
i f m s h g d
CPC 464

r * /
M r *

Amstrad
CPC 464

Machine
Language
for the
Absolute
Beginner

Joe Pritchard

MELBOURNE HOUSE
PUBLISHERS

(g 1985 Jo e P r itchard

All rights reserved. This book is copyright and no part may be copied or
stored by electromagnetic, electronic, photographic, mechanical or
any other means whatsoever except as provided by national law, AH
enquiries should be addressed to the publishers:

IN THE UNITED KINGDOM —
Melbourne House (Publishers) Ltd
Castle Yard House
Castle Yard
Richmond, TW10 6TF

IN AUSTRALIA —
Melbourne House (Australia) Pty Ltd
2nd Floor, 70 Park Street
South Melbourne, Victoria 3205

Cataloguing in Publication

ISBN 0 86161 1934

Edition 7 6 5 4 3 2 1
Printing F E D C B A 9 8 7 6 5 4 3 2 1
Year 90 89 88 87 86 85

I would like 150 acknowledge the help given by two
groups of people in the production of this book; my
publisher, for the rapid delivery of a machine and the
support given me in the production of the book, and
the staff of Amsoft for all their help with my
occasional queries.

Finally, I ’d like to dedicate this book to my
wife, Nicky, who had to put up with it’s production!

Joe Pritchard

1
1
2

2
3
3
5
8
8
1 1
12
13
13
1 3
13

15
19
20
2 1
21
24

25
25
29
30
32
32
33

35
36
36
37
39
42
42
43

47
48
49
51
51

55
55
59
62
68
70
75

81

82
83

Contents
1 - Machine Code First Principles

Uhy Bother?
Uhat is Machine Code?
The BASIC Interpreter and the

OPERATING SYSTEM
Disadvantages of Machine Code
Assembly Language Programming
The Z80 CPU. Uhat can it do?
Amstrad Hardware
The Z80 CPU
The Stack Pointer
Memory
The CRTC
The PSG
The PPI
The Gate Array

2 — Hou Computers Count
Bits and Bytes
Representation of Information
Program Representation
Data
Summing Up

3 — Machine Code meets BASIC
Homes for machine code programs
POKE and PEEK
CALL
Saving bytes on tape
RUNn i ng a file
Load i ng a file

4 - Registers at work
Register Addressing
Immediate Addressing
Register Indirect Addressing
Extended Addressing
Labels in Machine Code
Indexed Addressing
Immediate Indexed Addressing

5 - Passing Parameters to programs
Integer variables and Numbers
Variables prefixed with @
Passing Strings
String Descriptor Block

6 - 8 bit counting
The F Register
Counting with 8 bits
8 bit Arithmetic
Comparing Numbers
Logical Operations
Manipulating Bits in a Byte

7 — 16 bit transfers
Transfers between register pairs

and memory
Manipulating the Stack

89
89
90

93
93
98

1 0 1
105
106

1 1 1
1 1 1
1 13

1 17
1 17
1 18
121
124
126

131
131
133

135
135
140

145

149

151
151
151

153

- 16 bit- arithmetic and counting
Increment and Decrement
Addition and Subtraction

- Loops, Jumps and Block Operations
Jumps
FOR ... NEXT Loops in machine code
CALL and RETURN
Interrupts
Block Operations

- Ins and Outs and Odds and Ends
Input and Output Instructions
Odds and Ends

- Amstrad Sound
General Notes on the AY-3—8912
PSG Registers
Amplitude Control
No i se
Enve1 opes

- The Amstrad Keyboard
Uait for a key
D o n ’t Uait For a Key

- The Amstrad Display
Printing Characters to the Screen
Simple Nachine Code Graphics

- Instructions and Op-codes

- Flag Operation Summary

- Numbers on the Amstrad
BIN$(ualue,no. of digits)
HEX$Cvalue)

Timing Programs

Chapter 1
Machine Code First Principles

This book is designed to introduce the AMSTRAD BASIC
programmer to the ’’native language” of his computer.
This language is called Machine Language, or Machine
Code. You may have heard of it before, or it may be a
totally neu subject to you. D o n ’t worry, the first
chapter of this book will slowly and painlessly
introduce you to Machine Language ideas and concepts,
step by s t e p .

The first thing to do is to look at how ue usually
program our computer. Ue type in lines of BASIC, and
this instructs the computer to do some task or other.
However*, w e ’re not actually communicating with the
’’brain” of the computer when we do this. This brain,
called the Central Processor Unit, or CPU, is never
spoken to directly while we program the computer in
BASIC. Ue always go through a "middle man” , called
the BASIC interpreter, when we program our computer in
BASIC. However, more about this later.

The CPU used in the Amstrad is called the 280, and
is probably the most popular CPU around in home
computers at the moment. There are several other
electronic "chips” in the Amstrad, but the CPU is at
the heart of all the operations performed by the
computer. Indeed, when we talk about programming the
Amstrad in Machine Language, w e ’re actually talking
about programming the Z80 CPU in 280 Machine Language.

Why Bother?
Amstrad BASIC, as y o u ’re probably found out for
yourself, is very powerful. Uhy should we bother
learning a new language? Uell, there are three main
advantages that using Machine Language offers us over
using BASIC. These are:

(a) Faster Programs
(b) Programs in Machine Language are more economic

in terms of memory.
(c) Certain tasks can ONLY be done using machine

1anguage.

In addition, machine language programming enables
us to free ourselves from the restraints of the

1

Amstrad BASIC Interpreter, and it enables us to alter
the uay in which the BASIC Interpreter uorks. I think
that yo u ’d agree, therefore, that a knowledge of
machine language programming could be rather useful!

Cell, having answered the question of Uhy?, let’s
look at Uhat machine language is.

What is Machine Code?
The 280 CPU, if y o u ’re never seen one, is a large
black chip with 40 "legs” on it. These legs, or pins,
are the means by uhich CPU communicates with the rest
of the computer. Of these, there are 8 pins of
particular importance which control how the CPU
behaves. The CPU communicates with the rest of the
computer system by means of electrical signals, and
the CPU was designed so as to behave in different ways
depending upon the combinations of electrical signals
on these 8 pins. Remembering that w e ’re talking about
electrical signals, let’s represent the presence of a
signal by ’1’ and the absence of a signal on any of
these 8 pins as ’0 ’. As there are 8 pins of interest
to us at this time, a typical combination of signals
might be represented by

01101101

This particular combination of signals will cause the
CPU to behave in a particular fashion, and we might
say that this combination instructs the CPU to perform
a certain job.

Ue call such a combination of signals, therefore,
a llachine Language Instruction, just as LET A = 0 is a
BASIC Instruction. This is essentially what llachine
Code programming is all about; a combination of
electrical signals that are capable of causing the CPU
to perform a particular task. The instructions that
are understood by the Z80 CPU are collectively called
the Z80 INSTRUCTION SET. Each different CPU has a
different Instruction Set; thus programs written in
the machine language of one CPU will almost certainly
NOT work properly on another CPU.

The BASIC Interpreter
and the OPERATING SYSTEM
The BASIC Interpreter is a machine language program
whose job it is to convert the BASIC instructions that
are typed in to the computer into llachine Language
instructions that the CPU can understand.

The CPU does not understand BASIC, and so the
BASIC Instructions must be translated into machine
language instructions before the CPU can do anything
with them. It’s just like the way we might translate
from English to French; w e ’d use a dictionary, or, if
we could afford it, the services of a professional
Interpreter.

2

The OPERATING SYSTEH is as machine language
program that tells the CPU hou to communicate with the
monitor, the keyboard and the tape recorder . It’s
used by the BASIC Interpreter whenever the BASIC
instructions need to use any of these devices. Thus
the Operating System machine code program for putting
a character on the screen will be called whenever a
PRINT statement is encountered in BASIC.

The fact that we have to translate BASIC
instructions into machine code instructions before we
can do anything with them explains why BASIC is slower
than machine code programs. The translation process
takes time, and often the machine code instructions
that are generated by the translation process are not
as efficient for the particular job as they might be.

Also, as w e ’ve already said, machine language
programming gives us the chance to make the computer
do things that the Operating System and the BASIC
Interpreter never intended us to do.

Disadvantages of Machine Code
There are some disadvantages with writing programs in
machine code. Just to set the balance right, I ’ve
listed them below:

(a) Nachine Language programs are difficult to
read and find errors in.

(b) They are difficult to transfer on to other
computers. Most machine code programs cannot
be transferred to other machines without
rewriting the programs!

(c) Needs large numbers of simple instructions in
many programs.

(d) Complex arithmetic is very difficult in
machine language.

You can thus see that ’’You pays your money and you
takes your choice” with regard to whether you write a
particular program in BASIC or nachine Code. Y o u ’d be
ill advised, however, to write an accounts package in
Hachine Code, but it would be equally silly to write a
program requiring speed in BASIC.

Assembly Language Programming
Writing machine code programs as strings
0 ’s would soon put every one except
professional off the whole idea. So,
surprising that there are other ways of
machine language programs.

of 1 ’s and
the hardened

it’s not
representing

The combination of l ’s and 0 ’s that represent a
machine language instruction can represent many things
to the CPU. To us mere humans, they can be seen to
represent a BINARY NUNBER. We can thus convert this
binary number into a decimal number, but ue must

3

remember that while this is a convenient
representation for us, the CPU will still see these
numbers as combinations of l's and 0 ’s on the 8 pins
ue spoke of at the start of this chapter. Ue could
therefore write a sequence of instructions down as a
series of decimal numbers.

Uhile this would be more legible to us than a
series of binary numbers, it still doesn't give us any
idea of uhat the instructions actually do. Ue could,
of course, have a list of numbers and the actions that
the instructions represented by these numbers perform.
Uhat would be useful, of course, would be a method of
representing machine language instructions in some
form of English. Ue can, in fact, do this.

Ue use a form of representation known as ASSEMBLY
LANGUAGE. Each machine code instruction is represented
by a short, descriptive name called a MNEMONIC. Each
mnemonic is also called an ASSEMBLER INSTRUCTION.
Thus, using our different ways of representing machine
language instructions -• binary, decimal and Assembler,
we could write a particular instruction down as:

You might even be able to guess from the mnemonic
what this instruction tells the CPU to do. Yes, it
tells the CPU to stop, or HALT, until further notice.
Assembler Instructions are, as you can probably guess,
totally incomprehensible to the CPU. Ue thus require a
means of converting the Assembler Instructions into
the machine code instructions and then into sets and
electrical signals before the CPU can perform what is
expected of it. You can do this conversion yourself,
using the tables in the back of this book, or you can
use a computer program to do the job for you. Such a
program does a similar job to that performed by the
BASIC Interpreter, and converts the Assembler
Instructions in to machine code instructions.

Such a program is called an ASSEMBLER, and it
ASSEMBLES the machine code program from the Assembly
Language program. If you convert the Assembler
instructions into machine code instructions using
tables such as those in the back of the book, then the
process is called HAND ASSEMBLY. (It’s actually quite
good practice to start this way).

So far, w e ’ve not really seen what machine
language can do for us. As a brief interlude, I offer
a single instruction machine code program that totally
disables ESCAPE and SHIFT-CTRL-ESCAPE from within a
running BASIC program. Once this machine code program
has been entered, the only way to stop a running
program is either hope for an END or an error in the
program, or turn the computer off! Not even ON BREAK

b i nary
dec i m a 1
Assemb1er

0 1 1 1 0 1 1 0
1 1 8

HALT

4

offers this degree of protection from a running
program being stopped! The instruction simply causes
the CPU to ignore any Break events, such as those
caused by Escape. Type the line in exactly as shown.
Explanations will come later.

10 POKE &BDEE,201

The rest of your program can now be entered , and
once running it u i 11 be immune from people pressing
the Escape key. You must admit, that single
instruction machine code program does something that
cannot be done from BASIC. Nou u e ’ve had a brief
glimpse of what machine code can do, let’s see what
sort of things the CPU can do.

The Z80 CPU. What can it do?
The CPU is responsible for virtually everything that
goes on in the computer; as soon as you turn the
machine on, the CPU starts running the BASIC
Interpreter program and this enables you to type in
your programs and commands.

The first thing to realise about the CPU is that
it is only able to do simple tasks, such as addition
and subtraction, but it can do them very quickly.

Secondly, whereas ue might use pencil and paper to
do such simple tasks, the CPU doesn’t; it performs the
tasks in the same way that a child might, that is,
with its ’’fingers". The only use of "pencil and paper”
by the CPU is when it is told to store the results of
a task. The results are stored in "boxes” within the
computer memory.

Two points become obvious from the fact that the
CPU uses "fingers” to count on:

(a) Only whole numbers, or integers, can be dealt
with directly by the CPU. (It cannot work in
ha If f i ngers).

(b) The numbers involved are obviously limited in
size by the number of fingers that the CPU
has .

Cc) Uith respect to the second point above, if the
CPU needs to, it can count on its ’’toes” as
well as its fingers!

There is some consolation, however, in that
whereas w e ’re stuck with two hands and two feet, the
CPU has several more than this. Also, the CPU has 8
"fingers" on each of its hands, and 16 "toes” on each
foot. (Note that the CPU can count up to 255 on one
of its 8 fingered hands and up to 65535 on one of its
feet. Exactly how this is done will be revealed in the
next Chapter .)

Le t ’s get back to what the CPU can do. How might
it do a simple addition, such as 3+4? Le t ’s write down

5

the uay in ohich the CPU might do this in mnemonic
form. For the sake of this example, let’s call one of
the CPU hands ”A ” . U e ’11 also allow the CPU to use
various ’’boxes” in memory to store results and other
bits of information that are required.

LD A , 3
LD (BOX#1) , A put 3 in box 1
LD A , 4
LD (B0X#2),A put 4 in box 2
LD A , (BOX#1) get 3 into hand A
ADD (B0X#2) , A do the sum
LD CB0X#3) , A store the result

LD is the mnemonic for LOAD, and u e ’re simply
1oad i ng hand "A” in the first instruction with the
v a 1ue 3 - i.e . u e ’re counting up to 3 on the f ingers
of hand ”A ” . The second instruction where we store
th i s v a 1ue in a ”box” , is quite interesting and
introduces a rather important concept in machine code
programming. The brackets in this instruction indicate
that w e ’re interested in the CONTENTS of the box
mentioned in the brackets. In this case, the current
contents of box #1 are to be replaced by the number
that is counted out on the fingers of the ”A ” hand.
This may remind you of the idea of the BASIC variable.
However, this box is not the same as a variable - it
is simply a location in memory that the programmer has
decided to use for a particular purpose in that
program. The ADD instruction performs the actual
operation, leaving the result on the fingers of the
”A” hand. This is then stored away for future use. As
you can see, it’s a lot more long winded than the
BASIC: LET A=3+4

The Stack

Despite the CPU having 8 hands, each with 8 fingers,
and two 16-toed feet, it still occasionally finds the
need for more places to store numbers. Cell, we could
use some memory locations, or boxes, as we did above.
Sometimes, however, this isn’t desirable.

An alternative temporary store that the CPU can
use is called the STACK.

For the moment, w e ’ll look at the stack as one of
those spikes that well organised people, unlike me,
use to put pieces of paper on. Onto the spike paper
slips are pushed, and so it’s obvious that the last
piece of paper pushed on to the spike is the most
accessible. In a similar fashion, the most accessible
piece of information on the Stack is the last piece of
information that was placed on the stack. This is how
the Stack is useful to the CPU; it always knows where
it put a certain piece of information if it places it
on the stack.

The CPU stores information on the Stack or PUSHES

6

it onto the stack, from one of its hands whenever it
needs to use that hand for something else, but still
wants easy access to the contents of that hand. Once
the CPU wants the information back, it POPS the
information back from the stack on to the hand. The
CPU can store information from as many of its hands
and feet as it likes, each storage operation requiring
a separate PUSH. One thing to note about the stack in
the computer; the office spike was such that each PUSH
caused the stack to increase in height. In the
computer, the stack is upside down, and grows
downwards as more information is PUSHed onto it.

Uhat the CPU is capable of

As we mentioned earlier in the Chapter, the CPU is
really only capable of performing simple tasks.
Because the CPU's counting abilities are limited to
what it can count up to on its fingers and toes, it is
limited to numbers in the following ranges:

Cal 8 fingered numbers between 0 and 255
Cb) 16 fingered numbers between 0 and 65535

I use the phrase 16-fingered numbers deliberately;
we can get the CPU to use two of its 8-fingered hands
as an extra ’’foot” if we so desire. This 2-handed
number is thus the same as a number that can be
represented on a CPU foot. How w e ’ve met the types of
number that the CPU knows how to handle, let’s go and
examine the instructions that the CPU can understand.
They fall into the below main categories.

(a) Counting on one hand.
Cb) Counting on 2 hands.
Cc) Addition and Subtraction on 1 hand.
(d) Addition and Subtraction on 2 hands.
(e) Various manipulations of 1 handed numbers;

e.g. Making a number negative.
(f) Causing the CPU to jump from one point in a

machine language program to another.
(g) Causing the CPU to transfer 8 finger numbers

from and to other devices in the computer
system.

Before we leave this Chapter of first principles
let’s have a brief look at two other things that will
be useful to us. These are the idea of ADDRESSES, and
some details of the Amstrad hardware.

You may have noticed the word address turning up
occasionally in this Chapter; in normal English, it
refers to where a particular house or building can be
found in a town full of them. In computing, the
address refers to the location within a computer
memory where a particular number can be found. This

?

number could be a machine language instruction or a
piece of data, but all the numbers held at the various
addresses can be held as 8~f ingered numbers - i.e.
they are all between 0 and 255 in value. In the
Amstrad, some of the memory locations are used for
storing the programs that ue type in, others store the
BASIC Interpreter program, and yet others are used to
store the information that is used to form the image
on the monitor screen.

Amstrad Hardware
L e t ’s take a brief detour to look at the various
electronic components that make up the Amstrad
Computer System. Hardware is the term that is applied
to the various bits of electronic equipment that make
up a computer system. Software is the name given to
the programs that we run on the computer. Some wits
have suggested that the hardware is the bit you can
kick, but I d o n ’t consider this to be a useful
definition! Figure 2 shows how the various bits of the
Amstrad system fit together. Lie’ll now go on to take a
brief look at the roles of the devices. As they are
all to some extent under the control of the CPU, w e ’ll
start by taking a closer look at the CPU.

The Z80 CPU
U e ’ve already talked about what it does in general
terms; now w e ’ll look at how it’s arranged.

There are 8 ’’hands” in the CPU, and they’re all
given names. They are called A, B, C, D, E, F, H and
L. There are two CPU ’’feet” called IX and IY. These
’’hands” and ’’feet” are often represented in diagrams
as

A F

B C

D E

H L

IX

IY

Figure 1. The 280 Register Set

8

CASSETTE
RECORDER

Figure 2. Amstrad Hardware Configuration

9

All the hands except F can be used for counting
on; hand F has a rather special function, as each
finger of this hand is used to indicate whether or not
a particular event has happened within the CPU. This
will be discussed in greater detail when ue look at
the various instructions that affect the fingers of
th i s hand.

Ue can, if ue want, to, team up hands B and C, D
and E and H and L to form some neu "feet” called B C ,
DE and H L . Note that a DL foot is not possible,
neither is a DH, CE etc. Each of these neu feet is
capable of holding a 16 finger number just like the IX
and IY f e e t .

The hands and feet of the CPU are usually referred
to as CPU REGISTERS. Thus the A hand is usually
called the A REGISTER. The feet that ue make by
pairing up, say, the B and C registers are called
REGISTER PAIRS. Thus you can have the B C , DE and HL
Register Pairs. The IX and IY feet are also given
special names; these are known as INDEX REGISTERS.
D o n ’t uorry about these for the moment; all uill
become clear later in the book.

The A Register

This is often called the ACCUHULATOR because it
accumulates the results of many CPU operations. Think
of it. as the right hand of the CPU; just as many
operations are best done with the right hand, the CPU
often can only do certain operations with the A
Register.

The HL Register Pair

This is a very commonly used Register Pair within the
CPU. Look at it as a 16 finger accumulator, or as the
"Right foot” of the CPU.

The other registers and register pairs are general
purpose ones, with the exception of the F register
that ue mentioned earlier.

Alternative Registers

Uithin the CPU there are some more hands that ue can
use, but only for a very limited range of jobs. These
extra hands are called the ALTERNATIVE REGISTER SET of
the CPU, and are individually known as A ’, B ’, C ’, D ’,
E ’, F ’, H ’, and L ’. There are no alternate Index
Registers. The only thing that ue can do with them is
to copy the contents of the main registers into the
Alternate registers for safekeeping while ue use the
main registers for something else. Uhen ue do this,
the current contents of the Alternate registers are
copied into the main registers. Uhen writing machine
code programs for the Amstrad computer, however, these
registers are used by the BASIC Interpreter, and so

10

it’s often a good idea not to alter the contents of
these registers, (flmstrad recommend that you do not
use the alternative register set).

The Stack Pointer
This is a rather specialised CPU foot that points to
the address in memory that the stack has grown to. As
the stack grows down into memory, the number held on
this foot decreases as more information is PUSHED onto
the stack. The contents of the Stack Pointer, or S P ,
are altered whenever the CPU PUSHes or POPs the stack.
This register is only rarely manipulated directly in a
program.

The Program Counter

The program counter tells the CPU where in memory it
can find the next machine language instruction so that
the CPU can fetch this instruction and decide what to
do. The Program Counter is not directly manipulated in
machine language programs.

The fetching of instructions is dealt with by the
CONTROL UNIT of the CPU.

The Control Unit

This is the supervisor in the CPU. It coordinates and
times the various operations of the CPU, and is
responsible for fetching a machine language
instruction from memory. The location from which the
instruction is fetched by the address held in the
Program Counter. The instruction is then passed to a
CPU hand called the Instruction Register.

The Instruction Register

This CPU register holds an 8 finger number that
represents the machine language instruction that is to
be executed next by the CPU. The Control Unit is now
responsible for working out what the instruction is
and acting upon it.

The Arithmetic and Logic Unit

This is best seen as the pocket calculator of the CPU.
It’s controlled by the Control Unit of the CPU rather
than by a keyboard and is rather si triple in what it can
do. Addition and Subtraction are easy, but
multiplication and division are not possible. It can
also compare the values of 8 finger numbers, or
perform operations upon the fingers within registers,
i.e. it can cause a finger to be raised, or set to
'1’, or lowered, or set to ’0 ’, as required. As a by
product of the operations of the ALU, the fingers of
the F register are affected.

Although the CPU is a rather clever device, it
would be useless without the other devices in the
Amstrad. If you examine Figure 2 , yo u ’ll see that the
CPU is connected to virtually all other devices in the
computer. Le t ’s now take a look at these other devices
and see how they contribute to the operation of the
Amstrad Computer.

Memory
Because of its 16-finger Program Counter, the 280 can
gain access to 65536 different locations in memory.
However, certain areas of memory within the Amstrad
are effectively ’’used twice” by the computer, and this
gives the appearance of the computer being able to
access more than this amount of memory. U e '11 see a
little more of this interesting point shortly, but it
is rather complex and w e ’ll not go into it in any
great detail. There are two different types of memory
within the Amstrad; these are called Read Only tlemory
and Random Access Memory. D o n ’t worry about the
jargon; all will be revealed.

Read Only Memory

This type of memory is used in the Amstrad to hold the
Operating System and the BASIC Interpreter. This
memory keeps its contents even when you turn off the
power to the computer. However, the programmer, even
by using machine code, cannot alter the contents of
this type of memory. Ue can still load the CPU
registers with numbers that are held in Read Only
Memory, or ROM, if we wish, or we can run the machine
language programs that are stored in ROM. The reason
that we call ROM Read Only is therefore obvious;
that’s all we can do with it!

Random Access Memory

I prefer the unofficial but more descriptive name of
Read and Alter Memory for this kind of memory. Ue can
read numbers from it, or we can write new numbers to
it. Ue thus use it to store BASIC programs in, and
w e ’ll also use it to write our machine code programs
i n .

Although we can easily alter the contents of this
type of memory,RAM has one very annoying feature. Uhen
the power is removed, the memory forgets everything it
held before. For this reason, we need to store our
programs on cassette tape or disc to keep permanent
copies of them. This applies to BASIC or machine code
programs.

As w e ’ve already mentioned, a location in memory
can only hold an 8-finger number. This is true for
both RAM and ROM. The range of numbers that can be
held in memory locations is therefore 0 to 255. CUe’ll

12

mention later hou ue can use too of these locations to
store a 16-finger number).

The Amstrad has 65536 locations of RAM in its
memory; it also has over 8000 locations of ROM, the
ROM overlapping certain areas of RAM. It’s not really
important at this point to knou uhat RAM locations are
overlapped by ROM, as the Operating System of the
Amstrad takes care of uhat type of memory of CPU
’’sees” in these overlap locations at particular times.
The Practical upshot for machine code programmers on
the Amstrad is that ue can use the already uritten
machine code programs, present in the ROM, for doing
things like printing characters to the screen from
machine code. So, let’s leave memory alone for the
time being and move on to the other parts of the
Amstrad System.

The CRTC
The Cathode Ray Tube Controller chip (uou, uhat a
mouthful!) is responsible for getting the information
held in a particular part of memory, called the Video
RAM, on to the monitor screen as an image.

The PSG
The Programmable Sound Generator is responsible for
producing the many sounds that the Amstrad is capable
of. Ue ’ 1 1 look at hou ue can make sounds from machine
code later in this book.

The PPI
The Programmable Peripheral Interface
important chip in the Amstrad. It
controlling the display, keyboard, PSG,
and cassette recorder. This device
betueen the CPU and these other devices

is a vitally
has a r o 1e in
Printer port

acts as a go

The Gate Array
This is a clever piece of electronics specially
designed for the Amstrad, and it helps the CRTC
generate the screen image. It also controls uhether
the CPU sees ROM or RAM in those locations of memory
where the tuo overlap.

All these devices are controlled bh the CPU, uhich
is normally running the Operating System or BASIC
Interpreter program in the ROM. U e ’11 later see hou ue
can use routines present in these ROM programs to
enable us to control these devices from our oun
machine code programs. D o n ’t let this frighten you;
it’s much easier than it sounds, and is certainly an
easier job than writing programs from scratch to do
these jobs!

U e ’ve nou examined the ’’cast list” for the rest of

13

the book, and u e ’11 later see hou ue can program these
devices to perform various tasks. Houeuer, u e ’11 nou
go on to look at. a subject rather fundamental to
computing - the subject of counting.

14

Chapter 2
How Computers Count

I mentioned in Chapter 1 that, the CPU can represent
numbers between 0 and 255 on one of it 's 8 f ingered
hands. How can this be, when we only count to 10 on
our fingers? Uell, we count on our fingers in a rather
inefficient way, and the computer simply uses its
fingers more wisely than we do.

Uhen we count on our fingers, we let each finger
have the same value. i.e. a raised first finger
represents the same value as a raised second finger.
There is no reason why this should be so. You could,
in fact, use the different fingers to represent
different values.

For example, a raised first finger could represent
the value ’1 ’, a raised second finger ’2 ’ and so on.
In this scheme of things, therefore, we could
represent the number '3' on just two fingers, by
raising both the first and second fingers. Uhen either
finger is lowered, of course, it has the value ’0 ’.
This method is obviously more efficient than our way
of counting on our fingers.

Our normal method would, as I mentioned, require 3
fingers to represent the number 3, whereas this new
method only needs two fingers. The counting method
used by the CPU is based on this idea, and appreciates
the below facts;

(a) That whether a finger is raised or lowered is
important to the overall number being
represented on the fingers.

(b) That the position of the finger within in the
hand is important to the value represented on
that finger, and hence to the value of the
number represented on the hand.

L e t ’s take a look at our new method of
representing numbers using two fingers.

15

Number Represented

m

n il

(h
ffl

Ue might- represent a raised finger by the digit
’1’ and a lowered finger by the digit ’0 ’. This is
easier than drawing pictures of hands all over the
place! Thus the above can be rewritten as;

00 = 0
0 1 = 1
10 = 2
1 1 = 3

Th i s should look vague 1y familiar; remember our
uay of representing the presence or absence of an
electrical signal? Ue used 1 ’s and 0 ’s there as well.

0

1

2

3

Such a method of representing numbers in which
there are only two different states (raised or lowered
finger, 1 or 0) is called a BINARY method of
representing numbers. If we add yet another finger to
the two w e ’ve already considered, then there are 8
different combinations of raised and lowered fingers,
including the state when all the fingers are lowered.

If you d o n ’t believe this, try it with your own
fingers. Ue can therefore represent the numbers 0 to 7
on these three fingers. Le t ’s use our ’0 ’ and ’1 ’
representation to represent raised and lowered
fingers, remembering that a lowered finger is
represented by ’0 ’ and a raised finger is represented
by 1 .

000 = 0
00 1 = 1
0 10 = 2
0 1 1 = 3
100 = 4
101 = 5
1 10 = 6
1 1 1 = 7

The addition of a fourth finger enables us to
represent the numbers between 0 and 15. In computing
circles, the numbers 10 to 15 are represented in a

16

special way by the letters A to F, rather than by the
two digit numbers 10 to 15. Thus >

10 = A
1 1 = B
12 = C
1 3 = D
14 = E
15 = F

The method of representing numbers i n this uay i s
called HEXADECI UAL representation In this
representation, therefore , the numbers 0 to 15 are
represented as 0 , 1 , 2, 3, 4, 5 , 6, 7, 8,, 9, A, B, c ,
D , E and F . The dec ima1 number 16 is represented as
hexadecimal 10, dec i m a 1 17 as hexadecimal 11 and so
on .

The Amstrad computer allows us to type hexadecimal
numbers into the computer in BASIC. Houeuer, it’s
obviously necessary to tell the computer hou to
distinguish hexadecimal numbers from decimal numbers.

Ue can give a hexadecimal number either the prefix
or ”& H ” . Either of these will be recognised by the

Amstrad as the start of a hexadecimal number. There
are other methods of designating hexadecimal numbers,
and these are shown below. However, the Amstrad only
recognises & and & H .

&A = 10
&HA = 10
HA = 10
AH = 10

Throughout this book, w e ’ll use the & symbol to
designate hexadecimal numbers. You can probably see
now that using hexadecimal representation to represent
machine code instructions is rather convenient. A
machine code instruction must be able to be held on 8
fingers, (otherwise it could not be stored in the
computer), and we know we can represent 4 fingers as 1
hexadecimal number (0 - F). Thus an 8 fingered number
can be represented with only two hexadecimal digits.
The advantages of using the hexadecimal representation
to represent machine language instructions are
therefore;

(a) Ue can easily convert hexadecimal numbers into
binary numbers, and so we can see which
fingers are lowered or raised within a number.

(b) Ue can tell, by the numbers of hexadecimal
digits in the number whether the number will
fit into one or two hands; one handed numbers
have 2 digits and two handed numbers have 4
d i g i t s .

Ue do this by remembering that each finger has a
different- value attached to it.

17

Ue've got 4 fingers raised here, and ue have assigned
each finger a value. Uhen any finger is lowered it has
a value of 0. Thus if all the fingers are raised, the
fingers will be representing the number

8 + 4 + 2 + 1 = 1 5

Ue simply add up the values that have been assigned to
each raised finger. Thus if the left most finger were
to be lowered, the value represented would be

0 + 4 + 2 + l = 7

If y o u ’re mathematically inclined, yo u ’ll probably
note that the value represented by each finger is
multiplied by two as ue go from right to left. If ue
number the fingers in the belou fashion,

then the values assigned to each finger is 2 to the
power of N, where N is the finger number. 2 to the
power of 0, for example is 1.

So far u e ’ve seen how we can represent numbers
that have a value between 0 and 15; you should be able
to see what to do to enable us to represent larger
numbers; ue simply add more fingers. U e ’11 thus end up
with the 8 fingered number that a CPU hand is capable
of representing; For example, the number 16 is
represented on an 8 fingered hand in the below
fashion, with finger number 4 raised.

r\

7 6 5 4 3 2 1 0

0 0 0 1 0 0 0 0

This can be written in hexadecimal as &10. Ue arrive

18

at this by splitting the 8 finger number into too 4
finger numbers, and we then give each 4 finger number
a separate digit. In this case the right hand 4
fingers are all lowered, thus representing the value
0, and of the left 4 fingers the first finger is
raised, thus representing 1. However, the
significance of each of these 4 finger "handlets" is
not the same to the value of the number overall. The
left 4 fingers represent 16 times as much as the right
4 fingers. As a further example, look at the below
case, where all 8 fingers are raised.

i

F ' F

&FF = &F * 16 + &F
= 15 * 16 + 15
= 240 + 15
= 255

You can thus see how we can represent the number 255
on 8 fingers and how the CPU manages to count to 255
on its 8 fingered hands. An extension of this
principle will enable us to count to 65535 on 16
f i ngers.

Bits and Bytes
It’s now time to introduce the proper names of the
hands and fingers that are used in computer counting.
In common English, an alternative name for a finger is
a digit, and it is the same in computing. Each finger,
or binary number, is thus called a digit, and there
are thus 8 digits in our 8 finger numbers. There is a
special name for Binary digits, however, and this is
the name BIT. This is a contraction of the phrase
Binary Digit. Ue can thus say that our 8-fingered
numbers are 8-bit numbers. These collections of 8 bits
are called BYTES. A byte is thus a number that can be
represented on 8 fingers or that can be held on a CPU
hand. Our 4 finger ’’handlets” are called nibbles, a
nibble, after all, being a small byte...

The terms bit, byte and nibble are very common in
computing circles, and so yo u ’ll come across them
throughout this book and in many other works as well.
Just as we numbered our fingers, we number the bits
within a byte, and we number them in a similar
fashion; that is, 0 to 7 from right to left. Bit 0 is
given a special name. It is called the LEAST
SIGNIFICANT BIT, or L S B . This is because the value
associated with this bit, 1, contributes the least to
the value of the number represented on the 8 bits.
For a similar reason, bit 7 is called the HOST
SIGNIFICANT BIT, or HSB of the byte.

19

In a similar fashion, ue also label the tuo bytes
that make up a 16 finger number of the type that can
fit into a CPU ’’foot” or Register Pair.

0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

flost Significant, or
HIGH BYTE

I
& 0 F

&0FFF

Least Significant, or
LOU BYTE

I
&FF

Here, the High Byte has a significance to the overall
value of the 16 finger number of 256 times the Lou
Byte. Thus the total value of a number that is held in
a 16 finger number is given by

value = 256 * high + lou

uhere lou is the value held in the lou byte and high
is the value held in the high byte. In a similar
fashion, a 16 bit Register Pair in the CPU is said to
be made up of a High Register and a Lou Register. Uhen
you urite doun a Register Pair’s name, the first
register that you urite doun holds the high byte and
the second register holds the lou byte. Thus in he BC
register pair, the B register holds the high byte and
the C register holds the lou byte. This fact isn’t too
difficult to remember if you think about the HL
register pair; the H register holds the High byte and
the L register holds the Lou byte. This is probably
uhy the name G uasn’t used uhen the registers uere
originally named; a GH register uould be rather
conf us i n g !

Representation of Information
Human beings deal uith information mainly in the form
of numbers and letters. Computers only deal in
numbers. It is thus clear that the computer must have
some means of representing other forms of information.
There are tuo main types of information represented by
numbers in a computer;

(a) Machine language programs. These could be the
BASIC Interpreter, Operating System or some
programs uritten by the user.

Cbl Data for a machine language program. This can
either be numeric, or can include letters. The
BASIC program might, for example, be
considered as data for the BASIC Interpreter.

20

Let's nou look at hou different types of
information are represented in the computer memory.

Program Representation
A machine language program is a sequence of bytes that
represent instructions to the CPU of the computer.
They are stored in the memory of the computer. 260
instructions can be betueen 1 and 4 bytes in length.
For example, the HALT instruction is a single byte
instruction. Once the number that represents this
instruction has been recovered from the memory and
acted upon, then the next instruction is fetched by
the CPU. However, if the CPU realises that the number
recovered is part of a multi-byte instruction, bytes
are fetched successively until the CPU has a full
instruction to uork on. It is obvious, therefore, that
a single byte instruction is executed more quickly
than one made up of several bytes.

Data
In BASIC ue are able to use various types of variable
to hold information on uhich our programs are to uork.
These include Integers, Real Numbers and strings of
characters. In machine code ue d o n ’t have this sort of
versatility; the only numbers that the CPU can handle
directly are integers in the range 0 to 255 or 0 to
65535. To use floating point, or real numbers, such as
1.2345, the CPU has to be programmed appropriately,
and the amount of programming required often makes it
more advisable to urite programs that are to deal uith
these sort of numbers in BASIC. Character strings are
available to us in machine code uith only a little
extra effort, and the letters that make up strings are
represented in the computer by numbers, as ue shall
soon s e e .

Integers

U e ’ve seen already that integers are easily dealt uith
by the CPU provided that the numbers are in the range
0 to 65535. Houever , uhat about negative numbers? Hou
are SIGNED INTEGERS, as these numbers are knoun, dealt
uith in the computer?

Signed Integers

These numbers must obviously be represented in some
form of binary representation for the sake of the CPU,
so ue need a method of representing the SIGN of the
number, just as ue use the ”+” and in normal
arithmetic. The most commonly used representation
states that a number uill be treated as being negative
if the "thumb” of the "hand" is raised - i.e. the most
significant bit of the number is set to a value of 1.
This leaves us uith, for an 8 bit number, bits 0 to 6

21

to represent, the actual value of the number. For this
reason bit 7 is often called the SIGN BIT of an 8 bit
number. You can probably see that the use of only 7
bits to represent the value of the number means that
ue can no longer represent the number between 0 and
255 any more. Instead, half the numbers represented
will be with the sign bit set to 0, and hence will be
positive numbers, and half will have the sign bit set
to 1, and so will be negative numbers. The new range
will be -128 to +127.

This gives us a rather significant problem. How do
we tell whether a number is a large positive number or
a negative one? The answer is - we d o n ’t. It depends
upon what interpretation the programmer puts on the
numbers at any time. All the machine code instructions
will work perfectly well, but the interpretation put
on the result depends upon the representation used.
Producing a negative number is not, unfortunately,
just a matter of setting bit 7 to 1. Ue must now work
out know to represent the actual value of the negative
number on bits 0 to 6 of the byte. The fundamental
thing to remember about a negative number is that when
you add it to the corresponding positive number the
result is 0. That is:

C-l5 + (+15 = 0

Thus the representation of -1 must be such that when
added to +1 the result is zero.

0 0 0 0 0 0 0 1

00000000 desired result

If we represented -1 by 10000001, then by binary
addition w e ’d set bit 0 of the answer to Zero, but
what about the other bits of the answer? Uould these
also be set to zero?

0 0 0 0 0 0 0 1
+ 1 0 0 0 0 0 0 1
10000010 actual result

That’s not the desired answer. Ue really need to take
the carry that was generated by 1+1 and some how use
it to set all the other bits of the result +̂ o zero as
well. This requires that all the other bits of the
binary representation of -1 should be set to 1 as
shown below.

0 0 0 0 0 0 0 1
+ 1 1 1 1 1 1 1 1
00000000 actual result

Uell, this is certainly the correct answer for -1, but
how can we apply similar techniques go other negative
numbers? L e t ’s see if we can work out the general rule

22

for arriving at a representation of negative numbers.

It uould appear that the representation of -1
given above uas obtained in too stages. The first of
these uas the replacement of all the 0 ’s in the
positive number uith l ’s and all the l ’s of the
positive number uith 0 ’s, thus representing the number
as be 1o u .

change 0 0 0 0 0 0 0 1
to 11111110

This process is called COMPLEIIENTI MG the number. The
complement of 1 is 0 and that of 0 is 1 . The second
stage of the process uould appear to be adding 1 to
the result of the complementing operation. Thus,

1 1 1 1 1 1 1 0 + 0 0 0 0 0 0 0 1 = 1 1 1 1 1 1 1 1

The only uay to see if this method does give us a
proper representation of a negative number is to try
it and see. L e t ’s see if ue can get a binary
representation of -2.

(a) Complement +2:

the complement of 00000010
is 11111101

Cb) Nou add 1 to the complement:

1 1 1 1 1 1 0 1 + 0 0 0 0 0 0 0 1 = 1 1 1 1 1 1 1 0

This should be the binary representation of -2. To see
if u e ’re correct, let's try adding it to +2;

11111110
+ 0 0 0 0 0 0 10
00000000

Yes, that’s correct. Ue get the result zero. This
method of representing a negative number in binary is
called TUO ’ S COMPLEIIENT representation. This is the
most common form of representation for such numbers.
If you apply this go a negative number, y o u ’ll get the
binary representation of the positive counterpart.
This isn’t really surprising, when ue remember that
tuo minuses make a plus!

So far, u e ’ve seen this technique applied to 8 bit
numbers, but the principles can be applied to 16 bit
numbers as well. Uhen ue use the T u o ’s Complement
notation to represent a negative 16 bit number, the
MSB of the High Byte is the sign bit, and bit 7 of the
lou byte is left alone. The complementing operation,
houever, is the same for both 16 bit and 8 bit
numbers. Uhen ue use a 16 bit number in this uay, the
range of numbers that can be represented is -32768 to

23

+32767 instead of the usual 0 to 65535.

This is a good place to note that the Integer
Variables supported by the Amstrad BASIC are stored as
16 bit T u o ’s Complement numbers, and can thus have
values between —32768 and +32767.

Characters and Strings

In machine language programs, ue may want the numbers
stored in memory or held in CPU registers to represent
characters rather than machine language instructions
or numeric data for machine language programs. Let's
define a character as anything that we can put on the
monitor screen with a PRINT command. Thus the
collection of letters and numbers in ”134 HELLO” are
all characters, and they are collectively known as a
string of characters, or just a string. As there are
no more than 255 characters available to +,he
programmer, the numbers used to represent characters
are all 8 bit numbers. How do ue decide what numbers
are represented by what number? (Jell, there are a few
standards around, and the one used by the Amstrad is
called the ASCII code. This stands for ’’American
Standard Code for Information Interchange” and is the
most commonly used code for character representation.
For example, the code for the letter "A” is the number
65. To see what ASCII code is possessed by a
particular character, we can use +_he BASIC A S C O
function. Thus

PRINT ASCC ” A ” 1

will print 65 to the monitor.

Summing Up
You can thus see that what a particular number in a
memory location or register represents depends mainly
upon what the programmer uants it to represent. A
number can be any of the following;

(a) A machine language inn truction.
(bi A number in the range 0 to 255.
(c) A number in the range -128 to +127.
(d) Part of a 16 bit number or part of a multi­

byte machine code instruction.
Cel A number representing a character.

It is thus important for the programmer to keep
track of what he uses various parts of the computer
memory for; it would be disastrous, for example, for
the CPU to treat a sequence of bytes representing the
message ’’Hello there!” as a program.

The problem now remains of how to get these
numbers into the computer memory, be they machine code
programs or data. Ue use BASIC to help us do this, as
well as to help us run our programs. Le t ’s see how.

24

Chapter 3
Machine Code meets BASIC

As I mentioned earlier on in this book, from the
moment ue turn on our computer the Z80 CPU is
executing the BASIC Interpreter program that is stored
in the Amstrad R O H . Uhen ue want to tell the CPU to
run machine code programs that u e ’ue uritten, ue must
instruct the CPU to leave the ROM program for a uhile
and go off and run the program that ue have uritten.
Ue have to do this from BASIC, because ue are, rather
obviously, in the BASIC Interpreter. Ue must also
enter the bytes that make up the machine code program
in to the computer memory using BASIC commands. In
this Chapter, therefore, I uant to examine the
commands in BASIC that are invaluable to us uhen ue
are uriting machine language programs. You may have
read of some of them in the Amstrad manual, or they
may be totally neu to you. Do n ’t uorry, u e ’11 examine
each command in detail. I ’ll also look at hou ue can
pass information betueen BASIC programs and machine
language programs. This is very useful, because ue
often uant to urite machine language programs that are
used in conjunction uith BASIC programs to do jobs
that cannot be done from BASIC.

Homes for machine code programs
The machine language programs are made up of sequences
of bytes representing machine code instructions. The
most important thing, therefore, is to find a place in
the computer memory uhere the machine code can live in
safety. It's clear that this has to be in RAM memory;
don’t forget that ue c a n ’t alter the contents of the
ROM. Many areas of the RAH in the Amstrad are not
suitable for the storage of the bytes that make up
machine code programs. These areas of RAH are those
that are used by the computer for storage of the BASIC
program, or the BASIC variables, or by the 280 CPU
itself as scrap paper uhile it executes the BASIC
Interpreter or Operating System program. Any machine
code programs placed in these areas are thus prone to
being overuritten by the BASIC program as you add more
lines, by neu BASIC variables as the program runs or
by the 280 as it executes it’s programs. The areas of
the RAM that are used by the CPU uhile it executes the

25

programs in the flmstrad ROM are called System
Workspace If ue alter any of these memory locations,
then ue stand a very good chance of altering some of
the information that the CPU requires uhile it is
running the Operating System or Interpreter programs.
The Z 8 0 , not surprising1y , could then lose track of
uhat it’s doing and ’’crash” . This is as unpleasant an
event as it sounds; ue lose all control of the
computer and it is often necessary to turn the
computer off to regain control of the machine. This
rather desperate ploy uill result in the loss of
uhatever is in RAM. The moral of this little story is
that uhen ue are experimenting uith machine code
programs, ue should make use of the Amstrad built-in
Tape Recorder and save the programs frequently, so
that if ue have crashed the machine ue can simply
reload the machine language program from tape and find
uhat caused the problem. This is much easier than
typing in the program from scratch!

Crashing the computer uill probably be a common
occurrence until you find your machine code
programming ’’feet” , so d o n ’t uorry. This is caused
mainly by the fact that machine code programming is a
rather tedious and error prone task until you get used
to it. Machine code programs are also very unforgiving
about programming errors. In BASIC, the programmer is
given lots of help, uith error messages and the
opportunity to change the offending program line.
There are no such nicities in machine code
programming! If you are lucky uhen you make an error
in your machine code program, something unexpected
uill happen. If Y o u ’re unlucky, the result could uell
be a crash!

Anyuay, let’s return to the problem of finding a
home for our machine language programs. It’s obvious
that this home must be safe from being affected by the
action of the BASIC Interpreter or the Operating
System of the computer. The safest place for a piece
of machine code is made by taking some RAM auay from
the memory that is available for BASIC programs and
variables. Ue do this by using the MEMORY command in
BASIC. Before ue see hou ue use this command, let’s
look, in a simple u a y , at hou memory in the Amstrad is
arranged. Figure 3 shous a simple representation of
hou the Amstrad memory is arranged. Such a diagram is
called a MEMORY MAP. Remember that the address of a
byte in memory is simply the location of that byte
uithin the computer memory, and each memory location
can hold an 8 bit byte; i .e. a number between 0 and
255 .

26

&FFFF

Address

& C 0 0 0

&ACOO

&4000

&0040

& 0

Screen
RAM

Basic Interpreter;
ROM :

System
Workspace HIMEM

User Characters

Memory
"P o o l"

Operating
System

ROMSystem
Workspace

F i g u r e 3.

Bef ore go i ng any
map in a 1 itt 1 e mor
in hexad ec i ma 1 not at i
Vers i on of know t h

P rogramm i ng on the Am
area of RAM that i s
BASIC programs and v
highest. numbered me
Interpreter can use in
name; it's called HIM
HIMEM is set to a valu
between HIMEM and a
special purpose. It is
about the User Define
using the SYMBOL comma
memory thus changes,
Defined Characters we
when we use data f i 1
open a data file from
memory, thus decreasi
to the BASIC Interpret
value of HIMEM by

PRINT HIMEM

or

PRINT HEXSCHIMEM)

The latter will return
as a hexadecimal nu

Amstr ad n emory n aP

urth 0) 1et >s eX am ine th
de ta i1 . Th e add resses a

n The maP shous a s i
memo ry is arrang ed f

trad Th e memo r y
>»poo 1>>

a\ja i1 ab le to th e InterPr
aY iabl es Th e add ress
mOry 1oca t ion that th
th is uay is g iVen a

EM . Uh en ue turn th e mac
e of &AB7F. The area of
ddress &AC00 is set asi
used for storing inf

d Charac ter s th at yo u ca
nd . The pos it ion o f H

depend i ng up on hou m
uan t to use . It a 1 so
es on ca ssett e . I n fac t ,
BAS IC HI MEM is ”mo ue d d
ng the amount o f spa ce a
er . At any t ime ue c an f

the v a 1ue of HI riEU
mber .. Any memory ab

e memory
re given
mplified
or BAS IC
is that
eter for
of the

e BASIC
spec i a 1

h i ne o n ,
memory

de for a
ormat i on
n create
I MEM in
any User
changes
when we

own” in
vailab1e
ind the

resented
I MEM but

27

below address &AC0S
the BASIC Interpr
provided that ue don
of memory that is b
about the User Defin

So, hou do ue
Characters start in
and &AC00? Uell, uit
use, HIMEM is set
Workspace starts at
up by User Charact
on turning our Amstr
User Defined Chara
being bought down to
to move HlflEtl doun e
RAM between the NEU
our machine code pr
this instance that i
Characters.

is thus free from the ravages of
eter and the Operating System,
’t accidentally clobber the area
eing used to store the information
ed Characters.

User Def i nedknou where the
the area of memory between HIMREM

h no user Defined Characters in
to &ABFF; thus, as the System

address &AC00 , no space is taken
rs when none are in i

ad on, space is set as
cters, and this resi

ress &AB7F. Thus,
ven further in memory,

d &AB7F would
&AB80ograms. 1 s

The stages of setting aside some memc
machine code programs are thus as follows.

;e . Houev er ,
de for 16
ts in HI MEM
f we uere
the area of
e fr ee for
rst byte i n

L0)in Def ined

y for our

(a) Decide hou many U
actually want to
the SYHBOL AFTER
them. Thus, i f
Defined Character
200 to 255, you
command.

Cb) Now get the value
(c) Estimate the amou

use for your mac
value N. Now work

NEUHI MEM = HIMEM - N

ser Defined Characters you
use in the program. Then use

command to reserve space for
you wanted to use the User

s in the range of ASCII codes
d execute a SYMBOL AFTER 200

of HIMEM, as shown above,
nt of memory that you want to
hine code programs. Call this
out

<d)

(e)

IC inst ruct i on MEMORY to
tha t ue wa nt to alter the

ant to set i t to the v:11 ue
ue ’ ve just uor ked o u t . The
o th is , mak i ng the byte; i n

tell the computer
value of HIMEM. Ue i
of NEUHI MEM that

memory with the address NEUHIMEM+1 the first
byte of memory available to you for machine
code programming.

memory starting at, and
40000, y o u ’d issue a

Thus, to
including,

reserve
address

MEMORY 39999

The mi
prov i ded
Character

Remember

iand .

ry thus r eser ued is safe from BASIC.
at ue don 91 over ur ite the User Def i ned
ace . The a d d r e 3s of th is area of memory
ned by ma k i ng a not e Of the value o f HIMEM
d i at■ely after ue 'd used SYHBOL AFTER.
at this will r edu ce the amount of memory

28

can be obtained by making a note of the value of HIHEfl
present immediately after ue'd used SYHBOL AFTER.
Remember that this uill reduce the amount of memory
available to BASIC, but, as they say, you can't make
an omelette without breaking eggs!

IJhile ue are talking about memory use, a slight
detour is in order to look at a little jargon that you
uill come across with regards to computer memory. It’s
basically a uay of getting out of writing long strings
of numbers when ue are talking about know much memory
in a computer is available for particular purposes. In
the Amstrad , there are 65536 locations of RA11 . You
uill often come across the abbreviation 64K for this
quantity of memory. Thus uhen ue say that there is
64K of memory in the machine ue actually mean that
there are 65536 different locations of memory in the
machine. Similarly, 2K is 2048 bytes and 1/2K is 512
bytes.

After that short detour, let’s carry on with our
examination of useful BASIC commands for machine code
programs. Ue can now find a place in RAH for the bytes
that make up our machine code programs to live in, but
hou can ue actually get the bytes into the memory?
Also, can ue directly examine the contents of a memory
location? The answer to both questions is "Yes".

POKE and PEEK
Uhen ue uant to put a byte into a particular memory
location, ue use the rather descriptively named
command POKE. This is exactly uhat the command does;
it puts, or POKEs, a particular byte into a particular
memory location. Ue use it in the following fashion;

POKE address,va 1ue

where address is the address of the location that ue
uant to POKE the byte into, and value is the value of
the byte ue uant to put in that location. Thus the
command

POKE 40000,210

uill put the number 201 into location 40000 of the
Amstrad RAH .

Although i t ’s possible to POKE any address in the
computer, TAKE CARE! POKEing System Uorkspace, which
is very ill advised, can easily cause a crash.
Similarly, POKEing parts of the RAH that are storing
BASIC program lines or BASIC variables could lead to
either the BASIC Interpreter losing track of parts of
the program, or variables being altered in value. You
have been warned!

Having used the POKE command to put the bytes that
represent our machine code program into memory, it

29

would be rather nice to be able to look in to the
memory and find out uhat value is held in a particular
memory location. This is done by using the PEEK
command, which enables us to PEEK into a particular
memory location to see uhat value is in there.

PRINT PEEKCaddress)

will print to the screen the value of the byte held in
memory location uith the address ’address’. Thus

PRINT PEEK C 40000)

will return the value currently held in location
40000. An alternate use of this command allows us to
set a BASIC variable to hold the value PEEKed from a
memory location, as in

LET A=PEEKC40000)

In all PEEK and POKE instructions, the parameters,
which are the numbers we follow the command with, must
be whole numbers. In the POKE instruction, the ’value’
parameter should be in the range 0 to 255. In both
cases, the address should be in the range 0 to 65535.
Also, you can use BASIC variables in POKE and PEEK
statements. Thus the commands

LET address=40000:LET v a 1ue=64:POKE address,va1ue

would result in the contents of address 40000 being
set to 64. You can see that the BASIC commands PEEK
and POKE are at the very heart of writing machine code
programs on our Amstrad computer. Without them, ue
wouldn’t be able to enter the bytes that make up the
programs into memory, and so we wouldn’t be able to
run the machine code programs.

Speaking of running machine language programs, how
can we actually get the CPU to execute the machine
code instructions once we have POKEd them into place?
The CPU will still be executing the BASIC Interpreter
program, so we really need a BASIC command that causes
the CPU to leave the Interpreter, execute a machine
code program that is resident at a certain address
within the computer memory and then return to BASIC.
Well, not surprisingly, there is a BASIC instruction
to do this. It is called CALL.

CALL
The BASIC Interpreter treats your machine code
programs as machine code subroutines. Just as in
BASIC, where you can have subroutines to perform
particular jobs, you can have them in machine code
programming, as we shall learn later in the book.
Suffice to say for the moment, that the CALL command
effectively tells the BASIC Interpreter to do a GOSUB

30

to the machine code program that you uant running.
Obviously, the Z80 doesn’t actually execute a BASIC
GOSUB instruction, but does the machine code
equivalent of it. The CPU must obviously be told of
the address in memory of the first machine code
instruction that it is to execute. This is done by
passing a PARAUETER to the CALL command. This
parameter is a whole number in the range 0 to 65535,
and it specifies the address of the first instruction
in your machine code program. For example, try typing
in the command below, then press ENTER.

CALL &BB18

This causes the CPU to execute the machine language
program whose first instruction is at address &BB18.
At that address, there is a ROM machine language
program which causes the machine to wait until a key
is pressed before going on. You might be able to think
of a use for this command in your BASIC programs.

This way of using CALL is the simplest way of
running a machine code program from BASIC; simply give
the CALL command the address of the machine code
program of interest and away we go. However, there are
a couple of disadvantages with this method.

(a) There’s no obvious way of passing information
from BASIC to the machine code program.

Cb) There appears to be no method of passing
information back to BASIC from the machine
code programs.

These two disadvantages are not terribly important
when we start learning machine code, but they become
very important as soon as we want to write machine
code programs that do jobs that we cannot do from
BASIC; in these situations, it’s often useful to be
able to tell the machine code program the value of
BASIC variables, and also useful to get information
back from the machine code programs into BASIC
variables. To do this, we simply use an extended
version of the CALL command. An example of this is

CALL 40000,3,4,5

This would call the machine language program at
address 40000 and would make the numbers 3,4 and 5
accessible to that program. A similar command is

CALL 40000 ,A % ,G % ,F%

This would make the values held in the 3 BASIC
variables A%, GZ and FZ. accessible to the programmer.
The values that we make accessible to the machine code
programs in this way are called parameters, and we say
that w e ’re PASSING PARAHETERS to the machine language
program when we do this. lie will have a detailed look

31

at hou the Amstrad BASIC Interpreter allows us to pass
parameters to and from our programs in Chapter 5. If
ue were to look at this subject now, w e ’d be jumping
ahead of ourselves a little bit. L e t ’s get back to
reviewing our BASIC commands.

Saving bytes on tape
Uhen we save our BASIC programs to tape, we use the
SAVE command in BASIC. Ue use a similar command to
save the bytes that make up our machine language
instructions to tape. The command we use is

SAVE filename,B,start,length,execution_address

Le t ’s examine each part of this command. The
filename is a string which will give the file on tape
its name. It will be a string constant, such as
"PROG” . The B is essential; this causes the computer
to save a specific area of memory to tape, rather than
just the BASIC program. The area of memory that ue
want saving to tape is specified by the start and
length parameters as follows.

start This is the address of the first byte of
memory that we want saving to tape,

length This is rather self-explanatory, and is the
number of bytes that we want to save on tape.

Both of these can be constants or can include
variables. They should both be in the range 0 to
65535. The final parameter is optional - that is, we
d o n ’t have to use it unless ue want to. The execution
address of the file is the address in the block of
memory saved that will be treated as the address of
the first instruction of the program if we RUN the
file. If this parameter is left out when we save the
file, and you later try and RUN the file, you’ll
simply reset the whole computer, just as if yo u ’d
pressed SHIFT-CTRL-ESC•

RUNning a file
This is the same as the RUN filename command in BASIC.
The computer searches for the file with the given
filename on the tape, and if it finds it loads it and
runs it from the execution address that was saved with
the file. Thus

RUN "fred”

will look for a file called "fred" on the tape and
attempt to load it in and run the machine language
program that it represents.

32

Loading a file
11.’s often more useful to be able to LOAD a file in to
the computer rather than load it in AND run it. Ue can
then modify the program if ue desire, and then run it
uith a CALL command. Or, if could be a piece of
machine code that is called from uithin a BASIC
program to do a particular job uith certain BASIC
variables that would be passed as parameters from a
CALL command. The version of the LOAD command that
u e ’re interested in is as follows;

LOAD fi1ename,address

The filename is the name of the file that u e ’re
looking for, and the address parameter is optional. If
ue omit the address parameter, then the file is loaded
to the address from uhich it uas written. If the
address parameter is provided, then the file uill be
loaded to this address. Thus the command

LOAD ’’FRED’’ , 40000

uill load the file ’’FRED” to address 40000. There is
one point to note about this LOAD command, and that is
that uhen using it files saved uith the B parameter
can only be reloaded into memory OUTSIDE that area of
memory available to BASIC. This means, to us, that the
file must be reloaded above the current HinEtl.
Problems can arise here, therefore, if you SAVE a file
uith HIIlEn set at one value, and try to reload the
file to the same address BUT uith HIMEn set higher. In
this case, you must provide the LOAD command uith an
address parameter that is above the current setting of
HinEtl, or change HI HEM. (Note that you cannot aluays
move machine language programs to different areas of
memory).

There are various uays available to us to enter
the bytes that make up our machine code programs into
the proper area of memory. The uay that I have used to
test the programs listed in this book is to put the
numbers that represent the machine language
instructions into a DATA statement, and then use READ
to get the values. They are then POKEd into memory. A
simple program that can do this is listed belou.

10 RESTORE 50
20 FOR 1=0 TO number:REH number is number of bytes
30 READ A$: POKE(address+ I),UALC”& ”+A $)
40 NEXT
50 DATA hexadecimal bytes representing

the machine code instructions.

Before using this program, y o u ’ll need to add a
line that sets up the variables ’address’ and
’number’. ’address’ is the address of the first byte
that you uant to POKE into memory, ’number’ is the

33

number of bytes that you want to put into memory. The
hexadecimal numbers in the DATA statement must NOT
have the prefix; this is added in line 30 of the
program. Adding the prefix in this uay means less
typing for you when you are typing that data in. Thus
the number 255 uould be represented in the DATA
statement as ”FF". Each number in the DATA statement
is separated from the others by a as is usual in
DATA statements. One advantage of placing the bytes in
a DATA statement is that they can be saved as part of
a BASIC program, and the DATA statement can be edited
in the same uay as any other BASIC line.

Uell, you'll be glad to knou that ue're just about
ready to examine some 280 Machine Language
instructions. Before ue do this, houever , I’ll
introduce you to uhat is quite possibly the most
important machine code instruction that you’ll
encounter. It enables us to return to BASIC uhen u e ’ve
finished running our machine code program. It has the
mnemon i c

RET

uhich is short for RETurn from subroutine, and this
instruction is the equivalent of the BASIC RETURN. Ue
said earlier on that the CALL instructions uas a bit
like a GOSUB; here’s the corresponding RETURN.

Houever, forgeting a RET in machine code can be
absolutely FATAL! A crash uill be the usual result.

34

Chapter 4
Registers at work

Dell, u e ’re nou ready to look at some machine code
instructions. It’s probably clear to you by nou that
ue cannot do much programming of the Z80 CPU until ue
can actually get numbers into the CPU registers, and
into the memory of the machine from the CPU. So, in
this Chapter u e ’11 examine the instructions that ue
can use to transfer 8 bit numbers betueen the memory
of the computer and the CPU registers, as uell as the
commands that ue use to transfer 8 bit numbers betueen
the different registers of the CPU. U e ’11 take a look
at the instructions that ue use to transfer 16 bit
numbers around the machine in a later Chapter.

As always in computers, there is a little jargon
to come to terms uith. Uhen ue are transferring data
from one register to another register or memory
location, the register from uhich the data is being
copied is called the SOURCE REGISTER. That place to
uhich the data is being copied is called the
DESTINATION REGISTER. Similar terms are used uhen ue
are moving data betueen registers and memory
locations. Ue say that ue are loading a register or
memory location from someuhere else. Indeed, the
mnemonic for these transfers in assembler language,
L D , is simply an abbreviation of the uord LoaD.

The designers of the CPU gave us many different
uays of handling transfers of data from place to place
in the computer, and also several different uays of
actually carrying out various operations, such as
addition, on data. The uays in uhich the CPU uses its
registers are called ADDRESSING 110DES and virtually
all instructions in the Z80 Instruction Set use one or
other of the Addressing nodes that u e ’11 discuss in
this Chapter.

The Addressing Hodes uill be examined uith regard
to the LD instructions, but they are applicable to
other instructions as uell, as ue shall later see.
From nou on u e ’11 urite our machine code programs doun
using mnemonics, for clarity. There uill be example
routines for you to enter into your Amstrad Computer
in later Chapters, and so the mnemonics that make up
these programs uill have to be translated into machine

35

code by using the Tables in the back of the book. So,
let’s get working on the Addressing nodes.

Register Addressing
This is probably the simplest addressing mode
available to us for transferring data betueen
registers. It is just the transfer of data from one
register to another register. An example of this
Addressing node is

LD A,B read this as load A with B

This ui 11 copy the number that is currently in the
B register into the A register. This makes the B
register the Source register and the A register the
Destination register.

A couple of points to note about this transfer:
the first is that the contents of the B register are
totally unaffected by the transfer operation. The
second is that the contents of the A register before
the transfer are, not surprisingly, totally lost.
There is a general uay of writing down a register to
register transfer command. This is

LD rl,r2 load rl with r2

where rl and r2 are any 8 bit register except the F
register . Each of the various possible transfers is
represented by a single byte in our machine code
programs. For example, the transfer

LD A,C load A with C

is represented by the number & 7 9 . There are many such
transfer commands, as you can see if you look at the
Tables in the back of the book.

These transfer commands are a bit like the BASIC
commands of the form

LET A=B

These are very useful, but we haven’t yet seen know we
can actually load a register with a particular number.
The BASIC command to do this is of the form

LET A=7

This sets the variable A to hold the value 7. Let’s
look at the addressing mode that enables us to do
this.

Immediate Addressing
This is another addressing mode. This enables us to
load an 8 bit register with a number between 0 and
255. The number that is to be placed in a register is

36

specified as a part of the command. So, this command
takes up too bytes in our machine code programs; the
first byte is used to specify the actual register that
ue want to use and the second byte specifies the
number ue uant to put in that register. The general
form of these commands is

LD r,n load r uith n

where r is an 8 bit register, uith the exception of
the F register, and n is the number that ue uant to
put in that register. As a more specific example,

LD A,23

uill put the number 23 into the A register. This is
represented in machine code by the too bytes

3E 1?

Note that I ’ue put ’2 3 ’ into hexadecimal
representation. The first byte, 3 E , represents the
actual LD A,n instruction and the second byte
represents the number that ue uant to put into the
register. These tuo bytes are given special names. The
first byte that specifies the actual operation to be
carried out by the CPU is called the INSTRUCTION CODE
or OP CODE. The latter is short for OPERATION code.
The second byte above is called the OPERAND BYTE.
Using Immediate Addressing, therefore, ue can actually
put particular numbers in the CPU registers.

So far, u e ’ve only dealt uith data transfers
involving the CPU registers. Ue haven’t yet moved the
data between the CPU registers and the memory of the
computer. U e ’11 nou look at the addressing modes that
enable us to transfer data between the registers and
the memory of the computer.

Register Indirect Addressing
Things nou begin to look a little more complicated,
but the instructions that use this addressing mode are
very pouerful. Data is transferred between the CPU
registers and memory using the H L , BC or DE register
pairs to tell the CPU where the data is to be
transferred to. L e t ’s take a closer look at this. Ue
have to set up the register pair involved uith the
address of the location in memory that ue uant to look
at, and u e ’11 see hou ue can write data to these 16
bit register pairs later in the book. The general
forms of these instructions are as follows

LD A ,(rr)
LD (rr) , A
LD CHLO.n

Here, rr is one of the 16 bit register pairs that are

37

listed above, and n is an 8 bit number. There are a
couple of points to look at uith regard to these
i nstruct i o n s .

(a) The brackets surrounding the register pair
indicates to us that ue are interested in the
CONTENTS of the register pair; this is true in
all 280 assembler instructions. Whenever ue
see the brackets, remember that ue are
interested in the contents of the register
pair or memory location in the brackets.

(b) The HL register pair is already shooing itself
to be more versatile than the other 16 bit
register pairs in that ue can load a memory
location uhose address is in the HL register
pairs directly uith an 8 bit number. Uith the
other register pairs being used in this uay it
is necessary to put the number in to the A
register first.

This method of using the HL register to directly
load a memory location uith a number is given a
special name. It’s an addressing mode called, uait for
it... Register Indirect Immediate Addressing. You can
probably see that the Register Indirect part of the
name comes from the fact that ue use a 16 bit register
to hold the address of the memory location of
interest, and the Immediate part of the name comes
from the fact that u e ’re using a number in the
command, just as in Immediate addressing. The Register
Indirect Addressing commands are all represented by 1
byte in our machine code programs. The

LD (HL),n

command requires tuo bytes in machine code programs; a
one byte opcode and a one byte operand.

Using the instructions that u e ’ve looked at so
far, let’s see if ue can urite a small piece of
machine code to transfer the contents of memory
location 40000 to location 40001. Do n ’t forget that
all the numbers belou are in hexadecimal. Thus, 40000
is hexadecimal is &9C40 and so 40001 is &9C41. Lets
first look at the series of machine code instructions
that u e ’11 use to do this job. They’re listed belou
along uith the bytes that u e ’d have to enter in to the
computer.

38

LD H , &9C 26 9C load HL uith 40000
LD L , &40 2E 40 note that 40000 is &9C40
LD A ,(H L) ?E load A uith the contents

of location 40000
LD H , &9C 26 9C load HL uith 40001
LD L , &4 1 2E 41 40001 = &9C41
LD (HL) , A 7? load location 40000 uith

the contents of A
RET C9 return to BASIC

Let’s look at the role played by each of the
instructions. The first too instructions put the
address of location 40000 into the HL register pair.
The third instruction loads the A register from the
location addressed by the HL register pair. Ue then
set the HL register pair to hold the address of
location 40001, and ue then transfer the contents of
the A register to the location addressed by the HL
register pair, nou location 40001. The final
instruction, RET, brings us back to BASIC.

The BASIC program belou uill actually enter into
the computer the bytes that make up this machine
language program.

10 MEMORY 39999
20 FOR 1=0 TO 10
30 READ A$: POKE (40002+ 1) ,UAL(+ A$)
40 NEXT 1
50 DATA 26,9 C ,2 E ,, 40,7E , 26,9C , 2E ,41 ,77,C9

Line 10 reserves the memory from location 40000
onuards. The bytes that make up the programs are then
POKEd into memory from location 40002 onuards.
Remember that u e ’re using locations 40000 and 40001
for data for our machine code program. To use the
program that the above program enters into memory,
POKE a suitable value into address 40000, then CALL
40002, then use PRINT PEEK (40001) to see if the value
has been transferred from location 40000 to location
40001. This might seem a trivial example, but shous
the basic principles of entering a small machine code
program into the Amstrad memory. It’s clear from the
above that it uould have made things a little easier
if ue could have loaded the A register DIRECTLY from
the memory locations, uithout putting the address of
the location into the HL register pair first. Uell,
there is an addressing mode that allous us to do this.

Extended Addressing
These commands are of the form

LD A,(nn) load A uith the contents of nn
LD Cnn),A load nn uith the contents of A

uhere nn is a 16 bit number that represents the
address of a memory location in the computer. Typical

39

i n s t r u d i on
f o i l o u s ;

s using this addressing

LD
LD

A ,C40000)
C 4000 1) , A

These too commands could
example program that u
remember, the 16 bit number
the above command has a
the command requires three
opcode goes into memory f
too bytes representing the
most obu i ou s u a
tuo byt es th at re
Byte fi r s t . Th us ,

LD A , (40000

might be rep resen

3 A 9C 40

houeuer th is i s
expects to f l nd
i nstruc t ions The
put i nto memor y
represe nt a t ion of

bui ous1y
e've seen
s are held
single byt
bytes to r
irst, but
address i
this uou1

e address

the
a uay in
addresses

oh i
to

3A 40 9C

mode are as

be used i n the
ab ow e . As you

i n tuo bytes ; as
e f or i ts opcode,
epr esent i t . The
hou do u• e put the
nto memory? The
d be to ur i te the

u ith the High

ch the Z80 CPU
be used in these
1i ke th i s to be

irst. The correct
ould thus be;

This is a rather important point in machine language
programming to remember; in a situation uhere a 16 bit
number is to be stored in too memory locations in the
computer, the loo byte of the number is stored in the
lowest numbered memory location and the high byte of
the nu mber i s st or ed i n th e hi gher nurnber ed memory
1 oc at i on . Th i s may seem a 1i tt 1e pecu 1i ar , bu t the CPU
man ages to uor k th ings ou t . A 11 ue hav e to re me mber i s
to put the tuo byte s tha t m ake up the nu mb er i nto the
memory 1 ocat i on s in the cor r ec t or der .

The Lou byt e of any num CDs) > an d th e hi gh by t e , can
be uork ed ou t us i ng the be 1ou smal 1 pr og r am .

10 INPUT number
20 A*=HEX*(number)
30 sp*=STRING*(4-LEN(A*)., ”0 ”)
40 fl$=sp$+fi$
50 PRINT ’’High byte is ; LEFT*
60 PRINT "Lou byte is ” ; RIGHT*

S i mp iy run the prog r a
that you u i sh to CO
One po i nt to re memb er
this ,uher e the C P U i
M U S T be en ter ed > ev en
use i n the comm and i s

and enter the deci
uert to an upper and
is that in instruc
expecting an address
if the address that u
less than 255 in valu

mal number
1ouer byte.
t i ons 1i ke
, too bytes
e want to
e . Thus the

40

High byte of 255 is 0 and the Lou byte is &FF . The
instruction LD A,(&FF) uould thus be uritten as the
beloo series of bytes;

3A FF 00

The CPU is expecting a tuo byte address in this
instruction; if you forget it, a crash is often the
result, or a peculiar result from your program. The
reason for this is that the CPU will take a byte from
the next instruction to ’’make the numbers u p ” , thus
leading to the rest of the program being totally
misunderstood by the CPU!

Incidentally, it's easy to uork out exactly uhat
the value of the address is uhen it’s represented in
this uay in the computer memory. Simply uork out

value = Cvalue held in high numbered byte) * 256
+ Cvalue held in lou numbered byte)

Thus, if location 40000 and 40001 are knoun to be
holding a 16 bit number, and location 40000 is holding
the value &A0 and location 40001 is holding &6F ,

value = &6F * 256 + &A0
= 1 1 1 * 256 + 160
= 28416 + 160
= 28576

Let’s nou return to the addressing modes. The
opcodes and the operands for the commands discussed
above are as follows;

LD A ,C n n) 3A LB HB
LD Cnn),A 32 LB HB

uhere LB and HB stand for the lou byte and high byte
of the address nn respectively.

To see a concrete example of this instruction in
use, the three instructions

LD H ,&9C
LD L ,&40
LD A ,C H L)

could be replaced by

LD A , C &9C40)

uhich uould be represented by the bytes

3A 40 9C

On executing this command, the A register uould be
given a copy of uhatever data is in location &9C40 of

41

the computer memory. Similarly,

LD (. &9C4 1) , A

would copy the contents of the A register into
location &9C41.

Labels in Machine Code
Uhen ue are writing programs in Assembler Language, it.
often gets tedious to have to remember the exact
locations in memory that u e ’ue used for storage. To
make life easier for us, ue often giue commonly used
locations special names of our oun choosing. These
names are called LABELS. Thus ue might call location
40000, (&9C40) ’’FRED” . Ue could thus urite

LD A,(FRED)

As long as ue remember to put the actual address in
uhen ue hand assemble the code, u e ’re alright. The use
of these names, especially if the names have some
releuance to the data that u e ’re putting in these
locations, can make an assembler listing more
readable. If you eventually get an Assembler program
for the computer, y o u ’ll be able to use labels uith
th i s program.

Indexed Addressing
Remember the IX and IY ’’feet”? Ue 1 1 , this addressing
mode makes use of these registers. As uith all the
addressing modes that u e ’ve seen so far, the Indexed
Addressing mode is used by several different types of
instruction, not just the load instructions. The
Indexed Addressing instructions that ue use to
transfer 8 bit numbers are of the belou form;

LD r , (IX + d)
LD (IX + d) , r
LD r ,(IY+d)
LD (IY + d) , r

uhere r is, as usual, one of the 8 bit registers (uith
the exception of the F register), d is an 8 bit number
represented in T u o ’s Complement representation. It in
called the DISPLACEflENT byte, and is thus a number
betueen -128 and +127. To see the significance of the
displacement byte, look at the belou diagram that
represents an area of memory. Assume that the IX
register has already been loaded uith the address of
the memory location that’s labeled "tablestart” on the
dlagram.

42

-1 tablestart 1

0 tablestart

+ 1 tablestart+1

+2 tablestart+2

LD A,(IX+2) copies the contents of location
"tab 1estart + 2 ” into register A

The displacement byte is thus a value that is added to
the address that is held in the Index Register to give
the actual address of interest. These Indexed
addressing commands are thus very useful for accessing
data that is stored as "tables” of bytes in memory.
These instructions have a 2 byte opcode, and a further
byte that represents the displacement byte. Thus the
1 nstruct i on

LD A ,(IX + 2)

is coded as

DD 7E 02

02 is the displacement byte, and the bytes DD and 7E
are the opcode for this instruction. To load the A
register from memory location "tab 1estart-1” , ue'd
have to make the displacement byte equal to -1. All
that ue need to do is to put the displacement byte in
Tu o ’s Complement representation. As the T w o ’s
Complement representation of -1 is &FF , the command

LD A ,CIX-1)

is coded as

DD 7E FF

The opcodes for the various Indexed Addressing
instructions will be found in the back of the book.

You may remember that it was possible to load a
particular number into a memory location whose address
was held in the HL register pair. Uell, something
similar is possible with the Index Registers. It is a
new Addressing llode, called Immediate Indexed
Address i n g .

Immediate Indexed Addressing
This simply loads a memory location whose address is
specified by the contents of an Index Register and the
displacement byte. The general form of these
instructions is:

43

LD CIY+d),n
LD (I X + d) , n

uhere n is an 8 bit number and d is the displacement
b/te. An example is the instruction

LD (IX + 2) ,&FE

uhich is coded as

DD 36 02 FE

This instruction has a too byte opcode, and then too
extra bytes for the displacement byte and the number
that ue uant to load in to that memory location
specified by IX and the displacement.

That just about completes this survey of 8 bit
data transfers and the Addressing tlodes associated
uith them. In later Chapters u e ’11 look at 16 bit data
transfers, to complete the picture. However, ue can
nou go on to look at the complicated version of the
CALL command from BASIC. Remember hou it enabled us
to make BASIC variables accessible to our machine code
programs? Uell, the reason I didn’t cover this command
in the last Chapter uas that to understand hou it
uorks, ue needed to knou something about the Index
Registers and hou they uo r k . Ue nou knou enough about
this, so in Chapter 5 u e ’11 look at this extended
version of the CALL command to see hou ue can pass
parameters to our machine code programs.

44

tlnemon i c Bytes T i me Effect on flags
Taken C Z P/V S H H

LD register,register 1 4 - - - - -
LD register.number 2 7 _ _ - - -

LD A , Caddress) 3 13 - - - - -

LD C address),A 3 13 - - -

LD reg i st e r ,CHL) 1 7 - - - - -
LD A, CBC) 1 7 - - - - -
LD A , CDE) 1 7 - - - - -
LD CHL),reg i ster 1 7 - -
LD CBC),A 1 7 - - - -
LD CDE) , A 1 7 - -

LD register,CIX + d) 3 19 - - - - -

LD register,CIY+d) 3 19 - ~ - - -
LD C IX + d) ,register 3 19 ~ - - -
LD CIY+d),register 3 19 “ “ “

LD C HL) ,number 2 10 - - - - - -
LD C IX + d) ,number 4 19 - ~ - - -
LD CIY + d) , number 4 19 -

FI ags notat i o n :

i nd i cates flag i s a 1 tered by operation
0 indicates flag i s set to 0
1 indicates flag i s set to 1

indicates flag i s unaffected

Table 8 bit data transfer instructions

45

46

Chapter 5
Passing Parameters to programs

In Chapter 3, I suggested that you could use a special
version of the CALL command to pass the values held in
BASIC variables over to your machine language
programs. In this Chapter u e ’11 examine this use of
the CALL command to see hou ue can pass numbers
betueen BASIC and Machine language programs.

Although it’s possible to pass REAL numbers, such
as 1.234 or 1E7 over to machine code programs, I will
not cover this subject here. Instead, I uill
concentrate on passing Integers and Strings over to
machine code programs, and on passing Integer values
back to BASIC from machine code programs.

There are three broad classes of parameters that
can be passed over in the CALL statement. You can, of
course, mix up these classes of parameter in a single
CALL statement. The three classes are;

Ca) A number, such as 100 or 2, or an Integer
variable name or an integer expression. The
value passed over to the machine code program
must be in the range of numbers that can be
represented as a T u o ’s Complement, 16 bit
number. An example of this type of CALL is
CALL 40000,A% where 40000 is the address of
the routine and A% is the parameter.

(b) An Integer variable name prefixed uith the
symbol, such as @A% This, as you uill soon
see, enables us to pass Integer values BACK to
BASIC variables from machine code programs.

(c) A string variable name prefixed by such
as @ A $. This is hou string variables are
passed over.

Hou, hou do ue get access to these parameters that
are passed over in the CALL statement from uithin our
machine code program? Dell, the IX register "foot" is
set up by the BASIC Interpreter to hold the ADDRESS of
the lou byte of the LAST parameter that uas passed
over in the CALL command. The belou diagram shows this
for the CALL 40000,para 1,para2,para3 command. The
parameters are all passed over as two byte values.

4?

(IX+4)

(IX+2)

(IX+O)

It might seem a little peculiar for the IX
register pair to point to the last parameter that uas
passed over, but yo u ’ll soon get used to it. It’s
clear, therefore, that ue can use Indexed Addressing
mode instructions to get values from the above memory
locations into CPU registers. The area of memory that
is p;ointed to by the IX register is called a
PARAUETER BLOCK; the name is fairly descriptive, as
it’s an area, or block, of memory that holds
parameters!

The actual contents of each entry in the parameter
block corresponding to the parameter passed over in
the CALL statement depends upon the class of parameter
involved. Ue saw above that there were three different
classes of parameter in which u e ’re interested; let’s
now take a closer look at each of these classes.

Integer variables and Numbers
An example of this type of parameter is A% or 5.

On entering your machine code program, then A
register will contain the number of parameters that
have been included in the CALL command which caused
the program to be entered. Therefore, if you want this
information, d o n ’t forget to store it away before you
start using the A register!

For this class of parameter, each two byte entry
in the parameter block will contain a 16 bit, Tuo’s
Complement number that corresponds to the parameter
that uas passed over. Thus if the parameter in the
CALL statement uas the number "54", the appropriate
entry in the parameter block would be a tuo byte
number with the value 54. The numbers are stored in
the parameter block with their lou bytes first. Thus,
for the command CALL 40000,2,H% would generate the
below parameter block;

high byte of " 2 "

low byte o f “ 2 "

high byte o f H%

low byte of H%

(IX+3)

(IX+2)

(IX+1)

(I X + O)

48

Thus to load the value of the variable HZ into the HL
register pair ue might use the belou instructions

Examp 1e 1 :

LD L ,(I X + 0)
LD H , CIX+ 1)

Easy, isn’t it? A useful trick to remember is that if
you only uant to pass numbers to your machine code in
the range 0 to 255, you only need to load a register
from the lou byte of the appropriate parameter block
entry.

Variables prefixed with @
If a variable name is prefixed by the @ symbol, such
as

CALL 40000, @Hk.

then the too byte entry in the parameter block that
corresponds to this parameter is the ADDRESS of the
variable in the computer memory. Thus, if the
parameter block entry for @H% had the value 20000 it
indicates that the variable HZ is stored at address
20000 and NOT that the variable holds the value 20000.
So, if HZ=2, and ue issued a CALL statement containing
QHZ, the resulting parameter block would point to the
address of the HZ variable in the following fashion.

low byte

One nice thing to note about the use of is that it
enables us to actually alter the value held in a
variable from within a machine code program and then
pass the altered value of the variable back to BASIC
where it can be used by the BASIC program. How do ue
do this? Ue 1 1 , we must write our machine code program
so that it puts the value that we uant returning in
the BASIC variable into the memory locations given in
the parameter block entry. Thus, if ue uanted to set
HZ above to the value 7, w e ’d load location 20000 with
7 and 20001 with 0 before returning to BASIC with the
RET statement.

The BASIC Interpreter is usually quite forgiving
if you use a variable without first setting it to a
particular value. It usually assumes the variable to
be set to zero, as you probably know. However, in this
use of variables, the variable must have been set up
in some way. This is because the BASIC Interpreter

49

needs to pass into the parameter block the address of
the variable concerned; if the variable hasn’t been
previously used, the Interpreter obviously wo n ’t be
able to find an address for it! Thus any variable that
is used with the character should be initialised
in some way before use. If ue are passing a parameter
into the program in this variable then all will be
well, as y o u ’d set the variable to a value anyway. If,
however, y o u ’re using the variable to return a
value from machine code to BASIC, and y o u ’re NOT
passing a value over to the machine code program, then
it’s a good idea to set the variable to 0 first. If
you fail to do this, y o u ’ll get an error message.
L e t ’s see an example of the use of in a program.
Once the below program is entered,

CALL 40000,Q & X ,v a 1ue

will set the variable A% to the number passed over as
the second parameter. The second parameter should be
less than 256 in value. A% must be set to 0 before
use .

Examp 1e 2:

LD A, CI X + 0) DD 7E 00 get second parameter
LD L ,(IX + 2) DD 6E 02 get address of the
LD H , (I X + 3) DD 66 03 hX var i a b 1e
LD (HL) , A 77 set A% to value
RET C9 return to BASIC

The below BASIC program will POKE the bytes in to
memory at address 40000.

10 riEI-IORY 39999
20 FOR 1=0 TO 10
30 READ A $:POKE C40000+1>,UALC”& ”+A$)
40 NEXT I
50 DATA DD,7E,00,D D ,6 E ,02,D D ,66,03,7?,C9

To see it in action, run the above program and then
type in

A% = 0 : CALL 40000 , @A% , 4 : PR I NT A*2

You should get the value 4 printed to the screen. Try
the routine out with other integer variables and other
values. Again, remember that the variable must have
been previously used so that the BASIC Interpreter
knows where to find the address of the variable.

Do you see how the program works? The first
instruction gets the low byte of the second parameter
into the A register. Ue then get the next parameter,
which is the address of the integer variable used,
into the HL register pair. Finally, we use a Register
Indirect Addressing mode instruction to put the
correct value into the variable. (LD (HL),A is used

50

here). Finally ue make the return to BASIC with a RET
i nstructi o n .

Passing Strings
Uhereas ue can pass numeric constants, such as ”1” or
”3000” over to machine code programs, you can't pass
over string constants, such as ”UUUU". Thus,

CALL 40000,@A$

is 1ega1, but

CALL 40000,@ ”fred”

is not. Also, the command CALL 40000,A$ uill generate
a ’’Type Mismatch” error. However, w e ’ve already said
that the parameters are stored in the parameter block
as a series of two byte integers. How can ue store
strings in the parameter block, when a string can be
up to 255 characters, and hence 255 bytes, in length?
Ue 11, the answer is indicated to us by the fact that
strings can only be passed over to a machine code
program by prefixing their variable names with the
symbol. Uhen ue used this symbol above, with a numeric
variable, it placed in the parameter block an entry
representing the address in the computer memory of the
variable. A similar situation arises in this case.
Houever, the address placed in the parameter block is
NOT the address of the string itself. It is the
address of another block of memory that gives details
about the string. In fact, it describes the string,
and for this reason is often called the STRING
DESCRIPTOR BLOCK, or just the STRING DESCRIPTOR. L e t ’s
take a closer look at this area of memory.

String Descriptor Block
The below diagram illustrates the role of the string
Descriptor Block.

The role of the Descriptor is thus to

(a) tell us the length of the string. If the
length entry in the Descriptor block is equal
to 0 then the string is "empty".

51

(b) tell u b where in the memory the bytes that
represent the characters in the string can be
found. The address held in the last two bytes
of the Descriptor Block is stored low byte

ess of the first

access the string

f i rs t , and i s the
character of the str ing

As an example of how we C;
descr i ptor b 1o c k , let ’ s wr ite
that performs the ro 1 e of the]
One thing to note i s tha t
mach ine code program us i ng th e
been initiali sed in some wa y>
I nter preter w o n ’t be ab 1 e to gi>
the address of the Descr i pt or
examp 1 e .

E'nter the bytes that mak:e
progr am at address 4 0 0 e 10 .
sort the bytes o u t , us i ng the; T
the boc
used in
number
of byte?
15 by t<
read FOR

>k . YOU ican use a BASI C program
Ex am pie 2 above, but remember
i n the FOR ... state ment to th
; in the program. To help you he
fS i n th>e program , and the FOR s
: I= 0 TO 14 .

BASIC L E N O function,
any string passed to a

symbol must have
or otherwise the BASIC

ve the parameter block

up the machine code
I'll leave it to you to
ables in the back of

similar to that
to change the
e actual number
r e , there ar

Example 3:

LD L , CIX +0) get the address of
LD H , CIX + 1) the str ing descript or
LD A , (HL) get str ing length
LD L , c IX +2) get the address of
LD H , c IX +3) the i nte ger var i a b 1e
LD CHL) , A 1 oad the integer va r i a

with the string length
RET retu r n to BASIC

Ue use a CALL of the form

CALL 40000,@ A % ,@A$

Af.=0 . Obviously, any stri
variable can be used. Both
legal uses of the CALL.

i rst set up A$ and set
ng var i ab 1e and i nteger
the be 1 ow examp les are

A% = 0 : A$= "FRED” : CALL 40000 , @A?i ,@A$
LEZ = 0 : b$=’’joe” ; CALL 40 000 ,@LEH,@b$

In both cases, the integer variable will hold the
length of the string after the CALL has been executed.

52

a
 (
i>

That completes this review of the parameter
passing abilities of the Amstrad Computer. As I
mentioned, ue haven’t covered passing real numbers to
machine code programs, but I ’m sure y o u ’ll agree that
the facilities offered that u e ’ve examined are
extremely powerful. Also, they are nice and easy to
use, so yo u ’ve got no excuse for not using them in
your programs!

53

54

Chapter 6
8 bit counting

In Chapter 4 ue examined the ways in which ue could
transfer data between CPU registers and the computer
memory. In the last Chapter ue saw how we could use
these instructions to write simple machine code
programs. However, the programs we saw simply shuffled
data around; they didn't do any arithmetic on any of
the data they were working on. So, in this Chapter
w e ’ll look at the instructions that are available to
us for 8 bit arithmetic and counting operations. U e ’11
also look at that ’’odd man out” amongst the 8 bit
registers of the CPU, the F register. In fact, that’s
where w e ’ll start.

The F Register
The F, or FLAG, register serves to indicate to the CPU
that certain events have happened; all of these events
are concerned with the arithmetic operations of the
CPU, irrespective of whether these are 8 or 16 bit
operations. Ue NEVER treat the F register as just
another 8 bit register; in fact there are no data
transfer operations that we can do with the F
register. Ue can only PUSH it on to the stack,
nothing else.

Instead of treating the F register like a byte, we
look at it as 8 separate bits, each bit representing a
certain piece of information. These are known as FLAG
BITS, or just FLAGS. Although there are 8 bits in the
register, only 6 of them actually are used by the CPU.
I assume that the Z80 designer ran out of ideas of
what to do with the other 2 bits.

There is a little jargon here to do with bits that
are used as flags. Ue say that if a flag bit is set
to a value of 1 the flag is SET. If it is set to 0,
then the flag is CLEAR or RESET. After an instruction
has been executed by the CPU, the flags that have been
affected by that command, if any, are updated by the
CPU. Not all the commands available to the CPU affect
the values of flags; for example, the load
instructions that w e ’ve already seen d o n ’t alter any
f 1 ags at all.

55

Uhat the Flags stand for

The belou illustration shows how the flag register is
arranged.

Bit 7 6 5 4 3 2 i 0
Name S Z X H X P/V N C

The significance of each bit will be exp 1 a i ned
shortly. Tuu t h i ngs , though, spr i ng to our i mmed i ate
notice.

(a) Bits 3 and 5 are given the name ”X". These
have no relevance whatsoever to the
programming or behaviour of the CPU. "X" is
often used in computer circles to designate
’’Don ’ t care ’’ !

(b) Bit 2 has a two letter name; this is because
it is used as a different flag by different
instructions. That is, it means one thing when
some instructions are executed and another
thing when others are.

The C Flag

This is also known as the CARRY flag. If you think
back a little way, y o u ’ll remember that 8 bit numbers
can be in the range 0 to 255 for 8 bit numbers and 0
to 65535 for 16 bit numbers. Look at the below binary
addition;

11111111 Remember that in binary
+00000001 1 + 1 = 0 with a carry of 1

1 0 0 0 0 0 0 0 0

However, only the 8 zeros are represented in the
register; there is no room for the lone 1. Thus, if we
were to now inspect the register w e ’d find the answer
0 instead of the correct answer 256. This is simply
because you cannot represent the number 256 on 8
"fingers” . Uhen the accuracy of a result is lost in
this way we say that we have an OVERFLOW problem. Uhen
such a problem is encountered by the CPU, and a "ninth
bit” is returned, the "ninth bit” goes into the Carry
flag of the F register. A similar problem can occur in
subtraction problems, such as 200 - 201. Here the C
flag is set to 1 if the subtraction requires the use
of a carry from the 11SB of the A register. The C flag
is thus vitally important in Z80 arithmetic
operations; it’s so important, in fact, that w e ’ve
been given two commands that enable us to directly
manipulate the C flag. These are

SCF with opcode &37
CCF with opcode &3F

SCF stands for Set Carry Flag, and on execution this
instruction will set the C flag to 1. CCF stands for

56

Complement Carry Flag and on execution will set the
carry flag to it’s opposite state. That is, if the C
flag is set to 1 when the instruction is executed it
will be altered to 0, and if it is set to 0 when the
instruction is executed it will be altered to 1.

The N Flag

This is called the SUBTRACT flag. It is used mainly by
the rather special BCD arithmetic instructions that we
shall encounter later in this Chapter, and indicates,
not surprisingly, that the last instruction was a
subtraction when this flag is set!

The H Flag

This is called the HALF CARRY flag, and indicates that
a carry or borrow operation has been carried out to or
from the 5th bit of a A register. It is used in BCD
ar i thmet i c .

The P/V flag

This is the two purpose flag in the flag register. It
is called the PARITY/OVERFLOU flag. L e t ’s look at each
of it’s roles in turn.

Parity

I ’m sorry about all these new terms; this is a concept
that is involved in what are called the LOGICAL
operations of the CPU. U e ’11 look at these in greater
detail in a later section. If a byte has an odd number
of bits in it set to 1 then the byte is said to have
ODD PARITY, and if it has an even number of bits in it
set to 1 it is said to have EVEN PARITY. If a byte has
odd parity then the P/V flag will be set to 0,
otherwise it will be set to 1. As an example of
pari t y ,

0 1 1 0 1 1 1 1 parity is even
0 0 0 0 0 0 0 1 par i ty i s odd

The P/V flag is ONLY used as an indicator of the
parity of a byte when logical operations have been
performed on the byte.

Overf1ow

This use of the flag is important when we are dealing
with T w o ’s complement arithmetic. It indicates that
the addition of two positive numbers represented in
two’s complement representation has given rise to a
NEGATIVE number! This is clearly not possible, and
results from, for example, the sum being greater than
12? for 8 bit T w o ’s Complement numbers and 32767 for

5?

16 bit, Tuo’s complement numbers. It also indicates
uhen the addition of too negative Tu o ’s complement
numbers have given rise to a positive number; again
not possible. Either of these conditions is signaled
by the P/V flag being set to 1.

The Z f 1ag

This is called the ZERO FLAG and is probably the most
uidely used of all the CPU flags. It indicates whether
or not the result of a particular operation was zero.
The result being tested should be in the A register,
and so the Z flag really tests whether or not an
operation left zero in the A register. Uhen the result
is zero, the flag is set to 1. Uhen the result is NOT
zero, the flag is set to zero. This latter point can
cause some confusion!

The S Flag

This is the SIGN FLAG and serves to signify the sign
of the result of an operation. It is effectively a
copy of the NSB (Host Significant Bit) of the A
register, and so in accordance with T u o ’s complement
notation will be set to 1 if the result is negative
and 0 if the result is positive. This flag,
therefore, just gives us the status of bit ? of the A
reg i ster.

Hou are they used?

In BASIC ue can have program structures such as

IF A=2 THEN ...

Uell, in machine code programs ue can have something
very similar. Ue use the status of different flags, in
conjunction with some instructions that u e ’11
encounter later, to form these commands. The only
difference is that the instructions after the machine
code equivalent if IF ... THEN must be the machine
language equivalent of GOTO or GOSUB. The machine code
equivalents of these are JP and CALL respective1y . DO
NOT get this CALL mixed up uith the BASIC command CALL
that u e ’ve already encountered. JP simply stands for
Jump, and u e ’11 take a much closer look at these
instructions in Chapter 8. For nou, u e ’11 say that ue
use the flags to decide whether or not ue make a JP or
CALL. For example, the assembler equivalent of

IF A=0 THEN GOTO 12000

JP Z , 12000

This machine code instruction means; if the result of

58

the last instruction uas zero, jump to address 12000
uithin the computer memory.

This jump instruction is an example of a class of
instructions that are called CONDITIONAL instructions;
these instructions are only executed if a specific
condition is met.

Houever, g e ’re getting ahead of ourselves here;
let’s look at the instructions that ue can use to
carry out 8 bit counting and arithmetic operations.
Before ue leave flags, remember that the effects of
various instructions on the flags are indicated on the
various Tables of instructions scattered through the
book .

Counting with 8 bits
The easiest arithmetic operation that I can think of
is simply to add or subtract 1 from a number. The CPU
can do this job very easily, and u e ’11 nou look at the
instructions used to do this.

Counting up

To increase the contents of an 8 bit register by 1 ue
use the command

INC r

uhere r is an 8 bit register. Thus a typical
instruction might be INC A. This uill increase the
value of the A register by 1. Thus if the A register
uas containing 4 before the INC A instruction, it
uould be holding 5 after this instruction. The command

INC rr

does the same job for the register pairs. More details
uill be given in Chapter 8 uhen ue discuss the 16 bit
instructions. Uhen ue are using these 8 bit arithmetic
instructions, ue can use many of the addressing modes
that ue looked at in Chapter 4; take the use of
Indexed Addressing as an example.

INC (IX+d)
INC CIY+d)

are both legal instructions. Ue specify the address of
the memory location of interest in the Index Registers
uith the displacement byte, and then the execution of
the above instructions uould lead to the contents of
that particular byte of memory being incremented by 1.
Ue can use the HL register to specify a memory
location, as uell. Thus,

INC CHL)

59

increments the contents of the memory location
specified in the HL register pair. To give an example,

LD H L ,40000
LD A , 0
LD (40000) , A
INC (HL)
RET

uill result in the memory location 40000 containing
the ualue 1 instead of the value 0 uith which it uas
originally loaded. Remember that the brackets indicate
that the instruction u e ’re executing refers to the
contents of the ADDRESS specified by the register
pair, not the register pair itself. Example 4 shows a
simple program that uses the INC A instruction to
print all the available characters in the Amstrad
character set to the screen. In a later Example,
u e ’11 see a program in which the actual printing to
the screen is also done from machine code!

The assembler language code is;

Example 4:

LD L, C I X + 0)
LD H , (I X + 1)
LD A ,(HL)
INC A
LD (H L),A
RET

It ’s very simple; ue simply get the address of an
integer variable, get the lou byte, increment it, put
it back and then return to BASIC. Ue could have used
an INC (HL) instruction, that would have replaced 3 of
the above instructions. The BASIC program to load the
machine code bytes and CALL that above program is
shown below. The CALL statement has the same effect as
LET A"/.= A”; + 1 .

10 MEMORY 39999
20 A % = 31: REM set the variable up
30 FOR 1=0 TO 9: REM put the machine code in memory
40 READ A $:POKE (40000+I), V AL (’’ & ” + A$)
50 NEXT I
60 :
70 CALL 40000, & A : R E M make the call
80 PRINT CHR$(A°x) : REM print the character
90 IF A7.<256 THEN GOTO 70
100 DATA D D , 6 E , 0 0 , D D , 6 6 , 0 1 , 7 E , 3 C , 7 7 , C9

The alternative version of the assembler listing given
above, but using INC (HL) instruction, is:

60

LD L ,(I X + 0)
LD H , C I X + 1)
INC CHL)
RET

You might try to convert these assembler instructions
into machine code bytes.

One thing to note about INC instructions is that
it is possible to get back to zero by repeatedly
incrementing a register or memory location. This
isn't as mysterious as it sounds. Remember when ue
discussed the carry flag? Uell, incrementing a
register that contains the value 255 uill set the
lower 8 bits of the register to zero. This uill
obviously set the contents of an 8 bit register to
zero, as w e ’ve already seen.

Counting Down

The instructions for counting down with a register or
memory location are analogous to those that u e ’ve just
examined for counting up. So, the belou instructions
are all legal ones for counting doun.

DEC r
DEC rr
DEC IX
DEC I Y
DEC CHL)
DEC C IX + d)
DEC C I Y + d)

Note here the DEC IX and the DEC IY instructions.
There are, of course, INC IX and INC IY instructions
as uell. The DEC instructions all reduce the value
held in the register or memory location by 1. DEC can
be thought of as standing for DECrease or DECrement.
As an example, the belou short program uill decrement
the contents of location 40000 by 1.

LD A,(40000)
DEC A
LD < 40000) , A
RET

Just as you can get to zero by repeatedly incrementing
a register or memory location, you can achieve a value
of 255 by repeatedly decrementing a register. As soon
as the register contains the value 0, a further DEC
operation uill leave the value 255 in the register.
This can be quite a useful programming trick under
some circumstances.

Let’s now go and look at how the INC and DEC
instructions affect the CPU flags. These are the first
instructions that u e ’ve met that actually alter the
flags in any uay.

61

Effect, on the f l ags

The 8 bit INC and DEC instructions affect most flags;
however, the 16 bit register pair INC and DEC
instructions DO NOT affect any of the flags. This can
be extremely frustrating, as it means that ue have to
USe extra instructions to see if the register pair has
reached 0. Uhether this omission uas an oversight on
the part of the CPU designer, or an attempt to
undermine the sanity of programmers, ue ' 1 1 never knou.
The only important flag that is NOT affected by the 8
bit. INC and DEC instructions is the C flag. The notes
given belou, therefore, only refer to the 8 bit
i nstruct i o n s .

Sign Flag

This is set if bit 7 of the result is set to 1.

Zero Flag

This is set if the value of the result is zero.

0 verf 1o u

This flag is set if the operation altered the value of
bit 7 of the result.

Half Carry

This is set. if there is a carry or borrou from bit 4
of the resu1t .

Negate

This is set if the last instruction uas a subtraction
instruction, and so is set if a DEC instruction uas
the last instruction executed, as DEC is simply a
special form of the subtraction operation.

(Jell, the ability to count up and doun is rather
useful; it enables us to simulate things like the
BASIC FOR ... NEXT loops, as ue shall see uhen ue look
at jumps and calls in a later Chapter. However, they
are of little use to us if ue uant to add tuo numbers
together, such as 56+32. For this, ue need some more
sophisticated arithmetic instructions, and ue ’ 1 1 look
at these next.

8 bit Arithmetic
In this section u e ’11 consider the 8 bit arithmetic
operations, addition and subtraction. Both these types
of operation involve the A register; indeed, there are
some instructions that take the A register so much for
granted that it is not- even mentioned in the mnemonic

62

of the instruction! The arithmetic operations
available to the Z80 , you will have noticed, do not
include the operations of multiplication and division.

Some CPU's do include these too operations in the
instruction set, but the Z80 doesn’t. If we uant to do
either of these operations in machine code then ue
have to urite short machine code programs to do so.

The simplest arithmetic operation is the 8 bit
addition, so let’s start there.

8 Bit addition

The simples 8 bit add operation is

ADD A ,r

where r is one of the 8 bit registers. This
instruction tells the CPU to add the contents of the
register r to the contents of the A register and leave
the result of the addition in the A register. This is
the historical origin of the full name of the A
register, which is the ACCUMULATOR. In some of the
early computers, one particular register within the
computer was used to ’’accumulate” the results of
various operations done by the computer. That is
exactly the role of the A register here. As an example
of the use of these addition instructions, the below
instruction adds the contents of the A register to the
B reg i ster .

ADD A ,B

All the 8 bit addition operations can affect the
values of ALL the CPU flags; they set the N flag to 0,
and alter the other flags to reflect the result of the
operation just performed. The 8 bit additions are
available in a wide range of addressing modes;

ADD A , r
ADD A , n
ADD A ,CHL)
ADD A ,CIX + d)
ADD A ,CIY+d)

The one addressing mode that u e ,ue not got above
is the Extended Addressing mode i . e .

ADD A , (nn)

where nn is a 16 bit address . Houeuer , 'this i s no real
problem, as ue can simulate t h i s operat i on by

LD HL , nn
ADD A ,CHL)

Don’t worry about the 16 bit load instruction; this

63

simply puts the value nn into the HL register pair.
U e ’11 examine these instructions in Chapter 7.

A very important thing to remember is that the
result of an 8 bit addition operation must be capable
of being represented as a 8 bit number. For example,

LD A, 128
ADD A , 128

uill leave the value 0 in the A register, and not the
true result of this addition, uhich is 256. The reason
for this is quite obvious; you c a n ’t represent 256 on
8 b i t s .

Houever, this type of addition UILL set the carry
flag, and so u e ’11 be auare of the error that has
occurred. L e t ’s nou look at a simple addition program
that adds tuo integer variables together and passes
the result back to BASIC. Because ue haven’t yet
looked at 16 bit data transfers or 16 bit addition
operations, the numbers used should be such that the
result of the operation uill be less than 255.
Houever, if you uant to be aukuard, and enter bigger
numbers, y o u ’ll get an appreciation of the overflow
prob1e m s !

The assembler listing for this program is shoun
be 1o u ;

Examp 1e

LD
LD
LD
LD
LD
ADD
LD
RET

5 :

L , (I X + 0)
H ,(IX+1)
A ,(H L)
L , (I X + 2)
H , (I X + 3)
A ,(HL)
(HL),A

the instructions above leave the result in the hX
variable for the CALL shoun in the belou BASIC
program. The belou BASIC program uill POKE the bytes
that make the above program into memory and CALL it.

10 tlEHORY 39999
20 FOR 1=0 TO 15
30 READ A $;POKE (40000 + 1) , U AL (”& ” + A $)
40 NEXT I
50 :
60 INPUT ’’First number” , A2
70 INPUT "Second number” ,BH
80 CALL 4 0 0 0 , @ A , @ B
85 PRINT At;
90 END
100 DATA D D ,6 E ,00,D D ,66,01,7 E ,D D ,6 E ,02,D D ,66,03,86

77 , C9

This uill print the sum of the tuo variables to the

64

screen, assuming the variables give a sum in the range
0 to 255. Note that it c a n ’t cope uith negative
numbers.

If you play about uith the above routine, and type
in something like 123+245, you'll get the result 112
instead of the real answer 368. This is the overflow
problem coming to the surface.

112 = 368 - 256

Uhat can ue do to get around this problem? Uell,
the answer is to use an instruction called ADC. ADC
stands for ADd uith Carry, and enables us to take the
carry generated in these conditions and do something
usef u 1 uith it.

Add uith Carry

These instructions uork in the same uay as the normal
ADD instructions, have the same addressing modes and
uork on 8 bit numbers. Uhere they differ is that uhen
ue use ADC, the value of the Carry flag, uhether 1 or
0, is added to the result generated. It thus enables
us to make use of the carry generated. L e t ’s take a
look at an example to make it clearer. L e t ’s carry out
an addition that generates a result that can only be
accurately represented in 16 bits, such as
100+200 = 300 .

The belou machine code program uould, if entered
at a suitable address in the machine, put the result
of the addition into addresses 41000 and 41001. The
Lou byte of the result uill be placed in location
41000 and the High byte of the result uill be placed
in location 41001.

LD A , 200
LD B , 100
ADD A , B
LD (41000)
LD A , 0
LD B , 0
ADC A , B

LD
RET

(41001)

set up A and B uith the
numbers to be added
add them, A is 1 ou byte of sum
store the lou byte
the high bytes of the numbers
being added are zero
add high bytes uith the carry
in this case A = 0 + 0 + 1
store the high byte
return to BASIC

If you like, hand assemble this program and enter
it into your computer at address 40000. Remember that
all addresses in the program should be entered into
the memory lou byte first. Use a CALL 40000
instruction from BASIC to run the program. The
contents of the tuo locations holding the result can
then be PEEKed out using

PRINT PEEKC41000) +256*PEEKC4100 1)

65

Thus, ue can do arithmetic with 16 bit numbers
using only 8 bit arithmetic instructions. Thus, ue
could use a program similar to that above to add any
16 bit numbers together. One point to remember is that
the Amstrad BASIC Interpreter uses the Tuo’s
Complement notation for it's 16 bit integers, and so
if ue uere to use the parameter block to pass such
integers back to BASIC, any number above +3276? in
value uould be passed back to BASIC as a negative
number. If ue uant to get around this problem, then ue
must store the result that ue uant passing back to
BASIC in a couple of memory locations, like ue did
above, and then access these locations using PEEK
instructions. This uould allou us to return large 16
bit numbers to BASIC quite easily.

Example 6:

As a final example of 8 bit addition instructions,
Example 6 shous a general routine to add together tuo
integer variables and pass the result back in an
integer variable. This routine uill handle negative
numbers.

The CALL used by this routine is of the form

CALL 40000, A°4,B Z , @CZ

the values to be added are passed over in AZ and BZ
and the ansuer is returned in C Z . For this reason, ue
have to use the @ symbol to pass parameter C Z . It
also means that ue must set CZ to some value before
calling the machine code. The instruction

CALL 40000,2,4,QCZ

is equa 11y valid. The assembler listing i s g i ven
be 1o u .

LD L ,(IX + 0) get the address of CZ
LD H , (I X + 1)
LD A , (I X + 2) 1 ou byte of BZ into A
LD B , C IX + 4) 1 ou byte of AZ into B
ADD A , B formi the sum in A
LD (HL) ,A put result in lou byte of iCZ
INC HL make HL point to high byte of CZ
LD A ,CIX + 3) get the High byte of B
LD B , C I X + 5) get the High byte of AZ
ADC A , B add uith carry to get high byte
LD CHL),A store in high byte of CZ
RET return to BASIC

Enter the program at address 40000 after assembling
it. After a call the CZ variable uill hold the result
of the addition. Try typing in negative numbers, and
see hou the computer converts large integers into
negative numbers on the return to BASIC by typing in
something like 32767+5. You can, of course, use

6 6

different variable names in the above. Houever,
remember that the last parameter passed should be a
variable uhich is prefixed by the symbol. Finally,
remember that the last parameter should be initialised
in some u a y , even if it’s just set to zero.

8 bit subtraction

The instructions for this operation are analogous to
those for 8 bit additions. Again, there are too
different types of subtraction operation. These are

SUB subtract
SBC subtract uith carry

I uon’t go into too much detail here about these
instructions, because of their overall similarity to
the 8 bit addition instructions. The result of any 8
bit subtraction is left in the A register. The SBC
instruction subtracts the value of the C flag as uel1
as the value of the operand.

Before leaving these operations, a couple of
general points. Note that both ADD A,A and Sub A,A
commands exist. These uill have the result of doubling
the A register contents and setting them to zero
respectively. The SUB A,A command is also a good
method of clearing the C flag. It is important in the
ADC and SBC operations that you keep a close eye on
the C f 1a g .

The final point is one of mnemonics. Certain of
the instructions u e ’ve just examined are occasionally
ur i tten ui thout menti on i ng the A reg i ster. Thus ,

ADD CIX+d) means ADD A , C I X +d)
ADD B means ADD A , B
ADD 23 means ADD A ,23

So , i f you ever come across any of these uays of
ur i t i ng instructions do u n , y o u *11 k nou uhat i s meant.

BCD Arithmetic

So far, all the arithmetic that u e ’ve dealt uith has
been binary.

In BCD, or Binary Coded Decimal arithmetic ue
treat the 8 bit byte that ue know and love in a
totally neu uay. Houever, don't uorry too much, as
it's only included here for the sake of completeness.
The byte is nou treated as tuo 4 bit nibbles, each
nibble representing a decimal digit betueen 0 and 9.
The first point to note about this is that 6 of the
available 16 4 bit combinations are not used. This is
therefore an inefficient form of representing numbers,
but. is often useful uhen the CPU has to communicate
uith certain types of peripheral device. To see the

67

difference between BCD and straight binary
representation of numbers, look at the belou examples.

0010 0010 = 22 in BCD or 34 in binary.
1001 1001 = 99 in BCD or 153 in binary.

This is the largest 8 bit BCD number.
1101 1101 = is 221 in binary,

but is ILLEGAL in BCD.

Arithmetic uith BCD numbers

This peculiar representation method can cause a pot
full of problems when ue start doing addition and
subtraction with numbers. Consider the addition belou.

BCD 08 is 0000 1000
BCD 03 is 0000 0011

Their sum is 0000 1011

This is the correct answer in binary, but it is
illegal in BCD representation. Ue must somehow
convert the binary result of such an operation into a
legal BCD number. Ue can get a proper BCD number by
adding 6 to the number PROVIDED THAT the lou nibble
has a value of greater than 9. Fortunately, ue don't
have to uork out a program to do this ourselves; the
designers of the CPU put in an instruction to convert
any illegal BCD byte into a legal BCD byte. The
instruction is called D A A , which stands for Decimal
Adjust Accumulator, any ’’carry” from the lou nibble to
the high nibble is indicated by our old friend, the H
flag.

Having said all that, it’s not likely that you’ll
use BCD in your programs very often!

Comparing Numbers
You might ask what a section on comparing numbers is
doing in a Chapter on 8 bit counting operations. U e 11,
the process of comparing two numbers, as far as the
CPU is concerned, is essentially one of subtraction.
To uork out which of two numbers is the larger, ue
carry out a subtraction operation, and examine the
result. The result will be either 0, positive or
negative, and so will indicate the relative magnitude
of the two numbers involved.

The 280 CPU has a special instruction to perform
this operation, which is not surprisingly called the
Compare operation. The instruction is CP.

The CP Instruction

The CP instruction operates in a variety of addressing
modes, but always compares the contents of the A
register uith either the contents of another register,

68

memory location or number. The addressing modes
auai1ab 1e ar e ;

CP r
CP n
CP < HL)
CP O X + d)
CP CIY+d)

If ue look at the instruction CP r, then the operation
is effectively a subtraction of the contents of the
specified register from the contents of the A
register. However, the result is NOT placed in the A
register. Although the A register is not mentioned in
the above instructions, the CP instructions always use
it. It should be fairly obvious that the CP
instructions alter the flags; if they didn’t there’d
be no way of telling uhat the result of a comparison
uas! The N flag is set to indicate a subtraction
operation. The other flags are altered depending upon
the result of the operation. The P/V flag is used as
an overflow flag.

The two flags that are most commonly used when
ue're comparing numbers are the C and Z flags. Look at
the following example;

LD A, 10
CP B

The 2 and C f 1a g s will be set. i n the below fashion

If B < 10 then Z = 0 and C = 0
If B = 10 then — 1 and C = 0
If B > 10 then Z = 0 and C = 1

Ue thus have three unique sets of flags that we can
use to make decisions with. The status of these flags
can be used by conditional jump or call instructions
to control the flow of the program. A couple of other
examples of the CP instruction’s effect on flags are
shown below.

LD A,23
LD B ,22
CP B

will have both 2 and C set to zero.

On the other hand,

LD A,20
LD B ,30
CP B

will leave Z set to zero and C set to 1.

The ma i n poi nt ta note about t he CP i nst r uc11on i n
all it’s forms is that it is only by testing the
status of the flags that ue can tell the result of the

69

comparison operation. Thus the flag test must be
carried out before any commands are executed that
alter the flags again.

Flnemon i c Bytes Time
Taken

Effect on Flags
C 2 P/V S N H

ADD A ,reg i ster 1 4 # # # # 0 #
ADD A ,number 2 7 # # # # 0 #
ADD A , CHL) 1 7 # # # # 0 #
ADD A ,CIX + d) 3 19 # # # # 0 #
ADD A , (IY + d) 3 19 # # # # 0 #

ADC A ,reg i ster 1 4 # # # # 0 #
ADC A ,number 2 7 # # # # 0 #
ADC A ,CHL) 1 7 # # # # 0 #
ADC (IX+d) 3 19 # # # # 0 #
ADC A , C IY + d) 3 19 # # # # 0 #

SUB reg i ster 1 4 # # # # 1 #
SUB number 2 7 # # # # 1 #
SUB CHL) 1 7 # # # # 1 #
SUB C IX + d) 3 19 # # # # 1 #
SUB C I Y + d) 3 19 # # # # 1 #

SBC A,register 1 4 # # # # 1 #
SBC A ,number 2 7 # # # # 1 #
SBC A , C HL) 1 7 # # # # 1 #
SBC A ,(IX+d) 3 19 # # # # 1 #
SBC A ,<IY+d) 3 19 # # # # 1 #

CP reg i ster 1 4 # # # # 1 #
CP number 2 7 # # # # 1 #
CP CHL) 1 7 # # # # 1 #
CP CIX+d) 3 19 # # # # 1 #
CP CIY+d) 3 19 # # # 1 #

Flags Notation:

indicates flag is altered by operation
0 indicates flag is set to 0
1 indicates flag is set to 1
- indicates flag is unaffected

Table 2. 8 bit arithmetic and comparisons

Logical Operations
Strictly speaking, of course, all the operations of a
computer are logical! However, the operations to
which I ’m referring here are operations on the bits
within 8 bit bytes, rather than operations on the
bytes as a whole. The instructions in this category
can be as valuable to the programmer in machine code
as the operations of addition and subtraction. These
bit oriented operations are called BOOLEAN OPERATIONS,

70

after the Dublin mathematics Professor uho first
described them. Just as addition and subtraction are
said to be arithmetic operators, the instructions that
ue ’11 look at in this section are called Logical, or
Boolean, Operators.

There are 4 Boolean Operators that are supported
by the Z80 instruction set. These are

XOR
AND
NOT
OR

Let’s look at each of these and see uhat use ue can
put them to in our programs.

Truth Tables

A quick diversion; just as ue have tables to describe
the rules of multiplication, ue have tables to tell us
uhat the result of a given logical operation uill be.
These are called TRUTH TABLES. Each of the separate
operations listed above has a different Truth Table,
as ue shall nou see.

The NOT Operation

The action of the NOT operator is shoun be 1o u ; i t
uorks on one b i t .

A NOT A
0 1
1 0

You uill note that this is a COnPLEUENT operation,
like the one that ue sau uhen ue discussed the Tuo'a
complement method of representing numbers. The
instruction to complement the A register is C P L . This
is the only register that you can actually complement,
and no other addressing modes are supported. One
application of this instruction is in the generation
of the Tu o ’s complement of a number. The belou
instructions uill do this.

CPL
INC A

The AND Operation

There are 11 different AND instructions available to
the programmer in the Z80 instruction set. They
operate in the belou addressing modes.

71

AND r
AND n
AND CHL)
AND (IX+d)
AND CIY+d)

Note hou t-he A reg i ster i s not mentioned at all here,
despite the fact that al 1 these operations will on 1 y
uork u i th th i s reg i ster as one of those involved. The
AND operation works on one bit from each register , and
a 1ters all the bits in the A register according to the
corresponding bits in the other reg i ster.

A B A AND B
0 0 0
0 1 0
1 0 0
1 1 1

It is clear from this that the result of an AND
operation is to set a bit to 1 only if both the b i ts
being ANDed together are 1. The command

AND B

will do an AND operation on the A and B registers. The
result of such an operation on a particular set of
data is shown below.

A 00000101
B 00010000

A AND B 00000000

Alternatively, we might have,

A 00000101
B 0000 1 1 1 1

A AND B 00000101

You can see that we can use the AND instruction to
’’mask off” certain bits of the byte held in the A
register in which we ensure that a byte only has a
value between 0 and 15 inclusive. This is simple. Ue
just ignore the high nibble of the byte, and just
disregard bits 4 to 7 of the accumulator as shown
be 1o w .

LD A, (40000)
LD B,15 15 is binary 00001111
AND B
LD C 40000) , A

Thus no matter what value is held in the upper 4 bits
of the A register, it will be ANDed with zero, giving
a result of zero for the upper 4 bits. This leads us
rather neatly on to another use of the AND command;
the setting of certain bits in a byte to zero without

72

affecting other bits in the byte. The particular bit
that we want to set to zero is simply ANDed with zero.
For example, to set bit 5 to zero;

LD
AND

B , 223
B

223 is 11101111 in binary

The OR Operation

Th i s i nstruct i on has ■the tr uth table shoun belou.

A B A OR B
0 0 0
0 1 1
1 0 1
1 1 1

The addressing modes that are available to the OR
instruction are as for the AND instruction. The Z80
on 1 y all ous us tc. OR someth i ng u i th the contents of
■the A reg i st e r . Ue can use this command to set given
bits in the A
location to

register or another register or memory
1. For example, to set bit 1 of the A

register to 1 ue could use

LD
OR

B,2
B

or, more simply,

OR 2

There are other instructions that ue can use to
set specific bits in this u a y , as ue shall soon see.

The ASCII code of the louer case letters is 32
higher than the ASCII code of the corresponding upper
case letter. The belou machine code program accepts a
string from a CALL statement, then returns it to BASIC
having first converted the first letter of the string
to louer case. Ue use the OR instruction to set bit 5,
and hence effectively add 32 to the ASCII code of the
character. The assembler code is given belou.

Example 7:

LD L ,<IX+0)
LD H ,CIX+1)
INC HL
LD C ,CHL)
INC HL
LD B , CHLl
LD A ,(BC)
OR &20
LD C BC > ,A
RET

73

Assemble the proqram into memory at address 40080. You
can then CALL it using

CALL 40000,@S$

where S$ is the string of interest. One interesting
point to note here occurs in the belou program
section.

100 S$=”FRDD”
110 CALL 40000,@S$

After executing it, the command PRINT S$ u i11 return
”fRDD” . Houeuer, line 100 is also altered, as this is
where the string is defined in memory. Line 100 will
n o o read

100 S3==”fRDD”

This is something to be aware of.

The XOR Operation.

Dell, contrary to popular belief, XOR is not a
character from a Science Fiction novel! It is an
abbreviation of the name EXCLUSIVE OR. The truth table
for this operation is shown belou.

A B A XOR
0 0 0
0 1 1
1 0 1
1 1 0

As you can see, the XOR instruction gives a 1 as a
result only when the two bits being operated on have
different values. The addressing modes that are
available are the same as those that are available for
the AND instruction. One use of the XOR instruction is
to set the A register to zero;

XOR A

will clear A to zero and only requires one byte to do
so .

Effect on Flags

As can be seen from the Table at the end of this
section, all the flags are affected in some way by
these commands. However, only three of the flags have
a status that depends upon the outcome of such
operations. These are as follows:

2 This will be set if the result is zero.
S This will be set to 1 if bit 7 of the result

is 1 .

74

P/U This acts as a Parity Flag, and will be set
for even parity and clear for odd parity.

Ue can use the Boolean Operators to manipulate the
C flag status in the belou fashion;

OR A clears C and leaves A alone
XOR A clears both C and A register

Mnemonic Bytes T i me Effect on Flags
Taken C 2 P/U N H

AND register 1 4 0 # # # 0 1
AND number 2 7 0 # # 0 1
AND CHL) 1 7 0 # # # 0 1
AND CIX+d) 3 19 0 # # # 0 1
AND CIY+d) 3 19 0 # # # 0 1

OR register 1 4 0 # # 0 0
OR n u m b e r 2 7 0 # # # 0 0
OR CHL) 1 7 0 # # # 0 0
OR C IX + d) 3 19 0 # # 0 0
OR C lY + d) 3 19 0 n # 0 0

XOR reg i ster 1 4 0 # # # 0 0
XOR number Oz. 7 0 n # # 0 0
XOR CHL) 1 7 0 # # # 0 0
XOR CIX+d) 3 19 0 # # 0 0
XOR C I Y + d) 3 1 9 0 # # # 0 0

Flags Notation:

indicates flag is altered by operation
0 indicates flag is set to 0
1 indicates flag is set to 1
- indicates flag is unaffected

Table 3 . Logical Operations

Manipulating Bits in a Byte

There are a couple of commands in the 280 instruction
set that enable us to manipulate the status of bits
uithin a memory location or register. These
instructions are called SET and RESET, and much of
uhat you can do with them can also be done with the
logical operations seen above.

The SET command sets a given bit to 1. It operates
in the belou addressing modes;

SET n , r
SET n , CHL)
SET n , C I X + d)
SET n , C I Y + d)

75

where n is the bit to be set. n has a value between 0
and 7 . Thus the commands

LD A , 0
SET 0 , A

will result in the A register holding the value 1. No
changes are made to the flags. The complementary
command to SET is RESET, and this will force the value
of a particular bit to zero. It operates in the same
addressing modes as SET. Thus the command

LD A ,255
RES 0 , A

will result in the A register holding the value 254.

It is possible to test the value of an individual
bit within a byte using the BIT instruction. It
functions in the same addressing modes as SET and
RESET, and signals it’s result via the Z flag. Look at
the following example;

LD IX,200
BIT 0, CIX + 0)

This will test bit 0 of location 200. If this bit was
equal to zero, then the Z flag will be set to 1.
Otherwise, it’s not.

The final group of commands that we '11 look at in
this Chapter are the ROTATE and SHIFT instructions.
These aren’t often used in machine code programming,
but on the occasions that they are used they are very
valuable indeed.

Rotates and Shifts

On the whole, a rotate operation moves bits within a
byte in such a way that the bits moved out of one end
of a byte are eventually moved into the other end of
the byte. This cyclic operation is best shown as

1 0 0 0 0 0 0 1

C

1 0 0 0 0 0 0 1 1

C

0 0 0 0 0 1 1 1

C
Shifts, on the other hand, are nun-cyclic

76

operations which result in bits being ’’lost” , as shown
be 1 ow .

1

C

1 0 0 0 1 0 0 1

0 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0

A Rotate or Shift operation is named according to
the direction the bits are shifted in. If the bits are
shifted to the left then it is a ROTATE or SHIFT LEFT.
If the movement is to the right it is a SHIFT RIGHT.

Left Operations

There are two different Rotate Left operations and one
Shift Left operation.

Rotate Left

This operation can be applied to the below addressing
modes.

RL r
RL CHL)
RL ClX+d)
RL CIY+d)

A typical example is

RL A

which stands for Rotate Left A register. The action of
the command is shown below.

C Register A

The current value of the C
register into bit 0. Bit 7
to the C flag. In this case,
at as a "9th bit".

77

flag goes into the A
of the register enters in
the C flag can be looked

Rotate Left Circular

This operates in the same addressing modes that uere
featured above. The mnemonic is R L C . For example,
typical commands are RLC A and RLC CHL). The
difference between this operation and the last one i
that the value of the C flag is not cycled into bit
of the register involve.

Shift Left Accumulator

This operates on the same addressing modes as above.
The mnemonic is

SLA s

where s represents any of the addressing modes. It's
operation can be seen below;

This can effectively be seen as a "multiply by 2"
instruction. However, if the value in the register is
greater than 12? when the SLA is executed, a "funny”
result will be returned. You have been warned!

Example 8:

This example shows SLA A at work. Enter the code at
address 40000. CALL 40000,@A (Jill return A % / 2 . A%
must, be initialised to start uith, and should be
u i t h i n the range 0 to 127.

LD L , C I X + 0)
LD H , C I X + 1)
SLA (HL)
RET

Right Operations

The simplest instructions are the Rotate Right-
instructions . These instructions are;

RR r
RR CHL)
RR ClX+d)
RR CIY+d)

The operation can be seen as

c

78

in ®

Rotate Right Circular

The same addressing modes are supported as for the RR
instructions and the operation is best seen as

Shift Right Logical

The addressing modes available for this instruction
are

SRL r
SRL (HL)
SRL C I X + d)
SRL C I Y + d)

and the operation can be looked at as a divide by tuo,
bit 7 being set to zero and bit 0 being pushed into
the carry .

One problem with this instruction when used as a
divide by tuo operation is uhere ue have a number that
is a tuo’s complement number. It is vital in this
event that the sign bit, bit 7, is retained. There is
a command to do this.

Shift Right Arithmetic

This retains the current status of bit 7, but in all
other respects is the same as S R L . The mnemonic is SRA
s .

o
7 c

Those of you uho are still lj1th me uill no coubt
be grat i f i ed to knou tuo things;

Ca) That ’s the end of the 8 b i t a r 11 h rn e 1 1 c a n d
1 og i c

(b) There
operati o n s .
aren’t as many 16 b i t arithmetic and

1 og i c operations!

In the next tuo Chapters ue' 11 examine the 16 bit
data transfer operations and logic operations.

79

8 0

Chapter 7
16 bit transfers

U e ’ue already seen hou some of the 8 bit registers can
be paired together to form 16 bit register pairs.
These offer us the potential for handling 16 bit
numbers, and in this Chapter u e ’ 1 1 look at hou ue can
transfer 16 bit numbers between CPU register pairs and
memory. Ue'ue already encountered one use of 16 bit
numbers in machine code programming; that of
specifying an address within the computer memory.

L e t ’ start uith a look at the instructions for
loading a 16 bit register pair uith a 16 bit number.
The general mnemonic for this type of instruction is

LD r r ,nn

uhere rr is a 16 bit register pair, such as B C , DE or
H L . nn is a 16 bit number. A typical example of these
instructions is

LD H L ,&9C00

Remember that when ue specify the 16 bit number in the
instruction, it must be stored uith it’s low byte
first. Thus the above assembler instruction uou1d be
coded as

LD H L ,&9C00

uhich assembles to

21 00 9C

Ue can also load numbers directly into the IX and
IY registers, such as

LD IY,&9C00

or

LD IY,&9C00

81

Transfers between register pairs and memory
It ’s all very uel1 to be able to load a register pair
uith a number, but uhat about transferring the number
to memory? The instructions that can be used for these
operations are

LD inn),rr
LD inn),IX
LD (nn),IY

The instructions for loading the 16 bit register pairs
uith the contents of an address are as follows;

LD r r ,C n n)
LD I X , C nn)
LD IY,(nn)

Because ue are dealing uith 16 bit numbers, ue are
actually loading the register pair from address nn and
address nn+1. Houeuer, ue d o n ’t have to specify this
to the CPU, it takes it into account automatically.
In the example,

LD HL , (&9C00)

uill load the HL register pair from addresses &9C00
and &9C01. The L register uill receive the contents of
address &9C00 and the H register uill receive the
contents of address &9C01. A possible application of
these instructions is shoun be 1o u ;

LD H L ,(&9C00)
LD A ,(H L)

In a similar fashion,

LD B C , (&9C00)

uill load the BC register from addresses &9C00 and
&9C01. One thing to note is that a command such as

LD D E ,&9C0 0

uill load the value 00 into the E register and the
value &9C into the D register. Some of the 16 bit load
instructions have 4 byte opcodes - tuo bytes
representing the instruction and tuo bytes the address
of interest.

82

Hnemon i c Bytes T i itie Effect on FI ags
Taken C 2 P/U s N H

LD reg pair,number 3/4 10 - - -
LD IX,number 4 14 - - - - -

LD IY,number 4 14 - - — ~

LD (address),BC 4 20 - - -

LD (address),DE 4 20 -
LD (address),HL 3 16 - - - - - -

LD (address), IX 4 20 - ~ -

LD (address) , IY 4 20 - - - -

LD BC,(address) 4 20 - - -

LD D E ,(address) 4 20 - -

LD HL,(address) 3 1 6 - - -

LD IX,(address) 4 20 - - -

LD IY,(address) 4 20 - _

Flags Notation:

indicates flag i s a 1 tered by operation
0 indicates flag i s set to 0
1 indicates flag i s set to 1

- indicates flag i s unaffected

Table 4. 16 bit data transfer instructions

Manipulating the Stack
Some time ago ue looked briefly at the stack; you may
recall that this is uhere the CPU can store items of
data without the need to keep a record of where the
i nf ormat i on was p u t . Ue too can use the stack to store
i nformat i on in this way; houever, ue are 1i m i ted to
storing 16 bit numbers on the stack. The i nstructions
for stor i ng registers on the stack are as foilous;

PUSH AF
PUSH BD
PUSH DE
PUSH HL
PUSH IX
PUSH I Y

Note how we treat the AF register pair here like the
other register pairs. All these PUSH operations have
single byte opcodes. The PUSH commands copy the
contents of the relevant register pair on to the
stack. The register pair involved still retains a copy
of the number that has been pushed onto the stack. To
recover a number form the stack, and put it into a
register, ue use an instruction called POP. This

83

removes the last item from the stack and puts it into
the register involved. Thus

POP HL

will put the last item on the stack into the HL
register. Ue can use the stack to implement data
transfers between the 16 bit registers in the belou
fashion. The instruction

LD B C ,DE

is not implemented in the Z80 instruction set, and ue
normally carry out this operation by the instructions

LD B , D
LD C , E

The operations

PUSH DE
POP BC

have the same effect.

The instructions also enable us to look directly
at the contents of the F register;

PUSH AF
POP BC

The BC register nou contains the original contents of
the AF register ’’pair” . The C register will contain
the contents of F and the B register will contain the
contents of A. The stack can also be used to store the
current status of the F register uhile ue do other
j o b s . e .g .

PUSH AF
... other instructions
POP AF

Important Note

The BASIC Interpreter of the Amstrad uses the stack,
just as ue do. Uhen ue execute CALL from BASIC, the
address from which the CALL uas made, and to uhich the
CPU must return after executing your machine code
program, is stored on the stack. As the CPU expects to
find this uhen your machine code has been executed, it
is UITAL that this address is the next one available
on the stack uhen the final RET is made in your
program to return to BASIC. This RET causes the CPU to
jump back to the address that is currently available
on the stack, and so obviously if the number on the
stack is not the address from uhich the CALL uas made,
y o u ’re in BIG trouble! So, all PUSHes that you make in
your program should be matched by POPs. For example, a
program that just consisted of

PUSH BC
RET

84

would cause problems, uhere

PUSH BC
POP BC
RET

would be alright, because the POP is balanced by a
PUSH .

Moving the Stack

Although most of the time we d o n ’t need to know
anything about uhere the stack is located in the
computer memory, the CPU, whilst under the control of
the Amstrad Operating System, has to set up the stack
as one of it’s first tasks. It does this by loading
the address at which it wishes the stack to be placed
into a 16 bit register pair called the STACK POINTER,
or S P . The commands that are available to manipulate
the stack are as follows;

LD S P ,nn
LD SP,Cnn)
LD SP,IX
LD S P ,IY

Obviously, moving the stack around in memory is
not an advisable activity until y o u ’ve gained
experience, and you should ALWAYS set SP back to it’s
original value before going back to BASIC!

The final group of 16 bit data transfer operations
that w e ’ll look at are those that transfer data
between the main register set and the Alternate
Register set. On the whole, it’s not advisable to do
this on the Amstrad, because the alternate registers
are used by the Operating System for various things.
Thus, I ’ll mention the commands, but do not advocate
using them!

The command

EX A F ,A F ’

swaps the contents of the AF register with the
contents of the A F ’ register. The instruction

EXX

swaps the B C , DE and HL register pairs simultaneously
with their counterparts. The final exchange
instruction doesn’t work with the Alternative register
set but on two register pairs from the main register
set;

85

EX DE , HL

will swap the contents of the DE and HL registers.

The belou table summarises the stack operations.

Flnemon i c Byte T i me Effect or f 1 ags
Taken c Z P/V S N H

PUSH reg pa 1 r 1 1 1 - - - - -
PUSH IX 2 15 - - - - -
PUSH I Y 2 15 - - - _ _ _

POP re g _ p a i r 1 10 - _ - - -

POP I X 2 14 - - - - -
POP IY 2 14 - — — _ _ _

LD SP , address 3 10 - - - - -

LD SP ,C address) o 20 - - - - -
LD SP , HL 1 6 - - - - -
LD SP , I X 2 10 - - - - -
LD SP , I Y 2 10 - - - - - -

Flags Notat ion:

i nd i cates flag i s altered by operation
0 lnd i cates f 1 ag i s set to 0
1 i nd i cates flag i s set to 1
- i nd i cates flag i s unaffected

Table 5. Stack manipulation instructions

Before leaving this Chapter, let’s look at an
example of a 16 bit data transfer operation. This
routine u i 1 1 give you the value of the address from
which the CALL command uas made in the BASIC
Interpreter.

Enter the code at address 40000, and CALL it uith
the 1i ne

Example 9:

A% = 0 : CALL 40000,@A?S

A% will then hold the address of interest, uhich uill
be the address that is RETurned too by the RET command
at the end of the program.

POP BC get, the address
PUSH BC restack the result
LD L , (I X + 0)
LD H , (I X + 1)
LD (HL) ,C
I NC HL
LD (HL),B
RET

86

Z8&In the
instruct!ons

next. Chapter ue ’ 1 1 examine the
for 16 bit arithmetic operations.

87

88

Chapter 8
16 bit arithmetic and counting

The 16 bit arithmetic operations uere included in the
instruction set of the Z80 to make 16 bit additions
and subtractions more convenient. U e ’ve already seen
hou ue can make do uith the ADC operation for 16 bit
addition. The 16 bit arithmetic operations are not as
versatile as the 8 bit instructions.

Let's start by examining the 16 bit INC and DEC
instructions, as these are the simplest form of
arithmetic operation.

Increment and Decrement
The simplest 16 bit INC operation is of the form;

INC rr

which increments the contents of one of the 16 bit
register pairs. Thus the too instructions;

LD H L ,0000
INC HL

uill result in the HL register holding the value 1. Ue
can also alter the value held in the Index Registers:

INC IX
INC IY

The DEC instructions are analogous to the INC
instructions. The 16 bit DEC instructions are thus as
foilous.

DEC BC
DEC DE
DEC HL
DEC IX
DEC IY

The fundamental difference between the 8 bit and
the 16 bit INC and DEC instructions is that the 16 bit
operations DO NOT affect any of the flags! Thus, ue
have to perform extra programming operations to test
the value in a 16 bit register after an INC or DEC

89

instruction. For example, to test if a register pair
is equal to zero ue have to perform a series of
operations like those shoun belou.

DEC HL
LD A , H
OR H
JP Z ,address

Here, oe use the JP Z instruction to pass control to
another part of the program if the result of the OR
operation is zero. This u i 11 only be so IF the H and L
registers are both equal to zero. If this is so, then
the OR operation will set the zero flag.

Addition and Subtraction
In the same uay that the A register is the favourite
register for 8 bit addition and subtraction
operations, the HL register pair is the favoured
register pair for the 16 bit addition and subtraction
operations. The ADD instructions that work

ADD H L ,rr
ADD IX,BC
ADD IX,DE
ADD IX,SP
ADD IX,IX
ADD H L ,SP
ADD IY,BC
ADD IY,DE
ADD IY,SP

You'll notice a couple of things form this list; the
first is that there is no instruction for adding the
contents of the HL pair to either of the Index
Registers. The second is that no instructions are
available for the

ADD IX, IY

instruction. Finally, note that there is no
instruction for

ADD H L ,nn

To perform this job, ue must use something like the
belou method, uhich has the disadvantage of using tuo
reg i sters.

LD DE , nn
ADD H L ,DE

In all these operations, the result is left in the
first register pair to be mentioned in the
instruction. Thus in the operation

ADD H L ,BC

90

the result is left in the HL register pair.

Effect on the Flags

There aren’t many flags bothered by the 16 bit
arithmetic operations; the C flag is set if there’s a
carry from bit 7 of the upper register to the ”17th
bit” . Any carry from the lou register is automatically
carried into the upper register by the addition
operation. The only other flag that is affected is the
N flag which is set to zero.

There are no 16 bit SUB instructions. Any 16 bit
subtractions that ue want to do have to be Subtract
with Carry operations.

Add and Subtract with Carry

Ue have a selection of ADC instructions which, as in
the case of the 8 bit ADC instructions, give us the
opportunity to perform multi-byte addition. The ADC
instructions available are:

ADC H L ,BC
ADC H L ,DE
ADC H L ,HL
ADC H L ,SP

You will note that there are no instructions to deal
with the IX or IY registers here.

The SBC instructions are analogous to the above
ADC instructions. They are:

SBC HL , BC
SBC HL , DE
SBC HL , HL
SBC H L , SP

Because of the
the C f1ag i n

fact that all these operations involve
their reckonings, remember to clear the

C flag before doing any subtractions that do not need
to SBC instruction’s added complexity. How can we do
this? Uell, the easiest way is to use a Boolean
operation to clear the C flag. The below instructions
will perform a simple 16 bit subtraction, subtracting
the contents of locations 41002 and 41003 from the
contents of locations 41000 and 41001. The result ends
up in the HL register and is stored in locations 41000
and 41001 before return to BASIC.

91

LD HL, (41000)
LD D E ,(41002)
AND A
SBC HL , DE
LD HL , DE
LD (41000),HL
RET

The belou Table shous the effects on the flags of
these instructions. The Z, P/U and S flags have a
status that depends upon the result of the operation.

rinemon i c Bytes T i me
Taken

Effect on
C Z P/U

i :
s
Fl.
N
ags
H

ADD H L ,reg pair 1 1 1 # - - - 0 o

ADD HL ,SP 2 1 1 # - - - 0 ?
ADD H L ,reg_pa i r 2 15 # # # # 0 o

ADD IX, SP 2 15 # # # 0 o

ADD I X , BC 2 15 # - - - 0 o

ADD IX,DE 2 15 # - - - 0
ADD IX , IX 2 1 5 # ~ ~ - 0 r>

ADD IX,SP 2 15 # - - - 0 r>

ADD IX , BC 2 15 # - - - 0 -T>

ADD I X , DE 2 15 # - - - 0 r>

ADD I Y , I Y 2 15 # - - - 0 o

ADD I Y , SP 2 15 # - - 0 r>

SBC H L ,reg pair o
jL 15 # # # # 1 r>

SBC HL , SP 2 15 # # # 1 o

Flags Notation:

indicates flag is altered by operation
0 indicates flag is set to 0
1 indicates flag is set to 1
- indicates flag is unaffected
? indicates flag is ?

Table 6. 16 bit arithmetic instructions

92

Chapter 9
Loops, Jumpsand BlockOperations

This Chapter covers tuo apparently different areas of
the 280 instruction set;

(a) Instructions that cause control to pass to
another part of the program, in a similar way
to the GOTO and GOSUB BASIC commands pass
control around a BASIC program.

(b) The Block instructions, or Block Operators,
uhich are operations that uork on several
bytes of memory simultaneously, rather than
acting on single bytes.

The reason that I ’ve grouped these instructions
together is that the Block operations often involve a
jump or loop operation, and so it makes sense to group
the commands uith the jump and loop instructions.

Jumps
All the programs that u e ’ve entered into the Amstrad
so far have been able to perform their task uithout
the presence of any machine code instructions that
simulate the BASIC GOTO or GOSUB. If ue uere to
continue this philosophy, the resultant programs uould
not be very powerful. The use of these machine
language ’’GOTO" instructions thus gives us great
programming power, but ue must be careful uhen ue use
these instructions. L e t ’s begin by looking at the JP,
or jump, instruction uhich is the direct equivalent of
GOTO. Houever, instead of jumping to a line number the
JP instruction jumps to a particular address.

The JP operation has tuo addressing modes;
immediate and Register Indirect. In the immediate mode
the address is given implicitly in the command;

JP 40000

is an example of the addressing mode. In the Register
Indirect addressing mode, the address is held in the
H L , IX or IY register pairs. flore details uill be
given later in the Chapter.

A jump can be UNCONDITIONAL, like the one shown
above, in uhich case control is immediately passed to

93

the instructions that start at the address specified
in the command. Alternatively, it can be a CONDITIONAL
jump, in which case the jump is only made if some
condition, indicated by the status of a flag, is
satisfied. This is the machine code equivalent of

IF ... THEN GOTO ...

in BASIC. For example,

JP Z,40000

uiill only execute a jump to address 40000 if the
result of the last operation was zero; i.e. if the Z
flag is set. Other flags can also be used to decide
whether to jump or not.

JP 0,40000

will jump when the C flag is set. Other instructions
of this type are;

JP N Z ,address j ump if resu1t non-zero
JP N C ,address j ump if carry ■c 1 ear
JP P ,address j ump if resu1t pos i t i ve
JP H ,address j ump i f resu1t negat i ve
JP P E ,address j ump if par i ty even
JP P0 > address j ump if par i ty odd

thesei instructions are "three bytes long
byte opcode and a two byte address. The address is
stored, as we might now expect, low byte first. Thus
the instruction

JP Z , &9C00

is coded as

CA 00 9C

Let's nou write a simple machine code program that
uses a JP instruction. However, before ue start, a
cord of caution. Like the good soldier, when the CPU
is told to jump, it jumps even if the orders given
cere a little silly. If u e ’ve made a mistake in
specifying an address, then the jump might pass
control to a byte in memory that represents a byte of
data , or to the second byte of a three byte
instruction, or any other place in the computer
memory. The result is usually a crash. Secondly, if a
condition arises that causes a sequence of
instructions to be executed for ever, you often have
to turn off the computer to break the loop

Example 10:

In this example, I ’ll list the bytes alongside the
assembler instructions, so that yo u ’ll get the bytes

94

for the JP instruction correct.

LD H L ,&C000 21 00 C0
LOOP LD CHL),255 36 FF

INC HL 23
LD A , L ?D
OR H B4
JP N Z ,LOOP C2 43 9C
RET C9

This program MUST be entered into memory at address
40000, because u e ’ue specified an address i n the
program for the jump instruction. If we were to load
the program to another 1 ocat ion in memory without
altering the address given in the JP instruction, a
crash would be the most probable result. Enter the
above bytes, and type CALL 40000. The screen will
fill up, and the effect will be slightly different in
each screen mode. Let's look at how the program works.
In the Amstrad, the area of memory between address
&C000 and &FFFF is reserved for screen memory. Thus
writing data to this area of memory will have an
obvious affect on the screen. This program loads every
byte between &C000 and &FFFF with the value 255. Ue
check for the end of screen memory by testing the HL
register for the value 0, which it will assume after
we increment it from a value of &FFFF. Ue have to test
each of the separate registers that make up the HL
register pair to ensure that it holds zero, because
the INC HL instruction doesn’t affect the 2 flag.

Try to simulate this program with a FOR ... NEXT
loop in BASIC, and I’m sure you will be impressed with
the speed of the machine code program.

There are some occasions when machine code is too
fast for a particular application. In these cases we
often have to use delay loops to slow things down a
little. This example shows how we can do this.

Examp 1e 11:

This program shows a machine code delay loop, which is
repeated a given number of times. The inner loop is
controlled by the DE register pair and the outer loop
is controlled by the HL register pair. The program
must once more be entered at address 40000 if you use
the bytes given below, again because of the fact that
we specify an address in the JP instructions.

95

LD HL,65535 21 FF FF
11 64 00LOOP 1 LD D E ,10 0

L00P2 DEC DE IB
7B
B2

LD A , E
OR D
JP NZ.L00P2
DEC HL
LD A , H
OR L
JP N Z ,LOOP 1
RET

C2 43 9C
C9

C2 46 9C
2B
7C
B5

Again, note the additional instructions that are
needed to check that the register pairs are zero.

You can see that the JP instructions give us the
ability to produce programs whose behaviour depends
upon the status of the flags. The JP instructions that
w e ’ve seen so far require the programmer to specify a
two byte address even if the destination of the jump
is only a few instructions away from the jump
instruction. There are some alternative JP
instructions that only require one byte specify the
destination; these are called RELATIVE JUMPS.

Relative Jumps

In the programming examples w e ’ve just seen, the
destinations of the jumps were not very far from the
jump instructions themselves. However, we still had
to specify a two byte address. Also, the use of a
specific address in a JP instruction means that the
program must always be loaded to and executed at the
same point in memory every time. The relative jump
instructions offer us a way around these two problems.
The instructions are only two bytes long; a one byte
opcode and a single displacement byte which specifies
where the jump is to be made to.

The displacement byte represents a number between
-128 and +127. This byte represents the ’’distance” to
be jumped by the instruction. Ue can thus pass
control to any byte within the range 127 bytes after
the relative jump and 128 bytes before it.

The mnemonic for this instruction is

JR c c ,d

where d is the displacement and cc is one of the
conditions that are applicable to relative jumps. Ue
can have unconditional relative jumps of the form;

The value of the displacement byte causes a jump in
the following fashion.

Uhen the CPU encounters a JR instruction, the

JR d

96

first thing that occurs is that the CPU adds 2 to the
current value of the Program Counter. The practical
result of this is that the address referenced by the
displacement byte is reckoned from the byte after the
JR instructions and displacement byte. Look at the
belou example to make things clearer.

INC A -3

JR z, -2
02 -1

LD A , 0
00 + 1

LD A , + 2
02 + 3

The byte immediately following the displacement byte
is numbered 0, the next byte 1, and so on. Similar
numbering occurs in the other direction. Thus the
i nstruct i on

JR -2

is not a terribly good idea, because it causes a jump
back to the JR instruction, thus causing a perpetual
1 oop!

As you might expect, the negative numbers are
stored in T u o ’s Complement representation. Thus -2 is
written as &FE. As a further example, look at the
belou program, which includes a label.

LD A,00
LOOP INC A

JR N Z ,LOOP

The displacement byte here would be -3, or &FD. Some
conditional relative jumps are possible, but not as
many as for the normal JP instruction. The list below
shows the conditional relative jumps that you have at
your disposal.

JR C , d
JR N C ,d
JR 2 , d
JR NZ,d

So, if you want to make a jump based upon the parity
of a number, y o u ’ll have to use a JP instruction.

The major advantage offered by the relative jump
instructions over the conventional jump instructions
is that they make no reference to a particular memory
location; all jump destinations are specified relative
to the current position of the JR instruction. This
means that a program that’s been written with only

97

relative jumps in it can run at any location in
memory. Example 12 shoos this in action.

Examp 1e 12:

Try the be 1oo program at addresses 40000, 41000, 42000
and see that it oorks at each of these locations in
the same uay. Do n ’t forget to change the address in
the CALL statement each time!

LD H L ,&C000 21 0 0 C0
LOOP LD (HL) ,255 36 FF

INC HL 23
LD A , L 7D
OR H B 4
JR N Z ,LOOP 20 F9
RET C9

This type of program, t h a t oill run at several
different memory 1ocat i ons , is said to RELOCATABLE. It
can run at an address in memory other than that at
u h i c h it uas originally ur i 11 e n .

Register Indirect Jumps

U e ’ve already mentioned these briefly; here, oe place
the address to which oe want the jump to be made in to
either the HL, IX or IY register pair. The beloo
command is then executed, where rr is the appropriate
register pair.

JP Crr)

Thus ,

JP (HL)
JP (IX)
JP (IY)

are the only legal Register indirect commands. As a
concrete example, the beloo lines oill cause the CPU
to begin executing the instructions at location 0000
of the memory; this oill cause a system reset.

LD H L ,0000
JP (HL)

There are no conditional Register Indirect jumps.

FOR . . . NEXT Loops in machine code
U e ’ve noo seen the machine code equivalent of GOTO and
IF ... THEN statement, so let’s noo look at the FOR
. . . NEXT construction in machine code. Le t ’s start by
looking at the use of a FOR . . . NEXT loop in BASIC.
Generally, it is used ohen oe oish to perform a
particular set of Instructions a given number of
times. Look at the beloo BASIC program;

98

10 C = 0
20 FOR 1=1 TO 6
30 LET C=C+1
40 NEXT I

In machine code, as you might expect, ue use a
register to replace the I variable. The easiest uay to
do this uith a single register is to use a count down,
rather than a count up. It is easier for us to check
for zero than for a non zero value. The belou routine
uill simulate the above BASIC program.

LD C , 0 initialise variab1e ’ C '
LD B , 6 initiali se var i ab1e ’ I ’

LOOP INC C C = C+ 1
DEC B
JR N Z ,LOOP simulate the NEXT command

last tuo instructions in this short rout i ne occur
together quite often in Z80 machine code, and were
united by the CPU designer to give a single command,
DJNZ. The full instruction is

DJNZ d

where d is a displacement byte that is identical in
form to the displacement bytes that ue use with the
relative jump instructions. The instruction DJNZ
stands for Decrement and Jump if Non Zero. The
instruction needs tuo bytes, and using it ue can
rewrite the above program as

LD C , 0
LD B , 6

LOOP INC C
DJNZ LOOP

There is only one problem uith DJNZ; it is only useful
for counting loops uith up to 256 passes. There is no
16 bit DJNZ command. 256 loops, you say; hou can ue do
this uhen the biggest number that ue can put into an 8
bit register is 255? Dell, if ue set the B register to
zero, then execute a DJNZ instruction, the B register
uill be decremented, so leaving a value of 255 in the
register.

DJNZ instructions can be nested to enable us to
count passes through loops of instructions that need
more than 256 passes. Look at the belou example;

99

LD B , 1 6
OUTLOOP PUSH BC

LD B ,256
INLOOP

DJNZ INLOOP
POP BC
DJNZ OUTLOOP

An alternative uay, that uses another 16 bit
register, is to use a 16 bit DEC command. U e ’ve seen
this in action already. Obviously, if ue wanted to
include a STEP in these commands ue simply add more
INC or DEC commands. For example,

LD C ,0
LD B , 100

LOOP INC C
INC C
DEC B
DJNZ LOOP

Here the C register uill count up 0, 2, 4... and the B
register uill count doun 100, 98, 96... Remember that
there is one DEC B instruction hidden in the DJNZ
instruction. One problem could arise with the short
routine above; if you put an odd number in the B
register, then you’ll never actually achieve a value
of zero in the B register. The looping would thus
carry on permanently.

The belou table features the loop and Jump
instructions with their relative times. No flags are
affected by these operations, with the exception of
the DJNZ.

rinemon i c Bytes Time
T aken

JP nn 3 10
JP c c ,nn 3 10
JR nn O 12
JR c c ,nn 2 7/12
JP CHL) 1 4
JP CIX) 2 8
JP (IY) 2 8
DJNZ d 2 8/13

Table 7. Jump and loop instructions

Where two times are mentioned, the first time
given is that time taken when the condition is NOT
met, and the second time is the time taken when the
condition is met. The relative jumps take a little
longer than the JP instructions when a jump is
actually made because the address to which the jump is
to be made has to be calculated from the current
address and the displacement byte.

1 0 0

CALL and RETURN
In BASIC, ue had the instructions GOSUB and RETURN
that gave us the ability to use subroutines. A
subroutine, you u i 11 remember, is a block of
instructions that is stored once in memory but that
can be called as often as you like in a program. In
Z80 machine code ue have the same ability; in fact,
ue ’ ve already used a machine code subroutine call.
Whenever ue issue a CALL instruction, ue are
effectively making a subroutine call from the BASIC
Interpreter to your machine code program. The RET uith
uhich ue end our programs is the equivalent of the
RETURN instruction in BASIC subroutines.

In machine code, the

CALL nn

instruction uill call a subroutine at address nn. The
instruction is a three byte instruction. One byte is
the opcode and the others are the address of the
subroutine. The bytes of the address should be entered
into memory lou byte first. Any piece of code that is
being used as a subroutine should end uith a RET
instruction. Once a RET is executed by the CPU, the
CPU starts executing the instruction immediately after
the CALL instruction. Hou does the CPU knou uhere to
return to?

Well, the stack is used. This is the main role of
the stack in the Amstrad computer. When the CALL is
made, the CPU saves the address of the first
instruction after the CALL instruction on to the
stack. The RET instruction, uhen executed, looks at
the last entry on the stack and effectively POPs it in
to the program counter. The RET instruction uill thus
cause the CPU to jump back to the address that is
represented by the last entry on the stack.

Uithin the body of the subroutine, therefore, it
is vital that all PUSHes on to the stack are balanced
by POPs from the stack, if the RET instruction is to
return the CPU to the instruction follouing the CALL.
There are some techniques in uhich the item to be
treated as the return address can be altered, but
these are best left alone until yo u ’ve gained some
experience. U e ’11 look at one of these techniques
shortly. The normal behaviour of CALL and RET is shown
be1o u .

40000 CALL 41000 -----► 41000 INC A
40003 INC A -------- 41001 RET

Uhen ue include a PUSH and POP in the subroutine, ue
have the below situation.

1 0 1

4 0 0 0 0 C A L L 4 1 0 0 0
I N C A

4 10 0 0 PUSH
I NC
POP
RET

AF
A
AF

The PUSH is balanced by a POP, and so the RET
instruction receives the correct address off of the
stack.

Belou, houeuer, ue have an "unbalanced” PUSH
operation, uhich leaves the stack altered from uhat
the FET expects to find.

40000 CALL 41000 ------^41000 LD BC.0000
INC A PUSH BC

0000 ----------------------- RET

The CPU ui 1 1 nou start executing the instructions at
address 0 as soon as the RET is executed. This will
reset the computer. However, in some applications,
changing the address that the RET instruction will
find on the stack can be useful, though it is
certainly NOT good programming practice.

This type of behaviour effectively uses the RET
instruction as a kind of jump, and the below routine
shows this in action;

40000 CALL 41000------ »-41000 POP DE
LD BC,42000
PUSH BC

42000 . . . ■*----------------------- RET

The POP DE instruction removes the original return
address from the stack. Ue then PUSH the desired
return address onto the stack, and the RET instruction
cause-; the jump to be made. All this is very
interesting, but is not the real use of the CALL
instruction, which is to call a subroutine and return
to the instruction following the subroutine call! You
will note that the full address is required in the
CALL statement; there are no relative subroutine
calls. Programs written with subroutines in them are
not very relocatable, unless they only use Amstrad ROM
routines in the subroutine call.

Saving Registers

You will occasionally want to make a subroutine call
but still preserve the contents of certain register
pairs; we can do this by PUSHing the register pairs
onto the stack before we make the CALL, and POPing the
registers back after the CPU has executed the
subroutine. Saving the registers in this way is
called PRESERVING the CPU registers, or, if yo u ’re
into impressive sounding phrases, "saving the CPU
env i ronment ” .

L e t ’s now examine a subroutine call in a short
program.

1 0 2

Example 13:

This routine simply uses an Amstrad ROH routine that
waits for a key to be pressed before proceeding with
the program. Load the program to address 40000, and
the bytes given belou u> i 1 1 be correct.

CALL SUBR
RET

SUBR CALL &BB18
RET

CD 44 9C
C9
CD 18 BB
C9

There are effectively too subroutine calls here, one
to the label SUBR and one to address &BB18. CALL 40000
will cause the machine to pause until you press a key.

A feu general points about subroutines. Aluays try
and put the definitions in such a place in memory that
they u o n ’t be accidentally executed by the CPU uithout
them being CALLed. Subroutine calls are slower than
having the code repeated wherever it is needed in the
program, as the CALL and RET instructions take a
finite time to execute. Subroutines, although they
save memory, take more time. In any application where
time is important but memory isn’t, I tend to use
repeated chunks of code throughout the program.

Conditional Subroutine Calls

In BASIC we use

IF ... THEN GOSUB nn

when we wish to conditionally call a subroutine. A
similar structure exists in machine code.

CALL cc,address

will execute a CALL to a given address only if a
particular condition is satisfied. The conditions that
can be used are as fol1o w s :

CALL c ,address call if car r y set
CALL NC ,address ca 1 1 if carry c 1 ear
CALL z, address ca 1 1 if r esu 1t zero
CALL NZ ,address call if r esu1t not-zero
CALL PE ,address call if parity even
CALL PO ,address ca 1 1 if parity odd
CALL n, address call if resu1t negat i ue
CALL p , address cal 1 if resu1t posi t iye

No f 1ags are affected by the CALL instruction
thus simulate the ON ... GOSUB statements of BASIC by:

103

LD A ,(CHOICE)
CP 1
CALL Z ,OPT I ON 1
CP 2
CALL Z ,OPT I0N2

and SO o n . 0 ne thing to note i. s th at on ente r i ng the
opt, ion s e 1 ec bed by the appropy■ i ate CALL comma nd , the A
reg ister sho u 1 d be pres erued. If th is isn > t done , on
retuirn from the opti on the CPU cou 1 d poss ib 1 y enter
another opt ion after reiturning from one.

Ue can a 1 so have cond i t i. ona 1 RET i nst ruct i ons ,
that Ul 11 on i y cause a return from the subrou t i ne when
a pa rtic u 1 ar CO nd i t i on i s m e t ; the cond it i ons ca tered
for by th ls i nstruct i on av'e the sa me as for the
conditional CALL statement.

Unemonic Bytes

CALL address 3
CALL cc,address 3
RET 1
RET cc 1

T i me Effect on f 1 ags
T aken C Z P/U S N H

1?
10/17

10
5/11

- - - - - -

_ _ _ _ _ _

Table 8. Call and return instructions

Uhere too times are shown in the
shorter of the two times is that taken
is not met.

above Table, the
when the condition

Restarts

These can be seen as 1 byte subroutine calls; the
catch is that they can only call addresses within the
first 256 bytes of the Z 8 0 ’s memory map. They are thus
in that area of memory that is used by the Amstrad
Operating System, and so we are denied access to them
for our own programs.

The role of the restart, or RST commands, is to
provide fast access to a few routines that will be
commonly used in a program This is why the Operating
System has first choice. Of course, we could use the
calls, but there is not space in this book for a
compete explanation of what the Amstrad uses the
various RST instructions for.

There are 8 RST instructions, which enable us to
call 8 separate addresses. The addresses to which we
have access are & 0 0 , &08, &10, &18, &20 , &28, &30,
& 3 8 . For example the command

RST &00

will cause a jump
address for the
at address &30 is

to address 0
Amstrad comp
reserved for

, wh i ch i s the reset
uter system. The restart
the user to program,

104

but it's best left alone until you've gained some
experi ence.

Interrupts
These are particularly useful things to have in
computers; an interrupt is a signal sent to the CPU to
instruct it that some situation has arisen in the
computer that requires the immediate attention of the
CPU. The CPU makes a note of uhere it is in it’s work,
and then jumps off to a routine that deals with the
situation. This routine is called an Interrupt Service
Routine, or ISR. It will usually save various
registers, perform the task, restore the registers and
return the CPU to the task that it was previously
doing. The interesting thing is that the user isn’t
usually aware that anything has happened! To return
from an Interrupt Service Routine, a special command
i s used. Th is is

RET I

and is a special form of RET. The commonest form of
interrupt on the Amstrad is the one that is used to
call the various Operating System routines to read the
keyboard. This is called 50 times a second, and
executes a RST &38 instruction.

Interrupts of the type that u e ’ve mentioned so far
have been what are called HASHABLE INTERRUPTS; this
means that ue can instruct the CPU to ignore them. A
second class of interrupts, called NON HASHABLE
INTERRUPTS cannot be ignored by the CPU. The command

DI

causes the CPU to ignore all maskable interrupts. The
command

El

makes the CPU start taking notice of the interrupts
again. These should not be mistaken with the DI and El
commands that are available from BASIC; these deal
with other things. El stands for Enable Interrupts,
and DI stands for Disable Interrupts. You probably
won’t be experienced enough to fiddle around with
interrupts on the Amstrad, but if you should disable
interrupts within your program, it’s vital to re­
enable them with El before executing the final RET
i nstruct i o n .

That completes this review of instructions that
pass control around the program. U e ’11 now go on to
look at a rather powerful range of instructions that
use jumps to operate on more than one byte
automatically. They are called the BLOCK
INSTRUCTIONS.

105

Block Operations
These instructions operate on several bytes rather
than just the usual one or tuo bytes. Houeuer, the
simplest of the block instructions do only work on
single bytes.

The CPI Instruction

The simplest is the

CPI

instruction. This stands for ComPare and Increment.
This instruction compares the contents of the A
register uith the contents of the byte addressed by
the HL register. The HL register pair is then
automatically incremented. It thus performs the

CP (HL)
INC HL

instructions. The obvious use for this command is in
searching through the memory of the computer for a
given byte. Example 14 shous this in action.

E x a m p l e 1 4 :

The assembler instructions are as follows:

SEARCH

LD E , (IX + 0)
LD D , (IX+1)
LD A ,CDE)
LD HL,1000
CPI
JR N Z ,SEARCH
DEC HL
LD A , L
LD CDE),A
LD A , H
INC DE
LD (DE),A
RET

Type in the bytes at address 40000. The displacement
for the JR instruction is -4, or &FC. This is because
the CPI instruction is a tuo byte instruction. The
program searches through memory from location 1000
onuards. It can be called uith

CALL 40000,@A%

uhere t\% holds the byte that you're looking for. On
return, A% uill hold the address at which the first
occurrence of that byte was found. The DEC HL
instruction after the JR NZ instruction is needed
because of the automatic incrementing of the HL
register. This doesn’t affect the flags, and so if the

106

Z flag is set it must be due to the CP
finding a match.

i nstruct i on

The CPD

A similar instruction, CPD, performs a similar job but
decrements the HL register pair instead of
incrementing it. As ue l 1 as modifying the contents of
the HL register pair, both CPI and CPD decrement the
contents of the BC register. This quite usefully
allows us to search through a block of bytes of a
given length, such as a data area of a program.
Example 15 shows this in operation.

Examp 1e 15:

Let’s look at the program first, then describe it.
Enter the code to address 40000, then call it with

CALL 40000, @A5;

where A°i holds the appropriate value. The program
searches 255 bytes starting from address 1000 in
memory.

LD
LD
LD
LD
LD

SEARCH CPD
JR
INC
DEC
JR

OUT INC
LD
LD
INC
LD
LD
RET

B C ,255
E ,CI X + 0 1
D, CIX+1)
A , CDE)
H L ,1000

Z , OUT
C
C
N Z ,SEARCH
HL
CDE),A
A , L
DE
A , H
CDE),A

Because the 16 bit DEC operations, which are implicit
in these instructions, d o n ’t bother the flags, we have
to test the BC register contents ourselves to see
whether the register pair contains zero or not. As
w e ’re only counting 255 bytes here, we use the INC C
and DEC C instructions to see if the C register is
holding zero. The DEC instruction will set the Z flag
if the C register was originally zero before the INC C
operation. The program returns the value 255 if the
byte searched for is not found, or the address of the
byte if it is found.

1 0 ?

CPIR and CPDR

These tuo instructions are really powerful; they are
too byte instructions and are the equivalent of a CPI
or CPD with a built in jump instruction!

The CPU automatically searches a block of memory
until either a match is found or the end of the block
is found. The A register specifies the byte to be
searched for, the HL register holds the start address
of the block to be searched and the BC register pair
holds the number of bytes to be searched. The
instruction will terminate for one of tuo reasons;

(a) A match has been found.
(b) The block end has been reached.

Thus after a CPIR or CPDR instruction ue must test
to see uh ich of these conditions has caused the
termination of the instruction. This isn’t such a
difficult task as it sounds; simply remember that if
the block has been totally searched the BC register
uill contain the value 0. It’s thus simply a matter of
testing for this fact. The belou piece of code shous
th is in act i o n .

LD HL,42000
LD B C ,1000
LD A,255
CPIR
LD A , B
OR C
JR Z , END_FOUND

The label END_FOUND uould be jumped to if the BC
register uas equal to zero on termination. Otherwise,
the termination of the CPIR command is due to the
finding of a match.

Houever, these instructions are fairly time
consuming, but they are still faster than doing each
of the ”bund 1e d ” operations individually.

Block Moves

Occasionally ue may uant to move uhole chunks
memory around. One uay to do this uould be to use
p i ece of machine code like the one listed belou;

LD H L ,40000
LD B , 200
LD D E ,42000

LOOP LD A ,CHL)
LD CDE),A
INC HL
I NC DE
DJN2 LOOP

Here ue hr ansf er 200 bytes from address 40000

108

42000. This is effectively a copy operation; the bytes
will still be present at address 40000 onuards. HL
register pair points to the byte that w e ’re copying,
and DE points to uhere in memory that byte is to be
written to. The B register is used to count the number
of bytes that ue want to transfer. This program is
totally workable, but inefficient, as there is an
instruction in the 280 instruction set to do this kind
of operation for us automatically. The first
instruction of this type that w e ’ll look at is called
LDI .

The above routine can be rewritten as

LD HL,40000
LD DE,42000
LD B C ,200

LOOP LDI
LD A , B
OR C
JR N Z ,LOOP

The DE register pair is often called the DESTINATION
register and the HL register pair the SOURCE register.
Once LDI is executed, the HL and DE registers will be
incremented and the BC register will be decremented.
The command LDD does a similar job, but here the HL
and DE register pairs are decremented instead of
incremented. The above routine can be implemented in a
more efficient manner if we know that after an LDI or
LDD instruction, the P/U flag is set if the BC
register pair DOES NOT contain zero. Ue can thus use
this flag to see if a repeat is needed or not.

However, there is a much more efficient method of
getting an LDI or LDD instruction repeated; this is to
use either the LDIR or LDDR instruction, which test
the P/U flag automatically and jump accordingly.

For example, the short program below will transfer
1000 bytes from address 40000 to address 42000.

LD HL,40000
LD DE,42000
LD B C ,1000
LDIR
RET

The below table shows the block instructions and their
effects on flags and timings.

109

Ilnemon i c Bytes T i me
Taken

Ef f e<
C Z

ct on
P/U s

F 1 ags
N H

LDI 2 16 - - # _ 0 0
LDD 2 16 - ~ # - 0 0

LDI R 2 21/16 - - 0 _ 0 0
LDDR 2 21/16 ~ - 0 - 0 0

CPI 2 16 - # # 1 #
CPD 2 16 - # # # 1 #

CPIR 2 21/16 - # n 1 #
CPDR 2 21/16 - # # # 1 #

Flag Notation:

indicates flag is altered by operation
0 indicates flag is set to 0
1 indicates flag is set to 1
- indicates flag is unaffected

Table 9. Block search and move instructions

Timing:

For repeat instructions, the times shown are for each
cycle. The shorter time indicated is for the case of
the instruction terminating - e.g. for CPIR, either
BC = 0 or A = (HL>.

1 10

Chapter 10
Ins and Outs and Odds and Ends

In this Chapter ue'll take a very brief look the 280
Inpiut and Output instructions, and u e ’ll also examine
a feu final instructions that d o n ’t fit into any firm
category .

Input and Output Instructions
As uell as being able to communicate uith the RAH and
ROH, the CPU can also read information from and urite
information to a variety of addresses called
INPUT/OUTPUT or I/O addresses. There are 65S36 of
these available to the CPU, and they are used by the
CPU to enable it to communicate uith the many other
electronic devices that make up the Amstrad Computer,
such as the Gate Array or the PS G .

The actual uay in which this is done is beyond the
scope of bciok. , and the instructions mentioned be 1 ou
should only be used if you have a sound knowledge of
the Amstrad I/O system. IT IS POSSIBLE TO DAMAGE the
system if you mess around too much, although a more
likely result is a system crash!

The instructions used by the 280 to communicate
uith these I/O devices are called Input and Output
instructions, and there are several of them available
to the programmer. Houever, due to the uay in uhich
the Amstrad Hardware is arranged, there are only a
couple of instructions that can be used uith absolute
safety - the others often crash the system. Anyone
attempting to read or urite from I/O locations should
be auare of the problems involved, and never forget
that damage to the system is possible. A good I/O
description of the Amstrad can be found in Don
Thomasson ’ s book ’’The Ins and Outs of the Amstrad” ,
also published by Melbourne House.

The I/O instructions that are usable uith the
Amstrad hardware are as follous:

IN r , <X)
OUT CC),r

uhere r is an 8 bit register. The IN instruction
reads a byte of data from the I/O device to the CPU

1 1 1

register; it. is similar to loading a register from
memory. The OUT instruction sends a byte from the CPU
register to the I/O location. This is the same sort
of operation as loading a memory location from a CPU
register. The address of the I/O location of interest
here is held in the BC register pair. Care is needed
here, and an I/O map is essential, as not all
addresses are used by the System. An example of the
use of the IN instruction is shown belou:

LD B C ,&BE00
IN A ,(C)

The data will be read into the A register from, in
this case, the CRTC. An IN instruction involving the
A register also affects the S, Z and P/V flags.
Again, you can crash the system if you read from
certain I/O addresses.

Just as ue have the LDIR instructions for memory
transfers, ue can have block transfer operations for
the IN and OUT operations. However, due to the
arrangement of the Amstrad Hardware, they CANNOT be
used on the Amstrad.

On the whole, these instructions are of minimal
use on the Amstrad; apart from carrying the risk of
possible damage, the Amstrad ROM routines offer us all
ue are usually likely to need in terms of
communicating with the peripheral devices of the
System.

Odds and Ends
I uant to use the rest of this Chapter to mention a
feu instructions that are either rarely used or d o n ’t
fit in anywhere else! Hence the "odds and ends” part
of the Chapter title.

The first instruction t hat I u a n t to look at is
really useful, despite the fact that it does nothing!

HOP

The NOP instruct ion, uhen encount ered by the CPU, just
causes the CPU to ’’mark time” for a uhile. This rather
pointless sounding activity can be rather useful if ue
uant to slou things doom a little. The NOP instruction
could easily be included in t he t i me delay 1oo ps t h a t
ue sau in a previous Chapter.

A sec on d use is to delete i n s t ru clions from a
progr am by replaclnq t hem u i th the opcode for NOP,
which is 0 0. U h y do this? Dell, if the pro g ra m
contains any jumps, deleting instructions usually
r“ e s u 1 t s i n t h e rel a t i v e jump d i s p 1 a c e rn e n t s o r t h e
absolute jump addresses being incorrect. If ue simply
replace each byte of the offending instructions with

1 1 2

”00 ” then the jumps u i 11 be correct because the number
of bytes in the program uill not have changed.

You can see that, for an instruction that does
nothing, it’s surprisingly useful!

The next too ’’odd” instructions that ue ’ 1 1 look at
here are called RRD and R L D . They aren’t commonly used
instructions, but are useful if yo u ’re dealing uith
BCD numbers.

RRD and RLD

Ue sau some time ago hou ue could use shift
instructions to affect the value held in registers. Ue
also sau the Rotate instructions. These instructions
all uorked on single bits uithin a byte. These tuo
instructions work on nibbles uithin a byte! The
instructions only uork in the Register Indirect-
Addressing mode. In both instructions, the HL register
pair contains the address of the byte in memory that
is to be manipulated. The operations of the tuo
instructions are shown below. Note hou the A register
is a 1 so used.

Operation of RLD

In general terms this is

A register (HL)

For a particular example, let’s examine the belou
s i tuati o n .

A=0010 1100 CHL1=1010 0010

After the RLD instruction, u e ’re left uith

A — 0 010 1010 CHL5=0010 1100

Operation of RRD

In general terms, this is

1 13

For a particular example, toe can consider the belou
s 1tuat i o n .

A=10 10 0001 C H L)=0010 01 10

After the RRD command, the bytes are

A=1010 0110 (HL 5=000 1 00 10

As I said, these commands are really only useful if
yo u ’re doing some complicated manipulations of BCD
numbers.

HALT

An instruction uhose name is very descriptive; this
simply causes the CPU to stop uhat it’s doing, or
HALT, until it receives an interrupt. As there’s an
interrupt at least once every 300th of a second on the
Amstrad, the CPU d o n ’t halt for long!

Interrupt Modes

The Z80 can respond to Interrupts of the maskable kind
in a variety of uays. The uays in dhich the CPU
responds are called Interrupt Modes, and there are 3
of these. They are called IM0, 1111 and IM2. The
Amstrad runs in Interrupt Mode 1, dhich causes the CPU
to execute an Interrupt handler routine at address &38
uhenever an interrupt occurs.

The instruction

IM 0

dill change the Interrupt mode to Mode 0. IM 1 and
in 2 dill change the interrupt mode in use to the
corresponding modes. There is not really room in this
book to go into details about these different modes,
but it’s best not to alter them until you know exactly
dhat yo u ’re doing!

HEG

This instruction carries out an automatic complement
and increment operation on the A register, thus

1 1 4

negating the A register contents. Thus, the
i nstructions

LD A , 3
NEG

ui 1 1 leave the t u o ’s complement representation of -3
in the A register. The flags are affected in the
following fashion. C = 0 if the original value uas
zero. If the original value uas 128, then C = 0 AND
the P/V flag will be set. Otherwise C is set to zero.
The 2 and S flags assume a value depending upon the
result of the operation.

The I and R registers

These are two special purpose 8 bit registers. The I
register is concerned with interrupts, and is nothing
to do with the IX and IY registers. The R register is
called the REFRESH register, and both these registers
are of use only to the experienced programmer.

Ue ’ ve now looked at all the 280 instructions. Ue
can now go on to see hou ue can use the buiIt in
facilities of the Amstrad computer, starting with a
look at the Amstrad sound chip.

1 1 5

Chapter 11
Amstrad Sound

All the sounds on the Amstrad are generated by a
device called the AY-3-8912 Programmable Sound
Generator. These devices are often used in home
computers to generate sounds; the CPU simply instructs
the Sound chip to produce a particular sound, and then
it can go off and do something else while the PSG
continues to generate the sound independently. In
older systems that do not use these sound chips, the
CPU itself has to produce the sounds and is thus not
able to do anything else in this period.

Although the Sound chip provides the ’’raw" sounds
for the Amstrad, many of the special effects that are
possible are controlled by the CPU running programs.
In this section, I will look at the Sound Chip in
terms of hou it can be programmed to provide some
basic sounds, and give you enough information to write
your own sound effects programs.

General Notes on the AY-3-8912
This chip is called a 3 channel device; that is, it is
capable of playing three tones simultaneously, each
tone being of a different pitch and amplitude to the
others. Amplitude is just the technical term for
volume of sound. Each channel can also play ’’noise” ,
and so the device is well suited for producing sound
effects. Like the CPU, the PSG contains registers,
which are used to control the nature of the sound
being produced. Of course, we c a n ’t use these
registers to do arithmetic in! As well as these
control registers, there is also an input/output
register, which enables the PSG to communicate with
other electronic devices in the computer system. In
the Amstrad, this register is used, under CPU control,
to get information from the keyboard. Under normal
conditions, the PSG is controlled by the programmer
accessing 3 locations in the I/O map of the computer.
However, in a machine with the complexity of the
Amstrad, it’s safer to use a machine code routine
contained in the Amstrad ROM to communicate with the
PSG, and thus control it. The reason for this is that
because the keyboard is read 50 times a second, the
PSG might be accessed by the OS half way through one

1 17

of your operations, and this could really confuse
things? Using the provided ROM routine, which is
called MC SOUND REGISTER, will ensure that nothing
unpleasant happens!

PSG Registers
There are 15 registers in the PSG; 14 of these are
concerned uith sound generation and the other one is
the I/O register that u e ’ve just mentioned. Le t ’s nou
go on to look at hou ue use the ROPl routine to access
one of these registers. They are numbered from 0 to
14, and register 14 is the I/O register.

Writing to PSG Registers

This is simplicity itself, thanks to the ROH routine.
Ue simply load the register number of interest in to
the A register of the CPU and the value that ue want
to urite to that register into the C register of the
CPU. Then ue simply make a CALL to the ROM routine,
uhich is accessed at address &BD34.

As an example, let's say that ue uant to send the
value 4 to PSG register 8. Ue simply use the belou
code ;

LD A , B
LD C , 4
CALL &BD34

Easy isn’t it?

Examp 1e 16:

This short routine enables us to urite values to PSG
registers from BASIC.

LD C , CIX + 0)
LD A , (I X + 2)
CALL &BD34
RET

If the code is entered at address 40000, then

CALL 40000,2,3

uill urite the value 3 to PSG register 2. As ue d o n ’t
need to return any values to BASIC from this routine,
ue d o n ’t have to use the ”0 ” symbol.

Of course, the crunch is knouing uhat to urite to
each register to get the desired effect. So, let’s get
doun to finding out uhat each register does.

The only problem uith the PSG is that several
registers are involved uith the production of a sound.
U e ’11 look at those involved uith tone generation

1 18

first, and then examine those
generation and sound modulation.

to do with noise

Registers; 0 and 1

These are treated together
they hold
of the tone
8 bits of
the upper 4

by the P S G , and together
a 12 bit number which represents the pitch
played on Channel 1 of the PSG. The lower
the pitch value are held in Register 0 and
bits are held in the lower 4 bits of

Register 1. The upper 4 bits of register 1 are not
used. It's thus clear that the contents of the lower 4
bits of register 1 has a higher significance to the
value of the pitch than does the contents of register
0. For this reason, Register 1 is called the COARSE
TUNE CONTROL REGISTER, and Register 0 is called the
FINE TUNE CONTROL REGISTER. The higher the overall
value held in the twelve bit register is,
pitched the tone generated on Channel 1
write a value to these two registers, w e ’d

the lower
i s . S o , to
use code

like that shown be 1o w .

LD A , 0
LD C ,data for R . 0
CALL &BD34
INC A
LD C ,data for R . 1
CALL &BD34
RET

Register s 2 and 3

These are also p i tch
contro1 the pitch of
the PSG. They work in a

control registers, but they
2 of

and 1. Here
and Register

, Register 2 is the Fine Control Registers
3 is the Coarse Control Register.

Registers 4 and 5

These registers are the Pitch control registers for
channel 3 of the PSG. Register 4 is the Fine Control
Register for this Channel and Register 5 is the Coarse
Control Register.

Register 6

Register 6 is not concerned with tone generation,
so it will be examined later in the Chapter.

and

Register ?

This is best looked at as the main control register of
the PSG. Unless various bits of this register are set
in the correct fashion, no sounds will be produced by
the PSG, no matter what values are placed in the other
PSG registers, so it’s obviously quite important. Each

1 19

bit, except, one, controls one aspect of PSG behaviour.
Bit 7 is not used by the PSG. The aspects of behaviour
controlled by different bits of the register are shown
be 1o u .

L e t ’s now examine these bits in more detail.

Bit 0

This is called the Channel 1 tone enable bit. Uhen
this bit is set at zero, a tone can be played on
Channel 1 provided that it has a volume that is loud
enough to be heard! If set to 1, however, no tone can
be played. Uhen set to 1, Channel 1 is said to be
DISABLED, and when this bit is set to zero the tone on
Channel 1 is said to be ENABLED. It effectively turns
the tone on and o f f .

Bit 1

This is this Enab1e/Disab 1e bit for Channel 2 and is
similar in function to Bit 0.

Bit 2

This is the Enab1e /Disab 1e bit for Channel 3, and is
similar in function to bit 0.

Bit 3

This is the Channel 1 Noise Enable Bit, and it’s
status turns any noise on Channel 1 on or off. The
subject of noise will be considered in detail shortly.
Uhen set to 0, noise will be generated on Channel 1 at
a volume that depends upon the amplitude that w e ’ve
set for that channel. Uhen set to 1, no noise will be

1 2 0

generated. It is possible to have both bits 0 and 3 to
0. Setting both these bits to 1 will completely
inhibit all sound output on Channel 1.

Bit 4

The Channel 2 noise Enable/Disable bit. It is similar
to Bit 3 in function.

Bit S

The Channel 3 noise Enable/Disable bit. It is similar
in function to Bit 3.

Bit 6

This controls whether the I/O register is set to be an
Input Register or an Output Register. This bit should
be left set to zero, to signify that the I/O register
is to be used as an Input Register for the keyboard.
Setting this bit to 1 will disable the keyboard, and
the only way to recover from this, unless your program
resets the bit to zero before finishing, is to turn
the power off!

Bit 7

This isn’t used in this particular P S G .

Because of the importance of Bit 6, it's advisable
to be careful when writing to this register. Always
leave the top two bits, bits 6 and 7, set to zero. The
other bits should be set depending upon what you want
to do with the PSG.

Amplitude Control
The amplitude, or volume, of a sound determines it’s
loudness. There are two ways of controlling the
volume of sound produced by the Amstrad . The most
obvious is to use the volume control on the side of
the keyboard! However, this isn’t exactly
programmable, so we must use the three AMPLITUDE
CONTROL REGISTERS that the PSG has. There is one such
register for each Channel on the PSG and they are all
4 bit registers. This gives us 16 different levels of
loudness, from 0, which is silence, to 15, which is
the loudest volume. The Amplitude Control Registers
are Registers 8 to 10. Once w e ’ve discussed these
registers, w e ’re in a position to actually make some
sounds using the PSG.

Register 8

This is the Amplitude Control Register for Channel 1.
U e ’ve just said that this is a 4 bit register; well,

121

that’s not strictly true. There is a fifth bit, but
that’s not concerned with setting the amplitude at a
constant level.

Register 9

This is the Channel 2 amplitude control register.

Reg i ster 1 0

This is the Channel 3 amplitude Control register.

Le t ’s nou look at the actual business of
generating a tone using the P S G . There are three main
steps to doing this. These are;

(a) Set the Pitch up for that Channe1.
Cb) Set the Amp 1i tude up for that Channel
Cc) Enable Tone on that Channe1.

Examp 1e 17 shous a program for generating a
Channe1 1 .

Examp 1e 1 7 :

Enter the code at address 40000, and run it uith CALL
40000.

LD A , 0 select register 0
LD C , & 1 2 value for pitch reg i sters
CALL &BD34
I NC A select register 1
CALL &BD34
LD A , 8 select register 8
LD C, 15 full v o 1ume
CALL &BD34
LD A ,7 select register 7
LD C , 62 only enable tone on channel
CALL &BD34
RET

1

Calling this routine will probably induce you to turn
the volume on the computer down a little! You w i 11
also notice one thing; the sound doesn’t stop! Ue must
deliberately do this by disabling the Tone on Channel
1, or setting the contents of Register 8 to zero. The
difference between these two is that while tone is
disabled, the noise can carry on if it is enabled at
the same time as tone. Example 18 shows how we can use
a machine code delay routine in a program that
generates a tone for a given length of time before
disabling it again.

122

Before ue look at this, I ’d better tell you hou to
stop the tone produced a moment ago! A quick press of
the ”CLR” button when the ’’Ready” prompt returns
usually does the trick.

Examp 1e 18:

Enter- the code to address 40000 and call it at the
same address.

DELAY 1
DELAY2

LD A ,0
LD C , & 1 2
CALL &BD34
INC A
CALL &BD34
LD A , 8
LD C , 15
CALL &BD34
LD A,?
LD C , 62
CALL &BD34
LD B , 4
LD H L ,&FFFF
DEC HL
LD A , H
OR L
JR N Z ,DELAY2
DJNZ DELAY 1
LD A,?
LD C , 63
CALL
RET

&BD34

set up for a delay loop

tone period

d i sab 1e tone

The delay loop that is used here is the same as that
which ue sau in a previous Chapter. Example 19 show
hou ue might generate a ’’fade out” of the sound. I
does this by repeatedly reducing the value held in the
Amplitude Control register for Channel 1.

123

c*
 0
)

Examp 1e 19:

L00P2
LOOP 1

LD A , 0
LD C , & 1 2
CALL &BD34
I NC A
CALL &BD34
LD A , 8
LD C , 15
CALL &BD34
LD A , 7
LD C ,62
CALL &BD34
LD C , 15 initialise for fade
LD B , 15 number of steps in fade
LD H L ,&FFFF tone step duration
DEC HL
LD A , H
OR L
JR N Z ,LOOP 1 tone played at volume >C >
DEC C
LD A , 8 decrease volume
PUSH BC send to PSG register 8
CALL &BD34 push BC because this call
POP BC messes up the registers.
DJNZ L00P2 repeat with neu volume
RET all done

It’s a 1 so
registers
p 1ayed on
generate
shoos this

possible to vary the contents of the Tuning
for a given note uhile a note is being

that Channel. This is hoo the Amstrad can
it’s ’’Tone Envelopes” in BASIC. Example 20
i n act i o n .

Example 20:

This routine generates a series of tones by simply
modifying the contents of the Coarse Tune register for
the Channel on which the sound is being played; thus
in this example ue modify the Coarse Tune Register for
Channel 1, which is Register 1.

124

L00P2
LOOP 1

LD A , 0
LD C , 15
CALL &BD34
INC A
CALL &BD34
LD A , 8
LD C , 8
CALL &BD34
LD C, 15
LD B , 15
LD HL , &FFFF
DEC HL
LD A , H
OR L
JR N Z ,LOOP 1
DEC C
LD A, 1
PUSH BC
CALL &BD34
POP BC
DJNZ L00P2
LD A , 7
LD C , 63
CALL
RET

&BD34

initialise for tones
number of tones
duration of each tone

turn off tone

Note that this time ue have to turn off the tone. You
might like to try writing a machine code program that
does a similar trick with the Fine Tune registers, so
that you can get a smooth change from one tone to
another.

So far, w e ’ve used Channel 1 all the time. The
information given so far is equally applicable to the
other channels, provided that you use the correct
registers for that Channel. As was mentioned at the
start of the Chapter, you can play tones on three
channels simultaneously if you want to, by setting the
various registers up and then enabling tone on
whatever channels you want to use.

Noise
Ue briefly mentioned noise earlier in the Chapter.
Let’s look at it in greater detail. Noise, or UHITE
NOISE as it is some times called, is best described in
non-technica1 terms as a rushing, hissing noise,
similar to that that can be heard on a UHF radio
receiver when no stations are being received. Many
natural, and man-made, noises have a high proportion
of this type of sound in their make up. Examples are
rain, wind and explosions. Noise can be played on any
of the three channels, either at the same time as the
tone or instead of the tone on that channel. The
amplitude of noise on a particular channel is
controlled by the Amplitude Control Register for that
channel. The practical result of this is that you
can’t have noise played at a different volume to tone

125

on a given channel. Before you can actually hear noise
on a channel, the relevant bit in Register 7 must be
set to zero. Thus to enable the playing of noise on
Channel 1 ue must set bit 3 of this register to 0.
Example 21 plays noise on Channel 1. To stop it, press
”CLR” a couple of times.

Examp 1e 21:

Enter to code to address 40000 then call it with CALL
40000 .

LD A ,8
LD C , 8
CALL &BD34
LD A , 7
LD C,&37
CALL &BD34
RET

Just as a tone has a pitch, so does noise. The pitch
of white noise is measured in terms of the relevant
amounts of high and lou frequency noise present in the
sound High frequency noise is very "hissy", and lou
frequency noise is more of a "rushing" sound. The
pitch of the noise played by the PSG is controlled by
PSG register 6, which is the Noise Pitch Control
Reg i ster.

Register 6.

The fact that there is only one register for the
control of the pitch of the nose generated indicates
that all channels will play noise at the same pitch.
The register is a 5 bit register, thus giving pitch
values of between 0 and 31. A value of 0 gives the
highest pitched noise and 31 gives the lowest pitched
noise. Again, if we alter the value held in this
register while the white noise is being played, you
will hear the pitch of the noise alter.

Envelopes
Nothing to do with sending letters through the post.
Uhat is the difference between the note of 'C' played
on a flute and the note of ’C ’ played on a piano?
Although the pitch is the same, the notes sound
totally different. Well, as well as pitch the sound of
a note depends upon it's amplitude and upon the way in
which the pitch and amplitude of a note change as the
note is played. For example, ue can represent the way
in which the amplitude of a note changes with time
using a graph as shown below.

set the amplitude up

enable Channel 1 noise only

126

amplitude

time

This is the type of note that u e ’ve played so far.

The volume of the tone goes from zero to the
maximum amplitude set as soon as the note starts,
stays at this volume until the note finishes and then
drops back to zero. If ue could somehou "shape” the
sound amplitude, u e ’d be able to produce more
interesting sounds. Examine the belou graph.

followed by a slow decrease in the amplitude of the
sound. This sound shape is called an AMPLITUDE
ENVELOPE. Ue could, of course, generate such an
amplitude envelope by varying the contents of the
Amplitude Register, but this uold require the full
attention of the CPU. Fortunately, the PSG has the
ability to provide a feu specific envelopes
automatically. It is also possible to provide TONE
ENVELOPES by varying the contents of the Pitch Tune
registers for a particular channel, but this uould
require CPU attention whenever the tone needed
changing. This is hou the Amstrad provides it’s tone
envelopes from BASIC. However, w e ’re going to
concentrate on the envelopes built in to the PSG in
this Chapter. The essential thing to remember about
these envelopes provided by the PSG is that once w e ’ve
signaled to the PSG that ue want to use one of the 8
available "hardware" envelopes, and told the PSG which
one ue want to use, the PSG will get on with it
without any further interference from us.

The type of envelope applied to the tones played
on a channel, or the noise for that matter, depends
upon the contents of PSG register 13.

amplitude

time

start
This gives us a gradual

^end
increase in amplitude,

127

Register 13

This is the PSG Envelope Shape Control Register, and
only the louer 4 bits of this register. You might
think that this gives us access to 16 different
envelopes; well, it doesn’t. Only 8 different hardware
envelopes are available on the Amstrad , but this is a
limitation of the PSG rather than the computer.
Uriting a value to this register other than those
listed below will result in one of the listed
envelopes being applied to the sound. One thing that
is important is that the existence of only one
Envelope Shape Control Register for all three channels
obviously results in the same envelope being applied
to sounds on any channel that are played under
envelope control.

Ue can see how to set up what envelope we want to
use, but how do we tell the PSG that we want to play a
sound on a particular channel under envelope control
rather than at the fixed amplitude set by the
Amplitude Control Register for that channel?

(Jell, remember how I mentioned that the Amplitude
Control Registers had a fifth bit? This is the role of
the fifth bit. It signals to the PSG whether the
channel plays it’s sounds under envelope control or
under the control of the Amplitude Control Register.
If bit 4 of one of the amplitude Control Registers is
set to 1 then sound on that channel is played under
envelope control. If it is set to 0, then the sound
will be played at the volume specified by the lower 4
bits of the Amplitude Control Register. As a concrete
example, to instruct the PSG to play it’s channel 1
sounds under envelope control, we set register 8 to
hold the value 16.

The envelope shapes given for a particular value
of Register 13 are shown below.

128

1

13

129

In al 1 these examp 1e s , E P stands fot ENVELOPE PERIOD,
and is a measure of the time it takes to execute that
part of the envelope. Ue vary this parameter, and
hence vary the rate of change of the amplitude, by
altering PSG registers 11 and 12.

Registers 11 and 12

Together these form a 16 bit register pair within the
PSG. Register 11 holds the 8 low bits of the value and
Register 12 holds the 8 high bits of the value. The
higher the value is held in these too registers, the
longer is the envelope period.

Ue can now see a demonstration (or should it be
hear) of the hardware envelope facilities of the PSG.
Example 22 plays a tone on channel 1 under the control
of Envelope number 14.

Examp 1e 22:

This routine will play the enveloped tone until ”CLR”
is pressed. Load the bytes to address 40000 and run
the program with CALL 40000. You will be able to hear
each amplitude change due to the long Envelope Period
set by the contents of Registers 11 and 12.

LD C, 16
LD A ,8
CALL &BD34 set up channel 1 for envelope
LD A , 13
LD C , 1 4
CALL &BD34 set up envelope number 14
LD A , 1 1
LD C , 255
CALL &BD34 set up low byte of EP
LD A , 12
LD C , 255
CALL &BD34 set up high byte of EP
LD A , 7
LD C , 62
CALL &BD34 enab1e tone on this channel
RET

It is often possible to get a wide range of sound
effects simply by altering the Envelope Shape and
Envelope Period Registers. You might like to try this.
You will find, however, that,just as in BASIC,
generating sound effects is a rather ’’hit and miss”
occupation that often requires a little
experimentation to get the best results.

130

Chapter 12
The Amstrad Keyboard

That the keyboard is the main means by which ue can
communicate with the computer is rather obvious. Ue
type in all our programs on it, and issue all our
BASIC commands on it. It would thus be useful if we
could somehow access the keyboard from our machine
code programs. Uell, we c a n ’t do it directly, because
the effort required to read the information from the
Amstrad hardware is considerable, and making use of
the results would be a little difficult. Instead,
w e ’ll choose the easy option; that is, use the
facilities that are offered by the Amstrad R O H . There
are several different routines in the ROn that are
used to read the keyboard and make sense of the values
read from the hardware. For our purposes, w e ’ll make
use of two routines that perform the following tasks.

(a) Uait until a key is pressed and then return
the character typed in a register.

Cb) Read the keyboard, but do not wait until a key
is pressed. If the key is being pressed at
the instant of reading the keyboard, then it’s
ASCII code is returned in a register.

Let’s now look at these two routines in detail. They
are very easy to use.

Wait for a key
This ROH routine is called at address &BB06. Once
called it causes the machine to wait until a key is
pressed on the keyboard. The key pressed should be one
that normally returns a character or the ENTER key.
Keys like the SHIFT or SHIFT-LOCK keys will not
terminate this routine. Once a key has been pressed,
the ASCII code of the character will be passed back
from the ROH routine in the CPU A register. Example 23
shows how we might use this call.

Example 23:

The code is shown below. Enter it at address 40000 and
use the BASIC program to demonstrate it.

131

LD L , (I X + 0)
LD H ,CIX+1)
CALL &BB06
LD CHL),A
RET

100 A?i = 0
110 CALL 40000
120 PRINT A%,CHR$(A?0
130 GOTO 110

The char acter CO de is th US re tur ne d i n the va r i ab1e
f\Z .

This rout ine uou1dn *t be of mu ch use in most games
prog rams , for as soon as y ou stopp ed press i ng ke ys the
act ion in t h e ga me uouId g rin d to a halt unt i1 a key
uas pressed. Houever, th ere are severa 1 app lie at i ons
uher e th i s ca 11 i s usef u 1 , i n BASI C as ue 11 as mach i ne
code pro grams.

The f i rst i s uhere ue uan t the progra m to pause
unt i1 any key is presse d . Ca 1 1 i ng the abo ve men t i oned
rout i ne from BAS IC u i 11 do th is adm i rab1y Ue cou 1 d
even spec i f y th e key ue uant press ing bef ore a 11ou i ng
the user to go o n . This re qu ires a short mach i ne code
prog ram , and the be 1ou rou tin e u i 11 cause the computer
to uait unt i 1 th e Space Ba r has be en pressed. Re member
that the ASCI I code for a ’sp ace ' is 32.

UAIT CALL &BB06
CP 32
JR NZ.UAIT
RET

The rout i ne s imp ly cause s the ROM rout i ne to be called
r epe ated 1 y un ti 1 the Sp ac e Bar i s pressed . Th i s uou 1 d
cause the RON routine to be exited with 32 in the A
register, and thus in this case the CP 32 instruction
would cause the Z flag to be set, thus causing the
condition of the JR NZ instruction to fail.

A further appl i cat ion > in mach i ne codi
pr og r amm ing , m i ght be to ua it for a key to be pr esse<
th at rep resents a par t i cu 1 ar opt i on number f rom
r ang e of opt i ons The be 1 ou rou t i ne does th i s
assu m i ng that there ar e 3 Opt i on s num bered 1 , 2 and 3
Th e ASCI I codes for th ese num ber s are 49,50 and 5 1 .

UAIT CALL &BB06
CP 49
JP Z ,OPT I ON 1
CP 50
JP Z ,OPT I0N2
CP 51
JP Z ,OPT I0N3
JR UAIT

OPT I ON 1 . . .
loop until 1, 2 or 3
is pressed

132

You could write a short. machine code program that
enters a string of characters from the keyboard and
stores the ASCII codes of these characters in an area
of memory pointed to by an index register. Such a
routine is shown below. Pressing the ENTER key will
terminate the operation.

LD IX,41000 address for characters
U A I T CALL &BB06

LD (I X + 0) , A
INC IX
CP 1 3
JR N 2 ,UAIT

OUT if CHR$13 go here

The thing to note in this program is that the CP 13
instruction is, of course, a CP A , 13 instruction in
disguise. It does not refer to the contents of the IX
register. Uhen I started machine code programming I
always made the mistake of assuming that the CP
instructions in a situation like this referred to the
last register accessed!

Don’t Wait For a Key
The second way of reading the keyboard that w e ’re
going to look at in this introduction to Amstrad
machine code doesn’t wait until a key is pressed, but
simply goes on with the rest of the program. If a key
is pressed the ASCII code of the key is returned in
the A register. The R0I1 routine to perform this
function is called at address &BB09. The status of the
C flag indicates to us whether a key was pressed in
the instant at which the routine was examining the
keyboard. If the C flag is set on return from this RON
call, then it indicates that a key was pressed and the
the ASCII code of the character hence generated can be
found in the A register. If the C flag is clear then
it indicates that a key was not pressed during the
time that the routine was examining the keyboard.
Example 24 shows this routine being called from BASIC.

Examp 1e 24:

Enter the machine code at address 40000, and then use
the below BASIC program to run it. A?i will hold the
ASCII code of any character entered during the scan
time (when the keyboard was being examined by the RON
routine), or the value 0 if no key was being pressed.
Note that the auto-repeat on keys still works when we
call these RON routines.

LD L.CIX+0)
LD H ,(I X +1)
CALL &BB09
RET

133

The BASIC program is;

10 0 A H = 0
1 10 CALL 40000 ,@AH
120 PRINT AH
130 GOTO 110

You can see that, this routine is very useful in
machine code games, because processing doesn’t stop if
yo u ’re not pressing a key.

That completes this introduction to the Amstrad
keyboard. U e ’11 nou go on to look at the other major
means of interacting with the computer; the display
screen.

134

Chapter 13
The Amstrad Display

Hou uie’ve examined the Sound capabilities of the
Amstrad, and seen hou ue can read information from the
keyboard of the computer, u e ’11 complete this
introduction to Amstrad machine language by examining
hou ue can interact uith the display screen from
uithin our machine code programs. The Amstrad has a
high resolution, colour display and most of the
facilities that are available from BASIC are also
available from machine code uith reasonable ease.
Houever, u e ’11 only look at the simpler methods of
accessing the Amstrad screen from uithin our programs.
The most obvious thing to do is to find out hou ue can
simply print characters to the screen. Again, due to
the complex arrangement of the Amstrad harduare, the
job is best done using a ROM routine.

Printing Characters to the Screen
The ROM routine that does this is called at address
&BB5A. It’s very easy to use; ue simply put the ASCII
code of the character that ue uant to print on the
screen in the A register, and then ue simply call the
ROH routine. This routine treats characters passed to
it in the A register in tuo uays, depending upon the
ASCII code of the characters.

(a) Codes betueen 32 and 255 inclusive are printed
on the screen. Thus ue can print characters
that available from the keyboard as uell as
user definable characters set up by the SYHBOL
command.

(b) Codes betueen 0 and 31 are treated in a
special fashion by the Amstrad Operating
System. These codes are called CONTROL CODES,
or CONTROL CHARACTERS.

Uhat are Control Codes?

They provide us uith a means of controlling the
behaviour of certain aspects of the display. For
example, the ENTER key, uhen pressed, causes tuo
control codes to be sent to the display. These tell
the display to move the text cursor to the start of

135

the next line. Other Control Codes do things like move
the text cursor up, doun or sideuays or they clear the
screen, set the PEN colour or make a "beep” noise.
U e ’11 look at them in greater detail shortly.

Printing Characters

The belou routine u i 11 print the character held in the
A register to the screen.

LD A,ASCII code
CALL &BB5A
RET

As a more useful example, look at the program shoun in
Example 25.

Example 25:

This program u i 11 fill the screen uith the character
whose ASCII code is specified as the parameter to the
CALL instruction that calls the machine code program.
Load the bytes to address 40000 , and use a command
like CALL 40000.A% to run the program.

A>. of course, holds the ASCII code of the
character of interest. Thus CALL 40000,65 will fill
the screen uith letter ”A ”s.

LD A, C IX + 0)
LD BC , 1000

LOOP PUSH AF
PUSH BC
CALL &BB5 A
POP BC
DEC BC
LD A , B
OR C
JR 2 , OUT
POP AF
JR LOOP

OUT POP
RET

AF

preserve the registers

L e t ’s look at the program; the first instruction first
recovers the ASCII code from the parameter block. The
LD BC instruction then loads this register pair with
the number of text character locations on the screen.
This is 1000 in mode 1, and is different in the other
tuo modes. You can modify this program to fill screens
in the other modes by simply modifying the number
loaded into the BC register pair. The number of
characters that can be put on the screen in a given
mode is given by U*H, where U is the number of screen
lines and H is the number of columns on the screen.

The registers are pushed onto the stack because
the ROn routines often mess up the contents of
register pairs.

136

Ue can also print out strings of characters from
machine code. These strings could, for example,
represent messages that the machine code programs
should print out while they are running. It’s very
easy to do this, as Example 26 shows.

Example 26:

This routine prints the message "Hello” to the screen,
a rather trivial application! However, the principles
are applicable to longer strings, and all that needs
to be changed in the program is the value loaded into
the IX register as the start address of the string of
characters and the value loaded into the B register as
the length of the string of characters to be printed.
The below line of BASIC can be used to put the string
into memory at address 41000.

FOR 1=0 TO LENC"Hello"):
POKE (41000+1),ASC(HID$(”Hello” ,I,1)):NEXT I

The belou bytes should be loaded to address 40000
CALI 40000 will then print the string.

LD IX,41000 address of string
LD B , 5 length of string

LOOP LD A , (IX)
PUSH BC save no. of characters
CALL &BB5A
POP BC
INC IX
DEC B
JR N 2 ,LOOP
RET

It’s all very well to be able to print a string of
characters to the screen, but in BASIC we are also
able to specify exactly where on the screen the
characters are to be placed. Can we do this in machine
code?

The answer is yes.

Positioning Text on the Screen

Ue use one of the control codes to do this. If we send
character 31 to the ROM routine at &BB5A, then the
next two numbers to be passed to the routine are not
treated as characters to be printed to the screen.
Instead, they are treated as the X and Y position at
which the next characters to be printed are to be
placed. Thus, if we were to send the numbers 31, 10,
12, 65 to the ROM routine, w e ’d get the letter "A"

137

printed at position 10, 12 on the screen. In machine
code this is

LD A,31
CALL &BB5 A
LD A , 10
CALL &BB5A
LD A , 12
CALL &BB5A
LD A,65
CALL &BB5A

send character 31

send the X coordinate

send the Y coordinate

send the character

The X coordinate is betue
specifies the column numb
value here that will giv
upon the screen mode
va 1 ue 20 . in mode 1 it
80 . Sho u 1 d yo u exceed
giu en bu t the cha racter
to ■the appro pr iate po
i s the 1ef tmos t column
coo r d i na te incr eases
coo r d i na te ref ers to th'
you uant- the char acter
25 in a 11 modes . L i ne
d i splay.

Thus by us ing CHR$3
pos i tion text at any ;
thu s see that it prov i d
equ i va 1 ent of th e BASH
a contro 1 code ie t ' s t
the othe r s tha t are a va

flake A ’beep *

For thos e occa s i ons uhe

en 1 a
er on
a se

n use .
is 40

is va 1
oncern
t i on o
of th
r om 1
screen
appea
i s

nd 80 in
the screen
nsible res
For mode 0
and in mod

u e , no erro
ed u i 1 1 not
n the scree
e screen,
eft to ri
1i ne numbe
, and var i

the top 1

va 1 ue
The m

u 11 d
the m

e 2
r mess
be p

n . Co
and

g h t .
r at
es fro
i ne o

and
ax i mum
epends
ax i mum
it is
age i s
r i nted
1 umn 1
the X
The Y
uh i ch

m 1 to
f the

you can

uith the machine code
rE command. Nou u e ’ve met
closer look at some of

to indicate that something in your
occurred, but you don't uant to have to
varlou; registers of

brief tone
program has
program the
the desiredthe PSG to get

effect, you might like to try the belou routine, uhich
uses CHR$7.

LD A ,7
CALL &BB5A
RET

Clear the Screen

Printing CHR$12 uill clear the screen to the currently
selected text paper colour. It is thus equivalent to
the BASIC CLS command.

Set the PEN and PAPER Colours

The colour in uhich text is uritten to the text cursor
on the screen is specified by the PEN command in
BASIC.

138

PEN n

will set, the colour, uhere n is the colour number
required. To simulate this from machine code, ue use
CHR$15. This, followed by a second number, selects the
colour specified by the second number. Thus to execute
a

PEN 2

command from within a machine code program, we might
use

LD A, 15
CALL &BB5A
LD A,2
CALL &BB5A
RET

Ue can do a similar
selected paper. Here
code. The below routine
followed by a C L S . Th
colour specified by the

thing to change the currentl
we use CHR$14 as the contro

executes the PAPER 1 comman
is sets the text screen to th
PAPER command.

y
1
d

LD A , 14
CALL &BB5A
LD A , 1
CALL &BB5A
LD A , 12
CALL &BB5A
RET

There
US to si
these are
th i ng to
the d i sp 1
that the
that cont
this , the
the scree
f ew char
cont u0

are oth er con tr o 1 cod es aVa i1 ab 1 e , to enabl e
mu 1 at e the INK > SYMBOL and MODE comm ands bu t
of te n done Just as ea s i1y fr om BAS IC . On e
not e abo u t th e se nd in9 of CO ntro 1 cod es to

ay ro ut ines is tha t yo u shou 1d a 1 uay s ensur e
appr opr i at e num be r of Paramete rs re q u i red by

ro 1 code ar e Pas se d as u e 11 If you don 't. do
n occ as iona 11y str an ge res u 1ts can be se en on
n > a s i n th e abs en ce of Paramet ers th e nex t
acter CO des are tr ea te d as Par ameter s f or th e
ode .

To ma ke th i ngs
betwee n 0 and 31 a
them . For exam pie,
’’beep ” no i se , ca
sty 1 e cha r acte r to
we ge t the ROM
charac ter s to the
codes as Contr ol C

more confusing, a
Iso have a charact

CHR$7, as well
n also print a sma
the screen. The p
routines to prin

screen instead of
odes?

11 the ASCI I cod es
er ass oc i at ed w ith

as produ c i ng a
11 ”sp ace inv ade r ”
rob 1 em i s , how do
t thes e add it i on a 1
treat ing th e ASC I I

The answer
represented by
foilow i ng i t to
Thus, sending 1

i s very ea
CHR$1 cause

be treated as
and 7 to the

sy . The c
s the code
a pr i ntab 1

ROM rout i ne

ontrol code
i mmed i ate 1y

e character.
in that order

139

uill print the "space invader" to the screen instead
of making a "beep". The belou machine code
instructions uill do this.

LD A , 1
CALL &BB5A
LD A , ?
CALL &BB5A
RET

The i nf 1uence of CHR$1 only extends over the character
immediately following i t to the ROM routine. Thus the
belou program

LD A , 1
CALL &BB5A
LD A ,7
CALL &BB5 A
LS A , 7
CALL &BB5A
RET

uill print 1 character to the screen and then generate
1 "beep"

Of course, as uell as printing textual information
to the :screen ue also can drau graphics on the screen
from BASIC. As you might expect, there are several ROM
routines that enable the user to access graphics from
machine code routines. L e t ’s nou go and look at some
of the simpler ROM routines that are available.

Simple Machine Code Graphics
On any microcomputer, the generation of graphics from
within machine code programs is quite a job, and so
here I'll just give an introduction to the techniques
that are used on the Amstrad computer. Again, the job
is made easier by the use of the built in ROM
routines; accessing the screen directly, by writing
bytes to the memory addresses at which the screen is
situated is quite difficult because of the complex
arrangement of the screen.

The simplest thing that we can do in graphics
programming is to move the graphics cursor around on
the screen. This is easily done using a ROM routine
that we call at address &BBC0. For example, the below
routine will move the graphnics cursor to coordinate
100,100 on the screen.

LD D E ,100 X coordinate
LD HL.,100 Y coordinate
CALL &BBC0
RET

The X and Y coordinates are passed to this ROM routine
in the DE and HL register pairs respectively. This

1 40

routine appears to mess up the CPU registers, and so
it’s often useful to PUSH any registers that u e ’re
concerned about on to the stack before calling the ROM
rout i n e .

The above routine will not put anything on the
screen; it simply moves the graphics cursor to the
required point on the screen. As and example of it’s
use, ue ’ 1 1 call upon the services of another control
code, CHR$5. This enables us to print a text character
at the position of the graphics cursor, rather than at
the current position of the text cursor. The character
that is sent to the ’’print a character” ROf! routine
immediately after the CHR$5 is printed at the graphics
cursor. Example 27 shows this in action.

Examp 1e 27:

Load the machine code to address 40000, and then call
it in the belou fashion.

CALL 40000

This will then print the letter ”A ” at graphics
coordinate 100,100. The character is printed in such
a way that the top left corner of the character grid
is situated at the graphics cursor position. The
character is printed in the current graphnics in
colour, rather than the current text ink colour. The
machine code is;

LD H L ,100
LD D E ,100
CALL &BBC0
LD A,5
CALL &BB5A
LD A ,65
CALL &BB5A
RET

This facility is quite useful in that it enables us to
position text on the screen to a much greater degree
of precision than by using the text coordinate system.
As in BASIC, the coordinates for graphics normally
have their origin at the bottom left corner of the
screen.

The other simple graphics operation that u e '11
look at is the action of drawing a line on the screen
from one point to another point. Again, there’s a ROM
routine to do all the hard work for us. Ue use it in
the below fashion, by putting the X coordinate into
the DE register pair and the Y coordinate of the point
to be drawn to in the HL register pair.

LD DE.200 X coordinate
LD HL,200 Y coordinate
CALL &BBF6

141

There will draw a line, in the current graphics ink,
from the current position of the graphics cursor to
the point specified in the DE and HL registers above.
Example 28 shows a simple routine for drawing a box on
the screen.

Examp 1e 28:

i the code to address 40000 , and
10 .

LD D E ,100
LD H L ,100
CALL &BBC0 move to point 1
LD D E ,100
LD H L ,200
CALL &BBF6 dr au to 100,200
LD D E ,200
LD H L ,200
CALL &BBF6 dr au to 200,200
LD D E ,200
LD H L ,100
CALL &BBF6 dr au to 200,100
LD D E ,100
LD H L ,100
CALL &BBF6 dr au to 100,100
RET

ou can s e e , drau i ng a 1i ne i s a 1

with CALL

As you can see, drawing a line is a very easy job. Ue
can also simulate a PLOT statement from our machine
code programs using the routines that we've already
seen. Simply put, when we plot a point on the screen
we are effectively drawing a very short line. So, we
should be able to do such a job with the move and draw
ROM routines that w e ’ve seen. Example 29 shows a
simple point plotting routine.

Examp 1e 29:

Load the
program
represent
p 1otted.
this is a

bytes to address 40000 ,
with a CALL 40000, X”4 , Y%
the X and Y coordinates
Although the BASIC con
useful demonstration of

and then execute the
call where X% and Y%
of the point to be

tains a PLOT command,
the graphics calls.

142

LD L,CIX+0>
LD H , CIX+1)
LD E.CIX+2)
LD D.CIX+3)
PUSH HL
PUSH DE
CALL &BBC0
POP DE
POP HL
INC DE
INC DE
CALL &BBF6
RET

increment DE to give a small X
coordinate increase and drau line

do the move operation

get the Y coordinate

get the X coordinate

Thus, the call

CALL 40000,100,100

will plot a point at coordinate 100,100 on the screen,
again in the current graphics ink.

One really big advantage that ue can get from
using ROM routines is that they uork equally cell in
all screen modes. If ue uere to urite screen handling
routines of our o u n , u e ’d have to take the different
screen modes into account.

This is as far as ue go in this introduction to
Amstrad machine code. Hopefully, y o u ’ve nou past the
’’absolute beginner” stage and are ready to build on
your neu found skills. You uill no doubt find many
articles or books that uill expand upon uhat I ’ve
mentioned in this book. The only recommendation that
I’ll make is that you obtain, if possible, a rather
ueighty but extremely useful book published by Amsoft
called "The Amstrad Firmuare Technical Hanual” uhich
documents in detail all the many ROM calls of the
Amstrad Operating System. Good luck uith your machine
code programming, and may all your crashes be little
ones!

143

144

Appendix 1
Instructions and Op-codes

M N E M O N IC H E X A D E C IM A L M N E M O N IC H E X A D E C IM A L M N EM O N IC H E X A D E C IM A L

A D C A. (HL) 8E BIT 2,B CB 50 CP n FE XX
ADC A. (1X +dis) DD 8E X X BIT 2,C CB 51 CP E BB
ADC A . (IY -k Jis) FD 8E xx B IT 2.D CB 52 CP H BC
ADC A.A 8F BIT 2,E CB 53 CP L BD
ADC A.B 88 BIT 2,H CB 54 CPD ED A9
ADC A.C 89 BIT 2,L CB 55 CPDR ED B9
ADC A,D 8A B IT 3 ,(HL) CB 5E CPI ED A 1
ADC A.n CE XX BIT 3 . (IX+dis) DD CB X X 5E CPIR ED B 1
ADC A,E 8B BIT 3,(1 Y +dis) FD CB X X 5E CPL 2F
ADC A.H 8C BIT 3,A CB 5F DA A 27
ADC A ,L 8D BIT 3,B CB 58 DEC (HL) 35
ADC HL ,BC ED 4 A BIT 3,C CB 59 DEC (IX+dis) DD 35 X X
ADC HL.D E ED 5A BIT 3.D CB 5 A DEC (lY+dis) FD 35 XX
ADC H L .H L ED 6A BIT 3.E CB 5B DEC A 3D
ADC HL.SP ED 7A BIT 3,H CB 5C DEC B 05
A D D A. (HL) 86 B IT 3.L CB 5D DEC BC OB
A D D A .dX +d is) DD 86X X BIT 4 ,(HL) CB 66 DEC C OD
A D D A .(IY+dis) FD 8 6X X BIT 4 ,(IX+dis) DD CB X X 66 DEC D 15
A D D A,A 87 B IT 4,(1 Y +dis) FD CB X X 66 DEC DE 1 B
A D D A.B 80 BIT 4 .A CB 67 DEC E 1 D
A D D A.C 81 BIT 4.B CB 60 DEC H 25
A D D A.D 82 BIT 4.C CB 61 DEC HL 2B
A D D A.n C6 XX BIT 4.D CB 62 DEC IX DD 2B
A D D A.E 83 BIT 4.E CB 63 DEC IY FD 2B
A D D A.H 84 BIT 4.H CB 64 DEC L 2D
A D D A .L 85 BIT 4.L CB 65 DEC SP 3B
A D D HL .BC 09 BIT 5,(H L) CB 6E Dl F3
A D D HL.DE 19 B IT 5 , (IX+d is) DD CB X X 6E DJNZ.dis 10 XX
A D D H L .H L 29 BIT 5,(1 Y+dis) FD CB X X 6E El FB
A D D HL.SP 39 BIT 5 ,A CB 6F EX (SP) .HL E3
A D D IX.BC DD 09 B IT 5,B CB 68 EX (SP) .IX DD E3
A D D IX ,DE DD 19 B IT 5,C CB 69 EX (SP) . IY FD E3
A D D IX .IX DD 29 B IT 5,D CB 6A EX A F .A F ' 08
A D D IX.SP DD 39 B IT 5.E CB 6B EX DE.H L EB
A D D IY.BC FD 09 B IT 5,H CB 6C EXX D9
A D D IY .DE FD 19 B IT 5,L CB 6D H A L T 76
A D D IY .IY FD 29 B IT 6 , (H L) CB 76 IM 0 ED 46
A D D IY.SP FD 39 B IT 6 ,(IX+dis) DD CB XX 76 IM 1 ED 56
A N D (HL) A6 BIT 6,(1 Y+dis) FD CB X X 76 IM 2 ED 5E
A N D (1X +d is) DD A6 XX BIT 6 , A CB 77 IN A. (C) ED 78
A N D (lY+d.s) FD A6 X X BIT 6,B CB 70 IN A .port DB XX
A N D A A7 BIT 6,C CB 71 IN B . (C) ED 40
A N D B AO BIT 6,D CB 72 IN C . (C) ED 48
A N D C A 1 B IT 6,E CB 73 IN D . (C) ED 50
A N D D A2 B IT 6,H CB 74 IN E .(C) ED 58
A N D n E6 XX BIT 6,L CB 75 IN H . (C) ED 60
A N D E A3 BIT 7 ,(HL) CB 7E IN L .(C) ED 68
A N D H A4 B IT 7,11X +dis) DD CB X X 7E INC (HL) 34
A N D L A5 B IT 7,(IY+dis) FD CB X X 7E INC (IX+dis) DD 34 XX
BIT 0 ,(HL) CB 46 B IT 7 ,A CB 7F INC (lY+d.s) FD 34 X X
BIT 0,(IX+dis) DD CB XX 46 B IT 7 ,B CB 78 INC A 3C
BIT 0,(1 Y+dis) FD CB X X 46 B IT 7,C CB 79 INC B 04
BIT 0,A CB 47 B IT 7.D CB 7A INC BC 03
BIT o,B CB 40 BIT 7,E CB 7B INC C OC
BIT 0,C CB 41 B IT 7,H CB 7C INC D 14
BIT 0.D CB 42 B IT 7.L CB 7D INC DE 13
BIT 0,E CB 43 C A L L A D D R CD X X X X INC E 1C
BIT 0.H CB 44 C A L L C .A D D R DC X X XX INC H 24
B IT 0 ,L CB 45 C A L L M .A D D R FC X X XX INC HL 23
BIT 1 , (HL) CB 4E C A L L N C .A D D R D4 X X XX INC IX DD 23
B IT 1. (IX+dis) DD CB X X 4E C A L L N Z . A D D R C4 X X XX INC IY FD 23
BIT 1 ,(IY +dis) FD CB X X 4E C A L L P .ADD R F 4 X X XX INC L 2C
BIT 1 ,A CB 4F C A L L PE,ADDR EC XX XX INC SP 33
BIT 1 ,B CB 48 C A L L P O ,A DDR E4 X X X X IND ED A A
B IT 1.C CB 49 C A L L Z .A D D R CC X X XX INCR ED BA
BIT 1.D CB 4 A CCF 3F INI ED A2
BIT 1 ,E CB 4B CP (HL) BE IN IR ED B2
BIT 1 ,H CB 4C CP (IX+dis) DD BE X X JP (HL) E9
BIT 1 ,L CB 4D CP (1 Y+dis) FD BE X X JP (IX) DD E9
BIT 2 . IH L) CB 56 CP A BF JP (IY) FD E9
BIT 2 , (I X i s) DD CB X X 56 CP B B8 JP AD D R C 3 X X X X
BIT 2,(IY+dis) FD CB X X 56 CP C B9 JP C.ADDR D A X X XX
BIT 2,A CB 57 CP D BA JP M .A D D R F A X X X X

1 45

M N E M O N IC H E X A D E C IM A L M N E M O N IC H E X A D E C I M A L M N E M O N IC H E X A D E C IM A L

JP NC.ADDR D2 X X X X LD BC.nn 01 X X XX LDDR ED B8
JP N Z ,A DDR C2 X X XX LD C, (HL) 4E LDI ED AO
JP P.ADDR F2 X X X X LD C. (IX+dis) DD 4E xx LDIR ED BO
JP PE.ADDR EA X X XX LD C, (IY +di») FD 4E X X NEG ED 44
JP PO.ADDR E2 X X XX LD C.A 4F NOP 00
JP Z ,A D D R CA X X X X LD C.B 48 OR (HL) B6
JR C,dis 38 X X LD C.C 49 OR (IXKJis) DD B6 XX
JR dis 18 X X LD C.D 4A OR (I Y k Jis) FD B6 xx
JR NC.dis 30 XX LD C.n OE XX OR A B7
JR NZ.di* 20 X X LD C.E 4B OR B BO
JR Z .d i j 28 X X LD C.H 4C OR C B1
LD (A DDR) ,A 32 X X X X LD C.L 4D OR D B2
L D (A D D R) ,BC ED 43 X X X X LD D. (H L) 56 OR n F6 XX
LD (A DDR) ,DE ED 53 X X XX LD D, (IX+-dis) DD 56 X X OR E B3
L D (A D D R) ,H L ED 63 X X XX LD D, (lY+dis) FD 56 X X OR H B4
LD (A D D R) ,HL 22 X X X X LD D.A 57 OR L B5
LD (A DDR) . IX DD 22 X X XX LD D.B 50 O TDR ED BB
LD (A DDR) . IY FD 22 X X XX LD D.C 51 OTIR ED B3
LD (A DDR) ,SP ED 73 X X XX LD D.D 52 O UT (C) .A ED 79
LD (BC) .A 02 LD D.n 16 XX O UT (C) ,B ED 41
L D (DE) ,A 12 LD D.E 53 O UT (C) ,C ED 49
LD (HL) .A 77 LD D.H 54 O U T (C) ,D ED 51
LD (HL) .B 70 LD D.L 55 O U T (C) ,E ED 59
LD (HL) , C LD DE, (A DDR) ED 5B X X XX O U T (C) ,H ED 61
LD (HL) ,D 72 LD DE.nn 11 X X XX O UT (C) ,L ED 69
LD (HL) ,n 36 XX LD E. (HL) 5E O UT par t .A

LD E, (IX+dis) DD 5E X X O U TD
L D (HL) ,H 74 LD E. (IY +-dIs) FD 5E X X OUTI ED A3
L D (HL) ,L 75 LD E.A 5F F 1
LD (IX +di$) ,A DD 77 XX LD E.B 58 C1
LD (IX+du) ,B DD 70 XX LD E.C 59 POP DE D1
LD (IX +du) ,C DD 71 XX LD E.D 5A E 1
LD (IX+tJis) ,D DD 72 XX LD E.n 1 E X X POP IX DD E 1
LD (IX +-du) ,n DD 36 X X XX LD E.E 5B POP IY FD E 1
LD (IX+dis) .E DD 73 X X LD E.H 5C PUSH AF F5
LD (IX+dis) .H DD 74 XX LD E.L 5D PUSH BC C5
LD (IXHdis) .L DD 75 XX LD H, (HL) 66 PUSH DE D5
LD (l Y+ du) .A FD 77 X X LD H, (IXKJis) DD 66 X X PUSH H L E5
LD (IY-k Ji j) .B F D 70 X X LD H, (I Y Hj is) F D 66 X X PUSH IX DD E5
LD (lY+dis) .C FD 71 XX LD H.A 67 PUSH IY FD E5
LD (1Y K in) ,D FD 72 XX LD H.B 60 RES 0, (HL) CB 86
LD (1Y Hjis) ,n FD 36 X X XX LD H.C 61 RES 0. (IX-Hd.s) DD CB X X 86
LD (I Y k I .j) ,E FD 73 XX LD H,D 62 RES 0, (I Y k J is) FD CB X X 86
LD (1Y k Jis) .H FD 74 XX LD H.n 26 XX RES O.A CB 87
LD (lY+dis) .L FD 75 XX LD H.E 63 RES O.B CB 80
LD A, (ADDR) 3A X X XX LD H.H 64 RES O.C CB 81
LD A. (BC) OA LD H.L 65 RESO.D CB 82
LD A. (OE) 1 A LD HL. (A DDR) ED 68 X X XX RES O.E CB 83
LD A. (HL) 7E LD H L . (A D D R) 2A X X X X RES O.H CB 84
LD A. (1 X k I u) DD 7E XX LD HL.nn 21 X X XX RES O.L CB 85
LD A. (IY+dis) FD 7E XX LD I.A ED 47 RES 1, (HL) CB 8E
LD A.A 7 F LD IX. (A D D R) DD 2 A X X X X RES 1, (IX K J is) DD CB X X 8E
LD A.B 78 LD IX.nn DD 21 X X X X RES 1, (IY KJis) FD CB XX 8E
LD A,C 79 LD IY (A DDR) FD 2A X X XX RES 1 ,A CB 8F
LD A.D 7 A LD lY .nn FD 21 X X XX RES 1.B CB 88
LD A.n 3E XX LD L.A 6F RES 1.C CB 89
LD A.E 7 B LD L.B 68 RES 1.D CB 8A
LD A,H 7C LD L.C 69 RES 1 ,E CB 8B
LD A.I ED 57 LD L.D 6A RES 1,H CB 8C

LD L.n 2E XX
ED 5F LD L.E 6B RES 2. (HL) CB 96
46 LD L. (HL) 6E RES 2. (IX*d>s) DD CB X X 96

LD B, (1X *-cJis D D 46 X X LD L.(IX-Kl is) DD 6E XX RES 2. (I Y k J is)
LD B , (1Y k J i s) LD L, (IYKJis) FD 6E X X RES 2.A CB 97

47 LD L.H 6C RES 2.B CB 90
LD L.L 6D RES 2.C CB 91
LD R.A ED 4 F RES 2.D CB 92

42 LD SP. (A D D R) ED 7B X X XX RES 2.E CB 93
LD SP.nn 31 X X XX RES 2.H CB 94
LD SP.HL F9 RES 2.L CB 95

LD B.H 44 LD SP.IX DD F9 RES 3. (HL) CB 9E
LD B.L 45 LD SP.IY FD F9 RES 3 , (I X k J i s) DD CB X X 96
LD BC. (A DDR) ED 4B XX XX LDD ED A8 RES 3. (1Y k J is)

RES 3.A
FD CB X X 9E
CB 9F

1 46

H E X A D E C I M A L M N E M O N IC H E X A D E C IM A L MN EM ON IC H E X A D E C I M A L

RES 3.B
RES 3.C

| RES 3.D
; RES 3,E
j RES 3.H
I RES 3,L
! RES 4. (HL)
, RES 4, (IX+d.s)
; RES 4, (IY+dis)
i RES 4.A

RES4.B
! RES 4,C

RES 4,D
| RES 4,E
! RES 4,H
: RES 4.L
j RES 5 (HL)

RES 5, (IX+dis)
. RES 5. (I Y+d.s)
I RES 5.A

RES 5,B
RES 5.C

, RES 5.D
' RES 5.E
I RES 5,H
I RES 5,L

RES 6. (HL)
RES 6, (IX+d.s)

| RES 6, (I Y+dis)
RES 6 .A

: RE S 6.B
' RES 6.C
j RES 6,D
! RES 6.E
| RE S 6.H
! RES 6 ,L
: RES 7. (HL)
j RES 7. (IX+dis)

RES 7, (IY+dis)
RES 7,A
RES 7,B
RES 7.C
RES 7,D
RES 7.E
RES 7,H
RES 7.L
RET
RET C
RET M
RET NC
RET NZ
RET P
RET PE
RET PO
RET Z
RETI
RETN
R L (HL)
R L (IX+dis)
R L (IY+dis)
R L A
R L B
RL C
RL D
RL E
R L H
R L L
R LA
RLC (HL)
RLC (IX+dis)
RL C (IY+dis)
RL C A
RLC B

CB 98
CB 99
CB 9A
CB 9B
CB 9C
CB 9D
CB A6
DD CB X X A6
FD CB X X A6
CB A 7
CB AO
CB A1
CB A2
CB A3
CB A4
CB A5
CB AE
DD CB X X AE
FD CB X X AE
CB AF
CB A8
CB A9
CB A A
CB AB
CB AC
CB AD
CB B6
DD CB X X B6
FD CB X X B6
CB B7
CB BO
CB B 1
CB B2
CB B3
CB B4
CB B5
CB BE
DD CB X X BE
FD CB X X BE
CB BF
CB B8
CB B9
CB BA
CB BB
CB BC
CB BD
C9
D8
F8
DO
CO
FO
E8
EO
C8
ED 4D
ED 45
CB 16
DD CB X X 16
FD CB X X 16
CB 17
CB 10
CB 11
CB 12
CB 13
CB 14
CB 15
17
CB 06
DD CB X X 06
FD CB X X 06
CB 07
CB 00

R L C C
R L C D
R L C E
R L C H
R L C L
R L C A
R L D
RR (H L)
RR (IX+d is)
RR (IY+d is)
RR A
RR B
RR C
RR D
RR E
RR H
RR L
R R A
RR C (HL)
R RC (IX+d is)
R RC (IY+dis)
RR C A
R RC B
RRC C
R RC D
R RC E
RRC H
RRC L
R R C A
R R D
RST 00
RST 08
RST 10
RST 18
RST 20
RST 28
RST 30
RST 38
SBC A, (H L)
SBC A. (IX+d is)
SBC A . (IY+d is)
SBC A ,A
SBC A,B
SBC A,C
SBC A ,D
SBC A.n
SBC A,E
SBC A.H
SBC A .L
SBC HL.BC
SBC HL ,DE
SBC H L . H L
SBC HL,SP

SET 0, (HL)
SET 0, (IX+d is)
SET 0. (IY+d is)
SET 0 ,A
SET O.B
SET O.C
SET O.D
SET O.E
SET 0 ,H
SET O.L
SET 1, (HL)
SET 1. (IX+dis)
SET 1. (IY+dis)
SET 1 ,A
SET 1 ,B
SET 1 ,C
SET 1 ,D
SET 1 ,E
SET 1.H

CB 01
CB 02
CB 03
CB 04
CB 05
07
ED 6F
CB 1 E
DD CB X X 1E
FD CB X X 1E
CB 1 F
CB 18
CB 19
CB 1 A
CB 1 B
CB 1C
CB 1 D
1 F
CB OE
DD CB X X OE
FD CB X X OE
CB OF
CB 08
CB 09
CB OA
CH OB
CB OC
CB OD
OF
ED 67
C7
CF
D7
DF
E7
EF
F 7
FF
9E
DD 9E XX
FD 9E XX
9F
98
99
9A
DE XX
9B
9C
9D
ED 42
ED 52
ED 62
ED 72
37
CB C6
DD CB XX C6
FD CB X X C6
CB C7
CB CO
CB C1
CB C2
CB C3
CB C4
CB C5
CB CE
DD CB X X CE
FD CB X X CE
CB CF
CB C8
CB C9
CB CA
CB CB
CB CC

SET 1 ,L
SET 2. (HL)
SET 2. (IX+d.s)
SET 2. (IY+dis)
SET 2.A
SET 2.B
SET 2.C
SET 2.D
SET 2.E
SET 2.H
SET 2.L
SET 3. (HL)
SET 3. (IX+d.s)
SET 3. (IY+dis)
SET 3,A
SET 3.B
SET 3.C
SET 3.D
SET 3.E
SET 3.H
SET 3.L
SET 4. (HL)
SET 4. (IX+d.s)
SET 4. (IY+dis)
SET 4 .A
SET 4.B
SET 4.C
SET 4.D
SET 4.E
SET 4.H
SET 4 ,L
SET 5. (HL)
SET 5. (IX+d.s)
SET 5. (lY+d.s)
SET bA
SET 5.B
SET 5.C
SET 5.D
SET 5.E
SET 5.H
SET 5.L
SET 6. (HL)
SET 6, (IX+dis)
SET 6. (lY+d.s)
SET 6 .A
SET 6.B
SET 6.C
SET 6.D
SET 6.E
SET 6.H
SET 6.L
SET 7. (HL)
SET 7. (IX+d.s)
SET 7,(1 Y +dis)
SET 7.A
SET 7.B
SET 7.C
SET 7,D
SET 7,E
SET 7.H
SET 7,L
SLA (HL)
S LA (IX+d.s)
S LA (IY+d.s)
SLA A
SLA B
SLA C
SLA D
SLA E
S LA H
SLA L
SR A (HL)
SR A (IX+d.s)

CB CD
CB D6
DD CB X X D6
FD CB XX D6
CB D7
CB DO
CB D1
CB D2
CB D3
CB D4
CB D5
CB DE
DD CB X X DE
FD CB X X DE
CB DF
CB D8
CB D9
CB DA
CB DB
CB DC
CB DD
CBE6
DD CB XX E6
FD CB X X E6
CB E7
CB EO
CB E 1
CB E2
CB E3
CB E4
CB E5
CB EE
DD CB XX EE
FD CB X X EE
CB EF
CB E8
CB E9
CB EA
CB EB
CB EC
CB ED
CB F6
DD CB XX F6
FD CB X X F6
CB F 7
CB FO
CB F 1
CB F2
CB F3
CB F4
CB F5
CB FE
DD CB X X FE
FD CB XX FE
CB FF
CB F8
CB F9
CB FA
CB FB
CB FC
CB FD
CB 26
DD CB X X 26
FD CB X X 26
CB 27
CB 20
CB 21
CB 22
CB 23
CB 24
CB 25
CB 2E
DD CB X X 2E

147

H E X A D E C I M A L M N E M O N IC H E X A D E C I M A L M N E M O N IC H E X A D E C IM A LM N EM O N IC

SR A (I Y k I is) FD CB X X 2E
SR A A CB 2F
SR A B CB 28
SR A C CB 29
SR A D CB 2A
SR A E CB 2B
SR A H CB 2C
SR A L CB 2D
SRL (HL) CB 3E
SR L (IX+dis) DD CB X X 3E
SRL (IY*d.s> FD CB X X 3E
SRL A CB 3F
SRL B CB 38
SRL C CB 39
SRL D CB 3 A
SRL E CB 38
SRL H CB 3C
SRL L CB 3D
SUB (HL) 96

SUB (IX+dis) DD 96 XX
SUB (1Y *dis) FD 96 X X
SUB A 97

SUB B 90

SUB C 91
SUB D 92
SUB E D6 XX
SUB n 93
SUB H 94
SUB L 95
X O R (HL) AE
XOR (IX+<Jis) DD AE XX
X O R (IY+dis) FD AE X X
XOR A AF
X O R B A9
X O R C A9
X O R D A A
XOR n EE XX
X O R E A8
XSOR H AC
XOR L AD

1 48

Appendix 2
Flag Operation Summary

IN S T R U C T IO N C z P /V s N H C O M M E N T S

A D C H L , SS # # V # 0 X 16-b i t add w i t h carry

A D X s; A D D s # # V # 0 # 8 -b i t add or add w i t h carry

A D D D D , SS # - - - 9 X 16 -b i t add

A N D s 9 # p # 9 1 Logical ope ra t ions

B IT b, s - # X X 9 1 State o f b i t b o f loca t io n s is
copied in t o the Z f lag

CCF # - - - 9 X C o m p le m e n t ca rry

CPD; CPDR ; CPI; CPIR # # X 1 X B lock search in s t ru c t io n
Z=1 if A - (H L) , else Z 0
P /V=1 if BC^O, o th e rw ise
P /V = 0

CP s # # V # 1 # Compare a cc u m u la to r

CP L - - - - 1 1 C o m p le m e n t a c c um u la to r

D A A # # P # - # D ecimal ad jus t a c c um u la to r

DEC s - # V # 1 # 8 -b i t d ec rem en t

IN r, (C) - # p # 9 9 In p u t register ind i rec t

INC s - # V # 9 # 8-b i t inc re m e n t

IN D ; IN I # X X 1 X B lock in p u t Z-Q i f B *0
else Z = 1

I N D R : IN IR - 1 X X 1 X B lock in p u t Z = 0 i f B¥0
else Z = 1

LD A . I ; L D A ,R # IF F # 9 9 C on te n t o f i n te r ru p t enable
F l ip -F lo p is cop ied in to the
P /V flag

L D D ; L D I - X 0 X 9 9 B lock trans fe r ins t ruc t io n s

L D D R ; L D IR X 9 X 9 9 P /V = 1 if B C y0 , o th e rw ise
P /V = 0

NEG # # V # 1 # Negate a c c u m u la to r

OR s a # P # 9 9 Logical O R a cc u m u la to r

O T D R , O T IR ~ 1 X X 1 X B lock o u t p u t ; Z = 0 i f B * 0
o th e rw ise Z=1

O U T D ; O U T I - # X X 1 X B lock o u t p u t ; Z = 0 i f B^O
o th e rw ise Z=1

R L A ; R L C A ; R R A ; R R C A # - - - 9 9 R ota te a c c u m u la to r

R L D ; R R D - # p # 9 / R ota te d ig i t le f t and r igh t

R LS ; R L C s; R R s; R R C s
S L A s; SR A s; S R L s

p # 9 9 R ota te and sh i f t l oc a t io n s

SBC H L , SS # # V # 1 X 16-b i t sub t rac t w i t h ca rry

SCF

SBC s; SUB s

XOR x

1

0

V

p

9
1

9

9

9

Set carry

8 -b i t sub t rac t w i t h carry

Exclus ive OR a c c u m u la to r

1 49

SYMBOL OPERATION
C Carry flag. C=1 if the operation produced a

carry from the most significant bit of the operand
or result.

Z Zero flag. Z=1 if the result of the operation is
ze ro.

S Sign flag. S=1 if the most significant bit of the
result is one, ie a negative number.

P/V Parity or overflow flag. Parity (P) and overflow
(0) share the same flag. Logical operations affect
this flag with the parity of the result while
arithmetic operations affect this flag with the
overflow of the result.
If P/V holds parity, P/V=l if the result of the
operation is even, P/V=0 if result is odd.
If P/V holds overflow, P/V=l if the result of the
operation produced an overflow.

H Half-carry flag. H=1 if the add or subtract
operation produced a carry into or borrow from bit
4 of the accumulator.

N Add/Subtract flag. N=1 if the previous operations
was a subt rac t .

H and N flags are used in conjunction with the
decimal adjust instruction (DAA) to properly
correct the result into packed BCD format following
addition or subtractionusing operands with packed
BCD format.

The flag is affected according to the result of the
ope rat ion.
The flag is unchanged by the operation.

0 The flag is reset (=0) by the operation.
1 The flag is set (=1) by the operation.
X The flag result is unknown.
V The P/V flag is affected according to the overflow

result of the operation.
P P/V flag is affected according to the parity result

of the operation.
r Any one of the CPU registers A ,B ,C ,D ,E ,H ,L .
s Any 8-bit location for all the addressing modes

allowed for the particular instructions.
SS Any 16-bit location for all the addressing modes

allowed for that instruction.
R Refresh register
n 8-bit value in range 0-255.
nn 16-bit value in range 0-65535.

1 SO

Appendix 3
Numbers on the Amstrad

In this Appendix I want to take a brief look at the
way in which the Amstrad allows us to convert from one
number representation to another.

There are a couple of built in functions in the
Amstrad that allow us to convert numbers from decimal
to both binary and hexadecimal. Let's look at these.

BIN$ (value, no. of digits)
This function accepts a decimal number as 'value' and
returns a string representing the binary
representation of the number. The 'no of digits'
parameter allows us to specify how many binary digits
are returned when we use the function. This parameter
is optional, but is very useful. It makes sure that a
value is returned with leading zeros where they are
needed. To make this clearer;

PRINT BIN*C8) will print 1000
PRINT BIN*(8,8) will print 00001000

which is closer to the way in which we are used to
seeing binary numbers, as the contents of a byte or
reg i ster.

HEX$ (value)
This function returns the hexadecimal representation
of the decimal number ’value’. For example,

PRINT HEX*(65536) will print FFFF

This function is really useful when we want to work
out the displacement bytes for relative jumps or index
register operations. Thus, if we know that the
displacement value for a relative jump is -2, and we
want to get the hexadecimal representation of this
value using T w o ’s Complement notation, we simply use

PRINT HEX*(-2 5

The answer, FFFF, is converted into a single byte
value suitable for inclusion in our programs by simply

151

discarding the first tuo digits, thus leaving us uith
FE .

Ue

bin a r y
can , of c our se , 1 n cor p o r a t e h exadeci rna 1 or
n u m b e r s into our p r o g r a m s u s i n g the a p p r o p r i a t e

prefix. This is for hexadecimal numbers and '& X '
for binary numbers. Thus, 3 is represented in 8 digit
binary as

&X00000011

and i n hexadecimal as

&3

152

Appendix 4
Timing Programs

It is possible to work out, roughly, the length of
time a given machine code program uill take to run.
The Z80 CPU in the fimstrad is given about 3.3 million
’’ticks” of it’s internal clock each second. Thus, one
tick occupies about 0.33 millionths of a second. Nou,
in the tables of instructions that u e ’ve seen
scattered through this book the timings have been
quoted in terms of these ticks. The absolute length of
time taken for the CPU to execute a given instruction
is thus

TIME = 0.33 * number of ticks

uhere TIME uill be in millionths of a second, or micro
seconds.

Uhen ue use this technique in machine code
programs, remember that instructions in loops uill be
repeated several times, and also remember that some
conditional instructions take different numbers of
’’ticks” depending upon whether the condition is
fulfilled or not.

153

In d e x
0 47,49 Labe 1s 42
Accumu1 ator 10,63,68 l . D 36-45
ADC 63-66,70,90-92 Loading Files 33
ADD 63-66,70,90-92 Logical Operations 70 76
Address 1ng 7 LSB 19
Addressing Modes 35
Alternative Registers 10,85 Machine Code 1 -2
Amp 1i tude 121 Machine Language 1 - 2

Amplitude Control Reg i ster 121 Memory 12,25-29
AND 71-72,75 MEMORY 28
ALU 1 1 Mnemon i c 4
ASCI I 24 MSB 19
Assembly Language 3-5

NEC 1 16
BASIC 1,25-34 N i bb1e 19
BCD 67-68 No i se 124-125
Beep 138 NOP 1 1 3
Binary 16,51 NOT 71
B l ts 19
Block Operations 106-110 Op Code 37
Bytes 19-20 Operand 37

Operating System 2
CALL (in BASIC) 30-32,47-53 OR 73-74,75
CALL (in machine code) 101-104 OUT 111-113
Channe1s 1 17 Over f1ou 57-58
Characters 24,135-136
C1 ear (of f1ags) 55 Parameters 31,47-53
Clear Screen 1 38 Parity 57
CLR (key) 1 22 PEEK 30
Coarse Tune Control 1 19 PEN 138-139
Compare Instructions 68i-70,106-108 POKE 29-30
Comp 1ement 23 POP 84 86
Conditional Jumps 94 Positioning Text 1 37
Control Codes 135 PPI 1 3
Control Unit 1 1 Printing Characters 1 36
Countlng 15-24,55-70,89-92 Prog ram 21
CPU 1,5-7,8-12 Program Counter 1 1
CRTC 1 3 PSG 13,117-129

PUSH 84-86
DA A 68
Data 21 RAM 1 2
Decrement 61-62,89-90 Real Numbers 47
Dest ination 35 Registers 8,10,117
D i sp1acement 96-98 Register Addressing 36
Display 135-143 Register Indirect Addressing 37
DJNZ 99-100 RESET (RES) 55,75-76

Restarts 104
En ve1 opes 126-129 RET 34 , 104
Extended Addressing 39 RLD 114-115

ROM 12
F Register 8,10,55-59 Rotates 76-79
Fine Tune Control Reg i ster 119 Running Tape Files 32
F 1 ags 55-59

Saving Files 32
Gate Array 1 3 Saving Registers 1 02
Graphi c s 140-143 SBC 66-67,70,91-92

SET 75,76
HALT 1 15 Set 55
Hand Assembly 4 Shifts 76-79
Hexadec i ma1 17-19,151 Signed Integers 21-22
HltlEn 27-29,33 Source Register 35
Homes for Machine Code 25-29 Stack 6,83-85

Stack Pointer 11,83-85
Immediate Addressing 36-37 Strlngs 24,51
Immediate Indexed Addressing 43-44 String Descriptor 51-52
IN 111-113 SUB 66-67,70,91 92
Increment 59-62,89-90
Indexed Addressing 42 Timing Programs 153
Instruction Code 37 Tone Envelope 124
Instruction Register 1 1 Truth Tables 71
Integer 21-24,48 Tuo’s Complement 21-24
Interrupt 105
Interrupt Modes 115-116 Unconditional Jumps 93-94

Jumps XOR 74,75
Abso1ute 93-96
Register Indirect 98 Z80 1,5,8-12
Relative 96-100 Zero Flag 58

Keyboard 131-134

Amstrad
CPC 464

This book will enable you to learn machine language the easy way
— no computer jargon. A straight forward approach with many
examples.

Compiled exclusively for Amstrad users, AMSTRAD MACHINE
LANGUAGE FOR THE ABSOLUTE BEGINNER offers complete
instructions in Z80 machine language programming.

If you are frustrated by the limitations of BASIC and want to write
faster, more powerful, space-saving programs or subroutines,
then this book is for you.

Even with no previous experience of computer languages, the
easy-to-understand ‘no jargon' format of this book will enable you
to discover the power of the Amstrad's own language.

Each chapter includes specific examples of machine language
applications which can be demonstrated and used on your own
Amstrad. The features and capabilities of the Amstrad are all
covered, so you can start programming straight away.

AMSTRAD MACHINE LANGUAGE FOR THE ABSOLUTE
BEGINNER takes you, in logical steps, through a comprehensive
course in machine language programming. This book gives you
everything you need to write machine language programs on your
Amstrad.

Melbourne
House
Publishers

I S B N O - f l b l b l - n a - M

9 780861 611935

MÉMOIRE ÉCRITE

https://acpc.me/

Document numérisé
avec amour par :

	Amstrad machine language for the absolute beginner
	Contents
	1 - Machine Code First Principles
	2 - How Computers Count
	3 - Machine Code meets BASIC
	4 - Registers at work
	5 - Passing Parameters to programs
	6 - 8 bit counting
	7 - 16 bit transfers
	8 - 16 bit arithmetic and counting
	9 - Loops, Jumps and Block Operations
	10 - Ins and Outs and Odds and Ends
	11 - Amstrad Sound
	12 - The Amstrad Keyboard
	13 - The Amstrad Display
	Appendix 1 - Instructions and Op-codes
	Appendix 2 - Flag Operation Summary
	Appendix 3 - Numbers on the Amstrad
	Appendix 4 - Timing Programs
	Index
	Numérisé par ACME

