
Amstrad CPC464

Whole Memory

Amstrad
CPC464

Whole Memory
Guide

Don Thomasson

MELBOURNE HOUSE
PUBLISHERS

© 1985 Don Thomasson

Ail rights reserved. This book is copyright and no part may be copied or
stored by electromagnetic, electronic, photographie, mechanical or any
other means whatsoever except as provided by national law. Ail
enquiries should be addressed to the publishers:

IN THE UNITED KINGDOM —
Melbourne House (Publishers) Ltd
Castle Yard House
Castle Yard
Richmond, TW10 6TF

IN AUSTRALIA —
Melbourne House (Australia) Pty Ltd
2nd Floor, 70 Park Street
South Melbourne, Victoria 3205

ISBN 0 86161 199 3

Printed and Bound by Short Run Press Ltd, Exeter

Edition: 7 6 5 4 3 2 1
Printing: F E DC B A9 8 7 6 5 4 3 2 1
Year: 90 89 88 87 86 85

Contents
Chapter 1 — General System Arrangement...................................... 1

The Memory Map.. 1
The 110 Map... 2
Outer Perhipherals... 3
System States.. 4
Jumpblock Entries... 5
Summary... 5
Conventions.. 5

Chapter 2 — The RAM Routines... 7
The RST Area.. 7
The RAM Routine Jumpblock... 11
RST Area Extentions.. 13
Comment..17

Chapter 3 — The Machine Pack... 19
Main Reset... 19
Printer Routines.................... 23
Other MC Routines...24

Chapter 4 — The KERNEL... 27
The Interrupt Handler.. 28
The Event System...30
Comment... 36
Other Kernel Routines..37
Kernel Data Area... 38

Chapter 5 — The Display System...39
The Screen RAM... 39
Streams...41
Parameters..42
Workspace..42

Chapter 6 — The Screen Pack..45
Mode Control.. 46
Addresses...47
Inks and Flashing Colours...49
The Flash System...51
Called by SCRCLEAR..51

Event Routine...51
Called by 0D3C and 0D5B.. 52
Called by 0D4F, 0D5B and 0D6D.. 52
General Routines..52
Comment...57

Chapter 7 — The Text VDU..59
Screen and Cursor Control.. 60
Colour..62
Windows...64
Streams.. 65
Matrix Data... 66
Text Output... 67
Other Text Routines... 71
Comment... 72

Chapter 8 — The Graphies VDU...73
Setting Up...74
Checking Values...75
Main Functions... 76
Comment... 78

Chapter 9 — The Key Manager.. 79
Keyboard Routines.. 81
Input Routines...82
Key Strings..83
Key/Code Tables..85
Repeat Action...87
Break Functions... 87
Summary...89
Bit Maps.. 89
Key/Code Tables..90
Key Manager Workspace...90

Chapter 10 — The Cassette Manager... 93
Messages..95
The Routines... 95
Miscellaneous Calls.. 100
File Types..101
Comment..101
Cassette Workspace..102

Chapter 11 — The Sound Manager.. 105
System Calls...106
Comment..110
Sound Manager Workspace...111

Chapter 12 — External ROMs.. 113
Command Words... 114
Routines..116

Chapter 13 — BASIC Support... 121
Floating Point..1 21
The Entry Points...1 23
Using the Maths Calls.. 127

Chapter 14 — The BASIC Interpréter.. 129
Reserved Words in Token Order.. 130

Appendix 1 — Support Programs.. 133

Appendix 2 — Index by Location..1 45

Appendix 3 — Memory Map.. 151

Index.. 1 52

Introduction

The Amstrad/Arnold/Schneider CPC464 is a fascinating machine in
many ways, but it can be infuriating if you lack some of the
essential items of information regarding its inner workings.
Even with a complété set of official documentation, which can
run to several large volumes, there may be points that remain
obscure.

entry
fifty
they are

Some
their

formai
book

250The operating System, for example, has more than
points, each related to a spécifie function, but some
these entries are not formally defined,
primarily intended as extensions of the BASIC interpréter,
of the other entry points
function is
explanations are needed to complété the picture, and
seeks to meet that need.

because
of

not
are defined in such a way

immediately obvious. Broader,
that

less
this

A fully detailed analysis of the operating System would be very
long and tedious, and might still fail to provide answers to ail
the questions that are likely to arise. What is attempted is an
analysis of the more important functions, the rest being covered
by shorter descriptions.

It is assumed that the reader has some knowledge of machine
code. The inclusion of a complété tutorial on Z80 programming
would leave little or no room for anything else. For those who
need such help, the well-known book "Programming the Z80", by
Rodnay Zaks, is recommended. However, a study of the various
operating System routines in relation to the descriptions given
hereafter may prove enlightening, even to the merest tyro.

disas semblers
the Appendix

code,
means

some
in

ROM-borne

A key difficulty in this connection is that
will only access code in ROM. A program given
provides a solution, since it will work from
while another program in the Appendix provides convenient

the various functional routines and checking theirfor calling
action.

The book is
can largely be applied
jumpblock entry points

based on version 1.0 of the ROMs,
to other versions by
which should remain

but the
working
at the

given, even though they access different entry points
code.

comment s
from the
addresses

in the ROM

Chapter 1
GENERAL SYSTEM
ARRANGEMENT

the

wi th
By

a
the
is

System,
devices.
devices,

than
this
which is
various
because

difficulty
machine

periphera1
of
is

these
higher

One conséquence
a

access to
necessary,

a
with

capabilities

Superficially, the CPC464 is a typical Z80-based
an unusually econotnical arrangement of
making full use of
performance level has been obtained which
limited chip count might suggest.
that the operating System is especially complex,
offset by the comparative ease of user
functions. The word 'comparative'
knowledge of machine code is needed, which may be
for some users, but once they hâve corne to
code a wide range of possibilities opens up.

of
f act
the

is

ternis

Among other ingenuities, the way in which a minimum of 96K of
memory has been packed into a 64K memory map is especially
noteworthy, and this aspect of the System will be studied first.

The Memory Map

trying
This makes

ROM.
also

to write to
will

RAM, to
sense,

Reads

which
since
f rom
RAM,

i and
access

the top
and RAM
will. A BASIC

The whole of the 64K byte memory is occupied by
any writes to memory will be directed.
there is no point in
addresses in the middle half of memory
there being no ROM in this area. For addresses in
bottom quarters of memory, however, both ROM
présent, and it is possible to read from either at
peek will always access RAM, so a spécial bit of machine code is
needed to obtain the contents of ROM.

are

The memory arrangement is complicated by the fact that the top
quarter of RAM is dedicated to use as screen memory, and must be
immediately accessible at regular intervals while data is being
passed to the display. For this purpose, two bytes are read
every microsecond.

The processor is put into a wait state while the pairs of bytes
are being transferred, the transfer being made directly from
memory to the Video Gâte Array, using an address generated by

1

the CRT Controller chip. This means that the main processor can
only make one memory access per microsecond, and although its
clock runs at 4 MHz the actual processing speed is slightly
reduced, a point to watch when calculating execution times.

The Video Gâte Array handles the switching between ROM and RAM
for this purpose, so it is natural that it is also used to
control ROM sélection in general. The instructions for switching
between ROM and RAM are given by outputs to bits 2 and 3 of port
7FXX. A 1 disables, a 0 enables, while bit 2 applies to the
lower ROM and bit 3 to the upper ROM. Incidentally, there is
only one ROM component, some address fiddling dividing it into
two 16K blocks as far as the System is concerned.

As in any bank-switching memory System, the key problem is the
need to jump and switch banks simultaneously, or to appear to do
so. The CPC464 achieves this by using routines held in central
RAM. These are always accessible, whatever the ROM sélection
state. In addition to simple switching between ROM and RAM,
these routines allow the sélection of alternative upper ROMs,
extending the available memory still further. In the extreme, it
would nominally be possible to address a total of 4128K bytes of
memory, but few Systems are likely to approach that ultimate
1imi t.

The complexities of the memory System can be evaded
machine code into the central half of the memory
contains only RAM, but this is neither essential
feasible.

by putting
map, which
nor always

The I/O Map

The sélection of peripheral channels is largely determined by
making one of the bits of the upper byte of the 16-bit I/O
address low, which means that the older I/O instructions of the
form IN A,(N) and OUT (N),A cannot be used, because they draw
the upper byte from the contents of the A register. Instructions
which set the I/O address from the contents of the BC register
are mandatory, and there are strict limits regarding the
contents of the B register, because no more than one of the six
upper bits may be low in any given address. (Making more than
one of these bits low in an input instruction invites physical
damage, because two data sources may fight for control of the
bus, while it is rarely sensible to send the same output to two
different ports at the same time.)

2

The I/O addresses can be summed up as follows:

* If address bit A15 is low, the Video Gâte Array is selected.
This port is for output only. The address must be 7FXX.

* If address bit A14 is low, the CRT Controller is selected.
Address bits A8 and A9 are used to select four different
transfer modes;

BCXX Output to Register Select
BDXX Data Output
BEXX Status Input
BFXX Data Input

* If address bit A13 is low, ROM select data is being output.
The address must be DFXX.

* If address bit A12 is low, the printer channel is selected
for output only. The address must be EFXX.

* If address bit Ail is low, the Parallel Peripheral Interface
(PPI) is selected. Here again, bits A8 and A9 are used to
select four sub-channels;

F4XX Port A (I/O)
F5XX Port B (I/O)
F6XX Port C (I/O)
F7XX Control (Output only)

* If address bit A10 is low, an expansion channel is selected.
In this case, bits A5 - A7 hâve spécial significance;

A5 low selects a communication channel.
A6 low selects a reserved function.
A7 low selects the dise System.

* Address F8FF is a general reset for expansion channels.

The above allocations restrict the user to the following address
ranges for any spécial I/O functions he may require;

F8E0-F8FE: F9E0-F9FF: FAE0-FAFF: FBE0-FBFF

Outer Peripherals

The devices mentioned above are the 'inner peripherals', which
are accessed directly from the main processor. Further devices,
classed as the 'Outer Peripherals', are accessed by the inner
peripherals. They include the Programmable Sound Generator,
accessed by the PPI; the Keyboard, accessed by the PPI and the

3

Sound Generator; the Cassette Recorder, accessed by the PPI; and
the Loudspeaker, driven by the Sound Generator.

For further details of the hardware System, consult 'The Ins and
Outs of the Amstrad', which gives additional information on the
coding and action of these devices.

System States

At switch-on, a number of initialisation procedures are
executed, and control then passes to upper ROM 0. If there is no
external ROM of this number, the internai BASIC interpréter
takes charge as the 'foreground' program.

Once a foreground program has been entered, it remains in charge
until a return at entry level is executed, when a full reset is
performed, and ROM 0 is again put in charge. However, the
foreground program can call on 'background' programs for
assistance, and these, in turn, can call other programs. There
is thus - nominally - one foreground level, but there can be
several background levels.

A ROM other than 0, or a program in RAM, can be
foreground program. This can be done by a RUN "
reads a machine code program that has a defined
or by a machine code routine. It may be more convenient to leave

and run a
program.

in response to
is re-entered.

selected .
" command
start

as the
which

address,

the BASIC interpréter nominally in charge
CALLed from BASIC as if it was a foreground
the advantage that a full reset is not inévitable
a return at entry level. Instead, the interpréter

program
This has

Using BASIC in this way has other advantages. HIMEM can be
checked and adjusted quite easily, putting it below the area in
which machine code is to résidé, and other System variables can
be set up. The BASIC program will use some RAM, particularly
from 0170 upwards, but this is likely to be a negligible drain
on the large RAM area available.

One point to watch is that if extension Systems are added, such
as a dise drive, speech facility, or the MAXAM assembler in ROM
form, HIMEM is lowered, because the extensions hâve claimed
workspace for their own use. Some commercial programs are
incompatible with a dise drive , because they trespass on the
dise workspace. Protected or not, they cannot be transferred to
dise.

As a guide, HIMEM is AB7F in typical circumstances, but drops to
A67B with dise drives connected, and may go even lower with
AMSDOS active.

4

The official advice is that machine code programs should be
relocatable, but that is not always feasible. It has been noted,
however, that it is possible to set short routines in the BF00
area, and these survive a reset, which is useful....

Jumpblock Entries
The RAM area from BB00 to
principal operating System entries.
select the required ROM automatically.
this and no more, but
relevant ROM when the
RST Area'.)

the

The jumpblock entries
that a return address

BDC9 holds instructions accessing
Spécial jumps are used which

Entries beginning &CF
entries beginning &EF
routine returns. (See

also disable
the section on

do
the

'The

should be accessed by subroutine calls,
is available on the stack.

so

From BDCD to BDF3 the entries are simple jumps
These are 'indirections', which do not enable
ROM and should only be called when it is known
already selected.

beginning &C3.
the appropriate

that the ROM is

The intention is that the jumpblock addresses should not change,
though they may access different entry points with different
System versions. However, for ease of reference each routine
description is headed by the jumpblock address and the
associated destination in the operating System. The latter will
change with the System version, as in the CPC664, and the new
entry points must be determined by checking the jumpblock
instructions.

Summary
This quick tour of the main
as a useful introduction to
look more closely at detail
RAM.

System features should hâve served
the System. We must now begin to
beginning with the routines held in

Conventions
Two-digit hexadécimal numbers will are
four-digit hexadécimal numbers are not.
four-digit number indicate the contents of
address identified by the number. Where the
range of numbers, e.g in the form (00FA/D),
of the locations specified are indicated.

prefaced by '&',
Brackets round a

the location at the
brackets contain a
the joint contents

5

6

Chapter 2
THE RAM ROUTINES

During initialisation, two areas of RAM are set up by copying
from ROM. The resuit provides code which can be executed whether
the ROMs are enabled or not, though that is only part of the
story.

The area 0000-003F is set from the corresponding ROM locations.
This is the 'RST Area', which contains a number of spécial entry
points that need to be effective at ail times. An interesting
aspect of this is that initial entry at switch-on is at 0000,
but at that time the RAM copy has not been set up, and the lower
ROM must be entered. This is assured by hardware initialisation
in the Video Gâte array.

Some points within the RST Area can be accessed by the Z80 RST
instructions, but the meaning of these has been changed in the
CPC464 System, by making them call routines in the other RAM
routine area, from B900 to BAE8. This area serves a number of
purposes;

B900-B920 holds a jumpblock accessing routines in BA4A-BAB1
B921-B938 holds KL POLL SYNCHRONOUS. (See Event Routines)
B939-B97B holds
B97C-BA49 holds
BA4A-BAB1 holds
BAB2-BAE8 holds

the main interrupt handler.
the routines implementing RST Area entries.
ROM control and copy routines.
RAM read routines.

To simplify explanation, the action of the routines in B97C-BAE8
will be described first in functional terms, the coding being
examined in detail later, for those who want to know more about
their operation.

The RST Area
The Z80 RST instructions take the form &C7+X, performing a
subroutine call to location X, a return address being left on
the stack. X can be 0,8,&10,&18,&20,&28,&30 or &38.

7

The CPC464 System extends the meaning of these instructions by
making them access RAM routines which modify their effect
cons iderably;

RST00 (Code &C7) enters location 0000, and - as at initial
start-up - a complété reset is performed. The immédiate code
sets the Video Gâte array by an output of &89 to 7FXX, then
there is a jump to 0580 to perform the remainder of the
initialisation. (See Machine Pack.)

RST08 (Code &CF) enters location 0008, where there is a jump to
B982 in the RAM routines. The two bytes which follow the &CF
code are read as a 16-bit word, which is interpreted as follows;

Bits 0-13: An address in the 0000-■3FFF range.
Bit 14: 0 to enable lower ROM, 1 to disable it.
Bit 15: 0 to enable upper ROM, 1 to disable it.

The specified ROM condition is set, and a jump to the given
address is performed. This function, called LOW JUMP, is one of
the secret weapons that make the System of bank-switching
practicable, since the jump and ROM change appear to occur
simultaneously.

Entry at 000B accesses a jump to B97C in the upper RAM routines.
This is PCHL, which is similar to LOW JUMP, except that the
16-bit qualifying word is held in the HL register.

Entry at 000E accesses a jump to the address defined by the
contents of the BC register. This is PCBC, which resembles JP
(HL) in function.

Neither of these two entries is accessible by an RST
instruction, but they can be accessed in the usual way by a jump
or call.

RST10 (&D7) enters location 0100, where there is a jump to BA16
in the upper RAM routines. This implements the SIDE CALL
function. The two bytes following the &D7 code are read as a
16-bit word and interpreted as follows;

Bits 0-13: C000 is added to give an address in the C000-FFFF
range.

Bits 14-15: A value in the 0-3 range. This is added to the
number of the current foreground ROM to détermine the number
of the ROM which is to be accessed.

Upper ROM is enabled, lower ROM is disabled, the required upper

8

ROM is selected, and a jump to the specified address is
performed. This function simplifies cross-access within a group
of up to four sideways ROMs with consecutive numbers, allowing
for extension programs up to 64K in size.

It should be noted that whereas LOW JUMP leaves no return
address, and is a true jump, not a call, SIDE call does preserve
a return address pointing to the location following the
qualifying bytes, and is a call, rather than a jump. (The return
addresses left by the RST instructions are used to locate the
qualifying bytes.)

Entry at 0013 accesses a jump to BA10 in the upper RAM routines.
This is SIDE PCHL, which resembles SIDE CALL, except
16-bit qualifying word is held in the HL register.

Entry at 0016 accesses a
contents of register DE.

These two entries are
instructions.

means

defined

that the

1 by the

of RST

• to B9BF
&DF code

ng to a
ier give

jump to the address
(PCDE)

not accessible by

where there is a jump
The two bytes following the ■
which is an address pointi

first two bytes of the qualif
third byte is interpreted as follows:

RST18 (&DF) enters location 0018,
in the upper RAM routines,
are read as a 16-bit word,
three-byte qualifier. The
an entry address, and the

&00 to &FB: Select
lower ROM disabled.

ROM of this number: Upper ROM enabled,

&FC: ROM unchanged.. Upper and lower ROMs enabled.

&FD: ROM unchanged.. Upper ROM enabled, lower ROM disabled.

&FE: ROM unchanged., Upper ROM disabled, lower ROM enabled.

&FF :: ROM unchanged «, Upper and lower ROMs disabled.

This is FAR CALL, a versatile function that can access almost
anything.

Entry at 001B accesses a jump to B9B1 in the upper RAM routines.
This is FAR PCHL, which resembles FAR CALL, except that the
address part of the qualifier is held in the HL register, while
the third byte is in the C register.

Entry at 001E accesses a jump to the address defined in the HL
register (PCHL).

9

These two entries are not accessible by
instructions.

means of RST

RST20 (&E7) enters location 0020, where there is a jump to BACB
in the upper RAM routines. This is RAM LAM, which executes LD
A=(HL) with ROMs disabled. It can therefore be used to read RAM
at any time. The previous ROM state is restored after the read.

Entry at 0023 accesses a jump to B9B9 in the upper RAM routines.
This is FAR ICALL, which resembles FAR CALL, except that the
addresss of the qualifier is held in the HL register.

RST28 (&EF) enters location 0028, where there is a jump to BA2E
in the RAM routines. This is FIRM JUMP. It resembles the usual
C3XXXX instruction, but lower ROM is enabled before the jump and
disabled after the return.

SIDE CALL, SIDE PCHL, FAR CALL and' FAR ICALL
routine with IY pointing to the RAM data area
selected ROM.

enter the called
reserved for the

RST30 (&F7) is the entry for USER RESTART. If it is
lower ROM enabled, the current contents of C', which
current ROM select bits, are copied to (002B) in RAM
ROM is disabled, and the action returns to 0030, but
If the lower ROM is already disabled, this p

used with
contain the

, the lower
now in RAM.

rocedure is
unnecessary.

The area 0030-0037 in RAM can be patched to access a spécial
routine to meet the user's requirements. As initialised, 0030 in
RAM holds &C7, and entry to 0030 invokes a full reset.

RST38 (&FF) is the équivalent of the response to interrupt, and
is not available to the user.

Entry at 003B is part of the interrupt handling procedure. If an
interrupt lasts too long to be of internai System origin, 003B
is called. It normally contains &C9, a return instruction, but
RAM from this point may be patched to access a user interrupt
handler.

Some of the functions which hâve been described will rarely be
needed by a typical user, though they constitute a vital part of
the CPC464 System, which would not work without them. Their
action should be studied with care.

10

The RAM Routine Jumpblock
The jumpblock at the start of the upper RAM routines gives
access to eleven functions;

U ROM ENABLE: B900.BA5E

The currently-selected upper ROM is enabled. The routine returns
with the A register holding the previous ROM state.

U ROM DISABLE: B903,BA68

The currently-selected upper ROM is
returns with the A register holding the

disabled.
previous

The routine
ROM state.

L ROM ENABLE: B906.BA4A

Lower ROM is enabled. The routine returns
previous ROM state.

with holding the

L ROM DISABLE: B909,BA54

Lower ROM is disabled. The routine returns
previous ROM state.

with holding the

These four routines are almost identical,

form;

taking the general

A

A

Disable Interrupt

Select alternate registers

A = C'

Modify C'

OUT (C'),C'

Select normal registers

Enable interrupt

Return

The modification to C'
for the upper ROM. The
disable. The
assumed that
address. The
basis, while
are made.

ROM, bit
set

affects bit 2 for the lower
relevant bit is zeroed to enable,
to the Video Gâte Array. Note that it

3
to
isoutput is

B' contains &7F, the upper byte of the required I/O
contents of B' may only be changed, on a temporary
interrupt is disabled and no operating System calls

11

ROM RESTORE: B90C,BA72

On entry, A must hold the required ROM state bits, as defined
above, and supplied by the previous four routines. This state is
set.

The routine is similar to the first four, except that bits 2 and
3 of A are copied to C', the remaining bits of which are
unaltered.

ROM SELECT: B90F,BA7E

On entry, C holds the number of the required ROM. This ROM is
selected, and Upper ROM is enabled. When the called routine
returns, C holds the number of the previously-selected ROM and B
holds the previous ROM enable state.

The routine calls U ROM ENABLE, then jumps to BA92, where an
output of C to DFXX selects the required ROM. The ROM number is
copied in (B1A8), which maintains a note of the upper ROM in
current use.

CURR SELECTION: B912,BAA2

The A register is set from (B1A8) to the current ROM number.

PROBE ROM: B915, BAA2

On entry, C holds a ROM select address. One exit, A holds the
ROM class, H holds the ROM version number, and L holds the ROM
mark number. The class byte is interpreted thus;

0: Foreground ROM
1 : Background ROM
2: Extension Foreground ROM
&80: On-board ROM

The routine calls ROM SELECT, to bring the selected ROM into
action, then A = (C000), HL = (C001/2). ROM DESELECT follows to
restore the previously selected ROM.

ROM DESELECT: B918.BA8C

On entry, C holds the required ROM number
required ROM enable state. These will
obtained by ROM SELECT. The specified
selected, using ROM RESTORE and the routine
ROM SELECT.

and B
normally
ROM and

holds the
hâve been
state are

from BA92 used by

12

LDIR: B91B, BAA6
LDDR: B91E, BAAC
These routines allow copies to be made from RAM to RAM with ROM
temporarily disabled. On entry, BC,DE and HL should be set as
for a normal LDIR or LDDR.

The routines are tortuous, and can only be followed by noting
how the stack contents change. The LDIR routine is given here.
The LDDR routine is almost identical.

BAA6 CALL BAB2
BAA9 LDIR
BAAB RET

Stack: X
Stack: X,BC',BABF
To BABF

BAB2 DI Stack: X,BAA9
EXX
POP HL' Stack: X HL'=BAA9
PUSH BC' Stack: X,BC'
C'=C' OR &0C
OUT (C'),C' Disable ROMs
CALL BAC7 Stack: X,BC'

BABF DI Stack: X,BC'
EXX
POP BC' Stack: X
OUT (C'),C' Restore ROMs
EXX
El
RET To X (set by calling routine.)

BAC7 PUSH HL' Stack: X,BC',BABF,BAA9
EXX
El
RET To BAA9

RST AREA EXTENSIONS

The routines used to implement the RST Area functions are
complex and convoluted, but it is advisable to examine them in
some detail so that their action is clearly understood. They
will be examined in the order in which they appear in the upper
RAM routines.

LOW PCHL: 000B.B97C

B97C DI
PUSH HL
EXX
POP DE'
JP B988 See over.

13

The qualifier is transferred from HL to DE'

LOW JUMP: RST08.B982

B982 DI
EXX
POP HL'
DE' = (HL')

Return address.
Qualifier in DE'.

B988 EX AF/AF'
A'=D' Upper byte of qualifier.
D ' =D ' AND &3F
RLCA

DE' holds address only.

RLCA Bits 6,7 to 0,1
B990 RLCA

RLCA
XOR C'

Bits 0,1 to 2,3

AND &0C Bits 2,3 of A' isolated.
PUSH BC' Save previous ROM state.
CALL B9A8
DI
EXX
EX AF/AF'
A'=C’
POP BC'
AND 3
C'=C' AND &FC
A'=A' OR C'
JP B9A9

See below.

B9A8 PUSH DE' Set link to called routine
B9A9 OUT (C'),C'

CLEAR CARRY'
EX AF/AF'
EXX
El
RET

Set enables.

The manipulations of return addresses are somewhat similar to
those noted earlier in LDIR/LDDR. The crucial point is whether
the last block is entered at B9A8 or B9A9. At B9A8, the required
entry address is put on to the stack, so the block 'returns' to
the called routine. Entry at B9A9 leaves the overall return
address on top of the stack. The same block therefore does two
entirely different things.

The routine is complicated by the need to preserve the other
bits of C' while bits 2 and 3 are manipulated to select the ROM
state. On the other hand, bits 0 and 1 may be changed during
execution of the called routine, and they must be incorporated

14

into the previous state of

FAR PCHL: 001B.B9B1

the other bits.

B9B1 DI
EX AF/AF'
A'=C ROM number.
PUSH HL Routine address.
EXX
POP DE' Routine address to DE'
JP B9CE See below.

FAR ICALL:0023,B9B9

B9B9 DI
PUSH HL Pointer to qualifier
EXX
POP HL1 Pointer to HL'
JP B9C8 See below.

FAR CALL: RST18,0018,B9BF

B9BF DI
EXX
POP HL' Return Link.
DE'=(HL') Pointer.
HL=HL+2
PUSH HL' Modifiée! return link.
EX DE'/HL' HL' holds pointer.

B9C8 DE'=(HL') Address
HL'=HL'+2
EX AF/AF'
A'=HL' ROM number.

B9CE IF A')&FB THEN B990
B9D2 B'=&DF

OUT (C'),A' Select ROM
B'=(B1A8) Previous ROM number.
(B1A8)=A' New ROM number.
PUSH BC'
PUSH IY
A'=A'-1
IF A')6 THEN B9F2 Not background ROM
HL'=B1AC + 2*A'
IY =(HL') Address of workspace.

B9F2 B'=&7F Restore normal value.
A'=C'AND &F3
CALL B9A8 Enter called routine.
POP IY Restore previous contents
DI
EXX

15

EX AF/AF'
E'=C'
POP BC'
A'=B'
B1 =&DF
OUT (C'),A'
(B1A8)=A'
B'=&7F
A'=E'
JP B99F

SIDE PCHL: 0013.BA10

BA10 DI
PUSH HL
EXX
POP DE'
JP BAIE

Save current value.
Restore old value.
Previous ROM.

Restore previous ROM.
Note current ROM.
Restore normal value.
ROM which was called.
See above.

Qualifier

Qualifier to DE'
See below.

SIDE CALL: RST10,0010,BA16

BA16 DI
EXX
POP HL'
DE'=(HL')
HL'=HL'+2
PUSH HL'

BAIE EX AF/AF'
A'=D'
D ' =D ' OR &C0
A'=A' AND &C0
RLCA
RLCA
A'=A'+ (B1AB)
JP B9D2

Return Link.
Qualifier.

Modified return link.

Upper byte of qualifier.
Form address in C000-FFFF.
Isolate ROM select bits.

Bits 6,7 to 0,1
Add foreground ROM number.
See above.

FIRM JUMP: RST28,0028,BA2E

BA2E DI
EXX
POP HL'
DE'=(HL')
C'=C' AND &FB
OUT (C'),C'
(BA3F/40)=DE'
EXX
El

BA3E CALL XXXX
DI
EXX

Qualifier pointer.
Qualifier.
Zéro bit 2
Enable lower ROM.
Modify instruction.

Address defined above.

16

C'=C' OR 4
OUT (C'),C'
EXX

Set bit 2.
Disable lower ROM.

El
RET

This routine involves the création of an instruction at
run-time, which is not approved by ail programmers, but it
works. However, it can give confusing results in disassembly...

RAM LAM: RST20,0020,BACB

BACB DI
EXX
E ' =C ' Enable state.
E ' =E ' OR &0C
OUT (C'),E' Disable upper and lower
EXX
A=(HL) Read from RAM
EXX
OUT (C) ,C' Restore enable state
EXX
El
RET

The final routine is unnamed, but is a variant of RAM LAM:

BADC EXX
A=C ' OR &0C
OUT(C'),A Disable ROMs
A=(IX)' Read RAM
OUT (C1),C' Enable ROMs
RET

This form does not corrupt E', and uses IX as a pointer instead
of HL.

Comment

One experienced programmer, glancing through a draft for this
chapter, shook his head in amazement. "What a kerfuffle!" was
his initial reaction, but after further study he came to the
conclusion that every routine was necessary to implement the
storage System to full effect. A user who takes no note of
detail will find that the routines make everything simple, and
that is the key point.

For example, while the BASIC interpréter is running the upper
ROM must be enabled, but the BASIC program is stored from 0170

17

upwards, under the lower ROM. RAM LAM allows direct access to
this area of RAM, with a minimum of fuss and bother. If a
function in lower ROM is needed, it can be called through the
jumpblock by RST8 or RST28.

The routines which hâve been described form the groundwork of
the CPC464 operating System, a foundation on which the rest of
the System is built. We can now go on to examine the higher and
more directly interesting parts of the édifice.

18

Chapter 3
THE MACHINE PACK

Broadly speaking, the Machine Pack is reponsible for the control
of hardware peripherals, but it will be convenient to include
the main initialisation processes under this heading, since they
are largely concerned with peripheral setting-up.

Several of the Machine Pack routines dépend on the action of
other routines to set up data. To understand this data in full,
you need to read 'The Ins and Outs of the AMSTRAD CPC464', which
gives full details of the peripheral codes. Only the more
essential codes will be defined here.

Main Reset

At switch-on, or in response to instruction code &C7, location
0000 is entered. At switch-on, lower ROM is enabled, but the ROM
routines are later copied to the corresponding RAM locations in
this area, so the enable state of the lower ROM is then
unimportant. However, the first action of the reset routine is
to output &89 to the Video Gâte array on I/O address 7FXX, and
this enables lower ROM, disables upper ROM, and also sets up
Mode 1. There being no further room in the RST Area,- the routine
jumps to 0580 to continue reset action.

Interrupt is disabled, and &82 is output to F7XX. This sets the
PPI (Parallel Peripheral Interface) to output on ports A and C,
input on port B. Zéro outputs to F4XX and F6XX clear ports A and
C, while an output of &7F to EFXX initialises the printer port.
Bit 7 is low, the other bits are high.

The CRT Controller is then set up. There are two alternative
sets of values for this, one for 50 Hz frame Scan and the other
for 60 Hz. The set to be used is determined by reading port B,
bit 4. If this bit is true, 50 Hz values are used, while the 60
Hz values are used if the bit is false, this being determined by
the presence of Link 4 on the main printed circuit board.

19

The tables are read backwards, which can be a little confusing
at first, and the outputs alternate between BCXX, which selects
the register to be set, and BDXX, which performs the actual
setting.

Then MC START PROGRAM is entered at 060E with DE=065C and
HL=0000. The contents of DE point to the display routine for the
main title, which is called at an appropriate point. The zéro
value in HL means that ROM 0 will be entered at C006. This will
normally invoke the BASIC interpréter, unless an external ROM
responds to 0. C006 is the standard upper ROM entry point.

Before discussing MC START PROGRAM, it will be convenient to
look at a program which calls it, having first loaded the
necessary data:

MC BOOT PROGRAM: BD13.05DC

On entry to this function, HL must hold the address of a loading
routine, which must be designed to return with carry set and the
program start address in HL if the load is successful, or with
carry clear if the load fails.

The stack is reset by SP=C000, this being the normal stack
position, and sound RESET is called to silence the Sound
Generator. Interrupt is disabled, and &FF is output to port
F8FF, requiring that ail external peripherals devices should be
reset.

KL CHOKE OFF is called to clear the B100-B1BF area to zeroes,
though the previous contents of (B1A9/B) are first saved.
(B1A9/A) holds the last-used foreground ROM entry address, which
is copied to DE, while (B1AB) holds the last-used foreground ROM
number, which is copied to B. (Note that the number of the ROM
in current use is held in (B1A8), which is not preserved here.)

the text screen, assisted by a call to SCR RESET, and U ROM
ENABLE is called to bring the upper ROM into action.

If (B1AB) holds &FF the routine returns with C,
zeroed.

D and E ail

Back in the main BOOT routine, HL is restored to i ts value on
entry and DE, BC and HL are pushed. KM RESET is called to
initialise the Key Manager, TXT RESET is called to initialise

HL is popped, and the loading program it defines is entered,
using an odd little subroutine that consists solely of the JP
(HL) instruction. BC and DE are popped.

20

If the loader returned with carry set, MC START PROGRAM is
entered at 060B. Otherwise, DE and HL are exchanged, putting the
address obtained by KL CHOKE OFF into HL, C=B, and MC START
PROGRAM is entered at 060E with DE=06E8, the entry address of a
routine that reports 1LOAD FAILED'. The previously-selected ROM
is entered.

MC START PROGRAM: BD16,060B

If the normal entry to this function, at 060B, is used, DE is
set to 0726 (pointing to a Return instruction), but it is also
possible to enter at 060E, with DE pointing to a subroutine to
be run during the latter part of the START PROGRAM routine. In
either case, HL must hold the entry address to be used, and C
must hold the number of the ROM to be employed, though the
contents of C may be irrelevant if HL points to a RAM area.

Interrupt is disabled, and interrupt mode 1 is selected. The
alternative BC, DE and HL registers are brought into action.

An output of 0 to DFXX selects upper ROM 0, and an output of &FF
on I/O address F8FF should reset external peripherals. Workspace
in the B100-B8FF range is zeroed, and the Video Gâte Array
receives an output of &89 on address 7FXX. (Mode 1, enable
lower, disable upper.) The normal BC, DE and HL registers are
re-selected. XOR A zeroes A and clears carry, and EX AF,AF'
exchanges AF registers. This sets up the initial conditions
required by the interrupt System.

The stack pointer is again set to C000, its normal base, and HL,
BC and DE are pushed. A sériés of calls then performs the main
initialisation ;

To 0044, copying the RAM routines from RAM, with KL CHOKE OFF
following.

JUMP RESTORE resets the jumpblock entries.

KM INITIALISE resets the Key Manager.

SOUND RESET initialises the Sound System.

TXT INITIALISE initialises the Text VDU.

GRA INITIALISE initialises the Graphies VDU.

CAS INITIALISE initialises the Cassette Manager

21

MC RESET PRINTER standardises the printer System.

SCR INITIALISE initialises the Screen Pack.

The details of these routines will be examined in the
appropriate place, but it can be said that everything - or
nearly everything - is brought to a standard state. This can be
annoying to someone who likes to set up non-standard conditions,
but it has the great advantage that every program starts on the
same basis.

Interrupt is now enabled, and the routine defined in DE on entry
is called. This may be the initial title display, or a 'load
failed' report, as defined below. The main program then pops BC
and HL and jumps to 0077, which is the actual entry routine.
This key routine is not accessible via the Jumpblock, which
might be useful, because the System concept requires a full
reset before a program is entered.

If HL holds 0000, the default entry to C006 in ROM 0 is
executed, but otherwise the ROM is defined in A and the entry
address in HL.

0077 If HL=0000, HL=C006,A=0
(B1A8)=A
(B1AB)=A
(B1A9/A)=HL
HL=ABFF
DE=0040

Default Values.
ROM number.
Part of qualifier.
Qualifier address.
Initial HIMEM.
Initial LOMEM.

BC=B0FF Top of usable memory.
A FAR CALL DF A9 B1 enters the specified routine.
On return, a full reset from 0000 is executed.

This complétés the MC START PROGRAM routine, apart from the
routines called near the end:

065C This calls 0712, which reads port B, picking up bits 1-3,
which are determined by links. According to the links set, the
display announces that the name of the machine is one of the
following:

Arnold Amstrad Orion
Schneider Awa Solovox
Saisho Triumph Isp

The açtual output to the display is handled by
also called with HL=066D to output the rest of
finally with HL=0693 to complété the display.

06EB, which is
the title, and

06E8 HL=06F4, pointing to ' ***PROGRAM LOAD FAILED**-'-'

22

06EB A=(HL)
HL=HL+1
IF A=0 THEN RETURN
CALL TXT OUTPUT
JP 06EB

Printer Routines

Access to the printer port is obtained via a small group of
closely related routines;

MC RESET PRINTER: BD28,07E6

The indirection for entry to MC WAIT PRINTER at BDF1 is reset to
access 07F8. This cancels any change which has been made to
bring an alternative printer driver into use.

MC PRINT CHAR: BD2B,07F2

BC is saved on the stack while MC WAIT PRINTER is called at
BDF1.

MC WAIT PRINTER: BDF1.07F8

BC is set to 0032, a delay count. MC BUSY PRINTER is called, and
if it returns with carry clear the routine jumps to MC SEND
PRINTER. The printer is not busy.

If the return is with carry set, the routine loops back to
repeat the call. In ail, the call is executed 12,800 times
before giving up and returning with carry clear to indicate
failure, which should give you ample time to put the printer on
line if you hâve forgotten to do so.

MC SEND PRINTER: BD31,0807

BC, holding the delay count, is pushed, and A AND &7F is output
to the printer port on address EFXX. This sets strobe l<5w. Then
A OR &80 is output to the same address, making strobe high.
Finally, A AND &7F is. again output to bring strobe low. During
the last pair of outputs interrupt is disabled, to avoid any
risk of lengthening the strobe duration. BC is popped, carry is
set, and the routine returns.

23

MC BUSY PRINTER: BD2E,081B

BC, holding the delay count, is pushed, and A is copied to C.
Then A is set by an input from port B on F5XX, and bit 6, the
printer Busy line, is copied to carry. A is restored from C, BC
is popped, and the routine returns.

This is a good point at which to remind you of the key
différence between the main jumpblock entries and the
indirections. Apart from the préservation of BC in the first
case, BD2B and BDF1 appear to hâve the same effect, but BD2B
enables lower ROM, and BDF1 does not. It is useful to make BDF1
an indirection, to simplify calling alternative drivers, but
calling it with lower ROM disabled could cause chaos. If the
indirection has been altered to call code in RAM, however, this
does not arise.

Other MC Routines

MC CLEAR INKS: BD22,0786

BC and DE are pushed, and BC=7F10, forming a Video Gâte Array
address. 07AB is called. (See below)

At 0790, 07AB is called again. DE is decremented, and if 07AB
returned NZ the routine loops to 0790. Otherwise, BC and DE are
popped, and the routine returns.

Since 07AB incréments DE, the contents of this register remain
the same during the execution of the loop.

MC SET INKS: BD25.0799

This is identical with MC CLEAR INKS, except that the décrément
of DE is omitted. The incrément of DE in 07AB is therefore
allowed to stand.

At 07AB OUT (C),C sets the palette pointer of the Video Gâte
Array. Then A=(DE) AND &1F OR &40 is output to the Video Gâte
Array to set the palette entry. DE and C are incremented, and if
C=&10 the zéro flag is set. The routine returns.

The above routines require entry with DE pointing to an entry in
the colour tables, which will be discussed later. MC CLEAR INKS

24

sets ail the palette entries to the same colour, MC SET INKS
sets them from the colour table.

MC WAIT FLYBACK: BD19,07BA

base, which is set in (B1CB) by SCR SET BASE, and HL must hold
the required screen offset, as held in (B1C9/A).

AF and BC are pushed, and B=&F5, ready to access port B. An
input from the port is taken, and carry is set from bit 0 of the
resuit. The input is repeated until carry is true, which shows
that frame flyback has occurred. BC a
routine returns.

nd AF are popped , the

This routine allows screen action to
flyback occurs.

be delayed unt i 1 f rame

MC SCREEN OFFSET: BD1F.07C6

On entry, A must hold the upper byte of the required screen

BC is pushed
C=A/4 AND &30
A=H/2 AND 3 OR C
Output of &0C to BCXX selects CRTC register 12
Output of A to BDXX sets the register
Output of &0D to BCXX selects CRTC register 13
HL=HL/2
Output of L to BDXX sets the register
BC is popped
Return

This is an example of an MC routine that helps to implement a
routine elsewhere, by setting hardware to match the software
settings. The values set may appear strange until the section on
the screen has been read.

MC SET MODE: BD1C,0776

On entry, A must hold the number of the mode required. If A
exceeds 2, the routine drops out.

Bits 0,1 of A are copied to the corresponding bits of C', and C'
is then output to 7FXX, the Video Gâte Array.

Serious confusion could resuit if this function was not executed
after a software mode change. The hardware and software must be
kept in step.

25

MC SOUND REGISTER: BD34, 0826

This routine passes data to the Sound Generator registers. The
data is passed via port A of the PPI, while the interprétation
of the data is controlled by bits 6 and 7 of port C thus:

Inactive
Write to register
Read from register
Select register

Bit 6 Bit
0 0
0 1
1 0
1 1

On entry to MC SOUND REGISTER, A must hold the register number
and C must hold the data.

Interrupt is disabled.
A is output to F4XX Port A spécifiés régi
A is set from F6XX Port C input.
A==A OR &C0 Set bits 6,7.
A is output to F6XX Select register.
A==A and &3F Zéro bits 6,7.
A is output to F6XX Inactive.
C is output to F4XX Port A spécifiés data
C=A

Interrupt is enabled
Return

A=A OR &80 Set bit 7.
A is output to F6XX Write to register
C is output to F6XX Inactive.

This routine only handles outputs to the Sound Generator. Inputs
needed in scanning the keyboard are handled elsewhere.

That complétés the Machine Pack routines.

26

Chapter 4
THE KERNEL

The KERNEL routines deal with Interrupts and Events. They are
somewhat complex and tortuous, but need to be understood by
anyone who wishes to use the CPC464 System to full advantage. It
will be best to begin by making a rapid tour of the System.

The Video Gâte Array generates an interrupt puise every l/300th
of a second, or to be more précisé, every 52 horizontal scans of
the screen System, which gives an interval of 64*52=3328
microseconds.

The processor responds to the interrupt puise by jumping to
0038, where there is a jump to the primary interrupt handler in
the RAM routines at B939. The primary handler calls a secondary
handler at 00B1 in ROM, and this first deals with the time
counter update, then with the Frame Flyback Events, if any, and
then calls the Sound System interrupt routine. These are the
functions of the 'Fast Ticker' inetrrupt.

In five cases out of six, the secondary routine then drops out,
and the handling process is complété, but on every sixth entry
the action continues, to service the slower 'Ticker' interrupt,
which nominally occurs every l/50th of a second. In this case
the main handler calls a further secondary handler at 010A in
ROM.

Since the interrupts occur so frequently, it is essential that
they are handled as quickly as possible, since the handling time
is stolen from the running time of the main routines. Even so,
there may not always be time to complété outstanding actions
before the next interrupt occurs, so provision is made for
noting actions which are left over.

There is also provision for a spécial user interrupt handler,
but more about that later.

Most of the actions induced by interrupt are Events, each of
which is identified by an Event Block that defines its

27

characteristics and the address of the routine which implements
it. Events may be tied to the Fast Ticker, Ticker, or Frame
Flyback interrupts, or may be activated by the main program.

The Interrupt Handler

MC START PROGRAM selects interrupt mode
processor réponds to interrupt by putting
next instruction to be executed on to the
0038, where there is a jump to B939 in

i, which means that
the

stack and
the RAM

address of
jumping

Routines.

the
the
to

isThe first requirement for an interrupt
preserve the contents of the processor
interrupted routine can continue when the handler
its task. This is commonly
contents on to the stack, but the CPC464 uses the
of
initial!y.

handler
registers

achieved by pushing

to the alternative main

that
so

has
the

faster
registers,switching

This leads to some interesting gymnastics.

it should
that the
completed
register

method
leastat

is selected. If carry' is foundFirst, AF'
routine jumps to B970. The System is already
path, and
Otherwise
préserves

action
and

is
HL'

be
the

set

spécial
BC', DE'

the current ROM enable

needed, as
are brought
state, and carry'

to
in
explained

into use,
is set.

, the
interrupt

below.
A'=C'

is now enabled briefly while AF is re-selected.Interrupt
is the only brief period during execution of the handler when
further interrupt can intrude.
the interrupt took effect
interrupt is
Array, so it
jump to B970
conséquences

It occurs 44 clock
- say 13 microseconds. If

still active, it did not corne from the
must be a user interrupt.
mentioned above will
of that

Since carry'
be taken. We will

This
a

cycles after
the original
Video

is set,
look at

Gâte
the
the

later.

preserve it sAF is now pushed, to
zeroed so that the subséquent OUT
It is then
handler.

permissible to call

contents, and bit
will enable
the first

(c),c
00B1,

Time count in (B187/B) isAt 00B1, the
input is taken from F5XX (port B). If bit
Flyback time, and if there
list they will be serviced
Events)

are any events ■
by calling 0153

i the
with

2 of I is
ROM.

C
lower
secondary

incremented.
it

Frame Flyback
(See

0 is true,
on the
with HL=(B1BC).

Then an
is Frame

If there are any events on
serviced by calling 0153 '

actions that occur 300 times a

Fast Ticker
HL=(B18E).

second.

1 ist,
This

they are
complétés

now
the

28

The count in (B192) is now decremented, and if the resuit is not
zéro the routine returns. Otherwise, (B182) is reset to 6, and
the Ticker actions are executed.

First, the keyboard Scan routine is called (see Keyboard
Manager). Then the Ticker event list is checked. If it is not
empty, bit 6 of (B104), a flag byte, is set. The routine
returns.

Back in the main handler, a little bit of juggling is performed.
Carry is cleared, and is then made carry' by EX AF/AF'. A now
holds the previous ROM state copied earlier from C' to A'. C'=A'
and B=&7F, its usual value.

If (B104)=0, or (B104) is négative, the routine now jumps to
B96A. Otherwise, A = C' AND &0C, and AF is pushed. Bit 2 of C'
is reset. The normal BC, DE and HL registers are selected, and
010A is called to execute Ticker events. Then BC' , DE' and HI '
are brought back into action again. POP HL sets H to the value
pushed from A, then C'=C' AND &F3 OR H, forming the correct
value to be used to restore the ROM status as it was before
interrupt.

(C'),C'We hâve now, by one route or another,
restores the previous ROM status,
registers are finally reselected, and
stack. Interrupt is enabled, and
interrupted action being resumed.

reached B96A. OUT
the normal BC,DE and HL

AF is restored from the
the routine returns, the

But what about that spécial
be set? The routine at B970

action taken if carry'
looks a little strange

is f ound to

B970 EX AF/AF'
POP HL
PUSH AF
SET 2,C'
OUT (C'),C
CALL 003B
GOTO B94B

Cancel earlier change
HL', to be accurate.

Disable lower ROM.
User Interrupt Entry.
Follows call to 00B1.

The alternate registers are in use, having been selected by the
main handler. POP HL' removes the return address for the second
interrupt, as it is not needed. PUSH AF saves the normal AF.
After calling 003B in RAM the main routine is entered
immediately after the call to 00B1.

A user handler must not use EXX or EX AF/AF',
registers not in use are preserving data for

since the main
the interrupted

29

has already
preserved. DE'

IX or IY are

program. Of the registers in active use, HL'
corrupted, while the contents of BC1 must be
not appear to contain critical data, but if
they should be preserved on the stack first.

been
does
used

suggestion
if

that
it

a 1lows

To complicate matters, there is an official
should be 'nested', each calling another

its business.
to set up their handlers in any order they
get to that stage the

handlers
that the interrupt is none of
external
but if matters
out of hand.

units
situation

This

must be

user
f inds

for
wi sh,

almost

'nested',

A spécifie and important requirement is that the handler
clear the interrupt source.

should

The Event System

The key to the Event System is the Event Block,
following format;

which has the

Bytes 0,1; Chain Link
Byte 2; Count
Byte 3; Class
Bytes 4,5; Routine Address
Byte 6; ROM number
Bytes 7 on User Field

of event
by setting each link to point to the next

Chain Link is used to combine a number
list,
last block in the list has byte 1
more detail later.

blocks into a
event block. The

= 0. This will be examined in

Count is
rôle, it
'kicked'
routine
a
unaltered

is
négative

a record
may hâve
Count is

execute
value

by kicks

of outstanding requests for execution. In that
any value from 0 to 127. When an event is
incremented (but not beyond 127), and when the
d Count is decremented. If, however, Count has
the event is disabled, and Count remains
or executions.

Class defines the type of event. The coding used is;

Bit 0

Bits 1-4
Bit 5

0; The routine can be reached by a 'near address'
i.e. by a simple jump.
1; A 'far address' is involved, including
ROM sélection.
Priority (synchronous events only).
0

30

Bit 6

Bit 7

0; Normal event.
1; Express event.
0; Synchronous Event.
1; Asynchronous Event.

The routine entry address
the routine which must be
number being ignored if a

and the ROM number provide access
called to implement the event, the
'near address' is specified.

to
ROM

For normal events, a kick
Express events are execute
they should be as brief as
tied to interrupts, while
main program.

is marked by incrementing Count, but
d immediately. It is important that

possible. Asynchronous events are
Synchronous events are called from the

The event block must be in RAM, so that its contents
adjusted, and it must be in the central half of RAM, so
is accessible whenever it is needed.

can
that

be
it

The user field beginning at byte
parameters which are relevant to the

7 may be used
event function.

to hold

An event block is set up by;

KL INIT EVENT: BCEF, 01D2

On entry, HL must hold the address at which the event
to be set up, DE must hold the entry address for the
routine, B must hold the class byte, and C must hold
of the ROM which contains the associated routine.

block is
associated

the number

Chain link is not set up at this stage,
The rest of the entries are set up from

and Count
the given

is set
data.

to 0.

It
as

is advisable
they are not

to keep
easy to

a written note of
locate, once they

event block addresses,
hâve been set up.

The block having been established, must be
System. This can be done in various ways ;

linked into the

KL EVENT: BCF2, 01E2

If KL EVENT is called with HL holding
block, the event is 'kicked', subject

the address of the event
to checks on its status.

If Count is négative, the routine drops out, taking no action.
If Count is in the range 0-126, it is incremented, but if it is
127 the routine drops out, there being too many outstanding

31

requests already. (As a diagnostic aid, a case of Count=127 is a
clear indication that the interrupt System is overloaded.)

If the routine has not dropped out, Class is checked. A
synchronous event is linked into the synchronous list, a normal
event is added to the 'kicked' list, and an express event is
implemented immediately.

The events on the 'kicked' list are executed at the next Fast
Ticker interrupt. The list is constructed by setting each chain
link to point to the next event block, the first link being held
in (B100/1). For the synchronous list the first link is in
(B193/4). If the upper byte of a first link is zéro, the list is
empty.

There are further event lists associated with the Fast Ticker,
Ticker and Frame Flyback interrupts, the relevant functions
being:

KL NEW FRAME FLY: BCD7, 0163

On entry, HL must contain the address at which the Frame Flyback
block is to be set up: It consists of an event block preceded by
two bytes used as a chain link. The normal event block chain
link is not used. The othér parameters required for KL INIT
EVENT apply here, as the event block is first created, then
linked to the Frame Flyback list.

The first link of the Frame Flyback list is held in (B18C/D)

KL ADD FRAME FLY: BCDA, 016A

On entry, HL must hold the address of an existing event block,
less two. The event concerned is added to the Frame Flyback
list.

KL DEL FRAME FLY: BCDD, 0170

On entry, HL must hold the address of an event block less two.
The event is deleted from the Frame Flyback list, if it is there
in the first place.

Once an event has been tied to an interrupt list, it is kicked
every time the related interrupt occurs.

The three calls related to the Fast Ticker interrupt are
directly analogous to those for the Frame Flyback interrupt:

32

KL NEW FAST TICKER: BCEO, 0176

KL ADD FAST TICKER: BCE3, 017D

KL DEL FAST TICKER: BCE6, 0183

The first link of the Fast Ticker list is held in (B18E/F)

Ticker blocks are more complex, requiring six bytes prefaced to
a normal event block;

Bytes 0,1
Bytes 2,3
Bytes 4,5

Ticker Chain Link
Tick Count
Count Recharge

The Ticker interrupt nominally occurs 50 times a second. The
Tick Count is then decremented, but no further action is taken
until the count reaches 1, when the associated event is kicked
and the count is reset from Count Recharge. If Count Recharge is
zéro, the event is only kicked once. A zéro count disables the
event. Otherwise, the event can be called at intervals of up to
rather more than 21 minutes.

The first link of the Ticker list is held in (B190/1)

KL ADD TICKER: BCE9, 01B3

On entry, HL must hold the event block address less six, DE must
hold the initial count, and BC must hold the count recharge. The
event is added to the Ticker list. (There is no function to both
create an event and add it to the Ticker list.)

KL DEL TICKER: BCEC, 01C5

On entry, HL must hold the event block address less six. The
event is removed from the Ticker list.

Note that délétion of an event from any list leaves the event
block intact, and it can be put back on the list later, if
necessary.

33

KL DISARM EVENT: BD0A, 028E

On entry, HL must hold the address of an event block. The Count
byte in the event block is set négative, so that the event is
disabled.

Synchronous Events

Synchronous events are handled in a
events being set in the synchronous
first link of the list is held in
priority level is held in (B195).

rather different way, the
list in priority order. The

(B193/4) and the current

KL SYNC RESET: BCF5, 0228

This zeroes (B194/5), marking the list as empty and setting the
current priority level as zéro.

KL DEL SYNCHRONOUS: BCF8, 0285

On entry, HL must hold the address of an event block which is to
be removed from the synchronous list. KL DISARM EVENT is called
to make the Count byte négative, and the chain link pointing to
the specified event block is changed to point to the next event
on the list. If there is no subséquent event, the upper byte of
the link is zeroed.

For non-express synchronous events, bits 5-7 of Class are zéro,
so the magnitude of Class dépends on the prioriLy bits 1-4 and
the address type bit 0. When KL EVENT finds that it is dealing
with a synchronous event, the 'kick synchronous' subroutine is
called. This scans the synchronous list until either the end of
the list is reached or the Class byte of a listed event is
smaller than the Class byte of the new event, which means that
the new event has a higher priority.

Calling the listed event N, the previous event, N-l, will hâve a
chain link pointing to the event block for N. This is changed to
point to the new event, while the chain link of the new event is
set from the previous chain link of N-l. The new event block is
thus inserted in the list at a point appropriate to its
priority.

KL DEL SYNCHRONOUS reverses this process, changing links to
bypass the event block to be deleted.

34

KL NEXT SYNC: BCFB, 0256

This function searches the synchronous list for an event with a
higher priority than that set in (B195). If no such event is
found, the routine returns with carry clear.

If a suitable event is identified, the routine returns with
carry set, HL holding the event block address, and A holding the
event priority (Class), which is also stored in (B195). The
event is removed from the synchronous list.

When KL NEXT SYNC finds a suitable event, it is processed by;

KL DO SYNC: BCFE, 021A

On entry, HL must point to an event block, as provided by KL
NEXT SYNC. The event routine is called and executed. To complété
the action, it is then necessary to call:

KL DONE SYNC: BD01, 0277

On entry, HL must point to the relevant event block. The address
is not provided by KL DO SYNC, so the address
NEXT SYNC must be saved on the stack while

returned by KL
KL DO SYNC is

executed. Similarly, A must hold the previous event priority,
also provided by KL NEXT SYNC but not by KL DO SYNC. (CPC464
formai documentation spécifiés C instead of A, but the code uses
A...)

The priority level in (B195) is set from A, and the count in the
event block is decremented. If the count is then positive,
non-zero, the event is returned to the synchronous list.

KL POLL SYNCHRONOUS: B921

This is a routine in RAM, entered directly to allow a quick
check to be made of the first item on the synchronous list. If
this has a higher priority than the current priority in (B195),
the routine returns with carry true.

KL EVENT DISABLE: BD04, 0295

Bit 5 of (B195) is set to 1, indicating an impossibly high
priority.

35

KL EVENT ENABLE: BD07, 029B

Bit 5 of (B195) is zeroed.

The above description is nominally correct, but it leaves some
questions unanswered. For example, how can (B195) be set by a
named call? Is there any need to so set it?

Let us look over the System on a broader basis.

The intention is that the foreground program should make regular
checks for outstanding synchronous events. This can be done by
calling KL POLL SYNCHRONOUS. If the return is with carry set,
the sequence;

L1 CALL KL NEXT SYNC
JR NC,EXIT
PUSH HL
PUSH AF
CALL KL DO SYNC
POP AF
POP HL
CALL KL DONE SYNC
JP L1

can be run. This will process ail events at the priority level.
The level will initially be 0, because initialisation clears
(B195) to zéro, but as soon as KL NEXT SYNC finds a top priority
event, the current priority is set to that level, and ail events
of lower priority are barred.

What is needed here is an extension to the above routine.
EXIT is reached, if (B195) is not zéro it is decremented,
the routine is re-entered. For those who do not relish the

When
and

task
of checking whether (B195) is the correct location in their
System version, it is possible to set (B195) by calling KL DONE
SYNC with the required value in A and HL pointing to a dummy
event block...

Comment

The Event System is unlikely to be mastered completely in an
afternoon. Since the lengths of the various lists are virtually
unlimited, it would be possible to go berserk and create so many
events that the System would hâve no time to attend to anything
else, so a cautious approach is advisable.

36

It is possible to Write quite complex programs without making
use of events, but once the System is understood it provides
enormous scope for ingenuity.

Because the contents of the lists are changing rapidly ail the
time, it can be difficult to trace exactly what is happening.
The events provide a powerful tool, but - like ail powerful
tools - it needs to be used with care.

Other Kernel Routines

Some of the Kernel routines are not accessible through the
Jumpblock. We hâve already met the program entry routine at
0077, and a routine at 0044 that copies code to RAM. There are
also routines for adding an event to a list, or deleting an
event, but these are not suitable for use in isolation. Two more
Kernel routines, accessible through the Jumpblock, will suffice
here ;

KL TIME PLEASE: BD0D, 0099

The contents of the time counter are set in DE (upper word) and
HL (lower word).

KL TIME SET: BD10, 00A3

The time counter is set from DEHL, with (B18B)=0.

The very compact routine for incrementing the time count is
worth quoting here;

L1 HL=B187
L2 INC (HL)

INC HL
IF HL=0 THEN L2
RET

If a byte is incremented from &FF to 0, a carry is required to
the next byte. This could involve a spillover into (B18B) when
FFFFFFFF is incremented. That would occur roughly once in 4000
hours, but (B18B) would not return to zéro for around a million
hours. The System would then fail - if you can wait that long!

Four further Kernel routines are so closely linked with the
external ROM System that they are best dealt with in that
context.

37

Kernel Data Area

B100-B101 Kicked List Base
B102-B103 Kicked List End
B104 Flag byte
B105-B106 SP Hold
B107-B186 Spécial stack
B187-B18B Time count
B18C-B18D Frame Fly List Base
B18E-B18F Fast Ticker List Base
B190-B191 Ticker List Base
B192 Ticker Count
B193-B194 Sync List Base
B195 Current Priority
B196-B1A5 Command Word Copy
B1A6-B1A7 Command Chain Base
B1A8 Current ROM
B1A9/B Far Address Qualifier
B1AC-B1B8 Data Area Pointers

38

Chapter 5
THE DISPLAY SYSTEM

In ail, the Display System takes up some 4000 bytes of code and
fixed data in ROM, and its workspace spans about 380 bytes of
RAM, not to mention the 16K byte screen RAM. There are more than
100 entry points. Fortunately, the System divides into three
main parts:

* The Screen Pack deals directly with screen handling, colour
sélection and screen read and write.

* The Text VDU handles matters relating to text display,
including the implémentation of stream sélection. It also deals
with the control codes and their parameters.

* The Graphies VDU handles the graphie display.

Each of these parts requires a chapter to itself, but it will be
useful to offer some general information first.

The Screen RAM

In theory, the Screen RAM could be any 16K byte area of memory
starting at a multiple of 4000, but the 8000-BFFF block would
overwrite workspace and RAM routines, while 0000-3FFF would
overwrite the RST Area, so the choice narrows to 4000-7FFF or
C000-FFFF, and it is usually more convenient to adopt the latter
area, leaving the central half of RAM free for other purposes.

The Screen RAM is accessed by the Video Gâte Array on a basis of
addresses supplied by the CRT Controller, but the addresses are
not used in a straightforward manner. The CRT Controller
embodies two counters. One, output on RA0-RA4, is incremented

39

after each line of the display has been scanned. When this count
reaches the value set for the number of Scan lines in the
character height it is zeroed, and the second counter, output on
MA0-MA13, is incremented. This counter is initialised to the
Start Address set in the CRT Controller, which is 3000 when the
C000-FFFF area is in use. These outputs are used as follows;

bits A14,A15 are
counter Works from a Start
true.

* Address driven from MA12,MA13. Since the
Address of 3000, both these bits

MA
are

Address bits A11-A13 are driven from RA0-RA3

Address bit A1-A10 are driven from MA0-MA9

* Address bit A0 is driven from the CRT Controller clock.

*

*

The scan line takes 40 microseconds to traverse the visible part
of the display, and during each microsecond the Video Gâte Array
requires two bytes of screen data. These are transferred
directly from RAM to the Video Gâte Array, the processor being
meanwhile held in Wait. The process is so timed that the CRTC
clock changes state between the two transfers. Once ail the
bytes hâve been read, the normal processor action is allowed to
continue.

The bytes are used in different ways in the three screen modes.

In Mode 2, each byte defines one row of a
matrix, each bit determining which of two
given to a pixel, and eighty characters are

character pattern
colours should be
displayed in each

screen row.

: row, two
colours.

and 0,4.
pair of

the Video Gâte Array détermines which palette entry should
and sets the colour accordingly.

forty characters can be

two bytes are required to define
used to give each

each
of

matrix
four

1,5; .

In Mode 1,
bits being
Successive pixels are defined by bits 3,7;
This sequence is repeated in the second byte From each
bits ,
be used,
requires two bytes, only
screen row.

pixel one
2,6;

Since each matrix
displayed

row
per

In Mode 0, four bits are required
colours for each pixel. This means
for each matrix row. The first pixe
of the first byte, the second by bi
characters can be displayed in each screen row.

to define one of s ixteen
that four bytes are required
1 is defined by bits 1,5,3,7
ts 0 <,4,2,6 and so on., Twenty

The way the CRT Controller counts are used complicates the

40

calculation of
0:

screen addresses. Numbering columns and rows from

Address=Base + Offset + N*Column + 80*Row + 2048 per scan line.

where N is the number of bits per pixel in the current mode.

For a given scan line, the bits are taken in sequence. The
Scan line is located by increasing the addresses by 0800.

next

Fortunately, the System will work out screen addresses on
basis of column, line, base and offset.

the

Observant readers may notice a slight anomaly. If N*Column = 79,
and Row = 25, the column
total 1999, so there are
spare. The MA counter in

and row ternis
48 locations
the CRTC does not

in the above équation
in each scan line that are

address them.

However, there is the Offset term to be
Making offset = &50 moves the screen up i
offset 0800 would move the display up by
offset is limited to 07FF by the routine normally
it. When Offset is used,
modif ied,
There is a lot of scope for

Address
may then

taken
one line.

one Scan
used
the

into play.
in
corne

the Start
and the missing 48 bytes i

gentle experiment here.

into account.
Making
line,

to
CRTC

the
but
set
is

Streams

The System provides for the
screen data, each with its
are :

Window
Cursor Position
Pen and Paper
Cursor
Screen
Opaque or Transparent
Text or Graphies Write
Roll Type

of eight
independent

définition
own

streams'
parameters

of
, which

Enab1e
Enable

heldAil eight sets of parameters are
current use being copied into a common area.

in store, the set in

two
the

reserved may be accessed by stream
stream is specified.

Each stream may reserve for itself a rectangular window.
Windows overlap, the streams may overwrite
overlap area. Any area not so
0, which is the default if no

each other
If
in

41

Parameters

A certain amount of care is needed in dealing with screen
parameters, as their définition can vary. A distinction is made
between 'physical' and 'logical' values, the former numbering
columns and rows from 0 upwards, while the latter start at 1.
There are also distinctions between absolute and relative
values.

Similar distinctions arise with Graphies parameters, user
coordinates being relative to the origin set by the user, while
standard coordinates are relative to the default origin.

Workspace

As many workspace locations are common to more than one section
of the display System, the addresses for the whole screen
workspace in Version 1.0 are given here

42

Screen Pack Text VDU

B1C8 Mode B20C Current Stream
B1C9-B1CA Offset B20D-B21B Stream 0 data
B1CB Base (high byte) B21C-B22A Stream 1 data
B1CC-B1CE Jump instruction B22B-B239 Stream 2 data
B1CF-B1D6 Pixel masks B23A-B248 Stream 3 data
B1D7 Flash Time 2 B249-B257 Stream 4 data
B1D8 Flash Time 1 B258-B266 Stream 5 data
B1D9-B1E9 Colour Table 2 B267-B275 Stream 6 data
B1EA-B1FA Colour Table 1 B276-B284 Stream 7 data
B1FB Table select flag B285 Current Row
B1FC Flash count B286 Current Column
B1FD Colour time B287 Current Roll Type
B1FE-B206 Event Block B288 Current Top
B207 Bits/pixel, negated. B289 Current Left

B28A Current Bottom
B28B Current Right

Graphies B28C Current Roll Count
B28D Current Cursor Flag

B328-B329 X Origin B28E Current Screen Enabl<
B32A-B32B Y Origin B28F Current Pen
B32C-B32D X Position B290 Current Paper
B32E-B32F Y Position B291-B292 Link for print mode
B330-B331 Window Left B293 Graphie Write Flag
B332-B333 Window Right B294 1ST RAM Matrix Code
B334-B335 Window Top B295 Matrix Flag
B336-B337 Window Bottom B296-B297 Address of RAM Matri:
B338 Encoded Pen B298-B2B7 Pattern Hold
B339 Encoded PAPER B2B8 Parameter Count
B33A-B341 Matrix copy B2B9 Control code
B342-B343 X Hold B2BA-B2C2 Control Parameters
B344-B345 Y Hold B2C3-B322 Control Jump Table

43

44

Chapter 6
THE SCREEN PACK

The Screen Pack routines occupy the 0AA0-106E area of ROM, and
provide 34 defined entry points and three indirections. The
routines deal with screen Mode sélection, address calculations,
colour control, and similar matters. We will begin by looking at
the initialisation routines.

SCR INITIALISE: BBFF, 0AA0

MC CLEAR INKS is called with DE=104D, clearing ail palette
entries to &04. Screen Base is set to C000, and SCR RESET and
SCR CLEAR follow.

SCR RESET: BC02, 0AB1

SCR ACCESS is called with A=0 to select normal write mode. The
indirections SCR READ, SCR WRITE and SCR MODE CLEAR are reset to
the default addresses. 0CD2 is called to copy default colour
data from 104D-106E to the two colour tables at B1D9-B1E9 and
B1EA-B1FA. Flash times are set to one fifth of a second. The
colour select flag in (B1FB) is zeroed.

SCR CLEAR: BC14, 0AF2

Mode 1 is selected, with appropriate mask settings, and SCR MODE
CLEAR follows.

SCR MODE CLEAR: BDEB, 0AF7

This is an indirection, and must not be called when lower ROM is
disabled.

0D4F is called to disable the flash System, which will be
examined later. SCR OFFSET is called with HL=0000 to standardise
the screen map, then the screen RAM is cleared to zéro entries,

45

using LDIR. The routine exits via 0D3C to re-activate the flash
System.

Mode Control

SCR SET MODE: BC0E, ÔACA

On entry, A must hold the number of the mode required. If the
number is outside the 0-2 range the routine returns immediately.

Otherwise, 0D4F is called to disable the flash System, then 10B7
is called to initialise the streams, this being a routine in the
Text VDU area. 15D6 in the Graphies VDU is called to set
graphies pen and paper. The Mask Table is then set up as shown
below.

The Mode number is set in (B1CB) and MC SET MODE is called to
reset the Video Gâte Array. SCR MODE CLEAR is called, then GRA
INITIALISE at 15B6, following the call to GRA RESET. The final
exit is via 10D5, which leads into TXT STR SELECT.

MASK TABLE

Mode 0 Mode 1 Mode
B1CF &AA &88 &80
B1D0 &55 &44 &40
B1D1 •Æ &22 &20
B1D2 * &11 &10
B1D3 'A- * &08
B1D4 * &04
B1D5 * * &02
B1D6 ■j- * &01

Asterisks indicate entries which are set up but not used.

The table picks out the bits of the screen data bytes which are
to be used to define individual pixels. For example, in Mode 1
the first pixel is defined by bits 3 and 7, so the mask is &88.

SCR GET MODE: BC11, 0AEC

A is set from (B1C8) and compared with 1. This gives flags C,NZ
for Mode 0, NC,Z for Mode 1, and NC,NZ for Mode 2. There are a
number of internai calls to this routine, and the flag state is
more often used than the number in A.

46

Addresses

SCR SET OFFSET: BC05, 0B3C

On entry, HL must hold the required screen offset. H=H AND 7,
and then (B1C9/A)=HL. SCR GET LOCATION is called, and the
routine exits via MC SCREEN OFFSET to reset the CRT Controller.

Officially, the given offset is limited to an even number in the
range 0-07FE, which is désirable, since odd numbers could cause
confusion, but the routine does not zéro bit 0, so the user must
attend to the limitation.

SCR SET BASE: BC08, 0B45

The upper byte of the required screen base must be held in A on
entry. It is masked by A=A AND &C0, allowing the base to be
0000, 4000, 8000 or C000, and the resuit is set in (B1CB). SCR
GET LOCATION is called, and the routine exits via MC SCREEN
OFFSET to reset the CRT Controller.

SCR GET LOCATION: BC0B, 0B50

HL=(B1C9/A), Offset, and A=(BC1B), Base upper byte.

SCR CHAR LIMITS: BC17, 0B57

SCR GET MODE is called. For ail modes C=&18 (screen
one), while B is set to the number of screen columns
These values match the 'physical coordinates', which

rows less
less one.

start at 0.

SCR CHAR POSITION: BC1A, 0B64

On entry H must hold a physical column number and L a physical
row number. The corresponding screen address is calculated and
returned in HL, and the number of bits per pixel for the current
mode is returned in B.

47

SCR DOT POSITION: BC1D, 0B95

This is really a graphies function. On entry, DE must hold the X
coordinate of a pixel, and HL must hold the Y coordinate, both
being expressed in ternis of absolute displacement from the
bottom left corner of the screen. The screen address of the byte
relating to the pixel is returned in HL, B holds bits/pixel less
one, and C holds a bit mask identifying the relevant bits of the
specified screen byte.

We now corne to four routines which are by no means easy to
follow. In each case an address in HL is modified to point to a
byte in an adjacent screen position.

SCR NEXT BYTE: BC20, 0BF9

L is incremented, and if the resuit is non-zero the routine
returns.

Otherwise, a carry to H is required, so H is incremented, but if
this givns H AND 7 = 0, H=H-&08. The end of a bloc'c has been
reached, and correction is required.

SCR PREV BYTE: BC23, 0C05

L is decremented, and if it was not previously zéro the routine
returns.

Otherwise, H is decremented, and if previously H AND 7 < > 0 the
routine returns. Otherwise H=H+&08 to apply the necessary
correction.

SCR NEXT LINE: BC26, 0C13

H=H+8, moving to the corresponding byte in the next scan line.
If H AND &38 (> 0, the routine returns. Otherwise, the address
has gone out of range, and H=H-&40, L=L+&50, taking the address
to the other end of screen RAM and then forward one line.
Finally, if H AND 7=0, then H=H-8.

SCR PREV LINE: BC29, 0C2D

H=H-8. If H AND &38 < > &38, the routine returns. Otherwise,
H=H+&40, L=L-&50. If H AND 7=0 then H=H+8.

It is useful to picture the screen RAM as being divided into

48

eight sections, each of which deals with one particular matrix
row for ail characters. It may help to draw out a map of part of

the screen - but use a large sheet of paper!

Inks and Flashing Colours

The colour System involves some disconcerting translations, but
its otherwise fairly straightforward.

SCR INK ENCODE: BC2C, 0C86

The ink number held in A on entry is converted to an ink mask,
which is returned in A.

First, 0CC2 is called to interchange bits 1 and 2 of A if Mode 0
is in use. Then an eight-iteration loop is entered with E
initially holding the ink number, original or modified, and C
holds (B1CF), the first colour mask.

Bit 0 of E is copied to bit 0 of A, E being rotated right and A
being shifted left in the process. C is shifted right, and if
the bit which passes from C into the carry is 0, E is rotated
left, restoring its previous contents. The routine loops.

For Mode 2, C holds &80, so the contents of E remain unaltered
until the last itération. Bit 0 of E is set in ail locations of
A, each of which relates to one pixel.

For Mode 1, C holds &88. Bit 0 of E is set in bits 4-7 of A, and
bit 1 of E is set in bits 0-3 of A.

For Mode 0, bearing in mind the bit: exchange, the bits of A are
set as follows:

Bit of A: 7 6 5 4 3 2 1 0

Bit of E: 0 0 1 1 2 2 3 3

Colour bit: 0 0 2 2 1 1 3 3

SCR INK DECODE: BC2F, 0CA0

The above process is reversed, an encoded ink in A on entry
being converted to an ink number in A on exit.

The above two routines preserve BC, DE and HL.

49

SCR SET INK: BC32, 0CEC

SCR SET BORDER: BC38, 0CF1

These two entries share a common routine. On entry, B and C must
hold colour numbers, which should be the same for no flash,
different for flash. For SCR SET INK A must hold an ink number,
but for SCR SET BORDER A is zeroed. For SCR SET INK, A=A AND &0F
+ 1, giving the range 1 to &10.

One might expect that the subséquent process, common to both
entries, would be quite simple, the colour numbers being entered
in the locations of the two colour tables indicated by the ink
numbers, but an additional process is required, the colour
numbers being converted by reference to the following table:

changed

&00 &14 &08 &0D &10 &07 &18 &0A
&01 &04 &09 &16 &11 &0F &19 &03
&02 &15 &0A &06 &12 &12 &1A &0B
&03 &1C &0B &17 &13 &02 &1B &01
&04 &18 &0C &1E &14 &13 &1C &08
&05 &1D &0D &00 &15 &1A &1D &09
&06 &0C &0E &1F &16 &19 &1E &10
&07 &0 5 &0F &0E &17 &1B &1F &11

The colour number on the le ft of each pair becomes the colour
number on the right o f the pair. Note that only the first half
of the table is used.

The converted numbers are entered in the two colour tables , and
then (B1FC)=&FF to wa rn the colour System that the colours hâve

SCR GET INK: BC35, 0D14

SCR GET BORDER: BC3B, 0D19

Here again, a common routine is used, except that SCR GET INK
requires an ink number to be held in A on entry, whereas SCR GET
BORDER sets A to zéro. The ink is read from the colour tables,
and then converted by reverse reference to the table above. The
results are returned in B and C., with the first colour in B.

SCR SET FLASHING: BC3E, 0CE4

The contents of HL on entry are set in (B1D7/8). The two bytes

50

give the colour flash periods in fiftieths of a second. The time
for the first colour is given by the second byte...

SCR GET FLASHING: BC41, 0CE8

HL=(BlD7/8): See previous routine.

The Flash System

Colour flashing is executed automat ica 1ly by an event on the
Frame Flyback list. The event details are:

Event Block Address: B200

Class: Asynchronous, Near Address

Routine Address: 0D5B

The actual event routine is one of a group of small routines
which are closely interlinked. They are described below in
address order:

Called by SCR CLEAR

0D3C The event is removed from the Frame Flyback list, 0D6D is
called, and the event is returned to the list.

0D4F The event is removed from the list. 0D81 sets DE and A and
the routine exits via MC SET INKS.

Event Routine

0D5B The current flash count in (B1FD) is decremented, and if
the resuit is zéro 0D6D is called to change colours. If
(B1FC)()0, indicating that colours hâve been reset, 0D81 is
called to set DE and A, and MC SET INKS is called. Finally,
(B1FC)=0.

51

Called by 0D3C and 0D5B

0D6D 0D81 is called to set DE and A, and (B1FD)=A, setting the
current flash count. MC SET INKS is called, the colour select
flag in (B1FB) is complemented, and (B1FC)=0.

Called by 0D4F, 0D5B and 0D6D

0D81 DE is set to point to a colour table, and A is set to a
flash count. If (B1FB)=0, the first colour is selected, the data
being B1EA, (B1D8). Otherwise, the second colour is represented
by B1D9, (B1D7).

None of these routines are accessible via the Jumpblock.

General Routines

SCR FILL BOX: BC44, 0DB3

SCR FLOOD BOX: BC47, 0DB7

The différence between these two routines lies in the way the
input parameters are expressed. SCR FILL BOX calls a parameter
conversion routine at 0B95, and then executes SCR FLOOD BOX.

On entry to either routine, A must hold the encoded ink to be
used. For SCR FILL BOX, H=left column, L=top row, D=right
column, E=bottom row. These are physical coordinates, from 0
upwards.

0B95 calculâtes E=(E-L+1)*8, the number of Scan lines in the
height of the box. Then D=(D-H+1), the number of characters in
the box width. HL is preserved. SCR CHAR POSITION is then called
to return in HL the address of the top left corner of the box
(defined in HL). B is also set, to give bits/pixel for the
current mode, and this allows the calculation D=D*B to be made,
giving the number of bytes in the box width. C=A.

52

The entry conditions for SCR FLOOD BOX are precisely the same as
the exit conditions for SCR FILL BOX; HL must hold the screen
address for the top left corner of the box, D must hold bytes in
box width, E must hold scan lines in box height, and C must hold
encoded ink.

A loop is entered at 0DB7. HL is pushed, A=D, and 0EE8 is called
to check whether the line addresses are in straightforward
sequence. If they require no corrective action, 0EE8 returns
with carry cJear, in which case a simple LDIR routine can be
used to set the bytes in a line. This is the faster method, but
it cannot be used in ail cases.

If 0EE8 returns with carry set, the sequence (HL)=C:SCR NEXT
BYTE is repeated D times.

In either case, SCR NEXT LINE is called, and the routine loops
back to 0DB7 E-l times, clearing ail the scan lines in the box.

SCR CHAR INVERT: BC4A, 0DDF

On entry, B and C hold different encoded inks, H holds a
physical column number, and L holds a physical row number. The
colours of the character at the indicated position are
interchanged.

C=B XOR C, forming a mask which indicates the bits which are
different in the two colours. The process (HL)=(HL) XOR C is
applied to ail the bytes forming the character.

SCR HW ROLL: BC4D, 0DFA

The screen can be rolled by simply changing Offset if the window
area covers the whole screen. This is called Hardware Roll.

The contents of B on entry détermine the direction of the roll.
B=0 gives a downward roll, otherwise the roll is upwards.

First, the 48 unused screen RAM locations are cleared to
background colour. They will form part of the line which is
brought into the visible screen area. The routine then calls MC
WAIT FLYBACK before changing the offser by +/- &50 and clearing
the remaining 32 locations in the new line.

SCR SW ROLL: BC50, 0E3E

If the current stream has a window defined which is smaller than

53

the size of the full screen, Software Roll has to be
allowing areas
Hardware Roll,
direction, B=0

outside the window to
the contents of B on
giving roll down.

remain unaffected. As
entry détermine the

used,
with
roll

There are separate routines for the two directions of
the principle is the same for both. The line which is
screen is overwritten by copying the next line over it
process is repeated for the remaining Unes. Finally,
line is cleared, using SCR FLOOD BOX.

roll,
to go
, and
the

but
off
the

last

Where possible, LDIR is used for the copying process, but
with SCR FLOOD BOX - this is not possible if block or
boundaries hâve to be crossed. It is worth noting that
screen manipulations are very much faster when Offset is
and there are no Windows.

- as
line
buïk

zéro

SCR UNPACK: BC53, 0EF3

A character
in a manner
matrix has
for Mode 0.

pattern matrix
directly suited

to be spread out
This process is

defïnes the character shape, but
to Mode 2. For the other modes,

only
the

over 16 bytes for mode 1, 32 bytes
known as 'unpacking' the matrix.

On entry, HL points to the
which may be in ROM in
defined-area of RAM. DE mus
enough to hold the unpacked

start of a character
the 3800-3FFF area
t point to an area
matrix.

matrix block,
or in a user
of RAM large

Separate routines are provided for each mode. In Mode
matrix is copied directly into the receiving area
modi f ication.

2, the
wi thout

conversion is:

For Mode 1, the conversion is as follows;

Matrix Byte; abcdefgh
lst Unpacked Byte; abcdabcd
2nd Unpacked Byte; efghefgh

The conversion
B1CF-B1D2.

is determined by reference to the colour masks in

For Mode 0, the colour masks in B1CF-B1D0 are used, and the

Matrix Byte; abcdefgh
lst Unpacked Byte; abababab
2nd Unpacked Byte; cdcdcdcd
3rd Unpacked Byte; efefefef
4th Unpacked Byte; ghghghgh

54

The general method is that the original matrix byte is shifted
left bit by bit, and if the bit transferred to carry is true A=A
OR (Colour Mask). The colour mask is changed for each shift, and
the process is repeated for ail eight bytes of the matrix.

SCR REPACK: BC56, 0F49

The reverse process takes the unpacked matrix from Screen RAM,
so it is necessary to specify a character position, H holding
column and L holding row, both in physical coordinates. Colour
must also be taken into account, so A must hold encoded ink. DE
points to an eight-byte area of RAM in which the basic matrix
can be reconstructed.

C=A, and SCR CHAR POSITION is called to convert HL to a screen
address, after which the routine divides for the three modes:

For Mode 2, the following action is repeated for each matrix
byte;

A=(HL) XOR C
Complément A
(DE)=A
DE=DE+1
CALL SCR NEXT LINE

For the other modes, A=(HL) OR C, and the resuit is compared
with the colour masks for the mode. If A AND (Colour Mask)=0, a
1 is shifted into the output byte, otherwise a 0 is shifted in,
the byte being shifted left through carry.

SCR ACCESS: BC59, ÔC49

SCR WRITE can work in four different modes, and SCR ACCESS
détermines which mode is to be used. A jump destination is
determined by the contents of A on entry to SCR ACCESS. The four
modes, with B=Encoded Ink and C=Pixel Mask, are given below,
with the values of A which will cause SCR ACCESS to select them.

FORCE MODE (A=0);

A=(HL)

A=A XOR B

A=A OR C

A=A XOR C

A=A XOR B

(HL)=A

55

The implications of this are best shown by a truth table;

(HL) B C XOR B OR C XOR C XOR B

0 0 0 0 0 0 0
0 0 1 0 1 0 0
0 1 0 1 1 1 0
0 1 1 1 1 0 1
1 0 0 1 1 1 1
1 0 1 1 1 0 0
1 1 0 0 0 0 1
1 1 1 0 1 0 1

When C=:1, the; sequence OR C, XOR C produces a zéro state,
whereas when C=0 the previ ous state is unaltered.. In the latter
case XOR B ,XOR B makes no différence to (HL), so bits can only
be changed where C=l, when the final state dépends solely on the
initial state of B.

XOR MODE (A=l);

A=B AND C
(HL)=A XOR (HL)

Bits that are true in both B and C are reversed in (HL).

AND MODE (A=2);

A=C complemented.
A=A OR B
(HL)=A AND (HL)

Bits in (HL) that correspond to zéro bits in B coupled with true
bits in C are zeroed.

OR MODE (A=3);

A=B AND C
(HL)=(HL) OR A

Bits which are true in both B and C are made true in (HL).

Perhaps the best way to understand the implications of these
modes is to try them out.

SCR PIXELS: BC5C, 0C6B

This is identical to SCR WRITE in FORCE mode, except that it is
not an indirection.

56

SCR HORIZONTAL: BC5F, 0FC4

Ail graphie lines are made up of horizontal or vertical
segments, and this routine draws the horizontal segments. On
entry A must hold an encoded ink, DE the X start coordinate, BC
the X end coordinate, and HL the Y coordinate. Ail coordinates
are absolute displacements from the bottom left corner of the
screen.

The routine is lengthy but fairly straightforward. HL détermines
the scan line to be used, and DE and BC détermine the end
points. Note that these are not affected by the last plotted
point.

SCR VERTICAL: BC62, 102F

This is similar to SCR HORIZONTAL, but is much simpler, because
a given dot position has to be set in a sériés of scan lines. On
entry, A must hold an encoded ink, DE the X coordinate, HL the Y
start coordinate, and BC the Y end coordinate.

Two Indirections remain to be covered:

SCR READ: BDE5, 0C82

On entry, HL holds the screen address of a byte, and a mask in C
identifies pixels covered by the byte. These can be obtained
from SCR DOT POSITION. On exit, A holds the decoded ink for the
pixel. The routine consists of A=(HL), followed by the relevant
part of SCR INK DECODE.

SCR WRITE: BDE8, 0C68

address
s an

SCR

On entry, HL holds the screen
holds a pixel mask, and B hold
finds a further jump set up by
of the four Write routines already

of a character position, C
encoded ink. A jump to BICC
access, and this leads to one
examined.

Comment
routines should not be judged

serve higher
Pack

They are workhorses designed to
and it is these higher level functions that are

The Screen
isolation.
functions ,
likely to be used. For example, SCR WRITE sets only
byte, since it may be needed to set a single pixel, 1
display of a character requires the setting of up to

insolely
leve 1
most

one screen
whereas the

i 32 bytes.

57

That is the business of the Text VDU, which also has to tnake
sure that the data calls for character display, and not a
control action.

The Screen Pack deals with operations that involve the screen,
largely as a servant of the Text VDU and Graphies VDU, but there
are times when it can be accessed directly with advantage. In
any case, it is worth careful study, because it needs to be
understood as a basis for study of the VDU routines.

58

Chapter 7
THE TEXT VDU

The Text VDU occupies 1078-15A0 in ROM, and provides 36 entry
points and five indirections. Its main task is the placement of
characters on the screen, but it also handles control codes.

TXT INITIALISE: BB4E, 1078

TXT RESET is called, then (B295)=0 indicates that there is no
user matrix table. 113D is called with HL=0001 to set:

(B291/2)=1391 Opaque Mode

(B28D)=3 Cursor disabled and off.

(B28F)=H Paper 0

(B290)=L Pen 1

(B293)=0 Not Graphie Write

Window=Full screen

VDU ENABLE

This sets the current stream, and the routine exits via 10A3 to
copy this stream data to ail the streams.

TXT RESET: BB51, 1088

The five indirections are set to default addresses. The link
table for control codes is copied from 146B-14CA in ROM to
B2C3-B322 in RAM

59

Screen and Cursor Control

TXT VDU ENABLE: BB54.1451

TXT CUR ENABLE is called, (B28E)=&FF, (B2B8)=0

We now hâve to deal with a group of routines related to cursor
positioning. They are complicated by the fact that user
coordinates are expressed in 'logical' ternis, counting from 1,
while the stored data is in 'physical' terms, counting from 0.

TXT SET COLUMN: BB6F.115E

On entry, A must hold the required logical column number. Adding
window left and subtracting 1 gives the absolute column. H=A,
L=(B285), which is the row number, and TXT UNDRAW CURSOR is
called. Then (B285/6)=HL, and the routine exits via TXT DRAW
CURSOR.

Note that the cursor has to be removed before the coordinates
are changed.

TXT SET ROW: BB72, 1174

This is similar to the above, except that A must specify a
required row. L=A+(window top)-l, H=(B286), column, and the
cursor sequence follows.

TXT GET CURSOR: BB78.1180

Nominally, this routine returns the cursor position relative to
the current window limits, but the validity of the position is
not checked, and if it lies outside the window the position may
be changed before it is used.

HL=(B285/6) sets H to absolute column, L to absolute row.
H=H-(B298)+1 converts to user column coordinate.
L=L-(B288)+1 converts to user row coordinate.
A=(B28C) picks up the roll count.

The roll count is decremented at roll up, incremented at roll
down. It only serves to indicate whether a roll has occurred.

Cursor enable control is dépendent on bits 0 and 1 of (B28D).
Bi’t 0 is controlled by the user (ENABLE/DISABLE) , while bit 1 is
controlled by the System (ON/OFF). If either bit is true, the
cursor does not appear.

60

TXT CUR ENABLE: BB7B, 1289

TXT UNDRAW CURSOR is called. Then (B28D)=(B28D) AND &FE, zeroing
bit 0. The routine exits via TXT DRAW CURSOR.

TXT CUR DISABLE: BB7E, 129A

As the above routine, except that (B28D)=(B28D) OR 1, setting
bit 0.

TXT CUR ON: BB81, 1279

As TXT CUR ENABLE, except that bit 1 of (B28D) is zeroed.

TXT CUR OFF: BB84, 1281

As TXT CUR DISABLE, except that bit 1 of (B28D) is set.

The latter two routines preserve AF.

We now encounter an oddity, two jumpblock entries which call the
same entry point, though their action is equal and opposite. The
cursor is made to appear, if it is absent, or disappear if
présent, by inverting the character at the cursor position.

TXT PLACE CURSOR: BB8A, 1268

TXT REMOVE CURSOR: BB8D, 1268

BC, DE and HL are preserved. A subroutine at 11AB sets HL from
(B285/6) to column and row for the cursor position, checks the
validity of the position in relation to the current window,
using subroutine 11DA (see TXT VALIDATE), and sets (B285/6) from
the resulting contents of HL, which may hâve been changed to
bring the position wlthin the window. If carry is set, the 11AB
subroutine returns. Otherwise, roll is required. If B=0, A=1,
while if B=&FF, A=&FF. A is added to the roll count, B indicates
the required direction of roll.

TXT GET WINDOW is called. If it returns with carry set, SCR SW
ROLL is called, otherwise SCR HW ROLL. In either case, A=(B290),
paper.

Back in the main routine, B=Pen, C=Paper, and SCR CHAR INVERT is
called to invert the character at the cursor position.

61

The old cursor should hâve been removed first, using the same
routine with the old cursor position.

Linked with this dual-purpose routine we hâve a pair of
indirections :

TXT DRAW CURSOR: BDCD, 1263

TXT UNDRAW CURSOR: BDD0, 1263

If (B28D)<>0, the routine returns, taking no action. Otherwise,
TXT PLACE CURSOR follows.

TXT VALIDATE: BB87, 11 CE

This routine checks whether the cursor position is inside the
current window, and adjusts the position if it is outside the
window. On entry, H holds column and L holds row, in logical
coordinates counted from 1. The coordinates are converted to
absolute coordinates by adding window left-1 and window right-1.
A subroutine at 11DA then checks and adjusts as follows:

If H^window right, H=window left, L=L+1

If H^window left,H=window right, L=L+1

If L<window top, L=wlndow top, B=0, and the routine returns
with carry clear and B=0 to call for a roll down Otherwise, if
L(window bottom, return with carry set. Barring that, L=window
bottom, and the routine returns with carry clear and B=&FF to
call for a roll up.

HL is reconverted to logical coordinates. If carry is clear,
roll is executed.

Colour

TXT SET PEN: BB90, 12A9

TXT SET PAPER: BB96, 12AE

Apart from setting HL=B28F for pen, and HL=B290 for paper, these
entries use a common routine. On entry, A holds the ink to be
set. TXT UNDRAW CURSOR is called, then SCR INK ENCODE. (HL)=A,

62

and the routine exits via TXT DRAW CURSOR.

The cursor has to be removed, since the change of colour would
otherwise upset the inversion process.

TXT GET PEN: BB93, 12BD

TXT GET PAPER: BB99, 12C3

For pen, A=(B28F), for paper A=(B290). SCR INK DECODE follows.

TXT INVERSE: BB9C, 12C9

Pen (B289) and paper (B290) are interchanged.

TXT SET BACK: BB9F, 137A

This détermines whether background colour should be written
(opaque) or left unaltered (transparent). The action is
determined by setting a link address:

If A=0, (B291/2)=1391, a link to Opaque.

If A=l, (B291/2)=139F, a link to Transparent.

The chosen routine is called by TXT WRITE CHAR, but it will be
convenient to describe the action here. C holds the matrix byte,
and DE holds the screen address;

Opaque

HL=(B28F/90), pen and paper.
B=H AND (C complemented), the paper mask.
A=C AND L, then pen mask.
C=&FF, calling for ail pixels to be set.
B=A OR B, the combined mask.
EX DE/HL puts the screen address in HL
SCR PIXELS follows.

Transparent

B=(B28F), pen
EX DE/HL
SCR PIXELS follows.

Note that only FORCE mode is available.

63

TXT GET BACK: BBA2, 1387

If (B291/2)+EC6F=0, the link set is for opaque, and the routine
returns with A=0. If the link is set for transparent, AO0.

Windows

TXT WIN ENABLE: BB66, 120C

On entry, D and H must hold physical columns for the window side
positions, the larger being used to define the right side.
Similarly, E and L hold the top and bottom rows, the larger
defining the bottom row. The coordinates are checked for
validity, and adjusted if they are outside the screen area. The
resulting values are set in (B288/B) (see next routine).

If the window covers the whole screen, (B287)=0, this being the
flag which selects hardware or software roll. The cursor
position is moved to the top left corner of the window.

TXT GET WINDOW: BB69, 1256

L=(B288) Top

H=(B289) Left

E=(B28A) Bottom

D=(B28B) Right

If (B287)=0, the routine returns with carry clear, permitting
hardware roll. If carry is set, software roll is needed.

TXT CLEAR WINDOW: BB6C, 1540

The cursor is 'undrawn', (B285/6)=(B288/9), setting the 'home'
position at the top left of the window, HL and DE are set as for
TXT GET WINDOW above, and SCR FILL BOX is called. If enabled,
the cursor is restored.

The multiple streams, each of which can hâve its own set of
parameters, complicate a number of the above routines. The
cursor manipulations are also more complex than might be
expected.

64

On the other hand, the flexibility of the screen System
justifies the complexity, and makes a close study of the System
worthwhile.

Streams

Much use has been made of the current screen data in
(B285-B293). At any time, the data for another stream may be
copied into this area from the copies held in (B20D-B284). The
previous current data is saved in its copy area.

TXT STREAM SELECT: BBB4, 10E8

On entry, A holds the number of the required stream. A=A AND 7
ensures that a number 0-7 is used. If A=(B20C), the current
stream number, the routine returns without taking action.

Otherwise, BC and DE are pushed, C=(B20C), (B20C)=A, changing
the current stream number. B=A, A=C. DE=B20D+15*A sets the
address of the copy area for the current stream, and HL=B285,
BC=000F préparés for LDIR to save the current parameters to the
copy area.

A is then set to the new stream number, and the copy process is
repeated, though with an interchange of DE and HL to reverse the
transfer direction. A is set to the number of the previous
current stream.

TXT SWAP STREAMS: BBB7, 1107

This routine involves some interesting sleight of hand. On
entry, B and C hold the numbers of two streams, the data for
which is to be interchanged.

A=(B20C) notes the current stream number, and AF is pushed.

TXT STR SELECT is called with A=C to store the current stream
data and bring stream C data into the current area. Then
(B20C)=B, and DE is set to B20D+15--B. DE is pushed, A=C, and
DE=B20D+15*C. The address pushed from DE is popped into HL, and
the copy routine transfers stream B data into the stream C area.
AF is popped, and TXT STR SELECT is called to copy the old
stream C data (in the common area) into the stream B area

65

(because (B20C)=B). The stream defined in A, which was current
before this process began, is brought into the current area.

Matrix Data

Standard character matrix patterns are held in ROM at 3800-3FFF,
but spécial patterns can be set up in RAM by the user. When such
RAM patterns are set, the matrix flag in (B295) is non-zero, and
(B294) holds the code for the first character in the user table.
The address of the start of the RAM table is held in (B296/7).

carry is clear, HL is ignored, but in any case A=L.

When a pattern is wanted, it may be in ROM or
choice is made by:

RAM, and the

TXT GET M TABLE: BBAE, 132A

HL=(B294/5), putting the matrix flag in H and the code for the
first user-defined character in L. If HO0, carry is set, then
HL=(B296/7), the start of the user-defined table,, if any. If

TXT GET MATRIX: BBA5, 12D3

On entry, A holds a character code.

12D3 DE is pushed, E=A, and TXT GET M TABLE is called. If it
returns with carry clear, the routine jumps to 12E3. There
is no user table. If, otherwise, E is less than the value
of A set by TXT GET M TABLE, the code is below the range of
the user table, and the routine again jumps to 12E3.
Otherwise, 12E6 follows, with E=E-A.

12E3 HL=3800, the base of the ROM table.
12E6 HL=HL+8*E, forming the address of the required matrix. DE

is popped, and the routine returns.

To create a user matrix table, the RAM area must first be
defined and the relevant data must be set up.

TXT SET M TABLE: BBAB, 12FD

On entry, E holds the code for the first character in the table,
and D holds 0. However, if DO0 the existing table is cancelled.
HL holds the start address of the table.

66

12FD HL is pushed, saving the start address of the RAM table. If
D(> 0 the routine jumps to 131D with D=0, which zeroes the
matrix flag. Otherwise, D=&FF and DE is pushed. C=E, and DE
and HL are interchanged.

1308 A=C, and TXT GET MATRIX is called. If, as might be
expected, the matrix flag is clear, the address of the
matrix in ROM which corresponds to the character code in E
on entry is set in HL. If HL=DE, the routine jumps to 131C,
else :

1314 BC is pushed, and eight bytes are copied from (HL) to (DE)
by LDIR. BC is popped, and C is incremented to point to the
next character. If CO0- the routine loops to 1308.

131C DE is popped.

131D TXT GET M TABLE is called, then DE is copied to (B294/5),
the matrix flag being set from D and the first character
code from E. The start address of the new table is then
popped and set in (B296/7)

This préparés for the user table entry, the table consisting of
a copy of the relevant part of the ROM table. The user matrices
must now be set up;

TXT SET MATRIX: BBA8, 12F1

The matrix is set up by copying from a specified source, which
could be another existing matrix. On entry, A holds the code for
the matrix and HL points to the copy source. A return with carry
clear reports failure, carry true means success. Failure is an
indication that the character is not within the defined user
table, or that no table has been defined.

DE=HL, and TXT GET MATRIX is called. If it returns NC, the
routine drops out. Otherwise DE and HL are exchanged, and LDIR
copies the matrix into its place.

Text Output

The text output System is complicated by the interlinking of the
relevant calls. TXT OUTPUT uses TXT OUT ACTION (An indirection).
TXT OUT ACTION handles control codes, but passes character codes
to TXT WR CHAR or the Graphies System. TXT WR CHAR calls TXT
WRITE CHAR, another indirection.

67

This complication can hâve advantages. For example, Graphie
Write does not respond to control characters, so it displays
them, which can be annoying. By altering the indirection TXT OUT
ACTION, it is possible to intercept control codes and treat them
more usefully.

The routines will be described in reverse order, from the end of
the chain backwards towards the beginning, since this will make
the action clearer.

TXT WRITE CHAR: BDD3, 134A

On entry, A holds an ASCII code, H holds a physical column, and
L holds a physical row. (From 0 upwards)

134A HL is pushed, and TXT GET MATRIX is called to get the
address of the required matrix. DE=B298, the start of the
pattern hold area. DE is pushed, and SCR UNPACK is called
to expand the matrix in the hold area. DE and HL are
popped, and SCR CHAR POSITION is called to set a screen
address. C=8.

135C BC and HL are pushed. This is an outer loop point.

135E BC and DE are pushed. This is an inner loop point. DE and
HL are exchanged, C=(HL), and a call to 1376 accesses
either opaque or transparent mode. (See TXT SET BACK) SCR
NEXT BYTE is called, and DE is popped and incremented. BC
is popped, and a DJNZ to 135E follows. This loop sets one
scan line. (Note that B is set by SCR CHAR POSITION to the
number of bytes per character width.) When the DJNZ drops
out, HL is popped, SCR NEXT LINE is called, BC is popped, C
is decremented, and if C(^0 the routine loops to 135C,
otherwise returning, ail eight scan lines having been set.

TXT WR CHAR: BB5D, 1334

On entry, A holds an ASCII code. B=A. If (B28E)=0, the routine
returns, display being disabled. Otherwise, BC is pushed, and a
routine at 11A8 is called. This removes the cursor, checks
validity, and if necessary corrects the column and line values
to bring them within the current window. (B285)=H+1, setting the
next column position, and AF is popped, recovering the code
pushed from B. TXT WRITE CHAR is called, then TXT DRAW CURSOR.

68

TXT OUTPUT: BB5A, 1400

TXT OUT ACTION is called with BC, DE, HL AND AF saved on the
stack.

TXT OUT ACTION: BDD9, 140C

On entry, A holds a value which may be a character code, a
control code, or a parameter following a control code. The
routine must décidé which it is.

If the parameter count in (B2B8)=0, the value is not a
parameter, and must be an ASCII code. If it is &20 or more, it
is a character code, otherwise it must be a control code.

If the graphie write■ flag in (B293)<>0, action passes to GRA WR
CHAR, whether the value is a control code or not. This explains
why graphie Write insists on displayin;; control code symbols in
such a disconcerting way.

The following description should be read in conjunction with the
Control Code Table given hereafter. This details and interprets
data held in RAM from B2C3 on.

The first action is to copy A to C and check the graphie Write
flag, jumping to GRA WR CHAR with A=C if the flag is non-zero.

The parameter count in (B2B8) is then checked, and if (B2B8)
holds a number greater than 9 the routine drops out with
(B2B8)=0. Something has gone astray, since no control code
requires more than nine parameters. If (B2B8)=0 and A holds a
value greater than &1F the routine jumps to TXT WR CHAR.

Otherwise, B=(B2B8)+1, and an address is formed as B2B8+B. The
value in A is stored at this address. Note that if the value is
less than &20, (B2B8) may hold zéro, and the control code is
stored at (B2B9), but if (B2B8)<>0 the value is a parameter, and
will be stored at (B2B9) to (B2C1).

The contents of (B2B9), the control code, are used to form an
address B2C3+3*(B2B9). This picks out one of the three-byte
groups in the Control Code Table. The first byte of the group
spécifiés the number of parameter bytes required, and if the
required number hâve not been found the routine drops out.

Otherwise, the routine indicated by the second and third bytes
of the group is called. Then (B2B8)=0, and the overall routine
returns.

69

CONTROL CHARACTER TABLE

FunctionCode Parameters Link

&00 0 14E2 Immédiate Return. No action.
&01 1 1334 TXT WR CHAR (Writes parameter)
&02 0 139A TXT CUR DISABLE
&03 0 1289 TXT CUR ENABLE
&04 1 0ACA SCR SET MODE
&05 1 1945 GRA WR CHAR
&06 0 1451 TXT VDU ENABLE
&07 0 14D8 SOUND QUEUE WITH HL=14CF (BEEP)
&08 0 150A CURSOR LEFT
&09 0 150F CURSOR RIGHT
&0A 0 1514 CURSOR DOWN
&0B 0 1519 CURSOR UP
&0C 0 1540 TXT CLEAR WINDOW
&0D 0 1530 Column=Window left
&0E 1 12AE TXT SET PAPER
&0F 1 12A9 TXT SET PEN
&10 0 154F DELETE
&11 0 158E CLEAR WINDOW LEFT TO CURSOR
&12 0 1584 CLEAR CURSOR TO WINDOW RIGHT
&13 0 156D CLEAR WINDOW START TO CURSOR
&14 0 1556 CLEAR CURSOR TO WINDOW END
&15 0 144B TXT VDU DISABLE
&16 1 14E3 TXT SET BACK
&17 1 0C49 SCR ACCESS
&18 0 12C9 TXT INVERSE
&19 9 1504 TXT SET MATRIX
&1A 4 14F8 TXT WIN ENABLE
&1B 0 14E2 Inmediate return. No action.
&1C 3 14E8 SCR SET INK
&1D 2 14F1 SCR SET BORDER
&1E 0 152A HOME CURSOR
&1F 2 1538 LOCATE

In many cases, the routines are described elsewhere, but where
parameters are involved the routines may not be entered
directly , the parameters first being picked up in the
appropriate registers. Fo r cursor movements the cursor is
removed, column and/or row are modified, and the cursor is
restored . For Delete and bu lk clearances, SCR FILL BOX is used.
Note tha t the table is in RAM, so alterations can be made quite
easily, givlng the control codes new meanings.

The actual routines implementing the control codes are, in
general, quite simple, and it seems unnecessary to examine them
in detail here.

70

A closely allied routine is:

TXT GET CONTROLS: BBB1, 14CB

HL is set to B2C3, the start of the Control Code Table.

Other Text Routines

For the Edit System, it is necessary to be able to read a
character from the screen and dérivé the corresponding ASCII
code. Two routines are provided for this;

TXT READ CHAR: BB60,13AB

HL, DE and BC are pushed, and TXT UNDRAW CURSOR is called, so
that the character at the cursor is not inverted, which would
complicate matters. TXT UNWRITE is called with HL=(B285/6),
row/column. AF is pushed, and TXT DRAW CURSOR is called. AF, BC,
DE and HL are popped.

TXT UNWRITE: BDD6,13C0

This is an indirection. On entry, H must contain a physical
column and L a physical row, counted from 0 upwards. The
unpacked matrix is transferred from the screen position so
defined to the hold area beginning at B298, using SCR REPACK
entered with A=(B28F), pen. A comparison routine is callled, and
if it returns with carry set the whole routine drops out, with A
holding the required ASCII code.

The comparison compares the repacked matrix with ail tbe source
matrices in turn. If no match is found, the comparison returns
NC,Z, and in this case SCR REPACK is called again, this time
with A=(B290), paper. The resulting matrix is inverted, and the
comparison routine is re-entered. This allows for détection of
characters in an unexpected ink.

One last entry point remains.

71

TXT SET GRAPHIC: BB63, 137A

(B293)=A. If A=0 graphie Write is disabled,
enabled.

otherwise it is

Comment

The text routines are perhaps a little more complicated than
might hâve been expected, though most of the action is fairly
straightforward. The use of inversion to create the cursor is
not a complété success, since the resulting character is
sometimes difficult to read, but enough information has been
given to allow and encourage expérimentation with alternatives,
such as a simple underline. The necessary routines can be
accessed via TXT DRAW CURSOR and TXT UNDRAW CURSOR.

72

Chapter 8
THE GRAPHICS VDU

The graphies VDU occupies the area 15B0-19DC in ROM, and
provides 23 entry points and 3 indirections.

Since the various ways in which coordinates
confusing, sortie prelimiary explanation will

are expressed can be
be useful.

The current graphies position is stored
(B32E/F) for Y. The values are given in

in (B32C/D) for
'user coordinates

and

The Origin is initially at 0,0
screen - but can be altered at
are held in (B328/9) for X and

- the bottom left corner
will. The coordinates of
(B32A/B) for Y.

of the
Origin

An Absolute form of routine sets
contents of DE (X) and HL (Y) on
routine adds the current position
Absolute form then being entered.
routine at 1657.

the current posi
entry. A Rel

coordinates to
The addition is

tion from the
ative form of
DE and HL, the
perf ormed by a

For internai purposes, the
X coordinate being divided, in
bits which represent one pixel
original number is négative,
absolute Y coordinate is halved,
200 scan lines.

hâve to be modified, the
integer fashion, by the number of
for the current mode. If the
an incrément is applied. The
since it must point to one of

coordinates

Prior to these calculations, user coordinates are added to the
Origin coordinates.
entry at 161A first

Subroutine 161D performs
calling GRA ASK CURSOR.

this conversion,

X

We can now turn to the initialisation routines.

GRA INITIALISE: BBBA,15B0

GRA RESET is called, then Paper=0, Pen=l, Origin=0,0 and the
graphies window is set to the whole screen.

73

GRA RESET: BBBD, 15DF

The indirections for GRA TEST, GRA LINE, and GRA PLOT are set to
the default addresses.

Setting Up

GRA SET ORIGIN BBC9.1604

On entry, DE must hold the required X coordinate, HL the Y
coordinate. These are absolute values. The origin coordinates in
(B328/B) are set from DE and HL, which are then zeroed. GRA MOVE
ABSOLUTE follows, which zeroes the current position coordinates
in (B32C/F), effectively moving the cursor to the new origin.

GRA WIN WIDTH: BBCF, 1734

On entry, DE and HL must hold the standard (absolute)
coordinates for the left and right edges of the graphie screen.
The larger of the two will define the right edge. The values are
limited so that they lie within the screen boundaries, and are
converted to internai coordinates before being stored in
(B330/1), left, and (B332/3), right.

GRA WINDOW HEIGHT: BBD2, 1779

This routine is similar to the last, except that DE and HL hold
the top and bottom coordinates of the window. Limited and
converted, the coordinates are stored in (B334/5), top, and
(B336/7), bottom.

GRA CLEAR WINDOW: BBDB, 17C5

GRA GET WINDOW WIDTH (see below) is called to get the
coordinates of the left and right edges of the window, and from
these the window width is determined. The number of Scan lines
in the window height is similarly calculated. SCR DOT POSITION
is called, A is set from (B339), paper, and SCR FLOOD BOX is
called to perform the clearance. Home cursor follows.

74

GRA SET PEN: BBDE, 17F6

SCR INK ENCODE is called to encode the ink set in A on entry,
and the resuit is set in (B338).

GRA SET PAPER: BBE4, 17FD

As the previous routine, but the resuit is set in (B339).

Checking Values

GRA ASK CURSOR: BBC6, 15FC

DE is set from (B32C/D) to give the current X coordinate, and HL
is set from (B32E/F) to give the Y coordinate.

GRA GET ORIGIN: BBCC, 1612

DE is set from (B328/9), X origin, and HL is set from (B32A/B),
Y origin.

GR GET W WIDTH: BBD5, 17A6

DE is set from (B330/1), left, and HL from (B332/3), right. The
values are adjusted according to mode, giving absolute
coordinates.

GRA GET PEN: BBE1, 1804

A=(B338), and SCR INK DECODE is called.

GRA GET PAPER: EBE7, 180A

A=(B339), and SCR INK DECODE follows.

75

Main Functions

So far, the routines hâve been relatively trivial, though none
the less essential. We now reach the main function routines.

GRA MOVE ABSOLUTE: BBC0, 15F4

GRA MOVE RELATIVE: BBC3, 15F1

For the relative version, subroutine 1657 is called, then the
absolute version is entered. (B32C/D)=DE establishes the X
coordinate, and (B32E/F) sets up the Y coordinate. The new
values will take effect when the next major function is called.

GRA PLOT ABSOLUTE: BBEA, 1813

GRA PLOT RELATIVE: BBED, 1810

GRA PLOT: BDDC, 1816

For the relative version, subroutine 1657 is called, then the
absolute version follows. This immediately calls GRA PLOT, which
is an indirection.

16FC is called to adjust the coordinates in DE and HL for Mode,
using 161D, and then perform a validation function by comparing
the requested position with the window limits. If the position
is not valid, the routine drops out. Otherwise, SCR DOT POSITION
is called, B=(B338), and SCR WRITE follows.

Note that the ultimate action involves setting the bits which
relate to a particular pixel, but the normal Write action can be
used.

76

GRA TEST ABSOLUTE: BBF0, 1827

GRA TEST RELATIVE, BBF3, 1824

GRA TEXT: BDDF, 182A

These routines are related in the same way as the previous set,
the indirection GRA TEXT leading to the main action. 16FC is
called to check for validity of the requested position, and if
it returns NC, indicating an invalid position, the routine exits
via GRA GET PAPER.

Otherwise the routine exits via SCR DOT POSITION and SCR READ.

GRA LINE ABSOLUTE: BBF6, 1839

GRA LINE RELATIVE: BBF9, 1836

GRA LINE: BDE2, 183C

This is where the graphies System has to work for its living.
The routines are too complex to examine in detail, but the gist
of the action is this;

On entry, DE holds the X coordinate of the end point, and HL
holds the Y coordinate. The start point is the présent cursor
position. The first step is to calculate the X and Y spans, the
amount by which the two coordinates must change while the line
is being drawn. Suppose the X span, AX, is the larger. Then AX
is divided by AY, the Y span, and the resuit indicates how many
X steps must be taken for each Y step. The calculation is on an
integer basis, using a routine discussed under BASIC Support,
but it is repeated after each Y step to minimise any resulting
errors. Suppose that the resuit of the calculation is 5. Then a
short horizontal line five units long is wanted, for a start.
This is drawn by SCR HORIZONTAL.

AX is then reduced by 5, AY by 1, and the process is repeated to
take the line a stage further, until AY=0, AX=0.

77

GRA WR CHAR: BBFC, 1945

On entry, A holds an ASCII code, not necessarily a normal
character code. IX is saved on the stack, and TXT GET MATRIX is
called. DE=B33A, the start of
The matrix is copied into the

the copy matrix area, and IX=DE
copy area.

The current screen address is adjusted according
the validity of the position is checked by 16FF.
showing that the position is not valid, leads
action.

to mode, and
A return NC,
to corrective

What
that
MOVE

follows is similar to the action of TXT WR CHAR, except
graphie coordinates are used. The
ABSOLUTE to position the cursor at

the next character position.

routine
the top

exits via GRA
left corner of

Comment

Grouping some of the functions together has made the
System look relatively simple, but that hides a great
complexity. The lack of circle and fill functions
regretted in some quarters, but programs to add such
are available for those who need them.

graphies
deal of
will be

facilities

A point which is sometimes missed is that the effective number
of pixels in the screen width is 640 for Mode 2, 320 for Mode 1,
and only 160 for Mode 0. This can lead to disappointment if an
attempt is made to combine intricate patterns with a wide range
of colours.

Some programmers, especially some who live in Spain, hâve found
means for creating displays of very great complexity that
involve an apparently prodigal use of colours, and if an
opportunity arises for a study of their methods it can be very
revealing. Lacking that, it is worth trying out various
experiments, using the details which hâve been given here as a
guide.

78

Chapter 9
THE KEY MANAGER

The Key Manager occupies 19E0-1E62 in ROM, and uses workspace in
the B34C-B548 area. There are 26 defined entry points and one
indirection.

actions, and
Each

updated
handler.

The System uses three 'bit maps' to register key
these are summarised in a table at the end of this section,
individual bit relates to a given key, and the maps are
50 times a second by a routine called by the interrupt
This means that the map contents can only be examined coherently
while interrupt is disabled. Note
disabled when the cassette System is
is effectively dead during that period.

that
in action,

interrupt is always
so the keyboard

When a key is depressed, the corresponding bit in map 1 is
zeroed’. The matching bit in map 2 is set to 1 if the map 1 bit
changes from 0 to 1 or is zéro. This holds the map 2 bit true if
the map 1 bit is dithering due to contact bounce.

Map 3 is then checked. If it holds 0 for a particular key, and
map 2 holds 1 for that key, data is placed in the keyboard
buffer, and the map 3 byte is set from the map 2 byte.

This process is applied to ail the ten map bytes in turn, taking
the bits of each byte in order of increasing significance, so it
is quite possible that more than one entry may be made during a
single keyboard scan, the entries being made in ascending key
number order. (Should you examine the relevant code, you may be
puzzled by the function B=A AND -A: This sets one bit in B,
corresponding to the least significant true bit in A.)

code s,
entry

is room for
at a

indicating which bit

The keyboard buffer data bears no relation to ASCII
only an indirect relationship to the key number. Each
the buffer occupies two bytes, and
bytes, so up to twenty key dépréssions can be held
time. The upper byte is a one-bit mask,
a map byte is involved. The lower byte is compound. If Shift
pressed, bit 5 is true, and if Control is pressed, bit 7

there

and
in

f orty
given

of
is
is

79

true. The number of the map byte involved (0 to 9) is added.
the necessary data is covered, but it needs decoding.

AU

As an illustration, consider what happens if you press key .
This is key 26 = 3*8 + 2, so we are dealing with bit 2 of the
third map byte. If neither Shift nor Control is pressed, the
keyboard buffer entry will be 0403. With Shift pressed, the
entry would be 0423.

The keyboard buffer is of the 'circular' type, using two
pointers. The input pointer is in (B53D) and the output pointer
is in (B53F). They are single-byte displacement pointers. When
an entry is added to the buffer, the input pointer is
incremented, and when an entry is removed the output pointer is
incremented. When either pointer reaches &14 it is reset to
zéro. Think of the pointers as the hands of a watch chasing each
other round the dial, the buffer in use lying between them.

(B53C) is initialised to &15, and is decremented when an attempt
is made to make a buffer entry, and incremented when an entry is
removed. If the décrément gives zéro, the attempt to make an
entry is aborted, as the buffer is full, and (B53C) is reset to
1. It thus holds available buffer space (in words) plus one.

(B53E) is initialised to 1,
is made,
the décrément gives zéro,
read an entry is abandoned,
therefore holds the number of
one.

and is
decremented when removal of an entry is

the buffer is empty.
and (B53E) is
buffer entries

incremented when a new
attempted.

The
reset
(in

attempt
to 1.

words)

entry
If
to
It

plus

(B540) is initialised to 0, and
made, decremented when an entry
check on the current number
usef ul.

of

is
is removed.
buffer entries, which

incremented
It

when an entry is
therefore gives a

becan

The buffer access addresses are calculated by adding twice the
pointers to B514. Since (B53D) and (B53F) work over the range 0
to &13, the buffer occupies B514-B53B.

An important point is that
are determined from bits 5
entry, which are dépendent
entry was made. The shift
are irrelevant. However,

the shift states stored in
and 7 of the lower byte of
on the shift state at the

states at the time the entry
shift lock states hâve

the buffer
the buffer
time the
is read
to be

implemented separately. Note that information regarding
of state is interleaved with other keyboard inputs.

changes

80

Keyboard Routines

The above general description of the keyboard System has brought
to light some important points regarding its operation, such as
the length of the keyboard buffer, but the System can be used
without worrying too much about the way in which it Works.
However, an understanding of the System will help to explain how
the System calls function.

It will be best to begin with two routines that restore the
System to a standard state, which can be valuable if you are
tempted to experiment and get unexpected and unwelcome results.

KM INITIALISE: BB00, 19E0

This is the major reset function, which affects everything:

* The key/code tables and part of the repeat control table are
reset. by copying (1D69)-(1E62) to (B34C)-(B445) (see table).
* The keyboard Caps and Shift Lock states in (B4E7/8) are

zeroed.
* Repeat speed in (B4E9) is set to 2
* Repeat delay in (B4EA) is set to &1E.
* Map 2, at (B45F)-(B4FE) is set to &FF entries.
* Map 3, at (B4EB)-(B4F4) is set to zéro entries.
* (B541/2) is set to B34C, base of key/code table 1.
* (B543/4) is set to B39C, base of key/code table 2.
* (B545/6) is set to B43C, base of the repeat control table.
* The routine exits via KM RESET.

KM RESET: BB03, 1A1E

This lesser reset is still fairly drastic.

* (B53C)=&15
* (B53D)=0
* (B53E)=1
* (B53F)=0
* (B440)=0
* (B4E0)=&FF

(Buffer free space plus 1).
(Buffer input pointer).
(Buffer entries plus 1).
(Buffer output pointer).
(Number of buffer entries).
('Put back1 character = 'ignore').

A key-string buffer of 152 bytes (&98) beginning at B446 is
allocated, and the default strings are set up. (Unfortunately,
this overlaps the repeat control table!)

81

The KM TEST BREAK indirection at BDEE is set to the default
address.

The routine exits via KL DISARM BREAKS.

The araount of resetting involved hints at the scope for
alteration. . .

Input Routines

The fact that there are four main data input routines can be
confusing, but their inter-relationship is important.

KM READ KEY: BB1B, 1B5C

If there is an entry in the keyboard buffer, the routine exits
with the appropriate code in A, carry being set. If the buffer
is empty, the routine returns with carry clear. Registers other
than AF are preserved.

KM WAIT KEY: BB18, 1B56

KM READ KEY is called repeatedly until it returns with carry
set. This can be used for 'press any key to continue', whereas
KM READ KEY just checks the buffer in passing to see if a key
has been depressed since the last check. Registers other than AF
are preserved.

KM READ CHAR: BB09, 1A42

First, the 'put back' character in (B4E0) is checked.
not &FF, the character is returned in A with carry
(B4E0)=&FF. (see KM CHAR RETURN)

If it
set ,

is
and

Next, (B4DE/F) is
partially output,
character in the

checked. If
and routine

(B4DF)<>0, a key
returns with the

string has
code for the

been
next

string set in A, with carry set.

If there is no put-back character or key string, KM READ KEY is
called to look for a keyboard buffer entry. If the code returned
in A is a key string token, output of the string is initiated,
otherwise the routine returns with carry set and the code in A.

82

Failing a put-back character, a key-string character or a code
from the buffer, the routine returns with carry clear.

In ail cases, registers other than AF are preserved.

KM WAIT CHAR: BB06, 1A3C

KM READ CHAR is called repeatedly until it returns with carry
set.

The différence between these routines should now be clear. The
VAIT versions loop until a code is found, whereas the READ forms
take one quick look. Only the CHAR versions look at the put-back
and strings.

KM CHAR RETURN: BB0C, 1A77

This allows you to hâve your cake and eat it. When a character
has been read, it has been taken from the keyboard buffer, and
is no longer available. Calling KM CHAR RETURN transfers the
code from A to (B4E0), whence it can be read by KM READ CHAR, as
if it had just corne from the keyboard buffer. Only one character
can be ’put back' at a time, as there is only the one hold
location.

Ail registers are preserved.

Key Strings

The standard key-string buffer is at B446-B4DD, which overlaps
the repeat control table, but an alternative buffer can be
defined anywhere in RAM. Of the 152 locations- in the standard
buffer, 49 are set by default, leaving 103 for other
définitions.

The buffer format is simple. Each string is prefaced by its
length in bytes, so string n can be found by jumping forward n
times from one length byte to the next. The default settings
which cover the keypad, are;

B446 01 30 01 31 01 32 01 33 01 34
B450 01 35 01 36 01 37 01 38 01 39 01 2E 01 0D 05 52
B460 55 4E 22 0D

The first ten strings are one character long, and give codes for

83

the numbers
the twelfth
five bytes,

0 to 9. The eleventh string gives a full stop (&2E),
gives an Enter code, while the thirteenth string has
being RUN", followed by Enter.

A user buffer, with the above default strings initially set, can
be set up by using:

KM EXP BUFFER: BB15, 1A7B

On entry, DE must hold the start address of the new buffer, HL
must hold the buffer length, which must be &31 or more (not 44,
as stated in the formai documentation.) If the buffer has been
established, the routine returns with carry set, carry clear
indicating failure. In case a string is in the process of being
output, (B4DF) is zeroed, which stops the output immediately.

The next step is to set up the strings you want. This is done
by :

KM SET EXPAND: BB0F, 1ABD

On entry, B must hold the relevant expansion token,
the string length, and HL must point to the source
string. A return with carry set indicates success,
showing failure, perhaps because the buffer was not
to hold the string.

C must hold
of the new
carry clear
large enough

First, the position of the string in
using a routine which sets a pointer
buffer start, reads the length byte,
HL, uses the resuit to read the next

the buffer
initiallyHL,

is determined,
to the

and
the

AU

in
adds the length plus one to
length byte,

When this has been done a number of times equal to
token minus &80, HL points to the string position,
above that are then moved to leave the necessary space
new string, which can then be copied into place,
movement may be up or down, dependng on whether the
is longer or shorter than the string it replaces.)

so on.
length

entries
for

(Note that
the
the

'new string

Compared with some key string implementtat ions, this procedure is
delightfully simple.

To read a string, you need:

KM GET EXPAND: BB12, 1B2E

On entry, A must hold the expansion token, while L
number of the character within the string to be read.

holds the
On exit,

84

success is shown by carry set, the character code being in A. If
the string output process is complété, carry is clear and A is
corrupt. In either case, DE is corrupt.

This call is used by KM READ CHAR, and would not normally be
used independently, since it needs to be associated with a
routine which will update relevant flags and the L pointer.

To find whether a particular key is pressed, without identifying
the related code, you can use:

KM TEST KEY: BB1E, 1CBD

On entry, A must hold a key number. A return NZ means that the
key is pressed.C holds the current shift and control states (see
below), the lock states being ignored. A and HL are corrupt.

The information supplied cornes from map 3. The shift and control
bits in (B4ED) are isolated and set in C. The key number is then
converted to byte and bit pointers, which are used to isolate
the bit relating to the specified key.If the key is pressed, the
bit is 1.

The state of Caps Lock and Shift Lock can be checked by:

KM GET STATE: BB21, 1BB3

On return, this routine sets L=&FF if Shift Lock is effective,
H=&FF if Caps Lock is effective, the registers otherwise holding
zéro. Ail other registers are preserved, since the routine
merely sets HL=(B4E7/8), locations which are toggled when the
relevant lock codes are read from the key buffer.

Completing the keyboard read processes:

KM GET JOYSTICK: BB24, 1C5C

On exit L=(B4F1) AND &7F, giving the data for joystick 1 (keys
48-54) and H=(B4F4 AND &7F), giving the data for joystick 0
(keys 72-78). A=H. Ail other registers are preserved.

Key/Code Tables

The relationship between the keys and the codes they generate is

85

determined by the three key tables in the B34C-B43B area. (see
table.) Since the tables are in RAM, any key can be made to
produce any desired code, with the restriction that codes in the
&80-&9F range will be treated as string tokens by KM READ CHAR
(but not by KM READ KEY).

Three calls are available for changing the key table entries:

KM SET TRANSLATE: BB27, 1D52 Table 1

KM SET SHIFT: BB2D, 1D57 Table 2

KM SET CONTROL: BB33, 1D5C Table 3

On entry, A must hold a key number, and B the code which the key
is to generate. Once the appropriate table base has been read,
the routine is common to ail three entry points. The call is
rejected if A exceeds &4F, returning NC. Otherwise, A is added
to the table base to form a pointer for setting the contents of
B in the table.

Table 1 relates to no shift, no control. Table 2 is used when
Shift is effective, and Table 3 applies when control is
ef f ect ive .

A corresponding set of entries allow a code to be read:

KM GET TRANSLATE: BB2A, 1D3E Table 1

KM GET SHIFT: BB30, 1D43 Table 2

KM GET CONTROL: BB36, 1D48 Table 3

The format is much the same as that for the previous three
calls, except that the key number in A on entry is used to read
a byte from the appropriate table and return it in A. HL is
corrupt.

The keyboard lock state is ignored, being taken into account by
KM READ KEY.

86

Repeat Action

The repeat action of a key can nominally be changed by:

KM SET REPEAT: BB39, 1CAB

On entry, A holds a key number. If B holds 0, the key will be
allowed to repeat, while if B holds &FF repeat will be barred. A
key number greater than &4F is rejected, otherwise B is copied
into the repeat control table.

The snag is that if A exceeds 9, B will also be copied into the
standard key-string buffer, causing chaos unless you hâve set up
a different buffer of your own...

To read the repeat table;

KM GET REPEAT: BB3C, 1CA6

On entry, A holds a key number. If that key can repeat, the
routine returns NZ. A and HL are corrupt.

The repeat constants are handled by:

KM SET DELAY: BB3F, 1C6D

On entry, H must hold the delay factor and L the speed
The default values are &1E, giving a delay of 30/50=0.6
and L=2, giving a speed of 50/2 repeats per second. The
returns with AF corrupt.

factor,
second,
rout ine

KM GET DELAY: BB42, 1C69

The delay factor is returned in H and the speed factor in L. AF
is corrupt.

Break Functions

To understand the Break calls, you need to hâve read the section
on Events.

87

KM DISARM BREAK: BB48, 1C82

(B50C) is zeroed to mark the disarmed condition. KL DEL
SYNCHRONOUS is called with HL=B50D to remove the break event
from the synchronous list. The routine returns with AF and HL
corrupt.

KM ARM BREAK: BB45, 1C71

On entry, DE holds C45E, the address of the break event routine,
and C holds the relevant ROM number. (&FD, which means ROM
unchanged, enable upper, disable lower ROM) This accesses the
Break Routine in the BASIC interpréter, but other entry data can
be used to access an alternative routine.

KM DISARM BREAK is called to establish a known state. Then KL
INIT EVENT is called with HL=B50D and B=&40 to set up an event
block at B50D-B513. The class is Far Address, Express,
Synchronous. The routine address and ROM are as specified in DE
and C. (B50C)=&FF marks the armed condition.

KM BREAK EVENT: BB4B, 1C90

If (B50C)=0, the routine returns. Otherwise, (B50C)=0, and KL
EVENT is called with HL=B50D to kick the break event. &EF is set
in the keyboard buffer to mark the point at which the event was
kicked.

KM TEST BREAK: BDEE, 1C90

On entry to this indirection interrupt must be disabled to
inhibit keyboard action, and lower ROM must be enabled. C must
contain the Shift/Control key state, as found after interrupt
was disabled.

If Shift and Control are not both pressed, the routine exits via
KM BREAK EVENT.

Otherwise, it appears that a reset is being requested, but to
make quite sure the bytes in map 3 are added up. If only Shift,
Control and Escape are pressed, the total should be &A4, and if
this total is found a jump to 0000 follows. Otherwise, the
routine exits via KM BREAK EVENT.

88

Summary

There is really very little that you can do with a keyboard
other than ask it to provide data. Most of the calls listed
above are mainly relevant to other calls which make use of the
data obtained. However, there are a few tricks worth mentioning.

You can empty the keyboard buffer by changing the pointers, but
you must change them ail. There is a routine (at 1CED in version
1.0) which does just this. (It is the destination of the first
call in KM RESET, so should be easy to find in other versions.)

It is worth while to set up an alternative key-string buffer, so
that the repeat table can work.

You can set up a spécial key/code table of your own, bringing it
into action when necessary. This would allow extra codes to be
generated by keyboard action.

A particularly important considération arises if you are using a
foreground program of your own, and it concerns Break. The C45E
address suits the BASIC interpréter, but may not suit your
program at ail, but if you are using a sideways ROM, it will be
entered at C45E in response to pressing ESCAPE.

In some respects the Keyboard Manager is one of the less
satisfactory sections of the operating System, but it works
reasonably well, despite that. Providing you know its quirks,
they should not worry you.

Bit Maps
Bit

Mapl Map 2 Map3 0 1 2 3 4 5 6 7

B4F5 B4FF B4EB 0 1 2 3 4 5 6 7
B4F6 B500 B4EC 8 9 10 11 12 13 14 15
B4F7 B501 B4ED 16 17 18 19 20 21 22 23
B4F8 B502 B4EE 24 25 26 27 28 29 30 31
B4F9 B503 B4EF 32 33 34 35 36 37 38 39
B4FA B504 B4F0 40 41 42 43 44 45 46 47
B4FB B505 B4F1 48 49 50 51 52 53 54 55
B4FC B506 B4F2 56 57 58 59 60 61 62 63
B4FD B507 B4F3 54 65 66 67 68 69 70 71
B4FE B508 B4F4 72 73 74 75 76 77 78 79

The numbers in the table are key inumbers.

89

Key/Code Tables
Key No 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Table 1 F0 F3 Fl 89 86 83 8B 8A F2 E0 87 88 85 81 82 80
Table 2 F4 F7 F5 89 86 83 8B 8A F6 E0 B7 88 85 81 82 80
Table 3 F8 FB F9 89 86 83 8C 8A FA E0 87 88 85 81 82 80

Key No. 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Table 1 10 5B 0D 5D 84 FF 5C FF 5E 2D 40 70 3B 3A 2F 2E
Table 2 10 7B 0D 7D 84 FF 60 FA A3 3D 7C 50 2B 3A 3F 3E
Table 3 10 IB 0D 1D 84 FF IC FF 1E FF 00 10 FF FF FF FF

Key No 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
Table 1 30 39 6F 69 6C 6B 6D 2C 38 37 75 79 68 6A 6E 20
Table 2 5F 29 4F 49 4C 4B 4D 3C 28 27 55 59 48 4A 4E 20
Table 3 1F FF 0F 09 0C 0B 0D FF FF FF 15 19 08 0A 0E FF

Key No. 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
Table 1 36 35 72 74 67 66 62 76 34 33 65 77 73 64 63 78
Table 2 26 25 52 54 47 46 42 56 24 23 45 57 53 44 43 58
Table 3 FF FF 12 14 07 06 02 16 FF FF 05 17 13 04 03 18

Key No 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
Table 1 31 32 FC 71 09 61 FD 7A 0B 0A 08 09 58 5A FF 7F
Table 2 21 22 FC 51 09 41 FD 5A 0B 0A 08 09 58 5A FF 7F
Table 3 FF 7E FC 11 El 01 FE IA FF FF FF FF FF FF FF 7F

Key Manager Workspace

B34C-B39B
B39C-B3EB
B3EC-B34B
B34C-B49B
B446-B4DD
B4DE
B4DF
B4E0
B4E1/2
B4E3/4
B4E5/6
B4E7/8
B4E9
B4EA

Key/code table 1: No shifts
Key/code table 2: Shift
Key/code table 3: Control
Repeat Control Table
Keystring buffer (Note overlap)
Keystring pointer
Current string token
Put back character
Keystring buffer start
Keystring buffer end
Start of free space in keystring buffer
Keyboard lock state
Repeat Speed
Repeat Delay

90

B4EB-B4F4
B4F5-B4FE
B4FF-B508
B509
B50A

Map 3
Map 1
Map 2
Repeat Count
Map byte number

B50B Map bit mask
B50C Break Armed Flag
B50D-B513 Break event block
B514-B53B Keyboard buffer
B53C Buffer free space + 1
B53D Input pointer
B53E Buffer entries + 1
B53F Output pointer
B540 Buffer entries
B541/2 Pointer to key/code table 1
B543/4 Pointer to key/code table 2
B545/6 Pointer to key/code table 3
B547/8 Pointer to repeat control table

91

92

Chapter 10
THE CASSETTE
MANAGER
The Cassette Manager occupies 2370-2A91 in lower ROM, and uses
B800-B8D4 in RAM as workspace. In addition to this, 2K byte
buffer areas are used for intermediate storage during input and
output. There are 22 defined entry points.

The recordings are based on square wave cycles, those
representing high bits being twice as long as those representing
low bits. The nominal mean frequency can be varied between 700
and 2500 Hz, but the default frequency is 1000 Hz, which makes
the low bit cycle 666 microseconds long, with the high bit
cycles 1332 microseconds long.

'Precompensation' is used to unbalance the duration ratio of the
square waves, the default value being 25 microseconds. This is
added to the high bit cycle and subtracted from the low bit
cycle, emphasising the différence between them. Precompensation
should be increased as the mean frequency is increased.

A useful feature of the System is that it adjusts automat ica 1ly
to the correct frequency during playback. This is based on
reading the 'leader' block, which is made up thus;

Pre-record gap.
2048 high-bit cycles.
One low-bit cycle.
A sync byte.

For data, the sync byte is &16, for a header it is &2C.

The overall structure of a file consists of a header record
followed by a data record. The header block nominally contains
64 bytes, but most of these are unallocated. During recording,
the header is taken from the B807-B846 area of RAM. During
playback, it is set in the B88C-B8CB area. By reference to the
header read during playback, the System can décidé whether it
should load the subséquent data block, or merely report it as
'found', which allows recovery from a read error by asking for
the tape to be rewound if a block has been missed.

93

The System is remarkably tolérant to wow and flutter, though it
can be defeated in extreme cases.

Data blocks can handle up to 65536 bytes, but it is more usual
to limit them to 2048 bytes, to keep buffer size within
reasonable bounds. The blocks are divided into segments of 258
bytes each, two of these bytes being used to provide a cyclic
redundancy check (CRC).

Since the recording and
the interrupt System is
For the same reason,
created at intervals,
basis,
buffer is set up as the bytes become available, and the contents
are recorded when the buffer is full
closed. Similarly,
initially, and is refilled when ail the data

playback processes must be
disabled while the recorder is

blocks
or which may be

continous,
in

from bytes
byte-by-byte

use.
which are built up

read on a
are handled via an intermediate buffer. In recording, the

in playback the buffer is
or when

filled
has been

the buffer is
from tape
taken.

An exception to this arises when a block
BASIC program, is already established,
recorded directly. The same applies when
played back. The intermediate buffer
transfers to and from it are automatic.

of data, such as a
and can therefore be
data of this type is
is still used, but

The calls for the buffer- method are CAS IN CHARACTER and CAS
CHARACTER, whereas for the more direct method the calls are
IN DIRECT AND CAS OUT DIRECT.

OUT
CAS

Some of the calls offer facilities not available via BASIC. CAS
CHECK provides a vérification facility, while CAS NOISY allows
prompt messages to be suppressed. CAS RETURN resets the
intermediate buffer pointers so that an entry can be read more
than once, and the ABANDON calls allow buffer contents to be
discarded.

For those who fancy experimenting with recording Systems of
their own, perhaps seeking compatibi1ity with other computer
recording Systems, the primitives CAS READ and CAS WRITE are
accessible. They deal with single records, handling data of
given length starting at a given place in store.

The timing System used involves the Z80 Refresh Register, an
unusual application of it which gives very précisé short-term
t imings.

94

Messages

The prompt messages are stored in compressed form, with spaces
omitted, but invoked by adding bit 7 to the preceding character
code. There are four relevant error reports:

Read Error a: Bit too long.

Read Error b: CRC check failed.

Read Error d: Block too long.

Write Error a: Frequency too high

Read Error a may occur if the tape is halted during playback,
and has also been seen in a case of extreme wow which slowed the
tape down from time to time. Read Error b is more common, and
implies a defect in the tape surface. The other errors hâve not
been seen, though they could be induced deliberately.

The ESCAPE key provides an exit from the cassette routine s
limited circumstances. It is sensed directly,
keyboard buffer, which is ineffective in
interrupt. This means that it may be necessary

not through
the absence
to hold the

in
the
of

key
down for some time before it takes effect.

Filenames may hâve up to 16 characters. Any additional
characters will be ignored, while shorter names are padded out
to 16 bytes with spaces.

The Routines

CAS INITIALISE: BC65.2370

CAS IN ABANDON and CAS OUT ABANDON are called, and CAS NOISY is
called with A=0 to enable prompt message display. Then CAS SET
SPEED is called with HL=014D (333) and A=&19 (25) to set the
default speed and precompensation values.

CAS SET SPEED: BC68, 237F

On entry, HL must hold the length of half a low-bit cycle in
microseconds, and A must hold the required precompensation in

95

microseconds. HL is multiplied by 64. A is divided by
added to HL, the resuit being set in (B8D1/2).

4 and

BC and DE are preserved.

CAS NOISY: BC6B: 238E

The contents of A are set in (B800). If A=0, prompts
enabled, else prompts are disabled.

are

Ail registers are preserved.

CAS START MOTOR: BC6E, 2A4B

There are no entry conditions,
routine returns with carry set
is clear. On exit, A holds the
4 of which controls the motor.

If the action was completed, the
but if Escape was pressed carry

previous state of PPI port C, bit
(See CAS RESTORE MOTOR below).

After the motor has been switched
delay before the routine returns,
up to speed, unless the motor was

on, there is a two-second
to give the motor time to get
already running.

CAS STOP MOTOR: BC71, 2A4F

This is identical with CAS START MOTOR, except that the motor is
turned off instead of on, and there is no delay before return.

CAS RESTORE MOTOR: BC74, 2A51

On entry,
routines.

A must hold the byte returned in A by
The previous motor state is restored.

the above two

The above
routines,
move the tape
PLAY key must
might be used

cal ls
and

are
are only
without recording or playing
be locked

to

invoked automatically by
of interest to the user if

back.
down to allow this. Such

a given
running the motor for a calculated length

f ind recording aut
of time

higher level
he wishes to

However, the
an arrangement
orna t ica lly, by

CAS IN OPEN: BC77, 2392

This routine sets up an input buffer tagged with the given
filename, and initiâtes the procedures necessary to fill the
buffer from tape and make the data available to program action.

96

On entry, B must hold the number of bytes in the filename, HL
must contain the address of the filename start, and DE must
point to the 2K byte area which is to be used as a buffer. As
the buffer is read by RAM LAM, it may lie under a ROM.

The B802-B846 area is then initialised, largely by a routine
shared with CAS OUT OPEN. The unallocated bytes are set to zéro.
The buffer is then set up by reading from tape, the read action
being called automat ica 1ly.

If ail goes well, the routine returns with carry set and
false. HL points to the stored file header, DE holds the
location which is specified in the header, BC holds the
length specified in the header, and A holds the file type.

zéro
data
file

If an input file was already open, the routine returns NC,NZ,
while a return with NC,Z indicates that ESC was pressed.

If this routine has been executed successfully, up to 2K bytes
can be read from the buffer by repeated use of CAS IN CHAR.

CAS IN CLOSE: BC7A, 23FC

CAS IN ABANDON: BC7D, 2401

The différence between these calls is that CAS IN CLOSE returns
NC without doing anything if no input file is open. Otherwise,
it runs on into CAS IN ABANDON, which is executed
unconditiona1ly.

There are no entry conditions. (B802) is zeroed to mark the file
as closed. The buffer start address is copied from (B803/4) to
DE. A is set to (B8CC) XOR 1, and if A=0 (B8CC) is zeroed. (This
is the prompt flag.) The contents of DE
re-establish the buffer.

can be used to

CAS IN CHAR: BC80, 2435

This reads the next byte from the intermediate buffer into A,
subject to validity checks. There are no entry conditions, ail
action being dépendent on internai pointers.

Unless (B802) holds 1 or 2, the routine drops out NC,NZ without
further action. (1 indicates buffer open, no data taken, and 2
shows that CAS IN CHAR has been used at least once.)

97

Otherwise, (B802)=2. If the count of available bytes in
(B81A/B)=0000, ail the data has been taken, and an attempt is
made to read a further file from tape. If the end of the
available data has been reached, the routine returns NC,NZ.

If the buffer still holds data, (B81A/B) is decremented, and
HL=(B805/6), the buffer pointer. RAM LAM reads the next byte
into A, and (B805/6) is incremented. The routine exits C,NZ, BC,
DE and HL being preserved.

CAS IN DIRECT: BC83, 24AB

This call must be preceded by CAS IN OPEN, and CAS IN CHAR must
not be called thereafter, since that would debar execution of
CAS IN DIRECT. On entry HL must point to the start of the data
area to be set.

If (B802) does not hold 1 or 3, the routine drops out NC,NZ,
since either the buffer is not open or CAS IN CHAR has been
used. Otherwise, (B81C/D)=HL, setting the data destination
address, and the block is copied into position. The copy process
is 'intelligent', LDIR or LDDR being used, as appropriate.

CAS RETURN: BC86, 249A

The bytes-in-buffer count in (B81A/B) is incremented, and the
buffer pointer in (B805/6) is decremented. This makes the
character last read from the buffer available again. However,
there can be problems if the buffer has just been refilled....

CAS TEST EOF: BC89, 2496

CAS IN CHAR is called, and the routine drops out NC,Z if end of
file is found. Otherwise, the routine exits via CAS RETURN to
make the character read available again.

Ail registers except AF are preserved.

CAS OUT OPEN: BC8C, 23AB

On entry, B must hold the number of bytes in the filename, HL
must hold the address of the filename, and DE must point to the
start of a 2K byte area to be used as a buffer.

The (B847-B88B) area is set up, largely by a routine common to
CAS IN OPEN. If an output file is already open, the routine

98

returns NC. If ESC is pressed the
return with carry set indicates
address of the header buffer. The
are corrupt.

routine returns NC, NZ. A
success, and HL holds the

other registers (including IX)

CAS OUT CLOSE: BC8F, 2415

If (B847)=4, CAS OUT ABANDON is executed. If (B847)=0, the
routine returns NC, there being no open output file. Otherwise,
(B85D)=&FF, this being the end of file flag. If (B85F/60)=0000,
the buffer is empty, and CAS OUT ABANDON follows. Otherwise, a
write to tape is attempted, and if this fails the routine drops
out, otherwise CAS OUT ABANDON is called. It should be noted
that if ESC is pressed during recording, the file is not closed.

CAS OUT ABANDON: BC92, 242E

No checks are made. (B847)=0. DE=(B848/9). the buffer address.
If (B8CC)<>2 the routine returns with carry set. Otherwise
(B8CC)=0, A=&FF, and the routine returns C, NZ.

CAS OUT CHAR: BC95, 245B

On entry, A must hold a byte to be added to the output file.

If (B847)O1 or 2, the routine returns NC,NZ. The file status is
incorrect. Otherwise, (B847)=2, indicating that a byte entry has
been made. If the buffer is full, its contents are written to
tape. Pressing ESC during the recording causes the routine to
return NC, NZ. The output byte is set at the location determined
by the buffer pointer in (B84A/B), and the pointer is then
incremented. (B85F/60), bytes in buffer, is also incremented.

BC,DE and HL are preserved, AF and IX are corrupt.

CAS OUT DIRECT: BC98, 24EA

Like CAS IN DIRECT, this routine handles data in bulk. On entry,
HL must hold the address of the data, DE must hold the data
length, BC must hold the start address, if any, and A must hold
the file type.

An output file must be open, and it must be closed after the
call to CAS OUT DIRECT.

99

If (B847)<> 1 or 3, the routine returns NC,NZ, the file status
being incorrect. Either the file is not open or CAS OUT CHAR has
been used. Otherwise, the specified data is copied into the
intermediate buffer in 2K byte blocks, each block being recorded
separately. The normal exit is C,NZ. An exit NC,NZ indictates
incorrect file status, and NC,Z indicates that ESC was pressed.

Miscellaneous Calls

CAS CATALOG: BC9B, 2528

On entry, DE must point to a 2K byte area of RAM to be used as a
buffer. If (B802)<>0, the routine drops out, as an input file is
open. Otherwise (B802)=5, indicating catalog status. The buffer
address is set in (B803/4), CAS NOISY is called with A=0 to
ensure that messages will be displayed, and tape is read, block
by block, until ESC is pressed, when CAS IN ABANDON follows.

CAS WRITE: BC9E, 283F

This is the 'primitive' used by other routines to record tape.
On entry, HL must hold the data address, DE the data length,
while A holds the sync character, (&16 or &2C). Note that
DE=0000 would specify that 65536 bytes were to be written.

In case of failure or abort, the routine returns NC, A holding 0
if ESC was pressed, other errors being indicated by A=l.

CAS READ: BCA1, 2836

This is the corresponding 'primitive' for reading tape. On entry
HL must hold the data address, DE must hold data length, and A
must hold the expected sync character. This information can be
determined by reference to the header: Data for the header is
predictable.

CAS CHECK: BCA4: 2851

This is a verify function. On entry, HL must hold the data
address, DE must hold data length, and A must hold the expected
sync character. If the check is successful, the routine returns
with carry set. Error is shown by NC, with an error code in A.

100

File Types

File type is more important than may be apparent, since it
détermines the way in which a file is handled. The file type
byte is made up as follows;

Bit 0
Bits 1-3

Bits 4-7

If 1, the file is protected.
000: BASIC
001: Binary
010: Screen Image
011: ASCII
000: Not ASCII
001: ASCII

Other combinations not defined.

Note that adding &24 to the byte produces character codes, e.g.;

BASIC:
BASIC Protected:
Binary:
Binary Protected:

600 + &24 = &24: "$"
601 + &24 = &25:
602 + &24 = &26:
603 + &24 = &27:

and so on. However, the bit 5 entry for ASCII seems to be
ignored.

Comment

One of the main problems in using the cassette System is the
sélection and protection of suitable buffer areas. Otherwise,
the calls can be used quite simply, without much need to worry
about how they work, unless you want to do something naughty,
like removing protection. No, the method will not be given here,
though it would not be too difficult to work out from the data
provided. Like most protection Systems, it is rather fragile...

101

Cassette Workspace

B800
B801

CAS NOISY Flag. (0 enables messages)
Display Column Count (for messages)

Input File Control Block

B802
B803/4
B805/6
B807/16
B817
B818
B819
B81A/B
B81C/D
B81E
B81F/20
B821/2
B823/46

File status
Buffer Address
Buffer Pointer
F ilename
Block Number
EOF Flag
File Type
Bytes In Buffer
Data Write Address
First Block Flag
Data Length
Execution Address
Unallocated

Output File Control Block

B847
B848/9
B84A/B
B84C/5B
B45C
B45D
B45E
B45F/60.
B461/2
B463
B464/5
B466/7
B468/8B

File Status
Buffer Address
Buffer Pointer
F ilename
Block Number
EOF Flag
File Type
Bytes In Buffer
Data Read Address
First Block Flag
Data Length
Execution Start Address
Una1located

Header Copy
B88C/9B
B89C
B89D
B89E
B89F/A0
B8A1/2
B8A3
B8A4/5
B8A6/7
B8A8/CB

F ilename
Block Number
Last Block Flag
File Type
Data Length
Data Address
First Block Flag
Total Data Length
Execution Start Address
Unallocated

102

General

B8CC Prompt Flag
B8CD Sync Character
B8CE/F Timing
B8D0 T iming
B8D1 Precompensation
B8D2 Speed
B8D3/4 Timing

103

104

Chapter 11
THE SOUND MANAGER

The Sound Manager occupies 1E68-2363 in lower ROM and uses the
B550-B7F9 area as workspace. There are 11 defined entry points.

The sequence of actions needs to be clearly understood. First, a
block of nine data bytes defining a Sound must be set up in RAM.
If SOUND QUEUE is called with HL pointing to the block the data
is transferred, in slightly modified form, to a queue slot,
providing that a slot is available. There are four slots in ail.

If the relevant channel of the PSG (Programmable Sound
Generator) is free, the slot data is expanded into the cotnmon
buffer for that channel. This is done by an event routine.

Part of the Interrupt Handler updates the parameters in the
common area every 100th of a second, passing any necessary
instructions to the PSG.

Once SOUND QUEUE has been called, the rest
a complex sequence of actions

Any attempt to short-cut
chaos.

autornatic ,
with précision
is likely to lead to

of the process is
that must be maintained
or modify the procedure

A particular problem
sounds are to be set
goes into the
Thereaf te r,

whenarises
up for a given

area,common
SOUND CHECK needs

than

next
to be

discover when a further entry can be made,
any other action. Waiting too long to make
discontinuity in the sound pattern.

the

five
The
into

successive
first
the

more
channe1.

four
called repeatedly
but that could
a check could

sound
slots.

to
debar
cause

an event
provided by the user. Once that

the event will call its routine whenever

block
is set
there

The intended solution involves the use of
associated routine,
and enabled
free slot, and the next Sound queue entry can then be made
could be quite a complicated business
one channel is

and

>
in use. Once again,

especially if
the action is

up
is a
This
thanmore

entirely

105

automatic, which is convenient in some ways, restricting in
others.

However, it is always possible to act on the PSG directly, using
MC SOUND REGISTER to set the register defined in A to the data
defined in C, and this may provide an escape route, especially
for experimental purposes.

The function of the fourteen PSG registers can be summarised
thus :

R0 Tone period, Channel A, bits 0-7
RI Tone perios, Channel A, bits 8-11
R2 Tone Period, Channel B, bits 0-7
R3 Tone period, Channel B. bits 8-11
R4 Tone period, Channel C, bits 0-7
R5 Tone period, Channel C. bits 8-11
R6 Noise period. bits 1-4
R7 Enables (0 enables, 1 disables)

Bit 0: Channel A Tone
Bit 1: Channel B Tone
Bit 2: Channel C Tone
Bit 3: Channel A Noise
Bit 4: Channel B Noise
Bit 5: Channel C Noise
Bits 6/7 control I/O ports, 0 for input
1 for output.

R8 Channel A Volume
R9 Channel B Volume 0-&0F sets level
R10 Channel C Colume &1X gives envelope
RU Envelope Period, bits 1-7
R12 Envelope Period, bits 8-15
R13 Envelope Type: 0 to &0F
R14/15 I/O Ports.

Used directly, the PSG will produce a useful variety of sounds,
but the driving program must keep track of time, since there is
no feedback to show that a Sound is complété.

System Calls

SOUND RESET: BCA7, 1E68

To ail intents and purposes, the workspace area is zeroed,
exceptions being:

106

The event block, which is of the asynchronous near-address
type, set up at B555-B55B.

Location &1C of each channel buffer is set to 4, indicating
that there are four free slots available.

Locations 0-2 of each channel buffer are set as follows:

Loc 0 Channel Number
Loc 1 Channel Bit
Loc 2 Rendezvous Bit

A B C
0 1 2
1 2 4

&08 &10 &20

Envelopes are unchanged.

Ali channels are silenced.

SOUND QUEUE: BCAA, 1F9F

On entry, HL must point to a block of nine bytes
required Sound:

defining the

Byte 0: Bit 0: Select Channel A if 1
Bit 1: Select Channel B if 1
Bit 2: Select Channel C if 1
Bit 3 : Rendezvous with A if 1
Bit 4: Rendezvous with B if 1
Bit 5: Rendezvous with C if 1
Bit 6 : Hold if 1
Bit 7: Flush if 1

Byte 1 Amplitude envelope 0-&0F
Byte 2 Tone enve lope 0-&0F
Byte 3 Tone péri od, bits 0-7
Byte 4 Tone péri od, bits 8-11
Byte 5 Noise per iod, bits 0-4
Byte 6 Initial Amplitude
Bytes; 7-8 Duration or envelope repeat count

In ail cases, SOUND CONTINUE is called to release any Sound held
on any channel.

If no channel is specified, the routine returns with carry set.

If bit 7 of byte 0 is true, the specified channel or channels
will be flushed, which has much the same effect as SOUND RESET.

A check is then made for empty queue slots in the buffers for
the specified channel or channels. If the slots for any

specified channel are ail occupied, the routine returns NC.

107

Otherwise, the data is transferred to the first free slot. Byte
0 is set to the channel bit, byte 1 is set to (16*Amplitude
Envelope Number + Tone Envelope Number), and bytes 2 to 7 are
set from bytes 3 to 8 of the data. The slot pointers are
updated.

The event calling for entry of further data when slots are
available is disarmed (If it exists), and it must kick itself
again to maintain continuity. (It may be assumed that SOUND
QUEUE will be called by such an event if that approach is
adopted.)

SOUND CHECK: BCAD, 206C

On entry, A holds 1 to check Channel A, 2 to check Channel B, 4
to check Channel C. Channel status is returned in A:

Bits 0-2: Number iof free slots
Bit 3: Wa i t ing for Channel
Bit 4: Waiting for Channel
Bit 5: Waiting for Channel
Bit 6: Channel Held
Bit 7: Channe 1 Active

The user sound event is disarmed.

SOUND ARM EVENT: BCB0, 2089

On entry, HL must point to the user event block, which must hâve
been set up by KL INIT EVENT, and A must hold the relevant
channel bit.

The event block address is set in the channel buffer area, but
if there is a free slot the upper byte of the address is zeroed,
and KL EVENT is called to kick the event. Zeroing the upper byte
disarms the event, which must re-enable itself when it is
executed, or after execution of SOUND QUEUE or SOUND CHECK.

SOUND HOLD: BCB6, 1ECB

Ail channels are silenced. If any channel was active, the
routine returns with carry set.

SOUND CONTINUE: BCB9, 1EE6

Active channels that are held are released if their channel bit
is set in A.

108

SOUND RELEASE: BCB3, 204A

On entry, A must hold the channel bits for the channels to be
released. SOUND CONTINUE is called, and flags and pointers are
updated.

SOUND AMPL ENVELOPE: BCBC, 2338

On entry, A must
data block of

hold an envelope number, and HL must point
to 16 bytes, as follows:

to a
up

Byte 0: Number <of sections
Bytes 1-3 : Section 1
Bytes 4-6 : Section 2
Bytes 7-9 : Section 3
Bytes 10- 12: Section 4
Bytes 13- 15: Section 5

Byte 0=0, the envelope calls for
seconds

If
for two

a constant-level sound held

Either 'software' or 'hardware' envelopes can be specified. For
a 'software envelope', the bytes within a section are:

Byte 1: Step Count (1-127)
Byte 2: Step Size
Byte 3: Pause Time

If Step Count = 0, Step Size becomes a volume level.

For a 'hardware envelope';

Byte 1: Envelope Shape + &80
Byte 2: Envelope Period (L)
Byte 3: Envelope Period (H)

The data relates directly to PSG registers 11-13.

Providing the envelope
is copied unaltered to
returns with carry set
envelope storage area,

number in A is valid, the envelope data
the envelope storage area. The routine
and HL holding the address of the next
carry clear indicating failure.

SOUND TONE ENVELOPE: BCBF, 233D

This is very similar to the previous routine, except in the

109

meaning of the data. There are two formats for the sections:

Byte 1: Step Count (0—239)
Byte 2: Step Size (-127 to +127)
Byte 3: Pause Time (Hundredths of a second)

The step size is added to the current volume level.

Al ternat ively;

Byte 1: (240 to 255)
Byte 2: -127 to +127
Byte 3: Pause Time

The tone period set is 256*(Byte 1 - 240) + Byte 2

If bit 7 of the first byte of the envelope data is
envelope repeats.

set true the

SOUND A ADDRESS: BCC2, 2349

This converts an amplitude envelope number in A on entry to
address of the envelope data in HL on exit. Exit NC means
number in A was not valid.

the
the

SOUND T ADDRESS: BCC5, 234E

As the previous routine, but for tone envelopes.

Comment
The Sound routines are very ingenious - perhaps a little too
ingenious for their own good. The appréciable automatic element
can be frustrating to anyone who wishes to experiment, unless it
is bypassed completely.

This comment may be coloured by
Systems which rely almost entire
PSG devices as well. Writing the
Systems can be tedious, but the
charge of the situation, whereas
less control.

long-term expérience with sound
ly on software, though involving

routines and data for such
programmer can feel he is in
with automatic actions he has

Nevertheless, the CPC464 System is versatile
than is apparent to a user of BASIC alone -
quite interesting sounds.

- more versatile
and can produce

110

It should be appreciated that the génération of music requires
less data then might be thought. Once an envelope shape has been
established, the only relevant variables are pitch and duration.
The volume level may differ between channels, to obtain balance,
but can usually be left at a constant level. What is needed in
these clrcumstances is a routine that will pick up the essential
variables and insert them into the data blocks used to call up
notes.

Sound Manager Workspace

B550 Flags for new entries
B551 Flags for active channels held
B552 Flags for active channels
B553 Interrupt Control Counter
B554 Outstanding action count
B555-B55B Event Block
B55C-B59A Channel A buffer
B59B-B5D9 Channel B buffer
B5DA-B618 Channel C buffer
B619 PSG Enable Byte
B61A-B709 Amplitude Envelopes
B70A-B7F9 Tone Envelopes

Buffer Format

600 Channel No
601 Channel Bit
602 Channel Rendezvous Bit
&03 Channel Status
&04 Calls for tone
&05 Interrupt Coun
&06 Interrupt Coun
&07 Calls for ampl
&08/&09 Duration negat
&0A/&0B Amplitude Enve
&0C Number of sect
&0D/&0E Amplitude Enve
&0F Volume
&10 Envelope type
&11/&12 Tone Envelope
&13 Number of sect
&14/&15 Tone Envelope
&16/&17 Tone Period
&18 Step Count

Flags
setting if bit 0=1

t 1
t 2
itude setting if bit 0=1
ed
lope Address
ions in Amplitude Envelope
lope Section Address

(hardware envelope)
Address
ions in Tone Envelope
Section Address

111

&19
&1A
&1B
&1C
&1D/&1E
&1F/&26
&27/&2E
&2F/&36
&37/&3E
The above

Current Slot Number
Count
Slots in use
Slots Free
Event Block Address
Slot 1
Slot 2
Slot 3
Slot 4

are relative addresses within the channel buffers

112

Chapter 12
EXTERNAL ROMS

from time
but a broader view of the subject must now be taken.

into
and software
well worth

It has been necessary to mention external ROMs
t ime,
the more dedicated enthusiasts are likely to venture
area, which calls for a combination
expertise, but the System
examination.

to
Only
this

is
of hardware
nevertheless

Nominally, up to 252 external upper ROMs could be added to the
System to provide additional program space, the
determined by the format of FAR CALL and FAR
interpret ROM numbers &FC-&FD in a spécial way. In
number of ROMs added is likely to be much smaller.

limit being
ICALL, which
practice, the

Each ROM must be given a number, and when that number is output
on DFXX the ROM must become active. This does not mean that it
should immediately offer data to the highway. It may only do
that when it is active, ROMEN is true (low) and address bit A15
is true. In these circumstances, the ROMDIS line must be pulled
high before the external ROM is enabled, ensuring that the
internai ROM (upper and lower) goes into a high-impedance state
before the external ROM tries to drive the highway. Failure to
attend to this detail can cause physical damage.

The internai upper ROM is thus disabled when an external ROM is
active, even if the external ROM has been allocated the number
0, which is usually associated with the internai upper ROM. In
fact, the internai upper ROM is enabled when a number has been
output on DFXX which does not match that allocated to any
external ROM.

Foreground ROMs may be given any number, and it is possible to
accomodate up to 64K of homogenous foreground program by using
four 16K ROMs with consecutive numbers. SIDE CALL allows for
simple access between the ROMs in such a group.

Background ROMs must be given numbers in the 1 to 7 range, so
that they can be initialised by KL ROM WALK, as described

hereafter.

113

The distinction between foreground and background ROMs can now
be brought out more clearly. Only one foreground ROM can be
active at a time, since it takes control, and only one
controlling agency is allowed to exist in a System at a given
time. Background ROMs, on the other hand, can be called into
action on a temporary basis to support a foreground routine.

Entered at C006, a foreground ROM must modify the store address
data passed to it in BC, DE and HL to claim an adéquate amount
of workspace. The BASIC interpréter daims two initial areas, a
low area at 0040-016F, and a high area at AC00-B0FF. These form
boundaries to the main working area, which must hold the BASIC
program, variables and strings, and cassette buffers. This area
is called the memory pool, and it needs to be shared out with
care.

Having claimed its own workspace, the foreground program must
invite any background ROMs which it intends to use to claim
workspace for their own needs. KL INIT BACK will do this for a
partlcular ROM, while KL ROM WALK will initialise workspace for
ail the background ROMs in the System.

MN BOOT PROGRAM allows a program to be loaded into RAM and
treated as a foreground program, but there is also provision for
programs in RAM to serve in the background rôle. Such programs
are known as 'Résident System Extensions' (RSX) and are expected
to reserve their own data areas.

Command Words

While any program location can be accessed by the jumps and
calls provided, it is sometimes more convenient to use command
words. The on-board upper ROM has, in fact, only one command
word, BASIC, and this accesscs the initialisation entry at C006,
but other ROMs may define a whole host of spécial commands. Each
such command requires to be prefaced by 'I' to distinguish it
from a BASIC command.

The first
following

few locations of an external ROM must conform to the
format :

C000: ROM Type
C001 : ROM Mark Number
C002: ROM Version Number
C003: ROM Modification Number
C004/5:
C006 on

Address of Command Table Start
Command Jumpblock

114

ROM types are;

0: Foreground
1 : Background
2: Foreground Extension
&80: On-board ROM

The ROM format needs illustration by an example. Suppose that a
ROM provides an enhanced printer driver, and can generate code
sequences which set up the printer in a particular working mode.
In simplistic terms, the start of the ROM might look like this:

C000: 01 01 01 01
C004: 00 Cl Command Table at C100
C006: C3 00 C2 Initialise at C200
C009: C3 00 C3 DOUBLE at C300
C00C: C3 00 C4 EXTEND at C400
C00F: Other links

Command Table:

C100 49 4E 49 D4 INIT
C104 44 4F 55 4C C5 DOUBLE
C10A 45 58 54 45 4E C4 EXTEND
C110 . . , Other Command Names

The command words must consist of upper case alphabetic
characters (though full stops appear to be permissible) and &80
must be added to the code for the last letter in each word. The
Command Table must be terminated by a zéro.

For initialisation, the ROM is entered at C006, no command word
being involved. However, if the word EXPAND is set up, and KL
FIND COMMAND is called, the routine will return with the entry
address C00C in HL and the appropriate ROM number in C. FAR PCHL
will then access the required routine.

It is best to make the command words simple, though up to
sixteen characters can be significant.

Similar facilities are available for programs in RAM, but in
this case there are no constraints on the location of the
Command Table. Linkage to the table is via a four-byte reference
block, which in the case of background ROMs is placed
immediately below the workspace area allocated for the ROM.

115

With such comprehensive facilities for program extension, it is
natural that there hâve been queries regarding the possibility
of extending RAM in a similar manner. This, unfortunately, is
not easy to achieve. When a Write to memory is executed, RAM is
selected. , and the output buffer to RAM is enabled, but this
enable is not brought out to the extension connector, and there
is no provision for over-ruling it. A simultaneous write to
internai and external RAM might be achieved, if we could décodé
the available signais to dérivé a suitable enable, but a signal
line selecting this mode would still be necessary.

It is possible, of course, to set up an external RAM and read it
as if it was a ROM, but that is a rather different matter. Such
a procedure could prove useful while
linking with another computer System,
into deep waters.

developing ROMs,
are

or in
movingbut there we

Routines

The four Kernel Routines relevant to the Command Word System
are ;

KL LOG EXT: BCD1, 02A1

On entry, HL must point to a four-byte block of RAM which is
otherwise unused. For a background ROM B=0 and C holds the ROM
number, but for an RSX BC must hold the address of the Command
Table.

PUSH HL
DE = (B1A6/7)
(B1A6/7) = HL
(HL) = E
(HL+1) = D
(HL+2) = C
(HL+3) = B

This sets up the four-byte area. The first two bytes point to
the last such area set up, so by a simple scan it is possible to
start at B1A6/7 and trace through ail the areas in turn.

A slightly different procedure is used for background ROMs and
RSXs. the latter applying if B<>0-

116

KL INIT BACK: BCCE, 0332

On entry, C must hold the number of the ROM to be initialised,
DE must hold the address of the lowest free byte in memory, and
HL must hold the address of the highest free byte. The address
information is passed to the foreground ROM by the routine at
0077, which calls the ROM, and the foreground ROM must pass the
addresses to KL INIT BACK, perhaps modifying them first to claim
its own workspace.

If the contents of C are outside the 1-7 range, the permitted
numbers for background ROMs, the routine drops out. Otherwise,
KL ROM SELECT is called with A = C. If (C000) AND 3 < > 1, the
ROM is not of the background type, and the routine drops out via
KL ROM DESELECT.

Otherwise, BC is pushed, and the ROM is called at C006, the
entry point for initialisation. The ROM must modify the address
pointers to claim the workspace which it requires.

The modified values are returned in DE (LOMEM) amd HL (HIMEM).
DE is pushed and DE=HL+1. HL is then set to B1AA + 2*(B1A8),
(B1A8) being the number of the currently-selected ROM. DE is set
in the location so defined. This is the new HIMEM, marking the
start of the reserved workspace.

KL LOG EXT is then called with HL=DE—4, B=0 and C holds the ROM
number. This sets up the four-byte block in the area immediately
below the workspace.

HL is set to point to the location below the four-byte block,
and DE and BC are popped. The routine drops out via KL ROM
DESELECT.

Note that the table set up at B1AA + 2*(B1A8) gives the bottom
of each data area, not including the four-byte block. The top of
the data area is not defined in a similar way, but can be noted
by the ROM initialisation procedure.

Note, also, that it is not certain that a background ROM will
always be allocated the same data area, but some of the access
routines pass the address of the workspace start in IX when the
ROM is called. (See RAM Routines).

KL ROM WALK: BCCB, 0329

This calls KL INIT BACK with successive values of C decreasing

from 7 to 1, and therefore initialises ail available background

117

ROMs. Entry conditions are as for KL INIT BACK, except that C
need not be set.

KL FIND COMMAND: BCD4, 02B2

This is entered with HL pointing to a command word set up in
RAM. The command can be under a ROM, because the first action is
to copy sixteen bytes of the word to (B196-B1A5). Bit 7 of the
last byte of the copy is set, then HL = (B1A6), A=L. The routine
jumps to 02D5, and then to 02C5 if (HL'< >0.

02C5 HL is pushed, and BC=(HL+2,HL+3). This is the Command Table
address for an RSX or the number of a background ROM. 02F4
is called to process the data accordingly.

If 02F4 returns with carry set, the command word has been
matched, and the routine returns with DE holding the chain
link pushed from HL (to clear the stack), while HL holds
the entry address and C holds the ROM number.

Otherwise, the chain link is passed to HL, and HL=(HL)
picks up the next lirtk in the chain, so that the next
command table can be checked.

02D5 If HLO0, the routine loops to 02C5 for a further search.
If HL=0000, the end of the chain has been reached, and
other possibilities need to be checked. C=&FF, and a
further loop is entered:

02DA C=C+1. KL PROBE ROM is called to check the ROM type. If
this is 0 or &80, foreground or on-board, 02F4 is called.
It it returns with carry set, MC START PROGRAM is entered -
so a command word could select a new foreground ROM...

Otherwise, if the class is not &80, or if C=0, the routine
loops to 02DA to try another ROM. Barring that, the routine
returns with carry clear.

02F4 HL=C004, pointing to the
but if BO0 an RSX table
C=&FF.

command table address
is to be accessed,

in a ROM,
and HL=BC,

KL ROM SELECT is called, BC is pushed, DE=(HL), HL=HL+2. DE
and HL are exchanged, and the routine jumps to 0321.

At this point, DE holds the address of the command link
table, and HL holds the address of the Command Table.

030A BC=B196, the start of the command word copy.

118

030D A=(BC). If Ao(HL), the routine jumps to 0319. There is a
mismatch. Otherwise, HL and BC are incremented, and the
routine loops to 030D until bit 7 of A is true, marking a
word end. If this condition is reached, a match has been
found. DE and HL are exchanged, and the routine jumps to
0325 with carry set (from bit 7 of A). HL points to the
jumpblock entry, and C holds the ROM number.

0319 A=(HL), HL=HL+1. The routine loops to 0319 until bit 7 of A
is true, marking a word end.

DE=DE+3, advancing to the next jumpblock entry.

0321 If HLO0000 then back to 030A to try the next word.

0325 POP BC, exit via KL ROM DESELECT

That complétés the routines relevant to Command Word functions.

119

120

Chapter 13
BASIC SUPPORT

ROM are not
of the BASIC

However, the 49
for those whose

System.

The entries to the 2A98-37FF section of the lower
officially defined, because they are more a part
interpréter than of the operating
entries hold a host of treasures, especially
programs involve mathematics.

System, which is
specialised to be of general interest, being mainly

various key combinations
a buffer, the start of

The first entry, via BD3A, accesses the EDIT
rather too
concerned with the interprétation of
and the modification of data held in
which is defined in HL on entry.

The entries relating to floating point arithmetic
more general importance.

are of much

Floating Point

A five-byte floating point System is used. For example:

86 65 2E E0 D3

The first byte is the exponent.
value of the exponent is 2t6 = 64.
mantissa, and the overall
multiplying together the
mantissa.

Subtracting &80 gives 6, so
The remaining bytes form

the number is
the exponent

value of
values of

f ound
and

the
the

by
the

the second byte is the sign bit.
it is 0, so the number is positive. However, the

is always 1, so the
- is :

The most significant bit of
this case
value of the bit in numeric ternis
the last four bytes - the mantissa

value

In
t rue

of

E62EE0D3 = 3,845,054,675

121

in ' fractional
value

The mantissa, however, is expressed
which means that the most significant bit has a
the next bit a value of 1/4, and so on. To find the
of the mantissa we must divide by 2f32. Multiplying
by 64 gives the overall value of the floating
57.2957795 = 180/PI

binary',
of

real
the
numberpoint

1/2,
value

resuit
as

being
This can be seen as the next step

Combined

A zéro value is a spécial case, the exponent
mantissa
exponent of &01, which has a value
minimum mantissa value, which is 0.5, an
can be represented. The maximum possible
is a whisker under 2fl27.

irrelevant.
2f-127.

overa11 value
value that can

and
from

with
of 2f—128

i be shown

Floating point numbers are stored
order,
exponent last. A number of examples can be found in ROM
2E18-37FF area. Some are placed in the middle of a
code, which makes disassembly difficult. This is

I

with
the least significant byte of the

the bytes
mantissa first

in

'power sériés
following the

the
an

the

reverse
and
in

section
because

the
the
of

the
Some are placed in the middle of

This
constants from the locations

calls it. For example:
routine picks up

instruction which

0

CD A9 32 CALL 32A9
04 Four entries
4C 4B 57 5E 7F 0.4342597
0D 08 9B 13 80 0.5765815
23 93 33 76 80 0.9618007
20 3B AA 38 82 2.8853901

The routine continues at the location following the table, which
in this case is taken from the LOG routine.

When a mantissa is brought into registers, it normally occupies
DEHLC, C serving to collect any carry bits in right shift
operations. These may be needed for rounding purposes.

There are
numbers:

three defined hold locations in RAM for floating point

HOLD 1 : B8E5-B8EC
HOLD 2: B8ED-B8F1
HOLD 3: B8F2-B8F6

These are primarily for the use of the basic interpréter.

The floating point and integer arithmetic can be accessed
without worrying too much about the detailed working, but some
comments hâve been added to the following tabulation to assist

122

those who wish to investigate the routines more closely. A BASIC
program given in the Appendix will help such investigations.

The Entry Points

The jumpblock entries relevant to this area use the FIRM JUMP
code (&EF) rather than the LOW JUMP code (&CF) used for the rest
of the jumpblock. but the same rules apply: On jumping to an
entry there must be a return address left on the stack to allow
continuation after the called routine has been executed.

A spécial notation will be used for floating point data, FP(X)
meaning a floating point number pointed to by the contents of
register pair X.

The actual routine addresses are not given. They can be found
easily enough by examining the jumpblock entries at the
addresses stated.

BD3D DE and HL on entry point to two floating point numbers (or
areas where floating point numbers may exist). FP(DE) is
copied to FP(HL). On exit, A holds the exponent of the
copied number. Carry is set. (Note that FP(HL) must be in
RAM>)

BD40 On entry, DE points to an FP number area in RAM, and HL
holds an unsigned binary number in the range 0 - 65535.
FP(DE) is set to the fl oating point équivalent of the
number in HL. On exit HL=DE on entry, DE is corrupt, and A
holds the most significant byte of the new mantissa.

BD43 On entry, HL points to a four-byte binary number in RAM.
The number, treated as an integer, is overwritten by its FP
équivalent. On exit, HL points to the new number, and A
hold the most significant byte of its-mantissa.

BD46 This call is used by the BASIC command CINT. On entry, HL
points to an FP number in RAM, the number having a value
within the range +/- 32767. The integer part of the number
is set up in HL as a two's complément number rounded to the
nearest whole number. On exit, A holds the sign byte of the
FP number. Carry is set unless overflow occurred due to the
number being too large.

BD49 On entry, HL points to an FP number in RAM. BD4C is called
to convert the number to integer form. If the resuit leaves
a remainder greater than 0.5, or if the FP number was
négative, the integer is incremented. On exit, C holds the
number of non-zero bytes in the integer.

123

BD4C This call is used by the BASIC command FIX. On entry, HL
points to an FP number in RAM. The number is truncated to
signed integer form, the resuit overwriting the mantissa of
the original number. On exit, C holds the number of
non-zero bytes in the integer. A holds &FF for a négative
number, 0 for a positive number.

BD4F This call is used by the BASIC command INT. It is almost
identical to BD49, except that sign is sensed, remainder
ignored.

The foregoing calls need little explanation, but the next is a
different matter. It is used in préparation for décimal output,
though it does not perform the actual output process.

An interesting algorithm is used to calculate the number of
décimal places in the integer part of the number being
processed. The real value of the exponent is found by
subtracting &80, and the resuit is multiplied by 77/256, which
is a close approximation to logl0 2. The integer part of the
resuit states the number of décimal places needed.

The calculation can be written;

log N = (log N)*(log 2)
10 2 10

where N is the number concerned.

Nine is subtracted from the number of décimal places, since up
to nine can be displayed. If the resuit is non-zero, the number
is multiplied or divided by powers of ten until it lies in the
range 312500 to 10|9. (312500 - (10|7)/32).

BD52 On entry, HL points to an FP number in RAM. The number is
processed as described above, and set in place of FP(HL).
HL is then adjusted to point to the most significant byte.

This is the most difficult to use of ail the BASIC support
routines, and an alternative approach may be préférable.

BD55 On entry, A holds an index value, and HL points to an FP
number in RAM. The number is multipled by 10fA. A may range
from -127 to +127, but values outside the range +/- 76 will
be meaningless. The resuit replaces FP(HL). On exit BC and
DE are corrupt, and A holds the sign byte of the resuit
mantissa.

124

BD58 On entry, DE and HL point to FP numbers, the latter in RAM)
The calculation FP(HL)=FP(HL)+FP(DE) is performed. On exit
BC and DE are corrupt, A holds the sign byte of the
resulting mantissa.

FP(HL)=FP(HL)-FP(DE)BD5B As BD58, but

BD5E As BD58, but

BD61 As BD58, but

BD64 As BD58, but

BD67 On entry., A

FP(HL)=FP(DE)=FP(HL)

FP(HL)=FP(HL)*FP(DE)

FP(HL)=FP(HL)/FP(DE)

holds an index and HL points to an FP number in
effectively

2fA. A may hâve any value between
holds the new exponent.

RAM. A is added to the exponent of the number,
multiplying the number by
-127 and +127. On exit. A

BD6A On entry, DE and HL point to two FP numbers.

If FP(DE) - FP(HL), the routine exits NC,Z. A=0
If FP(DE) < FP(HL), the routine exits NC,NZ. A=1
If FP(DE) > FP(HL), the routine exits C,NZ. A=&FF

The FP numbers are unchanged.

BD6D FP(HL) is negated.

BD70 If FP(HL) = 0, the return is with A=0.
If FP(HL) > 0, the return is with A=l.
lf FP(HL) < 0, the return is with A=&FF.

BD73 Entered with A==0, this sets the RAD (radian) condition
Entry with A=1 sets the DEG (degree) condition.

BD76 FP(HL)=PI

BD79 FP(HL) is replaced by its square root. (SQR)

BD7C FP(HL) = FP(HL) f FP(DE)

BD7F FP(HL) is replaced by its natural logarithm. HL is preserved.

BD82 As BD7F, but the logarithm is to base 10.

BD85 FP(HL) = ef(FP(HL)). (EXP)

BD88 FP(HL) = SIN(FP(HL)).

BD8B FP(HL) = COS(FP(HL)).

125

BD8E FP(HL) = TAN(FP(HL)).

BD91 FP(HL) = ATN(FP(HL)).

The limitations and rules for the BASIC versions apply to
these functions in general.

BD94 This is similar to BD43, but Works on a five-byte integer.
The least significant byte of the integer is discarded,
since it lies outside the System resolution limit.

BD97 The random seed is set to 076C6589.

BD9A The random seed i s set as above, then XORed with FP(HL)

BD9D The random seed is updated and copied into FP(HL).

BDA0 The random seed is set from FP(HL).

BDA3 B=H . If H < 0 it is negated. C=2, A=0.

BDA6 BC='0002, E =0.

The last two calls are only significant to the BASIC
interpréter.

BDA9 If H (0 it is negated, and the routine returns. Otherwise,
if B>0 HL is negated.

We now reach the integer calculations.

BDAC HL=HL+DE

BDAF HL=HL-DE

BDB2 HL=DE-HL

BDB5 HL=HL*DE. Absolute values are used. If the signs of HL
and DE differ, B is set. négative. BDA9 follows

BDB8 HL=HL/DE,, remainder in DE.

BDBB DE=HL/DE,, remainder in HL.

BDBE HL=HL*DE.

BDC1 HL=HL/DE ,, remainder in DE. Absolute values are

BDC4 If HL=DE the return is with A = 0.

126

If
If

HL>DE
HL>DE

the
the

return
return

is
is

with
with

A
A

= 1.
= &FF

BDC7 HL is ne;gated.

BDCA If HL=0, the return is with A = 0.
If HL>0, the return is with A = 1.
If HL<0, the return is with A = &FF

Using the Maths Calls

mathematical
lot of

calls.
surrounding

Nor should it be assumed that the
ail the possibilities the

of
a

descriptions given above
program given in

You should not be deceived by the array
Using them to full advantage can entail
code.
cover
Appendix to explore the details,
examination of the routines, and it
points here and there...)

Use
(The descriptions are based

is only too easy to miss

the
on

odd

forNotable omissions are routines
numeric data, which is handled by
input process can be complicated by
décimal and hexadécimal bases, and by the fact
data may also be involved. However, in broad tenus
involves ;

the
the
the need

input
main

and
interpréter

to cover
that

output

the

of
The

binary,
alphabetic

process

(a. Checking that the data is numeric.
(b. Converting from ASCII to binary values.
(c. Multiplying the number already input by the number base.
(d. Adding the new digit.
(e. Looping to A.

Exit from the loop is usually dépendent on a non-numeric being
found at stage a.

is more especial ly

involves

if exponent
the
of

The
the

this
be

difficult,
It is often désirable to position

and for that you need to know
of

numbe r
be

the
division

number
by the

the
leading

base,
disp layed,

The output process
forms are to be included.
number with care,
décimal digits and hence
process
remainder as a basis for the digit to
produces the last digit first, and a string of codes
assembled in reverse order before output can begin.

number
zeroes.
taking

but
has to

Access to floating point routines opens the door to many types
of machine code program that would otherwise be much more
difficult to write, but that does not mean that such programs

127

become easy to create. A good deal of thought may be needed to
get everything right, but the results can be very satisfying.

128

Chapter 14
THE BASIC
INTERPRETER
If there are weaknesses in the CPC464 System, they lie mainly in
the BASIC interpréter. Though it shares a ROM with the operating
System, it conveys a somewhat different image. There are a few
undeniable bugs, which fortunately hâve a minimal effect on
overall performance, and it carries subroutine nesting to
extreme lengths, which makes explanations difficult.

Most of the interpréter is concerned with the execution of the
procedures relating to keywords, and the list of keywords,
tokens and entry addresses which has been provided hereafter
will simplify exploration, but these apply only to version 1.0.
Extraction of the corresponding information for other versions
is not easy, because the data is widely scattered.

First, there is the reserved word table, which is organised in
an ingenious but confusing way. There are, in fact, a sériés of
short tables, one for each letter of the alphabet. If, say, the
keyword PRINT is to be found, the routine first branches to
examination of the list for 'P', and then looks for RINT. The
last character of this word is marked by the addition of bit 7,
and the following byte gives the token for PRINT: &BF. The entry
is, in fact, the first in the 'P' list, so it is found very
quickly, but there are only nine words in the list, so even the
last is found without much delay. Systems which use a single
list would take much longer to find an entry.

Having found the tokens, you will need the entry addresses, and
here a certain amount of patience is needed, because the
relevant tables are scattered around somewhat, and they take
different forms. For tokens &F4-&FD there is a form of
jumpblock, recognisable by repeated &C3 entries. That falls at
CF81 in version 1.0. Other links are established by spécial
tables relating tokens to addresses, and other tables just give
the link addresses, being accessed on a displacement pointer
basis. I fear that the only answer is to search for areas of
non-code entries, and then do a little détective work to find
out what they mean.

129

On the whole the entry points within the interpréter are of
limited interest to the machine code programmer, especially as
he has direct access to the mathematical routines. A notable
exception is the CALL function, which can pass parameters to a
machine code program.

Each parameter is passed as a two-byte number, which may express
an integer, an integer derived from a real (FP) number, or the
address of a real number. Register A is set to the number of
parameters passed, and IX points to the last parameter. so if
there are N parameters then parameter X is stored at (N - X)*2
relative to the address in IX.

Despite the comments made at the start of this section, there is
much of interest to be found by anyone who explores the
interpréter, but to examine it ail here would be too
space-consuming. You hâve the tools needed for exploration, so
why not use them?

Reserved Words
in Token Order

Token Word Addr Token Word Addr

&00 ABS FD85 &12 PEEK F158
&01 ASC FA10 &13 REMAIN C99F
&02 ATN D53E &14 SGN FF02
&03 CHR$ FA16 &15 SIN D52F
&04 CINT FE8D &16 SPACE$ FA57
&05 COS D534 &17 SP D329
&06 CREAL FEEC &18 SQR D4EF
&07 EXP D520 &19 STR$ F91E
&08 FIX FDE8 &1A TAN D539
&09 FRE FC2D &1B UNT FEC2
&0A INKEY D409 &1C UPPER$ F842
&0B INP F16D &1D VAL FA77
&0C INT FDED &1E - FF06
&0D JOY D423 $40 EOF C417
&0E LEN FA0A &41 ERR D0DC
&0F LOG D52A &42 HIMEM D0F4
&10 LOG10 D525 &43 INKEY$ FA24
&11 LOWER$ F834 &44 PI D40B

130

Token Word Addr Token Word Addr

&45 RND D584 &9B ERASE D900
&46 TIME D0E5 &9C ERROR CA8F
&47 XPOS D107 &9D EVERY C979
&48 YPOS D10E &9E FOR C529
&71 BIN$ F8BA &9F GOSUB C6ED
&72 DEC$ F8EA &A0 GOTO C6E8
&73 HEX$ F8C4 &A1 IF C6C7
&74 INSTR F AAI &A2 INC C22A
&75 LEFT$ F93C &A3 INPUT DB2B
&76 MAX D1EE &A4 KEY D439
&77 MIN DIEA &A5 LET D654
&78 POS C276 &A6 LINE DAF8
&79 RIGHT$ F943 &A7 LIST E0F7
&7A ROUND D219 &A8 LOAD E9F6
&7B STRING$ FA36 &A9 LOCATE C2D2
&7C TEST C4E9 &AA MEMORY F4EF
&7D TESTR C4EE &AB MERGE EAA6
&7E - CEAB &AC MID$ F993
&7F VPOS C262 &AD MODE C24F
&80 AFTER C971 &AE MOVE C505
&81 AUTO C0DF &AF MOVER C50A
&82 BORDER C221 &B0 NEXT C5FB
&83 CALL F1BA &B1 NEW C12B
&84 CAT D246 &B2 ON C7E3
&85 CHAIN EA3C &B3 ON BREAK C8CB
&86 CLEAR C132 &B4 ON ERROR
&87 CLG C485 GOTO CBF8
&88 CLOSEIN D298 &B5 ON SQ C940

&89 CLOSEOUT D2A1 &B6 OPENIN D25F

&8A CLS C25A &B7 OPENOUT D256

&8B CONT CBC0 &B8 ORIGIN C48C

&8C DATA E8EF &B9 OUT F177

&8D DEF D117 &BA PAPER C20A

&8E DEFINT D618 &BB PEN C212
&8F DEFREAL D61C &BC PLOT C4D0
&90 DEFSTR D614 &BD PLOTR C4D5
&91 DEG D4E7 &BE POKE F15F
&92 DELETE E728 &BF PRINT F1FD
&93 DIM D67D &C0 E8F3

&94 DRAW C4C6 &C1 RAD D4EB

&95 DRAWR C4CB &C2 RANDOMISE D55E
&96 EDIT C052 &C3 READ DCEB
&9 7 ELSE E8F3 &C4 RELEASE D31E
&98 END CB65 &C5 REM E8F3
&99 ENT D385 &C6 RENUM E7DF
&9A ENV D84E &C7 RESTORE DCD9

131

Token Word Addr Token Word Addr

&C8 RESUME CC03 &E4 FN
&C9 RETURN C70F &E5 SPC -
&CA RUN E9BD &E6 STEP -
&CB SAVE EC09 &E7 SWAP -
&CC SOUND D2C0 &EA TAB -
&CD SPEED D494 &EB THEN -
&CE STOP CB5A &EC TO -
&CF SYMBOL F69D &ED USING -
&D0 TAG C319 &EF = -
&D1 TAGOFF C320 &F1 < -
&D2 TROFF DDE6 &F4 + FCCC
&D3 TRON DDE2 &F5 MINUS FCE1
&D4 WAIT F17D &F6 * FCF5
&D5 WEND C776 &F7 / FD12
&D6 WHILE C747 &F8 D4F4
&D7 WIDTH C3E3 &F9 DIV FD37
&D8 WINDOW C2E1 &FA AND FD58
&D9 WRITE F47B &FB MOD FD49
&DA ZONE F1F6 &FC OR FD63
&DB DI C8E1 &FD XOR FD6D
&DC El C8E7 &FE NOT -
&E3 ERL —

Not ail the tokens are associated with addresses. STEP is
recognised by the FOR routine, while SPC and USING are picked up
by PRINT.

Similarly, some tokens hâve spécial meanings that are not
associated with words. &FF warns that the next byte is a
function token, for example. Some bytes which look like tokens
mean something quite different. &02 introduces an integer
variable, &0D introduces a real variable and &1D introduces an
address. &1E introduces a two-byte integer constant, and &1F a
real constant.

It is interesting and instructive to examine the stored program,
which will be found from 0170 upwards, and compare the codes
with a listing. This will tell you more than could be conveyed
in a hundred pages of explanation.

132

Appendix 1
SUPPORT PROGRAMS

Two programs given here will assist you in exploring the
operating System and BASIC interpréter. The first is a
disassembler which will operate on ROM-borne code. It will also
dump in hexadécimal or alphabetic form. The display can be sent
to screen or printer.

It should be noted that a blank line is inserted at the end of a
code block, which helps to identify data insertions. Setting the
program up may be tedious, but the results make that well worth
wh i1e.

1 00 MEMORY 8<A4FF
1 10 GOSUB 4560
120 PF=0 : PC=0
130 OLS
140 PRINT TAB(10);"1. Display Mode
150 PRINT TAB(10)5"2. Print Mode."
160 PRINT TAB(10);"3. Disassemb1e.
170 PRINT TAB(10);"4. Hex dump
180 PRINT TAB(10)s"5. Text dump."
190 PRINT TABU5);
200 INPUT "Select Option."sK
210 IF K< 1 OR k>5 THEN 130
220 ON K GOTO 230,240.250,260,270
230 PF=0 s GOTO 130
240 F'F=8 : GOTO 130
250 DF=0 s GOIO 230
260 DF=1 : GOTO 280
270 DF=2
280 CLS
290 INPUT "Start Address ",C
300 INPUT "End Address ”,E
310 0=0-65536*(C<0)
320 E=E-65536*(E<0)
330 IF E<C THEN 130
340 0=0-1
350 IF DF=0 THEN 450
360 PRINT #FF, : GOSIJB 4620 : FR1NT #FF, HEXi(0+1,4 >

370 GOSIJB 4490
380 IF B<&20 OR B>8<7F I HEN BB=*<3F ELSE BB=B

133

390
400

410
420
430

440
450
460
470
480
490
500
510
520

530
540
550
560
570
5(30
590
600
610
620
630
640
650
660
6 70
680
690
700
7 I 0
720
730
740
750
760
7 70
780
790
800
810
820
830
840
850
860
870
880
890
900

P=INT(C/(8*DF)) : Q=C-(B*DF*P)
IF 0=0 THEN PRINT#PF ; GOSUB 4620 : FRINT#PF,HE
X$(C,4);
IF DF=1 THEN X$=HEX$(B,2> ELSE X$=CHR$(BB>
PRINT #FF,TAB(6+(4-DF)*Q);X$;
IF O=E THEN : PRINTttPF : PRINTttPF : PC=FC+1 s
GOSUB 4620 : INPUT C : GOTO 130
GUI O 570
GOSUB 4490
NA=B
□S$=HEX$(C.4>+" "+HEX$(8.2)+" "
AS$=""
MA=NA\64 s MD=NA MOD 64
ON (MA+1) 0010510,1300,1370,1480
MA=NA\8 s MB=NA MOD 8
ON (t'IA+1) GOTO 530,620,710,800.890,980,1070,1 16
0
UN (MB+1) GOTO 540,550,560.570,580,590,600,610
ASi="NOP“ : GOIÜ 1250
AS4 ="LD
AS$="LD
ASi="INC
AS$ = "INC
AS*="DEC
AS$="LD
AS$="RLC
ON (148+1)
AS$="EX
ASi="ADD
AS$=“LD
AS$="DEC
ASS="INC
AS«="DEC
AS$="LD
AS«="RRC
ON (MB+1)
AS$="DJNZ
AS$=“LD
AS$="LD
AS$="INC
AS$="INC
AS«="DEC
AS«="LD
AS$="RL
ON (MB+1)
AS$="JR
AS$="ADD
AS$="LD
ASi="DEC
ASt = "INC
AS$="DEC
AS$="LD
AS$="RR
ON (MB+1)
ASt="JR

BC," : GOSUB 4210 ; GOTO 1250
<BC),A” : GOTO 1250
BC" : GO 10 1250
B" : GOTO 1250
B" : GOTO 1250
B, " : GOSUB 4160 : GO IO 1250
A" : GOTO 1250
GOTO 630.640,650,660,670.680,690,700
AF/AF" : GO FO 1250
HL.BC" : GOTO 1250
A, (BC) " : GOTO 1250
BC" : GU I O 1250
C" : GU 10 1250
C" : GO 10 1250
C, " : GOSUB 4160 : GOTO 1250
A" : GUI O 1250
GUIO 720,730,740,750,760,Z70,780,790
" : GOSUB 4280 s GOIÜ 1250
DE," : GOSUB 4210 : GOTO 1250
(DE), A" : GO 10 1250
DE" : GO10 1250
D" : GOTO 1250
D" s GO 10 1250
D, " : GOSUB 4160 s GOIÜ 1250
A" : GOIÜ 1250
GO I O 810,820,830,840,850,860,870.880
" : GOSUB 4280 : FF=1 : GOTO 1250
HL,DE" : GOIÜ 1250
A, (DE)" : GOTO 1250
DE" : GOIO 1250
E" : GOTO 1250
E" : GOTO 1250
E, " : GOSUB 4160 : GOTO 1250
A" ; GOIO 1250
GO 10 900,910,920,930,940,950,960,970
NZ,” : GOSUB 4280 : GOTO 1250

134

910 AS$="LD HL, " : GOSUB 4210 : GOTO 1250
920 AS$="LD (" ; GOSUB 4210 : AS$=AS$+"),HL" : GO

T8 1250
930 AS$="INC HL" S GOTO 1250
940 AS$>=" INC H" : GOTO 1250
930 AS$="DEC H" : GOTO 1250
960 AS$="LD H." ; GOSUB 4160 : GOTO 1250
970 AS$="DAA " : GOTO 1250
980 ON (MB+1) GOTO 990,1000,1010,1020,1030,1040.105

0,1060
990 AS*="JR Z," : GOSUB 4280 : GOTO 1250
1000 AS$="ADD HL. HL" : GOTO 1250
1010 AS$="LD HL, <" : GOSUB 4210 : AS$=AS*+">" s GO

TO 1250
1020 AS4> = "I)EC HL" : GOTO 1250
1030 AS$ = "INC L." : GOTO 1250
1040 AS$="DEC L" s GOTO 1250
1050 AS$="LD L," : GOSUB 4160 : GOTO 1250
1 060 AS$="CFL " s GO 10 1250
1070 ON (MB+1) GOTO 1080,1090,1100.1110,1120,1130,11

40,1150
1080 AS$="JR NC, " : GOSUB 4280 : GOTO 1250
.1090 AS$="LD SP. " s GOSUB 4210 : GOTO 1250
1 100 AS$="LD (" : GOSUB 4210 : AS$=AS$+"),A" : GOT

0 1250
1 1 J 0 AS$="INC SP" : GOTO 1250
1 120 AS*=”INC (HL)" : GOTO 1250
1130 AS$="l)EC (HL)" : GOTO 1250
1 140 AS$="LD (HL)," : GOSUB 4160 : GOTO 1250
1 150 AS$="SCF “ s GOTO 1250
1 160 ON (MB+1) GOTO 1170.1180,1190.1200,1210.1220,12

30,1240
1 1 70 AS$="JR C," : GOSUB 4280 : GOTO 1250
1 180 AS4>=’'ADD HL , SF" : GOTO 1250
1 190 AS$="LD A, < " : GOSUB 4210 : AS-t=AS$ +") " : GOT

0 1250
1200 AS$="DEC SF" : GOTO 1250
1210 AS$="INC A" : GOTO 1250
1 220 ASt="DEC A" : GOTO 1250
1230 AS$="LD A," : GOSUB 4160 : GOTO 1250
1240 AS$="CCF GOTO 1250
1250 FRINT #PF ,OS$;TAB(19);AS$
1260 IF FFO0 J HEN PRINT #PF : FF=0 : GOSUB 4620
1270 GOSUB 4620
1 280 IF C>=E THEN INPUT F : GOTO 130
1290 GOTO 450
1 300 IF NAO 1 18 THEN 1320
1310 AS$="HALT ” : GOTO 1360
1 320 AS$="LD h

1330 MA= MD\8 : MB =MD MOD 8
1340 ME=MA
1350 GOSUB 4400 : ASt=AS$+"," : ME=MB : GOSUB 4400 :

GOTO 1360
1360 GOTO 1250
1370 MA=MD\8 : MB=MD MOD 8

135

1380

1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1 490

1500

1510
1520
1530
1540
1550
1560
1570
1580
1590

1 600
1610
1620
1630
1 640
1650
1 660
1670

1680

1690
1 700
1710
1 720

1 730
1740
1 750
1 760
1 7 70

1 780
1790
1800
1810

1820
1830

ON (MA+1) GOTO 1390,1400,1410,1420.1430,1440,14
50.1460
AS$-="ADD A," : GOTO 1470
AS*="ADC " : GOTO 1470
AS$="SUB " s GOTO 1470
AS»="SBC ’• : GOTO 1470
AS*="AND " : GOTO 1470
AS$="XOR “ : GOTO 1470
AS$-="OR " s GOTO 1470
AS$="CP “ : GOTO 1470
11E=MB ; GOSUB 4400 : GOTO 1250
MA=MD\8 : MB=HD MOD 8
ON <MA+1) GOTO 1500,1590,1680,1770,1860,1950,20
40,2130
ON (MB+1) GOTO 1510,1520,1530,1540,1550,1560,15
70,1580
AS«="RET
AS*="POP
AS*="JP
AS$="JP
AS$="CALL
AS$="PUSH
AS»=“ADD
AS*="RESET

NZ,
BC"
A,"

11

<1

: GOTO 2220
: GO 10 2220

: GOSUB 4210 : GOTO 2220
GOSUB 4210 : FF=1 s GOTO 2220

: GOSUB 4210 s GOTO 2220
: GOTO 2220
: GOSUB 4160 s GOTO 2220
FF=1 s GOTO 2220

ON <MB+1>
60,1670
AS*="RET
AS$="RET
AS»="JP
GOTO 2230
AS$="CALL
AS$="CALL
AS«="ADC

GOTO 1600,1610,1620,1630,1640,1650,16

Z" : GOIO 2220
" : FF=1 : GOTO 2220
Z," : GOSUB 4210 : GOTO 2220

Z," : GOSUB 4210 : GOTO 2220
" : GOSUB 4210 : GOTO 2220
" : GOSUB 4160 : GOTO 2220

AS*="LOW JUMP " : FF=1 : GOSUB 42i0 : GOTO 2220

ON UTB+1) GOTO 1690,1700,1710,1720,1730,1740,17
50,1760
AS$="RET NC" : GOTO 2220
AS$="POP DE" s GOTO 2220
AS$="JP NC, " : GOSUB 4210 : GOTO 2220
AS$=“ÛUT < " : GOSUB 4160 s AS$=ASS-+“ , A"

2220
GO 10

AS»="CALI_ NC," s GOSUB 4210 : GüIü 2220
AS$="PUSH DE" : GOTO 2220
AS$=“SUB " : GOSUB 4160 : GOTO 2220
AS*="SIDE CALL " : GOSUB4210 : GOTO 2220
ON U-IB+11 GOTO 1780,1790,1800,1810,1820,1830,18
40,1850
AS«="RET C" : GOTO 2220
AS$="EXX " : GOIO 2220
AS$="JP
AS*=“ IN
O 2220

C," : GOSUB 4210 : GUTO 2220
A,(" : GOSUB 4160 : AS$=AS$+“) GO 1

AS*="CALL C," : GOSUB 4210
AX*="IX" : GOTO 2420

GOTO 2220

136

1840 AS$="SBC " : GOSUB 4160 : GOTO 2220
1830 AS$="FAR CALL " : GOSUB 4210 : GOTO 2220
1860 ON (MB+1) GOTO 1870,1880,1890,1900,1910,1920,19

30,1940
1870 AS$="RET FO" : GOTO 2220
1880 AS$="FOP HL" s GOTO 2220
1 890 AS*="JF PO, " : GOSUB 4210 : GOTO 2220
1900 AS$=“EX (SF) /HL" s 8010 2220
1910 AS$="CALL FO," : GOSUB 4210 s GOTO 2220
1920 AS$="FUSH HL" : GOTO 2220
1930 AS$="AND " : GOSUB 4160 : GOTO 2220
1940 AS4>="RAM LAM ” : GOTO 2220
1950 ÜN (MB+1)

20,2030
GOTO 1960,1970,1980,1990,2000,2010,20

1960 AS»="RET PE" : GOIO 2220
1970 AS$="JP (HL) " : FF = 1 s GOTO 2220
1980 AS4>="JF PE" : GOIO 2220
1990 AS$="EX DE,HL" : GO10 2220
2000 AS$="CALL FE, " : GOSUB 4210 : GOTO 2220
2010 GOTO 3260
2020 AS*=“XOR " s GOSUB 4160 s GOTO 2220
2030 AS$="FIRM

0
ON (MB+1)

JUMP " : FF=1 : GOSUB 4210 : GOTO 222

2040 GO TO 2050,2060,2070,2080,2090,2100,21
10,2120

2050 AS*="RET F" : GOTO 2220
2060 ASi="FOP AF" : GOTO 2220
2070 AS$="JF P," s GOSUB 4210 : GOTO 2220
2080 ASi="DI " : GOTO 2220
2090 AS$="CALL P," : GOSUB 4210 s GOTO 2220
2100 AS$=‘‘PUSH AF “ s GOTO 2220
2110 AS$="OR " s GOSUB 4160 : GOTO 2220
2120 AS$="USER RESTART “ : FF=1 s GOTO 2220
2130 ON (MB+1)

00,2210
GOTO1 2140.2150,2160.2170,2180,2190,22

2140 AS$="RET M" : GOTO 2220
2150 AS$="LD SP,HL" : GOTO 2220
2160 AS$=“JP M," : GOSUB 4210 : GOTO 2220
2170 AS$="EI " : GOTO 2220
2180 AS«="CALL M," : GOSUB 4210 : GOTO 2220
2190 AX$="IY" : GOTO 2420
2200 AS$="CF *! s GOSUB 41 é>0 : GOTO 2220
2210 AS$="INTERRUPI " s GOTO 2220
2220 GOTO 1250
2230 GOSUB 4490 : RE=B s OS*=OS$+HEX*(B.2)+"
2240 MA=RE\64 : MD=RE MOD 64
2250 ON (MA+1) GOTO 2260.2360,2380,2400
2260 MC=MD\8 : MB=MD MOD 8
22/0 ON (MC+l) GOTO 2280, X 290,2300,23 10 ,2320, 2330

50.2350
2280 AS*="RLC •' : MÊ=MB : GOSUB 4400 : GOTO 2220
2290 AS$="RRC ” s ME=MB : GOSUB 4400 ■• GOTO 2220
2300 AS$="RL " ! ME=MB s GOSUB 4400 ; GOTO 2220
2310 AS*="RR " : ME=MB • GOSUB 4400 : GOTO 2220
2320 AS*="SLA " : ME=MB : GOSUB 4400 : GOTO 2220

137

ME=MB GOSUB 4400 GOTO 22202330 AS$="SRA "
2340 GOTO 4380
2350 AS$="SRL " : ME=MB : GOSUB 4400 : GOTO 2220
2360 MC=MD\8 : MB=MD MOD 8 : ME=MB
2370 AS$="BIT “+STRS(MC)+"," : GOSUB 4400 : GOTO 222

0
2380 MC=MD\8 : MB=MD MOD 8 : ME=MB
2390 AS$="RES "+STR*(MC)+ "," : GOSUB 4400 : GOTO 222

0
2400 MC=MD\8 : MB=MD MOD 8 s ME=MB
2410 AS$="SET "+STR$(MC)+”," : GOSUB 4400 : GOTO 222

0
2420 GOSUB 4490 : RE=B : OS$=OS$+HEX$(RE,2)+" "
2430 MA= RE\64 s MD=RE MOD 64
2440 ON (MA+1) GOTO 2450,2700,2880,3060
2450 MC=MD\8 s MB=MD MOD 8
2460 ON (MC+1) GOTO 2470,2480,2500,2510,2530,2580,26

30,2680
2470 GOTO 4380
2480 IF MBO1 THEN 4380
2490 AS*="ADD "+AX$+",BC" : GOTO 2220
2500 GOTO 4380
2510 IF MBO1 THEN 4380
2520 AS$="ADD "+AXS+",DE" : GOTO 2220
2530 IF MB>3 THEN 4380
2540 ON (MB+1) GOTO 4380,2550.2560,2570
2550 AS$="LD "+AX$+", " : GOSUB 4210 : GOTO 2220
2560 AS$="LD (" : GOSUB 4210 : AS$=AS$+"),"+AX$:

GOIO 2220
2570 AS*="INC "+AX$: GOTO 2220
2580 IF MB=0 OR MB>3 THEN 4380
2590 ON MB GOTO 2600,2610,2620
2600 AS$="ADD "+AX$+","+AX$: GOTO 2220
2610 AS$="LD ”+AX$+" , (" : GOSUB 4210 : AS$=AS$+")"

: GOIO 2220
2620 AS*="DEC "+AX$ s GOTO 2220
2630 IF MB<4 OR MB=7 THEN 4380
2640 ON (MB—3) GOTO 2650,2660,2670
2650 AS$=“INC “ : GOSUB 4390 s GOTO 2220
2660 AS$="DEC 11 : GOSUB 4390 : GOTO 2220
2670 AS$="LD “ : GOSUB 4390 : AS$=AS$+"," : GOSUB

4160 : GOTO 2:220
2680 IF MBO1 THEN 4380
2690 AS$="ADD ,,+AX» + " ,SP" : GOTO 2220
2700 MC=MD\8 : MB=IND MOD 8
2710 ON (MC+1) GOTO 2720,2740,2760,2780,2800,2820,2i

40,2860
2720 IF MBO6 THEN 4380
2 730 AS$="LD B," : GOSUB 4390 : GOTO 2220
2740 IF MBO6 THEN 4380
2750 AS$="LD C," : GOSUB 4390 s GOTO 2220
2760 IF MBO6 THEN 4380
2770 AS$="LD D," : GOSUB 4390 : GOTO 2220
2 780 IF MBO6 THEN 4380
2790 AS$="LD E," : GOSUB 4390 : GOTO 2220

138

HB=6 I HEN 4380

2800 IF HBO6 THEN 4380
2810 AS4="LD H," : GOSUB 4390 : GOTO 2220
2820 IF MBO6 THEN 4380
2830 AS4="LD L," : GOSUB 4390 : GOTO 2220
2840 IF MB=6 THEN 4380
2850 AS4="LD " : GOSUB 4390 : AS4=AS4+“," : ME=MB

: GOSUB 4400 : GOTO 2220
2860 IF MB06 THEN 4380
2870 AS4="LD A," : GOSUB 4390 : GOTO 2220 2840 IF

2880
2890

MC=MD\8 :
ON (MC+1)
20.3040

MB=MD MOD 8
80 TO 2900,2920,2940,2960,2980,3000,30

3060
3070

2900 IF MBO6 IHEN 4380
2910 AS4="ADD A," s GOSUB 4390 : GOTO 2220
2920 IF MBO6 IHEN 4380
2930 AS4="ADC A," : GOSUB 4390 : GOTO 2220
2940 IF MBO6 THEN 4380
2950 AS4="SUB A," s GOSUB 4390 j GOTO 2220
2960 IF MBO6 THEN 4380
2970 AS4="SBC A," : GOSUB 4390 : GOTO 2220
2'980 IF MBO6 THEN 4380
2990 AS4="AND A," s GOSUB 4390 ; GOTO 2220
3000 IF MBO6 THEN 4380
30 10 AS$="XOR A," : GOSUB 4390 : GO TO 2220
3020 IF MBO6 THEN 4380
3030 AS4="0R A," 8 GOSUB 4390 : GOTO 2220
3040 IF MBO6 THEN 4380
3050 AS$="CP A," s GOSUB 4390 : GOTO 2220

MB=MD MOD 8
GOTO 4380,3080,4380,4380,4040,4080,43

3080
3090
3100
3110
3120
3130
3140

MC=MD\8 :
ON (MC+1)
80,4120
IF MBO3
GOSUB 4490
GOSUB 4490
IF (RH-6) I
MC=RH\64 s
ON (MC+1) I
ON (MB+1) I
80,3210

THEN 4380
I : NC=B :
l : RH=B :
MOD 801

MB=RH X i
GOTO 3140
GOTO 3150,3160,3170,3180.3190.3200.43

OS$=OS$+HEX$(B,2)+" "
OS$=OS$+HEX$(B,2)+" "

0 THEN 4380
8
l,3220,3230,3240

(

3150 AS$="RLC " : GOSUB 3250 : GOTO 1250
3160 AS$="RRC • GOSUB 3250 : GOTO 1250
3170 AS$="RL ** ■■ GOSUB 3250 : GOTO 1250
3180 AS$="RR ” : GOSUB 3250 2 GOTO 1250
3190 AS$="SLA “ : GOSUB 3250 : GOTO 1250
3200 AS$="SRA “ : GOSUB 3250 • GOTO 1250
3210 AS$="SRL •• > GOSUB 3250 5 GOTO 1250
3220 AS$="BIT “ : GOSUB 3255 : GOTO 1250
3230 AS$="RES ” : GOSUB 3255 s GOTO 1 250
3240 AS$="SET ■i . GOSUB 3255 : GOTO 1250
3250
3255

" : RETURN
("+AX4+"+"+HEX$<

3260
3270

AS$=AS*+"
AS$=AS$+HEX$((RH AND «<38)78)+",
NC)+")” : RETURN
GOSUB 4490 : RE=B : OS$=OS$+HEX$(B.2)+" "
MA=RE\64 ; MB=RE MOD 64

139

3280 □N (MA+1) GOTO 4380,3290,3810,4380
3290 MD=MB\8 : MB=MB MOD 8
3300 □N (MD+1)

30.3760
GOTO 3310,3400,3470,3540,3610,3670,37

3310 ON (MB+1)
90,3390

GOTO 3320,3330,3340,3350,3360,3380,33

3320 AS$="IN 8,(0" : GOTO 1250
3330 AS$="OUT (C),B" : GOTO 1250
3340 AS$="SBC HL,BC" s GOTO 1250
3350 AS$="LD

TO 1250
C : GOSUB 4210 : AS$=AS$+"),BC" s GO

3360 AS$="NEG " : GOTO 1250
3370 AS$="RET N" î GOTO 1250
3380 AS$="IM0 " : GOTO 1250
3390 AS$="LD I,A" : GOTO 1250
3400 ON (MB+1)

80.3460
GOTO 3410,3420,3430,3440,4380,3450,43

3410 AS$=”IN C,(C)" : GOTO 1250
3420 AS$="OUT (C),C" : GOTO 1250
3430 AS$="ADC HL,BC" : GOTO 1250
3440 AS$="LD

ÎO 1250
BC,(" : GOSUB 4210 : AS$=AS$+")" : GO

3450 AS$="RET I" : GOTO 1250
3460 AS$="LD R,A" : GOTO 1250
3470 ON (MB+1)

20,3530
GOTO 3480,3490,3500,3510,4380,4380,35

3480 AS$=“IN D,(C)" s GOTO 1250
3490 AS$="OU1 (C),D" : GOTO 1250
3500 AS$="SBC HL,DE" : GOTO 1250
3510 AS$="L.D

TO 1250
(" s GOSUB 4210 : AS$=AS$+“),DE" : GO

3520 AS$="IM1 " : GOTO 1250
3530 AS$="LD A.l" : GOTO 1250
3540 ON (MB+1)

90,3600
GOTO 3550,3560,3570,3580,4380,4380,35

3550 AS$="IN E,(C)" s GOTO 1250
3560 ASi="OUT (C),E" : GOTO 1250
3570 AS$="ADC HL,DE" : GOTO 1250
3580 AS*="LD

TO 1250
DE,(" : GOSUB 4210 s AS$=AS$+")" s GO

3590 AS$="IM2 " : GOTO 1250
3600 AS$="LD A,R" : GOTO 1250
3610 ON (MB+1)

80,3660
GOTO 3620,3630,3640,3650,4380,4380,43

3620 AS$="IN H,(C)" s GOTO 1250
3630 AS$="OUT (C),H“ : GOTO 1250
3640 AS$="SBC HL,HL" : GOTO 1250
3650 AS$="LD

TO 1250
(" : GOSUB 4210 : AS$=AS$+"),HL" : GO

3660 AS$="RRD " : GOTO 1250
3670 ON (MB+1)

80,3720
GOTO 3680,3690,3700,3710,4380.4380,43

3680 AS$="IN L,(C)" : GOTO 1250
3690 AS$="OUT (C),L" s GOTO 1250
3700 AS$="ADC HL,HL" : GOTO 1250

140

3710 AS$="LD
FO 1250

HL,(" : GOSUB 4210 s AS$=AS$+")" : GO

3720 AS$="RLD " : GOTO 1250
3730 ON (MB+1)

80,4380
GOTO 4380,4380,3740,3750,4380,4380,43

3740 AS$="SBC HL,SP" s GOTO 1250
3750 AS$="LD

FO 1250
(" : GOSUB 4210 : AS*=AS$+"),SP" : GO

3760 ON (MB+1)
80,4380

GOTO 3770,3780,3790,3800,4380,4380,43

37 70 AS*="IN A,(C>" : GOTO 1250
3 780 ASt=”OUT <C),A" : GOTO 1250
3790 AS$="ADC HL,SP" : GOTO 1250
3800 AS$="LD

FO 1250
SP,(" : GOSUB 4210 : AS*=AS$+")" : GO

3810 MD= MBX8 : MB=MB MOD 8
3820 IF MD-..4 OR MB>3 IHEN 4380
3830 ON (MD-3) GOTO 3840,3890,3940,3990
3840 ON (MB+1) GOTO 3850,3860,3870,3880
3850 AS$="LD1 " : GOTO 1250
3860 AS$="CPI " s GOTO 1250
3870 AS$="INI " : GOTO 1250
3880 AS$="OUri " : GOTO 1250
3890 ON (MB+1) GOTO 3900,3910,3920,3930
3900 AS$="LDD " : GOTO 1250
3910 AS$="CPD " s GOTO 1250
3920 AS«="IND " s GOTO 1250
3930 AS*="OUTD " : GOTO 1250
3940 ON (MB+1) GOTO 3950,3960,3970,3980
3950 AS$="LDIR " : GOTO 1250
3960 AS$="CF1R " : GOTO 1250
3970 AS*="INIR " : GOTO 1250
3980 AS$="OTIR " s GOTO 1250
3990 ON (MB+1) GOTO 4000,4010,4020,4030
4000 AS$="LDDR " : GOTO 1250
4010 AS$="CPDR " : GOTO 1250
4020 AS$="INDR " : GOTO 1250
4030 AS$="OTDR " : GOTO 1250
4040 ON (MB+1)

80,4380
GOTO 4380,4050,4380,4060,4380,4070,43

4050 AS$="POF "+AX$ s GOTO 1250
4060 AS$="EX (SP),"+AX> : GOTO 1250
4070 AS$="FUSH "+AX$ s GOTO 1250
4080 IF MB>1 THEN 4 380
4090 ON (MB+1) GOTO 4100,4110
4100 AS$="ADC A," : GOSUB 4390 : GOTO 1250
4110 AS$=“JP <"+AX$+")" s GOTO 1250
4120 IF MBO1 THEN 4380
4130 AS$="LD SP,"+AX$: GOTO 1250
4140 IF MBO1 THEN 4380
4150 AS$="LD SP,"+AX$ s GOTO 1250
4160
4170

AS$=AS$+"
NC=B

#" s GOSUB 4490

4180 AS$=AS$+HE X $(NC.2)
4190 OS$=OS$+HEX$(NC,2)+" "

141

4200
4210
4220
4230
4240
4250
4260
4270
4280
4290
4300
4310
4320
4330
4340
4350
4360
4370
4380
4390

4400

4410
4420
4430
4440
4450
4460
44 70
4480
4490
4500
4510
4520
4530
4540
4550
4560
4570
4580
4590
4600
4610
4620
4630
4640
4650
4660
4670
4680
4690

RETURN
GOSUB 4490
NC=B
GOSUB 4490
NE=B
AS$=AS$+HEX$(NE,2)+HEX$(NC,2)
OS$=OS*+HEX$(NC.2)+" “+HEX$(NE,2)+" "
RETURN
GOSUB 4490
ND=B s OS$=OS$+HEX$(ND,2)+" "
IF ND7127 THEN 4340
ND=ND+C+1
AS$=AS$+HEX$(ND,4)
RETURN
ND=ND+C-255
GOTO 4320
RETURN
RETURN
AS$=“Invalid Code" s GOTO 2220
ASt=ASf *-" ("+AXT+" + " : GOSUB 4160 s AS$=AS* + ") "
: RETURN
ON (ME+1) GOTO 4410,4420,4430,4440,4450,4460.44
70,4480
AS$=AS$+"B" : RETURN
AS$=AS$+"C" : RETURN
AS$=AS$+"D" : RETURN
AS$=AS$+"E" s RETURN
AS$=AS$+"H" : REIURN
AS$=AS$+"L" : RETURN
AS$=AS$+"(HL)" s RETURN
AS$=AS$+"A" : RETURN
C=C+1
Q=INT(C/256)
POKE &A614,Q
POKE &A613,(C—256*Q)
CALL &A600
B= PEEK(«<A615)
RETURN
FOR X=«<A600 TO &A612
READ Y : POKE X,Y s NEXT
RETURN
DATA &2A ,«<13, «<A6 , «<CD, ?<00, &B9, «<F5
DAT A &CD , «<06, &B9 , &7E, &32 ,«<15, «<A6
DA TA &F 1 , «<CD ,&0C, «<B9,&C9
IF PFO8 THEN RETURN
FC=FC+1
IF PC<60 THEN RETURN
FOR Y=1 TO 6
PRINT #PF
NEXT
PC=PC-60
RETURN

142

The second program allows you to call particular routines with
k.nown register contents. The register contents on exit are
reported, and any floating point numbers pointed to be DE and HL
are evaluated. The program should be used with care, since some
calls can upset the applecart somewhat.

100
1 1 0
1 20
130
1 40
150
1 60
1 70
180
190
200
210
220
230
240
250
260
270
280
290
300
3 1 0
320
330
340
350
360
370
380
390
400
4 10
420
430
440
450
460
490
500
510
520
530
540
550
560
570
600
610

GOSUB 500
Cl S
INPUT "Set BC " , BC
BC=BC-65536*<BC<0)
B=1NT(8C/256) : C=BC-B*256
POKE «<4001,C : POKE «<4002, B
INPlJl "S«i»t l>l. ".DE
DE-DE-65536»(DE < 0)
D=1NI(DE/256) : E=DE-D*256
POKE ?x4004,E : POKE «<4005, D
INPlJl "Set HL " , HL
HL =HL - 65536 » (HL ■■■ 0)
H=1NI (HL./256) : L=HL-H*256
POKE &4007.L : POKE &4008.H
INPlJl "Set A ".A
POKE &400A.A
1NPU1 "Set CALL “.NM
NM=NM-65536*(NM<0)
N=1NI (Nt-I/256) : H=NM-N*256
POKE «<400C,M : POKE «<400D,N
CALL «<4000
BC=PEEK («<4020) +256«PEEK (M021)
DE=PEEK(&4022J+256*PEEK(&4023)
HL.=PEEK 1&4024)+256»PEEK («<4025)
A=PEEK(&4026)
PB INI "E<C = " sHEX$ (BC.4)
PRINT "DE="sHEX$(DE.4>
PRINT "HL = ": HEX$(HL.4)
PRINT “A= ";HEX$(A,2)
R-DE
Ni=“DE"
GOSUB 600
R=HL
NS="HL"
GOSUB 600
PRINT
INPUT V
GOTO 110
FOR P-«<4000 TO «<401F
READ Q : POKE P.Q
NEX T
RETURN
DATA 1,0,0.«<11,0,0, «<21,0
DATA 0,8<3E , 0, «<CD , 0,0 , «<ED , î<43
DA1 A 2<20 , &40, «<ED, S<53, &22, &40, «<22, «<24
DATA 640 , «<E5 , S<21 , &26 , «<40 , S<77 , «<E 1 ,«<C9
IF ABS(R)<16384 THEN RETURN
PRINI FP(":Nls")="s

620
630
640
650
660
670
680
690
700

710
720
730

FOR X=4 TO 0 S TEP -1
PRINT HEX»(PEEk(R+X).2)s
NEXT
PR INI " =* “5
Z=0
FOR X=0 TO 3
Z =(Z+FEEK(R+X))7256
NE X I
IF Z<0.5 IHEN Z=Z+0.5 : FR 1NT" + " ; ELSE PRINT

Z = Z*2 (PEEK(R+4)-&80)
FRINI Z
RETURN

144

Appendix 2
INDEX BY LOCATION

This is an index of the Labels used to identify the locations,
subroutines and vectors on the Amstrad CPC 464. The references
are to memory locations and not page numbers. The numbers are
given in Hexadécimal.

The Index below is set out in numeric order.

Location Label

B900.BA5E U ROM ENABLE
B903.BA68 U ROM DISABLE
B906.BA4A L ROM ENABLE
B909,BA54 L ROM DISABLE
B90C,BA72 ROM RESTORE
B90F.BA7E ROM SELECT
B912,BAA2 CURR SELECTION
B915,BAA2 PROBE ROM
B918.BA8C ROM DESELECT
B91B.BAA6 LDIR
B91E,BAAC LDDR
B921 KL POLL SYNCHRONOUS
000B,B97C LOW PCHL
0008,B982 LOW JUMP
001B.B9B1 FAR PCHL
0023,B9B9 FAR ICALL
0018,B9BF FAR CALL
0013,BA10 SIDE PCHL
0010,BA16 S IDE CALL
0028,BA2E FIRM JUMP
0020,BACB RAM LAM
BB00.19E0 KM INITIALISE
BB03.1A1E KM RESET
BB09,1A42 KM READ CHAR
BB06,1A3C KM WAIT CHAR
BB0C,1A77 KM CHAR RETURN
BB0F,1ABD KM SET EXPAND
BB12,1B2E KM GET EXPAND
BB15.1A7B KM EXP BUFFER
BB18,1B56 KM WAIT KEY
BB1B,1B5C KM REaD KEY
BB1E,1CBD KM TEST KEY

145

Location

BB21,1BB3
BB24,1C5C
BB27,1D52
BB2A,1D3E
BB2D,1D57
BB30,1D43
BB33.1D5C
BB36,1D48
BB39,1CAB
BB3C,1CA6
BB3F,1C6D
BB42,1C69
BB45,1C71
BB48,1C82
BB4B,1C90
BB4E,1078
BB51.1088
BB54,1415
BB57,144B
BB5A,1400
BB5D,1334
BB60,13AB
BB63,137A
BB66,120C
BB69,1256
BB6C,1540
BB6F,115E
BB72.1174
BB75,1174
BB78,1180
BB7B,1289
BB7E,129A
BB81,1279
BB84,1281
BB87,11CE
BB8A,1268
BB8D,1268
BB90,12A9
BB93,12BD
BB96,12AE
BB99,12C3
BB9C,12C9
BB9F,137A
BBA2,1387
BBA5,12D3
BBA8,12F1
BBAB,12FD
BBAE,132A
BBB1,14CB
BBB4,10E8

Label

KM GET STATE
KM GET JOYSTICK
KM SET TRANSLATE
KM GET TRANSLATE
KM SET SHIFT
KM GET SHIFT
KM SET CONTROL
KM GET CONTROL
KM SET REPEAT
KM GET REPEAT
KM SET DELAY
KM GET DELAY
KM ARM BREAK
KM DISARM BREAK
KM BREAK EVENT
TXT INITIALISE
TXT RESET
TXT VDU ENABLE
TXT VDU DISABLE
TXT OUTPUT
TXT WR CHAR
TXT READ CHAR
TXT SET GRAPHIC
TXT WIN ENABLE
TXT GET WINDOW
TXT CLEAR WINDOW
TXT SET COLUMN
TXT SET ROW
TXT SET CURSOR
TXT GET CURSOR
TXT CUR ENABLE
TXT CUR DISABLE
TXT CUR ON
TXT CUR OFF
TXT VALIDATE
TXT PLACE CURSOR
TXT REMOVE CURSOR
TXT SET PEN
TXT GET PEN
TXT SET PAPER
TXT GET PAPER
TXT INVERSE
TXT SET BAC K
TXT GET BACK
TXT GET MATRIX
TXT SET MATRIX
TXT SET M TABLE
TXT GET M TABLE
TXT GET CONTROLS
TXT STREAM SELECT

146

Location Label

BBB7.1107 TXT SWAP STREAMS
BBBA,15B0 GRA INITIALISE
BBBD,15DF GRA RESET
BBC0,15F4 GRA MOVE ABSOLUTE
BBC3,15F1 GRA MOVE RELATIVE
BBC6,15FC GRA ASK CURSOR
BBC9,1604 GRA SET ORIGIN
BBCC,1612 GRA GET ORIGIN
BBCF,1734 GRA WIN WIDTH
BBD2,1779 GRA WINDOW HEIGHT
BBD5,17A6 GRA GET W WIDTH
BBDB,17C5 GRA CLEAR WINDOW
BBDE,17F6 GRA SET PEN
BBE1.1804 GRA GET PEN
BBE4,17FD GRA SET PAPER
BBEA,1813 GRA PLOT ABSOLUTE
BBED,1810 GRA PLOT RELATIVE
BBF0,1827 GRA TEST ABSOLUTE
BBF3,1824 GRA TEST RELATIVE
BBF6,1839 GRA LINE ABSOLUTE
BBF9,1836 GRA LINE RELATIVE
BBFC,1945 GRA WR CHAR
BBFF.0AA0 SCR INITIALISE
BC02,0AB1 SCR RESET
BC05,0B3C SCR SET OFFSET
BC08.0B45 SCR SET BASE
BC0B,0B50 SCR GET LOCATION
BC0E,0ACA SCR SET MODE
BC11,0AEC SCR GET MODE
BC14,0AF2 SCR CLEAR
BC17,0B57 SCR CHAR LIMITS
BC1A.0B64 SCR CHAR POSITION
BC1D.0B95 SCR DOT POSITION
BC20,0BF9 SCR NEXT BYTE
BC23.0C05 SCR PREV BYTE
BC26.0C13 SCR NEXT LINE
BC29.0C2D SCR PREV LINE
BC2C,0C86 SCR INK ENCODE
BC2F,0CA0 SCR INK DECODE
BC32,0CEC SCR SET INK
BC35.0D14 SCR GET INK
BC38,0CF1 SCR SET BORDER
BC3B.0D19 SCR GET BORDER
BC3E,0CE4 SCR SET FLASHING
BC41,0CE8 SCR GET FLASHING
BC44,0DB3 SCR FILL BOX
BC47.0DB7 SCR FLOOD BOX
BC4A,0DDF SCR CHAR INVERT
BC4D,0DFA SCR HW ROLL
BC50,0E3E SCR SW ROLL

147

Location Label
BC53.0EF3 SCR UNPACK
BC56.0F49 SCR REPACK
BC59.0C49 SCR ACCESS
BC5C.0C6B SCR PIXELS
BC5F.0FC4 SCR HORIZONTAL
BC62.102F SCR VERTICAL
BC65.2370 CAS INITIALISE
BC68.237F CAS SET SPEED
BC6B.238E CAS NC’ISY
BC6E.2A4B CAS START MOTOR
BC71.2A4F CAS STOP MOTOR
BC74.2A51 CAS RESTORE MOTOR
BC77.2392 CAS IN OPEN
BC7A,23FC CAS IN CLOSE
BC7D.2401 CAS IN ABANDON
BC80.2435 CAS IN CHAR
BC83,24AB CAS IN DIRECT
BC86,249a CAS RETURN
BC89.2496 CAS TEST EOF
BC8C.23AB CAS OUT OPEN
BC8F,2415 CAS OUT CLOSE
BC92,242E CAS OUT ABANDON
BC95,245B CAS OUT CHAR
BC98.24EA CAS OUT DIRECT
BC9B.2528 CAS CATALOG
BC9E.283F CAS WRITE
BCA1.2836 CAS READ
BCA4,2851 CAS CHECK
BCA7,1E68 SOUND RESET
BCAA,1F9F SOUND QUEUE
BCAD.206C SOUND CHECK
BCB0.2089 SOUND ARM EVENT
BCB3.204A SOUND RELEASE
BCB6,1ECB SOUND HOLD
BCB9,1EE6 SOUND CONTINUE
BCBC.2338 SOUND AMPL ENVELOPE
BCBF.233D SOUND TONE ENVELOPE
BCC2,2349 SOUND A ADDRESS
BCC5.234E SOUND T ADDRESS
BCC8.005C KL CHOKE OFF
BCCB.0329 KL ROM WALK
BCCE,0332 KL INIT BACK
BCD1,02A1 KL LOG EXT
BCD4.02B2 KL FIND COMMAND
BCD7.0163 KL NEW FRAME FLY
BCDA.016A KL ADD FRAME FLY
BCDD,0170 KL DEL FRAME FLY
BCE0.0176 KL NEW FAST TICKER
BCE3.017D KL ADD FAST TICKER
BCE6.0183 KL DEL FAST TICKER

148

Location Label

BCE9.01B3 KL ADD TICKER
BCEC.015C LK DEL TICKER
BCEF,01D2 KL INIT EVENT
BCF2.01E2 KL EVENT
BCF5,0228 KL SYNC RESET
BCF8,0285 KL DEL SYNCHRONOUS
BCFB,0256 KL NEXT SYNC
BCFE.021A KL DO SYNC
BD01,0277 KL DONE SYNC
BD04.0295 KL EVENT DISABLE
BD07.029B KL EVENT ENABLE
BD0A.028E KL DISARM EVENT
BD0D.0099 KL TIME PLEASE
BD10.00A3 KL TIME SET
BD13,05DC MC BOOT PROGRAM
BD16.060B MC START PROGRAM
BD19.07BA MC WAIT FLYBACK
BD1C.0776 MC SET MODE
BD1F,07C6 MC SCREEN OFFSET
BD22,0786 MC CLEAR INKS
BD25.0799 MC SET INKS
BD28.07E6 MC RESET PRINTER
BD2B.07F2 MC PRINT CHAR
BD2E.081B MC BUSY PRINTER
BD31.0807 MC SEND PRINTER
BD34.0826 MC SOUND REGISTER
BD37.0888 JUMP RESTORE
BDCD.1263 TXT DRAW CURSOR
BDD0.1263 TXT UNDRAW CURSOR
BDD3,134A TXT WRITE CHAR
BDD6,13C0 TXT UNWRITE
BDD9,140C TXT OUT ACTION
BDDC,1816 GRA PLOT
BDDF,182A GRA TEXT
BDE2,183C GRA LINE
BDE5,0C82 SCR READ
BDE8,0C68 SCR WRITE
BDEB,0AF7 SCR MODE CLEAR
BDEE,1C90 KM TEST BREAK
BDF1,07F8 MC WAIT PRINTER

149

150

Appendix 3
MEMORY MAP

ROMRAMAddress

$FFFF

$C000

$4000

$0000

Upper ROMs
(bank switched)

Lower ROM

151

Index
AND Mode ... 49
Background Programs ... 4
BASIC Support ... 121
Break Functions ... 87
CAS CATALOG ... 100
CAS CHECK ... 100
CAS IN ABANDON ... 97
CAS IN CHAR ... 97
CAS IN CLOSE ... 97
CAS IN DIRECT ... 98
CAS IN OPEN ... 96
CAS INITIALISE ... 95
Cassette Manager ...93
Cassette Messages ... 95

CAS NOISY ... 96
CAS OUT ABANDON99
CAS OUT CHAR ... 99
CAS OUT CLOSE99
CAS OUT DIRECT 99
CAS OUT OPEN ... 98
CAS READ ... 100
Cassette Recorder ... 4
CAS RESTORE MOTOR ... 96
CAS RETURN ... 98
CAS SET SPEED ... 95

CAS START MOTOR ... 96
CAS STOP MOTOR ... 96
CAS TEST EOF ... 98
Cassette Workspace ... 102
CAS WRITE ... 100
Chain Link ... 30
Clock ... 2
Colour ... 62
Command Words ... 114
Control Character Table ... 70
CRT Control1er ... 3
CURR SELECTION ... 12
Display System ... 39

EvEnt Count ... 30
Event Class ... 30
Event System ... 30
External ROMs ... 113
External Reset ... 4
FAR CALL ... 9,15
FAR ICALL ... 10,15
FAR PCHL ... 9,15
File types ... 101
FIRM JUMP ... 10,16
Flash System ... 51
Force Mode 55
Foreground Programs ... 4

GRA ASK CURSOR ... 75
GRA CLEAR WINDOW ... 74

GRA GET ORIGIN ... 75
GRA GET PAPER ... 75
GRA GET PEN ... 75
GRA GET W WIDTH ... 75

GRA INIIALISE ... 73
GRA LINE ... 77
GRA LINE ABSOLUTE ... 77
GRA LINE RELATIVE ...77
GRA MOVE ABSOLUTE ...76
GRA MOVE RELATIVE ...76
Graphies VDU ... 73
GRA PLOT ... 76
GRA PLOT ABSOLUTE ...76

GRA PLOT RELATIVE ...76
GRA RESET ... 74

GRA SET ORIGIN ... 74

GRA SET PAPER ... 75
GRA SET PEN ... 75

GRA TEST ABSOLUTE ... 77
GRA TEST RELATIVE ... 77
GRA WIN HEIGHT ... 74
GRA WIN WIDTH ... 74
GRA WR CHAR ... 78
HIMEM ... 4
I/O Map ... 2

Inks and Flashing Colours ... 49
Interrupt Handler ... 28
Jumpblock ... 5

Kernel ... 27
Kernel data area ... 38
Keyboard ... 3
Keyboard Input ... 82
Keyboard Scan ...
Key Manager ... 79
Key Manager Workspace ... 90

Key Strings ... 81,83
Key/Code Tables ... 90

KL ADD FAST TICKER ... 33
KL ADD FRAME FLY ... 32
KL ADD TICKER ... 33
KL CHOKE OFF ... 21
KL DEL FAST TICKER ... 33
KL DEL FRAME FLY ... 32
KL DEL SYNCHRONOUS ... 34
KL DEL TICKER ... 33
KL DISARM EVENT ... 34
KL DO SYNC ... 35
KL DONE SYNC ... 35
KL EVENT ... 31
KL EVENT DISABLE ... 35
KL EVENT ENABLE ... 36
KL FIND COMMAND ... 118

KL INIT BACK ... 117
KL INIT EVENT ... 31
KL LOG EXT ... 116
KL NEW FAST TICKER ... 33
KL NEW FRAME FLY ... 32
KL NEXT SYNC ... 35
KL POLL SYNCHRONOUS ... 35
KL ROM WALK ... 117
KL SYNC RESET ... 34

152

132

. 60

KL TIME PLEASE . .. 37 PROBE ROM ... 12

KL TIME SET ... 37 PSG Registers ... 106

KM ARM BREAK ... 88 RAM LAM ... 17

KM BREAK EVENT . .. 88 RAM Routnes ... 7

KM CHAR RETURN . .. 83 Repeat Action ... 87

KM DISARM BREAK ...88 Reserved Word List ... 130 -

KM EXP BUFFER .. . 84 ROM DESELECT ... 12

KM GET CONTROL . ..86 ROM RESTORE ... 12

KM GET DELAY 87 ROM SELECT ... 12

KM GET EXPAND ..,. 84 ROM Select ... 2

KM GET JOYSTICK ...85 RST Area ... 7

KM GET REPEAT .., . 87 SCR ACCESS ... 55

KM GET SHIFT 86 SCR CHAR INVERT ... 53

KM GET STATE 85 SCR CHAR LIMITS ... 47

KM GET TRANSLATE ... 86 SCR CHAR POSITION ... 47

KM INITIALISE 81 SCR CLEAR ... 45

KM READ CHAR 82 SCR DOT POSITION ... 48

KM READ KEY ... 82 Screen Memory ... 1

KM RESET ... 81 Screen Pack ... 45

KM SET CONTROL86 Screen RAM ... 39

KM SET DELAY ..,. 87 Screen Workspace ... 42

KM SET EXPAND . .. 84 Screen and Cursor Control ..

KM SET REPEAT . .. 87 Screen pack ... 45

KM SET SHIFT .. . 86 SCR FILL BOX ... 52

KM SET TRANSLATE ... 86 SCR FLOOD BOX ... 52

KM TEST BREAK . .. 88 SCR GET BORDER ... 50

KM TEST KEY ... 85 SCR GET FLASHING ... 51

KM WAIT CHAR .. . 83 SCR GET INK ... 50

KM WAIT KEY ... 82 SCR GET LOCATION ... 47

L ROM DISABLE . .. 11 SCR GET MODE ... 46

L ROM ENABLE .. . 11 SCR HORIZONTAL ... 57

LDDR ... 13 SCR HW ROLL ... 53

LDIR ... 13 SCR INITIALISE ... 45

LOW JUMP ... 9, 14 SCR INK DECODE ... 49

LOW PCHL SCR INK ENCODE ... 49
Machine Pack .. . 19 SCR MODE CLEAR ... 45
Main Reset ... 19 SCR NEXT BYTE ... 48
Mask Table ... 46 SCR NEXT LINE ... 48
Matrix Data . .. 66 SCR PIXELS ... 56
MAXAM ... 4 SCR PREV BYTE ... 48
MC BOOT PROGRAM ... 20 SCR PREV LINE ... 48
MC BUSY PRINTER ... 24 SCR READ ... 57
MC CLEAR INKS . .. 24 SCR REPACK ... 55
MC PRINT CHAR . .. 23 SCR RESET ... 45
MC RESET PRINTER ... 23 SCR SET BASE ... 47
MC SCREEN OFFSET ... 25 SCR SET BORDER ... 50
MC SEND PRINTER ... 23 SCR SET FLASHING ... 50

MC SET INKS ... 24 SCR SET INK ... 50

MC SET MODE ... 25 SCR SET MODE ... 46

MC SOUND REGISTER ... 26 SCR SET OFFSET ... 47

MC START PROGRAM ... 21 SCR SW ROLL ... 53

MC WAIT FLYBACK ... 25 SCR UNPACK ... 54

MC WAIT PRINTER ... 23 SCR VERTICAL ... 57

Memory Map ... 1 SCR WRITE ... 57

Mode Control .. . 46 SIDE CALL ... 10,16
OR Mode ... 49 SIDE PCHL ... 10,16
Outer Peripherals ... 3 SOUND A ADDRESS ... 110

Parameters ... 42 SOUND AMPL ENVELOPE ... 109

PCBC ... 8 SOUND ARM EVENT ... 108

PCDE ... 9 SOUND CHECK ... 108

PCHL ... 9,10 SOUND CONTINUE ... 108

PPI ... 3 SOUND HOLD ... 108

Printer Port .. . 3 Sound Generator ... 3

153

Sound Manager ... 105

Sound Manager Workspace ... 111
SOUND QUEUE ... 107
SOUND RELEASE ... 109
SOUND RESET ... 106
SOUND T ADDRESS ... 110
SOUND TONE ENVELOPE ... 109
Streams ... 41,65

Synchronous Events ... 34
System States .. . 4
Text Output .. . 67
Text VDU ... 59
The BASIC Interpréter ..
TXT CLEAR WINDOW ... 64
TXT CUR DISABLE ... 61
TXT CUR ENABLE . .. 61
TXT CUR ON ... 61
TXT CURSOR OFF . .. 61
TXT DRAW CURSOR . .. 62
TXT GET BACK ... 64
TXT GET CONTROLS ... 70
TXT GET CURSOR . .. 60
TXT GET M TABLE . ..
TXT GET MATRIX . . . 66
TXT GET PAPER .. . 63
TXT GET PEN ... 63
TXT GET WINDOW . .. 64
TXT INITIALISE . .. 59
TXT INVERSE ... 63

TXT OUT ACTION . .. 69
TXT OUTPUT ... 69

TXT PLACE CURSOR ... 61
TXT READ CHAR .. . 71
TXT REMOVE CURSOR ... 61
TXT RESET ... 59
TXT SET BACK ... 63

TXT SET COLUMN . .. 60
TXT SET GRAPHIC ...72
TXT SET M TABLE ...66
TXT SET MATRIX . .. 67
TXT SET PAPER . . . 62
TXT SET PEN . . . 62
TXT SET ROW .. . 60
TXT STREAM SELECT ... 65

TXT SWAP STREAMS ... 65
TXT UNDRAW CURSOR ... 62
TXT UNWRITE .. . 71
TXT VALIDATE ... 62
TXT VDU ENABLE . .. 60

TXT WIN ENABLE . . . 64
TXT WR CHAR ... 68

TXT WRITE CHAR . .. 68
U ROM DISABLE ... 11
U ROM ENABLE ... 11
USER RESTART ... 10

Using the Maths Calls ... 127
Video Gâte Array ... 1,2
Windows ... 64
XOR Mode ... 49

154

This book is the definitive guide for ail serious programmées on
the Amstrad CPC464.

Don Thomasson has examined every aspect of the Amstrad —
its peripherals, the ROM and the RAM routines. This book
contains a breakdown and explanation of ail of the following:
Memory Map
Input/Output Map
Outer Peripherals
Jumpblock Entries
RAM routines
Main Reset
Printer routines
Interrupt Handler
Event System
Screen RAM
Streams
Parameters
Mode control
Addresses
Inks
Flash System
General routines
Colour

Windows
Matrix data
Text output
Graphies VDU
Keyboard routines
Input routines
Key/code table
Break functions
Cassette messages
Cassette routines
Cassette calls
File types
Sound calls
External ROM command words
External ROM routines
BASIC routines
BASIC interpréter

Ail of the routines available in the Amstrad are detailed with
explanations and tables, as well as information on how to use
the routines.

The book also contains a guide to ail possible ROM
configurations. The appendices include two programs that will
allow you to examine the routines in the Amstrad and test
various parameters.

If you are involved in programming the Amstrad CPC464 then
you must hâve this book.

£7.95

>
3<n
S
a

o
(D
2
(D
3
o
<
0 c
Q.fl)

	AMSTRAD CPC 464 Whole Memory Guide
	Contents

	Introduction

	Chapter 1 GENERAL SYSTEM ARRANGEMENT
	The Memory Map

	The I/O Map

	Outer Peripherals

	System States

	Jumpblock Entries

	Summary

	Conventions

	Chapter 2 - THE RAM ROUTINES
	The RST Area

	The RAM Routine Jumpblock

	RST Area Extensions
	Comment

	Chapter 3 - THE MACHINE PACK
	Main Reset

	Printer Routines

	Other MC Routines

	Chapter 4 - THE KERNEL
	The Interrupt Handler

	The Event System

	Synchronous Events

	Comment

	Other Kernel Routines

	Kernel Data Area

	Chapter 5 - THE DISPLAY SYSTEM
	The Screen RAM

	Streams

	Parameters

	Workspace

	Chapter 6 - THE SCREEN PACK
	Mode Control

	Addresses

	Inks and Flashing Colours

	The Flash System

	Called by SCR CLEAR

	Event Routine

	Called by 0D3C and 0D5B

	Called by 0D4F, 0D5B and 0D6D

	General Routines

	Comment

	Chapter 7 - THE TEXT VDU
	Screen and Cursor Control

	Colour

	Windows

	Streams

	Matrix Data

	Text Output

	Other Text Routines

	Comment

	Chapter 8 - THE GRAPHICS VDU
	Setting Up

	Checking Values

	Main Functions

	Comment

	Chapter 9 - THE KEY MANAGER
	Keyboard Routines

	Input Routines

	Key Strings

	Key/Code Tables

	Repeat Action

	Break Functions

	Summary

	Key/Code Tables

	Key Manager Workspace

	Chapter 10 - THE CASSETTE MANAGER
	Messages

	The Routines

	Miscellaneous Calls

	File Types

	Comment

	Cassette Workspace

	Chapter 11 - THE SOUND MANAGER
	System Calls

	Comment

	Sound Manager Workspace

	Chapter 12 - EXTERNAL ROMS

	Command Words

	Routines

	Chapter 13 - BASIC SUPPORT

	Floating Point

	The Entry Points

	Using the Maths Calls

	Chapter 14 - THE BASIC INTERPRETER

	Reserved Words in Token Order

	Appendix 1 - SUPPORT PROGRAMS
	Appendix 2 - INDEX BY LOCATION
	Appendix 3 - MEMORY MAP
	Index

	● Numérisation | Scan : ACME – https://acpc.me ●

