
------------ ARGUS BOOKS-------------

APPLICATIONS
FORTH!

AMSTRAD
CPC4M&664

GARRY MARSHALL

Applications for the
AMSTRAD CPC464 & 664

Applications for the
AMSTRAD CPC464 & 664

Garry Marshall

□□□□S E00Q0

Argus Books Limited
1 Golden Square
London W1R 3AB

©Argus Books Ltd 1985
ISBN 085242 853 7

All rights reserved. No part of this publication may be reproduced
in any form, by print, photography, microfilm or any other means
without written permission from the publisher.

Phototypesetting by
Contact Typesetting Limited,
14 Stoneleigh Park Road,
Ewell, Epsom, Surrey.
Teiphone: 01-393 0998/9

Printed and bound by Whitstable Litho

Preface

What useful and worthwhile tasks can be carried out with an
Amstrad computer? This is the question that this book sets out to
answer.

Information can be handled in any of an unlimited number of
ways with the aid of a program to tell the computer how to
proceed. Word processing and the storage and retrieval of
information are among the most useful information-related
activities. The computer can be used to solve problems of almost
any kind. The methods that are required for a computer to do this
are rather different from those used otherwise. Some of them are
demonstrated here. A computer can be used to control other
equipment. The equipment can range from a printer, which is an
obvious essential for word processing, to a robot, the uses for
which are still being invented. Computers can also be used for
communications, and a whole range of new services is being
developed in this area. Giving a computer the ability to communi
cate allows it to be used as a sort of enhanced CB radio or for
accessing information and computer services that are based
almost anywhere in the world.

The applications for the Amstrad computers are described and
explained under four headings: software-based applications,
problem solving, hardware-based applications and communica
tions. Many of the applications that are covered are, in their
details, highly specific to the Amstrad computers because they
describe what can be accomplished with software or hardware
developed specifically for use with an Amstrad computer. The
other applications, while they can, of course, be carried out from
an Amstrad, could also be achieved with other computers,
because they depend on the use of standard equipment. The
Amstrad possesses the same sort of standard sockets to which
equipment can be attached as many other kinds of computers. In
this way, the applications consist of a mixture of some that are

tied to the Amstrad and some that are more general. When
tackling a particular application, there may be advantages,
perhaps in terms of its cost or of its performance, in dealing with
it in a way that is Amstrad-specific or that is general.

No matter what uses you may have in mind for your Amstrad, I
hope that you will find something of help in this book, and also
that you may find some ideas for further uses.

Contents

1 Software-based applications 1

What can the computer do? The major applications. Word
processing. Who can benefit from word processing? A word
processing session. Databases. A card index and a database.
Spreadsheets. Examples of using a spreadsheet. Other
applications. Summary.

2 The Amstrad software 25

Word processing with Amsword. The commands. Database. The
Commands. Spreadsheets and Easi-Amscalc. The commands.
Other software. Summary.

3 Problem solving 40

Networks and routeing. Grazing problems. How to number
pages. Classification and coding. Conclusions.

4 Hardware-based applications 70

Cassettes and disks. Printers and plotters. Joysticks, light pens
and mice. Robots. Educational robots. Personal robots. Other
equipment. Summary.

5 Communications 96

The hardware and the software. Applications. Prestel. Databases.
Bulletin boards. Telecom Gold. Summary.

Glossary of jargon terms 106

Index 109

Introduction

This book is about the ways in which you can use your Amstrad
computer. It is not about using it for playing games, but about
using it in ways which will be beneficial and genuinely useful.
The applications that are described are aimed at allowing the
potential of the computer to be tapped in the home. The word
that tends to be used for such applications is 'serious'. In a way, it
is accurate, but it should not be taken to mean that there is no fun
to be had from using the computer in these ways.

The applications in which the computer can be of immediate
value include storing information, for instance, about the activi
ties of the family and the situation in the home, in such a way that
any of it can be readily recovered, whether it is a forthcoming
appointment with the doctor, a recipe for a special occasion or a
list of what is required to restock the freezer. They also include
many activities that will be educational. These may complement
the school and college studies of a member of the family, or they
may provide a less formal up-dating of the skills of someone at
work. Attaching a 'turtle' to the family computer can allow a child
to use it as it would be used at school, but in an environment
where he or she has sole and uninterrupted use of it, as opposed
to the situation in school where even short periods of use may
have to be shared. With a small robot attached to the home
computer, industrial uses of computers can be investigated and
simulated, and ways in which it can be used to advantage in the
home can be explored. And there are also the unexpected
problems that inevitably crop up from time to time, which can be
solved as long as you know something about the special methods
for problem-solving that are used with computers.

In this book, the applications for the computer have been
selected in such a way that they are not trivial but are worthwhile
and, at the same time, are within the range of what can be
achieved with a personal computer. The underlying thrust is that

the computer should be able to enhance our lives. The applica
tions described in this book all show, to a greater or lesser degree,
how the computer can be used so that it does improve the quality
of our lives.

The first two chapters of the book deal with applications that
become possible by running the programs that can be bought for
the Amstrad computers. By running a program, the computer is
transformed from an essentially useless mass of electronics to a
machine that is configured for a particular task and, further, is
ready to carry out that task. The major programs that we examine
are for word processing, for storing information and for planning.
Word processors, databases and spreadsheets, as these types of
programs are known, are widely used commercially, but they
have a surprising number of uses in the home, and can provide
improved ways of carrying out existing tasks as well as being
tools with which new activities can be brought within the range of
what can be successfully accomplished. We examine a number of
such tasks and activities, and there are others waiting for you to
discover them.

The final two chapters are about the equipment that you can
attach to the computer to widen its range of application, and also
about how the resulting combination can be used to advantage.
We have already mentioned robots as one of the items that can be
connected to and controlled by a computer. Others range from a
printer, that will be essential if you use the computer for word
processing, to the 'modem' that is needed if you use the computer
to communicate over the telephone, either for passing messages
or for accessing the information that is stored in other computers
that are also connected to the telephone network.

One essential difference between the first two chapters and the
last two is that programs for Amstrad computers are specific to
them and, in general, will not run on another computer. In
contrast, the equipment that can be attached to the computer can
be attached to many other computers because it must be plugged
in at a standard socket, and most computers possess these
standard sockets. This leads to a distinct contrast between the
treatment of the applications in the two pairs of chapters.

The coverage of the applications that become possible by
running software is, in part, a description of how to use particular
programs for particular purposes. To provide a framework within
which these accounts can be placed, discussions of word
processing, databases and spreadsheets precede the treatment of
the specific programs. The general discussions describe the whole
range of what can be accomplished, so that the capabilities of the
individual programs can be compared with this to ensure that

they can be used to do all that you would like to do, or so that it is
clear if some feature that you might need is missing. If the item of
software discussed here does not meet all your requirements,
there are probably others that will.

In the chapters covering the use of the equipment that can be
attached to the computer, there is much less that is specific to the
Amstrad machines. This is simply because attaching, for exam
ple, a printer via the standard socket will give entirely the same
behaviour with an Amstrad computer as with any other having
the same socket. Similarly, accessing Prestel with an Amstrad will
be just the same, and will give the same results, as accessing it
with another computer or, indeed, not accessing it with a
computer at all but with the special Prestel adaptor.

The software chapters, then, spend a certain amount of time
dealing with the specific way that programs written especially for
the Amstrad are operated, although they also explain what can be
done with them. In the hardware chapters, the emphasis is much
more on what can be done than on how it is done, purely because
these applications are always carried out in the same way.

In between these two pairs of chapters is a chapter on using the
computer for problem-solving. Spreadsheets and databases, for
example, can be used to tackle many and varied problems. But,
life being the way it is, the next problem to come along is likely to
refuse to be one of them. For this reason, it is a real asset to be
familiar with the ways in which programs can be created for
carrying out activities and for solving problems. Computer-based
methods of solving problems are different from other methods,
requiring a sort of lateral thinking. The examples in the problem
solving chapter have been chosen to try and illustrate a range of
these methods. This chapter contains problems that are neither
trivial nor extremely difficult but which show off a range of the
solution methods that can be adopted when using a computer.

In this way, the book aims to show how programs can be used
to good effect by the family, how the computer can be program
med to solve particular problems and meet special individual
needs, and how the extra equipment that can be attached to a
computer can be usefully applied. In all these ways, the computer
can be used to enhance the life of the family that owns it, and so
be of real value in the home. The applications that are described
are intended to be of real use, and all the members of the family
can benefit. And if you create your own program for some
particular purpose, then the computer has become yours to an
even greater extent. While one purpose of this book is to show
that computers can be used for activities other than playing
games, you should find that these applications are also great fun.

Software-based applications 1

A computer is a general-purpose machine; but from the point of
view of its user, it is a 'blank' machine that is capable of nothing
until it runs a program. When it is running a program, it becomes
a special-purpose machine that is capable of performing a
particular task. And as soon as this task is completed another
program can be run to turn the computer into another special
purpose machine for performing another task.

It is the range of the software that is available for a computer
that gives it its versatility. It is possible for a user to write the
programs to make the computer carry out the tasks that he or she
requires of it, but this can be a far from simple task. To write, let
us say, a powerful and complex word processor requires a
considerable degree of expertise. Besides, the people whose main
interest in a computer, and whose reason for having it, is to use it
to accomplish some specific task, or tasks, will have neither the
time nor the inclination to program it themselves before it can be
used for each and every activity.

The benefit of having a popular and widely owned computer
such as the Amstrad is that a good deal of software is available for
it with which it can be used to carry out worthwhile activities.

In this chapter, we shall first of all look at the sort of tasks that
the Amstrad can help us to accomplish simply by running the
appropriate software. In the next chapter we shall examine
specific, but representative, items of the software that are
available for each of these tasks, describing how the software is
used and exactly what it can make the computer do.

What can the computer do?

The first questions that occur to people who have the opportunity
to use a computer for the first time are almost invariably
something like 'What can it do?' and 'What can I use it for?'. The i

2 Software-based applications

aim of this section is to answer these questions in general terms so
that, armed with an appreciation of what a computer can do, it
will be possible for the reader to begin to see how one of them can
be used to meet particular, individual requirements.

It is generally known that personal computers can be used for
education, although how this is done is not so widely known.
(Actually, this is not surprising, because even the experts in
computer-based education are far from certain about it!) Compu
ters are also used for playing games. But, based in part on the
knowledge that many offices successfully employ computers in
their daily operations, there is a growing perception that it must
be possible to use personal computers for commonly needed
activities in the home, so that they can remove some of the
drudgery and act to enhance life generally. It is fair to say that
there is a desire, and even a demand, for computers to be used in
this way.

To begin to explain how an Amstrad computer can be used in
this way, we must examine what a computer does. Basically, a
computer deals with information. It can accept information, store
it, process and manipulate it, and it can communicate it.

This is fine as long as we know what is meant by 'information'.
We can say that information is any data, facts, knowledge, or
intelligence that are of interest and use to us and which we can
pass to the computer for it to deal with. The information may take
the form of a table of numbers, a paragraph of text or a picture. It
is something that can be typed at the computer keyboard or, as
with a picture, something which can be described from the
keyboard. There are other ways for the Amstrad to acquire
information but, as we are dealing with the use of the computer
when it is doing nothing more than running a program, we will
not mention them for the moment.

Some examples will probably help to illustrate what is meant by
information and, while giving them, we can also describe some of
the ways in which the computer can handle information. If the
computer is to be used to create documents, whether they are
memos, letters or books, it must be able to accept text and so, for
this activity, the basic information, in the sense that this is what is
typed at the computer's keyboard, consists of letters and
punctuation marks. A program that enables the computer to
Create documents is known as a word processing program. It
must be able to store the text, character by character, as it is
entered and then to manipulate it so that the letters can be
combined to give words, and then sentences and paragraphs. It
must then arrange these various assemblages of letters so that
they appear neatly on the computer's display screen and, if it is

Software-based applications 3

required, on paper when the document is printed.
If we want the computer to keep information for us in such a

way that we can recover it as and when we need it, then it can do
this. Suppose that in a large family, the computer is used to keep
the details of all the children's medical records, including their
illnesses, their inoculations, their next appointments and so on.
The information in this case consists of words, sentences,
numbers, dates and much else. A program that can hold this sort
of information is known as a database. It must be able not only to
store the information but also to allow it to be recovered. This
means that it must be able to associate items of information that it
holds while taking advantage of the associations. For example, to
find out which children have had mumps, the program must
search its store for any occurrences of 'mumps' and then report
the names of the children associated with these occurrences. To
find if there are any doctor's appointments scheduled for today, it
must search for occurrences of today's date and then report the
associated appointment details.

As a third example, we can use the computer to keep the
family's financial records. In this case, the information will be
numbers that represent income and expenditure. The program
must store the numbers and then perform arithmetic operations
on them, such as subtracting expenditure from income to give the
balance remaining. A spreadsheet is one kind of program that can
accept and display the sort of table of numbers that is needed for
this, and it can also perform the necessary arithmetic operations
automatically.

The examples that we have given show that programs for
handling information, no matter what its form, all conform to the
same broad pattern and, in particular, must have the following
three stages:

1 The program must enable the computer to accept information,
usually from the keyboard, and store it. The information may
consist of numbers, letters or facts. Without some information
stored in it, so that it has some raw material to process, the
computer can do very little.
2 The program must then tell the computer how to manipulate,
or process, the information that it has been given. The way in
which the information will be processed depends on its type.
Arithmetic operations will be performed on numbers; letters will
be combined into words, words into sentences, and so on. Facts
will be scanned and searched to see if they match an item that
someone is looking for.

4 Software-based applications

3 The program must tell the computer how to communicate the
results of what it has done. It is fruitless for the computer to
accept and to process information unless it communicates to us
the results of what it has done. The results will usually be
displayed on the screen, although other equipment can be
attached to the computer through which it can communicate with
us in any of a variety of ways. The form in which the computer
communicates its results is extremely important, for it can make
them easy to understand or very difficult. Word processors and
spreadsheets communicate their results most effectively, because
a great deal of care has been spent on the parts of these programs
that deal with the presentation of results. There is no need to
present information in a certain form just because it was originally
entered in that form. It may be much easier to understand the
significance of a set of numbers, for example, if they are
presented as a graph rather than as a table of numbers.

We can summarise all this by saying that a computer with the
appropriate programs can carry out all the information-related
tasks that occur in the home. It can keep the family accounts. It
cannot rock the baby to sleep, although if you attached a robot to
the computer and had a program that was the equivalent of a
lullaby it could do so. It cannot spend your money, although with
equipment that connects it to the telephone it can enable you to
order goods from a shop without ever leaving home. We shall
examine the applications that become possible after attaching
extra equipment to the computer in Chapters 4 and 5, but for the
moment we are concerned only with the information-related
tasks that can be performed with a computer and the appropriate
program.

The major applications

In this section, we shall look at the main information-related tasks
for which the Amstrad can be used in the home. These are word
processing, using a database and using a spreadsheet. We shall
examine each in some detail, and then discuss who can benefit
from them.

Word processing
We can say that word processing is using the capabilities of a
computer to store, process and communicate text. The computer
must do this in a way that satisfies anyone who has to write
words, and so must make it possible to create items as diverse as a
memo, a document of two or three pages, or a book. The

The major applications 5

computer itself will carry out the same fundamental operations as
it always does, whether it is being used to process words, to
perform complex numerical calculations or to create graphics. As
we have seen, it is by running a word processing program that it
acquires the ability to accept the text that is typed at its keyboard
and is then able to recognise words, sentences, paragraphs and
pages in that text so that it can perform actions in which these are
treated as basic units.

The computer cannot understand the text that is entered, and it
would be to exaggerate the power of a word processing program
to think that it gave the computer this ability. It could also lead to
expecting more from a word processor than it could possibly
deliver. A word processing program simply has in-built rules that
allow it to recognise words, sentences and other linguistic units.
One of these rules is that several consecutive letters followed by a
space form a word. It is the 'trick' of being able to recognise that a
space terminates a word that allows the word processor to
distinguish a word. Another rule is that a word can end with a full
stop. This will be the last word in a sentence, and so the word
processor recognises a sentence as a number of words, the last of
which ends with a full stop. There must be other, similar, rules to
cover the use of question marks and exclamation marks.

A word processing program allows you to type at the keyboard
just as you would with a typewriter. Pressing a letter key by itself
gives a lower case letter. Holding down a SHIFT key while
pressing a letter key gives a capital, or upper case, letter. The text
is automatically stored in the computer's memory and is also
displayed on the screen as it is typed. Storing the text in the
computer's memory allows it to be processed or manipulated in
any of a variety of ways which will vary with the particular word
processor that is used, although there are certain operations that
are provided by almost all of them. They allow alterations to be
made to the text that has been entered, by deleting, inserting or
replacing letters. This means that spelling mistakes can be
corrected, for example. They also allow a block of text to be
identified so that it can be deleted, copied or moved. This permits
a larger amount of text to be treated as a single unit so that
paragraphs or pages can be deleted or moved within a document.

The word processor also automatically arranges the text so that
it is always neatly presented. The precise arrangement can be set
by the user. The length of the lines can be given, as can the
positions for the left and right margins and the indentation
arrangement at a new paragraph in the text. Many word
processors can display text on the screen, as it is typed in, in
exactly the manner that has been prescribed. When printed on a

6 Software-based applications

printer attached to the computer, it will appear in precisely the
same form. This means that a document can be prepared and
then checked on the screen to ensure that it is perfect in every
way. It need not be committed to paper until both its content and
its presentation are completely satisfactory. When the document
is ready for printing, it only remains to issue the appropriate
command.

It is stating the obvious to say that the text must be typed in
before it can be processed by the word processor, but it is worth
pointing out that the better the user is at typing, the faster the text
can be entered. This brings out the importance of the 'proper'
keyboard that is a feature of the Amstrad. It is comparable to the
keyboards found on electric typewriters in its keys, the action of
the keys and the comfortable angle at which the keys are
presented. It will allow a trained typist to type just as quickly as
on a typewriter, and it will also make it possible for the unskilled
typist to reach a respectable standard quite quickly. But the
untrained typist should, from the outset, try to learn to type
properly. The 'hunt and peck' style of keying may be adequate for
short sessions at the keyboard, but it will never be good enough
for a word processing session of any length and, once acquired, it
is a habit that is not easy to lose.

A further point that can be made is that, although we are
probably accustomed to thinking of a document as something to
be printed on paper, when using a word processor paper is not
really needed, either for the preparation of a document or for its
communication. Once a document is prepared it is more conve
nient to store it on a cassette or floppy disk than on paper. And
because the computer can be linked to another machine by the
telephone and the appropriate equipment, a document can be
passed from one to another in electronic form. The receiving
system can display the document on its screen and can store it, so
that the document can be communicated without the need to
commit it to paper at any stage. In this way, the word processor
gives its users the ability to produce perfect documents and to
communicate these documents as 'electronic mail' without the
need to involve paper in the process at any stage.

Who can benefit from word processing?
Word processing makes the creation of documents easier in
various ways, and these ways can benefit different kinds of users
to different extents.

The speedy and straightforward production of accurate, even
perfect, documents is one advantage of word processing that can
benefit all its users. Any corrections and amendments can be

The major applications 7

made before the document is finally printed. The appearance of a
document can also be enhanced by using a word processor's
ability to underline words, to emphasise words by printing them
in heavier type than the others, to place headings centrally on a
line and to arrange the columns of a table in alignment. This
allows the production of documents of a quality and style that any
user of word processing may consider to reflect his or her
aspirations.

When typing a letter, its format can be altered after the text has
been entered to ensure that it fits neatly on the page and does not
require, for example, a final page consisting of perhaps a single
line and a signature. The word processor can perform the
rearrangement of the text automatically after being directed to
make the line lengths in the document a little greater. All users of
word processing will benefit from being able to make adjustments
of this kind.

Word processing also brings a very real benefit to anyone
producing letters that basically consist of standard sentences and
paragraphs drawn from some fixed repertoire. The standard
repertoire can be stored on a cassette or disk, and then any letter
can be produced simply by recalling the paragraphs needed to
make it up and placing them in the right order. There is no need
to type each letter individually. Any small changes that may be
needed in a particular letter can be effected by using the word
processor's editing facilities. It is possible to go further, because
names and addresses that have been stored on a cassette or disk
can be recalled to address the letters.

The use of standard material to compose letters is much used in
business by, for instance, lawyers when producing legal docu
ments and estate agents advertising properties. It can be equally
useful in the home for things like standard requests for advertis
ing brochures and 'thankyou' letters.

The authors of books and magazine articles, and students
writing essays, will be among those familiar with the process of
creating polished text after amending and refining several hand
written draft versions. The process involves producing a first
draft, and then proceeding to a second by crossing out parts,
inserting others, and perhaps cutting out sections to move them
by pasting them in somewhere else. When the whole becomes too
untidy or just unreadable it must be rewritten. The entire process
may then have to be repeated to give another draft. This is
extremely time-consuming, and it leaves the writer high and dry
if, having produced a further draft, he considers that it is worse
than an earlier one. With a word processor, the amendment,
revision and polishing of a document can be done much more

8 Software-based applications

easily. There is never any need to retype a document as the word
processor's editing functions ensure that, as one version is
converted to the next, the new version is always neatly displayed.
But the current version of the document can always be saved, so
that if the result of revising it is not an improvement, then the
new version can be discarded and the original recovered.

Anyone with a need to write polished text can benefit from this
way of using a word processor. Those who have become
accustomed to working with hand-written or typed drafts may
take some time to adjust to the new ways of working that go with
word processing, but the almost universal experience of those
who have tried is that, once they have become accustomed to it,
the use of a word processor is a much more convenient and rapid
way to create text that expresses what they want to say.

A word processing session
This section gives a description of a typical word processing
session with a view to showing what happens in practice. Word
processing has its own terminology, and some of it will be
introduced in the course of the description.

If you have some text that you want to turn into a document,
you can sit down at the keyboard and type it as soon as your word
processing program is running. Your text will appear on the
screen as you type it. Nothing unexpected happens until a line on
the screen becomes full. Then, the first word that makes the line
of text too long to fit on the screen is automatically positioned at
the beginning of the next line. This is known as word wrap. It
should be stressed that there is no need to press the ENTER key at
the end of each line of text as the equivalent of the carriage return
on a typewriter; the word processor handles this itself. In fact, it is
wrong to press ENTER for a line ending because it signifies
something else as we shall see in a moment.

When a line is filled with text and a new line is started, the
word processor also adjusts the line that has been filled so that its
final word finishes exactly at the end of the line. In this way the
document is given a neat vertical margin at the right as well as
having one at the left which it would even when using a
typewriter. This process is known as justification. It is achieved
by inserting extra spaces between the words on a line to push the
last letter across as far as is necessary. But the spaces are inserted
with care: they are positioned in a symmetrical way so that their
presence, while not drawing attention to itself, produces a
pleasing appearance.

Continuing to type gives further lines, all of which are treated
in the same way. The end of a paragraph is indicated by pressing

The major applications 9

ENTER. In response to this, the word processor automatically
creates the gap between paragraphs and makes the indentation
for the beginning of the new paragraph. This is part of the word
processor's document formatting: the positioning of the left and
right margins and the line spacing are other aspects of it. At all
times the document is displayed fully formatted on the screen as
it is being entered. This shows the user the document that is
being prepared in exactly the form in which it will be printed if it
is committed to paper.

The word processor provides its users with a particular style of
formatting by default. If the user prefers a different style, then
any aspect of the format can be altered by giving the appropriate
command to the word processor.

When sufficient text has been entered, the word processor will
indicate that the end of a page has been reached and will start on
a new one. The final document will be divided into these pages,
which can be numbered, given a header and given a footer. A
header is a line of text to be placed at the top of each page as with
the running title that is found at the top of every page in many
books. The footer, correspondingly, is a line of text to be placed at
the bottom of each page.

If a word or phrase needs to be underlined or emboldened at
any point in the text, this can be done by giving the appropriate
direction to the word processor to cause it to use the required
style. From then on all the characters that are entered will be
displayed in this style until you indicate that you no longer want
it or until you select another style.

When the entire document has been entered, or perhaps after
typing only a certain amount of it, you will want to go back to
check it. You can then ensure that you have typed everything
correctly, and see whether there are any spelling mistakes,
whether you want to make any changes and if the appearance of
the document is to your liking. The process of correcting and
amending a document is know as editing, and is one area where
the word processor really shows to advantage over a typewriter.

If your document is shown on the screen in its entirety, small
amendments, such as are needed to correct spelling mistakes or
to make small insertions, can be made after using the cursor
movement keys to move the cursor to the position on the screen
where the change is needed.

Having done this, the letter immediately to the left of the cursor
can be removed by pressing the key for deletion. A word can be
deleted by positioning the cursor at its left and deleting its letters
one by one. Text can be inserted at the position of the cursor,
thereby adding it to the document, just by typing it. It is also

10 Software-based applications

possible to make the text that is inserted replace, or over-type, the
existing text. While any editing operation is in progress, the word
processor re-formats the text at once to take account of the
change.

If the document is too large to fit on the screen, the screen acts
as a 'window' through which a part of the document can be seen,
as shown in Figure 1.1. The screen window can be moved up and
down the document in order to bring different parts of it into
view. (Looking at it in another way, you could say that the
document is scrolled up and down under the screen window.)
Since a part of the document can be edited only if it is being
displayed, a large document is edited by first bringing the part to
be edited into the display window and then proceeding as before.
To make substantial alterations to a document, such as deleting
large blocks of text or moving a paragraph from one position to
another, it is necessary to give the appropriate command to the
word processor. Similarly, if the format of the document is not to
your liking, it, too, can be changed after giving the necessary
commands.

Screen

Document held in memory

Figure 1.1 The word processor's screen as a 'window' on a document

The display maintained on the screen by a word processor
usually shows not only the formatted text but also a certain
amount of information about it. It shows the page and the line on
which the cursor is situated so that you can always keep track of
your position in the document, even during the most tortuous
editing session. The position of the cursor along the current line is
indicated on the ruler line. The ruler appears immediately above

The major applications 11

or below the displayed text, and also shows the positions of the
left and right margins and of the tab stops. The number of words
in the text may also be shown.

When you have edited your document and are satisfied with its
state, you will want either to save it on a cassette or disk, or to
print it. Either can be done by giving the associated command.
Before giving any command it is first necessary to enter a special
mode so that the word processor will know that you are issuing
commands rather than typing text for it. On entering the
command mode, a menu of commands is often displayed from
which one may be selected. The procedure for saving or printing
a document, then, is to enter command mode to display the
required command, and to issue the command for saving or
printing. The commands may require you to give more informa
tion, such as the name of the file in which the document is to be
saved, but you will be prompted for any information that you
should give.

The range of commands possessed by a particular word
processor gives a very good indication of its general power and
capabilities. You will find that you do not usually need all of
them. The commonly used ones, such as those we have
mentioned and a few others, will be sufficient for most of the
time. But it is a good idea to be aware of all the commands, for if
you are not, you may not appreciate that your word processor is
quite capable of fulfilling some unusual task, particularly when
the need for it first arises.

Databases
A database is an organised collection of data. It is also something
more than this, because data that is collected simply for the sake
of it has no particular value: it must be possible to make some use
of it. This means that the contents of a database must be
organised so that we can recover them to make use of them and,
what is more, recover them in any of the ways that we may need
to. Operations typical of those that we may want to perform to
make use of a collection of data are to select particular items from
it, to search it for any items, or collections of items, that meet a
specified condition, to update some of the items in it, and to sort
the items into a special order.

The data to be placed in a database can be organised,
essentially, by ensuring that all the entries are structured in the
same fashion when they are placed in it. This structure should
reflect, and even typify, the natural structure of the items that are
recorded as entries. Using a standard structure ensures that the
entries in a database all record instances of the same sort of item.

12 Software-based applications

This gives a coherence to the database not only in the way that it
records items but also in the type of items that it records. A well
thought out structure will also serve to avoid any redundancy and
duplication in the data that is stored in the database.

A database program can be of benefit to just about anyone, for
we all have a need to store and retrieve information of some kind.
Typical uses at the personal level range from cataloguing the
details of a stamp collection or an accumulation of recipes,
through keeping a record of the contents of the freezer, to
keeping the details of all the financial transactions relevant to
one's annual tax return and running an appointments diary.
Activities of kind usually associated with business, such as
keeping customer records, maintaining address lists and stock
control are all examples of applications that can usefully be
adapted for use in the home, and not just for running a business
from home. Address lists will be useful when sending the cards at
Christmas; a record of the personal details of friends and relations
can be used as a much more convenient replacement for an
address book, and to ensure that birthdays are not forgotten; a
small stock control program could automatically produce the
shopping list each week.

When databases are used for these kinds of purposes, the ways
in which the items in the database may need to be accessed will be
broadly the same in all cases. When using a database to keep the
details of a collection of recipes, a typical requirement might be to
display the details of a particular recipe, or to find all the recipes
for a beef dish for two people. A database holding data for an
appointments diary will need to be able to locate a date and to
display any appointments for that day. A database that is used for
a tax return ought to be able to perform arithmetic operations on
some of the entries, such as adding up all the items of income, for
example. When used to keep a record of the contents of the
freezer, it will be necessary to update the quantities held. If the
levels at which items should be re-stocked are also held in the
database, then re-ordering can take place automatically and
without fail whenever it becomes necessary.

A database of names and addresses can be used to print its
information on envelopes to address them. If the contents of a
database containing information about friends and relatives can
be passed to a word processing program then it can be added to a
standard letter so that individual personalised letters can be
produced for each one. By recording other information about
each individual in the database it will be possible to send letters to
a particular group of them. In this way letters can be sent to only
the children, for example, by making the database perform the

The major applications 13

task for an individual only if his or her age is below a certain
figure.

From this discussion, we can see that a database program has
two distinct parts. The first allows the data to be entered. The
second allows the user to access the data in any way that may be
required. In the entry phase, the program should allow the user
to structure the entries in a way that is suited to the application.
When it comes to making use of the data in the second phase, the
program should provide for all the operations that the user is
likely to require. These include, as we have seen, selection,
searching and sorting. The database program should provide
commands for all of these operations. In addition, if it is to be
thoroughly useful, it should allow its users to modify these
commands and even to design their own commands, for even the
most ambitious program cannot anticipate every need that may
occur. In general, we can say that the fewer restrictions a database
program places on its users in the ways that they enter and
retrieve data, the better it is.

As the final point in this introduction to databases, we can
illustrate how a database program can give a considerable
advantage over a collection of data presented in conventional
fashion. Almost every house in the country contains a database,
although it is printed on paper, in the form of the details of the
week's television and radio programmes. This is a database in the
sense that it is an organised, coherent collection of data about
television and radio programmes. From the printed version, it is
easy to find the programme that is on at a particular time, not
quite so easy to find at what time a particular programme will be
shown, and even less easy to find what programmes of a
particular kind will be shown and when they will be on. But if the
database were stored in a computer rather than being printed on
paper, any query could be answered with equal ease. It would
only be necessary to enter the query, no matter what it was, and
the answer would appear straight away.

A card index and a database
By examing how information is stored in a card index system and
subsequently recovered from it, we can begin to see how a
database program operates because it is used in an entirely
analogous fashion. Using a computer, rather than a card box full
of file cards, to store the database makes it much quicker and
more convenient to recover the information, but the principles
underlying the use of both systems are the same.

To deal with a concrete example, suppose that a family keeps
records showing details relating to the health of each child in the

14 Software-based applications

family, and that for each child it is decided to record the following
items of information: the child's first name, sex and age, the
diseases that the child has had, the inoculations that he or she
had, any forthcoming appointments, and finally any comments
that may be relevant. For this purpose a file card such as the one
shown in Figure 1.2 could be designed. Each card would carry the
details of one child and, depending on the size of the family, the
card box would contain a larger or smaller number of cards.

Figure 1.2 A file card to hold a child's medical record

The information to be stored about each child has been
structured by deciding carefully which details it is important to
record. All families will have different ideas about this, and it is
clear that other items can be placed on the card just as easily as
the ones that have been decided on, and that any item can be
crossed out if it is no longer important. But time spent on getting
the layout of the card right in the first place will be well spent. It is
also obvious that a file card carrying the details of a stamp in a

The major applications 15

stamp collection would not be kept in the same card box as the file
cards containing a child's medical details. It would be placed in a
separate box kept for the stamp collection and which would be
full of cards each carrying the details of a stamp. The situation
when a number of card boxes have each been filled with their
own type of cards can be represented as shown in Figure 1.3.

Mumps
INOCULATIONS

Smallpox Whooping Cough
APPOINTMENTS

17 May
REMARKS

Health is good

Figure 1.3 Several files, each containing record cards

Once the details of each child have been entered on a card, and
all the cards have been placed in their box, the data entry stage
has been completed and the database has been created. It can
then be examined to recover information about children's medical
details as it may be needed. The children who have had mumps,
for example, can be found by flicking through all the cards in the
box and noting the 'first name' on those for which the entry
against 'diseases' includes 'mumps'. The girls with medical
appointments in the next week can be found by flicking through
the cards and noting those on which the entry against 'sex' is
'female' and the entry under 'appointments' contains a date
between those of the beginning and the end of the week. Any
child with a particular allergy could be found by searching for the

16 Software-based applications

cards with appropriate remarks under 'remarks'. The family
could decide to sort the cards into order using the alphabetical
order of the first names to order them, or perhaps using the
decreasing order of the ages to order them with, as a secondary
consideration, females preceding males of the same age.

These operations will take some time involving, as they do,
scanning all the cards. The sorting will be particularly lengthy as,
besides scanning, it involves re-ordering. Although a computer
database will operate in essentially the same way when it carries
out these operations, the computer's speed ensures that the
operations are performed much more quickly. In addition, the
computer is doing all the work instead of us. (It can't drop the
cards, either.)

When using a database program, the program first allows us, as
the equivalent of designing a file card, to design the format of a
record. When the format has been designed records can be
entered, and this corresponds to filling in filing cards. Each item
of information in a record is known as a field of a record, and is
analogous to one of the entries on a card. When a record is
entered it is stored in the computer's memory. A collection of
such records is known as a file. With reference to Figure 1.3, a file
is obviously the equivalent of a box of cards. And just as we can
have a box full of cards that carry the details of one child's medical
record and another box full of cards each carrying the details of a
stamp, so a database program can be used to create various files
each of which contains records designed specially for it. When a
file has been created it can be permanently stored on a cassette or
disk.

Spreadsheets
By running a spreadsheet program the computer provides its
users with the electronic equivalent of a pencil, sheets of paper
and a calculator for preparing tables and performing calculations
on their numerical entries. The entries in the table can be
numbers, text to provide headings and labels, and calculations
involving the numbers in the table. After altering one value or
another in a table, the effects of the changes will automatically be
taken into account in the calculations and the new values
displayed. In this sense the spreadsheet is an 'electronic work
sheet'. Its advantages when compared to pencil and paper
working are those of speed and convenience, plus the abilities to
handle large amounts of data, and to perform calculations on this
data with ease. By allowing the rapid and direct investigation of
any alterations that are possible in a given situation, but

The major applications 17

particularly in a complex one, the spreadsheet becomes an ideal
tool for forecasting and planning.

The user of a spreadsheet program is presented initially with a
blank sheet. The sheet is structured as a table, providing a large
number of positions that are arranged in rows and columns. Each
position is known as a cell, and an entry is placed in a cell simply
by moving the spreadsheet's cursor onto that cell, typing the
entry and pressing ENTER when it is complete. The entries
themselves, as we have seen, can be numbers, text or a
description of a calculation involving other numbers in the table.
But, just by placing numbers and text in the appropriate cells, a
table such as the one shown as Table 1.1 can be prepared. The
headings and labels for the table will be entered as text, and the
entries in the body of the table as numbers.

Table 1.1 Family budget for one quarter

Family budget (£)
Income Expenditure

Savings Bills

Jan.
Feb.
Mar.

200
200
200

120
180
140
100

Water
Electricity
Gas
Rates

Totals 600 540
Balance 60

The rapid and convenient way in which a table can be prepared
only begins to hint at the spreadsheet's possible usefulness. Its
ability to hold a formula describing a calculation in any of its cells
is one factor that helps to make it such a useful tool. The formula
will make reference to the contents of other cells in the
spreadsheet but, when a formula is associated with i cell, the
spreadsheet does not display the formula itself in the cell, it
displays the value of the formula. This can be a help even in
preparing a table as small as the one in Table 1.1, where the totals
are the sums of the numbers in the columns above them, and the
balance is the difference of the two totals. With a large table it is
invaluable.

To prepare Table 1.1 by using formulae, each time the cursor is
positioned on a cell where a total is to be displayed, we can enter
a formula such as 'sum of the numbers in the column above'. For
the balance, we require a formula such as 'total of the savings -
total of the bills'. Of course, in practice a spreadsheet will have its

18 Software-based applications

own way of expressing such formulae, and they will be more
compact than the forms we have just given.

Table 1.1 could be prepared just by entering numbers and text,
but this gives a once-and-for-all table that serves its purpose, but
only that one purpose. If as many entries as possible are formulae
then we have a much more flexible table, because when a number
in the sheet is changed, the values of the formulae change
correspondingly. No matter what figures are placed in the table
for Savings and Bills, the spreadsheet automatically calculates the
figures for the Totals and Balance.

AH spreadsheets have the ability to update automatically the
value displayed in a cell with which a formula is associated
whenever a change is made to any of the cells involved in a
formula. This means not only that the calculations are left to the
spreadsheet, which will do them more reliably than we can, but
also that all the consequences of a change are calculated without
fail to be displayed at once.

When Table 1.1 is prepared with the fullest use of formulae, it
can be used to present any quarterly budget. All that is necessary
is to place the figures for the Savings and Bills in their two
columns. In this way, it provides a general model for a quarterly
budget.

Creating Table 1.1 with the help of formulae, also allows it to be
used to investigate the effects of different figures in the columns
where numbers, or data, are entered. If the amounts of the bills
were to rise, for example, it could show the resulting balance, or
could be used to find the savings that would be necessary to
maintain the balance at the same level. This illustrates, in a small
way, that a spreadsheet is an ideal vehicle for investigating the
effects of changing data values and so for planning. It will provide
immediate responses to the 'what if?' type of questions that often
need to be answered when planning ahead to prepare budgets
and forecasts.

In fact, with a spreadsheet it is possible to create a model of any
of a wide range of things from the household finances through
some proposed enterprise to an investment portfolio. Their
possible future behaviour can then be examined quantitatively,
and sensible plans for the future can be prepared with this
analysis in mind. The creation of a model requires a decision
about which entries are to be provided initially as data, but its
essence lies in deriving the formulae to represent the situation.

In modelling any complex operation, the spreadsheet will have
to support a very large table, and spreadsheets are quite capable
of this. The blank sheet that is provided is much too large to be
displayed on the screen in its entirety. The screen acts as a

The major applications 19

'window' on the sheet through which a part of it may be seen in
the way illustrated in Figure 1.4. The part of the sheet that cannot
be seen is still safely stored in the computer's memory. At any
time the window can be moved over the sheet to allow another
part of it to be viewed.

Screen

Figure 1.4 The screen as a 'window' on a spreadsheet

To summarise, a spreadsheet program maintains a table and
can accept numbers, text and formulae for display at any position
in the table. Numbers and text are displayed as they are entered,
but the value of a formula is displayed. The table can be, and
often is, much too large to display on the screen in its entirety. In
this case the screen acts as a 'window' on the table. A spreadsheet
has the ability to update the value of any formula it contains as
soon as a new value is placed in one of the cells involved in the
formula. This makes a spreadsheet an ideal tool for planning and
forecasting because it allows all kinds of 'what if?' investigations
to be carried out just by changing the numbers in the table and
observing the effects of the changes.

Examples of using a spreadsheet
In this section two examples of how to use a spreadsheet are
given. They are still relatively small-scale examples because it is
not practical to develop large-scale ones in a book. A spreadsheet
naturally comes into its own in a large application with a

20 Software-based applications

correspondingly large table. But these examples serve to illustrate
the sort of applications in which spreadsheets are valuable as well
as the basic ideas behind their use.

The first example is the creation of the sheet for the quarterly
budget that was shown in Table 1.1. This table can be entered, as
we have explained, as text and numbers only. The entries in the
columns headed Savings and Bills are the basic data, and will be
entered as numbers, but the other numeric entries depend on
those in these two columns, and will be entered as formulae.

Figure 1.5 The initial sheet of a spreadsheet

A B C D E

1

2

3

4

5

6

7

8

When a spreadsheet program presents its initial blank sheet,
the columns are labelled with letters and the rows with numbers,
as shown in Figure 1.5. One of the cells in the sheet is identified
by giving its column letter and row number, so that the cell at the
top left of the sheet is cell Al, and the cell immediately to its right
is cell Bl, for example. If we choose a position for our budget
table, such as the one shown below, we can go on to describe how
to enter it.

A B C D E

1 Family budget
2
3 Income Expenditure
4
5 Savings Bills
6 Jan 200 120 Water
7 Feb 200 180 Electricity
8 Mar 200 140 Gas
9 100 Rates
10
11 Totals 600 540
12
13 Balance 60

The major applications 21

The entries can be made by moving the cursor to the appropriate
cell and typing the number or text for that cell, except that for cells
Bll, B13 and Dll we shall enter formulae. To make the entries in
column A, we first move the cursor to cell A6, using the cursor
movement keys, type 'Jan' and press ENTER; then the cursor is
moved down one place to cell A7 and 'Feb' is typed followed by
ENTER; and so on for the rest of the column. All text and
numbers can be entered in the same way.

The formula to be entered in cell Bll, giving the total savings, is
for the sum of the numbers in cells B6 to B8. This is expressed by
the formula B6 + B7 + B8. This formula can be entered by moving
the cursor to cell Bll, typing the formula and pressing ENTER.
The figure for the total savings will then automatically be
displayed in this cell. The formula for the total amount of the bills
will be similar to this one. In fact, the formula for cell Dll is D6 +
D7 + D8 + D9. The balance is to be displayed in cell B13, and as
this is the difference between the total savings and the total bills,
the formula for this cell is Bll - Dll.

We can place a formula rather than a number in two more cells,
for if the savings are to be the same in each month, we need only
enter the amount once, and then the spreadsheet can copy it to
the other cells. To do this, we can enter the monthly amount as a
figure in cell B6 (for January), and the copy it for the next two
months by placing the formula B6 in both cell B7 and cell B8.

Having developed this sheet using as many formulae as
possible, it provides a model on which other quarterly budget
calculations can be based. For example, if the gas and electricity
bills increase, then the monthly savings that are required to
maintain the same balance can be found by entering the new
figures for the gas bill in cell D8 and the electricity bill in cell D7
and then trying new figures for the monthly saving in cell B6 until
the spreadsheet shows the required figure for the balance.

The second example concerns an investment portfolio, and
anyone with shares in several companies will be interested in a
worksheet such as the one shown below as Table 1.2.

Table 1.2 An investment portfolio

A B C D E F

1 Company Holding Price (p) Value (£) Cost (p) Gain (£)
2 BT 400 141 564 50 364
3 Bejam 200 168 336 148 40
4
R

Lloyds 100 522 522 446 76

6 Total 1422 480

22 Software-based applications

It shows the companies in which we hold shares, the number of
shares we have in each (Holding), the currently quoted price per
share in pence (Price), the value of our holding (Value), the
original cost of the shares in pence (Cost) and, most importantly,
the Gain in value of the shares.

The holdings and prices must be entered as numbers, but the
value of the holding in a company is calculated by multiplying the
number in the holding by the price per share and dividing by a
hundred to convert it to pounds. The necessary formulae for cells
D2 to D6 are B2^C2/100, B3*C3/100 and B4*C4/100. The total is
obtained by placing the formula D2 + D3 + D4 in cell D6.

It is a common occurrence when creating a worksheet to find
columns or rows of entries that are identical or, as with the
formulae for the values, show a simple repetitive pattern. For this
reason spreadsheets in general provide facilities that allow entries
to be repeated systematically in the cells of a column or a row.
Figures and text can be repeated in the same form while formulae
can be repeated in a pattern such as the one required in our
example. Following on from this, there is a need to be able to
specify a range of cells in a column or in a row, in part so that it is
possible to say over which cells an entry is to be repeated. The
range from C4 to C6, which is where we would like to repeat our
formula, is written as C4:C6.

When the price of a share changes, we can enter the new value
in column C, replacing the old one, and its consequences will be
reflected at once by corresponding adjustments in column D to
the value of the holding in that company and to the total.

The original costs must be entered as numbers in column E, but
the gains can be found from formulae. The gains can be calculated
as their current price less their original cost multiplied by the
number of shares in the holding, and divided by a hundred to
convert to pounds. This gives the formulae that we need for cells
F2 to F4 as (C2-E2)*B2/100, (C3-E3)*B3/100 and (C4-E4)*B4/100.
Again, there is a clear pattern to the formulae. After this, the total
gain can be shown in cell F6 by placing the formula F2 + F34- F4
in that cell.

Variations on this sheet can be made in many ways. For
example, if shares in, say, BT are bought at different times and at
different costs, a separate row can be used for each transaction.
But the current price, which will be the same regardless of when
they were acquired, need only be entered once as it can be copied
to other locations. When shares are sold, it is only necessary to
remove a row from the sheet. The table that has been created
provides a model from which any portfolio can be evaluated.
When the worksheet has been prepared it provides an ideal basis

Other applications 23

for making decisions about buying and selling shares because, by
taking a view about the way that share prices may move, the
possible future situations can be examined to see which gives the
best return.

Other applications
In this section we shall describe briefly a few of the other
applications for which software is available and which will be of
value in the home.

Programs for graphics can be valuable, particularly in trying to
make sense of sets of numbers. They allow numbers to be typed
in, as you would type text into a word processor, and then
display the numbers graphically in ways which you can choose.
Line graphs, bar charts, histograms and pie charts are among the
commonly used forms of display, and each will come into its own
in different circumstances. A pie chart is an effective way of
showing relative proportions and a chart with horizontal bars can
give a good impression of the sizes of the numbers in a set as well
as of their relative sizes. A good graphics program will display the
numbers it is given in any of a number of ways. This allows you to
try different forms of display and then to select the one that suits
you best.

You may have given the computer the numbers that you want
to display already, perhaps by entering them in a database or a
spreadsheet. It seems unnecessary to type the numbers again
simply to display them graphically. This brings us to a topic the
jargon word for which is integration. An integrated package is a
group of programs that is provided with a uniform environment
which allows the programs to exchange information with each
other. The uniform environment ensures that the programs are
used in the same way, as far as is possible, so that by learning to
use one you learn something about the others. Because the
programs can exchange information, a set of numbers that is
given to one of the programs can be passed from it to another.

A word processor, a database, a spreadsheet and a graphics
program are commonly to be found as the components of an
integrated suite of programs. The component programs may not
be as powerful as their individual, non-integrated, equivalents,
but in some circumstances integration may be more important
than having sophisticated features. Integration permits a set of
numbers from a column in a spreadsheet to be passed directly to a
graphics program for display. It would also allow a set of
numbers to be taken from a database, passed to the graphics
program for display, from where the graph or chart could be
passed to the word processor for incorporation in a document.

24 Software-based applications

A program generator is a computer program for writing
programs. It allows you to describe to it in fairly non-technical
terms what you want the computer to do, and then it writes a
corresponding program in the language of the computer instruct
ing the computer in how to perform the task in question. In effect,
a program generator allows you to program the computer without
being an expert computer programmer. If you cannot find the
software to make the computer do what you want of it, then a
program generator might be the way for you to create your own
software for the task.

Finally, 'expert systems' are available at a price at which they
can be considered for use in the home, all the other programs we
have mentioned deal with data and information: an expert system
deals with knowledge. The knowledge is extracted from an
expert, and the expert system can process that knowledge to
deliver advice and assistance of a standard equivalent to that of an
expert. It is not difficult to see that an expert system can be
invaluable in applications such as exploring for oil or diagnosing
illnesses, but there are occasions in the home when advice can be
sorely needed. The problems of bringing up a baby suggest
themselves at once, and there must be many others ranging from
advising with plumbing problems to helping to plan interesting
but nutritional meals. Expert systems complete with knowledge
about your particular problem may not be available, but it is
possible to buy an 'expert system shell', which is an expert system
containing no knowledge, to which you can add your own
knowledge of a particular topic, after which it can offer advice on
this subject to its users.

Summary
Word processors, databases and spreadsheets are the most
commonly used of the programs that can allow the Amstrad
computers to be used to good effect. This chapter gives general
descriptions of the applications, orthodox and otherwise, of these
types of programs, and describes the full range of facilities that
they should possess. In this way, the chapter provides a yardstick
against which the specific programs dealt with in the next chapter
can be measured. It may be that these programs have all the
features that you will ever need, or it may be that they lack a
feature that is vital to the particular application that you have in
mind. In either event, this chapter provides the criteria by which
particular programs can be judged.

Other kinds of programs that have valuable applications,
including graphics programs and expert systems, are also
described, although more briefly.

The Amstrad software 2

This chapter is concerned with using software for the Amstrad of
the kind that was described in the previous chapter. This software
allows the Amstrad to be used for serious computing. The
programs that we shall examine in some detail are:

Amsword — the word processor by Tasman Software Ltd that is
available from Amsoft.
Database — the database from Gemini Marketing Ltd.
Easi-Amscalc — the spreadsheet by Saxon Computing that is
available from Amsoft.

Word processing with Amsword
The Amstrad is turned into a word processor by running the
word processing program Amsword. The program is recorded on
cassette and, when it is run, it gives the initial display shown in
Figure 2.1. From this point, the user familiar with word
processing can proceed to explore Amsword's capabilities.

Figure 2.1 Amsword's initial screen 25

26 The Amstrad software

The display is divided into three parts. The largest, central, area
which is initially blank is for the display of the formatted text. The
area at the top contains reminders about how to use Amsword.
The bottom part shows the ruler and a line providing information
about the state of the document.

The top part of the display is part of Amsword's facility for
helping its users by providing the basic information about how to
enter, edit and format text, how to control an attached printer,
and, generally, how to make it do all the things that it is capable
of doing. This display is only a part of the help that is available,
which can be seen in its entirety by pressing the ESC (escape) key.
This gives the display shown in Figure 2.2. The word processor's
activities are all initiated by holding down either the green CTRL
(control) key or a SHIFT key and pressing one of the letter or
number keys at the same time. On the screen, and in the
documentation, the CTRL key is represented by an upward
pointing arrowhead filled in white and the SHIFT key by a
downward pointing arrowhead filled with black. These key
combinations are used so that the word processor can distinguish
a command for it to perform some activity from text that is being
entered.

Figure 2.2 Amsword's help screen

It is necessary to press ENTER to return to the normal display
from the help screen. After seeing the complete help screen, it is

Word processing with Amsword 27

clear that the normal display shows only a small part of it, but
different parts can be scrolled onto the screen by pressing CTRL
and [or CTRL and] so that the part of the help screen containing
the information that is required at any time can always be brought
into view.

On becoming familiar with the functions of Amsword, it is no
longer necessary to have the reminders in the upper part of the
screen all the time, and they can be removed by pressing CTRL
and 2. The part of the screen that was occupied by the reminders
is then taken into the part for the document display, making it
correspondingly larger. Figure 2.3 shows the screen when the
reminders have been removed and the text of a document has
been typed into Amsword in the way that we described earlier.
The help area can always be displayed again by pressing CTRL
and 1.

mum tstor
i 1384 Tasnac Sattar« Ud.

This Hnsuord Tutor is a text file that has b««n d«siyn«d to h«lp you use the
Sesuard cwwmd keys.

The first key ue will learn to use is the -4 key. This takes you to the end of
» text. Try -4 nou by holding the control key down and pressiny the + key,

w haw just cone back iron the end of the text press -> and keep pressiny
;1 you see a nessaye tel liny you to stop.

lili toe discovered that O "scrolls“ the display down throuyh the text
ihe opposite to -) is -< which scrolls the display up throuyh the
> the beginning. Use -< nou to scroll up a feu lines and then use -)
¡11 back down until you see a nessaje at the bottom of the screen t

tap of the corewnd keys require the control key (CTRL! to be held down while
sone other key is pressed. The - synbol is used to indicate such a cownd. for
extojle,-E neans hold the control key d«m and press the E key. Sone cwiand'
keys require the shift key to be held down while sone other key is pressed. The
* synboi is used for these keys,

Figure 2.3 Amsword, without its helpful reminders, displaying a document

In the lower part of the screen, the ruler is one line from the
bottom, and it shows the positions of the margins and the tab
stops. The bottom line itself contains a surprising amount of
information, including the position in the document of the cursor,
whether right justification and word wrap are active, the form in
which the characters that are being entered will be displayed, and
more.

The power of Amsword comes from its repertoire of com

28 The Amstrad software

mands. As mentioned earlier, you are unlikely to need them all in
the course of its general use, but you can only acquire a complete
appreciation of its capabilities if you are aware of them all. The
commands are all displayed and explained on the help screen, as
shown in Figure 2.2, although the explanations are necessarily
rather abbreviated. In the next section, we give expanded
explanations of the more commonly used commands.

The commands
This section groups together the most frequently used

Amsword commands and explains their purposes. The com
mands are grouped together by function to show the way that
Amsword corresponds with the general account of word proces
sing given in the previous chapter.

Text entry. Text is entered simply by typing it. Word wrap can be
turned on or off by CTRL and G. The positions for the margins
can be set after first moving the cursor to the required position.
After this, pressing CTRL and A sets the left margin so that the
cursor is immediately inside it; the right margin is set in a similar
way but by using CTRL and D. The end of a paragraph is
indicated by pressing ENTER. The indentation for a new
paragraph is achieved by the use of TAB. The tab stops are, by
default, at every tenth column. A new stop can be created by
placing the cursor at the required position and pressing CTRL and
TAB.

Editing. The cursor movement keys can be used to move the
cursor around in a document. By themselves, the keys move the
cursor by one position in the direction indicated on the key. With
CTRL they cause it to move to the edges of the document, that is,
to the top or the bottom and to either end of a line. With SHIFT
they cause it to move by one word along a line or by one screen
up and down. Once in the required position, typing causes the
new text to replace, or over-type, the existing text. Deletion is
achieved with DEL: by itself, DEL deletes the character to the left
of the cursor, CTRL and DEL delete the word on which the cursor
is positioned, and SHIFT and DEL delete the entire line. Text can
be inserted after pressing CTRL and I.

The replace function, initiated by CTRL and R, allows all the
occurrences of a word in a document either to be found or to be
found and replaced by another word.

Formatting and style. Right justification can be turned on and off
with CTRL and F. The current line can be centred with CTRL and
W. A paragraph can be re-justified, perhaps after editing it or

Word processing with Amsword 29

turning off the justification, by placing the cursor on the first line
of the paragraph and pressing CTRL and J.

The position at which the end of each page will occur when a
document is printed can be indicated on the screen by a dashed
line. These indications can be introduced or removed by pressing
CTRL and P. A header to be printed at the top of each page can be
created by typing it on a single line and pressing CTRL and 6. A
footer is created in similar fashion, but in this case CTRL and 7
must be pressed.

Special styles, such as underlining and emboldening, are
invoked by pressing CTRL and the space bar. Characters with
underlining and other styles do not appear on the screen.
Instead, special inverse characters appear before and after the text
that is to be treated in the specified way. The J key is used to
signify that characters will be underlined when the document is
printed, and cause an inverse J to precede and to follow the text in
question. Similarly, the letter A indicates embolding and I italic.

Printing and saving text. When a document has been created, it
can be printed or saved after pressing CTRL and ENTER. This
causes a menu of options to be displayed, with printing the
document and saving it among the choices. Pressing P to select
the printing option, followed by ENTER to confirm it, gives the
display shown in Figure 2.4, and then pressing COPY will cause
the document to be printed on a printer attached to the Amstrad.

AMSNORb
The UordProctitor .

8 Tasman Software Ltd. 1984

start at line (1
finish at linf <1
nynber of copies
line spacing < J.
continuous or sin
form feed at page
print header <N>
print footer <N> '
print page number

)

at middle or sides <M> M/S
start numbering at < 1 >

left margin on printing < B)
form feed after printing <N> ¥/N

-ess ENTER for default settin
. . = CLR to start again

COPY at any tine to win

Figure 2.4 The options when printing a document

30 The Amstrad software

An examination of Figure 2.4 will show that there are many ways
in which to affect the way in which the document is printed, and
any of them can be chosen as they may be required before
pressing COPY. Pressing S followed by ENTER when the menu is
displayed initiates the sequence of actions, each of which is
prompted on the screen, for saving the document.

A number of commands have not been mentioned here, but
those that have should be sufficient to convey an impression of
the capabilities of Amsword and to show that it is a thoroughly
useful program that should meet the needs of anyone who wants
to create text. In common with any good word processor, it
encourages its users to enter their ideas as quickly as possible so
that they, and their sequence, are not forgotten. The editing facili
ties make it so easy to go back to correct, polish and finish the text
that one need have no inhibitions about the way that the text is
entered in the first place as long as it is possible to understand it.

Database
We can make the Amstrad create and manage a database by
running Gemini's program called 'Database'. When the program
has been loaded from its cassette, it displays the initial screen
shown in Figure 2.5. This is the program's main menu, and any
activity from this card-oriented database is initiated by selecting it
from this menu.

Figure 2.5 The initial screen of Database

Database 31

To show how the program is used, starting from scratch, first to
create and then to examine a database, we shall go through all the
steps as they are needed for the database of children's medical
records that we described in the previous chapter. We must begin
by designing the 'card' on which the records in the database are
entered. This is done by selecting option H from the main menu.
This option presents us with a blank screen as the equivalent of a
sheet of paper on which to design the card. Text and graphics can
be typed anywhere on the screen to label the information and
create an acceptable appearance for the card. Then the COPY key
is used to indicate the positions in which the item of information
for each field of a record is to be displayed. Each press of COPY
creates a space that can be occupied by a character, and is
indicated on the screen by a white rectangle. When the design has
been created satisfactorily, with all the labelling and the gaps for
the information, pressing TAB causes the database to ask for a
name for each of the fields in the record, starting with the one at
the top of the screen and progressing to the one at the bottom. It
is sensible to use names that are similar to the labels for each field,
and in this case the names were chosen as:

Field 1: Name
Field 2: Age
Field 3: Sex
Field 4: Diseases
Field 5: Inoculations
Field 6: Appointments
Field 7: Remarks

When all these names have been entered, the program displays
the names and asks if they are correct. Pressing Y causes them to
be accepted, while N gives you the opportunity to correct them.
When the design and names for the fields are confirmed as
satisfactory, the program accepts them and returns to the display
of its main menu.

The next step is to enter some records, and this can be done
after selecting option A. This causes a blank card to be displayed,
and a record can be 'written' on it simply by typing the entries
and pressing ENTER at the end of each. When a card is filled in,
another blank card is displayed. A typical record is shown in
Figure 2.6. The entry of records can be continued for as long as
necessary; it is halted at any time by pressing TAB, which will
cause the currently displayed record to be abandoned while all
the ones entered previously are retained.

32 The Amstrad software

RECORD 2

First name: Anne

Age: 10

Sex: i

Diseases: Measles Chicken pax Mumps

Innoculations: Smallpox Whooping cough

Forthcoming appointments: 17 May

Remarks: Health is good

Figure 2.6 A record created and displayed with Database

Now that some records have been entered, the display in the
top line above the main menu becomes useful. It tells us how
many records we have entered against the initials RU (they
actually stand for 'records used'). Against RR it shows the
'records remaining' unused in the file, so that we know how
many more can be entered. The initials CR stand for the 'current
record', and when a record is displayed its number will be shown
here. The main thing that the number of a record tells us is its
position in the file: the first record in a file is record number one,
the next is number two, and so on. The fourth set of initials is RF.
This stands for 'records found': it comes into play when a file is
searched, and shows the number of records that were found
when the file was searched for a particular type of record.

With a file in place, we can browse through it using option B
from the main menu. The cursor-down and cursor-up keys,
respectively, let us move towards the end or towards the
beginning of the file. The number of the displayed record appears
against CR at all times. The currently displayed record can be
printed, amended or deleted just by pressing the appropriate key.

We cannot do anything creative in terms of examining the file
simply by browsing through it, but we can with the Sort and Find
options. Option I is for sorting the file, and when selected it gives
us a display of the fields and their names, as listed above, and
asks which field is to be used as the basis of the sorting. If the field
contains words, the records are sorted so that the entries in this
field appear in alphabetical order as in a dictionary. If it contains
numbers, the records are sorted so that the numbers in the field
are ordered from the lowest to the highest. When the sorting is
complete, the program returns to the display of its main menu,
after which a browse through the file will confirm that it has been
sorted.

Option F allows us to search the file for any records meeting a
particular criterion. We have to enter the criterion in a stylised

Database 33

form, but it is not difficult to do this. If we want to find all the girls
with records in the file then, after selecting option F and pressing
the space bar to indicate that we are about to enter a search
criterion, we must tell the database to search for all the records in
which the entry under 'Sex' if 'f'. Because 'Sex' is field 3 of the
record, we enter this criterion as:

F3 = "f"
When this has been entered the search is carried out and, when it
is finished, the display of the main menu returns. The number of
records meeting the criterion that were found during the search is
displayed at the top of the screen against RF. If we browse
through the file now any records that were found by the search
will be marked by the message 'FOUND' in their top left-hand
corner when they are displayed.

We can find all the children who have had mumps with:
F4 = "’Mumps"

The inclusion of the asterisk causes the database to be searched
for records with the words 'Mumps' appearing anywhere in field
4, that is, under 'Diseases'. All the girls who have been inoculated
against diphtheria can be found by:

F3 = "f" AND F5 = "*Diphtheria"
All the boys with medical appointments in April can be found by:

F3 = "m" AND F6 = "* April"
The children who have either had measles or been inoculated
against it can be found with:

F4 - "*Measles" OR F5 = "*Measles"
These examples should serve to show that the database can be
searched in a wide variety of ways. There is one unfortunate
shortcoming which is that a search criterion cannot mix numeric
and non-numeric parts.

The other options provided by the program are for activities
such as adding records to a file and amending the records of the
file. Option M can be useful in providing a shortened tabular
summary of the contents of a file. It can only be used after Option
N, which is needed to establish the style in which the table is to be
presented.

All in all, Database is easy to use because it is so close to a card
system, and with its pleasant display format it is convenient and
flexible in the ways in which it can manage its database.

The commands
The commands that can be accepted by Database, and their

purposes are as follows:

Add records. To add records to a file by filling in the form
designed with the Setup Card option.

34 The Amstrad software

Browse/amend records. To browse through a file as described
above. The current record can be amended, printed or deleted.

Calculations. To perform calculations on the numerical fields of
records. The totals and averages of a particular numeric field can
be found for all or some of the records in a file.

Delete records. To delete records from a file.

Exit program. To leave Database and go to BASIC.

Find records. To find the records that satisfy some criterion as
described above.

Print records. To print some or all of the records in a file.

Reformat/setup card. To design a record card with which records
can be added to a file, or to alter the design of a card.

Sort records. To sort the records in a file into a particular order.

Save file. To save a file on cassette or disk.

Append records. To append the records in a file to those in the
current file. The records that are appended will inherit the card
format of the current file.

Load file. To load a file from cassette or disk.

Field summary. To give a tabular summary of the contents of a
file.

Format field summary. To design the layout of the table for the
field summary.

Spreadsheets and Easi-Amscalc

Easi-Amscalc is a spreadsheet program that is intended to be easy
to use, and as a result it lacks a few of the more sophisticated
facilities possessed by some other spreadsheets. It can be used to
create the sheets described in the previous chapter without any
difficulty, though, and in this section we will show how this can
be done.

When the program is first run it displays a blank sheet. The
screen window shows part of a sheet with 30 rows, numbered
from 1 to 30, and 26 columns labelled A to Z. The spreadsheet has
a command with which the size of the sheet can be changed, but
this size suits our needs and we will retain it. The sheet is

Spreadsheets and Easi-Amscalc 35

displayed on an 80-column screen, which allows quite a large part
of the sheet to be shown in the screen window, but the display
can be switched to a 40-column screen, in which a smaller part of
the sheet is shown, although its cells are correspondingly larger.
A second command allows the user to switch between the two
forms of display at any time.

We have already mentioned two of the spreadsheet's com
mands, and a menu showing them all can be displayed at any
time by typing M to give the Menu command. These commands
are listed later in this chapter.

The commands include all the basic ones that we would expect
in the light of the discussion of the previous chapter, and we will
proceed to use them to construct the sheet for the family budget
given in Chapter 1. All the items of text and the numbers in the
columns under the headings 'Savings' and 'Bills' can be entered
by moving to the appropriate cell, pressing E to give the Enter
data command, and typing the text or number before finally
pressing ENTER. When all the text and numbers are entered, it
remains to enter the formulae. The formulae that Easi-Amscalc
can support are relatively simple consisting, typically, of the
difference of two entries in the sheet or the sum of the entries in a
column. Simple as they are, they are sufficient for our needs. The
formulae are not entered by typing them as formulae, but by
indicating them to the spreadsheet. This is done by positioning
the cursor on the cell where a formula is to be placed and pressing
ENTER to confirm it, indicating the type of formula, using the
minus sign for a subtraction, for example, and then using the
cursor as before to indicate the two cells whose contents are
involved in the subtraction. The formula will then be constructed
in the form that we described in Chapter 1.

To give a concrete example, the formula for cell Dll is a column
addition, and this is indicated by pressing C and then positioning
the cursor on cell D6 to indicate the top of the column of figures
that is to be added, followed by cell D9 to indicate the bottom.

Family budget (£)

Figure 2.7 The spreadsheet for the family budget

Income Expenditure
Savings Bills

Jan 200.00 120.00 Water
Feb 200.00 180.00 Electricity
Mar 200.00 140.00 Gas

100.00 Rates

Totals 600.00 540.00

Balance 60.00

36 The Amstrad software

The completed sheet is shown in Figure 2.7. The formulae that
have been entered can be displayed by pressing D to give the
Display formulae command, and the result of this is shown in
Figure 2.8.

FORMULA NO. 1

0 11 = D 6 c D 9

FORMULA NO. 2

B 11 = B 6 c B 8

FORMULA NO. 3

B 13 = B 11 - D 11

Figure 2.8 The formulae used in the family budget spreadsheet

When a formula is first entered in this way, the formula does
not appear in the cell, but neither does the value of the formula!
Instead, the number of the formula appears in the cell. (The first
formula to be entered is formula number one, the next is number
two, and so on.) To make the value of the formula appear in the
cell, we must give the Compute command, and this causes the
spreadsheet to compute the values of all its formulae. Subse
quently, if a number in one of the cells is changed, the Compute
command must be given again to cause the spreadsheet to update
the value of any formula involving that cell.

Company Holding Price(p) Valuefp) Cost(p) Dif-f (p) Gain(p)
BT 400 141 56400 50 91 36400
Be jam 200 168 33600 148 20 4000
Lloyds 100 522 52200 446 76 7600

Total 142200 48000

Figure 2.9 Easi-Amscalc's version of the shares portfolio spreadsheet

The sheet for the second example in Chapter 1, the share
portfolio, cannot be created directly as described there because of
the restricted nature of the formulae that Easi-Amscalc can accept.
An adapted form of this sheet is shown in Figure 2.9, with all
values in pence and an extra column introduced for an intermedi
ate calculation. The entries in the Value and Gain columns can, of
course, be converted to pounds, but further intermediate col-

Spreadsheets and Easi-Amscalc 37

limns will be required. One further command that is useful in
creating this sheet is Block, which allows a formula to be
repeated, but with the appropriate adjustments, throughout a
block of cells. To use it, all that is necessary is to indicate the
formula that is to be repeated, and three of the comers of the
block of cells in which it is to be repeated. This command was
used to 'paint' the formulae in the Value and Gain columns.

Easi-Amscalc is, by intention, a rather rudimentary spread
sheet, but it is easy to use, and it provides a good entry point to
spreadsheets and the exploration of their capabilities.

The commands
The commands provided by Easi-Amscalc and their purposes are
listed below. Each command is given by keying its first letter.

Amend a formula. To change any formula in the current sheet.

Block allocate. To 'paint' a formula, with appropriate adjust
ments, throughout a rectangular block of cells.

Compute. To compute and display the values of the formulae in
the spreadsheet.

Display formulae. To display the formulae entered in the current
spreadsheet.

Enter data. To enter a number or text in a cell.

Formula entry. To enter a formula.

Graph. To display a row or column of numbers in the spreadsheet
as a graph.

lump cursor. To move the cursor to a specified cell.

Kill formula. To remove a formula from a cell. The formula still
exists, and can be placed in another cell.

Load spreadsheet. To load a spreadsheet from cassette.

Menu. To display the menu of commands.

New spreadsheet. To create a new spreadsheet.

Print spreadsheet. To print all or part of a spreadsheet.

Quit. To leave Easi-Amscalc.

Replicate. To repeat the contents of a cell in a range of cells.

38 The Amstrad software

Save. To save a spreadsheet on cassette.

Titles lock. To lock onto the rows and columns in a spreadsheet
that contain titles.

Utilisation of formulae. To show the allocation of formulae to cells
in all or part of a sheet.

V. To set the number of decimal places with which numbers in
the sheet are displayed.

W. To change the colours of the display.

Xchange. To swap between 80- and 40-column screens.

Other software

The programs described above are by no means the only ones of
their kind for the Amstrad. There are other cassette-based
versions and there are more sophisticated disk-based versions.
There are programs that enhance the programs that we have dealt
with, and it is interesting to mention a few of these, for they begin
to show the full range of what can be achieved with the Amstrad
and the available software.

There is a program known as The Stylewriter, from Tasman
Software again, that can be used with the Amsword word
processor to create print styles, or founts, when the word
processor is used in conjunction with a dot matrix printer. The
user can choose one of the founts provided by Stylewriter or can
design one of his or her own. This adds an extra dimension to the
personal style of presentation of documents that can be achieved
with a word processor.

To go with Database, Gemini have produced Database Report
Generator. This allows printed reports and summaries to be
produced from a file created with Database. Further than this,
addresses can be printed, on labels if required, for mail and
information from the database can be merged into standard
documents to personalise them.

Amsoft's Microspread is a disk-based spreadsheet that is much
more advanced than Easi-Amscalc. It cannot accept sheets created
with Easi-Amscalc, but it is operated in much the same way, so
that any expertise gained from using Easi-Amscalc can be brought
to bear when using the more sophisticated version.

These examples show that it is possible to start from quite a low
level, in terms of the abilities of the software, and to achieve a
good deal. If ambition or need then determine that more powerful

Other software 39

software is necessary, then it is possible to enhance what you
have or to move on to acquire more powerful software.

Summary

One example each of word processor, database and spreadsheet
program are closely examined in this chapter to show the way in
which they are used, the range of facilities that they possess and
the applications to which they can be put. The descriptions are
intended to show the range of applications in which these
programs can be used and, together with the previous chapter, to
reveal any shortcomings that the programs may have. Programs
that enhance or supersede them are also mentioned to demons
trate that it is possible to grow and develop as you become more
confident about the application of your Amstrad. The possibilities
of extending the area of usefulness of your computer system will
almost certainly require attention to the hardware as well as to the
software, though, and these matters are dealt with in Chapter 4.

3 Problem solving

One of the most creative ways to use your Amstrad is for problem
solving. Complete books have been written on the ways in which
one may go about solving problems, whether with the aid of a
computer or not, but when you have read such a book, it is not
entirely certain that you will be in a better position to set about
solving a specific problem. In this chapter we shall proceed by
posing a number of problems and then explaining how they can
be solved with the help of the computer. The result of this will be
a number of programs written in Amstrad BASIC each of which,
in essence, instructs the computer in how to go about finding the
solution to a problem. In this way, we can examine and illustrate
various methods for solving problems and, in particular, methods
that are suitable for use with computers, for they can be rather
different from those that are used to solve problems in other
circumstances.

We shall see that there is a certain benefit in writing programs
with a clear structure and, preferably, with a structure reflecting
that of the problem that is being solved. We shall also see that the
way in which a program presents the solution that it finds to its
users can be greatly improved by making use of graphics. The
way in which the solution method works can also be made clear
with the use of carefully designed graphics, and this can enhance
considerably the value of a problem-solving program.

Besides this, the problems that we shall consider illustrate areas
in which computers are commonly applied, so that if you are
either already involved or are thinking of becoming involved in
one of these areas of computing, the way in which the relevant
problem is solved will give you a flavour of the way that the
computer is used there.

So, each of the sections of this chapter contains a problem for
solution with the aid of the computer. For each, we describe a

40 way of solving it and then write and present a program

Problem solving 41

incorporating this solution method. After this, we pause to see if
we can improve, first, the way that the program presents its
solution and, second, the way that it demonstrates how it goes
about finding it. This is usually done with the considered use of
graphics. This approach gives us two programs for solving each
problem. The first will contain the method for solving the
problem: the second will be an expanded version of the first that
considers the requirements of the users of the program. By
presenting the two versions of the program alongside each other,
we hope that it will be possible to see how the first is developed
into the second and how, if the first one has a decent structure,
the development of the second is quite natural.

Networks and routeing
Problems involving networks and finding routes through them
can occur in quite different contexts. For example, a network can
consist of the roads linking a number of towns together, and the
problem of the motorist travelling from town to town is to find the
best route between them. The airline passenger faces a similar
problem in getting from one airport to another in the network of
international airline routes. The public water supply authorities
have the same problem in supplying water in sufficient quantities
to all the reservoirs that are linked together by their network of
water pipes.

Pisa Munich
AN AIRLINE NETWORK

Figure 3.1 An airline network

42 Problem solving

The particular problem that we want to solve with the aid of the
computer is this. Given the network of cities linked by airline
routes as shown in Figure 3.1, what is the best route for a traveller
to take from any city to any other? By 'the best route' we mean, to
begin with at least, the route that requires the smallest number of
stops between departure and arrival at the destination. Although
the problem is stated in terms of an airline network and the routes
that an airline passenger should take, it is probably clear that the
problem could equally well have been posed for car travel, water
supply or in any of a number of other contexts.

In beginning to solve our problem, the first thing that we need
to do is to describe the network to the computer. To do this, we
shall first give the computer the names of the cities in the
network, and then tell it which cities are directly connected to
each other. We could give the names of the cities by assigning
them to string variables named, say, A$, B$ and so on, but we can
do it systematically and at the same time help with the devising of
a solution method if we assign the names to the elements of an
array of string variables. We shall use an array named N$ which is
declared by

DIM N$(6)

A typical assignment to an element of this array is

N$(l)="FRANKFURT"

The airport names are associated with the particular elements of
the array by using the number in the circle representing each
airport in Figure 3.1 to give the number of the element of the array
that is to hold the name of the airport.

To record the airports that are connected directly to each other,
we shall use a method that can be used to advantage in many
computer methods. We want to record, for example, that
Frankfurt, airport 1, is connected to Lyons, which is airport 4, and
that Pisa, airport 3, is connected to Munich, airport 2. This can be
done by using a two-dimensional array named C, which is
declared by:

DIM C(6, 6)

and using its elements so that, to state the general case, C(J, K) is
assigned the number of connections between airport j and airport
k. The number of connections will be 1 if there is a connection, or
0 if there is not. The two connections just mentioned can be
recorded by the assignment:

Networks and routeing 43

C(l, 4)=1: C(3, 2)=1

As there is no direct connection between airports 4 and 6 we shall
make the assignments:

C(4, 6)=0

By recording all the cities in the network and how they are
connected to each other, we have made a description of the
network that is suitable for the computer. It now remains to
devise a way of finding routes through it. We can write the
program so that a passenger will enter his or her point of
departure and destination. Examination of Figure 3.1 shows that
if two airports are not directly linked to each other, then there is
always at least one route that involves only one intermediate
airport. Our program should test to see if the departure and
destination airports are directly connected, which it can do by
referring to the two-dimensional array, C. If they are it can report
the direct connection as the best route. If they are not it must find
an intermediate airport through which the flight can be made.
This can also be done with reference to C by finding an airport to
which the departure airport is connected, and which is also
connected to the destination. It would seem to be desirable to
report all the possible intermediate airports in order to give the
traveller a choice of routes.

The following program is the result of these ideas on solving
the problem.

10 GOSUB 100: REM READ NETWORK DESCRIPTION
20 GOSUB 300: REM PASSENGER ENTERS AIRPORTS
30 GOSUB 400: REM FINDING THE ROUTE
40 END
100 REM NETWORK DESCRIPTION
110 DIM N»<6>, C<6, 6>
120 FOR K=1 TO 6
130 READ N$<K>
140 NEXT K
150 FOR J=1 TO 6
160 FOR K=1 TO 6
170 READ C<J, K>
180 NEXT K
l?0 NEXT J
200 DATA "FRANKFURT", "AMSTERDAM", "LONDON"
210 DATA "LYONS", "PISA" , "MUNICH
220 DATA 0 , 1, o , 1 . 0, 1
230 DATA 1 > 0 , 1, 0 , 1 > 0
240 DATA 0 , 1, o > 1 , 0 > 1
250 DATA 1 , 0, 1, 0 , 1, 0
260 DATA 0 > 1, o , 1 . o, 1
270 DATA 1 , 0 > 1, 0 , 1, 0

44 Problem solving

280 RETURN
300 REM PASSENGER ENTERS AIRPORTS
310 CLS
320 PRINT "ENTER DEPARTURE AIRPORT"
330 INPUT At
340 PRINT “ENTER DESTINATION AIRPORT"
350 INPUT B«
360 RETURN
400 REM FINDING THE ROUTE
410 PRINT “TO GET FROM A»; “ TO “j B«
420 F=0
430 FOR J=1 TO 6
440 FOR K=1 TO 6
450 IF A*=N*CJ) AND B«=N»<K> AND C<J, K> = 1 THEN PRINT "THERE
IS A DIRECT CONNECTION": F=1
460 NEXT K
470 NEXT J
480 IF F=1 THEN RETURN
490 FOR J=1 TO 6
500 FOR K=1 TO 6
510 IF N0T<A«=N*<J) AND B$=N$(K)) THEN 550
520 FOR L=1 TO 6
530 IF C(J,L>=1 AND C<L,K)=1 THEN PRINT "THERE IS A ROUTE
VIA “; N*<L>
540 NEXT L
550 NEXT K
560 NEXT J
570 RETURN

A typical dialogue with this progam produces the following
output.

ENTER DEPARTURE AIRPORT
LONDON
ENTER DESTINATION AIRPORT
PISA
TO GET FROM FROM LONDON TO PISA
THERE IS A ROUTE VIA MUNICH
THERE IS A ROUTE VIA LYONS
THERE IS A ROUTE VIA AMSTERDAM

The arrays and variables used in this program and the purpose
of each are summarised in the following table.

Name Item stored under this name

Arrays:
N$ The names of the airports
C The pattern of connections between

Variables:
the airports

A$, B$ The names of variables as input to the

F
program
A value to indicate if a direct connection
has been found

Networks and routeing 45

Now, although this program solves our problem, its output is not
presented in a particularly appealing manner. It would be much
more helpful if it could display a map of the network and show
the possible routes on the map. There are several reasons for
saying this, but the main one is that most people can absorb
information more readily if it is presented pictorially than if it is in
words. The contrast is not particularly marked with our network
of six airports, but imagine the corresponding situation for a
world-wide network. Also, any language problems, which will be
bound to occur with the assortment of people travelling on
international flights, can be minimised by avoiding the use of
language as much as possible.

We propose to further develop our program to make it display
the map of the network. (At the same time, this will prove that
our description of the network is adequate.) Then, when a route
between two airports is requested, we will make the program
mark it on the map.

The map of the network can be drawn by a display subroutine
that is called after the network description has been read. In
essence, it deals with each airport in turn by drawing a point to
represent it, and then drawing lines from it to all the airports to
which there are routes from it. The subroutine needs to be told
where on the screen each airport is to be positioned, but this is the
only extra information that it needs.

When the airports at the start and end of a passenger's journey
have been entered, the route can be highlighted on the map by
calling another subroutine. If there is more than one route then
the alternative routes will be highlighted in different colours so
that the passenger will be able to distinguish them and then to
choose between them. The resulting program, with its new
subroutines, but not the ones already given above, is listed
below.

10 DIM RC6), C0C6)
20 GOSUB 100: REM READ NETWORK DESCRIPTION
30 GOSUB 300: REM PASSENGER ENTERS AIRPORTS
40 GOSUB 1000: REM DISPLAY THE NETWORK
50 GOSUB 2000: REM FINDING AND MARKING THE ROUTE
60 END
1000 REM DISPLAY THE NETWORK
1010 FOR K=1 TO 6
1020 READ COCK), RCK)
1030 NEXT K
1040 DATA 400, 200, 300, 300, 200, 300, 100, 200
1050 DATA 200, 100, 300, 100
1060 INK 0, 1: INK 1, 24: CLS: CLG
1070 FOR K=1 TO 6
1080 FOR J=1 TO 6
10?0 IF J>K AND CCJ, K) = l THEN MOVE COCK), RCK): DRAW COCJ),
RCJ), 1

46 Problem solving

1100 NEXT J
1110 NEXT K
1120 FOR K=1 TO 6
1130 X=COCK): Y=RCK)
1140 IF Y=300 THEN Y=60
1150 IF Y=200 THEN Y=240: X=X-60
1160 IF Y=100 THEN Y=340
1170 LOCATE X/16, Y/16: PRINT N*CK)
1180 NEXT K
1190 RETURN
2000 REM FINDING AND MARKING THE ROUTE
2010 F=0: P=2: INK 2, 0
2020 FOR J=1 TO 6
2030 FOR K=1 TO 6
2040 IF A$=N*CJ) AND B*=N$CK) AND CCJ, K) = l THEN MOVE COCJ),
RCJ): DRAW COCK), RCK), 2: F=1
2050 NEXT K
2060 NEXT J
2070 IF F=1 THEN RETURN
2080 FOR J=1 TO 6
2090 FOR K=1 TO 6
2100 IF NOTCA$=N*CJ) AND B«=N$CK)) THEN 2140
2110 FOR L=1 TO 6
2120 IF CCJ,L)=1 AND C<L,K)=1 THEN MOVE COCJ), RCJ): DRAW
COCL), RCL), P: DRAW COCK), RCK), P: P=P+1
2130 NEXT L
2140 NEXT K
2150 NEXT J
2160 RETURN

The program uses mode 1, and in this mode only four colours
can be displayed. With two of the colours used for the
background and the network itself, only two remain for highlight
ing the routes. This causes a problem when there are three
possible routes to be shown. If the background colour is used
again for a route, the effect is to remove one of the routes from the
display as shown in the illustration. Although this is not entirely
satisfactory, the alternative of using mode 0 is, despite its
providing more colours, even less so.

The arrays and variables used by this program but not by the
previous one, and their purposes, are given in the table below.

Name Item stored under this name

Arrays:
CO f The column and row positions for
R the display of the airport with its name in

V. the corresponding element of N$
Variables:

X The column position (X) and the row
position (Y) for the display of the name of
an airport

Networks and routeing 47

As a final refinement, we can adapt the program so that when
there is a choice of routes, it finds and displays the one that is the
cheapest. To do this, we must give the cost of the flights between
the various cities to the program. Suppose that the costs are as
shown in the following table.

Flight costs in pounds

Frankfurt Munich Pisa Lyons London Amsterdam

Frankfurt 0 20 0 70 0 70
Munich 20 0 40 0 100 0
Pisa 0 40 0 40 0 100
Lyons 70 0 40 0 110 0
London 0 100 0 110 0 35
Amsterdam 70 0 100 0 35 0

The entries in the table not only give the cost of the flight between
two airports when there is a direct link, but by taking the value
zero they also indicate where there is no direct link. If we store
this data in the two-dimensional array C so that C(J, K) is
assigned the cost of the flight between airports j and k, as given in
the table, then we can interpret zero as before, but we can take
any non-zero value both to indicate that there is a connection and
to’give the fare for that flight.

The following program reads the fares data into C, and uses it
to find the cheapest route between any pair of airports.

10 DIM R<6>, C0(6)
20 GOSUB 100: REM READ NETWORK DESCRIPTION AND COSTS
30 GOSUB 300: REM PASSENGER ENTERS AIRPORTS
40 GOSUB 1000: REM DISPLAY THE NETWORK
50 GOSUB 2000: REM FINDING AND MARKING THE CHEAPEST ROUTE
60 END
100 REM NETWORK DESCRIPTION AND COSTS
110 DIM N$(6), C<6, 6)
120 FOR K=1 TO 6
130 READ N*<K>
140 NEXT K
150 FOR J=1 TO 6
160 FOR K=1 TO 6
170 READ CCJ, K)
180 NEXT K
l?0 NEXT J
200 DATA "FRANKFURT", “AMSTERDAM", "LONDON"
210 DATA "LYONS", "PISA", "MUNICH"
220 DATA 0, 20, 0, 70, 0, 70
230 DATA 20, 0, 40, 0, 100, 0
240 DATA 0, 40, 0, 40, 0, 100

48 Problem solving

250 DATA 70, 0, 40, 0, 110, 0
260 DATA 0, 100, 0, 110, 0, 35
270 DATA 70, 0, 100, 0, 35, 0
280 RETURN
1000 REM DISPLAY THE NETWORK
1010 FOR K=1 TO 6
1020 READ COCK), RCK)
1030 NEXT K
1040 DATA 400, 200, 300, 300, 200, 300, 100, 200,
1050 DATA 200,100, 300, 100
1060 INK 0, 1: INK 1, 24: CLS: CLG
1070 FOR K=1 TO 6
1080 FOR J=1 TO 6
1090 IF J>K AND CCJ, K)>0 THEN MOVE COCK), RCK): DRAW COCJ),
RC J)
1100 NEXT J
1110 NEXT K
1120 FOR K=1 TO 6
1130 X=COCK): Y=RCK)
1140 IF Y=300 THEN Y=60
1150 IF Y=200 THEN Y=240: X=X-60
1160 IF Y=100 THEN Y=340
1170 LOCATE X/16, Y/16: PRINT N*CK)
1180 NEXT K
1190 RETURN
2000 REM FINDING AND MARKING THE CHEAPEST ROUTE
2010 F=0: INK 2, 8
2020 FOR J=1 TO 6
2030 FOR K=1 TO 6
2040 IF A$=N*CJ) AND B$=N»CK) AND CCJ, K)>0 THEN MOVE COCJ),
RC J) DRAW COCK), RCK), 2: F=1
2050 NEXT K
2060 NEXT J
20 70 IF F=1 THEN RETURN
2080 C=0
2090 FOR J=1 TO 6
2100 FOR K=1 TO 6
2110 IF NOTCA*=N*CJ) AND B*=N$CK)) THEN 2160
2120 FOR L=1 TO 6
2130 IF CCJ,L)>0 AND CCL,K)>0 THEN D=CCJ, L)+CCL, K)
2140 IF D>C THEN C=D: X=J: Y=K: Z=L
2150 NEXT L
2160 NEXT K
2170 NEXT J
2180 MOVE COCX), RCX): DRAW COCZ), RCZ), 2: DRAW COCY),
RCY) 2
2190 RETURN

Grazing problems

There are some problems that cannot be solved exactly by using
mathematics and logic. This does not mean that they cannot be
solved at all, for approximations to their solutions can be found
with a computational method which, naturally enough, makes
the computer the ideal vehicle for determining them. One
problem which, although it appears to be quite simple, turns out
to need a computational method for its solution concerns a goat
grazing in a field. This problem is not only a prime example of the

Grazing problems 49

computer coming into its own for problem solving but also
illustrates very well the sort of method that is likely to be used in
computer-based problem solving.

If the idea of finding only an approximate solution seems none
too acceptable it is, first of all, obviously better than having no
solution at all. But an approximate solution may even be as useful
as an exact one for, at the cost of an increase in the amount of
computation that may be required, the accuracy of the approx
imation can usually be increased, so that the approximation to the
solution that is finally obtained may be as close to the precise
solution as is required.

This problem concerns a goat that is tethered to the edge of a
circular field. When the field has a radius of ten metres and the
goat is at the top of the field, the situation is as shown in Figure
3.2. The problem, as it is usually stated, is to find the length of the
lead by which the goat is tethered when the area that the goat can
graze is exactly half the area of the field.

Figure 3.2 Goat tethered in a circular field

Rather than tackling the problem head-on, the general
approach we shall adopt is to find the area that the goat can graze
when the tether restraining it has a given length. Then by
dividing this area by the area of the field, we shall have the
fraction of the field that the goat can graze. By varying the length

50 Problem solving

of the lead in a systematic way, we can then find the length for
the tether that makes this fraction more or less one half.

Before using this method to solve the problem, we need to be
able to find the area of a region for which we know the
boundaries. The basic idea of the way in which we shall do this is
illustrated in Figure 3.3. The region, with its irregular boundaries,
is laid on a square grid. To find an approximation to its area, we
can count the squares that fall within it and add their areas. There
is a slight difficulty over what to do about the squares at the edge
of the region that fall partly inside and partly outside it. We shall
count these only if the centre of the square falls within the region.
This means that we are to count a square if most of it lies in the
region and to neglect it otherwise. We might reasonably expect
the amount from such squares that are counted almost to be
balanced by the corresponding amount from the squares that we
neglect.

We shall begin by writing a program to find the area of the
circular field. (We know that the area is pi*10*10, so that we shall
be able to check the answer that we get.) By using the same
method, we can then find the area that the goat can graze when
the lead has a given length. After this, we can vary the length of
the lead in a systematic way until the area that the goat can graze
is approximately half that of the field.

A program based on the idea for finding the area of a circular
field of radius ten covered with squares of side one, is listed

Grazing problems 51

below. It works by counting all the squares the centres of which
lie within the distance R of the centre of the circle.

100 R=10: A=0
110 FOR J= -R TO R-l
120 FOR K= -R TO R-l
130 D=SQR<<J+0.5) ' 2 + <K+0.5)*2>
140 IF D<R THEN A=A+1
150 NEXT K
160 NEXT J
170 PRINT "Area is A

The program gives the result as 316. Compared with the exact
value of 314.16 this shows an error of 0.58%. The accuracy could
be increased by reducing the size, and so increasing the number,
of the squares in the grid.

Since the method and a grid of unit squares gives an acceptable
accuracy, we can feel confident about going on to use both the
method and this grid for finding the size of the area that the goat
can graze. The solution program stores the length of the lead
under L, assigning a value of one to L as a starting value, and
then finds the area that the goat can graze. It then repeatedly
increases the value assigned to L by one and finds the new value
for the grazing area until the area exceeds half that of the field.
The area that the goat can graze with a lead of a given length is
computed by counting those squares with their centres both
within a distance R of the centre of the circle and within a distance
L of the point where the goat is tethered. The program is:

100 R=10: L=1
110 G=0
120 FOR J= -R TO R-l
130 FOR K— -R TO R-l
140 OSQRC < J+0.5) *2 + <K+0.5)'2)
150 E=SQR(<R-J-0.5)*2 + (K+0.5)'2>
160 IF D<R AND E<L THEN G=G+1
170 NEXT K
180 NEXT J
1P0 IF G/<100*PI>>0.5 THEN 220
200 L=L+1
210 GOTO 110
220 PRINT “Length of lead is L

The program gives a length of 12 for the lead when the goat can
graze half of the field. Again, the accuracy with which the length
is determined can be improved by increasing the fineness of the
covering grid.

The variables in this program and the previous one are listed in
the table below along with the purposes for which they are used.

52 Problem solving

Name Item stored under this name

R The radius of the field
A The area of the field
D The distance from the centre of one of the squares of the

grid to the centre of the field
L The length of the lead
PI The value of pi
G The area that the goat can graze
E The distance from the centre of one of the squares in the

grid to the point at which the goat is tethered

Now, although this program solves the original problem, it
does not really give any insight into the situation to a person who
simply uses the program. We can adapt it so that it does so with
the addition of some graphics. With graphics, we can illustrate
the part of the field that the goat can graze with each different
length of the lead. This turns out to be quite easy to do, because
Amstrad BASIC provides us with graphics commands with which
we can show the field as a circle filled with colour. The circle
representing the field will naturally be filled with green, and the
part that the goat can graze can be removed from it for each
different length of the lead.

To draw a filled circle, we can draw a series of lines from its
centre to points on its edge, radii in fact. If we draw such lines all
round the circle, as long as they are close enough to each other,
the circle will be filled. A sector can be filled in similar fashion by
drawing the radii for only part of a circle.

The program with the additions to give the graphics is listed
below, and Figure 3.4 shows a display that it produces.

100 CLS: DEG: INK 0, 24: INK 1, IS: INK 2, 24
110 LOCATE 1, 1: PRINT "Length 7. grazing"
1 20 R= 1 0 : L= 1
130 8=0: F=360: X=320: Y=200: bl=!S*F
140 Z=11: GOSUE 1000
150 G=0
160 FOR J= -R TO R-l
170 FOR K= -R TO R-l
180 D=SQR<<J+0.5>"2 + < K+0.5 ■' 2 >
190 E=SGR<<R-J-0.5) 2 + <K+0.5>'2)
200 IF D-iR AND E<L THEN G=G+1
210 NEXT K
220 NEXT J
230 S=180: F=360: X=320: Y=380: W=18*L: Z=2: GOSUB 1000
240 IF G/<100*PI>>0.5 THEN 270
250 L=L+1
260 GOTO 150

How to number pages 53

270 LOCATE 9, 1: PRINT L
280 LOCATE 25, 1: PRINT G/PI
290 END
1000 FOR T=S TO F
1010 MOVE X,Y
1020 DRAW X+W*COSCT), Y+W*SIN(T), Z
1030 NEXT T
1040 RETURN

How to number pages

This section provides an example of how a computer can be used
to solve a problem when many people cannot imagine how it
might be possible even to begin to do so. The problem is to
determine how to arrange pages when a number of them are to be
printed on a large sheet of paper so that, when the large sheet is
folded, the pages will come into their correct numerical order as
they should appear when in a book or magazine. This is
illustrated in Figure 3.5, which shows top views of a set of eight
pages printed on one sheet which is then folded twice so that the
resulting stack of eight pages starts with page 1 on the top and
goes through to page 8 on the bottom. After the folding, the
edges of the folded sheet must be trimmed to separate the pages
from each other so that they can be turned, but it is only

54 Problem solving

necessary to trim three sides. After cutting the top, bottom and
the right-hand side, the uncut left-hand side will become a fold
for all the resulting double-page-sized sheets and will form part of
the spine of the book or magazine.

In the printing trade, this sort of assembly of pages is called an
imposition. If the pages are to be printed all at once on both sides
of a large sheet of paper, it is clear that they must be arranged in
such a way that after they are printed the sheet can be folded to
bring them into their proper order as they should appear in a
book. Printers, of course, do not need a computer to work out the
arrangement, as they either know what it is, or know how to
work it out in traditional ways. But the folding gives printers
some common ground with computers, in that powers of two
figure largely in the numbers that are used by them both. Folding
naturally leads to a power of 2 for the number of pages in an
imposition, as the number of pages that eventually result from
each sheet doubles with each fold. 32-page and 64-page imposi
tions are commonly used. Computer memory sizes also come in
powers of two as a result of the binary nature of the fundamental
process involved in their operation.

We will develop an Amstrad BASIC program to compute the
arrangement of the pages for an imposition containing any
number of pages as long as that number is a power of 2. If the
number of pages that is required is not an exact power of 2, then
an imposition for the smallest power of 2 that exceeds the number
must be made, and it will include some blank pages. In practice, it
is said that a sheet of paper cannot be folded more than seven
times, and seven folds would give an imposition of 2A 8 or 256
pages. For this reason, impositions do not contain more than this
number of pages and, as we have said, usually contain rather

How to number pages 55

fewer. But this need not prevent us from making our program
completely general.

There is more than one way to arrange the pages of an
imposition so that, after folding, a stack of pages is obtained all of
which are the right way up and which are in order. A book is
traditionally made with page one, and all the odd-numbered
pages, on the right-hand side when a book is opened. The spine
is, of course, on the left when the book is closed and is held the
right way up. By restricting the circumstances as follows, we can
guarantee to produce an imposition that gives this result. Page
one is always placed at the top right corner of the top side of the
sheet. When the sheet has been printed, folds giving a vertical
crease and a horizontal crease, made as shown in Figure 3.6, are
used alternately. A vertical fold is to be made by taking the left
half of the sheet behind the right half. Horizontal folds are made
by taking the bottom half behind the top half. The folding is
ordered so that the final fold always gives a vertical crease. This
form of folding ensures that only three cuts are needed to
produce the pages as a folio of double sheets, and that the uncut
left side can form part of the spine of the book.

Figure 3.6 The vertical and horizontal folds

Having explained the problem, it remains to write a program to
solve it. Unless you are absolutely clear about the problem it may
be a good idea to try folding a few sheets of paper and numbering
the 'pages' that result from the folding to get a feel for what is
happening. This is worth doing in any case, for it gives us the
basic idea that we shall use to solve the problem.

We shall approach the problem of finding the arrangement of
pages in an imposition by starting with the stack of pages in

56 Problem solving

order, and 'unfolding' them to obtain their original arrangement.
This means that we shall need one subroutine for 'unfolding' a
fold that gives a vertical crease, and another for 'unfolding' the
fold that gives a horizontal crease. When we have written them,
we can apply them alternately, starting with the vertical one, until
our stack of pages has been unfolded into a single sheet.

To visualise what is required, it may help to refer to Figure 3.6
again and to consider how a stack of eight pages can be unfolded.
We can consider the original stack as consisting of pages arranged
in one row and one column, and stacked to a depth of eight.
Unfolding the first vertical fold will give us one row with two
columns of stacked pages, and the pages will be stacked to a
depth of four in each stack. The right-hand stack will be the top
half of the previous single stack. The left-hand stack will be the
bottom half of the original stack, but in reverse order. After this,
unfolding the horizontal fold gives us two rows each with two
columns of stacked pages. The pages in the upper row are those
from the top half of the previous row. Those in the second are
from the bottom half of the previous row, but reversed in order
and turned upside down. The pages are now stacked to a depth
of two, and this means that we have reached the original sheet as
it was printed, for the depth of two pages corresponds to the
pages printed on both sides of the sheet.

In this way, by starting with a known arrangement of pages,
we can keep track of where each page goes as unfolding takes
place, and we can tell when all the unfolding is finished to give
the imposition.

After this, if we begin by thinking about just where the pages
with a particular number should be, the main thing that the
program has to do is to store and rearrange the page numbers.
For an eight-page imposition, we can store the page numbers in
an array declared by

DIM P(8)

and initialised with the page numbers by

FOR K=1 TO 8: P(K)=K: NEXT K

Since the pages are arranged in piles in a number, C, of columns,
a number, R, of rows and each with a depth, D, we can keep track
of what happens in an unfolding by having a rule that tells us
whereabouts in the array P a page with a given column, row and
depth is to be found. As we have just demonstrated, unfolding a
vertical fold doubles the number of columns in which the piles are

How to number pages 57

arranged, while halving their depth. Unfolding a horizonal fold
doubles the number of rows of piles and halves their depth. The
rule we shall use to give the position in the array for the page in
the pile in column CO, row RO at a depth DE is

1 + R*D*(CO-1) + D*(RO-1) + DE-1

With this preamble, the program for finding the imposition for
any number of pages that is a power of two is:

10 PRINT "ENTER NUMBER OF PAGES. THIS MUST BE A POWER OF 2"
20 INPUT N
30 DIM P<N) , T<N)
40 C=I: R=1 : D=N
50 FOR K=1 TO N: P<K)=K: NEXT K
60 GOSUB 1000: REM VERTICAL UNFOLDING
70 IF D=2 THEN 110
80 GOSUB 2000: REM HORIZONTAL UNFOLDING
90 IF D=2 THEN 110
100 GOTO 60
110 GOSUB 3000: REM PRINT RESULTS
120 END
1000 PR=R: PC=C: PD=D
1010 D=D/2: C=2*C
1020 FOR CO=1 TO C
1030 FOR R0=l TO R
1040 FOR DE=1 TO D
1050 L=1 + R*D*(CO-1? + D*<RO-1) + DE-1
1060 LR=RO
1070 IF CO>PC THEN LC=CO-PC: LD=DE: GOTO 1090
1080 LC=PC+1-CO: LD=PD+1-DE
1090 PL=1 + PR*PD*<LC-l) + PD«CLR-1> + LD-1
1100 T<L>—P<PL>
1110 NEXT DE
1120 NEXT RO
1130 NEXT CO
1140 FOR J=1 TO N: P<J>=T(J): NEXT J
1150 RETURN
2000 PR=R: PC=C: PD=D
2010 D=D/2: R=2*R
2020 FOR CO=1 TO C
2030 FOR RO=1 TO R
2040 FOR DE=1 TO D
2050 L=1 + R*D*<CO-1) + D*<RO-1> + DE-1
2060 LC=CO
2070 IF RO>PR THEN LR=R+1-RO: LD=PD+1-DE: GOTO 2090
2080 LR=RO: LD=DE
2090 PL=1 + PR*PD*<LC-1> + PD*(LR-1) + LD-1
2100 T<L>=P<PL>
2110 NEXT DE
2120 NEXT R0
2130 NEXT CO
2140 FOR J=1 TO N: P<J)=T(J>: NEXT J
2150 RETURN
3000 CLS
3010 FOR DE=1 TO D
3020 IF DE=1 THEN PRINT "TOP PAGES": GOTO 3040
3030 PRINT "BOTTOM PAGES"

58 Problem solving

3040 FOR R0=l TO R: FOR 00=1 TO C
3050 L=1 + R*D*<CO-1) + D*<RO-1) + DE-1
3060 PRINT PCL); " ” ;
3070 NEXT CO: PRINT: NEXT RO
3080 NEXT DE
3090 RETURN

For an initial input of 32 the program gives the following
output:

TOP PAGES
8 25 32 1
9 24 17 16
12 21 20 1 3
5 28 29 4
BOTTOM PAGES
7 26 31 2
10 23 18 15
1 1 22 19 14
6 27 30 3

These numbers give the order in which the numbered pages must
be arranged on the large sheet. The numbers for the pages on the
top of the sheet show the arrangement of the pages as they would
be seen there. The numbers for the pages on the bottom of the
sheet show the arrangement as it would appear when viewed
from the top, that is, page 2 is under page 1, page 7 is under page
8 and so on.

The program only shows where the pages appear; it does not
show which must be printed the right way up and which upside
down. The program can be amended to show this in schematic
form by printing a layout in which the number of a page that is
the right way up is printed in one colour and that of a page that is
inverted in another. It is only a horizontal fold that causes a page
to be turned upside down, so that only the subroutine starting at
line 2000 needs changes other than those that simply keep track of
the unfolding actions. The amended program is listed below, and
a sample of its output for a 32-page imposition is shown in Figure
3.7.

10 PRINT “ENTER NUMBER OF PAGES. THIS MUST BE A POWER OF 2“
20 INPUT N
30 DIM P<N), T<N), 0<N>, S<N)
40 C=1: R=1: D=N
50 FOR K=1 TO N: P<K)=K: Q<K)=0: NEXT K
60 GOSUB 1000: REM VERTICAL UNFOLDING
70 IF D=2 THEN 110
30 GOSUB 2000: REM HORIZONTAL UNFOLDING
90 IF D=2 THEN 110
100 GOTO 60
110 GOSUB 3000: REM PRINT RESULTS

How to number pages 59

120 END
1000 PR=R: PC=C: PD=D
1010 D=D/2: C=2*C
1020 FOR C0=l TO C
1030 FOR RO=1 TO R
1040 FOR DE= 1 TO 0
1050 L=1 + R*D*<CO-1) + D*(RO-1) + DE-1
1060 LR=RO
1070 IF CO>PC THEN LC=CO-PC: LD=DE: GOTO 1090
1080 LC=PC+1-CO: LD=PD+1-DE
1090 PL=1 + PR*PD*<LC-1) + PD*(LR-1> + LD-1
1100 T<L)=P<PL): S<L)=Q<PL>
1110 NEXT DE
1120 NEXT RO
1130 NEXT CO
1140 FOR J=1 TO N: P<J)=T(J): QCJ>=S<J>: NEXT J
1150 RETURN
2000 PR=R: PC=C: PD=D
2010 D=D/2: R=2*R
2020 FOR 00=1 TO C
2030 FOR RO=1 TO R
2040 FOR DE=1 TO D
2050 L=1 + R*D*CCO-1> + D*<RO-1) + DE-1
2060 LC=CO
2070 IF RO>PR THEN LR=R+1-RO: LD=PD+1-DE: GOTO 2090
2080 LR=RO: LD=DE
2090 PL=1 + PR*PD*(LC-1> + PDXLR-1) + LD-1
2095 IF RO>PR THEN Q<PL)=1-Q<PL)
2100 T<L>=P<PL): S(L)=Q(PL)
2110 NEXT DE
2120 NEXT RO
2130 NEXT CO
2140 FOR J=1 TO N: P<J)=T<J>: Q<J)=S(J): NEXT J
2150 RETURN.
3000 CLS
3010 FOR DE=1 TO D
3020 IF DE=1 THEN PRINT "TOP PAGES": GOTO 3040
3030 PRINT "BOTTOM PAGES"
3040 FOR RO=1 TO R: FOR CO=1 TO C
3050 L=1 + R*D*(CO-1> + D*(RO-1) + DE-1
3055 IF Q(L)=0 THEN PEN 1 ELSE PEN 3
3060 PRINT P(L); " ";
3070 NEXT CO: PRINT: NEXT RO
3080 NEXT DE
3090 RETURN

Figure 3.7 Folding program

60 Problem solving

The following table lists the variables and arrays used by the
programs in this section, along with the purpose of each.

Name Item stored under this name

Variables:
N The number of pages in the imposition
C C The number of columns (C), number of rows (R)
R < and the depth (D) of the pages in a folded
D arrangement of pages
CO r Counter variables for the columns (CO), rows
RO < (RO) and depth (DE) of a folded arrangement of
DE pages

PC The number of columns (PC), rows (PR) and the
PR < depth (PD) of a previous arrangement of pages
PD I that is being unfolded to give a new one

LC Counter variables for the columns (LC), rows
LR J (LR) and depth (LD) in the previous arrangement
LD 1 of pages

L The position in the ordering of the page numbers of the
number of a page at a given row, column and depth

PL The position in the ordering of the page numbers of the
number of a page at a given row, column and depth in
the previous arrangement

Arrays:
P To hold, in order, the numbers of the pages in an

arrangement
T To accumulate, in order, the numbers of the pages in a

new arrangement

Classification and coding

The processes of classification and coding are closely related.
Classification of sets of similar objects is usually achieved by
providing a label for each. The label, whether or not it is a
number, can be regarded as a code. The point of assigning the
code is to facilitate the systematic storage and tracing of the
objects.

A tree-like structure such as the one shown in Figure 3.8 is
usually used for classification. From a tree such as this, the
classification code for each item mentioned in the tree can be read

Classification and coding 61

English French Mathematics

Physics Chemistry

Figure 3.8 Tree for classification

by starting at the root of the tree and accumulating the digits or,
more generally, characters of the code as they are passed in taking
the path to the name of the item. The classification code for
Physics, for example, can be read from Figure 3.8 as 110. By
convention, the root of the tree is usually placed at the top, in
contrast to the position of that of a natural tree. But the names of
the parts of the tree still correspond with those of a natural tree,
with the root leading to a trunk, which divides into branches. The
branches divide further until at their ends they reach 'leaves'
which are labelled with the objects to be classified.

The classification system by which the books in libraries are
assigned their classification numbers is essentially of this tree-
structured form. Similarly, the way in which an item of informa
tion is traced in a large publicly accessible information bank such
as that of Prestel is by tracing the appropriate path through a tree
of this kind. Always starting from the root, the user can
repeatedly make a choice of branch, with guidance from the
system, until the required leaf is reached.

We can write a program in Amstrad BASIC to store the
information shown in Figure 3.8 with its tree structure. Once it is
stored, we should be able to enter the name of an item and to
have the program read its classification number from the tree
which it has stored. To store the tree, we can start at the root of
the tree and use pointers to point either to a branch or to an item

62 Problem solving

to be classified. After this, each branch must be given pointers of
a similar kind until all the leaves of the tree have been dealt with.
When the tree has been stored in this way, we can find the code
for each of its items by tracing the path between the root and the
corresponding leaf and noting the characters that label the route.

Since our tree grows exactly two branches at the end of its trunk
and from all the other branching points, we need two arrays of
pointers to mark the routes from the root through the tree. (Our
tree is an example of what is known as a binary tree.) We shall call
the arrays LB and RB to indicate that the elements of the first
point to the left branch following a branching point and those of
the second to the right branch. (The senses of'left' and 'right' are
as they would be from the point of view of a person viewing the
tree as it is shown in Figure 3.8.) With the branching points
numbered as shown in Figure 3.9, we can implement the pointers
in the following way. From branching point number 1, the left
branch leads to branching point 2 and the right branch to
branching point 3. To represent this, we can make the assign
ments

LB(1)=2: RB(1)=3

101 102

104

Figure 3.9 Tree with its branching points numbered

All the branches following a branching point can be pointed to in
this way, but if a branching point is followed by a leaf rather than

Classification and coding 63

another branch, we must have a way of showing this. The
subjects to be classified can be stored in an array called S$, so that
each subject can be pointed to by assigning the number of the
element of S$ that holds it to LB or RB. In this way, after the
assignment

S$(3)=“MATHEMATICS”

we could write

LB(3)=3

But, as things stand at present, this could also mean that after
branching point 3 the left branch leads to branching point 3. To
distinguish leaves from branching points, we shall add one
hundred to their pointer numbers. There is no chance of
confusion if we do this because there are far fewer than a hundred
branching points so that a number greater than a hundred can
never really represent a branching point. When a number greater
than a hundred occurs, then, we know that we must subtract a
hundred from it and that then it will point directly to a leaf. This
will make the assignment for the pointer to the leaf labelled
"MATHEMATICS"

LB(3)=103

Once the tree is stored in this way, with the arrays LB, RB and S$,
the part of the program for finding the classification code for one
of the items labelling the tree can be written. This will operate by
tracing the path from the leaf labelled with that item to the root of
the tree. The code will be accumulated as the route is traversed,
with the first number to be encountered treated as the right-hand
symbol or, if we are thinking numerically, the least significant
digit. Since a zero is always associated with a left branch and a
one with a right branch, we can add the appropriate character to
the left of the character string that accumulates the code according
to which branch is encountered.

The outline of the procedure for finding the code for a subject
is:

Find the pointer, K, to the subject
Initialise code
Repeat

Find J such that either LB(K)=J or RB(K)=J
Add 0 or 1 to the left of the string for the code accordingly
Set K to J

Until the root is reached

64 Problem solving

The program based on these ideas is:

10 DIM S*<5), LB<?>, RB<?>
20 LB<1)=2: RB(1)=3
30 LB<2>=101: RB<2)=102
40 LB<3)=103: RB<3)=4
50 LB<4>=104: RB<4>=105
60 S*<1)="ENGLISH": S$<2)="FRENCH"
70 S$(3)="MATHEMATICS": S<<4> = "PHYSICS"
80 S$<5)="CHEMISTRY"
90 INPUT "SUBJECT"; T$
100 K=1
110 IF Si<K>=T$ THEN 140
120 K=K+1
130 GOTO 110
140 K=100+K: C$="": J=1
150 IF LB<J)=K THEN C$=“0"+C»: K=J! J=0: GOTO 170
160 IF RB<J>=K THEN C$="l"+C$: K=J: J=0
170 IF K=1 THEN GOTO l?0
180 J=J+1: GOTO 150
190 PRINT "CODE IS Ct

The arrays and variables used in this program are listed,
together with their purposes, below.

Name Item stored under this name

Arrays:
S$ The names of the subjects to be classified
LB The numbers of the branching points at the ends of the

left branches of the tree
RB The numbers of the branching points at the ends of the

right branches of the tree
Variables:
T$ The name of a subject as input to the program
K The position in the array S$ of the subject
C$ The code for the subject
J A counter variable to hold values for testing as

candidates for K

Having started by writing a program to store a given tree and to
read the codes from it, we can go a step further by writing a
program which, when given subjects for classification, will
construct their classification tree. A procedure for doing this is
illustrated in Figure 3.10. The subjects are first written down in a

Classification and coding 65

list, then the bottom two are combined to give a new composite
subject, and this is done repeatedly until all the subjects have
been combined. A program that works by doing just this and
which draws the resulting classification tree is listed below.

10 DIM S$<5), X<5) , Y<5>
20 FOR K=1 TO 5: READ S*CK>: NEXT K
30 CLS
40 FOR K=1 TO 5
50 X(K>=200: Y(K>=75*K
60 LOCATE 1, 25-Y<K>/16: PRINT S«(K>
70 MOVE X(K)+30, Y<K): DRAW X(K>+80, Y(K), 1
80 X(K>=X<K>+80
90 NEXT K
100 FOR J=4 TO 1 STEP -1
110 MOVE XCJ+l), YCJ+l): DRAW XCJ+l), Y<J), 1
120 Y<J)=0.5*<Y<J+1>+Y<J))
130 FOR K=1 TO J
140 MOVE XCK), Y<K>: DRAW X(K>+50, YCK), 1
150 X(K)=X<K)+50
160 NEXT K
170 NEXT J
180 DATA "ENGLISH", "FRENCH", "MATHEMATICS"
190 DATA "PHYSICS", "CHEMISTRY"
200 GOTO 200

The last line is needed to prevent the program from ending, so
keeping the display on the screen.

Tne procedure on which this program is based is not the only
way to produce a classification tree. An alternative method is
shown in Figure 3.11. The question that naturally arises is which
of the possible trees is the best one. The answer to this question is
that it is best to give the shortest codes to the subjects that occur

66 Problem solving

most frequently and the longest to those that are the least
common. This is clearly the best strategy when devising codes for
storing information, rather than simply for classifying it, for
giving the shortest codes to the items that must be stored most
often ensures that the smallest amount of memory will be
needed. With classification codes, it is also better to give the
shortest codes to the most common items, for this will make the
codes easier to remember and quicker to enter.

If we use the probability of occurrence of a subject as the
measure of its frequency of occurrence, or commonness, there are
two different ways of going about finding the resulting tree. One
is to sort the subjects into decreasing order of their probabilities
before using the procedure that we have just written. This works
because the least common subjects are combined first and
therefore are given the longest codes. The second method is to
write a program to write the subjects down in the order in which
they are held in the array S$ ana then to combine repeatedly the
least probable, no matter which they are.

A program based on the first scheme is:

10 DIM S»<5), P<5>, X<5), Y<5)
20 FOR K=1 TO 5: READ S$(K), P<K>: NEXT K
30 GOSUB 1000: REM SORT ROUTINE
40 CLS
50 FOR K=1 TO 5
60 X<K)=200: Y(K)=75*K
70 LOCATE 1, 25-Y<K>/T6: PRINT S«(K)

Classification and coding 67

80 MOVE X<K)+30, Y(K>: DRAW X(K>+80, Y(K>, 1
90 X<K)=X<K)+80
100 NEXT K
110 FOR J=4 TO 1 STEP -1
120 MOVE X(J+1>, Y<J+1): DRAW XCJ+l), Y(J), 1
130 Y<J)=0.5*<Y<J+l)+Y<J))
140 FOR K=1 TO J
150 MOVE X(K), Y(K>: DRAW XCKJ+50, Y<K>, 1
160 X<K)=X<K)+50
170 NEXT K
180 NEXT J
190 DATA "ENGLISH", 0.2, "FRENCH", 0.1, "MATHEMATICS", 0.3
200 DATA "PHYSICS", 0.15, "CHEMISTRY", 0.25
210 GOTO 210
1000 S=0
1010 FDR M=1 TO 4
1020 FOR N=M+1 TO 5
1030 IF P<NXP(M) THEN 1070
1040 T»=S»(M>: S$(M)=S$<N): St<N)=T$
1050 X=P<M>: P<M)=P<N): P<N)=X
1060 S=1
1070 NEXT N
1080 NEXT M
1090 IF S=1 THEN 1000
1100 RETURN

A program based on the second scheme is:

100 IF X<K)>0 THEN MOVE XCK), YCK): DRAW XOO+50, Y<K), 1:
X<K>=X 00+50

10 DIM S$<5), P<5>, X<5> , Y<5)
20 FOR K=1 TO 5: READ S$(K> , POO: NEXT K
30 CLS
40 FOR K=1 TO 5
50 X 00=200 : YOO=75*K
60 LOCATE 1 , 25-YOO/T6: PRINT S*OO
70 NEXT K
80 FOR J=1 TO 5
90 FOR K=1 TO 5

110 NEXT K
120 IF J=5 THEN 240
130 M=1: Q=1
140 FOR K=1 TO 5
150 IF PCKMM THEN M=POO : Q=K
160 NEXT K
170 M2=l: P2=l
180 FOR K=1 TO 5
190 IF P<K)<M2 AND KOQ THEN M2=PCK): P2=K
200 NEXT K
210 MOVE X<Q>, Y<Q>: DRAW X<P2>, YCP2), 1
220 P<Q)=P<Q)+P<P2): P<P2>=2
230 Y(Q>=0.5»CY<Q>+Y<P2>>: X(P2)=-10
240 NEXT J
250 DATA "ENGLISH", 0.2, “FRENCH", 0.1, "MATHEMATICS“, 0.3
260 DATA "PHYSICS", 0.15, "CHEMISTRY”, 0.25
270 GOTO 270

The arrays and variables involved in the programs of this
section following the first are summarised below.

68 Problem solving

Name Item stored under this name

Arrays:
X f Column (X) and row (Y) numbers for positioning
Y t the lines for drawing a tree on the screen
P The probabilities associated with the subjects
Variables:
T$ A subject name during swapping
X A probability during swapping
S A value to indicate whether swapping occurred
M The smallest value in the array P
Q The position in P of its smallest value
M2 The second smallest value in the array P
P2 The position in P of its second smallest value

Conclusions

In this chapter, we have posed and solved a number of problems
each of which displays some degree of difficulty. One of the
points that emerges, almost self-evidently, is that they can all be
solved with Amstrad BASIC. Often, Amstrad BASIC possesses a
feature that is exactly what we require to facilitate the solution of a
particular problem.

Clearly, the addition of graphics to problem-solving programs
can enhance their worth considerably, and Amstrad BASIC is
quite well equipped to allow its users to create the necessary
graphics.

If a problem is tackled in a systematic fashion so that the
solution program has a clear and strong structure, then the
addition of graphics to the solution program is straightforward, as
is the addition of further refinements to enhance the usefulness
and generality of the program.

Sometimes, Amstrad BASIC does not lend itself to the
structuring of programs as well as other computer languages do.
Languages such as Pascal are available for Amstrad computers
and, if it is important to be able to find the solution of
considerable problems in a way that can be extended and
adapted, the investigation of such a language is well worth while.

It may seem that the use of a computer may not be necessary
for some of the problems that are presented in this chapter. A
computer is not really needed to classify five subjects, for
example. But there can be no doubt that a computer would be a
great help in classifying five thousand subjects. The program

Conclusions 69

presented here will do this, with simple and straightforward
changes, although the demonstration of this would be extremely
difficult in a book. So try to keep in mind the idea of 'scale': if a
computer program will solve a problem with small amounts of
data then (perhaps after minor modification) it will solve the same
problem with any amount of data.

The main purpose of the chapter, though, is to demonstrate the
sort of techniques that make the computer such a powerful tool
for problem solving. The methods are undoubtedly different from
those used in other areas, and their application requires a certain
amount of ingenuity, but with their use the scope of the problems
to which the Amstrad can be successfully applied is enormous.

4 Hardware-based applications

The range of applicability of the Amstrad can be enlarged
enormously by attaching items of equipment to it. The equipment
can range from something as obvious as a printer, through items
such as video equipment which may already be in the home to,
less obviously, a household robot. A printer is as necessary as the
computer itself for the user whose application is word processing,
although it has other uses. Attaching a computer to video
equipment enhances the applications of both. A personal robot
opens up a new area of interest in which the possibilities are only
now becoming apparent, indeed are only just being imagined.
Items of equipment such as these are attached to the Amstrad at
one of the sockets on its back panel. The sockets are labelled to
indicate their basic purposes. Each has its own pattern of
electrical connections that makes it suitable for dealing with
particular items because the item for which it is intended will
have its own socket with a corresponding, matching pattern of
connections. In this way, the socket marked 'PRINTER' on the
Amstrad is of a standard kind that is known as a Centronics
socket or port. Many of the types of printer that are manufactured
include this type of connection, and so any of them can be
connected directly to the Amstrad and operated with a minimum
of fuss. (Other kinds of printer incorporate a different socket.
While it is still possible to attach them to the Amstrad, the
connection is not so straightforward.) The connection marked
'USER PORT' is not a widely recognised standard socket in the
same way as the printer socket but, rather, is specific to the
Amstrad. Nevertheless, it provides a well-defined pattern of
electrical connections, and any item possessing the correspond
ing pattern can be plugged in here. Such items include the
Amstrad joysticks.

Many of the items that can be attached to the computer will
70 simply be controlled by it. The control will be achieved by passing

Hardware-based applications 71

electronic signals from the computer to the attached equipment.
This is not a particularly difficult departure for the computer.
Signals are being passed around inside it all the time between its
various component parts, and to lead some of these signals to a
connection socket is as easy as to lead them anywhere else. But
this does reveal the importance of having a well-defined pattern
of connections between the computer and the item attached to it.
If the computer sends a signal to one of its sockets for a specific
purpose, then that signal must be conducted to the necessary
place in the attached equipment to achieve that purpose. The use
of standard sockets is naturally a great help in ensuring successful
cooperation.

The one-way passage of signals, so that they only pass from the
computer to the item attached to it, may be sufficient for a
computer to control a printer. In this case it could be sufficient, for
example, for the computer to indicate to the printer when it is to
start printing, to pass the text to be printed, and then to indicate
that the printer must stop. But if the computer is to guide a robot
around the house signals must pass both from the computer to
the robot and in the opposite direction. The computer must send
the robot its directions as to how to proceed, but the robot must
send signals to the computer to indicate that it has encountered
some unusual situation with which it must cope. For example, if
the computer has been provided with a description of the
arrangement of the furniture in a room then it can guide the robot
from place to place without its bumping into anything. But if
there is a cat in the room and the robot is not to bump into it, then
the robot must be able to detect when there is an obstacle in its
path and, when there is, to request directions for avoiding it. The
two-way transmission of signals can be achieved with success in
the same way as one-way transmission, by agreeing on the
pattern of the electrical connections that link the computer and
the robot, or whatever, and the purpose of each.

The word peripheral is the jargon term for an item of
equipment that can be attached to a computer. If you have a
peripheral that you want to attach to the Amstrad and it does not
have a socket matching one of those that is on the Amstrad, then
it obviously cannot be plugged in directly, but there are still ways
of attaching so that it operates successfully. The peripheral clearly
cannot be plugged in if its plug is the wrong shape. But this is
only a symptom of the more fundamental mis-match that we have
been discussing, namely that the patterns of electrical connec
tions do not match. The solution to this is to build an electronic
circuit that takes the signals on the connections from, say, the
computer and converts them to the signals needed by the

72 Hardware-based applications

peripheral before routeing them to connections that match the
requirements of the peripheral. For two-way communication, it
will also need to do the same thing for the signals that pass from
the peripheral to the computer. An electronic circuit that
performs these ronversions is known as an interface. An interface
to make it possible to connect a particular peripheral to a
particular socket at the back of the Amstrad will incorporate two
cables, emerging from the circuit in opposite directions, as it
were, with one cable terminating in a connector to plug into the
peripheral and the other in a connector that fits the particular
Amstrad socket. For this reason, any peripheral for which an
appropriate interface exists, or can be constructed, can be
attached to the Amstrad and used in conjunction with it.

The peripherals that we shall examine and discuss in this
chapter can be classified, fairly loosely, into four categories. The
categories do overlap, but the purpose of giving them is to
provide a clear indication of the sorts of applications that become
available by adding extra equipment to the computer. The
categories are:

1 Upgrading the computer. Certain peripherals can be seen as
improving the capability of the computer as a computer. That is to
say, they bring an improvement in kind, but not in the scope of
the applications to which it can be applied. Adding a disk drive to
the CPC464 is an example of this, in that it has improved the
ability of the computer to do something that it could do before. It
allows it to store more information and to store it more quickly.
Adding a second disk drive to the CPC664 provides an upgrade in
a similar way, by facilitating the manipulation or copying of
substantial amounts of information, as anyone who has had to do
it will rapidly confirm.
2 Enhancing the computer. Some peripherals can enhance the
computer by bringing to it abilities that it did not have before. A
printer is one example, and a graph plotter is another.
3 Making the computer easier to use. Many peripherals are
available that make the computer easier to use. They often do this
by providing alternatives to the keyboard for communicating with
the computer. Joysticks are one example of this, and the light pen
and the mouse are others. But all of these can be used as more
than keyboard alternatives.
4 Opening up new applications. Although the creative use of
items for enhancing the computer and of those for making it
easier to use can be seen as making new areas of application, the
addition of a robot to a computer opens up vistas of opportunities
that represent much more radical departures. Similarly, attaching

Cassettes and disks 73

video equipment to the computer brings promises of interesting
and exciting applications.

Cassettes and disks

Cassettes and disks are the media on which information is stored.
The information may be a computer program, data that has been
placed in a database, text from a word processor or any of a great
many other things. No matter what its origin, when stored the
information is represented as a succession of magnetic marks on
the magnétisable surface of a disk or of the tape in a cassette. The
magnetic patterns representing information are recorded on a
cassette by a cassette player and on a disk by a disk drive.

The Amstrad CPC464 has its own built-in cassette unit, while
the CPC 664 has a built-in disk drive. We have seen in Chapter 2
that the CPC464 can be used for word processing, and for
database and spreadsheet applications, but the ability to be able
to use only cassettes for storage does impose some restrictions.
As applications programs come to offer more, and more sophisti
cated, facilities, they become larger and, in consequence, take
longer to load from cassette. As the amounts of information that
are generated increase, they also take longer to save on a cassette,
and further complications arise when too much information is
created for it all to fit on a single cassette. Thus, as the demands
that the user places on the system increase, there will be a natural
desire, in the interests of convenience and time-saving, to up
grade the system to include a disk drive. Disk drives allow
information to be stored and recovered much more quickly than a
cassette player ever can. This is partly because they are inherently
faster in operation, but also, as far as recovering information is
concerned, because they can access any items of information as
quickly as any others, which a cassette player cannot. A disk
drive reads the information on a disk by using a reading head that
is mounted on an arm which operates in much the same way as
the arm carrying the playing head and stylus of a record player
does when playing an LP. Just as a record player can play one
track on an LP as easily as any other, so a disk drive can retrieve
any information on a disk with equal ease. By contrast, a cassette
player must wind through all the unwanted information that
precedes the information that is required from a cassette before it
can begin to recover it.

A disk drive can be attached directly to the CPC464 via the
socket marked 'FLOPPY DISK'. Figure 4.1 shows Amstrad's own
disk drives attached to a CPC 464. When this has been attached
the system can, of course, run disk-based software. But it is worth

74 Hardware-based applications

Figure 4.1 Two Amstrad disk drives attached to a CPC464

taking care, when up-grading in this way, to ensure that the disk
based software that is purchased is compatible with the cassette
based software so that all the work done previously is not lost. If
the new software is compatible with the old, then it will be
possible to load information held on cassette with the use of the
cassette unit, and then to save it on disk, so that there is no
problem in incorporating information stored previously into the
new mode of working. Above all, there need be no hiatus when
starting with the new system while the information created with
the old system is re-created with the new one.

Figure 4.2 The 3 inch disks, drive units and interface used with the Amstrad CPC 464

Cassettes and disks 75

The CPC664 has its own disk drive which, in common with the
stand-alone drive, accepts 3 inch diameter disks of the type
shown in Figure 4.2. It has a socket at which a domestic tape
recorder can be attached, so that up-grading from a CPC464 to a
CPC664 can be achieved with the same safeguards as have just
been described for up-grading a CPC464 by adding a disk drive to
it. But once the user is familiar with the CPC664 and starts to
become more and more ambitious with its application, even a
disk drive will be found to have its limitations. Part of the reason
for this is that it is good practice to ensure that an applications
program is held on one disk and the data it produces on another.
This ensures, for example, that the applications program is never
accidentally overwritten by some data, and that if one data disk is
filled it is only necessary to start on another one. But with a single
disk drive, the user will often have to remove one of the disks to
replace it by the other, particularly if the applications program is
too large to reside in the computer in its entirety. In this case, the
computer will call in the parts of the program from the disk as
they are needed. But if the data disk is in the drive at the time, it
will be necessary to swap disks.

It is probably not difficult to imagine from this discussion that it
is very useful to have two disk drives so that one can hold the disk
with the applications program and the other the data disk.
Another much-needed operation in which two disk drives come
into their own is in making a copy of a disk. This will be needed,
for example, with any new disk to make a back-up copy of it for
security purposes in case any harm comes to the version that is in
use. Because the capacity of a disk far exceeds that of the
computer's memory (which will not all be available anyway
because it must also contain the program that does the copying),
the computer must repeatedly take chunks of information from
the disk and copy them to the other disk. With the original disk in
one drive and the disk on which the copy is being made in the
other this is straightforward, but with only one drive disks will
have to be inserted and removed rather too often for comfort.

Figure 4.3 shows the CPC664. With a second disk drive
attached to it, this represents the culmination of what can be
based on the Amstrad as far as external storage requirements are
concerned, and it is undoubtedly a powerful one. Because the
CP/M operating system can be used with the CPC664, a vast
range of software is available for it from the CP/M library in
addition to that which has been developed especially for the
Amstrad. Having twin disk drives allows the users of the system
to take full advantage of the capabilities of this software. By the
route that we have described, there is an Amstrad system with

76 Hardware-based applications

Figure 4.3 The Amstrad CPC664

adequate storage facilities to meet the needs of any user from the
beginner to the most demanding.

Printers and plotters

As we have said, any printer with a Centronics socket can be
connected directly to the Amstrad. Printers in this bracket cover
the entire range of what is available, so that although a printer
with another type of socket can be connected via an appropriate
interface, there is not too much point in doing so because such a
printer can offer nothing that is not possible with a Centronics
printer. In fact, a Centronics printer has one positive advantage
over its main rivals, which stems from the way that signals are
passed between the computer and the printer. A Centronics
connection passes eight signals simultaneously, or in parallel.
Since each signal can represent a bit, eight bits, or one byte, can
be sent at a time. And one byte can represent a character, that is, a
letter, number, punctuation mark or special symbol, to be passed
from the computer to the printer. By contrast, the connection
used by other printers passes only one signal at a time, so that bits

Cassettes and disks 77

are sent one at a time in a continuous stream. (They are sent in
serial.) This means that the characters making up information can
be sent to a Centronics printer more quickly than to other printers
and, correspondingly, that it is possible for such a printer to print
the information more quickly.

Figure 4.4 The Amstrad DMP-1 dot matrix printer

The printers available are basically of two kinds, known as dot
matrix and daisy-wheel printers after the way that they print their
characters. A dot matrix printer, such as the Amstrad DMP-1
shown in Figure 4.4, prints its characters as patterns of dots. A
number of small needles arranged in a rectangular array can strike
the print ribbon. By allowing some to strike it and not others, a
character is printed as the resulting pattern of dots as shown in
Figure 4.5. A daisy-wheel printer, such as the Silver Reed model
shown in Figure 4.6, prints complete letters by striking their
moulded shapes against the print ribbon. The printer operates by
rotating the wheel to bring the required character into position
and then striking the character against the print ribbon so that it
makes its imprint on the paper.

The two kinds of printer produce results of different qualitities,
and also have a few distinct operating characteristics. It is sensible
to review the uses to which a printer may be put to help in
deciding which printer is more suitable for the different applica
tions.

78 Hardware-based applications

Figure 4.5 A character produced as a pattern of dots

Figure 4.6 A daisy-wheel printer

Word processing
The most widespread practical use of a printer is in word
processing. Both dot matrix printers and daisy-wheel printers will
produce perfectly acceptable and readable notes, letters and
reports. For purposes of prestige, the user may feel that in some
circumstances the letters and documents that he or she produces
should have an appearance comparable to that which results from

Cassettes and disks 79

using a good electronic typewriter. In this case, a daisy-wheel
printer must be used to give the high quality, or so-called 'letter
quality', standard of printing. The prejudice that has existed
towards the results produced by dot matrix printers is breaking
down, however, and as the quality of their printing improves, it
becomes increasingly difficult to distinguish between the output
of a good dot matrix printer and a daisy-wheel printer.

When using a daisy-wheel printer, it is possible to use different
founts for the printing simply by changing the daisy-wheel to one
that supplies the fount required. A range of daisy-wheels will be
available giving different founts, such as Courier, Elite and Gothic
Mini, as well as for italics. There may also be daisy-wheels
providing the Greek alphabet and mathematical symbols. This
means that documents can be produced with an appearance and
of a quality that meet the highest requirements of the user.
Technical documents can also be printed.

A dot matrix printer can also offer different founts, although it
does not do so with the same flexibility as a daisy-wheel printer.
By changing the pattern of dots that is used to create each
character, a dot matrix printer can vary the appearance of the
characters that it prints. To call this 'changing founts' would be an
exaggeration, because the inherent limitation of a rectangular
array of dots scarcely permits the creation of the letters of an
accepted fount. But the change is possible. In contrast to the
physical changing of a daisy-wheel, the change is usually made
by software.

Another feature of daisy-wheel printers is that they can provide
what is known as 'proportional spacing'. In essence, this means
that they can provide spaces of various widths to separate letters.
Such spacing is used in producing the text of a book or
newspaper, so that it contributes to what we associate with the
'professional appearance' of such text, whether or not we are
aware of its use. Proportional spacing comes into its own when
text has to be right justified. It allows the extra space that must be
inserted to push the right-hand end of the line far enough across
to be uniformly distributed throughout the line. In the same
circumstances, a dot matrix printer can only justify its text by
inserting as many standard character-width space characters as
are necessary. This can lead on occasion to lines of text acquiring
an ungainly and obtrusive appearance that is distracting to the
reader.

It is probably fair to summarise all this by saying that daisy
wheel printers are superior for the production of high quality
letters and documents, although dot matrix printers are entirely
adequate. Daisy-wheel printers are also more expensive, and so

80 Hardware-based applications

the decisive basic point in choosing a printer for word processing
may be whether you can afford to buy a printer that produces
documents that meet your aspirations.

Programming support
As soon as programs of a certain complexity are being developed,
a printer is an almost essential aid to the programmer. To develop
or debug a lengthy program it is useful, and even necessary, to be
able to see the entire program. The screen can show only a limited
amount of it, while all of it can be printed. Besides this, a printed
copy of a program can be taken away from the computer and
studied at leisure. If a program can only be read on the
computer's screen while sitting in front of it, there is a great
temptation to tinker with the program by trying out anything that
comes to mind. If a copy of the program can be taken away from
the computer, it can be examined coolly and without the
immediate pressure of the computer's presence. The second of
these practices is much more likely to result in the development of
a coherent and well-structured program. The computer will also
be free for someone else to use.

With any kind of printer attached to the Amstrad, the program
stored in it can be listed on the printer simply by giving the
command:

LIST#8

The results given by a program can also be printed. This will
preserve them in an easily accessible form, in contrast to their
ephemerality if they are simply displayed on the screen. Before a
program is developed to a completely satisfactory state, it will
also be of help in correcting it, in the same way as is the ability to
print the program itself.

Again, no matter what kind of printer is attached, the output of
a program may be directed to it with commands such as:

PRINT#8, "Results for display on the printer"

On the face of it, there will be nothing to choose between the
two types of printer for this usage and, indeed, for most of the
time there will not be. But there are slight differences. The user
may need some of the special characters that are possessed by the
Amstrad or may design his own characters for some reason in an
application. These characters can be printed by a dot matrix
printer, after giving it the necessary directions, because the
characters are created using a dot matrix on the screen (this time a

Cassettes and disks 81

character is displayed by brightening certain dots and not others)
as well as on a printer. A daisy-wheel printer cannot display such
characters because it can only print the fixed repertoire of
characters that exists on its daisy-wheel. The same applies to
graphics characters, but we shall discuss them next.

The Amstrad provides a considerable repertoire of special
characters and graphics characters. They are all illustrated in
Appendix 3 of the Amstrad manual, but Figure 4.7 shows one
example of each. The provision of some Greek characters and
some mathematical symbols does weaken the advantage of daisy
wheel printers over dot matrix printers argued in the preceding

Figure 4.7 A special character and a graphics character

82 Hardware-based applications

discussion of word processing. But the sets of characters supplied
are not complete and, things being what they are, the one that
you need is likely to be among those not provided!

The conclusion here must be that a dot matrix printer is likely to
be preferable.

Graphics
The Amstrad can, as we know, display detailed graphics. The
images created on the screen can be printed on paper by a dot
matrix printer, but not by a daisy-wheel printer.

One way to create a graphics display on the screen is to PRINT
the graphics characters that are required to make it, thereby
creating an image in much the same way as a paragraph of text is
created by printing its individual letters. The characters in Figure
4.7, for example, can be displayed by:

PRINT CHR$(190)

and

PRINT CHR$(212)

An image created in this way can be printed by a dot matrix
printer in the same way as it prints text. It simply needs to print
the characters as they are sent to it. No special arrangements are
needed at all.

Even when the high-resolution graphics commands, such as
DRAW and PLOT, have been used to create a display, it can still
be copied by a dot matrix printer, although some software will be
needed. The display on the screen is composed of dots, and if the
screen is divided into blocks of eight by eight dots (the size of the
dot matrix for the characters) it can be regarded as being
composed of characters. These characters will, in general, not be
those that are in the standard character set. But if software is
provided that can describe each character into which an image
can be divided and can instruct the printer as to how to print it,
then high-resolution images can be printed in the same way as
images that were originally constructed from characters.

For graphics, then, a dot matrix printer is capable of printing
any of the images that can be created on the screen of the
Amstrad.

However, serious graphics programmers wanting a permanent
copy of their results will undoubtedly find that a graph plotter,
such as the one shown in Figure 4.8, will be necessary to do full
justice to their images. A graph plotter operates by moving a pen

Cassettes and disks 83

Figure 4.8 A graph plotter

over a sheet of paper. The pen is mounted on an arm: the arm can
move across the paper and the pen can move up and down the
arm. This allows the pen to be positioned at any point on the
paper. If the pen is down while the movements take place it will
draw a line. If it is raised, it can be moved to a new position
without drawing a line and, when lowered, can start to draw a
new line from there. If the plotter has a number of pens of
different colours, then it can draw multi-coloured graphics by
placing the pen of the appropriate colour in the pen holder at any
time.

The ability to reproduce multi-coloured graphics gives a graph
plotter an advantage over an ordinary printer, which can only
produce its results in black and white. The plotter can also
produce results superior to those displayed on the screen, for its
resolution is superior to that of the screen. On the screen the
positions of the dots which can be illuminated to create an image
are fixed. So when plotting a straight line, for example, there may
not always be a dot that is positioned directly in the path of the
line. When this happens the dot that is nearest to the path must
serve. This can lead to 'straight lines' that have a noticeably
jagged appearance: the effect is particularly noticeable with lines
that are nearly vertical and nearly horizontal. While a graph
plotter does not draw smooth lines, apart from in certain
exceptional cases, it does draw lines that are less jagged in
appearance. (In fact, a graph plotter is operated by stepper

84 Hardware-based applications

motors, with one to move the arm holding the pen by a small step
at a time, and a second to move the pen along the arm in small
steps. These steps are far smaller than the distance between
adjacent dots on the screen.)

Joysticks, light pens and mice

Of all the simple and convenient ways of communicating with the
computer, the joystick is the cheapest and most popular. There is
an Amstrad joystick that is specifically designed for use with
Amstrad computers. Two of these can be attached to the
computer. Its most common use is in games, but there is no
reason why it cannot be used with serious software. When using
a word processor, for instance, it provides a natural way of
moving the cursor around within a document.

Figure 4.9 A joystick

The Amstrad can detect whether the joystick has been moved
left, right, up or down, and can also tell whether one of the two
buttons on the joystick has been pressed. The joystick is treated
by the Amstrad as part of the keyboard, so that it is scanned 50
times a second, and its activities can be tracked by using the
INKEY command. The special function JOY is also provided,

Joysticks light pens and mice 85

though, and this function returns the values given in the
following table when the different actions that are possible have
occurred.

Table of values returned by JOY

Activity Value ofJOY(O)

Stick up 1
Stick down 2
Stick left 4
Stick right 8
Button 2 pressed 16
Button 1 pressed 32

Using this table, we can write a BASIC instruction to cause the
screen to be cleared when the joystick is moved upwards as:

IF JOY(O) = 1 THEN CLS

Clearly, instructions similar to this can be included in any
program, so that the joystick can be used in any application

Figure 4.10 A light pen

86 Hardware-based applications

although, with only six distinct states, its useful range may be
rather limited. It could be used, for example, to select an item
from a list, or menu, of up to six choices, but it must be admitted
that this does not suggest that it provides a means of doing so that
can be described as natural. But if the joystick is used to move an
indicator progressively down a menu and then to show that the
current item is to be selected, its use becomes rather more natural
and appropriate.

A light pen such as that shown in Figure 4.10, provides a more
natural means of interacting with the computer in that its use
corresponds quite closely to familiar activities such as pointing
and writing. Used in conjunction with the necessary software a
light pen can be used to select an item from a list displayed on the
screen by pointing at it, and can also be used to 'draw' on the
screen in a way that is entirely analogous to the way that we draw
on paper with a pencil.

One difficulty with using a light pen is that the very act of
holding it to the screen inevitably obscures some part of the
screen. One alternative that overcomes this problem is the
graphics tablet, illustrated in Figure 4.11. This consists of a pad
and a stylus which, again with the appropriate software, can be
used in the same way as a light pen with a screen. By using
overlays designed to accompany a particular applications prog
ram with the tablet, the use of the programs can be made
particularly easy. The overlays can, at their simplest, have a box
for each activity that the program provides, and any activity can
then be selected and activated by placing the stylus in its box.

Another alternative means of interaction, which again avoids
the problem associated with the light pen, is the mouse,

Figure 4.11 A graphics pad

Joysticks light pens and mice 87

illustrated in Figure 4.12. A mouse is only one part of a complete
approach to making the computer easy to use. Other components
are icons and windows. An icon is a graphical representation of
an activity that the computer can carry out. A small picture of a
folder can be used to represent the activity of filing information,
and an image of a waste paper basket can be used to represent the
discarding, or throwing away, of unwanted information. A
mouse is used by moving it around on a flat surface at the side of
the computer to which it is attached. As it is moved, it controls a
cursor that moves in a corresponding fashion on the screen. By
placing the cursor on an icon and pressing the button on the
mouse, the activity represented by the icon is both selected and
activated. With the cursor placed on the waste paper basket icon,
for instance, clicking the mouse will cause the information that is
currently being worked with to be thrown away.

Figure 4.12 A mouse

A window is a rectangular region on the screen in which
information can be displayed independently of the rest of the
screen. Creating a window will cause it to overwrite a part of the
display already on the screen, and removing it will cause the
original display to reappear. The use of a window with a mouse
and icons can be illustrated in the following way. Suppose that
we are in the middle of the activity of creating a file of
information, and we need to include some information that has
already been stored in another file. What we need to do is to
initiate the action of transferring information from another file to
our current one. This will be an option in a menu provided by the
program. So we place the cursor on the menu icon and press the

88 Hardware-based applications

button on the mouse. The menu then appears in a window
overwriting part of the display. Then we select the activity that
we require, this time by placing the cursor on its name and
pressing the button. We will have to give the name of the file
containing the information that we need, but then the system will
do the rest. When this activity is completed, we can place the
cursor on the 'put away the menu' icon, and then the window
containing the menu will be removed, leaving us with the display
that we had before we began this activity.

This discussion is intended to show that there is a whole range
of peripherals all of which can make the computer easier to use in
varying degrees. They replace the keyboard as our basic means of
communicating with the computer and, generally speaking, the
more natural they are to use, the easier they make it for use to use
the computer.

Robots
In many ways, a robot is the most attractive of all the peripherals
that can be attached to the computer. It provides something that
the user can control, and which can immediately be seen to
respond to the instructions it is given. The robots that can be
operated in conjunction with personal computers may not yet be
capable of enormously useful activity, but they do have their
uses, and their usefulness is certain to increase in the future. At
present, with a certain amount of ingenuity, there are some

Figure 4.13 The 'turtle'

Robots 89

worthwhile applications for robots that can be devised and
implemented.

The robots that are available for use with home computers
range from the 'turtle', shown in Figure 4.13 through the 'buggy'
to the Zero 2 in Figure 4.14. We will discuss the capabilities of the
turtle and the Zero 2, for in their applications they represent two
very different approaches to robotics. The turtle is intended as an
educational aid, and is found mainly, if not exclusively, in schools
and other educational institutions. The Zero 2 is marketed as a
personal robot for use in the home.

Figure 4.14 Zero 2

Educational robots
Examination of Figure 4.13 will show that, under its dome, the
turtle possesses a pair of wheels, which enable it to move

90 Hardware-based applications

forwards and backwards, and to turn. It also has a pen, which can
be raised and lowered. When the turtle is placed on a large sheet
of paper, it can draw on the paper when its pen is lowered, and so
can draw lines and curves that mark its path.

The turtle, then, can be moved around under the control of the
computer, perhaps following some path devised by its user. But it
can also draw as it goes, thereby creating a record of the path that
it has taken. This allows the turtle to be used, at one extreme, as a
small robot whose movements can be controlled or, at the other
extreme, as a graph plotter. Its intended form of use lies between
the two extremes, for it can be used as a small robot with the
ability to record its path. In this way, it provides a tool with which
strategies for creating paths for it can be developed and tested.
Because it can draw, its path can be compared to that which was
intended and, if necessary, amended.

Its value as an educational aid arises from this, because it can be
used for devising strategies, for exploring geometry and, when its
full potential is tapped, for much more that is of educational
value. That it produces visible results, both in itself and with its
drawings, makes it attractive and enjoyable to use. Even if it does
not perform as intended, it still produces some result, which can
be amended and adapted until it becomes what was required. By
embodying an approach to problem-solving that is close to the
way that problems are solved in real life, the turtle is helping to
develop and teach a skill of real value. Further, it does not
embody the often-found attitude that something that is not
absolutely right is, therefore, wrong: it deals with the in-between
situation and encourages the attitude that something that is not
quite right can be fixed so that it becomes right.

The way in which the turtle can be moved is fundamentally
very simple. At any time, it occupies a known position and faces
in a specific direction. It can move forwards in the direction in
which it is facing, taking 'steps' of a certain length. It can retire in
the opposite direction. It can be made to turn to face in another
direction. The turtle is controlled by using a group of commands
provided by a special language. The language originally devised
for this purpose was called Logo but, subsequently, the so-called
'Turtle graphics' commands have been incorporated in other
languages. No matter what language they are provided by, the
commands for controlling the turtle are, with slight variations
from language to language and dialect to dialect, as shown in the
following table.

Robots 91

Table of turtle commands

Command Effect of command

FORWARD n
BACK n
TURN a
PENUP
PENDOWN

To move the turtle forwards by n steps
To move the turtle backwards by n steps
To turn the turtle clockwise through a degrees
To raise the pen
To lower the pen

There are also a few other commands with obvious meanings,
such as REPEAT, which can be used to make the writing of
instructions for moving the turtle more convenient.

We can illustrate the use of these commands by giving a short
program for making the turtle follow a path that is an equilateral
triangle. The way in which the path is traced is shown in Figure
4.15, and the program is:

FORWARD 25
TURN 120
FORWARD 25
TURN 120
FORWARD 25
TURN 120

The last TURN command is not strictly necessary as far as tracing
the triangular path is concerned, but it does bring the turtle back
to its original state in that it occupies the same position and faces
in the same direction as it did before it started. It also means that
the program corresponds exactly to the following shorter version:

REPEAT 3
FORWARD 25
TURN 120

In both cases, the program should be preceded by the PEN
DOWN command if the turtle is to draw the triangle.

As a second example, we can consider how to make the turtle
draw a circle. The previous program can give us a clue as to how
this may be done, because the turtle has traced an equilateral
triangle by advancing and turning three times. To move forward
and keep turning by a constant amount is also the recipe for
tracing a circle, for a circle has the same curvature at any point on
its circumference. If the steps are as small as possible, and the
amount of turn is also the smallest that it can be, then the circle

92 Hardware-based applications

will be as smooth as is possible. This means that the turtle should
repeatedly FORWARD 1 and TURN 1. How many times should it
do this? Well, it turns through one degree with each turn, and
there are 360 degrees in a circle, so 360 times ought to be enough.
This gives the program for drawing a circle as:

PENDOWN
REPEAT 360
FORWARD 1

TURN 1

This illustration shows the sort of reasoning that is required to
make a turtle do what you want it to. The result of creating a
shape by telling a turtle how to move along a path of that shape
leads to a new approach to geometry which can be seen as a
computational geometry. But it also provides an attractive test
bed for trying out ideas and, if they do not work at first, for
amending them. In this, it creates a powerful educational

Figure 4.15 The way the turtle draws a triangle

Robots 93

The buggy is basically the same sort of robot as the turtle, with
the same intended area of use. It is equipped with more facilities
that the turtle, having an armoury of sensors, including touch-
sensitive ones with which it can detect an obstacle it has run into
and light-sensitive ones which can measure the brightness of a
surface. This allows the buggy to be programmed to do more than
the less well endowed turtle. It can be programmed to find its
way around an obstacle in its path; to explore its environment,
and create a map of it by recording where all the obstacles are
located; and to follow a painted line by staying on a path on
which the brightness of the surface under the light sensor
remains constant.

Personal robots

There are a great many tasks that a robot can usefully do in the
home, and even more that the harassed housewife might like one
to do. The reason that robots are not yet commonly to be found
doing jobs around the house soon becomes apparent on inspec
tion of those jobs. Washing up, making the beds, hoovering,
mowing the lawn and so on are all tasks not only of some
difficulty in themselves but also quite different from each other. If
you doubt that, say, doing the washing up is a complex task, then
consider how you would go about telling a robot how to do it. The
robot's program that gives it the ability to wash up must do just
this. And even when the robot can do the washing up, this ability
will not help it very much when it comes to making the beds.

The tasks that a small robot can do at present include roaming
round the house while the owners are away to give the
impression that the house is occupied, to deter burglars; cutting
material to a shape from a pattern, by following a path with a
cutting tool lowered rather than the turtle's pen; feeding the cat,
by dispensing its food at regular intervals; and playing a tune on a
piano. These are fairly trivial tasks, in the context of a useful
household robot, but they represent the first steps in the journey
towards such a thing.

The most cursory glimpse at the Zero 2 in Figure 4.14 will show
that it has little chance, in the form illustrated there, of carrying
out any worthwhile task at all. In fact, the illustration shows it in
its basic form in which it can do approximately as much as a turtle
can. The idea behind this robot is that it can have modules added
to it, each of which will provide it with an extra capability. So, the
module for a particular task will consist of the mechanical

94 Hardware-based applications

appendage required to carry out the task, be it an arm, a gripper,
a sensor, or anything else, and the accompanying control circuitry
and the software. From the lack of similarity shown by any
household task to any other, it is clear that this modular approach
to providing a robot with extra abilities is eminently sensible, and
probably even essential.

Other equipment

Other equipment that the computer can be made to control to
good effect includes a number of items that can be found in the
home. Video recorders can be controlled to real advantage,
allowing the user to edit and create his or her own films. The
computer can also be used to add sub-titles to a film. Individual
pictures can be acquired, as they can from a television set, for
incorporation in a program. Whether for educational purposes or
a game, a television frame provides a more realistic and detailed
image than it is possible to produce with graphics programming
without the expenditure of a very great deal of time and effort. In
the future, compact disks are likely to be used in the same way as
video can be and, with their enormous storage capacity, disks are
likely to provide almost unlimited amounts of external storage.

Hi-fi equipment can also be linked to the computer to improve
the quality with which computer-generated sound and music are
reproduced. Electronic keyboards can be operated in conjunction
with the computer. In general, any item of electronic equipment
can be connected to the computer which can then be used to
enhance its performance in some way.

Summary

There is a wide variety of hardware that can be attached to the
computer. This can extend the power of the computer for the
applications in which it is already used, make the computer easier
to use and, most importantly, open up new areas of application.

The ability to link the computer to other electronic goods in the
home, such as video and hi-fi equipment gives a way of getting
more from that equipment. All the items that can be attached to
the computer have considerable educational potential, whether
intentionally, as with the turtle, or incidentally by incorporating
and demonstrating the principles of modem industrial practice as
based on the innovations of information technology.

Summary 95

As your use of the computer becomes more ambitious, and as
you become increasingly aware of what it is able to do, it is almost
inevitable that extra hardware will have to be added to your
computer to allow it to perform these activities.

5 Communications

Using personal computers for communications, or going on-line,
is one of the applications of personal computing that has achieved
popularity only comparatively recently. All the same, it is one of
the most exciting and liberating things to happen to them.

Computers have been able to communicate either with termi
nals or with each other practically from their inception. Now it is
becoming increasingly easy to use a home computer as a
communications terminal and, just as importantly, there are
worthwhile reasons for doing so. These include stores of
information that can be accessed, services provided by other
computers that can be used despite the remoteness of the
computers providing them, and the ability to communicate with
the owners of other personal computers.

From a technical point of view, it is not difficult for a computer
to communicate. It requires little more than to lead the electronic
signals flowing within it to the outside and to conduct these
signals to their destination. It is not quite as simple as this, of
course, for two main reasons. One is that no two types of
computer work in the same way, so that some conversions are
necessary but, as this is the kind of thing that can be done by a
computer anyway, it is not an insuperable problem. The other is
that if an existing communications network is used to convey the
signals, it will almost certainly be necessary to convert the signals
from the form in which a computer provides them to the form in
which the network requires them. This is particularly true of the
telephone network which is both the most readily available
network and the most widely used.

The benefits that result from enabling computers to communi
cate with each other are considerable and they follow from the
fact that the linked computers can share their resources with each
other. When a network of linked computers has been established,

96 the user of one of the computers can make use of the facilities of

Communications 97

any computer in the network. Besides this, he can also communi
cate with anyone using one of the other computers, be it to
discuss problems, to share ideas, or simply to chat. Not all the
benefits that can follow from this may be apparent at first sight. A
number of computers linked together by good communications
and with the necessary communications software can become, in
effect, one very large computer. By communicating and interact
ing with each other, the users of the network can produce co
operative results that can exceed anything they could accomplish
individually.

Today, the operations of banks, airlines, police forces and,
indeed, governments depend heavily on the use of interlinked
computers and would be practically impossible without them.
Personal computer users will not be making the same uses of their
interlinked computers as these organisations, but they will know
what can be achieved, and will be able to borrow the expertise
that they need to do what they want to.

Personal computers have had the ability to communicate from
the first, and a few of their owners discovered this at a very early
stage. A fair amount of electronic expertise was necessary to
construct the equipment needed to connect them to the telephone
network, but once this was made the computer could communi
cate with any other that was attached to the same network. We
may hear most about the activities of the 'hackers' who illicitly
break into the computers of large institutions, but there is a good
deal of innocent and perfectly legitimate activity going on, as
there has been for some time.

In their way, the activities of the hackers illustrate very well the
way that communications liberates the computer. There is a lot to
find out about the inner workings of any personal computer, and
the best way for the owner or user of one to find out is to explore
them for himself. When the computer stands alone, this perfectly
natural expression of curiosity can do no harm to anyone else.
When a computer is linked by a communications network to other
computers, there is much more to be curious about. And the
difficulty is that the computer can give its user the ability to delve
into things that are not his own. To experiment with a public
communications network is to risk the disruption of a public
service. To explore the workings of another computer without
permission is to intrude on software and information belonging to
other people, and even to jeopardise their integrity.

Just as communications gives extra scope to the hacker, so it
provides extra services and facilities to the orthodox user. It is
sometimes argued that the operators of computers and computer-
based services to which access can be obtained should make their

98 Communications

systems secure so that the hacker can do no more than the
orthodox user. But the systems are complex, and they are still in
their infancy, so that taking preventive measures is not quite as
easy as this.

The aims of chapter are to describe the hardware and software
that are needed to equip a personal computer to go on-line, and
then to describe the applications that can be carried out by an on
line computer.

The hardware and the software

The telephone network, which allows us to speak to each other
no matter where we may be in the world, is used by personal
computers as their ready-made means of communication. In the
same way as one person with a telephone can speak to another
who also has a telephone, so one computer that is connected to
the telephone network can communicate with another computer
that is also connected to it. Because the telephone system was
designed to carry human speech, and not computer signals, the
signals produced by a computer must be converted so that they
resemble speech signals before they can be carried successfully by
it. The device that carries out this conversion is known as a
modem. This jargon word is a contraction of the words modulator
and demodulator. When used for sending information from a
computer, the modem accepts the signal from the computer.
Because it represents a stream of binary data, this signal consists
at any time of either one voltage level or another, with each level
representing one of the binary states. The modem operates by
changing each voltage level to an audible tone, thereby changing
the computer's signal to a voice-like signal suitable for transmis
sion down a telephone line. (This process is the modulation of a
tone by the computer's signal. The reception process is, corres
pondingly, the demodulation of the telepone signal to recover a
signal acceptable to the receiving computer. From this come the
two words that give the modem its name.)

Since only one telephone line will be used for communication,
the computer's signals must be sent one bit at a time, in serial, so
that a modem must be connected to the Amstrad via a parallel-to-
serial convertor. There are two main kinds of modem, and they
are known as acoustic couplers and direct connection modems.
An acoustic coupler provides two cups into which the ear-piece
and the mouthpiece of the telephone handset are placed. A direct
connection modem (Figure 5.1) is plugged in directly at a
telephone jack plug.

The hardware and the software 99

Figure 5.1 A direct connection modem

There are, quite naturally, advantages and disadvantages
associated with the two kinds of modem. An acoustic coupler is
portable and can be used with a telephone wherever it may be. (It
should be noted, though, that the handset of a Trimphone will
not fit into the cups of an acoustic coupler.) A direct connection
modem is usually plugged in at one location. Because the
communication process depends on the transmission of sound, it
is essential to prevent external sounds entering the telephone.
This is not problem with a hard-wired modem, but if the cups of
an acoustic coupler provide a poor fit, or if it is used in a noisy
environment, then extraneous sounds can intrude to corrupt the
signals. Besides this, hard-wired modems tend to be more
sophisticated, offering more facilities and being capable of
sending signals at greater speed.

Since a telephone line is intended to convey information at the
rate at which it is contained in speech, there is naturally a limit to
the speed at which it can communicate information between
computers. Typical transmission rates lie in the range from 300 to
1200 bits per second and, by and large, the reliability of
transmission increases as the rate decreases. One unusual aspect
to do with transmission rates that should be mentioned concerns
Prestel and other Viewdata systems. These systems use different
rates for sending and receiving data, sending it at 1200 bits per
second but accepting it at 75 bits per second. This pair of rates is
written as 1200/75.

When two computers are exchanging information, they must

100 Communications

clearly agree on the speed at which they are to exchange
information with each other, but there are other matters on which
agreement is also needed. Although data is transmitted serially, it
is still parcelled up in groups, in an attempt to ensure the integrity
of its transmission. The natural basis for a group is the character,
and the number of bits needed to represent any character taken
from the repertoire that is normally used is seven. To these is
added an eighth so-called parity bit, the purpose of which is to
provide a way of checking whether errors occur during transmis
sion. The parity bit can be even or odd, meaning that its value is
determined by ensuring that the number of binary 1's in the
resulting group of eight bits is even or odd. This arrangement can
detect an error occurring during transmission because an error
will cause a 1 to be received as a 0, or a 0 as a 1. Either error will
cause the number of l's to be increased or decreased by one. In
either case, the total number of l's will change from an even
number to an odd number, or from odd to even, and so will be at
variance with the parity as indicated by the parity bit.

After the parity bit has been added, the group is completed by
adding a 'start' bit, or bits, at its beginning and a 'stop' bit, or bits,
at its end. These start and stop bits are always the same in each
group, and their purpose is to orient the receiving computer to
give it every chance of recognising the groups properly and of not
receiving incorrect information by failing to detect the beginning
and end of each character that is sent to it.

To give an example to illustrate all this, the code for the
character 'U' in one of the most commonly used codes (the ASCII
code) is, in decimal notation, 85. When written as a seven-bit
binary number, it becomes 1010101. Adding an eighth bit of even
parity to this gives 10101010. Preceding it by the single start bit set
at 1 and following it by a single stop bit set to 0 gives the ten-digit
group 1101010100. This is the group of digits that will be sent in
these circumstances to convey the character 'U'.

In addition to agreeing on these matters, the transmitter and
receiver must be at one concerning whether they may send data
in both directions simultaneously or whether they can only send
it in one direction at a time, in which case a return message
cannot be sent until the transmission of the incoming message
has been finished. These forms of communication are known,
respectively, as full-duplex and half-duplex communication.

All the matters on which two computers must agree before they
can communicate successfully with each other are known as a
protocol. The components of a protocol are summarised in the
following table.

Applications 101

The components of a protocol

Component Purpose of component

Data rate To standardise the rates at which data is
exchanged in both directions between two
computers. Typical rates are 300/300 and 1200/75

Parity bit To allow transmission errors to be detected. The
parity bit will be even or odd.

Start To help the receiving computer to isolate the
groups of bits representing characters in the
serial stream transmitted to it. One or more start
and stop bits will be used and they will be set as
fixed binary digits.

Two-way
exchange

To establish whether two computers will be able
to exchange information either simultaneously
or in only one direction at a time.

The protocol to be used for communicating with a particular
computer or computer-based service may be set by selecting the
appropriate settings using dials on the hardware, but it is more
usual to set it from software. When done from software, the
individual components can be selected from menus, although it
may be simpler than this in some cases, for the software may
contain the complete description of, say, the Viewdata protocol,
which can be selected as a single entity. The use of software in
preparing a computer for communications may be preferable
because of its value in simplifying the process, particularly if it
provides sensible defaults, there is even more to the preparations
than selecting the protocol, for the computer's memory must be
made available in a suitable way for storing any information that
is transferred to it. Different services send their information in
different formats, with Viewdata sending it by the screenful, in
pages, and other services sending it in a simple serial stream. By
dealing automatically with all these matters, or even by just
providing a prompt for each together with a menu of alternatives,
software can make the configuration process much simpler than if
all the relevant matters must be dealt with individually.

Applications

With your computer connected to the telephone via a modem and
the necessary 'terminal emulation' software running on it, you

102 Communications

are ready to communicate. This section deals with the various
computer-based services that can be dialled, and describes the
usefulness of the facilities that they have to offer. But there is one
point that must be made before going any further. Most of the on
line services and databases that can be contacted are operated on
a commercial basis. It is necessary to subscribe to them before you
can use them, and this involves an initial joining or registration
fee. When using them, there is often a charge for the information
that is acquired and the services that are used must be paid for.
Then there are charges for the use of the telephone. These costs
can mount up, and it is certainly necessary to keep an eye on
them.

The computer-based facilities that are provided by one or more
of the services can be categorised, very broadly, as follows:

1 Viewdata, which is dealt with below under Prestel, but which
is the generic name for a family of interactive information services
originally based on the use of an enhanced television set.
2 Databases containing detailed and comprehensive informa
tion on their various and specialised areas.
3 Bulletin boards, which are run by enthusiasts for enthusiasts,
and which provide the electronic equivalent of a bulletin board
where messages of any kind can be posted.
4 Office services providing facilities that can carry out the
information-handling tasks that are likely to be required in an
office, such as electronic mail, electronic diary facilities and word
processing.

Prestel
Prestel is one of a general class of systems, known as Viewdata
systems, originally designed to provide an interactive information
service in the home. Viewdata systems were based on the idea
that many homes would already possess a television set and a
telephone, so that it would be sensible to base a system on them.
One consequence of this approach, and in particular of using the
television set as the display device, is that Prestel presents its
information by the screenful. This mode of presentation is not
shared by all information services, and others rely on the
receiving computer being able to retain in its memory the
information it is sent. This underlines the need to configure a
computer appropriately in order to communicate successfully
with a particular service.

Communication with Prestel can be established, as with any
other computer-based service, by dialling its number and then
giving the identification code assigned to you on registration. The
successful entry to Prestel is signalled by the appearance of

Applications 103

Figure 5.2 Prestel's welcome screen

Prestel's initial welcome screen, shown in Figure 5.2. There is no
particular difficulty in finding any information that may be
required, because Prestel uses a system of menus to guide its
users to any item within the vast amount of information that it
holds.

Prestel can be regarded as an electronic publishing medium. It
contains some hundreds of thousands of pages that give
information such as, for example, news, theatre and cinema
guides, commodity prices, company results and analysis, and
travel reports. Because Prestel's information can continually be
kept up to date by the concerns providing it, the 'information
providers', it is particularly valuable in areas where information
changes rapidly, as it does with foreign exchange rates, airline
seat availability and sports results. You can find any of this
information by keying the numbers to make the appropriate
selections from successive menus. The sequence of numbers
gives the page number for the page on which the information is

104 Communications

displayed. If you know the page number in advance, as you will if
you use a page regularly, the number can be keyed directly to
avoid the trek through all the menus.

It is also possible to use Prestel to order goods, reserve seats at
the theatre and book a room in a hotel. In these cases, the final
page reached by the user is a 'response page', rather than an
information page, in which the details of the transaction can be
entered and, after their correctness has been confirmed, for
warded.

Private areas accessible only to authorised users can be
established within Prestel. This allows those with access to one of
these areas to exchange confidential information with each other,
besides providing an area that contains only the information in
which they are interested so that they do not always have to
contend with all the information held by Prestel.

Micronet 800 is another kind of closed area within Prestel. It is
intended for those interested in microcomputers and computing,
and the expected access device is a microcomputer whereas for
the rest of Prestel it is a keypad used in conjunction with a
specially enhanced television set. Naturally, Micronet provides
information directed to the special interests of its users and allows
them to exchange messages, but it also supplies telesoftware, that
is, computer programs that it can send to the users' microcompu
ters.

Databases
It is possible to dial directly into a number of databases that
provide information of a more specialised kind than that supplied
by Prestel, and databases in the USA as well as in this country can
be accessed. Two of the databases and the kind of information
that they provide are:

1 BLAISE (British Library Automated Information Service),
which gives access to the British Library's catalogue of published
works. The record for every book includes its title, author,
publisher and a list of keywords, while some provide a summary
of the contents. For researchers, writers and academics, this
database is an unequalled source of information.
2 DIALOG supports a huge store of specialist information
comparable in its scope to that of the largest encyclopaedias. A
subset consisting of its more popular files, and known as the
Knowledge Index, has been established to meet the information
needs of micro users.

Bulletin boards
Bulletin boards are usually operated by individuals using their

Summary 105

own telephone and computer to provide a forum for other
enthusiasts. This means that their use is free, although it is
accepted practice that users make a contribution, perhaps in the
form of news or software that is of general interest, whenever
they access a bulletin board. Most boards can be accessed by only
one user at a time, so that it can be difficult to contact a popular
one, particularly at a peak time.

A bulletin board provides an electronic equivalent of a notice
board on which messages can be left and from which they can be
read. This allows its users to converse with each other, perhaps
about microcomputer matters, which will naturally be a common
interest. It can also provide an electronic version of the 'small ads'
found in a newspaper, and can be used to hold software, a copy
of which can be sent from the board to a user (the jargon word is
'downloaded').

Telecom Gold
British Telecom supports Telecom Gold, which is a computer-
based service providing the information-handling tasks that are
likely to be needed in the modern office. These include electronic
mail, word processing facilities, an electronic diary and telexing
facilities. Although aimed at business users, it does show the
services that can be provided on-line and that are likely to be
made more generally available in the future.

Summary

With a modem to link your Amstrad computer to the telephone
network, it is possible to communicate with other computers and
with information services. By communicating with other compu
ters you can exchange mail and ideas with their owners. By
contacting an information service, it is possible to obtain informa
tion about, for example, holidays and travel as well as informa
tion on more highly specialised topics. Some information services
cater especially for microcomputer users in that they maintain
special interest groups for them, such as Prestel's Micronet, and
can transmit software directly to a microcomputer.

Glossary of jargon terms

Acoustic coupler. A device for connecting a computer to the
telephone network via the telephone handset.
Back up. A copy of a file made for purposes of security.
BASIC. Beginners' All-purpose Symbolic Instruction Code. A
computer programming language.
Bit. Contraction of binary digit. A binary digif is one of the two
digits, represented by 0 and 1, used by the binary number
system.
Bulletin board. A computer-based service accessible by telephone
that is operated by an enthusiast for other enthusiasts.
Byte. A group of eight bits.
Cell. In a spreadsheet, a location at which text or a number can be
displayed.
Centronics. A standard means of connecting a device, but mainly
a printer, to a computer that employs parallel communication.
Character. Any symbol that can be displayed by a computer,
including letters, numbers and other symbols.
Cursor. A marker on the screen of a computer showing where the
next item will appear.
Cursor movemen t keys. Keys marked with arrows which change
the position of the cursor when they are pressed. The cursor
moves in the direction marked by the arrow on the key.
Database. An organised collection of information from which
items can be retrieved in any way that the user requires.
Defaults. The settings which determine how a system or a
program operates by default. The default settings can usually be
changed to suit the user.
Dot matrix. A rectangular array of dots from which characters can
be created by selecting certain of the dots.
Downloading. Passing information from a central computer to a
personal computer with access to it.

106 Duplex communications. Two-way communication. Full duplex

Glossary of jargon terms 107

means that communication can take place in both directions at the
same time. Half duplex communication means that it can only
take place in one direction at a time.
Editing. Correcting and polishing text.
Electronic mail. Passing messages in electronic form either
directly from computer to computer or via an intermediate
computer where they can be stored.
ENTER. The key which is pressed to indicate the completion of an
entry typed at the keyboard.
Expert system. A program that can store knowledge extracted
from a human expert and deliver advice based on this knowledge.
It should also be able to explain the reasoning on which its advice
is based.
Field. An entry in a record.
File. A collection of information that is in some sense complete
and is treated as a single entity. In particular, it is stored as a
single entity.
Fount. A complete collection of designs for characters.
Graphics. The creation and display of pictures and images by a
computer.
Hacker. Person who, perhaps illicitly, uses on-line facilities to
explore the structure and capabilities of any attached system.
Icon. A visual representation, to be displayed on its screen, of an
activity that the computer can provide.
Information provider. An organisation supplying and updating
information that is available commercially on Prestel.
Information technology. The technology resulting from the
convergence of computing and communications.
Integration. The linking of two or more facilities or programs to
create a whole that can offer more than the sum of its parts.
Interface. An electronic circuit that allows two basically incom
patible devices to communicate with each other.
Joystick. A device, modelled on a pilot's joystick, for communicat
ing with a computer.
Justification. To adjust text by the introduction of spacing, usually
to give it a neat margin at the right in addition to that at the left.
Menu. A list of activities from which one is selected by keying the
number associated with it.
Modem. A device to allow computers to communicate over the
telephone network.
Mouse. A device for communicating with a computer. When
rolled over a flat surface, it controls a cursor that moves in a
corresponding way on the screen.
On-line communication. Direct communication with another
computer or with a computer-based service.

108 Glossary of jargon terms

Page. A screen of information, as used by Viewdata systems.
Parallel transmission. The simultaneous transmission of several,
but usually eight, bits.
Peripheral. Any device that can be attached to, and controlled by,
a computer.
Program generator. A program that can accept a description of a
task in lay terms and from it can create a program enabling a
computer to perform the task.
Protocol. The collection of matters on which two devices must
agree before they can communicate successfully.
Record. A collection of fields. The basic entry in a database.
Sensor. A device for sensing some aspect of its environment.
Serial transmission. The transmission of bits one at a time in
succession.
Spreadsheet. A program that displays and maintains a table in
which the entries can be text, numbers or formulae.
Telesoftware. Computer programs which can be communicated
over a telephone line.
Terminal emulation software. The software that converts a
computer to a communications terminal.
Turtle. A small robot used in education.
Viewdata. The generic name for systems based on the television
set and telephone that give access to computer-based information
services. Prestel is one such service.
Window. The screen display as a window through which part of a
worksheet or of a document can be seen.
Word wrap. In word processing, the automatic movement of the
first word that is too long to fit on the current line to the
beginning of the next line.

Index

Acoustic coupler 98
Amstrad BASIC 40, 54, 61, 68

BASIC 40, 68-9
Bulletin board 104

Cassette 73-4
Cell 18, 35
Communications 96-105

applications of 101-5
benefits of 96-7
software for 100-1

Database 3,11-16, 30-4
on-line 102, 104
uses of 12

Disk 73-6

Editing 7, 9, 28
Electronic mail 6
ENTER key 8, 26
Expert system 24

Field 16
File 16
Footer 9

Graph plotter 72, 82-4
Graphics pad 86
Graphics 23, 82

programming 41, 45, 52, 65

Hacker 97
Header 9

Icon 87
Information 2

handling of 3-4
Integration 23
Interface 72

Joystick 84-6
Justification 8, 28-9

Keyboard 3, 6
proper use of 6

Light pen 86
Logo 90

Menu 11,86
Micronet 104
Modem 98-9
Mouse 87

Pascal 68
Peripheral 71
Prestel 99,102-4
Printer 70, 76-7

daisy-wheel 77, 79
dot matrix 77, 78
uses for 77-82

Problem solving 40-69
Program generator 24
Protocol 100-1

Record 16
design of 31

Robot 72, 88-94
educational 89-93
personal 93-4

SHIFT key 5
Spreadsheet 3, 16-23, 34-8

formula 17, 21, 35-6
as model 18, 22

Telecom Gold 105
Text 4
Turtle 89-93

Viewdata 99, 102

Window 87-8
in word processing 10
uses of 87-8
with spreadsheet 19

Word processing 2, 4-11, 25-30, 78-80
benefits of 6-7

Word wrap 8 109

[BOOKS FORI
AMSTRAD

COMPUTER
OWNERS

Working Graphics on the
Amstrad CPC 464 and 664-
James, Gee & Ewbank
Explains Amstrad graphics and
how you can use them. Covers
sprites, animation, computer
assisted painting, two and three
dimensional graphics, and
charts and graphs. A practical
book that gives enough
information for you to convert
the programs for your own
purposes-or use them as they
stand. All listings are taken from
working programs.
Illustrated, 234 x 156mm.
192pp £7 95
085242 874 X
PRODUCT CODE No 170087

Applications for the Amstrad
CPC 464 and 664-
Garry Marshall
The book describes,
demonstrates and illustrates the
full range of useful applications
for the Amstrad computers.
From word processors,
databases and spreadsheets to
problem solving; from bolt-ons'
like cassette and disc drives,
printers, plotters, joysticks,
light pens and mice, to
communications uses-Prestel,
Micronet 80, databases,
private bulletin boards and
Telecom Gold
Illustrated, 234 x 156mm,
128pp £7 95
0 85242 853 7
PRODUCT CODE No. 170011

Adventure Programming on the
Amstrad CPC 464 and 664-
Steve Lucas
The book to teach you how to
write your own adventure
programs, including developing
the plot, drawing the map.
and translating the objects in the
game into DATA statements
High-resolution graphics
and sound are also described,
and listings for three typical
adventure games are
also included
Illustrated. 234 x 156mm,
224pp £7.95
0 85242 856 1
PRODUCT CODE No 170044

Subroutines for the Amstrad
CPC 464 and 664-
Stephenson & Stephenson
The book to show you how to
put your Amstrad computer to
serious use More than 50 fully
tested subroutines in a wide
variety of areas-graphics,
maths, music, data processing
etc. Major listings include a
3 graph function plotter, an
index compiler, and a music
sequencer-each being well
worth the purchase price of the
book in its own right!
Illustrated. 234 x 156mm,
224pp £7 95
0 85242 855 3
PRODUCT CODE No 170036

Assembly Language
Programming for the Amstrad
CPC 464 and 664-
A P Stephenson and
D J Stephenson
Clearly written and readable
introduction to Z80 machine
code on the Amstrad CPC 464
and 664 It explains binary and
hexadecimal arithmetic and
contrasts the pros and cons of
machine code against BASIC
The book includes a hex
loading program, for those
working without an assembler,
and the Amstrad Assembler/
Disassembler
Illustrated, 234 x 156mm,
160pp £7 95
0 85242 861 8
PRODUCT CODE No 170060

Available through good book shops and specialist outlets or from
ARGUS BOOKS LTD. Wolsey House, Wolsey Road, Hemel Hempstead,

Herts HP2 4SS. Telephone: 0442 41221
Please add 10% of the total cost ordered to cover postage and packing (minimum 50p)

APPLICATIONS
FORTHE

AMSTRAD
CPC464& 664

This book aims to describe, demonstrate and illustrate the full
range of useful applications for the Amstrad CPC464 and 664
computers.

The first part of the book deals with software based applications
— word processors, databases and spreadsheets — with a full
explanation of what they are and what they can do. This is
followed by a chapter that gets to grips with some commercial
versions of these packages, in particular the word processor
Amswordfrom Tasman, Gemini's Database, and the Easi-Amscalc
spreadsheet from Saxon Computing.

Garry Marshall then moves onto problem solving, and shows how
your Amstrad can tackle a variety of tasks from selecting the best
route through a complex network, planning the pagination of a
book, to designing a coding and classification system.

No book on applications would be complete without some
reference to hardware, and all standard 'bolt-ons' that might be
needed are covered in the next chapter — cassette and disc drives,
printers, plotters, joysticks, light pens and mice. The book closes
with a look at communications and how you can get connected
(legally!) to Prestel, Micronet 80, general purpose databases like
DIALOG, private bulletin boards and Telecom Gold.

Here is a book that will help every Amstrad owner put his
computer to serious practical use that will continue to bring results
long after the games have been consigned to the rubbish bin.

The publishers would like to thank the following companies for their assistance in the
preparation of this book Amstrad Consumer Electronics, Gemini Marketing, Kuma Soft
wcAe, Saxon Computing Silver Reed i UK I and Tasman Software.

>
»
n
a
C/3

o
*
73

https://acpc.me/

CPC

[FRA] Ce document a été préservé numériquement à des fins éducatives et d'études, et non commerciales.
[ENG] This document has been digitally preserved for educational and study purposes, not for commercial purposes.
[ESP] Este documento se ha conservado digitalmente con fines educativos y de estudio, no con fines comerciales.

	Applications for the AMSTRAD CPC 464 & 664
	Preface
	Contents
	Introduction
	1 - Software-based applications 1
	2 - The Amstrad software 2
	3 - Problem solving
	4 - Hardware-based applications
	5 - Communications
	Glossary of jargon terms
	Index
	
✅ Raw HQ scan : Maxime CROIZER for ACME
✅ Cleaning/Restoration/Layout/OCR : ACME – https://acpc.me
✅ Thanks to Rafa CPCMANIACO for lending the book
✅ 2021-04-10

