

A CHILD'S GUIDE TO THE AMSTRAD MICRO

John Dewhirst James Ryan

CAMBRIDGE UNIVERSITY PRESS
Cambridge
London New York New Rochelle
Melbourne Sydney

Published by the Press Syndicate of the University of Cambridge The Pitt Building, Trumpington Street, Cambridge CB2 1RP
32 East 57th Street, New York, NY 10022, USA
10 Stamford Road, Oakleigh, Melbourne 3166, Australia
© Cambridge University Press 1984
First published 1984
British Library cataloguing in publication data
Dewhirst, John
A child's guide to the Amstrad micro

1. Amstrad computers - Juvenile literature
I. title II. Ryan, James
001.64'04 QA76.8.A4

ISBN 0521315611
Produced by Chancerel Publishers Ltd, 40 Tavistock Street, London WC2.
Designed by Valerie Sargent.
Cover and cartoons by David Parkins.
Printouts by James Ryan.
Typesetting and graphic reproduction by ReproSharp Ltd, 47 Farringdon
Road, London EC1.
Printed by Richard Clay (The Chaucer Press) Ltd, Bungay, Suffolk, England.

Acknowledgements
The authors and publisher would like to thank Amstrad Consumer Electronics plc for the loan of an Amstrad microcomputer during the preparation of this book.

CONTENTS

Introduction page 4
The keyboard 7
Control keys
Letter keys
Number keys
Symbol keys
Edit keys
Getting started 21
The computer as a typewriter
The computer as a calculator
The computer memory
Using the computer for storing information
Using the computer to ask for information
Special features 36
Changing the screen
Drawing on the screen
Moving on the screen
Plotting points
Changing colours
Making music
Writing programs 46
Writing programs
Projects
Finding out 81Reference sectionsEditing and writing programsUsing the screenMaking soundsWord functionsNumber functionsOperatorsSaving and loading programsGeneral commands and functions

INTRODUCTION

Each section of the book is written by a different person. Each person is an expert at their job and gives very useful advice Read their advice very carefully. The advice is given at the start of their section of the book. If you follow the advice it will make the work you do much easier.

SECTIONS

1 The keyboard

by Pru Comet - typist.
Ms Comet shows you the ways in which the various types of keys work and the position of the keys on the keyboard.

2. Getting started

by P. C. Truemo - investigator.
P. C. Truemo shows you how to get started on the computer, how to make it print numbers and words, calculate answers and finally store items in its memory.

3. Special features
by Mort Puce - artist.
Mort Puce shows you how to draw coloured pictures on the screen and to make the computer play music.

4. Writing programs

by Prof. O. Crumpet - designer.
Professor O. Crumpet shows you how to copy, adapt, then finally design your own programs.

5. Finding out

by Ms O. C. Termup - librarian.
Ms O. C. Termup shows you how to use the different reference sections.

Dear Reader,
Hello there. We are the people who have written this book and you will find out more about us as you read through it. When you meet us we shall introduce ourselves.

The book has been written for people who know nothing about computers, but who want to find out for themselves. It has been written to show you not just what the computer can do, but more importantly, what you can make the computer do for you.

We have put together all our good ideas so that it is easy for you to find out just how the Amstrad microcomputer works. The book is written in five sections and we have each written a section. The first four sections are to be read and worked through in order, but the last section is for reference and this can be used at any time for checking.

Happy computing!

yMndBMCl COMBA Prudence Comet

Bobby Truemo

Mortimer Puce

Olive Constance Termup
Olive Constance Termup

In each section of the book you will come across different types of diagrams. The things for you to try, that is various exercises and experiments, will all be given a 'You try' box.
The 'You try' box looks like this.

You try

The things which are displayed on the screen will all be shown in a 'Display' box. The 'Display' box looks like this.

The things which you need to make a note about and remember will all be given in a 'Make a note' box. The 'Make a note' box looks like this.

THE KEYBOARD

Pru Comet

My advice

Don't be afraid of the computer. I think of it as a typewriter with a difference. Try things out. In this way you will learn quickly just what it can and cannot do. When you try things out, the computer will send messages back to you. This is the way the computer talks to you. It can make noises, change colours on the screen and do lots of other things, so you'll need a bit of time to learn about everything the computer can do. Your first job is to learn about the keyboard, find out where all the keys are and what they all do. A good idea is to make your own notes in a book of all the things you find out about the computer.
As you read through the keyboard section of the book, try things out as you go along. Don't be put off by any messages the computer sends to you. It does not realise that you are a beginner and just trying out a few things for yourself. As you work through the rest of the book you will learn the language that the computer understands, but like learning any language you can only learn a bit at a time.

> Pm comet

There are 80 keys on the Amstrad microcomputer. The six on the far right-hand side control the datacorder, and they work just like the buttons on an ordinary tape recorder.

CPC 464 User Instructions F1.

The other 74 keys can be divided into five groups:
Control keys Symbol keys
Letter keys
Edit keys
Number keys

Before you start looking at these keys in detail, there are a couple of things you need to know.

1. If you keep your finger on a key it will repeat itself, and instead of a you will get aaaaaaa.
2. You can use DEL (which is short for 'delete') and CLR (which stands for 'clear') as rub out keys. That is, by touching DEL or CLR you can remove any unwanted characters. But beware! These keys work like the others, and if you keep your finger on them you could rub out more than you intended.

Control keys

There are ten control keys.

ESC
TAB
CAPS
LOCK
SHIFT

DEL
CLR
ENTER (two keys)
CTRL
CPC 464 User Instructions F2.1

ESC is coloured red. It is used to escape from what the computer is doing. If the computer is just sitting waiting for instructions, then pressing ESC will put this message on the screen:

If the computer is in the middle of carrying out a program, pressing ESC once will make it stop. If you then press any other key, it will start again from where it left off. But if you press ESC a second time, the computer will break out of what it is doing completely, and will be ready for you to type in more instructions.

TAB is coloured green. Pressing TAB will print a small arrow pointing to the right. This key does not repeat itself if you hold it down.

CAPS
LOCK This key is coloured green. When it has been pressed once, the letter keys print capitals and the symbol keys print the lower symbols or numbers. Pressing CAPS LOCK a second time switches it off, so the letter keys print small letters again. When the machine is first switched on, the CAPS LOCK is off.
\square This is what will appear on the screen

You try

Type QWERTY
\square

This is what will appear on the screen.

You try

Press $\begin{gathered}\text { CAPS } \\ \text { LOCK } \\ \text { type QWERTY again. }\end{gathered}$
CAPS
Now press LOCK a second time so that you can print small letters again.

SHIFT These two keys are coloured green. If you hold either of them down, the letter keys print capitals and the symbol keys print the upper symbols. Once you let
SHIFT go, you will get small letters and lower symbols or numbers again.
\square This is what will appear on the screen:

You try

Press in turn each of the keys on the top row of the keyboard marked 123456

\square This is what will appear on the screen:

You try

Now hold down
SHIFT and press the same keys 123456 again.

DEL is coloured green. It rubs out the character to the left of the cursor. The cursor is the solid block which shows you where the next character you type will appear on the screen.
\square This is what will appear on the screen

You try

Press the DEL
key six times.

Make a note

Each time DEL is pressed the cursor moves one place to

CLR is coloured grey. It rubs out characters which are underneath the cursor. You can move the cursor left and right with the help of the arrow keys on either side of the COPY key. When the cursor is over the character that you want to rub out, press CLR and the character will disappear. Other characters to the right of the cursor on the same line are moved over to fill the gap.
\square This is what will appear on the screen:

You try

Move the cursor over the letter \mathbf{Y} by pressing the left arrow key seven times. Now press
qumer IGRWFRTER 34 SF

ENTER There are two of these keys, a large one and a smaller one among the number keys on the right.
They are both blue. ENTER moves the cursor to the start of the next line.
\square This is what will appear on the screen:

You try

Press ENTER (either key will do).

Don't worry about the message saying Syntax error - we will soon learn how to stop that appearing.
\square This is what will appear on the screen:
You try
Press ENTER 24
times.

Make a note

Pressing ENTER moves the cursor down one line and

Notice that when the cursor got to the bottom of the screen, the words above it jumped up one line each time you pressed the ENTER key. This is called 'scrolling'.

CTRL This is coloured green. When pressed together with other keys, it carries out various special jobs. Here are two of them:

1. Hold down CTRL and press | CAPS |
| :--- |
| LOCK | once. Now pressing the letter keys will produce capital letters, while the symbols keys will produce the upper symbols. This works just the same way as the SHIFT key, but it saves you the trouble of holding SHIFT down all the time. If you press both CTRL and CAPS LOCK a second time, the computer will return to the state it was in before producing small letters and numbers if CAPS LOCK was off, and capitals and numbers if it was on.

Make a note

CTRL and LOCK

together have the same effect as holding down

SHIFT

2. Hold down CTRL, press SHIFT and hold that down too, and finally press ESC. You will see the 'wake up' message appear, just as it does when you first turn the computer on.

You try
Press
SHIFT CTRL and ESC all at the same time.

Make a note

 CTRL, SHIFT and ESC pressed together reset the computer. They act like the on/off switch.This is what will appear on the screen:

This is called 'resetting' the computer. It makes the computer forget everything you have told it.

Letter keys

There are 26 keys which print the letters of the alphabet: A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z
and
$\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}, \mathrm{h}, \mathrm{i}, \mathrm{j}, \mathrm{k}, \mathrm{l}, \mathrm{m}, \mathrm{n}, \mathrm{o}, \mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}, \mathrm{t}, \mathrm{u}, \mathrm{v}, \mathrm{w}, \mathrm{x}, \mathrm{y}$,
z.

At the bottom of the keyboard you will also find a long key with nothing written on it. This is the space bar, and it moves the cursor one space to the right without printing anything.

On the keyboard these keys are set out in exactly the same way as you would find them on a typewriter.

\square

You try
Type out the following. Press
[Eliter at the end of each line.
IST ROW QWERTYUIOP
2ND ROW ASDFGHJKL
3RD ROW ZXCVBNM
\square

You try
Type out the names of the members of your family and their birthdays. Press ENTER at the end of each line.
\square
You try
Type out:
I can use the
keyboard. Press ENTER.
\square

If you do not like the computer saying Syntax error then put a number at the beginning of each line.

When you are ready to move on to the next section of this book, press CTRL, SHIFT and ESC together to reset the computer.

Number keys

There are ten keys on the top row of the main keyboard which print the numbers $1,2,3,4,5,6,7,8,9$ and \emptyset. You will find the same ten numbers grouped together in the 'numeric keypad', along with a full stop (or decimal point) and the small ENTER key, to the right of the main keyboard.

The \emptyset key is used for zero so that it is not confused with the letter 0 . The numeric keypad is useful when you are typing in a lot of numbers. It will also still print numbers when the number keys on the main keyboard are printing symbols because you have pressed CTRL and CAPS LOCK.

You try

Type out these	$\mathbf{1}$
figures. Press	$\mathbf{1 2 1}$
ENTER at the	$\mathbf{1 3 3 1}$
end of each line.	$\mathbf{1 4 6 4 1}$

If you do not like the computer saying Line does not exist then put a letter at the end of each line before you press ENTER.

Reset the computer by pressing CTRL, SHIFT and ESC together when you are ready to move on to the next section.

Symbol keys

The 11 keys which print symbols are grouped together on the right-hand side of the main keyboard. There are also some more symbols above the numbers on the main keyboard, and to use these you must hold down one of the SHIFT keys or press CTRL and CAPS LOCK.

\square

You try

Type out the
following. Press
ENTER at the
end of each line.
$1!$
$2 \prime \prime$
3 \#
4 \$
5%
6%
71
81
91
0
\square

You try

Type out the
following. Press
ENTER at the end
of each line.
1 punctuation!" ';:, ?
2 arithmetic \% () + - */ \uparrow
3 other \$ \& @ \& [] 1 : _

When you are ready to move on, reset the computer by pressing CTRL, SHIFT and ESC together.

Edit keys

These are the four arrow keys and the COPY key, grouped together above the numeric keypad.

CPC 464 User Instructions 1.16.

The arrow keys move the cursor one space in the direction the arrow is pointing each time they are pressed. If you keep the arrow keys pressed down you can zoom around the screen. Hold the up or down arrows long enough, and anything written on the screen will scroll out of sight.
\square This is what will appear on the screen:

You try

Hold down the arrow pointing down until all the writing has disappeared from the screen.

\square This is what will appear on the screen:

You try

Use the arrow keys to move the cursor to the middle of the screen. Now type middle

You now know how to write anywhere on the screen.
If you hold down SHIFT while you press an arrow key, a second cursor will appear and will move in the direction of the arrow. This is the copy cursor.
\square This is what will appear on the screen:

You try

Reset the computer. Hold down SHIFT and press the up arrow eight times.

Find all the keys, And type with ease.

\square This is what will appear on the screen

You try

Press the COPY key until the copy cursor has reached the end of the words on the top line.

Amstrad 64 K Microcompiter (us)
g1984 Amstrad Consumer Electronitis ple BASTC 1.0

Ready
Amstrad $64 k$ Micracomputer (wi)

Notice how the computer copies a letter, number or space each time you press the COPY key. You can let go of SHIFT when you are using COPY, by the way!
\square This is what will appear on the screern

You try

Press ENTER.
Now use SHIFT, the arrow and COPY keys, and the space bar to copy the following words from the 'Ready' sign: Red Ray Read dye dead day

\square

GETTING STARTED

My advice

When you start to make the computer do things for you always check them very carefully. The computer is very exact in the way it understands things. A missing space, a full stop in the wrong place or a wrong letter will result in the computer not understanding you.
When this happens - INVESTIGATE - track down every possible mistake until you get everything correct. It may take some time at first to track down your mistakes, but gradually you will not only become quicker at doing this, but you will also make fewer mistakes.
Make notes of the things you find useful, so that you can use them again easily whenever you want. Finally I find these points very useful.

1. Remember that the computer is very particular about where you put spaces.
2. Remember that after every instruction you must press ENTER .

Bobby Truemo
Robby Trueithe

In this section we will find out how to use the computer in four different ways:

1. Using the computer as a typewriter.

We will discover how to print numbers and characters on the screen and how to space them out in various ways.
2 . Using the computer as a calculator.
We will learn how to add, take away, multiply and divide numbers using the computer.
3. Using the computer for storing information.

We will find out how to put numbers into the memory of the computer.
4. Using the computer to ask for information. We will learn how to get the computer to ask for information, which it then puts into its memory.

When switched on the Amstrad microcomputer will displa the following:

Amstrad Microcomputer (v1) - the make of computer and which version it is.

64 K - the size of the computer's memory.
(c) 1984 Amstrad Consumer Electronics plc and Locomotive Software Ltd. - the copyright line. It tells you that you are not allowed to make copies of the machine or the programs that come with it unless you have the permission of Amstrad and Locomotive Software.

BASIC $1 . \emptyset$ - the computer language used by the Amstrad computer.

Ready - the signal that the computer is ready for you to type in instructions.

This is the cursor. It shows you where the letters that you type will appear on the screen.

The computer as a typewriter

To make the computer write things we use print. After the statement is complete, remember to press ENTER

CPC 464 User Instructions 8.54

Printing numbers

\square This is what will appear on the screen:

You try

Type print 5 then press ENTER. You must put a space after print.

You try
Using the same idea, print some numbers of your own.

This is what will appear on the screen

Printing symbols, letters and words

\square
You try
Type print "?" then press ENTER \square

To print a symbol, print followed by a space, then the
symbol, letter word inside speech

\square This is what will appear on the screen:

You try

Type print "bee" then press ENTER
\square

You try

Use print to make the computer write your name.

\square
Spacing numbers
\square This is what will appear on the screen:

You try

Type print 1,2,3 then press ENTER
\square

\square This is what will appear on the screen:

You try

Type print 1;2;3 then press ENTER

print 1;2;3
Ready
R

You try

Using the same ideas space out some numbers of your own.

This is what will appear on the screen

\square

Make a note

Don't stand and wait,
prints spaced out .,. prints on two

Spacing words

\square This is what will appear on the screen
You try
Type print
"dog",'"cat" then press ENTER.


```
print "dog", "eat" Ready
```


You try

Type print
'dog'"; "cat" then press ENTER.
\qquad

\square
You try
Type print
'‘dog'",,,"cat"' then press ENTER.
\square
You try
Using the same idea space out your first and second names.

This is what will appear on the screen:

Make a note
The symbol
.prints words spaced out
; prints wo r without prints wo prints word
two lines Is on

The computer as a calculator

The print command can also be used to make the computer act like a calculator. It can be given a question and it will supply the answer. Remember that after the statement is complete ENTER should be pressed.
\square This is what will appear on the screen

You try

Type print 5+7 then press ENTER


```
print S+7
    12
```

 Ready

This is what will appear on the screen

You try
Type print 8-4 then press ENTER
\square
print 8-4
Ready
\square This is what will appear on the screen:

You try

Type print 7*3 then press ENTER.

\square This is what will appear on the screen:

You try

Type print 8/4 then press ENTER

You try

1. Using the same
 idea make up some of your own sums.
2. Check a shopping bill with the computer.

The computer memory

You can also use the computer to remember information.
It is important to know just how the computer does this before you go on to the next part of this section.

Just as you live at one address, your friend at another, your teacher at yet another address, so the computer uses a similar system of addresses for storing information.

It stores numbers at the following addresses in its memory The addresses can be either letters or words. For example

It stores words at addresses like these.

Using the computer for storing information

The $=$ sign is used to put numbers or words into the memory of the computer.

This is what will appear on the screen:

You try

Type $\mathbf{a}=123$ then press ENTER

$a=123$
Ready

You try
Type print a then press ENTER
\square

lou try

Jsing the $=$ sign put the number 12 into address \mathbf{b} and number 4 nto address c. Then type print $\mathbf{l}+\mathbf{c},,, \mathbf{b}-\mathbf{c},,, \mathbf{b} * \mathbf{c},,, \mathbf{b} / \mathbf{c}$ then press ENTER
print a

Ready
$\mathbf{a}=123$ put the number 123 into the memory of the computer at address a. print a recalled the number which was in the memory of the computer at address \mathbf{a}.

\square This is what will appear on the screen

You try

Type $\mathbf{a} \$=$ "good" then press ENTER
a\$="good"
Ready

This is what will appear on the screen

You try

Type print a\$ then press ENTER

$\mathbf{a} \$=$ "good" put the word good into the memory of the computer at address a\$. print a\$ recalled the word which was in the memory of the computer at address $\mathbf{a} \$$.
\square

You try

Use the $=$ sign to put I in the address $\mathbf{b} \$$ and $\mathbf{a m}$ in the address $\mathbf{c} \$$.

Type print $\mathbf{c} \mathbf{\$, b \$, a \$}$
and press ENTER
Type print b\$,c\$,a\$
then press ENTER

Using the computer to ask for information

CPC 464 User Instructions F2. 6
The input command is used to make the computer ask for numbers or words which it then puts into a memory address.
\square This is what will appear on the screen:

You try

Type input a then press ENTER

\square This is what will appear on the screen:
You try
Type 99 then press
ENTER
\square

\square This is what will appear on the screen:

You try

Type print a then press ENTER

print a
print a
99
Ready number 99 was typed, the computer put 99 into the memory address a. print a recalled the number whichwas in the memory of the computer at address a.

You try
Use the input statement to make the computer ask for some numbers to put into the memory addresses \mathbf{b} and \mathbf{c}. (? is asking for a number.) Type print $\mathbf{b}, \mathbf{c}, \mathbf{b}+\mathbf{c}, \mathbf{b} * \mathbf{c}$ then press ENTER

Make a note

1. input a makes the mputer ask for a
number 2. The? sign is the way the computer
asks for a number 3. The numb computer is give mputer is given
goes into the
m memory address a.
\square This is what will appear on the screeil

You try

Type input a\$ then press ENTER.

If in doubt,
If in doubt,
Try things out.

\square This is what will appear on the screen:

You try

Type HELLO then press ENTER

This is what will appear on the screen:

You try

Type print a\$ then press

ENTER

What the computer can do, is just up to you.
input $\mathbf{a} \$$ made the computer ask for a word. When the word HELLO was typed in, the computer put HELLO into the memory address a\$. print a\$ recalled the word which was in the memory address \mathbf{a} \$.

You try
Use the input statement to put your name into the address $\mathbf{b} \$$. (? is asking for a word.) Type print a\$,b\$ then press ENTER
\square

1. input as makes
the computer ask for
a word. sign is the
2. The sin
way the computer
3. The wo then goes memory

SPECIAL FEATURES

Mort Puce

My advice

My advice is to look at new commands carefully. When you think you understand the idea, experiment and try things out. You will learn what looks right. Of course, when you work like this you may create a mess. Don't be put off: try again. Remember your successes and forget about yous failures.
Try out all the ideas you can think of. Explore lines, angles, shapes, colours and even music. You can draw almost anything on the screen and colour it in different ways and then to celebrate your masterpiece compose a tune or evena complete symphony.
When you hit on a good idea make sure you write some notes about it, so that you will be able to use the idea again.

Changing the screen

The way in which characters are written out on the screen depends on the mode in which the computer is operating. When you switch it on, the Amstrad microcomputer is in mode 1 . In mode 1 there are $4 \emptyset$ characters to the screen line and 25 lines on the screen. However, the computer will operate in modes \emptyset and 2 as well.

To change the mode, type mode followed by a space and then the number of the mode that you want. For example, mode \varnothing followed by pressing ENTER puts the computer into mode \emptyset. In this mode there are only $2 \emptyset$ characters to the line. In mode 2 there are $8 \emptyset$ characters to the line. There are always 25 lines on the screen, whichever mode you choose.

CPC 464 User Instructions 5.3
\square This is what will appear on the screen:

You try

Type mode \emptyset then press ENTER Now type print (notice the change).

Get on the right road, Using the best MODE.
\square This is what will appear on the screen:

You try

Type mode 2 then press ENTER . Type print again.

Drawing on the screen

CPC 464 User Instructions F3. 1
The draw command is used to draw lines and shapes. To make the computer draw, the draw command must be followed by a space, then two numbers separated by a comma. For example
draw 32Ø,2ØØ draw 639,Ø

Assuming that you want what you are drawing to appear the screen, the first number can be any number from \emptyset to 639 . The second number can be any number from \varnothing to 399 ,

The draw command works in a similar way to drawing on a piece of paper without lifting the pencil. The first number after draw gives the distance across the screen, and the second number the distance up the screen, at which the line will finish.
\square This is what will appear on the screen

You try

Type mode 2 then press ENTER. Type draw 639,399 then press ENTER

This is what will appear on the screen

You try

Type mode 2 then press ENTER. Type draw 32の, \varnothing then press ENTER Type draw $\varnothing, 2 \emptyset \emptyset$ then press ENTER Type draw \emptyset, \varnothing then press ENTER

You try

Type mode 2 then press ENTER Type draw 2øØ, Ø then press ENTER Type draw 2のØ,2のø then press ENTER Type draw $\varnothing, 2 \emptyset \emptyset$ then press ENTER Type draw \emptyset, \emptyset then press ENTER

Moving on the screen

The move command is used to move on the screen without drawing a line. When using the draw command you will find from time to time that you need to move to another point on the screen without actually drawing a line. This can be done using move. Just as draw was like drawing on a piece of paper without lifting the pencil, move allows you to take the pencil off the paper and start to draw again at another point.
\square This is what will appear on the screen:

You try

Type mode 2 then press ENTER Type move $\emptyset, 20 \emptyset$ then press ENTER Type draw 639, \varnothing then press ENTER

\square
You try
Type mode 2 then press ENTER. Type draw 639,20ø then press ENTER. Type move 639, ${ }^{\text {® }}$ then press ENTER. Type draw Ø,2øø then press ENTER

Plotting points

This is what will appear on the screen

CFC 464 User Instructions F3.1

The plot command is used to move to a point on the screen and then draw a dot. Like move, you do not draw a line on the way to the point. The plot command is useful when yo f want to light up individual points on the screen, and when you want to draw shapes that are not made up of straight lines.

This is what will appear on the scree

You try

Type mode \emptyset then press ENTER. Type plot 32ø,2øø then press ENTER. Try plotting points in modes 1 and 2.

Make a note
draw, move and
plot mu
follow
and then by a space
and numbers. There are
$64 D$ points across
the screen up the scree a no numbers
be sur separated must

To help you plan your drawings, here is a grid showing distances across and up the screen from the bottom left-hand corner:

You try

Use draw, move and plot commands to draw a house or a road sign.

If you are interested in exploring other ideas like draw, move and plot, then refer to drawr, mover, origin and window in the CPC 464 User Instructions, and look at the 'Using the screen' reference section at the end of this book.

There are 27 different colours available on the Amstrad microcomputer. Of course, you will only see them if you are using a colour monitor or a colour TV. If you are using a green screen monitor, the colours will appear as different shades of green.

When you switch the computer on, it displays bright yellon characters on a dark blue background.
\square

You try

Type border \emptyset then press ENTER Type border 15 then press ENTER

You try

Type border 3,4 then press ENTER.

The 'You try' exercise gives first a black border round the edges of the screen, and then an orange border.

Each colour has a number, called the 'ink number'. For example, black is ink number \emptyset and blue is ink number 1. You will find a complete list of ink numbers in the CPC 464 User Instructions F3.2.
border followed by The 'You try' exercise gives a border which flashes between red and magenta. When you are tired of lookint at it, type border 1 to get a steady blue border back again.

Make a note

a space and one number changes the border to a steady colour.
border followed by a space and two numbers with a
comma

\square

You try

Type paper 2 then
press ENTER
Type cis then press

You try

Type pen 3 then press ENTER.
Type cIs then press

ENTER

The 'You try' exercise changes the background within the border to bright cyan. The statement els tells the computer to clear the screen.

The 'You try' exercise changes the colour that the computer uses to write with from bright yellow to red. Now anything that you type will be in red.

How many colours you can show on the screen at once depends on the mode that the computer is in. When you switch on, it is in mode 1 . In mode 1 you can use four colours at once, not counting the border. In mode \varnothing you can use up to sixteen different colours, but in mode 2 you can use only two (again, not counting the border).

You try

Change to mode Ø and alter the colours of the paper and pen by using ink numbers between Ø and 15. Clear the screen after altering the paper number.
\square
Make a note
The commands
paper and pen are used to choose the background and foreground colours of the screen. If your foreground and
backgro are the same will not be able to see what yb u typing.

You try

Reset the computer. Type ink 1,16 then press ENTER

You try

Type ink 2,9 then press ENTER. Type pen 2 then press ENTER.

You try

Type ink 3,14 then
press ENTER.
Type paper 3 then
press ENTER.
Type cls then press

ENTER

When you switch on the computer, the four colours available for your paper and pen in mode 1 are blue, bright yellow, bright cyan and bright red. Typing ink followed by a space and then two numbers separated by a comma allows you to select different colours instead. Using the ink command is like changing the ink in your pens and writing on differently coloured sheets of paper.

The 'You try' exercise instantly turns all the writing on the screen pink.

The 'You try' exercise turns everything you type after pen 2 green But everything before that is still pink.

The 'You try' exercise clears the screel and turns the paper colour to pastel blue.

The sound command is used to play musical notes. It works equally well in all three modes, so there is no need to select any particular mode. The sound command is followed by a space, then at least two numbers which are separated by commas. For example

sound 1,5Ø6
sound 1,6Ø,1ØØ
sound 1,239,2ØØ,2

The first number selects the channel. You only need channels other than number 1 if you want to play several notes at once.
The second number selects how high or low the sound is. The smaller the number is, the higher the note. The third number selects the length of time the sound is played, in hundredths of a second. If you leave this number out, the note will be played for one fifth of a second.
The fourth number selects how loud the sound will be. The numbers used are usually \emptyset to 7 , with 7 the loudest. If you leave this number out, the computer assumes you mean 4.
\square

You try

Type sound
$1,2 \emptyset 25,3 \emptyset \emptyset, 3$ then press ENTER.

The 'You try' exercise plays a low, long, quiet note.

You try
Type sound 1,30,10,7 then press ENTER

The 'You try' exercise plays a high, short, loud note.

You try

Use the sound command to play some of your own notes.

You can get the computer to play notes one after the other by using the : sign. For example,
sound 1,6Ø,1ØØ:sound 1,53,1ØØ:sound 1,47,1ØØ

WRITING PROGRAMS

Prof. O. Crumpet

My advice

You want ideas that work. You will probably need to spend some time thinking about them. If your idea does not work as you thought it would, then try to find out why. It may be that one very small alteration will make it work exactly as you intended.
However, it could be that your idea will never work, no matter how you alter it, so be prepared at times to start all over again. Sorting out ideas is not easy, but it is easier if you have some plan to work to.
Often an idea does not work quite as you wanted, but it could be used in another way. Make a note of it so that you can use it later. You must, of course, keep a very careful record of all your really good ideas.

The computer can do many things. Here are just a few. Try them for yourself.
cls (followed by ENTER) clears the screen.
print (followed by \quad ENTER) gives a blank line.
print "computer" (followed by ENTER) gives the print out of computer.
print "programmer" (followed by ENTER) gives the print out of programmer.

The computer can be given many other things to do, but instead of giving them to the computer one at a time, they can be given together. When the computer is given a list of things to do in order it is called a computer program. The lines begin with line numbers to tell the computer the order in which they should be carried out. Examples of line numbers are: 1Ø 2Ø $\mathbf{3} \mathbf{4 0} \mathbf{4 \emptyset 6 0}$ etc.

The computer looks at the list and works through it 1Ø, $\mathbf{2 \emptyset , 3 Ø}, 4 \emptyset, 5 \emptyset, 6 \emptyset$ in order until it reaches the end. Some programs have just a few line numbers, other programs may have hundreds or even thousands. An example of a program is
10 cls
$2 \emptyset$ print
$3 \emptyset$ print "computer"
40 print
You are making a start.
At the programming art.
50 print "programmer"
60 print
This is what will appear on the screen:

You try

Type the program above, line by line. After you have written a complete line press ENTER to go to the start of the next line.

\square
You try
Now type the word run and press ENTER

compilter
programmer
Ready

If you have made any mistakes you can correct them by retyping the line in which they occur. Suppose your screen showed

compirta
programmer
Ready

The mistake is in line number $\mathbf{3}$, so by retyping the line number $\mathbf{3 \emptyset}$ this mistake can be corrected.
$3 Ø$ print "computer" (followed by ENTER).
This will correct the line in the program and give you the correct display.
You may also alter lines in the program in the same way. Type in the following.
$3 \emptyset$ print "a computer"
(followed by ENTER).
This will alter the line in the program.
While you are writing programs it is quite useful to be able to look back at the program you have written. To do this type the word list followed by ENTER

This is what will appear on the screen:

```
Ready
1ist
10 CLS
2Q PRINT "a computer"
40 PRINT ,
SO PRINT "programmer *
G0 PRINT
Ready
```

Notice that some of the words are now in capitals. This shows that the computer has recognised them as BASIC commands. (It does not matter whether you type them in small letters or capitals.)
The program line numbers go up in tens so it is possible to add extra lines. For example, try typing:
15 print "I am" (followed by ENTER).
This puts the line into the program as follows:
10 cls
15 print "I am"
$2 \emptyset$ print
$3 \emptyset$ print "a computer"
40 print
$5 \emptyset$ print "programmer"
60 print
You can check that this has happened by typing list followed by ENTER. Type run followed by ENTER

Make a note

1. Number each line 10, 20, 30 etc.
2. Press ENTER when the line is complete.
3. Type run and press ENTER when the program is complete.
4. Correct mistakes by retyping the line. 5. Type list and press ENTER to look at the program.

This is what will appear on the screen:

Writing programs

In order to write your own programs you need to find out just what the computer can do. The exercises which follow should help you.
Before you start the next section you need to have understood the last section. If you are at all unsure about anything, work through it again.
Type in these programs just as the earlier program was typed in, that is one line at a time followed by ENTER to get to the start of the next line. Check your program when it has all been typed in and correct any mistakes by rewriting the faulty line. When you are sure that the program is complete and correct type run and press

ENTER and see what happens.
So that the computer does not get one program confused with the next, type new and press ENTER before typing in a new program. The computer then forgets the old program.
When you have copied and run the programs in each section then try the exercises. If you come up with any ideas for similar programs then try them out and see how they work.

At the end of this chapter there are five projects which are ideas for longer and more interesting programs. For most of the projects, you are helped with writing the basic program, and then you are given some ideas to improve it.

To see what is done, Just type RUN.

Programs using PRINT

PRINT is used to print out lists, information, diagrams and instructions.
\square
You try
Type new then press ENTER.
Type in the following program.
10 cls
29 print "Pru Comet"
30 print "P.C. Truemo"
40 print "Mort Puce"
50 print " 0 . Crumpet"
60 print "O.C. Termup" Type run then press ENTER
\qquad
\square
You try

Type in the following program.
10 cls
20 print 30 print 40 print 50 print 60 print

Type run then press ENTER
\square

This is what will appear on the screen:

When writing a program, you NEW. Must remember to start with This is what will appear on the screen:

\square

You try
Make up your own programs using PRINT to do the following:
\square
3. Draw a space shuttle.

TAB is used to set out information or diagrams.

\square
You try
Type new then press ENTER
Type in the following program.
10 cls
$2 \emptyset$ print tab(2Ø) "Prof. 0. Crumpet,"
$3 \emptyset$ print tab(22) " 14 Mep Court," 40 print tab(24) "Portcume."
Type run then press ENTER
\square
\square

You try

Type new then press ENTER
Type in the following program.
10 cls
$2 \emptyset$ print tab(19) "*"
$3 \emptyset$ print tab(18) "***"
40 print tab(17) "*****"
$5 \emptyset$ print tab(16) "*******"
$6 \emptyset$ print tab(15) "**********"
Type run then press
ENTER
\square

You try

Make up your own programs using TAB to do the following.

1. Draw a staircase.
2. Set out your address.
3. Draw a sloping line.

Programs using LOCATE

LOCATE is used to print anywhere on the screen.
\square This is what will appear on the screen:

You try

Type new then press
ENTER
Type in the following program.
10 cls
20 locate 25,5
$3 \emptyset$ print "Here I am."
40 locate 15,23
50 print "I moved."
60 locate 5,1
70 print "Coooeee!"
Type run then press
ENTER

This is what will appear on the screen:

You try

Type new then press ENTER
Type in the following program.
10 cls
20 locate $\mathbf{2 5 , 1 7}$
30 print 1
40 locate 20,12
50 print 2
60 locate 15,7
70 print 3
Type run then press
ENTER

You try

Make up your own programs using LOCATE to do the following.

1. Print messages on different parts of the screen.
2. Draw a wavy line.

Programs using =

The $=\operatorname{sign}$ is used to put a number into an address.
\square

You try

Type new then press ENTER
Type in the following program.
10 cls
$2 \emptyset a=5$
$3 \emptyset b=9$
40 sum $=a+b$
$5 \emptyset$ print a;"'+";b;"'=";sum
Type run then press ENTER
\square
\square
You try
Type new then press ENTER
Type in the following program.
10 cls
$2 \emptyset e=3$
$3 \emptyset f=8$
$4 \emptyset$ product $=e * f$
$5 \emptyset$ print e;'‘x";f;"‘=’;product
Type run then press ENTER
\square

You try

Make up your own programs using = to do the following.

1. Add two other numbers.
2. Multiply two other numbers.
3. Subtract or divide numbers.
\square
This is what will appear on the screen
This is what will appear on the screen
5 5 $9=14$
5 5 $9=14$
Ready
Ready

$$
\underset{\text { Ready }}{3 \times 8=24}
$$

The $=$ sign is also used to put words into addresses.
\square This is what will appear on the screen:

You try

Type new then press ENTER Type in the following program.
10 cls
20 a\$="Martin"
30 b $\$=$ "James"
40 c $\$=$ "Thomas"
$\$ 0$ print a\$"' 'b\$" "c\$
69 print c\$" '"b\$" "'a\$
Type run then press
ENTER

This is what will appear on the screen:

You try

Type new then press ENTER
Type in the following program.
10 cls
20 a\$="can"
$30 \mathrm{~b} \$=$ "you"
$40 \mathrm{c} \$=$ " go "
50 print a\$'، '"b\$" "c\$ 60 print b\$"' 'a\$" '"c\$ lype run then press ENTER

You try

Make up your own programs using $=$ to do the following.

1. Make $\mathbf{~ \$ ~ = ~ " ' i n " ' , ~ b \$ = " o n " ' , ~}$ c $\$=$ "set", d\$="side", e\$="to'", \$ = "up", g\$="wards".

By putting these words together, see how many longer words you can print.
2. Make sentences from words.
3. Select items from a menu.

INPUT is used to put numbers into programs.
\square This is what will appear on the screen

You try

Type new then press ENTER
Type in the following program.
10 cls
20 input a
30 input b
40 difference $=\mathbf{a}-\boldsymbol{b}$
50 print a;"-";b;"‘=";difference
Type run then press ENTER .
\square
\square This is what will appear on the screen

You try

Type in a number, for example 9, then press ENTER
Type in a number, for example 7, then press ENTER.
\square
\square

You try

Now put your own numbers into the program.

\square
You try
Type new then press ENTER
Type in the following program.
10 cls
20 input n
30 input d
40 quotient = n / d
50 print n;"/’’;d;"=’;quotient Type run then press ENTER
\square
\square

You try

Type in a number, for example 8, then press ENTER.
Jype in a number, for example 4, then press ENTER

You try

Type run then press ENTER Now put your own numbers into the program.

This is what will appear on the screen:

This is what will appear on the screen:

\square

You try

Make up your own programs using INPUT to do the following.

1. Add two numbers together.
2. Multiply two numbers.
3. Ask for the amount of pocket money you receive in a week and multiply this by 52 to give the amount you receive in a year.

INPUT is also used to put words into programs.
\square

You try

Type new then press
ENTER
Type in the following program. 10 cls
$2 \emptyset$ print "Ann,Eve,Kate,Mary" $3 \emptyset$ print "Find the palindrome." 4Ø input answer\$ $5 \emptyset$ print "The palindrome is Eve."
Type run then press
ENTER

\square

You try

Type in the palindrome Eve then press ENTER .

This is what will appear on the screen

(A palindrome is a word which is spelt the same way backwards as forwards.)

This is what will appear on the screen:

You try

Type new then press ENTER Type in the following program.
10 cls
20 print "Give me a word to fit His sentence."
30 print "Today the weather is" 40 input answer\$ 50 print "Today the weather is';'answer\$

Giue me a word to fit this sentemae.

Today the weather is

When a line is too long to fit on the screen just keep typing normally and the computer will understand you even though a word is on two lines. Do not press ENTER until you have reached the end of the instruction. Type run then press ENTER.
\square

You try

Type in sunny (or another word to describe the weather) then press ENTER

This is what will appear on the screen:

You try

Make up your own programs using
INPUT to do the following.

1. Find a missing word.
2. Answer a simple question.
3. Make the computer have a conversation with you.

Programs using FOR/TO/STEP/NEXT

FOR/TO/STEP/NEXT is used to repeat the same lines in turn for a set of numbers.

For each value of count between 1 and 5 , the row of dots and value of count was printed.
\square

You try

Type new then press ENTER
Type in the following program.
10 cls
$2 \emptyset$ for $\mathrm{n}=1$ to 9 step 2
$3 \emptyset$ print n
40 next n
Type run then press ENTER

You try

Make up your own programs using FOR/TO/STEP/NEXT to do the following.

1. Print out the numbers 1 to 20 .
2. Print out your name and address three times.
3. Print out the three times table.

This is what will appear on the screen!

If you do not tell the computer the size of the step it assumes step 1, so we could have left this out in the first example.

Programs using DATA/READ

CPC 464 User Instructions 8.9, 8.37
DATA/READ is used to put data (information) into the computer and read (recall) it when it is needed.
\square

You try

Type new then press ENTER
Type in the following program.
10 cls
20 data is,clue, a, here
36 read w\$,x\$,y\$,z\$
40 print z\$;" ";w\$;"‘ ’;y\$" ";x\$ 50 print y\$;"‘’;x\$;" ’;"w\$" ’;;z\$ Type run then press ENTER
\square
\square

You try
Type new then press ENTER Type in the following program which, for each of five pupils, reads in their maths mark and English mark and works out the average.
10 cls
20 data $75,61,83,79$, 64,78,93,67,86,72
30 for pupil $=1$ to 5 40 read maths, English $5 \emptyset$ average $=$ (maths + English)/2
60 print "'pupil’;pupil;"' has an average mark of';;average 70 next pupil Type run then press ENTER

This is what may appear on the screen:

This is what will appear on the screen:

You try

Make up your own programs using READ/DATA to do the following:

1. Rearrange a list of items.
2. Make a list of months giving the number of days in each month.
\square

Programs using LEFT\$, MID\$ and RIGHT\$

CPC 464 User Instructions 8.23, 8.27, 8.4
The word functions LEFT\$, MID\$ and RIGHT\$ can be used to pick out parts of words.
\square

You try

Type new then press ENTER
Type in the following program.
10 cls
$2 \varnothing$ word $\$=$ "composer"
30 print left\$(word\$,7)
$4 \emptyset$ print right\$(word\$,5)
$5 \emptyset$ print mid $\$($ word $\$, 4,4)$
Type run then press ENTER. Use LEFTS, MIDS and RIGHT\$ to print as many words as you can if

This is what will appear on the screer word\$="another".

Programs using INT and RND

CPC 464 User Instructions 8.22, 8.4
INT gives the whole number part of a number. For example, $\operatorname{INT}(\mathbf{2 . 4})=\mathbf{2}$. RND chooses a random number between \varnothing and 1 .

You try

Type new then press ENTER
Type in the following program.
10 cls
$2 \emptyset$ for $\mathrm{n}=1$ to $2 \emptyset$
$3 \emptyset$ print $n / 4, \operatorname{int}(n / 4)$
40 next n
Type run then press ENTER

This program shows how INT works. We need to use INT with RND when we want the answers to be whole numbers. RND chooses a number between \emptyset and 1 (but not equal to 1), so RND*4 chooses a number between \varnothing and 4 (but not equal to 4).
INT(RND*4) chooses one of the numbers $\emptyset, 1$, 2 , or 3 .
\square This is what may appear on the screen:

You try

Type new then press ENTER
Type in the following program.
10 cls
29 Leeds $=$ int(rnd*4)
$3 \emptyset$ Arsenal $=$ int (rnd *4)
40 print "LEEDS";Leeds 50 print "ARSENAL";Arsenal Type run then press ENTER

LEEDS 1
ARSENAI. 2
Ready

Since the computer chooses numbers at random it is unlikely that the numbers in this display or the next one will be the same as yours.

You try

Type new then press ENTER
Type in the following program.
10 cls
20 first $=1+$ int $($ rnd $* 6)$
30 second $=1+$ int (rnd $* 6$)
40 print "First dice";first
50 print ''Second dice'";second Type run then press ENTER

This is what may appear on the screen:

The instruction first $=\mathbf{1}+\mathbf{i n t}(\mathbf{r n d} * \mathbf{6})$ chooses one of the numbers $1,2,3,4,5$ or 6 at random and puts the chosen number into the address first. Try running the program several times and different numbers will probably be chosen.

You try

Make up your own programs using INT and RND to do the following. 1. Choose a winning raffle ticket from 1000 tickets.
2. Select numbers for a game of bingo (numbers 1 to 90).
3. Make up sums and print the correct answer when you have had a go.
\square

Programs using WHILE/WEND

CPC 464 User Instructions 8.51
WHILE/WEND is used to repeat lines of the program while a particular condition is satisfied.

You try

Type new then press ENTER
Type in the following program.
10 cls
$2 \emptyset$ count $=\emptyset$
30 while count <7
40 print "Iucky seven"
$5 \emptyset$ count = count +1
$6 \emptyset$ wend
Type run then press ENTER .

The particular condition to be satisfied in the 'You try' above is that count <7 ($<$ means is less than). The program will repeat lines $4 \emptyset$ and $5 \emptyset$ while count is less than 7 .

The next 'You try' uses two new ideas. The first is a method of putting two words together, which we do by putting + between them.

Second, to find out the number of symbols in $\mathbf{x} \mathbf{\$}$ we use LEN(x\$). If $\mathbf{x} \boldsymbol{\$}=$ "Prof.", then $\operatorname{LEN}(\mathbf{x} \$)=5$. LEN tells us how many spaces a word takes up on the screen.
\square
You try
Type new then press ENTER
Type in the following program.
10 cls
$2 \emptyset \mathrm{~b} \$=$ "HO"
$3 \emptyset$ while Ien(b\$)<33
$4 \emptyset$ print b\$
$5 \emptyset \mathrm{~b} \$=\mathrm{b} \$+\mathrm{b} \$$
$6 \emptyset$ wend
Type run then press ENTER

Make up your own programs using WHILE/WEND to do the following. 1. Print out the numbers 1 to 20 .

This is what will appear on the screen
lucky sevem
1HEky sevem
lenck seqem
luckg segen
lucky seuem
lifkg sequem
lucky sevem
Ready
E

Programs using IF/THEN/ELSE

CPC 464 User Instructions 8.19
IF/THEN/ELSE is used to introduce alternatives.
\square
You try
Jype new then press ENTER lype in the following program. 10 cls 29 print "Type WORD" 30 input word\$
40 if word $\$=$ "WORD" then print "correct" else print 'wrong" Type run then press

ENTER
\square
You try
Type WORD then press ENTER
\square

Notice that you must type WORD in capitals for this to work. Run the program again.
\square
You try
Type WIRD then press
ENTER

This is what will appear on the screen:

This is what will appear on the screen:

\square

You try

Type new then press ENTER
Type in the following program.
10 cls
$2 \emptyset$ print " $6 \times 4=$ "
$3 \emptyset$ input answer
$4 \emptyset$ if answer $=24$ then print "correct" else print "wrong"
Type run then press ENTER
\square
\square
You try
Type 24 then press ENTER

Run the program again:
\square

You try

Type 36 then press ENTER

You try

Make up your own programs using IF/THEN/ELSE to do the following.

1. Check an answer to a simple question.
2. Make the computer ask if you are well and give a suitable reply to your answer.
\square

GOTO is used to jump to a different line in the program.
\square This is what will appear on the screen:

Fou try

Type new then press ENTER
Type in the following program. 10 cls
29 print "Type in a number." 30 input number
40 if number <100 then goto $7 \emptyset$ 50 print number "is more than 6." end
print number "is less than

Type run then press ENTER .
\square

Fou try

Type in a number, for example 71, then press [ENTER].

This is what will appear on the screen:

\square This is what will appear on the screen

You try

Type new then press ENTER
Type in the following program.
10 cls
20 print " $7 \times 7=$ "
$3 \varnothing$ input answer
$4 \emptyset$ if answer=49 then goto $7 \emptyset$
$5 \emptyset$ print "wrong"
$6 \varnothing$ goto $2 \varnothing$
$7 \emptyset$ print "correct"
Type run then press ENTER
\square
\square
You try
Type in your answer then press

ENTER

\square
\square

You try

Make up your own programs using GOTO to do the following.

1. Print Yes or No in answer to a question.
2. Print a word in small or in capital letters.

3. Input the cost of five items of shopping and print the total cost. You will need to make the computer keep count of the number of items input so far.

Programs using AND

AND is used to check two conditions.
\square This is what will appear on the screen:

You try

ype in the following program. 0 cls	
20 print "How many tens in 4	
30 input tens	
40 print "How many units in 43";	
50 input units	
60 if tens $=4$ and units $=3$ then	
print "Both correct" else goto 20	
pe run then press	ENTER

You try

$\begin{array}{ll}\text { lype } 4 \text { then press } & \text { ENTER } . \\ \text { lype } 3 \text { then press } & \text { ENTER. } \\ & \end{array}$

\square
\square

You try

Run the program again. Type in one or two incorrect answers and notice what happens.

You try

Type new then press ENTER
Type in the following program.
10 cls
$2 \emptyset$ print 'What is the first letter of the alphabet"
30 input a\$
40 print "What is the last letter of the alphabet"
50 input $\mathbf{z \$}$
60 if $\mathbf{a}=$ = a " and $\mathbf{z \$}=$ " z "
then print "Both correct" else
goto 2ø
Type run then press ENTER
\square

You try

$\begin{array}{ll}\text { Type } \mathbf{a} \text { then press } & \text { ENTER } \\ & \\ & \\ & \\ & \\ & \end{array}$

You try

Run the program again.
Type in one or two incorrect letters and notice what happens.

This is what will appear on the screen

```
What is the first letter
```

of the alphabet:
?

This is what will appear on the screen

You try

Make up your own programs using AND to do the following:

1. Check for two possible answers to a question.
2. Select two words from a list of words.
3. Select two numbers from a list of numbers.
\square
\square

Programs using OR

OR is used to check for one of two conditions.
\square

You try

Type new then press ENTER Type in the following program. 10 cls
20 print "Which letter makes an" 30 print 'animal MO.SE" 40 input letter\$ 50 if letter\$="U'’ or letter $\$=$ " 0 " then print "correct" else goto 20
Type run then press

ENTER

\square This is what will appear on the screen:

You try

Type 0 then press ENTER.

Run the program again.
\square

You try

Type \mathbf{U} then press \square
\square

You try

Type in incorrect answers and notice what happens.
\square
This is what will appear on the screen:

\square

You try

Type new then press ENTER
Type in the following program.
10 cls
$2 \emptyset$ print "Type in the odd letter" 3ø print "A E H I O U"
40 input letter\$
$5 \emptyset$ if letter $\$=$ " H " or letter $\$=$ " h " then print "Correct" else goto 2 \varnothing Type run then press ENTER
\qquad
\square
You try
Type \mathbf{H} then press ENTER
\square

You try

Run the program again and try typing in \mathbf{h}. Run it once more and try typing in other letters.

Make up your own programs using OR to do the following:

1. Check for one of two possible answers to a question.
2. Check a numerical answer which may be one of two numbers.
\square

Type in the odd letter Q E H I O II

This is what will appear on the screen:

Project 1 - Knock, knock

The aim of this program is to make the computer tell knock, knock jokes. The main structure is a large WHILE . . . WEND loop, but first it is necessary to set up some starting values and give some data. The main steps are given below.

1. Make count $=\varnothing$. (We are going to count the number of jokes so that we know when we have reached the end. This is to start the count. We shall increase the count by one each time a joke is told.)
Make jokes=6. (This gives the number of jokes the computer can tell.)
DATA Ivor, sore hand from knocking on your door, Howard, I know, Mr, last bus home, Amos, quito, Lettuce, in and you'll find out, Ken, I come in
2. Now we can set up the WHILE . . . WEND loop. Start with the instruction WHILE count<jokes, then inside the loop the computer should be made to
(a) ask if you want to hear a knock, knock joke
(b) INPUT the answer
(c) if the answer is no then END
(d) otherwise READ name\$, lastline\$
(e) PRINT Knock, knock

Who's there?
name\$
name\$ who?
name\$;" ";lastline\$
(This will take several PRINT statements.)
(f) Make count=count+1 (increasing count by one).
(g) Put in WEND to end the loop.

Improvements and variations

A. Add some more jokes.
B. Make the telling of the jokes into a conversation with the computer. Then the computer will print Knock, knock, you will input Who's there? etc.
C. Make the program end if the answer to Do you want to hear another joke? is no or NO.
D. Make the computer print a message when it has run out of jokes to tell.
E. Include a pause between telling one joke and asking if you wish to hear another. This can be done by inserting the line FOR n=1 TO 2ØØØ:NEXT n
This makes the computer go round and round a loop which does nothing. Using a number greater than $2 Ø \varnothing \emptyset$ would make the pause longer.

Project 2 - Drawing

There is a great deal that you can do using DRAW and MOVE. Here are some ideas.
A. Try drawing a picture of a space rocket, a church, a TV set, a castle, a ship, or a telephone kiosk. It is easier if you draw the picture first on a copy of the grid on page 41.
B. Draw a small star (using the grid on page 41 to help you). Try adding the same number to all the distances across (the first number after DRAW and MOVE). See where the star is drawn now. Then try to draw the star further up the screen.
By using a FOR . . .NEXT loop, INT and RND try drawing many stars on the screen at random positions (so that it is different each time you run the program). If you have a colour monitor or TV set you can try making the stars different colours (you will need to use the INK command to do this).
C. Try using

FOR row=1 TO 39Ø STEP 3Ø: MOVE Ø, row: DRAW 639, row: NEXT row
D. You can make a solid square by trying

FOR row $=15 \emptyset$ TO $25 \emptyset$ STEP 2: MOVE 15Ø, row: DRAW 639, row: NEXT row

Actually, it is a bit taller than it is wide. Try to put this right. Try to make a solid rectangle which is wider than it is tall.

Project 3 - Countdown

In this project you will program the computer to play a game with you. In this game you start with 20 counters. You and the computer take it in turns to remove 1,2,3 or 4 counters. The one to remove the last counters so that none are left is the winner. The program can be written as follows.

1. Make the computer explain the game using PRINT.
2. Set up the number of counters to be $2 \emptyset$.
3. Have your turn, which consists of the following steps.
(a) Make the computer ask for the number of counters you wish to remove and INPUT the answer.
(b) Take away your answer from the number of counters to give the number of counters remaining and PRINT the result.
(c) Check whether the number of counters is zero. If it is then make the computer tell you that you have won and END the game.
4. Make the computer have a turn by doing the following steps.
(a) If the number of counters is less than five (<5), then the computer can choose to remove all the counters. Otherwise the computer chooses to remove a random number of counters between 1 and 4 (use
INT(RND*4) + 1). (Use IF/THEN/ELSE for this part.)
(b) Calculate the new number of counters and PRINT the result.
(c) Check whether the number of counters is zero. If it is then the computer says that it has won and ends the game, otherwise it returns to your turn (step 3). Make sure that the name for the number of counters is the same as at the beginning of step 3.

Improvements and variations

A. The computer could ask whether you want the first turn, and if not have the first turn itself.
B. Instead of having the computer write down the number of counters, make it draw the counters (use PRINT and the letter \mathbf{O} as a counter).
C. Make the screen clearer by using CLS, PRINT on its own for a blank line, and extra spaces.
D. It would be a good idea to make the computer check that you are not cheating by trying to remove too many counters or none at all.
E. You could vary the number of counters at the start and the number which may be picked up at each turn.
F. When you have played the game a few times and know how to beat the computer, try making the computer play more intelligently.

Project 4 - Music

The object of this program is to play the tune Brother Joseph (Frère Jacques). The English words, with notes above, are given below (C' etc. mean that the note comes from Octave 1, above middle C).

G A B G \quad G A B G
Brother Joseph, Brother Joseph,
B C' D' B C' D'
Wake up now! Wake up now!
D' \quad E' \quad D' \quad C' \quad B \quad G $\quad D^{\prime} \quad E^{\prime} \quad D^{\prime} \quad$ C' \quad B \quad G Go and pull the bell rope. Go and pull the bell rope.

G D G G D G

Ding, dang, dong. Ding, dang, dong.
Each note can be given to the computer as a command of the form SOUND, 1, tone, duration. The tone says how high or low the note is, and duration gives its length. The numbers for the tones are

D	E	F	G	A	B	C^{\prime}	D^{\prime}	E^{\prime}
426	379	358	319	284	253	239	213	$19 \emptyset$

The duration should be 25 for the short notes, $5 \emptyset$ for the medium-length notes, and $1 \emptyset \emptyset$ for the long notes. If you find it difficult to decide on the timing, make the duration $5 \emptyset$ for all the notes at first, and make the changes after listening a few times.

Here are some suggestions for writing out this program.

1. Make $\mathbf{d}=\mathbf{2 5}$ at the beginning of the program (\mathbf{d} standing for duration), and then you can write the length of the notes as $\mathbf{d}, \mathbf{d} * \mathbf{2}$ or $\mathbf{d} * \mathbf{4}$ depending on how long you want them to be. Then you can easily change the speed at which the tune is played by changing the value of d.
2. You can also try using DATA/READ in a similar way to their use in the Knock, knock project. This is a better way to program, especially since it needs less typing. It also makes it easier to change the key in which the tune is played, that is, to play it higher or lower.

If you are programming in this way, you should put pairs of numbers giving the tone and duration (such as $\mathbf{3 1 9 , d} \mathbf{~} \mathbf{2}$ for the first note) into DATA statements at the beginning of the program. Count how many notes there are altogether. Then tell the computer

FOR note $=1$ TO however may it is
READ tone, duration
SOUND 1,tone,duration
NEXT note

Improvements and variations

A. The tune probably sounds slightly wrong because there is no gap between the notes. If two notes of the same tone are played one after the other, they slide into each other and sound like one note. You can get over this by using

SOUND 1,Ø,5

to put a short pause where it is needed.
B. You could make the words come up on the screen as the tune is being played by using PRINT. This could also help to make it easier to see where in the tune you have reached when you are trying to correct the program.

Project 5 - Lions and antelopes

The purpose of this program is to set up a situation like the one faced by the warden of a game park in Africa. We shall look at the lions and antelopes in the game park. The lions kill the antelopes for food (about $2 \emptyset \emptyset$ each in a year), and the warden has to choose how many lions to kill to keep the numbers under control.
The structure of the program is as follows.

1. Make the computer explain the situation for someone new coming to the program, using PRINT.
2. Give starting values for the number of lions and the number of antelopes. It is sensible to start with about 15 lions and 1ØØØØ antelopes.
3. Make the computer ask the number of lions to be killed this year and INPUT the reply. This number is called the cull.
4. Work out the number of lions and antelopes for the following year using the equations below.
```
lions=INT(lions-cull
+lions*(antelopes-4ØØ*lions)/1Ø\emptyset\emptyset\emptyset)
```

antelopes $=$ INT(antelopes-2ØØ*lions +antelopes*(2ØØØØ-antelopes)/3ØØØØ)

The equation for the lions says that the new number of lion is the number from the previous year, minus the number killed, plus a number of births and deaths depending on the number of lions available to breed and the number of antelopes available as food. The equation for the antelopes is the number from the previous year, minus the number killed by lions, plus the number of births and deaths. Make the computer PRINT the new number of lions and antelopes.
5. Make the computer ask if you want another go, and if so then go to step 3.

Improvements and variations

A. Alter the number of lions and antelopes at the start either by using INPUT so that the user chooses them, or by using INT and RND so that the computer chooses them.
B. Make the computer keep a count of the year and PRINT the year number each time round. The computer could then ask if you wish to continue after every ten years, instead of every year.
C. Write the program in such a way that it only runs while there are still some lions and some antelopes left alive.
D. Include messages of congratulations if the number of lions and antelopes become large and scold the user if they become small.
E. Make the writing on the screen clearer by using CLS (to clear the screen), PRINT on its own (to give a blank line), and put in extra spaces between words so that no words are split between lines.
F. If you feel ambitious you could try drawing a picture of the park, and using symbols for lions and antelopes (say one symbol to represent a lion and another to represent $1 Ø \emptyset$ antelopes).

Other ideas for computer programs

1. A game of chance which uses random numbers
2. A spelling test
3. A list of questions on a particular subject
4. A musical scale
5. A questionnaire
6. A coloured diagram
7. A science experiment
8. A clock
9. A cash register
10. An anagram finder
11. A language translator
12. A passage in which missing words have to be filled in
13. A pattern designer
14. A list of names and addresses
15. A plan or scale drawing
16. A word game
17. An alphabetical sorter
18. A number game with questions and answers
19. A foreign money exchange
20. A cartoon
21. A maze
22. A rocket launcher
23. A TV advert
24. A guessing game
25. A tune

You may need to look back at some of the programs in the book or ones which you have written yourself.
It may also be helpful to check certain things in the reference sections from time to time.

FINDING OUT

Ms O.C. Termup

My advice

Always check the terms you use just as you would check the meaning of unusual words with a dictionary. Most of the terms are fairly easy to understand, but there are a lot of them. If you are unsure, then check the meaning and use. All the terms you are likely to need are contained in the eight parts of the reference section. So first find out which section the term is in and then look it up in that section.
The sections are
Editing and writing programs
Using the screen
Making sounds
Word functions
Number functions
Operators
Saving and loading programs
General commands and functions
It would be very useful if you made your own reference book to contain all the terms you come across. You need not put them in separate sections, but it will make things much easier if they are in alphabetical order.
Olive C.Termup

Reference sections

The terms which you have used in the book will all be found in the reference sections, but you will also find some new terms. These are included because they may be useful when you are writing your own programs.
If you are writing a program which examines words, then you might find some of the word function terms very useful. In a mathematics program some of the number function terms will be very useful.
The reference sections only give a brief outline of the meaning and use of the terms and if you wish to find out more about them you will have to look them up in other books. The most relevant book is

Amstrad CPC 464 User Instructions
Amstrad Consumer Electronics plc
which comes with the computer. More technical information can be found in

Amstrad BASIC: The Complete Technical Specification Amsoft
ISBN 1850840016
There are also a number of computer magazines which can be very helpful. Quite regularly they list programs which you might find interesting and you may well be able to adapt these programs to your own needs. Some suitable magazines are

Computer and Video Games
CPC 464 User Club Magazine
Personal Computer News
Personal Computing Today
Your Computer

Here is a list of all the terms that the Amstrad CPC 464 computer understands. The ones in heavy type are those which are likely to be most useful to you. These are the ones described more fully in the following pages: Wait to use the other terms until you have learnt more about BASIC.

Editing and	ON ERROR GOTO	INK
writing	REM	LOCATE
programs	RENUM	MODE
	RESUME	MOVE
AUTO	RUN	MOVER
CONT	STOP	ORIGIN
DELETE	TRON	PAPER
EDIT	TROFF	PEN
ERL	Using the	PLOT
ERR	SCreen	PLOTR
ERROR		POS
FRE	BORDER	PRINT
HIMEM	CLG	SPEED INK
LIST	CLS	SYMBOL
MEMORY	DRAW	SYMBOL AFTER
NEW	DRAWR	TAB
		TAG

TAGOFF	COS	General
TEST	CREAL	commands
TESTR	DEG	and functions
VPOS	EXP	
WINDOW	FIX	
WINDOW SWAP	HEX\$	AFTER
WRITE	INKEY	CALL
XPOS	INT	CLEAR
YPOS	LOG	DATA
ZONE	LOG1Ø	DEF FN
	MAX	DEFINT
Making	MIN	DEFREAL
sounds	MOD	DEFSTR
sounds	PI	DI
ENT	RAD	DIM
ENV	RANDOMIZE	EI
ON SQ GOSUB	RND	END
RELEASE	ROUND	ERASE
SOUND	SGN	EVERY
SQ	SIN	FOR/TO/STEP
	SQR	GOSUB
	TAN	GOTO
Word	UNT	IF/THEN/ELSE
functions		INP
	Operators	INPUT
ASC		JOY
BIN\$	AND	KEY
CHR\$	NOT	KEY DEF
INKEY\$	OR	LET
INSTR	XOR	LINE INPUT
LEFT\$		NEXT
LEN	Saving and	ON/BREAK
LOWER\$	loading	ON/GOSUB
MID\$	programs	ON/GOTO
RIGHT\$	programs	OUT
SPACE\$	CAT	PEEK
STR\$	CHAIN	POKE
STRING\$	CHAIN MERGE	READ
UPPER\$	CLOSEIN	REMAIN
VAL	CLOSEOUT	RESTORE
	EOF	RETURN
Number	LOAD	SPEED KEY
functions	MERGE	TIME
functions	OPENIN	WAIT
ABS	OPENOUT	WEND
ATN	SAVE	WHILE
CINT	SPEED WRITE	WIDTH

Editing and writing programs

AUTO enters line numbers without first typing in the number of the line. It can be ended by pressing ESC . AUTO gives 1Ø, 2Ø, $3 \emptyset \ldots$ etc. AUTO $12 \emptyset$ gives $12 \emptyset, 13 \emptyset, 14 \emptyset$. . . etc. AUTO 12Ø,4 gives 12Ø, 124, $128 \ldots$ etc. AUTO ,2 gives 1Ø, 12, 14, $16 \ldots$ etc.

CPC 464 User Instructions 8.4

CONT is used to start a program running again from where it was stopped by ESC being pressed twice, or by STOP or END in the program itself.

CPC 464 User Instructions 8.8
DELETE deletes lines from a program.
DELETE 22-30 deletes all lines between $2 \emptyset$ and $3 \emptyset$ inclusive.
DELETE - 30 deletes all lines up to and including line $3 \emptyset$.
DELETE 30- deletes all lines from (and including) line 30.
DELETE 40 deletes line $4 \emptyset$. This could also be done just by typing $4 \emptyset$ and pressing ENTER .

CPC 464 User Instructions 8.11
EDIT is used to edit lines of a program.
EDIT $4 \emptyset$ prints line $4 \emptyset$ on the screen with the main cursor over the first character on the line. Changes can then be made by moving the main cursor along the line with the cursor keys, and typing in extra characters or rubbing characters out with the DEL and CLR keys.

CPC 464 User Instructions 1.16

LIST lists a program. (See page 48.)
LIST lists the entire program.
LIST $1 \varnothing$ lists line $1 \varnothing$ only.
LIST - $5 \emptyset$ lists all lines up to and including line $5 \emptyset$.
LIST 5Ø- lists all lines from (and including) line $5 \emptyset$ to the end of the program.
LIST 5Ø-1ØØ lists all lines between 5 Ø and 1 ØØ inclusive.

CPC 464 User Instructions 8.24
NEW removes any existing program from the computer's memory. The computer is then ready for a new program to be typed in. (See page 50. .)

CPC 464 User Instructions 8.28

REM is used for putting a comment or REMark into a program to help you remember what the program is doing. The computer ignores anything written on the line after REM.
4Ø REM The computer will ignore this.
CPC 464 User Instructions 8.38
RENUM renumbers the lines of a program.
RENUM gives $1 \emptyset, 2 \emptyset, 3 \varnothing \ldots$ etc.
RENUM 1ØØ gives $1 \varnothing \emptyset, 11 \emptyset, 12 \emptyset \ldots$ etc.
RENUM 1ØØ,5Ø leaves all lines before 5 Ø as they are, but then gives 1 ØØ, 11Ø, 12Ø . . . etc.
RENUM 1ØØ,5Ø,5 leaves all lines before $5 \emptyset$ as they are, but then gives $1 Ø \emptyset, 1 Ø 5,11 Ø \ldots$ etc.
RENUM 1ØØ,,5 gives $1 \varnothing \emptyset, 1 \emptyset 5,11 \emptyset \ldots$ etc.
CPC 464 User Instructions 8.39
RUN tells the computer to run through a program. (See page 50.)
RUN 1ØØ tells the computer to run through a program, starting at line 1 ØØ.
RUN "name" tells the computer to load a program called "name" from cassette, and then run it.

CPC 464 User Instructions 8.41
STOP ends the running of a program. The program can be restarted with CONT.

CPC 464 User Instructions 8.45
TRON makes the computer print out the line number of each line that it comes to as a program is running. This is useful when you are trying to track down mistakes in a program. To turn off, use TROFF.

CPC 464 User Instructions 8.49

Using the screen

BORDER is used to change the colour of the screen border. (See page 42.)
BORDER 9 makes the border green.
BORDER 9,1Ø makes the border flash alternately green and cyan.

CPC 464 User Instructions F3.2
CLG clears the graphics screen. The graphics screen is normally the whole of the screen within the border, but may be altered by using ORIGIN.

CLG clears the graphics screen to the colour last specified in a CLG command, or ink \emptyset if none has been specified. CLG 2 clears the graphics screen to colour 2 .

CPC 464 User Instructions 8.7
CLS clears the text screen. The text screen is normally the whole of the screen within the border, but up to eight text windows can be defined using the WINDOW command. CLS clears text window \emptyset (the whole screen unless you have defined it otherwise) to its current paper colour.
CLS 3 clears text window 3 to its current paper colour.
CPC 464 User Instructions 8.8
DRAW draws a line on screen. (See page 38.)
DRAW 2ØØ,3ØØ draws a line to the point 2 ØØ, $3 \emptyset \emptyset$ from point \emptyset, \emptyset. Any further instruction draws a line from $2 \emptyset \emptyset, 3 \emptyset \emptyset$ to the next point. The first number after DRAW gives the distance across the screen, and the second number gives the distance up the screen. Point \varnothing, \varnothing is the bottom left-hand corner, unless this has been altered with the ORIGIN command.
DRAW 2ØØ,3ØØ,13 draws a line to point $2 Ø \emptyset, 3 Ø \emptyset$ in the colour currently defined by 13 .

CPC 464 User Instructions 8.12
DRAWR works in the same way as DRAW, except that it draws relative to the current position of the graphics cursor.
DRAWR 2Ø,3Ø,13 draws a line in colour 13 to a point $2 Ø$ units to the right and $3 \emptyset$ units up from the last point visited.

CPC 464 User Instructions 8.12
INK is used to select the range of colours which can be used for pen, paper and graphics. (See page 44.)
INK 1,8 would make paper 1 and pen 1 bright magenta.
INK $1,7,8$ would make paper 1 and pen 1 flash between purple and bright magenta.

CPC 464 User Instructions F3.2, F3.5
LOCATE is used to move the text cursor to a new point on the screen. Text will then be printed beginning from that point. (See page 53.)
LOCATE 2Ø,1Ø will move the text cursor to a point $2 \emptyset$ columns across from the left margin, and 10 rows down from the top of the screen.
LOCATE 2,2Ø,1Ø will move the text cursor $2 \varnothing$ columns
across and $1 \varnothing$ rows down from the top left corner of text window 2.

CPC 464 User Instructions 8.25
MODE is used to select the way graphics and writing appear on the screen. (See page 37.)
MODE Ø gives up to 16 colours in the display, $2 \emptyset$ characters per line and 25 lines on the screen.
MODE 1 gives up to 4 colours, $4 \emptyset$ characters per line and 25 lines on the screen.
MODE 2 gives 2 colours, $8 \emptyset$ characters per line and 25 lines on the screen.

CPC 464 User Instructions 5.3
MOVE moves the graphics cursor to a point on the screen without marking the screen as it does so. (See page 39.) MOVE 2ØØ,3ØØ moves the cursor to the point 2ØØ, $3 \emptyset \emptyset$ from point \emptyset, \emptyset. The first number after MOVE gives the distance across the screen, and the second number gives the distance up the screen. Point \emptyset, \emptyset is the bottom left-hand corner of the screen, unless this has been altered with the ORIGIN command.

CPC 464 User Instructions 8.28
MOVER works in the same way as MOVE, except that it moves the graphics cursor relative to the current position of the graphics cursor.
MOVER 2Ø,3Ø moves the cursor to a point $2 \emptyset$ units to the right and $3 \emptyset$ units up from the last point visited. CPC 464 User Instructions 8.28

ORIGIN is used to choose the starting point for the graphics cursor. ORIGIN can also be used to define a graphics window.
ORIGIN 32Ø,2ØØ places the point Ø, \varnothing in the centre of the screen.
ORIGIN Ø,Ø,4Ø,6ØØ,36Ø,4Ø defines a graphics window $4 \varnothing$ units in from the screen border on all sides.

CPC 464 User Instructions 8.32
PAPER is used to choose the background colour of the screen within the border. (See page 43.)
PAPER 1 sets the background to the colour currently specified by number 1.
PAPER 3,1 set the background of window 3 to the colour currently specified by number 1 .

CPC 464 User Instructions F3.2, 8.33

PEN selects the colour used for printing on the screen. (See page 43.)
PEN 3 prints characters in the colour currently defined by 3 (this is bright red in modes \emptyset and 1 unless it has been changed with an INK statement).
PEN \#4,3 prints characters in colour 3 within text window 4.

CPC 464 User Instructions F3.2, 8.34

PLOT is used to draw single points on the screen. (See page 40.)
PLOT 2ØØ,3ØØ lights up the point 2ØØ units to the right and $3 Ø \emptyset$ units up from point \emptyset, \varnothing. Point \varnothing, \varnothing is the bottom left-hand corner of the screen, unless this has been changed with the ORIGIN command.
PLOT 2ØØ,3ØØ,2 lights up point 2ØØ,3ØØ in colour 2.
CPC 464 User Instructions 8.35

PLOTR works in the same way as PLOT, except that it plots points relative to the current position of the graphics cursor.
PLOTR 2Ø,3Ø,2 lights up in colour 2 a point $2 \emptyset$ units to the right and $3 \varnothing$ units above the last point visited.

CPC 464 User Instructions 8.35

PRINT is used for printing characters on the screen. (See page 23.)
PRINT 5,6 gives 5

6

PRINT 5;6 gives 56
PRINT 5,,,6 gives 5
6
PRINT "words" prints words.
PRINT \#3, "Hello" prints Hello in window 3.
CPC 464 User Instructions 3.4
TAB is used to print from a particular column. (See page 52.)

PRINT TAB(9) "Hello" prints Hello starting in the ninth column of the screen.

CPC 464 User Instructions 3.6

TEST gives the colour of a point on the screen.
PRINT TEST(35Ø,1ØØ) will print the number which defines the colour at point $35 \emptyset, 1 \varnothing \varnothing$.

CPC 464 User Instructions 8.48

TESTR works in the same way as TEST, except that it tests the colour of a point relative to the current position of the graphics cursor.
TESTR $(3 \emptyset, 2 \emptyset)$ will find the number of the colour of the point $3 \varnothing$ units to the right and $2 Ø$ units above the last point visited.

CPC 464 User Instructions 8.48
WINDOW is used to divide the screen into different areas, called windows. These windows can then be given different paper and pen colours, and characters can be printed in the window specified in a PRINT command.
The WINDOW command takes the form WINDOW
\# window number,left column, right column,top row,bottom row.
$1 Ø$ MODE 1
2Ø WINDOW \#3,7,17,7,12
3Ø PAPER \#3,2
4 ($\mathbf{~ P E N ~ \# 3 , 3 ~}$
$5 \emptyset$ CLS \#3
6Ø PRINT \#3,"Hello"
CPC 464 User Instructions $5.1 \emptyset$

Making sounds

SOUND is used for playing notes. (See page 45.)
SOUND 1,478 plays middle C (tone period 478) on channel 1. The computer assumes you want to play the note for one fifth of a second at medium loudness.
SOUND 1,478,1ØØ plays the same note for one second (1ØØ times Ø. Ø1 sec.)
SOUND 1,478,1ØØ, 7 plays the same note at maximum loudness (7 out of 7).

CPC 464 User Instructions F3.16

Word functions

INKEY $\$$ scans the keyboard to see if a key has been pressed.
$10 \mathbf{a} \$=$ INKEY\$
$2 \emptyset$ IF a\$= ="" GOTO 1Ø
$3 \emptyset$ IF a\$="y" THEN PRINT "Yes":END
$4 \emptyset$ IF a\$="n" THEN PRINT "No" ELSE GOTO $1 \emptyset$
CPC 464 User Instructions $8.2 \emptyset$

INSTR searches a string (a series of characters) to see whether another string can be found in it.
$\mathbf{x}=$ INSTR ($\mathbf{a} \$, \mathbf{b} \$$) looks for the first position of $\mathbf{b} \$$ in $\mathbf{a} \$$ and stores the answer in \mathbf{x}.
$\mathbf{x}=\mathbf{I N S T R}(\mathbf{n}, \mathbf{a} \$, \mathbf{b} \mathbf{\$})$ does the same, but starts looking from the nth position.
PRINT INSTR("CAMPBELL","M") prints 3.
PRINT INSTR("CAMPBELL","L") prints 7.
PRINT INSTR(3,"CENTRE","E") prints 6.
CPC 464 User Instructions 8.22
LEFT\$ copies the left-hand part of a word. (See page 62.)
1Ø a\$="FELLOW"
$2 \emptyset$ b\$=LEFT\$(a\$,4)
3Ø PRINT b\$
prints FELL.
CPC 464 User Instructions 8.23
LEN gives the number of characters in a word. (See page 64.)

1Ø K=LEN("BEAUMONT")
2Ø PRINT K
prints 8.
CPC 464 User Instructions 8.24
LOWER\$ changes the letters in a word from capitals to small letters.
PRINT LOWER\$("HELLO") prints hello.
CPC 464 User Instructions 8.26
MID\$ copies the middle part of a word. (See page 62.)
$10 \mathbf{a} \$=$ "TRIPLET"
$2 \emptyset \mathbf{b} \$=\mathbf{M I D} \$(\mathbf{a} \$, 2,3)$
3Ø PRINT b\$
prints RIP.
CPC 464 User Instructions 8.27
RIGHT\$ copies the right-hand part of a word. (See page 62.)
1Ø a\$="CRUMPET"
$2 \emptyset$ b\$=RIGHT\$(a\$,3)
3Ø PRINT b\$
prints PET.
CPC 464 User Instructions $8.4 \emptyset$

SPACE\$ prints spaces.
PRINT SPACE $\$(12)$ prints a row of 12 spaces.

STRING\$ repeats a character a given number of times. PRINT STRING\$(7,"*") prints $* * * * * * *$.
 CPC 464 User Instructions 8.46

UPPER\$ changes the letters in a word from small letters to capitals.
PRINT UPPER\$("goodbye") prints GOODBYE.
CPC 464 User Instructions 8.49

Number functions

ABS gives the positive value of a number. PRINT ABS(-7) gives 7.

CPC 464 User Instructions 8.3

ATN gives the angle whose tangent is known. The result will be in radians, unless the computer has been told otherwise by the DEG command.

CPC 464 User Instructions 8.4

CINT rounds up or down to the nearest whole number. PRINT CINT(35.76) gives 36.

CPC 464 User Instructions 8.6
COS gives the cosine of an angle. The computer will assume the measurement is in radians unless told otherwise by the DEG command.

CPC 464 User Instructions 8.8

DEG tells the computer to calculate the values of functions like COS in degrees rather than radians.

CPC 464 User Instructions $8.1 \emptyset$

EXP gives e (approximately 2.7183) to the power specified.
CPC 464 User Instructions 8.17

INT gives the whole number part of a number. (See page 62.)

INT(45.61) gives 45.
INT ($\mathbf{- 1 7 . 2 2)}$ gives $\mathbf{- 1 8}$.
CPC 464 User Instructions 8.22

LOG gives the natural logarithms of numbers.

MOD gives the remainder after division.
PRINT 11 MOD 4 gives 3 .
PRINT 14 MOD 3 gives 2.
$\mathbf{P I}$ is a constant. Its value is 3.14159265 . The circumference of a circle of radius \mathbf{r} is $\mathbf{2 * P I * r}$. CPC 464 User Instructions 8.34

RAD tells the computer to calculate the value of functions such as COS in radians. RAD cancels out the command DEG.

CPC 464 User Instructions 8.37

RND gives a random number between \emptyset and 1 (but not 1). It must be used with INT to produce whole numbers. (See pages 62 and 63 for examples.)

CPC 464 User Instructions $8.4 \emptyset$

SGN gives the sign of a number.
1 for positive
-1 for negative
\emptyset for zero.
CPC 464 User Instructions 8.42

SIN gives the sine of an angle. The computer will assume the measurement is in radians unless told otherwise by the DEG command.

CPC 464 User Instructions 8.42

SQR gives the square root of a number. PRINT SQR(16) prints 4.

CPC 464 User Instructions 8.45

TAN gives the tangent of an angle. The computer will assume the measurement is in radians unless told otherwise by the DEG command.

CPC 464 User Instructions 8.48

Operators

AND is used to check whether two conditions hold. (See page 69.)
IF $x>=\varnothing$ AND $x<1 \varnothing$ THEN PRINT "digit" CPC 464 User Instructions 4.18

NOT is used with IF and THEN to test if something is not true.
IF NOT a=2 THEN PRINT "no" will print no if a does not equal 2.

CPC 464 User Instructions 4.18
OR is used to check whether one or another condition holds. (See page 71.)
IF $a=3$ OR $b=6$ THEN PRINT "yes" will print yes if either $\mathbf{a}=\mathbf{3}$ or $\mathbf{b}=\mathbf{6}$ (or both $\mathbf{a}=\mathbf{3}$ and $\mathbf{b}=6$).

CPC 464 User Instructions 4.18
XOR is used to check whether one or another condition holds (but not both).
IF person1 = girl XOR person2=girl THEN PRINT"'Marriage allowed".

CPC 464 User Instructions 4.18

Saving and loading programs

CAT is used to read out the contents of a cassette tape.
CPC 464 User Instructions 2.7
LOAD loads a program from a cassette.
LOAD "WATER" will load a program called WATER into the computer's memory, but the program will not be run: compare RUN on page 86 .

CPC 464 User Instructions 8.25
SAVE saves a program onto a cassette.
SAVE "MISSILE" saves a program and calls it MISSILE.

CPC 464 User Instructions 2.6
SPEED WRITE is used to set the speed at which programs and data are saved onto cassette. The computer will normally save at 1 ØØØ baud, but SPEED WRITE 1 will alter the saving speed to $2 Ø \emptyset \emptyset$ baud. The faster speed is less reliable.

General commands and functions

CLEAR clears all the variables written in a program. CPĆ464 User Instructions 8.7

DATA is used with READ to supply data for a program. (See page 61.)
DATA $1,2,3,4,5$
DATA apple,banana,carrot,date
CPC 464 User Instructions 4.14

DEF FN is used to define a function.
CPC 464 User Instructions 8.1Ø

DIM allows groups of words or numbers to be put into the computer.
DIM $\mathbf{x}(2 Ø)$ allows numbers to be put into the computer with addresses $\mathbf{x}(\boldsymbol{\emptyset}), \mathbf{x}(\mathbf{1}), \mathbf{x}(2) \ldots \mathbf{x}(\mathbf{2} \boldsymbol{\square})$.
DIM $\mathbf{x} \$(\mathbf{2 \emptyset})$ allows words to be put into the computer with addresses $\mathbf{x} \$(\emptyset), \mathbf{x} \$(1), \mathbf{x} \$(2) \ldots \mathbf{x} \$(2 \emptyset)$.

CPC 464 User Instructions 4.13

END tells the computer that the program has reached the end.

CPC 464 User Instructions 8.13

FOR/TO/STEP is used with NEXT to repeat the same lines many times. (See page 6Ø.)

CPC 464 User Instructions 8.18

GOSUB is a program instruction to go to a subroutine which starts at a given number.
GOSUB 550 tells the program to go to a subroutine which starts at line number 55Ø. RETURN is used to mark the end of the subroutine.

CPC 464 User Instructions 8.18

GOTO is a program instruction to go to a specific line number, skipping out any lines in between. (See page 67.)
GOTO $41 \varnothing$ tells the program to go to line $41 \emptyset$.
CPC 464 User Instructions F2.5

IF/THEN/ELSE tells the computer to do different things depending on which of various conditions holds true. (See page 65.)
IF a\$="GOOD" THEN GOTO 6ØØ ELSE GOTO 75Ø
CPC 464 User Instructions 8.19

INPUT allows words or numbers to be put into the computer. (See page 56 .)
INPUT a for numbers.
INPUT a\$ for words.
CPC 464 User Instructions F2.6
NEXT is used with FOR/TO/STEP.
CPC 464 User Instructions 8.29

ON/GOSUB and ON/GOTO are used for options. ON x GOSUB 1ØØ,2ØØ,3ØØ means that if $\mathbf{x}=1$ the program goes to the subroutine starting at line $1 \varnothing \emptyset$, if $\mathbf{x}=2$ it goes to the subroutine starting at line $2 \emptyset \emptyset$, etc.
ON x GOTO 1ØØ,2ØØ,3ØØ works in the same way.
CPC 464 User Instructions 8.29

READ is used with DATA to read information. (See page 61.)

1 (READ A\$,B\$,C\$,D\$,E\$

$2 \emptyset$ DATA red,green,orange,blue,pink
3Ø PRINT B\$
prints green.
CPC 464 User Instructions 4.14

RETURN is used with GOSUB in order to return to the main body of a program.

CPC 464 User Instructions $8.4 \emptyset$

WEND is used to end a loop beginning with WHILE. (See page 64.)

CPC 464 User Instructions 8.51

WHILE, used with WEND, sets up a loop so that the computer repeatedly executes the program lines within the loop while a particular condition holds true. (See page 64.)

CPC 464 User Instructions 8.51

A child's guide to the

AMISHRAD MIGRO

Here are five friendly experts, who'll help you to use your Amstrad microcomputer.
See how to write your own programs draw pictures, play tunes, tell jokes, even run a game park!

P.C. Truemo

 "I'll help you make sure the computer understands you - and investigate why, when it doesn't."

Prof. 0. Crumpet "Ah! What a beautiful thing is a well written program! I'll show you how to plan it, write it, and run it."
Mort Puce "I'm an artist and I'll show you how to draw patterns, change colours and make music with your computer."

Pru Comet "I'll help you understand the keyboard and learn the computer's language."

Ms O.C.
Termup
"T'm in charge of the reference section of this book. I'll help you look up terms and make your own reference file."

Docoment ammeitici dve amour nar

httos $/ / / \mathrm{acpenf}$.

