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Chapter 1
Machine Code First Principles

This book is designed to introduce the AMSTRAD BASIC
programmer to the "native language” of his computer.

This language is called Machine Language, or IMachine
Code. You may have heard of it before, or it may be a
totally new subject to you. Don’t worry, the first

chapter of this book will slowly and painlessly
introduce you to IMachine Language ideas and concepts,
step by step.

The first thing to do is to look at how we usually
program our computer. We type in lines of BASIC, and
this instructs the computer to do some task or other.
However, we’'re not actually communicating with the
"brain” of the computer when we do this. This brain,
called the Central Processor Unit, or CPU, is never
spoken to directly while we program the computer in
BASIC. We always go through a ”"middle man”, called
the BASIC interpreter, when we program our computer in
BASIC. Howevery, more about this later.

The CPU used in the Amstrad is called the 280, and
is probably the most popular CPU around 1in home
computers at the moment. There are several other
electronic "chips” in the Amstrad, but the CPU is at
the heart of all the operations performed by the
computer., Indeed, when we talk about programming the
Amstrad in Machine Language, we’re actually talking
about programming the Z88 CPU in Z808 Machine Language.

Why Bother?

Amstrad BASIC, as you’re probably found out for
yourself, is wvery powerful. Why should we bother
learning a new language? UWell, there are three main
advantages that using Machine Language offers us over
using BASIC. These are:

(a) Faster Programs

(b)Y Programs in Machine Language are more economic
in terms of memory.

(c) Certain tasks can ONLY be done wusing machine
language.

In addition, machine language programming enablesg
us to free ourseluves from the vrestraints of the



Amstrad BASIC Interpreter, and it enables us to alter
the way in which the BASIC Interpreter works. I think
that you’d agree, therefore, that a knowledge of
machine language programming could be rather useful!

Well, having answered the question of Why?, let’s
look at What machine language is.

What is Machine Code?

The 280 CPU, if you’'re never <seen one, iz a large
black chip with 40 ”"legs” on it. These legs, or pins,
are the means by which CPU communicates with the rest

of the computer. of these, there are 8 pins of
particular importance which control how the CPU
behaves. The CPU communicates with the rest of the
computer system by means of electrical signalg, and

the CPU was designed so as to behave in different ways
depending upon the combinations of electrical signals
on these 8 pins. Remembering that we’re talking about
electrical signals, let’s represent the presence of a
signal by 17 and the absence of a signal on any of
these 8 pins as ’'0®’. As there are 8 pins of interest
to us at this time, a typical combination of signals
might be represented by

ariel1i1e1

This particular combination of signals will cause the
CPU to behave in a particular fashion, and we might
say that this combination instructs the CPU to perform
a certain Jjob.

We call such a combination of signals, therefore,
a Machine Language Instruction, Jjust as LET A=0 is a
BASIC Instruction. This is essentially what IMachine

Code programming 1is all about; a combination of
electrical signals that are capable of causing the CPU
to perform a particular task. The instructions that

are understood by the Z80 CPU are collectively called
the 288 INSTRUCTION SET. Each different CPU has a
different Instruction Set; thus programs written in
the machine language of one CPU will almost certainly
NOT work properly on another CPU.

The BASIC Interpreter
and the OPERATING SYSTEM

The BASIC Interpreter is a machine language program
whose Jjob it is to convert the BASIC instructicns that
are typed in to the computer into IMachine Language
instructions that the CPU can understand.

The CPU does not understand BASIC, and so the
BASIC Instructions must be translated into machine
language instructions before the CPU can do anything
with them. It’s just like the way we might translate
from English to French; we’d use a dictionary, or, if
we could afford it, the services of a professional
Interpreter.



The OPERATING SYSTENM is as machine language
program that tells the CPU how to communicate with the

monitor, the keyboard and the tape recorder. It’s
used by the BASIC Interpreter whenever +the BASIC
instructions need to use any of these devices. Thus

the Operating System machine code program for putting
a character on the screen will be called whenever a
PRINT statement is encountered in BASIC.

The fact that we have to translate BASIC
instructions into machine code instructions before we
can do anything with them explains why BASIC is slower
than machine code programs. The translation process
takes time, and often the machine code instructions
that are generated by the translation process are not
as efficient for the particular job as they might be.

Also, as we’ve already said, machine language
programming gives us the chance to make the computer
do things that the Operating System and the BASIC
Interpreter never intended us to do.

Disadvantages of Machine Code

There are some disadvantages with writing programs in
machine code. Just to set the balance right, I’ve
listed them belouw:

Ca) Machine Language programs are difficult to
read and find errors in.

(b) They are difficult to transfer on to other
computers. Most machine code programs cannot
be transferred +to other machines without
rewriting the programs!

(c) Needs large numbers of simple instructions in
many programs.

(d) Complex arithmetic 1is wvery difficult in
machine language.

You can thus see that ”"You pays your money and you
takes your choice” with regard to whether you write a
particular program in BASIC or Machine Code. You’d be
ill advised, however, to write an accounts package in
Machine Code, but it would be equally silly to write a
program requiring speed in BASIC.

Assembly Language Programming

WUriting machine code programs as strings of 1’s and
@’s would scon put every one except the hardened
professiconal off the whole idea. So, it’s not
surprising that there are other ways of reprecenting
machine language programs.

The combination of 1’s and @’s that represent a
machine language instruction can represent many things
to the CPU. To us mere humans, they can be seen to
represent a BINARY NUMBER. We can thus convert this
binary number into a decimal number , but we must

w



remember that while this is a convenient
representation for us, the CPU will still see these
numbers as combinations of 1’s and @’s on the 8 pins
we spoke of at the start of this chapter. We could
therefore uwrite a sequence of instructions down as a
series of decimal numbers.

While this would be more legible +to wus than a
series of binary numbers, it still doesn’t give us any
idea of what the instructions actually do. We could,
of course, have a list of numbers and the actions that
the instructions represented by these numbers perform.
What would be useful, of course, would be a method of
representing machine language instructions in some
form of English. We can, in fact, do this.

WUe use a form of representation known as ASSENMBLY
LANGUAGE. Each machine code instruction is represented
by a short, descriptive name called a IMNEMONIC. Each
mnemonic 1s also called an ASSENMBLER INSTRUCTION.
Thus, using our different ways of representing machine
language instructions - binary, decimal and Assembler,
we could write a particular instruction down as:

binary 011101180
decimal 118
Assembler HALT

You might even be able to guess from the mnemonic
what this instruction tells the CPU to do. Yes, it
tells the CPU to stop, or HALT, until further notice.
Assembler Instructions are, as you can probably guess,
totally incomprehensible to the CPU. We thus require a
means of converting the Assembler Instructions into
the machine code instructions and then into sets and
electrical signals before the CPU can perform what is
expected of 1it. You can do this conversion yourself,
using the tables in the back of this book, or you can

use a computer program to do the job for you. Such a
program does a similar job to that performed by the
BASIC Interpreter, and converts the Assembler

Instructions in to machine code instructions.

Such a program 1s called an ASSEMBLER, and it
ASSENMBLES the machine code program from the Assembly

Language program. If you convert the fAssembler
instructions intc machine code instructions wusing
tables such as those in the back of the book, then the
process 1s called HAND ASSEMNBLY. (It’s actually guite
good practice to start this way).

So far, we’ve not really seen what machine
language can do for us. As a brief interlude, I offer

a single instruction machine code program that totally
disables ESCAPE and SHIFT-CTRL-ESCAPE from within a
running BASIC program. Once this machine code program
has been entered, the only way to stop a running
program is either hope for an END or an error 1in the
program, or turn the computer off! Not even ON BREAK



offers this degree of protection from a running
program being stopped! The instruction simply causes
the CPU to ignore any Break events, such as those
caused by Escape. Type the line in exactly as shown.
Explanations will come later.

186 POKE &BDEE,201

The rest of your program can now be entered, and
once running it will be immune from people pressing
the Escape key. You must admit, that single
instruction machine code program does something that
cannot be done from BASIC. Now we’ve had a brief
glimpse of what machine code can do, let’s see what
sort of things the CPU can do.

The Z8@ CPU. What can it do?

The CPU is responsible for virtually everything that
goes on in the computer; as soon as you turn the
machine on, the CPU starts running the BASIC
Interpreter program and this enables you to type in
your programs and commands.

The first thing to realise about the CPU is that
it is only able to do =simple tasks, such as addition
and subtraction, but it can do them very quickly.

Secondly, whereas we might use pencil and paper to

do such simple tasks, the CPU doesn’t; it performs the
tasks in the same way that a child might, that is,

with its ”fingers”. The only use of ”pencil and paper”
by the CPU is when it is told to store the results of
a task. The results are stored in "boxes” within the

computer memory.

Two points become obvious from the fact that the
CPU uses "fingers” to count on:

(a) Only whole numbers, or integers, can be dealt
with directly by the CPU. (It cannot work in
half fingers).

(b> The numbers involved are obviously limited in
size by the number of fingers that the CPU

has.
(c) With respect to the second point above, if the
CpPU needs to, it can count on its "toes” as

well as its fingers!

There is some consolation, however, in that
whereas we’re stuck with two hands and two feet, the
CPU has several more than this. Also, the CPU has 8
"fingers” on each of its hands, and 16 "toes” on each
foot. (Note that the CPU can count up to 255 on one
of its 8 fingered hands and up to 65535 on one of its
feet. Exactly how this is done will be revealed in the
next Chapter.)

Let’s get back to what the CPU can do. How might
it do a simple addition, such as 3+47 Let’s write down
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the way in which the CPU might do this in mnemonic

form. For the sake of this example, let’s call one of
the CPU hands ”"A”. We’ll also allow the CPU to use
various "boxes” in memory to store results and other

bits of information that are required.

LD A,3
LD (BOX#1),A put 3 in box 1
LD A,4

LD (BOX#2),A put 4 in box 2

LD A, (BOX#1) get 3 into hand A
ADD (BOX#2) ,A do the sum

LD (BOX#3),A store the result

LD is the mnemonic for LOAD, and we’re simply
loading hand YA in the first instruction with the
value 3 - i.e. we’re counting up to 3 on the fingers
of hand "A”. The second instruction where we store
this value in a "box”, is quite interesting and

introduces a rather important concept in machine code
programming. The brackets in this instruction indicate
that we’re interested 1in the CONTENTS of the box
mentioned in the brackets. In this case, the current
contents of box #1 are to be replaced by the number
that is counted out on the fingers of the "A” hand.
This may remind you of the idea of the BASIC variable.
However, this box is not the same as a variable - it
is simply a location in memory that the programmer has
decided to wuse for a particular purpose in that

program. The ADD instruction performs the actual
operation, leaving the result on the fingers of the
"A” hand. This is then stored away for future use. As

you can see, it’s a lot more 1long winded than the
BASIC: LET A=3+4

The Stack

Despite the CPU having 8 hands, each with 8 fingers,
and two 16-toed feet, it still occasionally finds the
need for more places to store numbers. UWell, we could
use some memory locations, or boxes, as we did akbove.
Sometimes, however, this isn’t desirable.

An alternative temporary store that the CPU can
use is called the STACK.

For the moment, we’ll look at the stack as one of
those spikes that well organised people, unlike me,
use to put pieces of paper on. Onto the spike paper

slips are pushed, and so it’s obvious that the last
piece of paper pushed on to the spike 1is the most
accessible. In a similar fashion, the most accessible

piece of information on the Stack is the last piece of
information that was placed on the stack. This is how
the Stack is useful to the CPU; it always knows where
it put a certain piece of information if it places it
on the stack.

The CPU stores information on the Stack or PUSHES
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it onto the stack, from cne of its hands whenever it

needs to use that hand for something else, but still
wants easy access to the contents of that hand. Once
the CPU wants the information back, it POPS the

information back from the stack on to the hand. The
CPU can store information from as many of its hands
and feet as it likes, each storage operation requiring
a separate PUSH. One thing to note about the stack in
the computer; the office spike was such that each PUSH
caused the stack to increase in height. In the
computer, the stack is upside down, and grouws
downwards as more information is PUSHed onto it.

What the CPU is capable of

As we mentioned earlier in the Chapter, the CPU is
really only capable of performing simple tasks.
Because the CPU’s counting abilities are limited to
what it can count up to on its fingers and toes, it is
limited to numbers in the following ranges:

(ad) 8 fingered numbers between @ and 255
(b) 16 fingered numbers between 0 and 65535

I use the phrase 16-fingered numbers deliberately;
we can get the CPU to use two of its 8-fingered hands
as an extra "foot” if we <so desire. This 2-handed
number is thus the same as a number that can be
represented on a CPU foot. Now we’ve met the types of
number that the CPU knows how to handle, let’s go and
examine the instructions that the CPU can understand.
They fall into the below main categories.

(a) Counting on one hand.

(b)) Counting on 2 hands.

(c) Addition and Subtraction on 1 hand.

(d) Addition and Subtraction on 2 hands.

(e) Various manipulations of 1 handed numbers;
e.g. Making a number negative.

(f> Causing the CPU to jump from one point in a
machine language program to another.

(g) Causing the CPU to transfer 8 finger numbers
from and to other devices in the computer
system.

Before we leave this Chapter of first principles
let’s have a brief look at two other things that will
be useful to us. These are the idea of ADDRESSES, and
some details of the Amstrad hardware.

Addresses

You may have noticed the word address turning up
occasionally in +this Chapter; in normal English, it
refers to where a particular house or building can be
found in a town full of them. In computing, the
address refers to the location within a computer
memory where a particular number can be found. This



number could be a machine language instruction or a
piece of data, but all the numbers held at the various
addresses can be held as 8-fingered numbers - 1i.e.
they are all between ©® and 255 in value. In the
Amstrad, some of the memory locations are used for
storing the programs that we type in, others store the
BASIC Interpreter program, and yet others are used to
store the information that is used to form the image
on the monitor screen.

Amstrad Hardware

Let’s take a brief detour to look at the wvarious
electronic components that make wup the Amstrad
Computer System. Hardware is the term that is applied
to the various bits of electronic equipment that make
up a computer system. Software is the name given to
the programs that we run on the computer. Some wits
have suggested that the hardware is the bit you can
kick, but I don’t consider this to be a useful
definition! Figure 2 shows how the various bits of the
Aamstrad system fit together. We’ll now go on to take a
brief look at the roles of the devices. As they are
all to some extent under the control of the CPU, we’ll
start by taking a closer look at the CPU.

The Z80 CPU

We’ve already talked about what it does in general
terms; now we’ll look at how it’s arranged.

There are 8 "hands” in the CPU, and they’re all
given names. They are called A, B, C, D, E, F, H and
L. There are two CPU "feet” called IX and Iv. These

"hands” and "feet” are often represented in diagrams
as
A F
B Cc
D E
H L
IX
Y
Figure 1. The 2Z8@ Register Set
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All the hands except F can be used for counting
on; hand F has a vrather special function, as each
finger of this hand is used to indicate whether or not
a particular event has happened within the CPU. This
will be discussed in greater detail when we look at
the various instructions that affect the fingers of
this hand.

We can, if we want to, team up hands B and C, D
and E and H and L to form some new "feet” called BC,
DE and HL. Note that a DL foot 1is not possible,
neither is a DH, CE etc. Each of these neuw feet is
capable of holding a 16 finger number just like the IX
and IY feet.

The hands and feet of the CPU are usually referred

to as CPU REGISTERS. Thus the A hand is usually
called the A REGISTER. The feet that we make by
pairing up, say, the B and C registers are called
REGISTER PAIRS. Thus you can have the BC, DE and HL
Register Pairs. The IX and IY feet are alsc given

special names; these are known as INDEX REGISTERS.
Don’t worry about these for the moment; all will
become clear later in the book.

The A Register

This is often <called the ACCUMULATOR because it
accumulates the results of many CPU operations. Think
of it as the right hand of the CPU; Just as many
operations are best done with the right hand, the CPU
often can only do certain operations with the A
Register.

The HL Regicster Pair

This is a very commonly used Register Pair within the
CPU. Look at it as a 16 finger accumulator, or as the
"Right foot” of the CPU.

The other registers and register pairs are general
purpose ones, with the exception of the F register
that we mentioned earlier.

Alternative Registers

Within the CPU there are some more hands that we can
use, but only for a very limited range of Jjobs. These
extra hands are called the ALTERNATIVE REGISTER SET of
the CPU, and are individually known as A’, B’, C’, D’,
E’, F’, H’, and L’. There are no alternate Index
Registers. The only thing that we can do with them is
to copy the contents of the main registers into the
Alternate vregisters for safekeeping while we use the
main registers for something else. When we do this,
the current contents of the Alternate registers are

copied into the main registers. UWhen writing machine
code programs for the Amstrad computer, however, these
registers are used by the BASIC Interpreter, and so
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it’s often a good idea not to alter the contents of
these registers. (Amstrad recommend that you do not
use the alternative register set).

The Stack Pointer

This is a rather specialised CPU fcoot that points to
the address in memory that the stack has grown to. As
the stack grows down into memory, the number held on
this foot decreases as more information is PUSHED onto
the stack. The contents of the Stack Pointer, or SP,
are altered whenever the CPU PUSHes or POPs the stack.
This register is only rarely manipulated directly in a
program.

The Program Counter

The program counter tells the CPU where in memory it
can find the next machine language instruction so that
the CPU can fetch this instruction and decide what to
do. The Program Counter is not directly manipulated in
machine language programs.

The fetching of instructions is dealt with by the
CONTROL UNIT of the CPU.

The Control Unit

This is the supervisor in the CPU. It coordinates and
times the wvarious operations of the CPU, and is
responsible for fetching a machine language
instruction from memory. The location from which the
instruction is fetched by the address held in the
Program Counter. The instruction is then passed to a
CPU hand called the Instruction Register.

The Instruction Register

This CPU vregister holds an 8 finger number that
represents the machine language instruction that is to
be executed next by the CPU. The Control Unit 1is now
responsible for working out what the instruction is
and acting upon it.

The Arithmetic and Logic Unit

This is best seen as the pocket calculator of the CPU.
It’s controlled by the Control Unit of the CPU rather
than by a keyboard and is rather simple in what it can

do. Addition and Subtraction are easy, but
multiplication and division are not poseible. It can
also compare the wvalues of 8 finger numbers, or
perform operations upon the fingers within registers.
i.e. it can cause a finger to be raised, or set to
’1’, or lowered, or =set to '®’, as required. A=z a by
product of the operations of the ALU, the fingers of

the F register are affected.

11



Although the CPU is a rather clever device, it
would be useless without the other devices in the
Amstrad. If you examine Figure 2, you’ll see that the
CPU is connected to virtually all other devices in the
computer. Let’s now take a look at these other devices
and see how they contribute to the operation of the
Amstrad Computer.

Memory

Because of its 16-finger Program Counter, the 2Z8@ can
gain access to 65536 different locations in memory.
However, certain areas of memory within the Amstrad
are effectively "used twice” by the computer, and this
gives the appearance of the computer being able to
access more than this amount of memory. UWUe’ll see a
little more of this interesting point shortly, but it
is rather complex and we’ll not go into it in any

great detail. There are two different types of memory
within the Amstrad; these are called Read Only IMemory
and Random Access IMemory. Don’t worry about the

jargon; all will be revealed.

Read Only Memory

This type of memory is used in the Amstrad to hold the
Operating System and the BASIC Interpreter. This
memory keeps its contents even when you turn off the
pouwer to the computer. However, the programmer, even
by using machine code, cannot alter the contents of
this type of memory. We can still load the CPU
registers with numbers that are held in Read Only
Memory, or ROM, if we wish, or we can run the machine
language programs that are stored in ROMN. The reason
that we call ROMN Read Only is therefore obvious;
that’s all we can do with it!

Random Access lMemory

1 prefer the unofficial but more descriptive name of
Read and Alter Memory for this kind of memory. We can
read numbers from it, or we can write neuw numbevrs to
it. We thus wuse it to store BASIC programs in, and
we’ll also use it to write our machine code programs
1n.

Although we can easily alter the contents of this
type of memory,RAIN has one very annoying feature. Uhen
the pouwer is removed, the memory forgets everything it
held before. For this reason, we need to store our
programs on cassette tape or disc to keep permanent
copies of them. This applies to BASIC or machine code
programs.

As we’ve already mentioned, a location in memory
can only hold an 8-finger number. This is true for
both RAM and ROM. The range of numbers that can be
held in memory locations is therefore @ to 255. (Ue’ll

12



mention later how we can use two of these locations to
store a 16-finger number).

The Amstrad has 65536 locations of RAM in its
memory ; it also has over 8000 locations of ROM, the
ROM overlapping certain areas of RAIN. It’s not really
important at this point to know what RAIl locations are
overlapped by ROM, as the Operating System of the
Amstrad takes care of what type of memory of CPU
"sees” in these overlap locations at particular times.
The Practical upshot for machine code programmers on
the Amstrad is that we can wuse the already written
machine code programs, present in the ROM, for doing
things like printing characters to the screen from
machine code. So, let’s leave memory alone for the
time being and move on to the other parts of the
Amstrad System.

The CRTC

The Cathode Ray Tube Controller chip (wow, what a
mouthfult)d is responsible for getting the information
held in a particular part of memory, called the Video
RAM, on to the monitor screen as an image.

The PSG

The Programmable Sound Generator is responsible for
producing the many sounds that the Amstrad is capable
of. We’ll look at how we can make sounds from machine
code later in this book.

The PPI

The Programmable Peripheral Interface 1ie a wvitally
important chip in the Amstrad. It has a role in
controlling the display, keyboard, PSG, Printer port
and cassette vrecorder. This device acts as a go

between the CPU and these other devices.

The Gate Array

This is a clever piece of electronics specially
designed for +the Amstrad, and it helps the CRTC
generate the screen image. It also controls whether
the CPU <sees ROM or RAIN in those locations of memory
where the two overlap.

All these devices are controlled bh the CPU, which
is normally running the Operating System or BASIC
Interpreter program in the ROIN. We’ll later see how we
can use vroutines present in these ROM programs to
enable us to control these devices from our own

machine code programs. Don’t let this frighten you;
it’s much easier than it sounds, and 1s certainly an
easiery Jjob than writing programs from scratch to do

these jobs!

We’ve now examined the "cast list” for the rest of

13



the book, and we’ll later see how we can program these

devices to perform various tasks. However, we’ll now
go on to look at a subject rather fundamental to
computing — the subject of counting.

141



Chapter 2
How Computers Count

I menticned in Chapter 1| that the CPU  can represect
numbers between @ and 25% on one of it's 8 fingered
hands. How can Yhis be, when we only count to 18  on
our fingers? Well, we count on our fingers in a rather
inefficient way, and the computer simply uses its

fingers more wisely than we do.

When we count on our fingers, we let each finger
have the same wvalue. i.e. a vraised first finger
represents the same value as a raised second finger.
There is no reason why this should be so. You could,
in fact, use the different fingers to represent
different values.

For example, a raised first finger could represent
the wvalue ’1’, a raised second finger ’2’ and so on.
In this scheme of things, therefore, we could
represent the number '3’ on Just two fingers, by
raising both the first and second fingers. When either
finger is lowered, of course, it has the value ’0’.
This method is obviously more efficient than our way
of counting on our fingers.

Our normal methed would, as I mentioned, require 3
fingers to represent the number 3, whereas this neuw
method only needs two fingers. The counting method
used by the CPU is based on this idea, and appreciates
the below facts;

(a) That whether a finger is raised or lowered ig
important to the overall number being
represented on the fingers.

(b> That the position of the finger within in the
hand is important to the value represented on
that finger, and hence to the wvalue of +the
number represented on the hand.

Let’s take a 1look at our new method of
representing numbers using two fingers.
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Number Represented

m = 0
b 1
(h
]

We might represent a raised finger by the digit
17 and a lowered finger by the digit ’0’. This is
easier than drawing pictures of hands all over the
place! Thus the above can be rewritten as;

Il
w

[%]4] = (%]
21 = 1
10 = 2
11 = 3
This should look vaguely familiar; remember our

way of representing the presence or absence of an
electrical signal? We used 1’s and @’s there as well.

Such a method of representing numbers in which
there are only two different states (raised or lowered
finger, 1 or @) is called a BINARY method of
representing numbers. If we add yet another finger to
the two we’ve already considered, then there are 8
different combinations of raised and lowered fingers,
including the state when all the fingers are lowered.

If you don’t believe this, try it with your own
fingers. We can therefore represent the numbers @ to 7

on these three fingers. Let’s use our '’ and 71’
representation to represent raised and lowered
fingers, remembering that a lowered finger is

represented by '@’ and a raised finger is represented
by 1.

[515]%}
001
010
2011
100
101
110
111

W
NN EWN - @

wnn

The addition of a fourth finger enables us +to
represent the numbers between 8 and 15. In computing
circles, the numbers 10 to 15 are represented in a
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special way by the letters A to F, rather than by the
two digit numbers 10 to 15. Thus,

10 = A
11 = B
12 = cC
13 = D
14 = E
15 = F

The method of representing numbers in this way is
called HEXADECIIMAL representation. In this
representation, therefore, the numbers Q to 15 are
represented as @, 1, 2, 3, 4, S5, 6, 7, 8, 38, A, B, C,

D, E and F. The decimal number 16 is represented as
hexadecimal 19, decimal 17 as hexadecimal 11 and so
on.

The Amstrad computer allows us to type hexadecimal
numbers into the computer in BASIC. However, it’s
obviously necessary to tell the computer how to
distinguish hexadecimal numbers from decimal numbers.

We can give a hexadecimal number either the prefix
”&” or "&H”. Either of these will be recognised by the
Amstrad as the start of a hexadecimal number . There
are other methods of designating hexadecimal numbers,
and these are shown below. However, the Amstrad only
recognises & and &H.

&A = 10
&HA = 10
HA = 10
AH = 10

Throughout this book, we’ll use the & symbol to
designate hexadecimal numbers. You can probably see
now that using hexadecimal representation to represent
machine code 1instructions 1is rather convenient. A
machine code instruction must be able to be held on 8

fingers, (otheruwise it could not be stored in the
computer), and we know we can represent 4 fingers as 1
hexadecimal number (® - F). Thus an 8 fingered number

can be represented with only two hexadecimal digits.
The advantages of using the hexadecimal representation
to represent machine language instructions are
therefore;

(a) We can easily convert hexadecimal numbers into
binary numbers, and so we can see which
fingers are louwered or raised within a number.

(b) We can tell, by the numbers of hexadecimal
digits in the number whether the number will
fit into one or two hands; one handed numbers
have 2 digits and two handed numbers have 4
digits.

We do this by remembering that each finger has a
different value attached to it.
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8 4 2 1
We’ve got 4 fingers raised here, and we have assigned
each finger a value. When any finger is lowered it has

a value of 0. Thus if all the fingers are raised, the
fingers will be representing the number

8 + 4 + 2 + 1 =15

We simply add up the values that have been assigned to
each raised finger. Thus if the left most finger were
to be lowered, the value represented would be

@ + 4+ 2+ 1=7

If you’re mathematically inclined, you’ll probably
note that the value represented by each finger is
multiplied by two as we go from right to left. If we
number the fingers in the below fashion,

3210
then the values assigned to each finger is 2 to the
power of N, where N is the finger number. 2 to the

power of @, for example 1is 1.

So far we’ve seen how we can represent numbers
that have a value between @ and 15; you should be able
to see what to do to enable us to represent larger
numbers; we simply add more fingers. We’ll thus end up
with the 8 fingered number that a CPU hand is capable
of representing; For example, the number 16 is
represented on an 8 fingered hand in the belouw
fashion, with finger number 4 raicsed.

= P00100G0O

76543210

This can be written in hexadecimal as &1@. WUe arrive
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at this by splitting the 8 finger number into two 4
finger numbers, and we then give each 4 finger number
a separate digit. In this case the right hand 4
fingers are all lowered, thus representing the wvalue
8, and of the left 4 fingers the first finger is
raised, thus representing 1. However, the
significance of each of these 4 finger "handlets” is
not the same to the value of the number overall. The
left 4 fingers represent 16 times as much as the right
4 fingers. As a further example, look at the belouw
case, where all 8 fingers are raised.

7654:3210 = &FF = &F * 16 + &F
| = 15 x 16 + 15
F | E = 240 + 15
= 255

You can thus see how we can represent the number 255
on 8 fingers and how the CPU manages to count to 255
on its 8 fingered hands. An extension of this
principle will enable us to count to 65535 on 16
fingers.

Bits and Bytes

It’s now time to introduce the proper names of +the
hands and fingers that are used in computer counting.
In common English, an alternative name for a finger is
a digit, and it is the same in computing. Each finger,
or binary number, is thus called a digit, and there
are thus 8 digits in our 8 finger numbers. There is a
special name for Binary digits, however, and this |is
the name BIT. This 1is a contraction of the phrase
Binary Digit. We can thus say that our 8-fingered
numbers are 8-bit numbers. These collections of 8 bits
are called BYTES. A byte is thus a number that can be
represented on 8 fingers or that can be held on a CPU
hand. Our 4 finger "handlets” are called nibbles, a
nibble, after all, being a small byte...

The terms bit, byte and nibble are very common in
computing circles, and so you’ll come across them
throughout this book and in many other works as well.
Just as we numbered our fingers, we number the bits
within a byte, and we number them in a <eimilar
fashion; that is, @ to 7 from right to left. Bit 0 is
given a special name. It 1is called the LEAST
SIGNIFICANT BIT, or LSB. This is because the value
associated with this bit, 1, contributes the least to
the wvalue of the number represented on the 8 bits.
For a similar Yeason, bit 7 ig called the TMOST
SIGNIFICANT BIT, or IISB of the byte.
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In a similar fashion, we alsoc label the two bytes
that make wup a 16 finger number of the type that can
fit into a CPU ”"foot” or Register Pair.

PRRO1111 11111111
Most Significant, or Least Significant, or
HIGH BYTE LOW BYTE
&OF &FF
&OFFF

Here, the High Byte has a significance to the overall
value of the 18 finger number of 256 times the Louw
Byte. Thus the total value of a number that is held in
a 16 finger number is given by

value = 256 x high + louw

where low is the value held in the low byte and high
is the wvalue held in the high byte. In a similar
fashion, a 16 bit Register Pair in the CPU is said to
be made up of a High Register and a Low Register. Uhen
you write down a Register Pair’s name, the first
register that you write down holds the high byte and
the second register holds the low byte. Thus in he BC
register pair, the B register holds the high byte and
the C register holds the low byte. This fact isn’t too
difficult to remember if you think about the HL
register pair; the H register holds the High byte and
the L register holds the Low byte. This is probably
why the name G wasn’t used when the registers were
originally named; a GH register would be rather
confusing!

Representation of Information

Human beings deal with information mainly in the form
of numbers and letters. Computers only deal in
numbers. It is thus clear that the computer must have
some means of representing other forms of information.
There are two main types of information represented by
numbers in a computer;

(a) Machine language programs. These could be the
BASIC Interpreter, Operating System or some
programs written by the user.

(b)Y Data for a machine language program. This can
either be numeric, or can include letters. The
BASIC program might, for example, be
considered as data for the BASIC Interpreter.
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Let’s now look at how different types of
information are represented in the computer memory.

Program Representation

A machine language program is a sequence of bytes that
represent instructions to the CPU of the computer.
They are stored in the memory of the computer. 260
instructions can be between 1 and 4 bytes in length.
For example, the HALT instruction is a single byte

instruction. Once the number that represents this
instruction has been recovered from the memory and
acted upon, then the next instruction is fetched by

the CPU. However, if the CPU realises that the number
recovered is part of a multi-byte instruction, bytes
are fetched successively until the CPU has a full
instruction to work on. It is obvious, therefore, that
a single byte instruction is executed more quickly
than one made up of several bytes.

Data

In BASIC we are able to use various types of wvariable
to hold information on which our programs are to work.
These include Integers, Real Numbers and strings of
characters. In machine code we don’t have this sort of
versatility; the only numbers that the CPU can handle
directly are 1integers 1in the range @ to 255 or © to
65535. To use floating point, or real numbers, such as
1.2345, the CPU has to be programmed appropriately,
and the amount of programming required often makes it
more advisable to write programs that are to deal with
these sort of numbers in BASIC. Character strings are
available to wus in machine code with only a little
extra effort, and the letters that make up strings are
represented in the computer by numbers, as we shall
soon see.

Integers

We’ve seen already that integers are easily dealt with
by the CPU provided that the numbers are in the range
@ to B6553%5. However, what about negative numbers? How
are SIGNED INTEGERS, as these numbers are known, dealt
with in the computer?

Signed Integers

These numbers must obviously be represented in some
form of binary representation for the sake of the CPU,
so we need a method of representing the SIGN of the
number , Just as we use the "+” and ”-” in normal
arithmetic. The most commonly used representation
states that a number will be treated as being negative
if the "thumb” of the "hand” is raised - i.e. the mogt
significant bit of the number is set to a value of 1.
This leaves us with, for an 8 bit number, bits 8 to €
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to reprecsent the actual walue of the number. For this
reason bit 7 is often called the SIGN BIT of an 8 bit
number . You can probably see that the use of only 7
bits to represent the value of the number means that
we can no longer represent the number between @ and
255 any more. Instead, half the numbers represented
will be with the sign bit set to ©, and hence will be
positive numbers, and half will have the sign bit set
to 1, and so will be negative numbers. The new range
will be -128 to +127.

This gives us a rather significant problem. How do
we tell whether a number is a large positive number or
a negative one? The answer is - we don’t. It depends
upon what interpretation the programmer puts on the
numbers at any time. All the machine code instructions
will work perfectly well, but the interpretation put
on the result depends upon the representation used.
Producing a negative number is not, unfortunately,
just a matter of setting bit 7 to 1. UWUe must now work
out know to represent the actual value of the negative
number on bite @ to € of the byte. The fundamental
thing to remember about a negative number is that when
you add it to the corresponding positive number the
result is @. That is:

(—=1> + (+1> = @

Thus the representation of -1 must be such that when
added to +1 the result i1s zero.

0PeeRoe1

[ajayalalalalago) desired result

If we represented -1 by 1080@801, then by binary
addition we’d set bit @ of the answer to Zero, but
what about the other bits of the answer? UWould these
also be set to zero?

20000VO 1
+10000001
10000010 actual result

That’s not the desired answer. WUe really need to take
the carry that was generated by 1+1 and some how use
it to set all the other bits of the result to zero as
well. This requires that all the other bits of the
binary representation of -1 should be set to 1 as
shown below.

0000REO 1
+11111111
000RRVOO actual result

Well, this 1s certainly the correct answer for -1, but

how can we apply similar techniques go other negative
numbers? Let’s see if we can work out the general rule
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for arriving at a reprecsentation of negative numbers.

It would appear that the representation of -1
given above was obtained in two stages. The first of
these was the replacement of all the @’s in the
positive number with 1’s  and all the 1’s of the
positive number with 8’s, thus representing the number
as belouw.

change 00@QQEO1
to 1111111@

This process is called COMPLENENTING the number. The
complement of 1 is ® and that of @ is 1. The second
stage of the process would appear to be adding 1 to
the result of the complementing operation. Thus,

11111119 + ©BOOVRB1 = 11111111

The only way to see if this method does give us a
proper representation of a negative number is to try
it and see. Let’s see if we can get a binary
representation of -2.

(a) Complement +2:

the complement of @0VQEEO1G
is 11111101

(b> Now add 1 to the complement:
11111101 + GBRBERO1 = 11111110

This should be the binary representation of -2. To see
if we’re corvrect, let’s try adding it to +2;

111111180
+0000RO10
000QRRO

Yes, that’s correct. Ue get the result =zero. This
method of representing a negative number in binary is
called TWO’S COMPLEMENT representation. This 1is the
most common form of representation for such numbers.
If you apply this go a negative number, you’ll get the
binary representation of the positive counterpart.
This isn’t really surprising, when we remember that
two minuses make a plus!

So far, we’ve seen this technique applied to 8 bit
numbers, but the principles can be applied to 16 bit
numbers as well. When we use the Two’s Complement
notation to represent a negative 16 bit number, the
MSB of the High Byte is the sign bit, and bit 7 of the
low byte 1is left alone. The complementing operation,
however, is the same for both 16 bit and 8 bit
numbers. UWhen we use a 16 bit number in this way, the
range of numbers that can be represented is -32768 to
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+32767 instead of the usual ® to B5535.

This is a good place to note that the Integer
Variables supported by the Amstrad BASIC are stored as
16 bit Two’s Complement numbers, and can thus have
values between -32768 and +32767.

Characters and Strings

In machine language programs, we may want the numbers
stored in memory or held in CPU registers to represent
characters rather than machine language instructions
or numeric data for machine language programs. Let's
define a character as anything that we can put on the

monitor screen with a PRINT command. Thus the
collection of letters and numbers in 7”134 HELLO” are
all characters, and they are collectively knoun as a
string of characters, or just a string. As there are
no moye than 255 characters available to the

programmey, the numbers used to represent characters
are all 8 bit numbers. How do we decide what numbers
are represented by what number? Uell, there are a feuw
standards around, and the one used by the Amstrad is
called the ASCII code. This stands for "Amer ican
Standard Code for Information Interchange” and is the
most commonly used code for character vrepresentation.
For example, the code for the letter "A” is the number
65. To see what ASCII code is possessed by a
particular character, we can use the BASIC ASC()
function. Thus

PRINT ASCC”A”)

will print 65 to the monitor.

Summing Up

You can thus see that what a particular number 1n a
memayry location or register represents depends mainly
upon what the programmer wants it to represent. A
number can be any of the following;

C(ad A machine language instruction.

(b> A number in the range @ to 255.

(c) A number in the range -128 to +127.

(d) Part of a 16 bit number or part of a multi-
byte machine code instruction.

(ed) A number representing a character.

It is thus important for the programmer to keep
track of what he uses various parts of the computer

memory for; 1t would be disastrous, for example, for
the CPU to treat a sequence of bytes representing the
message "Hello there!” as a program.

The problem now remains of how to get these
numbers into the computer memory, be they machine code
programs or data. WUe use BASIC tc help us do this, as
well as to help us run our programs. Let’s see how.
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Chapter 3
Machine Code meets BASIC

As I mentioned earlier on in this book, from the
moment we turn on our computer the 280 CPU is
executing the BASIC Interpreter program that is stored
in the Amstrad ROM. When we want to tell the CPU to
run machine code programs that we’ve written, we must
instruct the CPU to leave the ROI program for a while
and go off and run the program that we have written.
We have to do this from BASIC, because we are, rather
obviously, in the BASIC Interpreter. UWUe must also
enter the bytes that make up the machine code program
in to the computer memory wusing BASIC commands. In
this Chapter, therefore, I want to examine the
commands in BASIC that are invaluable to us when we
are writing machine language programs. You may have
read of some of them in the Amstrad manual, or they
may be totally new to you. Don’t worry, we’ll examine
each command in detail. I’11 also look at how we can
pass information between BASIC programs and machine
language programs. This is wvery useful, because we
often want to write machine language programs that are
used in conjunction with BASIC programs to do Jjobs
that cannot be done from BASIC.

Homes for machine code programs

The machine language programs are made up of sequences
of bytes representing machine code instructions. The
most important thing, therefore, is to find a place in
the computer memory where the machine code can live in
safety. It’s clear that this has to be in RAIN memory;
don’t forget that we can’t alter the contents of the
ROM. Many areas of the EAlN in the Amstrad are not
suitable for the storage of the bytes that make up
machine code programs. These areas of RAM are those
that are used by the computer for storage of the BASIC
program, or the BASIC variables, or by the 280 CPU
itself as scrap paper while it executes the BASIC
Interpreter or Operating System program. Any machine
code programs placed in these areas are thus prone to
being cverwritten by the BASIC program as you add more
lines, by new BASIC variables as the program runs or
by the 288 as it executes it’s programs. The areas of
the RAIM that are used by the CPU while it executes the
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programs in the Amstrad ROIN are called System
Workspace If we alter any of these memory locations,
then we stand a very good chance of altering some of
the information that the CPU requires while it is
running the Operating System or Interpreter programs.
The 280, not surprisingly, could then lose track of
what it’s doing and ”“crash”. This is as unpleasant an
event as it sounds; we lose a1l controcl of the
computer and it 1is often necessary to turn the
computer off to regain control of the machine. This
rather desperate ploy will result in the loss of
whatever 1is in RAM. The moral of this little story is
that when we are experimenting with machine code
programs, we should make use of the Amstrad built-in
Tape Recorder and save the programs frequently, =1s)
that if we have crashed the machine we can simply
reload the machine language program from tape and find
what caused the problem. This is much easier than
typing in the program from scratch!

Crashing the computer will probably be a common
occurrence until you find your machine code
programming ”"feet”, so don’t worry. This 1is caused
mainly by the fact that machine code programming is a
rather tedious and error prone task until you get used
to it. MNachine code programs are also very unforgiving
about programming errors. In BASIC, the programmer |is

given lots of help, with error messages and the
opportunity to change the offending program line.
There are no such nicities in machine code

programming! If you are lucky when you make an error
in your machine code program, something unexpected
will happen. If You’re unlucky, the result could well
be a crash!

Anyway, let’s return to the problem of finding a
home for our machine language programs. It’s obvious
that this home must be safe from being affected by the
action of the BASIC Interpreter or the Operating
System of the computer. The safest place for a piece
of machine code is made by taking some EAI away from
the memory that is available for BASIC programs and
variables. UWe do this by using the MEMORY command in
BASIC. Before we see how we use this command, let’s
look, in a simple way, at how memory in the Amstrad is
arranged. Figure 3 shows a simple vrepresentation of
how the Amstrad memory is arranged. Such a diagram is
called a TNMEMORY MAP. Remember that the address of a
byte in memory is simply the location of that byte
within the computer memory, and each memory location
can hold an 8 bit byte; i.e. a numkber between @ and
255.
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&FFFF Basic Interpreter:

Screen ROM
RAM
&CO0OO0 System |
Workspace HIMEM

&ACOO| User Characters

Memory
""Pool”
&4000 |oeeeceonens ceerees
Operating  :
&0040 System :
System ROM :
Address &0 Workspace PPTRORURROS:

Figure 3. Amstrad Memory IMap

Before going any further, let’s examine the memory
map 1in a little more detail. The addresses are given
in hexadecimal notation. The map shouws a simplified
version of know the memory is arranged for BASIC
programming on the Amstrad. The memory "pool” is that
area of RAM that is available to the Interpreter for
BASIC programs and variables. The address of the

highest numbered memory location that the EASIC
Interpreter can use in this way is given a special
name; it’s called HIMEN. When we turn the machine on,

HIMENM is set to a value of &ABT7YF. The area of memovry
between HIMEM and address &ACOO is set aside for a
special purpose. It is used for storing information
about the User Defined Characters that you can create
using the SYMBOL command. The position of HIMNEMN in
memory thus changes, depending upon how many User
Defined Characters we want to use. It also changes
when we use data files on cassette. In fact, when we
open a data file from BASIC HIMNEMN is ”"moved down” in
memory, thus decreasing the amount of space available
to the BASIC Interpreter. At any time we can find the
value of HIMEIM by

PRINT HIMEN
or
PRINT HEX$C(HINMEIM)

The latter will return the value of HINEMN represented
as a hexadecimal number. Any memory above HIINEIN but
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below address &ACE@ is thus free from the ravages of
the BASIC Interpreter and the Operating System,
provided that we don’t accidentally clobber the area
of memory that is being used to store the information
about the User Defined Characters.

So, how do we know where the User Def ined
Characters start in the area of memory between HIMREN
and &ACBO7? Uell, with no user Defined Characters in
use, HIMEM is set to &ABFF; thus, as the System
Workspace starts at address &ACOO, no space is taken
up by User Characters when none are in use. Houwever,
on turning our Amstrad on, space is set aside for 16
User Def ined Characters, and this results in HIMEN
being bought down to address &AB7YF. Thus, if we wuwere
to move HIMNEIN down even further in memory, the area of
RAINl between the NEW HIMNEM and &AB7F would be free for
our machine code programs. &AB8B is the first byte in
this instance that is used for storage of User Defined
Characters.

The stages of setting aside some memory for our
machine code programs are thus as follous.

(a) Decide how many User Defined Characters you
actually want to use in the program. Then use
the SYMBOL AFTER command to reserve space for
them. Thus, if you wanted to use the User
Def ined Characters in the range of ASCII codes
200 to 255, you’d execute a SYMNBOL AFTER 200
command.

(b)) Now get the value of HIMEM, as shown above.

(c) Estimate the amount of memory that you want to
use for your machine code programs. Call this
value N. Now work out

NEUWHIMEM = HIMEM - N

(d> Finally, use the BASIC instruction MEMORY to
tell +the computer that we want to alter the
value of HIMNEM. We want to set it to the value
of NEUWHIMEN that we’ve just worked out. The
command below will do this, making the byte in
memory with the address NEWHINEN+1 the first
byte of memory available to you for machine
code programming.

(e) Thus, to reserve memory starting at, and
including, address 48000, you’d issue a

MEMORY 393939

command .

The memory thus reserved iz =afe from BASIC,
provided that we don’t overwrite the User Defined
Character gpace. The addre=zs of thie area of memory
can be obtained by making a note of the value of HINMEIN
prezent immediately after we’d used SYMBOL AFTER.
Remember that this will reduce the amount of memory
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can be obtained by making a note of the value of HINMEN
present immediately after we’d used SYINBOL AFTER.
Remember that this will reduce the amount of memory
available to BASIC, but, as they say, you «can’t make
an omelette without breaking eggs!

While we are talking about memory use, a slight
detour is in order to look at a little jargon that you
will come across with regards to computer memory. It’s
bagsically a way of getting out of writing long strings
of numbers when we are talking about know much memory
in a computer is available for particular purposes. In

the Amstrad, there are 65536 locations of RAIM. You
will often come across the abbreviation 64K for this
quantity of memory. Thus when we say that there 1is

64K of memory in the machine we actually mean that
there are 65526 different locations of memory in the
machine. Similarly, 2K is 2048 bytes and 1/2K is 512
bytes.

After that short detour, let’s carry on with our
examination of useful BASIC commands for machine code
programs. We can now find a place in RAN for the bytes
that make up our machine code programs to live in, but
how can we actually get the bytes into the memory?
Alsc, can we directly examine the contents of a memory
location? The ansuwer to both guestions is "Yes”.

POKE and PEEK

When we want to put a byte into a particular memory
location, we use the rather descriptively named
command POKE. This is exactly what the command does;
it puts, or POKEs, a particular byte into a particular
memory location. We use it in the following fashion;

POKE address,value

where address is the address of the location that we
want to POKE the byte into, and value is the value of
the byte we want to put in that location. Thus the
command

POKE 40000 ,21@

will put the number 201 into location 4080@ of the
Amstrad RAI.

Although it’s possible to FOKE any addres=s in the
computey, TAKE CARE! FPOKEing System UWorkspace, which
is very ill advised, can easily cause a crash.
Similarly, POKEing parts of the RAIl that are storing
BASIC program lines or BASIC variables could lead to
either the BASIC Interpreter losing track of parts of
the program, or variables being altered in value. You
have been warned!

Having used the POKE command to put the bytes that
represent our machine code program into memory, it
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would be rather nice to be able to look in to the
memory and find out what value is held in a particular
memory location. This 1is done by using the PEEK
command, which enables us to PEEK into a particular
memory location to see what value is in there.

PRINT PEEK(address)

will print to the screen the value of the byte held in
memory location with the address ’address’. Thus

PRINT PEEK(30000)

will return the wvalue currently held in location
10000 . An alternate use of this command allows us to
set a BASIC variable to hold the value PEEKed from a
memory location, as in

LET A=PEEK(40008@)

In all PEEK and POKE instructions, the parameters,
which are the numbers we follow the command with, must
be whole numbers. In the POKE instruction, the ‘value’
parameter should be in the range ©® to 255. In both
cases, the address should be in the range @ to B65535.
Also, you can use BASIC variables in POKE and PEEK
statements. Thus the commands

LET address=40000:LET value=64:POKE address,value

would result in the contents of address 400080 being
set to 64. You can see that the BASIC commands PEEK
and POKE are at the very heart of writing machine code
programs on our Amstrad computer. Without them, we
wouldn’t be able to enter the bytes that make wup the
programs into memory, and so we wouldn’t be able to
run the machine code programs.

Speaking of running machine language programs, houw
can we actually get the CPU to execute the machine
code instructions once we have POKEd them into place?
The CPU will still be executing the BASIC Interpreter
program, so we really need a BASIC command that causes
the CPU to leave the Interpreter, execute a machine
code program that is resident at a certain address
within the computer memory and then return to BASIC.
Well, not surprisingly, there is a BASIC instruction
to do this. It is called CALL.

CALL

The BASIC Interpreter treats your machine code
programs as machine code subroutines. Just as in
BASIC, where you can have subroutines +to perform
particular Jobs, you can have them in machine code

programming, as we shall learn later in +the book.
Suffice to say for the moment, that the CALL command
effectively tells the BASIC Interpreter to do a GOSUB
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te the machine code program that you want running.
Obviously, the 280 doesn’t actually execute a BASIC
GOSUB instruction, but does the machine code
equivalent of it. The CPU must obviously be told of
the address in memory of the first machine code
instruction that it is to execute. This 1s done by
passing a PARAMETER to the CALL command. This
parameter 1s a whole number in the range @ to 65535,
and 1t specifies the address of the first instruction
in your machine code program. For example, try typing
in the command below, then press ENTER.

CALL &BB18

This causes the CPU to execute +the machine language
program whose first instruction is at address &BB18.
At that address, there 1is a ROIM machine language
program which causes the machine to wait until a key
is pressed before going on. You might be able to think
of a use for this command in your BASIC programs.

This way of using CALL iz the <simplest way of
running a machine code program from BASIC; simply give
the CALL command the address of the machine code
program of interest and away we go. However, there are
a couple of disadvantages with this method.

(a) There’s no obvious way of passing information
from BASIC to the machine code program.

(b) There appears to be no method of passing
information back to BASIC from the machine
code programs.

These two disadvantages are not terribly important
when we start learning machine code, but they become
very important as soon as we want to write machine
code programs that do Jjobs that we cannot do from
BASIC; in these situations, it’s often useful to be
able to tell +the machine code program the value of
BASIC variables, and also useful to get information
back from the machine code programs inte BASIC
variables. To do this, we simply wuse an extended
version of the CALL command. An example of this is

CALL 40000,3,4,5

This would call the machine language program at
address 40000 and would make the numbers 3,4 and S
accessible to that program. A =similar command is

CALL 40000,A%,G%,F%

This would make the wvalues held in the 3 BASIC
variables A%, G%X and F% accessible to the programmer.
The values that we make accessible to the machine code
programs in this way are called parameters, and we say
that we’re PASSING PARAINETERS to the machine language
program when we do this. We will have a detailed look
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at how the Amstrad BASIC Interpreter allows us to pass
parameters to and from our programs in Chapter S. If
we were to look at this subject now, we’d be Jumping
ahead of ourselves a little bit. Let’s get back to
reviewing our BASIC commands.

Saving bytes on tape

When we save our BASIC programs to tape, we use the
SAVE command in BASIC. We use a similar command to
save the bytes that make up our machine language
instructions to tape. The command we use is

SAVE filename,B,start,length,execution_address

Let’s examine each part of this command. The
filename 1is a string which will give the file on tape
its name. It will be a string constant, such as
"PROG”. The B is essential; this causes the computer
to save a specific area of memory to tape, rather than
Just the BASIC program. The area of memory that we
want saving to tape is specified by the start and
length parameters as follous.

start This is the address of the first byte of
memory that we want saving to tape.

length This is rather self-explanatory, and 1is the
number of bytes that we want to save on tape.

Both of these <can be constants or can include
variables. They should both be in the range @ to
65535. The final parameter is optional - that is, we

don’t have to use it unless we want to. The execution
address of the file is the address in the block of
memory saved that will be treated as the address of
the first instruction of the program if we RUN the

file. If this parameter is left out when we save the
file, and you later +try and RUN the file, you’ll
simply reset the whole computer, Just as if you’d

pressed SHIFT-CTRL-ESC!

RUNnNIing a file

This is the same as the RUN filename command in BASIC.
The computer searches for the file with the given
filename on the tape, and if it finds it loads it and
runs it from the execution address that was saved with
the file. Thus

RUN 7"fred”
will look for a file called "fred” on the tape and

attempt to load it in and run the machine language
program that it represents.
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Loading a file

It’s often more useful tao be able to LOAD a file in to
the computer rather than load it in AND vrun it. Ue can
then modify the program if we desire, and then run it
with a CALL command. Or, if could be a piece of
machine code that iz called from within a BASIC
program to do a particular Job with certain BASIC
variables that would be passed as parameters from a
CALL command. The wversion of the LOAD command that
we’re interested in is as follows;

LOAD filename,address

The filename is the name of the file that we’re
looking for, and the address parameter is optional. If
we omit the address parameter, then the file is loaded
to the address from which it was written. If the
address parameter is provided, then the fil= will be
loaded to this address. Thus the command

LOAD "FRED", 30000

will lovad the file ”FRED” to address 40000. There 1is
one point to note about this LOAD command, and that is
that when using it files saved with the B parameter
can only be reloaded into memory OUTSIDE that area of
memory available to BASIC. This means, to us, that the
file must be reloaded above the current HIMNEN.
Problems can arise here, therefore, if you SAVE a file
with HIMEN set at one value, and try to relcad the
file to the same address BUT with HIMEM set higher. In
this case, you must provide the LOAD command with an
address parameter that is above the current setting of
HIMEMM, or change HIMEM. (Note that you cannot always
move machine language programs to different areas of
memory) .

There are various ways available to wus to enter
the bytes that make up our machine code programs into
the proper area of memory. The way that I have used to
test the programs listed in this book is to put the
numbers that represent the machine language
instructions into a DATA statement, and then use READ
to get the values. They are then POKEd into memory. A
simple program that can do this is listed belou.

10 RESTORE 5@
20 FOR I=0 TO number:REM number is number of bytes
30 READ A%$: POKE(address+1),VALC”&”+A%)
40 NEXT
50 DATA hexadecimal bytes representing
the machine code instructions.

Before using this program, you’ll need to add a

line that sets up the wvariables ’address’ and
’number’. ’address’ is the address of the first byte
that you want to POKE into memory. ’number’ is the
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number of bytes that you want to put into memory. The
hexadecimal numbers in the DATA statement must NOT
have the "&” prefix; this is added in line 3@ of the
program. Adding the prefix in this way means less
typing for you when you are typing that data in. Thus
the number 255 would be represented in the DATA
statement as "FF”. Each number in the DATA statement
is separated from the others by a ”,”, as is usual in
DATA statements. One advantage of placing the bytes in
a DATA statement is that they can be saved as part of
a BASIC program, and the DATA statement can be edited
in the same way as any other BASIC line.

Well, you’ll be glad to know that we’re just about
ready to examine some z80 Machine Language
instructions. Before we do this, however, 1’11
introduce you to what is quite possibly the most
important machine code instruction that you’1ll
encounter. It enables us to return to BASIC when ue’ve
finished running our machine code program. It has the
mnemonic

RET

which is short for RETurn from subroutine, and this
instruction 1is the equivalent of the BASIC RETURN. Ue
said earlier on that the CALL instructions was a bit
like a GOSUB; here’s the corresponding RETURN.

However, forgeting a RET in machine code can be
absolutely FATAL! A crash will be the usual result.
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Chapter 4
Registers at work

Well, we’re now ready to look at some machine code
instructions. It’s probably clear to you by now that
we cannot do much programming of the 280 CPU until we
can actually get numbers into the CPU registers, and
into the memory of the machine from the CPU. So, in
this Chapter we’ll examine the instructions that we
can use to transfer 8 bit numbers between the memory
of the computer and the CPU registers, as well as the
commands that we use to transfer 8 bit numbers between
the different registers of the CPU. We’ll take a look
at the instructions that we use to transfer 16 bit
numbers around the machine in a later Chapter.

As always in computers, there is a little Jargon

to come to terms with. When we are transferring data
from one register to another register or memory
location, the vregister from which the data is being

copied is called the SOURCE REGISTER. That place to
which the data 1is being copied 1is called the
DESTINATION REGISTER. Similar terms are used uwhen we

are moving data betuween regisgters and memory
locations. We say that we are loading a register or
memory location from somewhere else. Indeed, the

mnemonic for these transfers in assembler language,
LD, is simply an abbreviation of the word LoaD.

The designers of the CPU gave wus many different
ways of handling transfers of data from place to place
in the computer, and also several different ways of
actually carrying out wvarious operations, such as
addition, on data. The ways in which the CPU uses its
registers are called ADDRESSING MODES and virtually
all instructions in the 280 Instruction Set use one or
other of the Addressing Modes that we’ll discuss in
this Chapter.

The Addressing MNodes will be examined with regard
to the LD instructions, but they are applicable to
other instructions as well, as we shall later see.
From now on we’ll write our machine code programs douwn
using mnemonics, for clarity. There will be example
routines for you to enter into your Amstrad Computer
in later Chapter=s, and =o the mnemcnice that make up
these programs will have to be translated into machine
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code by using the Tables in the back of the book. So,
let’s get working on the Addressing leodes.

Register Addressing

This is probably the simplest addressing mode
available to us for transferring data betuween
registers. It is just the transfer of data from one
register to another register. An example of this
Addressing Mode is

LD A,B read this as load A with B

This will copy the number that is currently in the
B register into the A vregister. This makes the B
register the Source register and the A register the
Destination register.

A couple of points to note about this transfer:
the first is that the contents of the B register are

totally unaffected by the transfer operation. The
second is that the contents of the A register before
the transfer are, not surprisingly, totally lost.
There is a general way of writing douwn a register to
register transfer command. This is

LD ri,r2 load r1 with r2

where r1 and r2 are any 8 bit register except the F
register. Each of the various possible transfers is
represented by a single byte in our machine code
programs. For example, the transfer

LD A,C load A with C

is represented by the number &79. There are many such
transfer commands, as you can see if you look at the
Tables in the back of the book.

These transfer commands are a bit like the BASIC
commands of the form

LET A=B

These are very useful, but we haven’t yet seen know we
can actually load a register with a particular number.
The BASIC command to do this is of the form

LET A=7

This sets the variable A to hold the wvalue 7. Let’s
look at the addressing mode that enables us to do
this.

Immediate Addressing

This is another addressing mode. This enables us to
load an 8 bit register with a number between @ and
255. The number that is to be placed in a register is
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specified as a part of the command. So, this command
takes up two bytes in our machine code programs; the
first byte is used to specify the actual register that
we want to use and the second byte specifies the
number we want to put in that register. The general
form of these commands is

LD rY,n load v with n
where r is an 8 bit register, with the exception of
the F register, and n is the number that we want to
put in that register. As a more specific example,

LD A,23

will put the number 23 into the A register. This igs
represented in machine code by the two bytes

3E 17

Note that I’ve put ’23’ into hexadecimal
representation. The first byte, 3E, represents the
actual LD A,n instruction and the second byte

represents the number that we want to put into the
register. These tuwo bytes are given special names. The
first byte that specifies the actual operation to be
carried out by the CPU is called the INSTRUCTION CODE
ory 0P CODE. The latter is short for OPERATION code.
The second byte above is called the OPERAND BYTE.
Using Immediate Addressing, therefore, we can actually
put particular numbers in the CPU registers.

So far, we’ve only dealt with data transfers
involving the CPU registers. We haven’t yet moved the
data between the CPU registers and the memory of the
computer. We’ll now look at the addressing modes that
enable us to transfer data between the registers and
the memory of the computer.

Register Indirect Addressing

Things now begin to look a little more complicated,
but the instructions that use this addressing mode are
very powerful. Data is transferred between the CPU
registers and memory using the HL, BC or DE register
pairs to tell the CPU where the data iz to be
transferred to. Let’s take a closer look at this. Ue
have to set up the register pair involved with the
address of the location in memory that we want to look
at, and we’ll see how we can write data to thegse 16
bit register pairs later in the book. The general
forms of these instructions are as follous

LD A,C(rr)
LD (rr),A
LD CHL)>,n

Here, rr is one of the 16 bit register paire that ar

D
14
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listed above, and n i1s an & bit number. There are a
couple of points to 1look at with regard to these
instructions.

(a) The brackets surrounding the register pair
indicates to us that we are interested in the
CONTENTS of the register pair; this is true in
all 280 assembler instructions. Whenever we
see the brackets, remember that we are
interested in the contents of the register
pair or memory location in the brackets.

(b) The HL register pair is already showing itself
to be more versatile than the other 16 bit
register pairs in that we can load a memory
location whose address is in the HL register
pairs directly with an 8 bit number. With the
other register pairs being used in this way it
is necessary to put the number in to the A
register first.

This method of using the HL register to directly
load a memory location with a number is given a
special name. It’s an addressing mode called, wait for
it... Register Indirect Immediate Addressing. You can
probably see that the Register Indirect part of the
name comes from the fact that we use a 16 bit register
to hold the address of the memory location of
interest, and the Immediate part of the name comes
from the fact that we’re wusing a number in the
command, Jjust as in Immediate addressing. The Register
Indirect Addressing commands are all represented by 1
byte in our machine code programs. The

LD (HLY,n

command requires two bytes in machine code programs; a
one byte opcode and a one byte operand.

Using the instructions that we’ve looked at so
far, let’s see if we can write a small piece of
machine code to transfer the contents of memory
location 40008 to location 40001. Don’t forget that
all the numbers below are in hexadecimal. Thus, 40000
is hexadecimal is &9C40 and so 400081 is &9C41. Lets
first look at the series of machine code instructions
that we’ll use to do this job. They’re listed below
along with the bytes that we’d have to enter in to the
computer.
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LD H,&3C 26 9C load HL with 340000

LD L,&30 2E 48 note that 40000 is &39C40

LD A, CHL)D TE load A with the contents
of location 40000

LD H, &3SC 26 3C load HL with 40001

LD L,&431 2E 41 40001 = &9C41

LD (HL>, A ars load location 40000 with
the contents of A

RET Cca return to BASIC

Let’s 1look at the role played by each of the
instructions. The first tuwe instructions put the
address of location 40880 into the HL register pair.
The third instruction loads the A register from the
location addressed by the HL register pair. UWe then
set the HL register pair to hold the address of
location 40001, and we then transfer the contents of
the A register to +the location addressed by the HL

register pair, now location 10001 . The final
instruction, RET, brings us back to BASIC.
The BASIC program below will actually enter into

the computer the bytes that make up this machine
language program.

1@ MEMNORY 339999

20 FOR I=0 TO 10

38 READ A%$: POKE (4@002+1),VAL("&"+A%)
40 HNEXT 1

50 DATA 26,9C,2E,40,7E,26,9C,2E,41,77,C9

Line 18 reserves the memory from location 10000

onwards. The bytes that make up the programs are then
POKEd 1into memory from location 40002 ocnwards.
Remember that we’re wusing locations 40000 and 40001
for data for our machine code program. To use the

program that the above program enters into memory,
POKE a suitable value into address 40000, then CALL
40002, then use PRINT PEEK (40001) to see if the value
has been transferred from location 48000 to location
40001. This might <seem a trivial example, but shous
the basic principles of entering a small machine code
program into the Amstrad memory. It’s clear from the
above that it would have made things a 1little essier
if we could have loaded the A register DIRECTLY from
the memory locations, without putting the address of
the location into the HL register pair first. Uell,
there is an addressing mode that allows us to do this.

Extended Addressing
These commands are of the form

LD A, (nn>d load A with the contents of nn
LD (nnd,A load nn with the contents of A

where nn is a 16 bit number that represents the
address of a memory location in the computer. Typical
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instructions wusing this addressing mode are as
follous;

LD A, (40000)
LD (40001),A

These two commands could obviously be used in the
example program that we’ve seen above. As you
remember, the 16 bit numbers are held in two bytes; as
the above command has a single byte for its opcode,
the command requires three bytes to represent it. The
opcode goes into memory first, but how do we put the
two bytes representing the address into memory? The
most obvious way of doing this would be to write the
two bytes that represent the address with the High
Byte first. Thus,

LD A, (40000)
might be represented as
3A 9C 40

however, this is NOT the way in which the 280 CPU
expects to find the addresses to be used in these
instructions. The CPU expects numbers like this to be
put into memory with the Low Byte first. The correct
representation of the above command would thus be;

3A 40 SC

This is a rather important point in machine language
programming to remember; in a situation where a 16 bit
number is to be stored in two memory locations in the
computer, the low byte of the number is stored in the
lowest numbered memory location and the high byte of
the number is stored in the higher numbered memory
location. This may seem a little peculiar, but the CPU
manages to work things out. All we have to remember is
to put the two bytes that make up the number into the
memory locations in the correct order.

The Low byte of any number, and the high byte, can
be worked out using the below small program.

1@ INPUT number

20 A$=HEX$(number)

30 sp$=STRINGS(3-LENCA$),"0")

30 AS=sSpH+AS

50 PRINT "High byte is ”; LEFT$(A$,2)
60 PRINT "Low byte is ”; RIGHT$(A$,2)

Simply run the program and enter the decimal number
that you wish to convert to an upper and lower byte.
One point to remember is that in instructions like
this, where the CPU is expecting an address, two bytes
MUST be entered, even if the address that we want to
use in the command is less than 255 in value. Thus the
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High byte of 255 is @ and the Low byte is &FF. The
instruction LD A, (&FF> would thus be written as the
below series of bytes;

3A FF @9
The CPU is expecting a two byte address in this
instruction; if you forget it, a crash is often the
result, or a peculiar result from your program. The
reason for this is that the CPU will take a byte from
the next instruction to ”make the numbers up”, thus

leading to the rest of the program being totally
misunderstood by the CPU!

Incidentally, it’'’s easy to work out exactly what
the wvalue of the address is when it’s represented in
this way in the computer memory. Simply work out

value = (value held in high numbered byte) x 256
+ (value held in low numbered byte)

Thus, if location 40000 and 40001 are knouwun to be
holding a 16 bit number, and location 4000@ is holding
the value &A® and location 40061 is holding &6F,

value = &BF x 256 + &AQ
= 111 ¥ 256 + 160
= 28416 + 160
= 28576
Let’s now return to the addressing modes. The

opcodes and the operands for the commands discussed
above are as follouws;

LD A, (nnd 38 LB HE
LD  ¢(nnd,A 32 LB HB

where LB and HB stand for the low byte and high byte
of the address nn respectively.

To see a concrete example of this instruction in
use, the three instructions

LD H, &3C
LD L,&30
LD A, CHLD
could be replaced by
LD A, (&9C4A0)D
which would be represented by the bytes

3A 40 SC

On executing this command, the A register would be
given a copy of whatever data is in location &93C40 of
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the computer memory. Similarly,
LD (&9C41),A

would copy the contents of the A register into
location &9C41.

Labels in Machine Code

When we are writing programs in Assembler Language, it
often gets tediocus to have to remember the exact

locations in memory that we’ve used for storage. Ta
make life easier for us, we often give commonly used
locations special names of our own choosing. These

names are called LABELS. Thus we might call location
40000, (&39C49) "FRED”. We could thus write

LD A, (FRED)D

As long as we remember to put the actual address in
when we hand assemble the code, we’re alright. The use
of these names, especially if the names have some
relevance to the data that we’re putting in these
locations, can make an assembler listing more
readable. If you eventually get an Assembler program
for the computer, you’ll be able to wuse labels with
this program.

Indexed Addressing

Remember the IX and 1Y "feet”? Uell, this addressing
mode makes wuse of these registers. As with all the
addressing modes that we’ve seen so far, the Indexed
Addressing mode is used by several different types of
instruction, not Just the load instructions. The
Indexed Addressing instructions that we use to
transfer 8 bit numbers are of the below form;

LD r, (IX+d)d
LD CIX+d),r
LD r,(IY+d)
LD CIY+d),r

where r is, as usual, one of the 8 bit registers (with
the exception of the F register). d is an 8 bit number
represented in Two’s Complement representation. It i
called the DISPLACENENT hyte, and is thus a number
between -128 and +127. To see the significance of the
displacement byte, look at the below diagram that
represents an area of memory. Assume that the IX
register has already been loaded with the address of
the memory location that’s labeled "tablestart” on the
diagram.
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-1 tablestart-1
0 tablestart
+1 tablestart+1

+2 tablestart+2

LD A, CIX+2) copies the contents of location
"tablestart+2” into register A

The displacement byte is thus a value that is added to
the address that is held in the Index Register to give
the actual address of interest. These Indexed
addressing commands are thus very useful for accessing
data that is stored as "tables” of bytes in memory.
These instructions have a 2 byte opcode, and a further
byte that represents the displacement byte. Thus the
instruction

LD A, (IX+2D
is coded as
DD 7E 02

@2 is the displacement byte, and the bytes DD and 7E
are the opcode for this instruction. To load the A
register from memory location "tablestart-17", we’d
have +to make the displacement byte equal to -1. All
that we need to do is to put the displacement byte in
Two’s Complement representation. As the Two’s
Complement representation of -1 is &FF, the command

LD A,C(IX-1D
is coded as

DD 7E FF

The opcodes for the wvarious Indexed Addressing
instructions will be found in the back of the book.

You may remember that it was possible to load a
particular number into a memory location whose address

was held in the HL register pair. UWell, something
similar 1is possible with the Index Registers. It is a
new Addressing Mode, called Immediate Indexed
Addressing.

Immediate Indexed Addressing

This simply loads a memory location whose address is
specified by the contents of an Index Register and the
displacement byte. The general form of these
instructions is:
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LD CIY+dd,n
LD (IX+d),n

where n is an 8 bit number and d is the displacement
byte. An example is the instruction

LD CIX+2),&FE
which is coded as
DD 36 92 FE

This instruction has a two byte opcode, and then two
extra bytes for the displacement byte and the number
that we want to load in to that memory location
specified by IX and the displacement.

That Jjust about completes this survey of 8 bit
data transfers and the Addressing lModes associated
with them. In later Chapters we’ll look at 16 bit data
transfers, to complete the picture. However, we can
now go on to look at the complicated wversion of the
CALL command from BASIC. Remember how it enabled us
to make BASIC variables accessible to our machine code
programs? UWell, the reason I didn’t cover this command
in the last Chapter was that to understand how it

works, we needed to know something about the Index
Registers and how they work. Ue now know enough about
this, so in Chapter 5 we’ll look at this extended

version of the CALL command to see how we can pass
parameters to our machine code programs.
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Mnemonic

LD
LD

register ,register

register,number

A, (address)
(address) , A

register, CHL)D
A, (BC)>
A, (DED
(HL) ,register
(BC)Y,A
(DE>, A

register, (IX+d)
register, (IY+d)
(IX+d),register
(IY+d),register

(HL)D ,number
(IX+d),number
C(IY+d),number

Flags notation:

I - O %

is
is
is
is

indicates
indicates
indicates
indicates

flag
flag
flag
flag

Time
Taken

Bytes

ww N o~
—-
ww =~ e

-
EENENENENEN!

s N wwww
—
(e}

altered by operation

set to ©
set to 1
unaffected

Table 1.
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Chapter 5
Passing Parameters to programs

In Chapter 3, 1 suggested that you could use a special
version of the CALL command to pass the values held in
BASIC wvariables over to your machine language
programs. In this Chapter we’ll examine this use of
the CALL command to see how we can pass numbers
between BASIC and Machine language programs.

Although it’s possible to pass REAL numbers, such
as 1.234 or 1E7? over to machine code programs, I will
not cover this subject here. Instead, I will
concentrate on passing Integers and Strings over to
machine code programs, and on passing Integer wvalues
back to BASIC from machine code programs.

There are three broad classes of parameters that
can be passed over in the CALL statement. You can, of
course, mix up these classes of parameter in a single
CALL statement. The three classes are;

(a)> A number, such as 180 or 2, or an Integer
variable name or an integer expression. The
value passed over to the machine code program
must be in the range of numbers that can be
represented as a Two’s Complement, 16 bit
number . An example of this type of CALL is
CALL 430000,A% where 40000 is the address of
the routine and A% is the parameter.

(b) An Integer variable name prefixed with the ”"@”
symbol, such as GA%X This, as you will soon
see, enables us to pass Integer values BACK to
BASIC variables from machine code programs.

(c) A string variable name prefixed by "@”, such
as (@GAs. This is how string wvariables are
passed over.

How, how do we get accesg to thezse parametera that

are passed over in the CALL statement from within our
machine code program? Well, the IX register "foot” |isg

set up by the BASIC Interpreter to hold the ADDRESS of
the low byte of the LAST parameter that was passged
over in the CALL command. The below diagram shows this
for the CALL 48000,paral,para2,para3 command. The
paramebters are all passed over as two byte values.
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para 1
9 (1X+4)
para
para 3 (1%+2)
(1X+0)

It might seem a 1little peculiar for the IX
register pair to point to the last parameter that wvas
passed over, but you’ll soon get wused to it. It’s
clear, therefore, that we can use Indexed Addressing
mode instructions to get values from the above memory
locations into CPU registers. The area of memory that
is p;ointed to by the IX register is called a
PARAINETER BLOCK; the name is fairly descriptive, as
it’s an area, or block, of memory that holds
parameters!

The actual contents of each entry in the parameter
block corresponding to the parameter passed over in
the CALL statement depends upon the class of parameter
involved. We saw above that there were three different
classes of parameter in which we’re interested; let’s
now take a closer look at each of these classes.

Integer variables and Numbers

An example of this type of parameter is A% or 5.

On entering your machine code program, then A
register will contain the number of parameters that
have been included in the CALL command which caused
the program to be entered. Therefore, if you want this
information, don’t forget to store it away before you
start using the A register!

For this class of parameter, each two byte entry
in the parameter block will contain a 16 bit, Tuwo’s
Complement number that corresponds to the parameter
that was passed over. Thus if the parameter in the
CALL statement was the number "S54, the appropriate
entry in the parameter block would be a two byte
number with the value 54. The numbers are stored in
the parameter block with their low bytes first. Thus,
for the command CALL 30000,2,H% would generate the
below parameter block;

high byte of 2" (IX+3)
low byte of 2" (1X+2)
high byte of H% (1X+1)
low byte of H% (1X+0)
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Thus to load the value of the variable H% into the HL
register pair we might use the below instructions

Example 1:

LD L,C(IX+@>
LD H, (IX+1)

Easy, isn’t it? A useful trick to remember is that if
you only want to pass numbers to your machine code in
the range @ to 255, you only need to load a register
from the 1low byte of the appropriate parameter block
entry.

Variables prefixed with @

If a variable name is prefixed by the @ symbol, such
as

CALL 40000 ,EH*%

then the two byte entry in the parameter block that
corresponds to this parameter is the ADDRESS of the
variable in the computer memory . Thus, if the
parameter block entry for GH% had the value 20000 it
indicates that the variable H% is stored at address
20000 and NOT that the variable holds the value 20000.
So, if H%=2, and we issued a CALL statement containing
@H*%, the resulting parameter block would point to the
address of the H% variable in the following fashion.

high byte 20001 0
low byte points to addreiJ» 20000 2 low byte
20000
parameter
block entry

One nice thing to note about the use of ”"@” is that it
enables us to actually alter the value held in a
variable from within a machine code program and then
pass the altered value of the variable back to BASIC
where it can be used by the BASIC program. How do we
do this? Uell, we must write our machine code program
so that it puts the value that we want returning in
the BASIC variable into the memory locations given in
the parameter block entry. Thus, if we wanted to set
H% above to the value 7, we’d load location 20008 with
7 and 28001 with @ before returning to BASIC with the
RET statement.

The BASIC Interpreter is usually guite forgiving

if you wuse a variable without first setting it to a
particular value. It usually assumes the wvariable to

be set to zero, as you probably know. However, in this
use of variables, the variable must have been =set up
in some way. This 1is because the BASIC Interpreter
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needs to pass into the paramester block the address of
the variable concerned; if the variable hasn’t been
previously used, the Interpreter obviously won’t be
able to find an address for it! Thus any variable that
is used with the ”@” character should be initialised
in some way before use. If we are passing a parameter
into the program in this variable then all will be

well, as you’d set the variable to a value anyway. If,
hovwever, you’re using the ”"@” wvariable to return a
value from machine code to BASIC, and you’re NOT

passing a value over to the machine code program, then
it’s a good idea to set the variable to © first. If
you fail to do this, you’ll get an error message.
Let’'s see an example of the use of ”@” in a program.
Once the below program is entered,

CALL 40000,CA%,value

will set the variable A% to the number passed over as
the second parameter. The second parameter should be
less than 256 in value. A% must be set to @ before
use.

LD A, (IX+0) DD 7E 88 get second parameter
LD L,CIX+2) DD B6E 82 get address of the
LD H, (IX+3) DD 66 B3 A% variable

LD CHL)DY , A 77 set A% to value

RET Ccg9 return to BASIC

The below BASIC program will POKE the bytes in to
memory at address 40000.

19 TEINORY 39999

20 FOR I=0 TO 1@

30 READ A%$:POKE (40000+1),VALC”"&"+A%$)

40 NEXT 1

5e DATA DD,vE,00,DD,6E,02,DD,66,03,77,CS

To see it in action, run the above program and then
type in

A%=0:CALL 40000 ,CA%,d4:PRINT A%

You should get the value 4 printed to the screen. Try
the routine out with other integer variables and other
values. Again, remember that the wvariable must have
been previously wused so that the BASIC Interpreter
knows where to find the address of the variable.

Do you see how the program works? The first
instruction gets the low byte of the second parameter
into the A register. We then get the next parameter,
which is the address of the integer variable used,
into the HL register pair. Finally, we use a Register
Indirect Addressing mode instruction to put the
correct value into the variable. (LD (HL)>,A is used
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here). Finally we make the return to BASIC with a RET
instruction.

Passing Strings

WUhereas we can pass numeric constants, such as ”17 or
”3808” over to machine code programs, you can’t pass
over string constants, such as "UWUW”. Thus,

CALL 40000 ,CA%$
is legal, but
CALL 40000 ,R@"fred”

is not. Also, the command CALL 40000,A% will generate
a "Type Mismatch” error. However, we’ve already said
that the parameters are stored in the parameter block
as a series of two byte integers. How can we store
strings in the parameter block, when a string can be
up to 255 characters, and hence 255 bytes, in length?
WUell, the answer is indicated to us by the fact that
strings can only be passed over to a machine code
program by prefixing their variable names with the "@”
symbol. When we used this symbol above, with a numeric
variable, it placed in the parameter block an entry
representing the address in the computer memory of the
variable. A similar situation arises in this case.
However, the address placed in the parameter block is
NOT the address of the string itself. It is the
address of another block of memory that gives details
about the string. In fact, it describes the string,
and for this vreason 1is often called the STRING
DESCRIPTOR BLOCK, or Jjust the STRING DESCRIPTOR. Let’s
take a closer look at this area of memory.

String Descriptor Block

The below diagram illustrates the role of the string
Descriptor Block.

char 3
hich 7 high byte of string char 2
9 address char 1
low byte of string
low J address
»length of string
parameter block
entry for the
string variable STRING DESCRIPTOR STRING IN MEMORY

The role of the Descriptor i=s thus to
Ca) tell us the length of the string. If the

length entry in the Descriptor block is equal
to @ then the string is "empty”.
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(b) tell us where in the memory the bytes that
represent the characters in the string can be
found. The address held in the last two bytes
of the Descriptor Block is stored low byte
first, and is the address of the first
character of the string.

As an example of how we can access the string
descriptor block, let’s write a machine code program
that performs the role of the BASIC LEN()> function.
One thing to note 1is that any string passed to a
machine code program using the "@" symbol must have
been initialised in some way, or otherwise the BASIC
Interpreter won’t be able to give the parameter block
the address of the Descriptor Block. So, on with the
example.

Enter the bytes that make up the machine code
program at address 48000. I’11 leave it to you to
sort the bytes out, using the Tables in the back of
the book. You can use a BASIC program similar to that
used in Example 2 above, but remember to change the
number in the FOR ... statement to the actual number
of bytes in the program. To help you here, there are
1S bytes in the program, and the FOR statement should
read FOR I1=0 TO 14.

Example 3:

LD L,(IX+@)D get the address of

LD H, (IX+1) the string descriptor

LD A, CHLD get string length

LD L,CIX+2) get the address of

LD H, (IX+3> the integer variable

LD CHL)Y , A load the integer variable
with the string length

RET return toc BASIC

We use a CALL of the form

CALL 40000,3A%,CA%
to use the routine, having first set up A% and set
A%=0. Obviously, any string wvariable and integer
variable can be used. Both the below examples are

legal uses of the CALL.

A%=0:A%="FRED”:CALL 40000,(CA%,REA%$
LE%=0:b%$="joe”;CALL 40000 ,CLE%,Cb%$

In both cases, the integer variable will hold the
length of the string after the CALL has been executed.
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That completes this review of the parameter
passing abilities of the Amstrad Computer. As 1
mentioned, we haven’t covered passing real numbers to
machine code programs, but I’m sure you’ll agree that
the facilities offered that we’ve examined are
extremely powerful. Also, they are nice and easy to
use, so you’ve got no excuse for not using them in

your programs!
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Chapter 6
8 bit counting

In Chapter 4 ve examined the ways in which we could
transfer data between CPU registers and the computer
memory. In the last Chapter we saw how we could wuse
these instructions to write simple machine code
programs. However, the programs we saw simply shuffled
data around; they didn’t do any arithmetic on any of
the data they were working on. So, in this Chapter
we’ll look at the instructions that are available to
us for 8 bit arithmetic and counting operations. We’ll
also 1look at that "odd man out” amongst the 8 bit
registers of the CPU, the F register. In fact, that’s
where we’ll start.

The F Register

The F, or FLAG, register serves to indicate to the CPU
that certain events have happened; all of these events
are concerned with the arithmetic operations of the
CPU, irrespective of whether these are 8 or 16 bit
operations. We NEVER treat the F register as Jjust
another 8 bit register; in fact there are no data
transfer operations that we can do with the F
register. We can only PUSH it on to the stack,
nothing else.

Instead of treating the F register like a byte, uwe
look at it as 8 separate bits, each bit representing a
certain piece of information. These are known as FLAG
BITS, or Jjust FLAGS. Although there are 8 bits in the
register, only 6 of them actually are used by the CPU.
I assume that the 280 designer ran out of ideas of
what to do with the other 2 bits.

There is a little jargon here to do with bits that
are used as flags. We say that if a flag bit is set
to a value of 1 the flag is SET. If it is set to @,
then the flag is CLEAR or RESET. After an instruction
has been executed by the CPU, the flags that have been
affected by that command, if any, are updated by the
CPU. Not all the commands available toc the CPU affect
the values of flags; for example, the load
instructions that we’ve already seen don’t alter any
flags at all.

55



What the Flags stand for

The below illustration shows how the flag register is
arranged.

Bit 7 6 S 4 3 2 1 0

Name S 2 X H X P/UN C
The significance of each bit will be explained
shortly. Two things, though, spring to our immediate

notice.

(a) Bits 3 and S5 are given the name "X”. These
have no relevance whatsoever to the
programming or behaviour of the CPU. "X is

often used in computer circles to designate
"Don't care”!

(b)) Bit 2 has a two letter name; this is because
it is wused as a different flag by different
instructions. That is, it means one thing when
some instructions are executed and another
thing when others are.

The C Flag

This is also known as the CARRY flag. If you think
back a little way, you’'ll remember that 8 bit numbers
can be in the range 8 to 255 for 8 bit numbers and 0
to 65535 for 16 bit numbers. Look at the belcw binary
addition;

11112111 Remember that in binary
+0000B001 1 + 1 =08 with a carry of 1
1 00000000

However, only the 8 zeros are represented in the
register; there is no room for the lone 1. Thus, if we
were to now inspect the register we’d find the ansuwer
@ instead of the correct answer 256. This is simply
because you cannot represent the number 256 on 8
"fingers”. UWhen the accuracy of a result is lost in
this way we say that we have an OVERFLOW problem. When
such a problem is encountered by the CPU, and a "ninth
bit” 1s returned, the ”ninth bit” goes into the Carry
flag of the F register. A similar problem can occur in
subtraction problems, such as 200 - 201. Here the C
flag 1is set to 1 if the subtraction requires the use
of a carry from the MNSB of the A register. The C flag
is thus vitally important in 280 arithmetic
operations; it’s so important, in fact, that we’ve
been gilven twoc commands that enable us to directly
manipulate the C flag. These are

SCF with opcode &37
CCF with opcode &3F

SCF stands for Set Carry Flag, and on execution this
instruction will set the C flag to 1. CCF stands for
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Complement Carry Flag and on execution will set the
carry flag to it’s opposite state. That is, if the C
flag is set to 1 when the instruction is executed it
will be altered to @, and if it is set to @ when the
instruction is executed it will be altered to 1.

The N Flag

This is called the SUBTRACT flag. It is used mainly by
the rather special BCD arithmetic instructions that we
shall encounter later in this Chapter, and indicates,
not surprisingly, that the last instruction was a
subtraction when this flag is set!

The H Flag

This is called the HALF CARRY flag, and indicates that
a carry or borrow operation has been carried out to or
from the Sth bit of a A register. It is used in BCD
arithmetic.

The P/V flag

This is the two purpose flag in the flag register. It
is called the PARITY/OVERFLOW flag. Let’s look at each

of it’s roles in turn.

Parity

I’m sorry about all these new terms; this is a concept
that is involved in what are called the LOGICAL
operations of the CPU. WUe’ll look at these in greater
detail in a later section. If a byte has an odd number
of bits in it set to 1 then the byte is said to have
ODD PARITY, and if it has an even number of bits in it
set to 1 it is said to have EVEN PARITY. If a byte has
odd parity then the P/U flag will be set to 0,

otheruise it will be set +to 1. As an example of
parity,

911061111 parity is even

0 6 00 090 0 02 1 parity is odd

The P/V flag is ONLY wused as an indicator of the
parity of a byte when logical operations have been
performed on the byte.

Ouerflouw

This use of the flag is important when we are dealing
with Two’s complement arithmetic. It indicates that
the addition of tuwo positive numbers represented in
two’s complement representation has given rise to a
NEGATIVE number! This is clearly not possible, and
results from, for example, the sum being greater than
127 for 8 bit Two’s Complement numbers and 32767 for
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16 bit Twco’s complement numbers. It also indicates
when the addition of two negative Two’s complement
numbers have given rise to a positive number; again
not possible. Either of these conditions is signaled
by the P/VU flag being set to 1.

The 2 flag

This is called the ZERO FLAG and is probably the most
widely used of all the CPU flags. It indicates whether
or not the result of a particular operation was zero.
The result being tested should be in the A register,
and so the 2 flag vreally tests whether or not an
operation left zero in the A register. When the result
is zero, the flag is set to 1. When the result is NOT
zevro, the flag is set to zero. This latter point can
cause some confusion!

The S Flag

This is the SIGN FLAG and serves to signify the sign
of the vresult of an operation. It is effectively a
copy of the TMSB (Most Significant Bit) of the A

register, and so in accordance with Two’s complement
notation will be set to 1 if the result 1is negative
and (4} if the result is positive. This flag,

therefore, Jjust gives us the status of bit 7 of the A
register.

How are they used?

In BASIC we can have program structures such as
IF A=2 THEN ...

Well, in machine code programs we can have something
very similar. WUe use the status of different flags, in

conjunction with some instructions that we’ll
encounter later, to form these commands. The only
difference is that the instructions after the machine
code equivalent if IF ... THEN must be the machine

language equivalent of GOTO or GOSUB. The machine code
equivalents of these are JP and CALL respectively. DO
NOT get this CALL mixed up with the BASIC command CALL
that we’ve already encountered. JP simply stands for
Jump, and we’ll take a much closer look at these
instructions in Chapter 8. For now, we’ll say that we
use the flags to decide whether or not we make a JP or
CALL. For example, the assembler equivalent of

IF A=@ THEN GOTO 12000
is
Jp Z2,12000

This machine code instruction means; if the result of
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the last instruction was zero, Jjump to address 12000
within the computer memory.

Thi= jump ingtruction is an example of a clazs of
instructions that are called CONDITIONAL instructions;
these instructions are only executed if a gpecific
condition is met.

However, we’re getting ahead of ourselves here;
let’s look at the instructions that we can use to
carry out 8 bit counting and arithmetic operations.
Before we leave flags, remember that the effects of
various instructions on the flags are indicated on the
various Tables of instructions scattered through the
book.

Counting with 8 bits

The easiest arithmetic operation that I can think of
is simply to add or subtract 1 from a number. The CPU
can do this job very easily, and we’ll now look at the
instructions used to do this.

Counting up

To increase the contents of an 8 bit register by 1 we
use the command

INC r
where v is an 8 bit register. Thus a typical
instruction might be INC A. This will increase the

value of the A register by 1. Thus if the A register
was containing 4 before the INC A instruction, it
would be holding 5 after this instruction. The command

INC YY

does the same job for the register pairs. More details
will be given in Chapter 8 when we discuss the 16 bit
instructions. When we are using these 8 bit arithmetic
instructions, we can use many of the addressing modes
that we looked at in Chapter 4, take the use of
Indexed Addressing as an example.

INC (IX+d)
INC (IY+d)D

are both legal instructions. WUe specify the address of
the memory location of interest in the Index Registers
with the displacement byte, and then the execution of
the above instructions would lead to the contents of
that particular byte of memory being incremented by 1.
We can wuse the HL register to specify a memory
location, as well. Thus,

INC C(HL)>
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increments the contents of the memory location
specified in the HL register pair. To give an example,

LD HL, 40000

LD A,0

LD (30000) ,A
INC (HLD

RET

will result in the memory location 48089 containing
the wvalue 1 instead of the value @ with which it was
originally loaded. Remember that the brackets indicate
that the instruction we’re executing refers to the
contents of the ADDRESS specified by the register
pair, not the register pair itself. Example 4 shous a
simple program that uses the INC A instruction to
print all the available characters 1in the Amstrad
character set to the screen. In a later Example,
we’ll see a program in which the actual printing to
the screen is also done from machine code!

The assembler language code is;

Example 4:

LD L,(IX+8)
LD H,(IX+1)
LD A, C(HL)D
INC A

LD (HL)Y, A
RET

It’s very simple; we simply get the address of an
integer variable, get the low byte, increment it, put
it back and then return to BASIC. We could have used
an INC (HL) instruction, that would have replaced 3 of
the above instructions. The BASIC program to locad the
machine code bytes and CALL that above program is
shown below. The CALL statement has the same effect as
LET A%=A%+1.

1@ MEMORY 39999

20 A%=31: RENM set the variable up

30 FOR I=0 TO 9: REMN put the machine code in memory
40 READ A%$:POKE (34@000+1),VALC"&"+A%)

S0 NEXT 1

60

70 CALL 40000 ,&A%:REI make the call

80 PRINT CHR$(AX%X):REMN print the character

90 IF A%<256 THEN GOTO 7@

19@ DATA DD,6E,00,DD,66,01,7E,3C,77,C3

The alternative version of the assembler listing given
above, but using INC (HL)> instruction, is:
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LD L,(IX+@)
LD H, (IX+1)
INC (HLD

RET

You might try to convert these assembler instructions
into machine code bytes.

One thing to note about INC instructions is that
it 1is possible to get back to zero by repeatedly

incrementing a register or memory location. This
isn’t as mysterious as it sounds. Remember when we
discussed the carry flag? Uell, incrementing a
register that contains the wvalue 255 will set the
lower 8 bits of the register to =zero. This will

obviously set the contents of an 8 bit register to
zero, as we’ve already seen.

Counting Down

The instructions for counting down with a register or
memory location are analogous to those that we’ve just
examined for counting up. So, the below ingstructions
are all legal ones for counting down.

DEC Y
DEC rvr
DEC IX
DEC 1Y
DEC (HL>

DEC (IX+d>
DEC (IY+d>

Note here the DEC IX and the DEC 1Y instructions.
There are, of course, INC IX and INC IY instructions
as well. The DEC instructions all reduce the wvalue
held 1in the register or memory location by 1. DEC can
be thought of as standing for DECrease or DECrement.
As an example, the below short program will decrement
the contents of location 40000 by 1.

LD A, (48000)

DEC A
LD (40000)> ,A
RET

Just as you can get to zero by repeatedly incrementing
a register or memory location, you can achieve a value
of 255 by repeatedly decrementing a register. As soon
as the register contains the value @, a further DEC
operation will leave the value 255 in the register.
This can be guite a useful programming trick under
gome clircumstances.

Let’s now go and look at how the INC and DEC
instructions affect the CPU flags. These are the first
instructions that we’ve met that actually alter the
flags in any way.
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Effect on the flags

The 8 bit INC and DEC instructions affect most flags;
houwever, the 16 bit register pair INC and DEC
instructions DO NOT affect any of the flags. This can
be extremely frustrating, as it means that we have to
use extra instructions to see if the register pair has
rvreached 0. Whether this omission was an oversight on
the part of the CPU designer, or an attempt tao
undermine the sanity of programmers, we’ll never knouw.
The only important flag that is NOT affected by the 8
bit INC and DEC instructions is the C flag. The notes
given belouw, therefore, only vrefer to the 8 bit
instructions.

Sign Flag
This is set if bit 7 of the result is set to 1.

Zzero Flag

Thig is et if the value of the result is zer

[n]

Overflow

This flag is set if the operation altered the value of
bit 7 of the result.

Half Carry

This is set if there is a carry or borrow from bit 4
of the result.

Negate

This is set if the last instruction was a subtraction
instruction, and SO is set if a DEC instruction was
the last instruction executed, as DEC 1is simply a

special form of the subtraction operation.

Well, the ability to count up and down iz rather
useful; it enables us to simulate things like the
BASIC FOR ... NEXT loops, as we shall see when we look
at Jjumps and calls in a later Chapter. However, they
are of little use to us if we want to add two numbers
together, such as 56+32. For this, we need some more
sophisticated arithmetic instructions, and we'll look
at these next.

8 bit Arithmetic

In this section we’ll consider the 8 bit arithmetic
operations, addition and subtraction. Both these types
of operation involue the A register; indeed, there are
some instructions that take the A register so much for
granted that it is not even mentioned in the mnemonic
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of the instruction! The arithmetic operations
available to the 280, you will have noticed, do not
include the operations of multiplication and division.

Some CPU’s do include these two operations in the
instruction set, but the Z80 doesn’t. If we want to do
either of these operations in machine code then uwe
have to write short machine code programs to do so.

The simplest arithmetic operation is the 8 bit
addition, so let’s start there.

2 Bit addition

The simples 8 bit add operation is
ADD A,r

where r is one of the 8 bit registers. This
instruction tells the CPU to add the contents of the
register r to the contents of the A register and leave
the result of the addition in the A register. This is
the historical origin of the full name of the A
register, which 1is the ACCUINULATOR. In some of the
early computers, one particular register within the
computer was used to "accumulate?” the results of
various operations done by the computer. That is
exactly the role of the A register here. As an example
of the use of these addition instructions, the below
instruction adds the contents of the A register to the
B register.

ADD A,B

All the 8 bit addition operations can affect the
values of ALL the CPU flags; they set the N flag to 9,
and alter the other flags to reflect the result of the
operation Just performed. The 8 bit additions are
available in a wide range of addressing modes:

ADD A,r

ADD A,n

ADD A, (HLD
aDD A, (IX+d)
ADD A, C(IY+dD

The one addressing mode that we’ve not got above
is the Extended Addressing mode i.e.

ADD A, (nn>

where nn is a 16 bit address. However, this is no real
problem, as we can simulate this opevration by

LD HL,nn
ADD A, (HLD

Don’t worry about the 16 bit load instruction; this
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simply puts the wvalue nn into the HL register pair.
We’ll examine these instructions in Chapter 7.

A very important thing to remember is that the
result of an 8 bit addition operation must be capable
of being represented as a 8 bit number. For example,

will leave the value @ in the A register, and not the
true result of this addition, which is 256. The reason
for this is quite obvious; you can’t represent 256 on
8 bits.

However, this type of addition WILL set the carry
flag, and so we’ll be aware of the error that has
occurred. Let’s nouw look at a simple addition program
that adds two integer variables tcgether and passes
the result back to BASIC. BRecause we haven’t yet
looked at 16 bit data transfers or 16 bit addition
operations, the numbers used should be such that the
result of the operation will be less than 255.
However, if you want to be aukward, and enter bigger
numbers, you’ll get an appreciation of the overflou
problems!

The assembler listing for this program is shown
below;

Example 5:

LD L,C(IX+8)
LD H, (IX+1)
LD A, CHL)D
LD L,CIX+2)
LD H, (IX+3)
ADD A, (HLD
LD (HL)Y, A

the instructions above leave the result in the A%
variable for the CALL shoun in the below BASIC
program. The below BASIC program will POKE the bytes
that make the above program into memory and CALL it.

1@ MEMNORY 39999

20 FOR I=© TO 15

3@ READ A%$;POKE (40000+1),VALC"&"+A$)
49 NEXT I

1%

60 INPUT "First number”,AX

7@ INPUT "Second number”,B%

80 CALL 4000,GEA%,(@B%

85 PRINT A%

90 END
1@@ DATA DD,BE,00,DD,66,81,7E,0D,6E,02,DD,66,03,86
77,C9

This will print the sum of the two wvariables to the
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screen, assuming the variables give a sum in the range
@ to 255. Note that it can’t cope with negative
numbers.

If you play about with the above routine, and type
in something like 123+245, you’ll get the result 112
instead of the real answer 368. This is the overflow
problem coming to the surface.

112 = 3688 - 256

What can we do to get around this problem? UWell,
the answer iz to use an instruction called ADC. ADC
stands for ADd with Carry, and enables us to take the
carry generated in these conditions and do something
useful with it.

Add with Carry

These instructions work in the same way as the normal
ADD instructions, have the same addressing modes and
work on 8 bit numbers. Where they differ is that when
we use ADC, the value of the Carry flag, whether 1 or
@, is added to the result generated. It thus enables
us to make wuse of the carry generated. Let’s take a
look at an example to make it clearer. Let’s carry out
an addition that generates a result that can only be

accurately represented in 16 bits, such as
1e@a+200=300 .
The below machine code program would, if entered

at a suitable address in the machine, put the result
of the addition into addresses 4100©@ and 41001. The
Low byte of the result will be placed in location
341908 and the High byte of the result will be placed
in location 41001.

LD A,200 set up A and B with the

LD B,100@ numbers to be added

ADD A,B add them, A is low byte of sum

LD (410005 ,4A store the low byte

LD A,0 the high bytes of the numbers

LD B,@ being added are zero

ADC A,B add high bytes with the carry
in this case A = 0 + @ + 1

LD (310012 ,A store the high byte

RET return to BASIC

If you like, hand assemble this program and enter
it into your computer at address 40000. Remember that
all addresses in the program should be entered into
the memory low byte first. Use a CALL 400009
instruction from BASIC to vrun the program. The
contents of the two locations holding the result can
then be PEEKed out using

PRINT PEEK(41000)+256%xPEEK(41801)
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Thus, we can do arithmetic with 1& bit numbers
using only 8 bit arithmetic instructions. Thus, we
could use a program similar to that above to add any
16 bit numbers together. One point to remember is that
the Amstrad BASIC Interpreter uses the Two’s
Complement notation for it’s 16 kit integers, and =
if we were to use the parimeter block to pass such
integers back to BASIC, any number above +32767 in
value would be passed back to BASIC as a negative
number. If we want to get around this problem, then we
must store the result that we want passing back to
BASIC in a couple of memory locations, like we did
above, and then access these locations wusing PEEK
instructions. This would allow us to return large 16
bit numbers to BASIC quite easily.

Example 6:

As a final example of 8 bit addition 1instructions,
Example 6 shows a general routine to add together tuwo
integer variables and pass the result back in an
integer wvariable. This vroutine will handle negative
numbers.

The CALL used by this routine is of the form
CALL 40000,A%,B%,RBCx%

the values to be added are passed over in A% and B%
and the answer is returned in C%. For this reason, we
have to use the @ symbol to pass parameter CX%. It
also means that we must set C% to some value before
calling the machine code. The instruction

CALL 40000,2,4,8Cx%

is equally wvalid. The assembler listing 1is given
below.

LD L,C(IX+@) get the address of C%

LD H,(IX+1)

LD A, (IX+2) low byte of B% into A

LD B, (IX+4) low byte of A% into B

ADD A,B form the sum in A

LD CHLY , A put result in low byte of CX%

INC HL make HL point to high byte of CX%

LD A, (IX+3) get the High byte of BX%

LD B, (IX+5S) get the High byte of A%

ADC A,B add with carry to get high byte

LD CHL)Y , A store in high byte of C%

RET return to BASIC

Enter the program at address 30008 after assembling
it. After a call the C% variable will hold the result
of the addition. Try typing in negative numbers, and
see how the computer converts large integers into
negative numbers on the return to BASIC by typing in
something like 327687+5. You can, of course, use
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different wvariable names in the above. However,
remember that the last parameter passed should be a
variable which is prefixed by the ”@” symbol. Finally,
remember that the last parameter should be initialised
in some way, even if it’s just set to zero.

8 bit subtraction

The instructions for this operation are analogous to

those for 8 bit additions. Again, there are two
different types of subtraction operation. These are
SUB subtract
SBC subtract with carry

I won’t go into too much detail here about these
instructions, because of their overall similarity to
the 8 bit addition instructions. The result of any 8
bit subtraction is left in the A register. The SBC
instruction subtracts the value of the C flag as well
as the value of the operand.

Before leaving these operations, a couple of
general points. Note that both ADD A,A and Sub A,A
commands exist. These will have the result of doubling
the A register contents and setting them to zero
respectively. The SUB A,A command is also a good
method of clearing the C flag. It is important in the
ADC and SBC operations that you keep a close eye on
the C flag.

The final point is one of mnemonics. Certain of
the instructions we’ve Jjust examined are occasionally
written without mentioning the A register. Thus,

ADD CIX+d)D means ADD A, (IX+dD

ADD B means ADD A,B

ADD 23 means ADD A,23

So, if you ever come across any of these ways of
writing instructions down, you’ll know what is meant.

BCD Arithmetic

So far, all the arithmetic that we’ve dealt with has
been binary.

In BCD, or Binary Coded Decimal arithmetic we
treat the 8 bit byte that we know and love in a

totally new way. However, don’t worry too much, as
it’=s only included here for the sake of completeness.
The byte is now treated as two 4 bit nibbles, each

nibble representing a decimal digit between ©® and 9.
The first point to note about this is that & of the
available 16 4 bit combinations are not used. This is
therefore an inefficient form of rvepregenting numbers,
but 1= often usgeful uhen the CPU has to communicate

with certain types of peripheral device. To see the
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difference between BCD and straight binary
representation of numbers, look at the belou examples.

0010 0010
1901 1001

22 in BCD or 34 in binary.

98 in BCD or 153 in binary.

This is the largest 8 bit BCD number.
is 221 in binary,

but is ILLEGAL in BCD.

1101 1101

]

Arithmetic with BCD numbers

This peculiar representation method can cause a pot
full of problems when we start doing addition and
subtraction with numbers. Consider the addition below.

BCD 98 is 90000 1000
BCD 03 is 0000 0011
Their sum is 0000 1011

This is the correct answer in binary, but it is
illegal in BCD representation. We must somehow
convert the binary result of such an operation into a
legal BCD number. UWe can get a proper BCD number by
adding 6 to the number PROVIDED THAT the 1low nibble
has a wvalue of greater than 8. Fortunately, we don’t
have to work out a program to do this ourselves; the
designers of the CPU put in an instruction to convert
any illegal BCD byte into a legal BCD byte. The
instruction is called DAA, which stands for Decimal
Adjust Accumulator. any "carry” from the low nibble to
the high nibble is indicated by our old friend, the H
flag.

Having said all that, it’s not likely that you’ll
use BCD in your programs very often!

Comparing Numbers

You might ask what a section on comparing numbers is
doing in a Chapter on 8 bit counting operations. UWell,
the process of comparing two numbers, as far as the
CPU is concerned, is essentially one of subtraction.
To work out which of two numbers 1is the larger, we
carry out a subtraction operation, and examine the
result. The result will be either @, positive or
negative, and so will indicate the relative magnitude
of the two numbers involved.

The 280 CPU has a special instruction to perform
this operation, which is not surprisingly called the
Compare operation. The instruction is CP.

The CP Instruction

The CP instruction operates in a variety of addressing
modes, but always compares the contents of the A
register with either the contents of another register,
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memory location or number. The addressing modes
available are;

CP Y
CP n
CP CHLD

CP CIX+d)D
CP CIY+dd

If we look at the instruction CP r, then the operation
is effectively a subtraction of the contents of the

specified vregister from the contents of the A
register. However, the result is NOT placed in the A
register. Although the A register is not mentioned in

the above instructions, the CP instructions always use
it. It should be fairly obvious that the Cp
instructions alter the flags; if they didn’t there’d
be no way of telling what the result of a comparison
was! The N flag is set to indicate a subtraction
operation. The other flags are altered depending upon
the result of the operation. The P/V flag is used as
an overflow flag.

The two flags that are most commonly wused when
we’re comparing numbers are the C and Z2 flags. Look at
the following example;

LD A,10
CP B

The 2 and C flags will be set in the below fashion.

If B < 19 then 2 = ®@ and C = ©
If B = 18 then Z = 1 and C = 0@
If B > 1@ then Z2 = 8 and C = 1

We thus have three unique sets of flags that we can
use to make decisions with. The status of these flags
can be used by conditional Jjump or call instructions
to control the flow of the program. A couple of other
examples of the CP instruction’s effect on flags are
shown belouw.

LD A,23
LD B,22
CcP B

will have both 2 and C set to zero.

On the other hand,

LD A,20
LD B, 30
CP B

will leave Z set to zero and C set to 1.

The main point to note about the CF instruction in
all it’s forms is that it 1is only by testing the
status of the flags that we can tell the result of the
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comparison operation. Thus the flag test must be
carried out before any commands are executed that

Mnemonic Bytes Time Effect on Flags
Taken C 2 P/U S NH

| ADD A,register 1 4 # # # # 0 #
1 ADD A,number 2 7 # # # # 0 #
| ADD A, (HLD 1 e # # # # 0 #

ADD A, C(IX+d)D 3 19 # # # # 0 # ‘

ADD A, CIY+d) 3 19 # # # # 0 # |
| ADC A,register 1 3 # # # # 0 #
. ADC A,number 2 7 # # # # 0 #
i ADC A, CHL) 1 7 # # # # 0 #
| ADC (IX+d) 3 19 # # # # 0 #

ADC A, CIY+d)D 3 19 # # # # 0 #

SUB register 1 3 # # # # 1 #

SUB number 2 7 # # # # 1 #

SUB (HL> 1 7 # # # # 1 #

SUB C(IX+d) 3 19 # # # # 1 #

SUB (IY+d) 3 19 # # # # 1 #
. SBC A,register 1 3 # # # # 1 #
| SBC A,number 2 7 # % # # 1 #

SBC A, (HLD 1 e # # # # 1 #

SBC A, (IX+d)> 3 19 $# # # # 1 #
| SBC A,CIY+d) 3 19 # # # # 1 #
|
|

CP register 1 4 # # # # 1 #

CP number 2 e # # # # 1 #

CP (HL> 1 7 # # # # 1 #

CP (IX+d> 3 19 # # # # 1 #

CP (IY+d) 3 19 # # # # 1 #

Flags Notation:

# indicates flag is altered by operation

@ indicates flag is set to @

1 indicates flag is set to 1

- indicates flag is unaffected

Table 2. 8 bit arithmetic and comparisons

Logical Operations

Strictly speaking, of course, all the operations of a
computer are logical! Houwever, the operations to
which I’m referring here are operations on the bits
within 8 bit bytes, rather than operations on the
bytes as a whole. The instructions in this category
can be as valuable to the programmer in machine code
as the operations of addition and subtraction. These
bit oriented operations are called BOOLEAN OPERATIONS,
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after the Dublin mathematics Professor who first
described them. Just as addition and subtraction are
said to be arithmetic operators, the instructions that
we’ll look at in this section are called Logical, or
Boolean, Operators.

There are 4 Boolean Operators that are <supported
by the Z8@ instruction set. These are

XOR
AND
NOT
OR

Let’s look at each of these and see what use we can
put them to in our programs.

Truth Tables

A quick diversion; Jjust as we have tables to describe
the rules of multiplication, we have tables to tell us
what the result of a given logical operation will be.
These are called TRUTH TABLES. Each of the separate
operations listed above has a different Truth Table,
as we shall now see.

The NOT Operation

The action of the NOT operator is ehouwun belouw; it
works on one bit.

A NOT A

4 1

1 4]

You will note that this is a COMPLEMENT operation,
like the one that we saw when we discussed the Tuo's
camplement method of representing numbers. The
instruction to complement the A register is CPL. This
is the only register that you can actually complement,
and no other addressing modes are supported. One
application of this instruction is in the generation
of the Two’s complement of a number. The below
instructions will do this.

CPL
INC A

The AND Operation

There are 11 different AND instructionz avai
the programmey in the 280 instruction =
operate in the below addressing modecs.
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AND r

AND n

AND CHL)D
AND CIX+d)D
AND (IY+d>

Note how the A register is not mentioned at all here,
despite the fact that all these operations will only
work with this register as one of those involved. The
AND operation works on one bit from each register, and
alters all the bits in the A register according to the
corresponding bits in the other register.

A AND B

- - 00D

B
9
1
9
1

OO0

It is clear from this that the vresult of an AND
operation is to set a bit to 1 only if both the bits
being ANDed together are 1. The command

AND B

will do an AND operation on the A and B registers. The
result of such an operation on a particular set of
data is shown below.

A 800B0101
B 20010000
A AND B 0oV LRe

Alternatively, we might have,

A 000V 101
B R 1111
A AND B 00BBR101

You can see that we can use the AND instruction to
"mask off” certain bits of the byte held in the A
register in which we ensure that a byte only has a
value between ©® and 15 inclusive. This is simple. Ue
Just ignore the high nibble of the byte, and Just
disregard bits 4 to 7 of the accumulator as shown
below.

LD A, (340000)

LD B, 1S 15 is binary 00801111
AND B

LD (10000) ,A

Thus no matter what value is held in the upper 4 bits
of the A register, it will be ANDed with zero, giving
a result of zero for the upper 4 bits. This leads us
rather neatly on to another use of the AND command;
the setting of certain bits in a byte to zero without

72



affecting other bite in the byte. The particular bit
that we want to set to zero is simply ANDed with zero.
For example, to set bit 5 to zero;

LD B,223 223 is 11101111 in binary
AND B

The OR Operation

This instruction has the truth table shown belouw.

A OR B
4]

- = 00D
0~ w

1
1
1

The addressing modes that are available to the OR
instruction are as for the AND instruction. The 280
only allows us to OR something with the contents of
the A register. We can use this command to set given
bits in the A register or another register or memory
location to 1. For example, to set bit 1 of the A
register to 1 we could use

LD B,2
OR B

or, more simply,
OR 2

There are other instructions that we can use to
set specific bits in this way, as we shall soon see.

The ASCII code of the lower case letters ig 32
higher +than the ASCII code of the corresponding upper
case letter. The below machine code program accepts a
string from a CALL statement, then returns it to BASIC
having first converted the first letter of the string
to lower case. We use the OR instruction to set bit 5,
and hence effectively add 32 to the ASCII code of the
character. The assembler code is given below.

-

Example 7:

LD  L,CIX+@)
LD  H,(IX+1)

INC HL
LD  C,CHLY
INC HL

LD B, (HL?>
LD A, (BC)

OoR &20
LD (BC>,A
RET
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Assemble the program into memory at address 48888. You
can then CALL it using

CALL 40000,@ES%
where S$ is the string of interest. One interesting
point to note here occurs in the below program

section.

19@ S$="FRDD”
11 CALL 40000,3BS$

After executing it, the command PRINT S$% will return
"fRDD”. However, line 100 is also altered, as this is
where the string is defined in memory. Line 180 will
now read

100 S$="fRDD”

This is something to be aware of.

The XOR Operation.

Well, contrary to popular belief, XOK 1is not a
character from a Science Fiction novel! It is an
abbreviation of the name EXCLUSIVE OR. The truth table
for this operation is shown belouw.

A B A XOR B
Q 5] 5]
5] 1 1
1 15} 1
1 1 5]

As you can see, the XOR instruction gives a 1 as a
result only when the two bits being operated on have
different wvalues. The addressing modes that are
available are the same as those that are available for
the AND instruction. One use of the XOR instruction is
to set the A register to zero;

XOR A

will clear A to zero and only requires one byte to do
SO.

Effect on Flags

As can be seen from the Table at the end of this
section, all the flags are affected in some way by
these commands. However, only three of the flags have
a status that depends upon the outcome of such
operations. These are as follows:

zZ This will be set if the result is zero.

S This will be set to 1 if bit 7 of the result
is 1.
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P/V This acts as a Parity Flag, and will be set
for even parity and clear for odd parity.

We can use the Boolean Operators to manipulate the
C flag status in the below fashion;

Ok A ~lears C and leaves A alone

XOR A clears both C and A register
Mnemonic Bytes Time Effect én Flags

Taken cC 2 P/U S NH

AND register 1 4 a # # # 0 1
AND number 2 7 a # # # @ 1
AND C(HL> 1 4 0 # # # 0 1
AND (IX+d)> 3 19 0 # # # 0 1 !
AND C(IY+d> 3 19 0 # # # 0 1 |
OR register 1 4 0 # # # 0 0
OR number 2 7 o # # #9060 |
OR C(HL> 1 7 0 # # # 0 0 |
OR C(IX+d> 3 19 @ # # # 0 0 |
OR C(IY+d)D 3 19 QO # # # 0 0 }
XOR register 1 4 0 # # # 0 0 1
XOR number 2 7 a # # # 0 0
XOR C(HLD 1 s @ # # # 0 0
XOR (IX+d> 3 19 a# # # 0 0
XOR (IY+d> 3 19 @ # # # 0 0

Flags Notation:

indicates flag is altered by operation
indicates flag is set to @

indicates flag is set to 1

indicates flag is unaffected

|~ %

Table 3. Logical Operations

Manipulating Bits in a Byte

There are a couple of commands in the Z88 instruction
set that enable us to manipulate the status of bits
within a memory location or register. These
instructions are «called SET and RESET, and much of
what you can do with them can also be done with the
logical operations seen above.

The SET command sets a given bit to 1. It operates
in the below addressing modes;

SET n,r
SET n,(HL)

SET n,(IX+d>
SET n,(IY+d>



where n is the bit to be set. n has a value between @
and 7. Thus the commands

LD A,0

SET ©@,A
will result in the A register holding the value 1. No
changes are made to the flags. The complementary

command to SET is RESET, and this will force the value
of a particular bit to zero. It operates in the same
addressing modes as SET. Thus the command

LD a,255
RES 0,4

will result in the A register holding the value 254.

It is possible to test the value of an individual
bit within & byte wusing the BIT instruction. It
functions i1 the same addressing modes as  SET  and
RESET, and signals it’s result via the 2 flag. Look at
the following example;

LD I¥X,200
BIT ©,CIX+8©)

This will test bit @8 of location 288. If this bit was
equal to zero, then the 2 flag will be set to 1.
Otherwise, it’s not.

The final group of commands that we ’11 look at in
this Chapter are the ROTATE and SHIFT instructions.
These aren’t often used in machine code programming,
but on the occasions that they are used they are very
valuable indeed.

Rotates and Shifts

On the whole, a rotate operation moves bits within a
byte in such a way that the bits moved out of one end
of a byte are eventually moved into the other end of
the byte. This cyclic operation is best shown as

C
L]
C
0
C

Shifts, on the othey hand, are non—cyclic



operations which result in bits being "lost”, as shown
below.

1 11000 {1 (0|01 <—0O
L]
C
1 0|0|0|1|0|0|1]|0[=—0O
omed
C
O f«—0 (0 |1 |00 (1|00 |e—0O
c

A Rotate or Shift operation is named according to
the direction the bits are shifted in. If the bits are
shifted to the left then it is a ROTATE or SHIFT LEFT.
If the movement is to the right it is a SHIFT RIGHT.

Left Operations

There are two different Kotate Left operations and one
Shift Left operation.

Rotate Left

This operation can be applied to the below addressing
modes.

RL Y

RL CHL>
RL CIX+d>
RL CIY+d>

A typical example is
RL A

which stands for Rotate Left A register. The action of
the command is shown belouw.

C Register A

The current value of the C flag goes 1into the A
register into bit 8. Bit 7 of the register enters in
to the C flag. In this case, the C flag can be looked
at as a "9th bit”.
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Rotate Left Circular

This operates in the =same addressing modes that were
featured above. The mnemonic is RLC. For example,
typical commands are RLC A and RLC CHLO>. The
difference between this operation and the last one is
that the value of the C flag i=s not cycled into bit 8
of the register involve.

Shift Left Accumulator
This operates on the same addressing modes as above.
The mnemonic is

SLA s

where s represents any of the addressing modes. It’s
operation can be seen belouw;

[~ Je s

This can effectively be seen as a "multiply by 27
instruction. However, if the value in the register is
greater than 127 when the SLA is executed, a "funny”
result will be returned. You have been warned!

Example 8:

This example shows SLA A at work. Enter the code at
address 40000. CALL 400008 ,CA% will return A%/2. A%
must be initialised to start with, and should be

within the range © to 127.

LD L,C(IX+8>
LD H, (IX+1)
SLA  (HL)

RET

Right Operations

The simplest instructions are the Rotate Right
instructions. These instructions are;

RER Y

RR CHLD
RE CIX+d>
RR CIY+d?

The operation can be seen as

A
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Rotate Right Circular
me addressing mod the RE

The sa es
ructions and the opera

inst

o+
-
0
jl
—

Shift Right Logical

The addressing modes available for this instruction
are

SRL v

SRL  (HL)
SRL  (IX+d>
SRL  CIY+dD

and the operation can be looked at as a divide by two,
bit 7 being set to zero and bit @ being pushed into

the carry.
o =] (]

One problem with this instruction when used a=s a
divide by two operation is where we have a number that
is a two’s complement number. It is vital in this
event that the sign bit, bit 7, is retained. There is
a command to do this.

Shift REight Arithmetic

This retains the current status of bit 7, but in all
other respects is the same as SRL. The mnemonic is SRA
s.

l +—{]

7 C

Tho=ze of you who are =till with me will no  doubt
be gratified to know two things;

(a> That ’s the end of the 8 bit arithmetic and
logic operations.
(b)> There aren’t as many 168 bit arithmetic and
logic operations!
In the next two Chapters we’ll examine the 16 bit
data transfer operations and logic operations.
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Chapter 7
16 bit transfers

We’ve already seen how some of the 8 bit registers can
be paired together +to form 16 bit register pairs.
These offer us the potential for handling 16 bit

numbers, and in this Chapter we’ll look at how we can
transfer 16 bit numbers betuween CPU register pairs and
memory . We’ve already encountered one use of 16 bit
numbers in machine code programming; that of

specifying an address within the computer memory.

Let’ start with a look at the instructions for
loading a 16 bit register pair with a 16 bit number.
The general mnemonic for this type of instruction is

LD YY,nn

where rr is a 16 bit register pair, such as BC, DE or
HL. nn is a 16 bit number. A typical example of these
instructions is

LD HL, &9C00
Remember that when we specify the 16 bit number in the
instruction, it must be stored with it’s low byte
first. Thus the above assembler instruction would be
coded as

LD HL, &3C00
which assembles to

21 80 SC

WUe can also load numbers directly into the IX and
1Y registers, such as

LD 1Y,&9Cee
or

LD 1Y,&3C00
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Transfers between register pairs and memory

It’s all very well to be able to load a register pair
with a number, but what about transferring the number
to memory? The 1nstructions that can be used for these
operations are

LD (nnd,rr
LD (nnd),IX
LD (nnd, 1Y

The instructions for loading the 16 bit register pairs
with the contents of an address are azs follows;

LD rr,(nn)
LD IX,(nn)
LD 1Y, (nno

Because we are dealing with 16 bit numbers, we are
actually loading the register pair from address nn and
address nn+l. However, we don’t have to specify this
to the CPU, it takes it into account automatically.
In the example,

LD HL, (&3C0@)>

will load the HL register pair from addresses &39Ca4
and &38CA1. The L register will receive the contents of
address &9C0VO and the H register will receive the

contents of address &9CB1. A possible application of
these instructions is shown belouw;

LD HL, (&3C0808)
LD A, CHLD

In a similar fashion,
LD BC, (&49C00)

will load the BC register from addresses &3C0OA  and
&9C01. One thing to note is that a command such as

LD DE,&9Cee

will load the value 8@ into the E register and the
value &9C into the D register. Some of the 16 bit load
instructions have 4 byte opcodes - two bytes
representing the instruction and two bytes the address
of interecst.



Mnemonic Bytes Time Effect on Flags
Taken C 2 P/U S NH
LD reg_pair,number 3/43 10 - - - - - =
LD IX,number 3 14 - - - - - =
LD IY,number 4 13 - - - - - -
LD (address),BC 4 20 - - - - - -
LD (address),DE 4 20 - - - - - -
LD (address),HL 3 16 - - - - - =
LD C(address), IX 4 20 - - - - - -
LD (address),IY 4 20 - - - - - -
LD BC, (address) 4 20 - - - -
LD DE, (address) 3 20 - - — -
LD HL, Caddress?> 3 16 - - - - - =
LD IX, (address) 3 20 - - - - - -
LD IY, (address> 4 20 - - - - - =
Flags Notation:
# indicates flag is altered by operation
@ indicates flag is set to @
1 indicates flag is set to 1
- indicates flag is unaffected
Table 4. 16 bit data transfer instructions

Manipulating the Stack

Some time ago we looked briefly at the stack; you may
recall that this is where the CPU can store items of
data without the need to keep a record of where the
information was put. We too can use the stack to store
information in this way; however, we are limited to
storing 16 bit numbers on the stack. The instructions
for storing registers on the stack are as follous;

PUSH AF
PUSH BD
PUSH DE
PUSH HL
PUSH IX
PUSH 1Y

Note how we treat the AF register pair here like the
other register pairs. All these PUSH operations have
single byte opcodes. The PUSH commands copy the
contents of the relevant register pair on to the
stack. The register pair involved still retains a copy
of the number that has been pushed onto the stack. To
recover a number form the stack, and put it into a
register, we use an instruction called POP. This
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removes the last item from the stack and pute it into
the register involved. Thus

POP HL

will put the last item on the gstack into the HL
register. We can wuse the stack to implement data
transfers between the 16 bit registers in the belouw
fashion. The instruction

LD BC, DE

is not implemented in the Z80 instruction set, and uwe
normally carry out this operation by the instructions

LD B,D
LD C,E

The operations

PUSH DE
POP BC

have the same effect.

The instructions also enable us to 1look directly
at the contents of the F register;

PUSH AF
POP BC

The BC register now contains the original contents of
the AF register "pair”. The C register will contain
the contents of F and the B register will contain the
contents of A. The stack can also be used to store the
current status of the F register while we do other
Jobs. e.qg.

PUSH AF
e other instructions

POP AF
Important Note
The BASIC Interpreter of the Amstrad uses the stack,
Just as we do. When we execute CALL from BASIC, the
address from which the CALL was made, and to which the
CPU  must vreturn after executing your machine code
program, is stored on the stack. As the CPU expects to
find this when your machine code has been executed, it
is VITAL that this address is the next one available
on the stack when the final RET is made in your
program to return to BASIC. This RET causes the CPU to
Jump back to the address that is currently available
on the stack, and so obviously if the number on the
stack is not the address from which the CALL was made,
you’re in BIG trouble! So, all PUSHes that you make in
your program should be matched by POPs. For example, a
program that just congisted of

PUSH BC

RET
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would cause problems, where

PUSH BC
POP BC
RET

would be alright, because the POP 1is balanced by a
PUSH.

Moving the Stack

Although most of the time we don’t need to know
anything about where the stack is located in the
computer memory, the CPU, whilst under the control of
the Amstrad Operating System, has to set up the stack
as one of it’s first tasks. It does this by loading
the address at which it wishes the stack to be placed
into a 16 bit register pair called the STACK POINTER,
or SP. The commands that are available to manipulate
the stack are as follouws;

LD SP,nn
LD SP, (nn>
LD SP, IX
LD SP,IY

Obviously, moving the stack around in memory is
not an advisable activity wuntil you’ve gained
experience, and you should ALUAYS set SP back to it’s
original value before going back to BASIC!

The final group of 16 bit data transfer operations
that we’ll look at are those that transfer data
between the main register set and the Alternate
Register set. On the whole, it’s not advisable to do
this on the Amstrad, because the alternate registers
are used by the Operating System for various things.
Thus, 1’11 mention the commands, but do not advocate
using them!

The command
EX AF, AF’

swaps the contents of the AF register with the
contents of the AF’ register. The instruction

EXX

swaps the BC, DE and HL register pairs simultaneocusly
with their counterparts. The final exchange
instruction doesn’t work with the Alternative register
set but on two register pairs from the main register
set
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EX DE,HL

will swap the contents of the DE and HL registers.

The below table summarises the stack operations.

rwﬁne5on1c Byte Time Effect on flags
! Taken C 2 P/VU S NH
PUSH reg_pailr 1 11 - - - = - - E
| PUSH IX 2 15 - - - - - -
| PUSH 1Y 2 15 - - - - - -
POP reg_pailr 1 10 - - - - - -
POP IX 2 14 - - - - - -
POP 1Y 2 14 - - - - - -
LD SP,address 3 10 - - - .
LD SF, Caddress) 3 20 - - - - - -
LD SP,HL 1 [S] - - - - - -
LD SP,IX 2 10 - - - - - =
LD SP,1Y 2 10 - - - - - -
Flags Notation:
# indicates flag is altered by operation
0 indicates flag is set to @
1 indicates flag is set to 1
- indicates flag is unaffected
o [
Table 5. Stack manipulation instructions
Before leaving this Chapter, let’s 1look at an

example of a 16 bit data transfer operation. This
vroutine will give you the wvalue of the address from
which the CALL command was made in the BASIC
Interpreter.

Enter the code at address 40000, and CALL it with
the line

Example 9:
A%=0:CALL 40000 ,3BA%

A% will then hold the address of interest, which will
be the address that is RETurned too by the RET command
at the end of the program.

POP BC get the address
PUSH BC restack the result
LD L,(IX+@)

LD H,(IX+1)

LD (HL),C

INC HL
LD C(HLO,B
RET
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In the next
instructions for

Chapter we’ll examine th
16 bit arithmetic operations.
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Chapter 8
16 bit arithmetic and counting

The 16 bit arithmetic operations were included in the
instruction set of the Z80 to make 16 bit additions
and subtractions more convenient. We’ve already seen
how we can make do with the ADC operation for 16 bit
addition. The 16 bit arithmetic operations are not as
versatile as the 8 bit instructions.

Let’s start by examining the 16 bit INC and DEC
instructions, as these are the gsimplest form of
arithmetic operation.

Increment and Decrement
The simplest 16 bit INC operation is of the form;
INC rr

which increments the contents of one of the 16 bit
register pairs. Thus the two instructions;

LD HL, 0000
INC HL

will result in the HL register holding the value 1. Ue
can also alter the value held in the Index Registers:

INC IX

INC 1Y

The DEC instructions are analogous to the INC
instructions. The 16 bit DEC instructions are thus as
follouws.

DEC BC

DEC DE

DEC HL

DEC IX

DEC IY

The fundamental difference between the 8 bit and
the 18 bit INC and DEC instructions is that the 16 bit
operationg DO NOT affect any of the flags! Thus, we
have to perform extra programming operations to test
the value in a 16 bit register after an INC or DEC
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instruction. For example, to test if a register paivr
is equal to zero we have to perform a series of
operations like those shown below.

DEC HL
LD A,H
OR H

JpP Z,address

Here, we use the JP Z instruction to pass control to
another part of the program if the result of the OR
operation is zero. This will only be so IF the H and L
registers are both equal to zero. If this is so, then
the OR operation will set the zero flag.

Addition and Subtraction

In the same way that the A register is the favourite
register for 8 bit addition and subtraction
operations, the HL register pair is the favoured
register pair for the 16 bit addition and subtraction
operations. The ADD instructions that work

ADD HL,rv
ADD IX,BC
ADD I1¥X,DE
ADD I1X,SP
ADD IX,IX
ADD HL,SP
ADD 1Y,BC
ADD 1Y,DE
ADD 1Y,SP

You’ll notice a couple of things form this list; the
first 1s that there is no instruction for adding the
contents of the HL pair to either of the Index
Registers. The second 1is that no instructions are
available for the

ADD IX, 1Y
instruction. Finally, note that there is no
instruction for

ADD HL,nn
To perform this job, we must use something like the

below method, which has the disadvantage of using two
registers.

LD DE,nn
ADD HL,DE

In all these operations, the result is left in the

first register pair to be mentioned in the
instruction. Thus in the operation

ADD HL,BC
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the result is left in the HL register pair.

Effect on the Flags

There aren’t many flags bothered by the 16 bit
arithmetic operations; the C flag is set if there’s a
carry from bit 7 of the upper register to the "17th
bit”. Any carry from the low register is automatically
carried 1into the upper register by the addition
operation. The only other flag that is affected is the
N flag which is set to zero.

There are no 16 bit SUB instructions. Any 16 bit
subtractions that we want to do have to be Subtract
with Carvry operations.

Add and Subtract with Carry

Ue have a selection of ADC instructions which, as in
the case of the 8 bit ADC instructions, give us the
opportunity to perform multi-byte addition. The ADC
instructions available are:

ADC  HL,BC
ADC HL,DE
ADC HL,HL
ADC HL,SP

You will note that there are no instructions to deal
with the IX or IY registers here.

The SBC instructicons are analogous to the above
ADC instructions. They are:

SBC HL,BC
SBC HL,DE
SBC HL,HL
SBC HL,SP

Because of the fact that all these operations involvue
the C flag in their reckonings, remember to clear the
C flag before doing any subtractions that do not need
to SBC instruction’s added complexity. How can we do
this? Well, the easiest way is to use a Boolean
operation to clear the C flag. The below instructions
will perform a simple 16 bit subtraction, subtracting
the contents of locations 41002 and 41003 from the
contents of locations 41800 and 41001. The result ends
up in the HL register and is stored in locations 41000
and 410081 before return to BASIC.
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LD HL, (410008)
LD DE, (410082)

AND A

SBC HL,DE

LD HL, DE

LD (41000) ,HL
RET

The below Table shows the effects on the flags of
these instructions. The 2, P/VU and S flags have a
status that depends upon the result of the operation.

’ Mnemonic Bytes Time Effect on Flags
‘ Taken cC 2 P/US NH
|
| ADD HL,reg_pair 1 11 # - - -0 72
| ADD HL,SP 2 11 # - - -0 7
| ADD HL,reg_pair 2 15 # # # # 0 7
! ADD IX,SP 2 15 # # # # 0 7
| ADD IX,BC 2 15 # - - -97°2
. ADD IX,DE 2 15 # - - -0 7
| ADD IX,IX 2 15 # - - -0 2
‘ ADD IX,SP 2 15 # - - -0 7
ADD IX,BC 2 15 # - - -0 7
ADD IX,DE 2 15 # - - -0 7
ADD 1IY,I1Y 2 15 # - - -0 72
ADD 1Y,SP 2 15 # - - -0 2
SBC HL,reg_pair 2 15 # # # # 1 72
SBC HL,SP 2 15 # # # # 1 7

Flags Notation:

indicates flag is altered by operation
indicates flag is set to ©

indicates flag is set to 1

indicates flag is unaffected

indicates flag is ?

[ 91 - o%

Table 6. 16 bit arithmetic instructions
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Chapter 9
Loops,JumpsandBlockOperations

This Chapter covers two apparently different areas of
the 280 instruction set;

(a) Instructions that cause control to pass to
another part of the program, in a similar way
to the GOTO and GOSUB BASIC commands pass
control around a BASIC program.

(b) The Block instructions, or Block Operators,
which are operations that work on several
bytes of memory simultaneously, rather than

acting on single bytes.

The reason that I’ve grouped these instructions
together is that the Block operations often involve a
jump or loop operation, and so it makes sense to group
the commands with the Jjump and loop instructions.

Jumps

All the programs that we’ve entered into the Amstrad
so  far have been able to perform their task without
the presence of any machine code instructions that
simulate the BASIC GOTO or GOSUB. If we were to
continue this philosophy, the resultant programs would
not be wvery powerful. The wuse of these machine
language "GOTO” 1instructions thus gives wus great
programming power, but we must be careful when we use
these instructions. Let’s begin by looking at the JP,
or Jjump, instruction which is the direct equivalent of
GOTO. However, instead of Jjumping to a line number the
JP instruction jumps to a particular address.

The JP operation has tuwo addressing modes;
immediate and Register Indirect. In the immediate mode
the address is given implicitly in the command;

JP 40000

ig an example of the addressing mode. In the Register
Indirect addressing mode, the address is held in the
HL, IX or IY register pairs. More details will be
given later in the Chapter.

A jump can be UNCONDITIONAL, like the one shown
above, in which case control is immediately passed to
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the instructions that start at the address specified
in the command. Alternatively, it can be a CONDITIONAL
jump, in which case the jump 1is only made if some
condition, indicated by the status of a flag, is
satisfied. This is the machine code equivalent of

IF ... THEN GOTO
in BASIC. For example,

JP Z,30000
will only execute a Jjump to address 40000 if the
result of the last operation was zero; i.e. if the Z
flag is set. Other flags can also be wused to decide
whether to Jump or not.

JP C,40000

will jump when the C flag is set. Other instructions
of this type are;

Jp NZ,address Jump if result non-zero
JP NC,address Jump if carry clear

JP P,address Jump 1f result positive
JP I, address Jump if result negative

JpP PE,address Jjump if parity even
JP PO, address Jump if parity odd

All these instructions are three bytes long; a one
byte opcode and a two byte address. The address is
stored, as we might now expect, low byte first. Thus

the instruction
Jp 2,&9C00
is coded as
CA 00 SC

Let’s now write a simple machine code program that
uses a JP instruction. However, before we start, a
word of caution. Like the good soldier, when the CPU
is told to Jump, it jumps even if the orders given
were a little silly. If we’ve made a mistake in
specifying an address, then the Jump might pass
control to a byte in memory that represents a byte of
data, or to the second byte of a three byte
instruction, or any other place in the computer
memory. The result is usually a crash. Secondly, if a
condition arises that causes a sequence of
instructions to be executed for ever, you often have
tc turn off the computer to break the loop

Example 10:

In this example, I’11 list the bytes alongside the
assembler instructions, so that you’ll get the bytes
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for the JP instruction correct.

LD HL,&C000 21 00 Ce
LOOP LD C(HL)>, 255 36 FF

INC HL 2

LD A,L 7D

OR H B4

Jp Nz ,LOoO0OP 2 43 39C

RET Ccs
This program MUST be entered into memory at address
40000 , because we’ve specified an address in the
program for the jump instruction. If we were to load
the program to another location in memory without
altering the address given in the JP instruction, a
crash would be the most probable result. Enter the
above bytes, and type CALL 4300080. The screen will

fill wup, and the effect will be slightly different in
each screen mode. Let’s look at how the program works.
In the Amstrad, the area of memory between address
&CPOV® and &FFFF is reserved for screen memory. Thus
writing data to this area of memory will have an
obvious affect on the screen. This program loads every
byte between &C00O and &FFFF with the value 255. Ue
check for the end of screen memory by testing the HL
register for the value 0, which it will assume after
we increment it from a value of &FFFF. We have to test
each of the separate registers that make up the HL
register pair to ensure that it holds zero, because
the INC HL instruction doesn’t affect the 2 flag.

Try to simulate this program with a FOR . e NEXT
loop in BASIC, and I’m sure you will be impre=ssed with
the speed of the machine code program.

There are some occasions when machine code is too
fast for a particular application. In these cases we
often have to use delay loops to slow things down a
little. This example shows how we can do this.

Example 11:

This program shows a machine code delay loop, which ig
repeated a given number of times. The inner loop is
controlled by the DE register pair and the outer loop
is controlled by the HL register pair. The program
must once more be entered at addre=ss 40000 if you use
the bytes given below, again because of the fact that
we specify an address in the JP instructions.
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LD HL,E5535 21 FF FF

LOOP1 LD DE, 10@ 11 64 90
LOOP2 DEC DE 1B
LD ALE 7B
OR D B2
JpP NZ,LO0FP2 C2 48 9C
DEC HL 2B
LD A,H 7C
OR L BS
Jp NZ,LOOP1 C2 43 9C
RET C9
Again, note the additional instructions that are

needed to check that the register pairs are zero.

You can see that the JP instructions give wus the
ability to produce programs whose behaviour depends
upon the status of the flags. The JP instructions that
we’ve seen so far require the programmer to specify a
two byte address even if the destination of the Jump
is only a few instructions away from the Jjump
instruction. There are some alternative JpP
instructions that only vrequire one byte specify the
destination; these are called RELATIVE JUIMPS.

Relative Jumps

In the programming examples we’ve just seen, the
destinations of the jumps were not very far from the
Jump instructions themselves. However, we still had

to specify a two byte address. Also, the use of a
specific address in a JP instruction means that the
program must always be loaded to and executed at the
same point in memory every time. The relative Jump
instructions offer us a way around these two problems.
The instructions are only two bytes long;, a one byte
opcode and a single displacement byte which specifies
where the jump is to be made to.

The displacement byte represents a number between
-128 and +127. This byte represents the "distance” to
be jumped by the instruction. We can thus pass
control to any byte within the range 127 bytes after
the relative jump and 128 bytes before it.

The mnemonic for this instruction is

JR ce,d
where d is the displacement and cc is one of the
conditions that are applicable to relative jumps. Ue
can have unconditional relative jumps of the form;

JR d

The value of the displacement byte causes a Jjump 1in
the following fashion.

When the CPU encounters a JR instruction, the
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first +thing that occurs is that the CPU adds 2 to the
current value of the Program Counter. The practical
result of this is that the address referenced by the
displacement byte is reckoned from the byte after the
JR instructions and displacement byte. Look at the
below example to make things clearer.

INC A -3

JR 2, -2

02 -1

LD A, (5]

20 +1

LD A, +2

02 +3
The byte immediately following the displacement byte
is numbered 9, the next byte 1, and so on. Similar
numbering occurs in the other direction. Thus the

instruction
JR -2
is not a terribly good idea, because it causes a Jump

back to the JR instruction, thus causing a perpetual
loop!

As you might expect, the negative numbers are
stored in Two’s Complement representation. Thus -2 is
written as &FE. As a further example, look at the

below program, which includes a label.

LD A,00
LOOP INC A
JR Nz ,LOoOoP

The displacement byte here would be -3, or &FD. Some
conditional relative Jumps are possible, but not as
many as for the normal JP instruction. The list belouw
shows the conditional relative jumps that you have at
your disposal.

JR cC,d

JR NC,d

JR Z2,d

JR NZ,d
So, if you want to make a Jjump based upon the parity
of a number, you’ll have to use a JP instruction.

The major advantage offered by the relative Jjump
instructions over the conventional Jjump instructions
is that they make no reference to a particular memory
location; all Jjump destinations are specified relative
to the current position of the JR 1instruction. This
means that a program that’s been written with only
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relative jumps in it 2an run at any location 1in
memory. Example 12 shows this in action.

Example 12:
Try the below program at addresses 30008, 41000, 32000
and see that it works at each of these locations in

the same way. Don’t forget to change the address in
the CALL statement each time!

LD HL,&Cooa 21 8@ Ce
LOOP LD CHL)Y , 255 36 FF

INC HL 23

LD A,L 7D

OR H B4

JR NZ,LOO0OP 20 FS

RET ca

This type of program, that will run at several
different memory locations, is said to RELOCATABLE. It
can run at an address in memory other than that at
which it was originally written.

Register Indirect Jumps

WUe’ve already mentioned these bhriefly; here, we place
the address to which we want the jump to be made in to
either the HL, IX or 1Y register pair. The belouw
command is then executed, where rr is the appropriate
register pair.

JP Cry)
Thus,

JP CHL>

JF CIXD

Jp CIY)
are the only legal Register indirect commands. As a
concrete example, the below lines will cause the CPU

to begin executing the instructions at location 0000
of the memory; this will cause a system reset.

LD HL,aeen
JP CHL)D

There are no conditional Register Indirect Jjumps.

FOR ... NEXT Loops in machine code

We’ve now seen the machine code egquivalent of GOTO and
IF I THEN <etatement, =20 let’s now look at the FOR
.+. NEXT construction in machine code. Let’s start by

looking at the wuse of a FOR ... NEXT loop in BASIC.
Generally, it is used when we wish to perform a

particular set of instructions a given number of
times. Look at the below BASIC program;
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19 C=0

20 FOR I=1 TO 6
30 LET C=C+1

40 NEXT I

In machine code, as you might expect, we use a
register to replace the I variable. The easiest way to
do this with a single register is to use a count down,
rather than a count up. It is easier for us to check
for zero than for a non zero value. The below routine
will simulate the above BASIC program.

LD c,0o initialise variable ’C’

LD B,6 initialise variable ’1°’
LOOP INC C C=C+1

DEC B

JR NZ,LOOP simulate the NEXT command

The last two instructions in this short routine occur
together quite often 1in 288 machine code, and were
united by the CPU designer to give a single command,
DJNZ. The full instruction is

DJNZ d

where d is a displacement byte that is identical in
form to the displacement bytes that we use with the

relative Jump instructions. The instruction DJNZ
stands for Decrement and Jump if Non Zero. The
instruction needs two bytes, and using it we can

reuwrite the above program as

LD c,o

LD B,6
LOOP INC C
DJNZ LOOP

There is only one problem with DIJNZ; it is only useful
for counting loops with up to 256 passes. There is no
16 bit DJNZ command. 256 loops, you say; how can we do
this when the biggest number that we can put into an 8
bit register is 2557 UWell, if we set the B register to
zero, then execute a DJNZ instruction, the B register
will be decremented, so leaving a value of 255 in the
register.

DJNZ instructions can be nested to enable us to
count passes through loops of instructions that need
more than 256 passes. Look at the below example:
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LD B, 16
OUTLOOP PUSH BC
LD B, 256

INLOOP
DJNZ INLOOP
POP BC
DJNZ OUTLOOP
An alternative way, that uses another 16 bit
register, is to use a 16 bit DEC command. Ue’ve seen
this in action already. Obviously, if we wanted to

include a STEP in these commands we simply add more
INC or DEC commands. For example,

LD Cc,o
LD B, 100
LOOP INC C

INC C

DEC B

DJNZ LOOP
Here the C register will count up @8, 2, 4... and the B
register will count down 109, 88, S896... Remember that
there is one DEC B instruction hidden in the DJNZ
instruction. One problem could arise with the short
routine above; if you put an odd number in the B
register, then you’ll never actually achieve a value
of zero in the B register. The looping would thus

carry on permanently.

The below table features the 1loop and Jump
instructions with their relative times. No flags are
affected by these operations, with the exception of
the DJNZ.

Mnemonic Bytes Time
Taken
| JP nn 3 10
JP cc,nn 3 10
JR nn 2 12
JR cc,nn 2 7/12
JP (HL> 1 4
JP CIXD 2 8
JP (1Y) 2 8
DJNZ d 2 8/13
Table 7. Jump and loop instructions
Where two times are mentioned, the first time

given is that time taken when the condition is NOT
met, and the second time is the time taken when the
condition is met. The relative Jjumps take a little
longer than the JP instructions when a Jjump is
actually made because the address to which the jump is
to be made has to be calculated from the current
address and the displacement byte.
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CALL and RETURN

In BASIC, we had the instructionse GOSUE and RETURN

that gave us the ability to use subroutines. A
subroutine, you will remember , is a block of
instructions that is stored once in memory but that
can be called as often as you like in a program. In

280 machine code we have the same ability; in fact,
we’ve already used a machine code subroutine call.
Whenever we issue a CALL instruction, we are
effectively making a subroutine call from the BASIC
Interpreter to your machine code program. The RET with
which we end our programs is the equivalent of the
RETURN instruction in BASIC subroutines.

In machine code, the
CALL nn

instruction will call a subroutine at address nn. The
instruction is a three byte instruction. One byte is
the opcode and the others are the address of the
subroutine. The bytes of the address should be entered
into memory low byte first. Any piece of code that is
being used as a subroutine should end with a RET
instruction. Once a RET is executed by the CPU, the
CPU starts executing the instruction immediately after
the CALL instruction. How does the CPU know where to
return to?

Well, the stack iz uged. Thisg i= the main role of
the stack in the Amstrad computer. When the CALL 1is
made, the CPU saves the address of the first
instruction after +the CALL instruction on to the
stack. The RET instruction, when executed, looks at
the last entry on the stack and effectively POPs it in
to the program counter. The RET instruction will thus
cause the CPU to Jump back to the address that is
represented by the last entry on the stack.

Within the body of the subroutine, therefore, it
is wvital that all PUSHes on to the stack are balanced
by POPs from the stack, if the RET instruction 1is to
return the CPU to the instruction following the CALL.
There are some techniques in which the item to be
treated as the return address can be altered, but
these are best left alone wuntil you’ve gained some
experience. We’ll look at one of these techniques
shortly. The normal behaviour of CALL and RET is shown
belaouw.

10000 CALL 41000 — 411000 INC A
40003 INC A «-—— 41001 RET

When we include a PUSH and POP in the subroutine, wue
have the below situation.
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10000 CALL 341000 —— 3102020 PUSH AF
INC A INC A
POP AF
RET
The PUSH is balanced by a POP, and so the RET
instruction vreceives the correct address off of the
stack.

Below, houwever, e have an "unbalanced?” PUSH
operation which leaves the stack altered from what
the FET expects to find.

30000 CALL 319000 —>» 41000 LD BC,0000

INC A PUSH BC

[51%1%)5%] - RET
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Example 13:

This routine simply uses an Amstrad ROM routine that
waits for a key to be pressed before proceeding with
the program. Load the program to address 10000, and
the bytes given below will be correct.

CALL SUBER CDh 44 39C
RET C9
SUBR CALL &BB18 CD 18 BB
RET Cg
There are effectively two subroutine calls here, one

to the label SUBR and one to address &BB18. CALL 40000
will cause the machine to pause until you press a key.

A few general points about subroutines. Aluways try
and put the definitions in such a place in memory that
they won’t be accidentally executed by the CPU without
them being CALLed. Subroutine calls are slower than
having the code repeated wherever it is needed in the
program, as the CALL and RET instructions take a

finite time to execute. Subroutines, although they
save memory, take more time. In any application where
time is important but memory isn’t, I tend to use

repeated chunks of code throughout the program.

Conditicnal Subroutine Calls

In BASIC we use

IF ... THEN GOSUB nn

when we wish to conditionally call a subroutine. A
similar structure exists in machine code.

CALL cc,address

will execute a CALL to a given address only if a
particular condition is satisfied. The conditions that
can be used are as follows:

CALL C,address call if carry set

CALL NC,address call if carry clear
CALL Z,address call if result zero
CALL NZ,address call if result not-zero
CALL PE,address call if parity even
CALL PO, address call if parity odd

CALL IM,address call if result negative
CALL P,address call if result positive

No flags are affected by the CALL instruction. We can
thus simulate the ON ... GOSUB statements of BASIC by:
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LD A, CCHOICED

Cp 1
CALL Z2,0PTIONI1
CP 2

CALL Z,0PTIONZ2

and so on. One thing to note is that on entering the
option selected by the appropriate CALL command, the A
register should be preserved. If this isn’t done, on
return from the option the CPU could possibly enter
another option after returning from one.

We can also have conditional RET instructions,
that will only cause a return from the subroutine when
a particular condition is met; the conditions catered
for by this instruction are the <same as for the
conditional CALL statement.

Mnemonic Bytes Time Effect on flags
Taken C 2 P/U S NH
CALL address 3 17 - - - = - -
CALL cc,address 3 19/17 - - - = - =
RET 1 10 - - - = - =
RET cc 1 S/11 - - - - - =
Table 8. Call and return instructions
Where two times are shown in the above Table, the

shorter of the two times is that taken when the condition
is not met.

Restarts

These can be seen as 1| byte subroutine calls; the
catch is that they can only call addresses within the
first 256 bytes of the 2Z280's memory map. They are thus
in that area of memory that is used by the Amstrad
Operating System, and so we are denied access to them
for our own programs.

The role of the restart, or RST commands, is to
provide fast access to a few routines that will be
commonly used in a program This is why the Operating
System has first choice. Of course, we could use the
calls, but there is not space 1in this book for a
compete explanation of what the Amstrad uses the
various RST instructions for.

There are 8 RST instructions, which enable us to
call 8 separate addresses. The addresses to which we
have access are &00, &098, &10, &18, &20, &28, &30,
&38. For example the command

RST &009
will cause a Jjump to address @, which is the reset

address for the Amstrad computer system. The restart
at address &30 is reserved for the user to program,
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but it’s best left alone wuntil you’ve gained some
experience.

Interrupts

These are particularly wuseful things to have in
computers; an interrupt is a signal sent to the CPU to
instruct it that some situation has arisen in the
computer that requires the immediate attention of the
CPU. The CPU makes a note of where it is in i1t’s work,
and then Jumps off to a routine that deals with the
situation. This routine is called an Interrupt Service
Routine, or ISR. It will usually save wvarious
registers, perform the task, restore the registers and
return the CPU +to the task that it was previously
doing. The interesting thing is that the wuser isn’t
usually aware that anything has happened! To return
from an Interrupt Service Routine, a special command
is used. This is

RETI

and is a special form of RET. The commonest form of
interrupt on the Amstrad is the one that is used to
call the various Operating System routines to read the
keyboard. This 1is called 5@ times a second, and
executes a RST &38 instruction.

Interrupts of the type that we’ve mentioned so far
have been what are called MASKABLE INTERRUPTS; this
means that we can instruct the CPU to ignore them. A
second class of interrupts, called HNON TIMASKABLE
INTERRUPTS cannot be ignored by the CPU. The command

DI

causes the CPU to ignore all maskable interrupts. The
command

EI

makes the CPU start taking notice of the interrupts
again. These should not be mistaken with the DI and EI
commands that are available from BASIC; these deal
with other things. EI stands for Enable Interrupts,
and DI stands for Disable Interrupts. You probably
won’t be experienced enough to fiddle around with
interrupts on the Amstrad, but if you should disable
interrupts within your program, it’s wvital to re-—
enable them with EI before executing the final RET
instruction.

That completes this review of instructions that
pass control around the program. We’ll now go on to
look at a rather powerful range of instructions that

use Jumps to operate on more than one byte
automatically. They are called the BLOCK
INSTRUCTIONS.
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Block Operations

These instructions operate on several bytes rather
than just the usual one or two bytes. Houwever, the
simplest of the block instructions do only work on
single bytes.

The CPI Instruction

The simplest is the
CPI

instruction. This stands for ComPare and Increment.
This instruction compares the contents of the A
register with the contents of the byte addressed by
the HL register. The HL register pair 1is then
automatically incremented. It thus performs the

CP CHL)D
INC HL

instructions. The obvious use for this command is in
searching through the memoyry of the computer for a
given byte. Example 14 shows this in action.

Example 14:

The assembler instructions are as follows:

LD E,(IX+0)

LD D,CIX+1)

LD A, (DE)

LD HL, 1000
SEARCH CPI

JR NZ,SEARCH

DEC HL

LD A,L

LD (DED, A
LD A,H
INC DE

LD (DEDY,A
RET

Type in the bytes at address 40000. The displacement
for the JR instruction is -4, or &FC. This is because
the CPI instruction is a two byte instruction. The
program searches through memory from location 1000
onwards. It can be called with

CALL 40000 ,CA%

where A% holds the byte that you’re looking for. On
return, A% will hold the address at which the first
occurrence of that byte was found. The DEC HL
instruction after the JR NZ instruction is needed
because of the automatic incrementing of the HL
register. This doesn’t affect the flags, and so if the
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Z flag is set it must be due to the CP instruction
finding a match.

The CPD Instruction

A similar instruction, CPD, performs a similar job but
decrements the HL register pair instead of
incrementing it. As well as modifying the contents of
the HL register pair, both CPI and CPD decrement the
contents of the BC register. This quite usefully
allows wus to search through a block of bytes of a
given length, such as a data area of a program.
Example 15 shows this in operation.

Example 15:

Let’s look at the program first, then describe it.

Enter the code to address 40000, then call it with
CALL 40o00,GEA%

where A% holds the appropriate wvalue. The program
searches 255 bytes starting from address 1000 in
memoyy .

LD BC, 255
LD E, (IX+@>
LD D, (IX+1)

LD A, (DE)

LD  HL,loe@
SEARCH CPD

JR  2,0UT

INC C

DEC C

JR  NZ,SEARCH
ouT INC HL

LD (DE)Y, A

LD  a,L

INC DE

LD  ALH

LD (DED, A

RET

Because the 16 bit DEC operations, which are implicit
in these instructions, don’t bother the flags, we have
to test the BC register contents ourselves to gsee
whether the register pair contains zero or not. As
we’re only counting 255 bytes here, we use the INC C
and DEC C instructions to see if the C register is
holding zero. The DEC instruction will set the Z flag
if the C register was originally zero before the INC C
operation. The program returns the value 255 if the
byte searched for is not found, or the address of the
byte if it is found.
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CPIR and CFPDR

These two instructions are really pouwerful; they are
two byte instructions and are the equivalent of a CPI
or CPD with a built in Jjump instruction!t

The CPU automatically searches a block of memory
until either a match is found or the end of the block
is found. The A register specifies the byte to be
searched for, the HL register holds the start address
of the block to be searched and the BC register pair
holds the number of bytes to be searched. The
instruction will terminate for one of two reasons,;

Ca) A match has been found.
(b) The block end has been reached.

Thus after a CPIR or CPDE instruction we must test
to see which of these conditions has caused the
termination of the instruction. This isn’t such a
difficult task as it sounds; simply remember that if
the block has been totally searched the BC register
will contain the value 8. It’s thus simply a matter of
testing for this fact. The below piece of code shous
this in action.

LD HL, 42000
LD BC, 1000
LD A, 255

CPIR
LD A,B
OR C

JR Z,END_FOUND

The label END_FOUND would be Jjumped to if the BC
register was equal to zero on termination. Otherwise,
the termination of the CPIR command 1is due to the
finding of a match.

However, these instructions are fairly time
consuming, but they are still faster than doing each
of the ”bundled” operations individually.

Block Moves
Occasionally we may want to move whole chunks of

memory around. One way to do this would be to use a
piece of machine code like the one listed belouw;

LD HL, 340000
LD B, 200
LD DE, 42000

LOOP LD A, CHLD
LD (DEY, A
INC HL
INC DE
DJIJNZ LOOP

Here we transfer 200 bytes from address 40000 to
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42080. This is effectively a copy operation; the bytes
will still be present at address 40000 onwards. HL
register pair points to the byte that we’re copying,
and DE points to where in memory that byte is to be
written to. The B register is used to count the number

of bytes that we want to transfer. This program is
totally workable, but inefficient, as there i1s an
instruction in the 2860 instruction set to do this kind
of operation for us automatically. The first

instruction of this type that we’ll look at is called
LDI.

The above routine can be rewritten as
LD HL, 40000

LD DE, 42000
LD BC, 200

LOOP LDI
LD A,B
OR C

JR NZ,LOO0P

The DE register pair is often called the DESTINATION
register and the HL register pair the SOURCE register.
Once LDI is executed, the HL and DE registers will be
incremented and the BC register will be decremented.
The command LDD does a similar Jjob, but here the HL
and DE register pairs are decremented instead of
incremented. The above routine can be implemented in a
more efficient manner if we know that after an LDI or
LDD instruction, the P/V flag is set if the BC
register pair DOES NOT contain zero. We can thus use
this flag to see if a repeat is needed or not.

However, there is a much more efficient method of
getting an LDI or LDD instruction repeated; this is to
use either the LDIR or LDDR instruction, which test
the P/V flag automatically and Jjump accordingly.

For example, the short program below will transfer
1000 bytes from address 39000 to address 42000.

LD HL, 40000
LD DE, 42000
LD BC, 1800
LDIR
RET

The below table shows the block instructions and their
effects on flags and timings.
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ﬁn;ﬁénic o /Byteé Time Effect on Flags
Taken C 2 P/US NH

|

‘ LDI 2 16 - - # - 00

| LDD 2 16 - - # - 00

|

’ LDIR 2 21716 - - 98 - 009

| LDDR 2 217186 - - 5] - 0 0

|

’ CPI 2 16 - # # # 1 #

CPD 2 16 - # # # 1 #
CPIR 2 21/16 - # # # 1 #

‘ CPDR 2 21716 - # # # 1 #

; Flag Notation:

|

|

| # indicates flag is altered by operation

| @ indicates flag is set to @

| 1 indicates flag is set to 1

L,ﬁ indicates flag is unaffected

Table 9. Block search and move instructions

Timing:

For repeat instructions, the times shown are for each

cycle. The shorter time indicated is for the case of

the instruction terminating - e.g. for CPIR, either

BC = @ or A = (HLD>.



Chapter 10
Ins and Outs and Odds and Ends

In this Chapter we’ll take a wvery brief look the 220
Input and Output instructions, and we’ll also examine
a few final instructions that don’'t fit into any firm
category.

Input and Output Instructions

Az well as being able to communicate with the RAN and
ROIM, the CPU can also read information from and wurite
information to a variety of addresses called
INPUT/QUTPUT ovr 1/0 addresses. There are 65536 of
these available to the CPU, and they are used by the
CPU to enable it to communicate with the many other
electronic devices that make up the Amstrad Computer,
such as the Gate Array or the PSG.

The actual way in which this is done is beyond the
scope of baak, and the instructions mentioned below

should only be used if you have a sound knowledge of
the Amstrad 1/0 system. IT IS POSSIBLE TO DAMAGE the
system if you mess around too much, although a more

likely result is a system crash!

The instructions used by the 2Z8@ to communicate
with these I1/0 devices are called Input and Output
instructions, and there are several of them availlable
to the programmer. However, due to the way in which
the Amstrad Hardware 1s arranged, there are only a
couple of instructions that can be used with absolute
safety - the others often crash the system. Anyone
attempting to read or write from I/0 locations should
ke aware of the problems involved, and never forget
that damage *to the system is possible. A good 170
descraiption of the Amstrad can be found in Don
Thomasson’s book "The Ins and Outs of the Amstrad”,
also published by Melbourne House.

The I/0 instructions that are usable with the
Amstrad havdware ave as follows:

IN Y, (C)

ouT CH,r
where r 1s an 8 bit register. The IN instruction
vreads a byte aof data from the 1/0 device ta the CPU
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reglister;
memovYy .

register to
of

it
The

operation

is similar to loading a vregister from
OUT instruction sends a byte from the CPU
the 1/0 location. This is the same sort

as loading a memory location from a CPU

register. The address of the I/0 location of interest
here is held in the BC register pair. Care is needed
here, and an 1/0 map is essential, as not all
addresses are wused by the System. An example of the
use of the IN i1nstruction is shown below:

LD BC, &BEQ®

IN A, (CH
The data will be read into the A register from, in
this case, the CRTC. An IN instruction involving the
A register also affects the s, 2 and P/U flags.
Again, you can crash the system if you read from
certain 1/0 addresses.

Just as we have the LDIR instructions for memory
transfers, we can have block transfer coperations for
the IN and OUT operations. However, due to the
arrangement of the Amstrad Hardware, they CANNOT be

used on the

Amstrad.

On the whole, these instructicons are of minimal
use on the Amstrad; apart from carrying the risk of
possible damage, the Amstrad ROIN routines offer us all

we are usually likely to need in terms of
communlicating with the peripheral devices of the
System.

Odds and Ends

I want to use the rest of this Chapter to mention a

few instructions that are either rarely used or don't
fit in anywhere else! Hence the "odds and ends” part
of the Chapter title.

The first instruction that I want to look at is

really useful, despite the fact that it does nothing!

HOP
The NOP 1nstructicn, when encountered by the CPU, ijust
causes the CPU to "mark time” for a while. This vrather
pointless sounding activity can be rvathey useful if we
want to slow things down a little. The NOP instruction
could easily be included 1n the time delay loops that
we sauw in a previous Chapter.

A second use is to delete instructions from a
praogram by replacing them with the opcode for NOP,
which is 0@. Uhy do  this? Uell, if the program
contalins  any Jjumps, deleting instructions usually
results in the relatiuve Jump  displacements oy the
absolute jump addresses being incorrect. If we simply

replace each byte of the offending instructions with
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"90"” then the jumps will be correct because the number
of bytes in the program will not have changed.

You can see that, for an instruction that does
nothing, it’s surprisingly useful!

The next two "odd” instructions that we’ll look at
here are called RRD and RLD. They aren’t commonly used
instructions, but are useful if vyou’re dealing with
BCD numbers.

ERD and ELD

Ue saw some time ago how we could use shift
instructions to affect the value held in registers. Ue
also saw the Rotate instructions. These instructions
all worked on single bits within a byte. These tuwo
instructions work on nibbles within a byte! The
instructions only work in the Register Indirect

Addressing mode. In both instructions, the HL register
pair contains the address of the byte in memory that
is to be manipulated. The operations of the tuwo
instructions are shown below. Note how the A register
is also used.

Operation of RLD

In general terms this 1is

A register (HL)
For a particular example, let’s examine the belouw
situation.
A=vB 1l 1100 (HLY)=1@1@ a@1la

After the RELD instruction, we've left with

A=0010 1010 CHLY>=201a 1120

Operation of RERD

In general terms, this is
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e _}
For a particular example, we can considey the below
si1tuation.
A=1010 goal (HL>=0@18 8110

Aftery the RRD command, the bytes are
A=1010 0110 (HL)>=0001 0010
As I said, these commands are really only useful if

you're doing some complicated manipulations of BCD
numbers.

HALT

An 1nstruction whose name 1is  very descriptive; this
simply causes the CPU to stop what it’s doing, or
HALT, unti1l it receives an interrupt. As there’s an

interrupt at least once every 300th of a second on the
Amstrad, the CPU won’t halt for long!

Interrupt llodes

The Z8@ can respond to Interrupts of the maskable kind
in a wvariety of uways. The ways in which the CPU
responds are called Interrupt Modes, and there are 3

of these. They are called Ime, IMmt and IMN2. The
Amstrad runs in Interrupt Mode 1, which causes the CPU
to execute an Interrupt handler routine at address &38
whensvery an 1nterrvupt occurs.

The 1nstruction
mn @

will change the Interrupt mode to Ilode @. Im 1 and
Im =z will change the interrupt mode in use to the
corresponding modes. There is not really rcom in this
book to go 1nto detaills about these different modes,
but 1t’s best not to alter them until you know exactly
what you’re doing!

z

EG

This instruction carries out an automatic complement
and increment operation on the A register, thus
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negating the A register contents., Thus, the
instructions

LD A,3

NEG
will leave the two’s complement representation of -3
in the A register. The flags are affected in the
focllowing fashion. C =08 if the original value was
zZevro. If the original wvaluese was 128, then C = @ AND

the P/U flag will be set. Otherwise T is set to zero.
The Z and S flags assume a value depending upon the
result of the operation.

The 1 and R registers

These are two special purpose 8 bit registers. The I
register is concerned with interrupts, and is nothing
to do with the IX and IY registers. The R reagister is
called +the REFRESH register, and both these registers
are of use only to thz experienced programmer.

We’ve now looked at all the Z80 instructions. Ue
can now go on to see how we can use the built in
facilities of the Amstrad computer, starting with a

look at the Amstrad sound chip.
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Chapter 11
Amstrad Sound

All the sounds on the Amstrad are generated by a
device called the AY—-3-83812 Programmable Sound
Generator. These devices are often used in home
computers to generate sounds; the CPU simply instructs
the Sound chip to produce a particular sound, and then
it can go off and do something else while the PSG
continues to generate the sound independently. In
older systems that do not use these sound chips, the
CPU itself has to produce the sounds and is thus not
able to do anything else in this period.

Although the Sound chip provides the "raw” =ounds
for +the Amstrad, many of the special effects that are
possible are controlled by the CPU running programs.
In this section, I will look at the Sound Chip in
terms of how it can be programmed to provide some
basic sounds, and give you enough information to write
your own sound effects programs.

General Notes on the AY-3-8912

This chip is called a 3 channel device; that ig, it ig
capable of playing three tones simultaneously, each
tone being of a different pitch and amplitude to the
others. Amplitude is Just the technical term for
volume of sound. Each channel can also play "noise”,
and so the device is well suited for producing sound
effects. Like the CPU, the PSG contains registers,
which are wused to control the nature of the sound
being produced. Of course, we can’t use these
registers to do arithmetic int As well as these
control registers, there is also an input/output
register, which enables the PSG to communicate with
other electronic devices in the computer system. In
the Amstrad, this register is used, under CPU control,
to get information from the keyboard. Under normal
conditions, the PSG 1is controlled by the programmer
accessing 3 locations in the I/0 map of the computer.
However, in a machine with the complexity of the
Amstrad, it’s safer to wuse a machine code routine
contained 1in  the Amstrad ROM to communicate with the
PSG, and thus contryeol it. The reazon for thie ig  that
because the keyboard is read 50 times a second, the
PSG might be accessed by the 0S half way through one
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of your operations, and this could really confuse
things! Using the provided ROM routine, which is
called MC SOUND REGISTER, will ensure that nothing
unpleasant happens!

PSG Registers

There are 15 registers in the PSG; 14 of these are
concerned with sound generation and the other one is
the 1/0 register that we’ve just mentioned. Let’s now
go on to look at how we use the ROl routine to access
one of these registers. They are numbered from @ to
14, and register 14 is the I/0 register.

WUriting to PSG Registers

This is simplicity itself, thanks to the ROIN routine.
We simply load the register number of interest in to
the A register of the CPU and the value that we want
to write to that register into the C register of the
CPU. Then we simply make a CALL to the ROMN routine,
which 1s accessed at address &BD34.

As an example, let’'s say that we want to send the
value 34 to PSG register 8. We simply use the belouw
code;

LD A,RE
LD Cc,43
CALL &BD34

Easy isn’t 1it?

Example 16:

This short routine enables us to write values to PSG
registers from BASIC.

LD C,(IX+@)
LD A, CIX+2)
CALL &BD34
RET

If the code is entered at address 48000, then
CALL 10000,2,3

will write the value 3 to PSG register 2. As we don’t
need to return any values to BASIC from this routine,
we don’t have to use the ”"@” symbol.

Of course, the crunch is knowing what to write to
each register to get the desired effect. So, let’s get
down to finding out what each register does.

The only problem with the PSG 1is that several
registers are involved with the production of a sound.
We’ll look at those involved with tone generation
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first, and then examine those to do with noise
generation and sound modulation.

Registers ©® and 1

These are treated together by the PSG, and together
they hold a 12 bit number which represents the pitch
of the tone played on Channel 1 of the PSG. The lower
8 bits of the pitch value are held in Register @ and
the upper 4 bits are held in the lower 4 Dbits of
Register 1. The upper 4 bits of register 1 are not
used. It’s thus clear that the contents of the lower 4
bits of register 1 has a higher significance to the
value of the pitch than does the contents of register
Q. For this reason, Register 1 is called the COARSE
TUNE CONTROL REGISTER, and Register 8 1is «called the
FINE TUNE CONTROL REGISTER. The higher the overall

value held in the twelve bit register is, the lower
pitched the tone generated on Channel 1! is. So, to
write a value to these two registers, we’d use code

like that shown below.

LD A,0Q

LD C,data for R.©
CALL &BD343

INC A

LD C,data for R.1
CALL &BD34

RET

Registers 2 and 3

These are also pitch control registers, but  they
control the pitch of the tone played on Channel 2 of
the PSG. They work in a similar fashion to Registers ©
and 1. Here, Register 2 is the Fine Control Registers
and Register 3 is the Coarse Control Register.

Registers 4 and S5

These registers are the Pitch control registers for
channel 3 of the PSG. Register 4 is the Fine Control
Register for this Channel and Register S is the Coarse
Control Register.

m

Fegister

Register 6 is not concerned with tone generation, and
so it will be examined later in the Chapter.

Register 7

This is best looked at as the main control register of
the PSG. Unless various bits of this register are set
in the correct fashion, no sounds will be produced by
the PSG, no matter what values are placed in the other
PSG registers, so it’s obviously quite important. Each
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bit, except one, controls one aspect of PSG behaviour.
Bit 7 is not used by the PSG. The aspects of behaviour
controlled by different bits of the register are shouwn
belouw.

'—— Channel 1 Tone Enable

Channel 2 Tone Enable

— Channel 3 Tone Enable

Channel 1 Noise Enable

Channel 2 Noise Enable

Channel 3 Noise Enable

I/0 control bit . LEAVE AT ZERO

Let’s now examine these bits in more detail.

Bit ©
This is called the Channel 1 tone enable bit. When
this bit is set at =zero, a tone can be played on

Channel 1 provided that it has a volume that is 1loud
enough to be heard! If set to 1, however, no tone can
be played. When set to 1, Channel 1 is said to be
DISABLED, and when this bit is set to zero the tone on
Channel 1 is said to be ENABLED. It effectively turns
the tone on and off.

Bit 1

This is this Enable/Disable bit for Channel 2 and is
similar in function to Bit Q.

Bit 2

This is the Enable/Disable bit for Channel 3, and is
similar in function to bit @.

Bit 3

This is the Channel 1 Noise Enable Bit, and it’s
status turns any noise on Channel 1 on or off. The
subject of noise will be considered in detail shortly.
When set to @, noise will be generated on Channel 1 at

a volume that depends upon the amplitude that we’ve
set for that channel. When set to 1, no noise will be
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generated. It is possible to have both bits @ and 3 to
a. Setting both these bits to 1 will completely
inhibit all sound cutput on Channel 1.

Bit 4

The Channel 2 noise Enable/Disable bit. It is similar
to Bit 3 in function.

EBit S
The Channel 3 noise Enable/Disable bit. It is similar
in function to Bit 3.

Bit ©6

This controls whether the 1/0 register is set to be an
Input Register or an Output Register. This bit should
be left set to zero, to signify that the I1/0 register
is to be used as an Input Register for the keyboard.
Setting this bit to 1 will disable the keyboard, and
the only way to recover from this, unless your program
resets the bit to zero before finishing, is to turn
the pouwer off!

Bit 7
This isn’t used in this particular PSG.

BEecausge of the importance of Bit 6, 1t's advisable
to be careful when writing to this register. Aluays
leave the top two bits, bits 6 and 7, set to zero. The
other bits should be set depending upon what you want
to do with the PSG.

Amplitude Control

The amplitude, or volume, of a sound determines it’s
loudness. There are +two ways of controlling the
volume of sound produced by the Amstrad. The most
obvious 1is to use the volume control on the side of
the keyboard! However, this isn’t exactly
programmable, so we must use the three ANPLITUDE
CONTROL REGISTERS that the PSG has. There is one such
register for each Channel on the PSG and they are all
4 bit registers. This gives us 16 different levels of

loudness, from @, which is silence, to 15, which is
the loudest volume. The Amplitude Control Registers
are Registers 8 +to 10@. Once we’ve discussed these

registers, we’re in a position to actually make some
sounds using the P3G.

Register 8
This ig the Amplitude Control Register for Channel 1.

Ue’ve Just said that this is a 4 bit register; well,

121



that’s not strictly true. There is a fifth bit, but
that’s not concerned with setting the amplitude at a
constant level.

Register 9

This is the Channel 2 amplitude control register.

Register 10

This is the Channel 3 amplitude Control register.

Let’s now look at the actual business of
generating a tone using the PSG. There are three main
steps to doing this. These are;

Ca) Set the Pitch up for that Channel.
(b) Set the Amplitude up for that Channel.
(c) Enable Tone on that Channel.

Example 17 shows a program for generating a tone on
Channel 1.

Example 17:

Enter the code at address 40000, and run it with CALL
10000 .

LD A,Q select register @

LD C,&12 value for pitch registers
CALL &BD34

INC A select register 1

CALL &RD34

LD A,8 select register 8

LD C,15 full volume

CALL &BD34

LD A,7 select register 7

LD c,62 only enable tone on channel 1
CALL &BD34

RET

Calling this routine will probably induce you to turn
the wvolume on the computer down a little! You will
also notice one thing; the sound doesn’t stop! We must
deliberately do this by disabling the Tone on Channel
1, or setting the contents of Register 8 to zero. The
difference between these two is that while tone is
disabled, the noise can carry on if it is enabled at
the same time as tone. Example 18 shows how we can use
a machine code delay routine in a program that
generates a tone for a given length of time before
disabling it again.
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Before we look at this, I’d better tell you how to
stop the tone produced a moment ago! A quick press of
the "CLR” button when the "Ready” prompt returns
usually does the trick.

Example 18:

Enter the code to address 40000 and call it at the
same address.

LD A,Q

LD C,&12

CALL &BD34

INC A

CALL &BD34

LD A,8

LD C,15

CALL &BD34

LD A,7

LD Cc,62

CALL &BD34

LD B,4 set up for a delay loop

DELAY1 LD HL,&FFFF
DELAY2 DEC HL

LD A,H

OR L

JR NZ,DELAY2

DJNZ DELAY1 tone period
LD A,7

LD C,63 disable tone
CALL &BD34

RET

The delay loop that is used here is the same as that
which we saw in a previous Chapter. Example 19 shouws
how we might generate a ”fade out” of the sound. It
does this by repeatedly reducing the value held in the
Amplitude Control register for Channel 1.



Example 13:

LD A,@
LD C,&12
CALL &BD34

INC A
CALL &BD34
LD A,8
LD C,15
CALL &BD34
LD A,7
LD c,62
CALL &BD34
LD C,15 initialise for fade
LD B, 15 number of steps in fade
LOOP2 LD HL,&FFFF tone step duration
LOOP1 DEC HL
LD A,H
OR L
JR NZ,LOOP1 tone played at volume ’C’
DEC C
LD A,8 decrease volume
PUSH BC send to PSG register 8
CALL &BD34 push BC because this call
POP BC messes up the registers.
DJNZ LOOP2 repeat with new volume
RET all done

It’s also possible to vary the contents of the Tuning
registers for a given note while a note is being
played on that Channel. This is how the Amstrad can
generate it’s ”Tone Envelopes” in BASIC. Example 20
shows this in action.

Example 20:

This routine generates a series of tones by simply
modifying the contents of the Coarse Tune register for
the Channel on which the sound is being played; thus
in this example we modify the Coarse Tune Register for
Channel 1, which is Register 1.
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LD A,Q@

LD C,15

CALL &RBD34

INC A

CALL &BD34

LD A,8

LD c,8

CALL &BD34

LD C,15 initialise for tones

LD B,15 number of tones

LOOP2 LD HL,&FFFF duration of each tone
LOOP1 DEC HL

LD A,H

OR L

JR Nz ,LOOP1

DEC C

LD A,l

PUSH BC

CALL &BD34

POP BC

DJIJNZ LOOP2

LD A,7

LD Cc,6e3

CALL &BD34 turn off tone

RET
Note that this time we have to turn off the tone. You
might 1like to try writing a machine code program that
does a similar trick with the Fine Tune registers, so

that you can get a smooth change from one tone to
another.

So far, we’ve used Channel 1 all the time. The
information given so far is equally applicable to the
other channels, provided that ycu use the correct
registers for that Channel. As was mantioned at the
start of the Chapter, you <can play tones on three
channels simultaneously if you want to, by setting the
various vregisters wup and then enabling tone on
whatever channels you want to use.

Noise

We briefly mentioned noise earlier in the Chapter.
Let’s 1look at it in greater detail. Noise, or WHITE
NOISE as it is some times called, is best described in
non—-technical terms as a rushing, hissing noise,
similar to that that can be heard on a VUHF vradio
receiver when no stations are being received. IMany
natural, and man—-made, noises have a high proportion
of this type of sound in their make up. Examples are
rain, wind and explosions. Noise can be played on any
of the three channels, either at the same time as the

tone or instead of the tone on that channel. The
amplitude of noise on a particular channel is
controlled by the Amplitude Control Register for that
channel. The practical result of +this is that you

can’t have noise played at a different volume to tone
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on a given channel. Before you can actually hear noise
on a channel, the relevant bit in Register 7 must be
set to zero. Thus to enable the playing of noise on
Channel 1 we must set bit 3 of this register to 0.
Example 21 plays noise on Channel 1. To stop it, press
"CLR” a couple of times.

Example 21:

Enter to code to address 40000 then call it with CALL
40000 .

LD A,8
LD c,8
CALL &BD34 set the amplitude up
LD A,7
LD C,&37
CALL &BD34 enable Channel 1 noise only
RET
Just as a tone has a pitch, so does noise. The pitch

of white noise is measured in terms of the relevant
amounts of high and low frequency noise present in the
sound High frequency noise is very "hissy”, and low
frequency noise is more of a "rushing” sound. The
pitch of the noise played by the PSG is controlled by
PSG register 6, which is the Noise Pitch Control
Register.

Register 6.

The fact that there is only one register for the
control of the pitch of the nose generated indicates
that all channels will play noise at the same pitch.
The register 1is a 5 bit register, thus giving pitch
values of between ©® and 31. A value of @ gives the
highest pitched noise and 31 gives the lowest pitched
noise. Again, if we alter the value held in this
register while the white noise is being played, you
will hear the pitch of the noise alter.

Envelopes

Nothing to do with sending letters through the post.
What is the difference between the note of ’C’ played
on a flute and the note of o played on a piano?
Although the pitch 1is the same, the notes sound
totally different. Well, as well as pitch the sound of
a note depends upon it’s amplitude and upon the way in
which the pitch and amplitude of a note change as the
note is played. For example, we can represent the way
in which the amplitude of a note changes with time
using a graph as shown below.
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amplitude

time

Astart Afinish
This is the type of note that we’ve played so far.

The volume of the tone goes from zero to the
maximum amplitude set as soon as the note starts,
stays at this volume until the note finishes and then
drops back to =zero. If we could somehow "shape” the

sound amplitude, we’d be able to produce more
interesting sounds. Examine the below graph.
amplitude
time
A
start end
This gives wu=s a gradual increase in amplitude,

followed by a slow decrease in the amplitude of the
sound. This sound shape is called an AMPLITUDE
ENVELOPE. Ue could, of course, generate such an
amplitude envelope by wvarying the contents of the
Amplitude Register, but this wold require the full
attention of the CPU. Fortunately, the PSG has the
ability to provide a feuw specific envelopes
automatically. It is also possible to provide TONE
ENVELOPES by wvarying the contents of the Pitch Tune

registers for a particular channel, but this would
require CPU attention whenever the tone needed
changing. This is how the Amstrad provides 1it’s tone
envelopes from BASIC. However, we’re going to
concentrate on the envelopes built in to the FSG in
this Chapter. The essential thing to remember about

these envelopes provided by the PSG is that once we’ve
signaled to the PSG that we want to use one of the 8
available "hardware” envelopes, and told the PSG which
one we want to use, the P3G will get on with it
without any further interference from us.

The type of envelope applied to the tone=g played
on a channel, or the noise for that matter, depends
upon the contents of PSG register 13.
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Register 13

This 1s the PSG Envelope Shape Control Register, and
only the lower 4 bits of this register. You might
think that +this gives wus access to 16 different
envelopes; well, it doesn’t. Only 8 different hardware
envelopes are available on the Amstrad, but this is a
limitation of the PSG rather than the computer.
Writing a value to this register other than those
listed below will result in one of the listed
envelopes being applied to the sound. One thing that
is important is that the existence of only one
Envelope Shape Control Register for all three channels
obviously results in the same envelope being applied
to sounds o©on any channel that are played under
envelope control.

We can see how to set up what envelope we want to
use, but how do we tell the PSG that we want to play a
sound on a particular channel under envelope control
rather than at the fixed amplitude set by the
Amplitude Control Register for that channel?

Well, remember how I mentioned that the Amplitude
Control Registers had a fifth bit? This is the role of
the fifth bit. It signals to the PSG whether the
channel plays it’s sounds under envelope control or
under the control of the Amplitude Control Register.
If bit 3 of one of the amplitude Control Registers is
set to 1 then sound on that channel is played wunder
envelope control. If it is set to @, then the sound
will be played at the volume specified by the lower 4
bits of the Amplitude Control Register. As a concrete
example, to instruct the PSG to play it’s channel 1
sounds under envelope control, we set register 8 to
hold the value 16.

The envelope shapes given for a particular wvalue
of Register 13 are shown below.
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In all these examples, EP =tands for ENVELOPE PERIOD,
and 1is a measure of the time it takes to execute that
part of the envelope. UWe wvary this parameter, and
hence wvary the rate of change of the amplitude, by
altering PSG registers 11 and 12.

-

Registers 11 and 12

Together these form a 16 bit register pair within the
PSG. Register 11 holds the 8 low bits of the value and
Register 12 holds the 8 high bits of the wvalue. The
higher the wvalue is held in these two registers, the
longer is the envelope period.

We can now see a demonstration (or should it be
hear) of the hardware envelope facilities of the PSG.
Example 22 plays a tone on channel 1 under the control
of Envelope number 14.

Example 22:
This routine will play the enveloped tone until "CLR"”
is pressed. Load the bytes to address 40000 and run

the program with CALL 40000. You will be able to hear
each amplitude change due to the long Envelope Period
set by the contents of Registers 11 and 12.

LD C,16

LD A,8

CALL &BD34 set up channel 1 for envelope
LD A,13

LD C,14

CALL &BD34 set up envelope number 14
LD A,11

LD C,255

CALL &BD34 set up low byte of EP

LD A,12

LD C,255

CALL &BD34 set up high byte of EP

LD A7

LD c,62

CALL &BD34 enable tone on this channel
RET

It is often possible to get a wide range of sound
effects simply by altering the Envelope Shape and
Envelope Period Registers. You might like to try this.

You will find, however, that, just as in BASIC,
generating sound effects is a rather "hit and miss”
occupation that often requires a little

experimentation to get the best results.
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Chapter 12
The Amstrad Keyboard

That the keyboard is the main means by which we can
communicate with the computer is rather obvious. Ue
type in all our programs on it, and issue all our
BASIC commands on it. It would thus be useful if we
could somehow access the keyboard from our machine
code programs. Well, we can’t do it directly, because
the effort required to read the information from the
Amstrad hardware is considerable, and making use of
the results would be a little difficult. Instead,
we’ll choose the easy option; that is, use the
facilities that are offered by the Amstrad ROIl. There
are several different routines in the ROM that are
used to read the keyboard and make sense of the values
read from the hardware. For our purposes, we’ll make
use of two routines that perform the following tasks.

(a) Wait until a key is pressed and then vreturn
the character typed in a register.

(b) Read the keyboard, but do not wait until a key
is pressed. If the key is being pressed at
the instant of reading the keyboard, then it’s
ASCI1 code is returned in a register.

Let’s now look at these two routines in detail. They
are very easy to use.

Wait for a key

This ROM routine is called at address &BB®@6G. Once
called it causes the machine to wait until a key is
pressed on the keyboard. The key pressed should be one
that normally returns a character or the ENTER key.
Keys like the SHIFT or SHIFT-LOCK keys will not
terminate this routine. Once a key has been pressed,
the ASCII code of the character will be passed back
from the ROM routine in the CPU A register. Example 23
shows how we might use this call.

Example 23:

The code i=s shown below. Enter it at address 40000 and
use the BASIC program to demonstrate it.
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LD L, (IX+@)
LD H, (IX+1)
CALL &BB@6

LD (HL), A
RET

100 A%=0

110 CALL 40000 ,CA%
120 PRINT A% ,CHR$(AX%)
1306 GOTO 110

The character code is thus returned in the wvariable
A% .

This routine wouldn’t be of much use in most games
programs, for as soon as you stopped pressing keys the
action in the game would grind to a halt until a key
was pressed. However, there are several applications
where this call is useful, in BASIC as well as machine
code programs.

The first is where we want the program to pause
until any key is pressed. Calling the above mentioned
routine from BASIC will do this admirably. We could
even specify the key we want pressing before allowing
the user to go on. This requires a short machine code
program, and the below routine will cause the computer
to wait until the Space Bar has been pressed. Remember
that the ASCII code for a ’space’ is 32.

WAIT CALL &BB®@©6
CP 32
JR NZ,UAIT
RET

The routine simply causes the ROM routine to be called
repeatedly wuntil the Space Bar is pressed. This would
cause the ROIN routine to be exited with 32 in the A
register, and thus in this case the CP 32 instruction
would cause the Z flag to be set, thus causing the
condition of the JR NZ instruction to fail.

A further application, in machine code
programming, might be to wait for a key to be pressed
that represents a particular option number from a
range of options. The below routine does this,
assuming that there are 3 options numbered 1, 2 and 3.
The ASCII codes for these numbers are 49,50 and S51.

WUAIT CALL &BBe6

Cp 49

JP Z,0PTION1

CP 514]

Jp Z,0PTIONZ2

CP S1

JP Z2,0PTION3

JR WAIT loop until 1, 2 or 3
OPTION1 ... is pressed
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You could write a short machine code program that
enters a string of characters from the keyboard and
stores the ASCII codes of these characters in an area
of memory pointed to by an index register. Such a
routine is shown below. Pressing the ENTER key will
terminate the operation.

LD I1X,341000 address for characters
WAIT CALL &BB@6
LD C(IX+0),A
INC IX
CP 13
JR NZ,WAIT
ouT .o if CHR$13 go here
The thing to note in this program is that the CP 13
instruction is, of course, a CP A,13 instruction in
disguise. It does not refer to the contents of the IX
register. When I started machine code programming I

always made the mistake of assuming that the CP
instructions in a situation like this referred to the
last register accessed!

Don’t Wait For a Key

The second way of reading the keyboard that we’re
going to look at in this introduction to Amstrad
machine code doesn’t wait until a key is pressed, but
simply goes on with the rest of the program. If a key
is pressed the ASCII code of the key is returned in
the A register. The ROM routine to perform this
function is called at address &BB®S. The status of the
C flag indicates to us whether a key was pressed in
the instant at which the routine was examining the
keyboard. If the C flag is set on return from this ROMN
call, then it indicates that a key was pressed and the
the ASCII code of the character hence generated can be
found in the A register. If the C flag is «clear then
it indicates that a key was not pressed during the
time that the routine was examining the keyboard.
Example 24 shows this routine being called from BASIC.

Example 24:

Enter the machine code at address 400@@, and then u=se
the below BASIC program to run it. A% will hold the
ASCII code of any character entered during the scan
time (when the keyboard was being examined by the ROIN
routine), or the value ® if no key was being pressed.
Note that the auto-repeat on keys still works when we
call these ROIMN routines.

LD L,(IX+8)
LD H, (IX+1)
CALL &BB@S
RET
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The BASIC program is;

100 A%=0
110 CALL 40000,CA%

1280 PRINT A%
130 GOTO 110

You can see that this vroutine 1is wvery useful in
machine code games, because processing doesn’t stop if
you’re not pressing a key.

That completes this introduction to the Amstrad

keyboard. We’l11l now go on to look at the other major
means of interacting with the computer; the display
screen.
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Chapter 13
The Amstrad Display

Now we’ve examined the Sound capabilities of the
Amstrad, and seen how we can read information from the
keyboard of the computer, we’ll complete this
introduction to Amstrad machine language by examining
how we can interact with the display screen from
within our machine code programs. The Amstrad has a
high resolution, colour display and most of the
facilities that are available from BASIC are also
available from machine code with vreasonable ease.
However, we’ll only look at the simpler methods of
accessing the Amstrad screen from within our programs.
The most obvious thing to do is to find out how we can
simply print characters to the screen. Again, due to
the complex arrangement of the Amstrad hardware, the
Job is best done using a ROM routine.

Printing Characters to the Screen

The ROM routine that does this is called at address
&BBSA. It’s very easy to use; we simply put the ASCII
code of the character that we want +to print on the
screen in the A register, and then we simply call the
ROM routine. This routine treats characters passed to
it in the A register in two ways, depending upon the
ASCII code of the characters.

(a) Codes between 32 and 255 inclusive are printed
on the screen. Thus we can print characters
that available from the keyboard as well as
user definable characters set up by the SYMNBOL
command .

(b) Codes between © and 31 are treated 1in a
special fashion by the Amstrad Operating
System. These codes are called CONTROL CODES,
or CONTROL CHARACTERS.

What are Control Codes?

They provide wus with a means of controlling the
behaviour of certain aspects of the display. For
example, the ENTER key, when pressed, causes two
control codes to be sent to the display. These tell
the display to move the text cursor to the start of
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the next line. Other Control Codes do things like move
the text cursor up, down or sideways or they clear the
screen, set the PEN colour or make a "beep” noise.
We’ll look at them in greater detail shortly.

Printing Characters

The below routine will print the character held in the
A register to the screen.

LD A,ASCII code
CALL &BBSA
RET

As a more useful example, look at the program shown in
Example 25.

Example 25:

This program will fill the screen with the character
whose ASCII code is specified as the parameter to the
CALL instruction that calls the machine code program.
Load the bytes to address 40008, and use a command
like CALL 40000.A% to run the program.

A%  of course, holds the ASCII code of the
character of interest. Thus CALL 400800,65 will fill
the screen with letter "A”s.

LD A, (IX+0)
LD BC, 1000

LOOP PUSH AF preserve the registers
PUSH BC
CALL &BBSA
POP BC
DEC BC
LD A,B
OR C
JR Z2,0UT
POP AF
JR LOOP
ouT POP AF
RET

Let’s look at the program; the first instruction first
recovers the ASCII code from the parameter block. The
LD BC instruction then loads this register pair with
the number of text character locations on the screen.
This is 18090 in mode 1, and is different in the other
two modes. You can modify this program to fill screens
in the other modes by simply modifying the number
loaded into the BC register pair. The number of
characters that can be put on the screen in a given
mode is given by UxH, where V is the number of screen
lines and H is the number of columns on the screen.

The registers are pushed onto the stack because
the ROM routines often mess up the contents of
register pairs.
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We can also print out strings of characters from
machine code. These strings could, for example,
represent messages that the machine code programs
should print out while they are running. It’s very
easy to do this, as Example 26 shous.

Example 26:

This routine prints the message "Hello” to the screen,
a vrather trivial application! However, the principles
are applicable to longer strings, and all that needs
to be changed in the program is the value loaded into
the IX register as the start address of the string of
characters and the value loaded into the B register as
the length of the string of characters to be printed.
The below line of BASIC can be used tc put the string
into memory at address 11000.

FOR I=0 TO LEN("Hello"):
POKE (41000+1),ASC(MID$(”Hello”,I1,1)):NEXT 1

The belcw bytes should be loaded to address 10000 .
CALI. 40000 will then print the string.

LD IX,31000 address of string
LD B,S length of string
LOOP LD A, C(IXD
PUSH BC save no. of characters
CALL &BBSA
FOP BC
INC IX
DEC B
JR NZ,LOO0P
RET

It’s all very well to be able to print a string of
characters to the screen, but in BASIC we are also
able to specify exactly where on the screen the
characters are to be placed. Can we do this in machine

code?

The answer is yes.

Positioning Text on the Screen

We use one of the control codes to do this. If we send
character 31 to the ROM routine at &BBSA, then the
next two numbers to be passed to the routine are not
treated as characters to be printed to the screen.
Instead, they are treated as the X and Y position at
which the next characters to be printed are to be
placed. Thus, if we were to send the numbers 31, 10,
12, 65 to the ROI routine, we’d get the letter "A”
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printed at position 18, 12 on the screen. In machine
code this is

LD A,31
CALL &BBSA send character 31
LD A,10
CALL &BBSA send the X coordinate
LD A,12
CALL &BBSA send the Y coordinate
LD A,B5
CALL &BBS5A send the character
The X coordinate is between 1 and 80 in wvalue, and

specifies the column number on the screen. The maximum
value here that will give a sensible result depends
upon the screen mode in use. For mode ® the maximum
value is 280, in mode 1 it is 4@ and in mode 2 it is
80. Should you exceed this value, no error message is
given but the character concerned will not be printed
to the appropriate position on the screen. Column 1
is the leftmost column of the screen, and the X
coordinate increases from left to right. The Y
coordinate refers to the screen line number at which
you want the character to appear, and varies from 1 to
25 in all modes. Line 1 is the top 1line of the
display.

Thus by using CHR$31 and it’s parameters you can
position text at any position on the screen. You can
thus see that it provides us with the machine code
equivalent of the BASIC LOCATE command. Now we’ve met
a control code, let’s take a closer look at some of
the others that are available.

Make A ’beep’

For those occasions where you just want a brief tone
to indicate that something in your program has
occurred, but you don’t want to have to program the
various registers of the PSG to get the desired
effect, you might like to try the below routine, which
uses CHE#$7.

LD A,7
CALL &BBSA
RET

Clear the Screen

Printing CHR$12 will clear the screen to the currently
selected text paper colour. It is thus equivalent to
the BASIC CLS command.

Set the PEN and PAPER Colours

The colour in which text is written to the text cursor
on the screen 1is gspecified by the PEN command in
BASIC.
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PEN n

will set the colour, where n is the colour number
required. To simulate this from machine code, we use
CHR#$15. This, followed by a second number, selects the
colour specified by the second number. Thus to execute
a

PEN 2
command from within a machine code program, we might
use

LD A,15

CALL &BBSA

LD A,2

CALL &BBSA

RET

We can do a similar thing to change the currently
selected paper. Here we use CHR$14 as the control
code. The below routine executes the PAPER 1 command
followed by a CLS. This sets the text screen to the
colour specified by the PAPER command.

LD A,14
CALL &BBSA
LD A,1
CALL &BBSA
LD A,12
CALL &BBSA
RET

There are other control codes available, to enable
us to simulate the INK, SYMBOL and INODE commands, but
these are often done just as easily from BASIC. One
thing to note about the sending of control codes to
the display routines is that you should always ensure
that the appropriate number of parameters required by
that control code are passed as well. If you don’t do
this, then occasionally strange results can be seen on
the screen, as in the absence of parameters the next
few character codes are treated as parameters for the
control code.

To make things more confusing, all the ASCII codes
between @ and 31 also have a character associated with
them. For example, CHR#7, as well as producing a
"beep” noise, can also print a small "space invader”
style character to the screen. The problem is, how do
we get the ROM routines to print these additional
characters to the screen instead of treating the ASCII
codes as Control Codes?

The answer is very easy. The control code
represented by CHR$1 causes the code immediately
following it to be treated as a printable character.
Thus, sending 1 and 7 to the ROM routine in that order
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will print the "space invader” to the screen instead
of making a "beep”. The below machine code
instructions will do this.

LD A,l
CALL &BBSA
LD A,7
CALL &BBSA
RET

The influence of CHR$1 only extends over the character
immediately following it to the ROIl routine. Thus the
below program

LD Al
CALL &BBSA
LD A,7
CALL &BBSA
LS A,7
CALL &BBSA
RET

will print 1 character to the screen and then generate
1 ”beep”.

Of course, a=s well as printing textual information
to the screen we also can draw graphics on the screen
from BASIC. As you might expect, there are several RON
routines that enable the user to access graphics from
machine code routines. Let’s now go and look at some
of the simpler ROIN routines that are available.

Simple Machine Code Graphics

On any microcomputer, the generation of graphics from
within machine code programs is quite a job, and so
here 1’11 just give an introduction to the techniques
that are used on the Amstrad computer. Again, the Jjob
is made easier by the wuse of the built in ROIN
routines; accessing the screen directly, by writing
bytes to the memory addresses at which the screen is
situated 1s quite difficult because of the complex
arrangement of the screen.

The simplest thing that we can do in graphics
programming is to move the graphics cursor around on
the screen. This is easily done using a RO routine
that we call at address &BBCO. For example, the belcow
routine will move the graphnics cursor to coordinate
100,100 on the screen.

LD DE, 100 X coordinate
LD HL, 100 Y coordinate
CALL &BBC®

RET

The X and Y coordinates are passed to this ROIN routine
in the DE and HL register pairs respectively. This
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routine appears to mess up the CPU registers, and so
it’s often useful to PUSH any registers that we’re
concerned about on to the stack before calling the RON

routine.

The above routine will not put anything on the

screen; it simply moves the graphics cursor to the
required point on the screen. As and example of it’s
use, we’ll call upon the services of another control

code, CHR$S. This enables us to print a text character
at the position of the graphics cursor, rather than at
the current position of the text cursor. The character
that iz sent to the ”"print a character” ROIN routine
immediately after the CHR$S is printed at the graphics
cursor. Example 27 shows this in action.

Example 27:

Load the machine code to address 40000, and then call
it in the below fashion.

CALL 40000

This will then print the letter "A” at graphics
coordinate 100,180. The character i1s printed in such
a way that the top left corner of the character grid
is situated at the graphics cursor position. The
character is printed in the current graphnics in
colour, rather than the current text ink colour. The
machine code is;

LD HL, 100
LD DE, 100
CALL &BBC®
LD 4,5
CALL &BBSA
LD a,85
CALL &BBSA

This facility is quite useful in that it enables us to
position text on the screen to a much greater degree
of precision than by using the text coordinate system.
As in BASIC, the coordinates for graphics normally
have their origin at the bottom left corner of the
screen.

The other simple graphics operation that we’ll
look at is the action of drawing a line on the screen
from one point to another point. Again, there’s a RON
routine to do all the hard work for us. UWUe use it in
the below fashion, by putting the X coordinate 1into
the DE register pair and the Y coordinate of the point
to be drawn to in the HL register pair.

LD DE, 200 X coordinate

LD HL, 200 Y coordinate
CALL &BBF6

141



There will draw a line, in the current graphics ink,
from the current position of the graphics cursor to
the point specified in the DE and HL registers above.
Example 28 shows a simple routine for drawing a box on
the screen.

Example 28:

Load the code to address 40000, and run it with CALL
10000 .

LD DE, 100

LD HL, 100

CALL &BBC@ move to point 100,100
LD DE, 100

LD HL, 200

CALL &BBFB6 draw to 100,200
LD DE, 200

LD HL , 200

CALL &BBFE& draw to 200,200
LD DE, 200

LD HL, 100

CALL &BBF6 draw to 200,100
LD DE, 100

LD HL, 100

CALL &BBFB6 draw to 100,100
RET
As you can see, drawing a line is a very easy Jjob. We

can also simulate a PLOT statement from our machine
code programs using the routines that we’ve already
seen. Simply put, when we plot a point on the screen
we are effectively drawing a very short line. So, we
should be able to do such a job with the move and draw
ROIN routines that we’ve seen. Example 29 shows a
simple point plotting routine.

Example 29:

Load the bytes to address 40000, and then execute the
program with a CALL 490008 ,X%,Y% call where X% and Y%
represent the X and Y coordinates of the point to be
plotted. Although the BASIC contains a PLOT command,
this is a useful demonstration of the graphics calls.
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LD L,CIX+@> get the Y coordinate
LD H, (IX+1)

LD E,C(IX+2) get the X coordinate

LD D,(IX+3)

PUSH HL

PUSH DE

CALL &BBC® do the move operation

POP DE

POP HL

INC DE

INC DE

CALL &BBF6 increment DE to give a small X
RET coordinate increase and draw line

Thus, the call
CALL 400090,100,100

will plot a point at coordinate 100,100 on the screen,
again in the current graphics ink.

One really big advantage that we can get from
using ROMN routines is that they work equally well in
all screen modes. If we were to write screen handling
routines of our own, we’d have to take the different
screen modes into account.

This is as far as we go in this introduction to
Amstrad machine code. Hopefully, you’ve now past the
"absolute beginner” stage and are ready to build on
your new found skills. You will no doubt find many
articles or books that will expand wupon what 1’ve
mentioned in this book. The only recommendation that

1’11 make is that you obtain, if possible, a rather
weighty but extremely useful book published by Amsoft
called "The Amstrad Firmware Technical INManual” which
documents in detail all the many ROM calls of the
Amstrad Operating System. Good luck with your machine
code programming, and may all your crashes be little
ones!
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Appendix 1

Instructions and Op-codes

—
HEXADECIMAL

MNEMONIC HEXADECIMAL | MNEMONIC HEXADECIMAL | MNEMONIC
ADC A, (HL) 8E BIT 2,8 CB 50 cPn FE XX
ADC A, (IX+dis) DD 8E XX BIT 2.C cB 51 CPE 8B
ADC A.(IY+dis)  FD 8E xx BIT 2.0 CB52 CPH BC
ADC A.A 8F BIT 2.E CcB 53 cPL BD
ADC A.B 88 BIT 2,H CB 54 CPD ED A9
ADC A,C 89 BIT 2,L CB 55 CPDR ED B9
ADC A,D 8A BIT 3,(HL) CB 5E CPI ED A1
ADC An CE XX BIT 3.(IX+dis) DD CB XX 5E | CPIR ED B1
ADC A,E 8B BIT 3,(1Y+dis) FD CB XX 5E CcPL 2F
ADC A.H 8C BIT 3,A CBSF DAA 27
ADC AL 8D BIT 3,8 ces8 DEC (HL) 35
ADC HL,BC ED 4A BIT3,.C CB 59 DEC (IX +dis) DD 35 XX
ADC HL.DE ED5A BIT3,D CB5A DEC (1Y +dis) FD 35 XX
ADC HL,HL ED 6A BIT3E CcB 5B DEC A 3D
ADC HL,SP ED7A BIT 3,H CcB5SC DEC B 05
ADD A, (HL) 86 BIT3.L CB 50 DEC BC 0B
ADD A,(IX+dis) DD 86XX BIT 4,(HL) CB 66 DECC oD
ADD A.(IY+dis)  FD B6XX BIT 4,(1X+dis) DD CB XX 66 | peCD 15
ADD A,A 87 BIT 4,(1Y+dis) FD CB XX 66 DEC DE 1B

| ADD AB 80 BIT 4.A CB 67 DECE 1D

| ADDAC 81 BIT 4B CB 60 DEC H 25

1 ADD A.D 82 BIT 4.C cB 61 DEC HL 28
ADD An C6 XX BIT 4D CB 62 DEC IX DD 28

| ADD AE 83 BIT 4.E cB63 DEC IY FD 2B
ADD A.H 84 BIT 4,H CB 64 DEC L 2D

] ADD A,L 85 BIT4,L CB 65 DEC SP 3B

| ADD HL,BC 09 BIT5,(HL) CB 6E DI F3

‘ ADD HL,DE 19 BIT 5,(1X+dis) DD CB XX 6E | DINZ.dis 10 XX
ADD HL,HL 29 BIT 5,(1Y+dis) FD CB XX 6E El FB

‘ ADD HL,SP 39 BIT5,A CB 6F EX (SP) HL £3

| ADD IX,BC DD 09 BIT5B CB 68 EX (SP) ,IX DD E3
ADD IX,DE DD 19 BITS5.C CB 69 EX (SP) 1Y FDE3
ADD IX,IX DD 29 BITS,D CB 6A EX AF AF’ 08

| ADD IX.SP DD 39 BITSE CB 68 EX DE,HL EB

| ADD 1Y BC FD 09 BIT5H CB6C EXX D9

| ADD IY,DE FD 19 BITS,L CB 6D HALT 76
ADD 1Y, 1Y FD 29 BIT 6,(HL) CB 76 IM 0 ED 46

{ ADD 1Y SP FD 39 BIT 6,(1X+dis) DDCB XX 76 [ IM1 ED 56

| AND (HL) A6 BIT 6,(1Y+dis) FDCBXX76 | M2 ED 5E

I AND (IX+dis) DD A6 XX BIT 6,A cB 77 IN A, (C) ED 78

| AND (1Y+dis) FD A6 XX BIT 6.8 CB 70 IN A port DB XX

| AND A A7 BIT6.C cB 71 IN B, (C) ED 40

| ANDB AD BIT 6.D cB 72 INC, (C) ED 48
AND C Al BIT 6,E CcB 73 IN D, (C) ED 50

| ANDD A2 BIT 6,H CB 74 INE, (C) ED 58

[ AND n E6 XX BIT 6,L CB 75 IN H, (C) ED 60

| ANDE A3 BIT 7,(HL) CB 7E INL, (C) ED 68

| ANDH A4 BIT 7,(1X +dis) DD CB XX 7E | INC (HL) 34
AND L A5 BIT 7,(1Y+dis) FD CB XX 7E INC (1X+dis) DD 34 XX
BIT O,(HL) CB 46 BIT 7,A CB 7F INC (1Y +dis) FD 34 XX
BIT 0,(I1X+dis) DD CB XX 46 BIT 7,8 CcB 78 INC A 3C
BIT 0,(1Y+dis) FD CB XX 46 BIT7.C CB 79 INC B 04
BITO,A CcB 47 BIT 7.0 CB7A INC BC 03
BIT 0,B CB 40 BIT 7,E CcB 78 INCC ocC
BITO,C CB 41 BIT 7,H cB7C INCD 14
BITOD CB 42 BIT7,L CB 7D INC DE 13
BIT O,E CB 43 CALL ADDR CD XX XX INC E 1C
BIT OH CB 44 CALLC,ADDR  DC XX XX INCH 24
BITO,L CB 45 CALLM,ADDR  FC XX XX INC HL 23
BIT 1,(HL) CB4E CALL NC,ADDR D4 XX XX INC X DD 23
BIT 1,(IX+dis) DD CB XX 4E | CALL NZ,ADDR C4 XX XX INC 1Y FD 23
BIT 1,(1Y+dis) FD CB XX 4E CALL P,ADDR Fa XX XX INC L 2C
BIT1.A CB 4F CALL PE,ADDR  EC XX XX INC SP 33
BIT1,B cB a8 CALL PO,ADDR  E4 XX XX IND ED AA
BIT1,C CB 49 CALL Z,ADDR  CC XX XX INCR ED BA
BIT1,D CB4A CCF 3F INI ED A2
BIT 1.,E CB 4B CP (HL) BE INIR ED B2
BIT 1.H CB 4C CP (IX+dis) DD BE XX JP(HL) E9
BIT1,L CB 4D CP (1Y +dis) FD BE XX 4P (1X) DD E9
BIT 2,(HL) CB 56 CPA BF JP (1Y) FD E9
BIT 2,(1X+dis) DDCB XX 56 | cpB B8 JP ADDR C3 XX XX
BIT 2,(1Y+dis) FDCBXX56 | cPC B9 JP C.ADDR DA XX XX
BIT 2,A CB57 CPD BA JP M,ADDR FA XX XX
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MNEMONIC HEXADECIMAL | MNEMONIC HEXADECIMAL | MNEMONIC HEXADECIMAL

JP NC,ADDR D2 XX XX LD BC,nn 01 XX XX LDDR ED 88

JP NZ ADDR C2 XX XX LD C, (HL) 4E LDI ED AO

JP P,ADDR F2 XX XX LD C, (IX+dis) DD 4E xx LDIR ED BO

JP PE,ADDR EA XX XX LD C, (1Y +dis) FD 4E XX NEG ED 44

JP PO,ADDR E2 XX XX LDC.A 4F NOP 00

JP Z ADDR CA XX XX LDC.B 48 OR (HL) B6

JR C dis 38 XX LbC,C 49 OR (IX+dis) DD B6 XX

JR dis 18 XX LDC,D 4A OR (1Y +dis) FD B6 xx

JR NC.dis 30 XX LD Cin 0E XX OR A B7

JR NZ dis 20 XX LDC.E 48 OR B BO

JR Z dis 28 XX LDC.H ac ORC B1

LD (ADDR) ,A 32 XX XX LDC.L 40 0]/ D 82

LD(ADDR) ,BC ED43 XX XX | LD D, (HL) 56 ORn F6 XX

LD (ADDR) ,DE  EDS3 XX XX | LD D, (I1X +dis) DD 56 XX ORE 83

LD(ADDR) HL ED 63 XX XX | LD D, (1Y +dis) FD 56 XX ORH B4

LD (ADDR) HL 22 XX XX LDD.A 57 OR L BS

LD (ADDR) ,IX DD 22 XX XX | LD D,B 50 OTDR ED BB

LD (ADDR) ,IY  FD22XX XX | LpD.C 51 OTIR ED B3

LD (ADDR) ,SP ED 73 XX XX LD D,D 52 ouT (C) A ED 79

LD (BC) A 02 LD DA 16 XX ouT (C) B ED 41

LD (DE) ,A 12 LD D.E 53 QuT (C) ,C ED 49

LD (HL) A 77 LD D.H 54 ouT (C) D ED 51

LD (HL) .B 70 LD D,L 55 OuT (C) E ED 59

LD (HL), C n LD DE, (ADDR)  EDSB XX XX | QUT (C) .H ED 61

LD (HL) D 72 LD DE.,nn 11 XX XX ouUT (C) .L ED 69

LD (HL) n 36 XX LD E, (HL) SE OUT part, A D3 port

LD (HL) E 73 LD E, (I1X+dis) DD 5E XX ouTD ED AB

LD (HL) H 74 LD E, (1Y +dis) FD5E XX ouT! ED A3

LD (HL) L 75 LD E.A SF POP AF F1

LD (I1X+dis) ,A DD 77 XX LDEB 58 POP BC c1

LD (IX+dis) ,B DD 70 XX LDE,C 59 POP DE D1

LD (IX+dis) ,C DD 71 XX LD E.D 5A POP HL E1

LD (I1X+dis) ,.D DD 72 XX LD En 1E XX POP IX DD E1

LD (IX+dis) ,n DD 36 XX XX LDEE 5B POP IY FD E1

LD (I1X+dis) ,E DD 73 XX LD EH 5C PUSH AF F5

LD (IX+dis) H DD 74 XX LDE,L 5D PUSH BC cs

LD (IX+dis) L DD 75 XX LD H, (HL) 66 PUSH DE 0s

LD (1Y +dis) A FD 77 XX LD H, (IX+dis) DD 66 XX PUSH HL ES5

LD (1Y +dis) .B FD 70 XX LD H, (1Y +dis) FD 66 XX PUSH IX DD ES

LD (1Y +dis) .C FD 71 XX LD H,A 67 PUSH 1Y FD ES

LD (1Y +dis) .D FD 72 XX LDHB 60 RES O, (HL) CB 86

LD (1Y +dis) n FD 36 XX XX | LDH.C 61 RESO, (IX+dis) DD CB XX 86

LD (1Y +dis) E FD 73 XX LD H.D 62 RESO, (IY+dis) FDCB XX 86

LD (1Y +dis) .H FD 74 XX LD Hn 26 XX RES0.A cB 87

LD (1Y +dis) L FD 75 XX LD H.E 63 RES 0,8 CB 80

LD A, (ADDR) 3A XX XX LD HH 64 RESO0.C CB 81

LD A, (BC) 0A LD H,L 65 RES 0,0 CcB 82

LD A, (DE) 1A LD HL, (ADDR) ED 68 XX XX RESO0.E cB 83

LD A, (HL) A LD HL.(ADDR) 2A XX XX RESO.H cB 84

LD A, (IX+dis) DD 7€ XX LD HL,nn 21 XX XX RESO,L CB 85

LD A, (1Y +dis) FD 7E XX LD I,A ED 47 RES 1, (HL) CB 8E

LD A.A 7F LD IX, (ADDR) DD 2A XX XX | RES 1, (IX+dis) DD CB XX 8E

LD AB 78 LD IX nn DD 21 XX XX | RES 1, (1Y +dis) FD CB XX 8E

LDAC 79 LD 1Y (ADDR) FD2A XX XX | RES1,A CB 8F

LD AD TA LD 1Y, nn FD21 XX XX | RES1.B CB 88

LD An 3E XX LD LA 6F RES 1,C CB 89

LD AE 78 LD L.B 68 RES 1,0 CB 8A

LD AH 7C Lo L.C 69 RES 1,E c8 88

LD Al ED 57 LO LD 6A RES 1. H cB8C

LO AL 70 LD L.n 2E XX RES 1,L CB 8D

LD AR ED 5F LD L.E 68 RES 2, (HL) CB 96

LD B, (HL) 46 LD L, (HL) 6E RES 2, (IX+dis) DD CB XX 96

LD B, (IX+dis) DD 46 XX LD L.(1X+dis) DD 6E XX RES 2, (IY+dis)  FD CB XX 96

LD B, (1Y +dis) FD 46 XX LD L, (1Y +Hdis) FD 6E XX RES 2.A CB97

LD BA 47 LD LH 6C RES2.B CB 90

LD B.B 40 LD L.L 60D RES 2,C CB 91

LOB.C 41 LD R.A ED 4F RES 2,0 CcB 92

Lo 8D 42 LD SP, (ADDR) ED 7B XX XX | RES2,E CcB 93

LD Bn 06 XX LD SP,nn 31 XX XX RES 2.H CB 94

LD BE 43 LD SP.HL F9 RES 2,L CB 95

LD B.H a4 LD SP.IX DD F9 RES 3, (HL) CB 9E

LD B.L a5 LD sP1Y FD F9 RES 3, (IX+dis) DD CB XX 9E

LD BC, (ADDR) ED 4B XX xx | LDD ED A8 RES 3, (1Y +dis) FD CB XX 9E
RES 3,A CB9F




MNEMONIC HEXADECIMAL | MNEMONIC HEXADECIMAL | MNEMONIC HEXADECIMAL
RES 3B CB 98 RLC C cB 01 SET 1,L CB CD
I RES 3,C CB 99 RLC D CB 02 SET 2, (HL) CB D6
| RES 3.D CB9A RLCE cB 03 SET 2, (IX+dis) DD CB XX D6
RES 3,E CB 9B RLCH CB 04 SET 2, (IY+dis)  FDCB XX D6
i RES3.H cB9C RLC L CB 05 SET2.A CcCB D7
RES 3,L CB 9D RLCA 07 SET 2.8 CB DO
| RES 4, (HL) CB A6 RLD ED 6F SET 2.C cB D1
. RES 4, (IX+dis) DD CB XX A6 RR (HL) CB1E SET2.D CB D2
RES 4, (1Y +dis) FD CB XX A6 RR (IX+dis) DD CB XX 1E SET 2.E CB D3
RES 4,A cB A7 RR (1Y +dis) FDCB XX 1E SET 2 H CB D4
RES 4.8 CB A0 RR A CB1F SET2.L CB DS
RES 4,C CB A1 RR B cB 18 SET 3, (HL) CB DE
{RES4.D CB A2 RR C CB 19 SET 3, (IX+dis) DD CB XX DE
| RES4E CB A3 RR D CB1A SET 3, (IY+dis)  FD CB XX DE
| RES4,H CB A4 RR E cB 1B SET 3,A CB DF
' RES4.L CB A5 RR H CcB1C SET 3B CB D8
RES 5 (HL) CB AE RR L CB 1D SET3.C CcB D9
RES 5, (I1X+dis) DD CB XX AE | RRA 1F SET3.D CB DA
RES 5, (1Y +dis) FD CB XX AE | RRC (HL) CB 0OE SET 3.E CB DB
RES 5,A CB AF RRC (IX+dis) DD CB XX OE SET 3,H CcB DC
RES 5.8 CB A8 RRC (1Y +dis) FD CB XX OE SET3.L CB DD
. RES5.C CB A9 RRC A CB OF SET 4, (HL) CBE6
RES 5.,D CB AA RRC B CB 08 SET 4, (IX+dis) DD CB XX E6
RES 5,E CB AB RRC C cB 09 SET 4, (1Y +dis) FD CB XX E6
' RES5,H CB AC RRC D CB 0OA SET 4 A CBE?
\ RESS5,L CB AD RRC E CH 0B SET 4B CB EO
RES 6, (HL) CB B6 RRC H CBOC SET4.C CBE1
RES 6, (IX+dis) DD CB XX B6 RRC L CB 0D SET 4.0 CB E2
RES 6, (1Y+dis) FD CB XX B6 | RRCA OF SET 4.E CBE3
RES 6,A CB B7 RRD ED 67 SET4.H CBE4
RES 6,8 CB BO RST 00 c7 SET 4L CBES
RES 6,C CB B1 RST 08 CF SET S, (HL) CBEE
RES 6,0 CB B2 RST 10 D7 SETS, (IX+dis) DD CB XX EE
RES 6.E CB B3 RST 18 DF SET 5, (1Y +dis) FD CB XX EE
RES 6,H CB B4 RST 20 E7 SETS.A CBEF
{ RES6.,L CB BS RST 28 EF SET 5.8 CB E8
RES 7, (HL) CB BE RST 30 F7 SETS5.C CB E9
RES 7, (IX+dis) DD CB XX BE | RST 38 FF SET 5D CB EA
RES7, (IY+dis)  FDCB XX BE | SBC A, (HL) 9E SETS.E CBEB
RES 7,A CB BF SBC A, (IX+dis) DD 9E XX SET 5.H CBEC
RES 7.8 CcB B8 SBC A, (1Y+dis) FD 9E XX SETS.L CB ED
RES 7.C cB B9 SBC A.A 9F SET 6, (HL) CB F6
RES7.D CB BA SBC A,B 98 SET 6, (IX+dis) DD CB XX F6
{ RES7.E CB BB SBC AC 99 SET 6, (1Y +dis) FD CB XX F6
RES 7,H CB BC SBC A,D 9A SET6.A CBF7
RES7.L CB BD SBC A.n DE XX SET 6.8 CB FO
RET c9 SBC AE 98 SET6.C CB F1
RET C D8 SBC AH 9c SET 6.0 CB F2
RET M F8 SBCA,L 9D SET 6.E CBF3
RET NC Do SBC HL,BC ED 42 SET 6.H CB F4
RET NZ co SBC HL,DE ED 52 SET6.L CBF5
RET P FO SBC HL.HL ED 62 SET 7, (HL) CB FE
RET PE E8 SBC HL,SP ED 72 SET 7. (IX+dis) DD CB XX FE
RET PO EO SCF 37 SET 7.,(1Y +dis) FDCB XX FE
RET Z c8 SET 0, (HL) CB C6 SET 7.A CB FF
RETI ED 4D SET 0, (IX+dis) DD CB XX C6 SET7.B CBF8
RETN ED 45 SET 0, (1Y +dis) FD CB XX C6 SET7.C CB F9
RL (HL) CB 16 SET0,A CBC7 SET 7.D CBFA
RL (I1X+dis) DD CB XX 16 SETO0.B CB CO SET 7.E CBFB
RL (1Y +dis) FD CB XX 16 SETO0.C cBC1 SET 7.H CB FC
RL A CB 17 SET 0,0 cB C2 SET7.L CB FD
RL B CB 10 SET O.E cBC3 SLA (HL) CB 26
RLC cB 11 SETOH CBC4 SLA (IX+dis) DD CB XX 26
RL D CB 12 SETO,L CB CS SLA (IY+dis) FD CB XX 26
RLE CcB13 SET 1, (HL) CB CE SLA A CB 27
RLH CB 14 SET 1, (IX+dis) DDCBXXCE | SLAB CB 20
RLL CB 15 SET 1, (IY+dis)  FD CB XX CE SLAC CB 21
RLA 17 SET 1,A CBCF SLA D CB 22
RLC (HL) CB 06 SET1.B cBC8 SLAE CB 23
RLC (IX+dis) DD CB XX 06 | SET1,C cB C9 SLA H CB 24
RLC (1Y+dis) FD CB XX 06 SET1,D CB CA SLA L CB 25
RLC A CB 07 SET 1,E CBCB SRA (HL) CB2E
RLC B CB 00 SET 1,H cBCC SRA (IX+dis) DD CB XX 2E
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MNEMONIC

HEXADECIMAL

MNEMONIC

HEXADECIMAL

MNEMONIC

HEXADECIMAL

SRA (1Y +dis)
SRA A

SRA B
SRA C

SRA D
SRAE

SRA H

SRA L

SRL (HL)
SRL (I1X+dis)
SRL (1Y +dis)
SRL A

SRL B
SRLC
SRLD

SRL E
SRLH

SRL L

SUB (HL)
SUB (1X+dis)
SuUB (1Y +dis)
SUB A

sus 8

suB C

suB D

SUB E

SuB n

SUB H

SUB L

XOR (HL)
XOR (IX+dis)
XOR (1Y +dis)
XOR A
XOR B

XOR C
XOR D
XOR n

XOR E
XSOR H
XOR L

FD CB XX 2E
CB 2F

CB 28

CB 29

CB2A

CB 2B

CB 2C

CB 20

CB 3E

DD CB XX 3E
FD CB XX 3E
CB 3F

CB 38

CB 39

CB 3A

CB 3B

CB3C

CB 3D

96

DD 96 XX
FD 96 XX

97

90

91

92

D6 XX




Appendix 2

Flag Operation Summary

l INSTRUCTION c| z|pv] s N[ H]commENTS

ADC HL, SS # # \Y # Q X | 16-bit add with carry

ADX s; ADD s # #| V| # @ | #|8-bit add or add with carry

ADD DD, SS # | - - - 0| X|16-bit add

AND s 0 # P # Q 1 | Logical operations

BITb,s - # X X 0 1 | State of bit b of location s is
copied into the Z flag

CCF # | — — - 0 X | Complement carry

CPD; CPDR; CPI; CPIR — # # X 1 X | Block search instruction
Z=1if A=(HL), else Z=0
P/V=1.f BC#Q, otherwise
P/V=0

CPs # # \Y # 1 # | Compare accumulator

CPL — — — — 1 1 | Complement accumulator

DAA # # P # # | Decimal adjust accumulator

DEC s — | # V| # 1 # | 8-bit decrement

INr, (C) — | ® P # 0 @ | Input register indirect

INCs — | #|( V| #| 0| #|8bitincrement

IND; INI - # X X 1 X | Block input Z=0 if B¥0
else Z=1

INDR:INIR — 1 X X 1 X | Block input Z=0 if B¥0
else Z=1

LD A, ;LD AR — | # | IFF| # 0 0 | Content of interrupt enable
Flip-Flop is copied into the
P/V flag

LDD; LDI - X| e | X @ | 0| Block transfer instructions

LDDR; LDIR —| X| 0| X| 0 Q| P/vV=1if BC#0, otherwise
P/V=0

NEG # | # # 1 # | Negate accumulator

OR s ) # P #| 0 0 | Logical OR accumulator

OTDR; OTIR - 1 X 1 X | Block output; Z2=0 if B¥0
otherwise Z=1

OUTD; OUTI - | #| X X 1 X | Block output; Z=0 if B#0
otherwise Z=1

RLA;RLCA;RRA;RRCA| # | —| — | - | O @ | Rotate accumulator

RLD; RRD — | # Pl #]| 0 / | Rotate digit left and right

RLS; RLCs; RRs; RRCs | # # P # 0 0 | Rotate and shift location s

SLAs; SRAs; SRL s

SBC HL, SS # #| V # 1 X | 16-bit subtract with carry

SCF 1 - -1 =10 @ | Set carry

SBCs; SUB s \ 1 8-bit subtract with carry

XOR x Q P "] 0 | Exclusive OR accumulator

.
o
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SYMBOL
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< >x = O |

o

OPERATION
Carry flag. C=1 if the operation produced a
carry from the most significant bit of the operand
or result.
Zero flag. Z=1 if the result of the operation is
zero.
Sign flag. S=1 if the most significant bit of the
result is one, ie a negative number.
Parity or overflow flag. Parity (P) and overflow
(0) share the same flag. Logical operations affect
this flag with the parity of the result while
arithmetic operations affect this flag with the
overflow of the result.
If P/V holds parity, P/V=1 if the result of the
operation is even, P/V=0 if result is odd.
1f P/V holds overflow, P/V=1 if the result of the
operation produced an overflow.
Half-carry flag. H=1 if the add or subtract
operation produced a carry into or borrow from bit
4 of the accumulator.
Add/Subtract flag. N=1 if the previous operations
was a subtract.

H and N flags are used in conjunction with the
decimal adjust instruction (DAA) to properly
correct the result into packed BCD format following
addition or subtractionusing operands with packed
BCD format.

The flag is affected according to the result of the
operation.

The flag is unchanged by the operation.

The flag is reset (=0) by the operation.

The flag is set (=1) by the operation.

The flag result is unknown.

The P/V flag is affected according to the overflow
result of the operation.

P/V flag is affected according to the parity result
of the operation.

Any one of the CPU registers A,B,C,D,E,H,L.

Any 8-bit location for all the addressing modes
allowed for the particular instructions.

Any 16-bit location for all the addressing modes
allowed for that instruction.

Refresh register

8-bit value in range 0-255.

16-bit value in range 0-65535.
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Appendix 3
Numbers on the Amstrad

In this Appendix I want to take a brief look at the
way in which the Amstrad allows us to convert from one
number representation to another.

There are a couple of built in functions in the
amstrad that allow us to convert numbers from decimal

to both binary and hexadecimal. Let’s look at these.
BINS$ (value, no. of digits)

This function accepts a decimal number as ’value’ and
returns a string representing the binary
representation of the number. The ’no of digits’

parameter allows us to specify how many binary digits
are returned when we use the function. This parameter
is optional, but is wvery ugeful. It makes sure that a
value is returned with leading zeros where they are
needed. To make this clearer;

PRINT BIN$(8) will print 1009
PRINT BIN$(8,8) will print 00001000

which is closer to the way in which we are wused to
seeing binary numbers, as the contents of a byte or
register.

HEXS$ (value)

This function returns the hexadecimal representation
of the decimal number ’‘value’. For example,

PRINT HEX$(65S536) will print FFFF

This function is really useful when we want to work
out the displacement bytes for relative jumps or index
register operations. Thus, if we know that the
displacement value for a relative Jjump is -2, and we
want to get the hexadecimal representation of this
value using Two’s Complement notation, we simply use

PRINT HEX$(-2D

The answer, FFFF, is converted into a =ingle byte
value suitable for inclusion in cur programs by simply
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discarding the first two digits, thus leaving us with
FE.

Ue can, of course, incorporate hexadecimal ov
binary numbers into our programs using the appropriate
prefix. This is ’&’ for hexadecimal numbers and *&¥X°

for binary numbers. Thus, 3 is represented in 8 digit
binary as

&X000R0011
and in hexadecimal as

&3
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Appendix 4
Timing Programs

It is possible to work out, roughly, the 1length of
time a given machine code program will take to run.
The 280 CPU in the Amstrad is given about 3.3 million

"ticks” of it’s internal clock each second. Thus, one
tick occupies about ©.33 millionths of a second. Now,
in the tables of instructions that we’ve seen

scattered through this book the timings have been
quoted in terms of these ticks. The absolute length of
time taken for the CPU to execute a given instruction
is thus

TIME = ©.33 ¥ number of ticks

where TINE will be in millionths of a second, or micro
seconds.

When we use this technique in machine code
programs, remembery that instructions in loops will be
repeated several times, and also remember that some
conditional instructions take different numbers of
"ticks” depending upon whether the condition is
fulfilled or not.
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This book will enable you to learn machine language the easy way
— no computer jargon. A straight forward approach with many
examples.

Compiled exclusively for Amstrad users, AMSTRAD MACHINE
LANGUAGE FOR THE ABSOLUTE BEGINNER offers complete
instructions in Z80 machine language programming.

If you are frustrated by the limitations of BASIC and want to write
faster, more powerful, space-saving programs or subroutines,
then this book is for you.

Even with no previous experience of computer languages, the
easy-to-understand ‘no jargon’ format of this book will enable you
to discover the power of the Amstrad's own language.

Each chapter includes specific examples of machine language
applications which can be demonstrated and used on your own
Amstrad. The features and capabilities of the Amstrad are all
covered, so you can start programming straight away.

AMSTRAD MACHINE LANGUAGE FOR THE ABSOLUTE
BEGINNER takes you, in logical steps, through a comprehensive
course in machine language programming. This book gives you
everything you need to write machine language programs on your
Amstrad.

- Melbourne IS8V 0-8bklel-193-4
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