
\vOmjjnvcr,!

BEST OF PCW

TEACH YOURSELF
ASSEMBLER

ZRO

TEACH YOURSELF ASSEMBLER

Z-80

Paul Andreas Overaa

¿.Personal. >
Computer
< * World Z

CENTURY
Century Communications London

ABOUT THIS BOOK
Teach Yourself Assembler provides a clear approach to structured
programming through the use of Warmer diagrams. The use of the Z-80
processor and its instruction set are discussed in sufficient detail to allow the
novice to start programming. All the main structures of a program are
illustrated extensively with Z-80 and basic listings. General approaches to
problem solving and to the real-life application of programs are considered
at the end of the book.

A detailed tabulation of all the major Z-80 op-codes and their functions
completes the book.

ABOUT THE AUTHOR
Paul Andreas Overaa works for a company of consultant analytical chemists
in London, England. He initially specialized in gas liquid chromatography,
a branch of physical chemistry, and it was through this that he became
involved with data reduction techniques and microprocessor programming.
Much of his published work centres around the use of language independent
design techniques.
He is a Fellow of the Institute of Analysts and Programmers and a Licentiate
of the Institute of Data Processing Management. His spare time interests are
varied and include pyschology, mathematics, music and Yoga.

ALSO AVAILABLE from Century Communications
in association with Personal Computer World
Three new books about assembly language programming:

Teach Yourself Assembler: 6502 by Paul Overaa, a companion to this book
based on this other very popular processor.
Assembler routines for the Z-80 and
Assembler routines for the 6502 by David Barrow, based on the very best of
the long running PCW SUBSET series.

Copyright © Paul Andreas Overaa 1984

Based on material published in Personal Computer World magazine

All rights reserved

First published in Great Britain in 1984 by

Century Communications Limited
12-13 Greek Street, London, W1V 5LE

ISBN 0 7126 0549 5

Edited and produced working directly from the author’s
word-processor by NWL Editorial Services, Somerset, TA10 9DG

CONTENTS

An examination of the classes of instructions available

Chapter 1 INTRODUCTION
An introduction to the book and to the approach
adopted throughout it

1

Chapter 2 WARNIER DIAGRAMS
An explanation of Warmer diagrams in relation to
program design

7

Chapter 3 ASSEMBLY LANGUAGE
A discussion of assembly language and of the facilities
offered by modern assemblers

19

Chapter 4 THE Z80 PROCESSOR 27

for this processor
Chapter 5 SEQUENCE AND REPETITION

Two of the basic building blocks of structured
programming

37

Chapter 6 ALTERNATION
The third basic building block of programming is
examined

47

Chapter 7 ADDRESSING
An explanation of addressing techniques

59

Chapter 8 REPRESENTING NUMBERS
A description of the different techniques used for
different types of numbers

79

Chapter 9 DATA STRUCTURES
An introduction to commonly used data structures

93

Chapter 10 SORTING AND SEARCHING
Some simple search techniques are examined before
looking at tree structures and sorts

113

Chapter 11 SOLVING YOUR PROBLEMS
A general approach to problem solving and program
design

139

Chapter 12 LINKING INTO BASIC
Two simple projects are described

147

Chapter 13 WHERE TO GO FROM HERE
Where indeed?

157

Appendix A The Z-80 Instruction set listing 167
Appendix B Assembler conventions 221
Appendix C The ASCII Character set 223
Appendix D The CP/M Operating system 227
Appendix E Glossary 231
Index 236

Understand the stillness that lies within you
and be content to know that

you are not alone

dedicated to

BOO

for very special help

1
SOLVING

PROBLEMS

There are so many methodologies scattered around under the
heading ‘structured approaches to problem solving’, ‘structured program
ming techniques’, and so on, that we are apt to look on new ideas and
thoughts about how we should program with a certain contempt.
Frequently such contempt is justified because writers often re-hash
the work of others - using little more than a different terminology to
hide the fact. This book collects together some important ideas that
have appeared over the last few years and attempts to illustrate how
these ideas can give you a foothold into the world of assembly
language programming. Emphasis is placed on how these newer
techniques are evolving to form a self-consistent framework of ideas
applicable to both high and low level programming.
Let us start by examining some very general points, closely related to
the field of computer programming - they are concerned with how
we think and how we solve problems.

STRUCTURE, LOGIC AND CODE
It is generally accepted that the easiest way to learn about any new
subject is to break it up into small manageable pieces. Each piece is
then far less formidable and consequently far easier to get to grips
with. Inherent in this idea is the implication that an ordered or
‘structured’ approach exists which enables our understanding of the
lesser problems to be integrated into our understanding of the
original more complex ideas and problems.
Once you have a computer (or access to one), instruction manuals
and books explaining how to program your computer, and a certain
amount of ‘hands-on’ experience, you will begin to feel ready to
tackle larger problems - and this is when the difficulties arise. As
often as not you find yourself searching through large amounts of
coding in an attempt to locate a ‘bug’ which is preventing your
program from working. If you are examining a program that you
wrote some time ago the problem may be even more exasperating
(especially if you did not document it properly). In even worse cases
you find yourself trying to understand programs written by other
people. You may well have come to the conclusion that either every
programmer is a latent masochist - or that there must be a better
approach to use.

1

SOLVING PROBLEMS

The emphasis towards ‘structured programming’ is an important
step in the right direction but it is not in itself a complete solution.
This is because a serious fundamental error is continually made by
both professional and amateur programmers alike. The difficulty in
programming a computer to solve a particular problem consists of
two very distinctly different parts:

• The inherent logical basis of the problem

• Writing the code in the language of your choice

The confusion between these two problems is one of the reasons why
so many people run into problems as they start to tackle larger
projects. It is also one of the factors that can make the difference
between being able to learn assembly language and giving up; this
next paragraph offers the key to overcoming 99 percent of your
programming difficulties:

• Any envisaged use of computers to solve a problem requires that
you find a logically correct solution before you make any attempt
to to actually code your computer solution - you should not try to
solve the quite separate problems at the same time.

The problems associated with tackling each part in turn have, time
and time again, been found far easier to deal with than the
difficulties incurred by approaches not making this distinction. The
isolation of a logical program design produces a logical solution that
is portable i.e. is independent from the computer hardware and
software on which it will be implemented.
From a practical viewpoint it is obviously advantageous to find ways
of solving problems and designing logical solutions that can produce
good, efficient, well structured programs in any language you care to
name.

We are now going to examine three ideas related to how we solve
problems, and to how we react to difficulties, and we shall see how
the concept and use of the Warmer diagram can reduce many
problems to the status of an open book. These ideas are unusual
material for an assembly language book, but their relevance should
not be underestimated: learning to program in assembly language is
more difficult than high level language programming and it is useful
to know a little about the way in which we think and how we react
when things go less smoothly than we might wish.

ENACTIVE, SYMBOLIC AND ICONIC MODELS
The way in which we approach a problem plays an important role in
determining how successful or not our solution will be. In the last
2

SOLVING PROBLEMS

twenty years much work has been done by psychologists to try to
discover the basic mechanisms we use when we solve a problem, i.e.
how we learn, how we conceptualize and abstract and in general
what mechanisms we use to come to terms with our intellectual and
physical environment.
Jerome Bruner has attempted to describe and characterize the ways
in which young children react when confronted with a problem. He
was able to identify three broad stages in the problem solving
experience. The words used by Bruner - Enactive, Iconic and
Symbolic - can be thought of as keywords for a basic problem
solving framework. This framework is applicable to adult as well as
children’s patterns of thought.

• The Enactive stage relates to the use of physical models and the
ability and confidence to manipulate them. One of the character
istics of this enactive level is the inability to describe the situation,
i.e. the inability to communicate effectively without resorting to
actual demonstration.

• The second, Iconic, stage describes the use of diagrams or
pictures to represent the ‘enactive elements’ of the problem. This
has been called the ‘iconic’ stage and is sometimes seen as the
initial stage of abstraction, i.e. of separating the physical or real
problem into a ‘modelling situation’. Such a model will hopefully
embody all the enactive elements of the problem in a form that is
easier to translate into totally abstract form.

• The third, Symbolic, stage describes the use of signs and symbols,
previously defined, to produce an abstract version of the
problem. This characterizes the ‘symbolic’ level of confidence in
problem solving.

Mathematics is typical of symbolic abstraction and it is commonly
recognised that difficulties associated with learning and understand
ing mathematics frequently stems from a lack of confidence in
symbol manipulation.
In children these stages can be identified by the way that simple
problems are tackled. Of equal importance is how the approach
changes as a child gets older: given a dozen bricks a very young
child, if asked how many he would get if he had to share his bricks
with two other children, will resort to physically (enactively) sharing
the bricks. At a later stage he might solve such a problem by drawing
three boxes and placing dots in them to represent bricks. He will be
able to deduce from his iconic model that each child will receive four
bricks. Later still in his development his confidence at the symbolic
level will enable him to write ‘12 = 3 = 4’ without hesitation - and
to know that the answer produced symbolically is as valid as both the
enactive and iconic results.

3

SOLVING PROBLEMS

In many situations these three levels of confidence occur simul
taneously; they should not therefore be thought of as being
physically distinct. The distinction to make is that the stages are
conceptually different. We will often be able to look at particular
lines of reasoning and identify problem areas as being ‘symbolic’ as
opposed to ‘iconic’ (or whatever).
This framework is equally recognizable in adult thinking and the
various levels of confidence can,often be identified. A point that is
important is that when we have difficulties in tackling a problem we
frequently fall back to a lower level of problem representation in an
attempt to achieve a better understanding.
As an example consider how many times you have been presented
with a mathematical problem to solve in which you plunged straight
in with some symbolic argument only to find you got ‘stuck’ and
rapidly resorted to a graph or diagram - an ‘iconic model’ - in order
to get a better understanding of the problem itself.
These ideas produce some interesting generalities which have
implications of particular benefit to us in our quest for better
methods of designing and writing computer programs.
Firstly, when you solve programming problems you are frequently
solving other people’s problems. You may very often need to explain
your solutions and your lines of reasoning to others and there is a
need to ensure proper communication of your ideas (often to
non-technical people).
Secondly the problems you examine will often be ill defined or
imprecisely defined. Frequently restrictions will be added to the
problem whilst you are in the middle of finding a solution and the
problem will change.
During all your programming you will regularly and inevitably
encounter a number of quite severe difficulties. If you are working at
a purely symbolic level you may conclude that some particular
difficulty is insurmountable. Providing you have an ‘iconic model’ to
fall back on you are more likely to come to terms with the new
restraints.
The ways in which we describe a problem are important to us as we
attempt to conceptualize and solve problems. The description is also
important because of the ease or difficulty with which we can convey
our ideas and thoughts to others.

WARNIER DIAGRAMS
One of the techniques which capitalizes on the above ideas is the
Warmer diagram. The power of using such diagrams to design
programs is due in part to the separation of the logical from the

4

SOLVING PROBLEMS

practical difficulties. In addition to this the diagrams provide an
iconic level with which to examine a problem.
The next chapter shows you what a Warnier diagram is and
introduces you to the way it can be used to describe a computer
program. We use these diagrams no matter what language we
program in because they help to define and clarify the fundamental
logical problems of the program design - regardless of the code
which will be written to execute it. We hope that by the time you
have finished this book you also will appreciate their usefulness, not
only in relation to learning Z-80 assembly language but to
programming and system design problems in general.
The ideas that have been discussed have implications not only in the
field of programming but in thinking itself. In the Warnier diagram
we have a technique which enables us to draw a picture of the logical
structure of a problem. We can successively redefine our thoughts,
change the problem, add or remove restrictions, all while maintain
ing a diagrammatic version of the current solution ready to be
translated into any language we choose to use. Throughout this book
you will see Warnier representations of various problems and we
hope you will, as we have done, realize that the work of Warnier goes
far beyond the realms of programming and system design, he has in
fact given us the techniques for analysing our thoughts and
organizing the contents of our minds in a way that enables us to
document those thoughts whilst we examine problems. We can
illustrate our progress diagrammatically and use the diagrams
produced to successively refine our ideas etc. The techniques
actually help us think about the problems we examine.
If you are a newcomer to micro-computing then take heart.
Although some of the ideas may take a certain amount of time to
digest they are basically simple. Be patient and think about the
concepts. Apply them to problems of your own choosing and you
will achieve a real and useful understanding.

The Z-80 PROCESSOR
We know from first hand experience that too much dependence on
any particular processor often tends to result in the teaching of
selected tricks based on the particular facilities that the processor
provides. Whilst obviously it is important to use such techniques to
utilize the available facilities of a particular processor, we feel that
teaching underlying general principles is far more important.
We considered that the concept of working with a ‘hypothetical
processor’ also leaves much to be desired. You only learn about
assembly language programming by doing it and you can’t easily run
programs based around a hypothetical processor. We will use many
of the concepts that you know about already from languages like

5

SOLVING PROBLEMS

basic, and re-apply them to assembly language - we will also try, as
far as possible, to avoid involvement with the I/O problems of
specific machines.
The ‘chip’ we have chosen to work with is the Zilog Z-80
microprocessor. This is used in the Sinclair ZX-81 computer, the
Osbome-Ol and many other popular computers. So if you want to
step into the world of assembly language programming but have
been worried about the difficulties then please join us now as we take
our first steps.

6

2
WARNIER

DIAGRAMS

A program design approach must satisfy several criteria; it must be
able to produce results of consistently high quality, it must be rapid,
it must allow for easy ‘program maintainence’, and it must be simple
and straightforward to use. You will be pleased to hear that a
technique already exists which - to a large extent - satisfies all of the
above objectives.
The pioneering work of Jean Dominique Warnier (References I and
2) in France represents a major step forward in the design of logically
structured programs. The use of the ‘Warnier diagram’ has been
recently publicized in some of the works of Kenneth T. Orr
(References 3 and 4) and others in the United States.

SEPARATING OUT THE PROBLEM
Before looking in detail at the ideas involved it is important to
emphasise that we are aiming to obtain solutions to problems that are
completely independent of the computer or languages you use. Such
factors will affect how you ‘code’ your solution, but they should not
usually influence your logical solution to a design problem. The
same techniques are applicable whether programs end up being
coded in high level languages such as basic, pascal or cobol, or
coded in low level languages such as Z-80 assembly language. When
you program in a high level language it is frequently possible to write
short programs without explicitly designing your program. When
programming with assembly language, the design stage becomes not
just more important - it becomes vital. It provides a means of
separating the logical problems of design from the practical problems of
coding and by doing so enables you to tackle your programming in
coherent stages.
Essentially a Warnier diagram is a set of ‘curly brackets’, that defines
particular groups of operations and the order in which they should
be performed. The easiest way to show you about these diagrams is
to take some examples.

7

WARNIER DIAGRAMS

EXAMPLE A
Imagine we wish to produce a report, consisting of details held on a
computer file on disc or tape. The Warmer diagram of the basic
problem is shown in figure 2.1.

BEGIN REPORT
(1 time)

ACCESS FILE
REPORT (1 time)

PRINT DETAILS ON FILE
(1 time)

END REPORT
(1 time)

Figure 2.1 : Warmer diagram of the essential characteristics
of a simple report generator

The bracket is read from top to bottom and describes a procedure or
group of operations that we have arbitrarily called REPORT.
Underneath each item we have identified how many times the item is
to be performed and, with this, our first diagram illustrates the
essential features known about our problem.
Do we know anything more about our problem? Can we think of any
information that could be relevant? Well, we know that:

• Computer files need to be opened before reading and closed once
the read operation is complete.

These details could therefore be added to the diagram. To enable us
to explain some further conventions used with Warmer diagrams let
us first add a minor complication to the problem - let us suppose:

• The user wishes to access a file of his (or her) own choosing and to
obtain a printed report of the details on the file.

• The specified file may not exist, and, if this is the case the user
should be informed.

These changed or altered requirements can be represented by a more
detailed Warmer diagram as we shall now show.
8

WARNIER DIAGRAMS

REPORT

BEGIN REPORT
(1 time)

ASK FOR FILENAME
(1 time)

OPEN FILE
(1 time)

FILE EXISTS
(0,1 time)

ACCESS FILE
(1 time)

<

PRINT DETAILS
(1 time)

CLOSE FILE
(1 time)

FILE EXISTS
(0,1 time)

INFORM OPERATOR THAT
FILE DOES NOT EXIST
(1 time)

END REPORT
(1 time)

Figure 2.2 : Some new restrictions added to Figure 2.1

Figure 2.2 shows, in Warnier diagram form, the requirements of our
problem as it is at the moment. We are using the convention that the
logical opposite of a statement is written by placing a bar over it:

FILE EXISTS means FILE DOES NOT EXIST

We are also using a sign (‘φ’) to separate mutually exclusive
operations (sets of operations which will not occur together). In our
example the file will either exist or it will not exist - so only one of
these two operations would be performed at any one time. In some
cases (where one of two or more alternatives exist) there will be sets
of operations which may not be performed or which may be
performed once, or many times. This is shown on the diagrams as
(0,1 time), (0,N times), etc.
The conventions we have used so far are in fact the only ones you
will need for the majority of problems that you will encounter. Let’s
collect them together for convenience:

9

WARNIER DIAGRAMS

• Brackets are used to define sets of operations.

• Brackets are read, and performed, downwards within any one
‘level’. The item at the top of the bracket is performed first, the
item at the bottom performed last.

• The logical opposite of a statement can be written as the original
statement with a bar drawn over it.

• Brackets written to the right of a statement indicate the
operations to be performed if that statement is performed.

• Underneath each item or statement we indicate the number of times the
operations should be performed.

Using these conventions we can express in English exactly what figure 2.2
tells us; we are dealing with a certain procedure, called REPORT that
starts by asking for the name of a file. If the file exists then it is
opened, accessed, the details printed, and then the file is closed. If it
does not exist then the operator is informed of the fact. Remember
that if the file does exist then it is the group of actions (subset) shown
to the right of the label FILE EXISTS that are performed.

To appreciate the elegance and speed with which these diagrams can
accommodate changing requirements let us place some further
restrictions on our problem: within our ‘hypothetical system’ are
files containing sensitive data (personnel data, wages, medical
records, etc.). Such data must be protected from unauthorised
access and users are therefore issued with access code numbers, so
that examination of sensitive files is restricted to those users with the
proper authority. If unauthorised attempts to access this data are
made the computer should inform those in charge of system
security.

Let us first consider the new constraints in isolation. We need to
check whether the file specified by the user is a restricted file, if it is
we must ask for the user’s code number. If the code is correct then
we allow access, if not we inform the system security of an attempted
illegal access.

10

WARNIER DIAGRAMS

BEGIN REPORT
(1 time)

ASK FOR FILENAME
(1 time) —

BEGIN FILE EXISTS
(1 time) ASK FOR CODE

REPORT <

FILE EXISTS
(0,1 time)

FILE RESTRICTED
(0,1 time)

CODE CORRECT
(0,1 time)

ACCESS FILE

PRINT DETAILS

CODE CORRECT
(0,1 time)

INFORM
SECURITY
ILLEGAL
ACCESS

ACCESS FILE

FILE RESRICTED
(0,1 ti me) PRINT DETAILS

(1 time)

END FILE EXISTS
(1 time)

FILE EXISTS
(0,1 time)

INFORM USER FILE
DOES NOT EXIST
(1 time)

END REPORT
(1 time)

Figure 2.3: A hierarchy is forming within the revised
problem

The diagram in figure 2.3 shows the Warmer form of our new
requirements. Notice that as we redefine the problem and add more
detailed restrictions we do not have to rearrange the complete
diagram, as one frequently needs to with flowcharts, etc. All we do is
superimpose the new details and restrictions on to the existing
diagram structure. The diagram is actually growing as we successive
ly modify and redefine the known details of the problem. Addi
tionally the diagram is documenting and expressing the logical
requirements of the problem in a way that will make the transition to
a computer language equivalent remarkably simple.

11

WARNIER DIAGRAMS

The ability of the Warnier diagram to display, help formulate, and to
grow with the changing logical requirements of a problem, as that
problem is examined, is of great importance. Once the quite simple
conventions have been learnt these diagrams can be read just like the
written English equivalent but, unlike the written English form, a
Warnier diagram contains within its deceptively simple notation, the
complete solution to coding of the problem.
We will see several examples of how this is achieved in assembly
language in later chapters but for now figure 2.4 gives an example
using a ‘pseudo basic’ type of code to show the general idea. The
secret of converting a Warnier diagram into a finished program lies
in regarding each bracket involving more than one operation as a
subroutine. There are certain exceptions to this general statement
but these will become apparent during the course of the book.

* ===
PSEUDO-BASIC-REPORT-MODULE

* __
INPUT NAME OF FILE
IF FILE EXISTS THEN GOSUB 'FILE EXISTS1

ELSE PRINT 'FILE DOES NOT EXIST'
RETURN TO CALLING PROGRAM

REM SUBROUTINE........................ FILE EXISTS
IF FILE IS RESTRICTED THE GOSUB 'RESTRICTED FILE'

ELSE GOSUB 'ACCESS'

RETURN
*__
REM SUBROUTINE........................ RESTRICTED FILE
INPUT SECURITY CODE
IF SECURITY CODE=CORRECT CODE THEN GOSUB 'ACCESS'

ELSE GOSUB 'ILLEGAL ACCESS'
RETURN
*__
REM SUBROUTINE........................ ILLEGAL ACCESS
WRITE TO I/A LOG FILE THE TIME OF ATTEMPT AND THE ACCESS CODE
PRINT 'THIS IS A RESTRICTED FILE - PLEASE MAKE NO FURTHER ATTEMPTS'
RETURN

REN SUBROUTINE........................ ACCESS
THIS WOULD BE A ROUTINE TO ACCESS THE DATA IN THE FILE AND DISPLAY
ON TERMINAL OR PRINTER ETC.
RETURN
* ===

Figure 2.4: Pseudo-BASIC code for Example A

EXAMPLE B
We wish to design the basic structure of a routine that collects
characters from a keyboard device. If the character is a carriage
return (i.e. ASCII 13) then we should leave the routine, if it is

12

WARNIER DIAGRAMS

another control character then an appropriate control character
subroutine should be performed. If the character is not a control
character then it should be passed to a printing routine to display it
on a VDU or other output device.
Let us quantify what we know about the problem in terms of the sort
of operations we may need to perform. We will have to input a
character, possibly using an input routine available within the
operating system. We must also make some type of check to see if it
corresponds to a control character (note that for our purposes we
shall regard a control character as one with an ASCII value of less
than decimal 32). Additionally we will need some means of printing
characters and again this may be a facility provided by the operating
system. Let us draw a Warnier diagram to indicate the objectives we
can recognize so far.

EXAMPLE
B

BEGIN

GET CHARACTER
(1 time)

CARRIAGE RETURN
(0,1 time)

<

AVAILABLE SYSTEM ROUTINE

SKIP AND EXIT

CONTROL CHARACTER
(0,1 time)

CONTROL
ROUTINE

CARRIAGE RETURN
(0,1 time)

CONTROL CHARACTER
(0,1 time)

SYSTEM
PRINT
CHARACTER
ROUTINE

Figure 2.5: First Warnier diagram for Example B

Figure 2.5 shows our first attempt at describing the problem. The
diagram implies that we can perform a test that will indicate whether
a given input character is a carriage return or not, additionally it
implies that we can test to see if a character is a control character or
not. We should be fairly happy with this initial diagram because we
know that all computer languages provide the type of testing we

13

WARNIER DIAGRAMS

would need to use. In the basic language we are, for example, able to
use statements such as:

IF ASC(X$)=13 THEN ...

and

IF ASC(X$)<32 ...

to perform the necessary tests.
At present the Warnier diagram does not indicate that we collect
anything more than one character by performing the illustrated
operations. It is necessary in practice to perform the operations in
figure 2.5 any number of times from 1 to N times, depending on
when the user supplies a carriage return character.

BEGIN
GET CHARACTER
(1 time)

CARRIAGE RETURN
(0,1 time)

t
 AVAILABLE SYSTEM

ROUTINE

t
SKIP AND EXIT

ROUTINE

EXAMPLE«
B

GET STRING
(1 ,N times) CONTROL

CHARACTER
(0,1 time)

CONTROL
CHARACTER
ROUTINE

CARRIAGE RETURN
(0,1 time)

CONTROL
CHARACTER
(0,1 TIME)

SYSTEM
PRINT
CHARACTER
ROUTINE

Figure!.6: Expanded Warnier diagram for Example B

Figure 2.6 explicitly shows that we perform the operations indicated
in figure 2.5 at least once, and up to a maximum of N times. The
labels we use are, of course, arbitrary, but it is obviously advisable to
use meaningful English expressions since this enables the diagrams
to be easily understood.

We now have an accurate representation of the problem we are
dealing with let’s see how we can continue to redefine parts of the
problem and expand the corresponding parts on the Warnier
diagram. Let us suppose that the control characters detected are
14

WARNIER DIAGRAMS

going to be used to perform the operations shown in figure 2.7. We
will, on the basis of the ASCII value of the control character,
perform one of the routines listed.

ASCII code Operation to be performed
8
16
10
9
11
12
OTHERS

Move cursor to Left
Move cursor to Right
Perform a Line Feed
Perform a Tab
Move cursor Down
Move cursor Up
Take no action (i.e. ignore them all)

Figure 2.7 : Actions associated with the control characters

These operations are a more complex example of the mutually
exclusive operation sets mentioned earlier. In such cases we cannot
use the bar notation since many alternatives exist. Instead we show
the options using their respective names and we use the φ sign to
indicate that each ‘operation subset’ is mutually exclusive. Figure
2.8 shows how we represent this in Warnier diagram form.

CONTROL
CHARACTER
(0,1 time)

ASCII CODE =

Φ
ASCII CODE =

Φ
ASCII CODE =

Φ
ASCII CODE =

Φ
ASCII CODE =

Φ
ASCII CODE =

Φ
ASCII CODE =

MOVE CURSOR TO LEFT

MOVE CURSOR TO RIGHT

PERFORM A LINE

PERFORM A TAB

FEED

MOVE

MOVE

CURSOR DOWN

CURSOR UP

TAKE NO ACTION ■ i gn

Figure 2.8 : Warnier expansion of the CONTROL
CHARACTER statement

Let us now make an alteration to the control character’s routine by
creating some further assumptions. We suppose that if our
hypothetical user presses a control key that serves no apparent
purpose then either a simple error has been made (the user has
pressed the wrong key) or the user is under the impression that the
control key pressed serves some function which it does not, in fact,

15

WARNIER DIAGRAMS

perform. In either case we may, from a practical point of view,
decide to provide some means of informing our user that a ‘useless’
or ‘unsupported’ key has been pressed.
We may assume that the VDU screen has one or two lines available
for comments and for programs to use when collecting responses
such as input from the user. We also must assume that the remainder
of the screen contains information that must be preserved, so we
cannot simply print a menu of control character options on to the
screen. What criteria can we identify?

• We will need space on the screen to display a menu and will
therefore need to save the existing contents of the VDU screen
somewhere.

• We will need to ascertain whether the ‘user’ actually needs a
menu or whether he or she will quickly realize that a wrong key
has been pressed by mistake.

We first consider the new restrictions as a discrete subset of
operations, i.e. we concentrate on these new requirements. Once we
have created a suitably structured diagram concerning the new
constraints we can then superimpose it on the original diagram in
figure 2.8.

INFORM USER 'KEY HAS NO FUNCTION'
(1 time)

ASK USER 'DO
(1 time)

COLLECT REPLY
(1 time)

YOU WANT MENU Y/N?'

^YSTEM INPUT ROUTINE

SAVE CONTENTS OF SCREEN

DISPLAY MENU OF CONTROL OPTIONS

OTHER J USER WANTS MENU

CHARACTERS (0,1 time)
(0,1 time)

USER WANTS MENU
(0,1 time)<—

INFORM USER
'Press any key to continue'

COLLECT INPUT CHARACTER

RESTORE CONTENTS OF SCREEN

>__
^SKIP i.e. do nothing

Figure 2.9 : New restraints added to Figure 2.8

16

WARNIER DIAGRAMS

The diagram in figure 2.9 shows our latest requirements in Warnier
diagram form. Convince yourself that we have expressed the known
additional details in a suitable manner, then look at figure 2.10
which shows the whole of the control character description including
the current additions.

CONTROL *

CHARACTER
(0,1 time

ASCII CODE = 8

Φ
ASCII CODE = 16

Φ
ASCII CODE = 10

Φ
ASCII CODE = 9

Φ
ASCII CODE = 11

Φ
ASCII CODE = 12

MOVE CURSOR TO LEFT

MOVE CURSOR TO RIGHT

PERFORM A LINE FEED

PERFORM A TAB

MOVE CURSOR DOWN

MOVE CURSOR UP

INFORM USER
(1 time)

'KEY HAS NO FUNCTION'

ASK USER 'DO
(1 time)

COLLECT REPLY
(1 time)

YOU WANT MENU Y/N?'

^SYSTEM INPUT ROUTINE

z·
SAVE CONTENTS OF SCREEN

DISPLAY MENU OF CONTROL
OPTIONS

OTHER
ASCII
CODES

USER WANTS MENU
(0,1 time)

USER WANTS MENU
(0,1 time)

INFORM USER
'Press any key to continue'

COLLECT INPUT CHARACTER

^RESTORE CONTENTS OF SCREEN

SKIP

Figure 2.10 : The final control character diagram

We could continue to expand other statements to provide further
detailed analysis of the problem. As we do so we reach a point where
it is possible to say ‘Yes, the operations we are describing in the
lower levels of the diagrams (the right-most levels) are easily capable
of being coded directly in the language I have chosen to use!’ In

17

WARNIER DIAGRAMS

practice we reach this point sooner with high level languages than
with assembly languages because more complex operations are
supported. The relevant point to make is that the general principles
are the same - the only difference is that when you analyse problems
that will be coded in assembly language you will need to carry the
analysis further.

FINAL WORD
The ideas discussed in this chapter have implications not only in the
field of programming, but in thinking itself. We have a technique
that enables us to draw a picture of the logical structure of a
problem. We can successively redefine our thoughts, change the
problem, and add or remove restrictions whilst maintaining a
diagrammatic version of the current solution which can be translated
into any language we choose to use. During the book you will be
given the choice of examining the Warnier representations of various
problems and we hope you will, as we have done, realize that the
work of Warnier goes far beyond the realms of programming and
system design, he has in fact given us the techniques for analysing
our thoughts and organizing the contents of our minds in a way that
enables us to document those thoughts whilst we examine problems.
We can illustrate our progress diagrammatically and use the
diagrams produced to successively refine our ideas. In short the
techniques actually help us think about the problems we examine.

Reference 1:
Warnier, Jean Dominique - Logical Construction of Programs (3rd
Edition, translated by B.Μ. Flanagan)
New York: Van Nostrand Reinhold Co. 1976
Reference 2:
Warnier, Jean Dominique - Logical Construction of Systems
New York: Van Nostrand Reinhold Co. 1981. ISBN 0-442-22556-3
Reference 3:
Orr, Kenneth. T. - Structured Requirements Definition
United States: Ken Orr and Associates, Inc. 1981.
ISBN 0-9605884—0-X
Reference 4:
Orr, Kenneth. T. - Structured Systems Development
United States: Yourdon Inc. 1977. ISBN 0-917072-06-5

18

3
ASSEMBLY

LANGUAGE

For many computer hobbyists, being able to write programs in an
‘assembler language’ is an ultimate goal. The mystique of writing
such programs is reinforced by the frequent publication of listings
written in strange and wonderful symbols reminiscent of ancient
Babylonian . . .
Many writers try to explain the concepts behind these languages in a
manner that subsequently reinforces the idea that assembly language
programming is different, complex, and difficult to understand. The
result is of course a foregone conclusion - a lot of people rapidly
decide that assembly language programming is going to be far too
difficult for them to learn.
We want to show you that a knowledge of assembler can be a very
real asset to your repertoire of computing skills and that it can be
learnt without having to throw away all those principles of good
programming that you developed while using higher level languages
such as basic or pascal.

WHAT IS AN ASSEMBLY LANGUAGE?
Is an assembly language the same as ‘machine code’? Is it the
language that the microprocessor understands? Are all assembly
languages similar to each other? Let us take things right from the
start and discuss exactly what an assembly langauge is.
A microprocessor is a sophisticated logic device able to perform a
substantial number of predefined functions. These functions are
determined by the design of the ‘chip’ itself. On their own these
individual functions are neither complicated, nor in fact particularly
useful, but when combined in an appropriate order then the
microprocessor becomes an exceedingly powerful and versatile tool.
There are many different processors available and the architectures of
the various chips (their internal design) vary quite considerably.
Certain generalizations can however be made to enable you to
appreciate the essential similarities from an overall point of view.
As well as the set of operations that it can perform, a microprocessor
also has available a set of internal registers, places where it may store
data and other regularly needed items. It will have some registers

19

ASSEMBLY LANGUAGE

assigned for specific functions and others of a more general nature.
Instruction sets are designed not only to utilize the internal facilities
that the chip itself provides, but also to allow the use of additional
memory chips. In this way the microprocessor is able to transmit and
receive information - it has the ability to communicate with other
devices.
Unfortunately the language a microprocessor understands - the
machine language - is that of binary numbers, it identifies the various
functions that it can perform in relation to predefined patterns of
zeros and ones. The Zilog Z-80 processor will interpret the binary
number 1 100001 1 as an instruction to perform a jump from its
current memory location to a different memory location, whose
position or address would, in practice, be provided by the two binary
numbers immediately following the instruction. It is possible to
program a computer using nothing but such codes - and there are
even certain occasions when it is necessary!
Such programming is, however, prone to many problems such as
transposition errors and the like. Toa certain extent the problem can
be eased by using a hexadecimal or an octal numbering system. The
above example for the jump instruction of a Z-80 processor changes
from 1100001 1 in binary to a simpler C3 in hex. Not exactly a mind
shattering improvement, but it’s definitely going in the right
direction.
A program written in a hexadecimal form becomes immediately
unrecognisable to the processor, so it is always necessary to convert
any such program into a binary form before it can be recognized as a
set of instructions.
Early on in the development of the computer it became apparent that
to write even moderate size programs in binary, hexadecimal or octal
form was about the best working definition of masochism that you
would be likely to find. The concept therefore developed of creating
a language that used the same operations but with each of them
being given a simple (and comprehensible) name. It was in this
manner that assembly language programming was born.
The word used to describe the instructions is mnemonic - pro
nounced nem-mon-ik - literally a memory jogger or aid to memory
(we have always felt that the individual who selected the word
mnemonic was having a private joke against the rest of society). The
mnemonic for the Z-80 jump instruction used earlier is JP, which
you’ll surely agree is a useful improvement.
By writing a computer program in such a language, we are
attempting to make it more comprehensible to ourselves. We do not
however make it any more comprehensible to the poor computer,
and so it is necessary to translate our mnemonics into the binary
form that the computer will be able to interpret. It can be done by
20

ASSEMBLY LANGUAGE

hand or a suitable computer program can do it for you. The name
given to a computer program that performs this translation (or most
of it) is an Assembler.

STANDARD MNEMONICS
The choice of mnemonics to be used with a particular type of
processor is in fact an arbitrary one. They are selected and
recommended by the manufacturer of the chips themselves as an aid.
In the same way that different software houses write their basic
interpreters and compilers around various ‘standard’ facilities but
still end up producing versions of basic slightly different from each
other, so manufacturers of microprocessors also design according to
their own ideas and idiosyncrasies. Thus each type of microp
rocessor will have its own characteristics and methods of im
plementing the functions it provides. It will also have its own set of
mnemonics. Such mnemonics are peculiar to the processor or the
series of processors that a manufacturer produces and thus the
mnemonics that your computer will require will be dependent on the
chip that your computer is designed around.
It would be perfectly possible, if you felt that the manufacturer had
chosen their mnemonics unwisely, to devise your own set. You
would however pay for such a privilege by having to either assemble
your final programs by hand, or by having to write your own
assembler. However, modern day assemblers also do far more for
you than simply act as a mnemonic converter and we will look at
some facilities provided later on.

PREPARING SOURCE CODE
In general the source code - the text version of the program that you
write - would be prepared using some form of text editor. The
source code may temporarily be stored on tape, on diskette or it may
simply remain in memory. If it is stored at all it is usually as a simple
ASCII text file.
Some assemblers have a ‘resident’ editor present as part of the
assembler package itself. One such example of this arrangement is
the ZX.ASZMIC ROM which actually replaces the Sinclair ZX-81
operating system to provide a quite useful Z-80 assembly language
programming environment. You use an editor part to prepare your
program in source code form, then assemble the program after
wards.
Other assemblers are completely separate. With these, usually on
larger computer systems, you use a separate text editor or word
processor to produce your source code. In these cases the assembler
is used quite separately to operate on the ASCII files created by the
text editor.

21

ASSEMBLY LANGUAGE

SYNTAX
Each assembler will have its own rules or syntax requirements, just
as say basic and pascal have their own requirements. You need to
be aware of what your assembler can cope with and to what extent, if
any, you can deviate from those requirements.
Nowadays the average assembler will flag errors in much the same
way as a basic interpreter does. Syntax and other common errors are
checked for and identified. Most assemblers are, however, quite
easily led astray. This being so, it is usually important to look at the
first error that is shown very carefully since this one will often cause
the assembler to mis-interpret succeeding statements, even though
they are correct when considered in isolation.

Lines of an assembler listing

A line in an assembly language program can be divided into three
regions or fields·.

• A label field

• An instruction field

• A comments field

The first and last fields are optional. Your assembler will have fixed
rules for identifying the individual fields and you will find these in
the documentation provided with your assembler.
Here is an isolated line from an assembly language program:

CHECKSCHARACTER: CP CARRIAGE$RETURN ;end of input?

I f f
Label field Instruction Remark or comment field
(Optional) Field (Optional)

Inclusion of comments within the program

It is possible to include comments within an assembly language
program to make it more understandable. In basic you will be
familar with the use of REM statements. With these you can add
remarks that are effectively ignored by the basic interpreter.
Assemblers vary in how they identify a ‘Remark’, the standard
assembler provided by most CP/M systems will ignore any line that
starts with an asterisk **’. It will also ignore comments placed after a
specified delimiter character. Most basics have similar facilities
for ‘end of line’ remarks. With a high level language you can often
work out what a program does even if it has not been reasonably
documented - the same is not true of assembly language.

22

ASSEMBLY LANGUAGE

One of the fundamental problems with writing assembly language is
that it is difficult to analyse. It is difficult because any inherent
structure present in the routines is often not obvious unless you
wrote the code and know what to look for.
Because of this you may often have problems when you examine
other people’s programs. If you start right from the very beginning
by making the maximum use of internal remarks you will at least
avoid creating additional problems for yourself. You may think that
you fully understand a program at the time you write it. You
probably will at the time but will you next week, next month, next
year? Make the most of a lesson that most of us have learnt the hard
way and don’t take chances - document to the maximum extent that time
(and your assembler) will permit.

• The importance of placing understandable comments within an
assembly language program cannot be over-emphasised.

Labels

Most assemblers allow you to use long meaningful names for specific
locations in memory. This means that instead of having to remember
that location 0A3Fhex is the start of some subroutine that checks
characters collected from a keyboard, you can use a label
CHECKSCHARACTER in the label field of the first instruction of that
subroutine. The assembler will add the label to its internal symbol
table and you will then be able to use the label to reference that
particular routine. (Some assemblers require that you place a
delimiter character, often a colon, immediately after a label
definition so that the assembler can distinguish it from the
instruction field, as in CHECK:).

The EQUate Directive

Another facility provided by modern day assemblers is that of the
equate directive. This enables names to be assigned to numeric
values. The use of such labels does not affect the code that the
assembler will finally produce, and since it is a function of the
assembler, not of the processor, the equate directive is known as a
pseudo operation. It is especially useful for defining many of the
common ASCII characters.
By placing the following statements at the start of your assembly
language program you cause the assembler to include these
‘definitions’ to its internal symbol table.

CARRIAGESRETURN EQU 13
SPACE EQU 32

23

ASSEMBLY LANGUAGE

By using such definitions you will make your programs more
readable to yourself and to others.

Other pseudo-ops

In addition to the above aids, the assembler will provide pseudo
operations that enable you to define specific areas of memory as
reserved space, and to place certain constant values into the
assembled program for you. You can, using a pseudo-op usually
called an ORG directive (short for ORiGin), select whereabouts in
memory your program is to start.
It is unwise to list and explain all the facilities available - for several
reasons: firstly many functions will not make much sense until you
have written some assembly language programs and, secondly, many
of the functions are just icing on the cake and in the early stages their
explanation simply causes undue confusion. We have given you the
basic idea of what an assembly language is, of what an assembler
actually does and of the type of help that modern assemblers can
provide. We will add to this basic knowledge when it is appropriate.

OPERATING SYSTEMS
Before a microprocessor can perform any useful function, it needs a
means of getting its data, it needs somewhere to send the output it
produces, it needs additional memory, and it needs some means of
co-ordinating all these various items, so that things happen at the
right time and at the right place.
Unfortunately these very essential needs turn out to be the most
complicated and time consuming to program. It is necessary to be
familiar with the computer hardware used (and its idiosyncrasies),
and with the technical details of the computer’s design.
Routines which perform such functions are collectively known as the
computer’s operating system. It is neither necessary nor advisable for
each manufacturer to design their own operating system and many
micro manufacturers have realized the benefits of using widely
available operating systems such as CP/M. These provide a
quasi-standard environment within which to work. The object of
such systems is to attempt to isolate you from the hardware
dependent nasties that present themselves when you start trying to
get information to and from various devices. An operating system is
to a large extent judged by its ability to isolate the problems of Input
and Output (I/O) from a user.
There are unfortunately many different operating systems available.
This is especially true of the smaller cassette-based home computers.
With larger diskette based machines, CP/M provides a very welcome
24

ASSEMBLY LANGUAGE

anchor point which isolates you from the worst of its insides through
a protocol-based function interface.
Smaller machines, in general, do not achieve this type of isolation.
They nevertheless usually provide accessible routines which may be
used by your programs to simplify many operations. It is not
possible to be familiar with all of the different operating systems that
are available. We will therefore try, as much as possible, to avoid
reference to specific computers. This means that you will, when the
time arrives, have to delve into your own computer’s manuals for
certain of the details you will need. By the time we get to this stage
though we will hopefully have given you sufficient grounding in the
general principles for you to know what you will be looking for.

25

NOTES

26

4
THE Z-80

PROCESSOR

The purpose of this chapter is to acquaint you with the various
details about the Z-80 in order to help you build a mental picture of
the processor. We can do this without having to delve into the world
of electronics by using a simplified logical model. Many of the
concepts we will discuss in this chapter are in fact applicable to many
such models of other microprocessors.
We define a register as a place within a processor that can hold binary
information. With 8-bit processors we talk of an 8-bit ‘word length’
and this is called a byte. The 8-bit registers in our processors can
therefore hold one byte of information.
For our purposes a microprocessor can be regarded simply as a
device that has a set of internal registers, some having specific uses,
and a set of available instructions. The instructions enable data to be
manipulated both within the processor and between it and the
external memory.
Before a microprocessor can operate it is necessary for it to be able to
access program instructions and data from either random access
memory (RAM) or from read only memory (ROM). From a
conceptual viewpoint we can regard this additional memory as a
collection of 8-bit memory locations, each of which is identifiable by a
specified unique address. With the 8-bit processors that we are using,
we identify a particular memory location by specifying a 16-bit
address so two bytes are required to specify a given location in the 0 -
64K range. Certain memory addressing instructions enable less than
the full address to be given and this can have advantages in terms of
speed of operation.

The descriptions that follow show, in a schematic form, the registers
available in the Z-80 processor. The specific functions will be dealt
with as we start to examine the instruction set and the facilities
offered by the microprocessor. Since most processors have certain
facilities and characteristics that are almost universal, it is useful to
point these out while we look at our ‘models’ so that the overall
general theme is apparent:

• All processors have a specialized register, called an Accumulator,
used for arithmetic/Boolean functions.

27

THE Z-80 PROCESSOR

• All processors have a Program Counter register that tells the
microprocessor from which memory location the next instruction
should be retrieved.

• It is necessary for a processor to be able to store items such as
subroutine return addresses and the Z-80 processor uses a very
common software method based on a selected area in RAM
memory. This area is called a Stack because items are added to it
and taken from it in the same way as you would for example, take
cards from and add them to the top of a pack of playing cards (on
a last in-first out principle). Most processors have a Stack Pointer
register that determines the memory location that is the current
‘top’ of the stack. Instructions that place items onto the stack
automatically adjust the stack pointer accordingly. The stack is
also available for storage of other items such as the temporary
saving of the microprocessors internal registers (through inbuilt
instructions). It is common practice to talk of the placing of data
on the stack as ‘pushing' onto the stack, when items are removed
the terms 'popping’ or 'pulling’ are used.

• A selected set of bits within the processor are affected by certain
conditions that can occur. These bits, called Flags, are frequently
grouped together for storage on the stack etc. and are often
collectively termed a 'status word’ or ‘program status word’. As an
example, any arithmetic operation that results in zero being
present in the accumulator, will set the zero flag to 1 (remember a
bit can only take values of 0 or 1 and, by convention, 1 is chosen
to represent the ‘true’ condition).

• Eight-bit processors usually provide some means of combining
certain of their 8-bit registers so that a 16-bit (i.e.two bytes)
memory address can be specified.

• As well as the above registers a microprocessor will provide
others, some for specific purposes such as indexed addressing and
interrupt handling. Others, sometimes called ‘secondary regis
ters’ are of a more general nature and can be used as desired.

LAYOUT OF THE Z-80 MICROPROCESSOR
The Z-80 processor is conceptually similar to an older microp
rocessor, the Intel 8080, but has much improved facilities. Twin sets
of the main processing registers are available. Two 16-bit index
registers are also present together with two specialized registers that
will not concern us at present. A schematic description of the
processor is shown in figure 4.1.

28

THE Z-80 PROCESSOR

Note: The subtract flag is used
mainly by the processor itself

Sign Zero Half Carry Pari ty/Overf low Subtract Carry
Flag F lag F lag F lag Flag F lag

flags as shown above

S Z * H * P/V N C ACCUMULATOR

B C

D E

H L

Alternate set is usually shovn as a dash equivalent

Alternate Flag Set ACCUMULATOR'

B' c

O' E'

H' L'

Figure 4.1: Schematic layout of the Z-80 processor

Interrupt Vector Memory Refresh

IX 16-BIT INDEX REGISTER

IY 16-BIT INDEX REGISTER

SP 16-BIT STACK POINTER

PC 16-BIT PROGRAM COUNTER

HEXADECIMAL NUMBERS
An 8-bit binary number can take values from 0 to 255 i.e. from
00000000bin to 11111111 bin. It is often convenient to be able to
express these values in a hexadecimal form which involves a ‘base’ of
16 rather than the ‘base 2’ binary form. The use of different bases
sometimes causes problems so before you say: T was never taught
about bases at school’, we’ll tell you that you are probably already
using different bases almost every day of your life, possibly without
realizing it. If you still weigh things in pounds and ounces, then
you are already working in a hexadecimal based number system -
only the notation is different.

29

THE Z-80 PROCESSOR

With our ‘normal’ numbering system, base 10, we group by units of
ten. When you add numbers together you add the units first, then
remove multiples of ten and ‘carry’ these over to a ‘tens’ column.
You do a similar operation with the ‘tens’ column and so on. The
only reason that 10 is used as the base or ‘radix’ of our normal
numbering system is that it is found convenient: we are, after all,
born with ten fingers to count on.
When you have to add ‘pounds and ounces’ you proceed as follows:
You add the ounces and if they come to more than 16 you ‘carry’ the
number of multiples of 16 into the ‘pounds’ column:

2 Lbs 14 ounces
+

2 Lbs 5 ounces 14 + 5 - 19: One group of 16 to carry
-------------------------------- an(j three units Left over
5 Lbs 3 ounces

If instead of using numbers from 0 to 15 for ounces we used 0, 1,2,
3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F then we could write 21bs 14
ounces as 2E ounces. It is this extended numbering system that forms
the basis of the hexadecimal notation.
The extension of our basic number symbols (the digits 0 to 9), could
have been done by adding any extra symbols, but since we already
have an alphabet, the use of letters to represent our extra numbers
was an obvious extension. So in just the same way that you learnt
what the numbers 0 to 9 symbolize it is necessary to learn that Ahex
represents 10 in ‘ordinary’ base 10 numbers. In computing
applications it is common to write Ή’ or ‘hex’ after a hexadecimal
number to avoid confusion with decimal numbers.
If you now consider the eight bits of a byte of binary information as
two groups of four bits you will appreciate that we can represent
each of those two groups by a hexadecimal digit. Consider the binary
number 1000111 1:

1000 Binary = 8 decimal = 8 hex
1111 Binary = 15 decimal = F hex
Thus 1000 111 1 binary can be written very compactly as 8Fhex. In a
similar fashion we can represent two bytes (i.e. 16 bits of
information), by using four hexadecimal digits.

1111 0000 1000 1111 binary can be split into four groups of four
bits and written in hex form as F08Fhex. For specifying addresses -
locations in memory - you will find the hexadecimal notation very
convenient.

30

THE Z-80 PROCESSOR

PAGES OF MEMORY
We have already said that it is possible, with a two byte address, to
specify any one memory location out of a total of 64K (i.e. 64 x 1024
= 65536) such locations. Such an address can be written in hex form
using four hexadecimal digits. An additional concept of dividing
available memory into pages, each of 256 locations, has also proved
useful. The first byte or ‘high byte’ of such an address is therefore
often called the ‘page number’. Page zero then refers to the initial
256 bytes of memory, whose addresses go from 0000hex to 00FFhex.

THE Z-80 INSTRUCTION TYPES
There is no universal standard by which to group the various
instructions that a microprocessor can execute. The following
classification is a simplified version of the details commonly available
from manufacturers and other sources.

Data transfer instructions

On the Z-80 these fall into various categories: 8-bit, 16-bit, block
transfers and operations using the Z-80’s stack.

8-bit transfers

These are accomplished by the load instructions. These instructions
are written in Z-80 assembly language as LD destination, source.
For example, to load the accumulator (designated as register A) from
register C we use the instruction LD A, C.
Such transfers can be made between any two working registers: A,
B,C,D,E,HorL.No direct instructions exist that enable values to
be exchanged between the ‘active’ and the ‘alternate’ register set;
when required, such transfers may be achieved by use of the stack or
additional memory.
In order to load any register other than the accumulator from a
memory location it is necessary to place the location address into the
HL register pair. HL thus points to the location to be used as the
source. The notation (HL) signifies that it is the contents of the byte
addressed by HL that is involved in the transfer. Thus LD C, (HL)
will load the C register with the contents of the byte whose address is
contained in HL.
Similarly to store the contents of register C at the location whose
address in in HL we would use the instruction LD (HL), C.
The accumulator is the only register that can store data directly to,
and load data directly from, a memory location. LD A, (OFFFH) will

31

HorL.No

THE Z-80 PROCESSOR

load the accumulator with the contents of the byte whose address is
OFFFhex- Similarly LD (OFFFH), A will transfer the contents of the
accumulator directly to the specified memory location.
Data can also be loaded from a byte that follows the op code byte. eg.
LD B, OFH will load the B register with the value 15, i.e. OF hex.
This is termed immediate addressing and is explained later.
Other possibilities including loading using indexed addressing are
available and the instruction set listing covers these in detail.

16-bit transfers

Any of the register pairs BC, DE, HL, SP, IX or IY may be stored at,
or loaded from, a specified pair of memory locations. They may
also be loaded with a 16-bit value contained in the two bytes
following the instruction. Additionally BC, DE, HL, IX, or IY may
also be transferred to, or loaded from, the top of the stack (whose
address is kept in the stack pointer or SP register). The accumulator
and the flag status are also treated as a 16-bit register that can be
transferred to and retrieved from the stack. Miscellaneous other
instructions exist that perform 16-bit transfers.

EXAMPLES
PUSH DE
This decreases the stack pointer then pushes the contents of the D
register onto the stack. The stack pointer is again decreased before
the contents of the E register are placed on the stack - note that the
stack is growing downward in memory as items are added.
POP DE
This performs the reverse operations to the PUSH instruction
described above.
LD BC, 10FCH
This loads the BC register pair with the 16-bit value 10FChex.

Block transfer instructions

The Z-80 has some quite powerful, and extremely useful, block
transfer instructions. All of these instructions use three sets of
registers namely BC, DE and HL. The BC pair are used as a 16-bit
counter which specifies the number of bytes involved in the transfer.
HL is used to point to the source, and DE used to point to the
destination. The instructions have the mnemonics LDD, LDDR,
LDI, LDIR and their operation is explained in the instruction set
Esting.
32

THE Z-80 PROCESSOR

Data processing instructions

Various addition and subtraction instructions exist, both with and
without carry. ADD A, B for example will add the contents of the B
register to the accumulator. The instruction ADC A, B will also add
the contents of the B register to the accumulator but if the carry flag
is set this will also be added into the result. In both cases the result is
stored into the accumulator and thus overwrites the original
accumulator contents.
Several logical instructions, AND, OR and XOR (exclusive OR) are
available together with instructions that enable 8-bit data values to
be compared, rotated and shifted in various ways. Details are
provided within the instruction set listing and examples of their use
will be found in the text.

Conditional test instructions

Many of the instructions available on the Z-80 will use particular flag
conditions as a criteria for execution. These include the conditional
jump, conditional branch and the conditional call instructions. As an
example the instruction CALL Z, INPUT$ROUTINE will call a
subroutine whose address is defined by the label INPUT$ROUTINE
only if the zero flag is set. If the zero flag is not set then the
subroutine will not be called.

Miscellaneous instructions

Numerous other instructions exist that are used for input and output,
interrupt servicing, forcing particular flag conditions, switching
between alternative register sets, and so on. Certain instructions have
been deliberately excluded from our simplified listing and in such
cases you are referred to the manufacturers data or other sources.
No Z-80 book would be complete without a mention of the extensive
‘bit manipulation’ instructions that are available. The three instruc
tions BIT, RES (RESet bit), and SET enable individual bits of a
register, an indirectly addressed byte, or an indexed addressed byte
to be tested, reset or set as required. We have avoided using such
instructions because they are not generally available on other
microprocessors; you should, however, be aware that they do exist
and are often useful.

33

THE Z-80 PROCESSOR

EXAMPLES
BIT 4, A
Test bit 4 of the accumulator and set zero flag accordingly.
SET 2, (IX+d)
Set bit 2 of the indexed addressed byte (IX + d).
RES 5, (HL)
Reset bit 5 of the indirectly addressed byte (HL).

We have not attempted to cover the uses of all of the Z-80
instructions that exist. The main area not covered relates to those
instructions used in operating system programming, these include
the use of interrupts (which are essentially hardware generated
subroutine calls) and the port input/output instructions. Such
material is not particularly relevant for our purposes and in the early
stages can be quite easily remain ‘hidden’ behind the operating
system that your computer uses.

INSTRUCTION FORMAT
Instructions on the Z-80 can consist of between one and four bytes.
In general the instructions with the shortest length execute the most
quickly.

Single byte instructions

One example is the load instruction LD A, C. As mentioned above
this will load the contents of the C register into the accumulator.
When assembled, a single byte is produced, which has the value
79h„. This byte of 'object code’ that is produced is the numerical
equivalent of this particular assembly language instruction. It is
called the op-code for the instruction.

Two byte instructions

A typical example is the instruction LD C, OFH which will load the C
register with the value 0Fhex. When assembled two bytes of object
code are produced. The first byte is 0Ehex, which is the op-code for
the instruction, the second byte contains the value OF hex, the value
specified in the instruction.
34

THE Z-80 PROCESSOR

Three byte instructions

The 16-bit equivalent of the load instruction shown above is LD BC,
1F20H which loads the BC pair with the 16-bit value shown.
Assembly of this instruction produces one op-code byte followed by
two bytes that hold the value 1F20hex. Other examples include
instructions that involve specifying 16-bit addresses, eg. LD A,
(0F21H) which is assembled to produce the op-code byte, followed
by the low order part of the address (21hex) followed by the high
order part (0Fhex).

Four byte instructions

Some instructions, namely those involving the indexed registers or
indexing, can require four bytes. One example is the instruction LD
(IX+d), n which loads the byte whose address is found from the
contents of the index register IX plus a displacement ‘d’ with the
value specified by the letter n. Once assembled the instruction
produces the following object code bytes:

• A two byte op-code, DDhex and 36hex

• A single byte containing the value of the displacement

• The specified data value ‘n’

THE Z-80 INSTRUCTION SET
Appendix A lists the Z-80 instruction set in mnemonic form,
giving a description of each operation together with details of its
effect on the flags, a listing of the object codes generated and
miscellaneous other information.

35

5
SEQUENCE

and REPETITION

One of the observations that led to the concept of structured
programming was the discovery that virtually all problems may be
solved by using a combination of the three basic structures:
Sequence, Repetition and Alternation.
The term sequence simply means doing things in a serial order. We
can illustrate this in a flowchart form as shown in figure 5.1:

ope rat i on 1

I
operation 2

I
operation 3

Figure 5.1: Sequence in flowchart form

The equivalent Warnier diagram is shown in figure 5.2:

Ç~opera t! on 1

< operation 2

^operation 3

Figure 5.2: Sequence in Warnier diagram form

Repetition concerns itself with performing a set of actions a given
number of times. Program loops such as basic’s ‘FOR .. NEXT’, ‘DO
.. UNTIL’and‘WHI LE .. WEND’are typical examples of this type of
structure. Two forms are possible, depending on whether we are
testing the exit condition before (pre-test) or after (post-test)
performing the required processing. Figures 5.3 and 5.4 show how
we can use flowchart and Warnier representations to illustrate
repetition.

37

SEQUENCE and REPETITION

(1 ,n times)

Figure 5.3: Pre-test Repetition Flowchart form

EXIT CONDITION TRUE

EXIT CONDITION TRUE

SKIP

PROCESS

Figure 5.4: Pre-test Repetition Warnier diagram form

The description of alternation will be left until the next chapter
when we shall examine it in detail.

REPETITION - An example program
As an illustration of repetition, we have chosen a simple program to
collect characters directly from the keyboard, and to print them on
the VDU screen. There are many ways such a program could be
written using basic. We have chosen one particular representation
that will let us compare the assembly language equivalents very
easily.
The basic program can be divided into three parts. An initial or
‘Setup’ block, whose main task is to define a variable called
CARRIAGE.RETURNS as the string equivalent of the ASCII 13
‘Carriage Return’ code. An ‘end’ block, which in our example is
nothing more than a single END basic statement. The bulk of the
program is labelled the ‘main’ block and performs the following
functions: We collect a character, using the IN P U T $ () function; we
38

SEQUENCE and REPETITION

then check to see if it is a carriage return character, if it is we jump to
the end of the program, otherwise we print the character and jump
back to the input statement in line 30 for the next character. Here is
the basic form:

SETUP
BLOCK

10
20

CLEAR
CARRIAGE.RETU R NS = CHRS(13)

30 X$=INPUTS(1) 'collect character in X$
MAIN 40 IF X$ = CARRIAGE.RETURNS THEN 70 'end of input if true
BLOCK 50 PRINT XS;: 'output character to VDU

60 GOTO 30 'get next character

END
BLOCK

70 END

When we write an equivalent program in assembly language we use
the same type of program structure. The ‘Setup’ block will,
however, vary according to your assembler, and your operating
system. We give a typical example of the type of coding that could be
expected.

Z-80 mnemonics for SETUP BLOCK

STACK:

CARRIAGESRETURN E9U 13
ORG 100H
JP STACK
ORG 150H
LD SP,$-2

OPERATIONS USED

• Define CARRIAGEÎRETURN so that the assembler will recognize
this term as meaning the number 13.

• Define whereabouts in memory your program is to start. Our
assemblers use ORG (short for ORiGin) and in the above example
the program starts at 100hex.

• We perform an unconditional jump to an address that is labelled
STACK. This is the first real assembly language instruction we
have encountered. This type of jump is called an unconditional
jump because it is performed irrespective of any processor flag
conditions. The mnemonic JP represents the start of a three byte
instruction. The first byte is the ‘op code’, i.e. the numerical
representation of the mnemonic, the second and third bytes are

39

SEQUENCE and REPETITION

the required jump address. A schematic description is shown in
figure 5.5.

RANDOM ACCESS MEMORY LOCATIONS

Figure 5.5: Schematic representation of a ‘Jump’
instruction

high byte of address
low byte of address
C3 hex (op code for JP)

• The microprocessor performs this jump by placing the address
following the op code into the program counter register. The
program counter is called the destination register for the
information transfer. The information source is the two bytes that
immediately follow the op code.
In general the term ‘addressing’ refers to the specification, within
an instruction, of the location of the ‘operand’ - the byte(s) upon
which the instruction will operate.
Since the operand for the JP instruction is the two immediate
data bytes that follow the op code the addressing mode being used
to execute the instruction JP is called ‘immediate’.

• Next we tell the assembler to ‘move over’ the space we are going
to reserve for our stack. This is done by using ORG 150H which
results in the assembler placing our next mnemonic instruction at
this new origin, thus reserving half a page of memory for the
stack.

40

SEQUENCE and REPETITION

• Lastly we load the stack pointer register with the value $ - 2. Our
assemblers use ‘$’ to define the address of the current memory
location. The Z-80 instruction that loads the stack pointer register
is called a load instruction. The mnemonic is LD and this
instruction can be used to load a 16-bit address into either the BC,
DE,or HL register pairs or to load a 16-bit address into the stack
pointer register. The letters SP indicate that we are loading the
stack pointer register. So we are loading the stack pointer just
below the address of the memory location called STACK.
Remember that we do not need to know the numerical address of
the location that we have labelled STACK - we leave that to the
assembler. Bear in mind that frequently it is possible to use a
mnemonic with a variety of addressing modes. We have used the
LD instruction in an ‘immediate addressing mode’ but we will see
later that other uses are also possible. You will be better able to
appreciate this after we have defined and examined addressing
techniques.

Remember also, that EQU and ORG are assembler ‘pseudo
operations’, not mnemonics. They are not assembled into program
statements. They simply tell your assembler that you wish to define
a term, or define the start of a program. You may find that your
system uses different conventions. It may use START instead of
ORG for the starting address. You will need to find the address that
your system expects your programs to start at. Similarly the EQUate
‘pseudo op’ may be expected in a different form such as
CARRIAGE$RETURN: = 13, but these things are dependent on
your system and your assembler - you must check your manuals to
ensure that you are complying with the syntax and other require
ments.
We have indicated the general type of setup block usually required.
It may be that your particular system requires joint use of the stack
and that your programs should simply use an existing stack. In other
cases it is necessary to save the operating system’s stack pointer so
that it can be re-instated when your program has finished. You
must, to a large extent, be guided by your own system requirements.
We can look now at the coding of the main block. We are going to
show two forms so that we can illustrate the differences between
some of the jump instructions that the Z-80 can perform. We have
seen an unconditional jump in the setup block. Now we get the
chance to see a jump instruction which is conditional on the state of
one of the Z-80’s flag bits. As you look at the examples compare
them with the basic form given earlier.

41

SEQUENCE and REPETITION

Z-80 mnemonics for MAIN BLOCK code

START: CALL INPUTÎROUTINE
CP CARRIAGESRETURN
JP Z,FINISH
CALL OUTPUTSROUTINE
JP START

;coLlect character in accumulator
;end of input if true

conditional jump
¿output character to VDU

unconditional jump

Alternative MAIN BLOCK

START: CALL INPUTSROUTINE
CP CARRIAGESRETURN
JR Z,FINISH
CALL OUTPUTSROUTINE
JP START

¿collect character in accumulator

¿end of input if true
conditional relative jump

¿output character to VDU
unconditional jump

Firstly we call a subroutine that we have called INPUT$ROUTINE
to collect a character in the accumulator. The Z-80 mnemonic for a
subroutine call is CALL. This instruction places the address
INPUTSROUTINE into the processor’s program counter so that a
jump to the required subroutine occurs. Prior to this the program
counter, which is pointing to the next instruction, is automatically
pushed on the stack. When the subroutine terminates, the address
that was stored on the stack is ‘popped’ off and placed back in the
program counter. The program counter is then pointing to the
instruction after the CALL instruction. In this way the processor can
‘remember’ where it should return to after the subroutine has been
performed.
The next instructions compare the character collected in the
accumulator with the value CARRIAGESRETURN. The processor
subtracts from the contents of the accumulator the value of the byte
specified (in this case 13). If the contents are equal then the result of
the subtraction is zero and the processor’s zero flag will be set. The
result of the subtraction is not stored anywhere and the contents of
the accumulator are not altered. Only the processor status word, i.e.
the flags, are affected.
Immediately following the comparison test we have placed in the
first example an instruction called a conditional jump. If the zero
flag has been set then a jump occurs to an as yet unspecified FINISH
routine. The second example uses an alternative instruction known
as a conditional relative jump.
If the zero flag has not been set then the jump to FINISH does not
occur, so a further subroutine call, this time to an output routine, is
made. We then jump back to the start of the Main block to collect
another character.

42

SEQUENCE and REPETITION

It is necessary here to point out that there is a distinct difference
between the JP instruction of the Z-80 processor, and the JR
instruction. The former instruction results in a jump to an address
that has been specified by a two-byte operand. The JR instruction is
a ‘relative conditional jump’ instruction, and this is using a different
form of addressing known as ‘relative addressing’. The value of the
operand is a one-byte displacement, not an address. The relative
jump or ‘branch’ as it is sometimes called is limited to values that can
be specified within one byte - your assembler will calculate the
displacement, and should tell you if you exceed this limit.
Relative addressing has the advantage of only requiring a two-byte
instruction (which makes for faster execution). Since we do not use
an absolute address it also means that the code produced is
‘relocatable’.
The disadvantage is that you are limited to displacements that can be
specified with one byte. The allowed displacement +127 to -128
gets added to the contents of the program counter. The full
explanation of this instruction must wait until we have examined
two’s complement arithmetic.
To finish your program you are again in the hands of those who
designed your system. Your manuals will tell you how your program
may finish. Programs operating in a CP/M environment can use a JP
0 instruction to ‘reboot’ the operating system. In such a case FINISH
would consist of the following line:
FINISH: JP 0 ; Reboot operating system

INPUT AND OUTPUT routine
Once again you are very dependent on your operating system, you
will find memory addresses for functions like direct input and console
output. These might be given abbreviation names such as GETCHAR,
CONIN and OUCH or CONOUT. They enable you to avoid the
complexities of input and output by using existing operating system
routines.
If your operating system allows you to call these functions directly
then all that needs to be done is to place additional EQUate
definitions into your setup block. This is quite satisfactory in our
example because we are only using the accumulator register, but
frequently the operating system when performing these functions
will affect some or all of the microprocessor’s other working
registers. In general it is normal practice to save the contents of the
internal registers by ‘pushing’ them onto the stack before using an
operating system function.
One problem that may occur is that the direct input function does
not wait for input; you may find that your manual says that if a

43

SEQUENCE and REPETITION

Figure 5.6: Flowchart for the example program

BEGIN

GET CHARACTER
(1,N times)

END

INPUT CHARACTER

CARRIAGE RETURN

CARRIAGE RETURN

C
SKIP AND

EXIT ROUTINE

^OUTPUT CHARACTER

Figure 5.7: Warnier diagram for the example program

44

SEQUENCE and REPETITION

keyboard character is not available the operating system routine will
return with the value zero in the accumulator. If this is so then you
must create a ‘wait for input’ loop. You can do this by using
some of the instructions we have already looked at. The idea is fairly
straightforward and you have already seen most of the instructions
needed:

INPUTSROUTINE: CALL SYSTEMS INPUTSROUTINE
CP 0
JP Z,INPUTSROUTINE
RET

;system direct input
;is accumulator zero
;no input so keep waiting
;return from subroutine

As long as the system function is returning with zero in the
accumulator then the zero flag is being set by the compare
instruction, thus we keep looping back to the start of the input
routine until a character is collected.
In this case you would use an equate operation in the setup block to
define SYSTEM$INPUT$ROUTINE - the address of the system input
routine. You would also have to place the above subroutine into your
program. The only instruction that is new in the above subroutine is
the RET instruction. You remember we said earlier that, when you
call a subroutine, the address of the next instruction is pushed onto
the stack; well, by making the last instruction of a subroutine a RET
then that address is ‘popped off the stack and placed back in the
program counter register. The next instruction to be executed after
the completion of the subroutine is then the one that followed the
original subroutine call instruction.

PUTTING IT ALL TOGETHER
Having explained how our example program operates we show you
the flowchart and Warnier forms of the program (figures 5.6 and
5.7) - and the outputs from our assemblers - so that you can see
what the complete program looks like in its assembly language form.

* CHAPTER 5 EXAMPLE.......................................CP/M VERSION
*
* CP/M Version Notes: This operating system requires that you
* identify the system function needed by placing a "function
* number' into the microprocessors C register. It also expects
* "output characters" to be in the E register and not the
* accumulator. This means we have to use instructions to transfer
* the contents of the accumulator to the E register. We set up the
* necessary details and then CALL the operating system through a
* common entry point which is a jump located at memory location
* 05 hex. The direct I/O function used also needs FF hex
* the E register to indicate that input (rather than output) is
* required.

45

SEQUENCE and REPETITION

* S E T U P - B L 0 C K
*
CARRIAGESRETURN EQU 13
OPERATINGSSYSTEM EQU 5

ORG 100H
JP STACK
ORG 150H

STACK: LD SP,S-2

* Μ A I N - B L 0 C K
*
START: CALL INPUTSROUTINE

CP CARRIAGESRETURN
JP Z,FINISH
CALL OUTPUTSROUTINE
JP START

* E N D -BLOCK
*
FINISH: JP 0 ¿Reboot operating system

* I N P U T -ROUTINE
*
* Notes: We have to use a "wait for input" loop here. With this

* system (CP/M) it is necessary to preserve the contents of the
* registers before using the operating system calls.
*
INPUTSROUTINE: PUSH BC I PUSH DE ! PUSH HL ¿Preserve reg's

INPUTSROUTINES1 : LD E,OFFH ¿Signifies console input

LD C,6 ¿Direct cons I/O function

CALL OPERATINGSSYSTEN
CP 0 ¿0 - no key pressed

JP I,INPUTSROUTI NES 1
POP HL ! POP DE ! POP BC ¿Restore registers

RET

* 0 U T P U T - R 0 U T I N E
*
OUTPUTSROUTINE: PUSH AF ! PUSH BC ! PUSH DE ! PUSH HL

LD E,A ¿Transfer is in E register

LD C,2 ¿Console output function

CALL OPERATINGSSYSTEM
POP HL ! POP DE ! POP BC ! POP AF

RET

46

ALTERNATION

We defined sequence and repetition in the last chapter and illustrated
the ideas with a short program. Now it’s the turn of ‘alternation’, the
third and last of our structured building blocks. Simple alternation is
exemplified by basic’s ‘IF .. THEN .. ELSE’ type of coding. The
essential features can be illustrated using flowchart and Warnier
diagram illustrations as shown in Figures 6.1 and 6.2

START

Figure 6.1: Simple Alternation in Flowchart form

CONDITION TRUE

CONDITION TRUE

^PROCESS 1

^PROCESS 2

Figure 6.2: Simple Alternation in Warnier diagram form

This form is called ‘simple’ alternation in order to distinguish it from
those cases that involve more than two alternatives. We are
implying, in both representations, that any necessary preselection
processing will have been performed.
A choice is being made between two sets of actions based on a
specified condition. Simple or ‘binary’ alternation represents the
existence of two mutually exclusive operation subsets. The ideas can
be generalized to condition tests with N mutually exclusive
outcomes. This leads to the corresponding existence of N mutually
exclusive operation subsets within the logical program description.

47

ALTERNATION

We want to give you an illustration of how we can create ‘alternation
constructs’ when writing programs in assembly language. To keep to
familiar ground we shall examine a slightly more complex problem
related to the ‘collection of characters’ program of chapter 5. In this
way the flowchart and Warnier forms will be less intimidating and
the assembly language programs will have a certain amount of
material that will be familiar already.
The same approach is used: we will look at the problem, consider the
principles involved in flowchart and Warnier diagram form, then
give a typical basic solution followed by the assembly language
forms and their explanations.

A SAMPLE PROBLEM
We want to write a routine that will collect input from a keyboard
and differentiate between control characters and printable charac
ters. The routine should terminate when the carriage return (enter
or return on most computers) key is pressed. Other control
characters less than ASCII value 32 are to be ignored although a
warning bleep is to be given. All other input characters should be
echoed to the VDU screen.

AND ITS SOLUTION
The problem is straightforward and is well defined. We need some
sort of input routine; we need to compare each character that is
collected to see if it is a carriage return (ie. has an ASCII value of 13).
If not we need to know if it is another control character or a character
to be printed. Figure 6.3 shows the flowchart representation:

Figure 6.3: Flowchart for the example program
48

ALTERNATION

Look at the equivalent Warnier diagram representation in figure 6.4:

What does figure 6.4 tell us? We collect a character using an input
routine. If the input character is a carriage return then we exit from
the routine. If it is not a carriage return then we make a further test
to identify whether the character is a control character or one to be
printed. Having performed one of two possible alternative sets of
actions we return for another input character.
How would we program this in, say, basic? Well, let us first look at
one translation from the Warnier diagram in a Microsoft basic form:

10 X$='A' 1 must force an entry into WHILE/WEND loop
20 WHILE ASC(X$)-13 1 <>0
30 GOSUB 1000 1 some input routine collects input in X$
40 IF ASC(X$)<32 THEN PRINT CHR$<7) ELSE PRINT X$
50 WEND
60 ENO

BEGIN
(1 time)

BEGIN GET-CHARACTER
(1 time)

COLLECT CHARACTER
(1 time)

GET
CHARACTER
(1,N times)

END
(11i me)

SOME INPUT ROUTINE

SKIP AND THEN
EXIT THE ROUTINE

CARRIAGE RETURN
(0,1 time)

CARRIAGE RETURN
(0,1 time)

END GET-CHARACTER
^(1 time)

ASCII VALUE < 32
(0,1 time)

PRINT
BELL

ASCII VALUE < 32
(0,1 time)

PRINT
CHARACTER

Figure 6.4

Figure 6.4: Warnier diagram for the example program
49

ALTERNATION

In our problem we can print ‘bell’ and other characters directly; but
in general you may want to perform more than just a single
instruction as the result of a conditional test. This being so a more
generalized equivalent is to be preferred:

10 X$='A' ' must force an entry into WHILE/WEND loop
20 WHILE ASC(X$)-13 ' <>0
30 GOSUB 1000 ' some input routine collects input in X$
40 If ASC(X$)<32 THEN GOSUB 2000 ELSE GOSUB 3000
50 WEND
60 END

Subroutine 2000 would perform those actions concerned with
‘printing a bell’ and subroutine 3000 would concern itself with
printing a character.
Yet another equivalent form, and one that in terms of coding is
arguably more efficient, can be obtained by using the ‘dreaded
GOTO’:

10 GOSUB 1000 ' some input routine collects input in X$
20 IF ASC(X$)=13 THEN END
30 If ASC(X$)<32 THEN GOSUB 2000 ELSE GOSUB 3000
40 GOTO 10

Such a form is perfectly acceptable and shows a correct use of GOTO.
The arguments against such code stems, not from the proper use of
the GOTO statement, but from the fact that they can easily be used
incorrectly. When they are used incorrectly they create tangled code
which is difficult to maintain, difficult to understand and prone to
errors.
We can make a point in passing that when one talks of a ‘structured
language’, one is usually suggesting that the available constructs of
the language will attempt to force a user into writing in a particular
way. The object is to avoid giving the user the chance to create
problems by incorrectly use of things like unconditional jumps.

• You should not be misled into thinking that, because a language
is labelled ‘unstructured’, it is not possible to write well
structured programs using that language.

The Carry flag

We have already used ‘immediate’ comparison instructions to test
for equality. The instruction used was the CP operand. When the
contents of the accumulator are the same as the immediate byte
specified, then the internal subtraction that occurs during the
comparison, results in the zero flag being set.
50

ALTERNATION

When the above comparison instructions are used, several flags are
affected. Our present concern is the effect of these operations on the
‘carry’ flag.

• If the value being compared is greater than the value present in
the accumulator then the microprocessor’s carry flag will be set.

We can tabulate all possible outcomes of such testing in the
following manner:

Condition

Accumulator >
Accumulator =
Accumulator <

Immediate Byte
Immediate Byte
Immediate Byte

Carry flag Zero
flag

Cleared Cleared
Cleared Set
Set Cleared

In all cases the contents of the accumulator, and of the immediate
byte value specified, are treated as simple binary data.
We are going to use the carry flag to detect control characters -
characters having an ASCII code of less than 32.
Let us look at the main part of a Z-80 assembly language
interpretation of the above forms and make some observations:

* Z80-VERSI0N-1

START: CALL INPUTSROUTINE ¿Character in accumulator
CP CARRIAGESRETURN ;End of input if true
JP Z,FINISH
CALL NOTSCARRIAGESRETURN
JP START ;Loop back for next character

*
NOTSCARRIAGESRETURN: CP SPACE

CALL C, CONTROLSCHARACTER
CALL NC, PRINTABLESCHARACTER
RET

The Z-80 mnemonics CALL C and CALL NC stand for ‘call on carry’
and ‘call on no carry’ respectively. They illustrate the concept of a
conditional subroutine call. The function of these instructions is to
perform the specified subroutine call - but only if the necessary flag
condition is satisfied.
A more efficient form of coding is shown below. It is more compact
and satisfies the requirements of our problem but you will see later
that you can sometimes run into problems which, at present, are not
immediately obvious.

51

ALTERNATION

* Z8O-VERSION-2
*__
START: CALL INPUTSROUTINE ;Character in accumulator

CP CARRIAGESRETURN ;End of input if true

JP Z,FINISH
CP SPACE
CALL C, CONTROLSCHARACTER
CALL NC, PRINTABLESCHARACTER
JP START ;Loop back for next character

We use an input routine to collect a character. This is returned in the
accumulator register. The CP instruction compares the value of
CARRIAGESRETURN (which will have been previously set to 13 by an
EQU directive) to the ASCII value of the character present in the
accumulator. If the character present in the accumulator is a carriage
return the zero flag will be set. As in the first form, the JP Z
instruction following this means we exit from the routine as soon as a
carriage return character is detected.
If the character being looked at is not a carriage return, then we
compare the accumulator contents to the value SPACE (again
previously defined by using an EQU directive). If the character
present in the accumulator has an ASCII value less than 32, then the
Z-80’s carry flag will be set. Otherwise the carry flag will be clear.
In both of these examples we are using the carry flag to implement
the equivalent of an‘IF .. THEN .. ELSE’ structure. If the carry
flag is set we do one set of operations. If the carry flag is not set we
perform the alternative set of operations. The only stipulation that
has to be made is that the status of the flag being tested must be
preserved by the first of the subroutines that may be called.

CONTROL CHARACTER SUBROUTINE
This has to output a bell character. On most terminals this is done by
sending the ASCII bell character to the terminal. In basic you use
‘PRINT C H R $ (7) ’, in assembler you load a register with the value 7
and then use your system output routine to send the character to the
terminal. The normal procedure is to define BELL using an EQUate
pseudo operation and the example shown below assumes that this
has been done.
The Z-80 has instructions to load a specified register with an 8-bit
data value. The form the instruction takes is:
LD register, 8 bit data value
52

ALTERNATION

Z 8 0 - V E R S I 0 N

CONTROLSCHARACTER: LD A,BELL
CALL OUTPUTSROUTINE
RET

The LD mnemonic is however, also used to represent register
loading operations other than the loading of immediate data values.
LD on the Z-80 processor, when used as shown above, is using
immediate addressing; additionally it is used to represent data
transfer using other addressing modes.
Go back now and look at the flowchart we are using for the example
program. Can you pick out the subset of actions associated with ‘not
finding a carriage return character' ? You will probably agree that even
in this simple example the isolation of such subsets are not
particularly obvious.
Try to find the same subset on the Warnier diagram, remember that
we write the logical opposite of a statement by placing a bar over the
statement. The subset we are discussing is shown in figure 6.5
below:

ASCII VALUE < 32

CARRIAGE RETURN*

(0,1 time)

ASCII VALUE < 32

PRINT
BELL

PRINT
CHARACTER

Figure 6.5: An isolated subset of actions

The reason we are interested in this subset is that the first version
explicitly treated the coding involved as a distinct subset, that is to
say that actions corresponding to ‘not carriage return' were im
plemented as a ‘called subroutine’. The code is therefore related to
the design diagram on this basis - the action subset is defined by
coding as a subroutine. The advantage being that the ‘structure’ of
the diagram and the coding is (dare we say it) isomorphic! (This is a
word used by mathematicians to imply structural similarity.)
The coding in the second versions performs the same function as the
coding in the first forms, but the action subset ‘not carriage return’
that we are discussing is not explicitly defined in the second form

53

ALTERNATION

code. The difference may not be immediately apparent to you, so
let’s briefly digress to explain this point . . .
There is a real advantage, especially when writing large assembly
language programs, in being able to easily locate the section of code
that is relative to a particular action subset in the corresponding
design diagrams. Such advantage is paid for by a slightly increased
program size.
Hardcore assembly language programmers often take great excep
tion to ‘wastage of bytes’ in this manner and in certain applications
their objections are justifiable. Our defence in general terms is
two-fold:

• It is often of great practical advantage to have coding that is
isomorphic with the design diagrams.

• Memory is getting cheaper, debugging time is not! Anything that
improves program ‘readability’ and ‘maintainability’ is very
welcome, especially when it comes to assembly language prog
ramming.

Explicit subset definition based on isomorphism between the design
diagram and the actual program code contributes in practice to
significantly reduced debugging time. The message is simple. Save
bytes by all means but distinguish carefully between pointless
inefficiency and the deliberate choice of using a few more bytes to
create code that can easily be compared to the design diagrams.

THE PRACTICAL SOLUTION
We have used our example to explain some general ideas. There is a
very good reason why you would not, in practice, actually need to
write subroutine-based code for this particular example. Look back
at some of the coding we have given and think about how we ‘output’
printable characters, and how we ‘output’ the ASCII ‘bell’ character.
In practice we shall be using the accumulator to output the printable
characters, we will also use the accumulator to output the ‘bell’
character. We will also, in both cases, be using our system
OUTPUTSROUTINE to send the character to the terminal.
Let us now consider and modify our flowchart/design diagrams in
the light of the above information. Figure 6.6 shows the revised
flowchart representation.

When we consider fully the practical implementation of our problem
we see that one of the alternation subsets is in fact a ‘do nothing’
process. The Warnier diagram equivalent is shown in figure 6.7 for
comparison.
54

ALTERNATION

I

Figure 6.6: Modified flowchart for the example program

This type of structure is frequently handled by simple ‘in-line’
conditional relative branching or conditional jumping. Based on a
certain condition we either perform some section of code or we avoid
it by jumping over it. Please bear in mind that this type of structure
is a subclass of the simple alternation that we dealt with first. There
are still, from a theoretical viewpoint, two sets of actions. The
distinction is that one of the subsets is an ‘empty set’.
Having possibly struggled through some the ideas we have presented
so far you will no doubt be pleased to see the assembly language code
that results from our most recent efforts.
If you have persevered up to this point you should find the code
fairly straightforward. The label PRINTSCHARACTER identifies the
location to be jumped or branched to if the carry flag is not set.

* Z80-PRACTICAL-SOLUTION

START: CALL INPUTSROUTINE
CP CARRIAGESRETURN
JP Z,FINISH
CP SPACE
JP NC,PRINTSCHARACTER
LD A,BELL

PRINTSCHARACTER: CALL OUTPUTSCHARACTER

* ==:============:
JP START

55

ALTERNATION

BEGIN
(1 time)

BEGIN GET-CHARACTER
(11 i me)

COLLECT CHARACTER
IN ACCUMULATOR
(1 time)

INPUT ROUTINE

GET CHARACTER
(1,N times)

CARRIAGE RETURN J SKIP AND THEN
(0,1 time) \ EXIT THE ROUTINE

<

ASCII VALUE < 32
(0,1 time) LOAD

ACCUMULATOR
WITH BELL

CARRIAGE RETURN /
(0,1 time)

ASCII VALUE
(0,1 time)

OUTPUT
CHARACTER
(1 time)

SOME OUTPUT ROUTINE

END GET-CHARACTER
(1 time)

END
time)

Figure 6.7: Modified Warnier diagram for the example
program

You should by now, appreciate the relationship between simple
alternation, where two subsets of actions are involved, and the
specific case of simple alternation where one of those subsets is an
empty set. You have also seen some of the ways in which we can
write the corresponding code.
It is important to grasp the general ideas involved because
alternation - together with sequence and repetition - will occur in
the majority of the programming problems that you will encounter.
You should appreciate that more complex alternation with multiple
mutually exclusive action subsets can be described by extending the
same basic principles that we have discussed.
56

ALTERNATION

FINAL WORD
One final point we wish to make now is that the design of our
solutions is derived from the logical examination of the problem.

• The logical solution exists as an independent entity and by having
such solutions available before you start coding you will side-step
many problems that other approaches walk straight into.

By using this ‘design before coding’ approach, we find that we are
left only with the much smaller problem of how to use an available
instruction set to implement a logical solution that is already known.
We don’t ask you to accept this philosophy without question, but we
would like you to think about the implications (and in particular the
benefits) of having language independent solutions available before
you start coding.
If you modify the main block in chapter 5 to incorporate the
practical solution you should be able to run a version of the program.
You might also like to experiment with some of the other ideas we
considered.

CHAPTER 6 EXAMPLE CP/M VERSION

CP/M Version Notes: This operating system requires that you
identify the system function needed by specifying a "function
number”. See the equivalent chapter 5 program for details.
This program needs an additional EQUate for the SPACE assignment.

*
*

S E T U P - B L 0 C K

CARRIAGESRETURN EQU 13
SPACE EQU 32
OPERATINGSSYSTEM EQU 5

ORG 100H
JP STACK
ORG 150H

STACK: LD SP,S-2

*
*

Μ A I N - B L 0 C K

START: CALL INPUTSROUTINE
CP CARRI AGESRETURN
JP Z,FINISH
CP SPACE
JP NC,PRINTSCHARACTER
LD A,BELL

PRINTSCHARACTER: CALL OUTPUTSROUTINE
JP START

* E N D -BLOCK

FINISH: JP 0 ;Reboot operating system

57

ALTERNATION

* INPUT-ROUTINE

* Notes: We have to use a "wait for input” loop here. With this
* system (CP/N) it is necessary to preserve the contents of the
* registers before using the operating system calls.

INPUTSROUTINE : PUSH BC ! PUSH DE ! PUSH HL ¿Preserve reg's
INPUTSR0UTINES1: LD E,OFFH ¿Signifies console input

LD C,6 ;Di rect console I/O function
CALL OPERATINGSSYSTEM
CP 0 ¿0 = no key pressed
JP Z,INPUTSROUTINES1
POP HL ! POP DE ! POP BC ;Restore registers
RET

* OUTPUT-ROUTINE
*
OUTPUTSROUTINE : PUSH AF ! PUSH BC ! PUSH DE ! PUSH HL

LD E,A ¿transfer is in E register
LD C,2 ;Console output function
CALL OPERATINGSSYSTEM
POP HL ! POP DE ! POP BC ! POP AF
RET

58

7
ADDRESSING

Addressing refers to the way in which we specify the location of the
operand (the byte(s) on which an instruction will operate). In this
chapter we look briefly at some of the addressing modes you need to
be familiar with. In each case we will consider the addressing mode
in a general sense, to give you a feel for the overall ideas, then we will
show you how the specific addressing modes available on the Z-80 fit
into this framework.

IMPLIED ADDRESSING

Most processors have instructions that enable specified internal
registers to be incremented or decremented. As an example the Z-80
uses INC B to increase the value of the B register by one. The
instruction when assembled results in a single object code byte. The
‘address’ of the operand (which in this case is the B register) is
specified within the op code. This form of addressing is termed
‘implied' or ‘implicit'. It is used in instructions such as register-to-
register transfers, register increments and register decrements.
Other specific examples are LD r, r1 ; ADC A, s; SUB s; XOR s;
OR s.
Note:
Zilog do in fact make a distinction between instructions, such as the
set of arithmetic operations where the accumulator is always implied
as the destination register, and those cases where the op codes
contain ‘bit codes’ to specify the registers. The latter form of
addressing is given the name ‘Register addressing’. This distinction
is not always made by other microprocessor manufacturers and for
normal use it is satisfactory to regard both forms as examples of
implied addressing.

AN EXAMPLE
It is useful to examine one example of register addressing in detail to
see just how the Z-80 implements it. The instruction LD r, r1 will
copy the contents of register r1 into register r, where r and r1 may be
the accumulator (register A), or B, C, D, E, H, or L registers.
When such an instruction is assembled it results in a single byte of
object code, with bit 7 being 0 and bit 6 set to 1. The remaining six

59

ADDRESSING

bits of the object code byte depend on which registers are involved in
the transfer as diagram 7.1 illustrates.

OBJECT CODE BYTE

0 1

These 3 bits specify the
the destination register (r)

-------------------1
These three bits specify
source register (r1)

Figure 7.1: Object code byte for a LD r, rl instruction

The source and destination registers are each coded using three bits
according to the following scheme:

Register Code
A
B
C
D
E
H
L

111
000
001
010
011
100
101

The op code of the instruction thus varies depending on which
particular registers are specified. The instruction LD A, C will load
the accumulator with the contents of the C register. The three-bit
code for the source register is 001, and the equivalent destination
register code is 111. The instruction will thus be assembled to the
single byte whose value is 01111001 binary, which is 79hex. Try
working out the op codes using other registers, then check your
answers by using the instruction set listing.

IMMEDIATE ADDRESSING
If an instruction uses immediate addressing then it gets its operand
byte(s) from the location or locations immediately following the op
code in memory. One example is in the loading of constant values
into a register.
These instructions, when assembled, result in two bytes of object
code being produced; the op code itself followed by the data value.
As we have seen previously the Z-80 has instructions which load
register pairs with 16-bits of data, resulting in three bytes of object
code being produced when the instructions are assembled - the op
60

ADDRESSING

code byte plus the two data bytes. Such instructions are often,
somewhat pedantically, referred to as using 'extended immediate
addressing’.
A point of confusion sometimes arises with the JP instruction. This
is normally thought of as an instruction that specifies a jump to a
memory location specified by a two-byte address. Such jumps are
often thought of as ‘absolute addressing jumps’. In the Z-80
literature such jumps are classed as immediate addressing instruc
tions. The reason is that although they do specify an ‘absolute jump’
to a given memory location, the actual data transfer takes place by
transferring the bytes immediately following the op code byte to the
program counter. If you compare this mechanism with LD B, data,
you will appreciate that in terms of data movement the ‘immediate
addressing’ label is perfectly valid.

ABSOLUTE ADDRESSING
As we have mentioned, absolute addressing indicates the specifica
tion of a memory byte using a full 16-bit address. On the Z-80 such
instructions consist of the op code, which may be one or two bytes
long, followed by the two byte address giving the location of the
operand (POKE address, value could be a classed as a typical
absolute addressing basic, statement). This form of addressing is
frequently called extended addressing in Z-80 literature.

ZERO PAGE ADDRESSING
If we provide an absolute reference to an address within the first 256
bytes of memory, then we only need one byte for the address (ie.
addresses from 00hex to FFhex).
This form of addressing is used to good effect on some processors,
but on the Z-80 only a limited version is available involving the
specialized RST instruction. Zero page addressing is sometimes
called short addressing.

RELATIVE ADDRESSING
Instead of an address we give a displacement to be added to the value
already in the program counter. Such displacements are restricted on
8-bit micros because they have to be specified with one byte. The
form of the displacement on the Z-80 is called ‘two’s complement’,
and this method of representing a number is dealt with in chapter 8.
When you use relative addressing in your programs you will not
normally have to calculate the displacement, your assembler will do
it for you. If by chance you try to jump to a location whose
displacement cannot be specified with one byte then the assembler

61

ADDRESSING

will make sure you realize by giving an appropriate error message.
Programmers who have written assembly language programs using
hexadecimal op-code entry have frequently been known to say
extremely unkind words about relative jump instructions.

COMPUTED ADDRESSING
Up to now the addressing modes we have looked at may be regarded
as ‘static’ - once the program has been completed, the memory
locations upon which instructions will operate are fixed, completely
defined by the instructions you have selected. Computed addressing
enables the address of an operand to be computed at run time and falls
into two categories:

• Indexed addressing

• Indirect addressing

INDEXED ADDRESSING
Indexed addressing uses an address that is obtained by modifying a
specified base address given in the program. The base address is
modified by providing a displacement which is added to the base
value to provide the final address used by the instruction.
As an example let us suppose you have a table of twenty single byte
data items held in memory, the lowest byte is labelled ‘BASE’ and
this base address is loaded into index register IX. If we write the
displacement as ‘n’ then the instruction LD A, (IX + n) will access the
base value if n is 0, the byte above this if the displacement is 1, and
so on. In general it will access the n’th item of the table. Figure 7.2
illustrates the general idea.

etc

4th

3rd

2nd

1st

BASE ------- >

It is this location that is
addressed if the displacement
has the value 4

Figure 7.2: Schematic description of Indexed addressing

62

ADDRESSING

You’ve probably used similar ideas in your basic programs:
FOR 1% = 1 TO 9 : PRINT X(U) : NEXT 17.
When I% = 4 you are referencing X (4) etc. Indexed addressing is
particularly useful for accessing succesive data elements from tables
or blocks of data.
You may be surprised that the displacement shown in the Z-80
instruction above is held within the instruction, rather than being
specified by say, the contents of a register. On the face of it, the
displacement is fixed when the instruction is assembled, which
restricts the usefulness of the indexing capabilities. This is a fair
criticism, the indexing facilities are not as generally useful as one
would like, but, nevertheless they can still be used to advantage. We
will see later that it is possible to alter the value of the displacement
by modifying the contents of the displacement byte during program
execution. Such ‘tricks’ are not generally used although they do
appear on occasion and should help to give you an idea of what can
be done.

INDIRECT ADDRESSING
The term indirect addressing refers to the concept of using one
address to ‘point’ to another. Imagine a data file of one thousand
items, each with a record length of 128 bytes. How can we sort these
items using the ‘field’ - or part of the record - lying between bytes 6
and 20 of each record? An easy approach is to load just the fifteen
bytes of interest from each record into a ‘vector’, say INDEXS () and
in addition create a ‘tag vector’, I/i(), that holds each record’s
‘record number’. Before sorting 17. (.) will simply contain the
numbers 1 to 1000 in order. We then perform a sort and rearrange
the 17. () vector to ‘mirror’ any physical (or logical) changes made in
the index vector. After sorting the vector INDEXSC) will be in the
required order but IN D E X $ (5) will not now necessarily relate to the
fifth record of our data file. By searching through I ND EXSO we
effectively move through the data file in the required sorted order
but this is of little use unless we can access the corresponding data
record. How do we access the records? We use the ‘tag vector’ 17.0
that holds the corresponding original record numbers. Thus the
record number of the first record in the sorted order, whose index
value is IN D E X $ (1) is found from 17. (1). Similarly the Xth item in
the sorted order is obtained from 17. (X). We use the tag vector
17. () to ‘point’ to the records in the data file. When we use the basic
statement GET # 1, 17. (5) to get the fifth record in the new sorted
order, we are specifying its address indirectly. We are saying in
effect that the ‘address’ of the record in question is held in the
variable 17. (5).

63

ADDRESSING

Indirect addressing in an assembly language instruction involves the
same general idea as our basic example. We do not specify the
operand’s address, we specify the locations from which the address
may be obtained. In the case of the Z-80 processor a form of indirect
addressing often called ‘register indirect’ is available. It is a register
pair, rather than a pair of memory locations, that holds the required
address.

BIT ADDRESSING
Bit addressing relates to the technique the Z-80 uses to access
specified bits in a register or memory location. It is not generally
thought of as a ‘proper’ addressing mode, but since it is mentioned
in the literature we have included it for completeness. The Z-80 has
special instructions for setting, resetting and testing specific bits
within an internal register or a memory byte. The byte itself may be
addressed by one of three ‘conventional’ addressing modes, namely
indexed, indirect (ie. register indirect) or register addressing.

COMBINED ADDRESSING MODES
Some instructions involve more than one operand. In these cases the
addressing mode used to get the source data is not necessarily the
same as the addressing mode used to transfer the necessary
information to its destination. A typical example is the loading of an
indexed addressed memory location with a byte of immediate data:
the instruction LD(IY+d), 8 will load the value 8 into the memory
location whose address is given by the contents of register IY plus the
displacement value ‘d’. The instruction is using immediate addres
sing to obtain the source data, ie. the number 8, and it is using
indexed addressing to send this value to its destination.

• Occasionally you will come across variants of the basic addressing
modes that have been discussed. This is particularly true if you
work with other processors. It is usually possible to understand
the meaning of such terms by concentrating on the instruction
itself; examine what the instruction does, ask yourself where it
gets its data from, and identify the destination of the results of the
instruction etc. You will usually be able to relate the general
addressing mode to one of those that have been dealt with in this
chapter.

THE CONNECT FOUR’ GAME
We are going to illustrate some of the various addressing schemes by
examining one way to represent the game ‘Connect Four’. This also
gives us the chance to examine some of the logical instructions
available on the Z-80.
64

ADDRESSING

In this game two players have sets of coloured counters which are
dropped (one at a time by alternate players) into one of seven
columns. The first player to get four counters in a vertical,
horizontal, or diagonal line has won the game. The game is played on
an upright hollow board of six rows and seven columns. We are
going to look at how such a game could be represented within a
computer and we will start out with a list of the main requirements:

• A subroutine to set up (clear) the board representations

• A subroutine to get players move (ie. a column number)

• A subroutine to check that move is valid

• A subroutine to ‘make the move’ on the computer’s boards

• A subroutine to identify change of player for next move

We need to define how we are to represent the game internally. We
shall represent each player on a separate board created by seven
bytes of memory, each of which will constitute one column of the
games ‘board’. As you look at the memory description in figure 7.7
bear in mind the the boards are twisted sideways in memory. The
base locations that we have labelled are the ‘column 0’ bytes. As the
game is played column 0 would be on the left hand side, column 6 on
the right (see figure 7.8). We’ve numbered the seven columns from 0
to 6 because of the way we shall use indexing to access them. The six
rows however, have been numbered from 1 to 6 because the row
number then represents the ‘bit position’ within the byte.
The presence of a counter in a certain position will be indicated by
setting the equivalent ‘bit’ to 1. Our bytes are eight bits wide and
(for reasons that we shall explain later) we will use the inner six bits
of the bytes. We will also select one byte of memory to act as a player
switch and shall change its value with each move to identify which
player is making a move. Seven bytes will be used to count how
many ‘pieces’ have been placed in a given column and a further
seven bytes used to identify the position of the last piece placed in a
given column.

MEMORY CLEARING ROUTINE
We will, at the end of a finished program, use an assembler pseudo
operation to reserve certain memory locations for use by our
program. The operation is usually called ‘reserve data storage space’.
Our assemblers use the instruction DS N to reserve N memory
locations. In our case this space will sit immediately above the actual
program code, figure 7.7 shows how we have chosen to allocate its
use.

65

ADDRESSING MEMORY LOCATIONS

Column 6

Column 5

Column 4

Column 3

Column 2

Column 1

BOARDSBASEÎB:

Column 6

Column 5

Column 4

Column 3

Column 2

Column 1

BOARDÎBASEÎA:

SWITCH: ________

Column 6

Column 5

Column 4

Column 3

Column 2

Column 1

COUNTERSÎINÎBASE :

Column 6

Column 5

Column 4

Column 3

Column 2

Column 1

R 0 W $ P 01N T E R $ B A SE:

Internal representation of the game board

BOARD FOR PLAYER B

BOARD FOR PLAYER A

Selects Player)

Number of counters in
binary number form

Bits in position 0
are shi fted to left
to make a move

66

ADDRESSING

We must write a subroutine to clear the area of memory assigned for
the boards, and make the initializations needed to the switch byte
(we will arbitrarily set this to 0 to indicate player ‘A’ and to F Fhex to
indicate player ‘B’). Seven bytes are initialized, starting at the
location labelled ROW$POINTER$BASE, so that they contain the
value 00000001 binary. We will be using an operation called a left
shift to push those single bits from right to left as the game
progresses.
On the Z-80 the index registers IX and IY are used to hold base
addresses and not offset values. We already know that the indexed
instructions offer the inclusion of a displacement value within the
instruction itself. The instruction LD (IX + number), value will
load the specified value into the memory location whose address is
‘IX + number’. When assembled in memory, the layout of the
instruction is:

BYTE 1 BYTE 2 BYTE 3 BYTE 4
1st OP CODE 2nd OP CODE DISPLACEMENT LITERAL

DD hex 36 hex number value
(op code values)

Notice that we have an instruction here that has a two-byte op code
resulting in a total instruction length of 4 bytes. Let us use this
instruction to create a simple loop that stores a constant value in a set
of adjacent locations.

67

ADDRESSING

* Z 8 0 - V E R S I 0 N - 1
*

LD IX, BASE ¿Set up index register IX
LD C, n ¿Number of bytes

START: LD (IX+0), value ¿Value stored at address in IX
INC IX ¿Increase register IX by 1
DEC c ¿Decrease counter C
JR NZ, START ¿Back for next byte if C<>0

¿(relative jump !)

Notice that within this loop we are essentially using the index
register as a ‘pointer’ to the location in which we wish to store the
data item. We are not therefore using ‘indexing’ in the true sense of
our original definition but are in fact effectively using the IX register
to specify an address which is then used to store the data.

If we wished to implement the variable displacement that we
discussed in our general definition of indexing we could use the H L
register pair to ‘point’ to the byte holding the displacement and
modify it during execution by using a DEC (HL) instruction like this:

* ===τ----------------------- :

* Z 8 0 - V E R S I 0 N - 2

LD IX, BASE-1 ¿Byte below base address
LD HL, TARGET+2 ; HL points to displacement
LD (HL), N ;N is the number of bytes

TARGET: LD (IX+0), value ¿Run time modified displacement
DEC (HL) ¿Decrease displacement
JR NZ, TARGET ¿Back for next byte if disp <>0

The following coding uses two loops, one to initialize with zeros the
memory between the byte labelled COUNTERSSINSBASE and the top
of board ‘B’, the other to initialize the seven row pointer bytes. At
the end of the routine we also set B and D registers to zero. The
reason for this will become apparent later.

* ===

* CLEAR-MEMORY-SUBROUTINE
*__
CLEARSMEMORY: LD IX, COUNTERSSINSBASE

LD C, 22
CSMS1: LD (IX+0), 0 ¿Set these bytes to 0

INC IX
DEC C
JR NZ, CSMS1
LD IX, ROWSPOINTERSBASE
LD C, 7

68

ADDRESSING

* ==============

CM2 : LD CIX+O), 1 ;Set these bytes to 1
INC IX
DEC c
JR NZ, CÎMS2
LD B, 0 ;We set B and D to 0 in order
LD D, 0 ;to use ADD HL, BC etc. later
RET

GET MOVE SUBROUTINE
We use a system input routine to collect a column number in the
accumulator. One immediate problem is that the ASCII character
codes for the numbers 0 to 9 on the keyboard are not the numeric
values of the numbers themselves. The values are as follows:

DECIMAL BINARY ASCII VALUE

0 0000 0000 0011 0000
1 0000 0001 0011 0001
2 0000 0010 0011 0010
3 0000 0011 0011 0011
4 0000 0100 0011 0100
5 0000 0101 0011 0101
6 0000 0110 0011 0110
7 0000 0111 0011 0111
8 0000 1000 0011 1000
9 0000 1001 0011 1001

- the 8-bit numbers have been slightly separated into two 4-bit
‘nibbles’ here for clarity. To convert the ASCII form to a real binary
equivalent of the input number we need to set the upper four bits of
the ASCII form to zero. This can be accomplished by using an
‘AND’ operation. Essentially two bytes, one of which is the
accumulator, are compared bit-by-bit. If both bits are set to 1 then
the corresponding accumulator bit is set to 1, otherwise the
accumulator bit is set to 0. Figure 7.3 shows the effect on the ASCII
code for the number 9:

ACCUMULATOR 00111001 < ------------ ASCII '9'
OTHER BYTE 0 0 0 0 1 1 1 1 <-------------- 'MASK'

RESULT 00001001 < ------------ REAL '9'

Figure 7.3 : The effect of an ‘AND’ operation on an ASCII
character

The value we compare against is often called a ‘mask’ - for obvious
reasons. On the Z-80 several addressing modes are available with the
AND operation. We shall use an immediate addressing mode to
compare the accumulator with 0Fhex (00001 1 1 1 binary). The

69

ADDRESSING

mnemonic will thus take the form AND OFH. Having obtained a
proper numeric representation of the input character we store it in
the C register by using a LD C, A instruction. We then have the
column number for the user selected column in the C register. To
collect a character from the keyboard, mask it, and store it in the C
register we use the following code:

CALL INPUTSROUTINE
AND OFH

LD C, A

COMPUTING THE OFFSET INTO THE BOARD
The offset into the boards is dependent on whether player ‘A’ or
player ‘B’ is being dealt with. We use the value held in the switch
byte to decide which board requires updating.
As one of several alternatives we load the accumulator with the
contents of the switch byte and then add the contents to itself. This
sets or clears the sign flag which is then used to add, or not add, the
offset for board ‘B’. We have chosen to store the result in the E
register.

*

* G
*

E T - Μ 0 V E - S U 8 R 0 U T I N E

GETSMOVE : CALL INPUTSROUTINE
AND OFH ;Mask upper four bits

LD C, A ;Save column no. in C register

LD E, A ;and as the board Ά' offset

LD A, (SWITCH)
ADD A
JP Μ, GSHS1
LD Az E ;Get column number back

ADD 7 ;Board 'B' additional offset

LD E, A ¿Replace offset value in E

GSMÎ1 : RET

MOVE VALIDITY CHECK
On most microprocessors it is possible to shift bytes and registers to
the left or right. The Z-80 has instructions to perform various shifts
and we will make use of the instruction SLA which is an arithmetic
shift left. Our row pointer bytes are initialized to the value
70

ADDRESSING

00000001 binary by the ‘clear memory’ coding. Figure 7.4 shows
the effect of such a shift on the accumulator.

00000001 <-- initial value of accumulator
00000010 <-- accumulator after one SLA instruction
00000100 <-- accumulator after two SLA instructions

Figure 7.4 : Effect of left shift on the accumulator contents

The bit at the right hand side is always set to zero. The bit on the left
hand side is shifted into the carry. If we used the instruction SLA A
then we would perform the above shift on the contents of the
accumulator.

We want to load the accumulator with any one of seven bytes,
depending on the value of the C register. On the Z-80 we can do that
in the following manner. We load the HL register pair with the
address whose label is ROWSPOINTERSBYTE then add to it the
contents of register C. A specific instruction for adding pairs of
registers proves useful: we use ADD HL, BC to add the contents of
BC to the address in HL. Since we have previously set B to zero we
are effectively just adding C to the HL contents. Having done this we
use SLA, A to shift the contents of the accumulator to the left. Think
about this carefully, use figures 7.7 and 7.8 if you find it difficult to
picture.

After this instruction has been performed, the single bit will be in
the bit position corresponding to the board position to be updated by
this move. This representation has been arranged so that if the bit
has been shifted to the bit 7 position then the move is illegal because
the column already has six pieces in it. We can tell this because the
SLA instruction on the Z-80 affects the carry, the parity, the zero
and the sign flags. The sign flag is used to determine the status of bit
7. The type of coding we use is shown below.

* CHECK-MOVE-SUBROUTINE
*___
CHECKSMOVE : LD HL, ROWSPOINTERSBASE

ADD HL, BC ;Effective HL+C since B=0
LD A, (HL) ;Image of column's last move
SLA A ; Left shift
RET

* ===

71

ADDRESSING

MAKING THE MOVE
After the ‘check move’ subroutine has been performed we will have
an image of the new move held in the accumulator. The first step
therefore is to store the contents of the accumulator back in the
location used in the ‘Check Move’ subroutine. Following this it is
necessary to add the new move into the appropriate board column.
Figure 7.5 illustrates the effect we wish to obtain to ‘create the new
move’.

BYTE - ROW$POINTER$BASE+C - 0 0 0 0 0 1 0 0 <-- image of the neu move
in the accumulator

BYTE - BOARDSBA SE$A + B - 00000010 <-- current column state

RESULT
NEEDED IN ACCUMULATOR - 0 0 0 0 0 1 1 0 < — required neu state

Figure 7.5 : creating a new move

Another logical function exists, called OR that tests the accumulator
against another specified byte. It will set any accumulator bit to 1 if
either or both of the respective bits in the accumulator or if the other
byte specified is set to 1.
The Z-80 has an OR’ instruction which OR’s the accumulator with
another specified byte. We are going to use the instruction to OR the
image of the current state of the column in question with the new
move present in the accumulator. The updated column will then be
replaced in its correct memory position. Having done this we
increase the value of the corresponding numerical count of the
number of pieces in the column. The code to store the new row
position byte, create the new move in memory and update the
numeric count is shown below:

* MAKE-MOVE-SUBROUTINE
*
MAKESMOVE: LD (HL), A ; Replace updated column image

LD HL, BOARDSBASESA
ADD HL, DE ¿Now HL points into boards
OR (HL) ¿Create new board image
LD (HL), A ;and replace in memory
LD HL, COUNTERSSINSBASE
ADD HL, BC ;HL now points to count byte
INC
RET

(HL) ¿Increase numeric count

72

ADDRESSING

CHANGING THE PLAYER
We change players by changing the value of the byte we have
labelled S WIT C H. We set it to zero when we perform the clearing of
memory. After each move we want to change the value, so that it
alternates. We have seen examples of AND and OR as logical
functions, another logical function is called ‘exclusive OR’. This is
similar to the OR described earlier, except that if both bits being
tested are high (ie. 1) then the accumulator bit will be set to 0 and
not 1. Figure 7.6 shows this:

BYTE BEING TESTED 00110000
ACCUMULATOR 10100010

RESULT 10010010

Figure 7.6 : Example of the effect of an ‘exclusive OR’

We could use such an instruction, called XOR, to change the switch
from 00000000 binary to 11111111 binary. If the switch already
contains 11111111 binary then the XOR OFFH instruction will
change it back to 00000000 binary. The Z-80 does however have an
explicict instruction CPL to complement the accumulator (ie. set all
ones to zeros and all zeros to ones) and the following example uses
this:

* =

* C H A N G E - P L A Y E R - S U B R 0 U T I N E
♦
CHANGESPLAYER: LD A, (SWITCH) ¿Get current player

CPL ¿Complement the 'switch' byte
LD (SWITCH), A ¿Changed for next player
RET

* === === === === = = = = = = = = === = = = = = = = ===

SOME NOTES ON THE DESIGN
The internal representations of the boards themselves can be
examined in several ways. We could write a routine to display the
contents of the bytes in binary form, we could use the system
monitor to examine the bytes in question, or we could use a dynamic
debugging tool (such as CP/M’s DDT program) to examine memory
areas during execution of a program.
Most of the complexity of our example lies in the representation of
the game, not in the individual instructions used. We would like to
explain a few points about our choice of representation:

• We have chosen to represent each player individually because
when it comes to devising a strategy with the computer playing it

73

ADDRESSING

will be useful to have such separation. Routines that for one
player find the ‘best move to make’ can then be used on the other
board to find the ‘most appropriate blocking move’.
The visual display of the game would of course represent both
players on the same board, it is only the internal representation
that uses separate boards.

• The inner six bits were chosen specifically so that the shift
instruction will, once a column is ‘full up’, push that single bit
representation into bit position 7. We make use of the fact that
this results in a flag being set and are thus able to detect and reject
illegal moves, ie. moves into a full column.

• The co-ordinates of the column and row of a given move could be
passed to a graphics routine that would handle the visual display
of the ‘real’, or displayed, board.

Some of the ideas presented will take time to digest. The essential
idea should be reasonably easy to follow, and routines such as the
‘clear memory’ subroutines should also not take long to understand.
The instructions that make a move and update an internal board
depend on an understanding of how we are representing the game -
this may take time to absorb. Don’t worry unduly if the representa
tion of the game seemed a bit complicated, concentrate on easier
sections. The main thing is to understand what we mean by
‘addressing’ and appreciate the main differences between the various
modes.

LINKING AND TESTING
We have now developed some routines applicable to the game
‘Connect Four’. Obviously these are just first steps in such a
development, but, even at this stage the routines must be checked to
ensure that they work. A common technique (and one which we use
frequently) is to write short ‘test-bed’ controller routines, ie. a short
patch of code is written that uses the subroutines under development
so that we can check their performance. To illustrate how we go
about this we have written a short routine to test the subroutines we
have been looking at.
Our first job was to sketch out a brief ‘controller structure’ using a
Warnier diagram as shown in figure 7.9.

We should point out that the general ideas of the game were in fact
also examined in Warnier form first, that’s how we produced our
initial objectives. Most of the statements in figure 7.9 correspond to
subroutines that we have already written but we would like to make
the following additional observations. The ‘end of game’ statements
74

ADDRESSING

BEGIN TEST ROUTINE
(1 time)

CLEAR MEMORY
(1 time)

GET MOVE
(1 time)

END OF GAME
(0, 1 time)

CHECK MOVE
(1 time)

TEST
ROUTINE

PLAY

MOVE VALID
(0, 1 time)

MAKE MOVE
(1 time)

/ SHOW MOVE
(1 time)

CHANGE PLAYER
(1 time)

END TEST
(1 time)

END OF GAME
(0, 1 time)

ROUTINE

MOVE VALID
(0, 1 time)

Figure 7.9: Warnier representation of the test bed control
routine

imply that we can detect the end of the game - this we cannot do
since there is, as yet, no playing strategy available. With this in mind
we must be satisfied with either testing the routines using an ‘infinite
loop’, or with terminating the controller program when a particular
keyboard character is detected. We choose the latter option and will
arbitrarily use a carriage return to signify the end of game condition.
We also need some temporary ‘show move’ code, for illustration
purposes we adopt a simple solution: we just output the row number
that represents the position in the given column that the latest move
will occupy. In writing the controller routine the aim is only to test
the subroutines we have written.

75

ADDRESSING

To summarise: the controller block starts by clearing the memory,
then we collect a character with the ‘get move’ subroutine. If a
carriage return is detected we end the program, otherwise we check
the move. If the move is illegal (ie. a move to a column that is full)
we ignore it, otherwise we make the move on the internal boards and
display it by outputting the ‘row number’. Lastly we change the
player before returning to collect another move. We have not
included a check to ensure that any column number entered lies
between 0 and 6 since this method of identifying a move is really
only applicable during the development stage where such checks are
not absolutely necessary.
We have kept the ‘test bed’ program listing separate from the listings
of the subroutines developed. This should make it easier for you to
see the basic ideas behind the controller routine, and also allows you
to view the subroutines that we have developed ‘in isolation’. If
problems occur, one useful tip is to modify the controller routine to
eliminate calls to any suspect subroutines. To be safe you may prefer
to start with a controller routine that just calls the ‘clear memory’
subroutine. Once this is working satisfactorily the ‘get move’
subroutine can be included. In this way you can build up the
controller routine one piece at a time.
The layout of the ‘test bed’ program is as follows: We start with a ‘set
up’ block, defining equates, initializing stacks, etc., as required.
Next comes the controller routine which makes calls to the various
subroutines that have been developed. Immediately following this
we place the subroutines that we wish to test, including any other
necessary routines such as input / output routines. Lastly we identify
our data storage areas which sit on top of the program.

»CONNECT- FOUR -TEST-BED -PROG R A Μ

* SET UP BLOCK
*
CARRIAGESRETURN EQU 13
OPERATINGSSYSTEM EQU 5 ; Entry point

ORG 100H
JP STACK
ORG 150H

STACK: LD SP, $-2

* CONTROLLER - ROUTINE
*

CALL CLEARSMEMORY
PLAY: CALL GETSMOVE

LD A, C
CP CARRIAGESRETURN
JP Z, FINISH ;End of game
CALL CHECKSMOVE
JP Μ, PLAY ¡Illegal move so ignore it

76

ADDRESSING

CALL MAKESMOVE
LD A, (HL) ;Get row number for display
OR 00110000B ¿Convert to ASCII equivalent
CALL OUTPUTSROUTINE ; ie. we 'Show move1
CALL CHANGESPLAYER
JP PLAY ¿Back for next move

FINISH: JP 0 ¿Re-boot operating system

* IN THIS
* SHOWN IN

AREA
THE

PLACE SUBROUTINES
SEPARATE LISTING

* (INCLUDE ANY I/O ROUTINES REQUIRED)

* W 0 R
*

K S P A C E - D E F I N I T I 0 N S

ROWSPOINTERSBASE: DS 7 ¿Bit marked 'counter height'
COUNTERSSINSBASE: DS 7 ¿Numeric form 'counter height'

SWITCH: DS 1 ¿Identifies current player
BOARDSBASESA: DS 7 ¿Player A's board bit map
BOARDSBASESB: DS 7 ¿Player B's board bit map

* ===================

* CLEAR
*

-MEM0RY-Z80-VERSI0N

CLEARSMEMORY: LD IX, COUNTERSSINSBASE
LD C, 22

CSMS1: LD (IX+0), 0 ¿Set these bytes to 0
INC IX
DEC C
JR NZ, CSMS1
LD IX, ROWSPOINTERSBASE
LD C, 7

CSNS2: LD (IX+0), 1 ¿Set these bytes to 1
INC IX
DEC C
JR NZ, CSMS2
LD B, 0 ¿We set B and D to 0 in order
LD D, 0 ¿to use ADD HL, BC etc. later
RET

* G
*

E T - Μ 0 V E - Z 8 0 - VERSION

GETSMOVE : CALL INPUTSROUTINE
AND OFH ¿Mask upper four bits
LD C, A ¿Save column no. in C register
LD E, A ¿and as the board Ά' offset
LD A, (SWITCH)
ADD A
JP Μ, GSMS1
LD A, E ¿Get column number back
ADD 7 ¿Board 'B' additional offset
LD E, A ¿Replace offset value in E

GSMS1: RET

77

ADDRESSING

* CHECK-M0VE-Z80-VERSI0N

CHECKSMOVE : LD HL, ROWSPOINTERSBASE
ADD HL, BC ¿Effective HL+C since B=0
LD A, (HL) ¿Image of column's last move
SLA
RET

A ¿Left shift

* MAKE-MOVE-Z80-VERSION

MAKESMOVE: LD
LD
ADD
OR
LD
LD
ADD
INC
RET

(HL), A
HL, BOARDSB)
HL, DE
(HL)
(HL), A
HL, COUNTER!
HL, BC
(HL)

¿ Replace updated column image
ISESA

¿Now HL points into boards
¿Create new board image
¿and replace in memory

ISINSBASE
¿HL now points to count byte
¿Increase numeric count

* C HANG E - P L A Y E R-Z80-VERSI0N
*
CHANGESPLAYER :: LD A, (SWITCH) ¿Get current player

* ========:

CPL
LD
RET

(SWITCH), A
¿Complement the 'switch' byte
¿Changed for next player

78

8
REPRESENTING

NUMBERS

We very much take for granted the facilities offered by high level
languages for adding, subtracting, multiplying and dividing and so
on, and an appreciation of how languages, such as basic, actually
perform the ‘arithmetic’ is useful in gaining insight into the
problems involved when providing such facilities. Our first job is to
look, in a general sense, at the way we represent numbers inside a
computer and it is to this problem that we first turn our attention.
The 8-bit processors, including the Z-80, only have instructions for
performing elementary addition and subtraction. To provide any
thing more sophisticated requires us to program the more complex
procedures in terms of the simple operations that the processor can
perform. We look first at some general ideas and then move on to
relate these ideas to some assembly language routines.

REPRESENTING INTEGERS
With the eight bits of a single byte we can represent numbers from
00000000 binary to 11111111 binary (0 to 255 decimal). To
represent larger numbers we must use more bits. By using two bytes
for the representation we can deal with integer numbers up to the
value 65536 , i.e 1111 1111 1111 1111 Binary. The magnitude of a
number that can be represented in this way is therefore limited by
the number of bytes we choose to assign to its representation.
This form of representation is called ‘unsigned binary’. If we wish to
allow for the occurrence of negative numbers it is necessary to make
provision within the representation of the number to indicate
whether it is positive or negative. This can be done by using one bit
as a ‘sign’ bit. By convention we use the most significant bit, i.e the
left-most bit:

• We set the bit to 0 to represent a positive number and to 1 to
indicate a negative number.

An 8-bit ‘signed binary’ number will therefore have only seven bits
for the numerical value. As an example, decimal 5(101 Binary) can
be represented as follows:

79

REPRESENTING NUMBERS

+5 Signed binary form = 0 0000101
-5 Signed binary form = 1 0000101

Î
Leading bit used to represent the sign of the number

(.This has been separated οηίχ for c L a r i t y)

By using a suitable number of bytes, and using one bit as a sign bit
we can represent both positive and negative numbers of any
magnitude. To a large extent our problems of representation must
surely be over? If we just wanted to represent the numbers then this
would in fact be partly true. The problem is that we don’t just want
to represent the numbers, we want to manipulate them, to add and
subtract and so on. Let us add two positive numbers 4 and 5 as an
example.

+4 is 00000100
+5 is 00000101

Result 00001001 represents '9' (which is correct)

Now we try adding the two numbers - 4 and + 5 :

-4 is 10000100
+5 is 00000101

Result 10001001 represents '-9' (which is incorrect)

The result we should have obtained is +1 so clearly a problem exists
with the representation or in the way we are using it. The solution
lies in using what is called ‘two’s complement’ representation. In this
form, positive numbers are represented in the usual signed binary
form, but for negative numbers we take the ‘unsigned binary’ form
and complement it, i.e turn all the l’s into 0’s and all the 0’s into l’s
(often called the ‘one’s complement’ form). Having done this we add
1 to the result to obtain the final ‘two’s complement’ representation.
It can be shown that if we use this representation the results of
arithmetic operations, including the sign, will come out correctly
(there is one proviso which will be covered shortly').
Let’s work through some examples to get the general idea. First let’s
redo the addition of -4 to +5 that we tried earlier. +5 being a
positive number is represented in usual signed binary form but we
must convert - 4 to its two’s complement in the manner mentioned
above. When we have obtained the correct representation we will
retry our example to see what result we get. The details are shown in
figure 8.1.

80

REPRESENTING NUMBERS

Conversion to the two's comp Lenient form:

00000100 is binary 4
11111011 One's complement form of -4
11111100 Two's complement form of -4

Addition of the two's complement forms:

11111100 -4 (two's complement form)
00000101 +5 (two's complement form)

(1) 00000001 Result +1 (which is correct)

Î ---------------
Carry flag is set in this example

Figure 8.1: Example of addition using two’s complement
arithmetic

One of the rules of two’s complement arithmetic is that the setting of
the carry flag itself can safely be ignored.
If the magnitude of a result is too large to be expressed within the
bits allotted for the representation of the numerical part of the
number then it is possible for the sign bit to be changed accidentally.
This is called ‘overflow’ and the effect is that an incorrect result is
obtained.
The most obvious cause of such an error is an ‘internal carry’ from
bit 6 to bit 7 as the following example shows:

0 0111111
0 1000001

two's complement form of +63
two's complement form of +65

1 0000000

Î
the 'sign' bit has been changed by
a carry from bit 6 to bit 7

Overflow can also occur when we add two negative numbers. In
general it will occur when the result cannot be expressed in the seven
bits available. It is obviously useful to be able to detect such a
condition and most processors, including the Z-80, have an
‘overflow’ flag for this purpose.

Multiple-byte integers

The magnitude of the largest integer we can represent is governed by
the number of bytes we use. We can show you the general idea by
looking at how Microsoft’s basic stores the ‘integer variables’. When
you write the basic statement LET XX = 10, the percent sign

81

REPRESENTING NUMBERS

indicates that an integer variable, X%, is being assigned the value 10.
Can we write a basic program to look at the internal representation
of such a number? Yes we can, and it is very easy to do. The function
VARPTR(XX) is used to obtain the address of the variable X/Í. This
byte and the contents of the following byte are examined using the
P E E K () function, (after prior translation to hexadecimal form by use
of the H E X $ () function). For hex numbers less than 16, the H E X $ ()
function returns only one character (eg: F rather than 0 F), so we add
the ‘0’ to such numbers from within the program. The following
program asks for an integer value and prints the hex form of the
internal representation.

4 REN ===
5 REM PRINT HEX REPRESENTATION OF INTEGER XX
6 REM __
10 INPUT1PIea se enter integer value'; XX 'Input an integer value
20 MSB$=HEX$(PEEK(VARPTR(XX) +1)) ' Most significant byte
30 IF LEN(MSB$)=1 THEN MSB$= '0'+MSBS
40 LS B$=H EX $ (PE E K (V A R PT R (XZ))) ' Least significant byte
50 IF LEN(LSB$) = 1 THEN LSB$=10 ' + LSBS
60 PRINT MSBS+LSBS' Shows how XX is stored
70 END
80 REM ==

Note:
The function VARPTRO, which is an abbreviation of ‘variable
pointer’, is normally used to pass addresses of variables from a basic
program to an assembly language routine.
If you run this program with the number 15 you will get 000F,
which corresponds to the binary number 000000000000 1111. If
you try -66 you will get FFBE and the following details show the
reason why:

< MSB > < LSB >

66 = 0000 0000 0100 0010 Binary
Complement 1111 1111 1011 1101
add 1 1

Two's comp lenient form 1111 1111 1011 1110
Equivalent Hex form FF BE

FLOATING POINT NUMBERS
The representation of wide ranges of decimal numbers has its own
special problems. The usual way of coping with wide variations in
magnitude is to use scientific notation, for example 26063.15 can be
represented as 2.606315 x 104, -0.000003415 can be written -3.415 x
IO-6. This gives a clue to providing a similar computer representa
tion. We need to reserve bits for the mantissa, and further bits for
the exponent. We also need to indicate the signs of each part of the
82

REPRESENTING NUMBERS

number. In scientific notation we ‘normalize’ the number by moving
the decimal point to a position where the mantissa takes a value
between 1 and 9.999. It turns out that for floating point representa
tion it is better to move the ‘binary point’ to the far left of the
number:
111.1101 is represented as .1111101 x 23
0.0000111 is represented as .111 x 2-4

The general floating point format is based on the following type of
scheme, m and n varying according to the number of bits chosen but
the following schematic form will illustrate the essential idea.

1 bi t n bi ts 1 bi t in bi ts
Sign Exponent Sign Mantissa

BINARY CODED DECIMAL NUMBERS
For some applications it is necessary to have complete numerical
accuracy - an often quoted example is the use of computers in
accountancy. For these applications an alternative representation
called ‘binary coded decimal’ or ‘BCD’ is sometimes used.
The principle is to code each digit separately, using as many bits as is
necessary. Each digit reqires four bits with some combinations being
unused:

BCD Number
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010-1111

0
1
2
3
4
5
6
7
8
9
Unused codes

Two digits are packed into each byte, thus the amount of space a
number will require is dependent on how many characters are
present. The advantage of representing numbers in this way is that
complete accuracy is obtained. The disadvantages are firstly that
more memory is required to store the numbers, and secondly that
arithmetic operations are slower.

83

REPRESENTING NUMBERS

Having briefly described some of the more common ways of
representing numbers within a computer we turn our attention to
some simple routines that use some of the forms we have discussed.
Firstly, however, try this experiment - take a number and multiply
it by 2, by 4, and by 8. Express the number and all of the products in
their binary form and see what you notice about the bit patterns.

ARITHMETIC OPERATIONS
The basic arithmetic instructions available on the Z-80 processor are
for addition and subtraction. Certain instructions allow 16-bit as well
as 8-bit operands to be dealt with.

ADDITION
On the Z-80 the basic addition instructions take the general form
‘ADD A, operand’. The function performed is to add the specified
operand to the value already present in the accumulator and in
symbolic form we can write A«—A + operand. Various forms of
addressing are possible when specifying the operand and some
typical examples are shown below:

ADD A, 8
Adds the immediate value 8 to the accumulator, performing the
function A*-A + 8.
ADD A,B
Adds the contents of the B register to the accumulator thus
performing the function A* —A + B.
ADD A,(HL)
Adds to the accumulator the contents of the byte whose address is
specified by HL like this A«—A + (HL).
ADD A,(IX+d)
In the indexed addressing form the address of the byte to be added is
found by adding a specified displacement to the address held in
index register IX. The symbolic representation is A«—A + (IX+d).

Instructions also exist that enable 16-bit operations and these use
HL, IX or IY as destination registers. Typical examples are as
follows:

ADD HL,DE
This adds the contents of the DE pair to the contents of HL thus
performing HL<—HL+DE.
ADD IX,BC
In a similar fashion to above this adds the contents of BC to the index
register IX (IX^IX+BC).

84

REPRESENTING NUMBERS

All of the instructions looked at so far affect the flag register, but,
because of the way the carry flag is used during multi-byte addition
another addition instruction is made available. On the Z-80 the
instruction 'add with carry’, ADC, will include in the ‘addition’ the
carry flag value, i.e ADC A,B will perform the function A* —A + B +
carry.

The usefulness of this instruction can be seen from the following
example. We will add two ‘two byte numbers’ 255 and 257 by adding
the two low bytes first and then adding the two high bytes.

I------------------------------ Lou byte addition causes
the carry to be set

HIGH BYTES LOW BYTES

0000 0000 1111 1111 OOFF hex = Decimal 255
0000 0001 0000 0001 0101 hex = Decimal 257

0000 0010 (1) 0000 0000 <-— Result of addition

Carry flag

High byte addition
ui th ADC inc tudes
the carry value

The addition of the low bytes causes a carry to occur. This carry
must be taken into account when the high bytes are added and this is
precisely what the Z-80 ‘add with carry’ ADC instruction does. It is
therefore performing the function that is shown by A«—A +
operand + carry. As a general rule, multi-byte addition is
performed by using a normal addition instruction for the first - least
significant - bytes, and using the add with carry instructions for
succeeding bytes. Let us now write a short program to add the
contents of two two-byte numbers held in locations labelled
FIRSTSNUMBER and SECONDSNUMBER. We assume, as is common
convention, that the least significant bytes are held at the labelled
address, with the most significant bytes following (as figure 8.2
shows). The result will be placed in two further locations the lowest
of which is labelled RESULT.

The program takes the following form. The accumulator is loaded
with the least significant byte of one of the numbers,
(FIRSTSNUMBER), and HL is loaded with the address of the least
significant byte of the other number, SECONDSNUMBER. The
instruction ADD A,(HL) is then used to add the byte specified by HL
to the accumulator, thus performing the additions of the low bytes.
This result is stored and the accumulator re-loaded with the second
byte of the first number. HL is incremented so that it then points to

85

REPRESENTING NUMBERS

the second byte of the second number, and an ADC instruction used
to obtain the high byte of the result which is then stored in address
RESULT+1.

Z-80 - 16 BIT - ADDITION

LD HLZSECOND$NUMBER ¿HL points to low byte of 2nd number

LD A, (FI RSTSNUMBER) ; Ge t low byte of 1st number in Acc.
ADD A,(HL) ; Add low bytes

LD (RESULT),A ; Sto re low byte of result

LD A,(FIRSTSNUMBER+1) ; Get high byte of 1st number
INC HL ¿Now points to high byte of 2n d number
ADC A,(HL) ; Add high bytes + carry

LD (RESULT+1),A ; S t o re high byte of result

Because of the existence of double register addition instructions it is
possible on the Z-80 to write a much simpler 16-bit addition
program. DE and HL can be loaded directly with the numbers to add
and an ADD HL,DE instruction used to perform the 16-bit addition
with one addition instruction.

Z-80 - ALTERNATIVE 16 BIT ADDITION

LD DE,(FIRSTSNUMBER) ;Load DE with 1st number
LD HL,(SECONDSNUMBER) ;Load HL with 2nd number

ADD HL,DE ¿Performs HL <-- HL + DE
LD (RESULT),HL ¿Store result

RESULT:

SECONDSNUMBER :

FIRSTSNUMBER :

Figure 8.2: Layout in memory of the two byte numbers
86

REPRESENTING NUMBERS

SUBTRACTION
As with the addition instructions it is useful to have two types of
subtraction, normal subtraction and subtraction with borrow.
Normal subtraction (mnemonic is SUB) is used for the least
significant or ‘low bytes’; subtraction with borrow (mnemonic SBC)
is used for the succeeding bytes. Most of the instructions in the
following program are identical to the earlier addition program. If
after the subtraction of the least significant bytes the carry flag has
been set then this indicates that the value subtracted from the
accumulator is greater than the accumulator value itself, i.e a borrow
has occurred. The SBC instruction allows for this ‘borrow’ by
including the carry flag value in the subtraction.

* Z-80 - 16 BIT - SUBTRACTION
*

LD H L,SECOND$NUMBER ;HL points to low byte of 2nd number
LD A, (FI RSTSNUMBER) ;Get low byte of 1st number in Acc.
SUB (HL) ;Subtract low bytes
LD (RESULT),A ¡Store low byte of result
LD A, (FIRSTSNUMBER +1) ;Get high byte of 1st number
INC HL ;Now points to hi byte of 2nd number
SBC A,(HL) ¡Subtract high bytes with borrow
LD (RESULT+1),A ¡Store high byte of result

A more compact version using HL and DE can also be written and
again this is similar to the equivalent addition program. The only
difference to be noted is that the only subtraction instruction
available for the double register operations is a subtract with carry.
This being so we clear the carry flag by AN Ding the accumulator
with itself thus producing a ‘normal subtraction’ (there is no explicit
‘clear carry Z-80 instruction’ that could be used).

* Z-80 - ALTERNATIVE 16 BIT SUBTRACTION

LD DE,(FIRSTSNUMBER) ¡Load DE with 1st number
LD HL,(SECONDSNUMBER) ¡Load HL with 2nd number
AND A ¡Clear the carry flag
SBC HL,DE ¡Equivalent to HL <-- HL - DE
LD

* ============
(RESULT),HL ¡Store result

The above ideas can be expanded to any number of bytes and the
general principles remain unchanged but for now we shall turn our
attention to the slightly more complicated problem of multiplication
and division. The algorithms for multiplication and division are
similar and can be found from many sources. Once one algorithm is
understood the understanding of the other follows quite easily. This
being so we are going to restrict our examination to that of
multiplication.

87

REPRESENTING NUMBERS

MULTIPLICATION
Consider the following base 10 product:

25 <— Multiplicand
12 <— Multiplier

25 <— Partial products
50

300 <--- Result

Let us take the simple product shown above and do the same
calculation using base 2, i.e binary arithmetic.

110 0 1 <— Multiplicand
<— Mui t i pli er

(25)
(12)110 0

110 0 1 <— Partial products
1 1 0 0 1

0 0 0 0 0
0 0 0 0 0

0 0 10 110 0 <— Result (300)

The important point is that the partial products are either zeros or a
shifted version of the multiplicand. We can use this knowledge to
devise an algorithm for binary multiplication. For each bit in the
multiplier we must ask, ‘is this bit set to 1?’, if it is then we add the
shifted equivalent of the multiplicand to the result. Two approaches

BEGIN

SET RESULT TO ZERO

LEAST SIGNIFICANT BIT
OF MULTIPLIER = 1

RESULT=RESULT +
MULTIPLICAND

8-BIT
MULTIPLY

COMPUTE
PARTIAL
PRODUCT
(8 times)

LEAST SIGNIFICANT BIT
OF MULTIPLIER = 1

SKIP

LEFT SHIFT THE MULTIPLICAND

RIGHT SHIFT THE MULTIPLIER

END
__

Figure 8.3: Warnier diagram for an 8-bit multiply.
88

REPRESENTING NUMBERS

are possible, we can either ‘left shift’ the multiplicand during the
operations or we can ‘right shift’ the bytes or registers that are
storing the result. The Warnier diagram for a basic 8-bit multiply
algorithm is shown in figure 8.3.

Before showing some typical code for an 8-bit multiplication we need
to understand the general ideas behind creating 16-bit shifts. In
general the left shift operations available on our microprocessors will
push bit 7 into the carry flag. When attempting to left shift a 16-bit
(i.e 2 byte) value we can use a normal left shift on the low order byte
as follows:

LOW ORDER CONTENTS BEFORE LEFT SHIFT INSTRUCTION

b7 b6 b5 b4 b3 b2 b! bO

Carry
f lag

LOW ORDER CONTENTS AFTER LEFT SHIFT INSTRUCTION

(b7) b6 b5 b4 b3 b2 b1 bO 0

f
This bit is

set to zero

Bit 7 falls into the carry flag and to obtain a 16-bit shift we now wish
to shift this bit, now in the carry flag, into bit 8 of the 16-bit number,
i.e we want to push this carry value into bit 0 of the high order byte.
We need an instruction that performs a left shift that includes the
carry and the most commonly implemented instructions that
perform this are called rotation instructions. Rotation to the left thus
has the following effect.

HIGH ORDER CONTENTS BEFORE LEFT ROTATION

b7 b6 b5 b4 b3 b2 b1 bO

(b7)

HIGH ORDER CONTENTS AFTER LEFT ROTATION

b6 b5 b4 b3 b2 b1 bO C

89

REPRESENTING NUMBERS

By utilizing a combination of left shift on the low order byte, and a
left rotation (through the carry) on the high order byte we can left
shift a 16-bit number held in two bytes or in two 8-bit registers. The
principles can of course be extended to any number of bytes as
required. Similar instructions are usually available for the equivalent
right shifts and right rotations. Occasionally you will find tricks
being used to create 16-bit left shifts. One favourite on the Z-80 is
using the double register addition instructions to add a register pair
to itself: ADD HL,HL results in a 16-bit arithmetic left shift.
Let us see how these ideas help to produce a simple multiplication
program that takes an 8-bit number held in a location labelled
MULTIPLICAND, multiplies it by a second number held in location
MULTIPLIER, and finally places the result into the two bytes
starting from the lowest byte which has been labelled RESULT as
shown in figure 8.4.

The following code is split into two parts. Firstly we load the
registers with the following data: HL is loaded with the address of the
multiplier and register C is then loaded with the multiplier itself
(using indirect addressing through HL). A ‘bit count’ of 8 is loaded
into the B register and this will be used to count how many times we
have gone through the ‘multiplication loop’. The HL pair are then
incremented so that they then point to the multiplicand, which is

Figure 8.4: Layout in memory of 8-bit multiplication

placed in the E register using a LD E,(HL) instruction. Register D is
set to zero because, although the multiplicand is only 8 bits we will
need 16 bits available as we do the 16-bit left shift operation
explained earlier. Finally HL is set to zero and will be used to collect
the result prior to storing it in locations RESULT and RESULT + 1.
The second section of code is the actual multiplication itself. We use
a right shift operation on the C register so that the least significant bit
goes into the carry.

90

REPRESENTING NUMBERS

This means that if the carry becomes set then the least significant bit
was a 1. The carry flag is tested and if it has not been set then the
partial product is zero and we skip the addition. Before moving on to
the start of the loop again the DE pair is shifted using a left shift
followed by a left rotation, and the ‘bit counter’, B, is decreased. If B
is not zero then we repeat the loop again otherwise the final result is
stored in RESULT and RESULT+1.

* =======
*
*

Z-80 EIGHT BIT MULTIPLICATION

LD HL,MULTIPLIER ¿HL points to multipLier
LD C,(HL) ;Get multiplier in C register
LD B,8 ;B is used as a 'bit' counter
INC HL ¿Now HL points to multiplicand
LD E,(HL) ¿Get multiplicand in E register
LD D,0 ¿Now DE = multipli cand!

*
LD HL,0 ;HL will be used to hold result

MULTIPLY: SRL C ¿Least sig. bit (multiplier) into carry
JR NC,SKIP ; Indi cates Least si g. bit is zero
ADD HL,DE ¿Add partial product to result

SKIP: SLA E ¿Left shift multiplicand low byte
RL D ;Left rotate high byte through carry
DEC B ¿Decrease bit counter
JP NZ,MULTIPLY ;Do next bit

* =======
LD (RESULT),HL ¿Store result

This ‘first attempt’ code can be shortened and improved in several
ways. The Z-80 has a combined 'decrement and relative jump on not
zero’ instruction. It operates using the B register as the counter: it
decreases the B register by 1, then if B<>0 the relative jump is
performed. Another improvement is also possible but is less
obvious. If the multiplier is placed in the H register and the L
register set to zero then the instruction ADD HL,HL will perform a
16-bit left shift. As the multiplier is shifted out during processing we
create room to store the result in HL.
To take advantage of this arrangement we must shift the multiplier
to the left to deal with the most significant partial product first. We
can also tighten up the initial loading code by loading HL as a register
pair starting one byte below the multiplier (so that the multiplier
goes into the H register). The L register can be cleared after this
16-bit load ready to receive the result. A similar trick can be used to
load the multiplicand into the E register.

These improvements have been made in the version shown below.
Bear in mind that we have now made processor specific enhancements,
we have not improved the basic steps of the algorithm but have, by
appropriate choice of registers and a 16-bit left .shifting trick,
produced a better practical implementation.

91

REPRESENTING NUMBERS

Z-80 EIGHT BIT MULTIPLICATION - VERSION 2

LD HL,(MULTIPLIER-1) ;Get multipLier in H register

LD L,0 ;Clear to zero
LD B,8 ;B is used as a 'bit' counter
LD DE,MULTIPLICAND ;Get multiplicand in E register

LD D,0 ¿Nou DE - multiplicand!
*
MULTIPLY : ADD HL,HL ; 16 bit (eft shift

JR NC,SKIP ¿Indicates most sig. bit is zero
ADD HL,DE ¿Add partial product to result

SKIP: DJNZ MULTIPLY ;Do next bit
LD (RESULT),HL ¿Store result

FINAL WORD
Before leaving the subject of number representation, did you try the
left shift experiment suggested earlier? If you did you will have
found that shifting a number to the left is equivalent to multiplying
the number by 2. Similarly two left shifts are equivalent to
multiplying by 4. In general an n-bit left shift will multiply the value
by 2 raised to the power ‘n’. Occasionally these ideas can be used to
avoid having fully fledged multiplication routines within your
programs. As an example the addresses of descriptors such as those
mentioned in chapter nine are easily calculated by shifting - if the
descriptor lengths are 2, 4, or 8 bytes in length.

92

The use of appropriate data structures plays a vital role in the final
efficiency of a program. The use of inappropriate representations
can result in programs which, in use, perform poorly. A data
structure describes the different ways in which we can impose a
‘logical’ structure onto a set of data. We will start by looking at some
basic data types and the corresponding ways in which they can be
represented within a computer.

FIXED AND VARIABLE LENGTHS
Sets of alphanumeric characters, ‘strings’ in basic, are usually
represented by sets of equivalent ASCII codes (the ASCII code
descriptions are given in appendix C). Numeric data (chapter 8) may
be represented in various ways, with unsigned and signed binary,
two’s complement, BCD and floating point forms being the most
common. We can make the immediate distinction between repre
sentations, such as floating point numbers which have a fixed length,
and representations such as text strings in which the data items have
variable length. The distinction is important because it affects the
way in which we handle such items within the computer (see figure
9.7).
REPRESENTING DATA
One simple way of representing variable length data within a
computer is to use a suitably sized block of memory and delimit each
item with a specified character (such as '* ’). This simple scheme can
be illustrated by considering the following list of names JOHN,ANDY,
SUE, PAUL.

Such a representation has the obvious disadvantage that the list must
be searched sequentially in order to locate a particular item, the
situation improves when we use fixed length data. Figure 9.2
provides a typical example of this with four bytes being allocated for
each item. Here we do not need to delimit each piece of data
explicitly, nor do we need to search the complete list to find, say, the
3rd item. For all items in such a table we can easily calculate the
address of the nth item as BASE + 4 times (n-1). Fixed data length
table structures are simple to create and manipulate.

93

DATA STRUCTURES

BASE

MEMORY LOCATIONS —►

Figure 9.1: Part of a sequential block of character data

One disadvantage with this simple fixed data length approach is that
if you try to store variable length data it will waste memory space.
Another, more important, is that you must still search the whole of
the table if you wish to see if an item of particular value X is present.
This can be overcome by building the table in an ordered manner. If
sorted tables are created they can be searched efficiently by using
techniques such as 'Binary searching’. Static tables (such as look-up
tables) which are used but not altered are commonly created using
table structures - they can be designed for efficient retrieval from the
start.
The major problem with table structures occurs while trying to keep
them in their correct order when data is added or deleted. It
94

DATA STRUCTURES

MEMORY LOCATIONS

BASE

i '

Four bytes N1 - NA
are used for each
data item

Figure 9.2: Fixed data length items do not need delimiting

invariably results in the need to move large blocks of data -
unsatifactory in many applications where data is changed frequently.
With variable length items the problems are aggravated because of
the different lengths involved. In both cases as the tables increase in
size any problems become ever more apparent.

STACKS
The stack is a Last In First Out (LIFO) structure and should already
be familiar since the Z-80 uses one to store its return addresses. To
implement a stack structure a block of memory is reserved and a
‘pointer’; a two byte location or register is used to indicate the
current ‘top’ of the stack. As data is placed on the stack, so the stack
pointer is adjusted accordingly. When data is removed it is removed
starting from the pointer address. The result is an effective
implementation of a ‘Last In First Out’ structure. The fact that
addition and deletion occur only at one end is a distinctive feature of
the stack structure. Another distinctive feature is that the items on
the stack do not, during the process of addition and deletion, get
physically moved around in memory. It is of course perfectly
possible to implement a LIFO structure by using a ‘linked list’ (see
later), rather than using a contiguous block of memory as does the
Z-80.

95

DATA STRUCTURES

LINKED LISTS
To a large extent it is true to say that the simpler forms of
representing data in blocks, tables and so on are unsuitable for
representing data which is required to be kept in ordered form but
which is ‘dynamically changing.’
Linked lists go some way towards solving the objections in a way
that is suitable for dynamically changing data. To understand what
linked lists are, and how they can be created, it is necessary to
understand clearly the concept of using ‘pointers’ to imply logical
orders within data sets. Consider the four names JOHN, ANDREW,
SUE and PETER in that order. We can superimpose a ‘logical
ordering’ onto the existing physical order by the use of arrows.
Figure 9.3 shows two examples.

Physical Order Superimposed Logical Order

1 JOHN

2 ANDREW

3 SUE

4 PETER

1 JOHN

2 ANDREW

3 SUE

4 PETER

ANDREW

JOHN

— JOHN -4-----

-►ANDREW

SUE --------------

— PETER—J

Implied
Alphabetical
Order

Implied
Word length
Ordering

Figure 9.3 : Using ‘arrows’ to impose a logical ordering onto
data

Such a technique has an identical parallel in the world of computing.
We can include, either within the data or external to it, a pointer to
indicate the next item in the ‘logical order’. In assembly language
programming this pointer will most likely be an address, in higher
level languages it may be a record number or the number of an
element in an array.
For our purposes we can define a pointer as a two byte address from
which a data item may be obtained. Usually a data item will consist
of more than one byte and the most common convention is that a
pointer will hold the address of the location of the first byte of the
‘set’. Two types of pointers are distinquished, those that are
embedded within the data, and those that are separated.

96

DATA STRUCTURES

Pointers are used to implement most of the common data structures
including linked lists. If we consider our earlier example of the list of
names JOHN, ANDREW, SUE and PETER, then we could re-write our
‘arrow’ notation of an imposed alphabetical order relation as shown
below.

PHYSICAL ORDER ITEM
IN MEMORY

NEXT ITEM
POINTER

1. JOHN JOHN 4
2. ANDREW ANDREW 1 (S)
3. SUE SUE 0 (E)
4. PETER PETER 3

Starting from item 2, the ‘head’ of the chain, we can use the pointers
to move through! the data items in the order Item 2—»Item 1—»Item
4—»Item 3. We need to know the location of the start or ‘head’ of the
chain and additionally we must provide some way of knowing when
we have reached the end of the chain. In the above diagram we use
(S) for the head and (E) for the end. Common practical solutions
involve keeping a record of the address of the head of the chain and
using a null pointer (such as a zero address) to signify the end of the
chain. We can easily use the same data items as parts of more than
one list simply by adding additional pointers:

ALPHABETICAL
ORDER

WORD-LENGTH
ORDER

PHYSICAL ITEM NEXT ITEM NEXT ITEM
ORDER IN MEMORY POINTER POINTER

1. JOHN JOHN 4 4
2. ANDREW ANDREW 1 (S) 0 (E)
3. SUE SUE 0 (E) 1 (S)
4. PETER PETER 3 2

The advantages in this type of representation may be seen if we now
add a further item to our list. Let us add the name CATHERINE. To
do this we place the item at the end of our data list, but we adjust the
pointers as explained in the following alphabetical example. Since
the word CATHERINE comes before JOHN but after ANDREW
(alphabetically) we must change the A N D R E W pointer so that it points
to CATHERINE rather than JOHN. We must then associate with
CATHERINE a pointer to the item JOHN. In this way we have
maintained the logical order. We can do a similar exercise with the
other pointers (ie. those relating, to the word length order). If we do
this we obtain the following representation:

97

DATA STRUCTURES

ALPHABETICAL WORD-LENGTH
ORDER ORDER

PHYSICAL
ORDER

ITEM
IN MEMORY

NEXT ITEM
POINTER

NEXT ITEM
POINTER

1. JOHN JOHN 4 4
2. ANDREW ANDREW 5 (S) 5
3. SUE SUE 0 (E) 1 (S)
4. PETER PETER 3 2
5. CATHERINE CATHERINE 1 0 (E)

The name CATHERINE has been added to the end of the data, and we
have maintained not just one, but both ordered lists in their correct
forms without physically rearranging the data.

MULTIPLE LINKS
As well as forward pointers it is possible to use pointers which point
to the preceding item. It is frequently useful to include both forward
and backward links to further facilitate deletion, insertion and other
functions.

CIRCULAR LISTS
Linked lists in which the last element points back to the first are
often used in multiple servicing routines and certain ‘hashing’
techniques (key to address transformation!). It is necessary to keep
track of which item is currently ‘active’ in such lists.

QUEUES
These are First In First Out (FIFO) structures. They can be
implemented in various ways, for example by making additions to
the end of a linked list.

TREES
Trees are extremely important structures and enable particularly
efficient sorting and searching routines to be developed. An introduc
tion to the concept of a tree structure is given in chapter 10.

A WORKING MODEL
The example that has been selected gives a simple illustration of the
use of ‘pointers’ and also helps to illustrate how a particular problem
can be broken down to provide sufficient useful information to
create the final assembly language code. We will collect text from the
keyboard and store it in an area of memory designated as ‘string
space’. As we do so we will build a ‘descriptor’ set to tell us the size
and location of each entry in memory (this information will be used
to print back the list of entries when input is complete).
98

DATA STRUCTURES

STRING INPUT ROUTINE
We will require an input routine to collect a string of characters from
the keyboard. We will place those characters in a 'buffer' - an area of
memory in which we can temporarily place items before we transfer
or use them. The buffer will have a fixed address and we shall label
its start as TEXTSBUFFER in our source program. To transfer
characters we will need to keep track of how many characters have
been collected, so a character count will be needed. We can identify
an arbitrary, but suitable, buffer format as follows:

TEXT BUFFER COUNT TEXT AREA

SPACE TO BE 1 BYTE—► ------------------------------- 255 BYTES
ALLOTED

The source program will include a reserve data space declaration
such as:

TEXTSBUFFER: OS 256 ;Byte 1 =Count :Bytes 2 - 256 =Data

Assume that input words will be typed in and followed by a carriage
return. The essential structure required is shown in figure 9.4.
This is similar to structures examined in chapters 5 and 6. This type
of coding can be written from the diagram and in this particular case
the ‘nested subroutine’ arrangement is unnecessary.
Overall operation is straightforward: pointers are set up and a simple
loop is used to collect the input character and store it in the buffer
area. Each time a character is obtained which is not a ‘carriage
return’ it is stored and the count increased. The C register will be
used for the count and strings will be restricted to 255 bytes or less
(we will initialize BC to zero, rather than just C because this will
prove useful later). HL is loaded with the address of the start of the
buffer and then a loop is used to collect characters. As input is
collected we check to see if a carriage return has been typed. If the
character is not a carriage return then it is placed into the buffer area
using HL as an indirect pointer. As soon as a carriage return is
detected we jump out of the loop and perform a ‘close buffer’
operation. This entails writing the ‘count’ (the contents of the C
register) at the start of the buffer. Here is a starting point:

99

DATA STRUCTURES

BEGIN GET-WORD
(1 time)

INITIALIZATION

BEGIN BUILD-STRING
(1 time)
INPUT A CHARACTER
(1 time)

SYSTEM CALL

INCREMENT COUNT
IN MEMORY

GET-WORD BUILD-STRING
(1 ,n times)

CARRIAGE RETURN
(0,1 time)

BUFFER FULL/ SKIP
(0,1 time) { AND

EXIT

BUFFER FULL) STORE
(0,1 time) < CHAR IN
. I BUFFER

CARRIAGE RETURN
(0,1 time)

SKIP AND EXIT
ROUTINE

END GET-WORD
(1 time)

END BUILD-STRING
(1 time)

WRITE COUNT TO BUFFER

Figure 9.4 : Essential input requirements

*
*
*

G E 1• - W 0 R D - S U B R 0 U T I N E

GETSWORD : LD BC,0 ¿Initialize count

LD HL,BUFFERSSPACE ;Start of buffer
BUILDSSTRING: CALL INPUTSROUTINE ¿System call

CP CARRIAGESRETURN ; i s it a CR ?
JR Z,CLOSESBUFFER
INC C ¿Increase count
INC HL ¿Increment pointer

LD (HL),A ¿Store character
JR BUILDSSTRING ¿Back for next character

CLOSESBUFFER: LD HL,BUFFERSSPACE ¿Need start address again

LD (HL),C ¿Store character count
RET ¿Return from routine

*

As an initial attempt, the above routine is fine except for one thing -
a check has not been made to see if the input string is greater than
255 characters. The easiest solution is to check the count immediate
ly after the INC C instruction. If C goes over 255 the zero flag will be
set. The additional check is simple to implement: we use a relative
100

DATA STRUCTURES

jump on zero instruction to branch to CLOSESBUFFER if the zero flag
has been set. Since C is incremented fromm 255 to 0 when the buffer
overflow is indicated the effect is that an oversize entry will be
completely ignored and treated as a ‘null entry’.
The additional instruction has been added in the final version shown
below. The call to CRSLF is a carriage retum/line-feed routine, a
subroutine to output ASCII codes 13 and 10 together. Such a routine
may be available as a system call or it may be necessary for you to
write a short subroutine to perform the function. Without such a
routine the input words will display as a single continuous line of
characters.

* GET-WORD-SUBROUTINE
*
GETSWORD: LD 8C,0 ¿Initialize count

LD HL,BUFFERSSPACE ¿Start of buffer
BUILDSSTRING : CALL INPUTSROUTINE ¿System call

CP CARRIAGESRETURN ¿is it a CR ?
JR Z,CLOSESBUFFER
INC C increase count
JR Z,CLOSESBUFFER ;8uffer is full
INC HL increment pointer
LD (HL),A ¿Store character
JR BUILDSSTRING ¿Back for next character

CLOSESBUFFER: LD HL,BUFFERSSPACE ;Need start address again
LD (HL),C ¿Store character count
CALL CRSLF ;Output Carriage return

¿and Line feed
RET ¿Return from routine

* ===

TRANSFERRING DATA
To transfer data from the buffer we need a source address and a
destination address. The source address is the buffer. The destination
address depends on the next byte of the string space that is available.
This will vary as we add data, so we will keep track of the address in
a two byte static variable that called NEXTSFREESSTRINGSSPACE.
In the source program we shall see a further space declaration such
as:

NEXTSFREESSTRINGSSPACE DS 2 ¿Next free string space location

It will of course be necessary to initialize these locations to a suitable
value.This may be done using instructions at the start of the
program or it may be done within the source code by using a ‘define
bytes’ assembler directive.
A simple definition of a descriptor is that it is an external ‘pointer
set’ identifying certain characteristics about a data item. Our
descriptors will contain the size of a data item and the address of the

101

DATA STRUCTURES

first byte of the item. Since we restrict the size of an any input string
to 255 bytes or less, we can hold the ‘count’ in one byte of the
descriptor. Two bytes are required for an address so each descriptor
will require a total of three bytes. As always the Z-80 address
convention is used, with the low byte of the address being stored
first. The following illustration shows the schematic layout of the
descriptor.

High byte of address

Low byte of address

BASE OF THIS Number of characters in string

DESCRIPTOR -------- ». ___

When placing an incoming item into string space, it is necessary to
create a suitable descriptor for the item.
A special two-byte count variable is reserved to keep track of the
number of descriptors created. We will call it DESCRIPTORSCOUNT
and it will be defined as the last two bytes of the object program. It
will therefore reside immediately below the base of the descriptor
table giving certain practical advantages. For convenience a record
of the descriptor size (3 in this case) will also be kept in a two byte
variable called DESCRIPTORSSIZE.
The overall layout or memory map for our example should now be
becoming apparent. A typical schematic outline for our selected
memory use is shown in figure 9.5

The start of the program will depend on the particular computer
being used, as will the address of the start of string space - it is up to
you to decide which area of memory is appropriate. The most useful
general point is that these memory arrangements are essentially
arbitrary. You can as easily have descriptors building down from
‘high memory’ and strings moving upwards from above the end of
the program’s static variable area.
If we assume for the present moment that a ‘word’ is already
available in the buffer area then we can consider details of the
transfer mechanism. Firstly it will be helpful if we can use one of the
automated ‘block transfer’ instructions. We have chosen to use the
decrement form of the repeating block load, LDDR, since this will
simplify the transfer coding. To do this we must use HL as a source
pointer, DE as a destination pointer, and BC as a two byte counter.
With this arrangement in mind we define the following uses for the
registers and register pairs shown in figure 9.5.
102

DATA STRUCTURES

START OF
STRING SPACE

Example of
Static variable —►
Space
ie. locations are
fixed at assembly
t i me

Example of
Dynamic --------------►
Variable
Space
ie. space is
al located
as required
during 'run time'

OPERATING SYSTEM

STRING SP
DOWNW

ACE IS USED
ARDS

t
DESCRIPTORS ARE BUILT

UPWARDS

DE S CR IPTORSCOUNT

DESCRIPTORSSIZE

NEXTS F REESSTRINGSSPACE

STARTSOFSNEXTSDESCRIPTOR

DATA AREA FOR
OTHER STATIC DATA

IN THE PROGRAM
eg. BUFFER SPACE

PROGRAM ITSELF

Figure 9.5 : Memory map for the example program

BC: Register C will be used to hold the count of the number of
characters in the buffer. By initializing BC to zero during the
‘Get-word’ subroutine we ensure that BC = C.
DE: is used as the ‘destination’ pointer. It will point into string
space.
HL: This will be the ‘source’ pointer and will point into the buffer.
IX: Will point to the first free byte above the existing descriptor set.
The value will come from the static variable we have called
STARTOFNEXT$DESCRIPTOR. The IX pointer will be used to put
data into new descriptors.

COPYING DATA INTO STRING SPACE
We are assuming here that IX and DE have been set up to point to
the base of the new descriptor and the next free string space byte
respectively.

103

DATA STRUCTURES

The block transfer instructions provide a means of automating the
movement of blocks of data. LDDR is one such instruction and we
shall use it to transfer data from the buffer to the string space area.
To use LDDR it is necessary to load HL with the source start address,
DE with the destination start address, and BC with the number of
bytes to be transferred. The instruction will transfer the byte
pointed to by HL to the byte addressed by DE, it will then decrement
BC, HL and DE and if BC is not equal to zero the instruction will be
performed again. This repetition will continue until BC becomes
equal to zero.
On leaving the ‘Get-word’ subroutine, HL and BC contain the start
address of the buffer and the character count, consequently an ADD
HL,BC instruction will ‘point’ HL to the last character placed in the
buffer. This sets up HL as the source pointer for an automated
transfer. At this point we have to place the character count into the
first byte of the descriptor because otherwise the LDDR transfer will
destroy the count value. After the block transfer DE will be pointing
to the byte below the last byte of string space used, this is used to
update NEXT$FREE$STRING$SPACE. Incrementing DE results in
DE pointing to the first character of the new word in string space and
this ‘start address’ is then stored in the new descriptor using indexed
addressing with code like this:

ADO
LD
LDDR
LD
INC
LD
LD

HL,BC
(IX+0),C

(NEXTtFREESSTRINGSSPACE),DE
DE
(IX+1),E ¿Store
(IX + 2) ,D

¿Now points to last character
¿Count in descriptors first byte
¿Perform block transfer
¿Update with new value
¿Now points to start of new word
low byte of new string's address
¿Store high byte of address

Notice that because LDDR decreases HL and DE as it re-executes,
the transfer process is copying the buffer word starting from the end
of the word. Figure 9.6 illustrates this.

UPDATING THE STATIC VARIABLES
By re-using the DE register pair the descriptor size is added to the
contents of index register IX (so that it then points to the next byte
above the newest descriptor) and the result stored in
STARTOFNEXT$DESCRIPTOR. Finally the descriptor count is
updated to reflect the fact that a new descriptor has been created.
Typical coding is shown below:

LD DE,(DESCRIPTORSSIZE)
ADD IX,DE
LD (STARTSOFSNEXTSDESCRIPTOR) ,IX
LD HL,(DESCRIPTOR$COUNT)
INC HL
LD (DESCRIPTORSCOUNT),HL

¿Get descriptor size in DE
¿Add to current descriptor base
¿and store new base
¿Get count
¿ Increment
¿Replace count

104

DATA STRUCTURES

PART
OF
STRING
SPACE

PART
OF
BUFFER

TEXTSBUFFER:

TOP OF MEMORY

Current next free
string space byte

Characters () show the
new word to be transferred

Wilt be start of new string

This byte will become
the new 'next free
string space1 byte

1st character transferred

2nd character transferred

3rd character transferred

4th character transferred

1st byte is buffer count

(T)

(S)

(E)

(T)

T

s

E

T

4

Figure 9.6 : Example of transfer from buffer to string space

Before completing a finished subroutine we must ask what will
happen if so much data is entered that the descriptors being built
upwards meet the end of the string string space that is moving
downwards'?
At present we have not identified any check that could prevent Li’s
major disaster from happening. It is helpful to look at a Warnier
diagram of the ‘store data’ routine so that we can be sure of the
objectives to be set. Figure 9.7 gives the general layout that is
required.

We must decide what conditions determine whether the new data is
‘safe to write’. Prior to the LDDR instruction being executed, DE is
pointing to the current next free string space byte and BC is the
character count.

105

DATA STRUCTURES

BEGIN STORE DATA
(1 time)

SET UP POINTERS
(1 time)

PERFORM SAFETY CHECK
(1 time)

STORE DATA __________________
SAFE TO WRITE
(0,1 times)

SAFE TO WRITE
(0,1 ti mes)

GIVE WARNING

WRITE DESCRIPTOR

TRANSFER DATA

UPDATE STATIC VARIABLES

END STORE DATA
(1 time)

Figure 9.7 : Layout of the ‘store data’ subroutine

DE-BC+1 is therefore the address of the lowest string space byte
that would be used if the new data item was written. Similarly the
highest descriptor byte that would be used would be IX+2. The
condition for ‘safe’ storage is therefore given by the solution set of
the inequality DE-BC+1 > IX+2. This can be written in the form
DE-BC-1 > IX from which we obtain IX+BC+1-DE < 0. To
perform this check we add BC to IX and then increment IX, this
produces the equivalent of IX+BC+1 in index register IX. By
transferring IX to HL and using SBC HL,DE we effectively provide
the required function. If the carry flag has been set then it is safe to
store the new data. In the code that follows notice how the stack is
used to copy the IX register into the HL pair providing the function
HL<—IX.

* S A F E -TO - WRITE - CHECK
*
CHECK: PUSH IX ! PUSH HL ¿Preserve registers

ADD IX,BC ¿Will also clear carry
INC IX ¿Gives IX <-— IX + BC + 1
PUSH IX
POP HL ¿Copy trick
SBC HL,DE ¿Carry set if safe
POP HL ! POP IX ¿Restore registers
RET ¿Return from subroutine

106

DATA STRUCTURES

To implement a ‘warning’ we could output a ‘bell character’ (ASCII
7), and a routine to do this is shown below:

* U N
*

SAFE - I 0 - W R I T E - WARNING

WARNING : LD A,BELL
CALL OUTPUTSROUTINE

¿Signifies no
¡avai table for

space
further

RET ¡input data

We are now in a position to link the various sections of code together
to produce a completed version of the ‘store data’ subroutine. The
code has been produced by using the guideline structure given by
the Warnier diagram, coupled with the individual section analysis of
how to implement the various functions needed.

*
*

S T 0 R E - 0 A T A - S U B R 0 U T I N E

STORESDATA: PUSH AF ¡Preserve fLags/acc

LD DE, (NEXTSFREESSTRINGSSPACE)

LD IX,(STARTSOFSNEXTSDESCRIPTOR) ¿Start of descriptor

CALL CHECK ¡Any space left ?

CALL NC, WARNING ¡Do not store
CALL C, WRITE ¡Store the data

POP AF ¡Restore fLag/acc

RET ¡Logical end of subroutine

* S 1l F E -TO - W R I T E - CHECK
*
CHECK: PUSH IX I PUSH HL ¡Preserve registers

ADO IX,BC ;Wi ll clear carry

INC IX ¡Gives IX <— IX+BC+1

PUSH IX
POP HL ¡Copy trick

SBC HL,DE ¡Carry set if safe

POP HL ! POP IX ¡Restore registers

RET ¡Return fro» subroutine

* W R I T E - D A T A
*
WRITE : ADD HL,BC ¡Now points to last character

LD (IX+0) ,C ; Count in desc's first byte

LDDR ¡Perform block transfer

LD (NEXTSFREESSTRINGSSPACE),DE ¡Update with new value

INC DE ¡Points to start of new word

LD (IX+1),E Store lo byte new strings add

LD (IX+2) ,D ¡Store hi byte of address

LD DE,(DESCRIPTORSSIZE) ¡Get descriptor size in DE

ADD IX,DE ¡Add to current descriptor base

LD (STARTSOFSNEXTSDESCRIPTOR),IX ¡and store new base

LD HL,(DESCRIPTORSCOUNT) ¡Get descriptor count

INC HL ¡Increment descriptor count

LD (DESCRIPTORSCOUNT),HL ¡Store new count
RET ¡Return from subroutine

107

DATA STRUCTURES

t ===
* UNSAFE-TO-WRITE-WARNING

WARNING: LD A,BELL ¡Signifies no space
CALL OUTPUTSROUTINE ¡available for further
RET ;input data

t ===

PRINTING THE WORD LIST
The objectives are straightforward. Words are available for printing
as long as the ‘number of words printed’ is less than the
DESCRIPTORSCOUNT. In general the starting address and character
count of the nth word is obtained from the nth descriptor. A routine
‘PRINT-WORD’is needed to print n characters starting at address pq.
Both the count and the starting address are easily obtained so we
require a simple loop to produce the desired effect. The main loop is
fairly obvious and uses the combined ‘decrement and relative jump on
not zero' instruction DJNZ (this operates using the B register as the
counter). Typical coding is shown below:

PRINTSWORD: LD A,(HL)
CALL OUTPUTSROUTINE
INC HL
DJNZ PRINTSWORD

;Get character
¿System call
¡Increment pointer
¿Back for next character if B<>0

We have to decide how to initialize the HL and B values and we have
to decide under what circumstances the routine should be called. If
we load IX with the address of the base of a descriptor then we can
load the necessary data into B, H and L registers using indexed
addressing as follows:

LD B,(IX+0)
LD L,(IX+1)
LD H,(IX+2)

;Load count from descriptor
¡Low byte of address
;Load high byte of address

The two byte descriptor size variable is used only for the
convenience of being able to use the paired register addition
instructions. In practice the size resides in the low byte only. We are
therefore able to load BC initially with the descriptor size then
overwrite the B register with the word character count whilst leaving
the descriptor size still present in register C. To move from one
descriptor to another we temporarily utilize the accumulator to save
the contents of the B register then set B to zero so that an ADD
IX,BC instruction produces the required function IX<-IX+C. The
code below gives the general idea:

LD
LD
ADD
LD

A,B
B,0
IX,BC
B,A

¡Preserve B
¡Now BC = C
¡IX <— IX + C
¡Restore B

108

DATA STRUCTURES

The only remaining problem is how to decide whether words are
available for printing. There is a simple solution, we load DE with
the descriptor count and decrease it by one each time a ‘word’ is
printed. When DE is reduced to zero then all words will have been
printed. Because the instruction DEC DE will not affect the zero flag
it is necessary to test for DE = 0 in the following manner: the
accumulator is loaded from the E register and then an OR D
instruction is used. If D = E = 0 (ie. if DE = 0) then the zero flag
will be set as required. Since we must check to see whether any
words have been entered at all, we use a pre-test - we check DE on
entry to the loop rather than at the end of the loop.

The above ideas can be combined to form the subroutine PRINT.
After each word is printed we make a subroutine call to a routine
called CRSLF to output a carriage return character and then a
line-feed character. Notice that because the descriptor set starts
immediately above the descriptor count variable we can use
DESCRIPTORSCOUNT + 2 to identify its location. In this example we
could just as well have used an additional label but, in cases where
the descriptor space (including the starting address of the descriptor
block!) may be allocated dynamically and addressed indirectly, it is
useful to be able to access the count, the descriptor size and the
descriptor set itself from simple functions of just one indirect
pointer.

* ===

*
*

PRINT-SUBROUTINE

PRINT: LD BC,(DESCRIPTOR$SIZE) ¿Size is really in C

LD DE,(DESCRIPTORSCOUNT) ¿Descriptor count
LD IXzDES CR IPTORSCOUNT+2 ;Base of first descriptor

PRINTS'! : LD A,E ¿Low byte of descriptor count
OR D ;Zero flag set if D=E=O

RET Z ¿Logical end of routine

LD B,(IX+0) ¿Load count fron descriptor

LD L,(IX + 1) ¿Load lou byte of address
LD H,(IX+2) ¿Load high byte of address
LD A,B ¿Preserve B
LD B,0 ¿Now BC = C
ADD IX,BC ; Nov IX points to next descriptor
LD B,A ¿Restore B

PRINTSWORD : LD A,(HL) ¿Get character
CALL OUTPUTSROUTINE ¿Syste» call

INC HL ¿Increnent pointer
DJNZ PRINTSWORD ¿Back for next character if B<>D
CALL CRSLF ¿Carriage return/line-feed

DEC DE ¿Decrease descriptor count
JR PRINTS! ¿Now do next word

109

DATA STRUCTURES

PUTTING THE PIECES TOGETHER
Having now developed three subroutines to collect, store and
re-display the input data, it is time to link them together. We collect
‘words’ from the keyboard until such time as a ‘null word’, ie. just a
carriage return, is entered. Each word entered is stored using the
‘STORE DATA’ subroutine. When the end of input is detected a
PRINT DATA subroutine is called to read back the input words. Look
at the Warnier diagram in figure 9.8.

BEGIN MAIN BLOCK
(1 time) BEGIN COLLECT DATA

(1 time)

MAIN BLOCK < COLLECT DATA
(1, n times)

GET WORD
(1 time)

WORD AVAILABLE
(0,1 time)

^STORE WORD

WORD AVAILABLE
(0,1 time) C

SKIP AND

EXIT

END COLLECT DATA
■— (1 time)

PRINT WORDS
(1 time)

END MAIN BLOCK
(1 time)

x—

Figure 9.8 : Structure needed to link the three subroutines

How do we tell if a word is ‘available’? We could look at the
character count in the buffer, but by looking at the ‘Get Word’
subroutine we can see that the count is present in the C register
already. By transferring this count to the accumulator it is possible
to use a comparison instruction to see if it is zero. If it is then we
simply call the ‘Print’ routine to finish, otherwise we store the data,
and then branch back for further input.
A typical code is shown below. The only point that should be made
is that since we use a zero flag test in two consecutive instructions we
must protect it from alteration. On occasions like this the procedure
used is to PUSH the combined accumulator-status flag register pair
onto the stack at the start of the subroutine, and POP them off
before returning. It was for this reason that PUSH/POP instructions
were included in the final ‘store data’ subroutine.
110

DATA STRUCTURES

* MAIN-BLOCK
*__

t ===

MAINSBLOCK: CALL GETSUORD ;Collect input word
LD A,C ;Copy count into accumulator

CP 0 ;Is it zero ?
CALL NZ, STORESDATA
JR NZ,MAINSBLOCK ;Get next word
CALL PRINT
JP 0 ;Re-boot operating system

* ===

All that is needed now is some initial coding to set up the stack and
to perform initialization of variables, and some data declaration
statements so that we can create a ‘runnable’ program. As always,
the exact form is dependent on your particular system, but the basic
source code layout will take a form much like that which we now
describe.

SOURCE CODE LAYOUT

Your program will start with an ‘initialization block’, which will set
up the stack and define any EQUates. This will be followed by the
‘main block’ code, the three subroutines plus any additional routines
which may be needed (perhaps to produce a combined carriage
return and line feed). Finally the space reservation statements are
made. The facilities offered by different assemblers vary, but most
will allow you to define uninitialized space, initialized space (single
bytes with a specified value), and also double bytes (often called
‘words’) of a specified value. Typical examples are:

LABEL: OS 256 ; The assembler skips over 256 bytes
LABEL: OB 3 ; The assembler places the value 3 into the byte
LABEL: DU FF30H ; The assembler places 30 hex into this byte

; and FF hex into the byte LABEL+1.
; ie. it treats the value as a two byte address
; and stores the low byte followed by the high byte
; as is the usual 2-80 convention

Your assembler may use different terminology but the overall layout
of the final source code before assembly should take the form shown
in figure 9.9.

111

DATA STRUCTURES

TYPICAL SOURCE CODE LAYOUT

SET UP BLOCK

MAIN BLOCK

GET WORD SUBROUTINE

STORE DATA SUBROUTINE

PRINT SUBROUTINE

ANY OTHER SUBROUTINE REQUIRED (eg. for CR/LF or I/O wait loops)

BU F F E RS S P A C E : DS 256

STARTSOFSNEXTSDE SCR IPTOR : DW PROGRAMS FIN ISH

NE XT$ F RE E$STRINGSSPAC E : DW CBOOH ; Depends on your system

DE SC RIPTORSS11E : DW 3

DESCRIPTORSCOUNT : DW 0 initialized at assembly

PROGRAMSFINISH: DS 1 ;Dummy end for label use

Figure 9.9 : Typical source code layout for the example

FINAL WORD
We have tried to keep the routines relatively straightforward and
have not particularly tried to minimize the code size. Some ideas of
general interest have been incorporated and one example of this is
seen in the ‘Get-word’ routine. ‘Get-word’, as you will remember,
closes the buffer by writing the character count to the head of the
buffer. For this particular example we do not actually use this stored
count because it is already present in the C register when we enter
the ‘Store-data’ subroutine. On other occasions, when other
processing occurs between the time that the buffer is written and the
time it is actually used, the stored count might well be needed.
By considering the general themes, as opposed to the actual coding,
it should be possible to adapt many of the ideas discussed for use in
your own projects.

112

10
SORTING

and SEARCHING

SEQUENTIAL SEARCHING
Sequential searching, in which a block of memory is searched for a
particular character or group of characters, is one of the simplest
search techniques to implement.
For a search of 255 or fewer characters we can use a simple loop like
this:

START: LD A, CHARACTER ¡Test character in accumulator
LD B, BLOCKSSIZE ¡Number of characters
LD HL,BLOCKSSTART

LOOP: CP (HL) ¡Compare counts of accum'r and HL
JR Z, PRESENT ;Z flag set = character found
INC HL ¡Move to next byte
DJNZ LOOP ¡Keep going

PRESENT: etc

The character to be tested for is placed in the accumulator and HL is
used as an indirect pointer to search the block using a simple loop.
We use B as a counter in order to make use of the automated
decrement and relative jump instruction DJNZ.
If we try to implement a similar kind of loop with more than 255
bytes, a problem occurs - see if you can work out why the following
code will not function:

* FAULTY SEQUENTIAL SEARCH FOR SPECIFIED CHARACTER
*
*
*
*
*
*
*
*
*

Entry conditions: HL = Start of Block
BC =
A =

Zero

Zero

Block Size
Character to be searched for

Exit conditions: flag set = Character found at

flag set = Character not found

loc'n HL

START CP
RET
INC
DEC
JR
INC
RET

(HL)
Z
HL
BC
NZ, START
BC

¡Flag modified by A - (HL)
¡Z set = Character not found
¡Nove to next byte

¡Decrease counter
¡Keep going
¡Clear zero flag
¡Before returning

* ===

113

SORTING and SEARCHING

The above code suffers from a peculiarity of the Z-80: unlike
equivalent8-bit decrement instructions (such as DEC B), the 16-bit
instructions such as DEC BC do not have any effect on the flag
register. Because of this the loop will fail to terminate correctly when
BC becomes equal to zero! It is possible to test whether BC=0 by
placing, say, B in the accumulator and ORing it with C, if B=C=0
the zero flag will have been set. In order to accomplish this it is
necessary to re-arrange the use of the registers if we are to avoid
overwriting the ‘test character’ which is held in the accumulator
during the loop.
On the Z-80 there is a better alternative using one of the automated
comparison instructions to good effect. CPIR is the Block Compare with
Increment instruction and its effect is as follows: the contents of the
byte addressed by HL is subtracted from the accumulator (as with a
normal comparison instruction), then HL is incremented and BC is
decremented. If BC does not equal zero and if the byte tested did not
equal the contents of the accumulator the instruction is automatically
re-executed. On exit the zero flag is set unless the character was not
found. The above routine, re-written to use CPIR now looks like
this:

* AUTOMATED SEÖUENTIAL SEARCH FOR SPECIFIED CHARACTER
♦
* Entry conditions: HL = Start of Block
* BC - Block Size

* A - Character to be searched for
*
* Exit conditions: Zero flag set = Character found at loc'n HL
*
* Zero flag set = Character not found
*
START: CPIR ;Automated block comparison

RET

The automated block compare instructions CPIR and the de
cremental form CPDR are good examples of the improvement of the
Z-80 over its predecessors the 8080 and 8085.

MULTI-BYTE COMPARISONS
The comparison of two blocks of equal length can be achieved by a
straightforward search, byte by byte, until a difference is found. A
more interesting problem concerns the comparison of items of
differing lengths such as two text strings. We shall first consider the
general problem using a Warnier diagram. In this case we have opted
for a more symbolic representation based on the definition of HL-B
and DE-C descriptor sets which define the two words. HL and DE
are the starting addresses of the words, while B and C are the

114

SORTING and SEARCHING

respective character counts. (When we write (HL) we are specifying
the contents of the byte whose address is held in HL; similarly (DE)
specifies the contents of the byte whose address is in the DE pair).
The routine will compare two words, byte by byte, until a difference
is found or until it runs out of characters in one of the words. We
adopt the following convention:

• If the HL-B set is alphabetically ‘greatest’ (based on the ASCII
values of the characters), the carry flag will be cleared.

• If the HL-B set is equal to the DE-C set then the zero flag will be
set, otherwise it will be cleared.

As you look at figure 10.1 remember that B and C are being
decremented each time we perform the ‘Check character’ routine,
and that HL and DE are pointers indicating which characters within
the words are being tested.

The following, initial example has been written directly from the
Warnier diagram and uses the nested subroutine arrangement
mentioned in chapter 6:

♦ ===

* FIRST-CODE-COMPARE-WORDS
*
COMPARESWORDS: LD A, 0

CP B ;Is B zero?
CALL I, BSZERO
CALL NZ, BSNOTSZERO

; an exit test here followed by
; a conditional jump to start of
; 'COMPARESWORDS

RET ;Logical end of subroutine
*
BSZERO: CP C ;is C zero?

CALL Z, WORDSSEQUAL
CALL NZ, DECSGREATEST
RET

*
BSNOTSZERO: CP C ;is C zero?

CALL Z, HLBSGREATEST
CALL NZ, CHECKSCHARACTERS
RET

*
CHECKSCHARACTERS: LD A, (DE) ;Get byte fron DE-C set

CP (HL) ;coipare with HL-B set byte
CALL C, HLBSGREATEST
CALL NC, TESTSF0RSE8UALITY

115

SORTING and SEARCHING

TESTSFORSEflUALITY: CALL NZ, DECSGREATEST
CALL Z, ADJUSTSPOINTERS
RET

ADJUSTSPOINTERS: INC HL
INC DE
DEC B
DEC C
RET

We have not yet decided how we will pass the DECSGREATEST,
HLBSGREATEST and WORDSSEQUAL information up through the
nested subroutine levels. Neither have we determined what exit
condition will be used to leave the ‘compare-words’ subroutine.

The next scheme avoids the need to do this at all and it is based on
the recognition in the Warnier diagram that all but one of the lower
level operations result in an ‘exit the routine’ condition. If the nested
calls relating to those conditions are replaced by jumps to one of the
three possible endings then we do not need to make the high level
exit test because we will not fall back to that loop once an exit
condition is found. Notice also that the C H E C K$ C H A R A C T E R section
does not need to be called as a subroutine because we fall through to
it automatically if the zero test directly above it should fail. Exiting
through jumps and relative jumps needs a certain amount of care
because it occurs after an internal subroutine call has been made (in
the initial loop). It is necessary to POP this address off the stack so
that the final RET instruction causes us to leave the ‘compare-words’
subroutine in the proper manner.

* COHPARE-WORDS-SUBROUTINE

* Entry conditions: DE-C and HL-B descriptors to be set up
* Exit conditions: If HL-B > DE-C then carry flag is set
*
*

If HL-B = DE-C then zero flag is set

CORPARESWORDS :

*

LD
CP
CALL
CALL
JR

A, 0
B
Z, BSZERO
NZ, BSNOTSZERO
COMPARESWORDS

;Does B = 0 ?

;Do next characters

BSZERO: CP C ;Does C = 0 ?
JR Z, WORDSSEQUAL ;Exit condition
JR DECSGREATEST ;Exit condition

*
BSNOTSZERO : CP C ;Does C = 0 ?

JP Z, HLBSGREATEST ;Exit condition

116

SORTING and SEARCHING

BEGIN COMPARE-WORDS

BEGIN CHECK-CHARACTER
(1 time)

COMPARE
WORDS

CHECK
CHARACTER

(1,n times)

HL-B GREATEST
EXIT ROUTINE

WORDS EQUAL
EXIT ROUTINE

SET
AND

DE-C GREATEST
EXIT ROUTINE

SET HL-B GREATEST
AND EXIT ROUTINE

(HL)

SET
AND

(HL) > (DE)

(HL) > (DE)

INCREASE
HL,DE
DECREASE
B,C

SET DE-C
GREATEST
AND EXIT
ROUTINE

END CHECK-CHARACTER
(1 time)

END COMPARE-WORDS
(1 time)

Figure 10. 1: ‘Compare words’ routine in Warnier form

117

SORTING and SEARCHING

♦
CHECKSCHARACTER : LD A, (DE)

CP (HL) ¿compare bytes
JR C, HLBSGREATEST ¿Exit condition
JR NZ, DECSGREATEST ¿Exit condition
INC HL ¿Next byte of HL-B set
INC DE ;Next byte of DE-C set
DEC B ¿Decrease B count
DEC C ¿Decrease C count

*
RET

WORDSSEQUAL: POP BC ¿Lose last call address
RET ¿Leave COMPARESWORDS

*
DECSGREATEST : POP BC ¿Lose last call address

OR A ; Clear carry flag

RET ¿Leave COMPARESWORDS
*
HLBSGREATEST : POP BC ¿Lose last call address

SCF ¿Set carry flag
RET ¿Leave COMPARESWORDS

Further improvements can be made by recognizing that the ‘words
equal’ condition does not entail any action other than leaving the
routine via POP and RETurn. By slightly re-arranging the end
coding we can eliminate some duplicate instructions. The final
version that follows includes the modified ‘end’ and additionally uses
POP and PUSH instructions to preserve the original contents of BC,
DE and HL. The routine thus makes the comparison without
disturbing the HL-B and DE-C descriptor sets passing the result
back using the carry and zero flags.

* COMPARE-WORDS-FINAL-SUBROUTINE

* Entry conditions: DE-C and HL-B descriptors to be set up
*
* Exit conditions: If HL-B > DE-C then carry flag is set
* If HL-B - DE-C then zero flag is set
* Accuuulator contents destroyed

COMPARESWORDS: PUSH BC ! PUSH DE ! PUSH HL
A, 0
B
Z, BSZERO
NZ, BSNOTSZERO
COMPARESWORDS

¿Preserve registers

¿Does B - 0 ?

¿Do next characters
*

LD
CP
CALL
CALL
JR

BSZERO: CP C ¿Does C = 0 ?

JR Z, LEAVESROUTINE ¿Words = exit condition

*
JR DECSGREATEST ¿Exit condition

BSNOTSZERO: CP C ¿Does C = 0?
JR Z, HLBSGREATEST ¿Exit condition

118

SORTING and SEARCHING

t
CHECKSCHARACTER LD A, (DE)

CP (HL) ¿Compare bytes
JR C, HLBSGREATEST ¿Exit condition
JR NZ, DECSGREATEST ¿Exit condition
INC HL ;Next byte of HL-B set
INC DE ;Next byte of DE-C set
DEC B ¿Decrease B count
DEC C ¿Decrease C count

*
RET

DECSGREATEST : OR A ¿Clear carry flag
JR LEAVESROUTINE

*
HLBSGREATEST: LD A, 0 ¿Must force reset

INC A ¿of the zero flag
SCF ¿Set carry flag

LEAVESROUTINE : POP BC ¿Lose last call address
POP HL ! POP DE ! POP BC ¿Restore orig'l contents

* ===============:
RET ¿and leave routine

In certain cases it is worthwhile checking the count values B and C
before entry and ‘swapping’ so that, for example, the HL-B set is
never shorter than the DE-C set. When this approach is used some
of the comparisons within the routine can be eliminated. It is
however usually necessary to re-instate the original descriptors after
comparison or include some indication that a descriptor switch has
occurred.
In chapter 9 we developed a simple descriptor based string storage
program. A comparison routine such as that just developed provides
an easy way to compare words pointed to by a pair of descriptors.
The descriptor data is loaded into the respective registers to create
the necessary HL-B and DE-C sets and the comparison routine
called. By examining the zero and carry flag afterwards, it is possible
to tell which word is the greatest.

SORTING
Within weeks of learning basic most of you had learned something
of the mysterious ‘Bubble Sort’. Performed on 20 to 30 items in
memory, such sorts are quite impressive - especially if you have
never seen a sort program working before. When the same technique
is applied to two or three hundred - or even thousand! - items,
something goes sadly amiss. For sorting anything other than small
amounts of data the bubble sort written in basic is quite simply
useless. The fault lies in the mechanism of the bubble sort itself and
has little to do with the language used to implement it.
When assembly language is used something magical happens to the
bubble sort, it achieves a ‘respectability’ of performance which
suggests that some metamorphosis has occurred to the essential

119

SORTING and SEARCHING

algorithm. The fact of the matter is simple; the speed of assembler
will hide the inefficiency of the bubble sort for a little bit longer
before the same old problems occur. This being so we are not going
to waste your time explaining in detail how to program one of the
worst sorting algorithms ever devised!
Instead we are going to look at a sort technique which has, for no
particularly good reason, gained a reputation for being frighteningly
complex - the Tree Sort. By examining the fundamental ideas and
relating tree sorts to programs written in easy languages such as
basic, it is possible to develop an understanding of the general
principles involved.

SORT TREES
All of you will have come across the term ‘data structure’. The ways
in which we structure our data can make a dramatic difference to the
efficiency and speed with which some applications programs will
run. Stacks, Lists, Tables and Arrays are examples of structures
commonly used by programmers (and novices) who soon acquire a a
‘mental picture’ of these concepts and quickly develop proficiency in
their use.
Tree structures are a very widely used way of describing and
organising data, and they have many applications. The study of trees
is often ignored in many popular publications, often on the ground
that it is too complicated. In fact, the opposite is often true and trees
can be used to radically simplify your problems!
Rather than simply listing various tree routines, we have decided to
tackle the problem at source. We will take a guided tour through the
common first approach to tree work so that you can get to grips with
the underlying basic concepts before starting on the routines
themselves.
You already know what a ‘family tree’ looks like, you know that - by
convention - they are drawn ‘upside-down’ with parents shown
above their descendants (The ‘root’ of the tree is at its top). Figure
10.2 illustrates this:

PARENTS

I---------- --------------- J
1st 2nd 3rd etc.

Descendants

(This is part of a tree)

Figure 10. 2: Tree representation

120

SORTING and SEARCHING

When we draw a family tree, we are describing the relations between
the parents, their children and their children’s descendants - and so
on. The important point is that the tree shows how these elemnts are
related and, in the computing sense, the tree data structure is
somewhat similar - and the terminology used will often reflect this.
Another common ‘non-computing’ example of a tree structure is the
management organisation chart of which figure 10.3 is a typical
example. Again the purpose is to show relations, this time between
the various jobs or orders of responsibility in the company.

HEAD OF PRODUCTION

I------------------------- —t--------------------------- 1
OFFICE ACCOUNTS WORKS
MANAGER MANAGER MANAGER

1 I 1 ______ _
Office Staff Accounts Staff | |

Production Project
Team Supervisors
Leader

I-----------“t--------- 1
Foreman No.1 Foreman No.2 ... etc

Figure 10.3: A company hierarchy tree
Notice that each item on the chart in Figure 10.3 is related to only
one item above it. We say that each item has only one parent·,
Foreman No.l is responsible only to the Production Team Leader.
Similarly the Production Team Leader is only responsible to the
Works Manager.
There is no such restriction on the number of ‘descendants’ an item
may have. The Production Team Leader has many Foremen who
have to report directly to him.
In general then, for a structure to be classed as a Tree Structure:

• Each item must have only one Parent

• Each item may have none, one or many ‘descendants’

The exception to this is the very first item in the tree which will have
descendants but no parent:

• The first item in a tree is given a special name: the Root of the
tree.

Before we start considering how these structures can be used in a
computing sense we need one more piece of terminology:

• Each item in a tree is called a ‘node’

Thus the first item would be called the 'Root Node' or 'Node Γ.

121

SORTING and SEARCHING

Binary trees

It may now have occurred to you that one way of describing a ‘list’ is
as ‘a tree structure in which each parent is allowed only one
descendant’. The simplest type of tree structure, other than a list, is
one in which we restrict the maximum number of descendants a
particular node may have, to two.
Such a structure is called a ‘Binary Tree’ and it turns out to be a very
useful structure indeed. One application of Binary Trees is in the
sorting and searching of large amounts of data. Since these
applications probably occupy more computer time than any other
single application it is little wonder that a vast amount of work has
gone into ways of creating very efficient routines. The complexity of
these published standard solutions, developed and refined over
many years, tends to cloud the basics and make it extremely difficult
for newcomers to come to terms with the more fundamental aspects
involved.
By starting with fairly humble beginnings we can, hopefully, avoid
these ‘apparent complexities’ and enable you to see the benefits that
exist in using such structures .
Consider the list of numbers ‘5, 3, 1, 6, 4’. We are going to place
them onto a tree structure according to the following rules:

• If the number being added is less than or equal to the value of the
node being examined then we shall move to the left descendant.

• If the number being added is ‘greater than the value of the node
being examined’ then we shall move to the right descendant.

• When no suitable descendant exists then the number being added
to the tree will be added in that vacant descendant position.

• We shall take the list of numbers in left to right order and this
means that the first number (5) becomes the root node.

If we go through an example step by step you will get the general
idea:

(V) <----------This is the root node

(i.e. 1st node)

The next number in the list is 3 . Since our tree has only one item on
it and therefore has no descendants we ask; ‘is 3 less than or equal to
5 ?’ Since it is, we shall draw 3 as the left descendant of the root node
as follows:

122

SORTING and SEARCHING

<— Root node

<--- 2nd node has been drawn
as the left descendant

The third item in the list is the number 1. To place this in its correct
position, according to our rules, we proceed as follows: We compare
the new entry (number 1), with the root node. Since 1 is less than the
value of the root node we examine the left descendant of the root
node (node number 2), the second item that we added to the tree.
We ask ‘is the value of the new entry less than or equal to the value of
node number 2?’. Since it is, we see if node 2 has a left descendant. It
hasn’t and so this is where our new entry, the number 1, will be
stored:

<— Root node

<--- 2nd node

<— 3rd node

The fourth item in our list is the number 6. We do exactly the same
as before and compare this value with the value of the root node. In
this case the value is greater than that of the root node value. Since
there is not a right descendant of our root node at present we proceed
by making our fourth new entry the right descendant as follows.

Make quite sure you are clear about the terminology because it often
causes problems. The numbering of the nodes themselves is
dependent on the order that we are placing the items onto the tree.
When we compare values,in order to ascertain where particular
items should be placed, we are interested in the actual value that a
particular node will have.

123

SORTING and SEARCHING

Let us place the last item in our list onto our tree. The item is the
number 4. We compare the number 4 to the value of the first node in
our tree. Since 4 is less than 5 we move to the left descendant of the
first node. This is node number 2 Which has a value of 3. We ask ‘is 4
less than or equal to 3?’; it is not, so seeing that there is not a right
descendant of this node we complete our tree by making the last
entry the right descendant of node number 2.

You have now created a ‘sort tree’ and at a first glance you may well
be wondering what use such a structure can be. It can be noticed that
the leftmost item on the tree is in fact the one with the lowest value.
It is also apparent that the rightmost item is in fact the one with the
largest value. Other than that there does not appear to be anything
special about the arrangement.
Before we continue, try and draw a sort tree for the following list.
This time we will consider a list of seven words:

ENGLAND
AMERICA
FRANCE
RUSSIA
SPAIN
GERMANY
CANADA

Use exactly the same rules as we did before, and apply them to the
alphabetic rather than numeric order. You should end up with the
following tree structure:

124

SORTING and SEARCHING

It is convenient in general to write the value of a node in a circle or
rectangle and then in the top right above it put the node number as
has been done in the previous example (S PA IN, for example, is node
5).
If you are still unsure about how to draw a sort tree from a list of
numbers or words then write a few of your own lists and draw out
their corresponding sort trees. Do it until you are quite clear in your
own mind about the processes involved.
Two points should be noted in passing: firstly it was purely an
arbitrary decision to make the ‘less than or equal to’ decision
correspond to the ‘left descendants’ in the tree. We could equally
have used the reverse convention. Secondly we could have split the
decision part into ‘less than’ and ‘equal to or greater than’. Again it
was purely arbitrary.
What, however, is important is that the way in which we split the
decision part enabled us to classify all incoming items into only one
of two types. Thus there is never any doubt about the exact position
that an incoming item will occupy on an existing tree.
Let us look at two other ways in which we could represent such a
tree structure. Firstly we could represent it as a ‘Table’. Look at
figure 10.4 , it shows in table form the tree structure that we
obtained with our list of numbers:

NODE DATA ITEM PARENT LEFT RIGHT

1 5 0 2 4
2 3 1 3 5
3 1 2 0 0
4 6 1 0 0
5 4 2 0 0

Figure 10.4: Table representation of tree data
Such a table is easily handled in many high level languages. In basic,
for instance, it would be possible to define an array using statements
like DIM T(5,4) if you wished to store the above table. In this
instance T (n , 1) would refer to the nth node’s value; T (n , 2) the
node that is the parent of the nth node; T(n,3) would be the left
descendant of the n111 node, and so on. Later on we will look at a
basic program (and some Z-80 assembly language routines) that will
produce these type of tables.
Another way of representing a tree structure is with a different type
of table as shown in figure 10.5. Supposing that for a tree containing
N items we labelled N columns as the Nodes 1, 2 , 3 N ; and
labelled N rows similarly as the Nodes 1, 2, 3 N. We could
specify that a node, ‘p’ say, was the Parent of Node ‘q’, by placing a
1 in the table position (p, q). This type of representation is

125

SORTING and SEARCHING

normally called a bit map or a relation matrix. One advantage of such
a description is that it can, by various techniques, be made very
compact. Another advantage is that we can use matrix algebra to
manipulate the relations. One disadvantage is that to make use of
this type of representation you need some quite complex program
ming, not because of problems with the concept of a tree itself, just
because it is a characteristic of this particular way of representing
them.

DESCENDANTS

1 2 3 4 5

10 10 10
P
A 2 0 0 1 0 1
R
E 3 0 0 0 0 0
N
T 4 0 0 0 0 0
s

5 0 0 0 0 0

Figure 10.5: Bit map representation of figure 10.4

The Relation Matrix representation is not a good way to develop an
understanding of the basic concepts of tree structures and so we shall
not discuss them further.
For most applications of Binary Trees it is possible to use a table
representation similar to that described earlier, Let us now consider
a basic program using the table-based tree structure, an understand
ing of a high level language form will help us understand what must
be done to create an assembly language equivalent.

A BASIC ‘TREE TABLE’ PROGRAM
Now that you have worked through the creation of some simple
binary trees and have drawn their corresponding table forms, you
will appreciate something of the approach:

• We start out by finding if there are any items on the tree at all.

• If there are not then all we have to do is make sure that the item
being added becomes the root node.

• If there are items already, then the incoming item must be
compared in exactly the same way as we did when drawing it as a
picture.

126

SORTING and SEARCHING

The following basic examples use Microsoft basic - a very widely
used version of the language. We are going to create a routine called
‘Create tree’ which can later be used as a general utility.
We will use a variable called N 7. to hold a record of the number of
items that will be present in the finished tree. The variable
NEW.NODEX is used to represent the number of the item we are adding.
The data items themselves wil be placed in a vector variable called
DATA.ITEM$().
Line numbers are fairly arbitrary.
To place the first item on our tree we simply copy the item into
DATA.ITEM$(1). The element is specified by the node number
held in a further variable NEW.NODEX. The first level of the ‘Create
table’ subroutine will look like this:

490 rem == =
500 NEW.NODEX = 1: GOSUB 5000 'Collect the first input item
550 FOR NEW.NODEX = 2 TO NX
560 GOSUB 5000 'Collect next input item
580 GOSUB 1000 'Store new item on tree
590 NEXT NEW.NODEX
600 RETURN
610 REM ===

We must not forget that we need to define memory space for the
table. To do this we shall, for the present, assume that the finished
program will include a DIMension statement like this:

10 DIM DATA.ITEMS(NX), PARENTX(NX)
15 DIM LEFT.DESCENDANTX(NX), RIGHT.DESCENDANTX(NX)

The following code is not written in the most concise way possible,
but is laid out to enable you to relate the various sections to the
earlier drawings we made of tree structures - the same reason
accounts for the long and descriptive variable names.

The building of our tree really starts with subroutine 1000. As yet
this is undefined but we do know what it will have to do: it will
compare the incoming value with various nodes already in the tree.
Since we will always have at least one new node in the tree before
using subroutine 1000, we will not need to check whether the tree
exists or not.

990 REM ===
1000 JX=1 ' We start at the 'Root' nede i.e. nude 1
1010 WHILE JX <> 0
1020 IF DATA.ITEMJÍNEW.NODEX) <= DATA. ITEMS(JX)
THEN GOSUB 1200 ELSE GOSUB 1400
1030 WEND
1040 RETURN
1050 REM ==

127

SORTING and SEARCHING

Bear in mind that basic WHILE .. WEND loops and other condition
test statements have an implied condition as part of the standard
logic operations in basic. When we are testing ‘WHILE J % <> 0’ we
do not need to explicitly state the ‘not equal to 0’ part but can
instead simply write WHILE J %. For clarity we will write these
conditions explicitly while looking at the various sections of code
although the final example uses implicit tests to save space.
We are using a variable J % to identify the position in the tree that we
are examining. We compare the current item that is being placed on
the tree with node J /. If the value of the new data item is less than or
equal to the value of the node being examined then we must move
down to the left descendant of the node being examined. If the value
of the new data item is greater than the value of the node being
examined then we will move down to the right descendant of the
node being examined. These two alternatives are handled by two
separate subroutines as follows:

1170 REM ==
1180 REM NEW ITEM IS LESS THAN OR EQUAL TO VALUE OF NODE JX
1190 REM --------------------- ----------------- -- -------------------

1200 IF LEFT.DESCENDANTX(JX)oO THEN J X = LE FT. DESCENDANT« (J X) : RETURN
1210 PARENTX(NEW.NODEX)=JX
1220 LEFT.DESCENDANTXtJX) = NEW.NODEX
1230 JX=O 'this forc'es us to leave WHILE / WEND loop in sub 1000
1240 RETURN
1250 REM ==

1370 REM = = === = = = = = === === = = = = = = = = = = = = = === = = = = = = = = = = = = = = = = = = === === ====
1380 REM NEW ITEM IS GREATER THAN THAN VALUE OF NODE JX
1390 REM --- ---
1400 IF RIGHT.DESCENDANTX(J X)<>0 THEN JX = RIGHT.DESCENDANT«(J X): RETURN
1410 PARENT«(NEW.NODE«) = JX
1420 RIGHT.DESCENDANTX(JX) = NEW.NODEX
1430 JX=O 'this forces us to leave WHILE / WEND loop in sub 1000
1440 RETURN
1450 REM ==

Only one or the other of these subroutines will be called during the
positioning of a given new item. Let us analyse the one correspond
ing to ‘Less than or Equal to’. We have already tested the new data
item value and the node J / and have found the value of the new item
to be less than or equal to the value of the current node that is being
examined (J %). Line 1200 looks to see whether node J 7. has got a left
descendant. If it has, then we set J / to the value of
LEFT.DESCENDANT%(J %) and then return from the subroutine
1200 via the RETURN statement on the same line.
The result of such an action is to return us into the WHILE .. WEND
loop of subroutine 1000 where again we compare the data item that
we are trying to place on the tree with what is now a new node J S.
128

SORTING and SEARCHING

We then repeat the process again and we are, in effect, moving down
through the tree in just the same way as we did manually with our
pictures.
If the test in line 1200 fails, ie. if there is no left descendant then we
know straightaway that our new item is going to become that
descendant. We also know that the current node J % is therefore
going to be the parent of the new node that we shall create. In cases
where the condition test in line 1200 fails we alter the left descendant
pointer of node J % (which was zero) to the value NEW.NODE %. We
also make node J / the parent of the new node. Since by this time the
new item has been placed on the tree we set J % to zero. By doing this
we will automatically leave the WHILE .. WEND loop which will still
be in operation at the subroutine 1000 level. This will ensure that we
fall through this level back to subroutine 500 ready to ‘pick up’ the
next item to be placed onto the tree.
Subroutine 1400 operates in a similar fashion but concerns itself with
those occasions that involve moving to a right descendant.
If we are to retrieve data in ascending order from our tree we must be
able to locate the lowest value node that is present. From some of the
tree structures you have already drawn, you have probably guessed
that all you need to do is to start at the root node and keep going left
until you run out of descendants. We write a subroutine called
‘Lowest-node’ to do this with a single line of basic as follows:

1420 REM ==
2990 REM LOWEST-NODE-SUBROUTINE
2995 REM ---
3000 WHILE LEFT.DESCENDANTX(JX)<>O:JX=LEFT .DESCENDANTSJZ):WEND

: RETURN
3030 REM == === = = = = ===== === = = = = = = = = ===== = = = === = = = =

We enter the above subroutine with J % as the number of the root
node. The lowest value node is returned in J % overwriting the
original value. By writing the subroutine in this way we can use it to
find the lowest node of a special section of a tree known as a ‘subtree’.
Consider any tree and then consider a particular node n as being the
root of a smaller tree - that tree is the subtree of node n. We also talk
about left and right subtrees. These are the subtrees formed by
considering, respectively, the left and right descendants of a node as
root nodes.
Before we can construct a program using these routines we must
consider one last problem. Given a particular node we want to be
able to find the node that is next in ascending order and print it. To
do this we do not have to consider any of the values of the data items
themselves because the order can be deduced from the parent, left
descendant and right descendant pointers provided by our ‘Create
table’ subroutine.

129

SORTING and SEARCHING

If you consider some drawn examples you will convince yourself that
any subtree formed using the right descendant of a particular node n
will only contain values greater than the value of node n. If we search
this subtree for the node of lowest value we will have found the item
that is next in order. Remember that we have already developed a
subroutine to search a tree for the lowest value and we will be able to
use this to search our sub-trees as well.
It is always possible that the current node being examined will not
have a right descendant. If this is the case we must move up to the
parent of the current node and repeat the process, but if we are
moving up from a right descendant we must ignore this parent and
move up again because the node will already have been printed. If
during this ‘climbing back’ we find ourself at the root node then we
will have printed all the nodes in the tree.
It is very helpful to relate these ideas to diagrams of various trees.
Draw various subtrees in different colours and work through the
above ideas on paper. As you develop a mental picture of how we are
selecting the next item to print you will find the coding easier to
follow.

The essential details of ‘Next-node’ are as follows: we look at the
current node and ask ‘is there a right descendant’? The coding is
done like this:

3090 REM ==
3100 IF RIGHT.0ESCENDANTX(JX)<>0 THEN GOSUB 3200 ELSE GOSUB 3300
3110 RETURN
3120 REM ==

Corresponding to the two possibilities we choose between two
subroutines. If there is a right descendant then we move to it and
then use ‘Lowest-node’ to find the lowest valued node of this right
subtree:

3190 REM ==
3200 JZ=RIGHT.DESCENDANT%(JZ):GOSUB 3000' Lowest-node
3220 RETURN
3230 REM ==

If a right descendant does not exist we have to move up the tree. We
keep track of the previous value of J / so that we can check whether
we have moved upwards from a right descendant:

3290 REM ==
3300 IF JX = 1 THEN EXIT.FLAGX=0¡RETURN
3310 OLD.JZ=JX:JZ=PARENT%(JX):

IF RIGHT.DESCENDANT* (JX) = OLt>.JX THEN GOTO 3300
3320 RETURN
3330 REM = ======= === === = = ===== = = = = = = = = = = = = = = ===== = === = === === = = = = === = =

130

SORTING and SEARCHING

The completed subroutine can be seen in the listing of the example
program where the above sections of code have been combined into a
single block entitled ‘Next node’.

The listing

We have developed three fairly simple subroutines that enable us to:

• Build a table corresponding to a tree structure

• Find the lowest node of a tree or subtree

• Find the next node in ascending order

These subroutines have been combined into a short program which:

• Builds a tree table using input from the terminal

• Prints the table, using a simple loop, so that you can examine it

• Prints the input data in ascending order using calls to ‘Lowest
node’ and to ‘Next-node’

The final code uses some multiple line statements to save space.
Implied tests such as WHILE JZ, rather than the explicit WHILE
JXoO, have also been used to shorten some of the lines of code.
Figure 10.6 shows an example of the output that the program
oro vides.

131

1 REM ===
2 REM S E T - U P - B L 0 C K
4 REM___
5 CLEAR:WIDTH LPRINT 70:INPUT"How many items do you wish to store';NX
10 OIM DATA.ITEM$(NX),PARENTX(NX),LEFT.DESCENDANT«(NX),

RIGHT.DESCENDNT(NX)
25 REM ======= ===== = = = === ========= = = === = = = = = = = = ===== ======= ====..............
30 GOSUB 500 1 2 Build tree table
32 REM ==
33 REM P R I N T - T A B L E
34 REM ___
35 LPRINT’Tree table has been created as’:LPRINT
37 LPRINT ’NODE”,"DATA ITEM",'PARENT',"LEFT",'RIGHT’
40 FOR IX = 1 TO NX
50 LPRINT IX,DATA.ITEMS(IX); :
55 LPRINT TAB(30)

PARENTX(IX).LEFT.DESCENDANTX(IX),RIGHT.DESCENDANTX(IX)
60 NEXT IX

SORTING and SEARCHING

80 REH ==
90 REM PRINT-DATA-IN-ORDER
100 REM __
105 LPRINT:LPRINT'Ordered list is as follows......................... ”:LPRINT
110 JX=1:GOSUB 3000 1 Lowest-node
115 EXIT.FLAGZ=1
120 WHILE EXIT.FLAGZ
130 LPRINT DATA.ITENS(JX),¡GOSUB 3100 1 Next-node
150 WEND
160 END 1 ... Logical end of program
460 REM ===
470 REM CREATE-TABLE-SUBROUTINE
480 REM __
500 NEW.N0DEX=1:G0SUB 5000 1 Input data item
550 FOR NEW.NODEX = 2 TO NX
560 GOSUB 5000 1 Input data item
570 GOSUB 1000 1 Second level of this routine
580 NEXT NEW.NODEX
590 RETURN
1000 JX=1
1010 WHILE JX
1020 IF DATA.ITEMSINEW.NODEX) < = DATA.ITEMS(JX) THEN GOSUB 1200

ELSE GOSUB 1400
1030 WEND
1040 RETURN
1200 IF LEFT.DESCENDANTX(JX) THEN J X = LE FT.DESCENDANTX(J X): RETURN
1210 PARENT!(NEW.NODEX) = JX: LEFT.DESCENDANT!(J X) = NEW.NODEX:JX=O

: RETURN
1400 IF RIGHT.DESCENDANTS JX) THEN JX=RIGHT.DESCENDANTX(JX)¡RETURN
1410 PARENTX(NEW.NODEX)=JX:RIGHT.DESCENDANTX(JX)=NEW.NODEX:JX=O

¡RETURN
1420 REM ==
2990 REM LOWEST-NODE-SUBROUTINE
2995 REM ___
3000 WHILE LEFT.DESCENDANT!(JX)<>0:JX=LEFT .DESCENDANTSJX)¡WEND

¡RETURN
3030 REN ==
3080 REM N E X T - N 0 0 E - S U B R O U T I N E
3090 REN ___
3100 IF RIGHT.DESCENDANTX(JX) THEN GOSUB 3200 ELSE GOSUB 3300
3110 RETURN
3200 JX=RIGHT.DESCENDANT!(JX):GOSUB 3000 1 Lowest-node
3220 RETURN
3300 IF JX=1 THEN EXIT.F LAGX=0 : RETURN
3310 OLD.JX=JX:J X=PARENTX(J %) : IF RIGHT.DESCENDANTX(J X) = 0LD.J X THEN

GOTO 3300
3320 RETURN
3330 REM ===
4980 REM I N P U T - S U B R 0 U T I N E
4990 REM ___
5000 INPUT 'Enter value to be stored DA T A.ITEMS(NEW.NODE!)¡RETURN
5010 REM = = = = = = = = = === ==..............========= ===============================

132

SORTING and SEARCHING

NODE DATA ITEM PARENT LEFT RIGHT

1 PAUL 0 2 3
2 ANDY 1 6 4
3 RUTH 1 12 28
4 GEORGE 2 9 5
5 MABEL 4 7 39
ó AMANDA 2 8 35
7 JENSINE 5 10 11
8 ALBERT 6 0 0
9 FRANK 4 15 14
10 IAN 7 31 21
11 JOSEPH 7 13 20
12 PETER 3 0 19
13 JOHN 11 38 0
14 FRED 9 0 0
15 CYRIL 9 16 18
16 CHRIS 15 22 17
17 CHRISTINE 16 0 0
18 DAVE 15 0 25
19 RONALD 12 33 29
20 KEVIN 11 26 0
21 JANICE 10 37 0
22 ANNE 16 23 24
23 ANN 22 0 0
24 CAROLINE 22 34 0
25 DAVID 18 0 0
26 JOYCE 20 0 27
27 JUDY 26 0 30
28 WENDY 3 40 0
29 RUSS 19 0 0
30 JULIE 27 0 32
31 HAROLD 10 0 0
32 KAY 30 0 0
33 ROBERT 19 0 36
34 B08 24 0 0
35 ANDREAS 6 0 0
36 ROLF 33 0 0
37 JACK 21 0 0
38 JILL 13 0 0
39 MAUREEN 5 0 0
40 SANDRA 28 0 0

Ordered list is as foil ows........................

ALBERT AMANDA ANDREAS ANDY ANN
ANNE BOB CAROLINE CHRIS CHRISTINE
CYRIL DAVE DAVID FRANK FRED
GEORGE HAROLD IAN JACK JANICE
JENSINE JILL JOHN JOSEPH JOYCE
JUDY JULIE KAY KEVIN MABEL
MAUREEN PAUL PETER ROBERT ROLF
RONALD RUSS RUTH SANDRA WENDY

Figure 10.6: Output from a basic tree sort program
133

SORTING and SEARCHING

Some design notes

If you have not used ‘tree sorts’ before then the speed of these
routines will be very impressive. Of particular interest is that we
achieve the sorting without physically re-arranging any of the data
items by using pointers to specify the logical structure of the
corresponding tree.
The decision to use the ‘parent’ pointers needs a certain justification.
Those of you who have come across these types of sorts before will
be aware that it is standard practice to eliminate the parent pointers
thus saving 33% of the total pointer space. It is also common practice
to use recursion to provide some very elegant routines. These and
other refinements such as relation matrix representation, when
considered collectively, do a great job at hiding the essential
simplicity of the basic concepts.
Those of you who have found the ideas straightforward you may like
consider how the parent pointers can be eliminated. Look at the
coding for the subroutines ‘Lowest node’ and ‘Next node’. There is
only one place that we actually use the parent pointers (program line
3310). If, within these two routines, we created a list of nodes that
we ehcounter as we climb down a tree then we could climb back up
by reading the list backwards. In this case we would only need to
create left and right pointers in our table. Such a space saving
becomes increasingly more important as the size of the data set that
we are dealing with increases.

ASSEMBLY LANGUAGE TREE STRUCTURES
The key to writing assembly language tree sorts lies in understand
ing the principles behind the sort. We cannot in a book of this nature
get too involved with the writing of comprehensive tree sort
programs since much depends on the data formats used and on
details of the application concerned. What we can do is provide you
with plenty of clues that you can relate to our earlier discussions so
that you acquire a ‘feel’ for the problems involved.
We set the scene for our discussion by considering the following
problem. A block of text is present in memory (perhaps a memory
image of a text file read into memory from diskette or tape). The text
is to be read sequentially and each time an ‘end of word’ is detected a
descriptor is to be built giving the character count, the start address
of the word and the addresses of the descriptors of the left and right
descendants. Parent pointers are not going to be used. The definition
of ‘end of word’ is to some extent arbitrary but a reasonable choice is
that the end of a word is found when a space or any other non
alphabetical character is detected.

134

SORTING and SEARCHING

Descriptor format

Figure 10.7 shows a suitable format for the descriptor. Seven bytes
per word are therefore required to create the text tree data structure.

MEMORY LOCATIONS

RIGHT DESCENDANT HIGH BYTE

RIGHT DESCENDANT LOW BYTE

LEFT DESCENDANT HIGH BYTE

LEFT DESCENDANT LOW BYTE

START ADDRESS HIGH BYTE

START ADDRESS LOW BYTE

CHARACTER COUNT OF TEXT WORD
BAot Ur
DESCRIPTOR

Figure 10.7: Layout of a text tree descriptor
A block of descriptors can be built starting from the top of the text so
that the the tree structure is created without physically re-arranging
any of the text at all.

The start of the block of descriptors is the start of the tree, the very
first descriptor created is the ‘root node’. To add a second item is
easy: the word being added is compared to the root node word. If the
new word is alphabetically less than or equal to the root then the
second entry becomes the left descendant of the root. To do this all
that needs to be done is to place the start address of the second
descriptor into the left descendant area in the first descriptor.
Conversely if the new word is not alphabetically less than or equal to
the root word then we make the second entry the right descendant of
the root node.
Let us assume that a tree exists of at least one node. In a similar
fashion to that shown in chapter 9 we can create a DE-C set for the
new word to be added to the tree. If index register IX holds the start
of a descriptor then an equivalent HL-B set for a node word can be
created using indexed addressing as follows:

LD B,(IX+O)
LD L,(IX+1)
LD H,(IX+2)

;Count value
;Low byte of start address
;High byte of start address

135

SORTING and SEARCHING

To place a new item on the tree we want to start at the root node,
compare the new word with the current node word (root to start
with). If the new word is less than or equal to the node word we
move to the left, if greater we move to the right.
The following loop illustrates the general ideas involved:

CREATESNODE: LD IX,TEX TSR00 T$N0DE ;Base of first treeI descriptor
CSNS1: LD B,CIX+O) ;Count value

LD L,(IX + 1) ;Low byte of start address
LD H,(IX+2) ;High byte of start address
CALL COMPARESWOROS ;Carry set if HL-B is greater
CALL C,LEFTSDESC END ANT ;C set - node word > new word
CALL N C, RIG H T $ D E S C E N D A N T
JR NZ,CN1 ;Zero f lag is exi t condi t i on

To create a descendant we place the address of the new descriptor
being created into the descriptor that is the current node being
examined. If in performing the calls to LEFTÎDESCENDANT and
RIGHTSDESCENDANT we find that no further descendants exist then
the current node being looked at is going to become the parent of the
new node being added. We have implied in the above code that if
this condition is found the zero flag will be set to force an exit from
the loop.
Routines for left and right descendants are fairly similar so let us just
look at the left version. We use a PUSH AF instruction to preserve
the status of the carry flag, then we look at bytes (IX+3) and (IX+4)
to see if a descendant exists. If a descendant does exist we set IX to
the address of the start of the left descendants descriptor, otherwise
we create a new left descendant. The following code assumes that HL
already contains the start address of the new descriptor being
created:

* = = :
LEFTSDESCENDANT : PUSH Af ¿Must preserve carry

LD A,(IX+3) ;Low byte of left descendant
OR (IX+4) ;Z flag set if no descendant
JNZ MOVESTOSLE FT

*
CREATEÏLE FT : LD (IX+3) ,L

LD (IX + 4) ,H
POP AF

*
RET

MOVESTOSLEFT : LD E,(IX+3) ¿Get low byte
LD D,(IX+4) ¿Get high byte
PUSH DE ¿Transfer trick to
POP IX ¿perform IX <— DE
POP AF ¿Restore carry status
RLA ¿Carry into bit 0 of accumulator
CP A ¿Trick to clear zero flag
RR ;Bi t 0 back into carry
RET

* =
136

SORTING and SEARCHING

This is a double ended subroutine that includes two tricks. Firstly the
PUSH DE, POP IX instructions are used to provide a means of
transferring the contents of DE into index register IX. Secondly
RLA, CP A , RR is used to protect the carry flag whilst setting the
zero flag.
Routines such as these are used to build the descriptor block that
defines the logical structure imposed on the text image in memory.
In order to use such a structure it is necessary to write subroutines
that perform functions similar to those basic subroutines ‘Lowest-
node’ and ‘Next-node’ that were developed during our tree sort
introduction.
Without getting too involved we will develop one routine to show
you the principles. The assembly language equivalent of ‘Lowest-
node’ has to search the tree for the left-most item. We start at the
root (the first descriptor) and look to see if (IX + 3) and (IX + 4) are
zero. If they are then no further left descendants exist and therefore
thus the current node is the lowest node on the tree. If a descendant
does exist then we set IX to the address of the left descendants
descriptor and repeat the loop until such time as we run out of left
descendants. A simple routine providing the essential ideas is as
follows:

LOWESTSNODE : PUSH AF ! PUSH DE ¿Preserve registers
LSNS1: LD A,(IX+3) ¿Low byte of left descendant

OR (IX+4) ¿Zero flag set if no L. descendant
JR NZ,LSNS2 ;Have we found it ?
LD E,(IX+3) ;Low byte of left descendant
LD D,(IX+3) ¿High byte of left descendant
PUSH DE ; Copy trick
POP IX
JR LSNS1 ;Keep going left

LSNS2: POP DE ! POP AF ¿Restore registers
RET

If parent pointers were being used this routine would be satisfactory.
Without parent pointers this routine would correctly find the lowest
node, but other routines such as ‘Next node’ would not be able to
operate because there is no way of moving up the tree. The solution
is to track all movement through the tree using a stack (a LIFO
structure). Any movement through the tree is monitored by pushing
the address of the current descriptor (the current node) onto the
tree-stack. Many approaches are possible, here is an easy one that
uses the Z-80’s own stack mechanism. We save the existing Z-80
stack pointer, then load the SP register with our own tree stack
pointer held in a location TREESSP say. We then use the Z-80 PUSH
IX instruction to place our current descriptor address onto the tree
stack. Finally we save the new value of the tree stack pointer and
re-instate the Z-80 stack. A typical modification is shown below:

137

SORTING and SEARCHING

* ===
* LOWEST-NODE
* ===
LOWESTSNODE: PUSH Af ! PUSH DE ;Preserve registers
LSNS1 : LD A,(IX+3) ;Low byte of left descendant

OR (IX+4) ;Zero flag set if no L. descendant
JR NZ,LSNS2 ;Have we found it ?
CALL ADDSTOSSTACK ;Track movement through tree
LD E,(IX+3) ;Low byte of left descendant
LD D,(IX+3) ;High byte of left descendant
PUSH DE ;Copy trick
POP IX
JR LSNS1 ;Keep going left

LSNS2: POP DE ! POP AF ;Restore registers

*
RET

ADDSTOSSTACK : LD (Z8OSSP),SP ;Save Z80 stack

LD SP,(TREESSP) ;Get tree pointer
PUSH IX ;Store this node on tree stack
LD (TREESSP),SP ;Save tree pointer
LD SP,(Z80SSP) ;Restore Z80 stack
RET

* ===

Routines wishing to climb the tree can therefore do so by popping
the necessary addresses from the tree stack. The general principle is
that you PUSH descriptor addresses onto the stack whenever you
move down the tree, and POP descriptor addresses whenever you
move up the tree. The stack approach is one good example of a
structure that is in fact easier to implement in assembly langauage
than it is in languages such as basic.
Hopefully we have given you some insight into tree structures. The
ideas are sometimes difficult to grasp on initial contact but rest
assured that they do become easier once the essential characteristics
of such structures are understood. Hopefully you now appreciate
what a tree structure is, and you should be aware of the types of
problems that need to examined when using them.

138

11
SOLVING

PROBLEMS

Certain things make the development of assembly language prog
rams less problematic than they can be, we examine some of these
areas in this chapter.

DOCUMENTATION
We have dealt in detail with various design aspects and this goes
hand in hand with another frequently neglected item - documenta
tion. By this we do not just mean details of how the program is to be
used, we also mean development notes, details of amendments,
program notes and so on. Programmers in general are noted more for
their ‘Let’s do some coding’ attitudes than for any excessive desire to
document their programs - eventually failure to keep adequate notes
will cost dearly, both in lessons not learned and in lost time.
The golden rule is simple:

• Document while you are developing the program, not afterwards

By all means tidy up the development notes after the program is
complete but don’t wait this long before you make any notes at all.

If possible try to develop a more or less standard layout for all your
projects. You need development notes which will show, when taken
in conjunction with any design work, what the objectives of writing
the program were, and which explain the reasons behind your
approach. You need sufficient program details to enable you and
others others to understand the operation of the program. Finally, if
the program is to be used by non-technical people you will also need
‘jargon free’ user instructions.
The task of producing this documentation is not as difficult as it
might seem. If you have a text editor program then you can keep
most of the documentation on tape or diskette, this has the
advantage of being very easy to keep up to date. In many cases you
will be able to use the editor program that comes with your
assembler to prepare your documentation. Here are some guide
lines:

139

SOLVING PROBLEMS

Keep all your design diagrams and make notes about the problems you
encounter during the development. Make special note of any
assumptions made which might affect program operation if changed
in the future. Note also which parts of the code are dependent on
things like the operating system I/O characteristics and even
particular control characters which might vary from system to
system.

With short routines include the documentation with the source code. If
the programs are larger, then use your editor program to create a
separate documentation file.

Keep essential details within the source code itself to tell you where the
additional documentation may be found, when the program was
written and so on. A simple scheme is usually all that is required and
a typical source code ‘header’ is shown in figure 11.1.

* Program Name........................... SPELL-CHECK
* s::

* Project Reference........... 81/A11/1-1
* Copyright (C) 1981 by Paul Andreas Overaa
♦
* Purpose................ First phase of a CP/M based spelling check program
* using simple memory based tree sort techniques.
* Will operate on all common ASCII based files,
* including Wordstar type.
t
* Date........................ Project start 23rd January 1981
t
* This source 12th February 1981
*
* Processor........... Either Z80 or 8080/8085
*
* Operating system.... CP/M 1.4 onwards
t
* Documentation notes.... Kept separate from source,
* see project ref fi le.
*
* Diskette forms.. . Program and documentation are both available
* (in RAIR S/D format)
*
* Source code SPELL.ASH
*
* Object code SPELL.CON
*
* Documentation SPELL.DOC
«
* = = = = = = = z = = = = z = = = = = = = = = = z = = = = = = = = = = = = = = = z = = = z = = = = = z = = = = = = = = = = = = = = = z =

Figure 11. 1: A typical program header
140

SOLVING PROBLEMS

If a routine requires a particular format for the data that it works on
then provide some sort of indication within the routine itself so that
the general ideas behind it are apparent. Use a title that indicates
what operation the routine performs - Figure 11.2 shows a typical
example.

* WORD-SEARCH (Revision A)
*__
* Purpose:
* This routine searches the text file for words. Each time the start
* of a word is found a 'count' of the number of characters begins.
* When the end of the word (any non-aIphabeticaL character) is
* identified Word-search calls a routine to create a new node which

* contains the starting address of the word, its character count and
* the descriptor addresses of the left and right nodes in the binary
‘ tree that is created. All 'nodes' created have an associated block
* of SEVEN bytes called the node descriptor. If a word is found
* that is already present on the tree the node creation is aborted.
* The resulting descriptor set is therefore free of any duplication.
*__________________________ _________________________
WORDSSEARCH : LD BC,0 ;Zero B and C together

LD DE,0

LD HL,(CURRENTSDNASAD DRESS)

LD (NEXTSERPTYSTEXTSNODE),HL
LD (TEXTSROOTSNODE),HL

LD HL,0
LD (TEXTSNODESCOUNT)ZHL
LD HL,PROGRAMTOP jStart of file buffer

WSSS1: LD A,(HL) ;Get a character
AND 7FH ;Clear bit 7
CALL IDENTIFYSCHARACTER
CP EOF
JR NZ,W$SS1
RET

IDENTIFYSCHARACTER: CALL UPPERSLOWERSCASE
CALL C,LETTER$ADJUSTMENT ;Nust preserve HL
CALL NC,NON$LETTER$ADJUSTRENT;and carry for

INC HL ;CC part
RET

t ZZSSZSSZZZSZZZZZZZZZSSZSZS

Figure 11. 2: Try to include brief explanation at the start of a
routine

STANDARD PROGRAM LAYOUT
In the same way that a standardized documentation layout helps to
provide consistency, so does a standardized program layout. Even if
all your programs are different there are many things about the
overall structure which will often be similar.

141

SOLVING PROBLEMS

All will have some type of ‘initial block’, where EQUates are
defined, stacks initialized and so on. Most will use various system
calls which may need your own routines to ‘wait for input’, to pass
data to the operating system in a particular way and to perform other
functions. Additionally it may be necessary to reserve areas within
the program for particular uses such as static data areas.
Figure 11. 3 shows a typical assembly language source code layout.
Bear in mind that this representation means that the assembled
programs will have the data areas at the top of the object code as
figure 11.4 illustrates.

PROGRAM
HEADER

INITIALIZATION
BLOCK

MAIN
PROGRAM

PROGRAM
SPECIFIC

SUBROUTINES

GENERALIZED
SUBROUTINES

SYSTEM
BASED

SUBROUTINES

FIXED
DATA

AREAS

DYNAMICALLY
ALLOCATED

WORK-SPACE

Figure 11. 3: Suggested plan for a source code layout

LIBRARY ROUTINES
Many routines find use over and over again in a wide range of
different programs. The advantages of building up a subroutine
library is two-fold:

• First it is not necessary to re-write the routines, they can usually
be loaded from tape or cassette directly into the source code you
are writing

142

SOLVING PROBLEMS

TOP OF RAM
Á k

DYNAMICALLY
ALLOCATED

WORK-SPACE
AVAILABLE AT

THE TOP OF THE
PROGRAM

FIXED
DATA

AREAS

SYSTEM
BASED

SUBROUTINES

GENERALIZED
SUBROUTINES

PROGRAM
SPECIFIC

SUBROUTINES

MAIN
PROGRAM

INITIALIZATION
BLOCK

PROGRAM ------ ► __________________________________

START
(In your program this is defined by
an ORG pseudo-op or similar statement)

Figure 11. 4: Resulting layout of object code in memory

• Second, you will feel more comfortable using such routines
because you know they have been tried and tested

It goes without saying that you should not include routines in your
‘library’ until you are happy that they actually do the job that they
are supposed to. In practice the availability of such pre-written
routines will greatly increase the speed at which your programs
become operational.

COMMON PROBLEMS
The golden rule is don’t panic, and do not start making un
documented changes to your source code either. Errors are, on the
whole, easily approachable; they come in various shapes and sizes,
often under the general heading of syntax errors.
Syntax errors are, or should be, by far the most common problem.
You may mis-spell the name of a label (such as CHECKSWRD when

143

SOLVING PROBLEMS

you meant CHECKSWORD), or mis-type an instruction mnemonic
(LD,A B). You may write a comment without the delimiter character
which tells your assembler to ignore it. Doing this is a great way to
upset your assembler, because it will probably try to assemble your
comment as though it was a series of instructions - obviously it does
not get very far before it finds ‘instructions’ that it cannot
understand!.
These errors are usually picked up by the assembler when you try to
assemble the source code. The messages that you will get vary but
the type of thing to expect is the ‘UNDEFINED LABEL’, ‘BAD OP
CODE’, ‘DUPLICATE LABEL’ and the like. The exact forms will be
found from your assembler manual and are usually self explanatory.
Often an assembler will create a separate file showing the errors that
have been found and their locations. Facilities vary substantially
from assembler to assembler.
Other common errors can include relative jumps that are greater
than allowed and the incorrect use of various assembler directives.
Your assembler manuals should provide full details of the types of
error that will be identified.

PROBLEMS AFTER ASSEMBLY
Just because your source code has been assembled without errors it
does not necessarily mean that the program will work. It only means
that the assembler has been able to understand the instructions and
has translated them into the appropriate object code (or sometimes
into an intermediate ‘hex’ code). If for example you have written a
jump on zero instruction mnemonic (JP Z) when you really meant to
write jump on not zero (JP NZ), then your program will not function
correctly. Again, prevention is the best policy: try to plan out and
design small sections of code using subroutines for as many
procedures as possible. Small sections of code are easier to write,
easier to examine when things go wrong, and easier to change if the
need arises.
The isolation of distinct subroutines has two benefits in terms of
debugging:

• It is usually possible to devise ways of checking particular
routines one at a time

• It is much easier to alter or replace a small subroutine than it is to
untangle a small section of assembly code buried in a large mass

If a program or routine does not run as expected then try to identify
the area in the source code which is likely to be causing the problems.
Examine the code to ensure that the instructions written are the
instructions that you intended to write. Are you testing the right
144

SOLVING PROBLEMS

flag? Is the comparison test the wrong way around? Have you
forgotten to include a RETurn instruction at the end of a
subroutine?.
Try to identify the cause of the problem before you alter the source
code. Above all do not be tempted to guess! If a routine does not
work then there is a definite fault somewhere. You should (with
practice) be able to identify that fault from the source code listing,
and until then it is advisable not to make any wild guesses, they
simply lead to further problems.

LOGICAL FAULTS
These problems are frequently the most disastrous. There is nothing
worse than spending many hours writing routines which, once
combined, are found to be riddled with seemingly inexplicable new
faults. When faults such as this occur there is no simple answer, the
debugging of these types of problems often requires large sections of
code to be changed (often introducing further errors!).
The best way to avoid the problems that logical faults create is to use
techniques that enable the design of the program to be viewed
during development. This is why we place so much emphasis on the
Warnier diagram as a design tool.

OVERALL PLAN

• Identify the problem and keep a written description of your
project

• Break the problem down, using the techniques we have de
scribed, so that smaller and more manageable areas can be
identified

• Make notes on how you expect to code those areas that appear
straightforward

• Ask yourself whether more complex areas can be broken down
still further. The answer is usually ‘Yes’. Continue this break
down process until you are happy about the coding of each section
of the project

• Use the design diagrams and your notes as a starting point for a
basic program structure. Make lists of the routines that need to be
developed, and make a note of those which may be available from
your library

• Work on individual routines in isolation, but keep in mind that
they must be compatible with the remainder of the program

145

SOLVING PROBLEMS

• Test routines individually to ensure that they perform as they
should. Complex programs can be built up piece by piece with
any errors usually resulting from the most recently added routine

146

12
LINKING

INTO BASIC

In this chapter we move away from pure assembly language
programs and give an example of how small assembler routines can
be ‘hidden’ in some rather unusual places. These tricks are
sometimes used for efficiency, sometimes for speed, and often for
more dubious reasons.
It is possible to create your own assembly language routines for use
in a program written primarily in a high level language. If you are
using a compiler then sophisticated link techniques are usually
available. If you use interpreted basic then other methods are
necessary. The most popular example is probably the POKEing of
routines into basic’s REM statements. Since R EM’s are not used in any
way a routine can safely reside within the characters of the line,
without causing any problems.
You can also load assembly language routines into variables,
provided that you take certain precautions. The overall ideas behind
all of these related techniques are similar and we shall look at two
examples using Microsoft basic. Firstly we show you how to hide an
assembly language subroutine within a string variable, then we will
show how you can incorporate a ‘memory mapped screen save’
routine into your own basic programs.
Microsoft basic includes the CALL statement which allows you to
call an assembly language subroutine. In its simplest form the CALL
statement is followed by the starting address of the subroutine.
However, indiscriminate use of CALL will cause the system to
‘crash’, so it is wise to exercise a certain amount of care when using
it. With operating systems such as CP/M you can actually damage
diskette data if you inadvertently execute one of the disk operating
system routines - indeed it is not unusual for some people to use
these effects as part of their ‘program protection’ techniques.

Before using the CALL statement we must understand a little about
the state of the microprocessor at the time a call is executed. When a
call is made you can safely assume that all of the internal registers
contain information which must be preserved. It is therefore
necessary to push the contents of all of these registers on to the stack.
If, as is usual, you are only using the primary set of Z-80 registers
then you only need to save these.

147

LINKING INTO BASIC

Usually a basic CALL statement will preserve the contents of the
necessary registers automatically, but there may be some basics
available that expect you to do it from within your own routines. We
shall therefore assume, at least to start with, that Microsoft basic
does not preserve the register contents when a CALL statement is
encountered. Having developed some initial routines we will then be
able to check whether we really need to save the internal registers, or
whether it is being done for us.
The versions of Microsoft basic that we have worked with allow for
only 16 bytes of stack storage in a user-called subroutine. If more
stack space is needed then basic’s stack pointer must be stored, and
the stack pointer initialized so that an independent stack is available
to the called routine. The contents of the stack pointer must be
restored to their original value before returning control to the basic
interpreter. A typical routine, if we do not need to set up additional
stack space, will take the form illustrated in figure 12.1, and it is this
scheme that will be used in our example program.

PUSH AF
PUSH BC
PUSH DE
PUSH HL

t
BODY OF SUBROUTINE

I
POP HL
POP DE
POP BC
POP AF
RET

; save internal registers

; restore original contents

; and RETurn to BASIC

Figure 12. 1: General format required for a simple CALL
To force a routine into a variable (or into a REM statement) we must
translate the mnemonic form into a numeric form. This is done by
using the equivalent op-codes, addresses and data values. Such
exercises make useful educational material, and certainly help us
appreciate the benefits of modern assemblers!
On the Osbome-O] Z-80-based computer the VDU screen is cleared
by ‘printing’ the character 1Ahex. The Osborne uses CP/M as its
operating system and to output a character it is necessary to do three
things:
148

LINKING INTO BASIC

• The character to be ‘output’ must be loaded into the E register

• The number 2 must be loaded into the C register (this is called the
‘function number’ and signifies to CP/M that character output is
required)

• A C A L L instruction must be issued using a common entry point at
location 05hex. This entry point is usually labelled BDOS by CP/M
programmers (the label stands for Basic Disk Operating System).

If we add the three instructions to the basic format shown in figure
12.1, and list each instruction together with the hexadecimal
equivalent we obtain the form shown in figure 12.2.

Mnemonic form Hexadecimal form

PUSH AF F5
PUSH BC C5
PUSH DE D5
PUSH HL E5
LD E,1AH 1E, 1A
LD C,2 0E, 02
CALL BDOS CD, 05, 00
POP HL E1
POP DE D1
POP BC C1
POP AF F1
RET C9

Figure 12. 2: Translation of program into hexadecimal form

The routine, if it were to be assembled, would be translated by the
assembler to the binary equivalent of the set of numbers F 5, C 5, D 5,
E5, 1E, 1A, OE, 02, CD, 05, 00, E1, D1, C1, F1, C9. We will place
these numbers directly into a portion of memory which we will
assign to a ‘dummy’ string variable.
Microsoft’s VARPTRO function is used to obtain addresses of
variables to enable them to be passed to assembly language routines
etc. If we make an assignment X$=STRING$(50,0) then we define
a string variable of 50 characters, each of which has the ASCII code 0
- we will have a string of 50 null characters. The function
VARPTR(XS) does not return directly the address we need, instead it
returns the address corresponding to the first byte of a three byte
‘pointer’.

149

LINKING INTO BASIC

The format of this pointer is needed if we are to find the actual
address of the variable. Here is how it is arranged:

• The first byte is the number of characters in the string

• The second byte is the low order part of the address

• The third byte is the high order part of the address

If the variable ‘Γ is used to collect the result of the VARPTRO
function then we can define a variable ADDRESS like this:

ADDRESS=PEEK(I+1)+PEEK(I+2)*256

We multiply the high byte of the address by 256 to left shift it eight
bits higher than the low order part. If this seems confusing try
writing out some examples and translating them by hand. Remem
ber that addresses on the Z-80 are stored low byte first, so that
PEEKU + 1) is reading the low order byte.
The first program we show uses the hexadecimal numbers as a DATA
statement. We read the values and poke them into space reserved for
the X $ variable whose starting address has been found as indicated
above. Having done this our routine is present inside X$ and can be
used by an appropriate CALL statement. Here is a simple trial
program:

10 REM ==
20 REM USING MICROSOFT 'STRING SPACE' FOR AN ASSEMBLY ROUTINE
30 REM ___
40 X$= S T RING$(60,0) ' Dummy variable will hold the routine
50 DATA 8HF5,8HC5,8H05,8HE5:REΜ hex forms of PUSH instructions
55 DATA &H1E,&H1A:REM ...hex form of LD Ε,ΙΑΗ
56 DATA &H0E,&H02 : REM ... hex form of LD C,2
57 DATA &HCD,&H05,&H00:REMhex form of CALL 0005H
60 DATA 8HE1,8HD1,8HC1,8HF1,8HC9: REM .hex forms of POP and RETurn
70 I=VARPTR(X$) ' First byte is the character count for the string
80 ADDRESS = PEEK(1 + 1) + PEEK(I+2)*256 ' See text about this line
90 FOR J=ADDRESS TO ADDRESS+15
100 READ X:P0KE J,X ' Read data value and place into position
110 NEXT J
120 CALL ADDRESS ' This uses routine that we placed into X$
130 END
140 REM ===

The instructions in the DATA statements have been separated for
clarity. There is, however, no reason why the hex numbers cannot
be written as a single DATA declaration if desired.

AN EXAMPLE: DUPLICATING A DISPLAY FILE
For some applications it is necessary to reserve space explicitly
outside basic itself and facilities usually exist to set the highest
150

LINKING INTO BASIC

address which will be used by basic. This may done by placing the
necessary value into a specific location (the ZX-81 has a system
variable called RAMT OP which may be used in this way). Other
basics, like Microsoft’s, have initialisation options which will reserve
external space. When Microsoft basic is loaded from disk, the
command MBASIC /M:8HBB00 will cause basic to load into
memory, once in use it will not use any memory space above the
specified BB00hex.
We shall make use of the ability to reserve RAM space to allocate an
area for copying the contents of the display file of a memory mapped
system. The particular example taken again involves the Osbome-Ol,
but the general principles will be similar with any memory mapped
system, only the actual addresses used will change.
Figure 12.3 shows the schematic memory layout of the Osbome-Ol
when using Microsoft basic. The important point is to notice that
the display file occupies addresses F000hex to F F F Fhex - it is situated
at the top of the memory.
Memory areas between CB00hex and F000hex are reserved for the
operating system and obviously must not be used.
When basic loads it does so from 100hex upwards and will use
locations from CBOOhex downwards for storage of variables, strings
etc. Since we can restrict the area of memory used by Microsoft
basic we will load using MBASIC /M:8HBB00 to reserve 4K of
memory in which we will duplicate the contents of the screen (our
display file).

FFFF hex

FOOD hex
DISPLAY - FILE

RESERVED
F 0 R

OPERATING
SYSTEM

CBOO hex
MICROSOFT

BASIC
WORKSPACE

APPLICATIONS
PROGRAMS

MICROSOFT
BASIC

0100 hex
RESERVED

F 0 R
OPERATING

SYSTEM
0000 hex

Figure 12. 3: Schematic layout of the Osbome-Ol with BASIC
151

LINKING INTO BASIC

The equivalent memory organization obtained when reserving space
in this way can be seen from figure 12.4. Space reserved can of
course provide a ‘common area’ for assembly language subroutines,
data transfers between different applications programs and has many
other uses.

FFFF hex

FOOD hex

CBOO hex

BBOO hex

0100 hex

0000 hex

Figure 12. 4: Memory layout with space for screen copy
The copy routine itself is very straightforward and uses one of the
powerful block move instructions LDIR. The BC register pair is
loaded with the number of bytes to be transfered, this is F F F Fhex
minus F000hcx , which is FFFhex. The HL pair is loaded with the
starting address of the source block - F000hex in our example.
Finally the DE pair loaded with the starting address of the
destination block - BB00hex. The instruction LDIR will automatically
copy the source block into the destination; the contents of the byte
addressed by HL are transferred to the byte addressed by the DE
register pair, then DE and HL are incremented and BC is
decremented. If BC is not equal to zero then the program counter is
decreased by 2 and the instruction repeated. The main part of the
routine simply requires three ‘load’ instructions and the block move
instruction. As with the first example we shall store the routine in a
152

LINKING INTO BASIC

string variable, the data to be transferred will be passed outside basic
to the area BB00hex to C B00hex which has been reserved for the screen
copy. As with the first example we list the mnemonic forms of the
instructions (including the stack save/restore operations needed for
the CALL operation) and convert these into their hexadecimal form
so that the routine can be POKEd into position.
Figure 12.5 shows the operations required and the equivalent
hexadecimal form to be used in the DATA statement. When writing
routines such as these, do not be tempted to skip the ‘mnemonic
stage’. Op codes are easily forgotten or transposed, so write the
program just as if you were going to assemble it, then translate it into
numeric form. When such routines are incorporated into basic
programs you should ensure that you document the program
sufficiently. You may understand a routine when you write it, but
what about next week, next month, or next year?

Mnemonic form Hexadecimal form

PUSH AF F5
PUSH BC C5
PUSH DE D5
PUSH HL E5
LD BC,OFFFH 01, FF, OF
LD HL ,FOOOH 21, 00, FO
LD DE BBOOH 11 , 00, BB
LDIR ED, BO
POP HL E1
POPDE D1
POP BC C1
POP AF F1
RET C9

Figure 12. 5: Translation of screen copy program to
hexadecimal form

A simple test program which places this routine into a string variable
(X$) is shown below. Note the similarity in layout to the earlier
program. Remember that the routine which performs the copy is
inside the variable X$, the contents of the screen are placed into the
area of memory reserved when we first loaded basic.

10 REN ==
20 REN SCREEN - COPY - ROUTINE
30 REN ___
40 X$=S TR INGS(20,0) 1 Routine is placed into this space
50 DATA SH F 5,8HC5,&HD5,&HE5 : R EN hex forms of PUSH instructions
60 DATA 8H01 ,&HFF,8H0F : REN hex form of LD BC OFFFH

153

LINKING INTO BASIC

70 DATA (H21,(H00,8HF0:REM hex form of LD HL FOOD
80 DATA 4H11,«H00,»HBB:REH hex form of LD DE BBOOH
85 DATA SHED,8HB0 : REM ...hex form of LDIR
90 DATA 8HE1,8HD1,8HC1,8HF1,8HC9: REM ..hex forms of POP and RETurn
100 I=VARPTR(X$) ' First byte is the character count for the string
110 ADDRESS=PEEK(1+1)+PEEK(I+2)*256 1 See text about this line
120 FOR J=ADDRESS TO ADDRESS+19
130 READ X:P0KE J,X 1 Read data value and place into position

140 NEXT J
150 CALL ADDRESS ' this call saves current screen contents
160 END
170 REM ===

The example illustrates the general principles and should provide
some food for thought for the more devious readers. Routines within
variables can be saved and read to disk or tape just like any other
variable.

Preserving the registers - Is it necessary?

If you are lucky you may find this information in the language
manuals, but more often than not you will have to find out for
yourself. The easiest way is simple - try it and see: write a short
routine which changes values of the microprocessor registers, then
use it with and without the PUSH and POP instructions. The program
below has had the PUSH and POP instructions removed. Remember
that the loop counter (currently allowing for 11 iterations) must be
changed to reflect the smaller number of bytes now being POKEd
into the string variable.

10 REM ==
20 REM SCREEN - COPY - ROUTINE
30 REM ___
40 X$=STRING$(20,0) ' Routine is placed into this space
60 DATA &H01 ,8HFF ,8H0F : REMhex form of LD BC OFFFH
70 DATA 8H21,8H00,8HF0:REMhex form of LD HL FOOD
80 DATA 8H11,8H00,8HBB:REM hex form of LD DE BBOOH
85 DATA 8HED,8HB0 : REM ... hex form of LDIR
90 DATA 8HC9:REM ..hex form of RETurn
100 I=VARPTR(XS)1First byte is the character count for the string
110 ADDRESS=PEEK(1+1)+PEEKC1+2)*256' See text about this line
120 FOR J=ADDRESS TO ADDRESS+11
130 READ XcPOKE J,X' Read data value and place into position
140 NEXT J
150 CALL ADDRESS' this call saves current screen contents
160 END
170 REM ===

The results of this test indicated that Microsoft disk-based basic does
preserve and restore the necessary registers; it is quite likely that
your version of basic will do the same but, if there is any doubt, it is
far better to check for yourself.
154

LINKING INTO BASIC

FINAL WORD
There is much scope for this type of ‘mixed code’ programming
within normal applications packages. Often you can use assembler to
do things which require maximum speed such as sorts and graphic
displays, but you can still benefit in other areas by having the high
level language available. The level of such compromise can be
adjusted to suit your own time and complexity requirements. If you
are feeling adventurous here are some possible approaches you might
like to develop:

• Write a routine that stores the ‘calling program’ to disk or tape.
Some commercial sorting programs use this technique so that the
maximum amount of RAM, less the operating system and the sort
routine itself, is made available for the actual sort.

• Write a routine to convert upper case to lower case and lower case
to upper case.

• Using external reserved RAM space create a ‘help menu’ that is
entered by not responding to a request for input within a certain
time. Use an assembler routine or basic functions such as IN K E Y $
to identify the time taken to respond to input.

155

NOTES

156

13
WHERE
NEXT?

In this last chapter we want to briefly consider some of the
implications of the ideas contained within this book. We start by
covering some points about Warnier diagrams that have been, to a
certain extent, avoided.

VERIFYING YOUR DESIGN
By now you have seen some of the uses that Warnier diagrams may
be put to and we have tried to illustrate some of the ways in which
such diagrams may be used to describe the structure of data and of
programs themselves. The emphasis has been centred around the
separation of the logical problems of programming from the physical
problems of actually coding the solution for a particular language or a
particular computer. We have dealt primarily with the Z-80
microprocessor, but many of the fundamental ideas are not
processor dependent.
Many of you will have wondered, whilst reading this book, what
happens if you make a logical error as you prepare a Warnier
diagram. Such errors will sometimes occur but you will be less likely
to make such mistakes because the diagrams represent your logical
solution in a very ‘pictorial’ fashion. Frequently you will know that a
fault exists just by looking at the diagram. You can then take steps to
make the necessary modifications. Used in this way the Warnier
diagram becomes a prop to lean on as you are working towards a
solution.
It is possible to be more rigorous in the use of the concepts that we
have looked at and since there exists a relation between the defined
objectives of a problem, the correct Warnier representation of the
problem, and the efficiency of the final implementation, it is relevant
to consider one way to make sure your Warnier diagram is faultless.
In the early chapters we illustrated the use of the Warnier diagram as
an iconic model for the logic we are attempting to describe or create.
In doing this the Warnier diagram is actually mapping out the
program structure required to implement our solution.
Warnier does not concern himself with these aspects because the use
of these diagrams as an iterative design tool for analysing problems is
not fundamental to his approach. Those of you who have studied any

157

WHERE NEXT?

of Warnier’s works will realise that to a large extent he attains a
correct logical solution using various techniques including Boolean
Algebra, Karnaugh Maps and Decision Tables. Such solutions are
then represented by a Warnier diagram. The program is then
constructed from the diagram as indicated.
For our purposes the Warnier diagram is being used in a rather
different way to that originally employed by Warnier himself. We
use them to analyse and document our thoughts on a problem, that is
to say the Warnier diagram is being used as a design tool to provide
an iconic model helping us to achieve solutions by a process of
iterative refinement.
It is sometimes helpful, when using the Warnier diagrams in this
way, to be able to verify the efficiency and correctness of your
implied solution. One way to do this is to translate the diagram into
an algebraic expression using the Algebra of Sets, Boolean Algebra
or any other isomorphic algebra that you might be familiar with. To
give you some insight into how this can be done we will take a simple
example and describe what is done at each stage.

AN EXAMPLE
Let us take a very general example of a Warnier diagram and use the
letters A, B and C to represent three conditional tests that are
present in the structure of the program. Let us also define U1, U2,
U3 and U4 as subsets of actions that are performed in accordance
with the logical description shown in figure 13.1.
There is nothing special about the example other than the fact that it
was made purposely inefficient. You can regard U1, U2 etc. as being
subroutines which are called as desired. If for instance condition A is
true and condition B is also true then the top third from left bracket
will be performed. If in the course of carrying out the operations in
this bracket the test C fails (ie. is not true) then subroutine U2 would
be called. If the test C did not fail (ie. condition C was true), then
subroutine U1 would be called instead.

We get a clue about verifying such a diagram from one of the ways
that Warnier uses to solve his logic problems. At times he will get a
solution from a decision table of possible options in terms of a
Boolean Algebra expression. He then proceeds to describe the
solution with a Warnier diagram. The implication is straightfor
ward:

• If you can convert a Boolean expression into a Warnier diagram
then you can convert a Warnier diagram back into a Boolean
expression.

Having done that, you can manipulate the expression and reduce it
158

WHERE NEXT?

HYPOTHETICAL
EXAMPLE

Figure 13.1: Warnier diagram for a hypothetical example

to its simplest form (or confirm that it is already in its simplest
form). It is then perfectly easy to take the simplified expression and
convert it back to the Warnier diagram form. The resulting diagram
will then be correct and will represent the simplified logical solution.

If you study figure 13.1 you will see that subroutine U2 is called in
two places:

• If test A is true and test B is true but test C is not true then U2
will be called.

• If test A is not true and test B is true and test C is not true then
again subroutine U2 will be called.

We can easily express the fact U2 is dependent on these two
condition requirements in the following way:

U2 = A.B/C + T.B/C

This is a Boolean algebra expression of the set of conditions under
which subroutine U2 is called. We can, in a similar fashion, write

159

WHERE NEXT?

down expressions for all of the subroutines U1 to U4. If we do this
we get the following results:

U1 = A.B.C + A.B.C + T.B.C + A.B.C

U2 = A.B/C + T.B.T

U3 = A.B.T + A.B.C

U4 = T.B.C + T.ÏÏ.C

The notation is derived from Boolean Algebra but the way you
describe the expressions in words is up to you. U2 can be described
as the subroutine that is carried out when either ‘A and B are true
but C is not true’, or ‘B is true but A and C are not true’.
To follow the reduction of the above expressions all you need to be
aware of is the fact that you can treat the letters on the right hand
side just as you would treat unknowns in an equation. The object of
the exercise is to regroup the symbols so that we can bracket together
complementary terms such as A and A because we can then
eliminate them.
Look first at U2 and follow through the reduction:

U2 = A.B.C' + T.B.C

Note that B.C is common to both expressions and re-arrange
accordingly:

U2 = B.T (A + T)

This immediately leads to the reduced expression for U2 as:

U2 = B/C

Now we try to reduce U3 in a similar way:

U3 = A.B.C + T.ÏÏ.'C

U3 = ÏÏ.T (A + T)

U3 = B.T

With U4 we proceed as follows:

U4 = T.B.C + T.B.C

U4 = T.C (B + B)

U4 = T.C

160

WHERE NEXT?

Lastly we can reduce U1 in the following manner:

U1 = A.B.C + A.ÏÏ.C + I.B.C + T.ÏÏ.C

U1 = A.C (B + ÏÏ) + T.C (B + ÏÏ)

U1 = A.C + T.C

U1 = C (A + T)

U1 = c

We have now simplified all of the original expressions and have
obtained the following results:

U1 - c

U2 = B.C

U3 = B.T

U4 = T.C

How do we convert these expressions back into an efficient Warnier
diagram. The first thing to do is to re-arrange the expressions so that
the most frequent condition test comes first on the right hand side,
then comes the next most frequent - and so on. If we do this we
obtain the following forms:

U1 = c

U4 = C.T

U2 = Ï.B

U3 = T.Ï

Look closely at the way the reduced forms have been arranged and
then look at the Warnier diagram in figure 13.2 We can draw the
diagram directly from the re-arranged Boolean expressions.

You will notice that we have effected quite an improvement on the
logical structure of our hypothetical program. If we consider some of
our earlier thoughts we can see some useful concepts emerging. We
can use Warnier diagrams to pictorially represent our problem as we
come to terms with the various constraints and can create a ‘picture’
of our logical solution. We can also check the validity of a solution by
translating the diagram into algebraic form and attempting to reduce
the expressions we obtained. If we find reduction is possible then by
translating back we can improve the original solution. The final
Warnier diagram will describe the necessary structure of the
program in a way that is easy to translate into computer code.

161

WHERE NEXT?

HYPOTHETICAL
EXAMPLE

Figure 13.2: Improved diagram for the example

The correspondence between a Warnier diagram and Set Algebra or
the isomorphic Boolean Algebra provides a link into the realms of
mathematics with many implications concerning the correctness of
the structure of a program.

SYSTEM PLANNING
It is of interest to make one last connection concerning the uses of
the Warnier diagram. As you know we can regard a program as a set
of instructions. We can divide such a set into subsets and represent
the inherent structure using a Warnier diagram. It is equally
advantageous in systems design to consider the system as being
divisible into subsets of actions. Such a subset defines a set of
logically related actions which may be combined into a program
module.
Imagine, for instance, that we are designing a system around some
routine business application. In practice we would need to be able to
add and delete data, analyse it, print reports and so on. We might
decide on a menu driven system and could describe the highest level
menu in Warnier form as in figure 13.3 (here all options are mutually
exclusive):

MENU 1

EDIT VALIDATION RECORDS

Φ
ADD / DELETE DATA

•Φ
PRINT ERROR REPORTS

Φ
PRINT REPORT

Φ
CLOSEDOWN SYSTEM

Figure 13.3: Essential menu details
162

WHERE NEXT?

Such a diagram indicates the bare essentials of what we want our
system to do. Each term can obviously be expanded into much
greater detail. The simple statement in figure 13.3 ‘EDIT VALIDA
TION RECORDS’ can be expanded to incorporate some additional
ideas as in figure 13.4.

BEGIN EDIT VALIDATION RECORDS
(1 time)

GET RECORD DESCRIPTION
(1 time)

INFORM USER THAT
RECORD EXISTS
(1 time)

{
RUN

M-1
MODULE

RECORD EXISTS
(0,1 ti me)

EDIT
VALIDATION
RECORDS

RECORD EXISTS
(0,1 time)

CREATE NEW RECORD
(1 time)

RUN
M-2
MODULE

END EDIT VALIDATION RECORDS
(1 time)

Figure 13.4: Edit validation records, further expansion

We can, by using these ideas, see that there is no fundamental
difference between designing a system and designing a program. It is
just as easy to develop a logical coherent system as it is to develop a
logical program.
We have tried throughout the book to emphasise some of the new
ideas which seem to be of use in our quest for better methods of
writing and designing programs. There is no doubt that the work of
Jean Dominique Warnier is of fundamental importance in this
search. We dealt initially with some ideas connected with how we
solve problems and the usefulness of having ‘pictures’ or ‘iconic

163

WHERE NEXT?

models’ to relate to. We have also seen how the basic concepts of a
set can provide interesting and useful descriptions that are of
particular use when programming in assembly language.
This last chapter has dealt briefly with one approach to verifying
your solutions and suggests that the design of systems or sets of
programs is really no different from designing programs themselves.

COMPACT CODING
Throughout the book you will notice that we have not emphasised
the saving of bytes. Neither have we suggested that the efficiency of
a program should be judged by its compactness alone.
It is nevertheless true to say that it is important not to waste memory
unneccessarily. Indeed some applications may require the use of
many legitimate tricks to squeeze as much useful code as possible
into a given space. If it is necessary to put a 5K operating system into
a 4K ROM you must cut corners, you will therefore forced to save
bytes by using many tricks that will inevitably make your code
convoluted and extremely difficult to understand. Such solutions are
governed by the necessity of cramming as much code as possible into
a given area. Where our ideas may possibly differ is that we would be
inclined to do such compression after we had the overall design
identified and not before or during the development.

LAST WORD
By avoiding some of the difficult areas, such as hardware interfacing
and the problems of microprocessor I/O, we have hopefully provided
you with a fairly gentle introduction to assembly language program
ming. Our final piece of advice is simply this:

• As you examine more advanced texts bear in mind that behind
each program or routine there is, or should be, a sound logical
design.

• Try to understand the basis of the routines you examine and try
also to separate and understand the logical structure as something
quite separate from the coding itself.

• Remember that writing obscure code for its own sake is rarely
wise. At the very least you may need to understand it many years
after it was written, equally likely is the possibility that someone
else may need to!

164

WHERE NEXT?

Today, good programming does not just involve efficient code, it
involves producing efficient code in a reasonable amount of time and
it involves producing code that can be easily altered (and main
tained) should the need arise. The techniques that we have
illustrated are identical whether they are being used for system
planning, high level programming, or low level programming.
Obviously such ideas do not solve all problems and many other
useful techniques and approaches exist.
If you are new to computing then use the ideas that you have
understood and concentrate on the underlying essentials. If you are
not a beginner then you can be assured that the concepts covered
may be taken much further. We hope that the ideas have provided
food for thought. Perhaps, like us, you will consider that the unity of
some of the underlying concepts may indicate that it is no longer
necessary to regard good programming as magic or as an art-form.
Good programming can be taught just as easily as we teach other
subjects - providing we use the right techniques and ensure that the
underlying fundamental ideas are understood.

165

NOTES

166

Appendix A
X * THE Z-80

INSTRUCTION SET

The following instruction set listing is based on the data available from the
manufacturer’s data sheets and from other sources. The notation used is
based on generally accepted Z-80 mnemonic conventions as follows:

Symbol
r, rl

Description
Any 8-bit register

rr A register pair
eg. BC, DE

s An 8-bit operand. Note that this may be a register, an
immediate byte of data or an address from which the
operand is actually obtained.

Note also that such an address may be specified in several
ways.

n An 8-bit value

mn A 16-bit value
d An 8-bit value which is a ‘displacement’ in an indexed

addressed instruction

(XX) Brackets are used to indicate that it is the contents of byte
XX that are being treated as the operand, and not the value
XX itself. As an example the notation (HL) should be read
‘the contents of the byte whose address is held in HL’.

Flags 0 = flag set to this value
1 = flag set to this value
* = flag value depends on the result of the instruction
? = this is explained in notes below the flag description

pq
X

Any 16-bit address
X bar is the complement of X, ie. all 1’s are turned into
0’s and all 0’s turned to l’s

eg. ifX = 10110000 thenX = 01001111
b A specified bit within a byte or set of bytes
e An 8-bit number in two’s complement form

cc An allowed condition to be tested
eg. Z = zero

NZ = not zero

167

Appendix A - THE Z-80 INSTRUCTION SET

Symbolic description of an instruction
It is possible to describe the effect of an instruction in notation form and this
has certain advantages as shown in these two examples:

• The instruction LD r, n is shown in symbol form as r<—n. This implies
that the value n is loaded (copied) into register r.

• The instruction LD A, (HL) is shown in symbol form as A«—(HL). This
implies that the contents of the byte whose address is HL are loaded
(copied) into the A register (the accumulator).

Where it is felt that a symbolic notation is not specifically of value (as in, for
example, the CALL instructions), then only the text description has been
given. The overall format of the instruction set in this appendix is as follows:

Mnemonic: This is the standard ‘shorthand’ description of the
instruction. It is the form that your assembler will expect

Title: Mnemonic in ‘word form’
Description: Brief details of the function of the instruction

Flags: Details of which flags are affected by the instruction
This information is followed by details of the allowed forms for the
instruction. This includes the addressing modes, the assembly language
forms for a given mnemonic, the object code resulting from a particular
instruction and the number of bytes occupied by the assembled instruction.

Mnemonic: ADC A, s
Title:
Symbolic:

Add accumulator with carry
A«—A + s + carry

Description:

Flags:

The operand and the carry flag are added to the value
already present in the accumulator
S Z H P/V N C
★ ★ ★ ★ Q ★

Addressing
mode

Assembly Object Bytes
form code

Implicit ADC A, A 8 F 1
ADC A, B 88 1
ADCA, C 89 1
ADCA, D 8A 1
ADCA, E 8B 1
ADCA, H 8C 1
ADCA, L 8D 1

Immediate ADC A, n C E n 2
Indirect ADCA, (HL) 8E 1

Indexed ADC A, (IX + d) DD8Ed 3
ADCA, (lY + d) FD8Ed 3

168

Appendix A - THE Z-80 INSTRUCTION SET

Mnemonic: ADC HL, rr
Title: Add with carry to HL
Symbolic: HL«— HL + rr + carry
Description: The contents of the specified register pair together with

the contents of the carry flag are added to the value
already present in HL

Flags:

Addressing

S Z H P/V N C
★ ★ ★ ★ o ★

Assembly Object Bytes
mode

Implicit

form code

ADC HL, BC ED 4A 2
ADC HL, DE ED 5A 2
ADC HL, HL ED6A 2
ADC HL, SP ED7A 2

Mnemonic: ADD A, (HL)
Title: Add indirect addressed location to accumulator
Symbolic:

Description:

A«-A + (HL)

The contents of the byte whose address is specified by
HL are added to value already present in the accumulator

Flags: S Z H P/V N C
★ ★ ★ ★ Q ★

Addressing
mode

Assembly Object Bytes
form code

Indirect ADD A, (HL) 86 1

Mnemonic: ADD A, (IX + d)
Title: Add indexed addressed location (IX + d) to accu

mulator
Symbolic:

Description:

A«—A + (IX + d)

The contents of the byte specified by (IX + d) are added
to the value already present in the accumulator

Flags: S Z H P/V N C
★ ★ ★ ★ o *

Addressing
mode

Assembly Object Bytes
form code

Indexed ADDA, (IX + d) DD 86 d 3

169

Appendix A - THE Z-80 INSTRUCTION SET

Mnemonic: ADD A, (IY 4- d)
Title: Add indexed addressed location (IY + d) to accu

mulator
Symbolic: A*—A + (IY + d)
Description: The contents of the byte specified by (IY + d) are added

to the value present in the accumulator
Flags: S Z H P/V N C

* * * * 0 *
Addressing Assembly Object Bytes

mode form code
Indexed ADD A, (IY + d) FD 86 d 3

Mnemonic: ADD A, n
Title: Add immediate data byte to the accumulator
Symbolic: A* —A + n

Description: The contents of the byte that follows the op code is added
to the value already present in the accumulator

Flags: S Z
* *

H
*

P/V
★

N C
0 *

Addressing Assembly Object Bytes
mode form code

Immediate ADD A, n C6 n 2

Mnemonic: ADD A, r
Title:
Symbolic:

Description:

Add register r to accumulator
A«—A + r

The contents of register r are added to the value already

Flags:

Addressing

present in the accumulator
S Z H P/V N C
★ ★ ★ * o ★

Assembly Object Bytes
mode

Implicit
form code

ADDA, A 87 1
ADD A, B 80 1
ADDA, C 81 1
ADD A, D 82 1
ADDA, E 83 1
ADDA, H 84 1
ADDA, L 85 1

170

Appendix A - THE Z-80 INSTRUCTION SET

Mnemonic: ADD HL, rr
Title: Add register pair to HL

Symbolic: HL«-HL + rr

Description: The contents of the specified register pair
the value already present in the HL pair

are added to

Flags: S Z H P/V N C
★ 0 *

Addressing Assembly Object Bytes
mode form code

Implicit ADD HL, BC 09 1
ADDHL.DE 19 1
ADD HL, HL 29 1
ADD HL, SP 39 1

Mnemonic: ADD IX, rr
Title: Add register pair to IX

Symbolic: IX^IX + rr
Description: The contents of the register pair rr are

contents of index register IX
added to the

Flags: S Z H P/V N C
* 0 *

Addressing Assembly Object Bytes
mode form code

Implicit ADD IX, BC DD09 2
ADDIX.DE DD 19 2
ADD IX, HL DO 29 2
ADD IX, SP DD 39 2

171

ADDHL.DE
ADDIX.DE

Appendix A - THE Z-80 INSTRUCTION SET

Mnemonic: ADD IY, rr
Title:

Symbolic:
Description:

Add register pair to IY
lY^IY + rr
The contents of the register pair rr are added to the

Flags:

Addressing

contents of index register IY
S Z H P/V N C

* 0 *

Assembly Object Bytes
mode

Implicit
form code

ADD IY, BC FD09 2
ADD IY, DE FD 19 2
ADD IY, HL FD29 2
ADD IY, SP FD39 2

Mnemonic: AND s
Title: AND accumulator with specified operand
Symbolic: A<—Aas

Description: The accumulator and the operand are compared bit by
bit according to the following rule table:

Accumulator bi t 0 1

Operand 0 0 0
Bit Result in accumulator

1 0 1

Flags: s Z H P/V N C
* * 1 * 0 0

Addressing Assembly Object Bytes
mode form code

Implicit AND A A7 1
AND B AO 1
AND C A1 1
AND D A2 1
AND E A3 1
AND H A4 1
AND L A5 1

Immediate AND n E6 n 2
Indirect AND (HL) A6 1
Indexed AND (IX + d) DD A6 d 3

AND (IY + d) FD A6 d 3

172

Appendix A - THE Z-80 INSTRUCTION SET

Mnemonic: BIT b, (HL)
Title: Test bit b of the memory location addressed by HL
Description: The selected bit is tested and the zero flag set if bit is zero
Flags: S Z H P/V N C

* * 1 * 0
Addressing Assembly Object Bytes

mode form code
Indirect BIT 0, (HL) CB 46 2

BIT 1, (HL) CB 4E 2
BIT 2, (HL) CB 56 2
BIT 3, (HL) CB 5E 2
BIT 4, (HL) CB 66 2
BIT 5, (HL) CB 6E 2
BIT 6, (HL) CB 76 2
BIT 7, (HL) CB 7E 2

Mnemonic: BIT b, (IX + d)
Title: Test bit b of indexed addressed location (IX + d)
Description: The selected bit is tested and the zero flag set if bit is zero
Flags: S Z H P/V N C

* * 1 * 0
Addressing Assembly Object Bytes

mode form code

Indexed BIT 0, (IX + d) DD CBd46 4
BIT 1, (IX H-d) DDCBd4E 4
BIT 2, (IX + d) DD CB d 56 4
BIT 3, (IX + d) DD CB d 5E 4
BIT 4, (IX + d) DD CB d 66 4
BIT 5, (IX + d) DDCBdóE 4
BIT 6, (IX + d) DD CB d 76 4
BIT 7, (IX + d) DD CBd 7E 4

173

Appendix A - THE Z-80 INSTRUCTION SET

Mnemonic: BIT b, (IY + d)
Title: Test bit b of indexed addressed location (IY + d)
Description: The selected bit is tested and the zero flag set if bit is zero
Flags: S Z H P/V N C

* * 1 * 0
Addressing Assembly Object Bytes

mode form code
Indexed BITO, (IX + d) FDCBd46 4

BIT 1, (IX + d) FD CB d 4E 4
BIT 2, (IX + d) FD CB d 56 4
BIT 3, (IX + d) FD CB d 5E 4
BIT 4, (IX + d) FD CB d 66 4
BIT 5, (IX + d) FDCBdóE 4
BIT 6, (IX + d) FD CB d 76 4
BIT 7, (IX + d) FD CB d 7E 4

Mnemonic: BIT b, r
Title: Test bit b of register r
Description: The selected bit of register r is tested and the zero flag set

if bit is zero
Note: This implied addressing instruction is two bytes long.

The first byte is CBhcx, the second byte depends on
which register and which bit is being tested. The
following table shows the second byte op code possibili
ties:

Flags: s
★

z
*

H
1

P/V
*

N
0

C

REGISTERS A B C 0 E H L

0 47 40 41 42 43 44 45
1 4F 48 49 4A 4B 4C 4D

B 2 57 50 51 52 53 54 55
I 3 5F 58 59 5A 5B 5C 50
T 4 67 60 61 62 63 64 65
S 5 6F 68 69 6A 6B 6C 60

6 77 70 71 72 73 74 75
7 7F 78 79 7A 7B 7C 70

174

Appendix A - THE Z-80 INSTRUCTION SET

Mnemonic: CALL condition. pq
Title: Call subroutine at address

tied
pq if condition is satis-

Description: If condition is met the program counter contents are
placed on the stack. The specified address is then loaded
into the program counter

Flags: No effect

Addressing
mode

Assembly
form

Object
code

Bytes

Immediate CALL NZ, pq
CALL Z, pq
CALL NC, pq
CALL C, pq
CALL PO, pq
CALL PE, pq
CALL P, pq
CALL Μ, pq

C4 q p
CC q p
D4 q p
DC q p
E4 q p
EC q p
F4 q p
FC q p

3
3
3
3
3
3
3
3

Mnemonic: CALL pq
Title: Call subroutine at address pq
Description: Unconditional subroutine call. The program counter

contents are placed on the stack and the specified address
is then loaded into the program counter

Flags:

Addressing
mode

No effect

Assembly Object Bytes
form code

Immediate CALL pq CD q p 3

Mnemonic: CCF
Title: Complement carry flag
Symbolic: C<—C
Description: The carry flag is complemented

Flags: S Z H P/V N C
* 0 *

Addressing Assembly Object Bytes
mode form code

Implicit CCF 3F 1

175

Appendix A - THE Z-80 INSTRUCTION SET

Mnemonic: CPs
Title: Compare operand to accumulator
Description: The operand is subtracted from the accumulator. The

result is not stored but is used to condition the status of
the flag register

Flags: S Z H P/V N C
* * * * 1 *

Addressing Assembly Object Bytes
mode form code

Implicit CP A BF 1
CP B B8 1
CP C B9 1
CP D BA 1
CP E BB 1
CP H BC 1
CP L BD 1

Immediate CP n FE n 2
Indirect CP (HL) BE 1
Indexed CP (IX + d) DD BE d 3

CP (IY + d) FD BE d 3

Mnemonic: CPD
Title: Compare with decrement
Symbolic: Flags conditioned by A - (HL) : HL«—HL - 1

: BC«-BC - 1
Description: The contents of the byte indirectly addressed by HL are

subtracted from the accumulator. The result is not stored
but does condition the status of the flag register. HL and
BC are then decremented

Flags: S Z H P/V N C
* ? * ? 1
Z flag set if A=(HL)
P/V flag reset if BC=0 after execution, else set

Addressing
mode

Assembly Object Bytes
form code

Indirect CPD ED A9 2

176

Appendix A - THE Z-80 INSTRUCTION SET

Mnemonic: CPDR
Title: Block compare with decrement
Symbolic: Flags conditioned by A - (HL) : HL<— HL - 1

: BC<—BC - 1
Repeated until BC=0 or A=(HL)

Description: As CPD but if BC is non-zero and A does not equal (HL)
then the program counter is decreased by two and the
instruction re-executed

Flags: S 1 H P/V N C
* ? * ? 1

Z flag set if A=(HL)
P/V flag reset if BC= 0 after execution, else set

Addressing
mode

Assembly Object Bytes
form code

Indirect CPDR ED B9 2

Μ nemonic: CPI
Title: Compare with increment
Symbolic: Flags conditioned by A - (HL) : HL<—HL + 1

: BC<—BC - 1
Description: Byte addressed by HL is subtracted from the accumula

tor. Result is not stored but flag register is conditioned.
HL is then incremented and BC decremented

Flags: S Z H P/V N C
* ? * ? *
Z flag is set if A=(HL)
P/V flag is reset if BC=0 after execution, else set

Addressing
mode

Assembly Object Bytes
form code

Indirect CPI EDA1 2

177

Appendix A - THE Z-80 INSTRUCTION SET

Mnemonic: CPIR
Title: Block compare with increment
Symbolic: Flags conditioned by A - (HL) : HL«—HL + 1

: BC«—BC - 1
Repeated until BC=0 or A=(HL)

Description:

Flags:
As per CPDR but HL is incremented instead
S Z H P/V N C
* ? * ? 1

Z flag set if A=(HL)
P/V flag reset if BC=0 after execution, else set

Addressing
mode

Assembly Object Bytes
form code

Indirect CPIR ED B1 2

Mnemonic: CPL
Title: Complement accumulator
Symbolic:
Description:

Flags:

A«—A

The contents of the accumulator are complemented
S Z H P/V N C

1 1
Addressing

mode
Assembly Object Bytes

form code

Implicit CPL 2F 1

Mnemonic: DAA
Title: Decimal adjust accumulator
Description: See manufacturer’s data

178

Appendix A - THE Z-80 INSTRUCTION SET

Mnemonic: DECS
Title:

Symbolic:

Description:

Decrease operand s
s<—s - 1
The contents of the specified byte are decremented

Flags: S Z H P/V N C

Addressing

★ ★ ★ ★

Assembly

1
Object Bytes

mode form code

Implicit DEC A 3D 1
DEC B 05 1
DEC C 0D 1
DEC D 15 1
DEC E 1D 1
DEC H 25 1
DEC L 2D 1

Indirect DEC (HL) 35 1

Indexed DEC (IX + d) DD 35 d 3
DEC (IY + d) FD 35 d 3

Mnemonic:

Title:
Symbolic:
Description:

DEC rr
Decrease register pair rr
rr«-rr - 1
The contents of the register pair rr are decreased by one

Flags:
Addressing

No effect
Assembly Object Bytes

mode form code

Implicit DEC BC OB 1
DEC DE 1B 1
DEC HL 2B 1
DEC SP 3B 1

Μ nemonic:
Title:

Symbolic:

Description:

DEC IX
Decrement IX
IX«-IX - 1
The contents of the IX register are decreased by one

Flags:

Addressing

No effect

Assembly Object Bytes
mode form code

Implicit DEC IX DD 2B 2

179

Appendix A - THE Z-80 INSTRUCTION SET

Mnemonic: DEC IY
Title: Decrement IY
Symbolic:

Description:
Flags:

Addressing
mode

IY«-1Y - 1
The contents of the IY register are decreased by one
No effect

Assembly Object Bytes
form code

Implicit DEC IY FD2B 2

Mnemonic: DI
Title: Disable interrupts
Description: See manufacturer’s data

Mnemonic: DJNZ e
Title: Decrement B and relative jump on not zero
Symbolic: B<—B - 1

If B < > 0 then PC«—PC + e
Description: B register is decremented. If result is not zero then a

relative jump is performed
Flags:
Addressing

mode

No effect

Assembly Object Bytes
form code

Immediate DJNZe 10 e 2

Mnemonic: El
Title: Enable interrupts
Description: See manufacturer’s data

180

Appendix A - THE Z-80 INSTRUCTION SET

Mnemonic: EX AF, AF'
Title: Exchange accumulator and flags with alternate

registers

Symbolic:
Description:

AF«->AF'
Current ‘active’ accumulator and flag registers are
interchanged with the alternate set

Flags: S Z H P/V N C

Addressing
mode

Assembly Object Bytes
form code

Implicit EX AF, AF' 08 1

Μ nemonic: EX DE, HL
Title: Exchange contents of the DE and HL registers
Symbolic:

Description:

Flags:

Addressing
mode

DE«->HL
The contents are effectively swapped
No effect

Assembly Object Bytes
form code

Implicit EX DE, HL EB 1

Mnemonic: EX (SP), HL
Title: Exchange HL with top of stack

Description: See manufacturer’s data

Mnemonic: EX (SP), IX
Title: Exchange IX with top of stack
Description: See manufacturer’s data

Mnemonic: EX (SP), IY
Title: Exchange IY with top of stack
Description: See manufacturer’s data

181

Appendix A - THE Z-80 INSTRUCTION SET

Mnemonic: EXX
Title: Exchange alternate registers
Symbolic: BC<—BC'

DE«—DE'
HL«—HL'

Description: The contents of the BC, DE and HL pairs are
interchanged with the alternate set BC’, DE’ and HL’

Flags:
Addressing

mode

No effect

Assembly Object Bytes
form code

Implicit EXX D9 1

Mnemonic: HALT
Title: Halt CPU
Description: See manufacturer’s data

Mnemonic: IM 0
Title: Set interrupt mode 0 condition
Description: See manufacturer’s data

Mnemonic: IM 1
Title: Set interrupt mode 1 condition
Description: See manufacturer’s data

Mnemonic: IM 2
Title: Set interrupt mode 2 condition
Description: See manufacturer’s data

Mnemonic: IN r, (C)
Title: Load register from port (C)
Description: See manufacturer’s data

182

Appendix A - THE Z-80 INSTRUCTION SET

Mnemonic: IN A, (N)
Title: Load accumulator from input port N

Description: See manufacturer’s data

Mnemonic: INC r
Title:
Symbolic:
Description:

Increase register r

r<—r + 1
Specified register contents are increased by one

Flags:

Addressing
mode

Implicit

S Z H P/V N C
★ ★ ★ ★ o
Assembly Object Bytes

form code

INCA 3C 1
INC B 04 1
INCC 0C 1
INCD 14 1
INCE 1C 1
INCH 24 1
INCL 2C 1

Mnemonic: INC rr
Title:
Symbolic:

Description:

Increment register pair
rr<—rr + 1
Specified register pair contents are increased by one

Flags:
Addressing

No effect

Assembly Object Bytes
mode form code

Implicit INC BC 03 1
INC DE 13 1
INC HL 23 1
INCSP 33 1

183

Appendix A - THE Z-80 INSTRUCTION SET

Mnemonic: INC (HL)
Title: Increment indirectly addressed location (HL)
Symbolic:

Description:

(HL)«- (HL) + 1

The contents of the byte addressed by HL are increased
by one

Flags: S Z H P/V N C
★ ★ ★ ★ Q

Addressing
mode

Assembly Object Bytes
form code

Indirect INC (HL) 34 1

Μ nemonic: INC (IX + d)
Title: Increment indexed address location (IX + d)
Symbolic:

Description:

(IX + d)—(IX + d) + 1

The contents of the indexed addressed byte are increased
by one

Flags: S Z H P/V N C
★ ★ ★ * o

Addressing
mode

Assembly Object Bytes
form code

Indexed INC (IX + d) DD 34 d 3

Μ nemonic: INC (IY + d)
Title: Increment indexed address location (IY + d)
Symbolic:
Description:

(IY + d)<—(IY + d) + 1

The contents of the indexed addressed byte are increased
by one

Flags: S Z H P/V N C
★ ★ ★ ★ o

Addressing
mode

Assembly Object Bytes
form code

Indexed INC (IY + d) FD34d 3

184

Appendix A - THE Z-80 INSTRUCTION SET

Mnemonic: INC IX
Title: Increment IX
Symbolic:
Description:

Flags:
Addressing

mode

IX^IX + 1

The contents of the IX register are increased by one
No effect

Assembly Object Bytes
form code

Implicit INC IX DD 23 2

Mnemonic: INC IY
Title: Increment IY
Symbolic:
Description:
Flags:

Addressing
mode

IY—IY + 1

The contents of the IY register are increased by one
No effect

Assembly Object Bytes
form code

Implicit INC IY FD 23 2

Mnemonic: IND
Title: Input with decrement
Description: See manufacturer’s data

Mnemonic: INDR
Title: Block input with decrement
Description: See manufacturer’s data

Mnemonic: INI
Title: Input with increment
Description: See manufacturer’s data

185

Appendix A - THE Z-80 INSTRUCTION SET

Mnemonic: INIR
Title: Block input with increment
Description: See manufacturer’s data

Mnemonic: JP cc, pq
Title: Conditional jump to address pq
Symbolic: If condition true then PC ^pq

Description: If the condition is met then the address pq is placed into
the program counter register. This results in a jump to
the specified address

Flags: No effect
Addressing Assembly Object Bytes

mode form code
Immediate JP NZ, pq C2 q p 3

JP Z, pq CA q p 3
JP NC, pq D2 q p 3
JP C, pq DA q p 3
JP PO, pq E2 q p 3
JP PE, pq EA q p 3
JP P, pq F2 q p 3
JP Μ, pq FA q p 3

Μ nemonic: JP pq
Title: Jump to location pq
Symbolic:
Description:

PC«—pq

The address pq is placed into the program counter
register. This results in a jump to the specified address

Flags:

Addressing
mode

No effect

Assembly Object Bytes
form code

Immediate JP pq C3 q p 3

186

Appendix A - THE Z-80 INSTRUCTION SET

Mnemonic: JP (HL)
Title: Jump to HL
Symbolic:

Description:
PC«—HL

The contents of HL are placed in the program counter.
This results in a jump to the address specified by HL

Flags:

Addressing
mode

No effect

Assembly Object Bytes
form code

Implicit JP(HL) E9 1

Mnemonic: JP (IX)
Title: Jump to IX
Symbolic:
Description:

PC«—HL
The contents of IX are placed in the program counter.
This results in a jump to the address specified by IX

Flags:

Addressing
mode

No effect

Assembly Object Bytes
form code

Implicit JP IX DD E9 2

Mnemonic: JP (IY)
Title: Jump to IY

Symbolic:

Description:

PC«-IY

The contents of IY are placed in the program counter.
This results in a jump to the address specified by IY

Flags:

Addressing
mode

No effect

Assembly Object Bytes
form code

Implicit JP (IY) FD E9 2

187

Appendix A - THE Z-80 INSTRUCTION SET

Mnemonic: JR cc, e
Title: Conditional relative jump
Symbolic: If condition is true then PC«- PC + e
Description: A relative jump is performed if the given condition is met
Flags: No effect
Addressing Assembly Object Bytes

mode form code
Relative JR NZ, e 20 e 2

JR Z, e 28 e 2
JR NC, e 30 e 2
JR C, e 38 e 2

Mnemonic: JR e
Title: Unconditional relative jump
Symbolic:
Description:

PC^PC + e
The given offset e is added to the program counter using
two’s complement arithmetic (See chapter 8).

Flags:

Addressing
mode

No effect

Assembly Object Bytes
form code

Relative JR e 18 e 2

Mnemonic: LD rr, (pq)
Title: Load register pair from locations addressed by pq
Symbolic: rr low«-(pq)

rr high* —(pq + 1)
Description: The register pair is loaded with the contents of byte pq

and byte pq + 1
Flags:

Addressing
mode

No effect

Assembly Object Bytes
form code

Extended
absolute

LD BC, (pq) ED 48 q p 4
LD DE, (pq) ED 5B q p 4
LD HL, (pq) ED 6B q p 4
LD SP, (pq) ED 7B q p 4

188

Appendix A - THE Z-80 INSTRUCTION SET

Mnemonic: LD rr, mn
Title:

Symbolic:
Description:

Load register pair with immediate data
rr<—mn

The contents of the two memory locations immediately

Flags:
Addressing

following the op code are placed into the register pair
No effect

Assembly Object Bytes
mode

Immediate
form code

LD BC, mn 01 n m 3
LD DE, mn 11 n m 3
LD HL, mn 21 n m 3
LD SP, mn 31 n m 3

Mnemonic: LD r, n
Title: Load register r with immediate data n
Symbolic: r<— n

Description: The contents of the byte following the op code is loaded
into the specified register

Flags: No effect
Addressing Assembly Object Bytes

mode form code
Immediate LD A, n 3E n 2

LD B, n 06 n 2
LD C, n 0E n 2
LD D, n 16 n 2
LD E, n 1E n 2
LD Η, n 26 n 2
LD L, n 2E n 2

Mnemonic: LD r, r1
Title:

Symbolic:
Load register r from register r1
r<—r1

Description:

Flags:

The contents of the source register rl are loaded into
register r
No effect

Addressing
mode

Assembly Object Bytes
form code

Implicit LD A, A 7 F 1
LD A, B 78 1

189

Appendix A - THE Z-80 INSTRUCTION SET

LD A, C 79 1
LD A, D 7A 1
LD A, E 7B 1
LD A, H 7C 1
LD A, L 7D 1
LD B, A 47 1
LD B, B 40 1
LD B, C 41 1
LD B, D 42 1
LD B, E 43 1
LD B, H 44 1
LD B, L 45 1
LD C, A 4F 1
LD C, B 48 1
LD C, C 49 1
LD C, D 4A 1
LD C, E 4B 1
LD C, H 4C 1
LD C, L 4D 1
LD D, A 57 1
LD D, B 50 1
LD D, C 51 1
LD D, D 52 1
LD D, E 53 1
LD D, H 54 1
LD D, L 55 1
LD E, A 5F 1
LD E, B 58 1
LD E, C 59 1
LD E, D 5A 1
LD E, E 5B 1
LD E, H 5C 1
LD E, L 5D 1
LD H, A 67 1
LD H, B 60 1
LD H, C 61 1
LD H, D 62 1
LD H, E 63 1
LD H, H 64 1
LD H, L 65 1
LD L, A 6F 1
LD L, B 68 1
LD L, C 69 1
LD L, D 6A 1
LD L, E 6B 1
LD L, H 6C 1
LD L, L 6D 1

190

Appendix A - THE Z-80 INSTRUCTION SET

Mnemonic: LD (BC), A
Title: Load indirectly addressed location (BC) from accu

mulator

Symbolic:
Description:

(BC)«—A
The contents of the byte addressed by BC are loaded with
the contents of the accumulator

Flags:
Addressing

mode

No effect

Assembly Object Bytes
form code

Indirect LD (BC), A 02 1

Μ nemonic: LD (DE), A
Title: Load indirectly addressed location (DE) from accu

mulator
Symbolic:

Description:
(DE)^-A

The contents of the byte addressed by DE are loaded
with the contents of the accumulator

Flags:

Addressing
mode

No effect

Assembly Object Bytes
form code

Indirect LD(DE), A 12 1

Μ nemonic: LD (HL), n
Title: Load indirect addressed location (HL) with immedi

ate data byte
Symbolic:

Description:

(HL)wi

The contents of the byte following the op code are loaded
into the indirectly addressed location (HL)

Flags:
Addressing

mode

No effect

Assembly Object Bytes
form code

Immediate
Indirect

LD (HL), n 36 n 2

191

Appendix A - THE Z-80 INSTRUCTION SET

Mnemonic: LD (HL), r
Title: Load indirect addressed location (HL) from speci

fied register r
Symbolic: (HL)«—r
Description: The contents of the specified register are loaded into the

memory location whose address is in HL
Flags: No effect
Addressing Assembly Object Bytes

mode form code

Indirect LD (HL), A 77 1
LD (HL), B 70 1
LD (HL), C 71 1
LD (HL), D 72 1
LD (HL), E 73 1
LD (HL), H 74 1
LD (HL), L 75 1

Mnemonic: LD r, (IX + d)
Title:

Symbolic:

Load register r from location (IX + d)
r«—(IX + d)

Description:

Flags:

The contents of the byte with address (IX + d) is placed
into register r
No effect

Addressing
mode

Assembly Object Bytes
form code

Indexed LDA, (IX + d) DD 7E d 3
LD B, (IX + d) DD 46 d 3
LDC, (IX + d) D9 4E d 3
LD D, (IX + d) DD 56 d 3
LDE, (IX + d) DD 5E d 3
LD H, (IX + d) DD 66 d 3
LDL, (IX + d) DDÓEd 3

192

Appendix A - THE Z-80 INSTRUCTION SET

Mnemonic: LD r, (IY + d)
Title:

Symbolic:
Load register r from location (IY + d)
r«—(IY + d)

Description:

Flags:

The contents of the byte with address (IY + d) is placed
into register r
No effect

Addressing
mode

Assembly Object Bytes
form code

Indexed LDA, (lY + d) FD 7E d 3
LDB, (lY + d) FD 46 d 3
LDC, (lY + d) FD 4E d 3
LD D, (IY + d) FD 56 d 3
LD E, (IY + d) FD 5E d 3
LD H, (IY + d) FD 66 d 3
LD L, (IY + d) FD6Ed 3

Mnemonic: LD (IX + d), n
Title: Load indexed addressed location (IX + d) with

immediate data byte
Symbolic:

Description:

(IX + d)<—n

The contents of the byte following the op code are placed
into the byte whose address is specified by (IX + d)

Flags:

Addressing
mode

No effect

Assembly Object Bytes
form code

Indexed
Immediate

LD (IX + d), n DD 36 d n 4

Mnemonic: LD (IY + d), n
Title: Load indexed addressed location (IY + d) with

immediate data byte
Symbolic:

Description:

(IY + d)<—n

The contents of the byte following the op code are placed
into the byte whose address is specified by (IY + d)

Flags:
Addressing

mode

No effect

Assembly Object Bytes
form code

Indexed
Immediate

LD (IY + d), n FD 36 d n 4

193

Appendix A - THE Z-80 INSTRUCTION SET

Mnemonic: LD (IX + d), r
Title: Load indexed address location (IX + d) from

specified register r
Symbolic:

Description:
(IX + d><—r

The contents of register r are transferred to the location
specified by (IX + d)

Flags: No effect
Addressing

mode
Assembly

form
Object

code
Bytes

Indexed LD (IX + d), A DD 77 d 3
LD (IX + d), B DD 70 d 3
LD (IX + d), C DD 71 d 3
LD (IX + d), D DD 72 d 3
LD (IX + d), E DD 73 d 3
LD (IX + d), H DD 74 d 3
LD (IX + d), L DD 75 d 3

Mnemonic: LD (IY + d), r
Title: Load indexed address

specified register r
location (IY + d) from

Symbolic: (IY + d)<—r
Description: The contents of register r

specified by (IY + d)
are transferred to location

Flags: No effect

Addressing Assembly Object Bytes
mode form code

Indexed LD (IY + d>, A FD 77 d 3
LD (IY + d), B FD 70 d 3
LD (IY + d), C FD 71 d 3
LD (IY + d), D FD 72 d 3
LD (IY + d), E FD 73 d 3
LD (IY + d), H FD 74 d 3
LD (IY + d), L FD 75 d 3

194

Appendix A - THE Z-80 INSTRUCTION SET

Mnemonic: LD A, (pq)
Title: Load accumulator from location whose address is

given by pq
Symbolic:

Description:

A«—(pq)

The contents of the location addressed by pq are placed
into the accumulator

Flags:
Addressing

mode

No effect

Assembly Object Bytes
form code

Extended
absolute

LD A, (pq) 3A q p 3

Mnemonic: LD (pq), A
Title: Load directly addressed memory (pq) from accu

mulator

Symbolic:
Description:

Flags:

Addressing
mode

(pq)<—A
The contents of the accumulator are placed in. location pq
No effect

Assembly Object Bytes
form code

Extended
absolute

LD (pq), A 32 q p 3

Mnemonic: LD (pq), rr
Title: Load memory locations addressed by pq from a

register pair rr
Symbolic: (pq)* —rr low

(pq + 1)«—rr high
Description: The contents of the specified registers are placed into

locations whose addresses are pq and pq + 1
Flags: No effect
Addressing Assembly Object Bytes

mode form code
Extended LD (pq), BC ED 43 q p 4
absolute LD (pq), DE ED 53 q p 4

LD (pq), HL ED 63 q p 4
LD (pq), SP ED 73 q p 4

195

Appendix A - THE Z-80 INSTRUCTION SET

Mnemonic: LD (pq), HL
Title: Load locations addressed by pq from HL
Symbolic: (pq)* — L

(pq + 1)«-H
Description: The contents of H and L are placed into locations pq + 1

and pq respectively
Flags:
Addressing

mode

No effect

Assembly Object Bytes
form code

Extended
absolute

LD (pq), HL 22 q p 3

Μ nemonic: LD (pq), IX
Title: Load locations addressed by pq from IX
Symbolic: (pq)«— IX low

(pq + 1)«—IX high
Description: The contents of IX are placed into locations pq + 1 and

pq respectively
Flags:

Addressing
mode

No effect

Assembly Object Bytes
form code

Extended
absolute

LD (pq), IX DD 22 q p 4

Μ nemonic: LD (pq), IY
Title:

Symbolic:
Load locations addressed by pq from IY
(pq)«—IY low
(pq + 1)♦—IY high

Description:

Flags:

The contents of IY are placed into locations pq + 1 and
pq respectively
No effect

Addressing
mode

Assembly Object Bytes
form code

Extended
absolute

LD(pq), IY FD 22 q p 4

196

Appendix A - THE Z-80 INSTRUCTION SET

Mnemonic: LD A, (BC)
Title: Load accumulator from indirectly addressed loca

tion given by BC
Symbolic:

Description:
A«—(BC)

The contents of the byte whose address is in BC are
loaded into the accumulator

Flags:
Addressing

mode

No effect

Assembly Object Bytes
form code

Indirect LDA, (BC) OA 1

Mnemonic: LD A, (DE)
Title: Load accumulator from indirectly addressed loca

tion given by DE
Symbolic:

Description:

A«—(DE)

The contents of the byte whose address is in DE are
loaded into the accumulator

Flags:

Addressing
mode

No effect

Assembly Object Bytes
form code

Indirect LDA, (DE) 1A 1

Mnemonic: LD A, 1
Title: Load accumulator from the interrupt vector register
Description: See manufacturer’s data

Mnemonic: LD A, R
Title: Load accumulator from memory refresh register
Description: See manufacturer’s data

Mnemonic: LD LA
Title: Load interrupt vector register from accumulator
Description: See manufacturer’s data

197

Appendix A - THE Z-80 INSTRUCTION SET

Mnemonic: LD HL, (pq)
Title: Load HL from locations addressed by pq
Symbolic: L<—(pq)

H<—(pq + 1)

Description: The contents of bytes addressed by pq and pq + 1 are
loaded into the HL pair

Flags:
Addressing

mode

No effect

Assembly Object Bytes
form code

Extended
absolute

LD HL, (pq) 2A q p 3

Mnemonic: LD IX, mn
Title: Load register IX with immediate data mn
Symbolic:
Description:

IX*-mn
The contents of the two bytes following the op code are
loaded into the IX register.

Flags:

Addressing
mode

No effect

Assembly Object Bytes
form code

Immediate LD IX, mn DD 21 n m 4

Mnemonic: LD IX, (pq)
Title: Load IX register from location with address pq
Symbolic: IX low«-(pq)

IX high*-(pq + 1)
Description: Register IX is loaded with the contents of the bytes with

address pq and pq + 1
Flags:

Addressing
mode

No effect

Assembly Object Bytes
form code

Extended
absolute

LD IX, (pq) DD 2A q p 4

198

Appendix A - THE Z-80 INSTRUCTION SET

Mnemonic: LD IY, mn
Title: Load register IY with immediate data mn
Symbolic:
Description:

IY«^mn

The contents of the two bytes following the op code are
loaded into the IY register.

Flags:

Addressing
mode

No effect

Assembly Object Bytes
form code

Immediate LD IY, mn FD 21 n m 4

Μ nemonic: LD IY, (pq)
Title: Load IY register from location with address pq
Symbolic: IY low«—(pq)

IY high«—(pq + 1)
Description: Register IY is loaded with the contents of the bytes with

address pq and pq + 1
Flags:

Addressing
mode

No effect

Assembly Object Bytes
form code

Extended
absolute

LD IY, (pq) FD2Aqp 4

Μ nemonic: LD R, A
Title: Load refresh register from accumulator
Description: See manufacturer’s data

Mnemonic: LD SP, HL
Title: Load stack pointer from HL register pair
Symbolic:
Description:

SP«- HL

The contents of the HL register pair are copied into the
stack pointer register

Flags:

Addressing
mode

No effect

Assembly Object Bytes
form code

Implicit LDSP, HL F9 1

199

Appendix A - THE Z-80 INSTRUCTION SET

Mnemonic: LD SP, IX
Title: Load stack pointer from index register IX
Symbolic:

Description:
SP«-IX
The contents of the IX register are copied into the stack
pointer register

Flags:

Addressing
mode

No effect

Assembly Object Bytes
form code

Implicit LD SP, IX DD F9 2

Mnemonic: LD SP, IY
Title: Load stack pointer from index register IY
Symbolic:
Description:

SP<-IY
The contents of the IY register are copied into the stack
pointer register

Flags:
Addressing

mode

No effect

Assembly Object Bytes
form code

Implicit LD SP, IY FD F9 2

Mnemonic: LDD
Title: Block load with decrement
Symbolic: (DE)«—(HL) : DE^DE - 1

: HL<—HL - 1
: BC«—BC - 1

Description: The contents of the byte addresssed by HL are loaded
into the location addressed by DE. Then HL, DE and
the BC pair are each decremented

Flags: S Z H P/V N C
0 ? 0

P/V flag reset if BC=0 after execution, else set
Addressing

mode
Assembly Object Bytes

form code
Indirect LDD ED A8 2

200

Appendix A - THE Z-80 INSTRUCTION SET

Mnemonic: LDDR
Title: Repeating block load with decrement
Symbolic: (DE)—(HL) : DE—DE- 1

: HL—HL - 1
: BC—BC - 1

Repeated until BC=0
Description: The contents of byte addresssed by HL are loaded into

the location addressed by DE. Then HL, DE and the BC
pair are each decremented. If BC does not equal zero then
program counter is decreased by 2 and the instruction
repeated

Flags: S Z H P/V N C
0 0 0

Addressing
mode

Assembly Object Bytes
form code

Indirect LDDR ED B8 2

Mnemonic: LDI
Title: Block load with increment
Symbolic: (DE)—(HL) : DE—DE + 1

: HL—HL + 1
: BC—BC - 1

Description: The contents of the byte addresssed by HL are loaded
into the location addressed by DE. Then HL and DE are
incremented and the BC pair decremented

Flags: S Z H P/V N C
0 ? 0

P/V flag reset if BC=0 after execution, else set
Addressing

mode
Assembly Object Bytes

form code

Indirect LDI ED AO 2

201

Appendix A - THE Z-80 INSTRUCTION SET

Mnemonic: LDIR
Title: Repeating block load with increment
Symbolic: (DE)«—(HL) : DE—DE + 1

: HL—HL + 1
: BC—BC - 1

Repeated until BC=0

Description: The contents of the byte addresssed by HL are loaded
into the location addressed by DE. Then HL and DE are
incremented and the BC pair decremented. If BC does
not equal zero then program counter is decreased by 2
and the instruction repeated

Flags: S Z H P/V N C
0 0 0

Addressing
mode

Assembly Object Bytes
form code

Indirect LDIR ED BO 2

Mnemonic: LD r, (HL)
Title: Load register r from byte addressed by HL
Symbolic:

Description:
r-(HL)
The contents of the byte addressed by HL are loaded into

Flags:

Addressing

register r
No effect

Assembly Object Bytes
mode form code

Indirect LD A, (HL) 7E 1
LD B, (HL) 46 1
LD C, (HL) 4E 1
LD D, (HL) 56 1
LD E, (HL) 5E 1
LD H, (HL) 66 1
LD L, (HL) 6E 1

202

Appendix A - THE Z-80 INSTRUCTION SET

Mnemonic: NEG
Title: Negate accumulator
Symbolic:
Description:

A<—0 - A

The contents of the accumulator are subtracted from zero
using two’s complement arithmetic and result placed into
accumulator

Flags: S Z H P/V N C
* * * * 1 *

Addressing
mode

Assembly Object Bytes
form code

Implicit NEG ED 44 2

Mnemonic: NOP
Title: No operation
Description:

Flags:
Addressing

mode

Performs no function other than to create a delay
No effect

Assembly Object Bytes
form code

Implicict NOP 00 1

Mnemonic: OR S
Title: Logical OR of accumulator with specified operand
Symbolic: A«— - A V s
Description: The contents of the accumulator are OR’ed with

specified byte and the result placed into the accumulator.
The rule table for OR is as follows:

Accumulator bi t 0 1

Operand
bi t

0

1

0 1

1 1
Result in accumulator

Flags: s
★

Z H
* 0

P/V
★

N C
0 0

203

Appendix A - THE Z-80 INSTRUCTION SET

Addressing Assembly Object Bytes
mode form code

Implicit OR A B7 1
OR B BO 1
OR C B1 1
OR D B2 1
OR E B3 1
OR H B4 1
OR L B5 1

Immediate OR n F6 n 2
Indirect OR, (HL) B6 1
Indexed OR, (IX + d) DD B6 d 3

OR, (IY + d) FD B6 d 3

Mnemonic: OTDR
Title: Block output with decrement
Description: See manufacturer’s data

Mnemonic: OTIR
Title: Block output with increment
Description: See manufacturer’s data

Mnemonic: OUT (C), r
Title: Output register C to output port
Description: See manufacturer’s data

Mnemonic: OUT (N), A
Title: Output accumulator to port N
Description: See manufacturer’s data

Mnemonic: OUTD
Title: Output with decrement
Description: See manufacturer’s data

204

Appendix A - THE Z-80 INSTRUCTION SET

Μ nemonic: OUTI
Title: Output with increment
Description: See manufacturer’s data

Mnemonic: POP rr
Title: Pop register pair from stack
Description: Current two bytes at top of stack are copied into the

specified register pair
Flags:

Addressing
mode

No effect

Assembly Object Bytes
form code

Indirect POP BC C1 1
POP DE D1 1
POP HL E1 1
POP AF F1 1

Μ nemonic: POP IX
Title: POP IX register from top of stack
Description: The contents of the top of stack are placed into the IX

register
Flags:

Addressing
mode

No effect

Assembly Object Bytes
form code

Indirect POP IX DD E1 2

Μ nemonic: POP IY
Title:
Description:

POP IY register from top of stack
The contents of the top of stack are placed into the IY

Flags:
Addressing

register
No effect

Assembly Object Bytes
mode

Indirect
form code

POPIY FD E1 2

205

Appendix A - THE Z-80 INSTRUCTION SET

Mnemonic: PUSH rr
Title: Push register pair onto the stack
Description: Specified register pair are copied to the top of the stack
Flags: No effect

Addressing Assembly Object Bytes
mode form code

Indirect PUSH BC C5 1
PUSH DE D5 1
PUSH HL E5 1
PUSH AF F5 1

Mnemonic: PUSH IX
Title: Push IX onto stack
Description: The contents of the IX register are copied onto the stack
Flags: No effect
Addressing Assembly Object Bytes

mode form code
Indirect PUSH IX DD E5 2

Mnemonic: PUSH IY
Title: Push IY onto stack
Description: The contents of the IY register are copied onto the stack
Flags: No effect
Addressing Assembly Object Bytes

mode form code
Indirect PUSH IY FD E5 2

206

Appendix A - THE Z-80 INSTRUCTION SET

Mnemonic: RES b, (HL)
Title: Reset bit b of indirectly addressed operand

Description: Specified bit b of the byte whose address in contained
HL is set to zero

Flags: No effect

Addressing Assembly Object Bytes
mode form code

Indirect RES 0, (HL) CB 86 2
RES 1, (HL) CB 8E 2
RES 2, (HL) CB 96 2
RES 3, (HL) CB 9E 2
RES 4, (HL) CB A6 2
RES 5, (HL) CB AE 2
RES 6, (HL) CB B6 2
RES 7, (HL) CB BE 2

Mnemonic: RES b, (IX + d)
Title: Reset bit b of IX indexed addressed operand
Description: Specified bit b of the byte specified by (IX + d) is set to

zero

Flags: No effect

Addressing Assembly Object Bytes
mode form code

Indexed RES 0, (IX + d) DD CB d 86 4
RES 1, (IX + d) DD CB d 8E 4
RES 2, (IX + d) DD CB d 96 4
RES 3, (IX + d) DD CB d 9E 4
RES 4, (IX + d) DD CB d A6 4
RES 5, (IX + d) DD CB d AE 4
RES 6, (IX + d) DD CB d B6 4
RES 7, (IX + d) DD CB d BE 4

207

Appendix A - THE Z-80 INSTRUCTION SET

Mnemonic: RES b, (IY + d)
Title: Reset bit b of IY indexed addressed operand
Description: Specified bit b of the byte specified by (IY + d) is set to

zero
Flags: No effect
Addressing Assembly Object Bytes

mode form code
Indexed RES 0, (IY + d) FD CB d 86 4

RES 1, (IY + d) FDCBd8E 4
RES 2, (IY + d) FDCBd96 4
RES3, (lY + d) FD CB d 9E 4
RES4, (lY + d) FDCBdAÓ 4
RES 5, (IY + d) FDCBdAE 4
RES6, (lY + d) FDCBdBÓ 4
RES7, (IY + d) FD CB d BE 4

Mnemonic: RES b, r
Title: Reset bit b of register r
Description:

Note:
Specified bit b of register r is set to zero
This implied addressing instruction is two bytes long.
The first byte is CB hex, the second byte depends on
which register and which bit is being reset. The following
table shows the second byte op code possibilities:

REGISTERS A B C 0 E H L

0 87 80 81 82 83 84 85
1 8F 88 89 8A 8B 8C 80

B 2 97 90 91 92 93 94 95
I 3 9F 98 99 9A 9B 9C 90
T 4 A7 AO A1 A2 A3 A4 A5
S 5 AF A8 A9 AA AB AC AD

6 B7 BO B1 B2 B3 Θ4 B5
7 BF B8 B9 BA BB BC BO

208

Appendix A - THE Z-80 INSTRUCTION SET

Mnemonic: RET
Title: Return from subroutine
Description: Two bytes currently at the top of the stack are copied

into the program counter, this provides the address for
the next instruction

Flags:
Addressing

mode

No effect

Assembly Object Bytes
form code

Indirect RET C9 1

Μ nemonic: RET cc
Title: Conditional return from subroutine
Description:
Flags:

Addressing
mode

As for RET but only executed if condition is met
No effect

Assembly Object Bytes
form code

Indirect RET NZ CO 1
RETZ C8 1
RET NC DO 1
RETC D8 1
RET PO EO 1
RET PE E8 1
RETP FO 1
RET Μ F8 1

Mnemonic: RETI
Title: Return from interrupt
Description: See manufacturer’s data

Mnemonic: RETN
Title: Return from non-maskable interrupt
Description: See manufacturer’s data

209

Appendix A - THE Z-80 INSTRUCTION SET

Mnemonic: RL S
Title: Rotate operand s left through carry

Description: The contents of the specified operand are left shifted one

Flags:

Addressing
mode

Implicit

Indirect
Indexed

place. Original carry flag contents are moved to bit 0 and
original bit 7 contents moved to the carry flag. The
instruction thus performs a 9-bit rotation.
S Z H P/V N C
* * 0 * 0 *
Assembly Object Bytes

form code

RL A CB 17 2
RL B CB 10 2
RL C CB 11 2
RLD CB12 2
RL E CB 13 2
RLH CB14 2
RL L CB 15 2

RL (HL) CB 16 2
RL (IX + d) DD CB d 16 4
RL (IY + d) FD CB d 16 4

Mnemonic: RLA
Title: Rotate accumulator left through carry
Description: The contents of the accumulator are shifted left. The

contents of carry flag are moved to bit 0 and contents of
bit 7 are moved into carry, (ie. this is a 9-bit rotation)

Flags: S Z H P/V N C
0 0 *

Addressing
mode

Assembly Object Bytes
form code

Implicit RLA 171

Mnemonic: RLCA
Title: Rotate accumulator left with branch carry
Description: See manufacturer’s data

210

Appendix A - THE Z-80 INSTRUCTION SET

Mnemonic: RLC r
Title: Rotate register r left with branch carry
Description: See manufacturer’s data

Mnemonic: RLC (HL)
Title: Rotate byte addressed by HL left with branch carry
Description: See manufacturer’s data

Mnemonic: RLC (IX + d)
Title: Rotate left with branch carry the location addressed

by (IX + d)
Description: See manufacturer’s data

Mnemonic: RLC (IY + d)
Title: Rotate left with branch carry the location addressed

by (IY + d)
Description: See manufacturer’s data

Mnemonic: RLD
Title: Rotate left decimal
Description: See manufacturer’s data

211

Appendix A - THE Z-80 INSTRUCTION SET

Mnemonic: RR s
Title: Rotate operand s right through carry

Description:

Flags:

The contents of the carry flag plus specified byte are
treated as a 9-bit word for rotation to the right
S Z H P/V N C
**o*o*

Addressing
mode

Assembly Object Bytes
form code

Implicit RRA CB1F 2
RRB CB 18 2
RRC CB19 2
RRD CB1A 2
RR E CB 1B 2
RR H CB 1C 2
RR L CB 10 2

Indirect RR (HL) CB1E 2
Indexed RR (IX + d) DD CB d 1E 4

RR (IY + d) FDCBd IE 4

Μ nemonic: RRA
Title: Rotate accumulator right through carry
Description: The contents of the carry flag together with the specified

operand are treated as a 9-bit word for a right rotation
Flags: S Z H P/V N C

0 0 *
Addressing

mode
Assembly Object Bytes

form code

Implicit RRA 1 F 1

Mnemonic: RRC s
Title: Rotate right with branch carry
Description: See manufacturer’s data

Mnemonic: RRCA
Title: Rotate accumulator right with branch carry
Description: See manufacturer’s data

212

Appendix A - THE Z-80 INSTRUCTION SET

Mnemonic: RRD
Title: Rotate right decimal
Description: See manufacturer’s data

Μ nemonic:
Title:

Description:

RST p
Restart at p
See manufacturer’s data

Mnemonic: SBC A, s
Title: Subtract with borrow
Symbolic: A«-A - s - Carry
Description: The specified operand, together with the carry flag, is

subtracted from the accumulator
Flags: S Z H P/V N C

★ ★ ★ ★ 1 *
Addressing Assembly Object Bytes

mode form code
Implicit SBC A, A 9F 1

SBC A, B 98 1
SBC A, C 99 1
SBC A, D 9A 1
SBC A, E 9B 1
SBC A, H 9C 1
SBC A, L 9D 1

Immediate SBC A, n DE n 1
Indirect SBC A, (HL) 9E 1
Indexed SBC A, (IX + d) DD 9E d 3

SBC A, (IY + d) FD 9E d 3

213

Appendix A - THE Z-80 INSTRUCTION SET

Mnemonic: SBC HL, rr
Title: Subtract register pair with borrow from HL
Symbolic: HL<—HL - rr - Carry
Description: The contents of the register pair, together with the carry,

are subtracted from contents of HL. Result is stored in
HL

Flags: S Z H
* * *

P/V
★

N C
1 *

Addressing Assembly Object Bytes
mode form code

Implicit SBC HL, BC ED 42 2
SBC HL, DE ED 52 2
SBC HL, HL ED 62 2
SBC HL, SP ED 72 2

Mnemonic: SCF
Title: Set carry flag
Symbolic: Carry«—1
Description: The carry flag is set to 1
Flags: S Z H P/V N C

0 0 1
Addressing Assembly Object Bytes

mode form code
Implicit SCF 37 1

Mnemonic: SET b, (HL)
Title: Set bit b of indirectly addressed operand
Description: Bit b of the byte whose address is contained in HL is set

to 1
Addressing

mode
Assembly Object Bytes

form code
Indirect SETO, (HL) CB C6 2

SET 1, (HL) CB CE 2
SET 2, (HL) CB D6 2
SET 3, (HL) CBDE 2
SET 4, (HL) CB E6 2
SET 5, (HL) CB EE 2
SET 6, (HL) CB F6 2
SET 7. (HL) CB FE 2

214

Appendix A - THE Z-80 INSTRUCTION SET

Mnemonic: SET b, (IX + d)
Title: Set bit b of IX indexed addressed operand
Description: Bit b of the byte whose address is specified by (IX + d) is

set to 1
Addressing Assembly Object Bytes

mode form code
Indexed SET 0, (IX + d) DD CB d C6 4

SET 1, (IX + d) DD CB d CE 4
SET 2, (IX + d) DD CB d D6 4
SET 3, (IX + d) DD CB d DE 4
SET 4, (IX + d) DD CB d E6 4
SET 5, (IX + d) DD CB d EE 4
SET 6, (IX + d) DD CB d F6 4
SET 7, (IX + d) DD CB d FE 4

Mnemonic: SET b, (IY + d)
Title: Set bit b of IY indexed addressed operand
Description: Bit b of the byte whose address is specified by (IY + d) is

set to 1
Addressing Assembly Object Bytes

mode form code
Indexed SET 0, (IY + d) FD CB d C6 4

SET 1, (IY + d) FD CB d CE 4
SET 2, (IY + d) FD CB d D6 4
SET 3, (IY + d) FD CB d DE 4
SET 4, (IY + d) FD CB d E6 4
SET 5, (IY + d) FD CB d EE 4
SET 6, (IY + d) FD CB d F6 4
SET 7, (IY + d) FD CB d FE 4

215

Appendix A - THE Z-80 INSTRUCTION SET

Mnemonic: SET b, r
Title: Set bit b of register r
Description: The selected bit of register r is set to 1
Note: This implied addressing instruction is two bytes long.

The first byte is CB hex, the second byte depends on
which register and which bit is being set. The following
table shows the second byte op code possibilities:

REGISTERS A B C 0 E H L

0 C7 CO C1 C2 C3 C4 C5
1 CF C8 C9 CA CB CC CD

B 2 07 00 01 02 03 04 05
I 3 OF 08 09 DA OB DC 00
T 4 E7 E0 E1 E2 E3 E4 E5
S 5 EF E8 E9 EA EB EC ED

6 F7 F0 F1 F2 F3 F4 F5
7 FF F8 F9 FA FB FC FD

Mnemonic: SLA s
Title: Arithmetic shift left
Description: The contents of the specified operand are shifted to the

left. Bit 0 is set to 0 and bit 7 transferred to the carry.
Flags: S Z H P/V N C

* * 0 * 0 *
Addressing Assembly Object Bytes

mode form code
Implicit SLA A CB 27 2

SLA B CB 20 2
SLA C CB 21 2
SLA D CB 22 2
SLA E CB 23 2
SLA H CB 24 2
SLA L CB 25 2

Indirect SLA (HL) CB 26 2
Indexed SLA (IX + d) DO CB d 26 4

SLA (IY + d) FD CB d 26 4

216

Appendix A - THE Z-80 INSTRUCTION SET

Mnemonic: SRA s
Title: Arithmetic shift right
Description: The contents of the specified operand are shifted to the

right. Bit 0 is transferred to the carry. The contents of bit
7 remain unchanged.

Flags: S Z H P/V N C
★ * 0 * 0 *

Addressing Assembly Object Bytes
mode form code

Implicit SRA A CB 2F 2
SRA B CB 28 2
SRA C CB 29 2
SRA D CB 2A 2
SRA E CB 2B 2
SRA H CB 2C 2
SRA L CB 2D 2

Indirect SRA (HL) CB 2E 2
Indexed SRA (IX + d) DD CB d 2E 4

SRA (IY + d) FD CB d 2E 4

Mnemonic: SRL S
Title: Logical shift right
Description: This is a non-rotation shift. All bits are shifted right by

one position. Bit 7 is set to
the carry

zero and bit 0 is moved into

Flags: S Z H P/V
* * 0 *

N C
0 *

Addressing Assembly Object Bytes
mode form code

Implicit SRL A 3F 1
SRL B 38 1
SRL C 39 1
SRL D 3A 1
SRL E 3B 1
SRL H 3C 1
SRL L 3D 1

Indirect SRL (HL) CB 3E 2
Indexed SRL (IX + d) DD CB d 3E 4

SRL (IY + d) FD CB d 3E 4

217

Appendix A - THE Z-80 INSTRUCTION SET

Mnemonic:

Title:
Symbolic:
Description:

Flags:

Addressing
mode

Implicit

SUB s
Subtract operand from accumulator
A«—A - s
The specified operand is subtracted from the contents of
the accumulator. The result is placed into the accumula
tor

Immediate
Indirect
Indexed

S Z H
* * *

P/V
*

N C
1 *

Assembly
form

Object
code

Bytes

SUB A 97 1
SUB B 90 1
SUB C 91 1
SUB D 92 1
SUB E 93 1
SUB H 94 1
SUB L 95 1
SUB n D6 n 2
SUB (HL) 96 1
SUB (IX + d) DD 96 d 3
SUB (IY + d) FD 96 d 3

218

Appendix A - THE Z-80 INSTRUCTION SET

Mnemonic: XOR S
Title: Exclusive OR accumulator with specified operand
Description: The accumulator and the operand are compared bit by

bit according to the following rule table:

Accumulator Bit 0 1

Operand
Bi t

0

1

0 1

1 0
Result in accumulator

Flags: s Z H P/V N C
* * 0 * 0 0

Addressing Assembly Object Bytes
mode form code

Implicit XOR A AF 1
XOR B A8 1
XOR C A9 1
XOR D AA 1
XOR E AB 1
XOR H AC 1
XOR L AD 1

Immediate XOR n EE n 2
Indirect XOR (HL) AE 1
Indexed XOR (IX + d) DD AE d 3

XOR (IY + d) FD AE d 3

219

220

Appendix B
X X ASSEMBLER

CONVENTIONS

Just as various implementations of the basic language often differ
from one another, so different assemblers also vary in their syntax
requirements and in the facilities available. For the purposes of
standardization we have adopted the following conventions for all
Z-80 source code. These conventions are used in the examples in this
book.

• All numbers must start with a digit, 0-9, and are classed as
decimal numbers unless:
They end in Ή’ in which case they are hexadecimal.
They end in ‘B’ in which case they are binary.
They end in ‘Q’ in which case they are octal.

Thus 12, OBBFH, 77Q and 01100010B are all examples of valid
numbers.

• Labels must end in a colon but can be any number of characters
long. The dollar character ($) can be used within a label to
improve the clarity of the label. Thus STACK:, CRSLF: and
OUTPUTSROUTINE: are all examples of valid labels.

• Remarks within the source are of two types:
Any line beginning with an asterisk, (*), is treated as a whole line
remark. It is ignored by the assembler completely.

• The following directives are used to reserve space within a
program:
DS reserves uninitialized space.

Anything written after a semi-colon (;) delimiter will also be
ignored by the assembler.

• All standard Zilog mnemonics are supported. This may seem a
strange convention, but it is not uncommon to find Z-80
assemblers which use 8080 mnemonics for Z-80-compatible 8080
instructions. The translation to 8080 mnemonics is only one of
direct translation and should not cause problems (for example,
the Z-80 instruction LD C, 0 has an 8080 equivalent of MVI C,0).

221

Appendix B - ASSEMBLER CONVENTIONS

DB reserves initialized space. This may be a valid single byte
number, a label equating to a single byte value or a string of
characters assembled into consecutive locations. The statement:

DB 12, OFFH, SPACE, Out of menioryS1

will place 12 into the first byte, F Fhex into the second byte, 32 into
the third byte (SPACE must have been previously defined as EQU to
32), and then the ASCII codes corresponding to the string ‘Out of
memoryS’.
DW defines a two byte ‘word’ format. The value given is converted
to a 16-bit value and stored low byte first as is the standard Z-80
convention. As an example the statement DW SPACE would place
32 into the low byte and 0 into the high byte.

• The statement ORG defines a starting location for assembly.

222

Appendix C
X ASCII

CHARACTER SET

Decimal Hex Binary ASCII

00 00 000 0000 NUL
01 01 000 0001 SOH
02 02 000 0010 STX
03 03 000 0011 ETX
04 04 000 0100 EOT
05 05 000 0101 ENQ
06 06 000 0110 ACK
07 07 000 0111 BEL
08 08 000 1000 BS
09 09 000 1001 HT
10 0A 000 1010 LF
11 OB 000 1011 VT
12 OC 000 1100 FF
13 0D 000 1101 CR
14 0E 000 1110 so
15 OF 000 1111 SI
16 10 001 0000 OLE
17 11 001 0001 DC1
18 12 001 0010 DC2
19 13 001 0011 DC3
20 14 001 0100 DC4
21 15 001 0101 NAK
22 16 001 0110 SYN
23 17 001 0111 ETB
24 18 001 1000 CAN
25 19 001 1001 EN
26 1A 001 1010 SUB
27 1B 001 1011 ESC
28 1C 001 1100 FS
29 10 001 1101 GS
30 1E 001 1110 RS
31 1F 001 1111 US
32 20 010 0000 SP
33 21 010 0001 I

34 22 010 0010
35 23 010 0011 #
36 24 010 0100 $
37 25 010 0101 X
38 26 010 0110 8
39 27 010 0111
40 28 010 1000 (
41 29 010 1001)
42 2A 010 1010 *

223

Appendix C - ASCII CHARACTER SET

Decimal Hex Binary ASCII

43 2B 010 1011 +
44 2C 010 1100 /
45 2D 010 1101 -
46 2E 010 1110
47 2F 010 1111 /
48 30 011 0000 0
49 31 011 0001 1
50 32 011 0010 2
51 33 011 0011 3
52 34 011 0100 4
53 35 011 0101 5
54 36 011 0110 6
55 37 011 0111 7
56 38 011 1000 8
57 39 011 1001 9
58 3A 011 1010
59 3B 011 1011 ΐ
60 3C 011 1100 <
61 30 011 1101 =
62 3E 011 1110 >
63 3F 011 1111 *>

64 40 100 0000 a
65 41 100 0001 A
66 42 100 0010 B
67 43 100 0011 C
68 44 100 0100 D
69 45 100 0101 E
70 46 100 0110 F
71 47 100 0111 G
72 48 100 1000 H
73 49 100 1001 I
74 4A 100 1010 J
75 4B 100 1011 K
76 4C 100 1100 L
77 40 100 1101 N
78 4E 100 1110 N
79 4F 100 1111 0
80 50 101 0000 P
81 51 101 0001 a
82 52 101 0010 R
83 53 101 0011 s
84 54 101 0100 T
85 55 101 0101 0
86 56 101 0110 V
87 57 101 0111 u
88 58 101 1000 X
89 59 101 1001 Y
90 5A 101 1010 I
91 5B 101 1011 [
92 5C 101 1100 \
93 50 101 1101]
94 5E 101 1110 t
95 5F 101 1111
96 60 110 0000 1

97 61 110 0001 a
98 62 110 0010 b

224

Appendix C - ASCII CHARACTER SET

Decimal Hex Bi nary ASCII

99 63 110 0011 c
100 64 110 0100 d
101 65 110 0101 e
102 66 110 0110 f
103 67 110 0111 g
104 68 110 1000 h
105 69 110 1001 i
106 6A 110 1010 j

107 6B 110 1011 k
108 6C 110 1100 I
109 60 110 1101 m
110 6E 110 1110 n
111 6F 110 1111 0
112 70 111 0000 P
113 71 111 0001 q
114 72 111 0010 r
115 73 111 0011 s
116 74 111 0100 t
117 75 111 0101 u
118 76 111 0110 V
119 77 111 0111 w
120 78 111 1000 X
121 79 111 1001 y
122 7A 111 1010 z
123 76 111 1011 {
124 7C 111 1100 I
125 70 111 1101 }
126 7E 111 1110
127 7F 111 1111 DEL

225

NOTES

226

Appendix D
X * THE CP/M

OPERATING SYSTEM

The following schematic diagram gives the logical memory layout for
a standard CP/M based 64K computer.

FFFFhex

BIOS
(Basic I/O system)

BDOS
(Basic disc operating
system)

CCP
(Console command
processor)

SPACE AVAILABLE
FOR APPLICATIONS

PROGRAMS

lOOhex

PAGE ZERO
ALSO USED BY CP/M

0000hex

Some systems may have the upper memory code ‘moved down’ to
allow for such things as memory mapped display (the Osborne-01 is
one machine on which this has been done). Occasionally other areas
within the BDOS and BIOS may be modified or enhanced, but this
does not usually affect the CP/M end user.
CP/M’s functions are accessed through a common entry point at
location 05hex. Only a minimal understanding of the workings of
CP/M is required for the programs given in this book and these are

227

THE CP/M OPERATING SYSTEM

as follows: All programs are expected to start at 100hex. Space below
this (ie. the zero page), is used by CP/M itself. The jump instruction
that starts at location 05hex can be used to determine the start of the
disk operating system area (called the BDOS) and area from 100hex
up to the start of BDOS is available for use by applications
programs. It is common practice to overwrite the CCP area since this
is re-loaded when CP/M is re-booted.
CP/M system calls are performed by placing a ‘function number’
into the C register and then ‘CALLing BDOS’. The only functions
required for the programs in this book are those of input and output.

Function number = 1 (Console Input)
A typical use of the console input function is shown below:

» CP/M - CONSOLE-INPUT

INPUTSROUTINE: PUSH BC I PUSH DE ! PUSH HL ¿Preserve registers
LD C,1 ¿Function number
CALL BDOS ¿CP/Μ entry point
POP HL ! POP DE ! POP BC ¿Restore registers
RET

* ======================
¿Return from subroutine

Function number = 2 (Console Output)
The character to be output must be present in the E register. Since
the DE pair is commonly used by applications programs for other
purposes it is common practice to write programs assuming that it is
the accumulator that is used for I/O and then move the character
from the accumulator to the E register from within the output
routine. A typical example is shown below:

« ============
* CP/M - C 0 N S 0 L E - 0 U T P U T

OUTPUTSROUTINE

* ============

: PUSH BC ! PUSH
LD C,2
LD E,A
CALL BDOS
POP HL I POP DE

RET

DE ! PUSH HL ¿Preserve registers
¿Function number
¿Transfer via E register
¿CP/Μ entry point

! POP BC ¿Restore registers
¿Return from subroutine

228

THE CP/M OPERATING SYSTEM

Function number = 6 (Direct I/O)
The above CP/M calls recognize certain control characters as having
special meanings. Occasionally such system interpretation is unwel
come and thus facilities are provided to allow for direct I/O without
interpretation. If the E register is loaded with F Fhex then the function
will collect characters from the console and return them in the
accumulator. If no character is available then the accumulator is set
to zero and thus a ‘wait for input’ loop must be used. When the E
register is loaded with any character other than F Fhex then function 6
will output that character to the console. Typical examples of such
routines are given in chapters 5 and 6.

229

NOTES

230

Appendix E
X X GLOSSARY

Algorithm
A series of rules (or a diagramatic equivalent) which when
followed result in a predetermined or predictable outcome.

Alternation
A set of two or more alternative actions with only one of those
actions being performed.

ASCII
American Standard Code for Information Interchange consists
of a set of 96 displayable and 32 non-displayed characters based
on a seven bit code.

Assembly Listing
A printed listing made by the assembler showing how the
source code has been interpreted during the assembly process.

BCD
Binary Coded Decimal.

Binary
A number system using base 2 for its operations.

Binary Search
A method of searching an ordered table or file by successively
dividing the search area in half.

Bit
A Binary Digit.

Boolean Algebra
The mathematics of a class of logical operations closely related
to set theory mathematics.

BPS
Bits Per Second.

Buffer
An area of memory used to hold data temporarily whilst being
collected or transmitted.

231

Appendix E - GLOSSARY

Bug
A fault within a program which has not yet been found. Also
see Debug.

Chain
See Linked list.

Comment
A remark, social or otherwise, written within a program.

Complement
Binary complement, the process of turning all l’s to 0’s and all
0’s to l’s.

Computed addressing
A form of addressing in which the address is calculated at run
time. Indirect addressing and indexed addressing are two
examples.

Control character
A character which signifies the start or finish of some process.

CP/M
A commonly favoured operating system designed originally for
the 8080 microprocessor. Several variants exist nowadays
including networked, multi-tasking, concurrent and 16-bit
versions of CP/M.

CPU
Central Processing Unit.

Data set
A collection of data items.

Debug
To eliminate errors within a program.

Directive
An assembler operation based on a particular assembler facility
(rather than a facility of the processor that code is being
assembled for). Sometimes called a pseudo-operation.

Editor
See Text editor.

File
A set of data items held on diskette, tape or other medium.

232

Appendix E - GLOSSARY

Floating Point
A means of representing numbers in the binary equivalent of
scientific notation by specifying an exponent and a mantissa.

Hard copy
A printed listing of some computer output as opposed to the
output displayed on a VDU screen.

Hashing
or Key to Address transformation is a collective term used to
describe the techniques for calculating the address of a data
item (or data item set) by using a mathematical function of the
search key.

Hexadecimal
A base 16 numbering system using the digits 0-9 and the
letters A-F.

Iconic
A picture representation using Icons.

I/O
Input/Output.

Isomorphic
Systems of similar structure.

Interrupt
An externally instigated request which, if accepted, causes the
processor to save its current status and perform some required
function. When the function has been completed the status of
the processor is restored and control handed back to the
interrupted program.

Label
Rectangular shaped paper, often sticky, used for placing
identification markings on objects.

Label
An identification name used in an assembly language source
code to refer to a particular section of coding.

Linked List
A set of data items linked together by using pointers.
Sometimes called chains.

Memory map
A diagram showing the allocation of the various parts of

memory chosen for a particular system or program.
233

Appendix E - GLOSSARY

Mnemonic
Pronounced nem-mon-ik - an aid to memory. Assembly
language mnemonics are designed to help you remember what
functions the various instructions perform.

Object code
Machine readable code which has been produced by translat
ing the mnemonic form of an assembly language program into
binary code.

Octal
A base 8 numbering system.

Operand
An 8-bit or 16-bit value upon which an instruction will
operate.

Operating system
A collection of routines which perform the I/O and other
hardware dependent chores that are needed for a computer to
function.

Page
256 bytes.

Peripheral
Any external or remote device connected to a computer
system, such as a printer.

Pointer
An address, record number or other indicator which specifies
the next item of a data set taken in a specified logical order.

Program counter
A 16-bit register used to determine from which location the
next instruction should be fetched.

Pseudo-operation
See Directive.

Repetition
Repeating a set of actions a given number of times.

RAM
Random Access Memory.

ROM
Read Only Memory.

234

Appendix E - GLOSSARY

Sequence
Operations following each other in time.

Set
A collection of items.

Software
Any program or routine for a computer.

Source code
Text version of an assembly language program. Assembly of
such source code will produce either the object code form
directly or a hex form which is translated into object code form
by using a loader program.

Sort
To arrange a data set in a specified order.

Stack
An area of memory reserved for storing data in a Last In First
Out (LIFO) basis.

Syntax
The formal structure of a language.

Text Editor
A program which enables text to be written, manipulated,
stored and so on. Word processors are sophisticated text
editors.

Tree
A type of data structure.

Two’s complement
A numerical representation in which positive numbers are
represented as ordinary signed binary but negative numbers
are represented by complementing the number and adding
one.

VDU
Visual display unit.

Warnier diagram
A design diagram which uses sets of hierachical curly brackets
to indicate the logical structure of a problem, program or
system.

Zero page
The first page of memory, addresses 0000hexto 00FFhex.

235

INDEX

16-bit shifts - 89
16-bit transfers - 32
8-bit transfers - 31
Absolute addressing - 61
Accumulator - 27, 31, 32
ADC - 33, 85
ADD - 33, 84
Add with carry - 85
Addition - 84
Addressing - 59
Alternation - 47
Alternation, ’binary’ - 47
Alternation, complex - 56
Alternation, simple - 56
AND - 33, 69
Architectures - 19
Arithmetic shift left - 70
ASCII - 13, 15, 21, 93
Assembler - 21
Assembly language - 19
Assembly language tree structures - 134
Base address - 62
BASIC - 14, 22, 38, 127
BCD - 83
Binary coded decimal - 83
Binary multiplication - 88
Binary numbers - 20
Binary trees - 122
BIT - 33
Bit addressing - 64
Bit map - 126
Block transfer instructions - 32
Boolean Algebra - 158
Bruner, J. - 3
Bubble Sort - 119
Buffer - 99
Byte - 27
CALL - 33, 42, 51
Carry flag - 50, 51, 85, 87
Circular lists - 98
Comments field - 22
Computed addressing - 62
Conditional relative branching - 55
Conditional relative jump - 42
Conditional subroutine call - 51
Conditional test instructions - 33
Connect Four - 64
Control character - 13, 15, 48
CP/M - 22, 24, 43, 147, 148
CPDR- 114
CPIR- 114
CPL - 73
Data processing instructions - 33
Data structures - 93
DEC - 114
Descendants - 121
Descriptor - 92, 98, 101, 103, 135
Displacement - 61, 62, 67, 68
DJNZ - 108, 113
Documentation - 139
Enactive -2,3
EQU-23, 41, 111
Exclusive OR - 73
FIFO structures - 98
Flags - 28
Floating point numbers - 82
GOTO - 50
Hexadecimal numbers - 20, 29, 150
Iconic - 2, 3, 4
Immediate addressing - 60
Implied addressing - 59
Indexed addressing - 62
Indirect addressing - 63
Instruction field - 22
Instruction format - 34
Integers - 79
JP - 39
Label field - 22
Labels - 23
LD - 32, 34, 40, 59
LDD - 32
LDDR - 32, 103, 104
LDI - 32
LDIR - 32
Left shift - 90
Library routines - 142
LIFO structure - 95, 137
Linked list - 95, 96
Load instructions - 31

Logical opposite - 10
Machine language - 20
Mask - 69
Microprocessor - 19, 27
Mnemonic - 20
Multiple-byte integers - 81
Multiplicand - 88
Multiplication - 88
Multiplier - 88
Mutually exclusive operations - 9
Node - 121, 128
Null word - 110
Object code - 34, 144
Octal - 20
Op-code - 34, 39, 153
Operand - 59
Operating systems - 24
OR - 33, 72, 114
ORG- 39, 40, 41
ORG directive - 24
Osbome-Ol - 148, 151
Overflow - 81
Page zero - 31
Pages of memory - 31
Parent - 121
Parent pointers - 137
Partial products - 88
Pointer - 149
Pointers - 96, 98
POP- 32, 110, 115, 118, 137, 138, 154
Procedure - 8
Program counter - 28, 42
Program layout - 141
Pseudo operation - 23, 41
PUSH - 32, 110, 118, 137, 138, 154
Queues - 98
RAM - 27
Register addressing - 59
Register indirect - 64
Registers - 19, 27
Relation matrix - 126, 134
Relative addressing - 43, 61
REM statements - 22, 147
Repetition - 37, 38
Report generator - 8
RES - 33
RET - 116, 118
Right shift - 91
RLA- 137
ROM - 27
Root - 121
Rotation instructions - 90
RR - 137
SBC - 87
Sequence - 37
Sequential searching - 113
SET - 33
Sets of operations - 10
Short addressing - 61
Signed binary - 80
Simple alternation - 47
SLA - 70
Sort trees - 120
Sorting - 119
Source code - 21, 111, 140, 144
Stack - 28, 95, 137
Stack pointer - 28, 40, 41
Standard mnemonics - 21
Static tables - 94
Status word - 28
String space - 103
SUB - 87
Subroutine - 42
Subtraction - 87
Subtree - 129, 130
Symbolic -2,3
Syntax - 22
Syntax errors - 143
Tree Sort - 120
Tree structure - 98
Trees - 98
Two’s complement - 61, 80, 81
Unsigned binary - 79
Warnier diagram - 4, 7, 157
Warnier, J. D. - 7, 163
XOR - 33, 73
Z-80 - 5, 20, 27, 28
Zero flag - 42, 100
Zero page addressing - 61

Teach Yourself Assembler: Z80 isforallpersonal
computer owners with a Z80 based micro interested
in learning to write assembler programs. Although
writing in BASIC can be fun, Paul Overaa shows you
how to get even greater satisfaction and pleasure by
creating your own programs in assembler.

The author's clear, structured style is particularly
suitable for those tackling assembler for the first time.
The author shows how the fundamental principles are
exactlythe same as those applicableto high level
languages.

This book was developed following the publication of
the author's highly successful Teach Yourself
Assembler series in Personal Computer World
magazine. This book is a much-expanded text,
specifically addressed to Z80 programmers. There is
a companion volume for the 6502 processor.

ISBN 0 7126 0549 5
CENTURY COMMUNICATIONS LTD 9 780712 6 5496

https://acpc.me/

CPC

[FRA] Ce document a été préservé numériquement à des fins éducatives et d'études, et non commerciales.
[ENG] This document has been digitally preserved for educational and study purposes, not for commercial purposes.
[ESP] Este documento se ha conservado digitalmente con fines educativos y de estudio, no con fines comerciales.

	Teach yourself assembler Z80
	CONTENTS
	1 - INTRODUCTION
	2 - WARNIER DIAGRAMS
	3 - ASSEMBLY LANGUAGE
	4 - THE Z-80 PROCESSOR
	5 - SEQUENCE and REPETITION
	6 - ALTERNATION
	7 - ADDRESSING
	8 - REPRESENTING NUMBERS
	9 - DATA STRUCTURES
	10 - SORTING and SEARCHING
	11 - SOLVING PROBLEMS
	12 - LINKING INTO BASIC
	13 - WHERE NEXT?
	Appendix A - THE Z-80 INSTRUCTION SET
	Appendix B - ASSEMBLER CONVENTIONS
	Appendix C - ASCII CHARACTER SET
	Appendix D - THE CP/M OPERATING SYSTEM
	Appendix E - GLOSSARY
	INDEX
	
✅ Raw HQ scan : KailoKyra for ACME
✅ Cleaning/Restoration/Layout/OCR : ACME – https://acpc.me
✅ 2022-10-11

