
CP/M
Simplified

Γ

JSÍ

lü'mise^ · I
■ ·

L

Jeffrey R. Weber

MiISiWEBER
ISYSTEMS
liNCORPORATED

CP/M
SIMPLIFIED
1st EDITION

Jeffrey Weber

Weber Systems Inc.
Cleveland, Ohio

Published by
Weber Systems Inc.
8437 Mayfield Road
Cleveland, Ohio 44026

For information on translations and book distributors outside
the USA, please contact WSI at the above address.

CP/Μ Simplified First Edition

Copyright© 1982 Weber Systems Inc. All rights reserved. Printed
in the United States of America. No part of this publication may
be reproduced, stored in a retrieval system, or transmitted in any
form or by any means, electronic, mechanical, photocopying,
recording or otherwise without the prior written permission of
the publisher.

Library of Congress Catalog Card Number 81-66910
ISBN 0-938862-05-7

Typesetting: Shelly Harpold

Contents

1. INTRODUCTION TO CP/M AND MP/M 9

Typical Computer System 9. Computer 10. Disk
Drives 10. Terminal Display and Keyboards 13.
Printer 13. Software 14. CP/M, MP/M Defined
14. CP/M Versions 15.

2. USING CP/M FOR BUSINESS COMPUTING 17

Custom vs. Package Programs 17. WSI Business
Applications Packages 18. Hardware
Requirements 19. CP/M Operating System 22.
Accounts Receivable System 23. Accounts
Payable System 24. General Ledger System 25.
Payroll/Personnel System 25. Inventory System
27. Mailing List 27. Word Processing 28.

Packages 18.

3. BASIC CP/M OPERATION 31

Copying the System Diskette 32. Cold Start 33.
System Prompt 33. Warm Start 34. Disk Directory
34. DIR 35. Running a CBASIC Program 36. ED 37.
REN 39. Loading a Diskette 39. PIP 40. Printing
Files 43. Erasing Files 45.

4. CP/M AND MP/M COMMANDS 47

Command Format 48. Control Characters 49.
File Handling Commands 52. Device Handling
Commands 54. Program Handling Commands
56. Control Characters 57. Filenames 57.
Filename Match 58. Filename Extension Types
59. Built-In and Transient Commands61. DIR61.
TYPE 62. REN 63. ERA 63. SAVE 64. SYSGEN 64.
STAT 66. SUBMIT 73. SUB with XSUB75. ASM77.
LOAD 80.DUMP 82. DDT 83. SAVE 84.
Calculating Pages 85.

5. MP/M AND CP/M 2.2

Program Scheduling 87. User Areas 92. File
Protection 94. DISKRESET 96. SPOOL 97. SCHED
98. TOD 98. ABORT 99. ATTACH 99. CONSOLE
100. DIR 100. ERASE 100. TYPE 101. MPMSTAT
101. GENMOD 103. GENHEX 103. PRLCOM 103.
GENSYS 104. MPMLDR 104.

6. USING THE PIP COMMAND TO HANDLE FILES

87

107

PIP Defined 108. Copying a Single File 108.
Copying Several Files 110. Copying all Files 112.
Copying With a Drive 113. With 2 Drives
114. Aborting PIP 116. Using PIP to Copy Other
Peripherals 116. Device Keywords 119. Examples
of PIP File Transfers 119. Physical Device Names
in PIP 124. Special Device Names 124. Sending
Text Files to Devices 125. ASC II Conversion
Table 127. ASC II Character Codes 128.
Concatenating Text Files 132. Concatenating
Non-Text Files 134. Concatenating Hex Files 134.
PIP Parameters 136. PIP Parameter Examples 139.
Copying Part of a File 140. Using PIP in CP/M 2.2
and MP/M 141. File Attributes 142. Using PIP to
Copy from User Areas 142. Using PIP with Read-
Only Files 144. Using PIP with System Files 145.

7. THE CP/M EDITOR (ED) 147

Introduction 147. CP and Line Numbers 150. ED
Mechanics 150. ED with Source Files 157.
Accidentally Erasing the Edit Buffer 158.
Creating a New File 158. Using T to Display Text
165. Moving the CP 166. Determining the CP
Position 166. Ending the ED Session 169. Using
the A Command 171. Moving Inside the Edit
Buffer 172. Changing Text with ED 176.
Substituting Text in the Edit Buffer 179. Writing
Lines to the Edit Buffer 182. The N Command
184. R Command and Library Source File 185. X
Command and Holding File 185. J Command
187. Μ Command 188. ED Error Conditions 188.

8. INTERNAL OPERATION OF CP/M

Overview 191. Allocation of Memory 193. CP/M
File Structure 195. File Control Block 196. File
Control Block Descriptions 199. CP/M System
Operation Overview 201. FDOS and CCP 202.
BIOS 204. BDOS 204. BIOS Function Numbers
205. BDOS Function Numbers 206. Altering
CP/M 213. Altering Memory Size 213. Installing
MP/M 214. Altering CP/M 218.

9. CP/M AND MP/M REFERENCE GUIDE

191

219

Format 219. ABORT 221. ASM 223. ATTACH 226.
CONSOLE 227. DDT 228. DIR 230. DSKRESET233.
DUMP 234. ED 235. ERA236. ERAQ 238. GENHEX
240. GENMOD 241. GENSYS 243. LOAD 245.
MOVCPM 247. MPMLDR 249. MPMSTAT 250.
PIP 251. PRLCOM 256. REN 257. SAVE 258.
SCHED 261. SPOOL 262. STAT 263. STOPSPLR
266. SUBMIT 267. SYSGEN 269. TOD 271. TYPE
273. USER 274. XSUB 275.

10. CBASIC PROGRAMMING LANGUAGE 277

CBASIC Beginnings 277. CBASIC Structure 277.
CBASIC Errors 278. Using ED to Edit a CBASIC
Program 279. Entering New Text with I 280.
Correcting Errors in ED 281. Saving the Program
on Disk 282. Compiling the CBASIC Program
283. Running the Compiled CBASIC Program
284. Introduction to Programming Practices 284.
Flowcharting Techniques 285. Module Structure
285. CBASIC Program Statements 288. Flowchart
Symbol Description 289. Line Numbers 291.
Remark Statements 291. CBASIC Keyword
Summary 293.

11. PRACTICAL OPERATIONAL GUIDELINES 295

Introduction 295. Computer Room
Organization 296. Environmental Problems 296.
System Documentation 298. Computer Room
Supplies 299. Copying Diskettes 300. Storing and
Handling Diskettes 300. The Printer 302. How to
Shut Down the System 303. CP/M and Diskette
Space 303. System Troubleshooting 303.

295.

APPENDICES
A. COMMON CP/M ERROR MESSAGES
B. PIP DEVICE NAMES
C. FILENAME EXTENSION TYPES

305
307
309

INDEX 313

CHAPTER 1. INTRODUCTION TO
CP/M AND MP/M

INTRODUCTION

In this chapter, we want to teach you the basics of operating a
computer system, as well as to introduce you to CP/M. We
assume no prior knowledge of computers in this book.

THE TYPICAL COMPUTER SYSTEM

A computer system consists of hardware and software. The
hardware refers to the system’s physical devices, such as the
central processor, terminal, disk drives, and printer. The
software are the instructions as well as the data files that are
manipulated by these programs.

ILLUSTRATION 1-1. TYPICAL COMPUTER SYSTEM

10 CP/M Simplified

THE COMPUTER

The most well-known manufacturers of small computers; Tandy,
Apple, and Commodore, generally house the computer itself in
a plastic cabinet with a built-in keyboard. Sometimes, a video
screen and disk drives are enclosed in the same housing with the
computer and keyboard.

The computer’s main function is to process data. The computer
stores information or data in memory. Memory is measured in
kilobytes or K. One K is equal to 1024 bytes of storage space.
Typical memory sizes of small computer systems are 16K, 32K,
48K, 64K, 96K and 128K.

The computer has two types of memory; ROM and RAM. ROM
(Read-Only Memory) is used to store permanent information
such as the operating system and compiler. RAM (Random Ac
cess Memory) can be both read from and written onto. RAM is
volatile. That is when the computer is turned off, the information
being stored in RAM will be lost. If the information being stored
in RAM is to be saved, it must be transferred to a storage device
such as disk or tape.

All computer memory is based on the word. A word is a single
logical unit of information on which the CPU will operate. A
word does not always specify the same number of bits. A bit is the
smallest means of representing data. A bit may be either 0 or 1—
the two binary states.

In an 8 bit system, a word is 8 bits in length. Since there are 8 bits
to a byte, a word is one byte in length in an 8 bit system. In a 16 bit
system a word is two bytes or 16 bits in length. In a 4 bit system, a
word is 4 bits in length. An example of one byte stored in the
computer’s memory would be: 00001111. All characters, data,
and instructions are based upon these groups of 8 bits, or bytes.

THE DISK DRIVES

Since the computer’s RAM memory is a temporary means of
storage, the computer system must have a permanent storage
device. Magnetic disk drives are the most commonly used
storage devices on small computers, although magnetic tapes

Introduction to CP/M & MP/M 11

can also be used. For our purposes in studying CP/M, we will
assume that the system is equipped with disk drives.

There are two common methods of storing data on disk; hard
disk storage and floppy disk storage. Hard disks give the user a
large amount of storage and high speed of operation. The main
disadvantage of hard disk storage is that hard disk drives are
more expensive than floppy disk drives.

Floppy disks are generally used in small computer systems.
Floppy disks are available in two standard sizes; 514 inch and 8
inch. The SVi inch floppy diskette is known as a mini-diskette,
while the 8 inch diskette is simply called a diskette.

ILLUSTRATION 1-2. DISKETTE SPECIFICATIONS

Index Holes-^
Drive
Spindle
Hole

Head Slot—i-

8"

®
sy/'

0

8" 51/4"

Write Protect
Notch

Diskettes are fragile and should be handled with care. Do not
touch, scratch, or allow dust to settle on the exposed areas of a
diskette. Since diskettes are a magnetic storage device, they must
be kept away from magnetic fields, as these may erase existing
data. Be especially careful to keep diskettes away from
telephones, as these often contain magnetic devices.

12 CP/M Simplified

ILLUSTRATION 1-3. 8" DISKETTE

maxEll
Ropp/ Osk

FHl

o

Each floppy disk consists of a cardboad covering containing a
diskette made of mylar coated with magnetic oxide. The hole in
the center of the diskette allows the disk drive motor to turn the
diskette. The long, oval-shaped opening allows the disk drive’s
read/write head to come into contact with the diskette surface
so that information may be read from or written onto the disk.

Every disk is divided into concentric circles. These circles are
called tracks. Each track is in turn divided into sectors by the
CP/M operating system. This is shown in Illustration 1-4.

Most diskettes have a write-protect notch. On the 8 inch
diskette, this notch is covered with a piece of aluminized paper.
When you remove this paper, the write-protect notch is
exposed, which means that the disk cannot be written onto.

The operation of the write-protect notch is exactly the opposite
with the 514 inch minifloppy diskette. The aluminized paper
must be removed before one can write on the disk. As long as the
paper is present on the diskette, it cannot be written onto.

Introduction to CP/M & MP/M 13

ILLUSTRATION 1-4. TRACKS & SECTORS

Sector

Track

The write-protect notch is used to prevent the operator from
inadvertently writing over important information. Master
diskettes are generally write-protected and stored in a safe area.

TERMINAL DISPLAY & KEYBOARDS

The terminal display and keyboard are generally built into the
same unit within the computer. The keyboard is the means by
which the operator can communicate with the computer. The
terminal display or video display will display information to the
operator via the video monitor.

PRINTER

The printer provides a print-out (hard-copy) of information
specified by the operator. The printer is a separate unit
connected to the computer itself via connector cables.

14 CP/M Simplified

SOFTWARE

The hardware is only one component of a computerized system.
The software is the other component. The software is the
sequence of instructions that when placed in the computer's
memory, will direct the actions of the computer.

There are two types of software: system software and
applications software. The system software is the operating
system of the computer. CP/M is an example of an operating
system. The operating system includes the programs that direct
the computer in transferring data to and from storage devices
such as disk drives and cassette tape units.

The applications software include programs which are designed
to perform a specific task such as word processing, accounts
receivable, accounts payable, payroll, mailing list, etc.

CP/M & MP/M DEFINED

CP/M is an abbreviation for ‘Control Program for
Microprocessors’, while MP/M stands for 'Multiprogramming
Control Program for Microprocessors’.

CP/M is an operating system which allows the user to take full
advantage of the hardware. CP/M will read and process data
entered via the keyboard, display data on the video monitor,
send data to the printer, manage disk space, and manage the
allocation of the computer’s memory.

The main difference between CP/M and MP/M is that CP/M is
designed as an operating system for a single operator while
MP/M is a multi-user operating system. In other words, MP/M
allows several terminals to be used simultaneously in the
computer system. The differences between CP/M and MP/M
will be explained later in this book.

CP/M OVERVIEW

CP/M is a group of programs stored on a diskette known as the
system diskette. The resident monitor or bootstrap loader which
is present in every computer system) will load CP/M from the
system diskette whenever the system is properly turned on.

Introduction to CP/M & MP/M 15

Once the system is turned on, CP/M begins monitoring the
keyboard for commands. The operator may then enter the
proper command to activate the desired program.

Once the program has been loaded into the computer’s RAM,
the operator can begin using that program. When the program is
ended, the CP/M prompt will again appear, and will await the
entry of new commands via the keyboards.

DIFFERENT VERSIONS OF CP/M

Several different versions of CP/M have been released. In this
book, we will discuss the features of CP/M up to CP/M 2.2. We
will also discuss MP/M.

CHAPTER 2. USING CP/M FOR
BUSINESS COMPUTING

Complete data processing systems are now available for just a
few thousand dollars, which are just as powerful as systems
costing hundreds of thousands of dollars just a few years ago.
These dramatic cost reductions have made the computer
affordable for almost any small business. In fact, a computer has
almost become a necessity now for any business large or small.

There are many models of these new, low-cost business
microcomputers. They include the Apple, Commodore CBM,
Tandy's TRS-80 line, the IBM Personal Computer, the Xerox 820,
and various other manufacturers such as Northstar, Intertec,
Cromemco, Dynabyte, Altos, Zenith, Ohio Scientific, Wang, and
Hewlitt-Packard.

When choosing a business system, you may wish to consider
several or all of these hardware manufacturers to find the
hardware configuration best suited to the needs of your
business. However, the main consideration in choosing a
business system is the applications software. By applications
software, we mean the specific programs that will handle the
various information processing tasks required by your business.
Examples of applications programming functions include
accounts receivable, accounts payable, general ledger, payroll,
job costing, inventory, word processing, order entry, billing,
mailing list, and a host of other tasks.

Since the most important consideration in building a business
system is choosing the applications software, many managers
make the selection of applications software their first step in
building a business system. Then, they choose the hardware and
operating system on which the applications software will best
operate. This is the preferred method for selecting a
computerized system for business applications.

CUSTOM VS PACKAGE BUSINESS PROGRAMS

Once you have identified the specific needs of your business,
you must decide what applications software will best meet those
needs. The first question you must ask yourself is whether to
develop custom applications programs or purchase packaged
applications software.

18 CP/M Simplified

Custom applications software is that which you develop your
self—either by writing the programs or contracting with a
programmer to write them for you. A package applications
system is a standardized system sold by software houses and
designed to fit the needs of a wide range of businesses.

The obvious advantage of custom applications software is that it
will be specially designed to fit the needs of your business. The
drawback of custom software is that creating a complete,
debugged applications system is a long and expensive task that
can take years and hundreds of thousands of dollars to develop.
For all but the largest business users, this makes custom business
programs impractical.

Although packaged programs may not fit the exact needs for
your specific business, such programs are generally the only
practical solution to a businesses software needs from a cost and
time standpoint. It is important for the business user to examine
a number of different applications software packages to find the
one best suited for his or her business.

One way to gain some of the advantages of customized software
with the low cost of a package system is to purchase the system
that most closely fits the information processing needs of your
business, and then modify or add programs that will adapt the
package system so it more closely fits the exact needs of your
business. This will increase the initial cost of the applications
software, but in many cases, the increased efficiency justifies the
additional expense. If a full or part-time programmer is available,
additional special purpose programs can be added to most
packaged systems that result in these systems fitting the needsof
your business more closely.

WSI BUSINESS APPLICATION PACKAGES

Weber Systems Incorporated publishes a series of business
applications packages priced from $29.95 to $499.95. These
packages are equivalent to those offered by software houses for
several times these prices. Because of mass distribution, we have
been able to offer complete business applications packages at
low prices. These quality packages are within the financial reach
of any firm.

Using CP/M For Business Computing 19

The following packages are either currently available or are in
the development stage.

WSI Small Business Accounting System
’Accounts Receivables
’Accounts Payables
’General Ledger

WSI Micro Filing System
’Data Base Capacity
’Mailing List Capability

WSI Word Processing System

WSI CompuCalc
’Electronic Spread Sheet Capability

WSI applications packages will run on most microcomputers
such as Apple, TRS-80, CP/M based systems, IBM PC's, the
Osborne I, and more.

If you wish more information on WSI applications, send a self
addressed stamped enveloped to the address below, and our
catalogue will be mailed to you.

Weber Systems Inc.
P.O. Box 413

Gates Mills, OH 44040

Support is available for WSI applications software packages.

BUSINESS SYSTEM HARDWARE REQUIREMENTS

Naturally, business system hardware requirements differ
according to the size of the business and the complexity of that
businesses applications programs. For our purposes, we will
concentrate on the needs of the small to medium sized business
rather than large businesses. These firms are more typical users
of microcomputers.

20 CP/M Simplified

The requirements of the central processor impose few
limitations on the business user. The speed of the processor is
rarely a major factor in choosing hardware for business
applications. The size of the memory does limit the choice of
hardware somewhat. Most business applications packages
require 48 to 64K of RAM.

The most important consideration in choosing hardware for a
business system is the disk storage. A disk system must be chosen
that allows for sufficient storage of applications programs, data
files, and possibly even operating systems and utilities. Both SVi"
and 8" diskettes are widely used for business. Two disk
drives is the recommended minimum for most business ap
plications. Generally, one drive is needed to hold the disk con
taining the applications programs and data files, while the
second disk drive is used to make disk back-ups (copies) of the
data and program files on the first drive.

Another disk storage system exists for the business user in the
form of hard disks. Hard disks are desirable in that they offer
much more storage capacity and are faster than floppy disks.
Moreover, if several different applications systems are being
used by a business, a hard disk system makes it possible to
include several or even all of these application programs and
their data files on a single disk. Usually, a maximum of one or two
applications programs and data files may be stored on a floppy
disk. A hard disk may store a large number of applications
programs and data files. For most businesses, all applications
programs and data files can be stored on one or two hard disks.
Therefore, the hard disk system entails less disk handling than
the floppy disk system, as there is no need to insert and remove
the disk each time a different applications package is used.

Also, a hard disk system allows more data files to be on-line
(available on demand to the user). Finally, because of its larger
storage capacity, the hard disk system allows more efficient
applications programs to be used.

The drawback to hard disk systems is their cost. A hard disk
system is signicantly more expensive than a floppy disk system.
However, if your business applications require a large amount of
data storage or a great deal of file handling, the additional ex
pense of a hard disk system is usually well justified.

Using CP/M For Business Computing 21

A hard disk system requires back-up capabilities just as a floppy
disk system. However, in some hard disk systems, the disk is not
removable. Just as tape drives are often used as back-ups on
large main-frame computers many hard disk systems contain
both a fixed disk and a removable disk for making back-ups. On
microcomputers with a floppy disk built into the mainframe,
such as the Apple III® or TRS-80 Model II®, the built-in floppy
disk may be used to make back-up copies of files on the hard disk
drive.

One final note before we leave the subject of hard disks. If your
system is to have multiple terminals, a hard disk is almost a
necessity.

The final consideration when choosing hardware for your
business system is the choice of a printer. Two main types of
printers may be required depending upon your applications.

-A line printer for speed.
-A daisy wheel printer for quality.

A daisy wheel is preferred for word processing applications,
where the nature of the output dictates typewriter quality. The
drawback to the daisy wheel printer is that it is generally much
slower than a line printer. Since a high speed printer is often
needed to produce extensive reports from large data files, a
daisy wheel printer is often impractical for printing voluminous
reports.

If your business system will be required to produce lengthy
reports, a line printer with its high speed may be necessary. If
your reports are not overly lengthy, you may be able to use a
daisy wheel printer to produce reports, giving you the flexibility
of using your computer for word processing applications. Check
with your computer dealer for his opinion before making your
final decision.

Many firms require both types of printers—a daisy wheel for
word processing and a line printer for report writing. However,
some businesses find that the line printer outputs acceptable
quality for many of their word processing applications. These
firms use a line printer for both report writing and word
processing applications.

22 CP/M Simplified

CP/M OPERATING SYSTEM

Once you have decided upon your hardware configuration, you
must choose an operating system. The operating system is a
series of programs which are designed to provide the user with
convenient commands for executing applications programs and
handling files.

The minimal requirements for an operating system are that it
allows the user to give a name to a program or data file, store that
file on disk, display the file on the video screen, and print it on
the printer.

Most computer manufacturers have their own individual
operating systems. For example. Commodore offers various
versions of DOS (Disk Operating System), while TRS-80
computers use various versions of TRSDOS. The drawback here
is that an applications program written to run under TRSDOS
may not run under DOS and vice versa. In other words, the
systems are not compatible.

For this reason, many business users choose to operate under
CP/M. CP/M is a standard operating system developed and
trademarked by Digital Research, which is available for use on
almost any model microcomputer which usesan Intel 8080,8086,
or 8088 compatible microprocessor.

Software houses find it more attractive to write applications
systems that run under CP/M than systems that will run on only
one model microcomputer. This makes the CP/M operating
system an important consideration when planning your system.
Obviously, you will find a much larger and more varied selection
of programs written for CP/M that those written for an operating
system used by only a single manufacturer, such as TRSDOS or
DOS. For this reason, many business users of microcomputers
choose to install CP/M so as to have a wider range of software
from which to choose.

Another advantage of CP/M for the business user is that the ap
plications software he develops or purchases for use on a CP/M
system is hardware independent. In other words, the software
will run on any hardware that will accept CP/M. Therefore, if the
user wishes to switch hardware, he will not lose his investment in
applications software.

Using CP/M For Business Computing 23

BUSINESS APPLICATIONS--A MACRO VIEW

Every business must maintain a certain number of files. These
files generally involve accounts payable, accounts receivable,
personnel, inventory, and general ledger accounts. Additional
files often include a customer list, vendor list, asset list, back-
order list, as well as a multitude of others. These lists (or files)
must be managed. Management can be effected either by hand-
such as a bookkeeper-by an electronic device-such as a com-
puter-or as is generally the case, by a combination of both.

These various files used by the business must be processed,
maintained, and updated. New data (transactions) must be en
tered into the file. Changes must be made in existing data (file
maintenance). Information must be processed and transferred to
other files which are affected by changes in the original files (up
dates). Finally, reports must be output reflecting all of this ac
tivity. Applications programs are designed to automatically per
form these file processing tasks.

INDIVIDUAL BUSINESS SYSTEMS

The various tasks of a business can be broken into sub-groups.
The most commonly used names for these sub-groups are:

Accounts Receivable System
Accounts Payable System
Inventory System
Personnel/Payroll System
General Ledger System

ACCOUNTS RECEIVABLE SYSTEM

The accounts receivable system keeps track of what is owed to
the firm. The major files in an accounts receivable system are the
customer file and the invoice file. The customer file usually con
tains one record for each customer. The customer record
generally contains separate fields for the customer's name, ad
dress, telephone, account identification number, and total
purchases.

The invoice file contains one record for each sale made or credit
allowed. Each invoice record contains a field for an invoice iden
tification number, a billing date, an invoice amount, a shipping
amount, a sales tax amount, and invoice payments.

24 CP/M Simplified

Transactions reflecting invoices, debit and credit memos issued
and payments received are entered into the accounts receivable
system as transactions. These transactions then update the in
voice and customer files. Finally, invoices and account
statements are printed as well as reports of overdue accounts,
summaries of transactions entered, summaries of changes to the
invoice and customer files, and summaries of each customer’s
account activity.

ACCOUNTS PAYABLE SYSTEM

An accounts payable system keeps track of the invoices billed to
your business by its vendors—the amounts that your business
owes. The major files in an accounts payable system are the
vendor file, the invoice file, and the check file. Each vendor
record contains data on the vendors from whom your firm
makes purchases. Fields in the vendor record generally include
an identification number, name, address, phone, and total
purchases.

The invoice file contains records for the various invoices, debit
and credit memos billed to your firm. Invoice record fields
generally include an invoice number, description, purchase
order number, date, invoice amount, discount amount, freight
amount, and tax amount. For accounts payable systems that are
interactive with the general ledger system, the invoice record
will contain fields for account numbers and amounts to be
posted to the proper general ledger accounts.

The check file contains information on each check issued by
your firm to pay its accounts. Fields generally included on a
check record include the identification number of the vendor
being paid, a check register number, a check amount, and the
invoice number or numbers being paid by the check.

Transactions reflecting invoices, debit memos, and credit
memos issued to your firm and payments made by your firm are
entered into the accounts payable system as transactions. These
transactions then update the vendor, invoice, and check files.
Finally, checks are printed as well as reports summarizing
transactions entered, file update activity, checks written, and
vendor account activity.

Using CP/M For Business Computing 25

GENERAL LEDGER SYSTEM

A general ledger system keeps track of the balances of the firm’s
asset, liability, income, and expense accounts. The primary files
in a general ledger system are the account file and the posting
files.

The account file contains a record for every account, whether it
is an asset, liability, income, or expense account. Each account
record generally contains fields for the account number, name,
current month total, current quarter total, current year total, first
previous quarter total, second previous quarter total, third
previous quarter total, and previous year total. In addition, the
account record generally contains fields which govern how it
will appear when it is printed on the Balance Sheet or Income
and Expense reports.

The posting file contains records for every separate posting to a
general ledger account. Each posting record generally contains
the general ledger account number to which it is to be posted,
the posting date, the amount to be posted, and a description of
the posting for future reference.

Postings can be entered either directly by the operator, or they
may be automatically created by systems which interact with the
general ledger system. For example, when an invoice is entered
into the accounts receivable system, a posting will be created to
credit the sales account (Income) and debit the accounts
receivable account (Asset).

A general ledger system usually contains one program to allow
the entry of posting transactions with a separate program to
update these posting transactions to the permanent records on
the account file. Another program is also necessary to add
records to or drop records from the account file, as well as to
change field data on existing records in the account file. A good
general ledger system also has a cash journal program to allow
direct posting of transactions affecting the cash accounts to the
account file.

PAYROLL/PERSONNEL SYSTEM

The payroll/personnel system calculates employee pay, income

26 CP/M Simplified

tax deductions, payroll tax deductions, and miscellaneous
deductions. Moreover, a history must be kept for every
employee of gross pay, all taxes withheld, and all deductions.
Finally, a payroll system should have the ability to print payroll
checks, a payroll journal, 941A forms, W-2 forms. Insurance
Reports, and Employee Absentee Reports.

a
Generally, a payroll system revolves around an employee master
file, an employee history file, tax files,
deduction/miscellaneous pay file, and a transaction file.

The employee master file contains one record for every
employee who has been on payroll in a given year. The
employee master record fields include an employee number,
name, address, social security number, number of exemptions,
marital status, pay rate, vacation, and sick hours remaining. The
employee master record also contains fields that keep track of
the following information for the current pay period, current
quarter-to-date pay period, and current year-to-date pay
period.

Hours worked
Overtime Hours Worked
Vacation Hours
Miscellaneous Pay
Total Pay
Federal Income Tax Withheld
State Income Tax Withheld
City Income Tax Withheld
FICA Withheld
Deductions Withheld

The employee history file contains one record for every
paycheck that was issued during the year. Each record contains
fields for storing that pay period's payroll and deduction data.

The deduction/miscellaneous file will contain records of
information related to non-recurring deductions and payments
to employees.

The transaction file may also be known as the entry file. This file
contains records of information describing a single transaction
that affects an individual employee’s pay. These records are

Using CP/M For Business Computing 27

eventually updated to the employee history and master files.

The tax files contain federal, state, and city tax rates, and salary
cut-off points.

INVENTORY SYSTEM

An inventory system should perform the following inventory
management functions.

Inventory Maintenance
Purchase Order Entry
Sales Order Entry
Back Ordering
Inventory File (includes quantity, cost, vendor,
identification number, and date of sale)
Minimum Quantity Search
Inventory Activity Reports
Inventory Lists (differing reports based on a number of
report criteria)

The inventory system generally revolves around the inventory
file. The following information is held as a field in the record for
every item in the inventory file.

Item Number
Description
Storage Location
Number on Hand
Vendor Number
Filling Price
Purchase Price
Last Sale Date
Minimum Reorder Quantity

MAILING LIST

The mailing list program is perhaps the most underused business
system. Many businesses merely use the customer list from the
accounts receivable file for their mailing list. In actuality, an
efficient mailing list should contain different files, each of which
contain prospects as well as actual customers. For example, one

28 CP/M Simplified

list may contain the purchasers of $1000 worth of spare parts in
the past 12 months. Another list might contain all coupon
respondents to a trade journal advertisement. A third list might
contain your competitor’s customers. The possibilities for
increasing your firm’s profits through the use of a properly
managed mailing list system are enormous.

WORD PROCESSING PROGRAM

If you own a microcomputer, you already have the makings of a
word processor. You need not invest thousands of dollars in a
computer dedicated solely to the word processing task such as
those manufactured by Wang or Lanier. By purchasing word
processing software, you can convert your microcomputer into a
word processor.

A word processor is an applications program designed so that
text can be typed on the keyboard, stored on disk,then edited
and modified as desired, and finally printed in a specified format.
Word processors are now widely used by businesses for typing
correspondence, manuals, and even books. Word processing is
becoming increasingly important in the publishing and printing
industries.
With a word processor, a rough draft is first typed in on the
terminal for storage on disk. Next, a printout of the text is output.
The author of the text inspects the printout and indicates
revisions where necessary. The text can then be edited by the
operator on the screen until it has reached its final form. That
final form of the text can then be printed out under a number of
different formatting options. For example, the text can be left-
justified, right-justified, or tabulated.

Word processors are valuable tools for contracts or form letters
where the same basic document must be reproduced a number
of times with just a few words changed. With a word processor, a
perfect printout can be obtained with a minimum of effort.

If you use your business microcomputer for producing lengthy
reports as well as word processing, you may need two printers—a
faster line printer for report writing and a letter quality daisy
wheel printer for documents produced with the word
processing software.

Using CP/M For Business Computing 29

A large number of word processors are available that will run on
microcomputers equipped with the CP/M operating system.
Many of these operating systems offer optional dictionary
programs to allow for spelling checks in documents.

CHAPTER 3. BASIC CP/M
OPERATION

INTRODUCTION

We will assume that you are working with a TRS-80 Model II
computer with 64K of RAM, two 8 inch disk drives, and a line
printer.

To turn on the Model II, press the On/Off switch so that the
computer will be turned on. Then, turn on your printer and disk
drives.

Next, insert a copy of your CP/M system diskette in Disk Drive A.
Hit the Return key and the following system message and system
prompt will appear.

64K CP/M

A>

With MP/M:

64K MP/M

OA>

— System Message

System Prompt

32 CP/M Simplified

FORMATTING A BLANK DISKETTE
All diskettes used under CP/M must be formatted. Formatting is
the process of initializing a blank diskette’s track and sector
information so that it is compatible with the disk controller being
used. Different software houses have customized CP/M so that it
can be used with different hardware systems. Each version will
have a customized formatting utility program. Refer to your
specific CP/M system’s documentation for details on formatting
blank diskettes.

COPYING THE SYSTEM DISKETTE
If you have only one original copy of your system diskette, you
should order or make several copies of that original. Store your
original in a safe place and use your copies for actual system
operation.

To make copies of your system diskette, insert the system
diskette in Drive A, and a new blank diskette in Drive B. Then,
type in the characters as shown in the following.

A>SYSGEN

SYSGEN VER 1.4

SOURCE DRIVE NAME# (OR RETURN TO REBOOT) A

SOURCE ON A, THEN TYPE RETURN

FUNCTION COMPLETE

DESTINATION DRIVE NAME (OR RETURN TO REBOOT)

DESTINATION DRIVE B, THEN TYPE RETURN

FUNCTION COMPLETE

DESTINATION DRIVE NAME (OR RETURN TO REBOOT) /

A>PIP B:=A:*.*[v]/

(Copying Messages)

This will copy
CP/M utilities.

A>

Basic CP/M Operations 33

When reading the screen displays in this book, the characters
underlined are to be typed in by the operator. The symbol, ,
stands for the Return key, which is a special key on the keyboard
which functions much like the carriage return on a typewriter.

In the previous example of SYSGEN, when the system prompt,
A>, appears, remove the system diskette copy from Drive B, as
well as the original system diskette from Drive A. Label both
diskettes. Store the original system diskette in a safe place. Use
the copy to operate with—or to make additional copies.
COLD START

In the section titled,‘Turning On the Computer', you performed
the bootstrap operation. The terms bootstrap and cold start are
synonymous. They both refer to starting up the system. What
actually happens is that the computer’s resident monitor reads
the CP/M system from the system diskette.
SYSTEM PROMPT

A system prompt is a message displayed by the system when it is
ready for your next command. For CP/M version 1.4 and earlier
versions of CP/M, the system prompt is fo·. For CP/M version
2.2 and MP/M, the system prompt is OA>. The A stands for the
disk drive in both cases. The zero (0) in MP/M and CP/M 2.2
stands for user area zero. The concept of user areas will be
discussed later in this book.

The system prompt always tells you what your current disk drive
is. If you wished to switch to Drive B, you could do so by keying in
the following command.

A>B:^

The system prompt would subsequently appear as the following.

B>

If you have more than 2 disk drives, they would be named Drive
C, Drive D, etc.

To get back to Drive A from Drive B, you would type in the
following:

B>A:^

34 CP/M Simplified

The new prompt would appear as follows.

WARM START
A>

A warm start interrupts whatever the computer has been doing
and restarts the operating system, giving the system prompt. To
perform a warm start, press the Control key (CTRL) and hold it
down while you press the C key. This is known as Control C or
(|c).

Control C is most commonly used to stop a program that was
chosen in error. After Control C has been entered, the program
will be stopped, and control will revert to CP/M.

If the warm start does not bring up the system prompt (A>),see
if the disk drive lights are on. If a light is on, and no diskette is in
place, try inserting a diskette so that the computer has a disk to
read from. If this fails, you will have to perform a cold start.
However, be sure to remove all diskettes before turning off the
computer’s or the disk drive’s power.

HARDWARE-CP/M INTERACTION

System diskettes are designed for a particular combination of
hardware components. If you change any of the elements of
your hardware configuration; the video screen, printer, disk
drives, or memory size, chances are that the original system
diskette will not work.

DISK DIRECTORY

The system diskette contains a number of different programs. To
list these different programs by name, you would type in the
Directory command (DIR) as shown below.

f A^DIR é
' A:PIP

A:ASM
A: LOAD
A: PROG R
A; STAT

\ A;ED
V A:PROG1

COM
COM
COM
COM
COM
COM
INT

Basic CP/M Operation 35

Since the prompt is in Drive A and the system diskette is in Drive
A, the above screen display example lists the various filenames of
the files stored on the disk in Drive A. This list is known as the
Disk Directory. Each filename is preceded by ‘A:’, which
indicates that the file being listed is contained in the disk on
Drive A.

The letters following ‘A:’ form the filename. For example, the
first file has the name ‘PIP’ followed by ‘COM’.'PIP’ is known as
the primary name while‘COM’is called the extension. These are
combined and separated by a period to form the complete
filename, ‘PIP.COM’.

The extension specifies the file type. All files with the extension
‘COM’ are command files (or transient commands). Files with
the extension ‘BAS’ are BASIC source code program files. Files
with the extension ‘INT’ are BASIC intermediate program files
(compiled program files).

Data and text files do not require a specific extension, although
you may make up your own extensions to help classify your data
files.

USING DIR TO FIND A SPECIFIC FILE

You may use the DIR command to find a specific file. To do so,
type the DIR command followed by the filename as follows:

A>D1R PIP.COM

A:PIP COM

A>

A space must separate the DIR command and the filename.

If you were in Drive B and wished to list a file in A, you would
execute the DIR command as follows:

B>DIR A:PIP.COM

PIP.COM
A:PIP.COM

36 CP/M Simplified

B > DIR A:PIP.COM /
A:PIP COM
B>

If you switch to a disk drive that does not contain a diskette, the
system will hang. That is, the disk drive light will come on, and
the keyboard will go dead. You will have to perform a cold start
to restart the system.

RUNNING A CBASIC APPLICATIONS PROGRAM

We will now discuss how to run a CBASIC applications program
under CP/M. For our discussion, we will assume that the
program being run was written in CBASIC and was named
CHECKWRITER.

CBASIC is one of the most commonly used languages that run
under CP/M. CBASIC is a compiled language. Program files
written in CBASIC source code must be compiled into
intermediate code before they can be executed. Program files
written in source code should be specified with the filename
extension .BAS. Intermediate program files should be specified
with the filename extension .INT.

To implement CBASIC you will need at least the following two
programs, CBAS2.COM and CRUN2.COM. CBAS2.COM is the
CBASIC compiler. CBAS2.COM would be used to compile the
source code program (CHECKWRITER.BAS in ourexample) into
the intermediate code program (CHECKWRITER.INT).
CRUN2.COM is the CBASIC run-time monitor, which must be
used to actually execute the intermediate program file.

Returning to our example of running CHECKWRITER.BAS, you
would first make certain that the diskette you were using
contained a copy of CP/M, CBAS2.COM, CRUN2.COM, and
CHECKWRITER.BAS. You can use PIP to copy the various
programs needed onto a single diskette.

Once you have the necessary files copied onto your diskette,
place that diskette in drive A of your computer. After the prompt
appears enter the following command.

A>CBAS2 CHECKWRITER.BAS

DIR_A:PIP.COM
CBAS2.COM
CRUN2.COM
CBAS2.COM
CBAS2.COM
CRUN2.COM
CBAS2.COM
CRUN2.COM

Basic CP/M Operation 37

The preceding command will compile CHECKWRITER.BAS, and
will output the intermediate file CHECKWRITER.INT.

Once the program has been compiled, it is ready to be run via
the run-time monitor CRUN2.COM. The following command
will execute CHECKWRITER.INT.

A>CRUN2 CHECKWRITER^

CBASIC is a compiled language. CP/M also supports other
languages which are interpreted languages. In an interpreted
language, the program executes directly from the source code.
No compilation is necessary as with compiled language.

The advantage to an interpreted language is that the compilation
step is eliminated. The disadvantage is that execution of an
intepreted source code program is generally slower than a
compiled intermediate file.

USING ED TO CREATE A FILE

CP/M includes an editor program, ED or ED.COM, that can be
used to create a file. ED is contained in the System Diskette. You
can enter the DIR command to check to be certain that ED is
listed.

To execute the ED command, type ‘ED’ followed by a space, and
then the name of your new file. If your new file was to be named
ACCT.DAT, you would type in the following.

A>ED ACCT.DAT

The following messages would be displayed on the screen after
the ED command was entered.

NEW FILE
*

The asterisk is the editor’s prompt. It signifies that the ED
program is up and ready for your next ED command. The various
ED commands will be described in detail in Chapter 7. We will
introduce them briefly here.

CRUN2.COM
ED.COM

38 CP/M Simplified

First of all, the I command is used to insert new characters into
your file. Enter ‘Γ after the ED prompt (*). Then, press the Return
key.

Next, type the new data that you wish inserted into the file.
Again, end by pressing Return.

When you have finished inserting text, simultaneously press the
Control and the Z keys (| Z). This will end the I command giving
you the ED prompt (*).

The following is an example of the use of the Ί' command.

* I

ADD THIS TO NEWFILE, ACCT.DAT, é

Z

*

Now that you have entered data into the file, ACCT.DAT, you
may wish to display what was entered. You will usethe B,T,or#T
commands to do so. The B command takes you to the beginning
of a file. The T command displays a line of text. The #T command
displays the entire text.

The following commands will display the contents of
ACCT.DAT.

To go to beginning of file.
-To display the file contents.*£Γ*-

*ADD THIS TO NEWFILE, ACCT.DAT

Now that you have entered data into the file and displayed that
data, you can save the file by using the E command as follows:

♦E.

A>

Basic CP/M Operation 39

The E command will save your file and conclude the ED program.
The operating system will take over and the file will be saved in
whatever disk the system was in, A or B. In our example, the
system was in Drive A(A > ED ACCT.DAT) when the file was
created, so the file will be stored on Drive A. Note that the system
prompt appears after the file has been saved.

Remember, if you do not save the file on disk by executing the E
command, the file will be lost from the computer’s memory
when you turn the system off or perform a warm start.

RENAMING A FILE

The REN (Rename) command is used to change a file’s name. It
takes the following form.

REN New name = Old name

For example, if you wished to rename ACCT.DATas NAME.DAT,
you would use the REN command as follows:

A>REN NAME.DAT = ACCT.DAT /

LOADING A NEW DISKETTE

When a diskette is inserted into a drive, CP/M automatically
reads the directory into the computer’s memory and logs the
diskette. If you change diskettes and attempt to write on the new
diskette, CP/M will not allow you to write on the new diskette
until a warm start has been performed. This feature is provided
to prevent you from acidentally erasing data on your diskettes.

Therefore, when you change diskettes, you must enable CP/M
to write on the new diskette by performing a warm boot.

For example, suppose that your System Diskette was in Drive A
and you had just inserted a new diskette in Drive B, which had
been previously used to make a copy of the System Diskette.
Press |C to perform a warm start.

Before the warm start, the map for the previous diskette was still
in the computer's memory. After the warm start, the map is

40 CP/M Simplified

changed so that the computer can write information to the new
diskette.

If you are only reading from the new diskette, a warm start is not
necessary. A warm start is only required when you will be writing
to the new diskette.

If you are using MP/M, you may not change diskettes or insert a
new diskette unless you perform a disk reset. We will describe
the procedure for disk reset later.

After you have performed the warm boot, the system prompt
will appear (A>), allowing you to access the files in either drive.

COPYING A FILE

Whenever you obtain or create a new program or data file, you
should make a copy of it immediately. Store your master diskette
in a safe place and use your copies for day to day operation.

Also, when you are updating a file, you should make a copy of
that updated file before leaving the system. Be sure to label the
copy and record its date.

The PIP command is used in CP/M and MP/M to copy files. PIP is
an abbreviatfon for Peripheral Interchange Program. PIP is a
program written in machine language that resideson the System
Diskette.

Let’s assume that the System Diskette is on Drive A and a data file,
ACCT.DAT, is on Drive B. The following prompt will appear:

A>

You execute PIP by typing it in as a command as illustrated
below.

A=>PIP^
*

The asterisk is PIP’s program prompt and tells the user that PIP is
executing.

Basic CP/M Operation 41

Your next step is to type in the PIP expression that will perform
the desired copying. Such PIP expressions take the following
form.

d:copyname = d:originalname

In the above expression, d stands for the letter of the disk drive.
Copyname and original name respectively stand for the names
of the file to be created as the copy, and the actual existing file
from which the copy is to be made.

For example, the following example:

*A:ACCT.BAK = B:ACCT.DAT /

tells PIP to make a copy of ACCT.DAT on Drive B and to name
this copy ACCT.BAK, placing it on Drive A.

After the copy operation has finished, the PIP prompt will appear
as follows.

*

If you press the Return key, you will exit PIP, giving control back
to the operating system.

* /

A>

Regardless of which drive was copied to or from, PIP will always
return to the drive from which you originally executed the
command. Since PIP was originally executed from Drive A in our
example, that is the drive to which it will return.

The disk drive lightswill go on and off as PIP is copying afile. That
is due to the fact that PIP copies the files in segments called
blocks. If the file is lengthy, PIP must keep going back to the
original file to get more blocks. This is the reason why the disk
drive lights will blink on and off.

Returning to our example, we have a copy of the file named
ACCT.DAT which was renamed ACCT.BAK on Drive A. Suppose

42 CP/M Simplified

we now wish to make a copy of ACCT.BAK on Drive B. We would
use the following command to do this.

A>PIP BrACCT.BAK = A:ACCT.BAK^

Notice that we used the same name for the new file as was used
for the original file. When using the same filename for both the
copy and the original, it is not necessary to name the copy's
filename in your command. The following command would
then be the equivalent of the command given earlier.

A > PIP B: = A: ACCT.BAK^

Remember, you can not have two files on the same diskette with
the same name. If you attempted to copy ACCT.BAK without
specifying a new drive or new name, the following statement
would appear.

INVALID FORMAT (error)

In actual usage, the expression causing the error will replace the
(error) in the above statement.

If an error does occur, press the Rubout or Delete key. This will
clear the error specified by the Invalid Format statement.

COPYING AN ENTIRE DISKETTE

We just covered how to copy a file from one drive to another
using the PIP command. Most copying operations involve
copying an entire diskette. In these cases, the user wishes to
make a back-up copy of every file on the diskette.

To copy an entire diskette with just one command, you need to
use a device known as a filename match. The filename match is
an expression which instructs the computer to perform the
instruction specified on any file that matches it.

* *

The most convenient expression to use for a filename match that
will match all files is *.*. The symbol * will match any name in its
field. Therefore, *.* will match any filename, because all
filenames consist of two field names separated by a period.

Basic CP/M Operation 43

The filename match, *.*, will match all of the following.

ACCT.BAK
F1LE.TXT
NAMES.COM
PROGRAM.BAS

Of course, there is always an exception to the rule, and this is it.
In CP/M 2.2 and later versions and MP/M, the filename match
. will only match those files in the current user area. This will
become clear when we discuss the concept of current user areas
in Chapter 5.

When copying an entire diskette, you should use a blank
formatted diskette to make your copy. If the diskette on which
the copy is to be made already has files on it there may not be
enough room for all the files to be written. Also, a filename may
already exist on the diskette to be copied to with the same name
as a file on the diskette being copied from. In such a case, the
copy operation will be stopped because of the rule, “Two files
cannot exist on the same diskette with the same name.’’

The following command would be used to copy all fileson Drive
A onto Drive B.

A>PIP B: = A:*.* /

This command will search Drive A for any files that match *.*. It
will then copy these files onto Drive B, giving them identical
filenames.

When using the PIP command, only files on other diskettes will
be copied. The CP/M system itself is a special program not stored
as a file. The CP/M system is stored on two reserved tracks on the
diskette. If CP/M is to be copied, the SYSGEN command must be
used to do so. We will discuss SYSGEN in detail in Chapter 4.

PRINTING FILES

You are now ready to learn to send a copy of a file to the printer.
There are two different methods of doing so in CP/M.

NAMES.COM

44 CP/M Simplified

One method is to use the CTRL and P keys along with the TYPE
command. First of all, press the CTRL (Control) key and the P key
(I P) simultaneously. Now, whatever you type at the keyboard
will be displayed on the screen as well as printed by the printer.
Before using Control P, be sure that your printer is turned on.

After having entered Control P (| P), you can now enter a TYPE
command at the keyboard to list a file on the printer. This is
shown below.

A> TYPE ACCT.BAK^

ACCT.BAK
listing

A>

The file ACCT.BAK will be displayed on your screen and
simultaneously printed by your line printer when the above
command is entered while Control P is active.

If you press Control P again, you will turn off the printer. If you
use the TYPE command when Control P is turned off, the file will
only be displayed on the video screen. It will not be listed on the
printer.

The second method of printing files uses the LPT: device name.
This is generally more efficient than using Control P with the
TYPE command, especially if you wish to print several files.

An example of the use of the LPT: is given below.

A > PIP LPT: = ACCT.BAK

This command sends the file ACCT.BAK to the listing device, in
our case the printer.

Basic CP/M Operation 45

You can also use a filename match to print several or all files as
illustrated below.

A>PIP LPT: = * *

ERASING FILES

Suppose that you had the file ACCT. BAK on both Drive A and
Drive B, and you wished to erase the file on Drive A.

First of all, before erasing any files, check your directory to see
which files you have on the diskette in Drive A.

A > DIR^

ACCT BAK

ACCT DAT

A>

Now, use the DIR command to list the files on the diskette on
Drive B.

A>

B > DIR^

ACCT BAK

ACCT DAT

B>

You can nowissuean ERAcommand thatwillerase ACCT.BAKin
Drive A as illustrated below.

B > ERA A:ACCT.BAK

46 CP/M Simplified

If you wish to erase several or all the files on a diskette, you can
do so by using a filename match as illustrated below.

B > ERA ACCT.*4>

This will erase all files on Drive B with filename ACCT regardless
of what that file's filename extension is.

TURNING OFF THE SYSTEM

Before turning off the power to your computer and/or disk
drives, be sure to remove all diskettes from their drives. If you
turn off the system with any diskettes still in their drives, they
may be erased.

You should also make back-up copies of any files that were
created or updated before turning off your system.

CONCLUSION

You have now learned the basic terminology of computer
hardware and software, how to turn a system on and off, how to
start CP/M, how to use the basic CP/M commands such as ERA,
PIP, DIR, REN, and ED, and how to use special functions such as
Control-C and Control-P. You have also learned how to list files
on your display and/or printer, as well as how to make back-up
copies of files.

Believe it or not, you now know enough about CP/M to run most
applications programs running under CP/M. However, if you
wish to learn more about CP/Mand itscapabilities,continueon.

CHAPTER 4. CP/M & MP/M
COMMANDS

INTRODUCTION

This chapter will cover the CP/M built-in commands including;
DIR, REN, ERA, SAVE, and TYPE, as well as the CP/M transient
commands such as SYSGEN, PIP, ED, STAT, ASM, LOAD, DUMP,
DDT, SUBMIT, and MOVCPM. Each command as well as its
practical use will be discussed in detail. The control characters
will also be covered.

This chapter will give you all the information you need to use the
CP/M commands. After you have studied this chapter and have
become familiar with these features of CP/M, you can use
Chapter 9 as a quick reference guide for the various CP/M and
MP/M commands.

The descriptions of commands in this chapter are based on their
usage in CP/M 1.4. These same commands are used with
modifications in CP/M 2.2 and MP/M 1.0. These modifications
will be discussed in the next chapter. Also, CP/M 2.2 and MP/M
contain additional commands not used in CP/M 1.4. These will
also be discussed in the next chapter.

Even if you are a user of CP/M 2.2 or MP/M, you should read this
chapter to gain a basic understanding of the CP/M commands
before proceeding to Chapter 5.

48 CP/M Simplified

COMMAND FORMAT

In the remainder of this book, we will use a pre-defined format
for describing commands. Each command will be printed in
uppercase letters. The arguments which must be supplied with
each command are given in lower case letters. If two or more
arguments are enclosed in parentheses, then you can choose
between the two. The symbol^ will stand for the Return key.
The symbol | will stand for holding down the Control key while
another key is being pressed.

OVERVIEW

CP/M contains a number of control characters which will be
discussed in the next section. These are listed in Table4-1. CP/M
also contains at least 5 built-in commands including:

TYPE
DIR
REN
ERA
SAVE

Finally, the following transient commands may also be executed
under CP/M when they are present on the System Diskette.

SYSGEN
PIP
ED
LOAD
ASM
DUMP
DDT
SUBMIT
MOVCPM
STAT

These commands are listed in Tables 4-2, 4-3, and 4-4.

CP/M and MP/M Commands 49

TABLE 4-1. CONTROL CHARACTERS

CONTROL KEY FUNCTION RESULT

CONTROL-C Restart system. Al
lows writing on a
newly inserted
diskette.

CP/M.Restarts
Allows you to
write on newly
installed diskette.

CONTROL-C** Stops an MP/M
program
running.

while
MP/MRestarts

and aborts the
program run
ning.

CONTROL-D** Used to detach a
running program
from a terminal.

Returns control
to MP/M.

CONTROL-E Used to type a
command longer
than the video
display's line
length.

The cursor will
move to the next
line without ex
ecuting the com
mand.

CONTROL-M or
RETURN

Ends PIP (copy)
program.

Ends
turning
t o
MP/M.

PIP
control

o rCP/M

re-

**MP/M only

50 CP/M Simplified

TABLE 4-1 (CONT). CONTROL CHARACTERS

CONTROL KEY FUNCTION RESULT

CONTROL-P When first pres
sed, sends every
thing to be typed
and displayed at
the terminal to
the printeras well.
When pressed a
second time, it
stops sending
data to the prin
ter.

CONTROL-R The current line
will be retyped.

CONTROL'S Stops and restarts
display.

switch
outputting

the printer

On/Off
for
on
what is input at
the keyboard
and displayed
on the video
screen.

Used to ‘clean
up’ a line after
corrections were
made.

Stops display so it
can be read when
first pressed.

CONTROL-U** Erases entire line. Cursor moves to
the next line. Dis
plays # as a signal
to begin a new
command.

MP/M only

CP/M and MP/M Commands 51

TABLE 4-1 (CONT.). CONTROL CHARACTERS

CONTROL KEY FUNCTION RESULT

CONTROL-X*

*CP/M 2.2 and MP/M only

Erases entire line. Cursor moves
back to begin
ning of the line
and erases the
previous line.

DELETE (RUB
OUT)
CONTROL-H*

Erases the last
character typed.

Cursor will re
peat the char
acter
deleted.

being

RETURN, CON-
TROL-M, CON
TROL-) (linefeed)

theExecutes
command line.

The current com
mand is executed.

E followed by
RETURN

Ends ED (editor). Saves text in
source file and
edit buffer.

text

GO followed by
RETURN

Ends DDT (de
bugger).

Returns control
to CP/M or
MP/M.

CP/M

52 CP/M Simplified

DIR

TABLE 4-2. CP/M FILE HANDLING COMMANDS

COMMAND RESULT

filename
filename match

Lists all filenames in the
directory. DIR alone lists ail
files on a diskette.

ED filename Editor program is used to
create a file on disk or
allows modification of the
contents of an existing file.

ERA filename
filename match

Erases file.

PIP new filename = old
filename

Copies a file and gives it a
name.

PIP d:new filename = d:old
filename

Copies from one drive to
another.

CP/M and MP/M Commands 53

TABLE 4-2 (CONT.). FILE HANDLING COMMANDS

COMMAND RESULT

REN new filename = old
filename

STAT d:filename
d:filename match

STAT d:

STAT d:filename

TYPE filename

Renames a file.

Displays sizes of files and
space taken up by them.

Displays free disk space.

Displays file attributes.

Displays contents of the file
on the screen. If Control-P
is activated, the file will also
be sent to the printer.

54 CP/M Simplified

TABLE 4-3. CP/M DEVICE HANDLING COMMANDS

COMMAND RESULT

Switch from one drive to
another. The d: is the
symbol for the new drive
(A, B, C, D, . . .).

CONSOLE ** Displays console number.

DSKRESET^** Allows system operator to
change disks.

MPMLDR or SYSGEN ** Used in MP/M only to copy
or reconfigure MP/M.

MOVCPM^ Creates a different version
of the CP/M system.

**MP/M only

CP/M and MP/M Command 55

TABLE 4-3. (CONT.). CP/M DEVICE HANDLING COMMANDS

COMMAND RESULT

MPMSTAT é** Displays run time status.

PIP^ Copy from one disk to
another.

SPOOL filename Spools file to the printer.

STAT DEV:4>
STAT VAL:

Reports current and
possible device assignments
respectively.

current

STAT log:=phy: Assigns the physical device
phy: to the logical device
log:.

STOPSPLR *♦ Stop and delete the queue
for spool.

* ♦TOD
TOD mm/dd/yy hh:mm:ss

Display or set time and date.

USER n 4^ Changes the user area.
When used without n—dis
plays current user area.

**MP/M only.

56 CP/M Simplified

TABLE 4-4. CP/M PROGRAM HANDLING COMMANDS

COMMAND RESULT

program name Execute program or trans
ient command.

ASM filename Creates object file in mach
ine language.

DDT filename
RDT filename**

Used to debug a program,
RDT isthe MP/M debugger.

DUMP filename Prints the object file.

LOAD filename Creates a new command file
with a .COM filename ex
tension from an object file.

SCHED mm/dd/yy hh:mm Schedules programs for ex
ecution. The mm/dd/yy is
the date while the hh:mm is
the time.

SUBMIT filename parameter
1,2, . . .

Submits a batch of com
mands to be executed.

**MP/M only

CP/M and MP/M Commands 57

CONTROL CHARACTERS

The use of control characters is described in Table 4-1. It is
important to have a working knowledge of control characters
when using CP/M. The most commonly used control characters,
Control-C and Control-P were discussed in Chapter 2.

Another commonly used control character is the Delete key
(DEL) or Control-H (in CP/M version 2.2 or MP/M). Suppose you
began typing as follows.

A > PIP B:ACCT:BSK =

In the previous example, suppose that you had actually wished
to type ACCT:BAK =. You would hit the DEL key three times to
erase the last three characters as follows:

A > PIP B: ACCT:BSK = = KS

You would then finish typing the command. However, do not
press Return when the command is finished.

A > PIP B:BSK = = KSAK = A:ACCT.DAT

By using Control-R, the line will be retyped with corrections
incorporated.

A > PIP B:ACCT.BAK = A:ACCT.DAI

Press the Return key after the command is redisplayed, and the
command will be executed.

FILENAMES

Filenames take the following format.

NAME.EXT

The NAME is the primary filename and .EXT is the filename
extension. The primary filename may be up to 8 characters long,
while the filename extension must contain 3 characters. Primary
filenames and filename extensions may contain letters.

58 CP/M Simplified

numbers, or special characters. However, the following symbols
may not be used in filenames.

[]

Filename extensions are used to identify different types of files.
Some extensions are required, while others are optional.
Optional filename extensions are used merely for the
convenience of the operator. The different extension types are
described in Table 4-5.

When using filenames as an argument to a command, the entire
filename, including its extension must be used except where
that file is a transient command. In these cases, the .COM
extension need not be typed in.

FILENAME MATCH

When you wish a command to acton several files at once, instead
of just a single file, use a filename match rather than the filename
itself as the argument of the command. The format for using a
filename match is as follows.

PIP (filename match)

A filename match is a group of characters used to specify several
files at once. The filename match can consist of letters, digits, a
period, or two special symbols. * and ?.

The ? symbol will match any character as long as it is in the same
position as the ?. Therefore, the following:

PROG?.BAS

will match each of the following filenames.

PROG1.BAS PROG2.BAS PROG3.BAS

CP/M and MP/M Commands 59

TABLE 4-5. FILENAME EXTENSION TYPES

EXTEN
SION EXAMPLE DESCRIPTION

ASM

BAK

BAS

COM

HEX

INT

PRL

PRN

LOAD.ASM

DATA.BAK

PROGRAM!.BAS

PIP.COM

PROGRAM1.HEX

PROGRAM!.INT

PROGRAM!.PRL

PROGRAM!.PRN

Required for assembly
language source files to
be used with the ASM
command.

Used to identify a back
up copy of a file.

Required for BASIC pro
gram source files.

Required command file
of a transient command.

Required for program file
in hexadecimal format
which is to be LOADed.

Required for BASIC inter
mediate (already com
piled) program files.

Required for MP/M re
locatable program files.

Required for the listing
file of an assembly lan
guage program.

PIP.COM

60 CP/M Simplified

TABLE 4-5. FILENAME EXTENSION TYPES (CONT.)

EXTEN
SION EXAMPLE DESCRIPTION

RSP SPOOL.RSP Required for MP/M sys
tem program files.

SUB

$$$

CHANGE.SUB

DATA.$$$

A text file with CP/M
commands or programs;
is to be executed batch
style by the SUBMIT
command.

A temporary or scratch
file to be created and
erased by ED and other
programs.

The * symbol will match with any number of characters as well as
no characters at all. Therefore, *.BAS would match with
SAMPLE.BAS, PROGRAM.BAK, or even just .BAS. It would not
however, match with SAMPLE.BAK or PROGRAMI.BAK. The
filename match *.♦ will match any filename since all filenames
contain a period.

BLANKS

CP/M requires that all commands be followed by at least one
blank space. In the following example, the PIP command must
be followed by a blank space.

A > PIP B: = A:*.* /

Other blanks may be inserted optionally, but at least one blank is
required after a command.

CP/M and MP/M Commands 61

BUILT-IN & TRANSIENT COMMANDS

All commands take the form of the following example.

A > ERA PROG1.BAS

This command is telling the computer to erase the file named
PROG1.BAS.

All commands are actually assembly language programs.
Commands are either built-in or transient. The built-in
commands (DIR, ERA, REN, SAVE, TYPE) are built into the CP/M
operating system.

Transient commands are also assembly language programs that
reside on disk. However, transient commands are not built into
the CP/M operating system. They can be copied, moved, or
deleted from the diskette.

The following transient commands are generally provided with
CP/M.

ASM
ED
DUMP
LOAD
PIP
MOVCPM
STAT
SYSGEN
SUBMIT

BUILT-IN COMMANDS

We will now discuss each of the built-in commands (except
SAVE) in detail and give examples of each.

DIR (Directory)

As mentioned earlier, the Directory command is used to list all of
the files on a diskette. For example, to list all the files on Drive A,
type the following command.

A > DIR^

62 CP/M Simplified

If you wished to list the files on Drive B, you would type the
following command.

A > DIR B:

If you wished to search for a specific file on a drive, you would
name that file as the argument of the command. The following
command would search for the file ACCT.DAT on Drive A.

A > DIR ACCT.DAT^

You can also use a filename match with the DIR command to list
files that match on a disk.

The following command would display all files with the
extension .DAT.

A > DIR *.DAT

In CP/M version 2.2, the directory is listed in a four column
format:

A>DIR
A:PIP
A:ED
A:XSUB COM:COPY
A:ACCT DAT:PROG1

COM:ASM COM:DUMP COM;LOAD COM
COM:MOVCPM COM:DDT COM:STAT COM

COM:LIST
BAS:PROG2 BAS:PROG3BAS

COM: STAT
COM:SYSGEN COM

TYPE

The TYPE command can be used to display any ASC II file on the
video screen. The format of the TYPE command is as follows.

TYPE d:filename.extension

The d:stands for the disk drive letter.

CP/M and MP/M Commands 63

You can print the file on the printer as well as display it by
pressing Control-P before giving the TYPE command. When the
file is printed as well as displayed on the video screen, it will be
displayed at a much slower pace than if it were printed alone.

The TYPE command provides a quick means of examining a file.

REN (Rename)

The REN command allows you to change the name of a file. The
format of the REN command is as follows:

REN new filename = old filename

For example, if you wished to change the name ofACCTl.DAT to
ACCT2.DAT, you would give the following command.

A > REN ACCT2.DAT = ACCT1.DAT

ACCT1.DAT, which is on Drive A will be renamed ACCT2.DAT.
The file contents will remain as they were.

ERA

The ERA command is used to erase a file. It has the following
format.

ERA d:filename

The drive (d:) does not necessarily have to be specified. The
following is an example of the ERA command.

A > ERA ACCT.DAT

You can use a filename match to erase more than one file at a
time. For example, you could erase all files on the diskette on
Drive A with the extension .DAT with the following command.

A > ERA *.DAT é

Be very careful when you are using the ERA command. You do
not want to inadvertently erase the wrong file.

64 CP/M Simplified

SAVE

The SAVE command is a complex subject and will be discussed in
detail later in this book. The SAVE command is used to store
information from the Transient Program Area (TPA).

TRANSIENT COMMANDS

We will describe each of the ten standard CP/M transient
commands; PIP, ED, SYSGEN, STAT, ASM, LOAD, DUMP, DDT,
SUBMIT, and MOVCPM.

SYSGEN

As we described in Chapter 1, SYSGEN is used to copy the CP/M
operating system from one disk onto another. When you first
receive your system diskette, you should use it to make a copy on
a blank diskette.

Use the PIP transient command to transfer all of the .COM and
.SYS files to your new diskette. However, to copy the CP/M
operating system stored on the reserved tracks of the diskette,
the SYSGEN command must be used.

The SYSGEN program works by bringing the CP/M operating
system into the memory of the computer, and then writes the
system onto the new diskette.

The following dialogue occurs between the operator and the
SYSGEN program._______________________

< A > SYSGEN \
SYSGEN VERSION x.x

1 SOURCE DRIVE NAME (OR RETURN TO SKIP)A^
2 SOURCE ON A THEN TYPE RETURNi^
3 FUNCTION COMPLETE

DESTINATION DRIVE NAME (OR RETURN TO REBOOT) B
5 DESTINATION ON B THEN TYPE RETURN é

FUNCTION COMPLETE
6 DESTINATION DRIVE NAME (OR RETURN TO REBOOT)/
L A> >

CP/M and MP/M Command 65

♦ 1—if CP/M had already been copied into memory using
MOVCPM, you would type RETURN instead of the source drive
name.

* 2—Before typing RETURN, you should insert the diskette with
the CP/M system into the correct drive.

* 3—CP/M has been placed into memory and is ready to be
written onto the new diskette.

* 4—Place the blank diskette into Drive B.

* 5—CP/M will be written on the diskette in Drive B after RETURN
is pressed.

* 6—You can make another copy by typing B. If you wish to finish,
press RETURN.

After this series of steps have been finished, the new diskette will
contain only CP/M (if it were originally a blank diskette). If you
wish to copy the rest of the files on the diskette in Drive A on the
diskette in Drive B, you can do so by issuing the following PIP
command with a filename match as illustrated below.

A =► PIP B = A:*.*

If you did not wish to copy all of the files using the filename
match, you could copy only those files desired by issuing a
separate PIP statement for each file to be copied.

After you have copied the CP/M operating system and the
.COM files onto your new system diskette copy, you should test
that copy before using it in everyday operation.

PIP

PIP has already been introduced and will be explained in detail
in Chapter 6.

ED

ED is the editor. This has been introduced and will be explained
in detail in Chapter 7.

66 CP/M Simplified

STAT

STAT is used to display the system status or to change device
assignments. The STAT command isalsoused todisplayavailable
disk space.

The least complex STAT command is used to display the
remaining disk space. The following is an example of a STAT
command used in this fashion.

A > SI Al>

A:R/W,SPACE;132K

A>

R/W stands for read-write. This means that the files on the disk
can be read from or written onto. In other words, the operator
can create new files or delete old ones.

R/W is the opposite of R/O. R/O stands for read-only. A diskette
designated R/O can only have its files read from. These files can
not be written onto. In other words, the disk is write-protected.

Most 8 inch diskettes hold 224K of available file space. In our
example above, the 132K indicates that 132K of space is left on
the diskette in Drive A available to be written onto. The other
92K have already been written onto.

BYTES & HOW THEY RELATE TO RECORDS

At this point, we will digress from our discussion of the STAT
command and explain the concept of bytes and how they relate
to records. A byte is an 8 bit location in memory. A bit is the
smallest unit of memory. A bit may either equal zero (0) or 1.

In CP/M, 128 bytes form a record, which is the size of one sector
on most disk. Eight records in turn make up 1028 bytes or IK.

Files exist on diskette as 16K sections known as extents. These
extents do not necessarily lie directly next to each other on the
diskette. Each extent contains the starting address of the next
extent. This is know as ‘chaining’.

CP/M and MP/M Commands 67

You need not be concerned with locating files or allocating
space for them. The CP/M system does this automatically
through its Basic Disk Operating System (BDOS).

The allocation of space is dynamic. That is, the system will
allocate additional space for your data or program file as you add
records to it. You never need to specify a maximum program
length.

STAT (CONT.)

STAT can also be used to display a list of possible device
assignments for the logical names CON:, RDR:, PUN:, and LST:.
You would type in the following command to list device
assignments for these logical names.

A >STAT VAL:/

The system would respond with a display similar to the one listed
below.

A >STAT VAL:/
CON:
RDR:
PUN:
LST:

CRT:
PTR:
PTP:
TTY:

BAT:
TTY:
TTY:
CRT:

TTY:
UR1:
UP1:
LPT:

UCI:
UR2:
UP2:
ULI:

Notice that a list of four different physical names is given for each
device. These names may vary depending upon your system.

The actual device assignments may also be displaying by using
the STAT command as follows:

A > STAT DEV:/

68 CP/M Simplified

The actual device assignments will be displayed on the video
screen as follows.

A > STAT DEvV

CON: = CRT:
RDR: = UR1:
PUN: = PTP:
LST: = LPT:

According to the above display, the CON: device is the CRT
(Cathode Ray Tube) or the video screen. The RDR: device is a
user defined reader. The PUN: device is a paper tape punch
device. The LST: device is a line printer.

You may use the STAT command as follows to modify the
physical device names.

STAT logical name = physical name: ...

The logical name is the logical device name (CON:, RDR:, PUN:
or LST:). The physical name is the physical device name (in our
case LPT, CRT, UR1, etc.).

The following STAT command would be used to change the LST:
device from the line printer to the CRT. All copy operations
would now go to the CRT, rather than to the line printer.

The CON: device must be a device that can both send and
receive data (such as the video display). The RDR: device must
be able to send data to the computer (an input device). The PUN:
and LST: devices must be able to receive data from the
computer (an output device).

STAT IN CP/M VERSION 1.4

When the STAT command is used in CP/M version 1.4, the
information displayed will be as follows.

CP/M and MP/M Commands 69

A > STAT /

BYTES REMAINING ON A:144K

A;R/O

A>

As we mentioned earlier, R/O stands for read-only. In our
example, the diskette in Drive A can not be written upon. If you
do attempt to write upon this diskette, the following error
message will appear.

BDOS ERR ON B:READ ONLY

If you get this message, you can reset the disk to R/W (read
write) by hitting any key on the keyboard.

To set a diskette in Drive A to R/O (read-only), type in the
following command.

A > STAT A:R/O /

If you wish to display the size of a file or of several files on the
video screen, you could do so by using the STAT command in the
format outlined below.

STAT d: filename
or

filename match

Again d: stands for the letter of the disk drive. If the file is in the
drive that is currently being specified by CP/M, the drive letter
may be omitted.

If a filename match is used rather than a single filename, the
STAT command will match all files against the filename match
and display them alphabetically on the video screen. The

70 CP/M Simplified

following is an example of how to use the filename match with
the STAT command.

A >STAT B:*.DAT

RFCS
8
8
16

BYTES
IK
IK
2K

EXT
1
1
1

D:FILENAME.TYP
B: ACCT1.DAT
B:ACCT2.DAT
B:ACCT.DAT

The RFCS field informs the operator how many 128 byte records
were assigned to the file. The BYTES field shows how many
kilobytes were assigned to a particular file. BYTES can be
calculated by multiplying 128 (bytes per record) times the
number in RFCS and dividing the total by 1024 (IK is equal to
1024 bytes).

The EXT field gives the number of 16K extents which are
allocated to the file.

As shown in our example, the smallest amount of space that can
be allocated by CP/M is IK for each file. On standard diskettes,
each record has 128 bytes. Therefore, CP/M always allows a
minimum of 8 records when allocating disk space.

If you are using double density diskettes, each record is allocated
256 bytes. The smallest amount of space that can be allocated by
CP/M for double density diskettes is 2K. Again, CP/M allows a
minimum of 8 records for each file.

If hard disks are being used, CP/M will allow a minimum of 4K
for each file. This is true even if the file uses only a small portion
of that space.

STAT IN CP/M 2.0 & 2.2

The use of the STAT command in CP/M versions 2.0 and 2.2
includes several enhancements. If you use the STAT command
with a filename or filename match, you will get the same video
display as shown in CP/M version 1.4. This is shown in the
following example.

CP/M and MP/M Commands 71

B > STAT *.* /
RECS BYTES EXT ACC

25
16

8

3K
2K
IK

R/W B:ACCT1.DAT
R/W B: ACCT2.DAT
R/W B:ACCT3.DAT

1
1
1

If the STAT VAL: command is used under CP/M 2.0 or 2.2, the
following type of video display results.

A > STAT VAL; /

TEMP R/O DISK: d = R/O
SET INDICATOR: d:filename.typ $R/O $R/W $SYS $D1R
DISK STATUS: DSK:d:DSK
USER STATUS: USR:
JOBYTE
CON:
RDR:
PUN:
LST:

ASSIGN
= TTY:
= TTY;
= TTY:
= TTY:

CRT:
PTR:
PTP:
CRT:

BAT:
UR1:
UP1:
LPT;

UC1:
UR2:
UP2:
ULI:

The last four lines in the above layout are the same as the layout
for the STAT VAL command used in CP/M version 1.4.

The first five lines are used to show what STAT commandscan be
used and what they will do. For instance, if you wished to set an
entire disk as read-only, you would use the following STAT
command.

72 CP/M Simplified

A > STAT A: = R/O

This command would set the entire disk on Drive A as read-only.

To set the R/O$, R/W$, SYS$, or $DIR status for a file, use the
following format:

STAT d: = R/O

To display the status of the current disk, you can use the STAT
DSK command. To display the status of a disk on a non-current
drive, you would use the drive identifier (d:) with the STAT DSK
command as illustrated below.

STAT d:DSK:

In CP/M 2.2 and MP/M, the STAT USR: command can be used to
display current user areas. The usage of this command will be
explained in detail later, after we discuss the concept of current
user areas.

USING $S ARGUMENT IN CP/M VERSION 2.2

CP/M version 2.2 allows you to use an optional field, $S, with
STAT commands. This optional field causes the size of the file to
be displayed. This command takes the following format.

STAT d: filename
filename match

$S

For example, if you are using the STAT command, you might add
the $S optional field as follows.

A >STAT ACCT1.DAT $S

SIZE
60

RECS
60

BYTES
12K

EXT
1

ACC
R/W A:ACCT.DAT

CP/M and MP/M Commands 73

The Size field tells you how many records have been allocated to
the file.

The Rees field gives the number of records in every 16K extent.

The Bytes field gives the actual number of bytes allocated for a
file. If you are working with a random access file, this is the only
figure that actually gives you the space allocated for that file.
Since a randomly accessed file might have records counted in
the Rees field that are notactually being used, the Rees field may
not give an accurate picture of the size of the file. The Size field
should be used to determine the logical number of records in a
file.

The Ext field gives the number of extents (16K blocks) allocated
to a file. The Acc field tells what type of access is allowed to a file,
R/O or R/W.

A file’s attributes can be changed by including the attribute
desired as an argument to the STAT command. The format of
such a command would be as follows.

STAT d: filename
filename match

$R/O
$R/W
$SYS
$DIR

An example of the use of the STAT command to change the
status of the file ACCTl.DAT to R/W would be as follows.

A > STAT ACCT1.DAT $R/W^

SUBMIT COMMAND

The SUBMIT command allows you to execute a series of CP/M
commands as if they were instructions in a program.

Suppose a certain series of commands were used over and over
by the operator. Rather than executing each individual
command in this series over and over, it would be far easier to
execute the entire series as one single command. The SUBMIT
command allows you to do this.

74 CP/M Simplified

The SUBMIT command searches for a file with an extension of
‘SUB’. This file contains actual command lines. Each command
line includes arguments that are to be replaced by actual values,
when the command is executed.

This .SUB file is created like any other text file by using the ED
program.

For example, suppose the file, EXAMPLE.SUB, contained the
following lines.

DIR $1:$2
PIP A: = $1 ;$2

In our example, $1 and $2 are the arguments. They are used
much like variables are used in a BASIC program. When the
SUBMIT command is used, these arguments will be replaced by
the actual values given in the SUBMIT command.

In our example, the argument $1 will be replaced by a letter
which will indicate the disk drive. The argument $2 will be
replaced by a filename (including its extension).

Suppose that the following SUBMIT command was executed.

A > SUBMIT EXAMPLE.SUB B ACCTT.DAt/

When the command is executed under CP/M, first of all the
system will search for the EXAMPLE.SUB file. When the file is
found, the commands will be executed. To execute the DIR
command, the value ‘B’ will be substituted for the argument $1,
and ACCT1.DAT will be substituted for $2. In other words, the
filename ACCT1.DAT will be displayed in the directory for Drive
B.

Next, the PIP command will be executed to copy the
ACCT1.DAT file onto Drive A, giving the new file the same name.

The SUBMIT command takes the following general form.

SUBMIT filename al a2 a3 ...

CP/M and MP/M Commands 75

The filename need not necessarily include the '.SUB' extension
as this is automatically supplied by the program. To prevent
confusion however, many operators make it a practice to
include the ‘.SUB' extension.

In our general form for SUBMIT, al, a2, a3, etc. all stand for the
value specified to replace the argument. The first value, al, will
replace the argument $1 everywhere in the ‘.SUB’ file; a2 will
replace $2; and so on. An argument must always consist of a
dollar sign ($) followed by an integer.

If you wish to include a Control key combination in a .SUB file,
you must use the Up Arrow key to denote Control rather than
the Control key. This is required as generally, the user may not
use the Control key when creating .SUB files with the editor.

To perform a SUBMIT operation, a diskette must be inserted into
Drive A. You must then reboot the system by pressing | C.

To stop a SUBMIT operation, you must press the RUBOUT (or
DELETE) key. The SUBMIT command automatically creates a
temporary file $$$. SUB that will hold the commands from the
.SUB file. When the SUBMIT operation has been competed, this
file ($$$.SUB) will be deleted. Also, if you press the E)ELETE key
or if an error is detected during the SUBMIT operation, the
$$$.SUB file will be erased.

SUB WITH XSUB

In CP/M 1.4, SUBMIT is used to create the temporary file
$$$.SUB from the .SUB file supplied. The CCP (Console
Command Processor) then executes each line of $$$.SUBas if the
user were keying in separate commands. The CCP is the part of
the system that reads and executes what is typed in as a
command.

In CP/M version 2.2, another program, XSUB, is available as a
transient command that allows the user wider use of .SUB files.
XSUB allows the user to include commands to programs that use
buffered input (other that the CCP). The ED, DDT, and PIP
programs all use buffered input.

76 CP/M Simplified

For example, XSUB allows the user to execute ED commands in a
.SUB file as input to the ED program. By using this facility, one
SUBMIT operation allows a complex ED operation to be
performed separately.

Suppose that INSTRUCT.SUB contained the following lines.

*
XSUB
DIR$1.
ED $1.$2
#A
B
1
"Note to typesetter: 10 point Oracle with 1.5 lines
leading.”
E
A > SUBMIT INSTRUCT DRAFT.TXT

In the previous example, the first line of INSTRUCT.SUB is the
XSUB command. When SUBMIT is executed, it first tells the CCP
to execute XSUB. The XSUB program moves to the area directly
below the CCP. It will remain there until the next system reset or
cold boot.

As long as XSUB is active, the following message will be displayed
above the system prompt.

XSUB ACTIVE

As long as there are commands in the file INSTRUCT.SUB, XSUB
will execute them (unless it is interrupted by a warm start).

In our example, XSUB will execute the commands listed in
INSTRUCT.SUB. First, DRAFT will replace $1, and the DIR
program will display all files that match DRAFT.*.

In the second command, TXT is substituted for $2. XSUB executes
the ED program on DRAFT.TXT. The next command (#A) moves
DRAFT.TXT into the edit buffer. Then, the B command moves
ED’s charactér pointer to the beginning of the buffer. The I
command is then used to insert text at the beginning of the
buffer, and finally the E command is issued to save the edit buffer
as a file and to end the ED program. These ED commands will be
discussed later in detail.

CP/M and MP/M Commands 77

When INSTRUCT.SUB has no more commands remaining, the
CCP will take over and wait for more commands to be entered at
the terminal. However, XSUB will remain active unless it is over
written in memory or unless the operator does a cold start or
system reset.

As long as XSUB is active, the SUBMIT command can be used to
execute other .SUB files. These .SUB files need not include XSUB
as a command line if XSUB is already active.

ASSEMBLING (ASM), LOADING (LOAD), & DUMPING (DUMP)

INTRODUCTION

ASM (Assemble), LOAD, and DUMP are operations that allow
assembly language programs to work just like a command. The
ASM and LOAD commands can be used to turn an assembly
language source program into a sort of homemade temporary
command.

If you wish to write assembly language programs for a CP/M or
MP/M system, you will need to know the assembly language of
the computer that you are using. Standard CP/M runs on the
Zilog Z80 or Z8000 microprocessors as well as the Intel 8080,8086,
and 8088 microprocessors.

ASSEMBLING (ASM)

The ASM command is used to execute the 8080 Assembler
program which is stored in CP/M under the filename,
ASM.COM. This assembler program is used to translate an
assembly language source file (previously written in 8080
assembly language) into a machine language file. A machine
language file is written in binary code, which is the language
used by the microprocessor itself. However, when
communicating with the operator, either via the video display or
the printer, the file will be displayed in hexadecimal form.

ASM.COM

78 CP/M Simplified

ILLUSTRATION 4-1. THE ASSEMBLY PROCESS

ΠObject code

FILENAME.HEX
Program
in assembly
language

Translation
by

Assembler

jFILENAME.ASM ASM.COM
Listing for
Users

FILENAME.PRN

You may have other assembly language programs in your CP/M
system other than ASM.COM. Several more powerful
assemblers are available for the 8080, and other asemblers are
also available for the other microprocessors. These other
assemblers also end with the extension .COM, and are executed
just as ASM.COM is executed.

The source file written in assembly language contains the
extension .ASM. When the source file is assembled into machine
language, it is given the extension .HEX.

The assembler also creates a printable file with the extension
.PRN. This is the file used to print out the program. This .PRN file
contains the lines from the original .ASM source code along with
error messages and the corresponding machine code in
hexadecimal notation.

For example, if an assembly language file named EXAMPLE.ASM
was the source file, the assembled machine language file would
be named EXAMPLE.HEX and the printable file would be named
EXAMPLE.PRN.

ASM.COM
ASM.COM
ASM.COM

CP/M and MP/M Commands 79

EXECUTING ASM

There are two ways to execute ASM. One is by specifying ASM
followed by the filename as shown in the example below.

A=- ASM EXAMPLE^

The primary name of the source file need only be specified in the
ASM command. The extension need not be included, because
the file is assumed to have the extension, .ASM. If the file does
not have the extension .ASM, the file will not be assembled.

When the above command is executed, the ASM program will
assemble the file named EXAMPLE.ASM. The ASM program
assumes that the file named is on the current drive. ASM will
place the assembled machine language file, EXAMPLE.HEX, and
the printable file, EXAMPLE.PRN, on the current drive.

In our example command, the ASM program will assume that
EXAMPLE. ASM is on Drive A. It will also place EXAMPLE.HEX and
EXAMPLE.PRN on that drive.

An example of the second form of an ASM command is shown
below.

A =► ASM EXAMPLE.ABX

Each of the three letters of the filename extension, .ABX, has a
special significance.

The first letter indicates the letter of the drive containing the
source file. In our example, the source file EXAMPLE.ASM is
contained on Drive A.

The second letter indicates which drive is to receive the .HEX file
(the machine language file). In our example. Drive B is to receive
that file. If the letter Z is used for the second letter, the ASM
program will not create a .HEX file—but it will create a .PRN file.

80 CP/M Simplified

The third letter indicates which disk drive is to receive the .PRN
file. If an X is used for the third letter, as in our example, the .PRN
file will be sent only to the terminal. If a Z is used as the third
letter, ASM will not create the .PRN file, but it will still create the
.HEX file

ASM ERROR MESSAGES

Error messages under ASM are generally in assembly language
source code. These codes are interpreted in the documentation
for the assembler. Errors can be corrected by using the DDT
(Debugger) program to modify the program file or by correcting
the source file and reassembling.

Some of the errors you may encounter under ASM are listed in
Table 4-6.

LOAD

Once you have produced a .HEX file with the ASM program, you
can turn that file into a .COM file (transient command) by using
the LOAD command to load it into the operating system. This is
pictured in illustration 4-2.

ILLUSTRATION 4-2. THE LOADING PROCEDURE

OBJECT CODE
(EXAMPLE.HEX)

TRANSIENT COMMAND
(EXAMPLE.COM)

' LOAD 1
(LOAD.COM)!

EXAMPLE.COM
LOAD.COM

CP/M and MP/M Commands 81

TABLE 4-6. ASM ERROR MESSAGES

MESSAGE EXPLANATION

SOURCE FILE
NAME ERROR

Filename in ASM is improper.
Remember, filename matches are
not allowed in ASM.

SOURCE FILE
READ ERROR

Source file cannot be read by ASM.
Use the TYPE command to find
the incorrect line in the source
program file.

NO SOURCE FILE
PRESENT

Usually due to the omission of the
.ASM filename extension.

OUTPUT FILE
WRITE ERROR

Usually due to filled disk. The
.HEX or .PRN output file can not
be written.

NO DIRECTORY
SPACE

Due to a filled disk directory. Erase
files that are not needed.

CANNOT CLOSE FILE Generally due to attempts to write
on a write-protected disk. Output
file (.HEX or .PRN) cannot be
closed.

82 CP/M Simplified

To execute the LOAD command, type in LOAD followed by the
filename of the .HEX file, as shown below.

A > LOAD EXAMPLE^

The .HEX extension need not be included in the filename.

When the above command is input, the LOAD program will
search for the EXAMPLE.HEX program on Drive A. When that file
is found, a duplicate will be created and named EXAMPLE.COM.

If you wish to load a file not on the current drive, specify the disk
drive name as part of the command as shown below.

A > LOAD B:NEWEXAM·^

The above command will load the file NEWEXAM.HEX from
Drive B and create NEWEXAM.COM on Drive A.

DUMP

The DUMP command is used to display the contents of a file on
the terminal in hexadecimal form.

All data is actually stored in memory in binary form (base 2). This
binary data can be represented in hexadecimal form (base 16).
Hexadecimal data is much easier for humans to work with than
binary data. In this book, when hexadecimal data is being given,
we will end the hexadecimal number with an H. The H
represents the fact that the number is in hexadecimal notation.
For example, lOOH would be the same as 256 in decimal notation.

When using the DUMP command, both the filename and its
extension must be given.

A > DUMP ACCTl.DAT^

In the above example, the contents of ACCTl.DAT will be
displayed in hexadecimal notation at the video screen.

EXAMPLE.COM
NEWEXAM.COM

CP/M and MP/M Commands 83

DEBUGGING

Bugs are errors in a computer program. These errors are
corrected by using the debugger program, DDT. The DDT.COM
program is supplied with a standard CP/M or MP/M operating
system.

DDT can either be used to correct errors or to bring a file into
main memory so that a copy of it can be saved.

The DDT command takes the following form.

DDT (d:) filename.HEX
filename.COM

If the file specified exists on a drive other than the current drive,
include that drive’s letter as part of the DDT command.

When the DDT command is used, DDT replaces the Console
Command Processor (CCP) as the operating system, which will
read the command line by line. The Console Command
Processor reads and interprets console input and system errors.
The CCP is discussed in more detail in Chapter 8.

When the DDT program replaces the CCP program, the DDT
program will take over the function of reading the command
line.

There are several different commands used with the DDT
program. We will discuss the I (Input) command, the R (read)
command, and the GO command (used to stop DDT and return
to the operating system).

DDT commands may be used only after DDT has been executed.
Once DDT has been executed, a prompt message (a different
one for each system) will appear on the terminal video screen
followed by the DDT prompt (-). You may type in DDT
commands after the DDT prompt has appeared.

DDT.COM
filename.COM

84 CP/M Simplified

The first DDT command we will discuss is the I (input) command.
The I command is used to input a file into the Transient Program
Area (TPA). This command accomplishes the same thing as if the
filename were supplied with the original DDT command. The I
command is useful in that you may add a second file to the first
one specified in the DDT command.

The R command reads the file in the TPA and displays a load
message. This load message takes the following form.

NEXT

xxxH

PC

XX

The number beneath the NEXT column is the address after the
program that has been loaded. This number is in hexadecimal
form. The PC is the program counter.

The value displayed under NEXT can be used to calculate the
number of pages to be used with the SAVE command. This
concept will be discussed in the next section.

The GO command is used to end DDT. Control is returned to the
operating system. However, the program is left in the Transient
Program Area so that a copy can be saved by using the SAVE
command.

SAVE

The SAVE command is used to save one or more pages of the
Transient Program Area (TPA) as a file on disk with a filename
specified by the operator. One page is the equivalent of 256
bytes of memory.

The SAVE command is used to create an exact image of a file
currently in the TPA. An example of a situation where the SAVE
command might be used is where the DDT was being used on a
program and that program began working correctly. The
operator would want to save the program as a file for future use.

The SAVE command takes the following form.

SAVE p filename

CP/M and MP/M Commands 85

The p is a decimal number giving the number of pages to be
saved.

CALCULATING THE NUMBER OF PAGES (P) UNDER THE SAVE
COMMAND

Many computer programmers find calculating the number of
pages to be SAVE’d somewhat confusing. However, the method
is actually very simple.

First of all, the R command must be used under the DDT program
to display the NEXT field. As we discussed earlier, the figure
under the NEXT column is the next higher address following the
program in the TPA. In other words, it is the last address of the
TPA plus 1. Remember, the number supplied under NEXT is in
hexadecimal form.

Since the number under NEXT is the last address plus 1 in the
TPA, if you subtract 1 from that figure, you will have the last TPA
address—or the end of the program. The trick is that you must
subtract in hexadecimal arithmetic. After this subtraction has
been completed, you must convert the hexadecimal address
into decimal pages.

To make this conversion, follow these steps.

1. Convert the NEXT address from hexadecimal to
decimal form.

2. Subtract 1—to convert the NEXT address to the
end of program address.

3. Subtract 256—the beginning address of the
Transient Program Area (256 to Ί00Η).

4. Divide the remainder by 256.

5. If the result is an integer, use that figure as the
number of pages (p). If the result is not an integer,
round the result to the next highest integer and use
that figure for p.

86 CP/M Simplified

We will run through an example to make this clear.

Suppose that the value given under NEXT by the R command in
DDT was 2900H. If you convert 2900H to decimal, the decimal
number address is 10496. Subtracting 1 and then 256 yields 10239.
Division by 256 yields 39.99. Rounding to the next highest integer
results in 40; which is the figure that should be used for p—the
number of pages to be saved.

If you wished to save this portion of memory via the SAVE
command, you would use the following command.

A > SAVE 40 EXAMPLE.COM>

The data from 100H through and including 28FFH (H signifies
hexadecimal) would be saved on the disk on Drive A under the
filename EXAMPLE.COM.

EXAMPLE.COM
EXAMPLE.COM

CHAPTER 5. MP/M & CP/M 2.2

INTRODUCTION TO MP/M

The MP/M operating system is designed for the execution of
several programs simultaneously on the same system. This
phenonema is know as timesharing.

Of course, the programs are not actually executed at the exact
same time—although to the users, it seems as if they are. The
computer executes one program and then immediately goes to
another. This switching back and forth occurs so rapidly that
each user gets the impression that he or she is the only one using
the system.

PROGRAM SCHEDULING

With a timesharing system, each program must be scheduled to
run on the processor in a certain order. This is known as program
scheduling.

The simplest method of scheduling is round-robin scheduling.
This is where every program receives an equal amount of
computer time in its turn. Round-robin scheduling is illustrated
in Illustration 5-1.

A better method of scheduling than round-robin is a scheduling
system where certain more important programs are run before
other less important programs. In such a scheduling system, each
program is assigned a priority level which determines when it
will run.

In setting priorities, processes or programs are usually classified
as either I/O functions or CPU functions. I/O functions are

88 CP/M Simplified

ILLUSTRATION 5-1. ROUND-ROBIN SCHEDULING

User 1

User 8

User 7

User 6

User 3

User 4

User 5

programs that perform input/output functions, while CPU
functions are programs that perform Central Processor Unit
operations.

For example, if a program was being executed in the CPU, it
would eventually request an input or output operation. An
input/output operation takes several milliseconds and is slow
compared to a CPU operation, which operates in microseconds.

When an I/O command is issued, the program beingexecuted is
usually temporarily blocked. The program is then known as
being dormant.

While the program is dormant, the I/O operation will begin. This
I/O operation will be undertaken concurrently with a CPU
operation. When the I/O operation has been completed, the
program will no longer be blocked. It will now become active
rather than dormant,and will takeitsplaceintheschedulinglist.

MP/M and CP/M 2.2 89

A multi-layered priority system with three priority levels is
shown in illustration 5-2. Notice that the highest priority is zero,
while the lowest is two.

ILLUSTRATION 5-2. THREE LEVEL PRIORITY LIST

PRIORITY 0 Process 13

PRIORITY 1 Process 1

PRIORITY 2
prøces^4|—»Jprøces^^1

In Illustration 5-2, process 8 will be executed next, followed by
process 13. When all of the processes at level 0 have been
completely executed, the processes at level 1 will be executed,
followed by the processes at level 2. In Illustration 5-2, process 1
will follow process 13. Processes 14 and 27 will then follow
process 1.

If a new process were entered at a high priority level, that
process would interrupt the scheduling. For example, suppose
that process 8 had been executed. While process 13 was
executing, a new process (4) was entered at priority level 0. The
scheduling would now appear in the order shown in Illustration
5-3.

90 CP/M Simplified

ILLUSTRATION 5-3. REVISED PRIORITY SCHEDULING

PRIORITY 0
(highest)

Process 8 I—

PRIORITY 1 J Process 11

PRIORITY 2
|praces^ nPraces^zl

Generally, the scheduling systems we have described apply only
to the central processor. However, scheduling may also be used
for the disk and/or the printer.

Processes for the printer are scheduled on a First-In-First-Out
basis. This is known as FIFO. The scheduling program for a FIFO
scheduling system is called a spooler.

In the case of the disk, the scheduling program will attempt to
make disk access as efficient as possible by reading or writing
those processes that require the least movement of the read
write head. Therefore, processes waiting for disk service may be
serviced in any order depending upon when the block they
require physically comes under the read-write head.

MP/M and CP/M 2.2 91

In addition to a scheduling program, a time-sharing system
requires the following.

1. Flags and interrupts to synchronize the processes.

2. Protective facilities so that if a single process malfunctions, the
other processes will not be damaged.

3. An efficient allocation of memory so that the processes occupy
memory space only when necessary.

MP/M provides all of these facilities. However, MP/M does have
certain limitations including.

1. MP/M will handle a maximum of eight processes.

2. Each process must have its own fixed memory segment (48K).

3. The files may only be one of the following four types.

Read/Only (R/O)
Read/Write (R/W)
System (SYS)—the file will not be listed in the directory.
Directory (DIR)

SIMILARITIES BETWEEN CP/M 2.2 & MP/M

CP/M version 2.2 contains several features actually designed for
MP/M. One of these features is the USER command and user
areas, which are used to segregate your own files from those of
other users in the system. Also, CP/M offers a feature whereby
file attributes may be assigned by a STAT command to protect
your files from accidentally being written over or deleted.

These additional features are necessary for MP/M, because it is a
multi-user system. With a multi-user system, several operators
may be using the resources of the system at the same time.
Therefore, with several operators using the same device (CPU,
disk drive, printer, etc.) at the same time, more protection is
needed for each user’s files.

92 CP/M Simplified

Besides the two common features shared by both CP/M and
MP/M, additional features are found only in MP/M that are
useful in a multi-user environment. These includethe following.

—SPOOL command which regulates traffic in the line
printer.

—CONSOLE command which displays the current
console number in a system with multiple consoles.

—GENMOD command which is used to produce a
relocatable program.

— DSKRESET command which is used to schedule the
changing of disks in a multi-user system.

—TOD command which is used to display or set the
system time and date.

—SCHED command which is used to schedule programs
to be executed at a later time.

—MPMSTAT command which is used to display system
information.

USER AREAS AND THE USER COMMAND

When MP/M is accessed, the following message will appear
upon each console.

MP/M
nA>·

The n refers to the user number for that console. Consoles can
be numbered from 0 (for the first console) to 15. The maximum
number of consoles that can be supported by MP/M is 16. Any
user number from 0 to 15 may be assigned to any console by
using the USER command.

MP/M and CP/M 2.2 93

The A in the previous MP/M prompt refers to the disk drive.
Drive A. Just as with CP/M, the drive letter may be changed by
the operator according to his wishes.

In CP/M version 2.2 and MP/M, each disk is divided into 16
separate areas. These areas are referred to as user areas. The
purpose of user areas is to keep all of each user’s files separate.
For example, user 1 would keep his files in user area 1, user 2 in
user area 2, etc. User area 0 is reserved for the system files.

PUTTING A FILE INTO A USER AREA

For whatever user area you are currently in, the files that you
create will be placed in that user area. By the same token, to
access a file, you must be in that file’s user area before you can
gain access to it.

When you first activate CP/M version 2.2 or MP/M, the current
user area will be zero. In MP/M, the following prompt appears
when the system is activated.

0A>

The zero (0) stands for user area zero. The A stands for Drive A.
Therefore, MP/M reminds you that your current user area is
zero when it is activated.

In CP/M version 2.2, you must use the following version of the
STAT command to determine the current user area.

STAT USR:

It is possible to copy a file that is in another user area. To do so,
you need to use the G parameter of the PIP command. This is
available in MP/M and CP/M 2.2. The G parameter will be
explained in the next chapter.

Unless you use the USER command, you will stay in user area
zero. If the program and data files that you create under CP/M
2.2 or MP/M are in user area zero, then they will be compatible
with the earlier versions of CP/M without separate user areas.

94 CP/M Simplified

To go to another user area in CP/M 2.2 or MP/M, you must use
the USER command as given in the format below.

USER n

The n stands for the user area specified by the operator. If n is
supplied between zero and fifteen, the USER command will
move to that user area as illustrated below.

OA > USER 5^

5A >

In the example above from MP/M, the initial user area upon
start-up is zero. This is indicated by the system prompt OA > .
This system prompt indicates that the current user area is zero
and the current disk drive is A.

When you use the USER command to move to another user area,
you will stay in that area until another USER command is given or
until the system is rebooted (which places the system back to
user area zero).

FINAL POINTS ON USER AREAS

User areas are designed to be used with systems containing a
large amount of disk storage, usually a hard disk.

For this reason, most sytems using MP/M are equipped with
hard disk drives rather than floppy disk drives.

PROTECTING FILES IN MP/M & CP/M 2.2

In CP/M 2.2 and MP/M, when a file is created , it is done so with
the $DIR and $R/W file attributes. The $DIR attribute signifies
that the file will be listed when the DIR command is used. The
R/W attribute signifies that the file can be read from or written
onto. Of course, this means that the file can also be erased.

In CP/M version 2.2 and MP/M, you can prevent a program from
being listed by a DIR command by changing the $DIR attribute
to the $SYS, or system, attribute. The STAT command is used to
change this file attribute as shown below.

A > STAT PROGRAMA.BAK $SYS

MP/M and CP/M 2.2 95

This command changes PROGRAMA.BAK into a system file-
one that will not be listed by a DIR command.

You can also use the STAT command to change a file from $R/W
(read-write) to $R/O (read-only). By changing a file to read-only,
you will prevent it from being erased or written onto. The
command below illustrates how to use the STAT command to
change a file to read-only.

A > STAT PROGRAMA.BAK $R/O

This command changes PROGRAMA.BAK from read-write to a
read-only file.

STAT can also be used to assign the $SYS file attribute. The $SYS
file attribute is the opposite of $DIR. The $SYS file attribute can
be useful in hiding a file from other users in a multi-user system.
When a file has the $SYS file attribute, the DIR command will not
display that file. However, complete protection is not afforded as
the STAT command can be used to display $SYS as well as $DIR
files. However, by using the $SYS file attribute along with the
$R/O file attribute, your files will be afforded some protection
from other users.

The effect of the DIR and STAT commands on files with the
attributes $SYS, $DIR, $R/W, and $R/O is illustrated below.

A > DIR PROGRAMA.BAK^

NOT FOUND

A > STAT PROGRAMA.*^

Size
64
64
64

Rees
64
64
64

Bytes
8K
8K
8K

Ext
1
1
1

Acc
R/O A: PROGRAMA.TXT
R/W A:PROGRAM.BAS
R/O (A:PROGRAMA.BAK)

In the above example, PROGRAMA.BAK is not listed by the DIR
command, as it was previously assigned the $SYS file attribute by
a STAT command.

96 CP/M Simplified

The STAT command lists all files with the prefix PROGRAMA
regardless of whether they have the $SYS or $DIR file attribute.
The PROGRAMA.BAK file is listed in parentheses because it has
both the $SYS and $R/O file attributes. The other files have the
$DIR file attribute. PROGRAMA.TXT and PROGRAMA.BAK are
$R/O files, while PROGRAMA.BAS is a R/W file.

Finally, when you are using the PIP command to copy a read
only or system file, the new file created will have the read-write
and directory file attributes. If you wish the newly created file to
have the $SYS and $R/O file attributes, you must use the STAT
command to change these attributes.

MP/M SYSTEM OPERATIONS

An MP/M system with just one user operates just like CP/M
version 2.2. Usually, an MP/M system involves several users—
each with his own terminal. Each user can operate the system—
which will operate just like CP/M version 2.2 from each
individual operator’s point of view.

However, multiple users place demands on the system which
one user will not. These demands include scheduling, spooling
files to the printer, setting the system time and date, changing
diskettes, and displaying system information. MP/M provides
for all of these demands with a set of MP/M commands.

DSKRESET (MP/M COMMAND)

In an MP/M system, it is not advisable for any one user to remove
a disk from a drive without first warning the other users of what
he is about to do. The DSKRESET command warns other users of
an MP/M system that someone else wishes to change a diskette.

The DSKRESET command resides on the system diskette as either
a .COM or .PRE (Page Relocatable) file. The DSKRESET command
can be executed just by typing in its primary name as shown
below.

OA > DSKRESET

MP/M and CP/M 2.2 97

When the DSKRESET command is entered, the following
message will appear on every terminal connected to the system.

Confirm reset disk system (Y/N)? Y

For a disk reset to be allowed, each user must key in Y (for yes) in
answer to the above prompt.

SPOOL (MP/M COMMAND)

Many times, more than one user will want to send files to the
printer, or the same user may wish tosend several files at once. In
these cases, the user or users will want to line up the file being
sent to the printer in a queue or line. This is known as spooling.
The queue is also known as the spool queue.

The SPOOL command is used to send files to the spool queue.
This command takes the form outlined below.

SPOOL filename (filename, filename, . . .)

Only the first filename is a required entry. The others are
optional. The filename must include the extension (if any) as well
as the primary filename.

The following is an example of the use of the SPOOL command.

OA>SPOOL FILE1.TXT FILE2.TXT FILE3.TXT>

The SPOOL command as used above will send three files,
FILE1.TXT, FILE2.TXT, and FILE3.TXT, to the LST device (usually
the printer).

The STOPSPLR command can be used to stop a spool operation
and empty the spool queue. An example of this command is
shown below.

OA > STOPSPLR^

98 CP/M Simplified

SCHED (MP/M COMMAND)

The MP/M operating system has the capability to keep the date
and time. You can use this capability to schedule programs to be
run at a preset time on a preset date. MP/M will keep track of the
system time and date and will run these programs as scheduled.

The SCHED command is used to schedule execution of a
program at a specified date and time. The format of the SCHED
command is as follows.

SCHED mm/dd/yy hh:mm program name
The date is supplied in mm/dd/yy as the month for mm (00-12);
day for dd (01-31); and year for yy. The time is supplied in hh:mm
as hours (00-24) and minutes (00-60).

The program being supplied is assumed to have an extension of
either .COM or .PRL. It is not necessary to supply this extension,
the primary filename alone is sufficient. The following example
illustrates the use of the SCHED command.

OA > SCHED 01/01/82 01:30 NEWYEAR^

The program NEWYEAR.COM (or NEWYEAR.PRL) will be
executed at 1:30 AM on New Years Day of 1982—as long as your
system is running, and that date is encountered by the system.

TOD (MP/M COMMAND)

The TOD command is used to display or reset the time of day. To
display the system time, use the TOD command as illustrated
below.

OA >TOD
Sat 04/12/81 02:33:14

The illustration below shows the procedure for using the TOD
command to reset the system time and day.

OA >TOD 04/12/81 02:36:00
Strike any key to set time
Sat 04/12/81 02:36:00
OA >

NEWYEAR.COM

MP/M and CP/M 2.2 99

When the “Strike any key” message appears, you may set the
system time whenever you wish by merely striking a key.

ABORT (MP/M COMMAND)

The Control C command (| C) will abort a program that is
currently attached to the console. However, it has no effect on
programs which are detached.

You can use the ABORT command to abort any program, both
those that are attached and those that are detached from the
console. The ABORT command can even be used to ABORT
programs belonging to another console in the system. An
example of the use of the ABORT command is illustrated below.

3A > ABORT PROGRAMA 3

The above command will abort PROGRAMA scheduled at the
console where the command was entered, (assume console 3).
The console number is not required in this case, as you are
aborting a program on the same console where the command
was entered, console 3.

However, if you are aborting a program scheduled on another
console, you must specify a console after the program name in
the ABORT command. If we suppose user number 3 is still
console 3, the following command will abort PROGRAMA at
console 4.

3A > ABORT PROGRAMA 4^

ATTACH (MP/M COMMAND)

Control D (| D) may be used to detach a program from the
console. The program will continue to operate without making
use of the console until it is reattached to the console. This
command generally is used to free the console for data entry, or
the execution of another program. However, for Control D to
detach a program, the program itself must check the console for
that command.

You can use the ATTACH command to attach a program to a
console. A program must always be reattached to the same

100 CP/M Simplified

console from which it was detached. The use of the ATTACH
command is illustrated below.

OA > ATTACH PROGA

CONSOLE (MP/M COMMAND)

The CONSOLE command allows the user to examine the
number of the console being used. Remember, the console
number does not always correspond to the user number. The
following example illustrates the use of the CONSOLE
command.

3A > CONSOLE
CONSOLE = 2

This example shows that user number 3 is using console number
2.

DIRECTORY (MP/M COMMAND)

The DIR command works in MP/M as it does in CP/M with one
extra option, the S option. By including S after the filename, all
$SYS files as well as $DIR files will be listed by the DIR command.
The use of the S option is illustrated below.

3A > DIR PROGRAMA.* S

All files with the primary name, PROGRAMA, will be included in
the directory listing including those with $SYS file attributes.

ERASE (MP/M COMMAND)

The ERASE command is used in MP/M as it is in CP/M with one
additional option, the ERAQ command. ERAQ is a form of erase
used in MP/M that allows the user to erase a set of files that
match a specific pattern.

The ERAQ command will not erase files with read-only ($R/O)
attributes, nor will it erase disks specified as read-only.

Unlike ERASE, ERAQ requests the user to verify each file

MP/M and CP/M 2.2 101

before erasing it. An example of the use of the ERAQ command
is given below.

OA > ERAQ PROGRAMA.*
A:PROCRAMA.INT ?χ
A:PROGRAMA.TXT ? Y

A Y must be entered by the operator to verify the command,
before the file will actually be erased.

TYPE (MP/M COMMAND)

The TYPE command is used in MP/M as in CP/M to type a file.
MP/M contains an additional option known as a pause. The
pause allows the operator to display a specified number of lines.
After those lines are typed, the listing process will pause until the
Return key has been pressed. The following command illustrates
the use of the TYPE command with the pause option.

1B>TYPE PROGRAMA.TXT P15 /

The first fifteen lines of PROGRAMA.TXT will be typed followed
by a pause, until the Return key has been pressed.

MPMSTAT (MP/M COMMAND)

MPMSTAT is a special form of the STAT command used in MP/M
to display a complete run-time status of MP/M. The form of the
command is illustrated below.

OA > MPMSTAT

An outline of the output of the MPMSTATcommand isshown in
Illustration 5-4.

A detailed explanation of Illustration 5-4 goes beyond the scope
of this chapter. However, a brief description of the MP/M Status
Display outline will follow.

Ready Process (es)--a list showing all of the ready processes in
order of priority. The process with the highest priority is that
which is running.

102 CP/M Simplified

ILLUSTRATION 5-4. MPMSTAT OUTPUT

******MP/M Status Display******

DQing
NQing

Ready Process(es):
Process(es)
Process(es)
Delayed Process(es):
Polling Process(es):
Process(es) Flag Waiting:
Flag(s) Set:
Queue(s):
Process(es) Attached to Consoles:
Process(es) Waiting for Consoles:
Memory Allocation:

Process(es) DQing—each queue is shown along with those
processes which have executed a read operation on the queue.
The processes are listed in order of priority. They are waiting for
a message to be written to the queue.

Process(es) NQing—same as DQing except that the processes
must wait for a buffer to write a message to the queue.

Delayed Process(es)—lists those processes delayed for a specific
length of time.

Polling Process(es)—lists those processes that poll an I/O device
waiting for a ready status.

Process(es) Flag Waiting—lists the processes opposite their
corresponding flag number.

Flag(s) Set--gives a list of the flags that are set.

Queue(s)—lists the queues in the system. An MX at the
beginning of a queue name denotes mutual exclusion. Queues
named with upper case letters may be accessed via a console
command.

MP/M and CP/M 2.2 103

Process(es) Attached To Console—lists the processes with their
corresponding console numbers.

Process(es) Waiting For Consoles—lists the processes by console
and by priority. These processes have been detached and are
waiting for their console in order to again resume execution.

Memory Allocation—displays a memory map which gives the
base, size, bank, (if applicable), the resident process, and the
console number.

GENMOO (MP/M COMMAND)

GENMOD, as well as GENHEX and PRLCOM, are commands
used only by assembly language programmers. The format of
GENMOD is as follows.

OA > GENMOD d:FlLE1.HEX d:FILE2.PRL $DDDD/

FILE1 contains two hexadecimal files which are concatenated
and set off from each other by OlOOH bytes. The GENMOD
command transforms Fl LEI into FILE2, which is page relocatable
(PRL). PRL is a file extension which is required for MP/M
programs which are relocatable.

DDDD$ is an optional parameter that specifies the additional
amount of memory required by the program in hexadecimal
form.

GENHEX (MP/M COMMAND)

GEN HEX is used to transfer a COM file into a HEX file. GEN HEX is
often used before GENMOD. An example of the use of GENHEX
is given below.

OA > GENHEX B: PROGRAMMA.COM /

PRLCOM (MP/M COMMAND)

The PRLCOM command is used to transform a PRL file into a
COM file. An example of the use of PRLCOM is given below.

OA > PRLCOM B:PROGRAMA.PRL A:PROGRAMA.COM

PROGRAMMA.COM
A:PROGRAMA.COM

104 CP/M Simplified

CENSYS (MP/M COMMAND)

The GENSYS command is used for MP/M system generation. The
operator will be prompted for all required parameters and
information. After this data has been entered, the MPM.SYS file
will be created.

The MPMLDR command is used to load and execute the
MPM.SYS file. The dialogue between the user and system is
shown in Illustration 5-5. The underlined areas denote user
responses.

MPMLDR (MP/M COMMAND)

The MPMLDR command loads the MPM.SYS file that contains
the MP/M system. MPMLDR then executes the MPM.SYS file to
bring up MP/M. MPMLDR also displays the system parameters.
Use of MPMLDR is illustrated as follows.

A > MPMLDR>

MP/M 1.0 Loader

Number of consoles = 4
Breakpoint RST# = 5
Top of memory = COFFH
Memory Segment Table:

SYSTEM DAT COOOH 0100

MP/M and CP/M 2.2 105

ILLUSTRATION 5-5. GENSYS DIALOGUE

A > GENSYS

MP/M SYSTEM GENERATION

Top page of memory =
Number of consoles =__
Breakpoint RST# # =__
Add system call user stacks (Y/N)?___
Z80 CPU (Y/N)?__
Bank switched memory (Y/N)?___
Memory segment bases (ff terminates list)

Select Resident System Processes: (Y/N)
ABORT
SPOOL
MPMSTAT
SCHED

?.
I
?.
?.

CHAPTER 6. USING THE PIP
COMMAND TO HANDLE FILES

INTRODUCTION

We introduced the PIP command in Chapter 3, where we
showed how PIP can be used to copy a file. Although PIP's
primary purpose is to copy files, it has many more uses.

In this chapter, we will cover the different uses of the PIP
command. It is likely that you will not require many of the
different usages of PIP. You will probably only require a few of
these different usages. Therefore, you may find it useful to
briefly skim the areas of this chapter which you are not likely to
make use of, and concentrate on those areas you will make use
of.

Some of the different usages of PIP are given below.

—PIP can be used to concatenate files.

—PIP can be used to cut off lines that are too long for the screen
using the D option.

—PIP can be used to automatically print text in formatted pages
with the P option.

—PIP can be used to print formatted text using tabs.

—PIP can be used to print a group of files with just one command
by giving a PRN specification.

108 CP/M Simplified

WHAT IS PIP?

Basically, PIP is a program that transfers files. PIP is an
abbreviation for Peripheral Interchange Command. Asthe name
implies, PIP allows files to be transferred between any two
peripheral devices.

In Chapter 3, we only discussed transfers from one disk to
another. In this chapter, we will cover the additional uses of PIP.
We will study in detail PIP's primary function—that of
transferring and copying files—as well as the use of PIP for
processing files as it transfers them.

COPYING A SINGLE FILE WITH PIP

PIP can be either executed as a single line command or as a
program. The example below illustrates the use of PIP as a single
line command.

A > PIP B:PROGRAM2.TXT = PROGRAM1.TXT
A >

PROGRAM1.TXT is assumed to be on the current system drive,
Drive A. The above command will instruct PIP to make a copy of
PROGRAM1.TXT, name that copy PROGRAM2.TXT, and place
PROGRAM2.TXT on Drive B. When these operations have been
completed, the program will respond with the system prompt.

When the PIP command is used as a program, it can perform a
number of different copy operations. The example below
illustrates the use of PIP as a program.

A > PIP^

*B:PROG1.BAK = PROGI.TXT^
*A: = B:PROG3.BAS>
*
A>

Using The PIP Command To Handle Files 109

Once PIP has been executed as a program, it will display the
symbol, *, which is the PIP prompt. Once the PIP prompt has
been displayed, PIP commands may then be executed. In our
example above, the first command makes a copy of PROG1.TXT
on Drive A, names that copy PROG1.BAK, and then places
PROG1.BAK on Drive B.

The next line makes a copy of PROG3.BAS, which is on Drive B,
uses the original filename, PROG3.BAS for the copy, and places
that copy on Drive A.

By pressing Return, PIP will be ended as a program. Control will
return to CP/M, and the system prompt will appear.

The format for copying files using PIP is as follows.

d:copy = d:original

The d: is the letter representing the disk drive. The copy is the
new name for the file being copied, and the original is the
original filename.

If the d: on the right of the equal sign is omitted, PIP will assume
that the file to be copied is on the current drive. The d: on the left
may also be omitted, as long as a filename is supplied. In this
case, the copy with the new filename will be placed on thesame
diskette with the original.

If the name of the copy is to be the same as that of the original,
the copy’s filename need not be keyed in, although the new
drive letter must be included. An example of this is shown
below.

d: = original

The first d: must be a different drive than the second d:. The
above format will only work if the drive that is to receive the copy
is different from that containing the original file. This is because
of the rule that a single diskette cannot have two files with the
same filename.

The following examples will illustrate some uses of abbreviated

110 CP/M Simplified

PIP commands. We will assume that PROGRAMA.BAS is on
Drive B and F1LEA.TXT is on Drive A.

*A:

A > PIPj/

= B:PROGRAMA.BAS^
*B: = FILEA.TXT >
*A:NEWFILE.TXT = A:FILEA.TXT/
*B:FILEA.TXT = FILEA.TXT >

COPYING SEVERAL FILES WITH PIP

Of course, multiple individual PIP commands can be used to
copy several different files. For example, the following three
files:

PROGRAMA.BAS
TEXTA.BAS
FILEA.BAS

could be copied from Drive B to Drive A by using the following
PIP commands.

A > PIP>

* A: = B:PROGRAMA.BAS^
* A: = B:TEXTA.BAS>
* A: = B:FILEA.BAS>
*
A>

However, there is an easier way to copy multiple files using PIP.
There are two symbols used by PIP, ? and *, which can be used
when copying multiple files.

The symbol ? may be used in a filename with a PIP command. The
? will match any character that appears in its position, as shown
below.

PROGRAM?.BAS

This will match the following:

Using The PIP Command To Handle Files 111

PROGRAMA.BAS
PROGRAMB.BAS
PROGRAMC.BAS

but will not match:

PROG.BAS
PROGRAA.BAS

Suppose the above 5 files were on Drive B. The following PIP
command can be used to copy PROGRAMA.BAS, PRO-
GRAMB.BAS, and PROGRAMC.BAS from Drive B to Drive A.

A > PIP A: = B:PROGRAM?.BAS^

All three files will transfer with just one PIP command.

The second matching symbol, *, will match anything in its field
when used with PIP. For example, let’s assume the following files
were on Drive B.

PROGRAMA.TXT
PROGRAMA.BAS
FILE1.TXT
FILE1.BAK
FILE2.TXT
DATAI.BAS

If the following command was issued using the symbol, *;

A > PIP A: = B:PROGRAMA.*>

the files, PROGRAMA.TXT and PROGRAMA.BAS would be
copied to Drive A.

If the following command was issued;

A > PIP A: = B:*.TXT^

the files, PROGRAMA.TXT, FILE1.TXT, and FILE2.TXT would be
copied to Drive A.

112 CP/M Simplified

COPYING ALL FILES WITH PIP

First of all, take note that the title of this section is “COPYING
ALL FILES WITH PIP”, not “COPYING AN ENTIRE DISKETTE
WITH PIP”. That is because it is not possible to copy the CP/M
system itself with the PIP command. This is due to the fact that
the CP/M system is not a file.

If a diskette contains only files, then PIP can be used to copy an
entire diskette. However, if a diskette contains files as well as the
CP/M system, PIP can only copy the files. SYSGEN must be used
to copy the CP/M system.

Another thing to remember about the CP/M system is that it is
not listed in the diskette directory by the DIR command. The DIR
command only lists files. Since CP/M is not a file, it is not listed as
a file. To determine whether or not CP/M is on a diskette, try to
bring up the system prompt by executing a warm start by
pressing Control C.

With these warnings in mind, let's turn to the use of PIP to copy
all files on a diskette.

To copy all files on a diskette, you would use the symbol, *, with
the PIP command as illustrated below.

A > PIP B: = A: *.* /

This command would copy all files on the diskette in Drive A
onto the diskette on Drive B.

The format below is used to copy all files on a diskette.

PIP d: = d: *.*

The first d stands for the letter of the drive containing the
diskette which is to accept the copies. The second d stands for
the drive holding the diskette containing the files which are to
be copied.

When you do use the * symbol with PIP to copy all files on a
diskette, we strongly recommend that you use the V option as

Using The PIP Command To Handle Files 113

illustrated below.

A > PIP B: = A: [V] >

The V (verify) options checks to see that the files copied are
identical to the original. The drawback to using the V option is
that the PIP command takes much longer when it is used with the
V option.

COPYING WITH PIP

COPYING FILES WITH ONE DRIVE

Copying files using PIP is much more difficult using one drive
than two. The following steps below show how to copy
FILE1.DAT to another disk (B) using PIP.

Step 1. The user should first insert a diskette that
has PIP on it. PlPshould be typed in, followed by
a Return. The diskette with the file to be copied
is inserted and the copy command is typed in as
shown below:

A > PIP^
*B: = A:FILE.DAT

Please mount disk B on main drive (hit enter when ready)

Step 2. When the preceding message appears,
the user should exchange diskettes and press
Return. What PIP does is create a file called
FILE1 .$$$ for FILE1.DAT. If FILE1.DAT exists on
diskette B,PIPwilldelete FILE1.DAT on diskette
B, the following will be displayed.

A > pip/
*B: = A:FILE1.DAT/

Please mount disk Bon main drive (hit enter when ready)^

\ Please mount disk Aon main drive (hit enter when ready)j/

114 CP/M Simplified

Step 3. Diskette B should now be removed from
the drive and diskette A inserted into the drive.
The Return key should then be pressed. PIP now
will load FILE1.DAT from diskette A into
memory. PIP will then display the following
prompt.

A > PIP/
*B: = A:FILE1.DAT/

Please mount disk B on main drive (hit enter when ready)

Please mount disk A on main drive (hit enter when ready)

Please mount disk B on main drive (hit enter when ready)^

Step 4. Again diskette A should be removed
from the drive and diskette B inserted in its
place. The user should then press Return. PIP
will write FILE1.DAT from memory to diskette B.
The PIP prompt should reappear.

When larger files are copied with PIP in a single
drive system, additional prompts may appear
prompting the user to mount the diskette on
either drive A or drive B. Continue to follow the
instructions given by PIP until the copying
operation has been completed.

COPYING WITH TWO DISK DRIVES USING PIP

If your system is equipped with two or more disk drives, you’re in
luck. Using PIP with a two drive system is both easier and faster
than using PIP with a one drive system.

PIP can be used in either its single line format as shown below, or
PIP can be used in its multiple command format.

A > PIP B: = NEW.TXTi/
A >

Using The PIP Command To Handle Files 115

In the preceding example, PIP is used to copy NEW.TXT from
drive A to drive B. Note that after Return is pressed, the CP/M
prompt appears.

PIP can also be used as a program to perform multiple copy
operations. An example of PIP usage for multiple copy operations
is shown below:

*B: = NEW.TXT /
*B: = OLD.TXT /
♦
A >

In the first line of the preceding example, PIP is loaded into the
computer’s memory. Once PIP has been loaded, the user can
enter one or more copy operations.

When the Return key is pressed with no preceding entry for a
copy operation, the PIP program will end, and the CP/M prompt
will be displayed.

Notice how much easier copying operations are when your
system has two disk drives installed rather than just one. No
complex disk swaps are required with a two drive system, unlike
a one drive system.

USING [V] TO VERIFY DISK COPYING OPERATIONS

The V (verification) can be used with PIP commands to verify that
the files being copied were copied accurately. When the V
option is used with PIP, the copying operation is slowed
somewhat.

It is recommended that the V option be used when copying
important files, to be certain that these files were copied
correctly.

The V option must be enclosed in brackets and must appear at
the end of the PIP command. Generally, spaces may not separate
the brackets used with V and the last character of the PIP
command. This is also the case with the other PIP options.

116 CP/M Simplified

The following are examples of the use of PIP commands with the
V option.

A > PIP B: = A:FILE.TXT[V] /

A > pip/

*B: = A:FILE1.TXT[V] /
♦B: = A:FILE2.TXT[V]
*
A >

In the first example, FILE.TXT will be copied from the diskette in
drive A to the diskette in drive B and will then be verified.

In the second example, FILE1.TXT and then FILE2.TXT will be
copied from A to B and then verified.

ABORTING PIP

If you press any character key on the keyboard while PIP is
transferring a file, the transfer process will be aborted. The
message, ABORTED, will be displayed on the video screen as
confirmation of this.

USING PIP TO COPY TO OTHER PERIPHERALS

PIP can transfer files between almost any periphal device, not
just between two disks. In this section, we will describe how PIP
may be used to transfer files between any two devices.

TRANSFERRING FROM DISK TO PRINTER WITH TYPE

The process of transferring a file from a disk drive to the printer is

Using The PIP Command To Handle Files 117

commonly referred to as printing a file. Most applications
software packages have specialized print routines that send data
from the disk files to the printer. The major advantage of these
specialized print routines is that your data is formatted according
to the program specifications.

Also, CP/M’s TYPE command can be used as illustrated below to
send a file to the printer.

A > |p
A >· TYPE F1LE1.TXT>

The Control P will turn the printer on. The TYPE command will
result in the file being printed exactly as it is on the disk without
any reformatting.

There is one formatting facility offered with the TYPE command.
Control 1. Control I will expand any tab characters contained in
the file, and assume a tab position at every eighth column.

Generally, the TYPE command is used to display a file on the
screen rather than on the printer. The CRT terminal displays text
at a speed 15 to 30 times faster that the printer. Therefore, using
the TYPE command to the screen rather than to the printer
results in text being displayed at a much faster rate.

TRANSFERRING FILES TO PERIPHERALS WITH PIP

PIP can be used to send a file to any device capable of receiving
it. PIP can send files to a disk drive, a printer, a video screen, a
paper tape punch, and a cassette tape recorder. However, PIP
may not be used to send files to a card reader or a keyboard.

Generally, the file is input from a disk and output to the screen or
printer. However, files can also be input from the cassette tape
unit or the keyboard. Files can also be output to a disk drive orto
the cassette recorder. Illustration 6-1 displays some of the input
and output combinations possible.

118 CP/M Simplified

ILLUSTRATION 6-1. INPUT/OUTPUT TRANSFER POSSIBILITIES

Console and Keyboard

CPU Cassette Recorder

te&-

Disk Drives

4

in

Printer

I

Using The PIP Command To Handle Files 119

Files can be transferred between different peripheral devices via
file transfer routines in programs. However, PIP can also be used
to transfer files between different peripheral devices. When PIP
is used to make such transfers, special keywords must be used to
represent the various peripheral devices. We will examine these
in the next section.

DEVICE KEYWORDS

First of all, the difference between a physical device name and a
logical device name must be understood. A physical device
name is the actual name of a specific peripheral device. A logical
file name is an overall name that can actually refer to any one of
several peripheral devices.

The following are the logical device names allowed in PIP
commands.

CON—or console; includes the keyboard and the screen display.

LST—or listing device; includes the printer, teletype, or modem.

PUN—or punch; includes tape or card punches.

RDR—or reader; includes card or paper tape reader.

In most cases, the CON device will be the terminal; the LST
device will be the printer; and the PUN and RDR device names
will not be used.

The STAT command as explained earlier can be used to display
the specific device assignments for each logical device name.
The STAT command can also be used to change these
assignments.

EXAMPLES OF PIP FILE TRANSFERS

The logical file names just desribed can be used with the PIP
command to transfer files between peripheral devices. The
following examples illustrate this usage of PIP.

120 CP/M Simplified

A >PIP^

* LST: = AiTEXTI.FILE^
♦ CON: = B:PROGRAMA.BAK^
♦PROGRAM.BAS^ RDR:>~
♦ PUN: = L E >TEXT2.fi

A>

The first PIP command transfers a copy of TEXT1.FILE from Drive
A to the LST: device. This is shown in Illustration 6-2.

ILLUSTRATION 6-2. LST: =A:TEXT1.FILE

Disk Drives

L
Printer

A B

TEXT2.fi

Using The PIP Command To Handle Files 121

The second PIP command transfers PROGRAMA.BAK from
Drive B to the CON: device. This is shown in Illustration 6-3.

ILLUSTRATION 6-3. CON: = BzPROCRAMA.BAK

4

Disk Drives
CRT

£ g
A B

122 CP/M Simplified

The third PIP command reads the information coming from the
reader device and creates the file PROCRAM.BAS. This
command allows a program on punched cards or paper tape to
be read into the system and stored as a file on disk. This is
illustrated in Illustration 6-4.

ILLUSTRATION 6-4. PROCRAM.BAS = RDR:

I
Tape Reader Disk Drive

Using The PIP Command To Handle Files 123

The fourth PIP command sends a copy of the file PROG.BAS
from the disk to the punch device. This is shown in illustration
6-5.

ILLUSTRATION 6-5. PUN: = TEXT2.FILE

L λ

Punch DeviceDisk Drives

124 CP/M Simplified

PHYSICAL DEVICE NAMES IN PIP

Physical as well as logical device names may be used with PIP
commands.

CRT:—or Cathode Ray Tube for the console or terminal.

LPT:—for the line printer.

PTP:—for the paper tape or card punch.

PTR:—for the paper tape or card reader.

TTY:—or teletype. This can also be used for the console,
terminal, reader, or punch.

UC1:—user defined console or terminal.

ULI:—user defined listing device.

UP1:—user defined output device.

UP2:—second user defined output device.

UR1:—user defined reader.

UR2:—second user defined reader.

COMPLEX PIP TRANSFERS

The preceding PIP operations all performed just file transfers.
However, PIP can do more than simply copy files. PIP has the
capability to also perform complex processing procedures on
text and hexadecimal files while they are being transferred.

SPECIAL DEVICE NAMES

One of these additional PIP capabilities are special device
names. The following special device names may be used with
PIP.

EOF:—sends an end-of-file mark to the device named. The end-
of-file mark is the ASC II code for I Z. The end-of file (EOF)

Using The PIP Command To Handle Files 125

mark is automatically sent by PIP during ASC II text file transfers.
The EOF special device name need only be used to send this
code in special cases. The following command illustratesthe use
of EOF.

* PUN: = XYZ.ASM, EOF:^

This command sends a copy of XYZ.ASM to the punch device
followed by the EOF character (|Z).

NUL—sends the ASC II code for the null character (0) to the
physical device specified. The NUL special device name is
generally used in connection with a punch (PUN) device, as
shown below.

*PUN: = FILE1.HEX, NUL:/

The above example sends FI LEI. HEX to the PUN device followed
by the ASC II code for the null character.

PRN:—works like the LST: device name in that the file is sent to
the LST device (generally the printer). The difference in PRN lies
in the fact that the tabs are expanded every eighth character, the
lines are numbered, and form feeds (advance printer to new
page) are given after every 60 lines of output. Also, a form feed is
given before the first line is printed in that the output begins with
a new page. The use of PRN is illustrated below.

*PRN: = FILE1.TXT /

SENDING TEXT FILES TO DEVICES

The files created by word processing applications and editor
programs as well as most data files are text files. In text files, the
binary codes represent text, while in program files (.COM, .BAS,
.INT, .HEX), the binary codes represent actual instructions or
numbers. Certain PIP special copy operations can only be
performed on text files. These include copying only part of afile,
dropping characters during the copy operation and translating
upper case characters to lower case.

126 CP/M Simplified

Also, only certain devices may receive or send text files. For
example, text files may be only sent to printers or the video
screen. The reader and punch devices (RDR: and PUN:) can
send or receive text files.

A text file generally is coded in ASC II format. In ASC 11, a byte is
used to represent a character. A byte consists of 8 bits. Table 6-1
shows the ASC II code in byte form for all characters including
special control characters. The ASC II codes are also listed with
their binary and hexadecimal equivalents in Table 6-2.

Using The PIP Command To Handle Files 127

TABLE 6-1. ASC II CONVERSION TABLE

b4 b3

b7
b6
bS

b2 b1
Column

Row

0
0
0

0
0
1

0
1
0

0
1
1

1
0
0

1
0
1

1
1
0

1
1
1

0 1 2 3 4 5 6 7

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
VT
FF
CR
SO
SI

OLE
DC1
DC 2
DC3
DC 4
NAK
SYN
ETB
CAN
EM
SUB
ESC
FS
GS
RS
US

SP
1

tí

$
%
&

(
I

0
1
2
3
4
5
6
7
8
9

u

A
B
C
D
E
F
G
H
I
J
K
L
Μ
N
0

P
Q
R
s
T
u
V
w
X
Y
z
I

1
Λ

a
b
c
d
e
f
g
h

p
q

s
t
u

w
X

y
i
k
I
m
n
o DEL

Start of text
End of text

NUL Null
SOH Start of heading
STX
ETX
EOT End of transmission
ENQ Enquiry
ACK Acknowledge
BEL
BS
HT
LF
VT
FF
CR
SO
SI
DLE

Bell, or alarm
Backspace
Horizontal tabulation
Line feed
Vertical tabulation
Form feed
Carriage return
Shift out
Shift in
Data link escape

DC1 Device control 1
DC2 Device control 2
DC3 Device control 3
DC4 Device control 4
NAK Negative acknowledge
SYN Sychronous idle
ETB
CAN Cancel
EM
SUB Substitute
ESC Escape
FS
GS
RS
US
SP
DEL

End of transmission block

End of medium

File separator
Group separator
Record separator
Unit separator
Space
Delete

128 CP/M Simplified

TABLE 6-2. ASC II CHARACTER CODES IN ASCENDING ORDER

Hexa
decimal

Binary ASCII

00
01
02
03
04
05
06
07
08
09
OA
08
oc
OD
OE
OF
10
1 1
12
13
14
15
16
17
18
19
1A
IB
1C
ID
IE
IF

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
001
001
001
001
001
001
001
001
001
001
001
001
001
001
001
001

0000
000 1
0 0 10
0 0 11
0 100
0 10 1
0 110
0 111
1000
100 1
10 10
10 11
1100
110 1
1110
1111
0000
000 1
00 10
0 0 11
0 100
0 10 1
0 110
0 111
1000
100 1
10 10
10 11
1100
110 1
1110
1111

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
VT
FF
CR
SO
SI

DLE
DC1
DC 2
DC 3
DC4
NAK
SYN
ETB
CAN
EM

SUB
ESC
FS
GS
RS
US

Using The PIP Command To Handle Files 129

TABLE 6-2 (CONT). ASC II CHARACTER CODES IN ASCENDING
ORDER

Hexa
decimal

Binary ASCII

20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
38
3C
3D
3E
3F

010
010
010
010
010
010
010
010
010
010
010
010
010
010
010
010
01 1
01 1
01 1
01 1
01 1
01 1
oil
01 1
01 1
01 1
01 1
01 1
01 1
01 1
01 1
01 1

0000
0 0 0 1
0 0 10
0 0 11
0 100
0 10 1
0 110
0 111
1000
10 0 1
10 10
10 11
1100
110 1
1110
1111
0 0 0 0
0 0 0 1
00 10
00 11
0 100
0 10 1
0 110
0 111
10 0 0
100 1
10 10
10 11
110 0
110 1
1110
1111

SP
!

$
%
&

(
)

/
0
1
2
3
4
5
6
7
8
9

?

130 CP/M Simplified

TABLE 6-2 (CONT). ASC II CHARACTER CODES IN ASCENDING
ORDER

Hexa
decimal

Binary ASCII

40
41
42
43
44
45
46
47
48
49
4A
48
4C
40
4E
4F
50
51
52
53
54
55
56
57
58
59
5A
58
5C
50
5E
5F

100 0000
100 0 0 0 1
100 0 0 1 0
100 0 0 11
100 0 100
100 0 1 0 1
100 0 1 1 0
100 0 111
100 1 0 0 0
100 10 0 1
100 10 10
100 10 11
100 110 0
100 110 1
100 1110
100 1111
101
101
101 0010
101
101
101
101
101
101
101
101
101
101
101
101
101

0000
000 1

00 11
0 100
0 10 1
0 110
0 111
1000
10 0 1
10 10
10 11
1100
110 1
1110
1111

®
A
8
C
0
E
F
G
H
I
J
K
L
Μ
N
0
P
Q
R
S
T
u
V
w
X
Y
z
[
\
1
Λ

Using The PIP Command To Handle Files 131

TABLE 6-2 (CONT). ASC II CHARACTER CODES IN ASCENDING
ORDER

Hexa
decimal

Binary ASCII

60
61
62
63
64
65
66
67
68
69
6A
68
6C
6D
6E
6F
70
71
72
73
74
75
76
77
78
79
7A
78
7C
7D
7E
7F

110 0000
110 000 1
110 0 0 1 0
110 00 11
110 0 100
110 0 10 1
110 0 110
110 0 111
110 1000
110 10 0 1
110 10 10
110 10 11
110 110 0
110 110 1
110 1110
110 1111
111 0000
111 000 1
111 0010
111 00 11
111 0 100
111 0101
111 0 110
111
111
1 11
11 1
1 11
1 11
11 1
111
111

0 111
1000
100 1
10 10
10 11
1100
110 1
1110
1111

a
b
c
d
e
f
g
h
I
J
k
I

m
n
o
P
q
r
s
t
u
V
w
X

y
z
I I

1

DEL

132 CP/M Simplified

Table 6-1 shows how the binary and hexadecimal equivalents of
each ASC II character formed. To form the binary equivalent for
a character, find the values for bits b7, b6, and bS from the
column position in Table 6-1. Then, find the values for bits b4, b3,
b2, and bl from the row position in Table 6-1. By combining
these, the binary equivalent for any ASC II character can be
determined.

For example, the bit values for T are 101 for b7, b6, and b5, and
ClOOfor b4, b3, b2,and bl.The binary equivalentforTis 1010100.

Table 6-1 can also be used to find the hexadecimal equivalent for
ASC II characters. The first portion of the hexadecimal value is
the column hexadecimal valueO-7. The record portion is the row
hexadecimal value 0-F. For example, the hexadecimal value for
the ASC II character Z is 5A.

Normally, a text file is coded in ASC II where an 8 bit code is used
to represent each character. However, programs that have been
processed by a compiler are generally represented in the more
compact hexadecimal form.

When you are transferring files to the printer or the screen
display, it is important that you specify whether the data being
transferred is hexadecimal or ASC II. With ASC II files, PIP will
transfer a file until the end of file character (| Z) is reached in
ASC II text files or until the end of a file is reached in other types
of files.

CONCATENATING TEXT FILES

Concatenation is a process where two data items or groups are
combined into one. Concatenation is most commonly applied to
strings and text files. Here, we will cover the concatenation of
two or more text files. The following example uses PIP to
concatenate FILE1.TXT and FILE2.TXT into TOTALFILE.TXT.

AS’PIP /
♦TOTALFILE.TXT = FILE1.TXT. FIL E2.TXT /

Using The PIP Command To Handle Files 133

Concatenation can also be used with PIP to combine several files
on different drives at once as illustrated in the following
example.

A=-£IP/

*B:NEWFILE.TXT= A:TOTALFILE.TXT,B: LETTER.TXT.A: ADD.TXT /
*A:FINAL.TXT = B:NEWFILE.TXT,A:FILE7.TXT,B:FILE9.TXT/
*
A=*

In the first command of the above example, TOTALFILE.TXT
from Drive A, LETTER.TXT from Drive B, and ADD.TXT from
Drive A, are concatenated in that order to form NEWFILE.TXT on
Drive B.

In the second command, NEWFILE.TXT on Drive B, FILE7.TXTon
Drive A, and FILE9.TXT on Drive B, are concatenated to form
FINAL.TXT on Drive A.

Only text files can be concatenated in this manner. Non-text file
concatenation follows different rules. Remember, each text file
ends with the EOF character (| Z). When PIP concatenates text
files, it removes the EOF character (| Z) from between the files
being joined, and places one EOF mark at the end of the newly
concatenated file. Naturally, if the files being concatenated were
not text files, the procedures just outlined would not work.

Concatenation with text files can be used to add to an existing
file as well as to create a new file. This is shown in the example
below.
A=» pip/

♦ORIGINAL.TXT = ORIGINAL.TXT, ADD.TXT, NEW.TXT/
*/
A=*

The above command will add ADD.TXT and NEW.TXT to the
contents of ORGINAL.TXT. ADD.TXT and NEW.TXT will not be
altered by this command. However, ORIGINAL.TXT will only
exist in its newly concatenated form. The earlier version of
ORIGINAL.TEXT will no longer exist.

134 CP/M Simplified

Concatenation can also be used with physical and logical device
names to send two or more files to a device at once. For example,
the command given below will send FILE1.TXT and FILE2.TXT to
the printer.

A :*PIP/

*LPT: = FILE1.TXT, FILE2.TXT/

A=>-

CONCATENATING NON-TEXT FILES WITH PIP

As mentioned in the last section, concatenating non-text files
with PIP requires a different set of commands than text file
concatenation. Non-text files do not have an end-of-file
character. PIP normally will concatenate by copying after the
EOF character has been read. Therefore, to force PIP to continue
copying the next file (if non-text) a parameter must be inserted
where the EOF mark would occur if the file were a text file. That
parameter must tell PIP to continue copying.

This transfer parameter is [X]. The X parameter must be enclosed
in brackets, and positioned directly after the file it applies to.

The following command illustrates the use of the X parameter.

A > PIP
*FILEZ.HEX = FILEA[X], FILEB[X], FILEC/

The above PIP command will concatenate FILEA, FILEB, FILEC
into FILEZ. Notice that the [X] parameters are used to force PIP to
continue concatenation past the ends of FILEA and FILEB.

CONCATENATING HEX FILES WITH PIP

Hexadecimal files are usually created by an assembler. An
assembler translates a program written in assembly language
into machine language. Machine language consists solely of
binary codes which correspond to actual program instructions.
This machine code is stored in a hexadecimal file. In other words,
the CP/M assembler creates a HEX file when it translates an
assembly language program into machine language.

Using The PIP Command To Handle Files 135

HEX files have a special significance with regards to PIP. First of
all, PIP will assume any HEX file to be in proper Intel format. PIP
will check the HEX file for proper format, legal hexadecimal
values, and check sums. Therefore, exercise caution when using
HEX files with PIP.

You can use either the H-parameter or the l-parameter with a PIP
command to copy a HEX file.

When the H-parameter is used, PIP will check all file data to be
certain that it is in correct Intel hexadecimal format. If the data is
not in proper hexadecimal format, PIP will prompt you via the
terminal for corrections. The H-parameter will also remove non-
essential characters from between hexadecimal records while
the file copying procedures are taking place. The following is an
example of the use of the H-parameter.

A > pip/

♦NEWFILE.HEX = OLDFILE.HEX[H] /
*
A>

The previous command copies OLDFILE.HEX into NEWFILE.HEX
while checking for invalid hexadecimal format.

The I parameter automatically sets the H-parameter. In other
words, the I parameter does what the H-parameter does, plus
much more. When the l-parameter is used, PIP will ignore any
:00 records in the original hexadecimal format. The l-parameter
also will check for improper hexadecimal format and remove
non-essential records from between hexadecimal records as the
H-parameter does. The following is an example of the useof the
l-parameter.

A > PIP /
♦NEWFILE.HEX = QLDFILE.HEX[I] /

A >

136 CP/M Simplified

The above command transfers OLDFILE.HEX to NEWFILE.HEX,
while removing :00 records and checking for valid hexadecimal
format.

You can copy from a device such as the console, paper tape, or
card reader to a HEX file. In these cases, you need not use the H-
parameter to check for improper hexadecimal format or
checksum error, although you may need to use the 1-parameter
to eliminate :00 records. If PIP discovers an invalid format or
checksum error, it will report this error via the terminal and await
correction. An example of the use of PIP for copying from a
device to a HEX file is shown below.

A> PIP >

* FILE2. H EX = CON:FILE1.HEX[I1

I Z

A=-

HEX records
typed in
after command.

In this example, PIP transfers the input from the CON: device
(terminal) into FILE2.HEX until a | Z is entered. Then, PIP
continues by copying FILE1.HEX into FILE2.HEX, while checking
for improper format and removing :00 records.

PIP PARMETERS

As we explained earlier, parameters are letters enclosed in
brackets that follow a filename in a PIP expression. The
parameters affect how that file is copied. More than one
parameter may be specified in a PIP expression. Some
parameters require additional letters and/or digits.

It is not necessary to memorize these various parameters. You
will probably only ever use a few of them. However, it is
important to know that they are available.

B—is the block mode transfer parameter. When the B parameter
is specified, data from a continuous reading device such as a
cassette tape unit or a paper tape reader will be read in blocks.

Using The PIP Command To Handle Files 137

Blocks are sectors of a larger file. PIP will read data into a buffer
until it reads the ASC II character (| S) from the device from
which the data is being read. PIP will then clear the buffer and
begin reading in more data. The size of this buffer will depend
upon your particular hardware. The buffer size will be
documented in your system manual. An example of the B
command is given below.

A > PIP /

♦FILE1.TXT = RDR:[B]/
*
A>

D##—is the delete parameter. This command is used when
copying text files. PIP will delete any characters past the column
number given in ##. This command is valuable when sending
data to a printer with a narrow column width or a terminal with a
narrow screen. An example of the use of the B parameter is given
below.

A > pip/

LPT: = FILE1.TXT[D40]/

A >

The above command causes data to be printed up to column 40
on the printer.

E—is the echo or redisplay parameter. This parameter causes all
copying operations to be displayed on the terminal screen as
they are actually being performed. The following is an example
of a command using the E parameter.

138 CP/M Simplified

A > PIP /

»FILE1.TXT = OLDFILE.TXT, NEWFILE.TXT[E] /
*
A >

F—removes any form feeds from a file.

H—is used for a hexadecimal file transfer. PIP will check for
proper Intel hexadecimal format.

I—is used with HEX files. I automatically sets the H-parameter so
proper format is checked for, and also removes any :00 records
during the file transfer.

L—transforms all upper case characters to lower case.

N—adds line numbers to each line being copied to a new file.
Each line number is followed by a colon. Leading zeros are
omitted from the line number (ex. 009, would be 9).

N2—adds line numbers to each line being copied, but leaves the
leading zeros in place and inserts a tab space after each line
number. N2 is much more frequently used than N.

O—is used for object (or non-ASC II file transfers).

P##--inserts a page eject at every linespecified by#. For example,
if## is in actuality 40, a page eject will be placed at every 40th line.
If P is used alone or PI is specified, page ejects will occur at every
60th line.

The P parameter is often used in comination with F. The F
parameter is used to remove form feeds, and then P is used to
insert page ejects. This can be useful when a file must be printed
to a pre-determined page format.

Q (string) I Z—PIP will cease copying from the file when it
encounters the string of characters specified after the Q
parameter. The final character of your string must be ended with
I Z to specify the file end.

Using The PIP Command To Handle Files 139

S (string) I Z—PIP will begin copying from the file when the
string of characters following the S parameter is encountered.
Again, that string must end with | Z.

T##—is used to expand the tab space to the number specified in
place of ##. Tab space in a text file is created by Control-1 (| I).
The T parameter expands this tab space.

U—is used to translate all lower case letters to upper case during
the file transfer.

V—or verify is used to check to see that the data was copied
correctly.

Z”turns the parity bit to zero in ASC II character inputs.

PIP PARAMETER EXAMPLES

The following examples will illustrate some of the possible
usages of the PIP parameters.

A> PIP /

♦PRN: = LETTER.TXT[NP] /

A>

The above PIP command sends the file LETTER.TXT to the PRN:
device with line numbers (N) and with page ejects at every 60
lines (P defaults to the equivalent of P60).

A > PIP >

*LPT: = FILE1.TXT[N2P50U]^

The above PIP command sends FILE1.TXT to the line printer with
line numbers including leading zeros and followed by a tab
space (N2), page ejects at every 50th line, and lower case
characters translated into upper case (U).

140 CP/M Simplified

COPYING PART OF A FILE

PIP can be used to copy only part of text file by using the S and
the Q parameters. The starting and stopping places are specified
by the strings named after the S and the Q parameters.

The string following the S parameter indicates the starting point,
while the string following the Q parameter indicates a stopping
point. PIP automatically searches for each of these strings as it
performs its copy operations. Remember, to end each string
after the S and Q parameter with Control Z (f Z).Thefollowing
example illustrates the use of the S and Q parameters to copy
only a portion of a file.

A > pip/

♦FILE2.TXT = FILE1.TXT[Q stophere |Z]/
*
A>

The PIP command will copy FILE1.TXT from its beginning point
until the string “stophere” is encountered. The new file will be
named FILE2.TXT. If the PIP command were entered as in the
example below, a different set of circumstances would ensue.

A > PIP FILE2.TXT = FILE1.TXT[Q STOPHERE |Z]

In this example, PIP would copy until the string “STOPHERE” was
encountered in FILE1.TXT. Notice that in the first example, PIP
searches for "stophere” while in the second, PIP is seaching for
“STOPHERE”.

Whenever PIP is executed as a one line command (as in the
second example), the string is always translated to the
uppercase. This is not the case where the copy expression is
typed in following the prompt, *.

The following is an example of the use of both the S and the Q
parameters.

Using The PIP Command To Handle Files 141

A > PIP>

♦NEWFILE.TXT = OLDFILE.TXT[X Beginhere |Z Q Stophere fZ]/

A>

The PIP command will begin copying OLDFILE.TXT when it finds
the string “Beginhere”. PIPstopscopying when itfindsthestring
“Stophere”.

NEWFILE.TXT will contain that portion of OLDFILE.TXT
between those two strings.

Note that PIP was executed as a program, rather than as a one-
line command. This means that the upper-lower case string
"Beginhere” and "Stophere” will begin and end PIP when they
are encountered. If PIP had been executed as a one-line
command, the upper case string "BEGINHERE” and
"STOPHERE” would have had to be encountered for PIP to start
or end its copying operations.

USING PIP IN CP/M 2.2 & MP/M

CP/M 2.2 contains some restrictions regarding the useof PIP that
do not apply to CP/M 1.4. Most of these differences deal with
user areas. For example, if you are making use of user areas in
CP/M 2.2, you can not create a file in another user area, nor can
you copy from a file that resides in another user area.

Before we explain the differences between using PIP in CP/M
1.4, we will briefly discuss the topics of user areas and file
attributes. This discussion will help clarify the use of PIP in CP/M
and MP/M.

USER AREAS

Any diskette can be separated into separate user areas. You have
the option to have only one user area, but CP/M allows you to
separate your files into separate user areas and go from one user
area to another by issuing the USER command.

142 CP/M Simplified

CP/M 2.2 has been structured with the option of one user area or
multiple user areas, so that it is compatible with MP/M. If you
plan to eventually upgrade to a multi-user system, your CP/M
diskettes will be compatible with an MP/M system. If you wish to
use CP/M so that your disks are compatible with earlier versions
of CP/M and MP/M, use only user area 0.

FILE ATTRIBUTES

In both CP/M and MP/M, you have the option to place a file
attribute on a file. A file attribute indicates how a file is to be used
by the system. Examples of file attributes are system, ($SYS),
directory ($DIR), read-only (R/O), and read-write (R/W). File
attributes are set with the STAT command.

The read-only file attribute (R/O) indicates that a file cannot be
changed or erased. In other words, the system is not allowed to
write to the file. Before you can write to a file with a R/O file
attribute, that attribute must be changed to read-write (R/W) via
the STAT command.

If a file has the system file attribute ($SYS), it will be displayed by
the DIR command. You also cannot read from a $SYS file. This
also means that the file cannot be copied. By giving a file the R/O
and $SYS file attributes, that file will be write-protected.

PIP in CP/M 2.2 and MP/M contains several parameters which
can be used to override the restrictions of file attributes and also
to copy files from one user area to another. These parameters
are as follows.

G##—stands for get. It allows you to get a file from the user area
specified. This parameter also allows you to write to read-only
(R/O) files.

R—allows you to read files with system ($SYS) file attributes. This
parameter also allows you to write to read-only (R/O) files.

W—allows you to write to read-only (R/O) files.

USING PIP TO COPY FROM USER AREAS

As long as a file exists in the same user area as it is being copied

Using The PIP Command To Handle Files 143

to, it can be transferred between diskettes without using the G
parameter. For example, if F1LE1.TXT exists in user area 3 of Drive
A, you can copy it to user area 3 of Drive B without using the G
parameter. However, you must be in user area 3 to make this
transfer.

If you wish to make a copy of a file that exists in another user area
in your current user area, you must use the G parameter as
shown in the following example.

3A > pip/

*A: = B:FILE1.TXT[G4] /
*/
3A>

As shown by the system prompt, the current disk drive is A and
the current user area is 3. The above PIP command will transfer
F1LE1.TXT residing in user area 4 of Drive B to user area 3 (the
current user area) of Drive A.

If you want to use PIP to copy other user areas, you first will have
to be sure that a copy of PIP.COM resides in the user area which
is to receive the copy. If PIP does not exist in your current area of
at least one of your disk drives, then you can not use the PIP
command. The following sequence of commands illustrates how
to copy PIP into user areas.

2A > USER 0/

OA > DDT PIP.COM/

DDT VERS.xx.xx

NEXT
IC80

PC
xxxxxx

Change from user area 2 to user
area 0.

DDT—debugger—is executed on
PIP.COM.

This is the DDT sign-on message.

IC80 is the hexadecimal address at
the end of PIP.COM. This is used to
calculate the number of pages to
be used with the SAVE command.

PIP.COM
PIP.COM/
PIP.COM
PIP.COM

144 CP/M Simplified

-CO GO terminates DDT, but leaves
PIP.COM in TPA, so that a copy can
be saved with the SAVE command.

OA > USER 5

5A >· SAVE 28 PIP.COM

We are supposing that you wish to
put a copy of PIP.COM in user area
5.
SAVE will create a copy of
PIP.COM in user area 5 of Drive A,
with 28 pages of memory. The 28 is
derived by converting the high
order byte (first two characters) of
the hexadecimal 1C80 into its
decimal value. Hexadecimal 1C is
the equivalent of 28 in base 10.

USING PIP WITH READ-ONLY FILES

When a file has the read-only system attribute, PIP will not
overwrite it. That is, PIP will not delete the original file and create
a new file with the same filename in its place. If you do attempt to
overwrite an R/O file, PIP will respond with a prompt as
illustrated below.

A=> PIP B: OLDFILE.TXT = NEWFILE.TXT/
DESTINATION FILE IS R/O, DELETE (Υ/Ν)?χ/
A=»-

In the above example, we attempted to make a copy of
NEWFILE.TXT and place it on Drive B with the filename
OLDFILE.TXT. However, OLDFILE.TXT already exists on Drive B
with the R/O file attribute.

PIP responds with the message that the destination file,
OLDFILE.TXT, is read-only, and asks if we wish to delete
OLDFILE.TXT. By replying with a Y for yes, the original
OLDFILE.TXT will be deleted and replaced with a copy of
NEWFILE.TXT. This copy will resideon Drive B with the filename,
OLDFILE.TXT. It will not have the R/O file attribute.

If the response to the above prompt was N for no rather than Y
for yes, PIP would have responded with the following message.

NOT DELETED

PIP.COM
PIP.COM
PIP.COM
PIP.COM

Using The PIP Command To Handle Files 145

You can use the W parameter to override the display of this
prompt message. The W parameter tells PIP to ignore the R/O
system attribute. When the W parameter is placed at the end of a
PIP expression in which a number of files are being copied, the
R/O attributes of all of those files will be ignored. This is
illustrated below.

A > PIP NEWFILE.TXT = FILE1.TXT, FILE2.TXT, FILE3.TXT[W] /

A>.

USING PIP WITH SYSTEM FILES

If either the original file or the copy file has the system {$SYS) file
attribute, PIP will not be able to locate these files, as they will not
be listed in the disk directory. The R parameter can be used so
that PIP ignores both the $SYS and the R/O file attributes. This
allows PIP to find the original file or create the copy file.

If the R parameter is placed at the end of a number of different
files, it will ignore the R/O and $SYS file attributes of all of the
files being concatenated. This is illustrated below.

A > PIP NEW.TXT = COPY1.TXT, FILE1.TXT, FILE2.TXT[W] /

CHAPTER 7. THE CP/M
EDITOR (ED)

INTRODUCTION

In this chapter, we will describe in detail the use of a very
important CP/M program, the editor (ED). In this chapter, we
will describe both how to use the editor program as well as how
the editor works, and what facilities it offers to the user. If you are
using a word processing applications program with your
computer, you will find our discussion of the editor very
valuable in helping you understand your word processing
system.

Any editor program, including CP/M’s, allows you to create and
edit text files. A text file is any file that consists of characters; a
book, poem, letter, manual, etc. The editor program allows you
to easily move from line to line and change, delete, or insert
characters without extensive retyping. A good editor program
should also allow you to locate any group of characters you
indicate in the text file, and to substitute for them. Finally, an
editor program should allow you to combine two text files and
interweave separate lines of text from each of them.

You should be aware of the difference between a word
processing applications program and an editor utility program. If
you plan to use your microcomputer for extensive word
processing tasks, you would be wise to consider the purchase of
a word processing applications program.

148 CP/M Simplified

A word processing program includes an editor program for
inputting text, and also includes a program for outputting that
text on the printer. A good word processing program allows you
to output text in a number of different formats; right justified,
left justified, both margins justified, columns of data in tab
positions, boldface type, expanded type, and many more
formats.

Choose your word processor carefully. Some word processors
are more well suited to a particular task than others. Before
choosing a word processing program, define your work tasks.
Then, choose the word processing program that will best
accomplish those tasks.

ED--THE CP/M EDITOR

The editor program, ED.COM, is included on the system
diskette. If you wish to execute the editor program, you can do
so by keying in ED followed by the name of the text file that you
wish to edit. This is illustrated below.

A > ED FILE1.TXT>

You may now use ED to create or modify FILE1.TXT. Remember,
a filename must be supplied with the ED command. Otherwise,
the editor program will not execute.

When you use the ED command with a filename as illustrated
above, ED will first check the disk directory to see if the filename
specified is that of an existing file. If the filename specified in the
ED command cannot be found on the disk directory, ED will
assume that a new file is to be created with the filename
specified.

The file that is specified in your ED command becomes the
source file. Any following ED commands will bring this source
file into the edit buffer as pictured in Illustration 7-1.

The edit buffer is a block of memory within the computer that
has been reserved for ED’s use in processing text files. In CP/M’s
edit program, only a portion of large text files may be loaded into

ED.COM

The CP/M Editor (ED) 149

ILLUSTRATION 7-1. EDIT BUFFER

Display
I

File on Disk

Save to
Disk

Edit
Buffer g

Enter or
Modify
Text

ED Program
Commands

the edit buffer at any one time. More powerful editor programs
can handle larger text files.

After the text file has been moved to the edit buffer, you can
change that text or type in new text to add to it. Before leaving
the ED program, you must recopy the modified text file from the
edit buffer back to the disk. If you end ED or turn off the system
before the modified text file is copied from the buffer back to
the disk, that modified text file will be lost. The original text file
(without changes) will still exist on the disk. The modified text
file in the edit buffer is saved by using the E command.

Once the ED program has been executed, the ED prompt will be
displayed until program is terminated. The ED prompt is as
follows, *.

The E command would be keyed in as follows.

*

We will discuss more of the commands used in ED in the
following sections.

150 CP/M Simplified

CP & LINE NUMBERS

CP stands for the character pointer. The character pointer is used
by the ED program to always point at one particular character.
The CP can be moved around in the edit buffer by ED
commands. The CP is not actually displayed on the video screen.

The commands used in ED generally refer to those characters
following the CP, or both the character pointed to by the CP and
those characters following that character. You move the CP to
the right to move forward in the text file, and to the left to move
backwards in the text file. This may seem confusing at first, but
will be made clear by the examples in this chapter.

In ED, each line in the text file is assigned a line number. The line
number is not actually part of the text file, but is only used for
positioning purposes. In newer CP/M versions, the line numbers
are displayed with the text on the screen. In older CP/M
versions, the V command must be executed to display the line
numbers. You can move to any line by specifying its line number
with an ED command. This will be illustrated later.

Both the CP and line numbers are actually imaginary devices, in
that they exist only in the edit buffer, and are only used to move
between lines and characters in that buffer. The CP and line
numbers will not be output in a print run of the text file.

ED MECHANICS

To show how ED operates, let’s assume that we wish to modify
FILE1.TXT, which is shown in illustration 7-2.

First of all, we will execute ED as follows.

A > ED FILE1.TXT

ED will set up space in the Transient Program Area (TPA) for the
edit buffer. A temporary file, FILET.$$$ will be created. This file
will be used to store the edited file, so that the original file will
not be erased. This initial ED also prepares FILE1.TXT to be
copied into the edit buffer.

The CP/M Editor (ED) 151

ILLUSTRATION 7-2. FILE1.TXT

From FILE1.TXT, this is line 1.
This is line 2.
This is line 3, but it could be
numbered differently. (This is line 4.)
And this is line 5.
Line 6.
Line 7.
Line 8.
Line 9.
Line 10.
Line 11.
Line 12.
Line 13.
Line 14.
Line 15.
Line 16.
Line 17.
Line 18.
Line 19.
Line 20.
Line 21.
Line 22.
Line 23.
Line 24.
Line 25.
Line 26.
Line 27.

152 CP/M Simplied

However, FILE1.TXT is not actually copied into the edit buffer
until the A (append) command is given. An example of the use of
the append command is given below.

*2a/

The ED command 2A specifies that the first two lines of the text
file are to be moved into the edit buffer. This is shown in
Illustration 7-3.

ILLUSTRATION 7-3. EDIT BUFFER AFTER 2A COMMAND

1: From FILE1.TXT, this is line 1.
2: This is line 2.

If you wish to expand the edit buffer to include the first five lines
of FILE1.TXT, you could do so with a second A command, as
shown below.

*3a/

The edit buffer would now contain the first five lines of Fl LEI .TXT
as shown in Illustration 7-4.

ILLUSTRATION 7-4. EDIT BUFFER AFTER 2A & 3A COMMANDS

1: From FILE1.TXT, this is line 1.
2: This is line 2.
3: This is line 3, but it could be
4: numbered differently. (This is line 4.)
5: And this is line 5.

The CP/M Editor (ED) 153

These lines now residing in the edit buffer can now be modified
or added to. Illustration 7-5 shows how to add 3 new lines to the
edit buffer by using the I command.

ILLUSTRATION 7-5. USING THE I COMMAND TO ADD NEW
LINES TO THE EDIT BUFFER

1: From FILE1.TXT, this is line 1.
2: This is line 2.
3: This is line 3, but it could be
4; numbered differently. (This is line 4.)
5: And this is line 5.

6: Line 5A was just added from the keyboard.
7: Line 5B was also just added.
8; So was line 5C.^

♦

The W (Write) command is used to send text from the edit
buffer into the temporary output file. As you will recall, the
temporary output file is opened so as to store the edited file
without writing over the original file. In our example, the
temporary output file is FILE1.$$$.

Illustration 7-6 shows the effect of the W command on the edit
buffer and the temporary output file.

154 CP/M Simplified

ILLUSTRATION 7-6. EFFECT OF W COMMAND ON EDIT
BUFFER & TEMPORARY OUTPUT FILE

ORIGINAL EDIT BUFFER

1: From F1LE1.TXT, this is line 1.
2: This is line 2.
3; This is line 3, but it could be
4: numbered differently. (This is line 4.)
5: And this is Line 5.
6; Line 5A was just added from the keyboard.
7: Line 5B was also just added.
8: So was Line 5C.

*2W>

NEW EDIT BUFFER

3: This is line 3, but it could be
4: numbered differently. (This is line 4.)
5: And this is line 5.
6: Line 5A was just added from the keyboard.
7: Line 5B was also just added.
8: So was line 5C.

TEMPORARY OUTPUT FILE-FILE1.$$$

From FILE1.TXT, this is line 1.
This is line 2.

The CP/M Editor (ED) 155

Now that we have written two lines to thetemporary outputfile,
FILE1 .$$$, with the W command, the remaining lines move upto
the beginning of the edit buffer. This frees up space in the edit
buffer.

If we use the A command to add 15 more lines to the edit buffer
from F1LE1.TXT on the disk, the results will be as shown in
Illustration 7-7.

ILLUSTRATION 7-7. APPENDING 15 MORE LINES TO THE EDIT

FILE.TXT on Disk

From FILE1.TXT, this is line 1.
This is line 2.
This is line 3, but it could be
numbered differently. (This is line 4.)
And this is line 5.
Line 6.
Line 7.
Line 8.
Line 9.
Line 10.
Line 11.
Line 12.
Line 13.
Line 14.
Line 15.
Line 16.
Line 17.
Line 18.
Line 19.
Line 20.
Line 21.
Line 22.
Line 23.
Line 24.
Line 25.
Line 26.
Line 27.

156 CP/M Simplified

ILLUSTRATION 7-7 (CONT.). APPENDING 15 MORE LINES TO
THE EDIT BUFFER.

Edit Buffer in TPA (memory)

3: This is line 3, but it could be
4; numbered differently. (This is line 4.)
5: And this is line 5.
6: Line 5A was just added from the keyboard.
7: Line 5B was also just added.
8: So was line 5C.
9; Line 6.

10: Line 7.
11 : Line 8.
12; Line 9.
13: Line 10.
14: Line 11.
15: Line 12.
16: Line 13.
17: Line 14.
18: Line 15.
19: Line 16.
20: Line 17.
21: Line 18.
22: Line 19.
23: Line 20.

The CP/M Editor (ED) 157

The E command can be used to end this editing session by
copying the text in the edit buffer to the temporary output file,
FILE1.$$$. The E command will also copy the remainder of the
source file, FILE1.TXT, to the temporary output file, FILE1.$$$.
By the remainder of FILE1.TXT, we mean those lines that were
not appended to the edit buffer via the A command.

After the edit buffer and remainder of the source file have been
copied to FILE1.$$$, ED renames the original FILE1.TXT to
FILE1.BAK.

ED then renames the temporary output file. Fl LET .$$$ to FILE.TXT.
This is shown in Illustration 7-8.

ED is in effect creating a back-up copy of the original F1LE1.TXT
file called Fl LEI. BAK. This is the original text file before modifica
tions in the editing session were made. ED then renames the
edited file from FILET .$$$ to FILET .TXT.

When the ED command is executed for a text file, any BAK files
associated with that file will be automatically deleted.

ED WITH SOURCE FILES

When you specify a filename with an ED command, ED first
searches for that file. If the file is not found, ED assumes that it
does not exist, and creates a new file with the filename given in
the command. This file is called the source file. For this
example, assume the source filename to be SOURCE.TXT.

Even though the source file is in fact empty, the A command is
used to append lines from the source file to the edit buffer. The
lines appended are each given a line number in the edit buffer.

You may then use the W command to write lines from the edit
buffer to the temporary output file (SOURCE.$$$). When you
write lines to the temporary output file, you will be freeing
space in the edit buffer. This, of course, allows you to append
more lines from the source file into the edit buffer.

158 CP/M Simplified

When you have finished editing, use the E command to rename
the original source file (SOURCE.TXT) with the BAK filename
extension (SOURCE.BAK). The temporary output file (SOURCE.
$$$) is then given the name of your original text file (SOURCE.
TXT). The newly modified file is now stored on disk as
SOURCE.TXT.

ACCIDENTALLY ERASING THE EDIT BUFFER

There are several ways that ED may be accidentally ended; a
power loss, mistakenly hitting Control-C,or a system error. The E
and Q commands can be used to end ED on purpose.

When ED is accidentally terminated, the data in the edit buffer
will be lost. The temporary output file will be kept on the disk
with its original name (ex. SOURCE.$$$), as will the original
source file (SOURCE.TXT).

The temporary output file will contain only those lines written
to it from the edit buffer. All data remaining in the edit buffer
will have been lost.

CREATING A NEW TEXT FILE WITH ED

The first step in creating a new text file is to keyin the ED
command with the desired filename. This is illustrated below.

A*ED SOURCE TXT /

Since we are in Drive A above, SOURCE.TXT will reside on that
drive. We are in Drive A because the ED program itself
(ED.COM) is in that drive. You can execute ED from Drive A and
put SOURCE.TXT on Drive B by using the command illustrated
below.

A^ED B:SOURCE,TXT

You can also execute ED from another drive by prefixing that
drive's letter before the ED command as shown in the following.

B»A:ED SOURCE.TXT

ED.COM

The CP/M Editor (ED) 159

ILLUSTRATION 7-8. USING THE E COMMAND TO END AN
EDITING SESSION

FILE1.TXT on Disk

From FILE1.TXT, this is line 1.
This is line 2.
This is line 3, but it could be
numbered differently. (This is line 4.)
And this is line 5.
Line 6.
Line 7.
Line 8.
Line 9.
Line 10.
Line 11.
Line 12.
Line 13.
Line 14.
Line 15.
Line 16.
Line 17.
Line 18.
Line 19.
Line 20.
Line 21.
Line 22.
Line 23.
Line 24.
Line 25.
Line 26.
Line 27.

Last 7 lines
to FILE1.$$$

The last 7 lines from FILE1.TXT are output to the temporary
output file when the E command is issued. FILE1.TXT is then
renamed to FILEl.BAK.

Ί60 CP/M Simplified

ILLUSTRATION 7-8 (CONT). USING THE E COMMAND TO END
AN EDITING SESSION

Edit Buffer in TPA Before E

3: This is line 3, but it could be
4: numbered differently. (This is line 4.)
5: And this is line 5.
6: Line 5A was just added from the keyboard.
7: Line 5B was also just added.
8: So was Line 5C.
9; Line 6.

10: Line 7.
11; Line 8.
12: Line 9.
13: Line 10.
14: Line 11.
15: Line 12.
16: Line 13.
17: Line 14.
18: Line 15.
19: Line 16.
20: Line 17.
21; Line 18.
22: Line 19.
23: Line 20.

Entire Edit Buffer Output to FILET,$$$

The CP/M Editor (ED) 161

ILLUSTRATION 7-8 (CONT). USING THE E COMMAND TO END
AN EDITING SESSION

After the following is issued;

FILE1.$$$ (Temporary Output File)
is Renamed to FILE1.TXT.
FILE1.$$$ as shown below.

From FILE1.TXT, this is line 1. ~~
This is line 2.
This is line 3, but it could be
numbered differently. (This is line 4.)
And this is line 5.
Line 5A was just added from the keyboard.
Line 5B was also just added.
So was line 5C.
Line 6.
Line 7.
Line 8.
Line 9.
Line 10.
Line 11.
Line 12.
Line 13.
Line 14.
Line 15.
Line 16.
Line 17.
Line 18.
Line 19.
Line 20.
Line 21.
Line 22.
Line 23.
Line 24.
Line 25.
Line 26.
Line 27.

Edit
Buffer

Unappended
Source File
Lines

162 CP/M Simplified

Here, ED will be executed from A, and SOURCE.TXT will be
stored in A.

when a source file name is used with ED for a file that does not
exist on the diskette, the following message will be displayed.

NEWFILE
*

A new file with the filename entered will be created. The ED
prompt (*) indicates that the user can enter ED commands.

When the new source file has been created, the CP (character
pointer) will be positioned at the beginning of the edit buffer.
You can insert text at the beginning of the edit buffer by initially
giving the I command, as shown below.

*

When the I command is given, the cursor will be moved to the
next blank line on the video screen.

You may now insert text merely by typing—as you would on a
regular typewriter. Each line must be ended by pressing the
Return key. When Return is pressed, the line will be transmitted
into the edit buffer. This line is then known as a “line in the
buffer”.

Sometimes, you may wish a line in the buffer to contain more
characters than the number allowed by the length of one line in
your video display (generally 80 characters). In these cases, when
you come to the end of a line on your video screen, press
Control E. This will move the cursor to the next line without
transmitting the previous line to the edit buffer.

When you do press the Return key, the entire line (spread over
two display lines) will be transmitted to the edit buffer as one
“line in the buffer”. One rule to keep in mind when using
Control E is that the maximum length of a line is 128 characters.

Let’s suppose that we wished to insert the first line of Hamlet’s
soliloquy using the I command. Our example from the initial ED
command will appear as follows.

The CP/M Editor (ED) 163

A > ED SOURCE.TXT >

NEW FILE

“To be or not to be, that is the question.”^
Reference: Hamlet by Wm. Shakespeare
Tz
*

Control Z is used to end the use of the I command as illustrated
above.

while inserting text with the I command, you can use several
Control key combinations to manipulate the text being inserted.
These are described below.

Control U—delete the line.
Control E—return the “carriage” without transmitting the line.
Control R—retype the last line.
Control H—backspace & delete a character (new ED version
only).
Control X—backspaces to the beginning of the line (new ED
version only).

Another command often used in conjunction with the I
command is the U command. If you specify the U command
before the I command, any text inserted will be automatically
converted to upper case. The text being typed will appear to be
in upper and lower case, but in actuality, it is all being converted
to upper case. To terminate the U command, use the negative U
command.

Once text has been placed in the buffer, it may then be
displayed. However, before that display can take place, the CP
(character pointer) must be moved back to the beginning of the
buffer. When the I command was given and text inserted, the CP

164 CP/M Simplified

was moved. Using dur example, the CP would be positioned as
illustrated below.

1: “To be or not to be, that is the question.”
2: Reference: Hamlet by Wm. Shakespeare.

In the above example, the CP is positioned at the end of the
buffer.

In this book, we are going to explain the position of the CP in a
manner differing slightly from the way CP is described in the
Digital Research reference manual. We find Digital Research's
explanation to be somewhat confusing.

Digital Research defines the CP as being positioned between 2
characters as illustrated below.

XY

CP

We prefer to visualize the CP as an imaginary pointer as
illustrated below.

XY

CP

In the next few sections, we will discuss methods for moving the
CP.

The CP/M Editor (ED) 165

USING T TO DISPLAY TEXT IN THE EDIT BUFFER

The T command is used to display text in the edit buffer. The
configuration of the T command is as follows.

*+nT

The n can be any number, zero, or the # sign. For example, if the
following command were keyed in:

*5T>

the next 5 lines from the CP (character pointer) will be displayed
on the screen.

If a negative number is specified intheT command,that number
of lines preceding the CP (but not including the CP) will be
displayed on the screen.

For example, the following command:

*-5T

will display the 5 lines preceding the CP.

If a zero is specified, the current line in the edit buffer (the line
with the CP in it) will be displayed on the screen from its
beginning up to (but not including) the CP.

If no n is specified, a value of 1 is assigned to n by default. If a
value of 1 is given n (either by assignment or by default), the
current line is displayed from the CP to its end.

If a # sign is specified with T, the entire edit buffer following the
CP will be displayed.

You can use the B command in conjunction with the#T to display
the entire edit buffer. First, issue the B command as illustrated
below.

166 CP/M Simplified

This will move the CP to the beginning of the edit buffer.

Next, issue the #T command as illustrated below.

This command displays the entire edit buffer following the CP.
Since the CP had previously been moved to the beginning of the
edit buffer with the B command, the entire edit buffer will be
displayed.

When the # sign is used with a negative sign as shown below, all
lines preceding (but not including) the CP will be displayed on
the screen.

MOVING THE CP

We previously showed how the B command could be used to
move the CP to the beginning of the edit buffer. Generally, the B
command is used in conjunction with the T command to display
the entire buffer.

The CP can be moved within the current line by using the C
command. The configuration of the C command is given below.

+ nC

If the sign is positive, the CP will be moved forward by the
number of characters given by n. If the sign is negative, the CP
will be moved n characters backwards.

Let’s evaluate the following example to make this discussion
more concrete.

DETERMINING THE CP POSITION FROM THE VIDEO DISPLAY

The display of lines from the edit buffer on the screen will
provide you with the position of the CP. Assume that the
following T command was issued.

The CP/M Editor (ED) 167

3: *-2T /

1: Now is the time for all good
2: men to come to the aid
3:*

Notice that the ED prompt appears in line 3 and this line contains
a line number. This tells the user that text is contained in line 3
and that the CP is positioned at the beginning of line 3.

In some cases, the prompt will be positioned at a line without a
line number. This is illustrated below.

: *-2T>
1: This is another example of the edit buffer.
2: This is line 2.

. *

In this example, the colon (:) tells the user that the CP is
positioned at the beginning of line 3, but that line 3 does not as
yet have text.

168 CP/M Simplified

EDIT BUFFER

1: Now is the time for all

2: goof men, to come to
CP After First
C Command

Initial CP
3: the aid of their country.

CP After Second C Command

We will assume that the CP is positioned within the edit buffer
as illustrated above-pointing to the first character at the
beginning of the edit buffer. Suppose the following command
were issued.

*5C/

The C would move five characters forward as shown above.

If the following C command were issued next;

*-3C >

the CP would move backwards 3 characters as shown above.

In CP/M versions 1.4 or later, the T command can also be used
to both move the CP and display a specified line number.

2: *3:T
3: The aid of their country.
3; *

The CP/M Editor (ED) 169

In the previous command, the initial part of the first
command,3:, moved the CP to the beginning of line 3, which
was then displayed by the second part of the initial command,
T.

This command can also be used without T to move the CP to a
line. This is illustrated in the following example.

1:
2: *

In the previous example, the initial command, 2:, moved the
CP to line 2.

ENDING THE ED SESSION

Before ending the ED session, you must save the contents of the
edit buffer. The E command allows you to save the contents of
the edit buffer and exit the ED program simultaneously.

If you are in the edit buffer and you issue the E command, the
edit buffer along with the remainder of the source file will be
transferred into the temporary output file. The temporary
output file is then renamed to the name of the original source
file.

rhe original source file will be renamed with its original filename
and the extension .BAK. The use of the E command is shown in
Illustration 7-9.

The Q command can also be used to end an editing session.
When a Q command is issued, the editing session will be ended
without any alterations to the source file. The original source file
will remain unchanged on the diskette. The temporary output
file will be erased. No backup file will be created. The CP/M
prompt will be displayed after the Q command has been issued.

170 CP/M Simplified

Before the Q command is actually effected, the user will bi
prompted as follows:

Q-(Y/N)?

This prompt is displayed to prevent the user from accidental!)
ending the edit session in error.

ILLUSTRATION 7-9. EFFECT OF THE E COMMAND ON THE
EDITING SESSION

A
(Append)

W
(Write)

Source file
(FILE.TXT) Edit Buffer K

 Temporary ,
Output /

File I
(FILE.$$$) \

(Insert)
T

(Type)
I

Backup File
(FILE.BAK)

New Source
File

(FILE.TXT)

L]g
Console

The CP/M Editor (ED) 171

AN IMAGINARY EDITING SESSION

In the remainder of this chapter, we will illustrate the use of the
ED commands with a practical example.

USING THE A COMMAND TO APPEND LINES TO THE BUFFER

When you are using ED to edit an existing text file, you should
first execute the A command to bring text lines into the edit
buffer. The format for the A command is as follows.

nA

The n specifies the number of lines to be appended from the
source file. If no value is given for n, A will append one line. In
other words, the default value for n is 1. If a # sign is used for n,
the entire source file will be brought into the edit buffer (up to a
maximum of 65535 lines).

If 0 is used for n as shown below;

0Α·>

the A command will append lines so as to fill half of the buffer.
This is especially useful when working with large files.

The OA command is often used in conjunction with OW to
append and write out half of the edit buffer. This will be
discussed in detail later in this chapter.

If you had used the A command to append only part of the
source file, you can use the A command again to append more
lines from the source file. The second A command will begin
appending where the first A command left off.

The following example illustrates the use of the A command
using HAMLET.TXT as the source file.

172 CP/M Simplified

A > ED HAMLET.TXT
1

*y
:*A 3

4

2

1:
1:
1: There are more things
2: In heaven and earth Horatio,
3; Than are dreamt of in your
4: philosopy
1: *

Notes:

1 Necessary only in Version 1,4; not needed in Version 2.2

2- Appends one line to edit buffer from source file.

S Appends next three lines -which is the remainder of the
source file.

4 Goes to the beginning of the edit buffer and displays al
lines.

Note that the #A command could have been used in place of the
A and the 3A commands to bring the entire HAMLET.TXT into
the edit buffer.

MOVING INSIDE THE EDIT BUFFER

Once you have appended text to the edit buffer, you can move
around within the edit buffer, change any text within the edit
buffer, and insert new text anywhere within the edit buffer. You
can also append other lines of text from a special source file
known as the library source file. We will discuss this concept
later in this chapter.

The CP/M Editor (ED) 173

Let's assume that we are still working with the lines of
HAMLET.TXT in the edit buffer, and we wish to insert 2 more
lines of text. First, the -B command must be issued to move to
the end of the last line in the edit buffer. This is shown below.

The end of the last line in the edit buffer actually is a Carriage
Return (CR). In ASC 11, the Carriage Return is a combination of
the Return (the character which returns the carriage) and the
line feed (the character which generates a new line).

The end of the edit buffer then is actually the beginning of the
next new line. However, this new line does not have a line
number until characters have been inserted into it via the I
command.

Therefore, when you move to the end of the edit buffer with the
-B command, only a colon(:) followed by the prompt will appear
on the video display.

The example below shows how to insert text using the I
command.

5; But come!
6: Here, as before, never, so help you mercy.

*

174 CP/M Simplified

The jz is used to end the insert mode when the operator has
finished inserting text.

The B and T commands again can be used together to move to
the beginning of the edit buffer, and then display it. This is
shown in the example below.

: *Β£Γ /
1: There are more things
2: In heaven and earth Horatio
3: Than are dreamt of in your
4: philosophy.
5: But come!
6: Here, as before, never, so help you mercy,
1: *

You may also use line numbers to move to another line within
the edit buffer. In CP/M 2.2 and later versions, line numbers are
displayed automatically. In CP/M version 1.4, the V command is
used to turn on the line number display, and -V turns off the line
number display. Versions of CP/M earlier that 1.4 do not display
line numbers.
In CP/M versions 1.4, 2.2, and later, you can move to a different
line by typing the line number followed by a colon, as an ED
command. This is shown in the following example.

1:
2: *

The CP/M Editor (ED) 175

A range of lines can also be specified. In such cases, the first
line is typed in followed by two colons, and then the second
line.

The following example illustrates the use of the T command
with a range of line numbers to display those lines.

2: *3::6T /
3: Than are dreamt of in your
4: philosophy.
5: But come!
6: Here, as before, never, so help you mercy,
3: *

Notice that the CP is moved to the beginning of the first line
specified in the range (line 3) in the previous example. When a
single line is specified, the CP is moved to the beginning of that
line. When a range of lines is specified, the CP is moved to the
beginning of that line in the range. The lines within the range
specified are displayed by the T command. The CP will remain at
the beginning of the first line in the range.

You can also select a range of lines from the current line to an
ending line by specifying the ending line preceded by a colon.
This is shown in the following example.

':6T /3
3
4
5
6
3

Than are dreamt of in your
philosophy.
But come!
Here, as before, never, so help you mercy.

176 CP/M Simplified

The L command can also be used to move inside the edit buffer.
The format for the L command is as follows.

+ nL

If the sign is +, the L command will move the CP forward. If the
sign is negative (-), the L command will move the CP backwards.
The n indicates the number of lines that the CP will be moved
forwards or backwards. The L command moves the CP to the
beginning of the line selected. The use of the L command is
illustrated below.

1: *2L/
3: *-1L
2: *

If the command OL is specified, the CP will be moved to the
beginning of the current line.

CHANGING TEXT WITH ED

Text is changed in ED by moving the CP within the edit buffer,
deleting the old text, and inserting the desired new text.

The K command is used to delete text. The format of the K
command is shown below.

+ nK

The K (kill) command will delete the current line if n is not
specified. If n is specified, K will delete +n lines forward from
(and including) the current line, or -n lines backwards from (and
not including) the current line.

The CP/M Editor (ED) 177

You can use the # sign with K to clear the edit buffer. The
command;

+ #K

will clear out the current line and the next 65535 lines following
it. The command;

-#K

will delete 65535 lines preceding, but not including the current
line.

Remember, once lines have been deleted with the K command,
they are gone forever. Unless these lines were previously saved
in the source or back-up file, they will be unavailable. The
example below illustrates the use of the K command with the
lines of HAMLET.TXT in the edit buffer.

2: *1::6T /
1: There are more things
2: In heaven and earth Horatio,
3: Than are dreamt of in your
4; philosophy.
5: But come!
6: Here, as before, never, so help you mercy.

5: *2K/
: *1::4T /

1: There are more things
2: In heaven and earth Horatio,
3: Than are dreamt of in your
4: philosophy
1; *

178 CP/M Simplified

In the preceding example, the T command causes lines 1 to 6 in
the edit buffer to be displayed. The CP is then moved to line 5
where the 2K command is issued to delete the current line and
the line following it.

The T command is then used to redisplay lines 1 to 4 in the edit
buffer. These are now the only remaining lines in the edit buffer
(assuming HAMLET.TXT in the edit buffer contained just the
original 6 lines).

You can also delete individual characters in the edit buffer as
opposed to entire lines, by using the D command. The format
for the D command is given below.

+ n D

If no n is specified, the D command will erase the current
character (the character being pointed to by the CP). If +n is
specified with D, the D command will erase +n characters
following and including the CP. If -n is specified with the D
command, the D command will erase -n characters preceding
but not including the CP.

The D command is often used in conjunction with the I
command to delete and then insert characters into the edit
buffer. The I command takes one of two forms.

I (insertion) |z
or

When I is used with the carriage return (^), a new line is
automatically begun when the carriage return is inserted.

When I is used with |Z, no new line is started. When deleting
and inserting individual characters or groups of characters, I
with I Z is generally used to avoid the insertion of carriage
returns.

The following example illustrates the use of the D and I
commands on the lines of HAMLET.TXT (remember, lines 5 and 6
were erased with K) in the edit buffer.

The CP/M Editor (ED) 179

1: *B#T /
1: There are more things
2: In heaven and earth Horatio,
3: Than are dreamt of in your
4: philosophy.
1: *T é
1: There are more things
1:*1^/
1: *601 ideas |z OLT /
1: There are more ideas
1; ♦

1: *15C /

In the previous example, we used the B#T command to display
the lines in the edit buffer. We then used the T command to
display the current line in the edit buffer. The command 15C
was then issued to move the CP 15 characters to the right.

In the following line, the 6D command deletes the character
pointed to by the CP as well as the following 5 characters. The D
command moves the CP as it deletes characters.

We then use the 1 command to insert the new text, "ideas".The
I command is terminated with Control Z. Note that the I
command inserts characters before the CP. The I command also
moves the CP as it inserts characters.

The OL command was used to move the CP to the beginning of
the current line and the T command was used to display that
line.

SUBSTITUTING TEXT IN THE EDIT BUFFER

The F (or Find) command provides the CP/M user with an easy
method for moving the CP. The format of the F command is
given below.

F(text) Z

180 CP/M Simplified

The text consists of those characters to be located by F. The F
command will move the CP to the character that directly
follows the last character found. The example below illustrates
the use of the F command with the lines from HAMLET.TXT in
the edit buffer.

1; F more /
1: *

The F command will move the CP to the position immediately
after the last character found. The CP position after the preceding
F command entry is shown below.

There are moreiideasCl 11

CP

The F command is generally used in conjunction with the D and I
commands to find and insert, find and delete, or find, delete,
and insert characters. This is illustrated in the example below.

1: *Fideas | Z-5Dlthings | ZOLT j/

1: There are more things
1: *

The F command moves the CP to the end of ‘ideas’ in line 1.
Notice that the F command is terminated with | Z rather than
carriage return, so that more commands may be issued.

a

The D command '-5D’ is then issued to delete ‘ideas’ and move
the cursor in position for the I command.

The CP/M Editor (ED) 181

rhe I command is used to insert 'things'. The OL command is
then issued to move the CP to the beginning of the current line.
The T command then displays the newly revised line.

The F command is ended with the carriage return () if no
other command is to be included on that line. If as in the
example above, the F command if followed by additional
commands, it is ended with | Z.

The F command can also be used in the format given below;

nF (text...) I Z

where n is a positive number which tells you to find the n th
occurence of the character specified by (text...).

For example, in the following command,

3FHoratio^

the CP will move when it finds the third occurence of 'Horatio'
in the edit buffer.

The S command can also be used to find and substitute groups
of characters. In fact, S (substitute) is much more widely used
than the F and 1 command combination just discussed. In
effect, the S command combines the actions of the F, D, and I
commands into one.

The format for S is as follows;

nS (old text) lz(new text)

The S command will search the edit buffer for the characters
specified by 'old text' and will substitute this group of characters
with the characters named in 'new text'.

You have the option of ending the new text string with either | Z
or the carriage return (). The ♦ Z is issued if another
command is to be added to the S command. The carriage return
ends the command.

182 CP/M Simplified

The n indicates the number of times that 'newtext' is to be
substituted for Oldtext'. This substitution will be executed until
the n th substitution has been made-or until the end of the edit
buffer has been reached.

The default value for n is one. In other words, if no n is specified,
the substitution will be made one time. If a value is used for n, the
substitution will be made throughout the edit buffer. The
substitution will be madethroughouttheeditbufferthenumber
of times indicated.

The use of the S command is illustrated below.

1: *£Γ>
1: There are more things
2: In heaven and earth Horatio,
3: Than are dreamt of in your
4: philosophy.
1: _
1: There are more things
2: In heaven and earth Ophelia,
3: Than are dreamt of in your
4: philosophy
1: *

S Horatio 4 Z Ophelia I Z B4T^

The above example will substitute, Ophelia for Horatio, when
Horatio is encountered in the edit buffer. The B command
moves the CP back to the beginning of the edit buffer, and the T
command displays the first 4 lines of the buffer.

WRITING INDIVIDUAL LINES TO THE EDIT BUFFER

Generally, an edit session is ended with the E or H command.
Both the E and the H write the entire edit buffer to the
temporary output file, copy the remaining lines in the source

The CP/M Editor (ED) 183

file to the output file, and rename the temporary output and
source files. The E command terminates ED while the H
command keeps ED active.

You can use the W command to write lines from the edit buffer
to the output file without copying the entire edit buffer or the
remaining source file to the output file.

The W command takes the following format.

nW

The n signifies the number of lines following and including the
current line to be written to the output file. If a value is not
specified for n, only the current line will be written to the
output file.

The following example illustrates the use of the W command.

1; *B#t/
1; There are more things
2: In heaven and earth Horatio,
3: Than are dreamt of in your
4: philosophy.
1: *2W>
3: #Τ>
3: Than are dreamt of in your
4: philosophy.
3; *#Wl/

. ♦

In the example above, the initial command, B#T, moves the CP
to the beginning of the edit buffer and then displays the entire
edit buffer.

The command, 2W, then writes the first two lines of the edit
buffer to the temporary output file. After the 2W command is

184 CP/M Simplified

issued, the remaining lines in the edit buffer are then displayed
by the #T command.

The #W command outputs all remaining lines in the edit buffer
to the temporary output file. Now that the edit buffer is empty,
no line number is displayed as illustrated by the final line in our
example, : *

Even though the entire edit buffer has been written to the
temporary output file, the rest of the source file must also be
written to the temporary output file. Also, the temporary output
file (in our case HAMLET.$$$) must be renamed (HAMLET.TXT),
and the source file (HAMLET.TXT) must also be renamed
(HAMLET.BAK). You can use the E and the H commands to
perform these tasks.

As you may remember, earlier we discussed the usage of the OA
command to append lines to the edit buffer from the source file
so as to fill it halfway. The OW command can also be issued to
write half the lines in the edit buffer.

THE N COMMAND

The N command operates much like the F command, except
that the N command does not stop at the end of the edit buffer.
The N command will continue to append lines from the source
file into the edit buffer until the specified group of characters
has been found.

The format for the N command is as follows.

nN (text) Z

The N command will start searching at the CP in the edit buffer
for the n th occurence of ‘text'. If N does not find the n th
occurence of ‘text’ in the edit buffer, it will automatically append
lines from the source file into the edit buffer until the n th
occurence of ‘text’ is found (or until the source file is depleted).

The CP/M Editor (ED) 185

If more commands are to follow, the N command should be
ended with IZ. Otherwise, N should be ended with a carriage
return.

Just as with the F command, the N command places the CP
immediately after the last character of the n th occurence of the
string specified by 'text'.

THE R COMMAND AND THE LIBRARY SOURCE FILE

A library source file is a file with the extension .LIB. For
example, HAMLET2.LIB, would be considered a library source
file.

A library source file can be used as a secondary source file—a
file from which text can be inserted into the edit buffer. An
obvious application of using a library source file is when you
wish to merge two separate files into one final, combined file.

By specifying one file as the source file and the second file with
the extension, LIB, you can merge the two files into the edit
buffer to form a single file.

The R command will insert lines from the LIB file specified in
that command. The format of the R command is as follows.

R filename

The filename in the above format is the name of the file with a
LIB extension to be inserted into the edit buffer. When the R
command is issued, that file will be inserted into the edit buffer
beginning at the current CP until the end-of-file mark (I Z) is
reached in the LIB file.

THE X COMMAND AND THE HOLDING FILE

The X command is available in CP/M version 1.4 and later
versions as well. The X command is used to transfer lines from
the edit buffer to the holding file. The holding file is named,
X$$$$$$$.LIB. This file only exists when ED is operational.

If ED is terminated, the holding file will be deleted with one
exception. If ED is terminated with a warm boot { |C), the

186 CP/M Simplified

holding file will not be erased. However, once ED is again
activated, the holding file will be deleted.

You may have noticed that the holding file is a LIB type file.
Therefore, you can use the R command to transfer lines back
into the edit buffer from the holding file.

The format of the X command is illustrated below.

nX

The X command copies the next n lines following the current
line from the edit buffer to the temporary file, X$$$$$$$.LIB.
The K command can be used to delete lines from the edit buffer
after copying them.

The X command may be issued several times to accumulate
lines in the X$$$$$$$.LIB file. The lines will be accumulated in
the order in which they are transferred.

As mentioned previously, the R command can be used to
retrieve lines from the X$$$$$$$.LIB file. In such cases, the R
command is used alone without a filename as illustrated below.

: *r/

When the R command is issued as illustrated above, all of the
lines transferred previously into X$$$$$$$.LIB will be copied into
the edit buffer following the CP. Note that the R command
simply copies the lines from X$$$$$$$.LIB; it does notemptythat
file. In other words, you can use the R command to copy the
X$$$$$$$.LIB file over and over. This is very useful where certain
lines must be repeated over and over.

If you do wish to delete the contents of X$$$$$$$.LIB, you can
do so by issuing the command OX. This is a form of the X
command where the prefix n has been set to zero.

In certain cases, you may wish to save the temporary file,
X$$$$$$$.LIB, after ED has ended. In these cases, use |C to
end the ED session. Then, rename the X$$$$$$$.L1B file so that
it will not be erased the next time ED is executed.

The CP/M Editor (ED) 187

THE J COMMAND

The J (juxtapose) command is used to rearrange groups of
characters in the edit buffer. The format of the J command is as
follows.

nJ stringl I Zstring 2 ♦ Z string 3 j I Z

The J command will begin searching after the CP in the edit
buffer for string 1. If string 1 is located, the J command will
insert string 2 immediately behind string 1, and then move the
CP to the end of string 2.

The J command will then search for string 3. If string 3 is located
the J command will delete all characters between string 2 and
string 3. The CP will be left pointing to the first character of
string 3. If string 3 is not located, the J command will not delete
any characters.

The J command will follow this pattern for the number of times
specified in n--or until it has run through the entire edit buffer.

The use of the J command is illustrated in the example below.

1: *B#T^
1: There are more things
2: In heaven and earth Horatio,
3: Than are dreamt of in your
4: philosophy
1: *1J earth | Z, |Z Than |Z B#T /
2: There are more things
3: In heaven and earth, Than are dreamt of in your
4: philosophy.
2: *

188 CP/M Simplified

In the preceding example, the J command finds ‘earth’, and then
inserts string 2 (,) immediately following string 1. When string 3 is
located (than in line 3), all characters between string 2and string
3 are deleted (Horatio).

THE Μ COMMAND

The Μ (macro) command can be used to repeat a set of ED
commands over and over. Μ takes the following format.

nM command string

Μ will execute each of the ED commands in 'command string'
for the number of times indicated by n, as long as n is greater
than 1. If n is equal to zero or one, the string of commands will
be executed over and over until the end of the edit buffer has
been reached, or until an error condition occurs.

ED ERROR CONDITIONS

Table 7-1 lists the various ED error indicators. When an error
condition occurs in ED, the last character read by ED before the
error occurence will be displayed along with one of the error
indicators listed in Table 7-1.

The newer versions of CP/M display a complete error message
rather than just an error symbol. This error message takes the
following form;

BREAK error symbol AT ed command

where 'error symbol' is the ED error symbol and 'ed command'
was the ED command being executed when the error occurred.

The CP/M Editor (ED) 189

TABLE 7-1. ED ERROR INDICATORS

Indication Meaning

? ED does not recognize this command.

The edit buffer is full. The D, K, S, W,
E, or H commands must be used to
delete characters. Another source of
this error may be a string that is too
long. This error may have been the
result of the use of the F, N, or S
command.

#

The indicated command cannot be
executed the number of times spec
ified. An example would be when the
edit buffer’s end is reached before
the command can be executed the
specified number of times.

0

This occurs when the LIB file cannot
be opened by the R command.
Usually, this is caused by an incorrect
LIB file name or no existing LIB files.

CHAPTER 8. INTERNAL
OPERATION OF CP/M

INTRODUCTION

In this chapter, we will present an overview of CP/M’s internal
operation. We will discuss the various components of CP/M,
what each component does, and the way in which each of these
components interact. The way that the various CP/M modules
are spread over memory will also be discussed. The organization
of the file system will be given in detail.

Each of CP/M’s three modules will then be discussed in detail
with the commands that are related to each module. The
adaptation of CP/M to differing hardware configurations will
then be discussed. The chapter will conclude with an overview
of MP/M's operation.

If you are only interested in learning CP/M operation, this
chapter is not required reading. However, if you wish to know
how CP/M operates internally, you should read this chapter.

CP/M OVERVIEW

CP/M consists of the following three modules.

CCP (Console Command Processor)

BIOS (Basic Input/Output System)

BDOS (Basic Disk Operating System)

Illustration 8-1 shows the actions of these three modules on the
system’s physical devices and their interaction with each other.

192 CP/M Simplified

ILLUSTRATION 8-1. CCP, BIOS, BDOS CONTROL

Command Information

Other Devices CCP

Status &
Data

Γ BIOS
(I/O
Functions)

BDOS
(Files)

1=3
s

L λ

ID

Internal Operation of CP/M 193

CCP's main function is to interpret the commands keyed in at
the keyboard. CCP also performs some internal processing. As
can be seen in Illustration 8-1, CCP draws upon BIOS and BDOS
to perform its functions.

BIOS consists of routines which communicate with the various
physical devices attached to the system. These routines are
known as peripheral drivers. BIOS sends and receives data and
status information between a physical device and CCP’s debug
ger. BIOS is called by the CCP as pictured in Illustration 8-1.

BDOS, CP/M's disk operating system, consists of a large number
of utility routines designed to manage the disk files. BDOS
performs disk managing functions such as locating blocks of
data, verifying that data, and allocating and releasing storage
areas. BDOS performs virtually all of these tasks without the
user being aware of its disk managing activities.

ALLOCATION OF MEMORY

As shown in Illustration 8-2, CP/M divides the available
memory into separate zones for the system. Transient Program
Area, CCP, BDOS, Bootstrap Leader, and BIOS.

The first 256 memory locations are reserved for the system.
These are known as page 0, and will be discussed later in detail.

The next memory area is known as the Transient Program Area
or TPA. This is the area of memory available for program
execution, and is the largest area of memory allocated.

The TPA begins at either address 0100H (hexadecimal) or 4300H
(hexadecimal), depending upon the hardware configuration. If
the computer being used has pre-stored programs in ROM being
stored at the lower memory addresses, the TPA begins at 43000H.
The TRS-80 is an example of such a hardware system.

If programs on ROM are not being stored at the lower addresses,
the TPA begins at location 100H (or 256 decimal). Examples of
computers where the TPA begins at the standard address of 100H
are Cromemco, Altair, and Northstar.

194 CP/M Simplified

ILLUSTRATION 8-2. CP/M MEMORY ALLOCATION

SEARCH '
OPEN
CLOSE
READ
WRITE
SELECT

BIOS

Bootstrap Leader

BDOS

>

CCP
ERA
DIR
REN
SAVE
TYPE
CLOSE
WRITE

TPA
User Program & Data

Reserved

TPA extends upwards through memory to its upper limit—the
hase of chase.

Chase is the hase of the CCP area of memory. The exact address
of chase differs according to the amount of memory available in
the system.

CP/M assumes that the system has either 16, 32,48, or 64K. If the
system has 16K of memory, CP/M assumes that the memory
address of chase is 2900H. For every 16K of memory, CP/M adds
4000H to the address of chase.

Internal Operation of CP/M 195

CP/M FILE STRUCTURE

Before you can fully comprehend the operation of BDOS and
the CCP, you must understand the overall structure of the file
system. To this end, we will examine the CP/M file structure.

The file can be defined as a logical unit containing information
or programs. The function of any disk operating system,
including BDOS, is to manage this logical unit on the physical
storage device. In our case, the physical device is the diskette.

The diskette is organized into tracks and sectors as shown in
Illustration 8-3. Information is recorded in concentric circles
known as tracks. These tracks are in turn divided into sectors.

ILLUSTRATION 8-3. TRACKS - SECTORS

Sector

Track

196 CP/M Simplified

On an 8 inch diskette, each sector consists of 128 bytes. This is
also known as a record. Each file on a diskette consists of a
collection of records. It is impossible to keep a file’s records in
physical sequence on the diskette. These sectors containing a
file’s records are spread across the entire diskette’s surface.

Logically, a list of some sort must be kept to keep track of the
location of all sectors associated with a particular file. Different
operating systems use different techniques for accomplishing
this purpose. In CP/M, a file control block is used to keep track
of all sectors belonging to a disk file. Each file control block has
the capacity to describe up to 16K bytes of a file. Up to 16 total
file control blocks can be used to keep track of a CP/M file.

In CP/M, a file is divided into units. A unit may contain
anywhere from 0 to 128 records. Since each record (sector)
contains 128 bytes, a unit may consist of from OK to 16K (128
records x 128 bytes per record).

A CP/M file may contain up to 16 units. The largest CP/M file
possible would contain 16 units of 16K per unit (or 256K). This
capacity is slightly greater than the maximum capacity of a
standard 8 inch diskette.

FILE CONTROL BLOCK

The file control block (FCB) consists of 33 bytes and is stored in
the directory area. The FCB is actually a directory of the sector
allocated to a particular file. When a file is accessed through
CP/M, its FCB is brought from the diskette to the TPA so that it
can be quickly accessed by the operating system.

The structure of the file control block is pictured in Illustration
8-5 and described in Table 8-1.

The relationship of file control blocks to FDOS and CCP will be
discussed in more detail later in this chapter.

Internal Operation of CP/M 197

ILLUSTRATION 8-4. DISK SPACE UTILIZATION

tracks

Bootstrap

241K for 8” Standard diskette

The outer two* tracks of the diskette are used to store the CP/M
system. The remainder of the diskette is used to store the files
and file directory.

*5^λ" diskettes have the outer 3 tracks reserved for the CP/M
system.

198 CP/M Simplified

U
O
CQ
o
at
Z.
o u
UJ
LU
ui
CO
z
O
H < U H LZ)
3

co
tn
co

co
co
co
CM
CO

co
G
co
σ>
CM
00
CM

CM

CM
in
CM

CM

CM
CM
CM

CM
G
CM
σ>
w
00

ςο

ιη

ί*>

CS

o

σ>

00

tn

co

CM

Oí Z

Σ
Q

a. < s
1.O
< u 0
<

Û

I

X
X
■χ LU

Û bU

Z

LU

ιυ α.

bU
Σ <
1.

LU

<
Z tu

Internal Operation of CP/M 199

TABLE 8-1. FILE CONTROL BLOCK FIELD DESCRIPTIONS

FIELD NAME POSITION DESCRIPTION

ET This is the entry type and is
assumed to be zero in
CP/M version 1.4. In
CP/M version 2.2 or
MP/M, this position is
known as the drive code.

version
version

0

FN

FD

EX

XX

1-8

9-11

12

13-14

This is the file name which
may consist of up to eight
characters. Any characters
not supplied will be
entered as the ASC II
blank.

supplied

This is the file type. The file
type consists of three
alphanumeric characters.
Again, characters not
supplied by the user will
be entered as ASC II
blanks. When the diskette
directory is listed, both the
file name and file type will
be displayed.

characters

This is the file extent
which is normally zero.

This field is not used and
is normally set to zero.

200 CP/M Simplified

TABLE 8-1. FILE CONTROL BLOCK FIELD DESCRIPTIONS
(CONT.)

FIELD NAME POSITION DESCRIPTION

RC 15 This field contains the
record count. A file may
contain from 0 to 128
records. The record count
is also referred to as the
current extent size.

DM 16-31 These positions are
known as the disk alloca
tion map. This section
keeps track of which disk
sectors are used by this
file.

positions

NR 32 This field is known as the
next record, and contains
the next record to read or
write. This field is nor
mally zero. In CP/M 2.2,
this field is known as CR
(Current Record).

RO-1-2 33-35 R 0-1-2 are used only in
CP/M 2.2 for random
accesses and contains the
optimal random access
number.

random

Internal Operation of CP/M 201

CP/M SYSTEM OPERATION OVERVIEW

As shown in Illustration 8-2, the CP/M operating system remains
in the lower end of memory (addresses OOOH to 100H). The
gateway to the CP/M operating system is memory address 005H.
The gateway is a single fixed point in memory where control is
transferred back to CP/M.

For example, if a program is loaded into the TPA (beginning at
100H), the program can "jump" back to the operating system by
executing a JMP instruction to address 005H.

From an operator's point of view, CP/M works as outlined
below.

1. The CCP (Control Command Processor) displays the system
prompt and then waits for a command.

2. The command line keyed in is transmitted via BIOS (Basic
Input/Output System) to the CCP buffer.

3. When the command (with any associated filename) is
received, CCP will execute that command, if it is a built-in
command (a built-in command is one that is permanently in
the system's memory).

4. If the command received by CCP is not built-in, CCP assumes
the command to be a transient program with the .COM filename
extension. An example would be . The CCP will
request that BDOS find the file and read it onto the TPA. Finally,
the CCP will create a file control block for the file or files named
after the command.

STAT.COM

For example, in the following command;

A > ERA SAMPLE.TXT /

a file control block would be constructed for SAMPLE.TXT.

5. The CCP now ends its control. This leaves the space in
memory formerly used by the CCP free, allowing the TPA to
temporarily expand and use this space.

STAT.COM

202 CP/M Simplified

6. BDOS now locates the specified file using the file control
block created by the CCP in Step 4. At this point, the newly
created file control block contains only the filename.

Each file on the diskette has its own file control block. All
BDOS does is match the filename of the file control block
created by CCP in Step 4 with the filenames from the file control
blocks for the files on disk.

7. When BDOS finds the correct file on disk, it supplies data
from that file's file control block on disk to the current file
control block created by the CCP. Whenever the program
accesses that file on the disk, BDOS updates the information on
the current file control block. When the file is closed by the
program, BDOS copies the current file control block from the
computer's memory onto the diskette. Both the file and that
file's file control block are simultaneously updated.

FDOS & CCP IN OPERATION

Illustration 8-6 portrays CP/M's memory map after CP/M has
been loaded into the computer's main memory. Note the
differences between Illustration 8-6 and Illustration 8-2. First of
all, BIOS and BDOS have been combined as FDOS. Secondly,
each of these four memory areas has a specified base; boot,
tbase, cbase, and fbase.

The exact memory address locations for boot, tbase, cbase, and
fbase depend upon the version of CP/M being used. However,
these addresses are present in any CP/M system.

The boot is the location where machine code instructions are
begun which perform a system restart. A program in TPA can
transfer control back to CP/M by jumping to the boot.

The user program or transient command fills memory from tbase
to chase, and can extend into fbase if it will overwrite the CCP.

Internal Operation of CP/M 203

ILLUSTRATION 8-6. CP/M MEMORY MAP AFTER LOADING

FDOS (BIOS + BDOS)

fbase:

CCP (Console Command Processor)

cbase:

TPA (Transient Program Area)

tbase: 100H

Page Zero

boot: 1 2 40 3 5 6
0

204 CP/M Simplified

BIOS

BIOS is essentially a message carrier allowing communication
with peripherals. Examples of BIOS operations would be to send
a character to the printer or to read a character from the
keyboard.

BIOS is the part of the CP/M operating system that must be
modified for a particular hardware configuration. Digital
Research supplies BIOS so that it will operate on an Intel
MDS-800 with standard peripherals that connect to the
MDS-800. If a different hardware configuration is to be used,
BIOS must be altered to fit this environment.

BIOS (as well as BDOS) are accessed through boot + 0005H
(the principle entry point for FDOS). Table 8-2 lists the function
numbers for BIOS operations. A BIOS command is communica
ted by sending a function number along with an information
address. For instance, if the ASC II character A were to be sent
to the console, the function number 2 (write console) would be
placed in register C, and the ASC II value for A would be placed
in the CPI register pair D,E.

BDOS

BDOS is also accessed by entry through FDOS (boot + 0005H). A
BDOS operation is specified by using a function number and an
information address.

For example, if a sequential read was to be performed on a disk
file, the program should send the function number for a
sequential read (20) along with the address of the file control
block for the file to be read.

BDOS would then attempt to complete the specified function. If
the read was completed, BDOS would return with a successful
completion indicator. If the read was not successful, BDOS
would return with an error indicator.

The BDOS function numbers along with their description are
given in Table 8-3.

Internal Operation of CP/M 205

TABLE 8-2. BIOS FUNCTION NUMBERS

Func
tion Operation Description

1

2

3

4

5

*6

7

8

9

10

11

Read Console

Write Console

Read Reader

Write Punch

Write List

Direct Consol In
put Output

Get I/O Status

Set I/O Status

Print Buffer

Read Buffer

Interrogate Con
sole Ready

Returns an ASC II character.

Outputs an ASC II character.

Returns ASC II character from
the reader device (RDR:).

Outputs a character to the
punch device (PUN:).

Outputs an ASC II character to
the list device (LST:).

Send ‘FF’ to receive character or
status. Or send a character to
the console.

Return byte with status of
device.

Send byte with status to device.

Send entire string-starting with
the address and ending with $.

Send address of read buffer and
return with filled buffer.

If the least significant bit of the
byte is 1, then the console
character is ready.

* CP/M 2.2 and MP/M only

206 CP/M Simplified

TABLE 8-3. BDOS FUNCTION NUMBERS

Func
tion Operation Description

12 Lift Disk Head
(CP/M 1.4)

This function lifts the head from
the current disk.

12

13

14

Return Version
Number
(CP/M 2.2 &
MP/M)

Reset Disk System

Select Disk

This function returns the ver
sion number of your CP/M sys
tem to provide version
independent programming.

This function initializes BDOS,
resets the read/write state for all
disk, selects Drive A, and sets
the default DMA address to
boot + 0080H. This address is
used by programs to allow disk
changes without a | C or
system restart.

A disk drive is selected as the
current drive for succeeding file
operations (1 = A; 2 = B; 3 = C;
etc.).

a t c

Internal Operation of CP/M 207

TABLE 8-3. BDOS FUNCTION NUMBERS (CONT.)

Func
tion Operation Description

15

16

17

18

Open File

Close File

File Search

Search For Next
Occurence

If a file control block address is
sent with this function number,
BDOS will find a matching file
control block in the directory
area of the disk. BDOS will
return with the correct direct
ory code, which will indicate
that the proper information had
been copied to the file control
block. This process permits later
file access.

If a file control block address is
sent with this function code,
BDOS will write the updated
directory information in the file
control block on the disk.

If this function is sent with the
address of the file control block
that contains a filename, BDOS
will search for the first match of
that filename. BDOS will return
the address of the file control
block that matches the file
control block set up by CCP.

This function is used to search
for the next occurrence of a
filename. This function is used
after 17. The address of the next
file control block on disk will be
returned.

208 CP/M Simplified

TABLE 8-3. BDOS FUNCTION NUMBERS (CONT.)

Func
tion Operation Description

19 Delete File If this function is sent with the
address of a file control block
containing a filename, BDOS
will delete that file from the
disk.

20

21

Sequential Read If the file had previously been
opened or created by the Make
File function, the Sequential
Read function will read the next
128 bytes (record) into memory
at the current DMA address.
The function returns an indica
tor for a successful read, an end
of file, or unwritten data during
random access.

Sequential Write If the file had been previously
opened or created by the Make
File function, the Sequential
Write function will write the
next 128 bytes (beginning at the
current DMA address) to the file
named by the file control block.
The Sequential Write will over
write any existing data.

Internal Operation of CP/M 209

TABLE 8-3. BDOS FUNCTION NUMBERS (CONT.)

Func
tion Operation Description

22

23

24

25

Make File

Rename File

Return Log-In
Vector.

Return Current
Disk*

The Make File function creates a
new file as well as opening it. If
you send the address of a file
control block with a new file
name, the Make File function
will create the file and initialize
its file control block in main
memory as well as on disk.

If the address of the file control
block is sent with this function,
BDOS will rename the filename
area of the block and record it
on disk.

This function is used to deter
mine which disk drives are on
line.

This function returns a number
that corresponds to the letter of
the disk drive
selected.

currently

*CP/M 2.2 and MP/M only

210 CP/M Simplified

TABLE 8-3. BDOS FUNCTION NUMBERS (CONT.)

Func
tion Operation Description

26

27

28

29

Set DMA Address

Get Allocation
Vector Address

Write-Protect
Disk

Get Read-Only
Vector

The DMA address is the Direct
Memory Address. This is the
address where the file pointer
stopped following a read or
write operation. This function
sets the DMA to a different
value so that data records can
be found elsewhere in memory.
After a cold start, a warm start,
or a disk reset, the DMA is set to
boot + 0080H.

An allocation vector is main
tained in the main memory for
each on-line drive. This func
tion is used to return the add
ress of the vector for the current
drive. This vector can be used
by a program (example-STAT)
to determine the remaining disk
storage space.

This function will temporarily
protect a disk from being writ
ten over. An error message will
be generated on any attempted
write to the disk.

The Get Read-Only Vector
function returns a function
which indicates which drives
are read-only.

Internal Operation of CP/M 211

TABLE 8-3. BDOS FUNCTION NUMBERS (CONT.)

Func
tion Operation Description

30 Set File Attributes The Set File Attributes function
makes it possible to either set or
clear read-only and system attri
butes attached to files.

31

32

33

Get Disk Para
meter Block
Address

Get or Set User
Code*

Random Read

This function returns the BIOS
disk parameter block address.
This address can be used to
compute disk space and to
change disk parameters.

This function can be used to
determine which user code is
currently active or to change the
user code currently active.

The Random Read uses the
Random Record Number field
in the file control block to select
a record number and read that
record. After the record indica
ted has been read, this function
will set the DMA at the record
read. The NR (Next Record)
field in the file control block
will not be incremented as in a
Sequential Read.

*CP/M version 2.2 & MP/M

212 CP/M Simplified

TABLE 8-3. BDOS FUNCTION NUMBERS

Func.
tion Operation Description

34

35

36

Random Write

Compute File Size

Set Random
Record Position

As with the Random Read, the
Random Write uses the Random
Record Number field to select a
record. This record then writes
the data from the current DMA
to the disk. Again, the Next
Record field is not advanced.

When sent with a file control
block address, this function
returns the record address of
the end of that file. This gives the
virtual size of the file. If a file is
sequential, the virtual size
equals the file’s physical size. If
the file is random, the virtual
size includes blank spaces
which are the result of random
write operations.

includes blank

This function gives the random
record position after a number
of sequential read or write
operations. This function can be
used to make an initial sequen
tial search of a file before
random read or write opera
tions. If can also be used to
switch from sequential to
random operations.

from sequential

Internal Operation of CP/M 213

ALTERING CP/M

As we mentioned before. Digital Research supplies a form of
CP/M that operates on the Intel MDS-800 microcomputer
system. Other forms of CP/M are available that run on other
hardware systems. Generally, these versions of CP/M require no
alterations.

However, you may someday find yourself in a situation where
you already have CP/M installed on your system, but wish to
change your input or output devices. In such cases, you will have
to alter the BIOS module of CP/M. If you have MP/M, you will
have to alter both the BIOS and XIOS modules.

This alteration is known as patching. Patching simply means
inserting the new input/output routines required by your new
hardware configuration.

Patching is a simple task. However, the specific routines to be
changed depend upon the hardware changes involved.

Because of the numerous possibilities, we cannot present
patching instructions in this book. Refer to your CP/M verson's
CP/M Alteration Guide for specific patching instructions.

ALTERING MEMORY SIZE

Another alteration of a hardware configuration is an increase or
decrease in memory size. When memory size is changed (by
installing or removing memory boards), CP/M must also be
altered. The MOVCPM program can be used to reconfigure
CP/M for any size memory. In such cases, MOVCPM takes the
format outlined below;

MOVCPM) * ((*)
j nn Í

The argument (nn or *) informs CP/M of the amount of memory
that the new CP/M system should manage. If nn is set to 32, the
CP/M will be configured for 32K of RAM. If nn is set to 48,
CP/M will be configured for 48K of RAM, ect. If the argument is

214 CP/M Simplified

left blank, or if an asterisk (*) is specified as the argument,
MOVCPM will configure the CP/M system to use all of the
available RAM in the host computer. For example, if the host
computer has 64K of RAM, and the following command is
issued;

MOVCPM

CP/M will be configured to manage 64K of RAM.

The second asterisk is optional. If a second asterisk is supplied,
MOVCPM will keep the newly-configured CP/M system in
memory. The CP/M system can then be saved with a SAVE
command, or written out to a diskette with the SYSGEN
command.

If only a single asterisk is used as illustrated below;

MOVCPM*

MOVCPM will boot the new system without writing it on disk.

Some examples of the use of MOVCPM are listed in Table 8-4.

, is executed, theWhen the command, MOVCPM
following prompt will be displayed.

* ♦

READY FOR SYSGEN

When a command of the form, MOVCPM nn*^ , is executed,
the following prompt will be displayed.

SAVEnnCPMnn.COM

The nn’s stand for the number of kilobytes of RAM.

INSTALLING MP/M

An MP/M system must be installed from an existing CP/M
system. MP/M is brought up from CP/M by executing

SAVEnnCPMnn.COM

Internal Operation of CP/M 215

MPMLDR.COM. This command loads the MP/M system into
memory from the diskette. The MP/M system is held as
MPM.SYS on the diskette.

Before the MP/M system can be loaded into memory with
MPMLDR.COM, it must be generated with the program
GENSYS.COM. The GENSYS.COM program operates under
CP/M and is provided with MP/M.

The GENSYS program asks the operator questions and uses his
answers to build MPM.SYS. The following illustrates an example
run of GENSYS.

A > GENSYS^

MP/M 1.0 SYSTEM GENERATION
TOP PAGE OF MEMORY
NUMBER OF CONSOLES
BREAKPOINT RST#
ALLOCATE USER STACKS FOR SYSTEM CALLS? (Υ/Ν)χι^

MEMORY SEGMENT BASES, (FF TERMINATES LIST)
:00,0
:00,1
:00,2
:FF

SELECT RESIDENT SYSTEM PROCESSES: (Υ/Ν)χ/

TIME
SCHED
ATTACH
SPOOL
MPMSTAT
A>

Ly/
lY/
Lï/
ίΎ/

MPMLDR.COM
MPMLDR.COM
GENSYS.COM
GENSYS.COM

216 CP/M Simplified

TABLE 8-4. MOVCPM

COMMAND DESCRIPTION

A > MOVCPM CP/M is reconfigured so as to
manage all available RAM in the
host computer. The system will
then be executed without being
written to a diskette.

A > MOVCPM** é CP/M is reconfigured to
manage all of the host com
puter's RAM. The system is left
in memory in preparation for a
SYSGEN or SAVE command.

reconfigured

A > MOVCPM 48^ This command reconfigures
CP/M to manage 48K of RAM.
CP/M is executed without
being written to disk.

A > MOVCPM 48*^ reconfiguredCP/M is reconfigured to
manage 48K of RAM. The system
is left in memory in preparation
for a SAVE or SYSGEN
command.

SAVE

The second and fourth examples use the optional second
asterisk to leave the newly configured CP/M in memory, so that
a SAVE command can be used to write the contents of memory
out to disk or a SYSGEN command can be used to create a system
diskette.

Internal Operation of CP/M 217

In the first line of this prompt sequence, the operator activates
the GENSYS program. The second line is the system response.

The third line is the prompt for the top page of memory. In
answer to this prompt, the operator should enter the top page of
his system's RAM memory. If the operator enters a zero (as he
did in our example), MPMLDR will determine the top page of
RAM memory when it loads MP/M.

The fourth line prompts the operator to enter the number of
consoles to be attached to the MP/M system. Upto 16 consoles
may be used in an MP/M 1.0 system. Each console requires one
page or 256 bytes of memory.

The fifth line of dialogue prompts the operator to enter the
Breakpoint RST# (of breakpoint restart number). This sets the
number of break points for the DDT debugger programs.

The sixth line allocates user stacks for system calls. If the answer
is yes, stack space will be allocated so that CP/M .COM files
can be used as commands in MP/M. This prompt is necessary
because an MP/M command requires more stack space than is
required in CP/M.

The seventh line prompts you to form one to eight user memory
segments. Each user segment area has the same address space
but different bank numbers. The first memory location that you
specify should be your actual initial RAM location. This will be
OOOOH (unless you have ROM memory beginning at OOOH). A
comma will follow this location, followed by the bank number.
Key in EE when you wish to end this list.

The twelfth line in our example, prompts the operator to select
resident system processes. If the operator does not desire to
select resident system processes, he should answer with a Y to
this prompt. He should also respond with a Y for each specific
process he wishes as resident rather than transient.

A resident process is a program that lies within the operating
system much like a built-in CP/M command. Resident Processes
are not displayed in the directory.

218 CP/M Simplified

Once MPM.SYS has been generated, the system prompt {A=*)
will appear. The operator can then use MPMLDR.COM to load
MPM.SYS into memory and execute it. MPMLDR.COM requires
no dialogue. It is executed as a command.

ALTERING MP/M

Like CP/M, MP/M is designed to run on the Intel MDS-800
microcomputer. Modified versions of MP/M are available for
other hardware environments from software vendors.

As with CP/M, when MP/M is used for a hardware environment
other than the Intel MDS-800, XIOS (MP/M's BlOS—known as
extended BIOS) must be altered. Also, MPMLDR.COM must be
altered to load and execute MP/M. Specific instructions on
altering XIOS and MPMLDR.COM for differing hardware
configurations are available in Digital Research's documenta
tion for MP/M.

MPMLDR.COM
MPMLDR.COM
MPMLDR.COM
MPMLDR.COM

CHAPTER 9. CP/M AND MP/M
REFERENCE GUIDE

INTRODUCTION

This chapter has been designed as a reference guide to the
various CP/M and MP/M commands and utility programs. Each
command keyword is used to reference that command. These
keywords are presented in alphabetical order.

FORMAT

In this chapter, we have used a specialized format to present
each command. The command's keyword is illustrated first. To
the right of that illustration is the Version Checklist, which lists
the three versions of CP/M and MP/M as follows.

□ CP/M version 1.4
□ CP/M version 2,2
□ MP/M version 1.0

If square is blackened in the checklist, the command being
described applies to that version of CP/M or MP/M. If a square
is left white, the command does not apply to that version of
CP/M or MP/M.

In the preceding example, the command being described would
apply to CP/M 1.4, but would not apply to CP/M 2.2 or MP/M
1.0.

The first line underneath the illustration of the command's
keyword is a short description of the command's purpose.

The second line describes the nature of the command. For
example, the ATTACH command may either be a resident
process or may exist as a PRE file.

220 CP/M Simplified

The third line illustrates the following formats that may be used
when executing the command or program. If an argument is not
enclosed in parentheses, that argument is required. If an
argument is enclosed in parentheses, it is optional.

When arguments are enclosed in brackets, the user may choose
between the items enclosed by the brackets. At least one of the
arguments in the brackets is required, unless the argument is
enclosed in parentheses. In such cases, the argument is
optional.

After the format, a description of the arguments is given
followed by a description of what the command does. This is
followed by a narrative description of how the command is used
and some practical examples. In these examples, everything to
be keyed in by the operator is underlined. The symbol ^stands
for Return or Carriage Return. The symbol I stands for the
Control key.

CP/M and MP/M Reference Guide 221

ABORT

Purpose:

□ CP/M version Ί.4
□ CP/M version 2.2
□ MP/M version 1.0

J

Aborts a program that has been scheduled
with SCHED.

Command
Nature:

ABORT.COM or ABORT.PRL

Formats: 1. ABORT program name console number.

Arguments: program name: The name of the program
which is to be aborted.

console number: The console number is the
number of the console from which the
program was initiated.

Command
Description:

The ABORT command stops the execution of
the program specified in its argument. This
command should be used with care as it may
be used by any user to stop any program
which was started at any console.

Command
Usage:

To stop a program, you must specify the
program's filename and the console where it
was initiated.

ABORT.COM

222 CP/M Simplified

Examples: 3A > ABORT PROGRAMA 1

In the above case, PROGRAMA was started
at console 1. PROGRAMA will be halted by
the above command.

CP/M and MP/M Reference Guide 223

ASM
H CP/M version 1.4
0 CP/M version 2.2
0 MP/M version 1.0

Purpose: Assemble a file.

Command
Nature:

ASM.COM (supplied with CP/M or MP/M)

Formats: 1. ASM filename
2. ASM filename (.shp)

Arguments: filename: refers to the name of a source file
(with the extension .ASM. The .ASM exten
sion need not be specified in the command,
as ASM automatically searches for a filename
with the extension .ASM.

(shp): are three optional letters that may be
specified after the filename. The s is the
letter for the disk drive that contains the
.ASM source file referred to in the command.
The h is the letter of the drive that is to
receive the HEX file created by ASM. If the
letter Z is specified for h, the .HEX file will
not be created. The p is the letter of the drive
that is to receive the .PRN file created by
ASM. If X is used in this position, the .PRN
file will be sent to the video display. If a Z is
specified, ASM will not create the .PRN file.

ASM.COM

224 CP/M Simplified

Command
Description:

The assembler program (ASM.COM) is used
to turn an assembly language source file
written in 8080 or Z-80 code into a machine
code file of type .HEX. The HEX file can then
be loaded into the system as a transient
command.

ASM will also create a listing file with a .PRN
extension that contains the assembly lan
guage source lines with error flags and
hexadecimal notation.

Command
Usage:

If the .ASM source file is on your current disk
and you wish to create .HEX and .PRN fileson
your current disk, use format 1.

Otherwise, you must use format 2. The letter
of the drive containing the source file must
be specified in s. The drive to receive the
.HEX file must be specified in h. The drive to
receive the .PRN file must be specified in p.

If you specify the letter Z for h, the ASM
command will skip creating the .HEX file and
will only create the .PRN file.

If you specify a Z for p, then ASM will only
create the .HEX file. ASM will skip creating
the .PRN file.

If you wish ASM to only send the .PRN file to
the terminal and not save it on disk, then you
should specify the letter X for p.

In both of the formats for ASM, the
command translates the assembly language
source code into Intel hexadecimal notation,
which is machine or binary code. When ASM
discovers an error in the source file, it
displays the line which is in error, along with
an error code.

ASM.COM

CP/M and MP/M Reference Guide 225

Examples: A > ASM PROGRAMA /

The ASM command will be executed on
PROGRAMA which is in the current line.

A > ASM PROGRAMB.ABX /

The above command executes ASM on
PROGRAMB in Drive A. The newly created
PROGRAMB.HEX is placed on Drive B, and
PROGRAMB.PRN is sent to the terminal for
display only and is not saved on disk.

226 CP/M Simplified

ATTACH
□ CP/M version 1.4
□ CP/M version 2.2
@ MP/M version 1.0

Purpose: Attach a console to a detached program.

Command Nature ATTACH.PRL or Resident Process.

Format: ATTACH program name.

Argument: Program name: refers to the filename for the
detached program that was attached to the
console when the ATTACH command was
executed.

Command
Description:

The ATTACH program attaches a detached
program to the console. That detached
program must have been previously
detached from that same console. A program
can be detached from a console while
running by pressing | D. When f D is
pressed, the console will automatically attach
the next waiting process.

Command
Usage:

If the ATTACH command is a resident MP/M
system process or if ATTACH.PRL is acces
sible on a disk, the ATTACH program can be
executed as a command when used with a
program name as an argument.

Example: 3A > ATTACH PROGRAMA.PRL /

In the example above PROGRAMA.PRL takes
over the console.

CP/M and MP/M Reference Guide 227

CONSOLE
□ CP/M version 1.4
□ CP/M version 2.2
i3 MP/M version 1.0

Purpose: To display the number of the terminal
currently executing the CONSOLE command.

Command
Nature:

CONSOLE.COM or CONSOLE.PRL

Format: CONSOLE

Command
Description:

After the Console command is typed at the
terminal, the command returns with the
console number of the terminal being used.
The Console command is often used in
determining which console has detached
programs waiting for it.

Example: OA > CONSOLE^
Console = 1
OA >

In the above example, the console being
used is console 1.

CONSOLE.COM

228 CP/M Simplified

DDT
® CP/M version 1.4
® CP/M version 2.2
B MP/M version 1.0

v.

Purpose: DDT (debug) is used to load, alter, and test
programs.

Command
Nature:

DDT.COM or DDT.PRL

Format: DDT (filename)

Argument: Filename: This is an optional argument. The
file specified must be a .COM or .HEX file.
The filename extension must be specified in
the command.

Command
Description:

DDT first replaces the CCP in memory and
then loads the file specified into TPA
(Transient Program Area). If a filename is not
specified as the argument, DDT occupies the
TPA and waits for a file to be input into
memory.

DDT has its own set of commands for
inserting values, displaying memory loca
tions, saving comments, setting breakpoints,
and various other debugging functions.

DDT also displays the address following the
final address in the program being debugged.
This is known as the NEXT address. Finally,
DDT displays the PC (program counter).

DDT.COM

CP/M and MP/M Reference Guide 229

Command
Usage:

DDT must exist as a program on an accessible
disk for it to be executed. DDT is ended with
the command, GO.

Example: A > DDT PROGRAM-HEX /

In the above example, PROGRAM.HEX will
be loaded into TPA.

230 CP/M Simplified

DIR
J

Purpose:

Command
Nature:

Format:

Arguments:

Command
Description:

θ CP/M version 1.4
0 CP/M version 2.2
B MP/M version Ί.0

Displays a list of the filenames in the current
disk drive’s directory.

In CP/M, DIR is a built-in command. In
MP/M, it is referred to as DIR.COM or
DIR.PRL.

DIR (d) filename
.filename match.

Filename: This is an optional argument that
tells DIR to find just that file specified. A
drive can be specified.

Filename match: This is also an optional
argument for DIR. The files which match will
be located and listed by DIR. A drive can be
specified.

If a filename or a filename match is specified
as the argument, DIR will display only the
filename specified or those filenames which
match with the filename match specified.

If a drive is specified with the filename or
filename match, DIR will search that drive
(A:, B;, C:, ...) for the specified filenames.

DIR.COM

CP/M and MP/M Reference Guide 231

If a filename or filename match is not
specified, DIR will list all filenames in the
current file. Only files with the $DIR system
attribute will be listed. Those files with the
$SYS attribute will not be listed.

In MP/M 1.0 and CP/M, only those files in
the current user area will be listed.

Command
Usage:

DIR is a built-in command in CP/M version
1.4 and version 2.2. This means that DIR is
part of the operating system of these versions
and can be executed from any disk drive and
user area.

DIR is supplied as DIR.PRL or DIR.COM in
MP/M. DIR.PRL or DIR.COM must exist in
the current drive unless another drive is
specified as a prefix to DIR in the command.
DIR must also be in the current user area for
execution in MP/M.

Examples: A > DIR^

ED.COM PIP.COM DUMP.COM
LOAD.COM BASIC.COM STAT.COM
FILE2.TXT CLIENT.TXT FILE1.TXTCLIENT.TXT

The above command displays all files on the
current drive A, under CP/M version 1.4. If
the above command was executed under
CP/M version 2.2, all files with the $DIR
attribute in Drive A, user area 0 would be
displayed.

DIR.COM
DIR.COM
ED.COM
PIP.COM
DUMP.COM
LOAD.COM
BASIC.COM
STAT.COM

232 CP/M Simplified

A > DIR *.TXTj>

FILE1.TXT
FILE2.TXT
CLIENT.TXT
INVOICES.TXT

The above command displays all files on the
current Drive A with the file extension .TXT
in CP/M version 1.4. In CP/M version 2.2, all
files with the same filename extension .TXT
and the $DIR attribute will be displayed, if
said file is in user area 0 of Drive A.

CP/M and MP/M Reference Guide 233

DSKRESET
□ CP/M version 1.4
□ CP/M version 2.2
0 MP/M version 1.0

Purpose:

Command
Nature:

This command is used to notify other users in
a multi-user system of a disk change.

DSKRESET.COM or DSKRESET.PRL

Format: DSKRESET

Command The following message is sent to the other
terminals in a multi-user system when
DSKRESET is executed.

Confirm reset disk system (Y/N) ?Y

If any terminal user responds with a N to the
preceding prompt, the request to change the
disk will not be allowed.

A user in a multi-user system should always
use DSKRESET to communicate the fact that
he or she intends to change a disk. If another
user is accessing or updating files on the disk
being changed, problems could be entailed.

Example: 3A> DSKRESET /
Confirm reset disk system (Y/N) ?Y

The preceding message will appear at every
terminal which is hooked up to the system.

DSKRESET.COM

234 CP/M Simplified

DUMP

Purpose:

i] CP/M version 1.4
O CP/M version 2.2
H MP/M version 1.0

The Dump command dumps the file specified
as its argument to a terminal. The contents
of the file are displayed in hexadecimal form.

Command
Nature:

DUMP.COM

Format: DUMP filename

Arguments: filename: The name and extension of any
disk file

Command
Description

The DUMP command displays the contents of
the disk file specified in hexadecimal form on
the terminal. Sixteen bytes are listed at a time.
Each line’s absolute byte address is listed to
the left.

Command
Usage:

The DUMP program is executed as a
command when entered with a filename and
its extension. If DUMP.COM is not on your
current drive, precede the command with the
letter of the drive containing the file.

Example: A> DUMP FILEI.HEX^

The example above dumps EILEI.HEX onto
the terminal.

DUMP.COM
DUMP.COM

CP/M and MP/M Reference Guide 235

ED
O CP/M version 1.4
il CP/M version 2.2
0 MP/M version 1.0

Purpose: The purpose of ED is to edit a text file.

Command
Nature:

ED.COM or ED.PRE

Format: ED filename

Argument: filename: This is the name of the file that is
to be edited. The file must be a .TXT file.

Description: ED automatically creates an edit buffer in
which the text file can be modified. The first
step undertaken by ED is to erase any .BAK
file for the filename specified. The user may
then append the text file to the edit buffer
where it may be modified. Text from .LIB
(Library) files may be inserted into the edit
buffer. Text may be output from the edit
buffer into a temporary output file. When ED
is ended, ED will update the original (source)
file and create a back-up file of that original
source file.

Command
Usage:

Examples:

ED.COM or ED.PRL must be on an
accessible disk. Details of ED usage are
described in Chapter 7.

A=*ED TEXT.TXT /

The file (TEXT.TXT) specified can now be
created or modified by the editor.

ED.COM
ED.COM

236 CP/M Simplified

ERA
H CP/M version 1.4
H CP/M version 2.2
B MP/M version 1.0

V. J

Purpose: The purpose of ERA is to erase one or more
files from a disk or diskette.

Format: ERA filename
filename match

Arguments: filename: The filename argument is provided
with the ERA command to specify which file
is to be erased. The filename's extension
must be included. A drive letter may also be
specified.

filename match: When a filename match is
used as an argument for ERA, several files
may be erased simultaneously. If the
filename match, *.*, is used with ERA, all
files on the current drive will be erased in
version 1.4, or all files in the current drive
and current user area will be erased in version
2.2 or MP/M.

Command
Description:

The ERA command erases any filenames
specified by the argument. The only excep
tions are drives that are specified read-only
or files with the $R/O file attribute. In these
cases, the file will not be erased.

If ERA does not find the filename specified,
the following message will be displayed.

No File

CP/M and MP/M Reference Guide 237

You can specify a drive letter as part of a
filename to erase a file on a non-current
drive. For example, the following command;

A >■ ERA B:FILE1.TXT /

will erase FILE1.TXT on Drive B.

Command
Usage:

In CP/M versions 1.4 and 2.2, ERA is a built
in command which may be executed from
any drive. In MP/M, ERA exists as ERA.COM
or ERA.PRL. ERA.COM or ERA.PRL must exist
in the current drive or be referred to using a
drive specifier as shown below.

OA > B:ERA FILE1.TXT/

In CP/M 1.4, you can erase an entire diskette
by specifying the filename match, *.*. To
erase an entire disk or diskette in CP/M
versions 2.2 or MP/M, you must use the
ERA command with the filename match *.*
for each user area. Be sure that no read-only
files have been left which have not been
deleted.

Examples: A > ERA FILE1.TXT /

FILE1.TXT is erased from Drive A.

A > ERA B:FILE2.TXT /

FILE2.TXT is erased from Drive B.

2K > ERA

All files (except those with $R/O file
attributes) are erased from user area 2 of
Drive A.

ERA.COM
ERA.COM

238 CP/M Simplified

ERAQ
□ CP/M version 1.4
□ CP/M version 2.2
Bl MP/M version 1.0

J

Purpose ERAQ is used to erase one or more files from
a disk or diskette.

Command
Nature:

ERAQ.COM or ERAQ.PRE

Format: ERAQ filename match

Argument: filename match: The filename match allows
ERAQ to erase a set of files.

Command
Description:

The ERAQ command erases all those files
that match its arguments, unless the disk has
been specified as read-only or a file has the
$R/O file attribute.

Command
Usage:

ERAQ differs from ERA in that the user is
requested to confirm an erasure before the
files are actually erased.

In MP/M, ERAQ is supplied as a command
file (ERAQ.COM) for absolute memory or a
relocatable file (ERAQ.PRE) for relocatable
memory. ERAQ.COM or ERAQ.PRE must
either exist in the current drive, or be
referenced by their drive letter as illustrated
below.

A > B:ERAQ*·* /

ERAQ.COM
ERAQ.COM
ERAQ.COM

CP/M and MP/M Reference Guide 239

If the filename match *.* is used as in the
above example, all files (except those with
the $R/O file attributes) will be erased.

Example: 0A>-ERAQ FILE *
A: FILE.TXT? _Y
A: FILE.INT? Y

The system will prompt the user to confirm
the erasure of all files with the filename,
FILE *. If confirmed, each file will be erased.

240 CP/M Simplified

GENHEX
□ CP/M version 1.4
□ CP/M version 2.2
0 MP/M version 1.0

Purpose: GENHEX transforms a .COM file to a .HEX
file.

Command
Nature:

CENHEX.COM or CENHEX.PRL

Format: GENHEX program name .COM offset

Arguments: program name: This refers to the name of the
program. It must be of type COM. The name
of the program may be preceded by a disk
identifier.

offset: This is the offset for the .HEX file that
is to be generated.

Command
Description:

The GENHEX command outputs a file of type
.HEX from a file of type .COM. The file is
offset by the amount specified.

Command
Usage:

The GENHEX is generally used to generate a
page-relocatable (.PRE) file using a GEN-
MOD command. In these cases, the offset
will either be (X)0H or 100H.

Example: 0A*GENHEX PROGA.COM 100 >

PROGA.HEX is generated from PROCA.COM
and is offset by 100H bytes.

CENHEX.COM
PROGA.COM
PROCA.COM

CP/M and MP/M Reference Guide 241

GENMOD
□ CP/M version 1.4
□ CP/M version 2.2
□ MP/M version 1.0

J

Purpose: GENMOD creates a relocatable file from two
concatenated .HEX files.

Command
Nature:

CENMOD.COM or GENMOD.PRL

Format:

Arguments:

Command
Description:

Command
Usage:

GENMOD filename.HEX filename.PRL
(Sbbbb)

Filename.HEX: This .HEX file must contain
two concatenated .HEX files, each offset
from the other by 100H bytes.

Filename.PRL: This is the name of the .PRL
file to be created from the two conatenated
.HEX files. An .RSP extension could be
substituted for .PRL if you wanted to create a
resident system process.

$bbbb: This argument is optional. It specifies
the number of bytes of additional memory
for the program.

GENMOD creates a .PRL (page relocatable)
or .RSP (resident system process) from two
concatenated .HEX files offset by 100H.
When the optional argument $bbbb is given,
GENMOD allocates the amount of additional
memory specified in the argument for the
program.

GENMOD is executed as CENMOD.COM in
CP/M version 2.2. In MP/M, GENMOD must
be executed as a .PRL file.

CENMOD.COM
CENMOD.COM

242 CP/M Simplified

Example: 0A>CENMODTEXT3.HEXTEXT4.PRL$1000/

In the preceding example, CENMOD creates
TEXT4.PRL from TEXT3.HEX with 1000H
additional memory.

CP/M and MP/M Reference Guide 243

CENSYS

Purpose:

□ CP/M version 1.4
□ CP/M version 2.2
B MP/M version 1.0

GENSYS generates an MP/M system from
CP/M.

Command
Nature:

GENSYS.COM

Format: GENSYS

Command
Description:

The GENSYS program prompts the system
operator with questions about the new
MP/M system being generated. GENSYS then
builds the file MPM.SYS to hold the system.

The MPMLDR.COM program is then used to
load the newly generated MPM.SYS into
memory.

GENSYS is also used to incorporate resident
processes (.RSP files) into the system.
CENSYS searches for files with the extension
.RSP and then asks the user to select resident
processes from a list of .RSP files.

Command
Usage:

GENSYS is executed from CP/M or MP/M.
The operator must answer the various
prompts with a response and by pressing the
Return key.

GENSYS.COM
MPMLDR.COM

244 CP/M Simplified

Example: 2A=> GENSYS é

MP/M 1.0 System Generation

=C0 >Top page of memory
Number of consoles
Breakpoint RST# ___
Allocate user stacks for system calls (Y/N) Y_

Memory segment bases, (ff terminates list)
:00
:40 >

?Y

Select Resident System Process: (Y/N)
TIME
SPOOL
SCHED __
ATTACH JY>

CP/M and MP/M Reference Guide 245

LOAD

Purpose:

0 CP/M version 1.4
0 CP/M version 2.2
0 MP/M version 1.0

J

The LOAD command loads a file into an area
of memory where it can be executed. The
LOAD command will also convert a .HEX file
into an executable command with the
extension .COM.

Command
Nature:

LOAD.COM

Format: LOAD filename

Argument: filename. The name of a file with a .HEX
extension. The .HEX extension need not be
specified in the command.

Command
Description

The LOAD command is used to convert a
program in Intel hexadecimal format into an
executable command file with an extension
of type .COM.

Command
Usage:

The LOAD.COM program must be on an
accessible disk for it to be executed.
However, if you prefix the LOAD command
with the letter of an alternative disk where it
resides, LOAD.COM can be executed.

The file of type .COM which was created by
the LOAD command can be loaded into TPA
by simply typing that filename with the
extension .COM.

LOAD.COM
LOAD.COM
LOAD.COM

246 CP/M Simplified

Example: A > LOAD program/

PROGRAM.HEX is transformed into
PROGRAM.COM.

A > PROGRAM.COM/

PROGRAM.COM can now be executed as a
command.

PROGRAM.COM
PROGRAM.COM/
PROGRAM.COM

CP/M and MP/M Reference Guide 247

MOVCPM
Θ CP/M version 1.4
H CP/M version 2.2
B MP/M version 1.0

Purpose:

J

The MOVCPM command is used to recon
figure a version of CP/M, so that it fits
hardware with a different amount of RAM.

Command
Nature:

MOVCPM.COM

Format: MOVCPM

bb
(*)

Arguments: bb: This is an optional argument which
specifies the amount of memory for which
CP/M is to be configured. For example, if 32
were specified for bb, CP/M would be
configured for a system with 32K of RAM.

*: If only one asterisk is included in the
command, MOVCPM will determine the
total available RAM for the host computer,
configuring CP/M for that size. If a second
asterisk is specified, either after the first
asterisk or after bb, MOVCPM will leave the
new system in memory in preparation for a
SYSGEN or a SAVE operation. If a second
asterisk is not specified, MOVCPM will
execute the newly configured system without
recording it on disk.

MOVCPM.COM

248 CP/M Simplified

Command
Description:

Command
Usage:

The MOVCPM program creates a copy of the
system and then alters that system for
operation in the new RAM size given in the
argument bb or for the maximum RAM
available in the host computer. If the second
asterisk is supplied as in the following;

MOVCPM**
or
MOVCPM 64*

MOVCPM will leave the newly generated
system in TPA. The SAVE or SYSGEN
commands can later be used to record the
new version on disk. If the second asterisk is
not specified as in the examples below;

MOVCPM*
MOVCPM 64

the newly configured system will be executed
but not recorded.

MOVCPM is generally used to prepare a
revised CP/M or MP/M system for a new
hardware configuration.

Examples: A > MOVCPM** /

The preceding example constructs a version
of CP/M for the maximum available memory.
This system is left in memory, so that it can
be saved on disk via the SYSGEN or SAVE
commands.

A > MOVCPM 64/

The preceding example constructs a 64K
version of CP/M. This version is executed
without being stored on disk.

CP/M and MP/M Reference Guide 249

MPMLDR
□ CP/M version 1.4
□ CP/M version 2.2
B MP/M version 1.0

Purpose: This MPMLDR program is used to load and
execute the MP/M system.

Command
Nature:

MPMLDR.COM

Format: MPMLDR

Description: MPMLDR loads, relocates in memory, and
executes the MPM.SYS file previously gener
ated with the GENSYS command. MPMLDR
issues a display of the system parameters
including the number of consoles, the
breakpoint, the top of memory, and a
memory segment table.

Command
Usage:

MPMLDR.COM can be executed from either
MP/M or CP/M.

Examples: A 5* MPMLDR >

MP/M 1.0 Loader
Number of Consoles =3
Breakpoint RST =5
Top of Memory =COFFH
Memory Segment Table:

SYSTEM DAT COOOH 0100

MPMLDR.COM
MPMLDR.COM

250 CP/M Simplified

MPMSTAT
□ CP/M version 1.4
□ CP/M version 2.2
0 MP/M version 1.0

Purpose:

Command
Nature:

MPMSTAT displays the MP/M system status.

Resident Process or MPMSTAT.PRL

Format: MPMSTAT

Command
Description

MPMSTAT displays the names of those
processes waiting for CPU time, those
processes waiting for messages from queues,
and those processes waiting to send mes
sages.

The following are also displayed.

delay and polling processes
* flags waiting
* flags set
* queues in operation
* processes waiting for consoles
* processes attached to consoles

memory allocation

it

Example: OA»MPMSTAT >

Refer to Chapter 5 for a detailed description
of MPMSTAT output.

CP/M and MP/M Reference Guide 251

PIP
0 CP/M version 1.4
B CP/M version 2.2
B MP/M version 1.0

Purpose: Used to perform copying operations.

Command
Nature:

PIP.COM

Formats: 1. PlPjd;
I (d:) new file (d:) old file (p)

2. PIP >

(d:) (new file) = (d;) old file (p)

*

3. PIP device:
(d:) filename

device:
(d:) filename (p),

device: I
(d:) filenamei, ...

4. PIP d: = (d:) filename match (p)

PIP.COM

252 CP/M Simplified

Arguments: d:
(d:) new file

In Format 1, this argument can be used in
different variations to specify that the file is to
have the same or a new name. The argument
can also specify whether the file is to be
placed on the same or a different drive.

(d:) old file

In Format 2, the name of the old file being
copied is required. The name of the new file
(the copy) is not required in the command, as
long as it is placed on a disk different from the
original.

(P)
In all PIP commands, various PIP parameters
may optionally be included.

device
(d:) filename

In Format 3, the operator must choose
between a device (a device name such as
CON:) or a filename with an optional drive
specifier.

This form of PIP has several different uses. It
can be used to send a file to a device, receive
data from a file or a device, or send special
device codes to a device.

CP/M and MP/M Reference Guide 253

d: = (d:)filename match

Command
Description:

The drive specifier is required for the
destination file—it is optional on the source
file. This format generally is used to copy
several files onto another diskette using the
same filenames for the copies as for the
originals.

In format 1, if only d: is supplied on the left
side of the command (and new file is not
supplied), the new file will have the same
name as the original source file. Remember,
however, the d: specified on the left side of
the command must be different from the
optional d: supplied on the right side of the
command. In other words, the file being
copied must be copied onto a different drive
from the original-if they are both to have the
same filename.

When the optional d: is omitted from the
right side of the command, the original
source file (old file) is assumed to be on the
current drive.

If a new file name (new file) is supplied, the
new file being copied will have that file
name. In cases where a different file name is
specified for the file being copied, both files
(old file and new file) can be on the same
disk.

In format 2, PIP follows the same rules as in
format 1, The difference is that in format 2,
the user can perform several PIP operations in
a row. That is, when PIP is entered alone
followed by a Return, PIP is left in memory.
An asterisk (*) is displayed as a prompt for the
user to enter PIP expressions. When a Return
is entered immediately following the prompt
(*), PIP will be terminated.

254 CP/M Simplified

Format 3 illustrates the use of device names
with PIP. The user is not allowed to copy
from a receive-only device—nor may the user
copy to a send-only device.

The left side of the command is the
destination (the file or read device which is
to receive the data). The right side of the
command is the source (the sending device
for files being copied). Several sourceTcan be
joined into one destination file or receiving
device. The special device names are listed in
Appendix B at the end of this book.

In format 4, the user can use a filename
match on the right side of the PIP command
to copy several files onto another diskette.
The drive specifier (d:) on the left side of the
command is required and must be different
from the drive on which the source files are
contained. The reason for this is the rule that
two files with the same name can not exist on
the same diskette.

PIP may be used as a one line command as
illustrated in format 1. You may also execute
PIP and leave it in memory, execute several
PIP commands, and then terminate PIP by
pressing Return.

Examples: A > pip/

*B: = PROGA.TXT /
♦LST: = PROGA.TXT é

in the above example, the PIP command is
executed in the first line. In the second line,
PROGA.TXT is copied with the same file
name on Drive B. In the third line, a copy of
PROGA.TXT is sent to the LST: device.

CP/M and MP/M Reference Guide 255

A>PIP FILE2 = FILET [N] /

In the above example, FILET is given line
numbers with the N parameter as it is copied
as FILE2. FILE2 also resides on Drive A.

256 CP/M Simplified

PRLCOM
□ CP/M version 1.4
□ CP/M version 2.2
ü MP/M version 1.0

Purpose: Transform a PRL file into a COM file.

Command
Nature:

PRLCOM.COM or PRLCOM.PRL

Format: PRLCOM (d:) source program .PRL (d:)
destination program .COM

Arguments: Source program .PRL: This is the name of the
source program. A drive unit may be
optionally specified.

Destination program .COM: This is the name
of the destination program. A disk unit may
be specified optionally.

Command
Description:

The PRLCOM command is used to transform
a program of type PRL into a program of type
COM. If the COM filename is already being
used, a message will be displayed by the
system, and the user will be given the option
of cancelling the command.

Command
Usage:

A user generally uses PRLCOM to convert a
PRL file to a COM file so that it may reside in
absolute TPA rather than a relocatable
memory segment.

Example: 1A> PRLCOM FILE.PRL FILE.COM/

The example above converts FILE from PRLto
a COM type file.

PRLCOM.COM
FILE.COM/

CP/M and MP/M Reference Guide 257

REN
Θ CP/M version 1.4
0 CP/M version 2.2
0 MP/M version 1.0

J

Purpose: Used to rename a file.

Command
Nature:

Built in CP/M command. REN.COM or REN.
PRL in MP/M.

Format: REN old filename = new filename.

Arguments: Old filename: This isa required argumentfor
the REN command giving the name of the file
whose name is to be changed.

New filename: This argument is required for
REN. It gives the new filename to which the
old filename is to be changed to.

In both arguments, drive letter prefixes are
not allowed, and filename extensions are
required.

Command
Description:

The REN command is used to change a file's
name. The filename extension must be
included in the command.

Command
Usage:

In CP/M, REN is a built in command that can
be executed at any time. In MP/M,
REN.COM or REN.PRL must be on an
accessible disk to be executed.

Example: A > REN NEW FILE.TXT = OLD FILE.TXT >

The above example changes the name of the
filename OLD FILE.TXT to NEW FILE.TXT.

REN.COM
REN.COM

258 CP/M Simplified

SAVE
0 CP/M version 1.4
0 CP/M version 2.2
0 MP/M version 1.0

J

Purpose: Used to save the contents of memory on a
disk file.

Command
Nature:

Built-in command.

Format: SAVE p filename

Command
Arguments:

p: This is the required part of a SAVE
command. The p refers to the number of
pages to be saved. A page is a 256 byte
segment.

Command
Description:

The SAVE command saves the contents of
the TPA (Transient Program Area) beginning
at memory location 100H and upwards in
memory to p pages (the number of pages
specified in the command).

Command
Usage:

To execute the SAVE command, you must first
calculate p, the number of pages. To
calculate p, use DDT to load the original
program into memory. If you are using an
early version of CP/M, use the R command to
display the NEXT address. The NEXT address
is the address following the loaded program
in hexadecimal form. If you are using a
later version of CP/M, the NEXT address is
displayed automatically. You have no need to
use the R command.

CP/M and MP/M Reference Guide 259

The address given by NEXT is one greater
than the actual last address of the program.
You can use the following algorithm to
determine the number of pages (p) to specify
in the SAVE command.

Begin

Are
Last Two Digits
of NEXT = 00*?

Yes No

i 1
Subtract 1H From
NEXT Address Leave NEXT Address

Alone

I JI
Take The First Two
Digits of the NEXT
Address (the high-or
der bits)

I
Convert The Two
High Order Digits
From Hexadecimal To
Decimal

I
Use This Value For
The Number of Pages
or p.

I
End

260 CP/M Simplified

Examples: A > DDT PROGRAMA.COM /
NEXT PC
Ί BOO 00
-go/

In the example above, PROGRAMA.COM is
loaded by DDT into TPA. We are assuming
that a later version of CP/M is being used.
Therefore, no R command is necessary.

The value given by NEXT is 1B00H. Since the
last two digits are 00, we subtract 1H to get
1AFFH. Now, we take lAH and convert it to
decimal. We get 26. This is the number of
pages to specify for p in the SAVE command.

A > SAVE 26 PROGRAMB.COM /

The above command saves PROGRAMA.-
COM in TPA from memory into disk and
names the resulting file PROGRAMB.COM.

DDT_PROGRAMA.COM
PROGRAMA.COM
PROGRAMB.COM
PROGRAMB.COM

CP/M and MP/M Reference Guide 261

SCHED
□ CP/M version 1.4
□ CP/M version 2.2
0 MP/M version 1.0

Purpose: SCHED is used to schedule a program for
execution at a later date and time.

Command
Nature:

Resident Process or SCHED.PRL

Format: SCHED mm/dd/yy hh:mm filename
.COM
PRL

V

Arguments: mm/dd/yy: This argument gives the date
when the program scheduled is to be execu
ted. It is required. The mm represents the
month (1-12), dd represents the day (01-31),
and yy represents the last two digits of the year.

hh:mm: This is the time when the program
scheduled is to be executed. The hh stands for
hours (00-24) and the mm stands for minutes
(00-59). This argument is required.

filename: This isthefilenameforthefiletobe
executed. The file must be of type .COM or
.PRL, but the extension need not be specified
in the command.

Command
Description:

When the SCHED command is executed, it
waits in memory until the time and date
match that of the respective arguments.
When this occurs, SCHED executes the
program named as its argument.

Command
Usage:

The SCHED program must be used with the
required arguments. SCHED exists either as a
.PRL file or as a resident process.

Example: OA > SCHED 01/01/82 00:01 NEW YEAR /

262 CP/M Simplified

SPOOL
□ CP/M version 1.4
□ CP/M version 2.2
0 MP/M version 1.0

Purpose:

Command
Nature:

Format:

Arguments:

Command
Description:

Command
Usage:

Example:

J

Used to send one or more files to the spool
queue, which is usually for the line printer.

Resident Process or SPOOL.PRL

SPOOL filename, (filename,...)

filename: The first filename is required, while
the others are optional. Filename extensions
must be specified.

The SPOOL command sends files to the spool
queue one by one. There, they wait until they
are processed by the LST: device (generally
the line printer). These files must be ASC II
text files.

The SPOOL program will either be a resident
system process or a .PRL file in the current
disk drive. The command, STOPSPLR, can be
used to cancel the spool queue operation.

OA > SPOOL FLA.TXT,FLB.TXT,FLC.TXT/

The above example sends FLA.TXT, FLB.TXT,
and FLC.TXT to the spool queue where they
wait to be processed by the LST: device
(usually the line printer).

CP/M and MP/M Reference Guide 263

STAT
0 CP/M version 1.4
0 CP/M version 2.2
0 MP/M version 1.0

Purpose: The STAT command is used to display status
information or assign devices.

Command
Nature:

STAT.COM or STAT.PRL

Formats: 1, STAT DEV:
VAL:

2. STAT gendevice: = phydevice:,...

3. STAT (d:) = (R/O)

4. STAT (d:) filename
filename match

5. STAT (d:) filename
filename match $S

$R/O
$R/W
$SYS
$D1R

6. STAT (d:) DSK:
USR:

STAT.COM

264 CP/M Simplified

Arguments:

DEV:
VAL:

This argument is used in the first format.
When DEV: is used, STAT produces a display
of actual device assignments. When VAL: is
used, STAT displays potential device assign
ments. In CP/M 2.2, VAL: also lists possible
STAT commands.

gendevice :phydevice

This argument is used in format 2. The
gendevice: stands for the generic device
name (CON:, PUN:, RDR:, or LST:). The dev:
stands for any physical device that can be
used with that generic device name.

(d:) = (R/O)

This argument is used in format 3. When
d: — R/O is specified (d: is a drive letter), the
drive specified by d: will be read only. If only
d: is displayed as the argument, STAT will
display that drive's current status. When no
argument is specified, the STAT command
will display the current drive's status read
only or read-write).

d: filename
filename match

This argument is used in format 4. If filename
is used as the argument, the status (i.e. size in
records and bytes, number of extents,
filename, and type) will be displayed. If a
filename match is specified, the status of
several files will be displayed at once. In
either case, the drive specifier (d:) is optional.

CP/M and MP/M Reference Guide 265

' $S
$R/0
$SYS
$R/W

. $dir ,

This argument is also used in format 4. $S is an
optional field which causes the file’s size to be
displayed. The other parameters ($R/O,
$R/W, $SYS and $DIR) are used to set file
attributes. $R/O (read/only) protects a file
from being overwritten or deleted. $R/W
cancels out the $R/O attribute. The $SYS
command prevents the file from being
displayed by a $DIR command. $DIR cancels
the $SYS file attribute.

(d:) DSK:
USR:

Format 6 is only used in CPM 2.2 and MP/M.
The argument DSK : is used to display the disk
characteristics. Unless a drive is specified by
the optional d:, the current drive's character
istics will be displayed.

If the argument USR: is used, information on
user areas will be displayed.

Command
Description:

STAT is used to display information about
files and diskettes, assign physical devices to
generic names, give a file $R/O or $SYS file
attributes, display current user areas, or
display active user areas.

STAT is executed as either STAT.COM or
STAT.PRL in one of the formats illustrated
previously.

Examples: A=* STAT PIP.COM $S é

Size Rees Bytes Ext Acc
55 55 12K 1 R/OA:PIP.COM12K

The above example displays the size of
PIP.COM. See Chapter 4 for examples of the
various uses of STAT.

STAT.COM
PIP.COM
R/OA:PIP.COM
PIP.COM

266 CP/M Simplified

STOPSPLR
□ CP/M version 1.4
□ CP/M version 2.2
0 MP/M version 1.0

Purpose: The STOPSPLR command is used to cancel
out a SPOOL command and empty the spool
queue.

Command
Nature:

Resident process or STOPSPLR.PRL

Format: STOPSPRL

J

Description:

Examples:

The STOPSPRL command is used to cancel a
SPOOL operation already in progress and
also to empty the spool queue.

OA > STOPSPRL /

In the above example, the STOPSPRL
command will cancel the SPOOL operation
and empty the SPOOL queue.

CP/M and MP/M Reference Guide 267

SUBMIT
0 CP/M version 1.4
B CP/M version 2.2
0 MP/M version 1.0

Purpose:

J

SUBMIT is used to execute a batch of
commands.

Command
Nature:

SUBMIT.COM or SUBMIT.PRL

Format: SUBMIT filename (value 1 value 2 value 3 ...)

Arguments: filename; This argument is required. The
filename must be for a text file containing
command lines. The filename is assumed to
have the extension .SUB which is not
required in the command.

Value 1 value 2 value 3...: These are optional
values to be given to variables in the .SUB file.
The arguments specified by value 1, value 2,
value 3 etc. will replace the variables $1, $2,
$3, etc. in the .SUB file.

The SUBMIT program accepts the file named
with the .SUB extension and builds the file
$$$.SUB, which is executed after a warm
start (after the SUBMIT program terminates).

Command
Description:

The $$$.SUB file's command lines are then
executed until the file is exhausted. When
the $$$.SUB file is built, SUBMIT will
substitute value 1 for $1, value 2 for $2, value 3
for $3 etc.

Submitted files can only be built when they
are in Drive A.

SUBMIT.COM

268 CP/M Simplified

Command
Usage:

Example:

By executing SUBMIT.COM or SUBMIT.PRL
on a SUB file, a batch of commands may be
executed.

Let's assume the file SAMPLE.SUB contained
the following lines of text.

*

ERA SI.BAK
DIR $2.
PIP $1.BAK = $2.BAK
ERA $2.BAK

If the SUBMIT program was used to submit
this file as follows;

A^^SUBMIT SAMPLE.SUB PROGA PROGB

the following command lines would be
contained in $$$.SUB;

ERA PROGA.BAK
DIR PROGB.*
PIP PROGA.BAK = PROGB.BAK
ERA PROGB.BAK

When the SUBMIT command has finished
substituting to build the file $$$.SUB, the
system will execute the contents of the file
$$$.SUB.

SUBMIT.COM

CP/M and MP/M Reference Guide 269

SYSGEN
@ CP/M version 1.4

CP/M version 2.2
@ MP/M version 1.0

y

Purpose: SYSGEN is used to generate a copy of CP/M,
bring the system into memory, and/or
produce a copy of the system diskette.

Command
Nature:

SYSGEN.COM

Format: SYSGEN

Command
Description:

Command
Usage:

SYSGEN can be used to bring the system into
memory and execute it. SYSTEM can also be
used to initialize a system diskette; that is
writing the first two tracks of the diskette
with the system information.

After SYSGEN has been executed as shown
below, a series of prompts will appear.

Examples: A > SYSGEN >

SYSGEN VERSION xx.xx
SOURCE DRIVE NAME (OR RETURN TO SKIP) δ/

Your response to the above prompt should be
the letter of the drive where the system is
located. However, respond with Return, if
you want to skip the system read operation.
This is done when the system is already in
memory due to a MOVCPM operation.

SOURCE ON A, THEN TYPE RETURN
FUNCTION COMPLETE

SYSGEN.COM

270 CP/M Simplified

The system read operation is now complete,
and the system is in main memory.

DESTINATION DRIVE NAME (OR RETURN TO REBOOT) J,/

The response to this prompt should be the
letter of the drive holding the system diskette
to be initialized. If Return is pressed instead,
the system will be executed in memory.

DESTINATION ON B, THEN TYPE RETURN/

Here, the system is written on the system
diskette. The system diskette can now be
used.

DESTINATION DRIVE NAME (OR RETURN TO REBOOT)/
A>

In the above prompt, by pressing Return, the
user has terminated SYSGEN.

CP/M and MP/M Reference Guide 271

TOD
□ CP/M version 1.4
□ CP/M version 2.2
0 MP/M version 1.0

Purpose: This is the time of day command. It is used to
display or set the time and date.

Command
Nature:

Resident Process or TOD.PRL

Format: TOD (mm/dd/yy) (hh:mm:ss)

Arguments: (mm/dd/yy): This argument is optional. It is
only required when setting the date. The mm
stands for the month (01-12). The dd stands
for the day (01-31). The yy stands for the
year.

(hh:mm:ss): This argument is required when
setting the time or the date. The hh isthe hour
(00-24). The mm is the minute (00-59). The ss is
the second (00-59). The argument is not
required if TOD is used alone to display
the system time and date.

Command
Descriptin:

In an MP/M system, TOD can be used to
display the system time and date if it is used
alone, without arguments.

If TOD is used with a time and/or date
argument, TOD will prompt the user with the
following message:

Strike a key to set a time.

When the user wishes to set the system time,
he or she can do so by pressing any key.

ni CP/M Simplified

TOD can exist as a .PRL file on your current
disk or as a resident system process (a
command).

Example: OA =>TOd/

FRI 10/22/81 20:01:37

In the above example, TOD displays the
system time.

OA > TOD 10/22/81 20:01:37/

Strike a key to set time

10/22/81 20:01:37

In the above example, when the operator
strikes a key, the system time is set to that
time and date supplied in the arguments.

CP/M and MP/M Reference Guide 273

TYPE
□ CP/M version 1.4
□ CP/M version 2.2
0 MP/M version 1.0

Purpose: Displays the contents of a file on the console
screen.

Command
Nature:

Built-in command in CP/M.
TYPE.COM or TYPE.PRL in MP/M.

Format: TYPE

Arguments: filename or filename match: The user must
include either a filename (with extension) or
a filename match. The filename displays the
specific file named, while the filename
match displays any files that match.

Command
Description:

The TYPE command can be used to display
the contents of any file. However, the user
will only be able to read the contents of an
ASC II text file such as a listing file, source file,
or .PRN file.

Command
Usage:

In CP/M, TYPE is a built-in command that
can be executed at any time. In MP/M, TYPE
may exist as either TYPE.COM or TYPE.PRL.

Examples: A >TYPE FILEI.TXT/

J

In the example above, FILE1.TXT will be
displayed on the console screen.

TYPE.COM
TYPE.COM

274 CP/M Simplified

USER
□ CP/M version 1.4
O CP/M version 2.2
0 MP/M version 1.0

Purpose:

J

Used to change current user area or display
user area in MP/M systems.

Command
Nature:

USER.COM or USER.PRL

Format: 1. USER (x) in MP/M

2. USER X in CP/M 2.2 and later

Argument: x: The argument x stands for the user area
number (0-15). This argument is required in
CP/M, but is optional in MP/M.

Command
Description:

If no argument is supplied, the USER
command is executed alone in MP/M to
display the current user number. If an
argument (x) is supplied with USER in MP/M,
the user are will be changed to that
specified by the argument. In CP/M 2.2, the
argument is required, meaning that the
current user area may only be changed—not
displayed.

Command
Usage:

The USER program is supplied as either
USER.COM or USER.PRL.

Example: A > USER 4/
A >

In the example above, the current user area is
changed to 4.

USER.COM
USER.COM

CP/M and MP/M Reference Guide 275

XSUB

Purpose:

□ CP/M version 1.4
CP/M version 2.2

Ξ MP/M version 1.0

■This program is the extended SUBMIT, which
allows input to programs executed in the
submit file.

Command
Nature:

XSUB.COM

Format: XSUB

Command
Description:

XSUB is available in CP/M 2.2 and MP/M
and offers the user expanded use of .SUB
files. XSUB allows the user to include
commands in the .SUB file to programs that
use buffered input (other than the CCP). The
ED, DDT, and PIP programs all use buffered
input.

Command
Usage:

XSUB is inserted as the first command line of
the .SUB file. The .SUB file is then executed
line by line until all commands have been
executed. XSUB will remain active until the
next cold start.

XSUB
PIP 1$.TXT= 2$.BAK

Example: A > SUBMIT COPY NEW ORIGINAL /

The .SUB file (COPY.SUB) is executed by the
SUBMIT command. Since XSUB is the first
line in COPY.SUB, the XSUB program is
relocated to the area of memory just below
the CCP, where it remains active. Next XSUB
executes the PIP command with NEW
substituted for $1 and ORIGINAL substituted
for $2.

XSUB.COM

CHAPTER 10. CBASIC
PROGRAMMING LANGUAGE

CBASIC BEGINNINGS

CBASIC is a programming language. A programming language
can be defined as a specific set of words and symbols which
represent calculations, operations, decisions, and procedures
which can be undertaken by the computer.

Binary symbols are used by computers to perform all of their
operations. Since binary logic consists of long sequences of I’s
and O's, programming a computer using binary logic would be
both difficult and inefficient.

Programming languages consist of instructions which are
automatically reduced to binary instructions which are then per
formed by the computer. The advantage to programming
languages are that unlike binary instructions, they can readily be
understood by humans as well as computers.

CBASIC was first released in 1977. However, CBASIC did not
become widely used in the microcomputer field until 1978,
when CBASIC version 2 was released.

CBASIC version 2 had many features that software development
firms were looking for. These software development firms began
writing applications software in the CBASIC version 2 language.

The main advantage of CBASIC is that it works with the CP/M
operating system. CP/M is one of the most widely used
operating systems for microcomputers. Therefore, programs
written in
microcomputers on which CP/M is installed.

CBASIC will operate on the thousands of

CBASIC STRUCTURE

CBASIC programs are written as source programs or source
code. Source code consists of CBASIC reserved words such as

278 CP/M Simplified

PRINT, READ, OPEN, DATA, variable names, arithmetic
operators, and functions such as MID$, CHR$, and LEN. The
source code is the form of CBASIC generally dealt with by
programmers.

CBASIC converts the source program into a condensed series of
symbols which can be executed by the computer. This con
version process is known as compiling. The series of symbols that
can be executed by the computer is known as the object code.

CBASIC consists of two parts; the compiler and the monitor. As
we just mentioned, the compiler translates the source code into
object code. The monitor interprets the symbols used in object
code into a language that can be read by the computer and
executes the program.

The fact that CBASIC contains both a compiler and a monitor
makes it unique among the differing versions of the BASIC
programming languages. Many versions of BASIC are known as
real-time interpreters. Real-time interpreters allow the program
mer to enter a program and run it in one step. The compilation
step is not necessary.

The advantage to real-time interpreters is that the programmer
can trace a program step-by-step to find errors. Also, the com
pilation step is eliminated.

The advantage of a machine language compiler is that it
executes a program much faster than a real-time interpreter.
Once the source code has been translated into a form similar to
the computer's native language, interpretation is not needed,
and the program will execute much faster.

To the novice, a compiled language such as CBASIC may seem to
be a nuisance. However, as we have discussed, compiled
languages offer a real advantage in fast execution.

CBASIC ERRORS

Every programmer encounters errors. They occur in both simple
and complex programs.

CBASIC distinguishes errors as two different types; compiler
errors and run-time errors. Compiler errors are defined as errors

CBASIC Programming Language 279

in the usage of the programming language. For example, the
misspelling of the reserved work INPUT as INRUT would be an
example of a compiler error. Compiler errors fortunately are
easily discovered and corrected. As your skills as a CBASIC
programmer increase, the frequency of compiler errors will
decrease.

Run-time errors are errors that result in the program not doing
what it is supposed to be doing. Run-time errors are much more
difficult to detect than compiler errors. The process of solving
run-time errors is generally a detailed and involved process.

USING ED TO EDIT A CBASIC PROGRAM

As you already know, CP/M includes a text editor program
known as ED. ED is not as sophisticated as many of the text editor
programs available. If you own a more sophisticated text editor
than ED, you may wish to use it to enter your CBASIC programs.

Since everyone who has a CP/M installation has an ED program,
we will use ED to illustrate how to edit a CBASIC program.

Your first step is to enter ED followed by the name of the file that
you wish to enter and finally the carriage return.

A^ED PROG RAMI . BAS

If PROGRAM!.BAS already existed on the diskette, then the
preceding command would make that program fileavailablefor
ED.

If PROGRAMI.BAS did not already exist on the diskette, then
CP/M would assume that you wanted to create a new file with
the filename PROG RAMI.BAS.

signifies pressing the carriage return key.

signifies operator input.

280 CP/M Simplified

If this was the case, ED would respond to your initial entry with
the following:

NEW FILE

This message means that CP/M will create the new file on its
directory. The directory is a portion of the diskette which con
tains the name, size, and location of every file residing on that
diskette.

ENTERING NEW TEXT WITH I

After the ED command has been entered with an appropriate
filename, an asterisk (*) will appear at the beginning of the next
line. This asterisk lets you know that ED is ready for use, and is
known as the ED prompt. The asterisk is just one of several prom
pts encountered in CP/M.

Once the ED prompt has appeared, the ED program will have
been loaded into memory and will be waiting for further in
structions. If you are working with an existing file which already
contains text, you should first enter the Append command. The
Append command copies lines from the file being edited into the
edit buffer-an area in memory where the actual text processing
takes place.

5OOA é

The number preceding the Append command specifies the num
ber of lines from the file being edited that are to be appended to
the edit buffer.

If you are working with a new file, naturally, you will not need to
append lines to the edit buffer.

To begin entering text into the edit buffer, the Insert command
must be entered.

After the Insert command has been entered, the ED prompt
character will disappear, and you will begin entering text into the
edit buffer by typing on the keyboard.

CBASIC Programming Language 281

Once you have finished inserting text into the edit buffer, you
must notify the ED program that you wish to terminate the Insert
command. This is done by pressing the Z key while holding down
the Control key (Control-Z).

After Control-Z has been pressed, the Edit prompt will reappear.

At this point, you may wish to review the text that you have just
entered so that you can check for errors. You can display the en
tire edit buffer by entering the following command.

*B#T

The B command moves back to the beginning of the edit buffer
while the #T types out the lines in the edit buffer until the end of
the file has been reached.

CORRECTING ERRORS IN ED

There are several ways to correct errors in the edit buffer.
Generally, errors are corrected either by re-entering the entire
line where the error occured or by substituting for the
erroneous letters.

To re-enter a line, move to the line in the edit buffer where the
correction is to be made. Use the Insert command to enter the
new line. Then, enter Control-Z to end the Insert command. This
is shown in the example below.

6: Z$ = A$ + B$
6: *
7: PRINTT Z$

7; PRINT Z$/
8: fZ
8: *K é
8: *

After the new line has been entered, you must delete the
erroneous line with the Kill command (K), as has been illustrated
above. After the erroneous line has been deleted, you will have
corrected the error.

282 CP/M Simplified

Another method of correcting a line in the edit buffer besides
reentering the entire line is to correct any erroneous letters by
substituting the correct letters. This is done by using the Sub
stitute or S command.

101: PRITT Z$
101: *STT| ZNt/
101: PRINT Z$
*

The preceding example corrects the misspelled reserved word
PRITT to PRINT by using the Substitute command. The first com
mand S stands for Substitute. The S command searches for text
in the edit buffer until it matches the characters that are
specified immediately following S. In our example, these are the
letters TT·

After the letters to be substituted for have been entered, Control-
Z is entered (|Z). Control-Z indicates the end of the characters
to be searched for.
After Control Z, the characters to replace the original characters
are entered (NT).

The command line in our example:

STTfZNT

can be interpreted as "substitute the first two characters found
in the text-TT-with NT.".

By including a number as a prefix with the S command, the Sub
stitution will repeat that number of times. For example, in the
following:

lOSTTiZNT

NT would be substituted for TT the next ten times TT is en
countered in the edit buffer.

SAVING THE PROGRAM ON DISK

When you are satisfied with the program that has been entered
into the edit buffer, you will want to save that program on disk.

CBASIC Programming Language 283

The program can have any primary filename that you wish.
However, the program must have a filename extension of .BAS.

To save the program on disk, you should enter the END com
mand (E) as shown:

*1^
A>

The E command saves that file on the diskette, ends the ED
program and returns control to CP/M.

COMPILING THE CBASIC PROGRAM

Once you have entered your CBASIC program file, your next step
is to compile that file. A CBASIC program is compiled by en
tering the name of the CBASIC compiler (CBAS2) followed by
the name of the .BAS file to be compiled. This is illustrated in the
following command.

A > CBAS2 PROGRAM.BAS /

As your program is compiled, it will be displayed line by line as
shown below.

CBASIC COMPILER VER 2.07
1: REM BEGIN PROGRAMA.BAS
2: A = 1
3: B = 2
4: C = 4*A + B
5: PRINT “THE ANSWER IS’';C
6: END

NO ERRORS DETECTED
CONSTANT AREA:
CODE SIZE:
DATA STMT AREA:
VARIABLE AREA:

9
47
0
04

These preceding lines are known as the compiler listing. If the
program contained any compiler errors, these would have been
displayed with the program.

284 CP/M Simplified

If the program does contain errors, these will be listed along with
an error code. The total number of errors in the program is listed
at the end of the compiler listing.

The lines printed at the end of the compiler listing are known as
compiler statistics. The compiler listing gives the size of certain
memory areas used by your CBASIC program when it is run.
These compiler statistics are useful in more advanced programs.

RUNNING THE COMPILED CBASIC PROGRAM

Once the CBASIC program has been compiled, its compiled ver
sion will be saved on the diskette with the filename extension
.INT. This file will contain the original .BAS file in its compiled
form, which can then be executed by the CBASIC interpreter.

You can run your compiled program by typing in the following
command:

A=> CRUN PROGRAMA

CRUN VER 2.07
THE ANSWER IS 6

A=-

INTRODUCTION TO PROGRAMMING PRACTICES

If you are just beginning to program, the first programming con
cept that you must understand is that programs must have struc
ture and organization. A good program does not consist of an ar
bitrary series of BASIC statements. A good program is well-
structured, well-organized, and easily modified.

When you are writing lengthy programs, your best strategy is to
divide that long program into a series of smaller programs or
modules, and then write each module separately. This practice is
known as modular programming.

Modular programming offers several advantages to program
mers. First of all, smaller programs are more easily written,
coded, and debugged. Secondly, modular programs are more
easily understood by others. This is especially important when

CBASIC Programming Language 285

other people will be reading or using your programs. Finally, you
can reuse individual modules over and over again in other
programs.

FLOWCHARTING TECHNIQUES

An excellent method of organizing a program before you ac
tually write it is to draw a flowchart of it. Flowcharts are a set of
symbols and connectors which provide a map of the logical
operation of the program.

There are two different types of flowcharts; system flowcharts
and program flowcharts. A system flowchart is an overall map
which depicts how the individual modules of the system interact
as a whole. An example of a system flowchart for an Accounts
Payable System is given in Illustration 10-1.

System flowcharts give an overall view of how the program
works. Each of the boxes in the system flowchart describes a
module in the overall system.

A program flowchart is shown for the Accounts Payable Check
writer module in Illustration 10-2. The program flowchart differs
from a system flowchart in that it is much more detailed. Every
operation and calculation is described in a program flowchart.

MODULE STRUCTURE

Before you actually begin writing a program or a program
module, it is a good idea to divide that module into a structure.
Generally, you will find that structuring a program or module in
volves the following steps.

Define the data. The variables to be used by the program
are set to their initial value. Arrays and tables are defined
via DIM statements.

Input data. The data that the program needs to operate
is retrieved-either from operator input or from a peripheral
device such as a disk drive.

Process the data. The necessary operations are performed
on the data.

286 CP/M Simplified

2 Ul
u
bU
(B

(U
H
1.

o u u
ee O u.
H
K

Z U
0

isCÛ 00Φ Φ W 00
° Φ = <5 0

I Φ c

bk
s
bU H (/) >

o
T.O
«

Φ Μ
?
2 □

Φ
cO
2

c o
c<e

Φ
o
cΦ

£
■&
□

E \□ \
αβ
C φ
sí Ϊ
2 a I»
¿ 3 E

Μ Φ 0£
Φ

Φ

Φ

E Ç I
£ w —
si·?
5.50
O Ï u

Φ
Φ
Ö c

Φ 00
Φ
">5 eo
I®

É
0

cl-i

s«î

£

ΦX q

CBASIC Programming Language 287

ILLUSTRATION 10-2. PROGRAM FLOWCHART FOR AP TRAN
SACTION PRINT

2
A/p transaction'
SORT/PRINT

(Line 01

I
KEY RETURN TO BE-'
QIN ENTER ΈΝ0
TO EXIT
(Line 1| 1

Keym Response

No Was
Return Pressed’

Yes

TRANSACTION
PRINTZSORT LOAD
ING MENU

JLine 3) Sort Messages

I
Load Menu

Video-β

Is
Verilicaiion = 1?
< (PRINT)

Yes

No

Ó Keyin Report Group

Transaclion Print Re
port

Was
Entry = 0’

Yes

No

Keyin Beginning &
Ending Record No s

Keyin Verification

Θ
A

ΐ

288 CP/M Simplified

Output the data. The results of the data processing are
either displayed on the console or printed by the line prin
ter.

Store updated data. The disk which has been processed is
stored on disk or tape for later use.

If you remember these five steps when designing your program
modules, your programs will be well-structured, easier to un
derstand, and more resistant to errors.

CBASIC PROGRAM STATEMENTS

Now that we have introduced some of the principles of modular
programming, we will introduce some of the concepts of CBASIC
programming.

Every CBASIC statement must contain at least one keyword. A
keyword is a word that has a special reserved meaning in
CBASIC. A keyword describes a pre-defined input process, out
put process, decision, calculation, or function. The CBASIC
keywords are listed in Table 10-1.
In addition to at least one keyword, a CBASIC statement can also
contain parameters. Parameters are variable names, numbers, or
special symbols that may appear in CBASIC statements.

CBASIC programs may be written in either upper or lower case
letters. When CBASIC programs are compiled, the lower case
letters are automatically converted to upper case letters (unless
this feature is suppressed with the $D toggle).

CBASIC statements may be divided among several separate
lines. The backslash (\) character (Control-9 on most terminals is
used to continue a CBASIC statement to the next line. For
example, the following CBASIC statement:

IF A>OTHENGOTO 5999

could be expanded to two separate lines with the use of the
backslash as shown in the following:

IF A > 0\
THEN GOTO 5999

CBASIC Programming Language 289

TABLE 10-1. FLOWCHART SYMBOL DESCRIPTIONS

Symbol Operation

Arrow This symbol indicates the flow of the
program logic.

Operator
Input

This symbol indicates an entry from
the keyboard.

Display

Disk

This symbol describes what is
displayed on the CRT.

This symbol describes an action
which takes place on the disk drive.

Printout

This symbol indicates a document
printed on standard paper by the prin
ter.

290 CP/M Simplified

TABLE 10-1 (CONT.). FLOWCHART SYMBOL DESCRIPTIONS

Symbol

Decision

Operation

This block indicates a change in the
logic flow in the program depending
upon the answer to the question in
the block.

Process or
Note

A program action is described, or a
note to the reader is enclosed in this
symbol.

Connector

The program flow continues at the
matching connector.

User
Instructions

The operator must perform some
function outside the program.

Terminal

This symbol indicates the program
start or end.

CBASIC Programming Language 291

Blank spaces as well as the backslash can be used to make
CBASIC programs more readable. In CBASIC, wherever you are
allowed to insert one blank space, you may insert as many blank
spaces as you desire. Blank spaces are especially useful in in
denting program lines so that the program takes on a certain
outline and is easily read.

You may also place more than one CBASIC statement on a single
line through the use of the colon (:). By separating CBASIC
statements with a colon, they may appear on the same line, yet
still be interpreted as separate statements. This is shown in the
following example:

A = 0:GOTO 5999
LINE NUMBERS

Many versions of BASIC require the inclusion of a line number
with every program statement. In CBASIC, line numbers need
not be included with program statements. They are optional.

However, line numbers are required if that line number is
referenced by a statement in the CBASIC program. This is often
the case in GOSUB or GOTO statements.

In most versions of BASIC, line numbers must be integers and
must occur in an ascending order. In CBASIC, line numbers do
not have to be in any particular order, nor need they be integers.

CBASIC line numbers may either be an integer or a real number.
Line numbers may contain fractions or decimals. They may even
be exponential in nature. The following are exaiViples of CBASIC
line numbers.

1000
4.375
40000
17.5

CBASIC's only rule pertaining to line numbers is that the line
number must contain 31 characters or less.

REMARK STATEMENTS

You will find it valuable to include comments in your programs

292 CP/M Simplified

that explain what is being done in particular portions of it. Not
only does this help others understand your programs, it also
helps you remember the reasoning behind your program
statements.

There are two ways to add comments to a CBASIC program.

1. Write comments beyond the backslash (\) character on
any line.

2. Use REMARK statements.

Any characters appearing after the keyword REMARK or its
abbreviation REM, are ignored by CBASIC. The following
segment from a program uses REM statements to explain the
program logic.

A REM statement can either be the only statement on a line or it
may appear on the same line with other statements. If a REM
statement appears on the same line with other statements, then
the REM statement must be the last statement on the line. The
following lines illustrate the use of the REM statements.

REM FUTURE VALUE OF AN INVESTMENT
INPUT I REM ENTER INITIAL INVESTMENT
INPUT R REM ENTER INTEREST RATE
INPUT C REM ENTER # OF COMPOUNDING PERIODS
INPUT Y REM ENTER # OF YEARS INVESTED
REM CONVERT INTEREST RATE TO DECIMAL
R = R/100

CONCLUSION

This chapter is meant only as an introduction to CBASIC. WSI
does publish a complete guide to CBASIC titled "CBASIC
SIMPLIFIED”. This book is available for $13.95 from your local
computer dealer or bookstore. It is also available by mail for
$13.95 plus shipping and handling from:

Weber Systems Inc.
Box 413

Gates Mills, OH 44040

CBASIC Programming Language 293

TABLE 10-2. CBASIC KEYWORDS SUMMARY

ABS
AND
AS
ASC
ATN
BUFF
CALL
CHAIN
CHRS
CLOSE
COMMANDS GE
COMMON GO
CONCHAR% GOSUB
CONSOLE
CONSTAT% GT
COS
CREATE
DATA
DEF

GOTO

IF
INITIALIZE ON
INP OPEN
INPUT OR

DELETE
DIM
ELSE
END
EQ
EXP
FEND
FILE
FOR
FRE

INT
INT%
LE
LEFTS
LEN
LET
LINE
LOCAL
LOG
LPRINTER REM
LT
MATCH
MIDS
NE
NEXT
NOT

REMARK
RENAME
RESTORE
RETURN
RIGHTS
RND
SGN
SIN
SIZE

SQR
STEP
STOP
STR$
SUB

OUT
PEEK
POKE
POS
PRINT
RANDOMIZE TAB
READ
RECL
RECS

TAN
THEN
TO
U CASES
USING
VAL
WEND
WHILE
WIDTH
XOR

CHAPTER 11. PRACTICAL
OPERATIONAL GUIDELINES

INTRODUCTION

You should now have become proficient in the use of CP/M.
Through this book, you have learned how to use CP/M as well as
how CP/M operates.

CP/M is probably the most widely used operating system for
microcomputers. Although CP/M will continue to evolve and
improve, later CP/M versions will probably be compatible with
earlier versions. Therefore, the CP/M foundations that you have
mastered in this book will continue to be of use for future
releases of CP/M. You need only learn the additional features of
new versions of CP/M and you will have mastered that new
version.

To become truly proficient at using CP/M, you must actually
practice it with a microcomputer. Test all of the resources of
CP/M. Even if you have no immediate use for the editor, try it
out. It will prepare you for using word processing programs, as
well as helping you become a more proficient CP/M user.

Mastering CP/M has another advantage that we have not yet
mentioned. The basic concepts of most operating systems are
very comparable. By mastering CP/M, you will be more easily
able to adapt to and master other operating systems.

Now that you have an overall working knowledge of CP/M, we
would like to outline some practical operating guidelines to
using CP/M that will allow you to become as proficient as
possible at using CP/M.

296 CP/M Simplified

DISCIPLINED USE

Discipline is the key to successful usage of computers. Minor
errors can cause serious problems in a program. By faithfully
following correct operating procedures, almost all of these
problems can be avoided. In the following sections, we will
outline correct computer system operating procedures which
will allow you to avoid almost all serious problems.

ORGANIZE THE COMPUTER ROOM

You should keep your computer room well organized. You must
control the physical environment for the computer so that it will
not cause errors. A list of environmental problems that can occur
in a computer room is shown in Table 11-1.

You should also be sure that the necessary manuals,
maintenance logs, diskettes, and documentation are readily
available. These items are listed under the heading 'System
Documentation’ in Table 11-2.

Finally, you should be certain that adequate supplies are
available in the computer room as listed in Table 11-3.

TABLE 11-1. ENVIRONMENTAL PROBLEMS

Item Description

Ventilation Be certain that the computer room
has adequate ventilation.

Computer Outlet
Vents

Be certain that the computer venti
lation outlets are free from any ob
struction. A common problem is an
object being placed on top of a
ventilation outlet.

Practical Operational Guidelines 297

TABLE 11-1. (CONT.) ENVIRONMENTAL PROBLEMS

Item Description

Non-Metallic
Diskette File Holders

If you use a file holder for your
diskettes that can be magnetized,
you risk having your disks erased.

Telephone Keep telephones out of your
computer work area. A ringing
telephone on top of a diskette or a
disk drive can erase a diskette.

Screwdrivers Keep screwdrivers away from your
computer work area. Screwdrivers
can become magnetized and cause
an erasure of diskettes.

Liquids Keep all liquids away from your
computer work area.

Smoking No smoking should be allowed in the
areas near your disk drives.

Disk Drives Do not unneccessarily move your
disk drives or allow them to be
vibrated.

Carpeting Guard against using carpeting that is
prone to static electricity in your
computer work area.

298 CP/M Simplified

TABLE 11-2. SYSTEM DOCUMENTATION

□ 1. All Required Manuals

□ a.) Computer Manual

□ b.) CRT Manual

□ c.) Printer Manual

□ d.) Disk Drive Manual

□ 2. CP/M Diskette

□ 3. CP/M Documentation

□ 4. Applications Program Diskettes

□ 5. Applications Program Documentation

□ 6. Maintenance Record

□ 7. Maintenance Phone Numbers

□ 8. Record of Correct Printer Settings

□ 9. Record of Correct CRT Terminal Settings

□ 10. System Start-Up Procedures

□ 11. Precautionary Procedures

Practical Operational Guidelines 299

TABLE 11-3. COMPUTER ROOM SUPPLIES

□ Blank Diskettes

□ Print Wheel

□ Spare Ribbons

□
□

Printer Paper

Blank Forms Required for Applications
Programs (Invoice Forms, Blank Checks, etc.)

300 CP/M Simplified

COPYING DISKETTTES

Whenever a new program or system diskette is acquired, that
disk should be copied first, before it is used. The original should
then be stored in a safe area and the copy used for actual
operations. Therefore, if your copy is ever accidentally
damaged, the original is still available so you can make more
copies.

When a lengthy file has been worked with extensively, the user
should copy this file onto a fresh diskette. By doing this, the file’s
sectors will be copied sequentially onto the fresh diskette. This
results in much faster loading of the file from the new diskette
than from the original.

STORING & HANDLING DISKETTES

Rule 1.

Rule 2.

Rule 3.

Rule 4.

Rule 5.

The first rule to remember when handling
diskettes is to keep them away from any
magnetic objects -- or any metallic objects
that could have become magnetized. Ex
amples include magnets, telephones, and
magnetized screwdrivers.

The second rule to remember is to always store
diskettes in their dust covers.

The third rule is to keep your diskette free
from smoke or dust contamination.

The fourth rule is never to touch, scratch, or
attempt to clean a diskette’s surface.

The fifth rule is to always properly label your
diskettes. The label should include the date
and contents at the least. A good procedure is
to generate a directory for each disk, then list

Rule 6.

Rule 7.

Rule 8.

Rule 9.

Rule 10.

Rule 11.

Rule 12.

Rule 13.

Rule 14.

Practical Operational Guidelines 301

that directly on the printer, cut out that
listing, and paste or tape it to the disk cover.
This gives a complete guide to a diskette's
contents.

Keep separate copies of your important
diskettes in several different locations. In the
case of a disaster (fire, theft, accidental
erasure), you can copy your back-up
diskettes, and avoid losing data files.

Do not expose diskettes to excessive heat or
direct sunlight.

Never fold, bend, or mutilate a diskette.

Never write on a diskette with a ball point
pen. Always use a felt tip pen. A bail point pen
can damage the diskette inside the cover.

Whenever the disk drive’s power is turned on
or off, be certain that the diskette is not
completely inserted in the drive.

Always make back-up copies of disks
containing important files.

Never allow diskettes to be exposed to dust.
Dust accumulates a static charge which allows
it to stick to the surface of the diskette. This is
especially important to remember when
storing diskettes in industrial areas, schools
(chalk dust), warehouses, stock rooms, and
dental offices (grinding of plaster).

Keep your computer work area relatively dust
free. If possible, install an electrostatic air
cleaner for the room.

Try to keep the build-up of static electricity to
a minimum in your computer room. Anti
static sprays are available for use on
carpeting . Install a dehumifier if possible.

302 CP/M Simplified

THE PRINTER

The most important rule to remember when using a printer is to
understand its operation. Read your owner’s manual thoroughly.
Be certain that you understand the functions of all adjustment
levers.

Before printing, be certain that these adjustment levers are set
properly. For example, if you are using thin paper in your
printer, but have the paper width lever adjusted for heavy paper,
the printer may malfunction. Be sure that you understand the
printer adjustments and set them properly.

Another potential error exists in environments where two
different printers are used. This is common in a business
environment where a daisy wheel printer is used for word
processing applications and a line printer for reports. In these
cases, separate CP/M versions may be necessary for each
hardware configuration. Be certain that the CP/M diskette you
are using corresponds to your hardware configuration.

Once your printer is operating properly and is listing data, more
problems may be encountered. The paper may become jammed
in the printer. If you are printing adhesive backed labels, this can
especially be a problem.

If the printer does become jammed, it is important that the
operator be present to shut off the operation. Otherwise,
physical damage could be incurred by the printer. Since printing
is a relatively slow operation, many operators do not attend the
printer while it is operating. This is an acceptable practice as long
as the printer is operating properly, and the operator frequently
checks its operation.

However, at the beginning of a print run, it is recommended that
the operator attend to the printer, as this is the period where it is
most likely to jam. Also, when printing labels, it is recommended
that the operator be present at all times, as jamming often occurs
during label print runs.

Whenever a problem such as a jam occurs in a print run, that
print run must be restarted. If the file being printed is of a short
or medium length, it is usually easiest just to restart the print run.

Practical Operational Guidelines 303

However, if the file is a long one, you may wish to restart the
listing near the point where the error occured. In such cases, you
can use PIP or ED to select the portion of the file that requires
reprinting.

HOW TO SHUT DOWN THE SYSTEM

If something is going wrong with your system, you may wish to
shut it down. Do not turn the power off or pull the electrical cord
out of the wall socket.

First of all, try a warm start by pressing CTRL-C. If this does not
work, try pressing RESET. Although you will lose information
held in RAM, you will not damage your file.

If your printer malfunctions, you can shut it down by merely
turning off the power.

CP/M & DISKETTE SPACE

It is a good practice to install CP/M on your diskettes when they
are blank. By doing this you are able to boot from any diskette.
Also, your chances of damaging files when swapping diskettes
when using PIP are reduced considerably.

SYSTEM TROUBLESHOOTING

Step 1. Check For Operator Errors

1. Are the cables properly connected?

2. Are any fuses blown?

3. Are all switches in the correct position?

4. Was the correct command given?
a.) Turn the system off
b.) Turn the system on. Repeat the command

304 CP/M Simplified

Step 2. Check The Diskette

1. Use your back-up diskette to generate a second back-up.

2. Use your back-up in the system in place of the original which
was causing the erratic system behavior.

Step 3. Check The Software

1. Make sure that you are using the correct version of CP/M for
your system.

2. Make sure that you are using the correct compiler for your
applications software (ex. CBASIC2).

3. Make sure that you are using the correct applications program
diskette.

4. Make sure that the applications programs have been written
so that they will work on your terminal and printer.

Step 4. Check The Hardware

1. Try to identify the defective device (printer, disk drive,
memory board) using any troubleshooting advice in your
owners manuals.

2. Try switching the malfunctioning component for a
component that you know is good. For example, if you believe
that your printer is malfunctioning, try using another printer
(the same model).

APPENDIX A
COMMON CP/M ERROR MESSAGES

The following error message reports errors which are related to
the CP/M system in general rather than to one particular
command (i.e. ED, PIP, ASM, etc.).

BDOS ERR ON d:error

In the preceding error message, d: is a letter identifying the disk
drive where the error took place. The error can beany one of the
following error messages.

BAD SECTOR
SELECT
READ ONLY

The following message is another error condition found only in
CP/M 2.2 and later versions.

FILE R/O

Each of these error messages will be discussed in the following
four sections.

BAD SECTOR

A bad sector error occurs when the disk controller is unable to
read information from a diskette. One major cause of bad sector
errors is a bad diskette. A second possible cause of this error is
defective disk drive controller.

A third possible cause of a bad sector error is if the diskette you
are trying to read from was written onto by a different controller.
Even though disk controllers are suppose to be standardized,
there may be small differences in record formats, which might
cause bad sector errors.

There are two possible ways to recover from a bad sector error.
First of all, you can try pressing the Return Key. This tells the
system to ignore the bad sector error and continue execution.

306 CP/M Simplified

However, pressing the Return Key may not enable execution to
continue. If this is the case, you can reboot the system by
pressing Control-C. This will abort the program and return
control to the CP/M system.

SELECT:

The SELECT: error is encountered when the user selects a disk
drive which is not present. The drive named in the SELECT error
message is the one selected in error. The system may be
rebooted by pressing any key on the terminal.

READ ONLY

The READ ONLY error occurs when the user attempts to write to
a diskette that has been specified as read only via the STAT
command.

The READ ONLY error is also encountered when the user inserts
a new diskette without first rebooting the system by pressing
Control-C. When a new diskette is inserted, the user must press
Control-C to change the diskette's memory map before that
diskette can be written to.

If the READ ONLY error is encountered, error recovery can be
made by pressing any key on the terminal and then rebooting
the system by pressing Control-C.

FILE R/O:

The FILE R/O error is encountered on CP/M 2.2 and later
versions. The FILE R/O error occurs when the user attempts to
write to a file that has been specified as read-only ($R/O).

The FILE R/O error condition can be recovered by pressing any
key on the terminal. When a key is pressed, the operation
attempting to write to the read/only file will be aborted. The
user should then use the STAT command to change the file
attribute from read/only ($R/O) to read/write {$R/W).

CON:

RDR:

PUN:

LST:

TTY:

CRT:

PTR:

APPENDIX B
PIP DEVICE NAMES

LOGICAL DEVICE NAMES

console or terminal. Includes both
keyboard and video display.
(input/output)

paper tape or card reader, (input)

paper tape or card punch, (output)

listing device such as line printer,
(output)

PHYSICAL DEVICE NAMES

or teletype. Used for console,
terminal, reader, punch or listing
device.

or Cathode Ray Tube. Used for a
console, terminal or listing device.

or paper tape reader. Used for
paper tape or card reader.

308 CP/M Simplified

PTP:

LPT:

or paper tape punch. Used for
paper tape or card punch device.

or line printer. Used for listing
device (usually line printer).

UCl: or user-defined console.

URl: or user-defined reader.

UR2: or second user-defined reader.

UP1: or user-defined punch device.

UP2: or second user-defined punch
device.

ULI: or user-defined listing device.

APPENDIX C
FILENAME EXTENSION TYPES

Extension
Name Description Example

ASM Filename extension required
for assembly language source
files to be used with the ASM
command.

PROG.ASM
NEW.ASM

BAK Filename extension for back-up
of a file before it was edited by
ED (text editor).

TEXT.BAK

BAS Filename extension required
for BASIC program source code
files.

PROG.BAS

COM Filename extension of transient
command.

PIP.COM
ED.COM

HEX Filename extension required
for files in hex format (machine
language).

PROG.HEX
NEW.HEX

INT Filename extension required
for BASIC program inter
mediate files (previously
compiled).

PROG.INT

PRL

PRN

BASIC

Filename extension required
for MP/M relocatable programs.

Filename extension required
for the listing file of an assembly
language file.

TRAN.PRL

PROG.PRN

PIP.COM
ED.COM

310 CP/M Simplified

RSP Filename extension required
for MP/M resident system
programs.

SPOOL.RSP

SUB Filename extension required
for text files containing CP/M
commands which are to execut
ed as a group via the SUBMIT
program.

OPER1.SUB

$$$ Filename extension for temp
orary or scratch files which are
created and then erased.

Index 313

INDEX

A Command (ED), 152, 171, 172, 280
ABORT, 99, 221, 222
Accounts Payable System, 24
Accounts Receivable System, 23
ASC II, 126, 127, 128, 129, 130, 131, 132
ASM Command, 48, 56, 77, 78, 223, 224,

225, 309
ASM, error messages, 80, 81
ASM, execution, 79
ASM, extension, 59
ATTACH, 99, 100, 226

B Command (ED), 38, 173, 174, 281
B Parameter (PIP), 136
Bad Sector Error, 305
BAK extension, 59, 309
BAS extension, 35, 59, 309
BASIC Files, 35
BDOS, 67,191,192,193,202,204,206,207,

208, 209, 210, 211, 212
Binary Logic, 277
Bit, 10, 66
BIOS, 191,192,193,194,202,204,205,213
Blanks, 60
Blocks, 137
Bootstrap Leader, 193, 194
Bugs, 83
Built-in Commands, 47, 61
Business Applications, 23
Byte, 10, 66
Bytes Field, 70, 73

CBAS, 283
CBAS2.COM, 36
cbase, 194, 203
CBASIC, 36, 277
CBASIC Keywords, 293
C Command, 166, 168
CCP, 83, 191, 192, 194, 201, 202, 203

chaining, 66
Character Pointer, 150, 164
Cold Start, 33
COM extension, 35, 59, 96, 98, 309
Command, format, 48
Command, files, 35
Commands, built-in, 47, 61
Commands, transient, 61
Compiled Files, 35
Compiled Language, 36
Compiler, 278
Compiler Errors,
Compiler Listing, 283
Computer, 10
Computer Room, environment, 296
Computer Room, organization, 296
Computer Room, supplies, 299
Computer, system, 9
CON: 119, 121, 307
Concatenation, 132, 133, 134, 135
Console, 54, 92, 100, 227
Control-C, 49, 99
Control Characters, 49, 57
Control Command Processor, 83
Control-D, 49
Control-E, 49, 163
Control-H, 51, 57, 163
Control-J, 51
Control-M, 49, 51
Control-P, 50
Control-R, 50, 57, 163
Control-S, 50
Control-U, 50, 163
Control-X, 51, 163
Copying Diskettes, 42, 300
Copying, Files, 40
Copying System Diskette, 32
CP/M, business systems, 22
CP/M, defined, 14

CBAS2.COM

314 CP/M Simplified

CP/M, error messages, 305
CP/M, file structure, 195
CP/M, internal operation, 191
CP/M, operating guidelines, 295
CP/M, versions, 15
CRT: 124, 307
CRUN, 36, 284

ERAQ, 100, 238, 239
Error, bad selector 306
Error, file R/O, 306
Error Messages, CP/M, 305
Error, Read-Only, 306
EXT Field, 70, 73
Extents, 66

D Command (ED), 178, 179
Daisy Wheel Printer, 21
DDT, 48, 56, 83, 84, 228, 229
Debugger, 48, 56, 83, 84
Delete Key, 51, 57
Device Assignments, 67, 68
Device Keywords, 119
Device Names, logical, 307
Device Names, physical, 307
Device Names, PIP, 307
Device Names, special, 124

Floppy Diskettes, 11
Flowchart Symbols, 289, 290
Format, 32
General Ledger System, 25
GENHEX, 103, 240, 243, 244
GENMOD, 92, 103, 241, 242
GENSYS, 104, 215, 217
G Parameter (PIP), 93, 142, 143
GO, 51, 144

F Command, 179, 180, 181
File Attributes, 73, 95, 142
File Control Block, 196, 198, 199, 200
File Protection, 94
File R/O Error, 306
File Structure, CP/M, 195
Filename Extension, 57, 58
Filename Match, 42, 58
Filenames, 57
Files Erasing, 45
Files, Printing, 43

DIR, 35, 48, 52, 61, 62,100, 230, 231, 232 files. Text, 147
Disk Directory, 34
Disk Storage, 20
Disk Swapping, 114, 115, 116
Disks, Floppy, 11
Disks, Hard, 11
Diskette, Loading, 39
Diskettes, 11
Diskettes, copying, 300, 301
Diskettes, storing, 300, 301
$DIR, 72, 95, 96
$$$ Extension, 60, 310
D Parameter (PIP), 137
DSKRESET, 54, 92, 96, 97, 223
DUMP, 49, 56, 77, 82, 234
Dynamic Allocation, 67

Hard Disk, 11
Hard Disk, Storage, 20
Hardware, 19
H Command (ED), 153, 182, 183
HEX extension, 59, 309
HEX file, 79, 134, 135
H Command (ED), 153, 182, 183

E Command (ED), 38,39,51,153,157,159,
160, 161, 169, 171, 182, 183, 283

ED, 37, 48, 52, 147, 148, 235
ED, error indicators, 189
ED, prompt, 149
Edit Buffer, 148, 149, 150, 280
Editor Prompt, 37
EOF, 124
EOF Character, 133
E Parameter (PIP), 137
ERA, 45, 48, 52, 63, 236, 237
Erasing Files, 45

I Command (ED), 38, 153, 162, 173, 280
I Parameter (PIP), 135, 138
Input Command (DDT), 84
INT extension, 35, 59, 309
Intermediate Program Files, 35
Interpreted Languages, 37
Interpreter, 278
Inventory System, 27

J Command (ED), 187, 188

Index 315

K Command (ED), 176, 177, 281
Keyboard,13
Keyword, 288
Keywords, CBASIC, 293

Language, Compiled, 36
Language, Interpreted, 37
L Command, 176
Line Numbers, 291
Line Printer, 21
Load, 48, 56, 77, 80, 245, 246
Loading, Diskette, 39
Logical Device Name, 68, 119, 307
L Parameter (PIP), 138
LPT: 44, 124, 308
LST: 119, 120, 307

Mailing List System, 27
Μ Command, 188
Modular Programming, 284
Modules, 284
Monitor, 278
MOVCPM, 48, 54, 213, 214, 216, 247, 248
MPM, 87
MPM, defined
MPM, installation, 214
MPMLDR, 54, 104, 215, 218, 249
MPMSTAT, 55, 92, 101, 218, 250

N Command, 184, 185
N Parameter (PIP), 138
N2 Parameter (PIP), 138
NUL, 125

Object Code, 278
O Parameter (PIP), 138

Pages, 85
Parameters, CBASIC, 288
Parameters, PIP, 136
Payroll/Personnel System, 25, 26
Physical Device Name, 68, 119, 307
PIP, 40, 48, 52, 55, 107,108, 251,252, 253,

254, 255
PIP, aborting, 116
PIP, copying with one drive 112, 113
PIP, copying several files, 110, 111
PIP, copying single files, 108, 109, 110
PIP, copying to other peripherals, 116,117
PIP, device names, 307

PIP, prompt, 41
P Key, 44
P Parameter (PIP), 138
Primary Filename, 57
Printer, 13, 302
Printer, Daisy Wheel, 21
Printer, Line, 21
Printing Files, 43, 44
Priority Scheduling, 87, 88, 89
PRLCOM, 103, 256
PRL extension, 59, 96, 98, 309
PRN: 125
PRN extension, 59
PRN file, 79, 309
Program Flowcharts, 285
Programming Language, 277
Protection, files, 94
PTP: 124, 308
PTR: 124, 307
PUN: 119, 121, 126, 307

Q Parameter (PIP), 138, 140

RAM, 10
R Command (DDT), 84, 85, 86, 185, 186
RDR: 119, 121, 126, 307
RDT, 56
Read-Only Error, 306
Read-Only Files, 144
Read/Write Head, 12
Real-Time Interpreter, 278
Record, 66
Rees Field, 3, 70
Remark Statements, 292
REN 39, 48, 53, 63, 257
R/O, 66, 69
R/O $, 72, 95, 96
ROM, 10
R Parameter, 142, 145
RSP extension, 60, 310
Run-Time Errors, 278
Run-Time Monitor, 37
R/W, 66
R/W $, 72, 95, 96

$S, 72
SAVE, 48, 64, 84, 85, 86, 258, 259, 260
SCHED, 56, 92, 98, 261
Scheduling, priority, 87, 88

316 CP/M Simplified

Units, 196
U Parameter (PIP), 139
URl: 124, 308
UR2: 124, 308
USER, 55, 91, 92, 93, 94, 274
User Areas, 91, 92, 93, 94, 141, 142

V Command (ED), 150, 174
Verify Option (PIP), 113, 139
Video Display, 13

Warm Start, 34
W Command (ED), 153, 154, 183, 184
Word Parameter (PIP), 145
Word, 10

Write Protect Notch, 12, 13

X Command, 185, 186
XIOS, 213
XSUB, 75, 76, 77, 275

Scheduling, round-robin, 87, 88
S Command (ED), 181, 182, 282
Sector, 66, 195, 196
Select Error, 306
Size Field, 73
Software, applications, 14
Software, custom, 17, 18
Software, system, 17, 18
Source Code, 277
Source Code Files, 35
Source File, 157
S Parameter (PIP), 139, 140
Special Device Names, 124
Spool, 55, 92, 97, 262
Spooler, 90
STAT, 48, 53, 55, 66, 67, 68, 69, 70, 71,72, Word Processing System, 28, 29,147,148

93, 94, 95, 96, 119, 263, 264, 265
STOPSPLR, 55, 92, 98, 261
SUB Extension, 60, 74, 75, 76, 77
SUBMIT, 48, 56, 73, 74,75,76,77,267,268
$SYS, 72, 95, 96, 145
SYSGEN, 32, 43, 48, 54, 64, 269, 270
System Diskette, 32
System Flowcharts, 285
System Message, 31
System Prompt, 31, 33
System Shutdown, 303
System Troubleshooting, 303

Z Option (PIP), 139

T Command (ED), 38, 165, 166,167,174,
175

Temporary Output file, 153
Timesharing, 87
TOD, 55, 92, 98, 271, 272
TPA, 84
T Parameter (PIP), 139
Tracks, 12, 195
Transient Command, 58, 61, 64
Transient Program Area,84,150,193,194
Troubleshooting, system, 303, 304
TTY: 124, 307
Turning Off System, 46
TYPE, 44, 48, 53, 62, 101, 117, 273

U Command (ED), 163
UCl; 124, 308
ULI: 124, 308
UP1: 124, 308
UP2: 124, 308

$13.95

CP/M SIMPLIFIED
CP/M® Simplified is a clear, practical guide to the CP/M
microcomputer operating system. CP/M is probably the most
widely used operating system for microcomputers. The following
microcomputers can be operated under CP/M: TRS-80 Model If,
IBM Personal Computer, Apple II, Vector Graphics, Xerox 820,
Intertec Superbrain, Zenith Z-80 & Z-90, Northstar, Osborne I, and
many more.

For beginners, CP/M Simplified offers step-by-step instructions in
the use of CP/M. No prior knowledge of computers is assumed.
Everything from turning on the computer to correcting error
situations is explained in simple, clear terms.

For experienced programmers, CP/M Simplified offers a complete
description of all of CP/M's advanced features. Subjects covered
include:

• CP/M Business Usage
• MP/M Operation
• CP/M Commands
• CP/M Internal Operation
• Introduction to CBASIC

...and many more

A handy reference guide to CP/M and MP/M commands is
included along with several invaluable appendices. No user or
potential user of CP/M should be without CP/M Simplified.

CP/M® is a registered trademark of Digital Research Inc.

LC: 81-66910 ISBN: D-ISfifibB-OM-l

WEBER

ng

2
"XJ
H··
"T1 M··
m□

m ~n
25 -|W
o z

W5i
WEBER

SYSTEMS
IMC

https://acpc.me/

CPC

[FRA] Ce document a été préservé numériquement à des fins éducatives et d'études, et non commerciales.
[ENG] This document has been digitally preserved for educational and study purposes, not for commercial purposes.
[ESP] Este documento se ha conservado digitalmente con fines educativos y de estudio, no con fines comerciales.

	CP/M simplified
	Contents
	1. INTRODUCTION TO CP/M AND MP/M
	2. USING CP/M FOR BUSINESS COMPUTING
	3. BASIC CP/M OPERATION
	4. CP/M AND MP/M COMMANDS
	5. MP/M AND CP/M 2.2
	6. USING THE PIP COMMAND TO HANDLE FILES
	7. THE CP/M EDITOR (ED)
	8. INTERNAL OPERATION OF CP/M
	9. CP/M AND MP/M REFERENCE GUIDE
	10. CBASIC PROGRAMMING LANGUAGE
	11. PRACTICAL OPERATIONAL GUIDELINES
	APPENDIX A. COMMON CP/M ERROR MESSAGES
	APPENDIX B. PIP DEVICE NAMES
	APPENDIX C. FILENAME EXTENSION TYPES
	INDEX
	
✅ Raw HQ scan : KailoKyra for ACME
✅ Cleaning/Restoration/Layout/OCR : ACME – https://acpc.me
✅ 2022-07-31

