
AMSTRAD 11

Sean Gray ‘A? Eddy Maddix

AMSTRAD B00K1 STARTING BASIC

STARTING
BASIC

FOR THE

AMSTRAD
BOOK 1

BY

SEAN GRAY & EDDY MADDIX

Glentop Publishers Ltd.

FEBRUARY 1985

All programs in this book have been written expressly to illustrate
specific teaching points. They are not warranted as being suitable
for any particular application. Every care has been taken in the
writing and presentation of this book but no responsibility is
assumed by the author or publishers for any errors or ommisions
contained herein.

COPYRIGHT © Glentop Publishers Ltd 1985
World rights reserved.

No part of this publication may be copied, transmitted or stored in
a retrieval system or reproduced in any way including but not
limited to photography, photocopy, magnetic or other recording
means, without the prior permission from the publishers, with the
exception of material entered and executed on a computer system for
the reader's own use.

Graphics: Samantha Borland
Wordprocessing: Jane Grant

ISBN 0 907792 39 1

Published by: Glentop Publishers Ltd
Standfast House
Bath Place
High Street
Barnet
Herts EN5 1ED
Tel: 01-441-4130

* Dr Watson is a Trademark of Glentop Publishers Ltd.

□□æmasæm
Introduction

Chapter 1 In the Beginning * The Keyboard * SHIFT *
spaces * Mistakes * Getting Started in BASIC
* PRINT * LET * Variables * Your First
Program * INPUT * LIST * Separators * Prompts
* EDIT * NEW * LOCATE * CLS

Chapter 2 Guess The Number * RND * GOTO * IF...THEN *
STOP * Flow Charts * FOR... NEXT * Storing A
Program * LOAD * SAVE * IF...THEN * Comparing
Numbers * Simple Logic * OR * AND *
Mathematical Precedence

Chapter 3 Graphics * MODE * BORDER * INK * Pen and
Paper * Pixels and Points * Plotting a Point
* Drawing Lines * Etcha Sketcha * INKEY$ *
Drawing Boxes * Drawing Circles

Chapter 4 Structure * READ And DATA * RESTORE * LEFT$,
RIGHT$ and MID$ * LEN * GOSUB and RETURN *
Arrays * True * False * Upper $

Chapter 5 More Structure * Skeleton Programming *
Program Control Module * INSTR * Program
Development * Flags

Chapter 6 Solutions to Exercises

Appendix One Binary and Hexadecimal

Appendix Two Using The Amstrad Data recorder

This is the first of a two-book series for the Amstrad. The object
of this book is to teach the reader the fundamentals of Amstrad
Basic i.e. the most common commands and how to use them. Also, the
aim is to demonstrate various programming techniques including
'structured programming'. In order to achieve these aims each new
command encountered is explained in careful steps and in most
cases this includes a demonstration program showing the reader not
only what the command does but also how it is used in a program.

The reader is first introduced to the simplest of Basic's commands
in chapter one and by the time the reader has finished reading the
book he or she will be fully capable of programming in Amstrad
Basic.

Included in this book are three games. The first is a simple
number guessing game, the second an anagram game and finally a
hangman game using computer graphics. The object of each of these
games is to illustrate specific points. For example the number
game takes the reader through the world of random numbers and
simple logic. By the end of chapter five the reader will have
learnt different ways of storing information, how to draw pictures
and the advantages of modular, structured programming.

It is stressed that as an introduction to the Amstrad's Basic
commands this book stands on its own. Those who wish to delve
further into the Amstrad should consider reading book two as well.
We hope you will gain as much in the reading of this book as we
did in the writing.

S. Gray

E. Maddix

January 1985

CHAPTER

PART ONE
Are you sitting comfortably? Then we will begin. This part of the
chapter will deal with the setting up of your Amstrad. Unlike most
computers the Amstrad comes with its own specially designed
monitor. Because the monitor has been built to work with the
Amstrad computer the picture (and colours) are much clearer than
on an ordinary television.

Connecting The Amstrad
The Amstrad monitor also houses the computer's power supply. This
cuts down on the amount of wires one has lying around. At the
front of the monitor there are two wires, one ending in a din
plug, the larger of the two, the other ending in a jack-plug.

The Amstrad Keyboard

FIGURE 1.1(a)

1-1

The Amstrad Monitor

FIGURE 1.1(b)

The din plug plugs into the socket in the back of the Amstrad
labelled monitor (see Figure 1.1(a)). Next to the monitor socket
there is another one labelled '5VDC. This is where the jack plug
is inserted. When both of these are connected properly then you
are ready to begin.

1-2

At the front of the monitor there is a switch marked POWER (see
Figure 1.2). Pressing this button switches the monitor on. It also
switches the Amstrad's power supply on but not the computer.

power

The

on off

Monitor Power Button

FIGURE 1.2

The Amstrad
right side of

computer
the computer.

has its own ON/OFF switch and this is on the

The Keyboard Power Switch

FIGURE 1.3

If all the wires are plugged in correctly and the monitor is
switched on you should flick the keyboard switch to 'ON'. A red
light will 'light' up on the keyboard. Your Amstrad personal
computer is now all set up and raring to go.

1-3

Once all is switched on you will see the following message:

Amstrad 64K Microcomputer (vl)
© 1984 Amstrad Consumer Electronics pic

and Locomotive Software Ltd.

BASIC 1.0

READY■

The Start' Display

FIGURE 1.4

The start display tells us a number of things. The first line
tells us which computer we have got, in this case an Amstrad
microcomputer with 64K. Your computer has 64K of memory, which is
quite a lot. The second line tells us to whom the Amstrad computer
design and software copyright belongs, Amstrad Consumer
Electronics and Locomotive software.

Next we see the message 'BASIC 1.0'. This tells us that the
language the Amstrad understands is BASIC version 1.0. There are
many versions of BASIC, almost one for each new computer. The word
BASIC is an acronym and it stands for Beginners All Purpose
Symbolic Instruction Code.

The Ready message means the computer is ready to begin. Underneath
the 'R' of 'Ready' there is a light coloured block, this is called
the 'CURSOR'. The cursor is the computer's way of telling us where
the next character will appear. Press one of the letter keys on
the keyboard and it will appear on the screen where the cursor
was. The cursor will move one space to the right. If you press
another letter then the same thing will happen. If you continue to
keep pressing a key the cursor will move across until it reaches
the righthand side of the screen. It will then appear on the
left-hand side on the next line down the screen.

1-4

Th
e A

m
st

ra
d K

ey
bo

ar
d

1-5

The Keyboard
The Amstrad allows you to use the keyboard as you would the keys
of a typewriter. If you press any of the letter keys you will see
that letter appear in lower case. To get upper case letters
(capitals) you simply press the key marked Caps Lock. This is a
big green key on the left hand side of the keyboard. Upon
pressing the Caps Lock key you are in capital mode and every
letter pressed henceforth will be upper case.

To return to lower case you simply press the Caps Lock key once
again. You are now back in lower case mode. The Caps Lock key is
known as a toggle switch. If you are in lower case and you press
it you go into upper case mode, but if you were already in upper
case pressing the caps lock switches you to lower case.

SHIFT
There are two SHIFT keys on the Amstrad. They are both green and
there is one on either side of the keyboard. It should be
understood that it does not matter which SHIFT key you use. They
both do exactly the same thing. Having got that sorted out it is
time to find out exactly what they do.

You may have noticed that some of the keys on the Amstrad keyboard
have more than one symbol, for example the '4' key also has a '$'
dollar symbol on it. To get the 4 character you simply press the
key. To get the $ character you need to hold down SHIFT and then
press the key. Holding down either of the SHIFT keys allows you to
get the extra characters on some of the keys. The 'extra' or
'shifted' character is the top one shown on the key.

The following keys have extra SHIFT values.

Shift Characters

FIGURE 1.6

1-6

All these 'shifted' characters are obtained by holding down either
of the SHIFT keys and pressing the appropriate key. The letters
don't have extra shift characters on them but when CAPS LOCK is
off, holding down SHIFT and pressing a letter key will give the
upper case letter.

CTRL
As well as having extra shift values some keys have special
control values. These values are not displayed on the keys so you
should consult Figure 1.7. To get these special characters you
should hold down CTRL and press the appropriate key at the same
time.

The Special CTRL Keys

FIGURE 1.7

There is one CTRL key not shown in Figure 1.7 and that is CTRL and
P. Holding down CTRL and pressing the 'P' key does not disolay a
character on the screen but makes a 'beep' noise. Very nice. If
you cannot hear it there is a volume wheel next to the keyboard
on/off switch. Turn this up and press CTRL and P again. This time
(if you turned the volume wheel the right way) you will hear the
short noise, this is the computer's equivalent of the bell on an
ordinary typewriter.

Auto Repeat
Most of the keys on the main part of the keyboard have 'auto
repeat'. This means if you hold the key down for more than half a
second the character you are pressing will start to appear over
and over again. To demonstrate this hold down the 'H' key. Keep
the 'H' key pressed down until eventually after six and a half
lines of 'H's' the Amstrad will emit a loud beep and cursor will
stay in the same place. This noise is to tell you that it has gone
as far as possible and it will continue beeping until you take
your finger off the key.

1-7

DEL
Having reached a situation where we cannot press any of the
character keys without getting a beep its time to find out about
the DEL key. The DEL key is green and situated at the top left of
your keyboard. When this is pressed the character directly behind
the cursor is DELeted. By pressing the DEL key we can delete all
the 'H's typed in. DEL also has auto repeat so just hold the key
down.

When the last H is deleted you will hear the beeping again. This
is the computer telling you that you cannot delete past the start
of the line. When you take your finger off DEL the beeping will
stop.

Spaces
Along the bottom of the keyboard is a long grey key. When you
press this key the cursor will move to the right but nothing will
appear on the screen. With this key, known as the 'space-bar',
you will get a space character. Because you can not see this
character throughout this book it will be represented by a small
delta symbol ' A '. This is used to denote that a space exists in
situations where a space is very important, so when you see that
symbol remember to press the space-bar.

Alternatively, if a lot of spaces are required then you will see
something like the following: <12 spaces>. That means you should
press the space bar twelve times.

Getting Started In BASIC
Now that you know what most of the keys do it is about time to
find out what your brand new Amstrad computer can do. This is
where the learning really begins.

Whilst you were pressing the keys to see what they do, you might
at some stage have seen the following message displayed on the
screen:

Syntax error

This is a very important message from your computer to you. Your
Amstrad is saying that it doesn't understand what you have typed
in. A Syntax error' means the computer does not understand the
way you are trying to tell it something.

1-8

The Amstrad, like most home computers, understands the computer
language called BASIC. This is a specially developed language to
allow easy dialogue between computers and computer users. To
illustrate the difference between BASIC and English, in your best
hand writing, type in the following:

SAY HELLO

Having typed that in the cursor should be positioned after the 'O'
in HELLO. What to do now?

ENTER
The ENTER key is arguably the most important key on the Amstrad
keyboard. What the ENTER key does is tell the computer that you
have finished typing in your instruction and wish the computer to
act upon it. When you have finished typing in your instruction(s)
you must always remember to press the ENTER key.

In the example above you have just finished typing in an
instruction so press the ENTER key. You will get the following
message:

Syntax error

Although we have given the computer a clear instruction, 'say
hello' it is not an instruction that the computer understands. To
tell the computer to say 'hello' you must use the BASIC command
PRINT.

PRINT
PRINT is the command to tell the computer that you want it to say
something to you. To tell your Amstrad to say hello to you, in a
way it can understand, you must type in the following command:

PRINT "HELLO"

Now if you press ENTER the computer will display:

HELLO

1-9

Bingo! You have made the computer understand you. The PRINT
command tells the computer to display on the screen whatever it
sees inside the quotation marks. In this example it sees the word
'HELLO'. This is promptly displayed on the screen. Underneath you
will see the message:

Ready

This is the Ready 'prompt', it is the computer telling you that it
has understood you and has obeyed your instruction with no
problems. The cursor is patiently waiting for you to type
something in.

The double quotation marks on either side of HELLO are very
important as these tell the computer to PRINT exactly what is
enclosed between them. Whatever is between the quotes will be
printed even if it is rude, splet wrong or logically incorrect.
For example:

PRINT "Amstrad is rubbish"

This is incorrect but you have told your Amstrad to print it and
so it will.

STRINGS
The characters that are between the two quotes are called
'strings'. To your Amstrad anything enclosed in quotes is regarded
as just a load of characters 'strung' together.

The print command can also be used to display numbers. To prove
this point type in the following.

PRINT 8

Upon pressing the ENTER key you will see 8 displayed on the
screen. The difference between printing numbers and strings is
that numbers do not have quotation marks. If the eight was
enclosed in quotes, e.g.

PRINT "8"

Then the 8 would be regarded as a string, although the actual
display would be the same as printing the number 8. Notice that in
the case of the number 8, the computer has put a space before it,
but it hasn't done this with the string "8".

1-10

The PRINT command can do sums and display the answer. If you type
in PRINT and then a calculation, upon pressing ENTER you will see
the answer ('/' is divide, '*' is multiply) e.g.

PRINT 47/5
9.4

Ready

Using PRINT in this way makes it easy to do quick calculations.

LET
So far all that we have done is to tell the computer to display
things on the screen. The next step is to tell the computer to
remember something. This is done by using the LET command.

The LET command tells the computer to remember what we tell it to.
When using this command we need to tell the computer two things.
The first thing is a name to remember by and the second thing is
what we actually want remembered.

Variables
When asking our Amstrad to remember something we have to specify a
name to remember it by. This name is called a 'variable'. It is
called a variable because the actual value remembered can change,
i.e. it varies.

There are rules controlling the naming of variables but thankfully
not many.

The first rule is that variables must begin with a letter e.g.
'A 7'.

The second rule is that your variable name must not be more than
forty characters in length.

The third rule is that the variable name should not contain a
punctuation mark.

The fourth and final rule is that variables used to store strings
must have a dollar sign ($) as the last character of the name,
variables used to store numeric data must not.

Variables that contain strings are called string variables. The
computer can tell the difference between string and numeric (those
used to store numbers) variables because string variables end with
a *$' whereas numeric variables don't.

1-11

So, to tell the computer to remember your name type in the
following and then press ENTER.

LET NAME$=" ALBERT"

(If your name is not ALBERT you might like to type in your own.)

Once you have pressed ENTER you will see the Ready prompt and the
cursor appear. Not much seems to have happened, but deep inside
your Amstrad an area of memory has been given the name 'NAME$' and
the string 'ALBERT' was put into it.

A complete translation of the LET command reads like this:

Your Amstrad reads 'LET NAME$' and translates this into
'take an area of memory and call it NAME$'. See Figure 1.8

An Area of Memory Called NAME$

FIGURE 1.8

ii) Next it reads the '=" ALBERT'" part and translates this
into 'store the string ALBERT in the string variable
NAME$. See Figure 1.9.

Storing ALBERT in NAME$

FIGURE 1.9

1-12

The Amstrad also checks that the variable has a dollar sign at the
end of the name AND that the expression (what it is to become) is
enclosed in quotes. If the variable is a string variable but the
expression is not in quotes then you will see the following
message:

Type mismatch

This message will also be given if the variable is numeric but the
expression is enclosed in quotes. Type mismatch is the computer's
way of telling us that an attempt was made to put a string into a
numeric location or numeric data into a string location.

Having read the last page you have probably forgotten what you put
(assigned) in NAME$. Just to refresh your memory type in the
following:

PRINT NAME$

The computer interprets this as 'find the memory location called
NAME$ and PRINT it out, i.e. display whatever is in that location
onto the screen'.

LET works in the same way with numbers.

LET AGE=2

Here the value of two is placed in a numeric variable called AGE.

The LET command can also be used to perform sums.

LET AGE=AGE+1

This tells the computer to add one to the value stored in variable
AGE and to store the answer back into the variable AGE. This will
replace what was previously in there. To test this

PRINT AGE

The answer you should get is 3.

Your First Program: Line numbers and RUN
So far, all the entries made have been carried out (or 'executed')
immediately after the ENTER key was pressed. These are known as
DIRECT ENTRY or IMMEDIATE mode COMMANDS. Once these have been
executed they cannot be automatically re-executed, they're gone
forever!

1-13

However, when programs are used, they are stored in memory and re
activated when required. What differentiates an immediate command
from one in a program is that the program has line numbers.
Whenever the ENTER key is pressed, the Amstrad looks at the entry
made and, if it sees a number at the beginning of the line, stores
the entry in memory as a line of program. Thus, if the earlier
immediate entry commands are replaced by Program 1.1 below, they
constitute an actual program, short as it is. Each line of a Basic
program is refered to as a STATEMENT. The difference between the
two is that commands are direct entry whereas statements form part
of a program. When you typed 'PRINT NAMES' in immediate mode it
is a 'command'. When you type in the line 30 'PRINT NAMES' that
is known as a 'statement'.

Just what the value of a line number is doesn't really matter too
much as long as it is a whole number with a positive value between
1 and 65536. What does matter is the order of the line numbers, as
the Amstrad will run the program starting at the lowest line
number and work through the increasing line numbers unless told to
do otherwise. Type this program in (remember to press ENTER at the
end of each new line!):

PROGRAM 1.1

20 LET NAMES="ALBERT"
30 PRINT NAMES

This time, when ENTER was pressed the machine simply responded by
moving the cursor down a line: it did not execute the program
lines. In order to execute them, simply type RUN. The program
will, when you've pressed ENTER, print ALBERT onto the screen.
Once you have done this, you will have run your first real
program!

INPUT

In Program 1.1, your name was stored directly in the program,
which means of course that the program is only of use to you. To
make it of more general use, it would be handy to be able to set
the value of NAME$ once the program is running. This can be done
by using an 'INPUT' command which causes the program to stop and
wait while the user enters the required information via the
keyboard. The machine also needs to be told what variable name to
assign to this information. Program 1.2 shows how an INPUT
statement is utilised to assign a value to NAMES at the
beginning of the program. In order to erase the old line 20 it is
only necessary to type in the new one and then press ENTER. The
machine will then write the new line over the old. To display the
modified program on the screen, type LIST and press ENTER.

1-14

PROGRAM 1.2

20 INPUT NAME$
30 PRINT NAMES

When Program 1.2 is RUN a question mark will appear, indicating
that the computer is awaiting an INPUT of information. On typing
in your name and pressing ENTER, the computer will assign the
INPUT to NAMES, i.e. will put your name in NAMES, and, at line 30,
print out the value of NAMES - your name!

INPUT can also be used to input numbers. The only difference is
that they must go to a numeric location, i.e.

2 INPUT AGE

Typing in a number into a string variable will mean the number
will be stored as a string. However, you cannot type in a letter
into a numeric variable. If you try, upon pressing ENTER you will
get the following message:

?Redo from start

This is the computer's way of telling you that the input was not
of the type expected. The question mark prompt will reappear and
you should now type in a number.

Once part of a program is stored in memory, new lines will need to
be added, and fortunately the Amstrad handles this very smoothly,
displaying lines on the screen as they are ENTERed. However,
suppose we wish to recap what the program is doing at line 10,
when we are at line 5000?

LIST
There is a command in BASIC called 'LIST'. This command tells the
computer to display all the lines of our program on the screen in
numerical order. Try typing in LIST now. You should see your
program come up on the screen when you've pressed ENTER. However,
the Amstrad's LIST command is more versatile than this. If you
type LIST 30 for example, you will see line 30 on the screen. The
various forms of the LIST command are given below:

LIST
LIST 30
LIST-30
LIST 30-
LIST 30-60

lists all of the program
lists line 30 only
lists the program up to and including line 30
lists the program from line 30 onwards
lists lines 30 to 60 inclusive

1-15

Formatting Screen Displays - Separators
So far, all the PRINT statements you have used had something
simple to print out. However, it's sometimes necessary to print
several items onto the screen at once. This is handled in BASIC by
means of features which tell the machine which 'format' is
required on the screen. Thus, in order to print NAME$ in Program
1.2 on the screen twice, it would be possible to write a line in a
program that had a PRINT statement followed by two NAMES's.
However, the Amstrad expects to see strings in PRINT statements
separated. Not surprisingly, the things used to separate them are
known as 'separators'!

To test this out, Program 1.2 can be modified to print out NAME$
four times, first of all using the ',' (comma) separator. Change
line 30 to read:

30 PRINT NAMES,NAMES,NAMES,NAMES

Typing in a line number with nothing in it tells the computer to
search until it finds that line in its memory. Once it has been
found it removes whatever was in that line and promptly forgets
the line number.

If you type in a line number that does not exist e.g. '12', and
then press ENTER, the Amstrad will search through its memory until
it realises that there is no line twelve for it to forget. The
following error message is reported:

Line does not exist

telling you that you have made a mistake.

Now delete line 2 by typing 2 and pressing ENTER. You should now
have Program 1.2(a)

PROGRAM 1.2(a)

20 INPUT NAMES
30 PRINT NAMES,NAMES,NAMES,NAMES

When this is RUN with a NAMES INPUT of 'FRED' it yields a screen
display of:

FRED FRED FRED
FRED

Screen Display Using the Comma Separator

FIGURE 1.10

1-16

Each of the strings being PRINTed onto the screen is allocated a
third of the screen. This is known as the 'print field' and it
provides a useful means of spacing out a display of strings or
numeric variables into columns.

One important thing to note about strings is that if they are over
12 characters in length, then they will fill the print field and
overrun into the next one. In this case, the next character to be
printed following a comma separator will be moved over into the
next available field. See Figure 1.11

FRED
FRED

FRED FRED

Example of PRINT Fields

FIGURE 1.11

The second separator is the semi-colon, which has the effect
of causing one string to be PRINTed immediately after the previous
one. This is demonstrated in Program 1.2(b) where line 30 is
further extended to include a semi-colon separator.

PROGRAM 1.2(b)

20 INPUT NAMES
30 PRINT NAMES,NAMES,NAMES,NAME$;NAME$

This illustrates the effect of the semi-colon when RUN and yields
the display shown in Figure 1.12:

FRED FRED FRED
FREDFRED

Screen Display Using Commas and a Semi-Colon

FIGURE 1.12

1-17

In all the examples so far, separators have been used with string
variables. It turns out that their use with numeric variables is
almost identical. The only difference is that numbers are printed
with a space on either side of them. Thus, statements can be
printed which contain mixtures of string and numeric variables
separated by commas and semi-colons.

Prompts
We have found that the INPUT statement can be used in a program to
get a response from the user. Unfortunately, the question mark is
not a very helpful way of asking for information and the addition
of some brief message would greatly improve matters. Such a
message, usually known as a 'prompt', can very readily be added
using a PRINT statement. This is done in line 10 of Program 1.3.
type in the new line and RUN the program.

PROGRAM 1.3

10 PRINT "PLEASE TYPE IN YOUR NAME"
20 INPUT NAME$
30 PRINT NAME$

When Program 1.3 is run, things are a little more informative and
you are actually asked for your name. However, there's an even
neater way of doing this job in BASIC! The INPUT statement can
itself be used to print a message by inserting the message between
the 'INPUT' and the variable name. The line required is a mixture
of lines 10 and 20.

What we will do is to add the statement in quotes in line 10 to
the INPUT statement in line 20. The Amstrad computer is equipped
with edit features to help you do this.

EDIT
To edit line 20 simply type EDIT 20 and press ENTER. A copy of
line 20 will be displayed on the screen with the cursor placed on
the '2' of '20'. You are now in EDIT mode.

Above the number pad to the right of the keyboard you will see the
following keys.

1-18

The Cursor Keys

FIGURE 1.13

This set of keys are the edit keys. They move the cursor whilst in
EDIT mode. Using the right-arrow key move the cursor until it is
postioned between the INPUT statement and the variable name.

20 INPUT NAME$

When the cursor is in the correct position begin to type the
following:

"PLEASE TYPE IN YOUR NAME";

As you type this in all that is in front of the cursor is moved
forward. What you are typing in is being INSERTed between INPUT
and NAMES. When you type in the semi-colon NAMES is pushed forward
so that the dollar symbol appears on a new line.

20 INPUT"PLEASE TYPE IN YOUR NAME"; NAME
$

Don't worry about it. The Amstrad still understands that it is
part of the program line. You should not press ENTER until you
have finished typing in a line. The Amstrad allows you to keep
typing in until six and a half lines of screen are full, then you
will hear a beep telling you that you cannot type in any more.

1-19

If the line is now the same as above you have finished editing
line 20, so press the ENTER key and you will have created a new
line. You will also have left the EDIT mode.

That was a straightforward insert. A less straightforward task
would be to change something like

100 PRINT "THIS MESSAGE IS WRONG"

to

100 PRINT "THAT MESSAGE WAS WRONG"

The Edit requires 'THIS' to be replaced with THAT' then the
cursor needs to be moved to replace 'IS' with 'WAS'. The whole
operation can be performed in easy steps.

• Type in : 100 PRINT "THIS MESSAGE IS WRONG"

• Press ENTER

• Type in: EDIT 100

• Use the right cursor key to move the cursor onto the 'I'
of 'THIS'.

• Press the key marked CLR twice. Pressing CLR deletes
whatever chracter the cursor is on.

• Type in: AT

• Press the right cursor key nine times so that the cursor
is on the T of 'IS'.

• Press CLR once

• Type in: WA

• Press ENTER

You have now successfully edited line 100.
Congratulations!

1-20

COPY
Another way to edit line 20 would have been to use the copy key.
To see how this would have been done follow through the stages.

• Type in: LIST 10

• Press ENTER

• While holding down SHIFT use the cursor keys to move the
cursor until it is on the first quotation mark on line 10.
there are now two cursors on the screen. The one on the
quotation mark is the EDIT cursor.

• Type in: 20 INPUT
This will appear where the normal cursor is.

• Press the COPY key. This will will move the edit cursor
copying whatever is beneath it onto the position of the
text cursor.

• Keep pressing the copy key until line 20 looks like this

20 INPUT "PLEASE TYPE IN YOUR NAME"

• Now type in: ; NAME$

• Press ENTER

• You have successfully edited line 20 again. More
congratulations!

Although it seems a long and difficult process, the EDIT features
are fairly easy to use, especially with practice.

Anyway, going back to Program 1.3, having modified line 20 to
include the message, the program now contains the same message
twice and thus line 10 needs to be deleted. This is quite simply
done by typing in the number 10 and then pressing ENTER.

Once line 10 has been removed, type LIST and Program 1.4 should
appear as below.

PROGRAM 1.4

20 INPUT "PLEASE TYPE IN YOUR NAME";NAME$
30 PRINT NAME$
100 PRINT "THAT MESSAGE WAS WRONG"

1-21

When this is run a prompt will appear asking for your name and,
following the entry, the computer will simply print your name back
onto the screen! Now would be a good time to delete line 100 - so
do so! Type in 100 and press ENTER.

Fortunately, the PRINT statement can also contain a variable in
much the same way as the INPUT statement, so try to modify Program
1.4 as instructed in Exercise 1.1.

EXERCISE 1.1

Edit line 30 of Program 1.4 so that the
program announces:

YOUR NAME IS FRED

(or whatever your name happens to be.)
An answer is given in the solutions chapter.

The INPUT statement can be used to INPUT more than one item at a
time. To do this the comma (,) separator is used, e.g:

10 INPUT A$,B$,C$

When RUN the computer will expect three items of data to be
entered. Suppose the data was 'ONE' , TWO' and THREE'. You
would normally type in 'ONE' then press 'ENTER' (giving A$ the
value of ONE), then type TWO and press 'ENTER' and again with
THREE'. With a multiple INPUT statement (like that above) after
inputting the first value and pressing ENTER the Amstrad will
respond with the message 'Redo from start'. This is because the
computer is expecting three items of data and it has only been
given one.

The correct method of inputting the data is to type in 'ONE' then
a comma then TWO' comma and then finally 'THREE' NOT followed by
a comma but by pressing ENTER. The commas tell the computer that
the next item of data is to be given to the next variable.

If the INPUT statement asks for three INPUTS, as above in line 10,
and four pieces of data are entered, each separated by a comma,
the user will receive the '?Redo from start' error message and
you will be expected to type in the three items of data again.

Because a comma is used to separate strings during inputs it
cannot be part of the INPUT string. The multiple INPUT statement
can contain both messages and numbers. The same rules apply to
numeric variables as to strings.

1-22

The messages or prompts you can now put into your programs are
valuable in guiding the user through the problem of entering the
right data. Try Exercise 1.2 using clear prompts.

EXERCISE 1.2

Modify the program developed in Exercise 1.1
so that it asks a person's name and age, and
then reports back to them "YOUR NAME IS ...,
YOUR AGE IS ... ". A possible answer is
given in the solutions chapter.

LOCATE
As well as simply printing out your name on the screen, you can
choose exactly where on the screen you wish your name to be
printed. The Amstrad screen is divided into 'invisible positions'
called 'cells', each character taking up one position. There are
40 'cells' across and 25 down, numbered 1-40 and 1-25
respectively. These cells are identified by referring to their
horizontal and vertical positions known as 'coordinates'. In this
book we will follow the usual convention and refer to the
horizontal direction as the 'X coordinate' and the vertical
direction as the 'Y coordinate'.

Using the LOCATE statement you have to specify the position of the
'cell' you want the computer to start printing at. The cells being
referred to by their X and Y coordinates. For example:

LOCATE 10,2

will position the print cursor 10 characters along on the second
line down. The next thing to be printed will begin there. The
LOCATE statement can help 'tidy up' your screen display.

Before using LOCATE, it would be a good idea to get rid of the
program which is currently stored in memory, namely Program 1.4
(as modified in the exercises). To do this use the command:

1-23

NEW
Typing in NEW and pressing ENTER makes the Amstrad forget whatever
you have told it. It will 'forget' your program and the contents
of any variables you have set up or used. To demonstrate this type
NEW, then press ENTER, then type LIST and press ENTER again. There
is no program there. Once you have entered NEW your program is
gone for good so make sure you want to do that before entering
NEW.

Now we can begin writing a new program using LOCATE.

PROGRAM 1.5

10 LOCATE 10,2
20 PRINT "HELLO"

Program 1.5 will print HELLO starting at the tenth cell across (X
coordinate) and the second line down (Y coordinate). If there was
anything on the screen around these locations then you might not
be able to see the hello too clearly. It would be a good idea to
clear the screen before running the program, the following command
will do that for you.

CLS
The CLS statement is used to CLear the Screen either in a program
or by direct entry. We will use it in our program to make sure
that we always have a clean screen to start with. Normally after
CLS whatever is to be printed will begin at the top left hand
corner of the screen. However, line 10 moves the print cursor to a
different start point, in this example ten characters across and
two lines down.

With the addition of line 5 the program looks like this:

PROGRAM 1.6

5 CLS
10 LOCATE 10,2
20 PRINT "HELLO"

1-24

EXERCISE 1.3

Write a short program that will clear the
screen and then ask your name, clear the
screen again and print 'HELLO FRED' (or
whatever) in the middle of the screen, using
the LOCATE statement. A possible answer is
given in the solutions chapter.

Now we have come to the end of the first chapter and you should
understand some of the basic commands of Amstrad BASIC.

1-25

CHAPTER 2

PART ONE

Guess the number
This first mini project will be to develop a number guessing game
and investigate various number manipulation techniques. In this
game the computer will think of a number between 1 and 100 and the
player will be asked to guess what the number is in less than six
goes. The player will then be told whether the guess is too
large, too small, or correct. After six goes, if it has not been
guessed correctly the number will be displayed. At this stage, or
when the number is guessed correctly, the player will be asked
whether or not they wish to have another go.

The program will be built up in a modular fashion introducing
various commands as and when necessary.

RND
In a game such as this the essential function is that of producing
a random (ie. unpredictable) number for the player to guess. The
Amstrad uses the RND command to generate a RaNDom number.

Try this:

PRINT RND

This will cause the Amstrad to print a random decimal number
between 0 and 1. It will never be 0 or 1, always inbetween.

However, for our game this range is too small, we need a range of
1 to 100. This can be accomplished by simply multiplying the
random number by 100, i.e.

PRINT 100*RND

Now the range is right, but the numbers being produced have digits
after the decimal point, and what we need is just the whole number
or 'integer' part. Amstrad Basic contains a command to remove the
numbers after the decimal point, leaving just the integer value.

2-1

INT
The command to produce integer numbers from decimals is called,
unsurprisingly, INT, where the brackets contain the number or
expression to be INTegered. The Amstrad does this by rounding DOWN
the decimal number to the nearest whole number,

e.g.

INT(6.0128)=6
INT(5.9)=5
INT(2.3*4)=9

Thus PRINT INT(RND*100) will print a random number between 0 and
99. The reason numbers up to 100 but not 100 itself are produced
is because of the way the RND function provides numbers: never 100
but sometimes 99.99, which, when the integer value is taken,
becomes 99. To produce numbers in the range 1 to 100 inclusive you
simply need to add 1 to your random value, e.g.

PRINT INT(RND*100)+l

As this line will be used in a program it needs a line number.
Also we need to assign this random number to a variable, which we
shall call RAN UM, meaning RAndom NUMbers.

PROGRAM 2.1(a)

30 RANUM=INT(RND*100)+l
50 PRINT RANUM

GOTO
For lines 30 and 50 to be repeated a number of times, a command is
needed which will send the program back to the beginning again.
The command that does this is 'GOTO'. The GOTO command redirects a
program to an indicted line number. As GOTO is self explanatory
and should prove no difficulty in understanding. It can be added
to Program 2.1(a) in line 80, to yield Program 2.1(b). Once this
is done, Program 2.1(b) is said to LOOP back to line 30 from line
80.

PROGRAM 2.1(b)

30 RANUM=INT(RND*100)+l
50 PRINT RANUM
80 GOTO 30

’2-2

When this is RUN the program will enter an endless loop which
PRINTS random numbers down the screen.

In order to terminate the proceedings, press the ESCape key twice.
The first press halts the program and the second press exits from
the program.

So far, the program can produce random numbers, but in a rather
uncontrolled manner. What we need is some form of counting
mechanism and some check on this count to say, for example, when
100 numbers have been delivered.

A counting mechanism is provided by the introduction of a variable
called COUNT. This is set to zero at the begining of the program
and is then increased (or 'incremented') by one each time a random
value is PRINTed onto the screen. Thus, if we add lines 10 and 70
(below) to the program they will count the number of times we've
gone round the loop. The program structure is as in Program
2.1(c):

PROGRAM 2.1(c)

Set counter to zero
Generate a RaNDom number
PRINT the RaNDom number
onto the screen
Increment the counter
Go back for another random
numbe r

10 COUNT=0
30 RANUM=INT(RND*100)+l
50 PRINT RANUM

70 OOUNT=COUNT+1
80 GOTO 30

However, counting how many random numbers have been printed is all
that the program will do! So far it has not been told to respond
in any other way to this number. As an experiment, RUN the program
for a few minutes. When the fun(?) has worn off press the ESCape
key twice to exit the program. Next, to check that the count
routine has worked, type in PRINT COUNT and the machine will
respond by telling you how many random numbers it has printed.

IF...THEN
So far so good - we can can count! The next job is to modify the
program so that it can carry out a check on the state of the
PRINTing and stop when enough numbers have been displayed. This is
done by a checking or 'conditional' statement, which is in line 60
of Program 2.1(d).

2-3

PROGRAM 2,1(d)

60 IF COUNT=99 THEN GOTO 90
90 STOP

Line 60 checks the value of the variable COUNT and if - and ONLY
if - it equals 99, the program goes to line 90 and STOPs.

STOP

The STOP in line 90 tells the program to STOP! The message 'Break
in 90' is displayed. This is the Amstrad's way of telling us that
the program has stopped at line 90.

The IF...THEN statement allows the user to place another BASIC
instruction after an IF...THEN. This second BASIC instruction will
only be executed when the IF condition has been met.

When using conditional statements, such as in line 60, care has to
be taken over the number tested against. In this case the value
which terminates the loop was 99, because the incrementing was
done after the IF statement. Were this incrementing to have been
done say, in a line 55, then the condition in line 60 would have
been met when COUNT=100.

The combination of Programs 2.1(c) and 2.1(d) gives Program
2.1(e), which, when run will print out 100 random numbers.

PROGRAM 2.1(e)

10 COUNT=0
30 RANUM=INT(RND*100)+l
50 PRINT RANUM
60 IF COUNT=99 THEN GOTO 90
70 COUNT=COUNT+1
80 GOTO 30
90 STOP

As programs become more and more complex, they become more and
more difficult to follow and some means needs to be found for
representing the flow of a program in a form that can be readily
understood. Such a device is known as a:

2-4

FLOW CHART
A flow chart breaks the program down into simple elements which at
the very simplest level:

1. STOP or END programs.
2. Process data: LET... statements.
3. Input and Output: statements such as PRINT and INPUT
4. Make decisions: IF...THEN... statements.

There are other program statements which don't quite fit into the
above pattern. GOTO, for example, in effect changes the sequence
of lines in a program while it is actually RUNning.

It is often helpful to use flow charts to understand the logic of
a program. Standard symbols are used for each of the four
program elements mentioned above, as their use enables the
diagrams or charts to be interpreted much more readily.

Terminators

Processes

Input/Output

Decision

The rule for following a
start at the top of the
boxes, until you get to
show the direction of flow.

flow chart is really
chart and follow the
the end. Arrows on

quite simple. You
lines connecting the
the connecting lines

Flow charts can be helpful when first designing a program. By
convention, the explanations in the boxes should be written in
plain English. It is a common mistake to write 'BASIC in boxes'
and think that the end result is a proper flow chart. Always aim
to make your flow chart's language and your computer's language
independent.

2-5

Notice that the ’GOTO' in Program 2.1(e) is represented by a flow
line on the flow chart, Figure 2.2. All the other equivalents to
the program statements are contained in one of the four box types
given above (Figure 2.1).

10 CQUNT=0

30 RANUM=INT(RND*100)+l

50 PRINT RANUM

60 IF COUNT=99 THEN GOTO 90

70 COUNT=COUNT+1

90 STOP

Flow Chart of Program 2.1(e)

FIGURE 2.2

2-6

Other conditional tests are available in BASIC and all the normal
mathematical operators can be used to test values. For instance,
Program 2.1(e) could be modified to use the 'greater than' sign,
'>'. In this case delete line 60 and insert line 75.

PROGRAM 2.1(f)

75 IF COUNT>99 THEN GOTO 90

Another operator available for mathematical comparisons is '<’
which means 'less than' and is used in a similar way to the
'greater than' symbol '>'.

EXERCISE 2.1

Rewrite Program 2.1(e) to produce Program 2.2,
which uses the line:

75 IF COUNT <(a number) THEN

The program should still print out 100
numbers.

Draw a flow chart to explain the operation of
your program. A possible answer is given in
the solutions chapter.

Using conditional tests in the programs has enabled loops to be
produced, but BASIC contains its own built-in loop generator which
makes life much easier - this is the:

FOR...NEXT Loop
When using this construction it is only necessary
beginning and end of a loop, as shown below:

to define the

FOR Beginning of loop.
Instructions within loop.
NEXT....... End of loop.

As in Program 2.1(e), the number of passes through the loop needs
to be defined and this is achieved by means of a variable that is
incremented automatically on each pass of the loop. Thus the form
shown above requires amendment, to become:

2-7

FOR COUNT=1 TO 100
loop
NEXT COUNT

In this statement the counting variable, in this case COUNT, is
known as the loop variable' or the 'control variable', as it
controls the number of times the loop is executed.

Incorporating this into Program 2.2 (produced from Exercise 2.1),
the 'FOR' and 'NEXT' lines replace lines 10, 70 and 75 as
indicated below.

PROGRAM 2.2(a)

10 COUNTS------------------------------------- FOR OOUNT=1 TO 100
30 RANUM= INT(RND*100)+l
50 PRINT RANUM
70 OOUW=OOUNT+H____ -__________
75 IF COUNT<100 THEN GOTO 304^NEXT COUNT

Note that there is now no necessity for the STOP statement as the
program will stop when 100 loops have been completed.

Using the FOR...NEXT statement for loops generally makes a program
easier to understand. For instance, Program 2.2(a) can be
simplified as shown in Program 2.2(b):

PROGRAM 2.2(b)

10 FOR COUNT=1 TO 100
30 RANUM=INT(RND*100)+l
50 PRINT RANUM
60 NEXT COUNT

The FOR... NEXT loop above counts in 'steps' of '1'. We can
however tell the computer to count in 'steps' other than one,
using the 'STEP' command. The 'STEP' command is added to the end
of the 'FOR...' statement like so:

FOR X=1 TO 100 STEP N

where N denotes the STEP size.

If we do not specify a STEP size then a STEP of one is assumed. To
demonstrate the use of the TOR..NEXT...STEP' statement, enter and
run Program 2.3(a). Type NEW first to get rid of the old program.

2-8

PROGRAM 2.3(a)

10 FOR X=1 TO 100 STEP 2
20 PRINT X
30 NEXT X

This particular loop starts at '1' and prints out every second
number. So the display would be '1', '3', '5' up till the last
value of 'X', 99.

EXERCISE 2.2

Change line 10 of program 2.3(a) so that the
loop starts at 0 and increases in STEPS of
three. A possible answer is in the solutions
chapter.

The loop doesn't have to start at 'O' or '1'. It can begin at any
value less than (or equal to) the 'TO' value. If the first value
is larger than the second (i.e. FOR X=100 TO 50) then what's
needed is a countdown: 100, 99, 98, 97 etc. To do this we need a
'STEP' value of minus one (-1).

So to count down the instruction would read:

PROGRAM 2.3(b)

10 FOR X=100 TO 50 STEP -1

EXERCISE 2.3

Write a short program that will count down
from '10' in 'STEPS' of '-1'. When the loop
has been completed then the program will PRINT
'FIRE!'. A possible answer is in the
solutions chapter.

If whilst using FOR...NEXT loops you made a mistake and typed in
any of the following lines, the computer would quite sensibly
ignore you (in the third case, it will do the loop once only):

FOR X=100 TO 10 STEP 1
FOR X=10 TO 100 STEP-1
FOR X=10 TO 20 STEP 30

2-9

As programs become more complex and include such features as
FOR...NEXT loops, the danger of making mistakes increases.
Fortunately, the Amstrad stays with you and when a bug creeps in
error messages tell you what the error is. To demonstrate this,
add line 30 of Program 2.3(c) to Program 2.3(b).

PROGRAM 2.3(c)

30 NEXT K

When this is RUN, the Amstrad will give an error message:

Unexpected NEXT in 30

This tells you that you have attempted to use a NEXT without a
matching FOR at line 30 as the 'FOR' line used the variable X and
the ’NEXT' line, the variable K.

Errors in Amstrad BASIC are readily picked up in this way as the
computer has been taught its own logic. For instance, if you
chose to say in English "The mat cat, on the sat", this would be
incorrect in its 'syntax'. Thus, when similar errors occur in the
Amstrad's language, the computer tells you that a 'Syntax error'
has occurred. Just think of a Syntax error as the computer's way
of saying "I DON'T UNDERSTAND".

Having looked at a few essential BASIC statements, we can begin
the developement of this chapter's project: the number guessing
game described at the beginning of the chapter.

First type in NEW and press ENTER to remove the earlier
demonstration programs from the computer's memory.

The first thing the number game needs is a number for us to guess!
This is quite easily done by setting up a random value RANUM
which, for the time being, we will PRINT onto the screen:

PROGRAM 2.4(a)

30 RANUM=INT(RND*100)+l
35 PRINT RANUM

Next input a guess from the player. The guess will be stored in
variable GUESS.

PROGRAM 2.4(b)

30 RANUM=INT(RND*100)+l
35 PRINT RANUM
50 INPUT GUESS

2-10

At this stage the guess can be compared with the random number
using the IF...THEN statement. In the earlier example this was
used only to end the program by means of a STOP command.
However, the IF...THEN statement can be followed by any valid
BASIC command, so in this case the statement could say: If the
guess equals the random number then tell the player that the guess
is correct.' Translating that into BASIC yields:

IF GUESS=RANUM THEN PRINT"WELL DONE-GUESS CORRECT."

One small tip before adding that line, though! During the
development of this game you will probably RUN it hundreds of
times. Fun as this may be for the first hundred or so times, it
will probably get somewhat boring - eventually. To overcome this,
line 35, the statement to PRINT out the value of the random
number, is left in - it makes the game easier too! So far, then,
the program reads:

PROGRAM 2.4(c)

30 RANUM=INT(RND*100)+l
35 PRINT RANUM
50 INPUT GUESS
60 IF GUESS=RANUM THEN PRINT"WELL DONE-G
UESS CORRECT."

At this stage the program should RUN and, when the answer is
correct, give a message and then end. However, if an incorrect
guess is entered, the program will simply end with no message.
To handle this, two further conditional statements are added at
lines 70 and 80 in Program 2.4(d).

PROGRAM 2.4(d)

70 IF GUESS>RANUM THEN PRINT"GUESS TOO L
ARGE-TRY AGAIN."
80 IF GUESS<RANUM THEN PRINT"GUESS TOO S
MALL-TRY AGAIN."

When Program 2.4(d) is run, it will handle both correct and
incorrect answers but only for one INPUT. In order to give the
player another chance, it clearly has to be re-routed back to the
INPUT (line 50) if the answer was incorrect. This re-routing needs
to be done conditionally based on the IF...THEN tests performed in
lines 60, 70 and 80. Once again, BASIC comes to the rescue in that
a second BASIC statement can be added to the end of an existing
line provided that the two parts are separated by a colon(:).
When this is done the line is referred to as a multi-statement
line.

2-11

The second statement is executed immediately after the first, just
as if it were on the next line, except that, as in this program,
it comes after an IF...THEN statement. In this case, the extra
statements will only be executed if the 'THEN' bit is executed,
i.e. if the condition is met. Thus line 60 can be modified to read
as in Program 2.4(e). The alteration to line 60 can be done most
easily using an additional feature of the EDIT command. As in
previous examples, you type in EDIT followed by the line number,
which in this ease is 60, and then you press ENTER. Move the
cursor along to the end of the line using the cursor keys. Then
all you have to do is type in the extra instruction (i.e.
':STOP'), and press ENTER. The new line 60 should look like this:

Program 2.4(e)

60 IF GUESS=RANUM THEN PRINT"WELL DONE-G
DESS CORRECT.":STOP

This modification will STOP the program after a correct answer.
Lines 70 and 80 can be similarly extended, in their particular
cases to redirect the program, as in Program 2.4(f).

PROGRAM 2.4(f)

70 IF GUESS>RANUM THEN PRINT"GUESS TOO L
ARGE-TRY AGAIN.": GOTO 50
80 IF GUESS<RANUM THEN PRINT"GUESS TOO S
MALL-TRY AGAIN.": GOTO 50

After the modifications in PROGRAM 2.4(f) the game will allow any
number of incorrect guesses but comes to a STOP when the correct
guess is made.

This ending is rather abrupt and the program would be improved
considerably were the player to be given a choice after a correct
guess - either to terminate the game or to play again. So a
further routine is added at the end of the current program and
offers the player the opportunity to continue. It takes the form
of an INPUT with a message and a conditional test - see Program
2.4(g). In addition, the STOP will need to be removed from line 60
and the program redirected from here to the INPUT at line 110.

PROGRAM 2.4(g)

60 IF GUESS=RANUM THEN PRINT"WELL DONE-G
UESS CORRECT":GOTO 110
110 INPUT "DO YOU WANT ANOTHER GO(Y/N)";
A$
120 IF A$="Y" THEN XXX

2-12

In line 110, the INPUT is expecting a YES/NO type of answer and
the bracketed ’(Y/N)' is an additional prompt that gives the
player a clear indication of what is expected in the way of
inputted data. The use of such prompts makes it possible to test
simply following the INPUT. In line 120, it is only necessary to
test for the 'Y' - meaning 'Yes' - answer as this input is
clearly expected. If the input is not a 'Y', then the program goes
on to execute the next line or, if there isn't one, to end the
execution. Note, the XXX in line 120 just refers to the line
number without a 'GOTO'. This is because in Amstrad Basic when
using an IF...THEN statement the GOTO is assumed if a line number
follows a THEN. In fact you can, in the case of GOTO, make the
statement an IF...GOTO instead of an IF...THEN, should that appear
more clear to you.

As the INPUT expected is a string, i.e. alpha characters
(letters), it was necessary to assign an appropriate string
variable name - in this case A$ is used. Line 120 is not complete
and it is left for you to finish the loop. Just in case you make a
mistake, or are not too sure, it is completed in later versions of
the game.

As the game stands at the moment, the player can take any number
of goes to guess the number. Just to add a bit more interest the
number of attempts will be restricted to six. Ways have already
been explored of getting programs to loop around a given number of
times and as in Program 2.2(b), a FOR...NEXT loop can be used.
This will be required to repeat the guessing part of the program,
starting after the random number has been generated in line 40.
The loop back - the 'NEXT' - will take place after the tests for
the guess have been made and before the 'ANOTHER GO?' question is
asked - at 90. These are shown in Program 2.4(h) where the
variable 'COUNT' is used in the loop.

PROGRAM 2.4(h)

30 RANUM=INT(RND*100)+l
35 PRINT RANUM
40 FOR COUNT=1 TO 6
50 INPUT GUESS
60 IF GUESS=RANUM THEN PRINT"WELL DONE-G
UESS CORRECT.":GOTO 110
70 IF GUESS>RANUM THEN PRINT"GUESS TOO L
ARGE - TRY AGAIN.": GOTO 50
80 IF GUESS<RANUM THEN PRINT"GUESS TOO S
MALL - TRY AGAIN.": GOTO 50
90 NEXT COUNT
110 INPUT"DO YOU WANT ANOTHER GO (Y/N)";
A$
120 IF A$="Y" THEN 30

2-13

Just to prove this program for yourself, run it through a few
times - firstly with a correct answer and then to check the loop
with incorrect guesses. If you count the incorrect guesses you
will find that the loop is not actually activated. To help you to
see why, the flow chart for this program is given in Figure 2.3.
You can use this to correct Program 2.4(h). Don't worry if you get
stuck; the correction is explained below. Incidentally, there are
no less than four faults or 'bugs' in the program at present. See
if you can find them!

2-14

GENERATE
RANDOM No

INITIATE
LOOP

N

FIGURE 2.3

2-15

EXPLANATION - don’t read this until you’ve had a go!
Following the program through for a correct answer yields no
obvious problems. However, in line 60, a correct guess directs the
program to line 110. While this is logically correct, it has the
effect of jumping out of the FOR...NEXT loop which is BAD
programming practice. The FOR is left waiting for a NEXT which
will never arrive. It's a bit like arranging to be met from a
train and then going by bus! Some computers will crash if you do
this sort of thing but fortunately the Amstrad is smart enough to
sort things out and the program will run as shown.

However, we will amend line 60 so that, instead, COUNT is set to
some value, say 99, which will mean that when the NEXT is met in
line 90 the computer will think that the loop has been fully
completed. Also the loop fails to activate after the allowed six
attempts. If a 'yes' results from the check 'is guess too high?'
then a message is output. However, the program simply loops back
from this point to allow another INPUT. Removal of the 'GOTO 50'
in lines 70 and 80 will allow these lines to be followed by line
90, where 'NEXT COUNT' is met. The 'NEXT' function performs the
necessary incrementing of 'COUNT' as well as checking whether it
has yet reached 6. Once the loop is completed the NEXT command
allows the program to run through to line 110. At this point the
player will be asked: "DO YOU WANT ANOTHER GO?" Before this the
player should be told: "YOU'VE HAD YOUR SIX GOES" but only if the
guesses have all been wrong. To accomplish this a PRINT line could
be added at line 100 if COUNT is less than 99, which it will be if
none of the guesses were correct.

To summarise, the four modifications required to Program 2.4(h)
are:

(i) Remove the GOTO 110 in line 60 and insert OOUNT=99
(ii) Remove the GOTO 50 on line 70

(iii) Remove the GOTO 50 on line 80
(iv) Insert line 100:
100 IF OOUNT<99 THEN PRINT"SORRY, YOU'VE HAD YOUR SIX
GOES."

This yields Program 2.4(i).

2-16

PROGRAM 2.4(i)

30 RANUM=INT(RND*100)+l
35 PRINT RANUM
40 FOR COUNT=1 TO 6
50 INPUT GUESS
60 IF GUESS=RANUM THEN PRINT"WELL DONE -

GUESS CORRECT.":COUNT=99
70 IF GUESS>RANUM THEN PRINT"GUESS TOO L
ARGE - TRY AGAIN."
80 IF GUESS<RANUM THEN PRINT"GUESS TOO S
MALL - TRY AGAIN."
90 NEXT COUNT
100 IF COUNT<99 THEN PRINT"SORRY, YOU'VE

HAD YOUR SIX GOES."
110 INPUT"DO YOU WANT ANOTHER GO (Y/N)";
A$
120 IF A$="Y" THEN 30

IF...THEN...ELSE
The IF...THEN command has been used so far only to act if a
condition is true, i.e. if A=5 THEN PRINT "Five". However
IF...THEN has a built in option that allows the program to
continue on the IF...THEN line only when the condition is false.
For example, line 120 of Program 2.4(i) has the following test

IF A$="Y" THEN 30

This tests an input, if the key pressed was 'Y' then another go is
required and the program loops back to line 30. However if the key
pressed was not a 'Y' then the program simply ends. Using ELSE it
is possible to tell the player that the program has finished on
line 120. If the player decides that they do not want to play
again the program will say goodbye and End. Thus line 120 needs to
include the following:

IF A$="Y" THEN 30: ELSE PRINT"GOODBYE":EN
D

The ELSE section will only be preformed if A$ is not "Y". If A$ is
"Y" then the program loops back to line thirty, as before.

PROGRAM 2.4(j)

120 IF A$="Y" THEN 30: ELSE PRINT "GOOD B
YE!":END

2-17

All that really remains to be done now is for the program to
report back on how many goes the player took to get the right
answer.

EXERCISE 2.4

Add a reporting-back function to Program 2.4(i)
such that it tells the player how many goes it
took to get the correct answer. A possible
answer is given in the next program but see if
you can work it out yourself before looking.

Once Exercise 2.4 is completed, the result should be a functioning
number guessing game. In many ways it is a bit simple, but from
Program 2.5 onwards the rest is up to you. The major improvement
that is needed is an introductory message to tell the player what
the game is about and what the rules are and a polite 'goodbye'
when the player finishes. It might also be an idea to stop
PRINTing the random number at the beginning of the game!

In writing this program, provision has been made for additions at
a later date in lines 10 and 20. In Program 2.5 below, both of
these lines start with a REM command, which identifies each line
as a REMark line. Once the Amstrad detects a REM, it then ignores
anything that follows on this line. By means of REMs, comments can
be inserted into programs to enable either the program's author or
any other user to follow its logic more easily. A generous
sprinkling of REMs is to be recommended to all.

2-18

PROGRAM 2.5

10 REM **NUMBER GUESSER**
20 REM *******GAME*******
30 LET RANUM=INT(RND*100)+l
40 FOR COUNT=1 TO 6
50 INPUT GUESS
60 IF GUESS=RANUM THEN PRINT "WELL DONE
- GUESS CORRECT.":PRINT"YOU TOOK ";COUNT
;" GOES":COUNT=99
70 IF GUESS>RANUM THEN PRINT"GUESS TOO L
ARGE - TRY AGAIN."
80 IF GUESS<RANUM THEN PRINT"GUESS TOO S
MALL - TRY AGAIN."
90 NEXT COUNT
100 IF COUNT<99 THEN PRINT "SORRY, YOU'V
E HAD
YOUR SIX GOES."
110 INPUT "DO YOU WANT ANOTHER GO (Y/N)"
;A$
120 IF A$="Y" THEN 30:ELSE PRINT"GOOD BY
E":END

There are many ways the program can be developed - for instance a
'GETTING WARMER/COLDER' function could be inserted instead of the
higher/lower message. Another development could be to improve the
display and messages. For example, telling an unsuccessful player
what the number was!

EXERCISE 2.5

Alter line 100 of Program 2.5 to print out the
number if it has not been guessed. A possible
answer is given in the solutions chapter.

Storing a Program
Now to save that program onto tape!

2-19

Once a program of any length has been developed, it becomes a
chore to keep typing it into the computer. It can, as you will
see, be saved onto a storage device and then re-loaded back into
the memory when you need it. Unlike most home computers on the
market the Amstrad has a built-in cassette recorder. You cannot
play music on it, however, because it is specially made to work
with the Amstrad. There are two main advantages of having a
built-in recording device. The first is that you don't have to buy
one and the second is that saving programs is extremely reliable.
Consequently there is no verify command on the Amstrad to check if
your program has been saved properly.

Cassette storage is described as 'non-volatile' as it doesn't need
any power to keep the program stored. The area of memory in the
computer where your programs are stored is described as 'volatile'
because, once the machine is turned off, all the contents of
memory are lost. Amstrad Basic contains two commands for cassette
storage. These commands form part of the machine's operating
system, those built-in programs which make the whole computer
work.

The BASIC commands for storage are: SAVE and LOAD.

SAVE and LOAD
The command used for saving a program onto tape is SAVE. It is not
too difficult to use, but a few points need to be remembered:

• Press the 'PLAY' and 'RECORD' keys down before you enter
the SAVE command.

• Remember that program names should be no more than 16
characters (letters and numbers) long.

• Remember not to try and record on the blank leader at
the beginning of the tape.

• It is good practice to save important programs on two
different tapes. Thus if you lose one you have a second
copy. This is known as a 'backup' copy.

• Always label your tapes so that you know what's on them.
This saves a lot of time when you are looking for a
program that could be on any one of a number of tapes.

2-20

Now, let's suppose you have a program to save onto cassette, for
example, the guessing game "GUESSER" which you have just written.
To save that program, do the following:

• Insert a blank (unrecorded) cassette into the
recorder, making sure that the tape is wound past the
blank leader portion so that the actual brown
recording section of the tape is visible.

• Press both the 'PLAY' and 'RECORD' buttons on the
recorder.

• If you wish to call your program something other than
GUESSER, you may substitute your own program name
between the quotation marks below - but remember, the
name must not be more than sixteen characters in
length.

• Type SAVE "GUESSER" and press ENTER

• The Amstrad will report:

Press REC and PLAY then any key:

If you have not already done so then press record and play down on
the tape.

• Press any key, other than a green key or the red
escape button.

• Wait. The Amstrad is now, hopefully, saving the
program onto the tape. You will see the following
message:

Saving GUESSER block 1

• When it has finished, the Ready prompt will appear
below the Saving message.

LOAD
Once the program is SAVEd onto tape it can be transferred back
into the computer by means of the LOAD command. Thus, to reLOAD
the program called 'GUESSER' the command:

LOAD "GUESSER"

is used. Once this is ENTERed, you will be asked to:

Press PLAY then any key:

2-21

Upon pressing the play button and then any key on the Amstrad
keyboard the program will begin to LOAD.

If all is well then the Amstrad will tell you that it has found
the program by reporting:

Loading GUESSER block 1

A block can be looked upon as a lump of program. Depending on the
size of the program the block number may be a small number (in
this case 1) or a large number, the larger the program the higher
the block number reached. The block number reflects how much
memory the program fills.

Once the program has been safely loaded then the READY prompt will
appear on the screen below the Loading message.

If whilst loading you should get the message:

Read error

on your screen do not panic! Most times this means that you have
not wound the tape to the beginning of the program. If after doing
this you still get an error, then you are unlucky enough to have
got one of the extremely rare errors that do occur. If so, you
must save your program again. One thing of paramount importance to
remember is that when a load is successful any other program
currently in the computer's memory will be erased.

A useful feature of your computer's BASIC is that it is not
necessary to name the program that you are LOADing. If you have
forgotten the name that you SAVEd it under, then the command

LOAD""

will LOAD the first program found on the tape.

CAT
The last of the Amstrad cassette commands is CAT. CAT is short for
CATalogue and is used to display the names of all files saved on
the tape in the cassette drive.

After typing in CAT the Amstrad will respond with

Press PLAY then any key:

2-22

Once a key is pressed the Amstrad will begin searching through the
tape. Every time a program is encountered the following will be
displayed:

<filename> block <n> <filetype> OK

Where <file name> is the name of the file found. <n> is the block
number and <file type> is one of the following file characters:

$ Basic program
% Protected Basic file
* ASCII text file
& Binary file
' Protected Binary file

The OK message tells you that the program was saved okay. The
CATalogue message for the tape that "GUESSER" was saved on would
read:

GUESSER block 1 $ OK

filename filesize saved OK

basic program

The CATalogue Display

FIGURE 2.4

Amstrad Basic contains
These are all covered in

quite a few variations on LOAD and SAVE.
Appendix Two.

PART TWO

Comparing Numbers
Various techniques are allowed in BASIC when comparing numbers;
one very useful one allows two comparisons to be made in one
statement. Using this, a program will be developed from Program
2.5 to produce a game which asks the player to guess two numbers.
In order to simplify this, the equality check, the 'greater than'
and the 'less than' lines should be removed, i.e. lines 60, 70 and
80.

2-23

Next, a second random number must be introduced. We will call the
two numbers RANUM1 and RANUM2, to stand for RAndom NUMberl and
RAndom NUMber2. As the player is now to be asked to guess two
numbers it would also be easier if the possibilities for each
number were to be reduced to, say, the range 1 to 4.

PROGRAM 2.6(a)

30 RANUM1=INT(RND*4)+1:RANUM2=INT(RND*4)
+ 1

In this particular game, two guesses will be required and, as with
the random's these can be called 'GUESS 1' and 'GUESS2' as in line
50 of Program 2.6(b).

PROGRAM 2.6(b)

50 INPUT "GUESS1";GUESS1:INPUT "GUESS2";
GUESS2

AND
With two guesses and two random numbers, the testing process
becomes much more complex than in the earlier game. However for
BASIC command 'AND' eases things somewhat. It enables one, for
instance to compare two guesses on one line of a program. Thus,
using AND it is possible to say:

IF GUESS1=RANUM1 AND GUESS2=RANUM 2 THEN
PRINT "WELL DONE"

The "WELL DONE" will only be printed when your first guess is
equal to the first random number AND the second guess equals the
second randomly generated number. The above line checks for
correct guesses and can be used in the program at line 60. If the
guesses are correct then the loop counter is set to an extreme
value and the program jumps to line 90, where the NEXT is
encountered and the loop is terminated as COUNT is greater than 6.

PROGRAM 2.6(c)

60 IF GUESS1=RANUM1 AND GUESS2=RANUM2 TH
EN PRINT"WELL DONE - GUESS CORRECT":COUN
T=99:GOTO 90

2-24

It would be nice if the player could win after having typed in the
correct numbers but in the wrong order. To allow for this line 65
of Program 2.6(d) compares GUESS1 with RANUM2 and GUESS2 with
RANUM. If they are both equal then the player has guessed
correctly.

PROGRAM 2.6(d)

65 IF GUESS1=RANUM2 AND GUESS2=RANUM1 TH
EN PRINT"WELL DONE - GUESS CORRECT":COUN
T=99:GOTO 90

Having tested for a correct answers it is now time to look at the
possibilités of incorrect guesses. Logically speaking if the two
were not correct then they are incorrect and the player should be
told that she has got it wrong. This is the easy way out, a path
that we will not be taking! Instead, further checks will be made
on the user's guesses to see if one or both of them are wrong.

The test for two incorrect guesses will simply read:

If GUESS1 not equal to RANUM1 AND GUESS1
not equal to RANUM2 AND GUESS2 not equal
to RANUM1 AND GUESS2 not equal to RANUM2
then PRINT "Both wrong"

In BASIC 'not equal to' is indicated by the less than '<’ and
greater than ’>' signs placed togther i.e.

<>

Program 2.6(e) contains the line which tests to see if the guesses
are incorrect. Line 100 has also been amended to print out both
numbers if they have not been guessed after six tries.

2-25

PROGRAM 2.6(e)

30 RANUM1=INT(RND*4)+1:RANUM2=INT(RND*4)
+1
40 FOR OOUNT=1 TO 6
5 0 INPUT"GUESS1";GUESS1:1NPUT"GUESS 2";GU
ESS 2
60 IF GUESS1=RANUM1 AND GUESS2=RANUM2 TH
EN PRINT"WELL DONE - GUESS CORRECT" :OOUN
T=99:GOTO 90
65 IF GUESS1=RANUM2 AND GUESS2=RANUM1 TH
EN PRINT"WELL DONE - GUESS CORRECT" :OOUN
T=99:GOTO 90
70 IF GUESS 1ORANUM1 AND GUESS 1ORANUM2
AND GUESS2ORANUM1 AND GUESS2ORANUM2 TH
EN PRINT "BOTH WRONG":GOTO 90
90 NEXT COUNT
100 IF OOUNT<99 THEN PRINT "SORRY, YOU'V
E HAD YOUR SIX GOES"¡PRINT "THE NUMBERS
WERE"; RANUM1 ,RANUM2
110 INPUT'TO YOU WANT ANOTHER GO (Y/N)";
A$
120 IF A$="Y" THEN 30:ELSE PRINT"GOOD BY
E":END

So far the guesses have been tested to see whether they are both
correct or both wrong. If neither of these conditions are true
then the program is diverted to line 90 where the count is
incremented. Then you are left with a pair of guesses one of which
is correct and, logically enough, one incorrect. It is not
necessary to conduct any further testing because if the guesses
are not both correct or both incorrect then one of them must be
right. Line 80 tells the player this.

PROGRAM 2.6(f)

80 PRINT"ONE RIGHT"

Once line 80 has been entered you have a working two-number
guessing game, to delight and amuse your friends.

OR
As demonstrated above the AND command allows us to compare two
variables and act upon the result. BASIC provides us with a second
command to use when comparing numbers. The OR command works like
this:

2-26

"If this is correct OR if that is correct
then do something"

In Basic that would be:

IF A=1 OR A=2 THEN PRINT A

The above condition would print the value of A, if the value was
'1' or '2'. This is a more flexible command than AND.

The OR command can be used in the number guesser game to combine
lines 60 and 65, the correct guess tests. This will produce the
following line:

PROGRAM 2.7

60 IF (GUESS1=RANUM1 AND GUESS2=RANUM2)
OR(GUESS1=RANUM2 AND GUESS2=RANUM1) THEN

PRINT"WELL DONE GUESS CORRECT":COUNT=99
:GOTO 90

The brackets on line 60 are used to separate each section of
tests. The tests in the first brackets are those that were in the
orignal line 60 and the second set of brackets contains the tests
that were in line 65.

Line 120 tests to see if the user has typed ’Y’ for another go.
However, if a lower-case 'y' were entered there would be no match
and the program would end. To cater for this as well we can use
'OR' and test for 'y'. This gives the following line:

PROGRAM 2.8

120 IF A$="Y" OR A$="y" THEN 30:ELSE PRI
NT" GOODBYE":END

The program is now complete and should look like Program 2.9. Try
improving it - increasing the range of the numbers to be guessed,
better displays using the LOCATE statement, improved messages,
etc.

2-27

PROGRAM 2.9

10 REM NUMBER GUESSER
20 CLS
30 RANUM1=INT(RND*4)+1:RANUM2=INT(RND*4)
+1
40 FOR OOUNT=1 TO 6
50 INPUT"GUESS1";GUESS1:INPUT"GUESS2";GU
ESS 2
60 IF (GUESS1=RANUM1 AND GUESS2=RANLM2)
OR(GUESS1=RANUM2 AND GUESS2=RANUM1) THEN
PRINT "WELL DONE GUESS CORRECT" :OOUNT=99:
GOTO 90
70 IF GUESS 1ORANUM1 AND GUESS 1ORANUM2
AND GUESS2ORANUM1 AND GUESS2ORANUM2 TH
EN PRINT "BOTH WRONG":GOTO 90
80 PRINT"ONE RIGHT"
90 NEXT COUNT
100 IF OOUNT<99 THEN PRINT"SORRY YOU'VE
HAD YOUR SIX GOES. ": PRINT"THE NUMBERS WE
RE ";RANUM1;" AND ";RANUM2
110 INPUT"DO YOU WANT ANOTHER GO (Y/N)";
A$
120 IF A$="Y" OR A$="y" THEN 30:ELSE PRI
NT "GOODBYE"END

PART THREE

Mathematical Precedence
There are rules in mathematics that determine the order in which
calculations are done. Multiplications and divisions are always
performed before addition and subtraction, i.e. they have
’precedence1. For example in the calculations:

5+3*4

The calculation '3*4' would be performed before five is added.
Similiarly in the calculations:

10/2-3

The division (10/2) will be the first calculation. Supposing a
calculation had multiplication and division, much like this one:

3/4*2

2-28

Then the sum is calculated starting from the left. The first
calculation being 3/4 and then the multiplication by two is done
(2x3/4=1.5).

Brackets
There is a way of breaking the mathematical order and that is the
use of brackets. Calculations enclosed in brackets are always done
first. For example, in the following sum:

2*3+(4-2)

4-2=2 will be calculated first. The next precedence is
multiplication (2*3=6) and lastly the addition (6+2=8). In the
event of brackets within brackets, or 'nested' brackets, the
calculations within the innermost set of brackets are done first,
the calculation then working outwards. For example:

4*2+(6+4*(3+2)+l)*2

The (3+2) is done first, giving 5. Then 4*5 is done, giving 20.
Then 6 is added, then 1, giving 27. At this stage the calculation
reads:

4*2+27*2

Thus the computer does 8+54, giving 62.

If a calculation contains several sets of brackets (not
necessarily nested), then it will do these from left to right -
any nested inner brackets first of course.

Summarising this, the mathematical order of precedence is:

innermost brackets
brackets
* and /
+ and -

In cases where there is no competition for precedence (e.g. a
calculation containing only + and -) then it is calculated from
left to right.

2-29

CHAPTER 3

PART ONE

Graphics
In the previous two chapters we have seen how to print characters
onto the screen. In this chapter you will be shown how to produce
pictures using some of the Amstrad's high resolution graphic
commands.

Modes
The Amstrad has three different modes,
formats, called MODE 0, MODE 1 and MODE 2.
switched on it goes into MODE 1. This is the
probably the one you are using at the moment.

i.e. screen display
When the Amstrad is
default mode and is

The most obvious difference between each mode is character size.
Figure 3.1 illustrates the different sizes of characters in each
mode. MODE 0 has very large characters, MODE 1 characters are
medium sized and MODE 2 has very small characters.

MODEO MODE1 MODE2

The Three Character Sizes

FIGURE 3. 1

3-1

To change any of the MODEs you simply type in 'MODE' and then the
required MODE number. For example:

MODE 0

will switch the computer to MODE 0. Notice the large letters. As
well as changing the mode the screen was cleared and the cursor
placed in the top left hand corner of the screen. This is referred
to as the 'home' position.

Because Mode 0 characters are so big only twenty can fit onto one
line on the screen, although there are twenty five lines. Another
difference between the modes is the different number of colours
available at any one time. Figure 3.2 shows the different number
of colours and characters for each mode.

MODE Colours Available Text Display

0 16 25 lines x 20 characters
1 4 25 lines x 40 characters
2 2 25 lines x 80 characters

The Screen Display Available In Each MODE

FIGURE 3. 2

So far you have only been using the colours the Amstrad starts up
with. It is possible for the user to change the border, screen and
character colours. The Amstrad has twenty seven colours for you
to choose from so you should find something to your taste. Those
of you without a colour monitor will see each different colour in
varying shades of green.

The Amstrad comes complete with
BORDER, INK, PAPER and PEN.

four colour commands, these being

BORDER
This command is used to change the colour of the screen's border.
The colour you wish to change it to is indicated by a number
following the BORDER command. The Amstrad's twenty seven colours
are numerically coded, ranging from 0-black to 26-bright white.
The colour used in the border is separate from the colours
available on the screen area inside it. A complete list of colours
and their numeric codes are given in Figure 3.3

3-2

The Amstrad Colours and Codes

0 BLACK 14 PASTEL BLUE
1 BLUE 15 ORANGE
2 BRIGHT BLUE 16 PINK
3 RED 17 PASTEL MAGENTA
4 MAGENTA 18 BRIGHT GREEN
5 MAUVE 19 SEA GREEN
6 BRIGHT RED 20 BRIGHT CYAN
7 PURPLE 21 LIME GREEN
8 BRIGHT MAGENTA 22 PASTEL GREEN
9 GREEN 23 PASTEL CYAN
10 CYAN 24 BRIGHT YELLOW
11 SKY BLUE 25 PASTEL YELLOW
12 YELLOW 26 BRIGHT WHITE
13 WHITE

FIGURE 3. 3

Thus to change the border to pink you simply type:

BORDER 6

Upon pressing ENTER the BORDER will become pink. In this manner
the BORDER colour can be set to any of the available colours.

One special feature of the Amstrad monitor is that you can change
the BORDER to two colours. This is done by adding another colour
value after the first.

BORDER 16,0

This causes the Amstrad to constantly flash the BORDER colour from
pink to black. A very interesting (!) effect.

INK
The INK command is used to select which colours you wish to use
for the screen and characters. This command takes the form of:

INK i,c

Where 'i' is the INK number and 'c' is the colour number. To
understand this command you have to imagine a row of ink pots.
Each ink pot has its own unique number (the INK number) and
contains the colour ’c’.

3-3

So INK 0,6 means fill the ink pot numbered 0 with colour 6 (bright
red). When the Amstrad is switched on the 'ink pots' are given
default colour values. The colour in each ink pot differs
depending upon which mode you are in. Figure 3.4 shows the
default INK values for each of the three modes.

INK MODE 0 MODE 1 MODE 2

0 1 1 1
1 24 24 24
2 20 20 1
3 6 6 24
4 26 1 1
5 0 24 24
6 2 20 1
7 8 6 24
8 10 1 1
9 12 24 24
10 14 20 1
11 16 6 24
12 18 1 1
13 22 24 24
14 Flashing 1,24 20 1
15 Flashing 16,11 6 24

The Default INK Values

FIGURE 3. 4

From a look at the chart you will see that MODE 2 has only two
colours, MODE 1 has four colours and MODE 0 has sixteen. These
are the different colour limitations for each mode. It doesn't
matter what the particular colours are but you are only allowed
two in MODE 2, four in MODE 1 and sixteen in MODE 0.

PAPER
The PAPER command changes the background colour of the characters
on the screen and takes the form:

PAPER i

Where 'i' is the INK number.

3-4

For example:

PAPER 8

will change the background to the colour that was. put into ink pot
eight. This colour depends on which mode you are in. The colours
are cyan, blue and blue for modes 0,1 and 2 respectively.

If you now type in some characters you will find that they have a
different background colour to those already on the screen. To
change the background colour for the whole screen just type 'CLS'.
The whole screen clears and each character cell has been filled
with new background colour.

PEN
This changes the colour of the cursor and subsequently any
characters that appear AFTER the PEN command has been used. Pen
works in the same way as Paper. So:

PEN 3

will change the character colour to whatever ink pot 3 contains.

Now we can change the colour of the screen and characters to any
combination we require. Suppose you required a lime green screen
with a pen colour of bright cyan. The Amstrad uses INK 0 as the
default value for the screen colour and INK 1 as the default value
for the character colour. Thus to change the current colours to
the required values we simply change the value of INK 0 and INK 1.
Type in the following direct entry commands:

INK 0,21

INK 1,2

Twenty one and two are the colour codes for lime green and blue
respectively.

EXERCISE 3.1

Write a short program that will switch the
computer to MODE 0. The BORDER colour should
be set to white and the background to sea
green. The character colour should become
pastel magenta. A possible answer is given in
the solutions chapter.

3-5

Graphics
As promised earlier, we will now show you some of the Amstrad's
graphic commands. As you found out earlier, the size of the
characters on the screen varies with each mode, being largest in
MODE 2 and smallest in MODE 0. A similar situation exists when
using graphics. To produce drawings we need to 'light-up' the
appropriate points on the screen. These points are known as
'PIXELS' (short for PICTure ELements - well sort of!) and they
also vary in size with each mode (largest in MODE 2, smallest in
MODE 0). The difference in size is known as the 'resolution', i.e.
the sharpness of the display, of each mode. If you look closely at
a photograph in a newspaper you will see that it is made up of
hundreds of little dots - it is the same with graphics on your
Amstrad. The smaller the pixel, the sharper the display that you
will get. The difference in pixel size for each mode is
illustrated in Figure 3.5.

MODE PIXEL SIZE (relative) PIXELS PER SCREEN

0

1

2

160 x 200 pixels

320 x 200 pixels

640 x 400 pixels

FIGURE 3. 5

PLOT
Each point has its own unique 'X' and 'Y' coordinates. These
range from 0,0 (the bottom left hand corner) to 640,400 (the top
right hand corner). To 'set', i.e. light-up' a pixel at any
point on the screen you use the PLOT command, in the form:

PLOT X,Y

where X and Y are the coordinates of the pixel to be set. For
example:

PLOT 100,100

3-6

This will set a pixel at the point one hundred across and one
hundred up from the origin. The origin is the position that has
the coordinate value of 0,0, i.e. the bottom left hand corner of
the screen. The colour is decided by the value of INK 1.

To PLOT a pixel at the centre of the screen type in the following
program:

PROGRAM 3.1

10 PLOT 320,200

When plotting a point the Amstrad looks at two things. Firstly
the X and Y coordinate values and secondly the MODE. In Mode 2
the pixel coordinates correspond exactly with the point
coordinates, therefore in mode two the Amstrad will plot only the
point specified by the coordinates. This is demonstrated below.

FIGURE 3.6(a)

However, when Mode 1 is being used the computer plots two points
because each pixel in Mode 1 is twice that of those in Mode 2. In
Mode 1 the pixels are grouped together in twos. Consequently the
plotting at one location will cause the second in that group of
two to be plotted as well. Thus the plotting of location 100,100
will cause location 100,101 to be switched on as well.

3-7

Mode 0 is treated in exactly the same way, but this time the pixel
size is twice that of Mode 1 and four times that of Mode 2.
Consequently one plot command in Mode 0 causes four points to be
set.

A Point Plotted In Mode 0

FIGURE 3.6(c)

In other words, the sizes of the pixels may differ, but regardless
of the mode being used the graphics screen always has the same
number of graphics points, i.e. 640x400. This means that, when
using modes 0 or 1 (where the resolution is less than 640x400),
drawing at any particular graphics point on the screen will
'light-up' certain surrounding points.

To demonstrate this point (?) further type in and run Program 3.2.

PROGRAM 3.2

5 MODE 0
10 FOR X=0 TO 640 STEP 4
20 PLOT X,100
30 NEXT X

Because each pixel in Mode 0 takes up four points this program
will produce a whole line across the screen even though it is
plotting in steps of four (it's also much quicker!). When it is
finished change line 5 to the following:

5 MODE 1

Now run the program. This time, because Mode 1 pixels are half
the size of Mode 0 pixels, the program will produce a dotted line
where every second point is set. When the program finishes again
change line 5.

5 MODE 2

This time every fourth point is set producing an even 'dottier'
line.

3-8

PART TWO

An Etcha-Sketcha Game
The main problem associated with any etcha-sketcha type of game is
that the program must get the computer to draw lines of
indeterminate length.

This problem can be overcome by arranging the program so that it
slightly increases a line's length every time a key is pressed.
This problem is tackled in Program 3.3. In order to prepare the
Amstrad to receive a new program it is essential to type in the
command NEW; do this now and then type in Program 3.3.

PROGRAM 3.3

10 MODE 1
70 INPUT D$
80 PLOT X,Y
90 X=X+1
100 GOTO 70

If you follow the program through, here is what it does.

• First the screen is cleared and set to MODE 1

• The computer asks for an input and waits for ENTER to be
pressed

• The point (X,Y) is plotted on the screen. (You may have to
look carefully for it!)

• The X coordinate is increased by 1.

• The program loops back to line 70 for another input. The
question-mark prompt appears one line lower each time line
twenty is reached.

• After a second input another pixel is set. You cannot see
this pixel because the PLOT coordinates for this pixel
have already been set by the first PLOT statement. In this
method it would take two inputs to set each pixel.

To see a new pixel after every input the X coordinate will have to
be increased in steps of two. This, however, is only true for
Mode 1. Those of you who may wish to try the program out on Mode
1 or 2 should add 4 and 1 to X respectively.

3-9

This still leaves us with a problem: the object of the game is for
the line to increase each time a key is pressed, but using INPUT
we have to press ENTER as well. Not only that but the question
mark prompt appears on the screen. There is a command which allows
you to input characters without pressing ENTER and without
displaying any form of input prompt. This is the INKEY$ command.

INKEY$
What the INKEY$ command does, as its name implies, is to take IN
the value of which ever KEY is pressed. The command takes the
form of:

A$=INKEY$

Where A$ is the string variable in which you want the value of the
key pressed to be stored.

The major differences between INKEY$ and INPUT is that INKEY$
accepts the keystroke without requiring ENTER to be pressed and
also the character is not displayed on the screen. Once INKEY$ is
encountered, the computer scans the area of memory where the
characters from keys that have been pressed are stored. This is
known as the 'keyboard buffer'. The first character it finds is
assigned to A$ and if nothing is found then a null string is
assigned to A$ and the program simply passes on. This command
can be used to halt a program until a key is pressed by simply
testing the keyboard buffer to see whether a particular key has
been pressed. If the test proves negative, i.e. if the key has
not been pressed, then the program is returned to the beginning of
the line and the check repeated. The following program shows this:

PROGRAM 3.4(a)

2 PRINT "PRESS 8 TO BEGIN"
3 A$=INKEY$
4 IF A$ <>"8" THEN 3

When the program is run now, nothing happens initially until the
'8' key is pressed. Once this is done, the program continues to
operate as it did before.

3-10

With a line such as 4 in Program 3.4(a), the program waits until a
particular key is pressed. For this line of the program to work
satisfactorily, the user needs to be told which key. needs to be
pressed. A program can be made more general by using the INKEY$
command to look in the buffer to see whether NO key has been
pressed, in which case the 'empty string' or 'null string' will be
stored. In BASIC a null string is described by means of two
quotation marks together, i.e. "". In a program it would be
entered as in line 4 of Program 3.4(b) below. What this line is
saying is that if the keyboard buffer contains the 'null string',
i.e. nothing, then go back for another input. This process will
be repeated forever until a key - except SHIFT or CAPS LOCK - is
pressed. The ESC key is also picked up but that only halts the
program, as usual.

PROGRAM 3.4(b)

4 IF A$="" THEN 3

Such a device is commonly used when one needs to pause a program
whilst the user reads a message. In this case some sort of prompt
is incorporated to tell the user what is expected. To do this,
lines 2 and 6 of Program 3.4(c) need to be added. Line 2 prints
the message onto the screen and once a key has been pressed, line
6 clears the screen using the CLS command.

PROGRAM 3.4(c)

2 PRINT"PRESS ANY KEY TO BEGIN"
3 A$=INKEY$
4 IF A$="" THEN 3
6 CLS

Lines 2 to 6 were used only for demonstration purposes and are no
longer needed so we have to get rid of them. This offers the
opportunity to examine another of Amstrad BASIC's editing
commands.

DELETE
To remove a single line you just type the relevant line number and
then press ENTER. This process can be repeated until all the
unwanted lines have been removed. Amstrad BASIC does, however,
have an easier way of removing groups of successive program lines;
this is the DELETE command.

3-11

To remove a whole block of lines you have to specify two things.
First, the line number that you want to start deleting at and
second, the line number that the deletion will finish at. Thus to
delete lines 2 to 6 type in:

DELETE 2-6

upon pressing ENTER these lines will be deleted. They are no more!
You must be careful when using the DELETE command. If you make a
mistake you could end up removing your entire program.

Delete has variations similiar to those used with LIST.

DELETE : Delete all of a program
DELETE 10 : Delete only line 10
DELETE 10-100 : Delete all lines from 10 to 100 INCLUSIVE
DELETE 10- : Delete all lines from line 10 onwards
DELETE -100 : Delete all lines up to and including line 100

Going back to the etcha-sketcha program, the INKEY$ command can be
incorporated via line 70. If no key has been pressed then the
program will loop around 'inside' line 70 until one is.

PROGRAM 3.5

70 A$=INKEY$:IF A$="" THEN 70

The next task is to modify the program so that it draws a line in
a chosen direction. This is achieved by testing the value of A$.
The Amstrad keyboard has four arrow keys, one pointing in each
direction (left, right, up and down). It would be nice if we could
use these keys to move the 'line' in the appropriate direction. To
allow for this the program could contain the following sequence of
instructions:

IF A$="f" THEN Y=Y+1
IF A$="4" THEN Y=Y-1
IF A$="<-" THEN X=X-2
IF A$="-+" THEN X=X+2

However, there is a slight problem. When you attempt to type in an
arrow between the quotes you do not get an arrow, the cursor moves
in the arrow's direction. This is quite a problem. If the cursor
arrows will not appear between the quotation marks how can an
input be tested for them? Help is at hand.

3-12

CHR$() and ASC()
Each key on the A instead keyboard has a special numeric value
referred to as its ASCII value. ASCII is an acronym from American
Standard Code for Information Interchange. The way to find out the
ASCII value of any character is to print its ASCII value using the
ASCII function. For example

PRINT ASCC'A")

Will result in a display of 65. Sixty five is the ASCII value of
upper case 'A'. The letter 'A' can now be displayed on the screen
by printing CHR$(65), e.g.

PRINT CHR$(65)

The number enclosed in brackets is an ASCII value of a character,
in this case an upper case 'A'.

Thus the arrow keys can be tested for by using their ASCII values
which are

240

t
242 4— 243

241

The test can be done in one of two ways:

IF ASC(241)=A$ THEN

or

IF A$=CHR$(241) THEN

The latter has been chosen but if you prefer to use the other then
you may.

3-13

PROGRAM 3.5(a)

80 IF A$=CHR$(240) THEN Y=Y+1
90 IF A$=CHR$(241) THEN Y=Y-1
100 IF A$=CHR$(242) THEN X=X-2
110 IF A$=CHR$(243) THEN X=X+2
220 PLOT X,Y
230 GOTO 70

Once these lines are added the program should draw in all four
directions. Experiment to see if you can draw rectangles using
it.

There is still one flaw however: the program won't stop unless you
press ESC twice. Therefore a further INKEY$ test is added. This
time if the test is positive, the command STOP is given.

PROGRAM 3.5(b)

120 IF A$="S" THEN STOP

This program certainly works now, but there are still 'bugs'. For
example, it is still possible to draw over the edge of the screen.
The Amstrad will allow you to keep plotting points off the screen,
but this is not much fun as you cannot see anything. One way to
avoid this is to use a further series of tests, as shown below in
Program 3.5(c):

PROGRAM 3.5(c)

130 IF X>640 THEN X=640
140 IF X<0 THEN X=0
150 IF Y>400 THEN Y=400
160 IF Y<0 THEN Y=0

If we include these lines then it becomes impossible to plot
points which are off the screen as, for instance, when X exceeds
640, line 100 resets it to this maximum value. Lines 110, 120 and
130 do a similar service for the minimum value of X and the
maximum and minimum values of Y respectively. The complete program
is listed below for your convenience. Lines 20 to 60 have been
added to allow the user to choose the position at which to start
drawing:

3-14

PROGRAM 3.5(d)

10 MODE 1
20 LOCATE 1,1
40 INPUT"X START" ;X
50 INPUT"Y START";Y
60 PLOT X,Y
70 A$=INKEY$
80 IF A$=CHR$(240) THEN Y=Y+1
90 IF A$=CHR$(241) THEN Y=Y-1
100 IF A$=CHR$(242) THEN X=X-2
110 IF A$=CHR$(243) THEN X=X+2
120 IF A$="S" THEN STOP
130 IF X>640 THEN X=640
140 IF X<0 THEN X=0
150 IF Y>400 THEN Y=400
160 IF Y<0 THEN Y=0
220 PLOT X,Y
230 GOTO 70

EXERCISE 3.2

Add an extra line so that if the ’R' key is
pressed, the program allows drawing to begin
again at a new start position. A possible
answer is given in the solutions chapter.

PART THREE

DRAW
Not only does PLOT put a pixel onto the screen but it also moves
the graphics cursor to the plot coordinates. The graphics cursor
is used to keep track of the last point that was plotted by the
computer. These coordinates are the start values for the DRAW
statement.

PROGRAM 3.6

10 MODE 1
20 PLOT 50,25

3-15

This program will put the computer into MODE 1 and then plot a
pixel at coordinates 50,25. You will be able to see this pixel if
you look closely enough, it is in the bottom left hand part of the
screen. This is where the DRAW statement will start to draw from.

PROGRAM 3.6(a)

30 DRAW 100,100

This will cause the Amstrad to draw a line from point 50,25 (as
specified in the PLOT statement) to point 100,100. The DRAW
statement allows us to draw lines starting from the coordinate
chosen in the PLOT statement and ending at the coordinates
specified in the DRAW statement itself.

The colour of the line drawn defaults to the value of INK 1. This
can be changed by adding the ink number that contains the required
colour to the DRAW statement.

PROGRAM 3.6(b)

30 DRAW 100,100,3

Looking at Figure 3.4 on page 3.4 we see that INK 3 has the colour
value of red whilst in MODE 1.

EXERCISE 3.3

Draw a sea green line from the centre of the
screen to location 64,93 in MODE 0. The
answer is in the solutions chapter.

The DRAW statement itself moves the graphics cursor, so the next
DRAW statement will continue where the last one left off.

PROGRAM 3.6(c)

10 MODE 1
20 PLOT 50,25
30 DRAW 100,100
40 DRAW 200,25

Line 20 positions the graphics cursor at coordinates 50,25, i.e.
fifty points across and twenty five up. The DRAW statement on line
30 begins at this point and draws a line to the one hundredth
point across and the one hundredth point up. This point is used by
the next DRAW statement, line 40, as the starting point and a line
is drawn from coordinates 100,100 to 200,25.

3-16

DRAWR
This variation of the DRAW command allows you to DRAW a line to a
point Relative to the current position of the graphics cursor.
For example,

PLOT 300,100: DRAW 50,50

This will draw a line starting at 300,100 and ending at point
50,50. DRAWR, however, will do something quite different.

PLOT 300,100: DRAWR 50,50

This will draw a line from point 300,100 to location 350,150, a
position fifty points up and across from the start location.

Using PLOT and DRAWR statements it is possible to write a small
program which allows the user to draw a variety of boxes onto the
screen. Program 3.7 draws a square with sides of 50 points.

PROGRAM 3.7

10 MODE 1
20 PLOT 320,200
30 DRAWR 50,0
40 DRAWR 0,-50
50 DRAWR -50,0
60 DRAWR 0,50

Line thirty plots a point at the centre of the screen. Then, using
DRAWR, line 30 draws a line fifty points to the right. This is
the top line of our square. The next stage is to draw the right
side (line 40). Having an X coordinate value of zero in the DRAWR
statement means the line will be drawn using the same X
coordinate. Having a minus value as the Y coordinate causes the
computer to draw the line down the screen. The program up to line
40 produces the following picture.

50

50

FIGURE 3.7

3-17

Lines 50 and 60 complete the square by first drawing the bottom
line and then the left hand side.

This program, wonderful though it is, is boring. It always draws
the same box. Really we would like to produce lots of different
boxes, some of them being squares and some rectangles. To do this
the plot coordinates will have to be variables. At the start of
the program the user can be asked to input the coordinates for
both X and Y. Add lines 2 and 4 of Program 3.7(a) to Program 3.7:

PROGRAM 3.7(a)

2 INPUT"TOP LEFT X:";X
4 INPUT"TOP LEFT Y:";Y

Now line twenty needs to adjusted accordingly.

PROGRAM 3.7(b)

20 PLOT X,Y

The program will now draw the same box anywhere on the screen. To
make the program really general we would need to input the height
and width values of a box. These modifications are included in
the program by adding to it Program 3.7(c).

PROGRAM 3.7(c)

6 INPUT"HEIGHT OF BOX:";H
8 INPUT"WIDTH OF BOX :";W

30 DRAWR W,0
40 DRAWR 0,-H
50 DRAWR -W,0
60 DRAWR 0,H

The box-drawing routine is now 'universal' and we can draw a
rectangular box anywhere on the screen.

EXERCISE 3.4

Add lines 3 and 5 to Program 3.7(a-c) so that
the start locations for the box are tested to
see if they are within the the allowed range.
If they are not then the program should be
looped back to recieve another input. A
possible answer is given in the solutions
chapter.

3-18

PART FOUR

Circles
The Amstrad does not have a circle command but it is possible to
draw a circle using PLOT. If some way could be found of
calculating the plot positions of a circle, then a circle could be
'plotted' onto the screen. This task is not quite as hopeless as
it sounds for help is at hand.

SIN() and COS()
For a circle, the mathematical functions we need are our old
friends from school, SIN and COS. These two useful functions will
be used to the full when we draw a circle. Let's first see what
they are and how they can help in this task.

Figure 3.8 shows the X and Y axes (horizontal and vertical
directions) with a line 'CB' one unit long drawn from the centre
'C of a circle, at an angle 'a' from the X axis.

If the line CB were rotated about the centre C the end B would
trace out a circle:

FIGURE 3.9

3-19

In order to use these ideas to draw a circle on the computer we
will need to know the 'X' and 'Y' coordinates of the end point of
CB. This, as you may have guessed, is where SIN and COS come in.

For a particular angle 'A' the 'X' and 'Y' coordinates are:

This value 'A' would be in radians, there being 2*pi radians in
360 degrees (a circle). Pi (pronounced 'pie' as in 'Apple pie') is
a number which is the ratio of the radius of a circle to its
circumference - the circumference of a circle is 2*pi*R
(R=radius). The actual value of pi is 3.14159... but you don't
have to worry about it because the Amstrad has a special variable
called Pl. This has the value of 3.14159265. Check this by
typing:

PRINT PI

Your Amstrad works in radians because the mathematical formulae
that the computer uses to calculate COS and SIN work naturally in
radians.

If we let 'A' be all the angles in a circle, i.e. 0 to 2*PI
radians, then SIN(A) and COS(A) give all the 'X' and 'Y'
coordinates of the points around the circle. Well that's all very
well for a circle with a radius of 'T but what about a circle
with a radius of '100'? If the radius is 100 times longer, then
everything is 100 times bigger, so the coordinates of *X' and 'Y'
become:

X=100*COS(A) Y=100*SIN(A)

For our circle we will use a radius value of 100.

3-20

To draw a circle we need to plot every point on the circumference
and to do this a FOR..NEXT loop will be needed. It will loop from
0 to 2*PI radians, or if you prefer 0 to 360 degrees (a complete
circle). The step size used allows the computer to draw a complete
circle, a larger step size will produce a dotted circle.

PROGRAM 3.8

10 MODE 1
20 R=100
30 FOR A=0 TO 2*PI STEP 0.01
40 X=R*COS(A): Y=R*SIN (A)
50 PLOT 320+X.200+Y
60 NEXT A

How's that? A wonderful circle created with SIN and COS. There is
however one problem: the circle takes a long time to be plotted,
about twenty seconds. Do not fret, it is possible to produce a
circle in a much shorter time. This can be done by one of two
methods.

First, increase the STEP size. Care must be taken when doing this
because too great a step value will produce a dotted circle. A
quite reasonable circle can be plotted using a step value of 0.02.
This will cut the circle plotting time in half, but that is still
quite slow.

The second method is to replace PLOT with DRAW. This causes the
program to draw a line to each new coordinate. Because DRAW
produces a complete line there will not be any gaps in the circle.
This allows us to increase the value quite significantly. Once
again, if the STEP size is increased too far problems arise and
the circle will appear more like a polygon. A suitable STEP size
is that of 0.1, ten times the step size used in line 30 of Program
3.8. These modifications are incorporated in Program 3.8(a).
Notice line 25; this moves the graphics cursor to the start
position of the circle.

PROGRAM 3.8(a)

10 MODE 1
20 R=100
25 PLOT 420,200
30 FOR A=0 TO 2*PI STEP 0.1
40 X=R*COS(A): Y=R*SIN(A)
50 DRAW 320+X.200+Y
60 NEXT A

3-21

Having typed in Program 3.8(a) and RUN it you will be aware that
we have a slight problem. The Amstrad has not drawn a complete
circle. You may feel that the computer has done something wrong
but computers do what you TELL them to do, not what you MEAN to
tell them.

To understand this problem we must refer back to the earlier
lessons abour FOR...NEXT loops. In chapter 2 we learnt that the
counter increases until it is equal to or greater than the count
limit. In the case of Program 3.8(a) the counter A will have the
values 5.9, 6.0, 6.1 and 6.2. The counter is then incremented to
6.3 but as this value is greater than the limit (2*PI=6.28318530),
so the FOR... NEXT loop ends without a further line being drawn.
This means that a small value (6.28318530-6.2) is left undealt
with. This error of 0.08... is nearly equal to the STEP size of
0.1 and so the gap appears.

In general, to deal with this type of problem we must ensure that
the step size divides exactly into the difference between the
counter start and limit values. In this case a simple solution is
to approximate the value of 2*PI as 6.3 in line 30. The step size
of 0.1 then divides exactly into 6.3 and a complete circle is
drawn.

EXERCISE 3.5

Draw a semi-circle using SIN and COS. The
centre should be at location 120,200 and the
circle radius 57. A possible answer is given
in the solutions chapter.

3-22

C H A P 1 E R 4

Strings and Structure: an Anagram Game

In chapter 2, a number guessing game was developed which utilised
a random number generated by the Amstrad. In this chapter a
similar game will be written, but this time using words, an
anagram game. Thus, instead of asking the player to guess a
number, the player will be required to guess a word. First of all
though, this chapter will investigate ways of storing these words
and then of delivering them one by one when required. This will be
done using structured programming techniques to demonstrate how a
complex program can be divided into simply understood sub
sections.

Each seperate part of the Anagram game will be developed as a
module. A module is a section of program that performs one major
operation. By way of example, the Anagram game developed in this
chapter has one module to choose a random word and another module
to jumble up the letters.

When dealing with random numbers, the Amstrad can generate an
endless supply to order. It has built into its ROM (Read Only
Memory) a program which produces these as rapidly as they can be
consumed. Of course, when dealing with words, the same thing is
not possible. Computers don't know anything about words and so
all the words to be used must be stored in the program somewhere,
and thus must be defined by the programmer. A common way of
storing such data is in strings, and the program could contain
such statements as:

LET A$="AMSTRAD"
LET B$="KEYBOARD"
LET C$="SCREEN"

4-1

READ...DATA
This, however, would be an extremely tedious way of doing the job
and BASIC provides an alternative method. It utilises two
commands, READ and DATA, the first one telling the machine to READ
one piece of data and the second telling it where to find the
data. The DATA statement is the one piece of program that is
footloose - it can go anywhere in the program. It is, however,
usual to put it right at the end so that it is out of the way.
Program 4.1 illustrates this, with line 100 reading one piece of
DATA, which is PRINTed out in line 110, the DATA originally having
been entered at line 9000.

PROGRAM 4.1

100 READ A$
110 PRINT A$
9000 DATA ONE, TWO, THREE

When run, this program will retrieve only one piece of DATA, e.g.
'ONE', and then PRINT this onto the screen. String data does not
have to be enclosed in quotes in a DATA statement. If the string
contains a comma, as in JONES,ED then it is wise to enclose it in
quotes. For example, try 9000 DATA "JONES,ED",ONE,TWO in Program
4.1.

Program 4.2 shows a very similar program where numbers are stored
rather than words.

PROGRAM 4.2

100 READ A
110 PRINT A
9000 DATA 1,2,3

In this program, the changes from Program 4.1 are really only what
one would expect: the numeric variable name 'A' replaces the
'A$'. Under no circumstances is numerical data enclosed in
quotes.

READ statements may be as simple or as elaborate as the program
demands and a number of variables could be READ in by one line of
program; e.g. READ A$,A,B$. However, when doing this the greatest
care must be taken to ensure that when the READ statement tries to
READ a number it finds a number and not a string. If a mismatch in
types occurs, the machine will report a 'syntax error' in the data
line where the unexpected string data is found. As the READ
statement is straightforward, try this little exercise!

4-2

EXERCISE 4.1

Write a program to READ the numbers 1 to 4
from DATA statements in both numbers and
words, and to display them on the screen like
so:

1 ONE
2 TWO
3 THREE
4 FOUR

A possible answer is given in the solutions
chapter.

Having found a way of storing and retrieving data, some way has to
be found of making a random selection from it. By using a
FOR...NEXT loop to READ a particular number of items from the
DATA, one particular piece may be retrieved, as shown in Program
4.3. In this program, the loop is executed three times, and thus
the third piece of data is retrieved.

PROGRAM 4.3

120 FOR X=1 TO 3
130 READ A$
140 NEXT X
150 PRINT A$
9000 DATA ONE,TWO,TH REE

In fact, three pieces of DATA will have been retrieved but only
the string 'THREE' is printed. On the first pass through the
loop, the value of A$ would have been 'ONE' but during the second
pass this would be overwritten by 'TWO' and then finally by
'THREE'. It was this string THREE' that was stored in A$ at the
time that line 150 displayed the string on the screen.

On each pass through the loop, line 130 READs the next item in the
DATA statement. It knows which item is next as, each time a READ
is performed, a pointer is moved along one item to point to the
next one to be read. This can give rise to problems if an attempt
is made to read more DATA than exists. For instance, if Program
4.3 is made to READ through the DATA more than once, then there
won't be enough data and the computer will tell you. Try this out
by adding Program 4.3(a) into Program 4.3.

4-3

PROGRAM 4.3(a)

160 GOTO 120

When Program 4.3(a) is RUN, the computer will report back:

DATA exhausted in 130

It is simply telling you that it has READ all the DATA and is
looking for more but can't find any! To keep track of where it is
in the data, the Amstrad's BASIC uses a 'pointer' and this it
moves along to point to the next piece of DATA to be READ. For
instance before line 130 of Program 4.3(a) is read the Amstrad's
DATA structure is as in Figure 4.1.

POINTER

DATA ONE TWO THREE

FIGURE 4. 1

Thus in the first 'READ A$', the string 'ONE' is assigned to A$
and the pointer moved to point to 'TWO' as in Figure 4.2.

NTER

DATA ONE TWO THREE

FIGURE 4. 2

The next time around TWO' is stored in A$ and the pointer moved
again, Figure 4.3.

POINTER

DATA ONE TWO THREE

FIGURE 4. 3

4-4

On the final pass through the loop, the string THREE' is stored
in A$ and, once again the pointer moved. Because there is no more
data the pointer is moved to a position after three, pointing at
nothing.

POINTER

DATA ONE TWO THREE

FIGURE 4. 4

After this pass through the loop, the program passes the 'NEXT X'
and line 150 PRINTS out the value of A$ which is currently
'THREE'. Having done this, line 160 redirects the program to line
120 and the FOR... NEXT loop starts again.

When line 130 is encountered again the computer sees that the
pointer is pointing at nothing thus indicating that there is no
more data. It is at this stage that the computer gives the
message.

DATA exhausted in 130

On many occasions, a program needs to use the same DATA over and
over again and, for this to happen, the pointer needs to be moved
back to the beginning of the DATA. This is brought about by means
of the BASIC command:

RESTORE

This has the effect of moving the pointer back to the beginning of
the DATA. It is demonstrated in Program 4.4 where a 'RESTORE' is
performed before sending the program back to begin the loop again.

PROGRAM 4.4

120 FOR X=1 TO 3
130 READ A$
140 NEXT X
150 PRINT A$
160 RESTORE:GOTO 120
9000 DATA ONE, TWO, THREE

4-5

When Program 4.4 is run, it runs through the DATA endlessly.
However, each time it runs through the loop it reaches the string
THREE', this being defined by the loop value 3. For the Anagram
game the word guessed needs to be chosen randomly. This will be
done using a special form of variable called an ARRAY.

Arrays

An array is a series, or list, of related variables. They are
related in that they have the same name. A street can be looked
upon as a sort of array. The street has one name and all the
houses have a number, Figure 4.5.

FIGURE 4.5

As the diagram shows, the Arnolds live at number three Amstrad
Street. This could be written like so:

AMSTRAD STREET(3)=ARNOLDS

where 'Amstrad Street' is the array name and '3' is the array
pointer and Arnolds is the value stored therein. If all of the
words in the anagram game were to be stored under the collective
name of WORD$, the first could be WORD$(1), the second W0RD$(2),
etc. This is demonstrated in Program 4.4(a)

PROGRAM 4.4(a)

10 FOR X=1 TO 4
20 READ WORD$(X)
30 NEXT X
9000 DATA FLOWER, RAIN, AMSTRAD, COMPUTER

After running this program the array WORD$ will contain the
following values:

WORD$(1)="FLOWER"
WORD$(3)=" AMSTRAD"

WORD$(2)="RAIN "
WORD$ (4)="COMPUTER"

4-6

The random number can now be chosen from those in the array.
Program 4.4(b) demonstrates this:

PROGRAM 4.4(b)

40 R=INT(RND*4)+1
50 A$=WORD$(R)
60 PRINT A$

Line 40 generates a random number which is then stored in R. Next
the Rth value of the array WORD$ is stored in A$. This is then
printed out. When we ran the program TLOWER' was displayed.

Using this method all of the words for the Anagram game can be
stored in array WORD$. Program 4.4(c) uses WORD$ to store twenty
different words.

PROGRAM 4.4(c)

10 FOR X=1 TO 20
20 READ WORD$(X)
30 NEXT X
40 R=INT(RND*20)+l
50 A$=WORD$(R)
60 PRINT A$

9000 DATA FLOWER, RAIN, AMSTRAD, COMPUTER
9010 DATA ADAPT, CREATE, IMAGINE, FRUIT, WALL
9020 DATA CONFUSION, STRANGE, BEAUTIFUL
9030 DATA PLASTIC, ELASTIC, BOMBASTIC, GRAND
9040 DATA YESTERDAY, NEWSPAPER, POT, PEANUT

What this program should do is read twenty words into the array
WORD$ and then randomly print out one of the words. What actually
happens is another matter! The program reports back:

Subscript out of range in 20

This is the Amstrad's way of telling you that you are trying to
assign too many values to an array. If the computer is not told
how many values the array WORD$ can hold then a value of 10 is
assumed. Any attempt to read in, or print out, the 11th value of
WORD$ will result in a subscript out of range error.

4-7

The command that tells the computer how many array values we need
is called:

DIM
The DIM command (DIM is an abbreviation of DIMension) tells the
computer to allocate a specified number of locations to a certain
variable; e.g.

DIM WORD $(20)

will reserve twenty locations for the array WORD$. Now if we add
Program 4.4(c) to Program 4.4(d) it will work properly.

PROGRAM 4.4(d)

5 DIM WORD $(20)

One quirk of DIM is that you cannot DIMension the same array more
than once in a program. For example, if line 7 of Program 4.4(c)
was added and the whole thing run the following error message
would appear:

PROGRAM 4.4(e)

7 DIM WORD$(20)

Array already dimensioned in 7

This error message tells the user, quite clearly, that the array
dimensioned in line 7 has already been DIMed earlier in the
program.

Arrays work in the same way with numeric variables. To demonstrate
this type in this short program.

PROGRAM 4.4(f)

1 DIM T(50)
2 FOR X=1 TO 50:T(X)=X:NEXT X
3 FOR X=1 TO 50
4 PRINT T(X);: NEXT ¡STOP

Upon running this program the computer will display the numbers
one to fifty which are the contents of the variables T(l) to
T(50). Before continuing with the Anagram game delete lines 1-4.

4-8

Module 1

FIGURE 4.6

Figure 4.6 illustrates diagrammatically how this particular module
works - run it and you'll find a randomly chosen item of the DATA
in A$.

As we will use this piece of program later on let's store it away
out of harm's way by renumbering it from line number 1000 onwards.

RENUM
The Amstrad BASIC command RENUM is used to RENUMber lines. Renum
has three arguments. The first is where you want the new line
numbers to begin at. In this example it will be line 1000. The
second value is the line number that you want to renumber from,
in this example line 120. The third and final argument is the step
size that you wish the lines to increase by. We will use 10.

new numbers
RENUM to start

at line

begin to
renumber
at line

increase line
numbers in
steps of

In our example the RENUM command will look like this:

RENUM 1000,5,10

All three values in the RENUM command are optional. If left out
they will be replaced by 10. For example, typing in RENUM with no
arguments will cause the whole program to be numbered starting at
line 10 and increasing in steps of ten. Before doing this, delete
line 60.

4-9

PROGRAM 4.5

1000 DIM WORD$(20)
1010 FOR X=1 TO 20
1020 READ WORD$(X)
1030 NEXT X
1040 R=INT(RND*20)+l
1050 A$=WORD$(R): AA$=A$
1060 DATA FLOWER, RAIN, AMSTRAD, COMPUTER
1070 DATA ADAPT, CREATE, IMAGINE, FRUIT, WALL
1080 DATA CONFUSION, STRANGE, BEAUTIFUL
1090 DATA PLASTIC, ELASTIC, BOMBASTIC, GRAND
1100 DATA YESTERDAY, NEWSPAPER, POT, PEANUT

This particular section of program needs to be split into two
sections. The first section sets up the array and this will only
be called up once at the beginning of the program. The second
section is that which randomly chooses the word. Another Renum
command can be used to seperate the two sections. Type in:

RENUM 1100,1040,10

The program should now look like this:

1000 DIM WORD$(20)
1010 FOR X=1 TO 20
1020 READ WORD$(20)
1030 NEXT X

1100 R=INT(RND*20)+l
1110 A$=WORD$ (R): AA$=A$
1120 DATA FLOWER, RAIN, AMSTRAD, COMPUTER
1130 DATA ADAPT, CREATE, IMAGINE, FRUIT, WELL
1140 DATA CONFUSION, STRANGE, BEAUTIFUL
1150 DATA PLASTIC, ELASTIC, BOMBASTIC, GRAND
1160 DATA YESTERDAY, NEWSPAPER, POT, PEANUT

Line 1110 has been altered to create a second copy of the randomly
chosen word. The first copy, stored in array A$, will be used to
create the Anagram version.

Slicing Up Words

In the anagram game that we are developing, it will be necessary
to 'slice up' the words to identify their individual letters. To
do this we utilise the BASIC functions:

4-10

LEFTS, RIGHTS and MIDS
Amstrad BASIC provides several ways to chop up strings. Two of
these are LEFTS and RIGHT$. These simply lop off the left and
right ends of strings respectively. Let's try chopping up a few
strings for practice! Firstly we'll set A$ to "COMPUTER". To
use the jargon, we will 'set the value of the variable A$ to the
literal value "COMPUTER"'. The first practice will be with
'LEFT$'. LEFTS gives the specified number of left-most characters
of a string and takes the form:

LEFTS (X$,N)

where 'X$' is the string we wish to chop
of characters we wish to remove.

up and 'N' is the number

In our example the string is A$, which is set to 'COMPUTER'. If we
wished to remove the first 4 characters i.e. 'COMP' we would use
the following method:

A$="COMPUTER"
B$=LEFT$(A$,4)
PRINT B$

LEFTS(A$,4)

-.. .1-_
A$=COMPUTE R

12 3 4
B$ = C O M P

FIGURE 4.7

The command RIGHT$() works in exactly the same way, except that
it starts counting from the RIGHT-hand side of the string. RIGHTS
takes the following form:

RIGHT$(X$,N)

where X$ is the string, and N is the number of characters to be
removed.

Thus, if A$="COMPUTER", C$=RIGHT$ (A$,5) will set the string C$ to
"PUTER", the 5 right-most characters of "COMPUTER". Try it out to
make sure!

4-11

In contrast, the MID$ function can start anywhere in the string.
It allows the programmer to chop away selectively small or large
bits of the string being worked upon. MID$ takes the form:

MID$(X$,S,N)

where X$ is the string to be 'cut-up', S is the character from
which the operation should start and N is the number of characters
to be removed. It can cut away from the middle or either end of
the string. Let's examine that in more detail, using the example

A$ = "COMPUTER"
C$ = MID$(A$,4,3)

• When the computer sees C$=MID$(...) it knows that a string
is to be dissected and the result stored in the string C$.

• It then carries on and sees MID$(A$...). It translates
this into 'first find A$ and get prepared to operate on
it'.

• Next it sees the '4' in MID$(A$...) and this tells it to
start at the fourth character of the string.

• Then it reads the '3' in MID$(A$,4,3) and, starting at the
fourth character of the string, it strips off three
characters. These it stores in C$.

Thus, following the operation, C$ would contain "PUT".

In general terms, the structure of the command is:

MID $(A$,START, LENGTH)

'START and 'LENGTH' must both be whole numbers. MID$ will cut out
a part of the string A$ starting at character number 'START' and
of length 'LENGTH' characters. Diagrammatically, MID$ appears as:

B$ = MID$(" A M S T R A D ",2,4)

I
b$ = "|m s t r|

FIGURE 4.8

4-12

Using these string handling commands enables you to slice up a
word on demand, taking individual letters as required. Thus, each
time a letter is required from anywhere within a word it can be
obtained by means of MID$. Program 4.6 shows this in action as
MID$ reads step by step through a word, printing each letter as it
goes.

PROGRAM 4.6

1500 LET A$="COMPUTER"
1510 FOR X=1 TO 8
1520 B$=MID$(A$,X, 1)
1530 PRINT B$
1540 NEXT X

One of the problems that Program 4.6 would present, were we to try
and use this as a module in a program, is that it works when the
word has eight letters but for words with more or fewer letters,
it would prove to be problematical. But, you've guessed it, BASIC
has a fix for this with the function:

LEN()
This command is used to tell how many characters are in a
particular string - in the jargon, LEN() 'returns' the length of
a string. Test it out with:

PRINT LEN("COMPUTER")

and then with a few other strings; each time it should print out
the length of the string involved. Program 4.6 can now be re
written so that the loop will run through the correct number of
times, whatever the string length, as in Program 4.7.

PROGRAM 4.7

1500 LET A$="COMPUTER"
1510 FOR X=1 TO LEN(A$)
1520 B$=MID$(A$,X, 1)
1530 PRINT B$
1540 NEXT X

4-13

Whatever the string that is assigned to A$, the loop will now
always handle it. However, the aim of this project is an anagram
guessing game so the module that we are developing should re
arrange the letters and not leave them in the same order! It is
line 1520 that dissects the string and this it does in an orderly
way, starting at 1 and progressing through to LEN(A$). One way to
make it less orderly would be to replace the variable X in line
1520 with a random number which lies between 1 and LEN(A$). This
can be done by setting a variable, say R, to the appropriate
random number and replacing line 1520 by:

B$=MID$(A$,R, 1)

And the random number - remember the drill from chapter 2 where we
found we needed to add 1 to produce the correct range -

R=INT(LEN(A$)*RND)+1

This can be added in Program 4.7:

PROGRAM 4.7

1515 R=INT(LEN(A$)*RND)+1
1520 B$=MID$(A$,R,1)

So, when lines 1515 and 1520 are added to Program 4.7 it yields
Program 4.8, below:

PROGRAM 4.8

1500 LET A$="COMPUTER"
1510 FOR X=1 TO LEN(A$)
1515 R=INT(LEN(A$)*RND)+1
1520 B$=MID$(A$,R, 1)
1530 PRINT B$
1540 NEXT X

Now, when this is run it will print out the letters of A$ in a
random way. Just one problem though! If you look at the letters
printed its almost certain that one or more has been repeated.
This is because, once a letter has been chosen at random, it
remains in A$ to be chosen again! What we need to do is to remove
each letter once it is guessed, a fairly tricky operation!
However, it can be done without too much difficulty, thanks to the
commands LEFT$ and RIGHTS.

4-14

Say for instance that the random letter chosen was the ’P* in
'COMPUTER', i.e.

B$

A$ = COMPUTER

In order to 'remove' B$ we must take the section of string to the
left of P and that to the right of P and add them together,
calling this the new A$.

As B$ is the letter defined by the random value R, i.e. the R'th
letter (in this case the fourth), there are R-l letters to the
left of it (in this case 3). The string to the right of B$ is
slightly more complex as it consists of the whole word minus R
characters, i.e. LEN(A$)-R characters. In this case 8-4 = 4
characters. The new value of A$ is then made up from the part to
the left of the 'R' plus the part to the right i.e.

B$

A$ =" C O MP U T E R "

LEFTS (A$,R-l) RIGHT$(A$,LEN(A$)-R)

New A$ = LEFT$(A$,R-1)+RIGHT$^$,LEN(A$)-R)

U T E RC O M

FIGURE 4.9

To form the new A$ the left and right parts can be added together
just as if they were numbers! When this is done to strings it is
given the fancy term 'concatenation'! To try this out type in the
direct line:

A$="FRED":B$="DY":C$=A$+B$:PRINT C$

This will print out 'FREDDY'.

4-15

Using this device, Program 4.8 can be modified so as to take out
one letter at a time, close up the remainder of A$ and then to add
the letter removed to the new string. The result of this
concatenation - or adding together - will be stored in a string
called AN$ (ANswer) which will be gradually increased, one letter
at a time, until it contains all the letters. However, to start
off, this string must be emptied or set to an empty string, i.e:
AN$='”'. If you're not too sure of this process carry out the
following little exercise. Type in Program 4.9

PROGRAM 4.9

1 A$="FRED": AN$="AND"
2 PRINT A$;AN$;A$
3 STOP

When you run this you should get a display of

FREDANDFRED

Now modify Program 4.9 as shown below in Program 4.9(a) in order
to set AN$ to an empty string. (Also known as a null string).

PROGRAM 4.9(a)

1 A$="FRED": AN$=""

When this is RUN the display should show:

FREDFRED

In other words, the string AN$ is now empty. Having seen that,
delete lines 1-3. Applying that idea to Program 4.8 yields Program
4.10:

PROGRAM 4.10

1500 LET A$="COMPUTER":AN$=""
1510 FOR X=1 TO LEN(A$)
1520 R=INT(LEN(A$)*RND)+1
1530 B$=MID$(A$,R, 1)
1540 AN$=AN$+B$:PRINT AN$
1550 A$=LEFT$(A$,R-1)+RIGHT$(A$,LEN(A$)-R)
1560 NEXT X

When run, Program 4.10 will print out the anagram, stage by stage
as it is built up. Also, as A$ becomes progressively smaller, the
random number that selects the letter (R) becomes progressively
smaller too - very convenient eh?

4-16

Putting this into a diagram and calling the module number 2 gives
Figure 4.10.

SID

Module 2

FIGURE 4.10

Program 4.11 shows the module with the intermediate 'PRINTS'
removed.

PROGRAM 4.11 - Module 2(Part)

1500 AN$=""
1510 FOR X=1 TO LEN(A$)
1520 R=INT(LEN(A$)*RND)+1
1530 B$=MID$(A$,R, 1)
1540 AN$=AN$+B$
1550 A$=LEFT$(A$,R-1)+RIGHT$(A$,LEN(A$)-R)
1560 NEXT X

Now that two modules have been written, what is needed is a way of
calling these up, as and when required. This is achieved by
treating the modules as subroutines and 'calling' them when
required. The 'calling' part is done by the BASIC command 'GOSUB'
which, in effect means 'go to the subroutine starting at the given
line number'. Test this in direct mode by typing in the direct
command:

GOSUB 1000

What happened? Then computer should have executed module 1 and
chosen a word from the DATA list. However, this did not happen.
The Amstrad has displayed the following message:

Array already dimensioned in 1000

4-17

The Array was already dimensioned when we ran the program
previously. The RUN. command tells the computer to forget the value
of all variables, including arrays, before starting to execute the
program. This time however, the program was not RUN but executed
by a

'GOSUB 1000'

This does not 'initialise' any variables and so the computer tells
you that the array WORD$ has already been dimensioned.

To get around this problem simply type in:

'GOSUB 1100'

this will execute the program with the exception of line 1000.
Once you have typed in the above line you will see the ready
message appear. You think that the Amstrad has run Module one and
finished, but it will have done more than that; once it has run
through module 1 it will have run directly into module 2 to carry
out the randomization of AN$. The running of module 2 was
unplanned and, therefore, out of control. To regain control the
computer needs to be told when the subroutine is ended by means of
the construction:

GOSUB...RETURN
This construction directs a program to a subroutine by means of
GOSUB and sends it back once the RETURN is encountered. The
program returns to the statement immediately after the GOSUB call.

To accomodate the changes required, modify the two modules by
adding the lines

1040 RETURN
1170 RETURN
1600 RETURN

The two modules can now be used in a really structured way, by
being called from a program control module starting at 500, i.e:

PROGRAM 4.12

460 GOSUB 1000:REM SET UP THE ARRAY
510 GOSUB 1100:REM PICK A WORD
520 GOSUB 1500: REM SCRAMBLE IT
640 END

4-18

Once the word has been scrambled and the anagram produced it can
be printed onto the screen. This is done in line 530 of Program
4.12(a).

PROGRAM 4.12(a)

530 LOCATE 1,6:PRINT"THE ANAGRAM IS ";AN$

Module 3: Inputting the guess
This module should, apparently, present no great problems as it
seems that a straight-forward 'INPUT* command could cope. However,
it is necessary during the inputting of data to check whether
detectable errors have been made. It's much easier to do this when
the characters are accessible individually than when they are all
recieved with a single 'INPUT* command. For this reason an input
routine will be created using the INKEY$ command. By this means,
each character can be checked as it is typed in and the end of the
input sequence will be detected when the user presses the RETURN
key. The problem is how to test for a press of the ENTER, key.
Unlike most of the keys on the Amstrad keyboard the ENTER key does
not place a character on the screen when pressed. To test for a
press of the ENTER key we need to use a new command.

CHR$
Every key on the Amstrad keyboard has a special character number
which the computer uses to identify it. This number is referred to
as its ASCII value. ASCH is an acronym from American Standard
Code for Information Interchange. One of the commands used in
association with the ASCII values is CHR$. To demonstrate the CHR$
command type in the following:

PRINT CHR$(47)

The Amstrad will display '/'. The CHR$
computer to display on the screen the
value of forty seven. As mentioned above
ASCH value, even the ENTER key.

command has told the
character with a ASCII
every key has its own

PRINT CHR$(13)

Thirteen is the CHR$ value for the ENTER key. The Amstrad cannot
display 'ENTER' without being told to PRINT"ENTER", which is NOT
the same thing so it has done the next best thing - it has
actually performed an ENTER. This makes the cursor appear two
lines lower on the screen.

4-19

To test if ENTER has been presses a line 2020 in Program 4.13 can
be used.

PROGRAM 4.13

2010 Z$=INKEY$:IF Z$="" THEN 2010 Input a character
2020 IF Z$=CHR$(13) THEN END check for RETURN
2060 GOTO 2010 look for next input

Program 4.13 will accept a string of inputted characters but does
not store them. In order to do this, the individual characters
must be added together to form the guess, say G$. Don't forget,
though, that each time a guess is inputted it must be built up
from scratch by setting G$ equal to a null string.

PROGRAM 4.14

2000 G$=""
2040 G$=G$+Z$

If all the words that are to be guessed are to contain only
letters, then a check can be made to ensure that this is so. These
all lie between 'a' and 'z' and therefore can be checked by
saying: If Z$ does not lie between a and z then go back for
another input' i.e.

2030 IF Z$<"a" OR Z$>"z" THEN GOTO 2010

Line 2030 tells the computer to check the CHR$ value of the input
character with 'a' and 'z'. If the input character is less than
the character value of 'a' or it is greater than the character
value of 'z' then it is not a letter and the input is ignored.
Because the Amstrad has different CHR$ values for upper and lower
case letters you must make sure that CAPS LOCK is off before you
run this program.

Putting this together to form an input module - module 3:

4-20

PROGRAM 4.15

2000 G$=""
2010 Z$=INKEY$:IF Z$="" THEN 2010
2020 IF Z$=CHR$(13) THEN RETURN
2030 IF Z$<"a" OR Z$>"z" THEN 2010
2040 G$=G$+Z$
2050 LOCATE 16,8:PRINT G$
2060 GOTO 2010

Line 2050 displays what you are inputting, letter by letter. Take
great care whilst typing in your guess because you cannot correct
a mistake.

So that's the inputting process! However, it still needs hooking
up by means of the program control module, i.e. as Program 4.16.

PROGRAM 4.16

460 GOSUB 1000: REM SET UP THE ARRAY
510 GOSUB 1100:REM PICK A WORD
520 GOSUB 1500: REM SCRAMBLE IT
530 LOCATE 1,6:PRINT"THE ANAGRAM IS ";AN$
535 LOCATE 1,8:PRINT"YOUR GUESS IS”
540 GOSUB 2000:REM INPUT A GUESS

Once the guess has been inputted, it needs to be compared with the
original word and the appropriate message given. Let's develop
this as Module 4.

Module 4: Testing the guess

A simple comparison will serve to test whether or not the word is
correct, i.e.

IF G$=AA$ THEN guess is correct

Tests of this type can be used where tests are made for each
condition and the appropriate message given immediately as in
Program 4.17.

PROGRAM 4.17

2510 IF G$=AA$ THEN PRINT "WELL DONE GUES
S CORRECT"
2520 IF GOAA THEN PRINT"SORRY THAT'S
NOT CORRECT! TRY AGAIN"

4-21

However one of the problems with this direct technique is that it
is restricted to producing a message immediately after the
IF...THEN. Even more of a problem is where more instructions are
needed following the test. For instance, when the guess is correct
it would be desirable to ask the player whether another go is
required.

This problem is overcome by having one routine to check the guess
and another two routines to report on it. One routine for a
correct guess and the other for an incorrect guess. In order to
incorporate this, a method is needed to transfer information from
one routine to another. This is done using FLAGS. A flag is a
special variable that is used to indicate whether a condition has
been met. If the condition is met then the flag is set to '1'
otherwise it is set to 'O'. Using flags in this manner it is quite
simple to develop a routine to check the player's guesses.

PROGRAM 4.18

2510 IF G$=AA$ THEN Fl=l

The variable AA$ contains the word that the anagram was created
from. If G$ (the player's guess) is equal to this then the flag Fl
is set to one.

As well as testing to see whether the player has guessed
correctly, this routine can be used to check how many guesses the
player has had. This program will allow a maximum of six goes. If
the word has not been guessed by the sixth attempt then the player
has lost. Another flag is used when checking the COUNT value: this
is caHed F2. If all the guesses have been used up then F2 is set
to '1' otherwise it is zero.

PROGRAM 4.18(a)

2520 IF COUNT=6 THEN F2=l

Having completed the two tests the routine needs to be RETURNed to
the control program, line 2530. Line 2500 sets the initial value
of both flags to zero. This initialisation prevents the flags from
passing the wrong information during a second run of the program.

PROGRAM 4.19

2500 Fl=0:F2=0
2510 IF G$=AA$ THEN Fl=l
2520 IF COUNT=6 THEN F2=l
2530 RETURN

4-22

The next step is to act upon the value of the flags. If Fl is 1
then the guess was correct and the player needs to be told that
they have won. The control module tests the guess; if it was
correct then the routine at 2600 is called up. If the guess was
wrong then the routine at 2800 is called.

PROGRAM 4.20

550 GOSUB 2500:REM CHECK GUESS
560 IF Fl=l THEN GOSUB 2600:GOTO 590:REM WIN
580 IF Fl=0 THEN GOSUB 2800:GOTO 535

The routine at 2600 needs to tell the player that they have won
and how many gueses it took. Lines 2610, 2620 and 2630 use a new
command called SPACE$. The SPACE$ command is used to print spaces!
The number of spaces required is indicated by the number in
brackets. In Program 4.20(a) forty spaces are printed. By printing
spaces in the appropriate places all the unwanted messages are
removed from the screen prior to telling the player that they have
won.

PROGRAM 4.20(a)

2600 REM YOU HAVE WON
2610 LOCATE 1,8:PRINT SPACE$(40)
2620 LOCATE 1,12:PRINT SPACE$(40)
2630 LOCATE 1,14:PRINT SPACE$(40)
2640 LOCATE 1,8
2650 PRINT"THAT IS CORRECT!"
2660 LOCATE 1,10
2670 PRINT"THAT TOOK YOU";COUNT;"ATTEMPTS"
2680 RETURN

If the guess was incorrect then Fl=0 and the program is directed
to the incorrect guess subroutine. Once this routine has been
returned from, the program is redirected to line 530 for another
input.

4-23

PROGRAM 4.20(c)

2800 REM INCORRECT GUESS
2810 LOCATE 1,10
2820 PRINT»™ SORRY THAT IS WRONG"
2830 FOR X=1 TO 1000: NEXT X
2840 LOCATE 1,12
2850 PRINT"YOU HAVE HAD";COUNT;"GOES"
2860 LOCATE 1,14
2870 PRINT"YOU HAVE";6-COUNT;"TRIES LEFT"
2880 FOR X=1 TO 1000: NEXT X
2890 LOCATE 1,10: PRINT SPACE$(40)
2900 LOCATE 1,8:PRINT SPACE$(40)
2910 COUNT=COUNT+1
2920 RETURN

Lines 2890 and 2900 use SPACES to remove the player's guess and
the I’M SORRY THAT IS WRONG' message.

The final part of the fourth module checks to see whether all the
goes have been used up (i.e. F2=l). If they have then the player
needs to be told that they have lost and what the word was that
they were trying frantically to guess.

PROGRAM 4.20(a)

570 IF F2=l THEN GOSUB 3000:GOTO 590: REM LOST
3000 REM YOU HAVE LOST
3010 LOCATE 1,10:PRINT SPACE$(40)
3020 LOCATE 1,12:PRINT SPACES(40)
3030 LOCATE 1,14:PRINT SPACES(40)
3040 LOCATE 1,8
3050 PRINT'TM SORRY YOU HAVE LOST"
3060 LOCATE 1,10
3070 PRINT"THE WORD WAS ";AA$
3090 RETURN

Module 4

FIGURE 4.11

4-24

The major part of the program is the control routine. So far it
looks like this:

PROGRAM 4.21

460 GOSUB 1000:REM SET UP THE ARRAY
510 GOSUB 1100:REM PICK A WORD
520 GOSUB 1500: REM SCRAMBLE IT
530 LOCATE 1,6:PRINT"THE ANAGRAM IS ";AN$
535 LOCATE 1,8:PRINT"YOUR GUESS IS"
540 GOSUB 2000:REM INPUT A GUESS
550 GOSUB 2500: REM CHECK GUESS
560 IF Fl=l THEN GOSUB 2600:GOTO 590:REM WIN
570 IF F2=l THEN GOSUB 3000:GOTO 590:REM LOSE
580 IF Fl=0 THEN GOSUB 2800:GOTO 535

The lines 500 to 560 call up all the routines and test all the
conditions. This is the core of the program. All that needs to be
added is the rules and a test to see whether another go is
required. Also the value of COUNT needs to be set to zero at the
beginning of the program.

In structured programming the rules of the game should be included
in their own little subroutine which the computer calls up before
anything else. This is what Program 4.22 does.

PROGRAM 4.22

450 GOSUB 3500:REM THE RULES

3500 REM THE RULES
3510 MODE 1
3520 LOCATE 12,2
3530 PRINT"**ANAGRAM GAME!**"
3540 LOCATE 12,4
3550 PRINT"HERE ARE THE RULES"
3560 LOCATE 8,8
3570 PRINT"! WILL THINK OF A WORD THEN"
3580 LOCATE 8,10
3590 PRINT"! WILL JUMBLE UP THE LETTERS"
3600 LOCATE 7,12
3610 PRINT"YOU MUST TRY TO GUESS THE WORD"
3620 LOCATE 5,18
3630 PRINT"**PRESS THE SPACE BAR TO BEGIN**"
3640 IF INKEY$<>" " THEN 3640
3650 RETURN

Having displayed the rules we now need to set COUNT to its initial
value of zero (line 470). Lines 480 and 490 display the game's
title once again so that you know which game you are playing.

4-25

PROGRAM 4.23

470 CLS:COUNT=1
480 LOCATE 12,2
490 PRINT"**ANAGRAM GAME**"

The final part of this game is to ask the player whether another
go is required. This is done only if they have guessed correctly
or if all the guesses have been used up. Thus it is placed at
lines 590 to 630.

PROGRAM 4.24

590 LOCATE 4,12
600 INPUT "DO YOU WANT ANOTHER GO (Y/N)";B$
610 IF B$="Y" THEN 470
620 CLS: LOCATE 14,12
630 PRINT"GOODBYE"
640 END

LOWERS
At the moment the game works quite well but with one minor
irritation, the user has to make sure that the computer is set to
lower case before running the program. This is because line 2030
test each inputted character to see if its ASCII value is less
than or greater then the ASCII value of lower-case 'a' and 'z'
respectively. If the Amstrad is in capitals mode then the letter
characters would be ignored (Amstrad has different ASCII codes for
'A' and 'a'). Help is at hand in the shape of the LOWERS command.
This converts a string of characters into lower case. For example:

A$="SMALL LETTERS"

PRINT LOWERS (A$)

This will display 'small letters' in 'small letters'! If the
string already contained lower-case letters then all very well,
nothing would have been changed.

LOWERS can be incorporated into the program by adding line 2025.
This converts each character input into lower case so now it
doesn't matter if the computer is switched to upper or lower case.

PROGRAM 4.25

2025 Z$=LOWER$(Z$)

4-26

UPPERS
This, if you haven't already guessed, converts strings into upper
case letters. For example:

A$="big letters"

PRINT UPPER$(A$)

This will display 'BIG LETTERS' in 'big letters'!

That completes this introduction to structured, 'modular'
programming, leaving you, the user, with a completely structured
program.

4-27

Top- down programming : A Hangman Game
There are many different ways of structuring a

'program

and each
one has its adherents. Those who believe in one way tend to do so
with an almost religious fervour - an unshakable belief. In this
chapter, one particular approach will be followed but no claim is
made for its total omnipotence. It's just one way among many!
However, it is a technique that many now feel to be particularly
valuable.

But first....

When writing any complex program, the
things to paper right at the beginning.
be asked and these are:

author must commit certain
Certain questions have to

. . What does the program set out to achieve?

How will i t interact with
be needed from the user
produce?

the user i.e. what
and what outputs

inputs will
will these

. What strategy
processes?

will be used to carry out the necessary

In the ease of the hangman game, these are not really terribly
difficult questions and are probably much more pertinent when
large complex systems are involved. However...

The program will set out to achieve an
dialogue between the computer which generates
word and the user who has to guess what it is.

interactive
a random

. Interaction between the user and
keyboard and the monitor's screen.

computer will be via the

The program can be divided into two major sections. The
first section is the control routine (part of a program
that calls up subroutines) and the second part of the
program will be the various subroutines.

Develop a random word to be guessed. . Compare the guessed character with the word.

5-1

When a program is developed using 'top-down' programming, the
general structure is defined first and then the program proper is
written in progressively greater detail. Thus, decisions made
early on influence later parts of the program. If this procedure
is reversed and the detail done first, then many changes will be
needed in the detailed parts of the program as the structure is
defined. However, before proceeding to this structure, let's have
a look in very broad terms at the program as a whole. What we will
do is to write it out in a sort of 'pseudo code'; that means in a
way that is a bit like English and a bit like a computer language.

What the program should do:

• Display a title page and rules. (Module 1)

• Choose a word randomly by reading through DATA statements:
call the word A$. Set up an array called WORD$() to have
a dot for each letter in A$ i.e. at the beginning:

If A$="COMPUTER"then WORD$()="......... "

When an 'M' is guessed, WORD$() would become "..M ",
i.e. the 'M' would be placed in the correct position
(Modules 2 and 8).

• Tell the player how many letters in the word to be guessed
(Module 3)

• Input a guess from the player: call the inputted character
GUESS$ (Module 4)

• Check if the guessed character (G(JESS$) is in the word to
be guessed (A$). If it is then replace the appropriate dot
in WORD$() with the guessed letter (Modules 7 and 8)

• Store a list of all the characters that have been guessed
so far. Call this string X$ (Module 5)

• Check if the currently guessed character has been guessed
before, i.e. is it in the string X$? (Module 5)

• Tell user if character has been guessed before (Module 6)

• Display the current state of the guessed word (Module 9)

• Check to see if the word has been guessed. This is done
by seeing if any dots are left in the string WORD$. If no
dots are left then all the letters have been guessed
(Module 10)

5-2

• If the player has won then they are to be congratulated
and asked if they require another go (Modules 11 and 12)

• When an incorrect guess has been made the incorrect guess
variable 'E' needs to be incremented by one. (Module 13)

• Once an incorrect guess is made the next section of the
hangman needs to be drawn. (Module 14)

• A check is made on the incorrect guess count. If E is
equal to ten then the player has lost and the man is hung.
(Modules 15 and 16)

Program structure
Firstly the program will be developed in a skeleton structure so
that it runs in very broad terms but without all the detail. Once
this is done the structure can be checked and the detail filled in
only when the structure is correct.

This program is made up of 16 modules 'glued' together by a
general Program Control Module - so now to work through each
module one by one.

The various program modules will be located in the program as
follows:

Module lines

Program control 0-
Ancilliary functions 900-
Module 1 1000-
H 2 2000-
ÎÎ 3 3000-
ÎÎ 4 4000-
ÎÎ 5 5000-
ÎÎ 6 6000-
!l 7 7000-
ÎÎ 8 8000-
ÎÎ 9 9000-
tt 10 10000-
ÎÎ 11 11000-
ÎÎ 12 12000-
ÎÎ 13 13000-
ft 14 14000-
tt 15 15000-
ÎÎ 16 16000-
Data statements 17000-

FIGURE 5.1

5-3

These subroutines will be written as dummy routines first, in
order to test the logical flow of the overall program. By doing
this, all the different routes through the program can be
investigated and any problems ironed out.

Module 1: Initialisation
Several pieces of housekeeping need to be done. When a program
starts, general user information needs to be given, variables to
be set etc. However, for now, module 1 will simply clear the
screen and then wait for the user to press a key. As each of these
dummy modules will display a screen and then wait for a character
to be inputed, the 1NKEY$' routine will be written just once at
900 and called by a 'GOSUB' whenever it is required, i.e. Program
5

PROGRAM 5

900 A$=INKEY$:IF A$="" THEN 900
910 RETURN

PROGRAM 5.1

1000 CLS
1010 LOCATE 10,10
1020 PRINT"INITIALISATION"
1030 GOSUB 900
1040 RETURN

The subroutine is called by means of the Program Control Module
(PCM) shown in Program 5(a)

PROGRAM 5(a)

500 GOSUB 1000: REM INITIALISATION

When it is RUN, the screen will clear and then the word
1NITITIALISATION' will appear on the screen. The program will
then sit and wait until a key is pressed and then Well try it!
Run the program and press the space bar twice; the screen should
now be showing:

Unexpected RETURN in 910

5-4

Can you see what has happened and prevent it from happening again?
The problem is that once the PCM had been RUN and returned from
Module 1, it ran back into the 'A$=INKEY$' routine at line 900.
The second press of the space bar bought the program to line 910
and came across the 'RETURN'. This time, however, the program had
nowhere to RETURN to because the routine was not called by a
GOSUB, therefore, an error was reported. The problem can be
prevented by terminating the PCM neatly by means of an END i.e. as
in Program 5(al)

PROGRAM 5(al)

500 GOSUB 1000: REM INITIALISATION
899 END

Now, when this is RUN, the word 'INITIALISATION' will appear once
and upon pressing a key the program will stop.

So far so good! However, the program is not really very user-
friendly as, while it waits for the input the user cannot be sure
what is happening. It would be much clearer, were the user to be
told to press a key. Thus, the input routine could be improved by
incorporating a message. As the subroutine is to be used on many
occasions it is better if its screen position is always the same.
Using LOCATE it poses no problem to print the message in the same
place everytime.

PROGRAM 5(a2)

900 LOCATE 4,20:PRINT"PRESS ANY KEY
TO CONTINUE"
910 A$=INKEY$:IF A$="" THEN 910:ELSE RETURN

Now, when the program is RUN INITIALISATION' is printed and then
the 'PRESS ANY KEY' message is given.

From here, the program follows only one route, that to:

Module 2:Choose word.
In this element a word will be selected from those made available.

5-5

In skeleton from this is

PROGRAM 5.2

2000 CLS:LOCATE 10,10
2010 PRINT"CHOOSE WORD"
2020 GOSUB 900
2030 RETURN

The module is called by line 510 in the PCM, shown in Program 5(b)

PROGRAM 5(b)

510 GOSUB 2000: REM CHOOSE WORD

Module 3:Input Guess

This module will set up the screen format that will be used for
the rest of the program. Skeletally speaking it looks like this:

PROGRAM 5.3

3000 CLS:LOCATE 10,10
3010 PRINT"DISPLAY SCREEN"
3020 GOSUB 900
3030 RETURN

The module is called by the PMC, this being shown in line 520 of
Program 5(c).

PROGRAM 5(c)

520 GOSUB 3000: REM DISPLAY SCREEN

Module 4: Display Screen
At this point a guess is made by the player and this is checked to
trap various errors.

Program 5.4

4000 CLS¡LOCATE 10,10
4010 PRINT"INPUT GUESS"
4020 GOSUB 900
4030 RETURN

5-6

This module is called by line 530 of Program 5(d)

PROGRAM 5(d)

530 GOSUB 4000: REM INPUT GUESS

Module 5: Was character previously tried?

At this stage of development, there is really nothing to compare,
so a simple (Y/N) input is requested. As in the anagram game,
flags will be used to pass information from modules to the PCM.
Thus, if the guess is correct, a flag is set to -1 and, if
incorrect, set to zero. If these numbers appear a little strange,
don't worry, all will be revealed later in the chapter. In Module
5, the flag Fl is set to -1 for a 'Y' entry and to zero for a 'N'
entry.

PROGRAM 5.5

5000 CLS:LOCATE 4,10
5010 PRINT"CHARACTER PREVIOUSLY TRIED (Y/N)?"
5020 GOSUB 900
5030 IF A$="Y" THEN Fl=-1
5040 IF A$="N" THEN Fl=0
5050 IF A$O"Y" AND A$O"N" THEN 5020:ELSE RETURN

The routine is called by line 540 in the PCM as in Program 5(f)
below:

PROGRAM 5(f)

540 GOSUB 5000:REM CHARACTER PREVIOUSSLY TRIED?

Module 6: Message “character previously tried”
The purpose of this element is simply to tell the player that the
latest character input had previously been used.

PROGRAM 5.6

6000 CLS:LOCATE 4,10
6010 PRINT"CHARACTER PREVIOUSLY TRIED"
6020 GOSUB 900
6030 RETURN

5-7

This routine is called only when the character has been previously
guessed, i.e. when Fl=-1, line 550 of the PCM. Once this sub
routine has been called the program is directed back to line 530
for another input.

PROGRAM 5(g)

550 IF Fl=-1 THEN GOSUB 6000:GOTO 530:
REM GO BACK FOR ANOTHER INPUT

Module 7: Is guess in word?
Once it has been established that the guess has not been made
before, a check must be made for a correct guess and the program
routed accordingly. As with the other testing module, Module 5,
the skeleton program will allow the Flag to be set from the (Y/N)
input.

PROGRAM 5.7

7000 CLS:LOCATE 4,10
7010 PRINT"IS THE GUESS IN THE WORD (Y/N)?"
7020 GOSUB 900
7030 IF A$="Y" THEN F2=-l
7040 IF A$="N" THEN F2=0
7050 IF A$O"Y" AND A$O"N" THEN 7020:ELSE RETURN

And the PCM that calls this, line 560 of Program 5(h) is shown
below:

PROGRAM 5(h)

560 GOSUB 7000:REM GUESS IN WORD?

Once this module has been run, it is known whether or not the
guess is correct and the program needs to be re-routed
accordingly. To make that a little clearer, let's have a look at
the program's flow on the flowchart in Figure 5.2

5-8

FIGURE 5.2

Spelling out the whole PCM to date, then, gives Program 5(i). In
this a test is made for Fl which returns the 'character previously
tried' condition. When the character was previously tried, i.e.
Fl=-1, the subroutine at 6000 is called to give that message i.e.

IF Fl=-1 THEN GOSUB 6000

Once the message has been given, the program needs to return to
the point in the program where another guess is inputted.
Proponents of structured programming would require the program to
work its way through all the tests prior to returning to line 530
in order to input another screen. However, proponents of
pragmatic programming would add in a judicious 'GOTO' at this
point! i.e.

550 IF Fl=-1 THEN GOSUB 6000:GOTO 530

5-9

PROGRAM 5(i)

500 GOSUB 1000: REM INITIALISATION
510 GOSUB 2000:REM CHOOSE WORD
520 GOSUB 3000:REM DISPLAY SCREEN
530 GOSUB 4000:REM INPUT GUESS
540 GOSUB 5000:REM CHARACTER PREVIOUSLY TRIED?
550 IF Fl=-1 THEN GOSUB 6000:GOTO 530
:REM GO BACK FOR ANOTHER INPUT
560 GOSUB 7000:REM GUESS IN WORD?
570 IF F2=0 THEN XXX:REM GUESS NOT IN WORD

When the test in line 550 fails, the program next tests to
establish whether or not the guess was correct. As with aH tests
the program branches foHowing it, the route depending on the
result of the test. Figure 5.3 demonstrates this is in action:

FIGURE 5.3

For the time being the 'GOTO' on line 570 will be left unfinished
because at this stage the line number is not known.

So far the program has progressed as far as handling the
conditions; where the letter guessed is in the word and the
character was previously tried. Now our attention is turned to
the situation where the guess was correct and had not previously
been tried. The next three modules to consider are:

8 Store the newly guessed letter in the 'word guessed so
far' array(WORD$).

9 Modify the screen display to tell the user what is
happening.

10 Test if there are any more letters left to guess, i.e. is
the game over.

Putting this into a section of flowchart yields:

5-10

FIGURE 5.4

Firstly the Modules...

Module 8: Update array of guessed characters.
In this routine, the array WORD$ needs to be updated by replacing
the dot that is stored where the letter should go with the actual
letter.

PROGRAM 5.8

8000 CLS .-LOCATE 10,10
8010 PRINT"UPDATE ARRAY"
8020 GOSUB 900
8030 RETURN

Module 9: Display new screen
This module, shown in skeleton form in Program 5.9, simply reports
back on the current state of the guessed word.

PROGRAM 5.9

9000 CLS:LOCATE 4,10
9010 PRINT"THE WORD SO FAR IS"
9020 GOSUB 900
9030 RETURN

5-11

Module 10: test for all characters guessed
At this point a test is carried out to determine whether or not
the player has guessed all the characters in the word.

PROGRAM 5.10

10000 CLS:LOCATE 4,10
10010 PRINT"ANY CHARACTERS LEFT TO GUESS (Y/N)?"
10020 GOSUB 900
10030 IF A$="Y" THEN F3=-l
10040 IF A$="N" THEN F3=0
10050 IF A$O"Y" AND A$O"N" THEN 10020:ELSE RETURN

The PCM up to this point is fairly straightforward as it just
flows directly through from Module 8 to Module 10 as in Program
5(j)

PROGRAM 5(j)

580 GOSUB 8000: REM UPDATE ARRAY
590 GOSUB 9000:REM DISPLAY SCREEN
600 GOSUB 10000:REM ANY CHARACTERS LEFT TO GUESS?

Once the test has been made to see if all the characters have been
guessed, then the program diverges once more. If more characters
remain to be guessed i.e. F3=-l, then the program returns for
another input (to Module 4) and when all the characters have been
guessed, the game is over, and the player should be told, Figure
5.5.

GO BACK FOR
ANOTHER INPUT

FIGURE 5.5

5-12

The easiest of these routes to tackle is the one going back for
another input. All that is required is a re-directing of the
program to the input routine when F3 is set to -1 i.e.

IF F3=-l THEN 530

When this flag is not set then the program will call Module 11.

PROGRAM 5(k)

610 IF F3=-l THEN 530
620 GOSUB 11000:REM WELL DONE

Once the player has been told that they have won (Module 11),
Module 12 will ask the player if another go is required. Thus,
Modules 11 and 12 are....

Module 11: Tell the player “well done”
PROGRAM 5.11

11000 CLS:LOCATE 4,10
11010 PRINT"WELL DONE YOU HAVE GUESSED
THE WORD"
11020 GOSUB 900
11030 RETURN

Module 12: Ask “do you want another go?”
PROGRAM 5.12

12000 CLS:LOCATE 4,10
12010 PRINT"DO YOU WANT ANOTHER GO (Y/N)?"
12020 GOSUB 900
12030 IF A$="Y" THEN F5=-l
12040 IF A$="N" THEN F5=0
12050 IF A$O"Y" AND A$O"N" THEN 12020:ELSE RETURN

Module 12 is called by a simple 'GOSUB' but then the Flag returned
must be decoded. When 'another go' is required the program is re
routed right back to Module 1 and when no further goes are wanted,
the whole program ends. The PCM section that calls this is:

5-13

PROGRAM 5(1)

630 GOTO 700:REM ANOTHER GO?

700 GOSUB 12000:REM ANOTHER GO?
710 IF F5=-THEN 500:REM PLAY IT AGAIN SAM!
720 CLS:LOCATE 10,10
730 PRINT "GOODBYE!"
740 END

If another go is required the program is directed to line 500
which catts up the initialisation routine, so that the program
begins again.

5-14

Figure 5.6 shows the flowchart so far:

FIGURE 5.6

5-15

From Figure 5.6 it can be seen that all that remains to be done
are the routines that handle the route from Module 6 where F2=0,
i.e. the guess was not in the word. Line 570 can now be completed
to read:

570 IF F2=0 THEN 640: REM GUESS NOT IN WORD

Along this route, the first stages are: to increment the wrong
guess count (Module 13), display the new screen (Module 14) and
then check if all the goes have been used (Module 15) Figure 5.7

FIGURE 5.7

Now the Modules

Module 13: Increment wrong guess count

PROGRAM 5.13

13000 CLS:LOCATE 4,10
13010 PRINT"INCREMENT WRONG GUESS COUNT"
13020 GOSUB 900
13030 RETURN

5-16

Module 14: display new screen
PROGRAM 5.14

14000 CIS:LOCATE 4,10
14010 PRINT"DISPLAY NEW SCREEN"
14020 GOSUB 900
14030 RETURN

Module 15: Are all goes used?
PROGRAM 5.15

15000 CLS:LOCATE 4,10
15010 PRINT"ARE ALL GOES USED (Y/N)?"
15020 GOSUB 900
15030 IF A$="Y" THEN F4=-l
15050 IF A$="N" THEN F4=0
15050 IF A$O"Y" AND A$O"N" THEN 15020:ELSE RETURN

PROGRAM. 5(m)

640 GOSUB 13000:REM INCREMENT WRONG GUESS COUNT
650 GOSUB 14000:REM DISPLAY NEW SCREEN
660 GOSUB 15000:REM ARE ALL GOES USED?

Once Module 15 has been run a check must be made on the condition
of F4. If it is not set (F4=0) then all the goes have not yet been
used and the program loops back to line 530 for another input.
However, if all the goes have been used, then the player is
informed and asked if another go is required. Figure 5.8 sums up
the general situation.

5-17

FIGURE 5.8

If all the goes have been used up then the player is hung and
asked if another go is required. This program simply runs into
line 700 where the player is asked if they want another go.

5-18

670 IF F4=0 THEN 530:REM MORE GUESSES
680 GOSUB 16000:REM YOU HAVE LOST
700 GOSUB 12000:REM ANOTHER GO?
710 IF F5=-l THEN 500:REM PLAY IT AGAIN SAM
720 CLS:LOCATE 10,10
730 PRINT"GOODBYE!"
740 END

Module 16: You have lost
Only Module 16 now remains to be specified, that being the display
to say that all the goes have been used up i.e.

PROGRAM 5.16

16000 CLS: LOCATE 4,10
16010 PRINT "ALL GOES USED UP"
16020 GOSUB 900
16030 RETURN

At this stage of the proceedings, the entire skeleton of the
program has been written and the flow-chart can be drawn. Figure
5.9 shows it in all its glory!

5-19

ADD ONE TO
WRONG

GUESS COUNT

FIGURE 5.9

5-20

The next task is to test that all the conditions that can occur
during a run of the game have been provided for. One way to
tackle this is to list all the points at which branches occur and
then to run the program, selecting each branch in turn.

All the flags in this program have two conditions, 'YES' and 'NO'.
Figure 5.10 lists all the flags and their possible states.

FIGURE 5.10

Flags States

Fl YES NO
F2 YES NO
F3 YES NO
F4 YES NO
F5 YES NO

Now let's RUN the program and step through all the possible
stages. Below is given the screen message and in darker type, the
entry that you should make. Remember that the 'Y' should be in
upper case.

Stage

1 Initialisation SPACE
2 Choose word SPACE
3 Display screen SPACE
4 Input guess SPACE
5 Character previously tried? Y
6 Display 'previously tried' message SPACE
7 Input guess SPACE

FIGURE 5.11

Figure 5.11 shows the stages that occur when the program is first
run. The first is that which checks a previously guessed
character. When the 'character previously tried?' message is
displayed press •¥'. Then the computer will display the following:

CHARACTER PREVIOUSLY TRIED

Obviously that section of the program control module is working.
Moving on...

5-21

StatesFlag

Fl yes/ NO
F2 YES NO
F3 YES NO
F4 YES NO
F5 YES NO

FIGURE 5.12

Now to carry on checking a few more routes: Press
stage 7

SPACE to clear

Stage

8 Was-character previously tried? N
9 is guess in word? Y
10 Update array SPACE
11 Display new screen (the word so far) SPACE
12 Any characters left to guess? Y
13 Input guess SPACE

FIGURE 5.13

That’s another loop completed. Let's mark off what's been tested
so far.

FIGURE 5.14

Flag Sta!tes

Fl yes/ no/
F2 yes/ NO
F3 yes/ NO
F4 YES NO
F5 YES NO

That's just half the routes tested so far. Have a go yourself at
planning the rest of the tests. Just in case you have problems,
one possible way of doing it is given below:

5-22

Stage

14
15
16
17
18
19
20
21
22
23
24

Was character previously tried?
Is guess in word?
Update array
Display new screen (the word so far)
Are characters left to guess?
Tell player well done
Want another go?
Initialisation
Choose word
Display screen
Input guess.

N
Y

SPACE
SPACE

N
SPACE

Y
SPACE
SPACE
SPACE
SPACE

FIGURE 5.15

Another loop and some more tests to be marked off.

Flag States

Fl YES/ NO/
F2 YES/ NO
F3 YES/ NO/
F4 YES NO
F5 YES/ NO

FIGURE 5.16

That just leaves testing to be done along the ’guess incorrect’
route. So off we go again with a SPACE to clear the Input.

Stage

25 Was character previously tried? N
26 Is guess in word? N
27 Increment wrong guess count SPACE
28 Display new screen SPACE
29 All goes used? N
30 Input guess SPACE
31 Character previously tried? N
32 Is guess in word? N
33 Increment wrong guess count SPACE
34 Display new screen SPACE
35 All goes used? Y
36 Display screen SPACE
37 Want another go? N

FIGURE 5.17

5-23

The program should now have ended. If the program ended at that
point then all is well, all routes having been tested
successfully! If it seems a lot of bother then that's only because
it is. Even an apparently simple program like this has a fairly
complex structure and needs to be tested thoroughly before the
subroutines are added. That is the next stage:

Developing the modules

Once the overall program structure is developed and working the
individual modules can be designed, tested and then slotted into
place one at a time. In this way the overall problem can be broken
down into manageable parts. The various subroutines are developed
into the program structure to facilitate testing.

Firstly then....

Program control module
500 GOSUB 1000: REM INITIALISATION
510 GOSUB 2000:REM CHOOSE WORD
520 GOSUB 3000: REM DISPLAY SCREEN
530 GOSUB 4000:REM INPUT GUESS
540 GOSUB 5000:REM CHARACTER PREVIOUSLY
TRIED?
550 IF Fl=-1 THEN GOSUB 6000:GOTO 530:
REM REPORT CHARACTER PREVIOUSLY TRIED
560 GOSUB 7000:REM GUESS IN WORD?
570 IF F2=0 THEN 640:REM GUESS NOT IN W
ORD
580 GOSUB 8000: REM UPDATE ARRAY
590 GOSUB 9000:REM DISPLAY SCREEN
600 GOSUB 10000: REM ANY CHARACTERS LEFT
TO GUESS?
610 IF F3=-l THEN 530: REM MORE CHARACTE
RS TO GUESS
620 GOSUB 11000: REM WELL DONE
630 GOTO 700:REM ANOTHER GO?
640 GOSUB 13000:REM INCREMENT WRONG GUE
SS COUNT
650 GOSUB 14000: REM DISPLAY NEW SCREEN
660 GOSUB 15000:REM REM ARE ALL GOES US
ED?
670 IF F4=0 THEN 530: REM MORE GUESSES
680 GOSUB 16000:REM YOU HAVE LOST

5-24

700 GOSUB 12000:REM ANOTHER GO?
710 IF F5=-l THEN 500:REM PLAY IT AGAIN
SAM!

720 CLS:LOCATE 10,10
730 PRINT" GOOD BYE"
740 END

You might like to get rid of the now superfluous END statement on
line 899 at this stage, as line 740 is now the 'official' end of
the program.

Module 1: Initialisation
The initialisation routine first clears the screen and sets up the
colours the game will use in 'ink pots' 0 to 3. After this, lines
1040-1190 are used to give the rules of the game, these having
been left for you, the reader, to do your literary best. Real
care must be taken over this documentation phase as, if the game
is to stand on its own without you to explain it, the rules must
be absolutely clear.

The initialisation routine can now be written; what it will do is

Clear the screen and set colours - Lines 1010-1030
Announce the game - line 1040
Give the rules - Lines 1050-1190
Stop the program until the rules have been read and a key
pressed - Lines 1200-1205

Putting that into a Program:

PROGRAM 5.1(a)

1000 REM initialisation
1010 MODE 1
1020 INK 0,13:INK 1,26:INK 3,17:INK 4,3
1030 BORDER 17:PEN 1:PAPER 0:CLS
1040 LOCATE 14,2:PRINT"***HANGMAN***"
1050 LOCATE 4,6
1060 PRINT"Here are the rules!"
1070 LOCATE 4,8
1080 PRINT"There are no rules!"
1190 LOCATE 4,20
1200 PRINT"Press space bar to continue"
1205 IF INKEYSO" " THEN 1190

5-25

Each time the game is played, several variables need to be reset
and strings cleared, for instance Z$. On the first run through
the game this is set to ' FIRST ' i.e. the screen then says what
is your Z$ (first) guess. Immediately after use, Z$ is reset to
"NEXT" so that the player is then asked 'what is your Z$ (next)
guess?' Of course, once the game has been played Z$=" NEXT " and
needs re-setting or re-initialising. Other variables need re
setting too, such as E (the number of incorrect guesses so far)
and X$ (a string comprising all the guesses made to date).

PROGRAM 5.1(b)

1220 Z$=" FIRST "
1230 E=0
1240 X$=""
1250 RETURN

Once this has been entered the program may be run. However, apart
from the 'title' page it will appear little different from when
run previously. No enhancements to the screen display have been
made at this stage.

Module 2: Choose word
This routine, shown in Program 5.2(a), generates a random number
and then searches that number of times through the DATA
statements.

PROGRAM 5.2(a)

2000 REM CHOOSE WORD
2010 R=INT(RND*10)+l
2011 R=4:REM development only
2020 RESTORE
2030 FOR X=1 TO R
2040 READ A$
2050 NEXT X
2060 L=LEN(A$)

Line 2011 sets 'R' to the value of '4', so that when testing this
program we know what word to guess. This will save a lot of time
when debugging the program.

Note the FOR.... NEXT loop in 2030 runs from 1 to R, i.e. it
changes randomly as different random numbers are generated in line
2010.

5-26

In addition to choosing the word, the subroutine also calculates
its length, L, as this is needed in other subroutines. The
variable ’L’ is then used to make up the string WORD$. At the
beginning of the game this simply contains the requisite number of
dots - i.e. one for each letter. As correct guesses are made the
appropriate letters are inserted in the correct place in the array
and then displayed on the screen. Thus if the word selected (A$)
is originally 'COMPUTER", then L=8 and each value in the array the
WORD$ is set to a dot.

PROGRAM 5.2(b)

2500 WORD$=""
2510 FOR X=1 TO L
2510 WORD$(X)=".":WORD$=WORD$+"."
2520 NEXT X
2530 RETURN

The DATA to be READ is stored at lines 18000 onwards as in Program
5.2(c)

PROGRAM 5.2(c)

18000 DATA CAT,TURBINE,PLATE,COMPUTER
18010 DATA
18020 DATA
18030 DATA

The rest of the data is left for you to fill in. No difference
will be detectable when Module 2 is typed in and the program RUN
as none of its handiwork is displayed on to the screen at this
stage.

Module 3: Display Screen
At this point in the game, all that has to be displayed is the
message telling the player how many letters the word has, and the
string W$.

5-27

PROGRAM 5.3(a)
3000 REM display the screen
3005 CLS
3010 LOCATE 14,1:PRINT"***HANGMAN***“
3020 LOCATE 4,3
3030 PRINT"The word is"
3040 LOCATE 16,3s PEN 2
3050 PRINT word*
3060 LOCATE 4,5:PEN 1
3070 PRINT"The word has";
3080 PEN 2SPRINT 1;:PEN 1
3090 PRINT"letters"
3100 RETURN

Now, when the program to date is RUN, the beginnings of the game
will begin to emerge. However, the display will disappear right
away because the 'Press any key' prompt has been removed and the
routine immediately RETURNS to line 520. Again the exact nature of
the finished screen display is up to you.

Module 4: Input a guess
All that is required here is a simple message to tell the user to
input a guess. Sometimes, however, it will be the 'FIRST guess
and sometimes the 'NEXT' guess. This can be accommodated by
assigning the word 'FIRST' to a string during the initialisation
and then, once the program has run, changing the contents of the
variable to 'NEXT'. The two elements that do this are shown in
Program 5.4(a). The use of an INKEY$ rather than INPUT allows a
single character - presumably a letter! - to be input without the
need to press ENTER.

PROGRAM 5.4(a)

1210 Z$=" FIRST "

4000 REM input a guess
4010 LOCATE 4,7
4020 PRINT"What is your";z*;"guess? "
4025 LOCATE 29,7 s PEN 3 SPRINT CHR*<143):PEN 1
4030 g*=INKEY*:IF g*="" THEN 4030
4040 g*=UPPER*<g*>
4050 IF g*<"A" OR g*>"Z" THEN 4030
4060 LOCATE 29,7:PEN 2SPRINT g*
4070 z*=" next ":PEN 1
4080 RETURN

The inputted character is converted to capitals using the UPPER$
command.

5-28

Now, when RUN, the program will get as far as inputting a guess
which is assigned to the variable G$ and printed onto the screen.

Module 5: Was character previously tried?
When a player puts in a guess that is a repeat of a previous
entry, this program treats him kindly. It would be possible to
charge this guess against his number of allowed attempts but the
option chosen here is to report that that particular letter has
been guessed before and then loop back for another input.
Program 5.5(a), Fl is initially set to zero, and is only set to
one if the inputted character, G$, is found in X$.

The value, X$, was set to i.e. am empty string on the line the
initialisation procedure, Program 5.1(b). As a guess is made, it
is added to the string (Module 8) and so, at this stage it is only
necessary to read through the string to check whether any of its
letters equal GUESS$, the latest guess. One slight complication
exists in that the string gets one letter longer each time the
letter has not been guessed before so it is always necessary to
recalculate its length (L2), as in line 5010.

PROGRAM 5.5(a)

5000 Fl=0
5010 L2=LEN(X$)
5020 FOR X=1 TO L2
5030 IF G$=MID$(X$,X, 1) THEN Fl=-1
5040 NEXT X
5050 IF Fl=0 THEN X$=X$+G$
5060 RETURN

Again, RUNning the program will yield no new display. An
alternative way of checking X$ is to use the INSTR function.

INSTR
This function automatically searches one string for the oecurance
of a second. Thus, lines 5010 to 5050 inclusive could be replaced
with

5010 IF INSTR(X$,G$)=0 THEN X$=X$+G$:ELSE Fl=-1

INSTR returns a zero if it doesn't find the string G$ within X$.
If G$ is somewhere in X$, INSTR returns its position within X$.

5-29

For instance, with

PRINT INSTR("FRED","R")

you would get a 2 printed, because R is the second letter of
"FRED". As a bit of an aside, you can also do this like

PRINT INSTR("FRED","ED")

which will return 3, because "ED" starts at position 3 in "FRED".

Module 6: Message: “Character previously tried**

The aim of this message is to inform the player clearly that the
letter just guessed has already been tried, and then to clear the
screen back to its previous state. he message is PRINTed onto a
line that is currently empty. Once on the screen, the message is
held there for a time while the player takes it in and then it is
cleared. What is needed here is a technique for causing the
program to wait for a specific time period i.e. a delay.

Once the message in Module 6 has sunk in, it needs to be removed
by printing blank spaces over it. This is achieved by means of the
SPACE$ command.

PROGRAM 5.6(a)

6000 REM character previously tried!
6010 LOCATE 4,24:PEN 2
6020 PRINT"You have already tr'ied that lette
6030 FOR x=l TO 1000:NEXT x
6040 LOCATE 4,24:PEN 1
6050 PRINT SPACE$<36)
6060 RETURN

At this stage, when the program is RUN (in capitals mode) and a
character is guessed for the second time, the 'already tried'
message will appear.

Module 7: Is guess in word?
Once a guess has been made the subroutine in Program 5.7(a) needs
to read through the word looking for a match with the inputted
letter. Should it find such a match, then F2 will be set to -1.
Note that, at the start of this subroutine, the flag is reset to
zero and remains at zero unless the test at line 7020 proves
positive.

5-30

PROGRAM 5.7(a)

7000 REM IS GUESS IN WORD?
7010 F2=0
7020 IF INSTR(A$,G$)<>0 THEN F2=-l
7030 RETURN

Remember that WORD$() holds the status of the word being guessed,
starting off with all dots. As correct guesses are made, the
correct letters are inserted into this array at the appropriate
place so that the word to be guessed is built up gradually.

As no more screen dislays have been added, RUNning the program at
this stage will display nothing new on the screen.

Module 8: Update array of guessed characters
This Module handles the case where the character guessed has not
previously been guessed; it is inserted into WORD$ at the
appropriate place.

PROGRAM 5.8(a)

8000 REM update array
8010 FOR x=l TO 1
8020 IF g«=MID$(a$,x,1) THEN GOSUB 8100
8030 NEXT x
8040 RETURN
8100 word$(x)=g$
8110 RETURN

Figure 5.18 demonstrates the process for the INPUT of an S' (i.e.
GUESS$="S") where A$="AMSTRAD" and the S' has not previously been
guessed.

FIGURE 5.18

LOOP A$ W3RD$() W3RD$()
NUMBER before after

1 A
2 M •
3 S s
4 T •
5 R •
6 A •
7 D

5-31

Module 9: The word so far
At this point the string WORD$ needs to be made up out of each of
the values of WORD$() and then the program will print out the
current state of the guessed word, this being done in line 9060 of
Program 5.9(a).

PROGRAM 5.9(a)

9000 REM the word so far
9010 word$=“"
9020 FOR x=l TO 1
9030 word$=word$+word$(x)
9040 NEXT x
9050 LOCATE 16,3:PEN 2
9060 PRINT word*:PEN 1
9070 RETURN

Module 10: Are all characters guessed?
To check this, array WORD$() needs to be read through to see if
any character position remains unfilled. If this is so then F3 is
set to a -1, in line 10030 of Program 5.10(a).

PROGRAM 5.10(a)

10000 REM ARE ALL CHARACTERS GUESSED?
10010 F3=0
10020 FOR X=1 TO L
10030 IF WORD$(X)="." THEN F3=-l
10040 NEXT X
10050 RETURN

Module 11: Message “Well done”

This Module tells the player that the word has been guessed
correctly. Once the message is on the screen, the game is over and
there is, therefore, no need to display it tor a fixed time. As
the next stage of the program is to ask the player it another go
is wanted, the message can be left on the screen until a key is
pressed.

5-32

PROGRAM 5.11(a)

11000 REM WELL DONE YOU HAVE WON
11010 LOCATE 28,10:PEN 2
11020 PRINT"WELL DONE!"
11030 LOCATE 28,12:PEN 3
11040 PRINT "YOU HAVE WON"
11050 RETURN

Module 12: Do you want another go?
This is a simple test to see if another go is required. If yes
then F5 is set to -1 (line 12050), if not then F5=0 (line 12060).

PROGRAM 5.12(a)

12000 REM DO YOU WANT ANOTHER GO?
12010 LOCATE 4,24:PEN 2
12020 PRINT"DO YOU WANT ANOTHER GO (Y/N)?"
12030 Z$=INKEY$:IF Z$="" THEN 12030
12040 Z$=UPPER$(Z$)
12050 IF Z$="Y" THEN F5=-l
12060 IF Z$="N" THEN F5=0
12070 IF Z$O"Y" AND Z$O"N" THEN 12030
12080 RETURN

Module 13: Increment wrong guess count
The variable 'E' records the number of wrong guesses and is simply
incremented at the appropriate time whenever F2 is set to 'O'. It
is done in line 13010 of Program 5.13(a)

When the guess is incorrect, the player is told "SORRY THAT LETTER
IS NOT IN THE WORD."

PROGRAM 5.13(a)

13000 REM wrong guess!
13010 e=e+l
13020 LOCATE 4,23:PEN 2
13030 PRINT"!’m sorry that letter is not
in the word"

13040 FOR x=l TO 1000:NEXT x
13050 LOCATE 4,23:PEN 1
13060 PRINT SPACES(40>
13070 RETURN

As in a previous subroutine, the message is maintained on the
screen by the FOR... NEXT loop on line 13040.

5-33

Module 14: Draw Hangman
Once an incorrect guess has been made another piece of the hangman
will be drawn. The hangman we will draw is created by using
Amstrad graphics commands PLOT and LINE and a new Basic command:

ON...GOTO
The individual pieces of the hangman will be drawn in separate
program sections all within the one subroutine. One section will
be for drawing the base, one for drawing the head etc. These
individual sections will be accessed depending on the value of *E’
(the incorrect guess count), using a special version of the
IF...THEN command, called ON...GOTO. This works a bit like lots of
'IF...THEN...' commands would. Taking the example:

ON X GOTO 100,200,300

The computer understands this as:

" ON the value of X, GOTO 100, 200, 300"

Thus if X = 1 then the program is directed to line 100, if X is 2
then the program goes to line 200 and so on. If X is 'O', or
greater than the number of line names listed the program will
continue onto the next line - in the example below, to line 30.

Just to see this in action try the following:

PROGRAM 5.14(b)

10 INPUT X
20 ON X GOTO 40,50,60
30 END
40 PRINT"40"
50 PRINT"50"
60 PRINT"60"

Now RUN this and test it out with various entries.

As well as using 'GOTOs', the ON... command can just as well use
GOSUBs. In this case, it directs the program to the subroutine in
just the same way as would any GOSUB.

5-34

For drawing the hangman graphics we will use an 'ON GOTO' command,
and each 'drawing section' will end with RETURN. Thus, on the
first value of E (E=l) the program will GOTO line 14040 and draw
part of the Hangman frame. Line 14090 RETURNS the program back to
the PCM. In this way all ten sections of the Hangman can be drawn
in sequence, i.e. the third guess will draw the third 'item'.

PROGRAM 5.6(s)

1400® REM draw hangman on the value of E
14010 REM
14020 ON e GOTO 14040,14100,14150,14210,
14260,14320,14410,14490,14620,14700
14030 REM the hangman drawing sections
14040 REM-------- the frame# 1--------
14050 PLOT 240,50:DRAW 240,280
14060 PLOT 242,50:DRAW 242,280
14070 PLOT 244,50:DRAW 244,280
14080 PLOT 246,50:DRAW 246,280
14090 RETURN
14100 REM-------- the frame#2--------
14110 PLOT 246,280:DRAW 376,280
14120 PLOT 246,278:DRAW 376,278
14130 PLOT 246,276:DRAW 376,276
14140 RETURN
14150 REM-------- the frame#3--------
14160 PLOT 246,200:DRAW 316,274
14170 PLOT 246,204:DRAW 314,274
14180 PLOT 246,208:DRAW 312,274
14190 PLOT 246,210:DRAW 310,274
14200 RETURN
14210 REM-------- the frame#4----------
14220 PLOT 150,50:DRAW 350,50
14230 PLOT 150,48:DRAW 350,48
14240 PLOT 150,46:DRAW 350,46
14250 RETURN
14260 REM-------- the rope---------
14270 PLOT 373,274:PLOT 375,276
14280 FOR x=l TO 20 STEP 4

5-35

PROGRAM 5.6(s) continued

14290 PLOT 371,276—xsDRAW 376,271-x
14300 NEXT x
14310 RETURN
14320 REM-------- the head-----------
14330 r=30
14340 PLOT 406,224
14350 py=PI/180
14360 FOR a=0 TO 360 STEP 6
14370 x=r*COS(a*py):y=r*SIN<a*py)
14380 DRAW 376+x,224+y
14390 NEXT a
14400 RETURN
14410 REM-------- the face------------
14420 LOCATE 23,11 : PRINT"o o"
14430 PLOT 366,209!DRAW 386,209
14440 PLOT 368,209iDRAW 360,216
14450 PLOT 366,209!DRAW 358,216
14460 PLOT 386,209!DRAW 394,216
14470 PLOT 388,209¡DRAW 396,216
14480 RETURN
14490 REM-------- the body------------
14500 PLOT 348,194¡DRAW 408,194
14510 DRAW 420,160:DRAW 400,130
14520 PLOT 348,194
14530 DRAW 336,160!DRAW 354,130
14540 PLOT 356,180
14550 DRAW 349,160¡DRAW 363,135
14570 PLOT 398,180
14580 DRAW 406,160¡DRAW 392,135
14590 DRAW 400,130
14600 PLOT 363,135¡DRAW 350,130
14610 RETURN
14620 REM-------- the legs------------
14630 PLOT 355,135
14640 DRAW 363,80¡DRAW 375,80
14650 PLOT 410,143¡DRAW 402,80

5-36

PROGRAM 5.6(s) finished

14660 DRAW 390,80:DRAW 386,145
14670 PLOT 375,80:DRAW 378,145
14680 PLOT 355,145:DRAW 395,145
14690 RETURN
14700 REM-------- the shoes-----
14710 PLOT 363,80:DRAW 345,70
14720 DRAW 375,70:DRAW 375,80
14730 PLOT 404,80:DRAW 422,70
14740 DRAW 390,70:DRAW 390,80
14750 RETURN

Module 15: Are all goes used?
This module is a simple test of the variable 'E'. If all the
allowable goes have been used then E is equal to 10, and F4 is set
to -1.

PROGRAM 5.15(a)

15000 REM ALL GOES USED UP?
15010 F4=0
15020 IF E=10 THEN F4=-l
15030 RETURN

Module 16: Display losing message
By this point in the game, it's all over for the player and that's
what the message says in lines 16000 and 16080. The player is
given the correct solution to the game as some compensation!

PROGRAM 5.16(a)

16000 REM LOSER MESSAGE
16010 LOCATE 2,10:PEN 2
16020 PRINT"BAD LUCK!"
16030 LOCATE 2,12
16040 PRINT"YOU ARE HUNG"
16050 LOCATE 2,14:PEN 3
16060 PRINT"THE WORD WAS"
16070 LOCATE 2,16:PRINT A$
16080 RETURN

5-37

Now that the routines have been written and the game working you
might be asking yourself why the flags were set to '-1' instead of
the usual '1'. When set like this the flags can be 'logically'
tested to see if they are true or false.

True/False

The Amstrad has built in special logic routines. A variable with
the value of -1 is deemed to be TRUE. This means that the
condition the flag indicates has been encountered. Instead of
saying:

IF Fl=-1 THEN GOSUB 6000:GOTO 530

Using the Amstrad's logic handling the line can be rewritten.

IF Fl THEN GOSUB 6000:GOTO 530

The Amstrad interprets this as meaning:

'if the variable Fl indicates a True value i.e. it is set
to minus one, then perform the rest of the line'

By omiting the '=-1' the computer performs the testing operation
much faster, almost twice as fast. We are only dealing with
millionths of a second but as the saying goes a 'million half
pennies is a lot of half pennies'.

The NOT command in used by the Amstrad to determine whether a
variable has the value of zero i.e. a condition of Not True! Line
670 of the program control module can be changed from:

670 IF F4 =0 THEN 530

to:

670 IF NOT F4 THEN 530

The Not operation, like True, is quicker than a normal 'IF...THEN'
operation. Using NOT and TRUE whenever possible to test values can
speed up programs, particularly long programs with many flags.

5-38

PROGRAM 5

5@0 GOSUB 1000:REM initialisation
510 GOSUB 2000:REM choose word
520 GOSUB 3000:REM display screen
530 GOSUB 4000:REM input guess
540 GOSUB 5000:REM character previously
tried?
550 IF fl THEN GOSUB 6000:GOTO 530:REM g
o back for another input
560 GOSUB 7000:REM guess in word?
570 IF NOT f2 THEN 640:REM guess not in
word
580 GOSUB 8000:REM update array
590 GOSUB 9000:REM display screen
600 GOSUB 10000:REM any characters left
to guess?
610 IF f3 THEN 530
620 GOSUB 11000:REM well done
630 GOTO 700:REM another go?
640 GOSUB 13000:REM increment wrong gues
s count
650 GOSUB 14000:REM display new screen
660 GOSUB 15000:REM are all goes used?
670 IF NOT f4 THEN 530:REM more guesses
680 GOSUB 16000:REM you have lost
700 GOSUB 12000:REM another go?
710 IF f5 THEN 500:REM play it again Sam I
720 CLS:LOCATE 10,10
730 PRINT"Goodbye!"
740 END
899 END
900 LOCATE 4,20:PRINT"Press any key to c
ontinue"
910 a$=INKEY$:IF a$="" THEN 910:ELSE RET
URN

1000 REM initialisation
1010 MODE 1
1020 INK 0,13:INK 1,26:INK 3,17:INK 4,3
1030 BORDER 17:PEN 1:PAPER 0:CLS
1040 LOCATE 14,2:PRINT"***HANGMAN***"
1050 LOCATE 4,6
1060 PRINT"Here are the rules!"
1070 LOCATE 4,8
1080 PRINT"There are no rules!"
1190 LOCATE 4,20
1200 PRINT"Press space bar to continue"

5-39

1205 IF INKEYSO" " THEN 1190
1210 zS=" first "
1220 e=0
1230 xS=""
1240 RETURN
2000 REM choose word
2010 r=INT(RND*10>+l
2011 r=4:REM development only
2020 RESTORE
2030 FOR x=l TO r
2040 READ aS
2050 NEXT x
2060 l=LEN<aS)
2500 wordS=""
2510 FOR x=l TO 1
2520 wordi<x)=”.":wordS=wordS+“-"
2530 NEXT x
2540 RETURN
3000 REM display the screen
3005 CLS
3010 LOCATE 14,1:PRINT"***HANGMAN***"
3020 LOCATE 4,3
3030 PRINT"The word is"
3040 LOCATE 16,3:PEN 2
3050 PRINT wordS
3060 LOCATE 4,5:PEN 1
3070 PRINT"The word has";
3080 PEN 2:PRINT 1;:PEN 1
3090 PRINT"1etters“
3100 RETURN
4000 REM input a guess
4010 LOCATE 4,7
4020 PRINT“What is your";zS;"guess?
4025 LOCATE 29,7:PEN 3:PRINT CHRS<143>:P
EN 1
4030 gS=INKEYS:IF gS="" THEN 4030
4040 gS=UPPERS<gS)
4050 IF gS<"A" OR gS>"Z" THEN 4030
4060 LOCATE 29,7:PEN 2:PRINT gS
4070 zS=" next ":PEN 1
4080 RETURN
5000 f 1=0
5010 IF INSTRCxS,gS)=0 THEN xS=xS+gS:ELS
E fl=-l
5060 RETURN
6000 REM character previously tried!
6010 LOCATE 4,24:PEN 2
6020 PRINT“You have already tried that 1
etter!"
6030 FOR x=l TO 1000:NEXT x

5-40

6040 LOCATE 4,24sPEN 1
6050 PRINT SPACE*(36)
6060 RETURN
7000 REM is guess in word?
7010 f2=0
7020 IF INSTR(a*,g*)<>0 THEN f2=-l
7030 RETURN
8000 REM update array
8010 FOR x=l TO 1
8020 IF g*=MID*(a*,x,1) THEN GOSUB 8100
8030 NEXT x
8040 RETURN
8100 word$<x)=g$
8110 RETURN
9000 REM the word so far
9010 word$=""
9020 FOR x=l TO 1
9030 word$=word$+word$(x)
9040 NEXT x
9050 LOCATE 16,3:PEN 2
9060 PRINT word*:PEN 1
9070 RETURN

in the word"

10000 REM are all characters guessed?
10010 f3=0
10020 FOR x=l TO 1
10030 IF word*<x)=“." THEN f3=-l
10040 NEXT x
10050 RETURN
11000 REM well done you have won
11010 LOCATE 28,10:PEN 2
11020 PRINT"Well done!"
11030 LOCATE 28,12:PEN 3
11040 PRINT"You have won!
11050 RETURN
12000 REM do you want another go?
12010 LOCATE 4,24:PEN 2
12020
?"

PRINT"Do you want another go (Y/N
12030 z*=INKEY*:IF z*="" THEN 12030
12040 z*=UPPER*(z*)
12050 IF z*="Y" THEN f5=—1
12060 IF z*="N" THEN f5=0
12070 IF z*O"Y" AND z*O"N" THEN 12030
12080 RETURN
13000 REM wrong guess!
13010 e=e+l
13020 LOCATE 4,23:PEN 2
13030 PRINT"!’m sorry that le tter is no

5-41

13040 FOR x=l TO 1000SNEXT x
13050 LOCATE 4,23:PEN 1
13060 PRINT SPACE*(40)
13070 RETURN
14000 REM draw hangman on the value of E
14010 REM
14020 ON e GOTO 14040,14100,14150,14210,
14260,14320,14410,14490,14620,14700
14030 REM the hangman drawing sections
14040 REM-------- the frame#l--------
14050 PLOT 240,50:DRAW 240,280
14060 PLOT 242,50:DRAW 242,280
14070 PLOT 244,50:DRAW 244,280
14080 PLOT 246,50:DRAW 246,280
14090 RETURN
14100 REM-------- the frame#2--------
14110 PLOT 246,280:DRAW 376,280
14120 PLOT 246,278:DRAW 376,278
14130 PLOT 246,276:DRAW 376,276
14140 RETURN
14150 REM-------- the frame#3--------
14160 PLOT 246,200:DRAW 316,274
14170 PLOT 246,204:DRAW 314,274
14180 PLOT 246,208:DRAW 312,274
14190 PLOT 246,210:DRAW 310,274
14200 RETURN
14210 REM-------- the frame#4----------
14220 PLOT 150,50:DRAW 350,50
14230 PLOT 150,48:DRAW 350,48
14240 PLOT 150,46:DRAW 350,46
14250 RETURN
14260 REM-------- the rope---------
14270 PLOT 373,274:PLOT 375,276
14280 FOR x=l TO 20 STEP 4
14290 PLOT 371,276-x:DRAW 376,271-x
14300 NEXT x
14310 RETURN
14320 REM-------- the head------------
14330 r=30
14340 PLOT 406,224
14350 py=PI/180
14360 FOR a=0 TO 360 STEP 6
14370 x=r*COS(a*py):y=r*SIN(a*py)
14380 DRAW 376+x,224+y
14390 NEXT a
14400 RETURN
14410 REM-------- the face------------
14420 LOCATE 23,11:PRINT"o o"
14430 PLOT 366,209:DRAW 386,209
14440 PLOT 368,209:DRAW 360,216

5-42

14450 PLOT 366,209:DRAW 358,216
14460 PLOT 386,209:DRAW 394,216
14470 PLOT 388,209:DRAW 396,216
14480 RETURN
144 7® rctri
14500 PLOT 348,194:DRAW 408,194
14510 DRAW 420,160:DRAW 400,130
14520 PLOT 348,194
14530 DRAW 336,160:DRAW 354,130
14540 PLOT 356,180
14550 DRAW 349,160:DRAW 363,135
14570 PLOT 398,180
14580 DRAW 406,160:DRAW 392,135
14590 DRAW 400,130
14600 PLOT 363,135:DRAW 350,130
14610 RETURN
14oZv KLrl.....
14630 PLOT 355,135
14640 DRAW 363,80:DRAW 375,80
14650 PLOT 410,143:DRAW 402,80
14660 DRAW 390,80:DRAW 386,145
14670 PLOT 375,80:DRAW 378,145
14680 PLOT 355,145:DRAW 395,145
14690 RETURN
14700 REM—------ the shoes------------
14710 PLOT 363,80:DRAW 345,70
14720 DRAW 375,70:DRAW 375,80
14730 PLOT 404,80:DRAW 422,70
14740 DRAW 390,70:DRAW 390,80
14750 RETURN
15000 REM all goes used up?
15010 f4=0
15020 IF e=10 THEN f4=-l
15030 RETURN
15040 IF a$="N" THEN f4=0
15050 IF a«O"Y" AND a$O"N" THEN 15020
ELSE RETURN
16000 REM loser message
16010 LOCATE 2,10:REN 2
16020 PRINT"Bad luck!"
16030 LOCATE 2,12
16040 PRINT"You are hung!"
16050 LOCATE 2,14:PEN 3
16060 PRINT"The word was"
16070 LOCATE 2,16:PRINT
16080 RETURN
18000 DATA CAT,TURBINE,PLATE,COMPUTER
18010 DATA
18020 DATA
18030 DATA

5-43

Program Improvements
One of the unspoken rules in a computer company is that a
programmer never finishes a program. The program can be developed
to a stage where it is playable (the hangman game is at this stage
now) but improvments are always possible. When a program has been
written in a structured way it is normally quite simple to insert
a few 'extra* features to make an otherwise great game even
better. Below are a few suggestions that you might like to work
on. Most of the suggestions are a matter of taste and have been
left for you to implement.

• Better screen displays

• Difficulty level of words

• The better the player the less goes they are allowed

• Two player game

5-44

APPEND I X

Binary,Binary-Coded Decimal and Hexidecimal Notation
Counting systems in general use throughout the world the decimal
system and this has been developed to count on past 10 and also
below 1. In this standard, the digits to the left of a number are
of greater value than those to the right for instance, in the
number 66, the first 6 has a value 10 times the second, i.e.

66

This is extended in larger numbers where digits to the left are
successively greater by a multiple of ten, i.e.

6 x 100 __ 6 x 10

6 x 1000 //► 6x1

6666

A system where the position or place of a digit in a number
affects its value is known as a PLACE-VALUE numbering system. In
the decimal system, the values of digits increase in multiples of
10 and this is known as the BASE for that system. Other systems
use different bases but follow the same pattern as the decimal
system, i.e. the place to the left is greater being multiplied by
the base.

The computer, being basically electrical in operation, can only
recognise two states, on or off ('O' and '1' respectively) and,
thus uses the Binary system - base 2. Thus, any number in binary
consists simply of 0's and l's, or electrically speaking, offs and
ons (or electronically, zero volts -OFF- and some volts -ON-). To
count past one, the binary system must resort to place-value
notation and, as with other cases, the multiplying factor is tbe
base, i.e. 2. Thus, the number 101 in base 2 or binary represents:

1x4 4------0x2 1x1
X + /

i o 1

A1-1

i.e. 4+0+l=5. Clearly the plethora of bases presents a problem
when representing numbers as in base 10, '101' represents one
hundred and one while in binary (base 2) ’101' represents 5. To
overcome this ambiguity, a convention exists when representing
numbers in that the base is written to the right of the number,
just below the line. Thus, the two numbers discussed above become:

101lo= One hundred and one in base ten.

1012 = Five in base two.

The present-day generation of home computers (1985-style) uses
eight bit registers or memories and can, thus, represent numbers
up to 11111111 , i.e. in base 10:

By way of example, let's take one more conversion - say, 101001112

1 x 128 0 x 64 1x2

1 x

1 0 1

0 x 16

1 4

0 0 J 1 1

0 x 8

1 x 1

Thus 10100111 = 1x128 +0x64 +1x32 +0x16+ 0x8 +1x4 +1x2 +1x1
= 128+32+4+2+1
= 16710

Just to check your understanding, have a go at the following:

A1-2

EXERCISE A 1.1

Calculate the value of the following in base
10:-

i) 000000112
ii) 000001002

iii) 100000002
iv) 100000U2
v) 101101112

vi) 0U100112
Answers are given in the
solutions chapter.

Hexadecimal
While the 0's and l's are convenient for the computer, they are
much less so for the mere human so a compromise is sought. Decimal
notation is of little use as, apart from l10 and 12 there is no
other correspondence. A further idea would be to take the whole
eight binary bits as adigit (i.e. up to 255io) asnd use a base of
256! what would you see as the objection to this? That's apart
from the idea itself being a bit mind-bending! Time to think...
The answer comes from an examination of the base 10 case in which
ten digits (0 to 9) are needed so base 256 would need 256 digits!

A compromise system adopted splits the eight bits up into two
parts and represents these separately. Thus, the largest number to
be represented is 11112 or 15io and this requires along with the
0, sixteen different symbols. The ones adopted for this job are:

Decimal number

Symbol

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 A B C D E F

FIGURE A1.2

Using this notation, any eight bit number can be represented by
two symbols, one for the most significant four bits and one for
the least significant four bits. To avoid the rather long
description of these two halves of a byte, they are given the term
NYBBLES. Thus a byte consists of two nybbles, a most significant
nybble (MSN) and a least significant nybble (LSN) - see Figure
A 1.3.

A1-3

FIGURE A 1.3

The system described, which uses sixteen symbols is, of course,
given the name HEXADECIMAL - usually abbreviated to HEX. Its major
advantage, as far as computers are concerned, is that it is
compatible with binary. Any eight bit binary number can be
represented by two hexadecimal characters.

To gain an understanding of hex try the following:

EXERCISE A 1.2

Calculate the value in decimal of the
following:-

i) 000916 v) OOOEjg
ii) 001316 vi) oua16

iii) 00A5jg vi i) OOE^ jg
iv) OAAEjg

Answers are in the solutions chapter.

If you need more exercises in hex the Bin/Hex exercises program
will supply them, select '1' for decimal to Hex practice and '4'
for Hex to decimal. Remember <DELETE> to delete last entry and
<RETURN> for MENU.

Binary-Coded Decimal
As well as decimal, binary and hexadecimal notations, one other
system is used in computing - Binary-Coded Decimal. As its name
suggests, it is a hybrid form with elements from both binary and
decimal. It is commonly used where an output is required in
digital format, e.g. a digital clock, or when great precision is
required and no bits can be dropped.

A1-4

In BCD the normal decimal base is retained, i.e. one place is a
factor of 10 times its neighbour but each individual digit is
represented in binary. Thus the number 8^^vould be represented:

1000 0111

base 10

i.e. BCD = 1000 0111 (or in eight bits
10000111)

FIGURE A1.6

As the largest digit required in decimal notation is 9, only four
bits of binary are needed to represent this, i.e. 9i0=1001g thus a
BCD digit can be represented by a nybble and two digits by a byte.
Figure Al.6 shows this, where 871O is represented in BCD as
10000111g This can give rise to ambiguity in that 100001112 in
binary is 1351O. To overcome this, BCD representations will be
given the notation 10000111 (BCD).

Using four bits of binary, it is possible to count up to 151O
(i.e. 11112 -1510) but in BCD the largest digit used is 9, so
inevitably BCD is less economical in its use of space. Its largest
digit, 9, is 10012and when one is added to this it clocks over to
00002and carries the 1 to the next nybble, i.e.

FIGURE A1.7

810 - 0000 1000 (base 2 BCD)
910 = 0000 1001 ÎT TT TT

1010 = 0001 0000 tt ÎÎ IT

n10 - 0001 0001 tt TT IT

As you know all about BCD now! try the following:-

EXERCISE A 1.3

Convert the following
BCD:

i) 4 v)
ii) 10 vi)

i i i) 77 vi i)
iv) 97 viii)

Answers are given in the

decimal numbers

53
102
953
2579

solutions chapter.

into

A1-5

EXERCISE A 1.4

Convert the following BCD numbers into
deci mal

i) 0000 0001
ii) 0000 1001

iii) 0001 0101
iv) 0010 0000
v) 0100 1001

vi) 1010 0011
vi i) 1001 0111

vi i i) 1000 1000

Answers: are given in the solutions chapter

In the explanations given of the value of places in place-value
notation a simplification was adopted in order to make these
explanations clearer for the less mathematically inclined
brethren! However, if you wish to see a slightly more mathematical
explanation, please read on. Otherwise - END OF APPENDIX 1.

With binary numbers, it was said that the places increase their
value in multiples of 2, but the least significant bit of the
binary number was equivalent to the same symbol base 10 (or for
that matter base 3, or whatever). In actual fact, the multiplying
factor is the base, raised to the power of its place starting with
zero at the left. i.e. in binary:

7 6 5 4 3 2 1 0

128 64 32 16 8 4 2 1

27 26 25 24 23 22 21 2°

Place
Previously stated
multiplication factor

Mathematically more
precise factor.

Thus the least significant
are not sure of this try
bit is multiplied by 21, and

bit is multiplied by 2° or 1. (If you
the direct program PRINT 2'0.) The next
so on.

A1-6

This rule holds for ANY base; let’s apply it for hex, i.e. base
16:

Least significant bit factor = 16° = 1

2nd most significant bit factor = 161 = 16

3rd most significant bit factor = 162 = 256

Most significant bit factor = 163 = 4096

A1-7

□SEEEEiEimmniaa
Using The Data Recorder
Chapter two included a brief account of the SAVE and LOAD commands
showing the user how to save a program onto tape and then load it
back. The commands used were the simplest form of SAVE and LOAD.
This Appendix will demonstrate extra features of the Amstrad's
cassette data system.

Save
The SAVE command can be used to save three types of files, each
type selected by a code.

Save “file name”,A
When using SAVE, A a BASIC program is saved as an ASCII file. The
GUESSER program in chapter two was saved as an ASCII file. If no
file type is chosen then 'A' is the default value. The Amstrad
(like most computers) saves BASIC programs in numeric form. Each
character of a program is converted into its ASCII value. This
ASCII value is, in turn, converted into an electronic sound which
is stored onto the tape.

Save“file name”,P

The P in this case stands for Protect. A program saved in this way
cannot be loaded in the normal manner. To illustrate this point do
the following:

A 2-1

• Type in: 10 REM PROTECTED PROGRAM
20 PRINT "I AM SAFE"

• SAVE "PROTECT",?

• The Amstrad will respond with
PRESS REC and PLAY then any key:B

• Press down the RECord and PLAY keys on the tape deck
and then hit the space bar

• The computer will display the following message:
Saving PROTECT block 1

• When the Ready message appears rewind the cassette and
type: LOAD "PROTECT"

• The Amstrad will report back
Press PLAY then any key:B

• Press the PLAY key on the tape deck and then hit the
space bar.

• The computer will begin looking for the program called
PROTECT. When it has found it you will see the
following message:
Loading PROTECT block 1

• When the Ready message appears the computer has
finished loading. All appears to be normal.

• Type: LIST

• Nothing is displayed. Your program has not been
loaded. Not only that but whatever was in the
computer's memory prior to loading has been deleted.

A program that is saved using protect can only be loaded back in
one of two ways. The first of these is the CHAIN command.

CHAIN
The CHAIN command is a very special variation of the LOAD command.
When CHAIN is used the loaded program automatically RUNS from a
specified line number.

CHAIN "GUESSER", 100

A 2-2

This will load the Basic program GUESSER and begin running the
program from line 100. If no program line is specified then the
program will start from the first program line. If the number used
in the CHAIN command does not exist then the computer will report:

Line does not exist

and the attempted load will be unsuceesful.

The CHAIN command is used to load programs saved with Protection.

RUN
Another command that is used to load programs saved with
Protection is the RUN command. When used to load RUN is followed
by a file name. e.g.

RUN "PROTECT"

This will load the program PROTECT and RUN the program starting
from the first line number.

Holding down CTRL and pressing the small ENTER key on the number
pad causes the Amstrad to display the following:

RUN"
Press PLAY then any key:B

This will load and RUN the next program encountered on the tape.

Both CHAIN and RUN can be used in exactly the same way with
protected and unprotected programs.

SAVE “file name”,B
This form of SAVE is used to save the contents of specified memory
locations. The Data is stored on tape as Binary data. The user has
to type the location that saving is to begin at and how many
locations to save. For example:

SAVE"MEMORY",B, 55000,100

This will save the contents of all the memory locations from fifty
five thousand to fifty five thousand one hundred.

A 2-3

There is one other argument that can be used with SAVE.B and this
is the entry point. If this value is included then the file will
begin execution from that point. For example:

SAVE"MEMORY",B, 55000,100,55020

This will save the same block of memory and automatically RUN the
data stored in that area of memory following a LOAD.

This form of save is used almost exclusively with machine-code
programs. To find out about machine-code and assembly language,
recommended reading is:

Beginners' Assembly Language Programming Course for the Amstrad.

This is part of the Dr. Watson series and is available from all
good computer bookshops, or by mail order direct from the
publishers, Honeyfold Software Ltd.

MERGE
As well as simply loading a program it is possible to merge two
programs together. One of the programs must be stored in memory
and the other on tape. The MERGE command loads the program on tape
line by line. Suppose the first line loaded is ten. The Amstrad
checks to see whether the program in memory has a line 10. If it
has then it is replaced by the line 10 loaded from tape, if no
line 10 is present then the line from tape is used. Figure A 2.1
demontrates the principles of MERGE.

A 2-4

The program in the computer The program on Tape

10 REM COMPUTER
15 LET A=8
20 LET A=A+7
30 PRINT A
35 PRINT "THANK YOU"

10 REM TAPE
20 LET A=A*A
30 PRINT "THANK YOU";A
40 END

The Final Program

10 REM TAPE
15 LET A=8
20 LET A=A*A
30 PRINT "THANK YOU";A
35 PRINT "THANK YOU"
40 END

A Diagrammatic Representation of the Merge Command

FIGURE A2.1

The new program is the program from tape and any lines of the
program that was in the computer which do not have a corresponding
line number in the tape program.

CHAIN MERGE
The CHAIN MERGE command is an interesting combination of both
CHAIN and MERGE. The merge section works in the way outlined in
Figure A2.1 and the CHAIN section works exactly the same way as
the CHAIN command by itself.

CHAIN MERGE "ALBERT"

This will merge the cassette program ALBERT with the program
currently in memory. Once merge is completed the program will
automatically RUN starting at the first line of the program.

A 2-5

CHAIN MERGE "ALBERT", 100

This will Merge the cassette program ALBERT with the program
currently in memory. Program execution will start at line 100.
Make sure that the line used in the CHAIN MERGE command exists. If
it does not the Amstrad will report back:

Line does not exist.

and the program in memory will have been deleted.

The combination of CHAIN and MERGE can be used with a third
argument. This is DELETE.

CHAIN MERGE "ALBERT", 100,DELETE 300-

When entered this will cause the computer to Delete lines 300
onwards from the program currently in memory BEFORE the program on
cassette is merged.

CAT
The last of the Amstrad cassette commands is CAT. CAT is short for
CATalogue and is used to display the names of aH files saved on
the tape in the cassette drive.

After typing in CAT the Amstrad will respond with:

Press PLAY then any key: ■

Once a key is pressed the Amstrad will begin searching through the
tape. Every time a program is encountered the following will be
displayed:

<filename> block <n> <filetype> OK

Where <file name> is the name of the file found. <n> is the block
number and <file type> is one of the following file characters.

$ BASIC program
% Protected BASIC file
* ASCII text file
& Binary file
' Protected Binary file

A 2-6

The OK message tells you that the program was saved okay. The
CATalogue message for the tape on which "GUESSER" was saved would
read:

GUESSERJfilename

block 1
▲

filesize

OK

saved OK

basic program

The CATalogue Display

FIGURE A2.2

A 2-7

□□(sugmmti]

EXERCISE 1.1

• Type EDIT 30

• Move the cursor until it is between PRINT and
NAMES

• Type in "Your name is ";

• Press ENTER

• You have successfully edited line 30

EXERCISE 1.2

10 INPUT "What is your name "; NAME$
20 INPUT "How old are you "; AGE
30 PRINT "Your name is "; NAME$
40 PRINT "Your age is ' AGE

EXERCISE 1.3

10 CLS
20 INPUT "WHAT IS YOUR NAME";NAME$
30 CLS
40 LOCATE 15,10
50 PRINT "HELLO "; NAMES

EXERCISE 2.1

10 COUNT=0
30 RANUM=INT(RND*100)+l
50 PRINT RANUM
70 COUNT=COUNT+1
75 IF COUNT < 100 THEN 30
90 STOP

S-l

EXERCISE 2.

EXERCISE 2.

10 FOR X=0 TO 100 STEP 3

10 FOR X=10 TO 1 STEP -1
20 PRINT X
30 NEXT X
40 PRINT"FIRE!"

S-2

EXERCISE 2.4

EXERCISE 2.5

EXERCISE 3.1

EXERCISE 3.2

EXERCISE 3.3

EXERCISE 3.4

One way is to change line 60.

60 IF GUESS=RANDOM THEN PRINT"WELL DONE-
GUESS CORRECT ":PRINT"YOU TOOK" ;C; "GOES":
GOTO 110

100 IF COUNT <99 THEN PRINT"SORRY YOU'VE
HAD YOUR SIX GOES ":PRINT"THE NUMBER WAS";
RAN UM

10 MODE 0
20 BORDER 13
30 INK 0,19
40 INK 1,17
50 PAPER 0
60 PEN 1

10 MODE 0:INK 1,19
20 PLOT 320,100
30 DRAW 64,93,4

75 IF A$="R" then 30

3 IF X>640 OR X<0 THEN PRINT"NUMBER OUT
OF RANGE":GOTO 2

5 IF Y>400 OR Y<0 THEN PRINT"NUMBER OUT
OF RANGE":GOTO 4

S-3

EXERCISE 3.5

10 MODE 1
20 R=57
25 PLOT 177,200
30 FOR A=0 TO 3.15
40 X= R*COS(A):Y=R*SIN(A)
50 DRAW 120+X, 200+Y
60 NEXT A

EXERCISE 4.1

10 FOR X=1 TO 4
20 READ A,A$
30 PRINT A;A$
40 NEXT X
50 DATA 1,ONE, 2,TWO,3,THREE, 4,FOUR

APPENDIX ONE
EXERCISE A 1.1

i) 0000 0011 = 0+0+0+0+0+0+2+1
— 3

ii) 0000 0100 — 0+0+0+0+0+4+0+0
4

iii) 1000 0000 = 128+0+0+0+0+0+0+0
= 128

iv) 1000 0011 128+0+0+0+0+0+2+1
= 131

v) 1011 0111 128+0+32+16+0+4+2+1
= 183

vi) 0111 0011 = 0+64+32+16+0+0+2+1
= 115

S-4

EXERCISE A 1.2

i) 0009
16

=

0x409+0x256+0x16+9x1
0+0+0+9
91O

ii) 0013 0x4096+0x256+1x16+3x1
16 = 0+0+16+3

= 1910

iii) 00A5fl1 O
= 0+0+10x16+5x1
= 160+5
— 165io

iv) OAAE = 0+10x256+10x16+14x1
16 = 2560+160+14

— 27341O

v) oooe<4,
1 O

= 0+0+0+14
141O

vi) OUA.-1 O
= 0+256+16+10

2821O

vi i) 00EA.ft
1 v

= 0+0+14x16+10
= 224+10
= 2341O

EXERCISE Al.3

i) 41O = 01002 (BCD)

ii) l01O - 1x10+0

iii) 77.-. - 7x10+7
1 U = OUI 0Ul2 (BCD)

iv) 971O - 9x10+7
= 1001 01U2 (BCD)

v) 53io - 5x10+3
— 0101 00U2 (BCD)

vi) 102.- - 1x100+0x10+2x1
l U 0001 0000 00102 (BCD)

vi i) 953- n 9x100+5x10+3x1
10 = 1001 0101 00U2 (BCD)

S-5

viii) 2579 = 2x1000+5x100+7x10+9x1
= 0010 0101 0111 10012 (BCD)

EXERCISE A 1.4

i) 0000 00012 (BCD)= 0x10+1x1
i-IO

ii) 0000 10012 (BCD)= 0x10+9x1
= 91O

iii) 0001 01012 (BCD)= 1x10+5x1
— 151O

iv) 0010 oooo2 2x10+0x1
= 201O

v) 0100 10012 (BCD)= 4x10+9x1
— 491O

vi) 1010 00112 (BCD)

*** This is not a valid BCD number as the first
nybble, 10102 = 101o , i.e. is greater than allowed
in BCD.

vii) 1001 OU12 (BCD)= 0x10+7x1
= 97! o

viii) 1000 10002 (BCD)= 8x10+8x1
881O

S-6

A

AND 2-24
Angles 3-19
Arithmetic 1-11
Array already dimensioned 4-8
Arrays 4-6
ASC 3-13
ASCII 3-13
Auto repeat 1-7

B

Binary A1-1 et seq
BORDER 3-2
Brackets 2-9
Break in 2-3

C

CAT 2-22, A 2-7
CHAIN A 2-2
CHAIN MERGE A2-5
Character sizes 3-1
CHR$ 3-13, 4-19
Circles 3-19
CIS 1-24
Colour 3-3
Comma separator 1-16
Comparisons 2-23
Conditional loop 2-4
Connecting the Amstrad 1-1 et seq
Continuous loop
Copy 1-21
COPY key 1-19
COS 3-19
CTRL key 1-7
Cursor 1-4
Cursor keys 1-19, 3-12

D

DATA 4-2
Data exhausted 4-4
Data recorder 2-20, A 2
Decision 2-5
Default INK values 3-5
DEL key 1-8
DELETE 3-11
DIM 4-8
Dimensioning arrays 4-8
Division (/) 1-11
DRAW 3-15
DRAWR 3-17

E

EDIT 1-18, 1-20
Edit mode 1-18
ELSE 2-17
Empty string ("") 3-11
ENTER key 1-9
Etcha sketcha 3-9 et seq

F

False 5-38
File types 2-23
Flags 4-9, 5-1 et seq
Flow charts 2-5
Formatting Screen displays 1-16
FOR...NEXT 2-7
FOR...NEXT...STEP 2-8

G

GOSUB 4-17, 4-18
GOTO 2-2 et seq
Graphics 3-1 et seq
Graphics grid 3-4, 3-5
Greater than (>) 2-6
Guess the number game 2-1 et seq

H

Hangman 5-1 et seq
Hangman picture 5-35, 5-36, 5-37
Hexadecimal Al-1 et seq

I

IF...THEN 2-3
IF...THEN...ELSE
INK 3-3
INKEY$ 3-10
INPUT 1-14
Input/Output 2-5
INSTR 5-29
INT 2-2

2-17

K

Keyboard 1-5
Keyboard buffer 3-10

L

LEFTS 4-11
LEN 4-13
LET 1-11
Line numbers 1-13
LIST 1-15
LOAD 2-20, A 2-1 et seq
LOCATE 1-23
Loops 2-1 et seq
Loop variable 2-3
LOWERS 4-26

M

Mathematical precedence 2-28
Memory locations 1-5 et seq
MERGE A 2-4, A 2-5
MID$ 4-11
MODE 3-1 et seq
Modular programming 4-1 et seq
Multiple INPUT 1-22
Multistatement lines 2-11

N

NEW 1-24
NEXT 2-7
NOT 5-38
Not equal to (<>) 2-25
Null string ("") 3-11
Numerical Variable names 1-11

O

ON...GOTO
ON...GOSUB

5-34
5-34

P
PAPER 3-4
PI (3.14159265) 3-20
Pixel 3-7
PLOT 3-6
Point 3-7
Pointer (data) 4-4
Power up 1-4
PRINT 1-9
Print fields 1-17
Processes 2-5
Prompts 1-18

R

READ 4-2
Ready 1-10
REM 2-8
RENUM 4-9
RESTORE 4-5
RETURN 4-18
RIGHT$ 4-11
RND 2-1
RUN 1-13
RUN" A2-3

s
SAVE 2-20, A 2-1 et seq
Saving programs 2-20 et seq, A2-1 et seq
Semicolon separator 1-17
Separators 1-16, 1-17
SHIFT key 1-6
SIN 3-19
Slicing strings 4-10
Solutions 6-1 et seq
Spaces 1-8
Start up display 1-4
STEP 2-8
STOP 2-4
String slicing 4-11
String variable names 1-11
Strings 1-10
Structure 4-1 et seq
Subroutines 4-18 et seq
Subscripts out of range 4-7
Switching on 1-1
Syntax error 1-9

T

Terminators 2-5
The Amstrad keyboard 1-5
THEN 2-3
TO 2-7
Top down programming 5-1
True 5-38

U

Unexpected next 2-10
UPPERS 4-27
Using the data recorder A2-1 et seq

V

Variable names 1-11, 1-12
Variables 1-11 et seq

OTHER BOOKS FOR THE AMSTRAD

Watson's Workbook
Amstrad BASIC Book 2 - Continuing BASIC
ISBN 0 907792 40 5

Dr Watson Series
Amstrad Assembly Language Programming
ISBN 0 907792 41 3

AMSTRAD
CPC 464

Starting Basic
This book is designed for the complete newcomer to
computers and the programming language BASIC.

The book takes the reader step-by-step through Amstrad
BASIC. Commands are thoroughly examined as they are
introduced and are incorporated in numerous example
programs. Readers will already know enough to write and
run their own short programs by the end of chapter
one!

The programs in this book have been written to illustrate
the use of structured programming, making programs
easier to write and understand.

This book is a complete course in itself, but when you
wish to know more about the Amstrad, book 2, ‘Con
tinuing Basic’, is also available.

GLENTOP

publishers

ISBN 0-507752-35-1

Glentop Publishers
Standfast House, Bath Place,
High Street Barnet, London 9 780907 792390

s -

?
<
2»

X

https://acpc.me/

CPC

[FRA] Ce document a été préservé numériquement à des fins éducatives et d'études, et non commerciales.
[ENG] This document has been digitally preserved for educational and study purposes, not for commercial purposes.
[ESP] Este documento se ha conservado digitalmente con fines educativos y de estudio, no con fines comerciales.

	AMSTRAD Watson's Workbook Book1 - Starting BASIC
	Contents
	Introduction
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Appendix One - Binary and Hexadecimal
	Appendix Two - Using The Amstrad Data recorder
	Chapter 6 - SOLUTIONS
	Index
	● Raw HQ scan : Maxime CROIZER for ACME | Cleaning/Cover restoration/Layout/OCR/Coca light : ACME – https://acpc.me | Thanks to Rafa CPCMANIACO for lending the book ● 2020-11-03

