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Preface

Though ‘C’ has been used for a considerable time as a language for writing compilers, 
word-processors and games, it has never become as well known as it ought to be, and has 
certainly never displaced BASIC as a language for microcomputers. This has been due to 
several reasons, some of which are no longer valid. One reason has been that BASIC, 
because it allowed direct keyboard commands, was an easier language to learn. This is 
certainly true, but it is also true that it is easier to learn to program badly in BASIC, even in 
Locomotive BASIC, than to program well. Another restriction was that many ‘C’ 
compilers did not produce machine code which could then be recorded and used on any 
suitable machine. It was common to find that ‘C’ programs could be run only on machines 
which were equipped with a complete ‘C’ compiler installed. The most vexing problem was 
that ‘C’ was simply not available for machines with small memory sizes. The result was 
that this useful, fascinating, though sometimes infuriating language was confined to 
programmers who had mini rather than micro-computers.

The arrival of HiSoft C has changed the outlook completely. The version around which 
this book is written has been designed for the Amstrad machines, from the CPC464 
upwards, including the CPC664 and CPC6128. This version of ‘C’ supports direct 
commands which, though not as flexible and simple as those of BASIC, do at least allow to 
escape some of the frustration of using other versions of‘C’. A forthcoming version of ‘C’ 
which runs under CP/M should be even more useful. Now, using HiSoft C, the 
programmer can operate with a high level compiled language which includes instructions 
for the high resolution graphics and sound, and which compiles to very fast-running 
machine code. The serious programmer who uses discs can also produce ‘C’ programs in 
machine code which will run on Amstrad machines that are not equipped with HiSoft 
C. This language, then, provides all that is lacking in BASIC, and much more.

I have assumed that the reader of this book will have programmed in BASIC. Since the 
book is written for the Amstrad user, this seems to be a reasonable assumption, and it 
provides a basis of comparison between Locomotive BASIC and ‘C’. In addition, I have 
assumed that the reader who wishes to use graphics and sound is familiar with the methods 
of Locomotive BASIC. This is important, because in HiSoft C, the graphics routines are 
rather similar, and the simpler types of sound instructions should be useable by anyone 
who has used the sound system in BASIC. HiSoft C, however, offers significant extensions 
to these commands. These extensions form part of the HiSoft Library of‘C’ functions, and 
very many of these functions have been more fully described in this book. In addition, some 
of the non-standard features of HiSoft C, such as the inline statement, have been 
explained, with examples, in a more complete way that has been provided in the manual.
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In some ways, it is easier to learn a new computing language if you have previously learned 
any other computing language. This is not always true when the first language is BASIC, 
however, because ‘C’ offers much that can only be accomplished with a lot of tortuous 
effort in BASIC. Very often, a BASIC programmer is tied to BASIC methods, and cannot 
see that there are simpler ways open to him/her when using another language. I have taken 
every opportunity to point out the new ways in this book. I have also included many 
reminders about old BASIC habits that must be abandoned when you learn to program in 
‘C’.

Because the way that you write ‘C’ programs is very closely tied to the way that you design a 
program, I have linked these topics together rather than trying to deal with the design of 
programs separately. The book has been written entirely around the conventional ‘top- 
down’ programming method, and the programming has been approached in the same way. 
The system which was used was a CPC464 with a disc drive, but the book is equally 
suitable for the user who has bought HiSoft C on cassette. Obviously, the book will also be 
suitable for the buyers of the CPC6128 model which are now available. Throughout the 
book, the carriage-retum/newline key has been referred to as (RETURN) (as on the 
CPC6128) or as (ENTER) (as on the CPC464). Where I have used commands that are 
peculiar to the disc system, I have pointed this out. My HiSoft C disc was a stock item, 
purchased by mail, and not a pre-production sample. The version number was VI.2. The 
reader should find, then, that there are no significant differences between the ‘C’ of my 
descriptions and the ‘C’ that he/she has bought. The programs that appear in this book 
have been photo-copied from listings which were produced by an EPSON printer reading 
the ‘C’ program direct from disc. The listings in the book are therefore exactly of the 
programs which I used. No line numbers are shown, because the line numbers that appear 
on the screen are not sent to the printer.

Finally, I am very grateful to HiSoft for this excellent version of‘C’, which has breathed life 
into the learning of this fascinating language. I am indebted to them for permission to print 
a few of the large number of library functions which form part of the HiSoft C package for 
the Amstrad. In particular, I want to thank Dave Howarth for many interesting hints. I am 
also most grateful to Dr. Peter Holmes, of Glentop Publishers, who warmed to the 
prospects of‘C’, and commissioned this book.

Ian R. Sinclair

September 1985
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Chapter 1

Introduction to ‘C’.

Why ‘C’?
If you program in BASIC and find the language perfectly adequate, it’s reasonable to ask 
“why use ‘C’ ?”. Certainly, if you find the Locomotive BASIC of the Amstrad completely 
suited for what you want to do, you probably don’t need ‘C’. On the other hand, it’s much 
more likely that you have found a lot of items for which BASIC, even the excellent 
Locomotive BASIC, is not well suited. One obvious set of such items on every version of 
BASIC is the programming of database records. Others are less obvious, unless you are 
trying to write business software that requires the use of lists, or games software which uses 
sets of items. BASIC can cope with these needs only in roundabout ways, and if you have 
only ever programmed in BASIC, you simply don’t realise how much effort you are having 
to make for what are quite simple actions in other languages.

Another reason for using ‘C’, of course, is speed. BASIC is an interpreted language. This 
means that every instruction in a BASIC program is carried out as the machine comes to it. 
A computer carries out these instructions by converting them into machine code and 
running the machine code. An interpreter takes the instructions one by one, finds the 
machine code for an instruction, runs that instruction, then looks for the next one. By 
contrast, a compiler deals with the whole of a program and converts it into one piece of 
machine code. This code can then be recorded and run. The advantage of this is that all of 
the looking-up and converting steps are done once, in the action which is called 
compiling, and this compiled code can run fast, usually almost as fast as machine code 
which has been written using an Assembler. When you use an interpreted language, the 
interpretation has to be done for each step and for each time the program is run. For 
example, suppose that your program consists of a loop which prints a string variable value 
fifty times. An interpreter would look for the machine code for the print operation, find the 
address and length of the string of characters, and carry out the same action fifty times. All 
of the looking up is repeated on each pass through the loop. A compiler, by contrast, 
would generate machine code which carried out the print action in a loop. This generation 
would be done once, during compiling, and because the looking up actions do not have to be 
done again, the result is very much faster. The speed of a compiled language may be 
important for you if you want to write either business or games software, though the 
advantage is less for some types of games programs. The reason is that the ‘C’ compiler 
makes use of the built-in screen routines of the Amstrad machines, which are comparatively 
slow. HiSoft C, however, allows you to mix in machine code with your ‘C’ so as to carry out 
actions like direct access to the screen memory.
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Yet another reason for using ‘C’ is that the language is much closer to the languages that are 
used on larger machines. It is also ‘portable’ in the sense that a program which is written in 
‘C’ for one machine will probably work with another machine. This assumes only that 
there are no instructions which are peculiar to one machine, and ‘C’ is particularly good in 
this respect. The way that ‘C’ is designed, there are a few instructions that you find in all 
versions of‘C’, and a lot of actions (the library functions) that you can call up to make any 
particular machine go through its tricks. Above all, though, ‘C’ is a language that forces you 
to think carefully about what you want a program to do. It is possible to write poorly- 
designed and sloppy programs in ‘C’. It is also possible to write neat and tidy programs in 
BASIC. In the normal run of events, however, both of these are unusual. One of the things 
that endears ‘C’ to old BASIC programmers is that ‘C’ is a flexible language. You aren’t tied 
to the very rigid rules that you find, for example, in Pascal. On the other hand, you pay for 
this flexibility in being allowed (some might say encouraged) to make mistakes. The ‘C’ 
compiler won’t stop you when you try to do something silly, and it can sometimes be very 
difficult to find out just what is causing the trouble.

The order of things.
‘C’ is not simply a compiled language, it is a language in which programs can be written 
which compile to unusually compact and fast machine code. This is possible only if you 
program in the correct order, though. The most important idea to get used to, if your 
programming experience is in BASIC, is that types of variables and their names have to be 
declared before they can be used. In BASIC, you can write a line like:

100 A%=5

which introduces a variable name, A%, with the % sign meaning that this is an integer. At 
the same time, the value to which A% is assigned is made equal to 5. A ‘C’ programmer can 
write a very similar kind of line, but it has to appear early in a program, before the variable 
will be used. The ‘C’ form of this line will be:

static int a=5;

with int used instead of the % sign to mean that a represents an integer. The word static 
refers to the way that the value is stored, and will be explained later. Using this 
declaration means that we use only a in the program, not int a or a%. The use of the 
equality sign and the 5 then assigns a value of 5 to a. The assignment does not have to be 
made here, it can be done later in the program. Declaring a variable type, and assigning a 
value in one step is just one of the short cuts that ‘C’ allows and which makes it such a very 
interesting and challenging language.

This idea of declaring what type of variable is represented is not one that appears much in 
BASIC. The Amstrad machines, along with a few machines which use Microsoft BASIC 
(such as the MSX machines) use instructions such as DEFINT. This allows you to define 
how letters will be used in the program. For example, DEFINT A-D in Microsoft BASIC 
means that any variable name which starts with the letters A, B, C, or D will be an integer 
variable. This means that you no longer have to mark integer variables, like A%, BY%, 
COWS% and so on, to show that they are integers. The DEFINT statement at the start of 
the program has done this for you, and it’s also possible to define string or real-number 
variables in a similar way.
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In ‘C’, however, this idea of declaring how names will be used in advance is all-important, 
though different in style. Note, too, that I said ‘names’. In Locomotive BASIC, you are 
probably used to working with variable ‘names’ like Apple, Belong^ and so on. ‘C’ also 
allows you to use realistic names rather then just letters singly or in pairs. This is an 
advantage in ‘C’, because using long names does not slow down the action of the program as 
it does with BASIC. You must, however, define what type ofitem each name will be used 
for. This allows the compiler to prepare for each variable that will be used by making the 
correct allocation of memory. You cannot write statements which in BASIC look like:

NAME=“SINCLAIR”

in ‘C’ unless you have, earlier in the program, declared that NAME is a variable that will be 
used for a string of at least nine characters. Nine has to be used for an eight-letter name, 
because in ‘C’, a string must end with a zero, which is the ninth character. You can’t make 
this declaration later, because the compiler will halt when it finds a name used that it has 
no notification about. You cannot ever use a name unless you have defined the name. The 
definition does not necessarily need to be placed at the start of the program, but it certainly 
must come before you attempt to use the name. So that I don’t have to use long-winded 
phrases each time I remind you of this idea, I’ll give it its correct name from now on- it’s 
called pre-definition.

Program structure.
The structure of a program means how it is arranged and organised. Some BASIC 
programs are about as structured as the path of a drunken fly. Others are neatly arranged 
with a simple main core program which calls subroutines to perform the actions. If you 
have written programs of the core-and-subroutine type, then it’s likely that you’ll take well 
to ‘C’. If your programs have been of the ‘fly-track’ variety, you will have real problems! ‘C’ 
forces you to have some structure about your programs, and the type of structure is one 
that is far removed from BASIC. For example, in some varieties of BASIC, you might call 
up a subroutine in a line like:

220 GOSUB 5000:PRINT A;

which carries out a subroutine, prints the value of a number, and keeps the printing in the 
same line.

This could never be mistaken for a ‘C’ line. For one thing, ‘C’ lines aren’t normally 
numbered, although HiSoft C for the Amstrad uses line numbering for your convenience in 
editing. If you write the lines in the correct order, the order that the compiler will deal with 
them, there’s no need for line numbers. The second point is that the subroutine starts 
somewhere later in the program, at line 5000. We can’t have such a thing in ‘C’, because the 
compiler can’t use line numbers. Instead of using a subroutine which is called by its line 
number, ‘C’ uses a function which is called by using its name. Users of the BBC Micro 
(and the QL) are familiar with this idea, and the principle is developed further in ‘C’. Even 
the instruction PRINT is not used in ‘C’, and the semicolon does not mean ‘don’t take a new 
line’. Did I really say that knowing one computer language would prepare you for another?
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The point that is really important here, though, is order. In BASIC, you can write a core 
program which has calls to subroutines. It won’t run correctly until the subroutines have 
been entered, but you can place the subroutines anywhere you like in the program. By 
contrast, defined functions in Locomotive BASIC must be placed ahead of the point at 
which they are called. If you have a function which, for example, multiplies a price by 0.15 
so as to work out the amount of VAT, you must, in BASIC, define it before you use it. You 
would have lines in BASIC such as:

10 DEF FNVat(S)=S*.15

20 INPUT “BASE PRICE”;X

30 PRINT“VAT IS ”;FNVat(X)

because the BASIC interpreter can’t look ahead for FNVat. The similarity here is that a 
defined function in Locomotive BASIC is called into action by using its name, FNVat in 
this example, rather than by using a line number. In a ‘C’ program all functions must be 
defined, but this can be done following the main program. Like a well-structured BASIC 
program then, which might consist of a core program of perhaps ten to a hundred lines of 
main program followed by subroutines, a ‘C’ program is written in the order of main, then 
functions. This means that details, such as declaring variable types, all come at the start of 
the program, followed by the main program, and the functions often come last of all. This is 
a very logical arrangment as far as the programmer is concerned. It cartainly makes the 
writing of programs much simpler than is the case in other languages. Any modem version 
of‘C’ can be expected to possess a good editing system, so it’s easy to add statements at the 
start or at the end of a program if you have left something out. If you have programmed for a 
long time in BASIC, you might feel rather lost without line numbers, and HiSoft C 
therefore allows you the use of line numbers. This is shown only in the editing example in 
the manual, but you can use line numbers just as you do in BASIC, and the line numbering 
can be made automatic in the same way as used in Locomotive BASIC. For example, 
typing 110,10 (ENTER) will cause the line numbering to start at 10 and to change in steps 
of 10.

The line numbering is not essential in HiSoft C. With the compiler switched in, you can 
enter a set of statements with no line numbers, and you can then compile and run the 
program. You cannot, however, record the program to use again. The line numbers are also 
very useful if you want to list selectively, or delete some lines. You can use a line-editing 
action which is similar to that of the Amstrad machine. The line numbers, however, are not 
recorded along with the program, and you can find that your program has an entirely 
different set of line numbers when you replay it. In addition, the line numbers are not 
printed when you take hard-copy. The examples in this book have been printed directly 
from the text of working progams, with no line numbering. You can, if you like, prepare 
your programs using a word-processor, leaving out line numbers, and recording on tape or 
disc. If you program in BASIC in this way, you will know what is involved. You can also 
read recorded ‘C’ programs with a word-processor, or by using the CP/M TYPE 
command.
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The use of line numbering just like BASIC makes it much easier for you to have second 
thoughts. It’s easy, for example, to insert new lines just by giving them suitable numbers. 
You can, for example, put in lines with numbers 11,13,14,16 and so on, between line 10 
and line 20. If you find that you are running out of numbers, then HiSoft C comes to your 
rescue with the facilities that you normally have on the Amstrad machines. You can, for 
example, renumber lines with a higher increment number. If you find that you are 
writing so many extra lines that you will need to use many more lines, then you can 
renumber all the existing lines of the program by typing simply n then (ENTER). This will 
renumber so that the first line number is 10, and the subsequent lines are numbered in tens. 
You can then continue to insert lines with intermediate numbers, and renumber as often as 
you like. If you have programmed in BASIC using the popular plan of reserving certain 
ranges of line numbers for certain tasks (like 10 - 100 for the main program, and each 
subroutine starting at 1000,1200,1400 and so on), then forgetit! This is never needed in ‘C’, 
and in any case, a program is always automatically renumbered when it is replayed from 
tape or disc. You can also delete lines in a similar way. Typing dl00,200 will delete all lines 
between, and including, 100 and 200. A command such as dlO will delete a single line. 
Unlike BASIC, typing a line number and then pressing (ENTER) will not delete a line. It 
will only bring up the polite message ‘Pardon?’, which is how the HiSoft Editorfor ‘C’ deals 
with anything it can’t recognise. The command dl,32767 will delete all the lines of a 
program.

In addition to these useful editing commands which are a normal part of the BASIC of the 
Amstrad, HiSoft C allows you a couple of commands which are more commonly used in 
word-processing programs. One is f, which is used to find any string, such as a name. You 
have to specify the range of line numbers over which you want to search. The command 
flO,1000,copy (ENTER) will list on your screen (or printer) each line which contains this 
word copy. The line appears on the screen, ready to edit using the arrow and (DEL) keys in 
the usual way. The range of line numbers that is needed has to be entered only once if you 
are using the same range for several searches. After the first search, you can use f„newone 
for example, omitting the line numbers. The other action of this type is the change action. 
This is used to change one string into another. For example, flO,1000,copy,turn 
(ENTER) will list all the lines that contain copy and allow you the choice of altering each 
copy to turn if you want to. If you want to make the change, you press CTRL s, and you’ll 
see the alteration carried out, then the next word will be found.

Source-code and Machine-code.

HiSoft C is sold in two versions, cassette and disc, which operate in almost identical ways. 
Normally, you will work with the compiler program held in the memory of the Amstrad for 
all the time that you need to use it. When you type a program, that program exists only as a 
set of ASCII codes, just like the output from a word-processor. This is called the ‘source­
code’, and is recorded on cassette or disc by using the p command, more of which will come 
later. When a program like this is loaded from the disc or cassette, it is still just a set of 
ASCII codes. To make the program run, it first has to be compiled, and then set into action.
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This can take some time, particularly if the program is a long one. The reversi.c which is 
provided with HiSoft C is a good example of another problem that can arise - it’s too long to 
compile in this way on the CPC464 machine! Another disadvantage, however, is that only 
an Amstrad which has HiSoft C loaded into it can load, compile and run a program which 
has been created this way. This is because normal compiling action does not record or 
replay machine code. All that is recorded is a serial file of strings, the instructions of the ‘C’ 
program. These have to be read and compiled before running is possible.

There is an alternative however. By making the first instruction of a long program (or any 
other program you want to use) #translate filename, using your own filename, you can 
compile and record machine code. If the program is a very long one, you record the source­
code, including the translate instruction. You then compile the recorded program, using 
the instruction #include source__filename. This loads the compiler into the memory
only when it is needed. The program can be read from disc or cassette, compiled, and the 
resulting machine code stored back on the disc or cassette. This allows you to run 
a ‘C’program without having HiSoft C in your machine, and in this way much longer 
‘C’ programs can be compiled. Once this has been done, the code can be read from the 
disc by any Amstrad machine which has enough memory , and run. In this way , a 
program which you have written in *C ’ can be used by any Amstrad, even one which is 
not supplied with HiSoft C on cassette or on disc.

Throughout this book, the examples will be useable in any form you please. As with any 
compiled language, the main advantages of using ‘C’ are available only to disc users, and I 
believe that most programmers in ‘C’ will be using a disc system, as I am. Nevertheless, if 
you are learning about HiSoft C with only a cassette system, you will be able to use all of the 
examples which are included here, though progress will be slow. The programs that are 
illustrated all use lower-case letters for words of command. You must use lower-case 
letters for program instructions and for commands to the compiler, because upper-case 
letters will not be accepted. The use of upper-case letters gives you a set of ‘undefined 
symbol’ error messages. Because of this, all references to program instructions in the text 
will be in bold type. The w command will list a ‘C’ program on your printer if you have a 
printer connected, and the listings that are reproduced in this book have all been made by 
using the w command to an EPSON RX-80 printer.

HiSoft C summarised.
Unless you have used other varieties of‘C’, the advantages of HiSoft C are not necessarily 
clear to you, even after reading the manual. You can also find that, unless you are a fairly 
experienced ‘C’ programmer, even ‘C’ programs printed in other books may not run when 
you try them, because you need to know how the Amstrad version works first. The main 
point is that HiSoft C is a version which corresponds very closely to international 
standards. You should never have to re-learn your ‘C’, because there are not the 57 
varieties of‘C’ that you find with BASIC. If you change your computer for a later design, 
then you will find that you can use ‘C’ on the new machine as readily as you did on the old. 
This is particularly true if HiSoft C is also available for your new machine.
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Having praised the advantages of standardisation, however, there are also some non­
standard advantages. The Amstrad is a machine which has quite superb capabilities for 
graphics and sound, better than those of many other machines. HiSoft C comes with a 
library of functions to allow you to control these features of the Amstrads, and obviously 
these features would not necessarily be available on other computers. There are also 
provisions for writing in assembler language, and for direct commands.

Command Effect

1 a Set drive to A.

1 b Set drive to B. Will cause a lockup if no ‘B’ drive exists.

1 cpm Switch to CPM, clearing out ‘C’.

1 dir Display disc directory.

1 dir file Display filename, which can use wild card.

1 disc Switch to disc in, disc out.

1 disc.in Switch to disc in.

1 disc.out Switch to disc out.

1 drive letter Switch to drive of specified letter, if present.

1 era name Erase file of specified name. A wildcard can be used.

1 ren old new Rename old filename as new.

1 tape Switch to tape in, tape out.

1 tape.in Switch to tape in.

1 tape.out Switch to tape out.

1 user number Change user number.

Owners of the CPC464 should note that these bar commands use the neater style (no 
‘©’strings needed) of command as used by CP/M and also used in the 664 and 6128 
machines.

The bar commands which can be used direct from the keyboard during editing.

FIGURE 1.1
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The bar( I ) commands that are listed in Figure 1.1 can also be used directly from the 
keyboard. I dir, for example, is very useful to find what is on your disc at any time before 
you start saving a program. You also have access to all the rename and erase commands for 
disc operation without having to go back to BASIC. You can also set the programmable 
keys for some of the most-used ‘C’ instructions, saving wear on your typing finger(s).

The use of line numbers when entering ‘C’ statements makes editing particularly easy, 
especially when you can make full use of the familiar editing system of your Amstrad. This 
makes learning HiSoft C very much easier, because you do not have to struggle with an 
unfamiliar editing system at a time when you are likely to make a large number of mistakes. 
For disc users who choose to use the Disc version, there are many advantages in HiSoft C. 
Of these, the main advantage is that the library is much easier to use. This is another 
feature of ‘C’ which is difficult to grasp if you have only programmed in BASIC. Every 
version of‘C’ comes with the small set of‘C’ instructions built in, but also with a ‘library’. 
The library is a set of recorded functions. It’s rather like getting a version of BASIC which 
came with a disc full of ready-made subroutines. These library functions contain a lot of 
extensions to the language, not least of all the special instructions that are needed for sound 
and graphics on the Amstrad machines. When you have to use cassettes, getting these 
library functions off the cassette and into memory takes rather more time than most of us 
can spare. When the library is held on disc, the need to wait is much reduced. In addition, 
when you make use of discs, the full range of disc filing commands can be used in programs.
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Chapter 2

Starting ‘C’ programs.

Loading in.
The ‘C’ disc or cassette is loaded into your Amstrad in much the same way as any other disc 
which contains machine code. This means that the ‘C’ compiler is recorded in the form of 
an unprotected BIN file, which is loaded and run by using RUN“hisoft-c” (ENTER). Once 
this has been done and the compiler is in action, your only way out is back to BASIC, by 
pressing ESC SHIFT CTRL together. This will re-start BASIC, and remove all of the 
compiler code. The disc contains several other sections of code, including the library 
routines, which are arranged to load in as and when necessary. These other sections are 
held as ‘C’ source files, which means that they are in ASCII code, and can be read by the 
CP/M TYPE command or the g„filename command of the ‘C’ editor. To see these files 
using CP/M, and to print them out if you have a printer, start by switching back to BASIC. 
Insert the CP/M master disc, and then type I CPM (ENTER) to get into CP/M. Now 
remove the CP/M disc and insert your HiSoft C disc. To see the file extcmd.h, for 
example, type type extcmd.h and press (ENTER). You will hear the disc spin, and see the 
file appear on the screen. If you have a printer connected, then using CTRL P before 
entering the TYPE command will cause the file to appear on paper. The alternative is to 
start ‘C’ running, use the command dl,32767 to make sure that the memory is clear, then 
use g„filename to get the file. The file can be printed out using the w command. You can 
then take a look at a professional class of‘C’ program. Don’t let it put you offl

You have paid for the master copy of‘C’ on cassette or on disc, and there is no reason why 
you should not make backup copies of the disc. The HiSoft manual shows how to make 
copies of the library routines from the cassette, and making disc copies of the main program 
and the library routines is just like copying the CP/M master disc. Certainly if you intend to 
be using ‘C’ for many years, it would be preferable to have at least one backup for the disc. 
Your backup should contain all of the files except reversi.c, and you can leave the backup 
disc unprotected, so that you can add your own ‘C’ files to the list. It’s a good idea to have 
the HiSoft C and the library files on each disc that you use, to save having to use the master 
copy. If you use cassettes, then you have to swap the cassettes around a lot in any case. 
Remember that once you have entered ‘C’, you cannot use familiar commands like cat or 
list. You can use the bar (I ) commands in the usual way, however, with the usual 
reminder that if you use I CPM, the CP/M master disc must be in the drive, and you will 
then lose the ‘C’ compiler. You can, however, use commands like i ren and I era in their 
CP/M form.
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First steps.
All ‘C’ programs can be constructed in the same way, and though you can leave out some 
steps in HiSoft C, it’s advisable to keep to the rules of standard ‘C’. If you do, it’s much 
easier to write ‘C’ programs for practically any machine. In addition, it helps a lot if you 
write programs the way that you ought to design them, outline first and details later. 
Remember also that you need to keep to Amstrad rules as well. For example, you must, if 
you are not using the automatic line numbering, remember to leave a space following a line 
number. Failing to do this will make your ‘C’ programs look very peculiar. The simplest 
possible outline of a ‘C’ program then, is:

10 main()
20 !
30 /*statements;*/
40 }.

- and we now have to take a look at this to decide what is important in these few lines. One 
thing which is very important is the way that the semicolon is used. In BASIC, the 
semicolon is used to ensure that printing is to be kept on the same line. In ‘C’, the semicolon 
is used as a separator, showing the end of a statement. This is the sort of thing you do in 
BASIC just by ending a line and taking a new line number. In ‘C’ you can, for example, use 
the semicolon to separate statements in the same line, as you use the colon in BASIC. 
Omitting the semicolon is a way of instructing the compiler that there is more of a 
statement to come. At this stage, it’s a bit pointless to describe the rules, because until you 
have had some experience in writing programs, you won’t really see why semicolons are 
used in some places and not in others. For that reason, I’ll point out in each of the early 
examples the few instances in which a semicolon has not been used where you might expect 
it.

In the example of program outline, the first line consists of the special name main(). A ‘C’ 
program consists of a set of named functions, using whatever names you like to give them, 
but there must always be one that is called main. The brackets are an essential part of this, 
and it’s not very often that you need to put anything between these brackets. For other 
names of functions, though, you will want to place various items between the brackets. In 
any case, you can’t omit them. The main program is the one that calls up all of the other 
functions, just as a BASIC core program can call up various subroutines. The curly 
brackets then show the start and the end of the main program. The ! indicates the start, 
and the ! shows the end. You don’t need any other way of marking the end of the program.

The simplest possible program is then written using keywords. A keyword in ‘C’ is rather 
like a keyword in BASIC, it is reserved for a special purpose and you can’t use it for 
anything else. Keywords must be correctly spelled, otherwise an ‘Undefined symbol’ error 
will be announced after you have compiled and when you try to run the program. This 
means that any of the errors which you would think of as ‘syntax errors’ in BASIC are very 
often not discovered in a ‘C’ program until after compiling. This wastes a lot of time, so you 
need to be rather careful about checking what you type. It isn’t made easier by the difficulty 
in reading the Mode 2 lower-case printing on the Amstrad screen, either. Figure 2.1 shows 
the keywords of HiSoft C.
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auto 

break

case

cast 

char 

continue 

default 

do 

double

else

entry 

extern

float

for

goto 

if

inline 

int

long 

register 

return 

short 

sizeof 

static

Specifies type of variable or function.

Break out of loop.

Marks a choice made by using switch.

Change the type of a variable.

Character variable type.

Go to start of loop.

Select default option in switch.

Start of do. .while loop.

Double precision variable, not implemented in V.1.2.

Alternative in if statement.

Not implemented.

Used in V.1.2 to declare non-integer functions in advance.

Floating-point variable, not implemented in VI.2.

Start of counter controlled loop.

Jump to position of label name.

Test word, used along with else.

Used in VI.2 to head list of machine code bytes.

Integer variable type, range -32768 to +32767.

Double size variable type, not implemented in VI.2.

Variable type, not implemented in V1.2.

Pass back value of parameter from function.

Normal variable type, only type used in VI.2.

Measuring number of bytes in variable.

Type of variable using fixed memory.
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The keywords of HiSoft C. Some, such as long and float, are not implemented in the first version.

struct Compound variable consisting of several fields.

switch Passes control to one of a number of statements.

typedef Defines a name as meaning a variable type.

union Variable type which can be one of a defined group.

unsigned Number in range 0 to 65536.

while Marks start of while loop, or end of do loop.

FIGURE 2. 1

Note that most of these, apart from cast and inline will be found on other versions of‘C’, 
but other versions, notably the ‘C’ for the IBM PC, have a few more keywords, in particular 
for random access disc filing.

The word main, note,is not one of the keywords. This doesn’t mean that you can use it for 
anything you like, but it is a title for the main program, not a word which describes an 
action. This is an example of a word which is an identifier. In BASIC, the only identifiers 
that you use are filenames and names for variables. ‘C’ uses a lot more types of identifiers, 
and they are used in much more interesting ways. In this case, the word ‘main’ identifies the 
main program, and you could use other words to identify the functions (the ‘C’ replacement 
for subroutines) which are called up by the main program. You also use identifiers for other 
things, like variable names, subject to a few rules. The rules are that an identifier must start 
with a letter, with upper-case and lower-case being treated as identical. Since you must use 
lower-case for keywords, it makes sense to stick with lower-case for identifiers too. 
Professional programmers use upper-case letters in indentifiers which are present for 
special purposes, as we’ll see later. You can then follow this letter with other letters or with 
digits, but no blanks or punctuation marks. The only character that is allowed, apart from 
letters and digits, is the underscore (__), which you get by pressing the SHIFT 0 key. The
underscore is useful as a way of making long names more readable (like name__o£_item).
You could, if you wanted to, start a word with an underscore, but there again its better not 
to, because this could lead to trouble later on in your ‘C’ programming career. The reason is 
that words which begin with an underscore are used within the compiler, and unless you 
can be sure that you are using different words, you can cause problems. You can use names 
of more than eight characters, but only the first eight characters will count. This gives 
you rather less choice about things like variable names than you have in BASIC, because 
Locomotive BASIC places no restriction on name lengths up to 40 characters long.

You probably know that in Amstrad BASIC, there are some variable names that you 
cannot use, such as PRINT, TAB and any other reserved word in upper-case letters. 
HiSoft C, like other versions, has some identifier names which are already allocated.
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bit Move bytes in memory.

define # command.

direct # command.

error # command.

fclose Close file.

fopen Open file.

fprintf Print to file.

fscanf Read from file.

getc Character from file.

getchar Character from keyboard.

include # command.

isalpha Test for letter.

isdigit Test for digit.

islower Test for lower case.

isspace Test for space.

isupper Test for upper case.

keyhit Test for key struck.

list # command.

main Marks main program.

printf Print on screen.

putc Send character to file.

putchar Place character on screen.

rawin Read keyboard for key.

rawout Send code to screen.
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Identifiers that are already allocated. These belong to functions which are built-in to the HiSoft compiler.

scanf Read variable value from keyboard.

sprintf Send string to file.

sscanf Read from string into other variables.

swap Exchange variable values.

tolower Alter character to lower case.

toupper Alter character to upper case.

ungetc Put character back on file.

FIGURE 2. 2

These are listed in Figure 2.2, and when you look at this list, you might think that these 
were another set of reserved words, as many of them would be in BASIC. The difference is 
important. All of these identifier names can be used by you for something else if that’s what 
you want. If, for example, you want to call your program gets or puts then you can do so. 
You would be foolish to do this, because by changing the meaning of these names, you are 
losing the use of some action that you might need, but you will not cause any error message. 
The difference is important, because if you try to use a reserved word for anything else, the 
error will be signalled; if you use one of the ‘predefined’ identifier words, there’s no error, 
and you won’t be informed. You may wonder, however, why some action later turns out to 
be impossible! The words in Figure 2.2 are the names of the library routines of HiSoft C, 
and each of them will call up a routine which may be part of the compiler (an internal 
function), or from the library on disc or cassette. This allows you to incorporate ready- 
written pieces of ‘C’ into your own programs, saving a lot of reinventing the wheel.

Following the main() identifier, there is a newline (obtained by pressing the (RETURN) 
or (ENTER) key) and an opening curly bracket. This must be present, and if you omit it you 
will see an error message, usually ‘Bad declaration’, when you try to compile. The opening 
curly bracket marks the beginning of any program or piece of program, and follows the 
program name and declaration of variables. This is something that we’ll look at very 
shortly. The next line is where we would expect the program to do something. Instead, all 
that we have is /‘Statements*/.  The combination of the forward slash (under the question­
mark) and the asterisk (with no space between them) has the same effect as REM ill BASIC. 
It marks a piece of the program which is just a reminder to the programmer. Unlike BASIC, 
you have to mark both the beginning and the end of the remark. In addition, a reminder in 
‘C’ does not slow down the program in the same way as a REM in BASIC does. This is 
because the compiler ignores the reminder and no code is generated. In BASIC, a REM still 
has to be looked at each time the program runs, just to read the code that means REM. In 
this line, I have put a semicolon to remind you that there will be a semicolon following each 
statement. Finally, the ‘C’ program ends with the closing curly bracket. The pairs of curly 
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brackets can be in many places in a ‘C’ program. This is because each section of a program 
has a beginning and an end, and the curly brackets are used to mark them. Any but the 
simplest ‘C’ program will be written as a set of named functions that will be called by the 
main program, and each of these procedures will have an opening curly bracket and an 
ending curly bracket. If, incidentally, you miss out the ending curly bracket in the main 
program, you may find that the error is not picked up by the compiler. The program will 
compile, but it will not run. In the example, it will stop with the error message ‘expecting a 
primary here’. The main reason for this is that it can’t think of any other name for the error!

You can now check the sample program. If you have started by typing il0,10 for automatic 
line numbering, you will have to leave this by pressing (ESC) after the last line of the 
program. If you need to edit a line, then type e followed by the line number and press 
(ENTER). Use the right shift and (DEL) key to repair the damage, and press the (ENTER) 
key again when you have finished. Use 1 (letter ell) to get a listing of the program to check it. 
Once you are sure that it is perfect, you can compile it. This is done by typing c (ENTER). 
This clears the screen, setting 80-character lines again if you had switched to 40 characters 
for readability, and just waits. Using c just switches the compiler in, it doesn’t start it. To 
start compiling, type ^include, and (ENTER). If you have made no mistakes, you will see 
the lines of the program appear in order, followed by the cursor. If you do find errors in this 
example, then it’s nearly always going to be omission of a curly bracket or a slashmark. You 
then need to prepare for running. The compiler pauses at the end of compiling so as to allow 
you to put in special commands to the compiler, but in most cases this isn’t needed. To 
indicate that you want to use the program, you press (CTRL Z). This brings up the message 
‘Type y to run’, and pressing the ‘y’ key will run the program. If a mistake like a missing 
final curly bracket has been found, you’ll get an error message in place of the‘T ype y to run’ 
message. You can then run the*program  by typing y without needing to press (ENTER). 
Since the program doesn’t do anything, nothing appears on the screen except another 
invitation to run the program by pressing the ‘y’ key. Pressing any other key puts you back 
into the hands of the editor.

Output to the screen.
You have probably already noticed that ‘C’ does not have a reserved word print. There is, 
in fact, no reserved word for the action of putting something on the screen. This action is 
one which carries an identifier name for a library routine rather then being one of the 
reserved name actions. The identifier word that you need is printf. Unlike most of the 
library routines, printf is built-in as part of the compiler code, so that the routine does not 
have to be read from the disc each time you compile it. The use of printf is, however, quite 
different from the use of PRINT in BASIC. The name printf has to be followed in brackets 
with details of what has to be printed. This means not only what you want to print, but also 
how you want it printed, formatting as it’s called. The formatting commands and the items 
that you want to print are all included within brackets, with quotes around the formatting 
commands and any characters that are to be printed. What is ‘written’ on the screen in this 
way can be a number or it can be text. The simplest possible examples of text writing look 
sufficiently like BASIC to be easily understood when you are reading a ‘C’ program. Figure 
2.3 shows an example, which you can type, compile and run.
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mai n ()

print! ( " \nWords“) ;
print!(“\nXd“,5+3*2);

A short program in ‘C’ to get you familiar with compiling.

FIGURE 2. 3

In this example, the actions are of writing a word and performing a piece of arithmetic. The 
writing of a word is rather different to the PRINT “Words” that would be used in BASIC. 
The word has to be placed between quotes, and also has to be placed between brackets. The 
semicolon at the end of the line has nothing to do with the printing action, remember, it’s 
just the signal to the compiler that there is more to come. The real novelty here is the \ n 
which appears within the quotes and just ahead of Words. The \ is the backslash sign, 
which is on the key next to the right-hand SHIFT key. Don’t mix this up with the forward 
slash next to it which is used in /*  rem*/  lines. The effect of \ n coming before the text is to 
force a newline before anything is printed. You could also place another \ n after the text to 
cause a new line to be taken after printing. There is a complete set of these backslash 
instructions, all of which must be included between quotes in a printf type of statement. 
Figure 2.4 shows this set.

Mark Meaning

\ n Newline (ENTER/RETURN key).

\ t Tab (one space default).

\ b Backspace.

\ r Carriage return (not newline).

\ f Printer formfeed, screen clear.

\ ‘ Put in single quote.

\ “ Put in double quote.

Any other codes can be put in as numbers in octal code following the backslash. For 
octal codes, see Appendix A.

The specifier letters which can follow the backslash.

FIGURE 2. 4

If, for example, you use \ f this will carry out a formfeed if sent to the printer, and will clear 
the screen if the screen is being used. In the next line, what is written is still placed between 
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brackets, but there are no quotes. The arithmetic result is printed out, just as it would be 
by PRINT 5+3*2  in BASIC. As in BASIC, the multiplication is carried out before the 
addition, so that the result is 11, not 16. Here again a semicolon has been used to mark the 
end of the statement, and there’s another \ n used to cause a newline. The novelty this 
time is the %d which follows the \ n. The % sign is a general way of indicating how you 
would like a number printed, and when it’s followed by a d, then the number is printed in 
denary. If you haven’t come across this term before, it means the ordinary scale-of-ten 
numbers that we use. Once again, there is a whole set of these ‘number specifiers’, and 
Figure 2.5 shows the complete list. After this line, the main program ends with the curly 
bracket.

Mark Meaning

%d Signed denary number, range -32768 to +32767.

%u Unsigned denary number, range 0 to 65535.

%o Unsigned octal number.

%x Unsigned hexadecimal number.

%c Single character.

%s String ending with a zero.

%% Print % sign.

Quantities are normally printed right-justified, but using a negative sign before the 
specifier letter will force left justification. Each specifier letter can be preceded by a 

number to set minimum field size, 0 will print a leading zero or blank.

The formatting code letters whch can follow the % sign.

FIGURE 2. 5

This very simple program nevertheless illustrates a lot of important points about ‘C’. The 
most important point is that the program consists entirely of calls to functions. There is 
absolutely no processing in the main program, simply two calls to the printf function. The 
brackets, which we did not use in main() are used in printf to carry the items that we want 
to print, and also the instruction codes about how we want it all printed. This is the way of 
carrying out most actions in ‘C’, and very often we have to write our own functions if there 
is nothing suitable in the library.

Now press the ‘c’ key to get to the compiler, type ^include to compile, CTRL z to signal 
ready to run, and answer ‘y’ to the ‘Type y to run:’ message. You must, of course, press the 
(RETURN) (CPC6128) or (ENTER) (CPC464,664) key each time. When your program 
has been compiled and will run, it’s a good idea to check recording. To record yourprogram 
on disc or tape, type pl0,50,test , then (ENTER). You can, of course, use your own 
filename in place of test here. When the program has been saved, you can load it with 
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g,,test, specifying the filename again. Note that the two commas must be used. If you 
have only one drive, you don’t need to specify drive number with g, but you must use the 
correct file name. You will find that the program is always renumbered when you list it, 
with numbers starting at 10. This is not obvious in this example, but if you add some 
comment lines such as:

25 /*odd  line number 25*/

and then record this and load it in again, you will find that the renumbering has been 
carried out.

If you use a word-processor program for writing and editing your ‘C’ program files, you will 
not make use of line numbers until the program is loaded for compiling. You will see from 
the disc directory that your ‘C’ program has been recorded as a file which is 
indistinguishable from any other file in ASCII codes. This file is called the ‘source-code’. 
Until this source code has been compiled it is just a file of ASCII codes, nothing more. Once 
compiled, it is object code, closer to machine code and quite different in action. The most 
important difference from your point of view is that the source code can be read, edited, and 
is easily understood. The object code has no meaning unless you know about machine code, 
is very difficult to edit, and can be recorded only when you are using the ^translate 
instruction inside the program code. The routine for #translate compiling is summarised 
in Figure 2.6.

1. Write the source code and test it thoroughly.

2. Edit in a first line which is #translate filename, using the filename that you want 
for your machine code. Make sure that this name does not appear on any other file on 
the disc.

3. Save the source-code on a disc.

4. Use the ^include sourcefile command to read the source code from the disc and compile 
it. The code will be compiled to machine-code, and stored on the same disc under the 
filename that you used along with ^translate.

A summary of the procedures for using translate to make a ‘standalone’ program.

FIGURE 2.6

Even if you use a cassette system, there is no point in using #translate for short programs. 
This is because even a short program requires a large amount of code. The example of 
Figure 2.3 requires about 3K of code when it is compiled to a combined BASIC and 
machine code program which will run independently. Once the program has run, the 
machine instantly returns to BASIC, and unless your program ends with a loop of some 
kind, the results of running it are not visible. The source code for this sample program fills 
only part of one sector, IK on the disc. The reason for the difference is that when you 
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compile and run in one operation, most of the code is already in memory, either in the RAM 
or read from the disc or cassette. When you use the #translate instruction to create a 
program which will run on any Amstrad, it has to include all of the code (the ‘run-time 
system’) that would normally be held in memory as part of the ‘C’ compiler program. The 
consolation is that longer programs do not necessarily need very much more code! From 
now on, we will concentrate on examples which use ordinary compilation.

Using constants.
When you use a constant, like 3.1416, in BASIC, you are always advised to assign the value 
to a variable name. The reason is that this avoids the BASIC interpreter having to convert 
the ASCII codes for the number into number-variable form each time the number is used. 
The same is true of ‘C’ programs, but with the difference that you can either assign to a 
variable name or use a #define, of which more later. As far as HiSoft C is concerned, one of 
the things that you have to get used to is that you can’t use numbers like 3.1416 - not with 
VI.2 at least. The reason is that HiSoft C V1.2 does not allow what are called ‘floats’, 
numbers which can contain fractions. This is one of the few missing parts of a complete ‘C’, 
and we simply have to accept it. Originally, ‘C’ was designed to be used by programmers 
who were writing compilers for other languages and for operating systems, and only integer 
(whole) numbers were needed. Though standard ‘C’ can cope with fractions, HiSoft C 
can’t in VI.2, though there are hints in the manual that this extension will follow.

Even with this omission, ‘C’ has rather more different types of data than BASIC, and one of 
these is the integer, which uses the reserved name int. As we saw briefly in Chapter 1, you 
can declare that a name will be used for an integer, and then assign a value to the integer. 
The syntax of declaration is:

int penta;

using the reserved word int followed by the identifier name penta. You can have several 
such declarations on the same line, with commas following each name. For example, you 
could have a line:

int penta,hex,hept;

if you wanted to declare several names as integers. Note the semicolon to show the end of 
the statement, the end of that declaration. Once the names are declared, you can make 
assignments to these names, using integer numbers.

main t) 
C 
int hex; 
h ex=6; 
pri nt-f ( "\nXd times 2 is 7.d “ , hex , hex *2)  
i

Using a variable, in this example an integer variable called hex.

FIGURE 2.7
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Figure 2.7 shows a simple program which makes use of the integer hex to mean 6. In this 
example, the declaration of the integer and its assignment are both straightforward, but the 
printf line is not. In ‘C’, printing is a very different kind of operation as compared to 
BASIC. The first part of the printf statement consists of the words and formatting 
instruction only. We want two numbers to be printed, both in denary form. In the phrase 
that is to be used, then, the %d is put in each part where a number will be printed in the 
version we see on the screen. Once the quotes are closed, the numbers are put in, using the 
same left to right order, and with commas used to separate the numbers. The numbers are 
hex, the integer, and hex*2,  the result of a calculation. Once again, this is a statement, and 
it has to end with a semicolon. When it prints on the screen, you see the message:

6 times 2 is 12

which is not exactly world-shaking, but until you get used to the way in which ‘C’ uses its 
printf statement, it’s an example you’ll probably need to consult now and again.

Constants.
The use of a variable for holding a number in ‘C’ is close enough to the methods of BASIC 
(so far) to cause you little worry. There is an alternative in ‘C’, however, for storing items 
which you might want to use in any part of a program. These items are called, logically 
enough, constants, and they have to be defined in a way that is quite different from our 
definition of variables. The definition of a constant is done at the beginning of a program, 
before the main() portion or (almost) anything else. The syntax is simple enough, #define 
, followed by a space and then the name that you want to use, another space and the value. 
There must be no semicolon at the end of a ^define line. Constants can be numbers, single 
characters or strings, as you please, providing you assign correctly and use correctly. In 
other versions of‘C’, this part of the programming is handled by a separate section, called 
the ‘pre-processor’. In HiSoft C, it’s all part of the main compiler action, and we’ll treat it as 
such. Take a look, for example, at Figure 2.8.

#de-Fine foot 305
main () 
r

int -Ft;
-Ft=3;
print-F ("\nZd -Feet is Zd mi 11 imetres“ ,-Ft, 
ft*-Foot)  ;

Using a constant, declared with #define. This is one of the ‘pre-processor’ actions.

FIGURE 2.8
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The line which ‘declares the constant’ of foot is situated immediately at the start of the 
program, using ^define foot 305. In the main program, the part which lies between the 
curly brackets, we will use foot as meaning the number 305, the approximate number of 
millimetres in a foot. This meaning must be declared before the program begins. This way, 
the compiler has allocated memory space for the constant and is ready to use it before the 
program needs it. As we have seen, you might have to allocate several constants like this 
before a program starts. These constants need not all be integer numbers like 305. They 
could be letters or phrases, like ‘Press any key’, and this use of a constant replaces a lot of the 
purposes for which we use string variables in BASIC. This is important, because ‘C’ does 
not have string variables in the form that we use in BASIC. In the example, you can see 
the printf phrase “ \ n%d feet is %d millimetres” used with the %d to specify where the 
numbers will be printed, as denary numbers. Following the phrase comes the quantities, 
the integer variable ft and the constant foot. In this example, the numbers have been 
printed as denary numbers, but you can force any printf action to produce numbers in 
other forms, such as hex or octal, that you want. You can also decide how much space you 
want the number to take up. Try a change to line 60, so that it reads:

60 printf(“ \ n 6d feet is %8d millimetres”,ft,ft*foot);

and compile and run this one. You will see that the figure ‘3’ appears on the left hand side of 
the screen, and the number 915 is spaced out from the word ‘is’, taking up 8 character 
positions. As you may have guessed, the figure 8 along with the ‘d’ specifies that the number 
shall be printed taking up 8 character positions, and placed at the right hand side (right- 
justified). By using a minus sign in front of the number, the space is allocated similarly, but 
the number is set over to the left (left-justified). This type of control over number position 
is called ‘fielding’, and it’s much easier in ‘C’ than it is in BASIC. If you don’t use any 
numbers along with the ‘d’ in formatting, a number will simply take up whatever space it 
needs in the printf statement. You can, of course, decide on the number of spaces either 
ahead of or following the number by putting them in with the spacebar. The fielding 
method is particularly useful if you want numbers organised in columns, and really comes 
into its own when fractions can be used. In a later version, perhaps...

I said that a constant did not have to be a number, but could be a character or a string. For 
items like that, you still use #define, with the name that you want to allocate, and the 
character or string spaced from it.

#define mesq "press any 
Adeline key "Y" 
main() 
{
printf<"\nuse the Xs key 
printf("\nXs", mesq);

key"

or",key);

Using string and character constants with ^define.

FIGURE 2.9

2-13



The character or string needs to be surrounded by quotes, as Figure 2.9 shows. If you omit 
the quotes you will get an error message during compiling when the character or string is 
used, rather than where it is defined. The message will be ‘undefined variable’, but if you 
surround the characters with marks other than quotes you can get some quite exotic error 
messages. The other part of the deal is that if you want to print messages in this way, the 
printf statement needs to be changed. In place of the %d that you needed to specify a 
number in denary form, you need to use %s for a string or %c for a single character. Without 
these modifiers, nothing gets printed! In the example, %s has been used for both, but we 
could have used %c for the single character. The use of ^define in this way allows a lot 
more than just the occasional number constant or message phrase. With ^define, you can 
make your programs much more readable, particularly by definitions such as ^define 
white 0 and ^define black 1, which allow you to use words in place of numbers for items 
such as board games, or allocate values to items, as in #define mayfair “£5000”.

More variables.
We have already made use of an integer variable in a program, and the style is easy enough. 
However, there’s much more to this type of variable than meets the eye. A variable which is 
declared as, for example, int num is what is called an ‘automatic’ variable. In all varieties 
of‘C’, you can state this by typing auto int num, but if you don’t use any word before int, 
then the use of auto is assumed (it’s the default). Most of the variables that you are likely to 
use in HiSoft C prgrams will be auto types, simply because of convenience. The alternative, 
as far as HiSoft C is concerned, is a static variable. Now the difference is not at all easy to 
understand if you have only ever programmed in BASIC, and a more extended explanation 
will follow later when we deal with functions. The difference concerns how values are 
stored and used. The storage of a static variable in HiSoft C is more efficient and the value 
can be reached much more quickly. You might, for example, want to use static variables in 
games programs to get the highest possible speed. As far as programming is concerned, 
though, the important difference is retaining values. All variables in HiSoft C are local. 
This means that they have a meaning only within a function in which they have been 
declared, and in any function contained within that. So far, we have used only a main() 
function, and the point is not important - yet. When a variable is declared in a function that 
is called by main, any value that was allocated to it disappears whenever the function ends. 
You can use the same variable again in main() with a different value without confusing the 
machine. If you return to the function, the assignment starts all over again. If the variable is 
static,though, its value is held waiting to be used again. If you return to a function in which 
a variable has been declared as static, and in which it had the value 5, then the value of 5 
will be assigned to it whenever the variable is used again. There is an illustration of this in 
Chapter 10. For the moment, however, the static option is one that you should think of 
simply as a convenient way of speeding up a program, and we’ll look at the other 
implications later. One feature which might be useful right away, however, is initialisation. 
The way that you can declare and assign in one operation in BASIC, such as A%=5, is very 
useful. In HiSoft C, you can’t do this with automatic variables, but you can with statics. 
Take a look at the very brief example in Figure 2.10.
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mai n ()
X.
static int dot=6;
print-F ( "\n7.d" , dot) ;

Combining declaration and assignment for a static integer.

FIGURE 2.1 0

This declares a static int and makes the assignment of 6 to its value. The printf statement 
then shows that the assignment has been carried out. If you attempt to do this with an auto 
variable, as by deleting the word static, then you get a RESTRICTION error message. As 
this suggests, this restriction is peculiar to HiSoft C, and you can initialise automatic 
variables in some other versions of‘C’. It’s really another good reason for preferring static 
variables. If you have read some other books on ‘C’ (and the best of luck!), you may have 
seen references to register variables and extern variables. These are not available in 
HiSoft C, and I don’t think you’ll miss them!

Getting a value.
Suppose that we extend the use of an integer variable to a variable whose value is entered 
from the keyboard? One of the standard identifier words for reading an input is getchar(), 
which is a function that is built-in. Being built-in means that we don’t have to worry about 
the complications of reading source-code from the library. It’s the old Sam Goldwyn 
motto, simplicate and add lightness, in action! Using this built-in function, however, 
brings us up against one of the features that newcomers to ‘C’ find irritating - the use of 
characters. The function getchar() will get characters from the keyboard, meaning that 
you can type any character, digit or letter that you like. If you look up the action of this 
function in the HiSoft Manual, however, you see it described as int getchar() meaning 
that it gives you (or returns) an integer. Whatever you type at this point is accepted as an 
ASCII code, and this is the integer value that you get. What we are going to type is a number 
which will have to be assigned to a variable name of x. The value of x, however, will be an 
ASCII code. For the numbers 1 to 9, this means a code in the range 49 to 57. We can get the 
number values back from this by subtracting 48, the value of ASCII ‘O’. Now we can do this 
in two ways.

mai n ()

int x;
pri nt-F ("Enter a number, 1 to 9 \n")j 
x=getchar ();
x=x—48;
printf ("\nSquare is 7-d" ,x*x);  
1 
J

A program which obtains a character from the keyboard.

FIGURE 2.1 1
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In the printed program of Figure 2.11, it is shown in the familiar BASIC way, as x=x-48. 
We can, however, also write it as x=x-‘O’, meaning that we subtract the ASCII code for 
zero. This second form is a lot easier to use and understand - for one thing, you don’t have 
to strain your memory for the ASCII codes!

Using getchar(), as you’ll gather, is rather primitive. Though you can type more than one 
digit, the function works only on the first, which is why the program limits input to the 
range 1 to 9. There is a function called atoi() in the library for converting characters into 
numbers, but that’s for later. There is also, in the library, a routine which corresponds 
more closely to BASIC’s INPUT, but without the facility to mix questions and input like 
INPUT “Answer: ”;a$ in BASIC. The trouble with using these routines right at the start of 
your conversion to ‘C’ is that they involve a lot of new ideas, and we can’t ever take in too 
much at one time.

Other variable types.
By the time any book on BASIC has reached this stage, the subject of string variables would 
have appeared. Now strings have an important part to play in ‘C’, as they have in any 
language, but the way that strings are handled is not quite so simple if you are making a 
transition from BASIC to ‘C’. The reason is that STRING is not a pre-defined variable 
type; it isn’t in the list of ready-made identifiers ofFigure 2.2. We’ve looked already at how 
we can use a string in a ^define line, and when you think about the way you use strings, this 
probably takes care of more than 60% of the ways in which you use strings in most of your 
programs. Later, we’ll look at how this type ofidentifier can be created, but for the moment 
we’ll look at the characters that make up a string.

HiSoft C, in common with all others, has a variable type called char, which means any 
character of the computer which is represented by an ASCII code. In HiSoft C for the 
Amstrad, this includes the graphics characters as well as the ordinary alphabetical and digit 
characters. Now with this char variable, we can do the actions that you associate with 
PRINT CHR$() in BASIC, and some more. Take a look at Figure 2.12, for example.

main ( )

static char ml=249j
static char m2=250;
static char m3=251;
rawout(4) ;rawout(1)ï
pr i nt-f ( “ \n Zc Zc Zc " , m 1, m2, m3) ;

Printing three characters on the screen using rawout.

FIGURE 2.1 2
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Three static char types are defined, variables ml, m2 and m3. These are assigned with 
ASCII codes 249 to 251, just to rub in the point that the whole of the Amstrad ASCII codes 
can be used. The use of char means that the variable consists of one ASCII code, stored in 
one byte of memory. Printing these codes will give the screen patterns that correspond to 
them, the ‘running men’ shapes. As it happens, however, these will be in the Mode 2 size, 
which makes them very difficult to see (like the text). The line which contains 
rawout(4);rawout(l); will switch the screen to Mode 1, making both text and character 
shapes a lot easier to see on the screen.

1. In edit mode, type #direct+ and press (RETURN)/(ENTER) key.

2. Type rawout(4);rawout(l);direct-; then press (RETURN)/(ENTER).

3. You can now enter your source code in Mode 1, which is much easier to read. The mode 
will return to Mode 2 when you compile, but this also can be changed, see later.

Switching over to Mode 1 with a ^direct routine. The mode will return to Mode 2 when you compile.

FIGURE 2.1 3

Figure 2.13 shows how you can switch over to Mode 1 by a direct command, making it 
easier to type and check your listings. Note that the screen mode will always change back to 
Mode 2 when you press ‘c’ to compile, and a fix for that particular problem is listed in the 
following chapter.

Finally, what about using rawout() for characters. The rawout function has to be 
provided with an ASCII code between its brackets - this is the ‘argument’ for the function. 
Whatever this ASCII code represents will then be ‘printed’ in the usual Amstrad way. As 
far as the use of codes 4 and 1 are concerned, these are the codes for notifying a mode change 
and specifying that the mode is Mode 1. We could just as easily use rawout() with the 
variables ml, m2, and m3, even though these have been defined as characters rather than 
integers. This is the kind of flexibility that is the joy of‘C’ programmers and the despair of 
academics! The only snag with using rawout() is that you don’t have the same control over 
how the characters are presented on the screen as you have with printf(). Try removing 
the printf line, and substituting:

rawout(ml);
rawout(m2);
rawout(m3);

to see the effect. It still prints on the screen, but the characters are closed up against each 
other.
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Chapter 3

Functions and the Library.

Functions.
We have seen already that a program consists of any #defme constants, then a main() 
which is followed by the opening curly bracket, some statements which end with a 
semicolon, and then a closing curly bracket. In the main program, between the curly 
brackets, you will place all the actions, in sequence, that the program will carry out. Now in 
short programs these actions will be simple ones, and they can all be written between the 
curly brackets of the main program. As your programs become longer, however, you will 
need to break them into sections, if only for the sake of planning. Just as you can break a 
BASIC program into a core and a set of subroutines, or functions, you can break a ‘C’ 
program into a main block and a number of functions. The similarity between the 
languages ends there, though. A function in ‘C’ is called into action by using a name, its 
identifier. In addition, values can be passed to a function in ways that are not used by 
subroutines. The use of a function is therefore something that needs rather more thought 
than the use of a subroutine. Unlike BASIC, ‘C’ permits only functions, and there is 
nothing remotely like a subroutine. If you have programmed with functions in Locomotive 
BASIC, you will feel very much at home with the way that ‘C’ uses functions.

Take a look for example at the program in Figure 3.1.

main ()

pr i nt-F ( "\nThe name is "); 
attention(’ I ’ ) ;
}
attention(n)
char n; 
_r

rawout(7);
print-F("%c",n);
print-F (" Sinclair."); 
rawout(7);

A program which makes use of a new function.

FIGURE 3. 1

This starts in the usual way, and prints a phrase, ‘The name is ’. It then calls a function 
attention. Now this isn’t a function that is built in to the compiler, nor held in the library.
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It’s a function that we have to write for ourselves. The name of the function is attention, 
and it will make use of anything that is enclosed in the brackets. What is in the brackets in 
this example is the character ‘I’. Note that this is ‘I’ with a single apostrophe, not “I” with 
quotes. The difference is important. The ‘I’ is a character with ASCII code of 73, whereas 
“I” would represent a string - and a string is not a single character as we’ll see later. The ‘I’ 
is the argument of function attention, the value that has to be passed for the function to 
use.

Now of course, we can’t compile this and run it until there is a function attention written. 
The main() program is ended by the second curly bracket, and following it we type the 
name of the function, which is attention(n). We can make the letter inside the bracket 
anything we like, it can be a complete name or a single letter. We then have to declare that 
we will be using this quantity n, and that it’s a character. The curly bracket then opens, the 
rawout(7) delivers a beep (equivalent to PRINT CHR$(7) in BASIC, remember), and the 
character is printed. Now this is represented in the first printf line as n. This is a variable 
name which exists only inside this function, and because n was used in the ‘header’, as the 
argument of attention(), it takes the value that was used as an argument when the 
function was called, which is ‘I’. The printf modifier is %c, meaning that the variable 
which follows will be printed as a single character. The next fine is a conventional printf - 
notice that we don’t need a modifier because we don’t want a new line, and we aren’t 
printing a variable, just a phrase within quotes. The last part of the function is another 
beep, which in fact will just sound as part of the first one because there is so little time 
between them.

Now when you compile and run, you see the complete phrase appear on the screen. It 
would, of course, have been just as easy to use the whole phrase in the printf line of the 
main program, but it’s always easier to see how something works from a simple example 
than it is from a difficult one. The important point is that any function you want to use can 
be called up by using its name, and the brackets are used to pass any arguments to the 
function. These arguments can be integers, characters or strings, direct or as variable 
names. When the function itself is written, you write it like another main() type of 
program. You need to declare any variables that you want to use inside the function, and 
that includes the name that you have used for the argument. You then carry out whatever 
actions are needed. In this example, this has meant calling up other functions, rawout and 
printf, which exist in the memory of the machine along with the rest of the compiler. This 
is typical of the way that we write programs in ‘C’ - a small main() program calls up 
functions, which in turn call other functions and so on. Unless you use cassettes, you can 
use the CP/M TYPE instruction to list the version of Reversi that you get with the HiSoft 
compiler, and you’ll see from that how remarkably short the main program is.

The variable n exists only within the attention function. If you try to print its value near 
the end of the program, following the attention(T); line, you will find that you get an 
error message about ‘undefined variable’ when you try to compile. This means that n was 
not declared as a variable at the start of the main() program. The fact that it was declared 
as a char type in the function refers to the function only, and you can print the value of n at 
any time while the function attention is running. The significance of this is that you 
provided a value of ‘I’ as the argument for attention. This value is then temporarily 
transferred to variable n for the duration of the function only. This is completely 
automatic, and is rather different from the methods that you have to use in older varieties of 
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BASIC. The name that is used for n and anything of this kind is a local variable, and there is 
no equivalent to the use of this type of variable in Locomotive BASIC. All variables that are 
declared inside a ‘C’ function definition are automatically made local. We’ll look later at the 
principle of passing values back from a function, and of using global variables, whose values 
are retained in all parts of a program.

The library.
The library is one of the glories of‘C’, because it’s the way in which the language can be 
continually extended and made more useful. The library is a set of functions, written in 
source code. Its value is that any function in the library can be named in your own program, 
and taken from disc or cassette to be included in your program. In many versions of‘C’, this 
has to be done by loading in the whole of the library routines before you compile. HiSoft C 
has a very useful variation on library use which allows you to load in only what you need. 
This means that the disc or cassette has to be searched, and this takes a noticable time, even 
for a disc. As with any compiled language, however, the time you spend on this part saves 
time later when you run the program. At this stage, we’re not ready to make the most 
efficient use of the several library files that HiSoft has provided, but it’s a good point to start 
looking at how the library is used.
To start with, there are two really important library files that you need to know about. The 
first one is called stdio.h, and the second is called stdio.lib. You will normally need both 
of them, and you certainly can’t use stdio.lib unless you already have stdio.h in place. 
The positions in which these are called are also important. The header stdio.h must be 
placed right at the start of a program, before anything else, even before the ^define lines. 
The header is installed by typing #include stdio.h. The use of #include with a filename 
like this causes the compiler to look on the disc (or cassette) for the routines. The other set, 
stdio.lib goes right at the end of all your program sections. Now you will usually want to 
take only what you need from this one, so its installed by typing #include ?stdio.lib?. The 
question marks are a feature of HiSoft C which you will not find on other versions, and 
their use for selective inclusion saves a lot of valuable memory, a feature that you’ll 
appreciate if you are using the older Amstrad machines like the CPC464 or CPC664.

The next step is to decide what to use from the library. One useful function is the one that 
provides the poke action, and its syntax is almost identical to the use of POKE in BASIC. 
On the VI.2 version of the HiSoft compiler, poking location 3551 with 1 will switch to 
Mode 1, making the load on your eyes a lot easier.

/*  Set mode 1 */  
»include stdio.h 
ma inf) 
<
poke(3551,1) ;

♦include ?stdio.lib?

A program which sets Mode 1, using the library. This will remain set until you switch off, or change the 
number stored in address 3551.

FIGURE 3. 2
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This has to be done with the aid of the library, however, so we start the program of Figure 
3.2, after the reminder line, with #include stdio.h, and end it with #include ?stdio.lib?. 
The rest simply consists of a main() that has just the one statement, poke(3551,l). 
Compiling this takes a considerable time, because the library has to be searched. Even on 
disc this takes time, and I would want to make a cup of coffee if I were waiting for a cassette 
to do this. When the program runs, you don’t at first notice any change. That’s because the 
mode number is not used until a ‘c’ is typed. When you type ‘c’, then (RETURN), you’ll see 
the mode change to Mode 1. This will persist for as long as you use the compiler, unlike the 
change which was noted in Chapter 2. If you happen to know how to make a new recording 
of your version of the compiler, you can now record it with this change in place. If you don’t 
know how to do this, then it’s not my place to tell you!

That’s just one example of the use of the library. It’s a long winded one, because only one 
library function has been used after all that disc spinning. If you want to use just one library 
function, the easiest way is to print out the function that you need and simply copy the 
library routine into your main routine. This will then compile at once, with no need to 
include either the header or the main library. If you want to do this with the poke action, 
Figure 3.3 shows the result.

/*  Set mode 1 */
ma in O 
<
typedef char * charptr;
int address, valLie;
address=3551;
value =1;
*cast(_char_ptr) address — value;

The program for setting Mode 1 with its routine extracted from the library (courtesy of HiSoft). This makes 
compiling much quicker.

FIGURE 3. 3

This is simplified, because only fixed values are needed - but don’t ask how it works just at 
this point! Check that it works, then save the code under a filename like model, and use it 
each time you have loaded in ‘C’.

Look now at another couple of library actions. These are max and min, and as the name 
suggests, they will weed out numbers from a list. The list must follow the max or min 
words, within brackets, and the result of the search has to be an integer number. The max 
and min functions are in the stdio.h part, and if you don’t need to use any of the functions 
from the main library, then you needn’t run it. Figure 3.4 shows max and min used in a 
simple example.
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ffinclude stdio.h
mai n () 
r

int k;
k=max(23,1,45,67,22,34);
printf(“\n Max is 7.d" , k);
k=mi n (23, 1,45, 67, 22, 34) ;
printfO"\n min is Zd",k); 
y

Using the max and min functions from the stdio.h library.

FIGURE 3. 4

You can, incidentally, speed up the compiling of this and other examples once you have 
checked that they operate correctly. If you put #list- at the start of a program, it will 
suppress any listing. You can see this command being used when the stdio.h program is 
being loaded in. Placing #list+ at the end of the program turns the listing on again so that 
you can use the editor normally. This avoids having to watch all the titles come up in the 
library routines, and it’s particularly useful for long programs.

As a last example of the use of the library for the moment, take a look at Figure 3.5.

♦include stdio.h
ttdefine sample "123fg"
mai n ()
<
i nt val;
val-atoi(sample);
print-F (11 \nValue is 7.d" ,val);

♦include stdio.lib

Using the function atoi from the library. This carries out the action of VAL in BASIC.

FIGURE 3. 5

This defines a string constant as “123fg”. The stdio routines are used, and the particular 
routine here is a very useful one, atoi, which does the job that VAL does in BASIC. This is 
to convert a string into an integer number. Only the number characters at the start of the 
string are converted, just like the VAL action. In this example, the string is a string 
constant, and the atoi action converts it into an integer 123, which is printed in the usual 
way. There are many more functions which will act on strings, but before we can make 
really effective use of them, we need to be able to work with pointers, -the crowning glory of 
‘C’. That’s for later!

3-5



Planning.
One of the most important points about functions is how they affect planning of programs. 
How, for example, do we plan the simple illustration ofFigure 3.1? Figure 3.6 illustrates a 
version of one method which is favoured by many programmers.

Program

Start

Initialise 
message

Call attention

End

print letters

print string

A planning system that is very popular with programmers.

FIGURE 3. 6

The left-hand side shows the steps of the main program, with the main action shown as one 
step. The curly brackets are then used to show where more details are needed. This has 
been used in the example to show variable names, and also to show what has to be done in 
the attention function. The important point is that a function is designed in very much the 
same way as the main program is designed. You can design a function without constantly 
having to refer to the main program, because the variables that are used within a function 
need not bear the same names as those used in the main program, the only essential feature 
is that they should be of the same type. In general, if you define variables for the main 
program at the start of the program, these variables can also be used in the function. If you 
define variables inside a function, these variables are ‘local’; they are used only in the 
function, and simply don’t exist when the function is not running.

Some operations.
There aren’t many programs that you are likely to write that don’t involve the operators of 
‘C’. The operators are the symbols which control actions on numbers, and ‘C’ is rather 
richer in operators than BASIC. In addition, some of the actions and the order in which 
they are carried out need rather more thought than you would give to similar things in 
BASIC. The four main operators of * / + - are specified just as they are in BASIC, but you 
have to remember the restriction of integer numbers in HiSoft C VI .2. Look at an example 
to start with, in Figure 3.7.
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main () 

int w,x,y,z;

y=5;
z=7;
printf("\n%d di vided by
7.d over “ , z , x , z /x , z 7.x ) ;
w=++x;w=++w;
print+("\nw is %d and x

7.d gives 7.d and

i s Xd " , w, x '> ;

Integer arithmetic, showing the whole number result and the remainder or modulus.

FIGURE 3.7

This shows four integer variables declared, with three of them assigned. The first printf 
line will print values of z, x, z/x and z%x. Now z/x is just z divided by x, as you would expect, 
but this is integer division. Hisoft-C in its VI.2 form does not support ‘floats’, meaning 
numbers which contain fractions, so only the whole number part of 7/3 is printed, and 
that’s 2. The % operator, however, is used to find a remainder. The expression z%x means 
‘find the remainder after z has been divided by x’, and this amount will be 1. The use of 
these two operators, then, allows you to carry out divisions and show the result as a number 
and a (vulgar) fraction, whereas using a float number would allow the result to be shown as 
a number and decimal fraction. Try altering the printf line so that the program will 
produce:

7 divided by 3 gives 2-1/3

- this is a good way of checking that you have really understood how printf works!

The next line carries out an action which is quite certainly unfamiliar in BASIC. The 
assignment w=++x means that the value of x is incremented, and it is then assigned to 
variable w. The next part of the line then increments this value of w and assigns it to w. The 
printed values of x and w then show that has been done. The ++ operator means 
increment (increase by 1) and the — sign means decrement (decrease by 1). Just as 
important, however, is the point that the position of these symbols is important. Edit the 
assignment fine now so that it reads:

w=x++; w=++w;

and run this. The printout now states that w is 4 and x is 4. Using the increment sign 
following the variable name means that the increment action has been carried out after 
the assignment, not before. If you make the line read:

w=x++;w=w++;
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then the result is ‘w is 3 and x is 4’, because w=x++ made w=3, and then x=4, while 
w=w++ made w equal to 3, and then carried out an increment action which had no effect 
because the variable had already been assigned. The use of increment and decrement can be 
very handy in loops, but you have to think out the order of things carefully. This becomes 
more difficult when you get to complicated expressions, so it’s advisable to start with the 
easy ones.

Operator Action

++ Increment variable value.

* Decrement variable value.
Multiply quantities.

/ Divide (integer result).

% Modulus, remainder of division.

+ Add quantities.

Subtract quantities.

Less than.

Greater than.

<= Less than or equal to.

>= Greater than or equal to.

== Identical to.

!= Not equal to.

&&

1 1

AND action.

OR action.

Select one or other.

= Assign value.

The ordinary arithmetic and logic operators. See Chapter 10 for the bit operators.

FIGURE 3.8

Figure 3.8 gives a list of the ordinary operator symbols that are used in arithmetic or logic, 
and their actions. This is not a complete list of all operators, because there are operators 
which act on pointers, and others which operate on the bits of a byte, but these don’t 
concern us at the moment.
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main () 
<
int a,b,w,x,y,z;
x=3;y=5;z = 7;
test (x , y) ;
test (x , z ) ;
if ty!=z) print! (“ \n7.d not equal to 7.d‘‘, 
y ,2 ' ;
x*=6;
print!("\nx is now 7.d‘‘,x);
J

test(a,b)
int a,b;
l.
if (a==b) pr i ntf ( “ \n7.d equals Zd",a,b);
else print! (“\n7.d is not equal to Xd" ,a, 
b> ;

Examples of use of some operators.

FIGURE 3. 9

Figure 3.9 shows another example of some of the operators which will be less familiar to 
you, along with an introduction to the ‘if test. The usual declarations of variables are made, 
then assignments, and then a function is used to compare first x and y, then x and z. In this 
function, test, the numbers which are to be compared are supplied in variable form as 
arguments in the brackets, separated by a comma. The test function itself uses integers a 
and b, which are allocated with values only in the function. We have declared a and b in the 
main program also, so that we could, if we liked, use a and b to hold quite different numbers 
in the main program, unaffected by the use of a and b in test(). The test is for equality, and 
the operator which is used is ==, not the more familiar = of BASIC. In ‘C’, = is used for 
assignment, and == means ‘identical to’, avoiding the confusion that can arise in BASIC, 
which uses the same symbol for both purposes. The test routine will print a message if the 
two quantities are equal (which they never are), and another message if they are not equal. 
Notice how this second message is obtained. The if test line is followed by another line 
which starts with else, and this is followed by the action which is to be taken when the first 
test turns out to be false. The item which is to be tested is enclosed in brackets, like 
(a==b), and this expression will be either TRUE or FALSE. If it is TRUE, then whatever 
immediately follows the test will be carried out. If the expression is FALSE, the program 
moves to the next line to carry out the effect of an else if one exists. If there is no else, then 
whatever follows the if line will be executed. You can have complicated sets of if and else 
fines with nesting, but for the moment we’ll concentrate on the simple examples. When 
these tests have been carried out, there is another test in the main program which tests for 
(y!=z). This means y not equal to z, and the != combination in ‘C’ is the equivalent of 
<> in BASIC. Finally comes the expression that is decidedly peculiar to ‘C’. Using x*=6  
is the equivalent of x=x*6,  a combination of the operation of multiplication and an 
assignment. This kind of shorthand action is what gives ‘C’ a reputation for being difficult 
to follow. The point is that you aren’t forced to use x*=6  in place of x=x*6,  but when 
you’re familiar with these shortcuts these are very convenient.
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More planning.
Let’s look now at a short program, starting with the design steps. This is to be a program 
which will convert a list of Celsius temperatures into their Fahrenheit equivalents. The 
planning, such as it is, is shown in Figure 3.10.

Program

Start

Declare integers f,c

Loop c=0 to c=100 step 10

Action f=(c*9/5)+32
print results

End

Planning a simple program to convert Celsius temperatures into Fahrenheit.

FIGURE 3.1 0

On the left-hand side, the main steps of the program are listed as Start, declare, loop, action 
and End. The curly brackets now open into more detail. The variables will be called f and c 
and will be integer numbers (not much choice with VI .2). The range and steps will be dealt 
with by using a loop, which is something new for us. The only detail which is included in 
this list is the range of temperatures, 0 to 100 in steps of 10 Celsius degrees. Fortunately, 
this range allows exact conversions, so that we don’t have to show fractions of a degree, but 
if we did, then you know how to do this. The conversion could be done by a function, but it’s 
so simple that it’s hardly worth while, and we simply use the conversion formula.

Now this program illustrates that a FOR loop in ‘C’ takes a very different form, particularly 
as regards the STEP portion. Figure 3.11 shows the program which has been drawn up 
from the plan.

main ( )
L
mt -f , c ;
tor Cc=0;c<=100;c=c +10)

f = (c*9/5>  +32;
printf ( “\n7.d C is >.d F“,c,O;

The Celsius to Fahrenheit program for a range of temperatures.

FIGURE 3.1 1
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As always, looking at a finished program gives you no idea of what the steps were in writing 
it, so we’ll look at the program in the order in which it was written. When you write a ‘C’ 
program from a plan, never allocate any line numbers. Leave the allocation of line numbers 
to the i action of the compiler when you enter the program. This avoids continual re­
numbering when you have to squeeze yet another definition into the start of the program at 
the planning stages! The main program starts in the usual way with main(), and then 
declares the integers f and c. The next step is the loop which carries out the actions of 
converting and printing the values. Now the first thing to note here is that the loop line does 
not end with a semicolon. This is because the statement has not ended; we have to specify 
what will be done in the loop, and that follows enclosed in curly brackets. The effect of 
enclosing the two statements in curly brackets is to make this set of lines constitute one 
single statement. A set like this is often called a ‘compound statement’, and because it ends 
with a closing curly bracket, it doesn’t need a semicolon. What is inside this set of curly 
brackets, then, will be carried out on each pass through the loop.

The next thing to look at very carefully is how the loop statement is constructed. In many 
ways, this corresponds exactly to the BASIC statement:

FOR C=0 TO 100 STEP 10

but ‘C’ writes this as a set of conditions. The first test is c=0, the starting condition for the 
loop. The next is c<=100, meaning c less then 100 or equal to 100. This is the ending 
condition. The third is c=c+10, and this is the stepping condition. If you think that is all 
very clear and straightforward, then try omitting the step condition. You’ll find that the 
loop is then endless, and you need to use ESC to get out of it. Unless you put in a step 
condition, there won’t be one, and the loop will be endless, unless c gets incremented 
somewhere within the curly brackets following the loop statement. The other difference 
from BASIC is the condition c<=100. If you try making this c=100, you’ll find the loop 
goes only as far as 90, because after 90, c is not less than 100. Now try making the middle 
condition c=100, and see what this does. The effect, another endless loop, is most 
unexpected if you are still thinking in BASIC terms. The reason is that each part of the loop 
statement is a condition. The c=0 part is a starting condition. The c<=100 is an ending 
condition, but the loop does not end until this condition is FALSE. If you put in a condition 
which makes the loop impossible, the result is an endless loop. With c=0 (and c=100) false, 
the loop should not run, and the response is to increment c to 100, then run continuously! 
The conditions c<number, c>number, c<= number, or c>=number are the ones 
that you should always use for a loop of this type. Since ‘C’ offers you the choice of two 
other loops, you can’t really complain that you are restricted for choice.

The conversion to Fahrenheit uses the variable name f, and is the first action in the loop. 
The next action is to print both amounts. With the range of quantities that we have chosen, 
there will never be a fractional result, so that the answers are exact. The way that the 
numbers are presented, however, could be improved. One way is to use left-justification, 
and this can be done by using the line:

printf(“\ n%r-3d C is %d F”,c,f);
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which lines up the printing of the words. This isn’t perfect, though, because we don’t 
normally left-justify numbers. A better display is obtained by using:

printf(“ \ n %3d C is %d F”,c,f);

which looks a lot better. Three spaces have been typed between ‘n’ and and the number 
has been right-justified to three figures. This puts the number always hard against the right 
side of the spaces that you have left for it, and makes the display look just right.

While we have a loop operating, we can take the chance to make some changes which will 
illustrate a few more points about how ‘C’ uses loops. In particular, ‘C’ has statements that 
allow you to skip passes through the loop, or to break out of the loop, without giving the 
computer’s operating system apoplexy. BASIC is not nearly so well organised in this 
respect. Take a look at Fig.3.12.

mai n()

i nt 
for

f ,ci
(c=0;c 100;c=c+10)

if 
if

continue 
break;

(c==20) continue;
(c==70) break;
f=(c*9/5)+32;
printf("\n Z3d C is 7.d F",c,f)

The use of break and continue in a loop.

FIGURE 3.1 2

Two lines have been added within the loop this time, and when you run the program you’ll 
see that each has a very interesting effect. The continue statement makes certain that 
nothing more is done, the program action returns to the loop step for the next pass. In this 
example, no calculation is made, and nothing is printed. This is a way of excepting certain 
items (even-numbers, short names, one particular name) from being treated by the action 
of a loop. You can choose your position for the continue, too, because you might want to do 
some of the loop actions before you skipped the rest. The other loop modifier is break. 
This, as you might expect, allows you to break out of the loop altogether as the result of 
some test. In this example, it’s when the value of c reaches 70, so that the loop prints out 
only as far as 60C. In this example, of course, it makes little sense to do this, because we 
could just as easily have put this in as the ending condition at the start of the loop. You 
might, however, want to test for another condition, such as something non-numerical, in 
this way. If your loop was, for example, reading a fist of 100 names, you might possibly want 
to stop when you found McTavish, knowing that this name could be anywhere in the list. 
The continue and break actions of‘C’ avoid the messy and unpredictable effects of using 
GOTO’s in BASIC loops.
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More functions.
It’s time to take another look at a function action, one which is simple but rewarding to 
consider. This time, as the listing of Figure 3.13 shows, the function is called (or invoked) as 
part of a printf statement.

main ()

i n t x;
for (x=0;x<=20; x++)
printf I"\n7.d squared is Zd ‘ ,x , square (x ) )

J

square(a) 
int a;
X.

return(a*a) ;
j

A function which returns a number to the main program.

FIGURE 3.1 3

The other important point which this program illustrates is one way in which a value can be 
passed back from a function. This is not quite as straightforward as you might think, 
because in the examples we have used so far, any quantity that is to be passed to the 
function has to be defined in the function. If it is defined in the function, however, its value 
is lost when the function ends! All of the functions that we have used so far have printed out 
whatever value they calculated. In this sense, we have been using the functions in the way 
that other languages use procedures, a way of doing some action rather than a way of 
returning a variable value.

The illustration in Figure 3.13 is quite different. The loop makes use of numbers from 0 to 
20, and the incrementing is taken care of by using x++ as the third term in the for 
statement. Since there is only one statement in the loop, it can follow the for part, and be 
terminated with a semicolon which now marks the end of the loop. If you put the semicolon 
after the for statement you’ll get a loop, but with nothing in it! The printf statement prints 
the value of x, and also the value of square(x). Now square(x) is a function, so we have to 
define it somewhere, but the main point is how it comes to have a number value.

The answer is in the line return(a*a);.  This means that a value is to be given to the 
function, and that value is a*  a, the square of a number which has been assigned to variable 
a. Remember that a is local to the function, it has no value in the main program. The value 
of x is passed to a when the function starts, and the function therefore acquires the value of 
x*x  at the return step - there is no change to the value of x. As an exercise, you might like 
to tidy up the screen presentation of this little lot. Incidentally, if you have return; as a 
statement by itself in a function, this is where the function will stop and return, but in this 
case without a value. It’s the equivalent of the way that a BASIC subroutine uses 
RETURN.
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Now you need not feel that you must pass variable values to a function in this way. You 
could just as easily use x as the variable all along the way, as the slight modificiations in 
Figure 3.14 show.

main ()

i nt x;
-for <x=0;x<=20;x++>
print-f ( "\n7.d squared is 7.d x , square (x ) )

print-f(‘‘\n x is Zd“,x);
J

square(x>

return(x*x );

Using a global variable in the function.

FIGURE 3.14

In this case, variable x has been used for both actions, both in the main program and in the 
function. Because x has a value in the main program, both the name x and its value can be 
passed to the function to be used. You cannot, however, omit this passing step. The value of 
x itself is not altered by the program, as the final printed value shows. You can’t use 
square() in the printf statement or in the definition of the function. If you omit the (x) 
part, then x is not recognised in the function. Your compilation will then stop with the error 
message of ERROR 37 undefined variable. You may have declared x in the main 
program, but each function is a rule unto itself and doesn’t recognise any meaning to x 
unless it is passed on, or declared locally. If you try to get round this by keeping the 
square() use and adding int x; within the brackets of the function, you are in for more 
trouble. The program will now compile, but what you see when it prints out is simply 
gibberish numbers. Declaring x in the function makes a local x available, and it doesn’t get 
assigned with a value. What you see when you print its square is just what happens when 
the contents of memory that this variable uses is squared. This is a feature of‘C’ that you 
need to be careful about. You can do things like this which are silly, but which follow the 
rules of the compiler. Because they follow the rules of the compiler, they are accepted and 
compiled, but when they run, the answers are garbage. Unless you know that the answers 
are garbage, though, you might not notice. It’s important, whatever your state of expertise, 
to test programs with items that can be verified reasonably easily - but you ought to know 
that already.
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Suppose that you want to return several values from a function. The return statement 
does not cater for this, and there’s no simple answer at the moment. In other varieties of‘C’ 
you can use variables that have been declared as extern which you can pass to and fro as 
much as you Eke, with values changed as you want. HiSoft C does not use extern in this 
sense, and you have to Eve with it. As it happens, you very seldom need to pass back a set of 
values. If you are printing numbers, they can be printed from within the function. If the 
numbers have to be used in a calculation, then the calculation can be done inside the 
function and only the result passed back. As it happens, there are ways, but they depend on 
these mysterious pointers that you keep hearing about. Perhaps it’s time we took a look at 
these.

3-15





Chapter 4

Pointers.
A pointer is a type of number variable, and the reason for its name is that it ‘points’ to where 
something is stored. For example, suppose that you have the character ‘C’ stored in the 
memory of the Amstrad. What this actually means is that one of the memory cells is storing 
the number which is the ASCII code for ‘C’, the number 67. Now memory for a computer is 
organised so that each unit (or byte) is numbered, and we might know that the number of 
the byte which held our ‘C’ was 41967. This number of41967, then, is the number which is 
the pointer for ‘C’. We could, if we liked, store the number 41967 somewhere so as to make 
it possible for the computer to find where ‘C’ was stored, and this is precisely what the 
action of a pointer is. It would be rather a waste to store a pointer for every character, but we 
don’t need to. All we need to do is to store a pointer to the start of any variable. Once we 
know where the start is, we can locate it and read the required number ofbytes ofdata. This 
is something that is used a lot in assembly language programming, but seldom occurs in 
BASIC. A few machines, notably the MSX machines, have a BASIC function called 
VARPTR which comes back with a number that tells you where about in the memory a 
variable is stored. The Amstrad machines achieve the same effect with the use of @ 
preceding a variable name. In BASIC, however, there is little use for this action, and not 
many programmers make use of it, or are even aware of it. In ‘C’, however, pointers are a 
way of storing variables and getting access to them. This is not just a useful feature of‘C’, 
it’s something that is central to the way that the language is constructed. Without pointers, 
you simply don’t get very far with ‘C’.

Take a look at a simple example just to get the taste of all this.

niai f i ()

char *p,ccr;
ccr= C ;
p=&ccr;
pr i nt + ( “ \n7.c “ , *p ) ;
pnntf t “ \n7-d “ , p > ;

Using a pointer, in this example to point tb a character. The pointer number must be declared and 
assigned.

FIGURE 4.1
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Figure 4.1 is a program which declares two variables of type char. One of these variables is 
ccr, which is a straightforward variable name. The other, however, is referred to as *p.  
Now the asterisk, in this context, means ‘contents of. What it implies is that p is an address 
in the memory, and a character can be held at that address. The program assigns the 
variable ccr with ‘C’, a single ASCII code, and then assigns the pointer by using p=&ccr. 
The & operator, used in this context, means ‘address of. The effect, then, is to store the 
character ‘C’ at the address held in the pointer variable p. The program then prints out the 
character, in the form *p,  and the pointer value itself, which when I ran it on my machine 
gave -23569. Don’t worry about the negative sign, it only arises from the way that numbers 
are converted. The actual address number that this corresponds to is 65536-23569, which 
is 41967. You would have seen this number printed if you had replaced %d by %u in the 
printf line.

A pointer in ‘C’ is a variable quantity which is the address of another variable. What makes 
the pointer valuable is that if the pointer is declared, the compiler does not need to have the 
other variable declared. For example, if the pointer to a real number is known, and is 
variable p, then the name of the real number does not have to appear earlier in the program. 
A pointer reserves space for a declared type of variable, what you put into the space later is 
your own business, provided that it’s the correct variable type. In addition, the pointer is a 
number (unsigned), but what it points to can be any type of variable, simple (such as 
another integer) or structured (like a record which consists of a number of different types). 
We can then juggle with the pointers rather than with the variables themselves.

All of this sounds rather academic, so take a look at an example which reveals a little of what 
all this is about.

lUct 1 i'l ( >

r u
int x,y;
-,r --*~t  J
power (x , ;
printf (“\n 7.d
J

power(x,p)
int *p;

3t-p—X*X  4

Xd“,x,y);

Using a pointer to return a value from a function.

FIGURE 4.2

In Figure 4.2, two integers x and y are declared in the main program. The variable x is 
assigned with a value, but y is not. The function power(x,&y) is then called. The 
quantities that have been passed here are the variable x and its value, and the pointer toy.
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The important item here is that we don’t deal with y, simply its address pointer. In the 
function, the header declares that the content of pointer p is an integer, but we don’t need to 
declare p itself. The value of p will be assigned as the address of y, but all this is implied 
rather than declared. We can then make the statement which assigns the contents of 
pointer p to the cube of number x, and the function ends there. Now if we had assigned 
y=x*x*x,  then y, if it had been declared in the header of the function, would have been 
assigned this value, but it could not have passed it back unless you used the return 
statement. Using a pointer does allow a quantity to be returned in the form of its pointer 
address. The main program then prints a value of y, using the pointer address of y, which 
has now been changed by the function to give the cube of x.

Now this is strong stuff- the quantity that has been stored in a variable y has been changed 
without the need to have a line y=x*x*x,  or even a direct reference to &y. All that has been 
done is to pass &y, the pointer to y, to the function. This is the way in which a function can 
return values to a main program, and it’s a method that is very extensively used in the 
library functions. In order to make any substantial use of the library functions, we have to 
master this idea of using pointers. At the moment, one problem that has been hanging over 
us is how to enter numbers, so this seems a good time to introduce one way, the scanf 
function. This function is built into HiSoft C, so that we don’t need to use the library to load 
it when we compile.

Now as it happens, scanf is not the easiest of functions to use, and a lot of programmers 
avoid it like the plague. The principles are reasonably straightforward, though, and it’s 
principles that we want to look at. Function scanf is set out very much like printf, with a 
control section, and a list of the variables that you want to input. So far, it sounds just like 
good old BASIC INPUT A,B,C. The important difference is that scanf requires pointers 
to variables, not just variable names by themselves. The other thing, the one that causes a 
lot of frustration, is that scanf works to strict and rather old-fashioned rules, and can do 
the most amazing thing if you don’t understand the rules.

mainì ì
■<.
int n,k;
f or (n=0 ; n< =10;n++>

■<_
printt<“\n Number, please- " 
scanf ( “ 7.dXc " , 8<k ) ;
k—k * k ;
printf<”\n square is Xd“,k);

Using scanf for the input of a number. The number must be assigned to a pointer.

FIGURE 4.3
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Figure 4.3 illustrates a scanf action, and gives you a taste of its use of pointers and one of its 
peculiarities. The main program sets up a loop which will run from 0 to 10, 11 passes 
through the loop. In each loop, we want to print a brief message, input a number, calculate 
its square, and then print that value. The input of the number is the action that is assigned 
to scanf, and the syntax for this particular example is

scanf(“%d%c”,&k);

which at first sight looks rather baffling. Run it, and check that it does as it ought to, 
remembering that all the arithmetic is integer, so that squaring large numbers will give very 
peculiar results. On the whole, it does as you might expect, though you’ll notice that there 
has been an extra blank line. This is because of the use of (ENTER) to terminate the scanf 
line. You can miss out the \ n portion of the second printf statement if you want to close it 
all up. So far, so good, but what’s the %c for in the scanf statement? You’ll see if you try the 
program with this removed. The first number is accepted, but following that one, the loop 
cycles round without waiting for you to enter anything! The reason is that you used the 
(ENTER) key after typing the number. Without the %c in the scanf specification, the 
(ENTER) character is stored and used each time scanf comes round. Since you don’t have 
time to enter a number, this isn’t done. Unless you are working with a loop, this action is of 
no importance, and a lot of books on ‘C’ don’t even mention it. By adding the %c into the 
‘specifier’ part of scanf, you allow for the (ENTER) character, and the loop works 
correctly. There is another way of getting round the problem, which is to leave a space 
ahead of the %d specifier, and we’ll illustrate that method later.

There are a lot of possibilities here, but the important point to look at is how scanf deals 
with the address pointer to variable k. The quantity that is called for in scanf is &k, the 
pointer to k. The action of scanf is to assign the number that you type into this pointer, so 
that the variable k can be used with this value. It’s a very good illustration of a function 
being used to work with a pointer, and scanf is a function which requires that all of its 
returned values should be pointers. We’ll come back to scanf later, but for the moment try 
editing the scanf line so that the specifier part reads “%d%c%*c ”. The %*c  part makes the 
scanf action skip a character, and its effect in this case is to allow you to enter a number, 
but to hang up when you press (RETURN), and wait until you press (RETURN) again.

Arrays.

In BASIC, you have simple variables, such as integers, reals and strings; and you also have 
one structured variable, the array. By ‘structured’, I mean that an array name like A means 
not just a single value, but a set of values which carry distinguishing names like A(l), A(2) 
and so on. ‘C’ is very well equipped with ‘structured’ variables, or structured data types, as 
they are called. One of these types is the array, and for a number of reasons we need now to 
look at what it is and what we can achieve with it. As you might expect, an array has to be 
declared at the start of a program and this declaration will include a name (the identifier), 
the number of elements in the array, and the type of data that is to be stored. This is just 
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what you would expect from our experience of arrays in BASIC. When you use a DIM 
statement, such as DIM Name$(20), in BASIC, you are specifying the name Name, the 
type (string) and the number of elements (from 0 to 20, a total of21). The main difference in 
‘C’ then will be the way in which an array is defined rather than the information which is 
used.

Suppose, for example, that we want an array called classmarks to hold a set of 20 integer 
numbers. The declaration that we need for this looks something like this:

int classmarks [20];

This provides the name of the array, which is classmarks, the number ofitems (20 of them) 
and the fact that each item will be an integer. This variable declaration can be made along 
with other declarations of integers in the same line. One important point to note here is the 
use of the square brackets. If you forget that you are writing ‘C’ and not BASIC, it’s easy to 
refer to an item as classmarks(12), when you should be using classmarks[12] instead. The 
error message that you get when you do something like this will not necessarily remind you 
of what has gone wrong. Since the array in this example is an array of integers, you can use 
scanf to get each item of the array. One very important difference between the BASIC 
array and the ‘C’ array, however, lies in the way that items are numbered. When you define 
a BASIC array as A(20), then this allows for 21 items, A(0) to A(20). By contrast, the ‘C’ 
array allows for just the 20 that you specified, and these will be [0] to [19], there will be no 
[20]. This might not stop you trying to use an item [20], and this is one of the things that you 
have to be very careful about because ‘C’ doesn’t always stop you from doing foolish things, 
it lets you go ahead and pour garbage into the memory which you don’t find until later!

•na i n ()

int num,classmarkst20];
tor (num—0; num<.= 19; num++) 

€
printt(“\nMark Zd - ”,num+l);
scant (‘‘Z2dZc" , S<cl assmarks Lnum J ) ; 
J

print! ( " \+\n 7.25s\n‘‘ , “CLASSMARKS'1 ) ;
tor(num=0;num<=19;num++)

1pr i n11 <“\n11em Zd got Zd mar k s ",num+1, 
olas smar k s C num J);

J

Using an integer array. The array numbers are read in from the keyboard, and then printed.

FIGURE 4. 4
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Figure 4.4 shows an example of this array in use, and also some more formatting. In this 
program, a set of twenty marks is obtained. There’s nothing to stop you from entering 
numbers like 5000, but the program assumes that the items will be between 0 and 99. Later 
on, we’ll see that this can be checked in better ways. The items are entered in a loop, using 
principles that should be familiar by now. The prompt line uses num+1 rather than num 
so that you can have numbers from 1 to 20 instead ofO to 19. In the scanf line, the %2d 
allocates the numbers in twos. This is not ideal, because it means that if you type a four- 
figure number, it will be allocated to two sets of marks! For the moment, though, it will 
serve to keep the numbers below 99. The other point about the use of scanf here is that the 
array pointer is used directly, as &classmarks[num]. You don’t have to use any 
intermediate integer here, as you are required to do in some languages.

When all of the items have been entered, the screen clears and the title CLASSMARKS is 
printed in the centre. This is done in the printf line by using the control string 
“ \ f \ n%25s \ n”. The \ f part clears the screen, and the \ n part takes a line down. The 
next part, the %25s, is a string ‘field size’ number for the word CLASSMARKS. The field 
size number represents the total size of string that is printed, and if the word is less than this 
size, it is padded with blanks at the left hand side (in other words, it is right justified). By 
using a positive number, we force the word to be printed with any of these padding blanks 
on the left-hand side. The choice of the number 25 with CLASSMARKS (which has ten 
letters) means that 15 spaces will be printed to the left of the name. Figure 4.5 shows how 
this can be used to centre any name.

1. Count the number of letters in the title, for example, 16.

2. Add this number to the number of screen characters per line, for example 40 in Mode 1 
(example gives 56).

3. Divide this number by two, and use it in the field size. For example, “%28s”.

How to centre any title, using the fielding number.

FIGURE 4. 5

If, incidentally, a negative ‘field’ number is used, the excess spaces are printed to the right 
of the name. This can be useful for spacing the next name, but is not so useful for a heading.

The items of the array are then printed out in order, using the variable name num as the 
array number and num+1 as the item number. The printing line has not attempted to 
make the spacing such that the lines will be uniform for both single-digit and two-digit 
numbers. This, once again, is a good exercise for you in fielding these printouts. If you have 
been used to the action ofTAB in BASIC, the use of the field numbers can often be difficult 
to adapt to, and the more experience you have the better. The rule is to use a positive field 
number when you want to start a word away from the left-hand side of the screen, and a 
negative number to space the next item along so that it will fit neatly.

4-6



The method of using scanf with the number specified by %2d makes sure that no number 
of more than two digits can be entered. This is not always a desirable method of checking, 
however. The main problem is that if your finger slips and you enter 999 instead of 99, then 
99 gets entered in one mark, and the last ‘9’ becomes the first digit of the next mark. The 
program as it stands gives you no chance to do anything other than grin and bear it. This is a 
compiled program, remember, so you can’t just use the old BASIC trick of commanding a 
GOTO to get you back into the right part of the program. This method of specification, 
then, is suitable only when there is no loop involved, so that it doesn’t matter if something 
gets left over. If you want to be able to correct an item without running the program all 
over again, then an IF test (like BASIC) is a preferable method, and we’ll look at another 
method shortly. There’s no reason why the result should not then be assigned to an array 
which has restricted values. The golden rule is that your program should never bomb out 
when the unlucky user (you, perhaps) has just entered a lot of data.

Strings at last.
A string in HiSoft C can be regarded as an array of ASCII characters, ending with a zero. 
This is true in all other versions of‘C’, (and in some types ofBASIC) but in BASIC there is 
a ready-made string variable type, marked with the dollar sign, as one of the main variable 
types. HiSoft C, in common with other varieties of‘C’, does not have these string variables 
ready-made; we have to define them for ourselves. A string is an array of characters and we 
always define it in that way, as for example string[20]. When you write characters for a 
string in a program you enclose them with quotes just as you would in BASIC, and you 
don’t have to type in the zero that is always used to end the string. As an example, which is 
also a very important guide to the use of pointers, take a look at Figure 4.6.

main ()

static char stLJ=“EXAMPLE“;
int n;
char *p;
P=st;
tor (n=0;n<=9;n++)
print-f (“\n7.c , code 7.d , is in 7.d“,*(p+n),  
*(p+n>,p+n);

A string variable, and its use with a pointer to print out characters, codes and addresses.
FIGURE 4. 6

Now in this example a string is assigned, and the assignment is different from what you 
might expect. Both declaration and assignment have been carried out at the same time, and 
this is possible only with a static variable in any variety of‘C’. This is not a restriction of 
HiSoft C because we are initialising an array, and no version of‘C’ allows an auto array to 
be initialised. In addition, though, the number of characters in the string has not been 
declared; there is no number between the square brackets. This is something that can be 
done only in a combined declaration and assignment, and you can’t split this into two 
statements like char st[]; st[] =“EXAMPLE”.
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The real meat of this example, however, lies in the use of a pointer defined as p. Now in the 
6th fine of the program, we make the assignment p=st, which looks very peculiar. It rather 
looks as if we are assigning a pointer, which is an address number, to the name for an array. 
You would expect by now that an assignment of this kind should be written as p=&st[0], 
and it would make not the slightest difference to the way that the program works if you did 
so. This is another of these short-cuts of ‘C’. The name of any array (and a few other 
compound data types, as we’ll see) is the pointer address of the first item in the array. The 
array is stored in consecutive addreses in the memory, as the example shows, and the use of 
pointers is particularly handy just because of that. You don’t, of course, have to make use of 
pointers if you just want to print a string or select one item from it. You can print a string by 
using a library routine, knowing, as you do now, that the pointer for the string is 
represented by its name. You can pick a letter from the string by using the fact that it is an 
array, so that st [4] is the fifth letter (the count starts at 0, remember). Later, we’ll see that it 
is possible to assign and use a string using only the pointer, with no string variable name at 
all.

maini)

static char stE3="EXAMPLE";
printf ( ” \n/.s" , st) ;
printf(“\n Fifth character is 7.c",stE4J)

Picking out a character from a string, using its array number. This is much simpler than MIDS in BASIC.

FIGURE 4. 7

Figure 4.7 shows string selection more clearly. Once again the string is initialised, and the 
complete string is printed using a printf line. Only the array name, st, needs to be used 
here, and no square brackets are needed. In the following line, the fifth character in the 
string is printed by using st[4] - remember once again that counting starts with zero. Using 
the idea that each letter in an array can be located by using its subscript number, you can 
always assign one array to another variable name. For example if you have variables st and 
string, both of which are character array types, you can use a routine such as is shown in 
Figure 4.8 to make a copy of the array st into the array name string.

main ()

static char stLj=“Sample String";
char stringE2Bd;
i nt n;
for (n=8;n<=19;n++)
string E nJ =stEnd;

printf(“\n name is 7.s‘‘,string) ;
J

Copying one string to another - you can’t equate the string names as you do in BASIC.

FIGURE 4. 8
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This is pretty much the same method as you would use in BASIC to copy one array into 
another. As it happens, you have a more efficient method available in the form of the 
strcpy function in the library.

ttinclude stdio.h 
mai ni)

static char stL3=‘SampIe String";
char stringE20d;
strcpy(string, st > ;
print!("\n name is 7.s" , str i ng ) ;
J

¡¡include stdio.lib

Using the library function strcpy.

FIGURE 4. 9

Figure 4.9 shows how this can be included into a routine that needs a lot of library 
functions. Remember that if you need just one library function, it’s much easier just to type 
the source code of the function that you want into your listing than to have to wait for the 
library to be read each time you compile. The library version makes use of pointers, as you 
might expect, and it’s a good example of just how compact ‘C’ code can be made.

Let’s get back to the strings, however.

main ()

char c,namet20J; 
static int n-0;
do
L
c=getchar();
name[nl=c;
n=n+1j

whi 1 e (c ‘ ' \n ) ;
nameLn-13=0;
n=0;
while (nameEnJ!=0)

putchar(name!nJ>;
n=n+1;

j
I

Reading and writing a string character by character. This makes it easy to test for a ‘terminator’.

FIGURE 4.1 0
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Figure 4.10 shows a very simple string variable reading and writing program. This time, 
very different methods have been used for entering and writing the name. We have made 
use of some of the simple built-in functions that exist for reading and writing characters, 
and this has involved two different types of loop, the while and the do., while. The word 
name is defined as an array of 20 items of type char. This means that name should not 
contain more than 20 characters, but there is nothing to stop you from entering more than 
20. This is a feature of‘C’, that you have to build in your own safeguards, the language 
provides only the minimum necessary. If you enter only two characters from the keyboard 
no harm is done, but the rest of the array will be filled with garbage. If you enter 22 
characters, the program may crash at a later stage. After the declaration and initialisation 
steps, the program starts a loop. This loop is not the kind that is regulated by a counting 
number, like the for type of loop. Instead, the actions that follow the keyword do are 
repeated until a condition that follows while (at the end of the loop) is TRUE. It’s rather 
like the WHILE...WEND loop of the Amstrad turned the other way round. The test is 
made at the end of the loop, so that the loop must run at least once. The statements in the 
loop are enclosed in curly brackets, so that they act as one ‘compound’ statement. The 
c=getchar() function does what its name suggests, it gets a character from the keyboard. 
The next line assigns this character a place in the string, name, and following that, the 
counter integer n is incremented- I have used n=n+l, but you know a better method, 
don’t you? The while condition is for the character to be the carriage return, indicated as 
‘ \ n’ - and note the apostrophe signs, not quotes, because this is a single character, not a 
string with a zero at the end.

So far, so good. Everything you enter at the keyboard will be taken and put into the array 
name. Everything, that is, including the \ n at the end, but with no final zero, because we 
can’t type a zero character (the Obn the keyboard is ASCII 48, not ASCII 0). The statement 
name[n-l]=0 remedies this problem by stepping back to the \n character and 
substituting a zero. Now we can print the string. Y ou could, of course, make use ofprintf to 
do this, but since we’re looking at the simple functions, let’s use putchar. This, like 
getchar, works on one character at a time. Also like getchar, it has to be instructed rather 
closely, and we have to start by setting the counter n to zero again, otherwise we can’t print 
the correct characters. Now we use a while loop. Unlike the WHILE... WEND in Amstrad 
BASIC, the while loop in ‘C’ carries out a set of instructions which either end with a 
semicolon, or are enclosed by curly brackets. In this example, we’ve used the curly brackets, 
so that providing that name[n] is not a zero, putchar will place the character on the 
screen, and the number n will be incremented. When the zero is found, the action stops.

Now it works, but no seasoned ‘C’ programmer could possibly be happy with it. The whole 
principle of‘C’ is that you ought to be able to do a lot with a very few instructions. In an 
example like this, it’s preferable to make use of some of the library routines which use 
pointers, but just for the exercise, how could we go about slimming this down? The answer 
is to make use of a few of the ‘C’ shortcuts, and some of these are illustrated in Figure 4.11.
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mai n () 

c h ar n ante L265 J ;
static int n=0;
whileiiname[n++]=getchar() ) != \n') ;
name[nl=0;
n=0;
while (nameinJ!=0)
putchar(nameLn++J);

The program of Figure 4.10 slimmed down or compacted.

FIGURE 4.1 1

This is the same program, using the same routines and methods, but with shortcuts. It takes 
ten lines instead of nineteen to write, so the slimming, while not exactly anorexia 
computerosa, is impressive. The main reduction is obtained by using the line:

while((name[n++]=getchar())!=‘ \ n’);

which is the sort of thing that gives ‘C’ a bad reputation with academics. When you unravel 
it it’s not quite so bad as it looks, and you’ll soon learn to shrink lines down to this state. The 
way to unravel anything like this is to start at the innermost brackets. Within these you’ll 
find: name[n++]=getchar() and this assigns the character from the keyboard to 
name[n], and then increments n. This allows us to remove the n=n+l line from the old 
program, and also replaces the clumsy assignment to char c and then to namefn], This 
complete part of the statement is enclosed in brackets, following which is !=‘ \ n’, testing 
to find if what is within the brackets is not equal to the (ENTER) key code. The whole of 
this is enclosed in brackets which follow the while. This has the effect of testing if the whole 
expression is TRUE or FALSE. If the key is not (ENTER), the expression is TRUE, and 
the while loop is carried out. In other words, the character is put into the string and the 
place number is incremented. When the \ n code is found, the expression which follows 
while is FALSE, and that’s the end of the loop. The whole of this while loop is in one line, 
marked by the semicolon at the end of the line. The two actions which follow are as in the 
old version, putting a zero at the end of the name and making n equal to zero again. Using 
name[n]=0 actually causes the string to include a \ n character, but the effect of using 
name[n-l] doesn’t make much difference until the printout stage when it changes the 
number of spaces under the printed version. We can, in fact, save another line here by 
using:

n=name[n]=0;

which carries out the two assignments to zero in one step. Finally, the putchar part of the 
work is done in two lines with another while loop, and you should be able to unravel that 
one from your experience of the getchar loop.
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In HiSoft C, string actions look rather complicated because assignment is not quite so easy 
as you might think. Since a string is a form of array, and there’s no method by which you 
can copy one array into another except character by character, it all looks like hard work. 
It’s really only a problem, however, if you are ‘thinking in BASIC’. You can assign a string 
constant, for example, by using #define in a lot of places where in BASIC you would use a 
string variable. You can also use the scheme that we looked at earlier, of defining a static 
char string[] into which you can assign anything you want. You can also make a pointer 
point to any string you want, which is probably the easiest way of re-assigning a string 
name. We don’t need to go into this, because it’s in the HiSoft C library (it’s one that exists 
in every ‘C’ library). When you really need to use a string variable is when you are inputting 
or outputting strings, and once again there is a library routine, gets(string), for this 
purpose. We’ll look at these routines later. The thing that you really have to be careful 
about is any attempt to assign a string to an array which is not large enough, because only a 
string of at least the same length is compatible. If your strings are arrays of 20 characters, 
then only another array of up to 20 characters total (including zero or any \ n character) 
can be assigned. This is very difficult to get used to when you have been accustomed to the 
free and easy ways that BASIC has with strings, and Chapter 8 of this book is devoted to 
ways of making life easier for you.

Arrays of strings.
In BASIC, you are accustomed to being able to use string arrays, with assignments such as 
A$(5)=“FRIDAY”. In HiSoft C, a string array is an array of an array of characters. This 
sounds complicated until you realise that it’s no more than a two-dimensional array. The 
sort of thing which in BASIC is written as A(3,4) is treated very similarly in HiSoft C, with 
the minor difference in this case that one of the dimensions is a set of ASCII codes. An 
easier method is to define a string as an array of characters, and then define another name as 
an array of strings. Once you have defined your ‘string array’ name correctly, you can use 
the string array rather as you do in BASIC. You must remember, however, that the rules 
are rather more strict. Each name in the array, for example, will consist of not more than 
the declared number of characters, and it’s likely that anything following the zero that 
marks the end of a string will be garbage.
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Look for example at Figure 4.12.

main()
X.

char nameCISJL20J ;
int n, j ;
tor (n=0;n<=9;n++> 

r

j-0;
printf ("\n Name please — ");
whilet(nameLn3[j++l=getchar( ) ) ! - \n'); 
nameCnJ Lj-13=0;

pr intf ("\f " ) ;
for (n=0;n<=9;n++)
printf ( " \n7.s" , nameLn 3 > ;

Using a string array, a two-dimensional array of characters.

FIGURI' 4.12

This consists of a program which will fill an array with names (of up to 20 characters), clear 
the screen, and then print the lot out. We start by defining name as an array of ten strings, 
each of which is an array of characters, up to 20 characters long. Two integers, n and j, are 
then defined to be used as counters. In the first loop, using n=0 to n<—9 because the array 
elements are 0 to 9 not 1 to 10, the array name is filled with names that you type from the 
keyboard. Each string is referred to by its two numbers, the place in the array of strings, and 
the character in each string. For example, name[2][4] means character 4 in string 2, 
remembering that character 4 is the fifth character, and string 2 is the third string. The 
screen is then cleared, and the array of strings is printed on the screen by using the other 
loop. Each name in the array is obtained, once again, by using its position number within 
square brackets; name[7] in HiSoft C is equivalent to NAME$(7) in BASIC. Note that 
this time you don’t have to use two sets of square brackets. By specifying that you want to 
print a string, you have automatically made it unnecessary to specify the second set of 
square brackets. Just as you could use printf to print a string called title, which was 
defined as title[25], you can use printf to print a string which is called, for example, 
name[4].

A lot of BASIC programs depend on filling an array with values which are taken from an 
internal list. You might in BASIC, for example, want to fill an array WEEK# with names 
taken from a DATA list of weekdays, such as:

20 FOR N=1 TO 5
30 READ WEEK$(N):NEXT

so that any day can be found by use of the array number. This is not quite so easy in HiSoft 
C, because in ‘C’ there is no direct equivalent of the BASIC READ and DATA 
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instructions. These instructions are very wasteful of memory, because everything that you 
have in a DATA line in BASIC is stored in two places while the program is running. The 
action ofREAD....DATA in BASIC is really just the initialisation of an array in ‘C’, and the 
program of Figure 4.13 illustrates this action in a form of a function which you can use for 
your own programs.

main() 
£
static char *weekf 3=<"Monday"Tuesday", 
“Wednesday“,"Thursday","Friday"};
i nt n;
for(n=0; n<=4;n++>
print+("\n Day Xd is Xs",n+1,weekLnJ);
J

Initialising an array, the equivalent of using READ..DATA in BASIC.

FIGURE 4.13

This time the array is an array of pointers, one pointer for each string, with no restriction 
on string length; a subject that we’ll come back to. The name of the pointer is week[], it 
points to a character type, and its initilisation is carried out as shown. The storage class 
must be static if we are to carry out declaration and initialisation in one line, and the new 
feature is how a set of words, between quotes, can be put into an array. The contents of the 
array are shown between curly brackets, separated by commas. In an initialisation there is 
no need to show the number between the square brackets of the name, so this goes in as 
*week[]. When the array of strings is printed out, we don’t print *week[0],  *week[l]  and 
so on, but week[0], week[l] etc. This is because the pointer name is the name of the array 
item. This is the kind of thing that’s always likely to catch you out when you first start 
writing programs in ‘C’, and it’s the first thing to suspect if you find that a printout gives 
you a screen full of gibberish. Note, incidentally, that each string will end correctly with a 
zero. You haven’t put this in, but it’s taken for granted when you use letters between 
quotes, like “Monday”.

So far, we have been looking at comparatively short programs. When your programs get to 
the length at which they take up more than one screen ‘page’, a printer becomes a more 
pressing necessity. It’s particularly useful if you are using pointers and you are not sure 
whether you should be using a *x  or just x at any particular time. If you can see the 
declarations at the same time as you look at the lines that are giving you the problems, it all 
becomes much easier. Another problem is that by the nature of‘C’, you tend to have a lot of 
nested {and} marks. If you can see these only on the screen, it’s very difficult to be sure that 
each { corresponds to the correct}. Of course, if you planned the program correctly in the 
first place, you will have checked the nesting on paper. The problem arises, however, when 
you have been doing some editing, renumbering the lines, correcting mistakes and so on. At 
that stage, checking for an incorrectly placed ! on the screen alone can be rather a 
frustrating task. One thing that can make a ‘C’ program much easier to read is indenting 
each new { or loop. In this way, sections which are ‘compound statements’, running as if 
they consisted of one single instruction, are set away from the left-hand side in a block. 
This makes it easier to see where the { and ! of each block is located.

4-14



Chapter 5

Menus, choices and files.

The BASIC of the Amstrad allows the simplest method of programming menus, using the 
ON K GOSUB type of command. Since a menu is a very common feature of a lot of 
programs, it’s time that we took a look at how such a system can be programmed in HiSoft 
C. The key to simple menu programming is the switch statement, which is ‘C’s equivalent 
of ON K GOSUB. Suppose that you have a list of items on your menu, with each item 
numbered in the usual way. You then use a keyboard read function to input a number. 
Suppose, for example, that you use the getchar function, which is built-in. You can then 
program:

switch(getchar(}-48) 
{
case 0: (first action);
break;
case l:(second action);
break;

and so on, with the closing curly bracket at the end of the list. The function getchar() will 
have values which are ASCII codes for numbers such as 0,1,2, and so on, so that 
getchar()-48 converts to number form as we saw earlier. This allows switch to select the 
command which appears after the same number in the list that follows case. In a real 
program, each of these options would consist of a function name, or a statement. For an 
illustration, we can substitute simple printf statements, as in Figure 5.1. The important 
point is to understand why the break statement has been added in each line.
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mai n (> 
<
printf<"\f%24s\n", "THE MENU“);
pnntf (“\n 1. Start -file.");
pr i ntf ( “ \n 2. Add to -file.");
printf(“\n 3. Delete item.“);
printf(“\n 4. Amend item.");
printf(‘‘\n 5. End program.\n“); 
switch (getchar()-48)

break;
case 4: print-f (‘‘\n amend item here."); 
break;

case 1 : 
break ;

pr i ntf <“\n file starts nere.");

case 2: 
break ;

printf(“\n add to file nere.");

case 3: pr i ntf ( “ \n delete item nere.");

try again. “ ) ;

case 5:printf(“\n end of program. “ ) ;
break;
default:printf(“\n No such item— pl ease

A skeleton menu program, showing how the switch statement is used.

FIGURE 5.1

In this example, the screen is cleared by the \ f part of the first printf statment. This prints 
a title, and the fielding command %24s has been used. Note that when anything like this is 
done, the message must be separated by a comma from the fielding. If you use 
printf(“\ f%24s\ n THE MENU”) ; you will see a set of gibberish characters appear 
preceding THE MENU. The menu items are then printed, with a number allocated to each 
item. You are asked to choose by number, and then your number choice is put into the 
switch statement. What follows lists the numbers and actions. Each number is followed by 
a colon, then the action or actions that must be carried out. The set of switch actions must 
end with a closing curly bracket, and the whole program ends as usual with the final curly 
bracket. Each choice has simply caused a phrase to be printed in this example, because the 
aim is just to show what the switch statement does and how it is programmed. To see why 
we need the break statements, try omitting one or two. You’ll see that this has the effect of 
allowing more than one answer to be printed. The switch statement allows you to select 
one item, but when the action returns, it will move to the next case statement. Unless you 
want the next switch fine to be carried out, you must make this next statement the break 
to allow the rest of the switch sections to be skipped. Notice, too, that we can cater for a 
selection which is not in the range that switch allows. This is done by the default item, 
and it’s a very handy way of ensuring that the entry range is checked and something 
sensible done for each possible answer.
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In many examples, though, that’s still not quite what we want. What we would like is to 
have the menu repeated until we enter a number that is suitable. In primitive varieties of 
BASIC you have to use a GOTO to achieve this, but in ‘C’, the obvious way is to use the 
do..while instruction. This is illustrated in Figure 5.2, in which the selection is repeated 
until a choice in the correct range is made.

main() 
'u 
int j; 
printf ( “ \f7.24s\n" , "THE MENU");
printf ("\n 1. Start tile.");
printf("\n 2. Add to tile.“);
print+i"Xn 3. Delete item.");
printfC"\n 4. Amend item.");
printf ("Xn 5. End program.\n"); 
do 

1. 
switch (j=getchar()—48)

case 1:printf("\n -file starts here.")

br eak;
case 2:printf("Xn add to tile here.")

■E 
break; 
case 3:printf("Xn delete item here.")

break;
case 4:printf(“Xn amend item here."); 
break;
case 5sprintf(“Xn end of program.");
break;
case —38:break;
detaul t: pri ntf ( "\n No such item-7.d p 

1 ease try again.Xn“ , j ) ; 
J 

J

wh i 1 e (j >5 i 1 j < 1) ;

Repeating the switch action until a number in the correct range is entered.

FIGURE 5. 2

This time, the program does not end when an incorrect choice is made. The message is 
printed by the function, and the do loop ensures that the choice can be made again until the 
number lies in the correct range. It’s not quite so straightforward as it seems, however. If 
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you simply add a do..while loop, you need a quantity to test at the end, and this can be 
obtained by using a variable to store the value obtained from getchar. In the example of 
Figure 5.2, the integer j has been used. You don’t need to equate this to getchar() in a 
separate line, it can all be contained within the switch statement as the example shows. At 
the end of the loop, the value of j is tested. This contains the statement (j>5 | | j < 1), and 
the novelty here is the vertical bar signs. Used in this way, in pairs, they mean logical OR, 
so that the statement in brackets tests the truth of‘j greater then 5 OR j less than 1’.

The trouble is that this always causes the default message to be issued twice, once for the 
incorrect number, and once again for the (ENTER) key. This is because entry from the 
keyboard is done by storing the characters in a memory buffer. The (ENTER) key returns 
ASCII 10, and 10-48 gives -38, so this is assigned to j after the first default message, causing 
another message - but there are no more characters left now in the buffer. Now this could 
be sorted out by a bit of machine code which clears out (or flushes) the buffer, but there is a 
simpler ‘all-C’ solution, which is to make a case -38:break; to detect this and ignore it. 
This is one of the delightful things about ‘C’, that there is so often a way out of difficulties 
which doesn’t involve digging into the machine-code. This is important, because the 
Amstrad machines are not so compatible with each other as you might think, and it’s 
always best to avoid machine-code unless you are certain that it works on the machine that 
you are using.

Incidentally, now that we’re starting to look at programs which contain several sets of 
nested curly brackets, it’s time to think of indenting program lines. Indenting means 
leaving a space at the left-hand side, and it’s a good way of showing how statements within 
curly brackets are nested. If you have nested sets of curly brackets in a program, put each 
new starting bracket one space in from the previous one, and indent all of the statements 
within the brackets similarly. This makes it much easier to read the program and see which 
statements are included in which set of brackets. The listing for Figure 5.2 should give you 
some flavour of all this. The semicolons at the end of the switch lines have spilled over 
because the printer has been set to use the same 40-character lines as the screen.

Other cases.
The control for switch does not have to be defined as an integer because, as we have seen 
previously, a character is entered as an ASCII code which is an integer anyhow. You can, 
therefore, use a character to control a switch, as is illustrated in Figure 5.3.
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fflain ()

char s;
s= S' ;
do

X
it (s!= e )s= getcharO;
printf(“Xntype a letterXn");
s=getchar();
switch(s)

"V
case a' :
case e’ :
case 'i ' :
case o :
case u :printfi“ —is a vowelXn"J; 
break;

default:print+(" -is a consonant\n;
J

J

while (s ! = @ ' > ;

Controlling switch with a character rather than with a number.

FIGURE 5. 3

In this example, the variable s is of type char, meaning a letter, and the switch statements 
are set up for letter testing. We can still use s=getchr() to get the character from the 
keyboard, however. This is because, once again, the language does not make any rigid 
division between characters and integers - the main difference as far as the computer is 
concerned is that a character is stored in only one byte of memory, and an integer requires 
two bytes. Note that a character is referred to by using its key, within single quotes, such as 
‘S’, ‘A’ and so on. This is something you constantly have to remember, because using 
double quotes, such as “S”, “A”, means a string which consists of the letter code and a zero. 
Once again, in this program, the use of a do..while loop will cause problems, in particular 
the repetition of the ‘type a letter’ message. This time, the method that has been used to 
prevent this is different. It is certainly possible to use an extra case line to detect the 
character ‘ \ n’, but this does not prevent the prompt from being printed twice. The test at 
the start of the loop, however, along with the assignment to ‘@’ before the start of the loop 
does what is needed. Assigning the value ‘@’ to s before the loop starts prevents the extra 
s=getchar() step from being used. If the loop returns because the @ key has not been 
pressed, the value of s cannot be @, so the extra getchar will read the (ENTER) code of 
‘ \ n’, and allow the program to operate normally.

This type of character input can be improved by using some of the built-in library 
functions, and one of these can also be used to get over the (ENTER) key difficulties. The 
improved program is shown in Figure 5.4.
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mai n O 
{ 
char s;
printt("XnType a letter - use ® to stop\

while ((s=getchar<))!= @')
L

if (iespaceis>> continue;
it (; isalpha(s)) 

■<.
printt("not a letterXn');
continue;
J

tolower(s); 
switch(s) 

■<.
case a':
case 'e':
case i : 
case 'o : 
case u'¡printt i1’ -is a vowelXn“>; 
break ;

de+ault:printt(" -is a consonantXn;

Analysing letters with a switch statement and some of the built-in character actions.

FIGURE 5. 4

This time, the test for escaping from the loop (the @ character) is made at the start, using a 
while loop. You have to be careful how this is done, with the s=getchar() step enclosed in 
brackets and made not equal to ‘@’, and the whole expression in brackets for the while 
statement. If you get these brackets wrong, such as by using while(s=getchar()!=’@’) 
then you will find that s is not assigned to any character that is not @, which is not exactly 
what you wanted. In the loop, two tests are then made. The first test uses the isspace 
function, which is TRUE if s happens to be a space, the newline character or a TAB. In this 
example, it’s the newline we are trapping, and the effect will be to continue if the character 
is a newline. ‘Continue’ used in any type of loop means that the rest of the loop will be 
skipped, and the loop is restarted. If the newline is found, then, the loop returns for another 
getchar. The next test uses function isalpha. By using this in the form if (! isalpha(s)), 
we get a TRUE answer if the character is not alphabetical. For this event, we print out the 
‘not a letter’ message, and continue to get another letter. If character s has survived so far, 
we then use function tolower(s) so that any upper-case letter is converted to lower case. 
This avoids the problem of entering an upper-case letter like A, E, I, 0 ,U and being told 
that each is a consonant. All of these functions are built in, and don’t need the library to be 
searched.
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One last point about switch. The expression that follows switch, within brackets, must 
give a single integer. You can’t for example, make switch work with strings, except to 
recognise the first character of a string. If you have to work with strings, then a program like 
the one in Figure 5.5 will be more suitable.

main ()
X
int j,n;
char commandLGJ;
printf("XnPlease type command");
printf(“XnCLS,UP,DOWN,LEFT,RIGHT") ;
do

<
n=0;
while ((j=rawin())!=13)

X
c ommand L n J=j ;
n=n+l;
J

command In 1='X0 ;
if ( !strcmp(command,"cls"))rawout( X14

if (istrcmp(command,"up")) rawout('X13
) ;
if ( !strcmp(command,"down"))rawout( X12
');rawout( X10 );
if (!strcmp(command, “ 1eft" ) )rawout('X10
) 5
if (‘strcmp(command, "rigot“ > )rawout( X1

i ■ >;
rawout(233);

J
while (command);
J

int strcmp(s,t)
char *s,*t;

while (*s==*t)

if O*s)  return 0;
++s;++t;

return *s-*t;

Using a menu structure to recognise command words.

FIGURE 5.5
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The name command is defined as a string of up to six letters, and it is filled with characters 
by using a loop which contains rawin. This requires testing for the ASCII code of 13 to 
check the use of the (RETURN)/(ENTER) key. The point of using rawin in this example, 
is that it does not place anything on the screen. For some purposes, particularly graphics 
programs in which pressing an answer should not show on the screen, this action can be 
useful. The command word which is obtained is then compared with a list of keywords by 
using if tests with strcmp. There is no way in which you can make a direct comparison of one 
string with another in ‘C’, so that lines such as:

if (command==“cls”)...

are not valid. The strcmp function, which is in the function library, does the comparison 
character by character, and returns a number whenever two characters are unequal. If the 
strings match perfectly, then the function returns 0. We have to test for NOT strcmp, 
therefore, using the ! sign. The program example will do things like clear the screen and 
move a cursor about by using long commands such as UP, DOWN, LEFT, RIGHT. The 
important points are that the words do not appear, and that the comparison can be made. 
You will need to press the (ESC) key twice to get out of this one, because the while 
condition will make it loop forever.

Recording data.
Once you have made a start to gathering information into arrays, then it’s likely that you’ll 
want to record the information on to cassette or disc. The cassette filing system of the 
CPC464 follows the same command system as the disc system, and the later 664 and 6128 
machines are disc-only, though a cassette system can be plugged in. In this part, then, we’ll 
assume disc use, and if you use cassettes the only differences are that you’ll have to choose 
places on the cassette and wait around rather a lot. We’ll start at the beginning, and look at 
what is involved in recording and replaying a list of integers which will be held in the 
computer as an array. Figure 5.6 shows what is involved.

mai n ()

1 nt n,aL51J;
int *+p;
tor(n=0;n<=50; n++)

aLn!=2*n;
J

print!("XnArray filled....“);
fp=fopen ( “intf i 1 “ , “W ) ;
for (n =0;n<=50;n++)

fprintf(fp,"5dXn“,aLn J) ;
J

f c1ose(f p);
J

A disc or cassette filing program for a list of integers.

FIGURE 5.6
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The integers are generated in a loop, which simply gives all the multiples of two up to 100. 
Once this array has been generated, the recording file is opened by using the line:

fp=fopen(“intfil”,“w”);

in which fp is a pointer to the start of the file, “intfil” is a filename that will be used on the 
disc, and “w” means write. Note that this is “w”, a string, not ‘w’, a character. The 
function fopen is built-in, so that you don’t need to search the library for it. Once the file 
has been opened, the array can be recorded by using another loop, with a variation on 
printf being used in the writing process. The function fprintf is used very much like 
printf, but with the file-pointer as the first of its arguments. Once again, fprintf is a built- 
in function. The whole action could have been carried out in one loop, but I wanted to 
separate the generation of the numbers from the filing routine so that it would be easier to 
adapt the program for something more useful. The file must be closed by using fclose(fp) 
after writing. If there has been any other file called intfil on the disc, it will be renamed as 
intfil.bak in the usual way, and the new intfil file will become the current one of that 
name. Once the file is on disc, you can look at it, after a fashion, with the type command of 
CP/M. This involves losing the ‘C’ compiler to switch into CP/M, and typing type intfil. 
You will see the integers appear, very untidily, on the screen with a new line and a right­
space for each new integer. To read the integers back in a more controlled way, we should 
write a reading program in ‘C’ - and that’s the next step.

mai n ( )
■<.
int n,bl51J,*fp;
fp=fopen t “intf 11“, "r “ ) ;
for(n=0;n<=50;n++>

+ scant (f p, " 7.0 \n " , b+n ) ;

foiose(fp);
for (n=B;n<=30;n++) 
printf("%d “jblnj);

A reading program for the disc/cassette file.

FIGURE 5.7

One possible reading program is illustrated in Figure 5.7. This one prepares in the usual 
way, and opens the file using fp=fopen(“intfil”,“r”) with the “r” (not ‘r’) meaning 
“read” in this case. The loop is performed as before, but this time fscanf is used, and the 
syntax is not the same as that for fprintf. The reason is that an array is being filled, and 
fscanf needs a pointer to the position in the array. Now the name of the array, b, is the 
pointer to its first item, b[0], so that if we use b by itself in the scanf instruction, all 
numbers will be read into the first item. To make the pointer shift to the correct item, we 
use b+n, so that the correct number of address bytes above the pointer start b is being used. 
When you add to a pointer in this way, the number that is actually added is a calculated 
number, taking into account the type of data. For example, an integer uses two bytes. If 
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pointer b happens to be 42000, for example for n=0, then for n=l the address is 42002, 
because an integer takes two bytes. This automatic adjustment is very useful, but easily 
forgotten. After the numbers have been read, the file is closed in the usual way, and the 
array is then printed out. The printout is not in the same format as was used for reading the 
array in, which is the main benefit of using a separate loop for this purpose.

The use of fprintf and fscanf is just one of a set of ways of using disc filing.

»define EOF -1 
ma inf)

char c,a£51J;
int n,j, *+p;
n=0;
fp=+open("newchr","w");
c= \n ;
whi1e(n<=S0)

u
if(c!= \n )

c=getchari) ;
continue;

printf("XnType a single character.. “); 
j=getchar();
i+(j== 0 )break;

c=j ;
putc(c,+p);
ni++;
J

fclose(fp);
printt(“XnPress any key to read back“);
while(!keyhit () ) ;
n=0;

■f p=+open ( "newchr “ , "r “ ) ;
1 + ( + p= = 0i
printf(“XnNo such file"); 

el se
wiii 1 e ( ( j —get c (-f p) ) ! —EOF)

aln++J=j;
J

aL n J — X0' ;
fclose ( + p ) ;
pr i nt + ( " \n'4s“ , a) ;
j—rawint);

Using putc() and getc() in filing programs.

FIGURE 5.8
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Figure 5.8 demonstrates two other functions which can be used, putc() and getc(). As the 
names tell you, these are character functions, but this description can be very misleading, 
particularly as applied to getc(). The action of getc() is to return an integer, which can, of 
course, be regarded as a character in ASCII code. The important point is that you can 
assign getc() as an integer or directly as a character, but it’s better always to assign it as an 
integer. The reason is that you generally use getc() in a loop which continues until the end- 
of-file character is found. The EOF character in HiSoft C is -1, which in integer form 
consists of two bytes. If you read getc() as a character, it will only deliver one byte, and the 
end of file character cannot be read. That’s usually one fruitful cause of program crashes. 
Another is to gather the characters into a string and forget that there must be a zero at the 
end when the string is printed!

Looking at the program of Figure 5.8, then, the assignments are made as usual with 
character c, string a, and the others integers. As before, the pointer has been defined as 
pointer to an integer. The counter n is initialised to zero, and c to the newline character. 
This assignment has been made to avoid problems due to the newline trapping in the while 
loop that follows. In this loop, the number of characters that can be entered is limited to 51 
(from 0 to 50), and a trap for a newline in the keyboard buffer is placed as the first step. After 
a letter has been typed, near the end of the loop, this trap will remove the stored newline 
character so that the message (‘Type a single character’) is not repeated unnecessarily. If c 
is not assigned to a newline before the loop starts, however, the message step will not appear 
until the (RETURN)/(ENTER) key is struck. The loop is also arranged to break when the 
‘0’ key is used - obviously you could use whatever terminator you wanted, and the message 
would normally mention this. Function getchar() is used to get the character from the 
keyboard, and the character is extracted the long way round, using integer j, whose value is 
tested, and then assigning this to character c. The file which was opened at the start of the 
program is then used by putc(c,fp) to place the character c in the file which is pointed to by 
fp. This loop continues until a ‘0’ is entered or until the maximum permitted number of 
characters has been entered. The file is then closed, and the program hangs up, waiting for 
you to press a key.

The ‘press a key’ step is provided by another built-in function, keyhit(). This makes the 
program look for any key to be struck, and the keycode remains in a buffer. Using keyhit() 
in a while loop causes the program to hang up in a loop, waiting for a key to be hit. When 
you press any key, the program then continues, initialising the counter n once again, and 
opening the file for reading. Now it can happen that you don’t have the correct disc in the 
drive when you are reading a file, and the next part of the program shows how to deal with 
this contingency. The pointer fp will be zero if no file exists, so that testing for (fp==0) 
allows you to print a message. In a real program, of course, you would want to return to the 
waiting step if the disc turned out to be the incorrect one, but in this example, the program 
simply stops if the newchr file is not on the disc. If the file is found, then a while loop reads 
it until the EOF character is found. The EOF has been defined at the start of the program as 
-1, the correct EOF for HiSoft C. We could, of course, have used -1 in place of EOF, but if 
you use EOF and #define, it’s much easier to change a program so as to run on another 
machine (or another variety of‘C’). The getc() function is assigned to the integer j so that 
the EOF can be detected, and the conversion to characters is done simply by using 
a[n++]=j, in which the character is placed in the array of characters and the place 
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number incremented. When the loop ends because of the EOF character, the ‘ \ 0’ is added 
to make the array into a true string. The file is closed, and the string of characters is printed. 
The last step looks mysterious. It reads the key that was struck at the keyhit() step, and 
assigns the value to j. The only reason for doing this is to avoid having a code in the 
keybuffer when the program ends. If there is a code in the buffer, then the prompt‘T ype y to 
run’ appears, and the code in the buffer, unless it is the code for ‘y’, causes a return to the 
editor. This is an important point to watch, because these stored key-codes can be a lot of 
stored trouble even when a program ends. Now you can start condensing the size of the 
program by merging actions as was illustrated previously.

String Hies.
The use of number and character files is seldom particularly important, except as parts of 
other files. That’s something that we shall take a close look at in the following chapter. For 
the moment, the important string file is one that we want to attend to. As you know, a string 
in ‘C’ is an array of characters which ends with a ‘ \ 0’ marker. An array of strings can be 
dealt with in two ways. One is as an array that has two dimensions, such as a[10][10], 
another is by keeping an'array of pointers. Experienced ‘C’ programmers work as a matter 
of preference with pointers, and we have already had a taste of this when we saw that a 
pointer plus a subscript number could be used to refer to an item in an array. In the 
following example, we’ll make much more use of pointers by using an array of pointers to 
store a string array.

tde+ine EOF -1
»define NULL 0
extern char *gets (),*fgets () ;
main()

int n,*fp;
char strE40J,*sp;
n=0;
fp=fopen ( "str-f i1","w"); 
do

■«_
sp=gets(str);

f pri nt f(f p,"%s\n",str);
n++;

J-
tohile (n < =13);

tel ose (f p ) ;
print-f ("\nPress any key to readxn");
whlie (!keyhi t());
fp=topen("strf11","r" ) ;
if (fp==0)

z

printf("\nNo such file");
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n=20;
whi1e(sp=fgets(str,n,+p)>

i-f (sp=0> break;
print+("Xs“,str);
J

•fclose(fp);
n=rawi n();

char *gets(s>  
char *s;

static int c;
static char *cs;
cs=s;
while ((c=getchàr( ) > !=EOF && c!= \n )*c  

s++=c;
*cs=0;
return((c==—1 && cs==s)?NULL:s);

char *fgets(s,n ,+p) 
char *s;
int n; 
int *tp;

static int c;
static char *cs;
cs=s;
while (—n>0 && (c=getc(+p)>!=EOF> it (

(*cs++=c )== \n >break;
*cs='\0 ;
return ( (c==EOF && cs==s) ?NULL: s> ;

Using pointers in a program to store a string array.

FIGURE 5.9

The program is illustrated in Figure 5.9. It’s considerably longer and more complicated 
than any of the ‘C’ programs that we have looked at so far, and there are several new points 
embedded within it. The first point is that two routines from the library have been included 
in the program. So far, when we have included library programs, they have either been the 
type which returned an integer (or nothing), or they have been included by using stdio.h 
and stdio.lib. This time, two routines which return character pointers have been used, and 
placed following the main program. Because they are not simple integer returning routines, 
the compiler will need to be notified of them in advance. An alternative is to place the 
functions ahead of the main program. In this case, the ‘forward declaration’ is used, with 
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extern followed by a copy of the header for each function, gets and fgets. You will find the 
two functions in your stdio.lib file, and the forward declarations in stdio.h. The gets() 
function will get a string named s from the keyboard, and returns a string pointer which 
need not be used. In this example, the pointer has been assigned, but not used, and each 
expression could be simplified by omitting the assignment. The only reason for including it 
is to show that it can be done.

The first part of the program opens a file called ‘strfil’ which is intended to take a number of 
strings, counted by the do..while loop from 0 to 10, eleven in all. Each string is obtained 
from the keyboard by using gets(str), a library function which assigns the string to the 
name that is supplied and returns a pointer to the first character. The string is then saved to 
a disc file by using the usual fprintf routine. Note that this has used str but it could just as 
easily have used sp. This is an important point, because it’s easy to assume that you might 
need to use *sp,  which would, in fact, give just the first character of the string. Once all of 
the strings have been read and filed, the file is closed, and the first part of the program ends. 
There is no attempt, in an example like this, to check that the number of characters in each 
string does not exceed a maximum, and if the dimensioning of str is exceeded, the program 
could crash. For a working program, some kind of protection against exceeding the limit 
would have to be included.

The replay starts with the ‘Press any key’ type of loop that we encountered earlier. The file 
pointer is allocated for a read file, and tested in case the file does not exist. Once again, no 
attempt is made to return to the waiting loop at this stage. The file reading loop makes use 
of the function fgets. This takes three parameters, str,n,fp, which denote the string, 
number of characters and file-pointer respectively. The function will read the file whose 
pointer is fp and return a string of n-1 characters from the file. For a reason that we’ll look 
at later, it looks as if it doesn’t, but I can assure you that it does. Each string is then printed, 
and the printing line used %s to specify a string, but no \ n to force a newline. This is 
because the strings already have newline characters when they are put into the file with 
fprintf.

So far, so good. For the moment we’ll ignore the library functions, except to point out that 
they have to start with a declaration of type, and the asterisk which shows that they each 
return a pointer. The program will compile and run as you would expect, but when you test 
some of its characteristics, it seems to be misbehaving. In particular, when you enter a 
string of more than 20 characters, it appears to be replayed with no alteration. How is this 
possible, if the fgets() function is working? The penny drops when you count the number 
of strings. If you have put in one long string, you read it back as more than one string. It 
appears on the screen undivided because there was no newline character in it when you 
entered it. If you really want to see what the reading action does, then place a newline 
descriptor of \ n in the printf line for the returned string. You’ll see then that the long 
strings are read as strings of up to 19 characters each, this time separated by a newline; with 
the other strings separated by two newlines.
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If, like me, you hate to have a mystery left unexplained, I’ll deal with the return line of the 
library routines. The test?actionl:action2 line is a way of choosing to return one 
quantity or another. If the test is TRUE, then actionl is taken, if the test is FALSE, then 
action! is followed. In the example of *gets(s),  the line is:

return((c==-l && cs==s)?NULL:s)

so as to select which quantity to return. The reason for this line is that the function should 
return a pointer to NULL, address 0, if for any reasons a true pointer cannot be obtained. In 
any other case, the pointer should be s, which is the pointer obtained in the function. The 
test is (c==-l && cs==s), meaning that the character is the EOF character (EOF would 
have been safer here!) and thè pointer to character position, cs, is still pointing where it was 
originally set, to s. If this is true, then nothing has been read into the string, and NULL is 
returned. For any other values, the pointer s is returned.
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Chapter 6

More structured types.
We have come quite a long way in looking at examples and applications of‘C’, but there are 
still plenty of topics to get to grips with. One of these is records, something that is not easy at 
the best of times, and more difficult if you have only ever programmed the Amstrad in 
BASIC. A record is a collection of items of data, which may all be of the same type or, more 
usually, of different types. What makes these items into parts of a record is that they are 
related. T o take an example, suppose that you wanted to keep a record of membership of the 
local GolfClub. You would need the name and the address for each member. These would 
be strings, arrays of type char. You might also want to keep year of birth (because Juniors 
pay a reduced fee, and senior members pay only green fees), year of joining (members with 
ten or twenty years membership have special privilege years), and handicap. All of these 
last three items could also be stored as strings, because string entry and storage is easier. 
There might also be an entry for fees due (a real number in a real-life program) and 
whether paid or not to date.

Now all of this data constitutes a record because for each person, the subject of the record, 
all the items belong together. It would not make much sense to keep a file of names, one of 
addresses, one of year of birth, and so on, and yet this is the way that we are often forced to 
keep such records in BASIC. The alternative in BASIC is often to pack all the data into one 
string of set length, and to make up a string array. ‘C’ allows you to define what will go into 
a record, and then to create an array of records. Obviously, the ultimate aim of such an 
array would be to record it on tape or disc, but that’s something that we can leave until later. 
Another thing that we’ll leave for later is the topic of using ‘pointers’ to locate records in 
memory. The type of variable that is used in ‘C’ for a record is called a structure.

char *gets(5) 
char *s;

#def i ne
#define
#define
#de+ine
#defi ne
#define
#def i ne
#define
#de+ i ne 
ttdef i ne
#def i ne
#define

EOF -1 
NULL 0 
total 2 
true 1 
false 0 
N “Name - “ 
A "Address - “ 
YB ‘Year of birth - “ 
YJ “Year of joining - “ 
H “Handicap - “
S "Subscription in pence 
P “Paid, Y or N - "
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static int c;
static char *cs;  
cs=s;
while ( (c=getchar O ) ! =EOF && ci — \n ) *c  

s++=c;
*cs=0;
return s; 
J

struct golfcluD 1 
char namei201;
char addresst40j;
char birthLSI;
char joinCdJ;
char hcapE3J; 
int suds; 
char paid;

in ai n ( )

int j;
char c,st5J;
for (j-1;j< = 1;j++)

rawout(12); /»clear screen*/  
print! ( N ) ;
gets(G.name) ;
print!(A);
getsiG.address);
print!(YB);
gets(G.oi rth);
pr i nt! ( Y J);
g e t s i G.join;;
printf(H);
gets(G.heap);
print!(S);
get sis);
G.suus=atoi (s? ;
print!(H);
c-getchari);
toi ower(c);
G.paid=c;
print!i“\nPress any key...\n“>; 
j —rawin i >;
print!(N);
print! ( “ 7.s \n ,U. nante ) ;
print!(A);
print! < '' zLs\n “ , u. addr ess) ;
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printf (¥B) ;
printf("7.s\n“,G.bi rth);
pr intf (YJ > ;
printt Ul7.s\n",G. join) ;
printf(H);
printf(“7.s\n“ ,G.heap);
printf("Subscription:-
printf ( “#%d. 7.d\n‘‘ , (G. subs) /100, (G. subs) 

7.1 @0) ;
printf(P>;
printf ( “ Xc\n“,G.paid);

J

J

atoi(s>
char *s;

static int c,value,sign;
while(isspace(*s) )++s;
value=0;
signal;
if (*s==  — )
L
+-f-s;
sign=-1;
j

eise it l*s==  + ) ++s;
while (isdigit(c=*s++) )value=10*value+c  

- 0-;
return sign*vaiue;

The arrangement of a structure, showing how it is declared and used.

FIGURE 6.1

We’ll start by considering what we need to do in Figure 6.1 to declare a structure, using as 
an example the Golf Club illustration above. The first action, as usual, is to declare any 
constants. In this illustration, we shall make the total membership of the club a constant, 
equal to 2, because this is just an example. By making this a small number, you can see how 
the program works without wearing out your typing finger(s). The program which is 
illustrated is a long one, and the intention is that you type it once and save it. The 
developments can then be added by editing the ‘starter’ program, so that you’ll find a few 
items in the starter which aren’t needed immediately. The ^define lines define a number 
of useful items, along with a set of messages which will be used in the entry and reprinting 
sections of the program. The function char *gets()  is then defined, so as to avoid the 
business of declaring it as an extern, as we used it previously.
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The important part, however, is what follows in the struct declaration. The name of the 
record is given as golf__club. This is a reminder only, because though we could use this as
a variable name, it’s rather unwieldy, as you’ll see. The name that is used here is sometimes 
called the ‘tag’ of the structure. The structure golf__club is declared, and what follows
within curly brackets must be a list of the fields of the record, meaning the items that make 
up the record. I have typed these indented, with one item per line, to make them more 
obvious. Like any other declaration, the items could be grouped with all the char names 
following the char heading, separated by commas. The name and address fields are both 
strings, but with different numbers of characters. The two years and the handicap are also 
taken as strings, with the dimensioning for five characters in the year because there will be 
four digits and the ‘0’ which marks the end of the string. If you don’t dimension adequately, 
the program will compile and run, but the results will be decidedly odd! The subscription 
amount should be a ‘float’ number- in a program which was seriously intended to keep 
records of this type, the amount of the subscription would be calculated from a formula and 
printed when required, but in this example, I have made it an entered integer item. The 
letter paid is of type char, and will be used for a ‘Y’ or ‘N’ reply, because the subscription 
will either be paid or not- this club doesn’t allow instalment payments! The end of the 
definition of the fields of this record is marked with the usual) sign. All of this definition 
occurs before the start of the main program, and following the curly bracket which ends the 
structure definition, we must have a semicolon. If there is only a semicolon, then the name 
of the structure can be assigned later by using a fine like:

gollL club G;

By using the syntax: }G;, however, we can use G to mean a structure of type golf__club
without using another line, which is much more convenient. We could, if we liked, declare 
other names in this way, such as: ¡G,HJ; so as to mean that G,H,K were all names for 
structures of the type golf__club.

The main program then starts, with an integer declared for a counting loop, a character for 
the ‘y’ or ‘n’ entry, and a short string for getting the subscription amount. Apart from 
scanf, the input functions of ‘C’ are biased to character or string entry, so it makes sense to 
use string entry for almost everything since the gets() function is being used in any case. 
There is a function, atoi which will convert a string of digits into an integer. The program 
then starts with a loop. It’s a once only loop in this example, because there’s no point in 
using the loop more than once until the program has been expanded a bit, but I’ve put it in 
to show how this would be done. In the first section, the screen is cleared, and information is 
prompted for and entered. The prompt messages are obtained by using the string constants 
N, A, YB... which were defined at the start of the program. The important point to note is 
how the inputs are assigned. For the name entry, for example, we use gets(G.name). This 
calls function gets(), and assigns the string that it gets from the keyboard to variable 
G.name. This is the way that we can select one item (or field) of a record, using the 
structure variable name, then a full-stop, then the item name. This syntax lets you assign to 
an item in a structure or print an item. Later on, we’ll see that if you want to do anything 
more complicated you need, as always, to use pointers.
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The rest of the information is then entered in the same way, with the subscription being 
requested in pence. Now this is just a convenience, and it would be just as easy, since a 
string is being entered, to enter in conventional pound-dot-pence or pound-dash-pence 
form. The parts could then be separated and converted to separate integers to avoid the 
problems of not having float numbers. This example is supposed to be a simple one, 
however, so we’ll stick to simple ways. The number that is entered is converted to an 
integer by function atoi and stored as G.subs. If your subscription is too large to store as an 
integer you’re spending too much on golf! The last item is a ‘y’ or ‘n’ entry of a single 
character, and the function tolower is used in case the (SHIFT) key was used. The data is 
then ‘replayed’, simply to show that it all works. The titles are printed using, mainly, the 
string constants, and the answers are obtained from the structure name and portions. Note 
that the subscription is printed in pounds and pence by making use of integer division and 
modulus operators. The use of j=rawin() for the ‘Press any key’ stage avoids difficulties 
with stored characters, and allows the program to end with the usuaTType y to run: ’ notice.

Filing structures.
The structure in ‘C’ is so useful as a way of packing information into groups that we need 
some way of recording structures on disc. It would be pleasant if we had a structure filing 
statement which allowed a complete structure to be put on to disc simply by using the 
structure name. This, however, can’t be done, and we have to record the items of a 
structure one by one. Though this could be done as part of a main program, we’ll learn a lot 
more about the use of structures and pointers if we make the structure filing routine part of 
a function. The important point here is that you can’t pass the name of a structure to a 
function and expect it to do anything about it. You can, however, pass a pointer to a 
structure by using the & sign with the structure name. This is needed so often that ‘C’ has a 
special way of indicating the items in a structure by way of the pointer. For example, if sp is 
the pointer to a structure, then sp->item will refer to the item in the structure. The -> 
sign uses the minus and greater-than signs together.

#detine
#de+ine
#define 
ftdefine
#def i ne
#de+ine
#de+ine 
ftdefine
#de+ i ne
#define
#de+ine
#define
#defi ne
#define

EOF -1 
NULL 0 
total 2 
true 1 
False 0 
N “Name — 
A "Address — 
YB "Year of birth - " 
Y'.J "Year of joining - “ 
H “Handicap 
S "Subscription in pence - " 
F "Paid, Y or N - " 
w ‘‘inFrepare disc for data\n" 
M " \nFTess any key to proceed, xn

»define MM “\nPress Ö key to end, any ot 
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her to continue entry.\n“ 
char *gets(s)  
char *s;  

■<_ 
static mt c; 
static char *cs;
cs=s;
while ((c-getchar( ) ) !=EOF && c ! = \n ) *c  

s++—c;
*cs=0; 
return s; 
j‘

struct gol!_club t 
char nameL20 J ; 
char addressL40J; 
char birthE5J; 
char joinEb];
char heapE3]; 
char suOslôJ; 
char paidE2J;

3 G;
main ( )

int j,count,*!p ;
count=0;
print!(W);
print!(M>;
j =r awin ( > ;
f p=-f open ( “cl ubdat “ , “ w" ) ; 

do
X 
coun t++;
rawout(12); /*clear  screen*/  
pr i nt-F i N) ;
gets(8.name);
print!(A);
gets(G.address);
print!(ŸB);
gets(8.birth);
pr i nt f ( i'J ) ;
g e t s(8.join);
print!CH);
gets(G.hcap);
print!(S);
gets(8.subs)$ 
print!(P);
gets(G.paid); 
! i 111 i ! p , i<G ) ;
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print!(MM);
j=rawin ( ) ;

while (j!=‘ê );
-f cl ose ( + p) ;
fp=topen(“di m",“w");
fprint! (tp , “7.d“ ,count ) ;
telóse(fp);
J'

filit(tilp,sp)
struct golf_ciub *sp;
i nt *+ 11p;
jr

fprintt (flip, “ Zs\n7.fi\n " ,sp—Zname,sp->ad 
dress);
tprintt (flip, "Xs\n%5\n%s\n” ,sp->birth,s 

p-Zjoin,sp-Zhcap);
+ printf (f i ip , "7.s\n%5\n" ,sp->subs, sp->pa 

id);
J

Entering data into a structure and recording it on disc.

FIGURE 6.2

A sample structure-filing program is illustrated in Figure 6.2. This has been constructed 
out of part of the program of F igure 6.1, omitting the printing sections. Three new messages 
have been added, though one needs tidying up with an additional \ n to force a newline and 
prevent a word from being split. A disc file is opened, with the name “clubdat”, for 
writing. The setup of the structure is the same as before, as is the entry of information. After 
the information on payment of subscriptions has been entered, a function filit() is called to 
place the data of the structure on file. This function uses the file pointer for the disc, fp, and 
also the pointer address &G for the structure. The program then hangs up waiting for a 
reply key to be pressed. If this is the @ key, then the program closes files and terminates. 
Any other key will continue the do..while loop. I found that in this type of loop, the 
j=rawin() step left something in the buffer which would be taken as a string by gets(). 
This caused the next cycle of inputs to disregard the ‘Name’ step, and was cured this time 
by adding another gets() step following j=rawin(). Note that this was on a CPC464, and 
it’s possible that later Amstrad machines might not exhibit this problem.

The meat of the program therefore lies in the function filit, which uses two parameters. 
One parameter is the filepointer, flip, an integer, and the other is the structure pointer sp 
which is declared as struct golf_ club *sp.  This declaration is that sp is a pointer to a
structure of type golf__club. The fields of the structure are then sent to the file, using
fprintf statements. The name and address strings are sent first, using “%s%s” as the 
specifier for the two strings, and with sp->name , sp-> address as the separate fields. 
The other fields of the structure are dealt with in the same way, remembering that sp- 
>subs is an integer, and sp->paid is a single character. Since the items that are to be 
recorded are stored in a buffer until the buffer fills or the file is closed, you don’t necessarily 
hear much activity from the disc at the time when this function runs.
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Reading back structures.
Reading back a file of structures from the disc normally uses fscanf, but you must 
remember that this function works with pointers. In addition, fscanf will take the end of a 
string as being the first ‘white space’ in the string, meaning the first blank or any other 
character which does not ‘belong’ in a string, such as the (TAB) key or the (space) key. This 
makes fscanf more suited for files of integers, or of strings which can be guaranteed to have 
no spaces in them, but it’s not very useful for the type of string that we now want to read, 
with names and addresses. Fortunately, the library contains the useful fgets() function, 
which is very similar to gets(), but with subtle differences. This function can be used to 
read back all of the recorded strings, and will not give trouble if any ‘white space’ is found in 
a string.

That doesn’t mean that everything is plain sailing, because when you use a library function 
you have to read the small-print (or its listing) to see just what it will do with the data. The 
similarity between fgets and gets is close, but one difference is very important. Whereas 
gets will read a string of characters, including the (RETURN)/(ENTER) character, and 
then replace the (RETURN)/(ENTER) character by a zero to act as string terminator, 
fgets does not do this. The fgets function reads a string until the ‘ \ n’ character is found, 
and then adds a zero to the end of this. This makes the string longer. For example, if year of 
birth is entered as a string of four characters, it will be recorded as five characters (the ‘ \ n’ 
being the fifth), and will be returned into the program as a string of six characters in all, 
including the ‘ \ n’ and the ‘ \0’. This means that we have to be careful about 
dimensioning the strings that we shall read into, because it’s easy to fall into the trap of 
assuming that the string we read back will be the same as we recorded. This behaviour of 
fgets can be changed by decrementing cs in the fgets function before it is equated to zero, 
but in this example, I have used the library function simplified but not returning anything 
different. The other point to watch is that fgets takes three parameters, the string name, a 
string length number, and the filepointer. The string-length number decides how many of 
the characters of the string are read, and the function reads characters until this number is 
exceeded or until a newline character is found. Unless you are very sure of your string 
lengths, it’s better to provide generous values of length, so that the newline character ends 
the reading action. If, of course, all of the strings were tested for length before recording, 
there’s no objection to counting them back precisely. What you need to remember, 
however, is that the number that you provide for string length in fgets must be the 
complete string length, including the ending zero or newline character.

With these warnings in mind, we can now look at what is needed to read back the string file 
that was created by the program of Figure 6.2.

»define tut- -1
»define NULL 0
ttde-fine total 2
»define true 1
»define -false 0
»define N "Name - "
»define A "Address - "
»define YB "Year o-f birth 
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ttdefine YJ “Year of joining - “
#define H “Handicap — “
ttde+ine S “Subscription in pence — "
#define F‘ “Paid, Y or N - " 
char *fgets (s,n,+p) 
char *s;  
int n; 
int *fp;

*«.
static int c;
static char *cs;
cs=s;
whilei—n>0 && (c=getc(fp)>!=EOF) if (( 

*cs++=c>== \n ) break;
*cs= \0';
return s;

main()

struct golf cl Lib <
char name[20J ;
char addressC 40J
char birth Eôl;
char joi nE6J ;
char hcapL43;
char subsEéJ;
char paidC3J;

ÏGE50J ;

int x,j,count,*fp ;
char c;
do

,r
fp^fopen("dim",“r“);

while( !testit Cf p >);
fscant(fp,“Xd",¿count> ;
fclose(fp);
fp=fopen(“clubdat“,"r“);
if (count >5) count-5;
f or tj =0; j < =coun t -1; j ++>

fgets\GLj 
fqets(GEj 
f gets(Gt j 
fgets(Gt j 
fgets(GE j 
f gets(Gt j 
fgets(GE j

J.name,20,f p);
J.address,40,fp);
J.üirth,è,fp>;
J.join,6,fp);
1.heap,5,fp);
J ■ s u d s , / , f p ? ;
j.paid,3,fp);
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f c 1 ose ' f p ) ;
printf ("\nPres5 any key...\n:i);
j =r aw ini);
rawout(12) ;

f or (j =0; j < =count -1; j ++ >

printf(N);
printf t" 7.5in " , GE J J ■ name> ;
printf(A);
printf ( “71s\n“,GEj J. address) ;
printfiyB);
printf "7.5\n“ ,GE j J. birth) ;
pri ntf(¥J);
printf i "7.s\n“ ,GE j J. join) ;
print! iH) ;
printf ( "7.s\n“ ,GE j1. heap) ;
printf(“Subscription:- “);
x=atoi (GE j J.subs);
printf i " #7id - 7id \n “ , x / 100 , x .4100) ;
printf(F);
printf ( " 7.s \n “ , GE j J . pai d ) ;

z
atoi(s)
char *s;
‘■L

static int c,value,sign;
whi1e(isspacei*s) )++s;
value-0;
siqn=1;
i f (*s== '-')

-r-i-s;
sign=-1;

else if (*5==  + ) ++s;
whlie (i sdigi t(c=*s++ ))value=10* value+c 

- 0 - ;
return siqn*value;

testi t < k)
int k;

i f(k!=0 > ret urn k;
el se

't.
printf("XnNo such file.“);
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print-F (’*\nFi nd correct disc and*');
printf(“\npress any key to try again.“)

Reading and printing a file of structures.

FIGURE 6.3

The reading program is shown in Figure 6.3, and it starts in the usual way with the #define 
steps, the fgets function, and the structure declaration. Notice that this time the structure 
has been named as G [50], an array of structures. This allows us to store the structures as an 
array, and demonstrate how an array of structures is handled. When the structures were 
recorded, a count number was included in a separate file, dim. This is one useful way of 
ensuring that the writing and the reading programs do not get out of step. In BASIC, this 
number could be read and then used to dimension the array. In ‘C’ this type of thing is not 
so easy, because the structure has to be dimensioned before the main program starts. If the 
declaration is made before the start of the main program (that is, all of struct golf__club
but without the G[50]), then the declaration of the name (G) and the dimensioning could 
be done in a function, with the structure not used in the main program. This function 
would have to be called after the count number was loaded from disc. In this example, 
however, we’ve kept to simpler methods, and the count number is used simply to operate 
the playback loop. Once again, in a real program, the count number would be compared 
with the dimensioning of the array to check that no attempt was made to overfill the array. 
In this example, the line:

if (count>5) count=5

is deliberately put in to keep the amount of data down, though the dimensioning allows for 
50 structures to be used. The use of count also allows a test for the correct disc being in 
place before the main data is read. All of this can be replaced, and the count ignored, if the 
end of file is used as a means of detecting the end of the structures on the disc, but this is not 
particularly easy to do.

The example in Figure 6.3 uses the count number to set up a loop which will read in 
structures. The loop runs from 0 to count-1, rather than from 1 to count, so that the first 
structure (G[0J) is not wasted. If a structure name by itself, such as G[0], is used in a 
function it has to be represented by its pointer, but when parts of a structure are being read, 
as in G[j].name, these can be used directly. The fgets lines read in all of the parts of each 
structure, after which the file is closed. The data is then displayed, in this case simply to 
confirm that it has been correctly read and placed in the array. The only novelty in the 
printout loop is the printing of the subscription amount. This is done using function atoi 
which converts a string into an integer, providing that the string consists of digits. The 
integer x is obtained from the subs string, and this is printed in pound, pence fashion by 
making use of integer division and modulus operators.
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Working with structure files.
The example of Figure 6.3 showed the reading part of a file being followed by a simple 
printout of each record. A much more normal action would be to pick out one record, or to 
sort the records into alphabetical order. Now picking out one record is fairly simple, as the 
amended program of Figure 6.4 shows.

#define
#de-f i ne

EOF -1
NULL 0

ttde-fine total 2
Ide+ine true 1
#define -false 0
#define N “Name - " 
ttdefine A “Address — " 
ttdefine YB "Year of birth - “ 
ttdefine YJ "Year o-f joining - " 
ftdefine H “Handicap - “
ttdefine S "Subscription in pence - 
ttde-fine P "Paid, Y or N - “ 
char *fgets(s ,n,fp> 
char *s;
int n;
int *fp;

static int c;
static char *cs;
cs=s;
while(—n>0 && (c=getc (fp) ) ! =EOF) 
f c
i-f (c== \377 ' ¡continue;
if ( (*cs++=c ) == \n ) break;
J

*cs= \0 ;
return s;
J

char *getstr(s)
char *s;

static int c;
static char *cs;
cs=s;

while!(c=getchar())!=EOF )
if ((*cs++=c )=='\n )break ;
*cs-0;
return s;
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struct golf club < 
char nameE203;
char addressE403;
char birthE63;
char join161; 
char hcapE4J; 
char subsE63; 
char paidE33;

JGE503; 
mai n()
X.
int x,j,count,*fp ;
char c,sE203;
/♦Length not checked*/  
do

fp=fopen("dim“,“r");

whi1 e ( !testi t (f p ));
fscanf (f p , “7.d “ , taunt ) ;
f cl ose ( f p ) ;
fp=fopen ( “clubdat " , "r " ) j. 
if (count>5) count=5;
for (j=0;j<=count-l;j++) 
X.
f gets (Gl j 1. name, 20, f p ), ;
fgets(GE j 3.address,40,fp);
fgets(GE j1.birth,6,fp> ;
fgets(GE j J.join,6,fp);
fgets(GE j1.heap,5,fp) ;
fgets(GE j 3.subs, 7 , f p ) ;
fgets(GE j 3.paid,3,fp); 
J

fcl ose(f p) ;
rawQut(12);

printf("\nPlease type name required."); 
getstr(s) ;
x=fal se;

for (j=0;j<=count—1;J++) 
r

if (stremp(s,GE j J.name))continue; 
el se;

printf(N);
printf ( "7.s\n“ , GE j J . name) ;
printf(A);
printf ( "7.s\n“ ,GE j 3. address) ; 
printf(¥B);
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printf ( “%s\n" ,GEjl.birth);
pri nt-f (¥J ) ;
printf(“%s\n",GEJ3.join);
pri nt-f (H) ;
pri nt-f ( “%s\n " ,GE j 3. heap) ;
printf(“Subscription:- “);
x=atoi (G E j 3 .subs);
print-f ( “#7.d. 7.d\n " , x /100, xZ100) ;
printf(P);
pri nt-f ( "7.s\n “,GE j 3.pai d);
x=true;
J

br eak;
J

if <x==false)printf(“\nName not found,")

J

atoi(s)
char *s;
<
static int c,value,sign;
whi led sspace (*s)  ) ++s;
value=0;
sign=l;
i f (*s==  —')

++s;
sign=-l;

else if (*s=='+  ) ++s;
whi1e dsdigit(c=*s++) )value=10*value+c  

- ’ 0 ' ;
return sign*value;

testi t(k)
int k;

if(k!=0) r et ur n k;
el se

printf ("\nNo such file.11);
printf(“\nFind correct disc and“);
printf("\npress any key to try again.")

stremp(s,t) 
char *s,*t;
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while (*s==*t)

if (!*s)  return B;
++s;

return

Reading structures into an array so that they could be sorted.

FIGURE 6.4

The principle is once more to read in the records as an array of structures, using fgets(), 
which will result in each string ending with a ‘ \ n’ and a zero. When the array has been 
read in, the program prompts for the name that is being searched for. This is entered, using 
a function called strget(s). The reason for not using gets(s) is that gets(s) will always 
replace the ‘ \ n’ character by a ‘ \ O’, and to match the string that we are entering we need 
it to contain both of these characters. The function strncmp is therefore modelled after 
fgets() rather than after gets(), in that it has a parameter that tells it how many characters 
to copy. In addition, this program introduces the idea of comparing strings. This cannot be 
done in the familiar BASIC IF A$=B$.. way. The name of a string in ‘C’ is simply a pointer 
to its first character, and you can’t expect the pointers to two different strings to be equal. 
Any comparison such as:

if (s==G[j].name)....

is doomed to failure. To compare strings, you need to use a string comparison function, 
such as strcmp. The two strings are passed as parameters to this function, and it will 
return zero (false!) if the strings are equal, true if not. In fact, if the strings are not equal, the 
number that is returned is an integer equal to the difference between the string pointer 
numbers, but anything which is not zero is counted as true for the purposes of a test.

The test for equality of strings is used to make the loop run faster by causing a continue in 
the for loop if the strings are not equal. When a matching string is found, the else section 
runs, printing the details for the selected name. Before the loop started integer x was made 
equal to ‘false’ (zero), and if a string match is found, this integer x becomes true and the loop 
breaks. In this way, the loop runs fast until a matching string is found, and then breaks 
immediately afterwards. The integer x is used after the loop ends to print a suitable 
message if no matching name has been found. It works perfectly - unless you want to get the 
first name on the file! The problem with this one is that ‘C’ reads the ASCII file starting one 
character earlier than it ought to. This usually means that the first character of the file 
comes in as the character that corresponds to (CTRL-Z) in ‘C’, 255, and appears as a 
double-headed horizontal arrow when printed. You can’t enter this character from the 
keyboard when you are asking for a name, so that the only thing to do is to remove it either 
from the file or from the readback. This has been done in the program of Figure 6.4 by 
modifying the fgets() routine. In the modified version, the character is tested for equality 
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to 255, and the while loop continues if this is true. The curious appearance of the test is due 
to the way that a number like 255 has to be expressed. Tests of this type in ‘C’ use octal, 
scale of eight code, so that 255 denary comes out as 377 octal. There is more information on 
octal code in the Appendix. With this test in place, the 255 character is rejected. If the file 
contains this character, of course, this would cause trouble, but an ASCII coded file would 
never contain this character and if you are working with integers then you’ll use fscanf() 
rather than fgets for file reading. The CP/M version of‘C’ behaves much better in this 
respect. You might like to work on this program now so that the selection of a name routine 
will loop until a blank name is entered (by pressing (ENTER) without typing a name).

Sorting a file.
In BASIC, there is nothing that corresponds to the structure. This makes actions such as 
sorting very tedious, because each field of a record has to be represented by an array item or 
as part of a string. Sorting is never easy, but in HiSoft C you do at least have the advantage 
of a sort routine in the library.

ttde+ine EOF -1 
Adefine NULL 0 
Adefine total 2 
ttde+ine true 1 
Adefine false 0 
Adeline N “Name - “ 
Adefine A "Address — “ 
Adeline YB "Year of birth - “ 
Adefine YJ "Year of joining - “ 
Adefine H "Handicap - " 
Adeline S "Subscription in pence - 
Adefine P "Paid, Y or N - " 
char *fgets(s ,n,fp) 
char *s;  
int n; 
int *fp;

*cs="\0‘;
return s;

R.
static int c;
static char *cs;  
cs-s;
while!—n >0 && (c=getcifp))!=EOF) 

r.

if (c==\377)continue; 
if (i»cs++=c)==’\n‘) break;
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struct golf club < 
char naffie[201;
char address£401;
char birth£61;
char join£6J;
char hcap£41;
char subs£6J;
char paid£31;

J- G £ b 1 , *Gp ;
main()
L
int y, i , it,z,x,j,count,*fp;  
/"♦Length not checked*/  
do

X.
fp=fopen("di m“,“r“); 
J
whi1e <!testi t (f p) ) ;
f scanf (f p , "7.d" , &count) ;
fclose(fp);
fp=fopen("clubdat",“r"> ;
if (count>5) count=5;
for (j=l;j<=count;j++) 
r <_
fgets(G£jl.name,20, f p) ;
fgets(G£ j1.address,40,f p) ;
fgets(G£jl.birth,6,fp) ;
fgets(G£ j J. join,6,fp) ;
fgets(G£ j J.heap,5,fp) ;
fgets(G£ j J.subs,7,fp);
fgets(G£ j1.paid,3,fp);

fclose <fp>;
rawout(12);
printf (" XnF'ress any key for list"); 
Gp=G;

y=l;
while (yicount) 
y=2*y;

do

y= (y--l) /2;
it=count-y;
for (i=1;i<=it; i++)

j=i; 
do
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if (strcmp(Glz 3.name,GE j 3.name)<=0)
JT L.

swap (Gp+z,Gp+j,sizeof (struct golf_c 
1ub) ) ;

j=j-y;

else j=0;
J

wh i 1 e (j >0);
J

> whlie (y ! = 1) ;
tor (j=l;j<=count;j++)

X

x=rawin(1;
printf(N);
printf ( "7.s\n“,GE j 3. name) ;
pri ntf(A) ;
printf(“%s\n“,GE j 3.address);
printf(YB);
pr i ntf('7.s\n“,GE j 3.birth);
printf(VJ) ;
printf ( “7.s\n " ,GEj3.join);
printf(H);
printf ( "7.s\n" ,GE j 3 . heap> ;
printf(“Subscription:- “);
x=atoi (GEj 3.subs);
printf ( “#7.d. 7.d \n “ , x /100 , x 7.100) ;
pri ntf(P) ;
printf ( "7.s\n" ,GE j 3 . pai d) ;
printf(“XnPress any key...");

atoi(s)
char *s;
X

static int c,value,sign; 
whi1e(i sspace(*s) )++s;
value=0;
si gn=l;
if (*s== '-')
r

++s;
sign=—1;

else if (*s==+  ) ++s;
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while (i sdi gi t(c=*s++) )value=10*value+c  
- ' 0 ' ;
return sign*value;

testi t(k)
i n t k;

if(k!=0) return k;
el se

print!("\nNo such tile.");
printf(“\nFind correct disc and“);
printf(“Xnpress any key to try again.“)

strcmp(s,t >
char
€
while (*s==*t)

if (!*s>  return 0;
++s;

J

return *s~*t ;

A structure array program which incorporates a sort routine.

FIGURE 6.5

The illustration of Figure 6.5 shows a Shell-Metzner type of sort routine used to sort a list 
of records in alphabetical order of names as typed in the file. Now this is not the Shell- 
Metzner sort which is included in the library, because that one is a rather complicated 
general-purpose one. Nor is it the sort that is mentioned in the manual, from Kernighan & 
Ritchie’s book, because it won’t compile into HiSoft C as it stands. The problem is that 
there are three loops, and this causes a ‘Too many operators’ message when you try it. The 
one in the library only just fits in. Because of all that, and for the sake of variety also, I have 
put in another Shell type of sort, adapted from a version which I wrote in Pascal.

The program reads the count number, and then reads the structures into an array. This 
time, simply because it’s more convenient for the sort routine, the array numbers start with 
1 rather than with zero, but that’s the only change up to the point where the message ‘Press 
any key for list’ is printed. After that, things get more complicated. In the structure 
declaration, the usual G[5] has been supplemented by *Gp,  making Gp a pointer to a 
structure. Simply declaring that Gp is a pointer, however, doesn’t make it point to 
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anything, and the statement Gp=G is needed to make Gp a pointer to the start of structure 
G. This is a very important step, and omitting it is one of the most common errors in the use 
of pointers. If your pointer hasn’t been set to point at something, then trouble, in the shape 
of a major program crash, can’t be far behind. Why do we need the pointer anyhow? The 
answer is that in the sort routine we shall want to change the pointers to different members 
of the array. Changing pointers involves exchanging only two numbers, rather than the set 
of strings (or whatever else is used) in a structure. For this reason, it’s fast and simple.

I won’t go into details of how the Shell-Metzner sort works, because it’s a standard routine 
that you can find described at length in many other books. The important features of the 
sort (starting at the statement y—y+1) are the test and exchange steps. The test uses 
strcmp as you would expect, with G[].name being used as a basis of comparison. The 
exchange step uses the built-in function swap, and the parameters that are supplied make 
use of the string pointers, along with the sizeof statement. The sizeof statement, as its 
name suggests, will provide an integer, the number of bytes of memory allocated to a 
variable. In this case, it’s the structure golf__club whose size we want to pass on. We can
count it up for ourselves by adding the bytes allocated to each part of golf_ club, and it
comes to 85, but by using sizeof the counting is automatic, so that if you alter the structure 
dimensioning you don’t have to alter the swap routine. The swap routine exchanges 
pointers, if need be, and when the sort is completed, the structures will be in order of names. 
The important point is that, because of the Gp=G step, you can print out this new order 
using G[j], you don’t have to use pointer Gp unless you want to. This is the value of 
altering pointers in this way, because the pointers can be altered in a subroutine and the 
alteration will affect the result of a printout in the main routine. In this example, the whole 
sort routine is, unusually, in the main program, simply to avoid the problems of passing 
parameters until you have seen an example of the straightforward version. The remaining 
parts of the program are straightforward, and a ‘Press any key’ step has been put into the 
loop which prints the details so that you don’t lose data because of scrolling.

The next problem is how you would alter this program so as to sort in order of ascending 
handicap numbers. I have not used handicap numbers in the strict golfing sense here, so 
please don’t write to say that the range should be from about +4 to -36! It’s not so easy as 
you might think, because simply using G[].hcap does not do what you might think. This 
change will work if the handicaps are single figures (OK for an Open championship, 
perhaps), but not for double figures. The reason is that a number like 20 is taken as being 
less than the number 6. This is because the G[].hcap field is a string, not an integer, and 
the comparison goes one character at a time. When a ‘2’ is found as the first character, this is 
taken as being less than the ‘6’, and so the second character of the ‘20’ is never considered. 
How do we get round that one?

The answer is a simple alteration to the comparison line, using atoi in place of strcmp. 
The line now becomes:

if (atoi(G[z].hcap)<=atoi(G[j].hcap))

In this line, if the handicap of member z is less than or equal to the handicap of member j, 
then the swap will be carried out as before. The important point, once again, is that the 
effect of swapping an entire record can be carried out by swapping pointers.

6-20



Now suppose that we wanted to sort the list of names in some other way. In Figure 6.5, we 
chose to sort in alphabetical order name, and we have seen also how to sort by ascending 
handicap number. Sorting by descending handicap is trivial, all you need to do is to 
reverse the <= sign in the comparison line into a >= sign. The important change is to be 
able to sort ‘by another field’. In plain language, this means sorting by surname order, or 
forename order, by age, or by any other feature. This is easy enough if you want the sort to 
be permanent. If, for example, you always wanted the program of Figure 6.5 to sort the 
records in order of handicap, then all you have to do is to carry out the changes that we have 
looked at. It’s not quite so straightforward when sorting might be wanted by any of a 
number of fields, selected when the program runs. The obvious way to do this is to 
introduce a menu stage in the main program, and select each time the comparison that is 
needed when the program of Figure 6.5 runs.

#de+ine EOF -1
4def ine NULL 0
#def i ne total 2
#define true 1
#detine false 0
#def i ne N "Name - “
#de-f i ne A “Address - "
#defi ne YB "Year of birth - “
#def i ne YJ “Year of joining — "
#de+ine H “Handicap - “
#define S “Subscription in pence -
#def i ne P “Paid, Y or N - “
char *fgets(s ,n,fp)
char *s;
int n;
int *fp;
i
static int c ;
static char *cs;
cs=s;
whi1e (- -n>0 && (c=getc(fp>)!=EOF)

if (c==; '\377 )continue;
if ( (*c s++=c)=='\n > break ;

*cs='\0 ; 
return s;

struct golfcluo <
char name£20J ;
char address£401
char birth£61;
char join£6J ;
char- hcap£41;
char subs£6J ;
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char paidE33;
>GE53 ,*Gp;

main()
<
int s,y,i,it,z,x,j,count,*fp ;
char c;
/♦Length not checked*/  
do

fp=fopen("dim",“r");

whi1e(!testi t (f p ) ) ;
fscanf(tp,"%d",&count);
fclose(fp) ;
fp=fopen("clubdat","r " ) ;
if (count>5) count=5;
for (j=l;j<=count;j++)

fgets(GE j1.name,20, f p) ;
fgets(GE j1.address,40, f p) ;
fgets(GEjl.birth,6,fp) ;
fgets(GEJJ.join,6,fp) ;
fgets(GE j J.heap,5,fp > ;
fgets(GE j].subs,7,fp) ;
fgets(GE j J.pai d,3,fp) ;
J

fclose(fp >;
dot
dot
rawout(12) ;

printf("XnPlease select sort method.")
printf(“\n 1. Name.");
printf(“Xn 2. Age.");
printf("Xn 3. Length of membership.");
printf("\n 4. Handicap.");
c=getchar();

c—=48;
3-while(c<0 !! c>4);

Gp-G;
y=l;
while (y<count)
y=2*y ;

do 
r

y-(y-1)/2;
i t=count-y;
for (i=l;i<=it;i++)
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j=i;
do

z=j+y;
s=-f al se;
switch (c) E
case l:if (strcmp(GEz3.name,GEj3.name 

)<=0) s=true;break;
case 2:if (atoi(GEzJ.birth)<=atoi(GEj 

3.birth))s=true;break;
case 3:if (atoi(GEz3.join)<=atoi(GEj3 

.join))s=true;break;
case 4;if (atoi(GEz3.heap)<=atoi(GEj3 

.heap))s=true;break;

if (s) E
swap (Gp+z,Gp+j,sizeof (struct golf c 

1ub)) ;
j=J-y;

else j=0;
J
while (j >0) ;

J

3 wh i1e (y*=1)  ;
printf("\nPress any key...\n‘‘);

for (j=l;j<=count;j++)

x=rawin();
printf(N);
printf(“%s\n“,GE j 3.name);
printf(A);
printf(‘7.s\n",GEj 3.address);
printf(YB);
printf ( “Xs\n‘‘ ,GE j 3 . birth) ;
printf(YJ) ;
printf(“%s\n",GE j 3.join);
printf(H);
printf ( "72s\n ",GE j 3. heap) ;
printf("Subscription:- ");
x=atoi(GEj3.subs);
printf ( “#7.d. Xd\n" ,x/ 100,x7.100) ;
printf(P);
printf ( “7.s\n'‘ ,GE j 3 . paid) ;
printf(“\nPress any key...“);
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print+(“\n@ Key terminates display");
>wh i1e (x =raw i n() !='©');

atoi(s)
char *s;

static int c,value,sign;
whi1e(isspace(#s))++s;
vai ue=0;
si gn = l;
if (*s== '- )

++s;
si gn=—1;
J

else i-f (*s=='+')  ++s;
while (isdigit(c=*s++) )value=10*value+c  

- '0 ' ;
return sign*value;

testi t (k)
int k;
r•_
i-f(k!=0) return k;
el se

pri nt-f ( " \nNo such -file.");
print-f (“ XnFind correct disc and");
printf("Xnpress any key to try again.")

strcmp(s, t) 
char *s,*t;  
z ■L
while (*s==*t)

i-f (!*s)  return 0; 
++s;

return *s-*t;

Amending the program so as to sort by any field.

FIGURE 6.6
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Figure 6.6 shows the amendments that can be made to allow a choice of four possible sort 
fields, in this case, surname, year of birth, joining year or handicap. The sort and display 
part of the program has been arranged so that it will loop until the @ key is pressed. This 
allows you to enter data from the disc file and then test the action of the switch function.

Now look at the program of Figure 6.6 in detail. Two more variables have been declared. 
One is c which will be used to accept a letter choice when you are asked to decide which field 
to use for sorting. The other is s, which is an integer variable that will be used to decide 
whether to swop two records or not.

The selection action starts immediately after the data has been read in from the disc. The 
choices are listed, and you are asked to select by number. This is done within a do loop, so 
that when the number that you use is tested the menu will repeat until a correct choice is 
made. This, incidentally, causes the menu to perform several flashes at times when several 
characters are in the keyboard buffer. When an acceptable number is pressed, the function 
returns to the main program with the value of a number assigned to c. This is then used in 
the sorting function. In the record exchanging part of this routine, variable s is set to false 
and the lines that follow switch carry out the selection of field. In these fines, then, the 
letter which has been coded as c is used to select the correct comparing action, testing the 
correct field of each record. As a result of that test, s will be either TRUE or FALSE. Ifs is 
TRUE, then the test in the exchange portion of the sort routine will cause the records to be 
exchanged. Note that you don’t have to type:

if (s==true)....
or

if(s!=O)....

only if (s)..., because this is the correct syntax in ‘C’ as it is in many versions ofBASIC. The 
rest of the program then proceeds in the usual way.

This method of choosing which field to sort by can be used when the number of records is 
comparatively small, but causes problems when a large number of records are used. The 
problem is one of sorting time. The switch selection line has been placed in a part of the 
sorting loop which is repeated very many times during a sort, and as a result, has a large 
effect on the total time that is taken. Because ‘C’ is a compiled language, the effect is not so 
serious as it would be in BASIC, but it can make the sort action irritatingly slow. If you need 
to exercise a choice of sort field for a list of records which consists of a large number of 
items, all held in the memory, then a faster option is to have as many sort functions as you 
want sort fields, and to select the complete function. You might, for example, have 
functions sortname, sorthcap and sortage which were selected by the value ofc. Each of 
these functions would be identical apart from the test line in each one. This method 
requires more code, but runs much faster. The reason is that the choice is not having to be 
enforced each time two items are being compared. The choice is made once and used to 
select a function which can then run unencumbered. As usual, when you design a program 
you can design it to run fast, or you can design it to be comparatively short, but you can’t 
normally have both! The alternative is to write a sort routine to which the parameters can 
be passed, but for a structure this is extremely difficult because you have to be able to pass 
the field names such as G[j].name , not just the array name.
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Record nests and choices.
So far, each record that we have illustrated has consisted of items that are simple variables. 
We can, however, use records which consist partly or completely of other records! 
Structures which are a part of another structure are called ‘nested’ structures, and typically 
they are used to hold details of an entry. We might, for example, have an entry called birth 
which would require the details of day, month and year of birth. This could be provided by 
making birth a structure in itself, with day, month and year items of that structure. Figure 
6.7 shows how this provision for nested structures can be used.

ttde+ine max 2 
char *getstr(str ,count) 
char *str;
int count;

static int c;
static char *cs;
cs=str;
while(—count >0 && ((c=getchar())!='\n* 

) )
*cs++=c;
*cs=B;
return str;
J 

struct name' 
char sur£203; 
char -frn£203;

struct dob < 
int day; 
int month; 
int year;

struct person £
struct name memnam;
struct dob birth; 
char phone£163;
3 member £ max + 13; 

main()

char reply£183; 
int j ;
-For (j = l; j<=max ; j++> 

£
printf (11 \nSurname - ");
getstr(member £ j 3.memnam.sur,20); 
printf("\nForename - " ) ;
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getstr(member£j J.memnam.f rn,20);
printf("\nDay of birth 1—31 -“);
getstr(reply,4);
member £ j J.birth.day=atoi(repi y);
printf("XnMonth of birth 1-12 -“) ;
getstr(reply,4);
member £ j J .‘birth. month=atoi (repl y) ;
printf("\nYear of birth - ");
getstr(reply,6);
member £ j J.birth.year=atoi(reply);
printf("\nPhone number - “);
getstr(memberL j J.phone,17);
J

rawout(12);
printf ( “ \nZ20s“ , “LIST" ) ;
printf ( "\n");
for (j=l;j<=max;J++)

£
printf(“\nZs , Zs",member £j3.memnam.sur 
,member £ j3.memnam.frn);
printf("\nBorn - ");
printf("Zd-Zd“, member £ j J.birth.day,memb 
er £ j 3.bi rth.month);
printf(" —Zd",member £jJ.birth.year);
printf(“\nZs- Zs\n",“Phone No.",member£j 
3.phone);

atoi(s)
char *s;
£
static int c,value,sign;
whi1e(i sspace(*s ))++s;
value=0;
si gn=l;
if (*s==  ' — ' > £++s; si gn=—1; 3-
else if (*s==  + ) ++s;
whi1e(i sdi git(c=*s++) )value=10*value+c —'
0 ' ;
return sign*value;

Using nested structures. This will be illustrated further in Chapter 9.

FIGURE 6.7
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The main structure now is of type person, but it now contains the sub-structures name 
and dob. The structure variable memnam is of type name, and birth is of type dob, both 
of which must be defined as structures before the main structure can be defined. Structure 
name is defined as consisting of sur and frn, both arrays of char. Remember that you 
can’t use for for forename, because this is a reserved word. The structure dob consists of 
day, month and year, all integers. These ranges would, in a working program, be checked 
each time an item was entered.

Though the structures are nested, we don’t necessarily need nested loops to read items into 
the structures, or out of them. For the sake of simplicity, all stages except entry and printing 
have been omitted from this program. The entry function starts early in the main program, 
and the important feature here is that the reading line uses the full title for each field and 
subfield. For the first member, 1 in this case, we need the surname. This has to be specified 
as:

member [j] .memnam. sur

using the main structure title, the substructure title (memnam) and the field title of sur. 
Each name and number is entered in this way, using a string entry function which is 
modelled after fgets() so as to restrict the number of characters entered. Remember that 
the number in this function must be one more than the number of characters, and that a 
string will always contain a zero character. This is why the day of the month, for example, 
which has two digits at most, needs a count number of 4 in getstr. Following these entries, 
the phone number is obtained. Note that this is put into string form. A telephone number is 
most unlikely to be expressable as an integer, and because it may contain dashes (as in 
0999-1123-212), it cannot be expressed as a real (float) number either when this becomes 
possible. The way in which nested structures are printed out is illustrated in the lines 
following the printing of the title LIST. The loop construction is just as it was before, and 
the items are specified in the same way. Note how the date of birth items have been fielded 
so as to make the date look better on the screen. This example shows the most awkward 
type of sub-structure identification, in which there are several subfields of one main field.
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Chapter 7

More about pointers.
We have made some use of pointers in programs and program functions, but the subject so 
far has really only been introduced. If you look through the routines in the library, you will 
find that practically all of the standard routines make considerable use of pointers, rather 
more than we have done so far. The intelligent use of pointers can make a lot of apparently 
difficult program actions become relatively simple to achieve. A good reason for leaving 
detailed discussion of pointers until later in this book, however, is that the careless use of 
pointers can make a program unworkable. In many respects, the use of pointers in ‘C’ is 
rather like the use of GOTO in BASIC - it can make a lot possible, but that can include a lot 
that you don’t want.

Before we start on extended pointer exploration, then, recall for a few moments what a 
pointer is. A pointer is a number which locates a piece of data. A pointer can be defined as a 
pointer to an int, char or any other data type, simple or complex. If the data type is a simple 
one, the pointer is the number which gives the location of the first byte of that data. If the 
data type is complex, like an array or a structure, then the pointer gives the address of the 
start of the array or structure. If we want to make use of a pointer, we must declare its name 
and also assign it. We can carry out actions on pointers that include incrementing and 
decrementing, addition and subtraction of integers, comparison of pointers, and the 
subtraction of one pointer from another (only for pointers of the same type). The valuable 
feature of pointer arithmetic is that ‘C’ makes automatic allowance for the size of data. If 
you have an array of characters, for example, then you can define and assign pc as a pointer 
to the first character. Incrementing this pointer, either by using ++ or by adding 1, will get 
a pointer to the next character. Since each character takes up just one byte of memory, this 
isn’t exactly surprising. If you have an array of integers, however, in which each integer 
uses two bytes of memory, then changing the pointer by using ++ or by adding 1 will still 
get the next integer, even though the pointer has to change by two bytes this time. This is 
extremely valuable, because it means that you don’t continually have to be worrying about 
the numbers that you add to pointers. Y ou can, of course, add numbers greater than 1 if you 
want to get hold of other parts of an array.

7-1



mai n() 

static char nam[]="Sinclair";
static int dataL3=C1956,1966,19833;
char *pc;
int *pn;
pc=nam;
pn=data;
wr ite(pc,8);
dates(pn,3);
J

wri te(p,n)
char *p;
i nt n;

int j;
rawcut(12);
rawout(10;;
for (j=l;j<=n;j++) 
putchar(*p++> ; 

J

dates <p,n)
int *p,n;
<u
int j;
for (j=l;j<=n;j++>
print! ( “\n7.d“ ,*p++  ) ;

Passing pointers to functions to be used in the functions.

FIGURE 7. 1

The use of pointers in this way, along with passing pointer to functions, is illustrated in 
Figure 7.1. In this example, two arrays have been declared and initialised. One is an array of 
characters, the other is an array of integers. The assignments pc=nam and pn=data will 
make the pointers point to the start of each array. Note that this type of assignment is legal 
because the name of an array is also the value of its pointer. The important difference 
between the pointer that we assign and the name is that the name is a fixed pointer. In 
other words we can assign pc=nam, because pc is a pointer variable, but we cannot assign 
nam=pc because nam is a fixed amount, the pointer for the start of an array, which 
cannot be altered except by assigning another array. This important difference is not 
always well emphasised in books. We could also, incidentally, assign directly to the 
pointers, not using the array names at all, and this is something that we’ll do later. Once the 
pointers have been assigned, we can use them in function calls. Two function calls are 
shown, one to write(p,n) which will print a string of n characters pointed to by p, and 
dates(p,n) which will print n dates, one on each line, pointed to by p.
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The real meat of pointer use is now contained in the function definitions, and we’ll look at 
write first. The header contains the parameters p,n and these will have to be declared 
before the first curly bracket of the function, because these are the variables that are passed 
to the function. Since p points to a character, it is declared as such, and n is an integer. 
Remember that these names are completely local to the function, we can change them 
without altering the quantities that are stored as pc, pn, n in the main program. Following 
the first curly bracket, the integer j is declared for the loop, and the loop uses putchar() to 
print a character on the screen. Function putchar is built-in to HiSoft C, and so it doesn’t 
need to be typed in. The character that putchar uses is *p,  the character that pointer p 
points to. At the start of the loop, p takes the same value as pc, because this was the value 
passed to it. In the putchar() statement, however, we use *p++  so that the value of p is 
incremented by one character position after the character has been printed. This will 
ensure that the next character is fetched when the loop goes around again. The dates 
function behaves in an almost identical way, but printf has been used to ensure that the 
date is printed in the form of an integer number. Once again, using *p++  ensures the 
correct next number, though this time the memory is being incremented by two units 
instead of just one. We could make the action of the write routine more elegant and more 
useful by making it write all characters to the ‘ \ 0’ character.

wr i t e ( p ) 
char *p;
V
rawout(12);
rawout( 10) ;
whi 1 e (*p  ! = \0 ' ) 
putchar(*p++) ;

Simplifying the write() functions.

FIGURE 7. 2

This modification is illustrated in Figure 7.2. Using this function now requires only the 
pointer to be passed, not the number of characters.

So far, so good. If you want to pass a pointer to a single integer or character, you must use 
the pointer-finding symbol &, which has been illustrated previously. This is particularly 
important when functions such as scanf are used. Generally, however, the main use of 
pointers is in connection with arrays because this is one of the ways that arrays can be 
manipulated as a whole. As an example, take a look at the program in Figure 7.3.
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mai n ( )

static char namC]=“Sinclair";
static char townCi=“Watford"; 
char *pc,*pd;
pc=nam;
pd=town;
printf ( “ \nZd , 7.d “ , pc , pd ) ;
printf (“\n7.s 7.s“,“Name is”,pc);
printf ( “\n7.s 7.s“,''Town is”,pd); 
exchange(&pc,&pd>;
printf ( “\n7.d ,7.d“ ,pc ,pd) ;
printf (“\n7.s 7.s“,“Name is“,pc);
printf ( “\n7.s 7.s“,“Town is",pd>;

exchange(x,y> 
int *x,#y;
‘■L
int tmp;
tmp = *x  ;
*x=*y;
*y=tmp;

Swapping string pointers so as to interchange the strings.

FIGURE 7.3

This contains a function exchange which will swap two strings of different lengths, by 
swapping their pointers. Now it’s important to realise that only the pointers are swapped, 
and the strings remain assigned to their original names. If we print out the string names 
before and after swapping, there will be no change. If we print out using the pointers, 
however, the swap will be obvious. The moral, then, is to work with pointers at all times if 
you are going to make such changes. The routine of Figure 7.3 declares and assigns two 
names, and the pointers are declared and then assigned. The printf lines then show what 
the pointer addresses are. If it still unnerves you to see these as negative numbers, use “%u” 
in place of “%d” in the printf lines for printing the pointers. The first printing shows the 
pointer numbers and the names in the correct order. Following the exchange function, 
however, the pointer numbers are swapped, and what they point to is also exchanged. This 
appears only if we printf the pointers pc, pd, not the names nam and town which do not 
change. Note that the printf line uses pc,pd and not *pc,*pd.  Once again, this is because 
the name of an array is the pointer to its starting address. In this context, quantities such as 
*pc,*pd  are meaningless. The pointer exchange is carried out using pointers to the 
pointers. The pointers to the strings are simply two numbers which are stored in the 
memory. To exchange them in a function we need to find where these pointer numbers are, 
and we can do this by finding their own pointers. This is done by calling function 
exchange with parameters &pc, &pd, which are the pointers to pc, pd respectively.
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These pointers are passed to the function as numbers x and y, and defined as pointers to 
integers, which they are. The integers that they are pointing to are the pointers pc,pd. We 
then use these pointers to exchange the values of pc and pd. We cannot simply exchange pc 
and pd in a function, because the function works with local values only. At the end of the 
function, any quantities that are passed to the function are restored to normal. If we work 
with pointers, however, we can make permanent alterations in anything that these pointers 
point to. In this case, the quantities that we are working with are temporary values x and y. 
These are manipulated so as to exchange pc and pd, pointers which have not been directly 
passed to the function. Using pointers in this indirect way is the only method by which a 
function can make changes in a number of parameters. The routine carries out the swap, 
and when the main program takes over again you can see that the pointers have been 
swapped. The important feature here is that a pointer is a two-byte number. You can swap 
pointers like this around as much as you like, and the action is quick and easy. It’s certainly 
not so easy, and definitely not so fast to try to swop the actual contents of strings around. 
Y ou wouldn’t be advised to try it on strings of unequal defined lengths, either, but when you 
work with pointers all things are possible. If, incidentally, you want to find where the 
pointers to the pointers are stored, add a line:

printf(“ \ n%u,%u” ,x,y);

just following the int tmp declaration in the function.

Arrays of pointers.
An array of pointers is a method of locating data which is often more useful than other types 
of arrays. It would be rather pointless (sorry!) to use an array of pointers to integers, 
because it’s simpler to use an array of integers, and it would take less space. Arrays of 
pointers come into their own when they are used to refer to arrays of arrays. An array of 
strings, for example, consists of an array of arrays of characters. A useful alternative to a 
string array formed in the way that we have used previously, then, is an array of pointers to 
strings. As we have seen, this allows for actions such as exchanging to be carried out. To 
form and make use of such an array of pointers we have to know what syntax has to be used 
to refer to pointer arrays. Figure 7.4 shows a simple start to the idea.

ma in() 

static char siC3=“Xerography";
static char s2L3 = "A1teration";
static char s-3£ 3 = "Middle“;
char *ptr£33;
int j;
ptr l&53=s 1;
ptr £ 13=s2;
ptr £2J=s3;
for (j =0;j < =2;j ++ >
printfi"XnXs“,ptrL j 3);

Using a pointer array as a string array.
FIGURE 7.4
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Three strings have been declared and initialised. They have been declared as static 
because otherwise initialisation cannot be carried out on the same step. An array of pointers 
is then declared, using ptr[3], and the strings are assigned to the pointers. In a ‘real-life’ 
program, it’s likely that you would use a scanf function to get the strings from the 
keyboard, so that the assignment would be direct to the pointer array elements. The 
program then prints the strings in order of assignment.

Now this is all very tame stuff, but you can see that the use of arrays of pointers can lead to a 
lot of interesting actions. It’s as easy to select one string in this way as in a conventional 
string array, and it’s much easier to swap pointers round so that the string arrangement is 
different.

main()
■<.
static char siE3="Xerography"; 
static char s2E 3 = "Alteration'1 ; 
static char s3E 3 = ‘*Middle “ ;
char *ptrE33;
i nt p ;
int j;
ptr E03=sl;
ptr E1J=s2;
ptr E23=s3;
for (j=0;j<=2;j++)
pr intt ( “ \n7.s“ , ptr E j 3 ) ;
al ter(&ptrE03,&ptrE13,&ptrE23); 
for (j=0;j<=2;j++>
pr i nt + ( “ \n7.s“ , ptr E j 3 ) ;
J

al ter(x ,y,z ) 
int *x,*y,*z;
A.
int tmp;
tmp=*x  ;
* x=y ;*
* y=tmp;
tmp=*y ;
* y=z ;*
* z=tmp;

Using a pointer array to swop string positions.

FIGURE 7. 5
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Figure 7.5 shows this done, using a simple swap routine rather than the complications of a 
full-scale sort for so few items. Note that, contrary to what you might expect, you have to 
use the address sign, &, in front of the pointer array values in order to pass the values 
correctly to the function. If you omit the & signs, you will find that the first two letters are 
exchanged, but no others. This is not a standard action of‘C’, and it’s not easy to see why 
two characters are swopped. One, or all, I could understand, but two? Another point to note 
is that the use of a function will successfully result in obtaining pointers to the pointers, but 
this is not so simple if you want to carry it out in the main part of the program. The reason is 
that quantities such as ptr[0] are defined as string pointers, and you can’t obtain pointers 
to them in a straightforward way. The only simple assignment you are allowed to make is of 
another pointer to a string. You can get around this restriction by using a statement cast 
which is very poorly illustrated in most books on ‘C’. The use of cast is to make a quantity 
become of a specified type, and the syntax is cast(type)quantity. This doesn’t illustrate 
how cast is used, however, quite so dramtically as Figure 7.6.

main ( )
<_
static char siEJ=“Xerography";
static char s2E]="Alteration“;
static char s3EJ="Middle";
static char *ptrL3J;
static int p,*s;
int j;
ptr E£5J=sl ;
ptr E1J=s2;
p t r E 2 J =s3;
s=&(cast (int) ptrEOJ);
for (j=0;j<=2;j++)

pri nt + ( “ \n7.u, 7.u“ , s , *s  ) ;
pr i nt+ ( “ \n7.su , *s++  ) ;

Using cast to convert a pointer into unsigned form.

FIGURE 7. 6

In this example, the strings have been printed in quite a different way that illustrates the 
usefulness of pointers to pointers. The line:

s=&(cast (int) ptr[0]);

will have the effect of making the quantity ptr[0] temporarily into an integer, and then 
taking the address of this integer and assigning it to integer pointer s. It is possible to do this 
in two steps, such as:

p=cast(int)ptr[O] ;s=&p;
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but when you do this the addresses will be displaced, because of the extra integer, p. If you 
use this method, you will find that the output is decidedly peculiar, with the first string 
being printed twice! Using the correct cast expression allows s to carry the address of 
ptr[0], and the printing loop can now make use of *s++  both to print the value and to 
increment to the next string. This is simple because the string pointers are held at 
consecutive addresses.

Another aspect of the use of pointers with string lists is how easily an item can be located. 
This makes for very efficient and short routines for such actions as finding the day of the 
week from a number.

char *getname(c)  
int c; 
■*_
static char *dayfd=<
"no such day","Monday","Tuesday",“Wedne 

sday","Thursday","Friday", 'Saturday", 
"Sunday">;
return C(c<1 ï ic>7)?dayC0J:dayicJ); 
} 
mai n()
■<-
char c;
rawout(12);
printt <"XnDay number, piease\n");
c=(getchar()-4S);
pr i ntf ( “ \n7.s“ , get name (c > ) ;

Using a string pointer array, initialised at the same time as being declared.

FIGURE 7. 7

An illustration of this use is shown in Figure 7.7, which also shows the initialisation of a set 
of strings in a function. The function is of type char and it will return a pointer because this 
is what the name of one item will be, one of the array of pointers. The header will put in an 
integer which will consist of a number in the range 0 to 9. A number such as 10 will count as 
1, because only the first character will be accepted by the main program call to getchar. 
This number is declared and treated as an integer in the function, and the pointer array 
*day is declared and (since it is static) assigned. The assignment of the zero position is 
made to a message. After this, the last fine of the function returns the selected string. The 
variable c is used as a selector in the line:

return((c<l I I c>7)?day[0]:day[c]);

so that if c is less than 1 or more than 7, the string day[0] will be returned, giving the 
message ‘no such day’. For numbers between 1 and 7 inclusive, the correct day of the week 
is returned counting Monday as day 1.
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Pointers to functions.
One of the restrictions about the use of functions is that you can’t use a function name as a 
parameter to a function. It would be useful, for example, if a function could specify in its 
header which of a number of alternative functions was to be used inside it. This action is, 
however, possible provided that the name which is passed is treated as a pointer to the 
function that is wanted. Once again, the use of a pointer makes a very useful and curious 
action possible.

mai n()

static char test £ 3 = i'TeSt " ;
int down(),up( ) ;
int j;
printf(“\n‘/.s",test );
for (j=0;j<=3;J++)

if ( test £ j !<"•? 1 ) testEj3=redo (test£jl,u 
p> ;
else if (testEjJ>V6)testLj3= redoftestE 

j 3,down);

printf(“\n7.s",test );
J

redo(c,change)
char c;
int (»change)();
u
c=(»change)(c);
return(c) ;
J

Up ( s )
char s;

1.
s»=32 ;
return(s) ;
J

down(s)
char s;

s—=32;
return(s);

Passing a pointer to a function to allow a choice of functions.

FIGURE 7.8

7-9



Figure 7.8 illustrates this way of allowing functions to pass other functions as parameters. 
The example is a very simple one, which means that what it does could very easily be done 
by simpler methods. The point, however, is that its only by looking at fairly simple 
examples that you can disentangle the important features from their surroundings. In this 
example, the program is provided with a word which is typed partly in upper-case and 
partly in lower-case, and the aim is to reverse the case of each letter.

The main program is simple enough, but the declarations have to be watched. The 
functions that are going to be passed as parameters have to be declared at the start of this 
main program, and they are called down and up. Each of them will return an integer, so 
that they can be placed at the end of the listing without any need for references forward. 
Following the declarations, the program starts a loop in which each character of the word is 
selected and passed as a parameter to a function called redo. This function does not need to 
be declared in the main program, and it will be designed to return the character rather than 
altering a pointer. Because it returns a character, its form is:

character=function(parameters)

and in the example, the two different calls to redo are placed in two test lines. If the 
character that is being dealt with has an ASCII code ofless than 91, then it is an upper-case 
character, and function up must be called within the redo function. This is done by using 
the call:

test[j]=redo(test[j],up);

in which we want to alter test[j] by equating it to the character returned by redo. We also 
want redo to make use of function up, and this function name is put into the parameter list 
for redo. Note that we use up, and not &up. This is because ‘C’ takes the name of a 
function, like the name of an array, as a pointer to where the function starts. The alternative 
call is made if test[j] is greater than 91, when the call to redo makes use of the function 
down.

The next step is to look at function redo to see how the alternative functions up and down 
are used. The header for redo uses parameters (c,change) in which c is a character code 
and change represents the pointer to a function passed to redo. This function represented 
by change has to be declared before opening the curly bracket on redo, and it’s declared as:

int (*change)();

- a function which returns an integer and whose (temporary) name is pointed to by 
change. You must use the name as a pointer here, with the asterisk, and the brackets 
surrounding the function name, and a separate set of brackets as you have with any 
function. The redo action then consists only of calling the function that has been passed to 
redo, and returning the correct character. Once again, however, the syntax is important. 
The temporary name must be used as a pointer and enclosed in brackets, with its parameter 
c in separate brackets following (* change). Since this function needs to return a 
character, we use:

c=(*change)(c);
return(c);
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to ensure the return of a suitably changed character. The effect of all this will be to pass the 
pointer to one of the functions up or down, and execute the action of that function from 
within redo. It’s not exactly the kind of thing that you can do in BASIC, and it’s one of the 
many features that makes ‘C’ such a very powerful language for programming. The 
functions up and down are written conventionally, but the lines return(s) are, in fact, 
redundant. They have been put in as a reminder that each function returns something, but 
they can be deleted because the return(c) inside redo carries out the returning action.

Passing function names in this way is particularly useful when you want to use a function 
on different types of data. One very common type of action is sorting lists of different items. 
This can call for the use of different comparison functions (one for numbers, one for 
strings) and diffent exchange functions (once again, differing for numbers and strings) but 
with the same basic action, such as the Shell sort.

/*  Sorting function — a Shell sort */

void qsorttlist, numiterns, size, cmpfu 
nc)

char Hist;
int num_iterns, size;
mt (*cmp_func )();

X.
static unsigned gap, bytegap, i;
static char *p;

for (gap = numiterns >> 1; gap > 0;
gap >> = 1) 

x.
bytegap = gap * size;
tor (i = gap; i < numiterns; ++i 

)
for (p = list + i * size - byte_ 

gap; p >= list; p —= bytegap)
X.

if ((»cmpfunc)<p, p + byte_ 
gap) <= 0) break;

swapfp, p + bytegap, size);

The Shell sort from the HiSoft library, courtesy of HiSoft.

FIGURE 7.9
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You can obtain this by using g„stdio.lib, and you can then separate out routines and 
record them for use as and when you want. In this particular example, four variables are 
passed, one of which is a function cmp__func. This will be the function that compares
items in an array. The start of the array is pointed to by list, and the size of the items must 
be constant. The number of items and size is passed as integers, and the comparison 
method is a function.

The action of calling the sort is better illustrated by an example, in Figure 7.10.

mai ni)
a.

int numcmp(),strcmp();
static int x£l = £3,17,4,21,163 ;
static char namtSJ £101=i"zebra“,"delta", 
“whisky“,“juliet","echo"3 ;
mt j;
for (j=0;j<=4;j++)
pr i ntf ( " \nXd--------Xs" ,x £ j J,namlj J) ;
printf ("\n");
qsort(x,5,2,numcmp);
qsort(nam,5,10,strcmp);
for (j=0;j<=4;j++)
printf("\nXd--------Xs", x £ j J ,naml j J);
J

int qsort(list, numi terns, size, cmp fun 
c )

char *list;
int num i terns, size;
int («empitine)();

■<.
static unsigned gap, bytegap, i;
static char *p;
for (gap = numi terns >> 1; gap > 0;

gap / 1;
X.

bytegap — gap * size;
for (i - gap; i < num_iterns; ++i 

)
for (p = list +• i * size - byte_ 

gap; p >= list; p -= byte_gap)

if <(*cmp_func>(p,  p + byte_ 
gap) < = 0) break;

swapip, p + bytegap, size);
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int strcmpis, t) 
char *s,  *t;

while (*s  == *t )

if (! *s)  return 0; 
++s; ++t;

return *s  - *t;
J

int numcmp( x,y >
int *x  ,*y ;

if (*x>*y)return (1);
else if (*x<*y)  return (-1);
else return(0);

Making use of the library function qsort.

FIGURE 7.10

In this example, two arrays are declared and initialised. One is an array of integers, the 
other an array of strings which is declared as a two-dimensional array and filled with 
words. Note the order of the subscript numbers, which is [number of words] [maxi­
mum size]. These arrays are printed side by side to show the order, and then two calls are 
made to the function qsort. This has been loaded in from the library with only one change. 
The change is to make the type of function int rather than void. The library declares early 
on that void is identical to int, and the word is used when whatever a function returns is 
unimportant. The strcmp function is also taken from the library, but the numcmp 
function has been added by me. When a qsort call is made, then, its parameters are the start 
of the array, the number of items in the array, the size of each item, and the comparison 
function. The pointer for the start of any array is always the array name, and the number of 
items is always five in this example. The sizes of items are 2 for integers, which store in two 
bytes, and 10 for strings, since we have defined strings of ten characters. Remember that 
this figure of ten characters includes the ending zero of a string. If when you print your 
strings you see two or more joined, this indicates that the zero has been wiped out. The 
comparison functions will be strcmp for the strings, and numcmp for the numbers.

All the actions in this program are by now reasonably familiar, but the function numcmp 
is new. The qsort routine makes use of pointers, and what is passed to numcmp is a pair of 
pointers to integers. These are declared, and then the main action consists of comparing the 
integers that x and y point to. These comparisons return numbers 1, -1, or 0 according to 
whether the order is incorrect, correct or correct. The order will be correct if the two 
numbers are in order, or if they are equal, which is why the three possibilities exist. When 
the routines run, then, you will see the lists in their original unsorted form, and then in their 
sorted form.

7-13



Linked lists
Suppose that you defined a structure which consisted of an integer number and a pointer. 
Now the most important feature of a pointer is that it can be made to point to something 
that may be anywhere in the memory of the computer. Because this is possible, we can 
make the pointer in the structure point to the next structure, even if this means a structure 
which is not the next one that you enter, or even the previous one. If you make up a set of 
structures like this, you don’t need an array. Each structure contains a pointer to the next 
structure so that if you can locate the first structure, you can get to any other, swinging like 
the legendary Tarzan on ropes of pointers from structure to structure.

0

head of list end of list

A linked list in diagram form. This is the form of BASIC program lines.

FIGURE 7.11

Figure 7.11 shows in diagram form what this is all about. A sequence like this is called a 
‘linked list’.

What advantages would such a set of structures have? Well for one thing, it becomes very 
easy to ‘delete’ a structure. All you need to do is to alter the pointer that points to the item 
and make it point to the next one instead (Figure 7.12).

Deleting a structure from a linked list.

FIGURE 7.12

Having coped with that idea, how would you reverse the order of two structures?
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Reversing the order of two members of a linked list.

FIGURE 7.13

Figure 7.13 shows the principle in diagram form, requiring three pointers to be changed. 
What we have to do now is to see how some of this paper talk can be transferred into a 
working program.

struct recordi 
int daily;
struct record *next;
leash,*first ,*p ;
typedef struct record *rec_p;  

main ()

int j,x;
p=cast Cree p)calloc(100,sizeof(struct 

record));
■f i rst=NULL;

dot
print-F ("\nToday'5 number - “);
scanf ( " 7.d “ , & j;
p->dai1y=j;
p—>next=fi r st;
+irst=p;
p + +;
3- whi 1 e (j ! =0) ;

rawout(12);
x=rawi n(>;
j=i;
p=+i rst;
wh i1e(p!^NULL)

printf (“ \n*/.d ------ 7-d“ , j , p—>dai 1 y) ;
p=p—>next;
J++;
J

A simple linked list example. This does not show the supporting functions, and will not run unless these are 
added or put in with #include ?stdio.lib?.

FIGURE 7.14
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Figure 7.14 shows a typical example which is deceptively simple. Only the main part of the 
program has been shown here, because when all the necessary functions are added to make 
it run, the result is rather massive. In this part, then, we define a structure called record. 
This structure contains an integer daily, and a pointer next. What makes next rather 
different from any pointer we have looked at so far is that it’s a pointer to type record. In 
other words, part of this structure is a pointer to another structure of the same type. 
Variable cash is then defined as a structure of type record which contains daily, an 
integer number, and next, a pointer. The variables first and p are also defined as pointers 
to a record, then the program itelf starts with main(). This starts by declaring j and x as 
integers, and then finding a value for the quantity p. We need p as a pointer to where each 
structure is going to be stored, and to get this free space we use a function calloc(number, 
size). The parameters to calloc are the number of structures that we would want to use, 
and the size of each structure. Rather than count up the size of a structure, we can use 
sizeof to get this number. The snag in this action is that calloc returns a character pointer, 
and we want a pointer to type record. This is arranged by two important lines. One is the 
typedef struct record *rec __p which follows the declaration of the structure. We
haven’t used typedef before, because it’s main use is in situations like this along with cast. 
The statement typedef allows us to declare that a word represents a data type. It doesn’t 
allow us to create any new data types, but it can define a type that will be accepted by the 
cast statement. In this example, the word rec__p is being defined as meaning a pointer to
type record, the structure. By using rec__ p in the cast statement, therefore, we force the
value of the pointer that is returned by calloc to be of the same type as a pointer to the 
structure. You may think that all of this changing of variable type for a set of numbers that 
are all integers is rather tedious, but programming can be a lot more tedious in a language 
which doesn’t allow conversions!

The next step is to make first point to NULL. There are no values to point to yet, so this 
pointer points nowhere. A loop is then set up. The preset limit to size for this set of 
structures is set by the value of size that was used in calloc and entry can continue until 
you enter a figure of zero, or until the memory is full. You get no warning if you exceed the 
limit that has been set by calloc, and if you do exceed it you may suffer no ill effects, or you 
may find that the whole program crashes, and your data with it. The freedom that you have 
to do as you wish with ‘C’ is paid for by the need to ensure that your program can’t do 
anything silly.

Now what happens in the loop is vital to the way that the list is constructed, and you need to 
follow it very carefully. I think it’s a lot easier if we can think of numbers for the pointers, 
and so I’ll assume that the pointer NULL is zero (true), and that the other pointers will be 
40974,40978,40982... and so on (possibly true, depending on machine, and it helps you to 
understand it). Let’s take a walk through the first loop round. The value of pointer p has 
already been allocated by calloc, and its type is pointer to record, so that we can use 
quantities such as p->daily in the same sense as cash.daily. We can imagine that p 
carries the number 40974. This will now be used to store the cash amount, p->daily, 
obtained as integer j from the scanf line. Notice, incidentally, the blank space preceding 
the %d in scanf. This is put in to ensure that the (RETURN)/(ENTER) character does not 
cause an endless loop. The pointer quantity p->next for this structure is now made equal 
to first, which is NULL. This is the way of signalling that there is no following structure.

7-16



Pointer first is then made equal to p, assumed to be 40974. The value of p is then 
incremented using p++. This makes p change from 40974 to 40978, because the structure 
contains one integer (two bytes) and one pointer (also two bytes), a total of four bytes.

So much for the first loop. What happens in the second? We pick a new p allocation, 
assumed 40978 this time. Once again, we store a cash quantity, and the p->next pointer is 
this time made equal to 40974, the pointer to the previous entry. Pointer first is now made 
equal to the current value of p, which is 40978. If you look at these steps in diagrammatic 
form, Figure 7.15, you can see that the list is not growing in the way that you might expect.

o

head of list end of list

0

end of list

0

The steps in the formation of the list.

FIGURE 7.15

The ‘top’ of the list is zero, followed by the item that we entered last of all. Its pointer always 
points to the next one down, the previous item. The list ends with the one that points to the 
first entry. If any more proof is needed, take a look at what the last part of the program, 

7-17



following the zero entry, prints out. Enter items like 11, 22, 33 and so on that you can 
recognise. When you see the listing it will show 1-0, which is the zero entry that you used 
to close the list. After that your other values follow in reverse order of entry, with the most 
recently entered item at the top of the list and the first item that you entered at the bottom. 
The word next can be rather confusing in program examples like this. It certainly means 
the next item in the list, but it’s the next one back simply because there isn’t a next one 
forward until you create one!

»define TRUE 1 
»define FALSE 0 
»define NULL 0 
»define ERROR -1 
typedef char*  __ charptr;
struct header 
< 

struct header * _ptr; 
unsigned _size;

J' 5
typedef struct header HEADER, * HEADER 
_PTR;
HEADER _base, *_ailocp;
»define HEAPSIZE 1000 
char sbrk(n) 
unsigned n;

static char *p ,heapCHEAPSIZEJ,*heap_ptr=  
heap;
if (heap_ptr+n>heap+HEAF‘SI ZE) return ERROR
R
p=heap_ptr;
heap_ptr+=n; 
return p;
J 

char *calloc(n,  size) 
unsigned n, size;

static HEADER *p , *q;
static unsigned nbytes;
nbytes = (n * size + (sizeof(HEADER) - 

1)) / sizeof(HEADER) + 1;
if ((q - allocpi == NULL) /*  no free 

11 st */
v.

_base._ptr = allocp = q — &_base
R 

base.size - 0;
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P = q->_ptr; 
while (TRUE) 

<
if (p—>_size >= nbytes) /*  big en 

ough */

if (p->_size == nbytes) q->_p 
tr = p->_ptr; /*  just right size */  

ei se
f /

* split block and allocate tail */  
p—>_size —= nbytes; 
p += p->_size;
p—>_size = nbytes;

allocp = q; 
return cast(__ charptr) (p+1);

J

if (p == allocp) /*  wrapped arou 
nd free list */

•c
if ((p = cast(HEADER_PTR> sbrk 

(nbytes * sizeof(HEADER))) == ERROR) 
return NULL;

p->_size = nbytes; 
free(p+1>;
P ~ 1ocp;

J 

q = p; 
P = p->_ptr;

3 /*  end while TRUE */
J 

struct record! 
int dai1y; 
struct record »next; 
leash,*first ,*p ; 
typedef struct record *rec_p;

main()

int j,x;
p=cast(recp)calloc(100,sizeo+(struct 

record));
fi rst=NULL;
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do £
print-f ("\nToday's number - " > ;
scant(" Zd“,&j);
p—>daiiy=j;
p->next=f i rst;
f i rst=p; 
p++;
3 whi1e (j!=0);

rawout(12) ;
x=rawin();
j=i;
p=first;
wh i le (p ! =NLILL)

t.
printf ( "\n7.d------ 7.d" , j ,p->dai 1 y) ;
p=p->next;
j++;
J

tree(p);
J

int tree(block> 
char »block;

£
static HEADER *p , *q;
p = cast(HEADER_PTR) block - 1;
■For (q = allocp; ! (p > q && p < q-> 

_ptr); q = q->_ptr)
if (q >= q—>_ptr && (p > q ! ! p

< q->_ptr)) break;
if (p + p->_size == q->_ptr)

p->_size += q->_ptr->_size; 
p-.>_ptr = q->_ptr->_ptr;

else p->_ptr = q->_ptr;

if (q + q->_size == p)

q->_size += p->_size; 
q->_ptr = p->_ptr;

J

else q->_ptr = p;
_allocp = q;

The complete listing for the linked list program, with all the library functions, courtesy of HiSoft.

FIGURE 7.16
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Figure 7.16 shows the complete listing for the linked-list, using all the library listings that 
are included. In these, the word void has been replaced by int. Don’t be downhearted by 
the look of a listing like this, because as you can see, the main program, which is the bit that 
you write, is quite small. The routines from the library can be taken from the disc and added 
in, with no typing required. You can do this by making a disc in which each library routine 
is separately filed. You will find this very useful because it allows you to make up programs 
without the need to use #include ?stdio.lib?, which slows down compiling considerably. 
You can load in your library routines when you compile by using #include.filename at 
the start of the program.

Could we, as a matter of interest, make a list in a different way? When you think about it, 
there’s no reason why you shouldn’t. At any point in a list you can direct a pointer to the 
next item or to the previous item simply by incrementing or decrementing the p number. 
This makes it possible to construct what are called ‘double-linked’ lists with a pointer in 
each direction, but programming of that sort is beyond the scope of this book, and if you 
need to use it you probably need a lot more memory for your program than you’ll find in the 
smaller Amstrad machines. What is more important at this point, then, is learning how to 
operate on the lists so that you can search through a list.

struct recordt 
int dai1 y;
struct record »next;
3 cash,*f  i rst,*p ;
typede-f struct record *rec_p;

mai n ()

int j,x,y;
p=castCreep)cal 1oc(5,sizeo+(struct re 

cord));
fi rst=NULL;
x=0;

dot
x++;
pri ntf ( " \n7.sZd7.s" , " I tern “ ,x," is - “ )

scan-f ( " 7.d “ , & j ) ;
p->daily=j;
p—>next=+i rst;
First=p;
p++;
> while (j !=0);

rawout(12) ;

dot
printf("\nplease select item number.");
print-F (“XnXs/idZs" , " (range-1 to '',x,“)“); 
p=-F i rst;
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scanfC Zd“,&j);
i-F (j>x!!j<l> continue;
e 1 se -[

printf("YnZsZdZs","Item " , j , “ is “ ) ; 
j=x+l-j;
tor (y=l;y<=j;y++)
p=p—>next;

pri nt-f ( "Zd" , p—>dai 1 y) ;
Jwhile (TRUE);

Searching through a linked list for an item.

FIGURE 7.17

Figure 7.17 shows how you can search through a list for an item. This is the main part of the 
program only, and you will need the same additional functions as the previous listing. You 
need to know, of course, what you are looking for, whether it’s the item with a value of 64 or 
the first one whose value is less than 9 or whatever criterion you adopt. You need not work, 
of course, with integer number values in the structures, as long as each structure contains 
some data that you want to use along with a pointer to the next structure. In this example, 
the same structures have been used to save extra typing. The aim is to find the entry for a 
given identification number, but you could, of course, easily adapt the program to find 
whatever feature you wanted of the structure you had defined. The item-finding part has 
been put into a loop so that .you can try the options of a number that you know is genuine 
and one that you know is not in the list. You can escape in the usual way by pressing the 
(ESC) key when you see the ‘please select item number’ message.

There are a few alterations to both parts of the main program this time. An extra integer, y, 
is declared, and integer x is used to count the items as they are entered. When entry is 
completed, this number is corrected to remove the zero entry which terminated the entry 
routine. This also makes it unnecessary to test for the pointer becoming equal to NULL, 
though it is better practice to do this also. Following the clearing of the screen and the 
decrementing of counter x, the endless loop starts. In this loop you are asked to provide an 
item number, which is tested for range. If the item number is in the correct range, the 
corresponding item is found. This is not entirely straightforward because of the ‘upside­
down’ nature of the list. The scanf function returns the item number as integer j, and this 
is tested for range using continue to ensure that the loop will return to its starting point if 
the number is not in range. For a number that is in range, the next step is to adjust the 
variable value, using the expression:

j=x+l-j

to ‘invert’ the number. If you have 9 items, for example, and you want the third one, then 
this expression gives 9+1—3=7, which is the correct position on the list counting from the 
end at which the last item was entered. The corrected number j is then used in a loop to run 
through the pointers until the correct item has been obtained. The item value is then 
printed in the usual way.
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From this point on, the topic of linked lists starts to get complicated, and you will need to 
consult specialised texts if you want to see how to insert or delete items. It’s advisable to 
make sure that you have a really firm grip on ‘C’ programming before you attempt such 
work, and that’s why I shall not pursue the topic in this book.
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Chapter 8

String functions.
Compared with BASIC, standard ‘C’ seems at first sight rather weak on string handling 
routines. This is particularly true when ‘C’ is compared to Locomotive BASIC and to some 
of the later versions of Microsoft BASIC, as used, for example, in the MSX micros and also 
in the IBM PC. HiSoft C sticks close to the standard in most respects, so that you must rely 
on library routines to provide the string handling that you have become used to in BASIC. 
When you have moved from BASIC to ‘C’, however, this can leave you wondering how to 
implement actions, such as TAB, which you always took for granted with BASIC. You also 
have to learn how to use library functions for things like LEFTS, MID$ and RIGHTS, and 
the HiSoft manual is particularly helpful in this respect. You will find that a few actions, 
notably the VAL action of BASIC, are performed almost automatically and without effort 
in ‘C’. The problem, in fact, is very often to make sure that any variable is in the form that 
you want! This chapter will be devoted to the use of the string-handling library functions 
which help you to bridge the gap. A named ‘C’ function has the great advantage over a 
BASIC subroutine in that it is called into action by using its name rather than by the use of 
a line number. Because of this ‘C’ functions can be used as if they were new words in the 
language, which, from your point of view, they are. All of this is greatly helped by the 
appending action of g„filename, which will tack a file on to the end of whatever is in place. 
You can also use #include filename to read in library functions from a disc which has the 
functions stored separately. The one action that is missed most by ex-BASIC users, 
however, is assigning a string variable to some text, as A$=“THIS IS A STRING”. This is 
not very difficult to implement in ‘C’, but it requires some planning, unlike its BASIC 
equivalent. You should try to make use of string constants, prepared with #define rather 
than string variables for messages and other items of this sort. Other string assignments can 
often be tackled by the type of combined declaration and initialisation that we have looked 
at already.
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ttde-fine TAB “ 
/*  eight spaces*/  
#detine CLS rawout(12> 
»define EOF -1 
#define NULL 0 
char *gets(s)  

char *s;  
r

*s++ = ( c ? ( c
) ;

—n ;
J 

return si;
-*■
char *spc(s,n)
char *s; 
int n ; 
v
static char spE]=" 

?
/* 20 spaces*/
static char *spc;
spc=s;
strncpy(spc,sp,n);
spc Cn1= \0 ;
/♦needs terminator*/ 
return spc;

static int c; 
static char *cs;  
cs = s;
while ((c = getchar(>) 

! =EOF && c ! = \n ' )
*cs++ = c;

*cs = 0; 
return
((c==—1 && cs==s) ? 
NULL : s );

J

char *strncpy(sl,  s2, n) 
char *sl,  *s2;

4.
static char *s,  c;
s = si; 
c = *s2;  
while (n)

*s2++ ) : 0

il
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unsigned strlen15) 
char *s;

{
static char *p;
p = s;
do ; while (*p++) ;
return p-s-1;

mai n ( )

char sC40J;
CLS;
printf ( " \n7.s7.s7.s7.s7.s7.s7.s\n " , “A" , TAB, " B" , 
TAB,“C",TAB,"D");
printt<"\nXs\n“,"Your string, please");
gets(s);
printf ( "\n7.s7.u7.s\n" , "consists of " ,strl 
en is)," characters.“>;
printf ( " Xn7.s7.s7.s7.szis7.s" , "Thi s" ,spc (s,5) , 
“is",spc(s,3),“spc",spc(s,4));
printf ( "7,s7.s7.s" , "in", spc (s , 7) , "action " ) ;

A few string actions, including fixed tabbing, strlen, and spc.

FIGURE 8.1

The set of string actions starts with Figure 8.1.1 could have shown all of the string library 
functions in one long program, but I have split these into sections because it’s easier this 
way to select the actions that you need most frequently. Be warned, though, that these 
functions are in ‘skeleton’ form. They are completely lacking in any mugtraps, so that 
misuse can crash your programs. The aim is to provide simple functions, with no frills, 
which you can use as starter packs for your own routines. The simplest string action 
consists of preset tabbing. By defining a constant TAB of eight spaces, we can place the 
word TAB into a printf statement and automatically space words or numbers. Remember, 
however, that this does not over-ride any field specifications, and that typing 
printf(“/n%s%s%6d”,“Total”,TAB, j); where j is an integer will produce more than 
eight spaces because of the field number ‘6’. If you field your numbers correctly, however, 
this will not be a problem. The use of this preset TAB, which can, of course, be of five spaces 
or any other number you please, gets over a lot of the display problems that ex-BASIC 
programmers encounter when they start to use ‘C’. In this sense, TAB is being used more 
like the TAB of a typewriter than the TAB ofBASIC. The action is closer to the instruction 
SPC(8) which is allowed in some versions ofBASIC, or to the way that the comma is used 
in BASIC. Remember that ‘C’ can use the field numbers for its tabulation, and these are 
often much easier to use than the BASIC TAB instruction. The TAB in this example is 
produced simply by using ^define, with TAB made equivalent to eight spaces. In addition, 
CLS is defined to be equivalent to rawout(12) to clear the screen.
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The next action in the list is the strlen function. This is a HiSoft library function which 
produces a value for the number of characters in a string up to the final zero. This is not the 
same as the total length of the string, because the zero is not counted. The string name is 
passed as s, defined in the header as a pointer. Another pointer, p, is then declared and set 
equal to the value of s so that at this instant, both s and p are pointing to the start of the 
string. The do..while loop then increments p until it points to a zero, the end of the string. 
The length, including the zero, is then p-s, and subtracting another 1 gives the length not 
counting the final zero. A lot of other functions can make use of strlen, so that this function 
is one of our ‘bankers’, one that you should keep on a disc and not delete from this program 
unless you are sure that it is not used in later versions.

The function spc(s,n) is one that will return a specified number of spaces. This is not one of 
the library functions, though it depends for its effect on a library function which copies one 
string into another. This function has been written so that it returns a string, and can 
therefore be included in a printf line. It could equally easily have been modified so that it 
printed the spaces itself, and returned nothing. It’s up to you to choose how you want to use 
a function of this type, but the use of a function that returns something is often more 
flexible. In this case, the variables s, a string to be returned, and integer n, the number of 
spaces, will be passed to the function. These are declared in the header, with s as a pointer to 
the first character of the string. Following the curly brackets, the string sp is declared and 
assigned to twenty spaces. This means that if you try to create more than 20 spaces, you will 
get very odd results! The pointer spc is also declared, and assigned to s to pass the string 
back. The library function strncpy is then used to copy the correct number of spaces into 
the string spc. This library function will not put in the zero at the end of the string, and this 
has to be done in a separate line. The string spc is then returned.

In the library function *strncpy(sl,s2,n),  a number of characters n from the string s2 are 
copied into a string si. If the string s2 is short, shorter than ‘n’ characters, it is copied 
complete, with its ending zero. If, however, the string s2 is long and the number n selects 
only part of the string, then the final zero is not copied. You have to be certain before you 
make any use of this function (and the similar strcpy) that the string si has been defined as 
long enough to take whatever is being copied into it. As usual ‘C’ lets you do whatever to 
want to, even if it’s likely to crash the whole program! In the strncpy routine, the string 
pointers are declared in the header. The integer n is not, because the declaration of an 
integer in the header is optional in HiSoft C, though it’s very desirable to put in the 
declaration if only as a reminder. You’ll find some integers declared, others not declared in 
the HiSoft C library, depending on whoever wrote the original versions. At the start of the 
function, pointer s to char, and char c are declared, then the statement s=sl sets the local 
pointer s to the start of the string into which characters are to be copied. Character c is then 
assigned to the first character of the second string, s2. A loop then starts which will run as n 
is counted down until the value of n reaches zero. In the loop the value assigned to *s,  the 
string copy character, will either be the character copied from s2, or zero. If the current 
character c is not zero, then the character from s2 is used, else a zero is put in. Note, 
however, that the zero is copied only when a zero exists in the second string. The string 
pointers are incremented, and the number n is decremented. If the loop finishes because n 
has been decremented to zero, then no zero is copied. Looking at this loop, incidentally, you 
might be tempted to rewrite the whole routine in the form that is shown in Figure 8.2.
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char *5trncpy(sl,  s2, n) 
char *sl , *s2;

i
static char *s;

i ci t j ;
s = si;

■for (j=n;j>0;j— )
#s++=( j ? <*s2++ ) : 0 ) ;

return si;

A rewrite of strncpy which is more suitable for these applications.

FIGURE 8.2

This uses a for loop to carry out the action, and has the advantage, for our purposes, of 
always putting in the terminating zero when the whole string has not been copied. This, of 
course, is not a replacement for strncpy except for this type of use. The more general 
library routine is the one to use when you want to copy entire strings, and when the end is to 
be signalled by the zero character normally rather than by the count.

The main program illustrates the use of this ‘starter-pack’ of string handling functions and 
functions. The screen is cleared, using the defined CLS, and the letters A, B, C, and D are 
tabbed across the screen, using the constant TAB. A figure of eight spaces is a particularly 
convenient one for most purposes, but you might want to use 5 for separating integers 
particularly if the field size is small. Remember that this TAB, unlike TAB in BASIC, is 
really a spacing command. In other words, it sets the amount of space between items rather 
than the absolute position of items on the fine. The next three lines illustrate the strlen 
function being used simply to print out the length of a string. This would not normally be of 
interest but you might want to make use of strlen to decide whether a string was too long to 
use, or in other string handling actions. Finally, the last two lines illustrate the use of spc. 
This, remember, is a function which returns a string so that it can be put into a printf 
statement like any other string.

♦define LLS rawout(12)
♦define NULL 0
♦define EOF -1 
char »gets(s) 

char *s;
< 

static int c; 
static char *cs;

es = s ;
wh i 1 e ( ( c =

!=EOF &&
*cs++ =

getchar()) 
c ! = \n ' )

8-5



*cs = 0; 
return
((c==-l && cs==s) ? 
NULL : s );

J'

main()

int x,y;
char sL40J;
CLS;
print-f (”XnFlease type your text\n‘‘); 
gets(s);
printf(“\nand the x,y, numbers\n“);
scant ( “ Xd Xd“ ,&x ,&y) ;
/»should test these*/  
printat(x, y,s);
y
printat(x,y,s) 
int x,y;
char *s;

rawout(31>;
rawaut(x ) ;
rawout(y>;
printt(“Xs“,s);

Achieving a PRINTAT action.

FIGURE 8.3

A function which resembles the PRINTAT facility of some computers is illustrated in 
Figure 8.3. In the BASIC of many computers, PRINTAT is followed by X and Y co­
ordinates and then by a string which is to be printed. This allows a string to be printed 
anywhere on the screen, irrespective of the normal position of the cursor. PRINTAT can 
be implemented very easily in HiSoft C thanks to the provision of rawout() in conjunction 
with the Amstrad codes, and the PRINTAT action is almost as fast as normal printing. The 
function makes no use of any other library function, because rawout is a built-in function 
of HiSoft C. The function requires three parameters, the X and Y positions (integers) and 
the string text. In this example, no attempt has been made to test the values of x and y, and 
if you seriously wanted to use this function, you should really include some limits on the 
numbers. In the main program gets(s) is used to get the text, and scanf is used to get the 
numbers. The spaces in the scanf specifier portion are deliberate, in case you want to use 
the program in a loop. You can enter the numbers either by typing one, then 
(RETURN)/(ENTER), then the other (and (RETURN)/(ENTER)), or by typing the 
numbers separated by a space and then pressing the (RETURN)/(ENTER) key. This latter 
method is much quicker, but you have to remember to get out of old BASIC habits - no 
comma must be used.
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The use of printat() gives you a lot more freedom over the placing of text on the screen, 
and saves having to make each positioning of text into a major exercise. Useful additions 
when you don’t necessarily want the complete freedom of printat are vspc and cent, 
illustrated in Figure 8.4.

ttde-fine CLS rawout(12) 
ttde+ine NULL 0 
#de+ine EOF -1 
char *qets(s)  

char *s;

static int c; 
static char *cs;

cs = s;
while (<c = getchar()) 

! =EOF && c ! = ' \n ' )
*cs++ = c;

*cs = 0; 
return

( (c==-l && cs==s) ? 
NULL : s );

unsigned strlen(s)
char *s;

static char *p;

P = s;
do ; while (*p++) ;
return p—s-1;

mai n ( )

char st 203;
int v;
CLS;
printf ("\n7.s\n" , "Please type the title..
“) ;
gets(s);
printf ( ,, \n%s\n,‘, "and the size of vertica
1 space");
scant (" 7.d" ,&v>;
printf("\n7.u", v);
CLS;
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cent(s);
vspc(v);
print-F ("Xs" , "this is the next text line" 
); 
j

cent(s) 
char *s;

i nt x,j;
j=strlen(s);
x=(39—j)/2;
■F or (j = 1; j < =x ; j ++)
rawout(9> ;
printt("Xs", s) ; 
J 

vspc(v> 
i n t v; 
<.
i nt j;
for(j=0;j<=v;j++)
rawout(10) ;
rawout (13) ;

The vspc and cent functions.

FIGURE 8.4

Function vspc prints, as the name suggests, a number of empty lines, so spacing your text 
vertically. The cent function will centre a title in its line. As always, you have to be careful 
of string dimensions. For the cent function, it’s better to work with character arrays of no 
more than 40 in length, because you wouldn’t want to have two-line titles centred. In this 
example, the dimensions of s have been limited to 20.

The vspc function takes as its parameter the number of lines that you want to space 
vertically, and a loop counts out an equal number of rawout(lO) statements. These have to 
be followed by a single rawout(13) to place the cursor to the start of the line, otherwise it 
will be left wherever the printing of the title left it. The cent function takes a title, a string s. 
This has been defined as an array of up to 20 characters, and function strlen has been used 
to measure the length of your title and assign it to integer j. The centre position is given by 
using the formula - the figure of 39 has been used rather than 40 (characters in a line), 
because the left margin on the monitor makes a centered title look too far over to the right 
when using 40. The action of rawout(9) is to tab the cursor to the right, and since this is 
done in a loop the correct horizontal position is reached.
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Left, right and middle.
The BASIC functions LEFTS and RIGHTS can be replaced to some extent in HiSoft C by 
the use of some of the printing functions or strcpy. The manual, for example, suggests the 
use of printf(“%2s”,strncpy(s,string^)) as a replacement for LEFTS(string,2) and 
puts(string+6) as a replacement for RIGHTS(string,6). These actions apply to printing 
only, however, and they don’t allow you to do what you can do so easily in BASIC, that is to 
assign part of a string to another string variable name. The next few functions, then, are 
aimed at providing this action, and also with providing the equivalent of a MIDS action.

♦define CLS rawout(12)
♦define NULL 0
♦define EOF -1 
char »gets(s)

char *s;

static int c;
static char *cs;

cs = s;
while t(c = getchar(>) 

!=EOF && c!='\n )
*cs++ = c;

*cs = 0;
return 
((c==-l && cs==s) ?
NULL : s ) ;

cnar »strcpy(dest, source) 
char »dest, »source; 

■<_
static char »result;
result = dest;
while (*resu.lt++  = *source++)  ; 
return dest; 

J

char *1 eft(s,n)
char *s;
int n;

char *p;
P=s;
wh i1e(n)

p++;n—;
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*p —0;
return s;

char »right(s,n)
char *s;
int n;
c
while(*s>  s++;
while(n)

s—; n—;
J

return s;

ma i n ( )

char sE403,str£40J ;
CLS;
pr i nt-f ( "\nF‘l ease type some text\rr‘>;
gets (s) ;

/»can use -fgets to restrict size*/  
strcpy(str,s>;

pr i nt+ ( " \nXs7.s\n‘‘ , “The le+t(3> is “,ieft 
(str ,3) ) ;
/*s  is stiil original string*/
strcpy(str,si ;

pr i ntf ( "\n7.s7.s\n “ , “ The right(3) is “,rig 
nt(str,3)>;

Functions to provide the left and right string slicing actions.

FIGURE 8.5

Figure 8.5 tackles the left and right problem. Now these are ‘skeleton’ functions in the 
sense that they do just the minimum that is required. There is no checking to see if the 
numbers that you use are sensible, and a standard string length of up to 40 characters has 
been assumed. What is being done is to use a pointer to shift either the starting address or 
the finishing address of the string. This means that the string which is supplied has its 
pointer temporarily altered by the function,and the new pointer position returned. 
In the examples, a string which is an array of up to 40 characters is chopped and the 
chopped portion is assigned to a string of the same name (with the same pointer). Once 
again the listing shows the header section as well, and you can see that functions gets(s) 
and strcpy(dest,source) have been used. The strcpy function is used to ensure that the 
same string is present for both demonstration runs, because the function left puts a zero 
into the string.
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The function left requires the parameters s, the pointer for a string of up to 40 characters, 
and the position integer n. Pointer p is used as the position indicator for the characters in 
the string, and the action consists of shifting this pointer to the end position of the sliced 
string, n characters on, and then placing a zero following the nth character. The function 
then returns the original string pointer to the start of the string, but since the zero has been 
inserted after n characters the string will now appear to be of this length. The function is 
used by typing left with the correct parameters, either to give a new assignment to the 
existing string, in an assignment (using strncpy) to another string, or as part of a printf 
statement. Note that the function allows no protection from a silly number, like 
left(“Hi”,5). In a ‘skeleton’ function like this protection is omitted, but for a program 
which might be used by anyone who was unaware of the restriction, you would need to 
carry out a check based on detecting the end of the string in the while loop. The right 
function carries out a rather different action, using only the main pointer s. First of all s is 
advanced to the end of the string by a while loop, which tests for the zero character at the 
end. When this position is found the pointer is decremented, along with the counter n until 
n reaches zero. This places the pointer to the correct number of characters away from the 
last (non-zero) character in the string. This time, what is returned is the altered pointer. 
Like left(s,n), the right(s,n) action can be used as part of printf or independently to 
change an assigned string. Once again, there is no protection against reading to the end of 
the string and then counting back too many characters, probably into another string. As 
before, if you want protection you will have to add it in the shape of detecting a zero 
character. A useful alternative form of protection for both types of slicing function is to 
compare n with strlen(s) before attempting to slice, and returning with the string 
unaltered if the specified number would cause problems.

The equivalent of the BASIC MID$ action is carried out by the MID function in Figure 8.6.

Bdetine CLS rawc«ut(12) 
ftde+ine NULL 0 
#define EÜF — 1 
char *gets(s)  

char *s;  
■_ 

static int c; 
static char *cs;

cs = s;
win ie ( ic = getchar ( ) >

! =EOF && c ! = ■ \n ' )
♦cs++ — c;

*cs = 0;
return
((c==—1 && cs==s) ?
NULL : s );
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char *mid(5,pos,ien)  
char *s;  
int pos,len;

char *p;
whi1e(pos—1)< 
s++;pos—;> 
P=s;
wh lied en > Ï 

p++;1 en—; 3
*P=0j 
return s; 

J 

main i ) 
ichar sL40J; 
CLS ;
print-f ( “ XnFlease type some text xn“); 
printt(“\nCat least 8 characters.)\n"); 
gets(s);
pr intt ( " \n/.s7.s“ , “ The midis, 3,4) is " ,mid 
t s, 3,4 ) ) ;

The mid action, corresponding to BASIC MID$.

FIGURE 8.6

In this function once again, s is the pointer to the string which is to be sliced and pos is the 
position of the first character that you want to copy. The integer len is the number of 
characters that you want to copy. Some MID$ instructions in BASIC use this second 
number as another position number, but in this particular function it is used in the same 
way as in the MID$ of Amstrad BASIC. The action is the same type as has been used for 
left and right, and it consists of incrementing the string start pointer s to the position that 
is given by pos. A new pointer, p, is then placed at the same address by using p=s, and this 
pointer is then advanced along the string using len as a counter. The zero is then placed at 
the end of the sliced portion of string, and the new starting position is returned as s. Like the 
previous functions there is no protection here against silly numbers, and it’s a good exercise 
in logic to devise a protection against either the impossible starting position or the 
impossible length of slice, or both.

Another useful function which is provided on many computers, including the BASIC of the 
Amstrad machines, is STRINGS. This will make up a string of a number of identical 
characters, with the number and the character specified. For example, in BASIC, 
X$=STRING$(20,“*”) will make X$ a string of twenty asterisk signs. This is a quite 
simple action to achieve in ‘C’. In addition, most varieties of BASIC have the STR$ 
function. This converts a number variable into a string variable; something that is quite 
often needed in BASIC. ‘C’, with its very flexible rules about data types, is pretty good 
about conversions, but mainly in the other direction.
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#define CLS rawout(12)
#de+ine NULL 0
»define EOF -1
char »gets (.s) 

char *s;

static int c;
static char *cs;

cs = s;
while ((c = getchar(>) 

! =EOF && c!= \n ' )
*cs++ = c;

*cs’= B; 
return 

( (c==-l && cs==s) ?
NULL : s );

J

char *fi 11(s,n,c> 
char *s,c;
int n; 
■u
wh11 e (n) <
*s++=c;
n—; 3

*s=0;
return s;

char *str(s,n)  
char *s;
i nt n;

sprinttis," Zd‘‘,n); 
return s; 
J 

ma i n ()

char st40J;
int x;
CLS;
x=2345;
str(s,x > ;
print-f ( "\n7.s - 7.s\n" , "String version is 
" ,s> ;
till (s,20, » );
print-f ( “\n7.s" ,s) ;

How to fill a string with a character, and the conversion from number form to string form.

FIGURE 8. 7
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Figure 8.7 shows the STRINGS equivalent, fill, and the str functions. Note that the dollar 
sign cannot be used as part of a function name in ‘C’. The fill(s,n,c) function emulates the 
STRINGS action, but you have to remember the method of specifying the character. The 
parameters that have to be passed are the string pointer (name), the number of characters 
and the character that is to be used for filling the string. As usual, the function counts the 
number of characters into the array, using *s++=c  to put a character c into the string at 
pointer number s, and then increment the pointer. By using n as a counter, the correct 
number is put in place. The ending zero is then added by using * s=0, and the original string 
starting address is then returned. Remember that the use of s in the function does not affect 
the string pointer that is passed to the function, though we might affect the string 
characters by use of the pointer. This function is called by typing fill, followed, in brackets, 
by the string name, the number of characters and the filling character. Note that only one 
character can be specified in one fill instruction, and that the character is surrounded by a 
single quote each side, not a double quote. Remember, ‘a’ is a character, “a” is a string. The 
result of fill is the string s filled with the characters. There is no check on the number that is 
passed to this routine, so that it would be possible to stop the program by specifying a 
number which was greater than the dimensioning of the array. Since these are skeleton 
functions, you can fill in the fleshy bits for yourself.

The integer to string a function is even simpler. The string name and the number are passed 
to a sprintf statement, which carries out the conversion. There is really little point in 
making a separate function out of this one, and you would normally make direct use of 
sprintf. Converting from a string form of a number into the form of a number variable can 
also be carried out by a built-in function, sscanf. For example, if string s [] =“123” and n 
is declared as an integer, then using:

sscanf(s,“ %d”,&n);

will assign the number 123 to variable n. This carries out the action of VAL in BASIC.

Concatenation and insertion.
Concatenation means joining two strings together, and it is achieved in most dialects of 
BASIC by using a + sign between strings. There is no similar instruction in HiSoft C, but 
there is a very useful strcat function in the library and we can easily write a skeleton 
function for the insert action. Insertion in this sense means that one string is added to the 
other at some intermediate position. You might, for example, insert DIME into SENT so as 
to get SEDIMENT, though it’s hardly likely to be something that you would do very often! 
Nevertheless, both concatenation and insertion are useful actions at times and they can be 
provided with the functions of Figure 8.8.

“#define CLS rawout(12)
»define NULL 0
»define EOF -1
char »strcat(base, add)

char »base, »add;
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static char *dest;

dest = base;
while (*dest)  ++dest;
while (*dest++  = *add++) ;
return base;

char *ins(si,s2,n)
char *sl,*s2;
i nt n ;
Y
char *q,*p ,tmpC20J,*t ;
p=sl ;
whi1e(n—)p++;
q=p;
t=tmp;

while (*p>  *t++=*p++;
*t=0;
whi1e(*s2 )*q++=*s2++  ;
t=tmp;
whi1e(*t )*q++=*t++ ;
return si;

J

main <)

static char siL20J=“sent";
static char s2El="dime";
static char 531201="sent“;
static char s4E j = ‘'dime‘‘;
CLS;
print! ( "\n7.s‘Zs\n“, "strcat gives ",strca 

t tsl,s2));
printf ( " \n7.s7.s\n" , "ins gives “,ins(s3,s 

4,2));

Concatenation and insertion of strings using functions.

FIGURE 8. 8

Looking first at the main program, two sets of strings are declared and initialised. One pair, 
si and s2, is concatenated by using the strcat function which has been copied from the 
library. The other pair, s3 and s4, is subjected to the insertion routine. In this routine, two 
strings and a number are passed. The number decides how many characters of the first 
string are allowed before the second string is inserted. In this case, since n=2, the result 
should be se from string s3, then dime from string s2, then the remaining nt from string 
si, giving sediment.
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The strcat action is fairly simple. Pointer dest is assigned to the start of the first string and 
the first while loop then moves the pointer to the last character in the string, the one 
preceding the zero. The next while loop then transfers characters from the second string 
on to the end of the first one, overwriting the zero at the end of the first one. This continues 
until the final zero of the second string has been assigned, and the program then returns the 
original starting pointer. Since the characters have been changed in the routine, the string 
that we passed to the routine is now changed, so that we can’t use string si in the second 
part of the main program.

The action of ins is slightly more complicated. For that reason, the programming has been 
left in a simple form rather than compacting it. The first action is to set pointer p to the start 
of the first string. A while loop then advances this pointer by the number of places given by 
the number, n. Note that there is no error-trapping here, and you might want to ensure 
that a silly value of n could not corrupt the string. The pointer q is then used to hold this 
position, the position of insertions, and pointer t is used in another while loop to put the 
remainder of the first string into another string variable, tmp, which is dimensioned to 20 
characters. This is another place where you might want to put an error trap to prevent this 
string from being over-filled. The zero is placed at the end of this string (can you think of a 
better method having seen strcat in action?), and then characters are copied from the 
second string. Finally the remaining characters from the first string are copied from tmp, 
and the pointer to the first string is returned.

Other string and character functions.
The HiSoft manual illustrates a method of obtaining the INSTRS action of BASIC, and 
also for the more usual action of obtaining a starting position for a string. The normal 
action of Locomotive BASIC is to get the position number of one string inside another. For 
example, using INSTR(JOHN SMITH,SM) should give the answer 6 since the ‘S’ of 
‘SMITH’ is the 6th character.

#detine CLS rawout(12)
ftdefine NULL 0
♦define EUF — 1

int strncmpisl, s2, n)
char *sl,  *s2;

if (in) return 0;
while (*sl  —— *s2)

if ( ' *sl>  return 0; 
if ( ! —n) break;
++sl; ++s2;

return <sl — *s2;
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unsi gned

s t at i c c i ■ a t * p,

P = 5.
d Ü i: Wi l 1 1 6 t * p T > f 

return p-s-1;

int 1.■ r=>t ,ma 1 ri, bü.D>
char *mai  n , *suij  ;

static int ien ;
char *s;
ien=str1 en tsuû);
s—main;
ÜO L

3 + »' ! strncmp mai n , sub , 1 en ) ) return (mai n—s 
y 4

; wh lie ( *++ma  i n ) ;
return 0;

mai n ( >
<
static char str L i = “ feststring“ ;
static char bi t L 1 —" tst;

pnntt i " inZs/.d “ , “F'osi 11 on is “,inst(str, 
bit));

A modification of the library function for the INSTR action.

FIGURE 8. 9

Figure 8.9 shows an alternative version of the library function which will always provide 
the position number, or zero if the string cannot be found. There is no provision in this 
routine for starting the search at a given number of characters along the main string, but 
this is something that you can easily add if you want it. All that has to be added is the integer 
number, which is then added to the starting pointer of main. The "action of the routine 
which is shown depends heavily, like the corresponding HiSoft library routine, on the use 
of strlen and strncmp. The length of the small string is obtained as the integer len, and 
the pointer s is set to the start of the main string. The do..while loop makes a test and 
continues until the test succeeds or until the end of the main string when the zero character 
is detected after incrementing the main pointer number. The test is that strncmp(main, 
sub,len) is not zero. The strncmp function will return a zero unless two strings of the 
same length len are identical. The loop will therefore cycle round, advancing the starting 
character until len characters are identical in the two strings. If this is found, then the 
return is of (main-s), the difference between the incremented pointer and the original value 
for main. This is the position number for the first character of the small string. The only 
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safeguard in this routine is that a zero is returned if the end of the main string is found 
before a match can be found, and this causes a problem if the two strings are identical. The 
character count in this example starts from zero, so that identical strings give the same 
result as no match. If this is likely to cause trouble, use a return(main+l-s) in the inst 
function.

In addition to the string functions that we have looked at in detail, there are several others 
which are sometimes useful. Function strchr will give a pointer to the first place in a string 
where a given character occurs. The manual illustrates the main use for this function which 
is to check that a character belongs to a set, such as the letters in a Roman number, the 
numbers of the weekdays, or whatever. You can also see from the example that this is one of 
the actions which Pascal does rather more neatly than ‘C’! There is also a similar function 
strrchr, which returns the last position of character c in the string. This can find, for 
example, the surname in a name that consists of more than two parts by getting the last 
space in the name. Three other functions are rather more exotic. Function strpbrk 
compares two strings, and finds the first place in ‘stringl ’ where any characer from ‘ string?’ 
occurs. This one is of use if you are looking for the occurrence of particular letters for some 
reason. The strspn and strcspn functions both look at the start of a string, si, and 
compare it with a string s2. If the first few letters of si contain letters from s2, then strspn 
returns the number of letters. The function strcspn, by contrast, returns as many letters at 
the start of si as are not in s2.

In addition to these string functions there are many useful functions which operate on 
characters, one by one. The most useful of these character functions are built-in, and they 
consist mainly of character analysing actions. Looking at the built-in functions to start 
with, you can use isalpha to decide if a character is a letter, upper or lower case, and 
isdigit to decide if a character is a digit. The other three built-in tests are islower to test 
for lower-case, isupper to test for upper-case, and isspace to test for ‘whitespace’. 
Remember that a ‘whitespace’ character can be the spacebar character, the newline, or the 
tab character. Also built in are two character changing functions, tolower and toupper, 
which change the case of a character. There are also several tests which are not built in: for 
alphanumeric characters (letters or digits); for ASCII codes; for control characters; for 
graphics characters; for printing characters; or for hex digits. All of these have their uses 
particularly if you want to parse a phrase, of which a little more later. Meantime, Figure 
8.10 illustrates some of these tests and conversions in action.

»define Ci_S rawoutti?) 
»define NULL 0 
»define LuF — 1 
un signed strien( s ) 

char *s;

static char *p;
P = sj
do ; while \*p++?;
return p-s-1;

char »cap (name) 
char »name;
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<_i idr" *p ;
int j , 1en;
p=name;
ien—strlen (name) ;
wfi i ie (*p )

it<p=-name) *p=tcjupper  (*p ; ;
i+ (isspace(*p ))* (p+1)=toupper(* (p+1));
P++; 
J 

return name;

main()

static char nameL3="John smith williams"

pr i ntt ( " \n'/.s7.5\n “ , "Name is ",name);
pr i ntr < "\n7;s>.s\n " , "Name is now “,cap(nam 
s) > ;

J
Illustrating the character tests and conversion functions.

FIGURE 8.1 0

The aim here is to analyse the letters of a name and convert correctly to upper case. The 
principle is that the first character ought to be in upper case, and any character which 
follows a space should be in upper case. Perhaps you might like to try altering this routine 
so that it could deal with names that contained a hyphen? The important points, however, 
are to see the tests in action, and how the changing functions are used.

The main intended use of all these tests, however, is in writing interpreters and compilers. 
The ‘C’ language was developed just for such purposes, and this accounts for the number of 
functions which analyse and work with characters. One of the important features of a 
language interpreter or compiler is ‘parsing’. This (for the sake of readers younger than 40) 
means separating the parts of a sentence to explain what each part does. In a BASIC 
statement such as PRINT C, for example, PRINT is the word that describes the action, and 
C is the name of a number variable. A parser function can deal with a piece of text like this 
in at least two ways. One way is to go through the letters, looking for the space and then 
splitting the phrase into its two parts. If this is done, then a statement such as PRINTC will 
be rejected because the space is missing. The alternative is to use the strspn type of action 
to detect the PRINT, and then separate the ‘C’ by using the number from strspn. This is a 
more common method, and in most BASIC interpreters a code number (the ‘token’) is then 
substituted for the action word. In this book, there simply isn’t space to start considering 
the fascinating work of writing a compiler or interpreter. If you are interested, I can 
thoroughly recommend the book ‘Writing Interactive Compilers and Interpreters’, by P.J. 
Brown (John Wiley). Apart from anything else, it’s a thoroughly readable, interesting and 
useful book for anyone with serious programming interests.
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Chapter 9

Graphics, sound and BASIC conversion.
The excellent graphics and sound capabilities of the Amstrad micro would be wasted if it 
were not possible to make use of them from HiSoft C. This is done by making use of a 
library of functions which carry out the graphics and sound actions. In addition there is 
another library which carries out actions such as setting function keys, which are available 
in the BASIC of the Amstrad machines. Since the use of these graphics and sound 
instructions in BASIC is well documented elsewhere, I shall not take up space in this book 
with them. In general, all of the normal instructions that Locomotive BASIC uses for 
graphics can be implemented in ‘C’ with a few slight changes in syntax and one major 
enhancement. The SOUND statement of BASIC, however, has been abandoned in favour 
of a scheme which is closer to the methods used on the IBM and MSX computers (and 
Dragon, if anyone remembers!).

As an illustration, we’ll look at a simple piece of graphics executed by ‘translating’ a BASIC 
routine.

10
20
30
40
50
60

MODE 1
CLG
FUR N— 1 i Ü tj0
MOVE 320,200
DRAW RND(1)*639, RND(1)*399, RND( 1 > *4
NE XI

A graphics routine in BASIC.

FIGURE 9.1(a)
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#incÌLide stdio.h 
/*Simple  graphics*/  
ma i n O 
"u 
int n;
rawout(4);rawoutti);
Z*set  mode 1*/
G_clear_winbow();
/*uLG*/
tor tn=l;n<=50;n++)

U
G_move_absolutet320,200) ;
/*HOVE (320,200)*/
G_set_pen (rana t ) 7.4) ;
/ *ran  dom col our * /
tì_l i ne absol Lite (ranci t ) 7.639, r and ( ) 7.399 ) ; 
/«MOVE*/

J

rawin O ;
7*hold  pattern*/  
J

#mc iude ?basic2.1ib?
^include ?stdio.lib?

The conversion into ‘C’, using the basic2.1ib routines.

FIGURE 9.1(b)

The BASIC version is shown in Figure 9.1(a), the ‘C’ version in 9.1(b). The BASIC 
statements have been ‘translated’ into ‘C’ functions and statements, using the HiSoft 
Manual list of equivalents. Because these call for functions from the stdio.lib and 
basic2.1ib, the header stdio.h must be placed first in the listing and the other library 
names put at the end so that the compiler can select functions in the usual way. Most of the 
translations are fairly direct, but some changes are needed to random numbering. The 
random number function of Locomotive BASIC gives a random number which is always 
less than 1. The rand function in the stdio.lib generates a number which is an integer, and 
which is not so random as the RND of BASIC. You can see this when you run the program, 
because the pattern is always the same. Even if you try to alter the randomness by using 
srand(n) at the start of the loop, you’ll find that the patterns repeat. This is a consequence 
of not being able to use floating-point numbers, which prevent the ROM routines for 
random number from being effectively used. You can, however, make use of other random 
number routines. In place of the RND(1)*399  type of routine that is used in BASIC, the ‘C’ 
version uses rand()%399 to create a ‘random’ integer and find its modulus with 399 - in 
other words, to find a remainder between 1 and 398.

Any program in BASIC which deals with graphics can make use of a ‘C’ translation of this 
type. It’s much more interesting, however, to make use of the new routines that ‘C’ permits.
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The main new graphics routine is draw(), and its action will certainly not be familiar to 
Amstrad owners though it is well known to users of the MSX machines. Knowing the 
action is one thing, knowing the syntax is another. Like the function which is available for 
sound, the draw function uses position numbers which don’t bear much similarity to the 
numbers that are used in the BASIC of the Amstrad machines. In addition, the numbers 
that are used must be expressed in a way that is certainly not familiar to many 
programmers nowadays, - octal. There’s more about octal scales in Appendix A, but to 
introduce the draw action, take a look at the listing of Figure 9.2.

♦include stdin.h
#de-fine CLS inline(0xcd,0xbbdb);
main (>
u
char »string;
CLG;
string="0 m\0\0\217\i 1\177\2\0\0\0";
draw(string);
r awin ();

♦include ?basicz.iib?

An illustration of the draw function in the basic2.1ib library. Note that the numbers are in the octal scale.

FIGURE 9.2

This defines a string:

“0 m\0\0\217\ 1 1\ 177\2\0\0\0”

which is then used in a draw function. The result of all this effort is a horizontal line across 
the screen, half way up and extending all the way across. How does the string cause this 
effect5

The answer is that the letters act as commands for graphics actions. The complication is 
that each letter has to be followed by numbers, anything from zero to four numbers, and in 
octal. The three commands that are illustrated are 0 (the zero byte), 1 (ell) and m. The 0 
command causes the graphics cursor to go to the bottom left-hand comer, the (0,0) 
position. This command needs no numbers following it. The 1 command moves the cursor, 
but without leaving any trace. It needs four numbers following it. The m command letter 
means move, and it draws a line. It also needs four numbers following it. The range of 
numbers is the same as the standard Amstrad BASIC range. The range ofX numbers is 0 to 
639, the range of Y numbers is from 0 to 399. These are denary numbers, and the ones that 
follow the commands are not. The conversion is by no means simple, because each number 
has first to be converted into two bytes, in low-high order, and then into octal.
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The conversion is carried out in stages. First of all, if the number is negative, it has to be 
subtracted from 65536. If the position number that you want to convert is then less than 
256, then it fills only one byte of memory with zero in the upper byte. A number such as 190, 
for example, can be written as 190,0 - meaning a low byte of 190, high byte of zero. If the 
number is greater than 255 but less then 512, then its high byte is 1 and its low byte is 
obtained by subtracting 256. For example, the number 320 has a high byte of 1, and a low 
byte of320-256=64. It would be written in two byte form as 64,1. If the number is greater 
than 512, it has a high byte of2, and the low byte is the number less 512. For example, 600 
has a high byte of2, and a low byte equal to 600-512=88, and would be written as 88,2. If 
the position number started off as negative, then subtracting from 65536 produces a large 
number and it’s easier to find the high/low bytes using the alternative procedure. The high 
byte is number/256 (integer division) and the low byte is number%256 (the modulus). 
Either procedure gets numbers into two-byte form. The next step is to get them into octal 
form. Take a number such as 88, divide it by 8, which gives 11 and no remainder. Write 
down the remainder, which is 0. Now divide the 11 by 8, getting 1 and a remainder of 3. 
Write down the 1, then the 3, then the final zero, and you have 130, the octal version of 88 
denary. If you find this a nuisance, then you have two options. One is to buy an octal 
calculator, such as the TI® LCD Programmer, the other is to make use of the program in 
Figure 9.3.

/♦Octal bytes*/  
unsigned oct(n) 
unsigned n;
L
unsigned y,x,b; 

y=x=B;b = l;
dot
if< y *=8>n=y;
x+=b*(nX8) ;
b*=10;
y=n/ 8;

; wh i i e (y .-=8) ;
x +=b*y ;
return x;

J
unsigned negittinp? 
char *inp;

unsigned j;
inp+=l;
sscanf ( i np , " z.d “ , & j ) ; 
return (65536-j);
J 

main ()
<.
unsigned j,lo,hi; 
char inpL51;

dot
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printf("\nDenary number — \n“>; 
scant ( “ 7.s",inp);
if (*inp==  —j=negit(inp) ; 
else sscanf (inp,i: 7.d“,&j);
1 o= j 7.256;
hi=j7256;
printf (“\n 7.s \\7.d \\7.d \nH,"Octals ar

e “,oct(1o),oct(hi)>;
Iwhi le (j ! =¡3) ;

J

A program for performing conversions from denary to octal, positive or negative.

FIGURE 9.3

This carries out the conversions for any number in the approved range ofO to 640, positive 
or negative - you enter the number when asked, and you get a printout of the two bytes in 
the correct order. The bytes are written with the backslash to ensure that each one is stored 
as one character, rather than as an integer.

With the octal bother out of the way, we can give our attention to the graphics string 
commands. The move and line commands each cause the cursor to move to a new position 
which is ‘x’ points to the right of the old one, and ‘y5 points up. If you want to move left or 
down, you will have to put a negative sign into the denary number, and then convert. The 
program of Figure 9.3 will cope with negative numbers. Each number will be in two-byte 
form, even if the number is a small one, and must be in octal, using the backslash. The only 
absolute position command is 0, which means that the cursor moves to the origin, point 0,0, 
the bottom left-hand corner. The m command can then be used to position the cursor, the 
p command to position the cursor and light a point and the 1 command to draw a line. The 
string of commands must end with a final 70’ so that the compiler can recognise the end. 
Suppose we wanted to draw a square somewhere around the centre ofthe screen. Figure 9.4 
shows the routine which would do this.

^include stdio.h 
ttdefine CLG iniine(0xcd,0xbbdb); 
ma i n ()

char »string;
CLb;
string=“0m\35\l\257\0 i \0X0X62X0 1 X62X0X
0X0 1 X0X0X316X377 i X316X377X0X0X0"; 
draw(string);
rawin();
J 
»include ?basic2.1ib?

A square drawing routine.

FIGURE 9.4
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The CLG command has been put in with a #define, though it could just as easily have 
been provided from the basic2.1ib, since this library has to be used in any case. If, 
incidentally, you find that you get an error message while the stdio.h is being read, this is 
always due to memory corruption and you will have to switch off and completely reload.

The string is the one that will draw the square. The starting zero puts the cursor to the 
bottom left hand comer of the screen and the following four numbers of the m command 
place it at the bottom left hand comer of the square position, which is x=285, y=175 in 
denary numbers. These translate into the octal set \ 35 \ 1 \ 257 \ 0. From this starting 
point, the sides of the square are then drawn. The first step is to draw a vertical side by 
specifying a y-change of 50 and an x-change of 0. This makes use of the octal set 
\0\0\62\0, with the 1 command used for drawing the line this time, not just moving 

the cursor. The next line is the top of the square, a movement of 50 steps in the positive y- 
direction. This uses the octal sequence \ 62 \ 0 \ 0 \ 0, and from this point, the 
movements will need negative co-ordinates. The movement of-50 in the y direction is 
programmed using octal \ 0 \ 0 \ 316 \ 377 , and the last movement of -50 in the x- 
direction uses \ 316 \ 377 \ 0 \ 0, and the string ends with another \ 0. When this runs, 
you’ll see the square drawn very quickly. The rawin() line ensures that the appearance of 
the square is not disturbed by the ‘Type y to run:’ message until a key is pressed.

The use of a string of commands like this is rather restricting, because you can type only 
about two lines of a string using the keyboard. You can, however, use a set of draw 
statements in sequence, because each one can take over where the other left off. One 
particularly useful way of doing this is to arrange the strings into arrays, and then use a loop 
to draw the array strings.

itinclude stdio.h
^define CLG inline(fixed,fixbbdb) ; 
ma in ( )

i n t n ;
char *stringL23;
CLG;
stringL03="fim\35\1\257\0 ì\0\0\62X0 i \62 
\0\fi\B\0“;
stringi 1 j = “l\0\0\316\377 1\316\377\fi\0X 

fi" ;
+ or (n-0;n< — 1 ;n++)
draw(stringLnl) ;
rawi ni);

#include ?basic2. 1 ib?

How an array of draw strings can be used.

FIGURE 9.5
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Figure 9.5 illustrates this with a simple example, the square pattern drawn as two sections 
with an array of two pointers. This allows you to make as much use as you need of the draw 
strings and also makes it possible to test drawings step by step, with one step assigned to 
each pointer in a pointer array.

#iDelude stdio.h
#detine CLG iniine(0xcd,0xbbdb); 
ma i n ()

i nt n;
char *stringE2J;
draw ( “cb\0‘‘) ;
CLG;
stringE03=“0m\35\1\257X0 cf\l 1\0\0\62\0 

1 \ <b2 \ 0 \ 0 X 0 \ 0 u ;
stringE1 J — “c +\3 1\0\0\316\377 \21 1X316

\377X0X0X0“;
tor (n=0;n<=l;n++>
draw(stringEnJ);
r awin(>;
J

^include ?basic2. lit)?

Adding colour instructions to a draw string.

FIGURE 9.6

Figure 9.6 illustrates this by using the separated strings to add colour instructions. The 
colour command letter is c and it is followed by the letter \ ‘f or \ ‘b’, meaning 
foreground colour or background colour respectively. These colours are taken from the 
normal Amstrad INK range. F or Mode 1, this consists of four colours using numbers 0 to 3. 
You can, of course, change the colour set by using the ink() function in the basicLlib set 
of routines. The usual rules of PEN and PAPER colours are followed. If you want to change 
the background colour you need to follow it with a CLG instruction, so that a separate 
draw string is useful. In Figure 9.6 this has been done, using the conventional INK(0), dark 
blue, as background, but with two different foreground colours. Note the syntax for the 
colour changes, using cf \ 1 and cf \ 3.

More spectacular changes can be achieved by using the scale-changing features of 
command s. Command s is followed by the usual four numbers, two for each dimension, 
and it causes the scale of the drawing to be changed. The original scale is represented by a 
factor of 4, so that using the string “s \ 4 \ 0 \ 10 \ 0” will make all of the x-dimensions 
normal, as specified, and all of the y-dimensions double scale.
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^include stdio.h
#de+ine CLG inline(0xcd,0xbbdb>;
main i)

int n;
char *stringE2J;
draw(“cbX0“);
CLG;
draw("5X4X0X10X0");
stringt0]="0mX35XlX127X0 c-FXl 1X0X0X62X0 

1X62X0X0X0X0";
stringE1]="cfX3 1X0X0X316X377 X21 1X316

X377X0X0X0";
-for (n — 0; n< = l; n++)
drawtstringEnJ);
rawin O ;

^include ?basic2.1ib?

Using the scale-change command letter s.

FIGURE 9.7

In Figure 9.7, you can see that this causes the drawing to be stretched into a rectangle. Note 
that the starting point has had to be altered to allow for the change in the y-dimensions. 
The scale changing can be examined in more detail in Figure 9.8.

#include stdio.h 
tfde+ine CLG inline(0xcd,0xbbdb); 
ma int)
V 
i nt n;
draw("cbX0") ;

CLG;
pattern ();
draw("SX6X0X6X0X0");
pattern(>;
draw("5X10X0X10X0X0“);
pattern();
draw("5X12X0X12X0X0“);
pattern () ;
rawi nt);
J

itinclude ?basic2.1ib? 
pattern()
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char *stringl2J;
i n t n;

stri ngE0J="0 c-F\l 1 X0X0X62X0 1X62X0X0X0X 
0
stringLlJ="c+\3 1X0X0X316X377 X21 1X316

X377X0X0X0“;
-For (n=0; n< = l; n++)
draw(stringtnl);

Illustrating the scale sizes, which are applied relative to the previous drawing.

FIGURE 9.8

In this example the drawing has been put into a function, and the scale strings are used in 
the main. If you look at the sizes of the squares which are drawn in this routine, you’ll see 
that they are by no means proportional to the (octal) numbers which follow the ratio 
4:6:8:10 in denary. This is because each scale string operates on the previous string that was 
drawn. For example, supposed that we used scales of 4,5,6 and 7 in sequence. If the square ■ 
drawn with the scale of 4 (normal 1:1) had a side of 50 points, then the square drawn with 
scale 5 would have 50*5/4=62  points (no fractions allowed). This, however, would be the 
size of the square for the next action, so that the scale of 6 would produce a square of side 
62*6/4=93  points, and so on. To prove this point, try making each scale number equal to 5 
and you’ll see a group of squares drawn with equal increments in size. This is a point which 
is not made clear in the manual, and only emerges when you study the routines in the 
library that are used for the graphics functions. It’s a good illustration, in fact, of the action 
of static integers in a function.

Finally in this section, the r command letter will cause a pattern to be drawn rotated by one 
right angle in the clockwise direction. Once again, this is a command which has to be used 
with some understanding. The effect of r is to rotate everything that follows it. If, for 
example, you follow the r command with a move from 0,0 (bottom left hand comer) to the 
centre of the screen, then the rotation will attempt to move from the corner to some point 
off the screen. Any movements like this must be made before the r command is used.

#include stdio.n
ttdefine CLG inline(0xcd,0xbbdb);
main <)

int n;
draw("cb\0");

CLG;
draw("0 SX4X0X10X0 mX35\1X127X0X0");
pattern();
draw(“r X0");
pattern();
draw("r X0");
pattern(); 9-9



draw("r\0");
pattern();
rawin();

ttinclude ?basic2.1ib?
pattern()

*<.
char *stringL2J;
int n;

stnng[0] = "ct\1 1\0\0X62\0 1 \62\0\0\0\0"

stringi 1J = “c+\3 1\0X0\316\377 \21 1X316 
\377\0\0\0U;
-for (n=0; n< = l ; n++>
draw(stringin]);

Illustrating the rotation of a drawing.

FIGURE 9. 9

The program in Figure 9.9 shows the old square-drawing program altered to suit. The 
scaling and the movement of the cursor are all done before the remainder of the routine is 
called as a function. This shape is then rotated three times, forming a pattern of rectangles. 
Notice that the rotation is always around the first point in the pattern, the one which 
formed the bottom left hand comer of the original pattern.

Sounds unlimited.
In the space of this book a really full explanation of the sound commands of the Amstrad 
machines is not appropriate, and I have to refer you to specialised books modestly naming 
no names. The methods by which sound can be controlled using HiSoft C is, however, 
rather different from the methods of Locomotive BASIC, and for that reason requires 
rather more background information than would be needed otherwise. The Amstrad 
BASIC SOUND commands require all of the instructions to be in number form. If you 
read music, or can work with sheet music, this is the last thing that you want. The ideal 
method of programming music would be to work with the named notes of music - and this 
is what is done when you use the play() routine in the HiSoft C basicl.lib library. It 
might appear to be the obvious thing to do, but very few computer languages do it!

If you have no experience of music, however, this may seem rather puzzling to you. How do 
we go about writing down music? For each note we have to specify what the note is (its 
pitch), how loud it must be and for how long it is to be played. In written music this is done 
by using a type of chart for the pitch, and different shapes of markings (notes) for the 
duration. Loudness is indicated by using letters such as f (loud) and p (soft). More than one 
letter can be used, so that fff means very loud, and ppp means very soft. Each sound is 
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indicated by a note, a shape on the chart, and the shape of the note gives some information 
about the duration of the note. In addition to this, each piece of music will start with some 
advice about the speed at which the notes are to be played. One of these methods is a 
metronome reading. The metronome is a gadget which ticks at regular intervals, and the 
metronome reading for a piece of music is the number of metronome ticks per minute. A 
more ancient way of indicating speed is the use of Italian words like allegro (fast), lento 
(slow) and so on. What these speed settings decide is how many unit notes will be played in a 
minute. The unit note is the crochet, so if a piece of music is marked at a metronome speed 
of 60 (pretty slow), then there will be 60 crochets played per minute. The durations of all the 
other notes are decided in comparison to this unit, the crochet. A minim sounds for twice as 
long as the crochet, a semibreve for twice as long as a minim which is four times as long as 
the time of a crochet. The quaver sounds for only half the time of the crochet. A semiquaver 
sounds for only half the time of a quaver, which is quarter of the time of a crochet. The 
crochets and other timed notes are indicated by the shapes of the written notes, as Figure 
9.10 shows.

How the shapes of the note symbols are used in written music.

Symbol Time (relative 
to crotchet) Name

J* ‘/8 Demisemiquaver

? >/4 Semiquaver

? >/2 Quaver

J 1 Crotchet

J 2 Minim

<> 4 Semibreve

FIGURE 9.1 0

In addition symbols are used to indicate silences in the music, and these are based on the 
same idea of a unit duration of silence and others which are twice, four times, half, or 
quarter. These silence marks are shown in Figure 9.11
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Rest symbol
Time (relative to 

crotchet)

Silence marks in music.

FIGURE 9.1 1

The pitch of a note is indicated in written music by placing it on to a kind of musical map 
which is called the ‘stave’(Figure 9.12).

Treble

F 
D
B 
G 
E

C O

Bass

The stave and how notes are placed on it.
FIGURE 9.1 2

Piano music uses two of these staves, each consisting of five lines and four spaces. The 
upper stave is the treble stave, and it is used for writing the higher notes which will be 
played on the piano with your right hand. The lower stave is the bass stave, the lower notes, 
played with the left hand. Instruments which do not use a keyboard will normally have 
music written with only one staff. In addition to this representation of notes by position on 
staves, we also use the letters of the alphabet from A to G to name the notes.

The piano is the most familiar type of musical instrument, and its keyboard is set out so as 
to make it very easy to play one particular series of notes called the ‘scale of C Major’. The 
scale starts on a note that is called Middle C and ends on a note that is also called C, but 
which is the eighth note above Middle C. A group of eight notes like this is called an 
‘octave’, so that the note you end with in this scale is the C which is one octave above 
Middle C. Because music (in the Western hemisphere, at least) is based on this group of 
eight notes, we use only the first seven letters of the alphabet in naming the notes. Why 7 ?
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Well, the eighth note is the end of one octave and the start of the next, so it bears the same 
name. The scientific basis of all this is that if you take Middle C and find the frequency of 
the sound of this note, then the C which is the next octave above Middle C has precisely 
double the frequency value of Middle C. The C below Middle C has half the frequency of 
Middle C, and so on. That’s why the ancient Greeks always thought that music was a 
branch of mathematics.

Arrangement of keys on a piano keyboard.

FIGURE 9.13

The appearance of these keys on the piano keyboard is illustrated in Figure 9.13. Middle C 
is, logically enough, at the centre of the keyboard, and we move right for higher notes or left 
for lower notes. One of the complications of music, however, is that the frequencies of the 
notes of a scale are not evenly spaced out. The ‘normal’ full spacing is called a ‘tone’ and the 
smaller spacing is called a ‘semitone’. Each scale will contain two semitones. On written 
music, Middle C appears midway between the treble and bass staves.

The key instruction for playing music with HiSoft C is the play() function. Like draw(), 
play has to be followed by a string name and a channel number. The string then contains 
all the information that is needed to produce the music. The channel number is used in 
exactly the same way as it is used in Locomotive BASIC, with numbers 1 to 7 for channels 
and the higher numbers used for synchronisation, holding a channel, or clearing sound 
buffers. The notes are specified simply by their names, as used in music. These are the 
letters A to G, with upper-case letters used, and we also use the signs # and b. The # sign 
means a semitone higher than the note indicated by the letter, so that A# is a semitone 
above A - the note a musician would call ‘A-sharp’. Similarly, Ab would mean a semitone 
below A, or ‘A-flat’. In addition to the letter names of the notes, we can use other control 
letters to indicate the octave, volume, tempo, amplitude envelope, pitch envelope and 
noise. The octave letter is (upper-case) O, and it has to be followed by a number whose 
range is 0 to 8. If you don’t specify any ‘O’ value, the computer will set itself to 03, which is 
the octave that contains Middle-C. The actual range of an octave for the purposes of the 
play() function is from A to G, rather than the usual C to B range that is used with 
computers. OO means the lowest range of computer notes; 08 gives the highest. This 
means that the computer can play nine octaves of notes, which is more than the range of 
any ordinary musical instrument. The volume control letter, V, can be followed by a 
number whose range is 0 to 15. This lets us make music whose volume can change during 
the playing of the music. As you might expect VO gives the lowest volume, V15 the greatest.
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The computer sets to V12 if you don’t specify anything different. We can, of course, still set 
the volume control on the computer itself to suit our own tastes. The duration of a note is 
controlled by a number in the range 1 to 40 octal, and the default setting is 4. This duration 
number, if needed, is placed following the note name. The duration of each note is mainly 
set by the tempo of the music, and the number following the note will be used mainly to 
change specific notes, not with each and every note. The tempo is set by using the T 
command with a number in the range 1 to 377 octal.

Time now for some illustrations. This involves some extra work if you are using the 
CPC464 model. Start by clearing out any program text, and then loading in the basicl.lib 
text file. When you list this, then, at or near to line 4370 you’ll see the statement:

reg__bc=0x80FF; /*  asynchronous, all RAM*/

which is intended for the later CPC664 (of the brieflife) and CPC6128 machines. If you are 
using the CPC464, the statement has to be changed to OxO2FF to correct a problem in the 
way that the CPC464 handles these routines.

We can then start with Figure 9.14.

♦include stdio.n 
main()

5etup_5ound();
P1 ay i " T \74 0 \ 3
J

♦include 7‘basi c 1. i i b?

A simple example of play in action. The function setup_ sound must be called before any play action.
FIGURE 9.14

This calls the function setup__ sound, which prepares the routines for handling the play
actions. The string is then defined and played in one action by using the play(string, 
channel) form. The notes consist of the scale that starts at Middle C. How do I know? 
Well, Middle C in the HiSoft C pattern is the third note in octave number 3, so by omitting 
an octave command (which gives the effect of 03) and specifying C, we get Middle-C. The 
other notes have been written in sequence, but when we get to the note A, we are starting a 
new octave. Unless you force the octave number higher, the A below C will be played. We 
could use 04 for this purpose, but a more convenient method is to use the apostrophe sign. 
The apostrophe following the note will raise the pitch of that note by one octave - you need 
an apostrophe for each note that is altered in this way. Placing an apostrophe preceding a 
note will lower its octave by one. The scale uses the default value of volume and a speed 
(tempo) of 74 octal, 60 denary. This corresponds to 60 notes per minute, one per second, 
which is a nice slow pace. This also is a default setting. Each note in the string is followed by 
a full-stop, which marks the note as one to be played. The computer will ignore any note 
which is not followed by this full-stop. When you run this the ‘Press y to run:’ message 
appears almost at once, and if you press any key before the music has finished you will stop 
the sound. Pressing the y key will always re-start the scale.
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The scale of C is a simple one, but it’s a good piece of music to illustrate a few of the things 
that can be done with this play command. Try Figure 9.15 now, to see what we can do with 
the volume command, V, and the length numbers.

♦include stdio.h 
main()

char »music;
setup sound ();
music="T\170 V\2 C.D.E.F. V\7 G\62.A'.B 
. VX17 C'\l.
pi ay(music,2) ;
J

♦include Tbasicl.lib?

Using the V command letter to change volume, and using note duration numbers.

FIGURE 9.15

In the example, we have used the ordinary tempo, 120 denary (170 octal), but changed the 
volume and length of note settings. The reason for having separate tempo and length 
controls is that you can get the tune sounding right by using the length number to select the 
length of notes which are not crochets, and then use T right at the start to set whatever 
tempo you like. If you want to speed things up, use a low value for T, if you want a funeral 
march, use a high value. You can even write the string without a T, and then add it in by an 
earlier command like:

play(“T170”);

Another useful part of the string of notes is the W command letter. This means ‘wait’, and is 
used to provide a pause between notes. The pause duration can be controlled in exactly the 
same way as the duration of a note, by using an octal duration number in the range 1 to 40 
following the W and separated by a backslash. The full stop must follow the W command 
and its duration number just as if it were a note.

♦include stdio.h
main(>

■L
cnar »music[2J;
i n t n;
setup sound(>;
musicL0J = '‘T\300 G.0X4 A. Bb. W\2. A. D. 'G. WX 
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musici 1 ] = “A. D. C. Bb\2. A\2. Bb\2. C\2. Bb. vi\4 
.A\10.
-for (n=ß;n<=i;n++>
p1 ay(musi c Ln3,2>;

♦ include 7‘basi c 1. 11b?

More music, with the W command letter used for silences.

FIGURE 9.1 6

Figure 9.16 illustrates the use of the wait commands in a piece of music that also contains 
flattened notes, using the ‘b’ sign. Unless you are a very experienced musician, you will 
need to use sheet music to provide the notes for you. If you can read sheet music, it’s an easy 
matter to translate it into the strings that are needed for the play function.

Using envelopes.
If you have used envelopes along with the BASIC of the Amstrad machines, you will not 
find it too difficult to adapt to the use of envelopes with the play() function. If you use an 
early model of the CPC464, however, you may not be aware from the manual of the variety 
of envelopes that can be created. These are described in detail in a book of mine, Music & 
Sound on the Amstrad CPC464. In this section, we’ll look very briefly at the methods by 
which envelopes can be specified and used with the play function. The Amstrad manuals 
concentrate on ‘software envelopes’, meaning that you have to design the shape of each 
envelope for yourself. It’s never easy to do this, and one alternative is to make use of the set 
of standard shapes which are built into the hardware. These are illustrated in Figure 9.17, 
along with the values of reference numbers which produce them.

Number

Fast up, slow down and repeat.

Description

10

Fast up, slow down, then hold at zero 
volume.

Fast up, slow down, then repeated slow up, 

slow down.
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11 Fast up, slow down, fast up and hold at 

maximum.

12

13

Slow up, fast down, then repeat.

Slow up, then hold at maximum volume.

14 Slow up, slow down and repeat.

15 Slow up, fast down and hold at zero volume.

The hardware envelope shapes of the Amstrad computers.

FIGURE 9.1 7

For producing a sound with a hardware envelope, then, you need to set up the number of 
sections (1 to 5), and for each section the values of envelope number and envelope period. 
Both the number of sections and the envelope number will be a single byte (a character 
number), one in the range 1 to 5, the other in the range 8 to 15, and the period is an unsigned 
number in the range 1 to 65535. These numbers can be set up in a form suitable for reading 
by putting them into a structure. The function that creates the envelope can then be passed 
the address of this structure, so that the numbers can be read in order.

♦include stdio.h 
struct hard < 
char nr;
char shape; 
unsigned period;

J section;
matn ()
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i n t j , n , k;
char w;
unsigned x;

setupsound i);
section.nr=l;

for (w=8;w<=15;w++)
X
printf ( " Xn7.s 7.d" , "Envelope No.“,w>;
x = 1;
for(j = 1;j <=4;j ++)

y

x*=10;
printt ( "\n7.s 7-d" , "Feri od",x) ;
section.shape=w+12S;

/'♦must have bit 7 set*/  
section.period=x;
S_ampl_envelope(1,&section);
p 1 a y ( “ Y \ 1 C. " , 2) ;

■for (k =0; k<■ 10000; k ++) ,

ttinclude r'basicl.lib?
Sinclude Vstdio.lib?

An illustration of how to set up hardware envelopes, and how they sound.

FIGURE 9.1 8

Figure 9.18 illustrates how hardware envelopes are set-up, and how they sound. Various 
values of period are used for the full range of envelope numbers, and the screen prints up 
the values as you hear the sounds. Several points of detail are important. One is that the 
envelope must be numbered, both in the call to S__amp]__ envelope and in Y command
of the play string. The principle of the envelope statement is that the number of sections is 
set up, and each section requires three bytes of data. For a hardware envelope, each of thse 
sections consists of a shape number and a two-byte period. The shape number consists of 
the envelope shape code, number 8 to 15 inclusive, with 128 added to it. The addition of 128 
is vital, because this sets bit 7 of the byte, and is the way that the machine-code routines of 
the Amstrad machines recognise the difference between a hardware envelope and a 
software one. There is no need to set duration or volume to zero, as you have to when you 
use the BASIC sound statements with an envelope. If you do, in fact, the program will hang 
up with no sound and no loop running, but it can be recovered by using the (ESC) key. The 
duration number in the play string will control the overall time for which the note is 
sounded.
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The program runs slowly because of the time delays that are built in. The time delays are 
essential, however. The reason is that the sound generator is a little computer in its own 
right, and if you issue it with a play() function it gets on with it independently. If you do not 
use a time delay in this program then you can find the screen displaying values of envelope 
and period which are well ahead of what the loudspeaker is playing. This is because the 
display is fast, but the music has been forced to play at a slower pace. This can be very 
useful, because it means that if you mix music with other computing actions, you will not be 
held up while the music plays. You will find that the play function ofHiSoft C allows many 
more notes to be put into a queue than the SOUND command of Locomotive BASIC. You 
will find, as you run Figure 9.18, that several of the envelope values sound pretty much the 
same. There are in theory only eight different wave shapes, and not all of these can be easily 
distinguished unless you have a good ear for sound. In particular, if you use short values of 
period, you will not hear the effect of the ‘repeater’ notes that you get with envelope number 
values of 8,10,12 and 14. You will find, in fact, that for a lot of notes you can hear only a few 
main types.

If you haven’t used hardware envelopes from BASIC, you might be confused by the ‘period 
number’. The name suggests that its value might set the total time of each envelope. In fact, 
it sets the time for each step when the waveform amplitude is changing. If you consider 
envelope shape 13 as an example, it consists of the sloping part, the ramp and a steady part. 
The ramp consists of sixteen steps of amplitude (from 0 to 15), and the period number sets 
the time between each step. The Amstrad hardware manual states that the step time is 128 
microseconds. My own timing indicates that this may be a misprint, and that the time per 
step should be 12.8 microseconds, corresponding roughly to a period number of 5000 for a 
step time of one second. Step times as long as this are useful only for special effects. Another 
point to note as regards timing is that when you use machine code, the firmware places a 
two-second delay following any hardware envelope. If you want to use hardware envelopes 
for music then each envelope should use its hardware section(s), followed by a software 
section of silence which will then set the timing for the overall envelope. The timing in ‘C’, 
however, is still controlled by the duration number which is part of the note specification.

linclude stdio.h
typede-f struct< 

char shape;
unsigned period;

3 hard;
struct C 

char sect; 
hard sectionLSJ;
jsoundit;

main()

setup_5ound(>;
soundi t.sect=2;
soundi t.section [03.shape=137 ;
soundi t.section[S3.peri od=lS30;
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soundi t.sectiont1].shape=l;
sound i t.sec11oni11.per i od=10240;
S_ampl _envel oped, Stsoundi t) ;
p 1 ay ( "¥\ 1 LAI. D\l. t\l. F\1.G\1. A ' \ 1. B ' \ 1.
C \1.",2>;

ttinclude /basici.lib?
ttinclude ?stdio.1ib?

Mixing a hardware section and a software section.

FIGURE 9.1 9

Figure 9.19 shows how such an envelope can be constructed, using one hardware section 
and one silence section. A more elaborate structure is needed this time because we must 
have one structure to contain the number of sections and the section description array, then 
another structure to contain the parts of each section. The illustration in the manual (under 
the description of S__ampl__ envelope) shows how to allow for a mixture of hardware
and software envelopes by using a union, a topic that will be mentioned in Chapter 10. In 
this simpler example, both types of sections have been put into one structure. The structure 
whose type is hard is defined in the usual way as having one char for the shape number, 
and an unsigned for the period, a total of three bytes. The main structure, soundit, 
consists of a char sect which will hold the count number, and an array section of type 
hard which will hold the section structures. The main program then calls setup__sound()
as usual, and assigns values to the sections. The BASIC equivalent of what we want to do is 
the two section envelope which would be programmed with ENV 1,=9,1000,1,0,40 and 
the ‘C’ version starts with assigning soundit.sect, the number of sections as 2. The 
numbers for the sections are then allocated. For the hardware part the numbers 9+128 and 
1000 are assigned as you might expect, but for the software section things'are not quite so 
straightforward. The software section which in BASIC uses numbers 1,0,40 will still use 
the 1 as its first number, but the other two have to be written in unsigned form. This means 
multiplying the third number by 256 and adding it to the second. Since 40*256+0=10240,  
that’s the number we put in as the ‘period’ number. We are still using three bytes, but in a 
different way. The hardware deals correctly with this set of three because the first number 
is less than 128, signifying a software section. The address of the structure then has to be 
passed to S__ ampl__ envelope, and everything is ready to play. The envelope will not
give correct timing, however, until the duration of each note is put to its minimum figure of 
\ 1. This, in fact, exercises more control on the envelope duration than the software 
portion, and makes it much easier to use hardware envelopes.

What about using software envelopes, then? The method is no more difficult than we have 
looked at so far. If you are using an envelope which is purely a software one then the 
structure is slightly changed, as Figure 9.20 illustrates.
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ttinclude stdio.h
t y p ede-f str Lie t L 

char count,size,time;
} serf t;

struct <
char sect;
soft sect!onL3J;

>sound!t;
main()

setup sound();
sound!t.sect=3;
soundit.section[0].count=l;
sound!t.sect!onE0j.si ze=8;
sound11.sec t i on £ 01. t ime=2;
soundit.section Eld.count=5;
sound!t.sectionE1 J.si ze=255;
soundit.section!11. time=4;
soundi t.sect!on £2 J.count=2;
soundit.sect!on£21.size=251;
soundi t.sectionE21.time=2;
S_ampl envei ope (1 , Stsoundi t) ;
p 1 ay (11YX 1 C\1.D\1.E\1.b\1.G X1.A' X 1 • B ' XI.
C •' Xl. " ,2) ;

#include rbasicl.lib?
»include Ystdio.lib?

A software envelope, and the structure which is needed to define it.

FIGURE 9.2 0

The three bytes in each section of a software envelope represent, in order, the step count, 
step size and pause time. Each of these can be a single byte character, so that structure soft 
has now been defined as containing three characters. This involves one slight complication 
- the use of negative numbers of step size. The number that has to be used to represent a 
negative step size is 256-step__size, so that a step size of-1 is put in as 255, and a step size
of-5 is put in as 251. The example then shows a three-section envelope being set up and 
used. This particular envelope has a curious echo effect that will sound quite different with 
different lengths of notes - try it out for yourself!

This brings us to the end of this section, with a huge variety of sound effects unexplored. We 
haven’t looked at noise, nor at multichannel music and synchronisation. The reason, apart 
from lack of space, is that all of these features are programmed in much the same way as in 
BASIC. If you have a sound program which runs in BASIC, then the library functions in 
basicl.lib will allow you to program the same sounds in ‘C’. The HiSoft Manual is 
particularly helpful to you in this respect, by showing the ‘C’ library equivalents of the 
sound statements.
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Chapter 10

Assortment.
In a book of this size, it’s impossible to cover all the possibilities that a language like ‘C’ 
offers, and I have aimed at dealing with the essential features that most users of HiSoft C on 
the Amstrad will need. I have concentrated, in particular, on the aspects of ‘C’ which a 
programmer who has previously used BASIC will find difficult. Nevertheless, we have 
covered most of the important topics in reasonable detail, and the main thing that you will 
need from now on is practice. Only a lot of practice, particularly in planning programs, will 
release you from the frustration of finding errors reported each time you compile, and then 
getting a different set of errors when you try to run your program. In this chapter we shall 
look at some points that have been skipped over previously, or which need more emphasis. 
The most important of these topics is fault finding.

Inevitably, when you start to learn a new language you are going to make a lot of errors in 
syntax. This is particularly true if you have previously programmed only in BASIC. The 
most common mistakes are omitting semicolons, and forgetting the brackets and the 
inverted commas in printf statements. These errors are found by the compiler and 
reported in such a way that they should not be difficult to remedy. There are several such 
syntax errors, however, which produce reports that don’t lead you to the fault unless you 
have had some experience. If, for example, you revert to BASIC habits and write an array 
member with round brackets instead of square brackets, you can get some very interesting 
error reports. For example, if you have the line:

str(j)=s[j];

then you can get the report:

ERROR 40
Can only call functions

which will certainly draw your attention to the line that causes the problem, but doesn’t 
necessarily remind you of what the fault is. The problem is that round brackets mean a 
function to the compiler, so using str(j) makes it appear that you are trying to assign a 
value to a function, which is impossible.
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Another fruitful source of error messages lies in assignments. You become so accustomed 
to the few data types in BASIC, that you assume that almost any variable can be equated to 
any other. In ‘C’ simple data types are treated quite loosely, and you can playwith ints and 
chars almost as if they were interchangeable. This shouldn’t be allowed to go to your head, 
though, because there is an important difference. The char type needs only one byte of 
memory, whereas the integer needs two. The importance of this in reading the EOF 
character has already been mentioned. The other side of the coin is that ‘C’ treats strings 
(arrays of characters) rather more strictly than BASIC does. In particular, you cannot 
assign a string to a variable name by any simple method such as using stringl=string2 as 
you might in a more BASIC-like language, or even in Pascal. Instead, strings must be 
assigned character by character, as strcpy or bit does, or by passing pointers. This is 
probably one of the items that causes most annoyance to ex-BASIC programmers! In 
addition, even the most obvious error messages may not be all that they seem. An error 
message delivered in the middle of a line may refer to the preceding line, or even to a line 
which is several steps away. The most baffling message is usually the Missing type, 
because whatever is reported as missing may be staring you in the face, on the screen. As the 
manual comments, this particular message is a shorthand form for several types of faults 
and you simply have to look at your program Esting rather closely.

To anyone coming to ‘C’ from BASIC, the use of the semicolon to mark the end of a 
statement is sometimes baffling because of the exceptions. The most important rules 
concerning semicolons are that there should be none following while, do, or following the 
loop statement such as:

for (j=0;j<=100;j++)

unless this is being used purely as a time delay. You don’t need semicolons following 
/‘remark*/  lines, but if you do put in the semicolons the compiler will not object. The 
program will object, however, if you have put in a semicolon following a #define. As the 
manual points out, using #define NULL 0 means that NULL is defined as 0 throughout 
the program. If you use ^define NULL 0; then NULL is defined as 0; which is not a 
number, and which will cause some very peculiar things to happen. The problem here is 
that the error is not found at the time when the ^define line is being dealt with, but later, 
when you attempt to use NULL. The error message will also be one that does not make it 
clear what has happened, Eke ‘Missing )’. The worst errors occur when you have done 
something instinctively. Top among this type of thing is using x=y when you mean x==y 
in a test. The statement if (x=y).... means that the value of y is assigned to x and if it is not 
zero then something has to be done. The statement if (x==y)... means that something is 
to be done only if x is identical to y. The confusion arises because both statements are legal 
syntax, but with very different meanings.

Other errors are rather easier to spot because they involve actions which you would not be 
working with in BASIC. Pointers are a notorious source of problems, even for fairly 
experienced programmers in ‘C’. One very common cause of trouble is declaring a pointer, 
but forgetting to assign some value to it before using it. A less obvious problem is that a 
string name is a pointer to the string, but an integer or character name is not. In addition, 
the name of a structure needs the & sign if it is being passed to a function. The other 
common pointer error is to forget that incrementing or decrementing a pointer will 
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automatically cause a change of the correct number ofbytes, according to the variable type. 
The scanf function is another potent source of errors. It’s always wise to start a scanf 
control string with a blank, because this prevents problems when the input is done in a loop. 
By using a blank, scanf will skip over any (RETURN)/(ENTER) character which is in the 
keyboard buffer from a previous entry. At various stages in this book, we have seen what 
problems this stored character can be when other input functions are used. One minor 
point about scanf is that there is no %u specifier string for unsigned numbers. Using “%u” 
in a scanf input will cause very odd corruption of the other variables. A more common 
problem is to forget that each variable in scanf must be a pointer, so that string names or & 
with other names will be required.

Even when a program compiles correctly, there is no guarantee that the program will run 
without fault. An error-free compilation means only that the statements in the program are 
of correct syntax and do not contain any undeclared variables or impossible assignments. 
You can compile without errors, for example, a program that will try to put more items into 
an array than the array has space for, or which has a faulty switch statement in which you 
can enter a reply for which no case is provided. In general, run-time errors are caused by 
faulty planning of one sort or another rather than by faulty typing or bad use of statements. 
You may have omitted to test the size of an entered quantity, for example, or given no 
thought to how many items could be put into an array. If you are exerienced in 
programming with any other language, then the run-time errors should present no 
problems to you.

Hints & tips.
There are a few odd hints and tips which can make your ‘C’ programming career rather 
easier. Don’t forget, for example, the very useful find-and-replace facilities of the HiSoft C 
editor. As always, if you have programmed only the Amstrad in BASIC you will not have 
come across these useful aids to programming. If you have used any good word-processor 
software, however, you will know how much time can be saved by using search and replace 
actions. In a program which consists of a large number of printf statements, for example, 
you can save a lot of typing time by abbreviating printf to P. You can make similar 
economies with scanf and gets. If you use a lot of these search and replace actions, though, 
it’s a good idea to keep a note of which abbreviation you have used for which purpose. If you 
don’t there is a risk of using the same abbreviation for two different instructions, or of 
forgetting that you have used an abbreviation. These editing actions are particularly useful, 
of course, in versions of‘C’ which do not use line numbers, but if you do not have a printer 
it’s very handy to be able to find, for example, which line contains something like /*FIND  
DATA*/.  In addition to the use of the editor, of course, you can make use of #define. You 
can, for example, use a line such as:

#define P printf

to make each P in the program act as a printf. This is less desirable than using the editor, 
however, particularly if you intend to print out your program at any stage. The reason is 
that it makes the ‘C’ statements look non-standard, and so much more difficult to read. It’s 
better to keep the use of #define for quantities such as NULL, EOF and the like, which 
can vary from one system to another but which should be reasonably standardised in 
programs.
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Other actions.
Inevitably, when you make use of a language some parts of that language will come in a lot 
more use than others. In the course of this book, I have tried to put the greatest emphasis on 
the features of‘C’ that you are likely to spend most time with. This emphasis has meant 
that other features have been omitted or lightly glossed over, and in this section we’ll try to 
remedy that deficiency. It’s possible that none of the actions which are described here may 
ever interest you. On the other hand, one or two of them might just be exactly what you 
have always needed but were afraid to ask about. Particularly belonging to this section are 
the statements and operators that apply to binary numbers and to machine code. You will 
find that many of the functions in the basic libraries are written by using calls to the 
firmware. If you are a proficient machine-code programmer you may wish to write 
different functions for some applications, depending on your interests. You might, for 
example, want to add a circle(pos,rad) function, or a sound function which is more 
similar in syntax to the BASIC version. All of this is possible, and it makes ‘C’ a particularly 
useful language which is never static. HiSoft have promised to release new libraries as more 
functions are added, and this is a very desirable method of supporting the language. In 
addition, the C User Group in the U.S.A, keeps discs full of source-code routines, though 
these are not at the moment available in the unusual Amstrad 3“ disc format. If you can 
make use of larger discs, however, it’s possible that you could read the ASCII text from 
these discs, which consist of ‘public-domain’ software. Public domain means that no 
copyright is involved, and the programs are free though you need to pay for discs, copying 
time, postage etc. It would help if these programs could be made available as listings, but 
unfortunately they are.not.

We’ll start with a keyword that you may have noticed in the list, but which we haven’t used. 
This takes very little time, because entry is simply a spare word which has no effect on any 
compiler at present. It is a word for an action which is not implemented, and might never 
be. It should not be typed into a HiSoft C program, as the compiler will reject it. A much 
more important topic concerns coercions and cast. As you will have seen, ‘C’ treats 
characters and numbers in a fairly interchangeable but well-defined way. This means that 
the result of an expression which uses mixtures of items will be obtained by using a set of 
rules. These rules are summarised in Figure 10.1, and Figure 10.2 illustrates them in 
action.

1. Type char is always converted into type int.

2. If an unsigned number is used in an expression, the result is always unsigned.

3. If the numbers are integers, the result is also integer.

4. Any change to this scheme can be made only by using cast.

The rules for coercion of number types.

FIGURE 10.1

10-4



main()
€
char c;
int j;
unsigned p;
c = a ’;
J =50;
pnntf ( “ \nZd" , j+c > ;
p=36;
p+=50+c;
print! (“\n7.u“ ,p) ;
J

A program which illustrates coercion in action.

FIGURE 10.2

Three variable types are declared, and arithmetic is carried out. The addition of a character 
to an integer produces an integer result, the sum of the integer value and the ASCII value of 
the character. The sum of the unsigned number, integer and character produces an 
unsigned number because the character converts to integer, and the sum of an integer and 
an unsigned is always unsigned. Assignments, however, will convert to whatever form is 
called for if possible. For example, if you declare int j and char d and then assign 65 to j, 
then d=j can be performed and will result in the character d printing as an A, ASCII 65.

These coercions are completely automatic, but there are times when we want to make 
coercions that are not automatic. We may, for example want to make a pointer into an 
unsigned number or an unsigned number into a pointer. This latter action is particularly 
useful if we want to perform the equivalent of PEEK or POKE, as the library illustrates. 
For such actions, the cast action is provided. Note that the use of the word cast is a feature 
of HiSoft C, and does not appear in all other versions. In many varieties of‘C’ the cast 
operation is carried out by using the syntax of cast (with brackets), but without the word 
‘cast’ being used. This makes it only too easy to perform a cast action unwittingly, and the 
specific use of cast is a useful enhancement to the language. The syntax is of the form:

j=cast(type)variable 

in which the brackets enclose the type that you want the number to be cast to.

ma ini)
X
char *p;
unsigned j;
*p= d ;
printt ("\n7.c“ , *p>  ;
j=cast(unsi gned>p;
pr i nt+ i “ \n'/.u" , J > ;

Illustrating the use of cast.

FIGURE 10.3
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Figure 10.3 illustrates the use of cast in forcing a pointer to be cast to an unsigned number. 
This is not likely to be needed because you want to perform arithmetic on pointers, since 
you can perform most of the arithmetic actions that you need to on pointers in any case. It’s 
much more likely that you need to assign a definite value to a pointer.

More complications.
The data types that are supplied by ‘C’ are fixed, and you are not allowed to make up your 
own data types as you are in Pascal. You can, however, assign names of your own to types 
by using typedef.

niai n ( ì

int j;
typede-f int *p_int;
pint point;
J=45;
poi nt=if j ;
print! ( " \n7.d" , »point) ;

Using typedef to declare a pointer type.

FIGURE 10.4

Figure 10 .4 shows a typical example. The line:

typedef int *p __int;

means that we can now use p__ int as if it were a variable type like int or char. It is, in fact,
a pointer to an integer, and by declaring p__ int point we make the word point a variable
of type pointer to integer. We can therefore assign to point a pointer value, the address at 
which the value of j is held, and we can print the value held in this address by printing 
*point. This action of typedef can be very useful, but if too many types are defined it can 
make a program difficult to follow.

Typedef does not create new types but there is one type that we haven’t considered so far, 
the union. A union is a ‘hold-anything*  variable, one that can be used to hold a character, 
integer, string or whatever we like. It sounds marvellous, but in fact it’s not used as much as 
you might expect. A union has to be declared in very much the same way as a structure is 
declared, using a pattern of the form shown in Figure 10.5.
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union bossi
char u;
char *s;
int j,k;
j- chief;

mai n()

chief.c= A ;
printf(“\nZc“,chief.c);
chief . s="STRING" ;
printf ( “ \n7.s*'  ,chi ef . s) ;

Creating a union, a form of variable that will hold any one of a set of types.

FIGURE 10 .5

In this example, the type union is declared with the pattern name of boss. The union can 
contain a character, a pointer, or an integer named j or k. Note that this is one or another. A 
structure, by contrast, contains all of the types that are specified, the union contains any 
one. In the lines that follow, a type is assigned and its value then printed out. The important 
point is that you can assign only one value at a time, and you must select the correct name, 
such as chief.c , chief.) or whatever is needed. When a union variable is declared, it will 
reserve as much space as is needed for the largest of its contents. If you make a union type, 
for example, which contains a character, an integer and a four-character string, then the 
string is the longest member and will make the union four bytes long, assuming that the 
total string length is four. A structure would need one byte for the character, two for the 
integer, and four for the string, a total of seven bytes. If you attempt to print out data which 
has not been assigned to a union, you will get garbage. For example, if you have assigned a 
string to pointer s in the union, then trying to print out a character chief.c or an integer 
chief.; will produce results which may be useful, but usually are not. In this particular 
example, the attempt to print chief.) will usually produce the pointer address chief.s.

Finally in this particular collection of less-used statements, we come to the least-used of 
all, goto. Having to use goto in a ‘C’ program is the programmers equivalent of driving a 
car with a sign on the back that says ‘Take care, wally driving’. The use of GOTO in BASIC 
has little enough justification, because Locomotive BASIC has the WHILE...WEND loop. 
In *C ’, the use of goto is useful mainly when you want to try out a loop by a piece of quick 
editing. Once you have proved the point, you would normally want to make a more 
permanent form of loop using while , do or for. Of course, once your program has been 
compiled into machine code with ^translate no-one will ever know. The use of goto 
requires a label name, which is used to mark the start of the loop or the place to which goto 
leads to. Unlike BASIC, which uses the line number as a label, ‘C’ requires a word to be put 
in and followed with a colon, as the illustation in Figure 10.6 shows.
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màiniì

char *s;
int j;
s—" I am a wal 1 y. . . 11 ;
j=5;
here:j—;
/»start of loop»/ 
printf i " \n7.s“ , s) ; 
if (j==0> goto there; 
goto here;
there:; 
J

Using goto, with its label word.

FIGURE 10 .6

The colon can be folowed by a statement, or simply by a semicolon. The effect of the goto 
will be to make the program move to the point which is labelled. The provision of the break 
and continue statements in loops provide for practically all the uses that might otherwise 
justify the use of goto, and for that reason it’s seldom used.

The # commands.
We have made intensive use of two # commands, #include and ^define, in programs so 
far. These commands are often called ‘pre-processor’ commands, because of the way that 
‘C’ is implemented in other computers. In these machines there is a separate piece of 
program which deals with these commands, using them to alter the text of a program. For 
example, if ̂ define NULL 0 has been used at the start of a program, the pre-processor will 
replace each NULL by a zero throughout the program. Only after all this has been done 
will the compiler get to grips with its work. Similarly, if you have included other files by 
using commands such as #include strcmp , then the pre-processor will get these files 
(assuming there are such files on the disc) and place their text into yours. In HiSoft C there 
is no separate pre-processor, and all of this work is done by the main compiler. HiSoft C 
also allows a few # commands which do not feature in the pre-processor syntax of most ‘C’ 
compilers. One of these is #error. When you type #error into your listing, you release a 
considerable chunk of extra memory in the computer. This was the memory that was 
formerly used for the detailed error messages, as distinct from the ERROR number 
messages. The use of #error is therefore a useful method of squeezing in a very long 
program, but the messages will remain suppressed until you switch off and re-load HiSoft 
C. Unless you can find where the messages are stored and how their presence is indicated, 
there isn’t much choice about this.
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The #direct command works in a quite different way. To use #direct, you must first have 
typed c and (RETURN)/(ENTER). This puts the compiler in action, and typing #direct+ 
then puts it into direct mode. This means that any statement which you type will be 
executed when you press (RETURN)/(ENTER). You must be careful not to press 
(RETURN)/(ENTER) until you have finished typing statements, which means that you 
simply type statements separated by semicolons, not in fines. This is most useful for items 
that are self-contained, like rawout(4);rawout(l);, rather than for extended statements. 
It’s handy if you want to send codes to a printer, or to make use of some peeks and pokes or 
rawout statements. You can get back to normal compiler use by typing #direct-, using 
(ESC) - or by making a mistake in a statement that is to be executed directly.

The other common # command is #list, which once again is a feature of HiSoft C. Using 
#list- suppresses listing while a program is compiling, and using #list+ restores the 
listing. You can see this action at work when you make use of the routines from the 
libraries. It speeds up compiling to some extent because the screen print routines of the 
Amstrad machines are rather slow, and in any case once a program is debugged you don’t 
paticularly want to see it listing each time it compiles. It’s a good idea, then, on your longer 
programs to incorporate a title using /‘remark*/  lines, and suppress listing immediately 
after this until the end of the program. That way the heading shows what program is 
compiling, but the actual listing does not appear.

Statics in functions.
The HiSoft C manual encourages you to make use of static variables wherever possible, 
because of the saving in memory. This is not the advice that you get with other versions of 
‘C’ but since the Amstrad is, by comparison with the machines on which ‘C’ was 
developed, of modest memory size, the advice is sound. Because static is advised as the 
normal memory type, it’s easy to forget precisely why it was evolved and how it can be used. 
Figure 10.7 is a reminder.

m din ()
£
i nt j ;
for ( j = l; j<=5; j+-+>
stadem();
J

stadem()

static in t k.= l;
printt ("\n7.5 Xd“,“k is “,k);
k++;

A simple program to illustrate the action of a static variable in a function which is called several times.

FIGURE 10.7
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In this example, a function is called five times. In the function, the static variable k is 
initialised to 1, and its value is printed, then incremented. When the program runs, 
however, you will see the incremented values of k appear in a count-up. The effect of 
declaring k as static and initialising it to 1, is to make it have this value of 1 the first time the 
function is called. At the end of the function, however, the value of k is preserved - this is 
what a static variable is all about. When the function is called again the initialisation step is 
ignored, and the value of k which is stored from the previous time is used. The value ofk 
cannot be used in the main program, because it does not exist in the main program. Even if 
you have a variable called k in the main program, it will have no effect on the k that is used 
in the function. This aspect of a static variable is very important if you want tp make use of a 
function in which a variable is changed. You can avoid the change if you carry out a 
separate assignment. If, for example, you follow the declaration of k with the line:

k=l;

then the printout from the program will show that k has always been 1. For many purposes, 
however, the automatic storage of variables can be very convenient. In general, programs 
written in ‘C’ for other computers are likely to use static variables only where this type of 
action is wanted, and you may have to be careful if you write these programs again for 
HiSoft C, using mainly static variables.

Another action which is sometimes needed is a variadic function. The functions that we 
normally use have a known and fixed number of arguments, like action(a,b,c,d). We 
sometimes need, however, to pass a variable number of arguments. Many textbooks show 
this applied to main() itself, but this is not something that you can do with HiSoft C. The 
header stdio.h shows this action used for two functions, max and min, which are 
designed to find the maximum or minimum value, respectively, in a list of numbers. The 
argument of each function, then, will consist of as many items as there are numbers. The 
essential feature of a function of this type is to follow its header name with the word auto. 
This indicates to the compiler that the function will be of this ‘variadic’ type, and that the 
number of arguments is variable. The output of the auto actions will be to supply two 
special arguments for the function which are called, by convention, argc and argv. The 
function itself is written with one argument in the brackets. This argument, unlike any we 
have met before, doesn’t have to be declared anywhere because it is a special quantity, the 
number of bytes of argument which have been used when the function was called. Suppose, 
for example, that you were dealing with integers. Since two bytes are used for each integer, 
ten numbers in an argument would require 20 bytes. By convention an extra pair of bytes is 
always held available, making 22. This is because the use of argc and argv in HiSoft C is 
not quite the same as its use in other versions. In many versions of‘C’, argc and argv are 
used to pass commands, with arguments, directly to main() so that you can call upon a 
compiled main program by using its name and passing some values. This is not possible 
when the program has to be compiled each time it is used. In the original method, argc is 
the number of arguments, and argv is a pointer to an array of strings, one string per 
argument. In this method, argv[0] is the program name itself, forming one of the strings, 
so that a program with no arguments still has an argv[0], and its argc value is 1. The first 
real argument is argv[l], making argc equal to 2 and so on. On this basis, argc always 
contains one item more than the total number of items. If the arguments are integers, then 
this extra argc value corresponds to two bytes.

10-10



total(number> auto

static int argc,*argv,t;
argc=number/2-1;
argv=&number+argc;
whi 1 e (argc—) <
t+=*argv;
—argv;j 

return t;
J
main ( )
r

int j;
j=total(1,6,4,8,6,21 ;
printf ( “ \nZd" , j 1 ;

A variadic function, in which the number of arguments is variable.

FIGURE 10.8

In the program of Figure 10.8, then, we start by defining a variadic function called total. 
The program must place this function before any call that is made to it, even though it is, in 
this case, a function that returns an integer. The header of the function contains only the 
argument number which will be the number of bytes in the argument when the function is 
called. This quantity number does not have to be declared. Instead, we declare the integers 
argc and t, and the integer pointer argv. Because number consists of one item more than 
the actual list of arguments, we find the item-count from number/2-1. The pointer argv 
then has to be set. The arguments are stored in memory addresses which decrement, so that 
the address that we get from &number when we read this quantity is the lowest address at 
which the last argument is stored. To get to the first argument, at the top end of the memory 
range, we need to add argc, the item count. The items can then be dealt with in a loop that 
decrements argc and argv together. In this example, the argument numbers are added to 
the totalling integer t, so that the total can be returned. If you want to see what is going on, 
add some lines that will print values of number, argc , argv and *argv  at intervals.

Binary and machine code.
For many purposes, binary numbers and machine code are unnecessary and undesirable. 
After all, the whole point in iventing higher level languages like ‘C’ was to avoid the chore of 
programming in machine code or assembly language, and having to think in terms ofbinary 
numbers. Nevertheless, there are times when we have to do just that, either in order to save 
memory, devise some very clever programming or speed up the execution of something. 
The standard ‘C’ language provides several operators for use with binary numbers, and the 
HiSoft version also provides a new reserved word, inline, which has the effect of entering 
machine-code routines directly into memory. The provision of inline, incidentally, makes 
it comparatively easy to write a Z-80 assembler for yourself. That’s just the type of task that 
‘C’ was intended to make easy.
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We’ll start with the operators that carry out binary logic comparisons of two numbers. The 
three binary operators of this type are & (AND), I (OR) and A (XOR). Note that these are 
single characters, and you must be very careful to distinguish the & from &&, and the I 
from I I , because these are used in very different ways. If you aren’t familiar with binary 
logic operators this is no place to start learning, and I suggest that you skip the rest of this 
chapter until you have had time to digest a book on binary numbers and machine code.

main ( ) 

char c,d;
c—0x At>,
d=0x-3C;
print! < “ \n7.s 7.x “ , “AND gi ves " , c&d) ;
print! ("\n7.s 7.x","OR gives ",cid);
print! < " \n7.s 7.x " , “ XOR gi ves “ , c d > ;

Using some of the binary operators. These are the three operators which make a logical comparison of 
binary bits.

FIGURE 10.9

Figure 10.9 illustrates the binary operators being used to compare two numbers. The 
numbers are written in hex code, using the Ox prefix which is used to mark hex numbers in 
HiSoft C. A number written normally is always taken to be a denary (ordinary scale of ten) 
number unless it is being used along with a backslash. Numbers which are preceded with 0, 
or as characters with a backslash, are taken to be in octal code. Because of this use of the 
zero, you must be careful not to start any ordinary denary number with a zero. In this 
example, the numbers are hex and are prefaced with the Ox. The numbers are declared as 
characters which means that we are working with eight bits only, and the three printf lines 
give the results of AND, OR and XOR operations carried out bit by bit. The printf lines 
make use of the %x specifier to print out the results in hex. In case you are dubious about 
these results, Figure 10.10 shows an analysis of what is happening.

Hex A6= 10100110 in binary
Hex 3C= 00111100 in binary
AND gives 00100100 which is hex 24.

Hex A6= 10100110
Hex 3C= 00111100
OR gives 10111110 which is hex BE.

Hex A6= 10100110
Hex 3C= 00111100
XOR gives 10011010 which is hex 9A.

An analysis of the binary number actions.

FIGURE 10.10
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HiSoft C does not permit some of the ‘bit field’ actions of the ‘C’ standard, but the 
equivalent effects can all be obtained by suitable use of these operators. For example, if you 
wanted to check that bit 4 in a byte was set, you could use a test like:

if (c&&0xl0==0xl0)....

and you can make use of the usual ‘masking1 effects of numbers such as OxFO and OxOF. 
These bitwise operations can be used, of course, on integer numbers as well. The integer is 
stored as two bytes, so that the results of these operations will be expressed as two byte 
numbers unless they can be fitted into a smaller space. Remember that small negative 
denary numbers (like -5) will be stored as a two-byte integer, with the upper byte equal to 
OxFF, so that bitwise comparisons with such numbers will often result in four-figure hex 
numbers.

In addition to these operators which compare two numbers, there are two shift operators 
which operate on a single number, integer or character. The left shift is indicated by «, 
which must be followed by a number that gives the number of places shifted. Using <<1 
will cause a left shift of one place, using < <3 will cause a left shift of three places. These left 
shifts are logical shifts, with zeros being used to fill in the right hand side. The shift will 
change the most significant bit of the upper byte if necessary, so that the apparent sign of an 
integer can be changed by a shift of an integer. The right shift is signalled by using », 
again followed by a number. This is an ‘arithmetic’ type of shift because the most 
significant bit of the upper byte is not shifted, and the shift action copies this byte at the left 
hand side rather than putting in zeros. In other words, if the integer starts with the bits 10.., 
thenaright shift of one place will make this 11.. rather than theOl which would result from 
a logic shift. The right-shift action therefore does not change the sign of a number.

Some shift actions are illustrated in the program of Figure 10.11.

main ( )
c
char c , d ;
c=0xA6;
d=0x3C;
pri ntf ( “\n7.s 7.x","shift left c- “,c << 1

5
pri ntf ( "\n7.s 7.x", “shift rignt c— “,c >■>
1) ;
printf ( "\n7.s Xx”, "shift left d three pla 
ces- ",d<<3);
printf("XnZs 7.x ", "shift right d three pl 
aces- ",d>>3);

The use of shift actions on binary numbers.

FIGURE 10.11
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The two numbers are declared as characters and one is shifted by one place left, then by one 
place right. The other number is shifted in each direction by three places. In each case the 
results are printed in hex, and you can see the effects of type coercion working to display 
two of the results as integers rather than characters. Figure 10.12 shows an analysis of these 
shifts.

Hex A6 is 10100110 in binary

When this is shifted one place left, with zero added on the right hand side, it 
becomes:
101001100 which is hex 14C.

Hex A6 is 10100110 in binary

When this is shifted one place right, it becomes:

01010011 which is hex 53.

Note that the left hand bit has changed - the rule about the left hand bit not 
changing applies only to 16 bit numbers.

Hex 3C is 00111100 in binary

When this is left shifted by three places, it becomes: 

000111100000 which is hex 1E0.

Hex 3C is 00111100 in binary

When this is right shifted by three places, it becomes: 

00000111 which is hex 07.
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Sixteen-bit shifts.

Hex C03C is 1100000000111100 in binary.

When this is left shifted by three places, it gives:

0000000111100000 which is hex 01E0.

Hex C03C is 1100000000111100 in binary.

When this is right shifted by three places, the most significant digit of 1 is 
retained, and copied into the shifted places. This gives:

1111100000000111 which is hex F807.

Analysing the effect of shifts.

FIGURE 10. 12

If you now modify the program to declare int d and assign the number 0xC03C to d, you 
can run the program again to see the effect of left and right shifts on a number which has its 
most significant bit set. The left shift behaves as a normal logic shift, giving OxOlEO, and 
changing the sign of the number if it is printed as a denary number. The right shift copies 
the most significant bit of T into the the next three places, and gives the result 0xF807 of 
the same sign as the original number. These are also shown analysed in Figure 10.12. You 
will find the shifts widely used in the library routines as a method of multiplying or dividing 
by 2, or for bitwise analysis.

Inserting machine-code.
The inline reserved word of HiSoft C is not a standard ‘C’ word. It is, however, a very 
useful enhancement of standard ‘C’, because it allows you to write library functions which 
include, or are made exclusively of, machine code. Since all of the facilities of the computer 
are available from machine code, this allows you to write, for example, a circle(centre, 
radius) function or new methods of controlling the sound system as you please. 
Obviously, it helps considerably if you know how to write and use machine code, but even if 
you are not an expert with machine code it can be useful. You can, for example, make use of 
small pieces of machine code which you see printed in magazines, and transform them into 
‘C’ library functions. You need to know what you are doing, and the code must be the type 
that is ‘relocatable’ meaning that it can be written in any part of the memory. The inline 
statement does not allow you to choose memory addresses for your machine-code, it 
simply places it ‘in fine’ with the rest of the code that the ‘C’ compiler generates, hence the 
name.
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mai n ()

fill (> ;
J
fillO
{
i nline(
0xCD,0x6C,0xBB
0x01,0x£7,0x03
0x3E,0x41
0x CD, 0x 5 A, 0x BB
0x0B,0x7S,0xBl
0x20,0xF6

Using inline to insert machine code into a function. No RET code must be used.

FIGURE 10. 13

Figure 10.13 shows a very simple example of inline in use. The machine code program is a 
trivial one - it simply fills the screen with the letter ‘A’. The important point is how it is 
introduced into the ‘C’ program, and how it is terminated. Normally, a machine code 
program ends with the RET command, 0xC9, or with some variation on this command. 
This should not be done when inline is used, because the RET will cause a lockup unless it 
is part of a subroutine within the code. You have to be careful about some looping programs 
in machine code which might include conditional returns such as RET Z. The best way of 
adapting these is to change the conditional return into a jump to the last byte of the 
program, which can then be a NOP byte ofOO. No such complications arise in this example, 
however, and the code is written following the inline word, with the code enclosed in 
brackets. Note that the code can be written as shown in separate lines, with commas 
separating the code bytes. No semicolon must be used until the final bracket has closed on 
the codes. The compiler will then assemble the code as it comes along, and place it as part of 
the compiled ‘C’ code. In this example, when you run the program, the screen fills with the 
letter ‘A’, and the final fine then scrolls to allow the ‘Type y to run:’ message to appear.

unsigned _hl;
ma in()
X

int n,j;
for < n=0;n < = 100;n +=2)

X

si de(n >;
f or(j = 1;j< = 1000;j ++);

si de in)
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_h1=n;
inline (
0x2A,&_h1, 
0xCD,0x05,0xBC
) ;

Passing a parameter to a machine code routine which is written inline. The routine performs a sideways 
scroll, using the position number which is passed from the main program.

FIGURE 10. 14

Figure 10.14 shows an advance on this technique. This time a parameter is passed to the 
machine-code routine, using the method which is normal for HiSoft C. Unlike the BASIC 
method this depends on the use of a variable as a temporary store, and this variable,__ hl, is
declared as unsigned before the start of the main program. The machine code itself is a 
sideways scroll routine, which requires a position number into the HL register pair, then a 
call to 0xBC05. The important point here, then, is the method of getting the parameter 
value n into the HL register pair. Normally when you interface from BASIC to machine 
code, the first part of your machine code program consists of reading the parameter bytes 
using the IX registers. The HiSoft manual points out that the IX register is also used when a 
function is called, but the passing of the parameter must be done in a different way. The 
method is to pass the parameter to the unsigned number__hl. Obviously, you could call
this whatever you like and the basicl.lib routines use reg__hl, but whatever you use it’s a
good idea to have a name that reminds you of what it’s to be used for. The number stored in 
this variable then has to be passed to the routine and, in this case, it’s needed in the HL 
register pair before the shift routine is called. The transfer is done by using the code for LD 
HL, which is 0x2A, and following this inline with &__hl to get the address of the variable.
The call to 0xBC05 is then made in the next fine of codes and, as usual, the set of inline 
codes ends with no RET byte. If, incidentally, you require an inline function to return an 
integer or pointer, this can be done by loading the required bytes into the HL and BC 
registers before the routine ends.

This concludes our tour through the facilities of HiSoft C. Like any other language ‘C’ 
takes some time to learn, and a lot of practice is needed to become really familiar with it. It 
also requires you, like any other language, to write programs of your own design to become 
really familiar with the feel of the language. In my pogramming time I have had to use 
Fortran, Basic, Pascal and C, and of these ‘C’ is the one that is always the greatest joy to 
return to and write in. It’s difficult to say why, but I think it’s best summed up in the word 
‘fascination’. ‘C’ is a fascinating language to use, not least because almost every action that 
can be carried out with the hardware you have can be programmed with ‘C’. The other side 
of the coin is the lack of safeguards - that a ‘C’ program can suffer from an obscure bug 
which may keep you up all night trying to swot. To me, that’s part of the fascination, the 
pitting of wits against the inexorable logic of the machine and the language. I shall never 
tire of it, and I hope that I have been able to pass some of my own sense offascination to you.

10-17





Appendix A

Binary, Octal and Hex codes.
Throughout the history of computing, programmers have used various forms of number 
codes in preference to the normal scale of ten. The reason is basically that computers store 
numbers in memory units, each of which is a type of switch. A switch can be either on or off, 
and so each unit of a memory can store only two codes, one for on and one for off. We can 
put this into number terms by using off to mean 0 and on to mean 1. With only these digits 
to use, then, all numbers have to be stored and manipulated inside the machine using 
binary code, which has only the two digits 0 and 1. Using only two digits makes no great 
difference to the way that we write numbers, however. In denary (scale of ten) we count up 
from 0 to 9, and then the next number is written by placing a T in another column, the 
‘tens’ columns, and a zero in the units column. In binary the count in the units column is 
from 0 to 1, and then the next number is 10, - one ‘two’ and no units. The number three is 
then represented as 11, a two and a unit, and four needs another column, 100. Figure A.l 
illustrates the sequence of these numbers, and shows how to convert between binary and 
denary numbers.

Position values -

Bit.No. 7 6 5 4 3 2 1 0

Value 128 64 32 16 8 4 2 1

For each further place to the left, use a position number which is double the previous one.

Binary count from 0 to 15 denary.

Denary Binary Denary Binary
0 0000 8 1000
1 0001 9 1001
2 0010 10 1010
3 0011 11 1011
4 0100 12 1100
5 0101 13 1101
6 0110 14 1110
7 0111 15 mi
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Conversions:
1. Denary to binary.

Divide the number by 2, and put the remainder next to it. Do the same with the result of the 
division, and so on until the last number is zero. Then read the remainders from the bottom 
up.

Example: Conversion of 58 denary.

Number - 58 divide by 2=29 and 0 over.
29 divide by 2=14 and 1 over.
14 divide by 2=7 and 0 over.
7 divide by 2=3 and 1 over.
3 divide by 2=1 and 1 over.
1 divide by 2=0 and 1 over.

Reading from the bottom of remainders gives 111010, which is the binary equivalent. This 
can be padded out with zeros on the left hand side to make it an 8—bit or a sixteen-bit 
number. For example, as an 8—bit number, it would be 00111010.

2. Binary to denary.

Write the binary number with the position values above the ‘1’ digits, then add the position 
values. For example, the binary number 01011011 is written as:

64 16 8 2 1
I I I I I I I I
0 10 110 11

The position values added give 64+16+8+2+1=91.

Binary numbers, and conversion between binary and denary.

FIGURE A.l

The trouble with binary numbers is that they contain a lot of l’s and 0’s, quite a dazzling 
number if your computer happens to use them in groups of 32 or more. Small computers 
use only eight binary digits (or bits) at a time, but even so, the sets of l’s and 0’s can 
hypnotise you into making silly mistakes. Because of this programmers have devised other 
code systems, of which the most common are octal and hex. For microcomputers octal is 
very seldom used, and its use in HiSoft C is the first I have ever encountered on a micro.
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The trouble with denary, you see, is that ten is not a power of two, as 4, 8, and 16 are. This 
makes it much more difficult to convert easily between denary and binary. Octal is based on 
a scale of eight, and its main feature is that conversion between octal and binary is very 
simple, as Figure A.2 shows.

Octal count 0-7 as in denary, then-

etc.

Denary Octal

8 10
9 11

10 12

16 20

Conversion of denary to octal:

As for denary to binary, but dividing by eight. For example, denary 467 is converted as 
follows:

467 divide by 8=58 and 3 over.
58 divide by 8=7 and 2 over.
7 divide by 8=0 and 7 over.

This makes the octal number equal to 723.

Octal to denary.

As for binary, but use the place numbers:

32768 4096 512 64 8 1

For example, the octal number 421 is 4*64  + 2*8  + 1= 273 denary.

Octal and Binary.

Each octal number corresponds to three bits of binary, from 000 to 111. See the binary 
number table for these equivalents. To convert octal to binary, simply write down the 
three-bit binary equivalent of each octal digit. For example, octal 254 becomes:
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2 5 4
010 101 100

giving the binary number 010101100.

For converting from binary to octal, divide the binary number into three-bit groups, 
starting from the right hand side. Convert each group into octal, including any one or two 
bit number at the left hand side.

For example, the binary number:

1001110110100110 is grouped as:

1 001 110 110 100 110

giving

1 1 6 6 4 6 octal.

Octal numbers, and their relationship to binary.

FIGURE A.2

The digits of an octal scale are simply the digits 0 to 7 with the new culumn being used for 
each power of 8, such as 8, 64, 512 etc.

Hex, or hexadecimal, is even better from the programming point of view. One single hex 
digit will represent a number which uses up to four binary digits. This makes the system 
particularly suitable for modern microcomputers, which use groups of 8, 16, and 32 bits 
almost exclusively. Since a scale of sixteen is used, we need digits for 0 up to denary 15, and 
for the numbers denary ten to denary fifteen we use the letters A to F, as Figure A.3 shows.



Denary Hex

0 00
1 01

etc. to..
9 09

10 0A
11 0B
12 OC
13 OD
14 0E
15 OF
16 10
17 11

etc.
The hexadecimal (hex) code.

FIGURE A.3

The conversions between hex and binary are particularly simple, as Figure A.4 illustrates.

Hex Binary Hex Binary

00 0000 08 1000
01 0001 09 1001
02 0010 0A 1010
03 0011 0B 1011
04 0100 OC 1100
05 0101 OD 1101
06 0110 0E 1110
07 0111 OF mi

To convert hex to binary, write the equivalent four-bit binary number for each hex digit.

For example, to convert Hex AF to binary, write down the codes 1010 for A and 1111 for F 
giving 10101111 as the binary equivalent.

To convert from binary to hex, group the binary digits into fours starting from the right 
hand side. Then write the corresponding hex digits, not forgetting any one, two or three 
digit group at the left hand side.

For example: Binary 11001011011 is grouped as 110 0101 1011, so that in hex it is 6 5 B.
Converting between hex and binary.

FIGURE A.4
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Finally in this brief summary, we come to the problem of negative numbers. There is no 
provision for the use of a negative sign in binary, octal or hex. The system that is used is to 
make the most significant bit (left hand bit) of a binary number act as a sign bit. If we use 
16—bit numbers, for example, like the int type of‘C’, then a number 0111111111111111 is 
positive, and the number 1000000000000000 is negative. Figure A.5 shows how the binary 
equivalent of negative numbers can be found, and how the conversion in the other direction 
is achieved.

For integer numbers of two bytes, the left hand bit (bit 15) is used as a sign bit. This means 
that the number 0x7FFF is the largest positive integer, denary 32767. The number 0x8000 
is equivalent to -32768, the largest negative number. In denary terms, to find the 
equivalent of a negative number subtract the number value from 65536, and then convert 
to octal, hex or binary. When converting back, a negative result should be converted in the 
same way.

For example, converting-76 gives 65536-76=65460, which in hex is FFB4, and in octal is 
177664. In binary, this is 1111111110110100.

Converting the binary number 1100111101101011 into hex gives CF6B, octal 147553, and 
denary 53099, so that the number it represents is -12437.

Negative numbers in binary code.

FIGURE A.5
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