
ÍY1V
flIÏISTflflD CPC lÆU

mo me
JACK KlflLKEñ

My Amstrad CPC 464
and Me

Jack Walker

Duckworth

First published in 1985 by
Gerald Duckworth & Co. Ltd.

The Old Piano Factory
43 Gloucester Crescent, London NW1

©1985 by NEWTECH PUBLISHING LTD

All rights reserved. No part of this publication
may be reproduced, stored in a retrieval system,

or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording
or otherwise, without the prior permission of the

publisher.

ISBN07156 19640

British Library Cataloguing in Publication Data

Walker, J.
My Amstrad computer and me. — (My computer and me)
1. Amstrad Microcomputer — Juvenile literature
I. Title II. Series
001.64'04 QA76.8.E/

ISBN 0-7156-1964-0

Typeset by Commercial Colour Press,
Forest Gate, London E7.
Printed in Great Britain by

Redwood Burn Ltd., Trowbridge
and bound by Pegasus Bookbinding, Melksham

INTRODUCTION

This book is for children and for total
beginners. It does not attempt to go beyond
the absolute minimum necessary to
understand the principles of programmming.
I have tried to explain things as thoroughly
and as simply as I can. I hope that I have
succeeded in avoiding the assumption that
after the first three or four pages the reader
is miraculously transformed into an expert.

The difficulty with programming
languages is not one of essence but of detail.
There are a lot of words to understand and
learn and put together. That is a good thing,
because a good vocabulary can produce
powerful sentences. But a collection of
words is not necessarily a vocabulary. This
book considers the most important words
which happen (as is the case in any sort of
language) to be the simplest. It deals not
only with words but with the ideas that
inform programming:

Actions can happen one after another, in
sequence.

Actions can be repeated. They can be
repeated a fixed number of times. Or they
can be repeated until something happens to
make them stop. If that something never
happens they will keep repeating.

Actions can be aimed in one direction or
another depending on some condition.

Actions act on objects.

1

A computer program is a collection of
actions on objects. The objects are given to
the actions. The actions process the objects
to produce new objects. These objects may
be processed by other actions in the
program or they may be shown as the end
results of the program.

One of the major ideas that this book does
not deal with is that of recursion. It is not
because this idea is particularly difficult,
but because it comes into its own for
programs that are more complex than any in
this book.

An hour a day with the book, reading and
acting on it, is a program for grasping how
really simple and powerful the ideas of
programming are.

The best possible readers I could hope for
are children and parents reading the book
together.

2

IT LOOKS FAMILIAR!

When you first look at your Amstrad, you
might tell yourself, “This looks just like a
typewriter!”

Have you ever used a typewriter? You first
put a blank sheet of paper in it. You type
and you see that words get PRINTED on the
paper. Does the sheet of paper have to be
white? Not really. Does the typewriter
ribbon have to be black? Not really. You
could have red ink on black paper, black ink
on white paper, and so on. What would
happen if you had ink the same colour as
the paper? If you typed your name in red ink
on red paper, would you be able to see your
name?

Have you thought what happens when you
type the letter A on a typewriter?

3

When you hit the A key, this makes the
typewriter move levers and springs, an arm
comes up and strikes the ribbon and the
letter A is printed on the paper.

If you type the letter A on the keyboard of
your Amstrad, the Amstrad obeys your
command to print the letter A on the screen.
But, of course, it uses a different method to
the one used by the typewriter. The Amstrad
has electronic chips inside it instead of
springs and levers. It shows things on the
screen in the same way as a TV set does.

Is your Amstrad switched on and
connected?

Notice the Ready sign. It tells you that the
Amstrad is ready for you to type
instructions and orders into it.

4

Type in your first name. Now, the way you
tell the Amstrad that you have finished an
instruction is by pressing the ENTER key.
So press ENTER.

The Amstrad gives you a message:
Syntax error.
That’s its rather cheeky way of telling you

that it doesn’t understand what you want it
to do.

That’s not really surprising, when you
think that your Amstrad is really only a
machine. Your TV set gives marvellous
moving pictures and sound, but it needs to
be switched on by you. You have to change
the channels. You have to turn the
brightness, volume, contrast and sound
controls.

So you also have to give your Amstrad
instructions in a special language that it can
understand. This language is called BASIC.

One of the words in this language is
PRINT.

Type in:
PRINT'Amstrad"
Press ENTER to tell the Amstrad that

you’ve finished your instruction. What do
you see on the screen? What would you do if
you wanted to PRINT your first name
instead of AMSTRAD?

At this stage, press CAPS LOCK and keep
this key in operation for the rest of the work
you do with this book.

5

DOING THINGS AT ONCE
AND DOING THINGS LATER

When you are home at the weekend, you
may suddenly decide to go out and play
football. After that, you may decide to read
a book. You can keep on deciding to do
things as you think of them, without having
a definite plan. But you can instead think
ahead and make a list of what you want to
do, one thing after another. If you keep a
list, you can look at it later and see what
you have to do.

Suppose this is your list:
10 PLAY FOOTBALL
20 READ A BOOK
30 WATCH TELEVISION
40
50

60

HAVE DINNER
PLAY WITH THE
AMSTRAD COMPUTER
END

6

Why do you think the numbers go up ten
at a time? Let’s try and think why.

Suppose you want to have a shower after
playing football. Then you can write:

15 HAVE A SHOWER

You can see that having the numbers go
up by ten makes it easier to put in
something else in your list of things to do.

Notice how you tell yourself to finish
doing the things on your list. You put the
instruction in Line 60.

Now, you can command the Amstrad to do
things at once:

PRINT'AMSTRAD"

(Don’t forget to press the ENTER key after
the command.)

You can, instead, make a list of commands
for the Amstrad to obey:

10 MODE 0
20 PRINT' AMSTRAD"
30 END

Don’t forget to press the ENTER key after
typing line 10 and after typing lines 20 and
30.

When you make a list of instructions for
the computer to follow, the computer will
remember them. But it won’t act on them
immediately. It will follow the instructions
only when you order it to.

You give it the order by typing RUN.
The list of instructions is called a

PROGRAM.

7

If you want to tell the computer that you
are going to give it a new program, type
NEW.

So, now type NEW.
Now type in this program:

10 MODE 1
20 PRINT'AMSTRAD"
30 END
Notice that Line 10 is different to the Line

10 you typed in before.
Now type RUN.

8

FAT LETTERS
AND THIN LETTERS

Notice that the word AMSTRAD appears on
the screen in a different size for each
program that you typed in.

Why is that?
It’s because of the word MODE.
MODE tells the Amstrad to divide the

screen up into little blocks. Of course, you
can’t actually see these little blocks, but the
Amstrad divides the screen up in its
memory.

When you tell the Amstrad to divide the
screen up into MODE 0 blocks, the letters it
shows on the screen are fatter than the
letters it shows when it is in MODE 1.

Let’s look at the way the letter A is shown
in MODE 0.

First, type NEW.
Now, enter this new program: (By the way,

don’t confuse the number 0 with the letter
O. The number 0 has a little slanting line

9

through it and is near the top right-hand
corner of the keyboard.)

10 MODE 0
20 PRINT"A"
30 END
Now type RUN. Notice how the A shape is

made up of little dots.
Now let’s look at the way the letter A is

shown in MODE 1.
First, we have to command the Amstrad to

go to MODE 1.
Does this mean we have to type in a whole

new program?
Not really. First, type LIST. This will show

you all the lines of your program.
The only line you want to change is Line

10.

So, all you have to do is type in:
10 MODE 1

10

The screen is looking a bit messy now. So
clean it up by typing CLS. You haven’t lost
the program. Type LIST and you’ll see it
again.

Now type RUN.
Notice how the letter A is not as fat as the

letter A you saw for MODE 0.
That’s because the little dots making up

the letter A in MODE 1 are thinner than the
dots in Mode 0, so it looks thinner.

Suppose some fat men try to squeeze into
a telephone box. Then suppose some thin
men do the same. You can see that more
thin men will fit in. In the same way, more
letters will fit on the screen in MODE 1 than
in MODE 0. In Mode 1 the Amstrad can fit 40
characters across one line of the screen. It
can only fit 20 characters in MODE 0.

11

By the way, the little dots that make up a
letter or a picture on the screen are called
PIXELS. The fatter the pixels a letter is
made up of, the fatter the letter is. The
fatter the letters are, the fewer of them will
fit onto the screen. It’s just like the fat and
thin men and the telephone box.

You can not only put letters on the screen.

12

The pixels are dots. So you can order the
Amstrad to join the dots together to draw
lines, and triangles, and circles; and even
pictures. Of course, you have to give the
Amstrad careful instructions to do these
things. As you practise more and more, you
will learn how to write bigger and bigger
programs.

The Amstrad can draw letters and pictures
on the screen in three different MODES.
You’ve looked at MODE 0 and MODE 1.

You can easily see what the letter A will
look like in the remaining MODE.

First, type LIST to look at Line 10.
10 MODE 1
You just want to change the 1.
So, press the SHIFT key and hold down.
Use the upward-arrow key that’s near the

COPY key to shift the ■ sign (it’s called the
COPY CURSOR) to go on the 1 of Line 10.
Now, press the COPY key carefully until you
see the copy cursor positioned over the 1.
Now type in 2. Then press ENTER.

Notice that so long as you press COPY,
you copy what’s in Line 10. If, instead, you
type something without pressing COPY, you
add something new to Line 10.

Now you can RUN your program and see
what the letter A looks like in MODE 2.

13

NUMBERS AND
CHARACTERS

ONE NINE e«&KT -Four
w

NlNETCGN ElfifHTYFOU^

Let’s go back to the program we started
with. Type in:

10 MODE 1
20 PRINT'AMSTRAD"
30 END
Look again at line 20:
20 PRINT'AMSTRAD"
Why can’t we just say AMSTRAD, without

the ‘ ‘ marks? If you want, try it and you’ll
see that the Amstrad thinks it is a number
and prints a zero.

14

That’s because the Amstrad has to know
whether you are talking about a character
or a number.

Numbers can be added, or subtracted or
multiplied or divided.

1+2 = 3
4-2 = 2
4*2 = 8 (* means multiply for the

Amstrad. Look for it on your
keyboard.)

4/2 = 2 (/ means divide for the Amstrad.
Look for it on your keyboard.)

Characters are all the things that are not
treated as if they are numbers.

“AMSTRAD” is a collection of characters.
You can’t treat it the way you can a number.
You can’t do things like addition and
subtraction to it.

The “ marks tell the Electron that it is
dealing with characters.

But let’s look at 1984.
1984 looks like a number but it can also be

treated as if it is a collection of characters.
It depends on what you mean when you say
1984.

If you mean the year 1984, then it’s a
collection of characters. If it is how many
pounds you have in the bank, then it’s a
number.

Your name is a set of characters. You can’t
multiply your first name by your surname
to give a new name. But you can multiply
ten by two to give twenty.

15

WHAT’S HAPPENING
INSIDE?

Here, once again, is the list of instructions
for what you might do on a Saturday:

10 PLAY FOOTBALL
15 HAVE A SHOWER
20 READ A BOOK
30 WATCH TELEVISION
40 HAVE DINNER
50 PLAY WITH THE AMSTRAD
60 END

16

You write these instructions on a piece of
paper. You can’t write them on air! You need
somewhere — a piece of paper — to put the
instructions. If you write down even more
instructions, you will need more paper.

In the same way, when you enter a
program into the Amstrad, it is kept inside
the space the Amstrad uses to store the
instructions you give it in your program.
The larger your program is, the more space
it will need.

This space is in the computer’s memory.
You can think of it as being made up of tiny
little brain-boxes.

Does that mean that if you could look into
the tiny brain-boxes in the computer’s
memory, you would see the same sort of
letters and numbers as the ones you write
on a piece of paper?

No, not at all.
Take two little bits of blank paper. On the

first piece, write a 1 on one side and a 0 on
the other side. Do exactly the same thing on
the other piece of paper.

Now put the two pieces side-by-side. If you
do this and then turn one piece over, and
then the other, you will get the following
patterns:

11
10
01
00
If you tell yourself that you are an

Amstrad, and that each of the patterns
means something to you, you will get an
idea of how the Amstrad stores information

17

in its memory.
For example, you can tell yourself that the

pattern 11 means the letter P.
Every time you press a key, the Amstrad

changes the letters into patterns like the
ones above. Of course, you’ve only got four
patterns above. That’s because you used two
pieces of paper. But if you took eight pieces
of blank paper and then did exactly what
you did above, you would get 256 different
patterns! That’s more than enough for the
Amstrad to change what you type in into the
patterns of 0 and 1 that it can understand.

Of course, you can’t understand the
language that the Amstrad uses inside itself.
So the Amstrad very kindly changes it to

18

SOME THINGS REMAIN
THE SAME AND
SOME THINGS CHANGE
You were bom with one nose. You will have
one nose all your life (I hope!) When
something doesn’t change, it is called a
CONSTANT. Can you think of other things
that you could call constants?

See what’s in one of your pockets right
now. Maybe your pocket’s empty! Or maybe
it’s got something in it — money perhaps, or
a telephone number or the name of your
favourite pop star. The contents of your
pocket can change. Things that can change
are called VARIABLES.

If your pocket contains things that can be
added, subtracted, multiplied or divided, it
contains NUMBER variables. For example, if
your pocket contains five pence, you can
add two pence to it to make seven pence. Or
you can put 15 pence — three times five —
into it.

19

If your pocket contains changeable things
like telephone numbers or names or
addresses, it contains what the Amstrad
calls STRING variables. Remember that you
can’t treat these as if they are numbers. You
can’t take away your address from
somebody else’s address to get a new
address!

You can imagine that the Amstrad has
many, many pockets in its memory. It keeps
number variables or string variables in its
memory pockets. Of course, it can also keep
things that don’t change in its memory
pockets.

20

A BIGGER PROGRAM

Now let’s type in the same program that we
used before:

10 MODEEE
I did that wrong, but I realised it before I

pressed ENTER. I had to correct it, of
course, but all I had to do was keep pressing
the DELETE (the key marked DEL, top right
of the keyboard) key to get rid of the last
two letters E.

Next I typed:
20 PRINT AN "AMSTRAD"
Oh no! I didn’t want the AN there. If I left

it, the Amstrad would think I had typed in
rubbish. So I had to correct it. I pressed
ENTER. Then I held down the SHIFT key. I
used the up-arrow to get on the 20. Then I
pressed COPY until I got to the A. Then I
used the right-arrow key to skip over the A
and the N. Then I pressed the COPY key till I
got to the end of Line 20, just after the "
marks. Then I pressed ENTER.

Now I typed CLS and then LIST. That was
tiring. But we all make mistakes, that’s why
it’s so useful to be able to edit program
lines, instead of having to type them out
completely again. That would be even more
tiring.

10 MODE 1
20 PRINT'AMSTRAD"
30 END

21

We are now going to change this little
program a lot, and make it bigger.

First, we want to get rid of line 20. All we
have to do is type:

20
Now press ENTER. That’s how we can get

rid of a whole line in a program.
Type CLS and then use LIST.
We want to tell the Amstrad to reserve one

of its memory-pockets for a NUMBER
variable. Now, one pocket looks just like
another. So how can we tell if the pocket
should contain a number or a string variable
in it?

Suppose you wanted to reserve one of your
pockets for money only. One way of doing it
(but don’t really!) would be to get a sticky
label, write CASH on it, and stick it on a
pocket.

If you want to reserve a pocket for putting
names only into it, you could get a sticky
label and write NAMES on the sticky label,
then put this on the pocket. The $ sign tells
you that you are not dealing with numbers
but with characters. You are dealing with
STRING variables when you store names.
You can’t do arithmetic with names!

What would you do if you wanted to
reserve a pocket for putting telephone
numbers in? Is a telephone number a
number that people add to other telephone
numbers? Would PHONES be a nice sticky
label to put over a pocket?

22

NUMBER VARIABLES

Let’s pretend that your CASH pocket starts
off with no money in it. Your CASH is 0.

We can say:
CASH = 0

23

Now suppose that you add 5 pence to
what’s inside your cash pocket.

We can now say:
CASH = CASH + 5
How much CASH is in your pocket now? If

CASH started off by being 2, and you added
7 to it, how much CASH would there then be
in the pocket?

(What could you do if you wanted to
reserve a pocket for MARBLES?) Type in a
new Line 20:

20 CASH = 0
You’ve now ordered the Amstrad to

reserve one of its memory pockets for a
NUMBER variable called CASH. Inside this
variable memory pocket, it puts 0.

How can we know what the Amstrad has
in its variable memory pocket called CASH?
After all, because it is a number variable, we
could change it by adding, subtracting,
multiplying or dividing. We don’t want to do
the hard work of remembering what’s inside
the variable pocket, especially if what’s
inside it keeps changing. We would prefer
the Amstrad to do the donkey work and tell
us what we want.

It’s easy. All we have to do is to command
the Amstrad to PRINT what CASH is on the
screen.

So let’s type at Line 23:
23 PRINT CASH
LIST then RUN the program. It won’t

surprise you to see 0 on the screen. After
all, that’s what CASH starts off as.

24

Suppose your friend came along just now
and saw the 0, and asked you what it meant.
You could say, “That’s CASH”. But why
should you waste your breath when the
Amstrad can give a message for you?

So type in Line 22:
22 PRINT "CASH = "
LIST the program. Remember that if the

screen gets messy you can always clean it
up with CLS.

See the difference between Line 22 and
Line 23? The " marks in Line 22 tell the
Amstrad that it is dealing with characters
not numbers.

Notice that you’ve got Lines 22 and 23.
Suppose you wanted to type a line in
between these two lines. Of course, you have
to give this new line a number. You can’t
have a line whose number is 22-and-a-bit!
But the Amstrad is very friendly. Just type
RENUM, then LIST your program again.

Magic! The program lines are renumbered
and go up in tens again!

25

So here’s the very same program, but with
new numbers going up in tens:
10 MODE 1

CASH = 0
PRINT "CASH = "
PRINT CASH
END

Now RUN the program. You can see how
the Amstrad prints a message on the screen.

Now, say we want to increase the contents
of the CASH memory pocket by 5.

Let’s type in the fresh line, Line 45:
45 CASH = CASH + 5

26

Let’s tell the Amstrad to print a message
after this. Type Line 47:

47 PRINT "CASH = "

Let’s order the Amstrad to also tell us
what the CASH variable has changed to after
we added 5 to it. Type:

49 PRINT CASH

Type RENUM to renumber the program.
Now LIST it.

10 MODE 1
20 CASH=0
30 PRINT "CASH = "
40 PRINT CASH
50 CASH = CASH + 5
60 PRINT "CASH = "
70 PRINT CASH
80 END

What does the Amstrad put into the CASH
number variable pocket when it comes to
Line 20?

What does the Amstrad put into the CASH
number variable pocket when it comes to
Line 50?

Now RUN the program. Don’t forget that
whenever you want to see the lines of your
program after you run it, you can use LIST
again.

Let’s go back to your own pocket. Let’s
suppose that you start off, once again, with
no cash in it. Now, suppose you keep adding
two pence to it, three times.

27

CASH = 0 Nothing at the beginning

CASH = CASH+2 2 pence inside now
FIRST TIME

CASH = CASH+2 4 pence inside now
SECOND TIME

CASH = CASH+2 6 pence inside now
THIRD TIME.

28

Now, suppose you wanted to be able to tell
yourself to add to what’s in your pocket,
without having to remember how many
times you want to do this.

Suppose you took a piece of paper and
wrote these instructions on it:

FOR K = 1 TO 3
CASH = CASH + 2
NEXT K
Now suppose you took a sticky label and

wrote K on it and stuck it on another
pocket. Now start reading the instructions
you wrote.

The instruction FOR K = 1 TO 3 means
that, the FIRST TIME, there will be 1 in this
K pocket. So you add 2 pence to the CASH
pocket. When you see the instruction NEXT
K, you know that the K pocket now has got
2 in it, for the SECOND time that you have
to add 2 pence to the CASH pocket. Now you
come to NEXT K again, and now the K
pocket contains 3, for the THIRD TIME that
you have to add 2 pence to the CASH pocket.

29

As soon as K becomes more than 3, you
stop adding 2 pence to the CASH pocket.
That’s because the instruction FOR K ■ 1
TO 3 tells you to do the action only three
times.

Let’s try this again, with different
numbers.

Suppose you wanted to add 3 pence each
time to your CASH pocket. Suppose you
wanted to do this 4 times.

Here are the instructions you could write
for yourself to follow:

CASH = 0
FOR K = 1 TO 4
CASH = CASH + 3
NEXT K

How many times are you adding 3 pence to
the CASH pocket? How many pence will
there be in the CASH pocket after you’ve
added 3 pence to it for 4 times?

Remember our program so far:
10 MODE 1
20 CASH = 0
30 PRINT "CASH = "
40 PRINT CASH
50 CASH = CASH + 5
60 PRINT "CASH = "
70 PRINT CASH
80 END
At Line 50, the Amstrad is adding 5 to its

CASH number variable pocket. Let’s order it
to do this 20 times!

Type in Line 45:
45 FOR K = 1 TO 20

30

The Amstrad will do everything between
Line 50 and Line 70 as many times as Line
50 tells it to. Line 50 tells the Amstrad that
K will go up to 20. You can change K to go
up to 10 or 30 or any number you like. Try K

Suppose you wanted the Amstrad toadd 7
to its CASH number variable pocket 40
times. What would you change Line 50 to?
Try it now, and remember that at Line 60
you are ordering the Amstrad to add 7 to its
CASH pocket.

Now type in line 55:
55 NEXT K
LIST your program. Now RENUM it and

LIST it again. Use CLS if you want to, before
doing a LIST. Now we have:

10 MODE 1
20 CASH = 0
30 PRINT "CASH = *
40 PRINT CASH
50 FOR K = 1 TO 20
60 CASH = CASH + 5
70 NEXT K
80 PRINT "CASH = "
90 PRINT CASH

100 END

31

SAVE IT!

Remember our list of things we might do at
the weekend? You know, we might decide to
scrap this list.

We could tear or break it up and so
destroy it.

Suppose we wanted to use the list again
some other weekend! We would want to save
it and store it in a safe place. It would be
pretty boring if we had to write the
instructions in the list again and again. So
we save the list.

32

Our Money Program for the Amstrad is
something we should save before we switch
off the Amstrad. Remember, although we
sometimes treat this pretty little machine as
if it’s human, that’s only because we have
imagination. The Amstrad is still just a
machine, and as soon as we switch it off it
goes to sleep and forgets everything we’ve
taught it. So we should SAVE our Money
Program before sending the little Amstrad to
sleep.

But not yet! Just once more, look at the
Money Program again. If it isn’t already in
the Amstrad, type it in. Change Line 50 to:

50 FOR K = 1 TO 1000
Now LIST it.
But this time, after you type RUN, press

the ESCAPE key (The red key marked ESC
situated top left of keyboard) quickly twice.
The Amstrad escapes from doing the Money
Program instructions!

33

Notice that the Amstrad is really trying to
look after you. It tells you at what line
number the program escaped. Not bad for
something that’s really a collection of chips!

Before we let ourselves get carried away,
let’s remember that our little Amstrad can’t
think for itself. It tells you where it escaped
because there’s a program inside it that
comes ready-made when you get the
Amstrad. This ready-made program also
does things like allowing you to save your
programs on tape.

The ESCAPE key allows you to stop a
program that’s running. But the program
itself comes to no harm. You can RUN it
again or LIST it and even change it.
Changing a program is called EDITING a
program. We’ve already done some editing.
ESCAPE gives you a chance to change your
mind when you are in the middle of running
a program.

Just a minute! Sometimes, people who
write programs don’t want you to be able to
use the ESCAPE key in the way we just
talked about. So you’ll find that they have
stopped the ESCAPE key from being able to
do what they usually do. They have disabled
these keys. Sorry to have kept you waiting
to find out how to SAVE your MONEY
Program. Here’s how:

Put a tape — one of the 15-minute ones —
into the built-in recorder. Make sure that the
tape is at its beginning, then wind it just a
little way forward so that there really is
magnetic tape to record your program and
not a little bit of dead plastic!

Now type:

34

SAVE "MONEY"
Remember, our little Amstrad doesn’t

know you’ve finished giving it a command
until you press the ENTER key. So press
ENTER.

Look at the message the Amstrad gives
you on the screen and do exactly what the
message says. If you don’t already know,
ask someone to explain what buttons to
press to record something on a cassette
recorder. After that, press any key.

35

While your Amstrad is recording your
MONEY program, it will show you that it is
recording it. If it records it successfully,
you’ll see the ready sign coming onto
the screen.

Sometimes, your program may not be
recorded successfully. When that happens,
ask someone older for advice.

Let’s look at the instruction SAVE" MONEY"
again.

MONEY is the name we gave to our
program. But we could give it any name we
like, so long as the name isn’t more than 16
characters (including spaces) long. We could
have typed SAVE " SOULS" instead. But it’s
better to give programs names that remind
us what they are about.

Now that you’ve learnt how to save a
program, you will want to know how you
can bring it back into the Amstrad from
where it is on the tape. Of course, you
should have an idea as to where on the tape
you saved your program. If you check the
counter on the tape recorder, you can note
down at what numbers your programs begin
and end.

Suppose a program begins at 150 on the
tape counter. You can wind the tape forward
or backward to just before 150. Then you
can start loading in your program.

1. Get as close as possible to just before
the beginning of your program. You may
have to wind your tape to do this.

2. Type:
LOAD" MONEY"
3. Now press ENTER.

36

4. When you see the message
Press PLAY then any key
on the screen, press the PLAY button then
any key.

You’ll see
LOADING MONEY BLOCK 1
appear on the screen. Then when you see

the ready sign, you know the MONEY
program is safely back inside the memory of
the Amstrad.

If you wanted to, you could now LIST the
program and change it around — in other
words, EDIT it. Instead, you could order the
Amstrad to obey the instructions of the
program, by typing RUN.

Suppose you didn’t want to go to all the
trouble of first loading in the program and
then running it. Suppose you just wanted to
bring it in so that the Amstrad obeyed the
program instuctions at once.

What you can do is, do action 1 above, but
then type in

RUN "MONEY"
instead of
LOAD "MONEY"

when you come to action 2 above. Then do
action 3 above. Try it and see.

At last. We’ve saved the MONEY program.
We can load it in later any time we like.
Let’s have a bit of a break.

37

38

SHOWING OFF

I hope you saved your Money Program on
tape. If you did, load it in and LIST it.

Anyway, here it is again:
10 MODE 1
20 CASH = 0
30 PRINT "CASH = "
40 PRINT CASH
50 FOR K= 1 TO 20
60 CASH = CASH + 5
70 NEXT K
80 PRINT "CASH = "
90 PRINT CASH

100 END

RUN the program.
Let’s look carefully at what the Amstrad

displays, or shows, on the screen. Notice
that the message CASH appears on one line
of the screen, and the number on the next
line below.

39

Maybe we prefer to have the number on
the same line of the screen as CASH. How
can we do this?

Of course, we’ll have to change or EDIT
the program, because we now want it to do
something different.

Press the SHIFT key and hold down.
Use the up-arrow key to move the

EDITING CURSOR to just on the 3 in Line
30.

Press the COPY key gently and see how
Line 30 is being copied freshly.

When the editing cursor gets just past the
end of Line 30, press the SPACE BAR
(the long bar at the bottom of the keyboard)
once. This gives a little space to separate
one thing from another.

Now, what we want to do is have the
Amstrad print what’s inside the CASH
pocket, just after the message, on the same
line. So, if Line 30 now became

30 PRINT "CASH = " ; CASH

it would do the trick. Now type a; then
press the SPACE BAR to get a separating
space.

Now type CASH. Press ENTER to tell
the Amstrad that you’ve finished typing in
line 30.

What about Line 40? We don’t need it
anymore, because Line 30 is doing its job.
To get rid of it, just type 40 and then press
ENTER. If you like, clean the screen with
CLS, then LIST.

Now RUN the Money Program and notice
the display.

40

Just for fun, LIST Line 30 and EDIT it
again, but this time use a , instead of a ;

RUN this version of the program and
notice what the display looks like this time.
Now LIST line 30 and EDIT it back to what
it was before.

Can’t we do the same things to Line 80
and Line 90? Of course we can. The; or the,
tells the Amstrad to print what comes
behind it, on the same line of the display.
Why don’t you now change Line 80 and get
rid of line 90?

By the way, don’t you think it’s a good
idea to now renumber the program? Type
RENUM.

Your new Money Program should look like
this:

10 MODE 1
20 CASH = 0
30 PRINT "CASH = " ; CASH
40 FOR K = 1 TO 20
50 CASH = CASH + 5
60 NEXT K
70 PRINT "CASH = " ; CASH
80 END

41

LOCATE DANCING

I wonder if you’ve seen any old film
musicals where someone danced across a
floor that was divided up into squares just
like a chess-board is.

Imagine that the screen is like that
chess-board dance floor.

In MODE 1 the screen " dance floor" is
divided up into 40 squares when you look
from left to right. When you look from top
to bottom, the * dance floor" is divided into
25 squares. If you want to, you can divide a
big piece of paper into squares. If you do,
make it 40 squares broad and 25 squares
deep. This may help you to imagine what I’m
saying much better. Each square can fit a
single thing into it. This can be a single
character like A or M, or a single number
like 5 or 9.

42

Each square is itself divided up into 8
PIXELS across and 8 PIXELS down.

Remember that we said that PIXELS are
little blocks. Remember that we also said
that PIXELS can be fat or thin, depending on
what MODE the Amstrad is in.

The fatter the PIXELS are, the fatter the
squares of the screen “dance floor” are.
Just like fewer fat men could fit into the
telephone box, this means that the “dance
floor” will have fewer squares in it in MODE
1 than it will have in MODE 2.

In MODE 1, there are 40 squares across the
screen. In MODE 2, there are 80 squares
across the screen. The PIXELS of MODE 1
are four times fatter than the PIXELS of
MODE 2.

Let’s go back to the Money Program and
imagine that we want to move the word
CASH over the squares of the screen.

The instruction to move things over the
screen is LOCATE.

Suppose we want to move CASH five
squares across the screen. LOCATE 5,1 will
do this for us.

43

You can imagine that there is a dancer
called TEXT CURSOR who is carrying CASH
across the screen dance floor. The number 5
and 1 tells TEXT CURSOR to move CASH by
five squares across on the first line of print.

EDIT Line 30 of the Money Program:

30 LOCATE 5,1: PRINT "CASH = " ; CASH

Before we carry on, let’s think about how
we should EDIT Line 30.

First, press the SHIFT key and hold down.
Now use the up-arrrow key to get the EDIT

CURSOR on the 3 in 30.
Now use the COPY key to COPY Line 30 to

just before the P of PRINT.
We now have to put something new in. So

press the SPACE BAR once, then type
LOCATE 5,1: Then press the SPACE BAR
again.

Now use COPY to copy the rest of line 30
to just after the H in CASH. Now press
ENTER.

Now LIST and RUN the program.
Suppose we want TEXT CURSOR to dance

across the screen, but not just five squares
across but also ten squares down?

LOCATE 5,10 will do that for us. The first
number is 5. It tells TEXT CURSOR how
many squares to tab dance across the
screen. The second number is 10. It tells the
TEXT CURSOR how many squares to dance
down the screen.

Where does TEXT CURSOR begin its
dance?

Look at the top left-hand corner of the

44

screen. Imagine TEXT CURSOR standing
there, dressed in top-hat and tails and shiny
shoes!

If you tell it to LOCATE 5,1 it will dance
five places across the screen on the first line
of print. It will then put down whatever it’s
“carrying”.

If, instead, you tell it to LOCATE 5,10 it
will dance 5 squares across and ten squares
down the screen. It will then put down, on
the screen, whatever it is “carrying”.

There is one thing you have to be careful
of when using LOCATE. You must enter two
co-ordinates separated by a comma,
otherwise the Amstrad won’t understand
you.

45

Now let’s EDIT Line 30 to be:
30 LOCATE 5,10: PRINT "CASH = " ; CASH
Now LIST and RUN the program.
Let’s now EDIT Line 70:
70 LOCATE 5,12: PRINT "CASH = " ; CASH
Where do you think LOCATE 5,12 makes

TEXT CURSOR dance to?
LIST and RUN the program.

46

THE COLOURS OF
THE RAINBOW

So far, we’ve been writing on the screen in
bright yellow pen on blue paper. As the
bright yellow pen is on top of the blue paper,
we call the colour on top the CHARACTER
COLOUR and the colour underneath the
SCREEN COLOUR.

Remember, whatever is on top is called the
CHARACTER. Whatever is underneath is
called the SCREEN.

In MODE 1, if we want to write in red ink,
we can tell the Amstrad what we want by
saying PEN 3.

In MODE 1, up to 4 of the available colours
can be put on to the screen at any time.

There is a choice of 27 colours. You are
able to change the colour of the BORDER
(area surrounding the PAPER), the PAPER
(the area where the characters can appear)
or the PEN (the character itself), all
independently of each other. When the
computer is first switched on, the BORDER
and PAPER are both blue.

Now, what do we need to type to get
colours for the paper [the SCREEN]? It’s
very easy. We use the PEN and PAPER
commands.

Suppose we want to have CASH appear in
RED ink (character) on YELLOW paper
(screen). Look at Table 1 for the colour
numbers.

47

Tables 1 & 2

MASTER COLOUR CHART
Ink Number Colour/InkInk Number Colour/Ink

0 Black 14 Pastel Blue
1 Blue 15 Orange
2 Bright Blue 16 Pink
3 Red 17 Pastel Magenta
4 Magenta 18 Bright Green
5 Mauve 19 Sea Green
6 Bright Red 20 Bright Cyan
7 Purple 21 Lime Green
8 Bright Magenta 22 Pastel Green
9 Green 23 Pastel Cyan
10 Cyan 24 Bright Yellow
11 Sky Blue 25 Pastel Yellow
12 Yellow 26 Bright White
13 White

Paper/PenNo. Mode© Mode 1 Mode 2
0 1 1 1
1 24 24 24
2 20 20 1
3 6 6 24
4 26 1 1
5 0 24 24
6 2 20 1
7 8 6 24
8 10 1 1
9 12 24 24
10 14 20 1
11 16 6 24
12 18 1 1
13 22 24 24
14 Flashing 1,24 20 1
15 Flashing 16,11 6 24

48

Note that in Tables 1 & 2, when the computer is
first switched on, the PAPER used is number 0.
If you look at Table 2, in the first column, you
will see PEN number 0. Now look along the
same line in the Mode 1 column, you will see
colour number 1. If you now refer to the master
colour chart (Table 1), you will see that number
1 is equal to blue, which as already explained, is
the colour of the PAPER when the computer is
first switched on.

Type in a new Line, Line 15:

15 PEN 3
This gives us RED pen (CHARACTER).

Type in another new line, Line 17:

17 PAPER 1: BORDER 24

This gives us YELLOW paper (SCREEN)and
BORDER.

Type RENUM.
LIST the program, then run it.
Wait a minute! It’s true that we can see

red letters on yellow, but the whole screen
itself isn’t yellow. Although what we can see
is very pretty, and we should remember it,
what we now have to do is to clear the screen
completely to the paper (screen) colour.
The command CLS does this for us.

LIST the program, and now type this:
35 CLS
Now RUN the program, and see what

happens.

49

Suppose you change Line 30 to PAPER 3:
BORDER 6 to give a RED paper screen. What
happens if you write in red ink on red paper?
Why not try it and see what happens when
you RUN the program.

If you do try it, try also listing the program!
If you want to change the background

colour directly, without writing it in a
program line, all you have to do is type the
command INK and the current screen colour
number followed by the new colour number
you want.
The INK command has two numbers, the
first the number of the PEN or PAPER to be
changed, the second is the colour that the
PEN or PAPER is to be changed to.

If you find that you can’t see the listing
because both the PEN and PAPER are the
same colour, just change the PAPER colour.
You can do this directly by typing PAPER
and a number that’s different to the PEN
foreground number. Try PAPER 2. Now you
can LIST the program and see it again.

But, if you want to have different PEN and
SCREEN or PAPER colours while the
program is RUNNING, you will have to make
sure that Lines 20 and 30 give different
colours.

Try different PAPER, PEN and BORDER
colours.

50

DIFFERENT MODES

Of course, the Amstrad has other MODES.
In MODE 0, up to 16 of the 27 available

colours can be put on to the screen at any
time.

In Mode 2, up to 2 of the 27 colours can be
put on to the screen at any time.

51

SWEET SIXTEEN

MODE 0 is very interesting, because you can
use up to 16 colours of the 27 colours.
Remember, to change a paper colour use the
INK command.
To change a PEN colour use the INK
command and a BORDER colour the
BORDER command.
You can also make the colour of the
characters flash between one colour and
another. This can be achieved by adding an
extra colour number to the INK command of
the PEN. eg. ink , You can also make
the colour of the PAPER behind the
characters flash between one colour and
another. This can be achieved by adding an
extra colour number to the INK command
for the PAPER, eg. ink_ ,_ ___

Of course, you’ll have to EDIT your
program if you want to try MODE 0 and new
paper, pen and border colours.

If you do want to EDIT your program, first
LIST it. It should be:

10 MODE 1
20 PEN 3
30 INK 0,24: BORDER 24
35 CLS
40 CASH = 0
50 LOCATE 5,10 : PRINT "CASH = ";CASH
60 FOR K = 1 TO 20
70 CASH = CASH + 5

52

80 NEXT K
90 LOCATE 5,12: :PRINT CASH = ";CASH
100 END
Now put a tape into the cassette player

and SAVE this program under a new name.
Now change Line 10 to read:
10 MODE 0
Change Line 20 to:
20 PEN 7
Change Line 30 to:
30 INK 0,10: BORDER 6
Now RUN the program.
You can have a lot of fun by using

different MODES, and different PAPER, PEN
and BORDER colours in each MODE.

Remember to fully reset the computer’s
colours back to normal by pressing together
the CTRL SHIFT and ESC keys when you
have finished.

53

BACK INSIDE THE
AMSTRAD’S POCKETS

If you remember, the pockets of the
Amstrad’s memory can have STRINGS inside
them. To show that what’s inside the pocket
is a string, we can imagine that the sticky
label on the pocket has the name of the
pocket written on it, with a $ at the end of
the name.

54

So, suppose we have a string pocket that
we label A$. Suppose we want to put the
string "LOCO" inside the A$ pocket.

Now, we are writing something new, so
don’t use the Money Program. If the Money
Program is already in the Amstrad, type in
NEW.

Type:
10 MODE 1
20 A$ = "LOCO"

This puts the " LOCO" character string inside
the variable string pocket that is labelled A$.

Type:
30 PRINT A$
RUN this little program.
Let’s not forget our friend TEXT CURSOR,

the LOCATE dancer.

55

LIST the program and change Line 30 to:
30 LOCATE 5,10: PRINT A$
Line 30 shows on the screen what the

variable string pocket A$ contains. What
does A$ contain?

Why not try and add Lines to change the
PAPER, PEN and BORDER colours. Don’t
forget to RENUM after you add new lines.

Try getting red PEN (the characters) on
yellow PAPER (the screen).

Did you manage? Here’s what I got:
10 MODE 1
20 PEN 3
30 PAPER 1: BORDER?
40 A$ = "LOCO"
50 LOCATE 5,10: PRINT A$
60 END
Why not type in this program and try it?
When I tried it, it looked very pretty. But

it wasn’t exactly what I wanted. I wanted
the PAPER (or screen) to be completely
yellow with a different colour border, but I
forgot to clear the screen to the PAPER (or
screen) colour. So I added a line after Line
30:

35 CLS
Now let’s add:
55 LOCATE 5,12:PRINT "MOTION"
Let’s RUN the program. It looks like an

advertisement for a train.
Well, so far the contents of the A$ variable

pocket haven’t changed. It’s still got" LOCO"

56

in it. But try this:
57 AS = AS + "MOTION"
58 LOCATE 5,14: PRINT AS
Quick, before we forget, let’s RENUM this

program. Now let’s LIST it and then RUN it.
What does A$ contain now?
SAVE the program in the usual way. Let’s

save it under the name “TRAIN”.
What does the + sign in the line A$ = A$ +

" MOTION" mean? All it means is that" LOCO"
and * MOTION" are put together to make up
" LOCOMOTION". Then " LOCOMOTION" is
put inside the A$ string variable pocket. The
A$ pocket used to have " LOCO" in it. But now

57

what’s inside has changed to
"LOCOMOTION".

Putting two strings together to make a
new string is called CONCATENATION.

Try this by typing it in directly and not as
a program line:

PRINT "ELECT" + "ION"
Now type NEW and try this as a little

program:
10 A$ = "ELECT"
20 B$ = "ION"
30 C$ = A$ + B$
40 LOCATE 10,12: PRINT C$
50 END
If you look at Lines 10,20 and 30 you will

see that this time we have three string
variable pockets. These pockets are called
AS, B$ and C$.
Line 10 puts "ELECT" into pocket A$.
Line 20 puts "ION" into pocket B$.
Line 30 looks and sees what’s inside both
the pockets A$ and B$. It copies " ELECT" and
" ION" and puts them together to make
* ELECTION". It puts " ELECTION" into
pocket C$.

Then, at last, Line 40 shows us, on the
screen, what pocket C$ has got inside it.

58

IF YOU DON’T TELL IT
WHAT YOU MEAN,
THE AMSTRAD WON’T
KNOW WHAT YOU MEAN

Just to see what happens, first type NEW
and then type directly:

PRINT CASHS
The Amstrad doesn’t print anything when

you press ENTER because you haven’t first
told it to create the string variable pocket
CASHS. You have to first type in something
like Line 10 in the program above. So you
would be alright if you typed, for example:

CASHS = "CASH"
PRINT CASHS

59

Again, just to see what happens, type this
in:

PRINT CASH
The Amstrad doesn’t understand you! It

treats CASH as a number and prints a 0.
Remember, to be a character string, CASH

must have " marks around it. " Q.KSW is a
character string.

60

To be a string variable pocket that can
contain a string, CASH must have the $ sign
at the end of it. CASH$ is a string variable.

So if you only type PRINT CASH the
Amstrad thinks it should make for a
NUMBER variable pocket called CASH. So
the Amstrad prints 0. But if we first tell the
Amstrad that there is a CASH number
variable pocket, then it will be quite happy.
So type:

CASH = 30
PRINT CASH

What do you see on the screen?
By the way, the messages the Amstrad

gives you when it can’t understand
something you’ve typed in, are called
ERROR MESSAGES.

61

CONCATENATING
STRINGS AND ADDING NUMBERS

CONCATENATION is a very, very big word.
It’s a big mouthful, but its meaning is very
simple. It just means putting characters
side-by-side. So, if you put" DON" next to
" KEY", you’ll get " DONKEY".

62

Remember that our little Amstrad has to
be told exactly what to do. To put strings
side-by-side, you have to put the + sign
between them. Otherwise, the Amstrad
won’t understand what you mean.

So, to tell the Amstrad to put" DON" and
" KEY" side by side, you would have to use
something like D$ = "DON" + "KEY". Then
the D$ pocket would contain the character
string "DONKEY" inside it.

Of course, if you wanted the Amstrad to
show what it had inside the D$ pocket, you
would have to tell it to PRINT D$.

Now, here’s something interesting. Type in:
PRINT 3 + 4
The answer you see is 7. Here, the + sign

doesn’t put the 3 and the 4 side-by-side to
give 34. It gives 7 instead.

Why is that? Well, because there are no "
marks around the 3 and the 7, the Amstrad
knows that it is looking at NUMBERS and
not at strings. It ADDS the numbers 3 and 4
to give 7.

Ahah! Can you guess what would happen
if you put the " marks around the 3 and the
4 ? Why not try it and see. Type:

PRINT "3" + "4"
Don’t forget to press ENTER!

63

CUTTING THE STRING

I sincerely hope you SAVED "TRAIN" on
tape earlier. If you did, you can LOAD
"TRAIN" now in the usual way.

Here’s TRAIN:

10 MODE 1
20 PEN 3
30 PAPER 1: BORDER?
40 CLS
50 A$ = "LOCO"
60 LOCATE 5,10: PRINT A$
70 LOCATE 5,12: PRINT "MOTION"
80 A$ = A$ + "MOTION"
90 LOCATE 5,14: PRINT A$
100 END

Take a piece of paper and write on it:
LOCOMOTION.

Now, start from the left, from the letter L.
Count one-two-three-four until you come to
the letter O. What have you got? That’s
right, LOCO.

If you cut the paper just after T, you’ll get
two pieces of paper. The left piece of paper
will have LOCO on it.

(By the way, be careful if you use scissors.
Ask someone older before you use scissors.
Sharp things are dangerous.)

We can tell the Amstrad to do the same
thing with character strings. We can tell it
to cut up a string in the way we cut-up

64

The special word that does this is LEFT$(.
You can pretend that the (sign is like a

pair of scissors that’s ready to cut a string.
Add these lines to the program TRAIN:
95 L$ = LEFT$(A$,4)
96 LOCATE 5,16: PRINT L$

Let’s look at line 95. The Amstrad looks
inside the A$ pocket and sees
"LOCOMOTION"
inside it. Then it counts 4 starting from the
leftmost character, L. It gets LOCO after
counting 4 characters forwards, starting
from L. It then puts the string " LOCO" into
the string variable pocket L$.

65

Then line 96 shows us, on the screen,
what’s inside L$.

If there’s a LEFT$(, shouldn’t there be a
RIGHTS(? Of course there is. What do you
think RIGHT$(does?

Just for fun, try counting from the right
with the word DONKEY.

Write DONKEY on a piece of paper. Start
from the right, from the letter Y. Go back
wards, counting one-two-three. You come to
the letter K. What have you got? That’s right,
KEY.

If you cut the paper just before K, you’ll
get two pieces. The right piece will have KEY
on it.

Let’s add Lines 97 and 98 to TRAIN:
97 R$ = RIGHT$(A$,6)
98 LOCATE 5,20: PRINT R$
Let’s look at line 97. The Amstrad looks

inside the A$ pocket and sees the character
string " LOCOMOTION" there. Then it counts
six characters backwards, starting from N.
It gets the string " MOTION". It then puts the
string " MOTION" inside the string variable
pocket R$.

Line 98 shows us, on the screen, what’s
inside R$.

We should now RENUM the program
TRAIN. It’s changed quite a lot, so why not
SAVE it again? Call it TRAIN 1 if you like.

Now you can reset the computer by
pressing the CTRL, SHIFT and ESC keys in
order—but holding each key down until the
ESC key is finally pressed. The screen will
clear and the original message will reappear
as if you had just switched on.

66

WHAT MUST I DO, IF....

Remember our list of things to do at the
weekend?

10 PLAY FOOTBALL
20 READ A BOOK
30 WATCH TELEVISION
40 HAVE DINNER
50 PLAY WITH THE AMSTRAD
60 END
Let’s add Line 15:
15 HAVE A SOFT DRINK
Now, when you read your list of things to

do, you’ll have a soft drink after playing
football. But, maybe sometimes you’re not
thirsty! Then you’ll only really want a soft
drink if you’re thirsty.

Let’s change Line 15 to:
15 IF I'M THIRSTY, THEN

I'LL HAVE A SOFT DRINK
Before, you would always have a soft

drink. Now, because you’ve used IF and
THEN, you’ll have a soft drink only if you’re
thirsty.

IF and THEN, you won’t be surprised to
learn, are words the Amstrad can
understand.

67

RICH MAN, POOR MAN

Imagine you start off with 2 pounds in your
CASH pocket. Suppose some very generous
person keeps giving you 5 pounds to put
inside your CASH pocket. Suppose he does
this 10 times. As soon as your CASH pocket
has more than 20 pounds inside it, you
shout, "I’M RICH! I’M RICH!"

68

Let’s write this out carefully:
MY CASH POCKET HAS 2 POUNDS IN IT.
Another pocket has 10 in it, to show how

many times the generous person will give
me money to add to CASH. I’ll call this
pocket KOUNT.

I’ll keep adding 5 to CASH. I’ll do this 10
times, because KOUNT contains 10.

IF CASH becomes more than 20, I’ll shout,
"I’M RICH! I’M RICH!"

But anyway, whether I’ve got more than
20 pounds or not, I’ll tell you what’s inside
my CASH pocket.

Of course, I’ll keep checking to see
whether I’ve added money 10 times. Now
let’s try to type in a program the Amstrad
will understand:

10 MODE 1
20 CASH = 2
30 FOR KOUNT = 1 TO 10
40 CASH = CASH + 5
50 IF CASH > 20 THEN PRINT "I'M RICH!

I'M RICH!"
60 PRINT "CASH = " ; CASH
70 NEXT KOUNT
80 END

Let’s look at line 50. Can you guess what
the > sign in IF CASH > 20 means? That’s
right, the > sign simply means more than.

(There’s a < sign as well, just next to the
more than sign. It means less than.)

RUN the program.
How much money does the CASH pocket

end up containing?
69

Well, CASH ends up with 52 in it.
What’s the use of IF? It’s very useful. It

allows you to do something only if there’s a
reason. It allows you to make a decision. IF
you’re thirsty, then you decide to have a
soft drink. You’ll only follow Line 15 of your
weekend list if you have the right reason to
do so.

Similarly, because of the IF in Line 50,
you’ll only shout that you’re rich when you
have more than 20 pounds in your pocket.

To see this, change Line 40 to:
40 CASH = CASH + 1
Now, the CASH pocket is being increased

by 1 each time, instead of 5.
RUN the program now and see what

happens.

70

BUT ONLY THEN

Now suppose the generous person didn’t
want to be too generous.

Suppose he only wanted to repeat giving
you 5 pounds until your CASH pocket had
more than 20 pounds in it. Then he would
stop.

Just imagine it for yourself. You’ve got 2
pounds in your CASH pocket. He gives you 5
pounds. You add this to the 2 in your CASH
pocket. Have you got more than 20 pounds
now? No. So he gives you another 5 pounds.
And so on. He will repeat what he’s doing.
But only until you have more than 20
pounds.

IF and THEN are two words the Amstrad
understands.

Let’s write a little program using IF and
THEN. Remember to use NEW to show the
Amstrad that you’re writing a new program.

Type in the following program. You’ll see
big gaps in it, but don’t try to copy the gaps.
Just type the lines in as usual, one after the
other. Of course, when you finish typing a
line, you have to use ENTER to let the
Amstrad know.

10 MODE 0

20 PEN 4
30 INK 0,14: BORDER 18
40 CLS
50 PRINT "I'M POOR!"

71

60
70
80
90

CASH = 2
CASH = CASH + 5
PRINT "CASH = CASH
IF CASH< 20 THEN GOTO 70

72

100 PRINT
110 PRINT
120 PRINT "YOU'RE RICH."
130 PRINT "SO NO MORE MONEY

FOR YOU!"

These program lines just print out blank
lines. The blank lines separate the " YOU’RE
RICH" message from the other messages on
the screen. RUN the program and see. Then,
if you like, leave out Lines 110 and 120 and
see what happens when you now RUN the
program.

Remember how to get rid of a complete
line? Just type its number again and then
press ENTER.

By the way, I’m sure you’ve noticed that:
FOR always goes together with NEXT.
IF always goes together with THEN.
They go together like the two slices of a

sandwich! And, just as a sandwich usually
has something in between its two slices,
they usually have something between them!

73

If you are now going straight onto the
next chapter don’t forget to re-set the
computer in the way already shown.

When you typed the last program you might
have noticed the funny word GOTO. Your
Amstrad usually does things in the order of
its line numbers, but sometimes you might
want it to jump around in a different order.
This word does that and says ‘ ‘when you
have done that go to somewhere else. ” So,
GOTO 70 in line 90 means if you have less
than 20 pounds go to line 70 again.

74

THE AMSTRAD
EXPECTS....

If you’re expecting a letter on your birthday,
maybe you’ll get up early. Then maybe you’ll
stand by the door and wait for the postman
to put a letter through the letter box.

75

You can also make the Amstrad wait and
expect something to be put into one of its
memory pockets.

What word will the Amstrad need to
INPUT something into a pocket?

The word INPUT, of course.

The Amstrad can wait and expect you to
give it a NUMBER to put into a number
variable pocket. Or the Amstrad can wait
and expect you to put a character STRING
variable into a string variable pocket.

How will it know what sort of variable to
input into a pocket?

Well, once again, it all has to do with
whether there is a $ sign to tell the Amstrad
to expect a character string variable.

For example, if you tell the Amstrad to
INPUT N$, it will think that what you type in
is a character string. It will put this string
into the string variable pocket N$.

But if you tell the Amstrad to INPUT N, it
will think that what you type in is a
number. It will put this number into the
number variable pocket N.

76

THINK OF A NUMBER!

Now type in NEW, then type this little new
program:

10 MODE 0
20 PEN 7
30 LOCATE 3,2: PRINT "TYPE IN"
40 LOCATE 3,3: PRINT "YOUR FAVOURITE"
50 LOCATE 3,4: PRINT "NUMBER"
60 LOCATE 3,5: PRINT "FROM 1 TO 9"
70 INPUT NUM
80 LOCATE 1,7: PRINT "YOUR FAVOURITE

IS "
90 LOCATE 8,10: PRINT NUM
100 NUM = NUM * 9
110 ANSWER = NUM * 12345679
120 LOCATE 3,12: PRINT "HERE'S A

LOT OF"
130 PEN 3
140 LOCATE 6,14: PRINT ANSWER/10
150 PEN 15
160 LOCATE 8,16: PRINT "III"
165 PEN 7
170 END
Run the program. Now LIST it.
Let’s look at Line 70. If you had typed

NUM = 8 at Line 70, the number 8 would
already be in the NUM number variable
pocket. You’d be stuck with it, and you
wouldn’t be able to choose a number from 1
to 9.

But, because Line 70 has the word INPUT,
the Amstrad waits for you to type in a

77

number to put into its NUM pocket.
To show you that it’s expecting an input

from you, the Amstrad shows a ? on the
screen.

Let’s look at Line 100. Here, what’s inside
the NUM pocket will be multiplied by 9.

Suppose you type in 4 as your favourite
number when you see the ? mark. The NUM
pocket will then have 4 inside it. After the
Amstrad does what Line 100 says, the NUM
pocket will have 36 inside it.

Let’s look at Line 110. Here, NUM is
multiplied by a very large number. We don’t
have to worry, though, because the Amstrad
will do this big job for us. It will then put
the new number into the ANSWER pocket.

78

By now, you should understand what the
other lines of the program do. But, let’s just
one more time go through the program
line-by-line. It’s a good idea to first type in
MODE 1 directly then LIST the program.
Then look at the listing on the screen as you
read what follows.

Line 10 tells the Amstrad to go into Mode
0. Remember that we can use 16 colours in
MODE 0.

Line 20 gives a PEN (CHARACTER) colour
number of 7.

Line 30 uses LOCATE to print a part of a
message. LOCATE dances 3 across and 2
down the screen.

Line 40 uses LOCATE for another part of
the message. It dances 3 across and 3 lines
down.

Line 50 uses LOCATE for another part of
the message. It dances 3 across and 4 down.

Line 60 uses LOCATE for the last part of
the message. It dances 3 across and 5 down.

Line 70 shows a ? mark and makes the
Amstrad wait for a number to be typed in. It
puts it into the number variable NUM.

Line 80 uses LOCATE to show another
message on the screen.

We use different numbers for LOCATE
because we want to place things in different
places on the screen.

Line 90 uses PRINT and LOCATE to show
us, on a part of the screen, what NUM
contains at this moment.

Line 100 multiplies what NUM contains by
9. So now NUM has changed to containing 9
times what it did before.

Line 110 multiplies NUM by a large number.
79

the Amstrad does that for us. It puts this
number into the number variable ANSWER.

Line 120 places another message on the
screen, using LOCATE.

Line 130 changes the PEN (CHARACTER)
colour number to 3. Whatever is next shown
will be in this new ink colour.

Line 140 uses PRINT and LOCATE to show
what’s inside ANSWER, on a part of the
screen.

Line 150 changes the PEN colour number
to 15. This pen colour in Mode 0 will flash.

Line 160 just prints three! signs on apart
of the screen, using LOCATE.

Line 165 changes the PEN colour back to
purple.

80

HOW REMARKABLE!

We’ve gone through all the lines of this
program but, of course, we will get to know
things better and need explanations less.

If we want to put in little explanations
inside a program itself, so that the program
can be understood by someone else, we can
use REM. As you can guess, REM simply
tells the Amstrad that what follows it on a
line is a remark. A remark just tells you
something about a part of a program. The
Amstrad does nothing when it comes to the
REM while it is RUNning a program. The
REM line is only shown when you LIST the
program.

For example, we could add Line 145, just
before Line 150:

145 REM FLASHING CHARACTER
COLOUR

We can add other REM lines in the same
way, if we want to explain some important
part of a program. This is really useful in a
long, long program, which could be hard to
read and understand if it isn’t explained a
little at important points.

But, remember, too many REM lines can
also make a program difficult to read. You
have to use your common sense.

For example, one nice place to put a
remark would be just before Line 10. We
could add:

81

5 REM FAVOURITE NUMBER PROGRAM
Here we are just reminding ourselves what

the program is about. Three months later we
can look at Line 5 and easily know what the
program is about.

82

HUFF AND PUFF

I have to admit it, it’s a long time since I
was at school. But I seem to remember a
story about three little piggies who each
built a house. I can’t remember the story
completely, but I’m certain one of the little
pigs built his house of straw and the other
one built his of bricks. And there was a big
bad wolf who huffed and puffed and blew
down the house of straw. But he completely
ran out of huff and puff when he tried to
blow down the house of bricks.

83

What’s that got to do with programs?
A very great deal.
A house of straw is untidy. Bits of it keep

falling off and you have to keep patching it.
If part of a wall needs repair, you have to
take out bits of good wall too, and the straw
you put in is very difficult to put exactly
where you want it to go.

If your house is built of bricks, then it’s
easy to take out a bad brick and put in a
fresh one. It’s easy to replace one part by
another.

In the same way, you should write your
programs so that they are neat, and built up
of small parts. Each part should have a clear
purpose. A brick has a solid, clear shape. It
fits neatly with other bricks.

Is that easier to say than do? At the
beginning, yes. But as you practise, it will
become as easy to do as to say.

84

I wanted to write a game.
1. First, I wanted to PREPARE THE

SCREEN.
2. Then I wanted to tell the Amstrad to

create a string variable pocket and a number
variable pocket.

3.1 wanted to give some messages to the
player, to TELL HER OR HIM ABOUT THE
GAME.

4.1 wanted to INPUT whether the player
wanted to play the game or not. As soon as
he wanted to stop, the game would END.
Otherwise I would carry on with the game.

5. Then I wanted to give a problem to the
player. I wanted him to guess whether a wolf
was "huffing" or "puffing". This is really
what the game is about.

6. While the player was trying to guess
what the wolf was doing, I also wanted to
check whether he had guessed right. Had he
WON? If he won, I would do this:

I would tell him he had won and then ask
him if he wanted to play again.

7.1 wanted to tell him how many tries he
had so far. I also wanted to check whether
he had more than 3 guesses. If he had, then
the wolf had huffed and puffed enough times
to blow his house down. So he had LOST. I
would give him a message and ask if he
wanted to play again.

So long as the player didn’t have more
than 3 goes, he could keep playing until he
wanted to stop.

If you think about writing any kind of
program, you’ll find that it uses the same
sort of program bricks:

A brick to show things on the screen at

85

the beginning.
A brick to create certain variables.
A brick to give messages about the

program.
A brick to input information for the

program to look at or to use.
A brick to create something out of

information the program is given. This can
be a problem for the user, as in a game. But
this can instead be a solution, as when the
computer adds a lot of numbers together
and tells you the result on the screen.

A brick to see if the program has got a
result that the user wants. In this case, has
the player won?

A brick to see if the program has a result
the user doesn’t want. In this case, has the
user lost because he’s used up all his tries?

A brick to keep the user informed about
what’s happening. In this case, how many
guesses.

Each PROGRAMMING brick is called a
SUBROUTINE. Notice that we haven’t
actually done any programmming. But we’ve
done something more important than
writing program lines. We have planned a
program to be built out of SUBROUTINE
bricks.

86

THE HUFF-PUFF GAME

We will play the game in MODE 1.
1. We’ll describe or DEFINE the PREPARE

SCREEN PROCEDURE brick. Let’s give it a
name to remember it by — let’s call it REM
PREPARE. So our description can be called
REM PREPARE. Here it is:

REM PREPARE
The PEN colour is red.

The PAPER colour is bright cyan with a
bright blue border.

RETURN
Notice the RETURN. What do you think it

means? That’s right, it means that we’ve
finished the defintion of a SUBROUTINE.

2. Let’s DEFINE the SUBROUTINE to
create the variables we need for Huff Puff.
Let’s call it VARIABLES.

REM VARIABLES
Ask for the player’s name. That is, INPUT

the name as a character string. Put it into a
a string variable pocket called NAMES.

Tell the Amstrad to create a variable
number pocket called TRIES with 0 inside it.
(TRIES will be increased by 1 each time the
player has a go.) TRIES will tell the player
how many goes he or she has had so far.

RETURN

87

3. DEFINE the SUBROUTINE to TELL the
player about the game.

REM TELL

Print " This is the Huff and Puff game"
Print" Type huff if you think I’m huffing"
Print" Type puff if you think I’m puffing"
Print" then press ENTER"
Print" Yours sincerely, Wolf!"
RETURN
Now we have to keep repeating the problem

(which is the procedure brick number
5 below) until the player types "S" for
stopping the game. Number 8 below does that.
We’ll keep looking at A$. So long as it is not
equal to " S" when the IF line is reached, the
game will be repeated. We’ll also tell the
player to press S to stop the game if that’s
what the player wants. If he wants to keep
playing, we’ll tell the player to press P. As
soon as S is pressed, we’ll end the game.

4. This is the PROBLEM subroutine. Let’s
call it REMPROBLEM. As soon as the player
tries this problem, he’s having a go, so we’ll
increase TRIES by 1.

The problem is, is the Wolf doing a huff or
a puff? How do we tell the Amstrad to choose
whether the Wolf is doing a huff or a puff?

There is a very useful word called RND. If
you have the numbers 1,2,3, and so on,
written on separate pieces of paper and close
your eyes and pick one, you are choosing a
number at RANDOM. You can’t be sure what
number you will choose. RND tells the

88

Amstrad to close its eyes and choose a
number.

IfyousayINT(RND(l)*12) +1 it will choose
a number from 1 to 12.

If you say INT(RND(1) * 2) + 1 it will choose 1
or 2. There we have it. We will say
INT(RND(1) * 2) +1 If the number that comes
up is 1, then we’ll put" HUFF" into a string
variable pocket R$.

If the RND function chooses 2, then we’ll
put "PUFF" into R$.

REM PROBLEM
First, add 1 to the number variable TRIES.

So, TRIES = TRIES +1.
Make a number variable equal to

INT(RND(1) * 2) + 1. Call this number variable
R. So R = INT(RND(1)*2) + 1.

Now if R = 1, then we say R$ = " HUFF". If
R = 2 then R$ = " PUFF".

Now we’ll ask the player:" Do I huff or do I
puff?"

What has the player typed in? We tell the

89

Amstrad to expect HUFF or PUFF. We’ll say
something like, INPUT B$. If it is " HUFF",
we’ll check R$ to see if it’s equal to B$. If it
is, we’ll tell the player he’s won, using the
WON subroutine. If R$ is not equal to B$,
we’ll just carry on with telling the player
how many goes he or she has had. We’ll do
the same kind of thing if the player has
typed in " PUFF". If the player types in
something totally different, he just loses
another go.

RETURN
5. The WON subroutine prints the player’s

name, says he has won, and gives a message
like " I can’t blow your house down. Yours
disappointedly, Wolf. " Then, we ask the
player if he wishes to continue, using the
PLAY OR STOP subroutine.

6. We tell the player how many goes he
has. If it’s more than 3, we do a subroutine
that we can call the HUFFPUFF subroutine.
Otherwise, we repeat the problem.

7. REM HUFFPUFF can print out messages
like " it’s your try number four, your house is
made of straw. I’ve huffed and puffed and
blown your house down. Yours in
anticipation, Wolf!* Then we ask the player
if he wishes to continue playing, using the
PLAY OR STOP subroutine.

8. REM PLAY OR STOP asks the player if
he wishes to continue playing.

If the player hasn’t said he wants to
finish, or hasn’t won, or hasn’t used up all
his goes, this means that A$ is certainly not
* S". So the game is repeated from number 4
above.

I’ve left it up to you to make items 5,6,7
and 8 more like subroutines.

90

PROCEED WITH
YOUR PROGRAMS!

Let’s make a list of the procedures, together
with other bits of the Huff and Puff game:
10 MODE 1
20 GOSUB 140
30 GOSUB 190
40 GOSUB 240

100 GOSUB 340
110 GOSUB 550
130 GOTO 100

That’s the whole of the Huff Puff game,
written out as a list of Subroutines. Each
time the Amstrad comes to a GOSUB it
goes to that line and returns when it finds a
RETURN Command.

So, when the Amstrad COMES TO LINE 20
and sees GOSUB 140, it looks for this:

140 REM PREPARE
150 PEN 3
160 PAPER 2: BORDER 2
170 CLS
180 RETURN
So now let’s carry on with all the

definitions of the procedures.
190 REM VARIABLES
200 PRINT "WHAT IS YOUR NAME?"
210 INPUT NAME$
220 TRIES = 0
230 RETURN
240 REM TELL
250 PRINT "THIS IS THE HUFF AND PUFF

GAME"
91

260

270

280
290
330
340
350
360
370
380
390
400
410
420
430
450
460
470
480

490
500
510
515
520
550
560

570
580
590
600
610

PRINT "TYPE HUFF IF YOU THINK I'M
HUFFING"
PRINT'TYPE PUFF IF YOU THINK I'M
PUFFING"
PRINT "THEN PRESS ENTER"
PRINT "YOURS SINCERELY, WOLF"
RETURN
REM PROBLEM
TRIES = TRIES +1
R= INT(RND(1)*2) +1
IF R = 1 THEN R$ = "HUFF"
IF R = 2 THEN R$ = "PUFF"
PRINT "DO I HUFF?"
PRINT "DO I PUFF?"
INPUT B$
IF B$ = R$ THEN GOTO 460
RETURN
REM WON
PRINT NAME$
PRINT "YOU WON!"
PRINT "I CAN'T BLOW YOUR HOUSE
DOWN!"
PRINT "YOURS IN DISAPPOINTMENT"
PEN 0
PRINT "WOLF"
PEN 3
GOTO 850
REM GOES
PRINT "YOUR NUMBER OF TRIES
SO FAR IS"
PRINT TRIES
IF TRIES > 3 THEN GOTO 600
RETURN
REM HUFFPUFF
PEN 3

92

620 CLS
630 PRINT "YOUR TRY NUMBER FOUR"
640 PRINT "MEANS YOUR HOUSE IS OF

STRAW"
650 PRINT "I'VE HUFFED AND I'VE

PUFFED AND BLOWN YOUR HOUSE
DOWN"

660 PRINT "YOURS IN ANTICIPATION"
670 PEN 0
680 PRINT "WOLF!"
690 PEN 3
840 REM PLAY OR STOP
850 PRINT "TYPE S TO STOP"
860 PRINT "TYPE P TO PLAY"
870 INPUT A$
880 IF A$ = "P" THEN GOTO 10
890 IF A$ = "S" THEN END

Type the program in. If you want to list it,
it’s a useful trick to type LIST 10-180, press
ENTER. You’ll see part of the listing on the
screen. To get more, type in further blocks
of line numbers.

If you run the program, you’ll notice that
the screen doesn’t look very neat. It’s
important that people can read what’s on
the screen easily. So work on this program
to make it look better. Use everything you
have learnt.

If you get stuck, just ask somebody who
knows a bit of programming to help you.
There are many things I don’t understand,
and I often ask other people for help. But
first I try to do the things myself. So try
improving this program yourself first. If you
practise whenever you can, you will soon be
able to write your own programs!

93

INDEX

A
Addition
ARROW Key

15
40

B
BASIC 5
BORDER 47
C
CLS 11
Colours

Border 48
Character 48
Flashing 52
Screen 48

Concatenation 58
Constant 19
COPY Key 13

Cursor 13
CTRL Key 53
D
Delete 21
DEL Key 21
Divide 15
E
Edit 40
Editing Cursor 40
Enter 5
Error Messages 61
ESCAPE Key 33
F
For. ..Next 29
G
Gosub 91
Goto 74
I
If. . .Then 67
Ink 52
Input 76
INT 89
K
Keyboard 4
L
List 10
Locate 43

M
Mode 9
Multiply 15
N
New 8
Number Variables 23
P
Paper 49
Pen 49
Pixels 12
Print 5
Program 7
R
Ready 4
Recorder 34
REM 81
RENUM 25
Return 91
RND 89
Run 7
S
SHIFT Key 13
Signs
H 15* 15
/ 15
+ 15
— 15— 15
$ 22

69
< 69
SPACE Bar 40
String Variables 20
Strings 20
Subroutine 86
Subtraction 15
Syntax Error 5
T
Tape 34
Text Cursor 44
Then 67
V
Variables 19

94

Duckworth Home Computing

MY AMSTRAD CPC 464 AND ME
Jack Walker
Playing with a computer should be fun as well as
instructive. The purpose of this book is to help both
children and parents to understand how the Amstrad
computer works and what it can do.

The book adopts a simple, friendly style with emphasis
on learning as fun. A major feature is the use of short,
self-contained sections which encourage children and
parents to work at a steady, unhurried pace. An hour a
day with book and computer should enable a child to
grasp the simple but powerful ideas behind
programming. This is not a text for learning BASIC but
rather a way to get to know the Amstrad using simple
BASIC commands. Children as young as 6 or 7 should be
able to understand the text and operate the computer
with or without parental help.

Jack Walker has written and edited numerous
computer books. He runs hisown editorial and marketing
company, J.S.W. Publishing Services.

Duckworth ISBN 0 7156 1964 0
The Old Piano Factory
43 Gloucester Crescent, London NW1 IN UK ONLY £2.95 NET

m

https://acpc.me/

CPC

[FRA] Ce document a été préservé numériquement à des fins éducatives et d'études, et non commerciales.
[ENG] This document has been digitally preserved for educational and study purposes, not for commercial purposes.
[ESP] Este documento se ha conservado digitalmente con fines educativos y de estudio, no con fines comerciales.

	My AMSTRAD CPC 464 and me
	INTRODUCTION
	IT LOOKS FAMILIAR!
	DOING THINGS AT ONCE AND DOING THINGS LATER
	FAT LETTERS AND THIN LETTERS
	NUMBERS AND CHARACTERS
	WHAT’S HAPPENING INSIDE?
	SOME THINGS REMAIN THE SAME AND SOME THINGS CHANGE
	A BIGGER PROGRAM
	NUMBER VARIABLES
	SAVE IT!
	SHOWING OFF
	LOCATE DANCING
	THE COLOURS OF THE RAINBOW
	DIFFERENT MODES
	SWEET SIXTEEN
	BACK INSIDE THE AMSTRAD’S POCKETS
	CONCATENATING STRINGS AND ADDING NUMBERS
	CUTTING THE STRING
	WHAT MUST I DO, IF....
	RICH MAN, POOR MAN
	BUT ONLY THEN....
	THE AMSTRAD EXPECTS....
	THINK OF A NUMBER!
	HOW REMARKABLE!
	HUFF AND PUFF
	THE HUFF-PUFF GAME
	PROCEED WITH YOUR PROGRAMS!
	INDEX
	● Raw HQ scan : Maxime CROIZER for ACME | Cleaning/Restoration/Layout/OCR : ACME – https://acpc.me | Thanks to Rafa CPCMANIACO for lending the book ● 2020-11-26

