
A.P. STEPHENSON & D.J.STEPHENSON

HUNG SYSTEMS

Filing Systems and Databases for
the Amstrad CPC464

Other books for Amstrad users

A ms trad Computing
Ian Sinclair
0 00 383120 5

Sensational Games for the Amstrad CPC464
Jim Gregory
0 00 383121 3

Adventure Games for the Amstrad CPC464
A. J. Bradbury
0 00 383078 0

40 Educational Games for the Amstrad CPC464
Vince Apps
0 00 383119 1

Practical Programs for the Amstrad CPC464
Audrey Bishop and Owen Bishop
0 00 383082 9

Filing Systems
and Databases

for the Amstrad
CPC464

A. P. Stephenson and
D.J. Stephenson

COLLINS
8 Grafton Street, London W1

Collins Professional and Technical Books
William Collins Sons & Co. Ltd
8 Grafton Street, London W1X 3LA

First published in Great Britain by
Collins Professional and Technical Books 1985

Distributed in the United States of America
by Sheridan House, Inc.

Copyright © A. P. Stephenson and D. J. Stephenson 1985

British Library Cataloguing in Publication Data
Stephenson, A. P.

Filing systems and databases for the
Amstrad CPC464.
1. Amstrad CPC464 (Computer) 2. Data base
management
I. Title II. Stephenson, D. J.
001.64'42 QA76.8.A4

ISBN 0-00-383102-7

Typeset by V & M Graphics Ltd, Aylesbury, Bucks
Printed and bound in Great Britain by
Mackays of Chatham, Kent

All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system or transmitted,
in any form, or by any means, electronic, mechanical, photocopying,
recording or otherwise, without the prior permission of the
publishers.

Contents

Preface vii

1 Introduction 1

2 Components of a Filing System 18

3 Simple Filing Programs and Building Bricks 36

4 A Complete RAM-based Serial Filing System 68

5 Searching and Sorting 95

6 Knowledge Testing 147

Appendix A: Glossary 176

Appendix B: ASCII Character Codes 179

Appendix C: Answers to Self Test Questions 180

Index 182

Preface

This book is devoted entirely to the storage, manipulation and
retrieval of data using the cassette tape unit built into the Amstrad
CPC464. However, those who have disk drives fitted to their
machines may find a good deal of the material relevant to their needs.
As the title suggests, the leaning is towards the Amstrad CPC464
version of BASIC and Z80 machine code. However, the contents
may also appeal to owners of other machines. It is hoped that the
book will interest both the beginner and the experienced user alike
although it is assumed that the reader will have already studied the
user instructions which arrive with the machine.

Although full listings are given of major programs, they are based
on a collection of subroutine listings designed to function as building
bricks. It is hoped that they will be used to construct other programs
with modifications and extra features to suit specific needs.

The first major program is a general purpose filing system offering
a wide range of processing aids, including the ability to construct a
subfile from a main file (i.e. extract from a main file all records which
possess certain common features, and collect them into a separate
subfile). The second program, which is in two parts, illustrates how
the computer can be used for conducting multiple choice tests either
as classroom checks on progress or in the form of home quiz sessions.
Security checks have been included to simulate a formal classroom
atmosphere. Apart from the educational value, the programs show
that files can be used for storing questions and answers as well as
‘records’.

BASIC sorting and searching techniques are described in detail.
However, alternative fast machine code sorting routines are given
together with full directions for splicing them into main programs.
Since many users may not have assembler facilities, the object code is
supplied in the form of hex loading programs written in BASIC.

Some terms take on a different shade of meaning when applied to

viii Preface

home microcomputers. For example, databases and filing systems
are carefully distinguished in literature aimed at the mainframe and
minicomputer user but, as far as home microcomputers are
concerned, most authorities refer to them as if they were one and the
same. Again, terms used to distinguish various filing systems are not
always used consistently but we have tried to avoid entering into hair­
splitting arguments.

A. P. Stephenson and D. J. Stephenson

Chapter One

Introduction

Home filing methods

Most people in modern society find a need to store information. If,
for the moment, we define ‘information’ as that which conveys
meaning, and a ‘file’ as a ‘collection of related information’, then it
follows that we all keep files in some form or another, even if they are
only gas and electricity bills. It is worth examining some of the filing
methods used in the home to see if any of them will help us to design
computer filing systems. The following classification is by no means
exhaustive. In fact it does little more than represent some of the
techniques employed by the authors before they became hooked on
computers.

The single cardboard box
In many homes, the domestic filing system consists of a single
cardboard box into which is stuffed any piece of paper considered to
be of some importance in the future. It has the supreme advantage of
freeing the mind from the agonies of decision making. There is only
one box so there is only one file. Nothing could be simpler.

Labelled jam jars
Those who pride themselves on being methodical tend to despise the
single box system on the grounds that it lacks precision. They prefer
to use a battery of jam jars, each neatly labelled in accordance with
the general nature of the contents. Paid and unpaid bills may be
popped into one jar, cooking recipes in another and perhaps birth
and marriage certificates, or other documents of similar status, in a
slightly better class of jar. However, classification involves decisions.
Once you embark on a methodical approach it is inevitable that the
number of jars will begin to increase because either (a) some jars get
full up, or (b) some bits of paper turn up, containing information

2 Filing Systems and Databases for the Amstrad CPC464

which will not fit into any one of your labelled categories, or(c) the
original simple desire to introduce method could turn into a sinister
obsession. If this happens, the number of jars may start to increase
without limit.

Fortunately, the catastrophy forecast in (c) above is rare because
most of us soon discover the value of the miscellaneous label. This is
convenient for depositing awkward documents which fall into some
unspecified category. The miscellaneous jar is also useful as a
temporary (?) home, pending a final decision.

The office-type folder
There are those who despise both the cardboard box and the jam jar.
They prefer to use traditional office filing equipment - that is to say,
stiff folders neatly labelled with file heading and reference number,
which enclose the relevant papers. Sequential integrity is preserved
by means of a short tag string passing through the papers and the
outer folder. However, there is little difference in principle between
the office-type folder and the jam jar although the folder is
convenient and projects a more up-market image.

The ideal filing system
It is not easy to define an ideal filing system, although we might all
agree with the following tentative proposals:

(a) The ideal filing system should have infinite storage capacity.
(b) It should be possible to retrieve any specific item, or items, of
information from the file instantaneously and with minimum effort.

Ideals are useful because they stimulate efforts to approach them.
Let us commence with the desire for ‘infinite storage capacity’.
Leaving aside for the moment the impossibility of it ever being
achieved, it is worth asking ourselves what we would do with infinite
storage capacity even if we had it? According to current media
teachings, ‘information is power’. The amount of information
available is alarming and appears to be growing almost exponentially
with time. Up to the end of the Middle Ages, it was possible for a well-
educated person with an excellent memory to know virtually all there
was to be known. Now, a twenty-four volume encyclopaedia can be
little more than a crude index to the world’s knowledge. However,
having all this knowledge available in printed form is one thing;
finding a particular item of information is quite another. This brings
us to the second desirable quality mentioned above - the ability to
retrieve a specific item instantaneously and with the minimum of

Introduction 3

effort. It is almost self-evident that the difficulty of finding a specific
item increases proportionally with the total information stored. The
larger the library, the more difficult it is to find the right book. The
fatter the file, the more difficult it is to find the right document. The
longer the cassette tape, the longer it takes to get at the bit you want.

The computer as a filing system

The first stored-program digital computer was constructed at
Cambridge University in 1949 and was called EDS AC. It contained
132000 thermionic valves! The first machine delivered commercially
was UNIVAC in 1951. At first, computers arrived slowly and were
employed mainly by government engineers and scientists for solving
mathematical problems or undertaking laborious arithmetical
calculations relating to ballistics. A decade passed before computers
began to be used for more general work. It was realised, rather
belatedly, that the full potential of the computer rested in its ability to
store and retrieve information. In other words, the ability to process
information was equally, if not more, important than the ability to
calculate. As a result, a new buzzword, data processing, appeared in
order to distinguish it from ‘ordinary’ computing. Because of this
shift in emphasis, the storage capacity of a machine, rather than its
calculating ability, assumed greater importance.

The technology of the internal read/write memory (that which we
now call RA M) was centred around a matrix of magnetic cores. Each
bit was stored in a small ferrite ring through which three tiny wires
passed carrying the signal currents for polarising the magnets either
North or South (representing binary IsandOs). Because the magnetic
core memory was labour-intensive, the cost was relatively enormous
in spite of employing Third World labour. However, it had one
advantage over the present-day semiconductor RAM. It was a non­
volatile read/write memory. That is to say, it retained information
even when the computer power was switched off because the bits
were stored as blobs of permanent magnetism. Non-volatility was
something of a holy cow before the arrival, in the mid-Sixties, of the
semiconductor RAM. However, the cheapness and capacity of
RAMs was enough to overcome initial opposition and the computer
world gradually accepted the idea of a volatile internal memory.

The advent of the RAM resulted in a subtle change in terminology.
Before the RAM era, the word ‘memory’ was seldom used by
computer boffins because they disliked the anthropomorphic

4 Filing Systems and Databases for the Amstrad CPC464

association. They preferred the general word store but distinguished
between internal or ‘core’ store, and external storage on peripheral
equipment. This was referred to as backing store.

Memory and storage

Nowadays, when we refer to ‘memory’ it is tacitly assumed that we
mean semiconductor RAM. Thus, when we speak of a 64 K machine
we imply that 64 kilobytes of RAM is installed. The Amstrad CPC464
RAM complement consists of a bank of eight chips, each chip
capable of storing 64K bits.

Peripheral devices, such as cassette tape, disks or Winchesters
are ‘stores’. Certain classes of program make no use of store
during a RUN. In such programs, storage is used only to SAVE
the program before switching off. On the other hand, software
concerned with processing large amounts of data (such as required in
file management) will make heavy demands upon the store during
program RUNs.

With regard to storage, the majority of Amstrad CPC464 owners
will be content with the cassette unit. However, as funds allow or as
interest grows, a proportion of owners may eventually invest in disks.
Because storage assumes great importance in filing systems, it is
worth studying the properties of cassette and disk units.

Cassette tape storage

Cassette tape has been a boon to home computer users. Way back in
the early days of home computing, some enterprising technicians
connected with an American magazine called BYTE braved the
sneers of the computer establishment and managed to interface an
ordinary audio cassette unit to a small computer for storing
programs. The system became known as the ‘Kansas City Standard’
(because BYTE was published in that city) and, subject to
modifications and improvements, has been widely adopted ever
since. The revised system became known as CUTS (Computer User’s
Tape Standard). Although the microprocessor must take the major
share of the credit for the spread of home computing, it is doubtful if
it would have been as popular without the humble cassette unit. Not
only is the unit itself cheap enough to be within reach of most people,
the storage medium it uses (blank cassettes) is also cheap.

Introduction 5

Storage capacity
Audio cassettes are available in various lengths from C30 to C120 but
it is unwise to use tapes longer than C30. Cassettes which are specially
designed for computer storage are normally in C12 lengths. The
longer the tape, the greater the chance of a jam or break.

The amount of data stored is best measured in terms of ASCII
characters for a given baud rate and, to some extent, on the data
transfer protocol in use. To gain some idea of cassette storage
capacity, assume that one ASCII character requires 10 information
bits (8 for the code and 2 for start/stop signals). The baud rate is
essentially the number of information bits per second. (Strictly, we
shouldn’t speak of a ‘baud rate’ because, like the maritime knot, a
baud is already a rate in terms of bits per second.)

From the above, it follows that:

Characters stored per second=baud rate/10

The total number of characters (N) which can be stored on a tape of
length (C) minutes is therefore:

N = C X 60 X baud rate/10

Example:
A C12 tape running at, say, 2000 baud can store 12X 60X 2000/10 =
144000 characters. This is equivalent to just over MOK of storage. In
practice, some allowance must be made for end of block codes laid
down by the cassette operating system and bits of tape which may be
wasted at the beginning and end, so it is best to adopt a pessimistic
approach and cut the arithmetical figure by half. If we do this, we can
use the rough rule that a C12 tape, running at 2000 baud, can store
about 70K of real data.

Speed problems
It would be foolish to deny that cassette storage is slow. In fact it has
often been stated (particularly by floppy disk salesman) that a
cassette-based filing system is quite useless. We do not share this
view. Cassette filing systems can be designed to a high standard and
are certainly not useless. Does it really matter to the home computer
user or the small businessman if some files take a few minutes to load?
It is a simple matter to program in a loud beep (or screech) when the
loading is complete so you don’t have to sit idle, watching the tape
pass the reading heads.

Cassette storage is slow because of the tape transport speed and its
serial access nature. Unless you are an expert with the fast

6 Filing Systems and Databases for the Amstrad CPC464

forward/rewind buttons, you can’t go straight to the bit you want.
We shall see later that random access filing systems have considerable
speed advantages but, unfortunately, they cannot be applied to
cassette-based files.

BASIC on the CPC464

The majority of the listings in this book are in BASIC but, because
there is no such thing as a ‘standard’ BASIC, it is worth devoting a
little space to Amstrad’s version of the language. It is a powerful and
imaginative version, marred only by the omission of procedures
which means we are still stuck with GOSUBs. Defined functions
(DEF FN) are available providing they are restricted to a single line.
The majority of the familiar keywords, which form the hard core of
the language, are still retained so there is no point in redescribing
them here. However, there are a number of useful extras, seldom
found in other popular versions, which have direct bearing on file
handling and data presentation. The user instructions, which arrive
with the machine, are accurate and expertly presented. It is possible
that newcomers to the world of computer jargon may feel that some
of the explanations rely just a little too heavily on Amstrad’s ‘meta
language’. Meta language is concise and elegant but rather
forbidding in appearance. The following selection of keywords merit
further explanation because of their particular relevance to filing and
because they may not already be familiar to users of other BASICs.

Automatic calls to subroutines
The keyword EVERY allows you to build into a program an
automatic call to a subroutine at regular intervals. The call makes use
of any one of the four resident delay timers. The syntax is as follows:

EVERY delay,timer GOSUB line number

The timer is in integer units of /5g second. The timers are referenced
0,1,2,3. For example,

EVERY 50,3 GOSUB 5000

This will use Timer 3 to jump to the subroutine at line 5000 every 50
time units (1 second). If this line is entered once, probably near the
beginning of the program, it can be used for, say, interrupting a
program at regular intervals to display a message at the bottom of the
screen. In more general terms, the BASIC programmer can make use

Introduction 7

of the internal interrupt system, a facility normally available only in
machine code. The choice of four timers means that four independent
timing interrupts can be used in the same program.

Disabling a timed interrupt
If a timed interrupt delay has been programmed, using EVERY, a
clash of interests can occur. If a certain part of a program is
vulnerable and must not be interrupted under any conditions, it is
possible to inhibit the interrupt by using the keyword DI (Disable
Interrupt). The inhibition will last until the key word El (Enable
Interrupt) is used. For example:

500 DI
510 vulnerable part of program

600 El

End of file
EOF is a pseudo-variable representing End Of File. During a cassette
tape input, it remains at 0 until the end of the file is sensed, at which
point it changes to —1. For example:

100 IF EOF < I, THEN etc., etc.

Memory left
When creating a new file, it is reassuring to have a continuous update
on the amount of memory left. One of the defects of most BASIC
interpreters (the Amstrad version is no exception) is the way in which
strings are stored. Untidy heaps of garbage tend to be distributed
throughout RAM - relics of unfilled string variables. When there is
no room left, the operating system carries out a process known as
garbage collection in order to recover free space. It is possible to
anticipate this by using the pseudo-variable FRE.

FRE(“”) enforces garbage collection before it totalises the free
memory bytes. For example, PRINT FRE(“ ”) can be used at any
point in a program. This operation takes a certain amount of time
(could be several seconds) depending on the amount of data to be
collected. FRE(0) gives the bytes left but without garbage collec­
tion.

Limiting the BASIC area
The memory area above that used by BASIC is, in theory, available

8 Filing Systems and Databases for the Amstrad CPC464

for other purposes - for example, machine code subroutines. The top
address of the area currently occupied by BASIC is always available
in the dynamic variable HIMEM. The programmer can restrict the
BASIC space by assigning a fixed address to the pseudo-variable
MEMORY. For example, MEMORY &2000 will set the upper
address limit for BASIC. Memory above this, normally claimed by
BASIC, is then released for machine code.

Finding a string within a string
The keyword INSTR (meaning ‘instring’) is useful for determining
whether or not a certain group of characters is present within a string
variable. The default syntax, using arbitrary variables, is INSTR
(A$,B$) where B$ is the substring searched for within A$. If B$ is
indeed within A$, the keyword returns the string position in AS
where B$ starts. If B$ is not found at all, then the number returned is
zero. For example,

100 IF INSTR(AS,B$) = 0 THEN PRINT'Substring not
present”

This can contribute to user-friendliness in a routine which searches
through a file for a given record. An end user may remember a few
characters of the search key but not the whole so an escape clause of
this nature will be well appreciated.

Converting lower- and upper-case
It is possible to ensure that all characters in a string are either upper­
case or lower-case. The two keywords involved are UPPERS and
LOWERS. For example:

A$ = UPPER$(B$) will cause AS to hold an all upper-case
version of B$.
AS — LO WER$(B$) will cause an equivalent lower-case version.

A useful example is where the operator has to enter a yes/ no answer
in response to a prompt. The response entered may be in upper-case
or lower-case so a lengthy IF/THEN line would otherwise be
required to cover both options. UPPERS can be used to convert the
input to upper-case, rendering the IF/THEN line unnecessary. Many
other examples may come to mind, such as the sorting of strings
when the first letter of each string can be either upper- or lower-case.

Alternative to the FOR/NEXT loop
The standard FOR/NEXT loop has always been the back-bone of

Introduction 9

the BASIC language for programming repetitive sequences.
Although Amstrad’s BASIC naturally includes it, an alternative, and
often preferable, structure called the WHILE/WEND loop is
provided. The top of the loop is handled by the WHILE condition
and the bottom by the single keyword WEND (which means ‘While
END’). The body of the loop continues to execute until the condition,
or conditions, are satisfied. Although it is considered bad
programming to jump out of a FOR/NEXT loop before its natural
termination, it is quite permissible to avoid the WEND in
WHILE/WEND loops.

The Amstrad tape unit

All program and subroutine listings in this book are designed for
cassette tape files. The procedure for using tape is given in the user
instruction manual supplied with the machine but the additional
information which follows may help you gain the maximum benefit
from the tape unit.

The cassette tape unit on the majority of home computers is a plug­
in device which must be purchased separately. The self-contained
unit in the Amstrad has the following advantages, over and above the
obvious saving in additional cost:

(a) No untidy connecting cables and, consequently, no trouble with
faulty plug connections.
(b) Because of the integrated design, the signal levels between
computer and tape unit are optimised and constant (no fiddling
around with volume and tone controls).
(c) As a direct result of constant signal levels, the speed of data
transfer can be high - 2000 baud in fact!

There is a choice of two tape speeds, the normal (default) speed of
1000 baud or a software-selectable higher speed of 2000 baud. The
selection procedure, carried out by the keyword SPEED WRITE, is
as follows:

To establish the 1000 baud rate, enter SPEED WRITE 0
To establish the 2000 baud rate, enter SPEED WRITE 1

These figures are nominal, as indeed are all baud rate quotations,
because they assume that the data transferred consists of regular

10 Filing Systems and Databases for the Amstrad CPC464

alternations of the binary bits, 1 and 0. In other words, the baud rate
quoted is based, quite understandably, on statistical averages.
Another factor which is often neglected is the presence of formatting
data such as end of block characters and inter-block pauses in the
data transfer.

When reading back a file from tape, the Amstrad senses the baud
rate which was used when the file was recorded. LOAD“file name” or
INPUT“file name” will handle the read process, irrespective of the
baud rate used at the time when the file was saved.

Speed of information storage
It is all very well quoting baud rates but, if you are a newcomer to
computing and the Amstrad is your first machine, you will appreciate
a more down to earth measurement of tape speed. You will probably
want to know how long it will take to store a typical page of A4 text.
To answer this, we must start with the time it takes to store one
keyboard character. One character in the ASCII code requires 8 bits
but, as previously stated, at least another couple of bits are required
to signal the beginning and end of each character so we end up with a
provisional round figure of 10 bits per character. A tape speed of 2000
baud (2000 bits per second) means that the character speed is 2000/10
= 200 characters per second or 12000 characters per minute. If we
assume that the average word in the English language contains five
letters, this is equivalent to 12000/5 = 2400 words per minute. A
typical page of typed text, using double spacing between lines,
contains about 28 lines of 13 words per line - 364 words per page. At
2400 words per minute, this means that the speed of data transfer via
cassette tape works out to about six and a half pages of typed text per
minute. This doesn’t seem very fast but, before we start grumbling,
we ought to distinguish between a typical page of normal text and a
typical computer record. A ‘normal page’ of text or reading matter,
such as you would find in Hansard or a novel, contains a large
percentage of padding. It may be pleasant, it may be amusing and it
may even be important to those of a literary bent but, as far as adding
real information value to the page goes, it is still padding. In contrast, a
typical computer record is, or should be, almost void of padding.
Every word should pull its weight and there should be a minimum of
frills and pleasantries. It should be pure information. Any word
which can be removed without destroying the information value
shouldn’t have been there in the first place. It is surprising how much
information can be condensed into a record containing as few as fifty
words. For example, in a well-designed record layout, fifty words is

Introduction 11

normally quite adequate for an individual record containing the
name, full address, postal code, telephone number, sex, trade/
profession and bank balance. There may even be enough words left
over for storing a few intimate characteristics. Taking fifty word
records as an example, we obtain a tape transfer speed approaching
2400/50 = 48 records per minute which is fairly acceptable and
should provide ammunition to direct against those with fat wallets
who habitually sneer at cassette tape files.

Choice of baud rate
In general, the higher the baud rate the greater the chance of a read
error so if the data you wish to store on tape is particularly precious it
is probably advisable to use the lower 1000 baud rate. However, we
should mention that we have used the higher rate consistently during
the production of this book and have never yet encountered a read
error. It appears to be an extremely reliable system. The reliability of
the 2000 baud rate is not quite so good if a program is recorded on
one machine and played back on another. This is because there may
be slight differences in the alignment or properties of the recording
heads. On the same machine, this is not so important because it is the
same for both recording and playback. So, if you intend your
program to be read on other people’s machines, it might be safer to
record at 1000 baud.

Dangers of the leader tape

The majority of cassettes available in the high street shops have
several inches of blank leader tape before the normal oxide coated
region. The leader tape makes a strong mechanical joint with the
winding spool and cleans the record/playback head but, naturally, it
cannot store information. If you initiate the recording process too
early - that is to say, before the leader has passed the recording head -
the first part of your data may be lost and will be impossible to
recover when you later try to load it back. To prevent such a
catastrophe, it is worth pressing the PLAY button for a couple of
seconds after a full rewind in order for the leader tape to pass over the
heads before you begin the recording procedure. A good plan is to
advance the tape until the digital counter on the cassette unit reaches
5. You can buy special leaderless cassettes but they are not so freely
available. Cassettes without leader tapes can lead to a false sense of
security but it is still advisable to wait at least a second to allow the

12 Filing Systems and Databases for the Amstrad CPC464

first few inches of tape to pass. These first few inches can be degraded
by the tight coiling around the spool. So-called ‘digital quality’ tapes
often have larger diameter spools so the coiling is less tight on the
inner layers. Finally, one word of warning - think carefully before
buying bargain-price cassettes. Saving a small amount on the price of
a cassette can often be false economy. Good quality cassettes,
particularly those designated as suitable for digital data, are
manufactured to closer tolerance limits so there is far less chance of
drop-out areas over the oxide surface. Drop-out (i.e. irregularities in
the oxide coating) is relatively unimportant when recording normal
music but one bit reversed on a data tape could lead to chaos.

Back-up copies

If a tape fails to load one of your own programs the worst that can
happen is a bout of temper and a lot of extra work in retyping the
listing. However, if the failure happens to be a data tape containing
important business or private records, the effect is much more
serious. A file of a few hundred records can represent many hours of
careful work entering information, some of which might never again
be available. Although the Amstrad tape system seems very reliable,
loss of data can sometimes occur due to either a poor cassette or
finger trouble on the part of the operator during the initial recording
or subsequent playback. It is so easy, particularly when feeling tired,
to press PLAY instead of PLAY and REC so that nothing goes on
the tape. You may be unaware of the mistake until you attempt to
load back the tape at a later date.

To avoid rage and frustration, always keep two or even three
copies on the same tape and, for extra safety, have additional copies
on separate tape. Taking two copies, one after the other on the same
cassette, or on the opposite side, will certainly reduce risk but there is
always a chance that it could be mislaid, dropped on a hard surface or
placed on the top of a hi-fi loudspeaker. Magnets, especially speaker
magnets, have a malignant influence on cassette data and the two
should be kept at a safe distance from each other. On the assumption
that the same accident couldn’t happen to two separate cassettes, you
should consider, in spite of the extra expense, keeping a back-up copy
on another one. It is not good practice to cram different programs
and odd scraps of data onto one tape because (a) it can take some
time to locate the wanted part and (b) it causes problems with cassette
labels.

Introduction 13

If you don’t mind wasting unused tape, the best rule to adopt is to
use a separate tape for each program or data file. All this advice may
lead to the impression that keeping computer fdes on tape is a
potentially hazardous business. As already stated, the Amstrad tape
system is extremely reliable but this is no reason why every
precaution possible should not be taken to preserve the integrity of
files. Even in a large professional computer complex, using hardware
of high cost and impeccable performance, the taking of file copies,
together with their preservation and organisation, is enforced with
almost military discipline.

Labelling cassettes
The importance of labelling increases in direct proportion to the
number of cassettes in use. If you have only two or three tapes, it is
probably a waste of time writing labels because you will be constantly
changing the contents. As your collection grows, or if you are using
the machine to keep important records, it is wise to adopt a
methodical approach to labelling. You can buy labels designed for
cassettes but these, in our opinion, are a little overpriced. The best
plan is to buy a roll of pre-gummed plain labels and cut them to size as
you want them. Stick the labels on the cassette itself, not on the
plastic container, because (a) the cassette could get into the wrong
case, and (b) once you stick a label on the case, it is very difficult to
remove it without scraping and leaving a smudgy mess behind. On
the other hand, labels seem to peel off cleanly from the body of the
cassette. If cassette contents change, it is better to replace the entire
label rather than make alterations. A label with multiple alterations
looks scruffy and reduces confidence. Another method is simply to
label the cassettes 1, 2, 3, etc. and list the contents in a Tape Register
book. The trouble with registers is that initial enthusiasm for their
upkeep often wanes. It doesn’t really matter what system you use
providing you have one and that you stick to it.

Cassette data blocks

A cassette unit, because it is a mechanical system, operates within a
time scale which is thousands of times slower than the computer. To
allow for the time difference, the Amstrad CPC464 employs a 2K
area of memory, called a block, which is used as a buffer between the
cassette and the computer. Data transfers between computer and
cassette take place from within this buffer area. When a program is

14 Filing Systems and Databases for the Amstrad CPC464

being loaded, the screen message displays each 2K block number.

Allocation of cassette buffer area
The Amstrad uses dynamic allocation for cassette files. This means
that space for the cassette buffer is allocated only when needed. There
are sound reasons why the designers decided on dynamic allocation
rather than the conventional fixed buffer area. Many programs may
not use cassette data files so why waste valuable RAM by reserving
space that may not be used? For instance, a disk drive may be
connected thus making the cassette unit redundant. The Amstrad
CPC464 can support two open cassette files. A 2K buffer area is
needed for each of the input and output buffers, thus making 4K. in
total.

The highest available memory location available to BASIC is
stored in the variable HIMEM. Strings are stored from HIMEM
downwards and are referred to as the ‘heap’. In order for the cassette
buffers to be allocated, BASIC performs a house-keeping operation
to ensure that the heap is as small as possible and then physically
moves it down in memory by 4K. HIMEM is subsequently set to this
lower value. When the cassette buffer has performed its task, BASIC
tries to reclaim the memory taken by the buffer. It can only do this if
the buffer area is immediately above HIMEM. With this proviso, the
heap is moved back to its original location and HIMEM reset to its
default value.

Dynamic allocation of cassette buffers is fine in the majority of
cases but is a bit of a nuisance in RAM-based ‘database’ type
programs. The task of house-keeping and moving the heap can take
anything up to a couple of minutes to perform, depending on its size.
This delay can be annoying but fortunately there is a simple solution.
The buffers can be permanently allocated by the following few
program lines:

10 OPENOUT “Buffer”
20 MEMORY new
30 CLOSEOUT

where ‘new’ is the updated value of HIMEM given by the following
relation:

new = default HIMEM-4K-1

The — 1 term is needed to ensure that the cassette buffer opened in
line 10 is not immediately above HIMEM when the file is closed (see
above). BASIC is thus unable to reclaim the memory allocated to the

Introduction 15

buffers. However, if, at a later stage in the program, the cassette
buffers are needed, the previously allocated space will be reused.
Here is a practical example:

Assuming a perfectly standard machine (no disk drives, light pens,
etc.) the default HIMEM will be &AB7F. Knocking4K off HIMEM
gives &9B7F and a further reduction of 1, to comply with the above,
makes &9B7E. Therefore, the cassette buffers can be statically
allocated on a standard machine by the following:

10 OPENOUT “buffer”
20 MEMORY &9B7E
30 CLOSEOUT

An alternative version is:

10 OPENOUT “buffer”
20 MEMORY H1MEM-1
30 CLOSEOUT

Although the later example may appear preferable, it suffers a
severe disadvantage in that a further 4K will be nobbled each time a
program containing the above lines is reRUN. Using the former
method, it is easy to reserve a chunk of memory for machine code
routines at the same time. For instance, if &200 (512 decimal) bytes
are required for a machine code routine then line 20 could be changed
to:

20 MEMORY &997F

Your machine code can then be assembled from &9980 onwards.
Incidentally, this area is where our machine code sorting routines,
described in Chapter 5, are located.

Disk storage

This book is concerned almost entirely with cassette tape files but, for
the benefit of readers who may be new to computing and may
eventually invest in a disk drive, some brief discussion on this kind of
storage system is justified. The most obvious advantage of the disk
drive over the cassette is speed of data transfer. Even though we have
praised the speed of the Amstrad CPC464 cassette there is no denying
that it is still slow in comparison with a well-designed disk system.
However, it is worth mentioning that the speed of a disk drive

1 6 Filing Systems and Databases for the Amstrad CPC464

depends, to a large extent, on the disk operating system - The DOS.
Unless the DOS, which is simply a chunk of complex software, is
designed carefully, the inherent speed of the mechanical disk drive is
inhibited and the resulting system could, in the worst case, end up
only two or three times faster than a good cassette system. In fact, one
popular home computer employs a disk drive system which most
owners, even the most easily pleased, would describe as ‘a little
sluggish’. But, in all fairness, the speed of a disk drive is only one of its
virtues. As far as filing systems are concerned, the most outstanding
advantage of the disk lies in its random access nature. This means
that it is possible to go straight (or nearly straight) to the exact record
or file you need without having to read through all the unwanted data
which happens to come before it. This is because the read heads,
which pick up the data from the rotating disk, are at the end of an arm
which can travel radially across the disk surface until a desired track
is reached. The mechanism responsible for the radial movement is
called a ‘stepping motor’ and, because the movements are digitally
controlled, can position the read head with great accuracy onto the
centre of a desired track. It is this random access property, coupled
with the increased disk rotation speed, which is responsible for the
popularity of disk-based files. The DOS will normally include a set of
commands, appearing as extra BASIC keywords, which allow users
to communicate with the disk.

Summary

1. A filing system should have high storage capacity and fast access
to any particular item.

2. The standard internal memory, before semiconductor RAMs
were introduced, was the magnetic core memory.

3. A non-volatile internal memory is one which retains stored
information after the power is interrupted.

4. Semiconductor RAMs are volatile.
5. Tape speed is conveniently measured in bauds. 1 baud is a rate of

one information bit per second.
6. It normally takes 10 bits to represent each character on a tape.
7. Meta language is a specialised set of symbols used to describe the

behaviour of BASIC keywords. It is concise and, unlike plain
language descriptions, free of ambiguity.

8. The keyword, EVERY, allows access to any of the four interrupt
timers. The time unit is /50 second.

Introduction 17

9. Interrupts generated by EVERY can be disabled with DI and re­
enabled with El.

10. To enforce garbage collection, use FRE(“ ”).
11. UPPERS ensures all upper-case text; LOWERS ensures all

lower-case text.
12. Default tape speed is 1000 baud (SPEEDWRITE 0). Speed can

be doubled when saving by using the command SPEED WRITE
1.

13. A tape LOAD automatically senses the speed at which the tape
was SAVED.

14. Make sure that the leader tape is passed before commencing a
recording.

15. Use C12 tapes and, if possible, put only one file on a tape.
16. Information on tape is laid down in a series of blocks. 1 block =

2K. bytes.
17. Two 2K areas of RAM are required for cassette buffer purposes.
18. The two cassette buffer areas in RAM are not in fixed addresses.

They float up and down dynamically above HIMEM.
19. The buffers can be given fixed addresses by means of a direct

assignment.

Self test

1.1 What advantage did the old magnetic core memory have over
the modern semiconductor RAM?

1.2 What is the difference between memory and store?
1.3 What is the connection between Kansas City and the cassette

recorder?
1.4 How many characters are there in a block?
1.5 Why are there two 2K tape buffer areas in memory?
1.6 EOF is a pseudo-variable containing either 0 or —1. What is the

significance when it contains —1?
1.7 What is the difference between FRE(0) and FRE(“”)?
1.8 A tape recorded at 2000 baud may play back without fault by the

machine on which it was saved but may fail when played back on
another machine. Why?

Chapter Two

Components of a Filing
System

File layout

Science has always emphasised the importance of classification. In
fact, science could be defined as the orderly arrangement of
ascertained knowledge. We are not, at the moment, concerned with
the difference between ‘ascertained’ knowledge and information
except to point out that information can, at times, be false. As far as
file organisation and arrangement is concerned, however, it is
unimportant whether any particular item in the file contains true or
false information. The accuracy of the information held on file
depends on those responsible for its administration and daily
updating. Nevertheless, the design of a filing system should always
take into account the possibility of false entries and ensure that
simple errors are easily detected at input level and, equally easily,
corrected.

It should be realised that programs which organise and process
information are little more than tools. The practical value of a
computerised filing system depends largely on the manner in which
the file information is classified. The computer will not classify it. A
good computer program will normally allow the user considerable
freedom in the way the file information is structured but, ultimately,
it is the user’s responsibility to decide the manner in which that
freedom is to be exercised. For example, the name given to each
heading in the file, the material to be included, the number of
different headings, the space allowed for each item of text under a
heading, the abbreviations to be used, the particular heading which is
to be considered more important than other headings - all these
points and many others must be considered carefully before deciding
on the initial file layout. It is essential to adopt a long-term attitude
during the planning stage. It would be a nuisance, perhaps a disaster,
if a file has been in operation for some time and it is suddenly

Components of a Filing System 19

discovered that an extra heading should have been introduced during
the initial planning stage. It takes time and energy to keep a file
updated with new or corrected information so to scrap it and re-enter
it all again in a different format would be an unpleasant and time­
wasting exercise.

It is possible, of course, to prevent such a mishap from occurring
by simply creating a spare heading to be left blank until, or if, needed.
This is all right if there is plenty of room in the store but it is little
more than a cover-up for a potential problem which should not arise
if the original file were more carefully planned. It is also possible to
arrange a filing program allowing extra headings to be added, or
deleted, at any time but this would entail adding yet another
dimension of flexibility. Indeed, a file handling program could be
designed to cater for any defects in the user’s judgment but the
program could eventually assume unwieldy proportions and eat
deeply into available RAM space.

User-friendliness

‘User-friendliness’ is a controversial subject so it is not surprising that
so much has been written about it. To some, it is almost a cult.
Others, whilst recognising that lip service must be paid, feel that its
value is grossly overrated. The following is intended as a starting
point for discussion rather than a formal definition:

User-friendliness is a measure of a program’s
ability to recognise human weakness.

The extra program lines needed for adding a degree of user-
friendliness is often called idiot-proofing. We are all capable of
idiotic behaviour at times so we should not view the term ‘idiot’ as
offensive. The essential issue here is to decide how much idiot­
proofing is justified in a filing program.

There are several ways of introducing it but the following
arrangement is typical:

(1) The computer asks for some input.
(2) The operator enters it.
(3) The program examines the input and either

(a) accepts it, or
(b) rejects it and asks for input again.

20 Filing Systems and Databases for the Amstrad CPC464

The process is repeated indefinitely until the input satisfies the
computer. A typical input validation procedure is shown in the
following example.

Example:

100 INPUT "ENTER NUMBER OF RECORDS";NX
120 IF N7.<1 OR NX>500 THEN 1OO

The upper limit of 500 is, of course, arbitrary. This is only partial
idiot-proofing because it does not cater for the type who doesn’t
know why the input has been rejected. A message is needed from the
computer to explain why. The program segment now grows a little:

100 INPUT"ENTER NUMBER OF RECORDS";NX
120 IF N7.<1 OR NX>500 THEN PR I NT "NUMBER
MUST BE IN RANGE (1 TO 500)":GOTO 100
130 PRINT"NUMBER ACCEPTED"

Another aspect of user-friendliness is the incorporation of‘Are you
sure? Answer Y/N’ messages. These are issued in circumstances
where the wrong decision on the part of the operator could cause
serious trouble. For example, the original question might have been
‘Do you want this record to be erased?'. If the operator, in an
unguarded moment, answers ‘Y’ (but intended ‘N’) a valuable record
might be lost for ever. This could be catastrophic so the further
message, ‘Are you sure?’, would help to reduce such a risk. To provide
an added safeguard, it is wise to get the program to ask for one
particular key to be pressed for the more dangerous alternative while
otherwise accepting any of the others.

The concept of user-friendliness covers a wider field than simple
idiot-proofing. Simple and unequivocal screen messages and wise
choice of colour for emphasis purposes are also important. Colour
for its own sake is not justified even though the Amstrad CPC464 offers
a wide range of colour. Bizarre colour effects in games programs are
useful as cosmetic aids but, in more serious programs, colour should
be used only in cases where it can improve or add force to the screen
appearance.

Certain aspects of user-friendliness can be irritating. To start with,
we could ask for which particular user the program is intended to be
‘friendly’. A program which, by virtue of copious warning messages,
might be considered ‘friendly’ to a novice operator could be
absolutely infuriating to a skilled operator. It takes some time for any
operator to learn how to make use of all the facilities offered by a

Components of a Filing System 21

sophisticated program so, initially, the user-friendliness may be
appreciated. But the same novice may eventually become skilled and
will begin to experience irritation if too many warnings have to be
answered with ‘Y/ N’ entries. Another reason for not programming in
too much user-friendliness is the cost in RAM space. It is easy to go
over the top in trying to cater for all possible forms of human frailty.
The result could eventually lead to a situation in which the desire for
friendliness is satisfied only by sacrificing useful options. The
program examples in this book are ‘moderately’ friendly but, because
full use has been made of program modules (subroutines), it would be
easy for anyone to add extra input traps without endangering the
overall program structure.

Crashing the program
When a program ceases to be under the control of the operator it is
said to have crashed. This is a pretty wide definition because there are
various ways in which a program can be crashed. A crashed program
is always annoying because it means starting again with a RUN or
even a re-load from store. In the case of programs which handle large
amounts of data, a crash can be annoying, particularly.with RAM­
based files, if it occurs near the end of a long data-entering session.
The steps taken in the program to prevent an operator crash is yet
another aspect of user-friendliness.

Documentation
All programs, except the most simple, deserve some form of support
documentation explaining how they can be used effectively. Good
documentation is particularly necessary in filing programs because
they normally offer a wide range of processing options which can, for
the first-time user, appear bewildering. Good documentation also
contributes to user-friendliness by reducing the dependence on screen
messages. Too much screen information, although initially providing
valuable prompts, rapidly degenerates into useless clutter as an
operator becomes more experienced. To be constantly reminded on
every display page that we must ‘Press Key X to return to Options’
can soon become irritating. Besides, it is wasting the screen area.
Information of this kind is far better given in supporting
documentation.

22 Filing Systems and Databases for the Amstrad CPC464

Some preliminary terms and definitions

Up to this point, we have been using terms like ‘information’, ‘data’,
‘file’, etc, in their everyday sense. We have now reached the stage
where, for distinguishing purposes, more formal definitions are
needed.

Data
Of all terms in the repertoire of computer jargon, ‘data’ is probably
the most overworked. In the general sense, data could be defined as
anything which has meaning to the computer. This definition is too
all-embracing for our purposes. What we need is some rule whereby
we can distinguish ‘data’ from other closely related terms. We shall
use the following simple definition:

Data is information which can be held in store
for access by a suitable program.

When the data is loaded from store into RAM it is, of course, still
‘data’ but in the general sense only.

Files
Like data, the term ‘file’ is also an overworked term and often used
with a variety of meanings. For example, it is customary in user
handbooks to call everything that is stored on tape or disk as a ‘file’.
They refer to ‘Program files’ and ‘Data files’. In this book, we shall
define a file in the following way:

A file is a collection of related data held in store and
accessed by a program in RAM.

For example, the data in a file could consist of various snippets of
information on birds. Another file could be a simple list of customers’
names, addresses and telephone numbers.

As explained earlier, the choice of material to go into one file is a
human decision. Whether or not the contents of the file are indeed
‘related’ must depend on the judgment of the person setting up the
file.

In accordance with our previous definition of data, it follows that
the term ‘file’ assumes that it is a data file. As most readers will be
aware, BASIC programs are stored in a special format, using tokens

Components of a Filing System 23

instead of BASIC keywords, whereas data files are stored in simple
ASCII characters.

Record
Although a file contains information which is in some way related, it
is still hierarchal in form. That is to say, it will consist of a set of
individual ‘records’. For example, a file on customers’ names and
addresses will contain separate records for each customer. We can
therefore define a record as follows:

A record contains all data relevant to one particular
entry.

For example, a file on Birds of Britain could contain a number of
records, one for each different bird.

Field
A ‘field’ is to a record as a record is to a file, so the following definition
is appropriate:

A field is a subdivision of a record and represents one
aspect of the total information in a record.

Taking, as an example, a file on Volcanoes of the World, one field
might give the name of the volcano, another the height and another
its location. The number of characters set aside for each field is
known as the field-width.

Field headings
All fields must have a heading in order for the data to have meaning.
For example, if the number 5.67 appeared in one field of a record, it
would be meaningless without a heading. A field heading of, say,
‘Height in metres’ makes the number meaningful. In the interests of
programming efficiency, it may be important to distinguish between
fields which carry numerical data exclusively and those which carry
alphanumeric or string characters. During the setting up of a new file,
the operator can be asked the kind of data to be entered under each
field heading - string or numeric? It is easy to assume that all fields
are in string form and make the computer sort it out, but it is more
efficient for numeric fields to be distinct from string during keyboard
entry. This is particularly so if integers, instead of floating point
numbers, can be used.

24 Filing Systems and Databases for the Amstrad CPC464

The importance of the key field

Although all fields of a record will contain important information,
one of them will enjoy higher status than the others. It is called
the key field because it is used to identify the record. Which
particular field is to be chosen as the ‘key’ is the responsibility of the
person who initially sets up the file. However, because the key field is
the record identifier, it is essential that it be absolutely unique. In our
example of the volcano file, the choice of key field would clearly be
the volcano’s name, on the grounds that no two volcanoes would
share the same name. On the other hand, the volcano’s height may
not always be unique. A problem could arise in some files,
particularly where the key field is the customer’s name. It is quite
possible for more than one BROWN A.G. to be present in the same
file. If this happens, an extra identifier could be added - perhaps
BROWN2 A.G. The safe way, particularly in larger files, is to use a
code identifier as the key field (perhaps ten or more characters) rather
than a person’s name. Identity codes are dehumanising and offensive
to many people but, because they are necessary for the adminis­
tration of an over-populated society, should not be regarded as
Orwellian.

Files concerned with inventories of equipment will almost
certainly have a part number as the key field of each record. A typical
electronic components firm may have a separate record for each
component stocked. The number of different components could run
into tens, or even hundreds, of thousands. It would be a long and
unwieldy business trying to find a unique physical description for
each key field so a part number is the obvious solution. Although we
have used an industrial example, it is not uncommon to find large
inventories in homes, particularly if one of the residents is an ardent
collector. For example, a stamp collection of 10000 specimens would
be considered quite moderate in size by any amateur philatelist and a
computer filing system would provide an extra dimension to the
hobby. Providing the collection is organised properly on files, the
computer, can be used to find unexpected relations between groups of
specimens. Again, it may be more convenient for the key field to be a
stamp catalogue number rather than a description.

I n spite of the advantages of numerical or coded key fields, they are
inclined to be user-unfriendly. ‘Penny black’ is easier to remember
than, say, ‘23578642’ when searching for the record. To combine the
advantages of a coded search key with the friendliness of a literal key,

Components of a Filing System 25

an ingenious dodge known as indexing can be used.
Figure 2.1 illustrates the relationship between the field, the record

and the file.

Records—►

FILE

Record

Name Telephone Sex Occupation

Fields

Fig. 2.1. Components of a file.

File size

Various factors can influence the information grouped under one file
heading, including personal preferences. Over and above this, there
will be physical limitations imposed by the memory and storage
system on the maximum number of bytes allowable in a single
computer file. These limitations will depend to a large extent on the
methods employed in the program. There are several recognised
methods of organising filing programs and we shall be dealing with
some of them in due course. From the point of view of file length, it is
sufficient to distinguish two broad classes of file:

(a) RAM-based serial files: the entire file must be loaded from store
into RAM before records can be accessed.

26 Filing Systems and Databases for the Amstrad CPC464

(b) Store-based files: the file remains in store and only the chosen
record, or in some cases a few records, are accessed as required.

From this, it is clear that the length of a RAM-based file is limited
solely by the amount of space left in RAM over and above that used
by the program. A program with extensive file processing abilities
could bite deeply into the RAM space, thereby forcing a compromise
between processing facilities and file space. If we assume that 100
characters (including control characters) are required for a typical
record, the maximum file length could not exceed 100 records. There
will be a natural desire to cram as much information as possible into
each record by having lots of fields and space for characters in each
field. The following equation, for estimating the size of the file in
bytes should act as a sobering influence during the initial planning
stage:

Total bytes = Field width X number of fields X number of records.

It is not always appreciated that seventy characters, including spaces,
are required for the average name, address, post code and telephone
number.

With store-based files, the amount of available RAM is less
important because the limiting factor on file length is the amount of
on-line storage available. Apart from the increase in maximum file
length, a store-based file allows more RAM space for the program so
the number of options for processing the file need not be so
drastically curtailed as they would have to be in RAM-based files.

In spite of some disadvantages, RAM-based files are useful. In
cases where the length of the files is well within the capacity of
RAM, there is a distinct advantage in using them. Once a complete
file is loaded from store, the essential processes are completed at
RAM speed. Sorting records into some kind of order is the one
process at which RAM-based files excel. It is possible, but relatively
slow and inconvenient, to sort records unless the entire file is resident
in RAM.

File splitting and merging
The number of records under one file heading can eventually become
too large to fit into RAM at one go. This can be overcome with an
option for splitting a single file into one or more separate files. For
example, if the key field is the name of something, it may be advisable
to split the file into names beginning with A to J, another beginning

Components of a Filing System 27

with K to R and another with S to Z. Conversely, it might be useful to
have a facility for merging two or more smaller files into one.

Processing options

The outstanding advantage of a computer resides in its ability to
process data in a variety of ways. The manner in which the various
processes are chosen and activated determines whether the program
is defined as menu-driven or command-driven.

A menu-driven program revolves around a display referred to as
the ‘menu page’ which contains the list of options available. The
option required is chosen by entering the corresponding option
number. If there are less than ten options, the GET function can be
employed to avoid the operator having to press RETURN
afterwards. Whatever option is active, the menu can be regained by
pressing a particular key. A command-driven program has no menu
page. Instead, there is a line, or perhaps two lines, reserved at the
bottom of all screen displays known as the command line. This will
normally display a prompt such as ‘What next?’ followed by a
flashing cursor. The particular option required is entered in the form
of a single letter, or letter group, chosen by the programmer for
mnemonic association with that option. It is up to the operator to
memorise the option letters although one of the options may be ‘H’
(meaning Help) which displays all the options in full.

An experienced operator would probably find little to choose
between a menu- and command-driven program. One advantage
claimed of a command-driven program is the comfort to be gained
from seeing the prompt, the current option and the flashing cursor
present at the bottom of all screen displays. However, the menu-
driven program has distinct advantages. First, there is no need to
memorise option mnemonics as the menu page is displayed in non­
abbreviated form. Second, there is no wasted line, or lines, at the
bottom of each screen display. The programs in this book will all be
menu-driven. However, it should not be too difficult for anyone who
prefers a command-driven system to rewrite the display procedures
accordingly.

It is often convenient to split the menu into two levels. The first
level is for choosing a primary option such as ‘creating a new file’ or
‘accessing an existing file’. The lower level is for selecting one of the
many options available for processing an existing file. Some typical

28 Filing Systems and Databases for the Amstrad CPC464

processing options will now be described. They should be interpreted
in the general sense because variations can be expected in practice.

Create new file

The procedure for creating a new file will consist of a series of
prompts, inviting the operator to enter pertinent information on such
things as:

• File name
• File size (maximum number of records expected)
• Number of fields
• Field headings
• Field width
• Field data (numeric or string)

Access existing file

If a file exists already it is only necessary to choose one of the
following secondary options.

Enter record
This is used for:

(a) entering an extra record to a file which already exists, or
(b) entering the first record in a newly opened file.

Display record
There are several ways of displaying information, depending to a
large extent on the method used to organise the file. They can be
classified as follows:

(a) The broad-sheet display
All the fields of each record are presumed to lie along one horizontal
line which stretches beyond the visible screen area. The key field
remains permanently displayed at the left and the other fields are
scrolled into view as needed by means of pressing arbitrarily chosen
keys. The advantage of this display is in being able to view many
records simultaneously. Although only a part of each record appears
at a time, as many records as there are lines available can be viewed at

Components of a Filing System 29

the same time. Other arbitrarily chosen keys are used to scroll in
another block of records.
(b) Single record display
A single record occupies the screen with each field commencing on a
new line. If the record is too long for complete display, it is usually
arranged to display a screen full of data at a time.

Delete record
The ability to delete a record is one of the facilities which might justify
the use of an ‘Are you sure?’ message. After deletion, a ‘hole’ will be
left in the file unless the program includes a routine to close up the
following records. Some programs will insert a special marker,
known as a tombstone, in the slot formally occupied by a deleted
record. The tombstone is used to indicate to the program that the
next record to be entered can be placed in the tombstone’s slot.

Modify record
Records are often incorrect. They may have been entered incorrectly
or later became incorrect because of changing circumstances.
Consequently, all filing programs should have an option for
correcting part, or whole, of a record.

Search for record
Where it is practical, a filing program will ensure that any record or
group of records can be located and recovered, which satisfies one or
more search criteria. In fact, the search function alone is more than
sufficient to justify the use of a computer for filing information. The
normal procedure, explained earlier, for finding a particular record is
to quote the specific key field indentifier. For example, the key field
in a file on World Politicians would be the name of the particular
politician. A search by key field will always be the fastest method.
However, there may be many reasons why a record cannot be found
in this way.

For example, you may not be quite sure of the politician’s name
but have a feeling that the letters ‘eag’ appear in his name. This is
where the option, ‘Search for substring’ can be used. To find the
elusive politician, the substring ‘eag’ can be entered under the field
heading ‘Name’. This will bring out records of all politicians whose
name contains this substring, so the vital statistics of Reagan R.
might suddenly appear on the screen.

Another possible search requirement would be for records in

30 Filing Systems and Databases for the Amstrad CPC464

which information in one of the fields lies within some limit or limits.
For example, in a file on tropical diseases, we may want to find those
which have an incubation period in humans of less than 14 days. In
another file on bipolar transistors, we may want to examine the
records of those with a forward current gain (Hfe) greater than 100
but less than 130.

A list of search options might appear as follows on the menu page:

1. Search any field for <> n
2. Search any field for = n
3. Search any field for >= n
4. Search any field for < n
5. Search any field for >= n and < m
6. Search any field for substring

Example 1
If we ask for option 3 above, the program might then ask for the
following information:

1. Field heading? (Assume we answer volts)
2. Enter number? (Assume we answer 3)

The search will then bring out all records with a value equal to or
greater than 3 in the volts column.

Example 2
If we ask for option 5 above and we answer as follows:

1. Field heading?
2. Enter number?
3. Enter number?

(Assume we answer volts)
(Assume we answer 5)
(Assume we answer 15)

The search will then bring out all records with a value in the volts
column greater than or equal to 5 and less than 15.

The two examples have been concerned with searching for
numerical limits. Some programs work equally well if the limits are
given in character form.

Example 3
If we ask for option 4 and answer as follows:

1. Field heading? (Assume we answer name)
2. Enter string? (Assume we answer ‘G’)

The search will then bring out all records where the name begins with
any letter ‘earlier’ than G.

Components of a Filing System 31

Sort records

The ability to sort records into order is often considered an essential
element of any good filing system. An ordered system always has
more information value than a disordered system. A special
technique, known as a binary search, enables a search to be
conducted much faster than a simple linear or sequential search.
However, in order to use a binary search, all records must be in key
field order.

It is easy to sort records if the entire file can first be loaded into
RAM. However, sorting is a relatively slow process in BASIC, so, if a
sort option is necessary on a large file, it is better that it be
programmed in machine code.

Sub files

Fig. 2.2. Splitting files.

0

0

Become
master files
when stored

32 Filing Systems and Databases for the Amstrad CPC464

Subfiles

Some programs offer the facilities of a‘subfile’, containing all records
which satisfy a certain search criterion. The subfile can then be stored
separately under a new file name as illustrated in Fig. 2.2.

This can often be used to split a file which is beginning to show
signs of excessive bulk. The question of where to split can be decided
sensibly instead of by a crude alphabetical split. A file on Mountains
of the World could be split into separate files according to continent
or perhaps height above sea level. This would have greater
information value than a file split by mountain names into ‘A to G’,
‘H to R’, etc. In fact, a filing system which starts life as a hotch-potch
of disconnected data can, by careful splitting into subfiles, develop
into a highly organised information source. It is worth mentioning
that all information is data but not all data is information!

Printing options

Printers are not standardised. This makes it difficult to program an
option for sending selected file data to a printer. The early printers
were simple affairs, capable only of printing upper- and lower-case
characters in one typeface but this era is now past. Most modern
printers are able to deal with italics, underlining, enhanced and
double-width characters with variable line spacing and some even
produce a choice of colour and right-justified text. Unfortunately,
the control characters for activating such extras vary with different
printers. Of course, if a standard Amstrad printer is used, there is
no problem but printers are not yet cheap enough to be discarded for
a new one every time the computer is changed.

File organisation

The list of common file processing options we have described above is
all-important to those who just want to use the program. They may
not, or indeed need not, know how the file has been programmed or
which particular file organisation has been adopted. Although
complete program listings are given in this book, the aim is to
encourage readers to consider these only as a guide towards writing
their own versions. The emphasis, from now on, will be shifted away
From the user and more towards the programmer.

Components of a Filing System 33

There are several, well recognised, ways of organising a filing
system. Which method is chosen depends on:

(a) the type of storage equipment;
(b) which options are considered to be of overriding importance;
(c) the amount of on-line storage capacity.

With regard to (a) above, cassette tape is not really practical in any
way other than for RAM-based files. This calls for a definition:

A RAM-based filing system is one in which the entire file
is loaded into RAM before records are accessed or
processed.

STORE

RAM-BASED

Selected ;
record '

I

STORE-BASED

Fig. 2.3. RAM- and store-based files.

34 Filing Systems and Databases for the Amstrad CPC464

If a file requires updating, it must always be loaded into RAM, the
modifications made and rewritten back to store.

On the other hand, store-based is defined as follows:

A store-based filing system is one in which the complete
file remains in store and only the required record (or
sometimes a few records) is transferred to RAM as required.

Figure 2.3 shows the differences between them.
This book deals exclusively with RAM-based files that can be used

on a standard Amstrad CPC464.

Summary

1. A ‘user-friendly’ program can never be user-friendly to all users.
2. A computer-rejected input does not always justify an explana­

tory message.
3. The ‘are you sure’ response can be useful or irritating. It depends

on the calibre of the operator.
4. It should be impossible for an inexperienced operator to crash a

program.
5. Good supporting documentation is an important contribution

to user-friendliness.
6. A data file cannot be directly‘SAVEd’ or‘LOADed’. It can only

be accessed from within a program.
7. A record is a component of a file.
8. A field is a component of a record.
9. The field width is the number of characters in a field.

10. The field heading gives the meaning to be attached to the
information within the field.

11. String fields are those which can contain any character (except
control characters).

12. Numeric fields contain only numbers, either integers or floating
point.

13. The key field is the one which uniquely identifies the record.
14. Numerical key fields are favoured in large files.
15. The file size refers to the number of records it holds.
16. The space a file occupies in store depends on both the file size

and the field sizes.
17. If the complete file is processed from within memory, it is said to

Components of a Filing System 35

be RAM-based. The file size is then limited by the RAM
capacity.

18. If an individual record can be picked out of store and processed,
the file is said to be store-based. The file size is then limited by the
store capacity.

19. Menu-driven filing programs revolve around an option page.
20. Options are chosen in command-driven filing programs from a

‘command line’ at the bottom of all displays.
21. Sort routines are easy if the file is RAM-based.
22. Subfiles contain selected records within master files. When

stored, they become master files in their own right.
23. Print routines can only exploit the full potential of a printer if

they are purpose-designed for that model.

Self test

2.1 Can a data file be stored by using SAVE“name”?
2.2 What is the distinguishing feature of the key field?
2.3 Under what circumstances are numerical or coded key fields

preferable?
2.4 State an important advantage of a RAM-based file.
2.5 A file containing 100 records, each of 5 equal length fields,

occupies about 50K bytes of storage. How many characters in
each field, ignoring overheads?

2.6 In a broadsheet display, in which direction are the fields of a
record displayed?

2.7 Under what circumstances would the option ‘Search any field
for substring’ be used?

2.8 The facilities for splitting off a subfile are particularly useful in
RAM-based files. Why?

Chapter Three

Simple Filing Programs
and Building Bricks

The advantage of subroutines

The programs in this book assume that the reader has already gained
some experience in the CPC464 version of BASIC, particularly in the
use of subroutines. It is sometimes thought that subroutines should
only be used if the functions they perform are needed more than once
in the same program. If we take a narrow view of efficiency by taking
it to mean achieving the maximum effect with the minimum number
of programming lines, such a belief is justified. However, efficiency
can also mean reduction in programming time, not only in the initial
stages of writing and debugging but when modifications or additions
are required in the light of user experience. If this interpretation of
efficiency is taken, then subroutines should be used for practically
every logically distinguishable function, even if they are only used
once in the program. A subroutine is, or should be, a tight, self-
sufficient, black box with one input and one output. A collection of
general purpose subroutines are introduced later in this chapter
which will serve as ‘building bricks’ for integrated filing systems.

The user manual supplied with the machine should be consulted if
there is any difficulty with syntax since, in order to save space and to
avoid repetition, only aspects of the language specifically concerned
with data files will be treated. An attempt has been made to follow the
teachings of structured programming, at least as far as the BASIC
version will allow. Unfortunately, the much-maligned GOTO cannot
be avoided altogether. Even a subroutine is, intrinsically, a GOTO.
However, it is not a serious crime to use GOTOs within a subroutine,
providing the jump destination remains within its bounds. To jump
out of a subroutine before its normal exit, even if it is arranged to
arrive back before the normal RETURN, is an offence against the
whole idea of structure. If a subroutine has only one input and only
one output it is easy to follow the program and arrange modifications
without introducing chaos.

Simple Filing Programs and Building Bricks 37

Pretty displays
The temptation to glamorise displays by adding borders and various
colours has been resisted. A program with an attractive display is all
very well but unnecessarily complex. The main objective of this book
is to help you to understand how fding programs work and how to
tailor them to suit your own special purposes. This objective is
endangered if the main features of a listing are obscured by over­
packing with graphic symbols and colour information. In any case, it
is easy to add these touches afterwards.

Variable names
The variables in the program listings throughout this book will be
given meaningful names in order to cut down on the number of
REMs. As far as possible, the same variable names will have identical
functions in all programs. The explanations, which will accompany
each major program, will include the meanings of the more
important variable names and their functions. This will involve some
repetition, but it makes it a little easier to follow the program listings.

Program-based files

In Chapter 2, we listed the file organisations in common use.
However, one of them was deliberately left out because it is
questionable whether or not it should be considered a true filing
system. For want of a better name, we shall refer to it as a program­
based file because the file is held in DATA statements, and under line
numbers, within the program itself, rather than stored separately.
(We could have called it a ‘DATA-based’ system but this could be
confused with a ‘database’.)

Because the file information is written into the program, only a
‘programmer’ can alter it so the range of options is severely limited.
Nevertheless, such an elementary arrangement is excellent for getting
a preliminary feel of the subject and is well worth examining.

Program to display DATA

It is always best to start right at the bottom so study the listing of
Program 3.1 which, as you will see, is most certainly rock-bottom.
The program has a simple objective. It just grabs the records written
as DATA statements and presents them to the screen. In spite of this,

38 Filing Systems and Databases for the Amstrad CPC464

10 REM DISPLAY DATA STATEMENTS
20 READ filesizeX,fieldsX
30 DIM A*(fieldsX,filesizeX)
40 READ headingl*,heading2*
50 REM READ DATA INTO RECTANGULAR ARRAY
60 FOR RX=O TO filesizeX-1
70 FOR FX=O TO FieldsX-1
80 READ A*(FX,RX)
90 NEXT:NEXT
100 GOSUB 150
110 END
120 ’
130 ’
140 REM VIEW FILE SUBROUTINE
150 CLS
160 PRINT TAB(7) "FILE CONTENTS"
170 PRINT "-- “
180 PRINT headingl* TAB (19) heading2*
190 PRINT “-- ”
200 FOR RX=O TO filesizeX-l
210 FOR FX=O TO TieldsX-1
220 PRINT AS(F7.,RX) TAB (19);
230 NEXT
240 PRINT
250 NEXT
260 RETURN
270 ’
280 ’
290 REM NUMBER OF RECORDS AND FIELDS
300 DATA 8,2
310 ’
320 ’
330 REM FIELD HEADINGS
340 DATA NAME,TELEPHONE
350 ’
360 ’
370 REM FILE INFORMATION
380 DATA DEREK,678 9993
390 DATA GILL,453 9345
400 DATA CATH,777 5847
410 DATA STEVE,345 6694
420 DATA JOHN,979 6836
430 DATA GRAYHAM,685 3737

Simple Filing Programs and Building Bricks 39

440 DATA PAT,574 6858
450 DATA PAUL,786 8797

Program 3.1. Display DATA statements.

you are urged to key the thing in because it shows how to present the
information in a two-dimensional array onto the screen in rows and
columns. Use it as a guinea pig by altering some of the lines and
noting the effect.

List of variables used in Program 3.1

filesize % = file size = maximum number of records in each file
fields% = number of fields
headinglS = heading of field l
heading2$ = heading of field 2
F% = a particular field index
R% = a particular record index
A$(F%,R%) = an element of the two dimensional array holding
the main file data

Some explanation is called for in respect of A$(F%,R%). It is
common, in such a file array, to use the variables the other way
round, R% (record number) first and F% (field number) last.
Normally, when programming entirely in BASIC, it does not really
matter whether an array element is specified by A$(R%,F%) or
A$(F%,R%) as long as consistency is observed. However, a two-
dimensional or rectangular array is stored in the CPC464 in column
major order. That is to say, the sequential storage sequence of string
pointers in memory is A$(0,0) A$(l,0) A$(2,0) A$(0,1) A$(l,l)
A$(2, l) ...A$(0,n) A$(l,n) A$(2,n). Therefore, if we wish to ensure
sequential storage of field string pointers, relevant to each record,
then the form A$(F%,R%) is preferred. This storage organisation
favours fast and efficient methods of sorting a two-dimensional array
file using machine code.

The DATA statements of Program 3.1 constitute the file
information and are set at the bottom of the listing. Because they are
down at the bottom, they stand out well if, at some later date, they are
to be altered. The example file consists of eight records, each of two
fields, giving NAME and TELEPHONE numbers of friends.

The parameters filesize% and fields%, required by the loops and
also for the DIMension statement, are READ in first. They happen
to be 8,2 (8 records and 2 fields). The DIMension statement is not
necessary in CPC464 BASIC for arrays not exceeding ten but there is
always a chance that you may wish to increase the number of records

40 Filing Systems and Databases for the Amstrad CPC464

so it is always good practice to include DIMensions.
The headings of each field are also included in DATA statements

and read into the variables heading 1$ and heading2$. Of course,
there was no real need to waste these two variables because the
headings NAME and TELEPHONE could have been entered as
constants in literal text form in the body of the program, but
variables are easier to amend. In any case, in programs which follow,
the user is allowed to enter whatever heading is required so they must
be variables.

Once the initial parameters have been received, the records can be
READ into the appropriate two-dimensional array elements
A$(F%,R%) by the two nested FOR/NEXT loops. Note carefully
that the outer loop is controlling R% and the inner loop is controlling
F%.

Information held in DATA lines is easy to alter without too much
risk to the rest of the program - so easy, in fact, that it almost justifies
a label of ‘semivariable’. It is wise to allow a separate line for each
record, even if there are only two fields in each record. Cramming a
string of records under one line number may save a few bytes of
memory but only at the expense of clarity.

As before mentioned, there is no option page and there is only one
major subroutine which displays the entire file in broadsheet fashion.
This is handled by the subroutine VIEW FILE, which simply
unravels the data in A$(fields%,filesize%) and presents it in
humanised form for the screen display. The headings, ‘headinglS’
and ‘heading2$’, are enclosed within dotted lines - our only
contribution to cosmetics. For simplicity and because this is the first
program, the lines are drawn by simple PRINT statements, but in
subsequent programs the line drawing will be relegated to a separate
subroutine. Note that the line which PRINTs out the records ends
with a in order to suppress a carriage return so that field 2
(telephone number) appears on the same line as field 1 (name).

If you wish to try out fresh data, different headings and more
records, simply replace the record DATA lines but remember also to
update the loop parameters and field heading DATA accordingly. If
you decide to use extra fields, the formatting will require altering in
subroutine VIEW. Mode 1, the 40 characters per line mode, was used
in the example because of the increased screen clarity. When there are
only two fields to be displayed, 40 columns is normally quite
adequate although the mode can easily be changed to allow 80
columns. There are several little touches which could have been

Simple Filing Programs and Building Bricks 41

added but the program is only intended to break the ice - finesse is left
until later.

Program-based file with options

The next listing, Program 3.2, although still a program-based filing
system, is a shade less primitive because it is menu-driven.
Admittedly there are only three options, and one of these is EXIT
PROGRAM, but it should help in providing an insight into fresh
material.

Variable names
To maintain consistency, previous variable names have been retained
but, as the following list shows, there are one or two extras:

filesize% = file size = maximum number of records in each file
fields% = number of fields
heading! $ = heading of field l
heading2$ = heading of field 2
F% = a particular field
R% = a particular record
A$(F%,R%) = an element of the two-dimensional array holding
the main file data
SEL% = option number selected
K$ = general purpose variable
flag% = is a yes/no search Hag (l = record found, 0 = no
record).

10 REM SIMPLE PROGRAM BASED
20 REM FILING SYSTEM
30 READ filesizeX,fieldsX
40 DIM At(fieldsX,filesizeX)
50 READ headingIt,heading2t
60 REM READ DATA INTO RECTANGULAR ARRAY
70 FOR RX=0 TO PilesizeX-1
80 FOR FX=0 TO FieldsX-l
90 READ At(FX,RX)
100 NEXT:NEXT
110 ’
120 ’
130 GOSUB 210:REM MENU
140 IF SELX=1 THEN GOSUB 390:GOTO 130

42 Filing Systems and Databases for the Amstrad CPC464

150 IF SEL7.=2 THEN GOSUB 540: GOTO 130
160 CLS:PRINT "EXIT"
170 END
180 ’
190 ’
200 REM MENU SUBROUTINE
210 CLS
220 PRINT TAB(3) "PROGRAM BASED FILING S
YSTEM"
230 LOCATE 1,6
240 GOSUB 730:REM DRAW LINE
250 PRINT"(1) VIEW FILE"
260 PRINT"(2) DISPLAY RECORD"
270 PRINT"(3) EXIT PROGRAM"
280 GOSUB 730:REM DRAW LINE
290 LOCATE 1,15
300 PRINT"Select option ";
310 K$=INKEY«:IF ««="" THEN 310
320 SEL7.=VAL(K$)
330 IF SEL7.<1 OR SEL7.>3 THEN 210
340 CLS
350 RETURN
360 ’
370 ’
380 REM VIEW FILE SUBROUTINE
390 PRINT TAB(7)"FILE CONTENTS"
400 GOSUB 730:REM DRAW LINE
410 PRINT headingl$ TAB<19> heading2S
420 GOSUB 730:REM DRAW LINE
430 FOR R7.=O TO f i 1 esi z e7.-1
440 FOR F7.=0 TO fields7.-l
450 PRINT A$(F7.,R7.) TAB (18);
460 NEXT
470 PRINT
480 NEXT
490 GOSUB 780:REM HOLD DISPLAY
500 RETURN
510 ’
520 ’
530 REM GET RECORD SUBROUTINE
540 flagZ=O
550 PRINT"ENTER "headingl*" REQUIRED ";
560 INPUT K«:K«=UPPER*(K$)

Simple Filing Programs and Building Bricks 43

570 IF K*=" " THEN 550
580 CLS:LOCATE 1,4
590 PRINT headingl* TAB(19) heading2«
600 GOSUB 730:REM DRAW LINE
610 FOR R7.=O TO filesize'/.-l
620 FOR F7.=0 TO Tields7.-1
630 IF A*(0,R7.)=K* THEN PRINT A*(F7.,R7.)
TAB(19); :flag7.= l
640 NEXT
650 NEXT
660 IF flag7.=0 THEN PRINT“THIS "headingl
«“ NOT ON FILE"
670 GOSUB 730:REM DRAW LINE
680 GOSUB 780:REM HOLD DISPLAY
690 RETURN
700 ’
710 ’
720 REM DRAW LINE SUBROUTINE
730 PRINT STRING*(40,CHR* <154));
740 RETURN
750 ’
760 ’
770 REM HOLD DISPLAY SUBROUTINE
780 PR I NT: PR I NT‘‘PRESS ANY KEY TO CONTINU
E”
790 K*=INKEY*:IF K*=,,,‘ THEN 790
800 RETURN
810 ’
820 ’
830 REM NUMBER OF RECORDS AND FIELDS
840 DATA 8,2
850 ’
860 ’
870 REM FIELD HEADINGS
880 DATA NAME,TELEPHONE
890 ’
900 ’
910 REM FILE INFORMATION
920 DATA DEREK,678 9993
930 DATA GILL,453 9345
940 DATA CATH,777 5847
950 DATA STEVE,345 6694
960 DATA JOHN,979 6836

44 Filing Systems and Databases for the Amstrad CPC464

970 DATA GRAYHAM,685 3737
980 DATA PAT,574 6858
990 DATA PAUL,786 8797

Program 3.2. Program-based file.

The program allows a choice between viewing the entire file in
broadsheet form and displaying any one selected record. It can be
seen that much of the structure is similar to the previous program.
For example, the file information loop parameters are still read into
an array from DATA statements but there are some additional
subroutines which require study.

Subroutine MENU: displays the menu, issues the prompt, “SELECT
OPTION”, and returns with the selected option number in SEL%.
Subroutine VIEW FILE: responsible for Option 1. It prints a
heading and displays the file data.
Subroutine GET RECORD: responsible for Option 2. It allows the
user to search for a particular record by quoting the key field. The
user is requested to enter the chosen key field by the prompt which
will appear on the screen as “ENTER NAME REQUIRED”. Note
that ‘headingl $’ is, in this case, NAME. The response is entered into
the general purpose variable K$ and a trap for the null string is laid if
the user inadvertently presses RETURN before entering the name.
The searching is carried out by the outer FOR /NEXT loop after the
headings have been displayed. As the records are scanned through,
A$(0,R%), which is the key field of all records, is compared with the
name in K.$. Remember that R% is the record variable and 0 is the
first field which, by definition, is the key field of the record. On
finding the matching field, the complete record is printed out as the
inner FOR/NEXT loop cycles through both fields. The sample data
has only two fields but the subroutine will cater for any number of
fields. If a match is found, the flag% is set to 1. If, after scanning
through all records, no match is found, flag% will remain at its
initialised value of 0 and the message “THIS NAME NOT ON
FILE” will appear.
Subroutine DRA W LINE: a minor subroutine used to draw a dotted
line across the screen.
Subroutine HOLD DISPLA Y: a minor subroutine which halts the
program until, in response to a prompt, any key is pressed.

The flowchart of Figure 3.1 will help in following the overall
structure.

It would be easy to include a ‘search’ option for finding a record by

Simple Filing Programs and Building Bricks 45

Fig. 3.1. Flowchart for Program 3.2.

TELEPHONE number instead of by key field but, as mentioned
earlier, this type of file organisation is really not worth taking too
seriously. Its value lies only in its simplicity - a stepping-stone to
better things.

Storing and retrieving data files

All information, stored on cassette tape or disk, is loosely called a
‘file’. Even when a program is SAVEd it is still often referred to as a
‘file’ although, to distinguish it from data files, it should be called a
program file. The procedure for saving and loading programs has
been made easy because they are ‘bread and butter’ functions on any
home computer. It would be irksome and certainly user-unfriendly to
force the average end user to worry about opening and closing files
each time a normal program needed saving or loading. Instead, most
machines, including the CPC464, save and load programs on receipt
of the simplified commands SAVE“name” and LOAD“name”.

46 Filing Systems and Databases for the Amstrad CPC464

Many programs, filing programs in particular, require the data used
by the program to be stored separately from the program itself. This
separate information is stored as a data file. Data files cannot be
accessed by the normal SAVE and LOAD commands because they
are stored in a totally different format to that of program files. For
example, when an ordinary program is saved, the BASIC keywords
are encoded into two-byte groups known as tokens. Data files, on the
other hand, are stored as straightforward ASCII characters, with
special header information and inter-block markers.

Opening a data file for output

At the point in a program where data is to be stored on tape, it is
necessary to open a tape file by using the following OPENOUT
statement:

OPENOUT “file name”

The file name can be literal, such as OPENOUT “Personnel”, or a
string variable which has been previously assigned, such as
OPENOUT Personnels. No more than sixteen characters are
allowed for a file name.

Using PRINT #9
Once the file has been opened for output, the data can be written to
tape by a special print statement having the format

PRINT #9, variable list

The ‘#9’ informs the system that the ‘printing’ is to be carried out on
output stream ‘9’, which is the cassette tape unit, rather than on the
monitor screen by default. The term ‘variable list’ above means one or
more variables, separated by commas such as

PRINT #9, filesize%,fields%

When a complete data file is to be printed to tape, there is a need to
store certain leading particulars of the file as well as the main record
items. For example, when the file is loaded, the program which loads
it will have no information as to the length of the file or the number of
fields in each record. These details must be obtained from the data
tape before loop parameters can be set up for reading the bulk of the
file.

The baud rate at which the data is sent to tape will be the default

Simple Filing Programs and Building Bricks 47

speed of 1000. However, if you wish to send it along at 2000 baud,
then follow the OPENOUT line with SPEEDWRITE 1.

Closing a file
After the data has been output to tape it is important to CLOSE the
file when you have finished with it because there may still be data left
in the cassette buffer area. The act of closing the file flushes out any
data that remains in the buffer and writesit to tape. CLOSEOUTisthe
relevant BASIC keyword to perform this.

Opening a data file for input

To retrieve a data file from tape, it is again necessary to open a file,
but this time, the keyword is OPENIN followed by the file name:

OPENIN“filename” or OPENIN string variable

Using INPUT #9
Normally the INPUT statement receives data from the default input
peripheral, which is the keyboard. To input data from tape, the
equivalent form is

INPUT #9, variable list

For example,

INPUT #9,filesize%,fields%

After all data has been retrieved from tape, the input file should be
closed in the usual way with CLOSEIN.

To illustrate the procedure for writing to and reading data from
tape, first key in the few lines of Program 3.3.

Program 3.3. Storing data on tape.

10 REM STORING DATA ON TAPE
20 CLS
30 PRINT"ENTER SOME CHARACTERS
40 LINE INPUT K'S
50 OPENOUT "TEST"
60 PRINT#9,K*
70 CLOSEOUT
80 END

48 Filing Systems and Databases for the Amstrad CPC464

Before running the program, ensure that you have a spare tape in
place and rewound to receive the data. Once the data is on tape,
perform a hard reset (or switch the computer off and on again). Now
key in Program 3.4 which should read back the data stored by the
previous program.

10 REM READING DATA BACK FROM TAPE
20 CLS
30 PRINT"PLEASE REWIND DATA TAPE"
40 OPENIN "TEST"
50 INPUT#*?, G$
60 CLOSEIN
70 PRINT"THE CHARACTERS READ BACK ARE"
80 PRINT G«
90 END

Program 3.4. Reading data from tape.

Again, make sure that the data tape is rewound to the correct place
before running the program. The machine must have been emptied of
data by the hard reset after Program 3.3 so the data printed out by
Program 3.4 must have originated from the data tape. Although the
variable K$ was used for printing the tape and G$ was used to receive
it back, the same variable could have been used in both programs.

General-purpose building bricks

The next chapter is dedicated entirely to the description of a single
practical filing system. The first, and relatively small part of the
program will be recognised as a self-contained control section. The
remainder of the program is simply a collection of subroutines, called
as needed from the control section. Although some of the subroutines
are tailor-made to suit this one program, most of them may be
considered as standard building bricks which can be spliced into
other programs, either as they stand or with slight modification.
When devising building bricks for use in a range of programs, there is
always the problem of size to consider. If we try and pack too much
sophistication into one subroutine, the general purpose nature is
endangered and we defeat the main guideline which is that a
subroutine should have only one clearly defined function. Like all
guidelines, slavish adherence is not necessary or, indeed, recom­
mended. It is often a matter of personal judgment. Collecting a

Simple Filing Programs and Building Bricks 49

library of building bricks saves having to re-invent the wheel in every
new program.

The variable names used in general purpose building bricks may
not necessarily be the most meaningful when sliced into application
programs, but changing names is a trivial extra task. However, in the
examples which follow, most of the variable names will coincide with
those used in the major programs appearing in the remaining
chapters of this book.

Subroutine building bricks

Subroutines are often hierarchical in structure. That is to say, some
subroutines call on other subroutines to carry out minor tasks in the
same way that a large organisation passes on some of the less
important work to subcontractors. It is convenient to distinguish
between high and low level subroutines. For example, there may be a
subroutine for displaying one of the records within a file (a high level
subroutine) which, in turn, may call on another subroutine (a low
level subroutine) for drawing field marking lines across the screen.
Incorporating the line drawing in the display subroutine itself would
appear to be the obvious plan but it would not be very efficient.
Drawing a line across the screen is a trivial but nonetheless useful task
and likely to be wanted in many other subroutines. Although
displaying a record is a general purpose task in any filing program,
drawing a line is even more general purpose, so the setting up of an
independent, low level subroutine is justified.

Subroutine DR A 1/1/ LINE
Call with GOSUB 2330.

2320 REM DRAW LINE
2330 PRINT STRING*<40,CHR*<154))j
2340 RETURN

The STRINGS function should always be used in preference to the
simple PRINT"-----------------------------” form. It is elegant and
certainly more economical on memory. CHR$(154) is a special
graphics character, forty of which are used to trace out the line. Any
other character can be used to draw the ‘line’ but avoid the asterisk -
it is reminiscent of the early days of home computing when gaudy
displays were the order of the day.

50 Filing Systems and Databases for the Amstrad CPC464

Subroutine GET LINE INPUT
Call with GOSUB 2260.

2250 REM GET LINE INPUT
2260 LINE INPUT K«
2270 IF K*="" THEN 2260
2280 K»=UPPER*(K»)
2290 IF LEN<K*)>18 THEN K«=LEFT»(K«,18)
2300 RETURN

When a screen prompt requests string input from the keyboard, some
responses will be unacceptable. This subroutine rejects the null string
caused by an operator mistakenly pressing the ENTER key before
entering text. The use of LINE INPUT is preferable in filing
programs because text often contains punctuation and other
characters which the ordinary INPUT statement would reject. The
text is entered into a temporary global variable K$. After the
subroutine has returned, the text in K$ will normally be assigned to
another variable. The subroutine also allows the operator the
freedom to enter text in either upper- or lower-case. Use has been
made of Amstrad’s delightful little keyword UPPERS which ensures
that all input text, irrespective of whether it was entered in upper- or
lower-case, is converted to upper-case. It is important, when sorting
alphanumeric text, that all characters are of the same ‘case’ because
sorting is carried out on ASCII values. Unless steps are taken to
rectify mixed-case text, sorting could produce some weird results.

The subroutine also restricts the length of all input to 18
characters. It does this by cutting off (truncating) characters in excess
of 18 rather than rejecting the entire input. This is a specific, rather
than general purpose, restriction and the line responsible can always
be altered or left out altogether. It has only been incorporated here
because it satisfies the needs of Program 4.1 which appears in the next
chapter.

Subroutine PRESS ANY KEY
Call with GOSUB 2330.

2510 REM PRESS ANY KEY
2520 PRINT:PRINT"Press any key to contin
ue‘‘
2530 K*=INKEY«:IF KS="” THEN 2530
2540 RETURN

Simple Filing Programs and Building Bricks 51

This employs the widely known dodge for freezing a display or
halting a program until the operator is ready. Note the appearance
again of the ubiquitous K$ variable. Wherever K$ appears in our
programs it can be considered as a temporary variable. Using the
same global variable over and over again is good practice. It saves
memory and simplifies the appearance of a program. Too many
different variables in a listing make it difficult to follow.

Subroutine GET FILENAME
Call with GOSUB 2370.

2360 REM GET FILENAME
2370 CLS:PRINT“Enter filename"
2380 GOSUB 2260
2390 IF LEN(K*)>16 THEN PRINT"Too long:E
nter again'*:GOTO 2380
2400 f i 1ename$=K$
2410 RETURN

The file name is required at several points in a filing system. The
prompt for the name is displayed and the response is handled and
checked by the GET LINE INPUT subroutine. The additional
reduction to 16 lines is to satisfy the 16-character restriction on file
names. Note that the variable, filenames is assigned to K$ before the
final return.

Subroutine SAVE FILE
Call with GOSUB 700.

690 REM SAVE FILE
700 GOSUB 2370
710 SPEED WRITE 1
720 OPENOUT filename*
730 PRINT#9, f i 1 esi ze%, f i el ds7., L7-
740 FOR R7.=0 TO L7.
750 FOR F7.=0 TO fields7.
760 PR I NT#9, A* < F7., R7.)
770 NEXT:NEXT
780 CLOSEOUT
790 RETURN

Outline information on opening and closing files has already been
given. This is a complete subroutine for printing a data file onto tape.
It assumes that certain information resides in the following variables
before it is called:

52 Filing Systems and Databases for the Amstrad CPC464

Maximum number of records allowed in filesize%
Maximum number of fields allowed in fields%
Current number of records in L%
All text to be in the array, A$(F%,R%)

The subroutine first calls on GET FILE NAME in order to open
the file for output. Three items, constituting the heading information,
are first sent to tape. The first two are needed in order to feed the
DIMension statement when the data file is read back at some later
date. The third item, L%, is needed as a FOR/NEXT loop
parameter. The two nested loops print the array to tape. The inner
loop takes care of the fields of each record and the outer loop takes
care of the complete records. No further screen prompts are required
for operating the tape unit because they are issued automatically by
the OPEN statement.

Subroutine LOAD FILE
Call with GOSUB 570.

560 REM LOAD FILE
570 GOSUB 2370
580 OPENIN filename*
590 INPUT89,filesizeZ,fieldsZ,mainsizeX
600 flag7.~l
610 DIM A* (fields-/., filesizeX)
620 FOR RX=0 TO mainsizeX
630 FOR FX=0 TO fields?.
640 I NPUT#9, A* (F7., R7.)
650 NEXT:NEXT
660 CLOSEIN
670 RETURN

After a preliminary call for the file name, the three items of heading
information are read in. The first two variables are identical to those
used in the SAVE subroutine but the third, although it was saved
under the name L%, is changed to mainsize%. The reason for this
may be obscure at the moment but it is all to do with programs which
may distinguish between a main file and a subfile. The nested
FOR/NEXT loops for reading in the array are identical in form to
the SAVE subroutine except, of course, for the substitution of
INPUT #9 in place of PRINT #9.

Simple Filing Programs and Building Bricks 53

Subroutine DISPLA Y FILE
Call with GOSUB 820.

810 REM DISPLAY FILE
820 F7.= l:top7.= l
830 WHILE INKEY (47)00
840 CLS:PRINT"Press space bar to regain
menu"
850 GOSUB 2330
860 PRINT A* (0,0) TAB (20) A*(F7.,0)
870 GOSUB 2330: bottom7.=top7.+ 19
880 IF bottom7.>L7. THEN bottom7.=L7.
890 FOR R7.=top7. TO bottom7.
900 PRINT A$(0,R7.) TAB (20) A«(F7.,R7.)
910 NEXT
920 CALL 8<BBO3:’KM RESET
930 CALL &BB18:’KM WAIT KEY
940 IF INKEY (8) =0 THEN F7.=F7.-1
950 IF INKEY < 1) =0 THEN F7.=F7.-1
960 IF INKEY <O)=O THEN top7.=top7.-20
970 IF INKEY(2)=O THEN top7.=top7.+20
980 IF F7.<1 THEN F7.=fields7.
990 IF F7.>fields7. THEN F7.= l
1000 IF top7.<l THEN top%= < INT (L7./20) *20)
+ 1
1010 IF top7.>L7. THEN top7.= l
1020 WEND
1030 RETURN

This subroutine displays pages of the file in broadsheet form (i.e. a
page full of records) but, because of the limited screen width, only the
key field and one other field can be seen at a time. The key field is
always in view but the other fields can be brought in ‘sideways’ by
using the left or right cursor keys. Further pages of records can be
rolled into view by means of the up and down cursor keys. The rather
mysterious CALL &BB03 is a machine code routine in the operating
system which, amongst other things, clears out (resets) the keyboard
buffer. The other machine code call to &BB18 is KM WAIT KEY
(wait for next key). The letters ‘KM’ in the appended REMarks refer
to the ‘Keyboard Manager’ and is the group name given by the
designers of the system ROM to certain of their operating system
routines.

By convention, the headings of the fields - for example NAME,

54 Filing Systems and Databases for the Amstrad CPC464

AGE, TRADE, etc. - are stored in the ‘Record 0’ elements of the
main array. The key field numbers are 0 to n, the key field always
being in field 0. This may explain how line 860 displays the field
headings at the top of the screen. A$(0,0) is the key field heading and
A$(F%,0) is the heading of field F%. Lines 890 to 910 display two
fields of data in up to 20 records at a time. Note that the bulk of the
subroutine lies within the confines of a WHILE/WEND loop which
is testing for a space bar press key (47). The four other INKEY lines
which lie further down are testing for a cursor key press.

Subroutine FIND RECORD
Call with GOSUB 2670.

2660 REM FIND RECORD
2670 R7.=0
2680 PRINT"Give record entry under ";A*(
F7.,O)
2690 GOSUB 2260
2700 R7.=R7.+ 1
2710 IF K«=LEFT$(A«(F7.,R7.) ,LEN(K*>) THEN
2740

2720 IF R7.<L7. THEN 2700
2730 PRINT“No such record on file":GOTO
2670
2740 RETURN

A search is conducted through the file for a particular record under
one of the field headings so the field number F% must be passed over.
If the search is by key field, then F% will be passed as 0. Assuming
that the key field heading is NAME, the first prompt will read

“Give record entry under NAME”

The response from the keyboard is entered into K$, by a call to
GET LINE INPUT. Line 2710 injects a degree of user-friendliness
into the keyboard response. The first letter, or first few letters, of the
name entered into K$ is sufficient for the search. For example, if the
record under name was BREW P, the letters BR might be sufficient
to retrieve the record. The search will yield the first record having BR
as the first two characters in the name. There is, of course, a chance
that BROWN GH may also be on file in which case the search would
have to be conducted again, using the first three letters. The end
product of the subroutine is the record number left in R%. The search
carries on until the record is found or deemed to be not on file.

Simple Filing Programs and Building Bricks 55

Subroutine DISPLAY RECORD
Call with GOSUB 2040.

2030 REM DISPLAY RECORD
2040 F*/.=0: GOSUB 2670: CLS
2050 PRINT:PRINT"Current Record number”R
7.: PRINT
2060 GOSUB 2330
2070 FOR F7.=0 TO Fields*/
2080 PRINT A*(F7.,0) TAB (21) AS(F7.,R7.)
2090 NEXT
2100 GOSUB 2330
2110 GOSUB 2520
2120 RETURN

The subroutine first calls on FIND RECORD to obtain the record
number in R%. The complete record is then displayed, headed by the
current record number. The term ‘current’ is important because the
stability of record numbers is not guaranteed. If a record is ever
deleted from the file, the record numbers are re-allocated to close up
the gap which would otherwise be left. The two calls at the bottom of
the subroutine are DRAW LINE and PRESS ANY KEY.

Subroutine FIND FIELD HEADING
Call with GOSUB 2570.

2560 REM’ FIND FIELD HEADING
2570 F7.=-l
2580 PRINT"Operate on which Field? (Give
heading)

2590 GOSUB 2260
2600 F*/=F7.+ 1
2610 IF K$=LEFTS(A$ (F7.,0) ,LEN(KS)) THEN
2640
2620 IF F*/.< Fields*/ THEN 2600
2630 PRINT"No such Field":G0T0 2570
2640 RETURN

Normally, a search through the file is conducted under the key field
heading but this subroutine is needed to support searches under any
field heading. The response to the prompt will be in K$ after a call to
GET LINE INPUT. Line 2610, which should now be familiar, allows
the operator the option of entering the first letter or two of the
heading or in full.

56 Filing Systems and Databases for the Amstrad CPC464

Subroutine PRINT FILE
Call with GOSUB 1940.

1930 REM PRINT FILE
1940 FOR R'/.= l TO LZ
1950 PRINT#8:PRINT#8,"Record No : "RZ
1960 PRINT#8,STRINGS(40,"-")
1970 FOR FZ=O TO fields'/.
1980 PRINTW8, A* (FZ, O) TAB (21) AS(FZ,RZ)
1990 NEXT
2000 NEXT
2010 RETURN

Subject to the peculiarities of the printer model in use, this subroutine
prints out the entire file as hard copy, including the current record
numbers. No provision is made for sending control characters to the
printer because they are not standardised but, if needed, they can be
entered on a new line immediately below the REM statement.

Subroutine TOTALISE COLUMN
Call with GOSUB 2150.

2140 REM TOTALISE COLUMN
2150 total=0
2160 GOSUB 2570
2170 FOR R'/.= l TO L7.
2180 total=total+VAL(A*(FZ,RZ))
2190 NEXT
2200 PRINT"Column total ="total
2210 PRINT"Column average="total/LZ
2220 GOSUB 2520
2230 RETURN

The column heading to be totalised is obtained by a call to FIND
FIELD HEADING. Both the column total and the column average
are printed out. Because the arithmetic is performed using VAL on a
string variable, the result will be meaningless if the chosen column
contains alpha characters.

Subroutine SORT FILE
Call with GOSUB 1490.

1480 REM SORT FILE
1490 GOSUB 2570
1500 IF LZ<2 THEN 1620

Simple Filing Programs and Building Bricks 57

1510 CLS:PRINT"Sorting by ";A«(F7.,0)
1520 N7.=L7.
1530 N7.= (N7.+2)\3
1540 FOR D7.=N7.+ 1 TO N7.*2
1550 FOR E7.=D7. TO L7. STEP N7.
1560 FOR R7.=E7. TO D7. STEP -N7.
1570 IF A«(F7.,R7.)<A«(F7.,R7.-N7.) THEN FOR
C7.=0 TO f i el ds7.: K»=A» (07., R7.): AS (07., R7.) =A
« (07., R7.-N7.) : A* (07., R7.-N7.) =K«: NEXT ELSE 15
90
1580 NEXT
1590 NEXT E7.
1600 NEXT
1610 IF N7.>1 THEN 1530
1620 RETURN

Since the next chapter is devoted entirely to the subject of sorting and
searching, no attempt will be made here to explain the subroutine’s
details apart from noting that the diminishing increment algorithm is
used. Considering it is in BASIC, the performance is reasonable but,
for long files, an alternative ultra-fast sort in machine code will be
given in the next chapter. The heading, under which the sort is
conducted, is obtained by a call to GET FIELD HEADING. The
complete array A$(F%,R%) is sorted into order, lowest record first.

Subroutine ADD RECORDS
Call with GOSUB 1060.

1050 REM ADD RECORDS
1060 CLS: IF mainsize7.>=f i lesize'/. OR FRE
(O) < fields7.*100 THEN PRINT"File full":
GOSUB 2520:GOTO 1240
1070 mainsizeZ=mainsizeZ+l
1080 PRINT" Type EXIT to finish entry of
records"

1090 PRINT:PRINT"Record No : "mainsizeZ.
11OO LOCATE 21,3
1110 PRINT"Bytes Free :"FRE(0)
1120 GOSUB 2330
1130 PRINT:FZ=-1
1140 F7.=F7.+ 1

58 Filing Systems and Databases for the Amstrad CPC464

1150 PRINT A«(F’/.,0)
1160 GOSUB 2260: A* (FX, mainsize’/.) =K*
1170 X X=POS (#0) : YX=VPOS (#0)
1180 LOCATE 34,3
1190 PRINT USING "#####";FRE(O)
1200 LOCATE X7.,Y7.
1210 IF A«(FX,mainsizeX)=*,EXIT” THEN mai
nsizeX=mainsizeX-l:GOTO 1240
1220 IF FX<Fields ’/. THEN 1140
1230 IF mainsizeX<filesizeX THEN 1060
1240 RETURN

A file grows by adding more records. Unless checks are built in, the
memory can suddenly overflow without warning. There are two
mechanisms at work which can lead to this:

(a) The number of records can reach the limit imposed by an existing
DIMension statement.
(b) The total number of bytes used can reach the limit imposed by
the available RAM complement.

If the amount of text per record is moderate, then the maximum
allowed number of records will be the first limiting factor. On the
other hand, a moderate number of records, each loaded massively
with text, can cause an overflow earlier than expected. This
subroutine starts by checking the current number of records already
in the file and also the amount of RAM left after allowing for a
healthy safety factor. The first line in the subroutine carries out both
checks. The amount of safe RAM left has been arbitrarily decided by
a constant safety factor equal to 100 X number of fields. If the total
free RAM is less than the constant, the message‘File full’ is displayed
and after a call to PRESS ANY KEY, the rest of the subroutine is
skipped by GOTO 1240.

The records are entered into A$(F%,R%) via a call to GET LINE
INPUT. The data is entered, a field at a time, by a loop headed by an
increment to F%. If the word EXIT is detected, the subroutine is
terminated by GOTO 1240. While records are being entered, the
current record number and the bytes left free are displayed at the top
of the screen.

Simple Filing Programs and Building Bricks 59

Subroutine CREATE FILE
Call with GOSUB 390.

380 REM CREATE FILE
390 PRINT"Enter -File size (number oF rec
ords)
400 INPUT Filesize'/.
410 IF Filesize'/.<1 THEN 400
420 PRINT”Enter number o-F Fields require

d (2-15)"
430 INPUT Fields'/.
440 IF Fields'/.<2 OR Fields'/.>15 THEN 420

450 Fields7.=Fields'/.-l
460 Flag'/.= 1
470 DIM A$ (Fields'/., Filesize'/.)
480 CLS
490 FOR F'/.=0 TO Fields'/.
500 PRINT"Enter Field heading ";F7.+ 1
510 GOSUB 2260: At (F'Z, 0) =K«
520 NEXT
530 GOSUB 1060
540 RETURN

This subroutine takes care of the preliminary work necessary to start
up a new file. The first two variables ‘filesize%’ and ‘fields%’ are
obtained directly by asking for an estimate of the maximum number
of records the file will eventually hold, and the number of fields
respectively. This information is fed to the DIMension line and a flag
is set to 1, indicating resident file status. The headings for each field
are then obtained via a call to GET LINE INPUT and assigned to the
Record 0 position in the array. The first records in the newly created
file are then entered by a call to ADD RECORDS.

Subroutine MODIFY/DELETE RECORD
Call with GOSUB 1270.

1260 REM MODIFY/DELETE RECORD
1270 F'/.=0: GOSUB 2670:K«=""
1280 WHILE K«O"EXIT" AND K«O"KILL"
1290 CLS:PRINT"Mod/copy line with CURSOR
/COPY keys"
1300 PRINT"Type KILL to delete record"
1310 PRINT“Type EXIT to regain option pa
ge"

60 Filing Systems and Databases for the Amstrad CPC464

1320 GOSUB 2330
1330 FOR F7.=0 TO fields’/.
1340 PRINT A$(F7.,0) TAB (21) A$(F7.,R7.)
1350 NEXT
1360 GOSUB 2330:PRINT:GOSUB 2330
1370 LOCATE l,VP0S(#0)-2
1380 LINE INPUT K«
1390 K$=UPPER«(K«)
1400 IF LEN(K«)>38 THEN K«=LEFT*<K»,38)
1410 FOR F7.=O TO fields7.
1420 IF A*(F%,0)=«=LEFT$(K*,LEN(A*(F7.,0)))

THEN A* (F7., R7.) =R I GHT$ (K*, LEN < K*) -20)
1430 NEXT
1440 WEND
1450 IF K*-"KILL“ THEN WHILE R7.<=mainsiz
e7.:F0R FZ=O TO fields7.:A*(F7.,R7.)=A«(F7.,R
"/.+1): NEXT: R7=R7.+1: WEND:mai nsi z e7.=mai nsi z
e7.-l:PRINT FRE("">
1460 RETURN

To modify a record, it must first be found from within the file so the
first call is to FIND RECORD. The bulk of the subroutine is within a
WHILE/ WEND loop which checks if the operator enters ‘KILL’ or
‘EXIT’. Lines 1330 to 1350 display the record to be amended. The
next two calls to DRAW LINE reserve a space on the screen for
entering the amended characters which, with the help of VPOS in line
1370, appear in the space between the two lines. If KILL is entered by
the operator, line 1450 erases the record and renumbers those which
follow in order to close the gap. For more details on the specific use of
this subroutine, see Chapter 4.

Subroutine TITLE
Call with GOSUB 3260.

3250 REM TITLE
3260 CLS
3270 LOCATE 1,2
3280 INK 2,6
3290 PAPER 2
3300 PRINT” MULTIFILING SYSTEM ”
3310 PAPER O
3320 RETURN

Simple Filing Programs and Building Bricks 61

This, like the subroutine for drawing a line, is trivial but it saves
entering a title line at the top of the screen. It is a simple matter to
change the border, ink and pen values if the author’s choice of colour
is felt to be lacking in taste.

Subroutine SEARCH FILE MENU
Call with GOSUB 1650.

1640 REM SEARCH FILE MENU
1650 SEL7.=O: GOSUB 3260
1660 LOCATE 1,5
1670 WHILE SEL7.<1 OR SEL7.>12
1680 PRINT"SHRINK file (Non destructive)

1690 PRINT“SEARCH
1700 PRINT" (1) <> a
1710 PRINT" (2) = a
1720 PRINT" (3) >= a
1730 PRINT" (4) < a

11

11

11

1740
1750
":PRINT

any field for:":PRINT
11

Character group"PRINT"(5)
PRINT:PRINT"Futher subfile options

1760 PRINT"(6)
1770 PRINT"(7)
1780 PRINT"(8)
Id"
1790 PRINT"(9)
n file"
1800 PRINT"(10)
1810 PRINT"(11)
1820 PRINT"(12)
1830 LOCATE 1,24
1840 INPUT"Select
1850 SELX=VAL(K»)
1860 CLS
1870 WEND

Save sub-f i1e"
Display sub-file"
Sort sub-file by any fie

Delete sub-file from mai

Totalise column"
Print sub-file"
Return to main menu"

option ";K*

1880 CLS: L7.=subsize7.
1890 ON SEL7. GOSUB 2770,2770,2770,2770,2
770,700,820,1490,3170,2150,1940,1910
1900 IF SEL7.<12 THEN 1650
1910 RETURN

62 Filing Systems and Databases for the Amstrad CPC464

This is a subsidiary menu, which can be called as one of the options
given in a main menu. The first call is to TITLE for heading the menu
page. Many of the GOSUB numbers called inline 1890 correspond to
subroutines already described. Options 1 to 4 allow a main file to be
shrunk down to a subfile containing only records which satisfy
certain criteria defined by ‘a’. Note that selection of any one of these
four causes a call to the same GOSUB number, 2770. This is the
subroutine SEARCH DIRECTOR to be described next. Option 5
assumes that the criterion for subfile inclusion is the presence of a
particular character or group of characters.

Subroutine SEARCH DIRECTOR
Call with GOSUB 2770.

2760 REM SEARCH DIRECTOR
2770 GOSUB 2570
2780 PR I NT “ SEARCH to operate on ";A$(F7.,
0)
2790 IF SEL7.<5 THEN PRINT"Give search da
tum/entity"
2800 IF SEL7.=5 THEN PRINT”Give character
group"

2810 GOSUB 2260:comp«=KS
2820 count7=0
2830 FOR R7.= l TO subsize7.
2840 ON SEL7. GOSUB 2900,2940,2980,3020,3
060
2850 NEXT
2860 IF count7.=0 THEN CLS: PR I NT "SEARCH i
s NEGATIVE":GOSUB 2520 ELSE subsize7.=cou
nt 7.
2870 RETURN
2880 ’
2890 REM SEARCH <>
2900 IF A*(F7.,R7.)Ocomp$ THEN GOSUB 3100
2910 RETURN
2920 ’
2930 REM SEARCH =
2940 IF A«(F7.,R7.)=comp* THEN GOSUB 3100
2950 RETURN
2960 ’
2970 REM SEARCH >=
2980 IF A«(F7.,R7.) >=comp* THEN GOSUB 3100

Simple Filing Programs and Building Bricks 63

2990 RETURN
3000 ’
3010 REM SEARCH <
3020 IF A*(F7.,R7.)<comp* THEN GOSUB 3100
3030 RETURN
3040 ’
3050 REM SEARCH FOR CHARACTER GROUP
3060 IF INSTR(A*(F%,RX),comp*) <>0 THEN
GOSUB 3100
3070 RETURN
3080 ’’
3090 REM MOVE RECORD
3100 countX=count%+l
3110 FOR C7.=0 TO fields7.
3120 k'*=A* <C7., R7.): A* (C7-, R7.) =A* (C7., count7.
) : A* <C7., count7.) =K*
3130 NEXT
3140 RETURN

To create a subfile, the operator must enter the field heading of
interest so the first call is to FIND FIELD HEADING. Prompts are
issued for the value of‘a’, or a character group if SEL%= 5. (SEL%is
a parameter passed from the subfile menu.) The response is assigned
to compS via a call to GET LINE INPUT. The variable compS is so
named because it contains the parameter which will be used for
comparison with each record in the main file. A separate subroutine
for each of the comparisons is called from within the FOR/NEXT
loop in lines 2830 to 2850. Although the loop extends from R%= 1 to
subsize%, it covers the whole of the main file on the first call because
subsize% will have been previously assigned to mainsize%. All
records which match the entered data in compS are brought out to
the front of the main file with the aid of subroutine MOVE
RECORD at line 3100. Because the subfile is the collection of
records now at the front of the main file, no additional RAM space is
occupied. The variable, subsize%, holds the number of subfile
records.

Subroutine DELETE SUBFILE

3160 REM DELETE SUB FILE
3170 IF subsize%=mainsizeZ THEN 3220
3180 FOR RZ=subsizeZ+1 TO mainsizeZ
3190 FOR F7.=0 TO fields7.

64 Filing Systems and Databases for the Amstrad CPC464

3200 A* (FZ,R7.-subsi ze7.) =A* (F7., R7.)
3210 NEXT:NEXT
3220 mainsizeZ=mainsizeZ-subsizeZ:SELZ=1
2
3230 RETURN

This subroutine is called only if the subfile is to be deleted from the
main file. Line 3180 contains the clue to its operation because the
FOR/NEXT loop starting parameter is subsize%+1. In other words,
the mainfile now starts at the first record number higher than the end
of the subfile. (You will remember that the records, collected into the
subfile, were all repositioned at the head of the main file.)

Initialisation and main menu

10 REM INITIALISATION AND MAIN MENU
20 OPENOUT "buffer"
30 MEMORY &9B7E:REM SET TO HIMEM—1
40 CLOSEOUT
50 MODE 1
60 BORDER O
70 mainsizeZ=0:flagZ=0
80 SEL7.=O
90 WHILE SEL7.<1 OR SEL7->12
100 GOSUB 3260
110 LOCATE 5,5
120 PRINT"MAIN FILE MENU"
130 LOCATE 1,7
140 PRINT"(1)
150 PRINT”(2)
160 PRINT”(3)
170 PRINT”(4)
180 PRINT"<5)
190 PRINT"(6)
200 PRINT"(7)
210 PRINT"(8)

Create new file"
Load file"
Save file"
Display file"
Add records"
Modify any record"
Sort by any field"
Create sub—file (Search a

ny field)"
220 PRINT"(9) Print File"
230 PRINT"(10) Display single record"
240 PRINT"(11) Totalise any column"
250 PRINT"(12) End program"
260 LOCATE 1,23

Simple Filing Programs and Building Bricks 65

270 INPUT"Select option ";K$
280 SEL7.=VAL(K$)
290 WEND
300 CLS:LZ=mainsize%:subsize%=mainsize%
310 IF SEL7.>2 AND mainsize7.=0 AND SEL7.< >
12 THEN PRINT"No file present":GOSUB 252
O:GOTO 70
320 IF SEL7.<3 AND flag7.= l THEN 2440
330 ON SEL7. GOSUB 390,570,700,820,1060,1
270,1490,1650,1940,2040,2150,350
340 GOTO 80
350 SPEED WRITE 0
360 END

This is a control program, not a subroutine. It has three sections:

(1) Lines 10 to 80 reset initial states, define a permanent area in
memory for the cassette buffer and establish the mode and border
colour.
(2) Lines 90 to 290 are occupied by a WHILE/WEND loop
containing the main menu and the prompt for the operator to select
an option number into SEL%. The title at the top of the menu display
comes via a call to subroutine TITLE.
(3) Lines 300 to 360 reset L% (the current length of the file) and
subsize% (the size of the subfile). The validity of the operator’s
selection is then tested followed by a call to the appropriate
subroutine. The default baud rate is finally established in case a call
to the SAVE FILE subroutine leaves it at 2000 baud.

Table of subroutine numbers

The subroutines offered as general-purpose building bricks in this
chapter are also components of a complete filing program. In fact,
the line numbers of the subroutines will be found to correspond
exactly with the listing of Program 4.1 in the next chapter. Because
the analysis of each subroutine has been described in reasonable
depth here. Chapter 4 will concentrate on the instructions for using
the program. For reference purposes, the subroutine line numbers
are set out below. It is worth mentioning at this point that GOTOs
and GOSUBs to lines with REM statements is bad practice. The
reason is that program compactors remove REM lines altogether
and fail to make allowances for GOTO and GOSUB. It also makes

66 Filing Systems and Databases for the Amstrad CPC464

manual REM removal easier for a working copy, where more RAM
space is required.

Table 3.1. Table of GOSUB numbers (the first REM lines are ignored).

Line number GOSUB title

2330 DRAW LINE
2260 GET LINE INPUT
2520 PRESS ANY KEY
2370 GET FILENAME

700 SAVE FILE
570 LOAD FILE
820 DISPLAY FILE

2670 FIND RECORD
2040 DISPLAY RECORD
2570 FIND FIELD HEADING
1940 PRINT FILE
2150 TOTALISE COLUMN
1490 SORT FILE
1060 ADD RECORS
390 CREATE FILE

1270 MOD1FY/DELETE RECORD
3260 TITLE
1650 SEARCH FILE MENU
2770 SEARCH FILE DIRECTOR
3170 DELETE SUBFILE

Summary

1. It is bad practice to jump out of a subroutine before the normal
RETURN.

2. A ‘program-based’ file has records within DATA statements.
3. A$(F%,R%) is a main file array element, or field in our case.
4. The field information index, F%, is written first to comply with

the order of string descriptor bytes stored in memory by the
interpreter.

5. In Program 3.2, A$(0,R%) is the key field of record R%.
6. Data files are saved to tape under a different format altogether

from program files.
7. The cassette tape drive is defined as stream #9.

Simple Filing Programs and Building Bricks 67

8. The command SPEED WRITE 1 is used if data is to be recorded
at 2000 baud.

9. A file should be properly closed by the keyword CLOSEOUT or
CLOSEIN as appropriate.

10. Failure to close a file for output could mean that residual data in
the buffer would not go on file.

11. K$ is a temporary variable.
12. The subroutine GET LINE INPUT is used for inputting string

variables. It rejects the null string and truncates all input to 18
characters.

13. Record numbers which follow a deleted record are all moved up
1.

14. When records are selected to form a subfile, they are
repositioned at the front of the mainfile.

15. The GOSUB numbers in the building bricks are arranged to
bypass the leading REMs.

Self test

3.1 If five more records are added to the program, what other line
must be altered?

3.2 What is the purpose of flag% in Program 3.2?
3.3 In Program 3.2, what is the purpose of line 310?
3.4 What is the reason behind line 1500 in the subroutine SORT

FILE?

Chapter Four

A Complete RAM-based
Serial Filing System

The program listing

This chapter is devoted entirely to the operation and description of a
complete RAM-based filing program.

10 REM CASSETTE MULTIFILING SYSTEM
20 0PEN0UT "buffer"
30 MEMORY &9B7E:REM SET TO HIMEM—1
40 CLOSEOUT
50 MODE 1
60 BORDER O
70 mainsizeX=Osflag%=0
80 SEL7.=O
90 WHILE SEL7.< 1 OR SEL7.>12
100 GOSUB 3260
110 LOCATE 5,5
120 PRINT"MAIN FILE MENU"
130
140
150
160
170
180
190
200
210

LDCATE 1,7
PRINT”<1>
PRINT"(2)
PRINT"(3)
PRINT"(4)
PRINT"(5)
PRINT"(6)
PRINT"(7)
PRINT"(8)

Create new file"
Load file"
Save file"
Display file"
Add records"
Modify any record"
Sort by any field"
Create sub-file (Search a

ny field)"
220 PRINT"(9) Print File"
230 PRINT"(IO) Display single record"
240 PRINT"(11) Totalise any column"
250 PRINT"(12) End program"
260 LOCATE 1,23

A Complete RAM-based Serial Filing System 69

270 INPUT"Select option “;K«
280 SELZ=VAL(KS)
290 WEND
300 CLS:L%=mainsize%:subsizeZ=mainsize%
310 IF SEL'/.>2 AND mainsize'/.=O AND SEL7.< >
12 THEN PRINT"No file present“:GOSUB 252
O:GOTO 70
320 IF SEL'/.<3 AND flag'Z=l THEN 2440
330 ON SEL'Z GOSUB 390,570,700,820,1060,1
270,1490,1650,1940,2040,2150,350
340 GOTO 80
350 SPEED WRITE O
360 END
370 ’
380 REM CREATE FILE
390 PRlNT"Enter -file size (number of rec
ords)
400 INPUT filesize'/.
410 IF filesize'/.<l THEN 400
420 PRINT"Enter number of fields require
d (2-15)"
430 INPUT fields'/.
440 IF fields'/.<2 OR fields'/.>15 THEN 420

450 f ields7.=f ields'/.-l
460 flag'/.= l
470 DIM A«(fields'/.,filesize/.)
480 CLS
490 FOR F'/.=O TO fields'Z
500 PRINT"Enter field heading “;F7.+ 1
510 GOSUB 2260: A* (F7., 0) =K$
520 NEXT
530 GOSUB 1060
540 RETURN
550 ’
560 REM LOAD FILE
570 GOSUB 2370
580 OPENIN filename*
590 INPUT49, f i 1 esi ze'/., f i el ds%, mainsi ze%
600 flag'Z-1
610 DIM A* (fields'/., filesize'/.)
620 FOR RZ=O TO mainsizeZ
630 FOR F7.=0 TO fields'/.

70 Filing Systems and Databases for the Amstrad CPC464

640 I NPUT#9, A* (FX, RX)
650 NEXT:NEXT
660 CLOSEIN
670 RETURN
680 ’
690 REM SAVE FILE
700 GOSUB 2370
710 SPEED WRITE 1
720 OPENOUT filename*
730 PR I NT#9,f i1esi z eX,f i el dsX, LX
740 FOR RX=O TO LX
750 FOR FX=O TO fieldsX
760 PRINT#9,A*(FX,RX >
770 NEXT:NEXT
780 CLOSEOUT
790 RETURN
800 ’
810 REM DISPLAY FILE
820 FX=l:topX=l
830 WHILE INKEY (47)00
840 CLS:PRINT"Press space bar to regain
menu "
850 GOSUB 2330
860 PRINT A*(0,0) TAB(20) A*(FX,O)
870 GOSUB 2330:bottomX=topX+19
880 IF bottomX>LX THEN bottomX=LX
890 FOR RX=topX TO bottomX
900 PRINT A*(O,RX) TAB(20) A*(FX,RX)
910 NEXT
920 CALL &BB03:’KM RESET
930 CALL &BB18:’KM WAIT KEY
940 IF INKEY(8)=O THEN FX=FX-1
950 IF INKEY(1)=O THEN FX=FX-1
960 IF INKEY(O)=O THEN topX=topX-20
970 IF INKEY(2)=0 THEN topX=topX+20
980 IF FX< 1 THEN FX=fieldsX
990 IF FX>+ieldsX THEN FX=1
1000 IF topX<1 THEN topX=(INT(LX/2O)*20)
+ 1
1010 IF topX>LX THEN topX=l
1020 WEND
1030 RETURN
1040 ’

A Complete RAM-based Serial Filing System 71

1050 REM ADD RECORDS
1060 CLS: IF mainsizeZ>=filesizeZ OR FRE
(O) < fields/.*100 THEN PRINT"File -Full":
GOSUB 2520:GOTO 1240
1070 mainsize7.=mainsizeZ+l
1080 PRINT" Type EXIT to finish entry of
records"

1090 PRINT:PRINT"Record No :"mainsizeZ
1100 LOCATE 21,3
1110 PRINT"Bytes Free :“FRE(O)
1120 GOSUB 2330
1130 PRINT:F7.=-l
1140 F7.=F7.+ 1
1150 PRINT AS<F7.,0)
1160 GOSUB 2260:A«(F7.,mainsizeZ)=K*
1170 X 7.=P0S (#0) : Y7.=VPOS (#0)
1180 LOCATE 34,3
1190 PRINT USING "#####";FRE(O)
1200 LOCATE X7., Y7.
1210 IF A$<F7.,mainsize7.)=“EXIT" THEN mai
nsize%=mainsizeZ-l:GOTO 1240
1220 IF F7.<fields7. THEN 1140
1230 IF mainsize7.<filesizeZ THEN 1060
1240 RETURN
1250 ’
1260 REM MODIFY/DELETE RECORD
1270 F7.=0: GOSUB 2670:K*=“"
1280 WHILE K»O"EXIT" AND K«O"KILL"
1290 CLS:PRINT"Mod/copy line with CURSOR
/COPY keys"
1300 PRINT"Type KILL to delete record"
1310 PRINT"Type EXIT to regain option pa
ge"
1320 GOSUB 2330
1330 FOR F7.=0 TO fields/.
1340 PRINT A$(F7.,0) TAB (21) A«(F7.,R7.)
1350 NEXT
1360 GOSUB 2330:PRINT:GOSUB 2330
1370 LOCATE l,VP0S<#0)-2
1380 LINE INPUT K«
1390 K»=UPPER*(K$)
1400 IF LEN(K$)>38 THEN K$=LEFT$(K$,38)
1410 FOR F7.=0 TO fields/.

72 Filing Systems and Databases for the Amstrad CPC464

1420 IF A«(F7.,0)=LEFT$(K«,LEN(A» (F7.,0)))
THEN AS (F7., R7.) =R IGHTS (K$, LEN (K*) -20)

1430 NEXT
1440 WEND
1450 IF K$="KILL" THEN WHILE RX<=mainsiz
e7.:F0R F7.=0 TO Fields*: AS(F7.,R7.)=AS(F7.,R
X+l):NEXT:R*=R*+1:WEND:mainsize*-mainsiz
e*-l:PRINT FRE("“)
1460 RETURN
1470 ’
1400 REM SORT FILE
1490 GOSUB 2570
1500 IF L*<2 THEN 1620
1510 CLS: PR I NT "Sorting by ";AS(F*,O)
1520 N*=L*
1530 N7.= <N7.+2)\3
1540 FOR D%=N7.+ 1 TO N**2
1550 FOR E*=D7. TO L7. STEP N7.
1560 FOR RX=E7. TO D7. STEP -N7.
1570 IF A$ (FX,R*)<AS(F*,R%-N%) THEN FOR
C7.=O TO FieldsX:KS=AS(C%,RX) : A$(C7.,R*)=A
S (C%, R7.-N7.) : AS <C%, R7.-NX) =KS: NEXT ELSE 15
90
1580 NEXT
1590 NEXT E7.
1600 NEXT
1610 IF N*>1 THEN 1530
1620 RETURN
1630 ’
1640 REM SEARCH FILE MENU
1650 SELX=O:GOSUB 3260
1660 LOCATE 1,5
1670 WHILE SEL%<1 OR SEL%>12
1680 PRINT"SHRINK File (Non destructive)
M

1690 PRINT"SEARCH any Field For:":PRINT
1700 PRINT" (1) <> a"
1710 PRINT" (2) = a"
1720 PRINT" (3) >= a"
1730 PRINT" (4) < a"
1740 PRINT"(5) Character group"
1750 PRINT:PRINT"Futher subFile options:
":PRINT

A Complete RAM-based Serial Filing System 73

1760 PRINT"(6)
1770 PRINT"(7)
1780 PRINT"(8)

Save sub—file"
Display sub—file"
Sort sub—file by any -fie

Id"
1790 PRINT"(9) Delete sub—file from mai
n file"
1800 PRINT"(10) Totalise column"
1810 PRINT"(11) Print sub—file"
1820 PRINT"(12) Return to main menu"
1830 LOCATE 1,24
1840 INPUT"Select option ";K*
1850 SEL7.=VAL(K«)
1860 CLS
1870 WEND
1880 CLS:LX=subsize7.
1890 ON SEL7. GOSUB 2770,2770,2770,2770,2
770,700,820,1490,3170,2150,1940,1910
1900 IF SEL7.C12 THEN 1650
1910 RETURN
1920 ’
1930 REM PRINT FILE
1940 FOR R7.= l TO L7.
1950 PRINT#8:PRINT#8,"Record No : "R7.
1960 PRINT#8,STRING*(40,"-")
1970 FOR F7.=0 TO fields'/.
1980 PRINTM8, A*(F%,0) TAB (21) A*(F7.,R7.)
1990 NEXT
2000 NEXT
2010 RETURN
2020 ’
2030 REM DISPLAY RECORD
2040 F7.=0: GOSUB 2670: CLS
2050 PRINT:PRINT"Current Record number"R
X:PRINT
2060 GOSUB 2330
2070 FOR F7.=O TO fields*
2080 PRINT A*(F%,0) TAB(21) A*(F7.,R7.)
2090 NEXT
2100 GOSUB 2330
2110 GOSUB 2520
2120 RETURN
2130 ’
2140 REM TOTALISE COLUMN

74 Filing Systems and Databases for the Amstrad CPC464

2150 total=0
2160 GOSUB 2570
2170 FOR RZ=1 TO LZ
2180 total=totaH-VAL(A*(FZ,RZ))
2190 NEXT
2200 PRINT"Column total ="total
2210 PRINT"Column average="total/LZ
2220 GOSUB 2520
2230 RETURN
2240 ’
2250 REM GET LINE INPUT
2260 LINE INPUT K*
2270 IF K*="" THEN 2260
2280 K*=UPPER*<K*)
2290 IF LEN(K*)>18 THEN K*=LEFT*(K*,18)
2300 RETURN
2310 ’
2320 REM DRAW LINE
2330 PRINT STRING*(40,CHR* (154));
2340 RETURN
2350 ’
2360 REM GET FILENAME
2370 CLS:PRINT"Enter Tilename"
2380 GOSUB 2260
2390 IF LEN(K*)>16 THEN PRINT"Too long:E
nter again":GOTO 2380
2400 Tilename*=K*
2410 RETURN
2420 ’
2430 REM BELT & BRACES
2440 PRINT"WARNING”:SOUND 1,16,10,15
2450 PRINT“This selection destroys EXIST
ING FILE"
2460 PRINT"Press ANY KEY to CANCEL selec
tion "
2470 PRINT"OR press CTRL M keys and RESE
LECT"
2480 CALL &BB18:’KM WAIT KEY
2490 IF INKEY(38)=128 THEN ERASE A*:GOTO

70 ELSE 80
2500 ’
2510 REM PRESS ANY KEY
2520 PRINT:PRINT"Press any key to contin
ue

A Complete RAM-based Serial Filing System 75

2530 INKEYS:IF K$=" " THEN 2530
2540 RETURN
2550 ’
2560 REM FIND FIELD HEADING
2570 F7.=-l
2580 PRINT"0perate on which field? (Give
heading)

2590 GOSUB 2260
2600 F7.=F7.+ 1
2610 IF K«=LEFT«(A*(F7.,0) ,LEN(KS)) THEN
2640
2620 IF F7.<fields7. THEN 2600
2630 PRINT"No such field":GOTO 2570
2640 RETURN
2650 ’
2660 REM FIND RECORD
2670 R7.=0
2680 PRINT“Give record entry under “ ;A*(
F7.,0)
2690 GOSUB 2260
2700 R7.=R7.+ 1
2710 IF K«=LEFTS(A«(F7.,R7.) , LEN(KS)) THEN

2740
2720 IF R7XL7. THEN 2700
2730 PRINT"No such record on file":GOTO
2670
2740 RETURN
2750 ’
2760 REM SEARCH DIRECTOR
2770 GOSUB 2570
2780 PRINT”SEARCH to operate on ";A«(F7.,
O)
2790 IF SEL7.<5 THEN PRINT"Give search da
tum/entity"
2800 IF SEL%=5 THEN PRINT"Give character
group"

2810 GOSUB 2260:comp*=K*
2820 count%=0
2830 FOR R7.= l TO subsize7.
2840 ON SEL7. GOSUB 2900,2940,2980,3020,3
060
2850 NEXT
2860 IF count7.=0 THEN CLS: PR I NT "SEARCH i

76 Filing Systems and Databases for the Amstrad CPC464

s NEGATIVE":GOSUB 2520 ELSE subsize7.=cou
nt%
2870 RETURN
2880 ’
2890 REM SEARCH <>
2900 IF AS(F7.,R7.X>compS THEN GOSUB 3100
2910 RETURN
2920 ’
2930 REM SEARCH =
2940 IF AS(F7.,R7.)=compS THEN GOSUB 3100
2950 RETURN
2960 ’
2970 REM SEARCH >=
2980 IF AS(F7.,R7.) >=comp$ THEN GOSUB 3100

2990 RETURN
3000 ’
3010 REM SEARCH <
3020 IF AS (F7..R7.XcompS THEN GOSUB 3100
3030 RETURN
3040 ’
3050 REM SEARCH FOR CHARACTER GROUP
3060 IF INSTR (AS (F7., R7.) ,compS) < >0 THEN
GOSUB 3100
3070 RETURN
3080 ’
3090 REM MOVE RECORD
3100 countZ=countZ+l
3110 FOR C7.=0 TO fields7.
3120 KS=AS <C7., R7.> : A* <C7.« R7.) =AS (C7., count7.
) : AS (C7., count7.) =KS
3130 NEXT
3140 RETURN
3150 ’
3160 REM DELETE SUB FILE
3170 IF subsize7.=mainsize7. THEN 3220
3180 FOR RZ=subsizeX+l TO mainsizeX
3190 FOR FX=O TO FieldsX
3200 AS (F7., RX-subsizeX) =AS (FX, RX)
3210 NEXT:NEXT
3220 mai nsi zeX=mai nsi z eX-subsi z eX:SELX=1
2
3230 RETURN

A Complete RAM-based Serial Filing System 77

3240 ’
3250 REM TITLE
3260 CLS
3270 LOCATE 1,2
3280 INK 2,6
3290 PAPER 2
3300 PRINT" MULTIFILING SYSTEM "
3310 PAPER O
3320 RETURN

Program 4.1. RAM-based multifile system.

The program, as listed, is written for cassette tape files but it would
be easy to modify the load and save subroutines for a disk system. As
can be seen from the length of the listing, it will take some time to key
in and perhaps still longer to rectify the keying errors. Before
continuing, it is worthwhile pointing out the difference between a
‘bug’ and a keying error. If we define a bug as a programming error,
causing behaviour other than the programmer intended, then there
are no known bugs in Program 4.1. If you key in the listing exactly as
shown, the program should work in the manner we intended. After
you have used it for some time, you may think certain features could
be improved or altered to suit your specific filing needs. You may not
even need all the options, in which case you can leave one or two of
them out in order to leave more room for records. Fortunately, the
program is reasonably well-structured so it is easy to introduce
amendments or omit a few of the options. H owever, if you think that
some of the subroutines can be shortened or made easier, be careful
to keep the original listing on tape as a‘fall back’precaution. Strange
things can happen if attempts are made to ‘simplify’ programs.

Those not yet accustomed to marathon bouts of keyboard bashing
may be interested to know there are two ways of accomplishing the
task:

(a) Brute force and hope for the best - that is, start at line 10 and
carry on until the last line. This method must work - eventually!
(b) Notice that the ‘program’ itself, terminating with END, occupies
about the first 40 lines only; the remainder of the listing is a collection
of subroutines. These lines should be keyed in first and then all the
subroutines necessary to allow option 1, create file, to be tried out.
Remember that option 1 calls up a few other subroutines so,
naturally, you must enter these as well. It may help if you study Table
4.1 which appears later in this chapter. You can go through the
motions of creating a small file of three records, each of three fields,
say Name, Age, Trade. Proceed on these lines for each option in turn,

78 Filing Systems and Databases for the Amstrad CPC464

making sure that the program runs satisfactorily up to the point
which you have reached. However, there is a world of difference
between a program which appears to work satisfactorily and one
which has been subjected to exhaustive tests. These should be delayed
until you have explored the complete program.

Using the program

Programming details are given at the end of this chapter for the
benefit of those who may wish to introduce modifications or add
additional facilities. However, it would be wise to spend some time
operating the program as it stands. On RUNning the program, the
12-option menu is displayed. In the first instance, there is no file
present in RAM so there are only two choices open on the menu -
Option 1 ‘Create file’ or Option 2 ‘Load file’. If any other option is
selected, the message ‘No file present’ is displayed. The menu is
regained by responding to the prompt ‘Press any key to continue’.
Operating details which follow are treated in the order in which they
are most likely to be used rather than in option number sequence.

Create file (Option 1)

When starting up a new file, a number of leading particulars must be
obtained from the keyboard in order to fix the dimensions of the
main rectangular array. These will include the number of records and
the number of fields. The literal headings of each field are also
required.

File size
The first screen prompt is ‘Enter file size (number of records)’. It pays
not to be too ambitious when entering this number because the
amount of RAM available, over and above that occupied by the
program and cassette buffers, is about 32K. We shall see later that as
records are entered into the file, the screen continuously displays the
file status, including the number of bytes still left in RAM. During
subsequent usage, the number of records added to the file can grow to
the point where the record number limit is approached or the number
of bytes left is looking dangerously low. At this point, it is possible to
split the file into two by making use of Option 8, ‘Create subfile’.

A Complete RAM-based Serial Filing System 79

Number of fields
The next screen prompt is ‘Enter number of fields required (2-15)’.
The maximum number is fixed at 15 and the minimum at 2. A trap is
included to prevent the limit from being exceeded, although it would
be easy to modify the upper limit. Remember that the RAM space
occupied by the file depends on the product of the number of records,
the number of fields in each record and the amount of text in each
field.

Field headings
Each field must have a heading, otherwise the data within the field is
meaningless. A different heading is required for each field so the
screen prompt for, say, field 3 is ‘Enter field heading 3’. No heading
must exceed 18 characters in length. If more than 18 are entered, the
program ignores any excess characters without notification. The
limit of 18 is enforced because of the requirements of Option4 which
allows a page of records to be viewed at a time in ‘broadsheet’ form.
The limit of 18 characters per field in Mode 1 allows only two of the
fields to be displayed horizontally at one time. (The remaining fields
are rotated into view by cursor controls.) It doesn’t matter if field
headings are entered in lower- or upper-case because the program
always converts to upper-case anyway.

Add records (Option 5)

The previous entries were leading particulars only and will normally
remain unchanged during the life of the file. Once these have been
entered, the display changes automatically to Option 5 ‘Add records’,
ready for receiving data for each field. As an aid to subsequent
explanations, assume that the file has three fields with the headings
Name, Telephone and Age. The prompts would be:

NAME - (you might answer BREW P)
TELEPHONE - (you might answer 208 4672)
AGE - (you might answer 36)

Don’t forget that, as with field headings, the data items must not
exceed 18 characters. This is not a severe restriction providing the file
has been created with the restriction in mind. For example, it would
have been bad planning to label one field ‘Address’ because it is
unlikely that a full address could be squeezed into 18 characters. One
field should have been ‘Number/street’, the next ‘Town’, the next

80 Filing Systems and Databases for the Amstrad CPC464

‘County’ and the last ‘Post code’. Since 15 fields are allowed per
record, this still leaves 11 fields for other data items.

When the last data item has been entered, the screen clears ready
for the next record to be entered. If no further records are to be added
during the current keyboard session, the menu can be regained by
keying ‘EXIT’. If the number of records reaches the maximum
estimated during the creation stage, or if the bytes free are exhausted,
the message ‘File full’ will appear and no further records will be
accepted.

If a file already exists in RAM, selecting Option I would destroy it
so the program issues a warning in case the option has been selected
in error, the details of which are given later under the ‘Load File’
option.

Display file (Option 4)

After the file has just been created or if additional records have just
been entered, the next logical step is to see what it looks like on the
screen. Assuming that the file has only three records, each giving
Name, Telephone and Age, the screen display would appear
something like this:

Press space bar for menu

NAME TELEPHONE

BLENKINSOP J 666 6778
GUTSWORTHY M 233 6895
GLUGENHEIMER K 233 1212

NAME is the fixed key field but the second field, TELEPHONE, is
a variable (in the display sense). Other fields can be rotated into the
right-hand position by use of the left or right cursor keys. For
example, if we pressed the right cursor key, the display above might
change to:

A Complete RAM-based Serial Filing System 81

Press space bar for menu

NAME AGE

BLENKINSOP J 24
GUTSWORTHY M 83
GLUGENHEIMER K 18

If more than 20 records are in the file, other blocks of 20 can be
moved into view, using the up or down cursor keys. If the display is
moved beyond the boundaries of the fields or records, wrap-around
occurs. That is to say, if there were seven fields and we tried to shift in
a non-existent eighth field, the display would wrap around to the
second field again. A similar thing happens if we try to bring in a non­
existent block of 20 records, except that it would be better described
as roll-around instead of wrap-around.

Display single record (Option 10)

The display file option is useful for gaining a general picture or for
observing how values of a particular field vary between records. The
eye can run down from top to bottom of a field and easily spot
abnormal or significant entries. Option 10, on the other hand,
searches through the file for one particular record. It displays the
complete record with all fields without the need for cursor key action.

Taking the same three example records shown before, and
supposing we ask for the one on GUTSWORTHY M, the search
would end with the following display:

Current record number 2

NAME GUTSWORTHY M
TELEPHONE 233 6895
AGE 83

Press any key to continue

82 Filing Systems and Databases for the Amstrad CPC464

The search requires the key field of the record to be entered. In the
example case, the prompt would read:

‘Enter entry under NAME’

Your response would be GUTSWORTHY M. However, the
program is sufficiently user-friendly to realise that you may not
remember the exact spelling of each name. The program will conduct
the search if you enter the first few letters correctly or even if you
enter only the first letter. For example, entering GUT, GU or even G
will initiate the search action. The search ends when the first record is
found having a key field beginning with the same few letters you have
entered. However, the fewer letters you enter, the greater will be the
chance of bringing out an unwanted record which, by coincidence,
begins with the same letters. If this happens, you can add another
letter - if you know it - and start another search. If all this fails, the
last resort would be to go over to the Display File option, skim
through the key fields until the full name is found and then return to
Option 10 for a new search. We appreciate that as far as our three
record example goes, such detailed advice might appear absurd but,
when a file approaches one hundred records, the advice may be
appreciated. If a search through the file fails to find a record which
corresponds to given search letters, the message ‘No such record on
file’ is displayed.

Save file (Option 3)

Once the file has been displayed, you will most probably wish to save
a copy on tape. The first prompt is ‘Enter file name’. A maximum of
16 characters is allowed for the file name. If more than 16 are typed
in, the message ‘Too long: Enter again’ appears. The usual
instructions for operating the tape transport will appear after an
acceptable file name is received. Although the listing for the
subroutine is written for cassette tape it would be easy to modify for
disk drives.

Load file (Option 2)

Because the loading of a file will automatically overwrite and
therefore destroy any existing file, precautions have been taken by
the program to safeguard an existing file should this option be

A Complete RAM-based Serial Filing System 83

selected by mistake. If a file already exists, the following warning,
accompanied by an audible tone, appears on selecting Option 2 (or
Option 1):

This selection destroys existing file

Press any key to cancel

Otherwise press CTRL and M keys
together and re-select

Summarising, if Option 2 is selected by mistake, pressing any key
will restore the menu without harm to the existing file. If the selection
was intentional, the CTRL and M keys must be pressed together to
regain the menu before re-selecting Option 2 again. This time, there
will be no further warning and the prompt ‘Enter file name’ appears
on the screen. Providing the cassette file is ready in the machine, the
loading process can begin. Modifying the subroutine to suit disk
drives should again be easy.

Modify any record (Option 6)

This option allows you to modify any field of a selected record. It also
allows the record to be deleted entirely from the file. The record to be
modified is first searched for in response to the prompt, ‘Give record
under NAME’ - assuming, of course, that the key field is NAME. As
we described earlier, the first letter or two of the key field is sufficient
to initiate the search. Once the record has been found, the following
display appears:

Modify/copy line with cursor/COPY keys
Type KILL to delete record
Type EXIT to regain Option page

NAME GUTSWORTHYM
TELEPHONE 233 6895
AGE 82

X

84 Filing Systems and Databases for the Amstrad CPC464

The cursor will initially rest at the point marked X. Suppose the
telephone number is incorrect. The copy cursor is first moved
upwards, by pressing SHIFT and ‘up arrow’ cursor keys, to the letter
T at the start of the second line. The SHIFT and COPY keys are then
used to move across the screen until the offending figure is reached. It
can then be corrected in the normal manner. The corrected version is
also duplicated on the bottom line during the editing process. After
you press the ENTER key, the corrected version is displayed. When
finally satisfied, enter EXIT to regain the menu options.

To delete a record from the file, type KILL when the desired record
is displayed. The gap in the array is closed up and garbage collection
is forced.

Create subfile (Search any field): Option 8

On selecting Option 8, an alternative menu is displayed. The first half
of the menu offers five ways of selecting which records from the main
file are to be treated as a ‘subfile’. Building up a subfile from records
which share one or more common attributes is a powerful feature of
the program although this, in itself, is no justification for promoting
the filing system to the status of a ‘database’. At this point, it is worth
digressing a little to clarify the distinction between the two.

The terms ‘data file’ and ‘database’ are often used as if they were
one and the same. This is not strictly true. Indeed, there are profound
differences between a data file and a database. To avoid any possible
confusion, we should think of a database as an integrated collection
of records, each containing information on the relationship between
them. These records could well be distributed throughout a number
of different files. On the other hand, a simple file contains records all
of the same type. A typical database has the following characteristics:

(a) A collection of cross-referenced records, known as the ‘database’,
held within, perhaps, a multitude of files.
(b) Cross-references are stored in an organised fashion, within the
database itself, so that complex search requirements can be executed
rapidly.
(c) A database is accessed from an applications program via a piece
of software called a database management system (DBMS). Thus the
applications program is independent of changes in the data structure.

It is obvious from the qualities of a true database that Option 8 has
no pretentions in this direction. However, it is certainly capable of

A Complete RAM-based Serial Filing System 85

carrying out fast search operations within the bounds of a single data
file. We shall test this by describing how a subfile can be progressively
narrowed down until one particular record survives the final‘shrink’.

Assume that the file loaded from store is named EUROPE and
contains four fields - Country, Area (square miles), Population and
Capital. We wish to find a country with an area less than 40000
square miles with a population greater than or equal to 500000. The
task begins by selecting Option 8 which brings out the following
search menu:

SHRINK FILE (Non-destructive)

Search any field for:

(1) <>a
(2) =a
(3) >=a
(4) <a
(5) Character group

Further subfile options:

(6) Save subfile
(7) Display subfile
(8) Sort subfile by any field
(9) Delete subfile from main file
(10) Totalise column
(H) Print subfile
(12) Return to main menu

Select option

The steps from then on could vary but the following approach is
reasonable:

(1) Select Option 4 (search for<a). The first prompt is:

Operate on which field?

The response should be AREA.

(2) The next prompt will be:

Search to operate on AREA
Give search datum/entity

86 Filing Systems and Databases for the Amstrad CPC464

The response should be 40000.

On selecting option 7 (Display subfile), the subfile is displayed with
all countries having areas less than 40000 square miles. The search
menu is now regained (by pressing the space bar). We now shrink this
subfile still further.

(3) Select Option 3 (search for >= a)
The first prompt is:

Operate on which field?

The response should be Population.

(4) The next prompt will be:

Search to operate on Population
Give search datum/entity

The response should be 500000.

On selecting Option 7 (View subfile), the new subfile is displayed
with all countries having an area less than 40000 square miles with a
population greater than or equal to 500000 inhabitants. We could, of
course, shrink still further by using Option 5 (character group) and
insisting that the country must contain the substring‘er’. According to
our own file on EUROPE (compiled with the help of Whitaker's
Almanac), the final shrinkage pointed to one country only
Switzerland. The example is illustrated in Figure 4.1.

X
X

X
X

I
X

X
X

Countries
in

Europe

Areas leas

than 40000

sq miles

Population
greater than
or equal to

500000

contains 'er'
\ I

{Switzerland

/

I

I

I

I

/

/

/

Fig. 4.1. Shrinking a main file on European countries.

A Complete RAM-based Serial Filing System 87

The second half of the search menu offers several straightforward
options, including save or sort the subfile at any stage. They are used
in exactly the same manner as their counterparts in the main menu.
However, it is worth pointing out that the ability to split the main file,
by using Option 9 (Delete subfile from main file) is very useful when
the main file grows too large for RAM. For example, we can create a
subfile of all NAMEs which begin with letters lower than ‘L’. The
subfile, after being saved under another file name, can then be deleted
from the main file. It then becomes a new ‘main file’ and the original
file, now much depleted, can be saved separately. With regard to the
above remark, ‘letters lower than L’, it should be explained that any
search option in the subfile menu acts according to the ASCII codes if
the field is alphabetic. Thus, if we use the operator ‘<’ on an
alphabetic field, under NAME, it will compare sequential ASCII
characters as necessary for the decision.

Sort (Option 7)

Option 7 in the main menu (or 8 in the subfile menu) will sort a file
into order by any field heading. The subject of sorting is treated in
detail in Chapter 5. In the meantime, it is simply a case of responding
to the prompt ‘Operate on which field?’. If we sort under NAME, it
will put all records into alphabetical order by name. On the other
hand, a sort under AREA will be numerical although the numbers
are still held in string form. Because of this, it is important, when
creating a file, that all numeric data entered should have the same
total number of digits. Small numbers must have leading zeros added
as packing. If this is not done, numeric sorts will not be carried out
correctly. To see why this is, examine the following series of numbers:

45
763

15777
94

If these are stored in string form, the sorting proceeds from the
ASCII code of the most significant character towards the least
significant. In the above example, the first characters examined will
be the codes for 4,7,1,9 because they take precedence over the less
significant characters. Subsequently, if the numbers are to be sorted
into highest-first order, the computer would judge the following
order to be correct:

88 Filing Systems and Databases for the Amstrad CPC464

94
763

45
15777

If the numbers had been originally entered with enough leading zeros
to make all numbers 5 characters long, the sort would yield the
following correct result:

15777
00763
00094
00045

Sorting data into order is a complex business; unless efficient
programming techniques are used for handling large files the time
delay can be unacceptable, so the next chapter is devoted entirely to
the subject.

Print file (Option 9)

This option allows a hard copy printout of a file. Serious use of a
filing system frequently demands hard copy as well as screen displays
so Option 9 deserves special attention. Normally, the keyword
PRINT implies ‘printing’ to the screen because of the default
interpretation. The peripheral output lines on the CPC464 are
identified by the character *#’ followed by a number. The parallel
printer socket is identified by the number ‘8’ so print statements,
intended for hard copy output, must be of the form:

PRINT #8, variables

Although the Amstrad DMP-1 is the official printer for the
CPC464 and will work without trouble as soon as it is plugged in,
there will be many end users who already have a perfectly good
printer and would rebel at the thought of buying another.
Unfortunately, there is a lack of standardisation, both in printer
interfaces and the control characters recognised by the printer
software. It is commonly believed that any computer with a parallel
(Centronics) socket at the back will always mate successfully with any
printer boasting of a parallel interface. Sadly, this ideal situation is
seldom realised in practice. Even if the leads and sockets happen to
match (and very often they don’t) there may still be trouble with the

A Complete RAM-based Serial Filing System 89

corresponding pin numbers. For example, some computers send a
carriage return out to the printer but, because the printer also
generates a carriage return internally, the effect is an unwanted
double spacing between line numbers. This can often be cured by
studying the manual supplied with the printer and juggling around
with control characters. Another possible cure, but not one that
should be undertaken without previous experience, is to cut the
connecting lead to pin 14 on the ribbon cable - but, here again, this
depends on the particular printer.

Whilst on the subject of printers, it is worth remembering the old
adage - you get what you pay for. Printers, particularly the so-called
‘intelligent’ variety, have dropped in price dramatically in spite of
increased sophistication. It is very nice to have a bewildering variety
of print fonts, underlining, superscripts, subscripts and, in some
cases, several different ink colours, providing it has not been obtained
at the expense of reliability. Once the initial excitement of trying out
all the features has worn off, most people settle down to the simple
default typeface because it becomes too much bother to look up the
control characters for producing special characters. If the printer is to
be worked hard and often, there are four questions relating to
performance which will outweigh in importance all others put
together:

(a) How robust and reliable is it?
(b) How easy is it to change the print head?
(c) Does it take standard printing paper?
(d) Does it have friction as well as tractor feed without crunching the
paper every few sheets?

Totalise any column (Option 11)

The ability to totalise a column only makes sense if the column is
purely numeric in character. For example, if the column is under the
field heading ‘Cash in hand’ then totalising is a sensible operation. On
the other hand, it would be absurd to totalise a column under the field
heading ‘Name’. The first prompt is ‘Operate on which field?’.
Providing the response is acceptable and the field exists, the result
appears as follows:

Column total =....
column average =

90 Filing Systems and Databases for the Amstrad CPC464

F
ig

. 4
.2

. S
tr

uc
tu

re
 c

ha
rt

 o
f P

ro
gr

am
 4

.1
.

A Complete RAM-based Serial Filing System 91

End Program (Option 12)

This option simply ends the program and sets the cassette writing
speed to its default value. Unfortunately, HIMEM cannot be reset to
its default value unless a hard reset is performed. However, if the next
program loaded is not heavy on memory, it does not matter.

Analysis of the program

The listing of Program 4.1 shows that the actual ‘program’ occupies
less than 40 lines and extends only as far as the END in line 360. The
remainder of the listing is a collection of subroutines. Figure 4.2
shows the overall strategy, particularly the relationship between
subfile and mainfile options.

Variable names used in Program 4.1
mainsize% = current number of records in mainfile.
subsize% — current number of records in subfile.
L% = temporary variable set to the current number of records in
either file as the case may be.
flag%= file status. 1 = file exists in RAM, 0 = no file exists in RAM.
filenames = name of file.
filesize% = maximum number of records that can be in the main file.
fields% = number of fields in file.
K$ = general purpose global variable.
total = column total.
F% = current field number.
R% = current record number.
A$(F%,R%) = two-dimensional file array element (a field).
A$(F%,0) — heading of field F%.
SEL% = option number selected.
bottom% = bottom of display.
top% = top of display.

Subroutine calls

All subroutines are given a title by REM statements so they should be
easy to locate on the listing. In accordance with established practice,
there are no GOTOs to REM lines so these can be omitted from the
listing if you wish to save memory. Within the body of the

92 Filing Systems and Databases for the Amstrad CPC464

subroutines, REMs have been used sparingly. Too many of them in a
listing and continual reference to line numbers in accompanying
descriptions can often be self-defeating. Anyway, most of the
subroutines may be recognised as belonging to our standard list of
building bricks given in the previous chapter.

Table 4.1. Subroutine calls.

Main subroutines Low level subroutines

Main menu:
Create file Get line input

Belt and braces
Add records

Load file Get filename
Save file Get filename
Display file Draw line
Add records Press any key

Get line input
Modify any record Find record

Draw line
Sort by any field Sort file

Find field heading
Print file (no low level subroutines)
Display record Find record

Draw line
Press any key

Totalise column Find field heading
Press any key

Subfile menu:
Create subfile Search file menu

Title
Search director
Find field heading
Get line input
Press any key
Search <>
Search =
Search >=
Search <
Search for character group

Delete subfile (no low level subroutines)

A Complete RAM-based Serial Filing System 93

Most options are implemented by first level subroutines which
may call on second level which, in turn, may even call on third level
subroutines. The table opposite shows the subroutine calls and
should prove useful if you decide to follow the advice given earlier
and key in the program a block at a time.

Use of Program 4.1
The advantages, of RAM-based filing systems are the processing speed
and the degree of sophistication which can be achieved. The
disadvantage, of course, is the limit imposed by the necessity for the
entire file to be loaded, even if we only want to look at one record.
Fortunately, the CPC464 is reasonably well supplied with RAM so,
in spite of the length restriction, the program will be found highly
practical and well worth the effort of keying in.

The sort file option is obviously a candidate for experimentation.
BASIC sort routines, even the best, are irritatingly slow when there is
a large number of records. The speed can be increased dramatically if
the BASIC version is replaced by one of the machine code versions
described in the next chapter.

Summary

All statements below refer to Program 4.1.

1. Unless a file is already in RAM, only Options 1 and 2 can be
used.

2. Records can have up to 15 fields.
3. Field headings are limited to 18 characters.
4. Only two fields are visible at one time, one of which is the key

field.
5. All data entered is converted to upper-case.
6. EXIT is entered to terminate data entry.
7. When using Option 4, left/right cursors bring other fields into

view, up/down cursors bring another block of 20 records into
view and the space bar regains menu.

8. The file name cannot exceed 16 characters.
9. If Option 1 (Create file) or Option 2 (Load file) is selected by

mistake, pressing any key regains menu.
10. If either of the above two options is selected intentionally, it

must be re-selected after pressing CTRL and M keys together.
11. A subfile can be extracted from the mainfile and saved. It then

becomes a separate mainfile in its own right.

94 Filing Systems and Databases for the Amstrad CPC464

12. A mainfile can be shortened by deleting the subfile records from
it and then being saved separately.

13. Files can be sorted under any field heading.
14. Numeric fields will not sort correctly unless all data was

originally entered with the same number of digits, using leading
zeros where necessary.

15. The print file option may require slight modification, depending
on the printer model.

Self test

All questions relate to the Program 4.1 listing.

4.1 What is the purpose behind lines 20 to 50?
4.2 SPEED WRITE 0 is the line before END. Why?
4.3 Why is ERASE AS used in the BELT and BRACES module?
4.4 Line 1370 uses VPOS(#0)-2. Why?

Chapter Five

Searching and Sorting

Introduction

Throughout this section, searching and sorting will be treated
qualitatively to avoid boring the reader with too much dry academic
analysis. The choice of algorithms treated is a mere sample of many
that have been devised for internal sorting. We will progress from a
simple exchange sort, through bubble, diminishing increment and
quicksort to a complete two-dimensional string array sort written in
machine code. The latter is capable of sorting a computerful of
records in a few seconds. Finally, we cover algorithms for searching
contiguous lists (arrays), the simple sequential search and the more
efficient binary search.

Sorting arrays
The BASIC sort subroutines in this chapter are given line numbers
starting at 1000. Preceding lines, if any, are concerned with a simple
test program used to set up the array and display the execution time.
The timing tables provided may need clarification. Each group of
tests is performed on the following series of array configurations:

(a) Reverse order: The test array is set up with integers in reverse to
the order required.
(b) Near ordered: The last element in the test array is sorted into its
correct place at the centre array position.
(?) Random order: This is an array filled with random numbers.

The times given are typical and may vary depending on the particular
numbers generated.

The exchange sort

This is the simplest of all sorting algorithms but is rather slow. The

96 Filing Systems and Databases for the Amstrad CPC464

technique, shown in Program 5.1, is based on the comparison of
adjacent items in an unsorted list or array. The object is to sort an
integer array A%(N) into ascending order. A pass, starting at A%(1),
is made through the array until two adjacent elements are found in
descending order. The offending array elements are exchanged in
position and the cycle restarted at A%(1). The cycle is repeated as
many times as necessary until the list is completely ordered. The
technique certainly works but is not widely used. Its merit lies in its
simplicity.

10 REM INTEGER SORT DEMONSTRATION
20 CLS
30 INPUT"Sort how many integers"»NUMBERS
40 PRINT
SO REM FILL AND DISPLAY RANDOM ARRAY
60 DIM A7. (NUMBER’/.)
70 FOR N7.= l TO NUMBER’/.
80 A7. < N7.) = 10000*RND
90 PRINT AX (NX)
100 NEXT
110 PRINT:PRINT
120 PRINT"SORTING ARRAY"
130 PRINT:PRINT
140 START=TIME/300
150 GOSUB 1000
160 T=TIME/300-START
170 FOR N7.= l TO NUMBER7.
180 PRINT A7. (N7.)
190 NEXT
200 PRINT
210 PR I NT "RECORDS SORTED-NUMBER ’/.
220 PRINT
230 PRINT"SORTING TIME="»ROUND<T,2);"SEC
ONDS”
240 END
250 ’
260 ’
999 REM EXCHANGE SORT SUBROUTINE
1000 NX=O
1010 WHILE N7.<NUMBER7.-1
1020 N7.=N7.+ 1
1030 IF A7. (N7.) >A7. < N7.+1) THEN T7.=A7. (N7.) : A

Searching and Sorting 97

Z (NZ) =AZ (NZ+1): AZ (NZ+1) =TZ : NZ=O
1040 WEND
1050 RETURN

Program 5.1. Exchange sort.

The relative timings for various configurations are shown in Table
5.1.

Table 5.1. Exchange sort timings.

Array order Elements Execution time

Reverse 20 13.40 seconds
Reverse 50 197.92 seconds
near order 20 1.36 seconds
near order 50 8.53 seconds
near order 100 34.12 seconds
Random 20 8.6 seconds
Random 50 142.92 seconds

Study of Table 5.1 shows that the sorting time increases alarmingly as
the number of elements increases. However, the time taken to execute
when the array is nearly in order is reasonable. The table also reveals
that the worst case condition in an exchange sort is when the array is
in reverse order. This is only to be expected. The worst case number
of comparisons needed is given by

/6(N3+5N-6)

where N is the number of elements to be sorted. The time taken will
thus be proportional to N3 if N is large.

The bubble sort

The bubble sort is considered an improvement on the exchange sort
because time is not wasted comparing adjacent array elements
already correctly positioned in their final order. This is probably the
most popular of all sorting routines providing there is only a small
number of array elements. A bubble sort demonstration is given in
Program 5.2.

Program 5.2 consists of an inner and an outer control loop. The
pairs of array elements are repeatedly incremented, compared and, if

98 Filing Systems and Databases for the Amstrad CPC464

999 REM BUBBLE SORT SUBROUTINE
1000 SIZE7.=NUMBER7.
1010 WHILE SIZE7.>1
1020 SIZE7.=SIZE7.-1
1030 FOR N7.= l TO SIZE7.
1040 IF A7. < NX > >A7. (NX+1) THEN TX=AX (N7.) : A
X (N7.) =AX < N7.+1) : A7. < NX+1) =T7.
1050 NEXT
1060 WEND
1070 RETURN

Program 5.2. Bubble sort subroutine.

necessary, swopped in position within the inner loop. The largest
integer in the array will always ‘bubble’ through to the last position. It
is no longer necessary to involve this integer in further comparisons,
since it will be in its final array position. The outer loop counter, L%,
can thus be decremented by one. In the following series of inner loop
cycles, the next largest integer bubbles through to the next to last
position in the array, and so on, until the array is completely ordered.
Incidentally, some purists argue that this algorithm is not a bubble
sort at all. They prefer to call it a ‘ripple sort’ since movement takes
place in a downward direction rather than upward.

Table 5.2 shows the timing data for the bubble sort program.

Table 5.2. Bubble sort timings.

Array order Elements Execution time

Reverse 20 2.25 seconds
Reverse 50 13.79 seconds
Reverse 100 54.83 seconds
Near order 20 1.39 seconds
Near order 50 8.08 seconds
Near order 100 31.54 seconds
Random 20 1.74 seconds
Random 50 10.80 seconds
Random 100 42.13 seconds

Studying Table 5.2 reveals that the bubble sort is, in general, an
improvement on the exchange sort in terms of execution time. The
average number of comparisons is given approximately by /2N2,
where N is the number of array elements. Thus it will take four times

Searching and Sorting 99

as long to sort double the number of elements. However, the
performance, when the array is near ordered, is only marginally
better than that of the exchange sort. This can be improved, without
incurring too much additional overhead, by introducing a ‘swop flag’
as shown in Program 5.3. The process allows early termination of the
sort if no swops are detected on any inner loop cycle. The swop flag,
SF%, is cleared to zero at the start of each inner loop and is set to one
within the loop only if a swop is made. As soon as a cycle ends with
SF% clear, the array must have been in order.

998 REM BUBBLE SORT SUBROUTINE
999 REM (WITH SWOP FLAGS)
1000 SI ZE7.=NUMBER7.
1O1O SF7.=0
1020 SIZE7.=SIZE%-1
1030 FOR N7.= l TO SIZE7.
1040 IF A7. <N7.) >A7. (N%+1) THEN T7.=A7. (N7.) : A
7. (N7.) =A7. (N7.+ 1) s A7. (N7.+ 1) =TXs SF7.= 1
1050 NEXT
1060 IF SF7.= 1 THEN 1010
1070 RETURN

Program 5.3. Bubble sort with swop flags.

The comparative timings using the flag system are shown in Table
5.3.

Table 5.3. Bubble/swop flag combination.

Array order Elements Execution time

Reverse 20 2.38 seconds
Reverse 50 14.50 seconds
Reverse 100 57.62 seconds
Near order 20 1.01 seconds
Near order 50 6.12 seconds
Near order 100 24.27 seconds
Random 20 1.92 seconds
Random 50 10.82 seconds
Random 100 44.33 seconds

As can be seen from Table 5.3, the near-order performance is
significantly improved by the use of swop flags with the marginal
trade-off in execution time under other conditions.

100 Filing Systems and Databases for the Amstrad CPC464

The diminishing increment sort

This group of sort algorithms is sometimes named after D. L. Shell
who devised his Shellsort in 1959. However, there are numerous
variations on the same basic skeleton. The differences are small, but
sometimes significant, so we will deal with only two such variations.
Although bubble sort routines are efficient for a small number of
elements, the execution time increases alarmingly when in excess of
about 15 or so. To see the delay on high numbers, try running
Program 5.3 with 1000 integers. About a day or so later the array will
be sorted! An improvement, where large values of N are involved, is
to use one of the many diminishing increment variants, of which
Program 5.4 is perhaps the simplest example.

The execution speed of the bubble sort for large lists is limited by
the need to compare only adjacent array elements. This means that
elements can only be moved by one array position at a time. The
diminishing increment sort is an attempt to overcome this problem
by making the initial comparisons on elements which are positioned
far apart from each other. The sort process begins by making
comparisons and exchanges over this large increment. Subsequently,
elements closer together are sorted as the increment is progressively
reduced at each sorting pass. An important proviso is that the final
sorting pass must be performed with an increment of one. The early
passes move the elements closer to their final array positions. The
final pass, which performs an ordinary bubble sort, executes very
quickly since the array is already roughly ordered.

If the above description seems a little difficult to digest at one
sitting it is sometimes beneficial to visualise the mechanism another
way. We noted earlier that the bubble sort is fairly efficient for sorting
small numbers of elements. We also noted that the use of a swop flag
system significantly speeds up the execution of a bubble sort when the
elements are roughly in order. The diminishing increment sort
capitalises on both these features. Essentially, the array is split up
into small sets which are bubble sorted. These are mixed to form
larger sets which will be roughly in order. These larger sets will be
bubble sorted and mixed to form even larger sets and so on until we
are left with one large roughly ordered list. This is finally bubble
sorted and, due to the points made earlier, will be efficient. In
Program 5.4 the number of sets is progressively halved each time
round the outer loop but the number of elements within a set is
doubled.

One of the best keys to the understanding of the mechanism of a

Searching and Sorting 101

diminishing increment sort, or indeed any other algorithm, is to
utilise a trace table. The idea is to follow the program through on
paper, using arbitrary test data and taking notes of the various key
variables such as loop counters, etc.

998 REM DIMINISHING INCREMENT SORT
999 REM (VERSION 1)
1000 E7.= INT (LOG (NUMBER/.) /LOG (2))
1O1O F7.=2^E7.
1020 FOR G7.= l TO E7.
1030 F7.=F7./2: M7.=NUMBER7.-F7.
1040 SF7.=O
1050 FOR N7.= l TO M7.
1060 IF A7. (N7.) >A7. (N7.+F7.) THEN T7.=A7.(N7.) s
A-/. (N7.) =A7. (N7.+F7.) : A-/. (N7.+F7.) =T7. : SF7.= 1
1070 NEXT
1080 M7.=M7.-1
1090 IF SF7.= 1 THEN 1040
1100 NEXT
1110 RETURN

Program 5.4. Diminishing increment sort (version 1).

The timings for the simple diminishing increment sort are given in
Table 5.4 which follows:

Table 5.4. Diminishing increment sort timings (version 1).

Array order Elements Execution time

Reverse 100 8.96 seconds
Reverse 200 20.96 seconds
Reverse 300 31.64 seconds
Near order 100 7.54 seconds
Near order 200 17.57 seconds
Near order 300 29.37 seconds
Random 100 21.65 seconds
Random 200 71.19 seconds
Random 300 136.28 seconds

Some interesting features are revealed by Table 5.4. The most
striking is the increase in speed, due to the more linear relationship
between execution time and the number of array elements. Notice
that for this algorithm, worst case operation is no longer the reverse

102 Filing Systems and Databases for the Amstrad CPC464

order condition. This honour has been transferred to randomly
generated arrays.

Program 5.5 is a variation on the simple diminishing increment
sort. The fundamental difference is in the way the sets are divided up
and composed. The choice of increments is purely arbitrary as long as
the final increment is 1. Other values of increment may work equally
well, worse or even better. Notice that a constant (2) is added in at line
1020. We found the performance slightly improved by this addition
for large numbers of array elements. Perhaps it helps the sets mix
better. Analysis of Shellsort is very difficult and estimates of the
number of comparisons required have, to date, only been estimated
under special conditions. Broadly, Program 5.5 is an improvement
on the previous one in terms of execution time. This is evident from
the comparison of Tables 5.4 and 5.5. The most outstanding
improvement is in the sorting of a randomly generated array. The
near-order performance, however, is only slightly improved.

998 REM DIMINISHING INCREMENT SORT
999 REM (VERSION 2)
1000 N7.=NUMBER7.
1010 WHILE N7.>1
1020 N7.= (N7.+2) \3
1030 FOR D7.=N7.+ 1 TO N7.*2
1040 FOR E7.=D7. TO HUMBERT, STEP N7.
1050 FOR F7.=E7. TO D7. STEP -N7.
1060 IF A7.(F7.XA7.(F7.-N7.) THEN T7.-A7. (F7.) :
A7.(F7.)=A7.(F7.-N7.) : A'Z(F7.-N7->=T7. ELSE 1080
1070 NEXT
1080 NEXT E7.
1090 NEXT
1100 WEND
1110 RETURN

Program 5.5. Diminishing increment sort (version 2).

This particular version was modified and used in Program 4.1 in
the previous chapter and is quite acceptable written in BASIC
provided N is not too large. Please note that the division sign in line
1020 is integer division, not normal division.

Searching and Sorting 103

Table 5.5. Diminishing increment sort timings (version 2).

Array order Elements Execution time

Reverse 100 9.92 seconds
Reverse 200 19.82 seconds
Reverse 300 37.14 seconds
Near order 100 7.36 seconds
Near order 200 14.66 seconds
Near order 300 26.11 seconds
Random 100 11.78
Random 200 23.85 seconds
Random 300 45.13 seconds

The Quicksort

The Quicksort algorithm devised and named by C. Hoare is one of
the fastest known for sorting random array elements and can
approach the theoretical minimum sorting time proportional to
nlog2n. This algorithm often impresses due to its speed when sorting
large numbers of random elements.

The fundamental idea behind Quicksort is the divide and conquer
technique. We observed earlier that sorting small lists is far more
efficient than sorting large lists. It follows that if we have a large
array, split it into two sublists containing different ranges of numbers
and sort each list separately, we will save a lot of sorting time. To do
this, we estimate an array element that, hopefully, will have a median
value and call this the pivot. All array elements having a value less
than the pivot will be placed above it in the lower half of the array and
all elements having a value greater than the pivot placed in the higher
half. If these two portions of the array are sorted separately, either
side of the pivot, then the array will be completely sorted. The
estimate of the pivot value is all-important here. For instance, we
could choose the first array element or the last array element in a
random array. However, if the list is partially sorted, as may occur in
practice, the performance may be seriously degraded because the
pivot will be too far offset from the median value to make the split
worthwhile. This effect can be reduced statistically by choosing the
pivot as the mid-point element of the array. There are, of course,
many other ways of obtaining the pivot but we will employ this

104 Filing Systems and Databases for the Amstrad CPC464

method. Incidentally, during worst case conditions, where the above
effect is dominant, the sorting time can be as poor as that for a bubble
sort (approximately proportional to n2) but this is unlikely to happen
in practice.

One method of implementing Quicksort is to keep partitioning lists
in this way till we have many lists containing, say, 15 elements at most
and then bubble sorting them. Alternatively, if we carry on and take
this partitioning process to its limit then each sublist will eventually
contain only one element, in which case there will be no need to
employ a bubble sort at all.

Normally, Quicksort would be written in a form suitable for
exploiting recursion. This term is used to define the practice whereby
a subprogram calls itself from within its own bounds. This is how the
many levels of partitioning are effected. Recursion normally requires
that defined PROCEDURES with local variables are supported.
These, although included in the more structured microcomputer
languages such as Pascal and BBC BASIC, are sadly omitted in the
otherwise impressive Amstrad CPC464 version of BASIC, pre­
sumably because of lack of space in the ROM. This does complicate
matters but, fortunately - although beyond the scope of this book - a
set of rules can be applied to remove recursion from algorithms by
employing a stack. (A stack is a section of memory where the last
variable value stored is the first recalled.) These rules have been
applied and Program 5.6 is the result. The array index limits of the
lower sublist are p% and q% (head and tail respectively) and r% and
s% for the higher sublist. The head and tail parameters of the sublists
yet to be sorted are put on the stack. Thus, if we are presently sorting
the array between A%(p%) and A%(q%) then r% and s% would be
placed on the stack so the sublist A%(r%) to A%(q%) could be sorted
later. It transpires that it is better to put the longer sublist limits on
the stack and process the shorter sublist immediately. This is the task
performed in line 1100. Each time a list is further partitioned in the
outer WHILE/WEND loop the process is repeated. On exit of the
loop in line 1120, the sublists, whose parameters were placed on the
stack, are taken in sequence (last in, first out) and sorted in a similar
manner.

It is often stated that Quicksort uses a lot of memory because the
program listing is longer, it uses more variables and needs to employ
a fixed stack area of memory. However, the extra memory used by
the stack itself is not excessive. The number of stack levels needed by
Quicksort is given by log2n. Therefore, to sort, say, 4096 numbers, the
number of stack levels needed will be log2(4096)= 12. In Program 5.6

Searching and Sorting 105

we need two stacks, consisting of at least 12 integer array elements
each, making a total of 24. Each array element DIMensioned
consumes 2 bytes so 48 bytes of array space will be claimed. This
memory need not be permanently allocated on the Amstrad CPC464
since we can DIMension the stack at the start of the subroutine (line
1000) and ERASE it at line 1130 thus freeing the memory again for
use by the main program.

The demonstration program for Quicksort is Program 5.6 and the
sorting time table is Table 5.6. The table reveals that, over the range
tested, there is an approximately linear relationship between the
execution time and the number of elements sorted. The near-ordered
performance was not seriously degraded in this particular test, but we
may not be so lucky in some of the other, largely ordered, situations
mentioned above.

999 REM QUICKSORT SUBROUTINE
1000 DIM stackl7.(16) , stack27. (16)
1010 sp7.=0: head7.= l: tai 17.=NUMBER7.
1020 WHILE head7.<tail7.
1030 pi vot7.=A7. ((head7.+tai 17.) \2)
1040 aZ=headZ:bZ=taiIX
1050 WHILE AXCaXXpivotX: aX=aX+l: WEND
1060 WHILE AX(bX)>pivotX:bX=bX—1:WEND
1070 IF a7.<b7. THEN t7.=A7. <a7.): AX (aX) =A7. (b
7.1 : AX <b7.) =tX: a7.=a7.+l: b7.=b7.-l : GOTO 1050
1080 IF a7.=bX THEN q7.=b7.-l: rX=a7.+ l ELSE
q7.=bX: r7.=a7.
1090 sp7.=sp7.+ l: pX=headX: sX=tai 17.
110O IF qX—pX<sX—rX THEN stacklX(spX)=rX
: stack2X (spX) =sX: headX=pX: tai 17.=q7. ELSE
stack 1X(spX) =p7.s stack27. (spX) =qX: headX=rX
:tai 1X=sX
1110 WEND
1120 IF spX>0 THEN head7.=stackl7.(sp7.): ta
i1X=stack2X(spX) :spX=spX—1:GOTO 1020
1130 ERASE stack 17., st ack 27.
1140 RETURN

Program 5.6. Quicksort.

106 Filing Systems and Databases for the Amstrad CPC464

Table 5.6. Quicksort timings.

Array order Elements Execution time

Reverse 100 6.08 seconds
Reverse 200 12.77 seconds
Reverse 300 18.65 seconds
Near order 100 7.45 seconds
Near order 200 15.51 seconds
Near order 300 23.30 seconds
Random 100 10.12 seconds
Random 200 19.32 seconds
Random 300 30.41 seconds
Random 1000 110.00 seconds
Random 2000 243.48 seconds

It is generally agreed that there is no universally superior sorting
algorithm. Each has its relative advantages and disadvantages. The
programmer should choose the one most suited to the particular task
in hand taking into account such factors as the number of items to be
sorted, available memory, acceptable execution time, and - most
important of all - programming effort. It is pointless to use an
elaborate sorting routine, such as Quicksort, to sort a list of say
twenty items. It is equally pointless to employ one to sort a fairly large
list once only. An analogy can be found between sort routines and
cricketers. Cricketers are either good bowlers or good batsmen but
rarely both.

Sorting strings

Earlier examples in this chapter have all used integer array elements
as the variables. String array variables can be substituted by changing
all occurrences of A%(N%) to A$(N%). The corresponding test part
of the programs, of course, would need to be changed. As an example
of the conversion necessary, we have produced a string version of
Quicksort with an accompanying testing program. The listing is
given as Program 5.7. It should be a fairly easy process to convert the
earlier subroutines to sort strings. A timing table, Table 5.7, shows
typical execution times for sorting various size random string arrays.

Searching and Sorting 107

Table 5.7. Typical execution times for Program 5.7.

Array size Typical sorting time

100 9.65 seconds
200 20.37 seconds
300 31.41 seconds
500 54.94 seconds

1000 230.76 seconds

10 REM SORT TEST PROGRAM
20 REM STRING ARRAY
30 CLS
40 INPUT"Sort how many stri ngs" ; NUMBER’/.
50 PRINT
60 REM FILL AND DISPLAY RANDOM ARRAY
70 DIM A*(NUMBER’/.)
80 FOR R7.= l TO NUMBER’/.
90 B*=""
1OO A7.=6*RND+1
110 FOR Z’/.= l TO A7.
120 N7.=25*RND
130 K«=CHR* (N7.+65)
140 B«=B»+K$
150 NEXT
160 A$(R7.)=B«
170 PRINT A*(R7.)
180 NEXT
190 PRINTzPRINT
200 PRINT"SORTING ARRAY"
210 PRINTzPRINT
220 START=TIME/300
230 GOSUB 1000
240 T=TIME/300—START
250 FOR R7.= l TO NUMBER’/.
260 PRINT A«(R7.)
270 NEXT
280 PRINT
290 PR I NT "RECORDS SORTED=" ; NUMBER’/.
300 PRINT
310 PRINT”SORTING TIME=";ROUND(T,2)J"SEC
ONDS"

108 Filing Systems and Databases for the Amstrad CPC464

320 END
330 ’
340 ’
999 REM STRING QUICKSORT SUBROUTINE
1000 DIM stackl7.(16) ,stack2X(16)
1010 sp7.=O: head7.= l: tai 17.=NUMBER7.
1020 WHILE head7.<tail7.
1030 pivot«=A*((head7.+tail7.) \2)
1040 a7.=head7.sb7.=tailZ
1050 WHILE AS(a/.) <pivotS: aZ=a7.+ l:WEND
1060 WHILE AS<b7.) >pivot« :b7.=b7.-1: WEND
1070 IF a7.<b7. THEN t«=AS<a7.): AS (a7.) =AS <b
7.): AS (b7.) =tS: a7.=a7.+ l:b7.=b7.-l: GOTO 1050
1080 IF a7.=b7. THEN q7.=b7.-l: r7.=a7.+ l ELSE
q7.=b%: r7.=a7.
1090 sp7.=spZ+l:pX=head7.:s%=tail7.
11OO IF q7.-pX<s7.-r7. THEN stackl7.(sp7.)=r7.
: st ack 27. (sp7.) =s7.s head7.=p7.: tai 17.=q7. ELSE
stackIX(spZ)=pX:stack2X(spX)=qX:headX=rX
:tailX=sX
1110 WEND
1120 IF spX>0 THEN headX=stack 17.(spX): ta
i 1X=stack2X (spX): spX=spX-l: GOTO 1020
1130 ERASE stackIX,stack2X
1140 RETURN

Program 5.7. String version of Quicksort.

Rectangular or two-dimensional string array

A common file organisation, encountered in RAM-based filing
systems, is the two-dimensional or rectangular string array. If a
RAM-based file is DIMensioned A$(FIELDS%,RECORDS%)
then the file AS can be considered to contain RECORDS% records
each of F1ELDS% fields. We can define any field in a specific record
by A$(F%,R%) where F% is the field number and R% is the record
number.

Searching and Sorting 109

Fig. 5.1. Storing a data file as a rectangular array.

File stored in RAM as a rectangular array

Field 0 Field 1 Field 2

Field headings A$(0,0) A$(1,0) A$(2,0)

Record 1 A$(0,1) A$(l,l) A$(2,l)

Record 2 A$(0,2) A$(l,2) A$(2,2)

Record 3 A$(0,3) A$(l,3) A$(2,3)

Record 4 A$(0,4) A$(l,4) A$(2,4)

Record 5 A$(0,5) A$(l,5) A$(2,5)

Record n A$(0,n) A$(l,n) A$(2,n)

Figure 5.1 shows how a file of this type is visualised in memory.
There are a few points in Figure 5.1 in need of clarification:

(a) When BASIC DIMensions a rectangular array, 3-byte string
descriptors are reserved for each array element whether they are used
or not. Unfortunately, this includes all zero-indexed elements. In
order to maximise the use of available memory we should ensure that
field zero is used as one of the legitimate fields. If we do this then we
can DIMension, say, a 400-record, 5-field file as A$(4,400) rather
than A$(5,400) which would, at first sight, seem reasonable.
Neglecting this point could waste 400X3 = 1200 bytes of memory
unnecessarily.
(b) The record zero elements are not wasted since they are
convenient for storing the field headings themselves.

110 Filing Systems and Databases for the Amstrad CPC464

Sorting rectangular string arrays

If it is required that records are to be sorted according to a specific
field, we need to modify our routines to exchange all fields of the
record pairs each time. An extra FOR/NEXT loop will be needed to
take care of this.

If a string sort is to be used successfully on numeric data fields, the
user should ensure that all entries have a constant number of digits
(including leading zeros). An alternative is the conditional use of the
VAL statement. However, this would introduce further compli­
cations along with an alarming increase in execution time.

Program 5.8 shows how the diminishing increment sort (version 2)
is modified for sorting a rectangular string array. We employed this
subroutine for Program 4.1 in the previous chapter. A test program
is also given that can generate a chosen number of fixed, three-field,
randomly generated records. See Table 5.8 for typical execution
times.

Table 5.8. Typical execution times for Program 5.8.

Records Typical sorting time

100 27.91 seconds
200 109.66 seconds
300 310.70 seconds

10 REM TEST PROGRAM
20 REM SORTING A RECTANGULAR STRING
30 REM ARRAY WITH BASIC SUBROUTINES
40 CLS
50 INPUT"Sort how many 3 -field records”;
RECORDS*/.
60 FIELDSX=2:REM fields 0,1,2
70 INPUT"Sort which field (0-2)";FIELDNU
MX
80 PRINT
90 REM FILL AND DISPLAY RANDOM ARRAY
100 DIM A* (FIELDSX, RECORDS'/.)
110 FOR RX=1 TO RECORDS'/.
120 FOR FX=O TO FIELDS"/.
130 B«=“"

Searching and Sorting 111

140 AX=6*RND+1
150 FDR ZX=1 TO AX
160 NX=25*RND
170 K«=CHR*(N’/.+65)
180 B«=B«+K*
190 NEXT
200 A*(FX,RX>=B*
210 PRINT A«(FX,RX>,
220 NEXT
230 NEXT
240 PRINTsPRINT
250 PRINT"SORTING ARRAY"
260 PRINTsPRINT
270 START=TIME/300
280 GOSUB 1000
290 T=TIME/300-START
300 FOR R’/.= l TO RECORDS’/.
310 FOR FX=O TO FIELDS’/.
320 PRINT A«(FX,RX),
330 NEXT
340 NEXT
350 PRINT
360 PR I NT "RECORDS SORTED=“ ; RECORDS’/.
370 PRINT
380 PRINT"SORTING TIME="5 ROUND(T,2)5“SEC
ONDS"
390 END
400 ’
410 ’
998 REM DIMINISHING INCREMENT SORT
999 REM (VERSION 2)
1000 N’/.=RECORDSX
1010 WHILE NX>1
1020 NX=(NX+2)\3
1030 FOR D’/.=NX+1 TO NX*2
1040 FOR EX=DX TO RECORDSX STEP NX
1050 FOR RX=EX TO DX STEP -NX
1060 IF A*(FIELDNUMX,RX)<A*(FIELDNUMX,RX
-NX) THEN FOR CX=O TO FIELDS/.: T«=>A« (CX, R
X):A« <CX,RX)=A« (CX,RX-NX):A*(CX,RX-NX)=T
♦:NEXT ELSE 1080
1070 NEXT
1080 NEXT EX

112 Filing Systems and Databases for the Amstrad CPC464

1090 NEXT
11OO WEND
1110 RETURN

Program 5.8. Diminishing increment sort of a rectangular string array.

A rectangular string array version of Quicksort, given in Program
5.9, can replace the sort routine used in Program 4.1 of the previous
chapter. This might give better all-round performance, but remember
that the variables REC0RDS% and FIELDNU M% should be
changed to L% and F% respectively. Table 5.9 shows the typical
sorting times to be expected.

Table 5.9. Typical execution times for Program 5.9.

Records Typical sorting time

100 15.49 seconds
200 33.42 seconds
300 144.87 seconds
500 596.37 seconds

998 REM SUBROUTINE: QUICKSORT
999 REM RECTANGULAR STRING ARRAY
1000 DIM stacklX(16) ,stack2X(16)
1010 spX=O: headX=l: tai1X=RECORDSX
1020 WHILE headX<tailX
1030 pi vot*=AS (FIELDNUMX, (headX+tai 17.) \2
)
1040 aX=headX: b7.=tai 1X
1050 WHILE A* (FIELDNUMX, aXXpivot«:aX=aX
■*■1: WEND
1060 WHILE A$(FIELDNUMX,bX)>pivot$:bX=bX
—1:WEND
1070 IF aXCbX THEN FOR CX=0 TO FIELDSXst
=A <CX,aX):A«(CX,aX)=A« (CX,bX):AS(CX,bX
)=tS:NEXT:aX=aX+l:bX=bX-l:GOTO 1050
1080 IF aX=bX THEN qX=bX-l:rX=aX+l ELSE
qX=bX:rX=aX
1090 spX=spX+1:pX=headX:sX=tai1X
11OO IF qX—pX<sX—rX THEN stackIX(spX)=rX
:stack2X(spX) =sX:head7.=pX:tai 1 X=qX ELSE
stacklX(spX)=pX:stack2X(spX)=qX:headX=rX

Searching and Sorting 113

: tai 17.=s%
1110 WEND
1120 IF sp7.>0 THEN head’/.=stack 17. (sp7.) s ta
i 17.=stack27. (sp7.): sp7.=sp7.-l:GOTO 1020
1130 ERASE stackl7.,stack27.
1140 RETURN

Program 5.9. Quicksort of a rectangular string array.

Machine code solutions

Whatever sort technique we use, there is no denying that where large
numbers of elements are involved, the execution time can be
unacceptable. We are, after all, up against the inherent defects of the
BASIC language. It is an interpretive, rather than a compiled,
language so execution speed is slow. The solution to the speed
problem is to program in machine code.

Even in machine code, it will still be important to select a suitable
algorithm. For example, assuming that a list is large, a bubble sort
written in machine code would not execute much faster than
Shellsort written in BASIC. However, in order to minimise the
tedium of machine code programming it is sometimes advantageous
to choose algorithms which are inherently binary in nature. Of all the
algorithms briefly discussed in this chapter, the Diminishing
Increment sort (version 1) is perhaps the best choice, taking into
account both programming effort and general performance. This
results from the binary method used to calculate the increment series.

Although the subject of Z80 machine code programming is outside
the scope of this volume, it would be a pity if we neglected to include a
few powerful routines for sorting arrays. We therefore ask you to
accept these routines with only an outline explanation. However, it is
worth making use of these routines so the emphasis will be on their use
ratherthan the programmingdetails. If nothingelse, it should give you
an idea of the speed advantages to be gained from machine code
programming.

All the assembly language listings in this section have been
developed using the inexpensive tape version of the ‘HiSoft
DEVPAC Editor, Assembler, Disassembler & Monitor’ (Amsoft
116). Do not worry if you cannot lay your hands on this particular
piece of software. Hex loading programs, written in BASIC, will be

114 Filing Systems and Databases for the Amstrad CPC464

provided so that the machine code bytes can be loaded directly from
BASIC DATA statements into a fixed area of memory. This section
of memory can then be saved to tape as a binary file.

Machine code string array sort

Practical files usually have more fields holding alpha characters than
numeric. When a string array is DIMensioned by the BASIC
interpreter, an access table is set up containing three bytes for each
string element. These bytes are not the strings themselves but the
length and address of where the string is stored. These three bytes are
referred to as string descriptors and represent the string length, low
byte address and high byte address respectively. The string length
byte is the lowest in memory. The actual string, consisting of the
ASCII codes in sequential memory locations, is stored at the starting
address given in bytes 2 and 3 above. A string array is thus formed by
a series of such string descriptors stored sequentially in memory.
Swopping strings during a string sort is not as difficult as it may first
appear. We can leave the strings themselves where they are in
memory and swop the string descriptors, since these tell the BASIC
interpreter where the strings are stored.

Program 5.10 is what is known as an assembly code or source code
listing of a diminishing increment string sort. The final machine code
or object code, necessary to sort string arrays, is assembled from this
and placed into memory from address &9980 onwards.

The corresponding test program is Program 5. II which sets up a
random string array, calls the machine code routine and displays the
sorted array. Finally, for those without an assembler, a hex loading
program is given in the form of Program 5.12.

10 ^DIMINISHING INCREMENT SORT
20 5 OF A STRING ARRAY
30 begin: EQU #9980
40 top: EQU begin+#F0
50 number: EQU top
60 array: EQU top+2
70 power: EQU top+4
80 cycles: EQU top+5
90 count: EQU top+7

1OO •Fl ag: EQU top+9
110 pointl: EQU top+10

Searching and Sorting 115

120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540

ORG begin
;Initialise

point2: EQU top+12
lenl: EQU top+14
len2: EQU top+15
addr1: EQU top+16
addr2: EQU top+18
size: EQU top+20

LD L,(IX)
LD H,(IX+1)
LD (array),HL

LD HL, 1
LD (size),HL

;Pick up and store
;array start address

jPick up number o-F strings
;and store in number

LD L,(IX+2)
LD H,(IX+3)
LD (number),HL

»Find next power o-F 2 >= number
;and store in size

EX DE, HL
SUB A

loop: INC A
LD HL,(size)
ADD HL, HL
LD (size),HL
SBC HL, DE
JR C,loop

;Store correspondi ng
;i ndex i n power

LD (power),A
;Divide size by 2
outer: LD DE,(size)

SRL D
RR E
LD (size),DE

jSubtract size -from number
jand store in cycles

LD HL,(number)
SBC HL, DE
LD (cycles),HL

116 Filing Systems and Databases for the Amstrad CPC464

550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
970

jInitialise count and swop -flag
mid: SUB

LD
LD
LD

jStore array

A
(count),A
(count+1), A
(flag),A
start address

jin pointl
LD HL,(array)
LD (pointl),HL

jMultiply size by 3 add pointl
jstore result in point2

LD HL,(size)
LD D,H
LD E,L
ADD HL, HL
ADD HL, DE
LD DE,(pointl)
ADD HL, DE
LD (point2),HL

Get lengths and addresses
ot strings to be compared
nner: LD HL,(pointl)

LD A, (HL)
LD (1en1) , A
INC HL
LD A,(HL)
LD (addrl), A
INC HL
LD A, (HL)
LD (addrl+1),A
LD HL,(point2)
LD A, (HL)
LD (len2), A
INC HL
LD A,(HL)
LD (addr2),A
INC HL
LD A,(HL)
LD (addr2+l),A
LD B,0

jCompare strings a character at
ja time, branch swop or noswop

LD DE,(addr2)

Searching and Sorting 117

980 LD HL,(addrl)
990 comp: LD A, (DE)

1OOO CP (HL)
1010 JR C,swop
1020 JR NZ,noswop
1030 INC B
1040 LD A,(lenl)
1050 CP B
1060 JR Z,noswop
1070 LD A,(len2)
1080 CP B
1090 JR Z,swop
110O INC DE
1110 INC HL
1120 JR NZ,comp
1130 ;Initialise byte counter
1140 ;set swap flag
1150 swop: LD B,3
1160 LD (flag) , A
1170 LD DE,(pointl)
1180 LD HL,(point2)
1190 $Swop string descriptors
1200 ;a byte at a time
1210 loop2: LD A, (DE)
1220 LD C,(HL)
1230 EX DE, HL
1240 LD (HL),C
1250 LD (DE),A
1260 INC DE
1270 INC HL
1280 DJNZ loop2
1290 ;Add 3 to each of
1300 ;point1 and point2
1310 noswop: LD DE, 3
1320 LD HL,(pointl)
1330 ADD HL, DE
1340 LD (pointl),HL
1350 LD HL,(point2)
1360 ADD HL, DE
1370 LD (point2),HL
1380 ;Increment count
1390 LD DE,(count)
1400 INC DE

118 Filing Systems and Databases for the Amstrad CPC464

1410 LD (count), DE
1420 ;Compare count to cycles
1430 ;if not equal jump to inner
1440 LD HL,(cycles)
1450 SBC HL, DE
1460 JP NZ,i nner
1470 ;Jump to fclear
1480 ;if swop flag1 is clear
1490 LD A, (flag)
1500 CP 0
1510 JR Z,fclear
1520 ;Decrement cycles and
1530 ;jump to mid if not zero
1540 LD HL,(cycles)
1550 DEC HL
1560 LD (cycles),HL
1570 LD A,H
1580 OR L
1590 JP NZ,mid
1600 jDecrement power and
1610 ;jump to outer if not zero
1620 fclear: LD HL,power
1630 DEC (HL)
1640 JP NZ,outer
1650 RET

Program 5.10. Diminishing increment sort of string array.

10 REM SORT TEST PROGRAM
20 REM STRING ARRAY
30 CLS
40 PRINT"Place object code tape in DATAC
ORDER"
50 OPENOUT “buffer"
60 MEMORY &997F
70 CLOSEDUT
80 LOAD "STRINGSORT" , 8c9980
90 CLS
1OO INPUT"Sort how many strings";NUMBERS
110 PRINT
120 REM FILL AND DISPLAY RANDOM ARRAY
130 DIM A«(NUMBER/)
140 FOR RZ=O TO NUMBER/—1
150 B«=“"

Searching and Sorting 119

160 AZ=6*RND+1
170 FOR Z7.= l TO A’/.
180 N7.=25*RND
190 KS=CHRS(N7.+65)
200 B«=B«+K*
210 NEXT
220 A*(R7.)=B*
230 PRINT A*(R7.)
240 NEXT
250 PRINT:PRINT
260 PRINT"SORTING ARRAY"
270 PRINT:PRINT
280 START=TIME/300
290 CALL &9980, NUMBER’/., SA* (O)
300 T=TIME/300-START
310 FOR R’/.=0 TO NUMBER’/.-1
320 PRINT A*(R7.)
330 NEXT
340 PRINT
350 PR I NT "RECORDS SORTED=" ; NUMBER’/.
360 PRINT
370 PRINT"SORTING TIME=”;ROUND<T,2)5"SEC
ONDS"
380 PRINT
390 INPUT"Another test (Y/N)";K*
400 K»=UPPER*(KS)
410 IF K*="Y" THEN ERASE A*:GOTO 90 ELSE

END

Program 5.11. BASIC test program for machine code string sort.

10 REM PRODUCING A MACHINE CODE FILE
20 REM SORT STRING ARRAY
30 REM (no assembler needed)
40 CLS
50 ADDRESS%=&9980
60 FOR N7.=O TO &EF
70 READ BYTE*
80 POKE ADDRESS7.+N7., VAL("&"+BYTE*>
90 NEXT
100 PRINT"Now produce an object code til
e on tape"
110 SAVE "STRINGSORT" , B, &9980, 8cF0
120 END

120 Filing Systems and Databases for the Amstrad CPC464

130 DATA 21,01,00,22,84,9A,DD,6E
140 DATA 00,DD,66,O1,22,72,9A,DD
150 DATA 6E,02,DD,66,03,22,70,9A
160 DATA EB,97,3C,2A,84,9A,29,22
170 DATA 84,9A, ED, 52, 38, F4, 32, 74
180 DATA 9A,ED,5B,84,9A,CB,3A,CB
190 DATA IB,ED,53,84,9A,2A,70,9A
200 DATA ED,52,22,75,9A,97,32,77
210 DATA 9A,32,78,9A,32,79,9A,2A
220 DATA 72,9A,22,7A,9A,2A,84,9A
230 DATA 54,5D,29,19,ED,5B,7A,9A
240 DATA 19,22,7C,9A,2A,7A,9A,7E
250 DATA 32,7E,9A,23,7E,32,80,9A
260 DATA 23,7E,32,81,9A,2A,7C,9A
270 DATA 7E, 32, 7F, 9A, 23, 7E, 32, 82
280 DATA 9A,23,7E,32,83,9A,06,OO
290 DATA ED,5B,82,9A,2A,80,9A,1A
300 DATA BE, 38, 13, 20,26,04, 3A, 7E
310 DATA 9A,B8,28,1F,3A,7F,9A,B8
320 DATA 28,04,13,23,20,E9,06,03
330 DATA 32,79,9A,ED,5B,7A,9A,2A
340 DATA 7C,9A,1A,4E,EB,71,12,13
350 DATA 23,10,F7,11,03,OO,2A,7A
360 DATA 9A,19,22,7A,9A,2A,7C,9A
370 DATA 19,22,7C,9A,ED,5B,77,9A
380 DATA 13,ED,53,77,9A,2A,75,9A
390 DATA ED,52,C2,DC,99,3A,79,9A
400 DATA FE,00,28,OC,2A,75,9A,2B
410 DATA 22,75,9A,7C,B5,C2,BD,99
420 DATA 21,74,9A,35,C2,A9,99,C9

Program 5.12. Hex loading program for machine code string sort.

Producing an object code file

In order to use machine code subroutines conveniently from a
BASIC program it is necessary to produce a binary file of the object
code on tape. This file can then be loaded automatically by the
BASIC program in the first few lines. There are two ways to produce
the object code file:

Method 1: Using an assembler
This method assumes that you are in possession of the HiSoft
DEVPAC assembler.

Searching and Sorting 121

(a) Load the HiSoft DEVPAC assembler at, say, address 6500
decimal. You will be prompted for this address.
(b) Type in the assembly code listing exactly as printed in Program
5.10 (this is sometimes called the source code listing).
(c) Save a copy of the source code on tape by typing:

P 10,1650,<filename>

The file can be reloaded at some later time with:

G„<filename>

(d) Assemble the source code by typing in A as an assembler
command. When asked for table size, respond with 500. This is more
than adequate space for the symbol table.
(e) Clear typing errors if any errors are reported.
(f) Produce an object code file that can be loaded directly from tape
by a main program. This is done automatically by typing the
assembler command:

O„STRINGSORT

Note that the filename STRINGSORT is not enveloped in double
quotes.
(g) Perform a hard reset to clear memory.
(h) Type in the test program, Program 5.11. This will automatically
load, run and test the STRINGSORT file you have just produced.

The object code itself is loaded into a 512-byte section of memory
reserved above HIMEM at &9980 but below the permanently
allocated cassette buffer area (refer back to ‘Allocation of cassette
buffer area’ in Chapter 1).

Method 2: No assembler
Type in Program 5.12 and RUN it. The object code file will be
produced automatically. This program is simply a loop which picks
up the machine code bytes from DATA statements and dumps them
directly into memory from &9980 onwards. The code is then
automatically saved on tape.

Relocation of machine code
The main disadvantage of method 2 is that the code will only execute
at address &9980. Moving it elsewhere in memory will result in chaos
because the object code is said to be not relocatable. If you have a
standard machine without disk drives or light pens etc., there is no

122 Filing Systems and Databases for the Amstrad CPC464

problem. However, it may be necessary to resort to Method I to
reassemble the source code at an alternative address if such
peripherals are connected. This is an easy task with Program 5.10;
simply change the address in the EQU statement in line 30 and
reassemble.

Calling STRINGSORT from any user program
To CALL the machine code STRINGSORT routine it is necessary to
pass over a few parameters. This is accomplished by the insertion of
one line in your program. For instance,

CALL &9980,NUMBER%,@A$(1)

will sort the array AS from A$(l) to A$(NUMBER%).
The &9980 term is the execution address of the subroutine. This

can be altered if you assemble the code elsewhere in memory.
NUM BER%, an integer variable, is the number of strings in the array
that are to be sorted. Any other variable will do, as long as it equals
this value. For instance, you could use SIZE% instead. The @A$(1)
parameter passes over the address of the first string descriptor of the
array to be sorted.

Passing @A$(0) will sort A$(0) to A$(NUMBER%—1) inclusive.
Passing @A$(1) will sort A$(1) to A$(NUMBER%) inclusive. Note
that the symbol preceding a variable means pass over the address
of the variable to the machine code routine, not the variable value
itself.

When a CALL statement is executed in BASIC, the parameter list
values, following the execution address, are passed over to the
machine code subroutine. These are automatically stored in a
parameter block offset from an address stored in the IX register of the
Z80 microprocessor. The parameter list values are offset from the IX
register contents in the reverse order to that which appears in the
CALL statement. For instance, with the above CALL, the address of
the A$(1) string descriptor is set up in (IX) and (IX+ l)and the actual
value of NUMBER% is set up in (IX+2) and (IX+3), low byte and
high byte respectively. These parameters may then be picked up and
stored in a more convenient section of memory by the machine code
subroutine itself.

To give an idea of the execution speed that can be expected from
Program 5.10, see Table 5.10.

Searching and Sorting 123

Table 5.10. Typical execution times for Program 5.10.

Array size Typical sorting time

100 0.53 seconds
200 1.59 seconds
300 2.97 seconds
500 7.23 seconds

1000 22.32 seconds
2000 64.35 seconds

Machine code diminishing increment sort of a rectangular
string array

Program 5.13 will sort a two-dimensional string array of the type
described earlier in this chapter. It is fairly fast. In fact, it will sort a
computerful of records in about 8 seconds. However, successful
operation depends on the field index being the first DIMensioned.
That is to say, the rectangular array is dimensioned DIM
A$(FIELDS%,RECORDS%) and individual fields F%, of record
R%, are accessed A%(F%,R%).

10 ;DIMINISHING INCREMENT SORT OF A
20 ;TWO DIMENSIONAL STRING ARRAY
30 begin: EQU #9980
40 top: EDU begin*#OHC
50 number: EQU top
60 array: EQU top+2
70 power: EQU top+4
80 cycles: EQU top+5
90 bytes: EQU top+7

100 count: EQU top+9
110 -Flag: EQU top+11
120 pointl: EQU top+12
130 point2: EQU top+14
140 lenl: EQU top-*-16
150 len2: EQU top -*-17
160 addr1: EQU top+18
170 addr2: EQU top-*-20
180 size: EQU top+22

124 Filing Systems and Databases for the Amstrad CPC464

190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610

iFFset: EQU top+24
ORG begin

Initialise
LD HL,0
LD (bytes), HL
LD (oFFset),HL
INC HL
LD (size),HL

Pick up and store
array start address

LD L,(IX)
LD H,(IX+1)
LD (array), HL

Pick up Field number
multiply by 3 and
store in oFFset

LD A,(IX+2)
LD B,A
SLA A
ADD A,B
LD (oFFset),A

jPick up number o-F Fields
;add 1 and store in bytes

LD A,(IX+4)
INC A
LD B,A
SLA A
ADD A,B
LD (bytes),A

JPick up number oF records
; and store in number

LD L,(IX+6)
LD H,(IX+7)
LD (number), HL

jFind next power oF 2 >= number
; and store in size

EX DE, HL
SUB A

loop: INC A
LD HL,(size)
ADD HL, HL
LD (size),HL
SBC HL, DE

Searching and Sorting 125

620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
990

100O
1010
1020
1030
1040

JR C,loop
;store corresponding
;index in power

;Divide
outer:

LD (power),A
size by 2
LD DE,(size)
SRL D
RR E
LD (size),DE

;and store in cycles
;Subtract size -From number

LD HL,(number)
SBC HL, DE
LD (cycles),HL

;Initialise count and swop -Flag
mid: SUB A

LD (count),A
LD (count+1),A
LD (flag),A

;Store array start address
Jin pointl

LD
LD

HL,(array)
(pointl),HL

;Multiply size by bytes add
$pointl store result in point2

LD A,(bytes)
LD B,A
LD HL,0
LD DE,(size)

mult: ADD HL, DE
DJNZ mult
LD DE,(pointl)
ADD HL, DE
LD (point2), HL

5 Get lengths and addresses of
5strings to 1be compared
inner5 LD DE,(offset)

LD HL,(pointl)
ADD HL, DE
LD A,(HL)
LD (lenl), A
INC HL
LD A,(HL)

126 Filing Systems and Databases for the Amstrad CPC464

1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470

LD (addrl),A
INC HL
LD A, (HL)
LD (addrl+1),A
LD HL,(point2)
ADD HL, DE
LD A, (HL)
LD (len2), A
INC HL
LD A,(HL)
LD (addr2),A
INC HL
LD A,(HL)
LD (addr2+l),A
LD B,0
LD DE,(addr2)
LD HL,(addrl)

;Compare strings a character at
;a time branch swop or noswop
comp: LD A, (DE)

CP (HL)
JR C,swop
JR NZ,noswop
INC B
LD A,(lenl)
CP B
JR Z,noswop
LD A,(len2)
CP B
JR Z,swop
INC DE
INC HL
JR NZ,comp

;Initialise byte counter
;set swop -Flag
swop: LD A, (bytes)

LD B,A
LD (flag), A

;Swop string descriptors
;whole dimension a byte .

LD DE,(pointl)
LD HL,(point2)

loop2: LD A, (DE)

Searching and Sorting 127

1480 LD C,(HL)
1490 EX DE, HL
1500 LD (HL),C
1510 LD (DE), A
1520 INC DE
1530 INC HL
1540 DJNZ loop2
1550 ;Add bytes to each of
1560 ;pointl and point2
1570 noswop: LD DE,(bytes)
1580 LD HL,(pointl)
1590 ADD HL, DE
1600 LD (pointl),HL
1610 LD HL,(point2)
1620 ADD HL, DE
1630 LD (point2>,HL
1640 ;Increment count
1650 LD DE,(count)
1660 INC DE
1670 LD (count),DE
1680 •Compare count to cycles
1690 ;if not equal jump to ini
1700 LD HL,(cycles)
1710 SBC HL, DE
1720 JP NZ,inner
1730 •Jump to f cl ear
1740 ;if swop flag is clear
1750 LD A, (flag)
1760 CP 0
1770 JR Z,fclear
1780 •Decrement cycles and
1790 •jump to mid if not zero
1800 LD HL,(cycles)
1810 DEC HL
1820 LD (cycles),HL
1830 LD A,H
1840 OR L
1850 JP NZ.mid
1860 •Decrement power and
1870 • jump to outer if not zei
1880 fcl ear: LD HL,power
1890 DEC (HL)

128 Filing Systems and Databases for the Amstrad CPC464

1900 JP NZ,outer
1910 RET

Program 5.13. Machine code sort of a rectangular string array.

Program 5.14 is a test program produced to set up a random file of
3 field records for testing out Program 5.13. The 3 fields are
numbered field zero, field 1 and field 2 respectively and the array is
dimensioned DIM (FIELDS%,RECORDS%), where FIELDS%is
set to the value 2. If this appears strange, see the remarks earlier in
this chapter concerning the use of rectangular arrays. You are asked
for the number of records, and which field (0 to 2) is to be the subject
of the sort. As before, the routine can be called not only from the
BASIC test program but from any other program by using:

CALL &9980,RECORDS%,FIELDS%,FIELDNUM%,
@A$(0,1)

The parameters required are:

(1) The execution address. This is &9980 if the source code is
assembled as set by the EQU directive in line 30 of Program 5.13.
(2) REC0RDS%, which can either be the maximum number of
records DIMensioned in the file (assuming the file is full) or the
current number of records present in the array.
(3) FIELDS%, the number of fields minus one or the value to which
the fields are DIMensioned.
(4) FIELDNUM%, the sorting field number (0 to n— 1) where n is the
total number of fields. The routine can sort records with up to 85
fields which is a limit well above the demands of most files!
(5) The @A$(0,1) term is the address of the first used array element -
that is to say, the first used field of the first record. The zero elements
in the record dimension are kept for field headings and thus shuld not
be included in the sort.

10 REM TEST PROGRAM
20 REM MACHINE CODE SORT OF A
30 REM RECTANGULAR STRING ARRAY
40 CLS
50 PRINT"Place object code tape in DATAC
ORDER"
60 OPENOUT "buffer"
70 MEMORY &997F
80 CLOSEOUT

Searching and Sorting 129

90 LOAD"SORT",&9980
100 CLS
110 INPUT"Sort how many 3 -field records"
;RECORDS/.
120 FIELDS7.=2: REM 3 fields <0,1 & 2)
130 INPUT"Sort which field (0-2)“JFIELDN
UM7.
140 IF FIELDNUM7.<0 OR FIELDNUM7.>2 THEN 1
30
150 PRINT
160 REM FILL AND DISPLAY RANDOM ARRAY
170 DIM AS (FIELDS/., REC0RDS7.)
180 FOR R7.= l TO REC0RDS7.
190 FOR F7.=O TO FIELDS7.
200 BS=“"
210 A7.=6*RND+1
220 FOR Z7.= l TO A 7.
230 N7.=25*RND
240 KS=CHRS (N7.+65)
250 BS=BS+KS
260 NEXT
270 AS(FX,RX)=BS
280 PRINT AS(F7.,R7.) ,
290 NEXT
300 NEXT
310 PRINT:PRINT
320 PRINT"SORTING ARRAY"
330 PRINT:PRINT
340 START=TIME/3OO
350 CALL &9980, RECORDS/., FIELDS/., FIELDNUM
7.,@AS<0, 1)
360 T=TIME/300-START
370 FOR R7.= l TO RECORDS/.
380 FOR F7.=0 TO FIELDS/.
390 PRINT AS(F7.,R7.),
400 NEXT
410 NEXT
420 PRINT
430 PR I NT "RECORDS SORTED="; RECORDS/.
440 PRINT
450 PRINT"SORTING TIME=";R0UND(T,2)5"SEC
ONDS"
460 PRINT

130 Filing Systems and Databases for the Amstrad CPC464

470 INPUT"Another test (Y/N)";K*
480 K*=UPPER«(K«)
490 IF K$="Y" THEN ERASE A*:GOTO 1OO ELS
E END

Program 5.14. Test program for the machine code rectangular array sort.

Producing an object code file of Program 5.13

The source code assembles its object code where we instruct it to. In
the listing this happens to be &9980 onwards as set in line 30. We now
need a copy of this object code on tape for use by any other program.
Again there are two methods, depending on whether or not an
assembler is available. Brief notes on how to perform this are set out
below. For more general instructions and comments refer back to the
STRINGSORT example above.

Method 1: Using the HiSoft DEVP AC Assembler
(a) Load the Assembler at, say, &6500 decimal.
(b) Type in Program 5.13.
(c) Save the source code file by typing:

P 10,1910,<filename>

(d) Assemble the source code file by entering the assembler
command A. When asked for table size, respond with 500.
(e) Save the object code on tape by typing the command:

O„SORT

(f) Perform a hard reset then type in Program 5.14. This program
will load, run and test the object code file you have just produced.

Method 2: No assembler required
Simply type in and RUN Program 5.15. This program produces an
object code file named ‘SORT directly. Unfortunately, the machine
code generated in this way cannot be relocated and thus executes only
at address &9980.

10 REM PRODUCING A MACHINE CODE FILE
20 REM RECTANGULAR STRING ARRAY SORT
30 REM (no assembler needed)
40 CLS
50 ADDRESS%=&9980
60 FOR N7.=0 TO &11B

Searching and Sorting 131

" SORT " , B , &9980, «< 11CSAVE
END
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

21,00, 00, 22, A4,9A, 22, B5
9A, 23, 22, B3,9A, DD, 6E, 00
DD,66,01,22,9F,9A,DD,7E
02,47,CB,27,80,32,B5,9A
DD, 7E, 04,3C, 47, CB, 27, 80
32, A4,9A, DD, 6E, 06, DD, 66
07,22, 9D,9A,EB,97,3C,2A
B3,9A,29,22,B3,9A,ED,52
38,F4,32,Al,9A,ED,5B,B3
9A,CB,3A,CB,IB,ED,53,B3
9A,2A,9D,9A,ED,52,22,A2
9A,97,32,A6,9A,32,A7,9A
32, A8, 9A, 2A, 9F, 9A, 22, A9
9A,3A,A4,9A,47,21,00,00
ED,5B,B3,9A,19,10,FD,ED
5B,A9,9A,19,22,AB,9A,ED
5B,B5,9A,2A,A9,9A,19,7E
32,AD,9A,23,7E,32,AF,9A
23,7E,32,BO,9A,2A,AB,9A
19,7E,32,AE,9A,23,7E,32
Bl, 9A, 23, 7E, 32, B2, 9A, 06
00,ED,5B,Bl,9A,2A,AF,9A
1A,BE,38,13,20,28,04,3A
AD, 9A,B8,28,21,3A,AE,9A
B8,28,04,13,23,20,E9,3A
A4,9A,47,32,A8,9A,ED, 5B
A9,9A,2A,AB,9A,1A,4E,EB
71,12,13,23,10,F7,ED,5B
A4, 9A, 2A, A9, 9A, 19,22, A9
9A,2A,AB,9A,19,22,AB,9A
ED,5B,A6,9A,13,ED,53, A6
9A,2A,A2,9A,ED,52,C2,FF
99,3A, A8, 9A, FE, 00,28, OC
2A,A2,9A,2B,22,A2,9A,7C
B5,C2,D9,99,21,Al,9A,35
C2,C5,99,C9

70 READ BYTE*
80 POKE ADDRESSZ+NX, VAL (“8<M+BYTE«)
90 NEXT
100 PRINT“Now produce an object code -fil
e on tape"
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480

Program 5.15. Hex loading program for the machine code rectangular string
array sort.

132 Filing Systems and Databases for the Amstrad CPC464

For an idea of the sorting times to be expected for various numbers
of randomly generated three-field records, see Table 5.11.

Table 5.11. Typical execution times for Program 5.13.

Array size Typical sorting time

100 0.55 seconds
200 1.70 seconds
300 3.21 seconds
500 7.45 seconds

Upgrading the filing system of Chapter 4

The complete filing system program previously described in Chapter
4 would greatly benefit from the increased speed of the following
machine code sorting subroutine. The few modifications required are
given below:

(1) Replace the existing SORT FILE subroutine of Program 4.1
(lines 1480 to 1620 inclusive) with the lines given below:

1480 REM SORT FILE
1490 GOSUB 2480
1500 IF L7.<2 THEN 1520
1510 CALL &9980,L7.,f ields7.,F7.,@A*(0« 1)
1520 RETURN

Line 1500 skips the CALL if less than 2 records are in the file. Line
1510 calls the machine code routine and passes over the relevant
variables from Program 4.1.
(2) Replace the first 4 lines of Program 4.1 (lines 10 to 40 inclusive)
with the following 7 lines:

10 REM CASSETTE MULTIFILING SYSTEM
15 REM WITH MACHINE CODE SORT ROUTINE
20 OPENOUT “buffer"
25 MEMORY &997F
30 CLOSEOUT
35 CLS:PRINT"Now load machine code sort
routine"
40 LOAD "SORT",&9980

Searching and Sorting 133

Lines 20 to 30 set HIMEM to &997F thus reserving a generous 512
bytes for the machine code subroutine. At the same time, the cassette
buffers are permanently allocated. The machine code file is loaded in
line 40.

It is convenient to ensure that a copy of the object code file is placed
on tape immediately after the copy of Program 4.1. This enables
Program 4.1 to load the code without the user needing to swap
cassettes in the Datacorder.

Using string arrays as data files

A couple of points, concerned with sorting, need to be stressed when
using string arrays for data manipulation.

First, since all the file data resides in a single two-dimensional
string array, all numeric fields must be stored and sorted as their
string representation. Therefore, if we are to sort records by numeric
fields, we must ensure, at the data entry stage, that all numeric data in
a given field consists of the same number of digits. This could often
entail the entry of some leading zeros. This is a common occurrence
in the real world; account numbers, etc., frequently contain them.
Secondly, if monetary values are represented in fields it may be
necessary to store $28 as $00028.00 in order to sort them. This is
because other entries under the same field heading may contain odd
cents.

Machine code sort of multifield, fixed length records

There are two main ways of generating RAM-resident multifield
records. The most common is the one we have just treated, the two-
dimensional array, where the records occupy one dimension and the
fields the other dimension. A totally different method is where the
entire field is stored as one string array in which each field/record is
of fixed length. The length of the record strings and field substrings
are set to the maximum length likely to be used. Any unused portions
of fields/records are then padded with spaces. For example, Fig. 5.2
shows the field headings and a pair of records of a simple file padded
out with spaces. The start position of each field is at a fixed point
along the string for each record.

This technique is sometimes more economical in terms of memory
storage since only one string descriptor per record need be set up,

134 Filing Systems and Databases for the Amstrad CPC464

8 characters 11 characters 3 characters

Fig. 5.2. Pair of multifield fixed length records.

A$ (0) Iniaimiei 1 1 1 t|r|a|d|e| | J. I T I IAIGIEI Field headings

A$ (1)|B|L|O|G|g|s| 1 PILIUIMIBIEIRI 1 1 I I0I6I2I Record 1

A$(2) iPlRlAlTlTi I I giuinisimiiitIhI 1 1 I0I2I7I Record 2
L L J
1 field 0 field 1 ' field' 2

whereas in the two-dimensional array, one descriptor is required for
each field of a record. The main disadvantages of this method,
however, are the restriction of 255 characters per record and the
wastage of RAM used for padding out the shorter field entries with
spaces.

10 ;DIMINISHING INCREMENT SORT OF
20 JMULTIFIELD iFIXED LENGTH RECORDS
30 begin: EQU #9980
40 top: EQU begin+#F5
50 number: EQU top
60 array: EQU top+2
70 power: EQU top+4
80 cycles: EQU top+5
90 count: EQU top+7

100 -Flag: EQU top+9
110 point1: EQU top+lO
120 point2: EQU top+12
130 length: EQU top+14
140 start: EQU top+15
150 addr1: EQU top+16
160 addr2: EQU top+18
170 size: EQU top+20
180 ORG begin
190 ;Initialise
200 LD HL, 1
210 LD (si ze),HL
220 ;Pick up and store
230 ;array start address
240 LD L,(IX)
250 LD H, (IX+1)
260 LD (array),HL
270 jPick up and store
280 ;-Field length in length
290 LD A, (IX+2)

Searching and Sorting 135

300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720

LD (length),A
jPick up field start position
Jdecrement and store in start

LD A,(IX+4)
DEC A
LD (start),A

JPick up number of records
Jand store in number

LD L,(IX+6)
LD H,(IX+7)
LD (number),HL

jFind next power of 2 >= number
jand store in size

EX DE, HL
SUB A

loop: INC A
LD HL,(size)
ADD HL, HL
LD (size),HL
SBC HL, DE
JR C,loop

;Store corresponding
;index in power

LD (power),A
;Divide size by 2
outer: LD DE,(size)

SRL D
RR E
LD (size),DE

;Subtract size from number
Jand store in cycles

LD HL,(number)
SBC HL, DE
LD (cycles),HL

;Initialise count and swop flag
mid: SUB A

LD (count),A
LD (count+1),A
LD (f1ag),A

JStore array start address
Jin pointl

LD HL,(array)
LD (pointl),HL

136 Filing Systems and Databases for the Amstrad CPC464

730
740
750
760
770
7S0
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
990

1000
1010
1020
1030
1040
1050
1Q60
1070
1080
1090
11OO
1110
1120
1130
1140
1150

;Multiply size by 3 add pointl
•store result in point2

LD HL,(size)
LD D,H
LD E,L
ADD HL, HL
ADD HL, DE
LD DE,(pointl)
ADD HL, DE
LD (point2),HL

• Get addresses of strings
•to be compared
i nner: LD HL,(pointl)

INC HL
LD A,(HL)
LD (addrl),A
INC HL
LD A,(HL)
LD (addrl+1),A
LD HL,(point2)
INC HL
LD A,(HL)
LD (addr2),A
INC HL
LD A,(HL)
LD (addr2+l),A

• Add start to each of string
•character start addresses

LD A,(start)
LD C,A
LD B,0
LD HL,(addr2)
ADD HL,BC
EX DE, HL
LD HL,(addrl)
ADD HL,BC

•Compare substrings a character
•at a time branch swop or noswop
;finish when length is reached
comp: LD A, (DE)

CP (HL)
JR C,swop
JR NZ,noswop

Searching and Sorting 137

1160 INC B
1170 LD A,(length)
1180 CP B
1190 JR Z,noswop
1200 INC DE
1210 INC HL
1220 JR NZ,comp
1230 ;Initialise byte counter
1240 ;set swop flag
1250 swop: LD B,3
1260 LD (f1ag),A
1270 LD DE,(pointl)
1280 LD HL,(point2>
1290 ;Swop string descriptors
1300 la byte at a time
1310 loop2: LD A, (DE)
1320 LD C, (HL)
1330 EX DE, HL
1340 LD (HL),C
1350 LD (DE),A
1360 INC DE
1370 INC HL
1380 DJNZ loop2
1390 lAdd 3 to each of
1400 ;pointl and point2
1410 noswop: LD DE,3
1420 LD HL,(pointl)
1430 ADD HL, DE
1440 LD (pointl),HL
1450 LD HL,(point2)
1460 ADD HL, DE
1470 LD (point2),HL
1480 ;Increment count
1490 LD DE,(count)
1500 INC DE
1510 LD (count),DE
1520 1Compare count to cycles
1530 lif not equal jump to ini
1540 LD HL,(cycles)
1550 SBC HL, DE
1560 JP NZ,inner
1570 lJump to fclear
1580 lif swop flag is clear

138 Filing Systems and Databases for the Amstrad CPC464

multifield fixed length

1590 LD A,(flag)
1600 CP 0
1610 JR Z,fclear
1620 ;Decrement cycles and
1630 ;j ump to mi d if not zero
1640 LD HL,(cycles)
1650 DEC HL
1660 LD (cycles),HL
1670 LD A,H
1680 OR L
1690 JP NZ,mid
1700 ;Decrement power and
1710 ;jump to outer if not zei
1720 fcl ear : LD HL,power
1730 DEC (HL)
1740 JP NZ,outer
1750 RET

Program 5.16. Diminishing increment sort of
fields/records.

The overall structure is similar to that of previous routines with the
extra coding ‘remarked’ on the listing. The machine code can be
executed from any program by means of the CALL statement

CALL &9980,NU MBER%,start%,fieldlength%,@ A$(l)

where

the &9980 term is the execution address of the routine;
NUMBER%F=the current number of records in the array;
start%=the character position of the field by which the records
are to be sorted. The permissible range is 1 to 255;
fieldlength% = the number of characters in the field by which
the records are to be sorted.
@A$(1)= the first used element in the array. The zero element
can be left for headings and excluded from the sort.

Program 5.17 is a test program that produces a number of random,
20-character strings. The string array can be sorted by any fixed
length substring starting at any fixed character position. This mimics
the sorting of a file structured on the lines of Fig. 5.2. To make the
sorted list easier to decipher, the test program inserts spaces between
the chosen field limits.

Searching and Sorting 139

10 REM SORT TEST PROGRAM
20 REM MULTIFIELD FIXED LENGTH RECORDS
30 CLS
40 PRINT"Place object code tape in DATAC
ORDER"
50 OPENOUT "buffer"
60 MEMORY &997F
70 CLOSEOUT
80 LOAD"MFSORT",&9980
90 CLS
100 lengthZ=2O
110 INPUT”Sort how many 20 character rec
ords” ; NUMBER’/.
120 INPUT"Enter field START position (1-
20)“;startZ
130 IF startX< 1 OR startZ>lengthX THEN 1
20
140 INPUT"Enter field LENGTH (1-20)”;fie
ldlengthX
150 IF fieldlengthZ<1 OR startZ+fieldlen
gthZ>lengthX+l THEN 140
160 PRINT
170 REM FILL AND DISPLAY RANDOM ARRAY
180 DIM A* (NUMBER/.)
190 FOR RZ=O TO NUMBER/.-1
200 B*="“
210 FOR ZZ=1 TO length7.
220 NX=25*RND
230 K«=CHR« (NZ+65)
240 B«=B*+K*
250 NEXT
260 A*(RX)=B»
270 PRINT A«(RX)
280 NEXT
290 PRINT:PRINT
300 PRINT"SORTING ARRAY"
310 PRINT:PRINT
320 START=»TIME/300
330 CALL &9980, NUMBER/., startX, fieldlengt
hZ,@A*(O)
340 T=TIME/300—START
350 FOR RX=O TO NUMBER7.-1
360 PRINT LEFT*(A*(RZ),startZ—1);SPC(1);

140 Filing Systems and Databases for the Amstrad CPC464

MID*(A*(R’/.), start’/., f ieldlengthX) ;SPC(1);
MID« < A* < RX),st artX+fi eldlengthX,LEN < A»(R
X)))
370 NEXT
380 PRINT
390 PRINT"RECORDS SORTED=";NUMBERX
400 PRINT
410 PRINT"SORTING TIME=";ROUND(T,2)J"SEC
ONDS"
420 PRINT
430 INPUT"Another test (Y/N)";K«
440 K*=UPPER*(K$)
450 IF K»="Y" THEN ERASE A«:GOTO 90 ELSE

END

Program 5.17. Test program for the multifield fixed length string sort.

Producing an object code file of Program 5.16

As in the previous examples, there are two ways of producing the
object code file needed for use by another program. These are
outlined below, but refer back to the description of the simple
machine code string sort to cover the general details.

Method 1: Using the HiSoft DEVPAC assembler
(a) Load the assembler when prompted at, say, 6500 decimal.
(b) Type in Program 5.16 as listed.
(c) Save the source code on tape by typing:

P 10,1750,<filename>

(d) Assemble the source code by entering the command A. When
asked for table size, respond with 500.
(e) Save a copy of the object code on tape by typing the assembler
command:

O„MFSORT

(f) Perform a hard reset, then type in Program 5.17. This will load,
run and test the object code file produced.

Method 2: No assembler required
To produce an object code file that loads and executes at &9980
simply type in Program 5.18 and RUN it.

Searching and Sorting 141

10 REM PRODUCING A MACHINE CODE FILE
20 REM SORT STRING ARRAY OF
30 REM FIXED LENGTH RECORDS
40 REM (no assembler needed)
50 CLS
60 ADDRESS7.=&998O
70 FOR N7.=0 TO «<F4
80 READ BYTE*
90 POKE ADDRESSX+NX, VALCV+BYTE*)
1OO NEXT
110 PRINT"Now produce an object code Til
e on tape**
120 SAVE "MFSORT" , B, &9980, SeF5
130 END
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410

DATA 21,01,00,22,89,9A,DD,6E
DATA OO,DD,66,01,22,77,9A,DD
DATA 7E,02,32,83,9A,DD,7E,04
DATA 3D, 32, 84, 9A, DD, 6E, 06, DD
DATA 66,07,22,75,9A,EB,97,3C
DATA 2A,89,9A,29,22,89,9A,ED
DATA 52,38,F4,32,79,9A,ED,5B
DATA 89,9A,CB,3A,CB,IB,ED,53
DATA 89,9A,2A,75,9A,ED,52,22
DATA 7A,9A,97,32,7C,9A,32,7D
DATA 9A,32,7E,9A,2A,77,9A,22
DATA 7F,9A,2A,89,9A,54,5D,29
DATA 19,ED,5B,7F,9A,19,22,81
DATA 9A, 2A, 7F, 9A, 23, 7E, 32, 85
DATA 9A, 23,7E,32,86,9A,2A,81
DATA 9A,23,7E,32,87,9A,23,7E
DATA 32,88,9A,3A,84,9A,4F,06
DATA OO,2A,87,9A,09,EB,2A,85
DATA 9A,09,1A,BE,38,OD,20,20
DATA 04,3A,83,9A,B8,28,19,13
DATA 23,20,EF,06,03,32,7E,9A
DATA ED,5B,7F,9A,2A,81,9A,1A
DATA 4E,EB,71,12,13,23,10,F7
DATA 11,03,00,2A,7F,9A,19,22
DATA 7F,9A,2A,81,9A,19,22,81
DATA 9A,ED,5B,7C,9A,13,ED,53
DATA 7C,9A,2A,7A,9A,ED,52,C2
DATA E9,99,3A,7E,9A,FE,00,28

142 Filing Systems and Databases for the Amstrad CPC464

420 DATA 0C,2A,7A,9A,2B,22,7A,9A
430 DATA 7C,B5,C2,CA,99,21,79,9A
440 DATA 35,C2,B6,99,C9

Program 5.18. Hex loading program of the object code of Program 5.16.

Searching arrays

Searching for a particular record within a file is a common processing
requirement, even more common than sorting. The objective of a
search is to find the data along with the key item which identifies it.
Although integer arrays are used in the examples, they can easily be
converted for use with string arrays.

Sequential or linear search
This is the search algorithm most widely used and involves starting
from the beginning of a list and sequentially comparing each element
in turn with the search key. When the end of the list is reached and no
match has been found the search is deemed to have failed. We used
this simple technique in Program 4.1 in the previous chapter.
Program 5.19 is an uncluttered demonstration program of this simple
technique. The subroutine, starting at line 1000, is so simple as not to
require further explanation. The preceding lines generate an array
containing sequential odd numbers. Thus all odd numbers will be
present in the array and all even numbers in the range will be absent.
RUN the program with, say, 1000 elements and see how long it takes
either to find or to determine that the specified integer entered into
item%, in line 100, is not present in the array. Compare the search
times with that of the more efficient binary search given in Program
5.20.

10 REM LINEAR SEARCH DEMONSTRATION
20 CLS
30 INPUT"How many numbers in list“;NUMBE
RX
40 DIM AX (NUMBER*/.)
50 FOR NX=1 TO NUMBERX
60 AX(NX)=NX*2—1
70 PRINT AX(NX)
80 NEXT
90 PRINT
100 INPUT"Search for "jitemX

Searching and Sorting 143

11O START=TIME/3OO
120 GOSUB 1OOO
130 T=TIME/300—START
140 PRINT”Searching time=“;ROUND(T,2);"S
econds”
150 INPUT"SEARCH AGAIN (Y/N)";K«
160 K$=UPPER*(K*)
170 IF K*=”Y“ THEN 90
180 END
190 ’
200 ’
999 REM SEQUENTIAL SEARCH SUBROUTINE
1000 J7.= l
1010 WHILE JZ<NUMBERX AND i tem7.< >AX (J'/.)
1020 JZ=JZ+1
1030 WEND
1040 IF itemX=AZ(JZ) THEN PRINT”Item fou
nd at array position";J7. ELSE PRINT"Item
not -Found”

1050 RETURN

Program 5.19. Simple sequential search demonstration.

Sequential searching, although relatively easy to understand and
program, is obviously slow because, on average, half the file will need
to be searched before the required data is found. In other words, there
will be, on average, N/2 comparisons for N items in the search list.

The binary search
A much faster method of searching for a key field, provided the
records are first sorted into order, is called the ‘binary’ search.
Program 5.20 is a binary search demonstration. With the exception
of the search subroutine at line 1000, it is similar in form to the
previous one.

10 REM BINARY SEARCH DEMONSTRATION
20 CLS
30 INPUT”How many numbers in list“;NUMBE
R7.
40 DIM AZ (NUMBER'/.)
50 FOR NX=1 TO NUMBERX
60 AZ(NX)=NX*2—1
70 PRINT AZ(NZ)
80 NEXT

144 Filing Systems and Databases for the Amstrad CPC464

90 PRINT
100 INPUT"Search for "JitemX
110 START=TIME/300
120 GOSUB 1000
130 T=TIME/3OO-START
140 PRINT"Searching time=";ROUND<T,2)»"S
econds"
150 INPUT"SEARCH AGAIN (Y/N)“?K«
160 K*=UPPER«<KS)
170 IF K<="Y" THEN 90
180 END
190 ’
200 ’
999 REM BINARY SEARCH SUBROUTINE
1000 1 ow%=l: hi gh%=NUMBER7.
1010 WHILE high%>low7.
1020 mi d’/.= (1 ow7.+hi ghX) \2
1030 IF item%>A%<mid7.) THEN Iow7.=mid7.+ 1
ELSE high7.=midZ
1040 WEND
1050 IF item7.=A7.(high7.) THEN PRINT" Item
-found at array position“;high% ELSE PRIN
T“Item not found or array not in order"
1060 RETURN

Program 5.20. Binary search demonstration.

Assuming that the array has first been sorted into ascending order,
the data item in the middle of the list is first compared with the item to
be matched. If the item is smaller than the required item, the search
continues in the first half of the array. If the item is larger, the search
concentrates on the second half of the array. On locating this half, the
process continues as before by first testing the middle item in that
half. Eventually, by continually halving, and testing, the required
data item is either found or declared to be non-existent. On the
surface, this may seem a longer process than the simple sequential
search but this is only because it has taken longer to explain. The
equation of interest is:

Average number of comparisons = log2n

where n is the total number of data items to be searched.
This is a startling result and worth an example, if only to illustrate

the superiority of the binary search over the simple sequential search.

Searching and Sorting 145

Assume that we wish to locate a specific item from within a total list
of 10000 items. We will compare both methods:

(a) Sequential search:

Average number of comparisons= n/2= 10000/2= 500

(b) Binary search:

Average number of comparisons=log2(n)=log2(1000)=10
(when rounded)

Even with one million items, the number of comparisons would
only be 20. However, it is only fair to stress once more that a binary
search can only be carried out on a previously sorted file, whereas the
sequential search makes no demands at all on the order of the file
items. If a file is small in size, it may not always be worth troubling to
sort it and it certainly would not be sensible to sort it just for the sake
of using a binary search. On the other hand, if a file has to be sorted
for other reasons, then it would be silly not to employ binary
searching. Another point is that many RAM-based files are
frequently sorted and stored on tape in alphabetical order anyway.

Summary

1. The exchange sort is simple but slow. The execution time
increases roughly proportionally to the third power of n.

2. The bubble sort is faster than the exchange sort, except when the
array is near-ordered. The execution time is roughly propor­
tional to the square of n.

3. Introducing a swop flag to the bubble sort decreases the
execution time on ordered or near-ordered arrays, with little
overhead.

4. A diminishing increment sort can still use bubble techniques but
first splits up the array into small sets. The sorted sets are then
progressively mixed into larger sets until a single sorted set
remains.

5. The diminishing increment sort (version 2) is more efficient still
than version 1.

6. The Quicksort is fast on average but the performance can
deteriorate if the array is ordered or near-ordered.

7. The most convenient sort algorithm for machine coding is the
simple diminishing increment sort (version 1).

146 Filing Systems and Databases for the Amstrad CPC464

8. Understanding of machine code string sorting is made easier if
the details of the string descriptors are known.

9. Records can be stored in two-dimensional array form or,
providing the fields/records are all of fixed length, as one simple
string array.

10. A particular record in a file can be located by either a simple
sequential search or, if in order, a binary search.

11. A sequential search can be performed on an unordered file.

Self test

5.1 Using the equation given, calculate - to the nearest million - the
number of comparisons needed for an exchange sort if the array
contains 500 items in reverse order.

5.2 With reference to 5.1 above, if each comparison cycle takes 1
millisecond, calculate the approximate sorting time to the
nearest hour.

5.3 Calculate the average number of comparisons made when
sorting 1000 array elements.

5.4 State a possible disadvantage of the Quicksort.
5.5 In the Shellsort, Program 5.5, why is the constant (2) added in

line 1020?

Chapter Six

Knowledge

Introduction

Some readers may feel that an entire chapter devoted to knowledge
testing is out of place in a book dedicated to filing systems.
Nevertheless, programs which facilitate the composing of questions,
their subsequent storage as a data file and their eventual retrieval in a
form suitable for student self-testing is, in essence, a filing system
which has many applications. The programs which follow are
concerned with the so-called multiple choice testing method.

Studying any subject, whether it is gardening or astrophysics,
involves memorising a number of facts and then learning how to use
them. Some modern educationalists tend to despise mere facts on the
grounds that they can always be looked up in a suitable reference
book as needed. This is excellent advice providing it is not taken too
seriously. It is very difficult to assess the relative worth of
contradictory arguments if you always have to be within reach of the
Encyclopaedia Britannica. In any case, most courses of study
culminate in an examination of some form and there are not many
authorities at the moment who are sufficiently enlightened to let
students enter the room carrying armfuls of reference material. The
trouble nowadays is the sheer number of facts which must be carried
in the head before you can begin serious study of any subject.

Progress testing
Some form offeedback is essential in any learning process, whether it
be the traditional sarcasm of a tutor, the regular progress test in the
classroom or from another member of the family or group. Without
periodic tests for progress, it is difficult to assess whether or not there
has been any. The question arises as to the form the progress test is to
take. If the test is in the home, then a common practice is to ask fora
volunteer from the family to conduct the test by asking questions

148 Filing Systems and Databases for the Amstrad CPC464

plucked at random from current textbooks and see if the answers
given correspond. This method has some value but can, at times, lead
to a certain amount of hostility because

(a) The parent may have difficulty in posing reasonable questions
even with the aid of the textbook;
(b) The answer given may be right but, because expressed in words
slightly different to the textbook version, is pronounced wrong. (The
arguments which follow often result in the abandonment of the test!);
(c) The volunteer, because the textbook is to hand, may gradually
acquire an air of superiority which can irritate the learner. Criticism
is often accepted in good grace from an outsider but resented from a
member of the family or group.

Mutliple choice tests

Whether it is justifiable or not, most people view the computer as an
omnipotent machine untainted by personal malice and completely
objective in all dealings with humans. Progress tests conducted via a
keyboard and VDU screen can take place in a strcss-free atmosphere
which is conducive to learning. If you give a wrong answer, whilst in
the home environment, nobody need know except the computer. A
poor score, displayed at the end of the test, can be a secret between
you and the computer and one which will probably stimulate a desire
to keep repeating the test over and over again until the computer is
‘beaten’. An innate desire to beat the computer, so evident in the
games addict, can thus be turned to good effect.

Although there are many ways of arranging a progress test on a
computer, the multiple choice question with four answers is the most
obvious. This kind of test was first used in World War II. It provided
a quick method of checking the progress of service personnel on
training courses. Traditional examination papers demanded a skilled
marking team and took too long. The multiple choice paper could be
marked by untrained personnel using only a stencil placed over the
answer sheet. For some time after the war, the educational
establishments despised the system, considering it a cheap expedient
suitable only for marking low grade students under training. (The
Establishment has always tended to consider ‘training’ as inferior to
‘education’.) However, due to the advance of technology in the post­
war years, the attitude towards the multiple choice test changed and,
eventually, even the universities began to accept it as a useful adjunct

Knowledge Testing 149

to conventional testing. The Open University, in particular, favours
this kind of test.

Mechanics of the multiple choice test
The test consists of a series of questions, each with at least four
answers A, B, C, and D. The person taking the test puts a cross
against the answer which he or she considers is the ‘best’ one. In the
more sophisticated questions, three of the answers may be
superficially correct but only one is true in all respects. The following
is a straightforward example:

Question: What is the capital of Hungary?
Answer A: Sofia
Answer B: Budapest
Answer C: Warsaw
Answer D: Bucharest

It is not good practice to include one answer which is absurd because
it effectively reduces the choice to one of three. We should remember
that some degree of guesswork is inevitable during an answering
session. In the above example, all four have an east European ring
about them so they are all possibles, but to have included New York
as an answer would almost certainly be rejected. Much of the
antagonism to the multiple choice paper in the early days was the
tendency for those preparing the paper to indulge in cheap word
tricks. They tried to express the four answers in a way which lured the
poor trainee into placing a cross against the wrong answer.

The multiple choice method of testing is used extensively for
shortlisting applicants for employment. Conducting personnel
interviews is an expensive business, particularly if the post demands
technical or business management knowledge. A provisional
multiple choice paper eliminates the bulk of the non-runners.
Because of this, it is good for all concerned, children as well as adults,
to get used to the system. It is one thing to know a subject but quite
another when you have to face a question paper in multiple choice
format for the first time and under conditions of stress.

The computer display
The Amstrad CPC464 is ideally suited for multiple choice
questioning because of the 80-column format in Mode 2 and the
presence of the customised video monitor at no extra cost. Several
popular computers offer an 80-column format but the display on a
TV, particularly if it’s a colour set, is almost unreadable. The

150 Filing Systems and Databases for the Amstrad CPC464

Amstrad 80-column display is excellent on the monochrome monitor
and perfectly legible even on the colour monitor. Of course, it is not
essential to choose an 80-column display but there are problems if we
try to make do with only 40 columns. It is self-evident that the screen
must be able to display the question, the four answers and some form
of prompting message. With only 40 columns and, say, 25 lines to
play with, it is very difficult to compose thought-provoking questions
and answers sufficiently concise to fit into one screen page. With 25
lines, each with 80 columns, there is room for at least 256 characters
for the question and 256 each for the four answers, a generous
allowance and ample for even the most searching question.

Programming methods
There is a variety of ways in which the test questions can be
programmed. A simple form of program could be devised in which
the questions and answers are contained in DATA statements.
Indeed, programs based on this principle have appeared in one or two
of the monthly magazines but, apart from simplicity, they have little
to recommend them. The snags are obvious:

(a) The person taking the test can easily LIST the program and
examine the DATA to find the right answer.
(b) Unless the person setting the test has some computer experience
there will be difficulties in setting up the DATA lines.

The first consideration is to design in user-friendliness. It must be
easy for the person to enter the questions as well as for the person who
will eventually have to sit the test. It is hoped that the programs which
follow will encourage members of a family to construct fresh
questions or even modify the programs to suit them.

The most sensible method is to split the task into two, one program
for compiling the questions and a separate program for answering the
questions. We shall call these programs ‘MC Prep’ and ‘MC Test’
respectively. Two such programs are listed later in this chapter
together with operating details. It is convenient in the meantime to
study some of the options which we have included and to suggest how
some of them might be adapted or enlarged to cover individual
requirements.

Multiple Choice File Preparation (Program 6.1)

The end result of the program is the production of a data tape bearing

Knowledge Testing 151

the questions and answers together with certain leading particulars
relating to the test. It is essential to have a blank tape ready in the
cassette drive before running the program. The data tape must be
saved for subsequent use in the second program, Multiple Choice
Test (Program 6.2).

Operating details
The program is menu-driven. When the program is initially RUN,
the menu page is displayed. The top half gives certain leading
information and the menu bottom half shows the available options.
Until the leading particulars have been entered, the menu page has
the following appearance:

Multiple Choice Preparation

Subject
Test :
Author :
Date :
Ref
Time (minutes) :
File size : 0 questions

1 Prepare file
2 Load file
3 Save file
4 View file
5 Add questions
6 Modify questions
7 Delete question
8 Exit file

Select option:

Option 1: Prepare file
This option should be used when preparing a fresh set of questions in
order to gather leading particulars from the composer of the
questions. Until this is done, the file size (number of questions)
remains at 0. The maximum number of questions has been limited to
a hundred but no input is requested for file size since this is

152 Filing Systems and Databases for the Amstrad CPC464

automatically updated as questions are added. The last item
requested is the time allowed (in minutes) which the composer of the
questions considers reasonable for answering them. After the leading
particulars have been entered, the menu page is replaced by the Add
Question display. This starts with the following header information:

MC Preparation Bytes free: xxxxx Question number l

The first prompt asks for the question, the next four for the answers.
The last prompt asks which of the four answers A, B, C or D is
correct. As each question is entered, the heading information is
updated. Knowledge of the remaining bytes is important to the
operator to avoid running out of memory. Although the number of
questions is limited to a hundred, it is possible to exhaust memory
before this is reached if there is an abundance of text in each question.
It is important to remember that if a question or answer occupies
more than one line, the ENTER key must not be used to turn the
corner to the next line, because this will terminate the entry. The limit
imposed by the Amstrad operating system on the number of
characters in a string variable held in RAM is 255, but the program
imposes a 254 limit because we have found that data cassette files can
sometimes reject the full 255 characters in a string. No question or
answer must exceed this or a warning bleep is given and the excess
refused. However, it is most unlikely that a question, and even less
likely an answer, would consume 254 characters. The majority of
questions will rarely exceed 80 characters. As a conservative round­
figure calculation, assume each question and each answer takes 100
characters, making a total of 500 bytes, say '/2K of memory per
question. Thus there is ample room for a file to hold 50 questions
because only 25K will be used up, still leaving a comfortable margin.

After the first question and answers have been entered, the
program reverts back to the menu. Any existing file resident in RAM
is destroyed by Option l.

Option 5: Add questions
Once the file has been prepared, and Question 1 has been entered, this
option is used each time an additional question is to be added to the
file. The question number, ‘bytes free’ and prompts for obtaining the
question and answers are the same as described under Option 1
above. The menu is regained after each question, the four answers
and the correct answer have been completed so it is necessary to select
Option 5 again for each one.

Knowledge Testing 153

Option 3: Save file
It is not necessary to sit at the keyboard for hours on end until all
questions have been entered. Whatever the question number reached,
selecting Option 3 can be used to save a partially completed file on
tape. Remember to take the program tape out of the cassette and
replace it with either a completely blank tape or one that has
previously been rewound to a blank area. The only prompt given is
for the file name followed by the normal system instructions for
pressing RECord and PLAY. The program sets the writing speed to
2000 baud but those of little faith can change back to the normal
default speed of 1000 baud.

Option 2: Load file
Providing the tape has been rewound to the correct position and the
response to the prompt ‘Enter file name’ is accepted, the file is loaded.
The position in the computer is now exactly the same as it was before
that particular file was saved. For example, if the file had been saved
when it was complete up to the stage of Question 15, further
questions 16 and upwards would be ready to be entered.

Option 4: View file
This option allows the questions in a file to be stepped through for
examination. The first prompt asks for the question number - which
means that the file can be viewed starting from a chosen number. An
error message of the form ‘Range = x to y’ appears if an illegal
question number is entered. Irrespective of the first question number,
other questions can be brought into view by using the right or left
cursor keys. The right cursor advances to the next higher and the left
cursor to the next lower question number. The cursor action wraps
around at both ends so, for example, if the last question number in
the file is 47, the next right cursor action wraps around to question 1
again. To regain the menu, press the space bar.

Option 6: Modify questions
The ability to modify either the question or one or more of the
answers is essential. Even if the original questions were typed in
correctly, there is always a strong possibility in any multiple choice
test that, sooner or later, someone is going to challenge some of them.
Either the question is misleading or, more often than not, two of the
answers in the same question are judged to be equally correct. For
this reason, modification facilities are needed to alter any single part
of a particular question number. It should also be possible to alter the

154 Filing Systems and Databases for the Amstrad CPC464

leading particulars in the menu (the Menu Panel). For example, the time
which has been allowed for the test. Care has been taken in Option 6 to
provide separate access to any of the parts and to make the
modification procedure as painless as possible.

On first selecting the option, the display reads:

To modify Menu Panel select question 0
Give question number

Thus, if only the leading particulars require modification, you would
select question 0. To modify a question, you enter the appropriate
question number.

The next display reads:

Modify which part of question?
(1) Question
(2) Answer A
(3) Answer B
(4) Answer C
(5) Answer D
(6) Correct answer A, B, C or D?

Select option:

Assuming you select 5 (Answer D), the next display changes to:

You can utilise any of the EXISTING TEXT with the
CURSOR/COPY keys
Type EXIT to regain menu
You are modifying field labelled D

(Existing text displayed here)

(ENTER NEW TEXT HERE)

Once the offending line has been modified, it is redisplayed for a
final check. Use the SHIFT and CURSOR/COPY keys to reuse any
existing text. To return to the menu, enter EXIT.

Knowledge Testing 155

Option 7: Delete question
This option simply prompts for the question number to be deleted
and closes up the gaps in the file. If the option has been selected by
mistake, there is a facility for returning straight to the menu by
selecting question 0. The selection also forces garbage collection of
redundant strings held in memory. If there are many questions in the
file, this may take some time.

Option 8: Exit program
It is important to use this option, rather than the ESC key, when you
have finished with the program because it restores normal default
status.

Analysis of Program 6.1

The treatment which follows is related to the listing of Program 6.1.

10 REM MULTIPLE CHOICE FILE PREPARATION
20 OPENOUT "buffer'1
30 MEMORY &9B7E
40 CLOSEOUT
50 flaq7.=O
60 DIM A«(1OO,5),H«(5),P«(5)
70 H<(0)=“QUESTION"
80 H*<1)=“ANSWER A"
90 HS(2)="ANSWER B"
1OO H«<3)=”ANSWER C“
110 H$<4)=“ANSWER D“
120 H*(5)="CORRECT answer (A,B,C or D)“
130 P«(O)="Subject"
140 P«(l)="Test"
150 P*(2)="Author"
160 P«(3)="Date"
170 P*(4)="Ref"
180 P»(5)="Time (minutes)"
190 BORDER O
200 MODE 1
210 SELX=O
220 WHILE SELZCl OR SEL7.>8
230 GOSUB 2110:GOSUB 2190
240 LOCATE 1,14
250 PRINT"(1) PREPARE file"

156 Filing Systems and Databases for the Amstrad CPC464

260 PRINT”(2) LOAD file”
270 PRINT”<3) SAVE file”
280 PRINT"<4) VIEW file”
290 PRINT”<5> ADD Question”
300 PRINT”(6)
310 PRINT"(7>
320 PRINT”(8)

MODIFY Question"
DELETE quest i on“
EXIT program”

330 LOCATE 1,24
340 PRINT”Select option
350 KS=INKEY*:IF K*="“ THEN 350
360 SEL7.=VAL (KS)
370 WEND
380 CLS
390 IF SELZ>2 AND SIZEZ=O AND SELZO8 TH
EN PRINT"No File 1oaded”:GOSUB 1800:GOTO

200
400 IF SELZ<3 AND flagZ=l THEN GOSUB 185
O
410 ON SELZ GOSUB 470,570,690,810,960,11
20,1460,430
420 GOTO 200
430 SPEED WRITE O
440 END
450 ’
460 REM PREPARE NEW FILE
470 SIZEZ=O:KZ=22
480 FOR CZ=O TO 5
490 PRINT”Enter ”;P«(CZ)
500 GOSUB 1950:A*<0,CZ)=UPPER*(K*)
510 NEXT
520 GOSUB 960
530 flagZ=l
540 RETURN
550 ’
560 REM LOAD FILE
570 GOSUB 2050
580 OPENIN filename*
590 INPUT49,SIZEZ
600 FOR QZ=O TO SIZEZ
610 FOR CZ=O TO 5
620 INPUT#9,A*(QZ,CZ)
630 NEXT:NEXT
640 CLOSEIN

Knowledge Testing 157

650 flagZ=l
660 RETURN
670 ’
680 REM SAVE FILE
690 GOSUB 2050
700 SPEED WRITE 1
710 OPENOUT -Filename*
720 PRINT49,SIZEX
730 FOR Q7.=O TO SIZEX
740 FOR CX=O TO 5
750 PRINT#9,A*(QX,CX)
760 NEXT:NEXT
770 CLOSEOUT
780 RETURN
790 ’
800 REM VIEW FILE
810 LOWX=1:GOSUB 1730
820 IF QX<1 THEN QX=SIZEX
830 IF QX>SIZEX THEN QX=1
840 GOSUB 1620
850 FOR CX=O TO 5
860 PRINT H*(CX);“ : "5 USING "8c” j A* (QX,
CX)
870 NEXT
880 WHILE INKEY (47)00
890 CALL 8cBB18:’KM WAIT KEY
900 IF INKEY(8)=0 THEN QX=QX-1:GOTO 820
910 IF INKEY(1>=O THEN QX=QX+1:GOTO 820
920 WEND
930 RETURN
940 ’
950 REM ADD QUESTION
960 IF SIZEX>=100 OR FRE (0X 2000 THEN PR
INT"FILE FULL”:GOSUB 1800:GOTO 1090
970 SIZEX=SIZEX+1
980 QX=SIZEX:GOSUB 1620
990 KX=254
1000 FOR CX=O TO 5
1010 PRINT “Enter “;H*(CX>" :
1020 GOSUB 1950:A«(QX,CX)=K*
1030 XX=POS(#0):YX=VPOS(#0)
1040 LOCATE 48,2
1050 PRINT USING "#####”;FRE(O)

158 Filing Systems and Databases for the Amstrad CPC464

1060 LOCATE XX, YX
1070 NEXT
1080 AS <QX, 5) =UPPERS < AS (QX, 5))
1090 RETURN
1100 ’
1110 REM MODIFY QUESTION
1120 PRINT“To Modify MENU PANEL select q
uestion 0":LOWX=O:GOSUB 1730
1130 SELX=O
1140 WHILE SELX<1 OR SELX>6
1150 CLS:LOCATE 2,5:PRINT"MODIFY which p
art of QUESTION ";QX
1160 LOCATE 1,10
1170 FOR CX=1 TO 6
1180 print" (*•; ex; “)
1190 IF QX=O THEN PRINT PS(CX-l)
1200 IF QX>O THEN PRINT HS(CX-l)
1210 NEXT
1220 LOCATE 1,21:PRINT"Seiect option"
1230 KS=INKEYS:IF KS="" THEN 1230
1240 SELX=VAL<KS)
1250 WEND
1260 KS="":WHILE KSO"EXIT" AND KSO"exi
t"
1270 GOSUB 1620
1280 PRINT"You can utilise any of the EX
ISTING TEXT with the CURSOR/COPY keys"
1290 PRINT
1300 PRINT"Type EXIT to regain the main
MENU"
1310 PRINT
1320 PRINT"You are MODIFYING the field 1
abelled : **;
1330 IF QX=O THEN PRINT PS(SELX-l)
1340 IF QX>0 THEN PRINT HS<SELX-1)
1350 PRINT:PRINT:GOSUB 2010
1360 PRINT AS(QX,SELX-1>
1370 GOSUB 2010:LOCATE 1,VPOS<#O)+4:GOSU
B 2010
1380 LOCATE l,VP0S<#0)-5
1390 LINE INPUT KS
1400 IF QX=O OR SELX=6 THEN KS=UPPERS(KS
)

Knowledge Testing 159

1410 IF K*O"EXIT" AND K«O"exit" THEN A
«(QX,SELX-1)=K$
1420 WEND
1430 RETURN
1440 ’
1450 REM DELETE QUESTION
1460 PRINT"The DELETE option has been se
lected"
1470 PRINT“To return to MENU select Ques
tion 0“
1480 L0WX=0:GOSUB 1730
1490 IF QX=0 THEN 1590
1500 PRINT"Wait”
1510 WHILE QX<SIZEX
1520 FOR CX=O TO 5
1530 A« <QX, CX) =A« (Q7.+ 1, CX)
1540 NEXT
1550 QX=QX+1
1560 WEND
1570 SIZEX=SIZEX—1
1580 PRINT FRE<“")
1590 RETURN
1600 ’
1610 REM DISPLAY HEADER
1620 MODE 2
1630 GOSUB 2010
1640 PRINT"MULTIPLE CHOICE PREPARATION"
1650 LOCATE 35,2
1660 PRINT"Bytes Tree j";FRE(O)
1670 LOCATE 64,2
1680 PRINT"QUESTION s"?QX
1690 GOSUB 2010
1700 PRINT
1710 RETURN
1720 ’
1730 PRINT
1740 REM GET QUESTION NUMBER
1750 INPUT"Give Question Number ";QX
1760 IF QX<LOWX OR QX>SIZEX THEN PRINT"R
ANGE <"LOWX;"to";SIZEX“>"sGOTO 1750
1770 RETURN
1780 ’
1790 REM PRESS ANY KEY

160 Filing Systems and Databases for the Amstrad CPC464

1800 PRINT-PRESS any KEY to CONTINUE"
1810 CALL ScBBlSs’KM WAIT KEY
1820 RETURN
1830 ’
1840 REM BELT & BRACES
1850 PRINT-LOADED FILE AT RISK"
1860 PRINT"Do you wish to RESELECT MENU
(Y/N)
1870 K*3INKEY*
1880 K*=UPPER*(K*)
1890 IF K*O"Y" AND K*O“N“ THEN 1870
1900 IF K*=“Y" THEN SELX=O
1910 IF K*=”N" THEN flagX=O
1920 RETURN
1930 ’
1940 REM GET LINE INPUT
1950 LINE INPUT K*
1960 IF K*=“" THEN 1950
1970 IF LEN(K*)>KX THEN K*=LEFT*(K«,KX)
1980 RETURN
1990 ’
2000 REM PRINT A LINE
2010 PRINT STRING*(80,CHR*<154));
2020 RETURN
2030 ’
2040 REM GET FILENAME
2050 CLSSPRINT"Enter filename"
2060 KX=16:GOSUB 1950
2070 filename«=K*
2080 RETURN
2090 ’
2100 REM DISPLAY HEADER 2
2110 CLS
2120 PRINT
2130 INK 2,6
2140 PAPER 2
2150 PRINT" MULTIPLE CHOICE PREPARATION
M

2160 PAPER O
2170 RETURN
2180 ’
2190 REM DISPLAY PANEL
2200 PRINT

Knowledge Testing 161

2210 PRINT STRING*(40,CHR*(154));
2220 FOR C7.=O TO 5
2230 PRINT TAB(2) P*(C7.) TAB (16) ": "A*
(0,C%)
2240 NEXT
2250 PRINT" File size :"JSIZEX;"QUES
TIONS"
2260 PRINT STRING*(40,CHR*(154));
2270 RETURN

Program 6.7. Multiple choice file preparation.

The program divides naturally into two sections. The first, extending
down to END at line 440, is the actual ‘program’. The remaining lines
form a battery of subroutines. The major subroutines, carrying out
various menu functions, are called from the ‘program’ but these, in
turn, may call up smaller subroutines which perform general
purpose, rather than specialised, functions. The variable namesand
their corresponding functions are given below:

A$(Q%,C%) = main array for holding questions and answers,
dimensioned A$(100,5).
H$(0 - 5) = literal prompts for the question and answers.
P$(0 — 5) = literal prompts for heading panel information.
SEL% = chosen option number.
S1ZE% = current highest question number in file.
K$ = general purpose global variable,
filenames = current file name.
Q% = question number.
C% = index to either the question itself, the four answers or the
correct answer.
flag% = file status: 0 = file not resident, 1 = file resident.

Fig. 6.1. Structure diagram for Program 6.1.

162 Filing Systems and Databases for the Amstrad CPC464

Tracing the subroutine paths
The major subroutines for each option are called from the ON SEL%
GOSUB statement at line 500. They each RETURN to the start of
the menu at line 200, via the GOTO at line 420. The overall structure
is shown in Figure 6.1.

Subroutine calls
Some subroutines call up other subroutines. Table 6.1 shows which
of them are called for each option.

Table 6.1. Subroutine calls.

Prepare question Prepare new file

Load file

Get line input
Add question
Get file name

Save file Get file name
View file Get question number

Add question
Display header
Get line input

Modify question Get question number

Delete question

Display header
Print a line
Get question number

The first section begins with a routine for reserving a 4K fixed
cassette buffer area. In this type of program, it is preferred to the
normal dynamic allocation of buffers which cause HIMEM to float
up and down. This can be a lengthy and repetitive process because all
strings in the ‘heap’ have to be garbage collected, shifted out to make
room for the cassette buffer and, after a load or save, re-positioned
again. (Refer back to the paragraph on cassette data blocks in
Chapter 1.)

The 40-column Mode 1 is used for the menu page but for preparing
and viewing the questions the 80-column Mode 2 is set by the Display
header subroutine.

Multiple choice test program

The objective of the last program was the production of a TEST
CASSETTE (data file) containing the questions. This one, Program

Knowledge Testing 163

6.2, uses it to present the questions, accept the answers and display
the final score.

Operating the program
A degree of classroom formality is blended into the program, giving a
‘supervisor’ power to prevent the person taking the test from having
more than one attempt. The supervisor should operate the first part
of the program as follows:

(1) Load Program 6.2.
(2) Remove the program tape from the cassette drive and have the
TEST CASSETTE (data file) to hand.
(3) RUN Program 6.2.

The screen will then read:

MULTIPLE CHOICE TESTING
Place TEST CASSETTE in the machine
REWIND tape ready to load DATA
Enter file name

When the tape has finished loading, the next prompt is:

MEMORISE and ENTER any 6 DIGIT code

(Once a code is entered, the program cannot be run again by the
person taking the test because the ESCape key is rendered
inoperative. If a hard reset is used, the program is lost anyway and
only the supervisor has the program tape needed for a re-run.) The
last screen prompt, as far as the supervisor is concerned, is for the
name of the person taking the test. The computer is then ready for the
test to begin.

The student's actions
The first display gives the Subject, Test, Author, Date, Reference and
the Time allowed in minutes. This is followed by instructions on
which keys to press for answering the questions. The test begins and
the time clock starts to count down when the student presses any key
to reveal the following (example) display:

164 Filing Systems and Databases for the Amstrad CPC464

Multiple choice: Time 01:15:05 Question: 1

Question: If N is any integer, which of the following expressions ensures an
ODD integer?
Answer A: 2N
Answer B: 2N+1
Answer C: N+1
Answer D: N/3

No RESPONSE recorded Press A,B,C or D to ANSWER or CHANGE ANSWER

The test starts at question number 1 but the next question does not
follow on automatically as each question is answered. The right or
left arrow cursor keys must be used to step forward or backward to
the next question. Each question is answered by typing A, B, C or D
in either lower- or upper-case. The student can change his mind at
any time by altering the answer. The message ‘No RESPONSE
recorded’ first appears but once an answer has been received, the
message changes to ‘Your RESPONSE stored as:’ followed by the
letter last entered for that question. While the test is progressing, the
amount of time left in hours, minutes and seconds, is always visible at
the top of the screen together with the current question number.
When the time clock eventually counts down to zero, the test ends,
irrespective of the number of questions answered. The last 10-second
count-down is accompanied by audible beeps which serve as a
warning to the student. If the student finishes the test before the
allotted time and he/she so wishes, the ESC key can be pressed.

On the count of zero, or pressing the ESC key, the screen displays:

TEST OVER
Press any key to obtain results

The test results are then displayed with a format as shown in the
following example:

Knowledge Testing 165

MULTIPLE CHOICE TEST
Subject
Test
Author
Date
Reference
Time (minutes)
File size

Mathematics
Taylor series
DJ Stephenson
Oct 25 1984
M/S2/302
37
50 questions

RESULTS TABLE: Wharton H

Total questions
Questions attempted
Correct answers
Incorrect answers
Percentage score
Performance grade

50
40
20
20
40%
(D) Pass

Enter CODE to obtain Menu

Obtaining the menu

Four options are available on completion of the test:

(a) Allow the same student to resit the test.
(b) Allow another student to sit the test.
(c) Load a different set of questions.
(d) Exit the program.

Assuming that the test is formal, the student who has just
completed the test will not have access to the menu so the supervisor
will take control because only he or she will know the code entered at
the start of the test.

As each code character is entered, a high tone is sounded. A low
tone is repeated on entry of every sixth character for synchronisation
purposes. If the correct code is entered, the menu will be displayed. If
not, the low tone is a prompt to indicate that the wrong code has been
entered and the entire code must be repeated. The menu page appears
as follows:

166 Filing Systems and Databases for the Amstrad CPC464

1 Load new question file
2 Resit test (new testee)
3 Resit test (same testee)
4 Exit program (Enable ESC key)

Select option number

Informal test
Although the presence of a ‘supervisor’ has so far been assumed, the
test can easily be carried out informally. The person taking the test
can key in his or her own code and carry out the test over and over
again in order to improve the score. In a free and easy environment,
the program can provide a novel driving force for continuous self­
improvement. There is, of course, one difficulty - someone must be
able to produce the questions in the first place and know how to
utilise the facilities of Program 6.1 before Program 6.2 can be used.
There are two solutions:

(1) Schools, or more usually technical colleges, professional
institutions and universities are often willing to supply previous
years’ examination papers. Many of these are in multiple choice
format although they don’t normally supply answers. Nevertheless,
there may be someone in the family or circle of friends who may
know a few of the answers; even if not, the questions themselves could
provide a model for simpler ideas.
(2) Although seemingly absurd, the student could make up his or her
own questions. There is no better way of learning a subject than to try
and teach it. An important part of any teaching process is the setting
of test questions. A student can, with the aid of textbooks, learn quite
a lot by composing a set of questions and answers because such a task
must stimulate research. It may be argued that the student who set the
test would gain little benefit from later taking it since he or she would
already know the answers. This argument is valid if the test is taken a
day or so after it was set. The results of the same test taken a week or
so later when the memory begins to fade may be quite surprising as
well as disappointing. With this in mind, students could prepare and
keep a set of question files for later revision purposes.

Knowledge Testing 167

Analysis of Program 6.2

The following should be read in conjunction with the listing of
Program 6.2 and the structure diagram shown in Figure 6.2.

10 REM MULTIPLE CHOICE TEST PROGRAM
20 OPENOUT "butter"
30 MEMORY &9B7E
40 CLOSEOUT
50 BORDER O
60 DIM A*(100,5),H*(5),P*(5),ANS*(100)
70 flag7.=O: 1 astT'/.=0
80 H*(O)="QUESTION"
90 H*(1)="ANSWER A"
10O H*(2)="ANSWER B"
110 H*(3)="ANSWER C"
120 H*(4)="ANSWER D"
130 H*(5)="Your RESPONSE stored as : "
140 P«(O)=“Subject"
150 P*(1)«“Test“
160 P*(2)="Author"
170 P«(3)="Date"
180 P* (4) ="Re-f "
190 P*(5)="Time (minutes)'1
200 MODE 1
210 GOSUB 1480:LOCATE 1,5
220 PRINT"Place TEST CASSETTE in the mac
hine"
230 PRINT"REWIND tape ready to LOAD DATA
11

240 PRINT:GOSUB 830
250 PRINT:PRINT“MEMORISE and ENTER any 6

DIGIT code"
260 INPUT code*
270 IF LEN(code*)=0 OR LEN(code*)>6 THEN
250

280 CALL &BB03:’KM RESET
290 GOSUB 1480:LOCATE 1,5
300 PRINT"Enter testee’s NAME (Max 22 Ch
aracters)"
310 LINE INPUT name*
320 IF name*=“" THEN 300
330 IF LEN(name*)>22 THEN name*=LEFT*(na
me*,22)

168 Filing Systems and Databases for the Amstrad CPC464

340 name*=UPPER*<namet)
350 GOSUB 730
360 GOSUB 950
370 CALL &BB18:’KM WAIT KEY
380 FINISH=TIME/300+VAL (A*(O,5))*60
390 GOSUB 1080
400 SOUND 1,36,20,15
410 MODE 1:LOCATE 16,12
420 PRINT"TEST OVER":PRINT
430 LOCATE 5,14
440 PRINT"PRESS any KEY to DISPLAY RESUL
TS"
450 CALL &BB18:’KM WAIT KEY
460 GOSUB 730
470 GOSUB 1710
480 LOCATE 1,23
490 PRINT STRING*(40,CHR* (154));
500 PRINT“Enter code to OBTAIN MENU"
510 PRINT STRING*(40,CHR* (154));
520 try*="":SOUND 1,758,10,15
530 FOR CHARX=1 TO 6
540 K*=INKEY*:IF K*="“ THEN 540
550 SOUND 1,18,5,15:try*=try«+K*
560 NEXT
570 IF try*Ocode* THEN 520
580 flagX=O:FOR QX=1 TO SIZEX:ANS*(QX)=“
":NEXT
590 GOSUB 1480:LOCATE 1,10
600 PRINT" (1) Load new QUESTION FILE"
610 PRINT" (2) RESIT test (new testee)
620 PRINT" (3) RESIT test (same testee)
630 PRINT" (4) EXIT program (Enable ESCA
PE key)
640 LOCATE 2,23
650 PRINT"Select option :“
660 K*=INKEY*:IF K*="“ THEN 660
670 SELX=VAL(K*)
680 IF SELX<1 OR SELX>4 THEN 590
690 ON SELX GOTO 210,290,350,700
700 CLS:END
710 ’
720 REM DISPLAY PANEL
730 MODE 1:GOSUB 1480

Knowledge Testing 169

740 PRINT STRING*<40,CHR*(154));
750 FOR C7.=O TO 5
760 PRINT TAB(2) P*(C%) TAB<16) ": "A*<0

,C%)
770 NEXT
780 PRINT” File size :“?SIZES;“QUEST
IONS"
790 PRINT STRING*(40,CHR* (154));
800 RETURN
810 ’
820 REM LOAD FILE
830 PRINT"Enter Filename :"S
840 LINE INPUT Filename*
850 OPENIN Filename*
860 INPUT#9, SI ZE7.
870 FOR Q7.=0 TO SIZES
880 FOR CS=O TO 5
890 INPUT#9,A*(QS, CS)
900 NEXT:NEXT
910 CLOSEIN
920 RETURN
930 ’
940 REM INSTRUCTIONS
950 LOCATE 1,14
960 PRINT"STEP through questions (wrap a
round) by“
970 PRINT”pressing one oF the Following
keys
980 PRINT“RIGHT arrow key increments QUE
STION No."
990 PRINT"LEFT arrow key decrements QUES
TION No."
1OOO PRINT:PRINT STRING*<40,CHR*(154));
1010 PRINT"To END TEST at any time PRESS

ESC key-
1020 PRINT STRING*(40,CHR*(154));
1030 PRINT
1040 PRINT“To START the TEST press any k
ey-
1050 RETURN
1060 ’
1070 REM DISPLAY & ANSWER QUESTIONS
1080 QX=1

170 Filing Systems and Databases for the Amstrad CPC464

1090 WHILE Tlag7.=0
1100 GOSUB 1350
1110 FOR C7.=0 TO 4
1120 PRINT H*(C7.)J" : "} USING " & " ; A* (Q7.
,C7.)
1130 NEXT
1140 LOCATE 1,24:GOSUB 1440
1150 WHILE Tlag7.=0 AND INKEY (8)00 AND I
NKEY(1> < >0
1160 LOCATE 1,25
1170 IF ANS*(Q%)=“" THEN PR I NT “No RESPON
SE recorded" ELSE PRINT H* (5); ANS* (Q7.)
1180 LOCATE 37,25
1190 PRINT"Press A,B,C or D to ANSWER or

CHANGE ANSWER"
1200 K*=INKEY*
1210 IF INKEY (66)=0 THEN Tlag7.= l
1220 GOSUB 1580
1230 IF K*=” " AND Flag7.=0 THEN 1200
1240 K*=UPPER*(K«)
1250 IF K*>="A” AND K*< = “D" THEN ANS*<Q7.
)=K*
1260 WEND
1270 IF INKEY <8) =0 THEN Q7.=Q7.-1
1280 IF INKEY(1)=O THEN Q7.=Q7.+ 1
1290 IF Q7.<1 THEN Q7.=SIZE7.
1300 IF Q7->SIZE7. THEN Q7.= l
1310 WEND
1320 RETURN
1330 ’
1340 REM DISPLAY HEADER 1
1350 MODE 2
1360 GOSUB 1440
1370 PRINT"MULTIPLE CHOICE TEST”
1380 LOCATE 30,2
1390 PRINT"Time le-ft “
1400 LOCATE 64,2
1410 PR I NT "QUEST I ON :"?Q7.
1420 GOSUB 1440
1430 RETURN
1440 PRINT STRING*(80,CHR*(154));
1450 RETURN
1460 ’

Knowledge Testing 171

1470 REM DISPLAY HEADER 2
1480 CLS
1490 LOCATE 1,2
1500 INK 2,6
1510 PAPER 2
1520 PRINT” MULTIPLE CHOICE TESTING “
1530 PAPER 0
1540 PEN 1
1550 RETURN
1560 ’
1570 REM TRACK AND DISPLAY TIME LEFT
1580 TX=FINISH—TIME/300
1590 SX=T7. MOD 60
1600 MX=T7.\60
1610 HX=MX\6O
1620 MX=MX MOD 60
1630 LOCATE 41,2
1640 PRINT USING "## : ## : ##" 5 HZ, MX, SX
1650 IF TX<=10 AND lastTX>TX THEN SOUND
1,36,5,15
1660 IF TX<=O THEN flagX=l
1670 lastT7.=TX
1680 RETURN
1690 ’
1700 REM PROCESS AND DISPLAY RESULTS
1710 SCOREX=O;PASSX=O
1720 FOR Q7.= l TO SIZE7.
1730 IF ANS* (QX) =A* (QX, 5) THEN SCOREX=SC
OREX+1
1740 IF ANS*(QX)="” THEN PASSX=PASSX+1
1750 NEXT
1760 PRINT"RESULTS TABLE : “5 name*
1770 PRINT STRING*(40,CHR*(154));:PRINT
1780 PRINT“TOTAL Questions s";SIZEX
1790 PRINT"Questions ATTEMPTED :";SIZEX-
PASSX
1800 PRINT”CORRECT answers s“;SCOREX
1810 PRINT"INCORRECT answers :“;SIZEX-
PASSX-SCOREX
1820 PERCENT=SCOREX/SIZEX*1OO
1830 PRINT"PERCENTAGE score :";ROUND(
PERCENT,2)5"X"
1840 PRINT:PRINT"Performance GRADE : "

172 Filing Systems and Databases for the Amstrad CPC464

1910 RETURN

1850 IF PERCENT>=90 THEN PRINT"A (EXCELL
ENT!)"
1860 IF PERCENT>=70 AND PERCENT<9O THEN
PRINT"B (GOOD PASS)"
1870 IF PERCENT>=50 AND PERCENT<70 THEN
PRINT“C (CLEAR PASS)“
1880 IF PERCENT>=40 AND PERCENT<50 THEN
PRINT"D (PASS)“
1890 IF PERCENT<40 AND PERCENT>=30 THEN
PRINT*'E (FAIL) “
1900 IF PERCENT<3O THEN PRINT"F (BAD FAI
L) “

Program 6.2. Multiple choice test.

The variable names used and their corresponding functions are as
follows:

A$(Q%,C%) = main array for holding questions and answers,
dimensioned A$(100,5).
H$(0 — 5) = literal prompts for the questions and answers.
P$(0 - 5) = literal prompts for heading panel information.
SEL% = chosen option number.
SIZE% = highest question number in use.
K$ = general purpose global variable.
filenames = current file name.
Q% = question number.
C% = index to the question itself, the four answers and the correct
answer.
flag% = test status: flag% = 0, test in progress; flag% = 1, test over.
codeS = 6 character code to gain menu.
M% = minutes.
S% = seconds.
H% = hours.
T% = clock tick.

Knowledge Testing 173

Initialise
variables

Load question
tape

Enter menu code

Enter students
name

Present
instructions

Reset clock

Present question
and obtain answer

Display
results

Enter code

Present menu

I

Resit test
(same student)

Resit test
(new student) New test (end)

Fig. 6.2. Structure diagram for Program 6.2.

174 Filing Systems and Databases for the A mstrad CPC464

The subroutine calls are shown in Table 6.2.

Table 6.2. Subroutine calls.

Display and answer questions Display header l
Print line

Track and display time left
Load file
Display panel
Instructions
Display header 1
Display header 2
Process and display results

No other calls
No other calls
Header 2
No other calls
Print line
No other calls
No other calls

The actual ‘program’ extends down to the END at line 700; the
remaining lines are occupied by subroutines.

Most of the subroutines are fairly straightforward and, apart from
some of the variable names, are similar in form to those discussed in
earlier programs. The subroutine at line 1580assumesyouarefamiliar
with the MOD function because it is used to break down the time into
seconds, minutes and hours. The screen presentation of the time in
groups of two digits is achieved by the PRINT USING statement in
line 1640.

It should be clear from Figure 6.2 how the subroutines are linked
together.

Summary

1. A multiple choice test consists of questions together with four
answers, only one of which is considered correct.

2. It is bad practice to use word tricks.
3. An 80-column display is essential for displaying a question

together with four answers.
4. Two programs are required, one for preparing the questions and

the other for answering them.
5. Both programs involve data tapes.
6. Program 6.1 must save a data tape containing the questions.

Program 6.2 loads a data tape before the test begins.
7. When preparing questions or answers which take more than one

line, use the space bar (not the ENTER key) to wrap around to a
new line.

Knowledge Testing 175

8. When preparing questions, keep an eye on the ‘Bytes free’
number.

9. Each question added is via the menu page.
10. Program 6.1 produces a 2000 baud data tape.
11. During preparation, any question can be viewed by quoting the

question number.
12. Questions can be deleted but subsequent questions numbers will

be decreased by one to maintain a numerical sequence.
13. When taking the test with Program 6.2, the final menu can be

protected by a code word entered by the examiner.
14.. Whilst the test is in progress, the time left is displayed at the top

of the screen.
15. Audible warning is given when only ten seconds are left for the

test.
16. During the test, the ESC key is disabled.

Self test

Using Program 6.1 and with the aid of a dictionary, compose a set of
fifty questions on spelling. For example:

Question: A word meaning a mental derangement accompanied by
feelings of persecution.
Answer A: parinoia
Answer B: paranoia
Answer C: parenoia
Answer D: paronoia

Having produced the data tape, use Program 6.2 for a self test -
without using the dictionary.

Appendix A

Glossary

assembly language: a more user friendly method of entering machine
code.

baud: a rate of one information bit per second.
binary search: a fast searching method, requiring a sorted list.
block: a unit consisting of a certain number of bytes. In the CPC464,

a block is 2K bytes.
bug: a program error causing behaviour other than intended.
byte: a group of 8 bits.
command driven: a program in which an option is selected by a direct

command rather than from a menu.
contiguous: occupying adjacent positions within a list.
crash: a situation in which the operator loses keyboard control.
database: a term which, in the home computer environment, is

virtually synonymous with a filing system.
data file: file which contains data accessible only by a resident

program.
data processing: a term originally used to cover storage and

processing of information as distinct from computation.
default: the natural conditions assumed in the absence of commands

to the contrary.
direct files: a file organisation which allows any record, irrespective

of its position in the file, to be located immediately.
documentation: hard copy information which is intended to describe

fully the operation and structure of a program.
drop out: loss of bits from a tape due to defects in the recording film.
exchange sort: a sort based on comparisons between adjacent items.
field: a subdivision of a record.
field heading: the title which defines the meaning of field data.
field width: number of characters allotted to a field.
file: collection of related information.
file creation: entering preliminary information such as field headings

etc.

Glossary 177

file reorganisation: a method, or program, which modifies the entire
structure of an existing file.

file size: normally, the number of records held in the file.
flag: a data item which can be the equivalent of either yes or no.
garbage collection: periodic deletion of redundant strings and

subsequent rearrangement of those left.
hard copy: computer output in permanent form, such as a printout

on paper.
hierarchical: a system which is structured in order of importance.
indexed file: a file in which the records are accessed by first consulting

a separate index file. The records need not be in any pre-defined
order.

key field: a field which uniquely identifies a record.
leader tape: the first few inches of unrecordable tape.
machine code: a program written in a format which is immediately

recognised by the microprocessor.
menu driven: a program in which the various options are selected

from a menu page.
meta language: a concise set of symbols used to describe BASIC

keywords without ambiguity.
numerical data: the character subset containing only the digits 0 to 9

inclusive.
object code: the machine code translation of source code.
pointer: a variable, representing the address of another variable.
primary option: one of the main menu options.
program based: a file in which the data items are within DATA

statements.
program module: a section of program which, although part of the

whole, has a recognisable function.
prompt: a screen message requesting some input from the keyboard.
pseudo variable: a variable in which the value can be changed but not

the nature.
record: subdivision of a data file.
recursion: a subprogram or subroutine which calls itself.
secondary key field: a field which tends to classify rather than

indentify itself.
secondary option: an option selected from a subordinate set of

options.
sequential file: one in which records are stored in key field sequence.
sequential integrity: permanent preservation of original order.
sequential search: searching from the first record and continuing

sequentially until the desired record is found.

178 Filing Systems and Databases for the Amstrad CPC464

source code: a program written in assembly or higher level language.
subfile: a file containing only a selection of records from a main file.
substring: a group of characters within a string.
swop flag: a flag indicating whether or not a swop has occurred.
tape buffer: an area in memory from which data is transferred to and

from tape.
tokens: the two-byte code used by the interpreter when storing

keywords.
trace table: a pencil and paper method of plotting the progress of a

program.
user friendly: the built-in quality of a program to recognise and allow

for human weaknesses.
volatile: a memory in which the data is lost when the power supply is

interrupted.
wrap around: beginning again on reaching the end of a file.

Appendix B

ASCII Character Codes

Decimal Hex Character Decimal Hex Character Decimal Hex Character

32 20 Space 64 40 @ 96 60 £
33 21 ! 65 41 A 97 61 a
34 22 66 42 B 98 62 b
35 23 67 43 C 99 63 c
36 24 $ 68 44 D 100 64 d
37 25 % 69 45 E 101 65 e
38 26 & 70 46 F 102 66 f
39 27 71 47 G 103 67 g
40 28 (72 48 H 104 68 h
41 29) 73 49 I 105 69 i
42 2A ♦ 74 4A J 106 6A j
43 2B + 75 4B K 107 6B k
44 2C 76 4C L 108 6C 1
45 2D - 77 4D M 109 6D m
46 2E 78 4E N 110 6E n
47 2F / 79 4F 0 111 6F 0

48 30 0 80 50 P 112 70 p
49 31 1 81 51 Q 113 71 q
50 32 2 82 52 R 114 72 r
51 33 3 83 53 S 115 73 s
52 34 4 84 54 T 116 74 t
53 35 5 85 55 U 117 75 u
54 36 6 86 56 V 118 76 V

55 37 7 87 57 W 119 77 w
56 38 8 88 58 X 120 78 X

57 39 9 89 59 Y 121 79 y
58 3A 90 5A 7 122 7A z
59 3B J 91 5B [123 7B
60 3C < 92 5C \ 124 7C
61 3D = 93 5D] 125 7D
62 3E > 94 5E A 126 7E
63 3F ? 95 5F - 127 7F Delete

Appendix C

Answers to Self Test
Questions

1.1 It was non-volatile.
1.2 Memory is internal and volatile. Store is external and non­

volatile.
1.3 BYTE magazine originally used a normal tape recorder for

storing digital information. It was published in Kansas City.
1.4 2K.
1.5 Two tape files can be opened at once.
1.6 End of file has been detected.
1.7 FRE(“ ”) enforces garbage collection first; FRE(0) doesn’t.
1.8 Because the recording heads may not be aligned quite the same

on different machines.
1.9 False.

2.1 No.
2.2 It must be unique.
2.3 When there are a large number of records.
2.4 Processing is fast once the file is loaded.
2.5 102 characters.
2.6 Horizontally.
2.7 When the operator is not sure of the complete field information.
2.8 Because memory space is more limited than in store-based files.

3.1 Line 300 should be altered to DATA 13,2.
3.2 To register whether the record is on file.
3.3 To reject a null string input, i.e. ENTER pressed before data is

entered.
3.4 You can’t sort a file containing only one record.

4.1 To allocate permanently the cassette buffer areas.
4.2 To restore the 1000 baud rate.
4.3 So that the array AS may be redimensioned.
4.4 To ensure that the edited line appears within the centre of the

dotted lines.

Answers to Self Test Questions 181

5.1 20 million.
5.2 6 hours.
5.3 500000.
5.4 Can have poor near order performance.
5.5 Improved mixing of sets for large values of N.

6.1 No formal answer required.

Index

add record subroutine, 57
assembler, 120

back-up copies, 12
baud, 5
binary file, 120
binary search routine, 143
block, 13
broad sheet display, 28
bubble sort, 97
buffer, 13
building bricks, 36

cassette labels, 13
cassette storage, 4
classification, 18
command driven, 27
control section, 48
create file subroutine, 59
create subfile, 84

data, 22
database management, 84
databases, 84
data file, 22
data processing, 3
delete subfile subroutine, 63
diminishing increment sort, 100
display single record, 81
display subroutine, 55
documentation, 21
drop-out, 12
dynamic allocation, 14

exchange sort, 95

field, 23
field heading, 23
file, 22
file closure, 47

file components, 25
file-name, 51
file size, 25
file splitting, 26
file status, 78

garbage collection, 7

hard copy, 88
hierarchical structure, 49
housekeeping, 14

idiot-proofing, 19
indentifier, 24
informal tests, 166
information, 1
initialisation subroutine, 64

Kansas City, 4
key field, 24
keying errors, 77

leader tape, 11
linear search, 142
loading files, 82

machine code sorting, 113
main file, 87
memory, 3
menu driven, 27
meta language, 6
modify subroutine, 59
multifield sorting, 133
multiple choice preparation, 150
multiple choice test program, 162
multiple choice tests, 148

numeric fields, 23

object code, 114

Index 183

padding, IO
pivot, 103
primary option, 27
print subroutine, 56
program-based files, 37
program compactors, 65
program file, 22
program modules, 21

quicksort, 103

random access, 16
record, 23
record search, 29
rectangular array, 33
rectangular array sort, 108
recursion, 104
relocation, I2l
roll-around, 81

saving files, 82
search director subroutine, 62
search file menu subroutine, 61
search subroutine, 54
sequential integrity, 2
sequential search, 142
serial files, 25
shell sort, 100
sort file subroutine, 56
sorting records, 31

sorting strings, 106
source code, 114
stack, 104
static allocation, 15
storage capacity, 5
store, 4
string descriptors, 109
string fields, 23
student options, 165
subfiles, 32
subroutine calls, 91
subroutines, 21
substring, 8
substring search, 29

tape speed, 9
title subroutine, 60
tokens, 46
tombstone marker, 29
totalise column, 89
totalise subroutine, 56
truncation, 50
two-dimensional array, 39

user-friendliness, 19

variable names, 37
volatile, 3

wrap-around, 81

This book shows how to construct both general purpose
and specialised filing systems - using the cassette system -
for a variety of applications.

Complete BASIC listings and subroutines are fully
described and written in module form so that users should
find it easy to tailor them to suit their own individual
needs. Fast machine code routines are also included as
alternative options where high executing speed is
essential.

The Authors
A. P. Stephenson has a long and distinguished record as a
writer on electronics and computing for the enthusiast. He
has contributed regularly to the popular computing journals
and is the author of ten other books.

D. J. Stephenson is another life-long computer enthusiast.
He has contributed to popular electronics and computing
journals, and is a co-author of four other books.

Other books for Amstrad users

AMSTRAD COMPUTING
Ian Sinclair
0003831205

SENSATIONAL GAMES
FOR THE AAASTRAD CPC464

Jim Gregory
0 00 383121 3

ADVENTURE GAMES
FOR THE AAASTRAD CPC464
A. J. Bradbury
0003830780

40 EDUCATIONAL GAMES
FOR THE AAASTRAD CPC464

Vince Apps
0003831191

PRACTICAL PROGRAAAS
FOR THE AAASTRAD CPC464

Audrey Bishop and
Owen Bishop
0 00 383082 9

Amstrad and CPC464 are trademarks of
Amstrad Consumer Electronics PLC

Front cover illustration by Godfrey Dowson

COLLINS
Printed in Great Britain

0003831027 £8.95 net

	Filing systems and databases for the AMSTRAD CPC 464
	Contents

	Preface

	1 - Introduction
	2 - Components of a Filing System
	3 - Simple Filing Programs and Building Bricks
	4 - A Complete RAM-based Serial Filing System
	5 - Searching and Sorting
	6 - Knowledge
	Appendix A : Glossary
	Appendix B : ASCII Character Codes
	Appendix C : Answers to Self Test Questions
	Index

	● Raw scan : Maxime CROIZER for ACME | Layout/OCR : ACME – https://acpc.me ● 2020-06-25

