

AMSTRAD

ADVANCED
USERS GUIDE

by

Daniel Martin

Glentop Publishers Ltd

October 1986

All programs in this book have been written expressly to illustrate specific teaching
points. They are not warranted as being suitable for any particular application. Every
care has been taken in the writing and presentation of this book but no responsibility
is assumed by the author or publishers for any errors or omissions contained herein.

COPYRIGHT © The Glentop Press Ltd 1986
World rights reserved
2nd Revised edition
1st Edition published February 1986

Translated from the original
COPYRIGHT © Editions du P.S.I. 1985

No part of this publication may be copied, transmitted or stored in a retrieval system
or reproduced in any way including but not limited to photography, photocopy,
magnetic or other recording means, without prior permission from the publishers,
with the exception of material entered and executed on a computer system for the
reader’s own use

ISBN 1 85181 122 2

Published by: Glentop Publishers Ltd
Standfast House
Bath Place
High Street
Barnet
Herts EN5 5XE
Tel: 01-441-4130

About the Author

Daniel Martin, who wrote the original, French, version
of this book, spent a brief period with the French
National Ministry of Education before succumbing to
the attractions of micro-computers - which have fasci­
nated him since 1978 - and taking a job as a computer
manager with the Tandy Corporation for eighteen
months. He then worked for Apple in the Netherlands
and is currently a systems engineer with Intertechnique,
a major French manufacturer specialising in micro­
computers based on the PICK system.

He wrote Le livre du MSX (The MSX book) in
December 1984, Les dessous du Spectravideo (Under­
neath the Spectravideo) in February 1985. He is curr­
ently writing L’assembleur du QL Sinclair (The Sinclair
QL assembler) and is preparing Livre de I’Amstrad (The
Amstrad book).

CONTENTS

CHAPTER 1

CHAPTER 2

CHAPTER 3

CHAPTER 4

CHAPTER 5

INTERNAL ARCHITECTURE 1
General layout and specifications • Block diagram

BASIC 3
General features • Allocation of variables • BASIC instruct­
ions • BASIC functions • Keywords and associated codes •
ASCII codes - Characters • ASCII codes - Graphics • Error
codes and error messages • BASIC and memory storage •
Storage of BASIC keywords • Storage of a BASIC line

MACHINE LANGUAGE 37
Internal layout of the Z80 • Z80 Registers • Details of the flag
register • Z80 Instruction set • Alphabetic list of Z80
instruction codes • Dissassembly tables • Single byte
instructions • Two byte instructions prefixed with CB • Two
byte instructions prefixed with ED • Two byte indexed
instructions prefixed with DD

INTERNAL SOFTWARE 54
Introduction • Operating system entry points • Keyboard
management routines • Text management routines • Screen
management routines • Tape management routines • Sound
management routines • The kernel • General and peripheral
interface routines • The jump block • Indirection vectors •
Kernel vectors and restarts • Upper memory vectors • Low
memory vectors • Vectors for maths routines • Main system
variables • Principal lower ROM addresses • Principal upper
ROM addresses • ROM absolute addresses • Execution
addresses of BASIC keywords • Control blocks • ROM
expansion • Streams • Sound queue • Amplitude and tone
control block • Ink vector • Format of bytes following a
restart • Standard ROM • Additional ROM • Format of
cassette files • Event block • Interrupt control block

CHIPS AND CIRCUITS 104
The AY3 8912 chip • Internal structure • Registers •
Programming • Functions of BDIR and BC1 • The PPI8255
chip • General • Allocation of ports • Programming •
Writing to the control register • The CRTC 6845 chip •
General • Registers • Programming • The video gate array •
Genral • Programming • Palette memory

CHAPTER 6 HINTS AND TIPS 114
Dumping hex memory from ROMs to printer • Lower ROM
hex dump • Upper ROM hex dump • Lower ROM ASCII
dump • Upper ROM ASCH dump • Starting and stopping
the cassette motor • Protecting a program • Original noises •
Circle and ellipse plotting program • Scanning the keyboard •
Putting a machine code routine into a comment line

CHAPTER 7 CONNECTORS AND CHIP PINOUTS 119
AY3 8912 • CRTC 6845 • PPI 8255 • Z80 • Joystick •
Video output • Expansion connector • Printer output

APPENDIX A 127
Table of values for the chromatic scale • Terminal control
codes • Table of port addresses • Screen memory format •
Table of colours • Table of keyboard codes • Numeric keypad
• Cursor keys • Joysticks

APPENDIX B CPC 664 MACHINE-SPECIFIC INSTRUCTIONS 135
Functions • Commands • Maths routine vectors • Main
system variables • Principal lower ROM addresses • Principal
upper ROM addresses • ROM absolute addresses • Execut­
ion addresses of BASIC keywords • New keywords

APPENDIX C CPC 6128 MACHINE-SPECIFIC INSTRUCTIONS 154
Principal lower ROM addresses • Principal upper ROM
addresses

INDEX 161

vi

INTERNAL ARCHITECTURE

GENERAL LAYOUT AND
SPECIFICATIONS

The block diagram on the following page shows the main circuits making up the
equipment.

The system is organised around a Z80 Central Processing Unit with a 4Mhz clock.

The most important circuit of the Amstrad, with the exception of the micro­
processor itself, is the gate array which contains all the system control logic. In
particular, it controls the colour, the screen mode and the Read Only Memory
(ROM).

Together with the CRTC 6845 (Cathode Ray Tube Controller) the gate array
controls all the video signals for the monitor (screen).

Another important circuit is the PSG AY3 8912 (PSG stands for Programmable
Sound Generator). This circuit contains three separate channels, with a sound
generator and envelope control for each channel. Programming is described in
Chapter 5.

The system also has an Input/Output port which can be used to read the keyboard
and joystick.

The PPI 8255 plays an important role in controlling the joystick, the parallel print
port, the tape recorder and in the selection of keyboard columns.

The system has 64K of Random Access Memory (RAM) and 32K of Read Only
Memory (ROM), the latter containing the operating system and BASIC.

The 32K ROM is part of the central circuitry and is divided into two blocks of
16K. The lower 16K block occupies addresses 0000 to 3FFF, the upper 16K block
occupies addresses from C000 to FFFF.

These two memories can be handled separately, in or out of the circuit, under the
control of the gate array.

There is a signal on the port extension which can be used to disconnect the
internal Read Only Memory and permit external memory access to the processor.
This allows for example, for the use of floppy disks.

RAM consists of 64K bytes from address 0000 to FFFF. The lower and higher
16K blocks thus share addresses with the ROM.

1

INTERNAL ARCHITECTURE

Normally this will cause no problems since when writing, only RAM is capable of
being affected and, when reading, it is possible to select between either ROM or
RAM, depending on what you want to read.

The screen memory occupies 16K in the central memory area and can be found at
addresses 0000, 4000, 8000 or C000. Generally, on startup, it will be located at
address C000.

BLOCK DIAGRAM

2

BASIC

GENERAL FEATURES

Maximum memory space available: 43533 bytes

Variable names: 1 to 40 characters

Data

Integers: from -32768 to 32767

Single precision: from 293874 E-39 to 170141 E30, to nine significant figures, or to
six in exponential form.

String size: 0 to 255 characters

Length of program lines: 255 characters maximum

Program line numbers: from 1 to 65535

Memory requirements: a single line of BASIC occupies a minimum of 6 bytes, 2 for
the line numbers, 2 for the length of the line, 1 for the separator and 1 for a minimum
instruction (eg. REM, PAINT)

Allocation of Variables
Positive integers from 1 to 9: 1 byte

Negative integers from 1 to 9: 2 bytes

Positive integers from 10 to 255: 2 bytes

Negative integers from 10 to 255: 3 bytes

Positive single precision (255-65535): 3 bytes

Negative single precision (255-65535): 4 bytes

Positive integer above 65535 or positive non-integer: 6 bytes

Negative integer above 65535 or negative non-integer: 7 bytes

Note:
The words ’single precision’ and ’real’ are used synonymously in this book.

3

BASIC

BASIC INSTRUCTIONS

AFTER AFTER X, [Y] GOSUB N
Calls a program subroutine after waiting X 5Oths of a second. Y
(optional) indicates which clock to use. There are four clocks,
numbered from 0 to 3, if no clock is specified, this defaults to
0.

AUTO AUTO [N] , [X]
Provides automatic line numbers, starting at line N and with
line number intervals of X. N and X default to 10.

BORDER BORDERX, [Y]
A and Y represent the numbers of the colours (0 to 26) to be
used for the screen border. If Y is specified then the two
colours alternate at a speed determined by the command
SPEED INK.

CALL CALLADR [, 1 i st of parameters]
This command is used in BASIC to call a machine code
subroutine located at address ADR. A list of parameters will, if
included, be passed to the subroutine.

CAT CAT
Reads the tape and lists the names of the files on it. Does not
affect the currently loaded program.

CHAIN CHAIN name [, N]
Loads a program from tape into central memory, replacing any
previous program. It then runs the new program starting from
line number N (if specified). If N is not specified then the
program executes from the lowest line number.

CLEAR CLEAR
Erases the contents of all variables.

CLG CLG
Clears graphics.

CLOSEIN CLOSEIN
Closes a tape file opened for input.

CLOSEOUT CLOSEOUT
Closes a tape file opened for output.

CLS CLS [# N]
Clears the screen or the screen window and leaves it coloured
according to the last PAPER instruction. N is any channel
number from 0 to 7 and corresponds to the screen as defined
by the instruction WINDOW.

CONT CONT
Resumes the running of a program after encountering STOP or

4

BASIC

END or after pressing the BREAK key - as long as the program
has not been edited in the meantime.

DATA DATA A , B , C
where A, B and C are data items.
Uses a program line to store a list of values, it is interpreted by
the READ function.

DEF FN DEF FNf [(X- expr
Used to define a user function; f represents the name of the
function, [X] represents its formal parameters and expr
represents its general expression.

DEFINT DEFINTX-YorDEFINTX,Y...
Defines a set of variables in the range X-Y or in the list
X.Y, . . . as being permanently of integer type.

DEFREAL DEFREAL X-Y or DEFREAL X , Y . . .
Defines a set of variables in the range X-Y or in the list
X , Y . . . as being permanently of real (single precision) type.

DEFSTR DEFSTR X-YorDEFSTR X, Y, . . .
Defines a set of variables in the range X-Y or in the list
X , Y . . . as being permanently of string (character sequence)
type.

DEG DEG
Sets calculation mode to degrees (trigonometric functions
normally use radians). This mode can be reset to use radians
by the commands CLEAR and RAD or by loading another
program.

DELETE DELETE (N1 ,N2 . . .) or DELETE N1-N2
Deletes lines N1 , N2 . . . , or all lines numbered between N1
and N2 (in the second example) from the currently loaded
program.

DI DI
Disables interrupts.
All commands which generate interrupts, with the exception of
BREAK, cease to work.

DIM DIM var(n)or DIM var(N1 ,N2 . . .) var (n1,n2. . .)
Dimensions an array (var) from 1 to n. By default a variable is
automatically dimensioned tolO(var (10)).

DRAW DRAWX.Y.A
Draws a line on the screen, starting at the position of the
graphic cursor and moving to the position of the co-ordinates
(X , Y) using colour number A.

DRAWR DRAWR X, Y.A
Draws a line on the screen starting at the position of the
graphic cursor and moving to the relative position +X.+Y
using colour number A.

5

BASIC

EDIT EDITN
Invokes the editing mode on line number N.

El El
Enables interrupts. Cancels the effect of DI.

END END
Instruction to end execution of the program.

ENT ENTNE[,SE]
This defines a tone envelope permitting the addition of
vibrato. NE represents the envelope number (0 to 15). SE
comprises three quantities for each section (the number of
steps, frequency value and time interval value for each); five
sections can be described.

ENV ENVNE[,SE]
This defines the volume envelope allowing the definition of
sound type. NE represents the envelope number (0 to 15). SE
contains three quantities per section (count value, volume level
and time for each); five sections can be described.

ERASE ERASE list of names of variables
Frees the memory space reserved by DIM commands.

ERROR ERROR N
N represents an integer. Enables a specific error trap and
defines the course of action to be taken on encountering that
error.

EVERY EVERY N.M GOSUB LN
The subroutine at line number LN will be executed every N
lOOths of a second, counted on clock M. Four clocks are
available numbered from 0 to 3. This command allows you to
call a subroutine at regular intervals.

FOR FOR var-D to F [STEP p]
Introduces a loop. All the instructions lying in lines between
FOR var = D to F [STEP P] and the corresponding NEXT, will
be repeated once for each value of var from D to F in steps of P
(if P is not specified then in steps of 1).

10 FOR 1=1 TO 20 STEP 2
20 PRINT I, " ",1*1
30 NEXT I

GOSUB GOSUB LN
Calls (executes) the subroutine starting at line number LN.

GOTO GOTO LN
Jumps to line number LN.

IF IF condition THEN instruction
Carries out the instruction which follows the THEN provided
that the condition following I F evaluates to true.

IF A=3 THEN GOSUB 1000
6

BASIC

INK INK, colour [.colour]
A varying number of inks are available according to the screen
mode currently in use. The IN K command determines the INK
colour and the background colour. If two background colours
are specified, then they will alternate every 50th of a second.

INPUT INPUT [#channel number][;][prompt string;]
1i st of vari abl es

Reads data coming from the specified channel and assigns it to
the named variables. The first [;] cancels the carriage return
after the prompt. A ; after the string causes a ? prompt to
appear, while , causes the ? prompt to be supressed. When a
tape channel is specified, there is no screen prompt call,
instead a data item from the relevant file (channel number)
will be assigned to each variable of the list.

KEY KEY integer number, string of characters
Allows definition of a new function key. The number
(128-140) defines the key to which the string of characters will
be assigned. Key 0 of the keyboard is designated as number
128, key 1 as 129, key 9 as 137, the space key as 138, the
combination CTRL and ENTER together as 140.

KEY 132, "RUN"+CHR$(13)

places the sequence RUN followed by an ENTER onto number
key 4.

KEY DEF KEYDEF, Key number, repetition, num character
Changes the value produced by a key.
KEY DEF 45,1 ,65 puts A on the J key with an auto-repeat
facility. KEY DEF 46,0,63 puts ? on the N key and disables
the auto-repeat.

LET LET variable=expressions
Assigns the result of the expression on the right of the equals
sign to the variable on the left.

LET A = 500*3

In AMSTRAD BASIC it is possible to write A=500*3. LET is
only used to maintain compatibility with earlier programs.

LINE INPUT LINE INPUT [//channel number,] [;] [string;] variable
or LINE INPUT"NAME";A$
Reads in an entire line from the specified channel (defaults to
channel 0). If a comma is found in the input it will be put into
the variable, whereas the use of a simple INPUT command
would have split the variable at this point.

LIST LIST [line numbers] [//channel number]
Lists the program on the desired channel (0 corresponds to the
screen and 8 to the printer). Screen scrolling can be stopped by
pressing ESC and resumed by pressing any other key. Pressing
ESC twice returns you to the command input (direct) mode.

7

BASIC

LOAD LOAD [name of fi 1 e] [.address]
Loads a BASIC program from cassette into central memory,
replacing anything that was there before. In the case of a
binary program the loading address can be specified.

LOCATE LOCATE [#No of channel ,] X.Y
Places the text cursor at co-ordinate position (X , Y) relative to
the origin of the screen window. The co-ordinate point (1,1)
is at the top left hand corner of the window.

MEMORY MEMORY address
Allows you to redefine the address of the highest memory
address used by BASIC. This is normally address AB7F.

MERGE MERGE ["filename"]
Identical to LOAD, but without the implied NEW command
before loading. Where two line numbers are identical, the line
contents become that of the new (LOADing) program. If the
name of the file is not specified, then the first program
encountered on the tape will be used. A tape program whose
name is preceded by the sign ! is protected and will not be
read.

MODE MODE N
Allows changing of the screen mode (N =0, 1 or 2). Clears the
screen and sets INKO regardless of the PAPER INK value in use
at the time. When this command is used the full screen is
displayed and the cursors return to their points of origin.

MOVE MOVE X, Y
Positions the graphic cursor at the absolute position of co­
ordinates (X,Y).

MOVER MOVER X, Y
Moves the graphic cursor to co-ordinate position (X, Y)
relative to the current position.

NEW NEW
Clears the memory. The current program and all variables
disappear but key definitions and display modes remain
unchanged.

NEXT FOR 1=1 TO 10 : ... : NEXT [I]
Determines the end point of a loop started by FOR.

ON...GOTO
ON...GOSUB

ON nGOTO 1 i st of linenumbers
ON n GOSUB1ist of 1 ine numbers

Branches to the routine or subroutine at the nth position in the
list of line numbers.

ON A GOTO 100,110,130,132,170,300,320,1000

if A = 1, a jump will be made to line 100
if A = 2, a jump will be made to line 110
if A = 7, a jump will be made to line 320
and so on.

8

BASIC

ON BREAK GOSUB ON BREAK GOSUB line number
Calls a subroutine to be executed whenever a break (ESC
ESC) is detected during the course of program execution.

ON BREAK STOP
Cancels the effect of the command ON BREAK GOSUB.

ON ERROR GOTO ON ERROR GOTO line number
Branches execution to the specified line when an error occurs.

ON SQ GOSUB ON SQ(n) GOSUB LN
Executes the sub-routine at line LN when the queue cor­
responding to sound channel n is no longer full, n can only
have the values 1, 2 or 4, corresponding to channels A, B and C
respectively.

OPENIN OPENIN "fi1 ename"
Opens a tape file, thus allowing the program running in central
memory to read data directly from the cassette. If the name of
the file is preceded by a 1, the normal messages associated with
use of the tape will not appear and the program will read in the
first tape file block directly.

OPENOUT OPENOUT "filename"
Opens a tape file so that a program can write data to it. If the
name of the file is preceded with !, the usual tape start-up
messages will not appear. The program then creates its first 2K
data buffer, but nothing is written onto the tape until the
buffer is full or until the command CLOSEOUT is used to close
the file.

ORIGIN ORIGINX.Y,[,L,R,T,B]
Determines the co-ordinates (X , Y) for the point of origin of
the graphic cursor. The optional elements L, R, T and B allow
you to define a new window.

OUT OUT port number, integer
Sends an integer value to the specified port. The integer can
take any value from 0 to 255 and the port number takes any
value between 0 and 65535.

PAPER PAPER [#noofchannel,] inkno
Defines the background colour for the next characters to be
written to the screen.

PEN PEN [# no of channel,] inkno
Defines the colour of the next characters to be written to the
screen.

PLOT PLOTX, Y [ink no]
Places the cursor at co-ordinate position (X , Y) in the colour
specified by INK, defaults to the colour last used.

9

BASIC

PLOTR PLOTR X, Y [, ink no]
Places the cursor at co-ordinate position (X , Y) relative to the
current position, in the colour specified by INK. Defaults to
the colour last used.

POKE POKE adr, data
Places the data at the specified address.

PRINT PRINT [#channel No,] data
Prints the data on the selected channel (defaults to channel 0,
the screen). PR I NT US I NG allows you to specify different print
formats.

RAD RAD
Sets the trigonometric calculation mode to work in radians (see
DEG).

RANDOMIZE RANDOMIZE [N]
Sets a new sequence of pseudo-random numbers starting from
N, N being an integer between 0 and 65535. By default, N is
equal to 0.

READ READ listofvariables
Reads the data contained in DATA program lines and assigns it
to the specified variables (see DATA and RESTORE).

RELEASE RELEASE sound channels
Releases a sound channel from the waiting state.

REM REM
Introduces a line of comments which will be ignored by the
BASIC interpreter.

RENUM RENUM [NN] , [SN,] [ST]
Renumbers the current program lines. New line numbers start
with NN (default 10); SN is the old line number from which
renumbering is to start (default is the first line of the program),
ST is the step between lines (default 10).

RESTORE RESTORE (line number)
Defines the line number of the next DATA statements to be
used by a READ. If no number is specified, READ begins at the
first program line containing a DATA statement.

RESUME RESUME [line number]
Allows program execution to continue from the given line
number after an error has been trapped and corrected by use of
ON ERROR GOTO.

RETURN RETURN
Returns to the main program after completing execution of a
subroutine called by GOSUB.

10

BASIC

RUN RUN [line number]
Runs the currently loaded program starting from the specified
line number or, by default, from the lowest numbered line.

RUN "name of program"

Loads a specified program from tape and RUNs it. If you do not
include the name of the program (as in RUN " "), BASIC loads
and runs the first program encountered on the tape.

SOUND SOUNDchannel, toneperiod [,duration[,volume[,
volume envelope[.tone envelope]]]]

Produces a specified sound. For a more detailed explanation of
how this is done, see the section on Chips - AY3 8912.

Channels: The three channels A,B and C can be selected
together, in pairs or individually.

Tone period: This determines the pitch of the tone and can take
any value between 0 and 4095. The frequency of the sound is
obtained by dividing 125000 by the selected time value.

Duration: Can take values between —32768 and +32767
(default 20). If the duration has a positive value, it represents
so many lOOths of a second; if it has a negative value, it
represents the number of repetitions to be made of the
complete volume envelope.

Volume: Takes a value between 0 and 15 (default 12 if the
command ENT has been given, otherwise defaults to 4).

Volume envelope: Can take any value between 0 and 15 (default
0) and indicates the type of the envelope defined by the
instruction ENV.

Tone envelope: Can take any value between 0 and 15 (default 0)
and indicates the type of the tone envelope defined by the
command ENT.

SPEED INK SPEED INK, integer, integer
Allows modification of the alternating rate of background
colours where two colours have been defined with the INK
command.

10 INK 0,1,9
20 SPEED INK 100,20

SPEED KEY SPEED KEY wa i t, repetitiontime
Sets the delay time (wait) before a key-stroke will auto-repeat,
together with the speed of the repetition (repetition time).
These adjustments are made in lOOths of a second and both
values default to 10.

SPEED WRITE SPEED WRITE n
Changes the speed at which a program is recorded onto tape.
When LOADing, the CPC 464 automatically establishes the
correct speed for reading. With n = 0 the WRITE speed will be
1000 baud; with n = 1 it will be 2000 baud, n defaults to 0 and
may only take one of the values 0 and 1.

11

BASIC

STOP STOP
Stops program execution while maintaining the option of
continuing with the CO NT command.

SYMBOL SYMBOL, character number; 1 ist of characters
Allows redefinition of the character whose number is specified.
All characters numbered between 240 and 255 can be re­
defined; to redefine others, see the command SYMBOL AFTER.

SYMBOL AFTER SYMBOL AFTER integer
Sets the number of characters that may be redefined using
SYMBOL. Normally set to 240.

TAG TAG [^channel number]
Allows characters to be placed at the position of the graphic
cursor. Written text can thus be mixed with graphics.

10 MOVE 200, 300
20 PRINT "YOOHOO"
30 TAG
40 PRINT "HELLO"

YOOHOO will be written at the position of the text cursor while
HELLO will be written at the position of the graphic cursor
(200,300).

TAGOFF TAGOFF [channel number]
Cancels the effect of the command TAG on the appropriate
channel (defaults to channel 0) and returns the text to where
the text cursor was before the use of the command TAG.

TRON TRON
Turns on TRACE mode.
During the execution of a program in TRACE mode, all the line
numbers executed are displayed in order on the screen. This
mode is really useful during the writing and debugging of a
program.

TROFF TROFF
Turns off TRACE mode.

WAIT WAIT nPORT, mask byte, selection byte
Waits for a specified bit pattern to appear at the specified input
port. This instruction reads the pattern at port n, ANDs the
contents with the mask byte and then performs and an
EXCLUSIVE OR function with the selection byte - program
execution is resumed only when the result is non-zero. The
mask function permits the isolation of one or more bits for
testing. The selection function allows the test state to be
inverted.

WEND WEND
Ends execution of a loop begun by the WHILE command.

WHILE WHILE logical expression
While the logical expression is true, the program will execute

12

BASIC

the program lines between WHILE and WEND (in this case until
X = Y).
The following program:

10 X-4: Y-0
20 WHILE XoY
30 INPUT "HOW MUCH IS 2 AND 2 " ; Y
40 WEND
50 PRINT "BRAVO":END

will do exactly the same as the program:

10 X-4
20 INPUT "HOW MUCH IS 2 AND 2"; Y
30 IF XoY THEN GOTO 20
40 PRINT "BRAVO":END

The usefulness of the instructions WHILE and WEND only
becomes particularly clear when using structured programm­
ing. One of the principles of this type of programming is a
considerable reduction in the use of the jump instruction
(GOTO) so as to make programs more readable.

WIDTH WIDTH intege r
Sets the number of characters which may be printed on a single
(logical) line.

WINDOW WINDOW [#channel no] left, right, top, bottom
Allows definition of a text window for a given channel of the
screen, channels 0 to 7 can be used to define screen text
windows.

WINDOW SWAP WINDOW SWAP, channel number, channel number
All attributes of the two channels are exchanged.

WRITE WRITE [#channel no,] [1 i st to be wri tten]
Writes the list to the specified channel (defaults to 0) without
any changes in punctuation.

WRITE "YOOHOO", 23,5

will write "YOOHOO", 23,5 on the screen.

XPOS XPOS
Returns the current horizontal position of the graphic cursor.

YPOS YPOS
Returns the current vertical position of the graphic cursor.

ZONE ZONE i ntege r
With the PR I NT command, a comma may be used to divide the
printout into columns (defaulting to 13 character columns);
ZONE allows this column width to be redefined.

10 ZONE 4:PRINT "*",1,2,3

prints

* 1 2 3

13

BASIC

BASIC FUNCTIONS

ABS ABS (numeric expression)
Returns the absolute value of the numeric expression shown in
brackets.

ASC ASC (String of characters)
Returns the ASCII code of the first character in the character
string named in the brackets.

ASC("ABC")

returns 65.

ATN ATN (numericexpression)
Returns the value in radians or in degrees (see DEG and RAD) of
the angle whose tangent equals the numeric expression (arc­
tangent).

BINS BINS (decimal integer [, N])
Converts an integer (in base 10) into a binary number (base 2)
of length N characters (leading zeros ommited by default).

CHRS CHRS (N)
Returns the character with the ASCII code N. N is an integer
between 0 and 255.

CHR$(65)

returns an A.

CINT CINT (numericexpression)
Rounds a real number up to the next whole number if the
fractional part of the expression (to the right of the decimal
point) is higher than or equal to 0.5; otherwise rounding down.
The new number will be stored as an integer.

PRINT CINT (1.4).CINT (1.6)

prints:

1 2

COS COS (angle value)
Returns the value of the cosine of an angle in radians (by
default) or in degrees if the DEG command has been used.

CREAL (numeric expression)
Converts an integer number to real form. This is the inverse of
the CINT function.

EOF PRINT EOF
Indicates that the end of a tape file has been detected. Returns
the value — 1 when the cassette is at the end of a file, otherwise
returns 0.

ERR PRINT ERR
ERR is a variable containing the number of the last error
message encountered.

14

BASIC

ERL PRINT ERL
ERL is a variable containing the number of the line which
produced the most recent error message.

EXP PRINT EXP (n)
Returns e to the power n.

FIX FIX (n)
Like I NT, this returns the decimal part of a number n, but this
time it truncates (removes the decimal point) rather than
rounds.

FRE FRE (x) orFRE (" ")
Returns the number of bytes remaining free in memory. The
argument (in brackets) is a dummy whose actual value is not
used by the routine and so may take any (legal) form.

HEX$ HEXS (n)
Converts an integer number to a hexadecimal number ofN
characters (leading zeros ommited by default).

HIMEM HIMEM
Returns the highest address available for use by BASIC.

INKEY INKEY (N)
Examines the keyboard to see what key has been pressed.
If key number N has been pressed, INKEY (N) returnsO.
If key number N has been pressed as the same time as the
SHIFT key, INKEY (N) returns 32.
If no key or any key other than key (N) has been pressed, then
INKEY (N) returns-1.

5 CLS
10 IF INKEY(54)>32 THEN 30

ELSE IF INKEY (54)-0 THEN 40
20 GOTO 10
30 PRINT "You have typed SHIFT and B": GOTO 50
40 PRINT "You have typed B"
50 GOTO 10

INKEY$ A$=INKEY$
Loads the string variable AS with the value of the key that has
just been pressed on the keyboard. This function is particular­
ly useful when waiting for a single key input.

10 CLS
20 PRINT "Do you take sugar in your coffee?";
30 A$=INKEY$: IF A-" THEN 30
40 IF AS <> ”Y" AND AS <> "N" THEN 30
50 PRINT AS

INP PRINT INP (Number of I/O port)
Reads the contents of a specified Input/Output port.

INSTR INSTR ([N,] AS , B$)
If the string B$ is a part of the string AS, INSTR (AS , B$)
takes a numeric value equal to the start position of B S within

15

BASIC

A$. If N is specified, the count will begin from the Nth
character in the string A $.

PRINT INSTR ("BANANA", "AN")

prints 2.

INT INT(numericexpression)
Ignores the fractional part of a number and rounds it down to
the nearest whole number. Similar to FIX for positive num­
bers, but will give 1 less than FIX for negative numbers which
are not integers.

JOY JOY(N)
Reads the value at joystick number N (0 or 1). The value
returned is expressed in the 6 least significant bits of the
returned number. If the joystick is not being used, all 6 bits
equal 0. Bits change to 1 with a change in position of the
joystick or by pressing the trigger as follows:

bit 0 = 1 joystick UP (adds 1 to returned value)
bit 1 = 1 joystick DOWN (adds 2 to returned value)
bit 2 = 1 joystick LEFT (adds 4 to returned value)
bit 3 = 1 joystick RIGHT (adds 8 to returned value)
bit 4 = 1 trigger 1 fired (adds 16 to returned value)
bit 5 = 1 trigger 2 fired (adds 32 to returned value)

It is possible to deduce combinations. For example, if the
joystick is in a downwards right position and trigger number 1
is being pressed, the joy function will return a value equal to
the sum of all values that would be returned for each separate
action:

Down = 2
Right = 8
Trigger 1 fired = 16
Returned value: 2 + 8+16 = 26.

LEFTS LEFTS (string, N)
Returns the N characters at the left of the specified string, N
being an integer.

PRINT LEFTS ("AMSTRAD",4)

will print:
AMST.

LEN LEN (string)
Returns the number of characters in the string.

LOG LOG (X)
Calculates the logarithm of X to base e.

LOGIO L0G10 (X)
Calculates the logarithm of X to base 10.

LOWERS LOWERS (stri ng)
Transforms all capital letters in an alphanumeric string to
lower case letters.

16

BASIC

MAX MAX (1i st of numeric expressions)
Returns the highest value found in a list of numbers or
numeric expressions.

PRINT MAX (2, 67, 34, 987, 12, 9, 876, 0)

prints 987.

MID$ MID$ (string, N [,M])
Extracts M characters from the string, beginning at the Nth
character. M defaults to 1.

MIN MIN (listofnumericexpressions)
Returns the smallest value contained in the list of numeric
expressions.

PEEK PEEK (N)
Returns the value contained at memory address N.

PI PRINTPI
Returns the numeric value of PI.

PRINT PI

prints
3.14159265

POS POS (#Channel number)
Indicates the current horizontal position of the text cursor for a
given channel (the X co-ordinate). If the printer is specified,
POS gives the horizontal position of the print-head, position 1
being at the left hand margin.

REMAIN (N)
Disables the specified clock (N = 0, 1, 2 or 3) and reads the time
remaining. Returns 0 if the clock has not been set.

RIGHTS RIGHT $ (string, N)
Returns N characters from the right-hand end of the specified
string.

RND RND (N)
Returns a psuedo-random number from the sequence deter­
mined by the RANDOMIZE command. If N is negative, then
each N will give a repeatable pseudo-random value, until
another RANDOMIZE command.

ROUND ROUND (numeric expression [,N])
Rounds up the numeric expression to N decimal places. N, an
integer, defaults to 0.

SGN SGN (numericexpression)
Determines the sign of the numeric expression. Returns — 1 if
negative, 0 if 0, and 1 if positive.

SIN SIN (ang 1 e value)
Returns the value of the sine of the angle in either radians or
degrees (see RAD and DEG). Defaults to radians.

17

BASIC

SPACES SPACE$ (N)
Creates a string of N spaces, N being an integer up to 255.

SQ SQ (sound channel)
Returns the number of free places in the queue of a given
channel.

SQR SQR (N)
Calculates the square root of the number N.

STR$ STR$ ([&]n)
Converts the numeric expression N into a string of characters.
If the numeric expression is preceeded by an ampersand (&), it
is assumed to be a hexadecimal number and will first be
converted into decimal before being converted into a string.

PRINT STR$ (&10)

would return the string 1 6.

STRINGS STRINGS (N, character)
Creates a string of characters made up of the specified
character repeated N times. N can be expressed in hexadecimal
if it is preceeded by a &.

PRINT STRINGS (4, "*")

and

PRINT STRINGS (4,42)

both print
* * * *

TAN TAN (angle)
Returns the value of the tangent of the angle, expressed in
radians (default) or degrees (see RAD and DEG).

TEST TEST(x,y)
Returns the value of IN K used at the absolute co-ordinate
position (x , y) on the screen.

TESTR TESTR (x,y)
Returns the value of INK used at the co-ordinate position
(x , y) on the screen, relative to the graphics cursor.

TIME PRINTTIME
Returns the amount of time spent so far (in units of 1/300th of
a second) since start-up. Tape read and write time is not
included.

UNT UNT (number)
Converts an unsigned integer to a signed integer between
-32767 and +32768.

PRINT UNT (&7FFF) and PRINT UNT (32767) print 32767
PRINT UNT (&0010) andPRINTUNT (16) print 1 6
PR I NT UNT (&0001) andPRINTUNT (1) print 1
PRINT UNT (&FFFF) andPRINTUNT (65535) print-1

18

BASIC

PR I NTUNT (&FFF6) and PRINT UNT (65526) print-10
PRINT UNT (&8000) and PRINT UNT (32768) print -
32768

UPPERS UPPERS (string)
Transforms the lower case letters of string to capitals.

VAL VAL (string)
Transforms a string into a numeric expression. Will return 0 if
the string starts with a letter.

PRINT VAL ("34E"), VAL ("123"), VAL (”A34)

prints

34 123 0

VPOS VPOS (#channel number)
Returns the vertical position (the Y co-ordinate)of the text
cursor for the specified channel.

XPOS XPOS
Returns the horizontal position of the graphic cursor.

YPOS YPOS
Returns the vertical position of the graphic cursor.

19

BASIC

KEYWORDS AND
ASSOCIATED CODES

All codes below 127 are preceded by a byte containing the value 255.

Decimal
code

Hex
code

Keyword Decimal
code

Hex
code

Keyword

255 + 0 FF + 0 ABS 255 + 27 FF+1B UNT
255+1 FF+1 ASC 255 + 28 FF+1C UPPERS
255 + 2 FF + 2 ATN 255 + 29 FF+1D VAL
255 + 3 FF + 3 CHRS 255 + 64 FF + 40 EOF
255 + 4 FF + 4 CINT 255 + 65 FF + 41 ERR
255 + 5 FF + 5 COS 255 + 66 FF + 42 HIMEM
255 + 6 FF + 6 CREAL 255 + 67 FF + 43 INKEYS
255 + 7 FF + 7 EXP 255 + 68 FF + 44 PI
255 + 8 FF + 8 FIX 255 + 69 FF + 45 RND
255 + 9 FF + 9 FRE 255 + 70 FF + 46 TIE
255+ 10 FF + A INKEY 255 + 71 FF + 47 XPOS
255+11 FF + B INP 255 + 72 FF + 48 YPOS
255+12 FF + C INT 255 + 113 FF + 71 BINS
255+13 FF + D JOY 255 + 114 FF + 72 DECS
255+14 FF + E LEN 255+115 FF + 73 HEXS
255+ 15 FF + F LOG 255+ 116 FF + 74 INSTR
255+16 FF+10 LOGIO 255+ 117 FF + 75 LEFTS
255+17 FF+ 11 LOWERS 255+ 118 FF + 76 MAX
255+18 FF+12 PEEK 255+ 119 FF + 77 MIN
255+19 FF+13 REMAIN 255+ 120 FF + 78 POS
255 + 20 FF+14 SGN 255+ 121 FF + 79 RIGHTS
255 + 21 FF+15 SIN 255+ 122 FF + 7A ROUND
255 + 22 FF+16 SPACESS 255+123 FF + 7B STRINGS
255 + 23 FF+17 SQ 255+124 FF + 7C TEST
255 + 24 FF+18 SQR 255+125 FF + 7D TESTR
255 + 25 FF+19 STRS 255+ 127 FF + 7F VPOS
255 + 26 FF+1A TAN

The following codes are not preceded by 255.

KeywordDecimal
code

Hex
code

Keyword Decimal
code

Hex
code

128 80 AFTER 139 8B CONT
129 81 AUTO 140 8C DATA
130 82 BORDER 141 8D DEF
131 83 CALL 142 8E DEFINT
132 84 CAT 143 8F DEFREAL
133 85 CHAIN 144 90 DEFSTR
134 86 CLEAR 145 91 DEG
135 87 CLG 146 92 DELETE
136 88 CLOSEIN 147 93 DIM
137 89 CLOSEOUT 148 94 DRAW
138 8A CLS 149 95 DRAWR

20

BASIC

Decimal Hex Keyword Decimal
code

Hex
code

Keyword
code code

150 96 EDIT 196 C4 RELEASE
151 97 ELSE 197 C5 REM
152 98 END 198 C6 RENUM
153 99 ENT 199 C7 RESTORE
154 9A ENV 200 C8 RESUME
155 9B ERASE 201 C9 RETURN
156 9C ERROR 202 CA RUN
157 9D EVERY 203 CB SAVE
158 9E FOR 204 CC SOUND
159 9F GOSUB 205 CD SPEED
160 AO GOTO 206 CE STOP
161 Al IF 207 CF SYMBOL
162 A2 INK 208 DO TAG
163 A3 INPUT 209 DI TAGOFF
164 A4 KEY 210 D2 TROFF
165 A5 LET 211 D3 TRON
166 A6 LINE 212 D4 WAIT
167 A7 LIST 213 D5 WEND
168 A8 LOAD 214 D6 WHILE
169 A9 LOCATE 215 D7 WIDTH
170 AA MEMORY 216 D8 WINDOW
171 AB MERGE 217 D9 WRITE
172 AC MIDS 218 DA ZONE
173 AD MODE 219 DB DI
174 AE MOVE 220 DC El
175 AF MOVER 234 EA TAB
176 BO NEXT 235 EB THEN
177 Bl NEW 236 EC TO
178 B2 ON 237 ED USING
179 B3 ON BREAK 238 EE >
180 B4 ON ERROR GOTO 239 EF =
181 B5 ON SQ 240 F0 > =
182 B6 OPENIN 241 Fl <
183 B7 OPENOUT 242 F2 <>
184 B8 ORIGIN 243 F3 < =
185 B9 OUT 244 F4 +
186 BA PAPER 245 F5 -
187 BB PEN 246 F6 *

188 BC PLOT 247 F7 /
189 BD PLOTR 248 F8
190 BE POKE 249 F9 \
191 BF PRINT 250 FA AND
192 CO 251 FB MOD
193 Cl RAD 252 FC OR
194 C2 RANDOMIZE 253 FD XOR
195 C3 READ 254 FE NOT

21

BASIC

ASCII CODES - CHARACTERS

Character

NUL (CTRL
SOH (CTRL A)
STX (CTRL B)
ETX (CTRL C)
EOT (CTRL D)
ENQ (CTRL E)
ACK (CTRL F)
BEL (CTRL G)
BS (CTRL H)
HT (CTRL I)
LF (CTRL J)
VT (CTRL K)
FF (CTRL L)
CR (CTRL M)
50 (CTRL N)
51 (CTRL O)
DLE (CTRL P)
DC1 (CTRL Q)
DC2 (CTRL R)
DC3 (CTRL S)
DC4 (CTRL T)
NAK (CTRL U)
SYN (CTRL V)
ETB (CTRL W)
CAN (CTRL X)
EM (CTRL Y)
SUB (CTRL Z)
ESC
FS
GS
RS
US

(space)

$

%

&

I

(

)

- (dash>

/

Hexadecimal
ASCII codes

Decimal Octal

0 0 0
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
8 8 10
9 9 11
A 10 12
B 11 13
C 12 14
D 13 15
E 14 16
F 15 17
10 16 20
11 17 21
12 18 22
13 19 23
14 20 24
15 21 25
16 22 26
17 23 27
18 24 30
19 25 31
1A 26 32
IB 27 33
1C 28 34
ID 29 35
IE 30 36
IF 31 37
20 32 40
21 33 41
22 34 42
23 35 43
24 36 44
25 37 45
26 38 46
27 39 47
28 40 50
29 41 51
2A 42 52
2B 43 53
2C 44 54
2D 45 55
2E 46 56
2F 47 57

22

BASIC

Character

0
1

N
 <

 X
 S

 <
C

 -l
(Z

>
zn

o-
oo

^3
|—

 x
 <—

 M
 =

 T m
 o

 o
 a

 >
 -J v

II A
- ■

 ■•
co

 co
 cn cn

 -Z
- c

o
to

[
\
]
A

_ (underscore)
X

a
b
c
d

Hexadecimal
ASCII codes

Decimal Octal

30 48 60
31 49 61
32 50 62
33 51 63
34 52 64
35 53 65
36 54 66
37 55 67
38 56 70
39 57 71
3A 58 72
3B 59 73
3C 60 74
3D 61 75
3E 62 76
3F 63 77
40 64 100
41 65 101
42 66 102
43 67 103
44 68 104
45 69 105
46 70 106
47 71 107
48 72 110
49 73 111
4A 74 112
4B 75 113
4C 76 114
4D 77 115
4E 78 116
4F 79 117
50 80 120
51 81 121
52 82 122
53 83 123
54 84 124
55 85 125
56 86 126
57 87 127
58 88 130
59 89 131
5A 90 132
5B 91 133
5C 92 134
5D 93 135
5E 94 136
5F 95 137
60 96 140
61 97 141
62 98 142
63 99 143
64 100 144

23

BASIC

Character
Hexadecimal

ASCII codes
Decimal Octal

e 65 101 145
f 66 102 146
g 67 103 147
h 68 104 150
i 69 105 151
j 6A 106 152
k 6B 107 153
1 6C 108 154
m 6D 109 155
n 6E 110 156
0 6F 111 157
p 70 112 160
q 71 113 161
r 72 114 162
s 73 115 163
t 74 116 164
u 75 117 165
V 76 118 166
w 77 119 167
X 78 120 170
y 79 121 171
z 7A 122 172
{ 7B 123 173
1 7C 124 174
} 7D 125 175

7E 126 176
DEL 7F 127 177

24

BASIC

ASCII CODES - GRAPHICS

The character set is represented on the screen in an 8 by 8 matrix. Characters may be
redefined using the SYMBOL command.

ri' If I I 1 I

5TWP!
SW

25

BASIC

26

BASIC

106 6A102 66

111 6F

112 70 113 ___ 71 114 72
[TTTTr 11111 ~■

1
1

1 ■

w
ftpsw

115 73

118 76 119 77 120 78117 75
ER

s
126 7E122 7A 123 78

27

BASIC

■ ■ ■ ■
■ ■ ■ ■
■■ ■ ■
■ a ■

■■■■■■■■■■■■ ■■■■■■■■■■■■■■■■■■■■

135 87
■■■■■■■ ■F
■■■■ ■ ■ ■ ■
■■■■ ■ ■ ■ r
■■■■ I ■ I I
■■■■
■■■■
■■■■
■■■■

1

1
■■■■■■■■■■■■■■■■

B
■
B
B

B
B
B
■

B
B
B
■

B
B
B
■

B
B
B
B

B
B
B
■

B
B
B
a

Bl
■ 1 celSi
■■

rrr
IBBI
IBBI

■■
Bl

LBI
Bl
Bl
Bl
Bl
BB

28

BASIC

167 A7£
Ir

168 A8 169
rg
a*

A9 171 AB

aww; ■■■■■■■ ■■gi ■■
I I 1 1 -L-L

172 AC
FFRMTF

We

170 AA

’■■r

29

BASIC

TH
J Bi
BBI

B
B

B
B

B

S
B

B
B

B

B
B

B
B

B

B
U

M
a

■
■1
■■

■
IB
IB
IB

213 DB

235 EB

30

BASIC

31

BASIC

ERROR CODES AND
ERROR MESSAGES

I . Unexpected NEXT
A NEXT command has been encountered without a corresponding FOR command
having been executed.

2. Syntax error.
BASIC cannot understand the structure of a line or command.

3. Unexpected RETURN
A RETURN command has been encountered for which there is no matched GOSUB
command.

4. Data exhausted
A READ command has tried to read more items of data than are available from a line
(or series of lines) of DATA statements.

5. Improper argument
The parameters of a command, or the value of a function, have not been expressed
correctly.

6. Overflow
A value introduced or calculated is too big or too small to be represented by the
computer.

7 . Memory ful1
All available memory space has been used or reserved. This can occur in case of
DI Mming oversized arrays, out of control FOR . . NEXT loops, or nested GOSUB calls.

8. Li ne does not exi st
The line number referred to does not exist in memory.

9. Subscriptoutof range
An array index is outside the DIMensioned value of the array (either too big or too
small).

10. Array al ready dimensioned
You have tried to redefine an array already defined by DIM.

II . Di vi si on by zero
Numbers cannot be divided by zero.

12. Inval id directcommand
The command typed in is not acceptable in direct mode.

1 3 . Type mi smatch
An alphanumeric value has been assigned to a numeric variable or vice versa.

14. String space ful 1
The space reserved for strings is full.

15. Stri ng too 1 ong
A string contains more than 255 characters.

32

BASIC

16. String expression too complex
An string expression is too complex to be handled by the computer.

17. Cannot continue
Program execution cannot be resumed with the CO NT command. This occurs if, after
a break (ESC ESC), any program line has been modified.

18. Unknown user function
An FN function has been called without previously defining it with the command DEF
FN.

1 9 . RESUME missing
An ON ERROR GOTO error trapping routine has been encountered but it contains no
RESUME statement.

20. Unexpected Resume
A RESUME statement has been encountered before an ON ERROR GOTO error trapping
routine has been executed.

21 . DIRECT command found
While loading a tape program BASIC has found data without a line number.

22. Operand missing
An expression without an operand has been encountered.

23 . Line too 1 ong .
BASIC cannot accept lines longer than 255 characters.

24. EOF met
The program has reached the end of the file on the tape.

25 . File type error
The file on the tape is not of the required type.

26 . NEXT missing
A FOR statement has been found without a corresponding, matched NEXT statement.

27. Fi 1 e al ready open
You have tried to open a file which is already open.

28. Unknown command
The command is unknown.

29 . WEND missing
The WEND corresponding to a WH I LE command is missing from the program.

30. Unexpected WEND
A WEND has been encountered without a preceding WHILE.

31 . Unknown error
This message is produced by all errors having an E R R value equal to or greater than
31.

33

BASIC

BASIC AND MEMORY STORAGE

Your computer only understands binary code (ie. it deals with everything in bit
patterns of Is and Os) - interpretation through the BASIC interpreter first of all
involves translation of your programs into binary terms (assuming all has been
written correctly so that it can be translated into this form).

Storage of BASIC keywords
The interpreter assigns a code called a token for each keyword encountered in
BASIC. This system allows the saving of a considerable amount of space in central
memory, since the one byte token takes up much less space than a complete word.
(This, incidentally, is why BASIC keywords should never be used to define variables
- the interpreter insists on replacing any keyword encountered, whether as a keyword
or simply as part of a variable name, with the token for the corresponding instruction
- with the exception of those included in text strings held between double quotes).

Storage of a BASIC line:
BASIC stores program lines starting from address 368. Let us see with the help of an
example how it stores a line. Try writing this short program:

1990 PRINT "YOOHOO"

then type in the following instruction (command) line:

FOR 1=368 TO 390: PRINT PEEK(I):NEXT I

The following list of numbers will appear on the screen, the table details their
meaning:

Address Contents Meaning

368 15 line length low byte
369 0 line length high byte
370 198 line number low byte
371 7 line number high byte
372 191 token for the keyword PRINT
373 32 ASCII code for SPACE
374 34 ASCII code for “
375 89 ASCII code for Y
376 79 ASCII code for 0
377 79 ASCII code for 0
378 72 ASCII code for H
379 79 ASCII code for 0
380 79 ASCII code for 0
381 34 ASCII code for “
382 0 code indicating the end of a BASIC line

34

BASIC

The length of the line is expressed in two bytes, to turn it into a straightforward
decimal number use the following formula:

low byte + (256 x high byte)

So the length of the above line equals = 15 + (0 x 256)= 15, in other words this line
occupies 15 memory locations.

The line number is also expressed in two bytes and can be obtained with the same
formula as used for the length. So it equals:

198 + (256 x 7) = 1990

To replace the PRINT with a REM , you can POKE the location of the PRINT token
directly with the value of the REM token:

POKE 372, 197

Now list your program and you will see:

1990 REM "YOOHOO"

From now on you can modify your programs at will, or even get them to modify
themselves by means of POKE lines within the program.... Have a good time!

Now let’s look at how variables are stored. Write this little program:

10 ABO20

Then, as before, type:

FOR 1’368 TO 390: PRINT I: " PEEK(I):NEXT I

You will see the following list of numbers displayed:

Address Contents Meaning

368 14 line length low byte
369 0 line length high byte
370 10 line number low byte
371 0 line number high byte
372 13 indicates a numeric variable
373 7 length of the variable name + 4
374 0 separator
375 65 ASCII code of the variable name’s first character
376 66 ASCII code of the variable name’s second character
377 195 128 + ASCII code of the variable name’s last character
378 239 token for = sign
379 25 variable size
380 20 variable value
381 0 separator

35

BASIC

The value 13 at 372 is a code indicating that the variable is numeric in type. For a
string variable the code would be 3.

Addresses 375 to 377 contain the codes for the variable name. All characters are
coded in ASCII, except the last one which is represented as its ASCII value plus 128.
At address 378, the value 239 represents the token for an = sign. The token for = is
different from its ASCII code so that the computer knows that the = is not part of
the variable name.

The value 25 at address 379 indicates the size of the variable. Here are the
different values that can be found at this location:

Value Variable length

15
16
23
25
26
31

variable value = 1, not coded
variable value = 2, not coded
variable value = 9, not coded
variable value between 10 and 255, coded in one byte
variable value between 255 and 65535, coded in two bytes
variable value above 65535 or non integer, coded in five bytes using the
following formula:

value = (2(b5 - 145)« (65536 + (b2/128) + (b3* 2) + (b4* 512) + (b 1/32800)

where bl to b5 represent the values held in the five addresses used to code the
variable.

Where the variable is a negative number, the token for - (239) is followed by the
token for the - (minus) sign, ie. 245.

36

MACHINE LANGUAGE
INTERNAL LAYOUT OF THE ZSO

D
A

T
A

B
U

S

8
bi

ts

'M
M

A
N

D

37

MA CHINE LANG UA GE

Z80 REGISTERS
PRIMARY REGISTERS SECONDARY REGISTERS

A' F '

H' L 1

B ' C 1

D' E ’

PC
PROGRAM COUNTER

Details of the flag register
7 6 5 4 3 2 1 0

S z - H - P/V N C

S = sign: set to 1 if the most significant bit of the result of an operation is 1.

Z = zero: set to 1 if the result of an operation is zero.

H = half carry: identical to C (carry flag), but for four-bit (rather than eight-bit)
operations.

P/V = Parity/overflow: set to 1 if there is an even number of bits set to 1 in the
accumulator, or if there is an overflow after an operation using signed numbers.

C = carry: set to 1 if the result leads to a borrow (subtraction) or a carry (addition)

N=add/subtract: used to ensure that the DAA operation will be correct after either
addition or subtraction.

Note:
Flags H and N cannot be tested.

38

MACHINE LANGUAGE

Z80 INSTRUCTION SET

Mnemonic Operation carried out

ADC Add with carry.

ADD Add without carry.

BIT Test a specified bit of a specified byte.

CALL cc,mm Conditional call of a sub-routine.

CALL Unconditional call of a sub-routine.

CCF Complement the carry flag.

CP Compare the operand with the accumulator.

CPD Compare the accumulator with the contents of the address pointed
to by HL and decrement HL and BC.

CPDR Compare the accumulator with the contents of the address pointed
to by HL. Decrements HL and BC. Repeats the sequence until
BC = 0 or A=(HL).

CPI Compare the accumulator with the contents of the address pointed
to by HL. Increments HL and decrements BC.

CPIR Compares the accumulator with the contents of the address pointed
to by HL. Increments HL and decrements BC. Repeats the
sequence until BC = O or A=(HL).

CPL Complement accumulator.

DAA Decimal adjustment of the accumulator.

DEC Decrement a register, a register pair or the contents of an address
pointed to by HL.

DI Disable interrupts.

DJNZ Decrement B and make a relative jump if B is not 0.

El Enable interrupts.

EX Exchanges the contents of registers or address pointed to by Stack Pointer

EXX Exchanges the contents of the registers BC, DE and HL with the
registers BC’, DE’ and HL’.

HALT Halts the CPU and places it in a waiting state for an interrupt or a
reset.

IM Set one of three interrupt modes (from 0 to 2).

IN Load the accumulator or a register with the contents of an
input/output port.

INC Increment a register, a register pair or the contents of the address
pointed to by HL.

IND Load the address pointed to by HL with the contents of the
input/output port pointed to by register C and decrement HL and B.

INDR Loads the address pointed to by HL with the contents of the
input/output port pointed to by C and decrements HL and B.
Repeats the sequence until B is 0.

39

MA CHINE LANG UA GE

Mnemonic Operation carried out

INI Loads the address pointed to by HL with the contents of an
input/output port defined in C, increments HL and decrements B.

INI R Loads the address pointed to by HL with the contents of an
input/output port defined in C, increments HL and decrements B.
Repeats the sequence until B is 0.

JP Unconditional jump to an address.

JP cc,aa Conditional jump to address aa.

JR e Unconditional jump relative to program counter plus offset e.

J R cc , e Conditional jump relative to program counter plus offset e.

LD Loads the accumulator, a register or an address with the contents of
the accumulator, of a register or of an address.

LDD Loads the address pointed to by HL with the contents of the address
pointed to by DE, and then decrements DE, HL and BC.

LDDR Loads the address pointed to by HL with the contents of the address
pointed to by DE, and then decrements HL and BC. Repeats the
sequence until BC = 0.

LDI Loads the address pointed to by HL with the contents of the address
pointed to by DE, and then increments DE and HL and decrements
BC.

LDIR Loads the address pointed to by HL with the contents of the address
pointed to by DE, and then increments DE and HL and decrements
BC. Repeats the sequence until BC = 0.

NEG Negates the accumulator. The accumulator contents are subtracted
from 0 using two’s complement arithmetic.

NOP No operation. The Z80 does not do anything.

OR Perform a logical OR operation between operand and accumulator.

OTDR Loads the input/output port pointed to by C with the contents of the
location pointed to by HL, then decrements HL and B. Repeats the
sequence until B = 0.

OTIR Loads the input/output port pointed to by C with the contents of the
location pointed to by HL, then increments B. Repeats the sequence
until B = 0.

OUT Loads the input/output port specified with the contents of the
accumulator.

OUTD Loads the input/output port pointed to by C with the contents of the
location pointed to by HL, then decrements HL and B.

OUTI Loads the input/output port pointed to by C with the contents of the
location pointed to by HL, then increments HL and decrements B.

POP Pops (removes) a register pair from the top of the stack (pointed to
by SP).

PUSH Places the contents of a register pair onto the top of the stack
(pointed to by SP).

RES Set a specified bit of the operand to zero.

40

MA CHINE LANGUA GE

Mnemonic

RET

RETI

RETN

RL

Operation carried out

Return (at end of subroutine).

Return at end of an interrupt subroutine.

Return at end of a non-maskable interrupt subroutine.

RLA

Rotation of the operand leftwards through the accumulator and
carry flag. 1" ” ;

0” d 7t 6t 5t 4-j- 3727I70P

CARRY 8-BIT OPERAND

Rotation of the accumulator contents leftwards through the carry
flag. T-------------------------------- -------------- ■

0-4 776757 4-r 3-r z-r 1 -7 0 |—T

CARRY ACCUMULATOR

RLC Rotate register or operand left with branch carry.
,------------------- ►----------------------- (

(add diagrai 7^. 6^. s, 4, 3^ , Z?)- - J

CARRY 8-BIT OPERAND

RLCA Rotate accumulator left with branch carry.

0 -I 77-6^5-7 4^3-7 2-7 1-7 Oh - -T

CARRY ACCUMULATOR

RLD Rotate left decimal. Bits 0 to 3 of the accumulator are rotated to the
left between the accumulator and the location pointed to by HL.

ADDRESS POINTED TO BY HL

RR Rotate operand to the right through the carry flag.

'—| 7-76 T-5T-4r3-2Tl -70-0

8-BIT OPERAND CARRY

RRA Rotate accumulator to the right through the carry flag.

ACCUMULATOR CARRY

i ° i

I

RRC

RRCA

Rotate operand right with branch carry.
1---

H 7 T 6 T 5 T 4 T 3 T 3 T 1

8-BIT OPERAND CARRY

Rotate accumulator right with branch carry.
' ” ”-------------------- ■*---------------------- - -1
-177675-473-271 T0~p -0

ACCUMULATOR CARRY

41

AL4 CHINE LANGUA GE

Mnemonic Operation carried out

RRD Rotate right decimal. Bits 0 to 3 of the accumulator are rotated to the
right between the accumulator and the location pointed to by HL.

1--------------- ♦------------- ,
- —---------- -1— V

17,6,5,413.2.1,0117,6.5,413.2,1,01

ADDRESS POINTED TO BY HL
ACCUMULATOR

RST Restart at given address.

SBC Subtraction with carry between either the accumulator and the
operand or HL and a register pair.

SCF Set the carry flag to 1.

SET Set a specified bit to 1 either in a register, or at an address pointed to
by HL or by IX and IY plus offset.

SLA Arithmetic shift left.

(add diagram)

SRA Arithmetic shift right.

(add diagram)

Note :
Bit 7 is unaffected

SRL Logical shift to right of operand.

0-7T6r5T4-r3T2 T1 -ol-- £[]

8-BIT OPERAND CARRY

SUB Subtract operand from accumulator.

XOR Exclusive OR between the operand and the accumulator.

42

MA CHINE LANG UA GE

ALPHABETIC LIST OF Z80
INSTRUCTION CODES

d = 8-bit data
dd = 16-bit data
a a = 16-bit address
• = flag is modified
0 = flag set to 0
1 = flag set to 1

Object code Instruction s z P/V c
8E ADC A,(HL) • • • •
DD8Ed ADC A,(IX+d) • • • •
FD8Ed ADC A, (IY+d) • • • •
8F ADC A,A * • « •
88 ADC A.B « 1 « •
89 ADC A.C • • • •
8A ADC A.D • • • •
8B ADC A.E • • • •
8C ADC A.H • • • •
80 ADC A.L • 1 • •
CEd ADC A.d • • • •
ED4A ADC HL.BC • • • I
ED5A ADC HL,DE • • • •
ED6A ADC HL,HL • • • •
ED7A ADC HL.SP I • • •
86 ADD A,(HL) • 1 • «
DD86d ADD A, (IX-kJ) • • 1 •
FD86d ADD A, (IY+d) • • • •
87 ADD A,A • • • •
80 ADD A.B I • • •
81 ADD A.C • • • «
82 ADD A.D • • • •
83 ADD A.E • • • •
84 ADD A.H • • • •
85 ADD A.L • • • •
C6d ADD A.d • • • •
09 ADD HL.BC •
19 ADD HL,DE •
29 ADD HL,HL •
39 ADD HL.SP 1
DD09 ADD IX,BC 1
DD19 ADD IX, DE •
DD29 ADD IX, IX •
0039 ADD IX.SP •
F009 ADD IY.BC •
FD19 ADD IY.DE 1
F029 ADD IY.IY 1
F039 ADD IY.SP •
A6 AND (HL) • • • 0
DDA6d AND (IX+d) • • • 0
FDA6d AND (IY+d) • • (0

A7 AND A • * • 0

43

IY.DE

MA CHINE LANG UA GE

C
B

5D

I
B

IT

O
bject code

Instruction________S
Z

P/V
C

O

bject code
Instruction

44

MA CHINE LANG UA GE

N
Z

.d

O
bject code

Instruction
S

Z
P/V

C

O
bject code

Instruction

45

MA CHINE LANG UA GE
O

bject code
Instruction

S
Z

P/V
C

O

bject code______
Instruction

46

MA CHINE LANGUA GE

rxjr\>r\jcDCDCDCDCD<DCD~no
— OxjOO

CX Q. a. cd cd
ex ex

CD —» CD Ln CH CD
cd m o <~> co

no
££ o

O
bject code

Instruction
S

Z
P/V

C

O
bject code

Instruction

47

MACHINE LANGUAGE
O

bject code
Instruction

S
Z

P/V
C

O

bject code
Instruction

48

MACHINE LANGUAGE

O
bject code

Instruction

49

MA CHINE LANGUA GE

DISASSEMBLY TABLES

Single byte instructions
n = bytes (8 bits, from 0 to 255)
nn = Double bytes (16 bits, from 0 to 65535)
d = relative address offset (8 bits)

9 2 a 3 4 5 t 7 9 A B c D E F

NOP 10 LO INC INC DEC LO iLCA EX ADD LD DEC INC DEC LD RRCA

BC,nn (BC),* 8C B 8 B,n AF,*F' HL,BC *,(BC) BC C C C,n

DJNZ to LO INC INC DEC LD RLA JR ADD LO DEC INC DEC ID RRA
J. d DE,nn (DE),* DE 0 0 0,n d Hl,DE *,(DE) OE E E E,n

9 JR to LD INC INC DEC ID DAA JR AOD LO DEC INC OEC ID CPL
a NZ,d HLtnn (nn), HL HL H H H,n Z,d HL,HL Hl, $>rj) HL I L L»n

9
JR 10 LO INC INC DEC LD SCF JR AOD LO DEC INC DEC LO CCF

0 NC,d SP, nn Gin),* SP (HL) (HL) (HL),n C,d C,d Hl, SP A,(nn) SP A A *,n

ID LO LD LO LD LD LD LO LO 10 LO LD LO LD LD LO
9 B, 8 8,0 8,0 B,E B,H B,L B,(HL) B,A C,8 C,C C.D C,E C,H C,L C,(HL) C,A

e LO LD 10 ID LO LO LO LO LO LO LO LO 10 10 LO LO
O D, B 0,C 0,0 0, E 0,H 0,1 O,(HL> D,A E,B E,C E,0 E,H t,L e,(hl) e,*

ID ID L0 LD LO LO LO LO LO ID LD LO LO 10 LD LO
b H,B H,C H,D H, E H,H H,L H,(HL) H, A L, B L,C 1,0 L,E L,H I,I I,(HL) I,‘

LD LO L0 LO LD LD HAL 1 LD LD 10 LO LD LD LO LD LD
7 (HL), B (HLJ,C (HL),D (HLV <HL)/T (HLM (Hl)JT A, B A, C A,0 A, E A,H AfL A,(HL) A,A

8
ADO ADO A00 ADD ADO AOD ADD AOD AOC ADC ADC ADC ADC AOC AOC ADC

A,B A, C *,D A,£ A, H *,l A,(HL) A,A A,8 *,c *,0 A,E A,H *,L A,(Hl) A?A

9
SUB SUS SUS SU8 SUB SUB SUB SUB S8C SBC SBC SBC SBC SBC SBC SBC

8 0 0 E H L (HL) A A,8 *,C *,D A,E A, H A,L A,(HL) A,A

AND ANO AND ANO AND AND AND AND XOR XOR XOR XOR XOR XOR XOR XOR
A 8 C 0 E H L (HL) A 8 c 0 E H l (HL) A

B
OR OR OR OR OR OR OR OR CP CP CP CP CP CP CP CP

8 C 0 E H L (HL) A B c 0 E H L (HL) A

n RET POP JP JP CALL PUSH AOD RSI RET RET JP CALL CALL AOC RST
u NZ BC NZ,nn nn NZ,nn BC A,n f Z Z,nn Z,nn nn *,n 8

n
RET POP JP OUT CALL PUSH SUB RSI RET EXX JP IN CALL S8C RST

u
NC DE NC,nn (n),A NC,nn OE n 16 C C,nn *,(n) C,nn A,n 2A

E
RET POP JP EX CALL PUSH AND RST RET JP JP EX CALL XOR RST

PO Hl P0,nn (Styl P0,nn HL n 32 OE (HL) PE,nn OE, HL PE,nn n AO

F RET POP JP 01 CALL PUSH OR RST RET LO JP El CALL CP RST

p AF P,nn P,nn AF n AB M SP,HL M,nn M,nn n 56

50

MA CHINE LANG U A GE

Two-byte instructions
prefixed with CB
All the instructions in this table must be preceded by the prefix CB.

0 1 3 3 0 5 s ? 8 9 A B C D s F

me RLC RLC RLC RLC RLC RLC RLC RRC RRC RRC RRC RRC RRC RRC RRC

0 8 C 0 E H L (HL) A B C 0 E H L (HL) A

RL RL RL RL RL RL RL RL RR RR RR RR RR RR RR RR

1
B C 0 E H L (HL) A 8 C 0 E H L (HL) A

SLA SLA SLA SLA SLA SLA SLA SLA SRA SRA SRA SRA SRA SRA SRA SRA

X
8 C 0 E H L (HL) A 8 C 0 E H I (HL) A

SRI SRI SRL SRL SRL SRL SRL SRL
3

8 C 0 E H L (HL) A

811 811 BIT 811 BIT BII BII BIT BII BIT BIT BIT BII BII BIT BIT
4 M 0,C M M 0,1 0,(HL) 0,* 1,8 1,C V 1,E 1,H 1tL 1,(Hl> 1,A

81T BIT 81! 811 BIT BIT BII BIT BII BIT BIT BII BIT BIT BIT BIT
5

2,8 2,C 2,0 2,C 2,H 2,1 2,(HL) 2,A 3,8 3,C 3,0 M 3,H 3,(HL) 3,A

81! 811 81! BIT BIT BIT BIT BIT BIT BII BIT BIT BIT 811 BIT BII
6

A,8 M A,H A,(Hl) M 5,8 5,C 5,8 5,E 5,H 5,1 5,(HL) 5,A

811 BI I BII BII BII 811 BII BII BII BII BII BII BII BIT BIT BIT
7 6,8 6,C 6,0 6,E 6,H 6,L 6,(HL) 6,A 7,8 7,C 7,0 7,E 7,H 7,l 7,(HL) 7,A

8
RES RES RES RES RES RES RES RES RES RES RES RES RES RES RES RES

M 0,1 |I,(HL) 0,A 1,8 1,C 1,0 V 1,H 1,1 1,(HL) 1,*

RES RES RES RES RES RES RES RES RES RES RES RES RES RES RES RES
9

2,8 2,0 2,0 2,E 2,H V 2,(HL) 2,A 3,8 3,C 5,» 3,E AL V 3,(HL) 3,*

RES RES RES RES RES RES RES RES RES RES RES RES RES RES RES RES
A A,8 4,0 M SE A,H a,l A,(HL) A,A 5,8 5,C 5,E AL 5,(HL) 5,*

B
RES RES RES RES RES RES RES RES RES RES RES RES RES RES RES RES

6,8 6,C 6,0 6,£ 6,H 6,L 6,(Hl) 6,A 7,8 7,C 7,0 7,E 7,H 7,L 7,(HL) 7,A

r> SEI SEI SEI SET SEI SEI SEI SEI SEI SEI SET SET SEI SET SET SEI
C M f,C M M 0,H 0,E ?,(HL) 0,* 1,8 1,C 1,0 1.E 1,H 1,1 1,(HL) 1,*

n SEI SEI SET SEI SET SEI SEI SEI SEI SET SEI SEI SET SET SEI SEI
u

2,B 2,0 2,0 2iE 2,H 2,1 2,(HL) 2,A 3,8 3,E 5,» 5,E 3,H 5,L 3,(HL) 3,A

F
SEI SET SEI SEI SET SEI SEI SEI SEI SEI SEI SET SEI SEI SET SEI

c A, 8 A,C A,0 SE a,h SL A,(HL) s* 5,8 5,C 5,o 5,E 5.H 5,1 5,(Hl) 5,A

F
SEI SEI SEI SEI SET SEI SEI SEI SEI SEI SEI SET SEI SEI SET SEI

e 6,8 AL.ALAL 6,H 6,1 6,(HL) 6,A 7,8 7,C AL 7,E 7,H 7,L 7,(Hl) 7,«

51

MA CHINE LANGUA GE

Two-byte instructions
prefixed with ED
All the instructions in this table must be preceded by the prefix ED.

9 J 2 3 4 5 6 7 8 9 4 B C D E F

fl

1

2

3

4
IN

B,(C)

OUT

(0,8

sec

HL, BC

ID

(nn\BC

NEG RETN IM

0

10

I,*

IN
C,(C)

OUT

(C),C

ADC

HL, BC

LD
B C,(n n)

RE II LD

R, A

5
IN

0,(0

OUT

(c),o

SBC

HL,DE

10

(nnXOE

IM

1

ID

A,I

IN

E,(C)

OUT

(C),E

ADC

HL,DE

LD

DE,(jnn)
IM
2

LD

A,R

6
IN

H,(C)

OUT

(C),H

SBC

HL,HL

LD

(nn^HL

RRD IN

L,(C)

OUT

(C),L

ADC

HL,HL

LD

HL,(nn)

RLD

7
IN

f,(c)

SBC

HL, SP

ID

(nnXSP

IN

A,(C)

OUT

(C),A

ADC

HL, SP

LD

SP,(pn)

8

9

A
101 CPI INI OUTI LOD CPD IND OUTO

B
LOIR CPIR INIR OTIR LOOR CPDR INDR OTDR

C

D

E

F

52

MA CHINE LANG UA GE

Two-byte indexed instructions
prefixed with DD
All instructions in this table must be preceded by a prefix; DD in the case of the index
register IX, and FD in the case of index register IY.

Code Mnemonic Code Mnemonic

09 ADD IX,BC CBdOE RRC(IX + d)
19 ADD IX,DE CB d 16 RL(IX + d)
21 LD IX,nn CB d IE RR(IX + d)
22 LD (nn),IX CBd26 SLA(IX + d)
23 INC IX CBd2E SRA(IX + d)
29 ADD IX,IX CBd3E SRL
2A LD IX,(nn) CB d 46 BIT 0,(IX + d)
2B DEC IX CBd4E BIT l,(IX + d)
34 INC(IX + d) CB d 56 BIT 2,(IX + d)
35 DEC(IX + d) CB d 5E BIT 3,(IX + d)
36 LD(IX + d),nn CBd66 BIT 4,(IX + d)
39 ADD IX,SP CBd6E BIT 5,(IX + d)
46 LD B,(IX + d) CBd76 BIT 6,(IX + d)
4E LD C,(IX + d) CBd7E BIT 7,(IX + d)
56 LDD,(IX + d) CB d 86 RES0,(IX + d)
5E LD E,(IX + d) CBd8E RES l,(IX + d)
66 LDH,(IX + d) CBd96 RES 2, (IX + d)
6E LD L,(IX + d) CBd9E RES 3,(IX+ d)
70 LD(IX + d),B CBdA6 RES 4, (IX + d)
71 LD(IX + d),C CBdAE RES 5,(IX + d)
72 LD(IX + d),D CBdB6 RES 6,(IX + d)
73 LD (IX + d),E CBdBE RES 7,(IX + d)
74 LD(IX + d),H CB d C6 SET 0,(IX + d)
75 LD(IX + d),L CBdCE SET l,(IX + d)
77 LD(IX + d),A CBdD6 SET 2,(IX + d)
7E LD A,(IX + d) CBdDE SET 3,(IX + d)
86 ADD A,(IX + d) CBdE6 SET 4,(IX + d)
8E ADC A,(IX+ d) CB d EE SET 5,(IX + d)
96 SUB(IX + d) CB d F6 SET 6,(IX + d)
9E SBC A, (IX + d) CBdFE SET 7,(IX + d)
A6 AND(IX + d) El POP IX
AE XOR(IX + d) E3 EX (SP),IX
B6 OR(IX + d) E5 PUSH IX
BE CP(IX + d) E9 JP(IX)
CB d 06 RLC(IX + d) F9 LD SP,IX

53

INTERNAL SOFTWARE

INTRODUCTION

The internal software of the Amstrad can be divided into three main areas:
• The lower ROM which contains the various control routines described below, the

maths routines, and character generation.

• The upper ROM contains the BASIC interpreter.

• The workspace in memory contains system variables, call vectors for the routines
in the lower ROM and the various buffers used by controllers and BASIC.

The control routines can be divided into nine main groups:

The keyboard controller

Controls the keyboard, generates the characters associated with key functions, tests
for BREAK and monitors the joysticks.

The text mode controller

This looks after the management of the cursor, interpretation of control codes and
the screen display of characters.

The graphic controller

This draws pixels (points) and lines on the screen.

The screen controller

This interfaces text and graphics with the specialised screen management routines
and circuits.

The tape controller

This handles reading from and writing to the tape, together with control of the tape
motor.

The sound controller

Deals with sound queues, envelopes, mixing and so on.

54

INTERNAL SOFTWARE

The Kernel

This is the heart of the operating system which deals with interrupts, execution of
programs and ROM memory management.

Low-level management system

This deals with the management of the printer interface and with low-level routines.

The jump block

Controls vectoring.

For ease of understanding, the software system will be presented as follows:

• RAM memory entry points for system subroutines.

• Indirect vectors.

• Kernel vectors and restarts.

• Vectors to the maths routines.

• The main system variables in RAM.

• Principal addresses in the lower ROM.

• Principal addresses in the upper ROM.

• A table showing the relationship between vectors and addresses in the lower
ROM.

• A table of BASIC keyword routine addresses.

• The principal operating system tables.

55

INTERNAL SOFTWARE

OPERATING SYSTEM
ENTRY POINTS

For each numbered subroutine, the entry point is shown (in hex) followed by an
explanation.

Keyboard management routines
Note:
Throughout these descriptions, flag status is referred to as true if the flag is set to 1,
and false if the flag is set to 0.

00 BB00 Initialise the keyboard manager
Entry conditions: none
Exit conditions: AF, BC, DE and HL are modified. All other
registers are preserved.

01 BB03 Reset keyboard manager
Entry conditions: none
Exit conditions: AF, BC, DE and HL are modified. All other
registers are preserved.

02 BB06 Waits for a character to be typed into the keyboard
Entry conditions: none
Exit conditions: If the carry flag is true, the accumulator will contain
the ASCII code of the character that has been typed. All registers
are preserved. Expansion tokens are expanded.

03 BB09 This routine tests whether a character is available from the
keyboard and reads it if it is
Entry conditions: none
Exit conditions: If a character is available, the carry flag is true and A
contains the ASCII code of the character. If there is not an available
character, the carry flag is false and A is modified. All other
registers are preserved. Expansion tokens are expanded.

04 BB0C Saves a character for next call of the previous routine
Entry conditions: A contains the character to be saved.
Exit conditions: All registers preserved.

05 BB0F Associates a character string with a key-code
Entry conditions: B contains the key-code to be associated with the
string.
C contains the length of the string.
HL contains the address of the string.
Exit conditions: If the operation has been successful, the carry flag is
set to true. If the string is too long or the key-code is invalid, the
carry flag is set false. A, BC, DE and HL are all modified.

06 BB12 Reads a character from an expanded string of characters
Characters in the string are numbered from 0.
Entry conditions: A contains the expansion code. L contains the
character number.

56

INTERNAL SOFTWARE

Exit conditions: If the character is found, A contains the character
and the carry flag is set true. If the instruction is invalid or if the
string is too long then carry flag is set false and A is modified. DE is
modified.

07 BB15 Allocation of a buffer to an expanded character string
Entry conditions: DE contains the address of the buffer and HL its
length.
Exit conditions: if everything is correct, the carry flag is set to true;
otherwise it is set false. Registers A, BC, DE and HL are modified.

08 BB18 Waits for a character from the keyboard
Entry conditions: None
Exit conditions: The carry flag is true and A contains the character
typed. All registers are preserved. Expansion tokens are not expanded.

09 BB1B Tests whether a character is available at the keyboard
Entry conditions: None
Exit conditions: If a character is available, the carry flag is true and A
contains the character; otherwise, the carry flag is false. Expansion
tokens are not expanded.

10 BB1E Tests whether a key has been pressed
Also allows testing of the joystick.
Entry conditions: A contains the key number or joystick position
number to be tested.
Exit conditions: If the key is not pressed, the zero flag is true; if the
key is pressed, the zero flag is false. The carry flag is always false, A
and HL are modified, C will contain the status of the SHIFT and
Control keys.

11 BB21 Checks whether the SHIFT or CAPS/LOCK key is pressed
Entry conditions: None
Exit conditions: L contains the status of SHIFT LOCK key and H
contains the status of CAPS LOCK key for the upper case mode. H
contains 00 if the lock is off and FF if the lock is on . The AF
register is modified.

12 BB24 Reads the status of the joystick
Entry conditions: None
Exit conditions: H contains the status of joystick number 0.
L contains the status of joystick number 1.
A contains the status of joystick number 0.
The use of bits is the same as in the JOY function described earlier
under BASIC functions.

13 BB27 Sets the code to be returned when pressing a key without
accompanying CTRL or SHIFT
Entry conditions: A contains the key number, B contains the ASCII
code that this key is to return.
Exit conditions: AF and HL are modified.

14 BB2A Returns a code corresponding to the number of a pressed
key
Entry conditions: A contains the key number
Exit conditions: A contains the ASCII code corresponding to the
key. HL and F are modified.

57

INTERNAL SOFTWARE

15

16

17

18

19

20

21

22

23

58

BB2D Sets the code that will be returned when pressing a SHIFTed
key Entry conditions: A contains the key number, B contains the
ASCII code that this key is to return.
Exit conditions: AF and HL are modified.

BB30 Returns the ASCII code of a SHIFTed key
Entry conditions: A contains the key number.
Exit conditions: A contains the ASCII code corresponding to the
key. HL and F are modified.

BB33 Sets the code that will be returned when pressing CTRL and
a key
Entry conditions: A contains the number of the key. B contains the
ASCII code to be returned by this key.
Exit conditions: AF and HL are modified.

BB36 Returns the ASCII code corresponding to a key pressed at
the same time as CTRL key
Entry conditions: A contains the key number.
Exit conditions: A contains the ASCII code corresponding to the
key. HL and F are modified.

BB39 Sets whether a key auto-repeats
Entry conditions: A contains the key number. If the key is to repeat
then B should contain FF; otherwise B should contain 00.
Exit conditions: AF, BC and HL are modified.

BB3C Tests whether a specified key has been set to auto-repeat
Entry conditions: A contains the key number.
Exit conditions: If the key can auto-repeat, the zero flag is set false, if
it cannot be repeated, the zero flag is set true. In both cases the carry
flag is set false and AF and HL are modified.

BB3F Sets the duration of the delay before auto-repeating and sets
the repeat delay
Entry conditions: H contains the delay before the first repeat. L
contains the speed of repetition. Both delays are expressed in 50ths
of a second.
Exit conditions: AF is modified.

BB42 Returns auto-repeat delay and repeat interval
Entry conditions: none
Exit conditions: H contains the delay before the first repetition and L
contains the repeat delay, both expressed in 50ths of a second. AF is
modified.

BB45 Arm the BREAK routine
Entry conditions: DE contains the address of the BREAK handling
routine, C contains the ROM address selected for this routine.
Exit conditions: AF, BC, DE and HL are modified.
Note:
This routine can be disabled by calling the next routine.

INTERNAL SOFTWARE

24 BB48 Disable the BREAK routine
Entry conditions: none
Exit conditions: AF and HL are modified.

25 BB4B Generates a BREAK interrupt if a BREAK routine has been
specified by routine 23
Entry conditions: none
Exit conditions: AF and HL are modified

Text management routines
26 BB4E

27 BB51

28 BB54

29 BB57

30 BB5A

31 BB5D

32 BB60

33 BB63

34 BB66

Initialise text mode
Entry conditions: none
Exit conditions: AF, BC, DE and HL are modified.

Reset text mode
Entry conditions: none
Exit conditions: AF, BC, DE and HL are modified.

Allows characters to be printed to the current stream
Entry conditions: none
Exit conditions: AF is modified.

Prevents characters from being displayed on the screen
Entry conditions: none
Exit conditions: AF is modified.

Sends a character or control code (ASCII 0 to IF) to the
screen in text mode
Entry conditions: A contains the character to be sent.
Exit conditions: All registers unchanged.

Sends a character or a control code instruction to the screen
in text mode
Entry conditions: A contains the character to be printed.
Exit conditions: AF, BC, DE and HL are changed.

Reads a character from the screen at the current cursor
position
Entry conditions: none
Exit conditions: If a character has been found then the carry flag is
set true and A contains the character. Otherwise the carry flag is
false and A contains 0.

Turns the graphic character processor on or off
Entry conditions: A set to 0 to turn graphics generator off, if A is not
zero then graphic processor is turned on.
Exit conditions: AF is modified.

Sets the size of the current text window
Entry conditions: H contains the column number of the left edge.
D contains the column number of the right edge.
L contains the row number of the top edge.
E contains the row number of the bottom edge.
Exit conditions: AF, BC, DE and HL are modified

59

INTERNAL SOFTWARE

35 BB69 Returns the size of the current window
Entry conditions: none
Exit conditions: If the window covers the complete screen, the carry
flag is set false, otherwise it is true. In both cases, H contains the
number of the left column, D the number of the right column, L the
number of the top line and E the number of the bottom line. A is
modified.

36 BB6C Clear the current window (CLS)
Entry conditions: none
Exit conditions: AF, BC, DE and HL are modified.

37 BB6F Sets the horizontal position of the cursor
Entry conditions: A contains the column number of the cursor.
Exit conditions:AF and HL are modified.

38 BB72 Sets the vertical position of the cursor
Entry conditions: A contains the row number of the cursor.
Exit conditions: AF and HL are modified.

39 BB75 Sets the position of the cursor
Entry conditions: H contains the column number and L contains the
row number of the cursor.
Exit conditions: AF and HL are modified.

40 BB78 Returns the current cursor position
Entry conditions: none
Exit conditions: H contains the column number of the cursor.
L contains the row number of the cursor.
A contains the scroll count.

41 BB7B Enables the text mode cursor
Entry conditions: none
Exit conditions: AF is modified.

42 BB7E Disables the text mode cursor
Entry conditions: none
Exit conditions: AF is modified.

43 BB81 Enables the operating system cursor
Entry conditions: none
Exit conditions: none

44 BB84 Disables the operating system cursor
Entry conditions: none
Exit conditions: none

45 BB87 Tests if a cursor position occurs within a window
Entry conditions: H contains the column number of the position to
test.
L contains the row number of the position to test.
Exit conditions: H contains the column number where the character
will be printed.
L contains the row number where the character will be printed.
A and F are modified. If printing will not cause scrolling then

60

INTERNAL SOFTWARE

46

47

48

49

50

51

52

53

54

55

56

the carry flag is true and B is modified. If printing will cause
scrolling then the carry flag is false and B contains FF. If it will
cause reverse scrolling then the carry flag is false and B contains 00.

BB8A Positions a cursor on the screen
Entry conditions: none
Exit conditions: AF is modified.

BB8D Removes the cursor from the screen
Entry conditions: none
Exit conditions: AF is modified.

BB90 Sets the foreground (PEN) colour
Entry conditions: A contains the INK number.
Exit conditions: AF and HL are modified.

BB93 Returns the foreground (PEN) colour
Entry conditions: none
Exit conditions: A contains the INK number, F is modified.

BB96 Sets the background (PAPER) colour
Entry conditions: A contains the INK number.
Exit conditions: AF and HL are modified.

BB99 Returns the background (PAPER) colour
Entry conditions: none
Exit conditions: A contains the INK number of the background
colour, A and F are modified.

BB9C Swaps text and background colours
Entry conditions: none
Exit conditions: AF and HL are modified.

BB9F Enables/Disables background display
Entry conditions: A = 0 if the background is to be displayed (opaque
mode); if the background is not to be displayed (transparent mode)
then A must contain a non-zero value.
Exit conditions: AF and HL are modified.

BBA2 Returns backgroud display mode {see 53)
Entry conditions: none
Exit conditions: A will be 0 if the background can be displayed,
otherwise A will contain some other value. DE, HL and F are
modified.

BBA5 Returns the address of a character matrix
Entry conditions: A contains the character to look for in the table.
Exit conditions: A and F are modified. If the table is user-defined
then the carry flag is true. If the table is held in ROM, the carry is
false and HL contains the address of the table.

BBA8 Creates a matrix for a user-defined character
Entry conditions: A contains the character representing the matrix
and HL contains the address of the table.

61

INTERNAL SOFTWARE

Exit conditions: If the character is user-defined then the carry flag is
true, otherwise it is false. AF, BC, DE and HL are modified.

57 BBAB

58 BBAE

59 BBB1

60 BBB4

61 BBB7

Sets the address of a user-defined matrix table
Entry conditions: DE contains the first character of the table and HL
contains the first address of the new table.
Exit conditions: If there is no existing table then the carry flag is false
and A and HL are modified. If a table has already been defined by
the user, the carry flag is true, A contains the first character of the
old table, HL contains the address of the old table and BC and DE
are modified.

Reads the table address of a user-defined matrix
Entry conditions: none
Exit conditions: If there are no matrix tables defined by the user, the
carry flag is false, A and HL are modified. If there is a table, the
carry flag is true, A contains the first character of the table and HL
contains the address of the table.

Returns the address of the control code table.
Entry conditions: none
Exit conditions: HL contains the address of the control codes. All the
other registers are preserved.

Sets a new VDU stream (attribute) table
Entry conditions: A contains the number of stream required.
Exit conditions: A contains the number of the old stream, HL and F
are modified.

Swaps the states of the two stream (attribute) tables
Entry conditions: B contains the number of stream 1.
C contains the number of stream 2.
Exit conditions: AF, BC, DE and HL are modified.

Note:
A stream table consists of an INK number, a PAPER number, a
cursor position and the WINDOW parameters.

Graphics management routines
62 BBBA

63 BBBD

64 BBCO

Initialise graphic mode
Entry conditions: none
Exit conditions: AF, BC, DE and HL are modified.

Reset graphic management system
Entry conditions: none
Exit conditions: AF, BC, DE and HL are modified.

Jump to absolute screen co-ordinate position
Entry conditions: DE contains the absolute X co-ordinate.
HL contains the absolute Y co-ordinate.
Exit conditions: AF, BC, DE and HL are modified.

62

INTERNAL SOFTWARE

65

66

67

68

69

70

71

72

73

74

75

BBC3 Jump to a screen co-ordinate position relative to the current
cursor position
Entry conditions: DE contains the relative X co-ordinate.
HL contains the relative Y co-ordinate.
Exit conditions: AF, BD, DE and HL are modified.

BBC6 Returns current position of the graphic cursor
Entry conditions: none
Exit conditions: DE contains the X co-ordinate, HL contains the Y
co-ordinate. AF is modified.

BBC9 Set cursor origin (home) position
Entry conditions: DE contains the X co-ordinate of the origin.
HL contains the Y co-ordinate of the origin.
Exit conditions: AF, BC, DE and HL are modified.

BBCC Returns the co-ordinates of the current origin
Entry conditions: none
Exit conditions: DE contains the X co-ordinate of the origin.
HL contains the Y co-ordinate of the origin.

BBCF Set left and right edges of a graphic window
Entry conditions: DE contains the horizontal co-ordinate of one
edge.
HL contains the horizontal co-ordinate of the other edge.
Exit conditions: AF, BC, DE and HL are modified.

BBD2 Set top and bottom edges of a graphic window
Entry conditions: DE contains the Y co-ordinate of one of the edges.
HL contains the Y co-ordinate of the other edge.
Exit conditions: AF, BC, DE and HL are modified.

BBD5 Returns left and right edge values of a graphic window
Entry conditions: none
Exit conditions: DE contains the X co-ordinate of the left edge.
HL contains the X co-ordinate of the right edge.
AF is modified.

BBD8 Returns top and bottom edge values of a graphic window
Entry conditions: none
Exit conditions: DE contains the Y co-ordinate of the top edge of the
window.
HL contains the Y co-ordinate of the bottom edge of the window.
AF is modified.

BBDB Clears a graphic window
Entry conditions: none
Exit conditions: AF, BC, DE and HL are modified.

BBDE Sets graphics INK colour
Entry conditions: A contains the colour number.
Exit conditions: AF is modified.

BBE1 Returns the graphic INK colour
Entry conditions: None
Exit conditions: A contains the colour number.

63

INTERNAL SOFTWARE

76

77

78

79

80

81

82

83

84

64

BBE4 Sets background (PAPER) colour
Entry conditions: A contains the colour number.
Exit conditions: AF is modified.

BBE7 Returns current background (PAPER) colour
Entry conditions: None
Exit conditions: A contains the colour number.

BBEA Displays a pixel at an absolute co-ordinate
Entry conditions: DE contains the absolute X co-ordinate.
HL contains the absolute Y co-ordinate.
Exit conditions: AF, BC, DE and HL are cleared.

BBED Displays a pixel at a relative co-ordinate
Entry conditions: DE contains the relative X co-ordinate.
HL contains the relative Y co-ordinate.
Exit conditions: AF, BC, DE and HL are modified.

BBFO Tests a pixel at an absolute co-ordinate
Entry conditions: DE contains the absolute X co-ordinate.
HL contains the absolute Y co-ordinate.
Exit conditions: A contains the INK colour number of the tested
pixel, BC, DE and HL are modified.

BBF3 Tests a pixel at a relative co-ordinate
Entry conditions: DE contains the relative X co-ordinate.
HL contains the relative Y co-ordinate.
Exit conditions: A contains the INK colour of the tested pixel, BC,
DE and HL are modified.

BBF6 Draws a line from the current cursor position to an absolute
co-ordinate position
Entry conditions: DE contains the absolute X co-ordinate of the end
pixel.
HL contains the absolute Y co-ordinate of the end pixel.
The line will be drawn from the current cursor position to the
absolute position.
Exit conditions: AF, BC, DE and HL are modified.

BBF9 Draws a line from the current cursor position to a relative
co-ordinate position
Entry conditions: DE contains the relative X co-ordinate of the end
pixel.
HL contains the relative Y co-ordinate of the end pixel.
The line will be drawn from the current cursor position to the
relative position.
Exit conditions: AF, BC, DE and HL are modified.

BBFC Writes a character at the graphic cursor position
Entry conditions: A contains the character to be written.
Exit conditions: AF, BC, DE and HL are modified.

INTERNAL SOFTWARE

Screen management routines
85

86

87

89

90

91

92

93

94

95

BBFF Initialisation of the screen management system
Modes, INK and PAPER values use the default values.
Entry conditions: none
Exit conditions: AF, BC, DE and HL are modified.

BC02 Re-initialisation of screen management system
Entry conditions: none
Exit conditions: AF, BC, DE and HL are modified.

BC05 Sets the initial screen OFFSET value
Modifying this value can cause the screen to scroll.
Entry conditions: HL contains the desired OFFSET value.
Exit conditions: AF and HL are modified.

BCOB Returns the screen memory address and the OFFSET value
Entry conditions: none
Exit conditions: A contains the high byte of the screen memory
address and HL contains the current OFFSET value. F is modified.

BCOE Sets a screen mode
Entry conditions: A contains the mode number.
Exit conditions: AF, BC, DE and HL are modified.

BC11 Returns the current screen mode
Entry conditions: none
Exit conditions: A contains the mode number, the carry and zero
flags are set according to the mode:

Mode 0: Carry = 1, Zero = 0
Mode 1: Carry = 0, Zero = 1
Mode 2: Carry = 0, Zero = 0

BC14 Clears the screen
Entry conditions: none
Exit conditions: AF, BC, DE and HL are modified.

BC17 Returns the size
Entry conditions: none
Exit conditions: B contains the last physical column number of the
screen, C contains the last row number and AF is modified.

BC1A Returns the memory address of a character whose screen
position has been provided
Entry conditions: H contains the column and L contains the row.
Exit conditions: HL contains the real memory address, B contains
the width in bytes of the character in memory and AF is modified.

BC1D Returns the memory address of a pixel whose screen po­
sition has been provided
Entry conditions: DE contains the X co-ordinate of the pixel and HL
contains the Y co-ordinate.
Exit conditions: HL contains the memory address of the pixel, B
contains the number of pixels in a byte — 1, C contains the pixel
mask. AF and DE are modified.

65

INTERNAL SOFTWARE

96

97

98

99

100

101

102

103

104

105

106

107

66

BC20 Calculation of the real address of the byte to the right of the
real current address
Entry conditions: HL contains the current address.
Exit conditions: HL contains the new address and AF is modified.

BC23 As 96 (BC20), but for the byte to the left

BC26 As 96 (BC20), but for the next line down

BC29 As 96 (BC20), but for the preceding line

BC2C Conversion of an INK number to provide a mask
This mask, if applied to a pixel storage byte will set all the pixels in
the appropriate INK colour
Entry conditions: A contains the INK colour.
Exit conditions: A contains the mask, F is modified.

BC2F Extraction of an INK colour from a mask (see above)
Entry conditions: A contains the mask
Exit conditions: A contains the INK number, F is modified.

BC32 Sets INK colours
Entry conditions: A contains the INK number.
B contains the first colour.
C contains the second colour.
Exit conditions: AF, BC, DE and HL are modified.

BC35 Returns current INK colour values
Entry conditions: A contains the INK number
Exit conditions: B contains the first colour.
C contains the second colour.
AF, DE and HL are modified.

BC38 Sets the colours of the screen border
Entry conditions: B contains the first colour.
C contains the second colour.
Exit conditions: AF, BC, DE and HL are modified.

BC3B Returns the border colours
Entry conditions: none
Exit conditions: B contains the first colour.
C contains the second colour.
AF, DE and HL are modified.

BC3E Sets the flash rate of the border colours
Entry conditions: H contains the duration of the first colour.
L contains the duration of the second colour.
Exit conditions:AF and HL are modified.

BC41 Returns the flash rates of the border colours
Entry conditions: none
Exit conditions: H contains the duration of the first colour.
L contains the duration of the second.
AF is modified.

INTERNAL SOFTWARE

108 BC44 Fills a rectangle with INK
Entry conditions: A contains the mask corresponding to the INK to
be used.
H contains the left-hand column number.
D contains the right-hand column number.
L contains the top line number.
E contains the bottom line number.
Exit conditions: AF, BC, DE and HL are modified.

109 BC47 Masks a series of bytes in screen memory with INK values
Entry conditions: A contains the INK mask.
HL contains the memory address corresponding to the top left
corner.
D contains the width, in bytes, to be set.
E contains the height in screen lines.
Exit conditions: AF, BC, DE and HL are modified.

110 BC4A Swaps the two colour values associated with a character
Entry conditions: B contains the mask for the first colour.
C contains the mask for the second colour.
H contains the column number.
L contains the row number.
Exit conditions: AF, BC, DE and HL are modified.

Ill BC4D Moves the entire screen eight pixels up or down
Entry conditions: B must be 0 for a downwards movement.
B must be non-zero to move upwards.
Exit conditions: AF, BC, DE and HL are modified.

112 BC50 Moves a part of the screen eight pixels up or down
Entry conditions: B must be 0 for a downwards movement.
B must be non-zero for an upwards movement.
A contains the INK mask to clear the new line.
H contains the left column number.
D contains the right column number.
L contains the upper line number.
E contains the lower line number.

113 BC53 Conversion of a character matrix from its standard form
into a series of pixel masks in the current mode
Entry conditions: HL contains the address of the matrix.
DE contains the address where the masks are to be stored.
Exit conditions: AF, BC, DE and HL are modified

114 BC56 Conversion of a series of current mode pixel masks into a
standard character matrix (inverse of 113)
Entry conditions: A contains the INK mask to be matched.
H contains the character column.
L contains the character row.
DE contains the address where the matrix will be built.
Exit conditions: AF, BC, DE and HL are modified.

67

INTERNAL SOFTWARE

115 BC59 Sets the screen write mode for graphics
Entry conditions: A contains the mode (0 = Fill, 1= exclusive OR,
2 = AND, 3 = OR).
Exit conditions: AF, BC, DE and HL are modified.

116 BC5C Writes a pixel on the screen regardless of the mode defined
by the preceding routine (115)
Entry conditions: B contains the INK mask.
C contains the pixel mask.
HL contains the memory address of the pixel.
Exit conditions: AF is modified.

117 BC5F Draws a horizontal line
Entry conditions: A contains the INK mask.
DE contains the start X co-ordinate.
BC contains the end X co-ordinate.
HL contains the Y co-ordinate.
Exit conditions: AF, BC, DE and HL are modified.

118 BC62 Draws a vertical line
Entry conditions: A contains the INK mask
DE contains the X co-ordinate of the line
HL contains the start Y co-ordinate.
BC contains the end Y co-ordinate.
Exit conditions: AF, BC, DE and HL are modified.

Tape management routines
119 BC65 Initialises the tape management system

Entry conditions: none
Exit conditions: AF, BC, DE and HL are modified.

120 BC68 Set tape write speed
Entry conditions: HL contains the length of half a zero bit.
A contains the pre-equalisation value required.
Exit conditions: AF and HL are modified.

121 BC6B Enables/Disables display of tape prompt messages
Entry conditions: A set to 0 to enable, to non-zero to disable message
display.
Exit conditions: AF is modified.

122 BC6E Turns tape motor ON
Entry conditions: none
Exit conditions: If the motor responds as expected, the carry flag is
true; if ESC has been pressed, the carry flag is false. A reflects the
previous state of the motor.

Turns tape motor OFF
Entry conditions: none
Exit conditions: as above (122).

123 BC71

68

INTERNAL SOFTWARE

124 BC74 Resets tape motor to previous state
Entry conditions: A contains the previous state of the motor.
Exit conditions: as above (122).

125 BC77 Opens a read buffer and reads in the first block
Entry conditions: B contains the length of the file name.
HL contains the address of the file name.
DE contains the address of the 2K data buffer.
Exit conditions: If the operation is successful, the carry flag will be
true and the zero flag false.
HL contains the address of the buffer carrying the header data.
DE contains the address of the file data.
BC contains the length of the file.
A contains the file-type.
If the channel has already been used, the carry flag is false and A,
BC, DE and HL will all have been modified.
If ESC has been pressed, the carry flag will be false and the zero flag
will be true. AF, BC, DE and HL will all be modified.
In all cases IX is modified.

126 BC7A Closes a file
Entry conditions: none
Exit conditions: If successful, the carry flag is true, otherwise the
carry flag is false. In both cases registers AF, BC, DE and HL will
be modified.

127 BC7D Abandons reading of a tape and closes the file
Entry conditions: none
Exit conditions: AF, BC, DE and HL are modified.

128 BC80 Reads a single byte
Entry conditions: none
Exit conditions: If successful, the carry flag is true, the zero flag is
false and A contains the character read.
If the end of file (EOF) has been encountered then the carry and
zero flags will both be false and A will be changed.
If ESC has been pressed, the carry flag will be false, the zero flag
will be true and A will have been modified.
In both cases IX is modified.

129 BC83 Reads file data into memory
Entry conditions: HL contains the address in memory to store the
file.
Exit conditions: As 128 for the carry and zero flags. HL contains the
entry point if the read is successful. In both cases AF, BC, DE and
HL and IX are modified.

130 BC86 Places the last character read by routine 128 back into the
read buffer
Entry conditions: none
Exit conditions: none

131 BC89 Tests whether the end of file (EOF) has been reached
Entry conditions: none
Exit conditions: If the end of the file has been reached, the carry and

69

INTERNAL SOFTWARE

zero flags are false. If the end of file has not been reached, the carry
flag is true and the zero flag false. If the user has pressed ESC
(break), the carry flag will be false and the zero flag true. In both
cases AF and IX are modified.

132 BC8C

133 BC8F

134 BC92

135 BC95

136 BC98

137 BC9B

Opens a file for output
Entry conditions: B contains the length of the file name.
HL contains the address of the file name.
DE contains the address of the next 2K file buffer.
Exit conditions: If the file has been correctly opened, the carry flag is
true, the zero flag is false and HL contains the address of the header
buffer to be written at the start of each data block. If the user has
pressed ESC, the carry flag is false and the zero flag is true. If the
buffer has already been used, the carry and zero flags will both be
false. In both cases AF, BC, DE, HL and IX are modified.

Normal close of an output file
Entry conditions: none
Exit conditions: If the close has been successful, the carry flag is true
and the zero flag is false. If the file was not open in the first place
then the carry and zero flags will both be false. If ESC has been
pressed, the carry flag will be false and the zero flag true. In both
cases, AF, BC, DE, HL and IX will be modified.

Immediate close of an output file
Entry conditions: none
Exit conditions: AF, BC, DE and HL are all modified.

Write a single character to an output file
Entry conditions: A contains the character to write
Exit conditions: If the operation is successful the carry flag is true
and the zero flag is false. If the file was not open, the carry and zero
flags are both false. If ESC has been pressed then the carry flag will
be false and the zero flag true. In both cases, AF and IX will be
modified.

Direct write of memory contents to an output file
Entry conditions: HL contains the memory address.
DE contains the number of bytes to be written.
BC contains the entry point.
A contains the type of file.
Exit conditions: As routine 135, but AF, BC, DE, HL and IX are
modified.

Records a tape directory
Entry conditions: DE contains the address of data to write.
Exit conditions: If the recording went correctly, the carry flag will be
true. Otherwise, the carry flag will be false . In both cases, AF, BC,
DE, HL and IX are modified.

Writes data to tape
Entry conditions: HL contains the address of the data to be written.
DE contains the number of bytes to write.

138 BC9E

70

INTERNAL SOFTWARE

A contains the synchronisation character.
Exit conditions: If the write went correctly, the carry flag will be
true, otherwise the carry flag will be false and A will contain an error
code. In both cases AF, BC, DE, HL and IX are modified.

139 BCA1 Reads data from tape
Entry conditions: HL contains the address to which the data will be
written.
DE contains the number of bytes to read.
A contains the synchronisation character.
Exit conditions: If the read went correctly, the carry flag will be true,
otherwise the carry flag will be false and A will contain an error
code. In both cases AF, BC, DE, HL and IX are modified.

140 BCA4 Compares a tape recording with the contents of memory
Entry conditions: HL contains the address of data to be compared.
DE contains the number of bytes to compare.
A contains the synchronisation character.
Exit conditions: If the comparison produces a perfect match then the
carry flag is set to true, otherwise the carry flag is set false and A
contains an error code. In both cases, AF, BC, DE, HL and IX are
modified.

Sound management routines
141 BCA7

142 BCAA

143 BCAD

Initialises the sound management system
Entry conditions: none
Exit conditions: AF, BC, DE and HL are modified.

Adds a sound to a sound queue
Entry conditions: HL contains the address of the sound program
which must be within the 32K central RAM memory.
Exit conditions: If the sound has been correctly added to the queue,
the carry flag is true and HL is modified. If all sound queues are full
and the required sound has not been added to one of them, the carry
flag is false and HL will be unchanged. In both cases AF, BC, DE
and IX are modified, all other registers are preserved.

Checks whether there is space available in a sound queue
Entry conditions: A contains the number of the sound channel to be
tested:

0 tests channel A
1 tests channel B
2 tests channel C

Exit conditions: A contains the status of the channel tested and F,
BC, DE and HL are all modified.

Sets up an interrupt for use when a sound queue is empty
Entry conditions: A contains the number of the sound channel to be
monitored:

0 tests channel A
1 tests channel B
2 tests channel C

HL contains the address of the interrupt routine.
Exit conditions: AF, BC, DE and HL are modified.

144 BCBO

71

INTERNAL SOFTWARE

145 BCB3

146 BCB6

147 BCB9

148 BCBC

149 BCBF

150 BCC2

151 BCC5

Resumes sound output through a specified channel after
inhibition by routine 146
Entry conditions: A contains the channel number to release:

0 tests channel A
1 tests channel B
2 tests channel C

Exit conditions: AF, BC, DE and HL are modified.

Stops all sound output
Entry conditions: none
Exit conditions: If a sound channel was active, the carry flag will be
true. If no sound was active, the carry flag will be false. In both
cases, AF, BC and HL are modified.

Restarts all sounds stopped by routine 146
Entry conditions: none
Exit conditions: AF, BC, DE and IX are modified.

Sets up of one of the 15 programmable amplitude envelopes
Entry conditions: A contains the envelope number.
HL contains the address of the amplitude data.
Exit conditions: If an envelope has been correctly set up, the carry
flag is true, HL contains the block address of data + 16, A and BC
are modified.
If the envelope number was invalid then carry flag is false and A, B
and HL are all modified.
In both cases F and DE will be modified.

Sets up of one of the 15 programmable frequency envelopes
Entry conditions: A contains an envelope number.
HL contains the address of the frequency data.
Exit conditions: If the frequency envelope has been correctly set up,
the carry flag is true, HL contains the block address of data + 16, A
and BC are modified.
If the envelope number was invalid then carry flag is false and A, B
and HL are all preserved.
In both cases F and DE will be modified.

Returns the address of an amplitude envelope
Entry conditions: A contains the envelope number.
Exit conditions: If the envelope is valid then the carry is true, HL
contains the address of the envelope and BC contains its length.
If the envelope number is invalid, the carry flag will be wrong, HL
will be modified and BC will be preserved.
In both cases AF will be modified.

Returns the address of a tone envelope
Entry conditions: A contains an envelope number.
Exit conditions: If the envelope is valid then the carry flag will be set
to true, HL will contain the address of the envelope and BC the
length of the envelope.

72

INTERNAL SOFTWARE

If the envelope number is invalid, the carry flag will be false, HL
will have been modified and BC will be unchanged.
In both cases AF will have been modified.

The Kernel
152 BCC8

153 BCCB

154 BCCE

155 BCD1

156 BCD4

157 BCD7

Clears all interrupts and clocks
Entry conditions: none
Exit conditions: B contains the ROM select address (if relevant).
DE contains the ROM entry point.
C contains the ROM select address of a program in RAM.
AF and HL are both modified.

Locate and initialise all background ROMs
Entry conditions: DE contains the address of the first usable byte of
memory.
HL contains the address of the last usable byte of memory.
Exit conditions: DE contains the address of the new first usable byte
of memory.
HL contains the address of the new last usable byte of memory.
AF and BC are modified.

Initialise a background ROM
Entry conditions: C contains the selection address of the ROM to be
initialised.
DE contains the address of the first usable byte of memory.
HL contains the address of the last usable byte of memory.
Exit conditions: DE contains the address of the first new usable byte
of memory.
HL contains the address of the last new usable byte of memory.
AF and B are modified.

Introduces an RSX (Resident System extension) to the
firmware
Entry conditions: BC contains the address of the RSX command
table.
HL contains the address of four RAM bytes for the kernel to use.
Exit conditions: DE is modified.

Searches for an RSX, background or foreground ROM to
execute a command
Entry conditions: HL contains the address of the command name to
be found.
Exit conditions: If an RSX or background ROM is found, the carry
flag is true, C contains the ROM selection address and HL contains
the routine address.
If the command has not been found, the carry flag is false.
In both cases AF, BC and DE are modified.

Initialises an event block and adds it to the list of blocks to be
activated during a CRT interrupt
Entry conditions: HL contains the address of the event block.
B contains the class of event.

73

INTERNAL SOFTWARE

C contains the ROM selection address.
DE contains the address of event routine.
Exit conditions: AF, DE and HL are modified.

158 BCDA

159 BCDD

160 BCEO

161 BCE3

162 BCE6

163 BCE9

164 BCEC

165 BCEF

Adds an event block to the list of blocks to be activated
during a CRT interrupt
Entry conditions: HL contains the address of the event block.
Exit conditions: AF, DE and HL are modified.

Deletes an event block from the list of blocks to be activated
during a CRT interrupt
Entry conditions: HL contains the address of the event block.
Exit conditions: AF, DE and HL are modified.

Initialises an event block and adds it to the list of blocks to
activate during a rapid (1/300th of a second) interrupt
Entry conditions: HL contains the address of the block.
B contains the event class.
C contains the ROM selection address.
DE contains the address of the event routine.
Exit conditions: AF, DE and HL are modified.

Adds an event block to the list of blocks to be activated
during a rapid interrupt
Entry conditions: HL contains the address of the event block.
Exit conditions: AF, DE and HL are modified.

Deletes an event block from the list of blocks to be activated
during a rapid interrupt
Entry conditions: HL contains the event block address.
Exit conditions: AF, DE and HL are modified.

Adds an event block to the list of blocks to be activated
during a normal (l/50th of a second) interrupt
Entry conditions: HL contains the address of the event block.
DE contains the initial value of the counter.
BC contains the reload value for the counter when it reaches 0.
Exit conditions: AF, BC, DE and HL are modified.

Removes an event block from the list of blocks to be
activated during a normal interrupt
Entry conditions: HL contains the address of the event block.
Exit conditions: If the block has been found in the list, the carry flag
is true and DE contains the counter, otherwise the carry flag is false.
In both cases, AF, DE and HL are modified.

Initialises an event block
Entry conditions: HL contains the address of the event block.
B contains the class of event.
C contains the ROM selection address.
DE contains the address of the event routine.
Exit conditions: HL contains the address of the event block + 7.

74

INTERNAL SOFTWARE

166

167

168

169

170

171

172

173

174

175

BCF2 Activates an event block
Entry conditions: HL contains the address of the event block.
Exit conditions: AF, BC, DE and HL are modified.

BCF5 Clears synchronous time event queue
Entry conditions: none
Exit conditions: AF and HL are modified.

BCF8 Removes synchronous event from the queue
Entry conditions: HL contains the event block address.
Exit conditions: AF, BC, DE and HL are modified.

BCFB Processes the next event in the queue
Entry conditions: none
Exit conditions: If there is an event to process, the carry flag is true
and HL contains the address of the event block. A contains the
priority code of the previous event.
If there is no event to process, the carry flag is false.
In both cases AF, DE and HL are modified.

BCFE Processes an event routine
Entry conditions: HL contains the address of an event block.
Exit conditions: AF, BC, DE and HL are modified.

BD01 Ends the processing of an event
Entry conditions: HL contains the address of an event block.
A contains the priority code of the preceding event.
Exit conditions: AF, BC, DE and HL are modified.

BD04 Disables normal synchronous events
Entry conditions: none
Exit conditions: HL is modified.

BD07 Enables normal synchronous events
Entry conditions: none
Exit conditions: HL is modified.

BDOA Inhibits a specified event
Entry conditions: HL contains the address of the event block.
Exit conditions: AF is modified.

BDOD Returns elapsed time in 300ths of a second
Entry conditions: none
Exit conditions: DEHL contains the elapsed time as a 4-byte value.

75

INTERNAL SOFTWARE

General and peripheral
interface routines
176

177

178

179

180

181

182

183

184

185

186

76

BD10 Sets the elapsed time counter
Entry conditions: DEHL contains the 4-byte value in 300ths of a
second. Exit conditions: AF is modified.

BD13 Loads a program into RAM and runs it
Entry conditions: HL contains the address of the routine to call to
load the program.
Exit conditions: program dependent.

BD16 Runs a program in a foreground ROM
Entry conditions: HL contains the entry point.
C contains the ROM selection.
Exit conditions: indeterminate.

BD19 Waits for the CRT to generate a frame sync signal
Entry conditions: none
Exit conditions: none

BD1C Sets the screen mode
Entry conditions: A contains the mode (0, 1 or 2).
Exit conditions: AF is modified.

BD1F Sets the screen memory offset
Entry conditions: A contains the base address of the new screen.
HL contains the offset.
Exit conditions: AF is modified.

BD22 Sets all INKs to the same colour to give the impression of
clearing the screen
Entry conditions: DE contains the address of an ink vector.
Exit conditions: AF is modified.

BD25 Sets the INK and BORDER colours
Entry conditions: DE contains the address of an ink vector.
Exit conditions: AF is modified.

BD28 Reinitialises printer output
Entry conditions: none
Exit conditions: AF, BC, DE and HL are modified.

BD2B Sends a character to the printer (and detects unusually long
A /»-#' (■
iu- • 0 -

printer BUSY signals)
Entry conditions: A contains the character to send.
Exit conditions: If the character has been sent, the carry flag is true.
If the printer has been busy for too long, the carry flag goes false.
In either case AF is modified.

BD2E Tests whether the printer is busy
Entry conditions: none
Exit conditions: If the printer is busy, the carry flag is set true,
otherwise it is false.

INTERNAL SOFTWARE

187 BD31 Sends a character to the printer (which must not be busy)
Entry conditions: A contains the character to be sent.
Exit conditions: carry flag true, AF modified.

188 BD34 Sends data to a PSG register
Entry conditions: A contains the register number.
C contains the data.
Exit conditions: AF and BC are modified.

The Jump Block
189 BD37 Resets standard jump blocks

Entry conditions: none
Exit conditions: NF, BC, DE and HL are modified.

INDIRECTION VECTORS

Indirection vectors allow the user to intercept and alter a certain number of actions of
the software system without having to rewrite the entire system.

Note:
The following addresses are not entry points but internal calls which can be trapped.

1 BDCD Enables screen cursor
Entry conditions: none
Exit conditions: AF is modified.

2 BDDO Disables screen cursor
Entry conditions: none
Exit conditions: AF is modified.

3 BDD3 Writes a character to the screen
Entry conditions: A contains the character to be written.
H contains the column number.
L contains the row number.

4 BDD6 Reads a screen character
Entry conditions: H contains the column number.
L contains the row number.
Exit conditions: if the character is found,then carry flag is true and A
contains the character. Otherwise the carry flag is false and A
contains 0. In both cases AF, BC, DE and HL are modified.

5 BDD9 Writes a character or interprets a control code
Entry conditions: A contains the character or control code number.
Exit conditions: NF, BC, DE and HL are modified.

6 BDDC Draws a pixel
Entry conditions: DE contains the X co-ordinate of the pixel.
HL contains the Y co-ordinate.
Exit conditions: AF, BC, DE and HL are modified.

77

INTERNAL SOFTWARE

7 BDDF Tests a pixel
Entry conditions: DE contains the X co-ordinate of the pixel.
HL contains the Y co-ordinate.
Exit conditions: A contains the INK value of the specified pixel. A,
BC, DE and HL are modified.

8 BDE2

9 BDE5

10 BDE8

11 BDEB

12 BDEE

Draws a line from the current position
Entry conditions: DE contains the X co-ordinate of the end pixel.
HL contains the Y co-ordinate of the end pixel.
Exit conditions: AF, BC, DE and HL are modified.

Reads a pixel in screen memory and decodes its INK colour
Entry conditions: HL contains the screen address of the pixel.
C contains the pixel mask.
Exit conditions: A contains the decoded INK value of the specified
pixel. AF is modified.

Writes one or more pixels in the current graphic mode.
Entry conditions: HL contains the screen address of the pixel or
pixels.
C contains the mask for the pixel or pixels.
B contains the INK code.
Exit conditions: AF is modified.

Clears the screen with INK 0
Entry conditions: none
Exit conditions: AF, BC, DE and HL are modified.

Tests the ESC key (BREAK)
Entry conditions: interrupts disbaled. C contains the state of the
CTRL and SHIFT keys.
Exit conditions: AF and HL are modified.

13 BDF1 Writes a character to the printer T i '
Entry conditions: A contains the character.
Exit conditions: if the character has been correctly written, then the
carry flag is true.
If the printer has been busy too long the carry flag goes false.
In either case, AF and BC are modified.

KERNEL VECTORS AND RESTARTS

A series of routines are used to control the selection and state of the ROM, these lie
outside the principal entry points of the system software and should not be modified
by the user.

Upper memory vectors
1 B900 Selects the upper ROM

Entry conditions: none
Exit conditions: A contains the previous state of ROM.
AF is modified.

78

INTERNAL SOFTWARE

2 B903 Disables the upper ROM to reselect RAM
Entry conditions: none
Exit conditions: A contains the previous state of ROM.
AF is modified.

3 B906 Selects the lower ROM
Entry conditions: none
Exit conditions: A contains the previous state of ROM.
AF is modified.

4 B909 Disables the lower ROM to reselect RAM
Entry conditions: none
Exit conditions: A contains the previous state of ROM.
AF is modified.

5 B90C Restores the former state of a ROM
Entry conditions: A contains the former state of the ROM.
Exit conditions: AF is modified.

6 B90F Selects a specified upper ROM
Entry conditions: C contains the select address of the required ROM.
Exit conditions: C contains the select address of the previous ROM.
B contains the state of the previous ROM.
AF is modified.

7 B912 Determines a ROM select address
Entry conditions: none
Exit conditions: Contains the select address of the current ROM.

8 B915 Determines the type and the version number of a ROM
Entry conditions: C contains the select address of the ROM to be
examined.
Exit conditions: A contains a ROM class.
H contains a version number.
L contains a type number.
B and F are modified.

9 B918 Reselects a previously selected upper ROM
Entry conditions: C contains the select address of the ROM to be
selected.
B contains its state.
Exit conditions: BC is modified.

10 B91B Executes a block memory transfer with increment (LDIR)
with both upper and lower ROMs disabled.
Entry conditions: BC, DE and HL are programmed as for a normal
LDIR.
Exit conditions: BC, DE, HL and F are in the same state as after a
normal LDIR.

11 B91E As above, but with decrement (LDDR).

79

INTERNAL SOFTWARE

12 B921 Tests for the existence of a higher priority event than the
current event
Entry conditions: none
Exit conditions: if an event with a higher priority is pending, then the
carry flag will be true, otherwise it will be false. AF is modified.

Low memory vectors
1 0000 RST0

Cold boot (as at power-up)
Entry conditions: none
Exit conditions: not relevant

2 0008 RST1
Jump to of a routine in ROM or in lower RAM.
The two bytes following the RST contain the execution address.
If set, bits 15 and 14 disable upper and lower ROMs respectively.
Entry conditions: all registers are passed on to the routine without
alteration.
Exit conditions: depends on the routine.

3 000B Jump to a routine in ROM or low RAM
Entry conditions: HL contains the lower address of the routine.
Exit conditions: depends on the routine.

4 000E Jumps to the address contained in BC
Entry conditions: BC contains the address.
Exit conditions: depends on the routine.

5 0010 RST 2
Sub-routine call to a secondary ROM.
The two bytes following the RST contain the execution address to
which &C000 is automatically added and the selection address of the
ROM. Seep. 101.
Entry conditions: all registers except IY are passed unaltered to the
routine.
Exit conditions: depends on the routine.

6 0013 Sub-routine call to a secondary ROM
The address is contained in HL.
Entry conditions: HL contains the address and all registers except IY
are passed unaltered to the routine.
Exit conditions: depends on the routine.

7 0016 Jumps to the address contained in DE
Entry conditions: DE contains the address.
Exit conditions: depends on the routine.

8 0018 RST 3
Call to a sub-routine in RAM or ROM.
The two bytes immediately following the call contain the address of
the far-address of the sub-routine. See p. 101.
Entry conditions: all registers except IY are passed on to the sub­
routine.
Exit conditions: depends on sub-routine.

80

INTERNAL SOFTWARE

9 001B Call to a sub-routine in RAM or ROM with the address in HL
Entry conditions: HL contains the address.
C contains the selection byte of the ROM or RAM.
All the registers are passed on to the routine, except IY.
Exit conditions: depends on the routine.

10 00IE Jumps to the address contained in HL
Entry conditions: HL contains the address.
Exit conditions: depends on the routine.

11 0020 RST4
Loads the byte in RAM pointed to by HL into the accumulator,
regardless of the state of the ROM.
Entry conditions: HL contains the address.
Exit conditions: A contains the value read.

12 0023 Calls a sub-routine in RAM or ROM
Entry conditions: HL contains the address where the far-address
of the sub-routine is held. All the registers are passed on to the
sub-routine except IY. See p.101.
Exit conditions: depends on the sub-routine.

13 0028 RST 5
Jumps to an address in the lower ROM. The two bytes following the
RST contain the address.
Entry conditions: all the registers are preserved.
Exit conditions: depends on the sub-routine.

14 0030 RST 6
User-definable reset jump.
Bytes 30 to 37 inclusive are available to the user for any purpose.

15 0038 RST 7
Entry point for system generated interrupts.
Entry conditions: none
Exit conditions: all registers are preserved.

16 003B External interrupt handling routine
Entry conditions: none
Exit conditions: AF, BC, DE and HL are modified.

81

INTERNAL SOFTWARE

VECTORS FOR MATHS ROUTINES

The maths routines are contained in the lower ROM and are regularly called by the
BASIC ROM in order to carry out the BASIC calculation functions (+, *, /, sine,
cosine and so on).

A series of vectors has been created to facilitate use of these calls.

The BASIC maths functions use a virtual accumulator of six bytes located at B0C1 to
B0C6. B0C1 contains 2 if the variable is an integer, 3 if it is a string, 5 if it is a real.

An integer variable is stored in two bytes in signed binary format.

A real variable is more complex. It is stored in five bytes according to the following
formula:

Step 1
Express the number in binary.

Step 2
Count the number of significant bits before the decimal point and add 128 (80 hex) to
it to get the fifth byte.

Step 3
Delete the left-most bit and convert the seven remaining bits into decimal. If the
number is negative, add 128 (80 hex). This gives the fourth byte.

Step 4
To obtain bytes 3, 2 and 1, take the remaining bits in groups of 8 and convert them
into decimals.

Example:
Coding the real variable — 2527

2527 in binary is 1001 1101 1111 (12 digits)

byte 5: 128+12= 140 = 8C

byte 4: take the next seven bits: 0011101 =29= ID
Since the number is negative, add 128: 29+ 128= 157 = 9D

byte 3: the eight following bits are 1111 0000 = 240 = F0

bytes 2 and byte 1: = 00 since there are no further bits.

— 2527 is therefore stored as 00 00 F0 9D 8C in hexadecimal.

82

INTERNAL SOFTWARE

Vector
address

BD3D

BD40

BD43

BD46

BD49

BD4C

BD4F

BD52

BD55

BD58

BD5B

BD5E

BD61

BD64

BD67

BD6A

Absolute Purpose
address

2E18 Copies the five bytes pointed to by DE into the area pointed to
by HL and transfers the content of the byte located at address
HL — 1 (the variable type) into A.

2E29 Copies the contents of A into the five bytes pointed to by DE.

2E55 Conversion of the binary number pointed to by HL into a
format suitable for use in the 5 byte virtual accumulator.

2E66 Transforms the value contained in the 5 bytes pointed to by
HL into an integer in HL.

2E8E Transforms the value contained in the 5 bytes pointed to by
HL into an integer, then places this in the first two bytes
pointed to by HL.

2EA1 Performs the FIX function.

2EAC Performs the INT function.

2EB6 Routine used by STR$ and PRINT.

2F1D Transformation routine.

333F Addition of two reals. HL points to 5 bytes representing a
number in real format (called ACCUM1), DE points to
another five bytes (called ACCUM2). On completion of the
routine, HL points to ACCUM1 which contains the sum of
ACCUM1 + ACCUM2.

3337 Subtraction of two reals. HL points to 5 bytes representing a
number in real format (called ACCUM1). DE points to
another five bytes (called ACCUM2). On completion of the
routine, HL points to ACCUM1 which contains the value of
ACCUM1 - ACCUM2.

333B Subtraction of two reals. As above, but ACCUM1 contains the
value of ACCUM2 - ACCUM1.

4315 Multiplication of two reals. As above, but ACCUM1 contains
the value of ACCUM1 *ACCUM2.

349E Division of two reals. As above, but ACCUM1 contains the
value of ACCUM1/ACCUM2.

3578 Adds A to the last byte of the number pointed to by HL.

359A Comparison of two reals.
If ACCUM1>ACCUM2, then A= 1
If ACCUM1 <ACCUM2, then A = 255
If ACCUM1 = ACCUM2, then A = 0

83

INTERNAL SOFTWARE

Vector
address

BD6D

BD70

BD73

BD76

BD79

BD7C

BD7F

BD82

BD85

BD88

BD8B

BD8E

BD91

BD94

BD97

BD9A

Absolute Purpose
address

359A Negation of a real number. HL points to ACCUM1 which
contains the value of — ACCUM1.

35E8 Tests the real contained in ACCUM1. HL points
toACCUMl.
IfACCUMl>0, then A=1
If ACCUMl<0, then A = 255
If ACCUM1 = 0, then A = 0

31AE Sets trig-calculation mode to degrees or radians. If A = 0, mode
is RADIAN, if A does not equal 0 then DEGREE mode is
selected.

31A3 Places the constant value PI in the area pointed to by HL on
entry.

310A Extraction of the square root of a real number. On entry, HL
points to the 5 bytes containing the number. On exit, the same
bytes will contain the square root of the number.

310D Raise a real number to a power. HL points to ACCUM1 which
contains the number and DE points to ACCUM2 which
contains the power. On exit, ACCUM1 contains the value of
ACCUM1 to the power ACCUM2.

3014 Calculation of the napierian logarithm (to base e) of a real
number. HL points to ACCUM1 which contains the entry
number. On exit, ACCUM1 contains the value of the
logarithm.

300F Calculation of the common logarithm (to base 10) of a real
number. HL points to ACCUM1 which contains the number.
On exit, ACCUM1 contains the value of the logarithm.

3090 Calculation of the exponent of a number. HL points to
ACCUM1 which, on exit, contains the value of the number’s
exponent.

31 BC Calculation of the sine of an angle.

31B2 Calculation of the cosine of an angle.

3231 Calculation of the tangent of an angle.

3241 Calculation of the arc-tangent of an angle.

2E5E Evaluation routine.

2F94 Routine to load B8E4 and B8E6 on initialisation.

2FA1 Routine used during random number generation.

84

INTERNAL SOFTWARE

If HL>0 then A = 1
IfHLcOthen A = 255
IfHL = Othen A = O

Vector
address

Absolute
address

Purpose

BD9D 2FB7 Routine used during random number generation.

BDAO 2FE6 Routine used during random number generation.

BDA3 3708 Manipulation using HL.

BDA6 370E Loads B and E with 0, loads C with 2.

BDA9 3715 Manipulation using HL.

BDAC 3728 Addition of two integer numbers. HL = HL + DE.
A = FF in the case of an overflow.

BDAF 3731 Subtraction of two integer numbers. HL = HL — DE.
A = FF in the case of an overflow.

BDB2 3730 Subtraction of two integer numbers. HL = DE - HL.
A = FF in the case of an overflow.

BDB5 3739 Multiplication of two integer numbers. HL = HL* DE.
A = FF in the case of an overflow.

BDB8 377A Division of two integer numbers. HL = HL/DE.
DE contains the remainder of the division on exit.

BDBB 3781 Remainder of the division of two integers.
HL = remainder of HL/DE.

BDBE 3750 A particularly obscure operation using HL and DE.

BDC1 378C Routine used during the PRINT instruction.

BDC4 37E9 Comparison of two integer numbers.
IfHL>DE then A = 1
IfHL<DEthen A = FF
IfHL = DE thenA = 0

BDC7 37D4 Negation of an integer number. On exit, HL = - (HL).

BDCA 37E0 Tests HL.

85

INTERNAL SOFTWARE

MAIN SYSTEM VARIABLES

Address Length Contents

ACOO 26 Code C9 (RET) repeated 26 times.
AC1C 1 AUTO flag: 0 = auto enabled, 1 = auto disabled.
ACID 2 Number of the current line (used by AUTO).
AC1F 2 Value of the increment between line numbers (AUTO).
AC24 1 Used by WIDTH instruction.
AC26 2 Used by NEXT instruction.
AC2C 2 Used by FOR instruction.
AC2E 2 Used by WHILE..WEND instruction pairs.
AC30 11 Used by ON..GOTO instruction.
ACA4 1 Used by EVERY instruction.
ACA5 256 Keyboard input buffer.
AD81 2 Line number for ON ERROR instruction.
ADA6 2 Pointer for RESUME instruction.
ADA8 2 Used by error-handling routine.
ADAA 1 Error number.
AD AB 2 Address of last byte executed.
AD AD 2 Address for END, STOP and CONT.
ADB1 1 Error number for ON ERROR GOTO function.
ADB2 9 Parameters used by SOUND instruction.
AEOC 26 Variable type declaration table. Consists of 26 bytes (1 for each

letter of the alphabet). Each byte contains a code determining
the default variable type of each variable beginning with the
letter.

AE2E 2 Address of current line for READ DATA.
AE30 2 Address at which READing of DATA starts, used with

RESTORE.
AE34 2 Used by ON ERROR GOTO.
AE38 1 TRACE flag: 0 = TROFF, 1 = TRON.
AE72 2 Temporary store of DE for use by CALL instruction.
AE74 1 Temporary store of accumulator for use by CALL instruction.
AE75 2 Temporary store of HL for use by CALL instruction.
AE77 2 Temporary store of SP for use by CALL instruction.
AE79 2 Used by ZONE instruction (address).
AE7B 2 HIMEM (upper address limit for BASIC).
AE7D 2 Used by SYMBOL instruction (address).
AE81 2 Address of start of BASIC program (defaults to 016F).
AE83 2 Address of end of BASIC program.
AE85 2 Address of start of variable table.
AE87 2 Address of simple variables table.
AE89 2 Address of array variables table.
BOBA 1 Key pressed flag (used by INKEY).
B0C1 1 State of virtual accumulator.

86

INTERNAL SOFTWARE

Address Length Contents

B0C2 5 Five bytes used by the accumulator.

B1C7 1 INK mask byte.
B1C8 1 Screen mode (0,1 or 2).
B1C9 2 Screen offset (values from 0 to 7FF).

B1CB 1 High byte of start of real screen memory.

B1CC 1 Sometimes contains a C3 (jump).

BICD 2 Contains a jump address.

B1D7 1 Length of first period of flashing of border.

B1D8 1 Length of second period of flashing of border.

B1DA 32 INK colours (two bytes per colour).

BIFC 1 Used by border.
B20C 1 STREAM number.

B285 1 Current cursor row.

B286 1 Current cursor column.

B287 1 Window flag.

B288 1 Start row of current window.

B289 1 Start column of current window.

B28A 1 Last row of current window.

B28B 1 Last column of current window.

B28D 1 Cursor flag: 0 = cursor enabled, 255 = cursor disabled.

B28E 1 Display flag: 0 = display disabled, 255 = display enabled.

B28F 1 Current foreground INK value.

B290 1 Current background (PAPER) INK value.

B291 1 Background display flag: 0 = background display enabled,
255 = background display disabled.

B294 2 First character in, and state of, user-defined character matrix
table.

B296 2 Address of user-defined character matrix table.

B2C3 96 Table of control codes.

B328 2 Coordinate of origin of X axis.

B32A 2 Co-ordinate of Y axis.
B32C 2 Graphic X co-ordinate.

B32E 2 Graphic Y co-ordinate.

B330 2 X co-ordinate of one edge of graphic window.

B332 2 X co-ordinate of the other edge of graphic window.

B334 2 Y co-ordinate of one edge of graphic window.

B336 2 Y co-ordinate of the other edge of graphic window.

B338 1 Graphic foreground INK colour.

B339 1 Graphic background INK colour.

B33A 8 Four sets of two bytes used as temporary store during line
drawing.

B342 2 X co-ordinate of end-point for line drawing.

B344 2 Y co-ordinate of end-point for line drawing.

B34C 80 Table of key values when used without SHIFT or CTRL.

87

INTERNAL SOFTWARE

255 = DEGREES mode.

Address Length Contents

B39C 80 Table of SHIFTed key values.
B3EC 80 Table of key values when used with with CTRL.

B43C 80 Table of repeat values for each key.

B4DE 2 Used for scanning (address).

B4E0 1 Temporary store of scanned character (BB0C).

B4E9 1 Value of auto-repeat speed for all keys.

B4EA 1 Value of delay before a key repeat.

B4F1 1 State of joystick 1.
B4F4 1 State of joy stick 2.
B50C 1 Used for BREAK control.

B541 2 Address of key table when used without SHIFT or CTRL.

B543 2 Address of SHIFTed key table.

B545 2 Address of key table when used with CTRL.

B547 2 Address of key repeat data table.

B551 Start of sound control variables area.

B60A 240 15 groups of 16 bytes containing values for amplitude
envelopes.

B6FA 240 15 groups of 16 bytes containing values for tone envelopes.

B800 1 Tape prompt flag: prompt message enabled if 0, disabled if not
0.

B802 1 File open flag.

B803 2 Address of 2K directory buffer.

B805 2 Address of read buffer.

B819 1 File status.
B81A 2 Current address of read buffer.

B81C 2 Address of data memory area.
B81F 2 Logical length of file.

B847 1 Status of write stream.

B84A 2 Address of write buffer.

B85F 2 Current address of write buffer.

B8CD 1 Synchronisation character.

B8D1 2 Read and write speed.

B8F7 1 Radian/Degree flag: 0 = RADIANS,

88

INTERNAL SOFTWARE

PRINCIPAL LOWER ROM
ADDRESSES

The lower ROM contains the system routines, the maths routines and the character
generator.

Note:
Addresses marked with a *

005C BCC8 *
0099 BDOD *
00A3 BD10 *
0163 BCD7 *
016A BCDA *
0170 BCDD *
0176 BCE0 *
017D BCE3 *
0183 BCE6 *
01B3 BCE9 *
01C5 BCEC *
01D2 BCEF *
01E2 BCF2 *
021A BCFE *
0228 BCF5 *
0256 BCFB *
0277 BD01 *
0285 BCF8 *
028E BD0A *
0295 BD04 *
029B BD07 *
02A1 BCD1 *
02B2 BCD4 *
0329 BCCB *
0332 BCCE *
05DC BD13 *
060B BD16 *
066D 64K MICROCOMPUTER (V1)

orl28K...(6I28), (message).

068A Copyright 1984 Amstrad
Consumer Electronics
PLC and Locomotive
Software Ltd. (message)

06F4 *** program load failed
*** (message).

are described in detail in other sections of this book.

0727 Li st of compatibl es
Arnold, Amstrad,
Orion,
Schneider, Awa,
Sol avox,
Sai sho , Tri umph, I sp.

0776 BD1C *
0786 BD22 *
0799 BD25 *
07BA BD19 *
07 C6 BD1F*
07E6 BD28 *
0782 BD2B* —
07F8 BDF1 *
0807 BD31 *
08IB BD2E *
0826 BD34 *
0888 BD37 *
0AA0 BBFF *
0AB1 BC02 *
0ACA BC0E *
0AEC BC11 *
0AF7 BC14 *
0AF7 BDEB *
0B3C BC05 *
0B45 BC08 *
0B50 BC0B *
0B57 BC17 *
0B64 BC1A *
0BA9 BC1D *
0BF9 BC20 *
0C05 BC23 *
0C13 BC26 *
0C2D BC29 *
0C49 BC59 *

89

INTERNAL SOFTWARE

0C68 BDE8 * 12FD BBAB *
0C6B BC5C* 132 A BBAE *
0C82 BDE5 * 1334 BB5D *
0C86 BC2C * 134A BDD3 *
0CA0 BC2F* 137A BB9F*
0CE4 BC3E * 1387 BBA2 *
0CE8 BC41 * 13A7 BB63 *
OCEC BC32 * BAB BB60*
0CF1 BC38 * 13C0 BDD6 *
0D14 BC35 * 1400 BB5A*
0D19 BC3B * 140C BDD9 *
0DB3 BC44 * 144B BB57 *
0DB7 BC47 * 1451 BB54 *
ODDF BC4A* 146B Table of terminal control
ODFA BC4D * codes (96 bytes).
0E3E BC50* 14CB BBB1 *
0EF3 BC53 * 1540 BB6C *
0F49 BC56 * 15B0 BBBA *
0FC4 BC5F * 15DF BBBD *
102F BC62 * 15F1 BBC3 *
1078 BB4E* 15F4 BBCO *
1088 BB51 * 15FC BBC6 *
10E8 BBB4 * 1604 BBC9 *
1107 BBB7 * 1612 BBCC*
U5E BB6F * 1734 BBCF *
1169 BB72 * 1779 BBD2 *
1174 BB75 * 17A6 BBD5 *
1180 BB78 * 17BC BBD8 *
11CE BB87 * 17C5 BBDB *
120C BB66 * 17F6 BBDE*
1256 BB69 * 17FD BBE4 *
1263 BDCD * 1804 BBE1 *
1263 BDDO* 180A BBE7 *
1268 BB8A* 1810 BBED *
1268 BB8D * 1813 BBEA*
1279 BB81 * 1816 BDDC*
1281 BB84 * 1824 BBF3 *
1289 BB7B * 1827 BBFO *
129A BB7E* 182 A BDDO *
12A9 BB90* 182A BDDF *
12AE BB96 * 1836 BBF9 *
12BD BB93 * 1839 BBF6 *
12C3 BB99 * 183C BDE2 *
12C9 BB9C * 1945 BBFC *
12D3 BBA5 * 19E0 BBOO *
12F1 BBA8 * 1A1E BB03 *

90

INTERNAL SOFTWARE

1A3C BB06 * 2401 BC7D *

1A42 BB09 * 2415 BC8F *

1A77 BBOC* 242E BC92 *

1A7B BB15 * 2435 BC80 *

1AB3 Default values of extended 245B BC95 *
keys (RUN for CTRL CR). 2496 BC89 *

1ABD BBOF * 249A BC86*

1B2E BB12 * 24AB BC83 *
1B56 BB18 * 24EA BC98 *
1B5C BB1B * 2528 BC9B *

1BB3 BB21 * 27C5 Press play then any key
1C2F BDEE* (message).

1C5C BB24* 27DB Error (message).

1C6D BB3F* 27E5 REC (message).

1C69 BB42 * 27E8 And (message).

1C71 BB45 * 27ED Read (message).

1C82 BB48 * 27F3 Write (message).

1C90 BB4B * 27FA Rewind (message).

1CA6 BB3C * 2800 Tape (message).

1CAB BB39 * 2805 Found (message).

1CBD BB1E* 280D Loading (message).

1D52 BB27 * 2815 Saving (message).

1D3E BB2A * 281D OK (message).

1D57 BB2D * 2820 Block (message).

1D43 BB30* 2826 Unnamed (message).

1D5C BB33 * 282D File (message).

1D48 BB36 * 2836 BCA1 *

1D69 Table of default values of key­ 283F BC9E *
board keys. 2851 BCA4 *

1E68 BCA7 * 2A4B BC6E *

1ECB BCB6 * 2A4F BC71 *

1EE6 BCB9 * 2A51 BC74*
1F9F BCAA* 2E18 BD3D *

204A BCB3 * 2E29 BD40*

206C BCAD * 2E55 BD43 *

2089 BCBO * 2E5E BD94 *

2338 BCBC * 2E66 BD46*
233D BCBF * 2E8E BD49 *

2349 BCC2 * 2EA1 BD4C*
234E BCC5 * 2EAC BD4F *

2370 BC65 * 2EB6 BD52 *
237F BC68 * 2F10 BD55 *
238E BC6B * 2F53 Table of powers of 10 (13 sets

2392 BC77 * of 5 bytes for values 10 to

23AB BC8C* 1013).

23FC BC7A* 2F94 BD97 *

91

INTERNAL SOFTWARE

2FA1
2FB7
2FE6
300F
3014
3086

308C

3090
30CC
30FB
3100
3105
310A
310D
31A3
31A9
31AE
31B2
31BC
31EC

321D

3231
3241

BD9A*
BD9D *
BDAO *
BD82 * LOGIO
BD7F * LOG
Coded value of LOG(2)
(0.693147181)
Coded value of LOG10(2)
(0.301029996)
BD85 * EXP
Coded 0.5 {constant}
1.44269504 {constant}.
88.0296919 {constant}.
-88.7228391 {constant}.
BD79 * SQR
BD7C*
BD76 * PI
PI (3.14159265) {constant}.
BD73 * DEG-RAD
BD8B * COS
BD88 * SIN
Table of 6 numbers, each of 5
bytes, for calculating sines
and cosines.
Table of 4 numbers, each of 5
bytes, for calculating sines
and cosines.
BD8E * TAN
BD91 * ATN

3258 Table of 11 numbers, each of

3337

5 bytes, for calculating arc­
tangent.
BD5B *

333B BD5E *
333F BD58 *
3415 BD61 *
349E BD64 *
3578 BD67 *
359A BD6A *
35E8 BD70 *
35 F8 BD6D *
3708 BDA3 *
370E BDA6 *
3715 BDA9 *
3728 BDAC*
3730 BDB2 *
3731 BDAF *
3739 BDB5 *
3750 BDBE *
377A BDB8 *
3781 BDBB *
378C BDC1 *
37D4 BDC7 *
37E0 BDCA *
37E9 BDC4 *
3800 Start of character generator

3FFF
table (256 groups of 8 bytes).
End of table.

92

INTERNAL SOFTWARE

PRINCIPAL UPPER ROM
ADDRESSES

The upper ROM contains the BASIC keyword handling routines.

C002 Initialisation and output of
BASIC 1.0 (message)

C03F BAS IC 1.0 (message)
C053 EDIT function
C090 Main entry (READY

display)
COCC READY (message)
CODF AUTO
C12B NEW
Cl 32 CLEAR
C20A PAPER
C212 PEN
C221 BORDER
C22A INK
C24F MODE
C25A CLS
C262 VPOS
C276 POS
C2D2 LOCATE
C2E1 WINDOW
C319 TAG
C320 TAGOFF
C337 Displays message pointed to

by HL
C3E3 WIDTH
C417 EOF
C48C ORIGIN
C4B5 CLG
C4C6 DRAW
C4CB DRAWR
C4D0 PLOT
C4D5 PLOTR
C4E9 TEST
C4EE TESTR
C505 MOVE
C50A MOVER
C529 FOR
C5FB NEXT
C6C7 IF
C6E8 GOTO
C6ED GOSUB

C70F RETURN
C747 WHILE
C776 WEND
C7C3 ON
C8CB ON BREAK
C8E1 DI
C8E7 El
C940 ON SQ
C971 AFTER
C979 EVERY
C99F REMAIN
CA8F ERROR
CB23 UNDEFINED LINE (message)
CB33 Routine to send ‘BREAK IN’

message
CB4F BREAK (message)
CB55 IN (message)
CB5A STOP
CB65 END
CBCO CONT
CBF8 ON ERROR
CC03 RESUME
CC5B Table of error messages
CE66 End of table of error messages
CF81 Table of entry points for

arithmetic and logic operat­
ions

DOCA Table of entry points for
the functions EOF, ERR,
HIMEM, INKEYS, PI,
RND, TIME, XPOS
and YPOS

DODC ERR
D0F4 HIMEM
D107 XPOS
D10E YPOS
DI90 Table of entry points for

functions
D219 ROUND
D1EA MIN
DIEE MAX

93

INTERNAL SOFTWARE

D256 OPENOUT
D25F OPENIN
D298 CLOSEIN
D2A1 CLOSEOUT
D2C0 SOUND
D31E RELEASE
D329 SQ
D34E ENV
D385 ENT
D409 INKEY
D423 JOY
D439 KEY DEF
D494 SPEED
D4DB PI
D4E7 DEG
D4EB RAD
D4EF SQR
D4F4 Routine for raising to a

power
D520 EXP
D525 LOG1O
D52A LOG
D52F SIN
D534 COS
D539 TAN
D53E ATN
D543 RANDOM NUMBER SEED ?

(twessqge)
D559 RANDOMIZE
D584 RND
D614 DEFSTR
D618 DEFINT
D61C DEFREAL
D654 LET
D67D DIM
D9C0 ERASE
DAF8 LINE
DB28 INPUT
DB77 ? redo from start

{message)
DCD9 RESTORE
DCEB READ
DDEZ TRON
DDEG TROFF
DE01 Table of entry points for

BASIC keywords
DEBA End of table

DFDC Table of keywords which
need to be followed by a
line number (GOTO,
RESTORE, AUTO, EDIT,
etc.)

E0F7 LIST
E2DD Routine to search for key­

words in table
E327 Routine to check whether a

keyword is in the keyword
table

E354 Table of addresses for each
of the 26 letters of the
alphabet

E388 Table of keywords and key­
word codes

E64A End of table
E728 DELETE
E7DF RENUM
E8EF DATA
E8F3 REM
E9BD RUN
E9F6 LOAD
EA3C CHAIN
EAA6 MERGE
EC09 SAVE
Fl 58 PEEK
F15F POKE
F16D INP
Fl 77 OUT
F17D WAIT
F1BA CALL
F1F6 ZONE
F1FD PRINT
F2C4 PRINT USING
F47B WRITE
F4EF MEMORY
F69D SYMBOL
F834 LOWERS
F839 Routine for conversion into

lower case
F842 UPPERS
F8BA BINS
F8C4 HEXS
F8EA DECS
F91E STRS
F93C LEFTS
F943 RIGHTS

94

INTERNAL SOFTWARE

F993 MIDS
FAOA LEN
FA1O ASC
FA16 CHRS
FA24 INKEYS
FA36 STRINGS
FA57 SPACES
FA77 VAL
FAA1 INSTR
FC2D FRE
FCCC +
FCE1 -
FCF5 *

FD12 /

FD37 Integer division
FD49 MODULO (remainder

division)
FD58 logical AND function
FD63 logical OR function
FD6D logical XOR function

(EXCLUSIVE OR)
FD85 ABS
FDE8 FIX
FDED INT
FE8D CINT
FEC2 UNT
FEEC CREAL
FEF3 Clear accumulator
FF02 SGN

FFOA Puts an integer into the acc­
umulator

FF16 Conversion of an integer to a
real

FF1D Puts variable type into C
FF23 Puts variable type into A
FF27 Tests whether the accumul­

ator contains a string pointer
FF62 Copies the accumulator into

the area pointed to by DE
FF71 Tests for a capital letter
FF7B Tests for a digit
FF8A Conversion into a capital

letter
FFAA Compares A with the contents

of HL
FFB8 Compares HL with DE
FFBE Compares HL with BC
FFC4 DE=HL—DE
FFCF HL=HL-DE
FFDA BC=HL-DE
FFE7 HL=HL—BC
FFF2 LDIR
FFF5 LDDR
FFF8 JP (HL)
FFF9 Return to address held

in BC
FFFB Return to address held

in DE

95

INTERNAL SOFTWARE

ROM ABSOLUTE ADDRESSES

Table of absolute jump addresses for
vectors
Vector
address

Absolute
address

Vector
Address

Absolute
Address

Vector
address

Absolute
address

BBOO 19E0 BB72 1169 BBE4 17FD
BB03 1A1E BB75 1174 BBE7 180 A
BB06 1A3C BB78 1180 BBEA 1813
BB09 1A42 BB7B 1289 BBED 1810
BBOC 1A77 BB7E 129 A BBF0 1827
BBOF 1ABD BB81 1279 BBF3 1824
BB12 1B2E BB84 1281 BBF6 1839
BB15 1A7B BB87 UCE BBF9 1836
BB18 1B56 BB8A 1268 BBFC 1945
BB1B 1B5C BB8D 1268 BBFF 0AA0
BB1E 1CBD BB90 12A9 BC02 0AB1
BB21 1BB3 BB93 12BD BC05 0B3C
BB24 1C5C BB96 12AE BC08 0B45
BB27 1D52 BB99 12C3 BC0B 0B50
BB2A 1D3E BB9C 12C9 BC0E 0ACA
BB2D 1D57 BB9F 137 A BC11 0AEC
BB30 1D43 BBA2 1387 BC14 0AF7
BB33 1D5C BBA5 12D3 BC17 0B57
BB36 1D48 BBA8 12F1 BC1A 0B64
BB39 1CAB BBAB 12FD BC1D 0BA9
BB3C 1CA6 BBAE 132 A BC20 0BF9
BB3F 1C6D BBB1 14CB BC23 0C05
BB42 1C69 BBB4 10E8 BC26 0C13
BB45 1C71 BBB7 1107 BC29 0C2D
BB48 1C82 BBBA 15B0 BC2C 0C86
BB4B 1C90 BBBD 15DF BC2F 0CA0
BB4E 1078 BBC0 15F4 BC32 0CEC
BB51 1088 BBC3 15F1 BC35 0D14
BB54 1451 BBC6 15FC BC38 0CF1
BB57 144B BBC9 1604 BC3B 0D19
BB5A 1400 BBCC 1612 BC3E 0CE4
BB5D 1334 BBCF 1734 BC41 0CE8
BB60 13 AB BBD2 1779 BC44 0DB3
BB63 13A7 BBD5 17A6 BC47 0DB7
BB66 120C BBD8 17BC BC4A 0DDF
BB69 1256 BBDB 17C5 BC4D 0DFA
BB6C 1540 BBDE 17F6 BC50 0E3E
BB6F 115E BBE1 1804 BC53 0EF3

96

INTERNAL SOFTWARE

Vector
address

Absolute
address

Vector
Address

Absolute
Address

Vector
address

Absolute
address

BC56 0F49 BCC5 234E BD34 0826
BC59 0C49 BCC8 005C BD37 0888
BC5C 0C6B BCCB 0329 B900 BA5E
BC5F 0FC4 BCCE 0332 B903 BA68
BC62 102F BCD1 02 Al B906 BA4A
BC65 2370 BCD4 02B2 B909 BA54
BC68 237F BCD7 0163 B90C BA72
BC6B 238E BCDA 016A B90F BA7E
BC6E 2A4B BCDD 0170 B912 BAA2
BC71 2A4F BCEO 0176 B915 BA83
BC74 2A51 BCE3 017D B918 BA8C
BC77 2392 BCE6 0183 B91B BAA6
BC7A 23FC BCE9 01B3 B91E BAAC
BC7D 2401 BCEC 01C5 BDCD 1263
BC80 2435 BCEF 01D2 BDDO 1263
BC83 24AB BCF2 01E2 BDD3 134A
BC86 249A BCF5 0228 BDD6 13C0
BC89 2496 BCF8 0285 BDD9 140C
BC8C 23AB BCFB 0256 BDDC 1816
BC8F 2415 BCFE 021A BDDF 182 A
BC92 242E BD01 0277 BDE2 183C
BC95 245B BD04 0295 BDE5 0C82
BC98 24EA BD07 029B BDE8 0C68
BC9B 2528 BDOA 028E BDEB 0AF7
BC9E 283F BDOD 0099 BDEE 1C2F
BCA1 2836 BD10 00A3 BDF1 07F8
BCA4 2851 BD13 05DC 0008 B982
BCA7 1E68 BD16 060B 000B B97C
BCAA 1F9F BD19 07BA 0010 BA16
BCAD 206C BD1C 0776 0013 BA10
BCBO 2089 BD1F 07C6 0018 B9BF
BCB3 204A BD22 0786 001B B9B1
BCB6 1ECB BD25 0799 0020 BACB
BCB9 1EE6 BD28 07E6 0023 B9B9
BCBC 2338 BD2B 07F2 0028 BA2E
BCBF 233D BD2E 081B 0038 B939
BCC2 2349 BD31 0807

97

INTERNAL SOFTWARE

EXECUTION ADDRESSES OF
BASIC KEYWORDS

Keyword Address Keyword Address

ABS FD85 ERASE D9C0
AFTER C971 ERR DODC
ASC FA10 ERROR CA8F
ATN D53E EVERY C979
AUTO CODF EXP D520
BINS F8BA FIX FDE8
BORDER C221 FOR C529
CALL F1BA FRE FC2D
CAT D246 GOSUB C6ED
CHAIN EA3C GOTO C6E8
CHRS FA16 HEXS F8C4
CINT FE8D HIMEM D0F4
CLEAR C132 IF C6C7
CLG C4B5 INSTR FAA1
CLOSEIN D298 INK C22A
CLOSEOUT D2A1 INKEY D409
CLS C25A INKEYS FA24
CONT CBCO INP F16D
COS D534 INPUT DB2B
CREAL FEEC INT FDED
DATA E8EF JOY D423
DECS F8EA KEY D439
DEF D417 LEFTS F93C
DEFINT D618 LEN FAOA
DEFREAL D61C LET D654
DEFSTR D614 LINE DAF8
DEG D4E7 LIST E0F7
DELETE E728 LOAD E9F6
DI C8E1 LOCATE C2D2
DIM D67D LOG D52A
DRAW C4C6 LOGIO D525
DRAWR C4CB LOWERS F834
EDIT C052 MAX DIEE
El C8E7 MEMORY F4EF
ELSE E8F3 MERGE EAA6
END CB65 MIDS F993
ENT D385 MIN D1EA
ENV D34E MODE C24F
EOF C417 MOVE C505

98

INTERNAL SOFTWARE

Keyword Address Keyword Address

MOVER C50A SAVE EC09
NEXT C5FB SGN FF02
NEW C12B SIN D52F
ON C7E3 SOUND D2C0
ON BREAK C8CB SPACES FA57
ON ERROR CBF8 SPEED D494
ON SQ C940 SQ D329
OPENIN D25F SQR D4EF
OPENOUT D256 STOP CB5A
ORIGIN C48C STRS F91E
OUT F177 STRINGS FA36
PAPER C20A SYMBOL F69D
PEEK F158 TAG C319
PEN C212 TAGOFF C320
PI D4DB TAN D539
PLOT C4D0 TEST C4E9
PLOTR C4D5 TESTR C4EE
POKE F15F TIME D0E5
POS C276 TROFF DDE6
PRINT F1FD TRON DDE2
’(REM) E8F3 UNT FEC2
RAD D4EB UPPERS F842
RANDOMIZE D559 VAL FA77
READ DCEB VPOS C262
RELEASE D31E WAIT F17D
REM E8F3 WEND C776
REMAIN C99F WHILE C747
RENUM E7DF WIDTH C3E3
RESTORE DCD9 WINDOW C2E1
RESUME CC03 WRITE F47B
RETURN C70F XPOS D107
RIGHTS F943 YPOS D10E
RND D584 ZONE F1F6
ROUND D219
RUN E9BD

99

INTERNAL SOFTWARE

CONTROL BLOCKS

ROM expansion

byte 0 ROM TYPE
byte 1 MAKE
byte 2 VERSION
byte 3 LEVEL
byte 4 TABLE

Streams

byte 0 VIDEO
byte 1 CURSOR
byte 2 CURSOR POSITION
byte 3 WINDOW SIZE
byte 4 INK
byte 5 CHARACTER
byte 6 GRAPHIC

Sound queue

byte 0 LINK CHANNEL
byte 1 AMPLITUDE ENVELOPE
byte 2 TONE ENVELOPE
bytes 3 and 4 SOUND PERIOD
byte 5 NOISE PERIOD
byte 6 INITIAL AMPLITUDE
bytes 7 and 8 DURATION OF ENVELOPE

Amplitude and tone control block

byte 0 NUMBER OF SECTIONS
bytes 1, 2 and 3 FIRST SECTION
bytes 4, 5 and 6 SECOND SECTION
bytes 7, 8 and 9 THIRD SECTION
bytes 10,11 and 12 FOURTH SECTION
bytes 13, 14 and 15 FIFTH SECTION

100

INTERNAL SOFTWARE

Ink vector
byte 0
byte 1
byte 2
and so on

to...
byte 16

BORDER COLOUR
INK COLOUR 0
INK COLOUR 1

INK COLOUR 15

Format of the two bytes
following a RESTART
bit 15
bit 14
bits 13 to 0

X
Y
ADDRESS

Standard ROM
X = 0 UPPER ROM DESELECTED
X = 1 UPPER ROM SELECTED

Y= 1 LOWER ROM DESELECTED
Y = 0 LOWER ROM SELECTED

Additional (secondary) ROM
XY gives a value from 0 to 3, which, when added to the selection address of the main
ROM, give the address of the secondary ROM.

Format of a Far-Address

Bytes 0,1 give the address of the routine to call.
Byte 2 as follows:

00-FB Select given ROM, enable upper, disable lower.
FC ROM unchanged, enable upper, enable lower.
FD ROM unchanged, enable upper, disable lower.
FE ROM unchanged, disable upper, enable lower.
FF ROM unchanged, disable upper, disable lower.

On return from the routine, ROM select and state are restored.

Format of cassette files
Complete block

MOTOR GAP HEADER BLOCK DATA

(the motor gap provides a period during which nothing is recorded, allowing time for the
tape motor to come up to full operating speed)

The first and last blocks include an additional silent gap which provides separation
between programs or files.

101

INTERNAL SOFTWARE

First block

MOTOR GAP START GAP HEADER DATA

Second block

MOTOR GAP HEADER DATA END GAP

Format of recording

1 data block = 256 bytes + 2 byte checksum (CRC)

LEADER DATA BLOCK 1 DATA BLOCK 2 DATA BLOCK n TRAILER

Recording of header: 1 DATA BLOCK
Recording of data: 1 to 8 DATA BLOCKS (usually 8)

Leader: 2048 bits set to 1 followed by a bit set to 0 and a
synchronising byte.

Trailer: 32 bits set to 1

Format of header

bytes 0 to 15 NAME OF FILE
byte 16 BLOCK NUMBER
byte 17 NOT ZERO IF LAST BLOCK
byte 18 FILE TYPE
bytes 19 and 20 LENGTH OF DATA
bytes 21 and 22 DESTINATION ADDRESS OF DATA
byte 23 NOT ZERO IF FIRST BLOCK
bytes 24 and 25 TOTAL LENGTH OF FILE IN BYTES
bytes 26 and 27 ENTRY POINT
bytes 28 to 63 NOT USED

Description of byte 18 (file type)

bit 0 1 if file is protected

bits 1 and 2 00 = BASIC
01 = BINARY
10= SCREEN DUMP
11=ASCII

bit 3 Not used

bits 4 to 7 Always set to 0 except in case of ASCH files when bit 4 is set to 1.

102

INTERNAL SOFTWARE

Event block

bytes 0 and 1
byte 2
byte 3
bytes 4 and 5
byte 6

SYSTEM POINTER
COUNTER
CLASS
PROCESSING ROUTINE ADDRESS
ROM SELECTION ADDRESS

Interrupt control block (normal)

bytes 0 and 1
bytes 2 and 3
bytes 4 and 5
bytes 6...

SYSTEM POINTER
COUNTER. Interrupt takes place when zero.
RELOAD. Value of re-initialisation after reaching 0.
EVENT BLOCK (see above).

Interrupt (rapid) and CRT control
block

bytes 0 and 1
bytes 2...

SYSTEM POINTER
EVENT BLOCK (see above).

103

CHIPS AND CIRCUITS

THE AY3 8912 CHIP

Internal structure
The PSG (Programmable Sound Generator) is made up of the following elements:

Sound generators:
There are three independent generators, each producing a square wave whose
frequency can be programmed. They are called CHANNELS A, B and C. They have
no inherent priority.

White noise generator:
Produces a wide spectrum white noise.

Mixer:
Allows the mixing (combining) of outputs from the three sound generators and the
white noise generator.

Amplitude control:
Selection of the output amplitude can be controlled in two ways. The first is by
controlling the amplitude with the microprocessor itself (called the fixed amplitude
mode). The second is by controlling the amplitude using the envelope generator
(called the variable amplitude mode).

Envelope generator:
Produces an amplitude modulation envelope. It possesses eight envelope forms.

Digital to analog converters:
The three D/A converters produce signals at 16 possible levels determined by the
amplitude control.

Input/Output port:
Not used in sound production (see later).

The PSG registers
There are 15 registers numbered RO to R14.

In order to produce a sound, a combination of registers RO to R13 must be loaded
with data. Each parameter includes the noise component, the sound component, the
frequency, the shape and the duration of the envelope.

Registers RO to R5
The first three pairs of registers (R0-R1, R2-R3, R4-R5) are the frequency control
registers for the three channels A, B and C.

104

CHIPS AND CIRCUITS

Registers Rl, R3 and R5 are the registers for coarse adjustment and only the least
signficant (left-most) four bits are used. Registers RO, R2 and R4 are the registers for
fine adjustment and all eight bits are used.

Thus the values loaded into RO, R2 and R4 take values between 0 and 255, while the
values loaded into Rl, R3 and R5 take values between 0 and 15.

The value used is determined by dividing 125000 by the required frequency in Hertz
(cycles per second).

Register R6
Register R6 determines the frequency of the white noise generator; only the five least
significant bits are used. The value of R6 therefore lies between 0 and 31. The same
formula is used as for R0-R5 to determine the value to be used for a specific
frequency.

Register R7
Register R7 controls the mixing of the three sound generators and the noise
generator. R7 is also used in the control of I/O port (see later').

The next table summarises the effects of register R7.

BIT set to 0 set to 1

7 not used
6 Input port
5 White noise on channel C ON
4 White noise on channel B ON
3 White noise on channel A ON
2 Sound on channel C ON
1 Sound on channel B ON
0 Sound on channel A ON

not used
Output port (unused)
White noise on channel C OFF
White noise on channel B OFF
White noise on channel A OFF
Sound on channel C OFF
Sound on channel B OFF
Sound on channel A OFF

Note:
Switching a channel OFF is not enough to stop its output, you must also place a 0 in
the relevant amplitude control register (see below).

Example:
Imagine that you want sound on channel A without noise, sound on channel B with
noise and noise only on channel C.

bit: 7 6 5 4 3 2 1 0
value: xxOOllOO =12

x = state not important

Thus you would write the value 12 into register 7 to obtain the required combination.

105

CHIPS AND CIRCUITS

Registers R8 to RIO
Registers R8 to RIO control the amplitudes of channels A, B and C. Only the four
least significant bits are used, and therefore the possible values will all lie in the range
0-15.

A value of 0 sets the amplitude to its minimum value (no amplitude) and 15
corresponds to the maximum amplitude. The fifth bit (bit 4) selects the amplitude
control mode. If set to 0, the amplitude will not vary. If set to 1, the amplitude is
controlled by the envelope generator (see below).

Registers Rll and R12
These two registers control the period of the envelope. A calculation with a formula
similar to that used for R0-R5 determines the value of R11 and R12:

value =125000 * P/16
where P is the period of the envelope.

Register R13
Register R13 controls the form of the modulation used. If bit 4 in registers R8 to
R10, is set to 1, then modulation takes place. Otherwise, the contents of register 13
are ignored.

Only the four least significant bits are used.

Bit
3 2 10 Envelope form Possible values

0 0 x x A A single cycle starts at maximum amplitude and decays to zero 0,1,2,3
0 1 x x B A single cycle starts with zero amplitude and increases to its maximum

value before dropping sharply back to zero, 4, 5, 6, 7
1 0 0 0 C As A, but continually repeating 8
10 10 D As C, but climbing more steeply to its maximum (steeper attack) 10
1 0 1 1 E As A, but resets to maximum value at end 11
1 1 0 0 F As B, but continually repeating 12
110 1 G As B, but resets to maximum value at end 13
1110 H As F, but with steeper attack 14

Register 14
This register has nothing to do with sound production. It is an input/output port
which deals with reading the keyboard and the joystick.

Bit 6 of register R7 controls the direction of transmission, but as the port is used
exclusively for input, you need only set bit 6 of R7 to 0.

106

CHIPS AND CIRCUITS

Programming the AY3 8912
The PSG is accessible through ports A and C of the PPI 8255 {see next section).

To simplify matters, routine 188 (at address BD34) can be used to write into the
PSG registers. Reading the state of the keyboard and joysticks is, however, more
difficult to perform directly and it is best to do this through the normal entry points
described earlier.

If you want to program the PSG directly, the two command signals BDIR and
BC1 are available at port C of the PPI 8255.

Function of BDIR and BC1
BDIR BC1 Function

0 0 Inactive: no function
0 1 Reading: the contents of the current register are placed on the data bus

D0-D7.
1 0 Writing: the data bus D0-D7 contains data to be written into the current

register.
1 1 Writing: the data bus D0-D7 contains the number of the register which is

to be used.

107

CHIPS AND CIRCUITS

THE PPI 8255 CHIP

General
The PPI is an interface circuit designed for 8080 series microprocessors and is
manufactured by INTEL under the name 8255A. It contains 24 input/output bits
which can be programmed in two groups of 12 bits and which can be used in three
principal modes.

In the first mode (mode 0), each 12-bit port can be programmed as 3 4-bit ports,
allowing both input and output.

In the second mode (mode 1), each 12-bit port can be programmed with 8 bits
used for input and output, and the remaining four bits for handshaking (transmission
control).

The third mode (mode 2) allows 8 bits to be used as a bidirectional port with the
remaining 5 bits used for handshaking.

The PPI also allows bits to be set directly to 0 or 1.

For the sake of simplicity, the PPI is considered to be divided into three 8-bit
ports called port A, port B and port C.

Port C is divided into two 4-bit ports to form the 12-bit groups with A and B.

Allocation of ports
Port A - Input and Output

BO to B7 Correspond to DO up to D7 on AY3 8912

Port B - Input only

Bit 7 Cassette data read (INPUT)

Bit 6 Printer BUSY signal (INPUT)

Bit 5
Bit 4
Bit 3 Not available

Bit 2
Bitl
BitO CRT generated interrupt

108

CHIPS AND CIRCUITS

Port C - Output only

Bit 7
Bit 6
Bit 5
Bit 4
Bits 3 to 0

Controls BDIR on AY3 8912 OUT
Controls BC1 on AY3 8912 OUT
Cassette data write
Cassette motor ON/OFF

Keyboard scan row selection

Programming
The PPI is interfaced at the following addresses:

Address F4xx
Address F5xx
Address F6xx
Address F7xx

Read and write at port A
Read and write at port B
Read and write at port C
Write to the control register

Notes:
xx signifies any value.

A is used for reading (input) and writing (output), B is used for reading (input)
only and C for writing (output) only.

Of the three modes described above, only mode 0 will be covered here since it
covers all likely operations.

The PPI is programmed through a write-only control register. It is not possible to
read this register.

Writing to the control register
Writing to the control register is carried out using a simple OUT command (in
BASIC or Z80 machine code) to port F7xx.

The control word is an 8 bit word, made up as follows:

Bit 7 Always 1 in a control word.

Bit 6 Port A mode selection, first bit. Together with bit 5 this sets the port A
mode. To select mode 0, this bit must be set to 0. When set to 1, it selects
mode 2 {but see bit 5, below').

Bit 5 Port A mode selection, second bit. To select mode 0, this bit must be 0.
When set to 1, it selects mode 1 {but see bit 6, above).

Bit 4 Sets direction of port A; 0 for output and 1 for input. Will normally be 1.

Bit 3 Sets direction of upper part of port C. 0 for output and 1 for input.

109

CHIPS AND CIRCUITS

Bit 2 Sets port B mode. 0 signifies mode 0 and 1 signifies mode 1. Will always
beO.

Bit 1 Sets working direction of port B. 0 for output and 1 for input. Will always
be 1.

BitO Sets working direction of lower part of port C. 0 for output and 1 for
input. Will always be 0.

If bit 7 is set to 0, the register is not used as a port control, but instead allows port C
bits to be set to 0 or 1.

Bit 7 = 0 use register to set bits.
Bits 6, 5 and 4 not used.
Bits 3,2 and 1 set the number of the bit to be positioned.
BitO determines whether the bit is to be set to 0 or 1. 0 here means set the

required bit to 0, 1 means set it to 1.

Programming is thus effected by sending the appropriate status word to the
control register and then performing either a read or a write to the relevant port.

THE CRTC 6845 CHIP

General
The 6845 CRTC (Cathode Ray Tube Controller) controls the generation of video
signals. It consists of an 8-bit bidirectional port and can be set up using its 19 internal
registers. One of the registers serves as a buffer for programming the other 18.

The 6845 registers
RO to R3

These determine the horizontal format and the timing. They are loaded with specific
values according to the mode. For example, in mode 1:

RO = 63
Rl=40
R2 = 46
R3=142

R4 to R9

These determine the vertical format. They are loaded with specific values:

R4 = 38
R5 = 0
R6 = 25
R7 = 30

110

CHIPS AND CIRCUITS

R10toR15

These control the cursor and are constantly modified by the software.

R16toR17

These deal with control of the light pen (not implemented).

RO Total number of character spaces available horizontally (0-255)
Rl Number of characters displayed horizontally (0-255)
R2 Horizontal sync (position. 0-255)
R3 Length of synchronisation (0-15)
R4 Total number of rows available (0-127)
R5 Vertical sync (0-31)
R6 Number of characters displayed vertically (0-127)
R7 Vertical synch (position. 0-127)
R8 Interlace mode (0-3)
R9 Scanning (0-31)
R10 Start line of cursor scan (0-31)
R11 End line of cursor scan (0-31)
R12 Most significant byte of starting address of video RAM from 16383

(0-16383)
R13 Least significant byte of video RAM from 16383 (0-16383)
R14 Cursor position (MSB)
R15 Cursor position (LSB)

Programming
Two port addresses are used to program the CRTC.

Port BCxx is used to set register addresses and port BDxx is used to write data to
the current register.

These registers are write-only, with the exception of registers 14 and 15 which can
be read to give the current cursor position.

Ill

CHIPS AND CIRCUITS

THE VIDEO GATE ARRAY

General
The Amstrad is equipped with a special circuit which looks after ROM. switching and
the CRTC chip. This is a custom circuit known as agate array, designed specifically
for the Amstrad.

Programming
The gate array may be looked upon as an 8-bit output port controlled using an OUT
7Fxx instruction.

The two top bits control the application:

Bit 7 Bit 6 Function
0 0
0 1
1 0
1 1

Loading of palette register
Loading of palette memory
ROM switching and video control
Reserved

ROM switching and video control

BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0

1
0
0
1 Resets interrupting device to 0
0 Selects upper ROM. 1 deselects upper ROM
0 Selects lower ROM. 1 deselects lower ROM

video control MC1 (see below)
video control MCO (see below)

MC1 and MCO

o o
0 1
1 0
1 1

Mode 0 (24 rows of 20 columns)
Mode 1 (24 rows of 40 columns)
Mode 2 (24 rows of 80 columns)
Illegal combination

112

CHIPS AND CIRCUITS

Palette register

BIT 7 0
BIT 6 0
BIT 5 0
BIT 4 0 Load ink colour number according to bits 0-3
BIT 4 1 Load border colour number (bits 0-3 ignored)
BITS 3to0 Set the ink number (15 colours available)

Palette memory

number of possible colours varies according to the mode in

use.

BIT 7 0
BIT 6 1
BIT 5 0
BITS 4 to 0 31 values for decoding the colour of the palette register. The

113

HINTS AND TIPS

DUMPING HEX MEMORY FROM
ROMS TO PRINTER

These programs will write ROM contents to the printer in hex.

Lower ROM hex dump

120

10 MEMORY 816000
1 5 CLS
20 FOR I =&A000 to &A010
30 READ A$
40 POKE I,VAL("&H" + A$)
50 NEXT I
60 DATA F3,CD,06,B9,21,00
70 DATA 00
80 CALL &A000
10C) FOR I-&6000 TO 40960

,00,11 ,00,60,01 ,FF,3F , ED,BO,C9

:PRINT #8,HEX$(I-&6000);"
130 A-PEEK (I)
135 AS-RIGHTS("00"+HEX$(A),2)
140 PRINT #8,A$;" ";
150 NEXT I

Upper ROM hex dump

10 MEMORY &6000
1 5 CLS
20 FOR I -SAOOO TO SA010
30 READ AS
40 POKE I,VAL("&H" +A$)
50 NEXT I
60 DATA F3,CD,00,B9,21,00
70 DATA 00
80 CALL &A000
100 FOR I-&6000 TO 40960

,00,11,00,60,01.FF.3F,ED,B0.C9

120 IF INT(1/16)*16-1 THEN PRINT #8,""
:PRINT #8,HEX$(I+&6000) ; "

130 A=PEEK(I)
135 A$=RIGHT$("OO"+HEX$(A),2)
140 PRINT #8,A$;" ";
150 NEXT I

114

HINTSAND TIPS

ASCII DUMP OF UPPER AND
LOWER ROMS TO PRINTER

Lower ROM ASCII DUMP

10 MEMORY &6000
15 CLS
20 FOR I-&A000 TO &A010
30
40
50
60
70
80

READ
POKE
NEXT
DATA
DATA
CALL

AS
I,VAL("&H"+AS)
I
F3,CD, 06,B9,21 ,00,00,1 1 ,00,60,01 ,FF,3F,ED,B0,C9
00
&A000

100 FOR I-&6000 TO 40960
120 IF INT(1/64)*64=1 THEN PRINT #8,""

:PRINT #8,HEXS(I-&6000); " ";
130 A-PEEK(I)
140 IF (A>31 AND A<127) OR A>159 THEN PRINT #8,CHR$(A);

ELSE PRINT #8,;
150 NEXT I

Upper ROM ASCII dump

10 MEMORY &6000
15 CLS
20 FOR I-&A000 TO &A010
30 READ AS
40 POKE I ,VAL("&H"+AS)
50 NEXT I
60 DATA F3,CD,00,B9,21 ,00,CO , 1 1 ,00,60,01 , FF , 3F,ED,BO , C9
70 DATA 00
80 CALL &A000
100 FOR I=&6000 TO 40960
120 IF INT(1/64)*64-1 THEN PRINT #8,""

:PRINT #8,HEXS(I+&6000) ; " " ;
130 A-PEEK(I)
140 IF (A>31 AND A<127) OR A>159 THEN PRINT #8,CHR$(A);

ELSE PRINT #8," . " ;
150 NEXT I

STARTING AND STOPPING THE
CASSETTE MOTOR

To start the motor:

To stop the motor:

0UT&HF600.16

0UT&HF600.0

115

HINTSAND TIPS

PROTECTING A PROGRAM

Type this at the start of the program:

10 REM
20 PRINT "START"

followed by the program to be protected.

When the program has been entered, type:
POKE 372,225

From now on it becomes impossible to list the program, and it can only be
executed by typing RUN 20.

The POKE instruction {above) has the effect of replacing the REM instruction in
memory with an invalid token number (225) so that when the computer attempts to
list the program, it encounters a token which it cannot translate and displays the
message SYNTAX ERROR.

Similarly, when it tries to execute the program (with RUN), it encounters the same
invalid token and freezes. RUN 20 allows execution of the program since it avoids ever
having to try to interpret line 10.

ORIGINAL NOISES

5 REM STARSKY AND HUTCH SIREN
10 FOR 1-80 TO 220 STEP 12
20 SOUND 1,1,2
30 NEXT I
40 FOR 1=220 TO 80 STEP -12
50 SOUND 1,1,2
60 NEXT I
70 GOTO 10

5 REM PHASER SOUND
10 FOR 1-90 TO 125
20 SOUND 1,1,2,15
30 NEXT I
50 GOTO 10

5 REM DEATH WHINE
10 FOR 1-15 TO 8 STEP -1
20 SOUND 1,500,20,I,,,1
30 NEXT I

116

HINTS AND TIPS

CIRCLE AND ELLIPSE
PLOTTING PROGRAM

This program simulates the Microsoft BASIC CIRCLE instruction which is not
available in Amstrad BASIC.

X and Y are the horizontal and vertical co-ordinates of the centre of the circle.

R is the radius of the circle.

SA represents the start angle and EA the end angle. These are both expressed in
degrees and allow arcs of a circle to be plotted.

FF represents a flattening factor which allows ellipses to be plotted.

10 CLS
20 X=320:Y=200:R=100
30 SA=0
40 EA-360
50 FF=2
60 DEG
70 PLOT X+R*C0S(SA),Y+R*SIN(SA)
80 FOR A-SA TO EA
90 X1-X+R*C0S(A):Y1-Y+R*SIN(A)/FF
100 DRAW X1,Y1
110 PLOT X1,Y1
120 NEXT A

SCANNING THE KEYBOARD

Try entering the following program, RUN it and then press different keys. Note the
values thus obtained, and you will be able to use them in your programs by PEEKing
the relevant byte and testing its value. This routine can replace IN KEYS to some
advantage. Use BREAK to end execution.

10 FOR I-&B4EB TO &B4F4
20 PRINT PEEK(I) ;
30 NEXT I
40 PRINT
50 GOTO 10

The following POKE modifies the background (PAPER) colour, producing narrow
bands. Try using it with different values of N.

POKE &B29O.N

Note:
N must have a value between 0 and 225.

117

HINTSAND TIPS

PUTTING A MACHINE CODE
ROUTINE INTO A COMMENT LINE

Short routines can be set up in a REM line (max. 255 characters, including the REM
itself and any spaces) as long as they do not contain two bytes set to 0 in succession at
any point.

Type:

1OREM****************************

Use one asterisk for each byte of your routine.

As BASIC stores programs starting at address 368, the first asterisk will be found
at address 374.

The following program sets up the routine and then erases itself.

20 FOR 1=374 TO 379: REM for a 6-byte routine
30 READ AS
40 POKE I,VAL("&H"+A$)
50 NEXT I
60 DATA 3E , 19,21 ,88,CD,C9
70 DELETE 20-70

Note:
The above code is an example and serves no particular purpose.

118

CONNECTORS AND
CHIP PINOUTS

PINOUTS ON THE AY3 8912

28 LEAD DUAL IN LINE
AY3 8912

Top View

ANALOGUE CHANNEL C C .1 28 □ DAO

TEST 1 c 2 27 3 DA1

Vcc(+ 5V) c 3 26 □ DA2

ANALOGUE CHANNEL B c 4 25 3 DA3

ANALOGUE CHANNEL A c 5 24 2 DA4

Vss (GND) q 6 23 2 DA5

I0A7 c 7 22 □ DA6

IOA6 c 8 21 J DA7

IOA5 c 9 20 □ BC1

IOA4 c 10 19 □ BC2

IOA3 c 11 18 □ BDIR

IOA2 c 12 17 J A8

IOA1 c 13 16 2 RESET

IOAO c 14 15 2 CLOCK

119

CONNECTORS AND CHIP PINOUTS

PINOUTS ON THE CRTC 6845

Vss (GND)
RESET

LPSTB
MAO
MA1
MA2
MA3
MA4
MA5
MA6
MA7
MA8
MA9

MA10
MA11
MA12
MA13

DISPEN
CURSOR

Vcc (+ 5V)

1 40
2 39
3 38
4 37
5 36
6 35
7 34
8 33
9 32

6845 31
11 30
12 29
13 28
14 27
15 26
16 25
17 24
18 23
19 22
20 21

VSYNC
HSYNC
RAO
RA1
RA2
RA3
RA4
DO
01
D2
D3
D4
D5
D6
D7
cs

RS
E
R/W
CLK

Pin name Description Direction

D0-D7
CS
RS
R/W
E
CLK
RESET
Vcc
MA0-MA13
RA0-RA4
HSYNC
VSYNC
DISPEN
CURSOR
LPSTB

Data bus - bidirectional tristate
Circuit selection - input
Register selection - input
Read/Write - input/output
Synchronisation signal - input
Clock - input
Initialisation - input
Power supply (+ 5 V) - input
Memory address (16K) - output
Line address (scanning) - output
Horizontal synchronisation - output
Vertical synchronisation - output
Enable/Disable display - output
Enable/Disable cursor - output
Light pen flag - input

120

CONNECTORS AND CHIP PINOUTS

PINOUTS ON THE PPI 8255

PA3
PA2
PA1
PAO
RD
CS
GND
A1
AO
PC7
PC6
PC5
PC4
PCO
PC1
PC2
PC3
PBO
PB1
PB2

PA4
PA5
PA6
PA7
WR

RESET
DO
D1
D2
D3
D4
D5
D6
D7
Vcc
PB7
PB6
PB5
PB4
PB3

Name of pin Function

D7-D0 Data bus (bidirectional)
RESET Initialisation
CS Chip select
RD Read input
WR Write input
A0-A1 Port address
PA7-PA0 Port A (bit)
PB7-PB0 Port B (bit)
PC7-PC0 Port C (bit)
Vcc Power supply (+ 5 volts)
GND 0 volts (ground)

121

CONNECTORS AND CHIP PINOUTS

PINOUTS ON THE Z80

A10
A9
A8
A7
A6
A5
A4
A3
A2
A1
AO
Ov
RFSR

Ml
RESET

BUSRQ
WAIT
BUSAK
WR
RD

Pin Function Pin Function

1 Address bit 11 21 Memory read command
2 Address bit 12 22 Memory write command
3 Address bit 13 23 Bus acknowledge
4 Address bit 14 24 CPU wait request
5 Address bit 15 25 Bus request
6 Clock input 26 Initialise CPU
7 Data bit 4 27 Start of machine cycle signal
8 Data bit 3 28 Dynamic memory refresh sig
9 Data bit 5 29 0 volts (ground)
10 Data bit 6 30 Address bit 0
11 + 5 volt supply 31 Address bit 1
12 Data bit 2 32 Address bit 2
13 Data bit 7 33 Address bit 3
14 Data bit 0 34 Address bit 4
15 Data bit 1 35 Address bit 5
16 Maskable interrupt request 36 Address bit 6
17 Non-maskable interrupt request 37 Address bit 7
18 HALT signal to microprocessor 38 Address bit 8
19 Memory request 39 Address bit 9
20 Input/Output request 40 Address bit 10

122

CONNECTORS AND CHIP PINOUTS

JOYSTICK CONNECTOR

0 0

Pin 1 Top
Pin 2 Bottom
Pin 3 Left
Pin 4 Right
Pin 5 Unused
Pin 6 Fire button 2
Pin 7 Fire button 1
Pin 8 Common earth
Pin 9 Common earth 2

123

CONNECTORS AND CHIP PINOUTS

VIDEO OUTPUT CONNECTOR

5

4
6

2
3

Pin 1 Red
Pin 2 Green
Pin 3 Blue
Pin 4 Sync
Pin 5 Earth
Pin 6 Brightness

124

CONNECTORS AND CHIP PINOUTS

EXPANSION CONNECTOR OUTPUT

<t9 47 45 45 41 59 57 55 55 51 29 27 25 25 21 19 17 15 15 11 9 7 5 5 1
nnnnnnnnnnnnri nn m-innn i—ir~ir~11—ii—i

UULl’IJLI LJ CJ‘|J OUUUU l l*LJ UUUUU 1—ILJLJL-JCZr
50 48 46 44 42 40 58 56 56 52 50 28 26 24 22 20 18 16 14 12 10 8 6 4 2

Pin 1 Sound Pin 26 DO
Pin 2 Earth Pin 27 + 5 volts
Pin 3 A15 Pin 28 MREQ
Pin 4 A14 Pin 29 Ml
Pin 5 A13 Pin 30 RFSH
Pin 6 A12 Pin 31 IORQ
Pin 7 All Pin 32 RD
Pin 8 A10 Pin 33 WR
Pin 9 A9 Pin 34 HALT
Pin 10 A8 Pin 35 INT
Pin 11 A7 Pin 36 NMI
Pin 12 A6 Pin 37 BUSRD
Pin 13 A5 Pin 38 BUSAK
Pin 14 A4 Pin 39 READY
Pin 15 A3 Pin 40 BUS RESET
Pin 16 A2 Pin 41 RESET
Pin 17 Al Pin 42 ROMEN
Pin 18 AO Pin 43 ROMDIS
Pin 19 D7 Pin 44 RAMRD
Pin 20 D6 Pin 45 R AMD IS
Pin 21 D5 Pin 46 CURSOR
Pin 22 D4 Pin 47 LIGHT PEN
Pin 23 D3 Pin 48 EXP
Pin 24 D2 Pin 49 EARTH
Pin 25 DI Pin 50 0

125

CONNECTORS AND CHIP PINOUTS

PRINTER OUTPUT CONNECTOR

Pin 1 STROBE
Pin 2 DO
Pin 3 DI
Pin 4 D2
Pin 5 D3
Pin 6 D4
Pin 7 D5
Pin 8 D6
Pin 9 D7
Pin 11 BUSY
Pin 14 GROUND (earth)
Pin 16 GROUND
Pin 19 GROUND
Pin 20 GROUND
Pin 21 GROUND
Pin 22 GROUND
Pin 23 GROUND
Pin 24 GROUND
Pin 25 GROUND
Pin 26 GROUND
Pin 28 GROUND
Pin 33 GROUND

Unused pins are not listed

126

APPENDIX A

TABLE OF VALUES FOR
CHROMATIC SCALE

c 3822
C# 3608
D 3405
D# 3214
E 3034
F 2863
F# 2703
G 2551
G# 2408
A 2273
A# 2145
B 2025

These values correspond to an octave based on middle C, for each octave above this,
divide the value by 2.

127

APPENDIX A

TERMINAL CONTROL CODES

Code Action

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Number of
parameters

n/a
Prints the next character
Disables cursor display
Enables cursor display
Sets screen mode to 0, 1,2
Prints the next character in graphic mode
Enables video display
Rings the bell
Destructive backspace
Moves the cursor one character right
Moves the cursor down one line
Moves the cursor up one line
Clears the current window, cursor home
Carriage return
Sets paper ink
Sets pen ink
Deletes the current character
Deletes the to start of (window) line
Deletes the to end of (window) line
Deletes from top left of window to cursor
Deletes to end of window
Disables (inhibits) the display
Sets opaque (0) or transparent (1) mode
Sets graphic mode
Swaps PAPER and PEN INK values
Sets up a character matrix
Sets the boundaries of a window
n/a
Sets INK colours
Sets border colours

n/a
1
0
0
1
1
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
1
1
0
9
4
n/a
3
2

Positions the cursor at top left-hand of window (home) 0
Absolute positioning of cursor in a window 2

128

APPENDIX A

TABLE OF PORT ADDRESSES

Address Function Direction

7Fxx VIDEO GATE ARRAY OUT
BCxx 6845 (ADDRESS) OUT
BDxx 6845 DATA OUT
BExx 6845 STATUS IN
BFxx 6845 DATA IN
DFxx NON-EXTERNAL SELECTION OUT
EFxx PRINTER PORT OUT
F4xx 8255 PORT A I/O
F5xx 8255 PORT B I/O
F6xx 8255 PORT C I/O

FFxx
8255 CONTROL PORT
RESERVED FOR USER

129

APPENDIX A

SCREEN MEMORY FORMAT

Size: 16K

Normal start address: C000 (but can begin at 0000,4000 or 8000)

Whatever the mode, screen memory can be considered as consisting of 8000 16-bit
words, each defining 4,8 or 16 pixels in modes 0,1 and 2 respectively.

Mode 0:
Mode 1:
Mode 2:

4 pixels of 16 bits:
8 pixels of 16 bits:
16 pixels of 16 bits:

4 bits per pixel:
2 bits per pixel:
1 bit per pixel:

16 colours
4 colours
1 colour

Lines 0, 8,16, 24...192 are stored in the first 2K.

Lines 1, 9, 17, 25...193 are stored in the next 2K.

Lines 7, 15, 23, 31... 199 are stored in the last 2K.

The 6845 address register determines the starting address of a 2K block (stored as a
10-bit value).

Each line uses 80 consecutive bytes in memory.

Example:
If the starting address is C000, then

line 0 occupies the first 80 bytes from C000 to C04F
line 1 occupies 80 bytes, from C800 to C84F
line 8 occupies the bytes from C050 to C09F

Mode 0 Mode 1 Mode 2

Left-most pixel bits 1, 5, 3, 7 bits 3, 7

bits 2,6

bits 0, 4, 2, 6 bits 1, 5

Right-most pixel
bits 0, 4

bit 7
bit 6
bit 5
bit 4
bit 3
bit 2
bit 1
bit 0

130

APPENDIX A

200 rows
of pixels

80 bytes

cooo C001 C04E C04F
C800 C801 C84E C84F
D000 D001 D04E D04F
D800 0801 D84E D84F

F000 F001 F04E F04F
F800 F801 F84E F84F
C050 C051 C09E C09F
C850 C851 C89F C89F

FF30 FF31 FF7E FF7F
C780 C781 C7CE C7CF
CF80 CF81 CFCE CFCF

F780 F781 F7CE F7CF
FF80 FF81 FFCE FFCF

t
Rows for
first
character

Rows for
25th
character

I
C7D0 to C7FF, CFDO to CFFF, and so on. FFDO to FFFF are not used.

131

APPENDIX A

TABLE OF COLOURS

Number Colour 6845 reg value

0 Black 20
1 Blue 4
2 Bright blue 21
3 Red 28
4 Magenta 24
5 Mauve 29
6 Bright red 12
7 Violet 5
8 Bright magenta 13
9 Green 22
10 Cyan (blue) 6
11 Sky blue 23
12 Yellow 30
13 White 0
14 Pastel blue 31
15 Orange 14
16 Pink 7
17 Pastel magenta 15
18 Bright green 18
19 Sea green 2
20 Bright cyan 19
21 Lemon yellow 26
22 Pastel green 25
23 Pastel cyan 27
24 Bright yellow 10
25 Pastel yellow 3
26 Bright white 11

132

APPENDIX A

TABLE OF KEYBOARD CODES

Keyboard

Numeric keypad

10 11 3

20 12 4

13 14 5

15 7 6

Cursor keys

0

8 9 1

2

133

APPENDIX A

Joysticks

Fire button 1 Fire button 2Joystick 0

72

74 75

73

Fire button 1

76

Fire button 2Joystick 1

43

50 51

49

52

134

APPENDIX B

CPC 664 - MACHINE
SPECIFIC INSTRUCTIONS

COMMANDS AND FUNCTIONS
UNIQUE TO THE CPC 664

Functions
COPYCHRS COPYCHRS (//channel number)

Copies the character at the current cursor position in the
specified channel into a string variable.

DECS DECS (numericexpression, format)
Formats a number for output (this format is identical with that
of the PRINT USING instruction). This function makes it
possible to put the result of US I NG into a string variable.

DERR DERR
Prints the last error number returned.

SPC SPC(N)
Generates N spaces for use with PRINT.

Commands
CLEAR INPUT CLEAR INPUT

This instruction clears the input buffer removing all characters
currently in it.

CURSOR CURSOR operating system cursor flag, user cursor flag
This instruction enables or disables the cursor. The flag takes
the value 1 if the cursor is to be enabled, 0 if it is to be disabled.

FILL FILL ink
Fills an area in the specified ink colour.

FRAME FRAME
Synchronises the writing of graphics with the CRT scan pulses
to reduce flickering.

GRAPHICS GRAPHICS PAPER ink and GRAPH ICS PEN ink
Sets the graphic PAPER INK or the graphic PEN INK values
without otherwise affecting the pen or the paper.

135

APPENDIXB - CPC 664 INSTRUCTIONS

MASK MASK i nteger 0 to 255 , integer0to7
A very useful instruction which allows the structure of a line to
be specified so as to be able to draw with a dotted or a
composite line. The first byte specifies the structure of the line
over 8 pixels (values 0 to 255), the second specifies the starting
point within the 8 pixels.

Example:
To draw a dotted line using every other pixel:

MASK&X10101010,0
or
MASK 170,0

MID$ MIDS(st ring 1.position,length)=string2
Inserts string 2 into string 1, starting from the character
defined by position and for number of characters length.

ON BREAK CONT ON BREAK CONT
Disables the BREAK key. This function must be used with
caution in finished programs. Once set, the only way to
interrupt the program is by means of the RESET.

136

APPENDIX B - CPC 664 INSTRUCTIONS

MATHS ROUTINE VECTORS
IN THE CPC 664

The maths routines in the lower ROM are frequently called from the BASIC ROM
in order to carry out all the BASIC calculating functions (+, *, /, sine, cosine, etc).

A series of vectors has been created to facilitate use of these calls.

The BASIC maths functions operate in a virtual accumulator of six bytes exactly
as previously described earlier in this book.

Vector Absolute Purpose
address address

BD5E 2F91 Copies the 5 bytes pointed to by DE into the area pointed to by
HL and transfers the contents of the byte located in address
HL — 1 (variable type) into A.

BD61 2F9F Integer to floating point conversion in the 5 bytes pointed to
by DE.

BD64 2FC8 Conversion of the binary number pointed to by HL into a
number suitable for use in the 5 bytes of the virtual accumul­
ator.

BD67 2FD9 Transforms the value contained in the 5 bytes pointed to by
HL into an integer which will be held in HL.

BD6A 3001 Transforms the value contained in the 5 bytes pointed to by
HL into an integer which will be held in the first 2 bytes
pointed to by HL.

BD6D 3014 Performs the FIX function.

BD70 3055 Performs the INT function.

BD73 305F SGN function (used by STR8 and PRINT).

BD76 30C6 Transformation routine (multiplies by 10A).

BD79 34A2 Addition of two reals. HL points to an area of 5 bytes
representing a number in real format (called ACCUM1). DE
points to another area of 5 bytes (called ACCUM2). On
completion of the routine, HL still points to ACCUM1 which
contains the sum of ACCUM1 + ACCUM2.

BD7C 3159 RND function.

BD7F 349E Subtraction of two reals. HL points to an area of 5 bytes
representing a real number (called ACCUM1). DE points to
another area of 5 bytes (called ACCUM2). On completion of
the routine, HL still points to ACCUM1 which contains the
value of ACCUM1 - ACCUM2.

137

APPENDIXB - CPC 664 INSTRUCTIONS

Vector
address

BD82

BD85

BD88

BD8B

BD8E

BD91

BD94

BD97

BD9A

BD9D

BDAO

BDA3

Absolute Purpose
address

3577 Multiplication of two reals. As above, but ACCUM1 ends up
containing the value of ACCUM1 * ACCUM2.

3604 Division of two reals. As above, but ACCUM1 contains the
value of ACCUM1/ACCUM2.

3188 Returns the last RND value.

36DF Comparison of two reals:
If ACCUM1>ACCUM2, then A= 1
If ACCUM1 <ACCUM2, then A = 255
If ACCUM 1 = ACCUM2, then A = 0.

3731 Negation of a real. HL points to ACCUM1 which contains the
value - ACCUM 1.

3727 Tests the real contained in ACCUM1:
HL points to ACCUM 1.
IfACCUMl>0, thenA=l
If ACCUM 1 <0, then A = 25 5
If ACCUM1 = 0, then A = 0.

3345 Sets angle-calculating mode to degrees or radians.
If A = 0, selects RADIANS mode.
If A<>0, selects DEGREES mode.

2F73 On exit, the area pointed to by HL on entry contains the
constant PI.

32AC Extraction of the square root of a real number.
On entry, HL points to an area of 5 bytes containing a real
number.
On exit, this area contains the square root of that number.

32AF Raising to a power of a real number.
HL points to ACCUM 1 which contains the number and DE
points to ACCUM2 which contains the power. On exit,
ACCUM1 contains the value of ACCUM1 raised to the power
ACCUM2.

31B6 Calculation of the napierian logarithm (to base e) of a real
number, HL points to ACCUM 1 which contains the entry
number. On exit, ACCUM1 contains the value of the
number’s logarithm.

31B1 Calculation of the common logarithm (to base 10) of a real
number. HL points to ACCUM1 which contains the entry
number. On exit, ACCUM1 contains the value of the
number’s common log.

138

APPENDIX B - CPC 664 INSTRUCTIONS

Vector
address

Absolute
address

Purpose

BDA6 322F Calculation of the exponent of a number.
HL points to ACCUM1 which, on completion, contains the
value of the number’s exponent.

BDA9 3353 Calculation of the sine of an angle.

BDAC 3349 Calculation of the cosine of an angle.

BDAF 33C8 Calculation of the tangent of an angle.

BDB2 33D8 Calculation of the arc-tangent of an angle.

BDB5 2FD1 Evaluation routine.

BDB8 3136 RND routine (B8E4 and B8E6) initialisation.

BDBB 3143 Random number generator.

139

APPENDIX B - CPC 664 INSTRUCTIONS

MAIN SYSTEM VARIABLES IN THE
CPC 664

Address Length Contents

AC01
AC02
AC04
AC09
ACOC
AC12
AC14
AC16
AC8A
AD8C
AD8E
AD90
AD91
AD93
AD98
AD99
ADF3

1
2
2
1
1
2
2
11
256
2
2
1
2
2
1
9
26

AE15 2
AE17 2

AE1B 2
AE1F 1
AE55 2
AE577 1

AE58 2
AE5A 2
AE5C 2
AE5E 2
AE60 2
AE64 2
AE66 2
AE68 2
AE6A 2
AE6C 2
B06F 2
B09F 1
BOAO 5

AUTO flag: 0 = AUTO enabled, 1 = AUTO disabled.
Number of the current line (used by AUTO).
Value of increment between lines (AUTO).
Used by WIDTH instruction.
Used by NEXT instruction.
Used by FOR instruction.
Used by WHILE..WEND instructions.
Used by ON..GOTO instruction.
Keyboard input buffer.
Pointer for RESUME instruction.
Used for error correction.
Error number.
Address of last byte executed.
Address for END, STOP and CONT.
Error number for ON ERROR GOTO function.
Parameters used by SOUND instruction.
Variable declaration table. Consists of 26 bytes (1 for each
letter of the alphabet). Each byte contains a code describing the
default status of each variable beginning with the relevant
letter.
Address of current line for READ DATA.
Address of start DATA statements for use with RESTORE
and READ.
Used for ON ERROR GOTO.
TRACE flag: 0 = TROFF, 1 = TRON.
Temporary store of DE for use by CALL instruction.
Temporary store of accumulator for use with CALL instruct­
ion.
Temporary store of HL for use by CALL instruction.
Temporary store of SP for use by CALL instruction.
Used by ZONE instruction (address).
HIMEM (upper address of BASIC).
Used by SYMBOL instruction (address).
Address of start of BASIC program (default 016F).
Address of end of BASIC program.
Address of start of variable table.
Address of simple variables table.
Address of array variables table (DIM).
Address of start of BASIC stack.
Status of virtual accumulator.
5 bytes used by the virtual accumulator.

140

APPENDIX B - CPC 664 INSTRUCTIONS

Address Length Contents

B113 1 Radian/degree mode flag.

B118 1 Prompt message flag: 0 = prompt enabled, not 0 = disabled.
B11A 1 File open indicator.
BUB 2 Address of 2K directory buffer.
B11D 2 Address of read buffer.
B131 1 Status of file.
B132 2 Current address of read buffer.
B134 2 Address of data memory.
B136 2 Logical length of file.
B15F 1 Status of write stream.
B162 2 Address of write buffer.
B176 2 Current address of write buffer.
B1E5 1 Synchronisation character.
B1E9 2 Read/Write speed.
B1ED Start of sound control variables.
B2A6 240 15 groups of 16 bytes containing values for amplitude

envelopes.
B396 240 15 groups of 16 bytes containing values for tone envelopes.
B496 80 Table of key values when used without SHIFT or CTRL.
B4E6 80 Table of SHIFTed key values.
B536 80 Table of key values when used with CTRL.
B586 80 Table of repeat data for each key.
B628 2 Used during keyboard scanning (address).
B62A 1 Temporary store for a scanned character (BB0C).
B633 1 Key repeat speed value.
B634 1 Key pre-repeat delay value.
B635 10 Key-scan table.
B63B 1 State of joystick 1.
B63E 1 State of joystick 2.
B68B 2 Address of key table for keys used without SHIFT or CTRL.
B68D 2 Address of SHIFTed key table.
B68F 2 Address of key table for keys used with CTRL.

B691 2 Address of key repeat details table.
B693 2 X co-ordinate of origin.
B695 2 Y co-ordinate of origin.
B697 2 Graphic X co-ordinate.
B699 2 Graphic Y co-ordinate.
B69B 2 X co-ordinate of one edge of graphic window.
B69D 2 X co-ordinate of the other edge of graphic window.
B69F 2 Y co-ordinate of one edge of graphic window.
B6A1 2 Y co-ordinate of the other edge of graphic window.
B6A3 1 Graphic PEN INK value.
B6A4 1 Graphic PAPER INK value.
B6A5 8 4 2-byte areas used as temporary stores during line drawing.

141

APPENDIXB - CPC 664 INSTRUCTIONS

Address Length Contents

B6AD 2 X co-ordinate of end-point for line drawing.
B6AF 2 Y co-ordinate of end-point for line drawing.
B6B5 1 STREAM number.
B726 1 Current cursor row position.
B727 1 Current cursor column position.
B728 1 Window flag.
B729 1 Start row of current window.
B72A 1 Start column of current window.
B72B 1 End row of current window.
B72C 1 End column of current window.
B72E 1 Cursor flag: 0 = enabled, 1 = disabled.
B72F 1 Current INK for PEN.
B730 1 Current INK for PAPER.
B731 1 Background flag: 0 = enabled, 255 = disabled.
B734 2 First character and state of user-defined matrix table.
B736 2 Address of user-defined matrix table.
B763 96 Control code table.
B7C2 1 byte for INK mask.
B7C3 1 Screen mode (0, 1 or 2).
B7C4 2 Screen offset (0 to 7FF).
B7C6 1 High byte byte of start of screen storage area.
B7C7 1 Sometimes contains a C3 (jump).
B7C8 Contains jump address.
B7D2 1 Duration of first period of border flashing.
B7D3 1 Duration of second period of border flashing.
B7D4 32 INK colours (2 bytes per colour).
B7F7 1 Used by BORDER.

142

APPENDIX B - CPC 664 INSTRUCTIONS

PRINCIPAL ADDRESSES OF
CPC 664 LOWER ROM

The lower ROM contains the system routines (communication with hardware), the
maths routines and the character generator.

Notes:
Addresses corresponding to routines already described in detail are marked with a *
sign.

Routines located at identical addresses
marked with an = sign.

005C = BCC8 *
0099 = BDOD *
003A = BD10 *
0163 = BCD7 *
016A = BCDA*
0170 = BCDD *
0176 = BCE0 *
017D = BCE3 *
0183 = BCE6 *
01B3 = BCE9 *
01C5 = BCEC*
01D2 = BCEF *
01E2 = BCF2 *
0219 BCFE *
0227 BCF5 *
0255 BCFB *
0276 BD01 *
0284 BCF8 *
028D BD0A *
0294 BD04 *
029A BD07 *
02 A0 BCD1 *
02B1 BCD4 *
0326 BCCB *
0330 BCCE *
05D7 BD13 *
0606 BD16 *
066F 64KMICROCOMPUTER (V2)

(message)
068B Copyright 1 984 Amstrad

Electronics PLC and
Locomotive Software
Ltd. (message)

to those described for the CPC 461 are

O7F5 ***program load
failed *** (message)

0728 Li st of compati bles
Arnold, Amstrad,
Orion,
Schnei der, Awa,
Solavox,Sai sho,
Tri umph, I sp.

0766 BD1C *
0776 BD22 *
077C BD25 *
07A4 BD19 *
07B0 BD1F *
07D0 BD28 *
080B BD2B *
0825 BDF1 *
0834 BD31 *
0848 BD2E *
0853 BD34 *
08BB BD37 *
0ABB BBFF*
0ACC BC02 *
0AE5 BC0E *
0B08 BC11 *
0B13 BCM *
0B13 BDEB *
0B33 BC05 *
0B38 BC08 *
0B52 BC0B *
OB59 BC17 *
0B66 BC1A *
0BAB BC1D *
0C01 BC20 *
0C0D BC23 *

143

APPENDIX B - CPC 664 INSTRUCTIONS

0C1B BC26 * 12C2 BB9C *
0C35 BC29 * 12D0 BBA5 *
0C51 BC59 * 12EE BBA8 *
0C6D BDE8 * 12FA BBAB *
0C70 BC5C * 1327 BBAE *
0C86 BDE5 * 1331 BB5D *
0C8A BC2C * 1347 BDD3 *
0CA3 BC2F * 1377 BB9F*
0CE6 BC3E* 1384 BBA2 *
OCEA BC41 * 13A4 BB63 *
OCEE BC32 * 13A8 BB60 *
0CF3 BC38 * 13BA BDD6 *
0D16 BC35 * 13FA BB5A *
0D1B BC3B * 1406 BDD9 *
0DB5 BC44 * 144E BB57 *
0DB9 BC47 * 1455 BB54 *
ODE1 BC4A* 14D0 BBB1 *
ODFC BC4D * 154B BB6C*
0E40 BC50* 15A4 BBBA*
OEF5 BC53 * 15D3 BBBD *
0F26 BC56 * 15F7 BBC3 *
0F8F BC5F * 15FA BBCO *
0F97 BC62 * 1602 BBC6 *
1070 BB4E * 160 A BBC9 *
1080 BB51 * 1618 BBCC *
10E0 BBB4 * 16A1 BBCF *
10FF BBB7 * 16E6 BBD2 *
1156 BB6F * 1713 BBD5 *
1161 BB72 * 1729 BBD8 *
116C BB75 * 1732 BBDB *
1178 BB78 * 1763 BBDE *
11C6 BB87 * 176 A BBE4 *
1204 BB66 * 1771 BBE1 *
124E BB69 * 1776 BBE7 *
125B BDCD * 177C BBED *
125B BDD0 * 177F BBEA *
1261 BB8A * 1782 BDDC *
1261 BB8D * 1790 BBF3 *
1272 BB81 * 1793 BBFO *
127 A BB84 * 1796 BDDF *
1282 BB7B * 17A2 BBF9 *
1293 BB7E * 17A5 BBF6 *
12A2 BB90 * 17B0 BDE2 *
12A7 BB96 * 193C BBFC *
12B6 BB93 * 1B5C BBOO *
12BC BB99 * 1B98 BB03 *

144

APPENDIX B - CPC 664 INSTRUCTIONS

1BBF BB06 * i 2935 Press play then any key
1BC5 BB09 * (message)
1BFA BBOC * 294B Error (message)
1C04 BB15 * 2955 REC (message)
1C3C Default value of extended 2958 And (message)

keys (RUN for CTRL CR) 295D Read (message)
1C46 BBOF* 2963 Write (message)
1CB3 BB12 * 296A Rewind (message)
1CDB BB18 * 2970 Tape (message)
1CE1 BB1B * 2975 Found (message)
1D38 BB21 * 297D Loading (message)
1DB8 BDEE * 2985 Saving (message)
1DE5 BB24 * 298D 0 K (message)
1DF2 BB42 * 2990 Block (message)
1DF6 BB3F * 2996 Unnamed (message)
1DFA BB45 * 299D File (message)
1E0B BB48 * 29A6 BCA1 *
1E19 BB4B * 29AF BC9E *
1E2F BB3C* 29C1 BCA4 *
1E34 BB39 * 2BBB BC6E *
1E45 BB1E * 2BBF BC71 *
1EC4 BB2A * 2BC1 BC74 *
1EC9 BB30 * 2F73 BD97 * PI
1ECE BB36 * 2F78 CONSTANT PI
1ED8 BB27 * 2F91 BD5E*
1EDD BB2D * 2F9F BD61 *
1EE2 BB33 * 2FC8 BD64 *
1EEF Table of key default values 2FD1 BDB5 *
1FE9 BCA7 * 2FD9 BD67 *
2050 BCB6 * 3001 BD6A *
206B BCB9 * 3014 BD6D *
2114 BCAA * 3055 BD70 *
21AC BCB3 * 305F BD73 *
21CE BCAD * 30C6 BD76 *
21EB BCBO * 30F5 Table of powers of 10. 13
2495 BCBC * sets of 5 bytes for values 10
249A BCBF * to 1013
24A6 BCC2 * 3136 BDB8 * RND INT
24AB BCC5 * 3143 BDBB * RND SEED
24BC BC65 * 3159 BD7C * RND
24CE BC68 * 3188 BD88 * RND
24E1 BC6B * 31B1 BDA3 * LOG10
288B BC77, BC7A, BC7D, BC80, 31B6 BDA0 * LOG

BC83, BC86, BC89, BC8C, 31EE Constant for calculating
BC8F, BC92, BC95, BC98, LOG (4 groups of 5 bytes)
BC9B *
(Cassette and disk routines)

3220 Stored value of 1 /SQR(2)

145

APPENDIX B - CPC 664 INSTRUCTIONS

3225 Stored value of L0G(2)
(0.693147181)

33C8
33D8

BDAF * TAN
BDB2 * ATN

322A Stored value of LOG10(2)
(0.301029996)

33EE Table of 11 coded numbers,
each of 5 bytes, for calculat­

322F BDA6 * EXP ing arc-tangents
329D Constant 1.44269504 349E BD7F * -
32A2 Constant 88.0296919 34A2 BD79 * +
32A7 Constant —88.7228391 3577 BD82 * * (multiply)
32AC BD9A * SQR 3604 BD85 */
32AF BD9C * POWER 36DF BD8B * COMPARISON
3345 BD94 * DEG-RAD 3727 BD91 * SGN
3349 BDAC * COS 3731 BD8E * SIGN CHANGE
3353 BDA9 * SIN 3800 Start of character generator
3382 Table of 6 coded numbers, table (256 groups of 8 bytes)

33B4

each of 5 bytes, for calculat­
ing sines and cosines
Table of 4 coded numbers,
each of 5 bytes, for calculat­
ing sines andcosines

3FFF End of table

146

APPENDIXB - CPC 664 INSTRUCTIONS

PRINCIPAL ADDRESSES OF
CPC 664 UPPER ROM

The upper ROM contains all the BASIC keyword processing routines.

C006 Initialisation and output of

C033

BASIC 1 .1 (message)
BAS IC 1 .1 (message)

C046 EDIT function
C058 Main input (READY display)

C0D7 READY (message)

COEA AUTO
C128 NEW
C12F CLEAR
C23C PAPER
C227 PEN
C24B BORDER
C254 INK
C278 MODE
C283 CLS
C29B COPYCHRS
C2A4 VPOS
C2A8 POS
C302 LOCATE
C311 WINDOW
C346 TAG
C34D TAGOFF
C363 CURSOR
C42D WIDTH
C452 EOF
C4E1 ORIGIN
C509 CLG
C515 FILL
C532 MOVE
C537 MOVER
C53C DRAW
C541 DRAWR

C546 PLOT
C54B PLOTR
C574 TEST
C579 TESTR
C59D GRAPHICS
C5C3 MASK
C5D7 FOR
C6A5 NEXT
C76A IF

C789 GOTO
C78F GOSUB
C7B3 RETURN
C7EA WHILE
C81D WEND
C885 ON
C979 ON BREAK
C99A DI
C9A0 El
C9F8 ON SQ
CA25 AFTER
CA2D EVERY
CA53 REMAIN
CB54 ERROR
CB74 UNDEFINED LINE

(message)
CC04 Send ‘ B R E A K IN ’ message
CC1F BREAK (message)
CC25 IN (message)
CC29 STOP
CC34 END
CC96 CONT
CCCD ON ERROR
CCD8 RESUME
CD 17 Table of error messages

(part of word)
CFFO Table of of arithmetic and

logic operation entry points
D11A Table of entry points for

the functions EOF, ERR,
HIMEM, INKEYS, PI,
RND, TIME, XPOS and
YPOS.

D12E DERR
DI 33 ERR
D14B HIMEM
D164 XPOS
D16B YPOS
D1E8 Table of entry points for

functions
D242 MIN

147

APPENDIXB- CPC 664 INSTRUCTIONS

D246 MAX
D26D ROUND
D2AB OPENOUT
D2B7 OPENIN
D2F0 CLOSEIN
D2F8 CLOSEOUT
D316 SOUND
D373 RELEASE
D37E SQ
D3A1 ENV
D3D7 ENT
D459 INKEY
D473 JOY
D489 KEY DEF
D4DE SPEED
D520 PI
D52C DEG
D530 RAD
D534 SQR
D539 Routine for raising to a

power
D563 EXP
D568 LOGIO
D56D LOG
D572 SIN
D577 COS
D57C TAN
D581 ATN
D587 RANDOM NUMBER SEED ?

(message)
D59C RANDOMIZE
D5C4 RND
D653 DEFSTR
D657 DEFINT
D65B DEFREAL
D691 LET
D6B9 DIM
D9F4 ERASE
DB18 LINE
DB48 INPUT
DB7F ? redo from start

(message)
DCCD RESTORE
DCDF READ
DEC6 TRON
DECA TROFF

DEE5 Table of entry points for
BASIC keywords

DFA8 End of table
E0C8 Table of keywords which

may be followed by a line
number (GOTO,
RESTORE, AUTO, EDIT,
etc)

E1D2 LIST
E3AD Routine for positioning

character table during
keyword search

E3F0 Test for keyword in table
E41D Tableof addresses for each

of the 26 letters of the
alphabet

E451 Table of keywords with their
code

E73A End of table
E7F3 DELETE
E8A3 RENUM
E9A8 DATA
E9AC REM
EA7D RUN
EABA LOAD
EB02 CHAIN
EB59 MERGE
ECE1 SAVE
F20D PEEK
F214 POKE
F21E INP
F228 OUT
F232 WAIT
F261 CALL
F2A2 ZONE
F2A9 PRINT
F383 PRINT USING
F50D WRITE
F570 MEMORY
F784 SYMBOL
F8EC LOWER#
F8F1 Routine for conversion to

lower case
F8FA UPPERS
F964 BINS
F969 HEXS
F98F DECS

148

APPENDIX B - CPC 664 INSTRUCTIONS

F9BC STRS
F9D3 LEFTS
F9D8 RIGHTS
FA07 MIDS
FA69 LEN
FA6E ASC
FA74 CHRS
FA7E INKEYS
FA8D STRINGS
FAAD SPACES
FABE VAL
FAE5 INSTR
FC53 FRE
FDOC +
FD21
FD35 * (multiply)
FD52 I
FD67 Integer division
FD79 MODULO (remainder after

division)
FD87 AND function

(LOGICAL AND)
FD92 OR function

(LOGICAL OR)
FD9C XOR function

(EXCLUSIVE OR)

FDBO ABS
FEOE FIX
FE13 INT

FEB6 CINT
FEEB UNT
FF14 CREAL
FF1B Clear accumulator
FF2A SGN
FF32 Places an integer in the

accumulator
FF3E Conversion of an integer

into a real
FF45 Places variable type in C
FF4B Places variable type in A
FF83 Copies the accumulator to

the area pointed to by DE
FF92 Tests for capitals
FF9C Tests for number
FFAB Conversion into capitals
FFCA Compares A with contents of

HL
FFD8 Compares HL with DE
FFDE Compares HL with BC
FFE4 DE = HL-DE
FFF2 LDIR
FFF8 LDDR
FFFB JP (HL)
FFFC Return to address pointed to

byBC
FFFE Return to address pointed to

by DE

149

APPENDIX B-CPC 664 INSTRUCTIONS

CPC 664 ROM ABSOLUTE
ADDRESSES

Vector
address

Absolute
address

Vector
address

Absolute
address

Vector
address

Absolute
address

BB00 1B5C BB03 1B98 BB06 1BBF
BB09 1BC5 BBOC 1BFA BBOF 1C46
BB12 1CB3 BB15 1C04 BB18 1CDB
BB1B 1CE1 BB1E 1E45 BB21 1D38
BB24 1DE5 BB27 1ED8 BB2A 1EC4
BB2D 1EDD BB30 1EC9 BB33 1EE2
BB36 1ECE BB39 1E34 BB3C 1E2F
BB3F 1DF6 BB42 1DF2 BB45 1DFA
BB48 1E0B BB4B 1E19 BB4E 1070
BB51 1080 BB54 1455 BB57 144E
BB5A 13FA BB5D 1331 BB60 13A8
BB63 13A4 BB66 1204 BB69 124E
BB6C 154B BB6F 1156 BB72 1161
BB75 116C BB78 1178 BB7B 1282
BB7E 1293 BB81 1272 BB84 127 A
BB87 11C6 BB8A 1261 BB8D 1261
BB90 12A2 BB93 12B6 BB96 12A7
BB99 12BC BB9C 12C2 BB9F 1377
BBA2 1384 BBA5 12D0 BBA8 12EE
BBAB 12FA BBAE 1327 BBB1 14D0
BBB4 10E0 BBB7 10FF BBBA 15A4
BBBD 15D3 BBCO 15FA BBC3 15F7
BBC6 1602 BBC9 160A BBCC 1618
BBCF 16A1 BBD2 16E6 BBD5 1713
BBD8 1729 BBDB 1732 BBDE 1763
BBE1 1771 BBE4 176 A BBE7 1776
BBEA 177F BBED 177C BBFO 1793
BBF3 1790 BBF6 17A5 BBF9 17A2
BBFC 193C BBFF OABB BC02 0ACC
BC05 0B33 BCOB 0B38 BCOB 0B52
BCOE 0AE5 BC11 OBOB BC14 0B13
BC17 0B59 BC1A 0B66 BC1D OBAB
BC20 0C01 BC23 0C0D BC26 0C1B
BC29 0C35 BC2C 0C8A BC2F 0CA3
BC32 OCEE BC35 0D16 BC38 0CF3
BC3B 0D1B BC3E 0CE6 BC41 0CEA
BC44 0DB5 BC47 0DB9 BC4A 0DE1
BC4D 0DFC BC50 0E40 BC53 0EF5
BC56 0F26 BC59 0C51 BC5C 0C70

150

APPENDIXB - CPC 664 INSTRUCTIONS

Vector
address

Absolute
address

Vector
address

Absolute
address

Vector
address

Absolute
address

BC5F 0F8F BC62 0F97 BC65 24BC
BC68 24CE BC6B 24E1 BC6E 2BBB
BC71 2BBF BC74 2BC1 BC77 288B
BC7A 288B BC7D 288B BC80 288B
BC83 288B BC86 288B BC89 288B
BC8C 288B BC8F 288B BC92 288B
BC95 288B BC98 288B BC9B 288B
BC9E 29AF BCA1 29A6 BCA4 29C1
BCA7 1FE9 BCAA 2114 BCAD 21CE
BCBO 21EB BCB3 21AC BCB6 2050
BCB9 206B BCBC 2495 BCBF 249A
BCC2 24A6 BCC5 24AB BCC8 005C
BCCB 0326 BCCE 0330 BCD1 02A0
BCD4 02B1 BCD7 0163 BCDA 016A
BCDD 0170 BCE0 0176 BCE3 017D
BCE6 0183 BCE9 01B3 BCEC 01C5
BCEF 01D2 BCF2 01E2 BCF5 0227
BCF8 0284 BCFB 0255 BCFE 0219
BD01 0276 BD04 0294 BD07 029A
BDOA 028D BD0D 0099 BD10 00A3
BD13 05D7 BD16 0606 BD19 07A4
BD1C 0766 BD1F 07B0 BD22 0776
BD25 077C BD28 07D0 BD2B 080B
BD2E 0848 BD31 0834 BD34 0853
BD37 08BB BD3A 1D3C BD3D 1BFE

BD40 145C BD43 15E8 BD46 19D1

BD49 17AC BD4C 17A8 BD4F 1626
BD52 19D5 BD55 0B41 BD58 07FC

BD5B 2C02 BD5E 2F91 BD61 2F9F
BD64 2FC8 BD67 2FD9 BD6A 3001
BD6D 3014 BD70 3055 BD73 305F

BD76 30C6 BD79 34A2 BD7C 3159
BD7F 349E BD82 3577 BD85 3604
BD88 3188 BD8B 36DF BD8E 3731
BD91 3727 BD94 3345 BD97 2F73

BD9A 32AC BD9D 32AF BDA0 31B6
BDA3 31B1 BDA6 322F BDA9 3353
BDAC 3349 BDAF 33C8 BDB2 33D8
BDB5 2FD1 BDB8 3136 BDBB 3143

151

APPENDIXB-CPC664 INSTRUCTIONS

EXECUTION ADDRESSES OF BASIC
KEYWORDS IN THE CPC 664

Address Keyword Address Keyword

ABS FDBO ERR D133
AFTER CA25 ERROR CB54
ASC FA6E EVERY CA2D

ATN D581 EXP D563
AUTO COEA FIX FEOE
BINS F964 FOR C5D7

BORDER C24B FRE FC53
CALL F261 GOSUB C78F
CAT D299 GOTO C789
CHAIN EB02 HEXS F969
CHR$ FA74 HIMEM D14B
CINT FEB6 IF C76A

CLEAR C12F INSTR FAE5
CLG C509 INK C254

CLOSEIN D2F0 INKEY D459
CLOSEOUT D2F8 INKEYS FA7E
CLS C283 INP F21E
CONT CC96 INPUT DB48
COS D577 INT FE13
CREAL FF14 JOY D473
DATA E9A8 KEY D489
DECS F9F8 LEFTS F9D3

DEF D174 LEN FA69

DEFINT D657 LET D691
DEFREAL D65B LINE DB18
DEFSTR D653 LIST E1D2
DEG D52C LOAD EABA
DELETE E7F3 LOCATE C302
DI C99A LOG D56D
DIM D6B9 LOG 10 D568
DRAW C53C LOWERS F8EC
DRAWR C541 MAX D246
EDIT C046 MEMORY F570

El C9A0 MERGE EB59
ELSE E9B2 MIDS FA07
END CC34 MIN D242
ENT D3D7 MODE C278
ENV D3A1 MOVE C532
EOF C452 MOVER C537
ERASE D9F4 NEXT C6A5

152

APPENDIX B - CPC 664 INSTRUCTIONS

Address Keyword Address Keyword

NEW C128 SAVE ECE1
ON C885 SGN FF2A
ON BREAK C979 SIN D572
ON ERROR CCCD SOUND D316
ON SQ C9F8 SPACES FAAD
OPENIN D2B7 SPEED D4DE
OPENOUT D2AB SQ D37E
ORIGIN C4E1 SQR D534
OUT F228 STOP CC29
PAPER C23C STRS F9CB
PEEK F20D STRINGS FA8D
PEN C227 SYMBOL F784
PI D520 TAG C346
PLOT C546 TAGOFF C34D
PLOTR C54B TAN D57C
POKE F214 TEST C574
POS C2AD TESTR C579
PRINT F2A9 TIME D13C
'(REM) E9AC TROFF DEC6
RAD D530 TRON DECA
RANDOMIZE D59C UNT FEEB
READ DCDF UPPERS F8FA
RELEASE D373 VAL FABE
REM E9AC VPOS C2A4
REMAIN CA53 WAIT F2E2
RENUM E8A3 WEND C81D
RESTORE DCCD WHILE C7EA
RESUME CCD8 WIDTH C42D
RETURN C7B3 WINDOW C311
RIGHTS F9D8 WRITE F50D
RND D5C4 XPOS D164
ROUND D26D YPOS D16B
RUN EA7D ZONE F2A2

New keywords
Address Keyword Address Keyword

COPYCHRS C29B FRAME BD19
CURSOR C363 GRAPHICS C59D
DERR D12E MASK C5C3
FILL C515

153

APPENDIX C

CPC 6128 - MACHINE
SPECIFIC INSTRUCTIONS

The CPC 6128 is slightly diferent to the CPC 664.

The lower ROM contains most of the differences, the upper ROM is practically
identical to that of the 664 apart from a slight offset in the actual addresses. The
system vectors, system variables and maths routines are identical to those of the CPC
664 in both their functions and their addresses.

The following pages only describe the relevant differences in the BIOS and
BASIC.

MAIN ADDRESSES OF THE
CPC 6128 LOWER ROM

The lower ROM contains the system routines (communication with hardware), the
maths routines and the character generator.

Note:
Addresses corresponding to routines already described in detail are followed by a *
sign.

Routines located at identical addresses to those described for the CPC 664 are
labelled here with a = sign.

(message')

005C = BCC8 * 0227 BCF5 *
0099 = BD0D * 0255 BCFB *
003A = BD10* 0276 BD01 *
0163 = BCD7 * 0284 BCF8 *
016A = BCDA * 028D BD0A *
0170 = BCDD * 0294 BD04 *
0176 = BCE0 * 029A BD07 *
017D = BCE3 * 02A0 BCD1 *
0183 = BCE6 * 02B1 BCD4 *
01B3 = BCE9 * 0326 BCCB *
01C5 = BCEC * 0330 BCCE *
01D2 = BCEF * 05ED BD13 *
01E2 = BCF2 * 061C BD16 *
0219 BCFE * 0688 64K MICROCOMPUTER

(V2)

154

APPENDIX C - CPC 6128 INSTRUCTIONS

068B Copyright
Amstrad

1984 0CEA
0CEE

BC3E *
BC41 *

Electroni cs PLC and 0CF2 BC32 *
Loco­
motive Software Ltd. 0CF7 BC38 *

(message) 0D1A BC35 *

07F5 ***program 1 oad 0D1F BC3B*

failed*** (message) 0DB9 BC44 *

0728 Li st of compatibles 0DBD BC47 *
Arnold, Amstrad, 0DE5 BC4A *
Orion, OEOO BC4D *
Schneider, Awa ,

0E44 BC50 *
Solavox.
Sai sho , Tri umph, I sp . 0EF9 BC53 *

0766 BD1C * 0F2A BC56 *

0786 BD22 * 0F93 BC5F *

078C BD25 * 0F9B BC62 *

07B4 BD19 * 1074 BB4E *

07C0 BD1F * 1084 BB51 *

07E0 BD28 * 10E4 BBB4 *

081B BD2B * 1103 BBB7 *

0835 BDF1 * 115A BB6F *

0844 BD31 * 1165 BB72 *

0858 BD2E * 1170 BB75 *

0863 BD34 * 117C BB78 *

08BD BD37 * 11CA BB87 *

OABF BBFF * 1208 BB66 *

0AD0 BC02 * 1252 BB69 *

0AE9 BC0E * 125F BDCD

OBOC BC11 * 125F BDDO *

0B17 BC14 * 1265 BB8A*

0B17 BDEB * 1265 BB8D *

0B37 BC05 * 1276 BB81 *

0B3C BC08 * 127E BB84 *

0B56 BC0B * 1286 BB7B *

0B5D BC17 * 1297 BB7E *

0B6A BC1A* 12A6 BB90 *

OBAF BC1D * 12 AB BB96 *

0C05 BC20 * 12BA BB93 *

OCU BC23 * 12C0 BB99 *

0C1F BC26 * 12C6 BB9C *

0C39 BC29 * 12D4 BBA5 *

0C55 BC59 * 12E2 BBA8 *

0C71 BDE8 * 12FE BBAB *

0C74 BC5C* 132B BBAE *

0C8A BDE5 * 1335 BB5D *

0C8E BC2C * - 134B BDD3

0CA7 BC2F*

155

APPENDIX C- CPC 6128 INSTRUCTIONS

137B BB9F*
1388 BBA2 *
13A8 BB63 *
13 AC BB60*
13BE BDD6 '
13FE BB5A*
140 A BDD9 1
1452 BB57 *
1459 BB54*
14D4 BBB1 *
154F BB6C *
15A8 BBBA *
15D7 BBBD d
15FB BBC3 *
15FE BBCO *
1606 BBC6 *
160E BBC9 *
161C BBCC 1
16A5 BBCF ♦
16EA BBD2 *
1717 BBD5 *

172D BBD8 *
1736 BBDB *
1767 BBDE *
176E BBE4 *
1775 BBE1 *
177 A BBE7 *
1780 BBED *
1783 BBEA *
1786 BDDC *
1794 BBF3 *
1797 BBFO *
179 A BDDF*
17A6 BBF9 *
17A9 BBF6 *
17B4 BDE2 *
1940 BBFC *

1B5C = From this address on­
wards, the lower ROM
routines use the same entry
points in the CPC 6128 and
the CPC 664.

156

APPENDIX C- CPC 6128 INSTRUCTIONS

MAIN ADDRESSES OF THE
CPC 6128 UPPER ROM

The upper ROM contains all the BASIC keyword processing routines.

C006 Initialisation and output of
BASIC 1 .1 (message')

C786
C78C

GOTO
GOSUB

C033 BASIC 1 .1 (message) C7B0 RETURN
C046 EDIT function C7E7 WHILE
C058 Main input (READY C81A WEND

display) C882 ON
C0D7 READY (message) C976 ON BREAK
COEA AUTO C997 DI
C128 NEW C99D El
C12F CLEAR C9F5 ON SQ
C224 PEN CA22 AFTER
C239 PAPER CA2A EVERY
C248 BORDER CA50 REMAIN
C251 INK CB51 ERROR
C275 MODE CBF1 UNDEFINED LINE
C280 CLS (message)
C298 COPYCHR8 CC01 Send ‘BREAK IN’ message
C2A1 VPOS routine
C2A5 POS CC1C BREAK (message)
C2FF LOCATE CC22 IN (message)
C30E WINDOW CC26 STOP
C343 TAG CC31 END
C34A TAGOFF CC93 CONT
C360 CURSOR CCCA ON ERROR
C42A WIDTH CCD5 RESUME
C44F EOF CD 14 Table of error messages
C4DE ORIGIN (part of word)

C506 CLG CFED Table of of arithmetic and

C512 FILL logic operation entry points

C52F MOVE D01D —

C534 MOVER D028 NOT

C539 DRAW D036 +

C53E DRAWR D117 Table of entry points for
the functions EOF, ERR,

C543 PLOT HIMEM, INKEYS, PI,
C548 PLOTR RND, TIME, XPOS and

YPOSC571 TEST
C576 TESTR D12B DERR
C59A GRAPHICS D130 ERR
C5C0 MASK D139 TIME
C5D4 FOR D142 ERL
C6A2
C767

NEXT
IF

D148 HIMEM

157

APPENDIX C-CPC 6128 INSTRUCTIONS

D14E @
D161 XPOS
D168 YPOS
D1E5 Table of entry points for

functions
D23F MIN
D243 MAX
DE6A ROUND
D296 CAT
D2A8 OPENOUT
D2B4 OPENIN
D2ED CLOSEIN
D2F5 CLOSEOUT

D313 SOUND
D370 RELEASE
D37B SQ
D39E ENV
D3D4 ENT
D456 INKEY
D470 JOY

D486 KEY DEF
D4DB SPEED
D51D PI
D529 DEG
D52D RAD
D531 SQR
D536 Routine for raising to a

power
D560 EXP

D565 LOGIO
D56A LOG
D57F SIN
D574 COS
D579 TAN
D57E ATN
D584 RANDOM NUMBER SEED ?

(message)

D599 RANDOMIZE
D5C1 RND
D650 DEFSTR
D654 DEFINT
D658 DEFREAL
D68E LET
D6B6 DIM
D9F0 ERASE
DB13 LINE

DB43
DB7A

DCC8
DCDA
DECI
DEC5
DEEO

DFA3
E0C3

El CD
E3A8

E3EB
E418

E44C

E735
E7EE
E89E
E9A3
E9A7
E9AD
EA78
EAB5
EAFD
EB54
ECDC
F208
F20F
F219
F223
F229
F25C
F29D
F2A9
F383
F508
F56B

INPUT
? redo from start
(message)
RESTORE
READ
TRON
TROFF
Table of entry points for
BASIC keywords
End of table
Table of keywords which
may be followed by a line
number (GOTO,
RESTORE, AUTO,
EDIT,
etc)
LIST
Routine for positioning
character table during
keyword search
Test for keyword in table
Table of addresses for each
of the 26 letters of the
alphabet
Table of keywords and
their tokens
End of keyword token table
DELETE
RENUM
DATA
REM
ELSE
RUN
LOAD
CHAIN
MERGE
SAVE
PEEK
POKE —
INP
OUT
WAIT
CALL
ZONE
PRINT
PRINT USING
WRITE
MEMORY

158

APPENDIX C- CPC 6128 INSTRUCTIONS

F784 SYMBOL
F8EC LOWERS
F8F1 Routine for conversion to

lower case
F8FA UPPERS
F964 BINS
F969 HEXS
F98F DECS
F9BC STRS
F9D3 LEFTS
F9D8 RIGHTS
FA07 MIDS
FA69 LEN
FA6E ASC
FA74 CHRS
FA7E INKEYS
FA8D STRINGS
FAAD SPACES
FABE VAL
FAE5 INSTR
FC53 FRE
FDOC +
FD21
FD35 * (multiply)
FD52 /
FD67 Integer division
FD79 MODULO (remainder

after division)
FD87 AND function

(LOGICAL AND)
FD92 OR function (LOGICAL

OR)

FD9C XOR function
(EXCLUSIVE OR)

FDBO ABS
FEOE FIX
FEU INT
FEB6 CINT
FEEB UNT
FF14 CREAL
FF1B Clear accumulator
FF2A SGN
FF32 Puts an integer into the

accumulator
FF3E Conversion into real
FF45 Puts variable type in C
FF4B Puts variable type in A
FF83 Copies the accumulator to

the address pointed to by
DE

FF92 Tests for capitals
FF9C Tests for number
FFAB Conversion into capitals
FFCA Compares A with contents

of HL
FFD8 Compares HL with DE
FFDE Compares HL with BC
FFE4 DE = HL-DE
FFF2 LDIR
FFF8 LDDR
FFFB JP (HL)
FFFC Return to address pointed

to by BC
FFFE Return to address pointed

to by DE

159

INDEX

ASCII codes - Graphics 25
characters 22

ASCII dump of ROMs 115
AY3 8912 104, 119
Accumulator 37

virtual 82
Amplitude control block 100
Auto-repeat status 58

BASIC 3
storage of keywords 34
storage of a line 34
keyword execution addresses 98
keywords 20

BREAK routine 58, 78
Border 66,76
Buffers 57

tape 69
Busses 37
Busy signal (printer) 76

CPC 6128 variations 154
CPC 664 variations 135
CRT - control block 103

interrupts 73
Caps lock status 57
Cassette - file format 101

motor control 115
Character - input 56

matrix 61
ASCII values 22

Chips and circuits 104
Chip pinouts 119
Chromatic scale values 127
Circle plotter 117
Comment line, program in 118
Control - blocks 100

codes 128,77
Colour setting 61
Cursor 77

codes 133
movement 128
position 60,64
style 60

Delay durations 58
Disassembly tables 50

Ellipse plotter 117
End of file 69
Entry points - operating system 56

Envelopes - sound 72
tone 72

Error - codes 32
messages 32

Escape (break) 78
Event block 74,103
Execution addresses of BASIC

keywords 98

Files - end of 69
cassette format 101
opening & closing 70

Flag registers 38
Flash rates 66

Graphics - codes (ASCII) 25
controller 54
management 62

Header block 101
Hex dump (ROM) 114
Hints and tips 114

Input and output 1
Indirection vectors 77
Ink 128,76

colours 63
masks 66
vectors 101

Integers 3
Interface routines 76
Internal software 54
Interrupts 74

control block 103
CRT 73
handling 81

Joystick status 57
Jump block 55, 77

Kernel 55,73
vectors 78

Keyboard - codes 133
controller 54
scanning 117
status 57

Keypad codes 133
Keywords (BASIC) 20

codes (tokens) 20

Machine code in a REM line 118

161

INDEX

Machine language 37
Maths vectors 82

CPC 664 137
Memory - screen 130

BASIC storage 3, 34
Motor gap 101
Music values 127

Noises (example) 116
Numbers - storage of 3

PPI 8255 108
PSG 1, 104
Paper 128,61

colour 64
Pen 128,61
Peripheral routines 76
Pinouts (chips & connectors) 119
Plotting program 117
Ports 108

addresses 129
Printer BUSY signal 76
Protecting a program 116

Queues (sound) 71,100

RAM subroutines 81
ROM 1,101

upper-CPC 664 147
addresses absolute, CPC 664 150
-absolute 96
-low ROM, CPC 664 143
-low ROM, CPC 6128 154
-upper, CPC 6128 157
control block 100
dump-ASCII 115
enabling & disabling 79
hex dump 114
ASCII dump 115
initialisation 73
subroutines 81
switching 112
types 79

RST 80
RSX 73
Real numbers 3
Registers 37,38

PSG 104
Reset vectors 80
Restarts 78, 101

SHIFT status 57
SYMBOL command 25
Screen border 66

controller 54
memory 130

Single byte instructions 50
Single precision numbers 3
Software - internal 54
Sound controller 54

envelopes 72
examples 116
queue 100

Streams 100
Subroutines in RAM or ROM
System variables 86

CPC 664 140

Tape controller 54
mangement 68
motor 68

Terminal control codes 128
Text controller 54

management 59
Tone control block 100

envelopes 72

Variables 3
coding of numbers 82
system, CPC 644 140
system 86

Vectors 55
indirection 77
ink 101
kernel 78
maths 82
maths, CPC 664 137
reset 80
ROM 96

Video gate array 112
Virtual accumulator 82

Windows 63,128
sizes 59

Z80 1
disassembly tables 50
flags 38
internal architecture 37
registers 38

81

162

ISBN 1-65161-122-2

781851 811229

	AMSTRAD CPCs Advanced users guide Book 1
	About the Author

	CONTENTS

	CHAPTER 1 - INTERNAL ARCHITECTURE
	CHAPTER 2 - BASIC
	CHAPTER 3 - MACHINE LANGUAGE
	CHAPTER 4 - INTERNAL SOFTWARE
	CHAPTER 5 - CHIPS AND CIRCUITS
	CHAPTER 6 - HINTS AND TIPS
	CHAPTER 7 - CONNECTORS AND CHIP PINOUTS
	APPENDIX A
	APPENDIX B
	APPENDIX C
	INDEX
	● Numérisation : Maxime CROIZER | Mise en forme : ACME – https://acpc.me ●

