
------------ ARGUS BOOKS-------------
ASSEMBLY LANGUAGE PROGRAMMING

FOR THE

U t H :7
CPC 464,664 & 6128

A.P. & D.J. STEPHENSON

Assembly Language
Programming for the

AMSTRAD CPC 464/664/6128

Assembly Language
Programming for the

AMSTRAD CPC 464/664/6128

A.P.&D.J.STEPHENSON

Argus Books Ltd
1 Golden Square
London W1R 3AB

© Argus Books Limited 1986

ISBN 0 85242 861 8

All rights reserved. No part of this publication
may be reproduced in any form, by print, photography,
microfilm or any other means without written
permission from the publisher

Phototypesetting by Photocomp Limited, Birmingham
Printed and bound by Whitstable Litho

Preface

We hope that this book will persuade readers that machine code,
entered with the help of an assembler, is worth learning. The reader
should have some experience of BASIC, together with an under
standing of simple computer terms. Anyone entirely new to
computing and who may have just bought an Amstrad should study
the User Instructions first, before tackling this book.

Machine code programs execute in a flash and take up far less
memory than an equivalent program written in BASIC. This is why
most commercial software, including arcade games, are written in
machine code.

Although written for the Amstrad, the book should also be
helpful to those who own other machines that incorporate the Z80
microprocessor - the Spectrum for example. Experience of machine
code, using 8-bit micros, is never wasted because most of the
techniques involved will still apply to the new breed of 16 or 32 bit
micros.

Some readers may be a little surprised by the scarcity of 'remarks'
in the program listings. For experienced programmers, there can be
no denying their importance. For those trying to learn machine code
from scratch, the sparse language and cryptic abbreviations used in
the typical 'remark' column can be more confusing than helpful.
Instead, we have included a line-by-line description in the ac
companying text.

We have stressed, quite early in the book, that an assembler is a
powerful weapon in the battle against machine code. We realise,
however, that some readers may be content to struggle along
without one so a simple hex loading program is featured which
should reduce the boredom associated with POKEing program
bytes into memory.

The complete Z80 instruction set is presented as an Appendix and
is laid out in a special format which, we hope, will provide an easy-
to-read reference source. Detailed descriptions of the most com
monly used Z80 instructions are given in Chapter 6.

Where applicable, descriptions are supported by example pro
gram listings. Some of these listings will be found to have

Preface

immediate practical value while others may serve as useful guide
lines for the development of other programs. Special attention has
been given in the early chapters to the design of loops and con
ditional branching because these are areas which provide a rich
breeding ground for bugs. Several full length subroutine listings
appear in the later chapters, each supported by detailed explana
tions which should help those wishing to introduce modifications.

Resident System Extensions, known as RSXs, provide a means of
adding extra commands to the operating system repertoire. We
have devoted considerable space to the techniques involved,
including practical machine code listings which can be called as an
RSX from BASIC.

Attention has been drawn to the advantages of writing 'relocat
able' machine code so we have shown, with practical examples, how
to convert normal code to a relocatable form.

The final chapter explains how the movement of 'shapes' on the
screen can be made free from flicker and without the jerkiness
which is so irritating in animated sequences.

AP and DJ Stephenson

Contents

1 Why machine code? 1
Good points of BASIC. Defects of BASIC. Translating high-level
languages. Compilers and interpreters. Assemblers. Binary machine
code. Hexadecimal machine code. Mixing BASIC with machine
code.

2 Machine hardware 10

Hardware. Logic chips. The Z80 microprocessor. The address bus.
The data bus. The control bus. The clock. RAM chips. ROM chips.
Overlay. Addressing problems. Start-up conditions. The ULA
chips. The CRT controller. The memory map. Disc workspace.

3 Binary and hexadecimal 21

Digital versus analogue computers. Representing numbers by
switches. Bits and bytes. Ways of arranging bits. Nybbles. Naming
individual bits. Binary addition. Double byte numbers. Signed
numbers. Two's complement numbers. Circle of signed numbers.
Unsigned binary. Decimal and binary conversion. Hexadecimal.
Converting hex to decimal. Adding hex numbers. Binary coded
decimal. Adding in BCD format. Use of BCD. Logical operations.
AND, OR and XOR.

4 Entering and running programs 38

Using an assembler. The HiSoft DEVPAC assembler. Listing source
code. Assembler options. Pass 1 and 2 errors. Assembler directives.
Object code. Using the BASIC loader. Saving and retrieving code.
Saving source code. Loading source code. Saving object code.
Renumbering source code. Executing object code. Assembler
manuals.

Contents

5 The Z80 registers 53

Registers. Source and destination rules. The single length registers.
Register pairs. The index registers. The stack pointer. Use of the
stack. The program counter. The flag register.

6 Commonly used instructions 63

Instruction mnemonics and operands. Addressing modes. Implied
addressing. Direct addressing. Immediate addressing. Indexed
addressing. Register indirect addressing. Indexed addressing.
Operation codes. Clock cycles. Bytes taken. Flags update. Load
instructions. Arithmetic instructions. Logical instructions.
Incrementing and decrementing. Stack operations. Conditional
jumps. Unconditional jumps. Subroutine calls. Comparisons. Bit
tests. Shift and rotate instructions. Operation code details. Relative
jump bytes.

7 Using resident firmware 86

Free software. Jump blocks. Commonly used resident subroutines.

8 Addition and subtraction 92

Numerical range limitations. 8 bit addition and subtraction. 16 bit
addition and subtraction. 32 bit addition and subtraction.

9 Decision making and loop structures 101

Testing for zero, non zero, less than zero and greater than zero.
Simple loop structures. Double byte up-counting and down
counting. Preserving register contents. Branching according to sign.
Using the BIT test.

10 Multiplication and division 118

8 bit unsigned multiplication. 16 bit unsigned multiplication. 16 bit
signed multiplication. 8 bit unsigned division. 16 bit unsigned
division. 16 bit signed division.

11 Input and output 139

String input. String output. Text output. Decimal input.
Hexadecimal input. Decimal output. Hexadecimal output.

Contents

12 Parameter passing and introduction to resident system
extensions 161

Parameter blocks. Fixed locations. Using the stack. Executing
machine code from BASIC. Sorting of BASIC string arrays.
Logging on an RSX. External command tables. Name tables.

13 Self relocation of subroutines and resident system
extensions 185

Dynamic allocation of memory. Self relocation of object code.
Location independent object code. Converting existing code to a self
relocatable RSX. Programming the user restart (RST 6). Converting
absolute addresses to relative. Look-up tables. String arrays
Quicksort RSX. Loading and testing the RSX. Parameter passing
from BASIC to an RSX. Executing an RSX from BASIC. RSX for
sorting rectangular arrays. Using rectangular arrays efficiently. How
BASIC organises a rectangular array. The RSX loader test program.
Producing a binary file of an RSX.

14 Graphics and direct screen addressing 213

Using resident firmware routines. Typical action games.
Organisation of screen memory. Mode zero. Shape tables for Mode
zero. Placing a shape at screen coordinates X,Y. Addressing screen
memory directly. Frame flyback. Moving a multicoloured shape.
Moving multicoloured shapes independently. Co-ordinate blocks.
Shape tables.

Appendices

Index 244

Why machine code? 1

It takes an extra effort to learn machine code, and to persuade you
that it's worthwhile, this chapter discusses the properties of high-
level languages such as BASIC, the various methods of entering
programs and explains the differences between compilers, inter
preters and assemblers.

Good points of BASIC

BASIC is the most popular computing language in present day use
and, in spite of periodic abuse from the establishment, will probably
remain so for some time. The reasons are not hard to find. With few
exceptions, home microcomputers are designed with only one ouilt-
in computer language, BASIC, so it is understandable that the
majority of home enthusiasts stick with it because they feel it to be
the 'natural' language of the computer. There are other reasons, not
least of which is the undeniable fact that newcomers to the
computer revolution find BASIC not too difficult to pick up. The
original designers of BASIC, John Kemeny and Thomas Kurtz of
Dartmouth College USA, way back in 1964, purposely designed the
language to suit those who wanted to use a computer in their work
but were not prepared to study the rather difficult languages
currently used by professionals at that time. Another advantage of
BASIC is the relative ease with which program lines can be deleted
or modified. In all fairness, we should point out that this advantage
stems from the method of translation, rather than from the language
itself.

Defects of BASIC

The above treatment has dwelt on the plus points of BASIC but
there are some rather disagreeable features which continue to
provide ammunition for the critics. One criticism is concerned with
the speed of execution. Depending on type, complexity and pro- 1

2 Why machine code?

gramming skill, some BASIC programs can take quite a while to
display the 'answers' on the screen. A few seconds' (or minutes')
wait is easily tolerated during the first weeks of ownership because
the natural fascination with a new toy clouds the critical faculties.
However, after the settling in period has ended, even a few seconds
can become irritating so the relatively slow execution speed of
BASIC must be accepted as a justifiable criticism. (Why BASIC is
slow will be explained later in this chapter.)

Another criticism concerns the amount of memory taken up by a
program written in BASIC. As each BASIC line is entered, the bytes
squandered tend to mount up at an uncomfortable rate. Home
micros, even Amstrad machines, are far from lavish in the amount
of RAM left over for user's programs. A sizeable chunk is always
purloined by the resident software for purposes which come under
the euphemistic heading of 'work space'. The situation is made even
worse by the fact that the full BASIC program (the source code) must
reside in RAM, in addition to the variable list, while the program is
being run. The strict definition of source code will be tackled later
but, in the meantime, it can be thought of as the program in the
form that it was originally written and entered. This is the form
which squanders RAM. Most other languages only require the
machine code translation (called the object code) to remain in memory
during run time.

Although execution speed and memory demands are often
quoted by attackers of BASIC, by far the most savage criticism is its
lack of structure. To exponents of the art, structure, a normally
harmless little word, is a kind of religion. It would be out of place in
this book to enter into lengthy discussions on what constitutes good
structure in a program because the concept is not quite so important
in machine code work. It is sufficient here to describe it as a set of
rules and guidelines for writing programs which are easy to follow
and easy to amend. It is not easy to write good structured programs
in BASIC because the language was designed without regard for
structure. Many other computer languages such as Algol and Pascal
were designed specifically for the writing of structured programs.
Fortunately, BASIC has gradually changed since its conception in
1964. Dialects of BASIC, now appearing in some modern micro
computers are far removed from the original crude Dartmouth
version. Both the BBC and the Amstrad machines offer quite an
advanced BASIC, allowing better structured programs to be written.
At least it is possible in either of these machines to write a program
without too many GOTO commands polluting the pages. (The
GOTO command is responsible for the cursed 'spaghetti' pro
gramming.)

In spite of all these criticisms, the authors do not despise BASIC.
There is no reason why you should give up BASIC to learn machine
code. In fact, the two can live quite happily together. One can
complement the other in many ways. The abuse, now hurled at
BASIC, cannot be accepted without suspicion as to the motives of

Defects of BASIC 3

those who practise it - in the words of the Bard, they 'protesteth too
much'.

Translating high-level languages

Languages such as BASIC, Algol, Pascal and many others (there are
over 1000 in all if various specialised languages are included in the
total) are said to be high-level. A high-level language:

(a) requires the assistance of translation software before the com
puter can understand it and,
(b) is one in which each statement, command or keyword in the
language, when translated, usually gives rise to many individual
machine instructions.

In BASIC, for example, an apparently simple statement like
PRINT TOTAL will, after translation, generate a surprising number
of machine code instructions. This is due to:

(a) the primitive nature of a computer at machine level and
(b) the necessity for the translating software to cover worst-case
situations. For example, the variable TOTAL could be holding a
small number like 47 in one program but a huge number like
358,467,789 in another so the translation software must always be
prepared for the worst.

Compilers and interpreters

There are two quite distinct classes of high-level language translat
ors and we need to distinguish them with care. Before describing
the difference, we must first introduce the terms source code and
object code.

Source code is the program as written in the original language. A
program written in BASIC or Pascal is source code. Code in this
form may be understood by you but not by the machine. Object
code is the output from the translator. In other words, it is the set of
machine code instructions which appear after the source code is
translated. This time, the machine will understand it, but you may
not.

Compilers
A compiler translates the entire source code into a complete set of
machine code instructions. This is said to be the compiling stage and
the source code is then said to be compiled. Once compiled into
object code, the program can be executed (run). The original source
code can then be released from occupying valuable RAM space.
Pascal, Fortran, Cobol, Algol are examples of languages which are
translated by a compiler. It takes a relatively long time for a machine
to compile source code but it is only a one-off task. All subsequent

4 Why machine code?

runs take place at machine code speed. From the beginner's point of
view, a compiled language has one serious drawback. Once the
program has been compiled, it is extremely difficult to debug or
modify the object code. If it doesn't work first time, the source code
must be re-entered before the fault can be corrected and the whole
lot recompiled again which, as we have seen, is a lengthy business.
Figure 1.1 shows the mechanism of compiler action.

Interpreters
An interpreter does not translate all of the program in one go. Each
line of the source code is translated and executed (run)) before the
next line is translated. So the overall action is: translate a line, run it,
translate the next line, run it, and so on. This means that the entire
source code must remain in memory during run time. BASIC uses
an interpreter. From the beginner's point of view, the advantage of
an interpreter lies in the ease with which a program can be
debugged or twisted around and re-run immediately. The disadvan
tages however, are serious. Since the source code must remain in
memory during run time, valuable RAM space is occupied which
limits the size of a program. Also the execution is dreadfully slow
compared with compiler action because translation takes place every

Fig 1.2 Interpreter action

Assemblers 5

Assemblers

As far as this book is concerned, compilers and interpreters are not
particularly important. They were introduced only as background
material before introducing the assembler. Compilers and interpret
ers are concerned with the translation of high level languages. An
assembler is a piece of software designed to aid the writing of direct
machine code. Detailed treatment of an assembler is given in
Chapter 4. It is sufficient at this stage to briefly describe assembler
action. High-level interpreters generate many machine code instruc
tions for each high-level statement. In contrast, an assembly
language program is said to be low-level, meaning that, in general,
one assembly code line generates only one machine code instruc
tion. We could say there is a one-to-one relationship between an
assembly code line and a machine code instruction. The primary
objective of an assembler is to ease the task of constructing a
machine code program. Instead of entering a long list of almost
meaningless numbers, an assembler allows you to enter them in the
form of code letters chosen, as far as practical, to be meaningful.
They are called mnemonic codes because they aid your memory. A
good assembler, in addition to allowing mnemonic code entries,
will also provide sophisticated editing facilities, display of both
source code and object code, means of storing either the source or
object code on disc (or cassette tape) and various other little dodges
which help to make life easier.

The terms source code and object code still apply to assemblers.
The source code is the program written in assembly language and
the object code is the translated version recognisable by the
machine. The object code is said to be the assembled version. To
'assemble' means to translate to object code.

Is an assembler necessary?
An assembler is not provided free with the Amstrad machines. It is
possible to enter a machine code program by a series of POKES from
BASIC. Later, we shall be giving a complete listing of a BASIC
program which will load any machine code program you like to
write, providing the hex codes are entered in DATA statements. So, it
would appear from this that the answer to the question 'Is an
assembler necessary?', is no. This needs amplification. If you have
patience above normal, if you are not easily frustrated, if you are
willing to devote hours and hours to debugging and, above all, if
you are blessed with a stable unemotional personality, then by all
means save yourself some money and make do with POKEing. If,
on the other hand you are a normal individual and intend to take up
machine code seriously then you are strongly advised to go out and
get hold of an assembler. Trying to write machine code without the
assistance of an assembler is like trying to cut a lawn with nail
scissors.

The current success of the Amstrad has stimulated software firms

6 Why machine code?

to produce assemblers on tape, disc or in ROM. There is probably
not much to choose between any of them, price for price, but the
programs in this book have been developed using the official
version, the HiSoft DEVPAC assembler. Its full title is as follows:

The HiSoft Assembler, disassembler, editor and monitor
It can be obtained from AMSOFT or direct from HiSOFT. The price,
at the time of writing is around £28. There are two versions, one for
the CPC464 which is supplied in the form of a cassette tape and one
supplied on disc for either the CPC464 with disc drive or the CPC664
and CPC6128 with built-in disc drives.

The advantages of using machine code

Before outlining the advantages, we should mention that 'machine
code', is a rather loose term used to cover several different forms.
There are in fact three different forms:

1. Pure binary machine code
A program residing in RAM would appear as a series of pigeon
holes, each containing a set of 'l's and '0's. A program in this form is
called pure binary machine code. The very early computers had
their programs entered in this way by means of a series of panel
switches. Mercifully, those days are ended but only because more
humane ways have been thought up for entering code. Neverthe
less, computers still only understand these 'l's and '0's - the change
has been in the method of entering, not the form in which they are
finally held in memory. Here is an example of a short program
segment to clear the contents of memory address 0025 hex, as it
might appear written in binary machine code:

1001 0111
0011 0010
0020 0101
0000 0000

(It is pointless at this stage trying to work out how this, and the next
two examples work.)

2. Hexadecimal machine code
This is code entered in the form of a series of numbers which can be
entered from a normal keyboard. A mixture of hardware and system
software provides the necessary conversion to the equivalent binary
'l's and '0's. Without an assembler, this is the form in which
programs have to be entered. This is what happens when you POKE
machine code or enter it by means of a loader. The numbers can be

The advantages of using washing machine code 7

in decimal or hexadecimal. Although decimal appears more natural
for humans, hexadecimal will be found more natural for the
machine and, with practice, easier for the human to communicate
with it. Chapter 4 deals in detail with the hexadecimal system of
numbers.

The program segment written in binary machine code shown
above now follows as it would appear if written in hexadecimal
machine code:

97
32
25
00

3. Assembly code
Assembly code is best considered as the most elegant and the least
error prone method of entering machine code. When we use
assembly code we still speak of it as machine code so from now on,
the term 'machine code' and assembly code mean the same thing.
As a final example, here is how the same program would appear if
written in standard Z80 assembler code:

SUB A
LD (#25), A

Why learn machine code?

Quite understandably, anyone used to the comparative comfort of
BASIC will not find machine code easy. Machine code is difficult,
and it is best to understand what you are up against right from the
start. There are many rewards for the extra effort involved. Let us
list them:

(a) A machine code program can run much faster than one written in
BASIC. Depending on the type of program, anything from 10 to
1000 times as fast.
(b) A machine code program takes up considerably less RAM
space than the equivalent BASIC version.
(c) Learning machine code will improve your understanding of
computers because you are conversing directly rather than through
a wall of translation software.
(d) Animation routines, written in BASIC often appear jerky
because of the slow execution time. Machine code versions give a
greatly improved display. To drive this point home, we should take
note of the fact that commercial games programs are almost always
written in machine code.
(e) It is possible to recoup the money spent on a computer, plus
some extra, by selling your programs to a publisher or software
house. However, very few commercial organisations accept pro

8 Why machine code?

grams written in BASIC, a condition which applies particularly to
animated games.
(f) Mastering machine code can act as an ego boost. A shallow
advantage perhaps but few of us are entirely without vanity.

Mixing BASIC with machine code

Until you gain experience, you would be well advised to mix BASIC
with machine code subroutines. Rather than attempt to write
complete machine code programs, be content with writing BASIC
programs which call up machine code at critical points. Use BASIC
lines for actions which are not sensitive to execution time and
machine code where its properties justify the extra effort. For
example, in a general purpose database, much of the program will
work quite satisfactorily in BASIC but where it is required to search
for a particular record, or to sort them in to some form of order, use
machine code subroutines.

The microprocessor instruction set

A program written in BASIC for one make of machine will not
necessarily run on another make. Although the majority of the
statements and commands remain the same for different machines,
there will be a few variants. In spite of this, it is usually a fairly
simple job to modify a BASIC program, written for one make of
machine so that it will run on another.

With machine code the program must be written to suit the
particular type of microprocessor used, not the machine system as a
whole. The microprocessor is the chip which forms the so-called
'brain' of a microcomputer and it will only understand machine code
written in its own special language. For example, a program written
in BASIC for, say the Commodore 64, can be persuaded to run on
the Amstrad or the BBC machine, providing a few trivial changes
are made. However, a program written in machine code for the
Amstrad would have to be completely re-written before it could
work on the Commodore 64 or the BBC machine because the
Amstrad uses the Z80 microprocessor and the BBC and the
Commodore 64 machines both use the 6502/6510. Studying machine
code for the Amstrad, or any other machine which uses the same
microprocessor, will involve learning the instruction set of the Z80.
The instruction set of a microprocessor is the list of machine code
instructions which it is capable of executing, together with the
hexadecimal or mnemonic codes which it recognises. It is a
formidable looking list of over 600 different instructions. Nobody in
their right senses would attempt to memorise them all, in any case
only a small percentage of them are in regular use. As long as you
can learn how to read the instruction set, that is all that matters.

Summary 9

Summary

1 BASIC is relatively easy to understand but uses a lot of memory
and is slow in execution.
2 BASIC, PASCAL and ALGOL are examples of high-level
computer languages.
3 Each statement in a high level language is equivalent to a great
many machine code instructions.
4 High-level language translators are either compilers or interpret
ers.
5 A compiler must translate the entire high-level program into
machine code before it can be executed.
6 An interpreter translates, then executes, line by line.
7 Source code is a program in the original form. Object code is how
it appears after translation to machine code.
8 An assembler is software designed to aid the writing of machine
code.
9 Without an assembler, machine code can only be entered by
POKE statements from BASIC.
10 Machine code executes rapidly and is economic on memory.
11 Machine code programs must be written to suit the micropro
cessor in use. In the case of the Amstrad, this is the Z80.

2 Machine hardware

The hardware and memory usage of the CPC 464 are described here,
but much of the material is still valid for the later CPC664/6128
models.

Is hardware important?

In some respects, a computer is no different from a washing
machine. Providing you know how to use it, knowledge of what's
inside is of little importance. Certainly, if your use of a computer is
restricted to buying and running commercial software there is no
need whatsoever to concern yourself with hardware details. To a
slightly lesser extent, you can maintain the same lofty indifference if
you write your own programs in a high level language such as
BASIC. After all, the general idea behind any high level language is
to protect the user from the harsh realities of computer technology.
A BASIC interpreter does just that by forming a cosy software
blanket between the user and the machine. But the machine code
enthusiast is normally a different kind of animal, who wants an in
depth understanding, even if it does entail additional mental labour.
The question now arises as to the level at which hardware needs to
be studied by the newcomer to machine code. For example,
considering that a computer is virtually 100% electronic in nature, is
it necessary to study electronics? Fortunately for most of us, the
answer is no. It may be useful to have a superficial electronic
awareness but, unless you intend to go in for computer repairing or
designing as a side line, you can get away with little more than
lamp, battery and switch knowledge. Gone are the days when the
circuit diagram of a computer stretched over hundreds of pages,
each filled with resistor, capacitor and transistor symbols. All this
complexity ended with the introduction of the integrated circuit, back
in the middle sixties. In a modern home computer, such as the
Amstrad, over 90% of the complexity is buried inside a handful of
integrated circuits, ICs. The machine code enthusiast need not
bother with the insides of the ICs. All he needs is a rough idea of the 10

Is hardware important? 11

function of each major IC and how they are connected together to
form a computing system. The highly simplified version of the
system can then be reduced to one or two block diagrams. That is to
say, diagrams containing 'boxes', representing the ICs, connected to
bundles of wires called buses. A bus is the term used for a set of
wires, all conveying the same kind of information. The address bus,
the data bus and the control bus are concepts which will be
mentioned frequently during this chapter. However, before con
tinuing, we should make it plain that information given in this
chapter is not absolutely essential for the machine code program
mer. You don't have to understand what follows. All we can say is
that the knowledge will not be wasted. It will help you appreciate
the finer points of the art and, more importantly, it will help you
understand what is actually happening in the computer when you
later write, say,

LD A, (HL).

Logic chips

Logic is a much abused term. In everyday speech, it usually means
clear thinking. In computer language, it means circuits which can
only be in one of two states, called either ON or OFF, or 1 and 0. Apart
from a few exceptions, all wires on the computer board are either in
the T' state (voltage around three to five volts) or the '0' state
(voltage around zero to one volt state). Complex logic systems are
based on a few building bricks known as logic gates. These have a
single output and, normally, several inputs. The output of a logic
gate depends on the right combination of 'l's and '0's being present
on the inputs. ICs may contain hundreds or even thousands of
internal logic gates, all interconnected to form an overall subsystem.
All subsystems are synchronised by an electrical oscillator known as
the clock. The clock is driven by a quartz crystal in order to maintain
frequency stability. In the Amstrad, the clock frequency is main
tained at 16 million oscillations per second (16 MHz).

The Z80A microprocessor

There is one particular chip in the Amstrad, and indeed in all home
and personal computers, which actually does the computing. This
chip is called the microprocessor and, in the Amstrad CPC464/664/
6128 machines, it bears the type number Z80A. All other chips in the
system are subservient to it. It is capable of responding to outside
instructions which 'tell' it whether to add, subtract, fetch some data
from memory etc. The instructions must be given in patterns of
'l's and '0's because it only understands binary and can only perform
with binary numbers (Chapter 3 treats binary in detail). Needless to

12 Machine hardware

say, it doesn't understand a word of English. Furthermore, it can
only respond to instructions which are within a limited repertoire
known as the instruction set. The Z80A has a particularly rich set of
over 600 instructions. You may think this is a bewildering number
from which to pick out the one you want but when grouped
together, according to respective functions, we find that those in the
same group are merely subtle variations on a main theme. All data
into or out of the Z80A takes place via registers. The Z80A is well
equipped with registers, details of which are in Chapter 5.

Figure 2.1 is our first block schematic. It is a highly simplified
version of the Amstrad circuit board intended only to illustrate the
central position of the microprocessor in relation to the general
scheme of things.

Fig 2.1 The microprocessor and buses

All information between the microprocessor and the rest of the main
components (lumped together as one box) take place via three
buses.

The address bus
Each memory cell (and certain auxiliary components) is identified by

The Z80A microprocessor 13

a unique binary code known as its address. So when a particular cell
is to be activated, the microprocessor sends out the personal code of
this cell down the address bus. Cells ignore all address signals other
than their own. There are two important details to note:

1 The direction arrows on the diagram show that the address bus
is one-way. Address codes can only originate from the microproces
sor and travel down the bus.
2 There are 16 wires in the bus, (labelled AO to A15) so there is an
upper limit on the number of different addresses. Chapter 3 gives
reasons why this limit can not exceed 65,536 different addresses.
Decimal numbers such as this are not easy to memorise. Large
numbers are best expressed in terms of 'K'. One K in computer
jargon is 1024 (210) not 1000. In termsof K, the number 65,536 is
reduced to a nice round figure.of 64K. (64x1024=65,536.) The
lowest address is address 0 and the highest is address 65,535. We
shall learn in Chapter 3 that, when working in machine code,
addresses are far better expressed in the hexadecimal (hex) number
system. In terms of hex, the address range is from 0000 to FFFF.

The data bus
This is an 8-wire bus (labelled DO to D7) which carries data between
the microprocessor and the rest of the system. All 8 bits (known as
one byte) are transferred simultaneously along the data bus. Note that
the direction arrow, unlike the one for the address bus, is two-way
which means that data can pass to the external devices (called
writing) or from the external devices (called reading). The fact that the
data bus is 8 bits wide, brands the Z80A as an '8-bit' microprocessor
because only numbers which can be held within the compass of 8
bits can be transferred in one go. The highest absolute decimal
number using 8 bits is only 255 so larger numbers must be fetched in
8-bit instalments.

At this point, perhaps we should mention 16-bit microprocessors
which are heralded as forming the new generation of home
computers. A true 16-bit microprocessor, apart from whatever other
qualities it may have, is one which has a full 16 bit data bus. A few
so-called '16-bit' machines which are now on the market do indeed
have microprocessors which, internally at least, operate on 16 or
even 32 bit numbers simultaneously. But they employ one of the
cheaper versions of the 16 bit family which only have an 8 bit data
bus. This means that 16 bit data still has to be transferred in two
instalments.

The control bus
The control bus, unlike the address and data buses, is a bundle of
odds and ends, a hotch potch in fact. Each wire has an entirely
distinct function. Some carry orders from, and some carry requests
to, the microprocessor. For example, one of them will be the read/
write control line, another will carry the clock signal and another
will be the reset line.

14 Machine hardware

Fig 2.2 The block schematic of the Amstrad 464 and 664

The Z80 microprocessor 15

although even this is still an enormously simplified version of the
true picture. Nevertheless, the detail shown is more than adequate
for our purpose.

The clock
This runs at 16 MHz for direct drive to the ULA (see later) but
counted down by a factor of four to drive the microprocessor at 4
MHz. However, a slight complication arises because of the need to
synchronise with the video scanning circuits. This has the effect of
reducing the effective clock rate to 3.3 MHz.

The RAM chips
The total complement of read/write memory is contained in eight
identical chips, each capable of storing 64K separate data bits. Because
there are eight of them and because each contributes one bit of data,
they collectively act as a 64K byte memory. The address inputs of
the RAM chips are fed from the address bus, and the eight separate
data wires are connected to the DO to D7 lines of the data bus. Figure
2.3 illustrates the RAM chip connections.

RAM chips D7 D0

Fig 2.3 RAM chip connections

One of the lines (labelled R/W) in the control bus is also connected,
albeit indirectly, to the RAMs for controlling the direction of data
flow. That is to say, whether data is to be read from or witten to
RAM.

The ROM chip
The single ROM chip holds 32K of permanent programs. Programs

16 Machine hardware

held in ROM are known under the collective title of firmware rather
than software. Although in a single chip, the ROM should be
considered as two functionally separate 16K ROMS, the 'lower' and
the 'upper'.

The lower ROM occupies the address range 0000 to 3FFF hex and
contains the Operating System. Duties under the heading of the
operating system include reading the key board, handling peripher
als, sending information to the screen display circuitry etc. In short,
all the various mundane duties which help to provide a friendly
man/machine interface. The success of any machine, whatever other
qualities it may have, can stand or fall on the quality of the operating
system. Only programmers of high calibre are employed in writing
operating system firmware. Needless to say, firmware is written in
machine code.

The upper ROM contains the BASIC interpreter firmware and
occupies addresses C000 to FFFF hex. It contains all the translation
rules for converting BASIC programs into machine code. The quality
of the Amstrad BASIC interpreter is excellent.

Addressing problems

Most home computers take the easy way out and restrict the total
RAM and ROM complement so as to fit comfortably into the available
64K addressing space of 8-bit microprocessors. (You will remember
that a 16-bit address bus can only supply 64K different addresses.)
But, Amstrad has 64K of RAM and 32K of ROM! This apparent
violation of the laws of address combinations obviously calls for
some explanation. The problem is overcome by bank switching. The
upper and lower ROMs 'overlay' the RAM areas beneath them. That
is to say, the areas of RAM, which underlay the ROMs, share each
other's addresses. This is all very nice but an obvious problem
remains. Since parts of RAM and ROM share the same addresses,
how does the system distinguish between them? The problem is
sorted out by the mysterious ULA but is helped by the following
reasoning:

1 If the instruction is to write to memory, it must mean the RAM
because you can't write into a ROM.
2 If the instruction is to write or read to any address between 4000
and BFFF hex, it must be RAM because there is no ROM in this area.
3 If it's reading information from ROM areas, it can be from either
ROM or the underlying RAM. This is where the ULA takes over and
decides whether the ROM should be isolated, leaving the coast clear
for the RAM or vice versa.

The above description has been based on the normal (default)
conditions of the Amstrad. However, it is possible to modify this
arrangement by a certain machine code call. Thus it is possible to

Addiessing problems 17

disable one or both ROMs although such adventures are best left
until your experience has matured a little.

Start up conditions
On first switching ON, the lower ROM takes over, resets all devices
and clears all RAM locations. On completion, control switches to the
upper ROM, ready for the first BASIC command.

The ULA
Computers, up to a few years ago, used to bristle with logic chips,
most of which performed primitive gating functions. Reliability is
inversely proportional to the chip count so designers were con
stantly searching for ways to reduce the number without sacrificing
sophistication. One ingenious solution was the Uncommitted Logic
Array (ULA for short). The idea is to construct a large number of
separate gates on one chip with provisions for 'burning in' the
interconnections between them afterwards. This means that the
chip was initially undedicated to any particular function. The actual
burning in stage is left until the end user supplies a plan of the final
interconnections. When this is done, the once uncommitted ULA
becomes committed to undertake a complex but specific task. It
becomes a customised chip, capable of replacing a large number of
untidy separate chips. The ULA solution is commercially viable for
bulk orders in excess of, say, 20,000. The cost per chip of the final
burning in process is excessively high for small quantities.

The ULA in the Amstrad is labelled IC 116 on the circuit diagram
and is responsible, amongst other things, for the following:

(a) Dividing the clock frequency by four to feed the Z80A.
(b) Controlling the data selectors which switch the address bus
between the video controller and the Z80 on a time ratio of 3 to 1.
(c) Indirectly controlling the colour of the screen output characters
by means of a palette latch. The input to the palette latch is derived
from the data bus (because the programmer decides the colour) and
the output is in the form of a five bit code. Decoder circuits in the
ULA reduce this to the three Red, Green and Blue (RGB) wires
which feed the colour monitor. There is one mystery here. It is
possible to program up to 27 different colours and yet there are only
three wires! The answer is to feed them with tristate instead of two
state logic. Thus, each of the separate RGB outputs have been
arranged so that they can rest in any one of three states, logic 1, logic
0 or virtually open circuit. Three wires, each capable of resting in
any one of three states, are capable of 33=27 combinations.
(d) Periodically switching in the Cathode Ray Tube Controller
(CRTC) to the screen RAM. It does this by interrupting the
microprocessor every few instruction cycles.

The CRT controller
This is a standard commercial chip bearing the type number 6845. It

18 Machine hardware

is quite a complex affair with eighteen internal registers and is
almost as flexible as a microprocessor. It is a peripheral, in the sense
that it has a port address block which can be activated by the BASIC
instructions INP and OUT. However, most of the CRT controller
registers are loaded by the operating system ROM and require no
help from us. It performs, by hardware, a large number of screen
operations, including scrolling, sync, high-res graphics and text
positioning. A less complex CRT controller would require extra
software in the ROM to achieve the same control of the screen.

Data selectors
Referring to Figure 2.2, the block marked 'data selectors' consists of
4 chips, responsible for steering the data bytes to RAM from either
the Z80A or the CRT controller. The chips act like 8-way, two-pole
switches controlled by the ULA.

Fig 2.4 Memory map

#FFFF

#C000

16K RAM screen
(by default)

65535

49152

Upper 16K of ROM

BASIC interpreter

#BFFF

#B100

Stack area
Firmware workspace

Jumpblock

49151

45312
#B0FF

BASIC and AMSDOS
data area

45311

A67C

A67B
— 42620

42619

Free space for
user programs

#4000 16384
#3FFF 16383 Lower 16K of ROM

#0040 64
Operating system

#003 F
#0000 Firmware area

I
I

I
I

I
I

I
I

|G
o|

Memory map 19

The memory map

The memory map of the Amstrad is shown in Figure 2.4. For
convenience, the memory addresses have been given in both
decimal and hex. To indicate hex numbers, we have used the
character '#' because it conforms to the notation used by the Hisoft
DEVPAC assembler.

The map shows the areas in which the upper and lower ROM
addresses overlay RAM. Note the stack (explained in later chapters)
is left by the operating system in a position below the screen RAM
area.

The sound generator

The Amstrad sound effects are produced by the industry standard
AY-3-8912 chip. It is connected via the input-output interface. It is
possible to program the hardware registers direct but it would be a
dangerous procedure because of its close linkage with the keyboard
scanning. This is a highly critical area because of precise interrupt
timing.

Disc workspace

The Amstrad CPC664/6128, or the 464 fitted with a disc drive,
requires an extra 1284 bytes of RAM for the disc operating system
(DOS) workspace. This means that HIMEM will be lowered from
#ABFF (44031) down to #A67B (42619). Some lengthy programs
written for the 464 on tape may not work if a disc drive has been
added. The solution is to leave the disc drive switched off. On the
664, the DOS is always on so the simple solution won't work.
However, an excellent software patch for overcoming the problem
has been designed by Cliff Lawson (see 'Amstrad User' magazine,
July 85 issue).

Summary

1 A bus is a bundle of wires, each conveying the same kind of
information.
2 The 16 wire address bus carries the code for selecting one
particular memory cell.
3 The 8 wire data bus conveys data bytes around the system.
4 The control bus contains a mixture of wires (so it is not a true
bus) each having a specific control function.
5 Logic, in computer parlance, refers to any two state switch
system. The states can be called 1 and 0, ON and OFF or HIGH and
LOW.

20 Machine hardware

6 A logic gate has one output, the state of which depends on the
logic combination applied to the inputs.
7 A 16 MHz clock is the source of all timing pulses in the Amstrad
machines.
8 The clock frequency is divided by 4 to obtain the 4 HMz drive to
the Z80A microprocessor.
9 Due to the requirements of video scanning, the effective Z80A
clock frequency is reduced to 3.3 MHz.
10 The read/write memory consists of 64K of RAM.
11 The read-only memory is a 32K pre-programmed ROM.
12 Permanent programs in ROM are known as firmware.
13 The upper 16K of ROM contains the BASIC intepreter firmware
and the lower 16K contains the Operating System.
14 A 16 wire address bus can only manage 64K different address
combinations so ROM addresses overlay some RAM addresses.
15 The upper ROM overlaps the screen RAM (C000 to FFFF hex.)
16 The lower ROM overlaps the operating system workspace (0000
to 3FFF hex).
17 The ULA is a customised chip responsible for a range of
assorted switch actions.
18 The RAM screen area, the upper ROM and the CRT controller
all share RAM addresses. The ULA arranges the periodic switching
at speeds transparent to the user.
19 The ULA also takes care of the colour palette decoding, mode
information, and composite sync generation.

Binary and hexadecimal 3

Digital versus analogue computers?

The term 'computer' is well established. So we are inclined to forget
that there are two species and that when we speak of the computer
age we are automatically referring to the digital, rather than the
analoge, species. And yet, the analogue computer came first mainly
because the physical characteristics of the real world can be
modelled more naturally by analogue techniques. Ignoring sudden
volcanic eruptions or similar violent catastrophies, physical changes
in the real world take place in a smooth orderly manner. For
example, wind speed will not suddenly jump from 10 mph to
20 mph. A plot of windspeed against time will always be a smooth
curve. It may be a steep curve during the onset of a storm but it will
still be smooth providing, of course, that enough plotting points are
taken. The same can be said of temperature changes. Even the
dramatic heat rise at. the beginning of a nuclear explosion may
appear instantaneous but the temperature plotted at nanosecond
intervals would still show a steep, but nevertheless smooth, curve.
Nature, apart from some rather weird 'quantum' behaviour at
subatomic levels, seems to dislike sudden jumps. Measurement of
physical quantities is carried out with instruments which convert
them to an analogous form, which we will assume here to be
electrical, and are therefore known as analogue instruments. These
instruments give readings, usually in the form of a voltage, which
are, as far as possible, proportional to the physical quantity. For
example, a wind velocity instrument may be calibrated such that
each additional volt represented an increase of 5 miles per hour. But
whatever the physical quantity, the essential ingredient of any
electrical analogue device is that a certain voltage (or perhaps
current) corresponds to a particular value of the physical quantify.
In the case of our example wind measuring instrument, 1 volt= 5
mph, 2 volts=10 mph and 20 volts= 100 mph. How can we use
analogue methods for manipulating numbers? In other words, how
is an analogue computer constructed, assuming it is capable of
addition, subtraction, multiplication, division and all the common- 21

22 Binary and hexadecimal

place trigonometrical operations. All we need is a panel full of knobs
which we can adjust to represent the numbers, a collet ’ion of fairly
straightforward electrical circuits which can add, subtract etc and a
few meters to present the results in a visual form. Indeed, this is
exactly what a commercial analogue computer looks like. Such
instruments still have a place in laboratories and are superior in
some respects to the digital computer, particularly in their ability to
handle complex differential equations. They have two drawbacks.
Firstly, they require highly skilled operators to set up all the knobs
and to check the preliminary reset conditions. Secondly, the
analogue circuitry requires frequent adjustment to counteract
voltage drifting caused by heat changes. The accuracy of an
analogue computer relies absolutely on the accuracy of a voltage or
current reading. Even with modern circuitry, equipment designed
for voltage tolerances better than 1 part in 1,000 would be quite
costly. This means that any attempt to use an analogue computer to
work out a balanace sheet for a business organisation would fail the
first auditor's check.

A digital computer overcomes all problems caused by measure
ment errors. In fact, the term 'accuracy' doesn't really apply to the
digital computer because measurement is not part of its nature.
Instead of measuring, the digital computer counts. To humans,
counting can be tedious and error prone but a machine built to
count, rather than measure, can be foolproof. The circuits of a
digiatal computer need only be designed to detect whether a voltage
is above a certain upper threshold limit or below a certain lower
threshold limit. In other words, any individual circuit is always in
the 'LOW' state or the 'HIGH' state. In the case of the Amstrad and
most other current microcomputers, the two levels are approxi
mately as follows:

Voltage between 3 to 5 volts is the HIGH state.
Voltage between zero to 1 volt is the LOW state.

The terms HIGH and LOW were chosen to suit electronic engineers
but, from a computing point of view, it is better to adopt the terms 1
and 0 respectively. Figure 3.1 may help you to visualise these states.

Representing numbers by switches

Almost all circuits in a digital computer act as electronically operated
switches, capable of changing rapidly from one state to the other on
receipt of an appropriate signal. A series of switches can be made to
represent numbers providing we are prepared to dispense alto
gether with the familiar decimal system and adopt the primitive
numbering system known as binary. Decimal is out because it would

Representing numbers by switches 23

Fig 3.1 The two digital states

require a ten state electrical system. In other words, it would be
necessary to revert back to an analogue system in which each circuit
would have to respond to ten different levels of current or voltage.
This demands expensive circuitry and frequent calibration. There
are no calibration problems with a switch because it is either ON
(the 1 state) or OFF (the 0 state)

Bits and bytes

Only the digits 1 and 0 are allowed in the binary counting system so
it is inherently simple. The term bit, derived from binary digit, refers
to either a 1 or 0. A string of eight bits is nowadays called a byte. The
numerical value of each bit is based on 'place weighting', similar to
decimal. However, each bit is worth twice as much (instead of ten
times as much) as the bit on its right. For example, the byte 00001111
is equal to 15 in decimal because, proceeding from right to left, we
have a 1 and a 2 and a 4 and an 8. Study the following examples:

00001001 = 9. 00000101 = 5. 00101110 = 46. 11111111 = 255.
10000000 = 128.

Number of ways of arranging bits
With two bits, there are 4 possible patterns, 00, 01,10 and 11. With 3
bits, there are 8 patterns, 000, 001, 010, Oil, 100, 101, 110 and 111.
Instead of laboriously writing down all the possible arrangements of
bits in a given string, we can use the following general rule:

Number of ways=2N (where N=the number of bits)

For example, for 8 bits, there are 28= 256 ways. Every time we add
one more bit to the string length, we double the possible number of
arrangements.

24 Binary and hexadecimal

Nybbles
It is convenient to consider the byte in two halves, each known as a
nybble and to introduce a space between them. For example,
0010 1101 is easier on the eye than 00101101 although it is important
to remember that the space is quite artificial and has no arithmetic
meaning.

Naming individual bits
When referring to individual bits in a byte, the terms illustrated in
Figure 3.2 are well standardised. The bit on the extreme right,
named bit 0, is the least significant bit (lsb) and the bit on the extreme
left, named bit 7, is the most significant bit (msb). Note carefully,
because there is a chance of confusion, that the bits are numbered 0
to 7, not 1 to 8.

Binary addition

The process of adding two binary numbers together is essentially
the same as we use for adding decimal numbers. In decimal, when
the sum of a column exceeds 9, we carry a 1 over to the next higher
significant column. In binary, a carry is made whenever the sum of a
column exceeds 1. Rather than explain the procedure in detail, it is
eaier to study a few examples, using complete bytes.

To add 1 to 1:
0000 0001 = 1
0000 0001 = 1

Sum 0000 0010=2

To add 3 to 5:
0000 0011=3
0000 0101=5

Sum 0000 1000=8

To add 17 to 31:
0001 0001 = 17
0001 1111=31

Sum 0011 0000=48

Double byte numbers 25

76543210 --------Bit names

128 64 32 16 8 4 2 1 --------Bit values

MSB LSB

Fig 3.2 Naming the bits

Double byte numbers

The Z80 micro processor is an eight-bit device. This means that all
trips to and from memory take place in bundles of eight bits. This is
why, up to now, we have concentrated on the byte. The trouble
with the single byte is the limited storage capacity. The maximum
binary number (every bit a 1) which can be held in one byte is only
equivalent to 255 decimal. Obviously, a computer would not be
much use if it could only handle numbers up to this value. The way
out is to use two or more bytes for each number by considering them
to be arranged end to end. Assume we use two bytes and fill them
both with 'l's as follows:

mi ini mi nil

This is equal to 65,535 decimal. You can of course check this by
adding up the value of each binary digit but there is an elegant
formula which, providing you have a scientific calculator handy (or
the Amstrad in direct mode), can do the job quickly,

Largest number in a string of N bits is 2N—1

For example,

4 bits can hold 24—1 = 15
8 bits can hold 28—1=255
16 bits can hold 216—1=65,535
20 bits can hold hold 2O20—1 = 1,048,575

When using double byte numbers, the least significant half is
known as the low-byte and the most significant half, the high-byte.
Note that each bit in the high byte has a value 256 times that of the
equivalent bit in the low byte. This morsel of knowledge is of far
reaching importance and justifies the appearance of Figure 3.3.

If the two bytes together are considered as one number the
decimal value of the total is given by:

Total=(low byte value) + (256 X high byte value)

26 Binary and hexadecimal

Sign

Fig 3.3 Equivalent bit values

If the low-byte holds 0000 0100 (4 decimal) and the high-byte holds
0010 0100 (36 decimal). The total becomes 4+(256x36)=9,220
decimal.

Signed numbers

A computer would be of little use if it could only handle positive
numbers. Arithmetic used by humans uses the unary minus
character to indicate that the number is negative. This is not
possible in binary because, as we have seen, the only characters
recognised are 1 and 0. The Z80A microprocessor, in common
with most other types, employs a system known as two's complement
notation for dealing with signed numbers and, as an indirect
consequence, subtraction. Before delving into the details of two's
complement, it is worth devoting some space to the hardware
mechanism of subtraction employed by most microprocessors. The
only true arithmetic operation built into the Z80A microprocessor
is addition. It can, of course, perform subtraction but, were we to
examine the inernal hardware, we would discover that it still uses
the additioin process but in a roundabout way by adding the two's
complement of the number to be subtracted. This is because every
square micrometre on the silicon chip area is precious. In fact the old
Silicon Valley boffins used to refer to the area as 'real estate'. They
decided that to include a hardware subtraction circuit in a micropro
cessor, as well as an addition circuit, would be a waste of chip area
which could otherwise be used for more rewarding functions.

Two's complement numbers

The fundamental difference between normal binary (which we shall
refer to as unsigned binary) and two's complement is the role of

Two's complement numbers 27

bit 7, the msb. This bit no longer represents magnitude. Instead, it
is used to indicate the sign of the number and, indeed, is often
referred to as the sign bit. The sign bit is 1 for negative numbers and
0 for positive numbers. Although quite straightforward for positive
numbers, there is a rather strange twist involved when the number
is negative. Before giving the rules, consider the following examples
of what positive and negative numbers would look like in two's
complement notation:

0000 0010=+2
1111 1110=—2

As you can see, +2 is easy but —2 looks a horrible mess. You may
ask why, since the msb is the sign bit, why not write —2 as
1000 0010? This would certainly appear more logical (and certainly
easier) but there would be a snag when writing zero. For example,
+zero would be written as 0000 0000 and —zero as 1000 0000. In
other words, we would have two different ways of writing the same
number. In any case, mathematicians have decreed that zero must
always be positive so you see the simple way doesn't work.

The rule for two's complement numbers
First we must introduce the jargon term 'flip'. To flip a bit means to
change it from 1 to 0 or from 0 to 1. Either of two rules can be used
but the following is the accepted academic version:

To obtain the equivalent negative, flip all the bits and add 1.

If, as the result of adding the extra 1, a carry propagates through to
the end and 'drops out' then simply ignore it. Some examples based
on the rule now follow.

1 To find —2, first write down the binary for +2 which is,
0000 0010=+2

flip the bits 1111 1101
add 1 1111 1110=—2

2 To find -8, 0000 1000=+ 8
flip the bits 1111 0111
add 1 1111 1000=-8

3 To find -1, 0000 0001 =-1
flip the bits 1111 1110
add 1 1111 1111 = —1

We have said that this rule is the academic version. Flipping the bits
produces the one's complement (also called the 'logical' complement)

28 Binary and hexadecimal

and adding the extra 1 converts it to the two's complement.
However, this rule may have the blessing of the establishment but
adding that extra 1 is a nuisance because of keeping track of the
carry. There is another way of finding the equivalent negative which
does not involve messing around with that awful carry:

Starting from the right, copy down up to and including the
first 1 then flip the remaining bits.

Examples:
+2=0000 0010
-2=1111 1110
+8=0000 1000
-8=1111 1000

+ 17=0001 0001
-17=1110 1111
+1=0000 0001
-1=1111 1111

Two's complement numbers work both ways. That is to say, the rules
remain valid for finding the equivalent positive, given the negative
version. For example, if we start with 1111 1111 (which is —1) and
use the rule, we obtain 0000 0001 (which is +1 again). Thus the
two's complement of a number doesn't necessarily mean the
negative version. It simply means the same number with opposite
sign.

Fig 3.4 The two's complement circle

-1^——

/ X 111

—

000 / \

2/ \ / \1

/ 110 \
/ 001 \

\ 101 7 \ 010 /

3\ 7 \ /2

\ / 100

—4

011 X /

Two's complement numbers 29

The circle of signed numbers
Although two's complement notation seems weird and even
illogical, it is, in fact, based on sound number theory. To appreciate
this, have a look at Figure 3.4 which, for simplicity, examines all the
eight ways of arranging 3 bits. Note the following points:

(a) The binary combinations proceed smoothly from 000 to 111 as
we journey clockwise round the circle. Thus, if we choose to treat
the meaning in terms of unsigned binary, the combinations progress
from 0 to 7.
(b) If we treat the meaning in terms of two's complement, we
progress clockwise for positive numbers up to +3 or anticlockwise
for negative numbers up to —4.
(c) There are 4 positive numbers, 0, 1, 2, 3 and four negative
numbers —1, —2, —3, —4.

Because zero is a positive number, it follows that there will always
be room for one larger negative number than positive in two's
complement notation. For example, the largest positive number
in a byte is 0111 1111 =+127 but the largest negative number is
1000 0000=-128. To allay possible criticism, we should point out
that mathematically, a number like —128 is considered to be
'smaller' than —127 but playing lip service to the demands of
academic purity often hampers initial understanding.

Two's complement and double byte numbers

When dealing with double byte numbers, bit 7 in the low byte has
no significance other than representing part of the overall mag
nitude. Only bit 7 of the high byte is the true sign bit. For example,
consider the following double byte number, 0001 0000 1000 0000.
The low byte has a 1 in bit 7 position but it does not represent sign
because the number, taken in its entirety, is positive because bit 7 in
the high byte is a 0. The largest double byte positive number, treated
in two's complement form, is 0111 1111 1111 1111 = +32,767 and
the largest negative double byte number is 1000 0000 0000 0000=
—32,768. On the other hand, if we treat the numbers as unsigned
binary, the largest two byte number becomes 1111 1111 1111
1111=65,535. Perhaps this would be a good point at which to
introduce a few equations for finding the maximum numbers that
can be held in a string of N bits.

Largest positive two's complement number=2(N1)—1
Largest negative two's complement number=—2(N_1)
Largest positive unsigned binary number=2N-1

Unsigned binary or two's complement?

Readers may be a little confused at this point as to whether the
microprocessor works in two's complement or unsigned binary. The

30 Binary and hexadecimal

answer is simple. It depends entirely on your own intepretation of
the result. If, for example, you are writing a program which is
dealing with numbers that must always be positive (such as
vibration frequency or population) then you would interpret the
result as unsigned binary. On the other hand, programs concerned
with banking accounts, must allow for both credit and debit
situations and both positive and negative numbers. In which case
numbers would be interpreted in two's complement form. As far as
the microprocessor is concerned, arithmetic operations are carried
out exactly the same, irrespective of the human interpretation
placed on the results. To see why this is so, consider how the
processor would add 1 to 0111 1111:

0111 1111
Add 0000 0001

Total 1000 0000

Now, as far as the microprocessor is concerned, the job is complete.
However, if the programmer is working in pure binary, the result is
valid and equal to 128 decimal. If, on the other hand, the operation
is dealing with both negative and positive numbers, the result is
invalid because the result is a negative number. In other words,
two's complement overflow has occurred. Fortunately, the micropro
cessor will set a flag bit in a special register to warn the programmer
of this condition. Dependant on the interpretation, the necessary
steps can be taken in the program to either deal with an overflow or
ignore the flag bit altogether.

Decimal and binary conversion

Although computers are quite happy with binary, humans are not.
Most of us find a page full of 'Is' and '0's monotonous and virtually
unintelligible. Unless every bit is studied with great care, mistakes
will be all too frequent. For example, try and spot (quickly) which bit
is different in the following versions:

Version A

Version B

1001 0010
1101 0101
1110 1101
1101 1010

1001 0010
1101 0101
1110 1001
1101 1010

Fortunately, it is no great problem for software specialists to write
binary to decimal conversion routines so that numbers can be entered

Decimal and binary conversion 31

in normal decimal form. Indeed, when writing programs in high
level languages such as BASIC or PASCAL, it may not even be
necessary to understand binary since all entries and transactions
take place via decimal numbers. It would seem that similar routines
for shielding us from the boredom of binary could be employed in
machine code programs. Indeed, most machine code assemblers
allow decimal entries. But there is a snag because, even with an
assembler, it is often necessary to be aware of the binary bit pattern
corresponding to a decimal entry. Unfortunately, decimal and
binary are far apart in the number stakes and it is by no means easy
to visualise the binary pattern corresponding to the decimal
equivalent or vice versa. That is to say, few people could take a
quick glance at the pattern 0110 0111 and recognise the decimal
equivalent. The problem is even worse for double byte patterns.
What is needed is a numbering system which is a compromise
between decimal and binary. A system which will enable a human
to recognise almost instantly the associated binary pattern. One
numbering system, popular in the earlier computers, was octal but
this was eventually superseded by the now popular hexadecimal
system.

Hexadecimal

The base of a numbering system is the number of different characters
used. Binary only uses the character 0 and 1 so the base is 2. Decimal
uses the characters 0, 1, 2 ... 9 so the base is 10. The hexadecimal
numbering system (known simply as hex) has a base of 16 because it
uses the characters 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. Notice
that decimal and hex are the same for numbers up to 9 but the
remaining six characters are the letters A to F inclusive. The
table overleaf shows the relationship between the three numbering
systems.

Machine addresses

When working in BASIC, we seldom need to concern ourselves with
actual machine addresses, except of course when we use POKE or
PEEK. In machine code, actual machine addresses are constantly in
use and, here again, we shall find that hex is far better than decimal
for specifying addresses. The Amstrad machine addresses, expres
sed in decimal, would be address 0 to address 65,535. Expressed in
hex, the address range is from 0000 to FFFF which is tidier in
appearance. Besides, it is easier to break down the address range
into 'pages' each of 256 bytes. The two left hand digits can then
represent the page and the two right hand digits can represent the
address on that page. For example, the hex address A324 can be
visualised as address 24 on page A3.

32 Binary and hexadecimal

Binary Hex Decimal

0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 A 10
1011 B 11
1100 C 12
1101 D 13
1110 E 14
1111 F 15

Note that one hex digit can represent any 4-bit pattern whereas two
decimal digits are required for the patterns 1010 to 1111 inclusive.
This means we can express the contents of a byte with only two hex
digits or a double byte with only four. It should not take too much
practice on your part before you are able to convert binary to hex
almost at sight and with no hesitation. Here are some examples:

Binary 1001 0001 1111 1111 0111 1010
Hex 9 1 F F 7 A

As a final impressive example, consider the pattern, 0111 0000 1111
1010. You should soon be able to convert this at sight to 70FA hex.
How long would it take you to convert it to decimal? The Z80
instruction codes are far better written in hex than in decimal. In fact
most assemblers, including the one we shall be using, will display
them in hex code so this is another reason why we should make
some effort to master hex.

Converting hex to decimal

Although anyone intending to take up machine code seriously
should learn to think in hex, there are times when it is necessary to
convert from hex back to decimal. You will find this a bit awkward at
first because the place weightings of hex digits go up in powers of 16
instead of in powers of 10. Instead of progressing in units of 1, 10,
100, 1000 etc, hex progresses in units of 1, 16, 256, 4096 etc. (Note
that 256 is 16 squared and 4096 is 16 cubed). Fortunately, we seldom

Converting hex to decimal 33

have to deal with hex numbers of more than four digits. Here are
some examples of hex to decimal conversion:

3F hex=(3xl6)+15=63 decimal
A2 hex=(10xl6)+2=162 decimal
FF hex=(15xl6)+15=255 decimal
101 hex=(lx256)+ 1=257 decimal
100A hex=(lx4096)+10=4106 decimal
2ACB hex=(2x4096)+(10x256)+(12xl6)+ll=10955 decimal
FFFF=(15 x 4096)+(15 x 256)+(15 x 16)+15=65,535.

You can of course use the Amstrad in direct mode for hex to decimal
conversion.

Adding two hex numbers

We don't often want to perform actual arithmetic using hex
numbers but it is well to underlying mechanism. Just remember that
if the sum of any column exceeds F, a carry is passed onto the next
column. Here are some examples:

OF
01

FF
01

3E
56

F0FA
0006

Sum 10 100 94 F100

Largest hex numbers

We listed earlier the numerical limits of bit strings expressed in
decimal.

It is useful to also know these limits in hex. In the case of
unsigned binary, the largest hex number is FF for single byte and
FFFF for double byte.

In the case of two's complement, the largest single byte positive
number is 7F (+127 decimal) and the largest negative is 80 (—128
decimal). For double byte two's complement numbers, the limits are
7FFF (+32767 decimal) and 8000 (-32768 decimal).

Binary coded decimal

There is another numbering system in use, known as binary coded
decimal or simply, BCD. It is a system designed to bridge the gap
between binary and decimal but, unlike hex, it does not use all of
the possible binary patterns in a byte. Here is a table of binary to
BCD conversions:

34 Binary and hexadecimal

Binary BCD

0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9

1010 Illegal
1011 Illegal
1100 Illegal
1101 Illegal
1110 Illegal
1111 Illegal

Here are some examples of BCD patterns:

0100 1000=78 decimal. 1001 1001=99 decimal.
0000 0101=5 decimal. 0110 0011=63 decimal.

Note that the two nybbles within a byte must be treated independ
ently of each other and must be read as two four-bit patterns.

Adding two numbers in BCD format
Certain difficulties arise when we try to add two numbers in BCD
format because of the possibility of creating one of the six illegal
combinations. Study the following two examples of addition in
BCD:

Add 5 to 23 0000 0101 (5)
0010 0011 (23)

Sum 0010 1000 (28)

This is a valid result

Add 8 to 23 0000 1000 (8)
0010 0011 (23)

Sum 0010 1011 Illegal

Binary coded decimal 35

The low order nybble of the result has fallen into the illegal band.
The solution is, at first sight, rather weird. The addition is
performed and, if the low order byte result is illegal, just add a further
six. Let us add a further six to the previous illegal result:

0010 1011 Illegal
Add 6 0000 0110

0011 0001 (31)

Note that adding the extra six has resulted in a carry from the low
nybble to the high nybble. This procedure always works and can be
summed up as follows:

1 Perform normal binary addition.
2 Test the result for illegalities (any nybble greater than 1001).
3 If illegal, add six.

The reason why this works is because the extra six cause the result
to skip over the six illegal patterns, 1010 to 1111.

What use is BCD?

Unless your interests extend to linking external digital instruments
to the Amstrad, the answer is, not much! It is becoming almost
commonplace nowadays to provide digital instrumentation with
sockets which can be interfaced to a computer. These readings are
normally given in BCD format and may be designed to link up with
a special input/output bus system, pioneered by Hewlett Packard,
and now known as the IEE 74 standard. Such a bus is not provided
on the Amstrad but no doubt its popularity may encourage
manufacturers of add-ons to provide a suitable interface.

Logical operations

There will be time when it is necessary to alter, or perhaps examine,
one or more particular bits within a byte without disturbing the
remaining bits. For example, we may need to ensure that bit 4 is a '1'
without disturbing the remaining bits. On the other hand, we may wish
to ensure that bit 7 is a 'O'. We may even wish to change the state of
certain bits. Normal arithmetic is not of much use to us in these
circumstances. Fortunately, most computers (including the Amstrad)
are able to carry out three, so called logical operations called AND,
OR and XOR. They are used in conjunction with a mask word in
which the bit pattern is chosen in accordance with certain rules.

36 Binary and hexadecimal

To ensure certain bits within a byte are ‘O'
Use AND with a mask as follows:
'l's in the mask will leave corresponding bits alone, '0's will ensure
the corresponding bits are 'O'.

To ensure certain bits within a byte are T.
Use OR with a mask as follows:
'0' in the mask will leave corresponding bits alone, 'l's will ensure
the corresponding bits are '1'.

To ensure certain bits in a byte are changed (flipped)
Use XOR with a mask as follows:
'0's in the mask will leave corresponding bits alone, 'l's will ensure
they are changed.

Here are some examples:

1 To ensure bit 7 in a byte is 0, AND it with the mask 0111 1111,
(7F hex).
2 To ensure bit 3 in a byte is 1, OR it with the mask 0000 1000, (08
hex).
3 To ensure that bit 5 in a byte is changed, XOR it with the mask
0010 0000, (20 hex).

As a final example, if a byte originally contained 1101 1110 and we
ANDed it with mask 0111 1111, it would then contain 0101 1110.
The three logical operations are purely bitwise in character. That is
to say, each bit is treated quite independently of the others. There is
no such thing as a carry from one bit to another as happens in
arithmetic operations.

Summary

1 Analogue computers measure. Digital computers count.
2 Digital computer circuits are arrangements of electronic switches
so they remain free from calibration errors.
3 The two digital states can be named either HIGH and LOW or 1
and 0.
4 A byte is 8 bits and a nybble is 4 bits.
5 The rightmost bit in a string of bit is the lsb and the leftmost bits
is the msb.
6 The bits in a byte are numbered 0 to 7 not 1 to 8.
7 Double byte numbers require a separate memory address for
each byte.
8 A single byte can hold numbers up to 255 in unsigned binary but
a double byte can hold up to 65,535.
9 The least significant byte in a double byte is called the low byte
and the most significant the high byte.

Summary 37

10 Signed numbers are held in two's complement form.
11 In two's complement form, the msb is treated as the sign bit, 0
for positive and 1 for negative.
12 The highest positive single byte number is +127 and the highest
negative is —128.
13 Flipping a bit means to change it from 0 to 1 or 1 to 0.
14 The two's complement of a number is the same number but of
opposite sign.
15 In two's complement form, only bit 7 of the higher order byte of
a two byte number is treated as the sign digit.
16 Whether a binary number is interpreted as unsigned or signed
binary is a matter for the programmer, not the machine.
17 Hex notation can be preferable to decimal when working in
machine code.
18 Hex uses a base of 16 and uses the characters A to F to cover the
range from 10 to 15 respectively.
19 Any single byte binary pattern can be expressed by two hex
digits.
20 The hex limit in unsigned binary is FF for single and FFFF for
double bytes.
21 Single byte, two's complement hex limits are 7F for positive and
80 for negative.
22 Amstrad decimal address range is 0 to 65,535. The hex address
range is 0000 to FFFF.
23 BCD addition can result in illegal combinations but they can be
cleared by adding a further 6.
24 BCD is not in general use outside the instrumentation field.
25 AND is used to clear bits.
26 OR is used to set bits.
27 XOR is used to change bits.

Entering and running
programs

The facilities of the Hisoft DEVPAC assembler, and the simple
execution of machine code programs from BASIC, are described in
this chapter to get the reader started.

A BASIC loader

It is possible to write, execute, debug, save and manipulate machine
code programs by staying in BASIC and relying heavily on the
commands CALL, PEEK and POKE. The machine code bytes
(forming the program) can be entered as a series of numbers in
DATA statements which, with the aid of a READ loop, can
subsequently be POKED into successive locations in memory.
Program 4.1, written in BASIC, is an example of a simple machine
code loader. Using this program, you save yourself the expense of
buying an assembler. But, you will soon discover that there are
more things to life than money. The saving of a few pounds,
representing a small fraction of the total cost of a computer, will turn
out to be poor compensation for the hours and hours of frustration
you will encounter when you try to develop your own programs
with the sole aid of a BASIC loader. The Z80A microprocessor is
blessed with a rich and complex set of over 600 instructions, far
more complex than the 6502 with which some readers may already
be familiar. Each one of these has its own unique 'operation code'
which, in most cases is a pair of hex digits. These numbers have to
be looked up for each instruction and copied down into DATA
statements. Writing machine code programs, even with the aid of an
assembler requires a degree of concentration and care. Without one,
the prospect is little short of desolate. Unless the program is trivial,
you may spend many hours, perhaps many weeks, trying to find
bugs. Even when (if?) you finally manage a successful run, the
appearance of the program in the form of DATA statement digits
will, even to you, become so meaningless after a few days that
attempts to introduce modifications would be out of the question.
The operation codes are numbers, the addresses upon which the 38

A Basic loader 39

codes operate are numbers, all of which leads to the most unfriendly
of environments. Our advice to you is to get hold of an assembler as
soon as you can. If you try and manage to scrape along without one
there is a good chance that you will soon give up the idea of machine
code altogether and that will mean you have wasted money on
buying this book! However, to cater for readers who are willing to
made do with POKE and PEEK techniques, all listings in this book
will include columns containing the machine code hex digits so that
they can be set into the BASIC loader (Program 4.1).

Program 4.1 Machine code loader

10 REM BASIC LOADER
20 REM FOR MACHINE CODE BYTES
30 INPUT"How many data bytes are there";number!
40 ADDRESS7.=&7000
50 FOR NX=O TO number7.-1
60 READ BYTE*
70 POKE ADDRESS7.+N7., VAL < "V+BYTE*)
80 NEXT
90 END
100 '
110 '
120 REM THE DATA BYTES BELOW ARE PURELY
130 REM FOR EXAMPLE PURPOSES
140 REM
150 DATA 3A,00,71,5F,3A,01,71,21
160 DATA 00,00,55,06,08,29,17,30
170 DATA 01,19,10,F9,22,02,71,C9

Using an assembler

Assemblers come under the heading of utility software. They are to
machine code as interpreters or compilers are to high level
languages. They all provide a friendly environment in which to
write machine code. Meaningless numbers can be replaced by
meangingful letter groups, and absolute addresses, which again are
numbers, replaced by labels chosen for their mnemonic value. All
these improvements allow the machine code programmer to
concentrate more on logic flow instead of cluttering the mind with
trivia.

As mentioned in an earlier chapter, we shall be using the official
assembler chosen by Amsoft:

The HiSoft DEVPAC Assembler,
Disassembler Editor and Monitor (SOFT 116).

From now on, any reference to the 'assembler' must be taken to
mean the above product.

There are two versions available, one for the CPC464 available on
tape and a disc version for use on the CPC664/6128 or the CPC464

40 Entering and running programs

with external disc drive. In all fairness, we should point out that
there are several other good assemblers on the market which are
written for the Amstrad machines. The fact that we have concen
trated on this one should not be taken as a sign that we consider the
DEVPAC in any way superior. After all, the 'best' assembler is the
one you know! Most of them offer, more or less, the same variety of
options, even though the syntax or some of the symbols may vary a
little. If you happen to have a different assembler, you will probably
find little difficulty in translating our assembly format to suit yours.

The assembler comes complete with detailed documentation on
its use. There are a variety of options but it would be waste of time
and book space to repeat them all here. It is sufficient to go over the
main options, relying on default conditions as much as possible.
The assembler manual must be consulted when more detail is
required. As in most utility software, there are some options which
are used frequently, some occasionally and one or two hardly ever.
When you are new to the assembler, it is not a good idea to worry
too much about all the various options. In what follows, it can be
taken for granted that the ENTER key must be struck to terminate all
orders to the assembler.

Initially, the most important exercises to try out will be:

1 How to load and operate the assembler so that, when you have
learned a few instruction mnemonics, you can get cracking on
entering some simple source code.
2 How to list the source code and correct typing errors.
3 How to assemble the source code into object code and how to
interpret the meaning of all the columns in the assembled version.
4 How to correct errors if the assembler reports any.
5 How to save and retrieve the source or object code on disc, or
tape as the case may be.
6 How to execute the machine code.

Note that running the code should normally be the last exercise
on the list. It is a risky business attempting to run (execute) code
before saving it. If you are new to the game (or even if you are an old
hand), NEVER attempt to run a machine code program unless you
have saved the source code first. Remember earlier warnings
regard-ing the malevolence of a naked microprocessor. It is
ridiculously easy to initiate a system crash. Only risk a run first if
you positively enjoy re-loading the assember from scratch and key
bashing all your work in again.

Loading the assembler

To load and enter the assembler from cassette tape simply press the
CRTL and small enter keys simultaneously. The assembler takes
about 131 seconds to load. The disc version is loaded in two parts.

Loading the assembler 41

Begin by typing:

LOAD"GENA31"

The assembler loader, written in BASIC, is now in memory ready to
load the full assembler, so we can now type:

RUN

The HiSoft logo will appear on the screen, and the following prompt
appears:

Load address?

This refers to the first address of the block where the assembler is to
be loaded. A good address is 1000 decimal which is chosen as the
default address by just pressing the ENTER key.

The next prompt is:

Load MONA now?

MONA is a machine code monitor and entirely separate from the
assembler. We are not yet ready for this facility so just answer:

N

The screen now tells us that GENA31, the body of the assembler, is
being loaded from disc. This takes a second or two from disc.

Using the assembler

After loading is complete, (the list of assembler options appears on
the screen, followed by the prompt '>', indicating the assembler is
waiting for orders. The assembly options are spelt out in full but you
need only key the characters which appear in upper case.

Line numbers
Each source code instruction is preceded by a line number followed
by a space. Note that multistatement lines separated by colons are
not accepted in the assembler format as they are in BASIC. Line
numbers can be entered manually but if you are simply typing in
listings from your notes, books or magazines then the use of the
'Insert' assembler command will save a lot of time. This automatic
ally feeds you with line numbers at a fixed increment. For example,
if you want the first line number to be 100 and subsequent lines to be
10 apart, you would key:

I 100,10

42 Entering and running programs

The first line number, 100, will now appear at the left ready for you
to begin entering the first source code instruction. On completion of
each line, the next line number automatically appears. When you
have finished entering code, press CTRL C to return back to the
assembler editor.

Listing the source code
When you have reached the last line (usually the instruction RET),
you will probably want to list your source code by typing L. This
assembler command also formats the display fields on the screen.
Any obvious typing errors at this stage can be edited. Assembler
editing procedures are virtually the same as BASIC.

Once you are satisfied with the source code listing, the next stage
is to assemble it. That is to say, convert the source code into object
code.

Assembling the source code
To assemble the source code into object code that can be executed,
type:

A

The screen will first respond with:

Table size:

The assembler needs to know how much memory to reserve for the
symbol table. In most cases it is sufficient to rely on the default
setting by keying ENTER. If an error message 'No Table space'
should appear then repeat with a higher estimated value. If all is OK
then the screen responds with:

Options:

There are various assembly options available, including fast assembly
with suppressed screen display and full format output to printer.
You can ignore the options and rely on default by pressing ENTER
which will bring forth the full assembly listing together with the
corresponding object code. Like most assemblers, it requires two
passes through the source code before it can completely translate into
object code. If it discovers errors during the first pass, whilst it is
scanning the labels and symbolic addresses, it will not attempt the
second pass until you have edited out the errors. The number of
errors are displayed in two digit form:

Pass 1 errors nn

If there are no errors, the second pass continues on from the first
without pause and the full assembly listing together with the object

Using the assembler 43

code listing is presented to the screen. To prevent high speed
scrolling, the listing stops at the end of each screen 'page' and
continues only after a key (any key) is pressed.

Making sense of assembly output

Viewing the full assembled output for the first time can be
unsettling until you begin to understand what all the columns
mean. Program 4.2 is an example assembly listing which we shall
use for descriptive purposes. The details of the program, which
happens to perform 8 bit integer multiplication, are quite irrelevant
because, at this stage, we are concerned only with the meanings of
the columns.

Assembler directives
We must distinguish between direct orders to the microprocessor,
called operation codes (op codes for short) and orders given to the
assembler itself, called assembler directives or 'pseudo codes'. Before
describing them, note the meaning which the assembler attaches to
the following characters:

(#) is used as a prefix denoting the following number is in hex.
(%) is used as a prefix denoting that the following number is in
binary.
(If a number is used without either of the above prefixes, it is
assumed to be decimal.)
(;) signifies that what follows is pure comment and will not be
assembled (similar to a REM statement in BASIC).
($) can be used anywhere in the source code to refer to the current
value of the location counter.

The most common assembler directives include the following:

The ORG (ORiGin) directive

Used to inform the location counter where the first byte of the
machine code program is stored. In general, we shall stick to the
address #7000 so the source code line could read:

ORG #7000

It is possible to choose a bad origin which could overwrite important
data. The assembler checks this and may issue the warning 'Bad
ORG!'

The ENT directive.

This assembler directive, which has no default setting, is used to
specify the execution address of the object code. It is only needed if
the code is to be executed with the assembler editor 'R' command.

44 Entering and running programs

For example: ENT #7000 will force the code to be executed from
address #7000 if the assember command 'R' is entered. If your code
is intended to be executed from BASIC then ENT is not necessary.

The EQU (EQUate) directive

Used to enable labels of your own choice to refer to absolute
addresses. Labels, can be in either upper or lower case and can be of
any length but only the first six will be recognised. Spaces are not
allowed as characters within labels. It is good programming practice
to assign labels for addresses at the head of the source code so that
they can subsequently be used in the body of the program. It makes
the coding easier to read, a factor which contributes to the overall
power of any assembler. Although it means a few extra lines to write
in the source code, it adds nothing to the size of the assembled
object code. Here is how you would assign the label 'begin' to the
address #7000:

begin: EQU #7000

At any time later in the program, you can use 'begin' instead of
#7000. We should emphasise that the choice of label is yours but,
clearly, you should choose labels that bear at least a rough
resemblance to the role they are to play.

Program 4.2 Example assembly listing

Hisoft GENA3.1 Assembler. Page 1.

Pass 1 errorsi 00

IO jEXAMPLE ASSEMBLER LISTING
7000 20 begin: EQU #7000
7100 30 top: EQU begin+#100
7100 40 number: EQU top
7101 50 mult: EQU top+1
7102 60 prod: EQU top+2
7000 70 0RG begin
7000 3A0071 80 LD A,(number)
7003 5F 90 LD E,A
7004 3A0171 100 LD A,(mult)
7007 210000 110 LD HL,O
700A 55 120 LD D,L
700B 0608 130 LD B,8
7OOD 29 140 shift: ADD HL, HL
700E 17 150 RLA
700F 3001 160 JR NC,over
7011 19 170 ADD HL, DE
7012 10F9 180 overs DJNZ shift
7014 220271 190 LD (prod),HL
7017 C9 200 RET

Pass 2 errors: OO

Table used: 93 from 136

Making sense of assembly output 45

Reading from left to right

Column 1 (Location counter)
This gives the absolute addresses where the object code bytes are
stored. The address shown here is where the first object code byte of
the second column is stored.
Column 2 (Object code)
Contains the set of object code digits which the assembler has
translated from your source code.
Column 3 repeats the line numbers which were used in the source
code.
Column 4 is the label field. The term 'labels' should be taken to mean
not only address labels, defined under EQU, but also to destination
labels for jumps.
Column 5 represents the assembler directives and machine op codes
in mnemonic form.
Column 6 represent the 'operands' which form the second part (if
any) of the machine instructions and assembler directives.

Assembler options

Note that columns 3, 4, 5 and 6 will be identical to the original
source code before it was assembled. Only column 2 represents the
final object code. When you asked for assembler output by entering
A, you will remember that you were prompted for which assembler
option? We advised that you could ignore this by pressing ENTER.
However, if you respond with option 4, you will obtain a restricted
assembler output giving only the addresses and object code
(columns 1 and 2). It is these columns which are important to
readers who have not yet obtained an assembler. More about this
later.

Making sense of Program 4.2

It should now be possible to attack the details of Program 4.2.
Line 10 is purely a remark, which explains why there is no
corresponding object code in columns 1 and 2.
Line 29 assigns the label 'begin' to the address #7000. Note that all
labels appearing in column 4 must be followed by a colon delimiter.
Line 30 deserves detailed treatment because it illustrates several
important features of labelled addresses. It assigns the label 'top' to
'begin' + #100. In other words, it assigns 'top' to an address #7100
which is #100 bytes further on than #7000. This little dodge shows
how we can make use of arithmetical expressions in assignments. It
also shows how a new label can be assigned in terms of a previous
label. The fact that 'top' was chosen to be #100 bytes away from
'begin' was to ensure that there was plenty of room for the machine

46 Entering and running programs

code bytes in between. When you begin coding a program, you may
not always know exactly how many bytes it will occupy so a some
what extravagant estimate, in this case #100 bytes, is sufficient. You
may observe that, because the code occupies addresses #7000 to
#7017 it would have been sufficient to allow an extra #18 bytes so
we could have written, 'begin' + #18 instead of 'begin' + #100. All
this does is close up the gap between the end of the actual instruc
tion lines and the beginning of the labelled addresses. In fact it is
unwise to close the gap initially because it leaves no room for any
extra lines which may be needed in the light of running experience.
So our advice is, until you are finally satisfied with your creation, to
allow a healthy margin of address space between the end of the
program and the beginning of the labelled data. If the above method
is adopted then only one EQUate directive need be changed to close
up the gap.
Lines 40, 50 and 60 assigns the labels 'number', 'mult' and 'prod' to
addresses 'top' (#7100), 'top' + l (#7101) and 'top'+2 (#7102)
respectively.
Line 70 informs the assembler to locate the code, starting at 'begin'
(which is, of course, #7000).
Lines 80 to 200 is the actual machine code program. We shall make no
attempt to explain it at the moment except to point out the
following:

1 Line 160 is an example of a conditional jump, similar to IF THEN
. . . GOTO in BASIC. The assembly instruction, JR NC, over, is a
conditional jump to the line labelled 'over'. Note that we can't jump
to line numbers like we do in BASIC.
2 Line 180 contains the instruction DJNZ which is another
conditional jump. (It stands for 'Decrement the B register and Jump
if Non Zero'). The jump, if the condition is satisfied, will be to the
line with 'shift' in the label field.
3 Line 200 is the end of the program and RET (similar to RETURN
in BASIC) transfers control back from wherever it was called,
usually the assembler editor, machine code monitor or BASIC.

The object code

If you have an assembler, the information under this heading may
only be of academic interest. If you haven't one, it is of vital
importance. Column 2 shows the object code and column 1 shows
the addresses (in rather a roundabout way) in which each byte of the
code is stored. Each line of the object code is in the form of hex
digits, representing one machine code instruction. Each pair of
digits occupy one byte of memory. Note that some instructions will
require one byte, some two bytes, some three bytes and a few
require four bytes of storage space. It is particularly important for
those without an assembler to associate each instruction byte with

The object code 47

the memory addresses you have chosen. In the example case, we
are only interested in addresses between #7000 and #7017. That is
to say, only addresses in which the machine code bytes of Program
4.2 are stored. Commencing with the first instruction, we note it
contains three pairs of hex digits 3A, 00 and 71. So the address
#7000 is holding 3A, #7001 is holding 00 and #7002 is holding 71.
The second instruction is the single pair, 5F and this is held in
address #7003. Perhaps you can see now why the addresses in
column 1 progress in ragged, rather than simple sequential,
progression. The assembler shows the address linkages in this
fashion in order to improve the appearance of the layout but we
should remember that bytes, forming a complete instruction, are
held one beneath the other in sequential memory locations. For example,
the instructions in memory, bearing in mind that hex is just a
shorthand way of representing binary, can be visualised as follows:

Address Memory Hex

#7000 0011 1010 3A
#7001 0000 0000 00
#7002 0111 0001 71
#7003 0101 1111 5F
#7004 0011 0101 3A
#7005 0000 0001 01
#7006 0111 0001 71
#7007 0010 0001 21
#7008 0000 0000 00
#7009 0000 0000 00
#700A 0101 0101 55

etc etc

Using the BASIC loader

We are now in a position to return to the BASIC loader, which
appeared in skeletal form, as Program 4.1. The example bytes used
in the DATA statements were taken directly from the assembly
listing of Program 4.2. When you write machine code programs, you
will have to enter your own program bytes in place of the examples
shown. After you have entered them, you must count up how many
there are. To facilitate counting, it is a good plan to always use 8 data
bytes per line. This makes it easier to count. The last line, of course
may have less than 8 byte pairs. On running Program 4.1, you will
be asked how many bytes there are (in the example, there were 24).
After running, the bytes will be stored in address #7000 onwards.
To satisfy yourself that they have been correctly placed into memory
you can PEEK a few of the locations. For example:

48 Entering and running programs

PRINT PEEK(&7000) should, in the case of the example, cause the
decimal number 58 to appear (3A hex), whereas PRINT PEEK(&7017)
should display the last byte, 201 decimal (C9 hex).

Although it may be obvious to many readers, it is still worth
pointing out that when Program 4.1 is RUN, the machine code has
only been stored in memory locations - you haven't yet run the
machine code program so don't expect any results. In fact, the
technique of running machine code programs will not be discussed
until after we have fully treated the various ways of storing the code
by means of assembler options.

Saving and retrieving code

The assembler contains commands for saving and loading source
code (the manual refers to source code files as text files). Also, the
object code bytes, generated by the assembler, can be saved on tape
or disc as a binary file. You could, of course, use BASIC to save the
object code but the assembler method saves us the bother of looking
up the start and finish addresses. A binary file produced in this way
car. be loaded from BASIC and executed in the normal way via a
CALL statement. However, be sure that your routine ends with RET
or the routine will not return to BASIC after execution.

Saving source code (command P)

The command is given in the following format:

P first line,last line,filename
Example: P 10,200,Mult

This stores source code, on disc or tape, as a text file named Mult
which starts at line 10 and ends at line 200. Note, the file name must
not be enclosed within quotes.

Loading source code (command G)

The command is given in the following format:

G„filename
Example: G„Mult

This loads a text file named Mult from tape or disc. Note that start
and end lines do not have to be specified this time.

Before loading a new file, it is normally advisable to delete any
existing source code in memory. If this is not done, the loaded file

Saving and retrieving code 49

will be appended to the existing file and the whole renumbered with
an increment of one.

Saving object code (command O)

The command is given in the following format:
O„filename
Example: O„Multip

Deleting source code (command D)

The command is given in the following format:
D n,m

This deletes from memory (not from disc or tape) all source code line
numbers from n to m.

For example, to delete Program 4.2:

D 10,200

Renumbering source code (command N)

The command is given in the following format:

N n,m

This renumbers such that the first line is n and the increments are
m. Both n and m must be quoted because defaults are not accepted.

To obtain option page (command H)

Just key H (Help) to obtain full list of assembler options.

To print hard copy (command Z)

(a) If all that is wanted is a printout of the source code listing, the
command Z can be chosen from the Help page. The format being:
Z n,m

Assuming the printer is switched on, the command outputs lines'll
to m of the source code. If n and m are absent, the entire source code
is printed by default.
(b) On issuing the command A (Assemble), various options are
presented. Option 8 directs assembly listing to the printer. The

50 Entering and running programs

assembler automatically pages hard copy. That is to say, if the code
is too long to be accommodated on one page of standard fanfold,
sufficient lines feeds are sent in order to leapfrog over the creases.
The assembler also prints the page numbers at the top of every page
printed.

It is probable that many readers who purchase one of the Amstrad
machines may already be in possession of an EPSON printer and
may find that all text is printed with double spacing between lines.
There is a hardware solution to this but, unless you have some
practical experience in this field, you would be advised to rely on a
software solution. Program 4.3 is a short program, which once run,
at the start of a session, will solve the double spacing problem. We
have used EPSON printers during preparation of the listings in this
book.

Program 4.3 Epson printer mod.

IO REM AMSTRAD/EPSON PATCH
20 PRINT#8,CHR$(27);"A"jCHR$(6)
30 WIDTH 50
40 END

Executing object code programs (command R)

At last, we arrive at the subject of running the object code. Once the
source code file is saved on tape or disc and assembled, the object
code can be executed from the assembler editor by typing R.
However, this is only possible if the ENT directive has been
included in the original source code listing. In a lot of cases it may
not always be as simple as this. Most machine code programs,
including our example Program 4.2, may require data to be present
in specific addresses. During the introduction to Program 4.2, we
mentioned that it was capable of multiplying two numbers together
but, clearly, it will only work if the two numbers to be multiplied are
present in the allotted locations. If you refer back to the program,
you will see, after a bit of detective work, that these locations are at
addresses #7100 and #7101, so it would be quite useless attempting
to run the program unless the two numbers were present in
advance. Furthermore, the result of the multiplication, which is two
bytes in length, will be left in 'prod' and 'prod+1', (the low byte in
address #7102 and the high byte in #7103).

Like most other 'programs', Program 4.2 is a subroutine. Sub
routines require other programs or sections of code to supply any
required data (called parameter passing) before they are called up.
As far as this book is concerned, most of the listings given are
indeed subroutines, intended to be called up from either another
machine code program or from BASIC. Although the assembler
provides the option 'R' for executing the object code, in nearly all

Executing object code programs (command R) 51

cases, you will be calling up the code from one or other of the above
sources.

The line in BASIC for calling on the machine code or for calling
from within another machine code program is:

CALL <address>

For example, after BASIC has obtained the necessary parameters
from the key board and POKED them in to the required locations,
CALL &7000 would call up (execute) any code located at address
&7000.

Switching between BASIC and assembler

When developing source code, you will be in the assembler
environment. If you want to execute the object code after assembly,
you can nip into BASIC by choosing option B. Please remember to
save your source code first!

To come back to the assembler from BASIC you use:

CALL Cload address + 4>.

For example, if you loaded the assembler at &2000, the BASIC
command to get back to your source code listing in the assembler (a
warm start) would be CALL &2004.

Returning back from BASIC to the assembler with a deleted
source code file is termed a cold start and is effected with an offset of
two

CALL cload address + 2>.

For example, CALL &2002 will enter the assembler from scratch
with all source code cleared so be careful here.
NOTE: when in BASIC, the prefix & is used to signify hex numbers.
When in the assembler, the prefix is #.

The assembler manual

We have only attempted to describe the main points of the
assembler in order to help you get started. In most cases, we have
been content with simple default options. The manual supplied
with the assembler, which must of course be considered the
overriding authority, should be consulted for information on the
other more fancy options.

Finally, we should emphasise that no attempt has yet been made
to explain the actual machine code instructions. There is no point in
learning these until you know how to use the assembler. This

52 Entering and running programs

requires practice. We suggest that you start by keying in the source
code of Program 4.2, and learning how to edit, list, assemble etc.

Summary

1 When developing a new machine code program, save the source
code before you execute any object code.
2 With the disc version LOAD'GENA31' loads the first part of the
assembler (the loader). The remainder is loaded by typing RUN.
3 To assemble, means to translate source code into object code.
4 The assembler requires two passes through the source code
before it can produce object code.
5 The assembler uses # to signify hex rather than &.
6 The semicolon ; before a source code line signifies it is only
comment.
7 The character $ refers to the current value of the location counter.
8 Assembler directives, called pseudo codes, are orders to the
assembler and will not appear in object code.
9 Assembler directives include: ORG for defining the address
where the first object code is to be located and EQU for assigning
labels to addresses.
10 After assembly, using the default option, columns 1 and 2
represent the addresses and object code, columns 3, 4, 5 and 6 are
the original source code.
11 If Option 4 is used, only the object code is displayed.
12 It is customary to reserve locations at the bottom end, below the
last instruction address, for data.
13 When reserving locations for data, make sure they are well
below the last instruction address.
14 Object code can be executed from the assembler editor,
machine code monitor or BASIC.
15 BASIC can be entered by typing in the assembler command 'B'.
16 Re-entry into the assembler from BASIC is effected by Call
<load address + 2> for a cold start and CALL <load address + 4>
for a warm start.
17 See the assembler manual for options not covered.

The Z80 registers 5

No attempt is made here to decribe the awesome internal complex
ity of the Z80. For programming it is enough to consider those
components which can be directly or indirectly controlled by the
programmer. These components are called registers.

What is a register?

A considerable amount of machine code programming is concerned
with transferring data bytes between memory addresses or between
one part of the microprocessor and another. The Z80, in common
with most other 8-bit microprocessors, carries out most of its
operations by means, or with the aid, of its internal registers. The
registers are only eight bits wide so are only capable of holding
unsigned (absolute) numbers up to 255 decimal (FF hex). However,
the internal hardware design of the Z80 allows certain pairs of these
registers to act as double length (16 bit) registers.

Source and destination rules
Before treating the registers in detail, it is important that you
understand the mechanism of inter-memory or inter-register trans
fers. First we must differentiate between the source and the
destination. For example, when we load data from A into B, then A is
the source and B is the destination. These terms are almost self
explanatory but note the following universal rule which applies to
all transfers.

After a transfer has taken place, the source data remains
undisturbed but the old data at the destination is overwritten
by the new data.

This is worth an example. Suppose A contained 20 and B 30 before
the transfer and then we load A into B. Afterwards, A will still 53

54 The Z80 registers

contain 20 but so will B. The original 30 in B would have been
overwritten.

Registeres are similar to normal memory locations in RAM, in that
they can hold a byte of data. The most obvious difference, of course,
is that they are located inside the microprocessor. But they differ in
other, less obvious respects. For example, data movements into and
out of most registers take place at much higher speeds than similar
movements between memory locations. Also, there are differences
in status between the registers. All memory locations are equal but
when we come to registers, we find that some of them are more
equal than others. One of them, called the accumulator, is blessed
with certain privileges not enjoyed by the others - it is virtually the
prima donna of all the single length registers. Although most of
them can be used to store data, some registers are equipped for
handling specific tasks over and above that of simple storage. For
example, some can be used in pairs for handling double byte data,
one is dedicated to the control of a special memory arrangement
known as the stack and one is called a register (but shouldn't be)
because it is merely a collection of quite separate bits acting as
indication of certain status conditions. They are known as flag bits.
Finally, one of the registers, called the program counter, is 16 bits long
and is virtually in charge of the entire program flow.

The Z80 registers

The above general description of registers, which would apply
equally well to several well known families of microprocessor must
now give way to a detailed study of those found in the Z80. The Z80
is rather well endowed with registers. In fact a bank of eight of them
are duplicated so, in theory, we can pick either set or switch from
one set to the other. For the most part, we shall assume the alternate
register bank does not exist because it is used by the Amstrad
operating system. To tamper with any of these registers would be to
court disaster. Bear in mind therefore that Figure 5.1 shows only the
Z80 registers which are safe to use in your programs.

The details of each individual register will include example instruc
tions written in standard Z80 assembly code.

Points to remember
Although we have already mentioned some of the rules regarding
standard assembly code notation, it is worth repeating the rules
conerning the order in which operands are written so there should
be no doubt as to the meaning of the many examples which follow.

1 The first operand after the operation code is the destination and
the second is the source. As an example, consider the hypothetical
instruction:

The Z80 registers 55

Register

Fig 5.1 The Z80 registers

Flag register (F)

Accumulator

Primary data pointer

Stack pointer

Program counter

► Index registers

Interrupt vector register

Refresh register

S Z o
<

O N C

A

B C

D E

H L

SP

PC

IX

IY

1

R

LD x,y

This will load y (the source) into x (the destination).
2 All numbers are assumed to be decimal unless prefixed by #, in
which case they are interpreted as hex numbers.
3 Brackets round an operand should be taken as meaning 'The
contents of'. For example, LD A,20 means load the decimal number
20 into A. However, if we write LD A, (20) we mean load the
contents of memory address 20 into A.

Now we are ready to examine the roles of the various registers
within the Z80.

The accumulator (A)

As mentioned above, this is the primary register and has exceptional
properties. These are:

(a) Data transfers between memory and accumulator take place
faster than with other registers.

56 The Z80 registers

(b) There are more memory instructions for acting specifically on
the accumulator than any other register.
(c) All 8-bit arithmetic and logical operations can only take place in
the accumulator and the result will always be left in the accumu
lator. (The reference to logical operations, sometimes called Boolean
operations, means AND, OR, XOR, etc which should already be
familiar to BASIC users.)
To load 12 hex into the accumulator:

LD A,#12

To load contents of memory address 8034 hex into the accumulator:

LD A, (#8034)

To load contents of memory addressed by the register pair HL:

LD A, (HL)

Store accumulator in memory address 8034 hex:

LD (#8034),A

Add the number 12 hex to the accumulator:

ADD A,#12

Add the contents of register E to the accumulator:

ADD A,E

Add the contents of memory addressed by the register pair HL to
the accumulator.

ADD A, (HL)

Single length registers B,C,D,E,H,L

These six registers can be used singly or in certain pairs for simple
data interchange. The HL pair has special significance because of its
specialised role as the primary data pointer for addressing memory,
but more of that later. It is sufficient for the moment to treat the six
registers as general purpose data locations.
Some examples follow.
To load register B from register E:

LD B,E

57Single length registers B,C,D,E,H,I

To load register E from register B:

LD E,B

In general, any one of the single registers A, B, C, D, E, H or L can
be loaded into any one of the others, the general instruction being of
the form:

LD destination,source

Register pairs

As shown in Figure 5.1, certain combinations of single length
registers can be treated in pairs. The allowed register pairs are BC,
DE and HL with the higher order byte always being held in the first
named register of a pair. For example, in the pair BC, B will hold the
high order and C the low order byte. Although there are no inter
register load instructions for any of the pairs, there is an instruction
for exchanging data between DE and HL.
To exchange the data between DE and HL:

EX DE,HL

The primary data pointer (HL)

The HL register pair, in addition to its general purpose role, acts as
a memory address pointer and is the recommended method of
accessing memory. In fact, you are advised to reserve H and L solely
for this purpose. The term address pointer means that the contents
of HL is interpreted as the memory address of data, rather than the
data itself. The general format for transferring data between any of
the single length registers and memory is as follows:

LD register, (HL)
or LD (HL),register

Example 1. To load B with data at the address specified by HL:

LD B,(HL)

Example 2. To store A in memory at the address specified by HL:

LD (HL),A

It is, of course, necessary to ensure that HL already contains the
required address before using it as an address pointer. One way of
doing this would be the use of an immediate data load. For example,

58 The Z80 registers

to load A from address #6000 by indirect use of HL, we could use
the following two instructions:

LD HL, #6000
LD A,(HL)

At first sight, this may seem a round about method - why not write
LD A,(#6000) and save an instruction? However, it may be that
some action is to be performed many times but acting on sequential
memory addresses. The address pointer method allows the contents
of HL to be changed (incremented or decremented) each time round
the loop so that the same instruction can be made to act on sequential
memory addresses. These advantages should be more apparent
when loops are discussed in Chapter 10.

Although HL is preferable, the register pairs BC or DE may also be
used as data pointers. For example, the above two instructions
could have been written:

LD BC,#6000
LD A, (BC)

It is worth mentioning that using a register pair as an address
pointer is referred to as implied addressing in Z80 literature. This can
cause some confusion because the term is often used differently. For
example, implied addressing in 6502 microprocessor literature is
taken to cover those instructions in which a certain register (usually
the accumulator) is implied rather than explicitly mentioned.

The index register pairs (IX and IY)

The two double length registers IX and IY are true 16 bit registers,
similar in some respects to the HL address pointer in that their
contents can be treated as a memory address. In fact all memory
references using HL can alternatively be specified by using IX or IY.
However, the index registers can have their contents modified by
the addition of a constant so that the effective address pointer is
(IX+constant) or (IY+constant). The following example:

LD A, (IX+#16)

will load into A the contents of memory at the address specified by
adding #16 to IX. If IX contained #6000, then A would be loaded
from the address #6016. Note that this is only a limited form of
indexing. Normally, when computer engineers speak of indexed
addressing, they expect the contents of an index register to be added
to the operand. For example, an instruction like LD #6000,X where
the contents of X is added to the operand #6000 to obtain the
effective address. However, the Z80 has no provision for such true

The index register pairs (IX and IY) 59

indexing and must be considered a rather inferior imitation. In fact,
there seems to be no apparent advantage is using LD A,(IX+
constant) over implied addressing using HL as the address pointer.
A constant, by definition, can not be varied so it would appear to be
of limited use in loop work.

The stack pointer (SP)

This is a true 16 bit register (not a register pair) specifically designed
to act as an address pointer for accessing an area of memory known
as the stack. It should never be used as a general purpose storage
register. The stack acts as a Last In First Out column of memory
locations (abreviated to LIFO). Any of the register pairs can be
stored on the stack using PUSH or reclaimed from the stack by using
POP. The use of these two instructions are described in Chapter 6.

Although the position of the stack in memory is not fixed by
hardware, the Amstrad firmware routines initialise the stack pointer
to immediately below #C000 so any attempt to alter its contents
could turn out to be a somewhat hazardous exercise. There is no
need to alter the stack pointer each time you want to use the stack
because, as we shall see later, it is done automatically when PUSH
or POP is used. Bear in mind that the stack 'grows downward' from
the highest address as indicated above.

In practice, the Amstrad allows over 256 bytes of stack locations
but it is extremely unlikely that all this will be used.

Use of the stack
In general, treat the stack as a temporary dumping ground.
Situations often arise where a register, already containing important
data from a previous operation, is required for other purposes. The
register can be freed by temporarily dumping the data on the stack
by the use of PUSH and later recovered by the use of POP. Note that
the stack pointer, SP, is automatically decremented with each PUSH
but incremented with each POP.

The program counter (PC)

Digital computers are said to be sequence controlled. That is to say, all
instructions are executed automatically, one after the other, in strict
address sequence. (There are some exceptions to this but for the
moment, this is unimportant.) The 16 bit register, responsible for
maintaining this sequence, is called the program counter, con
sequently, it is in complete control of a program. The contents of
this register is the address in memory of the next instruction byte to
be executed. The address of the first instruction byte in all programs
must be set into the program counter. Armed with this information,
no further action is required by the operator because all subsequent

60 The Z80 registers

instructions are fetched and executed automatically in strict address
sequence. If the address of the first instruction to be executed
(ignoring assembler directives) is at, say, #6000 the program will
fetch this byte and execute it. The program counter is then
automatically incremented by 1, ready for fetching the next instruc
tion byte at address #6001.

Normally, each instruction byte of the program is fetched from
the next sequential address because, as we have seen, the program
counter is automatically incremented after each byte is executed.
However, as mentioned above, there are exceptions to this rule.
Certain instructions are able to force the program counter to depart
from the normal rhythm by causing the program counter to be
loaded with an entirely different address. This means that some
instructions may be skipped over, or earlier instructions may be
repeated. It is worth mentioning that this break in the rhythm is not
carried out by a register load type instruction. Indeed, there are no
equivalent LD instructions for acting on the program counter.
Instead, the contents are changed as the result of executing 'jump'
instructions. There is a rich variety of jump instructions, some
unconditional and some conditional on the state of certain flags.

The flag register (F)

When conditional jumps are made, the criteria which decide
whether or not the jump is to be executed, depends on the state of a
certain bit, or bits, in the flag register. This register is not, in any
general sense, a register at all. We can't store anything in it by
programmed instructions. It is a collection of separate bits, each
entirely independent of each other. It is part of the microprocessor
control circuitry, keeping watch on the status of the machine. It does
this by automatically setting or resetting various flag bits according
to the result of certain instructions. Figure 5.2 shows how the bits
are named.

Carry (out from bit 7)

Subtraction or decrement

Parity or overflow

Auxiliary carry
(out from bit 3)

Zero

Fig 5.2 The flag register

Value of bit 7 (sign)

The flag register (F) 61

Note that bits 4 and 6 are there but are not used. They will be
permanently set to 1 or 0 so we can forget them. The flag bits have
the following significance:

The C bit
This is at 1 if there has been a carry out from bit 7 of a register. If not,
it will be 0.

The N bit
This is 1 after a subtract operation but 0 otherwise.

The P/O bit
This bit has two different meanings (Parity or Overflow) depending
on the class of instruction.

After logical instructions, it is at 1 for even parity, 0 for odd parity
(parity is discussed later).

After arithmetic operations, it will be 1 if there is two's
complement overflow, otherwise it will be 0.

Ac bit
Ac means Auxiliary carry. It is 1 when a carry has passed between
bit 3 to bit 4, otherwise it is 0. If you refer back to the paragraphs on
BCD in Chapter 3, you will notice that the half carry passes from the
right-hand to the left hand nibble following the result of an illegal
combination.

The Z bit
Set to 1 if register contains zero, otherwise it is at 0.

The S bit
This is the sign bit for two's complement arithmetic. It is 1 if bit 7 of a
result is 1, otherwise it is 0. Note that the term 'sign' bit is only
relevant when applied to two's complement arithmetic. If the
programmer is working in unsigned (absolute) numbers, the S bit
has no significance. In such cases, it only indicates that bit 7 is set.

As mentioned above, not all instructions effect the flag register
bits so it would be untrue to say that they always represent the
conditions resulting from the 'last' instruction. For example, none of
the load instructions having the mnemonic LD have any effect on
the flag register but, as expected, all the arithmetic and logic
instructions have an effect. As we shall see later, knowing whether
or not a certain instruction affects particular bits within the flag
register is of vital importance when programming conditional
jumps. We must be careful not to assume that the flag bits are
always determined by the results of the last instruction because not
all instructions affect the flag register. In fact, the current status may
have been the result of an earlier instruction. Although conditional
jump instructions act on flag information they do not themselves
have any effect on them.

62 The Z80 registers

The interrupt vector and the Refresh register

These control highly sensitive areas. Unless you are very ex
perienced, treat them as unexploded bombs and keep well away.

Summary

1 Registers are high speed storage locations within the micro
processor.
2 The primary registers A, B, C, D, H and L are each 8 bits wide.
3 An alternative set of registers labelled A', B', C' etc, duplicate the
primary registers but should normally be left alone.
4 Registers B and C, D and E, H and L can be used in pairs, so
acting as 16 bit registers.
5 The source register contents are preserved, the destination
register contents are overwritten by the transferred data.
6 The first operand in assembly code is the destination, the second
operand is the source.
7 Numbers are assumed decimal unless prefixed by #, in which
case they are in hex.
8 The accumulator is register A and is privileged.
9 All 8 bit arithmetic and logical operations are carried out with the
result in A.
10 Data can be exchanged between register pairs, HL and DE.
11 Any register pair can be used as a data pointer but HL is the
fastest and recommended pair.
12 The IX and IY registers can be used for a limited form of
indexing.
13 The stack is an area in memory. As data is entered, it grows
downwards from the highest address.
14 The stack pointer register is the data pointer for the stack.
15 The program counter is the instruction pointer. Its contents
being the address of the next instruction.
16 The program counter is incremented after each instruction byte,
but after jump instructions, it could hold an abrupt out-of-sequence
address.
17 The flag register is a collection of separate bits indicating certain
conditions exist. Bits 3 and 5 are not used.
18 Flag register bits are not programmable. They are altered
automatically by certain instructions.
19 Jump instructions depend on the current bits in the flag register
but do not alter them.

Commonly used 6
instructions

The Z80 has over 600 different instructions. To attempt a detailed
description of them all could shatter the confidence of many readers
new to machine code. Although the full list is set out in Appendix 1,
it is better to concentrate on a subset of the most commonly used
instructions, leaving the more exotic varieties till later. Even then,
you may still find some of them will lie gathering dust unless, of
course, you nurse an ambition to write your own operating system
or BASIC interpreter.

Instruction mnemonics and operands

The assembler normally requires two items of information before it
can 'understand' exactly what you want it to do. It must be told:

(a) WHAT particular action you want. This is called the instruction
mnemonic.
(b) WHERE the data can be found. This is called the operand. The
operand itself may often specify two registers, sometimes one
register and a memory address and sometimes register pairs. In
some cases, no operand is required because the instruction mnem
onic itself is deemed to be sufficient.

Example 1: LD A,B

LD is the instruction mnemonic meaning LoaD. A and B together
constitute two parts of the operand. The full meaning becomes:
Load the B register into the A register.
(Remember from Chapter 4 that the destination of the data is written
first and the source last.)

Example 2: ADD A, (HL)

ADD is the instruction mnemonic meaning, in this case quite
literally, ADD. The A register and (HL) are the two parts of the 63

64 Commonly used instructions

operand. The full meaning becomes:

Add the contents of the memory location specified in the register
pair HL to the accumulator contents.

Example 3: RLA and RET

RLA is the instruction mnemonic meaning Rotate Left the Accum
ulator through carry. RET means RETurn from subroutine. These
two are examples of instructions which no not require an operand.

Addressing modes

There are a number of different ways of specifying the location of
the data. They are known as addressing modes, and the following
formal definitions should be studied. When entering instructions,
take care with brackets, commas and spaces.

Implied addressing
The register pair (normally the HL pair) acts as a data pointer,
holding the address of the desired memory location.

Example: LD A, (HL)

A few instructions allow the BC or DE pairs to be used as the data
pointer. (Note: users with experience of the 6502 may be surprised
at this definition of implied addressing.)

Direct addressing
The operand contains the direct memory address of the required
data. Example LD A, (#7100) or LD A, (label) where 'label' is a
previously assigned address.

Where a 16 bit load is required, such as in LD HL, (#7100), the
address quoted contains the low byte memory location which is
loaded into L and the next address, #7101, contains the high byte
which is loaded into H.

Immediate addressing
The operand contains the actual data. That is to say, it is
'immediately' available without going to memory.

Example: LD A,#FF or LD HL,#FF34

Program relative addressing
This only applies to conditional or unconditional jump type
instructions. In object code, the operand indicates the number of
program bytes to be 'jumped over', either forward or backward. The
maximum number of bytes forward (counting from the first byte of

Addressing modes 65

the instruction) is 129 and the maximum backwards is 126. Without
an assembler, the programmer must count the number of bytes in
order to find out what the operand number must be.

In assembly code, the operand is merely a label since the counting
is done automatically by the assembler.

Example JR FINISH would be unconditional jump to the line
which had FINISH in the label field so the programmer is unaware
that program relative addressing is used.

Register indirect
Normally, the term indirect addressing is applied to an operand
signifying a memory address which, in turn, contains the address of
the required data. With register indirect, the operand specifies the
register which contains the address.

Example: JP (HL) would jump to the address contained in the
register pair HL.

Indexed addressing
The contents of an index register plus a 'displacement' value
represents the memory address of the desired data. There are two
index registers IX and IY.

Example: ADD A, (IX+#15)

If IX contained #FF61, the effective address would be #FF76. Either
of the two 16 bit index registers, IX or IY, can be used. This is a
rather limited form of indexed addressing because the displacement
must be a constant, so it would appear to have little advantage over
implied addressing. In fact, if the constant is zero, the action is
identical to implied addressing except that IX or IY is used in place
of HL as the data pointer. Nevertheless, indexed addressing
provides a convenient way of passing parameters to a subroutine.

Instruction mnemonics and operation codes

An instruction mnemonic, such as LD or ADC makes sense only to
an assembler. The equivalent, when using pure machine code, is
called the operation code. Although there are over 600 different
instructions, and therefore the same number of different operation
codes, there are nowhere near the same number of different
instruction mnemonics. This is because a number of different
operands may share the same mnemonic.

This may be a relief for assembler users because it cuts down the
apparent number of 'different' instructions. For those without one,
the outlook is decidedly gloomy because each operand variant
requires a unique instruction code.

66 Commonly used instructions

The set of LD mnemonics provide an obvious example because,
apart from loading register pairs to and from memory, it is possible
to load any single register into any other. Since there are 7 single
registers, the number of perms for these alone account for 49
different operands and therefore give rise to 49 different operation
codes.

Presenting the instruction set

An instruction set which purports to cover every aspect of each
instruction may be useful for experienced programmers but quite
frightening for others. We shall adopt a middle course and restrict
information to that considered essential for a first reading. Such
information will be given under the following headings:
1 The instruction as written in assembly code
Example LD A, (HL)

2 Operation code
This will be given in hex digits or, in some cases, binary. It forms the
first byte (in some cases the first two bytes) of the object code and
may be followed by one or two operand bytes. They are of interest
only to those without an assembler. The details of how to interpret
and use the codes will be delayed until the end of this chapter.

3 Meaning
Given in plain English, rather than symbolic language. An example
sometimes follows.

4 Clock cycles
This means how many effective Z80A clock cycles the instruction
takes. The Z80A runs at 4 MHz but the effective frequency is about
3.3 MHz (refer back to Chapter 2). Thus, each clock cycle takes about
0.3 microseconds. Knowing the number of clock cycles each
instruction takes may help in cases where high execution speed is
essential and may help in choosing from several alternatives. (As in
BASIC, there are various ways of achieving the same objective.)

5 Bytes
This is the number of bytes which each complete instruction
occupies in memory after the source code has been assembled. Since
each byte requires one memory location, this information may be
important if memory is at a premium. It is also useful for those
without an assembler because it provides information as to the
number of operand bytes (addresses etc) which must follow the
operation code. For example, if the operation code has 1 byte and
the total number in the complete instruction is 3 bytes, then it
follows that the operation code must be followed by 2 operand
bytes.

Presenting the instruction set 67

6 Flags updated on restdt
Some instructions, particularly the arithmetic, logical, shift and
rotate instructions, have an effect on certain bits in the F register
(flag register). The three most important are the S, Z and C flags. For
example, after an arithmetic instruction such as ADD, the S flag will
be set to 1 if the result is negative, the Z flag will be set to 1 if the
result is zero and the C flag set to 1 if the result causes a carry out at
the msb end of the accumulator. Conditional jump instructions
'look' at the state of a particular flag to decide whether to jump or
not to jump.

Where information under this heading is not given, it can be
assumed that the instruction has no effect on the flags. To simplify
the description of each instruction mnemonic and all operand
variants, the abbreviations given in Table 6.1 will be used.

Table 6.1

Abrev. Meaning

A,B,C,D,E,H,L,F Any of the registers
pr Any register pair BC,DE,HL,AF
rp Any register pair BC,DE,HL,SP
reg Any of the registers A,B,C,D,E,H,L
dst destination register
src source register
SP Stack pointer
xy Index register IX or IY
disp 8 bit signed binary displacement
addr 16 bit memory address
() contents of
IX the X index register
IY the Y index register
rr (see end of Chapter)
rrr (see end of Chapter)
ccc (see end of Chapter)

Armed with these abbreviations, we proceed with the description of
the commonly used instructions, although the choice of what
constitues 'commonly used' will, to some extent, be governed by
personal preference or habit. (The full instruction set is given in
abbreviated form in Appendix 1 and Appendix 2.) We begin with
the list of instruction mnemonics treated in this chapter.

ADC, ADD, AND, BIT, CALL, CP, DEC, DJNZ, EX, INC, JR, LD,
POP, PUSH, RET, RLA, RRA, SUB, SBC, SLA, SRL, SUB.

We should mention that where absolute numerical addresses are
quoted below, it is acceptable, (in fact advisable) to replace them
with previously assigned labels.

68 Commonly used instructions

Load instructions

LD dst,src
Operation code: Olrrrrrr
Meaning:

Load source register into destination register.
Example: LD B,C will load the C register into the B register. LD A,B
will load the B register into the accumulator.
Clock cycles: 4
Number of bytes: 1

LD A,(addr)
Operation code: 3A
Meaning:

Load accumulator from memory using direct addressing.
Example: LD A, (#7100) load accumulator with contents of address
#7100.
Clock cycles: 13
Number of bytes: 3

LD (addr),A
Operation code: 32
Meaning:

Store accumulator contents in memory, using direct addressing.
Example: LD (#7100),A stores accumulator in memory at address
#7100.
Clock cycles: 13
Number of bytes: 3

LD reg, data
Operation code: OOrrrllO
Meaning:

Load register with 8 bit data, using immediate addressing.
Example: LD A,#B3 loads accumulator with #B3.
Clock cycles: 7
Number of bytes: 2

LD rp,data
Operation code: OOrrOOOl
Meaning:

Load register pair with 16 bit data using immediate addressing.
Example: LD HL,#FF56 loads register pair HL with #FF56.
Clock cycles: 10
Bytes: 3

LD reg,(HL)
Operation code: OlrrrllO
Meaning:

Load contents of memory, at the address specified by HL into

Load instructions 69

register using implied addressing.
Example: If HL contains #FF56, then LD C,(HL) will load register C
with contents of address #FF56.
Clock cycles: 7
Bytes: 1

LD (HL),reg
Operation code: OlllOrrr
Meaning:

Store contents of register in memory address, using implied
addressing.
Example: If HL contains #7100, then LD (HL),C will store register C
in address #7100.
Clock cycles: 7
Bytes: 1

LD (addr),HL
Operation code: 22
Meaning:

Store contents of HL using direct addressing.
Example: LD (#7100),HL will store L in address #7100 and H in
address #7101.
Clock cycles: 16
Bytes: 3

LD (addr),rp
Operation code: ED OlrrOOll
Note: this has a 2 byte operation code.
Meaning:

Store contents of register pair, using direct addressing.
Example: LD (#7100),DE will store E in address #7100 and D in
address #7101.
Clock cycles: 20
Bytes: 4

LD HL,(addr)
Operation code: 2A
Meaning:

Store contents of HL, using direct addressing.
Example: LD HL, (#7100) will store the contents of address #7100 in
L and the contents of #7101 in H.
Clock cycles: 16
Bytes: 3

LD rp,(addr)
Operation code: ED OlrrlOll
Meaning:

Load register pair using direct addressing.

70 Commonly used instructions

Clock cycles: 20
Bytes: 4

EX DE,HL
Operation code: EB
Meaning:

Swap contents of DE with HL
Clock cycles: 4
Bytes: 1

Arithmetic instructions

ADC A,data
Operation code: CE
Meaning:

Add the data, together with carry bit (if any), to the accumulator
using immediate addressing.
Example: ADC A,#03 will add #03 to the accumulator although, if
the C bit is 1, it will add #04.
Clock cycles: 7
Bytes: 2
Flags updated on result: C,Z,S,Ac and P/0

ADD A,data
Operation code: C6

As ADC A,data except that carry bit is not involved in the actual
addition.

ADC A,(HL)
Operation code: 8E
Meaning:

Add contents of memory, together with carry bit, to the
accumulator, using implied addressing.
Clock cycles: 7
Bytes: 1
Flags updated on result: C,Z,S,Ac and P/0

ADD A,(HL)
Operation code: 86

As ADC A, (HL) except that carry bit is not involved in the actual
addition.

ADC A,reg
Operation code: lOOOlrrr
Meaning:

Add contents of specified register, together with carry bit, to
accumulator.
Clock cycles: 4

71Arithmetic instructions

Bytes: 1
Flags updated on result: C,Z,S,Ac and P/0

ADD A, reg
Operation code: lOOOOrrr

As ADC A,(HL) except that carry bit is not involved in the actual
addition.

ADC HL,rp
Operation code: ED OlrrlOlO
Note: this is a 2 byte operation code.
Meaning:

Add register pair, together with carry bit (if any), to HL.
Clock cycles: 15
Bytes: 2
Flags updated on result: C,Z,S

ADD HL,rp
Operation code: OOrrlOOl
Meaning:

Add register pair to HL.
Clock cycles: 11
Bytes: 1
Flags updated on result: C

SBC A,data
Operation code: DE
Meaning:

Subtract the data, and the carry bit (if any), from the accumulator
using immediate addressing.
Example: SBC A,#03 will subtract #03 from the accumulator
although, if the C bit is 1, it will subtract #04.
Clock cycles: 7
Bytes: 2
Flags updated on result: C,Z,S,Ac and P/O. N is set to 1.

SUB data
Operation code: D6

As SBC A, data except that carry bit is not involved in the actual
subtraction.

SBC A,(HL)
Operation code: 9E
Meaning:

Subtract contents of memory, and the carry bit, from the
accumulator, using implied addressing.
Clock cycles: 7
Bytes: 1
Flags updated on result: C,Z,S,Ac, and P/O. N is set to 1.

72 Commonly used instructions

SUB (HL)
Operation code: 96

As SBCA, (HL) except that the carry bit is not involved in the
actual subtraction.

SBC A, reg
Operation code: lOOllrrr
Meaning:

Subtract contents of specified register, and carry bit, from
accumulator.
Clock cycles: 4
Bytes: 1
Flags updated on result: C,Z,S,Ac and P/O. N is set to 1.

SUB reg
Operation code: lOOlOrrr

As SUB A,reg except that carry bit is not involved in the actual
subtraction.

SBC HL,rp
Operation code: ED OlrrOOlO
Note: this is a 2 byte operation code.
Meaning:

Subtract the designated register pair and the carry from HL.
Clock cycles: 15
Bytes: 2
Flags updated on result: C,Z and S. The N is set to 1.

Logical instructions

AND data
Operation code: E6
Meaning:

Performs the logical AND operation between the data, using
immediate addressing, and the accumulator. Result is left in the
accumulator.
Example: Let A

Let data
= #35 (0011 0101)
= #53 (0101 0011)

Afterwards, A = #11 (0001 0001)

Clock cycles: 7
Bytes: 2
Flags updated on result: Z,S, and P/O but N and C are both reset to
0.

AND reg
Operation code: lOOOOrrr

Logical instructions 73

Meaning:
Performs the logical AND operation between the data in the

specified register and the accumulator. The result is left in the
accumulator.
Clock cycles: 4
Bytes: 1
Flags updated on result: Z,S and P/O but N and C are both reset to 0.

AND (HL)
Operation code: A6
Meaning:

Perform the logical AND operation between the data, using
implied addressing, and the accumulator. The result is left in the
accumulator.
Clock cycles: 7
Bytes: 1
Flags updated on result: Z,S and P/O but N and C are both reset to 0.

OR data
Operation code: F6
Meaning:

Perform the logical OR operation between the data, using
immediate addressing, and the accumulator. The result is left in the
accumulator.
Clock cycles: 7
Bytes: 2
Flags updated on result: Z,S and P/O but N and C are both reset to 0.

OR reg
Operation code: lOllOrrr
Meaning:

Performs the logical OR operation between the data in the
specified register and the accumulator. The result is left in the
accumulator.
Clock cycles: 4
Bytes: 1
Flags updated on result: Z,S and P/O but N and C are both reset to 0.

OR (HL)
Operation code: B6
Meaning:

Perform the logical OR operation between the data, using implied
addressing, and the accumulator. The result is left in the accumu
lator.
Clock cycles: 7
Bytes: 1
Flags updated on result: Z,S and P/O but N and C are both reset to 0.

74 Commonly used instructions

XOR data
Operation code: EE
Meaning:

Perform the logical XOR operation (exclusive OR) between the
data, using immediate addressing, and the accumulator. The result
is left in the accumulator.
Clock cycles: 7
Bytes: 2
Flags updated on result: Z,S and P/O but N and C are both reset to 0.

XOR reg
Operation code: lOlOlrrr
Meaning:

Performs the logical XOR operation between the data in the
specified register and the accumulator. The result is left in the
accumulator.
Clock cycles: 4
Bytes: 1
Flags updated on result: Z,S and P/O but N and C are both reset to 0.

XOR (HL)
Operation code: AE
Meaning:

Perform the logical XOR operation between the data, using
implied addressing, and the accumulator. The result is left in the
accumulator.
Clock cycles: 7
Bytes: 1
Flags updated on result: Z,S and P/O but N and C are both reset to 0.

Increment and decrement instructions

INC reg
Operation code: OOrrrlOO
Meaning:

Increment the specified register by 1.
Clock cycles: 4
Bytes: 1
Flags updated on result: Z,S,Ac

INC rp
Operation code: OOrrOOll
Meaning:

Increment the specified register pair by 1.
Example: INC HL will add 1 to the register pair HL.
Clock cycles: 6
Bytes: 1
Flags updated on result: None

Increment and decrement instructions 75

INC (HL)
Operation code: 34
Meaning:

Increment the data in memory, using implied addressing, by 1.
Clock cycles: 11
Bytes: 1
Flags updated on result: Z,S,Ac

DEC reg
Operation code: OOrrrlOl
Meaning:

Decrement the specified register by 1.
Clock cycles: 4
Bytes: 1
Flags updated on result: Z,S,Ac but N is set to 1

DEC rp
Operation code: OOrrlOll
Meaning:

Decrement the specified register pair by 1.
Clock cycles: 6
Bytes: 1
Flags updated on result: none

DEC (HL)
Operation code: 35
Meaning:

Decrement the data in memory, using implied addressing, by 1.
Clock cycles: 11
Bytes: 1
Flags updated on result: Z,S,Ac but N is set to 1

Stack operations

PUSH pr
Operation code: llrrOlOl
Meaning:

Push the contents of the specified register pair on top of stack and
decrement Stack Pointer by 2.
Clock cycles: 11
Bytes: 1

POP pr
Operation code: llrrOOOl
Meaning:

Put the contents of top of stack into the specified register pair and
increment Stack Pointer by 2.
Clock cycles: 10
Bytes: 1

76 Commonly used instructions

Conditional jump instructions

JR condition, label
Operation code: see below.
Meaning:

There are 4 conditional jump instructions, using program relative
addressing. In assembly code, if the condition is true, a jump is
made to the line having that particular label in the label field. The
maximum forward jump is +129 bytes, maximum negative is —126
bytes.
Clock cycles: 7 if condition is not met, 12 if condition met.
Bytes: 2

JR C,label
Operation code: 38
Meaning:

Jump relative if carry is set to 1.

JR NC,label
Operation code: 30
Meaning:
Jump relative if carry is reset to 0.

JR Z,label
Operation code: 28
Meaning:

Jump relative if result is zero.

JR NZ,label
Operation code: 20
Meaning:

Jump relative if result is non zero.

JP condition,label
Operation code: llcccOlO
Meaning:

There are 8 conditional jump instructions, using direct addressing
which means that the jump address can be anywhere in memory.
The particular condition is specified by one of the following letters:
C=jump if carry set to 1. ccc=011
NC=jump if carry reset to 0. ccc=010
Z=jump if result zero. ccc=001
NZ=jump if result non zero. ccc=000
PO=jump if P/O flag set to 0. ccc=100
PE=jump if P/O flag set to 1. ccc=101
P=jump if sign positive. ccc=110
M=jump is sign negative. ccc=lll
Clock cycles: 10
Bytes: 3

Conditional jump instructions 77

DJNZ label
Operation code: 10
Meaning:

Decrement the B register by 1 and jump to the labelled line, only if
the register is non zero. That is to say, the jump is made only if the Z
flag is 0 after the decrement. Since relative addressing is used, the
limits of the jump are forward 129 bytes and backwards, 126 bytes.
Clock cycles: 8 if condition not met, 13 if met.
Bytes: 2

Unconditional jumps

JP label
Operation code: C3
Meaning:

Unconditional jump to instruction which has that label in the label
field.
Clock cycles: 10
Bytes: 3

JP (HL)
Operation code: E9
Meaning:

Unconditional jump to the address contained in HL.
Clock cycles: 4
Bytes: 1

Subroutine calls

CALL label
Operation code: CD
Meaning:

Jump to subroutine starting at address represented by label.
Clock cycles: 17
Bytes: 3

CALL condition,label
Operation code: llccclOO

As above, except that the call is conditional.
Example: CALL NZ,SORT will call the subroutine at the address,
represented by the label SORT, only if the Z bit is 0 (non zero result).
Clock cycles: 10 if condition is not met, 17 if met.
Bytes: 3

RET
Operation code: C9

78 Commonly used instructions

Meaning:
Return from subroutine.

Clock cycles: 10
Bytes: 1

RET condition
Operation code: llcccOOO
Meaning:

As above except that the return is conditional.
Clock cycles: 5 if condition not met, 11 if met.
Bytes: 1

Comparison instructions

CP data
Operation code: FE
Meaning:

Compare data, using immediate addressing, with the accumu
lator and set flags accordingly. The comparison is made by
subtracting the data from the accumulator. Original accumulator
contents are restored after the comparison is made so the overall
effect of the instruction is only on the flag register bits. It will
normally be followed by a conditional jump instruction.
Clock cycles: 7
Bytes: 2
Flags updated on result: C,Z,S,Ac but N is set to 1

CP reg
Operation code: lOlllrrr
Meaning:

As CP data above, except that the specified register is compared
with the accumulator.
Clock cycles: 4
Bytes: 1
Flags updated on result: C,Z,S,Ac but N is set to 1

CP (HL)
Operation code: BE
Meaning:

As CP data above, except that the memory data, obtained by
implied addressing, is compared with the accumultor.
Clock cycles: 7
Bytes: 1
Flags updated on result: C,Z,S,Ac but N is set to 1

Bit tests

BIT b,reg
Operation code: CB Olbbbrrr

Bit tests 79

Note: this is a 2 byte operation code.
Meaning:

The complement of specified bit (b) in specified register is placed
in Z flag. The register contents are unaltered.
Example: Suppose register B contains 1011 0011, then BIT 5,B will
make Z=0 (non zero). This is because bit 5 is a 1 and the
complement of 1 is 0.
Clock cycles: 8
Bytes: 2
Flags updated on result: Only the Z flag.

BIT b,(HL)
Operation code: CB OlbbbllO
Meaning:

As above except that bit b of the memory location addressed by
HL, is tested instead of a register.
Clock cycles: 12
Bytes: 2

Shift and rotate instructions

(Refer to Figure 6.1 for illustration of instructions under this
heading.)

RLA
Operation code: 17
Meaning:

Rotate accumulator left through carry.
Clock cycles: 4
Bytes: 1
Flags updated on result: C

RRA
Operation code: IF
Meaning:

Rotate accumulator right through carry.
Clock cycles: 4
Bytes: 1
Flags updated on result: C

SLA reg
Operation code: CB OOlOOrrr
Meaning:

Shift contents of specified register left arithmetic.
Clock cycles: 8
Bytes: 2
Flags updated on result: C,Z,S. The P/O flag reflects the party value.

80 Commonly used instructions

Fig 6.1 Shift and Rotate instructions

SLA (HL)
Operation code: CB 26
Note: this is a 2 byte code.
Meaning:

As SLA reg, except that the shift takes place on the data in
memory, using implied addressing.
Clock cycles: 15
Bytes: 2
Flags updated on result: C,Z,S. The P/O flag reflects the parity
value.

SRA (HL)
Operation code: CB 2E
Note: this is a 2 byte code

Shift and rotate instructions 81

Meaning:
Arithmetic shift right contents of implied addressed memory

location.
Clock cycles: 15
Bytes: 2

SRL reg
Operation code: CB 00111 rrr
Meaning:

Shift contents of specified register right logical.
Clock cycles: 8
Bytes: 2
Flags updated on result: C,Z,S. The P/O flag reflects the parity
value.

SRL (HL)
Operation code: CB 3E
Meaning:

As SRL reg, except that the shift takes place on the data in
memory, using implied addressing.
Clock cycles: 15
Bytes: 2
Flags updated on result: C,Z,S. The P/O flag reflects the parity
value.

Operation code details

As mentioned earlier, the details of the operation codes are
primarily of interest to those who wish to plod on without the aid of
an assembler. You will need the following information before you
can understand operation codes which have been given in binary
instead of hex digits:

1. What rrr means:
Register rrr

A 111
B 000
C 001
D 010
E Oil
H 100
L 101

2 What rr means:
Register pair rr

BC 00
DE 01
HL 10
SP 11

82 Commonly used instructions

3 What ccc means:
Condition ccc

non-zero 000
zero 001
no carry 010
carry 011
odd parity 100
even parity 101
positive 110
negative 111

4 What bbb means:
bit position bbb

0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

We will start by comparing a few lines of object code with their
equivalent in assembly source code in hex. The lines have been
chosen for illustration only and are not intended to make sense as a
program. Where the object code contains more than one byte, we
have separated them by a space for clarity reasons.

Line Obj code Label Source code

1 3A 15 LD A, #15
2 5F BACK: LD E,A
3 55 LD D,L
4 19 ADD HL,DE
5 17 RLA
6 20 03 JR NZ,DOWN
7 3A 43 71 LD A,(#7143)
8 ED 53 F7 7D DOWN: LD (#7DF7),DE
9 28 Fl JR Z,BACK

10 C9 RET

The first byte of object code in each line is the operation code, except
for line 8 which has a 2 byte code. Any remaining bytes belong to
the operand.
Line 1: this is easy because the instruction LD A, data, gives the
operation code directly in hex. The operand is the immediate data
15.

Operation code details 83

Line 2: not so easy because the operation code for the instruction LD
dst,src is given as Olrrrrrr. The destination register is E (code Oil
above) and the source register is A (code 111 above). So the full code
in binary is 01 011 111 which in hex is 5F. Note the line has BACK in
the label field so it will be a jump destination.
Line 3: is another LD dst,src instruction, using L (code 101) as the
source register and D (code 010) as the destination register. The
binary code is therefore 01 010 101 is 55.
Line 4: is an example of the register pair add instruction ADD HL,rp.
The operation code is given as OOrrlOOl so from the table above, DE
is 01. The full code becomes 00 01 1001 which is 19 in hex.
Line 5: another easy one because the code for RLA is given directly in
hex.
Line 6: the operation code for JR NZ, label is 20. But why the
operand is 03 will be explained soon.
Line 7: the instruction loads the contents of a 2 byte address into the
accumulator. The operation code is 3A. The next two bytes
represent the hex address 7143 but note carefully that the two bytes
must be written back to front - low byte first.
Line 8: this instruction is one of the awkward ones because it has a
two byte operation code ED 53. The operation code was given as ED
OlrrOOll. The register pair is DE so rr is 01. The full code is therefore
ED 01010011 which is ED 53 hex. The next two bytes represent the
address and, as always, must be written low byte first. Note the line
has the destination label 'DOWN'.
Line 9: the operation code for JR Z, label is 28 but why the operand is
Fl will be explained soon.
Line 10: operation code for RET is C9 and does not require an
operand.

Entering the bytes

If this was a practical program and you wanted to enter it by means
of the machine code loader, Program 4.1, the DATA statements
would be laid out as follows:

150 DATA 3A,15,5F,55,19,17,20,03
160 DATA 3A,43,71,ED,53,F7,7D,28
170 DATA F1,C9

Counting relative jump bytes

We must now treat the mysterious operands of lines in lines 6 and 9
above. Relative addressing, as far as hex object code bytes are
concerned, means the operand is a number, representing the
number of bytes which must be skipped over in order to reach the
labelled instruction. In other words, what number must be added to

84 Commonly used instructions

the contents of the Program Counter in order to make the program
jump back or forward? Now, in all instructions, including relative
jump instructions, the program counter contains the address of the
NEXT instruction byte. So we always begin the count by taking the
next instruction byte as the reference point. To help in understand
ing line 6, the lines involved are repeated below:

6 20 03 JR NZ,DOWN
7 3A 43 71 LD A,(#7143)
8 ED 53 F7 7D DOWN: LD (#7DF7),DE

The reference point is the byte 3A (the first one after the jump
instruction). The destination is the byte ED so 3 bytes have to be
added to the Program Counter. This explains why the operand in
line 6 is 03.

Backward jumps provide an added difficulty because they count
as 'negative' jumps. Thus, if we have to jump, say, 5 bytes
backwards from reference, the operand will be the two's comple
ment of 5 which is FB. Line 9 is a jump back to the labelled line
'BACK'. To understand why the operand is Fl, the relevant lines are
repeated:

2 5F BACK: LD E,A
3 55 LD D,L
4 19 ADD HL,DE
5 17 RLA
6 20 03 JR NZ,DOWN
7 3A 43 71 LD A,(#7143)
8 ED 53 F7 7D DOWN: LD (#7DF7),DE
9 28 Fl JR Z,BACK

10 C9 RET

The reference point is the byte C9, the first byte in line 10. The
destination is the byte 5F in line 2. The jump is 15 bytes back and the
two's complement of 15 is Fl.

Dangers

It is easy to be one out in the count so be careful because the
destination might end up on an operand, instead of an operation
code byte. The microprocessor has no initiative and certainly no love
for humans. It will gleefully seize any opportunity of crashing the
system. For this reason, you are advised to save your object code
before attempting to execute it.

Jumps using direct addressing
Jump instructions having the mnemonic JP cause no difficulty in
coding because the operand is a straightforward 2 byte address in
the form low byte, high byte. If you have no assembler, then this

Dangers 85

addressing method will be the easiest, at least during the initial
learning phase.

Summary

1 The instruction mnemonic determines the kind of action. The
format of the operand determines the addressing mode.
2 A register pair holding the address of data is called an address or
data pointer.
3 HL is the recommended register pair for use as an address
pointer.
4 Implied addressing uses an address pointer.
5 Direct addressing uses the actual address (or pre-assigned label).
6 Immediate addressing doesn't use an address at all! The operand
is the data.
7 Program relative addressing uses the operand as a signed
displacement number to be added to the program counter.
8 The assembly language programmer is shielded from program
relative addressing because a jump can be made to a labelled line.
9 Only a limited form of Indexed addressing is available using the
IX and IY registers.
10 Execution speed of an instruction is determined by the number
of clock cycles.
11 Memory locations occupied depend on the number of instruc
tion bytes.
12 Arithmetic, logical, comparison, shift and rotate instructions
update the flags.
13 Straightforward load, jump and stack instructions have no
effect on status flags.
14 DJNZ only operates in conjunction with the B register.
15 The BIT instruction, in conjunction with the Z flag, can be used
to examine the state of any bit in a register or memory location.
16 Shift instructions can lose bits at one end, rotate instructions
cannot.
17 Operation codes are of vital interest only if instructions are to
be POKEd from BASIC. That is to say without the aid of an
assembler.
18 The first byte in a line of object code is the operation code. (A
few instructions require 2 bytes). Any bytes which follow form the
operand, usually an address.
19 Two byte operands are written with the low byte first.
20 In Relative addressing, backward branching (JR jumps) re
quires a two's complement operand.

7 Using resident firmware

Free software

The operating system in the Amstrad CPC464/664/6128 is a collec
tion of machine code subroutines buried in the lower half of ROM. It
occupies the block of addresses #0000 to #3FFF. We should
consider these subroutines as a software goldmine, providing a rich
source of ready made, rigidly tested machine code building blocks,
many of which can be spliced into our own programs. To exploit any
particular one, we need to know:

(a) Exactly what it does.
(b) The calling address.
(c) Preparation before entry.
(d) Where results, if any, are placed.
(e) The state in which registers and flags are left after the call.

Some readers, blessed with independent characters, might be
vaguely disturbed at the thought of resorting to off-the-shelf
subroutines. They could well argue that, taken to excess, the end
result could be little more than high level language in disguise.
There is, of course, an element of truth in this argument. However,
if you are in the learning stage and are determined to go it alone by
avoiding resident software altogether then all we can do is to wish
you the best of luck. The apparently simple act of keying in a single
numerical digit to the accumulator and echoing it to the screen could
turn out to be far more difficult than you ever imagined. When (if?)
you master this, then you face the even more difficult problem of
entering and displaying a multi-digit number. The truth is that
many everyday operations such as these and which we all take for
granted in high level language, require a great deal of programming
skill and patience before they become foolproof and flexible. It is one
thing to get a subroutine to work but quite another to make sure it is
foolproof under all conditions. Because of these obstacles, you
should not hesitate to use resident subroutines for mundane tasks,
at least until you achieve confidence and expertise. Perhaps, as your
experience grows, you may reach the stage where you think you can 86

Free software 87

write them more efficiently yourself. If you have such ambitions,
remember that you will be placing yourself in competition with
professional operating system programmers.

There is a happy mean in everything. Rely too much on resident
subroutines and you could end up with a program which is virtually
a string of software beads written by someone else. On the other
hand, trying to avoid them altogether merely to satisfy a craving for
independence could lead to bouts of bad language and, in some
cases, a vicious attack on the Amstrad.

Jump blocks

Although the subroutines are actually located in the addresses
#0000 to #3FFF, they are not called directly from there. Instead,
they are called from certain locations in RAM known as jump blocks.
When the computer is first switched on, or following a hard reset, the
operating system in ROM copies a series of jump instructions into
these locations. The main jump block, the one in which we are
interested, occupies addresses #BB00 to #BD39. Each element
occupies three bytes so the subroutine call addresses in the jump
block are always spaced three bytes apart. For example, the
subroutine called READ CHAR is called at address #BB09. We shall
not delve into the mysteries of how such a call is eventually routed
to the actual subroutine in ROM. Those wishing to pursue the
matter can easily invoke MONA3, the Disassembler, which is
included in the HiSoft DEVPAC package. Don't worry about it
though. There is no need whatever to understand it all. Just CALL
#BB09 and leave the rest to the operating system.

A few of the more commonly used ROM subroutines are given
below. For the most part, they are concerned with simple keyboard
and screen activities. For the complete list and more detailed
specifications, you should consult the official Amstrad publication:
'Soft 158-Operating system Firmware Specification.

KM RESET (CALL #BB03)
Action: clears the key buffer and re-initialises the Key Manager
indirections and buffers.
AF, BC, DE and HL registers are corrupted.

KM WAIT CHAR (CALL #BB06)
Action: waits until a character is available from the key buffer and
loads its ASCII code into the accumulator.
Carry is always set but all other flags corrupted. Other register
contents are preserved.

KM READ CHAR (CALL #BB09)
Action: similar to KM WAIT CHAR but does not wait. On exit the
accumulator contains the character code. If character was available,

88 Using resident firmware

the carry is set. If not available, the carry is reset and accumulator
corrupted.
After each call other registers are preserved but flags are corrupted..

KM WAIT KEY (CALL #BB18)
Action: waits, if necessary, for the next key from the key buffer and,
after consulting a key translation table, loads either the character
code or expansion token into the accumulator.
Carry is set. All other flags corrupted.
Contents of other registers preserved.

KM READ KEY (CALL #BB1B)
Action: similar to KM WAIT KEY but does not wait. On exit, if carry
is set then a key was pressed and the accumulator contains the
character code or expansion token. If the carry is clear then a key
was not pressed and the accumulator is corrupt.
After each call other registers are preserved but flags corrupted.

TXT OUTPUT (CALL #BB5A)
Action: sends the character or control code in the accumulator to the
screen or current stream.
No effect on registers and flags.

TXT VDU ENABLE (CALL #BB54)
Action: allows characters to be printed on the screen.
A and F registers only are left corrupted.

TXT VDU DISABLE (CALL #BB57)
Action: prevent characters being printed on the screen and disable
cursor blob.
A and F registers only are left corrupted.

TXT RD CHAR (CALL #BB60)
Action: reads a character from the screen (at the cursor position of
the currently selected stream) into the accumulator.
Carry is set if recognisable character is found. If not found, carry is
reset and accumulator is cleared to zero.
After each call other register contents are preserved but flags
corrupted.

TXT CUR ON (CALL #BB81)
Action: allow cursor to be displayed on screen unless it is disabled.
No effect on flags or registers.

TXT CUR OFF (CALL #BB84)
Action: prevent cursor from reaching screen.
No effect on flags or registers.

Jump blocks 89

TXT SET PEN (CALL BB90)
Action: sets the text pen ink for writing foreground characters. The
ink number must be in the accumulator before calling.
AF and HL register pairs are left corrupted.

TXT SET PAPER (CALL #BB96)
Action: sets the text paper ink (background colour). The ink number
must be in the accumulator before calling.
AF and HL register pairs are left corrupted.

TXT INVERSE (CALL #BB9C)
Action: swaps the pen and paper inks over.
AF and HL register pairs are left corrupted.

GRA INITIALISE (CALL #BBBA)
Action: initialises the Graphics VDU.
AF, BC, DE and HL register pairs are left corrupted.

GRA MOVE ABSOLUTE (CALL #BBCO)
Action: moves current cursor position to an absolute position.
Before calling, X co-ordinate must be in DE and the Y co-ordinate in
HL. AF,BC,DE and HL register pairs are left corrupted.

GRA SET ORIGIN (CALL #BBC9)
Action: sets location of the graphics origin and moves cursor there.
Before calling, the X co-ordinate must be in DE and the Y co
ordinate in HL.
AF, BC, DE and HL register pairs are left corrupted.

GRA WIN WIDTH (CALL #BBCF)
Action: sets right and left hand edges of the graphics window.
Before calling, the X co-ordinate of one edge must be in DE and the
other X co-ordinate in HL. (It doesn't matter which edge is which.)
AF, BC, DE and HL register pairs are left corrupted.

GRA WIN HEIGHT (CALL #BBD2)
Action: sets top and bottom edges of the graphics window.
Before calling, the Y co-ordinate of one window edge must be in DE
and the Y co-ordinate of the other edge in HL. (It doesn't matter
which edge is which.)
AF, BC, DE and HL register pairs are left corrupted.

GRA CLEAR WINDOW (CALL #BBDB)
Action: clear the graphics window to the current graphics paper ink.
AF, BC, DE and HL register pairs are left corrupted.

GRA SET PEN (CALL #BBDE)
Action: set the graphics plotting ink. Before calling, the ink number

90 Using resident firmware

must be in the accumulator.
A and F registers are left corrupted.

SET PAPER (CALL #BBE4)
Action: set the graphics background ink. Before calling, the ink
number must be left in the accumulator.
A and F registers are left corrupted.

GRA PLOT ABSOLUTE (CALL #BBEA)
Action: plot a point at the absolute position relative to the user's
origin. Before calling, the X co-rdinate must be in DE and the Y
co-ordinate in HL.
AF, BC, DE and HL register pairs are left corrupted.

GRA PLOT RELATIVE (CALL #BBED)
Action: plot point relative to present co-ordinates. Before calling, the
X offset co-ordinate must be in DE and the offset Y coordinate in HL.
Either co-ordinates can be signed integers.
AF, BC, DE and HL register pairs are left corrupted.

GRA LINE ABSOLUTE (CALL #BBF6)
Action: draw line from present position to absolute co-ordinates
supplied.
Before calling, the X co-ordinate must be in DE and the Y co
ordinate in HL.
AF, BC, DE and HL register pairs are left corrupted.

GRA LINE RELATIVE (CALL #BBF9)
Action: draw line from present position to relative co-ordinates
supplied. Before calling, the X co-ordinate offset must be in DE and
the Y co-ordinate offset must be in HL. Either co-ordinates can be
signed integers.
AF, BC, DE and HL register pairs are left corrupted.

GRA WR CHAR (CALL #BBFC)
Action: put character on the screen at the current graphics cursor
position. Before calling, the character must be in the accumulator.
AF, BC, DE and HL register pairs are left corrupted.

SCR SET BASE (CALL #BC08)
Action: set area of RAM used for screen memory. Before calling, the
accumulator must contain the high order byte of the base address.
AF and HL register pairs are left corrupted.

SCR CLEAR (CALL #BC14)
Action: clears whole of screen memory to ink zero.
AF, BC, DE and HL register pairs are left corrupted.

SCR FILL BOX (CALL #BC44)
Action: fill a character area of the screen with an ink.

91Jump blocks

Before calling:
Ink number must be in accumulator.
H must contain the left column of the area.
D must contain the right column of the area.
L must contain the top row of the area.
E must contain the bottom row of the area.
AF, BC, DE and HL register pairs are left corrupted.
If illegal columns and/or rows are specified then weird results are
possible.

8 Addition and subtraction

92

Addition and subtraction using 8,16 and 32 bit integers are
described here. Multiplication and division will be held over to
Chapter 10. During the course of this chapter, you may from time to
time, find a need to refer back to the theory of signed and unsigned
numbers discussed in Chapter 3.

Range limitations

For addition, we have the choice of ADD and ADC and for
subtraction, SUB and SBC. Because of the inherent two's comple
ment structure, they can add or subtract any mixture of positive and
negative numbers. For example, ADD or ADC can add 4 to 7, -4 to
7, -4 to -7 etc. Similarly, SUB or SBC can subtract any mixture of
signed numbers. Using two's complement, the largest positive
number which any single length register can handle is 01111111 and
the largest negative number is 1000 0000 (+127 and —128 respect
ively). Whether we intepret a result in two's complement or
unsigned binary is purely a matter of choice. In unsigned integer
form, the largest number is 255.

Although a memory location can only hold one byte, the Z80A
does provide double byte addition and subtraction using register
pairs. For example, ADD HL,rp will add the 16 bit number in a
chosen register pair to the 16 bit number in HL. Note that HL
effectively takes on the role of a 16 bit accumulator. Although any
register pair can be chosen to hold one of the numbers, the other
must be in HL and will always hold the result. A double length
register can hold a signed integer range of —32,768 to +32,767
(65,535 in unsigned integer form).

Numbers higher than the limits imposed by double length
registers can be handled but only by a series of instalments.

8 bit Addition and Subtraction

There are several ways of performing addition using the various

8 bit Addition and Subtraction 93

addressing methods available with the Z80A. In each example
which follows, we assume that the two numbers to be added are
present in locations #7100 and #7101. These locations are labelled
'first' and 'second' respectively. The result will be stored in address
#7102. The examples can be tested if required by POKEing numbers
into these locations from BASIC, CALLing the routine at address
&7000 and PEEKing the result. For example:

POKE &7100,149
POKE &7101,27
CALL &7000
PRINT PEEK(&7102)

In practice, of course, the segment would not be used in this way
but would be a small part of a more ambitious project.

Testing can alternatively be effected from the monitor, but
remember to add an extra line:

ENT #7000

to the source code listing prior to assembly.

Example 8.1

Hi soft GENA3.1 Assembler. Page 1.

Pass 1 errors: OO

IO ;EXAMPLE 8.1
7100 20 first : EQU 47100
7101 30 second: EQll #7101
7102 40 resul t: EQU #7102
7000 50 0RG #7000
7000 3A0171 60 LD A,(second)
7003 47 70 LD B,A
7004 3A0071 80 LD A,(first)
7007 BO 90 ADD A,B
7008 320271 1OO LD (result),A
700B C9 110 RET

Pass 2 errors: 00

Table used: 51 from 119

We start our examples by using direct addressing:

Lines 20 and 40: assign labels to locations used.
Line 50: forces assembly at address #7000.
Lines 60 and 70: load the B register with the second of the two

94 Addition and subtraction

numbers to be added. Note that it is not possible to load the B
register directly from memory so the accumulator is loaded first and
the contents copied to the B register.
Line 80: loads the first number directly from memory into the
accumulator.
Line 90: adds the two numbers together with the ADD A,B
instruction. If subtraction is required this line can be changed to
SUB B.
Line 100: stores the result, present in the accumulator, in memory
using direct addressing.
Line 110: returns control back to the calling program. That is to say
BASIC or the assembler.

Example 8.2

Although the direct addressing method works it is not the most
efficient. The following example uses implied addressing and saves
one byte of memory and consumes 4 less clock cycles.

1.

Pass 1 errors: OO

Hisoft GENA3.1 Assembler. Page

10 ;EXAMPLE 8.2
7100 20 -first: EQU #7100
7101 30 second: EQU #7101
7102 40 result: EQU #7102
7000 50 ORG #7000
7000 210171 60 LD HL,second
7003 3A0071 70 LD A, (first)
7006 86 80 ADD A,(HL)
7007 320271 90 LD (result),A
700A C9 1OO RET

Pass 2 errors: OO

Table used: 51 from 118

Line 60: with implied addressing, the HL register pair holds the
address of the memory location accessed. The address of the second
of the two numbers to be added is thus loaded into the HL pair.
Line 70: loads the first of the two numbers into the accumulator
using direct addressing.
Line 80: adds the two numbers using implied addressing. If
subtraction is required change this line to SUB (HL).

Example 8.3

A further improvement in efficiency can be effected by noting that
the two 8 bit numbers to be added and the result are in sequential

Example 8.3 95

locations. Example 8.3 saves a further 3 bytes of memory over
Example 8.2.

Pass 1 errors: 00

Hisoft GENA3.1 Assembler. Page 1.

10 :EXAMPLE 8.3
7100 20 first: EQU #7100
7101 30 second: EQU #7101
7102 40 result: EQU #7102
7000 50 □RG #7000
7000 210071 60 LD HL,first
7003 7E 70 LD A,(HL)
7004 23 80 INC HL
7005 86 90 ADD A,(HL)
7006 23 100 INC HL
7007 77 110 LD (HL),A
7000 C9 120 RET

Pass 2 errors: 00

Table used: 51 from 120

Line 60: loads the address of the first of the two 8 bit numbers into
the HL register pair which is used as a data pointer.
Line 70: loads the accumulator with the first number, using implied
addressing.
Line 80: increments the data pointer, HL, to hold the address of the
second number.
Line 90: adds the two numbers, using implied addressing and the
result left in the accumulator. The necessary modification to perform
subtraction is to replace the ADD A, (HL) instruction with SUB
(HL).
Line 100: increments the data pointer HL, to hold the address of the
result location.
Line 110: stores result in memory using implied addressing.

16 Bit Addition and Subtraction

In practice, 8 bit addition, although treated ad nauseum in text books
(including this one), is sadly not used much. This is due to the
severe limitations in number size that can be effectively handled (0
to 255). Even the designers of the Amstrad software decided on 16
bit integers as the standard for BASIC thus giving an improved
integer arithmetic range of —32768 to +32767. Here we give a couple
of examples of 16 bit addition and subtraction. In both examples the
first and second numbers are assumed present in location pairs
starting at #7100 and #7102 respectively. The result is stored in two
sequential locations at address #7104. Remember the convention
that the low order byte is always stored first. As before, the routines
can be tested by POKEing values in from BASIC, CALLing the

96 Addition and subtraction

routine at &7000 and PEEKing the result. However, since you can
only POKE one byte at a time, care must be taken over setting up the
numbers. Remember that the low byte contains units up to 256 and
the high byte contains the number of 256s. The result can be printed
out in BASIC by the following line:

PRINT PEEK(&7104)+PEEK(&7105)*256

Example 8.4

This example shows how to perform the addition or subtraction
using implied addressing with simple 8 bit arithmetic instructions.
Notice that the listing is much longer than the previous examples.

Hisoft BEN A3.1 Assembler. Page 1.

Pass 1 arrorai 00

IO jEXAMPLE 8.4
7100 20 -firsti EQU #7100
7102 30 second1 EQU #7102
7104 40 resulti EQU #7104
7000 50 ORB #7000
7000 110071 60 LD DE,-first
7003 210271 70 LD HL,second
7006 1A 80 LD A,(DE)
7007 86 90 ADD A,(HL)
700B 320471 100 LD (result),A
7OOB 23 110 INC HL
7OOC 13 120 INC DE
700D 1A 130 LD A,(DE)
700E BE 140 ADC A,(HL)
7OOF 320571 150 LD (result+1) ,A
7012 C9 160 RET

Pan 2 arrorai 00

Tabla usedi 51 -from 127

Lines 60 and 70: load the DE and HL register pairs, acting as data
pointers, with the addresses of the first and second numbers.
Lines 80 and 90: load the first number into the accumulator and adds
it to the second, using implied addressing. Line 90 should be
changed to SUB (HL) if subtraction is required.
Line 100: stores low byte result, present in the accumulator, in
memory.
Lines 110 and 120: increment the data pointer DE and HL to point to
the high bytes of 'first' and 'second'.
Lines 130 to 140: load the high byte of the first number into the
accumulator and adds it to the high byte of the second number.
Here we use the instruction ADC A,(HL). This is because we need
to add in the carry, if any, from the low byte addition. The

Example 8.4 97

equivalent for subtraction would be the instruction SBC A, (HL)
which could be substituted in line 140.
Line 150: stores the high byte of the result in memory. Notice the use
of result!-1 here. The label 'result' is assigned a value #7104. By
informing the assembler that we wish to store the accumulator
contents at address result+1, the value #7105 is evaluated.

With the Z80 we are fortunate, unlike that of 6502 based micros,
that arithmetic can be performed on register pairs. This luxury, has
the advantage of freeing us from the worry of carries from low to
high bytes when working with 16 bit numbers. The following
instructions can be used directly on 16 bit numbers:

ADD HL,rp
ADC HL,rp
SBC HL,rp

If you are wondering why SUB HL,rp is not included, don't worry,
there isn't one. However, it can be mimicked by the following two
lines:

AND A
SBC HL,rp

The AND A instruction, or in fact any boolean instruction, simply
clears the carry flag.

Example 8.5 shows a shorter and faster method of 16 bit addition
or subtraction.

Example 8.5

Hisoft GENA3.1 Assembler. Page 1.

Pass 1 errorsi OO

10 jEXAMPLE 8.5
7100 20 first: EQU #7100
7102 30 second: EQU #7102
7104 40 result: EQU #7104
7000 50 ORB #7000
7000 2AOO71 60 LD HL,(first)
7003 ED5B0271 70 LD DE,(second)
7007 19 80 ADD HL, DE
7008 220471 90 LD (result),HL
7OOB C9 100 RET

Pass 2 errors: OO

Table used: 51 from 119

Lines 60 and 70: load the HL and DE register pairs directly from
memory by means of the 16 bit load instructions. The low bytes of
the two numbers to be added are loaded into the L and E registers.
The high bytes are loaded into the H and D registers.

98 Addition and subtraction

Line 80: performs the addition. Replace with AND A followed by
SBC HL,DE for subtraction.
Line 90: the 16 bit load instruction stores the result, present in the
register pair HL, into the location #7104 (low byte) and #7105 (high
byte).

As a general rule it is more efficient to use 16 bit register pair loads
where possible. However, there are always exceptions as you will
probably find out when tackling more ambitious programs.

32 Bit Addition and Subtraction

There are a few machines, for example the BBC micro, that perform
32 bit integer arithmetic in BASIC. If we wish to handle such large
numbers we will have to set aside 4 bytes for each number. Here we
will give two examples each with its own merit. In both cases the
first number will be assumed to occupy four bytes starting at #7100,
the second number at #7104 and the result will be stored in four
bytes starting at #7108. Although it is possible to test out the
routines as they stand by PEEKing and POKEing from BASIC it is
obviously going to be a little on the tedious side. It will probably be
more rewarding to simply study the coding and accept that it works
OK in practice.

Example 8.6

Example 8.6, although economical on memory, is fairly heavy on
the use of clock cycles (execution time). This stems from the fact that
a loop is executed four times to add the bytes. With assembly
language programming you are often faced with this sort of
dilemma. Should I use the fastest coding or the more economical on
memory? is a question often posed. The answer of course depends
on many factors. For example, in a short routine or animation
sequence execution speed is of prime importance. On the other
hand, if memory is tight, speed may be of secondary importance in
certain areas of a program. In Example 8.6 one of the original
numbers to be added is overwritten by the result but this will not be
a problem in the majority of cases.

Hisoft GENA3.1 Assembler. Page 1.

Pass 1 errors: 00

10 ;EXAMPLE 8.6
7100 20 ■first: EQU #7100
7104 30 second: EQU #7104
7108 40 result: EQU #7108
7000 50 ORG #7000
7000 110071 60 LD DE,first
7003 210471 70 LD HL,second
7006 A7 80 AND A

Example 8.6 99

7007 0604 90 LD B,4
7009 1A 100 loop: LD A,(DE)
700A 8E 110 ADC A,(HL)
700B 77 120 LD (HL),A
700C 23 130 INC HL
700D 13 140 INC DE
700E 10F9 150 DJNZ loop
7010 C9 160 RET

Pass 2 errors: 00

Table used: 62 -from 126

Lines 60 and 70: load the register pairs DE and HL respectively with
address of the first and second numbers to be added.
Line 80: clears the carry flag.
Line 90: initialises the loop counter, register B to 4.
Lines 100 to 150: add the four bytes of each 32 bit number using
implied addressing. Notice that ADC is used each time to add in the
carry between bytes. Since we cleared the carry flag in line 80 before
entering the loop we do not need to use the ADD instruction on the
first byte as in previous examples. Again, replace line 110 with
SBC A,(HL) if subtraction is needed.

Example 8.7
Example 8.7, although more economical on the use of clock cycles,
is heavier on memory requirements. Here, we use 16 bit register pair
loads and arithmetic using direct addressing. In view of this we only
need to worry about carries from the 2nd to 3rd bytes. The other
carries are taken into account automatically by the 16 bit arithmetic
instructions.

Hisoft 0ENA3.1 Assembler. Page 1.

Pass 1 errors: 00

10 {EXAMPLE 8.7
7100 20 firsti EQU #7100
7104 30 second: EQU *7104
7108 40 result: EQU #7108
7000 50 ORB #7000
7000 2A0071 60 LD HL,(first)
7003 ED5B0471 70 LD DE,(second)
7007 19 80 ADD HL, DE
7008 220871 90 LD (result),HL
700B 2A0271 100 LD HL,(first+2)
7OOE ED5B0671 110 LD DE,(second+2)
7012 ED5A 120 ADC HL,DE
7014 220A71 130 LD (result+2),HL
7017 C9 140 RET

Pass 2 errors: 00

Table used: 51 from 127

100 Addition and subtraction

Lines 60 to 70: load the register pairs HL and DE with the lower two
bytes of the numbers to be added using direct addressing.
Line 80: adds the two 16 bit values together and updates the carry
flag according to the result. (Use AND A followed by SBC HL,DE
for subtraction). It is worth stressing again that there is no SUB
HL,DE instruction in the Z80 repertoire.
Line 90: stores the 16 bit result of the addition in memory.
Lines 100 and 110: since the lower two bytes of the addition have now
been calculated we need to load the HL and DE register pairs with
the 3rd and 4th bytes of the two numbers to be added. This is why
two is added to the labels first and second. For example, the label
'first' is assigned an address #7100. By specifying first+2 as a label
the assembler evaluates it to #7102.
Line 120: adds the 3rd and 4th bytes of both numbers, now in HL
and DE. Notice that an ADC instruction is used here so the carry, if
any, from the 1st and 2nd byte result is added in. Use SBC HL,DE
here if subtraction is required rather than addition.
Line 140: stores the resultant 3rd and 4th bytes in memory at address
#710A.

Summary

1 Only the accumulator can hold the result of single byte
arithmetic and only HL can hold the result of double byte
arithmetic.
2 ADD is normally used for single byte addition although ADC can
be used providing the carry is cleared first.
4 In double byte addition, ADD is normally used for the first byte
and ADC for the second byte.
5 There is no SUB HL,rp instruction.
6 AND A can be used at any time to clear the carry flag without
corrupting the contents of the accumulator.
7 Numerically, each bit in a high byte is worth 256 times as much
as the corresponding bit in the low byte.

Decision making and 9
loop structures

In BASIC, and many other high level languages, we have a limited
range of decision making commands and loop structures. With
machine code we have considerably more freedom. This chapter
treats the more commonly used structures. After a preliminary read
through, it should be used as a reference guide.

Branch on decision structures

Decision making in machine code involves the interrogation of
status flags, particularly the carry flag (C) and the zero flag (Z).
These are updated by most arithmetic or logical instructions and are
subsequently used as the condition within JP or JR type instructions.

Testing for zero

After performing some arithmetic or logical process it will often be
necessary to test some register, usually the accumulator, for zero. If
a segment of code or 'process' is to be skipped by, say, a branch to a
location labelled 'over', the flag status is tested as follows:
(a) To test for zero, use JR Z,over
(b) To test for non zero, use JR NZ,over
There are occasions when the flags need to be set according to the
contents of the accumulator. We should remember’ that load
instructions have no effect on the status flags as is common with
such microprocessors as the 6502. In such cases the following
sequence may be used to update the status flags.

LD A,(number)
AND A
JR Z,over

over: 101

102 Decision making and loop structures

Note that the AND instruction sets the status flags without affecting
the contents of the accumulator.

Greater care is needed where the condition involves the relation
ship between two numbers because it will involve subtracting, or
comparing, one number with the other. This means that the result
of the subtraction, and hence the flag status, will depend on which
way round it is performed. That is to say, whether the first number is
subtracted from the second or vice versa. With SUB,SBC and CP
instructions the subtraction is always FROM the accumulator. In the
case of register pair subtraction, the subtraction is FROM the HL
register.

This leads to the following guide:

1 Use JR C to branch on Tess-than' decisions. (Still use JR C on
'greater-than decisions' but subtract, or compare, the numbers the
opposite way round.)
2 Use JR NC to branch on 'less than or equal to' decisions. (Still
use JR NC on 'greater than or equal to' decisions but subtract, or
compare, the two numbers the opposite way round.

It is worth reminding you that comparison instructions, such as
CP, leave the contents of registers or memory locations undis
turbed. The only effect of CP is on the flags so it is always intended
to be followed by a conditional branch or jump.

The following examples deserve careful study because they
provide examples covering the most used cases. It is assumed that
the labelled locations, 'first', 'second' and 'number', have been
assigned earlier. Naturally, they are not intended to be run in their
present skeletal state but should be used as reference material. For
simplicity, direct addressing has been used in the examples.
However, the same general principles will apply in all the other
addressing modes.

You will note that the line, AND A, often appears. One use has
already been discussed but another is simply a method of clearing
the carry flag before a SBC HL,rp instruction. There is no direct
instruction in the Z80A for clearing the carry flag so the AND A
instruction or any other logical instruction is used instead. Note that
there is no SUB HL,rp instruction in the Z80 repertoire.

A problem arises when decision making after a register pair
increment or decrement instruction because the flags are not up
dated on the result. This deficiency was a relic of the earlier 8080
microprocessor and, in the interests of software compatibility, was
not changed in its Z80 offspring. Nevertheless, we can easily update
the flags by using one of the logical instructions. An often used
method of decrementing, and checking whether the contents of a
register pair is zero, in this case BC, is as follows:

DEC BC
LD A,B
OR C
JR NZ,label

Testing for zero 103

How it works may not be immediately obvious. We first load B, the
high byte of the register pair BC, into the accumulator. We then
logically OR the lower byte of the register pair (the C register) with
the accumulator. The accumulator will only yield a zero result if
neither of the participants contained any binary Ts. At the same
time the OR instruction, like all other Boolean instructions, updates
the status flags according to the result. A branch can then be made
according to the result of the Z flag.

Example 9.1
Objective: branch to 'over' if 'number' in accumulator = zero.

LD A, (number)
AND A
JR Z,over

over-------------------

Example 9.2
Objective: Branch to 'over' if 'number' in accumulator is non zero.

LD A, (number)
AND A
JR NZ,over

over:-------------------

Example 9.3
Objective: Branch to 'over' if 'number' in register pair — zero.

LD BC, (number)
LD A,B
OR C
JR Z,over

over:-------------------

Example 9.4
Objective: Branch to 'over' if 'number' in register pair = non zero.

LD BC, (number)
LD A,B,
OR C
JR NZ,over

over:

104 Decision making and loop structures

Example 9.5
Objective: branch to label 'over' if 'first' single byte number =

'second' single byte number.

LD A, (second)
LD B,A
LD A, (first)
CP B
JR Z,over

over:-------------------

Example 9.6
Objective: branch to label 'over' if 'first' double byte number =

'second' double byte number.

LD HL, (first)
LD DE, (second)
AND A
SBC HL,DE
JR Z,over

over:-------------------

Example 9.7
Objective: branch to 'over' if 'first' number is not equal to 'second'

number.

LD A, (second)
LD B,A
LD A,(first)
CP B
JR NZ,over

over:-------------------

Example 9.8
Objective: branch to 'over' if 'first' double byte number is not

equal to, 'second' double byte number.

LD HL,(first)
LD DE,(second)

Testing for zero 105

AND A
SBC HL,DE
JR NZ,over

over:-------------------

Example 9.9
Objective: branch to 'over' if 'first' number is greater than or equal

to 'second' number.

LD A,(second)
LD B,A
LD A, (first)
CP B
JR NC,over

over:-------------------

Example 9.10
Objective: branch to 'over' if 'first' double byte number is greater

than, or equal to, 'second' double byte number.

LD HL,(first)
LD DE,(second)
AND A
SBC HL,DE
JR NC,over

over:-------------------

Example 9.11
Objective: branch to 'over' if 'first' number is less than 'second'

number.

LD A, (second)
LD B,A
LD A, (first)
CP B
JR C,over

over:

106 Decision making and loop structures

Example 9.12
Objective: branch to 'over' if 'first' double byte number is less than

'second' double byte number.

LD HL,(first)
LD DE,(second)
AND A
SBC HL,DE
JR NC,over

over:-------------------

Example 9.13
Objective: branch to 'over' if 'first' number is greater than 'second'

number.

LD A,(first)
LD B,A
LD A,(second)
CP B
JR C,over

over:-------------------

Example 9.14
Objective: branch to 'over' if 'first' double byte number is less than

'second' double byte number.

LD DE, (first)
LD HL,(second)
AND A
SBC HL,DE
JR C,over

over:-------------------

Example 9.15
Objective: branch to 'over' if 'first' number is less than, or equal

to, 'second' number.

LD A,(first)
LD B,A
LD A,(second)
CP B

Testing for zero 107

JR NC,over

over:-------------------

Example 9.16
Objective: branch to 'over' if 'first' double byte number is less

than, or equal to, 'second' double byte number.

LD HL, (second)
LD DE,(first)
AND A
SBC HL,DE
JR NC,over

over:----

Simple loop structures

Loops are a commonly used structure and can be either upcounting
or downcounting. Of the two, downcounting loops are the more
efficient since fewer instructions are needed. This will become
evident on studying the later examples.

A loop performs a repetitive process and consists of:

(a) The loop control counter for defining the number of times the
loop revolves. For down-count loops, the control counter starts high
and is decremented each time round towards zero. For up-count
loops, it starts low, usually zero, and is incremented each time
round.
(b) The actual process.
(c) The end of loop test. This can either be made at the start of the
process (test limit first type) or more commonly, after the process
(test limit last type). For downcounting loops the loop counter is
normally tested for zero each cycle. With upcounting loops the loop
counter is compared with some end value.

For simplicity, the 'process' within the following loops is one
which displays the character on the screen. In practice, of course,
the process can be complex and extend over many lines. The
following examples 9.17 to 9.25, although of no immediate practical
use, can be entered, assembled and executed directly. In this way,
familiarity with loop structures may be gained without detracting
from the essential details. Since the ENT assembler directive is used,
the object code can be executed simply by entering 'R' from within
the assembler. However, the code can also be called from BASIC
with CALL &7000. Where possible both 8 bit and 16 bit count loops
are given.

108 Decision making and loop structures

Example 9.17
Objective: repeat a process until the ENTER key is pressed.

Hisoft GENA3.1 Assembler. Page 1.

Pass 1 errors: 00

10 (EXAMPLE 9.17
BB5A 20 OUTPUT: EQU #BB5A
BB09 30 RCHAR: EQU «BB09
7000 40 ENT #7000
7000 50 ORG #7000
7000 CD09BB 60 loop: CALL RCHAR
7003 FEOD 70 CP #0D
7005 2807 80 JR Z,ex i t
7007 3E2A 90 LD A,"*"
7009 CD5ABB 100 CALL OUTPUT
700C 18F2 110 JR loop
700E C9 120 exit: RET

Pass 2 errors: 00

Table used: 60 from 120
Executes: 28672

A flowchart is given in Figure 9.1. Note the call to RCHAR is an
operating system subroutine for placing the ASCII character from
the keyboard into the accumulator and is previously assigned to
address #BB09.

Fig 9.1 Flow chart for Example 9.17

Testing for zero 109

Example 9.18
Objective: Single byte upcounting loop.

Hi soft GENA3.1 Assembler. Page --

Pass 1 error*! 00

10 (EXAMPLE 9.18
BB5A 20 OUTPUT: EQU *BB5A
7000 30 ENT #7000
7000 40 ORB #7000
7000 OE1O 50 LD C,#10
7002 0600 60 LD B,0
7004 3E2A 70 1oop: LD A,"*"
7006 CD5ABB 80 CALL OUTPUT
7009 04 90 INC B
700A 79 1OO LD A,C
700B B8 110 CP B
700C 20F6 120 JR NZ,1oop
700E C9 130 RET

Pass 2 errors: 00

Tabla used: 37 from 119
Executes: 28672

Lines 50 and 60 set the loop parameters. They are given arbitrary
numbers but can be altered as desired within the upper limit of $FF
(255 decimal). The process will always be executed at least once,
whatever the loop parameters. See Figure 9.2 for flowchart.

Example 9.19
Objective: double byte upcounting loop.

Hisoft 8ENA3.1 Assamb1ar. Page 1.

Pass 1 errors: OO

10 (EXAMPLE 9.19
BB5A 20 OUTPUT: EQU #BB5A
7000 30 ENT #7000
7000 40 ORB #7000
7000 010000 50 LD BC,0
7003 110004 60 LD DE,#400
7006 3E2A 70 loop: LD A, “a"
7008 CD5ABB 80 CALL OUTPUT
700B 03 90 INC BC
700C 7B 100 LD A,E
700D B9 110 CP C
700E 20F6 120 JR NZ,1oop
7010 7A 130 LD A,D
7011 B8 140 CP B
7012 20F2 150 JR NZ,1oop
7014 C9 160 RET

110 Decision making and loop structures

Pass 2 wrorsi OO

Table used: 37 -from 123
Executes: 28672

Lines 50 and 60 set the loop parameters. They are given arbitrary
numbers but can be altered as desired within the upper limit of
#FFFF (65,535 decimal). The process will always be executed at least
once, whatever the loop parameters. See Figure 9.2 for flowchart.

Fig 9.2 Flowchart for
'test limit last'
type loops

Example 9.20
Objective: Single byte downcounting loop.

Executes: 28672

Hisoft GENA3.1 Assembler. Page 1.

Pass 1 errors: 00

10 jEXAMPLE 9.20
BB5A 20 OUTPUT: EQU *BB5A
7000 30 ENT #7000
7000 40 ORB #7000
7000 06FF 50 LD B,#FF
7002 3E2A 60 1oop: LD A,"*"
7004 CD5ABB 70 CALL OUTPUT
7007 10F9 80 DJNZ loop
7009 C9 90 RET

Pass 2 errors: 00

Table used: 37 from 115

Testing for zero 111

The first two lines sets the loop counter. They are given arbitrary
numbers but can be altered as desired within the upper limit of #FF
(255 decimal). The process will always be executed at least once,
whatever the loop parameters. See Figure 9.2 for flowchart.

Example 9.21
Objective: double byte downcounting loop.

Hisoft GENA3.1 Assembler. Page 1.

Pass 1 errors: 00

10 jEXAMPLE 9.21
BB5A 20 OUTPUT: EQU «BB5A
7000 30 ENT #7000
7000 40 □RG #7000
7000 010004 50 LD BC,#400
7003 3E2A 60 1oop: LD A,"*"
7005 CD5ABB 70 CALL OUTPUT
7008 OB 80 DEC BC
7009 78 90 LD A,B
700A Bl 100 OR C
700B 2OF6 110 JR NZ ,loop
700D C9 120 RET

Pass 2 errors: 00

Tabla used: 37 -from 118
Executes> 28672

Line 50 sets the loop parameter. The number used is quite arbitrary
but can be altered as desired within the upper limit of #FFFF (65,535
decimal). The process will always be executed at least once, what
ever the loop parameters. See Figure 9.2 for flowchart.

Example 9.22
Objective: Single byte upcounting loop.

Hisoft GENA3.1 Assembler. Page 1.

Pass 1 errors: 00

10 ;EXAMPLE 9.22
BB5A 20 OUTPUT: EQU #BB5A
7000 30 ENT #7000
7000 40 ORG #7000
7000 OEFF 50 LD C,#FF
7002 0600 60 LD B,0
7004 78 70 loop: LD A,B
7005 B9 80 CP C
7006 2808 90 JR Z,over
7008 3E2A 100 LD A,

112 Decision making and loop structures

Executes: 2B672

700A CD5ABB 110 CALL OUTPUT
700D 04 120 INC B
700E 18F4 130 JR loop
7010 C9 140 over: RET

Pass 2 errors: OO

Table used: 48 from 121

Lines 50 and 60 set the loop parameters. They are given arbitrary
numbers but can be altered as desired within the upper limit of #FF
(255 decimal). Unlike the previous examples the process within the
loop will not necessarily be executed at all. (For example, if the two
loop limits are the same). See Figure 9.3 for flowchart.

Example 9.23
Objective: double byte-upcounting loop.

Executes: 28672

Hisoft BENA3.1 Assembler. Page 1.

Pass 1 errors: OO

10 IEXAMPLE 9.23
BB5A 20 OUTPUT: EQU #BB5A
7000 30 ENT #7000
7000 40 ORB #7000
7000 110004 50 LD DE,#400
7003 O1OOOO 60 LD BC,0
7006 7B 70 1oop: LD A,E
7007 B9 80 CP C
7008 2004 90 JR NZ,proc
700A 7A 100 LD A,D
700B B8 110 CP B
700C 2808 120 JR Z,over
700E 3E2A 130 proc: LD A,"*"
7010 CD5ABB 140 CALL OUTPUT
7013 03 150 INC BC
7014 18F0 160 JR loop
7016 C9 170 over: RET

Pass 2 errors: OO

Table used: 59 from 125

Lines 50 and 60 set the loop parameters. They are given arbitrary
numbers but can be altered as desired within the upper limit of
#FFFF (65,535 decimal). See Figure 9.3 for flowchart.

Example 9.24
Objective: Single byte down-counting loop.

Testing for zero 113

Executes: 28672

Hisoft GENA3.1 Assembler. Page 1.

Pass 1 errors: OO

10 ;EXAMPLE 9.24
BB5A 20 OUTPUT: EQU #BB5A
7000 30 ENT #7000
7000 40 □R8 #7000
7000 06FF 50 LD B,#FF
7002 78 60 loop: LD A,B
7003 A7 70 AND A
7004 2808 80 JR Z,over
7006 3E2A 90 LD A,"*"
7008 CD5ABB 100 CALL OUTPUT
700B 05 110 DEC B
700C 18F4 120 JR loop
700E C9 130 over: RET

Pass 2 errors: 00

Table used: 48 -from 120

Line 50 sets the loop parameters. They are given an arbitrary
number but can be altered as desired within the upper limit of #FF
(255 decimal). See Figure 9.3 for flowchart.

Fig 9.3 Flow chart for 'test limit first' type loop

114 Decision making and loop structures

Example 9.25
Objective: double byte downcounting loop.

Hisoft GEN A3.1 Assembler. Page 1.

Pass 1 errors! OO

10 jEXAMPLE 9.25
BB5A 20 OUTPUT: EQU #BB5A
7000 30 ENT *7000
7000 40 ORB #7000
7000 010004 50 LD BC,*400
7003 78 60 1oop: LD A,B
7004 Bl 70 OR C
7005 2808 80 JR Z,over
7007 3E2A 90 LD A,
7009 CD5ABB 1OO CALL OUTPUT
700C OB 110 DEC BC
7OOD 18F4 120 JR loop
700F C9 130 over: RET

Pass 2 errors: 00

Table used: 48 from 120
Executes! 28672

Line 50 sets the loop parameter. They are given an arbitrary
number but can be altered as desired within the upper limit of
#FFFF (65,535 decimal). See Figure 9.3 for flowchart.

Preserving register contents

Although the Z80 is well equipped with registers, situations often
arise where you would like a few more. For example, setting up a
loop, particularly a double byte variety, will often require one or
more registers for use within the process. This means that the
control counter or other loop parameters must be stored temporarily
before entering the process. After the process, the register contents
must be replaced again so that the loop can continue. The following
example assumes that BC and DE are worth saving.

Example 9.26
Objective: freeing registers for use within the 'process'.

PUSH BC
PUSH DE
//
//
process

//

Preserving register contents 115

POP DE
POP BC

The stack can be used for temporary storage but remember that it
acts as a LIFO memory so, as you can see from above, you must
POP the data back in reverse order.

Branching according to sign

Before proceeding further, we suggest that you refer back to the
paragraph 'Unsigned binary or two's complement' in Chapter 3
and, in particular, Figure 3.3. Bit 7 in a register or memory location is
the two's complement sign bit. It is 1 for negative and 0 for positive
numbers. In double, or multiple byte numbers, only bit 7 in the
higher order byte represents the sign, so bit 7 in the lower order byte
has no sign significance.

Examination of the Z80A instruction set reveals certain difficulties
associated with conditional jump instructions. For example, it is not
possible to use a JR conditional jump when the condition depends
on the status of the sign bit. This is a pity because the advantage of
ease of relocation is lost. That is to say, the ability of a program to
still function correctly when transferred to another area of memory.
The subject of relocation will be discussed more fully in a later
chapter but, in the meantime, note that JR instructions, because
they use relative adddressing, present no relocation problems.

Using JP P and JP M instructions

Returning to the problem of testing the sign bit, it can be seen
from the instruction set that one solution is to make use of either
JP M,label (jump on Minus) or JP P,label (jump on Plus).

Unfortunately, JP instructions use absolute addressing which means
they are not directly relocatable and require a 2 byte jump address. If
such disadvantages can be tolerated, they provide an easy solution
to the problem.

Using left shift for testing the sign

LD instructions have no effect on the flags so when a memory
location is loaded into the accumulator some artifact must be used in
order to establish the status of bit 7. One way is to shift the
accumulator left so that bit 7 enters the Carry flag. If the carry is set
to 1, we can use JRC to branch if negative or JR NC to branch on
positive. This method has the advantage of relative addressing but
the shift action corrupts the accumulator although this may not
always be a disadvantage.

116 Decision making and loop structures

Using the BIT test

The instruction BIT n,A puts the complement of bit n in the Z flag
but has no effect on the accumulator contents. After BIT 7,A has
been executed, the Z flag will be T' if bit 7 was a 'O'. If this is
followed by JR Z,label the jump occurs only if the number was
positive. This allows the use of a JR Z or JR NZ instruction for
branching according to sign. Although the test for sign is the more
common application, BIT n,A can be used to test the status of any
bit. For example, BIT 3,A will set the Z flag according to the status of
bit 3.

Example 9.27
Objective: absolute branch to 'pos' if location 'mem' holds a

positive number.

LD A,(mem)
AND A
JP P,pos

Disadvantage: not directly relocatable.

Example 9.28
Objective: absolute branch to 'neg' if location 'mem' holds a

negative number.

LD A, (mem)
AND A
JP M,neg

Disadvantage: not directly relocatable.

Example 9.29
Objective: relative branch to 'pos' if location 'mem' holds a

positive number.

LD A, (mem)
RL A
JR NC,pos

Disadvantage: corrupts accumulator contents.

Example 9.30
Objective: relative branch to 'neg' if location 'mem' holds a

negative number.

LD A,(mem)
RL A
JR C,neg

Disadvantage: corrupts accumulator contents.

Using the BIT test 117

Example 9.31
Objective: relative branch to 'pos' if location 'mem' holds a

positive number.

LD A, (mem)
BIT 7,A
JR Z,pos

This is the preferred method.

Example 9.32
Objective: relative branch to 'pos' if location 'mem' holds a

positive number.

LD A,(mem)
BIT 7,A
JR NZ,pos

This is the preferred method.

Summary

1 CP instructions have no effect other than updating the C,Z,S and
Ac flags.
2 LD, DEC rp or INC rp instructions have no effect on flags.
3 Using AND A as a dummy instruction is useful for updating the
status flags.
4 If the end-of-loop test is made after the process, the loop
executes at least once. If made before, the loop may not necessarily
execute at all.
5 Whe using the stack as a temporary storage medium, POPs must
be in reverse order to PUSHes.
6 JR instructions are normally preferable to JP instructions because
they are directly relocatable.
7 Direct jumps, conditional to the status of the sign bit, can only be
made with JP instructions.
8 Left shift can be used after an LD instruction to test the sign bit
but the accumulator contents are corrupted.
9 The BIT test is used to set the Z flag according to the status of any
bit in a register or memory.

10 Multiplication and division

Flow charts are provided to aid understanding of the algorithms
used in this treatment of 8 and 16 bit unsigned and 16 bit signed
multiplication and division.

Multiplication

Performing decimal multiplication with pencil and paper is essen
tially an artificial process, relying on your memory of multiplication
tables. In the case of older readers, this will very well depend on
how often you were thumped at school during the morning table
chanting. Without a calculator handy, the answer to 'What is 9x7?'
can only be answered instantly if we remember our tables. If not, we
have to hide our shame and laboriously keep adding nines together.
You may be relieved to know that multiplication in binary is
relatively easy because of the stark simplicity of the multiplication
table. There are no tables to learn since no single binary digit can
exceed 1. This is all we have to remember:

1x0=0 and 1x1 = 1

From this, we can deduce that:

(a) When a multiplier bit is 0, no action is needed.
(b) Action is only needed when a multiplier bit is a 1.
(c) Multiplication by 1 doesn't alter a number so any intermediate
results need only be added to a shifted partial product each time.

Before going into detail we need a few definitions. When two
numbers are to be multiplied together, one of them is officially
known as the multipicand, the other number is the multiplier and the
result of the multiplication is known as the product. It doesn't matter
which of the two numbers you call the multiplicand and which you
call the multiplier. One annoying trait of multiplication is the size of
the product. Allowing for the worst case in single byte numbers, 255
mutliplied by 255 gives a product of 65,025. Such a number can only
be accommodated if two bytes are considered placed end to end. 118

Multiplication 119

The program which follows is capable of multiplying any pair of 8-
bit numbers and leaving the 16 bit product in two adjacent memory
locations.

Unsigned 8 bit multiplication

120 Multiplication and division

The algorithm is similar in many respects to the pencil and paper
method of binary multiplication taught in many schools. After
preliminary initialisation of the product to zero, an eight-cycle loop
is entered. (The loopcounter is set to the number of bits in the
multiplier.) The loop begins with shifting the two byte product left.
This staggers the columns in a similar way to that used in the simple
pencil and paper method. Next, the single byte multiplier is shifted
left. If the msb of the multiplier was a 1, the carry would have been
set and the multiplicand is added to the partial product. If the msb
was a 0, the carry would be a 0 so no addition is required.
(Remember from the binary multiplication table above that multi
plication by 0 is a useles exercise). The procedure is repeated for a
total of 8 cycles, during which the 16 bit product builds up.

Simple 8-bit multiplication

Program 13.1 shows one method of coding the flow chart, Figure
10.1.

Example 10.1 Simple 8-bit multiplication

Hisoft GENA3.1 Assembler. Page 1.

Pass 1 errors: 00

IO :UNSIGNED 8 BIT MULTIPLICATION
7000 20 begin: EQU *7000
7100 30 top: EQU begin+#100
7100 40 number: EQU top
7101 50 mult: EQU top+1
7102 60 prod: EQU top+2
7000 70 □RG begin
7000 3A0071 80 LD A,(number)
7003 5F 90 LD E,A
7004 3A0171 100 LD A,(mult)
7007 210000 110 LD HL,0
700A 55 120 LD D,L
700B 0608 130 LD B,8
700D 29 140 shift: ADD HL, HL
7OOE 17 150 RLA
700F 3001 160 JR NC,over
7011 19 170 ADD HL, DE
7012 10F9 180 over: DJNZ shift
7014 220271 190 LD (prod),HL
7017 C9 200 RET

Pass 2 errors: OO

Table used: 93 from 136

Simple 8-bit multiplication 121

How example 10.1 works
This example assumes that the multiplicand and multiplier are
present in locations #7100 and #7101 respectively. The product will
be stored in two bytes starting #7102. Thereby the program can be
used as a subroutine and called by another machine code program.
It is assembled at the starting address #7000 so it can be tested from
BASIC by POKEing in values, executing with CALL &7000 and
PEEKing the resulting product.

There now follows a line by line analysis.
Lines 20 to 60: assign labels to locations. The multiplicand is labelled
'number' and the multiplier 'mult'.
Line 70: is the pseudo instruction to the assembler, informing it
where to assemble the object code.
Lines 80 and 90: load the E register with the 8 bit multiplicand
(number).
Line 100: loads the accumulator with the 8 bit multiplier (mult).
Lines 110 and 120: initialise the register pair HL (used to temporarily
hold the partial product) and the D register to zero. The D register
corresponds to the unused high byte of the 8 bit multiplicand
and is cleared so that 16 bit register pair arithmetic can be used in
line 170.
Line 130: initialises the loopcounter to the number of bits in the
multiplier.
Line 140: this instruction acts as a 16 bit shift left intruction on the
partial product (HL register pair).
Line 150: rotate the multiplier left one bit so that the most significant
bit is present in the carry status flag. Since it does not matter about
garbage entering in from the lsb end of the accumulator the RLA
instruction is used in preference to the more obvious SLA A
instruction.
Line 160: performs the crucial test on the carry bit. The carry is clear
only if the bit shifted out from the multiplier is a zero, in which case
no addition is required and the instruction in line 170 is skipped.
Line 180: While the loop counter remains non zero, the top of the
loop labelled 'shift' is repeatedly re-entered. When it reaches zero,
all bits of the multiplier have been examined and the loop can be
vacated.
Line 170: adds the multiplicand present in DE to the current product
in the HL register pair.

Unsigned 16 bit multiplication

Example 10.2 allows for the fact that two 16 bit numbers multiplied
together could, under worst case conditions, require four bytes to
hold the product.

122 Multiplication and division

Example 10.2 Multiplication of 16 bit unsigned numbers

Hisoft GENA3.1 Assembler. Page 1.

Pass 1 errors: 00
10 ;UNSIGNED 16 BIT MULTIPLICATION

7000 20 begin: EQU #7000
7100 30 top: EQU begin+*100
7100 40 number: EQU top
7102 50 mult: EQU top+2
7104 60 prod: EQU top+4
7000 70 □RG begin
7000 97 80 SUB A
7001 4F 90 LD C,A
7002 5F 100 LD E,A
7003 57 110 LD D,A
7004 0610 120 LD B,16
7006 2A0271 130 LD HL,(mult)
7009 CB23 140 shift: SLA E
700B CB12 150 RL D
7OOD CB11 160 RL C
700F 17 170 RLA
7010 29 180 ADD HL, HL
7011 300D 190 JR NC,over
7013 E5 200 PUSH HL
7014 2A0071 210 LD HL,(number)
7017 19 220 ADD HL, DE
7018 EB 230 EX DE, HL
7019 El 240 POP HL
7O1A 3004 250 JR NC,over
7O1C OC 260 INC C
701D 2001 270 JR NZ,over
701F 3C 280 INC A
7020 10E7 290 overs DJNZ shift
7022 47 300 LD B,A
7023 ED530471 310 LD (prod),DE
7027 ED430671 320 LD (prod+2), BC
702B C9 330 RET

Pass 2 errors: 00

Table used: 93 from 152

To use the routine, the two byte multiplicand must be present in
#7100 and #7101 and the two byte multiplier in #7102 and #7103.
The final four byte product is available in the four addresses, #7104
onwards. The program is merely an extension to the simple
algorithm we used for 8 bit numbers. Because of this, we felt a
separate flowchart and detailed line by line treatment of the listing
were not justified. To understand the program, it is sufficient to
point out the following essential differences:

1 Four bytes are needed for the product if overflow is to be
avoided. The product is manipulated in registers E,D,C,A (low byte
through to high byte). We used the accumulator for the high byte

Unsigned 16 bit multiplication 123

because RLA is faster than SLA B. In any case we have used the B
register as the loopcounter.
2 Note that two bytes are needed throughout for the multiplier.
The HL register pair is used to manipulate this value. Note that the
ADD HL,HL instruction, in line 180, is used again as a 16 bit shift
left. The loop counter, register B, is set to the number of multiplier
bits in line 120.
3 If the carry flag is set in line 190, the two byte value for the
multiplicand is added to the four byte value of the product. The
addition is performed in lines 200 to 280. Note that the HL register
pair (multiplier) is temporarily saved on the stack while 16 bit
register pair arithmetic is performed.
4 In lines 300 to 320 the high byte of the product in the accumulator
is transferred to the, now freed, B register and the product stored in
memory using a pair of 16 bit loads.

Signed 16 bit multiplication

Multiplication of numbers where signs must be taken into consider
ation raises complexity by an order of magnitude. This can be seen
by comparing the flowchart shown in Figure 10.2 with the unsigned
version shown in Figure 10.1.

To start with, we have to test the sign bits of both multiplicand
and the multiplier. The sign rules for multiplication are well known
but are worth repeating here:

Like signs give a positive result.
Unlike signs give a negative result.

From this, it is fairly easy to work out how these rules can be applied
within a program so as to give the correct sign for the result. The
following method works by using a spare register or location as a
kind of flag.

If the multiplicand is negative, then increment the previously
cleared flag.

If the multiplier is negative, then decrement the flag. The result
will be as shown in the following table.

Multiplicand Multiplier flag value

+ + 0
- + 1
+ - -1
— - 0

The flag will have a value of zero if the result is positive, and non
zero is negative. If either the multiplier and/or the multiplicand is

124 Multiplication and division

Fig 10.2 Flowchart for signed 16 bit multiplication

Signed 16 bit multiplication 125

126 Multiplication and division

found to be negative, then the two's complement is taken so that all
arithmetic is carried out with positive representations. Depending
on the value of the flag, the result of the multiplication is left as
positive (flag=0) or the two's complement taken if negative (a non
zero flag value).

When using signed arithmetic, it is always best to decide on a
standard bit length for numbers. That is to say, all numbers are
represented by 8 bits, 16 bits, 32 bits etc. Attempts to use mixtures
can lead to serious problems with large programs. For example,
when we were dealing with unsigned integers, we used 16 bit multi
plicands and multipliers but a 32 bit result. If, at a later stage, we
want to perform further arithmetic on the result, we will need 32
bit multiplication subroutines and so on! Such situations can result
in confusion. Confusion nearly always leads to poorly structured
programs. For example, Amstrad BASIC treats all integers as 16 bit
signed numbers. If we do this, we still need to signal an overflow
error if the result is larger than the capacity of 16 bits. All these
features are incorporated in Example 10.3, but first, study the
flowchart shown in Figure 10.2. (Previous page.)

Note that the information on the sign of the product can be
established at the beginning of the flowchart and the flag set
accordingly. Multiplication is always performed on positive num
bers. Any negative number is converted to its positive form, by
taking the two's complement, before multiplication begins. Near the
end of the flowchart, after the multiplication process is completed,
the flag is examined to decide whether the product is to remain in its
positive form or whether the two's complement negative form is to
be taken. If overflow is detected, a separate error flag is set to all 'l's
(#FF). Users of the routine should examine this on return to
determine whether or not the product is valid.

The full listing is shown in Example 10.3.

Example 10.3 Signed 16 bit multiplication

Hisoft BENA3.1 Assembler. Page 1.

Pass 1 errors: OO

10 ;SIGNED 16 BIT MULTIPLICATION
7000 20 begin: EQU #7000
7100 30 top: EQU begin+#100
7100 40 number: EQU top
7102 50 mult: EQU top+2
7104 60 prod: EQU top+4
7106 70 flag: EQU top+6
7000 80 ORB begin
7000 0E00 90 LD C,0
7002 2A0071 100 LD HL,(number)
7005 CB7C 110 BIT 7,H
7007 280B 120 JR Z , second

Signed 16 bit multiplication 127

7009 OC 130 INC C
700A EB 140 EX DE, HL
700B 210000 150 LD HL,0
700E A7 160 AND A
700F ED52 170 SBC HL, DE
7011 220071 180 LD (number),HL
7014 2A0271 190 second: LD HL,(mult)
7017 CB7C 200 BIT 7,H
7019 2808 210 JR Z,start
701B OD 220 DEC C
7O1C EB 230 EX DE, HL
701D 210000 240 LD HL,0
7020 A7 250 AND A
7021 ED52 260 SBC HL, DE
7023 11OOOO 270 start: LD DE,0
7026 0610 280 LD B, 16
7028 CB23 290 shift: SLA E
702A CB12 300 RL D
702C CB7A 310 BIT 7,D
702E 2026 320 JR NZ,error
7030 29 330 ADD HL, HL
7031 300E 340 JR NC,over
7033 3A0071 350 LD A,(number)
7036 83 360 ADD A,E
7037 5F 370 LD E,A
7038 3A0171 380 LD A,(number+1)
703B BA 390 ADC A,D
703C 57 400 LD D,A
703D CB7A 410 BIT 7,D
703F 2015 420 JR NZ,error
7041 10E5 430 over: DJNZ shift
7043 79 440 LD A,C
7044 A7 450 AND A
7045 2806 460 JR Z,plus
7047 210000 470 LD HL,0
704A ED52 480 SBC HL, DE
704C EB 490 EX DE,HL
704D ED530471 500 plus: LD (prod),DE
7051 97 510 SUB A
7052 320671 520 finish: LD (flag),A
7055 C9 530 RET
7056 3EFF 540 error: LD A,#FF
7058 18F8 550 JR finish

Hisoft GENA3.1 Assembler. Page 2.

Pass 2 errors: 00

Table used: 165 from 500

How the program works
Before using the program, the two 16 bit numbers to be multiplied
must be present in #7100, #7101 and #7102, #7103. The result will
be left in #7104, #7105.
Lines 20 to 70: assign labels to locations.
Line 80: forces assembly at #7000.
Lines 90: initialises the sign information flag (register C) to zero.

128 Multiplication and division

Lines 100 to 180: check the sign bit of the multiplicand. If positive, a
branch is taken to second. If negative, the two's complement of the
multiplicand is formed and the sign information flag, register C, is
incremented. Note that the two's complement is found by sub
tracting from zero.
Lines 190 to 260: check the sign bit of the multiplier. If positive, a
branch is made to 'start'. If negative, the two's complement is taken
and register C is decremented.
Lines 270 to 430: these are similar in form to the unsigned 16 bit
multiplication in Example 10.2. However, since we are limiting the
product to 16 bits we only need the DE register pair to manipulate
the partial product which leads to a more simple listing. Notice the
inclusion, in lines 310,320 and 410,420 of the BIT 7,D instruction
followed by JR NZ,error. The reason for these is to check for
overflow. Since, in this area of the program, we are working
exclusively with positive numbers, any corruption of the partial
product's sign bit (bit 7 of the D register) will indicate an overflow,
and thus an invalid calculation.
Lines 440 to 490: test the sign information flag (register C). If zero, a
branch is made to 'plus'. If non zero, the two's complement of the
product is taken.
Line 500: stores the product, currently in the register pair DE, in
memory at address #7104 and #7105.
Lines 510 and 520: clears the error flag, indicating that the product is
valid and returns.
Lines 540 to 550: sets the error flag to #FF as an overflow signal and
returns. Examination of this location can indicate whether overflow
has occurred.

Division

Division is the reverse process of multiplication. The four compon
ents involved are as follows:

The dividend is the number to be divided (the number you start
with).
The divisor is the number you are dividing by.
The quotient is the 'answer' (number of times the divisor goes into
the dividend).
The remainder, is what is left over, if any.

For example, if we divide 26 by 4, the dividend is 26, the divisor is 4,
the quotient is 6 and the remainder is 2.

Alternatively, the remainder can be expressed as a fraction. In our
example, the remainder of 2 could be expressed in fractional form as
2/26=1/12. (0.0833.. in decimal form). Since the programs which
follow are restricted to integer division, the remainder, if any, is left
as a simple integer which may or may not be useful.

Division 129

Multiplication was achieved by successive shift actions (for
examining each bit) and adding, so it was understandable that the
product would often be much larger than either of the two
component numbers (multiplicand and multiplier). Division, on the
other hand, is achieved by shifting and subtracting. This means that
the quotient will always be smaller than the dividend, except in the
special case when the divisor and the dividend happen to be the
same value. Because of this, we need not worry about overflow,
neither do we have to allow extra length register combinations for
the 'answer'. However, in division, there is one danger lurking
beneath the surface which was not present in multiplication. This is
the 'division-by zero' error condition. Multiplication by zero is a
valid exercise, even if it is useless, but trying to divide by zero is,
according to mathematicians (and computers) the worst crime in the
book.

8 bit division

The procedure is based on how binary division would be carried out
with pencil and paper and is best illustrated in flowchart form (see
Figure 10.3). (Overleaf.)

The full listing is shown in Example 10.4, followed by a detailed
line by line breakdown.

Example 10.4 Simple 8 bit unsigned division

Hisoft GENA3.1 Assembler. Page 1.

Pass 1 errorbi 00

10 1 UNSIGNED 8 BIT DIVISION
7000 20 begin: EQU #7000
7100 30 top: EQU begin+#100
7100 40 number: EQU top
7102 50 di v: EQU top+2
7103 60 remain1 EQU top+3
7000 70 □RG begin
7000 2A0071 00 LD HL,(number)
7003 3A0271 90 LD A,(div)
7006 4F 100 LD C,A
7007 3E00 110 LD A,0
7009 0610 120 LD B,16
700B 29 130 shift: ADD HL, HL
700C 17 140 RLA
700D B9 150 CP C
700E 3002 160 JR C,over
7010 91 170 SUB C
7011 2C 100 INC L

130 Multiplication and division

7012
7014
7017

10F7
320371
C9

190 overt DJNZ shift
200 LD
210 RET

(remain), A

Pa«« 2 erroral OO

Table usedi 94 from 136

Example 10.4 is in subroutine form and can be called from any
other machine code program. Before calling, the low byte of the
dividend must be present in #7100, the high byte in #7101 and the
divisor in #7102. The dividend 'number' is loaded and manipulated
in the HL register pair. After the subroutine has returned, the
quotient is available in the register pair which originally held the
dividend, namely HL. The remainder, if any, is present in the
accumulator.
Lines 20 to 70: assign labels to locations.
Line 80: forces assembly at #7000.
Lines 90 and 100: the register pair HL is loaded directly from memory
with the 16 bit dividend. Register C is loaded, in a somewhat round
about fashion, with the corresponding divisor value.
Lines 120 and 130: the accumulator is cleared in line 120, ready for
testing the bits shifted out of the msb end of the dividend (HL). The
loopcounter, the B register, is initially set to 16, the number of bits in
the dividend.
Lines 140 and 150: the ADD HL,HL instruction is simply an
economical method of performing a 16 bit shift left. The two
instructions combine to left shift a bit out of the HL register pair, via
the carry status flag, into the accumulator.
Lines 160 and 170: compare the divisor with the accumulator
contents. If the carry is found to be set (indicating that the divisor is
greater than the accumulator contents) a relative jump to 'over'
is made.
Lines 180 and 190: are only executed if the divisor is less than or equal
to the accumulator. In this case the divisor is subtracted from the
accumulator and the relevant bit of the quotient set to a 'I'. A simple
dodge is used here to simplify coding. As the Hl register pair is
shifted left each time, a zero is fed in from the lsb end of the L
register. If we increment the L register, as in line 190, it is equivalent
to setting the lsb to a T'. In this way we can use the same register
pair to hold both the dividend, prior to processing, and the quotient
which gradually builds up as the loop cycles progress. When the
loop is finally vacated, the HL pair will hold only the quotient since
all the original dividend bits will have been shifted out.
Line 200: checks if the loopcounter (the B register) has reached zero.
If not, it forces another cycle.
Lines 210 and 220: load the quotient and remainder directly into
memory.

8 bit division 131

Fig. 10.3 Flowchart for 8 bit division

132 Multiplication and division

Unsigned 16 bit division

Example 10.5 assumes that the 16 bit dividend is present in #7100,
#7101 and the 16 bit divisor is held in #7102, #7103. On return, the
two byte quotient is available in the two locations #7104, #7105. The
two byte remainder, if any, is available in the two bytes labelled
'temp' (#7106, #7107).

Example 10.5 Unsigned 16 bit division

Hisoft GENA3.1 Assembler. Page 1.

Pass 1 errors: 00

10 {UNSIGNED 16 BIT DIVISION
7000 20 begin: EQU #7000
7100 30 top: EQU begin+#100
7100 40 number: EQU top
7102 50 div: EQU top+2
7104 60 quot: EQU top+4
7106 70 temp: EQU top+6
7000 80 ORG begin
7000 210000 90 LD HL,0
7003 ED4B0071 100 LD BC,(number)
7007 ED5B0271 110 LD DE,(div)
700B 78 120 LD A,B
7OOC 0610 130 LD B,16
700E CB21 140 shift: SLA C
7010 17 150 RLA
7011 ED6A 160 ADC HL, HL
7013 ED52 170 SBC HL, DE
7015 3803 180 JR C,skip
7017 OC 190 INC C
7018 1801 200 JR over
701A 19 210 skip: ADD HL, DE
7O1B 1OF1 220 over: DJNZ shift
7O1D 47 230 LD B,A
701E ED430471 240 LD (quot),BC
7022 220671 250 LD (temp),HL
7025 C9 260 RET

Pass 2 errors: 00

Table used: 114 -from 145

Example 10.5 is similar to the previous 8 bit example, so a separate
flowchart or detailed line by line treatment is scarcely justified. It is
sufficient to point out the following differences between the two
programs:

1 Two bytes are now needed for the divisor instead of one. The IDE
register pair is used temporarily to hold and manipulate the divisor.
2 In the 8 bit example, we shifted the dividend bitwise into the
accumulator. This time, the HL register pair is used instead of the

Unsigned 16 bit division 133

accumulator to accommodate 16 bit arithmetic dividend. The ADC
HL,HL instruction acts as a 16 bit rotate left through carry and is
equivalent to an RL L instruction followed by an RL H. The
accumulator is borrowed temporarily as the low byte of the dividend
within the loop since RLA is more efficient than RL B, especially
when we consider the loop is executed 16 times. This refinement is
set up in line 120 and switched back in line 230.

Note that the carry will always be clear, prior to the SBC HL,DE
instruction in line 170.

16 bit signed division

When signs of numbers must be allowed for, division subroutines
start to become nasty. Earlier we covered the well known sign rules
for multiplying two signed numbers together. From these rules, we
have to work out a way to apply them to a division program.
Fortunately, apart from a change of terms, we can use a similar
method to the one described earlier. It employs a spare register, say,
the accumulator, as a sign information flag. The accumulator is
initially set to contain zero. The method operates as follows:

If the dividend is negative, increment register A.
If the divisor is negative, decrement register A.
The result will be as shown in the following table:

Dividend Divisor Accumulator (flag)

+ + 0
- + 1
+ - -1
— — 0

After the dividend and divisor have been tested, it is clear from the
table that the accumulator will have a value of zero if the result is
positive and non zero if negative. The above test is carried out
before starting the division process. The accumulator is then saved
on the stack for later use with a PUSH AF instruction. If either the
dividend and/or the divisor is found to be negative, the two's
complement is taken so that the subsequent division process can be
carried out on positive numbers. After the division process the
accumulator is retrieved from the stack with a POP AF instruction.
Depending on the value present in the accumulator, the quotient is
left in positive form (if A is zero) or converted to the two's
complement negative form (if A is non zero). The flowchart, shown
overleaf in Figure 10.4, illustrates the underlying strategy.

134 Multiplication and division

Fig. 10.4 16 bit signed division

16 bit signed division 135

As in multiplication, it is always best to decide on a standard bit
length when catering for signed integers. In this case, it means that
the dividend, divisor and quotient are standardised to a length of 16
bits. It is, of course, possible to arrange division programs for

136 Multiplication and division

handling mixed bit lengths but it can lead to confusing coding which
is alien to good structure.

The full listing for 16 bit signed division is given in Example 10.6
and can be called as a subroutine from within other machine code
programs. Before calling, the two byte dividend must be present in
addresses #7100 (low byte) and #7101 (high byte) and the divisor in
addresses #7102 (low byte) and #7103 (high byte). On return from
the routine, the two byte quotient will be present in #7104 (low
byte) and #7105 (high byte). The remainder, if any, will be in #7107
(low byte) and #7108 (high byte). The error flag, location #7106,
must be checked before relying on the quotient's validity. A value of
zero indicates the quotient is valid whereas a value of #FF indicates
a division by zero error.

Example 10.6 Signed 16 bit division

Hisoft GENA3.1 Assembler. Page

OO

1.

Pass 1 errorsi

10 ;SIGNED 16 BIT DIVISION
7000 20 begin: EQU #7000
7100 30 top: EQU begin+#100
7100 40 number: EQU top
7102 50 div: EQU top+2
7104 60 quot: EQU top+4
7106 70 flag: EQU top+6
7107 80 remains EQU top+7
7000 90 ORG begin
7000 ED5B0271 1OO LD DE,(div)
7004 7A 110 LD A,D
7005 B3 120 OR E
7006 2859 130 JR Z,error
7008 97 140 SUB A
7009 CB7A 150 BIT 7,D
700B 2807 160 JR Z,second
700D 3C 170 INC A
700E 210000 180 LD HL,0
7011 ED52 190 SBC HL, DE
7013 EB 200 EX DE, HL
7014 ED4B0071 210 second: LD BC,(number)
7018 CB78 220 BIT 7,B
701A 2809 230 JR Z,start
701C 3D 240 DEC A
7010 210000 250 LD HL,0
7020 A7 260 AND A
7021 ED42 270 SBC HL,BC
7023 4D 280 LD C,L
7024 44 290 LD B,H
7025 F5 300 start: PUSH AF
7026 210000 310 LD HL,0
7029 78 320 LD A,B
702A 0610 330 LD B, 16
702C CB21 340 shift: SLA C

16 bit signed division 137

702E 17 350 RLA
702F ED6A 360 ADC HL, HL
7031 ED52 370 SBC HL, DE
7033 3803 380 JR C,skip
7035 OC 390 INC C
7036 1801 400 JR over
7038 19 410 skips ADD HL, DE
7039 1OF1 420 over: DJNZ shift
703B 47 430 LD B,A
703C 3A0171 440 LD A,(number+1)
703F CB7F 450 BIT 7,A
7041 2807 460 JR Z,rempos
7043 EB 470 EX DE, HL
7044 210000 480 LD HL,0
7047 A7 490 AND A
7048 ED52 500 SBC HL, DE
704A 220771 510 rempos: LD (remain),HL
704D Fl 520 POP AF
704E A7 530 AND A
704F 2807 540 JR Z,plus
7051 210000 550 LD HL,0
7054 ED42 560 SBC HL,BC

Hisoft GENA3.1 Assembler. Page 2.

7056 4D 570 LD C.L
7057 44 580 LD B,H
7058 ED43O471 590 plusi LD (quot), BC
7O5C 97 600 SUB A
705D 320671 610 finish! LD (flag),A
7060 C9 620 RET
7061 3EFF 630 error: LD A,#FF
7063 18F8 640 JR finish

Paas 2 errorsi 00

Table used: 201 -from 500

The line by line break down is as follows:
Lines 20 to 80: assign labels to locations.
Line 90: forces assembly at address #7000.
Lines 100 to 130: check if the divisor is zero and, if so, causes a branch
to 'error'.
Line 140: initialises the sign information flag (accumulator) to zero.
Note that SUB A is a quick method of clearing the accumulator.
Lines 150 to 200: check sign bit of divisor (bit 7 of register D). If the
divisor is positive, a branch is made to 'second'. If negative, the
two's complement of the divisor is formed and the accumulator
incremented. There is no need to clear the carry status flag before
the SBC HL,DE instruction since it will have been cleared by the
SUB A instruction in line 140.
Lines 210 to 290: check the sign bit of the dividend (bit 7 of register B).
If positive, a branch is made to 'start'. If negative, the two's
complement of the dividend is formed and the accumulator
decremented.

138 Multiplication and division

Line 300: pushes the sign information flag (accumulator) on the stack
for later use.
Lines 310 to 420: perform the division operation. Because division is
carried out on positive values for dividend and divisor, the coding is
similar to lines 90 to 130 in Example 10.5 which dealt with unsigned
16 bit division.
Lines 440 to 500: test the sign of the dividend. If positive then the
remainder will be left in positive form. If negative, the two's
complement of the remainder is taken.
Line 510: the remainder, left in the HL register pair, is stored directly
in memory starting at the location labelled 'remain'.
Line 520: the sign information data, previously saved on the stack, is
restored to the accumulator.
Line 530: updates the status flags, without altering the accumulator
contents, by using AND A. (The POP instruction does not update
any flags.)
Lines 540 to 580: tests the accumulator for zero. If zero, a branch is
made to 'plus'. If non zero, the two's complement of the quotient is
taken.
Line 590: stores the quotient, currently in the register pair BC, in
address #7104 and #7105.
Lines 600 and 620: clear the error flag, indicating the division is valid
before returning.
Lines 630 and 640: set the error flag to #FF as a division by zero signal
before returning. Later interrogation of this location, #7106, can
indicate whether or not division by zero has occurred.

Summary

1 The multiplicand is one number, the multiplier is the other and
the result is the product.
2 Like signs give positive, unlike signs give a negative result.
3 Using a constant bit length simplifies a multiplication program.
4 Multiplication is carried out by a combination of left shift and
addition.
5 Signed multiplication is best carried out on positive numbers,
leaving the sign of the product until last.
6 The four components of division are the dividend, the divisor,
the quotient and the remainder.
7 Division is carried out by a combination of left shift and
subtraction.

Input and output 11

Input and output routines, which enable the user to enter and
display string and numerical data in a user friendly form, are now
described.

Nearly all data input at a computer keyboard is entered as a
character string and temporarily stored in a section of memory
called a buffer. Whether the characters entered into the buffer are
left in string form or converted to numeric data and stored
elsewhere is the task of an input routine. It follows that a string
input routine is a common building brick of all keyboard input,
whether string or numerical.

String input routines

Although it is possible to delve into the BASIC interpreter to find a
ready made input routine, it is far more rewarding to construct your
own. In any case you would have to conform to the general purpose
philosophy adopted by the original software design team. For
example, we may not necessarily require strings to be limited to 255
characters. However, a few pointers can be gained by examining the
following attributes of a typical BASIC string input routine:

(a) An input prompt character such as a cursor or question mark.
(b) A method of reflecting the characters input to the screen.
(c) A method of back deleting characters, both from the screen and
the keyboard buffer, in the event of mistyped characters. The
DELETE key is normally used for this purpose.
(d) A physical and audible limit on back deletion, no further than
the first character input.
(e) A similar limit on the maximum allowed number of characters.
A limit of 255 is normally allowable in BASIC but this could be
increased or decreased if we write our own input routines.
(f) The receipt of an ENTER key code terminates the string input.

A flow chart incorporating all these factors is shown in Figure 11.1. 139

140 Input and output

Fig 11.1 Flow chart of a string input routine

String input routines 141

The flow chart can be coded fairly efficiently by making use of a
few text VDU control codes and firmware routines. Program 11.1 is
the result. At various points in the program breakdown, it may be
necessary to refer back to Chapter 7 which deals with commonly
used firmware routines.

Program 11.1 String input routine

Hisoft GENA3.1 Assemb1er. Page 1.

Pass 1 errors: 00

10 ;STRING INPUT ROUTINE
7000 20 begin: EQU #7000
7100 30 top: EQU begin+#100
7100 40 length: EQU top
7101 50 string: EQU top+1
BB18 60 WAITKY: EQU #BB18
BB5A 70 OUTPUT: EQU «BB5A
BBB1 80 CURON: EQU *BB81
7000 90 ORG begin
7000 CD81BB 100 CALL CURON
7003 3E3F 110 LD A,«3F
7005 CD5ABB 120 CALL OUTPUT
7008 210171 130 LD HL,string
700B 0600 140 LD B,0
700D CD18BB 150 loop: CALL WAITKY
7010 FE7F 160 CP #7F
7012 2019 170 JR NZ,accept
7014 78 180 LD A,B
7015 A7 190 AND A
7016 280E 200 JR Z.bell
7018 3E08 210 LD A,8
701A CD5ABB 220 CALL OUTPUT
701D 3E10 230 LD A,16
701F CD5ABB 240 CALL OUTPUT
7022 05 250 DEC B
7023 2B 260 DEC HL
7024 18E7 270 JR loop
7026 3E07 280 bell: LD A,7
7028 CD5ABB 290 CALL OUTPUT
702B 18E0 300 JR loop
702D 77 310 accept: LD <HL),A
7O2E FEOD 320 CP #0D
7030 280E 330 JR Z,ex i t
7032 4F 340 LD C,A
7033 78 350 LD A,B
7034 FEFF 360 CP #FF
7036 28EE 370 JR Z.bell
7038 79 380 LD A.C
7039 CD5ABB 390 CALL OUTPUT
703C 04 400 INC B
703D 23 410 INC HL
703E 18CD 420 JR loop
7040 78 430 exit: LD A.B

142 Input and output

7041 320071 440
7044 C9 450

Pass 2 errors: OO

Table used: 145 from

LD (length),A
RET

172

Breakdown of Program 11.1

The purpose of Program 11.1 is to obtain string characters from the
user, via the keyboard, reflect them onto the screen and store them
in a buffer area along with a string length byte. All the features
mentioned in (a) to (f) above are incorporated.
Lines 20 to 50: assign labels to the locations used. The string itself is
stored in a buffer, up to 255 bytes long, starting at address #7101.
This can of course be altered to suit your requirements. The length
of the string is placed in location #7100.
Lines 60 to 80: assign labels to the firmware routines used. Chapter 7
gives more details of these. The labels used in lines 60 to 80 are
abbreviations for KM WAIT KEY, TXT OUTPUT, and TXT CUR
ON respectively.
Line 90: is the ORG assembler directive which forces assembly at
address #7000.
Line 100: calls the KM CUR ON firmware routine which places the
cursor on the screen.
Lines 110 to 120: output to the screen a '?' character to act as an input
prompt.
Lines 130 to 140: initialise the string buffer pointer, register pair HL,
and set the byte counter, register B, to zero.
Line 150: is the start of the main input loop extending to line 420. A
character, entered at the keyboard, is read into the accumulator.
Lines 160 to 170: The accumulator is checked for the delete key code
#7F. If the code is not #7F then a branch is made to 'accept'.
Lines 180 to 200: check the byte counter for zero. If zero a branch is
made to 'bell' as a warning.
Lines 210 to 220: output text VDU code 8 named BS which makes the
current cursor position legal. They then move the cursor left one
character.
Lines 230 to 240: output text VDU code 16, named DLE, which makes
the current cursor position legal and clears it to the current paper
ink. Note that lines 210 to 240 in conjunction perform a single
backspace delete operation on the screen.
Lines 250 to 260: decrement both the byte counter and the string
buffer pointer. This is so the deleted character on the screen above is
also effectively cleared from the buffer area.

Breakdown of Program 11.1 143

Line 270: branches back to 'loop' for the next character from the
keyboard.
Lines 280 to 300: output text VDU code 7 named BEL which makes a
short audible beep. The program then branches back to 'loop' for the
next character.
Line 310: stores the character, present in the accumulator, in the
current buffer position using implied addressing.
Lines 320 to 330: check if the current character is a carriage return
('ENTER' key code #0D) and if so terminate the routine by a branch
to 'exit'.
Line 340: temporarily stores the accumulator contents in register C so
that the accumulator can be used for other purposes. The contents
are later replaced in the accumulator in line 380.
Lines 350 to 370: check if the byte counter has reached the set limit of
#FF. If so, a branch is made to 'bell' as a warning. The limit can be
reduced to less than #FF if required. If strings longer than 255
characters are needed then a register pair, say DE, can be used as
the byte counter.
Lines 380 to 390: output the current character on to the screen.
Lines 400 to 420: increment both the byte counter and the string
buffer pointer before a branch is made back to 'loop' for the next
character.
Lines 430 to 450: store the byte counter or string length byte in
memory and returns control to the calling program.

Notes
Once the string is present in the buffer area it can be moved,
including its specific length byte, to any part of memory for storage
by the main program. Alternatively we could append a #0D
character to delimit different strings in memory. When handling a
lot of strings access tables would be important. An array or
contiguous list can be built up by storing the actual strings
sequentially in memory and setting up an access table consisting of
three byte groups. The first byte could be string length and the
second and third bytes the string address, low byte and high byte
respectively. A simple machine code filing program could be set up
in this way.

String output

This is much simpler to perform and is more or less the reverse of
the previous operation. We assume a string has been moved to an
arbitrary buffer area, starting at say the location labelled 'string'
(#7101), and it is required to print it out on the screen. The length of
the string is assumed to be present in the location labelled 'length'
(#7100). The simple process hardly justifies a flow chart. Instead,
just an example listing is given.

144 Input and output

Program 11.2 String output routine

Hisoft GENA3.1 Assembler. Page 1.

Pass 1 erroras 00

10 (STRING OUTPUT ROUTINE
7000 20 begin: EQU #7000
7100 30 top: EQU begin+#100
7100 40 length: EQU top
7101 50 string: EQU top+1
BB5A 60 OUTPUT: EQU #BB5A
7000 70 ORG begin
7000 210171 80 LD HL,string
7003 3A0071 90 LD A,(length)
7006 47 100 LD B,A
7007 7E 110 out: LD A,(HL)
7000 CD5ABB 120 CALL OUTPUT
7OOB 23 130 INC HL
700C 10F9 140 DJNZ out
700E C9 150 RET

Paa* 2 errorss 00

Tabla used: 84 -from 128

Breakdown of Program 11.2

Lines 20 to 70: set up the labelled locations as mentioned above.
Line 80: loads the register pair HL with the start address of the
chosen string buffer area.
Lines 90 to 100: load the byte counter, B register, with the string
length byte.
Lines 110 to 140: output the string characters in a loop fashion using
implied addressing.
Line 150: returns control to the calling program.

Text output

Literal text output is a common requirement. In BASIC we simply
write a line of the type:

PRINT 'The elephants are coming'

in the body of the program. When in assembly language it is often
convenient to place all literal text strings at the foot of a program as
you would DATA statements in BASIC. With assembly language,
we have the added advantage of using labels to distinguish between
different strings or messages.

With the HiSoft DEVPAC assembler, literal strings can be
assembled and stored in memory with the DEFM assembler
directive. For example:

DEFM 'The elephants are coming'

Text output 145

will, on assembly, place the ASCII codes for each character of the
above string in memory. Using labels to distinguish different
messages we could well have:

first: DEFM 'The elephants are coming'
second: DEFM 'the elephants have arrived'
third: DEFM 'My leg is broken'
fourth: DEFM 'I hope the elephants will go

A method is needed to distinguish a particular message in the list
for printing to the screen. Program 11.3 is an example of how this
can be done in practice and is split into three modules. The first
group of instructions is simply an example of how to specify which
message to print and calls the 'print' subroutine, lines 160 to 280.
In a large program, you would only print the selected message. The
second module prints out the specified message using implied
addressing. The third modiile is the list of labelled DEFM assembler
directives containing the messages themselves. Notice the termin
ation characters used at the end of the strings. They each have a
specific meaning within the print subroutine and must be included.
The ';' character terminator is used to specify 'the follow on' of text.
That is to say no line feeds or spaces are placed after the message. In
fact the ';' character is used in much the same way as it is in BASIC
PRINT statements with the exception that it is placed within, rather
than outside, the quotes. The ']' character is the one chosen to signal
a new line. Other characters can be used for this purpose, by
changing lines 170 and 190.

Program 11.3 Text output routine

Hisoft 6ENA3.1 Assembler. Page 1.

Pass 1 errors: OO

10 5 TEXT OUTPUT ROUTINE
7000 20 begin: EQU #7000
BB5A 30 OUTPUT : EQU #BB5A
7000 40 ORB begin

50
7000 213370 60 LD HL,first
7003 CD1970 70 CALL print
7006 214570 80 LD HL,second
7009 CD1970 90 CALL print
700C 215770 1OO LD HL,third
700F CD197O no CALL print
7012 216970 120 LD HL,fourth
7015 CD1970 130 CALL print
7018 C9 140 RET

150 i
7019 7E 160 print: LD A,(HL)
701A FE3B 170 CP 111 ••

146 Input and output

701C 2814 180 JR Z,ex i t
701E FE5D 190 CP "3"
7020 2806 200 JR Z,newlin
7022 CD5ABB 210 CALL OUTPUT
7025 23 220 INC HL
7026 18F1 230 JR print
7028 3E0D 240 newlin: LD A,«0D
7O2A CD5ABB 250 CALL OUTPUT
702D 3E0A 260 LD A,#0A
702F CD5ABB 270 CALL OUTPUT
7032 C9 280 exit: RET

290 5
7033 54484953 300 •First: DEFM "THIS IS MESSAGE lj"
7045 54484953 310 second: DEFM "THIS IS MESSAGE 23"
7057 54484953 320 third: DEFM “THIS IS MESSAGE 33”
7069 54484953 330 fourth: DEFM "THIS IS MESSAGE 43”

Pass 2 errorss 00

Table used: 124 -From 163

Breakdown of Program 11.3

Line 60: loads the HL register pair with the address of the message
labelled 'first' at the foot of the program.
Line 70: calls the print subroutine which displays the message 'first'
if HL is loaded as above.
Lines 80 to 130: similarly print out the other messsages by loading HL
with the appropriate address and calling the print routine.
Line 160: starts the print subroutine. Character codes are loaded one
at a time into the accumulator in a loopwise fashion using implied
addressing.
Lines 170 to 180: force a branch to 'exit' if a ';' character code is
detected in the accumulator.
Lines 190 to 200: force a branch to 'newlin' if a ']' character is detected
in the accumulator.
Line 210: uses the firmware routine TXT OUTPUT to place the
character on the screen at the current cursor position.
Lines 220 to 230: increment the HL string character pointer and a
branch back to 'print' is effected to get the next character of the
message.
Lines 240 to 270: output, via the firmware routine TXT OUTPUT,
the text VDU codes #0D and #0A. The #0D code, CR, brings the
cursor back to the beginning of current line and the code #0A, LF,
is a line feed. This section is only executed if the string is terminated
with a ']' character, detected in line 200.
Lines 300 to 330: are the labelled text messages in string form. Note
that because of the ']' character in line 300 the screen output will be
as follows:

Breakdown of Program 11.3 147

THIS IS MESSAGE 1THIS IS MESSAGE 2
THIS IS MESSAGE 3
THIS IS MESSAGE 4

No line feed is specified after the first message.

Decimal and hexadecimal input routines

It is a comparatively easy task to input ASCII characters and store
them as strings in memory locations. When we wish to enter actual
numbers it becomes a little more difficult. The method normally
adopted is to use a string input routine to get the number, in ASCII
character form, into a temporary buffer area. The buffer contents
can then be validated and converted to the binary equivalent at a
later stage. Throughout the examples given, we will convert all
input to 16 bit signed binary. The routine could easily be extended
along the same lines to handle 32 bit or more signed integers if
required.

Decimal input
The most user friendly way to input numbers at the keyboard is in
decimal form. Assuming the characters have been entered at the
keyboard and placed in a buffer area, it is then necessary to convert
the ASCII codes, representing the number, into signed 16 bit binary.
The algorithm which follows is fairly simple:

(a) Clear a 16 bit register pair, say, DE.
(b) Multiply the contents of the DE register pair by 10.
(c) Starting from the most significant end, convert next decimal
digit from its ASCII code form to binary by subtracting hex
30.
(d) Add the above result, in (c), to the DE register pair.
(e) Branch back to (b) until all characters are processed.
(f) The resulting number in DE is the 16 bit binary representation
of the ASCII string.

For example, if the characters 5694 are to be converted:

Cycle ASCII ASCII-#30 DE contents

1 #35 5 (0xl0)+5=5
2 #36 6 (5xl0)+6=56
3 #39 9 (56xl0)+9=569
4 #34 4 (569xl0)+4=5694

The above, although workable, is an oversimplification; we also
need to take into account such factors as validation of characters,

148 Input and output

sign and overflow. A worthwhile decimal input routine should have
at least the following extras:

1 Detect and process a leading sign.
2 Handle an optional leading '+' sign.
3 Detect overflow conditions and set an error flag accordingly.
With 16 bit signed binary the acceptable range will be —32768 to
+32767.
4 Detect invalid characters entered and set an appropriate error
flag. The characters 0123456789—+ are the only ones acceptable.

Program 11.4 is an example which incorporates the above
features. The 16 bit binary number will be stored in locations #7100
(low byte) and #7101 (high byte). To test the program these
locations can be PEEKed from BASIC.

Program 11.4 Decimal input routine (16 bit)

Hisoft GENA3.1 Assemb1er. Page 1.

Pass 1 errors! 00

10 {DECIMAL INPUT ROUTINE
20 ;(decimal to signed 16 bit binary)

7000 30 begini EQU #7000
7100 40 tops EQU begin+#100
7100 50 number: EQU top
7102 60 -Flags EQU top+2
7103 70 atackps EQU top+3
7105 80 atrings EQU top+5
BB18 90 WAITKYs EQU #BB18
BB5A 100 OUTPUTS EQU #BB5A
BB81 110 CURONs EQU «BB81
7000 120 ORG begin
7000 ED730371 130 LD (stackp),SP
7004 CD81BB 140 CALL CURON
7007 3E3F 150 LD A,#3F
7009 CD5ABB 160 CALL OUTPUT
700C 210571 170 LD HL,string
700F 0600 180 LD B,0
7011 CD18BB 190 loops CALL WAITKY
7014 FE7F 200 CP #7F
7016 2019 210 JR NZ,accept
7018 78 220 LD A,B
7019 A7 230 AND A
701A 280E 240 JR Z.bell
701C 3E08 250 LD A,8
701E CD5ABB 260 CALL OUTPUT
7021 3E10 270 LD A,16
7023 CD5ABB 280 CALL OUTPUT
7026 05 290 DEC B
7027 2B 300 DEC HL
7028 18E7 310 JR loop
702A 3E07 320 bells LD A,7

Program 11.4 Decimal input routine (16 bit) 149

702C CD5ABB 330 CALL OUTPUT
7O2F 18E0 340 JR loop
7031 77 350 accept: LD (HL),A
7032 FEOD 360 CP #0D
7034 280E 370 JR Z,ex i t
7036 4F 380 LD C,A
7037 78 390 LD A.B
7038 FEFF 400 CP #FF
703A 28EE 410 JR Z.bell
703C 79 420 LD A,C
703D CD5ABB 430 CALL OUTPUT
7040 04 440 INC B
7041 23 450 INC HL
7042 18CD 460 JR loop
7044 OEOO 470 exits LD C,0
7046 HOOOO 480 LD DE,0
7049 210571 490 LD HL,string
704C 7E 500 LD A,(HL)
704D FE2B 510 CP II+.11

704F 2807 520 JR Z.skip
7051 FE2D 530 CP II __ II

7053 2004 540 JR NZ .change
7055 3E80 550 LD A, *80
7057 4F 560 LD C.A

Hisoft GENA3.1 Assemb1er. Page 2.

7058 23 570 skip: INC HL
7059 E5 580 change: PUSH HL
705A 7E 590 LD A,(HL)
705B FEOD 600 CP #0D
705D 282E 610 JR Z.done
705F D630 620 SUB #30
7061 3846 630 JR C,error
7063 FEOA 640 CP 10
7065 3042 650 JR NC,error
7067 F5 660 PUSH AF
7068 210000 670 LD HL,0
706B 3E0A 680 LD A,10
706D 0608 690 LD B.B
706F 29 700 shift:; ADD HL, HL
7070 CB7C 710 BIT 7,H
7072 2031 720 JR NZ,ovf1ow
7074 17 730 RLA
7075 3005 740 JR NC,over
7077 19 750 ADD HL, DE
7078 CB7C 760 BIT 7,H
707A 2029 770 JR NZ,ovflow
707C 10F1 780 over: DJNZ shift
707E Fl 790 POP AF
707F 85 800 ADD A.L
7080 5F 810 LD E,A
7081 3EOO 820 LD A,0
7083 8C 830 ADC A,H
7084 57 840 LD D,A
7085 CB7A 850 BIT 7,D
7087 201C 860 JR NZ,ovflow

150 Input and output

7089 El 870 POP HL
708A 23 880 INC HL
70BB 18CC 890 JR change
708D CB79 900 done: BIT 7,C
708F 2807 910 JR Z, bypass
7091 210000 920 LD HL,0
7094 A7 930 AND A
7095 ED52 940 SBC HL, DE
7097 EB 950 EX DE, HL
7098 ED530071 960 bypass: LD (number),DE
7O9C 97 970 SUB A
709D 320271 980 finish: LD (flag),A
70A0 ED7B0371 990 LD SP,(stackp)
70A4 C9 1000 RET
70A5 3EFF 1010 ovflow: LD A, (IFF
70A7 18F4 1020 JR finish
70A9 3E01 1030 error: LD A,1
70AB 1BF0 1040 JR finish

Pass 2 errors: 00

Table used: 278 from 500

Breakdown of Program 11.4

Lines 20 to 120: set up the familiar label assignments and assembler
directives.
Line 130: saves the current value of the stack pointer in memory.
This will be reinstated later in line 990.
Lines 140 to 460: are identical to the string input routine Program
11.1.
Lines 470 to 490: initialise the registers. The C register is used to store
the sign information of the number input which is set to zero for
positive and #80 for negative. The DE register pair, set initially to
zero, is used to contain the 16 bit binary number as it builds up. The
HL register pair is loaded with the address of the temporary buffer
area where the input string is stored.
Lines 500 to 520: load the first string character code into the
accumulator. If it is a '+' sign then a branch to 'skip' is made.
Lines 530 to 540: if it is not a '-' sign then a branch to 'change' is
forced.
Lines 550 to 560: set register C to #80 as a flag for later use.
Line 570: increments the data pointer, HL, to the first numerical
character.
Line 580: pushes the data pointer on the stack so as to free HL for
other duties.
Lines 590 to 610: check if the current string character, loaded into the
accumulator, is a carriage return (#0D). If so the loop is terminated
by a branch to 'done'.
Lines 620 to 630: converts the ASCII code of the decimal digit to
binary by subtracting 30 hex. If the carry is set after the subtraction

Breakdown of Program 11.4 151

then the ASCII code must have been less than #30 so a branch to
'error' is performed.
Lines 640 to 650: check if the accumulator contents is less than 10. If
not a branch to 'error', indicating an invalid character, is performed.
Line 660: saves the accumulator, containing the current decimal
digit, on the stack in order to free the accumulator for other tasks.
Lines 670 to 780: contain a simple multiplication by 10 algorithm of
the type discussed in chapter 10. Note that line 700 is equivalent to a
16 bit shift left. The DE register pair, holding the building 16 bit
number, is multiplied by 10. The resulting product is in the HL
register pair. Twice, the sign bit of the product is checked. If set to
'1' then overflow is detected and a branch to 'ovflow' is made.
Lines 790 to 840: restore the decimal digit, pushed on the stack in line
660. It is then added to the register pair, HL, and stored back in the
register pair DE for the next cycle of the loop.
Lines 840 to 860: check for overflow after the previous addition.
Lines 870 to 890: restore the current data pointer, previously saved
on the stack in line 580, increment it to the next string character and
force a branch back to 'change' to repeat the process starting at line
580.
Lines 900 to 950: after exit from the loop, the sign bit of the C register
is checked. This was used earlier to save the sign information of the
number input. If the sign bit (bit 7) is zero then the result is positive
and a branch to 'bypass' is performed. If set to a '1' then the two's
complement of DE is taken as the negative representation.
Lines 960 to 980: store the 16 bit number, present in the DE register
pair, into memory and clear the location #7102 labelled 'flag' to
zero. This indicates an error free execution.
Line 990: restores the stack pointer contents which prevailed at the
start of the program. This is a precaution taken against possible
error conditions, in which case useless information may be left on
the stack.
Lines 1010 to 1020: set the location 'flag' to #FF indicating overflow.
Lines 1030 to 1040: set the location 'flag' to '1' indicating invalid input
characters. The error flag can be interrogated on return and the
input validity checked.

Hexadecimal input

In some programs a hexadecimal input routine may be required.
The method used in Program 11.5 is similar to that adopted in the
previous example. The algorithm is outlined below:

(a) Clear a 16 bit register pair, say, DE.
(b) This time, multiply the contents of the DE register pair by 16.
(c) Starting from the most significant end, convert next hexa
decimal digit from its ASCII code form to binary. This is a little more
complex than in the decimal example.

152 Input and output

(d) Add the above result, in (c), to the DE register pair.
(e) Branch back to (b) until all characters are processed.
(f) The resulting number in DE is the 16 bit binary representation
of the ASCII string.

For example, if the characters 1AD3 are to be converted.

Cycle ASCII Hex digit DE contents

1 #31 1 (OX16)+1 = 1
2 #41 A (1X16)+A=1A
3 #44 D (1Ax16)+D=1AD
4 #33 3 (1ADx16)+3=1AD3

The conversion from ASCII to decimal is simple. Just subtract 30
hex. The conversion of ASCII to hexadecimal digits is more complex
due to the gap in the ASCII codes between 9 and A. See the
program 11.5 breakdown for one method of performing this. We
need not bother about sign since this will be implied from the hex
digits input. For example - 32768 will be entered as &8000 and +
32767 will be entered as &7FFF. Again overflow and character
validity should be checked.

A 16 bit hexadecimal input routine should perform at least the
following actions:

1 Handle an optional leading prefix.
2 Detect overflow conditions and set an error flag accordingly.
With 16 bit signed binary the acceptable range will be —32768 (8000
hex) to +32767 (7FFF hex).
3 Detect invalid characters entered and set an error flag accord
ingly. The characters 0123456789ABCDEF& are the only ones
acceptable.

Program 11.5 is an example which incorporates all the above
features. The 16 bit binary number will be stored in locations #7100
(low byte) and #7101 (high byte). To test the program these
locations can be PEEKed from BASIC.

Program 11.5 Hexadecimal input routine (16 bit)

Hisoft BENA3.1 Assembler. Page 1.

Paa* 1 error*: OO

10
20

jHEXADECIMAL
;<16 bit with

INPUT ROUTINE
i validation)

7000 30 begin: EQU •7000
7100 40 top: EQU begin+ttlOO
7100 50 number: EQU top

Program 11.5 Hexadecimal input routine (16 but) 153

7102 60 flags EQU top+2
7103 70 •tring: EQU top+3
BB18 80 WAITKY: EQU «BB18
BB5A 90 OUTPUT: EQU #BB5A
BB81 100 CURON: EQU #BB81
7000 110 ORG begin
7000 CDSIBB 120 CALL CURON
7003 3E3F 130 LD A,#3F
7005 CD5ABB 140 CALL OUTPUT
7008 210371 150 LD HL,string
7OOB 0600 160 LD B,0
700D CD18BB 170 loop: CALL WAITKY
7010 FE7F 180 CP #7F
7012 2019 190 JR NZ,accept
7014 78 200 LD A,B
7015 A7 210 AND A
7016 280E 220 JR Z,bell
7018 3E08 230 LD A,8
701A CD5ABB 240 CALL OUTPUT
701D 3E10 250 LD A,16
701F CD5ABB 260 CALL OUTPUT
7022 05 270 DEC B
7023 2B 280 DEC HL
7024 18E7 290 JR loop
7026 3E07 300 bel 1: LD A,7
7028 CD5ABB 310 CALL OUTPUT
7O2B 18E0 320 JR loop
702D 77 330 accept: LD (HL),A
702E FEOD 340 CP #0D
7030 280E 350 JR Z,ex i t
7032 4F 360 LD C,A
7033 78 370 LD A,B
7034 FEFF 380 CP #FF
7036 28EE 390 JR Z,bell
7038 79 400 LD A,C
7039 CD5ABB 410 CALL OUTPUT
703C 04 420 INC B
703D 23 430 INC HL
703E 18CD 440 JR loop
7040 11OOOO 450 exit: LD DE,0
7043 210371 460 LD HL,string
7046 7E 470 LD A,(HL)
7047 FE26 480 CP "St"
7049 2001 490 JR NZ,getchr
704B 23 500 INC HL
704C 7E 510 getchr: LD A,(HL)
704D FEOD 520 CP #0D
704F 2823 530 JR Z,done
7051 FE47 540 CP #47
7053 302C 550 JR NC,error
7055 D630 560 SUB #30

Hi soft GENA3.1 Assemb1er. Page 2.

7057 3828 570 JR C,error
7059 FEOA 580 CP 10
705B 3806 590 JR C,over

154 Input and output

705D D607 600 SUB 7
7O5F FEOA 610 CP 10
7061 381E 620 JR C,error
7063 0604 630 over: LD B,4
7065 CB23 640 shift: SLA E
7067 CB12 650 RL D
7069 3812 660 JR C,ovf1ow
706B 10F8 670 DJNZ shift
706D 83 680 ADD A,E
706E 380D 690 JR C,ovflow
7070 5F 700 LD E,A
7071 23 710 INC HL
7072 18D8 720 JR getchr
7074 ED530071 730 done: LD (number),DE
7078 97 740 SUB A
7079 320271 750 finish: LD (flag),A
707C C9 760 RET
707D 3EFF 770 ovflow: LD A,#FF
707F 18F8 780 JR finish
7081 3E01 790 error: LD A,1
7083 18F4 800 JR finish

Phi 2 errors: 00

Table UBtdl 241 -From 500

Breakdown of Program 11.5

Lines 120 to 440: are identical to the string input routine Program 11.1
Lines 450 to 460: perform initialisation of registers. The DE register
pair, set initially to zero, is used to contain the 16 bit binary number
as it is built up. The HL register pair is loaded with the address of
the temporary buffer area where the input string is stored.
Lines 470 to 490: load the first string character code into the
accumulator. If it is '&' then a branch to 'getchr' is performed.
Line 500: increments the data pointer, HL, to the first hexadecimal
character.
Lines 510 to 530: check if the current string character, loaded into the
accumulator, is a carriage return (#0D). If so the loop is terminated
by a branch to 'done'.
Lines 540 to 550: check that the ASCII code of the current character is
less than #47. If not a branch to 'error' indicates an invalid
character.
Lines 560 to 570: converts the ASCII code of the hexadecimal digit to
binary by first subtracting #30. If, after the subtraction, the carry is
set then the ASCII code must have been less than #30 so a branch to
'error' is performed.
Lines 580 to 590: check if the accumulator contents is less than 10. If
so a branch to 'over' is performed, indicating that the ASCII code
was valid and originally less than that of the character 9.
Line 600: subtracts 7 from the accumulator to compensate for the gap
between the ASCII codes mentioned earlier.

Breakdown of Program 11.5 155

Lines 610 to 620: again check if the accumulator contents is less than
10. If so then a branch to 'error' is forced because the original ASCII
code must have been one of the characters in the gap between that
for 9 and A.
Lines 630 to 670: are a simple multiplication of the DE register pair
contents by 16. All this entails is simply a shift left 4 bits. (Remember
that shifting left one bit performs multiplication by two). The sign
bit of the product is checked. If set to a T then overflow is detected
and a branch to 'overflow' is forced.
Line 700: the DE register pair has been shifted left by one nybble so
the lower nybble of the E register will be vacant. The accumulator
contents, which contains the current hex digit are then placed here
by adding the accumulator to the E register.
Lines 730 to 800: are identical to those of 960 to 1040 of the previous
program with the exception of line 990. The stack is not used.

Decimal and hexadecimal output routines

In many small machine code programs we tend to rely on PEEK
commands from BASIC to display the contents of certain memory
locations. Since PEEK can only display the contents of one location,
(8 bits) we usually have to resort to quite complex lines of BASIC to
display 16 or 32 bit values such as:

PRINT PEEK(&7100)+PEEK(&7101) *256
or
PRINT HEX$(PEEK(&7100)+PEEK(&7101) * 256)

The position may of course be further complicated, in the case of
decimal output, if the sign of the number is to be taken into account
in the final output.

If we wish to have stand alone machine code programs without
resorting to BASIC then we need routines that will display the
contents of a group of locations in either decimal or hexadecimal
digits. The example programs given in this chapter are 16 bit (2
sequential locations), although the principles can easily be extended
to display 4 or more sequential bytes in memory.

Decimal output
A worthwhile decimal output routine should convert, say 16 bit,
binary numbers to decimal digits with sign detection. The routine
should output a '—' minus character prefix if negative. The
algorithm used is outlined below:

(a) Check the sign bit of the 16 bit binary number.
(b) If negative, indicated by a '1' in bit 7 of the high byte, then
two's complement the number and output a '—' minus sign.
(c) Divide the number by 10 and place the remainder on the stack.

156 Input and output

(d) Check if number has reached zero, if not branch back to (c).
(e) Withdraw remainders from stack, convert to ASCII codes by
adding 30 hex and output to screen. Note that the most significant
digit is placed on the stack last so is extracted first. (Last In First Out,
LIFO).

To output, say, the 16 bit number, 32402, the following steps
would be occur:

Cycle Number Divide by 10 Remainder

1 32402 3240 2
2 3240 324 0
3 324 32 4
4 32 3 2
5 3 0 3

For convenience we have expressed the numbers above in decimal
form although within the machine, of course, they are binary. Once
the number is reduced to zero the remainders are pulled off the
stack, converted to ASCII codes and output.

Program 11.6 is a decimal output routine and can be envisaged as
the equivalent of a 16 bit signed PEEK. Before calling the output
routine the 16 bit number is assumed transferred to locations &7100
(lowbyte) and &7101 (highbyte). However the HL register pair could
be loaded directly with the 16 bit binary number you wish to output.

Program 11.6 Signed decimal output routine (16 bit)

Hisoft GENA3.1 Assemb1er. Page 1.

Pass 1 errors: 00

10 jDECIMAL OUTPUT ROUTINE
20 1(signed 16 bit binary to decimal)

7000 30 begin: EQU #7000
7100 40 top: EQU begin+#100
7100 50 number: EQU top
BB5A 60 OUTPUT: EQU «BB5A
7000 70 ORG begin
7000 2A0071 BO LD HL,(number)
7003 CB7C 90 BIT 7,H
7005 280C 100 JR Z,start
7007 3E2D 110 LD A,
7009 CD5ABB 120 CALL OUTPUT
7OOC EB 130 EX DE, HL
700D 210000 140 LD HL,0
7010 A7 150 AND A
7011 ED52 160 SBC HL, DE
7013 OEOA 170 start: LD C,10
7015 1E00 180 LD E,O

Program 11.6 Signed decimal output routine (16 bit) 157

7017 3E00 190 divlO: LD A,0
7019 0610 200 LD B,16
701B 29 210 shift: ADD HL, HL
701C 17 220 RLA
701D B9 230 CP C
701E 3802 240 JR C,over
7020 91 250 SUB C
7021 2C 260 INC L
7022 10F7 270 overs DJNZ shift
7024 1C 280 INC E
7025 F5 290 PUSH AF
7026 7C 300 LD A,H
7027 B5 310 OR L
7028 20ED 320 JR NZ,divlO
702A 43 330 LD B,E
702B Fl 340 loop: POP AF
702C C630 350 ADD A, #30
702E CD5ABB 360 CALL OUTPUT
7031 10F8 370 DJNZ loop
7033 C9 380 RET

Pass 2 errorss 00

Table used: 119 from 500

Breakdown of Program 11.6

Lines 30 to 70: set the various assembler directives and labelled
locations.
Line 80: loads the HL register pair with the 16 bit number to be output.
Lines 90 to 100: check the sign, bit 7 of the high byte of the number,
and branch to 'start' if positive (bit 7=0).
Lines 110 to 120: output a '—' minus sign using the firmware routine
TXT OUTPUT.
Lines 130 to 160: two's complement the 16 bit binary number.
Lines 170 to 280: perform division by 10. The algorithm used has
been covered in detail in Chapter 10. Note that register E is used as a
byte counter for remainders placed on the stack in line 290.
Line 290: places remainder on the stack after division by 10.
Lines 300 to 320: check if the number has been reduced to zero by
repeated integer division by 10. If non zero then a branch is made
back to 'divlO'.
Line 300: transfers the stack byte counter to the B register so DJNZ
can be used in the output loop, lines 340 to 370.
Lines 340 to 370: withdraw the remainders from the stack, convert
the values to ASCII codes by adding 30 hex, and output the
characters using the firmware routine TXT OUTPUT.

Hexadecimal output

A hexadecimal output routine should convert, say, 16 bit binary
numbers to hexadecimal digit characters. In many ways hex output

158 Input and output

is easier to arrange than decimal. We need not worry about sign, as
this is implied. On the other hand the final looped conversion to
ASCII characters is a little more complex. The algorithm used is
outlined below:

(a) Place the least significant nybble (4 bits) of the number on the
stack. To achieve this the high nybble of the byte is first ANDed out
(set to zeros).
(b) Divide the number remaining by 16. That is shift right 4 bit
positions.
(c) Check if number has reached zero if not branch back to (a).
(d) Output a character signifying what follows are hexadecimal
characters.
(e) Withdraw nybbles from the stack convert to ASCII character
codes and output to screen. Note again that the most significant
digit is placed on the stack last so is extracted first.

As an example, suppose we want to output the 16 bit number
&A7D8. The following steps would occur:

Cycle Number Divide by 16 Stack nybble

1 A7D8 A7D 8
2 A7D A7 D
3 A7 A 7
4 A 0 A

For convenience we have expressed the numbers above in hexa
decimal form rather than binary. Once the number is reduced to
zero the nybbles are pulled off the stack, converted to ASCII codes
and the characters output.

Program 11.7 is a hexadecimal output example. Before calling the
routine, the 16 bit number is assumed transferred to locations &7100
(lowbyte) and &7101 (highbyte). However, if preferred, the HL
register pair could be loaded directly with the 16 bit binary number
you wish to output.

Program 11.7 Hexadecimal output routine (16 bit)

Hisoft GENA3.1 Assembler. Page 1.

Pass 1 errors: 00

10 jHEXADECIMAL OUTPUT ROUTINE
20 ;<16 bit binary to hex characters)

7000 30 begin: EQU #7000
7100 40 top: EQU begin*#100

Program 11.7 Hexadecimal output routine (16 bit) 159

Pa** 2 error*: 00

Table used: 107 -from 500

7100 50 number: EQU top
BB5A 60 OUTPUT: EQU #BB5A
7000 70 ORG begin
7000 OEOO 80 LD C,0
7002 2A0071 90 LD HL,(number)
7005 7D 100 loop: LD A,L
7006 E60F 110 AND #0F
7008 F5 120 PUSH AF
7009 OC 130 INC C
700A 0604 140 LD 8,4
700C CB3C 150 divl6: SRL H
700E CB1D 160 RR L
7010 10FA 170 DJNZ di vl6
7012 7C 180 LD A,H
7013 B5 190 OR L
7014 20EF 200 JR NZ,1oop
7016 3E26 210 LD A,"&"
7018 CD5ABB 220 CALL OUTPUT
701B 41 230 LD B,C
701C Fl 240 loop2: POP AF
701D FEOA 250 CP IO
701F 3802 260 JR C,over
7021 C607 270 ADD A,7
7023 C630 280 over: ADD A, *30
7025 CD5ABB 290 CALL OUTPUT
7028 10F2 300 DJNZ loop2
702A C9 310 RET

Breakdown of Program 11.7

Lines 30 to 70: set the various assembler directives and labelled
locations.
Line 80: initialise the hex digit counter to zero.
Line 90: loads the HL register pair with the 16 bit number to be
output.
Line 100: copies the L register contents into the accumulator.
Lines 110 to 130: ANDS out the high nybble of the accumulator
contents and places the low nybble, left in the accumulator, on the
stack. The digit counter is then incremented.
Lines 140 to 170: perform a simple division by 16 by shifting the
number in the HL register pair 4 bit positions to the right.
Lines 180 to 200: check if the number has been reduced to zero by
repeated integer division by 16. If non zero then a branch is made
back to 'divl6'.
Lines 210 to 220: output a character.
Line 230: transfers the hex digit counter to the B register, so DJNZ
can be used in the output loop.

160 Input and output

Line 240: designates the start of the output loop and each cycle,
withdraws a nybble from the stack into the accumulator.
Lines 250 to 260: check if the accumulator contents is less than 10. If
so a branch is made to 'over'.
Line 270: if this instruction is executed then the accumulator contents
are greater than or equal to 10. That is to say ABCDE or F. Thus 7 is
added to the accumulator contents to allow for the gap between the
ASCII codes of 9 and A.
Line 280: adds 30 hex to the accumulator contents to convert the digit
to its ASCII character code.
Line 290: outputs the character using the firmware routine TXT
OUTPUT.
Line 300: loops back for the next stack withdrawal if the digit counter
is non zero.

Summary

1 A string input routine should display a prompt, echo the
character to the screen, allow back deletion and warn when limits
are exceeded.
2 A decimal input routine should cater for leading '+' or '—'
characters, detect overflow and reject invalid characters.
3 A decimal output routine should handle, at least, 16 bit
numbers, and display sign as well as magnitude.
4 The sign of a hexadecimal number is implied by the number itself
so output routines do not require a sign character.
5 If the first hex digit is greater than 7, the number is negative.

Parameter passing and 12
introduction to resident

system extensions

The passing of parameters to and from machine code subroutines
often leads to confusion. In assembly language we have a choice
of methods but when calling machine code subroutines from BASIC
we are restricted to the versatile, CALL <address> <parameter
list>, command. As an example of exploiting this command, a fast
machine code sort routine is provided which is capable of sorting a
BASIC string array of a thousand elements in just over a second.
The chapter continues with an introduction to Resident System
Extensions although we will leave the more complex applications to
Chapter 13.

Passing parameters in assembly language

In assembly language, we have seen that a subroutine is invoked via
the use of a CALL <address> instruction. It may be required that
data be passed to a subroutine in order for it to perforn its function.
Moreover, we may wish to pass resultant data back to the calling
program. In this sense a 'data' element is referred to as a parameter
and a group of 'data' elements as a parameter list. When calling
subroutines it is necessary to:

1 Set up any parameters that are to be accessed by the subroutine
before using the CALL instruction.
2 Set up parameters (if any) that are to be accessed by the calling
program on return.

We shall describe four methods of passing parameters to/from
subroutines in assembly language. They are via:

(fl) Registers
The Amstrad operating system, in common with most other
firmware, uses this method of passing parameters to/from sub
routines.

If an 8 bit value is to be passed, then the accumulator is the natural
choice. For 16 bit values a register pair such as DE could be 161

162 Parameter passing and introduction to resident system extensions

employed. The subroutine will be written on the assumption that its
parameters will be available in certain registers when called. The
calling program equally expects returned parameters (if any) to be
available in certain registers.

This method suffers from the disadvantage that the registers used
may already hold important information. The solution, of course,is
to save the contents of such registers on the stack before calling and
restore them on return. On entry to the subroutine it is good
practice to save on the stack any registers, excluding those used to
pass parameters, that are used by the subroutine itself. The registers
can then be restored before return.

(b) Parameter blocks
The Amstrad CALL command uses this method of passing para
meters from BASIC to machine code subroutines. Where an
assortment of data needs to be passed to a subroutine, a parameter
block (data list) is used. The base address of the block of consecutive
addresses is normally passed via one of the index registers, IX or IY.
For example, if the base address of the parameter block is #7100
then the IX register can be set to #7100 by the instruction LD
IX,#7100. Individual parameters can then be picked up by the
subroutine, as required, by setting the displacement constant (d) in
the LD reg,(IX+d) instruction. For example, if IX contained #7100
as above, then LD A,(IX+4) would load the accumulator with the
contents of address #7104. Any location offset from the parameter
block's base address can thus be accessed. However, it should be
remembered that there is a limit of 255 for the displacement byte so
it is important that notes be kept on the relative positions of
parameters within the block.

(c) Fixed locations
This method, due to its inherent simplicity, is probably the most
popular method of passing parameters to and from subroutines.
The subroutine is written to expect its parameters to be left in certain
fixed locations. The calling program will also expect returned
parameters to be in fixed locations. There is no need to save or
restore registers in the calling program but it is still a good idea to
save, on the stack, registers used in the subroutine on entry. They
can be restored immediately before return. In some circles, this
practice has been known to cause the odd monocle to drop to the
end of its string. Academics say, with some truth, that it is difficult
to keep subroutine libraries on disc or tape and there may be
frequent clashes between chosen locations and labels. Nevertheless
the practice is still widely used. It is usually a trivial task to tailor a
subroutine to suit a specific program because the inclusion of 'search
and replace' facilities are now quite common in assemblers.

(d) The stack
It is also possible to pass parameters via the stack. However, some

Passing parameters in assembly language 163

frightful muddles may occur if we forget that, before entry to the
subroutine, the return address is placed on the stack. Therefore we
must make sure, before accessing parameters, that the return
address is first popped from the stack and stored within the
subroutine. Finally, after returned parameters have been pushed on
the stack, the return address must be replaced. On encountering the
RET instruction the program counter will be loaded from the top of
the stack which will then be the return address.

Executing machine code subroutines from BASIC.

When designing subroutines intended to be called from BASIC, the
CALL command is brought into service. The format is

CALL <address>,<parameter list>
For example:
CALL &7000,a%,b%,c%

If, in your programs, a parameter is to be returned to BASIC then
the PEEK command may be used.

Instead of treating the CALL command in a general sense, a
practical example, embodying most eventualities, will be more
helpful. Although this may seem a double barrelled approach, the
part that is of no immediate interest can be temporarily ignored
during the first reading. The example chosen is a fast sorting routine
and details of how to use and pass parameters will be given in the
text.

Machine code sorting of BASIC string arrays

When programming in BASIC, it is often required to sort a series of
strings held in array form. However, sorting is a time consuming
process, and the execution time can be unacceptably high with large
arrays. We are, after all, up against the inherent defects of the
BASIC language. It is an interpretive, rather than a compiled,
language so execution speed is likely to be slow. Even in machine
code, it will still be important to select a suitable algorithm. For
example, assuming a list is large, the common bubble sort written in
machine code may not execute all that much faster than a more
efficient algorithm written in BASIC.

Choosing a sorting algorithm
One of the fastest known methods of sorting large contiguous lists
(arrays) is by means of an algorithm called the 'Quicksort', devised
by C.A.R. Hoare in 1962. A machine code version of the Quicksort
that can be called from any BASIC program will provide a useful
addition to any subroutine library.

164 Parameter passing and introduction to resident system extensions

The Quicksort algorithm

The Quicksort is rather complicated so a brief overview of the main
features are first given in plain English.

The fundamental idea behind the Quicksort is that the sorting of
small lists is more efficient (fewer comparisons) than sorting large
lists. It follows, that if we split an array into two sublists, containing
different groups of strings, and sort each list separately, we reduce
the number of comparisons and therefore the sorting time. To do
this, we estimate an array element that, hopefully, will have a
median value and call this the pivot. All strings having a value less
than the pivot (ASCII wise) will be placed above it in the lower half
of the array and all strings having a greater value than the pivot
placed in the higher half. If these two portions of the array are
sorted separately on either side of the pivot then the array will be
completely sorted.

The estimate of the pivot value is all important. For instance, we
could choose the first array element or the last array element in a
random array. However,if the list is partially sorted, as may occur in
practice, the performance may be seriously degraded because the
pivot will be too far offset from the median value to make the split
worthwhile. This possibility can be reduced (statistically) by choos
ing the pivot as the mid point element of the array. We should
mention that there are other ways of obtaining the pivot but we will
employ this one. Incidentally, during worst case conditions, where
the above effect is dominant, the sorting time can be as poor as that
for a bubble sort, (approximately proportional to n2, where n=
number of elements) but this is unlikely to happen in practice.

One method of implementing Quicksort is to keep partitioning
lists in this way till we have many lists containing, say, 15 elements
at most and then bubble sorting them. Alternatively, if we carry on
and take this partioning process to its limit then each sublist will
eventually contain only one element. In this case there will be no
need to employ a bubble sort at all since a list containing only one
element must already be sorted!

The practical implementation of Quicksort relies heavily on the
use of the stack for storing the limits of lists not yet sorted.
(Remember that the stack is a section of memory where the last
variable value stored is the first recalled). To simplify the descrip
tion, we will use the following labels:

head = first array element to be included in sort,
tail = last array element to be included in sort,
lowhead = first array element in lower sublist,
lowtail = last array element in lower sublist,
highhead = first array element in higher sublist,
hightail = last array element in higher sublist.

The head and tail parameters of the sublists yet to be sorted are
put on the stack. Thus, if we are presently sorting the array between

The Quicksort algorithm 165

A$(lowhead) and A$(lowtail) then highhead and hightail would be
placed on the stack so that the sublist, A$(highhead) to A$(hightail),
could be sorted later. It transpires that it is better to put the longer
sublist limits on the stack and process the shorter sublist immed
iately. Each time a list is further partitioned within the loop, the
process is repeated. On exit from the loop the sublists, whose
parameters were placed on the stack, are taken in sequence (last in,
first out) and sorted in a similar manner. In view of the complexity
of the algorithm, and the danger of lapsing into verbal excesses, a
more detailed flowchart, Figure 12.1 (overleaf), is provided to help
in tracing the assembly code listing Program 12.1.

Although adequate in performance, the program was written
with clarity, rather than efficiency, in mind. When developing large
programs, it is relatively easy to save a few clock cycles or a byte
here and there if you have plenty of time to spare although the law
of diminishing returns will eventually take over.

Fig 12.1 Flowchart of Program 12.1

Hisoft GENA3.1 Assembler. Page 1.

Pass 1 errors: 00

10 {QUICKSORT
20 jOF A STRING ARRAY

7000 30 begin: EQU #7000
7203 40 top: EQU begin+#O2O3
7203 50 tail: EQU top
7205 60 head: EQU top+2
7207 70 array: EQU top+4
7209 80 stackc: EQU top+6
720A 90 plen: EQU top+7
720B 100 ppoint: EQU top+8
720D no sdlpoi: EQU top+10
720F 120 sd2poi: EQU top+12
7000 130 ORG begin

140 {Pick up and store base address
150 ;of string descriptors : array

7000 DD6E00 160 sort: LD L,(IX)
7003 DD66O1 170 LD H,(IX+l)
7006 220772 180 LD (array),HL

190 {Pick up tail of array : tail
7009 DD6E02 200 LD L,(IX+2)
700C DD66O3 210 LD H,(IX+3)
700F 220372 220 LD (tail),HL

230 {Pick up head of array : head
7012 DD6E04 240 LD L,(IX+4)
7015 DD6605 250 LD H,(IX+5)
7018 220572 260 LD (head),HL

270 {Set stackcounter to zero
701B 97 280 SUB A
701C 320972 290 LD (stackcount),A

300 {Branch to bypass if head>-tail

166 Parameter passing and introduction to resident system extensions

701F 2A0572 310 1oop: LD HL,(head)
7022 ED5B0372 320 LD DE,(tail)
7026 A7 330 AND A
7027 ED52 340 SBC HL,DE
7029 D23D71 350 JP NC,bypass

360 ;Initialise highhead and lowtail
370 (IX & IY respectively

702C DD2A0572 380 LD IX,(head)
7030 FD2AO372 390 LD IY,(tail)

400 (Calculate pivot string
410 (descriptor address : HL

7034 2A0572 420 LD HL,(head)
7037 ED5B0372 430 LD DE,(tail)
703B 19 440 ADD HL, DE
703C CB3C 450 SRL H
703E CB1D 460 RR L
7040 54 470 LD D,H
7041 5D 480 LD E,L
7042 29 490 ADD HL, HL
7043 19 500 ADD HL,DE
7044 ED4B0772 510 LD BC,(array)
7048 09 520 ADD HL.BC

530 (Get length and address of
540 (pivot string : plan & ppoint

7049 7E 550 LD A,(HL)
704A 320A72 560 LD (plen),A

Hisoft GENA3.1 Assembler. Page 2.

704D 23 570 INC HL
704E 5E 580 LD E,(HL)
704F 23 590 INC HL
7050 56 600 LD D,(HL)
7051 ED530B72 610 LD (ppoint) ,DE

620 ;Set pointer to first string
630 ;descriptor: sdlpoint

7055 2A0572 640 LD HL,(head)
7058 54 650 LD D,H
7059 5D 660 LD E,L
705A 29 670 ADD HL, HL
705B 19 680 ADD HL, DE
705C 09 690 ADD HL,BC
705D 220D72 700 LD (sdlpoint),HL

710 (Set pointer to second string
720 (descriptor: sd2point

7060 2A0372 730 LD HL,(tail)
7063 54 740 LD D,H
7064 5D 750 LD E,L
7065 29 760 ADD HL, HL
7066 19 770 ADD HL, DE
7067 09 780 ADD HL,BC
7068 220F72 790 LD (sd2point),HL

800 (Get length and address of first
810 (string: C & DE

The Quicksort Algorithm 167

706B 2A0D72 820 firsts LD HL,(sdlpoint)
706E 4E 830 LD C,(HL)
706F 23 840 INC HL
7070 5E 850 LD E,(HL)
7071 23 860 INC HL
7072 56 870 LD D,(HL)

880 ;Compare first string to pivot
890 ;branch to procl if string<pivot

7073 0600 900 LD B,0
7075 2A0B72 910 LD HL,(ppoint)
7078 1A 920 comp: LD A,(DE)
7079 BE 930 CP (HL)
707A 3811 940 JR C, procl
707C 201C 950 JR NZ,second
707E 04 960 INC B
707F 3A0A72 970 LD A, (plen)
7082 B8 980 CP B
7083 2815 990 JR Z,second
7085 79 1000 LD A,C
7086 BB 1010 CP B
7087 2804 1020 JR Z, procl
7089 13 1030 INC DE
708A 23 1040 INC HL
708B 20EB 1050 JR NZ,comp

1060 ;Add 3 to sdlpoint
708D 2A0D72 1070 procls LD HL,(sdlpoint)
7090 23 1080 INC HL
7091 23 1090 INC HL
7092 23 11OO INC HL
7093 220D72 1110 LD (sdlpoint),HL

1120 ;i ncrement hi ghhead
7096 DD23 1130 INC IX
7098 18D1 1140 JR first

Hisoft GENA3.1 Assemb1ar. Page 3.

1150 ;Bet 1ength and address of
1160 ;second string s C & DE

709A 2A0F72 1170 seconds LD HL,(sd2point)
709D 4E 1180 LD C,(HL)
709E 23 1190 INC HL
709F 5E 1200 LD E,(HL)
70A0 23 1210 INC HL
70A1 56 1220 LD D,(HL)

1230 ;Compare second string to pivot
1240 ;branch to proc2 if string>pivot

70A2 0600 1250 LD B,0
70A4 EB 1260 EX DE, HL
70A5 ED5BOB72 1270 LD DE,(ppoint)
70A9 1A 1280 comp2s LD A,(DE)
70AA BE 1290 CP (HL)
70AB 3811 1300 JR C,proc2
70AD 201C 1310 JR NZ,over
70AF 04 1320 INC B
70B0 79 1330 LD A,C

168 Parameter passing and introduction to resident system extensions

70B1 B8 1340 CP B
70B2 2817 1350 JR Z,over
70B4 3A0A72 1360 LD A,(plen)
7OB7 B8 1370 CP B
70B8 2804 1380 JR Z,proc2
70BA 13 1390 INC DE
70BB 23 1400 INC HL
70BC 20EB 1410 JR NZ,comp2

1420 ;Subtract 3 from sd2point
70BE 2A0F72 1430 proc2: LD HL,(sd2point)
70C1 2B 1440 DEC HL
70C2 2B 1450 DEC HL
70C3 2B 1460 DEC HL
70C4 220F72 1470 LD (sd2point), HL

1480 ;decrement lowtail
70C7 FD2B 1490 DEC IY
70C9 18CF 1500 JR second

1510 (Compare sdlpoint to sd2point
1520 ;Br. proc3 if sdlpoint<sd2point
1530 ;Br. skip if sdlpoi nt >sd2poi nt
1540 ;if = dec lowtail & inc highhead

70CB A7 1550 over: AND A
70CC 2A0D72 1560 LD HL,(sdlpoint)
70CF ED5B0F72 1570 LD DE,(sd2point>
70D3 ED52 1580 SBC HL, DE
70D5 3808 1590 JR C,proc3
70D7 202D 1600 JR NZ,skip
70D9 FD2B 1610 DEC IY
70DB DD23 1620 INC IX
70DD 1827 1630 JR skip

1640 ;swop string descriptors
70DF 0603 1650 proc3s LD B,3
70E1 2A0D72 1660 LD HL,(sdlpoint)
70E4 1A 1670 swop: LD A,(DE)
70E5 4E 1680 LD C,(HL)
70E6 EB 1690 EX DE, HL
70E7 71 1700 LD (HL),C
70EB 12 1710 LD (DE),A
70E9 13 1720 INC DE

Hisoft BENA3.1 Assembler. Page 4.

70EA 23 1730 INC HL
7OEB 10F7 1740 DJNZ swop

1750 (Add 3 to sdlpoint
7OED 2A0D72 1760 LD HL,(sdlpoint)
70F0 23 1770 INC HL
7OF1 23 1780 INC HL
7OF2 23 1790 INC HL
70F3 220D72 1800 LD (sdlpoint),HL

1810 1 subtract 3 from sd2point
70F6 2A0F72 1820 LD HL,(sd2point)
70F9 2B 1830 DEC HL
70FA 2B 1840 DEC HL
70FB 2B 1850 DEC HL

The Quicksort Algorithm 169

Tabla used:

70FC 22OF72 1860
1870

LD
(dec highheac

(sd2point),HL
zinc lowtail

70FF DD23 1880 INC IX
7101 FD2B 1890 DEC IY
7103 C36B7O 1900 JP first

1910 ;increment stackcounter
7106 210972 1920 skip: LD HL,stackcount
7109 34 1930 INC (HL)

1940 {Calc lowtail -1owhead &
1950 ; hightai1-highead

710A A7 1960 AND A
710B FDE5 1970 PUSH IY
71OD El 1980 POP HL
710E ED5B0572 1990 LD DE,(head)
7112 ED52 2000 SBC HL, DE
7114 EB 2010 EX DE, HL
7115 A7 2020 AND A
7116 2A0372 2030 LD HL,(tail)
7119 DDE5 2040 PUSH IX
711B Cl 2050 POP BC
711C ED42 2060 SBC HL,BC

2070 {Compare results & stack larger
2080 {limits : process smaller limits

711E A7 2090 AND A
711F ED52 2100 SBC HL, DE
7121 300D 2110 JR NC,sthigh
7123 2A0572 2120 LD HL,(head)
7126 E5 2130 PUSH HL
7127 FDE5 2140 PUSH IY
7129 DD220572 2150 LD (head),IX
712D C31F70 2160 JP 1 oop
7130 DDE5 2170 sthigh: PUSH IX
7132 2A0372 2180 LD HL,(tail)
7135 E5 2190 PUSH HL
7136 FD220372 2200 LD (tail),IY
713A C31F7O 2210 JP loop

2220 {compare stackcounter to zero
713D 3A0972 2230 bypass: LD A,(stackcount)
7140 FEOO 2240 CP 0
7142 280F 2250 JR Z,fini sh

2260 {decrement stackcounter
7144 3D 2270 DEC A
7145 320972 2280 LD (stackcount),A

2290 {Pop tail & head from stack
7148 El 2300 POP HL

Hisoft GENA3.1 Assembler. Page 5.

7149 220372 2310 LD (tail),HL
714C El 2320 POP HL
714D 220572 2330 LD (head),HL
7150 C31F70 2340 JP loop
7153 C9 2350 finish: RET

Pass 2 wrorai OO

310 from 500

170 Parameter passing and introduction to resident system extensions

Fig. 12.1 Flowchart of Program 12.1

The Quicksort Algorithm 171

172 Parameter passing and introduction to resident system extensions

Machine code string array sort

When a string array is DIMensioned by the BASIC interpreter, an
access table is set up containing three bytes for each string element.
These bytes are not the strings themselves but the length and
address of where they are stored. They are called the String
Descriptors and represent the string length, low byte address and
high byte address respectively. The string length byte is the lowest
memory. Figure 12.2 shows how an array is set up in memory by the
BASIC interpreter.

The strings themselves, in the form of ASCII characters, are
stored immediately below HIMEM (which Amstrad refers to as the
'heap') in sequential memory locations, the address of which is
given in bytes 2 and 3 of the string descriptor. Since the string
descriptors are at a fixed distance apart (3 bytes), any particular
string (x) can be accessed by multiplying the base address of the
access table by 3x. A string array is thus formed by a series of such
string descriptors stored sequentially in memory. Swapping strings
during a string sort is not as difficult as it may first appear. We can
leave the strings themselves where they are in the heap and swap
the string descriptors, since these tell the BASIC interpreter where the
actual strings are stored.

Program 12.1 is the assembly code listing. The object code is
assembled at address &7000 onwards. A suitable test is provided by
Program 12.2. It loads the machine code binary file from tape or
disc, sets up a random string array, calls the machine code routine
and displays the sorted array.

Machine code string array sort 173

Fig. 12.2 String descriptors

174 Parameter passing and introduction to resident system extensions

Program 12.2 Test program for Quicksort

10 REM TEST PROGRAM: STRING SORT
20 CLS
30 MEMORY &6FFF
40 LOAD "SORT.BIN”,&7000
50 CLS
60 INPUT,,Sort how many strings"; NUMBER7.
70 PRINT
80 REM FILL AND DISPLAY RANDOM ARRAY
90 DIM A$(NUMBER7.)
100 headZ-1: tai 17.=NUMBER7.
110 FOR R7.=head7. TO tai 17.
120 B#="“
130 A7.=6*RND+1
140 FOR Z7.= l TO A7.
150 N7.=25*RND
160 K#=CHR# (N7.+65)
170 B$=B$+K#
180 NEXT
190 A$(RX)=B$
200 PRINT A#(R7.)
210 NEXT
220 PRINTsPRINT
230 PRINT"SORTING ARRAY”
240 PRINT:PRINT
250 START-TIME/300
260 CALL &7000,head7.,tail7.,CA$(0)
270 T=TIME/300-START
280 FOR R7.-head7. TO tai 17.
290 PRINT A#(R7.)
300 NEXT
310 PRINT
320 PR I NT "STR INGS SORTED-" ; NUMBER7.
330 PRINT
340 PRINT”SORTING TIME—"(ROUND(T,2);"SECONDS"
350 PRINT
360 INPUT"Another test (Y/N)"|K»
370 K»-UPPER#<K»)
380 IF K»-"Y“ THEN ERASE A#:GOTO 50 ELSE END

Producing a binary file of the object code

The most convenient way to use machine code subroutines from
within a BASIC program is to produce a binary file of the object code
on tape or disc which can then be loaded automatically by the first
few lines of the BASIC program. This file can be produced by the
following method:

(a) Load the HiSoft DEVPAC asembler at, say, address &2000 hex.
(b) Type in the assembly code listing, Program 12.1.
(c) Save a copy of the source code on tape (or disc) by typing:

P 10,2350,SORT. SRC

Producing a binary file of the object code 175

Note that the filenames are not enveloped in double quotes as is
normal with BASIC programs.

The source code file can be reloaded at some later time with:

G„SORT.SRC

(d) Assemble the source code by typing the assembler command,
A. When asked for table size, respond with 500, which allows more
than adequate space for the symbol table.
(e) Clear typing errors if any errors are reported.
(f) Produce an object code file that can be loaded directly from tape
(or disc) by a main program. This can be done automatically by
typing the assembler command:

O„SORT.BIN

(g) Perform a hard reset to clear memory.
(h) Type in and save on disc the test program, Program 12.2. This
will automatically load, run and test the binary file you have just
produced.

The object code itself is loaded into a section of memory reserved
above HIMEM at &7000. This allows sufficient memory for the
object code and, in the case of the CPC464, a permanently allocated
cassette buffer area.

Relocation of machine code

The main disadvantage of Program 12.1 as it stands is that the object
code will only execute at address &7000. Loading it elsewhere in
memory will result in chaos because the object code is not
relocatable. If, for any reason you need the code located in memory,
other than &7000, you must reassemble at an alternative address.
This is an easy task with Program 12.1 - simply change the address
in the EQU statement in line 30 and reassemble. Chapter 13 will
show how to alter the program so that it will produce self relocating
object code.

Calling the routine from BASIC

To CALL the routine it is necessary to pass over a few parameters.
This is accomplished by the insertion of one line in your BASIC
program. For instance.

CALL &7000,head%,tail%,@A$(0)

will sort the array A$ between the limits head% and tail%. If you

176 Parameter passing and introduction to resident system extensions

have more than one array in memory then either or both may be
sorted with the same routine. For example:

CALL &7000,head%,tail%,@B$(0)

will force a sort of the array B$ without any modifications to the
subroutine itself. This of course, would not be possible in BASIC,
because a separate subroutine would be needed for each array. The
&7000 term is the execution address of the subroutine. This can be
altered if you assemble the code elsewhere in memory. The integer
variable, head%, is the array index to the first item in the array
(Usually set to 1).

The integer variable, tail%, is the highest array index. That is to
say, if head% is set to 1 and tail% is set to 200 then the above call will
sort the array A$ from A$(l) to A$(200). Even parts of arrays may be
sorted if head% and tail% are set to index subsections of the array.

The @A$(0) parameter passes over the address of the element
A$(0) which is the base address of the array. Note that the '@'
symbol preceding a variable, means pass over the address of the
variable to the machine code routine, not the variable value itself. It
is also important to remember that the address of the string
descriptor is returned, not the address of the string itself.

When a CALL statement is executed in BASIC, the parameter list
values following the execution address, are passed over to the
machine code subroutine. These are automatically stored in a
parameter block, offset from an address stored in the IX register of
the Z80 microprocessor. The parameters are offset from the IX
register contents in the reverse order to that which they appear in
the CALL statement. For instance, with the above CALL, the
address of the A$(0) string descriptor (2 bytes) is set up in (IX) and
(IX+1), the actual 16 bit value of tail% is set up in (1X+2) and (IX+3)
and finally the 16 bit value of head% is set up in (IX+4) and (IX+5).
The order being low byte first, high byte second. These parameters
may then be accessed, where they are as needed, or picked up and
stored in a more convenient section of memory by the subroutine
itself.

To give an idea of the execution speed that can be expected from
Program, 12.1 see the following table.

Typical execution times for Quicksort

String array size Sorting time(sec)

100 0.13
200 0.26
300 0.42
500 0.71
1000 1.53
2000 3.38
3000 5.62

CALL &7000, head %, tail %, @B$(0) 177

Notice the approximately linear relationship between execution time
and the number of strings sorted. For comparison, the equivalent
algorithm was programmed in BASIC and it took 54 seconds to sort
500 and 230 seconds to sort a thousand strings.

Breakdown of program 12.1

The main labels, referred to in the breakdown are as specified above
regarding head, tail, lowhead, lowtail, highhead and hightail. Some
of these labels are not used in the listing itself but are present in
remarks. We hope this will aid, in conjunction with Figure 12.1, the
understanding of the program flow.

To simplify the description, the following definitions apply:

stringl: term given to the current string accessed in the list/sublist
when scanning the list from the top towards the pivot string
position.
string2: term given to the current string accessed in the list/sublist
when scanning from the bottom towards the pivot string position.
pivot string: term given to the string at the mid position of the current
list/sublist to which stringl and string2 is repeatedly compared.

Line 30: sets the assembly address at #7000.
Lines 50 to 120: assign labels to often used locations. To elaborate
on the labels used see the following list:

top: start of data storage area.
array: base address of string descriptors.
Stack: stackcounter for the number of sublist limits placed on the
stack, corresponding to sublists yet to be sorted.
plen: length of the pivot string in bytes,
ppoint: address pointer to the current pivot string,
sdlpoint: address pointer to the array string descriptor, scanning
from the head of the current list/sublist.
sd2point: address pointer to the array string descriptor, scanning
from the tail of the current list/sublist.

Lines 160 to 180: pick up the base address of the array from the CALL
parameter block and store it, more conveniently, in the two
sequential locations labelled 'array'.
Lines 200 to 260: pick up the 16 bit values of the BASIC variables
tail% and head% from the parameter block and store them at the
locations labelled 'tail' and 'head' respectively.
Lines 280 to 290: initialise the stackcounter to zero.
Lines 310 to 350: compare the contents of 'head' and 'tail'. If 'head' is
greater than or equal to 'tail' a forward branch to 'bypass' is made.
Lines 380 to 390: initialise the IX and IY registers to the current
values, stored at 'head' and 'tail' respectively. On exit from the
loop, or scan of the list/sublist, the terminal contents of IX and IY
will be the previously defined values, 'highhead' and 'lowtail',

178 Parameter passing and introduction to resident system extensions

respectively. This saves using separate labelled locations for these
values as we have implied in the flowchart.
Lines 420 to 520: calculate the address of the pivot string descriptor,
firstly by adding 'head' and 'tail' together. Integer division by 2 is
then performed by a single shift right. Finally, this result is multi
plied by 3, the number of bytes in a string descriptor, and added to
the access table base address 'array'. The pivot string descriptor
address is available in the HL register pair. The formula evaluated is:

pivot descriptor address=[(head+tail)/2]x 3

where the integer value is taken within the square brackets.
Lines 550 to 610: use implied addressing to pick up the length and
address of the pivot string from the string descriptor. The length is
stored at 'plen' and the 16 bit address is stored at 'ppoint'.
Lines 640 to 700: calculate the address pointer to the current stringl
descriptor and store the result at 'sdlpoint'. The equation evaluated
is:

sdl point=(head X 3)+array

Lines 730 to 790: calculate the address pointer to the current string2
descriptor and store the result at 'sd2point'. The equation evaluated
is:

sd2point=(tail x 3)+array

Lines 820 to 870: use implied addressing to pick up the length and
address of stringl. The length is placed in register C and the address
is in DE.
Lines 900 to 1050: use implied addressing to compare, character by
character, stringl to the pivot string. If stringl is less than the pivot
string then a branch to 'procl' is made. This signifies that the
current stringl is already on the correct side of the pivot. The loop
terminates when a string greater than or equal to the pivot string is
found. The string comparisons are made using the following rules:

(a) Two strings are equal when they are the same length and
contain the same characters.
(b) The first string is less than the second if they are equal up to the
first string but the second string is longer.
(c) One string is less than the other when the first character to
differ in one string has a lower ASCII code than that of the other.

Lines 1070 to 1110: add three to the address pointer 'sdlpoint' so as
to point to the next higher string descriptor of the current stringl.
Lines 1130 to 1140: increment the array index to stringl in register IX.
This is followed by an unconditional jump to 'first' so the next
indexed string, scanning down from the top of the current list, can
be compared to the pivot string.

Breakdown of program 12.1 179

Lines 1170 to 1220: use implied addressing to pick up the length and
address of string2. The length is placed in register C and the address
is in DE.
Lines 1250 to 1410: use implied addressing to compare, character by
character, string2 to the pivot string. If string2 is greater than the
pivot string then a branch to 'proc2' is made. This signifies that the
current string2 is already on the correct side of the pivot. The loop
terminates when a string less than or equal to the pivot string is
encountered.
Lines 1430 to 1470: subtract three from the address pointer 'sd2point'
so as to point to the next lower string descriptor of the current
string2.
Lines 1490 to 1500: decrement the array index to string2 in the IY
register. This is followed by an unconditional jump to 'second' so
the next indexed string, scanning up from the bottom of the current
list, can be compared to the pivot string.
Lines 1550 to 1630: compare 'sdlpoint' with 'sd2point' in various
ways. On exit from the above loops, a decision has to be made
whether to swap them over or not. If 'sdlpoint' is less than
'sd2point' then stringl and string2 are swapped to the correct side of
the pivot in the list/sublist by a branch to zproc3'.

As shown in the flowchart, this outer loop, and thus the scans,
terminate only if 'sdlpoint' is greater than or equal to 'sd2point'. If
'sdlpoint' is equal to 'sd2point' (scans meet) it signifies that the
associated string in that array position is equal to the pivot string
and is excluded from either sublist. Consequently, the array index,
IX, is incremented, IY decremented and a branch to 'skip' made. If
'sdlpoint' is greater than 'sd2point' at this point then the scans have
crossed. Any strings corresponding to the crossover section,
excluding those currently indexed by IX and IY, are all equal to the
pivot string and are thus excluded from both sublists.
Lines 1650 to 1740: swap stringl and string2 descriptor blocks, a byte
at a time, using implied addressing.
Lines 1760 to 1800: add three to 'sdlpoint' so as to point to the next
stringl descriptor.
Lines 1820 to 1830: subtract three from 'sd2point' so as to point to the
next string2 descriptor.
Lines 1880 to 1900: increment the array index IX, decrement the array
index IY and unconditionally jump to 'first'.
Lines 1920 to 1930: increment the stackcounter ready for placing
array index limits on the stack.
Lines 1960 to 2060: calculate the lengths of each sublist. Remember
that after list/sublist partitioning that:

(a) 'lowhead' is always the current value stored at 'head'.
(b) Towtail' is the current value of the array index IY.
(c) 'highhead' is the current value of the array index IX.
(d) 'hightail' is always the current value stored at 'tail'.

180 Parameter passing and introduction to resident system extensions

The register pair DE holds the result of 'lowtail' - 'lowhead') and HL
holds the result of ('hightail' - 'highhead'). Note that the quickest
way of transferring the index register contents IX and IY to a register
pair is a PUSH xy and a POP rp.
Lines 2090 to 2200: compare the two sublist lengths and push the
array index limits, of the larger of the two, on the stack. The lower
and upper limits of the smaller sublist are stored at 'head' and 'tail'
respectively. An unconditional branch back to 'loop' is effected,
whatever the outcome, so the next sublist can be partitioned.
Lines 2230 to 2250: check if any unsorted sublist limits remain on the
stack waiting processing. If the stackcounter is zero then a forward
branch to 'finish' is made.
Lines 2260 to 2280: decrement the stackcounter.
Lines 2300 to 2340: pop the unsorted sublist limits from the top of the
stack in the reverse order to which they were pushed. These indices
are stored in 'head' and 'tail' and a branch back to 'loop' forces
another partitioning process.

Resident system extensions (RSX)

Subroutines can,if preferred, be called with a system command
prefixed by a vertical bar. Instead of using the CALL command,
followed by an execution address and parameter list, we can set up
an RSX version which can be executed from BASIC or direct mode.
For example, if the previous program was converted to an RSX we
could have called it with:

lSORT,head%,tail%,@A$(0)

Notice that we do not need an execution address. We could call it
with a command in much the same way as we would in BASIC.
However, there are one or two snags. The designers of the
Amstrad's software recommend that all RSX object code be self
relocating so as to fall in with their dynamic allocation of memory.
This is a rather complicated process so it will be sufficient here to
treat the setting up of a number of example RSXs and postpone the
more difficult concepts such as relocation and parameter passing
until Chapter 13.

Logging on an RSX

The first step in setting up an RSX is to 'log it on' to the operating
system's list of valid commands. They are called resident system
extensions because they are, quite literally, extensions to the
operating system repertoire. In order to log on a new RSX we need
to use a firmware routine in the Kernal called KL LOG EXT. This can

Logging on an RSX 181

be called, via the jumpblock, at address #BCD1. It has the following
properties:

KL LOG EXT Call address #BCD1

Purpose: log on one or more RSX's to the operating system firm
ware. The routine must be called to add the RSX's name and address
to the Kernal's list of external command servers.
Pre-call conditions: The register pair,BC, must be set to the address
of the RSX's external command table. The HL register pair must be
set to the address of an arbitrarily chosen, 4 byte, block of RAM.
These locations are used by the Kemal as workspace. The Kernals
storage area and the external command table must be in the central
area of memory. That is to say, it must not lie 'beneath' a ROM.
Exit conditions: The register pair DE is corrupted but all other
registers are preserved.

Logging on an RSX is complicated rather than difficult. Program
12.1 and its associated breakdown should help to unravel the
details. The example RSX's themselves have been deliberately kept
simple in order that the essential details are not obscured.

Program 12.3 Logging on an RSX

Hisoft GENA3.1 Assembler. Page 1.

Pass 1 errorss 00

10 IDEMONSTRATION OF SETTING UP
20 ;RESIDENT SYSTEM EXTENSIONS (RSX)

8000 30 begin: EQU 48000
8100 40 top: EQU begin+#100
8000 50 ORG begin

60 ; Set up and CALL KL LOG EXT
8000 O1OA8O 70 LD BC,Ctable
8003 210081 BO LD HL,top
8006 CDD1BC 90 CALL 4BCD1
8009 C9 100 RET

110 ;Set up external command table v
800A 1580 120 Ctable: DEFW Ntable
800C C3278O 130 JP first
800F C3318O 140 JP second
8012 C33B80 150 JP third

160 ; Set up name table
8015 4C494E 170 Ntable: DEFM "LIN"
8018 C5 180 DEFB "E"+#80
8019 424C4F43 190 DEFM "BLOCKLIN"
8021 C5 200 DEFB "E"+#80
8022 42454C 210 DEFM "BEL"
8025 CC 220 DEFB "L"+#80
8026 00 230 DEFB 0

240 j Draw line of 40 * ASCII(154)
8027 0628 250 first: LD B,*28
8029 3E9A 260 LD A. #9 A

182 Parameter passing and introduction to resident system extensions

802B CD5ABB 270 loop: CALL 4BB5A
B02E 10FB 280 DJNZ loop
8030 C9 290 RET

300 ;Draw line of 40 * ASCII(143)
8031 0628 310 second: LD B,#28
8033 3E8F 320 LD A,#8F
8035 CD5ABB 330 loop2: CALL «BB5A
8038 10FB 340 DJNZ loop2
8O3A C9 350 RET

360 ;Ring BELL ASCII(7)
803B 3E07 370 third: LD A,7
803D CD5ABB 380 CALL #BB5A
8040 C9 390 RET

Pass 2 errors: OO

Table used: 121 from 182

The example RSX commands logged on are as follows:

ILINE
IBLOCKLINE
IBELL

: displays 40 graphics characters of ASCII 154.
: displays 40 graphics characters of ASCII 143.
: outputs the ASCII 7 control code for BELL

(a beep).

The example cites only three commands but there can be as many,
or as few, as you want. To log on the above commands to the
external command server, type CALL &7000 from BASIC. The
firmware will then know, if any of the above commands are entered,
where in memory, to find and execute the appropriate routine.

Breakdown of Program 12.3

Line 30: sets the assembly address at #7000 for the ORG assembler
directive in line 50.
Line 40: sets the workspace area labelled 'top' at #7100.
Line 70: loads the register pair BC with the address of the external
command table. We have labelled this 'Ctable' at line 120.
Line 80: loads the HL register pair with the address of the 4 byte
workspace area demanded by the firmware routine KL LOG EXT.
This is allocated at #7100 in the example, but any other 4 sequential
locations that do not lie 'under' a ROM will do.
Line 90: calls the firmware routine KL LOG EXT, via the main
jump block address #BCD1.
Line 100: returns control to the calling program. At this stage all the
RSX routines will have been logged on and can be called by their
above names. Remember to prefix them with a bar even if called
from within a BASIC program.
Line 120: The firmware expects that the first two bytes of the external

Breakdown of Program 12.3 183

command table will hold the address of the name table. The DEFW
assembler directive evaluates its following expression, in this case
the 2 byte address labelled 'Ntable', and copies it into memory from
the address currently held in the program counter.
Lines 130 to 150: contain the associated jumps to the RSX routines.
They are labelled 'first', 'second' and 'third'.
Lines 170 to 220: contain the name table and each entry corresponds,
one for one, with its jump instruction in the external command
table. Notice the format of the name table. The DEFM directive
is used to copy the command name strings into memory up to, but
excluding, the last character. The last character of the command
name cannot be included with the DEFM string because it must
have #80 added to its ASCII code for recognition by the firmware.
The DEFB directive, which expects the following expression to
evaluate to an 8 bit value, is used to perform the necessary
arithmetic during assembly.
Line 230: acts as an end of name table marker (a zero data byte) and
must always be included. On assembly the DEFB directive will place
a zero data byte at the current address held in the program counter.
Lines 250 to 390: are the simple example RSX routines described
above and are not intended to be of great practical use.

Summary

1 Parameters can be passed from machine code programs to
machine code subroutines via registers, parameter blocks, fixed
memory locations or the stack.
2 Parameters are passed from BASIC to machine code routine with
the CALL command.
3 Algorithms programmed in machine code may not necessarily
execute faster than more efficient algorithms written in BASIC.
4 On average, Quicksort is one of the fastest known sorting
methods for large randomly ordered lists.
5 Occasionally, Quicksort may perform as bad as or worse than a
bubble sort but it is unlikely in practice.
6 To alter the execution address of most assembler programs, the
object code must be reassembled at the new address. Producing self
relocating object code can be tedious but rewarding.
7 A BASIC string array consists of many string descriptors placed
sequentially in memory.
8 A BASIC string descriptor consists of three bytes, a length byte
followed by a 16 bit address.
9 The strings themselves are stored downwards in memory from
HIMEM and are called the 'heap'.
10 The symbol '@' before a parameter in a CALL command
indicates its address not its value.
11 Machine code subroutines, intended to be called from BASIC,
are best loaded as a binary file from tape or disc.

184 Parameter passing and introduction to resident system extensions

12 An external command must be prefixed by a bar.
13 The KL LOG EXT firmware routine, called at #BCD1, must
be used to log on an RSX.
14 An RSX should preferably be location independent or self
relocatable.
15 Name table entries and command table jumps should cor
respond one to one.
16 The last character of a name table entry must have 80 hex added
to its ASCII code.
17 The name table must be terminated with a zero data byte.
18 The first two bytes of the external command table must be the
address of the name table.
19 The 4 byte workspace the firmware needs for RSX use, must be
in the central area of RAM (not under a ROM).
20 The BC register pair must contain the external command table
address. The HL register pair must contain the 4 byte workspace
address before making a CALL to KL LOG EXT.

13Self relocation of
subroutines and resident

system extensions

The more advanced requirements for setting up an RSX are
described but the chapter is mainly concerned with self relocation
procedures. As an example, we will convert the sorting program of
the previous chapter into a self relocating RSX and show the various
steps involved.

In addition, machine code sorting of BASIC two dimensional or
rectangular arrays is treated. The rectangular array is a convenient
format for database type programs which require the complete file
to be resident in RAM and where fields are stored in one dimension
and records in the other.

Dynamic allocation of memory

We noted in the previous chapter that the designers of the Amstrad
recommend that any RSX is made location independent or self
relocating in order to fall in with their dynamic allocation of memory.
This is sound advice and applies to any machine code subroutine,
whether an RSX or not. For example, as light pens, discs and
graphics tablets are made available they may well grab memory
from the top of the memory pool and thus push HIMEM down
wards. We can never guarantee, on any machine, which is the
highest usable memory address. Obviously, if we err on the safe
side, and assemble object code at a low, but safe address, we will
waste a lot of memory. On the other hand, if we neglect this
problem, our subroutine or RSX may not work on some machines
due to conflicts of memory requirements.

Self relocation of object code

When developing a large stand-alone machine code program,
assembled in the lower regions of memory, the above warnings are
not so important since it is unlikely that it will use memory in the
upper regions of the memory pool. However, when using machine 185

186 Self relocation of subroutines and resident system extensions

code subroutines, or RSX's, intended to be called from BASIC then
self relocation of object code is certainly desirable. In this way the
machine code bytes can be loaded as a binary file from tape or disc
and placed immediately under the current value of HIMEM, thus
maximising the available memory pool for BASIC. Before logging on
the RSX the machine code routine can be arranged to modify itself
for execution at its load address without re-assembly.

Location independent object code

It is possible, in short simple subroutines or RSX's, to use a
restricted
set of instructions which enables the assembled object code execute
in any chosen region of memory. The following advice is given as a
guide to producing location independent object code.

(a) Use registers and the stack rather than fixed memory locations
to manipulate and store variables.
(b) Use program relative addressing. In other words choose relative
jump instructions rather than direct jumps. If the operand exceeds
the limit of one byte then use two or more relative jumps such as:

loop :

stagel : JR Z,loop

: JR Z,stagel

(c) Do not use subroutines which are called with a 16 bit address.
This means the CALL instruction is not really suitable.

In a larger subroutine or RSX it may not be desirable or feasible to
restrict ourselves to the above rules. Heavy use of the stack, in
particular, can lead to a lot of untidy and inefficient code. In short,
subroutines written in this way are difficult to read and, more
importantly, to debug or modify. Where location independence is
not feasible we must resort to a self relocation method.

Self relocation problems

Before getting involved in the details, let's take a look at what needs
to be altered in the average machine code program so that it will
always execute correctly, irrespective of where it is stored in
memory:

Self relocation problems 187

1 All operands included in absolute jump instructions because
they all possess a 16 bit absolute address.
2 All instructions which have an operand consisting of a fixed
memory reference. These include labelled addresses for variable
data.
3 All CALL instruction operands. These are all 16 bit absolute
addresses.

To elaborate on item 2 above there does not appear to be any region,
other than in the main memory pool, that can freely be used for the
temporary storage of variable data. Even if a region were to be found
in the BASIC or operating system workspace we can never be
certain that the area will not be utilised in some future redesign
work or modification. It is far better to be in complete control and
allow the RSX and its associated workspace to be included in the
relocation process.

Another problem is that instructions may have different lengths.
For example look at the representative sample in the following
table.

Instruction or
assembler directive

Op-code
length

Operand length
or data bytes

LD A,(label) 1 2
DEFW label — 2
LD HL,(label) 1 2
LD rp, (label) 2 2
JP C,label 1 2
JP label 1 2

For more detail on instructions and their lengths refer to Appendix 1
and Appendix 4.

When altering locations in the program we must be careful that
we change only the operands and not the Op-code.

Converting a subroutine to an RSX

To convert a subroutine to its self relocating RSX version is tedious
but fairly straightforward. Program 13.1 is the RSX version of
Program 12.1 and shows all the changes that are necessary to the
source code listing in order to produce self relocating object code.
Since the routine is fairly long and consists of a large selection of
instructions, most eventualities likely to occur in your own pro
grams will have been covered by way of example.

188 Self relocation of subroutines and resident system extension

Program 13.1 String Quicksort as an RSX

Hi soft GENA3.1 Assembler. Page 1.

Pass 1 errors: OO

10 ;QUICKSORT
20 ; OF A STRING ARRAY
30 {(LOCATION INDEPENDENT RSX)

7000 40 begin: EQU #7000
7203 50 top: EQU begi n+#0203
7203 60 tai 1: EQU top
7205 70 head: EQU top+2
7207 80 arrays EQU top+4
7209 90 stackc: EQU top+6
720A 100 plen: EQU top+7
720B 110 ppoint: EQU top+B
72OD 120 sdlpoi: EQU top+10
720F 130 sd2poi: EQU top+12
E9E1 140 code: EQU #E9E1
0030 150 loc: EQU #0030
7000 160 ORG begin

170 ;Program user restart RST #6
180 ;to get address of ref in HL

7000 21E1E9 190 LD HL,code
7003 223000 200 LD (loc),HL

210 {Call the restart routine
220 {placed at location #30

7006 F7 230 RST loc
7007 44 240 ref: LD B,H
7008 4D 250 LD C,L
7009 218E01 260 LD HL,Ltable—ref
700C 09 270 ADD HL,BC

280 {Pick up data from Ltable.
290 {Make absolute by adding ref.
300 {Access locations, add ref
310 {to the relative values present

700D 5E 320 alter: LD E,(HL)
700E 23 330 INC HL
700F 56 340 LD D,(HL)
7010 23 350 INC HL
7011 7A 360 LD A,D
7012 B3 370 OR E
7013 2811 380 JR Z,end
7015 E5 390 PUSH HL
7016 EB 400 EX DE, HL
7017 09 410 ADD HL,BC
7018 E5 420 PUSH HL
7019 5E 430 LD E,(HL)
701A 23 440 INC HL
7O1B 56 450 LD D,(HL)
701C EB 460 EX DE,HL
7O1D 09 470 ADD HL,BC
701E EB 480 EX DE,HL
701F El 490 POP HL
7020 73 500 LD (HL),E
7021 23 510 INC HL
7022 72 520 LD (HL),D

Program 13.1 String Quicksort as an RSX 189

7023
7024

7026

El
18E7

012900

530
540
550 (Set
560 end:

POP
JR

up and
LD

HL
alter

CALL KL LOS EXT
BC,Ctable—ref

Hisoft GENA3.1 Assembler. Page 2.

7029 218A01 570 LIO: LD HL,Wspace-ref
7O2C CDD1BC 580 CALL #BCD1
702F C9 590 RET

600 (Set up external command table
7030 2E00 610 Ctabl e: DEFW Ntable-ref
7032 C33600 620 L2O: JP sort—ref

630 (Set up name table
7035 534F5254 640 Ntabl e: DEFM "SORTST"
703B D2 650 DEFB “R"+#80
703C 00 660 DEFB 0

670 (Pick up and store base address
680 (of string descriptors : array

703D DD6E00 690 sort: LD L, (IX)
7040 DD6601 700 LD H,(IX+1)
7043 220002 710 L30: LD (array-ref),HL

720 (Pick up tail of array : tail
7046 DD6E02 730 LD L,(IX+2)
7049 DD6603 740 LD H,(IX+3)
704C 22FC01 750 L40: LD (tai 1-ref),HL

760 (Pick up head of array : head
704F DD6E04 770 LD L,(IX+4)
7052 DD6605 780 LD H,(IX+5)
7055 22FE01 790 L50: LD (head-ref),HL

800 jSet stackcounter to zero
7058 97 810 SUB A
7059 320202 820 L6O: LD (stackcount-ref),A

830 (Branch to bypass if head>**tail
705C 2AFE01 840 1oop: LD HL,(head-ref)
705F ED5BFC01 850 L70: LD DE,(tai 1-ref)
7063 A7 860 AND A
7064 ED52 870 SBC HL, DE
7066 D27301 880 L80: JP NC,bypass—ref

890 (Initialise highhead and lowtail
900 { IX & IY respectively

7069 DD2AFE01 910 L90: LD IX,(head-ref)
706D FD2AFC01 920 L100: LD IY,(tai 1-ref)

930 (Calculate pivot string
940 (descriptor address : HL

7071 2AFE01 950 LI10: LD HL,(head-ref)
7074 ED5BFC01 960 L120: LD DE,(tai 1-ref)
7078 19 970 ADD HL, DE
7079 CB3C 980 SRL H
707B CB1D 990 RR L
707D 54 1OOO LD D,H
707E 5D 1010 LD E,L
707F 29 1020 ADD HL,HL
7080 19 1030 ADD HL,DE
7081 ED4BOOO2 1040 L130: LD BC,(array-ref)

190 Self relocation of subroutines and resident system extensions

7085 09 1050 ADD HL,BC
1060 {Get length and address of
1070 |pivot string : plen & ppoint

7086 7E 1080 LD A,(HL)
7087 320302 1090 L140: LD (plen-ref),A
708A 23 11OO INC HL
708B 5E 1110 LD E,(HL)
708C 23 1120 INC HL
708D 56 1130 LD D,(HL)
708E ED53O4O2 1140 L15O: LD (ppoint-ref),DE

Hisoft GENA3.1 Assembler. Page 3.

1150 {Set pointer to first string
1160 ;descriptor: sdlpoint

7092 2AFE01 1170 L160: LD HL,(head-ref)
7095 54 1180 LD D,H
7096 5D 1190 LD E,L
7097 29 1200 ADD HL, HL
7098 19 1210 ADD HL, DE
7099 09 1220 ADD HL.BC
709A 220602 1230 L170: LD (sdlpoint-ref),HL

1240 {Set pointer to second string
1250 ;descriptor: sd2point

709D 2AFC01 1260 L180: LD HL,(tai 1-ref)
70A0 54 1270 LD D,H
70A1 5D 1280 LD E,L
70A2 29 1290 ADD HL, HL
70A3 19 1300 ADD HL, DE
70A4 09 1310 ADD HL,BC
70A5 220802 1320 L190: LD (sd2point-ref),HL

1330 ;Get length and address of first
1340 ;string : C & DE

70A8 2A0602 1350 first: LD HL,(sdlpoint—ref)
70AB 4E 1360 LD C,(HL)
70AC 23 1370 INC HL
70AD 5E 1380 LD E,(HL)
70AE 23 1390 INC HL
7OAF 56 1400 LD D,(HL)

1410 {Compare first string to pivot
1420 {branch to procl if string<pivot

7OBO 0600 1430 LD B,O
70B2 2A0402 1440 L2OO: LD HL,(ppoint-ref)
70B5 1A 1450 comp: LD A,(DE)
70B6 BE 1460 CP (HL)
70B7 3811 1470 JR C, procl
70B9 201C 1480 JR NZ ,second
70BB 04 1490 INC B
70BC 3A0302 1500 L210: LD A,(plen-ref)
70BF B8 1510 CP B
70C0 2815 1520 JR Z,second
70C2 79 1530 LD A,C
70C3 B8 1540 CP B
70C4 2804 1550 JR Z,procl
70C6 13 1560 INC DE
70C7 23 1570 INC HL

Program 13.1 String Quicksort as an RSX 191

70C8 20EB 1580 JR NZ,comp
1590 ;Add 3 to sdlpoint

7OCA 2AO6O2 1600 prods LD HL,(sdlpoint-ref>
70CD 23 1610 INC HL
70CE 23 1620 INC HL
7OCF 23 1630 INC HL
70D0 220602 1640 L220: LD (sdlpoint-ref),HL

1650 ;increment highhead
7OD3 DD23 1660 INC IX
70D5 18D1 1670 JR first

1680 ;Get length and address of
1690 ;second stri ng : C & DE

70D7 2A0802 1700 second: LD HL,(sd2point-ref)
7ODA 4E 1710 LD C,(HL)
70DB 23 1720 INC HL

Hi soft GENA3.1 Assembler. Page 4.

70DC 5E 1730 LD E,(HL)
70DD 23 1740 INC HL
7ODE 56 1750 LD D,(HL)

1760 ;Compare second string to pivot
1770 ;branch to proc2 if string>pivot

70DF 0600 1780 LD B,0
70E1 EB 1790 EX DE, HL
70E2 ED5B0402 1800 L230: LD DE,(ppoint-ref)
70E6 1A 1810 comp2: LD A,(DE)
70E7 BE 1820 CP (HL)
70E8 3811 1830 JR C,proc2
70EA 201C 1840 JR NZ,over
70EC 04 1850 INC B
70ED 79 1860 LD A,C
70EE B8 1870 CP B
70EF 2817 1880 JR Z,over
70F1 3A0302 1890 L240: LD A,(plen-ref)
70F4 B8 1900 CP B
70F5 2804 1910 JR Z,proc2
70F7 13 1920 INC DE
70F8 23 1930 INC HL
70F9 20EB 1940 JR NZ,comp2

1950 ;Subtract 3 from sd2point
7OFB 2A0802 1960 proc2: LD HL,(sd2point-ref)
70FE 2B 1970 DEC HL
70FF 2B 1980 DEC HL
7100 2B 1990 DEC HL
7101 220802 2000 L250: LD (sd2point-ref),HL

2010 ;decrement lowtail
7104 FD2B 2020 DEC IY
7106 18CF 2030 JR second

2040 {Compare sdlpoint to sd2point
2050 jBr. proc3 i f sdlpoint<sd2point
2060 ;Br. skip if sdlpoint >sd2poi nt
2070 {if = dec lowtail & inc highhead

7108 A7 2080 over: AND A
7109 2A0602 2090 L260: LD HL,(sdlpoint-ref)
710C ED5B0802 2100 L270: LD DE,(sd2point-ref)

192 Self relocation of subroutines and resident system extensions

7110 ED52 2110 SBC HL, DE
7112 3808 2120 JR C,proc3
7114 202D 2130 JR NZ,skip
7116 FD2B 2140 DEC IY
7118 DD23 2150 INC IX
711A 1827 2160 JR skip

2170 ; swop string descriptors
711C 0603 2180 proc3: LD B,3
711E 2A0602 2190 L280: LD HL,(sdlpoint-ref)
7121 1A 2200 swop: LD A,(DE)
7122 4E 2210 LD C,(HL)
7123 EB 2220 EX DE, HL
7124 71 2230 LD (HL),C
7125 12 2240 LD (DE),A
7126 13 2250 INC DE
7127 23 2260 INC HL
7128 10F7 2270 DJNZ swop

2280 jAdd 3 to sdlpoint
712A 2A0602 2290 L2901 LD HL,(sdlpoint-ref)
712D 23 2300 INC HL

Hisoft GENA3.1 Assemb1er. Page 5.

712E 23 2310 INC HL
712F 23 2320 INC HL
7130 220602 2330 L300: LD (sdlpoint-ref) ,HL

2340 ; subtract 3 -from sd2point
7133 2A0802 2350 L310: LD HL,(sd2point-ref)
7136 2B 2360 DEC HL
7137 2B 2370 DEC HL
7138 2B 2380 DEC HL
7139 220802 2390 L320: LD (sd2point-ref),HL

2400 ;dec highhead:inc lowtail
713C DD23 2410 INC IX
713E FD2B 2420 DEC IY
7140 C3A100 2430 L330: JP ■fir st-ref

2440 ;increment stackcounter
7143 210202 2450 skip: LD HL,stackcount-ref
7146 34 2460 INC (HL)

2470 jCalc 1owtai1 -1owhead &
2480 ; hightai1—highead

7147 A7 2490 AND A
7148 FDE5 2500 PUSH IY
714A El 2510 POP HL
714B ED5BFE01 2520 L340: LD DE,(head-ref)
714F ED52 2530 SBC HL, DE
7151 EB 2540 EX DE, HL
7152 A7 2550 AND A
7153 2AFC01 2560 L350: LD HL,(tai 1-ref)
7156 DDE5 2570 PUSH IX
7158 Cl 2580 POP BC
7159 ED42 2590 SBC HL,BC

2600 ;Compare results & stack larger
2610 ;limits : process smaller limits

715B A7 2620 AND A
715C ED52 2630 SBC HL, DE

Program 13.1 String Quicksort as an RSX 193

715E 300D 2640 JR NC,sthigh
7160 2AFE01 2650 L36O: LD HL,(head-ref)
7163 E5 2660 PUSH HL
7164 FDE5 2670 PUSH IY
7166 DD22FE01 2680 L370s LD (head-ref),IX
716A C35500 2690 L380t JP loop-ref
716D DDE5 2700 sthighi PUSH IX
716F 2AFC01 2710 L3901 LD HL,(tai 1-ref)
7172 E5 2720 PUSH HL
7173 FD22FC01 2730 L400: LD (tail-ref),IY
7177 C35500 2740 L410: JP 1oop—ref

2750 ;comp«r> stackcounter to zero
717A 3A0202 2760 bypassi LD A,(stackcount—ref)
717D FEOO 2770 CP 0
717F 280F 2780 JR Z,finish

2790 ;decrement stackcounter
7181 3D 2800 DEC A
7182 320202 2810 L420: LD (stackcount-ref),A

2820 ; Pop tail & head from stack
7185 El 2830 POP HL
7186 22FCO1 2840 L430i LD (tai 1-ref),HL
7189 El 2850 POP HL
718A 22FE01 2860 L440i LD (head-ref),HL
718D C355OO 2870 L450: JP loop-ref
7190 C9 2B80 finish! RET

Hisoft GENA3.1 Assembler. Page 6.

7191 2890 Wspace: DEFS 4
7195 2000 2900 Ltable: DEFW end+l-ref
7197 2900 2910 DEFW Ctable-ref
7199 5600 2920 DEFW loop+l-ref
719B A200 2930 DEFW first+l-ref
719D C400 2940 DEFW procl+l-ref
719F D100 2950 DEFW second+l-ref
71A1 F500 2960 DEFW proc2+l-ref
71A3 3D01 2970 DEFW skip+l-ref
71A5 7401 2980 DEFW bypass*1-ref
71A7 23OO2COO 2990 DEFW L1O+1-ref,L2O+1-ref
71AB 3D004600 3000 DEFW L30+1-ref,L40+1-ref
71AF 4F005300 3010 DEFW L50+1-ref,L60+1-ref
71B3 5AOO6OOO 3020 DEFW L70+2—ref,L80+l-ref
71B7 64006800 3030 DEFW L90+2-ref,L100+2-ref
71BB 6B006F00 3040 DEFW L110+1-ref,L120+2-ref
71BF 7C008100 3050 DEFW L130+2-ref,L140+1-ref
71C3 89OO8COO 3060 DEFW L150+2—ref,L160+1-ref
71C7 94009700 3070 DEFW L170+1-ref,L180+1-ref
71CB 9FOOACOO 3080 DEFW L190+1-ref,L200+l-ref
71CF B600CA00 3090 DEFW L210+1-ref,L220+l-ref
71D3 DDOOEBOO 3100 DEFW L230+2—ref,L240+l-ref
71D7 FB000301 3110 DEFW L250+1-ref,L260+1-ref
71DB 07011801 3120 DEFW L270+2—ref,L280+l-ref
71DF 24012A01 3130 DEFW L290+1-ref,L300+1-ref
71E3 2DO133O1 3140 DEFW L310+1-ref,L320+1-ref
71E7 3AO146O1 3150 DEFW L330+l-ref,L340+2-ref
71EB 4DO15AO1 3160 DEFW L350+l-ref,L360+l-ref

194 Self relocation of subroutines and resident system extensions

71EF 61016401 3170 DEFM L370+2-raf ,L380+l-ra-f
71F3 69016E01 3180 DEFM L390+1-raf ,L400+2—ref
71F7 71017C01 3190 DEFM L410+1—raf,L420+1—ref
71FB 80018401 3200 DEFM L430+1-raf ,L440+l-ref
71FF 87010000 3210 DEFM L45O+l-ref,0

Paas 2 arrorai OO

Tabla uaadi 901 froa 1OOO

The first thing we should notice about Program 13.1 over its
predecessor is the extra block of instructions at the head of the
listing (lines 190 to 680). Besides setting up the routine as an RSX,
there are extra sections of code for changing key addresses and
picking up the addresses where the object code itself is loaded.

Converting existing code to a self relocatable RSX

Programs which already exist, such as Program 12.1, can be
converted to self relocatable form by means of the following steps:

Step 1: Program the user restart RST 6
The user restart, RST 6, is a section of memory available to the user
for extending the instruction set of the Z80A. It can be visualised as
a small subroutine called by the single byte instruction, RST #30.
The number of locations available for the user restart are restricted
to the 8 byte address range #0030 to #0037.

Accordingly, the machine code program will need to know where
in memory it has been loaded so that it can change its key locations.
We could, of course, simply POKE in these values at a location
which is a fixed offset from the load address. This would be a
nuisance, especially to first time users, so a fully automatic method
using RST 6 is preferred.

When RST 6 is executed by a RST #30 instruction, the return
address is first placed on the stack. So if we program RST 6 as
follows:

POP HL
JP (HL)

we can withdraw the return address from the stack into the HL
register pair and use a register indirect jump back to the return
address. This will leave the address of the location, immediately
following the RST #30 instruction, in the HL register pair. This is an
ideal reference point from which to alter the key addresses
necessary for relocation. Consequently, in Program 13.1 we have
labelled this location 'ref'. The breakdown of the relevant parts of
Program 13.1 are as follows:

Converting existing code to a self relocatable RSX 195

Line 140: assigns the op-code bytes of POP HL and JP (HL) to the
label 'code'. These are #E1 and #E9 respectively. The bytes are
shown in reverse order in the listing because a future load into HL
will place El in register L and E9 in register H.
Line 150: assigns the value #0030 to the location Toe'. This is the
address of the user restart, RST 6.
Lines 190 to 200: load the above op-code bytes into the restart
locations, #30 and #31.
Line 230: calls the use restart with RST loc.
Line 240: the instruction in this line has the label 'ref'. The address is
in the HL register pair at this point.

Step 2: Convert absolute addresses to 'ref' relative
When an instruction is found that has an absolute 16 bit address
in its operand, subtract 'ref' from it to make the address relative to
the location with that label. At the same time, if the label field of the
assembler is empty, place numbered markers such as those in
Program 13.1. There is no need to do this if a label is already
present. When labelling, always go up in steps of ten or so in case
you miss one out.

As an example, we will compare the equivalent lines of Program
12.1 and 13.1, lines 430 and 960 respectively.

In program 12.1 the line is:

7037 ED5B0372 430 LD DE,(tail)

In program 13.1 the equivalent line is changed to:

7074 ED5BFC01 960 L120: LD DE,(tail-ref)

The points worthy of mention are:

(a) The absolute address label 'tail' has been changed to 'tail-ref'.
(b) The instruction is marked by a label 'L120' in the label field of
the assembler.
(c) The assembler has performed the arithmetic on the address
'tail-ref' expression and has placed the relative address, offset from
'ref', in the object code field. The absolute address #7203 has been
changed to the 'ref' relative address of #01FC in the assembly
process.

It is important to stress, once again, that you save your source
code on tape or disc before executing the object code program.

Step 3: Set up a location pointer table
All instructions using 16 bit absolute addresses should at this stage
be marked off with a label. The location pointer table should hold, as
2 byte data words, the 'ref' relative addresses of the operands to be
modified. Expressions following the DEFW directive are used to
calculate the addresses. The location pointer table occupies lines

196 Self relocation of subroutines and resident system extensions

2900 to 3210 of Program 13.1 and has the label 'Ltable' in line 2900.
There are three different types of expression each corresponding to
the different lengths of instruction.

At the moment the labels L10, L20, L30 etc index the op-code
addresses, not the operand addresses. To recitify this, we need to
add-in a non constant offset, depending on op-code length (if any)
so that only the operand addresses which need to be changed are
present in the table.

Each entry into the table is an expression which evaluates to a 'ref'
relative 16 bit address. These expression can be either on the same
line separated by commas (lines 2990 to 3210), or else in a single line
(lines 2900 to 2980). Notice that lines 2900 to 2980 use labels other
than those numbered because the locations were already labelled for
other reasons. It is a good idea to include them at the head of the
table.

To illustrate the setting of the table's DEFW expressions, the three
different types occurring in Program 13.1 are described below.
Line 2910: The location labelled 'Ctable' (refer to line 610) does not
contain an actual instruction. It is simply the address data of the RSX
name table. In this case to make it 'ref' relative we simply subtract
'ref'.
Line 3070: The first address expression on this line is

'L170+1—ref'.

Looking back at the instruction labelled 'L170' in line 1230, we
find that the instruction is of the form

LD (addr),HL

which is a three byte instruction. The op-code is one byte long and
the 16 bit address operand follows it. This is why the offset of one is
added. Again the address value is made 'ref' relative by subtracting
'ref'.
Line 3100: The first address expression is

'L230+2—ref'.

Looking back at the instruction labelled 'L230' in line 1800, we find
that it is of the form

LD rp,(addr)

which is a four byte instruction. This time the op-code extends over
two bytes so the address operand is offset by 2 from the label 'L230',
hence the expression

'L230+2—ref'.

Finally, a zero data word (DEFW 0) is used as a marker to denote the
end of the table.

Converting existing code to a self relocatable RSX 197

Step 4: Add a location change routine
This routine is needed to pick up each relative address from the
table and convert it to absolute form by adding back 'ref'. The
corresponding locations are then accessed and their relative con
tents made absolute again by the addition of 'ref'. Remember that
the new value of 'ref' will have been determined for the new
execution address by the RST #30 call described in Step 1. The
routine, used in Program 13.1, lies between lines 240 to 540. The
breakdown of this routine is as follows.
Lines 240 to 250: the current value of the address 'ref' will be present
in the HL register pair. For later use, it is copied into the BC register
pair.
Lines 260 to 270: the 'ref' relative address of the location pointer table
is loaded into the HL register pair. The contents are made absolute
by adding BC, thus initialising HL as a data pointer to the table.
Lines 320 to 350: the currently accessed location table value is loaded
into the DE register pair, using implied addressing.
Lines 360 to 380: a check is made for the end of table marker which is
a data word set to #0000. If DE is found to contain zero then the
loop is terminated by a branch to 'end'.
Line 390: the data pointer, HL, is temporarily placed on the stack.
Line 400 to 420: the current relative address in DE is swapped over to
HL, and BC added to convert it to absolute. A copy of the absolute
address pointer value, left in HL, is placed on the stack for later re
use.
Lines 430 to 450: the operand, of the instruction to be altered is
loaded into the DE register pair using implied addressing.
Lines 460 to 480: this value is made absolute by adding the value of
'ref', still in BC, to the DE register pair.
Lines 490 to 520: the address pointer HL is restored from the stack
and the modified contents, in DE, are written back in the instruction
operand using implied addressing.
Lines 530 to 540: the table data pointer is restored from the stack and
an unconditional branch is made back to 'alter' so that the process
can be repeated on the next table entry.

Step 5: Log on the RSX
This section is placed from line 560 to line 660 of Program 13.1 and is
similar in form to that previously decribed for Program 12.3. The
only differences are:

1 Any references to absolute addresses in operands are subject to
the above guidelines.

2 The 4 byte workspace, specified for the KL LOG EXT (#BCD1)
call, is a labelled location 'Wspace'. Line 2890 shows that 4 bytes are
reserved using the DEFS assembler directive starting at this address.

3 'SORTSTR' is the only external command name logged on.

198 Self relocation of subroutines and resident system extensions

Loading and testing the string sort RSX

Once assembled at &7000, the object code can be saved to tape or
disc as a binary file. The RSX can then be loaded back into RAM at
any address within the memory pool. Once in place, it is essential to
call it at its chosen load address with the following command:

CALL <load adddress>

The reason for this is twofold:

1 To log on the RSX to the external command server.
2 To alter certain instruction operands for execution at the load
address.

Note that, at this stage, only the code necessary for intitialisation
and relocation is executed. The RSX itself, is subsequently executed
each time its external command name is recognised. A suitable RSX
loader, written in BASIC, occupies lines 20 to 60 of Program 13.2.
However, if preferred, the RSX can be automatically loaded directly
beneath HIMEM. The load address can be determined from the
expression (HIMEM - L - 1) where L is the length of the RSX in
bytes including workspace.

Lines 70 to 400 of Program 13.2 are simply a test routine which
sets up a random string array, executes the RSX and displays the
sorted array.

Program 13.2 Loader/Test program for the string sort RSX

10 REM TEST PROGRAM1 STRING SORT (RSX>
20 CLS
30 INPUT"Load address";addr
40 MEMORY ABS(addr)-l
50 LOAD "SORTSTR.BIN",addr
60 CALL addr
70 CLS
BO INPUT “Sort how many strings”; NUMBER’/.
90 PRINT
100 REM FILL AND DISPLAY RANDOM ARRAY
110 DIM A»(NUMBER%>
120 head'/.= l: tai 1Z=NUMBER7.
130 FOR R%-head% TO tai 17.
140 B$=""
150 A7.=6*RND+1
160 FOR Z%=1 TO A7.
170 N7.=25*RND
180 K$=CHR»<N7.+65>
190 B$=B*+K*
200 NEXT
210 A«(R7.)=B«
220 PRINT A»(R7.>
230 NEXT
240 PRINTsPRINT
250 PRINT"SORTING ARRAY"
260 PRINTsPRINT

Loading and testing the string sort RSX 199

270 START=TIME/3OO
280 I SORT STR, h«*d7. ,tai 17. ,«A» <0>
290 T-TIME/300-START
300 FOR R7.-h»*dX TO tai 17.
310 PRINT A»(R7.)
320 NEXT
330 PRINT
340 PRINT"STRINGS SORTED-"JNUMBERX
350 PRINT
360 PRINT"SORTING TIME-"jROUND(T,2)|“SECONDS"
370 PRINT
380 INPUT“Anoth»r test (Y/N)”|K»
390 K»-UPPER#<K»)
400 IF K«-“Y“ THEN ERASE A#I GOTO 70 ELSE END

Producing the RSX binary file
The RSX binary file can be produced by the following method:

(a) Load the HiSoft DEVPAC assembler at, say, address &2000
hex.
(b) Type in the assembly code listing, Program 13.1.
(c) Save a copy of the source code on tape (or disc) by typing:

P 10,3210,SORTSTR.RSX

The source code file can be reloaded at some later time with

G„SORTSTR.RSX

(d) Assemble the code by typing the assembler command, A.
When asked for table size, respond with 1000.
(e) Clear any typing errors reported.
(f) Save the object code as a binary file by typing the assembler
command:

O„SORTSTR.BIN

(g) Perform a hard reset to clear memory.
(h) Type in and save on disc the test program, Program 13.2. This
will automatically load, run and test the RSX at the chosen load
address. Remember to save the program on tape or disc before a
RUN.

Calling the RSX from BASIC

In the previous Chapter we executed the non-relocatable version of
Quicksort, Program 12.1 with the following command:

200 Self relocation of subroutines and resident system extensions

CALL &7000,head%,tail%,@A$(0)

We did not need, as we do for the RSX version, an initialisation call
to either log on the RSX or change any location contents.
Nevertheless, the method, content and mechanism of parameter
passing described there are equally valid for the self relocating RSX
version. The only difference is that we execute it with the following,
more convenient, variant:

I SORTSTR,head%,tail%,@A$(0)

RSX for sorting rectangular arrays

Program 13.3 is a self relocating RSX which is capable of sorting
rectangular arrays. It is fast. In fact, it will sort a computerful of
records in a second. The routine can sort records with up to 85 fields
which is a limit well above the demands of most files. Before
describing the routine, we will examine what rectangular arrays are,
what they can be used for and how they are stored in memory.

RAM based data files and rectangular arrays

A data organisation, commonly encountered in RAM based filing
systems, is the two-dimensional or rectangular string array. For
example, if a RAM based file is DIMensioned A$(FIELDS%,
RECORDS%) then the data array A$ can be considered to contain
RECORDS% records each of FIELDS% fields. We can define any
field in a specific record by A$(F%,R%) where F% is the field
number and R% is the record number. The following table shows
how to visualise such a file in memory.

Field headings
Field 0
A$(0,0)

Field 1
A$(l,0)

Field 2
A$(2,0)

Record 1 A$(0,l) A$(l,l) A$(2,l)
Record 2 A$(0,2) A$(l,2) A$(2,2)
Record 3 A$(0,3) A$(l,3) A$(2,3)
Record 4 A$(0,4) A$(l,4) A$(2,4)
Record 5 A$(0,5) A$(l,5) A$(2,5)
Record n A$(0,n) A$(l,n) A$(2,n)

Using rectangular arrays effectively

When BASIC DIMensions a rectangular array, 3 byte string des
criptors are reserved for each array element whether they are used

RAM based data files and rectangular arrays 201

or not. Unfortunately, this includes all zero indexed elements. In
order to maximise the use of available memory we should ensure
that field zero is used as one of the legitimate fields. If we do this
then we can DIMension, say, a 400 record, 5 field data file as
A$(4,400) rather than A$(5,400) which may, at first sight, seem an
obvious choice. Neglect of this point could waste 400*3=1200 bytes
of memory unnecessarily.

How BASIC organises a rectangular array in memory

If records are to be sorted according to a specific field, we need to
modify our routines to exchange all fields of the record pairs each
time.

The sequential order in which the BASIC interpreter stores the 3
byte string descriptors are as follows.

A$(0,0) A$(l,0) A$(2,0) A$(0,l) A$(l,l) A$(2,l)----------- A$(0,n)
A$(l,n) A$(2,n)

The second index, or dimension, is the one with sequential integrity
in memory. This is the reason why the field index is chosen first and
the record index second. The record's string descriptors occupy a
sequential block of memory and thus can be moved about efficiently
using machine code. Access to the string descriptor of a particular
field is a simple case of adding an offset, equal to a fixed multiple of
three, to the zeroth string descriptor of each record.

Program 13.3 Quicksort of a rectangular string array (RSX)

Hi soft GENA3.1 Assemb1er. Page 1.

Pass 1 errorst OO

10 J QUICKSORT □F A RECTANGULAR
20 {STRING ARRAY
30 ;(LOCATION INDEPENDENT RSX)

7000 40 begin: EQU #7000
7270 50 top: EQU begin+#270
7270 60 tail: EQU top
7272 70 head: EQU top+2
7274 80 array: EQU top+4
7276 90 stackc: EQU top+6
7277 100 plen: EQU top+7
7278 110 ppoint: EQU top+B
727A 120 sdlpoi: EQU top+10
727C 130 sd2poi: EQU top+12
727E 140 bytes: EQU top+14
7280 150 offset: EQU top+16
E9E1 160 code: EQU #E9E1

202 Self relocation of subroutines and resident system extensions

0030 170 loc: EQU #0030
7000 180 ORG begin

190 ;Program user restart RST #6
200 ;to return address o-f ref in HL

7000 21E1E9 210 LD HL,code
7003 223000 220 LD (loc),HL

230 ;Call the restart routine
240 ;placed at location #30

7006 F7 250 RST 1 oc
7007 44 260 ref: LD B,H
7008 4D 270 LD C,L
7009 21DD01 280 LD HL,Ltable-ref
700C 09 290 ADD HL,BC

300 ;Pick up data from Ltable.
310 ;Make absolute by adding ref.
320 ;Access locations, add ref
330 ;to the relative values present.

700D 5E 340 alter: LD E,(HL)
700E 23 350 INC HL
700F 56 360 LD D,(HL)
7010 23 370 INC HL
7011 7A 380 LD A,D
7012 B3 390 OR E
7013 2811 400 JR Z,end
7015 E5 410 PUSH HL
7016 EB 420 EX DE, HL
7017 09 430 ADD HL,BC
7018 E5 440 PUSH HL
7019 5E 450 LD E,(HL)
701A 23 460 INC HL
7O1B 56 470 LD D,(HL)
701C EB 480 EX DE, HL
701D 09 490 ADD HL,BC
701E EB 500 EX DE, HL
7O1F El 510 POP HL
7020 73 520 LD (HL),E
7021 23 530 INC HL
7022 72 540 LD (HL),D
7023 El 550 POP HL
7024 18E7 560 JR al ter

Hisoft GENA3.1 Assemb1ar. Page 2.

570 | Set up and CALL KL LOG EXT
7026 012900 580 end: LD BC, Ct ab 1 e-r ef
7029 21D901 590 L10: LD HL,Wspace-ref
702C CDD1BC 600 CALL #BCD1
702F C9 610 RET

620 1 Set up external command table
7030 2E00 630 Ctable: DEFW Ntable-ref
7032 C33700 640 L20: JP sort-ref

650 J Set up name table
7035 534F5254 660 Ntable: DEFM "S0RT2ST"
703C D2 670 DEFB "R“+#80
703D OO 680 DEFB 0

690 ; Initialise locations

How BASIC organises a rectangular array in memory 203

703E 97 700 sorti SUB A
703F 327A02 710 L30i LD (offset+l-ref),A
7042 327802 720 L40i LD <bytes+l-ref>,A
7045 326F02 730 L50i LD (stackcount—ref>, A

740 (Pick up and store base address
750 (of string descriptors I array

7048 DD6E00 760 LD L,(IX)
704B DD6601 770 LD H,(IX+1)
704E 226DO2 780 L601 LD (array-ref),HL

790 {Pick up field sort index
800 {multiply by threei offset

7051 DD7E02 810 LD A,(IX+2)
7054 47 820 LD B,A
7055 CB27 830 SLA A
7057 80 840 ADD A,B
7058 327902 850 L70i LD (offset-ref),A

860 (Pick up number of fields, add 1
870 {then multiply by three : bytes

705B DD7E04 880 LD A,(IX+4)
705E 3C 890 INC A
705F 47 900 LD B,A
7060 CB27 910 SLA A
7062 80 920 ADD A,B
7063 327702 930 LBO: LD (bytes-ref),A

940 {Pick up tai 1 of array : tai 1
7066 DD6E06 950 LD L,(IX+6)
7069 DD6607 960 LD H,(IX+7)
706C 226902 970 L9O> LD (tail-ref),HL

980 {Pick up head of array i head
706F DD6E08 990 LD L,(IX+8)
7072 006609 1OOO LD H,(IX+9)
7075 226B02 1010 LlOOi LD (head-ref),HL

1020 (Branch to bypass if head>-tail
707B 2A6B02 1030 loopi LD HL,(head-ref)
707B ED5B6902 1040 LllOi LD DE,(tai 1-ref)
707F A7 1050 AND A
7080 ED52 1060 SBC HL,DE
7082 D2C201 1070 L1201 JP NC,bypass-ref

1080 1 Initialise highhead and lowtail
1090 1 IX It IY respectively

7085 DD2A6B02 11OO L130i LD IX,(head-ref)
7089 FD2A6902 1110 L1401 LD IY,(tail-ref)

1120 1 Calculate pivot string
1130 {descriptor address : HL

7O8D 2A6B02 1140 L150i LD HL,(head-ref)

Hisoft GENA3.1 Assembler. Page 3.

7090 ED5B6902 1150 L1601 LD DE,(tai 1-ref)
7094 19 1160 ADD HL, DE
7095 CB3C 1170 SRL H
7097 CB1D 1180 RR L
7099 EB 1190 EX DE, HL
709A 3A7702 1200 L170i LD A,(bytes-ref)
709D 47 1210 LD B,A
709E 210000 1220 LD HL,0

204 Self relocation of subroutines and resident system extensions

70A1 19 1230 multi ADD HL, DE
70A2 1OFD 1240 DJNZ mult
70A4 ED5B6D02 1250 L180: LD DE,(array—ref)
70A8 19 1260 ADD HL,DE

1270 ;Get 1ength and address of
1280 ;pivot string : plen & ppoint

70A9 ED5B7902 1290 L190: LD DE,(offset-ref)
7OAD 19 1300 ADD HL, DE
70AE 7E 1310 LD A,(HL)
7OAF 327002 1320 L200: LD (plen-ref),A
7OB2 23 1330 INC HL
70B3 5E 1340 LD E,(HL)
70B4 23 1350 INC HL
70B5 56 1360 LD D,(HL)
70B6 ED537102 1370 L210: LD (ppoint-ref),DE

1380 ;Set pointer to first string
1390 ;descriptor: sdlpoint

70BA 210000 1400 LD HL,0
70BD ED5B6B02 1410 L220: LD DE,(head-ref)
70C1 3A7702 1420 L230: LD A,(bytes-ref)
70C4 47 1430 LD B,A
70C5 19 1440 mult2: ADD HL, DE
70C6 10FD 1450 DJNZ mult2
70C8 ED5B6D02 1460 L240: LD DE,(array-ref)
70CC 19 1470 ADD HL, DE
70CD 227302 1480 L250: LD (sdlpoint-ref),HL

1490 ;Set pointer to second string
1500 ;descriptor: sd2point

70D0 210000 1510 LD HL,0
70D3 ED5B6902 1520 L260: LD DE,(tai 1-ref)
70D7 47 1530 LD B,A
70D8 19 1540 mult3: ADD HL, DE
7OD9 10FD 1550 DJNZ mult3
70DB ED5B6D02 1560 L270: LD DE,(array—ref)
70DF 19 1570 ADD HL, DE
70E0 227502 1580 L280: LD (sd2point-ref),HL

1590 ;Get length and address of first
1600 sstrinq : C & DE

70E3 2A7302 1610 first: LD HL,(sd1poi nt-ref)
70E6 ED5B7902 1620 L290: LD DE,(offset-ref)
70EA 19 1630 ADD HL, DE
70EB 4E 1640 LD C,(HL)
70EC 23 1650 INC HL
70ED 5E 1660 LD E,(HL)
7OEE 23 1670 INC HL
70EF 56 1680 LD D,(HL)

1690 {Compare first string to pivot
1700 ;branch to procl if string<pivot

70F0 0600 1710 LD B,0
70F2 2A7102 1720 L300: LD HL,(ppoint-ref)

Hisoft 8ENA3.1 Assemb 1 er. Page 4.

70F5 1A 1730 comps LD A,(DE)
70F6 BE 1740 CP (HL)
70F7 3811 1750 JR C,procl

How BASIC organises a rectangular array in memory 205

70F9 201E 1760 JR NZ,second
70FB 04 1770 INC B
70FC 3A7002 1780 L310s LD A,(plen-ref>
70FF B8 1790 CP B
7100 2817 1800 JR Z,second
7102 79 1810 LD A,C
7103 B8 1820 CP B
7104 2804 1830 JR Z,proc1
7106 13 1840 INC DE
7107 23 1850 INC HL
7108 2OEB 1860 JR NZ,comp

1870 j Add 3 to sdlpoint
710A 2A7302 1880 procl: LD HL,(sdlpoint-ref)
710D ED5B7702 1890 L320: LD DE,(bytes-ref)
7111 19 1900 ADD HL, DE
7112 227302 1910 L330s LD (sdlpoint-ref>,HL

1920 {increment h ighhead
7115 DD23 1930 INC IX
7117 18CA 1940 JR first

1950 {Get 1ength and address of
1960 ;second string : C & DE

7119 2A7502 1970 second: LD HL,(sd2point-ref)
711C ED5B7902 1980 L340> LD DE,(offset-ref)
7120 19 1990 ADD HL,DE
7121 4E 2000 LD C,(HL)
7122 23 2010 INC HL
7123 5E 2020 LD E,(HL)
7124 23 2030 INC HL
7125 56 2040 LD D,(HL)

2050 {Compare second string to pivot
2060 ;branch to proc2 if string>pivot

7126 0600 2070 LD B,0
7128 EB 2080 EX DE,HL
7129 ED5B7102 2090 L350: LD DE,(ppoint-ref)
712D 1A 2100 comp2s LD A,(DE)
712E BE 2110 CP (HL)
712F 3811 2120 JR C,proc2
7131 2020 2130 JR NZ,over
7133 04 2140 INC B
7134 79 2150 LD A,C
7135 B8 2160 CP B
7136 281B 2170 JR Z,over
7138 3A7002 2180 L360: LD A,(plen-ref)
713B B8 2190 CP B
713C 2804 2200 JR Z,proc2
713E 13 2210 INC DE
713F 23 2220 INC HL
7140 20EB 2230 JR NZ,comp2

2240 ;Subtract 3 from sd2point
7142 2A7502 2250 proc2: LD HL,(sd2point—ref)
7145 ED5B7702 2260 L370: LD DE,(bytes-ref)
7149 A7 2270 AND A
714A ED52 2280 SBC HL, DE
714C 227502 2290 L380: LD (sd2point-ref),HL

2300 {decrement lowtail

206 Self relocation of subroutines and resident system extensions

Hi soft GENA3.1 Assembler. Page 5.

714F FD2B 2310 DEC IY
7151 18C6 2320 JR second

2330 ;Compare sdlpoint to sd2point
2340 ; Br. proc3 if sdlpoint<sd2point
2350 ; Br. skip if sdlpoint >sd2poi nt
2360 ;if - dec lowtail & inc highhead

7153 A7 2370 over: AND A
7154 2A7302 2380 L390: LD HL,(sdlpoint-ref)
7157 ED5B7502 2390 L400: LD DE,(sd2point-ref)
715B ED52 2400 SBC HL, DE
715D 3808 2410 JR C,proc3
715F 2031 2420 JR NZ,skip
7161 FD2B 2430 DEC IY
7163 DD23 2440 INC IX
7165 182B 2450 JR skip

2460 ; swop string descriptors
7167 3A7702 2470 proc3 : LD A,(bytes-ref)
716A 47 2480 LD B,A
716B 2A7302 2490 L410: LD HL,(sdlpoint-ref)
716E 1A 2500 swop: LD A,(DE)
716F 4E 2510 LD C,(HL)
7170 EB 2520 EX DE, HL
7171 71 2530 LD (HL),C
7172 12 2540 LD (DE) , A
7173 13 2550 INC DE
7174 23 2560 INC HL
7175 10F7 2570 DJNZ swop

2580 ;Add 3 to sdlpoint
7177 2A7302 2590 L420: LD HL,(sdlpoint-ref)
717A ED5B7702 2600 L430: LD DE,(bytes-ref)
717E 19 2610 ADD HL, DE
717F 227302 2620 L440: LD (sdlpoint-ref),HL

2630 ;subtract 3 from sd2point
7182 2A7502 2640 L450: LD HL,(sd2point-ref)
7185 A7 2650 AND A
7186 ED52 2660 SBC HL, DE
7188 227502 2670 L460: LD (sd2point-ref),HL

2680 ; dec lighhead:inc lowtail
718B DD23 2690 INC IX
718D FD2B 2700 DEC IY
718F C3DC00 2710 L470: JP first-ref

2720 5 increment stackcounter
7192 216F02 2730 skip: LD HL,stackcount-ref
7195 34 2740 INC (HL)

2750 ;Calc 1owtai 1 —1owhead &
2760 ; hightail-highead

7196 A7 2770 AND A
7197 FDE5 27B0 PUSH IY
7199 El 2790 POP HL
719A ED5B6B02 2800 L480: LD DE,(head—ref)
719E ED52 2810 SBC HL, DE
71A0 EB 2820 EX DE, HL
71A1 A7 2830 AND A
71A2 2A6902 2840 L49O: LD HL,(tai 1-ref)
71A5 DDES 2850 PUSH IX

How BASIC organises a rectangular array in memory 207

71A7
71AB

Cl
ED42

2860
2870
2880

POP
SBC

;Compare rei

BC
HL,BC

ults & stack larger

Hisoft BENA3.1 Assembler. Page 6.

2890 ;limits : process smaller limits
71AA A7 2900 AND A
71AB ED52 2910 SBC HL, DE
71AD 300D 2920 JR NC,sthigh
71AF 2A6B02 2930 L500: LD HL,(head-reF)
71B2 E5 2940 PUSH HL
71B3 FDE5 2950 PUSH IY
71B5 DD226BO2 2960 L510: LD <head-reF) , IX
71B9 C37100 2970 L520: JP loop-reF
71BC DDE5 2980 sthigh: PUSH IX
71BE 2A6902 2990 L530: LD HL,(tail-reF)
71C1 E5 3000 PUSH HL
71C2 FD226902 3010 L540: LD (tail-reF),IY
71C6 C37100 3020 L550: JP loop-reF

3030 ;compare stackcounter to zero
71C9 3A6F02 3040 bypass: LD A,(stackcount-reF)
71CC FEOO 3050 CP 0
71CE 280F 3060 JR Z,Finish

3070 ;decrement stackcounter
71D0 3D 3080 DEC A
71D1 326F02 3090 L560: LD (stackcount-reF),A

3100 ;Pop tail & head From stack
71D4 El 3110 POP HL
71D5 226902 3120 L570: LD (tai 1-reF),HL
71D8 El 3130 POP HL
71D9 226B02 3140 L580: LD (head-reF),HL
71DC C37100 3150 L590: JP 1oop-reF
71DF C9 3160 Finish: RET
71E0 3170 Wspace: DEFS 4
71E4 2000 3180 Ltable: DEFW end+l-reF
71E6 2900 3190 DEFW Ctable-reF
71E8 7200 3200 DEFW loop+l-reF
71EA DDOO 3210 DEFW First+l-reF
71EC 0401 3220 DEFW procl+l-reF
71EE 1301 3230 DEFW second+l-reF
71F0 3C01 3240 DEFW proc2+l-reF
71F2 6101 3250 DEFW proc3+l-reF
71F4 8C01 3260 DEFW skip+l-reF
71F6 C301 3270 DEFW bypass*1-reF
71F8 23002C00 3280 DEFW L10+1-reF,L20+1-reF
71FC 39003C00 3290 DEFW L30+1-reF,L40+1-reF
7200 3F004800 3300 DEFW L50+1-reF,L6O+1-reF
7204 52005D00 3310 DEFW L70+1-reF,L80+1-reF
7208 66006F00 3320 DEFW L9O+1—reF,L100+l-reF
720C 76007C00 3330 DEFW LI10+2—reF,L120+l-reF
7210 80008400 3340 DEFW L130+2-reF,L140+2-reF
7214 87008B00 3350 DEFW L150+1-reF,L160+2-reF
7218 94009F00 3360 DEFW L170+1-reF,L180+2-reF
721C A400A900 3370 DEFW L190+2—reF,L200+1-reF
7220 B100B800 3380 DEFW L210+2-reF,L220+2-reF

208 Self relocation of subroutines and resident system extensions

7224 BBOOC3OO 3390 DEFW L230+l-ref,L240+2-ref
7228 C700CE00 3400 DEFW L250+l-ref,L260+2-ref
722C D6OODAOO 3410 DEFW L270+2-ref,L280+l-ref
7230 E100EC00 3420 DEFW L290+2-ref,L300+l-ref
7234 F6000801 3430 DEFW L310+1-ref,L320+2-ref
7238 OCO11701 3440 DEFW L330+l-ref,L340+2-ref
723C 24013201 3450 DEFW L350+2—ref,L360+l-ref
7240 40014601 3460 DEFW L37O+2—ref,L380+l-ref

Hisoft GENA3.1 Assembler. Page 7.

7244 4E015201 3470 DEFW L390+l-ref,L400+2-ref
7248 65017101 3480 DEFW L410+l-ref,L420+l-ref
724C 75017901 3490 DEFW L430+2-ref,L440+l-ref
7250 7C018201 3500 DEFW L450+l-ref,L460+l-ref
7254 89019501 3510 DEFW L47O+1—ref,L480+2-ref
7258 9C01A901 3520 DEFW L490+1-ref,L500+1-ref
725C B001B301 3530 DEFW L51O+2—ref,L520+l-ref
7260 B801BD01 3540 DEFW L530+1—ref,L540+2-ref
7264 C001CB01 3550 DEFW L550+l-ref,L560+l-ref
7268 CF01D301 3560 DEFW L570+1-ref,L580+l-ref
726C D6010000 3570 DEFW L590+l-ref,0

Pass 2 errors! 00

Table used: 1115 from 1200

The RSX loader/test program

Program 13.4 is a loader/test program for loading and testing the
RSX at any address within the memory pool. The test section sets up
a random array of 3 field records. The fields are numbered field
zero, field 1 and field 2 respectively and the array is dimensioned
DIM (FIELDS%,RECORDS%), where FIELDS% is set to the value 2
(zero is taken as a positive number). You are asked for the number
of records, and which field (0 to 2) is to be the subject of the sort. As
with the previous test program (Program 13.2) the RSX routine must
be called initially with:

CALL <load address>

to log on the RSX and change certain locations for execution at the
load address. The RSX is subsequently executed by the following
external command:

ISORT2STR,head%,tail%,FIELDS%,FIELDNUM%,@A$(0,0)

The parameters required are:

1 head%, is the minimum indexed record to be included in the sort
(usually set to 1).

The RSX loader/test program 209

2 tail%, is the maximum indexed record to be included.
3 FIELDS%, the number of fields in a record minus one or the
value which appears in the DIMension command.
4 FIELDNUM %, the index to the field by which the array is to be
sorted (0 to n-1), where n is the total number of fields.
5 The @A$(0,0) term passes the base address of the array string
descriptors.

Program 13.4 Loader/test program for the rectangular array
Quicksort

10 REM TEST PROGRAM :
20 REM RECTANGULAR STRING ARRAY SORT (RSX)
40 CLS
50 INPUT"Load address"|addr
60 MEMORY ABS(addr)-l
70 L0AD"S0RT2STR.BIN",addr
80 CALL addr
90 CLS
100 INPUT”Sort how many 3 field records";RECORDSZ
110 FIELDSX=2x REM 3 fields (0,1 & 2)
120 INPUT"Sort which field (0-2) "; FIELDNUMZ
130 IF FIELDNUMXCO OR FIELDNUMZ>2 THEN 120
140 PRINT
150 REM FILL AND DISPLAY RANDOM ARRAY
160 DIM A»(FIELDSX,RECORDSZ)
170 headZ-1 s tai 1X-RECORDSX
180 FOR RX-headZ TO tai IX
190 FOR FX=0 TO FIELDSX
200 B»»""
210 AX-6*RND+1
220 FOR ZX=1 TO AX
230 NZ=25*RND
240 K»-CHR»(NX+65)
250 Bt=BS+K«
260 NEXT
270 M(FZ.RX)—BS
280 PRINT A«(FX,RX),
290 NEXT
300 NEXT
310 PRINTS PRINT
320 PRINT"SORTING ARRAY"
330 PRINTS PRINT
340 START-TIME/300
350 IS0RT2STR,headX,tai1X,FIELDSX,FIELDNUMX,SAS(0,
0)
360 T—TIME/3OO—START
370 FOR RX=headX TO tai IX
380 FOR FX-0 TO FIELDSX
390 PRINT A«(FX,RX),
400 NEXT
410 NEXT
420 PRINT
430 PRINT"REC0RD8 SORTED-RECORDSZ
440 PRINT

210 Self relocation of subroutines and resident system extensions

450 PRINT"SORTINB TIME-"jROUND(T,2)j“SECONDS"
460 PRINT
470 INPUT"Another t»«t (Y/N)"|K»
4B0 «♦—UPPER* (KO
490 IF K»-"Y" THEN ERASE A*I GOTO 90 ELSE END

Producing a binary file of the RSX

The following step by step guide shows how to produce, load and
test the RSX (Program 13.3).

(a) Load the Assembler at, say &2000.
(b) Type in Program 13.3.
(c) Save the source code file by typing

P 10,3570,SORT2STR.RSX

(d) Assemble the code by entering the assembler command A.
When asked for table size, respond with 1500.
(e) Save the object code as a binary file by typing the command:

O„SORT2STR.BIN

(f) Clear memory of the assembler by performing a hard reset then
type in Program 13.4. This program will load, run and test the object
code file you have just produced. Remember to save the program
first! (Murphy's law).

Breakdown of Program 13.3

The listing is similar in many respects to Programs 12.1 and 13.1 so
only additional or modified sections need describing. In view of
this, readers should refer back to the breakdowns of Programs 12.1
and 13.1 before attempting to decipher the following labels and
abbreviations.
Lines 140 to 150: the labels 'bytes' and 'offset' are assigned to the
addresses #727E and #7280 respectively.
Lines 700 to 720: initialise the labelled locations 'offset' and 'bytes' to
zero.
Lines 810 to 850: pick up the 16 bit value of the BASIC variable,
'FIELDNUM%', from the parameter block. This value is incre
mented, to take into account array index numbering from zero
rather than one. The result is then multiplied by three (the number
of bytes in a string descriptor) and stored in the location labelled
'offset'. This value will act as an offset (from the record's first field
string descriptor) to the string descriptor associated with a particular
key field. Multiplication by three is achieved by a single shift left

Breakdown of Program 13.3 211

(iex2) then adding the original number.
Lines 880 to 930: pick up the number of fields in a record, again
adding 1, then multiplying by 3. The result, stored in the location
'bytes', is thus the total length of the record's string descriptors.
These are the number of bytes which may be swapped in position
during sorting.
Lines 1140 to 1260: calculate the string descriptor address, associated
with the first field of the record containing the current pivot string.
(The pivot string descriptor will be offset from this). The calculation
is done in three stages. Firstly, 'head' and 'tail' are added together.
Secondly, integer division by two is performed by a single shift
right. Finally, the result is multiplied by 'bytes' and added to the
access table base address 'array'. The formula evaluated is:

string descriptor address=[(head+tail)/2]*bytes

where the integer value is taken within the square brackets.
Lines 1290 to 1360: add 'offset' to the above string descriptor
address so as to access the pivot string descriptor associated with
the key field. The result, in the HL register pair, is used as a data
pointer to pick up the length and address of the key field's pivot
string.
Lines 1400 to 1480: calculate the address pointer to the initial string
descriptor of the current record, scanning from bottom of list/
sublist, and store the result in 'sdlpoint'. The equation evaluated is:

sdl point=(head*by tes)+array

Lines 1510 to 1580: calculate the address pointer to the initial string
descriptor of the current record, scanning from bottom of list/
sublist, and store the result in 'sd2point'. The equation evaluated is:

sd2point= (tail*bytes)+array

Lines 1610 to 1680: add 'offset' to the string descriptor address
associated with the first field of the record containing stringl. The
result, the address of the key field's string descriptor, is used to pick
up the length and address of stringl using implied addressing.
Lines 1880 to 1910: add 'bytes' to the address pointer 'sdlpoint' so as
to point to the next appropriate string descriptor.
Lines 1970 to 2040: add 'offset' to the string descriptor address
associated with the first field of the record containing string2. The
result, the address of the key field's string descriptor, is used to pick
up the length and address of string2 using implied addressing.
Lines 1880 to 1910: subtract 'bytes' from the address pointer
'sdlpoint' so as to point to the next appropriate string descriptor.
Lines 2470 to 2570: swap the string descriptors, corresponding to the
entire record, containing stringl with those of the record containing
string2.

212 Self relocation of subroutines and resident system extensions

Lines 2590 to 2620: add 'bytes' to 'sdlpoint' so as to point to the next
appropriate string descriptor.
Lines 2640 to 2670: subtract 'bytes' from 'sd2point' so as to point to
the next appropriate string descriptor.

Summary

1 The Amstrad machines have a dynamic system of memory
allocation.
2 An RSX should preferably be location independent or self
relocating.
3 The restart RST 6 is guaranteed free for programming by the
user.
4 The user restart can be used to extend the Z80 instruction set and
can be considered a miniature subroutine.
5 RST 6 is executed by the single byte instruction RST #30.
6 The restart routine must not exceed 8 bytes in the range #0030 to
#0037.
7 Self relocating object code can be produced from any subroutine
by following four steps.
8 Once loaded, a self relocatable RSX must be called, at its load
address, to log its name on to the external command table. At the
same time, a short routine converts all 'ref' relative operand
addresses to absolute.
9 An RSX can be automatically loaded beneath HIMEM.
10 A data file can be stored in BASIC as a rectangular array or two
dimensional array. Fields will occupy one dimension and records
the other.
11 When using rectangular arrays always use the zeroth indexed
elements or memory will be needlessly wasted.
12 With an array dimensioned

DIM A$(x,y)

the first index (x) is the field index number and the second index (y)
is the record number.
13 The term @A$(0,0), returns the string descriptor address of
A$(0,0), not the string address itself.
14 The RSX Quicksort of a rectangular array will handle a
computer full of records in about one second.

Graphics and direct 14
screen addressing

Fast methods of setting up and independently moving multicol
oured sprites of any size, without perceptible flicker, are explained
now. In order to gain maximum speed it is necessary to address
screen memory directly. Unfortunately, the rather unusual layout of
screen memory and pixel encoding makes this a rather tedious task.
However, the principles are not difficult to grasp and can be put to a
variety of uses including graphics reinforcement to educational
programs and, of course, action games. The example routines
presented in this chapter can be incorporated in BASIC/machine
code hybrids or as part of a stand-alone machine code programs.

Using resident firmware routines

It.is possible, and in many quarters encouraged, to perform graphics
operations using resident firmware routines. Programs produced in
this way, have the advantages of being simple to implement and are
guaranteed portable between machines of the same type. A number
of calls to various firmware graphics routines may be linked together
with a few bytes of connective tissue to perform a full working
program. Most firmware routines are, of necessity, general purpose
in nature and may perform duties over and above a particular
requirement and so waste execution time. The requirement of speed
is one of the reasons why programmers resort to the direct addressing
of screen memory in animated sequences.

Typical action games

Figure 14.1 is a simplified flowchart of an action game, typical of the
early eighties. Although much of it is straightforward, problems are
often encountered with flicker. The blame rests almost entirely with
slow execution speed resulting from the need to continually draw
and erase sprites to simulate movement. It is in this area that we shall
now concentrate. 213

214 Graphics and direct screen addressing

Fig 14.1 Flowchart of a typical action game

Organisation of screen memory

As we have previously remarked, the Amstrad screen memory is set
out in an unusual manner. The 16K memory area is, by default,
situated at the top of the memory map in the address range #C000
to #FFFF. Each of the 200 pixel lines, regardless of mode, are coded
by 80 bytes making 200x80=16000 bytes in all. It follows that

Organisation of screen memory 215

16384(16K)-16000=384 bytes are unused. This region is split up into
eight 2K blocks, of which 48 bytes at the end of each block remain
unused. The pixel lines, 0,8,16,24,32,40,48...192 are coded sequen
tially in the first block. The pixel lines, 1,9,17,25,33,41,49,...193 are
coded sequentially in the second block and so on. The gaps of eight
between the series correspond to the relative spacing of each
standard text character row.

In all Modes, the vertical resolution is fixed at 200 pixels. The
horizontal resolution is all that changes on selecting a different
screen mode. In Mode 0, two pixels are encoded by each screen
byte, whereas 4 and 8 pixels are encoded by each byte in Modes 1
and 2 respectively. Thus each pixel is bit mapped only in the highest
resolution Mode 2. If only one bit is used to encode a pixel it can
only be one of two colours coded by a '1' or a 'O'. In mode 1, two bits
are available enabling four colours. Mode 0, having four bits to
encode each pixel, enables a choice of sixteen colours.

(°-0’ »
origln 160 pixels 80 bytes

Single pixel
movement

t

2 pixel Sprite cell 2 pixel
movement (any size) * movement

1

Single pixel
movement

Fig 14.2 Mode zero dynamic graphics resolution (fast method)

Mode Zero

Taking all things into account, the most versatile mode for animated
graphics is Mode 0. This mode has a reasonable resolution (160 by
200 pixels), at the same time allowing a maximum of sixteen
different pixel colours which can be selected from a choice of 27

216 Graphics and direct screen addressing

inks. A particularly fast graphics method is possible providing we
are content with two-pixel horizontal movement at a time. Although
not affecting pixel resolution, there is a corresponding reduction in
'dynamic' resolution to 80 by 200. However, this disadvantage is
more than compensated for by the ease of manipulation of pixels on
the screen. In fact, it simplifies to moving whole bytes around in
screen memory. Figure 14.2 (previous page) shows the byte/pixel
relationship of screen memory.

How pixels are encoded in a screen memory byte (Mode 0)

For ease of use within the system, the software designers of the
Amstrad have again chosen a rather unusual method of encoding
pixels within a screen byte. Figure 14.3 shows how the pixel colours
must be encoded. The current pen colours in the range 0 to 15 are
thus encoded in L3 L2 L, Lo (msb to isb) for the left hand pixel and R3
R2 Ri Rq for the right hand pixel.

Left hand pixel bits

1 r ' f ' ' BitO

L0 R0 L2 R2 L1 R1 L3 R3

Bit 7 t 1 1 1 i k 1 k

Right hand pixel bits

Fig 14.3 How pixels are encoded within screen bytes (Mode 0)

For example, Figure 14.4 shows how to encode a bright red pixel
on the left of a bright green pixel in an arbitrary byte of screen
memory. With default inks, the code numbers for bright red and
bright green are respectively 3 (0011 binary) and 12 (1100 binary).

Shape tables for Mode zero

A sprite, or MOB (Moving OBject), are blanket terms used to
decribe any arbitrary shape together with its associated velocity. When
designing a sprite, it is often convenient to consider it enclosed

Shape tables for Mode zero 217

#99

1 0 0 0 0 1

Fig 14.4 An example of pixel encoding (Mode 0)

within a rectangular cell of grid lines where each sub cell represents
a pixel. Once the shape is designed, colour or pen numbers can be
allotted to each pixel. Any irregular shape can be coded since the
background colour can be specified for any unused pixels. It is
always a good idea to ensure that a border of background colour is
present around the shape. By doing this, we need not concern
ourselves with erasing any remaining bits and pieces whichever
direction the shape is moved. This border would, of course, be two
pixels wide on the left and right hand sides of the shape and one
pixel high at the top and bottom. Horizontal pairs of pixels are then
encoded into bytes by the method described above and finally
placed in a data table for direct transfer into screen memory. For
convenience, the first two entries in a shape table may be the height
and width of the encoded shape in bytes. This data would
subsequently be used by a single routine which dumps one or more
different shapes into screen memory. Figure 14.5 (overleaf) shows
the row by row order in which bytes, corresponding to a 10 by 12
pixel shape rectangle, can be dumped into screen memory.
Remember that 5 bytes will contain the data for ten horizontal pixels
in Mode zero.

Placing a shape at screen co-ordinates X,Y

Within a program, a shape is often drawn relative to a particular pair
of X,Y screen co-ordinates. For subsequent ease of sprite manipula
tion, we can make use of a firmware routine called SCR DOT
POSITION (#BC1D), which translates the X,Y co-ordinates to a
reference screen address. From then on, direct screen addressing
can be used to dump the entire shape table into screen memory (see
Figure 14.6). In the example programs of this Chapter, we will be

218 Graphics and direct screen addressing

M

Height
12 bytes

Width
(5 bytes)

0 1 2 3 4

5 6 7 8 9

10 11 12

48 49

50 51 52 53 54

55 56 57 58 59

Fig 14.5 Order in which shape table bytes are dumped in screen memory

using the byte corresponding to the top left hand corner of the
shape rectangle as this reference address. The details of the
firmware routine SCR DOT POSITION (#BC1D) are set out below.
For our purposes we can neglect the exit conditions regarding the
BC register pair.

SCR DOT POSITION (BC1D)

Purpose:
(a) Convert X,Y screen co-ordinates to a screen memory address.
(b) Return a mask byte for chosen pixel.
(c) Return a number one less than the number of pixels in a byte.

Conditions on entry:
The DE and HL register pairs must contain the X and Y co-ordinates
respectively of the pixel.

Conditions on exit:
The HL register pair contains the screen memory address. The C
register contains the mask byte and the B register contains the
number of pixels in a screen byte minus one. Registers AF and DE
are corrupted.

Notes:
1 Screen co-ordinates (0,0) refer to the bottom left hand corner of
the visible screen.
2 Supplying illegal co-ordinates will produce garbage output.

Placing a shape at screen co-ordinates X,Y 219

Addressing screen memory directly

Once an initial screen address is obtained for the chosen co-ordinate
position, the shape table bytes are dumped directly into memory.

The unused 48 bytes of each 2K block, mentioned above, need not
concern us when addressing screen memory. To obtain the screen
memory address of any adjacent pixel pair to the right, simply add
one to the previous address. To obtain the screen memory address of
an adjacent lower pixel pair, add 2048 (800 hex) to the previous
address. However, if the result happens to be greater than #FFFF,
subtract 16304 (3FB0 hex). Figure 14.6 shows how a shape can be
envisaged in screen memory.

Add 1 for adjacent byte

Reference screen address returned by
SCR DOT POSITION (#BC10)

LL
11

J 1

Eac
2p

h byte encodes
ixel colours

For next byte add #800
If result >#FFFF, subtract #3FB0

Fig 14.6 A shape rectangle dumped in screen memory

Frame flyback

The frame flyback signal, generated by the 6845 CRT controller chip,
is the synchronisation pulse which signals the start of the frame
retrace period (moving the CRT tracing spot back to the top left
hand corner of the screen). Although the sync pulse itself is rather
short, the vertical retrace period is relatively long. For internal
reasons, the operating system interrupts this period half way
through, resulting in a small proportion of this time being lost to the
programmer. During the retrace period, the screen is blanked out to

220 Graphics and direct screen addressing

prevent the retrace lines being visible. Therefore, to simulate the
instantaneous appearance or movement of shapes, it is advantag
eous to employ this period when writing to screen memory. This
practice will reduce flicker and other disagreeable effects. There is a
firmware routine which holds up execution of programs until the
frame flyback pulse is detected. Writing to screen memory should
preferably be performed immediately after the firmware call. The
routine is:

MC WAIT FLYBACK (#BD19)

There are no entry or exit conditions and all registers and flags are
preserved on return.

Changing the mode by a firmware call

When programming in BASIC we change the mode by a simple
MODE command. When working in assembly language we need to
set up and call the corresponding firmware routine. The routine is
called SCR SET MODE and the details are given below.

SCR SET MODE (#BCOE)

Purpose:
To put the screen into a specified mode and ensure that the text and
graphics VDUs are set up.

Conditions on entry:
Register A must contain the required mode number in the range 0
to 2.

Conditions on exit:
AF, BC, DE and HL are corrupted and the screen cleared.

Moving a multicoloured shape

Program 14.1 is an example program which sets up and moves a
single shape diagonally across the screen. The program is split into
three identifiable sections.

(a) Lines 10 to 150 perform initialisation and control.
(b) Lines 180 to 470 arrange for the dumping of the shape table
data into screen memory at specified base co-ordinates.
(c) Lines 490 to 760 contain the shape table data.

The shape itself is a simple rectangle of various colours. In practice,
of course, the shape table could be modified for displaying anything
from a perambulator to a space ship.

Moving a multicoloured shape 221

Program 14.1 Moving a multicoloured shape

Hisoft GENA3.1 Assembler. Page 1.

Pass 1 errors: 00

IO ;MOVING A SINGLE
20 |MULTICOLOURED OBJECT

7000 30 ORG #7000
7000 97 40 SUB A
7001 CDOEBC 50 CALL #BCOE
7004 1E00 60 LD E,0
7006 2E0A 70 LD L,10
7008 0646 80 LD B,70
700A 1C 90 loop: INC E
7OOB 1C 100 INC E
700C 2C 110 INC L
7OOD CD19BD 120 CALL #BD19
7010 CD1670 130 CALL draw
7013 10F5 140 DJNZ loop
7015 C9 150 RET

160 1
170 1

7016 C5 180 draw: PUSH BC
7017 D5 190 PUSH DE
7018 E5 200 PUSH HL
7019 2600 210 LD H,0
701B 1600 220 LD D,0
701D CD1DBC 230 CALL #BC1D
7020 ED4B4570 240 LD BC,(shape)
7024 114770 250 LD DE,shape+2
7027 C5 260 vert: PUSH BC
7028 E5 270 PUSH HL
7029 1A 280 horiz: LD A,(DE)
702A 77 290 LD (HL) ,A
702B 23 300 INC HL
702C 13 310 INC DE
702D 10FA 320 DJNZ horiz
702F El 330 POP HL
7030 010008 340 LD BC,#800
7033 09 350 ADD HL,BC
7034 3006 360 JR NC,over
7036 01B03F 370 LD BC,#3FB0
7039 97 380 SUB A
703A ED42 390 SBC HL,BC
703C Cl 400 over: POP BC
703D OD 410 DEC C
703E B9 420 CP C
703F 20E6 430 JR NZ,vert
7041 El 440 POP HL
7042 DI 450 POP DE
7043 Cl 460 POP BC
7044 C9 470 RET

480
7045 090A 490 shape: DEFB 9,10
7047 00000000 500 DEFB #00,#00,#00,#00
704B OOOOOOOO 510 DEFB #OO,#OO,#OO,#OO

222 Graphics and direct screen addressing

704F 0000 520 DEFB #00,400
7051 00999999 530 DEFB #00,#99,#99,#99
7055 99999999 540 DEFB #99,#99,#99,#99
7059 9900 550 DEFB #99,#00
705B 00666666 560 DEFB #00,#66,#66,#66

Hisoft GENA3.1 Assembler. Page 2.

705F 66666666 570 DEFB #66,#66,#66,#66
7063 6600 580 DEFB #66,*00
7065 009999F8 590 DEFB #00,#99,#99,#F8
7069 F8F8F899 600 DEFB #FB,#F8,#F8,#99
7O6D 9900 610 DEFB #99,#00
706F 006666F4 620 DEFB #00,#66,*66,#F4
7073 F4F4F466 630 DEFB *F4,*F4,#F4,*66
7077 6600 640 DEFB *66,*00
7079 009999F8 650 DEFB *00,#99,*99,*F8
707D F8F8F899 660 DEFB *F8,*F8,#F8,#99
7081 9900 670 DEFB #99,#00
7083 00666666 680 DEFB *00,*66,*66,*66
7087 66666666 690 DEFB #66,*66,*66,*66
708B 6600 700 DEFB #66,*00
7O8D 00999999 710 DEFB #00,#99,#99,#99
7091 99999999 720 DEFB #99,#99,*99,#99
7095 9900 730 DEFB *99,#00
7097 00000000 740 DEFB *00,*00,*00,*00
7O9B 00000000 750 DEFB *00,*00,#00,#00
709F 0000 760 DEFB *00,#00

Pass 2 errors: OO

Tabla used: 81 from 237

Breakdown of Program 14.1

Line 30: instructs assembly at address #7000.
Lines 40 to 50: set up Mode 0 by setting the A register to zero
followed by a call to SCR SET MODE.
Lines 60 to 70: set the initial X,Y screen co-ordinates where the shape
is to be placed on the screen. The E register holds the X co-ordinate
and the L register the Y co-ordinate. The screen co-ordinates can
never exceed 160 by 200 so they can always be accommodated
within a single register.
Line 80: initialises the loop counter to 70 decimal. The loop itself will
cause the shape to traverse 2x70 pixel positions across the screen
and 70 pixel positions upward.
Lines 90 to 100: increment the X co-ordinate twice since two-pixel
movement must be used horizontally with the method adopted.
Line 110: increments the Y co-ordinate once. (Single pixel movement
is allowed vertically).
Line 120: a firmware call to MC WAIT FLYBACK holds up program

Breakdown of Program 14.1 223

execution until the frame flyback pulse is received.
Line 130: calls the subroutine 'draw' which dumps the shape table
data into screen memory at the specified X,Y co-ordinates.
Lines 140 to 150: check for loop termination and returns control to the
calling program.
Lines 180 to 200: push the register pairs BC, DE and HL on the stack
to preserve essential contents. (The contents are restored before
return).
Lines 210 to 230: call the firmware routine SCR DOT POSITION
(#BC1D). The X co-ordinate is expected in the DE register pair and
the Y co-ordinate in the HL register pair. The maximum possible
co-ordinates in Mode 0 are 160 for X and 200 for Y so they both lie
within the compass of a single register. Therefore, the D and H
registers, which normally hold the high bytes in other modes, can
be cleared to zero. On return the HL register pair will hold the
corresponding screen address.
Line 240: loads the first two data bytes of the shape table,
corresponding to the height and width in bytes, into the BC register
pair. The C register holds the height and the B register holds the
width, in this case, 9 and 10 respectively.
Line 250: uses the DE register as a data pointer and is loaded with the
address of the first shape table byte. Notice that the assembler is
instructed to add 2 to the address label 'shape' so as to skip the
width and height bytes above.
Lines 260 to 270: stack the values held in the BC and HL register pairs
for later use.
Lines 280 to 290: use implied addressing to pick up a single data byte
from the shape table and dump it into screen memory.
Lines 300 to 310: increment the address pointers to the data table and
screen memory. These are DE and HL respectively.
Line 320: terminates the loop once a row of shape table bytes have
been dumped into screen memory. This occurs when the B register,
containing the width value, has decremented to zero.
Line 330: restores the screen address value stacked in line 270 into
the HL register pair.
Lines 340 to 350: add the hex value #800 to the HL register pair to
obtain the screen memory address of the pixel pair immediately
below the previous location stacked in line 270. This denotes the
start address of the next row of shape table bytes to be transferred to
screen memory.
Line 360: checks if the previous result is greater than #FFFF. If it is,
the carry will be set since #FFFF is the highest number that can be
stored in a register pair. If the carry is clear a branch is made to
'over'.
Lines 370 to 390: subtract the necessary #3FB0 from the contents of
the HL register pair if the carry happens to be set. SUB A is used in
line 380 for two reasons. Firstly, it clears the carry flag for the SBC
instruction and secondly, it clears the A register for a later
comparison instruction in line 420.

224 Graphics and direct screen addressing

Line 400: restores the width and current height index to the BC
register pair.
Lines 420 to 430: decrement the current height index and compare it
to register A, previously set to zero. If Register C is non zero, a
branch is made back to 'vert' to trace out another row of shape table
bytes.
Lines 440 to 470: restore the values of the BC, DE and HL register
pairs to those present when the subroutine 'draw' was called.
Lines 490 to 760: contain the shape table data. The first two bytes in
line 490 are the height and width of the table in bytes. The actual
table, lines 500 to 760, correspond to 9 rows of 10 bytes. In order to
display all the data in the object code assembler field, it was
necessary to restrict each DEFB directive to a maximum of four byte
expressions. Therefore each row of screen memory data bytes are
coded in three sequential line numbers.

Moving multicoloured objects independently

Program 14.2 Moving three multicoloured shapes

Hisoft BENA3.1 Assemb1er. Page 1.

Pass 1 errors: 00

10)MOVINO MULTICOLOURED
20 jOBJECTS INDEPENDENTLY

7500 30 tablet EQU #7500
7502 40 coordi EQU #7502
7000 50 ORG #7000
7000 CD1170 60 CALL init
7003 0646 70 LD B,70
7005 CD2870 80 repeati CALL update
7008 CD19BD 90 CALL #BD19
700B CD3770 100 CALL scrran
700E 10F5 110 DJNZ repeat
7010 C9 120 RET

130 J
7011 97 140 initi SUB A
7012 CD0EBC 150 CALL #BC0E
7015 21000A 160 LD HL,#OAOO
7018 220275 170 LD (coord),HL
701B 218C64 180 LD HL,#648C
701E 220475 190 LD (coord+2),HL
7021 21648C 200 LD HL,#8C64
7024 220675 210 LD (coord+4),HL
7027 C9 220 RET

230 1
7028 210275 240 update: LD HL,coord
702B 34 250 INC (HL)
702C 34 260 INC (HL)
702D 23 270 INC HL
702E 34 280 INC (HL)
702F 23 290 INC HL
7030 35 300 DEC (HL)

Moving multicoloured objects independently 225

7031 35 310 DEC (HL)
7032 23 320 INC HL
7033 23 330 INC HL
7034 23 340 INC HL
7035 35 350 DEC (HL)
7036 C9 360 RET

370 ;
7037 C5 380 screen: PUSH BC
7038 D5 390 PUSH DE
7039 E5 400 PUSH HL
703A 219570 410 LD HL,shapel
703D 220075 420 LD (table),HL
7040 ED5B0275 430 LD DE,(coord)
7044 6A 440 LD L.D
7045 CD6870 450 CALL draw
7048 21F170 460 LD HL,shape2
704B 220075 470 LD (table),HL
704E ED5B0475 480 LD DE,(coord+2)
7052 6A 490 LD L,D
7053 CD6870 500 CALL draw
7056 212771 510 LD HL,shape3
7059 220075 520 LD (table),HL
705C ED5B0675 530 LD DE,(coord+4)
7060 6A 540 LD L.D
7061 CD6870 550 CALL draw
7064 El 560 POP HL

Hi Baft GENA3.1 Assembler. Page 2.

7065 DI 570 POP DE
7066 Cl 580 POP BC
7067 C9 590 RET

600 ;
610 |

7068 C5 620 draw: PUSH BC
7069 2600 630 LD H,0
706B 1600 640 LD D,0
706D CD1DBC 650 CALL #BC1D
7070 EB 660 EX DE,HL
7071 2A0075 670 LD HL,(table)
7074 4E 680 LD C,(HL)
7075 23 690 INC HL
7076 46 700 LD B,(HL)
7077 23 710 INC HL
7078 EB 720 EX DE, HL
7079 C5 730 vert: PUSH BC
707A E5 740 PUSH HL
707B 1A 750 horiz: LD A,(DE)
7O7C 77 760 LD (HL),A
707D 23 770 INC HL
707E 13 780 INC DE
707F 10FA 790 DJNZ horiz
7081 El 800 POP HL
7082 010008 810 LD BC,#800
7085 09 820 ADD HL,BC
7086 3006 830 JR NC,over

226 Graphics and direct screen addressing

7088 01B03F 840 LD BC,#3FB0
708B 97 850 SUB A
708C ED42 860 SBC HL,BC
708E Cl 870 overt POP BC
708F OD 880 DEC C
7090 B9 890 CP C
7091 20E6 900 JR NZ,vert
7093 Cl 910 POP BC
7094 C9 920 RET

930
7095 090A 940 shapel: DEFB 9,10
7097 OOOOOOOO 950 DEFB 400,400,*00,400
709B 00000000 960 DEFB #00,#00,*00,#00
709F 0000 970 DEFB #00,#00
70A1 00999999 980 DEFB #00,#99,#99,#99
70A5 99999999 990 DEFB #99,#99,#99,#99
7OA9 9900 1OOO DEFB *99,#00
70AB 00666666 1010 DEFB #00,#66,#66,#66
70AF 66666666 1020 DEFB #66,#66,#66,#66
70B3 6600 1030 DEFB #66,#00
70B5 009999F8 1040 DEFB #OO,#99,#99,#F8
70B9 F8F8F399 1050 DEFB #F8,#F8,#F8,#99
70BD 9900 1060 DEFB #99,#00
7OBF 006666F4 1070 DEFB «00,*66,#66,#F4
70C3 F4F4F466 1080 DEFB #F4,#F4,#F4,#66
70C7 6600 1090 DEFB #66,#00
70C9 009999F8 1100 DEFB #00,#99,#99,#F8
70CD F8F8F899 1110 DEFB #F8,#F8,#F8,#99
70D1 9900 1120 DEFB #99,#00
70D3 00666666 1130 DEFB #00,#66,#66,#66
70D7 66666666 1140 DEFB #66,#66,#66,#66

Hisoft GENA3.1 Assemb1er. Page 3.

70DB 6600 1150 DEFB #66,#00
7ODD 00999999 1160 DEFB #00,#99,#99,#99
7OE1 99999999 1170 DEFB #99,#99,#99,#99
70E5 9900 1180 DEFB #99,#00
70E7 OOOOOOOO 1190 DEFB #00,#00,#00,#00
70EB OOOOOOOO 1200 DEFB #00,#00,#00,#00
70EF 0000 1210 DEFB #OO,#OO
70F1 0C04 1220 shape2: DEFB 12,4
70F3 OOOOOOOO 1230 DEFB #00,#00,#00,#00
70F7 00666600 1240 DEFB #00,#66,#66,#00
70FB 00999900 1250 DEFB #00,#99,#99,#00
70FF 00666600 1260 DEFB #00,#66,#66,#00
7103 00999900 1270 DEFB #00,#99,#99,#00
7107 00666600 1280 DEFB #00,#66,#66,#00
710B 00999900 1290 DEFB #00,#99,#99,#00
710F 00F8F800 1300 DEFB #00,#F8,#F8,#00
7113 OOF4F4OO 1310 DEFB #00,#F4,#F4,#00
7117 00F8F800 1320 DEFB #OO,#F8,#F8,#00
711B OOF4F4OO 1330 DEFB #00,#F4,#F4,#00
711F 00F8F800 1340 DEFB #00,#F8,#F8,#00
7123 OOOOOOOO 1350 DEFB #00,#00,#00,#00
7127 0704 1360 shape3t DEFB 7,4
7129 OOOOOOOO 1370 DEFB #00,#00,#00,#00

Moving multicoloured objects independently 227

712D 00666600 1380 DEFB #00,#66,#66,#00
7131 00999900 1390 DEFB #OO,#99,#99,#00
7135 00666600 1400 DEFB #00,#66,#66,#00
7139 00999900 1410 DEFB #00,#99,#99,#00
713D 00666600 1420 DEFB #OO, #66, #66, #00
7141 OOOOOOOO 1430 DEFB #00,#00,#00,#00

Pass 2 errors: 00

Table used: 171 from 371

Program 14.2 is an example of how to move three shapes all
following independent trajectories. As far as the eye is concerned,
movement takes place simultaneously, smoothly and with no
perceptible flicker. The routine is split into six different sections.

1 A main control loop (lines 60 to 120).
2 An initialisation routine, (lines 140 to 220) which sets Mode 0 and
the start-up screen co-ordinates for the three shapes.
3 An update section which adjusts the co-ordinates to new values.
In the example we have simply incremented or decremented them
to show how movement is effected.
4 A screen section which draws the three shapes according to the
co-ordinates supplied from the update section. For each shape to be
drawn a call is made to the 'draw' routine.
5 A routine for drawing a shape depending on which shape table
address and X,Y co-ordinates are passed over to it from the screen
section.
6 A group of three separate shape data tables.

Co-ordinate blocks

A section of memory can be used to store the updated co-ordinates
corresponding to the screen positions of various shapes. Since only
one byte is needed to store each X and Y co-ordinate in Mode 0, we
can set up a sequential block of locations storing the X and Y
co-ordinates of each shape. In Program 14.2, the area of memory
reserved for this six byte co-ordinate block is #7500 and is shown
diagramatically in Figure 14.7. These locations are accessed sequen
tially using implied addressing and set up as required prior to
displaying an updated screen.

Addresses #7500 #7501 #7502 #7503 #7504 #7505

Shape numbers
1 2 3

Coordinates X Y X Y X Y

Fig 14 .7 Co-ordinate block for Mode 0

228 Graphics and direct screen addressing

The draw routine, as it stands in Program 14.1, needs minor
modification before it can be used for multiple shapes. The operands
of the instructions in lines 240 and 250 will always be the address of
a single shape data table. There are two methods of modification to
allow other shape table addresses to be incorporated at this point.

1 Change the operand bytes within the subroutine itself by the
method described in Chapter 13. However, it must be pointed out
that this practice is frowned upon in academic circles.
2 Alter the draw subroutine so that it expects its current shape
table address to be present in some common fixed location. This
location can be loaded with the appropriate address prior to the
subroutine call. We have chosen this approach in Program 14.2.

The example, Program 14.2 moves the first shape diagonally across
the screen, the second shape horizontally and the third vertically. The
multicoloured shapes, coded in the data tables, have been deliber
ately kept simple since the actual shape is immaterial at this stage.
However, it should show the kind of effects possible using this fast,
Mode 0 graphics, method.

Breakdown of Program 14.2

Line 30: assigns the label 'table' to the address used to store the
current shape table address.
Line 40: assigns the label 'coord' to the address of the co-ordinate
block.
Line 50: forces assembly at #7000.
Line 60: calls the initialisation routine (line 140).
Lines 70 to 110: form the main program loop which controls the
sequence of subroutine calls. The loop repeats 70 times in this
simple example program. The call in line 90 is an MC FRAME
FLYBACK call.
Lines 140 to 150: set up the Mode 0 screen.
Lines 160 to 210: load the co-ordinate block with the initial values of
the 3 shape co-ordinates. The assembler expression evaluator is
used to add 2 to the previous address of 'coord' each time to store
the data at the correct co-ordinate block addresses. With each HL
register pair load, the X co-ordinate data must be in the L register
and the Y co-ordinate data in the H register.
Lines 240 to 360: update the co-ordinates of the shapes in the
co-ordinate block (see Figure 14.7). The order in which this is done is
shapel, shape2, shape3. Implied addressing is used to update these
locations. Remember that 2 pixel movement (increment X co-ordin
ates twice) is required for horizontal movement.
Lines 380 to 400: push the register pairs BC, DE and HL, which hold
important information, on the stack. (These registers will be
restored before return).
Lines 410 to 420: store the address of the shapel table in the location
labelled 'table'.

Breakdown of Program 14.2 229

Lines 430 to 450: the X,Y co-ordinates for the first shape are loaded
into the DE register pair. The X co-ordinate in E and the Y
co-ordinate in D. The D register contents are then copied into the L
register in line 440. This sets up the entry requirements to SCR DOT
POSITION (#BC1D) in the draw subroutine, called at line 450. (The
H and D registers are set to zero in Mode 0).
Lines 460 to 500: repeat the above for shape2.
Lines 510 to 550: repeat the above process for shape 3.
Lines 560: to 580: restore the register values to that present on entry
to the subroutine.
Line 620: saves the B register, which contains vital data, on the stack.
Lines 630 to 650: set up and call the firmware routine SCR DOT
POSITION (#BC1D). The X co-ordinate is expected in the DE
register pair and the Y co-ordinate in the HL register pair. The
maximum possible co-ordinates in Mode 0 are 160 for X and 200 for
Y so they both lie within the compass of a single register. Therefore,
the D and H registers, which normally hold the high bytes, can be
cleared to zero. On return the HL register pair will hold the
corresponding screen address.
Line 660: the screen address in HL is temporarily moved to the DE
register pair. Thus freeing the HL register for implied addressing.
Line 670: the HL register pair is loaded with the current shape table
address and thus acts as the data table pointer.
Lines 680 to 710: load by implied addressing the first two data bytes
of the current shape table, corresponding to its height and width in
bytes, into the BC register pair. The C register holds the height and
the B register holds the width.
Line 720: performs a double function with the one instruction.
Firstly, the HL register pair, which is the current shape table data
pointer, is transferred to the DE register pair. At the same time, the
current screen memory address previously transferred to the DE
register pair is restored to the HL register pair.
Lines 730 to 920: have identical coding to that found in lines 260 to
470 of Program 14.1.
Lines 940 to 1210: contain the shapel table data. The first two bytes in
line 940 are the height and width of the shape table in bytes. The
actual table, lines 950 to 1210, correspond to 9 rows of 10 bytes. In
order to display all the data in the object code assembler field, it was
necessary to restrict each DEFB directive to a maximum of four-byte
expressions. Therefore each row of screen memory data bytes are
coded in three sequential line numbers.
Lines 1220 to 1350: contain the shape2 data.
Lines 1360 to 1430: contain the shape3 data.

Shape tables

The coding of shape table data by hand can be tedious. If this style
of graphics manipulation is found interesting, much time can be

230 Graphics and direct screen addressing

saved, in the long run, by designing a program that produces shape
table data as output. The program could be written mainly in BASIC
employing one or two of the routines in this chapter to display the
resulting shape. Programs of this type usually display a large
rectangular cell to specified dimensions. This is then subdivided by
grid lines into sub cells equivalent to a single pixel. The user then
moves the cursor round the sub cells specifying which pixel colour is
required. From this data (which can be conveniently stored in a
rectangular array) the various shape data bytes can be encoded and
displayed on the screen. This method of producing shape tables is
particularly useful for producing an animated sequence where each
shape is varied in outline as it is moved.

Summary

1 Using the graphics firmware is recommended but direct screen
addressing works faster.
2 Moving sprites by alternately drawing and erasing is the main
cause of flicker and jerkiness.
3 Enclosing a sprite in a border composed of the background
colour eliminates the need to erase.
4 The first two entries in a shape table can be the height and width
of the encoded shape.
5 To obtain address of next pixel pair to the right, add 1.
6 To obtain address of next pixel below, add 2048 (800 hex).
7 It is best to write to screen memory immediately after a call to
MC wait flyback.

Appendices

APPENDIX 1: THE Z80A INSTRUCTION SET
Note: x-status -flag updated
Abbreviations used in Op-code:
r IX or IY (O-IX.l-IY)
rr register pair code:

BC—00,DE—01,HL-10,SP-l1 -for rp,AF-ll for pr.
rrr single register code:

B-OOO,C-001,D-01O,E-011,H-100,L-101,A-111
bbb bit position, 000 to 111: b-bit 0 to 7
ccc condition code:

000-non zero (NZ)
001-zero (Z)
010-no carry (NC)
011-carry (C)
100- parity odd (P0) P-0
101— parity even (PE) P-1
110- positive (P)
111- negative (M)

sss restart code (000 to 111)
Abbreviations used in source code:
reg A,B,C,D,E,H, or L
xy IX or IY: d-displacement byte constant.
rp register pair BC,DE,HL or SP
pr register pair BC,DE,HL or AF
pp BC,DE,IX or SP
qq BC,DE,IY or SP
cond condition code

JUMP INSTRUCTIONS

Source code □p-code C Z S P/O Ac N Bt Ck

JP cond,label llcccOlO 3 10
JR C,label 38 2 7/12
JR NC,label 30 2 7/12
JR Z,label 28 2 7/12
JR NZ,label 20 2 7/12
DJNZ,label 10 2 8/13
JP label C3 3 10
JR label 18 2 12
JP (HL) E9 1 4
JP (IX) DD E9 2 8
JP (IY) FD E9 2 8 231

232 Appendices

COMPARISON INSTRUCTIONS

Source code Op-code C z s P/O Ac N Bt Ck

CP (HL) BE X X X 0 X 1 1 7
CP (xy+d) llrlllOl BE x X X 0 X 1 3 19
CP det* FE X X X 0 X 1 2 7
CP reg lOlllrrr X X X 0 X 1 1 4

LOAD INSTRUCTIONS:

Source code Op-code C Z S P/O Ac N Bt Ck

LD A,(addr) 3A 3 13
LD HL,(addr) 2A 3 16
LD rp,(addr) ED OlrrlOll 4 20
LD xy,(addr) llrlllOl 2A 4 20
LD (addr),A 32 3 13
LD (addr),HL 22 3 16
LD (addr),rp ED OlrrOOll 4 20
LD (addr),xy llrlllOl 22 4 20
LD A,(BC) OA 1 7
LD A,(DE) 1A 1 7
LD reg,(HL) OlrrrllO 1 7
LD (BC),A 02 1 7
LD (DE),A 12 1 7
LD (HL),reg OlllOrrr 1 7
LD reg,(xy+d) llrlllOl

OlrrrllO 3 19
LD (xy+d),reg llrlllOl

OlllOrrr 3 19
LD reg,data OOrrrllO 2 7
LD rp,data OOrrOOOl 3 10
LD xy,data llrlllOl 21 4 14
LD (HL),data 36 2 10
LD (xy+d) llrlllOl 36 4 19
LD dst,src Olrrrrrr 1 4
LD A,I ED 57 xx 10 0 2 9
LD A,R ED 5F xx 10 0 2 9
LD I,A ED 47 2 9
LD R,A ED 4F 2 9
LD SP,HL F9 1 6
LD SP,xy llrlllOl F9 2 IO
EX DE, HL EB 1 4
EX AF,AF' 08 1 4
EXX D9 1 4

BLOCK TRANSFER AND SEARCH INSTRUCTIONS:

Source code Op-code C Z s P/0 Ac N Bt Ck

LDIR ED BO 0 0 0 2 21/16
LDDR ED B8 0 0 0 2 21/16
LDI ED AO X 0 0 2 16
LDD ED A8 X 0 0 2 16
CPDR ED B9 X X X X 1 2 20/16
CPIR ED Bl X X X X 1 2 20/16
CPI ED Al X X X X 1 2 16
CPD ED A9 X X X X 1 2 16

Appendices 233

ARITHMETIC INSTRUCTIONS:

Source code Op-code C z s P/O Ac N Bt Ck

ADO A,(HL) 86 X X X 0 X 0 1 7
ADD A,(xy+d) llrlllOl 86 X X X 0 X 0 3 19
ADC A,(HL) 8E X X X o X 0 1 7
ADC A,(xy+d) llrlllOl 8E X X X 0 X 0 3 19
SUB (HL) 96 X X X 0 X 1 1 7
SUB (xy+d) llrlllOl 96 X X X o X 1 3 19
SBC A,(HL) 9E X X X 0 X 1 1 7
SBC A,(xy+d) llrlllOl 9E X X X o X 1 3 19
ADD A,data C6 X X X 0 X 0 2 7
ADC A,data CE X X X 0 X 0 2 7
SUB data D6 X X X 0 X 1 2 7
SBC A,data DE X X X 0 X 1 2 7
ADD A,reg lOOOOrrr X X X o X 0 1 4
ADC A,reg lOOOlrrr X X X 0 X 0 1 4
SUB reg lOOlOrrr X X X 0 X 1 1 4
SBC A,reg 1001lrrr X X X 0 X 1 1 4
ADD HL,rp OOrrlOOl X 7 0 1 11
ADC HL,rp ED OlrrlOlO X X X 0 7 0 2 15
SBC HL,rp ED OlrrOOlO X X X 0 7 1 2 15
ADD IX,pp DD OOrrlOOl X 7 0 2 15
ADD IY,qq FD OOrrlOOl X ? 0 2 15
DAA 27 X X X p X 1 4
INC (HL) 34 X X 0 X 0 1 11
INC (xy+d) llrlllOl 34 X X 0 X o 3 23
DEC (HL) 35 X X 0 X 1 1 11
DEC (xy+d) llrlllOl 35 X X 0 X 1 3 23
INC reg OOrrrlOO X X 0 X 0 1 4
INC rp OOrrOOll 1 6
INC xy llrlllOl 23 2 10
DEC reg OOrrrlOl X X 0 X 1 1 4
DEC rp OOrrlOll 1 6
DEC xy llrlllOl 2B 2 10
CPL 2F 1 1 1 4
NEG ED 44 X X X 0 X 1 2 8

STACK INSTRUCTIONS:

Source code Op-code C Z S P/O Ac N Bt Ck

PUSH pr UrrOlOl 1 11
PUSH IX 11O111O1 E5 2 15
PUSH IY 11111101 E5 2 15
POP pr llrrOOOl 1 10
POP IX 11011101 El 2 14
POP IY 111111O1 El 2 14
EX (SP),HL E3 1 19
EX (SP),IX 11011101 E3 2 23
EX (SP),IY 11111101 E3 2 23

234 Appendices

LOGICAL INSTRUCTIONS

Source code Op-code C z s P/O Ac N Bt Ck

AND (HL) AA 0 X X p 1 0 1 7
AND (xy+d) llrlllOl AS 0 X X p 1 0 3 19
OR (HL) B6 0 X X p 1 O 1 7
OR (xy+d) llrlllOl BA 0 X X p 1 0 3 19
XOR (HL) AE O X X p 1 0 1 7
XOR (xy+d) llrlllOl AE 0 X X p 1 0 3 19
AND data E6 0 X X p 1 0 2 7
OR data F6 O X X p 1 0 2 7
XOR data EE 0 X X p 1 0 2 7
AND reg lOOOOrrr 0 X X p 1 0 1 4
OR reg lOHOrrr 0 X X p 1 0 1 4
XOR reg lOlOlrrr 0 X X p 1 0 1 4

BIT MANIPULATIONS

Source code Op-code C Z s P/O Ac N Bt Ck

BIT b,reg CB Olbbbrrr X ? ? 1 0 2 8
BIT b,(HL) CB OlbbbllO X ? ? 1 O 2 12
BIT b,(xy+d) llrlllOl CB X ? ? 1 0 4 20
SET b,reg CB llbbbrrr 2 8
SET b,(HL) CB llbbbllO 2 13
SET b,(xy+d) llrlllOl CB

d llbbbllO
4 23

RES b.reg CB lObbbrrr 2 8
RES b,(HL) CB lObbbllO 2 15
RES b,(xy+d) 11x11101 CB

d lObbbllO
4 23

Appendices 235

SHIFT AND ROTATE INSTRUCTIONS

Source code Op-code C z S P/0 Ac N Bt Ck

RLC (HL) CB 06 X X X p 0 0 2 15
RLC (xy+d) llrlllOl CB X X X p 0 0 4 23

d 06
RL (HL) CB 16 X X X p 0 0 2 15
RL (xy+d) llrlllOl CB X X X p 0 0 4 23

d 16
RRC (HL) CB OE X X X p 0 0 2 15
RCC (xy+d) llrlllOl CB X X X p 0 0 4 23

d OE
RR (HL) CB IE X X X p 0 0 2 15
RR (xy+D) llrlllOl CB X X X p 0 0 4 23

d IE
SLA (HL) CB 26 X X X p 0 0 2 15
SLA (xy+d) llrlllOl CB X X X p 0 0 4 23

d 26
SRA (HL) CB 2E X X X p 0 0 2 15
SRA (xy+d) llrlllOl CB X X X p 0 0 4 23

d 2E
SRL (HL) CB 3E X X X p O 0 2 15
SRL (xy+d) llrlllOl CB X X X p 0 0 4 23

d 3E
RLCA 07 X 0 0 1 4
RLA 17 X O 0 1 4
RRCA OF X 0 0 1 4
RRA IF X 0 0 1 4
RLC reg CB OOOOOrrr X X X p 0 0 2 8
RL reg CB OOOlOrrr X X X p 0 0 2 8
RRC reg CB OOOOlrrr X X X p 0 0 2 8
RR reg CB 0001lrrr X X X p 0 o 2 8
SLA reg CB OOlOOrrr X X X p 0 0 2 8
SRA reg CB OOlOlrrr X X X p 0 0 2 8
SRL reg CB 0011lrrr X X X p 0 o 2 8
RLD ED 6F X X p 0 0 2 18
RRD ED 67 X X p 0 0 2 18

236 Appendices

INPUT/OUTPUT INSTRUCTIONS:

Source code Op—code C Z s P/O Ac N Bt Ck

IN A,(port) DB 2 10
IN reg,(C) ED OlrrrOOO X X p X 0 2 11
INIR ED B2 1 7 7 ? 1 2 21/16
INDR ED BA 1 7 7 7 1 2 21/16
INI ED A2 X 7 7 7 1 2 16
IND ED AA X 7 7 7 1 2 16
OUT (port),A D3 2 11
OUT (C),reg ED OlrrrOOl 2 12
OTIR ED B3 1 ? 7 ? 1 2 21/16
OTDR ED BB 1 ? 7 ? 1 2 21/16
OUT I ED A3 X ? ? ? 1 2 16
OUTD ED AB X ? 7 ? 1 2 16

SUBROUTINE CALLS, INTERRUPTS AND FLAGS

Source code Op-code C Z S P/O Ac N Bt Ck

CALL label CD 3 17
CALL end,lab llccclOO 3 10/17
RET C9 1 10
RET end 1lcccOOO 1 5/11
DI F3 1 4
El FB 1 4
RST n llaaalll 1 11
RET I ED 4D 2 14
RETN ED 45 2 14
IM 0 ED 46 2 8
IM 1 ED 56 2 8
IM 2 ED 5E 2 8
SCF 37 1 O 0 1 4
CCF 3F x ? 0 1 4
NOP 00 1 4
HALT 76 1 4

Appendices 237

APPENDIX 2: Z80 Instruction mnemonics

Note: many of the following mnemonics can be used with
a variety of addressing modes. Where these are not
shown, consult Appendix 1.

Commonly used instructions

Less often used instructions

Source code Meaning

ADC A
ADD
AND
CALL addr
CP
DEC
DJNZ
EX DE, HL
INC
JR
JR cond,addr
LD reg, data
LD reg,(HL)
LD A, (addr)
LD HL, data
LD (HL),reg
LD (addr),A
LD dst, src

Add with carry to accumulator
Add
Logical AND
Call subroutine at address
Compare
Decrement
Decrement and jump if non zero
Exchange DE with HL
Increment
Jump relative unconditional
Jump relative on condition
Load register immediate
Load register by data pointer
Load Accumulator direct
Load HL immediate
Store register, using HL as data pointer
Store Accumulator direct
Move source register to destination
register

POP
PUSH
RET
RLA
RRA
SBC
SLA
SRL
SUB

Pop pr from stack
Push pr on stack
Return from subroutine
Rotate Accumulator left through carry
Rotate Accumulator right through carry
Subtract with carry (borrow)
Shift left arithmetic
Shift right logical
Subtract

Source code Meaning

BIT b,(HL)
CPD

Compare bit b in memory
Compare Accumulator with memory. If
Accumulator matches, set Z flag and
decrement HL and BC. HL is address
pointer and BC is byte count.

238 Appendices

CPDR

CPI

CPIR

CPL
DAA
DI
El
HALT
IN
IND

INDR
INI

INIR

JP addr
JP cond,addr
LD A,(BC(

LD A, (DE)

LD HL, (addr)
LD reg,(xy+d)
LD rp,(addr)
LD rp,data
LD xy,(addr)
LD (BC) or (DE),A
LD (addr),HL
LD (xy+d),reg
LD (addr),rp
LD (addr),xy
LD (HL),data
LD (xy+d),data
LDD

LDDR

As CPD but repeats until a match is
found or byte count = zero
Compare Accumulator with memory. If
Accumulator matches, set Z flag and
increment HL and decrement BC. HL is
address pointer and BC is byte count.
As CPI but repeats until a match is found
or byte count = zero
Complete Accumulator
Convert Accumulator contents to BCD form
Disable interrupts
Enable interrupts
Halt
Input
Input from I/O port to memory location
(addressed by register C). Decrement
registers B and HL. B is byte
count and HL is address pointer
As IND but repeats until match is found
Input from I/O port to memory location
(addressed by register C). Decrement
registers B and increment HL. B is byte
count and HL is address pointer
As INI but repeats until a match is found
or byte count = zero
Jump unconditional
Jump on condition
Load Accumulator using BC as address
pointer
Load Accumulator using DE as address
pointer
Load HL direct
Load reg, indexed
Load register pair direct
Load register pair immediate
Load index register IX or IY direct
Store Accumulator secondary
Store HL direct
Store register, indexed
Store register pair direct
Store index register IX or IY direct
Store immediate to memory
Store immediate to memory, indexed
Load memory addressed by HL to that
addressed by DE, decrement BC,DE and
HL
Repeat, as above until BC contains zero

Appendices 239

Seldom used instructions

LDI Transfer byte from memory to memory.
Increment HL and DE, decrement BC.
HL is address pointer, DE contains
destination address, BC is byte counter

LDIR
NEG
NOP
OR
OUT
OUTD

Same as LDI but repeats until BC = zero
Negate (two's complement) Accumulator
No operation
Logical OR
Output
Output from memory to I/O port
addressed by register C. Decrement HL
and B.
HL is address pointer, B is byte counter.

OTDR
OUTI

Same as OUTD but repeats until B = zerO
Output from memory to I/O port
addressed by register C. Increment HL
and decrement B.
HL is address pointer, B is byte counter.

OTIR
RES
RETI
RL
RLC
RLCA
RR
RRC
RRCA
SET
SRA
XOR

As OUTI but repeats until B = zero
Reset bit
Return from interrupt
Rotate left through carry
Rotate left circular
Rotate Accumulator left circular
Rotate right through carry
Rotate right circular
Rotate Accumulator right circular
Set bit
Shift right arithmetic
Logical exclusive or

Source code Meaning

ADC HL,rp
CALL cond,addr
CCF
EXX

Add register pair with carry to HL
Call subroutine conditional
Complement carry flag
Exchange register pairs with alternative
register pairs

IM 0 Set interrupt Mode 0 (interrupt device
places instruction on data bus)

IM 1 Set interrupt Mode 1 (interrupt device
causes restart to address #0038)

IM 2 interrupt device performs an indirect call
to any address. (Interrupt Vector 1
register supplies high byte address and
interrupt device supplies low byte)

240 Appendices

RET cond
RETN
RLD

Return from interrupt conditional
Return from non-maskable interrupt
Rotate Accumulator and memory left
(BCD format)

RRD Rotate Accumulator and memory right
decimal

RST
SCF
LD A,I

Restart
Set carry flag
Load Accumulator from interrupt vector
register

LD A,R
LD I, A

Load Accumulator from refresh register
Store Accumulator to interrupt vector
register

LD R,A
LD SP,HL
LD SP,xy

Store Accumulator to Refresh register
Move HL to Stack pointer
Move index register X or Y to Stack
Pointer.

Appendices 241

Appendix 3: ASCII Character codes
Decimal Hex Character
32 20 Space
33 21 I
34 22 If

35 23 #
36 24 $
37 25 %
38 26 &
39 27
40 28 (
41 29)
42 2A *

43 2B +
44 2C /
45 2D -
46 2E
47 2F /
48 30 0
49 31 1
50 32 2
51 33 3
52 34 4
53 35 5
54 36 6
55 37 7
56 38 8
57 39 9
58 3A
59 3B /
60 3C <
61 3D =
62 3E >
63 3F 7
64 40 @
65 41 A
66 42 B
67 43 C
68 44 D
69 45 E
70 46 F
71 47 G
72 48 H
73 49 I
74 4A J
75 4B K
76 4C L
77 4D M
78 4E N

242 Appendices

79 4F O
80 50 P
81 51 Q
82 52 R
83 53 S
84 54 T
85 55 U
86 56 V
87 57 W
88 58 X
89 59 Y
90 5A Z
91 5B [
92 5C \
93 5D]
94 5E A
95 5F —
96 60 \
97 61 a
98 62 b
99 63 c

100 64 d
101 65 e
102 66 f
103 67 g
104 68 h
105 69 i
106 6A j
107 6B k
108 6C 1
109 6D m
110 6E n
111 6F o
112 70 P
113 71 q
114 72 r
115 73 s
116 74 t
117 75 u
118 76 V

119 77 w
120 78 X

121 79 y
122 7A z
123 7B {
124 7C
125 7D }
126 7E
127 7F Delete

Appendices 243

Appendix 4: Assembler directives

The following brief definitions are intended only for quick reference.
For more extensive coverage, consult the Hisoft DEVPAC manual.

ORG expression
Meaning: Origin

Sets location counter to the value of 'expression'. (The address
where the object code is to be assembled).

EQU expression
Meaning: Equate

Must be preceded by a label. Sets value of label to the value of
'expression'.

DEFB expression, expression, . . .
Meaning: Define Byte

Each expression must evaluate to 8 bits. Sets the value of each
'expression' in the list into the location defined by the current
Location Counter.

DEFW expression, expression, . . .
Meaning: Define Word

Each expression can evaluate to 16 bits. Set the value of each two
byte 'expression' in the list into the pair of locations (low byte first)
defined by the current Location Counter.

DEFS expression
Meaning: Define Size

Reserves a block of memory, equal to the value of 'expression', by
adding it to the current value of the Location Counter.

DEFM 'string'
Meaning: Define Memory

Places the ASCII codes of characters, enveloped within the
quotes, directly into memory at the current value of the Location
Counter.

ENT expression
Meaning: Sets the execute address of the object code to the value of
'expression'. Allows the code to be executed from within the
assembler by the editor command 'R'.

Index

Accumulator 54
Action games 213
Adding BCD numbers 34
Adding HEX numbers 33
Addition and subtraction (8 bit) 92
Addition and subtraction (16 bit) 95
Addition and subtraction (32 bit) 98
Address bus 11, 12, 15
Addresses 13
Addressing limits 13
Addressing modes 64
Algol 2, 3
AMSOFT 6
Analogue computers 21
AND 35, 36
Arithmetic instructions 70
Assembler (use of) 41
Assembler directives 43
Assembler loading 40
Assembler options 45
Assembler output (making sense of)

43, 45
Assembler output columns 45
Assembler passes 42
Assembly code 5, 7
Assembly listing example 44

Bank switching 16
BASIC loader program (use of) 47
BASIC loader program 38, 39
BASIC ROM 16
BASIC/machine code hybrid

programs 8
BCD 33, 35
Binary addition 24
Binary 6, 11, 22
Bit significance 24
Bit test instructions 78
Bit testing 116
Bits (ways of arranging) 23
Branch if equal 104
Branch if greater than or equal to 105
Branch if greater than 106

Branch if less than or equal to
107

106,

Branch if
Branch if
Branch if
Branch if

less than
non zero
not equal
zero 103

105, 106
103
104

Branch on sign 115, 116
Branch on zero (8 bit) 101
Branch on zero (16 bit) 102
Bytes 23, 66

CALL 48, 51, 77
Cathode ray tube controller 17
Clock cycles 66
Clock 15
Co-ordinate blocks 227
Code conversions 150, 154
Comparison instructions 78
Compiler 3, 4, 5
Conditional jump instructions 46, 76
Control bus 11, 13
CPC 464 block schematic 14
CRTC 17, 18

Data pointer (HL) 57
Data 13
Database 8
Debugging 4
Decimal to binary conversion 30
Decimal 7
Decrement instructions 75
Digital computers 21
Direct addressing 64
Disc operating system 19
Division (signed 16 bit) 133
Division (unsigned 16 bit) 132
Division (unsigned 8 bit) 129
Division 128
DOS 19
Dynamic allocation of memory 185

ENT 43, 50
EQU 44, 45, 46244

Index 245

Execution from basic 163, 175

Firmware routines (list of) 87
Firmware routines 213
Firmware 16, 86
Flag bits 54
Flag register 60, 67
Fortran 3
Frame flyback 219

GOTO 2

Hardware 10
Hex numbering limits 33
Hex to decimal conversion 32
Hexadecimal 6, 7, 13, 31
High and low state values 22
High byte 25
High level languages 3
HIMEM 19
HISOFT DEVPAC 6, 19, 39

IEE 74 standard 35
Immediate addressing 64
Implied addressing 58, 64
Increment instructions 74
Index registers 58
Indexed addressing 65
Input (decimal) 147
Input (hexadecimal) 151
Input (string) 139
Instruction set (presentation of) 66
Instruction set 12
Instructions (commonly used) 63, 68
Integrated circuit 10
Interpreter 3, 4, 5
Interrupt vector 62
Interrupts 17

Jump blocks 87
Jumps using direct addressing 84

Labels 39, 45
Line numbers 41
Load instructions 68
Logic gates 11
Logical instructions 72
Logical operations 35
Loop (double byte downcounting)

111, 114
Loop (double byte upcounting) 109,

112
Loop (single byte downcounting)

110, 112
Loop (single byte upcounting) 109,

111
Loop structures 107
Loop until key pressed 108
Low byte 25

Machine addresses 31
Machine code loader 6
Machine code 5
Memory map 19
Microprocessor 8, 11
Microprocessors (16 bit) 13
Microprocessors (32 bit) 13
Mnemonic code 5, 39, 45, 63, 65
Mode change 220
Mode zero 215
Multiplication (signed 16 bit) 123
Multiplication (unsigned 8 bit) 119
Multiplication (unsigned 16 bit) 121
Multiplication 118

Numbering system base 31
Numbers (double byte) 25
Numbers (signed) 26
Numbers (single byte) 24
Nybbles 24, 35

Object code (binary file) 174
Object code (execution from basic)

51
Object code (execution of) 50
Object code (general) 2, 3, 4, 45, 46
Object code (location independent)

186
Object code (saving) 49
Object code (self relocation) 185
One's complement 27
Operating system ROM 16
Operating system 16
Operation code (details of) 81
Operation codes 65
OR 35, 36
ORG 43
Output (decimal) 155
Output (hexadecimal) 157
Output (string) 143
Output (text) 144
Overflow 30

Pages 31
Palette latch 17
Parameter passing 161
Pascal 2, 3
PEEK 39
Pixels (encoding of) 216
POKE 39
Poking code into memory 5
Poking machine code into memory

38
POP 59
Program counter 54, 59
Program relative addressing 64
PUSH 59

Quartz crystal oscillators 11

246 Index

Quicksort (RSX. rect. string array)
200

Quicksort (string array) 172
Quicksort algorithm 164
Quicksort as an RSX (string) 188

RAM based data files 200
RAM 2, 7, 15, 16, 17
Range limitations 92
Reading from memory 13
Rectangular arrays (efficient use) 200
Rectangular arrays (sorting of) 200
Rectangular arrays (storage details)

201
Refresh register 62
Register indirect addressing 65
Register pairs 57
Register source and destination

rules 53
Registers 12, 53, 56
Relative jump bytes (counting of) 83
Relative jump instructions 102
Relocation (converting existing code)

194
Relocation problems 186
Relocation 175
Resident system extensions (RSX)

180
RGB 17
ROM (general) 15, 16, 17
ROM overlay 16
Rotate instructions 79
RSX (converting a subroutine to) 187
RSX (loading and testing) 208, 198
RSX (logging on) 180
RSX (producing a binary file) 199,

210
RSX (Quicksort rectangular array)

201

Screen memory (addressing of) 219
Screen memory 214
Shape (movement of) 220

Shape positioning 217
Shape tables 216, 229
Shift instructions 79
Sign bit 27
Sorting basic string arrays 163
Sound generator 19
Source code (deletion of) 49
Source code (hard copy) 49
Source code (listing) 42
Source code (loading) 48
Source code (renumbering of) 49
Source code (saving) 48
Source code 2, 3, 4, 45
Spaghetti programming 2
Stack (use of) 59, 114, 157, 160
Stack instructions 75
Stack pointer 59
Stack 19
String descriptors 172
Structure 2
Subroutine calls 77
Switching between basic and

assembler 51

Translation software 3
Tristate logic 17
Two state logic 11, 17
Two's complement (circle) 28
Two's complement (double byte) 29
Two's complement (negative limit)

29
Two's complement (positive limit) 29
Two's complement (rule) 27
Two's complement 26, 33

ULA 15, 16, 17, 18
Unconditional jump instructions T7

Unsigned binary 30

Work space 2
Writing to memory 13

XOR 35, 36

ASSEMBLY LANGUAGE PROGRAMMING
FOR THE

AMSTRAD
CPC 464,664 & 6128

Although the BASIC language provided on the Amstrad
machines is of an exceptionally high standard, there are
obvious advantages, both in speed and memory economy, to
be gained by the addition of machine code subroutines.

This book is intended to provide a grounding in Amstrad
machine code programming. Although particular emphasis is
given to the more commonly used Z80 instructions, the full
instruction set is presented in an appendix, specially
designed for quick reference.

The text is supplemented by numerous practical examples
including several full length listings. These are laid out in
standard assembly format, but a BASIC program is provided
for direct loading of machine code bytes to help those readers
who have not yet obtained an assembler.

9 780852 428610

	Assembly language programming for the AMSTRAD CPC 464, 664 & 6128
	Preface

	Contents

	1 - Why machine code?
	2 - Machine hardware
	3 - Binary and hexadecimal
	4 - Entering and running programs
	5 - The Z80 registers
	6 - Commonly used 6 instructions
	7 - Using resident firmware
	8 - Addition and subtraction
	9 - Decision making and loop structures
	10 Multiplication and division

	11 - Input and output 11
	12 - Parameter passing and introduction to resident system extensions
	13 - Self relocation of subroutines and resident system extensions
	14 - Graphics and direct 14 screen addressing
	Appendices

	Index

	● Numérisation : Maxime CROIZER | Mise en forme : ACME – https://acpc.me ●

