 2.2, the numbers and letters in the second
column, the 'object code', are what the assembly language looks
like after it has been assembled - i.e. machine code. Each pair of
alphanumeric characters (i.e. numbers and/or letters) in this
column represents one item from the original assembly language.
Thus, '3E' represents 'LD A' and '53' represents '83' (don't
worry about why! It's Hexadecimal and will be explained in a later
chapter.) For numbers in assembly language bigger than 255, four
machine-code alphanumeries are required. Thus 'C3' represents 'JP'
and '3075' represents '30000'. How does this help us calculate
addresses to jump to? Well, each pair of digits fills up one
memory location - one byte of memory. Thus, as it is known that
the first instruction in the program is in memory location 30000
(because of the 'ORG 30000'), we can simply count pairs of
machine-code alphanumerics.

For instance, to jump to the 'ADD A,l' instruction, we would need
to jump to the memory location containing 'C6'. So, starting at
30000, which contains '3E', we have 53, C3, 36, 75, C9, and then
C6. That's 6 memory locations along from 30000, or 30006. Hence
the program should jump to 30006. Admittedly, before you've
entered the 30006 in the JP instructions, the '3675' won't be
there for you to count. However, as you know that the address in
machine code is going to be four characters (two bytes), long,
this is not a problem provided you write your programs out on
paper before typing them in, - which is good practise anyway.

The appendices contain tables detailing how many bytes each
instruction requires to help in calculating jump addresses.

Here is a breakdown of the program:

ORG Uses no memory, it is there for the
assembler's use, and
'assembler directive'.

is called an

LD A,83 Takes up 2 bytes - the first is the
object code for LD A, and the second
is the data.

JP 30006 Takes up 3 bytes - one for its
object code, C3, the other two are
the memory location to jump to.

RET Only requires one byte for its
object code, C9.

2-4

ADD A,1 Requires 2 bytes. The first, C6, is
the object code for 'ADD A', the
second is the data.

CALL 47962 This instruction requires 3 bytes,
CD is the object code and 5A and BB
the memory location being called.

JP 30005 This is the same as the JP
30006 except that the memory
location to jump to is different.

By counting up the number of bytes we can calculate the length of
the program: Program 2.1 is 14 bytes long.

Using the JP operator we can jump to any memory location from 0 to
65536. If the memory location to jump to is less than +129 or -126
bytes from the current memory location the Jump Relative can be
used instead of the Jump instruction. The advantage of using this
alternative instruction is that, as it only requires two bytes to
store as opposed to three for the JP instruction, it is quicker.

JR e Jump Relative to address e

For example, if you are at address 30000, and you want to jump
ahead to address 30045, you would write

JR 30045

You would not say JR 39, the computer will calculate the single­
byte offset automatically. Remember, JR can only be used if you
are jumping to an address within +129 or -126 of the memory
location containing the 'JR' itself.

2-5

The Program Counter
Before going much further, the way in which a jump instruction
accomplishes its task must be examined. Examining Figure 2.2 it
can be seen that the program starts at memory location 30000. In
the body of the program we require it to jump to memory location
30006 and 30005. How does the computer keep track of where it is?
Inside the Z80 chip there is a '16 bit' register called the
Program Counter (PC). This register contains the address of the
current instruction. When a machine code program is run, the
program counter is set to the first memory location of the
program. After execution of the first instruction, the program
counter is updated, so that it points to the next instruction.
Thus a jump instruction loads the PC With the address to jump to
i.e: it 'points' it to the new instruction. The effect of this is
that the program continues execution from instruction contained in
the memory location pointed to by the jump address. Other
instructions are available to alter the contents of the PC hence
altering the programs course and will be introduced when required.

Figure 2.3 illustrates the execution of the previous program.

Program PC before
execution

PC after
execution

ORG 30000 ? 30000

LD A, 83 30000 30002

JP 30006 30002 30006

ADD A, 1 30006 30008

CALL 47962 30008 30011

JP 30005 30011 30005

RET 30005 Back to
assembler

FIGURE 2.3

So far the computer has jumped to another section of code
unconditionally. Although useful, it would be more useful if the
computer could be made to jump upon a certain condition being met.
This can be accomplished with the conditional jump group of
instructions.

2-6

Conditional Jumps
Any program that needs to test for conditions needs CONDITIONAL
JUMPS. In BASIC, the analogy is the IF.... THEN command.

i.e. 10 IF X=Y THEN GOTO 500

This line causes the computer to compare the variables X and Y and
if they are the same go to line 500.

The Z80 carries out this operation by using a special register,
the flag register. The flag register is an eight-bit register like
the accumulator and the B,C,D,E,H and L registers, but is used
quite differently from these. Whereas the other registers are used
to store and manipulate bytes, the flags register is treated as if
it contained eight individual bits which are used as signals or
flags. The Z80 normally only handles one flag at a time, either
setting, the bit value to 0 or 1. It can also test a flag to
determine whether it is set (1) or reset (0).

For example one of the flags is the Z flag or Zero flag. Whenever
an arithmetic process is carried out that produces a result of
zero, the zero flag is set to - otherwise it will be reset to
'O', indicating that the previous operation did not result in
zero.

Several different instructions can set this flag, one of these
being:

DEC d DECrement register d

This instruction decrements the contents of 'd', where 'd' is one
of the following registers:

B,C,D,E,H,L,A

If, after decrementing the specified register, the result is equal
to zero, then the zero flag is set, otherwise it is reset.

Note the instruction DEC is formally called an OPERATOR, and d,
the OPERAND; thus the OPERATOR operates upon the OPERAND. Some
OPERATORS, such as LD A, 10 require two OPERANDS, in this case, A
and 10.

Now on with the programming. Program 2.2 will print 10 A's on the
screen.

2-7

PROGRAM 2.2

ORG 30000
LD C,10
LD A,65
CALL 47962
DEC C
JR NZ,30004
RET

Type this program in and assemble it using option A, then option
2. To run the program exit to BASIC with X and type in CALL 30000.
You will see ten A's appear upon the screen. To return to the
assembler press the decimal point key on the numeric keypad.

Examining the program, the only line which hasn't been met yet is
JR NZ. This operator tests the current state of the zero flag and
'Jumps Relative' to 30004 if the last arithmetic instruction
results in a non-zero answer. Thus the program puts the contents
of the accumulator upon the screen, DECrements register C and
tests to see if the zero flag has been set by the DECrement
instruction. If it hasn't, i.e. it is Non Zero, then it Jumps
Relative to 30004 otherwise it goes on to the next line of the
program where it RETurns.

JR NZ, e Jump Relative on Non Zero result to
address e

EXERCISE 2.1

Rewrite Program 2.2 to use the B register in
place of the C register.

EXERCISE 2.2

Why have we used JR NZ,e instead of the
alternative JP NZ,e instruction?

Possible answers to both problems are given in
the solutions chapter.

2-8

Note, as might be expected an instruction to INCrement an operand
exists as well:

INC d INCrement operand d

So far the computer has been programmed to jump unconditionally
and on the result of an operation being zero. In both cases it is
necessary to know which memory location to jump to. While this
situation is bearable within short programs, when programs start
increasing in size it becomes increasingly difficult to calculate
these jump addresses, not to say time consuming. To overcome this
situation, labels are used.

Labels
The use of labels enables a program to be directed to a named
instruction, without the necessity of calculating jump addresses.
A fancier term for label is SYMBOLIC LABEL as the label itself is
symbolic of a location in memory. For instance, the instruction

JP LOOP:

Will cause the assembler to replace LOOP with an address, which
was previously assigned to LOOP, whenever it occurs.

To tell the assembler that a label is a label it is necessary to
follow the label with a colon. Also labels must be less than or
equal to six characters in length. Thus, for example if the
program should jump to the memory location containing the
instruction DEC C, the following program lines would be used.

JP LOOP:

LOOP: DEC C

2-9

Further conventions must be observed when using labels. The colon
for instance must follow the last character of the label (no space
between them). Also, a space must follow the colon. This is simply
to allow the assembler to work out where the label ends. Don't
worry if you forget any of this, the assembler will pick up any
errors and inform you.

To summarise:

LABELS
1. A label must consist of six or fewer characters.

2. A colon must immediately follow the label.

3. One space must follow the colon.

4. The label must not contain a space.

For example:

LOOP:

TEST:

NXTCHR:

are all valid labels. The following are not:-

LOOP :

BACKONE:

NEXT L:

To illustrate the use of labels we will rewrite Program 2.1 using
labels.

Note that as no absolute jumps are being used the ENT directive
can be used instead of the ORG directive.

2-10

PROGRAM 2.3

ENT
LD A,83
JP NXT:
END: RET
NXT: ADD A,1
CALL 47962
JP END:

When you list the above program, you will see that it is displayed
with the labels out to the left of the main body of the program,
like this, making it a lot easier to read:

ENT
LD A,83
JP NXT:

END: RET
NXT: ADD A,1

CALL 47962
JP END:

To ease typing in programs they will be displayed in this format
throughout the rest of the book. However, you should, of course,
type them in in the normal way.

Using the instructions introduced so far it is possible to jump
unconditionally or conditionally to anywhere in memory, or using a
jump relative command to any location within +129 or -126 of the
current position. Labels can also be used to facilitate
calculating jump addresses.

All of these commands will now be combined to print the numbers
one to nine on the screen. Remember in Chapter 1 we saw that the
ASCII for T is 84? Well, the numbers one to nine also have a code
associated with them. Look at the ASCII table (in the BASIC manual
appendices 3) and see if you agree that the code for one is 49 and
that for nine is 57.

Now to combine what has been learnt so far to solve the problem,
i.e: how to put the contents of the accumulator on the screen,
load it, and increment it. Also, how to decrement a register and
test for zero. If you have any ideas about how to get the computer
to display to numbers 1 to 9 on the screen, close the book now and
try, if not, don't worry all will be explained.

2-11

The following flow chart represents the solution:-

Problem: Display the numbers 1 to 9 on the screen.

FIGURE 2.4

2-12

Translated into a program it looks like this:

PROGRAM 2.4

ENT
LD C,9

Set start of program.
Load C with number of
characters to
print, i.e. nine.

LD A,49 Load A with the code
for "1".

NXT: CALL 47692 Print contents of Accumulator on
the screen.

INC A Add one to contents of
A, thus loading A with
code for "2".

DEC C
JR NZ.NXT:

Decrement the count register.
If DEC C results in anything
but zero jump relative
to the location addressed by
the label NXT.

RET If C=0 then return to the
assembler.

Before running it, let's
the program.

steo through it, each step in one loop of

Step
Number

Accumulator Register C Z flag

1 49 9 0
2 50 8 0
3 51 7 0
4 52 6 0
5 53 5 0
6 54 4 0
7 55 3 0
8 56 2 0
9 57 1 0

10 58 0 1

When the Z flag is set (1) the program terminates and returns to
the assembler. (Step 10)

Now assemble and run the program.

2-13

EXERCISE 2.3

Write a program which will print the alphabet
on the screen. (Hint: the code for A is 65.)

A possible answer is given in the solutions
chapter.

So far only the zero flag has been used, one of the seven flags
available. Here are the rest.

The Flags
The Carry Flag (C)

This flag is set whenever an addition or subtraction results in a
carry (or borrow). It is also used in certain shift and rotate
instructions.

Subtract Flag (N)

This flag is mainly used by the Z80 rather than by programs for
certain arithmetic operations.

Parity/Overflow Flag (P/V)

This flag has two distinct functions, the first to indicate the
parity of a result. The 'parity' of the result is obtained by
adding up all the ones in its binary representation. If the result
is even then the parity but is set, otherwise reset, i.e.=0. The
flag is also set when during certain arithmetic operations
'overflow' occurs.

The Half Carry Flag (H)

The half carry flag is used by the Z80 for 'Binary Coded Decimal'
instructions. Don't worry about this for the moment.

Zero Flag (Z)

The zero flag is set when an operation results in zero, and as
such, is used a lot for compares.

The Sign Flag (S)

This flag indicates the sign of the arithmetic result or of a byte
being transferred. It basically tests bit 7 of a byte, and is set
if it equals 1 and reset otherwise.

2-14

Subroutines
As the JP instruction was compared with the BASIC statement IF
X=Y THEN 500, a Z80 instruction similar to the BASIC statement
GOSUB 500 exists. This instruction, CALL, has already been used to
print the contents of the accumulator on the screen.

CALL nn CALL the routine commencing at
memory address nn (nn can
represented by a label).

the
be

As in BASIC, a return instruction is required at the end of
subroutine.

the

RET Return from the subroutine
called.

last

Let's see how these instructions can be used in a program.

Problem: Print
using

the ASCII characters 200 to 250 on the screen
a subroutine print the characters.

PROGRAM 2.5

ENT
LD A,200
LD B,50

NXT: CALL PRINT:
DEC B
INC A
JR NZ.NXT:
RET

PRINT: CALL 47962
RET

A= 1st ASCII code
B= count
Call printing routine
Decrement count
Next ASCII code
If B=0 jump to NXT

Assemble then run it.

To aid understanding
a label PRINT. 4s
exist, much the same

the program the print subroutine is assigned
well as unconditional calls, conditional calls

as conditional and unconditional jumps.

CALL cc,nn Call the subroutine starting
memory location nn, if condition
is met.

at
cc

2-15

The conditions on which the routine is called are exactly the same
as those used for conditional jumps. When a CALL instruction is
executed the current contents of the program counter are saved.
The program counter is then loaded with the call address nn. When
the Z80 has completed the subroutine, i.e. reached a RET
instruction the program counter is loaded with the saved value of
the program counter.

Problem Print 100 A's on the screen, but for every 10 printed,
print a space.

Representing the solution as a flow chart:

2-16

START

PR
IN

T A
 SP

A
C

E

2-17

Converting this into a program:

PROGRAM 2.6

ENT
LD C,100 C= 1st count
LD B, 10 B= 2nd count
LD A,65 A="A"

NXT: CALL 47962
DEC B

Print a 'A'

CALL Z.PSPC:
DEC C

If B=0 print a space

JR NZ, NXT: Have a 100 A's been
printed? If no jump to
NXT space.

RET Return to Assembler

PS PC: LD A,32 A=ASCII for a space.
CALL 47962 Print a space
LD A,65 A="A"
LD B, 10 Reload B as count
RET Return to main program

Try running this program now; lo and behold a hundred A's appear
upon the screen separated every 10 by a space. This form of
conditional call is very useful as it considerably eases writing
structured programs.

Summary
The program counter (PC) is a 16-bit register, which contains the
memory address of the current instruction from within a program.

The flags register contains 8 bits, which reflect the status of
the arithmetic section of the Z80.

Labels can be used in jump instructions. A label must be less than
seven characters long, terminated by a colon which must be
followed immediately by one space.

Two main forms of jumps exist, conditional and unconditional.
These two forms can be divided further into absolute jumps, i.e.
JP NXT or relative jumps, i.e. JR NXT.

Two forms of CALL exist, conditional and unconditional. Every call
instruction must have associated with it a RET instruction.

2-18

Also:-

The following list of instructions should be understood in
context, even
conditions.

JP
JP
JR
JR
JR

Where:-

nn

if you don't quite

nn
cc,nn
e
Z,e
NZ,e

is an absolute address or

understand

a label.

all the flag

CC is one of the operands signifying
test for.

what flag to

e is an absolute address, except that it is limited
to -126 to +129 bytes
label can also be used.

ce condition

NZ Non-Zero
Z Zero
NC No-Carry
C Carry
PO Parity Odd
PE Parity Even
P Positive
M Negative

from the current address. A

INC r

DEC r

Where r is an 8-bit register, and any one of the following

B,C,D,E,H,L,A.

The definition of operand and
example:

(TcT) GXlZX
(operator) S''"

-------- /operand one)

operator is best shown with an

—(operand two]

2-19

c H A P T E R 3.

Register pairs and addressing modes
So far we have only been able to load a register with an 8—bit
number. The Z80 allows certain registers to be combined into
pairs, thus allowing 16-bit numbers to be stored and manipulated.

The following registers may be paired together.

B and C
D and E
H and L

We have already met the instructions that enable us to load 8—bit
data into individual registers. The instruction which allows 16-
bit loading is:

LD dd,nn Load register paid dd with the 16-
bit data nn.

Where dd is any of the following registers: BC, DE, HL, or SP.
'nn' is a 16-bit number.

Note: The SP register is a special purpose register, called the
stack pointer. We will return to it at a later stage.

When loading a register pair in this way we are loading it
immediately with the data value given, hence the formal term for
this type of addressing, IMMEDIATE MODE.

All the programs so far have stored data in registers. This
situation is fine if we don't have very much data to process. In
real-life situations though, we will require more data storage
than the seven 8-bit or three 16-bit registers available.

A need arises for intructions to load memory with data, and to
read the contents of a memory location. The Z80 allows the
contents of registers to be stored in memory, and the contents of
memory locations to be copied into registers.

3-1

This form of addressing is termed DIRECT MODE, because it uses the
contents of memory locations and registers directly - i.e. without
doing anything with them first.

LD (nn),dd LoaD memory location nn with the
contents of register pair dd.

An example of this instruction is:

LD (200),BC

This will copy the contents of register pair BC into memory
location 200. Note that the memory location has to be included in
brackets.

The opposite instruction, to copy the contents of a memory
location into a register oair is:

LD dd,(nn) Load register pair dd with the
contents of memory location nn.

An example of this instruction is:

LD BC,(200)

What will this do? It will load the contents of memory location
200 into BC.

Okay, let's now use these instructions.

Up until now characters have been printed on the screen with a
CALL instruction. This is not the only built in routine available.
The internal memory (ROM) also contains some graphics routines,
which amongst other things allow us to draw lines on the screen.
For the moment we will not be concerned with how this is
accomplished, but with how to use it. When in BASIC to draw a line
from the origin to the point 400,200 the following command would
be typed in (assuming that the graphics cursor is at 0,0).

DRAW 400,200

If you try this, ensure that you reset the graphics cursor to 0,0
with the following command:

PLOT 0,0

3-2

By using the graphics routine starting in memory location 48118,
we can also plot a line to 400,200 using machine code. In BASIC,
the coordinates are typed in following the DRAW statement. When
using machine-code routines, the data is passed (X,Y coordinates
in this case) in registers. The DE register is loaded with the X
cordinate, HL with the Y coordinate.

Let's now summarise the information needed to use this routine:

Start address 48118

Parameters X,Y

X stored in register pair DE
Y stored in register pair HL

Right, let's now plot a line to the point 400,200 on the screen.

Here is the program

PROGRAM 3.1

ENT
LD DE,400
LD (35000),DE
LD HL,200
LD (35002),HL
LD DE,(35000)
LD HL,(35002)
CALL 48118
RET

Type it in now and run it

Examing the program. The first point to notice is that the
contents of DE are stored in memory location 35000, but the
contents of HL in 35002. Why not store the contents of HL in
35001? The reason is that any one memory location can only store
an 8-bit number and we are storing the contents of a 16-bit
register i.e. 16 bits. What happens is that the 16-bit number is
split into two 8-bit numbers which are then stored concurrently.
Thus to store a 16-bit number requires two memory locations. See
Figure 3.1.

3-3

Most Significant Byte Least Significant Byte

Register B C

8 bits 8 bits

4
LD (35000),BC

Memory Contents

35000 C
35001 B

Figure 3.1

The 'Least Significant Byte' (LSB) is stored first, followed
immediately by the 'Most Significant Byte' (MSB).

EXERCISE 3.1

Write down the order in which the registers would
be stored if the following sub-program was
executed.

LD (200),DE
LD (202),HL

See the solutions chapter for the answer.

When paired, the C, E and L registers are classed as the Least
Significant Bytes, hence the Most Significant Bytes are registers
B, D and H.

3-4

Now another exercise -

EXERCISE 3.2

Write a program to load memory location 35000
with 100 and location 35002 with 400 and then
plot a line to these points.

Note the graphics cursor will have to be reset
to 0,0. Either jump into BASIC by selecting X
to do this with PLOT 0,0 or for the more
adventurous; the Amstrad contains a machine­
code routine to plot a point, thus we could
incorporate this into the program. This would
save using BASIC to reset the graphics cursor.

The format of this call is as follows: -

Calling address 48106.

DE = X coordinate
HL = Y coordinate

(Pretty much the same as the line plotting
routine)

So to plot a point at 0,0 we have to load DE
with 0 and HL with 0, then call 48106.

A possible answer is given in the solutions
chapter.

3-5

EXERCISE 3.3

Write a program which will join the following
points together with lines:

X Y

200
400

0

300
200

0

N.B. Start with 200,300, remember, you load DE
with the X coordinate and HL with the Y
coordinate.

Possible solutions are given in the solutions
chapter.

The Z80 chip also supports various other addressing modes. So far,
the immediate mode for both 8 and 16-bit data, as well as direct
mode for 16-bit data have been used. Another mode is Indirect.

Indirect mode addressing
In this mode of addressing, the contents of a register are used to
point to a memory location. This mode is very useful, as we can
load a 16-bit register with the starting memory address of our
data, read the data, then increment (i.e. add 1 to) the register
pair and access the next item of data.

The instruction family is as follows:-

LD r,(HL) LoaDs register r with the contents of memory
location pointed to by HL. (This in effect
means that we load HL with the memory
address).

LD (HL),r LoaDs the memory location pointed to by HL
with the contents of register r.

3-6

LD A,(BC) LoaDs the accumulator with the contents of
memory location pointed to by BC.

LD A, (DE) LoaDs the accumulator with the contents of
memory location pointed to by DE.

LD (BC),A LoaDs the memory location pointed to by BC
with the contents of accumulator.

LD (DE),A LoaDs the memory location pointed to by DE
with the contents of the accumulator.

The above table may appear formidable at first, hopefully not,
anyway; all will be explained as the instructions are used in
examples.

What we will do now, to illustrate the use of some of the above
commands, is to store the ASCH representation of three A's in
memory, then print them on the screen using the HL register as a
'pointer'.

To simplify loading the three A's into memory we will use BC as a
moving pointer. Thus, if the accumulator contains the code for 'A'
(65), then using LD (BC),A and INC BC we can load three A's into
consecutive memory locations, starting at the address held in BC,
by incrementing BC three times.

Here is a program to do this:-

PROGRAM 3.2 (don't assemble this yet)

ENT
LD BC,35000 BC=start of data in memory
LD A,65 A=65, the ASCII code for 'A
LD (BC),A store first A
INC BC increment pointer
LD (BC),A store second A
INC BC increment pointer
LD (BC),A store third A

Now to write the program to read the data, which starts at 35000,
onto the screen.

3-7

LD HL,35000
LD A,(HL)

CALL 47692
INC HL
LD A,(HL)
CALL 47692
INC HL
LD A,(HL)
CALL 47692
RET

HL=start address
A=contents of memory location
addressed by HL
Print contents of A on screen
Increment pointer
Reload A
Print second character
Increment pointer
Reload A
Print third character
Return.

Assemble and run this program now. While this program
accomplishes its aim, it is not very efficient. Let's now see how
we can improve upon it.

Considering the first section :-

We duplicate the following commands three times, to set up the
data.

LD (BC),A
INC BC

Why not set up a loop? If we load an unused register, say E, with
3, then everytime we load a memory location, we decrement E and
test it to see if this results in a zero. If so, we end the loop,
otherwise we jump back to the beginning of the loop. This method
accomplishes the same task with greater elegance and efficiency.

Here is the first section of the modified program :-

PROGRAM 3.3 (Don't assemble this yet)

ENT
LD BC,35000
LD A,65
LD E, 3 load count register

NXT: LD (BC),A
INC BC
DEC E decrement count
JR NZ,NXT: if not zero jump back to NXT

Note the use of the label NXT to simplify the calculation of the
jump address.

No great time is saved in typing this program in: imagine though
using the previous method to store 200 'A's.

3-8

The same techniques can be applied to the second section.

EXERCISE 3.4

Add a second section to the program, using a
loop to print out the three A's, then assemble
and run it.

EXERCISE 3.5

Write a program to store the alphabet in
memory, then read it out of memory onto the
screen.

See the solutions chapter for possible
answers.

Let's briefly recap upon the addressing modes used so far.

Register -Register

LD B,A

Direct

LD A,(2000)

Immediate

LD A,83 or LD BC.300

Indirect

LD B,(HL)

You will find a full list of the Z80 mnemonics in the appendices.
Most of the 8 and 16-bit load groups should be comprehensible by
now.

3-9

Indexed addressing
In Program 3.3 we used a register pair to access a sequentially
stored block of data. While in certain applications this method is
very efficient, the Z80 offers an alternative. In addition to the
registers already introduced the Z80 contains two 16-bit 'index
registers', IX and IY. If you look up the word 'memory' in the
index of this book, you will probably start by finding the
beginning of the M's, then searching for the word 'memory'. In
other words you have treated the start of the M's as a base and
then started your search from there. This is directly analogous to
Indexed Addressing. The IX or IY register is loaded with a base
address. Then, to access a piece of information, an offset is
added to this base. The general format for the indexed part of an
instruction is as shown below:-

(IX+d)
\ —offset

Index register (base)
could also be IY.

Where d is a number in the range -127 to +128. Here is a sample
instruction using the index register IX:

LD A,(IX+3)

What will this do?

Suppose IX contains 200. What value will be loaded into A?

FIGURE 3.2

Memory
location

Contents

LD A,(IX+3) 200 1
201 2
202 3

LD A, (200+3)----- ► 203 4
204 5

The accumulator will therefore contain 4 after this instruction.
What offset would you have had to use to load A with 3? Answer:
(IX+2)

3-10

Instead of using the IX register as a base we could have used IY
with the instruction:

LD A,(IY+3)

Now let's review the load instructions which use either IX or IY.

Indexed addressing Instructions
There is a shorthand method of describing the operation of an
instruction, referred to as its symbolic operation. Here is an
example :-

Instruction

LD r,(IX+d)

This loads register r with
pointed to by the addition

Symbolic Operation

r 4—(IX+d)

the contents of the memory location
of IX and d. The appendices contain a

complete table of Z80 instructions including symbolic ooerations.

Here are the indexed loading instructions:

Instructions Symbolic Operation

LD r,(IX+d)
LD r,(lY+d)
LD (IX+d),r
LD (lY+d), r
LD (IX+d),n
LD (IY+d),n

r 4— (IX+d)
r ◄- (lY+d)
(IX+d) 4- r
(IY+d)4— r
(IX+d) 4— n
(IX+d)4- n

Now let's see how we can load the IX or IY registers themselves.
Look up the 16-bit load group table, and see if you can identify
what instructions to use.

Here they are; the format should appear familiar:-

Instruction Symbolic Operation

LD IX, nn IX 4-- nn
LD IY,nn IY 4-- nn
LD IX,(nn) IX 4-- (nn)
LD IY,(nn) IY 4-- (nn)
LD (nn),IX (nn)4-IX
LD (nn),IY (nn)4-IY

3-11

One point to note: it is not possible to compute the value of 'd',
it has to be given absolutely - i.e. as an immediate value.

To illustrate the use of index registers, Program 3.2 has been
rewritten.

Note: From now on the ENT instruction will be omitted from all
programs: it will be assumed that you will automatically insert it
as the first line.

Here is the program:-

PROGRAM 3.4

LD IX, 35000 IX=base
LD A,65
LD (IX+0),A first 'A' stored
LD (IX+1),A second 'A' stored
LD (IX+2),A third 'A' stored

The second section, which prints out the contents of memory on the
screen, is as follows :-

LD A,(IX+0)
CALL 47692
LD A,(IX+1)

print first character

CALL 47692
LD A,(IX+2)

print second character

CALL 47692
RET

print third character

Now try it.

Because the Z80 has to add the offset to the base for indexed
instructions, it requires more time to execute than an indirect or
immediate instruction. Also, because 'd' has to be given as an
absolute value, indexed addressing is not much good in a loop, as
'd' cannot be incremented. However, the main advantage of IX and
IY lies in their ability to access data, which is, stored in
memory relative to some known memory location - i.e. for accessing
tables of data, where various items of information are stored
using known offsets.

3-12

EXERCISE 3.6

Write a program using IX to store five
letters, e.g. a name. Then print the third and
fourth letters on the screen.

The following table may help.

Memory
location

Letter Code
for letter

35000 S 83
35001 U 85
35002 s 83
35003 A 65
35004 N 78

A possible solution is given in the solutions
chapter.

Well done! The end of another chapter; all that is left now is a
summary of what you have learnt during this chapter. If you feel
up to it, try writing your own programs. How about printing a
character, erasing it by printing a space over it, then printing
it in another location. This could be the basis of a game!

Summary
The following terms should now be understood

1. Register Pairs

2. Addressing Modes

a. Register-Register
b. Immediate
c. Direct
d. Indirect
e. Indexed

3. M.S.B. and L.S.B.

4. Symbolic Operation

3-13

5. Although not specifically mentioned, the following commands
will probably make sense (ss is a register pair).

INC ss
DEC ss

6. You should now be able to understand these three instructions
which were mentioned briefly in Chapter 2.

DEC (HL)
DEC (IX+d)
DEC (lY+d)

Where ss is any one of the following (ignore SP for now)

BC,DE,HL,SP

d is a number in the range -126 to +129.

3-14

Ç H A P T E R 4.

Arithmetic operations
Most real life situations require the manipulation of numbers. So
far, we can only increment and decrement the contents of registers
or memory locations. The Z80 provides us with some additional
arithmetic instructions which although not extensive form the
basics for more powerful operations.

This chapter explains these instructions. If you are not familar
with the binary or hexadecimal representation of numbers turn to
the Appendix 5 and work through it.

Welcome back.

The concepts of binary and hex (hexadecimal) should now be
familar. You will see why we use hex soon; it saves typing for one
thing!

We can classify the arithmetic instructions into two groups, the 8
and 16 bit. In this chapter we shall be concerned mainly with the
8-bit group, as the 16-bit group naturally follows on.

The most common arithmetic process is adding two numbers. To add
two 8-bit numbers the following instruction is used:

ADD A,n ADD n to the contents of the
Accumulator, replacing the contents
of the accumulator with the result.

To illustrate this command we will add 65 and 20 giving 85. When
the result is printed on the screen we will see a U. (The
character corresponding to the ASCII value of 85).

Try the following program.

4-1

PROGRAM 4.1

ENT
LD A,65
ADD A,20
CALL 47962
RET

Load A with 65
ADD 20 to A
Print the result on the screen

Lo and behold a U appears on the screen.

The assembler also allows numbers to be represented in
hexadecimal. To allow the assembler to distinguish between them,
hexadecimal numbers are preceeded by a

Rewriting Program 4.1 using the hexadecimal representation for
47962, 65 and 20:

PROGRAM 4.2

ENT
LD A,<5c41
ADD A,&14
CALL &BB5A
RET

Verify that this program is exactly the same as Program 4.1 by
running it.

EXERCISE 4.1

Write a program which will add 200 and 48
together then print the result on the screen.

EXERCISE 4.2

Write a program that will add &41 and &10
together. Then print the result on the screen.
What will be printed?

Possible answers are given in the solutions
chapter.

So far all our answers have been less than 255, the maximum number
an 8 bit register can hold. What do you think will happen if 150
and 171 are added together? Try the following program. Don't
forget ENT.

4-2

PROGRAM 4.3

LD A, 150
ADD A, 171
CALL 47962
RET

Load A with 150
ADD 171 to A
Print the result on the screen

What has happened is that the accumulator has overflowed. It
reached 255 then when 1 more was added it went back to zero and
started again, reaching 65; hence the A on the screen.

What cannot be seen from the program is the contents of the flags
register. If observable, it would be seen that as the accumulator
overflowed the carry bit was set (1). This fact can be used to add
together two numbers whose sum is greater than 255. This process
will be illustrated on oaper first, then a program will be written
to accomplish the same task in assembly language.

Problem: Add 1157 to itself, i.e: 1157 + 1157 = ?

Convert 1157 to Hex.

1157 + 4096 = 0 remainder 1157
1157 + 256 = 4 remainder 133
133 + 16 =8 remainder 5
5 + 1 =5 remainder 0

Thus 1157 = *0485.

*0485 expressed in binary is a 16-bit number,
to be split in half to allow the use
instructions. This is easily accomplished in
it is used!)

This therefore needs
of 8-bit arithmetic
hex. (Which is why

MSB = *04

LSB = *85

Note the terms MSB and LSB, meaning Least and Most Significant
Byte, respectively.

4-3

Step 2
To add the two &0485's together we must first add the LSB's then
add the MSB's, taking into account any carry generated by the
addition of the I£B's, --------

85 ' 8 5
+_85 / +8___5

+earry OA (+ carry 6 10 Decimal \
\ + carry 0 A Hex)

Thus the result is &0A + a carry. s'''

Step 3
Add the MSB's taking the carry bit into account.

04
+ 04

08

Now add the carry bit:

01 4-----carry bit
+ 08

09

Step 4
Recombine the new LSB and MSB.

1157 + 1157 = &090A

Now satisfy yourself that &090A equals 2314.

The main point to note is that in all DOUBLE PRECISION work, i.e.
using 16-bit numbers, the LSB is always operated upon first, so
that the carry (if any) can be taken into account.

Before we can write the program to accomplish this addition we
have to be aware of some new instructions:-

AND A Logical AND of the accumulator.

4-4

Only one effect of this operation need to be observed at the
moment, which is resetting the carry flag to zero. Why is this
necessary? Ans: if the carry flag was unintentionally set the
result after the addition would be incorrect due to the inclusion
of the incorrect carry in the addition.

An instruction which adds two registers plus the contents of the
carry flag is now required.

ADC A,s ADd the contents of register s plus
the Carry flag to the contents of the
Accumulator. The result is stored in
the accumulator.

Note that the ADC instruction uses a register as one of its
operands. An instruction similar to ADD A,n exists using a
register in place of the immediate data n.

ADD A,s ADD the contents of register s to the
contents of the Accumulator. The
result is stored in the accumulator.

Now on to the program.

PROGRAM 4.4 (don't assemble this yet)

LD C,&85
LD A,<5(85
AND A
ADD A,C
LD (<5(7OOO),A
LD C,&04
LD A,<5(04
ADC A,C
LD (&7001),A

Load C with the 1st LSB.
Load A with the 2nd LSB.
Clear the carry flag.
A = LSB + LSB.
Save new LSB.
Load C with the 1st MSB.
Load A with the 2nd MSB.
A = MSB + MSB + carry.
Save new MSB.

Well this program adds the two numbers together. But how can the
result be cheeked? What is now needed is a program to display the
answer in a recognizable format. Why can't the contents of the two
memory locations be printed on the screen? Nothing recognizable
would happen, as the ASCII codes <5cO9 and <5cOA do not represent
characters but control codes. An offset has to be added to both
answers to bring them into the ASCII alphabet range (65-122).

4-5

As the code for A is 65, this seems a reasonable offset to use.
Thus adding the following lines to the previous program from where
we left off:

PROGRAM 4.4(a)

LD C,65
LD A,(&7001)
ADD A,C
CALL ABB5A
LD A,(&7000)
ADD A,C
CALL &BB5A
RET

Now assemble and run the whole program. You will see a J and K on
the screen (corresponding to <5cO9 + 65 and &04 + 65).

EXERCISE 4.3

Write a program to add together 250 and 600,
in hexadecimal, adding 65 to the MSB and LSB.
Then print the result on the screen.

Subtraction

SUB s SUBtracts the contents of register s
from the accumulator. The result is
stored in the accumulator.

SBC A,s SUBtracts the contents of register s
plus the Carry Flag from the
Accumulator. The result is stored in
the accumulator.

The process of subtracting two 8-bit numbers is left for Exercise
4.4. Try it!

EXERCISE 4.4

Write a program that will subtract 9 from 233.
Then print the result on the screen. Note that
there is know need to add the offset of 65 to
the result. Why?

4-6

EXERCISE 4.5

Write a program that will calculate the answer
to the following sum:-

(97 + 126) - 153 = ?

Possible answers are given in the solutions
chapter.

As seen previously, when adding two numbers that give a result
greater than 255, overflow occurs. This overflow causes the carry
flag to be set.

The opposite situation occurs when trying to subtract a large
number from a smaller one. For example, try the following:-

25
’ 11 ?

It is not possible to directly subtract 7 from 5 so a unit is
borrowed from the next column. The first step in the subtraction
now becomes:

5 + borrow = 15
- 7 - _7

? 8 Ansl=8

As we have borrowed we have to 'pay back' i.e: subtract one from
the next column.

Completing the subtraction.

2 - borrow = 1
- _1 - _1

? 0 Ans2=0

Combining the two answers (Ansi and Ans2)

0 + 8 = 8

Thus:-

27 - 17 = 8

4-7

By using the same process we can perform this subtraction using
the Z80 subtract instructions.

Problem: Subtract 2000 from 2224.

Step 1
Convert the two numbers to Hex.

2000 + 4096 = 0
2000 + 256 = 7
208 +16 = D
0+1 = 0

2224 +4096 = 0
2224 + 256 = 8
176 +16 = B
0 + 1 = 0

remainder 2000
remainder 208
remainder 0

remainder 2224
remainder 176
remainder 0

2000 = 8c07D0

2224 = 5c08B0

Step 2
Subtract the two LSB's

B0 + borrow =
- DO

??

1B0
DO

. E0

0=0-0
E=1B-D

Step 3
Now the MSB's

08
- 07

99

08
- 07 + borrow = - 08

00

4-8

Combining the two results:

2224-2000 = &00E0

When carrying out this form of subtraction the carry flag acts as
a borrow flag, being set when a borrow occurs. Let's now convert
this subtraction into Z80 instructions.

PROGRAM 4.5

LD C,&D0 C= 1st LSB
LD A,&B0 A= 2nd LSB
AND A Clear carry flag
SUB C A= new LSB
LD (&7000),A Save LSB
LD C,&07 C= 1st MSB
LD A,<5c08 A= 2nd MSB
SBC A,C A=A-C-carry
LD (&700D.A Save MSB
LD A,(&7000) Recall LSB
CALL &BB5A Print result
RET

Points to note: firstly, as the MSB of the answer is known to be
zero there is no need to print it. Secondly, there is no need to
add any offset to the answer as it is within the printable range
of ASCII characters (65-255).

EXERCISE 4.6

Write a program to perform a 16 bit
subtraction using the following instruction
(ss is a register pair - i.e. BC or DE in this
case).

SBC HL,ss

eg. 4248 - 4008 = ?

(Hint: it is a lot easier than Program 4.5.)

Answer in the solutions chapter.

4-9

EXERCISE 4.7

Store two numbers in memory, then add the
contents of the accumulator to both. Replace
the old values with the new calculated
results.

The following tables may help.

Memory
location

Contents

35000 10
35001 20

Accumulator = 65

After program has been run

Memory
location

Contents

35000 75
35001 85

Use the instruction ADD A, (HL). Verify that
the results are as expected by printing the
contents of the memory location on the screen.

Answer in the solutions chapter.

4-10

EXERCISE 4.8

Draw a line to the point 100,50 on the screen
using the line drawing routine. Then add 75 to
each coordinate and draw another line, to this
point.

The line drawing routine is fully documentated
in the appropriate appendix, but briefly: -

Calling Address 48118

Parameters X, Y

X passed in DE
Y passed in HL

A possible answer is given in the solutions
chapter.

Well that concludes the basics of addition and
Although not’ explicitly mentioned, the following
should be self explanatory.

subtraction,
instructions

I nst ruct i on Symbol ic Operation

ADD HL, ss HL-— HL+ss
ADC HL,ss HL-— HL+ss+carry
SBC HL,ss HL-----HL-ss-carry
ADD IX,pp IX-— IX+pp
ADD IY, rr IY-— lY+rr

Where ss is any one of BO,DE,HL or SP
pp is any one of BC,DE,1X or SP
rr is any one of BC,DE,IY or SP

You should be able to understand what each instruction
accomplishes from the symbolic operation. It is possible to add or
subtract 32-bit numbers using the above instructions and the carry
flag, using the same method by which 16-bit arithmetic was carried
out using 8-bit instructions.

4-11

The carry flag Instructions
Before any arithmetic operations, the carry flag has to be reset.
This process has been accomplished using - the AND A instruction.
The carry flag can also be reset by using the two following
instructions:

SCF Set the Carry Flag

CCF Comolement the Carry Flag

To reset the carry flag with these instructions, firstly the carry
flag is set using the SCF instruction, then it is complemented by
using the CCF instruction. When a binary number is complemented, a
zero is replaced by a one; likewise a one is replaced by a zero.
The carry flag when set will equal one, so, after complementing
it, it will equal zero. The reason AND A was used is that it
requires half the time required by SCF and CCF.

Summary
The basics of 8 and 16-bit addition and subtraction .should now be
understood, including the use of the carry flag.

4-12

Ç H A P "1" E R. 5.

Binary Coded Decimal and Logical Operators
In addition to numbers being represented in binary, hex and
decimal notation, another representation exits. This is given the
rather grand name of Binary Coded Decimal. Whereas in binary one
number (0-255) is normally stored per byte, in BCD the byte is
split into two. The name given for each 4-bit half-byte is à
nybble!

For example, 7564 stored in BCD requires 2 bytes (4 digits to
encode -at 2 digits per byte).

7 5

Byte 1 0 111 0 10 1

6 4

Byte 2 0 110 0 10 0

Note that byte 1 is not necessarily stored in memory first. Its
location depends upon the storage format used in the program.

It may have crossed your mind that 4 bits are used to store each
number (0-9) when 3 bits could uniquely store them. The reason 4
bits are used is that BCD has been around much longer than micros.
It was first used on mainframes where it was more efficient to
store BCD digits in 4 bits. BCD is used a lot in accountancy
programs as well as being very useful for passing information to
certain forms of display devices (e.g. the 7-segment displays seen
in calculators and digital watches).

Let's now see how two BCD numbers are added together.

Decimal BCD

8 1000
+ 2 +0010

10 1010

5-1

This is fine but 1010 is 10 in decimal and therefore too large to
be stored in one BCD nybble which can only store numbers 0 to 9.
Some form of adjustment is required for answers bigger than nine.
By adding 6 to any result greater than 9 the correct result is
obtained:

Thus:

First Second
nybble nybble

0000 1010
+ 0000 0110 : - 6 in decimal

0001 0000

Giving the correct representation of 10 in BCD; 0001 0000.

It would soon get very annoying if every time we performed some
BCD arithmetic we had to check the validity of the result and
correct it if necessary. Fortunately the Z80 contains a
instruction to do this for us:

DAA Decimal Adjust the Accumulator

Now on with the programming.

Program 5.1 adds 8 and 2 together to produce the answer in BCD.

PROGRAM 5.1

LD A,8
ADD A,2
DAA
ADD A,65
CALL 47962
RET

Note the use of the offset (65) to bring the result into the
alphabet range.

The result, before the offset is added, will be the BCD
representation of 10 (0001 0000). In decimal this binary value
corresponds to 16. Thus the character with the ASCII code 16+65
will be printed on the sereen(Q).

5-2

EXERCISE 5.1

Add 7 and 12 together in BCD then print the
answer as a letter on the screen.

EXERCISE 5.2

Subtract &12 from &35 then convert the answer
to BCD and print the answer as a letter on the
screen.

Possible answers are given in the solutions
chapter.

In some situations it is necessary to extract the least
significant nybble from a byte. This is accomplished by removing
the most significant nybble. This can be done with the instruction

AND s Logical AND of operand s

Where s is any of A, B,C, D,E,H,L, (HL), (IX+d), (lY+d).

Anyone who has come into contact with digital electronics will
recognise the following symbol. It is the symbolic representation
of an AND gate.

AND Gate

FIGURE 5.1

5-3

The AND gate functions as follows; if and only if both inputs A
and B are set (1) then the output C will be set. Describing the
operation of an AND gate is fairly easy, but as the logic of gates
becomes more complex it becomes increasingly difficult to describe
clearly. The answer to this problem is to use a truth table. A
truth table enables a logic gate's output to be easily and quickly
derived from a given set of inputs.

For example here is the AND gate's truth table.

INPUTS OUTPUT

CA B

0 0 0
0 1 0
1 0 0
1 1 1

Truth Table for Logical AND

FIGURE 5.2

Notice C is set only when both A AND B are, hence the name AND.

EXERCISE 5.3

Using Figure 5.2 decide whether C would be set
or not for the following inputs

1 A=0 B=1
2 A=1 B=1
3 A=0 B=0

When the Z80 chip performs an AND instruction it operates upon 8
bits at a time. Take a look at this:

Problem: What is the result of ANDing 10101101 with
00001111?

Solution:

10101101
AND 00001111

00001101

5-4

What has happened?

The most significant nybble has been 'masked off', i.e. all the
bits comprising the MSN have been set to zero whilst those in LSN
have been left untouched.

This process is very powerful in that it allows us to extract any
portion of a byte using a suitable mask. e.g. To mask off the LSN
of 10111011 we would AND it with 11110000.

1010 1101
AND 1111 0000

1101 0000

Generally any bit position that is required to remain intact is
ANDed with one, the rest with zeros. For example, if the result of
ANDing- an eight-bit number with 00000011 is 2, then we know that
the number, whatever it is, is divisible by 2.

EXERCISE 5.4

What mask would have to be used to result in
00000011 from 10101011?

EXERCISE 5.5

What is the result of ANDing 253 with 75?

The answers are given in the solutions
chapter.

Now to write a program using the AND instruction. Program 5.2
logically ANDs 225 with 254 and then prints the result on the
screen.

PROGRAM 5.2

LD C.225
LD A,254
AND C
CALL 47962
RET

This will produce a 'face' on the screen, the Amstrad's ASCII
symbol for 224.

5-5

AND is not the only logical operator that the Z80 supports. Let's
now investigate the OR gate. The standard symbol for an OR gate is

OR Gate

FIGURE 5.3

The output C is set (1), if either A or B is set (1) or both A and
B are set. This is expressed in the following truth table.

INPUTS OUTPUT

CA B

0 0 0
0 1 1
1 0 1
1 1 1

Truth Table for Logical OR

FIGURE 5. 4

The Z80 OR instruction is:-

OR s Logical OR of operand s

Where s is any of A.B.C.D.E.H.L.fHD.UX+dl.dY+d).

EXERCISE 5.6

What is the result of the following logical
operations?

1. 1001 OR 1101 (binary numbers)
2. 250 OR 25
3. (209 OR 20) AND 27

Answers are given in the solutions chapter.

5-6

It may seem strange that an OR gate produces an output when both
inputs are set (1); indeed this can be a problem in certain cases.
Thus the 'exclusive OR' gate is used, overcoming this problem. The
symbol used to represent an XOR (exclusive OR) is:-

XOR Gate

FIGURE 5. 5

INPUTS
A B

OUTPUTS
C

0 0
0 1
1 0
1 1

0
1
1
0

XOR Truth Table

FIGURE 5. 6

The corresponding Z80 instruction is:

XOR s exclusive OR of operand s

Where s is any of A,B,C,D,E,H,L, (HL),(IX+d),(IY+d).

EXERCISE 5.7

What is the result of the following logical
operations? Try them on paper first and then
verify your answers by writing a program.

1. 1011 XOR 1110100
2. 77 XOR 200
3. (25 OR 255) AND 200

Answers are given in the solutions chapter.

5-7

Signed numbers
So far all the numbers dealt with have been positive. In many
situations a need arises for negative numbers.

How can negative numbers be represented in binary? The method used
allows the Z80 to treat negative numbers in much the same way as
it treats positive numbers. This method is given the rather grand
name "two's complement". Before investigating two's complement,
however, it is necessary to understand the concept of one's
complement!

One’s complement
When using one's complement notation all positive integers are
represented in binary as usual. However, negative numbers are
represented by replacing all the l's in a byte with 0's, and
replacing all the 0's with 1's.

For example:

+9 = 1001

Now replace all the l's by 0's and all the 0's by l's, i.e: l's
complement +9:

1001 l's complement = 0110

Thus in l's complement notation -9 = 0110

But 0110 also represents +6; this is in fact one of the problems
of l's complement notation.

EXERCISE 5.8

Convert the following numbers to their l's
complement form.

1. 1011
2. 1011101
3. 14

Answers are given in the solutions chapter.

5-8

Two’s complement
As in 1's complement positive integers are represented normally in
binary. Negative numbers are first 1's complemented then one is
added to the result. It may seem like a strange way of
representing negative numbers at first, but it works. Let's now
try adding 7 and -5 using 2's complement for -5.

5 = 0101
1's complement 1010
Add 1 + 0001

1011 - -5

Now:-

7 0111
+ (-5) 1011

2 0010 + carry

Ignoring the carry bit, the answer is correct. The fact that the
carry bit can be disregarded, with the result remaining correct,
considerably aids writing simple arithmetic programs dealing with
negative numbers.

EXERCISE 5.9

Calculate the answer to each of the following
problems using the 2's complement
representation for negative numbers.

1. -3 + 10 = ?
2. -1 + 7 = ?
3. -10 + 8 = ?

The answers are given in the solutions
chapter.

5-9

Using 4 bits, the decimal numbers represented by 2's complement
notation are as below:

Decimal Binary

+7 0111
+6 0110
+5 0101
+4 0100
+3 0011
+ 2 0010
+ 1 0001

0 0000
-1 mi
-2 1110
-3 1101
-4 1100
-5 1011
-6 1010
-7 1001
-8 1000

The 16 unique combinations of 1's and 0's which result from 4 bits
no longer represent the integers 0-15 but the integers +7 to -8.
Similary when using 8 bits the valid range of numbers is to +127
to -128. This can lead to problems when adding together two
numbers that result in a number greater than +127.

e.g:
100 01100100

79 01001111

179 10101011

In 2's complement 10101011 represents -85; this is clearly the
wrong answer. Overflow is said to have occurred. This is detected
by the P/V (Parity/oVerflow) flag and it is up to the programmer
how to act on this information. One blunt solution is to declare
the result invalid. Overflow will generally occur under the
following conditions.

When:-

1. Adding together two large positive or negative numbers.

2. Subtracting a large positive number from a large
negative number or subtracting a large negative number
from a large positive number.

5-10

The Z80 contains instructions which convert the contents of the
accumulator into either l's or 2's complement, as follows:

Program 5.3 below calculates the answer to the sum -112 +104.

NEG NEGates the contents of the
accumulator (exactly the same as 2's
complement)

CPL ComPLements the contents of the
accumulator (l's complement).

represents -8. The important point to notice here is that the Z80
cannot distinguish between 248 and -8. 2's complement is a concept
the programmer uses to represent negative numbers, not the Z80,
and as such, care is needed when using it to ensure the expected
result is obtained.

PROGRAM 5.3

LD A,112
NEG
ADD A,104
CALL &BB5A
RET

A=112
A=-112
A =-112+104

When run
Amstrad's
of 248

this program
character for

is 11111000

will print a little
ASCH code 248.

which using the

man
The
2's

on the screen, the
binary representation
complement notation

EXERCISE 5.10

Use the CPL and INC instruction instead of NEG
to calculate the result of the following sum

-20 + 98 = ?

A possible answer is given in the solutions
chapter.

That's 'yer lot' for another chapter; now to summarise.

5-11

Summary
The following ideas and concepts should now be familar.

1. BCD Arithmetic

2. Logical Operators

1. AND
2. OR
3. XOR
4. Logical Masks

3. Signed Numbers

1. I's Complement
2. 2's Complement
3. Overflows

The following instructions should also be recognised.

DAA AND s

CPL OR s

NEG XOR s

5-12

Ç H A P E R 6.

Multiplication, Division and the Rotate Group
Almost all real life computer applications require the
manipulation of numbers. Whilst some only require basic adding and
subtracting, many require multiplication and division. This
chapter looks at how these arithmetic functions can be implemented
in assembly language.

Binary Multiplication
Before we embark upon Binary Multiplication, let's examine the
decimal multiplication process. Take the sum 13x14. We define 13
as the MULTIPLICAND and 14 as the MULTIPLIER and lay out the
multiplication as below: -

13 Multiplicand
14 Multiplier

52
130

182 Answer

The multiplication is performed by multipling the multiplicand by
the rightmost digit of the multiplier and storing this result as
the first "partial product", i.e. 13x4=52. Next we multiply the
multiplicand by the next digit of the multiplier, resulting in the
second partial product. i.e. 1x13=13. This partial product is
written down shifted one bit position to the left. The two partial
products are now added together resulting in 182, the correct
answer.

It is quite possible to use the same method when performing binary
multiplication.

6-1

For example, to multiply 5x7 in binary: -

5 = 0101 (working only to 4 bits)
7 = 0111

0111 - (7)
x 0 1 0 1 = (5)

Adding as we go!
Partial Product 1 0111 0111
Partial Product 2 00000 0111
Partial Product 3 011100 100011
Partial Product 4 0000000 100011

Ans 100011

100011= (1x32)+(Oxl6)+(Ox8)+(Ox4)+(1x2)+(lxl)=35

With 1 as the rightmost digit of the multiplier, the partial
product has the same pattern of digits as the multiplicand i.e:
0111. Otherwise the partial product is zero, i.e. 0000. Every new
partial product is written down shifted one bit position to the
left. Thus binary multiplication reduces to successive additions
and shifts.

8-Bit Multiplication
In order to perform a multiplication
accumulator to hold the 'running
multiplicand and register E for the
the partial products are formed.

using the Z80 we will use the
total', register C for the

multiplier. Let's now see how

Partial
Partial
Partial
Partial

Product
Product
Product
Product

1
2
3
4

0111
0000

0111
0000

= 0111
= 0111
= 0111
= 0111

x
X
X
X

0101 = 5

0111 shifted left each
time (called the invisible
partial product IPP)

Just the next bit
in 0101 each time

The problem of binary multiplication can be expressed in a
flowchart as follows:

6-2

FIGURE 6.1

6-3

All that is required before starting to write the program are the
instructions that enable us to shift bits within bytes.

SRL s Logical Shift Right of operand s

Represented diagramatically:

Operand byte Carry
flag

For example, consider shifting
SRL.

10110111 right with the instruction

Before

After

Bit 7 has been replaced with a 0, bits 1 to 6 shifted right one
position and bit 0 moved into the carry flag.

Now onto the program:

PROGRAM 6.1

LD A,0
LD C,7
LD E, 5
LD B,4

ADD: SRL C
JR NC.NOADD:

ADD A,E

NOADD: SLA E
DEC B
JR NZ.ADD:

ADD A,65
CALL &BB5A
RET

Zero Accumulator
C = Multiplicand
E = Multiplier
B = Count (for 4bits)
Shift C right
If rightmost bit = 0 then
jump to NOADD
Add IPP to running total in
accumulator
Shift IPP left
Decrement counter
Jump back to ADD if there are
still some more bits to multiply
Add offset
Print character on screen
Return

6-4

An offset of 65 is used resulting in the character with an ASCII
code of 100 being printed on the screen, i.e. a lower case d (The
answer to 7x5 was 35, 35+65=100)

EXERCISE 6.1

Write a program to multiply 10x9. Then print
the result directly on the screen.

A possible answer is given in the solutions
chapter.

Program 6.1 can only multiply together two numbers which result in
a sum less than 255. The main reason for this limiting factor is
that as the invisible partial product is shifted left it will
eventually shift completely out of the register. A smiliar problem
occured when we were dealing with 16 bit addition and subtraction.
The problem was overcome by reloading the high order register with
the carry bit when overflow occured. What is now required is an
instruction which after a shift instruction on the LSB will shift
the MSB including any generated carry. This is accomplished with
the following instruction:

RL s Rotate Left operand s including the carry
bit

Represented diagramatically:

Carry Operand
bit

The carry flag is loaded into bit 0, bits 1-8 are shifted left one
position and the carry flag loaded with bit 7.

To shift a 16 bit register two instructions are thus required. The
LSB is shifted normally using the SLA instruction then the MSB is
shifted using the RL. For example suppose we wanted to shift left
the contents of DE. The following instructions would accomplish
this.

SLA E
RL D

6-5

Now to incorporate this new instruction into a program.

Problem Print the result of the following sum on the
screen: 7 x 10 = ?

PROGRAM 6.2

LD C,7 C = Multiplicand
LD E, 10 E = Multiplier
LD D,0 Zero register D
LD B,8 B = Number of bits
LD HL,0 Zero HL, it will be used to keep the

running total
NXTB: SRL C Shift multiplicand right

JR NC,NOADD: If carry=0 jump to NOADD
ADD HL,DE Add IPP to running total

NOADD:SLA E Shift LSB left
RL D Reload carry and shift D left
DEC B Decrement counter
JR NZ,NXTB: Jump back if any more bits left
LD A,L Load A with answer
CALL &BB5A Print answer on screen CF1).
RET

Note that although we used a 16 bit register for the result due to
the careful selection of the multiplier and multiplicand only the
LSB contains a value, allowing us to print it on the screen.

EXERCISE 6.2

Using Program 6.2 calculate the answer to the
sum 146x124. Note that this results in a 16
bit answer, thus both H and L will have to be
printed on the screen.

A possible answer is given in the solutions
chapter.

Program 6.2 used register B as a counter. Everytime the multiplier
was shifted left, B was decremented then tested. This operation
requires two instructions DEC and JR NZ. These two instructions,
can however be replaced by just one, making the program more
efficient and elegant.

6-6

DJNZ e Decrement B and if this results in a Non-Zero
answer Jump to memory address e.

EXERCISE 6.3

Replace the DEC B and JR NZ, NXTB with a DJNZ
NXTO instruction in Program 6.2, or your
answer to Exercise 6.2

An answer is given in the solutions chapter.

Binary division is also possible using a very similar method to
that used for multiplication.

Binary Division
Consider the following division:

Firstly we try to divide 7 by 10; as 10 does not go into 7 the
next step is to bring down the 8 and try to divide 78 by 10. This
divides seven times with a remainder of 8.

7
10 |785

As 10 'doesn't go into' 8, the next step is to bring down the 5
and try to divide 85 by 10. This divides 8 times remainder 5.

78 remainder 5
101785"

Thus the result is 78 remainder 5. This form of division is termed
'integer division' as fractions are not considered.

As with multiplication the various numbers in a division sum have
names; for example 'remainder' is already familar. The others are
as follows:

quotient

divisor

10 |785

t
dividend

remainder 5

6-7

Now to consider a 16 bit by 8 bit division.

Problem Print the result of the following division on the
screen in a recognisable format.

2765 75 = ?

Binary division is carried out as follows. If without borrowing,
the 8 bit divisor can be subtracted from the MSB of the 16 bit
dividend, then the relevant bit in the 8 bit answer is set. This
process is repeated eight times resulting in an 8 bit quotient and
an 8 bit remainder.

PROGRAM 6.3

LD HL, 2765 HL = Dividend
LD C,75 C = Divisor
LD B,8 B = Count

NXT: ADD HL,HL Shift dividend left
LD A,H A = MSB of dividend
SUB C Subtract divisor
JR C.NXTB: If carry jump to NXT
LD H,A Reload dividends MSB
INC L Increment answer

NXTB: DEC B Decrement counter
JR NZ, NXT: If non-zero jump to NXT
LD A,L A = answer (quotient)
CALL <5cBB5A Print answer
LD A,H A = Remainder
CALL &BB5A
RET

Print remainder

Run the program. It will print '$A' on the screen, where the ASCII
code for '$' corresponds to the answer and 'A' the remainder.
Check that these are correct. One point to note as the Z80 doesn't
contain a 16 bit left shift instruction, ADD HL,HL was used. In
binary, adding a number to itself is the same as shifting it left
one bit position, or multiplying by two. If you compare this with
the base 10 case, say, shifting left 19 will give 190 - the same
as multipling by 10. What do you think will be the effect of
shifting a binary number right one bit position? (Answer: it's the
same as dividing the number by 2).

6-8

So far only a few of the Z80's shift instructions have been used
in general purpose multiplication and division routines. It is
sometimes easier and quicker to use a small group of shift or
rotate instructions to perform a a specific arithmetic operation.
By using a rotate as opposed to a shift instruction the register
contents are altered, but no information is lost - i.e. no bits
dissapear off the end without trace. Here .is an instruction which
rotates the contents of the accumulator left:

RLCA Rotate the contents of the Accumulator
Left and load a copy of bit 7 into the
Carry flag.

Representing RLCA diagramatically:

Carry
flag

Accumulator

Notice that bit 7 is not lost but inserted into bit 0. An
instruction to rotate the contents of the accumulator right also
exists:

RRCA Rotate the content of the Accumulator
Right and load a copy of bit 0 into the
Carry flag.

Let's now use these two instructions.

Problem Multiply 10 by 16, print the result on the screen,
divide the result by 2 and print the new result on the
screen.

6-9

PROGRAM 6.5

LD A,10
RLCA
RLCA
RLCA
RLCA

A=10
A=20
A=40
A=80
A=160

CALL &BB5A
RRCA A=80

Print A ('*')

CALL &BB5A Print ACP')
RET

EXERCISE 6.4

Write a program to calculate and print the
results of the following sums in the screen
using the rotate and add instructions.

1. 5 x 32 - (160)
2. 254 - 2 = (127)

Possible answers are given in the solutions
chapter.

The Z80 supports more rotate and shift instructions than have been
used, these are detailed in the appendices under The Z80
instruction set'.

Now let's have a look at a set of instructions that allow
individual bits within a byte to be set, reset or tested.

The Bit Set, Reset and Test Group
Consider the following instruction:

BIT b,r Tests the bit at position b in the
operand r.

This instruction is used whenever a a particular bit in a byte
needs to be tested e.g: in input/output operations.

To illustrate the use of this command, a register will be zeroed,
increment until bit 7 is set, the resultant register contents will
then be printed on the screen.

6-10

PROGRAM 6.6

NXT:
LD A,0 A=0
INC A Increment A
BIT 7,A Test bit 7 of accumulator
JR Z,NXT: Is bit 7 set?
CALL &BB5A Print contents of A on the

screen
RET

This program loads A with zero and repetedly increments it until,
eventually, bit 7 is set.Run it; no great effect is noticed as bit
7 being set corresponds to 128 in decimal, the ASCII for a space.
Try inserting either a INC A or DEC A instruction just before the
CALL &BB5A instruction to print something visible on the screen.

Two further bit instructions exist: one to set and the other to
reset an individiual bit within a byte.

SET b,r SETs the bit at position b in the
operand r.

RES b,r RESets the bit at position b in the
operand r.

To illustrate these instructions, consider the ASCII code for 'C,
in binary 01000011. If bit 0 is reset, the effect is the same as
subtracting one, resulting in the ASCII representation of 'B'.

PROGRAM 6.7

LD A,67
CALL &BB5A
RES 0,A
CALL &BB5A
SET 0,A
CALL <5cBB5A
RET

A=ASCII for 'C
Print 'C
Reset bit 0
Print 'B'
Set bit 0
Print 'C

6-11

EXERCISE 6.5

Write a program that loads the accumulator
with 255, prints the contents on the screen,
resets bit 4, prints the result on the screen,
sets bit 4 resets bit 3 and then prints the
final result on the screen.

A possible answer is given in the solutions
chapter.

Well that concludes another chapter, by now you should have a fair
idea as to how to write a fairly complex program. Now to
summarise:

Summary
The following ideas and instruction groups should now be
reasonably familiar:

1. Binary multiplication and division
2. The shift and rotate group.
3. The bit set, reset and test Group.

6-12

Ç H A P "J" E R 7
The Stack
The stack is a b.ock of memory located from ócCOOO downwards. It is
used for the rapid transfer of data, and is filled downwards from
&C000, the next vacant location being recorded by a register
called the Stack Pointer', or SP. The usual analogy is with a
stack of plates, only the top one being accessible as this was the
last one put there. However, the stack is filled DOWNWARDS, i.e.
from &C000 towards zero, so plates are put in and retrieved from
the bottom, antipodean fashion! This mode of filling and emptying
the stack is known as 'last in, first out' or LIFO, so the stack
is a LIFO store.

One function of the stack is to record addresses during subroutine
calls, which the Z80 does automatically. When the Z80 sees an
instruction such as CALL &BBBA, it must first of all record where
the next instruction in the calling routine (main program) is, so
that it can find it again after the subroutine has been executed.
It then places the 'BBBA' into the PC (program counter).

Suppose the Z80 is about to execute the following instruction:

CALL &BBBA

The Z80 does the following things:

1. Increment PC
2. Fetch command byte ('CALL')
3. Increment PC
4. Fetch first byte of operand (&BA)
5. Increment PC
6. Fetch second byte of operand (&BB)
7. Store MSB of PC on stack
8. SP = SP-1
9. Store LSB of PC on stack
10. SP = SP-1
11. Put &BBBA into the PC
12. Execute subroutine, up to RET
13. Increment PC
14. Fetch command byte ('RET')
15. Load LSB of PC from stack
16. SP = SP+1
17. Load 'VßB of PC from stack
18. SP = SP+1
19. Increment PC
20. Continue with main program

7-1

In this example, the subroutine could well have met further
subroutines or 'nested' subroutines, and each time a CALL was
executed the return address would have been piled onto the stack.
Then as the program RETurned successfully through these
subroutines, the return addresses would have been strioped off
successively to steer the Z80 back to the original point of
departure. The area of memory used for the stack is more than 256
bytes long, so there should be plenty of room.

Fortunately, the operation of the stack in recording addresses
when executing subroutines is automatic and so the programmer can
allow the Z80 to do the job. However, when using built-in
subroutines, the stack does not automatically store register
contents but must be programmed to do so. The instructions for
doing this are:

Push and Pop

PUSH qq PUSH register pair qq onto the stack

Where qq is any of AF, BC, DE and HL. PUSH also comes in a form
suitable for storing IX and IY:

PUSH IX PUSH the IX register onto the stack

PUSH IY PUSH the IY register onto the stack

These instructions copy the contents of the specified registers
onto the stack. Having dealt with the subroutine or whatever, to
restore the former contents of the registers, the instruction POP
is used:

Again, qq is any of AF, BC, DE or HL.

POP qq Retrieve register contents from the
stack

POP IX Retrieve IX from the stack

POP IY Retrieve IY from the stack

7-2

Whether you are using PUSH or POP, there is no need for you to
update the stack pointer - this is taken care of automatically.

When storing register contents on the stack, it is important to
remember that the stack is a LIFO structure: you will normally
retrieve the registers in the reverse order to that in which you
stored them. Also, when writing a program incorporating PUSH and
POP, every PUSH should be matched by a POP, otherwise the computer
could get mixed up: it might, for instance, think that a number in
the stack is a RETurn address, when in fact it is the unPOPed BC
register pair. Obviously, this could lead to a system crash.
Program 7.1 is an example of using PUSH and POP correctly, to
preserve A and HL. It uses two of the computer's built in
routines; one is the familiar &BB5A output text routine. The other
is at location &BB75 and sets the text cursor position (see
Appendix 4 for details). To use it, H must contain the column
position and L the row position required. Note that &BB75 corrupts
the registers, which is why it is a good idea to store them on the
stack!

PROGRAM 7.1

LD HL.&0604 Load H with column 4 and L with row 6
LD A.&4D Load A with ASCII IM'
PUSH HL Copy HL onto stack
PUSH AF Copy A on stack
CALL &BB75 Set cursor using HL
POP A F Recall A
CALL &BB5A Write 'M' at cursor using A
LD BC,<5<0101 Put cursor offset in BC
ADD HL,BC Add offset to HL
PUSH AF Save AF on the stack
CALL &BB75 Update cursor position (HL)
POP A F Recall A
CALL &BB5A Write 'M' at new cursor position
RET Back to BASIC

This should produce two M's, in consecutive diagonal positions.
There are a couple of points worth noting in Program 7.1. Firstly,
although things are PUSHed onto the stack, the information remains
in the relevant registers until they are changed as PUSH only
copies registers onto the stack; in the above program, the
register contents are changed unpredictably ('corrupted') by the
use of the built-in routines. Nevertheless it was still correct to
PUSH AF and then CALL a routine which uses the contents of the A
register, as this hadn't been changed up until then. Another point
to note is that even though only A had to be preserved, AF had to
be PUSHed onto the stack, as PUSH only works with register pairs.
Similarly for POP.

7-3

EXERCISE 7.1

Write a short program to:

a) set the graphies cursor to (0,0)
b) put 100 in DE and 200 in HL
c) save DE and HL on the stack
d) draw a line to (100,200)
e) reset the graphies cursor to (0,0)
f) retrieve DE and HL, but putting the old

contents of DE into HL and vice-versa.
g) draw a line to (200,100)

Hint: see Appendix 4; &BBC0 to set the cursor
and &BBF6 to draw the lines. A possible answer
is given in the solutions chapter.

If you have done the above exercise, you may have noticed in the
solution an interesting way of swapping the contents of DE and HL:

PUSH DE
PUSH HL

POP DE
POP HL

The registers are POPed in the 'wrong' order.

There is another way of swapping the contents of the register
pairs DE and HL:

EX DE,HL Exchange contents of DE with HL

This instruction only works as written above; i.e. EX HL, DE or EX
BC,HL etc. will not work.

7-4

The Stack Pointer (SP)
To keep track of which items to POP next, or where to place the
next item to be PUSHed onto the stack, the Z80 uses a special
register called the Stack Pointer, or SP. This normally points to
the last location in the stack - i.e. to the last byte within the
stack.

There are several instructions that allow the programmer to access
the stack pointer, and change it. Using these, it is possible to
set up a 'user stack'. After adjusting SP to point to some new
memory location, the Z80 will use the new location as the start of
a new stack, completely ignoring the old one. Thus, if a new stack
is set up within a subroutine, it is important to preserve any
RETurn addresses by PUSHing them onto the new stack.

There are three LD instructions which can be used to alter SP:

LD SP,HL LoaD SP with the contents of HL

LD SP,IX LoaD SP with the contents of IX

LD SP,IY LoaD SP with the contents of IY

To find out the current value of SP, the following instruction can
be used:

LD (nn),dd LoaD memory location nn with the
contents of register pair dd

dd can be any of BC, DE, HL or in this case, SP.

Just to prove that setting up your own stack will work, try the
following program:

7-5

PROGRAM 7.2

LD A, 43
PUSH AF
CALL &BB5A
LD (&714A),SP
LD HL,¿<7148
LD SP,HL
LD A,61
PUSH AF
CALL &BB5A
LD HL,(&714A)
LD SP,HL
POP AF
CALL &BB5A
RET

Put '+' in A
Store A in current stack
Put '+' on screen
Remember current value of SP
Get ready to:
Set up new stack at 47148
Put '=' in A
Store A in new stack
Put '=' on screen
Find original location of SP
Go back to original stack
Retrieve '+'
Put '+' on screen

Program 7.2 will put '+=+' on the screen. If the stack pointer had
not been moved to a new location, then the POP AF would have
retrieved an ’=' instead, and the screen would have displayed
'+=='. Just to prove that there is a new stack at 47148, try the
following short exercise!

EXERCISE 7.2

Extend the above program so that it retrieves
the '=' and displays it and then puts SP back
where it came from again to retrieve and
display
display

another
'+=+=+'.

'+'. The screen should then

Hint: Remember that SP should point to the
last location within the stack, so moving it
to 47148 will not work. Use 47146.

A solution is given in the solutions chapter.

To conclude this chapter, it is worth mentioning the other
commands that can affect the stack. These allow the advanced (and
careful!) programmer to mess about with the contents of the stack
without necessarily PUSHing or POPing repeatedly to get the SP to
point to the desired element in the stack.

7-6

First of all, there are three more Exchange instructions:

EX (SP),HL Exchange contents of HL with the
top of the stack.

EX (SP),IX Exchange contents of IX with the
top of the stack.

EX (SP),IY Exchange contents of IY with the
top of the stack.

The other instructions which can affect SP are:

INC ss

DEC ss

INCrement register pair ss

DECrement register pair ss

ss is any of BC, DE, HL or SP.

ADD IX,pp ADD contents of register pair pp to
IX

Where pp is any of BC, DE, IX or SP.

Where rr is any of BC, DE, IY or SP.

ADD IY,rr ADD contents of register pair rr to
IY

7-7

Summary

POP LD (nn),dd
EX (SP),HL

Having read this chapter, you should know about the following:

LIFO
SP
PUSH

EX DE,HL
Which part of the stack SP points to
User stacks

7-8

CHAPTER 8

Block moves and compares
The Z80 has several instructions designed to allow whole sections
of memory to be handled easily, and without the program having to
specifically include the addresses of each individual memory
location. These instructions can be divided into two classes. The
block moves allow areas of memory to be copied from one place to
another. The block compares are used to search a region of memory
for some specific data item.

Block moves
The first of the block move instructions to be looked at in this
chapter is LDI:

LDI LoaD memory from memory and Increment data
pointers

To use this instruction, HL should contain the address of the
memory location that the data is to come from, and DE should
contain the address of the memory location that the data is to be
copied into. After executing this instruction, the Z80 increments
both DE and HL. Also it decrements BC; this makes LDI particularly
useful in loops - BC can be used as a loop counter. When BC is
decremented to 1, the parity/overflow flag is reset to 0 - at
other values of BC, LDI sets this flag to 1, so that it can be
tested to end a loop upon being set, using the PO condition. This
is described in more detail below; but first the program.

As an example of using LDI, Program 8.1 copies some memory onto
the screen. It copies some data from part of the stack, which
occupies memory locations &B100 to &BFFF, to the screen, which
corresponds to memory locations <5cC000 to <5cFFFF inclusive.

8-1

PROGRAM 8.1

LD HL.&B992
LD DE.&COOO
LD BC.&Al

LOOP: LDI
JP PO,FINISH:
JP LOOP:

FINISH: RET

This should produce
screen, with a short
side.

Load HL with start address of data
Load DE with destination
Load BC with amount of data + 1
Copy a byte of data
Exit loop if BC = 1
Else continue loop

a horizontal multicoloured line across the
multicoloured line at opposite ends on either

Parity
As stated earlier, the parity/overflow flag is set when it is
decremented to 1 rather than zero, so it is necessary for accurate
memory copying to load BC with the number of bytes to be copied
plus 1. To test the parity/overflow flag, the conditions are PO -
'parity odd' and PE - 'parity even'.

'Parity' refers to the number of bits set in the byte or flag
being tested: even parity means that an even number of bits are
set and odd parity means that an odd number of bits are set. Thus,
when the parity flag is set, it contains an odd number (1) of set
bits, and can be tested with the PO condition, as in Program 8.1
above:

JP PO,FINISH:

Should you ever need to test the parity of a byte of data, this
can be done by loading A with 255, and ANDing it with the byte in
question. The parity flag will be set appropriately and can be
tested with a statement such as the conditional JP above. Parity
tests are usually used in communications systems: one bit of each
byte will be set aside for use as 'parity bit' which will be set
or reset appropriately for each byte so that all bytes transmitted
and received will have identical parity. If any interference
garbles the data, the chances are that the parity of some bytes
will have changed, and this can be detected.

8-2

EXERCISE 8.1

Write a program similar to Program 8.1, to
copy &3FFF bytes starting at &B100, and to
display them on the screen starting at &C000.
Warning: be careful! A mistake might cause the
computer to crash, requiring you to reload the
assembler. A possible answer is given in the
solutions chapter.

The solution to Exercise 8.1 fills the screen with rubbish
alright, but it might be nice to see this done more slowly. Try
Program 8.2:

PROGRAM 8.2

LD HL.&B100
LD DE.&C000
LD BC.&4000

LOOP: LDI
JP PO,FI NISH:
LD A,&FF

DELAY: DEC A Time 'wasting' instructions
JP NZ,DELAY:
JP LOOP:

FINISH: RET

When this is run, the screen fills up line-by-line, the lines at
first separated, and then the gaps being filled in.

The reason the screen fills up like that rather than, say, line-
by-line with no initial separation between the lines, is because
of the way the computer controls the screen. Consecutive bytes of
screen-memory (i.e. from &COOO to &FFFF) do not control (or in the
jargon are not 'mapped on to') consecutive screen locations on the
monitor. Details of how the screen memory is organised are to do
with the 'operating system' of the computer rather than machine
code or assembly language, and the interested reader is referred
elsewhere, e.g. to Amsoft's "The Complete CPC 464 Operating System
Firmware Specification", SOFT 158.

8-3

Program 8.2 illustrates, indirectly, the main purpose of the LDI
block move instruction: you can put extra instructions in between
successive operations of the LDI instruction. Program 8.1
illustrates LDI's main drawback: if you don't require any extra
instructions between each operation of LDI, you still have to have
a jump back to the LDI to get it to repeat. This wastes both
memory space and time. The Z80 has a fix for this:

LDIR LoaD memory from memory, Increment data pointers
and Repeat

This instruction acts in exactly the same way as LDI except that
it automatically repeats itself until BC has been decremented to
0. Also, it sets the pari ty/overf low flag to 0 regardless of the
current value of BC. This doesn't matter of course, as with
automatic repetition there is no need to do any tests to find out
whether it has finished or not anyway. Program 8.3 is a rewritten
version of Program 8.1, replacing LDI and JP with LDIR.

PROGRAM 8.3

LD HL.&B992
LD DE.&C000
LD BC.&AO
LDIR
RET

Note that in this case, it is not necessary to load BC with the
number of bytes to be transferred plus one, as LDIR stops when BC
is zero, whereas in Program 8.1 and 8.2 the loop was ended when
BC=1. BC need only be loaded with the actual number of bytes to be
transferred.

There are two more block move instructions:

LDD LoaD memory from memory, Decrement data pointers

LDDR LoaD memory from memory, Decrement data pointers
and Repeat

8-4

These are the same as LDI and LDIR respectively except that DE and
HL are decremented rather than incremented. For example, try
Program 8.4, which will fill the screen from the bottom up:

PROGRAM 8.4

LD HL,<5cBFFF
LD DE.&FFFF
LD BC,*4000

LOOP: LDD
JP PO,FINISH:
LD A,<5cFF

DELAY: DEC A
JP NZ,DELAY:
JP LOOP:

FINISH: RET

Compares
It is often handy in a program to be able to compare two values,
and then to make a decision according to the result - as in the
BASIC IF...THEN construction. The assembly-language equivalent is

CP s ComPare s with A by subtracting s from A, leaving
A unchanged

In the above, 's' is any one of the following: A, B, C, D, E, H,
L, (IX+d), (IY+d), (HL). After subtracting s from A, the result is
not kept (i.e. A is not corrupted) although the consequences of
the subtraction are recorded by the carry, zero, overflow, sign
and half-carry flags. The overflow, sign and half-carry flags are
discussed elsewhere in the book. They are used when you wish to
compare two's complement numbers.

Since the comparison subtracts s from A, the carry flag will be
set if s>A, and reset otherwise. If s=A then the zero flag will be
set, otherwise reset. Program 8.5 demonstrates the use of CP.

8-5

PROGRAM 8.5

LD A.&21
LD B.&40
CP B
JP C,BIGGER:
JP Z,EQUAL:
LD A,<5c73
CALL &BB5A
LD A,<5c3C
CALL &BB5A
LD A,&41
CALL &BB5A
RET

Put a number into A
Put a number into B
Compare B with A
If carry set, B>A
If zero set, B=A
Else B<A;Put ASCII 's'
Put on screen
ASCII '<'
Put on screen
ASCII 'A'
Put on screen
Exit program

in A

BIGGER: LD A,&73
CALL &BB5A
LD A,&3E
CALL &BB5A
LD A,&41
CALL &BB5A
RET

ASCII 's'
Put on screen
ASCII *>'
Put on screen
ASCII 'A'
Put on screen
Exit program

EQUAL: LD A,&73
CALL &BB5A
LD A.&3D
CALL &BB5A
LD A,&41
CALL &BB5A
RET

ASCII 's'
Put on screen
ASCII '='
Put on screen
ASCII 'A'
Put on screen

Try this program out again with values &40 in A and &21 in B, and
with &21 in both A and B to check that it works as you might
expect it to.

Not only does the Z80 have the above compare instruction, it has
some block compare instructions as well. The first of these is CPI

CPI ComPare A with memory, Increment data pointer

As with LDI, this instruction decrements BC, the 'Byte Counter'.
Also, the parity flag is set when BC is decremented to 1,
otherwise it is reset. This instruction does not use the carry
flag, however, but it does affect the zero flag. This means that
CPI can only be used to test for equality, not greater than or
less than. Program 8.6 searches memory for a bracket '(' and puts
one '(' on the screen for each one it finds in memory.

8-6

PROGRAM 8.6

LOOP:

LD A.&28
LD HL,<5cO
LD BC.&O
CPI
JP PO,FINISH:
CALL Z,FOUND:
JP LOOP:

Put '(' in A
Start at beginning of memory
Search 64k (BC=bytes+l,O-l=FFFF)

FINISH: CALL Z,FOUND:
RET

FOUND: CALL &BB5A
RET

Finish if parity flag set
Call 'found' if zero set
Loop again
Check zero flag before finishing
Back to the assembler
Put '(' on screen
RETurn from subroutine

One thing to note in this program is that the 'FOUND' subroutine
needs to be called from within 'FINISH' because if Z was tested
before PO, and a '(' was found, calling BB5A would corrupt the
parity flag. If PO is tested first this problem does not arise.

Another block compare instruction is:

CPIR ComPare A with memory, Increment data pointer and
Repeat

This instruction is the same as CPI, except that it automatically
continues either until a match is found, or until BC=0. Program
8.6 can be rewritten simply by changing CPIR for CPI. The new
program will run faster with CPIR because the conditions do not
need to be tested after every comparison.

The last two block comparisons are the same as CPI and CPIR except
the data pointer, HL, is decremented rather than incremented:

CPD ComPare A with memory, Decrement data pointer

CPDR ComPare A with memory, Decrement data pointer and
Repeat

Unlike LDD and LDDR, these instructions do still effect the parity
flag.

8-7

In case you ever need to know, a table of the effects of
comparisons on the testable flags C, S and V is to be found in the
appendices. This should be referred to if you ever need to compare
two's complement numbers (i.e. numbers greater than 128)

Summary
Having read this chapter, you should now be aware of:

LDI LDD
PE LDDR
PO CP s
parity CPI
a delay loop CPIR
LDIR CPD

CPDR

8-8

c H A P E R 9

Special Operations and Interrupts
This chapter is about some of the least useful features of Z80
assembly language, at least from a purely software point of view.
Many of the special operations and features described in this
chapter are hardly used at all by most programmers. However, it is
worth being aware of them. Interrupts, discussed below, are very
useful, but detailed discussion of them is beyond the scope of
this book as they are really a matter for a hardware manual.

Interrupts
When doing a job that has to be done, no-one likes interruptions
until the job is finished. The Z80 is like that too. Whilst
executing a piece of program, it has all its registers under
control, and all its flags set appropriately.

An interrupt, however, is a subroutine that demands execution when
IT is ready, and not the Z80. In other words, an interrupt comes
from outside the Z80's direct field of control - either from some
external device, or from the keyboard. Thus, flags have to be
stored by the Z80 - usually on the stack. Then the Z80 will
'service' the interrupt - i.e. do whatever it is required to do by
the interrupt, and then it must restore all the registers and
flags and continue with the original program.

Interrupt handling should be allowed for in any program which
expects interrupts, particularly if the program does certain jobs
which must not be interrupted. If, for intanee, another device is
sending a stream of data into memory, then a 'hand-shaking'
procedure is carried out between the two machines. Quite simply,
this is an exchange of messages like: "I am ready to send data,
are you ready to receive it?" "Yes." "Here's the data end of
data." "Thanks!"

If such an exchange is interrupted, then the data is likely to
become garbled, and hence worthless. During such periods when no
interrupting is allowable, the program can block most interrupts -
not all - to allow a particular process to be completed.
Interrupts which can be blocked are called 'maskable' interrupts,
and interrupts which cannot be blocked are called 'non-maskable'
interrupts, or NMI's.

9-1

The instruction to block all maskable interrupts is DI:

DI Disable maskable interrupts

Having completed the, preferably short, section of the program
which cannot be interrupted, interrupts can be re-enabled using El

El Enable maskable Interrupts

When the Z80 services an interrupt,
machine-code subroutine. In common
must be terminated with a return
interrupts the instruction is:

it does this by means of a
with other subroutines, they
statement. For non-maskable

RETN RETurn from Non-maskable interrupt

For maskable interrupts it is:

RETI RETurn from Interrupt

If you think about the above, you may realise that interrupts
could be interrupted. There are priorities, however: for instance,
a maskable interrupt will not normally be allowed to interrupt a
non-maskable interrupt - it will usually just have to wait.

The highest priority interrupt of all is a 'bus request' or BUSRQ.
With other maskable and with non-maskable interrupts, the Z80 will
at least finish executing the current instruction before dealing
with the interrupt. With a BUSRQ, however, the Z80 reacts on the
next 'tick' of its internal clock - i.e. on its next cycle -
whether it has finished the current instruction or not.

How the Z80 reacts to maskable interrupts depends on the current
'interrupt mode'. In all cases, it first of all disables further
(maskable) interrupts, and saves the PC on the stack. It is
necessary always to re-enable interrupts (El) before returning
from your servicing routines.

9-2

Interrupt Modes For Maskable Interrupts

The default mode is mode 0. It can be set within a program using
the instruction:

IM 0 Set Interrupt Mode 0

Upon receiving and accepting a maskable interrupt in mode 0, the
Z80 will expect the external device to give it an instruction on
its next clock-cycle via its general input line, the 'data bus'.
This instruction is usually a CALL to an interrupt servicing
routine that the programmer has placed somewhere in memory. It is
also often a ReSTart instruction:

RST n ReSTart at address n

The address n is a single byte address and can only be one of the
following: <5c0, &8, &10, & 18, &20, &28, ic30 and 3c38. Because RST is
a single byte instruction, it is often used when a fast response
to the interruot is required. The problem with it is that there is
only really room at those memory locations for a jump to some
other address - especially if there are several interrupt
servicing routines, each required by differing devices using
different RST addresses.

Both CALL and RST automatically cause the PC to be saved onto the
stack. The Z80 disables further maskable interrupts and begins the
servicing routine. If the programmer requires the registers and
flags to be preserved, then the interrupt servicing routine should
begin with something like this:

PROGRAM 9.1

PUSH AF
PUSH BC
PUSH DE
PUSH HL
PUSH IX
PUSH IY

9-3

It should end with something like:

PROGRAM 9.2

POP IY
POP IX
POP HL
POP DE
POP BC
POP A F
El
RETI

Notice the 'AF'. This is the accumulator and the flags.

The next interrupt mode is mode 1:

IM 1 set Interrupt Mode 1

This mode is similar to interrupt mode 0 except that the Z80
automatically executes a RST &38 upon accepting a maskable
interrupt. Also, the Z80 will ignore the contents of its data bus
in the clock cycle following the interrupt. The final mode is mode
2:

IM 2 set Interrupt Mode 2

In this mode, after finishing the current instruction, saving the
PC and disabling further maskable interupts, the Z80 will jump to
any specified even-numbered memory location - i.e. one in which
the least significant bit is a 0. The most significant eight bits
of the address should be set in advance in a special register
calaled the 'interrupt vector' register, or 'I' register. The
least significant eight bits of the address are supplied by the
interrupting device. This allows the Z80 to jump to any one of up
to 128 addresses held in a table in memory starting at the high-
byte address held in the I register.

The Alternate Registers

You are by now well aware that
registers, in particular, A, B, C, D,
the Z80 has a second set of these
he 'alternate register set', A', B',
alternate flags F'.

the Z80 has many different
E, H, L and the flags. Well,
particular registers, known as
C, D', E', H', L' and the

9-4

Although they ean be used by the programmer, it is not advisable
on the Amstrad. Using the built-in routines will corrupt them, as
will any interrupt. The instructions to use them are as follows:

EXX Exchange register pairs

might look like this:

This instruction swaps the contents of the register pairs BC, DE
and HL with their alternates. Note that this means that any
following instruction using say DE will
of DE, that used to be in DE'.

now use the new contents

If the alternate registers B', or C are used, they must be
restored prior to swapping back to the original register set and
enabling interrupts. Thus a program to use the alternate registers

PROGRAM 9.3

DI Disable interrupts
EXX Exchange register pairs
PUSH BC Save new BC

POP BC Restore BC
EXX Back to original registers
El Enable interrupts

Any such program should be kept short, as various automatic
operating-system interrupts such as timers, keyboard scanning etc.
need to use the alternate registers, and anything other than a
short routine eould cause problems. This is true whenever
interrupts are disabled. (For further details see Soft 158).

Another instruction allows A' and F' to be used:

EX AF,AF' Exchange contents of AF and AF'

F' must be restored prior to 'unexchanging'. Again, interrupts
must be disabled whilst using these registers.

Note that exactly the same instruction is used to unexchange -
i.e. EX AF,AF', not EX AF'.AF.

9-5

More Exchange Instructions

There are two other forms of EX which are worth mentioning:

EX DE,HL Exchange the contents of DE with the
contents of HL

and

EX (SP),HL Exchange the top of the stack with
the contents of HT.

EX (SP),IX Exchange the top of the stack with
the contents of IX

EX (SP),IY Exchange the too of the stack with
the '>oat'’nts of IV

The top byte on the stack goes into L and vice-versa, and the next
byte on the stack goes into H (and vice-versa). Similarly with IX
and IY.

Halt

HALT Halt program execution

This instruction stops the Z80 until an interrupt is received. The
only thing it does is keep 'refreshing' the memory. As you know,
if you switch the computer off, it forgets any program or data
which is held in its memory. This is because the memory consists
of 'dynamic RAM' or 'Random Access Memory'. If this memory isn't
continually updated or 'refreshed' - i.e. if the internal voltages
are not continually corrected, then these voltages die awav and
the data stored disappears with them. The Z80 uses a 'refresh
register' to tell it which memory bank to refresh at any one
moment.

9-6

The INs and OUTs of the Z80
The Z80 has a family of instructions designed to allow inputs and
outputs of data from and to external devices. Again, these
instructions are hardware orientated, and will only be discussed
briefly here.

IN A,(n) INput contents of port n to the
accumulator

A 'port' is a connector to an outside device. Which number refers
to which port is determined by hardware - i.e by the actual
physical wiring and circuitry of the computer.

The port, as far as the Z80 is concerned, is an 8-bit data store.
IN A,(n) does not affect any of the flags.

There is a form of the IN command which allows the contents of a
port whose number is held in the C register to be placed in any of
A,B,C,D,E,H or L:

IN r,(C) INput contents of port addressed by
C to register r

This instruction resets the add/subtract flag. The carry flag is
not affected, but the other flags are altered according to the
value INput.

Should they be necessary, the Z80 also has forms of the IN command
which parallel LDI, LDIR etc. The first of these is:

INI INput contents of port addressed by
C, decrement B, Increment HL

With this instruction, B can be used as a loop counter if
required. Notice, however, that only B is used by INI, rather than
BC as in, say, LDI. C should contain the port number, and HL the
memory location in which the data is to be placed. INI corrupts
the sign, half-carry and pari ty/o verflow flags, and sets the
add/subtract flag. The carry flag is not affected. The zero flag
is set when B=l.

9-7

IN IR INput contents of port addressed by C,
decrement B, Increment HL, Repeat until
B=0

This is the same as INI except that it automatically repeats until
B is decremented to zero. The flags are affected in the same way
as with INI except that the zero flag is always set.

IND INput contents of port addressed by C,
decrement B, Decrement HL

IN DR INput content of port addressed by C,
decrement B, Decrement HL, Repeat until
B=0

These are the same as INI and INIR respectively, except that HL is
decremented instead of incremented.

OUT (n),A OUTput contents of Accumulator to port n

OUT (C),r OUTput contents of register r to the port
addressed bv C

The latter of these two differs from IN r,(C) in that it does not
iffect any of the flags.

OUTI OUTput to port addressed by C the
contents of memory addressed by HL,
decrement B, Increment HL

OTIR OUTput to port addressed by C the
contents of memory addressed by HL,
decrement B, Increment HL, Repeat until
B=0

9-8

OUTD OUTput to port addressed by C the
contents of memory addressed by HL,
decrement B, Decrement HL

OTDR OuTput to port addressed by C the
contents of memory addressed by HL,
decrement B, Decrement HL, Repeat until
B=0

These instructions affect the flags in the same way as the
corresponding IN instructions.

One slightly useful instruction hasn't been mentioned yet:

NOP

NOP No Operation

This tells the Z80 to do nothing for one clock cycle. This can be
useful for fine tuning the duration of delay loops. Also, if you
are using absolute addresses rather than symbolic labels, it can
be used to pad out your program to allow for addressing errors.

Summary
This chapter covered the following instructions:

DI
El
RETN
RETI
IMO
IM1
IM 2
RST n
EXX
OUT (n),A
OUT (C),r
OUT!
OTIR
OUTD
OTDR

EX AF,AF'
EX DE,HL
EX (SP),HL
EX (SP),IX
EX (SP),IY
HALT
IN A,(n)
IN r,(C)
INI
INIR
IND
INDR
NOP

9-9

Ç H A P E R J 0.

External commands and graphics extensions
This chapter explains how additional commands may be added to
those already supported by BASIC. For example, a circle-drawing
command will be added to the Amstrad's BASIC. These routines will
be written entirely in assembly language and interfaced to the
BASIC interpreter using 'external commands'. This chapter makes
use of some of the more advanced features of the assembler. It is
recommended that you read Appendix 6 first.

External command (RSX’s)
All commands in BASIC, e.g. LIST, GOTO, RND etc. are known as
'internal commands'. When a BASIC program is run and the
interpreter encounters an internal command it is searched for in
ROM (Read Only Memory) whereas, if an 'external command' is
encountered, the RAM (Random Access Memory) is searched as well.
An external command or Resident System extension consists of a
string of alphanumeric characters preceded by a vertical bar
(Shift and @). The following are all valid external commands.

I IRCLE (TRIANGLE (BOX

Try typing in IBOX when in BASIC. The computer will respond with
'Unknown command'. This is because the BASIC interpreter cannot
find the command BOX in ROM or RAM. It is quite simple to tell the
computer that an external command exists; here's how:-

Stcp 1
Firstly the computer needs to be informed that some external
commands are to be added. This is accomplished by creating a
command table of new commands. This command table acts as a jump
block to further tables, providing explicit information about the
new commands i.e. syntax, location, etc. This information is
passed to the operating system, by calling a routine in ROM, after
loading the relevant registers with data as well as the address of
a four-byte buffer required by the operating system.

10-1

Routine's use: Logs an external command onto the operating
system (i.e. tells operating system that the
command exists.

Calling address: *BCD1.

Entry conditions: BC= The starting memory location of the
external command table.

HL= The starting memory location of a four-
byte buffer.

This whole process will now be illustrated with an example. The
external command table will start at the memory address
represented by the label EXCOMT (External COMmand Table). The
easiest method of setting aside four bytes for a buffer is to use
the 'DEFS' assembler directive. This buffer will be assigned the
label BUFF:

Thus : -

BUFF: DEFS *04

Combining these various elements:

PROGRAM lO.Kdon't enter this yet)

BUFF: DEFS *04
LD BC, EXCOMT:
LD HL,BUFF:
CALL *BCD1
RET

Set up buffer
BC= Start of table
HL= Start of buffer
Log-on table
Return to Basic.

Don't enter this program yet as although the computer knows the
location of the external command table it wouldn't find any new
command names when it looked there. Thus the new external command
table needs to be filled with the new command names.

Step 2
Further details of the new command table must be held in an
additional table. The address of this table is given by the label
NENAM (NEw NAMe). Thus the first line of this section is:-

EXCOMT: DEFW NENAM:

The new command names are then added using the JP instructions as
follows.

JP BOX:

10-2

This would assign a jump address for the new command BOX. Assuming
that only one external command is going to be added, the second
section of the program appears as below.

EXCOMT: DEFW NENAM:
JP BOX:

All that is now required is to add the specific details of the new
external command's name.

Step 3
The new command name is entered as a string of ASCII characters
starting at the memory address pointed to by NENAM. The Amstrad's
internal operating system requires that bit 7 be set in the byte
representing the last ASCII character of the command name's
string. This is most easily accomplished by adding &80 to the
ASCII code of the last letter. Therefore &80 has to be added to
the ASCII for "X" in the example. Thus this section of the program
appears as below.

NENAM: DEFM "BO"
DEFB "X"+&80
DEFB <5c0

The &0 is to signify the end of the table.

Combining these three sections together:

PROGRAM 10.2(don't assemble this yet)

ORG 40000
BUFF: DEFS &04

LD BC,EXCOMT:
LD HL,BUFF:
CALL dcBCDl
RET

EXCOMT: DEFW NENAM:
JP BOX:

NENAM: DEFM "BO"
DEFB "X"+<5c8O
DEFB <5c0

Note that ORG has been set to 40000. By then setting MEMORY to
39999 hence preventing BASIC from using any memory location above
39999 the external command cannot be corrupted.

10-3

When :BOX is typed in, from BASIC, the computer will jump to the
memory location addressed by the label BOX - to illustrate the new
external command type in Program 10.3 immediately following
Program 10.2.

PROGRAM 10.3

BOX: LD A,66
CALL PRINT:
LD A,79
CALL PRINT:
LD A,88
CALL PRINT:
RET

PRINT: EQU <5cBB5A

Note the use of the memory label PRINT.

Now assemble the whole program;
below.

when listed it should appear as

ORG 40000
BUFF: DEFS &04

LD BC.EXCOMT:
LD HL,BUFF:
CALL &BCD1
RET

EXCOMT: DEFW NENAM:
JP BOX:

NENAM: DEFM "BO”
DEFB "X"+&80
DEFB &0

BOX: LD A,66
CALL PRINT:
LD A,79
CALL PRINT:
LD A,88
CALL PRINT:
RET

PRINT: EQU &BB5A

Run the program with a 'CALL 40000' from BASIC. Although nothing
visible has happened, the external command BOX has been 'logged
on' to the Amstrad's operating system. Exit to BASIC and type in
the following.

I BOX

10-4

BOX appears upon the screen! Thus any assembly-language program
addressed with the label BOX can be called with this external
command. For example a box could be drawn on the screen, using the
inbuilt graphics routines. To specify the size of the box, some
parameters have to be passed to the assembly-language program.
Consider the following diagram.

XI, Y1

FIGURE 10 .1

By defining two diagonally opposing corners, a unique box can be
described. It would be useful if, as well as the size, the colour
of the box could be changed. Thus five parameters need to be
passed to the assembly-language routine. One possible solution
would be to poke the data into a block of memory, creating a 'data
block'. Although cumbersome, it would work. Fortunately the
external command system creates this 'data block' for us. When
called, the starting location of the data block is stored in the
register pair IX, with the number of data items stored in the
accumulator. Consider the following command which would draw a box
100 by 100 units on the screen at 200,100 in ink 2.

I BOX, 200,100,300,200,2

10-5

300, 200

200, 100

FIGURE 10 .2

Before the box's parameters are stored in memory they are
converted to hexadecimal.

Step 1
100 = &0064
200 = &00C8
300 = &012C

2 = &0002

Step 2
The parameters are stored LSB first followed immediately by the
MSB. The last parameter entered is pointed to by IX. Thus the
parameters in the example are stored as follows:

10-6

Memory
location

Contents
Hex Decimal

IX+0 02 2
IX+1 00

IX+2 00 200
IX+3 C8

IX+4 01 300
IX+5 2C

IX+6 00 100
IX+7 64

IX+8 00 200
IX+9 C8

Thus by using a suitable offset any one of these parameters may be
accessed. Note that as each parameter is stored in two bytes, a
parameter can be in the range 0 to 65536.

Now, from the coordinates passed by the external command, four
coordinate pairs have to be derived describing the box.

Consider Figure 10.3:

X, Y1 XI, Y1

FIGURE 10.3

As the coordinates X,Y and XI,Y1 are passed by the external
command the coordinates of the other two corners may be deduced
and a box plotted. This is represented by the following flow
chart:

10-7

FIGURE 10.4

Expressing this flowchart in a program (note the use of the stack
to store the coordinates):

10-8

PROGRAM 10.4

10 DRAW: EQU &BBF6
20 PLOT: EQU &BBEA
30 INK: EQU &BBDE
40 BOX: LD A,<IX+0)
50 CALL INK:
60 LD D,CIX+8)
70 LD D,(IX+9)
80 PUSH DE
90 LD E,<IX+6)
100 LD D,<IX+7)
1 10 PUSH DE
120 LD E, (IX+4)
130 LD D,<IX+5)
140 PUSH DE
150 LD E,(IX+2)
160 LD D,CIX+3)
170 PUSH DE
180 LD E, (IX+8)
190 LD D,<IX+9)
200 LD E,<IX+6)
210 LD H,<IX+7)
220 PUSH DE
230 CALL PLOT:
240 POP DE
250 POP HL
260 PUSH HL
270 CALL DRAW:
280 POP HL
290 POP DE
300 PUSH DE
310 CALL DRAW:
320 POP DE
330 POP HL
340 PUSH HL
350 CALL DRAW:
360 POP HL
370 POP DE
380 CALL DRAW:
390 RET

10-9

Using labels for memory addresses greatly increases the
readability of the program. Now replace the subroutine starting
with the label BOX in the previous program with Program 10.4.
Assemble and run it. Now exit to BASIC and try Program 10.5, after
logging on the command with a 'CALL 40000'.

Note: As the Assembler uses the BASIC lines above 64000 don't type
NEW or you will have to reload the assembler again.

PROGRAM 10.5

10 MODE 0:CALL 40000
20 X=RND(l)*550
30 Y=RND(l)*350
40 Xl=RND(l)*50
50 Yl=RND(l)*50
60 C=RND(1)*15
70 IBOX,X,Y.X+Xl,Y+Yl.C
80 GOTO 20

Well that concludes the external commands section. The rest of
this chapter will explain how additional graphics commands may be
added.

Some Additional Graphics Commands

1. BOX,X,Y,X1,Y1,C
Draws a box on the screen using PEN C.

2. BOXF,X,Y,X1,Y1,C
Where the arguments are exactly the same as for BOX. The only
difference is that the box is filled in.

3. TRI,X,Y,X1,Y1,X2,Y2,C
Draws a triangle on the screen.

10-10

4. CIRCLE.X, Y, R,C

Where: -

The external commands reside in memory starting at memory location
40000. To ensure that they are not corrupted the BASIC memory
pointer is moved down to 39999 with the following BASIC command

MEMORY 39999

Thus it is wise to ensure that the first two lines of any BASIC
program using these external commands are as follows:-

1 MEMORY 39999
2 CALL 40000

The box-fill commands
This command draws a solid box upon the screen; it is drawn as a
series of consecutive horizontal lines.

Consider Figure 10.5

10-11

XI, Y1

FIGURE 10.5

The algorithm for filling in this box is as follows: -

10-12

FIGURE 10.6

Expressing this algorithm as a program:

10-13

PROGRAM 10.6

10 COUNT s DEFS 4
20 DRAW: EQU SBBF6
30 PLOT: EQU &BBEA
40 INK: EQU &BBDE
50 BOXF : LD A,<IX+0)
60 CALL INK:
70 LD L,(IX+2>
80 LD H,(IX+3>
90 LD E,(IX+6)
100 LD D,<IX+7>
110 AND A
120 SBC HL, DE
130 JP C,END:
140 LD (COUNT:),HL
150 LD E,(IX+8>
160 LD D,(IX+9)
170 LD L,(IX+6>
180 LD H,<IX+7)
190 PUSH HL
200 PUSH DE
210 CALL PLOT:
220 LD E,(IX+4>
230 LD D,(IX+5>
240 POP IX
250 POP IY
260 NXT: PUSH DE
270 PUSH IY
280 POP HL
290 CALL DRAW:
300 PUSH IX
310 POP DE
320 POP IX
330 INC IY
340 LD HL,(COUNT:)
350 PUSH DE
360 LD DE , 1
370 AND A
380 SBC HL, DE
390 LD (COUNT:),HL
400 POP DE
410 JR NZ,NXT:
420 END: RET

10-14

The assembler tape (side B) contains a file called GRAPHICS-EXT
which contains all the additional graphics commands presented in
this chapter. To use it load the assembler then load in the file
GRAPHICS-EXT and assemble it. If you wish to use the additional
commands within your BASIC programs, save a copy of the object
code generated by using the file identifier '-b'. e.g. Save it
under the name GRAPHICS-B. This file can then be loaded from BASIC
with the command LOAD "GRAPHICS-B",40000. However, ensure that the
BASIC memory pointer has been moved down first to 39999, using the
following command MEMORY 39999. Then to log on the graphics
commands type in CALL 40000 from BASIC. All the commands are now
available. Study the additional commands program GRAPHICS-DEMO if
you are not sure.

The triangle command
This command produces a solid triangle upon the screen. The method
used is iterative and is chosen for its simplicity and not
efficiency, in that a given procedure is repeated until a
condition is met. Here the difference between the two X base­
coordinates is used as a count. See Fig 10.7

A series of lines are drawn from the apex (XI,Yl) to the base.
This results in the apex pixel being overwritten 'count' number of
times. The pixels in the proximity of the apex are also
overwritten, but less frequently. This, is a very inefficient
algorithm; ideally each pixel in the triangle would be written to
once. This may be achieved by using more complex algorithms (e.g.
a scan-line algorithm). This is beyond the scope of this book -
for the interested reader the following book is recomended:

Fundamentals of Interactive Computer Graphics.
J.D. FOLEY and A. VAN DAM
Addison-Wesley 1982
ISBN 0-201-14468-9.

10-15

Here is a listing of the triangle command:

10 COUNT : DEFS 4
20 DRAW: EQU &BBF6
30 PLOT: EQU &BBEA
40 INK: EQU &BBDE
50 TRI : LD A,(IX+0)
60 CALL INK:
70 LD E,(IX+12>
80 LD D,(IX+13)
90 LD L,(IX+4)
100 LD H,(IX+5)
110 AND A
120 SBC HL, DE
130 JP M,END:
140 LD (COUNT:),HL
150 LD E,(IX+8)
160 LD D,(IX+9)
170 LD L,(IX+6)
180 LD H,(IX+7)
190 PUSH DE
200 PUSH HL
210 LD L,<IX+10)
220 LD H,(IX+11)
230 PUSH HL
240 POP IY
250 POP IY
260 LD E,(IX+12>
270 LD D,(IX+13>
280 PUSH DE
290 POP IX
300 NXTT: POP HL
310 POP DE
320 PUSH DE
330 PUSH HL
340 CALL PLOT:
350 PUSH IX
360 POP DE
370 PUSH IY
380 POP HL
390 CALL DRAW:
400 INC IX
410 LD HL,(COUNT:)
420 LD DE, 1
430 AND A
440 SBC HL, DE
450 LD (COUNT:),HL
460 JR NZ,NXTT:
470 POP DE
480 POP DE
490 END: RET

10-16

The circle command
The simplest method of producing a circle on the screen uses the
SIN and COS functions of the Amstrad. Consider Figure 10.8:

FIGURE 10.8

By Incrementing in the range 0<Qf<7T/2 and plotting a point at the
coordinates (X,Y) a quadrant of a circle is obtained. This
quadrant can be developed into a full circle. Assuming that the
centre of the circle is located at the graphics origin, consider
Figure 10.9 for the ooint X,Y.

10-17

While this method works, it is grossly inefficient as the
functions SIN and COS require considerable computational time
hence slowing down the algorithm. A slightly more efficient
algorithm can be derived from Pythagoras' Theorem, equation 10.1
below:

Pythagoras' Theorem

□
R2 = X2 + Y 2 Equ 10.1

Rearranging Equation 10.1

To draw a quadrant as before, X has to be incremented in the range
0<=X<=R, Y is then found for every value of X, and the pixel at
coordinates X,Y set. Try the following BASIC program.

PROGRAM 10.8

10 MODE 0
20 DEFINT x,y,r
30 x=0
40 r=100
50 WHILE x<r
60 y=SQR(r*r-x*x)
70 PLOT x,y
80 x=x+l
90 WEND
100 END

This program produces a quadrant as shown below in Figure 10.10

10-18

Y

FIGURE 10.10

There are two main limitations to using this method.

1. The quality of the arc as X approaches R leaves a lot to be
desired.

2. Although quicker than SIN or COS, finding the square root of a
number still requires considerable computational time.

There are various methods by which these problems may be
alleviated. In this chapter one possible solution will be looked
at. It is based upon Bresenham's algorithm initially developed for
mechanical plotters. The algorithm is considerably more efficient
than either of the previously mentioned methods as all the
arithmetic operations can be accomplished easily using a few
additions, subtractions and shifts.

An adaptation of Bresenham’s circle drawing algorithm
Instead of incrementing X in the range 0<=X<=R this method uses
the range 0<=X<= 7T /4 thus producing a 45 degree segment. The
complete circle is obtained by mirror imaging these calculated
points. The heart of the algorithm is a routine which selects the
pixel nearest to the true circle at the point in consideration.
The distance between the true circle and the selected pixel is
called the 'error term' and is derived as follows:-

10-19

Using Pythagoras' Theorem

r2 = x2 + y2

assuming that the pixel is plotted at X,Y then the error term is
given by

E= (x2 +y)-r2

By minimising E at eaeh step, the closest approximation to a
circle possible on the discrete pixel grid is obtained.

Consider Figure 10.11 which shows the various ways in which the
true circle could cut the pixel grid.

FIGURE 10.11

Assuming that the black pixel Z has just been set, the next pixel
to be set could be either A or B. Defining the error term as the
difference between the squared distances from the center of circle
to either pixel A or B and to the actual circle at this point, the
following equations may be derived.

For pixel A

EA =(xA +yA)-r2 Equ 10.2

pixel B

eb =(xB2-yB2>-r2 Equ 10.3

10-20

Thus if EA|>= I EB| pixel B is set, similary if | EA|< | EB | then pixel A is
set.

Combining equations 10.2 and 10.3 to form the total error term E

et = ea + eb

Now if Et >=0 pixel B is set, otherwise ET <0 and pixel A is set.

Reconsidering Figure 10.11

Case 1
Et<0 thus pixel A is set

Case 2
Et <0 thus pixel A is set

Case 3
Et <0 thus pixel A is set

Case 4
Et >=0 thus pixel B is set

Case 5
Et >=0 thus pixel B is set

As it stands the method works, however it is still necessary to
calculate the square and square roots of the data to calculate the
error term. It can be shown however by a series of arithmetic
operations that the initial error is as follows.

ET = 3-2r Equ 10.4

The value of ET changes dynamically throughout the program
depending upon the choice of the previous pixel, as follows.

If pixel A is selected as ET<0 then the new ET is given by

Et+1= Et+4x+6 Equ 10.5

or if pixel B is selected as ET >=0 then

Et+i= ET+4(x-y)+10 Equ 10.7

Equation 10.5 requires two adds and two shifts, equation 10.6 two
adds, one subtract and two shifts; a considerable improvement upon
the previous algorithms. A method of mirror imaging these points
is now required to form the complete cirde.If the X and Y values
can be found for one quadrant then by mirror imaging these
coordinates a full circle can be produced. See Figure 10.12

10-21

This algorithm is demonstrated in the following BASIC program.

PROGRAM 10.9

10 MODE 1
20 radius=100
30 x=0
40 y=radius
50 ORIGIN 320,200
60 diff=3-2*radius
70 WHILE x<y
80 GOSUB 150
90 IF d<0 THEN d=d+4*x+6: GOTO 120
100 d=d+4*(x-y)+10
110 y=y-l
120 x = x + l
130 WEND
140 END
150 PLOT x,y
160 PLOT y,x
170 PLOT y,-x
180 PLOT x, —y
190 PLOT x,-y
200 PLOT -x,-y
210 PLOT -y,-x
220 PLOT -y,x
230 PLOT -x,y
240 RETURN

10-22

The program produces a pixel distribution as shown in Figure
10.13, for a radius of 15.

Here is the algorithm converted to assembly language: To save your
fingers, all the external commands are included on the tape under
the name GR APHICS-EXT.

PROGW AVI 10.10

10 PLOTS EQU &BBEA
20 INK: EQU &BBDE
30 ORGINs EQU ÄBBCC
40 ORGET: EQU &BBCC
50 DIFF: DEFS 2
60 RAD: DEFS 2
70 X : DEFS 2
80 Y! DEFS 2
90 XOS DEFS 2
100 YO: DEFS 2
110 CIRCLE : CALL ORGET:
120 LD (XOs),DE
130 LD A,<IX+0)
140 CALL INK:
150 LD <YO:>,HL
160 LD D,(IX+7)
170 LD E,<IX+6)

10-23

180 LD H,(IX+5)
190 LD L,(IX+4)
200 PUSH HL
210 LD H,(IX+3)
220 LD L,(IX+0)
230 LD (RAD:>,HL
240 POP HL
250 CALL ORGIN:
260 LD BC,0000
270 LD (X:),BC
280 LD HL,(RAD:)
290 LD (Y:),HL
300 SLA L
310 RL H
320 PUSH HL
330 POP DE
340 LD HL ,3
350 XOR A
360 SBC HL, DE
370 LD (DIFF),HL
380 CALCs LD HL,(X:>
390 LD DE,(Y:>
400 PUSH HL
410 PUSH DE
420 CALL MIRIM:
430 POP DE
440 POP HL
450 XOR A
460 SBC HL, DE
470 JP P,END2:
430 LD HL,(DIFF :)
490 LD BC,0000
500 SBC HL , BC
510 JP P,LESS:
520 LD DE,(X:)
530 SLA E
540 RL D
550 SLA E
560 RL D
570 LD HL ,6
580 ADD HL,DE
590 LD DE,(DIFF:)
600 ADD HL , DE
610 JP NXT3:
620 LESS: LD HL,(X:>
630 LD DE,(Y:>
640 XOR A
650 SBC HL, DE
660 SLA L
670 RL H

10-24

680 SLA L
690 RL H
700 LD DE , 10
710 ADD HL, DE
720 LD DE,(DIFF:>
730 ADD HL, DE
740 LD DE,(Y:>
750 DEC DE
760 LD <Y:>,DE
770 NXT3: LD <DIFF:),HL
780 LD HL,<X:>
790 INC HL
800 LD <X:>,HL
810 JP CALC:
820 MIRIM: LD DE,<X:)
830 LD HL,<Y:)
840 CALL PLOT:
850 LD DE,<Y:>
860 LD HL,<X:>
870 CALL PLOT:
880 LD HL,0000
890 LD BC,< X : >
900 XOR A
910 SBC HL , DE
920 PUSH HL
930 PUSH HL
940 LD DE,<Y:>
950 CALL PLOT:
960 POP DE
970 LD HL,<Y:)
980 CALL PLOT:
990 LD HL,0000
1000 LD BC, <Y: >
1010 XOR A
1020 SBC HL , BC
1030 PUSH HL
1040 PUSH HL
1050 LD DE , (X :)
1060 CALL PLOT:
1070 POP DE
1080 LD HL,< X : >
1090 CALL PLOT:
1100 POP HL
1 1 10 POP DE
1120 PUSH HL
1130 PUSH DE
1140 CALL PLOT:

10-25

1150 POP HL
1160 POP DE
1170 CALL PLOT:
1180 RET
1190 END2: LD DE,<XO:>
1200 LD HL,<YO:>
1210 CALL ORGIN:
1220 RET

Well that's it, you have made it. Well done. It is hoped that you
have enjoyed reading this book and feel that it was all
worthwhile. Happy orogramming.

10-26

A P P E. N D 1 X

The Z80 Instruction Set
Abbreviations used in the following tables:

Registers

r,r'
dd
qq
PP
rr
e
s
d

H
S

= Refers to any one of the registers A,B,C,D,E,H,L.
= Refers to any one of the registers pairs BC,DE,HL,SP
= Refers to any one of the register pairs AF,BC,DE,HL
= Refers to any one of the register pairs BC,DE,1X,SP
= Refers to any one of the register pairs HC,DE,1X,SP
= Refers to a two's complement offsett
= Refers to any one of r,n,(HL),(IX+d),(IY+d)
= Refers to any one of r,(HL),(lX+d),(IY+d) or in a index

instruction to a two's complement offset.
= High Byte: L = Low Byte.
= Where b=bit 0 7

Addressing Modes

RR = Register - Register
Im = Immediate
IDX = Indexed
D = Direct
In = Indirect

Flags

C = Carry / link flag
Z = Zero flag
S = Sign flag
P/V = Parity or overflow flag
H = Half-carry flag
N = Add/Subtract flag

Al-1

Key to flag outcomes

? Flag set depending upon outcome of operation
0 Flag reset
1 Flag set
* Flag not affected

Flag outcome unknown
V Flag set on overflow
P Flag set on parity
F The P/V flag is set to the contents of the interrupt

enable fl ip-flop (IFF)

The P/V Flag

If the operation indicated by a V in the P/V column results in an
overflow then the V flag will be set (1) otherwise it will be
reset (0). If the operation is used to test the parity, indicated
by a P, then the flag will be set (1) if the parity is even else
reset (0) on parity odd.

Addressing Modes

LD r,r'
LD r,n
LD r, (IX+d)
LD r,(nn)
LD r, (dd)

Register,Register
Immediate
Indexed
Direct
Indirect

Where

r or r' is a 8-bit register
n is an 8-bit register
d is a 2's complement offset
nn is an 16-bit number
dd is one of the following: BC, DE, HL, SP.

A1-2

Ei
gh

t-B
it L

oa
d G

ro
up

Fl
ag

s A
ffe

ct
ed

C
 Z P

/V
 S N

H *****************00**

*****************00**

***************** c^o-**

*****************tuü^**

Ad
dr

es
s

m
od

e

X X X X! X X ~

N
o o

f
cy

cl
es

N
o o

f
by

te
s

r-< (N H CO CO r-1 C*3 CC (» Tf »T >“ r-1 w r-1 M M M (N (M

Sy
m

bo
lic

O

pe
ra

tio
n sllíllrllisínfe <

•L a ♦ id’oI'C’oTTTÜ I T i < iIlïilïoèïéèlIIëelllll

M
ne

 ru
ni

c

t- t- c c

V. c — C C J X »- X > ~Q

QQQaQQQOOQOOQQQQQaQOQ

A1-3

Fl
ag

s A
ffe

ct
ed

C

 Z P
/V

 S N
 H * * * *

* * * *

* * # *

* * * *

#

*

*

*

*

*

*

*

«

*

«

*

*

*

*

*

*

*

*

* *

A

Ad
dr

es
s

M
od

e

6 8 8O Q Q Q Q O Q Q

Vi
O «

oo >> z O

'S S
O
z CQ

M Tt Tf CO co

c z
1

X
X X X — >o o

Is
6 S.

c C c £ 3 c C c c c
Il ITT

+ c c
T

c + C
c c e
ïfï

+
c
c
Ï

"c 1 J 1 X lil

c c c

=1=1

c c c e>>£- cc O •8 ¿ i x j X
X c 3 CGC S c c c

o
’S

c
C c c = c c c "-Í , (

nn
) (UU) (n

n) z
X
X X >

o
E <v

X)
X X c C c S

s 3 3 S 3 Q o
J

Q J Q 2 Q Q
J J

A1-4

A1-5

A 1-6

A1-7

A1-8

G
en

er
al

 Pu
rp

os
e A

rit
hm

et
ic

 an
d C

.P
.U

. C
on

tro
l G

ro
up

s

Fl
ag

s A
ffe

ct
ed

C
 Z P

/V
 S N

 H O- V-^0-*0***** * *

* ^Hr-fOO***** * *

*>******* * *

O- *C<- ******* * *

Ad
dr

es
s

M
od

e e eeeeeeeee e e
)—1 >—< ►—< •—• • »—• •—« 1—« ►—« ►—« «—1 •—<

N
o o

f
C

yc
le

s

r-H CM CM

N
o o

f
By

te
s

‘ 'CM CM CM

Sy
m

bo
lic

O

pe
ra

tio
n • <D

V) r- - tí tí tí
> 2 § u o g O gl< Oil «II ga, fc # ta>
c.£oQ<uT3Smfclll¿ = <U'E~ .2 í? ~
O es O £ ti C Í1 ’ ’ O O.CU (V C 2 Û) C 2O< clíBs! « « o o<<OOz oOfeSäcn — Em — E <z> — E

M
ne

m
on

ic

H
I-J O [Xj 1—< CM< 0-. « Q Q O < — _ §

C QZOüOZXO«„ 5 —

A1-9

A1-10

OOQOQOOOQC C O

OOOOOOOOQ® O O

* *

EEEEEEEEEE E Et—4 I——1 >—< ►—< • ►—< 1—< •—< ►“■< •“1

oj rr cr en • i lili m m

OJ OJ rT i I lili OJ O1

1

b-
x

ffl

o

'S!’

L1?1 a

P 4P,
01

A
 1---------

-1
_'S

Jj
|7

 4|3
01

A
|7

 4P ।
 0|

"O "C

X lí ä “> tn tzi «
QQoo w ü " < < J 9 °
ajjxjxxjáx y 5xxxoicdxxrßoia) ce a

Al-11

Bi
t se

t, R
es

et
 an

d T
es

t G
ro

up Fl
ag

s A
ffe

ct
ed

C

 Z P
/V

 S N
 H rl r-< r-< * * * * *

o o c o * * * * *

1 1 1 1 * * * * *

Ad
dr

es
s

M
od

e

o-* X X X X§=2222222

N
o o

f
C

yc
le

s

(Ncointnc"’rtDcr ।

N
o o

f
By

te
s

cooa^r^fcsjcoTrTr ।

Sy
m

bo
lic

O

pe
ra

tio
n

J

in
c;

Z*

—
(IX

+d
)

i ill

'ïiâ£i

*3 c- co

M
ne

m
on

ic

”2 "ü "o
d * > x * >

u C- O O U o O O cn

•ti .ti Q) Q Q>
commcûa>(Z>cncf)ûi

A1-12

Ju
m

p G
ro

up

Fl
ag

s A
ffe

ct
ed

C

 Z P
/V

 S N
 H * * -•-*****

* * *********

** *********

** *********

** *********

** *********

Ad
dr

es
s

M
od

e

X X
EE EEEEE£22J!

N
o o

f
C

yc
le

s

co co co cm cm cm cm •—< cm cm co

N
o o

f
By

te
s

n n CM CM CM CM CM ' CM cm cm

Sy
m

bo
lic

O

pe
ra

tio
n 0) + +

g .2 ¿ E -2 S S S S x * > 7 - 3
i ¡5«! Ill í|ñ-s?-s-¡r-E| I
1 C ♦ ï C ’ OcOCNCNC’ ' ’ 1 O cffl .
o ooÔSoy.o.o o oOQOi^o G
CL î±3 Q o 2- O Oû-is O î±3 o oîs o cü cl Cl cû ha o zc CL

M
ne

m
on

ic C o
C (D 1 û)

ce ° N x ÏS 5-1ce W0ztoz5"cg

cu o, a¡xxxoiCL,ú-o-g

A1-13

C
al

l an
d R

et
ur

n G
ro

up

Fl
ag

s A
ffe

ct
ed

C

 Z P
/V

 S N
H * * * * * * *

* * * * * * *

* * * * * * *

* * * * * * *

* » * * * * *

Ad
dr

es
s

M
od

e

Im Im Im Im Im

Im

Im

N
o o

f
C

yc
le

s

uo co co r-< rr rr co

N
o o

f
By

te
s

co co ' »-I C-l CO «—<

Sy
m

bo
lic

O

pe
ra

tio
n

O O c ~ c □ E E S O OHa. + o s So obCl.ii
i i •- J2 - a> c d cu 'Z 2 | i1 1 =5*S>.!2«cwK~«Si“"> o- 5 Cl 1 1 „ „
¿ ¿ 1 8 ” ’i ¿ i á 1 1 8-~Í*£282c8¿¿ 1

M
ne

m
on

ic

c
c v
c ° o
d á ° - z Œ
< < ai u uj M en
O O oí o¿ ai ai c¿

A1-14

X * o- 1 1 1 1

Fl
ag

s A
ffe

ct
ed

C

 Z P
/V

 S N
♦

♦
♦

♦
♦

♦
?

P
?

0
*

?
-

-
1

r—<

«

r—*

1

*

1—<

1

»—f

t G
ro

up

Ad
dr

es
s

M
od

e

E c c c C e

□
Q.

O

'O
e

N
o o

f
C

yc
le

s

CO CO Tt m

In
pu

t a
N

o o
f

By
te

s

CO CO CO CO CO co

Sy
m

bo
lic

O

pe
ra

tio
n

A-
—

(n
)

r-—
(c

)
(H

L)
—

(e
)

B —
 B

-l
H

L—
H

L+
1

(H
L)

 —
(c

)
B —

 B
-l

H
L

—
H

L+
1

U
N

TI
L

B=
0

(H
L)

—
(c

)
B —

 B
-l

H
L—

H
L-

l
(H

L)
 —

(c
)

- ¿

J z II
m x □ œ

M
ne

m
on

ic

IN
 A,(

n)

IN
 r, (

c)
IN

I

IN
IR

IN
D

IN
D

R

Al-15

In
pu

t an
d O

ut
pu

t G
ro

up
 (co

nt
d.

)

Fl
ag

s A
ffe

ct
ed

C

 Z P
/V

 S N
H

* * *
* *

*
* * *

* *
*

* ? -
- 1

-

* 1 -
 - 1

 -
* ? -

- 1
-

♦ 1 -
- 1

-

Ad
dr

es
s

M
od

e

Ë c c c c cr-i »—< >—< ►—i >—< »—•

N
o o

f
C

yc
le

s

eo eo tn

N
o o

f
By

te
s

(N (N (N 03 03 03

Sy
m

bo
lic

O

pe
ra

tio
n 3 _ + 3 _ + 3 V 3 T

x T J x 7 x T x T< U — ¿ x — ¿ X ¿ X'Y ¿ x
llil 111 Igoll 111 lío

CQQ Ü ’ II o O >—^^11

M
ne

m
on

ic < «-
"c "o
~ ~ „ Q CE
H H c £ E- aaoo E o f-
O O O Ö o o

Al-16

A P P E N D 1 X 2.

Effects Of Instructions On The Flags

The Flags

Bit Flag

0 C Carry

1 N add/subtract

? P/V Pari ty/o Verflow

3 - -

4 H Half carry

5 - -

6 z Zero

7 s Sian

A2-1

Effects Of Instructions On The Sign Flag

Group Instruction Eff ects

8-bit
Loads

LD A,[
LD A,R

Set if I register is negative, else reset
Set if R register is negative, else reset

Compares CPI,CPIR,
CPD.CPDR

Set if result is negative, else reset

8-bit
arithmetic

ADD A,S
ADC A,S
SUB S
SBC A,S
AND S
OR S
KOR S
CP S
INC S
DEC S

Set if result is negative, else reset

General-
purpose
arithmetic

DAA

NEG

Set if msb of A = l, else reset

Set if result is negative, else reset

16-bit
arithmetic

ADC HL,SS
SBC HL,SS

Set of result is negative, else reset

Shifts
and
rotates

RLC S
RL S
RRC S
RR S
SLA S
SRA S
SRL S

RLD
RRD

Set if result is negative, else reset

Set if A is negative after shift, else
reset

Bit BIT B,S Corrupted

Inputs and
Outputs

IN R,(C)

TN.INIR
IND,INDR,
oun,om<,
OUTD,OTDR

Set if input data is negative, else reset

Corrupted

A 2-2

Effects of Instructions On The Zero Flag

Srouo Instruction Effects

8-bit
loads

LD A,I
LDA,R

Set Z if I register=t), else reset Z
Set Z if R register=O, else reset Z

Compares CPI.CPIR,
CPD.CPDR Set Z if A=(HL), else reset Z

8-bit
arithmetic

ADD A,S
ADC.A.S
SUB S
SBC A,S
OR S
XOR S
CP S
INC S
DEC S

Set Z if result=0, else reset Z

General
purpose
arithmetic

DAA
NEG Set Z if result=0, else reset Z

16-bit
arithmetic

ADC HL,SS
SBC HL.SS Set Z if resulted, else reset Z

Shifts and
rotates

RLC S
RL
RRC S
RR S
SLA S
SRA S
SRL S
RLD
RRD

Set Z if result=0, else reset Z

Bit BIT B,S Set Z if specified bit=0, else reset Z

'nputs and
Outputs

INR,(C)
INI,IND,
INIR.INDR
OUTI.OUTD
jTIR,Ort)R

Set Z if input data=0 else reset Z
Set Z if B-l=0, else reset Z
Set
Set Z if B-l=0, else reset Z
Set Z

A 2-3

Effects Of Instructions On The Half-Carry And Add/Subtract Flags

Group Instruction Half-Carry Effects Add/Subtract

8-bit loads LD A,I
LD A,R

Reset Reset

LDI.LDIR,
LDD.LDDR

Reset Reset

Compares CPI,CPIR,CPD Set if no borrow from
CPDR bit 4 else reset Set

ADD A,S Set if no carry from
ADC A,S bit 3, else reset Reset

SUB S Set if no borrow from
SBC A.S Bit 4, else reset Set

AND S
8-bit OR S Set Reset
arithmetic XOR S

CP S Set if no borrow from
bit 4, else reset

Set

INC S Set if carry from bit 3,
else reset

Reset

DEC S Set if no borrow from
bit 4, else reset

Set

DAA Corrupted No effect

CPL Set Set
General
purpose NEG Set if no borrow from Set
arithmetic bit 4, else reset

CCF No effect Reset

SCF Reset Set

A 2-4

Group Instruction Half-Carry Effects Add/Subtract
Effects

16-bit
arithmetic

ADD HL,SS
ADC HL.SS

SBC HL.SS

ADD IX,PP
ADD IY,RR

Set if carry out of bit 11,
else reset

Set if no borrow from
bit 12, else reset

set if carry out of bit 11,
else reset

Reset

Set

Reset

Shifts
and
rotates

RLCA
RLA
RRCA
RRA
RLC S
RL S
RRC S
RR S
SLA S
SRA S
SRL S
RLD
RRD

Reset Reset

Bit BIT B.S Set Reset

Inputs
outputs

INR, (C)

INI.INIR,
IND,INDR,
OUTI.OTIR,
OUTD, OTDR

Reset

Corrupted

Reset

Set

A 2-5

Effects Of Instruction On The Parity/Overflow Flag

Group Instruction Effects

8-bit
loads

LD A,I
LD A,R

Copy of interrupt Dip-flop 2

Block
instructions

LDI.LDD
CPI.CPIR
CPD.CPDR

Set if BCO1, else reset

LDIR.LDDR Reset

ADD A.S
ADC A.S
SUB S
SBC A.S

Set if overflow, else reset

8-bit
arithmetic

AND S
OR S
XOR S

Set if parity even, else reset

CP S Set if overflow, else reset

INC S Set if operand was 7FH
increment, else reset

before

DEC S Set if operand was 80H
increment, else reset

before

General-
purpose
arithmetic

DAA

NEG

Set if (A) parity even, else reset

Set if (A) was 80H before negate,
else reset

16-bit
arithmetic

ADC HL.SS
SBC HL.SS Set if overflow, else reset

Shifts and
rotates

RLC S
RL S
RRC S
RR S
SLA S
SRA S
SRL S
RLD S
RRD S

Set if parity even, else reset

Bit BTT B.S Corrupt

A2-6

Group Instruction Effect

Inputs and
Outputs

IN R,(C)

INI, INIR,
IND,INDR,
OUTI.OTIR,
OUTD.OTDR

Set if parity even, else reset

Corrupt

Effects Of Instructions On The Carry Flag

Group Instruction Carry Effects

8-bit LD A,I No effect
loads LA A,R

CPI.CPIR,
CPD,CPDR

Block LDI.LDIR No effect
instructions LDD.LDDR

ADD A,S Set if carry from bit 7, else reset
ADC A,S

SUB S Set if no borrow, else reset
8-bit SBC S
arithmetic

AND S
OR S Reset
KOR S

CP S Set if no borrow, else reset

•DAA Set if bed carry, else reset
General-

NEG Set if A was not 0 before negate, else
purpose reset

arithmetic CCF Set if CY was 0 before CCF, else reset

SC F Set

A 2-7

Group Instruction Carry Effects

ADD HL,SS Set if carry from bit 15, else reset
ADD LH,SS

16-bit
arithmetic SBC HL,SS Set if no borrow, else reset

ADD IX,PP Set if carry from bit 15, else reset
ADD IY,RR

RLCA Copy A bit 7
RLA

RRCA Copy A bit 0
RRA

RLC S Copy bit 7 of operand
Shifts RL S

and RRC S Copy bit 0 of operand
RR S

rotates
SLA S Copy bit 7 of operand

SRA S Copy bit 0 of operand

SRL S Copy bit 0 of operand

A 2-8

A P P E N D 1 X 3

The Effects of Compares on the
Overflow, Sign and Carry Flags

Interpretation

A s 8-bit 2's comp V S C

30 20 A>s A>s 0 0 0

20 CO A<s A>s 0 0 1

70 CO A<s A>s 1 1 1

CO 70 A>s A<s 1 0 0

CO 20 A>s A<s 0 1 0

20 30 A<s A<s 0 1 1

s = One of the following:- A,B,C,D,E,H,L,(HL),(IX+d),(IY+d)

1 = flag set 0 = flag reset

Conditions: Flag Set Reset

V PO (Parity Odd) PE (Parity Even)

S P (Positive) M (Negative)

C C (Carry) NC (No Carry)

In the above, if the sign and overflow flags are the same, then
A>s in two's complement. If they are different, then A<s, assuming
the zero flag is not set, of course.

A 3-1

A p_ p. E. N D 1 X 4

Some Built-In Routines

&BB00 Initialise key manager

Entry

None

Exit

A,B,C,D,E,H,L and Flags
corrupt.

Clears keyboard buffer. Sets key repeats to default values.
Enables interrupts. Shift and caps lock set to off. Disables break
events.

&BB03 Reset key manager

Entry

None

Exit

A,B,C,D,E,H,L and Flags
corrupt.

Clears keyboard buffer. Sets key repeats to default values.
Enables interrupts. Disables break events.

&BB06 Await character

Get character from keyboard buffer. If empty, don't wait.

Entry

None

Exit

A: The character (ASCII)
Carry: True
Other flags: Corrupt

Expands single expansion tokens.

A 4-1

&BB09 Fetch character

Get character from keyboard buffer. If empty, don't wait.

Entry

None

Exit

A: The character, or corrupt
Carry: True if character, else

false
Other flags: Corrupt

Expands single expansion tokens.

&BB18 Await character (non expanded)

Get key press from keyboard buffer. Wait if none present.

Entry

None

Exit

A: The character/token (ASCII)
Carry: True
Other flags: Corrupt

Does not expand expansion tokens.

&BB1B Fetch character (non expanded)

Get key press from keyboard buffer. If none, don't wait

Entry

None

Exit

A: The character or corrupt
Carry: True, if character

available.
Other flags: Corrupt

Does not expand expansion tokens.

A 4-2

ôcBBlE Key test

See whether specified key or joystick button is pressed.

Entry

A: key number (ASCII)

Exit

A, HL: Corrupt
C: 128 = Ctrl pressed

32 = shift pressed
160 = shift & Ctrl pressed

Carry: False
Zero: False if pressed, else

true
Other flags: Corrupt

&BB21 Keyboard status

See whether shift lock or caps lock is pressed.

Entry

None

Exit

A: Corrupt
L: 0 = shift lock off

255 = lock on
H : 0 = caps lock off

255 - caps lock on
Flags: Corrupt

&BB24 Joystick Status

Entry

None

Exit

A: Status of joystick 0
H: Status of joystick 0
L: Status of joystick 1

Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Spare Fire 1 Fire 2 Right Left Down Up Button

Bit 7 = 0; Above bits set means appropriate state applies

A 4-3

&BB39 Set Repeat Key

Enable/disable auto-repeat on specified key

Entry

A: Key number (ASCII)
B: 0 = No repeat

255 = Repeat enabled

Exit

A,B,C,H,L: Corrupt
Flags: Corrupt

&BB3C Test Repeat

Find repeat status of specified key

Entry
A: Key number (ASCII)

Exit
A,HL: Corrupt
Zero: False if repeat,

else true
Carry: False

&BB3F Repeat Set

Set start up delay and repeat speed

Entry Exit

H: Start up delay
L: Repeat speed

A: Corrupt
Flags: Corrupt

Delays and repeats are expected in 50ths of a second, e.g. 50 = 1
second.

A 4-4

&BB4E Initialise text VDU

Entry

None

Exit

A,B,C,D,E,H,L:
Flags: Corrupt

Corrupt

All text streams set to defaults (ink, paper, window, etc). User
defined characters lost. Control codes and text indirections set
to defaults.

&BB51 Reset text VDU

Entry

None

Exit

A,B,C,D,E,H,L: Corrupt
Flags: Corrupt

Sets control codes anc text indirections to defaults.

&BB54 Enable text VDU

Allows characters to be placed on the screen.

Entry

None

Exit

A: Corrupt
Flags: Corrupt

Clears control code buffer.

A 4-5

&BB57 Disable text VDU

Prevents characters from being placed on the screen.

Entry

None

Exit

A: Corrupt
Flags: Corrupt

Empties control code buffer.

&BB5A Output text

Output character on current stream.

Entry Exit

A: Character to send(ASCII)

&BB5D Write text character to screen

Entry

A: Character to print

Exit

A,B,C,D,E,H,L: Corrupt
Flags: Corrupt

Updates cursor position

&BB60 Read text character from screen

Entry

None

Exit

A: The character, or zero
Carry: True if character,

else false
Other flags: Corrupt

Cursor position needs to be set first.

A 4-6

&BB63 Set graphic text

Enables/disables text writing with graphics VDU

Entry Exit

A: <> 0 enable A: Corrupt
= 0 disable Flags: Corrupt

When enabled, control codes are printed, not executed.

&BB66 Define window

Sets size of text window

Entry

H: Column value for one edge
D: Column value of other edge
L: Row value of one edge
E: Row value of other edge

Exit

A,B,C,D,E,H,L: Corrupt
Flags: Corrupt

Lowest of
Top left of
Puts cursor

H and D is left column. Lowest of L and E is top row.
screen =1,1
at top left of window.

&BB6C Clear text window

Entry Exit

None A,B,C,D,E,H,L: Corrupt
Flags: Corrupt

Puts cursor at top left of window.

A 4-7

&BB6F Set text column

Entry

A: New column

Exit

A,H,L: Corrupt
Flags: Corrupt

1 = leftmost column within window

&BB72 Set text row

Entry Exit

A: New row A,H,L: Corrupt
Flags: Corrupt

1 = Topmost row within window

&BB78 Find text cursor

Returns current cursor position

Entry Exit

None H: Cursor column
L: Cursor row
A: Scroll count
Flags: Corrupt

A 4-8

&BB87 Test cursor position

Find out where next character will be printed

Entry

H: Column to check
L: Row to check

Exit

A: Corrupt
B: = 0 If window would

scroll down
= 255 If window would

scroll up else
corrupt

H: Column at which print
would occur

L: Row at which print
would occur

Carry = False if window
will scroll, else
true

Other flags: Corrupt

1,1 = top left of window.

&BB90 Set pen colour

Sets foreground text colour

Entry Exit

A: Colour number A.H.L: Corrupt
Flags: Corrupt

&BB96 Set paper colour

Sets text background colour

Entry Exit

A: Paper colour number A,H,L: Corrupt
Flags: Corrupt

A4-9

&BB9C Swap text colours

Swaps current text foreground and background colours

Entry

None

Exit

A,H,L: Corrupt
Flags: Corrupt

&BBBA Initialise graphics VDU

Entry Exit

None A,B,C,D,E,H,L: Corrupt
Flags: Corrupt

Sets graphics VDU indirections to defaults. Resets graphics window
to full screen. Does not clear window.

&BBBD Reset graphics VDU

Entry

None

Exit

A,B,C,D,E,H,L: Corrupt
Flags: Corrupt

Sets graphic VDU indirections to default.

&BBC0 Graphics absolute move

Entry

DE: Absolute X coordinate
HL: Absolute Y coordinate

Exit

A,B,C,D,E,H,L: Corrupt
Flags: Corrupt

A 4-10

à BBC 3 Graphics relative move

Entry Exit

DE: Relative X coordinate A,B,C,D,E,H,L: Corrupt
HL: Relative Y coordinate Flags: Corrupt

à BBC 6 Find graphics position

Entry Exit

None DE: X coordinate
HL: Y coordinate
A : Corrupt
Flags: Corrupt

&BBC9 Set graphics origin

Entry Exit

DE: X coordinate A,B,C,D,E,H,L: Corrupt
HL: Y coordinate Flags: Corrupt

(0,0) = lower left corner of screen = default graphics origin.

&BBCC Find graphics origin

Entry Exit

None DE: X coordinate
HL: Y coordinate

(0,0) = lower left corner of screen = default graphics origin.

A4-11

<3cBBCF Set graphics window width

Entry Exit

DE: X coordinate of one edge
HL: X coordinate of other edge

A,B,C,D,E,H,L: Corrupt
Flags: Corrupt

Left edge = smaller of DE and HL
(0,0) = lower left corner of screen

&BBD2 Set graphics windo w height

Entry Exit

DE: Y
HL: Y

coordinate of one edge
coordinate of other edge

A,B,C,D,E,H,L: Corrupt
Flags: Corrupt

(0,0) =
bottom

lower left of screen
edge = lower of DE and HL

&BBDB Clear graphics window

Sets window to background colour

Entry Exit

None A,B,C,D,E,H ,L: Corrupt
Flags: Corrupt

&BBDE Sets graphics foreground colour

Entry Exit

A: Colour number A: Corrupt
Flags: Corrupt

A4-12

&BBE4 Set graphics background colour

Entry Exit

A: Colour number A: Corrupt
Flags: Corrupt

&BBE7 Find graphics background colour

Entry Exit

None A: Background colour
number

Flags: Corrupt

&BBEA Absolute graphics plot

Entry Exit

DE: X coordinate A,B,C,D,E,H,L: Corrupt
HL: Y coordinate Flags: Corrupt

icBBED Relative graphics plot

Entry Exit

DE: Relative X
HL: Relative Y

coordinate
coordinate

A,B,C,D,E,H,L: Corrupt
Flags: Corrupt

A4-13

&BBFO Absolute graphies test point

Entry Exit

DE: X
HL: Y

coordinate
coordinate

A: Background colour of
point

B.C.D.E.H.L: Corrupt
Flags: Corrupt

&BBF3 Relative graphics test point

Entry Exit

DE: Relative X coordinate A: Background colour of
HL: Relative Y coordinate point

B,C,D,E,H,L: Corrupt
Flags: Corrupt

àBBF6 Absolute graphics line

Entry Exit

DE: X coordinate of endpoint A,B,C,D,E,H,L: Corrupt
HL: Y coordinate of endpoint Flags: Corrupt

&BBF9 Relative graphics line

Entry Exit

DE: Relative X coordinate A,B,C,D,E,H,L: Corrupt
HL: Relative Y coordinate Flags: Corrupt

A4-14

&BBFC Graphics text

Writes text at current graphics position

Entry Exit

A: Character A,B,C,D,E,H,L: Corrupt
Flags: Corrupt

Top left of character is written at current graphics position.
The current graphics position is updated.

&BC0E Set Screen Mode

Set screen mode and text and graphics VDU's

Entry Exit

A: Required mode A,B,C,D,E,H,L: Corrupt
Flags: Corrupt

&BC14 Clear screen

Clear the screen memory

Entry Exit

None A,B,C,D,E,H,L: Corrupt
Flags: Corrupt

&BC32 Set ink colour

Entry

A: Ink number
B: First colour
C: Second colour

Exit

A.B.C.D.E.H.L: Corrupt
Flags: Corrupt

If B and C are different, the ink colour will alternate.

A4-15

&BC4D Scroll line

Move screen up or down 1 line

Entry Exit

To scroll down:
B = 0

To scroll up:
BOO

A: Paper colour of new line

A,B,C,D,E,H,L: Corrupt
Flags: Corrupt

3cBC59 Set Graphics Plot mode

Entry

A:Write mode

Exit

A,B,C,D,E,H,L: Corrupt
Flags: Corrupt

A = 0: FORCE mode NEW = INK
A = 1: 5DR mode NEW = INK XOR OLD
A = 2: AND mode NEW = INK AND OLD
A = 3: OR mode NEW = INK OR OLD
NEW = FINAL PIXEL SETTING OLD = CURRENT PIXEL SETTING
INK = INK PLOTTED

&BCA7 Sound reset

Clear all sound channels and chip

Entry Exit

None A,B,C,D,E,H,L: Corrupt
Flags: Corrupt

A 4-16

&BCAA Sound channel

Add a sound to the channel

Entry

HL: Address of sound program

Exit

HL: Corrupt if sound added
: Preserved if channel

full

Carry: True if sound added
: False if channel

full

A,B,C,D,E,IX: Corrupt
Other flags: Corrupt

BYTE 0: Channels and synchronisation.
BYTE 1: Amplitude envelope to use
BYTE 2: Tone envelope to use.
BYTE 3,4: Tone period.
BYTE 5: Sound period.
BYTE 6: Starting amplitude.
BYTE 7,8: Duration, or number of repetitions.

Configuration
of byte 0: BIT 0: Channel A

BIT 1: Channel B
BIT 2: Channel C
BIT 3: Synchronise with Channel A
BIT 4: Synchronise with Channel B
BIT 5: Synchronise with Channel C
BIT 6: Sound hold
BIT 7: Empty queue

icBCAD Sound check

Status of a sound queue

Empty

A: Test bit

Exit

B,C,D,E,H,L: Corrupt
Flags: Corrupt

A4-17

&BCBO Empty Queue Event

Set up sound to occur when a sound queue becomes empty

Entry

A: Bit for link (Channel—Event)
HL: Address of event

Bit 0: Link channel A
Bit 1: Link channel B
Bit 2: Link channel C

Exit

A,B,C,D,E,H,L: Corrupt
Flags: Corrupt

&BCB3 Sound Release

Release particular held sounds

Entry

A: Channels to release

Bit 0: Release channel A
Bit 1: Release channel B
Bit 2: Release channel C

Exit

A,B,C,D,E,H,L,1X: Corrupt
Flags: Corrupt

&BCB6 Sound hold

All sounds are stopped immediately

Entry

None

Exit

Carry: True if sound
active, else false

A,B,C,H,L: Corrupt
Other flags: Corrupt

Sounds are automatically restarted by SOUND CHANNEL, SOUND RELEASE
and CONTINUE SOUND.

A 4-18

&BCB9 Continue sound

Release all held sounds

Entry Exit

None A,B,C,D,E,1X: Corrupt
Flasp: Corrupt

icBCBC Amplitude envelope

Set up one of the 15 amplitude envelopes

Entry Exit

A: Envelope number
HL: Address of amplitude HL: Contains data block

address plus 16 if
envelope correct, else
preserved

A,B,C: Preserved if
envelope invalid,
else corrupt

D,E: Corrupt
Carry: True if envelope

correct, else false
Other flags: Corrupt

BYTE 0: Number of parts in envelope
BYTES 1,2,3: First part of envelope
BYTES 4,5,6: Second part of envelope
BYTES 7,8,9: Third part of envelope
BYTES 10,11,12: Fourth part of envelope
BYTES 13,14,15: Fifth part of envelope

A 4-19

BCBF Tone envelope

Set up one of the 15 tone envelopes

Entry

A: Envelope number
HL: Address of tone data block

Exit

HL: Contains data block
address plus 16 if
envelope correct, else
preserved

A,B,C: Preserved: envelope
invalid

D,E: Corrupt
Carry: True if envelope

correct, else false
Other flags: Corrupt

BYTE 0: Number of parts in envelope
BYTES 1,2,3: First part of envelope
BYTES 4,5,6: Second part of envelope
BYTES 7,8,9: Third part of envelope
BYTES 10,11,12: Fourth part of envelope
BYTES 13,14,15: Fifth part of envelope

&BCC2 Amplitude address

Finds address of an amplitude envelope

Entry

A: Envelope number

Exit

A: Corrupt
BC: Length of envelope in

bytes if envelope
correct, else preserved

HL: Address of envelope if
envelope correct, else
corrupt

Carry: True if envelope
correct, else false

Other flags: Corrupt

A must be between 1 and 15

A 4-20

&BCC5 Tone address

Address of tone envelope

Entry

A: Envelope number

Exit

A: Corrupt
BC: Length of envelope if

envelope correct, else
preserved

HL: Address of envelope if
envelope correct, else
corrupt

Carry: True if envelope
correct, else false

Other flags: Corrupt

A must be between 1 and 15

For further details on any of these routines see "The Complete CPC
464 Operating System Firmware Specification" (SOFT 158).

A 4-21

A P P E N D 1 X 5

Binary,Binary-Coded and Hexadecimal Notations
Modern counting systems, in general use throughout the world, use
the decimal system. This has been developed to count past 10 and
also below 1. In this system, the digits to the left in a number
are of greater value than those to the right; for instance in the
number 66 the first 6 has a value 10 times the second, i.e.

This is extended in larger numbers where digits to the left are
successively greater by a multiple of ten, i.e.

6

6 x 10

x 1000

6 x 100

6 x 1

6666

A system where the position or place of a digit in a number
affects its value is known as a PLACE-VALUE numbering system. In
the decimal system, the values of digits increase in multiples of
10 and this is known as the BASE for that system. Other systems
use different bases but follow the same pattern as the decimal
system, i.e. the place to the left is greater being multiplied by
the base.

The computer, being basically electrical in operation, can only
recognise two states, on or off, often represented as T' and 'O'.
Thus it uses the Binary system - ie. base 2. Any number in binary
consists simply of 0's and 1's, or electrically speaking, offs and
ons (or electronically, zero volts and some volts). To count past
one, the binary system must resort to place-value notation and, as
with other systems, the multiplying factor is the base, i.e. 2.
Thus, the number 101 in base 2 or binary represents:

41 x

0 1

A 5-1

i.e. 4+0+l=5. Clearly, the plethora of bases presents a problem
when representing numbers. In decimal (base 10), '101' represents
one hundred and one while in binary (base 2) '101' represents 5.
To overcome this ambiguity, a convention exists when representing
numbers so that the base is written to the right of the number,
just below the line. Thus, the two numbers discussed above become:

101lo = One hundred and one in base ten.

1012 = Five in base two.

The present-day generation of home computers (1985-style) uses
eight bit registers or memories and can, thus, represent numbers
up to 11111111 , i.e. 255 in base 10:

128+64+32+16+8 +4 +2 +1 = 2551O

1 1 1 1 1 1 1 1

128 64 32 16 8 4 2 1

FIGURE A.l

By way of example, let's make another conversion - say, 10100111,,.

1 x 128 0 x^54 1

10 10

1 x 32 0 x 16 0 x 8

Thus 10100111 = 1x128 +0x64 +1x32 +0x16 +0x8 +1x4 +1x2 +1x1
= 128+32+4+2+1
= 1671O

Just to check your understanding, have a go at the following:

A 5-2

EXERCISE A 5.1

Calculate the value of the following binary
numbers in base 10:-

i) 000000112
ii) 000001002
iii) 100000002
iv) 100000112
v) IOIIOIU2

vi) 011100112

The answers are in the solutions Chapter.

To make the idea of converting numbers from Decimal to Binary
notation clearer try running the program 'BIN/HEX' on the
cassette. Type in the following:

RUN "BIN/HEX"

The program will now automatically be loaded and run by the
computer and the following display will appear:

HONES’ F OL I> SO FT H ftBE 1984

I Decimä1 O O O Hex O O J

B i viajr y L 9 O O O O tl o o

ENTER START NUMBER
CO to 2 5 5 >

BCD
•:f
0 0 0 0 0 0 0 0 0

Don't worry about the boxes marked 'Hex' or 'BCD', we will be
coming to them a little later. Ahat we are interested in, at the
moment, are the 'Decimal' and 'Binary' boxes.

As the display indicates, the program is waiting for you to enter
a number in the range 0 to 255. Type in '1' and press 'ENTER'. The
screen changes to give the following display:

A 5-3

All the boxes have changed to display the value of 1 in the
various different notations. The instruction boxes tell you that
the current value can be incremented or decremented, using the up-
arrow and down-arrow cursor keys respectively.

Press the up-arrow key and as the values increase you will be able
to see clearly how binary counts. If you now press 'E' you will be
able to enter a new start number. Enter '15' and the binary box
should contain '00001111'. Now increment this by one. The left
four bytes (the least significant bytes) have all changed to zero
and the fifth byte has become one. One way of understanding this
is to lay out the addition:

1111 A
+ 1 B

On adding the 1 to 1 this gives '2' i.e. 0, carry 1. This carry
then produces another 'O' + a carry, and so on.

When the register is full i.e. 111111112 , the addition of a
further 1 will clock the register back to zero and 256 will be
lost. However, with the Z80 chip all is not lost as the chip has a
carry flag that stores the fact that a carry has occurred. (The
carry flag is marked 'CF' on the display.)

To see the carry flag work press E and then start the count at
about 250lo i.e. enter 250 <RETURN>. It's now not too far to
increment up to 255 and 11111111 £ .

Now watch the binary box as you count past 255XO to 2561O . The
binary cycles back to zero + the carry bit. This is a handy
feature of the Z80 but must not be relied on as more than a
temporary store of the carry. It's just as easily reset to zero as
it is set to 1!

The program will also accept numbers that are entered in Binary
form. However, to do this the number MUST be proceeded by the
prefix '&X'. Thus to enter the binary number 101010 (42 decimal)
type:

&X101010

and then press ENTER. All the boxes change to show 42 in the
various notations.

To see if you really understand Binary notation try converting the
following binary numbers to decimal on paper and then use the
program to cheek your answers.

A 5-4

EXERCISE ^5.’

i) 11111
i i) 101001
iii) 10111101
iv) 10001000

The answers are in the solutions chapter.

Keep the BIN/HEX program in the computer; you will need it again
soon!

While the 0's and l's are convenient for the computer, they are
much less so for the mere human so a compromise is sought.
Decimal notation is of little use as, apart from l10 and 12
there is no other correspondence. A further idea would be to take
the whole eight binary bits as a digit (i.e. up to 255) and use
a base of 256! What would you see as the objection to this?
That's apart from the idea itself being a bit mind-bending!

Time to think ... The answer comes from an examination of the base
10 case in which ten digits (0 to 9) are needed to represent the
ten steps up to 10. In the base 2 system, two digits are needed so
base 256 would need 256 digits!

Hexadecimal
A compromise system adopted splits the eight bits up into two
parts and represents these separately. Thus, the largest number to
be represented is 11112 or 15l0 and this requires, along with the
0, sixteen different symbols. The ones adopted for this job are:

Decimal number0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 A B C D E F Symbol

FIGURE A5.2

Using this notation, any eight bit number can be represented by
two symbols, one for the most significant four bits and one for
the least significant four bits. To avoid the rather long
description of these two halves of a byte, they are given the term
NYBBLES. Thus a byte consists of two nybbles, a most significant
nybble (MSN) and a least significant nybble (LSN) - see Figure
A5.3.

A 5-5

FIGURE A5.3

The system described, which uses sixteen symbols is given the name
HEXADECIMAL - usually abbreviated to HEX. Its major advantage, as
far as computers are concerned, is that it is compatible with
binary. Any eight bit binary number can be represented by two
hexadecimal characters.

If you now look at the top right-hand box on the screen that we
pretended not to notice earlier, you will see that this counts in
HEX. The compatibility between binary and HEX shows wherever a
major carry occurs - take for instance Ull2 , 15 10 or F16 :
one increment past this turns the binary ones to zeroes and adds a
one to the left, i.e. to 100002 or 1016 . These major points of
correspondence occur at: _Step 1

^2 - hó = 1 10

0001 00002 = 1016 = 1610

0000 0001 0000 00002 = 10016 = 2561O

0001 0000 0000 00002 = 100016 = 4096lo

As you will have already noticed, the hexadecimal count is present
on the DEC/BÏN/HEX display and the progress of the count can be
followed on this.

Press 'E' and enter the start value of '1' and again, start
incrementing the count. Up to 9, the hex characters coincide with
the decimal ones and between 10 and 15 the single letters
correspond to the decimal numbers. After 15, Hex to decimal
conversion becomes a little more tricky, as the use of two numbers
together, e.g. FF16 =255, once again calls for place-value
notation. This time, as the base is 15 the ratio between any place
and its neighbour is 16.

A 5-6

The values, in base 10, of the places in hexadecimal are:

x 4096

FIGURE 45.4

Using Figures A5.4 and A5.5, the breakdown of E92F in base 16,
into 59695 in base 10, is illustated.

E 9 2 F

E(14)x4096 + 9x256 + 2x16 + F(15)xl = 59695

FIGURE A5.5

Now that hex is totally mastered (!) try the following; the first
two are explained fully in the solutions chanter.

EXERCISE A5

Calculate the
following-.-

value in decimal of the

i) 0916
ii) 1316

i i i) A516
iv) AE16

v) o*V16
vi) 1A 16

vi i) EA 16

Do the aoove exercise on paper first. The program will also accept
numbers input in Hexadecimal but they must be proceeded by the
prefix Thus if you entered the value '&FF' the decimal
equilvalent, 255, would be displayed. You can check your answer to
Exercise A5.3 using the program or look in the solutions chapter.
Keep the program, you will need it in a moment.

Binary-Coded Decimal
As well as decimal, binary and hexadecimal notations, one other
system is used in computing - Binary-Coded Decimal. As its name
suggests, it is a hybrid form with elements from both binary and
decimal. It is commonly used where an output is required in
digital format, e.g. a digital clock, or when great precision is
required and no bits can be dropped.

A 5-7

In BCD the normal decimal base is retained, i.e. one place is a
factor of 10 times its neighbour but each individual digit is
represented in binary. Thus the number 871O would be represented:

8 7-^^ base 10

1000 0111

i.e. BCD = 1000 0111 (or in eight bits
10000111)

FIGURE A5.6

As the largest digit required in decimal notation is 9, only four
bits of binary are needed to represent this, i.e. 910 =10012 , thus
a BCD digit can be represented by a nybble and two digits by a
byte. Figure A5.6 shows this, where 871O is represented in BCD as
100001112 . This can give rise to ambiguity in that 100001112 in
binary is 135jO . To overcome this, BCD representations will be
given the notation 10000111 (BCD).

Using four bits of binary, it is possible to count up to 1510
(i.e. 11112 = 1510) but in BCD the largest digit used is 9, so
inevitably BCD is less economical in its use of space. Its largest
digit, 9, is 10012 and when one is added to this it clocks over
to 00002 and carries the 1 to the next nybble, i.e.

810 = 0000 1000 (base 2 BCD)
910 = 0000 1001 " " "

io10 = 0001 0000 " " "
ll10 = 0001 0001 " " "

FIGURE A 5.7

The display we are concerned with this time is the one marked BCD.
Press 'E' and enter a start value of 1. If you increment through
the first 9 counts you will see that up to 910 , binary and BCD are
identical. However, as you increment from 9J0 to 10lo keep an eye
on the BCD box and you will see the 1 carried over to the most
significant nybble. From 10lo upwards BCD becomes a true hybrid
representing the decimal number in a binary form.

A 5-8

As the number input increases, the uneconomical nature of BCD will
become apparent. If you now enter a new start value of 95 and
start incrementing you will see the problem as 99to changes to
100lo When the count is made, however the accumulator is wrongly
changed and contains incorrect values. The program deals with this
by displaying the message TOO BIG FOR BCD' in the box. If you
decrement back down to 99 or less the appropriate BCD value is
again displayed but the carry flag remains set. (If you wish, you
may reset both carry flags by pressing 'R'. However, the BCD flag
will be set again as soon as a value over 99 is encountered). When
incrementing from 99jo to 100lo the BCD generates a carry from
its most significant nybble to the carry flag so the Z80 does not
lose this but sets the flag.

As mentioned above, this carry is only a short-term expedient and
must be picked up at the earliest possible moment if it is not to
be lost. The carry is generated on the BCD boxes at 99jq while the
binary boxes will store up to 2562 and the decimal of course up
to 99910 • æD is less economical but has its uses in particular
situations.

As you know all about BCD now, try the following:-

EXERCISE A 5.4

Convert the
BCD:

following decimal

i) 4 v) 53
ii) 10 vi) 102

iii) 77 vi i) 953
iv) 97 vi i i) 2579

numbers into

The answers are in the solutions chapter.

A 5-9

EXERCISE A 5.5

Convert the following BCD numbers into
decimal:-

i) 0000 0001
ii) 0000 1001

iii) 0001 0101
iv) 0010 0000
v) 0100 1001

vi) 0010 0011
vii) 1001 0111
viii) 1000 1000

The answers are in the solutions chapter,

Unfortunately for you, the program does not accept numbers input
in BCD notation. However, if you are desperate you could enter
each nybble separately.

In the explanation given for the value of places in place-@value
notation a simplification was adopted in order to make these
explanations clearer for our less mathematically inclined
brethren! However, if you wish to see a slightly more mathematical
explanation, please read on. Otherwise - END OF APPENDIX 5.

With binary numbers, it was said that the places increase their
value in multiples of 2, but the least significant bit of, the
binary number was equivalent to the same symbol base 10 (or for
that matter base 3, or whatever). In actual fact, the multiplying
factor is the base, raised to the power of its place starting with
zero at the left. i.e. in binary:

precise factor.

7 6 5 4 3 2 1 0 Place
Previously stated
multiplication factor

Mathematically more

128 64 32 16 8 4 2 1

27 26 25 24 23 22 2* 2°

Thus the least significant bit is multiplied by 2° or 1. (If you
are not sure of this try the direct program PRINT 210.) The next
bit is multiplied by 21, and so on.

A5-10

This rule holds good for ANY base. Let's apply it for hex, i.e.
base 16:

Least significant bit factor = 16° = 1

2nd most significant bit factor =16 =16
2

3rd most significant bit factor = 16 = 256
3

Most significant bit factor = 16 = 4096

A5-11

A p. P. E. N D 1 X 6.

The assembler
This appendix explains all of the features of both the assembler
and the editor. It is recommended that you read through it and
refer to it when necessary throughout the book.

The following editor commands are displayed by the menu.

1 Insert text 8 Save file
2 List 9 Fetch file
3 Replace line 10 Print file
4 Delete text 11 Renumber
5 Assemble 12 Convert Base
6 Exit to Basic 13 Arithmetic Operation
7 Call Program

These commands will be detailed on the following pages.

1. The insert option
This command is used for entering text into the text file. It is
possible to specify both the starting line number and the line
increment in response to the prompt, "Enter start and increment".
The first number will be taken as the starting line number, the
second as the line increment. These two numbers must be separated
by a dash which is located below the "=" sign on the keyboard.
For example the following sequence of commands would cause the
assembler to assign a line number of 10 to the first line of text
entered and set the second line number to 20 i.e. a line increment
of 10. The editor's prompts will be shown in bold thus.

> I
> Enter start and increment? 10-10 <ENTER>

Note that you will not actually see the 'I' appear on the screen,
it is shown here to denote that it was pressed, also <ENTER> will
be used in this appendix to represent the pressing of the large
blue ENTER key.

A6-1

If no line increment is specified then 10 will be assumed. To exit
the insert mode type in the '©' character as the first character
on a line. This will cause the editor to return to the command
mode shown by the '>' prompt. For example if the last line in your
program was RET in line 120, then '©' would be entered as the
first character in line 130.

The screen would appear as below:

120 RET <ENTER>
130 © <ENTER>

Type M for the menu
>

2. The list option
This command allows the whole program or a segment of it to be
listed to the screen. When selected the prompt "Enter starting
line number" appears. To list the whole program just press the
ENTER key. Once the listed program has filled a whole screen the
listing process will stop until any key is pressed. If you require
the listing to start at a particular line number then enter this
line number in response to the prompt "Enter starting line
number". At any point during the listing pressing the space bar
will halt the listing, pressing any key will allow the listing to
continue. Also, while listing, pressing the 'M' key will terminate
the listing and print the menu on the screen.

3. The replace option
This option is used to replace an existing line with another.
Suopose the following program was in the text file

10 LD A,65
20 IN C A
30 CALL &BB5A
40 RET

Line 20 should be INC A, and would be changed with the following
commands.

> R
> Enter the line number 20 <ENTER>
20 INC A <ENTER>

A 6-2

Note it is not possible to replace more than one line at a time.
If it is required to replace a series of lines use the insert
option to insert the new text.

4. The delete option
This command enables either a single line or a whole block of text
to be deleted from the text file. The syntax for the command is
exactly the same as that for the Insert command.

For example:

> D
> Enter line number 20 <ENTER>

Would delete line 20, whereas:

> D
> Enter line number 20-200 <ENTER>

Would delete lines 20 to 200 inclusive.

To delete the whole program choose line numbers which are outside
the used range. For example, suppose a program uses the line
number range 10 to 320. The following sequence of commands would
delete the whole program from memory

> D
> Enter line number 1-400 <ENTER>

5. The assemble option
After entering a program into the text file it is necessary to
assemble this source code into machine code. This is accomplished
with the assemble option.

After the assemble option has been selected, (by typing A while in
the command mode), a menu will appear as below:

1. No listing
2. Listing to screen.
3. Listing to printer.
4. Both screen and printer.

A6-3

1. No listing

This option will cause no listing to be generated hence it will
lead to the fastest assembly. However any errors will be
reported.

2. Listing to the screen.

This option causes the assembly listing to be output to the
screen.

3. Listing to printer.

This is exactly the same as option 2 except that the output is
directed to the printer.

4. Both screen and printer.

The assembly output is directed to both the screen and printer.

If during assembly the assembler encounters any errors it will
jump back to the editor after informing you of the error.

6. The exit to basic option
This command jumps out of the assembler program and enters BASIC
after clearing the screen with a MODE 1 command. The Assembler and
Editor are written in a mixture of BASIC and machine code. The
small BASIC 'driver' program uses the BASIC line numbers 64000 and
above. Thus as long as the line numbers are kept below 64000 it is
possible to have a small BASIC program resident in memory at the
same time as the assembler. This is very useful for testing out
algorithms before trying them in machine code. The maximum size of
the additional BASIC program is about 4K. To re-enter the
assembler, saving any program held in the text file, press the
decimal point key on the numeric key pad or type in from BASIC
'GOTO 64026'. If you don't need to keep the contents of the text
file, i.e. delete any assembly language program in memory, type in
from BASIC 'GOTO 64018'.

A 6-4

7. The call program option
This option allows machine-code programs to be run or called from
the assembler. To run a machine-code program, the memory location
containing the first instruction in the program is called. Note:
this option will only work if the program uses the ENT assembler
directive as its first line; don't be tempted to use it if your
program uses the ORG assembler directive as it may cause the
computer to act strangely i.e: crash.

Thus assuming that ENT has been used pressing C while in the
command mode will clear the creen and then jump to the machine
code program.

To run a program which uses the ORG directive it is necessary to
call the beginning of the program from BASIC. Thus suppose the ORG
instruction in the program is as follows:-

10 ORG 30000

This will cause the assembler to store the first byte of the
resultant machine code in memory location 30000. Thus to call the
program exit to BASIC using X. Now type in the following:-

CALL 30000 <ENTER>

This will cause the machine-code program starting at memory
location 30000 to be run. Ensure that the machine-code program is
error free however as any mistake may cause the computer to crash.

As stated previously it is possible to save a copy of the machine
code generated by the assembler (an object-code file), this type
of file has to be loaded into the computer from BASIC. The load
command is exactly the same as that used for loading a BASIC
program except that the computer needs to be told where to locate
the machine-code file. This information, the load address, is
given after the file name, separated by a comma.

For example to load the object code created by the program TEST
and saved under the file name TEST-b into memory starting at
memory location 30000, the following command would be entered from
BASIC

LOAD "TEST",30000 <ENTER>

Then to run the program

CALL 30000 <ENTER>

would be used.

A 6-5

The tape commands (S and F)
By using these commands text files can be saved to tape or fetched
from tape in a form suitable for the assembler. It is also
possible to save the machine code (object code) produced when a
text file is assembled. This is very useful as it enables a
machine code program to be developed and then run independently of
the assembler.

8. The save option
This option is used to either save a copy of the text file to tape
or to save a copy of the object code.

Saving the text file
Like BASIC programs, files are assigned a
of any alphanumeric characters. When the
you are asked to enter the file name you
to the prompt "Enter the file name". Thus
the text file under the file name TEST
would be used

> S
> Enter the file name? TEST <ENTER>

name which can consist
save option is selected
wish to use in response
to save the contents of
the following commands

The familiar "Press REC and PLAY then any key:" prompt will
appear, at which point you should proceed as if in BASIC: insert a
blank cassette, press PLAY and REC then any key. After the file
has been saved the command-mode prompt ’>' will reappear.

Saving the object code
It is also possible to save a copy of the object code generated by
the last assembly of a text file. The object code is the machine
code produced by the assembler. Thus an assembly language program
can be developed using the assembler and then the resultant
machine code saved to tape for use later. (Note: details as to how
to run this object-code file are given in the section detailing
the 'Call Program' option.)

A 6-6

To save a copy of the object code it is necessary to add a file
type-marker to the file name. This marker is a 'b' separated from
the file name by a dash. Before the object code can be saved the
program in the text file must be assembled. Thus to save the
object code created by the imaginary file TEST the following file
name would be used

> S
> Enter the file name? TEST-b <ENTER>

9. The fetch option
This option is used to fetch a text file from tape. Note: it
cannot be used to reload a copy of the object code created by the
assembler and saved with the identifier '—b*. See the 'Call
Program' option for this. You are prompted with the "Enter file
name" prompt. If you cannot remember the file name the program was
saved under just press ENTER in response to the prompt and the
first compatible file found on the tape will be loaded. For
example the following would be used to fetch the file test

> F
> Enter the file name? TEST <ENTER>
Press PLAY then any key: <Press PLAY then ENTER>

10. The print option
This option allows the program held in the text file to be output
to the printer, if one is present. The syntax for this command is
exactly the same as that for the list command, except that P is
entered instead of L.

11. The renumber option
This command renumbers all the lines stored in the text file. When
selected the prompt "Enter the new line increment" appears; the
number entered then will be used as the starting line number and
the line increment. Thus to renumber the text file with a line
increment of 10 starting with a line number of 10, the following
sequence of commands would be used

> N
> Enter the new line increment 10 <ENTER>

A6-7

12. The convert base option
While writing assembly language programs it is sometimes useful to
be able to convert a number from one base to another. The Convert
Base Option allows this, it will accept any number in the range 0-
65536. The number to convert can be represented in any one of the
three following bases:

1. Decimal.
2. Hexadecimal.
3. Binary.

To distinguish between them, the standard BASIC prefixes are used:

Base Prefix

Decimal None
Hexadecimal de
Binary &X

The input number is converted
275 in decimal, hex and binary
would be used.

to all three bases. Thus to express
the following sequence of commands

> B

Enter number to convert? 275 <ENTER>

The screen will then display the number 275 in all three bases. To
clear the screen press B again. Note the lower screen display will
remain unaffected by all commands except B and O which will clear
it.

13. The arithmetic operation option

This command allows two numbers, in any one of the three supported
bases, to be either added or subtracted from each other. For
example to add 200 to &FF.

> 0

First number? 200 <ENTER>
Second number? &FF <ENTER>
A. Add S. Subtract? A <ENTER>

A 6-8

The lower screen will now clear and display the following:

Binary = &X11100011
Decimal = 445
Hexadecimal = &1C7

As with the Convert Base option, this display will remain until O
or B is pressed again.

Assembler directives
As well as accepting the full Z80 instruction set the assembler
will accept certain assembler directives. An assembler directive
is an instruction to the assembler instead of the Z80 (they are
sometimes called pseudo-opcodes for this reason).

Assembly directives considerably increase the legibility and ease
of writing programs.

The first directive should be familiar:

ENT Causes the object code to be placed
immediately after the source code, in a form
suitable for running from the assembler's
call program option.

When writing programs that require more storage for data than is
available from the registers or easily from the stack, it is
necessary to use memory locations to store this data. Ideally
these memory locations would be situated in the same vicinity as
the program. As the exact length of the program is not known
calculating the address of a memory location situated at the end
of the program is not easy. The solution to the problem is to use
the following assembler directive

DEFS n Reserves n bytes of memory starting at the
current value of the location counter.

To allow easy reference to this storage area a label is assigned
to this directive. For example to sent up a four byte buffer
referenced by the label STORE: the following line would be used

STORE: DEFS 4

A6-9

When the assembler encounters this command it will reserve four
bytes of memory and assign to the label 'STORE:' the address of
the first byte in this buffer.

For example:

Suppose that an 8 by 8 bit multiplication program produces a 16
bit result in HL; if this result will be needed further on in the
program it will have to be kept.

By using the following program the result can be obtained by
referencing the label STORE:

ENT
STORE: DEFS 2

Multiplication program

LD (STORE:),HL

Thus the contents of the memory location addressed by store
contain the result of the multiplication. As well as creating
buffers, assembler directives can be used for many other
functions. The first to be considered is assigning numeric values
to labels.

EQU nn Assigns the value nn to the preceding label.

This form of directive is used mainly for setting up constants.

For example:

LOOP: EQU 20
LD A,LOOP:

When assembled and executed, this would load A with 20.

A6-10

So far most of the programs have used the ENT directive. This is
fine for development and testing purposes but when a machine-code
program is to be called from BASIC it has to be stored where BASIC
cannot overwrite it. The amount of memory available to BASIC is
set by the BASIC command MEMORY. By setting MEMORY to 39999 any
memory location above 39999 cannot be used for BASIC program
storage: thus, in effect, memory has been reserved for maehine-
code programs.

Instead of letting the assembler decide where to locate the
program it needs to be told. The following directive is used to
accomplish this

ORG nn Set the location counter to nn

This feature of the asembler allows programs to be assembled so as
to reside anywhere in memory. Note: the value nn has to be greater
than the last memory location used by the editor. If you type in
an invalid location the assembler will inform you.

Many programs require specific memory locations to be loaded with
data. There are three directives to accomplish this; the first two
load numeric data and are as follows

DEFB n Stores n at the current value of the
location counter.

DEFW nn Stores the LSB of the 2 byte word nn
at the current value of the location
counter and the MSB at the current
value of the loction counter + 1.

The last directive stores the ASCII representation of a string in
memory. This is very useful for printing messages on the screen.

DFFM "s" Set the contents of memory, starting
with the current value of the
location counter, to the ASCII
representation of string "s".

A6-11

Try the following program:

ENT
MESS: DEFM "A MESSAGE !"

LD B,ll
LD HL,MESS:

LOOP: LD A,(HL)
CALL &BB5A
INC HL
DJNZ LOOP:
RET

Useful heh!

Addition of operands & direct loading of ASCII characters
If by now you have worked through the book and have read chapter
10, it may have struck you that in Chapter 10 &80 was added to an
ASCII character held in quotes in a DEFB command. The effect of
this line is to load into memory, at the current value of the
location counter, the ASCII value of the character contained in
*he quotes after &80 has been added to it. The effect of adding
&80 to a binary number is to set bit 7. This was required in the
program as the Amstrad's operating system requires the last
character in an external command's name to have bit 7 set.

Thus to load the ASCII representation of A into the Accumulator it
is possible to use the following line:

LD A,"A"

which would load A with 65. Likewise, to load A with B you could
use:

LD A,"A"+1

These functions are very useful at times, especially for setting
up arrays of data.

Comments
The assembler will allow comment lines to be included in the text
file provided that the first character in that line is a semi­
colon. Thus a sample program containing comments would appear as
below:

A6-12

10 ENT
20 ;Load A with 65
30 LD A.65
40 ;Print A on the screen
50 CALL &BB5A
60 RET

Note that comments must be on separate lines from instructions;
the two cannot be combined on one line.

A6-13

G 0 S S A R Y

ADDRESS

The computer has lots of chips in it, in which to remember data.
It stores up data in little groups of 8 bits, called bytes. The
computer has lots of these bytes in its memory, we call each of
the places that holds a byte a memory location. Each memory
location has a special number associated with it, just like a
house number, this number is called the address of that memory
location. It helps the computer find the byte it wants.

ALGORITHM

An algorithm is a set of instructions for doing a particular job.
Cooking recipes are algorithms and so are flow charts and computer
programs.

ARCHITECTURE

The arrangement or design of the logic in a computer system.

ARITHMETIC AND LOGIC UNIT or ALU

The area in the central processor that does all the arithmetic and
logical operations.

ASCII

An abbreviation for American Standard Code for Information
Interchange. In the computer, information is stored in the form of
binary numbers so, in order to represent a letter in the computer,
it was decided that each letter of the alphabet should be given a
special number or code. This code is called the ASCII code of the
letter. Not all the ASCII codes represent letters, some represent
other characters like =,+,!,? or /. Also there are other codes
that represent new lines etc. Many computers do not strictly
conform to the ASCII standard but most conform to a large extent.

G-l

ASSEMBLER

A program which translates assembly language into machine code.

ASSEMBLER DIRECTIVE

These commands tell the assembler something, e.g. ORG. This
instructs the assembler to start storing the object code at the
given address. See also Assembler.

ASSEMBLY LANGUAGE

A low level' computer language, but not as 'low level' as machine
code. Assembly language is a language designed to make it easier
to enter machine code programs into a computer. A program called
an 'assembler' translates assembly language programs ('source
code') directly into machine code ('object code').

BASIC

Beginners All Purpose Symbolic Instruction code. A 'high level'
programming language.

BIT

One digit, either 0 or 1, in a binary number.

BYTE

A group of 8 bits used to represent a number between 0 and 255.

CENTRAL PROCESSOR UNIT

The part (in this case the Z80 chip) of the computer that does all
the executing of machine code programs (every program 'boils down'
to machine code of one form or another!).

COMMANDS

The near English equivalents of machine code. We actually write
commands when entering assembly language. Thus, ADD A,B is a
command; 80 is the machine code equivalent. See also 'mnemonics'.
Another word used for command is 'instruction'.

G-2

COMPILE

To create the object programs from the source.

COMPILER

A program which converts a whole program written in a 'high level'
language such as BASIC into machine code before the program is
run. Speeds comparable with assembly language/machine code
programs can be achieved. See also 'Assembler', 'Disassembler' and
'Interpreter'.

COMPLEMENT

A 'reverse' form of a binary number in which all the 1's are
swapped for 0's and all the 0's for 1's, i.e.

10111100 becomes 01000011

CONTROL CHARACTERS

Control charaters do not display anything but serve to perform
some action such as 'new line' <RETURN> or clear screen.

CRASH

If the Z80 is told to execute a program in memory that is
incomplete in some respect then it may end up executing what it
should not be executing! The Z80 is not very clever and can
easily attempt to execute the contents of a buffer, string
variable or any other kind of data. When this happens the Z80 gets
in a mess, jumping around, executing a bit here and a bit there.
It may store things all over the place, generally making a mess of
what you have in memory. You will need to reset the computer to
bring the Z80 to its senses. (A system crash will not do physical
damage to the system. Crash the system for fun if you want!)

CRYSTAL OSCILLATOR

Device based on the vibration of a quartz crystal to produce an
oscillating electrical voltage. Used in electronic watches, hence
quartz watch, also on timing devices (clocks) for some computer
systems.

G-3

DATA BUS

A group of electrical pathways used by a computer system to
communicate internally.

DOUBLE PRECISION

A rather general term meaning twice as precise. Used in this book
to mean mathematics done on numbers 2 bytes long (i.e. ranging
from 0 to 65535) rather than one byte long.

DISASSEMBLER

A program which translates machine code into assembly language.

EXECUTE

Used, in the context of this book, to mean the running of a
machine-code program.

FLAG

A special location, usually just one bit, that is set to a
particular value if some condition was true or to some other value
if it was not. It could be altered on the result say, of a compare
operation between two numbers, if they were equal it would be set
to 1 and if they were not it would be set to 0.

GATE

Generally, an electronic device for performing logical operation.
Voltage levels are used to indicate the values TRUE and FALSE, or
1 and 0. (Pneumatic logic gates also exist, but not in this
computer!).

INDIRECTION

The process of looking up the address to use in an instruction,
when the address is not actually given in the instruction: The
instruction contains the address at which the address to use is
stored.

G-4

INSTRUCTIONS

The near English equivalents of machine code. We actually write
instructions when entering assembly language. Thus, ADD A,B is an
instruction; 80 is the machine code equivalent. See also
'mnemonics'. Another word used for instruction is 'command'.

INTERFACE

A device to allow two electronic systems, not normally compatable
directly, to communicate with each other.

I/O

Abbreviation for Input/Output

INTERPRETER

A program which reads another program (eg. a BASIC program) and
converts it instruction by instruction into machine code which is
then immediately executed. Note that this is different from an
assembler or a compiler which convert whole programs (the 'source
code'). Programs in an 'interpreted' language such as BASIC run
more slowly than assembly language and compiled programs as each
BASIC instruction has to be interpreted every time it is executed,
whereas, say, an assembly language program only has to be
converted into machine code once before the program is run. See
also 'Compiler'.

LOAD

To load a register or the accumulator means to put some number
into it. The number can be obtained in various ways.

LOGICAL OPERATOR

Operator or function that only works with the values TRUE and
FALSE. The most basic logical operators are AND, OR and NOT. NOT
just returns the complement (opposite) of its input.

G-5

LOW and HIGH LEVEL LANGUAGES

The level' of a computer language refers roughly to its
similarity to English or other spoken languages. The higher the
level, the closer the language is to a proper spoken language. The
lower the level the closer the language is to the inscrutable
numbers of machine code. High level languages are characterised by
simple commands which can do a lot - i.e. by 'powerful' commands.
In approximate order from low to high a selction of computer
languages listed here: machine code, assembly language, FORTRAN,
BASIC, ALGOL, PASCAL, COBOL, LISP. Some languages such as FORTH,
whilst of quite high level, have many features of both low and
high level languages and it is difficult to say exactly how high a
level they are.

MACHINE CODE

This is the actual numbers that the Z80 microprocessor chip uses.
Not merely data, but every instruction which the chip executes is
represented as far as the chip is concerned by a machine-code
number, and these, controlling internal voltages, are all it can
use.

MEMORY LOCATION

The computer has lots of chips in it, in which to remember data.
It stores up data in little groups of 8 bits, called bytes. The
computer has lots of these bytes in its memory, we call each of
the places that holds a byte a memory location. Each memory
location has a special number associated with it, just like a
house number, this number is called the address of that memory
location. It helps the computer find the byte it wants.

MEMORY MAP

A chart showing how the memory is used by the computer, i.e. which
memory locations are used for what.

MNEMONICS

Pronounced 'nemoniks', and named after the Greek goddess of
memory, Mnemosyne, mnemonics are simply memory aids. It is easier
to understand or remember what 'ADD A,B' does than to remember
what the Z80 chip will do with the instruction '80'. Hence we tend
to use assembly language with its mnemonics rather than enter
programs directly in machine code.

G-6

NESTING

A structure in a computer program where one loop is put inside
another.

NYBBLE

A nybble is a chunk of 4 bits just as a byte is a chunk of 8 bits.
For convenience a byte is sometimes considered to consist of two
nybbles, the least significant nybble (right-hand one) and the
most significant nybble (left-hand one).

OBJECT CODE

The machine code version of an assembly language program. The
assembler is said to convert 'source code' into 'object code'.

OBJECT PROGRAM

The object program is the actual machine-code version of an
assembly-language program (the source program).

OP CODE

An instruction, usually written in assembly language or in a
higher level language, which the computer can follow: eg. ADD, LD,
PRINT, etc. Note that the op code is the instruction minus its
operands. Thus ADD A,B is an instruction, whilst ADD is the op
code.

OPERATING SYSTEM

A built in program which is designed to simplify 'housekeeping'
procedures within the computer. It deals with such functions as
scanning the keyboard, creating the video display, saving programs
to tape, etc.

OPERAND

The operand of an instruction is any number which follows that
instruction, such as A and 145 in LD A, 145. Some instructions
don't need an operand such as RET.

G-7

PARAMETER

Most instructions have parameters. For example in the BASIC line
'PRINT a,b'; a and b are the parameters.

PERIPHERAL

A device attached to the main computer system, such as a printer,
VDU or light pen.

PIXEL

Short for 'picture element', a pixel is the smallest portion of
the screen which the computer can control - i.e. a dot. All
pictures, letters etc. which the computer puts on the screen are
made up from combinations of pixels.

PROGRAM COUNTER

A special 16 bit register, in the Z80, that points to the next
instruction to be executed, so that the Z80 does not lose its
place in a program!

RAM

Abbreviation for <R>ead <A>nd <M>odify memory, also sometimes
known as <R>andom <A>ccess <M>emory.

REGISTER

A special memory location in a chip, usually in the Central
Processor Unit, (CPU) for storing a number, in binary. The
registers in the Z80 are either 8 or 16 bits long.

RESET

A flag or a bit is 'reset' when it has the value 'O'. A pixel is
reset when it is not lit up.

G-8

ROM

Abbreviation for <R>ead <O>nly
there is a program permantly
trying to POKE data into it or by

<M>emory. This is memory in which
stored, and cannot be erased by
means of LD type instructions.

SCREEN (Addresses)

The screen has a special area of the computer's memory reserved
for it. This memory area tells the system what information goes
where on the screen. If we alter the contents of these locations
then the displayed character on the screen will change.

SERVICE ROUTINE

Machine-code routine used for servicing interrupts.

SET

Generally set is used to refer to flags, it means to put a 1 into
the flag. A pixel is set when it is lit up.

SOURCE CODE

Assembly language as typed in, and before converion to machine
code or 'object code' by the assembler.

SOURCE PROGRAM

The source program consists of the actual assembly mnemonics, as
used in this book. It means a program that was created by the user
but must first be translated into some other form before execution
can take place. An assembly-language program must be changed into
machine code in order to execute it.

SYMBOLIC LABEL

This is a name given to a line in a program, so that it can be
referred to easily by the programmer. Instead of jumping to a
specific memory location within a program, it can jump to the name
instead.

G-9

VECTOR ADDRESS

The address that must be 'looked up' in an indirection operation
is called the vector address.

Z80

Z80 is the type or reference number of the central processing unit
CPU used in this computer. The CPU is often referred to as THE
Z80'.

G-10

s 0 u T JI. O N S

CHAPTER 1

EXERCISE 1.1

ENT
LD A,65
CALL 47962
RET

EXERCISE 1.2

ENT
LD A,70
CALL 47962
LD A,82
CALL 47962
LD A,69
CALL 47962
LD A,68
CALL 47962
RET

CHAPTER 2
EXERCISE 2.1

ORG 30000
LD B, 10
LD A,65
CALL 47962
DEC B
JR NZ, 30004
RET

EXERCISE 2.2

The JR NZ instruction is used in preference to the JP NZ
instruction because the jump distance is within +129 and -126
bytes, and the JR NZ instruction requires less time to execute. It
is therefore more efficient.

S-l

EXERCISE 2.3

NXT:

ORG 30000
LD C, 26
LD A,65
CALL 47962
INC A
DEC C
JR N Z, NXT:
RET

CHAPTER 3
EXERCISE 3.1

Memory location Contents

200 E
201 D
202 L
203 H

EXERCISE 3.2

ENT
LD DE, 100
LD (35000),DE
LD HL,400
LD (35002),HL
LD DE,(35000)
LD HL,(35002)
CALL 48118
RET

If you use the machine-code plot routine at 48106, the program is
instead:

S-2

ENT
LD DE, 100
LD (35000),DE
LD HL, 400
LD (35002),HL
LD DE, 0
LD HL,0
CALL 48106
LD DE,(35000)
LD HL,(35002)
CALL 48118
RET

EXERCISE 3.3

ENT
LD DE, 200
LD HL,300
CALL 48118
LD DE,400
LD HL, 200
CALL 48118
LD DE,0
LD HL,0
CALL 48118
RET

Note: There is no real need, apart from illustration, to load
the coordinates into memory. This program is quicker than
a program which stores the coordinates in memory then
reads them out again.

S-3

EXERCISE 3 4

NXT:

PUT:

ENT
LD BC,35000
LD A,65
LD E,3
LD (BC),A
INC BC
DEC E
JR NZ, NXT:
LD E, 3
LD BC,35000
LD A,(BC)
INC BC
CALL 47962
DEC E
JR N Z, PUT:
RET

No. of times to loop
Load start location of 'A's
Put 'A' in accumulator
Add 1 to data location
Put 'A' on screen
Decrement loop number
If loop number <> 0, loop again
END

EXERCISE 3.5

ENT
LD BC,35000
LD A,65
LD E, 26

NXT: LD (BC),A
INC BC
INC A
DEC E
JR NZ, NXT:
LD BC,35000
LD E,26

PUT: LD A,(BC)
INC BC
CALL 47962
DEC E
JR NZ,PUT:
RET

26 loops required

Next ASCII letter

26 loops required

S-4

EXERCISE 3.6

ENT
LD IX,35000
LD A,83
LD (IX+0),A
LD (IX+2),A
INC A
INC A
LD (IX+D.A
LD A,65
LD (IX+3),A
LD A,78
LD (IX+4),A
LD A,(lX+2)
CALL 47962
LD A,(IX+3)
CALL 47962
RET

CHAPTER 4
EXERCISE 4.1

ENT
LD A, 200
ADD A,48
CALL 47962
RET

This puts a little man on the screen.

EXERCISE 4.2

ENT
LD A,*41
ADD A.&10
CALL &BB5A
RET

This places a 'Q' on the screen.

S-5

EXERCISE 4.3

ENT
LD C,<5cFA
LD A,ôc58
AND A
ADD A,C
ADD A,65
LD (i<7000),A
LD C,<5cOO
LD A,&2
ADC A,C
ADD A,65
LD (&7001),A
LD A,(<5c7OOO)
CALL 4BB5A
LD A,(&7001)
CALL &BB5A
RET

This produces a shape like

USB of 250
LSB of 600

MSB of 250
MSB of 600

a robot's gripping arm.

EXERCISE 4.4

ENT
LD C.9
LD A,233
SUB C
CALL &BB5A
RET

It is not necessary to subtract 65 from the answer because
CHR$(224) is a printable character (a smiling face).

EXERCISE 4.5

ENT
LD A, 126
ADD A,97
LD C,153
SUB C
CALL 3cBB5A
RET

This puts 'F' on the screen.

S-6

EXERCISE 4.6

ENT
LD DE,4008
LD HL,4248
AND A
SBC HL,DE
LD A,L
CALL &BB5A
RET

This puts an up-arrow on the screen.

EXERCISE 4.7

ENT
LD HL,35000
LD A,10
LD (HL),A
INC HL
LD A, 20
LD (HL),A
LD A,65
ADD A,(HL)
LD (HL),A
DEC HL
LD A,65
ADD A,(HL)
LD (HL),A
CALL &BB5A
INC HL
LD A,(HL)
CALL &BB5A
RET

This puts 'KU' on the screen.

S-7

EXERCISE 4.8

ENT
LD DE, 100
LD HL,50
CALL 48118
LD D,0
LD E, 100
LD A,75
ADD A,E
LD E,A
LD H,0
LD L,50
LD A,75
ADD A,L
LD L, A
CALL 48118
RET

CHAPTER 5
EXERCISE 5.1

LD A,<5c7
ADD A,<5cC
DAA
ADD A,65
CALL <5cBB5A
RET

This will put a 'T) on the screen.

EXERCISE 5.2

LD C,&12
LD A.&35
SUB C
DAA
ADD A,65
CALL &BB5A
RET

This will put a 'd' on the screen.

S-8

EXERCISE 5.3

1. C=0
2. C=1
3. C=0

EXERCISE 5.4

The required mask would be 00000011.

EXERCISE 5.5

253 AND 75 = 73 (1001001)

EXERCISE 5.6

1. 1001 OR 1101 = 1101
2. 250 OR 25 = 251
3. (209 OR 20) AND 27 = 17

EXERCISE 5.7

1. 1101 XOR 1110100 = 127

LD C,U
LD A,116
XOR C
CALL &BB5A
RET

This prints a chessboard on the screen.

2. 77 XOR 200 = 133

LD C,77
LD A,200
XOR C
CALL <5cBB5A
RET

This prints a vertical bar on the screen.

S-9

3. (25 OR 255) AND 200 = 200

LD C, 25
LD A, 200
OR C
LD C,200
AND C
CALL &BB5A
RET

This prints two diagonal lines on the screen.

EXERCISE 5.8

1. 0100
2. 0100010
3. 0001

EXERCISE 5.9

1. 1010 = 10
1101 = -3
0111 7

2. 1111 = -1
0111 = 7
0110 6

3. 0110 = -10
1000 = 8
1110 -2

EXERCISE 5.10

LD A, 20
CPL
INC A
ADD A,98
CALL &BB5A
RET

This prints an 'N' on the screen.

S-10

CHAPTER 6
EXERCISE 6.1

The solution is the same as Program 6.1 except for these lines:

LD C,10
LD E,9

The program should put character 155 on the screen, i.e. an
upside-down short-tailed T.

This gives7TF.

Exercise 6.2

LD C,124
LD E, 146
LD D,0
LD B,8
LD HL,0

NXTB: SRL C
JR NC,NOADD:
ADD HL,DE

NOADD: SLA E
RL D
DEC B
JR NZ.NXTB:
LD A.H
CALL &BB5A
LD A,L
CALL &BB5A
RET

EXERCISE 6.3

The easy way to do this is to delete DEC B and replace the line JR
NZ.NXTB: with:-

DJNZ NXTB:

S-ll

EXERCISE 6.4

1. LD A,5
RLCA
RLCA
RLCA
RLCA
RLCA
CALL &BB5A
RET

This prints an up arrow head on the screen; the ASCII for 160.

2. LD A,254
RRCA
CALL ÓCBB5A
RET

This prints CHR$(127); a chessboard, on the screen.

EXERCISE 6.5

LD A,255
CALL &BB5A
RES 4,A
CALL &BB5A
SET 4,A
RES 3,A
CALL &BB5A
RET

This prints a double headed arrow, a rocket and a pyramid on its
side, on the screen.

S-12

CHAPTER 7
EXERCISE 7.1

ENT
LD DE,0
LD HL,0 Set graphies cursor to (0,0)
CALL &BBC0
LD DE, 100 Load DE with 100
LD HL, 200 Load HL with 200
PUSH DE Save DE on stack
PUSH HL Save HL on stack
CALL &BBF6 Draw line to (100,200)
LD DE,0
LD HL,0 Set cursor to (0,0)
CALL &BBC0
POP DE Put old contents of HL in DE
POP HL Put old contents of DE in HL
CALL &BBF6 Draw line to (200,100)
RET

EXERCISE 7.2

ENT
LD A,43 Put '+' in A
PUSH AF Store A on current stack
CALL &BB5A Put '+' on screen
LD (<5c7148),SP Remember current value of SP
LD HL,3(7148 Get ready to:
LD SP,HL Set up new stack at 30000
LD A,61 Put '=' in A
PUSH AF Store A in new stack
CALL &BB5A Put '=' on screen
LD HL,(&714A) Find original location of SP
LD SP,HL Go back to original stack
POP AF

PUSH AF
CALL 3(BB5A

Retrieve '+'

LD HL,3(7146
LD SP,HL

Because A and F are in the new stack

POP AF
CALL &BB5A
LD HL,(&714A)
LD SP,HL
POP AF
CALL 3cBB5A
RET

S-13

CHAPTER 8
EXERCISE 8.1

LD HL.&BIOO
LD DE.&COOO
LD BC.&3FFF

LOOP: LDI
JP PO,FINISH:
JP LOOP:

FINISH: RET

APPENDIX 5
EXERCISE A 5.1

i) 3
i i) 4

i i i) 128
iv) 131
v) 183

vi) 115

EXERCISE A5.2

i) 31
i i) 41

i ii) 189
iv) 136

EXERCISE A5.3

i) 9
i i) 19

iii) 165
iv) 174
v) 14

vi) 26
vi i) 234

S-14

EXERCISE A 5.4

i) 0000 0100 v) 0101 0011
ii) 0001 0000 vi) Too big for two byte BCD

représentât i on
iii) 0111 0111 vii) Too big for two byte BCD

representation
iv) 1001 0111 viii) Too big for two byte BCD

représentât i on

EXERCISE A 5.5

i) 1
ii) 9

iii) 15
iv) 20

v) 49
vi) 23

vii) 97
vi i i) 88

S-15

J!_ N D E X

A
Accumulator 1-2
ADC A,s 4-5
ADC HL,ss 4-11
ADD A,n 1-2, 4-1
ADD A,s 4-5
ADD HL,ss 4-11
ADD IX,pp 4-11, 7-7
ADD lY.pp 4-11, 7-7
Addressing Modes 3-1
Alternate Register Set 9-4
AND Gate 5-3
AND s 5-3
Arithmetic Operations 4-1
ASCH 1-6
Assembly Language 1-1

B
Base A 5-2
BCD 5-1, A 5-7
Binary 4-1
Binary,Binary Coded Decimal and Hexadecimal Notation A5-1
Binary Division 6-7
Binary Multiplication 6-2
BIT b,r 6-10
Bit, Set and Test Group Al-12
Block Moves 8-1
Block Transfer Group A1-6
Box Command 10-1
Box Fill Command 10-11
Built-in Routines 1-3, A4-1

c
CALL 1-2, 1-3, 2-15, 7-1
CALL cc,nn 2-15
Call and Return Group
Carry Bit 4-4
Carry Flag 4-5, 4-12, 8-5
CCF 4-12
Circle Command 10-7
Conditional Jumps 2-7
Compares 8-5
Converting a Number to Hex 4-3, 4-8
CP s 8-5
CPD 8-7
CPDR 8-7
CPL 5-11
CPI 8-6
CPIR 8-7
CPU Control Group A1-9

D
DAA 5-2
Data Pointer 3-7
DEC d 2-7
DEC ss 7-7
DEC (HL) 3-14
DEC (IX+d) 3-14
DEC (lY+d) 3-14
Decimal 4-1, A5-1
DI 9-2
Direct Addressing 3-2, 3-9
Dividend 6-7
Divisor 6-7
DJNZ e 6-7
Double Precision 4-4

E
Effects of Comparisons on the Flags A3-1
Effects of Instructions on the Flags A2-1
Eight Bit Arithimetic Group A1-8
Eight Bit Load Group Al-3
Eight Bit Logical Group A1-8
ENT 1-3, 3-2, 3-12
Entering Program 1-4
El 9-2

Exchange Group
EX AF,AF'
EX DE,HL
EX (SP),HL
EX (SP),IX
EX (SP),IY
EXX 9-5

A1-6
9-5
7-4, 9-6

7-7, 9-6
7-7, 9-6
7-7, 9-6

F
Flags 2-14, A1-1, A 2-1

G
Graphics Routines 3-2
General Purpose Arithmetic Group Al-9

H
HALT 9-6
Hexadecimal 4-1, A5-5

I
Immediate Addressing 1-7, 3-1, 3-9
IM 0 9-3
IM 1 9-4
IM 2 9-4
IN A,(n) 9-7
IN r,(C) 9-7
In-built Routines 1-2, 7-3
Indexed Addressing 3-10
Indirect Addressing 3-6
INC d 2-9
INC ss 7-7
IND 9-8
INDR 9-8
INI 9-7
INIR 9-8
Input and Output 9-7
Input and Output Group Al-15
Interrupts 9-1
IX 3-10
IY 3-10

J
Jump Group A1-13
JP nn 2-1
JR e 2-5
JR NZ,e 2-8

Labels 2-9
LD A,(BC) 3-7
LD A,(DE) 3-7
LD (DE),A 3-7
LD A,n 1 -2
LD dd,nn 3-1
LD dd,(nn) 3-2
LD (HL),r 3-6
LD r, (HL) 3-6
LD r,n 1- 7
LD rl,r2 1-8
LD r,(IX+d) 3-11
LD r, (IX+d) 3-11
LD (IX+d),r 3-11
LD (IY+d),r 3-11
LD (IX+d),n 3-11
LD (IX+d),n 3-11
LD (IX+d),n 3-11
LD IX, nn 3-11
LD IY, nn 3-11
LD IX, nn 3-11
LD IY, (nn) 3-11
LD (nn),dd 3-2, '
LD (nn),IX 3-11
LD (nn),IY 3-11
LD SP, HL 7-5
LD SP,IX 7-5
LD SP,IY 7-5
LDD 8-4
LDDR 8-4
LDI 8-1
LDIR 8-4
LIFO Stack 7-3
Logical Operators 5-1
LSB 3-4, 4-3, 6-5, 10-7

M
Machine Code 1-1
Mask 5-5
Memory 1-2
Memory Location 1-3, 2-3
Mnemomics 1-2
MSB 3-4, 4-3, 6-5, 10-7
Multiplication 6-1

N
NOP 9-9
Nybble 5-1

o
Offset 3-10
One's Complement 5-8
Operand 2-7
Operator 2-7
OR Gate 5-6
OR s 5-6
OTDR 9-9
Overflow 5-10
OUT (c),A 9-8
OUT (n),A 9-8
OUTD 9-9
OUTI 9-8
OUTR 9-8

P
Parity 8-2
Pointer 3-7
Primary Data Pointer 1-7
Program Counter 2-6
POP qq 7-2
POP IX 7-2
POP IY 7-2
PUSH qq 7-2
PUSH IX 7-2
PUSH IY 7-2
P/V flag 5-10, 8-1, Al-2

Q
Quotient 6-7

R
Refresh Register 9-6
Registers 1-2, 1-7, Al-1
Register Pairs 3-1
Register-Register Addressing 1-8, 3-9
RET 1-3, 2-15
RETN 9-2
RETI 9-2
RES b,r 6-11
RL s 6-5
RLCA 6-9
ROM 3-2
Rotate and Shift Group A1-10
RRCA 6-9
RST n 9-3
RSX 10-1
Running the Assembler 1-4

s
SBC A,s 4-6
SBC HL,ss 4-11
SCF 4-12
SET b,r 6-11
Secondary Data Pointer 1-7
Signed Numbers 5-8
Sixteen-Bit Load Group A1-4
Sixteen-Bit Arithmetic Group Al-10
SRL s 6-4
Stack 7-1
Stack Pointer 7-5
String Registers 3-4
SUB s 4-6
Subroutines 2-15
Subtraction 4-6, 4-7
Symbolic Label 2-9
Symbolic Operation 3-11

T
Triangle Command
Truth Table 5-4
Two's Complement

10-15

5-9

U
Unconditional Jumps 2-1

X
XOR Gate 5-7
XOR s 5-7

z
Zero Flag 2-8, 8-5
Z80 Architecture 1-6

ASSEMBLY LANGUAGE COURSE
The Book
This step-by-step text introduces the complete beginner to Z80 pro­
gramming in the now well proven style that has been described by the
critics as “worth its weight in gold". No prior knowledge is assumed and
the aim throughout the book is to ensure that the beginner really
succeeds. By the end of the book every Z80 class of instruction has
been explained in detail. Numerous examples illustrate the points
while exercises (along with solutions) test the understanding. Later
chapters show how additional commands may be added to BASIC
including, for example, a circle drawing routine.

The Associated Software
The software available to accompany this book includes a complete
Z80 assember with:

• Symbolic Labels
• Assembler Directives
• Save/Load

• Hard-copy
• Insert/Delete

The assembler allows programs to be written easily in assembly
language and these it translates into machine code.

To help understand the mathematical notations used, a binary hexa­
decimal tutor is included.

Also included is a program demonstrating the use of the additional
graphics commands described in the book.

GLENTOPi
PL BUSKERS ■ LIMITED

Glentop Publishers Ltd
Standfast House
Bath Place
High Street Barnet
Herts EN5 5XE
Tel:01 441 4130

ISBN 1 85181 112 5

m
D
CD
m
d

CD
o
z

ASSEMBLY LANGUAGE COURSE
Contains a complete course with text and software.

The Book
This step-by-step text introduces the complete beginner to Z80
programming in the now well proven style that has been described by the
critics as “worth its weight in gold”. No prior knowledge is assumed and
the aim throughout the book is to ensure that the beginner really
succeeds. By the end of the book every Z80 class of instruction has been
explained in detail. Numerous examples illustrate the points while
exercises (along with solutions) test the understanding. Later chapters
show how additional commands may be added to BASIC including, for
example, a circle drawing routine.

The Software
The complete Z80 assembler which is included on tape includes:

• Symbolic Labels
• Assembler Directives
• Save/Load

Hard-copy
Insert/Delete

to be written easily in assemblyThe assembler allows programs
language and these it translates into machine code.
To help understand the mathematical notations used, a binary
hexadecimal tutor is included.
Also included is a program demonstrated use of additional graphic
commands described in the book.

HONES
P

HONEYFOLD SOFTWARE LIMITED
STANDFAST HOUSE, BATH PLACE, BARNET, LONDON.

V DR
WATSON
k series y

AMSTRAD
ASSEMBLY^
LANGUAGE C*

COURSE \

Hors

https://acpc.me/

CPC

[FRA] Ce document a été préservé numériquement à des fins éducatives et d'études, et non commerciales.
[ENG] This document has been digitally preserved for educational and study purposes, not for commercial purposes.
[ESP] Este documento se ha conservado digitalmente con fines educativos y de estudio, no con fines comerciales.

	AMSTRAD Assembly Language Course
	Introduction
	Contents
	1 - Getting Started
	2 - Jumping,Subroutines and Labels
	3 - Register pairs and addressing modes
	4 - Arithmetic operations
	5 - Binary Coded Decimal and Logical Operators
	6 - Multiplication, Division and the Rotate Group
	7 - The Stack
	8 - Block moves and compares
	9 - Special Operations and Interrupts
	10 - External commands and graphics extensions
	Appendix 1 - The Z80 Instruction Set
	Appendix 2 - Effects Of Instructions On The Flags
	Appendix 3 - The Effects of Compares on the Overflow, Sign and Carry Flags
	Appendix 4 - Some Built-In Routines
	Appendix 5 - Binary, Binary-Coded and Hexadecimal Notations
	Appendix 6 - The assembler
	Glossary
	Solutions
	Index
	

✅ Raw HQ scan : KailoKyra for ACME

✅ Cleaning/Restoration/Layout/OCR : ACME – https://acpc.me

✅ 2021-06-30

