
------ ARGUS BOOKS------
ADVENTURE PROGRAMMING

ON THE

CPC464&664
STEVE LUCAS

Adventure programming on the
AMSTRAD CPC464 & 664

Adventure Programming on the
AMSTRAD CPC464 & 664

Steve Lucas

Argus Books Limited
1 Golden Square
London W1R 3AB.

© Argus Books Ltd 1985

Series Advisory Editor: Dave Carlos

ISBN 0 85242 856 1

All rights reserved. No part of this publication may be reproduced
in any form, by print, photography, microfilm or any other means
without written permission from the publisher.

Phototypesetting by
Contact Typesetting Limited,
14 Stoneleigh Park Road, Ewell, Epsom, Surrey.
Printed and bound by Whitstable Litho.

Preface

After owning a computer for some time, most people reach a point
where the novelty of 'zap em up' arcade games starts to wear thin.
At this stage, many owners turn to adventure games as a source of
more lasting enjoyment. For many people, the challenge of
exploring a strange and mysterious land inhabited by even stranger
creatures provides them with the escape from everyday existence
that is sorely needed. For less than the cost of the airfare to an exotic
island in the Pacific, you can be transported, in spirit at least, to
places beyond your wildest dreams. One day you may be entering
the jungles of the Amazon, and the next, flying in a spaceship to
Mars. The challenge of exploring a land where your every move
may be your last is one that few can resist.

Over the last few years, we have seen massive improvements in
commercial adventure games, some of which have been due to
radical changes in philosophy, whilst others have come as a result of
constant refinement of adventure techniques. To new owners of an
Amstrad microcomputer, the prospect of writing an adventure
program of their own may seem to be beyond the bounds of
feasibility, but in fact the programming skills needed to create a text
only adventure are not unduly difficult and even a graphical
adventure is not beyond the bounds of possibility.

Writing an adventure game is very similar to writing a novel.
Everybody can write a few unrelated sentences, but the novelist's
skill comes from stringing sentences together in such a way as to
create a tale combining imagination, flair and ingenuity. The version
of BASIC used in the Amstrad computers is known as Locomotive
BASIC and it is one of the most sophisticated versions of the
language on the market. It contains so many features to make life
easier for the programmer that even full high resolution adventures
are within the capabilities of the average programmer. With such a
powerful tool at our side, the technical skill of the programmer is no
longer the limiting factor in the process of designing an adventure
which can be enjoyed by all. In this book you will be shown how an
adventure game can be written by combining a number of standard
routines together and thus the skill of designing an excellent game

comes from creating a good plot rather than from the technical skill
of programming.

Many of the routines found within the pages of this book can be
taken and used within your own programs, although you may need
to adapt them to suit the theme of your own game. There are many
different ways of writing an adventure game and I have attempted
to introduce as many alternative techniques as possible to show
how they can be used to effect. To illustrate how these routines can
be combined to produce a large adventure, I have included three full
adventures and take you step by step through all the stages
involved in their development.

Naturally, you will need to have a reasonable knowledge of
BASIC programming before you will feel really confident to tackle
you own adventure game from scratch, but even if you are an
absolute beginner, without any knowledge of BASIC, you should
find something of interest within these pages. Computer novices
eager to make a start on their own program will find that the third
program listing in this book was written just for them. The game is
called A Journey Through Space and loads into your computer in
two parts. The first part of this program is a standard adventure
containing all the code necessary to control the game, whilst the
second part is a data file created by a separate program which is
listed at the end of this book. The data file contains details of all the
locations, objects and words recognised in the game, and the
program used to create it contains facilities for altering the file.
When run, this program displays a description of each location and
every object found within A Journey Through Space and asks you to
type in any changes you would like to make. If you were to change
all the descriptions in the file, you would, in effect, have created a
completely new adventure without actually programming it. Once
you are satisfied that the data typed in is all right, the program will
save the file onto tape or disc so that it can be loaded in as the
second part of the main game. In this way you can write a game of
your own without any of the fuss.

Over the last couple of years, adventure games have improved
beyond all recognition. Not only do many adventures now contain
full high resolution graphics and exciting sound effects, but many
now also have the ability to analyse full English sentences. No
longer are we limited to giving the computer simple instructions
such as GET LAMP, but can instead type more complex commands
such as TAKE THE GREEN LAMP FROM THE TOP SHELF AND
LIGHT IT WITH THE MATCH FOUND ON THE TABLE. In the
final stages of this book, you will find a few clues to point you in the
right direction for writing such routines in BASIC, although, in
practice, you will probably find insufficient room. 64K Amstrad
computers have about 43K of RAM free for BASIC programs if not
fitted with discs and, although this is far more generous than many
other machines, you will usually be forced to write your game in
machine code if you want to include plenty of puzzles, high

resolution graphics, sound and full sentence decoding in one
program. Although assembly language and machine code program
ming are beyond the scope of this book, adventure games written in
BASIC can be challenging to play and despite the limitation of the
language, the response time should still be fast enough for even the
most discerning player.

Contents

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Why Amstrad 1

Introduction 4

Getting started 11

Writing the data 28

The main control section 41

Setting the puzzles • part 1 51

Setting the puzzles • part 2 61

Setting the puzzles • part 3 73

Setting the puzzles • part 4 85

Making life difficult 90

Snow White • part 1 93

Snow White • part 2 105

Snow White • part 3 118

Snow White • part 4 126

Using a data file to create an adventure 135

A journey through space 149

Creating the data file 161

Adding the final touches 173

Getting to grips with BASIC 184

Graphics on the Amstrad 187
Index 194

Programs

1 The Wizard's Quest Chapters 1-7

This is a traditional text only adventure game. An ideal introduction
to adventure programming, illustrating many of the techniques of
setting puzzles for the player to solve.

2 Snow White Chapters 9-12

A game for children based on the traditional fairy tale, featuring full
high resolution pictures for each location in the game.

3 A Journey Through Space Chapters 13-14

In this game, the data is loaded from tape or disc to allow the player
to modify the game without all the effort of starting from scratch.

4 . Filer Chapter 15

This program is used to save a data file containing the starting
position for A Journey through Space. When it is run, you will be
asked whether you want to modify the game and if you answer
'yes', the program will allow you to change any (or all) of the
locations and objects in the game.

Why Amstrad?

The Amstrad CPC 464 and the CPC 664 contain a very powerful and
sophisticated version of the BASIC language which has been
specially written for the machine by Locomotive Software. One of
the most exciting features of these machines to the adventure
programmer is the massive amount of memory free for use in
BASIC. In many other home micros which claim to be 64K
machines, very little of this RAM is available for use in BASIC. Only
a couple of years ago, most computers had only 16K of RAM, or
even less, free for BASIC, yet some very sophisticated adventures
were written for 16K TRS80's and Commodore Pets and even the
16K ZX81 was capable of running some fairly exciting adventures.
Since then, however, the average computer owner has come to
expect games which include full high resolution graphics, excellent
sound effects and full sentence decoding. Adding these features to
an adventure does tend to demand a massive amount of RAM and
unless the program is written in machine code, it is unlikely that
you will be able to fit them all into a single game.

Where Locomotive BASIC scores over many of its rivals is in
having a wide range of commands available to control graphics and
sound. Only one feature is sadly lacking in the BASIC commands of
the CPC 464 and that is a FILL commmand. Drawing a shape and
filling it in will take a little more programming on a CPC 464 micro
than on some of its rivals. The later CPC 664 has remedied this
shortcoming. Nevertheless, the CPC series of micros leaves over
43K of RAM in which you should be able to write a massive
adventure game and still find room for graphics and/or sound! If
you compare the Amstrad micros with other machines, you will see
just how powerful they really are. The Commodore 64, for example,
contains the same amount of user RAM, but only 38K or so of it is
available for the user's BASIC program. To make life even more
difficult, the commands for manipulating the excellent graphics are
virtually nonexistent in BASIC, and all the effects have to be
produced by POKEing data into memory. Yet another difficulty
with this machine for the adventure programmer is that it will not
accept more than about 80 characters in any one line. The BBC Micro 1

2 Why Amstrad?

and its baby brother, the Electron, on the other hand have some
very powerful graphics and sound commands available, but leave
only a fraction of the memory available on the Amstrad. Even the
ever popular Sinclair ZX Spectrum fails to offer all the features of the
Amstrad computers. At the moment, the Amstrad computers are
still relatively new and although a few commercial adventures are
available, many of these are merely conversions of programs from
other machines. Not that a game should be rejected on these
grounds alone, for in fact the programs I've seen so far, including
the excellent games from Level Nine Computing and the superb
version of the Hobbit from Melbourne House, really do give
Amstrad owners something to get their teeth into. In addition to
these conversions, there are also a number of excellent adventures
which have been specifically written to make use of the features of
the Amstrad computers. The series of adventures featuring Arnold
Blackwood by Nemesis Software and the graphics adventures from
Interceptor Software are just two examples. What is disappointing
to the adventure game enthusiast is the small number of such
games, and what better way of rectifying this lack of software than
by writing your own. Maybe you can even produce the next
masterpiece?

Although the graphics and sound commands allow excellent
refinements to be made to games, it is in the string handling
commands that Locomotive BASIC really comes into its own for
writing adventure games. As you would expect, the Amstrad
computers contain all the usual string handling commands such as
LEFTS, MID$ and RIGHTS, which allow the programmer to
manipulate the text part of the game. In addition, however, there
are a number of other facilities which are not so widely available in
home computers. The INSTR command is one of the most useful
commands and this makes writing routines to analyse the player's
instructions much easier.

Despite the massive amount of RAM free for the programmer to
use, the arrays used in adventure games will rapidly eat up memory
space and the programmer will probably still want to save every
byte of memory, so as to pack as many features into the game as
possible. There are many ways of saving memory space and the
short list below should point you in the right direction.

1 Remove all spaces between key words. This is a very effective
way of saving RAM, but does make it more difficult for a computer
novice to type in. Consider the two examples below.

10 IF(P%=88ANDR=3)OR(P%=76ANDR=2)ORR=84THENGO
SUB2000:GOSUB2010:PRINT"O.K."R=3:S%(89,4)=27: RETURN

10 IF (P%=88 AND R=3) OR (P%=76 AND R=2) OR R=84
THEN GOSUB 2000: GOSUB 2010: PRINT"O.K.":R=3:
S%(89,4)=27:RETURN

Why Amstrad? 3

If you were to try typing in the first listing, the Amstrad would
produce a SYNTAX error, because there must be either a space or
some other delimiter between keywords. The second listing is easier
to read, but there are some additional spaces which can be removed.
See if you can find out which ones are not absolutely necessary.
2 Remove all REM statements. These are totally unnecessary to
program operation and any program will work equally well if they
are left out. In this book, however, REMs are used extensively
because they do help to explain what each section of the program
does.
3 Use integer variables wherever possible. They are far more
efficient in their use of memory and are little trouble to use. In any
adventure game, the numeric variables are going to refer to the
number of a location or object and, as you are never going to have
an object number 2.4 or a location number 17.9 you may as well use
an integer variable. All that is necessary is to put a % sign after the
name of the variable. Thus I have used P% rather that P for the
number of the location in all the adventure listings in this book.
4 Long variable names do make listings easier to follow than single
letter variables, but they also demand rather more memory. Rather
than use variables like map%(place%,direction%), I have used
S%(X,Y). This also saves typing time!
5 Use the zero element of arrays! Many programmers, myself
included, tend to ignore the zero element of an array. Whenever an
array is dimensioned, the computer will leave room for the zero
element and if it isn't used, you are wasting RAM. Suppose, for
example, that you DIMension the array A$ at the start of the
program with a line such as:-

10 DIM A$ (40)

There would be 41 elements available for use from A$(0) to A$(40).
Using the elements from 1 to 40 does, however, make for easier
programming!
6 One final feature which is unique to the Amstrad is the facility
for converting a string to lower or upper case with the commands
LOWERS and UPPERS. When the player types in the instructions
for the next move, he may well use either capital or small letters and
unless you use these commands to convert the sentence into lower
or upper case, you will find yourself writing a far longer section of
code than is necessary.

Introduction

Where have adventures come from?

Although the very first adventure game was written as far back as
1976, it wasn't until the arrival of the cheap home micro that
adventures started to become really popular. The very first
adventure was written on a large mainframe computer at Stanford
University in the USA by two computer enthusiasts. Don Woods
and William Crowther's original game was written in FORTRAN
and, unlike BASIC, this language does not contain facilities for
handling words. Despite the limitations of the system, these two
experts managed to create a game which has stood the test of time
and even today is a firm favourite with computer buffs. Using
FORTRAN as a language meant that the data for the game had to be
stored on disc and over 250K of memory was needed to play the
game. It is little wonder, therefore, that before Apple, Tandy and
Commodore started to produce microcomputers in the late 1970s
few people had even heard of an adventure, let alone played one.
Only those lucky enough to have access to large mainframe
computers in colleges, universities and large companies were able to
experience the delights of killing snakes and catching little birds.

When production of microcomputers started in the late 1970's few
people thought that it would be possible to write an adventure game
which would run on such a machine, after all it required over 250K
of memory and large disc drives to run the original game, often
referred to as Colossal Caves. Scott Adams, a young American, was
the first person to realise that it was feasible to write an adventure
game for the microcomputer and went on to produce a now famous
game called Adventureland for the Tandy TRS80. It was this game
that really convinced large numbers of computer owners that
adventure games were fun, and Scott Adams has since gone on to
write a whole series of adventures. His company, Adventure
International, has written and adapted these games to run on a wide
range of microcomputers and has started to add high resolution
graphics to many of them. Unfortunately, at the time of writing,

4 they are not available for Amstrad micros, although I'm sure that

Where have adventures come from? 5

if enough people demand versions, we'll see them in the shops very
soon. I, for one, look forward to the day when I can play Pirate's
Cove, Strange Odyssey and Preppie on my Amstrad. Many
software houses have attempted to convert the original Colossal
Caves to run on microcomputers, and Amstrad owners are now able
to buy at least two versions. My own favourite is produced by Level
Nine Computing, a British software house famous for their superb
adventure games, who have managed to cram over 70 extra
locations and a new 'end game' into their verson of the original
game. In order to compress such an enormous amount of data into
an Amstrad microcomputer, they have written the program in a
specially created adventure language called 'A-Code'. If you are
new to adventuring, there can be no better introduction than this
exceptionally well produced game.

What is an adventure?

If you've never played an adventure game before, you're probably
wondering what I'm talking about! Just in case you are puzzled, I'll
try to give you a brief explanation. An adventure game is rather like
a story in which you play the leading role. As you type instructions
on the keyboard of your computer, the tale will unfold before you.
A good decision will lead you further into the game, where you will
encounter all manner of puzzles and problems to solve. The
computer transports you from the comfort of your armchair into a
new, and often hostile, land where many strange creatures are to be
found.

An adventure game is, in many ways, like a book. It should have
a good story line or plot, be well written and, most importantly, be
enjoyable. Unlike a book, however, the sequence of events will be
different every time it is played. The computer will act as your eyes
and ears, telling you of any dangers you are likely to face and even
giving you help when you need it. There is no substitute, however,
for playing a game and no matter how much I try to explain what an
adventure is, you will only really find out for yourself by playing
one.

Trying to explain what an adventure game is to someone who has
never played a game before, is made even more difficult by the fact
that adventures have changed over the last few years. There are
now so many different types of games available that an adventure
can have many different meanings. All the early programs were text
only games in which the locations, creatures and objects were
described to the player in great detail using words alone. There have
been many improvements in this type of adventure over the last
couple of years. Since Melbourne House released probably the most
famous adventure game of all, The Hobbit, most new games have
tried to include the features found within this game. Few have
succeeded in finding the formula which made The Hobbit such a

6 Introduction

popular program. Whether it is the fact that it's based upon a
famous novel, or whether it's the sheer quality of graphics, there is
no denying the fact that this game is still one of the best adventures
around and, fortunately, is now available for the Amstrad. There
can be little doubt that good high resolution pictures can transform a
very good game into an excellent adventure, although no amount of
fancy graphics can convert a poor game, with little plot, into even an
average program. Adventure games now fall into many different
categories, ranging from the traditional text only game, based on the
original Crowther Wood's program, through the more modern
graphical adventure with full sentence decoding, to the role playing
adventure.

Many people would argue that a role playing game is not a true
adventure at all because the player is limited by the nature of a
character given to him at the start of the game rather than by his
own cunning and ingenuity. Often these role playing games are
based upon Dungeons and Dragons and involve the player fighting
other creatures which he or she comes across in the game. A true
adventure, on the other hand, is much more of a 'mind game',
involving puzzle solving rather than chance. Personally, I have yet
to come across a really good implementation of a Dungeons and
Dragons game on a microcomputer and, for that reason, I have
avoided trying to develop such a game myself.

Many adventure game enthusiasts are equally critical of the
modern graphics adventure, claiming that the mind is capable of
conjuring up far better pictures than any computer VDU. Whilst I
would agree that some of the text adventure games are superb,
there are also a growing number of very good graphical adventures.
In this book, I shall show you how to develop both text and graphics
adventures.

Writing your own adventure games

Once you've decided to take the plunge and write an adventure of
your very own, there are several decisions you'll have to make
before you reach the point of sitting at the keyboard and typing the
game in. The very first thing you will have to choose is whether you
are going to write a text only or a graphics game. Despite those
cynics who seem to despise anything other than the traditional
game, graphics adventures are great fun to play and even more
challenging to write. If you are fairly new to programming,
however, I would suggest that you start off with a traditional text
only game rather than throw yourself in at the deep end. After a few
games, you will be only too eager to write a game with full graphics
to illustrate each location.

One point worth bearing in mind before making the decision as to
whether a game should contain graphics or not, is the vast amount
of memory needed to include pictures. Even on a machine with very

Writing your own adventure games 7

powerful graphics commands, like the Amstrad microcomputer, the
space left when you have drawn the pictures for each location will
limit the rest of the game to such an extent that you may only be able
to fit a quarter of the number of locations and puzzles into your
program. In many commercial games, like The Hobbit, the authors
have realised the limitations and have made the decision to include
graphics for only a few of the locations, the rest being treated as if it
were a normal text game.

Whether you write a graphics or a text adventure, the most
difficult part of the whole process lies in choosing a good plot, rather
than in the actual coding of the game. No amount of fancy graphics
or detailed text will improve a game with a poor plot. Early games
tended to follow a very simple theme which involved moving
around a strange world inhabited by dangerous creatures and
gathering items of treasure to take back home to safety. The original
adventure games are probably more popular today than they were a
few years ago, which just goes to show that it is still possible to take
a simple theme and transform it into a superb game. As adventurers
practise their skills by playing more and more games, they are
becoming ever more critical, and if you intend to stick to such a well
worn plot, you will really have to pay great attention to the little
details which can make all the difference between a poor adventure
and an enjoyable game.

More modern adventures tend to have a much more tightly
controlled plot, where scores are given for solving specific prob
lems, rather than for simply finding treasures. In some games, the
player can even lose scores for falling into traps and may solve the
adventure without ever scoring 100%. Progress in these games may
well follow a much more linear thread, where, once you have
entered a new location, there is no way back again. In some games,
time may also play a part. Imagine a game based on Cinderella,
where the player must get back before the clock strikes midnight, or
a game where the player presses the fire button on the space rocket
and is unable to return to the plant to pick up the plutonium he
needs for his later mission.

It is well worth while playing as many different adventure games
as possible to give you a better idea of the sort of things which can
be achieved on a micro, before attempting to plan your own game.
This should give you a much better idea of what you want to
achieve. The very best starting point for any adventure is to sit
down with a pad and paper, a pencil and a rubber and write a short
summary of the story for the game. In the first chapter, I shall show
you how I took the basic plot for a game and transformed it into a
map of 'Middle Earth' ready for conversion into the program itself.

Some ideas for adventures
Stuck for an idea? Then the list of suggestions below might just set
you thinking and point you in the right direction to start your own
games.

8 Introduction

Lost horizons
Over the last few years, tales have started to reach you of a valley
deep in the Amazon Basin, where it is rumoured that the secret of
eternal life is to be found. Within the walls of a ruined city created
by forces beyond the bounds of human knowledge, there is
supposed to be a small temple where the secret scrolls are guarded
over by the spirits. With dreams of unknown wealth and eternal life,
many have set forth to find the valley, but none has yet returned!
Will you be the first to find the city and return with the scrolls?

Journey through time
Two days ago you received a distress call from the people of the
plant Ursa and, like all true Timelords, you could not let the people
suffer in the hands of the evil Trell. Shortly after leaving your ship,
however, two thieves entered the control room and stole the four
crystals which control time travel. On your return to the ship, you
find that the thieves have left just one small clue to the whereabouts
of your only source of escape, a small piece of paper with strange
writing on it. What does it mean? Can you recover the crystals and
escape or will you be doomed to spend eternity on Ursa?

The vampire's curse
For many years the villagers of LLudnia in a remote area of
Transylvania have been terrorised by the vampires in the dark and
gloomy castle high on the hill overlooking the village. One day the
villagers, led by the local priest, decided that they had had enough
and set out at dawn, determined to rid the castle of its curse forever.
Fritz, the local dentist, was wiser than most and realised that the
traditional methods just didn't work. A stake through the heart and
the crucifix had all been tried before and he knew that a new
approach was needed. Armed only with his small bag of tools, he
set out shortly after the others. In this game you must take on the
role of the local dentist and try to return to the village with all the
fangs before the vampires rise at dusk. Will you manage to succeed
where others fail or will you too join the vampires in the castle?

Detective agency
You have recently set up your own private detective agency in
downtown Bognor. Early yesterday morning, an old man entered
your office telling you of a murder which had occurred in his house.
The police had been called and seemed to think that all the evidence
pointed towards one man ... your new client. Just ten minutes ago,
you received a phone call from your client to tell you that he had
been arrested and charged with the murder. You are convinced of
his innocence and must try to find some new evidence. Can you
find the clues needed to solve the murder, or will your client go to
prison for a crime he didn't commit?

Writing your own adventure games 9

Castaway
It has been six days now since your ship sank in a violent storm. You
are tired and close to death, drifting alone in a small lifeboat, when
you see a small island in the distance. Quickly you grab the piece of
driftwood and row ashore. What does the strange drum beat mean?
Why do fish suddenly appear dead on the shore? Can you solve the
mystery of the island?

If the ideas above don't really capture your imagination, why not
take the plot from you favourite novel or short story. It's an ideal
way of starting an adventure, although you may come into
copyright problems if you try to sell a game written in this way. If
you stick to traditional stories such as Robin Hood, or to fairy tales,
you will not run into such problems and should be able to let your
imagination run riot. For those who have no intention of marketing
their games and who write for fun alone, there is absolutely no
reason why the game shouldn't be based around any story or novel.

Do remember that to make a game enjoyable, the puzzles and
problems set for the player should be relevant to the theme of the
game. Thus games written about Sherlock Holmes can contain
puzzles about violins, chemicals or murder, where as problems set
in games based on James Bond should reflect high technology,
secret agents and exotic locations. Several adventure games have
appeared on the market recently where the puzzles are totally
illogical, making the solution more a matter of luck than skill, and
most of these programs have been doomed to commercial failure.
Don't let yours fall into the same trap.

Most commercial adventure games are written in machine code
rather that in BASIC, although a number of software houses have
created their own languages specifically for writing adventure
games. There are two main reasons why BASIC is often considered
to be unsuitable for adventure games. Firstly, a game written in BASIC
is often very slow, resulting in long response times. There is nothing
worse than typing an instruction into your computer and having to
wait thirty seconds or so for a response! If, however, you plan your
routines very carefully, the response time can be almost as good as
in machine code games. This is especially true of Amstrad
machines, which have one of the fastest versions of BASIC around.
The second, and probably most important, advantage of machine
code over BASIC is that it is possible to cram far more puzzles and
locations into a game.

Both machine code and adventure languages are beyond the
scope of this book and although a game written in BASIC can't be as
complex as a game written in machine code, it is still possible to
write a game with over 200 locations and 50 objects to fit into the 43K
of RAM available in Amstrad mircos if you are very careful in your
approach. One final advantage of a machine code game is that it is
much more difficult for the player to cheat and solve the game by
listing it. This is a point I shall come back to later.

10 Introduction

In many ways, adventure games are very similar to database
programs. The computer must store information about the locations
and the objects found in the game and one of the most useful
methods is to store this information in DATA lines ready to be read
into arrays. Before beginning to write your own adventure, you
really do need to be familiar with the use of two dimensional arrays.
In the process of creating an adventure game, you will certainly
become a much more proficient and confident programmer! Don't
be put off, however, if you don't feel very confident about the use of
arrays and string handling. The third listing found in Chapter 13
should help you to write an adventure of your own without all the
effort needed to write one from scratch.

In any large program, you will inevitably make many simple
typing mistakes when you enter the program into your own
computer. Rather than waiting until you have typed the whole
program in and then trying to track down the errors made, it makes
much more sense to type the program into your computer in short
sections and test each one as it is entered. Each of the three
programs in this book is split into short routines which can be
checked out in this way before proceeding with the next one, and
full instructions are given to help you debug the games.

Getting started

Getting started 1

Writing an adventure game for your Amstrad computer will provide
you with a challenge that is guaranteed to keep you out of mischief
for many weeks, or even months. There are so many ideas to sort
out that it will take several hours of preparation before you are
ready even to begin programming the game. Some days you may
feel that you are making rapid progress in developing your
program, whilst on others you'll spend many hours trying to sort
out a minor problem. When you do come across a problem which
seems to be taking far too long to puzzle out, the best approach is to
give up. After you've had a drink and rested your brain for an hour
or two, you'll come back to the problem fully refreshed and ready to
go! The time spent in developing a large adventure may be exciting,
time consuming or even frustrating, but never dull or boring! In the
process of writing your game, you are bound to learn a great deal
about the operation of your computer, and this new found
knowledge should encourage you to attempt ever more
adventurous programs!

Although there are a few really good adventures for the Amstrad
computer, there are many more which don't reach the same high
standard and if you can find a really good plot, you are half way to
writing a superb game. Finding a suitable story line is, in fact, the
most difficult part of the whole process. We have already looked at
some ideas for plots in the introduction, but after you've exhausted
those ideas, what next?

Take a quick glance along the shelves of your local library and you
will find thousands of books which fall into a few familiar
categories: thrillers, science fiction, history, fantasy, westerns,
detectives, horror, romance to name just a few. As I have already
mentioned, adventure games are very similar to novels. Just as the
author of a detective story can very often take a familiar theme and
give it a new twist, so too can the adventure programmer. Very few
adventures are based on a completely original idea, yet most of the
really successful ones are written by programmers with a vivid
imagination who have managed to take an old idea and present it in
a completely new way. The quality of an adventure game is limited
only by the imagination and skill of the programmer! 11

12 Getting started

Adventure into education

The quality of most educational software is so poor that many
teachers have rejected the computer in favour of more traditional
forms of education. A few rather more enlightened teachers have
realised that adventure games can offer a far more exciting
education to children than many so called 'educational programs'.
Unlike arcade games, adventures encourage logical thought and, if
the game is really well planned, it can also be used to encourage
children with map drawing, creative writing and problem solving.
There are many recorded cases where the careful use of adventure
games has helped to develop the potential of slow learning pupils,
but as yet, adventures have not really been used in the normal
classroom environment to any great extent. Most of the best
adventures have been written without any regard to their educatio
nal content, and yet these very adventures can probably be
considered to be some of the best educational software around. If
only the programmer could set out with the intention of writing a
good educational adventure, I'm sure we would see even more
useful programs. Imagine, for example, a program based on
historical facts: Guy Fawkes, Captain Cook or I.K. Brunel. You
could even devise a program which required a knowledge of
chemical formulae!

Don't be put off writing your game by those cynics who claim that
there are too many adventures set in 'Middle Earth', or that
adventures set aboard a deserted spacecraft are boring. If you can
think of a completely new story line then so much the better, but
even if it is based on a familiar theme, your program should still
reflect your own personal blend of puzzles and problems and
should be something to be proud of. Once you have got the basic
framework of the game sorted out and got it running on your
computer, then you can spend many happy hours at the keyboard
refining the puzzles and, eventually, putting the finishing touches
to your masterpiece so that it contains your own unique mixture of
wit, humour and sophistication. At this stage however, all you
really need to sort out is the basic plot and a few ideas about the
nature of your game.

Programmers do tend to be an impatient breed. Eager to get their
hands on the keyboard, they will often neglect the very important
preliminary paper work. Time spent with a pencil, paper and a
rubber at the planning stage is well spent because a program
developed at the keyboard will inevitably lack structure and this in
turn will make debugging a nightmare! Many programmers still
look upon flowcharts as something to be avoided at all costs, but
even a simple flowchart can help you to sort out your ideas and
make program development much easier. Without one, you are
likely to end up with a program totally lacking in structure and this
in turn will make it far more difficult to follow when you do discover
a mistake. In principle, adventure games are very simple in

Adventure into education 13

structure and Fig. 1.1 shows how the game may be broken down
into simple, easy to develop, stages.

Fig. 1.1 Flowchart for typical adventure game.

The first thing you will notice if you compare this flowchart with any
of the listings in this book is that I have not followed it to the letter,
but have instead used it as a guide. A major difference between the
flowchart and the listings is that I have not included instructions

14 Getting started

within any of the games. There are two reasons for this. Firstly, the
programs in this book are written in BASIC and, in order to make
the listings easy to understand, I have used plenty of REM
statements and also left spaces between words wherever possible.
BASIC is, unfortunately, very inefficient in its use of RAM and this
can only make matters worse. Instructions within the program use
valuable memory space which can be better utilised by adding extra
locations to visit, objects to pick up and puzzles to solve. In the first
game, for example, I had to decide whether to include the facility to
save a game on tape or to incorporate instructions within the main
game; in the end I decided that the save game routine was too
important to leave out. Secondly, finding out what the game is all
about is often an integral part of the overall puzzle. In practice, you
can always write a short program containing the instructions which
then loads and runs the main game, or, even more simply, write the
instructions on paper.

The first program listing in this book, The Wizard's Quest is an
example of one of the earliest types of adventure game, where the
player must set out to explore the land and return with items of
treasure. Each object of value gives a score of one when it is placed
in the right location. This program, like most others, accepts only
one or two word sentences and the player must type instructions
such as GET LAMP or GO IN. Text adventures of this type really do
need to be well planned if they are to be different from the rest.
Descriptions of locations need to be very detailed, and the screen
display should be as neat as possible. If you can include cryptic clues
within the descriptions of locations, it does help to make the game
more interesting. If this is the first time you've attempted to write an
adventure game, I wouldn't try to be too ambitious. Success at
writing a game with a fairly simple plot and just a few locations is far
more rewarding than failure with a massive game.

Converting your ideas into a working program will require careful
preparation, the first stage of which is to draw a map of the locations
in the game. If you have decided to use a book as the basis of your
game, this process should be fairly straightforward, although a plot
of your own offers far more scope for originality. The map itself
need not be very detailed, but before starting to draw it, it's worth
considering some of the limitations of the Amstrad computers.
Although there is over 43K of RAM free for BASIC programs, this
will be very rapidly used up in an adventure game. The first listing
in this book illustrates some of the compromises which have to be
made. It contains 30 objects and 80 locations, all of which are
described in great detail. Even with the save game feature, there is
still about 20K of RAM free. I have included plenty of REM
statements in the program to make it easier to follow, and if these
are left out, you should be able to save even more memory, which
can in turn be used to add extra features to the game.

Unlike the first game, the second program contains a full high
resolution picture of each location, together with a few sound

Adventure into education 15

effects. Both sound and graphics routines tend to have a voracious
appetite for memory and therefore a graphics game cannot incorpo
rate as many locations as a pure text adventure. In Snow White, I
have included just 24 rooms, which leaves about 20K of memory
free for you to add a save game routine or extra puzzles.

The final listing shows how it is possible to load the data for the
descriptions of locations and objects from tape or disc rather than
keeping this information within DATA lines. This is a much more
efficient method of writing adventure games but, unfortunately,
programs written in this manner are far more difficult and time
consuming to create. Not only do you need to write a second
program to create the data file in the first place, but each time you
make a slight typing error, you have to load the data file in again.
From tape, this will take several minutes, although from disc things
are much better. Pushed to the extreme, you should be able fit well
over 250 locations into a game written in this manner, but if it's your
first attempt, I'd be a little more cautious! The majority of adventure
games are 'two dimensional', with most of the locations being on
the same level. A few games, however, are truly three dimensional.
In such a game, there will be several locations where the player can
move up or down onto a new floor. Drawing a map for a three
dimensional game tends to be a far more difficult task than for a two
dimensional game, as can be seen in Fig.1.2.

Fig. 1.2 Map for three dimensional game.

If your game contains fewer than ten locations where movement
up or down is possible, there is no need to write a full three
dimensional game. It is far easier to insert a short subroutine to deal

16 Getting started

with such movement than to incorporate it within the main
program. This is an approach I have adopted in all the listings in this
book. There is one other advantage over a full 3D game, where you
would need to increase the dimension of the array used to hold the
map and that is, of course, going to use more memory.

One other point worth bearing in mind when planning your map
is the fact that allowing movement in directions other than prime
compass points will use even more RAM. For this reason, I have not
inclued the ability to move northeast or southeast in any of the
games. You could, of course, try experimenting with these extra
directions of movement. It shouldn't be difficult! Fig. 1.3 shows one
approach to map drawing for adventure writing. Each location is
given a discrete number and I've used wiggly arrows to link
locations which are reached by methods other than moving north,
south, east or west. Thus to reach location 2 from location 3, you
would have to swim. I've not included detailed descriptions of the
locations on the map, as this would only make it more confusing. At
this stage all that is needed is a few words to indicate the type of
place. Detailed descriptions can be left to the programming stage.
Fig 1.3 shows just 10 locations, but you can add as many rooms to
your game as you like (within reason of course!).

Fig. 1.3 Drawing a map for an adventure game.

Once you have drawn the full map for your own game, the
descriptions of the locations and the directions in which movement
is possible will need to be converted into a format suitable for
inclusion in DATA lines. Before you rush off to the keyboard to
make a start, you should give some consideration to the nature of
the objects, creatures and other puzzles you are going to include in
the game. I like to show these on the map right from the start and, in
order to distinguish the objects from the locations, I try to use a
different colour for locations, objects and puzzles.

Rather than continue to talk about a hypothetical game, I shall
now refer specifically to the first game, The Wizard's Quest, so that

Getting started 17

you can see how I set about writing it. In so doing, I shall discuss the
solution to the game, so if your prefer to solve it on your own, you
should jump straight to the listing in Chapter 2.

The plot

Many years ago, in a land for away, there lived an evil sorcerer who
ruled over the whole kingdom. The peasants lived in fear of this
cruel and heartless being, who would send his servants late at night

What should I do now ?
I am : -
outside a small cottage. A sign on the
door reads 'Wizard out at the moment.
Please leave treasures inside ''.
I can go
West,In

What should I do now ? go in

I am : -
inside the Wizard's cottage. A small
-fire burns in the grate.

I can go
Out

Things I can see
a can of oi1

What should I do now ? get oil

I am : -
inside the Wizard's cottage. A small
fire burns in the grate.

I can go :-
Out
What should I do now ? inventory
I am carrying
a can of oil

I am : -
inside the Wizard's cottage. A small
fire burns in the grate.

I can go :
Out

Fig. 1.4 Sample run of game program.

18

The plot 19

to take their valued possessions and hide them in the castle high
above the village. Only this morning, you received a note from the
poor old Wizard asking for your help in recovering the treasures.
Will you help him? Can you find the ten items of treasure stolen by
the sorcerer and now guarded over by evil creatures and return
them to the Wizard's cottage?

20 Getting started

The plot 21

Fig. 1.5 Map for The Wizard's Quest.

I have used the same technique to draw the map for this game, but
with 80 locations, it was necessary to split it into three sections
(Fig.1.5.). I have tried to ensure that there is only one way across
from one page of the map to the next, so as to avoid undue
complexity. There are 30 objects in the game, although only ten of
these are treasures which give a score when returned to the
Wizard's cottage. These are listed in the table below.

Treasure Object number Location found in

A vampire
A giant slug

13
15

33
35

22 Getting started

A gold nugget 17 56
A bar of silver 18 71
A diamond 19 80
A jewelled casket 20 63
A giant 21 62
A pearl necklace 28 43
A ruby 29 39
A platinum bar 30 57

A vampire and a giant slug as treasure? Surely not! If you turn to the
next chapter to look at the listings for the DATA lines, you will see
that these items are included and a quick glance at the scoring
routine will again show that they are to be treated as treasure! This
illustrates one of the tricks used by adventure writers to make the
maximum amount of use of memory.

The vampire

When you first reach location number 33, you will see the vampire.
Using the crucifix in this location will, obviously, get rid of him and
rather than just emptying the contents of the appropriate array
element to make it disappear, I have changed the contents of the
same element into an item of treasure ... the jade ring. In a similar
way, you can change the contents of an array to make it appear as if
there are many more objects than the original 30 which were created
in the data lines. Obviously, you have to be careful when using this
technique that you don't allow the player to carry a vampire around
with him! This can be prevented by setting the value of a variable
and checking its value whenever you try to pick the object up. In a
very similar way, the slug can be killed by pouring salt all over it and
when it disappears, it will leave something behind! See if you can
guess how to get rid of the giant!

Changed treasures

Original object Location Changes into Method

A menacing vampire 33 A jade ring Use crucifix
A giant slug 35 A silk purse Use salt
A giant 62 An emerald Using the sling

In addition to changing vampires and the two other dangerous
creatures into items of treasure, I have also included a few other
objects which change their nature during play. The table below lists

The vampire 23

all the objects found in the games, together with any changes which
may occur to them. In future I shall always refer to an object by its
number. Hence object number 4 is the vacuum cleaner and object 17
the gold nugget.

Objects within the game

Number Original object
Does it

Location change? What to?

1 Small beanstalk 11 Yes Giant beanstalk
2 A can of oil 12 No
3 A small key 1 No
4 Vacuum cleaner 26 No
5 A glass vase 25 No
6 Rubber gloves 26 No
7 A magic wand 23 No
8 A bottle of rum 25 No
9 A book of spells 28 No
10 A gleaming sword 9 No
11 24 Yes A rope and hook
12 A pile of leaves 24 No
13 An evil vampire 33 Yes A jade ring
14 A wooden crucifix 22 No
15 A giant slug 35 Yes A silk purse
16 A jar of salt 38 No
17 A gold nugget 56 No
18 A silver bar 71 No
19 A diamond 80 No
20 A jewelled casket 63 No
21 A giant 62 Yes A large emerald
22 A flame thrower 55 No
23 A crowbar 63 No
24 A row of buttons 64 No
25 A little dog 54 Yes Disappears
26 An angry farmer 72 Yes Disappers
27 72 No A sling
28 A pearl necklace 43 No
29 A ruby 39 No
30 A platinum bar 57 No

24 Getting started

Once you've sorted out what objects and creatures are to appear in
your game and where they are to be found, it's back to the map to
put the finishing touches to it. Although it may seem to be tedious,
drawing out sections of the map again can often be worth your
while. There will be occasions where you want to make your map
'one way only', where the player can move from one location to
another, but not back again. This can be useful in a game where time
plays a part or where some means of transport, other than walking,
is used. Imagine, for instance, a game in which you reach the
summit of a mountain only to find a large eagle perched in the
branches of a tree. If you were to climb onto the eagle's back, it may
just fly you to a new location and in this particular case, there would
be no way back. Many games do in fact use this sort of technique, as
it can make the game more difficult for the player. If they have
forgotten to take one of the items they need to solve the next
problem, then there will be no way back to find it again! This is one
of the occasions where I would draw a wiggly line between the two
locations. In this game, however, I have not included any 'one way
only' movement.

The maze
Another common feature of many adventure games is the maze.
There are many ways of drawing the map of a maze when you are
designing one to make life more difficult for the player. I have never
been fond of mazes in adventure games, finding them dull and
boring. This is probably because I lack the patience to solve them.
Nevertheless, a book about adventure programming without a maze
drawing would be incomplete and therefore I have included a fairly
simple one in locations 73, 74, 76 and 77 to illustrate how they can be
created. These four locations are all within the dark and gloomy
forest, where movement does not obey the normal rules of logic.
Movement north from location 76, for example, takes you back
through the trees to location 76 again. There's no reason at all why
you shouldn't include many more locations within the maze and
twist the arrows all over the place to confuse the player! It is, of
course, important to make sure that the decriptions of the locations
within the maze are all exactly the same, otherwise the player will be
able to sort out where they are too easily.

Yet another common feature of an adventure game is being
unable to move around freely until a problem or puzzle is solved. In
this particular game, for example, there is a ghost in location 44
who will not let you progress further into the game. Once you have
sucked the ghost up into the vacuum cleaner, the path is then
cleared so that you are free to move south. The trick in program
ming these sorts of puzzles lies in setting the value of a variable and
testing its value whenever the player attempts to move from that
location. There are 13 locations in this game where puzzles must be
solved before being able to progress further and these are summa
rised in the table below.

Puzzles to be solved 25

Puzzles to be solved

Location Puzzle Solution

16 The gate is locked 1 Oil the padlock
2 Unlock it with the key

20 The wolf blocks your way Kill it with the sword
27 No way into the caves 1 Read the password

2 Say the password
36 The cave overhead is too

high to reach
1 Throw the rope which
will catch on the ring
2 Climb the rope

42 You are at the side of the
bottomless pit

You must wave the
magic wand

44 The ghost blocks your
way south

Use the vacuum cleaner to
suck it up

54 There is no way up to
the caves above

1 Plant the beanstalk
2 Fill the vase with water
3 Pour the water onto
the beanstalk to make
it grow
4 Climb the beanstalk

59 The goblins block
your way

Use the flame thrower
on them

64 The door is closed Press the correct button
69 The tramp won't let you

into the barn
Give him a bottle of spirits

79 The grate is set into
the ground

Use the crowbar to prise
it open

22 You are locked in the
small chapel

Pray for help

21 The chapel door is closed
and you can't get in

1 Wear the rubber gloves
to protect you from
electric shocks
2 Pull the lever and go in

Some of the problems in the game require two or more puzzles to be
solved. The way in to the small chapel, for instance, involves pulling
the lever. Unfortunately, however, the lever is connected to a high
voltage and unless the player is wearing rubber gloves, he will end
up dead!

In a few locations the player must adopt a different approach to
moving in the normal directions and these are listed below.

26 Getting started

Movement

Location Method of movement Location reached

7 Go in 12
12 Go out 7
10 Swim across 15
15 Swim across 10
36 Climb the rope

(after it's been thrown)
37

37 Go down the rope 36
29 Go in 25
25 Go out 29
54 Go up the beanstalk

(if it has grown)
49

49 Go down the beanstalk 54
64 Go in

(after pressing button)
63

63 Go out 64
65 Paddle across 68
68 Paddle across 65
69 Go in 70
70 Go out 69
70 Go up the ladder 71
71 Go down the ladder 70
79 Go down

(after using the crowbar
to open the grate)

80

80 Go up 79

All the above information has been shown on the map and you
should be almost ready to move over to the keyboard to start the
coding.

The only other decision which needs to be made is whether to
include sound or graphics within the game. Even the simplest of
sound effects can transform a game beyond all recognition if the
sounds are relevant to the game, but all too often sound is tacked on
as an afterthought and does nothing to improve the game. The
sound of a person knocking on a door, a radio playing in the corner
of the room or even a ghostly scream can add the finishing touches
to a game, although the programming of such effects will probably
take you a long time.

Good graphics can perform even greater miracles, but a graphics
adventure needs to be planned as such right from the start; inserting
pictures as an after thought is unlikely to be very successful. In The

Movement 27

Wizard's Quest, I have included neither graphics nor more than a
few simple sounds and have concentrated on the basic essentials,
although in the subsequent two games, graphics and sound play an
integral part of the program. Many of the sections of coding of a
pure text adventure can be used to equal effect in a graphics game
and if you compare the sections of each game, you will find many
similarities.

2 Writing the data

Your first task when converting your map into the data for your
game is to choose the names for the variables you will use. At this
point, you will need only to choose the names of the variables
associated with the arrays. The others can be selected as the game is
developed. There are a number of considerations which need to be
taken into account when choosing the names of your variables.
Many programmers argue that long variable names help you to
remember their purpose and there is little doubt that they do help to
make a program easier to follow. Thus using map%(2,3) and
locations$(7) will immediately remind you of their purpose, but
using such long variable names does use rather more memory than
is absolutely necessary. For this reason, I have used single letter
variable names for all variables in the games in this book. If you do
decide to use long variable names, do remember that they must not
contain keywords. Thus place$ would be valid, whereas locate$
would not!

One point worth noting about Locomotive BASIC is that the
variables can be in lower or upper case, but will be treated as being
exactly the same. Unlike many home computers, the Amstrad does
not convert variables typed in lower case into upper case, although
it does treat them as being the same. Thus it doesn't matter whether
you type in A$(23) or a$(23).

The second, and probably the most important, consideration
when choosing variables is to use integer variables wherever
possible. They use only a fraction of the RAM needed to store real
variables. In adventure games, we will normally be dealing with
whole numbers and therefore can make widespread use of integer
variables. Defining variables as integers can be done at the start of
the program using the DEFINT command, but in this book, I've
used the % sign at the end of the variable name in preference. The
choice is up to you!

The final consideration when choosing names, is purely one of
convenience. If you intend to write just one adventure game, it
really doesn't matter what name you give to your variables, but if

28 you decide that you are going to write several games, then it makes

Writing the data 29

sense to stick to the same names in each of your games. In a sense,
therefore, the names of variables can be seen as a trademark of the
programmer and if you look through any computer magazine, you
can often recognise the author of an adventure listing by the names
of the variables used in the game.

The following list contains the names of the major variables used
in all three games.

Variable name Purpose

P%
S%(X,Y)
Q$(X)

Holds the player's current position
Holds the map of the game
Holds the descriptions of the objects found
in the game

B%(X) Holds the location where the object is
to be found

N$(X) Holds the word by which the computer
recognises the object

N%(X) Holds the pointer to which object has been
mentioned by the player

V$(X) Holds the descriptions of the objects being
carried by the player (the inventory)

A(X) Holds the flag to test if carrying a
particular object

The most useful mode for adventure games on an Amstrad
computer is the 40 column mode (MODE 1). The text in an 80
column mode is not very easy to read on the colour monitor, and in
the 20 column mode, you can't fit many words on the screen. In this
game, I have selected the standard default colours of MODE 1, red,
blue, yellow and cyan. Rather than typing in the INK settings for
each of these colours, I have used a call to achieve this (CALL
&BCO2).

10 REM «* The Wizard's Quest **
20 REM ** an adventure -for the Amstrad CPC464 **
30 REM ** Steve Lucas 1985 **
40 MODE 1
50 PEN liLOCATE 10,2sPRINT"The Wizard's Quest"
60 LOCATE 4,10iPEN l:PRINT"An adventure game by 8.
W. Lucas"
70 REM ** common messages **
80 Y»-"0.K."
90 CALL &BC02

30 Writing the data

100 DIM Q»(80) ,87.(80,4) ,G»(30) ,B7.(30) ,N»(30) ,N7.<30
>,V«(4),A(30)
110 REM ** READ th» DATA -for th» locations **
120 FOR X-l TO 80s READ Q»(x)
130 FOR Y- 1 TO 4s READ S7.(X,Y)
140 NEXT Y,X
150 DATA standing in a small gully at the bottom o
f a sheer cliff face. ,0,0,2,0
160 DATA on a narrow -footpath between two steep m
ountains.,0,0,3,1
170 DATA at top o-F a small wooded hill. A narrow f
ootpath leads west into the mountains.,0,6,0,2
180 DATA on a dirt track which winds its way t
hrough a well tended garden.,0,9,5,0
190 DATA walking through a garden which is full o
f beautiful flowers.,0,0,6,4
200 DATA by a garden gate. The path to the north 1
eads out of the garden into open countryside
.,3,11,7,5
210 DATA outside a small cottage. A sign on the d
oor reads 'Wizard out at the moment. Please leav
e treasures inside !'.,0,0,0,6
220 DATA on the edge of a marsh. An old sign herer
eads 'Danger...do not proceed west!'.,0,0,9,0
230 DATA by a large wooden gate. Strange runes a
re inscribed on it.,4,0,10,8
240 DATA on the shores of a small lake. A small 1
aland lies in the middle.,0,0,0,9
250 DATA by the compost heap. A few small b
eanstalks are growing out of the top of the heap
.,6,0,0,0
260 DATA inside the Wizard's cottage. A small f
ire burns in the grate.,0,0,0,0
270 DATA outside a gloomy castle. There appears t
o be no way in.,0,0,14,0
280 DATA on a footpath lined with dense shrubs.,0,
0,15,13
290 DATA on a small landing stage. A few boats a
re moored here.,0,0,16,14
300 DATA at the entrance to a disused graveyard. A
rusty chain is padlocked around the two metal g

ates.,0,0,0,15
310 DATA standing next to an old gravestone. It's»
ngraved with the message 'To Martha.... Please Help

Me !!',16,0,18,19
320 DATA standing on a small lawn with a tall h
edge on three sides.,0,0,0,17
330 DATA in a small quadrangle full of ancient t
ombstones.,0,20,17,0
340 DATA by the East gate. A howling wolf guards t
he way west.,19,28,21,0
350 DATA outside a small chapel. The door is c
losed at the moment. A large lever protrudes f
rom the wal1.,0,0,0,20

Writing the data 31

360 DATA inside an ornate chapel. The door has c
losed behind me.,0,23,0,0
370 DATA next to the altar. There is nobody here.,
22,0,0,0
380 DATA outside the graveyard. A path leads s
outh and down -from here. ,0,27,20,0
390 DATA in the living room. The old woodcutter i
s asleep in a chair.,26,0,0,0
400 DATA in a small kitchen. The sink is -full o-f d
irty pots.,0,25,0,0
410 DATA next to a large rock which blocks the e
ntrance to a cavern. Strange runes are engraved on
it.,24,0,0,29

420 DATA in a small courtyard -full o-f old bones. T
he only way out is north.,20,0,0,0
430 DATA outside a wooden cottage. A sign on the d
oor reads 'Woodcutter -for Hire'. ,0,0,27,0
440 DATA in a wide passage lit by a strange greeng
low coming from the south.,0,34,31,0
450 DATA standing in the entrance to the Caverns o
f the Xarda.,27,0,32,30
460 DATA in a wide east-west passage. A smaller p
assage leads south and down from here.,0,36,33,31
470 DATA in an enormous cavern which is lined w
ith grotesque faces.,0,0,0,32
480 DATA in the 'Cavern of Light'. A large c
rystal hangs in the centre and sends rays of gre
en light dancing along the walIs.,30,0,0,0
490 DATA on a narrow rope bridge which spans a d
eep underground gully.,0,41,36,0
500 DATA in a small cavern. There is a tunnel h
igh above me leading east. A large metal ring
hangs from the ceiling next to the tunnel.,32,0,0
,35
510 DATA in a gloomy tunnel which looks down intoa
small cavern. There is a rope hanging down from h

ere.,0,0,38,0
520 DATA in the 'Room of Many Faces'. The walls a
re lined with mirrors which reflect thousands o
f images of my face.,0,0,0,37
530 DATA at the end of a passage leading into them
ountain. The view over the valley is magnificent
.,0,0,40,0
540 DATA in a narrow east-west passage lit by a b
earn of daylight.,0,0,41,39
550 DATA in a narrow east-west passage. To the n
orth lies a rope bridge which stretchesacross a de
ep ravine.,35,0,42,40
560 DATA at the edge of the bottomless pit. A d
rawbridge can be seen on the southern side.,0,0,0
,41
570 DATA in a chamber full of furniture built fors
omeone who must be extremely small.,0,0,44,0
580 DATA at the end of a wide passage.An evil g

32 Writing the data

host stands guard and prevents me passing sou
th.,0,0,45,43
590 DATA in a wide east-west passage lit by t
orches high
600 DATA on

above my head.,0,0,46,44
a wooden drawbridge.,42,0 ,0,45

610 DATA in the crater of an extinct volcano.,0, 52
,48,0
620 DATA in a small passage. Daylight pours into t
he passage -from an opening to the west. ,44,0,0,47
630 DATA in the branches of a giant beanstalk. T
here is a small cave entrance to the east.,0,0,5
0,0
640 DATA at the entrance to a gloomy passage. T
he beanstalk prevents much light entering.,0
,55,51,49
650 DATA in the 'Hall of the Evil Balrog'. The w
alls are all scorched.,0,56,0,50
660 DATA on a footpath leading between the centres
nd the top of the crater.,47,0,53,0
670 DATA at the top of the crater. A path leads e
ast and down the mountainside.,0,0,54,52
680 DATA on a path leading down the mountainside.I

can see a cave entrance in the cliff high above
my head. The soil here is very ferti le!,0,58,0,
53
690 DATA in the nest of the Balrog. Three e
normous eggs lie at the centre.,50,0,0,0
700 DATA in the Balrog's lair. A tunnel leads s
outh but the heat and smell coming fromit is too g
reat for me*,51,0,0,0
710 DATA outside the 'Tower of Darkness'. The e
ntrance is blocked by a pile of rubble.,0,0,58,0
720 DATA on a bracken covered hillside.,54,0,59,57
730 DATA by the 'West Gate of Jadir'. Two vicioush
obgoblins stand guard.,0,0,0,58
740 DATA in a field of golden corn.,0,66,61,0
750 DATA on a large strip of concrete. To the n
orth lies the West Gate.,59,0,62,60
760 DATA in an amphitheatre. A giant flexes his m
uscles at the far side.,0,0,0,61
770 DATA inside the bronze statue. A two headed 1
izard with halitosis peers down at me from above.
,0,0,0,0
780 DATA on the banks of a river.lt is too deep h
ere to cross. A seventy foot bronze statue of t
he god Joliar stand here.,0,67,65,0
790 DATA on the banks of a shallow river. It 1
ooks safe to cross here.,0,0,66,64
800 DATA in a field full of cows grazing.,60,0,0,6
5
810 DATA in a farmyard. An old dog sleeps in the s
hade of the haystack.,64,72,0,0
820 DATA on the banks of a shallow river. A sign h
ere reads 'Danger Quicksand...don't go west!',0,0,
69,0

river.lt

Writing the data 33

830 DATA outside an old barn. A path leads west. A
n old tramp blocks my way in.,0,0,0,68
840 DATA inside the old barn. A rickety ladder 1
eads up into the haylo-ft. ,0,0,0,0
850 DATA in the hayloft. A cat lies in the hay s
leeping. ,0,0,0,0
860 DATA outside an old farmhouse. The door is 1
□eked and there is no way in. A -Footpath le
ads west into the forest.,67,0,73,0
870 DATA in a dark and gloomy forest.,73,76,74,72
880 DATA in a dark and gloomy forest.,74,77,74,73
890 DATA at the west end of a small valley.,0,78,7
9,0
900 DATA in a dark and gloomy forest.,73,76,77,76
910 DATA in a dark and gloomy forest.,74,77,78,76
920 DATA in a small clearing. The way north leadsi
nto □pen countryside.,75,0,0,77
930 DATA at the far end of the valley. A metal g
rate is iset into a concrete slab in theground here
.,0,0,0,75
940 DATA in a small hole under the ground. It is f
ull of soft cushions.,0,0,0,0

Line

40 select the 40 column mode
50-60 titles
80 define common message
90 call routine in rom to select the default colours
100 dimension the arrays
110-140 read the data for the locations and the map into the

arrays
150-940 data for the locations and the map

Like most versions of BASIC, reading DATA into arrays is very
inefficient in the way it uses memory in an Amstrad microcomputer.
As you will see later, there are a number of ways of improving this.

In additon to the variables which are common to all adventures,
you will probably want to define some variables to contain common
messages such as 'O.K.' or 'I can't do that!' This is done in line 80. In
this game, I have used just one common message, but you can add
extra messages here if you wish!

As there are 80 locations and 30 objects in this game, line 100 is
used to dimension the arrays large enough to hold this information.
Thus the array Q$(X) is set to hold the description of 80 locations,
whilst S%(X,Y) is set to hold 80 locations and four directions. It is
this array which controls the movement of the player from one
location to another. The first number in this array refers to the
number of the location and the second number refers to the
direction. Thus:

34 Writing the data

S%(27,1) Refers to the location reached by going north from
location 27

S%(27,2) Refers to the location reached by going south from
location 27

S%(27,3) Refers to the location reached by going east from
location 27

S%(27,4) Refers to the location reached by going west from
location 27

The array V$(X) is used to hold the descriptions of the objects
carried by the player and in this game we are going to limit the
number of objects which the player can carry to four. This can be
increased or decreased to suit yourself, although you will need to
change the number in the inventory, get and drop routines as well.

The best course of action at this stage is to go ahead and type in
the program up to line 140. If, after typing in this section, you try to
RUN it, the computer will display an error indicating that you are
OUT OF DATA. Far from being a nuisance, this error message can
be one of the most useful methods of checking out the program as
you develop it.

Each of the following 80 lines contains the data for one location.
This is in the form of a description followed by four numbers. The
first thing you'll notice if you compare the description of location
number one in line 150 with the description of the same location on
the map is that I've tried to make it far more detailed. One of the
major differences between a really good adventure game and a poor
one is in the quality of the description. The more detail you can
include within the description, the more vivid the picture built up in
the mind of the player. If you compare the two examples of screen
displays from text adventures, you'll see what I mean.

Example 1

I am in a gully
I see a key
What shall I do now?

Example 2

I am standing in a small gully at the bottom of a sheer rock face. The
leaves from a tree keep falling on my head.
I can go east
Things I can see:-
a small rusty key
What shall I do now?

Example 2 provides the player with more information about his
location, and this in turn leads to a far greater sense of involvement

Writing the data 35

for the player. With 43K of RAM available for use in BASIC, there's
no excuse for descriptions of locations and objects which are so brief
that they fail to give the player enough information. On the other
hand, don't be tempted to go overboard with the text, or you'll soon
run out of memory. There are a number of ways of compressing
extra detail into the data, but these techniques are beyond the scope
of this book.

To convert the map for your game into the data lines for the
program you must examine each location in turn. The four numbers
in each data line correspond with the number of the location
reached by travelling north, south, east and west from the location
in question. As an example of this, consider location 4 in The
Wizard's Quest. To make life easier, I have kept the data for each
location on a separate data line. Thus the data for location 4 is found
in line 180, the fourth data line. In this location, the player cannot
travel north or west, and hence the first and fourth numbers after
the description must be zero, to indicate that movement north and
west is not possible. Movement south from this location takes you to
location 9, whilst movement to the east takes you to location 5. The
second and third numbers in the data line would, therefore, be 9
and 5 respectively. When these four numbers are read into the array
S%, which holds the map, the contents of the fourth element of S%
would be as follows:

S%(4,1) = 0 Movement north from location number 4 is not possible
S%(4,2) = 9 Movement south from location number 4 takes you to

location 9
S%(4,3) = 5 Movement east from location number 4 takes you to

location 5
S%(4,4) = 0 Movement west from location number 5 is not possible

In this game there are a few locations where the player can go up or
down in addition to movement in the normal compass directions.
As already indicated, this movement can be dealt with by storing
the number of the location reached by going up or down in the data
lines for reading into the array S%. I have not done this because
there are too few locations where the player can go up or down to
justify the extra memory space used by increasing the dimension of
the array. However, you may like to experiment with this and the
example below should indicate how to set about it. If you would like
to try your hand at a three dimensional game, there is more
information on the subject in Chapter 16.

Supposing movement up from location 1 took you to location 7
and movement down from location 1 to location 19, then the first
data line would need to be changed to:

150 standing in a small gully at the bottom of a sheer cliff
face.,0,0,2,0,7,19

36 Writing the data

You would probably need to change the description of the location
so that going up or down sounds more feasible.

150 standing in a small gully at the bottom of a sheer cliff face. A
narrow path leads up the mountainside and a small grate leads
down into a dark tunnel.,0,0,2,0,7,19

Adding the extra numbers to each data line without changing the
routine to READ them into the array would result in disaster. You
would need to change line 130 to:-

130 FOR Y=1 TO 6:READ S%(X,Y)
and also have to add a number of extra lines later in the game.

Testing
As soon as you have entered all the data lines for the locations in the
game (lines 150 - 940), you will need to check whether they have
been typed in correctly or not. Even the slightest typing error at this
stage can cause problems, especially to a beginner. Over ninety per
cent of errors occurring at this stage will be due to commas in the
wrong place, and the worst thing about a mistake in the placement
of commas is that the computer will, more often than not, tell you
that an error has occurred in a place other than where the real
mistake lies! The easiest method of checking that you have made no
mistakes may seem to involve sitting down and checking the listing
on the screen of your computer with that printed on paper. In
practice, however, you are more likely to miss the mistakes,
especially when you are getting towards the end and are tired and
frustrated. The best approach is to try to RUN the program. If all is
well, and the computer has found no errors in the order of the data,
the titles will be printed on the screen and after a few seconds the
message 'Ready' will appear on the screen. A message to this effect
does not mean that there are no mistakes in your program, but
merely that the computer has been unable to find any. A computer
is unable to check whether you have made a spelling mistake in the
description of a location or whether you have inserted the number
of the correct location when going north from location 17. It can, of
course, tell you if the data is presented in the wrong order or if a
comma is missing.

If the computer does return with a SYNTAX ERROR or an OUT
OF DATA error, the computer has found an error in the data lines,
even if it tells you that the error occurs in line 120 or 130. Tracking
down the source of the mistake requires a little thought on your
part. The easiest way is to try to find out the number of the location
where the computer thinks that the error occurs by typing PRINT X
and pressing <ENTER>. The number printed on the screen will
probably correspond with the number of the location where the
error has occurred. If you want to make sure of this, you should ask
the computer to print the description of the previous location.

Writing the data 37

For example, supposing the computer prints the value of X = 19,
then the last correct location would be number 18, so typing PRINT
Q$(17) should print the correct description of location 17. If the
description of location 17 is correct, try typing PRINT Q$(18) to see if
the description of location 18 has been read correctly. By a process of
careful elimination, you should be able to track down the position in
the data lines where the actual error has occurred. Once the mistake
has been rectified, you should try running the program again until,
eventually, the program will run without an error being discovered
by the computer.

One point that's worth looking out for at this stage is that you
have not included commas in the descriptions of any of the locations
in the DATA lines. The listings in this book do not have quotation
marks around these descriptions because, in most cases, they are
unnecessary. If, however, you want to include a comma in the
description of any location, then you must enclose that description
in quotation marks, or the computer will interpret the comma as
being the start of a new item of data which will result in a syntax
error at some other point in the program. For example,

250 DATA by a compost heap. A few small, green beanstalks have
grown out of the top of the heap.,6,0,0,0

would produce an error and should be written as:

250 DATA "by a compost heap. A few small, green beanstalks are
growing out of the heap.",6,0,0,0

Note, however, that if you do want to include a description of a
location which does contain a comma within it and this description
is saved as a data file in the routine to save a game, then it may cause
confusion when the tape is read in again. You would, therefore, be
well advised to make sure that your descriptions don't contain
commas.

Even if the computer doesn't find an error for you, you could still
have made a simple spelling mistake. It really does pay you to
double check all the details at this stage, rather than waiting until
later, when it will be much harder to find errors. The easiest method
of checking the data is to RUN the program and, when it prints the
message 'Ready', type in the short line below and press <ENTER>.

FOR X=1 TO 80: PRINT X:PRINT Q$(X): NEXT X <ENTER>

This will print out the numbers from 1 to 80 and, alongside each,
will print the description of the appropriate location. Pressing the
escape key will make the computer pause to give you time to read
the screen and check the accuracy of the descriptions. Spelling
mistakes in adventure games can spoil an otherwise excellent game,
and you should check and double check each description. Don't

38 Writing the data

forget to use a dictionary if you, like me, tend to be poor at spelling!
Equally irritating to an adventure player is a description where
words are split over two lines. As we are using a 40 column screen
width, the descriptions have been adjusted, by inserting extra blank
spaces, so that no word is started after column 37 and that there are
no split words. Even professional games sometimes contain errors
of this type and they can be very difficult to track down if you leave
the task until later.

The final check to be make at this stage is that the DATA entered
for the map contains no errors. There are two ways of checking this
information, either by checking the listing very carefully, line by line
or by typing PRINT S%(1,1) etc. and checking that the value
returned agrees with your map. Whichever method you choose, it
will take time, but you won't regret it later! It is all too easy to miss a
simple mistake in one data line and just one number which is
incorrect can make the whole map of the game appear nonsense!

After keying in so much of the program into your computer, you
will probably be feeling tired , and if you continue entering you will
be much more likely to make errors than when you first started. The
best course of action at this stage is to take a break, but don't forget
to save a copy of the game onto tape or disc before leaving the
keyboard. There's nothing worse than leaving the keyboard for five
minutes and returning to find that the kids have loaded the latest
arcade game or that the cat has knocked the computer off the desk
and the plug has come out. In fact I'd strongly recommend that you
make a habit of saving your program every half hour or so. You
never can tell when disaster is likely to strike and if you adopt this
course of action, you'll never lose more than half an hour's work,
even if the worst does happen! If you do have a disc drive, then I
would suggest that you save a copy of your new version using a
different file name, so that you will then have two, or more, copies
to fall back on.

Reading the data for the objects

950 REM ** READ the DATA -for the OBJECTS **
960 FOR X=1 TO 30-.READ Gt (X) , B7. (X) , NS (X) : N7. (X) «X :
NEXT
970 DATA a small beanstal k, 11, beanstal k ,a can of o
il,12,oil,a small key,1,key
980 DATA a vacuum cleaner,26,vacuum,a glass vase,2
5,vase,a pair of rubber gloves,26,gloves
990 DATA a magic wand,23,wand,a bottle of rum,25,r
urn,a book of spelIs,28,book,a gleaming sword,9,swo
rd
1000 DATA "",24,"",a pile of leaves,24,leaves,a me
nacing vampire,33,vampire
1010 DATA a wooden crucifix,22,crucifix,a giant si
ug,35,slug,a jar of salt,38,salt

Reading the data for the objects 39

1020 DATA a ** GOLD NUGGET **,56,gold,a ** BAR OF
SILVER **,71.silver,a ** DIAMOND **,80,di amend
1030 DATA a ** JEWELLED CASKET **,63,casket,a gian
t,62,giant,a -flame thrower,55,-flame
1040 DATA a crowbar,63,crowbar,a row of three butt
ons,64,buttons,a friendly dog,54,dog
1050 DATA an angry farmer,72,farmer,"",72,"",a **
PEARL NECKLACE **,43,pearl
1060 DATA a ** RUBY **,39,ruby,a ** PLATINUM BAR *
*,57,plat!num

Line

960 read the description of the object, the location where
the object is found and the word it is recognised by for
each of the 30 objects. Also set the pointer N%(X) to
equal the number of the object.

970-1060 data for the 30 objects.

The section of code between lines 950 and 1060 is used to READ the
DATA for the 30 objects found in the game. If your game contains
more than 30 items, then you will need to increase the size of the
arrays in the DIM statements at the start of the program and also
change the size of the loop in line 960. Each line of DATA contains
the information for several objects, so as to pack as much
information into the game as possible. This data is in three parts :
the description of the object, its location and the word which the
computer will recognise it by. The final array (N%(X)) is set to act as
a pointer to the number of the object. Although this section of the
program is much shorter than the previous one and won't take you
as long to enter into your computer, it is just as important to check
that the computer is READing the DATA for the objects into the
array correctly. This can be done by trying, once again, to run the
program and checking that the computer doesn't find any errors.
Should an error occur at this stage, you should type PRINT X and
press <ENTER>. The value of the variable X will probably indicate the
number of the object where the error has occurred. By a process of
careful elimination, you should be able to track down the exact
source of the mistake and correct it. If all is well, do check through
all the variables to make sure that no spelling mistakes have crept in.
The following line should help you to do this:

FOR X=1 TO 30: PRINT X: PRINT G$(X): PRINT N$(X): NEXT X

The computer will print the description of all of the objects, with the
exception of the few which are initially undefined (as explained in
Chapter 1), together with the words which the player will have to
type in. One very common mistake, which can happen if you try to
be too quick when typing, is that you get the line number wrong.

40 Writing the data

Imagine that you are in a hurry and type line 1020 as line 102, or
even worse as line 120. In the first case, the data for the game will be
in the wrong order and will appear to spoil the section you had
previously checked. In the second case, you would actually have
typed an incorrect line to replace the original line 120. It really does
pay you to check each line before actually entering it into the
computer's memory. When you are sure that all is well, you should
save a copy of the new version of your game onto tape or disc before
switching off.

The main control section 3

In any adventure, the most important section of all is the main
control sequence. In principle, this is a fairly straightforward piece
of programming, but unless it is carefully planned it can become
much more complex than it really needs to be. The simpler the
structure of the control section, the easier it is to detect any errors,
and this in turn helps to keep program development times to the
minimum. Many different approaches may be adopted when
writing this section, although once you've found a method that suits
you you will probably wish to stick to it in future games. The fun
and enjoyment of writing adventure games comes from setting
devious problems for the player to puzzle over rather than from
spending many hours developing routine sections of code. There is
nothing guaranteed to dampen the creative spirit more than
spending many hours debugging routines which are more complex
than they really need to be, especially when you are eager to put
your ideas for puzzles into practice.

We have already seen how the control sequence fits into the
framework of the game and we now need to sort out its internal
structure. The best way of doing this is to draw yet another
flowchart (Fig 3.1). 41

42 The main control section

P%<—7
S%<—0

DESCRIBE
LOCATION P%

zzz
CHECK

SCORE S%

—r~

Fig. 3.1 Flowchart for control sequence.

WORK OUT
DIRECTIONS

POSSIBLE

The main control section 43

The listing below, from The Wizard's Quest, shows how I have
converted the flowchart into a working routine, capable of
controlling the game.

1070 REM ** set starting position and score **
1080 P7.=7 : S7.-0 s CLS
1090 REM ** main control loop **
1100 WHILE S7.C10
1110 PRINT: PEN 1: PRINT" I am : PEN 2: PRINT Q$(P7.
)
1120 REM ** check score **
1130 GOSUB 2000
1140 REM *♦ describe directions **
1150 PEN l:A»«""sIF S7.(P7.,l)>0 THEN A$="North"
1160 IF S7.(P7.,2)>0 AND LEN(A$)>0 THEN A$=A$+" ,Sout
h” ELSE IF S7.(P7.,2)>0 THEN A$-"South”
1170 IF S7. (P7.,3)>0 AND LEN(A»)>0 THEN A$=A$+" ,East
" ELSE IF S7.(P7.,3)>0 THEN A»-"East"
1180 IF S7.(P7.,4)>0 AND LEN<A$)>0 THEN A$=A$+",West
" ELSE IF S7.(P7.,4)>0 THEN A*-"West"

A»="Up"

1190 IF (P7.-69 AND SH=1) OR P7.-7 OR P7.-21 OR P7.-29
OR P7.-64 THEN A$»A»+",In"

1200 IF P7.-12 OR P7.-63 THEN A$="Dut" ELSE IF P7.-22
OR P7.-25 THEN A$-A»+" ,0ut"

1210 IF P7.-70 THEN A»="Up,0ut" ELSE IF P7.<=80 THEN

ELSE IF P7.-71 THEN A*«"Down"

1220 IF P7.-54 AND SL=1 THEN A»=A»+",Up"
1230 IF P7.-37 OR P7.-49 OR P7.-79 THEN A$»A$+" , Down

1360 Z»-LOWER» (Z») s B»-LEFT» (Z$,2): C$-LEFT» (Z»,3):D
«»LEFT»(Z*,4)

1240 IF A»»"" THEN A«="nowhere obvious!"
1250 PEN Is PRINT:PRINT"I can go s-":PEN 2:PRINT M
1260 PEN 1 SPRINT:
1270 REM ** describe objects **
1280 E=O:FOR T=1 TO 30
1290 P=0: IF B7.(T)-P7. THEN P-1
1300 IF P=1 THEN 1320
1310 NEXT T:GOTO 1340
1320 IF E=0 THEN PRINT"Things I can see :PEN 2
1330 PRINT G$(T)sE=1sGOTO 1310
1340 PRINTsPEN l:INPUT”What should I do now ";Z»
1350 REM ** analyse input and act on it »*

1370 PRINT CHR$(7)sCLS
1380 IF C$="out" OR D»="go o" THEN GOSUB 1800
1390 IF C»-"pra" THEN GOSUB 1870
1400 IF C$="in" OR D»="go i“ THEN GOSUB 1930
1410 IF (B»="n" OR D»="go n") AND S7.(P7.,l)>0 THEN
P7.=S7.(P7.,1> :PRINT"O.K. " ELSE IF <B$»"n" OR D»="go
n") THEN PRINT"! can't do that!"
1420 IF <B$="s" OR D$="go s") AND S7.(P7.,2)>0 THEN
PZ=SX(P%,2)sPRINT“O.K." ELSE IF (B$="s” OR D»»"go
s") THEN PRINT"! can't do that!"
1430 IF <B»="e" OR D»="go e") AND S7.(PX,3) >0 THEN
P7.=S7.(P7.,3) :PRINT"O.K. " ELSE IF <B»-"e" OR D»-"go

44 The main control section

e") THEN PRINT"! can't do that!"
1440 IF (Bt="w" OR Dt-"go w"> AND S7.(P7.,4)>0 THEN
P7.=S7.(P7.,4> sPRINT"O.K. " ELSE IF <Bt="w" OR Dt="go
w") THEN PRINT"! can't do that!"
1450
out

IF Ct="sco" THEN PRINT"You have scored "jS7.j"
of 10. "

1460 IF
B 2130
1470 IF

Ct-"get"

C»-"inv"

OR Ct—"tak" OR Ct-"gra" THEN BOSU

THEN BOSUB 2300
1480 IF Ct="dro" OR Ct-"lea" OR Ct-"put" THEN BOSU
B 2370
1490 IF Ci="wea" THEN BOSUB 2460
1500 IF Ct="pul" THEN BOSUB 2520
1510 IF C$="wav" THEN BOSUB 2560
1520 IF Ct-"pad" THEN BOSUB 4150
1530 IF Ct="rea" THEN BOSUB 2670
1540 IF Ct-"say" OR Clf="tal111 OR Ct-"rep" THEN BOSU
B 2710
1550 IF Ct-"att" OR Ct="kil" OR Ct="sta" THEN BOSU
B 2780
1560 IF Ct-"sea" THEN BOSUB 2830
1570 IF Ct="thr" THEN BOSUB 2860
1580 IF Ct-"cli" THEN BOSUB 2930
1590 IF Ct-"up" ।□R Dt="go u111 THEN BOSUB 3010
1600 IF Ct="dri" THEN BOSUB 3070
1610 IF Ct-"giv" THEN BOSUB 3110
1620 IF Ct-"use" OR Clt="pri1" THEN BOSUB 3180
1630 IF Ct-"swi" THEN BOSUB 3420
1640 IF Ct-"uni" THEN BOSUB 3480
1650 IF Ct-"oil" THEN BOSUB 3540
1660 IF Ct="pla" THEN BOSUB 3580
1670 IF Ct-"fil" THEN BOSUB 3630
1680 IF Ct-"pou" THEN BOSUB 3660
1690 IF Ct-"dow" THEN BOSUB 3720
1700 IF Ct="pre" THEN BOSUB 3790
1710 IF Ct-"hel" THEN PRINT1"I'm sorry I don't have
a clue!। ■■

1720 IF Ct-"sav" THEN BOSUB 3870
1730 IF Ct-"loa" THEN BOSUB 4010
1740 WEND
1750 REM ** win the game **
1760 CLSsPEN 1:LOCATE 10,5sPRINT"W ell Done
! "
1770 PEN 3:LOCATE 3,10s PRINT"You have found and re
covered all the treasure."
1780 ENV 1,100,2,2sENT 1,100,-2,2:SOUND 1,284,200,
1,1,1;PEN 2s LOCATE 1,20sPRINT"Boodbye. Thank you f
or playing.":END

Line
1080 set the player's starting postion to location 7 and their

score to zero. The screen is then cleared.
1100-1740 this main loop is repeated until the score is equal to

ten.
1110 describe the player's current location.

The main control section 45

1130
1150-1180

1190-1230

1250
1260
1280-1310

1320

1330
1340
1360

1370
1380

1390

1400

1410

1420

1430

1440

1450
1460

1470

1480

1490
1500
1510
1520
1530
1540

1550
1560

call the subroutine to check the score.
examine the array S%(X,Y) to see if movement north,
south, east or west is possible and store this informa
tion in the variable A$.
check the number of the location to see if movement
up,, down, in or out is possible and add this
information to A$.
describe the direction in which the player can travel,
print a blank line.
check all of the thirty objects to see if they are in the
current location.
if this is the first object in that location, print the
message 'Things I can see
describe the objects found in the current location,
input the player's instructions.
change the sentence into lower case letters and
examine the first letters of it.
clear the screen and make short note.
if the player wants to go out, call the subroutine at
line 1800.
if the player wants to pray, call the subroutine at line
1870.
if the player wants to go in, call the subroutine at line
1930.
if the player wants to go north and this is possible,
change the value of P%, otherwise print the message
T can't do that!'.
if the player wants to go south and this is possible,
change the value of P%, otherwise print the message,
if the player wants to go east and this is possible,
change the value of P%, otherwise print the message,
if the player wants to go west and this is possible,
change the value of P%, otherwise print the message,
if the player asks for the score, print the value of S%.
if the player wants to 'get' an object, call the
subroutine at line 2130.
if the player wants to see the inventory of items they
are carrying, call the subroutine at line 2300.
if the player tries to 'drop', 'leave' or 'put' an object in
the current location, call the appropriate subroutine,
call the subroutine to wear an object.
call the subroutine to pull an object.
call the subroutine to wave the wand.
call the subroutine to paddle across the river.
call the subroutine to read the book.
call the subroutine to 'say', 'talk' or 'repeat' the secret
password.
call the subroutine to 'attack', 'kill' or 'stab' an object,
call the subroutine to search the current location.

46 The main control section

1570 call the subroutine to throw an object being carried.
1580 call the subroutine to climb up.
1590 call the subroutine to go up.
1600 call the subroutine to drink.
1610 call the subroutine to give an object away.
1620 call the subroutine to 'use' or 'prise' an object.
1630 call the subroutine to swim across the river.
1640 call the subroutine to unlock the padlock.
1650 call the subroutine to oil the lock.
1660 call the subroutine to plant the beanstalk.
1670 call the subroutine to fill the vase.
1680 call the subroutine to pour the water.
1690 call the subroutine to go down.
1700 call the subroutine to 'press' an object.
1710 call the subroutine to ask for 'help'.
1720 call the subroutine to 'save' a game during play.
1730 call the subroutine to 'load' in a previously saved

game.
1740 if the score is less than 10, start the loop again.
1760-1780 win the game. Print message, play a short tune and

end the game.

In all games in this book and, for that matter, in all my adventures,
the variable P% and S% are used to hold the player's current
position and the score respectively. After setting the value of these
variables in line 1080, the computer repeats the main loop until the
score is greater than 9. You will notice that the game starts with the
player standing outside the Wizard's cottage and therefore P% is set
to 7 at the start of the game. Most games have a maximum score of
either 10 or 100, but by changing the value tested for in line 1100, it
is possible to write a game so that the player wins when any chosen
score is reached. In some games, including the original Colossal
Caves, the player is given some score at the start of the game and
you may like to follow that example by changing line 1080.

The actual line numbers used in this game were changed many
times during development of the program. When you try to write a
program of your own, the reason for this will become quite obvious.
After writing the standard section of code, the subroutines to deal
with specific responses such as 'swim' or 'pray' were added one at a
time to the program. Each time a new subroutine was added at the
end of the program, a line was added between the line asking for
your instructions and the end of the loop to call that routine. After a
while, the space left between the lines began to run out and, in
order to make the listing look neater, the program was renumbered.
If you compare the main control section of this program with the
others in this book, you'll see that they are essentially identical,
although the line numbers will be very different.

The score is set to zero and the starting position to location
number 7 in line 1080, whilst the main control loop from line 1100 to

The main control section 47

1740 describes the location, the directions in which movement is
possible and any objects visible before asking the player to type in
their instructions. The LOWER$ instruction in line 1360 is used to
convert the player's instructions into lower case. In this way, the
player can type in either upper or lower case letters and the program
will produce the same result. Remember, though, that the letters
tested for in the following lines MUST be in lower case.

The variable Q%(P%) holds the description of location P% and
this is printed in line 1110. You will notice that the score is calculated
in a subroutine at line 2000 and this is called from the main loop
every time round it. This routine could have been included within
the main control loop, but using a subroutine meant that I was able
to develop the program as a series of smaller modules, which made
testing and debugging easier.

The section of code between lines 1140 and 1250 checks the
directions in which players can travel and this information is held in
the variable A$ so that it can be printed on the screen in line 1250.
Some adventure game programmers prefer to include this informa
tion within the description of the locations by changing the DATA
lines. To illustrate how to do this, consider location 7. The data
holding its description is held in line 210 and this line could be
changed to:

210 DATA outside a small cottage. A sign on the door reads 'Wizard
out at the moment. Please leave treasures inside'. I can go west or
into the cottage.,0,0,0,6

One major disadvantage of doing this is that you are then storing
many more extra characters in the DATA lines and this uses far
more memory than the method I have adopted, although you can
leave out lines 1150 to 1250. The routine to sort out the directions for
movement for north, south, east and west lies between lines 1150
and 1180, and this section of code is to be found in all three listings
in this book. It first of all clears the contents of A$ and then checks
whether the number held in S% (P%, 1) is greater than zero. If it is,
then movement north is possible and therefore A$ is set to hold the
word 'North'. In a similar way, the contents of S%(P%,2),
S%(P%,3) and S%(P%,4) are checked to see if movement south,
east or west is possible, and the contents of A$ are changed to
include any possible directions.

The code between lines 1190 and 1230 then tests the number of
the location to see if you can go up, down, in or out and again
adjusts A$ if necessary. To illustrate this, consider location number
54, where you can go up if, and only if, the beanstalk has been
planted in the fertile soil and you have watered it by filling the vase
with water in the kitchen and then poured it over the plant. Unless
the variable SL has been set to hold the number 1 (when the
beanstalk has been watered), line 1220 will be ignored. A variable
used in this way is called a flag, and you will find many such flags in

48 The main control section

adventure games. Once SL has been set to one, and you reach
location 54, the variable A$ will tell you that you can now move up
as well.

The final part of this section tests to see whether A$ is still empty,
setting its contents to 'Nowhere obvious' if it is, before finally
printing the directions of possible movement in line 1250. There are
no locations in this game where the contents of A$ will still be
empty, and line 1240 is not really necessary. It was included in this
game just to illustrate how it can be done.

On reachng line 1280, the program tests the array B%(X) for each
of the thirty objects found within the game to see whether the object
is to be found in the current location (P%). In order to do this, the
program uses the variables E and P as flags. P is set to hold the value
1 if any object is found in the current location, and unless this
happens the program will not reach the section of code where the
objects are described (lines 1320-1330). The variable E is set to one if
more than one object is found in that position so that the message in
line 1320 is not repeated for each object.

After the location, the directions and the objects have been
described to the player, all that is left to be done is to input the
player's commands and analyse them. This is done by comparing
the first few letters of the player's instructions with the word which
the programmer has decided will be relevant to the game, and if
they match each other the appropriate subroutine is called.

Many advances have taken place in instruction decoding over
recent years. The section of code from line 1360 to line 1730 is used
to analyse the player's instructions but provides only the familar
two word sentence decoding. It can be extended to provide more
complex sentence decoding if you are prepared to spend some time
developing it. (The subject of full sentence analysis is discussed in
greater detail in Chapter 16.)

The method I've adopted for decoding the player's instructions is
to store the first two letters in B$, the first three letters in C$ and first
four letters in D$ in line 1360. The following line doesn't play any
part in the decoding and may be left out if you don't mind the
screen scrolling during play. The remaining lines in this control
section are used to compare these variables (B$, C$ and D$) with set
word patterns corresponding to the instructions which you want
the computer to recognise and, apart from the sequence to move
north, south, east or west, pass control to an appropriate
subroutine. The only difficulty with using this method is that the
computer will then match a number of words with the routine.
Consider the player who tries to thrash the vampire. This will be
interpreted as 'throw', which will result in a totally unexpected
response. You may like to change the routine so that it compares the
full word, but this too can have its disadvantages.

Rather than type in the rest of the control section in one sitting, it
is easier to debug the program if you type in one line at at time and
then develop its associated subroutine. You can then check that the

The main control section 49

subroutine works correctly before moving on to the next line. As an
example of this, suppose you want to add an extra subroutine so
that the computer recognises and understands sentences beginning
with the word 'dive'. The following line should be added to the
control section.

1731 IF C$="div" THEN GOSUB 10000

You'll notice that I've added the subroutine at a line number well
past the end of the main program. This is to allow plenty of space
for the routine. Once you are convinced that it works correctly, the
program can be renumbered to make it easier to follow and also
allow space for the next subroutine. The only part of the main
control sequence which acts upon the player's instructions without
using a separate subroutine is that dealing with movement in the
prime compass directions (north, south, east and west). The code
needed to control this movement is so simple that it isn't worth
writing it in a subroutine. Line 1410 deals with movement to the
north. The first part of the line checks whether the player has typed
an instruction beginning with 'go n' or simply 'n'. If this is the case,
the computer then checks the contents of the array elements
S%(P%,1), which holds the map for movement north from the
current location. Should this element contain a number greater than
zero, then this number will represent the number of the location
reached by travelling north from the current location, and the value
of P%, the current location, is changed to this new number. The
next three lines deal with movement south, east and west by
examining the contents of S%(P%,2), S%(P%,3) and S%(P%,4) in a
similar manner.

Once the computer reaches the end of the loop, the score (S%) is
tested and if it is still less than ten, the computer jumps back to the
beginning of this loop and starts the process all over again. Careful
study of this loop shows that the computer doesn't print any
message if it fails to recognise the player's instructions. This is an
easy, and extremely useful, feature to add to any adventure game
and can make the program have a much more 'human' quality,
especially if the responses are humorous. To do this, we can use
another flag and set its value to zero immediately after the player's
instructions are input. If the command given by the player is then
recognised by the computer, the value of this flag should be
changed to a value other than zero, so that an extra line can be
added to test its value at the end of the loop and a message can be
printed if the flag is still zero. For example:

1370 PRINT CHR$(7):CLS:K=0

1380 IF C$="out" OR D$="go o" THEN GOSUB 1800:K=l

50 The main control section

1735 IF K=0 AND LEN(Z$)>0 THEN PRINT" I'm sorry I don't seem
to understand your instructions. Perhaps you should rephrase you
command."

In the above example, the variable K would be set to one at the end
of each line where an instruction was understood and would remain
zero only if the word pattern were not recognised. In line 1735, the
message would be printed if the value of the flag were still zero and
the player had typed an instruction rather than just pressing
<ENTER>. Until all of the subroutines have been typed in, you will
be unable to test that the main control section works fully, but
should be in a position to check that you can move around the
adventure. Before proceeding with the next chapter, it's worth
spending a little time checking that you can move north, south, east
and west in your game. The easiest way of doing this is to RUN the
program and when the computer prints the message asking for your
response, escape from the game by pressing the ESC key twice. You
can than change your location, without actually playing the game,
by typing P% = 1 and pressing <ENTER>. This will move you to
location 1. You can then continue the game by typing CONT and
pressing <ENTER>. In this way, you can move to each of the eighty
locations in the game and test whether the movement routine works
as you expect. If all is well, don't forget to save a copy of your game.
Should a fault occur at this stage, however, you will need to check
the numbers in the data lines to ensure that you have typed them in
correctly; also check the lines 1410 to 1440 for typing errors.

Setting the puzzles: part 1 4

Now that we have completed the routine part of the game, we can
really get to grips with the most interesting part of the whole
process. Setting puzzles and problems for the player to pit his wits
against is a very time consuming procedure and needs to be tackled
in several stages. Some of the subroutines called by the main control
section will be common to all adventure games. Examples which
readily spring to mind are those dealing with handling objects, such
as 'get', 'drop' and 'inventory', whilst others deal with your position
in the game such as 'score', 'help' and 'look'. Some routines,
however, will be unique to the particular game and although many
adventurers argue the fun of playing the game comes from finding
out which words the computer recognises, you would be well
advised to give the player some information about the words which
are understood by the computer. As the level of decoding by the
computer becomes more complex, it becomes ever more important
to give the player this information to point him in the right direction
and so avoid a great deal of needless frustration. This may be
achieved by providing a printed instruction sheet to accompany the
program or by including instructions with the game. In The
Wizard's Quest, there are two subroutines which are called not from
the main control section but from other subroutines. They are, in
fact, the two most important subroutines in the whole game and, for
that reason, will be discussed first.

Losing the game

The first of these, from line 2600-2650, deals with losing the game.
In any adventure, there will be many occasions where the player
loses his life by performing foolhardy tricks such as jumping from
the roof of a burning building or swimming in crocodile infested
water; writing separate routines to deal with every possible death
would be very wasteful of memory. Before calling this routine, a
message describing the death must be stored in the variable E$,
which is then printed at the top of the screen. The player will then
have to press the space bar for another game. 51

52 Setting the puzzles: part 1

Subroutine for losing the game

2600 REM ** lose game »»
2610 CLSsPRINT E»:LOCATE 1,20:PRINT"Press the <Spa
ce Bar> for another game."
2620 WHILE A»<>" "
2630 A»-INKEY»
2640 WEND
2650 RUN

Line

2610 clear the screen, print the message held in E$ and print the
message about pressing the space bar.

2620 wait for the space bar to be pressed.

Splitting sentence

The second routine, from line 2230 to line 2280, is probably the most
important in the whole game. Its first purpose is to split the
instruction typed in by the player into two separate words, and
store the second word of the sentence in the variable L$. The first
few letters of the input sentence have already been stored in B$, C$
and D$, and the computer will have already recognised the player's
intention in principle, although not in detail! Supposing, for
example, that the player types the instruction 'get rope', then the
main control section would call the subroutine which deals with
'get' and this, in turn, would call the routine being discussed to find
out which object the player wants to get and hence, on returning to
the 'get' routine, the variable L$ would hold the word 'rope'. In
order to do this, the computer uses the INSTR command to search
the input string (Z$) for the first occurrence of a blank space (" ")
and sets L$ to hold that part of Z$ to the right of it. Obviously, if the
player types in 'get the rope', L$ would then hold the words 'the
rope', which would not be recognised in the following lines. Games
which include full sentence decoding would then have to search L$
for any other occurrences of a blank space and leave the final value
of L$ with just the word 'rope' in it. You may like to try
experimenting with more complex sentence analysis for yourself
when you have sorted out the main sequence.

Subroutine to split sentence

2230 REM »• check item ♦*
2240 L»=”":XX=INSTR(Z»," "):R=O
2250 L7.=0 : L»=R IGHT» < Z*, (LEN (Z»)-X X >)
2260 IF LEN(L»)<2 THEN RETURN
2270 FOR X=1 TO 30:IF LEFT»<N»(X),LEN(L»>)=L» THEN

L7.= 1:R=X
2280 NEXT:RETURN

Splitting sentence 53

Lines 2270-2280 then search through the contents of the 30 elements
of the array N$(X), which holds the names of the objects recognised
by the computer, to see if the contents of L$ match any of the known
objects in the game. If a match does occur, then the variable R is set
to hold the number of that object. Should the object not be
recognised, then the value of R will remain zero when control is
returned to the subroutine which called it. In The 'Wizard's Quest,
for example, the rope is not found until the player has searched the
leaves for it and thus if the player tries to 'get rope' before searching
the leaves, the value of R returned would be zero. After searching in
the right places, however, the variables N$(ll) and G$(ll) are
changed and trying to 'get rope' would then return a value of R=ll.

Line

2240 empty the contents of L$, find the position of the blank
space in the string and set the value of R to zero.

2250 set the flag to zero and change L$ so that it holds the
second word typed in by the player.

2260 check the length of the word held in L$ and if it is too short,
return to the calling subroutine.

2270 search through all 30 objects to see if the word held in L$
matches the description of any of them and set R to the
number of the object if it does.

2280 return to the calling subroutine.

Calculating the score

All other routines, with the exception of that used to calculate the
player's score, are called as a direct result of the player's instruction.
The subroutine used to calculate the score, however, is called every
time round the main control loop, so that the computer always has
an up to date score to check at the end of the main section. There are
many different ways of giving the player a score in an adventure
game, and the routine from line 1990 to 2110 illustrates one of the
most popular methods. If you can remember back that far, the ten
items of treasure to be found have to be taken and dropped inside
the Wizard's cottage, location 12. The ten items of treasure
discussed in Chapter 1 were object numbers 13, 15, 17, 18, 19, 20,
21, 28, 29 and 30. Each time the routine is called, the score is set to
zero in line 2000 to make sure that it doesn't build up on its previous
value without the player finding any further items of treasure. Lines
2010 to 2100 then check the location of the treasures to see whether
they are inside the cottage and increase the score by one for each of
the above objects found.

54 Setting the puzzles: part 1

Subroutine to calculate the score

1990 REM ** set score **
2000 SX-0
2010 IF BX(13)=12 THEN SX-SX+1
2020 IF BX(15)=12 THEN SX-SX+1
2030 IF BX(17)=12 THEN SX-SX+1
2040 IF BX(18)=12 THEN SX-SX+1
2050 IF BX(19)=12 THEN SX-SX+1
2060 IF BX(20)—12 THEN SX-SX+1
2070 IF BX(21>—12 THEN SX-SX+1
2080 IF BX(28)=12 THEN SX-SX+1
2090 IF BX(29)—12 THEN SX-SX+1
2100 IF BXC30)—12 THEN SX-SX+1
2110 RETURN

Line

2000
2010

set the score to 0.
if object number 13 is in location 12, increase the score
by 1.

2020-2100
2110

repeat this process for the other treasures,
return to the main program loop.

'Get', 'inventory' and 'drop'

All adventure games need routines which allow the player to pick
up and drop objects and the next three subroutines deal with this
topic. The subroutine which allows the player to 'get' an object is
called from line 1460 in the main control loop. In order to make the
game as 'user friendly' as possible, the computer also recognises the
words 'take' and 'grab'.

The 'get' routine

2120 REM ** get routine **
2130 BOSUB 2240: IF LX<1 THEN RETURN
2140 EX—0:FOR X=1 TO 30: IF BX(X)-PX AND NX(R)-X TH
EN EX-1
2150 NEXT: IF EX-0 THEN RETURN
2160 IF (R-13 AND SI-0) OR (R-15 AND SJ-O) OR (R-2
1 AND SN-0) OR R—26 THEN PRINT"Don't be abeurd!":R
ETURN
2170 IF R—12 THEN PRINT"! can't carry them all!":R
ETURN
2180 A(R)-1
2190 EX—0:FOR X-l TO 4
2200 IF V»(X)-,,M THEN Vt (X) -6» (NX (R)) : EX-1: X-5
2210 NEXT: IF EX-0 THEN PRINT“Sorry. My hand» are -F
ull!“:RETURN
2220 BX(NX(R))-0:RETURN

'Get', 'inventory' and 'drop' 55

The first thing that this section of code does is to call the subroutine
discussed previously to split the sentence into two words. When
control is returned to the 'get' routine, the program tests the flag L%
to see whether the second word typed in has been recognised. If L%
still contains zero, then the player has typed in the name of an
object which the computer doesn't recognise and the program
returns to the main loop without any comment. One suggestion
which you may like to try out would be to insert a message into this
line before returning to the main loop:

2130 GOSUB 2240: IF L%<1 THEN PRINT "I can't see a ";L$;" here
!":RETURN

Most adventure game players appreciate a little humour, so try to
introduce a little wit into your comments!

Line

2130 call the subroutine to analyse the sentence and if the
flag is zero on return, return control to the main loop
of the program.

2140 check all thirty objects to see if they match the object
mentioned by the player and if they are in the current
location, set the value of the flag E% to one.

2150 if E% is zero when this line is reached, return to the
main loop.

2160 check whether the object can be picked up. If it is not
possible, print the message and return to the main
loop.

2170 prevents the player from carrying object number 12.
2180 set the value of the flag for the object so that the

computer knows that it is being carried.
2190-2200 insert the description of the object into the array

V$(X) which holds the inventory of objects being
carried.

2210 if the value of the flag is zero, print the message and
return to the main loop.

2220 remove the object from the current location and
return to the main loop.

If the object that the player wants to get has been recognised by the
computer then L% will equal 1 and the computer will then check
through all thirty elements of the array B%(X) to see whether the
object mentioned by the player is in the current location, P%. This is
done in lines 2140 to 2150, where the variable E% is used as a flag to
check that object number (R) is to be found in location P%. Should
the value of E% still remain zero at the end of line 2150, then the
object is not to be found in the current location and control is
returned to the main loop. I have again included no message to tell

56 Setting the puzzles: part 1

the player that the object is not there and you may like to change
line 2150 to something like:

2150 NEXT: IF E% =0 THEN PRINT "Maybe I need glasses, but I just
don't see ";L$;"here !":RETURN

When developing this game I decided to illustrate as many different
methods of setting problems in adventures as I possibly could. Line
2160 is an example where the player is prevented from carrying
objects numbers 13, 15 or 21 unless the variables SI, SJ or SN have
been set to 1. If you can remember back to Chapter 1, these are three
objects which start out as 'monsters', but which change into
treasures later.

Object number Starts as Finishes as

13 A vampire A jade ring
15 A giant slug A silk purse
21 A giant An emerald

The variables SI, SJ and SN are used as flags to test whether the
player has got rid of the 'monster' and found the treasure. Also in
line 2160, you will see that I have prevented you from carrying
object number 26, an angry farmer and in a similar way, you are
prevented from carrying the leaves in line 2170.

Whilst on the subject of variables used as flags, I should like to
mention that I have used the variables from SA through to SP as
flags to test whether a problem has been solved. I would strongly
recommend that each time you introduce a new variable as a flag
you also make a note of it on a piece of paper. The main reason for
this is that when you come to write a routine to save your position
onto tape or disc, you must ensure that the values of all the flags
used in this way are saved alongside the other variables. To help me
keep track of the flags, I tend to write down the names of the
variables on paper before actually using them, and in this game I
decided on the series SA to SZ. Each time that a new variable is
introduced into the game, I would then tick it off the list. Later on in
the game, we will come across instances where the computer needs
to know whether the player is carrying a particular item. One
example of this is where the player must kill the wolf before being
able to progress further into the game. This routine was written in
such a way that the player dies whilst attempting to do so unless
he is carrying the sword. It is very important, therefore, that the
computer knows which items are being carried at any instant and

'Get', 'inventory' and 'drop' 57

this is achieved in line 2180. Thus if the player types 'get oil', the
value of A(2) would be set to 1 because object 2 is the can of oil!

In this game, the player is allowed to carry only four items at any
one time, and therefore lines 2190 to 2210 check the four elements of
the array V$(X) to see if they are empty. If all four elements are full,
then the value of E% remains zero and an appropriate message is
given in line 2210 before returning to the main program loop.
Should an empty location in the array be found, then its contents
will be changed in line 2200 to hold the description of the object and
the value of X increased so that the loop is terminated. If X were not
increased to 5, then all the elements of the array following the empty
one would hold the same object! Finally, line 2200 sets the pointer
B%(X) so that the object no longer appears in any location in the
game. On returning to the main loop, the object appears in location
zero, which doesn't exist!

The 'inventory' routine

2290 REM ** inventory **
2300 E=0:PEN 1:PRINT"I am carrying I-"sPEN 2
2310 FOR X-l TO 41 IF V»(X)<>,,H THEN PRINT V4(X)sE=
1
2320 NEXT:IF E=O THEN PRINT"Nothing at all!"
2330 IF A(6)-2 THEN PRINT"! am wearing the gloves!
II
2340 IF A (5)-2 THEN PRINT"The vase is -full o-f wate
r"
2350 RETURN

When a player wants to find out what they are carrying, they would
normally type in 'inventory' and in this game, the routine to deal
with it can be found from line 2290 to 2350. This routine is very
simple and needs little explanation other than to discuss the tests in
lines 2330 and 2340. These tests check whether the player is wearing
the rubber gloves and whether they have filled the vase with water.
The contents of the array A(R) will normally be zero if object number
R is not being carried, or 1 if it is. In the routines we will come across
later, the values of A(6) and A(5) are set to 2 if the player wears the
gloves or fills the vase. Thus if they drop the gloves, A(6) will be set
to zero again, indicating that they have been removed first and if the
player drops the vase, the water will spill out and A(5) will also be
set to zero.

Line
2300 set the value of the flag to zero and print the message.
2310 search through all four elements of the array V$(X) and if it

contains something, print the description of the object and
set the value of the flag to 1.

2320 if the value of the flag is still zero, print the message that
nothing is being carried.

58 Setting the puzzles: part 1

2330 check the flag to see if the player is wearing the gloves and
print the message if they are.

2340 check the flag to see if the player has filled the vase with
water and print the description if they have.

2350 return to the main program loop.

The 'drop' routine

2360 REM ** drop item **
2370 BOGUS 2240: IF L7.< 1 THEN PRINT"! don't have ";
L*:RETURN
2380 E7.=0:F0R X=1 TO 4
2390 IF V$(X)=G$(N7.(R)) THEN V# (X) = " " : E7.-1
2400 NEXT: IF E7.=0 THEN PRINT"!'m not carrying ";Li
:RETURN
2410 B7.(N7.(R))-P7.
2420 A(R)=0
2430 IF R=25 AND P7.=72 THEN PR I NT "The -farmer smile
s and thanks me. 'I've searched all day -for him.
Please take mysling. You'll -find it use-ful ! ' , he s
ays. ”:G$(27)="a siing":G*(25)= G$(26)= B7.(26) =
0:B7.(25)=0
2440 RETURN

Now that the player is able to pick up objects found in the game and
the computer is able to tell them which items they are holding, the
next stage of development is to allow the player to drop objects
being carried. Just as the main control loop recognised 'take' and
'grab' as alternatives to 'get' when calling that subroutine, the
computer has also been instructed in line 1480 to recognise 'leave' or
'put' as alternatives to 'drop' when calling the subroutine between
lines 2360 and 2440.

The first line of this subroutine again calls the subroutine at line
2240 whch splits the input sentence into two words. If the object
that the player tries to drop is not recognised by the computer, then
the value of L% will remain zero and the message in line 2370 will be
printed before returning to the main loop. Lines 2380 to 2400 search
through all four elements of the array V$(X), which holds the items
being carried, to check whether the player is, in fact, carrying the
item in question. Should the array elements not contain the object,
then control is returned to the main loop after printing the
appropriate message in line 2400.

Line 2410 is used to set the pointer B%(N%(R)), which tells the
computer which location the object is to be found in, back to the
current location, P%. The next line then sets the contents of the
array A(R) back to zero so that the computer knows that the player
isn't carrying the object any longer.

Before returning to the main control loop, line 2430 checks

The 'drop' routine 59

whether the player has dropped the dog in location 72, where the
farmer stands looking for him. When this is done, one of the
invisible objects, number 27, is changed into the sling, which will be
needed later in the game, and the pointer B%(X) is set to zero for
objects 25 and 26. These two objects are the dog and the farmer
respectively and this has the effect of moving them to location zero,
which doesn't exist, to give the appearance of them moving away.
Many puzzles in adventure games can be set in this way and it's
worth while examining this line very carefully to make sure that you
understand how it works.

Line

2370 calls the subroutine to split the player's sentence into two
separate words. If the value of the flag L% is zero on
return, print the message that it isn't being carried and
return to the main loop.

2380 set the flag to zero and search the four elements of the array
V$(X) which holds the inventory of items being carried.

2390 if the word asked for is the same as an object being carried,
empty that element of the array V$(X) and set the value of
the flag to 1.

2400 if the value of the flag is still zero, then the object is not
being carried and therefore the message is printed before
returning to the main control loop.

2410 set the pointer for the position of the object to the current
location (P%).

2420 set the value of the flag for the object to zero so that the
computer knows that it is no longer being carried.

2430 check whether the player has dropped the dog at the
farmer's feet and solve the puzzle if they have.

2440 return to the main program control loop.

Testing

Once you have reached the point where you have typed all the
routines in this chapter into your computer, you would be well
advised to test that they work properly before proceeding further.
The first thing to check is that the 'get', 'inventory' and 'drop'
routines work correctly and the easiest way of doing this is to RUN
the program and try 'getting' any objects you find. Check that the
inventory routine works when you are carrying no objects and then
when you are carrying four objects. Also check that the computer
will not permit you to pick up more than four objects at any one time
and that you can 'drop' them again.

In addition to checking that the general routines work, you will
also need to check that you can't pick up the leaves, object 12, which

60 Setting the puzzles: part 1

are found in location 24. The easiest way to test this is to escape from
the program by pressing the escape key twice, typing P%=24, to
change location, and then typing CONT before pressing <ENTER>.
You should then try to get the leaves. Any mistake at this point
should be fairly easy to track down by a process of elimination, but if
you leave debugging until the end, you will find life much more
difficult.

Checking that you can't 'get' the vampire, the slug or the giant
can be achieved in a similar way. You will need first of all to escape
from the program and change the value of P% to the location you
wish to visit before CONTinuing with the program. If you want to
test that you can get these objects after solving the problems, you
will need to wait until you have read the next chapter.

The program should also be tested to see whether dropping the
dog in location number 72 produces the right effect. Again you
should escape from the program and move to location 54, where the
dog is to be found and CONTinue with the program. Once you have
got the dog, you should once more escape from the program and
more to location 72, where you can, after CONTinuing, drop the
dog. At this stage, you will only be able to test that the 'lose game'
routine works by escaping from the program and typing GOSUB
2610 <ENTER>. This doesn't test the routine out fully because the
only sure test that it works is by attempting to kill yourself, but these
sections have not yet been written! For similar reasons, we will be
unable to check the routine which works out the score, except by
careful comparison with the listing. One final check that can be
made is that typing 'help' produces the reply 'I'm sorry I don't have
a clue!'. Once you are sure that all is well, don't forget to save a
copy.

Setting the puzzles : part 2 5

Unlike the routines described in the previous chapter, which are
essential in all adventure games, many of the routines here were
developed specifically for this game. In the process of developing
them, you should find many ideas which can be adapted and used
in other games.

GO OUT

This command is useful when the player finds himself inside a room
and the instruction is recognised in line 1380 when the player types
'go out' or simply 'out'. There are five locations in The Wizard's
Quest where this command is useful and these are summarised
below:

1790 REM ** go out **
1800 IF P7.-12 THEN P7.=7 sPRINT Y»:RETURN
1810 IF P7.=22 AND SA=O THEN PRINT"The door's lock«
d!" sRETURN ELSE IF P7.=22 THEN P7.=21: PRINT Y$:RETUR
N
1820 IF P7,=25 THEN P7.-29: PRINT Y»:RETURN
1830 IF P7.-63 THEN P7.=64: PRINT Yt:RETURN
1840 IF P7.-70 THEN P7.=69 sPRINT Y»sRETURN
1850 PRINT"Don't be si 11y!"sRETURN

Location Description Leads to location

12 Inside cottage 7 outside cottage
22 Inside chapel 21 outside chapel
25 Living room 29 outside cottage
63 Inside statue 64 outside statue
70 Inside barn 69 outside barn

61

62 Setting the puzzles: part 2

The variable Y$ was set at the beginning of the program to contain
the most useful message in the whole game, 'O.K.'. In each of the
lines between 1800 and 1840, the computer checks to see whether
the location is one of those listed above. If the current value of P%
does correspond to a location where the player can go out, then the
message 'O.K.' is printed, the value of P% is changed to the value
shown in the chart and control is returned to the main section of the
program.

The only location where this is not quite true is inside the chapel.
When the player first enters the chapel, the door slams shut behind
him and unless he tries 'praying', the door will stay firmly locked!
This little puzzle is an easy one to set for the player. The variable SA
is used as a flag to test whether the player has prayed inside the
chapel. Unlike a number of machines, variables don't need to have
their value set to zero at the start of the program in Locomotive
BASIC. This means that SA will start at zero and in the 'pray'
routine this will be set to 1. In line 1810, the computer will print an
appropriate message if the door is locked, but will allow the player
to move outside if the door is open. If the program reaches line 1850,
then it will have checked all the locations where the player can go
out and will print a suitable message to indicate that the player is
being stupid.

Line

1800 if in location 12, change the value of P% to 7 and return to
the main loop.

1810 if in location number 22 and the door is locked, print an
appropriate message and return to the main loop without
changing the value of P%, otherwise, change the value of
P% to 21, print the message and return.

1820 if in location 25, move to location 29 by changing the value
of P% and return to the main loop.

1830 if in location 63, change the value of P% to 64, print the
message and return.

1840 if in location 70, move to location 69, print the message and
return.

1850 print the message that it isn't possible to go out and return
to the main loop of the program.

Testing
It's always easier to test that a routine works when you've just typed
it in and the ideas are fresh in your mind. The first thing to do when
testing this routine is to RUN the program and escape from it by
pressing the escape key twice. Provided that you don't attempt to
edit any line of the program, all the variables will remain intact and
you can change the value of the current location by typing P% = 12

Go out 63

and pressing <RETURN>. Try out the routine by typing 'go out' to
check that you do in fact end up in location 7. Test the other
locations in a similar way. When you are in the chapel, however,
you will be told that the door is closed, and to test the routine fully,
you will have to wait until you've typed in the 'pray' routine.

PRAY

This routine is called from line 1390 in the main game when the
player types 'pray'.

I860 REM ** pray **
1870 PEN 2s PRINT Y*
1880 ENV 1,100,2,2:ENT 1,100,-2,2:SOUND 1,284,200,
1,1,1
1890 IF P7.<22 OR P7. >23 THEN PR I NT "That made me fee
1 better!":RETURN
1900 IF SA=0 THEN PRINT"The door opened !":SA=1:Q$
(22)-LEFT*(Q* < 22),24)sRETURN
1910 PRINT"The door closed !":(22)=Q$(22)+ " The
door has closed behind me!":SA=0:RETURN

The computer first prints up the message 'O.K.' in line 1870 and
then plays a short tune in line 1880 before checking whether the
player is inside the chapel. Praying outside the chapel has no effect
and control is returned to the main loop in line 1890. Line 1900 then
checks to see that the door is closed, SA=0, and changes the value
of SA to 1 if it is. It also shortens the description of location 22 to
remove the message that 'the door has closed behind me'. If the door
is already open, then the flag SA is set back to zero and the door
closed again (line 1910).

Line

1870 print the message set at the beginning of the program.
1880 sound effects to accompany prayer ... adjust these to suit

your own requirements.
1890 if not inside the chapel, locations 22 and 23, print the

message and return to the main program control loop.
1900 check the value of the flag and open the door if it is closed,

by changing the value of the flag SA, before returning to
the main loop.

1910 if this line is reached, the door must be open, so the value
of the flag SA is changed to zero to close it and control is
returned to the main loop again.

64 Setting the puzzles: part 2

GO IN

1920 REM ** go in **
1930 IF P7.-7 THEN P7.= 12:PRINT Y»:RETURN
1940 IF P7.-21 AND SB=O THEN PRINT"The door's locke
d!“s RETURN ELSE IF P7.=21 THEN P7.-22: PRINT Y»:RETUR
N
1950 IF P7.-29 THEN P7.=25: PRINT Y»: RETURN
1960 IF P7.=64 AND SC=O THEN PR I NT "The way in is cl
osed!": RETURN ELSE IF P7.=64 THEN PRINT Y$sP7.=63:RE
TURN
1970 IF P7.=69 AND SH=1 THEN P7.-70: PRINT Y»s RETURN
ELSE IF P7.-69 THEN PR I NT "He won't let me!": RETURN
1980 PRINT"Don't be stupid!"sRETURN

This is one of the more frequently used commands in this game and
is called from the main program loop by typing 'go in' or simply 'in'.
Like the routine to 'go out', there are five locations where you can
use this instruction to effect.

Location Description Leads to location

7 Outside cottage 12 inside cottage
21 Outside chapel 22 inside chapel
29 Outside cottage 25 living room
64 Outside statue 63 inside statue
69 Outside barn 70 inside barn

Line 1930 checks to see if the player is in location 7 and changes the
value of P% to 12 if he is. In a similar way, line 1950 checks whether
the player is in location 29 and changes the value of P% to 25.

Movement in the other three locations is not as easy for the player
because they have to solve certain problems first. In location 21,
they cannot go into the chapel unless the door is opened by pulling
the lever. This, in turn, will result in death unless they are wearing
the rubber gloves to prevent them from getting an electric shock!
Once the lever has been pulled, the value of SB is changed to one
and when the player tries to enter the chapel the value of SB is
tested in line 1940 to see whether the door is open or not. In a similar
way, the player will not be able to enter the statue until they have
pressed the correct button (SC=1) and in addition, the tramp will
not permit entry into the bam until he has been given the bottle of
rum (SH=1).

Go in 65

Should the program reach line 1980, then the player must have
tried to go into a location other than the five listed above and a
message to tell them that they can't do this is printed. Testing of this
subroutine should be carried out in a similar way to the 'go out'
routine, although you won't be able to check the final three locations
fully until you have entered the appropriate routines where the
variables SB, SC and SH are set to 1. If you do want to test that you
can go into these locations, try changing the value of these variables
by escaping from the program, changing their value and then typing
CONT.

Line

1930 if in location 7, move to location 12, print the message and
return to the main loop.

1940 if in location 21 and the flag is zero, print the message
about the door being closed and return to the main loop,
otherwise change the value of P% to move to location 22
and return to the main loop.

1950 if in location 29, move to location 25, print the message and
return to the main loop.

1960 if in location 64, and the flag is zero, print an appropriate
message and return to the main control loop, otherwise
move to location 63 and return to the main loop of the
program.

1970 if in location 69, and the flag is 1, move to location 70,
otherwise print the message about the tramp not allowing
the player to go in and return to the main loop without
changing the value of P%.

1980 print the message about movement not being possible and
return to the main control loop.

WEAR

2450 REM ** wear **
2460 GOSUB 2240
2470 IF R< >6 THEN PR I NT "Don't be si 11y!":RETURN
2480 IF A(6)=0 THEN PRINT"! don't have thtem!"sRETU
RN
2490 IF A(6)=2 THEN PRINT"!'m already wearing them
!"sRETURN
2500 A(6)-2sPRINT Y#:RETURN

When the player tries to pull the lever outside the chapel, they will
get an electric shock and die unless they are wearing rubber gloves.
If you check through the list of objects, you will see that object 6 is 'a
pair of rubber gloves'. The first stage in checking whether the player
intends to try wearing anything else found in the game is to call the

66 Setting the puzzles: part 2

'check routine', which has already been discussed. If the player does
type in 'wear gloves', then the value of R will be set to 6 and line
2470 will not then return to the main loop. Attempting to wear
anything else is not possible. Line 2480 then checks the value of A(6)
to make sure that the player is carrying the gloves and in line 2490 a
check is made to ensure that the player is not already wearing them.
If the player is in a position to wear them, then the value of A(6) is
set to 2 in line 2500. The value of A(6) is later checked in the routine
to 'pull' and in the 'inventory' routine.

Line

2460 call the subroutine to split the sentence into two separate
words.

2470 if the object is not number 6, the gloves, print the message
and return to the main control loop.

2480 if the flag is zero, print the message and return to the main
loop.

2490 if the value of the flag is 2, print the message about already
wearing them and return to the main loop.

2500 set the value of the flag to 2, print the message and return
to the main loop.

PULL

2510 REM ** pull lever **
2520 GOSUB 2240: IF P7.O21 OR LEFT»(Li,3)<>"lev" TH
EN PRINT"Don't be silly!"sRETURN
2530 IF A(6)<>2 THEN E»="A violent electrical curr
ent surges through my body. I am dead!":GOSUB
2610
2540 PRINT"The door opens!"sSB=1sRETURN

The only way into the chapel, location 21, is by pulling the lever.
Line 2520 checks that the player is in location 21 and that they don't
want to pull anything else. In this game, the only object which can
be pulled is the lever and this is not an 'object' which is included in
the list of objects recognised by the computer. It is, in fact,
mentioned only in the description of the location (Q$(21)).

The next check, in line 2530, is that the rubber gloves are worn.
Should A(6) not equal 2 then the player receives a violent electrical
shock and control is passed to the death routine (line 2610). If the
player is wearing the gloves, then the value of SB is set to one in line
2540 and this allows the player to go into the chapel (see 'go in'
routine).

Once this routine has been typed in, you are in a position to check
that all the puzzles connected with the chapel work. The easiest way
to move around is to escape from the program and change the value
of P% before CONTinuing with the program. Go to the cottage and

Pull 67

find the gloves. Take these back to the chapel and try pulling the
lever. Go into the chapel and try praying. If all is well save your
updated copy on tape or disc. Any faults should be checked
carefully against the listing.

Line

2520 call the subroutine to split the player's instructions into two
words, if the second word is not the lever, print the
message and return to the main loop.

2530 if the player is not wearing the rubber gloves, the flag A(6)
will not be 2 and the player will die.

2540 print the message, set the value of the flag for the door to
open and return to the main control loop.

WAVE

2550 REM ** wave **
2560 GOSUB 2240:IF R< >7 THEN PRINT"Don't be stupid
!": RETURN
2570 IF A(7)=0 THEN PRINT"! don't have it!":RETURN
2580 IF P7.O42 OR S7.C42,2) >0 THEN PRINT"nothing ha
ppens!RETURN
2590 PRINT"The drawbridge comes down!":SX(42,2)=46
:RETURN

One of the standard features of many traditional adventures is the
magic wand. In this game, the player must find the wand and wave
it at the side of the bottomless pit, location 42. Waving any other
object doesn't do anything and this is checked for in line 2560. Line
2570 checks that the player is carrying the wand, object 7, and
returns control back to the main routine if A(7) remains zero. The
location and the value held in S%(42,2) is then checked in line 2580
to see if the player is in the correct place and whether he can go
south. Control is returned to the main section if the player is in any
location other than 42 or if the bridge has already come down. Line
2590 changes the value held in S%(42,2) so that movement south
now takes the player to location number 46 and the message that the
drawbridge comes down is printed on the screen.

Testing this routine involves going to find the wand and taking it
back to the correct location before waving it. The quickest way of
moving from one place to another is again by escaping from the
program and changing the value of P%.

Line

2560 call the subroutine to split the sentence into two words and
if the second word is not number 7, print the message and
return.

68 Setting the puzzles: part 2

2570 check to see if object 7 is being carried, print the message
and return.

2580 if not in position 42 or if the map has been changed, print
message and return.

2590 print the message, change the map and return.

READ

2660 REM ** read **
2670 IF A(9)”0 THEN PRINT"! have nothing to read!"
s RETURN
2680 PRINT"The book makes interesting reading.

'To enter the caverns, repeat the runes SDFDA'"
2690 A(0)-l:RETURN

The only object which can be read by the player in this game is the
book of spells, object 9. Line 2670 checks that the book is in fact
being carried and returns control to the main control loop if it isn't.
Line 2680 then gives the player the information needed to get into
the caves. It also sets the value of A(0) to 1 which acts as another flag
telling the computer that the player has read the message. This
means that the player has to read the book each time he plays the
game — memorising the runes will not work! You may like to try
changing the code needed to enter the caves to a random sequence
of letters to make the solution harder to find!

Once again, this routine cannot be fully tested until later, when
you have entered the routine which allows you to speak.

Line

2670 check to see if the player is carrying anything to read and
print the message before returning to the main loop if he
isn't.

2680 describe how to enter the caves.
2690 set the value of the flag and return to the main control loop.

TALK

2700 REM ** talk **
2710 CLSsINPUT"What do you want to say ";Z«:Z»»LQW
ER*(Z»)
2720 IF P%<>27 THEN PRINT"! talk but nobody listen
s!"s RETURN
2730 IF Z»O"sd-fda" THEN PRINT"Nothing happens"!RE
TURN
2740 IF A(0)-0 THEN PRINT"It didn't work!":RETURN
2750 Q$(27)-"at the entrance to a large cavern."
2760 A (0) =Os 87. <27,2) ”31:PRINT"The caverns open!"sR
ETURN

Talk 69

The only way into the caves, location number 27, is by saying the
correct password. This routine is called from the main section by the
instructions 'say', 'talk' or 'repeat' and the first line of the routine
asks the player to INPUT the word they want to say. If the location
is not correct or if the player types in the wrong code, control is
passed back to the main loop of the program. Line 2740 is used to
check that the player has read the password during this game and
has not tried to remember it from a previous game. This line is
optional and may be left out if you don't mind the player
remembering the password.

Line 2750 changes the description of location number 27 and line
2760 then changes the map to allow movement south from the
caves.

If you have already typed in the 'read' subroutine, then you are in
a position to test out the puzzle of entering the caves. As in all
testing, you should escape from the program and change the value
of P% so that you move to the correct locations. Get the book, take it
to the cave entrance and check that reading the book and saying the
password does, in fact, open up the cave entrance.

Line

2710 input the word that the player wants to say.
2720 if the location is incorrect, print the message and return to

the main loop.
2730 if the first few letters of the word are incorrect, print the

message and return to the main loop.
2740 check the value of the flag to see if the player has read the

password. If he hasn't, print the message and return to the
main loop.

2750 change the description of the location.
2760 set the value of the flag, change the map, print the message

and return to the main loop.

KILL

2770 REM ♦* kill ♦*
2780 BOSUB 22401 IF R-13 OR R»15 OR R-21 OR R-25 OR
R-26 THEN PRINT"That'• not th» right approach!"«

RETURN
2790 IF LEFTttLt.SX^’wol" OR P7.< >20 THEN PRINT"D
on't b» absurd!"I RETURN
2800 IF A<10)“0 THEN E»-"Th« wolf attack* m»!!"«B0
SUB 2610
2810 PRINT"Th» wolf di»«! ! "«87.(20,4)-24sQ»(20)-LEF
T»(Q»(20),17)lRETURN

In this game, the player must kill the wolf, which is found in
location 20, before he can move west from there. The wolf is not one
of the 'objects' found in the game and is, like the lever described in

70 Setting the puzzles: part 2

the 'pull' routine, only mentioned in the description of the location.
Line 2780 checks which object the player wants to kill and suggests
that he is not adopting the right approach if he attempts to kill the
vampire, the slug, the giant, the dog or the farmer. The following
line checks that L$ contains the word 'Wolf'. This is necessary
because the wolf is not a true 'object' with its own value of R. There
is also a check that the player is in the correct location to kill the
wolf. If the player is not carrying the sword, then the wolf attacks
and the 'lose game' routine is called (line 2800). If the program
reaches line 2810, then the player must be in location 20 and must be
carrying a sword with which to kill the wolf. This line prints the
message that the wolf dies, changes the map so that the player can
move west from location 20 and changes the description of the
location to eliminate any mention of the wolf. Thus the player can
now move west to location 24.

Testing this routine is quite straightforward and should be
completed before proceeding with the next routine.

Line

2780 call the subroutine to split the sentence into two words and
if the object mentioned is too dangerous to kill, the
message is printed before control is returned to the main
loop.

2790 if the second word typed in by the player is not 'wolf', the
message is printed and control returned to the main loop

2800 if the flag is zero, the player isn't carrying the sword, so the
message is stored in E$ before the death routine is called.

2810 print the message, change the map and the description of
the location. Return control to the main loop.

SEARCH

2820 REM ** search »*
2830 IF P7.O24 THEN PRINT"! can't see anythi ng! ": R
ETURN
2840 IF SF-0 THEN SF=1sPRINT"I see something!"sG*(
ll>="a long rope with a hook attached.":N$(ll)«"ro
pe"sRETURN ELSE PRINT"! see nothingRETURN

If you can remember back to the planning stage of the game, I
decided to hide the rope under all the leaves in location 24. The rope
and hook is to be object number 11, but the variables G$(ll) and
N$(ll) were left blank when READing the DATA into the arrays,
and these will need to be changed when the player searches through
the leaves. Line 2830 informs the player that there is nothing there if
he tries searching in any other location. The flag SF is set to one
when the player has searched through the leaves so that he finds
nothing if he tries to search through them again. The variables
G$(ll) and N$(ll) are redefined if the rope is found.

Search 71

Testing this routine merely involves moving to location 24 and
searching the leaves. Try typing 'search' a second time to check that
the computer tells you that there is nothing there.

Line

2830 if in any location other than number 24, print the message
and return.

2840 if the flag is zero, change its value, print the message and
change the description of object number 11, otherwise
print the message and return to the main loop.

THROW

2850 REM ** throw **
2860 GOSUB 2240: IF ROli THEN PRINT"! don't see mu
ch point in that ! 11: RETURN
2870 IF A (11) =0 THEN PRINT"! don't have it!":RETUR
N
2880 IF P7.< >36 THEN PRINT"The hook doesn't catch o
n anythingRETURN
2890 IF SG=0 THEN SG=1:PRINT"The rope catches on s
omething!“:(36)=□$(36)+" A rope hangs down!"
2900 FOR X=1 TO 4:IF V$(X)=G»(11) THEN V$(X)="“
2910 NEXT:RETURN

The only method of moving into locations 37 and 38 is to throw the
rope in room 36, so that it catches on the ring. The player will then
be able to climb up the rope and enter the room of faces to get the jar
of salt, which will be needed later in the game.

Line 2860 checks whether the player intends to throw anything
else and returns control to the main loop if necessary. The value of
A(ll) is then checked to see whether the rope is being carried and
finally the location is checked to make sure that there is only one
place where the rope can hang.

The description of the location is changed, in line 2890, to include
the information that the rope is hanging down, and an appropriate
message is printed on the screen. Lines 2900 to 2910 are needed to
remove the rope from the array V$(X), which contains the items
being carried, so that the rope disappears from view! When you try
to climb the rope later, the computer will check the value of the flag
SG to see whether it has been set to 1 (line 2890).

Line

2860 call the subroutine which splits the sentence into two
separate words and if the object mentioned is not number
11, print the message and return to the main loop.

2870 if the flag is zero, the player isn't carrying the rope, so the
message is printed and control returned to the main loop.

72 Setting the puzzles: part 2

2880

2890

2900

2910

if the player is not in the correct location, print the message
and return.
if the flag is zero, change the value of the flag, print the
message and change the description for the current
location.
search through the array V$(X), which holds the inventory
of objects being carried, and remove the rope.
return to the main control loop.

Setting the puzzles: part 3 6

CLIMB

2920 REM ** climb **
2930 GOSUB 2240
2940 IF P7.=54 AND SL=1 THEN PRINT Y$: P7.=49s RETURN
2950 IF ROH THEN PRINT"! can only climb a rope!”
:RETURN
2960 IF PZ<36 OR P7.>37 THEN PRINT"Not here! " s RETUR
N
2970 IF SBO1 THEN PR I NT "Not just yet!": RETURN
2980 IF P7.=36 THEN P%=37 SPRINT Y4: RETURN
2990 P7.=36 SPRINT Y»:RETURN

The first line of this subroutine calls the subroutine to split the input
sentence into two parts. Line 2940 then allows the player to climb
the beanstalk in location 54 if, and only if, he has first planted it and
then watered it, so setting the value of the flag SL=1.

The only other places where the player can climb up or down are
locations 36 and 37. Line 2950 makes sure that the player actually
types 'climb rope' and not just 'climb'. This line may be left out if
you don't feel it necessary. Lines 2960 and 2970 then check the
location and test to see if the rope is hanging from above (SG-1).
Finally, the value of P% is changed in lines 2980 to 2990 depending
on whether the player is climbing up or down the rope. Don't forget
to check out the routine in the usual way before typing in the next
one!

Line

2930 call the subroutine to split the player's instructions into two
words.

2940 if in location 54 and the beanstalk has grown, move to
location 49, print the message and return to the main loop.

2950 if the object is not the rope, print the message and return to
the main loop. 73

74 Setting the puzzles: part 3

2960 if not in location 36 or 37, print the message and return to
the main loop.

2970 if the rope has not caught on the ring, print the message
and return.

2980 if in location 36, move to location 37, print the message and
return.

2990 move to location 36, print the message and return.

GO UP

3000 REM ** go up **
3010 IF P7.=70 THEN P7.=71i PRINT Yt: RETURN
3020 IF P7.=80 THEN P7.=79: PRINT Yis RETURN
3030 IF P7.=36 AND SG=O THEN PRINT"not just yet!"!R
ETURN ELSE IF P7.-36 THEN P7.=37sPRINT Yis RETURN
3040 IF P7.=54 AND SL=1 THEN P7.=49 SPRINT y»s RETURN
3050 PRINT"! can't do that here!":RETURN

This subroutine is called whenever the player types 'go up' or
simply 'up'. There are four locations where movement in this
direction is possible and these are summarised below.

Location Description Leads to location

70 Inside bam 71 hayloft
80 Inside cavern 79 by grate
36 By ring 37 tunnel (if rope thrown)
54 Fertile land 49 beanstalk (if planted)

Line 3010 deals with the movement from location 70 to location 71,
whilst line 3020 handles movement from location 80. Line 3030
checks the flag SG to see whether the rope is hanging down, before
changing P% to 37 or printing a message to tell the player that he
can't move in that direction. Similarly, line 3040 checks the value of
SL to see whether the beanstalk has been planted and watered.
Finally, if the program reaches line 3050, then the player is trying to
'go up' from a location where this is not possible! Do check out the
routine in the usual way as soon as you have typed it in.

Line

3010 if in location 70, move to location 71, print the message and
return.

Go up 75

3020 if in location 80, move to location 79, print the message and
return.

3030 if in location 36 and the flag has not been set, print the
message and return to the main control loop, otherwise
move to location 37, print the message and return.

3040 if in location 54 and the flag has been set to indicate that the
beanstalk has grown, move to location 49, print the
message and return.

3050 print a message that it is not possible and return to the
main loop.

DRINK

3060 REM ** drink **
3070 BOSUB 2240: IF ROB THEN PRINT"Don't be silly!
":RETURN
3080 IF A(8)=0 THEN PRINT"! don't have any!":RETUR
N
3090 E$=="I drink the rum and in a drunken stupor,-F
all and break my neck!":60SUB 2610

This routine was written as a 'red herring'. The only object in the
game which it is possible to drink is the bottle of rum, object 8. The
first line of the routine checks whether the player has tried to drink
anything else and prints a message about their stupidity if they
have. Line 3080 then tests the value of A(8) to see if the rum is being
carried and if, finally, the player is carrying it, then they trip in a
drunken stupor and die! Ardent adventurers don't like games
where they lose their lives too often, so don't go overboard with
traps like this one and do try to keep the responses humorous. The
main purpose of the rum in this game is to give to the tramp.

Line

3070 call the subroutine to split the sentence into two words and
if the player is not referring to object number 8, the bottle of
rum, print the message and return to the main loop.

3080 check to see if the player is carrying the rum and return to
the main loop, after printing a suitable message, if not.

3090 set the message about getting drunk and call the lose game
routine.

GIVE

3100 REM ** give **
3110 BOSUB 2240: IF ROB THEN PRINT"!'m not giving
";LisRETURN
3120 IF A<8)=0 THEN PRINT"! don't have any!":RETURN

76 Setting the puzzles: part 3

3130 IF P7.O69 THEN PRINT"There's nobody here who
would like it!"¡RETURN
3140 A(8)-OsFOR X-l TO 4s IF V»(X)=G»(8) THEN V»(X)

ii
3150 NEXT:PRINT"The tramp thanks me and walks away
■ ■■
3160 Q»(69)-LEFT»(Q»(69),40):SH-1:RETURN

This is a useful routine which allows you to give objects being
carried to other people, or creatures, in the game. In this game, it is
used only once — to give the bottle of rum to the tramp who will
then walk away, so letting you go into the old barn. Line 3110
checks the number of the object you are trying to give and if this is
not 8, the rum, it prints an appropriate message. The next check, in
line 3120, is that you are carrying the rum and finally, line 3130
makes sure that you are in the correct location.

Once the computer has made sure that you want to give the rum,
that you are carrying it and that you are in the right place, the bottle
of rum is removed from the array V$(X), which holds the inventory
and a suitable message is printed. The most important part of this
routine is line 3160, where the flag SH is set to one, which is tested
in the 'go in' routine previously described. Finally, the description
of location 69 is shortened so that it no longer includes any mention
of the tramp. This is because the tramp, like the wolf described
already, is not a true object in this game. Testing this routine
involves moving to location 25, getting the rum and taking it to
location 69 to give to the tramp.

Line

3110 call the routine to split the player's instructions into two
words and if the object being given away is not the rum,
number 8, print the message and return to the main loop.

3120 check to see if the rum is being carried and print a suitable
message before returning if not.

3130 if the player is not in location 69, print the message and
return to the main loop.

3140 set the value of the flag to zero so that the computer knows
that the rum is no longer being carried and then remove the
description of the rum from the array V$(X) so that the
inventory routine works correctly.

3150 print the message about the tramp.
3160 change the description for the current location, set the

value of the flag SH to one and return to the main control
loop.

Give 77

USE

3170 REM ** use **
3180 BOSUB 2240
3190 IF R-4 AND A(4)-0 THEN PRINT"! don't have it!
":RETURN
3200 IF R-4 AND P7.O44 THEN PRINT"Nothing happens!
":RETURN
3210 IF R-4 THEN PRINT"The ghost disappears into t
he bag! " s S7. (44,2)-48s Q» (44)-LEFT» (Q» (44) ,29)sRETUR
N
3220 IF R-14 AND A(14)-0 THEN PRINT"! don't have i
t!"iRETURN
3230 IF R-14 AND P7.< >33 THEN PRINT“There isn't muc
h point here!"sRETURN
3240 IF R-14 THEN PRINT"The vampire -Flees for his
life leaving something behind!"sSI-1sB»(13)-"a ♦»

JADE RINB **"sN»(13)-"Jade"sRETURN
3250 IF R—16 AND A(16)=0 THEN PRINT"! don't have i
t!"iRETURN
3260 IF R—16 AND P7.< >35 THEN PR I NT "There isn't muc
h point!":RETURN
3270 IF R—16 THEN PRINT"The slug shrivels up to no
thing and leaves something on the ground."sB*(
15)-"a #* SILK PURSE **":N»(15)="si1k":SJ-1sRETURN

3280 IF R—22 AND A(22)-0 THEN PRINT"! don't have i
t!“sRETURN
3290 IF R—22 AND (P7.-35 OR P7.-72 OR P7.-62 OR P7.-44

□R P7.-33) THEN E»="It explodes and covers me with
a Jet of flames!!":BOSUB 2610

3300 IF R—22 AND P7.< >59 THEN PRINT"! don't see muc
h point in using it here!":RETURN
3310 IF R—22 THEN PRINT"The flames drive them away
! "s37. (59,2)-61 :Q*(59)-LEFT» (□»(59) ,29) :RETURN
3320 IF R—23 AND A(23)-0 THEN PRINT"! don't have i
t!"iRETURN
3330 IF R—23 AND P7.< >79 THEN PRINT" It's not much u
se here!":RETURN
3340 IF R—23 AND SM-0 THEN PRINT"The grate opens!"
:SM—1sQ»(79)—LEFT»(Q»(79),30)+" There is hole in t
he ground.":RETURN
3350 IF R—23 THEN PRINT"It's already open!":RETURN

3360 IF R—27 AND A(27)-0 THEN PRINT"! don't have i
t! ":RETURN
3370 IF R—27 AND P%<>62 THEN PRINT"a sling is of 1
ittle use here!":RETURN
3380 IF R-27 AND SN-1 THEN PRINT"! can't use it tw
ice!"I RETURN
3390 IF R-27 AND SN-0 THEN SN-1sPRINT"That's done
the trick! The giant's body fades away. I see some
thing here!"s6»(21)-"an »» EMERALD **"sN»(21)-"erne
raid"!RETURN
3400 PRINT"! can't use "|L»;" here!"sRETURN

78 Setting the puzzles: part 3

This is a very handy routine which allows the player to use many of
the objects which he finds along the way. It is called from the main
control section by typing either 'use' or 'prise'. In this game, there
are six objects which can be used in this way. Line 3180 calls the
routine which splits the input sentence into two words and stores
the number of the object mentioned in the variable R. Careful study
of the list will show that there are six different sections dealing with
each of the objects separately. If R does not have the value
4,14,16,22,23 or 27, then the program will pass all the checks and
reach line 3400 which tells the player that he can't use the object in
question.

Object
Used in
Location Purpose

4 vacuum cleaner 44 To get rid of ghost
14 crucifix 33 To get rid of vampire
16 salt 35 To get rid of slug
22 flame thrower 59 To get rid of goblins
23 crowbar 79 To open the grate
27 sling 62 To get rid of giant

Use the vacuum cleaner

3190 check that it is being carried and return to the main loop if
not.

3200 check the location to see if the ghost is there and return to
the main loop if not.

3210 print the message, change the map for location 44 to allow
movement south and change the description of the
location.

Use the crucifix

3220 check that it is being carried and return to the main loop if
not.

3230 check the location to see if the vampire is there and return
to the main loop if not.

3240 print the message, change the value of the flag SI, change
the vampire into the jade ring and return to the main loop.

Use 79

Use the salt

3250 check that it is being carried and return to the main loop if
not.

3260 check the location to see if the slug is there and return to
the main loop if not.

3270 print the message, change the value of the flag SJ, change
the descriptions of the slug into the silk purse and return to
the main loop.

Use the flame thrower

3280 check that it is being carried and return to the main loop if
not.

3290 call the lose game routine if in location 35, 72, 62 or 44.
3300 if not in location 59, return to the main loop.
3310 print the message, change the map to allow movement

south from location 59, change the description of the
location and return to the main loop.

Use the crowbar

3320 check that it is being carried and return to the main loop if
not.

3330 return to the main loop if not in the right place (location
79).

3340 print the message about the grate opening, change the flag
SM, which allows the player to go down, change the
description of the location and return to the main loop.

3350 the grate must be open, so print an appropriate message
and return to the main loop.

Use the sling
Note that the sling only appears in the game after the farmer has
been given his dog back!

3360 check that the sling is being carried and return to the main
loop if not.

3370 check the location to see if the giant is there and return to
the main loop if not.

3380 check whether the sling has already been used.
3390 set the value of the flag SN, print the message, change the

giant into the emerald and return to the main loop.
3400 this line is only reached if all the above tests have proved

negative, so the player is told that he can't use the object
and control is returned to the main loop.

80 Setting the puzzles: part 3

The best method of testing this subroutine is to try out every
possible combination catered for in the above lines. When you are
entirely satisfied that everything works correctly, you could perhaps
think about adding a few extra lines to this routine so that the player
can 'use' other objects found within the game.

SWIM

3410 REM ** swim **
3420 IF P7.-10 THEN PZ=15sPRINT Y$sRETURN
3430 IF P7.-15 THEN PX-10s PRINT Y»»RETURN
3440 IF P7.-65 OR PX=-68 THEN PRINT"The water's not
deep enough!":RETURN
3450 IF PX-64 OR P7.-8 THEN E»-"I drown.... what a «
tupid suggestion!"sGOSUB 2610
3460 PRINT"Don't be ridiculous!RETURN

There are many occasions in adventure games where you want the
player to move around by means other than walking. In this game,
there are two locations where the player must swim to progress
further. Swimming from location 10 takes the adventurer to location
15 and vice versa. This movement is taken care of in lines 3420 and
3430 respectively.

In locations 65 and 68, the water is not deep enough and the
player will have to paddle across. Line 3440 deals with this. In two
locations, numbers 64 and 8, the water is too dangerous to cross and
the player drowns. This is dealt with in line 3450, where the lose
game routine is called. There must be many other ways of losing
your life when swimming (crocodiles, piranha etc.) and I'm sure
that you could think up some terrible deaths for your victims. If the
program reaches line 3460, then swimming is not possible in that
location and a message to that effect is printed before control is
returned to the main loop. By now, you should have got the hang of
how to test that these routines are working properly.

Line

3420 if in location 10, move to location 15 by changing the value
of P%, print the message and return to the main loop.

3430 if in location 15, move to location 10 print the message and
return to the main loop.

3440 if in location 65 or 68, print the message and return to the
main loop.

3450 if in location 64 or 8, the contents of E$ are defined and the
death routine is called.

3460 print the message about swimming being impossible and
return to the main loop.

Swim 81

PADDLE

4140 REM ** paddle **
4150 IF P7.-65 THEN P7.-68: PRINT Y»sRETURN
4160 IF P7.-68 THEN P7.-65: PRINT Y»:RETURN
4170 IF P7.-64 OR P7.-10 OR P7.-15 THEN PRINT"The wat
er's too deep!":RETURN
4180 PRINT"! can't go paddling here dummy!“sRETURN

In this game, we have already decided to make it impossible to swim
from location 65 to 68 and vice versa because the water is too
shallow. Thus lines 4150 and 4160 allow the player to paddle across
the river between these two locations. In locations 10, 15 and 64, the
water is too deep and the player cannot paddle (line 4170). You may
like to change this line so that the player gets attacked by strange
fish and loses the game. Line 4180 is only reached if the player tries
to paddle in any other location and therefore a message to that effect
is printed!

Line

4150 if in location 65, move to location 68, print the message and
return to the main loop.

4160 if in location 68, move to location 65, print the message and
return to the main loop.

4170 if in location where the water is too deep, print the message
and return.

4180 print a message about paddling being impossible and
return to the main loop.

UNLOCK

3470 REM ** unlock **
3480 IF A<3)-0 THEN PRINT"! h*v» no k«y!":RETURN
3490 IF SK—0 AND P7.-16 THEN PR I NT "The lock'» too r
u»ty!"I RETURN
3500 IF P7.-16 THEN PRINT Y»sPRINT"The chain comes
loose. “:Q»<16)=LEFT»(Q»(16) ,40) s 87. (16,2)-17: RETURN
3510 IF P7.-79 THEN PRINT"There 's no keyhole! " s RETU
RN
3520 PRINT"Don't be silly!"sRETURN

There is only one lock in this game which can be unlocked and you'll
need to have oiled it first. The key, object number 3, is found in
location 1 and unless A(3)=l then the player is not carrying it (line
3480). The lock is to be found in location 16 and a check is made on
the value of the flag SK in line 3490 to see whether the lock has been
oiled first. Unless SK has been set, it is impossible to unlock the gate
and line 3500 is not reached. Line 3500 prints a message about the
chain, alters the description of location 16 and changes the map so

82 Setting the puzzles: part 3

that the player can move south from that location. A metal grate is
set into the ground in location 79 and the player may try to unlock
this with the same key. This is checked for in line 3510. There are no
other locations within this game where the player could reasonably
try to unlock anything and therefore the message 'Don't be silly!' is
printed for all other attempts to unlock anything (line 3520). It isn't
possible to check that this routine works properly until you have
typed in the subroutine to 'oil' the lock.

Line

3480 check the value of the flag to make sure that the player is
carrying the key and return to the main loop if not.

3490 if in location 16 and the flag has not been set, the gate has
not been oiled and so the message is printed and control
returned to the main loop.

3500 if in location 16, print the message, change the description
of the location and return to the main loop.

3510 if in location 79, print the message and return.
3520 print the message about it being impossible and return to

the main loop.

OIL

3530 REM ** oil **
3540 IF P7.O16 THEN PRINT"! can 't!“:RETURN
3550 IF A(2)=0 THEN PRINT"no oi1! ”iRETURN
3560 PRINT Y$:SK=»ls RETURN

Before the player can unlock the gate found in location 16, the lock
must be oiled. The first check, in line 3540, is that the player is in the
correct location. A check is then made in line 3550 on the value of
A(2) to make sure that he is carrying the oil. Finally, the flag SK is set
to one when the lock has been oiled (line 3560). The value of SK is
checked when trying to unlock the gate and hence you will need to
have typed in both routines (oil and unlock) before you are able to
test whether they work correctly. Testing this section involves going
into the Wizard's cottage and getting the oil. En route to location 16,
the player must get the key, and on reaching the gate, try to unlock
it. Once unlocked, going south from location 16 should take the
player to location 17. The easiest way of testing this is to try going
south and then escape from the program. You can then type PRINT
P% and the value 17 should be printed on the screen.

Line

3540 if not in location 16, print the message and return to the
main loop.

Oil 83

3550 check to make sure that the player is carrying the oil and
return to the main loop if not.

3560 print the message, set the value of the flag and return to the
main loop.

PLANT

3570 REM ** plant **
3580 IF A(l)=0 THEN PRINT"! can't!":RETURN
3590 IF P7.O54 THEN PRINT"The ground's too hard!“:
RETURN
3600 FOR X=1 TO 4:IF V$(X)=G$(1) THEN V$(X)="":PRI
NT Y»
3610 NEXT:G*(1)=”a tiny little beanstalk murmuring
................water, water ! " : 87. (1) =54: N$(1)="":A(1) =2: RETU
RN

One of my favourite puzzles in the original adventure involved
watering the beanstalk and climbing up the branches into a new
area of caverns. I have taken this idea to show you how you can
incorporate such puzzles within your own game.

Line

3580 check the value of A(l) to see if the player is carrying the
beanstalk.

3590 check the location. The only place where the beanstalk can
grow is in location 54 and so control is returned to main
loop if the player is in the wrong place.

3600 check through all the items being carried (V$(X)) and
remove the beanstalk.

3610 change the description of the beanstalk, change the value
of B%(1) to drop the beanstalk in location 54, change the
value of N$(l) so that the computer no longer recognises
the word 'beanstalk', set the flag A(l)=2 so that the
computer knows that the beanstalk has been planted and
return to the main loop.

It is very important that N$(l) is emptied so that the player is unable
to pick up the beanstalk after it has been planted. This routine
cannot be tested until the routine to 'pour water' has been typed
into your computer.

FILL

3620 REM ** -Fill **
3630 IF A(5)-0 THEN PRINT"Fill what ?"iRETURN
3640 IF P7.-10 OR P7.-15 OR P7.-26 OR P7.-64 OR P7.-65
OR P7.-68 THEN PRINT Y*: A (5> =2: RETURN ELSE PRINT"!
can't do that here!":RETURN

84 Setting the puzzles: part 3

When the player has planted the beanstalk, it will start murmuring
'water, water' and the next task is to find the vase and fill it with
water. The vase, object number 5, is found in location 25 and can be
filled at the kitchen sink, location 26, or on the river banks, locations
64, 10, 15 or 68.

Line

3630 check that the vase is being carried and return if not.
3640 check the location and change the value of A(5) to 2 if the

vase can be filled.

A(5) will usually have the value 1 if it is being carried and therefore
once it has been filled with water, its value is set to 2. If the player
drops it once it has been filled, the value of A(5) will go back to zero
and the water will spill!

POUR

3650 REM ** pour **
3660 IF A(5)02 THEN PRINT"! can't!":RETURN
3670 PRINT Y«sA(5)-l
3680 IF P7.O54 OR A (IX >2 THEN RETURN
3690 IF SL=0 THEN PRINT"Th« beinitilk «purt» into
rapid growth!"sG$(1)’"an enormous beanstalk reach!
ng high into the clouds."sSL=l
3700 RETURN

The final part of this puzzle involves taking the vase, which should
be full of water, to location 54 and pouring it onto the beanstalk.

Line

3660 check whether the player is carrying a vase full of water
and return if not.

3670 print the message 'O.K.' and empty the vase by setting
A(5) to 1.

3680 if the location is not number 54, or the beanstalk has not
been planted then return to the main control loop.

3690 check the value of SL to make sure that the beanstalk has
not already grown, print the message, change the descrip
tion of the beanstalk, set the value of the flag SL.

3700 return to the main program control loop.

The value of the flag SL is tested in the routine to climb the beanstalk
and therefore when you have checked that these three routines
(plant, fill and pour) are working, you would be advised to escape
from the program and type PRINT SL. This should return the
number 1 if you are to be able to climb the beanstalk later.

Setting the puzzles: part 4 7

GO DOWN

3710 REM ** go down **
3720 IF P7.-37 THEN P7.-36: PRINT Y#:RETURN
3730 IF P7.=49 THEN P7.=54 SPRINT Y4: RETURN
3740 IF P7.-71 THEN P7.«=70; PRINT Y<:RETURN
3750 IF P7.=79 AND SM=O THEN PRINT"! can't get past
the grate!“sRETURN

3760 IF P7.-79 THEN P7.-80: PRINT YisRETURN
3770 PRINT"! can't!":RETURN

This routine complements the routine to 'go up' and the two
routines should be tested together.

Line

3720

3730

3740

3750

3760

3770

if the player is in location 37, change location to 36 and
return to the main loop.
if the current location is 49, change it to 54 and return to
main loop.
if the current location is 71, move to location 70 and return
to the main loop.
if the location is 79 and the grate is closed (SM=0), then
print the message and return to the main loop.
if the location is 79, the grate must be open, so move to
location 80 and return to the main loop.
if this line is reached, the player is in a location where he
can't go down, so the message is printed and control
returned to the main loop.

PRESS

3780 REM ** press »*
3790 IF P7.O64 THEN PRINT"! can't do that here! ": R
ETURN
3800 PRINT”There are three buttons.”

85

86 Setting the puzzles: part 4

3810 PRINT"RED GREEN and BLUE"
3820 INPUT "Which one do I press ";Z$:Z$=LOWER$(Z$
)
3830 Z*=LEFT»(Zt,1)sIF SOI THEN E$="A snake crawl
s -From behind the buttons and sinks its fangs int
o me!":G0SUB 2610
3840 SOI: IF Z$O"b" THEN PRINT“Nothing seems to h
appen!":SC=0:RETURN
3850 PRINT"A door opens!":RETURN

On reaching location 64, the player will come across a row of three
buttons. Pressing the correct one will open the door into the statue,
but the wrong one can be dangerous! This is the only occasion in the
whole game where the player needs to press anything.

Line

3790 check the location and return to the main loop if it
isn't 64.

3800-3810 describe the colours of the three buttons to the
player.

3820 input the player's choice.
3830 if the correct button has already been pressed, the

snake will attack, and the lose game routine is called.
3840 if the player doesn't press the blue button, nothing

happens and control is returned to the main loop.
3850 open the door and return to the main loop.

You will notice that the flag SC is set to 1 if the door opens, and you
may like to change this section so that a random colour must be
chosen, or perhaps giving the player just two attempts to get it
right. This section should be tested by moving to location 64 and
pressing the buttons. Do make sure that pressing the blue button
twice does kill the player.

We have now finished the main part of the program and it should
be possible for you to solve the game as it stands. There is still
plenty of memory left for you to add extra puzzles and problems of
your own, although the final two subroutines will take up much of
this spare RAM. A routine which allows you to save your position
onto tape and load it back in again later is an extremely useful
feature of any adventure and can transform your program into a
very professional piece of programming.

SAVE GAME

3860 REM ** save game **
3870 PRINT"Please insert tape/disc now "
3880 0PEN0UT"data"
3890 FOR X=1 TO 80:PRINT#9,Q$(X):NEXT X

Save game 87

M,SN,S0,SP,P7.
3980 CLOSEOUT:RETURN
3990 REM

3900 FOR X=1 TO 80: FOR Y=1 TO 4: PRINT#9, S7. (X , Y) : NE
XT Y,X
3910 FOR X=1 TO 30:PRINT#9,G$(X>: NEXT X
3920 FOR X=1 TO 30:PRINT#9,B7.(X) : NEXT X
3930 FOR X-l TO 30:PRINT#9,N$(X):NEXT X
3940 FOR X=1 TO 30:PRINT#9,N7.(X) : NEXT X
3950 FOR X=0 TO 30:PRINT#9,A(X):NEXT X
3960 FDR X=1 TO 4:PRINT#9,Vi(X): NEXT X
3970 PRINT#9 ,SA,tSB,SC,SD,SE,SF,SG,SH,SI,SJ,SK,SL,S

When writing any save game routine, we must open a cassette or
disc file and save to it the values of any variables whose value might
have changed during the course of the game. In this program, there
are a few locations where the descriptions remain constant, but
most variables can change their value. For this reason, I decided that
the easiest way of writing the routine was to save the value of all
variables used onto the tape (or disc) using the PRINT #1
command.

Line

3870 print the message asking the player to insert the tape into
the recorder.

3880 open the file with the filename 'data'.
3890 write the descriptions of the 80 locations onto the tape.
3900 write the details of the map onto the tape.
3910 write the descriptions of the objects onto tape.
3920 write the locations where the objects can be found onto

tape.
3930 write the words recognised by the computer onto tape.
3940 write the pointers to the words onto tape.
3950 write the flags for the objects being carried onto tape.
3960 write the descriptions of the objects being carried onto

tape.
3970 write the flags SA - SP and the current position (P%) onto

tape.
3980 close the file and return to the main loop of the program.

It is extremely important when writing this routine that you don't
forget to include any of the variables you have introduced as flags.
It's all too easy to forget to include one and you would be well
advised to write them all down on paper as you introduce them into
the game.

88 Setting the puzzles: part 4

LOAD GAME

4000 REM ** load gam« **
4010 PRINT,aPlease insert tap«/diac now "
4020 OPENIN''data"
4030 FOR X-l TO 80:INPUT#9,Q*(X):NEXT X
4040 FOR X=1 TO 80:F0R Y—1 TO 4: INPUT#9,S7.(X,Y> :NE
XT Y,
4050

,X
FOR X-l TO 30:INPUT#9,G»(X>:NEXT X

4060 FOR X-l TO 30:INPUT#9,BX(X):NEXT X
4070 FOR X-l TO 30: INPUT#9,N*(X >: NEXT X
4080 FOR X-l TO 30: INPUT#9,N7.(X> :NEXT X
4090 FOR X—O TO 30:INPUT#9,A(X):NEXT X
4100 FOR X-l TO 4:INPUT«9,V»<X):NEXT X
4110 INPUT#9,SA,SB,SC,SD,SE,SF,SG,SH,SI,SJ,SK,SL,S
M,SN,S0,SP,P7.
4120 CLOSEIN:RETURN
4130 REM

Having saved a game onto tape, the next routine required will be
the one to load it back into memory. The purpose of this subroutine
is to restore the value of all of the variables back to that when the
game was saved. In many ways, this routine is a mirror image of the
save game routine. After opening the file, the variables must be read
back in from tape in exactly the same order as they were saved. Any
errors, however slight, in the ordering of the variables will cause
disaster.

Line

4010 print the message asking the player to insert the tape.
4020 open channel to input the cassette file.
4030 input the descriptions of the 80 locations.
4040 input the data for the map.
4050 input the descriptions of the 30 objects.
4060 input the positions where the objects are to be found.
4070 input the words understood.
4080 input the pointers to the words recognised.
4090 input the flags to tell the computer which items are being

carried.
4100 input the descriptions of the items being carried.
4110 input the flags SA-SP and the current location (P%).
4120 close the file and return to the main program.

Once you have typed in the two routines to save a game and load it
back in again, you should check that it does in fact work. If any
errors occur when trying to load the tape back into the computer,
there are a number of possible causes. I have summarised these
below.

Load game 89

1 Trying to load back the tape when the OPENIN command uses a
different filename. Check that both routines open the file with the
name 'data'.
2 The tape is faulty. Try saving a new version of your game on a
different tape.
3 The order in which the data is read in from tape is different from
the order in which it was saved. Check the listing of the two
routines very carefully.
4 You have saved a description of a location which contains a
comma. This may cause the computer to think that it is loading in
the next item of data. Make sure that you don't allow the contents of
any array to contain a comma. If you must have a description in
your game containing a comma, then you should change the comma
to another symbol such as a percentage sign and then change it back
to a comma again after the tape or disc has been loaded or saved.

Using this technique to store the data for an adventure game is very
inefficient in memory usage. The data is stored twice, once in the
data lines and again on the data tape. If you really want to make
maximum use of the memory available, then you would be advised
to load the data in from tape or disc every time. This would, of
course, mean that you would have to write a separate program to
create the first data tape of all. If you do attempt to write a program
in this way, you will also find that every time you make a simple
mistake, then you will have to load the data file in again and this in
turn means that the development time will be much greater. Later
on in the book, I shall introduce a game which was written in this
way and in which the program to create the first data file allows you
to change the program by answering a few questions!

Now that we have completed The Wizard's Quest, you might like
to try extending the game by including a few extra puzzles and
problems for the player to pit his wits against. There is, after all, still
plenty of RAM left in the Amstrad to make use of some of the
objects found in the game which I haven't made much use of. You
should, by now, be feeling fairly confident about how the program
works and might like to try adding a few extra subroutines. Here are
a few suggestions which you might like to try out.

1 The flame thrower refuses to work until you find some fuel. This
could be done by waving the wand over the top of the pile of leaves.
2 The vacuum cleaner is broken and you need to repair it before it
will work. You might need to use the rubber gloves as a new rubber
belt (after you have got into the chapel of course).
3 The lid to the jar of salt is stuck and you need to get help to open
it. Perhaps the farmer might oblige.

I'm sure you can think of plenty of other puzzles, especially if you
can introduce more objects of your own into the game. Do
remember that you will need to change the numbers in the get,
drop, check, load and save routines if you do add extra objects.

Making life difficult

Writing adventures for yourself is great fun, but you'll get a far
greater sense of achievement if you can write an adventure which
can be shared with others. One of the unfortunate features of BASIC
as a language for adventure games is that you can escape from the
program and list it. It is always far easier to solve a game by
examining the listing than actually playing the game, and whenever
the player comes across a tricky problem, there is always the
temptation to cheat. What can you, as the writer of the game, do
about it? How can you make life harder for the player?

There are several approaches which can be adopted and your
choice of technique will depend on whether you are writing a game
for your friends in the local computer club, for sale to a software
house or for publication in a magazine. One of the most useful
techniques is to code all the data lines so as to make the program
more difficult to solve. There are many different ways of doing this
and the listing below illustrates just one of them. Try typing it in
and running it.

10 DATA "In a dark and gloomy -forest."
20 READ M
30 FOR x = l TO L.EN(A$>
40 B$=B$+CHR$(ASC(MID*(AS,X,1))+l)
50 NEXT X
60 PRINT#8,"Original string
70 PRINT#8,AS
80 PRINT#8:PRINT#8
90 PRINT#8,"Final string
100 PRINT#8, BS

Sample Run

Original string
In a dark and gloomy forest.

Final string s-
Jo!b!ebsl!boe!hmppnz!gpsftu/

Making life difficult 91

This short program illustrates how we can change a line of DATA to
make it much more difficult for the player to decipher. What we
have done is to shift all the letters along the ASCII code by one.This
is done by looking at each of the letters of A$ in turn, finding the
ASCII code of it, adding one to the ASCII code and then printing the
appropriate character string using CHR$. Thus letter 'a' becomes
'b', 'b' becomes 'c' etc. The ASCII code for a space is 32, so that
adding one to it and finding the corresponding character, produces
'!'. There is no reason why you should be limited to shifting the
characters along the ASCII scale by just one. If you want to try
shifting them by 3, then you should change line 40 to

40 B$=B$+CHR$ASC((MID$(A$,X,l))+3)

Using this technique in practice requires a little care. The first thing
you will have to do is to change all the descriptions in the DATA
lines to their coded format. You will need to be exceptionally careful
of errors at this stage because it's extremely difficult to spot spelling
mistakes when the data has been coded. I would suggest that you
let the computer work out the coding for you, using the routine
printed above, rather than try to code it manually. You can then
change the data in your program by using the editing facilities of
your micro. This is a very laborious process and you may well think
that the effort is not worth while. Once you have coded all the data
lines containing the descriptions of the locations, you will need to
insert a few extra lines into your program to decode them. The
coding to do this is, in principle, exactly the opposite of the listing
we used to produce the coding and therefore you may like to try
working out how it works.

1101 H*=......I*=Q*(P7.)
1102 FOR X=1 TO LEN(It)
1103 H*=H*+CHR*(ASC(MID*(I*,X,1))-l)
1104 NEXT X
1105 Q*(P7.)=H*

If you have gone this far to make life more difficult for the cheat,
then you will probably want to use a similar technique to code the
descriptions of the objects, the words understood and the messa
ges. There is no reason why you shouldn't use a different code for
each section of data to make it even more difficult for the player to
crack. You can use the same coding and decoding lines as before,
although you will have to make changes to the names of the strings
being decoded.

If you intend to sell your program to other enthusiasts, or to a
software house, then coding your program in this way is well worth
the effort. Programs listed in magazines, on the other hand, are
often typed in by complete beginners and editors of all computer
magazines will be able to tell you of the many letters received

92 Making life difficult

complaining about programs which don't work. In practice, most
magazines print listings directly from working copies of programs
and therefore the vast majority of these errors are caused by typing
mistakes on the part of the readers. Most editors prefer programs
which are not going to cause too many problems for their readers!

If your program is well structured, it should be very easy to solve
the adventure by merely examing the listing and although a game
written using spaghetti programming would be much more difficult
to solve from the listing, you will find it far more satisfying to write a
structured program and code the data lines to prevent cheating.

Many commercial adventure programs are written in specially
created adventure languages. The most famous of these is called A-
CODE and was written by Mike Austin to help in the production of
the excellent series of adventures from Level Nine Computing. This
code combines all the advantages of machine code speed with data
compression techniques to produce adventures which are truly
amazing. In Snowball, for example, they have managed to cram
over 7000 locations, 700 different messages and 60 objects into only
32K of memory. This has been achieved by using a coding system
which replaces many common words such as 'the' with single
characters. The result of this is that text messages can be compress
ed into less than half of their original size, which means that the
games can be far more detailed. Such techniques are beyond the
scope of this book, but should provide avenues for exploration for
the more advanced programmer. Using data compression does also
have the advantage of making a game almost impossible to solve by
examining the listing.

A method of protecting your program which is a little easier to
implement is to add protection to the program when saving it to
tape. This can be done by typing SAVE"ADVENTURE",P. A
program protected in this way can be sold on tape through the usual
channels, but please don't try submitting such a program to a
magazine editor! It's important to remember to keep an unprotected
copy of your program as well, just in case you want to edit the
program at a later date.

Snow White: part 1 9

A graphic adventure is a very different type of program from a text
only adventure and must be planned in a totally different way.
Snow White is an adventure game for young children and contains a
full high resolution picture of each location visited. A number of
sound effects have also been incorporated within the game and
these too were decided upon before programming started rather
than added as an afterthought.

The starting point for this game, as with most adventures, is the
map. In a game designed for younger children, it is important to
keep the sentences used for descriptions fairly short and to make
the pictures as bright and colourful as possible. Despite the
advanced facilities available for the Amstrad CPC464 and 664 to help
with graphic design, the pictures used in this game do take up a vast
amount of user memory. In addition, the FILL command is not
available on the CPC464, although it is on its larger brother, the
CPC664. In order to make the game compatible with both, I have
not used the FILL command (well it was written on a CPC464 !). For
these reasons, I decided to include only 24 locations within the
game. In many graphic adventures, including The Hobbit, the
programmers have chosen to include graphics for only a few
locations, which allows them to pack more into the game. Even in
The Hobbit, however, there are only just over double the number of
locations found in this game. You must choose which path to follow
right from the start. My own feeling is that a game designed for
younger children should include as many pictures as possible,
whilst programs aimed at older enthusiasts should place greater
emphasis on text.

Once you have designed the map for your game and have put a
brief description of each location alongside the corresponding box,
you have a choice of directions to follow. You can either convert the
map into data lines, as we did with the last program, and develop
the graphics later, or you can go straight to the graphics. In most
cases it is easier to develop the pictures first because you will then
have a better idea of the amount of memory left for the rest of the
game. In practice, however, there is little difference between the
two approaches. 93

94 Snow White: part 1

Fig. 9.1 The map for Snow White.

In this game, all the pictures are drawn in MODE 0 and the text is
written in MODE 1. The reason for doing things this way is that it
allows more colours to be displayed at once, whilst still allowing the
text to be very legible. We must take care when changing from
MODE 0 back to MODE 1 to set the paper and pen colours back to
their default colours, otherwise we may well end up with yellow
text on a yellow background.

Snow White: part 1 95

In location 22, where there is some animation in the graphics, I
have used a large graphics character built up out of four user
defined characters. The definition of ghost$ is done right at the start
of the program and will be discussed later.

When I introduce the flowchart, you will notice that the program
is constantly changing between the two modes and, in order to
make life easier, I have directed the entry to the graphics section
through a subroutine which controls the graphics display.

Subroutine to control the graphics

2250 MODE O
2260 ON P7. GOSUB 2350,2440,2530,2590,2640,2680,273
0,2790,2840,2900,2960,3040,3120,3180,3260,3340,343
O,3490,3550,3630,3680,3720,3750,
3800
2270 MODE 1
2280 RETURN
2290 END

Line

2250 selects MODE 0 to allow more colours to be displayed.
2260 examines the value of P%, the current location and calls the

correct subroutine.
2270 return to MODE 1 for the text.
2280 return to the main program control loop.

Whenever this subroutine is called, the program examines the value
stored in P% and calls the subroutine for that particular location.
Thus if the player is in location 5, the value of P% will also be 5 and
the program will call the fifth subroutine in line 2260. In this way,
the graphics instructions held from line 2640 onwards will display
the picture for location 5. Each time you type in the graphics
instructions for a new location, you should check it to make sure
that it works properly. If, for example, you have just completed the
graphics for location 7, you should adopt the following procedure.

1 Type P%=7 and press <ENTER>
2 Type GOSUB 2250 and press <ENTER>

Line 2260 will then call the subroutine at line 2730 and the computer
should display the picture associated with location 7. Before you
reach this stage, however, it is very important that you type in the
short listing below. This is used to prevent the program returning
from display of the picture to the text section until the player has
pressed the space bar.

96 Snow White: part 1

Preventing return to MODE 1

2300 WINDOW «2,2,19,22,241 PAPER #2,51 PEN «2,4:CLS
«21 LOCATE #2,l,2iPRINT #2,"Pr#«« <8pac# Bar>“

2310WHILE F#<>" «»F»-INKEY»I WEND
2320 RETURN

Line

2300 defines a text window, sets its paper colour to black and
prints the message in it.

2310 waits for the space bar to be pressed.
2320 return to graphics control section.

Notice that I have used a WHILE WEND loop in line 2310 to replace
the more usual

2310 A$=INKEY$:IF A$< >" " THEN 2310

Now that you have typed the two sections of code needed to control
the graphics, you can press ahead with the graphics themselves. I
have split the pictures up into sections to make it easier to follow. If
you type in each subroutine separately and test it out, rather than
leaving debugging until the end, it should make it easier to find and
rectify any errors.

Rather than spend a long time here describing how the graphics
commands work, I will leave you to type them in and try them out
for yourself. If you would prefer to design your own graphics, then
you should refer to Chapter 18 where the subject is dealt with in
greater depth.

Location 1. Outside the small house

2330 REM ** graphics -for locations **
2340 REM ** location 1 **
2350 PAPER OiCLSlFOR Y-110 TO 202(M0VE 30,Y:DRAWR
300,0,11NEXT Y
2360 FOR Y-202 TO 240lM0VE 180,Y(DRAWR 200-(Y-100>
*0.4,0,3sMOVE 18O,Y1DRAWR (Y-1OO)*0.4-200,0,3

2370 NEXT YiFOR Y-230 TO 270(M0VE 240,YlDRAWR 10,0
,2iNEXT y
2380 FOR Y-112 TO 1301M0VE 290,YlDRAWR 30,0,31 MOVE
290,Y+501 DRAHR 30,0,3

2390 MOVE 120,YiDRAWR 30,0,31 MOVE 60,YlDRAWR 30,0,
3lNEXT
2400 XX-5OOI Y7.-300I C0LX-4I M-3l 80SUB 3890
2410 FOR Y-110 TO 120(M0VE 331,Y>DRAWR 289,0,121NE
XT
2420 60SUB 2300(RETURN

Location 1. Outside the small house 97

Location 2. On the wide road

2430 REM ** location 2 **
2440 PAPER 2l CLSiWINDOW «1,1,20,10,251 PAPER »1,12
iCLS «1
2450 FOR y-200 TO 3001 MOVE 300,yiDRAWR 200,0,3iNEX
T
2460 Z-01F0R Y-301 TO 330i MOVE 400,YiDRAWR 120-Z,
0,51 MOVE 400,Yi DRAWR Z-120,0,51Z-Z+41NEXT Y
2470 FOR Y-200 TO 2401 MOVE 400,YiDRAWR 20,0,llMOVE

450,YlDRAWR 20,0,11 MOVE 470,Y+100iDRAWR 15,0,7>NE
XT Y
2480 FOR Y-250 TO 265l MOVE 310,YlDRAWR 50,0,21 MOV
E 440,YlDRAWR 50,0,2iNEXT Y
2490 FOR Y-0 TO 1851M0VE 395+Y/10,YiDRAWR 101-Y/2,
131 NEXT
2500 XX-2001YX—300lCOLX—4lM—3lGOSUB 3890
2510 GOSUB 23001 PAPER OiRETURN

Location 3. In the small room

2520 REM ** location 3 **
2530 PAPER OiCLSlWINDOW «1,4,17,7,19lPAPER #1,13
2540 FOR Y-l TO 200lM0VE O,Y1DRAWR Y,Y/100,71M0VE
0,400-YlDRAWR Y.Y/1OO,7lNEXT Y
2550 FOR Y-l TO 200lM0VE 640,YlDRAWR -Y,Y/100,7iM0
VE 640,400-YIDRAWR -Y,Y/lOO,7lNEXT Y
2560 CL8 «11XX-3201YX-2OO1COLX-5iGOSUB 3890
2570 GOSUB 2300lPAPER OiRETURN

Location 4. In the misty mountains

2580 REM ** location 4 **
2590 PAPER IO1CLS1FOR Y-l TO 1201 MOVE O,yiDRAWR 64
0,0,5lNEXTlFOR Y-l TO 120lM0VE O,YlDRAWR 220+Y/3.0
,91 MOVE 640,YlDRAWR -220-Y/3,0,9
• NEXT
2600 FOR Y—121 TO 400I MOVE 50+Y/3,YlDRAWR 4OO-Y.O
,121NEXTlINK 13,9lF0R Y-121 TO 320lM0VE 300+Y/2,Yl
DRAWR 500-y,0,13iNEXT
2610 FOR Y-121 TO 370lM0VE O,YlDRAWR 400-Y.0,131NE
XT YlXX-550lYX-380lCOLX-1i808UB 3890
2620 BOSUB 23001 PAPER OlINK 13,22lRETURN

Location 5. Outside the cavern of light

2630 REM ** location 5 **
2640 PAPER 5lCLSlINK 13,91F0R A-l TO IBOlDEGlPLOT
320,200
2650 DRAW 320+190*008(A),200+190*8IN(A),4lNEXTlFOR

98 Snow White: part 1

Y-0 TO 210:M0VE O,Y:DRAWR 640,0,13:NEXT Y
2660 FOR Y-l TO 210:M0VE 190+Y/1.5,Y:DRAWR Y-200,0
,1: NEXT:GOSUB 2300:PAPER O: INK 13,22:RETURN

Location 6. In a narrow corridor

2670 REM ** location 6 **
2680 PAPER 9:CLS:WINDOW «1,9,11,12,14:PAPER «1,4:0
LS «1
2690 MOVE 0,0:DRAW 260,180,4:MOVE 640,0:DRAW 34S,1
80,4
2700 MOVE 0,400:DRAW 260,220,4:MOVE 640,400:DRAW 3
45,220,4
2710 GOSUB 2300:PAPER O:RETURN

Location 7. On the sea shore

2720 REM ** location 7 **
2730 PAPER 10:CLS:INK 13,19:F0R Y-l TO 12O1MOVE O,
Y:DRAWR 640,0,13:NEXT: FOR Y-121 TO 171:M0VE 100,Y
:DRAWR 200,0,0:MOVE 1OO,Y:DRAWR
-Y/2,0,0:MOVE 300,Y:DRAWR Y/2,0,0:NEXT Y
2740 FOR Y-0 TO 165:M0VE 550,Y:DRAWR 100,0,5:NEXT
Y:FOR Y-l TO 2:M0VE 550,165+Y:DRAWR -2OO,Y*2,7:NEX
T Y
2750 FOR Y-l TO 4:M0VE 200+Y,171:DRAWR 0,150,7:NEX
T Y:FOR Y-191 TO 291:M0VE 205,Y:DRAWR 291-Y,0,3:NE
XT: FOR Y-l92 TO 305: MOVE 199,Y
:DRAWR Y-305,0,3:NEXT Y
2760 XX—500:YX—350:COLX-1:GOSUB 3890
2770 GOSUB 2300:INK 13,22:PAPER O:RETURN

Location 8. In the yacht

2780 REM ** location 8 **
2790 PAPER O:CLS:FOR R-l TO 360:DEG:M0VE 320,200:D
RAWR 100*C0S(R),100*SIN(R>,4:NEXT
2800 FOR Y-l TO 150:M0VE O,Y:DRAWR 640,0,6:NEXT Y
2810 INK 13,9:WIND0W «1,10,11,12,12:PAPER«1,13:CLS
«1
2820 GOSUB 2300:PAPER O:INK 13,22:RETURN

Location 9. On a small island

2830 REM »» location 9 »*
2840 PAPER 2:CLS:FOR R-l TO 90:DEG:MOVE 320,200:PL
OT 320+190+C0S(R),200+190*SIN(R),5:DRAW 640,200+19
O*SIN(R),5:NEXT R
2850 FOR R-9O TO 180:DEG:MOVE 320,200:PLOT 320+190

Location 9. On a small island 99

*COS(R),200+190*3IN(R),5:DRAW 0,200+190*SIN(R),5sN
EXT R
2860 INK 13,9sF0R Y-l TO 2OOsMOVE O.YsDRAWR 640,0,
13sNEXTsF0R Y-3B0 TO 400sM0VE O.YsDRAWR 640,0,5sNE
XT
2870 FOR Y-l TO 200sMOVE 55O-Y,YsDRAWR -400+Y*2,0,
9 s NEXT
2880 GOSUB 2300sPAPER Os INK 13,22sRETURN

Location 10. On a mountain pass

2890 REM ** location 10 **
2900 PAPER SsCLSsINK 13,9s INK 11,22
2910 FOR Y-300 TO 400sMOVE O.YsDRAWR 640,0,2sNEXT
YsFOR Y-100 TO 360sM0VE 100+Y/3,YsDRAWR 35O-Y,O,13
sNEXT
2920 FOR Y—400 TO 90 STEP -IsMOVE O.YsDRAWR 420-Y,
0,12sNEXT Y
2930 FOR Y-390 TO 120 STEP -IsMOVE 28O+Y/2,YsDRAWR

-y+39O,0,13sNEXT YsFOR Y-380 TO 85 STEP -IsMOVE 6
40,YsDRAWR Y-400,0,12sNEXT Y
2940 GOSUB 2300sPAPER Os INK 13,22s INK 11,16sRETURN

Location 11. In a strange room

2950 REM ** location 11 **
2960 INK 13,3sPAPER 13sCLSsWINDOW #1,8,12,11,ISsPA
PER #l,3sCLS «1
2970 MOVE O.OsDRAW 260,180,3sM0VE 640,0sDRAW 345,1
80,3
2980 MOVE 0,400sDRAW 250,220,3sMOVE 64O,4OOsDRAW 3
50,220,3
2990 FOR Y-400 TO 240 STEP -IsMOVE 320,Y
3000 DRAWR (Y/3-80)*4.8+50,0,5
3010 MOVE 320,YsDRAWR -(Y/3-80)*4.2-90,0,5s NEXT Y
3020 GOSUB 2300SPARER Os RETURN

Location 12. In a field of corn

3030 REM ** location 12
3040 INK 13,9sPAPER 13sCLSsDEGsFOR R-180 TO 360 ST
EP 0.4sMOVE 320,400
3050 DRAWR 400*C0S(R),300*31N(R),2s NEXT R
3060 FOR Y—220 TO 400sM0VE O.YsDRAWR 640,0,2sNEXT
Y
3070 FOR Y-100 TO IBOsMOVE 250,YsDRAWR 120,0,llsNE
XTsFOR Y-100 TO 130sMOVE 300,YsDRAWR 20,0,5sNEXT
3080 FOR Y—180 TO 210sM0VE 310,YsDRAWR 270-Y,0,3sM

100 Snow White: part 1

OVE 310.Y1DRAWR Y—270,0,3»NEXT Y
3090 XX-5001 Y7.-350S COLX-1 s GOSUB 3890
3100 BOSUB 2300SPARER Os INK 13,221 RETURN

Location 13. Outside the church

3110 REM ** location 13 **
3120 INK 13,9»PAPER 13»CLS»F0R Y-150 TO 400» MOVE
0,Y:DRAWR 640,0,2sNEXT Y
3130 XX—450»YX—350»COLX—1iBOSUB 3890»FOR Y-150 TO
300IM0VE 70.Y1DRAWR 320,0,9»NEXT Y
3140 XX-135»YX-190s COLX-3»BOSUB 3890»FOR Y-150 TO
210»MOVE 135,Y»DRAWR 40,0,3»NEXT
3150 FOR Y-150 TO 350»M0VE 60.Y1DRAWR 40,0,8»NEXT
Y l XX-60 » Y7.-330» COLX-81 BOSUB 3890
3160 BOSUB 2300»PAPER Oi INK 13,22»RETURN

Location 14. In the interrogation room

X+140,1501 DRAWR 0,70,4»NEXT X

3170 REM ** location 14 **
3180 PAPER 5»CLS»XX—280»YX—300»colX—4»BOSUB 3890
3190

X
FOR X—297 TO 300»MOVE X,300»DRAW x,400,4»NEXT

3200
T Y

FOR Y—210 TO 214»M0VE 250,YsDRAWR 180,0,4»NEX

3210 FOR X—270 TO 274»MOVE X,150»DRAWR 0,70,4»MOVE

Y
3240 BOSUB 2300:PAPER O:RETURN

3220 FOR X—120 TO 124»MOVE X,150»DRAWR 0,100,4»M0V
E X+70,1501 DRAWR 0
3230 FOR Y-2OO TO

,50,4»NEXT X
204 s MOVE 120,Y:DRAWR 70,0,4»NEXT

Location 15. On a grassy hillside

3250
3260
DRAW

REM ** location 15 **
PAPER 2»CLS:INK 13,9»FOR Y-0 TO 15O»MOVE Y,Os
0,Y,12sNEXT Y

3270
T Y
3280

FOR Y-0 TO 150:M0VE 640-Y,Os DRAW 640,Y,12»NEX

DEBiFOR R-45 TO 140 STEP 0.4»MOVE 320,-350»DR

AWR 4OO*COS(R),500*SIN(R),131NEXT R
3290 XX—550»YX—350»colX-1»BOSUB 3890
3300 FOR X—280 TO 300»MOVE X,140:DRAWR 0,10,3»NEXT

X
3310 FOR X—276 TO 305»M0VE X,151:DRAWR O,1,O»NEXT
X
3320 BOSUB 2300»PAPER 0»INK 13,22»RETURN

Location 15. On a grassy hillside 101

Location 16. Outside the house

3330 REM «« location 16 »♦
3340 PAPER 21CLS1F0R Y-l TO lOOlMOVE O,YIDRAWR 640
,0,5iNEXT Y

T Y
3400 XX-550, YX-350«colX-4l BOSUB 3890
3410 BOSUB 23001 PAPER OlRETURN

3350 FOR Y—101 TO 251IMOVE 50,Y1DRAWR 200,0,9«NEXT
Y

3360 FOR Y—240 TO 352IM0VE Y—200,Y1DRAWR <352-Y>*2
,0,3lNEXT
3370 FOR Y—290 TO 320,MOVE 1OO,YtDRAWR 10,0,0«NEXT

Y
3380 FOR Y—120 TO 150l MOVE 95,YlDRAWR 40,0,10«MOV
E 95,Y+701DRAWR 4<>,0,10lNEXT Y
3390 FOR Y—102 TO 162,MOVE 180,Y,DRAWR 20,0,12iNEX

Location 17. At the end of the rainbow

3420 REM ** location 17 **
3430 PAPER 5lCLSlINK 13,9nF0R Y-l TO 15O1MOVE 0,Y
iDRAWR 640,0,13lNEXT Y
3440 DEBlFOR Y-0 TO 13iF0R R-O TO IBOlMOVE 320,131
3450 PLOT 320+(190+Y*3)*C0S(R),151+(190+Y*3)»SIN(R
>.Y
3460 NEXT R,Y
3470 BOSUB 2300iPAPER OlINK 13,22lRETURN

Location 18. Next to the strange wall

3480 REM ** location 18 **
3490 PAPER 2:CLSlINK 13,9lF0R Y-l TO ISOlMOVE O,Yl
DRAWR 640,0,13lNEXT YlFOR Y-151 TO 350lM0VE O,Y1DR
AWR 640,0,5>NEXT Y
3500 COLX-OlFOR XX-20 TO 600 STEP 40lF0R YX-1B0 TO

320 STEP 40lCOLX—COLX+1lIF COLX-5 THEN COLX-6
3510 IF C0LX>13 THEN COLX-O
3520 BOSUB 3890I NEXT YX,XX
3530 BOSUB 2300«PAPER OlINK 13,221RETURN

Location 19. Outside the yellow building

3540 REM •* location 19 **
3550 PAPER 2lCLSlF0R Y-l TO lOOlMOVE O,YIDRAWR 640
,0,5lNEXT Y
3560 FOR Y—101 TO 320iM0VE 1,Y«DRAWR 400,0,liNEXT
YlFOR Y—321 TO 400l MOVE l,YlDRAWR 740-Y,0,3lNEXT
Y
3570 FOR Y—101 TO I6O1MOVE 401,YlDRAW 640,Y,9lNEXT

YlFOR Y—161 TO 171IM0VE 401,YI DRAW 640,Y,5lNEXT Y

102 Snow White: part 1

3580 FOR Y-101 TO 150:M0VE 440,YsDRAW 590,Y,6:NEXT
YtFOR Y-101 TO ISOsMOVE 290,Y:DRAWR 30,0,6:NEXT Y

3590 FOR Y-l 20 TO 140sMOVE 40,Y:DRAWR 60,0,7sMOVE
140,Y:DRAWR 60,0,7s NEXT Y
3600 FOR Z-l TO 3sF0R Y-l 20 TO 140sM0VE 40,Y+Z*50s
DRAWR 60,0,7:M0VE 140,Y+Z*50:DRAWR 60,0,7sM0VE 240
,Y+Z*5OsDRAWR 60,0,7sNEXT Y,Z
3610 BOSUB 2300SPARER Os RETURN

Location 20. On a grassy plain

3620 REM ** location 20 *»
3630 PAPER OsCLSsINK 13,9sF0R Y-l TO 200sM0VE O,Ys
DRAWR 640,0,13sNEXT YsFOR Y-l TO 200sM0VE 250+Y/4,
YsDRAWR 200-y/2,0,9sNEXT Y
3640 FOR Y-201 TO 390sMOVE 10+Y,YsDRAWR 800-Y*2,0,
12s NEXT Y
3650 XX-50:YX-350:COLX-4:GOSUB 3890
3660 BOSUB 2300sPAPER Os INK 13,22sRETURN

Location 21. At the entrance to a gloomy cavern

3670 REM ** location 21 **
3680 PAPER 5s INK 13,9sCLBsF0R Y-l TO lOOsMOVE O,Ys
DRAWR 640,0,13sNEXT Y
3690 DEBsFOR R-0 TO 180 STEP 0.4sMDVE 320,100sDRAW
R 200*008(R),300*SIN(R),8s NEXT R
3700 BOSUB 2300sPAPER Os INK 13,22sRETURN

Location 22. In the ghost's cavern

3710 REM ** location 22 **
3720 PAPER SsCLSsFOR Y-l TO 20 sFOR X-l TO 20sL0CA
TE XjYsPRINT ghost*;sLOCATE X.YsPRINT sr»;sNEXT X,
Y
3730 LOCATE 10,5sPRINT ghost*:BOSUB 2300sPAPER OsR
ETURN

Location 23. In the cavern of pyramids

3740 REM ** location 23 **
3750 PAPER SsCLSsINK 13,9sF0R Y-l TO 70lM0VE O,YsD

RAWR 640,0,13:NEXT Y
3760 FOR Y-70 TO 320s MOVE Y.YsDRAW 640-Y,Y,4sNEXT

Y

3770 XX—40sYX—340:COLX—3:BOSUB 3890
3780 BOSUB 2300:PAPER Os INK 13,22:RETURN

Location 23. In the garden of Pyramids 103

Location 24. Outside a large office block

3790 REM ** location 24 *»
3800 PAPER 2lCl_S:F0R Y-l TO 100 s MOVE O,Y«DRAWR 640
,0,12«NEXT Y
3810 FOR Y—101 TO 320:M0VE 1,Y:DRAWR 400,0,4:NEXT
YsFOR Y-321 TO 400: MOVE 1,Y«DRAWR 740-Y,0,3:NEXT
Y
3820 FOR Y=101 TO 160:M0VE 401,Y:DRAW 640,Y,7:NEXT

YsFOR Y-161 TO 171sM0VE 401,Y:DRAW 640,Y,5«NEXT Y
3830 FOR Y-101 TO ISOsMOVE 440,YsDRAW 590,Y,5«NEXT

YsFOR Y-101 TO ISOsMOVE 290,YsDRAWR 30,0,7sNEXT Y
3840 FOR Y-l 20 TO 140s MOVE 40,YsDRAWR 60,0,8s MOVE
140,YsDRAWR 60,0,8s NEXT Y
3850 FOR Z=1 TO 3sFOR Y-l20 TO 140sMOVE 40,Y+Z*50s
DRAWR 60,0,8s MOVE 140,Y+Z*50sDRAWR 60,0,8s MOVE 240
,Y+Z*50sDRAWR 60,0,8sNEXT Y,Z
3860 GOSUB 2300s PAPER Os RETURN
3870 END

The only place where any animation is included in the graphics is
in location 22. This is in the cavern, where the evil ghost prevents
you from moving further into the cave system.

The picture of the ghost is held in the variable ghost$ and this is
erased from the screen by the variable er$. Both these variables are
defined at the start of the program and this will be discussed later.
Line 3720 is used to move the ghost across the screen and this line
may be simplified if movement is not required. Notice that the
moving graphics are displayed each time location 22 is entered, even
if the ghost has been killed. You may like to try displaying the
graphics for a dead ghost !

At the end of each subroutine, the player must press the space bar
before returning to the text part of the game. To achieve this, the
program calls the subroutine at line 2300. Before returning to the
text screen, the paper has to be set back to its default value by the
PAPER 0 command and the colours of any INKs which have been
changed must also be set back to their original setting.

In a few locations, large circles are drawn using the SIN and COS
functions, but in a number of locations, small circles are drawn. In
order to draw these very quickly, the coordinates are looked up
rather than calculated and I have written a short subroutine to do
this.

Drawing circles

3880 REM ** draw circle **
3890 RESTORE 3910:M0VE X7.,YX:F0R X-l TO 401READ D
3900 MOVE XX+(40-D)/2,X+YX:DRAWR D,0,C0L%«NEXT XsR
ETURN
3910 DATA 6,10,16,20,24,26,28,30,32,33,34,35,36,37
,38,38,39,39,39,40,41,40,39,39,39,38,37,36,35,34,3
3,32,30,28,26,24,20,16,10,6

104 Snow White: part 1

Line

3890 restore the data pointer, move to the X and Y coordinates
and read the data.

3900 draw the 40 lines for each circle and return.
3910 data for the circle.

Using a look up table to draw a circle makes it a little quicker than
forcing the computer to calculate the coordinates. Before this routine
is called, the value of X%, Y% and COL% must be set to the x and y
coordinates plus the number of the pen for the colour. The most
time consuming part of the whole process of creating a graphical
adventure is, without doubt, the graphic design stage. At this stage,
you are probably eager to try out the program and therefore I've left
detailed explanations of graphics techniques to Chapter 18, where
they can be given a much fuller treatment.

There are, however, a number of other approaches to graphics
which can be adopted when writing a graphics adventure. In this
program, I have stored the picture for each location within a
different subroutine. This is a method which has the advantage of
drawing the pictures very quickly, but suffers the major disadvanta
ge of using vast quantities of memory. Other programmers prefer to
store the data for their graphics within DATA lines and READ the
coordinates as they are drawn. This approach is often far more
efficient in memory usage, but it does take far longer to develop the
program and, in addition, it can also reduce the speed with which
the pictures are drawn.

A totally different approach can be adopted if you have a disc
drive. The pictures for each location can be created using one of the
excellent graphics packages, such as the one marketed by AMSOFT
and the screen picture can be stored as a file on the disc. Thus a
single disc can store the pictures for each location in the game and
whenever the player enters a new location, the picture can be
downloaded into memory. Using this method of graphics overlays
is very efficient in memory usage. No longer do we have to store the
information for the graphics within the program, leaving far more
space for puzzles and locations. Unfortunately, however, this
approach is totally unsuitable for a tape based game. With a disc
drive it is possible to search for, and load a file containing the
graphics within seconds, whilst the same process from tape would
take several minutes. You would be constantly using fast forward
and rewind on your recorder and would soon lose patience with the
game.

Snow White: port 2 10

Once upon a time there was a young princess whose skin was white
as snow, whose cheeks were as red as roses and whose hair was
black as ebony. She was called Snow White and she lived with her
stepmother who was beautiful and very vain. Each morning, she
would look into her magic mirror and ask, 'Mirror, mirror, on the
wall, who is the fairest of us all ?'. One day, instead of the usual
reply, the mirror replied 'Queen thou art fairest in this hall, but
Snow White is the fairest of us all'. The Queen was so angry that she
called a servant and ordered him to take Snow White to the forest
and kill her. The servant could not bring himself to do this dreadful
deed, and instead left Snow White to fend for herself in the forest.
After many hours, Snow White stumbled across a small cottage,
where she found seven dwarves. They took her in and looked after
her. Imagine the Queen's surprise when she asked the usual
question of her magic mirror and got the reply that Snow White was
still alive. She knew that her servant had deceived her and this
made her very angry. Next morning, she set off for the cottage in
the woods disguised as a poor beggar woman. When she arrived at
the cottage, she knocked on the door and gave Snow White a
poisoned apple.

That evening when the dwarves arrived home and found Snow
White on the floor, they took her and laid her in a crystal case in a
forest glade, where she lies to this very day. You are the handsome
prince who has set out on a perilous journey to revive the beautiful
princess. 105

106 Snow White: part 2

After that piece of scene setting, let's get on with the program
ming. Before incorporating the graphics section within the main
game, we must first type in the data lines containing the descrip
tions of the locations, the objects and the words understood. You
would be well advised to write the graphics section using very large
line numbers so as to leave plenty of space for the main program.
The program can always be renumbered at a later stage to make it
easier for others to type in.

Snow White: part 2 107

Initialising the program

10 REM ** Snow White **
20 SYMBOL AFTER 230
30 SYMBOL 231,1,1,3,63,115,227,227
40 SYMBOL 232,255,254,252,247,226,224,224,126
50 SYMBOL 233,31,128,128,192,252,206,199,199
60 SYMBOL 234,255,127,63,247,163,3,23,190
70 ghost«-CHR»(231)+CHRS(233)+CHR4(10)+CHR»(8)+CHR
»(8)+CHR»(232)+CHR*(234)
80 er4-CHRS(32)+CHR4(32)+CHRS(10)+CHR4(8)+CHR4(8)+
CHR4(32)+CHR»(32)
90 MODE ll CALL S<BC021 BORDER 22-.LOCATE 14,2»PRINT"S
now White"
100 LOCATE 2,10iPRINT"An Adventure for the Amstra
d Computer”
110 LOCATE 12,20iPRINT"by Steve W. Luc*«"
120 DIM 37.(24,4) ,Q»(24) ,B»(24) ,B7.(24) ,N»(24) ,N7.(24
),V4(4),A(24)
130 RESTORElFOR X-l TO 241READ Q»(X)tFOR Y-l TO 4i
READ S7.(X,Y) «NEXT Y,X
140 REM ** DATA FOR LOCATIONS **
150 DATA outside a «mall house. The door is open.A
footpath leads to the west.,0,0,0,2

160 DATA on a wide road. A narrow footpath leads e
ast to a small house.,4,12,1,0
170 DATA in a small room. There's not much f
urniture in here.,0,0,0,0
180 DATA in the misty mountains. There is a wide r
oad to the south and a narrow footpath leads east.
,0,2,5,0
190 DATA outside the cavern of light. The path 1
eads straight into the cave.,0,0,0,4
200 DATA in a narrow corridor. To the south lie t
he mountains and I can see light from the north.,
7,5,0,0
210 DATA on the sea shore. A small yacht is m
oored here. The cavern of light lies to the sout
h.,0,6,0,0
220 DATA in the cabin of the yacht. I can see a s
mall island in the distance.,0,0,0,0
230 A(R)-0
240 DATA on a small island. The yacht is moored h
ere. There is a large viaduct in front of me.,0,10
.0,0
250 DATA on a high mountain pass. The path is b-
locked by a fall of rubble.,9,0,0,0
260 DATA in a strange room inside the old church.T
he walls are painted red.,0,14,0,0
270 DATA in a field of ripening corn. There is a b
rightly coloured building in the distance.,2
,15,0,13
280 DATA outside the ruins of an old church. An o
pen doorway leads into the ruins.,0,0,12,0
290 DATA in an interrogation room. A small table s

108 Snow White: part 2

tanda undarnaath a bright light and a chair stand
a at ona aida.,11,0,0,0
300 DATA on a graaay hi 11aida. Thara ia a small b
nilding in tha diatanca.,12,17,16,0
310 DATA outaida a small houaa. Tha door is 1
□ckad at tha momant.,0,0,0,15
320 DATA at tha and of tha rainbow. A wida road 1
aads through tha rays of 1ight.,15,18,0,0
330 DATA naxt to a stranga wall. It is paintad w
ith brightly colourad circlas.,17,20,19,0
340 DATA outaida a larga yallow building. A largad
og stands by ths door.,0,0,24,18
350 DATA on a graaay plain. A groan pyramid a
tanda in tha diatanca.,18,0,0,21
360 DATA at tha ontranca to a larga gloomy cavarn,
0,22,20,0
370 DATA in a dark cavarn. An avil ghost provants
ma moving furthor into tha cavarn.,21,0,0,0
380 DATA in a largo cavarn. An anormous pyramid o
f solid lea stands at ths cantro.,0,0,0,22
390 DATA outaida an offica block. All ths doora a
ra closad.,0,0,0,19

Line

20
30-60
70
80
90

allows the characters after CHR$(230) to be redefined,
redefine characters to make up graphics.
define the graphics for the ghost.
define the graphics to erase the ghost.
select text mode, reset the colours to their default
values, print title.

100-110
120
130
140-390

titles.
dimension arrays.
read the data for the locations and map.
data for the locations and the map.

The first thing you'll notice about this listing is that I've used exactly
the same variable names as in the previous game. Just to remind
you what they are, I've summarised the major ones below.

S%(X,Y)
Q$(X)
G$(X)
B%(X)

holds the map.
holds the descriptions of the locations.
holds the descriptions of the objects.
holds the number of the location where the objects are
found.

N$(X)
N%(X)
V$(X)
A(X)
P%(X)
S%

holds the names of the words recognised.
holds the pointer to the words recognised.
holds the descriptions of the objects being carried,
flag to test if the object is being carried.
holds the number of the current location.
holds the score.

Initialising the program 109

As in previous games, each line of data in this section contains a
description of a location followed by four numbers, corresponding
to the number of the location reached by going north, south, east or
west. You'll also need to ensure that no words are split on the
screen in the descriptions of the locations. For this reason, some of
the lines have extra spaces inserted between words, or even no
spaces at all!

Locations in Snow White

1 Outside a small house. The door is open, A footpath leads to the
west.
2 On a wide road. A narrow footpath leads east into a small house.
3 In a small room with very little furniture.
4 In the misty mountains. A wide road leads south and a narrow
footpath leads east.
5 Outside the cavern of light. A path leads into the cave.
6 In a narrow corridor. A light can be seen to the north.
7 On the sea shore. A yacht is moored here.
8 In the cabin of the yacht. Through the window you can see a
small island.
9 On a small island. The yacht is moored here and a viaduct can be
seen.
10 On a high mountain path. Rubble blocks your way.
11 In a strange room inside the old church.
12 In a field of ripening corn. A brightly coloured building is to be
seen.
13 Outside the ruins of the church.
14 In the interrogation room. A table and chair stand underneath a
bright light.
15 On a grassy hillside. A small building can be seen in the
distance.
16 Outside a small house. The door is locked.
17 At the end of the rainbow. A wide road leads straight through
the centre.
18 Next to a strange wall covered in coloured circles.
19 Outside the yellow building. A large dog stands guard.
20 On a grassy plain. A green pyramid stands in the centre.
21 At the end of a large gloomy cavern.
22 In the dark cavern. The ghost blocks your way.
23 In the cavern. An enormous pyramid of ice stands in the centre.
24 Outside the large office block.

400 FOR X-l TO 24sREAD G4 (X) , BX (X) , N4 (X) : NX (X)-X X
NEXT X
410 DATA * sail,5,sail,a ropa,6,ropa,a ruddar,7,ru
ddsr
420 DATA a bowl of soup,3,soup,a wild cat,4,cat

110 Snow White: part 2

430 DATA a gol dan caakat ,23,caakat,,23, “ " ,a gold
an harp,10,harp
440 DATA a acrawdrivar,9,acrawdrivar,a giant lizar
d,8,lizard,a brasa knockar,16,knockar,"",16,""
450 DATA a larga rad button,24,button,an old lady,
19,lady,a pot of gold,17,gold
460 DATA an anormoua man with a gun in hi a hand,14
,man,"",14,""
470 DATA a pila of atraw,2,atraw,a woodan plank,1,
plank,a larga pot hola,15,pot hola
480 DATA a ballpoint pan,20,ballpoint,a placa of p
apar,11,paper,a python,12,python,a magpia,21,magpi

In the next section of the program, the DATA for the 24 objects
found within the game is READ into the arrays. Three of these
objects are, as in the previous game, invisible at first and only
become visible after solving some problems. These are listed in the
table below.

Object number Location found in Changes to

7 23 Snow White
12 16 A silver sword
17 14 A key

Line

400 reads the data into the arrays.
410-470 DATA for the objects, their location and word recog

nised.

Objects found in Snow White

Invisible
Number Object at start? Location

1 A sail No 5
2 A rope No 6
3 A rudder No 7
4 A bowl of soup No 3

Locations in Snow White 111

5 A wild cat No 4
6 A golden casket No 23
7 Snow White Yes 23
8 A harp No 10
9 A screwdriver No 9
10 A lizard No 8
11 A door knocker No 16
12 A silver sword Yes 16
13 A button No 24
14 An old lady No 19
15 A pot of gold No 17
16 A man with a gun No 14
17 A key Yes 14
18 Straw No 2
19 A wooden plank No 1
20 A pot hole No 15
21 A pen No 20
22 Paper No 11
23 A python No 12
24 A magpie No 21

The main control loop

In a graphic adventure, it is even more important that the main
control section is well structured and, once again, the best way of
doing this is to use a flowchart (Fig 10.1)

The major difference between this flowchart and the one used in
the previous game is that the value of the flag K is checked at the
start. This flag is changed every time you move into a new location.
If its value remains zero, the program is sent to the subroutine
which controls the graphics and the appropriate picture is displayed
on the screen.

Before examining the workings of this control section, we must
look more carefully at how the graphics are introduced. The
variable K is used as a flag to determine whether the graphics of the
current location (P%) are to be drawn or not, and its value is
checked right at the start of the loop. If K is equal to zero, then
control is passed to the graphics routine and the picture correspond
ing to the current location is drawn (line 530 calls the graphics
routine at line 2250). The next line makes sure that the computer is
in the 40 column mode for text and sets the value of the flag to zero
to make sure that it is always the same after drawing the graphics.

Immediately after the player types in his instructions, the value of
K is changed to 1 (line 770). Its value is then changed back to zero if
the player moves to a new location (lines 780-830), moves in or out
of a building, or types 'look' (line 860). Thus when the score is

112 Snow White: part 2

The main control loop 113

checked at line 1070 and the program is sent back to the beginning of
the loop, graphics will only be drawn if the player has moved
location or has asked to see the picture by typing 'look'.

490 REM ** set th« variables **
500 PX-3iSX-0
510 REM ** main control loop **
520 WHILE «X<10
530 IF K-0 THEN G08UB 2250
540 MODE liK—OlPRINT J4
550 IF PX-4 THEN SH-SH+liIF SH>3 THEN PRINT"The ca
t look* agi tatad I"
560 IF PX-4 AND 8H>5 THEN E4-"The cat attack« me!"
iGOSUB 1230
570 PRINT«PEN liPRINT"I am :-":PEN 2iPRINT 04(PX)
580 REM ** describe direction« »*
590 A4-......IF SX(PX,l)>0 THEN A4-"North"
600 IF SX(PX,2)>0 AND LEN(A4)>0 THEN A4-A4+",South
" ELSE IF SX(PX,2)>0 THEN A4-"South"
610 IF 8X(PX,3)>0 AND LEN(A4)>0 THEN A4-A4+",Ea«t"

ELSE IF SX(PX,3>>0 THEN A4-"East”
620 IF SX(PX,4)>0 AND LEN(A*)>0 THEN A4-A4+",West”

ELSE IF SX(PX,4)>0 THEN A4-"West"
630 IF PX-3 THEN A4-"Out" ELSE IF PX-11 THEN A4-A4
+",0ut"
640 IF PX—13 OR PX-5 OR PX-16 OR PX-1 OR PX-19 OR
PX—24 THEN A4—A4+",In"
650 IF A4-"" THEN A4-"nowhere obvious!"
660 PEN liPRINT«PRINT"I can go i-"iPEN 2:PRINT A4i
PRINT
670 REM •» describe object* **
6S0 E-OiFOR T—1 TO 24
690 P-OlIF BX(T>-PX THEN P-1
700 IF P-1 THEN 720
710 NEXT TiGOTO 740
720 IF E-0 THEN PEN liPRINT"I can see :-":PEN 2
730 PRINT 04<T)1E—11 GOTO 710
740 PRINT:PEN 1:INPUT"What «hall I do now "jZ4
750 REM ** analyse input *»
760 Z4-L0WER4(Z4>1B4-LEFT4(Z4,2)!C4-LEFT4(Z4,3):D4
—LEFT4(Z4,4)lJ4—""
770 PRINT CHR4(7>1CLS:K-1
7B0 IF <B4-"n" OR D4-"go n") AND SX(P7.,l)>0 THEN P
X-SX<PX,1):K—0 ELSE IF (B4-"n" OR D4-"go n"> THEN
J4—“I can't go that way!"
790 IF pX-15 AND <B4-"«" OR D4-"go «"> AND SC-0 TH
EN E4-"I fall down the hole and die!":G08UB 1230
800 IF (B4-"«" OR D4—"go «"> AND SX(PX,2>>0 THEN P
X-SX(PX,2>:K-O ELSE IF <B4-"«" OR D4-“go »“) THEN
J4—"I can't go that way!"
810 IF (B4-“e" OR D4-»go e") AND 8X(PX,3)>0 THEN P
X-SX(PX,3)iK-0 ELSE IF <B4-“e" OR D4-"go e") THEN
J4-" I can't go that way!"
820 IF PX-19 AND SE-0 AND (B4-”w" OR D4-”go w"> TH

114 Snow White: part 2

B 1290

EN □♦■"Th» old lady won't l»t m» pa«« !"iBOTO 330
830 IF <B4“"w" OR Dt-"go w"> AND 8%(P%,4)>0 THEN P
X-SX(P7.,4) iK-0 ELSE IF <B»-"w" OR DS-"go w") THEN
□♦-"I can't go that way!"
840 IF C»-,,out" OR D»-"go o" THEN 808UB 3930
850 IF Ct-“in" OR D»-"go 1" THEN BOSUB 1140
860 IF C»-"loo" OR Ct-"»xa" THEN K-0
870 IF C*-"»wi" THEN BOSUB 1200
880 IF C»-"g»t" OR C4-"tak" OR C4-"gra" THEN BOSU

890 IF C*-"inv" THEN BOSUB 1500
900 IF C»-"dro" OR C>-"l»a" THEN BOSUB 1560
910 IF C»-"unl" THEN BOSUB 1650
920 IF C4“"pla" THEN BOSUB 1710
930 IF C»-"pra" THEN BOSUB 1770
940 IF C4-"kno" THEN BOSUB 1820
950 IF Ct-"pr»" OR C>-“rin" THEN BOSUB 1920
960 IF C4-"r»a" THEN BOSUB 1970
970 IF C»-"giv" THEN BOSUB 2000
980 IF

2080
C»-"«ta" OR C»-"kll" DR CS-"u«»" THEN BOSUB

990 IF Ct-"dri" THEN BOSUB 2130

1060 REM ** if «cor« 1« less than 10, Jump back ag
ain »*
1070 WEND

1000 IF C»”"«co" THEN □♦-“Thia is no gam» you know
1 1 1 1 II

1010 IF
clue!"

C»-"h»l" THEN □♦■"I'm «orry I don't have a

1020 IF C»-"«»a" THEN □♦-"I didn't find anything!"
1030 IF
UB 2160

C»-"row" OR C»-"«ai" OR D»-"go b" THEN BOS

1040 IF
UB 2210

C»-"lan" OR □♦-"di«" OR D»-"go 1" THEN BOS

1050 IF Ct-"ki«" THEN BOSUB 3970

In the previous game, the mode was not changed during play and
we were able to print any message directly onto the screen. In this
game, however, the mode is changed between MODE 0 and MODE
1, which would effectively clear away any message printed on the
screen. The easiest way to solve this problem proved to be by using
the variable J$ to hold any messages. To illustrate this, consider
what happens if the player types in 'help' when asked 'What shall I
do now?' in line 740. The program will compare this response with
the contents of C$ in lines 780-1050 and will find a match in line
1010. It then sets the contents of the variable J$ to hold the message
'I'm sorry I don't have a clue!', so that this can be printed
immediately after the screen has been cleared by the MODE 1
command in line 540.

The main control loop 115

Line

500

520-1070

530

540

550

560

570
580-620

630

640

650
660
670-710

720

730

740
760

770

780
790

800
810
820

830
840
850

sets the starting position to location 3 and the score to
zero.
main WHILE-WEND loop to repeat the loop until the
score reaches 10.
if the value of the flag K is zero, call the graphics
control section.
change to the 40 column mode, set the flag K and print
any message held in J$.
test to see if the player is in location 4 and increase the
value of the flag SH. If the flag is greater than 3, print
the message.
test the location again to see if the player is in location
4 and if the flag is greater than 5 lose the game.
print the description of the current location (P%).
test to see if movement north, south, east or west is
possible and store the information in A$.
check to see if the player can go out, and store
information in A$.
check to see if it is possible to go in, and store this in
A$.
if A$ is still empty, store the message in A$.
print the description of the directions possible.
examine all 24 objects to see if they are in the current
location (P%).
if it is the first object in the location, print the message
'I can see
print the description of objects that can be seen and
jump back to line 710.
input the player's instructions into Z$.
convert the instructions into lower case and store the
first few letters in B$, C$ and D$.
short sound to make sure that the player knows that
he has pressed <ENTER>, clear screen and set K = 1 to
suppress any graphics.
deal with movement north.
if the player tries to move south from location 15
without having dropped the plank first, he loses the
game.
deals with movement south.
deals with movement east.
if the player tries to move west from location 19
without first giving the lady the pot of gold, she won't
let him.
deals with movement west.
deals with movement out of a location.
deals with movement into a location.

116 Snow White: part 2

860 if the player wants to 'look' or 'examine', the flag is set
to zero to allow graphics to be drawn.

870
880

deals with swimming.
calls the subroutine to get an object if the player types
'get', 'take' or 'grab'.

890 calls the 'inventory' subroutine to see which items are
being carried.

900
910
920
930
940
950
960
970
980
990
1000
1010
1020
1030

call the subroutine to 'drop' an item being carried.
call subroutine to deal with unlocking something.
call subroutine to play the harp.
pray ?
knock ?
press or ring the bell ?
read ?
give the pot of gold to the old lady ?
stab, kill or use a weapon ?
drink ?
want the score ?
want help ?
search ?
row, sail, or go boat ? This will take you onto the yacht
if you are in the correct place.

1040 land, disembark or go land ? This will allow you to get
off the boat.

1050
1070

kiss ?
test the score and finish the loop.

In the previous game, all the puzzles were written inside subrouti
nes; in order to show you that this is not the only way to set
problems in an adventure, I have included three puzzles within the
main control loop of this game. Every move spent by the player in
location 4, increases the value of the flag SH by one (line 550). The
fifth object in this game, the wild cat, is to be found in location 4.
After three moves spent in this location, the value of SH reaches 3
and the computer prints the message that 'the cat looks agitated'
(line 550). When the player has spent five moves in this location, the
cat decides to attack and the message is stored in the variable E$
before the lose game subroutine is called in line 560. This is identical
to the way in which the death routine worked in the previous game.

The second puzzle is set in line 790, which tests to see if the player
tries to move south from location 15 without putting the plank
across the pothole first. When this plank is dropped in the correct
place, the flag SC is set to one, which allows movement south to
occur. In order to solve this puzzle, the player would have to have
read the description of the location very carefully.

The final puzzle in the main control loop is set in line 820, where
the player is unable to move west from location 19 unless the value
of the flag SE has been set to one. If the player has not solved the
problem of what the old lady wants, he could well be stuck there

The main control loop 117

forever! You might like to add an extra line to allow them to 'quit' !
This should be a very easy modification to make.

WIN GAME

The WHILE WEND loop tests the value of the score (S%) and unless
the value of the score is 10, the loop is repeated when the WEND
statement is reached in line 1070. Few other computers have WHILE
WEND loops available and in listings for most other computers, you
would find line 1070 replaced with

1070 IF S%<10 THEN GOTO 530

and line 520 would be deleted. It is better, however, to use the
structures available to you and if this results in the listing being
easier to solve, you may like to make life more difficult for the cheat
by shifting the DATA along the ASCII scale.

1080 REM ** win game **
1090 CLSl LOCATE 12,2»PRINT"W «11 Don«!"
1100 PEN 2»PRINT"You hav« found Snow Whit« and aft
•r a ki»« from you *h« awak«* and you both liv
e happily «v«r aft«r,"
1110 REM *» add music h«r« if r«quir»d !"
1120 END

Line

1090 clear the screen and print the message.
1100 change the colour and print the message about what

happens to Snow White.
1110 this REM statement can be replaced by some sound effects

to suit your own requirements.
1120 end the game.

I have not included a sound effect for this routine, so that you can
experiment to suit your own requirements.

In this adventure, the player does not really get a true score. The
player either wins or loses the game and a message to this effect is
printed if he asks for the score. For this reason, the variable S% is
used as a flag rather than a measure of the true score.

11 Snow White: part 3

Many of the subroutines used in this game are very similar to those
already used, with only minor changes to deal with the different
circumstances. It is worth while comparing these routines with their
equivalent in The Wizard's Quest to gain some insight into how to
adapt them to your own purposes. A few of the subroutines,
however, have had to be written specifically for this game because
of its totally different plot. One major difference between routines in
this program and those already introduced is that any messages
which are to be printed on the screen must be stored in the variable
J$, for reasons already discussed.

GO IN

1130 REM ** go in **
1140 IF P7.-1 THEN J»-“O. K. " s P7.-3: K-01 RETURN
1150 IF P7.-5 THEN KI P7.-61 K-01 RETURN
1160 IF P7.-13 THEN J*-"O. K. " s P7.-11 s K-Os RETURN
1170 IF P7.-16 OR P7.-19 OR P7.-24 THEN J»-"Th« door
* lockad!":RETURN
1180 □♦■■"Don't ba absurd!“:RETURN

This subroutine is very similar to the subroutine in The Wizard's
Quest. There are just three locations where you can actually move to
a different place by typing the command 'go in', although you may
well be tempted to try going into a further three locations without
success. These are summarised in the chart below.

Location
Go in
possible? New location

1 Outside house Yes 3 Inside room
5 Outside cavern Yes 6 In corridor

118 13 Outside old church Yes 11 In church

Go in 119

16 Outside house No
19 Outside building No
24 Outside offices No

Line

1140 if in location 1, set message, move to location 3, set the flag
to zero to allow graphics to be drawn and return to the
main control loop.

1150 if in location 5, set message, move to location 6, set the flag
and return.

1160 if in location 13, set message, move to location 11, set the
flag and return.

1170 if in location 16, 19 or 24, set the message to tell the player
that the door is locked and return.

1180 set the message that the action is impossible and return.

In lines 1140-1160, you will notice that the variable J$, which holds
any messages, is set to hold the message 'O.K.' and the variable K is
set to zero before returning control to the main loop. Setting the
value of K to zero has the effect of forcing the computer to display
the graphics for the new location. If the player is not in any of the
locations tested for in line 1170, the program will reach line 1180 and
a message will be printed to indicate to the player that he is being
stupid.

SWIM

1190 REM ** swim **
1200 IF PX-7 DR PX-8 THEN E«-"I drown!“•0DSUB 1230
1210 ¿«-"Don't bm silly!"iRETURN

In this program, there are two locations (7 and 8) where the player
may be tempted to go for a swim. When writing the program, I
decided not to use the swim routine as part of the solution to the
game and therefore anyone foolish enough to try swimming in
either location will drown. Thus the variable E$ is set to hold the
message 'I drown' and control is passed to the 'death' routine if the
player attempts to swim in either of these places. All the other
locations are on dry land and therefore when line 1210 is reached, J$
is set to hold the message 'Don't be silly!' before returning to the
main loop.

Line

1200 if in location 7 or location 8, the message about drowning is
stored in E$ and the lose game subroutine is called.

120 Snow White: part 3

1210 the message 'Don't be silly' is stored in J$ and control is
returned to the main loop.

Death routine

1220 REM ** death routine **
1230 CLSI LOCATE 1,21PRINT E»
1240 PEN 311 LOCATE 1,10:PRINT"I am DEAD !"
1250 PEN 21 LOCATE 2,20iPRINT"Pre«e the <8PACE BAR>
to play again."

1260 A»-"": WHILE A»<>" “: A»—INKEY»iWEND
1270 RUN

Line

1230 clears the screen and prints the contents of E$, which
should hold a description of the cause of death.

1240 change the colour of the text and print the message.
1250 change the colour, move the cursor and print the message

to press the space bar for another game.
1260 wait for the space bar to be pressed.
1270 RUN the game again.

This routine is called whenever the player falls into a trap and loses
the game. Before it is called, a description of the reason for losing
must be stored in the variable E$. Note that in this game, death is
the only method of losing!

GET
1280 REM ** get objects **
1290 BOSUB 1440iIF LX<1 THEN RETURN
1300 EX-01F0R X-l TO 24l IF BX(X)-P7. AND NX(R)-X TH
EN EX-1
1310 NEXT«IF EX-0 THEN RETURN
1320 IF R-5 OR R-10 DR R-23 THEN E»-"It bites me..
.AAggghhhh!”:G0SUB 1230
1330 IF R-16 THEN E»-"The man shoots me as I appro
ach!":BOSUB 1230
1340 IF R—11 OR R—13 OR R-14 THEN ¿»-“Don't be abs
urd!"lRETURN
1350 IF R—24 THEN ¿»-"The magpie keeps pecking me!
II
1360 IF R—6 THEN ¿»-“It's too heavy!“iRETURN
1370 IF R—7 THEN ¿»-"I can't lift her!"«RETURN
1380 A(R>—1
1390 EX-01 FOR X-l TO 4
1400 IF V»(X)-"" THEN V»(X)—B*(NX(R)):EX—1:X—5
1410 NEXT:IF EX-0 THEN ¿«-"I can't carry any more!
"1 RETURN
1420 BX(NX(R))-0:RETURN

Get 121

This subroutine allows the player to pick up objects and the basic
framework is exactly the same as in the previous game.

Line

1290 call the subroutine to split the input sentence into two
parts and return the number of the object in the
variable R.

1300-1310 search through the current positions of all 24 objects
to see if the object requested is in the current location
and return to the main control loop if it isn't.

1320 call the death subroutine if the player tries to pick up
object numbers 5, 10 or 23.

1330 if the player tries to pick up the man, object 16, he
shoots the player.

1340 prevents the player from picking up objects
numbered 11, 13 or 14.

1350 if the player tries to pick up the magpie, a message is
printed on the screen to give him a clue!

1360 prevents the player from getting object number 6.
1370 prevents the player from getting object number 7.
1380 set the value of the pointer A(R) to one for the item

being carried.
1390-1400 include the object's description in the array V$(X)

which is used as the 'inventory'
1410 hands full ?
1420 change the pointer for the object's location to zero

which makes it seem to disappear.

Apart from the changed line numbers, the only differences between
this routine and its equivalent in The Wizard's Quest occur in lines
1320-1370. These are all checks for items which can't be carried.

Any attempt to pick up the wild cat (5), the lizard (10) or the
python (23) results in death in line 1320, whilst anyone silly enough
to try carrying the man with the gun will get shot in the following
line. In a similar way, the player is prevented from carrying the door
knocker, the button and the old lady, although he won't die in the
attempt. Line 1350 was inserted as a clue! When trying to get the
magpie, a message is printed on the screen to say that it keeps
pecking you. If you examine the inventory, once you have typed the
routine in, you will see that it is possible to carry the bird. When the
magpie is dropped at the feet of the man with the gun, it will peck
him and force him to run away. Lines 1360 and 1370 prevent the
player from carrying the casket or Snow White.

The rest of this routine is identical to the previous one and can be
considered as a 'standard routine' for use in all adventures.

122 Snow White: part 3

Split input sentence

1430 REM ** check items and split sentence **
1440 L»-......XX-INSTR (Z», ” "):R-0
14S0 L7.-0:L»-RIBHT»<Z», (LEN(Z»)-XX))
1460 IF LEN(L»)<2 THEN RETURN
1470 FOR X-l TO 24s IF LEFT*(N*(X), LEN(L»>)-L» THEN
LX-lsR-X

14B0 NEXTsRETURN

Apart from the line numbers used and the number of objects catered
for, this routine is exactly the same as that used in the previous
game. The number of objects has been changed in line 1470 to 24.

Just to remind you of its purpose it takes the input sentence (Z$)
and splits it into two words. The second word is held in the variable
L$ and this is then compared with the description of all 24 objects to
see if the second word refers to one of them. If a match is found,
then the variable R is set to hold the number of the object, otherwise
it will remain zero.

INVENTORY

1490 REM ** inventory **
1500 E-OsPEN liPRINT"I am carrying i-"iF0R X-l TO
4lIF V«(X><>"" THEN PEN 2lPRINT V*(X)lPEN 11E-1

1510 NEXTsIF E-0 THEN PEN 2»PRINT“Not a aauaaga!"i
PEN 1
1520 LOCATE 3,20sPRINT"Praaa the <SPACE BAR> to co
ntinua."
1530 A»-......WHILE A»<>" "sA»-INKEY»sWEND
1540 RETURN

The major difference between this routine and the one used in The
Wizard's Quest is that an extra two lines are added (lines 1520-1530)
which require the player to press the space bar before returning
control to the main program. The reason for adding these two lines
is that when control returns to the main program, there is a mode
change which will clear any messages off the screen. Thus it was
necessary to prevent return to the main loop until the player has had
chance to read the descriptions of the objects carried.

DROP
1550 REM ** drop **
1560 BOSUB 14401 IF L7.C1 THEN J»-"I dont't have a "
+L»sRETURN
1570 E7.-0: FOR X=1 TO 4
15B0 IF V*(X)-B»(N7.(R)) THEN V» (X) -" ":E7.-1
1590 NEXTs IF E7.-0 THEN J»-"I'm not carrying a "+L*
:RETURN

Drop 123

1600 BX(NX(R)>—PX
1610 A (R) “Os IF R—24 AND PX-14 THEN BX (24) -0:87. (16)
-OsJ»“"Th» magpl■ pack* tha man much that harun
a away laaving aomathing on tha ground!":N$<1
7)-"kay"I0*(17)-"a larga braaa kay"
1620 IF R-19 AND PX-15 THEN SC-1s□*(15)-Q»(15)+“ T
hara'a a plank acroaa tha holo!"sBX(19)-0
1630 RETURN

This routine is called from the main control loop whenever a player
tries to 'drop' or 'leave' an object being carried.

Line

1560 calls the subroutine which splits the sentence typed
in by the player into two separate words and returns
the number of the object referred to.

1570-1580 search through all four elements of the array V$(X) to
see if the object is being carried and remove it if it is.

1590 check to see if it is not being carried.
1600 set the pointer for the object to the current location.
1610 set the contents of the array A(R) to zero so that the

computer knows that it is not being carried; check if
object 24 is dropped in location 14 and solve the
puzzle if it is.

1620 check if object 19 is dropped in location 15 and solve
the puzzle.

1630 return to the main program control loop.

There are two puzzles in this game which are solved by dropping
objects in the right place. In line 1610, a check is made to see if object
number 24, the magpie, is dropped in location 24. A clue was given
to the player when he tried to get the magpie that it liked pecking
things! When the bird is dropped, the pointer B%(X) for objects 24
(the magpie) and 16 (the man) are set to zero so that they disappear
from the description of objects seen in location 14. At the same time,
the description for object 17 (G$(17)= the large brass key) and the
word it is recognised by (N$(17)) are changed to make it appear as if
the key is left behind when the man runs away. In addition, the
message about the man is stored in the variable J$.

In line 1620, a check is made to see if the plank, object 19, is
dropped in location 15. If it is, it will cover the pothole so that the
player can move further into the game without dying. This is
achieved by setting the flag SC =1 and then making the plank
disappear iron the normal objects by changing the pointer for its
position to zero (B% (19)=0). The description for location 19 is then
changed so that it incorporates the message that the plank lies
across the hole.

124 Snow White: part 3

UNLOCK

1640 REM ** unlock **
1650 IF A(17)“0 THEN J»-"What with ?"«RETURN
1660 IF P7.-16 OR P7.-19 OR P7.-24 THEN J#-"Th» k»y d
own't -f i t!" s RETURN
1670 IF P7.O23 THEN PRINT”How can I do that here?
What a stupid i d»a ! •• s RETURN
1680 J*«"Tha key -fits and the casket opens!“
1690 B*(7)-"Snow White" i N» (7)-"snow whit»" «87.-9« RE
TURN

In this game there is only one object which can be unlocked; the
casket holding Snow White. Once the key has been found,
however, the player may well try to unlock the doors found in
locations 16,19 or 24. As you well know, but the player doesn't,
there is no way into these buildings and therefore the program must
tell the player that the key doesn't fit!

Line

1650 check to see if the key is being carried. If A(17) = 0 then it
isn't and a message is stored in J$ to be printed after
returning to the main loop.

1660 check to see if the player is in location 16,19 or 24 and if he
is set the message into J$ and return to the main loop.

1670 check that the player is in location 23. If not, set J$ to hold
the message and return to the main loop.

1680 set the message held in J$ to tell the player that the casket
opens.

1690 set the description of object 7 (Snow White) and the word
recognised (N$(7)), set the score to 9 and return to the main
control loop.

Although the player is told 'This isn't a game you know!' when he
types 'score' during play (line 1000), the computer does keep track
of the score and should the player unlock the casket, the score is set
to 9/10. You may prefer the program actually to give this score to the
player; try changing line 1000 to

1000 IF C$="sco" THEN PRINT "You have scored ";S%;" out of
10."

PLAY
1700 REM ** play **
1710 IF ACS)—O THEN J»—"I can't do that just y»t! "
:RETURN
1720 RESTORE 1730«PRINT"O.K."«FOR X-l TO 34«READ D
«SOUND 7,D,20,7iNEXTiJ«-"Wa»n't that good ..Eh 7"
1730 DATA 478,478,426,478,379,479,478,426,379,358,

Play 125

319,478.470,426,379,350,319,478,470,426,478,319,47
8,284,478,253,478,253,284,319,358,379,426,478,506,
568
1740 IF P7.-19 THEN J»-"The old lady thank* m* for
playing for har and «ay* ' To gat rid of the gho*
t, you must pray in the old church"sSA-1
1750 RETURN

Part of the solution to this game is to be found by playing the golden
harp for the old lady, who will then tell you the secret of getting rid
of the ghost so that you can enter the caves. In this game I have tried
to show you how to add sound effects to the game which are an
integral part of the game. It is pointless adding sounds to your
program unless they form a useful purpose. Here the player has to
play a tune on the harp before the old lady will give some assistance.
I have used a fairly simple tune held as DATA in line 1730. You may
like to try elaborating on the sound to make it sound more like a
harp. Once the player has played the harp in location 19, the flag SA
is set to 1. The value of this flag is tested at a later point in the game
to make sure that you have solved the problem.

Line

1710 check to make sure that the harp is being carried. If A(8) is
zero, then the variable J$ is set to hold the message T can't
do that yet!'

1720 restore the data to line 1730, print the message 'O.K.', play
the tune, and set the message in J$.

1730 holds the data for the tune.
1740 test to see if the player is in location 19 and change the

message if he is. The value of the flag SA is also changed if
in the correct location.

1750 return to the main program control loop.

Before moving on to the next chapter, don't forget to check out the
routines you have just typed in. Use the technique adopted in the
last game; when you are convinced that all is well, you should save
an updated copy of the game just in case !

Snow White: port 4

PRAY

1760 REM ** pray **
1770 J»-"O.K. ■'IFOR x-l TO 1500 STEP IOOiSOUND 7,x,
20,7lNEXT
1780 IF PXOll THEN RETURN
1790 IF SA-0 THEN «-"Nothing happens!"sRETURN
1800 J*-"A voice boom* out ‘To kill the ghost youm
ust use the silver sword! "I SB-11 RETURN

Line

1770 set the contents of J$ to hold the message 'O.K.' and play a
short tune.

1780 if praying in any location other than the church (location
11), return to the main program control loop.

1790 if the flag SA is zero, nothing happens and control is
returned to the main loop.

1800 the contents of J$ are changed to hold the new message
about killing the ghost. The flag SB is set to one and the
program returns to the main loop.

In this game, the player must first play the harp for the old lady,
who will tell them to pray in the church. At the same time, the flag
SA is set to one. The value of this flag is checked when praying in
the church and unless the first problem has been solved, nothing
happens!

KNOCK

126

1810 REM »* knock **
1820 IF PXO16 THEN J»-"Thsrs isn't much point in
doint that hsrs!"sRETURN
1830 PRINT"knock knock"ISOUND 1,270,10,7sFQR X-l T
□ 200:NEXT XlSOUND 1,270,10,7
1840 IF SA-0 THEN «-"Nobody answers."sRETURN
1850 FOR X-l TO 1000s NEXT X s PRINT"I hear sombsbody

Knock 127

walking toward* th* door.":FOR x-i TO 1OOO:NEX
T x
1860 IF 3D-0 THEN PRINT"« man answers th* door and
throws a silver sword onto the -floor. 'Take t

hat'he says."
1870 IF SD-0 THEN G*(12)="a silver sword"sN«(12)-
"sword"iLOCATE 1,20iPRINT"Press the <Space Bar> to
continue."

1880 IF SD>0 THEN E»“"The man answers the door and
says 'What you again ?', as he hits me with a bat

on"iGOSUB 1230
1890 SD-11 A«-""lWHILE A»<>" A»-INKEY«8WEND
1900 RETURN

Line

1820 Check to see whether the player is trying to knock
anywhere other than location 16 and set the contents of J$
to hold the message that there isn't much point, if they are.

1830 print the message and make the sound effect.
1840 check the value of the flag SA. If it is zero, nobody answers

the door and control is returned to the main loop.
1850 make sound effect and print the second message.
1860 check the value of the flag SD and if it is the first time the

player has knocked on the door, the man answers and
drops the sword.

1870 if it is the first time the player has knocked on the door, the
value of G$(12) and N$(12) are changed.

1880 if it is the second time that the player has knocked on the
door, the man answers and hits him. This message is
stored in E$ before the lose game subroutine is called.

1890 set the flag SD to one and wait for the space bar to be
pressed.

1900 return to the main program.

After visiting the church to find the clue about killing the ghost, the
player must then return to location 16 and knock on the door.
Although there are many doors in this game, this is the only one
with a door knocker and therefore an appropriate message is
defined in line 1820 if the player tries anywhere else. The sound
effects for a door knocker can be achieved in many different ways
and the routine adopted illustrates the important technique of
introducing a time delay between events, which gives the game a
'real time' element. In line 1830, the sound is made and a short delay
is created using a simple FOR NEXT loop before the second knock is
sounded. Should the player not have previously played the harp for
the old lady, the value of the flag SA will remain zero and nobody
will answer the door (in line 1840). If it is the first knock on the door,
the flag SD will be zero and the description of object 12 will be
changed to make the sword appear (line 1870). At the same time, a

128 Snow White: part 4

message is printed (line 1860) which gives the impression that the
man has thrown the sword out of the door, whereas in fact it has
always been there!

When the player has knocked on the door and been given the
sword, the flag SD is set to 1 and should he try knocking again, the
value of the flag SD will be trapped by line 1880. This will result in
the death routine being called, with the message E$ holding the
information that the man has hit you. Line 1890 then waits for the
space bar to be pressed before returning to the main loop. The
reason for this is that the messages, which have been printed on the
screen, will be erased by the MODE 1 command on return to the
main control loop of the program.

RING

1910 REM ** ring **
1920 IF PXO24 THEN J»-"I can't do that h»rm!":RET
URN
1930 PRINT"Ding Dong ":SDUND 7,239,30:F0R X-l TO 3
OO:NEXT X:SOUND 7,478,30
1940 PRINT"! h»»r ■ommbody walking toward* tha doo
r":F0R X-l TO 300:NEXT X
1950 E*-"'What do you want ?', says a voica from b
ahi nd tha door. A buckat o-F boiling oil la thrown o
nto my haad from abova!":GOSUB 1230

There is a large red button on the door in location 24 of this game,
which controls the doorbell, and the player will probably try to
press it. The line in the main loop which calls this subroutine
responds to the instructions 'press' or 'ring'.

Line

1920 if not in location 24, set J$ to hold an appropriate message
and return to the main program.

1930 print the message and make the sound effect.
1940 print the message about somebody coming.
1950 lose the game.

This subroutine was written as a 'red herring' and is meant to put
the player off the correct scent. It was written to illustrate a
particular technique often used in adventure games to add realism,
namely introducing a time delay. The bell is rung in line 1930 and a
message, 'I hear somebody coming', is printed in the next line. This
is followed by a short delay, again in line 1940 before the bucket of
boiling oil is flung over you. You may like to try changing the sound
effect, or even the result of pressing the bell. Beware, however, of
writing too many red herrings into your game as they can waste an
enormous amount of RAM.

Read 129

READ
I960 REM ** read **
1970 IF A(22)-0 THEN □♦-"! have nothing to read !"
«RETURN
1980 □♦-"Thsrs is a simple message written on thep
aper. 'FIND THE KEY'"«RETURN

The routine to read the writing on an object being carried is not as
important in this game as in The Wizard's Quest, and serves only to
give a clue to the player.

Line

1970 if the piece of paper is not being carried, set the variable J$
to hold an appropriate message and return to the main
program.

1980 set J$ to hold the message and return to the main program.

If the player is not carrying the paper, A(22) will be zero and the
message variable J$ will contain the message that he has nothing to
read. If the program does reach line 1980, the player must be
carrying the paper and so the player is told that he must find the
key.

GIVE

1990 REM *♦ give **
2000 BOSUB 1440i IF RO15 THEN J»-"There isn't any
point!"«RETURN
2010 IF P7.O19 THEN □♦-"There is no point in doing
that here!"iRETURN

2020 IF SA-0 THEN □♦-"'You haven't played the harp
■for me yet!, she says. "«RETURN

2030 IF A(15)-0 THEN □♦-"! don't have it!"«RETURN
2040 □♦-"The old lady takes my gi-ft and runs aways
inging 'Somewhere over the rainbow'!"
2050 B%(14)-0«BX(15)-0«FOR X-l TO 4«IF V^(X)-B^(15
) THEN V^(X)-""
2060 NEXT«SE—1«RETURN

If the player attempts to move west from location number 19
without having first given the pot of gold to the old lady, she will
refuse to let him (see line 820). The flag used to check whether the
pot of gold has been given is SE and its value must be greater than
zero if he is to escape.

Line

2000 call the subroutine which splits the sentence into two
words and if the item mentioned is not number 15, set J$ to

130 Snow White: part 4

contain the message before returning to the main program
control loop.

2010 test to see if the player is in location 19 and return to the
main loop if not.

2020 test the value of SA and if it is still zero, set J$ to hold a
message about playing the harp first.

2030 test to see if the player is carrying the pot of gold.
2040 set the message about the old lady going.
2050 remove the old lady and the pot of gold by setting the

pointers B%(14) and B%(15) to zero and remove the pot of
gold from the array V$(X).

2060 set the value of the flag SE and return to the main program.

When playing this game, you will have to be very careful that you
don't enter location 19 without carrying both the harp and the pot of
gold. The harp can be found in location 10, whilst the pot of gold is
found at the end of the rainbow (where else ?). If the poor
unfortunate player does venture into location 19 without these
items, they will be stuck and I haven't included a routine which
allows them to quit the game. This could make a short project for
you to add to the game.

STAB

2070 REM ** stab **
2080 IF A(12)—O THEN J*=“I have no suitable weapon
!"tRETURN
2090 IF P7.O22 THEN J*-"Don't be so violent here!"
IRETURN
2100 J»-"I kill the ghost with the silver sword!“
2110 Q* (22) -LEFT* (Q* (22) , 18) i S7. (22,3) -23« RETURN

This subroutine is called from the main program whenever an
attempt is made to 'stab', 'kill' or 'use' an object being carried. I have
written the routine in this game in such a way that the computer
doesn't expect two words to be input. A slight change which could
be made would be to add the extra line below

2085 GOSUB 1440:IF LEFT$(L$,4)<>"ghos" THEN J$="I can't
kill the ";L$:RETURN

The effect of this would be to give the player a little more
information about which objects can be killed. If, for example, you
were to type 'kill cat', the computer would print 'I can't kill the cat'.

Line

2080 check to see if the sword is being carried and print the
message if not.

Stab 131

2090 check to see if in location 22, where the ghost is to be
found. Print the message and return if in the wrong room.

2100 set the contents of the message string.
2110 change the description of the location, change the map to

allow progress east and return to the main program.

The most important line in this section is line 2110, where the
description of the location is shortened to exclude any mention of
the ghost. This is done by setting the contents of the array element
Q$(22) so that it holds only the first 18 letters of the previous
description. The final part of the line then changes the map so that
movement east from room 22 leads to location 23, where the casket
containing Snow White is to be found. One change you may like to
consider making to this routine is to set another flag so that when
the picture is drawn for this location after the ghost has been killed,
the ghost is no longer displayed. This could be done by making the
following changes

2105 SK=1

3720 IF SK=1 THEN RETURN ELSE PAPER 5:CLS:FOR Y=1 TO
20:FOR X=1 TO 20:LOCATE X,Y:PRINT ghost$;:LOCATE X,Y:
PRINT er$;:NEXT X,Y

DRINK

2120 REM ** drink **
2130 IF A(4)-0 THEN J»-"I h»v» nothing to drink!":
RETURN
2140 E*»"I drink th» soup and fall into a d»»p ■
tupor. It must b» poisonad!“:BQ3UB 1230

As in the previous game, the 'drink' routine is used to lead the
player to his death. The only object which can be drunk is the bowl
of soup, object 4.

Line

2130 check to see if the soup is being carried and return to the
main loop if it isn't.

2140 set the contents of E$ to hold a message about the cause of
death and call the death subroutine.

You may like to try changing this routine so that you must drink the
bowl of soup to give you the strength to lift the harp or the plank.
This could be achieved in the following way:

1 Change line 2140 to

2140 J$="I feel much stronger now!":SL=l:RETURN

132 Snow White: part 4

2 Add the following line to the 'GET' routine.

1345 IF (R=8 OR R=19) AND SL=0 THEN J$= "I feel too weak to
lift it! ":RETURN

The flag SL is then used to test whether the player has drunk the
soup and if he tries to get the harp (object 8) or the plank of wood
(object 19) without the flag being set to 1, then the message 'I feel
too weak to lift it!' will be printed and control returned to the main
program.

SAIL

2150 REM ** sail boat **
2160 IF PX<7 OR P7. >9 THEN □»-“□u«t how am I suppos
ed to do that hmra RETURN
2170 IF P7.-8 THEN □»-"I'm alrmady sailing the boat
!"iRETURN
2180 P%—Bi SB—SB+1sK—O: IF SB>1 THEN 36-0
2190 RETURN

There are two locations in this game where the player must sail the
boat and these are numbered 7 and 9.

Line

2160 test to see if the location is numbered less than 7 or greater
than 9 and print the message if it is.

2170 test to see if the location is number 8, where the player is
already aboard the boat, and return to the main program if
it is.

2180 change the location to number 8 and change the value of
the flag SG before returning to the main program control
loop.

Line 2180 is particularly important in this routine because the flag
SG is used to determine where the player's boat lands. Each time the
routine is called, the value of SG will change. In the landing routine,
discussed later, the player will land in location 9 if SG has a value of
1 and in location 7 if SG is equal to zero.This routine is called
whenever the player types 'row', 'sail' or 'go boat' in the main
control loop.

LAND BOAT
2200 REM ** land the boat **
2210 IF PXOS THEN J»-"not here !" I RETURN
2220 K-O1IF SB-1 THEN PX-9 ELSE P7.-7
2230 RETURN
2240 END

Land Boat 133

This routine is called from the main control loop whenever the
player types 'land', 'disembark' or 'go land'.

Line

2210 if the location is not number 8, print the message and
return to the main program.

2220 set the flag K to zero and change the position.
2230 return to the main loop.

Line 2220 is the most important line in this routine. The value of the
flag K is set to zero to allow the graphics for the new location to be
drawn. The flag SG is then checked to see which location the boat
lands in. Thus if the player boards the boat in location 7, it will land
in location 9 and vice versa.

GO OUT

3920 REM ** go out »»
3930 IF P7.-3 THEN PX-1sK-OlK."1 RETURN
3940 IF P7.-11 THEN PX-13lK-OiK.“lRETURN
3950 J»-"Don't be • »illy billy!“iRETURN

This is a complementary routine to the 'go in' subroutine already
described and can only work in locations 3 or 11.

Line

3930 if the location is number 3, then move to location 1, set the
flag K to zero to allow graphics to be drawn and return to
the main control loop.

3940 if the location is number 11, move to location 13, set the flag
K to zero and return to the main loop.

3950 set the contents of the message string and return to the
main program.

If the player is not inside locations 3 or 11, the program will reach
line 3950 and the message 'Don't be a silly billy!' will be stored in J$
for printing on return to the main program loop.

KISS

3960 REM ** kiss **
3970 IF P7.O23 THEN J»-"I can't do that here!"iRET
URN
3980 IF 3X09 THEN J*-“The casket 's locked!"sRETUR
N
3990 J»-" I kiss Snow White and »he awakes!":SX-10:
RETURN

134 Snow White: part 4

This subroutine is needed as the final stage of the solution to the
game. When you have opened the casket and found Snow White,
you must kiss her to awaken her from her slumber.

Line

3970 if the location is wrong, print the message and return to the
main program.

3980 if the score is less than 9, the casket must still be locked, so
the message is printed and control is returned to the main
loop.

3990 print the message, set the score and return to the main
loop.

The score is used as a flag in this routine to check whether the casket
has been opened. It is often convenient to check the score in a game
in which points are awarded for solving particular problems, rather
than using a separate flag.

You should now have typed in all the subroutines for 'Snow
White' and be ready to play the game. Do remember to save a copy
before running it, so that if disaster does strike, you won't lose all
your hard work. Like the previous game, you would be well advised
to check each routine as you type it in, rather than saving your
checking until the end of the game.

Suggested improvements

There is plenty of memory free in your micro after typing this
program in to add a few extra routines. There is no facility at this
stage to quit the game when stuck in the location with the old lady.
This can be achieved by adding a line to the main control loop such
as

915 IF C$="qui" THEN PRINT"Goodbye. Thank you for play
ing. ":END

Note that in this case, you don't need to store the message in J$ for
printing because the program will stop at this point rather than
change the mode. The other facility missing from this program is
that of saving a game. Adding this facility should make an
interesting exercise. In principle, the routine is very similar to that
used in the previous program and you will need to check the
number of locations and objects and sort out the flags used. When
you have finally finished developing the game, you may as well
renumber it to make life easier for anyone having to type it in.

Using a data file to create
an adventure

13

This adventure game loads into your computer in two parts. The
first part is the main program that controls the action of the game,
whilst the second part is a data file. This data file contains the
descriptions of all the objects and locations found in the game,
together with a list of all the words understood. Using this
technique makes it very easy to create a completely new game. The
program listed later on in the book which creates the first data file,
makes it possible to write an adventure of your own with absolutely
no knowledge of BASIC programming. All you need to do to create
your masterpiece is to type in the main game and save it onto tape.
You should then type in the second program and, before saving it
on a different tape, you should run it. The program will ask you a
series of questions and when you have answered them all, you will
be asked to insert a tape into the tape recorder. This will then save
the data file onto the tape — you would be well advised to save it
immediately after the main program, so that you don't have to
change tapes when loading the game.

The very first question you will be asked when running the file
creating program is whether you want to make any changes. If you
answer 'no' to this question, the file created will allow you to play A
Journey Through Space and it is this adventure which will be
explained over the next few chapters. Answering 'yes', will, of
course, allow you to either make minor modifications to this game
or to create a new adventure of your own.

A Journey through Space

For many years, your spaceship travelled silently through galaxies
far from Earth, controlled only by a large computer. You, along with
your fellow crew members, have remained in a state of suspended
animation, your vital life functions being constantly monitored by
the computer. Two hours ago, the computer started to awaken you
from your slumber to help assess the damage caused by a meteor
striking the ship. Your only course of action was to land on the
nearest planet to arrange for repairs. 135

136 Using a data file to create an adventure

Unaware of the atmospheric storms of 'Lucia', you attempted to
land the ship on a small platform high above the planet's surface.
Unfortunately, the violent winds drove the ship off the edge of the
platform. When you came round after the crash, you found that the
computer had been damaged beyond repair and the life support
functions had failed. You are alone and need to repair the ship so
that you can return to Earth. Your task will not be easy!

Before considering the effects produced when you have created
your own data file, we need to examine carefully how the main
program works with the standard data file A Journey Through
Space.

A Journey through Space 137

Initialising the program

10 REM ** ADVENTURE **
20 DIM Q$(50) ,S7.(50,4) ,V$(4) ,G$(25) ,B7.(25) ,N7.(25) ,
N$(25),A(25)
30 REM ** main program **
40 REM ** S.W. Lucas **
50 MODE 1
60 CALL &BC02
70 GOSUB 1900
80 LOCATE 10,2:PRINT
90 LOCATE 2,7:PRINT"An adventure game for the Amst
rad CPC464"
100 CLS:S7.=0:P7.=2

Line
20 dimension the arrays.
50 select the 40 column mode.
60 set the colours to their default values.
70 calls the subroutine to load the data file from tape.
80 prints the title (if it has been saved on tape!)
90 prints the message.
100 clear the screen, set the score to zero and the start location to

2.
The most important line in this section is line 70, which calls the
subroutine to load the data file. Before this can be loaded, the arrays
must have been dimensioned large enough to hold the information
for the game. You will notice that 1 have used the same variable
names for these arrays as before.

Immediately after the data file has been loaded from tape or disc,
the title will be printed. This title may have been read off the tape, so
as to allow us to change the game without having to change any of
the main program. In the listing for the data file, however, I have
not saved any name onto the tape and you may like to experiment
with this. The game always starts off in location 2, although the
position is loaded in from tape so that the same data file can be used
to save the player's current position. This means that you could
delete P% = 2 from line 100 if you so wish.

The following list shows the objects which are found in the game
produced by the standard data file, together with the location in the
game where they may be found.

Objects found in the game

Object Location

1 A strong knife
2 A phaser

1
1

138 Using a data file to create an adventure

3 A shovel 1
4 A space suit 1
5 A button 3
6 A lever 4
7 A large can 22
8 A crystal warp control 46
9 A packet of wolf nuts 32
10 A hyper viper 17
11 A pair of leather gloves 2
12 A crystal control socket 2
13 A fuel injection cap 2
14 A damaged panel 2
15 A panel repair manual 45
16 A remote control for androids 32
17 A large hook 6
18 A boulder 6
19 A glowing statue 37
20 A lodoria plant 18
21 An alien mask 24
22 A metal bar 16
23 A fuel spout 50
24 A slot 50
25 An intergalactic credit card 33

It is worth bearing in mind that many of these objects have a specific
purpose in the game and if you try to change their nature by altering
the data file, you should try to keep them fairly similar in nature. As
an example of this, consider the large can, object 7. In the control
program, this must be taken to location number 50 to be filled with
rocket fuel. This is achieved when the player inserts an intergalactic
credit card into the slot in the same location. If you were to change
the description of object 7 to a leopard, this would result in a
completely illogical game. Imagine taking the leopard to be filled up!
You could of course change it to an oil lamp, a fountain pen, an
empty bottle or any other empty container which can be filled with a
liquid. I shall be coming back to this point in greater detail when I
introduce the program used to create the first data file.

Another point to be borne in mind when typing this program in is
that you will not be able to test out each routine as it is developed in
the manner adopted with the previous programs. This is because
you will need to load the data file in again each time the computer
comes across a mistake. You may be wondering how I actually
developed this program, as it does require the data file to be created
before it will work. I did, in fact, write a shortened version of the
data file creator program first and, only when the main program had
been fully developed, did I convert it into its final form as listed
here.

Initialising the program 139

The main control loop

Fig. 13.1 Flowchart for control section.

140 Using a data file to create an adventure

The flowchart for the control section of this program is very similar
to previous flowcharts. The loop is, again, repeated until the score
(S%) reaches 10.

105 WHILE S7.<10
110 PRINT"You are "¡PRINT QS (P7.) : PRINT
120 GOSUB 1510:REM ** check score **
130 AS="":IF S7.(P7.,l)>0 THEN AS="North"
140 IF S7.(P7.,2)>0 AND LEN(AS)>0 THEN AS=AS+",South
" ELSE IF S7.(P7.,2)>0 THEN AS="South"
150 IF S7.(P7.,3)>0 AND LEN(AS)>0 THEN AS=AS+",East"
ELSE IF S7.(P7.,3)>0 THEN AS="East"

160 IF S7.(P7.,4)>0 AND LEN(AS)>0 THEN AS=AS+" .West"
ELSE IF S7.<P7.,4)>0 THEN AS="West"

170 IF P7.=6 OR P7.= 12 THEN AS=AS+",In"
180 IF P7.=9 OR P7.= ll THEN AS=AS+" , Out"
190 IF P7.=35 THEN AS=AS+",Up"
200 IF P7.=34 THEN AS=AS+".Down"
210 IF AS="" THEN AS="nowhere obvious!"
220 PRINT"You can travel "¡PRINT AS
230 REM ** describe objects **
240 E=0:F0R T=1 TO 25
250 P=0: IF B7.(T)=P7. THEN P=1
260 IF P=1 THEN 280
270 NEXT:GOTO 300
280 IF E=0 THEN PRINT:PRINT"You can see "
290 PRINT GS(T):E=1:GOTO 270
300 PRINT:PRINT"What do you want to do now "¡INPUT

ZS
310 CLS: PRINT CHRSC7)
320 ZS=L0WERS(ZS):BS=LEFTS(ZS,2):CS=LEFTS(ZS,3) : DS
»LEFTS(ZS,4)
330 IF <BS="n" OR DS="go n") AND S7.(P7.,l)>0 THEN P
7.=S7. (P7..1) ELSE IF <BS="n" OR DS=”go n") THEN PR IN
T"You can't go that way!"
340 IF <BS="s" OR DS="go s") AND S7.(P7.,2)>0 THEN P
7.=S7.(P7.,2) ELSE IF <BS="s" OR DS="go s") THEN PR IN
T"You can't go that way!"
350 IF <BS="e" OR DS="go e") AND S7.(P7.,3)>0 THEN P
7.=S7. (P7..3) ELSE IF (BS="e" OR DS="go e") THEN PR IN
T"You can't go that way!"
360 IF <BS="w" OR DS="go w") AND S7.(P7.,4)>0 THEN P
7.=S7.(P7.,4) ELSE IF <BS="w" OR DS="go w"> THEN PR IN
T"You can't go that way!"
370 IF CS="get" OR CS="tak" OR CS="gra" THEN GOSUB
610

380 IF CS="inv" THEN GOSUB 790
390 IF CS="sco" THEN PRINT"You have scored ";S7.*10
; " 7."
400 IF CS="hel" THEN PRINT"Use your eyes and keep
your wits about you!"
410 IF CS=“dro" OR CS="lea" OR CS="put" THEN GOSUB

870
420 IF CS="wea" THEN GOSUB 970

The main control loop 141

1750

430 IF C$="in" OR D$="go i" THEN GDSUB 1020
440 IF C$="out" OR D$="go o" THEN GOSUB 1070
450 IF C$="-fir" OR C$="bla" OR C$="use" THEN GOSUB

1110
460 IF C$="dow" OR D$="go d" THEN GOSUB 1160
470 IF C$="up" OR D$="go u" THEN GOSUB 1200
480 IF C$="jum" THEN GOSUB 1240
490 IF C$="pus" OR C$="pre" THEN GOSUB 1280
500 IF C$="pul" THEN GDSUB 1380
510 IF C$="cli" THEN GOSUB 1420
520 IF C*="cut" THEN GOSUB 1470
530 IF C$="ins" THEN GOSUB 1580
540 IF C*="-fil" THEN GOSUB 1700
550 IF C*="rep" OR C*="(nen" OR C*="-Fix" THEN GOSUB

580 WEND
590 CLS:LOCATE 1,10:PRINT"Wel1 done you have solve
d this adventure":END

560 IF C$="sav” THEN GOSUB 1750
570 IF C$="loa" THEN GOSUB 1900

Line

110 describe the current location (P%).
120 call the subroutine to calculate the score.
130 check if movement north is possible and set the contents of

A$.
140 check if movement south is possible and set the contents of

A$.
150 check if movement east is possible and set the contents of

A$.
160 check if movement west is possible and set the contents of

A$.
170 check to see if the player is in location 6 or 12 and set A$ to

allow movement 'in'.
180 check to see if the player is in location 9 or 11 and set A$ to

allow movement 'out'.
190 check to see if the player is in location 35 and set A$ to allow

movement 'up'.
200 check to see if the player is in location 34 and set A$ to allow

movement 'down'.
210 check to see if A$ is still empty and set message to 'nowhere

obvious!' if it is.
220 describe the directions in which you can travel.
240 set the flag E to zero and search through 25 objects.
250 if an object is found in the current location, set the flag P to

1.
260 if an object is found, jump to line to describe it.

142 Using a data file to create an adventure

270 end of loop to search through all 25 objects.
280 if the flag E is still zero, print the message 'You can see'.
290 print description of object and set the flag to one to suppress

the message 'You can see' if a second object is found in the
same location.

Many adventure games are written in such a way as to break the
golden rule of programming and this one is no exception. In line
260, the program jumps out of a FOR NEXT loop. This is not,
generally, to be recommended, although in this instance the
program jumps back into the loop again when the object has been
described. Despite this redeeming feature, programming purists
may well like to rewrite this section of coding to adopt a better
structure. As well as offending structured programming enthu
siasts, jumping out of FOR NEXT loops can also cause the program
to behave in an unpredictable manner. There are a number of ways
of overcoming this if you do find yourself jumping out of a loop.
Probably the easiest is to set the value of the control variable to one
greater that the maximum value of the loop:

10 FORX=1TO5
20 IF J=3 THEN X=6:GOTO 50
30 NEXTX
40 PRINT "end of loop"
50 PRINT "XXXXXX"

In this way, the value of X will be 6 whether the program jumps out
of the loop or the loop is terminated in the normal manner. An
alternative solution is to jump back into the loop immediately after
completing the task in hand. This is not always very easy to arrange
and in most cases, you would be well advised to rewrite the section
of code to avoid jumping out of the loop!

Line

300 input the player's instruction.
310 clear the screen and make a short sound.
320 find the first few letters of the player's instructions and store

them in B$,C$ and D$.
330 move north if possible.
340 move south if possible.
350 move east if possible.
360 move west if possible.

Lines 330 to 360 are very similar to each other and deal with
movement from one place to another within the game. If the player
types 'n' or 'go north', line 330 will check first of all to see if
movement in that direction is possible. If S%(P%,1) is greater than
0, the value held in that location of the array corresponds to the

The main control loop 143

number of the location reached by going north and the value of the
current location (P%) is changed to this value. Should this value be
zero, then the map of the game does not allow movement north,
and the message 'You can't go that way' will be printed. The
following lines check the value of S%(P%,2), S%(P%,3) and
S%(P%,4) respectively to see if movement south, east or west is
possible.

Lines 370 to 570 examine the first few letters of the instruction
typed in by the player to see if they can be understood; if they are
recognised as a valid word the appropriate subroutine is called. The
words recognised in this section are: go north, n, go south, s, go
east, e, go west, w, get, take, grab, inventory, score, help, drop,
leave, put, wear, in, go in, out, go out, fire, blast, use, down, go
down, up, go up, jump, push, press, pull, climb, cut, insert, fill,
repair, mend, fix, save, load.

In some cases, where the instruction doesn't need much interpre
tation, it is unnecessary to call a subroutine and the action can be
dealt with within the main program. If, for example, the player asks
for 'help', the computer will print the message every time. The score
is also dealt with in this way. Each time around the main loop, the
score is calculated (line 120), so that if the player types 'score', it is
only necessary for the computer to print it. In this game, the score is
out of 10, although the player is given a percentage score.

If, for example, you wanted to add an extra line to the program so
that the computer recognised the word 'eat', this must be inserted
before line 580:

571 IF C$="eat" THEN PRINT "I'm not hungry at the moment
thank you!"

or

571 IF C$="eat" THEN GOSUB 2000

This second alternative would be necessary if you wanted to make
the game more 'intelligent'.

As the game stands, responses which are not recognised by the
computer are ignored. If, thus, the player types 'run', the computer
will not print any message at all. This can be irritating to the player,
who doesn't know whether the computer is working properly. All
that needs to be done to rectify this is to use another flag. eg. K and
add the following two lines :-

112 K=0
572 IF K= 0 THEN PRINT'Tm sorry 1 just don't understand you!"

You will, of course, need to set the value of this flag to 1 if an
instruction is recognised and understood. This should be done by
adding :K=1 to the end of each line from line 330 to 570:

144 Using a data file to create an adventure

570 IF C$="loa" THEN GOSUB 1880:K=l

If you do decide to include this feature within the game, you will
need to set K = 1 in both parts of the lines dealing with movement
(lines 330-360):

330 IF (B$="n" OR D$="go n") AND S%(P%,l)>0 THEN P% =
S%(P%,1): K=1 ELSE IF (B$="n" OR D$="go n") THEN
PRINT"You can't go that way!":K=l

If the score is less that 10 when the program reaches line 580, the
loop will be repeated again. If, however, the player does manage to
reach a score of 100% (S% = 10), the program will leave the loop and
reach line 590, where he will be told that he has won the game.

GET

600 REM ** get **
610 GOSUB 730: IF L7.< 1 THEN PRINT"You can't see a
”;L»;" here!":RETURN
620 EZ=O:FOR X=1 TO 25: IF B7.(X)=P7. AND N7.(R)=X THE
N E7.= l
630 NEXT: IF E7.=O THEN PRINT"You can't see a ";L$;"
hereRETURN

640 A(R)=1
650 IF R=1O AND A(ll)<2 THEN PRINT"You need to wea
r some protection -f i r st ! " : RETURN
660 IF R=6 OR R=5 OR R=18 OR R=19 OR R=20 OR R=21
OR R=23 OR R=24 THEN PRINT"You can't!": RETURN
670 IF R=13 OR R=14 OR R=12 THEN PRINT"Don't be st
upid!RETURN
680 E7.=0:F0R X=1 TO 4
690 IF V$(X)="“ THEN V$ (X) =G$ (N7. (R)) : E7.= l : X=5
700 NEXT: IF E7.=0 THEN PRINT"Your hands are ■full!":
RETURN
710 B7.(N7.(R))=0: RETURN

There are 11 objects in this game which cannot be picked up during
play. These are listed in the chart below.

Number
Location

Description found in

6
5
18
19

A lever 4
A button 3
A boulder 6
A glowing statue 37

Get 145

20 A lodoria plant 18
21 An alien mask 24
23 A fuel spout 50
24 A slot 50
13 A fuel injection cap 2
14 A damaged panel 2
12 A crystal control socket 2

In addition to these items which cannot be picked up at all, object
number 10, the hyper viper, can only be 'got' when the player is
wearing the leather gloves for safety. The value of A(ll) is set to 2
when the player is wearing the gloves, object 11. You will need to
bear this in mind if you are modifying the data file. You must make
sure that you change the 'hyper viper' into something which can
only be picked up when you are wearing some protection and you
must also change the leather gloves into an object to be worn! In a
similar way, the program would not seem logical if you changed the
boulder into a piece of paper and were then unable to lift it!

Line

610 call the subroutine to split the sentence into two words
and store the number of any object mentioned in the
variable R. Check the value of L% and if it is less than
one, the object mentioned is not recognised.

620-630 search through all 25 objects to see if it is in the current
location. If E% is zero, the object is not there and
control is returned to the main program loop.

640 set the value of A(R) to 1 for object number R.
650 check if the object is the 'hyper viper' and unless the

player is wearing the gloves (A(ll)=2), return to the
main loop.

660 check to see if the object cannot be picked up, print a
message and return to the main loop.

670 check to see if the object cannot be picked up, print a
different message and return to the main program.

680 set the flag E% to zero and search all four elements of
the array V$(X) to find an empty space.

690 if an empty element is found, store the description of
the object in it and set the value of X to 5 so as to
terminate the loop. Also set E% to one.

700 if E% is still zero, then the array V$(X) is full and the
player can't carry any more objects until he drops one.

710 set the pointer B%(N%(R)) for the object to zero, so that
it disappears from view and return to main loop.

146 Using a data file to create an adventure

In this game, the player is allowed to carry only four items at any
one time. As soon as the array V$(X) is full, the player will be unable
to carry any more objects. If you want to change this to allow five
items to be carried, you will need to change line 680 to

680 E%=0:FOR X=1 TO 5

You will, in addition need to make similar changes in the 'drop' and
'inventory' routines.

Split the input sentence and check items

720 REM ** split sentence and check items **
730 L*="":XX=INSTR(Z»," ”):R=O
740 L7.=0:L»-RIBHT»(Z$, (LEN (ZS)-XX))
750 IF LEN(LO<2 THEN RETURN
760 FOR X=1 TO 25:IF LEFTS(N$(X),LEN(LO)=L$ THEN
L7.= 1:R=X
770 NEXT:RETURN

This routine is exactly the same as that used in the other games,
except for the number of objects checked for in line 760. In this
game, there are 25 objects and the program must search through all
of them to find a match between the object's description and the
word typed in by the player. For more explanation, see the
description of the same routine in The Wizard's Quest. Do
remember, however, that the line numbers will be different!

INVENTORY

780 REM ** inventory **
790 E=0:PRINT"You are carrying
800 FOR X=1 TO 4:IF VS(X)<>"" THEN PRINT VS(X):E=1
810 NEXT:IF E=0 THEN PRINT"Not a sausage!"
820 IF A(4)=2 THEN PRINT"You are wearing the space
suit!"

830 IF A(11)=2 THEN PRINT"You are wearing the leat
her gloves!"
840 PRINT
850 RETURN

Line

790 set flag to zero and print message.
800 search all four elements of V$(X) and if they are not empty,

print description of object carried and set the flag to 1.
810 if flag is still zero, print message 'not a sausage!'.
820 check to see if wearing the space suit.

Inventory 147

830 check to see if wearing the leather gloves.
840 print blank line to leave space on screen.
850 return to the main program.

Few changes have been made to this routine. The message printed
when the player is not carrying anything has been changed and the
two tests to see whether the player is wearing anything are
included. In this game, the player must be wearing the space suit
before pressing the button on the door of the airlock, otherwise the
poisonous gas will kill him. Once he has pressed this button,
however, he will be able to take off the space suit. You may like to
change this by inserting a line into the main control loop of the
program such as

225 IF P%>3 AND A(4)<<2 THEN E$="You breath the atmos
phere and die in agony!!!":GOSUB 1330

A(4) would be set to zero again by dropping the space suit, whilst
the value of A(ll) would be set to zero by dropping the leather
gloves. Thus dropping the space suit in any location greater than
number 3 would result in death!

DROP

860 REM ** drop **
870 GOSUB 730s IF L7.< 1 THEN PRINT"You don't have a
”;L$:RETURN
880 E7.=0:F0R X=1 TO 4
890 IF V$(X)=G$(N7. (R)) THEN V$ (X) =" " : E7.= l
900 NEXT: IF E7.=0 THEN PRINT"You are not carrying i
t!RETURN
910 B7.(N7. (R)) =P7.
920 A(R)=0
930 IF R=10 AND P7.=39 THEN S7. (39,2) =40: (39) =LEFT
$(QS(39),24):PRINT"The viper attacks the dog and d
rives it away!":B%(10)=0
940 IF R=9 AND P7.=38 THEN PR I NT "The guard goes nut
s over them and moves aside to let me in ! " : 87. (38,3
)=39:Q$ (38)=LEFT$ (Q$(38) ,74) :B7. (9)=0
950 RETURN

Line

870 call the subroutine to split the input sentence and return the
number of the object mentioned in R.

880 search all four items being carried.
890 if object carried is equal to the object mentioned, remove its

description from V$(X) and set E=l.
900 if E is still zero, player is not carrying the object.
910 set pointer for the location of the object to P%.

148 Using a data file to create an adventure

920 set flag A(R) to zero so that the computer knows that the
player is no longer carrying it.

930 check to see if the viper is dropped in location 39.
940 check to see if the nuts are dropped in location 38.
950 return to the main program control loop.

One difference which you will probably have noticed between this
program and the other games in this book is that all the responses
are written in the second person, rather than the first person. This is
very much a matter of personal taste. In this program for example,
you will be given messages such as:

'You are not carrying a lamp' or 'You can't pull a button!'

In the previous games, these messages would have been :

'I am not carrying a lamp' and 'I can't pull a button!'

The only other differences between this subroutine and the 'drop'
routines in the other games lie in lines 930 and 940. The player must
drop the viper in location 39 to drive the dog away. This is another
example where the dog is mentioned only in the description of the
location and where the description of the location is shortened when
the dog has gone. You must bear this in mind when changing the
data file.

In line 940, a check is made to see whether the player has dropped
the nuts in location 38. The guard then goes 'nutty' and the map is
changed to allow movement east. In addition, the description of the
location is shortened and the pointer which tells the computer in
which location the nuts are found is changed to zero.

A Journey through Space 14

WEAR

960 REM ** wear **
970 GOSUB 730:IF R=ll AND A(ll)=l THEN A(11)=2:PRI
NT"O.K.RETURN
980 IF R=4 AND A<4)=1 THEN A(4)=2:PRINT"0.K.":RETU
RN
990 IF R=ll OR R=4 THEN PRINT"You haven't got it!"
:RETURN
1000 PRINT"You can't wear ";L$:RETURN

Line

970 call the subroutine to split the input sentence and return
the value of R corresponding to the number of the object,
check if object is gloves (number 11) and that they are
carried, change the flag A(ll).

980 check if the object is the space suit and that it is being
carried, set the flag A(4) and return to main program.

990 if R=4 or R=ll, print message and return to main
program.

1000 print message and return to main loop.

In this game, the player must wear the gloves before being able to
get the 'hyper viper' and must wear the space suit before pressing
the button on the airlock. No other objects within the game can be
worn. The program will reach line 1000 only if the player attempts to
wear something stupid! This must be borne in mind when
modifying the data file. If you do decide to change object 4 or object
11, then it must be changed into something which can be worn. 149

150 A Journey through Space

GO IN

1010 REM ** go in **
1020 IF P7.=6 AND A<18)=0 THEN PRINT"You can't sque
eze past the boulder ! 11: RETURN
1030 IF P7.=6 THEN P7.=9: PR I NT "0. K. " : RETURN
1040 IF P7.= 12 THEN P7.= l 1: PRINT"0. K. RETURN
1050 PRINT"You can't!"sRETURN

There are just two places in this game where movement into a new
location is allowed. Studying the map will show you that movement
from location 6 takes you to location 9, whilst movement from
location 12 takes you to location 11.

Line

1020 if in location 6 and the flag A(18) is still zero, the player
can't get past the boulder and control is returned to the
main loop.

1030 if in location 6, move to location 9 and return to the main
loop.

1040 if in location 12, move to location 11 and return to the main
loop.

1050 print the message about movement being impossible and
return to the main loop.

The main puzzle in this section of the game is how to get past the
boulder and into the cave in location 6. The boulder, object 18,
cannot be moved and the solution lies in blasting it with the phaser.
Because the boulder is one of the objects which you can't pick up,
the value of A(18) would not normally be 1. Instead of introducing
yet another flag, I decided to use this and change its value to 1 when
the phaser is fired at the boulder. If, therefore, the boulder has not
been removed, A(18) will still be zero and line 1020 will prevent
movement into the cave. If you do decide to change the data file,
don't change the description of the boulder without modifying the
message in line 1020.

If the player types 'in' or 'go in' and he is not in one of the two
rooms where this is possible, the program will reach line 1050 and
the message 'You can't' will be printed.

GO OUT

1060 REM ** go out **
1070 IF P7.=9 THEN P7.=6sPRINT"O. K. ": RETURN
1080 IF P7.= ll THEN P7.= 12s PRINTK. ": RETURN
1090 PRINT"You can't!":RETURN

Go out 151

Line

1070 if in location 9, move to location 6, print the message and
return to the main loop.

1080 if in location 11, move to location 12, print the message and
return to the main loop.

1090 print the message and return to the main loop.

This routine is complementary to the previous subroutine and
works only in location 9 and 11. If the player is not in either of these
places, line 1090 is reached and a message about his ability to go in is
printed before control is returned to the main loop.

FIRE PHASER

11OO REM ** lire phaser **
1110 GOSUB 730s IF R<>2 THEN PRINT"You can 't Fire a

Lt:RETURN
1120 IF fi(2)Ol THEN PRINT”You haven't got it!"sRE
TURN
1130 IF P7.O6 THEN PRINT"That would be too dangero
us hereRETURN
1140 PRINT"That does the trick ! ": B7. (18) =0: A (18) =2:
RETURN

As mention earlier, the way past the boulder is to blast it with the
phaser and this is the routine which controls that action. It is called
from the main loop whenever the player tries to 'blast', 'fire' or 'use'
an object.

Line

1110 call the subroutine to split the sentence into two words. If
the second word is not object 2, the phaser, a message is
printed and control returned to the main loop.

1120 check to see if the player is carrying the phaser and return
to the main loop if not.

1130 check the location and if it isn't number 6, return to the
main loop.

1140 print the message, change the pointer to the location of
object 8 so that it disappears, change the flag A(18) to 2 and
return to the main loop.

The program firstly checks whether you are carrying the phaser and
then whether the location is correct. Only if both conditions are all
right does the program reach line 1140, where the flag A(18) is set to
2. Remember that the value of this flag is tested when you attempt
to enter location 6 and therefore if you do change the data file, you
would be well advised to change the boulder to something else
which you need to shoot to get past (a soldier perhaps).

152 A Journey through Space

GO DOWN

1150 REM ** go down **
1160 IF P7.=34 THEN P7.=35: PRINT"□.K.": RETURN
1170 IF P7.=5 THEN PRINT"The ground's too -far below
you!":RETURN

1180 PRINT”Don't be si 11y!":RETURN

Location 34 is the only place in this game where this instruction
works.

Line

1160 check to see if the player is in location 34, move him to
location 35 and return to the main loop.

1170 if in location 5, print the message and return to the main
loop.

1180 print the message about the stupidity of trying to go down
and return to the main loop.

From location 34, going down takes you to location 35. The player
may well attempt to go down from location 5, but in this game he
must jump !

GO UP

1190 REM ** go up **
1200 IF P7.=35 THEN P7.=34: PRINT"0. K. " : RETURN
1210 IF P7.=7 THEN P7.=5: PRINT"0. K. " : RETURN
1220 PRINT"not here!"sRETURN

Line

1200 if in location 35, move to location 34 and return to the main
loop.

1210 if in location 7, move to location 5 and return to the main
loop.

1220 print the message that the action is not possible and return
to the main loop.

Although there is only one location where the player can go down, I
have allowed them to go up into the spaceship from location 7 to
location 5, whilst they must jump to go the other way! (after all the
gravity is low on this planet!). You may like to change this by adding
an extra subroutine to enter the ship again.

Go up 153

JUMP

1230 REM ** jump **
1240 IF P7.=5 THEN P7.=7: PRINT"Phew safe landing! Th
e gravity must be 1 oh!":RETURN
1250 IF P7.=7 THEN P7.=5:PRINT"The gravity is so low
, you made it!":RETURN
1260 PRINT"not here!"sRETURN

Line

1240 if in location 5, move to location 7, print the message and
return to the main loop.

1250 if in location 7, move to location 5, print the message and
return to the main loop.

1260 print the message about the futility of jumping and return
to the main loop.

There are, thus, two ways back into the spaceship. The player can
either 'go up' or 'jump'. This is only made possible by the low
gravitational forces on the planet. You will also notice that the
message printed in line 1240 refers to the force of gravity. If you do
intend to change the description of location 5 in the data file, you
should ensure that it still includes a clue about jumping. You may
also like to change the message printed in line 1240.

PRESS
1270 REM ** press **
1280 GOSUB 730:IF R<>5 THEN PRINT"What do you want

me to press?":RETURN
1290 IF P7.O3 THEN PRINT"Not here!": RETURN
1300 IF A(4)02 THEN E*="Whoosh! The airlock opens
and you die in the poisonous atmosphere!":GOSUB 1

340
1310 PRINT"The airlock opens ! " :S7. (3,2) =4
1320 RETURN

Line

1280 call the subroutine to split the player's sentence into two
words. The number of the object mentioned (R) is then
checked and if it isn't 5, the button, a message is printed
and control is returned to the main control loop.

1290 check the current location and if it isn't 3, print the message
and return to the main loop.

1300 check the flag A(4) to see if the player is wearing the space
suit and call the death routine if not.

1310 print the message and change the map.
1320 return to the main control loop.

154 A Journey through Space

The problem of how to get out of the spaceship has already been
mentioned and you will need to take great care when changing the
data file that object 5 remains something which must be pushed and
that the player must be wearing object 4 first !

Notice that the description of the way in which death occurs is
stored in the variable E$ before the death routine is called in line
1340.

LOSE GAME

1330 REM ** lose game **
1340 CLS:PRINT E*:LOCATE 1,10:PRINT"Press the <Spa
ce Bar> -for another game."
1350 A$=INKEY*:IF A*<>" " THEN 1350
1360 RUN

Line

1340 clear the screen, print the description of death held in the
variable E$ and print the message about pressing the space
bar.

1350 wait for the space bar to be pressed.
1360 run the program from the start again.

One point worth noting about this game is that the player will need
to reload the data file from the start if he loses the game because the
contents of the arrays will have been changed during play.

PULL

1370 REM ** pull **
1380 GOSUB 730:IF R<>6 THEN PRINT"You can't pull a

"5L*:RETURN
1390 IF P7.O4 THEN PRINT"not here!":RETURN
1400 E*="The ship explodes. You have just pulled t
he self destruct 1 ever!":GOSUB 1340

This routine was written to lure the unwary player to his instant
death!

Line

1380 call the subroutine to split the player's instructions into two
words; if the second word is not the lever, print message
and return to main program.

1390 if not in location 4, print message and return.
1400 set the contents of E$ to hold message and call the death

subroutine.

Pull 155

There is only one object in this game which can be pulled, the lever,
and checks are made that the player has mentioned it and that they
are in the correct location. Do remember to change the lever into
some other object which needs to be pulled if you attempt to change
the data file. You may also like to change the message to better
describe the method of death!

CLIMB

1410 REM ** climb **
1420 IF P7.=20 OR P7.=23 THEN 1430 ELSE PR I NT "Not he
re!RETURN
1430 IF A(17)=0 THEN E$="You slip -from the rope an
d -fall to your death. If only you had used a "+G$(
17):G0SUB 1340
1440 IF P7.=20 THEN P7.-23: PRINT"0. K. ": RETURN
1450 IF P7.=23 THEN P7.=20: PR I NT "0. K. " : RETURN

There is a rope stretching between locations 20 and 23. Climbing is
not possible in any other locations in this game. Players who try
climbing across the rope without holding the large hook, object 17,
will slip from the rope and fall to their death.

Line

1420 check location and if climbing not possible, print the
message and return to the main loop.

1430 check the value of the flag A(17) to see if the hook is being
carried, set the message string and call the death subrouti
ne if necessary.

1440 if in location 20, move to location 23, print message and
return to the main program loop.

1450 if in location 23, move to location 20, print message and
return to the main program loop.

I have included a clue in line 1430, to help the player overcome the
problem of crossing the rope next time. You may like to try
experimenting with sound effects when the player falls from the
rope in line 1430.

CUT

1460 REM ** cut **
1470 IF P7.O19 THEN PRINT"That's not the right app
roach!":RETURN
1480 IF A(1)=O THEN PRINT"You need a knife!":RETUR
N
1490 S7. (19,2) =20:Q* (19) =LEFT$(Q$(19) ,28)zRETURN

156 A Journey through Space

Once the player has reached location 19 in this game, he will be
unable to progress further through the jungle without cutting his
way through the dense undergrowth. He must, of course, be
carrying a knife in order to do this.

Line

1470 check current location and print message I return to main
loop if not in location 19.

1480 check to see if carrying the knife (object 1) and print
message I return to main loop if not.

1490 change map, shorten the description of the location and
return to the main program.

Don't forget that if you change the data file, the knife must be
changed into something to cut with, a saw or an axe perhaps. In
addition, the description of location 19 should contain the clue that
cutting a way through will be necessary!

SCORE

1500 REM ** check score **
1510 S7.=0:IF SC-1 THEN S7.=S7.+2
1520 IF SD=1 THEN S7.=S7.+ 1
1530 IF SE=1 THEN S7.=S7.+ 1
1540 IF SF=1 THEN S7.=S7.+ 1
1550 IF SG-1 THEN S7.=S7.+ 1
1560 RETURN

Unlike the other subroutines described in this chapter, this one is
called every time the program goes round the main control loop, so
that the computer always has an up to date record of the player's
score.

Line

1510 set score to zero, if flag SC=1 then increase the score by 2.
1520 if the flag SD=1 then increase the score by 2.
1530 if the flag SE=1 then increase the score by 2.
1540 if the flag SF=1 then increase the score by 2.
1550 if the flag SG=1 then increase the score by 2.
1560 return to the main program control loop.

Scoring in this game is achieved in a totally different way from the
previous games. The value of S% is increased by 2, so increasing the
score by 20%, for each of the five problems solved. These five
problems are all associated with the spaceship and are described
later. Each one solved sets the value of a flag (SC to SG) to 1.

Score 157

INSERT

1570 REM ** insert **
1580 GOSUB 730:IF R=8 OR R=25 THEN GOTO 1600
1590 PRINT"DQn't be ri di cuiousRETURN
1600 IF A(8)=l AND P7.=2 THEN PRINT"You insert the
crystal into its socket!":SC=1:GOSUB 1640:RETURN
1610 IF A(25)=l AND P7.=50 THEN GOSUB 1670: RETURN
1620 PRINT"You can't do that yet!":RETURN
1630 REM ** get rid of the crystal **
1640 FOR X = 1 TO 4: IF V$(X)=G$(8) THEN V$(X)=""
1650 NEXT: B7.(12) =0: RETURN
1660 REM ** insert credit card **
1670 IF A(7)=0 THEN PRINT"It pours all over the fl
oor!": RETURN
1680 SD=1:PRINT"You fill it up with fuelRETURN

There are two objects which need to be 'inserted' in this game,
namely the intergalactic credit card, object 25, and the crystal warp
control, object 8. The routine is fairly complex, which makes it a
little more difficult to modify these objects in the data file, whilst still
keeping a sense of logic in the game.

Line

1580-1590 call the subroutine to split the player's sentence into
two words. If the second word is not the crystal or the
credit card, print message and return.

1600 check whether player is in location 2 and carrying the
crystal. If he is, print message, set flag SC for score,
call the subroutine to drop crystal and return to main
program.

1610 if player wants to drop the credit card in the correct
location, call subroutine to do it and return to the
main program control loop.

1620 print the message that the action is not yet possible
and return to the main control loop.

1640 search through the four items being carried (V$(X))
and remove the crystal.

1650 set the pointer for the empty socket to zero so that it
disappears from view.

1670 if you are not carrying the can, item 7, the fuel pours
all over the floor and control is returned to the main
loop.

1680 set the flag SD to one, print the message that the can
is full of fuel and return to the main loop.

Should you decide to modify the data file, you will need to make
sure that the can, item 7, is changed for something which needs
filling with a liquid and that you need to 'insert' item number 25 into
a slot before that liquid is dispensed. The message printed in line

158 A Journey through Space

1680 was deliberately kept short so as to be applicable even if the
data file were changed. You may like to change it to a more detailed
description.

The score in this routine will be increased by 2 when the player
inserts the crystal warp control into the empty socket found in
location 2, the cabin of the spaceship. The score is also increased by
2 when the player inserts the credit card into the slot found in
location 50 and collects the rocket fuel in the can.

FILL

1690 REM ** fill **
1700 GOSUB 730: IF R=7 AND P7.=50 THEN PRINT"nothing
comes outRETURN

1710 IF R=7 THEN PRINT"Not hereRETURN
1720 IF P7.=2 AND A<7)=1 AND SD=1 THEN PRINT"You fi
11 the -fuel tanksSE=1:RETURN
1730 PRINT"You can't do that just yetRETURN

Before being able to escape from the planet, the ship has to be
repaired and filled with fuel. To do this, the player must be carrying
the can full of fuel.

Line

1700 call subroutine to split the input sentence into two words.
If the second word refers to the can and the player is in
location 50, nothing comes out and control passes back to
the main program loop.

1710 if the player tries to fill the can, object 7, print the message
and return to the main loop.

1720 if player is in location 2 and carrying the can and the can is
full (SD=1), print message, set the value of the flag SE to
increase the score and return to the main program.

1730 print message and return to the main loop.

The first part of this subroutine checks whether the player is
attempting to fill the can from the fuel tank. As we have already
seen, the way to do this is to insert the credit card into the slot and
this means that we must prevent the player from filling the can in
location 50. Line 1720 increases the score by 2, which is equivalent to
a score of 20%, if the player is in location 2 and carrying a full can of
fuel.

SAVE GAME

1740 REM ** save game **
1750 CLS:PRINT"Please insert a tape and set ready
to record !"
1760 PRINT:PRINT"Press <Space Bar> when ready"

Save game 159

1770 A$=INKEY$:IF A$<>" " THEN 1770
1780 OPENOUT"data"
1790 FOR x = l TO 50:PRINT#9,Q$(x):NEXT
1800 FOR x = l TO 50: FOR y=l TO 4: PRINT#9,S7. (X ,Y) : NE
XT Y,X
1810 FOR x=l TO 25:PRINT#9,G$(X):NEXT X
1820 FOR x = l TO 25: PRINT#9, B7. (X) : NEXT X
1830 FOR x=l TO 25:PRINT#9,N$(X):NEXT X
1840 FOR x = l TO 25: PRINT#9, N7. (X > : NEXT X
1850 FOR x=l TO 25:PRINT#9,A(X):NEXT X
1860 FOR x=l TO 4:PRINT#9,(X):NEXT X
1870 PR I NT#9, SA, SB, SC, SD, SE , SF, SG, SH, P7.
1880 CLOSEOUT:RETURN

This routine is identical to the routine in the data file creating
program. It is used to write a full data file containing the player's
new position and all the other variables used in the game.

Line

1750-1760 print message to insert the data tape and wait for the
space bar to be pressed.

1770 wait for the space bar to be pressed.
1780 open the file with a file name 'data' for saving the

data.
1790 save the descriptions of the 50 locations in the game.
1800 save the current map.
1810 save the current descriptions of the 25 objects.
1820 save the 25 pointers to the current location of the

objects found in the game.
1830 save the 25 words understood on tape.
1840 save the pointers to the words understood.
1850 save the 25 flags of the objects being carried.
1860 save the descriptions of the four objects being carried.
1870 save the flags SA to SH and the current position P%.
1880 close the file and return to the main program loop.

It is important to note that the descriptions of some of the locations
and objects will change during the play of the game and therefore it
makes sense to save the data for all the locations, objects and flags
found in the game.

LOAD GAME
1890 REM ** load game **
1900 CLS;PRINT"Please insert the data tape into th
e recorder."
1910 OPENIN"data"
1920 FOR x=l TO 50:INPUT#9,Q$(x):NEXT
1930 FOR x = l TO 50: FOR y=l TO 4: INPUT#9, S7. (X , Y) : NE
XT Y,X

160 A Journey through Space

1940 FOR X = 1 TO 25:INPUT#9,G$(X):NEXT X
1950 FOR X=1 TO 25: INPUT#9,B’Z(X) :NEXT X
1960 FOR X — l TO 25:INPUT#9,N$(X):NEXT X
1970 FOR X — l TO 25: INPUT#9,N7. (X) : NEXT X
1980 FOR X = 1 TO 25:INPUT#9,A(X):NEXT X
1990 FOR X — l TO 4:INPUT#9,(X):NEXT X
2000
2010

INPUT#9,
CLOSEIN:

SA, SB, SC, SD, SE, SF, SG, SH, P7.
RETURN

This subroutine is called right at the start of the game to load in the
data file containing the starting position. It can also be used to load a
game which has been saved during the course of play.

Line

1900 clear the screen and print message to insert the data tape
into the recorder.

1910 open the channel to input the data file.
1920 load in the description of the 25 locations.
1930 load in the array used to hold the map.
1940 load in the descriptions of the 25 objects.
1950 load in the pointers for the locations where the objects are

to be found.
1960 load in the words recognised.
1970 load in the pointers to the words recognised.
1980 load in the flags for the objects carried.
1990 load in the descriptions of the four objects carried.
2000 load in the flags SA to SH and the current location P%.
2010 close the file and return to the main program.

If you compare this routine with the SAVE GAME routine, you will
see that the data is read in from tape or disc in exactly the same
order. Any error in this section, however slight, will prevent the
game working at all and you must check that there are no typing
errors when entering it into your computer. You should now have
typed all sections of the main game into your computer and must
check carefully for any typing errors before saving a copy onto tape
or disc. You will not be able to test this game out by running it until
you have a data file on tape. In the next chapter you will find the
listing for the data file creating program, and this must be typed in
and RUN. You will be asked to insert a tape into the recorder and
you would be advised to save the data file created by the program
immediately after the main game on the first tape.

Because you will not be able to test each section of the program as
it is typed in, you must take extra care with data entry and check
each section against the printed listing before going on to the next
section.

Creating the data file 15

Before looking at how the data file is created, we need to draw the
map of the game in the same way as with the previous two games.
Although the program listing here allows you to modify the
descriptions of the locations, it doesn't, as it stands, allow you to
type in changes to this map. Only a minor modification to the
program would be necessary to allow this to be done and 1 will
explain in further detail how to set about it.

The map

161

162 Creating the data file

The map 163

Fig. 15.1 Map for A Journey through Space.

Careful study of this map will show you that there are 50 locations.
The data for the descriptions of the locations and the objects must
first be read into the arrays. I have again used the same variable
names for these arrays, so as to avoid confusion when trying to
debug the program.

164 Creating the data file

Reading the data

10 REM ** data -file creating program **
20 CLS:LOCATE 10,2:PRINT"Data File Creator"
30 REM ** must be used in conjunction with the adv
enture program **
40 REM ♦* READ the DATA -for A Journey through Spa
ce ' ♦*
50 DIM Q$(50) ,37.(50,4) ,V$(4) ,G$(25) ,B7.(25) ,N7.(25) ,
N$(25),A(25)
60 FOR X=1 TO 50:READ Qt (X)
70 FOR Y=1 TO 4:READ S7.(X,Y>: NEXT Y,X
80 DATA in the supply bay.,0,0,2,0
90 DATA in the cockpit o-f the spaceship. ,0,0,3,1
100 DATA in a small air1ock.,0,0,0,2
110 DATA outside the air1ock.,3,0,5,0
120 DATA on a docking platform high above the s
urface of the planet.,0,0,0,4
130 DATA outside a cave entrance.,0,0,7,0
140 DATA on the flat surface of the planet Lucia.T
he spaceship is here.,0,0,8,6
150 DATA at the edge of a deep chasm. Travel to t
he east is not possi ble. ,0,0,0,7
160 DATA inside a gloomy cavern. A dark tunnel 1
eads east.,0,0,10,0
170 DATA in a dark tunnel. Drips of water keep f
ailing on my head.,0,0,11,9
180 DATA at the cave entrance. I can see a fetid s
wamp in the distance.,0,0,0,10
190 DATA on a narrow footpath leading through thef
etid swamp. Swirls of purple mist rise from the sw
amp. A cave can be seen here.,0,
13,0,0
200 DATA at the edge of a fetid swamp. A dry f
ootpath leads north through the purple mist.,12,0,
0,14
210 DATA at the edge of a thick jungle.,0,15,13,0
220 DATA on the jungle f1oor.Strange insects c
rawl over my feet.,14,17,0,16
230 DATA in a clearing. Thick undergrowth stops m
e going further west.,0,0,15,0
240 DATA on a muddy trail leading through a densej
ungle.,15,0,18,0
250 DATA on a muddy path. The trees are alive w
ith strange creatures.,0,19,0,17
260 DATA at the end of a narrow path. It looks asi
f nobody has travelled this way for a long time b
ecause the undergrowth is so den
se to the south.,18,0,0,0
270 DATA on the banks of a narrow river. A rope s
tretches across to the far si de.,19,21,0,0
280 DATA on the banks of a fast flowing river. A h
igh cliff towers above me.,20,0,22,0
290 DATA underneath a tall cliff. A cave entrancec
an be seen above my head.,0,0,0,21

Reading the data 165

300 DATA on the banks of a river of mercury. A r
ope stretches across to the far si de. ,0,24,0,0
310 DATA on a narrow path leading into a large g
lass tube.,23,25,0,0
320 DATA in a clear glass tube.,24,0,0,26
330 DATA in a wide glass tube high above the p
lanet surface. A door leads north.,27,0,25,28
340 DATA in a ventilation shaft. It is too narrowt
o go further north,0,26,0,0
350 DATA in a wide glass tube leading into the t
op of a large bui1 di ng.,0,29,26,0
360 DATA in the reception lounge of the 'Lucia M
ining Corporation' headquarters.,28,0,30,33
370 DATA in a small room full of chairs covered w
ith a glowing purple fabric.,0,31,0,29
380 DATA by a vending machine. The two slots are c
overed by a red notice written in a strange Ian
guage,30,0,32,0
390 DATA by a lift. The doors are closed and the 1
ights are not working. I can't see any switches or
buttons to press.,0,0,0,31

400 DATA in a narrow corridor. The walls are 1
ined with wierd plants with eyes which follow my e
very move.,0,34,29,0
410 DATA at the top of a flight of stairs. A p
lastic android stands at the top.,33,0,0,0
420 DATA at the bottom of a flight of stairs. A w
ide passage leads east.,0,0,36,0
430 DATA on a slowly undulating walkway.,0,0,37,35
440 DATA in a large square.,0,38,0,36
450 DATA in a golden arcade. Small blue trees line
the sides of an enormous statue. A nutty guard wo

n't let me into the green bui
Iding.,37,41,0,0
460 DATA inside an entrance hall. A mad Lucian R
ock Hound spits molten gold at me.,0,0,0,38
470 DATA in a narrow corridor. Doors lead south a
nd east.,39,44,46,0
480 DATA at the end of the arcade. A path leads s
outh between two bui1 dings.,38,42,0,0
490 DATA in a narrow passage between tall b
uildings.,41,0,0,43
500 DATA on a narrow strip of concrete at the e
dge of a sheer drop.,47,0,42,0
510 DATA in an empty room. A door leads east.,40,0
,45,0
520 DATA in a repair bay. It's full of tools.,0,0,
0,44
530 DATA in a supply bay. A robot stands at the c
ounter and looks at me.,0,0,0,40
540 DATA in a wide duct.,0,43,0,48
550 DATA in a narrow duct.,0,49,47,0
560 DATA in a large cavern full of storage tanks.,
48,0,0,50

166 Creating the data file

570 DATA in the fuel storage bay. A large fuel d
ispenser with a slot in it stands here.,0,0,49,0
580 FOR x = l TO 25:READ G* (X) , B7. (X) , N$ (X) : N7. (X) =X : N
EXT X
590 DATA a strong knife,1,knife,a phaser,1,phaser,
a shovel,1,shovel,a space suit,l,suit
600 DATA a button,3,button,a 1 ever,4,1 ever,a large
can,22,can,a crystal warp control,46,crystal

610 DATA a packet of wolf nuts,32,nuts,a hyper vip
er,17,vi per,a pair of leather gloves,2,gloves,a cr
ystal control socket,2,socket
620 DATA a fuel injection cap,2,cap,a damaged pane
1,2,panel,a repair manual,45,manual
630 DATA a remote control for androids,32,control,
a large hook,6,hook
640 DATA a boolder 6,boulder,a glowing statue,37,s
tatue,a Idoria pl ant,18,pl ant,an alien mask,24,mas
k,a metal bar,16,bar
650 DATA a fuel spout,50,spout,a siot,50,siot,an i
ntergalactic credit card,33,credit card
660 CLS:S7.=0:P7.=2
670 J$="A Journey through Space"

Line

20 clears the screen and prints the title of the program.
50 DIMension the arrays.
60 read in the descriptions of the locations into Q$(X).
70 read in the map into the array S%(X,Y).
80-570 DATA for the locations.

In a similar manner to the previous programs, each DATA line from
line 80 to 570 contains a description of the location, followed by the
numbers corresponding to the locations reached by going north,
south, east and west respectively.

Line

580 read the description of the 25 objects, the number of the
location in which they are found, the word by which
they are recognised and set the pointer to the word.

590-650 DATA for the description, location and word recog
nised of the 25 objects.

660 clear the screen, set the score to zero and the location to
number 2.

670 define the title of the game.

Reading the data 167

Reminder of the variables used

s%
p%
Q$(X)
S%(X,Y)
G$(X)
B%(X)

holds the score
holds the number of the current location
holds the description of the location
holds the map
holds the description of the object
holds the number of the location where the object is
found

N$(X) holds the word recognised by the computer as being
connected with the object

N%(X) pointer to the object

It is worth noting that the routine in the main program to read the
data in does not contain a line to read in J$, the title of the game. If
you do add a line to do this, a similar line must be added to the save
game routine in the main program and to the file writing section in
this program.

Change the data file?

680 REM ** change data or leave alone **
690 CLS:LOCATE 1,2:PRINT"Do you want to change the
data file <Y>es / <N>o ?"

700 AA$=INKEY$: AA$»L0WER$<AAt) s IF AA$="n" THEN 80S
UB 730:PRINT“Data file saved now!":END
710 IF AA$="y" THEN GOSUB 900:G0SUB 730:PRINT"Data
file saved nowi":END

720 GOTO 700

When the program is run, the data for the standard game is read
into the arrays and the section of coding between line 680 and line
720 asks the player whether they want to save the standard game, A
Journey through Space, or whether they want to write their own
data file.

Line

690 asks the question whether the player wants to change the
data file.

700 wait for key to be pressed, if the player answers no, the
subroutine to save the data is called and the program then
ends.

710 if the player wants to change the data file, call the
subroutine to change the data, save the data file and end the
program.

720 jump back to test for a key being pressed.

168 Creating the data file

Should the player decide not to change the data file, the information
saved on the tape will contain all the data for A Journey through
Space. Pressing the 'Y' key, however will take the player to the
section of the program which allows him to type in changes to the
descriptions of the locations, objects and words recognised.

SAVE GAME

730 REM ** save game **
740 CLS:PRINT"P1ease insert a tape and make ready
to record."
750 PRINT:PRINT"Press <Space Bar> when ready."
760 At=INKEY$:IF A$<>" " THEN 760
770 0PEN0UT"data"
780 REM ** this line may be changed later ... see
notes **
790 FOR X=1 TO 50:PRINT89,Qt(X):NEXT
800 FOR
T Y,X

X=1 TO 50:F0R Y=1 TO 4: PRINT#9, S7. (X , Y) : NEX

810 FOR X = 1 TO 25:PRINT#9,Gt(X):NEXT
820 FOR X=1 TO 25:PRINT#9,B7.(X) : NEXT
830 FOR X=1 TO 25:PRINTW9,Nt(X) : NEXT
840 FOR X=1 TO 25:PRINTM9,NX(X>:NEXT
850 FOR X = 1 TO 25:PRINT#9,A(X>:NEXT
860 FOR X=1 TO 4:PRINT#9,Vt(X):NEXT
870 PRINT#9 , SA, SB, SC, SD, SE, SF, SG, SH, PX
880 CLOSEOUT:RETURN

This section of the program must be absolutely identical to the
section of code called in the main game when the player chooses to
save a game during play. Any differences between these two
routines will cause the DATA to be read in from tape in the wrong
order and this will result in a game which doesn't make any sense, if
it runs at all!

Line

740 clear the screen and print message to insert a tape ready to
save the game.

750 print message to press the space bar when ready.
760 wait for the space bar to be pressed before saving the data

onto tape.
770 open the cassette filing system.
780 see notes.
790 save the descriptions of the 50 locations.
800 save the map.
810 save the descriptions of the 25 objects.
820 save the pointer to the locations of the 25 objects.
830 save the words recognised for the objects.
840 save the pointers to the words recognised.

Save game 169

850 save the flags for the objects carried.
860 save the value of the flags SA to SH and the current location.
880 close the file and return.

Locomotive BASIC, as found on the Amstrad computers does not
require the values of variables to be defined before they are used. In
this case, the value of the flags A(X) and SA to SH will all be zero,
although their values will change in the file saved when the player
types SAVE during play.

When the data file is loaded from tape at the start of the game, the
contents of J$ does, in fact, hold the title of the game. In all the
routines for tape handling in Chapters 13 to 15, however, the value
of J$ is not saved or loaded. It is fairly simple to add one extra line to
each routine to do this. In this program, you will need to change the
REM statement in line 780 to

780 PRINT #9,J$

and insert the following lines into the main program:

1785 PRINT #9,J$
1915 INPUT #9,J$

This will save the contents of J$ before any other data on the tape.

Changing the data

890 REM ** change data -for a new game **
900 CLSzFOR X=1 TO 50
910 CLS:L0CATE 1,1: PRINT"Location number "; X
920 LOCATE 1,3:PRINT"01d description "
930 LOCATE 1,4:PRINT Q$(X>
940 LOCATE 1,10:PRINT"What is the new description
II
950 INPUT Q$(X)
960 PRINT"Is this correct <Y>es / <N>o ?"
970 AA$=INKEY$:AA$=L0WER$(AA$) : IF AA$="n" THEN 910
980 IF AA$="y" THEN 990 ELSE 970
990 NEXT X
1000 FOR X=1 TO 25
1010 CLS:LOCATE 1,1 :PRINT"0bject number " ; X
1020 LOCATE 1,3:PRINT"01d description
1030 LOCATE 1,4:PRINT G$(X)
1040 LOCATE 1,10:PRINT"What is the new description

II
1050 INPUT G$(X)
1060 PRINT:PRINT"What word will it be recognised b
y ";: INPUT N$(X)
1070 PRINT"Is this correct <Y>es / <N>o ?"
1080 AA$=INKEY$:AA$=L0WER$(AA$): IF AA$="n" THEN 10
10

170 Creating the data file

1090 IF aa$="y" THEN 1100 ELSE 1080
1100 NEXT x
1110 RETURN

When this section of program is reached, you will be shown a
description of all 50 locations and will be asked to type in a new
description. You should try to make sure that no words are split
across two lines on the screen, as this will make for an untidy
display when the game is run. Once you have typed in a new
description and pressed <ENTER>, you will be asked whether this
description is correct and if you press the 'N' key, you will be asked
to type the description in again.

Do try to bear in mind the puzzles set in the game when making
the changes to the descriptions. It would be a very stupid game
indeed if the player had to jump from a flat piece of earth or if they
had to climb across a footpath!

Once you have typed in the new descriptions of the locations, you
will then be shown the current descriptions of the 25 objects found
in the game and will be asked to type in their new description,
together with the word by which they are recognised.

It is again important to make sure that, when you change
descriptions of objects within the game, they are changed to
something which makes sense within the context of the game. Do
bear in mind that certain objects are associated with a particular
command. The knife, for example, must be used to cut your way
through the dense undergrowth and if you were to change it to a
tortoise, how could you find your way through the dense growth?

Line

900 clear the screen, repeat the loop 50 times.
910 clear screen and print the number of the location.
920 print message about the old description.
930 print old description of the locations.
940 print message to ask for input of the new description.
950 input the new description of the location.
960 print message to ask if this is correct.
970 get keyboard input and if player presses 'N' key, return to

input the description again.
980 if player doesn't press the 'Y' key, jump back to keyboard

input.
990 next description.
1000 repeat the loop for the 25 objects.
1010 clear the screen and print the number of the object.
1020 print the old description of the object.
1030 print the description of the object.
1040 print message to ask about the new description.
1050 input the new description of the object.

Changing the data 171

1060 print message about the word by which it is recognised and
input the word recognised.

1070 print message to ask if it is correct.
1080 wait for key to be pressed, if player presses 'N' key, return

to input words again.
1090 if key pressed is not 'Y', jump back to test the key being

pressed.
1100 next object.
1110 return to the main program.

Do make sure that you take care when typing in the description of
the objects that the words recognised by the objects are not
duplicated. To illustrate this, consider a game where object number
7 is a red button and object number 11 is a blue button. Thus the
contents of G$(X) would be

Object Description Word

7 A red button Button
11 A blue button Button

If you were to use the same word to recognise two different objects,
the computer would search through and find a match only for the
first occasion. If you do have two objects in your game which are
very similar, such as those above, you must make sure that the two
words recognised are different. In the above case, I would suggest
that you use 'red button' and 'blue button' for N$(7) and N$(ll)
respectively.

Conclusions

There are a number of advantages of writing a program in which the
data for the game is loaded in from tape or disc. These are
summarised below.
1 The program will occupy less memory space, which means that
it is possible to include more locations, objects, puzzles and
problems. You can also include far more detail in the descriptions of
the objects and locations because of the freedom given by extra free
memory; in addition, you may well find enough space to add
graphics as well.
2 The player will find it more difficult to cheat and solve the
adventure by escaping from the game and listing it.

172 Creating the data file

3 The program can be better structured, without making the game
so easy to solve that the player wants to cheat. It always makes it
easier to develop a program if the structure is sorted out properly at
the start rather than allowing the program to grow at random during
development of the game. However a typical 'spaghetti' style
program will be much more difficult for the player to solve by listing
it. At the same time, however, there is one major disadvantage of
developing a program in which the data for the game has to be
loaded in from tape every time — time. Each time you make a
simple typing error and the program crashes, you will have to
correct the mistake and then load in the tape again. This will take
several minutes at the very minimum and unless you have a great
deal of patience, the whole process can be very daunting. However,
for those of you fortunate to own a disc drive, this process will take
only a few seconds and the difference in time between loading the
data from disc and READing it from DATA lines within the program
will be very small. With Locomotive BASIC, there are no changes
needed within the program, as the OPENIN, CLOSE IN, PRINT #9
and INPUT #9 commands will assume that a disc is fitted if you
have the disc interface attached. You may, however like to change
the messages about inserting a tape so that they specifically mention
discs only.

Adding the final touches 16

So far, we have taken a close look at many of the standard features
of adventure games, but have not spent much time examining those
refinements which can truly transform a game into a masterpiece.

Function keys

The function of the keys on the numeric keypad can be redefined on
the Amstrad computer and so far, we have completely ignored this
facility. I recently played an adventure game where these keys were
given definitions useful to the player. This game loads into the
computer in two sections. The first program is a very short one and
serves two purposes. Firstly, it prints the titles and secondly, it
changes the definitions normally associated with the function keys
into words which are of far more use to the adventurer. There is, in
fact, a second advantage to be gained from this approach. We have,
until now, been unable to include instructions within the game
because the memory used up by them can be better utilised in
setting puzzles and problems. If, however, the titles and instruc
tions are included in a short program to define the function keys, we
need have no such worries.The listing below shows how this could
be done for The Wizard's Quest.

too KEY 128,"wait"+CHR$(13)
110 MODE 1
120 LOCATE 10,2:PEN 2:PRINT "The Wizard's Quest"
130 CHAIN"wizard"

10 KEY 136,"go north"+CHR$(13)
20 KEY 134,"go east"+CHR$(13)
30 KEY 130,"go south"+CHR$(13)
40 KEY 132,"go west"+CHRÍ(13)
50 KEY 133,"i nvent or y"+CHR$(13)
60 KEY 135,"help"+CHR$(13)
70 KEY 137,"score"+CHR*(13)
80 KEY 128,"search"+CHRS(13)
90 KEY 131,"pray"+CHR$(13)

173

174 Adding the final touches

Line

10-100 define the function keys 1 to 10
110 set the screen mode
120 print the titles
130 load the main program

You will notice that I have defined the funcion keys to print some of
the most common instructions used in adventure games. The
PRINT CHR$(13) command at the end of each of these lines is used
to enter the command into the computer whenever that function
key has been pressed. Although the 'get' command is one of the
most commonly used instructions in adventure games, this has not
been assigned to a function key because the player would still have
to type in the name of the object to be picked up. For that reason,
the definitions given to the function keys are single word com
mands only.

The final line of this sort listing is used to load the main game into
the computer. You must make sure, of course, that the main game
has been saved with the same filename as that listed in line 130 of
this program. If you do want to insert the instructions in this
program, this should be done immediately before the command to
load the main game.

Full sentence decoding

In all the games in this book, I have stuck to the traditional one or
two word sentence recognition. Many commercial games now
include the ability to understand far more complex sentences.
Unfortunately, BASIC doesn't leave much room in memory for the
inclusion of very complex sentence analysis, but you should be able
to make a few improvements. The simplest of these would be to
allow the inclusion of the word 'the' in the sentences so that the
player can type 'get the rope'. This makes the game seem a little
more realistic and should help to involve the player more in the
game. In order to do this, a short section of code will need to be
inserted into the routine used to split the sentence into two words.
It is at this point that you really start to appreciate the inclusion of
INSTR within the BASIC language. Adding this feature should
prove to be an interesting, and not too difficult, exercise.

Data compression

Many commercial adventure games contain such detailed descrip
tions of objects and locations that it would be impossible to achieve
in BASIC. Even storing the data for the game directly in memory
would not allow the quality of description achieved by some
programmers. Level 9 Computing's specially created adventure

Data compression 175

language A-CODE illustrates just what can be achieved in 32K of
RAM. Just how this works, they haven't revealed, although we can
make an intelligent guess. Most data compression techniques rely
heavily on redundancy of letter and word associations. Over 25
percent of average English text is made up of just ten words — I, is,
it, that, the, of, and, to, a, in. Of the other words in common use,
many contain standard groups of three letters which are sometimes
called trigrams — and, the, tha, ent, ion, for, nde, nee and has. In
addition, several letters always occur in combination, for example Q
is always followed by U. If these letter combinations are replaced in
the text by single characters chosen from the other ASCII codes
which are not needed in text programs, it is possible to compress
text into a comparatively small space. Attempts to code the data in
this way using BASIC are, however, unlikely to be very successful
because it is likely that the routines to decode the data will slow the
game down to an unacceptable level.

Three dimensional games

As you will recall, there are a few locations in the games listings in
this book where you can go up or down into new rooms. The
number of occasions where this is possible is so small, that I decided
to write them as subroutines rather than trying to create a full three
dimensional game. Imagine, however, an adventure based on that
famout film Towering Inferno, where the object is to escape from
the building alive or, perhaps, an adventure set in a large office
block. In such circumstances, there would be too many floors to
consider writing a two dimensional game, so where do we start
when developing such a program?

How do you draw a map of a three dimensional game?
The easiest way of tackling this problem is to draw a separate map of
each floor of the building and clearly label any stairs (or other means
of moving up or down such as lifts), together with the number of
the location reached by going up or down from that position. Once
you have done this, converting it into the data for your game should
be no more difficult than for a two dimensional game. If, for
example, location number 45 is by the stairs on floor number 3, the
data line would look something like

110 DATA by the emergency exit. A sign reads 'Floor
3'.,32,33,0,41,21,67

This line would indicate that movement north would take you to
location 32, movement south to location 33, movement east is not
possible, movement west takes you to location 41, movement up
takes you to location 21 and movement down to 67. Of course, you
will need to increase the size of the array holding the map to hold

176 Adding the final touches

these extra numbers. Thus the second number in S% in the DIM
statement will need to be increased from 4 to 6. In addition you will
need to change the line which READs this DATA into the arrays so
that it too reads 6 items rather than 4. The main difference between
a two dimensional and a three dimensional game will be that two
extra lines will need to be inserted into the main control loop. These
lines will be very similar to the lines used to move the player north,
south, east or west. The two lines below can be used in any game
where the data has been changed in this way, although the line
numbers will need to be changed to suit your own program:

200 REM ★★go up*^
210 IF (B$="up" OR D$="go u") AND S%(P%,5)>0 THEN PRINT
"O.K.":P%=S%(P%,5)
220 IF (B$="do" OR D$="go d") AND S%(P%,6)>0 THEN PRINT
"O.K.":P%=S%(P%,6)

These lines don't, of course, print any message if the player
attempts to move up or down from a location where this is not
possible, although it shouldn't take more than a couple of minutes
to rectify this.

Don't forget, though, that you are using far more memory space
to store the array holding the map and this will reduce the number
of features you can pack into your game. Whether you write a game
incorporating these ideas or not is really determined by the plot of
the game. If it is set in a multistorey building, then you will probably
want to write your game in this way.

Commercial games

Although writing your own adventure is a challenge from which
you will get a great deal of pleasure, you can't really enjoy playing a
game you've written yourself. After all, you do know the solution!
Anyone interested in writing adventures will inevitably want to
have a go at playing somebody else's, even if it's just to get a few
ideas! The following list contains some of the adventures which are
available for Amstrad machines at the time of writing, although,
hopefully, many more will be available by the time you read this.
Your local stockist should be able to get hold of these games for you,
but if not, you should be able to find them advertised in many of the
computer magazines.

Level Nine Computing
This company have a large number of adventures available for most
of the major home computers.

Colossal Adventure
A suberb version of the game which started it all off. This is not a
game to be solved in a hurry and if you've never played an

Commercial games 177

adventure before, you can be sure of many months of pure
enjoyment.

Adventure Quest
An epic adventure which follows in the tradition set by Colossal.
This one is my own favourite in the middle earth trilogy, containing
some of the most fiendish puzzles to solve.

Dungeon Adventure
The final part of the middle earth trilogy. This game contains many
elements of the Dungeons and Dragons theme, although a know
ledge of this is not necessary to solve the game.

Lords of Time
This game is, quite simply, superb. In it, you play the part of a time
traveller who must enter the old clock and turn the cogs to travel
through time to many of the different ages.

Snowball
This game is probably the most impressive adventure you are likely
to come across in a long while. It contains over 7000 locations, a fact
which impresses me almost as much as the game itself. If you're a
science fiction fanatic, then this is the adventure for you!

Return to Eden
This is the follow up to Snowball and, although it contains only 240
locations, compared to Snowball's 7000, is the first graphics
adventure from this company. I must admit some disappointment
with this game. It is as difficult as any of their others to solve, but
they have changed the character set and it is, unfortunately, difficult
to read the descriptions on the screen. The graphics, too are
disappointing. Not that there is anything wrong with them, just
that they take so long to draw, that you've forgotten what you were
going to do. Fortunately, they can be turned off when you've seen
them once! If you can't wait for a graphics adventure, then this
could be just the one for you.

Emerald Isle
The second graphics adventure from this company. This one is a
little easier to solve than their other games and should prove to be
good introduction to adventures.

Melbourne House

The Hobbit
Originally written for the Sinclair ZX Spectrum, this must be the
most famous graphics adventure yet. The graphics in the Amstrad
version are second to none and the game sets the standard by which
all other graphics adventures will be judged. It is another excellent
adventure to cut your teeth on.

178 Adding the final touches

Interceptor Software
Interceptor have introduced a range of adventures for the Amstrad
in which the graphics show just what the machine is capable of. The
standard of the descriptions, however, is not up to the standard set
by Level Nine, but that is more than rectified by the speed and
quality of the graphics. One other thing in their favour is their cost!

Message from Andromeda
A visually stunning science fiction epic suitable for the novice
adventurer.

Forest at World's End
A mythical adventure. Although not all locations have graphics
associated with them, those that do are quite simply stunning! It is
not a particularly difficult game to solve and should make an ideal
first adventure.

Jewels of Babylon
In this game, you play the role of the sole survivor aboard a sailing
ship after it has been attacked by pirates. The graphics are again
excellent and the game seems a little more difficult to solve than
some of their others.

Heroes of Karn
Converted from the Commodore 64, this game has many of the
features of the other games in the range. Another good graphics
adventure.

Amsoft/Abersoft
Amsoft have released a version of the traditional Classic Adventure,
so we are fortunate to have two versions to choose from. Which one
you pick is a matter of personal taste. For my money, the 'Level
Nine' version has the edge, but only just!

Nemesis
This company has released several adventures for the Amstrad
featuring the character of 'Arnold Blackwood — Adventurer
Extraordinaire'. These include The Trial of Arnold Blackwood,
Arnold Goes Somewhere Else, The Wise and Fool of Arnold
Blackwood and New Angelique: The Grief Encounter. All of the
games are characterised by a sense of humour and are guaranteed to
have you puzzling over some of the strange problems.

Gilsoft
Whilst not an adventure, a book on adventures for the Amstrad
which didn't mention The Quill, would be failing in its duties! This
program takes over where my data filing system leaves off. Using
the utility, it is possible to create some superb adventures and can be
thoroughly recommended.

The Amstrad has proved to be such a popular computer with
adventurers that new games are appearing every day. The list above

Commercial games 179

will, inevitably, be incomplete and if I have missed a game out, it is
not intentional!

Playing the game

Most of this book has dealt with writing adventures, but little
mention has been made of playing them. Much of what's been said
about writing games will be of direct relevance to those who want to
play adventures, In addition, playing a few games written by other
enthusiasts should give you a few ideas for puzzles and guide you
into a new direction of exploration.

To the novice who has never played an adventure previously,
exploring the territory in a game can be quite a bewildering
experience. If you don't chart your progress by drawing a map as
you go along, you may soon find yourself going round in circles, or,
even worse, continually being killed in the same place. Drawing
maps of games written by others isn't always as easy as it sounds.
There are some perverted souls who delight in creating a world
where the normal rules of logic don't apply. In such games, you
may find yourself going north into a new room, but on going back
south again, find yourself in a totally unexpected location. This is
fine in a maze, but not in the main part of a game. If I come across
too many instances where this happens, I usually give up. Not, I
hasten to add, because I can't do it, but because I like games to be
logical and finding the solution to depend on my own skill rather
that on a chance element. My own approach when mapping out
somebody else's adventure is much the same as when mapping my
own. The major difference being in the numbering. Each time I
enter a new location, I add it to the map, place a brief description
along side it and give it a number. Fig. 16.1 shows you how I
normally cope with a game where normal logic is not obeyed.

NORTH IN A FOREST

Fig. 16.1 Constructing a map to help solve an adventure game.

180 Adding the final touches

How do you draw a map of a maze? This is a question often asked
by adventurers and is not an easy question to answer. Until you
have actually tried to map your way through a maze, you won't
realise just how difficult this can be, especially if the maze is in total
darkness! The easiest way of tackling this is to enter the maze
carrying as many objects as the game will allow. In each location you
enter, try dropping one of the objects so that each time you end up
back in that room, you will know exactly how you got there. If the
maze is too complex, however, you will soon run out of objects to
drop and your map may well end up in the bin. In the original
Colossal Cave, you were able to carry just enough objects to find
your way through the pirate's maze, but in the Level Nine version,
you are restricted to only four, making progress that much more
difficult.

The secret to a maze actually lies in a password made up of the
letters n, s, e, w, u and d (the usual directions), but of unknown
length and mixture. Once you have found out the right combination
of moves, you will be able to find your way through the maze with
no further difficulty, but if you are limited to carrying only three or
four items, finding the right combination can be rather more a
matter of chance than skill.

In the map shown in Fig. 16.1 the player can move north from
location 2 to reach location 1, but movement south takes him from
there to location 3. In addition, it is likely that you will come across
places where you will need to move by swimming, jumping,
crawling, flying or even waiting, adding these to your map can be
done by drawing wiggly lines as shown on the map.

As you progress through the game, slaying the odd dragon or
two, you are bound to come across the perennial problem faced by
all adventurers; that of vocabulary. Many authors are kind enough
to provide you with a list of words which the computer under
stands, or even a full guide to the syntax of the language, as in The
Hobbit. In most games, however, you are on your own and will
have to find out what the computer understands by trial and error.
Before starting the game, it's worth spending a little time trying out
the 'standard' adventure vocabulary to see which words are
recognised.

Does the game allow you to 'get' and 'drop' objects, or does it
expect you to try to 'take' and 'leave' them? Some games even give
you a choice! Is it possible to 'examine' objects which you are not
carrying? Do you have to type in the whole word or will the
computer accept just the first few letters ? Typing KIL DRA may
annoy the purist, but it is much quicker to type than KILL THE
GREEN DRAGON and makes for a quicker route through areas of
the adventure which you have previously explored.

One of the most important points to check is whether the
computer will allow you to save a partially completed game. This
really will save you time later (pardon the pun!), and any
commercial game worth its salt will incorporate this facility. To

Playing the game 181

make life easier for yourself, your best course of action is to regularly
save a game during play and then when you are much more familiar
with the plot, try to save a 'clean' game; that is one where you have
achieved as many tasks as possible in the smallest number of moves.
This aspect of time is really of vital importance in games such as
Colossal Caves where you are carrying a lamp which runs out. If
you have a tape with your best performance so far on it, it will allow
you to get further into the game without the inconvenience of
having to start from the beginning each time.

Playing an adventure game is, in many ways, similar to solving a
good crossword — you spend hours puzzling over a clue only to
find the solution staring you in the face. All you have to do is to read
the messages carefully, think of the obvious (and not so obvious)
things to do with the objects you have come across, and suddenly
the solution will hit you. Once you know the answer to a puzzle,
you'll wonder why you didn't think of it before!

The job of the programmer is to create puzzles which are
reasonably devious. Almost anyone can create a puzzle which is
impossible to solve, and when you come across a game where your
progress is zero, it will soon end up in the bin. A really good game
should allow you a fair length of rope and enable you to explore
many areas of the fantasy world without being killed in your first
few moves.

Yet another point to find out as soon as possible when playing a
new adventure is just how many objects you can carry at any one
time. Don't forget to look out for those objects in the game which
allow you to carry extra items, such as a pack horse, a shopping bag,
a tool box or a rucksack. In some games you may come across items
which you can wear and this often allows you to carry more. In fact,
it may be necessary for you to wear the object in order to complete
the game. The palace guards may not let you in unless you are
disguised as a soldier by wearing the uniform you found in the
cottage, or those alien goggles may allow you to read the strange
runes carved into the wall. The magic ring may make you invisible
or the rubber gloves insulate you from a nasty shock!

Many of the newer games allow you to enter instrucions in the
form of full English sentences such as GO IN AND OPEN THE
CUPBOARD DOOR, or TAKE THE RED TOOTHBRUSH AND
BRUSH YOUR TEETH. To a newcomer to adventures, this sort of
facility does seem to be much more 'user friendly' than the
traditional two word sentence input. If that were always the case,
however, many of the very best adventures wouldn't be very
popular at all!

Once you are fully accustomed to the constraints of two word
input, it is surprisingly easy to use and leads to far less confusion by
the computer of your exact intentions. If you type in a long sentence
and the computer fails to understand the first part of your
instructions, it may go on to complete your other instructions, with
disastrous effect, or it may just stop at that point. Imagine, for

182 Adding the final touches

example, that you have typed in KILL THE GREEN DRAGON AND
MOVE NORTH, but that you have forgotten to carry the sword
needed to kill the dragon. If the computer stops after trying to kill
the dragon and tells you that you haven't any weapons, things are
not too bad, but if it tries to move you north, then you will very
likely get killed. There really is nothing more frustrating than
spending three quarters of an hour making good progress in your
quest, only to get yourself killed by making a minor mistake. Of
course, if you have planned your journey carefully, you will have
regularly saved your position on tape or disc so that when you do
make a mistake, it is not a major disaster. Don't be surprised,
however, if the very first time you forget to save your position, you
get yourself killed by an evil Troll! If you are using a tape based
system, the time spent in regularly saving your position may seem
to be wasted, especially in the more complex games where the
routine to save a game may take several minutes, but if you try to
avoid it, don't say I didn't warn you!

If you are really determined to succeed and solve the game, it is
most important that you read the description of every location very
carefully and EXAMINE virtually everything you come across in
great detail, as you never know what you might find. Don't assume
that the objects you find have to be used in the most obvious way.
That screwdriver might be quite sharp on examination and it could
make an excellent weapon to stab that evil monster. That piece of
driftwood may make an excellent handle for an axe, if only you can
find the flint to go with it! Can you open that grate set into the wall,
climb the old oak tree, swim across the crocodile infested river or fly
on the back of the old eagle?

One trick which is to be found in many adventures is where
making an action in one room will have an effect somewhere else in
the game. This is sometimes known as the 'Pearl' trick and, if it is
used extensively within a game, can lead to confusion. In one recent
game, I have come across a large stone wheel and on trying to turn
it, have heard a distant rumbling, only to find that I had opened up
the snake pit further in my travels. Whenever you do come across
puzzles like these in a game, you should try mapping the game both
before and after trying out the puzzle to see what difference it really
does make.

Yet another method of writing adventures adopted by some
programmers is to divide the game up into a number of different
sections, each with its own set of problems to be solved before being
able to progress to the next section. In a sense, therefore, these
games consist of a series of linked mini-adventures, where progress
to the next one depends on your completing the previous game.
Watch out in these adventures for objects which need to be carried
from one location to the next. This is especially true if the game
won't allow you to go back to pick up the rope needed to build the
raft. In some of the recent games I've played, I've flown on a magic
carpet, crashed my plane on a desert island, floated on a log down a

Playing the game 183

river and jumped from a low flying aircraft using a large umbrella as
a parachute. There is certainly no going back when the plane has
crashed or the carpet flown away!

Finally, watch out for games in which the solution is to be found
from a play on words rather than a completely logical approach. The
pie man may be a mathematician or the mouse a person. This sort of
adventure will have you tearing your hair out at times and is
definitely not to be recommended for the beginner.

Getting to grips with BASIC

17 Getting to grips with BASIC

The three adventure listings in this book follow a very similar
pattern, based on a set of common subroutines. All adventure
games contain a number of standard features and I have attempted
to show you how you can adapt one adventure system to deal with
several different types of games. This is, however, not the only
approach which can be adopted when writing an adventure game.
The main advantage of adopting a standard format lies in the ease
with which a new game can be created. Once you've mastered the
basic ideas, however, you'll be only too eager to experiment with
alternative techniques.

Whichever method you choose to adopt, a modular approach
does help to make program development much easier and you
would be well advised to break your program down into a number
of short sections which can be thoroughly tested. Before examining
the programming details, however, we really need to take a closer
look at some of ideas underlying any adventure. The most
interesting and exciting area where different approaches can be
useful is in setting problems for the player to solve.

Problems involving objects

Objects in an adventure game can serve several different purposes:

1 Objects which can be seen by the player but not picked up at all,
although they may contain a clue written upon them or reveal a
second object when searched.
2 Objects which can be seen by the player and readily picked up.
These may be 'tools' for use later in the game.
3 Objects which can be seen by the player but can't be picked up
until the player has taken some specific action.
4 Objects which can't be seen at first. These may be hidden behind
or underneath some other object.
5 Objects which must be moved out of the way to progress further

184 into the game.

Problems involving objects 185

6 Objects which are dangerous and which must be eliminated or
the player will lose the game.
7 Objects which are described within the main description of the
location.

There are a number of advantages to be gained from keeping the
description of objects in a separate array from the main description
of the location. The main one being that it is easier to write the
coding for 'get', 'drop' and 'inventory' routines. That is not,
however, to say that it is better from the player's point of view.
Games in which there is no attempt to separate the description of
objects, directions of motion and locations can be very exciting to
play. Writing a program in this way is likely to provide you with a
major headache in separating the description of the object from the
description of the location and storing it in another array.

Searching through an element of a string array for the object in
question is most easily achieved by using the INSTR command.
Supposing, for example, that the description of location 21, held in
the array loc$(X), is

I am sitting in a chair at the side of the fire. A man with a gun stands
by the door and a knife lies on the table.

The player may well try to GET KNIFE and the first thing the
program would have to do is to find out if the knife is there. Before
being able to do this, the program would, of course, need to split the
player's sentence into two words. It may well be that the word
KNIFE is held in the variable word$ and the following line could be
used to search the description for the word KNIFE.

1000 X%=INSTR(loc$(X),word$)
1010 IF X%>0 THEN GOSUB 2000 ELSE PRINT "I can't see it here!"

If the word held in the variable word$ is found in the description of
the location, X% will store the position in the string where the word
is to be found, otherwise it would be zero. Thus line 1010 will print a
message that it isn't to be found if X% is still zero. You will, of
course, need to write a routine at line 2000 to deal with the action if
the object is found in the current location, and this will prove to be
quite a complex procedure. The main problem caused by including
objects within the main description of the location is in removing it
from the description when you pick it up. It's easy enough to
remove the word 'knife' from the location, but programming the
computer so that it removes the other associated words is going to
be very complex.

There are many other possible uses of the INSTR command in an
adventure game. One of the features of the method I adopted to
analyse the player's instructions is that it is easy to follow. At the
same time, however, it does tend to lead to a very long section of

186 Getting to grips with BASIC

coding which in turn is RAM hungry. A far more compact routine
can be achieved by storing all the instructions which can be
recognised by the computer within one string. This is a technique
widely used by adventure writers and is illustrated in the short
listing below.

100 REM ★★ input instructions ★★
110 INPUT"What do you want to do here";Z$
120 Z$=LEFT$(Z$,3)
130 A=INSTR("EATDRILOOPRAHELSHODROGETPUT",Z$)
140 ON A GOSUB X,Y,Z, ...

After the player's instruction is input, the computer looks to see
whether the first three letters of Z$ can be found within the string
containing words such as EAT, DRINK, LOOK etc. Should a match
be found, the variable A will contain a number greater than zero and
an appropriate subroutine will be called in line 140.

The routine to split and analyse a sentence is often referred to by
programmers as a 'parser', and the parser used here, although
efficient in memory usage, is far from tolerant of alternative inputs.
The parser, more than any other section of an adventure must be
planned very carefully so that the computer recognises the verbs,
objects and modifiers you want.

In any adventure, the contents of array elements are being
constantly changed and each time the contents are altered the
computer will store the new version alongside the old. Eventually
the computer's memory will become full and the computer will need
to get rid of all redundant messages, objects etc. This process is
called garbage collection and will cause the computer to hang up for
several seconds. Fortunately, Amstrad computers allow you to clear
the contents of an array or variable using the ERASE command:

100 ERASE E$
110 IF A=2 THEN E$="East" ELSE IF A=3 THEN E$="West"

In this chapter, I have introduced a few ideas which should enable
you to explore some of the other methods of doing things. There's a
lot to be said for experimenting with various techniques to find the
method which suits your own programming style. Whatever
method you choose to adopt to deal with standard sections of an
adventure such as GO, INVENTORY, GET etc., it's important to
make sure that the game is enjoyable to play. Playability can be
easily ruined if the parser fails to recognise many of the player's
intentions, and for this reason it is good practice to write the game in
such a way that the computer understands several alternative
words.

Graphics on the Amstrad 18

Amstrad computers boast some of the best graphics around. Of the
three modes available, MODE 0 offers the maximum number of
colours on screen at once, and although the resolution is not as high
in this mode the extra colours mean that you can create more
realistic pictures of the locations. Whichever mode you choose, the
screen layout will be identical, with 640 locations across by 400
upwards. In the highest resolution mode (2), each location refers to
one pixel, whilst in the lower resolution MODE 0, the pixels will be
larger.

(0,399)

Graphics

20

Fig. 18.1 Screen layout in MODE 0.

(0,0)

(639,0)

187

188 Graphics on the Amstrad

The 16 default colours available in MODE 0 can be changed using
the INK command. If you intend to write a program in which the
graphics are to work effectively on both colour and monochrome
monitors, you must make sure that the colours used differ in
density. It would be little use drawing a picture of a pastel yellow
house on a pastel green grass field with a pastel blue roof, as this
would show up as one shade on the green screen. The best way of
ensuring compatibility is to place dark colours next to pastel colours.

The INK command can be used to redefine any of the PEN/
PAPER colours in the following way.

INK X,Y

where X= the number of the PEN and Y= the colour chosen from
the chart below:

Colour of the INK

0 black 9 green 18 bright green
1 blue 10 cyan 19 sea green
2 bright blue 11 sky blue 20 bright cyan
3 red 12 yellow 21 lime green
4 magenta 13 white 22 pastel green
5 mauve 14 pastel blue 23 pastel cyan
6 bright red 15 orange 24 bright yellow
7 purple 16 pink 25 pastel yellow
8 bright magenta 17 pastel magenta 26 bright white

The important thing to remember is that when the computer is first
switched on, the PAPER colour selected will be zero and the pen
will be PEN 1. These numbers do not represent the actual colour,
but the number of the INK used. The best way to understand this is
to imagine a piece of paper and sixteen pens numbered from 0 to 15.
The pens can be filled with any of the 27 inks available. All of these
pens are initially filled with inks whose colours have been chosen by
the designers of the computer. The chart in your computer manual
gives the full list of the predefined colours. If at any time you wish
to redefine the inks to their default values, the easiest way is to use
the call

CALL &BC02

The colour of the border surrounding the paper can be changed by
setting the border to the ink colour desired, although in practice, it
isn't usually important to change the border in the pictures for an
adventure game. If you want to define one or more of the colours as

Graphics on the Amstrad 189

flashing, you will need to include the number of the two colours
after the INK number, e.g. INK 1,26,6 will change PEN number 1 to
display flashing bright white/bright red. In most adventures,
flashing colours will not be very useful.

In many locations in an adventure game, the picture can be
started by drawing the sky and ground and using this as the
background on which to build the rest of your picture. The most
useful colours for this will be cyan for the sky and a green for the
grass. Using just the default colours, this will mean using PEN
numbers 8 for the sky and 12 for the grass. There are many ways of
filling in large areas, but the simplest is to use two windows. Listing
1 illustrates one way of doing this.

Listing 1

10 MODE 0
20 WINDOW #1,1,20,1,10
30 WINDOW #2,1,20,11,25
40 PAPER #1,8:CLS #1
50 PAPER #2,12:CLS #2

The window command is used to define an area of the screen on the
TEXT axes. Its exact format is

WINDOW # stream number, left, right,top,bottom

Thus line 20 defines a window at the top of the screen whose paper
colour is defined in line 40 and in a similar way, the bottom window
is defined in line 30 and the colour in line 50. The window command
is probably the simplest way of drawing boxes on the screen,
although they may only be placed at the boundaries of the text
locations.

Pixel graphics

It is possible to tell the computer to display any of the pixels on the
screen using the PLOT command. The general format for doing this
is

PLOT x,y,col

where x = the x coordinate, y = the y coordinate and col = the
colour. If you intend to design the picture for a location in the game
by addressing each individual pixel, you will need a great deal of
patience and will probably start to run into problems with memory
shortage. The best way of planning your pictures is to draw a rough
sketch of your design on a piece of graph paper which has been
labelled with the axes of the screen locations. Programming the
computer to draw the picture will be much simpler and less
demanding of RAM if you can design it using boxes, triangles,

190 Graphics on the Amstrad

circles or ellipses. It's surprising how a picture built up entirely of
these shapes can give a lifelike impression of a location in a game. If
you are feeling more ambitious, you can always come back and add
the final details to the pictures when you're sure that the game
works with memory to spare.

There are a further three commands which are very closely related
to PLOT and these are summarised below.

MOVE x,y
MOVER x,y
PLOTR x,y,col

MOVE is used to move the cursor to the specified pixel on the screen
without drawing anything. This is one of the most useful commands
available because it tells the computer where on the screen to start
drawing the picture. MOVER and PLOTR are very similar to MOVE
and PLOT except that they move the cursor relative to the last pixel.
If for example, the cursor were at pixel 74,85 and you were to type
MOVER 10,0,the cursor would move 10 locations to the right to
position 84,85.

Of all the graphics instructions available however, the most useful
one of all is the DRAW command. This draws a line from the current
cursor position to the new position in the colour specified. Its
general form is

DRAW x,y,col.

Using this command, it's fairly easy to build up boxes, triangles,
circles and other assorted shapes.

Drawing boxes

A rectangle or a square is a very useful shape for building up
pictures of buildings. The short listing below shows how to build up
the outline of a rectangle.

5 MODE 0
10 MOVE 10,10
20 DRAW 400,10,1
30 DRAW 400,200
40 DRAW 10,200
50 DRAW 10,10

Notice that colour 1 need only be selected in the first DRAW
statement unless you wish to change the colour of the subsequent
lines. The same effect can be achieved using the DRAWR command
as follows:

Drawing boxes 191

5 MODE 0
10 MOVE 10,10
20 DRAWR 390,0,1
30 DRAWR 0,190
40 DRAWR -390,0
50 DRAWR 0,-190

In DRAW statements, where all numbers refer to the actual
coordinates, only positive numbers will work, whereas the negative
numbers in the DRAWR command imply movement backwards.

Having drawn the outline of the shape, how do you fill it in ? If
you own the Amstrad CPC664, you will be able to use the FILL
command by moving the cursor inside the box as follows.

60 MOVE 200,100
70 FILL 1

This will fill the box in with the colour 1. Do make sure, however,
that the shape you try to fill is completely enclosed or you will get
some very strange effects. For programs which are to be compatible
with all Amstrad machines, you'll have to adopt a different
approach to drawing and filling in a box. The following listing
illustrates one method of drawing a solid box on the screen:

10 MODE 0
20 FOR Y=10 TO 200
30 MOVE 100,Y
40 DRAWR 400,0,1
50 NEXT Y

Drawing a triangle

Many shapes such as mountains and roofs can be drawn using
triangles. The basic outline is easy to draw using just three lines, but
filling this shape in on the CPC464 is not as easy as on the 664. The
next two listings illustrate different ways of drawing the basic shape
of a house. The first listing draws the whole shape in one go,
whereas the second draws the roof as a triangle on top of the main
box.

Version 1

10 MODE 0
20 FOR Y=1 TO 200
30 MOVE 100,Y
40 DRAWR 200, Y,4
50 MOVE 500,Y

192 Graphics on the Amstrad

60 DRAWR -200,Y,4
70 NEXT Y
80 MOVE 100,200
90 DRAWR 400,0,5

Version 2

10 MODE 0
20 FOR Y=1 TO 170
30 MOVE 100,Y
40 DRAWR 350,0,1
50 NEXT Y
60 REM ★★ ROOF ★ ★
70 FOR Y=171 TO 271
80 MOVE 275,7
90 DRAW Y-110,Y,2
100 MOVE 275,Y
110 DRAW 660-Y,Y,2
120 NEXT Y

If you try out the two methods, you'll see that the second method
offers the greatest scope in that it allows you to draw the roof in a
different colour. The roof is, in fact, built up out of two triangles.
Lines 80 to 90 draw the first triangle and lines 100 to 110 draw the
second.

Adding windows and doors to your picture of a house is a simple
matter of drawing a few rectangles in the appropriate places. Why
not try adding a mountain in the distance as well ?

Drawing circles, arcs and ellipses.

These three shapes are very useful to the adventure programmer for
drawing cave entrances, railway arches, small hills, the Sun and
many other shapes. Unfortunately, Locomotive BASIC doesn't have
a CIRCLE command, although the manuals of both CPC464 and
CPC664 machines contain routines for drawing circles using the
DRAW and PLOT commands (pages F3.12 to F3.14 in the CPC464
manual and pages 58 to 60 in Chapter 1 of the CPC664 manual).

The main problem lies not so much in the routine for drawing a
circle, but in knowing how to use it within your own program to
obtain the effect you want. Using a circle routine to draw the Sun or
Moon is simply a matter of choosing the radius, the centre and
colour you want to use and using the routine from your manual. If
you want to draw a cave entrance, on the other hand, you will first
of all need to draw the floor and the outside of the cave and the
simplest way of doing this is to define two windows as discussed

Drawing circles, arc and ellipses 193

previously. All you need to do then is to draw a circle with centre at
the middle of the bottom of the screen (320,0).

A small hill can be drawn in a similar way by choosing the centre
off the bottom of the screen and selecting one of the green shades
for drawing. With a bit of imagination, you'll soon be able to adapt
the routine from your manual to help create many curved surfaces.
If you're unsure how to set about this, Refer to chapter 9 where you
will see how I've used an adaption of the listing in many of the
different locations of Snow White.

The main process of drawing the picture of a location in an
adventure are summarised below:

1 Draw the background (sky and floor).
2 Draw the main foreground objects in layers. Each layer is
superimposed on top of the previous one. In this way the house is
drawn on top of the background and the windows are drawn on top
of the house etc.
3 When you have the framework of your graphics, you should
then develop the text for your game.
4 Once the game is running correctly you can come back and add
any extra details to the pictures if there is sufficient memory left.

There are several other graphics commands which can be used in
Amstrad machines, but many of these are of little use in an
adventure. The TEST and TESTR commands for instance allow you
to test the colour of a pixel on the screen which is great for arcade
games but is of little relevance to an adventure. There are, however,
a few games appearing which are a cross between arcade and
adventure games and you may well find yourself adapting your
game to contain some action sequences.

In a similar way, user defined characters (UDGs) are usually of
more use in arcade style games. In Snow White, however, I
deliberately built up the graphics for the ghost using UDGs to show
you how animation can be added to an adventure. Adventures
generally don't contain many graphics built up of UDGs because
they do take up quite a lot of memory.

Index

Adventure 5
Amstrad 1
Arc 192
Arrays 22,28
ASCII codes 91

Boxes 190

Cassette 171
Circles 103,192
Climb 73,155
Codes 92
Colour 29
Commercial games 176
Control loop 41,43,111,113,140
Control (graphics) 95
Crowbar 79
Crucifix 78
Cut 155

Data 28,30-33
Data compression 174
Data files 87,136,167
Death 120
DIM 33
Disc usage 87,171
Drink 75,131
Drop 58,122,147

East 35
Errors 34,37

Fill 84,158
Fill (graphics) 93
Fire 151
Flowcharts 13,42,112,139
Full sentence decoding 174
Function keys 173

Get 54,120,144
Give 75
Go down 85,152
Goin 64,118,150

Go out 61,133,150
Go up 74,152
Graphics 26,95,104,187

Hobbit 93

Improvements 134
Initialising 107,137
Insert 157
Inventory 57,146

Jump 153

Kill 69
Kiss 133
Knock 126

Land 132
Load game 88,159
Locations 96-103,109
Lose game 51,154

Maps 15,16,19-21,94,161
Mode 29,96,114
Movement 26,35

North 35

Objects 21-23,110,137
Oil 82
OPENIN 89
OPENOUT 89
Out of Data error 34

Paddle 81
Pictures 93
Pixels 189
Plant 83

Play 124
Playing adventures 179
Plot 8,11,18
Pour 84194

Pray 63,126
Press 85,153
Print 87
Problems 184
Pull 66,154
Puzzles 25

RAM 35
Read 68,127
READ DATA 33,38,109,164
Ring 128

Sail 132
Salt 79
Sample run 18
Save game 86,158,168
Score 53,156
Search 70
Selling programs 90
Sling 79
Snow White 93,105
Sound 125,127
South 35

Spelling 38
Splitting sentence 52,122
Stab 130
Swim 80,119

Talk 68
Tape 171
Testing 36,59,62
Three dimensions 15,175
Triangles 191

Unlock 81,124
Up 35
Use 77

Vacuum cleaner 78
Vampire 22
Variables 24,29

Wave 67
Wear 65,149
West 35
Win game 189

195

[BOOKS FORÌ
AMSTRAD

COMPUTER
OWNERS

Working Graphics on the
Amstrad CPC 464 and 664-
James, Gee & Ewbank
Explains Amstrad graphics and
how you can use them. Covers
sprites, animation, computer
assisted painting, two and three
dimensional graphics, and
charts and graphs A practical
book that gives enough
information for you to convert
the programs for your own
purposes-or use them as they
stand All listings are taken from
working programs
Illustrated, 234 x 156mm,
192pp £7 95
085242 874 X
PRODUCT CODE No 170087

Applications for the Amstrad
CPC 464 and 664-
Garry Marshall
The book describes,
demonstrates and illustrates the
full range of useful applications
for the Amstrad computers
From word processors,
databases and spreadsheets to
problem solving; from 'bolt-ons'
like cassette and disc drives,
printers, plotters, joysticks,
light pens and mice, to
communications uses- Prestel.
Micronet 80, databases,
private bulletin boards and
Telecom Gold
Illustrated. 234 x 156mm,
128pp £7 95
0 85242 853 7
PRODUCT CODE No. 170011

Adventure Programming on the
Amstrad CPC 464 and 664-
Steve Lucas
The book to teach you how to
write your own adventure
programs, including developing
the plot, drawing the map.
and translating the objects in the
game into DATA statements
High-resolution graphics
and sound are also described,
and listings for three typical
adventure games are
also included
Illustrated, 234 x 156mm.
224pp £7 95
0 85242 856 1
PRODUCT CODE No 170044

Subroutines for the Amstrad
CPC 464 and 664-
Stephenson & Stephenson
The book to show you how to
put your Amstrad computer to
serious use More than 50 fully
tested subroutines in a wide
variety of areas-graphics,
maths, music, data processing
etc Major listings include a
3 graph function plotter, an
index compiler, and a music
sequencer-each being well
worth the purchase price of the
book in its own right1
Illustrated, 234 x 156mm,
224pp £7 95
0 85242 855 3
PRODUCT CODE No 170036

Assembly Language
Programming for the Amstrad
CPC 464 and 664-
A P Stephenson and
D J Stephenson
Clearly written and readable
introduction to Z80 machine
code on the Amstrad CPC 464
and 664 It explains binary and
hexadecimal arithmetic and
contrasts the pros and cons of
machine code against BASIC
The book includes a hex
loading program, for those
working without an assembler,
and the Amstrad Assembler/
Disassembler
Illustrated, 234 x 156mm,
160pp £7 95
0 85242 861 8
PRODUCT CODE No 170060

Available through good book shops and specialist outlets or from
ARGUS BOOKS LTD. Wolsey House, Wolsey Road, Hemel Hempstead,

Herts HP2 4SS. Telephone: 0442 41221
Please add 10% of the total cost ordered to cover postage and packing (minimum 50p)

ADVENTURE PROGRAMMING
ON THE

AMSTRAD
CPC464&664

Would you like to learn how to write adventure programs on
your Amstrad micro? Well here is the book to show you how,
whether you have a CPC 464 or 664. First it explains how to
develop a plot, how to draw a map of the game and how to
decide on the locations of the various objects. Steve Lucas then
shows you how to translate the game into DATA statements and
how to create DATA statements for the objects 'ladder', 'rope', etc.
The main control section of any adventure game consists of a
control loop which calls the various subroutines, and the book
explains how these routines are set up to deal with such features
as 'get', 'drop', 'unlock', etc. Throughout this section of the book a
full text only adventure game has been developed, which by this
time you're probably ready to play!

Amstrad machines have excellent graphics facilities which are
both sophisticated and easy to use. The second program, Snow
White, shows how these features may be incorporated within
your own program to create a game with a full high resolution
picture for each location. This game also shows how you can add
the final touches to a game using the Amstrad's superb sound
features.

The book closes with a look at data files. By saving the data for a
game on tape or disc, rather than within the program itself, it
becomes much easier to write a completely new game. The final
listing is a short program which creates the data file for A Journey
Through Space. When it is run, you are given the option of
changing the locations and the objects so you can create a game
of your own with minimum of fuss.

So there you are all you would-be Amstrad adventurers, here's
the book to start you off.

9 780852 428566

s
£
99
n
C3
en
99
O
O
SK
Tfi

https://acpc.me/

CPC

[FRA] Ce document a été préservé numériquement à des fins éducatives et d'études, et non commerciales.
[ENG] This document has been digitally preserved for educational and study purposes, not for commercial purposes.
[ESP] Este documento se ha conservado digitalmente con fines educativos y de estudio, no con fines comerciales.

	Adventure Programming on the AMSTRAD CPC 464 & 664
	Preface
	Contents
	Programs
	Why Amstrad?
	Introduction
	1 - Getting started
	2 - Writing the data
	3 - The main control section
	4 - Setting the puzzles: part 1
	5 - Setting the puzzles: part 2
	6 - Setting the puzzles: part 3
	7 - Setting the puzzles: part 4
	8 - Making life difficult
	9 - Snow White: part 1
	10 - Snow White: port 2
	11 - Snow White: part 3
	12 - Snow White: port 4
	13 - Using a data file to create an adventure
	14 - A Journey through Space
	15 - Creating the data file
	16 - Adding the final touches
	17 - Getting to grips with BASIC
	18 - Graphics on the Amstrad
	Index
	
✅ Raw HQ scan : Maxime CROIZER for ACME
✅ Cleaning/Restoration/Layout/OCR : ACME – https://acpc.me
✅ Thanks to Rafa CPCMANIACO for lending the book
✅ 2021-04-25

