
ADVANCED
AMSTRAD

BASIC

AMSTRAD
ADVANCED

BASIC

AMSTRAD
ADVANCED

BASIC
Joe Pritchard

MELBOURNE HOUSE
PUBLISHERS

© 1986 Joe Pritchard

All rights reserved. This book is copyright and no part may be copied or
stored by electromagnetic, electronic, photographic, mechanical or any
other means whatsoever except as provided by national law. All
enquiries should be addressed to the publishers:

Published in United Kingdom by
Melbourne House (Publishers) Ltd
60 High Street, Hampton Wick
Kingston-Upon-Thames
Surrey KT1 4DB

Published in Australia by
Melbourne House (Australia) Pty Ltd
96-100 Tope Street
South Melbourne, Victoria 3205

ISBN 0 86161 202 7

Printed and bound in Great Britain by Short Run Press Ltd, Exeter

Contents

Index

Chapter 1 Graphicsand Animation. . . 1

Chapter 2 SoundingOut.. .77
The Sound commands, envelope design.

Chapter 3 Getting down to BASICs... 111
A look at the storage of BASIC programs and variables.

Chapter 4 RSX routines and machine code... 141
A collection of RSX routines for easier BASIC programming.

Chapter 5 The CRTC and Screen memory... 179
Have complete control of the video facilities of the Amstrad.

Chapter 6 AFTER and EVERY... 199

Chapter 7 Some Hints on Programming... 209

Appendix 1 ROM Routines Used... 239

Appendix 2 BASIC Tokens.. .241

...243

Introduction

This book can be read in a variety of ways; firstly, you can start here,
and work your way through to the end. Alternatively, you can dip in at
Chapters that interest you, using the Information that you find there for
your own programs. The aim of this book is to show what can be
achieved on the Amstrad from BASIC. Having said that, we will use
machine code on a couple of occasions, but the emphasis will be on
the advanced use of Locomotive BASIC. In discussions, I refer to the
programmer as 'him'; my apologies to any female programmers. This
isn't an attempt to annoy you, it's just that the English language lacks
a suitable alternative. (I do not like the word 'one'!!)

So, if you want to get the most from your Amstrad in BASIC, get the
machine set up, and off you go ...

Thanks must go to my publisher for the go ahead and the
machine, to Amsoft for their excellent documentation and to my wife
for toleration of my anti-social behaviour during the writing of the book!

Joe Pritchard,
Sheffield,
1985

Chapter 1
Graphics and Animation

In this Chapter we'll look at some computer graphics techniques,
including some enhanced text printing, the basic principles of
animation, and graph drawing amongst others. There will also be
several subroutines which you can use in your own programs.

The first area we'll look at is text handling. You'll probably know
that as far as text is concerned there are 2 cursors that you can use
when printing text; the TEXT CURSOR and the GRAPHICS CURSOR.
Normally, text is written to the Text Cursor, which is put at a given
position on the screen by the LOCATE command. The text will be
written to the current window's Text Cursor in the current window's
Text Pen colour. This only allows text to be positioned on the
character coordinate system, which depends upon the screen mode,
but offers a maximum resolution of 80 by 25 different locations.

The alternative is to write text to the Graphics Cursor, using the
TAG command. This allows text to be positioned anywhere on the
graphics 'grid' using the MOVE command, and its colour is set by the
current graphics Pen colour and the background by the current
graphics paper. This allows us to position text on a grid of 640 by 400
pixels. This last statement should be qualified, though; you may not
always be able to see a single pixel change.

Vertical resolution, although said to be 0 to 400, is really only 0 to
200. In Mode 1, for example:

10 PLOT 200,200
20 PLOT 200,201

1

will plot a single dot on the screen. PLOT 200,202 will then add
another dot. Thus, although the quoted resolution is 0 to 400, there
are only 200 separately addressable vertical pixels. On the horizontal
scale, nominally 640 pixels, there are 640 separately addressable
points available only in Mode 2. In Mode 1, PLOT 200,200 and PLOT
201,200 would plot only a single point, thus giving 320 separately
addressable points across the screen. In Mode 0 there are 160
separately addressable points across the screen.

However, TAG undoubtedly gives us a means of positioning text
with greater precision on the screen. The text is positioned by the
MOVE command, the character being printed with its top left corner at
the graphics cursor. When in TAG mode, ASCII codes 0 to 31 will print
their graphics characters rather than excercise any control function.
This has special relevance when printing characters using TAG; any
string thus printed must be printed with a after it. If this is not done,
the graphics characters for CHR$(10) and CHR$(13) will be added to
the string. To see this in action, try the following program:

10 MODE 1
20 MOVE 100,100,1
30 TAG
40 PRINT "Hello"

Now replace line 40 with:

40 PRINT "Hello";

The difference is obvious! After a character is printed under TAG, the
graphics cursor will be at the top right corner of the last character to be
printed. The dimensions of the characters are as follows:

Mode Vertical Horizontal
0 16 32
1 16 16
2 16 8

Of course, the above remarks concerning addressable points should
be taken into account with regard to this table. This amount of space
is taken up by each character printed using TAG, even if the character
is a 'narrow' one such as '.' or 'i'. Look in the text of a book, and you
will find that different letters occupy different widths on the page. This
is known as proportional spacing, and our first subroutine will offer a
very simple form of Proportional spacing for use on the Amstrad. It will
use TAG to position the letters, but will position the next letter
depending upon the width of the current letter. The practical use of
such a routine is to allow you to get more characters per line than you

2

normally would. The number of extra characters depends upon the
mode and the text, but can be useful. So, here we go.

Proportional Spacing
The letters chosen for 'special treatment' are as follows. i,l,,',
comma,.,:,;. You might like to try adding a few more to this list, but
these are the only ones that don't occupy the full width of the space
allotted to them, 'o', 'e' and 'c' can be added, but they are slightly
'chopped' by the subroutine. They are included in the listing. In
addition, the space allowed for each character is slightly less than
usual, which also saves space. It also, unfortunately, trims off the
edges of some characters, but the text is always readable, which is
what matters. The obvious application for such a routine is in graph
labelling, etc. To use the routine, xp% and yp% are set to hold the x
and y coordinates of the first character, mp% holds the screen mode,
cp% holds the colour. m$ should hold the string to be printed.

1 MODE 2
10 m$="Now is the time for all good men to come to the aid of the

party."
20 mp%=0
30 cp%=1
40 xp%=0:yp%=100
50 GOSUB 20000
55 TAG:MOVE 0,150:PRINT m$;
60 END

20000 REM Proportional spacing routine
20010 REM xp%=x position, yp%=y position
20020 REM cp%=colour, mp%=MODE AND m$=string
20030 :
20031 IF mp%=0 THEN inc%=30:prop%=26
20032 IF mp%=1 THEN inc%=15:prop%=12
20040 IF mp%=2 THEN inc%=7:prop%=6
20045 TAG
20050 MOVE xp%,yp7o,cp%
20060 FOR i=1 TO LEN(m$)
20070 ch%=inc%
20080 a$=MID$(m$,i,1):IF INSTR("ioec1 It.,!:;' ",a$)<>0 THEN ch%=prop°/
20090 PRINT a$;
20100 xp%=xp7o+ch%
20110 MOVE xp%,yp%,cp%
20120 NEXT
20130 RETURN

3

The above listing also includes a demonstration text. The routine also
allows less space for the space character. Altering the values of 'inc%'
and 'prop%' adopted in different screen modes can lead to interesting
effects. Note that any text that goes off the right edge of the screen is
lost in this subroutine.

To translate between Character Coordinates and Graphics
Coordinates, use the below equations. In each case, xg% and yg%
are the Graphics Coordinates, and xt% and yt% are the Text
Coordinates.

Mode 0
xg%=(xt%-1)*32
yg%=(yt%-1)*16:yg%=400-yg%

Mode 1
xg%=(xt%-1)*16
yg%=(yt%-1)*16:yg%=400-yg%

Mode 2
xg%=(xt%-1)*8
yg%=(yt%-1)*16:yg%=400-yg%

We can also use the TAG function to produce text on the screen that
has a 'shadow' effect.

Shadow Effects
A simple effect can be produced whereby text appears to be slightly in
front of the background, thus casting a 'shadow' on the background.
To make use of this effect, three colours at least are needed: a
background colour, black and a foreground colour. The principle of
this effect is to set the background, print the text of interest in black on
the background, then move the position at which the text is printed,
then print the text again in the foreground colour. Of course, it is
necessary that the foreground text is printed with transparent paper.
The shadow routine prints text to the screen in this way. The routine
also includes a demonstration.

1 MEMORY 37999
10 MODEO
20 cf%=1 :cb%=3:mp%=0
30 xp%=10:yp%=10
40 m$="Shadow Mode"
45 PAPER 3:CLS

4

50 GOSUB 20000
60 END

20000 REM shadow routine
20001 REM cf%=foreground colour, cb%=backg round
20002 REM xp%, yp% are the text coordinate positions
20003 REM mp%=mode of screen. m$= string
20004 :
20005 IF mp%=0 THEN x%=32
20006 IF mp%=1 THEN x%=16
20007 IF mp%=2 THEN x%=8
20009 FOR i=38000 TO 38005:READ a$:POKE i,VAL("&"+a$):NEXT
20010 x%=(xp%-1)*x%
20020 y%=(400-((yp%-1)*16))
20021 POKE 38001 ,cb%:CALL 38000
20030 MOVE x%-10,y%+5,5
20040 TAGPRINT m$;:TAGOFF
20050 PEN cf%
20060 LOCATE xp%,yp%
20070 PRINT CHR$(22);CHR$(1);m$;CHR$(22);CHR$(0)
20079 DATA 3e,00,cd,e4,bb,c9
20080 RETURN

In this routine, cf% holds the foreground colour, cb% the background
colour of the area of the screen to which the text is to be written, mp%
the screen mode, m$ the string and xp% and yp% the Text Coordinate
position of the text. The above outline will work on either a CPC 464 or
CPC 6128, but to do this a small piece of machine code is used to set
the graphics paper, on which the 'black' text is written, to the colour of
the background where the text is being written. The graphics paper set
like this is NOT transparent, so anything under it will be wiped out. The
machine code is set up by line 20009 and line 20021 pokes in the
PEN in which the graphics background for the text is to be filled. Once
the black 'shadow' is written, the text is rewritten in the foreground
colour, using Transparent paper, at the specified text coordinates.

If you have a 6128, the job is a little easier, in that there are
commands to set the Graphics Pen and Graphics Paper, and these
offer us the possibility of Transparent Graphics Paper. Listed below
are the modifications to the above program for use on a 6128 system.

Delete lines 1,20009, 20079
Alter line 20021 to read:

20021 GRAPHICS PAPER cb%

5

To get the Transparent Graphics Paper option, use:

20021 GRAPHICS PEN ,1

This will also remove the need to set 'cb%' up. Whichever version of
the program you use, remember that you will need to reset the
graphics paper after using the routine. This can be done by calling the
machine code routine after POKEing 38001 with a suitable value for
the 464/6128 version, or by a simple GRAPHICS PAPER command
for the 6128 version. Note that the machine code is relocatable.

Large Characters
When writing programs that have titles on screens, etc., it's nice to be
able to bring attention to these by the use of larger than usual letters.
In my book 'Ready Made Machine Language Routines for the
Amstrad", I listed some such routines. Here are a couple of BASIC
routines to do similar jobs. Note that the |SYMBOL command that we
will add in Chapter 4 will be used here.

Double Height
This is the simplest way of getting larger characters, and is particularly
useful in Mode 2. In the program, xp% and yp% are the Text
Coordinates of the first character of the string, the coordinates
referring to the character space occupied by the top half of the letter.
cf% is the foreground colour and cb% the background colour. m$ is
the string that is to be printed. User Defined Characters 254 and 255
are corrupted by this routine, which works by defining the one
character as the top half of a letter and a second character as the
bottom half of the letter, and printing them one below the other.

1 MODE 2
2 cb%=0:cf%=11
3 xp%=30:yp%=12
4 m$=''Double height text rules OK!"
5 GOSUB 20000
6 END

20000 REM double height routine
20010 REM xp%, yp% are the text coordinates
20020 REM m$ is the string to be printed
20030 REM cf% the foreground colour and
20040 REM cb% is the background colour
20050 :
20070 PEN cf%

6

20080 PAPER cb%
20090 FOR i%=1 TO LEN(m$)
20100 a$=MID$(m$,i%,1)
20110 |SYMBOL,ASC(a$),36000
20120 SYMBOL
255,PEEK(36000),PEEK(36000),PEEK(36001),PEEK(36001),PEEK(3
6002),PEEK(36002),PEEK(36003),PEEK(36003)
20130 SYMBOL
254,PEEK(36004),PEEK(36004),PEEK(36005),PEEK(36005),PEEK(3
6006), PEEK(36006),PEEK(36007),PEEK(36007)
20140 PRINT CHR$(255);CHR$(10);CHR$(8);CHR$(254);CHR$(11);
20150 NEXT
20160 RETURN

Text PEN and PAPER values will be corrupted by the routine. Also,
there is no allowance for text over-running the right hand edge of the
screen. Note that the |SYMBOL command needs 8 bytes of workspace
from which the bytes of the definition can be picked up. I have used
36000 here.

Double Width Characters
This subroutine has the same entry parameters as DBLHGT, but is not
as fast. Indeed, it’s rather pedestrian. However, the program
demonstrates the algorithm and it should easily convert into machine
code.

1 MODE 1
2 cb%=0:cf%=11
3 xp%=30:yp%=12
4 m$="Double Width Characters"
5 GOSUB 20000
6 END

20000 REM double height routine
20010 REM xp%, yp% are the text coordinates
20020 REM m$ is the string to be printed
20030 REM cf% the foreground colour and
20040 REM cb% is the background colour
20050 :
20060 LOCATE xp%,yp%
20070 PEN cf%
20080 PAPER cb%
20090 FOR i%=1 TO LEN(m$)
20100 a$=MID$(m$,i%,1)
20110 |SYMBOL,ASC(a$),36000

7

20119 GOSUB 20180
20120 SYMBOL 255,l%(0),l%(1),l%(2),l%(3),l%(4),l%(5),l%(6),l%(7)
20130 SYMBOL 254>r7o(0),r%(1),r%(2),r7o(3),r%(4),r%(5),r%(6),r%(7)
20140 PRINT CHR$(255);CHR$(254);
20150 NEXT
20160 RETURN
20170 :
20180 REM adjusts the character definition
20220 FOR row%=0 TO 7
20230 c$=BIN$(PEEK(row%+36000),8)
20235 n%=1 :m%=3:GOSUB 20510
20236 l%(row%)=VAL("&X"+b$)
20240 n%=4:m7o=7:GOSUB 20510
20250 r%(row7o)=VAL("&X"+b$)
20270 NEXT
20280 RETURN
20500 :
20510 REM gets left and right half of
20520 REM the characters
20525 b$=""
20530 FOR j%=n% TO m%
20540 b$=b$+MID$(c$,j%,1)+MID$(c$,j%,1)
20550 NEXT
20560 RETURN

Extra Large Characters
The BIGCH routine prints out characters at a massive 8 times larger
than normal. Again, machine code would speed matters up
somewhat. The routine expects the variable xp%, yp%, m$, cf% and
cb% to be set up in the same way as for DBLHGT and DBLVVID.

The final subroutine for printing out text strings in different sizes is
VARHGT, which prints out characters of varying sizes.

1 MODE1
2 cb%=1 :cf%=3
3 xp%=1 :yp%=12
4 m$="BIGI!"
5 GOSUB 20000
6 END

20000 REM Big letters routine
20010 REM xp%, yp% are the text coordinates
20020 REM m$ is the string to be printed
20030 REM cf% the foreground colour and
20040 REM cb% is the background colour

8

20050 :
20060 LOCATE xp%,yp%
20070 PEN cf%
20080 PAPER cb%
20090 FOR i%=1 TO LEN(m$)
20100 a$=MID$(m$,i%,1)
20110 |SYMBOL,ASC(a$),36000
20119 FOR row%=0 TO 7
20120 c$=BIN$(PEEK(row%+36000),8)
20122 FOR k%=1 TO 8
20123 IF MID$(c$,k%,1)="1" THEN PRINT CHR$(143); ELSE PRINT "

II .

20124 NEXT
20125 PRINT CHR$(10);:FORk%=1 TO 8:PRINT CHR$(8);:NEXT
20126 NEXT
20149 LOCATE xp%+(8*i%),yp%
20150 NEXT
20160 RETURN

Variable Size Characters
This routine expects the variables cf% and m$ to be set up as before.
In addition, sz% holds a value which sets the size of the characters,
and offset%, either 1,0 or -1 offers some 'special effects'. offset%=0
with give a straight forward text. Note that in this routine the xp% and
yp% variables should hold the position of the first letter of the string in
graphics coordinates, and the PEN used will be the current graphics
pen.

Again, this routine is slow, and is best used to prepare screens to
be loaded in from disc. Obviously, the larger the size selected, the
longer the routine will take to draw the characters. The routine is best
in Modes 1 and 2 only. The characters are a little distorted in Mode 0.
The below listing shows the subroutine, and a demonstration.

1 MODE 2
2 sz%=3:xp%=100:yp%=100:cf%=1 :m$="Hello":offset%=0
3GOSUB 20000
4 END

20000 REM variable size character routine
20010 REM xp% and yp% are graphics
20020 REM coordinates of the text.
20030 REM cf% is the colour, m$ the string
20040 REM sz% is the size factor and offset%
20041 REM gives special effects

9

20042 REM BEST IN MODES 1 AND 2. NOT SO GOOD
20043 REM IN MODE 0
20050 :
20051 inc%=8*sz%+2
20052 down%=2*sz%
20060 FOR i%=1 TO LEN(m$)
20065 MOVE xp%+1 ,yp%-1 ,cf%
20070 a$=MID$(m$,i%,1)
20080 |SYMBOL,ASC(a$),36000
20090 GOSUB 20200
20091 xp7o=xp%+inc%
20093 NEXT
20094 RETURN
20100 :
20200 REM draw a character
20210top7o=yp%
20220 FOR row%=0 TO 7
20230 r$=BIN$(PEEK(36000+row%),8)
20240 FOR j%=1 TO 8
20250 IF MID$(r$,j%,1)="1" THEN c%=1 ELSE c%=0
20255 GOSUB 20320
20260 NEXT
20270 top%=top%-down%
20280 MOVE xp%+1 ,top%-1
20290 NEXT
20300 RETURN
20310 :
20320 REM plot routine
20330 FOR h%=1 TO sz%
20340 FOR v%=down% TO 1 STEP -1
20350 PLOTR 0,1,c%
20360 NEXT
20370 MOVER 1 ,-down%+offset%
20380 NEXT
20390 RETURN

A lot can be done with text by simply manipulating the bytes that make
up the definition of the character. For example, we can print a string
'upside down' by simply getting the definition of each character,
inverting it, and then printing a character defined by the new definition.
The subroutine, TRANSFORM, prints out strings upside down, back to
front, or with the characters on their sides.

10

TRANSFORM
Here the string is in m$, xp% and yp% the position where the string is
to be printed (Text Coordinates), cf% is the PEN colour, cb% the
paper colour, and m% defines how the string will be printed.

mode Description

1 Upside Down
2 Back to Front
3 Sideways
4 Sideways

The two 'sideways' options are different; run the program below to see
them! Again, the |SYMBOL command is used to get the character
definitions.

1 MODE 1 :FOR m%=1 TO 4
2 xp%=10:yp%=10+m%
3 cf%=1 :cb%=0
5 m$="Joe is here"
6 GOSUB 20000
7 NEXT
8 END

20000 REM transform routine
20001 REM mode% is the mode of operation ;
20002 REM xp% and yp% give the position
20003 REM m$ is the string, cf% and cb%
20004 REM the colours.
20005 :
20006 PEN cf%:PAPER cb%
20007 LOCATE xp%,yp%
20010 FOR i%=1 TO LEN(m$)
20020 a$=MID$(m$,i%,1)
20030 |SYMBOL,ASC(a$),36000
20040 ON m% GOSUB 20100,20200,20300,20400
20050 IF m%=2 THEN SYMBOL
255,I7o(1),I7o(2),I%(3),I7o(4),I%(5),I7o(6),I7o(7),0

20051 IF m%=1 OR m%=3 OR m%=4 THEN SYMBOL
255,I7o(1),I%(2),I%(3),I7o(4),I7o(5),I7o(6),I7o(7),I7o(8)

20060 PRINT CHR$(255);
20070 NEXT
20080 RETURN

11

20090 :
20100 REM upside down
20110j%=1
20120 FOR i=36007 TO 36000 STEP -1
20130 l%(j%)=PEEK(i)
20140 j%=j%+1
20150 NEXT
20160 RETURN
20170 :
20200 REM back to front
20210 FOR row%=1 TO 8
20220 c$=BIN$((PEEK(35999+row%)),8)
20230 d$='"':FOR g%=8 TO 1 STEP -1
20240 d$=d$+MID$(c$,g%,1)
20250 NEXT:l%(row%)=VAL("&X"+d$)
20260 NEXT
20270 RETURN
20280 :
20300 REM sideways routine 1
20305 FOR g%=1 TO 8:b$(g%)='"':NEXT
20310 FOR row%=1 TO 8
20320 c$=BIN$((PEEK(35999+row%)),8)
20330 FOR column%=8 TO 1 STEP -1
20340 b$(column%)=b$(column%)+MID$(c$,column%,1)
20350 NEXT:NEXT

There is an alternative method of getting character definitions for use
in such programs that doesn't use machine code but is a little less
convenient. This involves printing the character to the screen, then
using the POINT command to find out which pixels are in the
foreground colour and which are in the background colour. However,
this approach has several disadvantages; it requires that a character
be printed to the screen, and it is slow.

Well, we've now seen how we can print text in various ways. This
would also apply, of course, to User Defined Characters set up by the
SYMBOL command. (Not, of course, CHR$(254) or CHR(255) in
some of the programs.) Let's now take a look at some advanced ways
of using User Defined Characters.

SYMBOL
The standard Locomotive BASIC SYMBOL command allows us to
define User Defined Characters. Its use is adequately covered in the
manual. However, there is one small 'peculiarity' related to SYMBOL

12

that some of you may not be aware of.
The SYMBOL AFTER command, which sets the range of

characters that are available for the user to change, will not work if you
attempt to use it after HIMEM has been changed in some way. This
will occur if you've opened a file with OPENIN or OPENOUT, or used
the MEMORY command. The moral of this little tale is that you issue
SYMBOL AFTER before you do any of these things.

The definition of user defined characters is a tedious job. To try
and alleviate the tedium I offer the below program, SYMBOL, which
can be used to define a character.

10 REM Character Designer Program
20 REM Joe Pritchard, September 1985
30 :
35 MODE 1
40 GOSUB 18000
50 GOSUB 19000
60 GOSUB 19120
65
70 GOSUB 19400
80 GOSUB 19600
90 IF m%=5 THEN GOTO 50

100 GOSUB 20000
110 GOTO 70
120 :
130 :
140 :
18000 REM initialise various things
18010:
18015 WINDOW #2,25,35,10,20:PAPER #2,3:PEN #2,1
18016 CLS #2
18020 DIM l%(8), t%(8), g%(8,8)
18030 SYMBOL 255,0,0,0,0,0,0,0,0
18040 xs%=18:ys%=18
18100 RETURN
18999:
19000 REM draw the grid
19005 xinc%=8*18:yinc%=xinc%
19010 MOVE 100,100,3
19020 ORIGIN 100,100
19025 DRAW 0,yinc%:DRAW xinc%,yinc%:DRAW xinc%,0:DRAW

0,0
19030 FOR y%=0 TO yinc% STEP 18

13

19040 MOVE 0,y%:DRAW xinc%,y%
19050 NEXT
19060 FOR x%=0 TO xinc% STEP 18
19070 MOVE x%,0:DRAW x%,yinc%
19080 NEXT
19090 RETURN
19100 :
19110 :
19120 REM move cursor and design
19130 REM the character
19140:
19150 x%=0:y%=18
19155 arx%=1 :ary%=1
19160 TAG
19170 :
19175 MOVE x%+2,y%-2,1 PRINT
19180 a$=INKEY$:IF a$="" THEN GOTO 19180
19190 ch%=ASC(a$):MOVE x%+2,y%-2
19195 IF g%(arx%,ary%)=1 THEN PRINT CHR$(143); ELSE

PRINT CHR$(32);
19200 IF ch%=240 THEN y%=y%+18:ary7o=ary%+1 :IF ary%=9

THEN ary%=8:y%=y%-18
19210 IF ch%=241 THEN y%=y%-18:ary%=ary%-1 :IF ary%=0

THEN ary%=1 :y%=y%+18
19220 IF ch%=242 THEN x%=x%-18:arx%=arx%-1 :IF arx%=0

THEN arx%=1 :x%=x%+18
19230 IF ch%=243 THEN x%=x%+18:arx%=arx%+1 :IF arx%=9 THEN

arx%=8:x%=x7o-18
19240 IF ch%=13 THEN g%(arx%,ary%)=1 :MOVE x%+2,y%-2:PRINT

CHR$(143);:x7o=x7o+18:arx%=arx7o+1:GOSUB 19300
19250 IF ch%=32 THEN g%(arx%,ary%)=0:MOVE x%+2,y%-2:PRINT

CHR$(32);:x%=x%+18:arx7o=arx%+1 :GOSUB 19300
19251 IF ch%=ASC("Q") OR ch%=ASC("q") THEN RETURN
19252 MOVE x%+2,y%-2:PRINT
19260 GOTO 19180
19270 :
19300 REM fudge routine to take care of line ends
19330 IF arx%=9 AND ary%<>1 THEN

arx%=1 :ary%=ary%-1 :x%=0:y%=y%-18:RETURN
19340 IF arx%=9 AND ary%=1 THEN

ary%=8:arx%=1 :x%=0:y%=yinc%:RETURN
19350 RETURN
19360 :

14

19370 :
19400 REM routine to put character def.
19410 REM into the array l%()
19420 :
19430 FOR row%=8 TO 1 STEP -1
19440 b$='"'
19450 FOR j%=1 TO 8
19460 IF g%(j%,row%)=1 THEN b$=b$+"1" ELSE b$=b$+"0"
19470 NEXT
19480 l%(row%)=VAL("&X"+b$)
19490 NEXT
19500 RETURN
19510:
19600 REM asks for the mode.
19610 :
19620 PRINT #2,"Mode 1-5"
19630 a$=lNKEY$:IF a$="” THEN GOTO 19630
19640 IF INSTR("12345",a$)=0 THEN SOUND 1,200:GOTO 19630
19650 m7o=VAL(a$)
19660 IF m7o=5 THEN CLS #2:RETURN
19670 PRINT #2:PRINT #2:PRINT #2,"Mode: ";m7o
19680 RETURN
20000 REM routine to define character
20010 FOR i7o=1 TO 8
20020 t7o(i7o)=l7o(i7o)
20030 NEXT
20040 ON m7o GOSUB 20100,20200,20300,20400
20050 SYMBOL 255,l7o(1),I7o(2),I7o(3),I7o(4),I7o(5),I7o(6),I7o(7),I7o(8)
20070 PRINT #2,"Char.: ”;CHR$(255)
20075 TAGOFF:LOCATE 1,22:PRINT SPACE$(40);:LOCATE

1,22:FOR i=1 TO 7:PRINT STR$(l7o(i));",";:NEXT:PRINT
STR$(l7o(8)):TAG

20080 RETURN
20090 :
20100 REM normal
20110j%=1
20120 FOR i7o=8 TO 1 STEP -1
20130 I7o(j7o)=t7o(i7o)
20140 j7o=j7o+1
20150 NEXT
20160 RETURN
20170 :
20200 REM upside down

15

20210 FOR row%=1 TO 8
20220 c$=BIN$(t%(row%),8)
20230 d$='"':FOR g%=8 TO 1 STEP -1
20240 d$=d$+MID$(c$,g%,1)
20250 NEXT:l%(row%)=VAL("&X"+d$)
20260 NEXT
20270 RETURN
20280 :
20300 REM sideways routine 1
20305 FOR g%=1 TO 8:b$(g%)=",,:NEXT
20310 FOR row%=1 TO 8
20320 c$=BIN$(t%(row%),8)
20330 FOR column%=8 TO 1 STEP -1
20340 b$(column%)=b$(column%)+MID$(c$,column%,1)
20350 NEXT:NEXT
20351 FOR row%=1 TO 8
20352 l%(row%)=VAL("&X"+b$(row%))
20354 NEXT
20360 RETURN
20370 :
20400 REM sideways routine 2
20405 FOR g%=1 TO 8:b$(g%)='"':NEXT
20410 FOR row%=1 TO 8
20420 c$=BIN$(t%(row%),8)
20520 FOR column%=1 TO 8
20530 b$(column%)=MID$(c$,co!umn%,1)+b$(column%)
20540 NEXT:NEXT
20550 FOR row%=1 TO 8
20560 l%(9-row7o)=VAL(''&X,,+b$(row°/o))
20570 NEXT
20580 RETURN

Using the program
On running the program you'll be confronted by a Mode 1 screen
containing an 8 by 8 grid, and a text window. The ’+’ in the bottom left
of the grid can be moved around by using the 4 arrow keys. Pressing
the 'ENTER' key will fill in the square currently occupied by the '+', and
this will result in that pixel in the character being defined being set to
foreground colour. Pressing 'SPACE' will set the square back to
background colour. Pressing 'space' or 'enter' will move the '+' cursor
to the right. You can thus see the character being built up in the grid.
When you’ve finished, press the 'Q' key (for 'quit'), and you will be
prompted for a 'Mode' to be typed in in the text window. A value of 1 to

16

4 will print the character just defined and also print out the numbers for
a symbol definition. Each of the 1-4 modes prints the character in a
different orientation, as you will see if you play around with the
program. A mode value of 5 will allow you to continue defining the
character. I hope that you will find this program useful.

Multi Coloured Characters
It's very easy to produce characters that contain more than one
foreground colour. Such characters are called COMPOSITE
CHARACTERS, as they are made up of at least 2 User Defined
Characters.

A separate character is defined for each foreground colour that we
want to have in the final character.

Thus for a two colour character, we'd need to define two User
Defined Characters. An example is shown in Figure 1.1, though the
two characters needed to create the character already exist in the
character set. The simplest way of creating a two colour character is to
use the XOR graphics mode; in the 6128 we could use the GRAPHICS
PEN command to produce transparent graphics paper, which is much
more useful. However, here I'll just show the XOR method.

FIGURE 1.1

17

Figure 1.1 Two Colour Characters
As you can see, there is NO overlap between the different characters
used to make up the composite. The reason for this is that any overlap
when using XOR can give some rather 'odd' colour effects. (See later
in this Chapter.)

To actually get the character on the screen, we can use TAG to
print the character at the graphics coordinates and use the XOR
graphics mode. The below program demonstrates this technique,
printing and moving a two colour character.

10 PRINT CHR$(23)+CHR$(1)
20 MODE 1
30 x%=100:y%=100
40 GOSUB 1000
50 CALL&BD19
60 GOSUB 1000
70 x%=x%
80 GOTO 40
90 :

1000 REM routine to print character
1010 TAG
1030 MOVE x%,y%,1
1040 PRINT CHR$(134);
1050 MOVE x%,y%,3
1060 PRINT CHR$(137);
1070 RETURN

If you don’t want to use graphics coordinates, then you could print the
characters at the text coordinates with transparent paper.

Two Dimensional Graphics
We've all done some 2D graphics, even if it's just drawing pictures on
a piece of paper! However, in this section of the Chapter we'll see how
we can draw various shapes, such as circles, ellipses, etc. The main
problem with such complex shapes is that they take time to draw, the
main reason for this being the fact that most curved shapes require a
calculation involving SIN and COS functions.

These are very time consuming, and various methods have been
used to cut down the number of calculations needed, as we shall later
see. But before we start looking at some drawing routines, a few
words about the graphics screen on the Amstrad.

18

The Amstrad Graphics Screen
As we've already seen, it's arranged as a 640 * 400 grid, though

their are in reality only 200 separately addressable vertical points and
the number of separately addressable horizontal points depends
upon the screen mode. However, for our purposes, we'll treat the
graphics screen as the 640*400 grid.

The Paper and Pen colours used for graphics operations can be
set explicitly only in the version of BASIC supplied with the 6128,
which has the commands GRAPHICS PEN and GRAPHICS PAPER.
On the 464, the graphics PEN colour is set as an additional parameter
on the end of a MOVE, DRAW etc. command. However, the graphics
pen and paper can be set easily on the 464 with a short machine code
routine, such as:

10 ORG 36000
20 CP 2
30 RET NZ
40 LD A,(IX+0)
50 CALL &BBE4
60 LD A,(IX+2)
70 CALL &BBDE
80 RET

Bytes: FE, 02, CO, DD, 7E, 00, CD, E4, BB, DD, 7E, 02, CD,
DE, BB, C9

This routine is from my earlier book, 'Ready Made Machine Language
Routines for the Amstrad', and is used with a simple CALL command:

CALL address,pen,paper

where 'address' is the address of the routine in memory, (it can live
anywhere within the memory pool), 'pen' is the desired graphics PEN
colour and 'paper' is the desired graphics PAPER colour. The pen
colour comes into play immediately, and the paper colour at the next
CLG. The 6128 still has some considerable advantages over the 464
in terms of graphics abilities, particularly the ability to produce
transparent graphics paper, a facility not present in Version 1.0
BASIC.

It is possible to limit the area of the screen accessed by the various
graphics commands by setting up a graphics window. This is done by
a variation of the ORIGIN command.

ORIGIN ox, oy, left, right, top, bottom

19

where ox and oy are the coordinates of the new graphics origin, and
left, right, top and bottom define the limits of the window in graphics
coordinates. Any operations from here on will treat ox,oy as the origin
rather than the usual 0,0. The commands:

10 ORIGIN 300,200
20 CLG
30 PLOT 0,0

will plot a point in the centre of the screen, rather than at the bottom
left corner as we might expect. One effect of this is that we can have
negative 'X' coordinate to the left of the current origin and a negative
Y coordinate below it. The below program demonstrates this.
this.

10 MODE 1
20 ORIGIN 300,200
25 PLOT 0,0
30 MOVE -100,-100
40 DRAW-100,+100
50 DRAW+100,+100
60 DRAW +100,-100
70 DRAW-100,-100
80 GOTO 80

The trick of moving the graphics origin can be a useful one, as we'll
see when we come to draw circles, ellipses and curves later in the
chapter. However, if you do move it, keep track of its value; the best
way to do this is to use a couple of variables so that you can restore it
to its original value when necessary.

Only one graphics window is allowed to be active at once,
subsequent definitions simply replacing the old one. A nice use of the
graphics window is to fill a rectangular block of the screen in with a
particular colour; simply define the block of interest as the graphics
window, set graphics paper to the desired colour using the above
routine, then issue a CLG command. Of course, 6128 programmers
can simply use the FILL command.

If you should lose track of the current origin, though, then here is a
short machine code routine that will return the current origin in ox%
and oy%. These are the ABSOLUTE coordinates of the graphics
origin. The routine can be placed anywhere in memory.

10 ORG 36000
20 CP 2
30 RET NZ

20

40 CALL &BBCC
50 PUSH DE
60 PUSH HL
70 LD L,(IX+0)
80 LD H,(IX+1)
90 POP DE

100 LD (HL),E
110 INC HL
120 LD (HL),D
130 LD L,(IX+2)
140 LD H,(IX+3)
150 POP DE
160 LD (HL),E
170 INC HL
180 LD (HL).D
190 RET

Bytes: FE, 02, CO, CD, CC, BB, D5, E5, DD, 6E, 00, DD, 66,
01, D1,73, 23, 72, DD, 6E, 02, DD, 66, 03, D1,73, 23, 72, C9

The routine is used in the following fashion:

ox%=0: oy%=0: CALL address, @ox%, @oy%

where address is the address of the machine code, ox% the x
coordinate of the origin and oy% the y coordinate.

So, after ORIGIN 200,300, the absove line would return with
ox%=200 and oy%=300.

The simplest shape to consider drawing is the rectangle. The
subroutine 'BOX' offers a general purpose routine for drawing a box
on the graphics screen. The below program contains the subroutine
and demonstrates it.

10 MODE 2
20 xp%=RND*600:yp%=RND*300
30 lx7o=RND‘100:ly%=RND‘50
40 c%=1 :b%=RND*2
50 GOSUB 20000
60 GOTO 20
70 :
80 :

20000 REM routine to draw boxes
20010 REM xp%, yp% give position of
20020 REM bottom left corner, lx% is

21

20030 REM the length and ly% is the
20040 REM height of the box. c% is the
20050 REM colour, and b% sets the border
20060 REM of the box if required.
20070 MOVE xp%,yp%,c%
20080 DRAWR Ix7o,0
20090 DRAWR 0,ly7o
20100 DRAWR -Ix7o,0
20110 DRAWR 0,-ly7o
20120 IF b7o=0 THEN RETURN
20130 MOVE xp7o+5,yp7o+5,c7o
20140 DRAWR Ix7o-10,0
20150 DRAWR 0,ly7o-10
20160 DRAWR-(Ix7o-10),0
20170 DRAWR 0,-(ly7o-10)
20180 RETURN

Various parameters are set up before the subroutine is called. xp7o
and yp7o set the graphics coordinate position of the bottom left hand
corner of the box. Ix7o holds the length, in graphics pixels, of the box,
and Iy7o its height. c7o holds the colour it is to be drawn in. If b7o=1
then a second box is drawn just inside the perimeter of the box.

BOX2 is an alternative box drawing program, designed for use
with text screens. I've included it here for completion, because it
allows the user to signal whether text or graphic coordinates are to be
used. A typical application for BOX2 is to provide a 'box' around an
area of the screen that is being used for input. Such an input routine is
featured in Chapter 7.

1 MODE 2
10 xp7o=100:yp7o=100:lx7o=20:ly7o=5:c7o=1 :g7o=1
20 GOSUB 20000
30 END

20000 REM Second box routine
20001 REM xp7o, yp7o, c7o as for the
20002 REM first routine. g7o sets
20003 REM whether graphics or text
20004 REM coordinates to be used
20005 :
20010 spt$=CHR$(135)+STRING$(lx7o-2,CHR$(131))+CHR$(139)
20020 spa$=CHR$(133)+STRING$(lx7o-2," ”)+CHR$(138)
20030 spb$=CHR$(141)+STRING$(lx7o-2,CHR$(140))+CHR$(142)
20040 IF g%=1 THEN GOTO 20100
20042 LOCATE xp%,yp7o:PEN c7o

22

20044 PRINT spb$;
20046 FOR y%=(yp%-1) TO (yp%-ly%)+1 STEP-1 :LOCATE ,m

m xp%,y%:PRINT spa$;:NEXT
20048 LOCATE xp%,yp%-ly%+1 PRINT spt$;
20050 RETURN
20060 :
20100 TAG:MOVE xp%,yp%+16,c%
20110 PRINT spb$;
20120 FOR y%=yp%+16 TO ((ly%-1)*16)+yp% STEP 16:MOVE

xp%,y%+16PRINT spa$;:NEXT
20130 MOVE xp%,((ly%+1)*16)+yp%:PRINT spt$;
20140TAGOFF
20150 RETURN

xp%, yp%, lx%, ly% and c% are set up as for BOX. However, lx% and
ly% are now measured in CHARACTER SQUARES, irrespective of
whether the box is being printed at text or graphic coordinates.

g%=1 will cause the routine to assume the coordinates to be seen
as graphic coordinates and g%=0 will cause the coordinates to be
seen as text coordinates.

In either case, the box is put in the screen using spaces and some
of the 'block graphic' characters that are to be found in the Amstrad
character set. The result of this is that anything in the area enclosed by
the box will be erased when the box is drawn on the screen.

Transformations
The simple box drawn by the 'BOX' routine can provide the start for
any 4 sided shape. We can TRANSFORM the rectangle into a different
shape by carrying out certain mathematical operations on the
coordinate pairs that define each corner of the box. These operations
are called transformations, and in this section we'll take a brief look at
some of the simpler ones.

A transformation is defined by a MATRIX, which is simply a
rectangular array of numbers. This book isn't a mathematical treatise; I
couldn't understand it, even if anyone else could! So, we'll simply
learn enough about matrices here to allow us to use them. A typical
transformation matrix is:

2
4

although the numbers in such a matrix could be fractional, zero or
negative as well as being positive integers. Matrices can be added,

23

multiplied, etc. just like any other numbers, although the method is a
little more involved. If you're interested, I suggest that an 'O' or 'A'
level maths text will be useful. All we need to do is to know how to
apply such a matrix to a coordinate pair X,Y to give a new pair X',Y'.
We say that X,Y is transformed into X',Y'. The matrix we saw above is
described as a 2*2 matrix. The coordinates (X,Y) can be described as
a 1*2 matrix, and to get X',Y' we simply multiply the two matrices
together. The product of two matrices is given by:

(X,Y) * (p q) = (p*X+r*Y, q*X+s*Y)

(X',Y') = (p*X+r*Y , q*X+s*Y)

The actual value of X',Y' will thus depend upon the values in the
matrix. The simple transformations that we will consider here all have
one drawback; that is, they all leave the coordinate (0,0) unaffected.
The reason is simple if you think about it- zero multiplied by anything
is always zero. All the transformations we will consider will be
centered around the coordinate 0,0, therefore. In some cases, this can
lead to problems. However, the methods of getting around this are
rather beyond the scope of this book, but try to keep this limitation in
mind if you use the techniques given below.

The below program, MATRIX, will accept the values for a matrix
and apply them to the coordinates of a rectangle, and show the
transformed shape. If you are feeling adventurous, you might try other
shapes.

10 MODE 1
20 GOSUB 15000
25 GOSUB 15210
30 GOSUB 15130
40 GOSUB 15280
50 GOSUB 15310
60 PRINT #2,"Press any key to go on”
70 CALL &BB18
80 CLEAR
90 GOTO 10

100 END
14999 :
15000 REM set up the grid and the
15010 REM colours
15020 ORIGIN 320,200,1,640,400,100
15030 MOVE -320,0,3

24

15040 DRAW 320,0
15050 MOVE 0,-200
15060 DRAW 0,200
15070 MOVE 0,0,1
15080 PRINT CHR$(23)+CHR$(1)
15110 RETURN
15120:
15130 REM draw the box using coord%
15140 REM for the start box
15150 MOVE coord%(1),coordy%(1)
15160 FOR i%=2 TO 5
15170 DRAW coord%(i%),coordy%(i%)
15180 NEXT
15190 RETURN
15200 :
15210 REM set arrays up
15211 WINDOW #2,1,40,20,25:PAPER #2,1 PEN #2,3:CLS #2
15220 FOR i%=1 TO 5
15230 READ coord%(i%),coordy%(i%)
15240 coordn%(i%)=coord%(l%):coordny%(i%)=coordy%(i%)
15250 NEXT
15255 DATA 0,50,100,50,100,0,0,0,0,50
15260 RETURN
15270 :
15280 REM input the matrix values
15290 INPUT #2,"P=",p
15292 INPUT #2,"Q= ",q
15294 INPUT #2,"R= ",r
15296 INPUT #2,"S=",s
15298CLS #2
15299 RETURN
15300 :
15310 REM apply the transformation matrix
15320 REM and put the result into
15330 REM coordn%()
15340 FOR i%=1 TO 5
15350 coordn7o(i%)=coord%(i%)*p+coordy%(i%)‘r
15360 coordny%(i7o)=coord7o(i%)*q+coordy%(i%)*s
15370 NEXT
15372 :
15373 REM the above applies the matrix
15374 :
15375 REM now delete the original shape

25

15376 :
15380 GOSUB 15130
15382:
15384 REM now redraw the transformed shape
15386 :
15390 MOVE coordn%(1),coordny%(1)
15400 FOR i%=2 TO 5
15410 DRAW coordn7o(i%),coordny%(i%)
15420 NEXT
15430 RETURN

To use the program, simply type in the appropriate values when
asked. Some of the standard transformation matrices are listed below.
Once you've tried them out, after the above program to give a shape
that doesn't have a coordinate at (0,0), and re-run the program to see
the differences.

Identity Matrix
This, when applied to a coordinate, leaves it unchanged.

/COS(angle) SIN(angle)\
y-SlN(angle) COS(angley

and for a clockwise rotation around (0,0) the matrix is:

/COS(angle) -SIN(angle)\
\SIN(angle) COS(angle)/

where 'angle' in both cases is the angle through which the shape is
being rotated.

Scaling Operations
These allow us to alter the size of the shape by increasing or
decreasing the value of X and Y in each coordinate pair.

The Scale Transformation Matrix is:

/sizex 0\
\G sizey/

26

'sizex' and 'sizey' are the scaling factors, which determine the size of
the transformed shape with relation to the original. If sizex=sizey=1,
then the final shape will be the same size as the original. This
shouldn't surprise us as we've got the Identity Matrix. The two
parameters needn't have the same vdlue; 'sizex' sets the scaling for
the X coordinate and 'sizey' the scaling for Y. 'size' values of greater
than 1 will cause the transformed shape to be larger than the original.
Values less than one will cause it to be smaller.

Reflections
A reflection transform is one which has the effect shown in Figure 1.2.
Here we have a reflection in the line on the graph on which all X
coordinates are equal to zero.

(Reflection in 'x') This is called the X axis, or the Ine 'x=0'. The matrix
for this transformation is:

You can have a similar reflection in the 'Y' axis, which is given by:

(o’?)

27

In addition, you can reflect the shape in any line that you like, such as
the line Y=X, on which all the points have equal X and Y coordinates
(e.g. 100,100 200,200 300,300 etc.)

Shear Transformations
A shear transformation is one of the type shown in Figure 6.3. There
are two types to consider here; the X Shear, which has a
Transformation Matrix of:

/1 shearX
\0 1)

and the X Shear, which has the transformation matrix:

°
\shear 1 /

Exactly by how much the shape is distorted by the Shear operation
depends upon the value of 'shear'.

FIGURE 1.3

Shear Transformation

An additional transformation is the TRANSLATION, which is simply a
movement away from the original position of the shape as a whole
with no distortion. Rather than defining a Transformation Matrix for
translation, I simply move the origin and redraw the shape at the new
location.

If you perform a translation on a rectangle, then perform another
transformation on the transformed shape, the result could have been
obtained by multiplying together the two transformation matrices, and
simply applying the resultant matrix to the original shape. The product
of two matrices is given by:

/a bX*/p q\ =/a*p+b*r a‘q+b‘s\
\c d y \r s) \c‘p+d*r c‘q+d*s /

28

Transformations are rather handy things to know about, allowing you
to generate a variety of shapes from one simple one. For example, a
wide variety of 4 sided shapes can be generated from a simple
rectangle by the application of suitable transformations. The rotation
matrices can be especially useful with complex shapes that need to
be rotated. Rather than having to have lists of coordinates for each
orientation of the shape we simply recalculate the coordinates when
we need them. Of course, there is the problem of time; the SIN and
COS operations required take quite a while to perform. The below
program, 'PATTERN', simply applies a rotation to a shape repeatedly
and draws the result, without erasing the shape previously drawn. You
might like to try altering the routine to introduce a second
transformation, say a scaling operation, applied after the rotation but
before the shape is drawn.

10 MODE 2
15 GOSUB 15210
20 FOR angle=0 TO 360 STEP 10
40 p=COS(angle):q=SIN(angle)
50 r=-SIN(angle):s=COS(angle)
60 GOSUB 15310
70 NEXT
80 END

15200 :
15210 REM set arrays up
15211 ORIGIN 300,200
15215 DEG
15220 FOR i%=1 TO 5
15230 READ coord%(i%),coordy%(i%)
15240 coordn%(i%)=coord%(l%):coordny%(i%)=coordy%(i%)
15250 NEXT
15255 DATA 0,50,100,50,100,0,0,0,0,50
15260 RETURN
15270 :
15310 REM apply the transformation matrix
15320 REM and put the result into
15330 REM coordn%()
15340 FOR i%=1 TO 5
15350 coordn7o(i%)=coord%(i%)*p+coordy%(i7o)*r
15360 coordny7o(i7o)=coord7o(i%)*q+coordy7o(i7o)*s
15370 NEXT
15390 MOVE coordn7o(1),coordny7o(1)
15400 FOR i7o=2 TO 5
15410 DRAW coordn7o(i7o),coordny7o(i7o)
15420 NEXT
15430 RETURN

29

That is all we've room for on simple transformations. However, it
should prove a useful basis for graphics work.

What about other shapes? Polygons, circles, etc? Well, the main
thing to remember about shapes drawn on a computer graphics
screen is that they are effectively made up of straight lines. Even if you
plot the points that make up the shape, a very time consuming
operation, we can still treat the points as being very short straight
lines. This leads us to the interesting proposition that a circle can be
made up of a great number of straight lines, all very short. And this is
the basis of circle drawing. We simply treat the circle as a special
polygon.

Drawing Polygons
OK, let's get the joke out of the way first. A polygon is not an escaped
parrot! It is simply a shape with several sides. In this section, we'll look
at some general techniques with which we can draw shapes of as
many sides as we want. We could say that triangles and rectangles
are polygons, and it's possible to draw such shapes using the
methods we're about to see. But they're so common that we usually
draw the 'ad hoc' rather than by using a mathematical equation to
derive the shape. In addition, the routines listed here give regular
polygons - all their sides are the same length. This is not always
desirable when we're drawing rectangles and triangles.

Before we examine some programs, a few general words. The first
is about positioning the shape. Most routines of this nature draw the
shape around a user specified origin, say 200,300, thus making
200,300 the middle of the shape. Now, there are two ways of drawing
this shape. We could leave the graphics origin where it is and add 200
to the X coordinates generated and 300 to the Y coordinates
generated, or we could move the graphics origin to the point 200,300.
The latter approach is the best. Apart from us not having to add
anything to the coordinates, it gives us better shapes; rounding errors
will inevitably happen in graphics operations, as we are trying to
express real numbers in a limited format. The Firmware of the Amstrad
Machines has been written to try and minimise the effects of these
errors, and it does this by carrying out its operations so that rounding
errors are all towards the graphics origin. Therefore, to limit the
distortion of a given shape, its useful if it can be made symmetrical
around the graphics origin. For this reason, all the routines used here
will, wherever possible, move the graphics origin to the centre of the
shape to be drawn. Thus you might like to use the machine code
routine given above to save the current graphics origin before calling
any of these routines.

The second general point is again to do with distortion, and is a
hardware problem.

30

Any display will introduce some distortion to the image, and my
particular monitor has a tendency to make circles look slightly
elliptical. To get around this, where accuracy is needed, a 'fudge
factor' is introduced to adjust either the X or Y coordinate. This is a
value, in the range 0.8 to 1.2, which is multiplied with the X or Y
coordinate to make the circle 'circular' again. For example, if you've
got a monitor that distorts in such a way as to make the circle you've
drawn 'taller' than it is wide, then you can either reduce each Y
coordinate by use of a 'fudge' less than 1, or increase each X
coordinate by a 'fudge' greater than 1. Experiment with different
values to get the best results. The subroutines listed here DO NOT
contain this correction factor; if you need it, simply apply it to each X or
Y coordinate accordingly.

POLYGON
This routine draws a polygon of 'n' sides centred on position
xp%,yp%. It is of radius 'prad' and in colour c%. Once run, it leaves the
graphics origin at xp%,yp%. Any value above 2 will give a
recognisable shape, and values above about 25 will give a
reasonable circle. The routine is also fairly fast. More accurate circle
drawing routines will be given shortly. The below program also
includes a demonstration. RUN the program, and press the space bar
to see the next shape.

1 MODE 2
2 xp7o=300:yp%=200:c%=1 :prad=50
3 FOR n=1 TO 50
4 CLS:GOSUB 20000
5 PRINT n;" sides to this shape"
6 CALL&BB18
7 NEXT

20000 REM draws polygons of most types
20030 REM n=number of sides, xp7o,yp7o position
20040 REM c7o colour, prad=radius of shape
20050 REM moves graphics origin
20060 :
20070 pstep=6.28/n
20080 RAD
20090 ORIGIN xp7>,yp7o
20100 MOVE prad,0,c7o
20110 FOR i=0 TO 6.7 STEP pstep
20120 DRAW prad*COS(i),prad*SIN(i)
20130 NEXT
20140 RETURN

31

Although this routine gives a reasonable circle in a fairly short time,
we can do better.

Circle Routines
The classic 'equation of a circle' is:

XA2 + YA2 = RA2

We can rearrange this equation, and get two equations that give
values of 'Y' for given values of X and the radius of the circle, R. These
equations are:

Y=SQR(RA2 - XA2)
Y=-SQR(RA2 - XA2)

The CIRCLE1 subroutine, listed below with a demonstration routine,
uses these two equations to draw the circle in two halves, the top
semi-circle being drawn with the equation:

Y=SQR(pradA2-xA2)
and the lower half being drawn with:

Y=-SQR(pradA2-xA2)
xp% and yp% give the position of the circle, c% its colour and prad
giving the radius of the circle. The radius should be integer only. Of
course, as well as drawing circles you can also use the routine to
draw semi-circles!

1 MODE 2
2 prad=INT(RND*50):xp%=RND*300+100:yp%=RND*200+100:c%=1

3 GOSUB 20000
4 GOTO 2

20000 REM draws a circle using the
20010 REM equation of a circle
20020 REM xp%, yp% are position
20030 REM c% is the colour
20040 REM prad is the radius
20050 :
20060 ORIGIN xp%,yp%
20070 MOVE -prad,0,c%
20080 FOR x=-prad TO prad
20090 DRAW x,SQR(pradA2-xA2)
20100 NEXT
20110 FOR x=prad TO -prad STEP -1
20120 DRAW x,-SQR(pradA2-xA2)

32

20130 NEXT
20140 RETURN

The second technique of drawing circles is based on the use of
Trigonometry. Consider Figure 6.4. Here we have a point on a circle
defined by the sine and cosine values of the angle, a.

x = RADIUS ‘COS (0)

y = RADIUS* SIN (0)

Figure 1.4 Trigonometric view of a circle.

It follows that every point on the perimeter of the circle can be
similarly defined, and that we can define the circle by plotting a point
at the position specified for 0 degrees, 1 degree, two degrees and so
on up to 360 degrees. This method is often called drawing by Angular
Increment. The POLYGON routine above worked on this principle.
However, we can speed matters up somewhat by using a version of
this technique in which the Sine and Cosine calculations are only
performed once. All the other sines and cosines required are
calculated from these original two. The routine CIRCLE2 draws circles
in this way. xp% and yp% set the position, c% the colour and prad the
radius.

You can get a smoother circle changing the value of 'n' used from
30 to a higher value. However, this will result in slower operation of
the program. It is a fact of life that the smoother you desire the circle,
the shorter the lines drawn and the more time needed to draw the
complete circle.

1 MODE 2
2 prad=INT(RND*50):xp%=RND*
1 300+100:yp%=RND*200+100:c%=
3 GOSUB 20000
4 GOTO 2

33

20000 REM draws a circle using the
20010 REM equation of a circle
20020 REM xp%, yp% are position
20030 REM c% is the colour
20040 REM prad is the radius
20050 :
20060 ORIGIN xp%,yp%
20070 MOVE -prad,0,c%
20080 FOR x=-prad TO prad
20090 DRAW x,SQR(pradA2-xA2)
20100 NEXT
20110 FOR x=prad TO -prad STEP -1
20120 DRAW x,-SQR(pradA2-xA2)
20130 NEXT
20140 RETURN

That concludes our studies of drawing circles. As a final point, you
might like to introduce a line of code into your subroutines that checks
whether a given line point is going to be on screen or off screen. If it's
off screen then there's little point in drawing it; simply carry on to the
next point.

Ellipses
The Ellipse, or oval, is best seen as a 'flattened' circle, and it's by
treating it in this way that we can best draw it. A typical ellipse is
shown in Figure 1.5.

You will see that an Ellipse is simply a distorted circle. Alternatively,
we could call a circle an ellipse in which the sizes of the minor and
major axes are the same. Thus, we can draw an ellipse with a
subroutine that simply distorts a circle. We've already touched on how
to do this when we were discussing how to get rid of screen distortion.

34

The program ELLIPSE will draw an ellipse, centred on position
xp%,yp%, in colour c% and with a major axis radius of 'major' and a
minor axis radius of 'minor'.

1 MODE 2
2 major=INT(RND*50):minor=INT(RND‘50):xp%=RND
‘300+100:yp%=RND‘200+100:c%=1

3 GOSUB 20000
4 GOTO 2

20000 REM draws an ellipse using the
20010 REM sine and cosines
20020 REM xp%, yp% are position
20030 REM c% is the colour
20040 REM major is the radius of the
20042 REM major axis and minor is the
20044 REM radius of the minor axis
20050 :
20060 ORIGIN xp%,yp%
20070 n=30
20080 c=COS(3.14/n) : s=SIN(3.14/n)
20090 RAD
20100 oldc=1 : olds=0
20110 MOVE major‘oldc,minor‘olds,c%
20120 FOR x=0 TO 2‘n
20130 newc=oldc‘c-olds*s
20140 news=olds*c+oldc*s
20150 DRAW major*newc,minor*news
20160 oldc=newc : olds=news
20170 NEXT
20180 RETURN

The above listing also features a demonstration.

Curves
The simplest curved line to consider is one that is part of the radius of
a circle. We can then draw it using a modified version of one of the
routines listed already in this Chapter. As a demonstration of this fact,
type in and play with the program below:

1 MODE 2
2 INPUT "First Angle:",a
3 INPUT "Second Angle: ",b
4 GOSUB 20060
5 PRINT "Press a key to go on"

35

6 CALL&BB18
7 GOT01
8

20060 REM routine to draw arcs
20070 pstep=360/30
20071
20072 REM number of steps is 30
20074
20080 DEG
20090 ORIGIN 300,200
20100 MOVE 50‘COS(a),50‘SIN(a)
20102
20104 REM move to position that
20105 REM corresponds to angle a
20106
20110 FOR i=a TO b STEP INT(pstep+0.5)
20120 DRAW 50*COS(i),50*SIN(i)
20130 NEXT
20140 RETURN

Figure 1.6 shows the angle associated with different parts of the circle
for this routine.

FIGURE 1.6

Circle for Arc Drawing program.

36

You could draw arcs that are sections of Ellipses by a similar
technique, using variables similar to 'major' and 'minor' in the
ELLIPSE program. The listing ARC will draw an arc of radius 'prad', in
colour c% from starting angle 'a' to finish angle 'b' with the centre of
the arc at xp%,yp%. The angles used are those given in Figure 1.6.

20000 REM general arc drawing routine
20010 REM xp%,yp% is centre of arc
20020 REM c% is colour
20030 REM prad is radius of arc
20040 REM a is the start angle and
20050 REM b is the finish angle on
20060 REM the circle shown in Fig. 6.6
20065 :
20080 DEG
20090 ORIGIN xp%,yp%
20100 MOVE prad*COS(a),prad*SIN(a),c%
20110 FORi=aTOb
20120 DRAW prad*COS(i),prad*SIN(i)
20130 NEXT
20140 RETURN

The final class of curve we'll examine are those generated by some
mathematical function or other. The most obvious of these are things
like SIN and COS curves, although SQR will also generate a curve, as
will raising numbers to powers, etc. These haven't as much general
use as the arc drawing program above. However, it's useful to be
aware of them, as they can be used on occasion. In addition,
remember that Ellipses, Circles, etc. can all be operated upon by
transformation matrices. To do this, the matrix would be applied to
every point generated. This allows us to make attractive patterns,
similar to that generated by the PATTERN routine, but using curved
shapes.

Note that wherever possible, the number of trigonometric
operations carried out should be minimised in order to give a faster
routine. One way of doing this is to calculate the points that will be
needed to draw circles, etc. used by the program before they are
needed and store them in arrays. When the circles are needed they
can be drawn by simply accessing the arrays holding the points. The
below program demonstrates this. The coordinates are held in x() and
y(), and are put in the arrays at the start of the program by the
subroutine at line 20000. Scaling is done when the points are read
back from the array and drawn in the subroutine starting at line 30000.

37

The main disadvantage of this technique is that more memory is used
in dimensioning the arrays than would otherwise be used. However,
this isn't too big a problem, with 40 odd k of memory to play with!

100 MODE1
110 ON BREAK GOSUB 210
130 PRINT "Press any key to see the"
140 PRINT "Array fill up"
150 CALL &BB18
160 |CRTC,12,0:|CRTC,13,0
170 FOR i=0 TO 2000
180 FOR i=0 TO 100:NEXT
190 a(i)=i
200 NEXT
210 REM Break Key Handler
220 MODE 1
230 END

Filling in Shapes.

One thing that is painfully difficult on the Amstrad 464 is to fill in
irregular graphics shapes with colour. This has been alleviated by the
inclusion in the 6128 BASIC of a FILL command, that allows the
shading in of shapes. However, for all you 464 owners out there,
here's an introduction to the art of filling in.

The Firmware supports a rather rudimentary Fill function which
can be accessed from machine code and which allows the user to fill
in rectangular areas of the screen. These routines are called SCR
FILL BOX, at &BC44 which operates on columns and rows of the
screen, and SCR FLOOD BOX, which operates on screen addresses.
These are, though, for rectangular areas of the screen only. We need
something a little more sophisticated than this.

Well, we'll start with the basic principles of graphic filling. The aim
is kto fill a bounded area with colour, and leave all other areas of the
screen alone. Thus in Figure 17, if we told the program to 'fill from x,y',
the square would be filled with colour. Telling the program to 'fill from
x1 ,y1' would result in the rest of the screen but NOT the square being
filled with colour. This, then, is what we are aiming for; a routine that
will fill with colour any area that we want.

38

xl.yl

x,y

FIGURE 1.7

Plane Graphics.

The edges of an area of screen to be filled are specified by lines
called the border, which can be the same or a different colour to that in
which we’re filling in the shape. In the programs to be discussed here,
though, I'll assume a border colour that is different to that of both the
background and the fill colour. It should be obvious why the border
colour should be different to the background colour! The simplest fill
routine to consider is that which fills in a single horizontal or vertical
line on the screen between two border colours. The below listing,
LFILL, shows a simple demonstration of this.

1 MODE 1
2 DRAW 0,400,1 :MOVE 500,0:DRAW 500,400
3 ce%=1 :cf%=3:xp%=100:yp%=100
4 GOSUB 22000
5 END

22000 REM simple line fill in BASIC
22010 REM xp%, yp% is the start pos.
22020 REM cf% is the fill colour, ce%
22030 REM the edge colour
22040 :
22050 off%=1
22060 GOSUB 22140
22070 off%=-1
22080 GOSUB 22140
22090 RETURN
22100 :
22140 REM routine that does it
22150 x%=xp%

39

22160 PLOT x%,yp%,cf%
22170 IF TEST (x%+off%,yp%)=ce% THEN RETURN
22180 x%=x%+off%
22185 GOTO 22160
22190 RETURN

xp% and yp% specify the start of the fill operation and should be
within the line to be filled. cf% sets the colour which is to be used to fill
the area, and ce% is the colour that is to be treated as the edge. In this
routine, ce% shouldn't be the same as cf%. The algorithm used is very
simple; a search is made, first to the right (off%=1), to find the border
colour. Any pixel that is not border is plotted in colour cf%. Once the
border is reached, a return to xp%,yp% is made and a search is done
to the left (off%=-1) in a similar fashion. Thus the whole of the line is
filled.

The routine is not very useful, though, as it stands. A line can be
filled quite easily in other ways, and most shapes we want to fill are
rather more complex! However, a little experiment will allow it to be
used to fill simple shapes, such as squares, circles or triangles. As an
example, try the below program.

1 MODE 1
10 MOVE 0,0,1
20 DRAW 100,100
30 DRAW 200,0
40 DRAW 0,0
50 :
60 REM draw a triangle in pen 1
70 :
80 xp%=100
90 :

100 REM xp% corresponds to the highest yp%
110:
120 ce%=1 : cf%=3
130 :
140 REM set the edge colour to 1 and
150 REM set the fill colour to 3
160 :
170 FOR yp%=1 TO 99
180 :
190 REM now loop to fill the shape
200 :
210 GOSUB 22000

40

220 NEXT
230 END

22000 REM simple line fill in BASIC
22010 REM xp%, yp% is the start pos.
22020 REM cf% is the fill colour, ce%
22030 REM the edge colour
22040 :
22050 off%=1
22060 GOSUB 22140
22070 off%=-1
22080 GOSUB 22140
22090 RETURN
22100 :
22140 REM routine that does it
22150 x%=xp%
22160 PLOT x%,yp%,cf%
22170 IF TEST (x%+off%,yp%)=ce% THEN RETURN
22180 x%=x%+off%
22185 GOTO 22160
22190 RETURN

The routine is also a little slow, but this is something that could be
circumvented by writing the routine in machine code. xp% is set to
correspond to the largest yp% value in the shape, and yp% starts at
the lowest yp% in the shape and is taken by the FOR...NEXT loop up
to the highest value. Some shapes will therefore need filling in two or
three attempts. This still requires us to know the vertical limits of the
shape we're filling.

This can be gotten around by calling the subroutine in the
following manner:

200 GOSUB 22000
210 yp%=yp%+1
220 IF TEST (xp%,yp%+1)<>ce% THEN GOTO 200

This will be adequate for simple shapes; again, xp% is set to the x
coordinate that corresponds to the largest y coordinate, and we start
with yp% set to the lowest y coordinate. To see the type of shape that
this approach can fill, try the program LDEMO3. This has to fill the
shape in 2 goes.

41

10 MODE 1
20 MOVE 0,0,1
30 DRAW 100,100
40 DRAW 100,200:DRAW 200,200:DRAW 200,100:DRAW

300,100:DRAW 300,300:DRAW 400,0:DRAW 0,0
50 :
60 REM draw a shape in pen 1
70 :
80 xp%=304
90 :

100 REM xp% corresponds to the highest yp%
110 :
120 yp%=2
130ce%=1 :cf%=3
140 GOSUB 220
150 yp7o=yp%+2
160 IF TEST(xp%,yp7o+1)<>ce% THEN GOTO 140
170 REM get here and we're ready to fill rest
180 REM of the shape in in the correct colour
190 xp%=150:yp7o=100
200 GOSUB 220
201 yp%=yp%+2
203 IF TEST(xp%,yp%+1)oce7o THEN GOTO 200
210 END
220 REM simple line fill in BASIC
230 REM xp%, yp% is the start pos.
240 REM cf% is the fill colour, ce%
250 REM the edge colour
260 :
270 off%=2
280 GOSUB 330
290 off%=-2
300 GOSUB 330
310 RETURN
320 :
330 REM routine that does it
340 x%=xp%
350 PLOT x%,yp%,cf%
360 IF TEST (x%+off%,yp%)=ce% THEN RETURN
370 x7o=x%+0ff%
380 GOTO 350
390 RETURN

42

This type of fill method doesn't work too well if there are areas within
the shape that are not to be filled in, such as windows in a picture of a
house.

Programs that fill any shape with no intervention from the user of
the program are, in BASIC, slow and often expensive on memory due
to the programming techniques required. Machine code offers the way
out, but this type of program is a little beyond the scope of this book.
We'll finish this look at fill routines with a program that you can use to
'colour in' graphics screens prior to saving them on to disc or tape.
The screen can then be re-loaded into a program. This is often the
best way of getting complex graphics screens up quickly, especially in
a disc system.

The program FILLF does this.

10 REM fill program for graphics screens
20 REM designed to be read in from disc
30 REM Joe Pritchard, 1985
40 :
50 MODE 1
60 :
70 REM if you want other modes, change
80 REM xinc% values as follows:
90 REM mode 0, xinc=4

100 REM mode 2 xinc%=1
110 :
120 xinc%=2:yinc%=2
130 ce%=1:cf%=3
140 :
150 REM default colours are border=1 and
160 REM fill colour=3. Change if you wish
170 :
180xp%=300:yp%=200
190 x7o=0:y7o=0
200 :
210 REM this is the main loop of the program
220 REM and it accepts key presses, acts on
230 REM them and prints and moves the cursor
240 :
250 PRINT CHR$(23)+CHR$(1)
260 TAG
270 :
280 MOVE xp7o,yp7o,ce7o
290 x7o=xp7o:y7o=yp7o
300 PLOT x7o,y7o,ce7o

43

310 :
320 REM loop starts here
330 :
340 a$=INKEY$:lF a$="" THEN GOTO 340
350 ch%=ASC(a$)
360 PLOT x%,y%,ce%
370 :
380 IF ch%=240 THEN y%=y%+yinc%
390 IF ch%=241 THEN y%=y%-yinc%
400 IF ch%=242 THEN x%=x%-xinc%
410 IF ch%=243 THEN x%=x%+xinc%
420 IF ch%=13 THEN GOSUB 19000
430 IF ch%=70 OR ch%=102 THEN GOSUB 18000
440 IF ch%=66 OR ch%=98 THEN GOSUB 18080
442 IF ch%=83 OR ch%=115 THEN GOSUB 19180
444 IF ch%=76 OR ch%=108 THEN GOSUB 19240
450 PLOT x%,y%,ce%
460 GOTO 320

18000 REM input the fill colour.
18010:
18020 GOSUB 18200
18030 cf%=ax%
18040 RETURN
18050 :
18060 REM enter the border colour
18070 :
18080 GOSUB 18200
18090 ce%=ax%
18100 RETURN
18110 :
18200 REM input routine
18210 TAGOFF
18220 LOCATE 1,1 :lNPUT"What is the colour: ”,ax%
18230 LOCATE 1,1 PRINT"
18240 TAG'.RETURN
18250 :
19000 REM this is the fill routine
19010 REM and uses the subroutine at 20000
19020 REM to fill a single line. This is
19030 REM repeated until a border pixel
19040 REM is reached vertically.
19050 :
19060 xp%=x%:yp%=y%

44

19070 TAGOFF
19080 PRINT CHR$(23)+CHR$(0);
19090 :
19100 GOSUB 20000
19110 yp%=yp%+yinc%
19120 IF (TEST (xp%,yp%)oce%) AND (yp%<402) THEN GOTO
19100
19130 :
19140 PRINT CHR$(23)+CHR$(1);
19150 TAG
19160 RETURN
19170 :
19180 REM the save routine
19200 GOSUB 19500
19210 SAVE a$,b,&C000,&4000
19220 RETURN
19230 :
19240 REM load routine
19250 GOSUB 19500
19260 MODE 1:TAG
19270 LOAD a$,&C000
19280 RETURN
19290 :
19500 REM input a string
19510 TAGOFF
19520 LOCATE 1,1 :INPUT"File Name: ",a$
19530 LOCATE 1,1 PRINT" ";
19540 TAG:RETURN
20000 REM simple line fill in BASIC
20010 REM xp%, yp% is the start pos.
20020 REM cf% is the fill colour, ce%
20030 REM the edge colour
20040 :
20050 off%=xinc%
20060 GOSUB 20110
20070 off%=-xinc%
20080 GOSUB 20110
20090 RETURN
20100 :
20110 REM routine that does it
20120 xd%=xp%
20130 PLOT xd%,yp%,cf%
20140 IF TEST (xd%+off%,yp%)=ce% THEN RETURN

45

20145 IF xd%>640 OR xd%<0 THEN RETURN
20150 xd%=xd%+off%
20160 GOTO 20130
20170 RETURN

As written, the program is for Mode 1, although details are given in the
listing of the alterations needed to make it run in other screen modes.
The program offers the following options.

Load a Screen
To do this, press 'L'. Then enter the name of the screen to be loaded
and press <ENTER>. The graphics screen will be loaded.

Save a Screen
To do this, press 'S'. Enter the file name under which you want the
current screen to be saved, and press <ENTER>.

Change Fill Colour
This alters the colour in which the Fill operation is to be done. The Fill
colour shouldn't be the same as the border colour. To use this option,
press 'F', then the colour number required, then <ENTER>.

Change Border Colour
This alters the colour used by the fill routine as the border colour,
which marks the edge of the area to be filled. Press 'B' then enter the
colour number required.

The cursor keys are used to move the 'cursor', a small dot in the
current border colour, around the screen. This indicates where the fill
operation will start. To fill a particular space with colour, move the dot
to within the shape, then press ENTER. The shape will be filled using
the line fill routine we've already seen. The fill will extend upwards
only, and so the start position should be near the bottom of the area to
be filled. Some areas will need a couple of tries to get them totally
coloured in. You, the user, provide the 'intelligence' for this fill routine.
Once you've coloured in the picture, it can be saved with the save
option.

Copying Screen Sections
When putting graphics screens together, a common requirement is the
need for a section of the screen to be repeated in two or more parts of
the screen. In this section, we'll look at routines that copy areas of the
screen.

46

The simplest approach to this problem is to use TEST() to read
pixel colour from the area of the screen being copied and then use
PLOT to plot a pixel of the same colour at the 'destination' area of the
screen. The subroutine below does this.

20000 REM copies an area of the screen
20010 REM xp%,yp% specify block being
20020 REM copied, col% is width, row% is
20030 REM the number of lines, xpd%,xpy%
20040 REM is the destination
20050 :
20055 y%=ypd%
20060 FOR j%=yp% TO (yp%+row%)
20065 x%=xpd%
20070 FOR i°/o=xp% TO (xp%+col%)
20080 PLOT x%,y%,TEST (i%,j%)
20090 x%=x%+1
20100 NEXT i%
20110 y%=y%+1
20120 NEXT

xp%,yp% represent the bottom left hand corner of the block of memory
being copied in graphics coordinates. 'col%' holds the length of the
area, in pixels, that is to be copied, and 'row%' represents the height
of this area. xpd%,ypd% hold the coordinates of the bottom left hand
corner of the 'destination' area of the screen.

An alternative copying routine is shown below; this accesses the
screen memory, and will only give correct results if the screen hasn't
been scrolled. The way in which the screen memory is arranged will
be examined later in this book.

1 xp%=1 :yp%=1 :row%=2:col7o=4:xpd%=10:ypd%=10:mp%=1
2 MODE 1
3 LOCATE 1,1 :PRINT"Hi Therell'LLOCATE 1,2:PRINT"Hello"
4 GOSUB 20000
5 END

20000 REM copy routine copying
20010 REM from screen memory.
20060 :
20061 REM set up the coordinates to be
20062 REM starting from 0,0, then get
20063 REM the pixel size for each mode
20064 :
20070 xp%=xp%-1 :yp%=yp%-1

47

20080 xpd7o=xpd%-1 :ypd%=ypd%-1
20081 IF mp%=0 THEN pix%=4
20082 IF mp%=1 THEN pix%=2
20083 IF mp%=2 THEN pix%=1
20090 :
20091 REM now get the base addresses
20092 REM for each screen location
20093 :
20094 FOR r%=yp% TO yp%+row%
20100 add=&C000+pix%*xp7o+80*r%
20110 add2=&C000+pix%*xpd%+80*(ypd%+r%)
20120 :
20130 F0Rj%=1 TO 8
20140 FOR i%=0 TO (col%*pix%)-1
20150 POKE (add2+i%),PEEK(add+i%)
20160 NEXT
20170 add=add+2048:add2=add2+2048
20180 NEXT
20185 NEXT
20190 RETURN

xp%,yp% hold the top left corner of the area to be copied in text
coordinates, from 1 upwards. col% holds the width of the area to be
copied, row% the number of text lines to be copied, mp% the screen
mode and xpd%,ypd% the text coordinates of the destination area.
The above listing includes a quick demonstration. Again, remember
that the program produces the correct effect only when the screen
hasn't been scrolled.

The final copying routine puts the material read back from the
screen into an area of memory, so that it can be put back on the
screen later. This routine is called 'COPYM'.

1 MEMORY 36999:xp%=1 :yp%=1 :row%=2:col%=4:mp%=1 :opt%=0
2 MODE 1
3 LOCATE 1,1 :PRlNT"Hi There!!":LOCATE 1,2:PRINT"Hello"
4 GOSUB 20000
5 PRINT'Press a key":CALL &BB18
6 xp7o=10:yp7o=10:row7o=2:col7o=4:mp%=1 :opt%=1
7 GOSUB 20000
8 END

20000 REM copy routine copying
20010 REM from screen memory.
20020 REM This routine puts the screen
20030 REM contents into a dump space at 37000

48

20060 :
20061 REM set up the coordinates to be
20062 REM starting from 0,0, then get
20063 REM the pixel size for each mode
20064 :
20070 xp%=xp%-1 :yp%=yp%-1
20081 IF mp%=0 THEN pix%=4
20082 IF mp%=1 THEN pix%=2
20083 IF mp%=2 THEN pix%=1
20090 :
20091 REM now get the base addresses
20092 REM for each screen location
20093 count%=0
20094 FOR r%=yp% TO yp%+row%
20100 add=&C000+pix%*xp%+80*r%
20120 :
20130 FOR j%=1 TO 8
20140 FOR i%=0 TO (col%*pix%)-1
20150 IF opt%=0 THEN POKE (37000+count%),PEEK(add+i%)

ELSE POKE (add+i%),PEEK(37000+count%)
20155 count%=count%+1
20160 NEXT
20170 add=add+2048
20180 NEXT
20185 NEXT
20190 RETURN

xp%,yp7o,mp%,row% and col% perform the same function as before.
The variable 'opt7o' here decides whether data is to be read from the
screen or poked to the screen. opt%=0 will read data from the screen
into a dump area at address 37000. opt%=1 will read data from this
dump and poke it in to screen memory. Note that no error checking is
put in to this routine; be careful not to overwrite any of the System
Workspace or try and read from incorrect screen locations. All three of
these routines can easily be translated into machine code for faster
operation.

Simple Animation Techniques
Getting smooth movement on the screen from BASIC is not easy, and
in this section we'll examine ways of improving animation. In fact,
even machine code routines don't always improve matters, especially
if characters are being printed to the screen. This is due to the time
needed by the computer to convert the character codes into the bytes
needed to produce the correct image on the screen. The only way

49

around this is to directly access the screen memory from machine
code. However, good effects can still be obtained from BASIC, as we'll
now see.

At the heart of any routine that is designed to move graphic
images around the screen is a piece of code to write the image to the
screen, pause, erase it and update the position of the image, then
repeat ad infinitum. For example, at the simplest level we could use
characters printed at text coordinates, erased by overprinting them
with spaces.

This method isn't often used for a couple of reasons.

1. The background is erased; to get around this we would need to
copy the area of screen over which the moving character is to
pass next and when the character is past that area redraw that
section of the screen. This is feasible only in machine code,
and then for small characters if smooth movement is to be
obtained.

2. Moving one character space at once is a little jerky.

We did use this method in the character designer program, however,
where these two considerations weren't important.

To reduce the jerky nature of such movements, we try and move
our image in as small steps as possible. In BASIC, this is done by
using the TAG command to allow us to move characters around the
screen using graphics coordinates rather than text coordinates. This
also allows us to use images formed by the use of graphics
commands to be moved. In the below program you'll see a few 'dots'
moving randomly around the screen, each dot being plotted in one
colour and then erased by plotting it in the background colour. This is
effectively the same as printing a character and then overprinting with
a space; we still zap the background if there's anything there.

10 REM graphics demo in mode 1
20 REM Joe Pritchard
30 :
40 MODE 1
50 :
60 DIM x%(4),xo%(4),y%(4),yo%(4)
70 :
80 REM set up arrays
90 :

100 FOR i%=0 TO 4
110 x%(i%)=INT(RND*100)+100

50

120 y%(i%)=INT(RND*100)+100
130 NEXT
140 :
150 REM set up start positions
160 :
170 REM main loop starts here
180 :
190 FOR i%=0 TO 4
200 PLOT x%(i%),y%(i%),1
210 xo%(i%)=x%(i7o):yo%(i0/o)=y%(i%)
220 NEXT
230 :
240 REM plot the points and save the
250 REM positions in arrays
260 :
270 FOR i7o=0 TO 4
280 x7o(i7o)=x7o(i7o)+(INT(RND*3)-1)*2
290 y7o(i7o)=y7o(i7o)+(INT(RND*3)-1)*2
300 NEXT
310 :
320 REM new positions into arrays
330 :
340 FOR i7o=0 TO 4
350 PLOT xo7o(i7o),yo7o(i7o),0
360 NEXT
370 :
380 REM delete points
390 :
400 GOTO 170

Note the use of integer variables for speed; we could increase speed
a little by getting rid of the REM statements and using multi-statement
lines. If you now set the graphics paper to a different colour to 'O' and
re-run the program , the background will become full of 'holes' as the
erase operation will no longer be in the background colour.

There are other ways of erasing characters or plotted points from
the graphics screen, and these depend upon us being able to change
the way in which anything written to the graphics screen is actually put
there. There are 4 Graphics INK MODES, not to be confused with
screen modes, that allow us to alter the way in which graphics images
are displayed. We'll look at these in more detail shortly, but for now
these are:

51

MODE Description

0 Force mode. Ink is put
on the screen without
any modification.

1 XOR Mode. The colour
displayed on the screen
is obtained by carrying
out an exclusive OR
operation between the
ink in use and what's
already on the screen at
that point.

2 AND mode. The colour
displayed on the screen
is obtained by a logical
AND operation between
the ink and what's
there already.

3 OR Mode. The colour
displayed on the screen
is obtained by a logical
OR operation between
the ink and what's
there already.

The default mode is 0. If you're not sure what the effects of the logical
operations are, look them up in the manual. These modes can be set
using a 4th parameter with most graphics commands or by:

PRINT CHR$(23)+CHR$(mode)

where 'mode' is the desired mode. Note that this statement will not
work if the TAG system is operative. Instead, you'll get two characters
printed to the screen. So, if you're unsure of the status of the TAG
command, do a TAGOFF before executing the above.

Our next step in animation uses one of these modes, and we'll
later see how the others can also be useful. The XOR mode has a
rather unique property, in that printing a shape at the same location, in
the same colour, with XOR Ink mode will cause the shape to be

52

erased! In addition, the background is untouched. There are
problems, in that an XORed shape over something else can cause
'odd' effects as the XOR function is carried out between the ink and
background, but this ink mode is very useful indeed.

The technique with using XOR then, is to draw the image once,
work out the next position at which is to be drawn,draw the shape at
the old position then redraw at the new position. To demonstrate this,
try the below program.

10 REM demonstration of the XOR mode
20 REM in moving graphics
30 :
40 DIM x(4),y(4),xo(4),yo(4)
50 :
60 FOR i%=1 TO 4
70 READ x(i%),y(i%)
80 NEXT
90 :

100 DEG
110 MODE 2
120 ORIGIN 300,200
130 PRINT CHR$(23)+CHR$(1)
140 :
150 MOVE 0,0:FOR j%=1 TO 4:DRAW x(j%),y(j%):NEXT
155 :
160 REM draw the shape first time at new
170 REM position
180 :
190 F0Rj%=1 TO 4:xo(J7o)=x(j%):yo(j%)=y(j%):x(j%)=x(j%)‘1.02:y

(j%)=y(j%)*1.02:NEXT
195 :
200 REM save original position and then
210 REM scale the shape up a little
220 :
230 MOVE 0,0:FOR j%=1 TO 4:DRAW xo(j%),yo(j%):NEXT
235 :
240 REM erase the original shape by drawing it a second
250 REM time.
260 :
270 GOTO 150
280 DATA 0,50,50,50,50,0,0,0

53

The shape gradually increases in size, the old shape being erased by
simply redrawing it. In a similar fashion, we can print characters at the
graphics cursor. The routine below uses the cursor keys to move a
simple block around the screen, as we might want to do in a game.
Note that the repeat rate of the keys have been altered to speed things
up.

1 ON BREAK GOSUB 20000
10 MODE 1
20 xp%=100:yp%=100:ce%=1
30 yinc%=4:xinc%=4
40 a$=CHR$(143)
50 SPEED KEY 4,4

250 PRINT CHR$(23)+CHR$(1)
260 TAG
270 :
280 MOVE xp%,yp%,ce%
290 x%=xp%:y%=yp%
300 TAG
301 :
302 REM this print statement puts
303 REM the character on the screen for
304 REM the first time
305 :
306 PRINT a$;
310 :
320 REM loop starts here
330 :
340 c$=INKEY$:IF c$="" THEN GOTO 340
350 ch%=ASC(c$)
351 :
352 REM print the character for the
353 REM first time.
354 :
360 MOVE x%,y%:PRINT a$;
370 :
371 REM read the keyboard for cursor keys
372 :
380 IF ch%=240 THEN y%=y%+yinc%
390 IF ch%=241 THEN y%=y%-yinc%
400 IF ch%=242 THEN x%=x%-xinc%
410 IF ch%=243 THEN x%=x%+xinc%
411 :

54

412 REM now print the character for the second time
413 REM within the loop
414 :
450 MOVE x%,y%:PRINT a$;
455 CALL&BD19
456 :
457 REM wait for the frame to be
458 REM displayed
459 :
460 GOTO 320

20000 SPEED KEY 30,2
20010 END
20020 :
20030 REM this sets the key repeat
20040 REM back to normal.

The Escape key will finish the program, and reset the keyboard repeat
rate. There is some flicker in this routine, which can be reduced by
altering the key repeat rate set up by the SPEED KEY statement early
in the program. The movement can be made smoother by decreasing
the value of 'xinc%' and 'yinc%'. This will also slow down the
movement. Increasing the value of these two variables will cause less
smooth but faster movement. In addition, flicker will be increased with
larger characters or shapes. Again, machine code will speed things
up a little.

The call to the ROM routine at &BD19 causes the execution of the
program to pause until a frame flyback takes place. This cuts down the
flicker by ensuring that the screen is not updated half way through it
being displayed.

One point to note is that if you try and update the screen too
quickly the character will move and partially 'disappear' at regular
intervals. This is due to interaction between the rate at which the
hardware refreshes the screen and the rate at which our program
attempts to refresh the screen.

The Palette
The range of ink colours available to the programmer is called the
palette of colours, just like a painter has a palette. Exactly which PEN
holds which colour depends upon the Mode in use. In addition, we
can use the INK command to put different colours than usual in a
particular PEN. The INK command has the following syntax:

INK ink,colour1 ,colour2

55

where 'colour2' is an optional parameter. The 'ink' parameter,
corresponding to the number after a PEN or PAPER command has a
value between 0 and 15 and the 'colour' parameters, which select an
actual colour, can have a value between 0 and 26. Thus:

INK 1,17
PEN 1

would result in anything written with PEN 1 appearing on the screen in
colour 17.

When an INK command is executed, anything that has been put
on the screen in that ink has it s colour changed to that used in the INK
command. Thus INK 1,16 will cause anything present on the screen in
ink 1 to be displayed in colour 16. This allows us to perform some
animation by a technique called Palette Switching. In this method, the
inks in a mode are set to background, and a series of images are
drawn, each separate image being drawn in a separate ink colour. To
animate the image, the ink used for each image is separately set to a
non background colour in turn, giving the impression of movement. Of
course, there are limitations with this technique, due to the number of
colours available in a mode. Palette switching is only really useful,
therefore, on the 16 colour Mode 0. The below program demonstrates
this technique with the animation of a simple square.

10 REM Palette switched graphics
20 REM Joe Pritchard
30 :
40 MODE 0
41 ORIGIN 300,200
42 :
43 REM set up origin
44 :
50 FOR i=1 TO 15
60 INK i,1
70 NEXT
80 :
90 REM set all inks to background

100 :
110 FOR j%=1 TO 5:READ x(j%),y(j%):NEXT
120 :
130 REM set up shape
140 :
150 FOR i%=1 TO 15
160 MOVE x(1),y(1),i%

56

170 FOR f%=2 TO 5:DRAW
x(f%),y(f%):x(f%)=x(f%)*1.05:y(f%)=y(f%)*1.05

180 NEXT
185 x(1)=x(1)*1.05:y(1)=y(1)*1.05
190 NEXT
200 :
2.10 REM the above lines draw 15 boxes on
220 REM the screen in different colours.
230 :
240 FOR i=15TO 1 STEP-1
250 INK i,24
260 CALL &BD19
270 INK i,1
271 :
272 REM set each of the inks in turn to a
273 REM foreground colour to display each
274 REM image in turn then set it to background
275 :
280 NEXT
285 FOR l=0 TO 500:NEXT
286 :
287 REM a delay loop
288 :
290 GOTO 240
300 :
400 DATA -50,-50,-50,50,50,50,50,-50,-50,-50

The REM statements in the program explain how it works. The
limitations are as follows:

1. There can only be 15 different images on the screen at once, one
image for each available colour. Thus an animated diagram can
have 15 different 'positions' in it in Mode 0, but only 3 in Mode 1.
Palette switching graphics are thus not available in Mode 2.

2. If all the inks are used for animation then none are left for other
things.

3. Problems can result if parts of two or more images cross each
other on the screen.

Palette switched graphics, therefore, are most use for animating
simple, repetitive, diagrams. The fact that all the different images that
make up the animation are drawn at once and are displayed by simply

57

altering the ink in which they're drawn makes the animation very fast
and smooth.

Problem (3) above can be a great limitation in graphics, and if you are
keen to see it in action, alter the DATA statement in the above
program so that the square has a corner at 0,0. This will ensure that
two sides overlap. Running the program will now lead to flashing of
the image.

The solution to this is to use the OR graphics Ink Mode rather than
the Force Mode that we've used so far in Palette Switching. Using this
technique reduces the number of separate images available for
animation, though, from 15 to 4. The separate images are drawn in
inks 1,2,4 and 8. To display the image drawn in colour 2, we simply
set ALL the inks that contain a binary 2 to a visible colour. Similarly
with the other colours. To see if a colour contains a particular binary
value, we could use a line such as:

IF (colour AND 4)=0 THEN INK colour,0 ELSE INK colour,24

where 'colour' is the ink colour and, in this case, '4' is the binary value
we're looking for. The program below demonstrates this technique.

10 REM using OR to switch
20 REM pallette colours to
30 REM prevent gaps in images.
40 :
50 MODE 0
60 ORIGIN 300,200
70 :
75 FOR i%=1 TO 4:READ colour(i%):NEXT
80 FOR i=1 TO 15
90 INK i,1

100 NEXT
105 PRINT CHR$(23)+CHR$(1)
110 :
120 FOR j%=1 TO 5:READ x(j%),y(j%):NEXT
130 :
140 FOR i%=1 TO 4
150 :
160 MOVE x(1),y(1),colour(i%)
170 FOR f%=2 TO 5
180 DRAW x(f%),y(f%)
190 x(f%)=x(f%)*1.05
200 y(f%)=y(f%)*1.05
210 NEXT

58

215 NEXT
220 :
230 FOR j%=1 TO 4
240 FOR i%=1 TO 15
250 IF (colour(j%) AND i%)=0 THEN INK i%,0 ELSE INK i%,24
260 NEXT
265 CALL &BD19
270 NEXT
280 GOTO 230
300 DATA 1,2,4,8
310 DATA 0,0,50,0,50,50,0,50,0,0

This routine gives more flicker than the previous palette switching
technique because of the need to calculate whether a colour contains
the appropriate binary number.

In addition to animation, Palette Switching allows us to produce
what are called 'Plane Graphics' or 'Sprite Plane Graphics'. This is
shown in Figure 1.8.

FIGURE 1.8

Filling In

Some machines, such as the MSX computers, have Sprite Plane
Graphics as standard, the handling of them being dealt with by the
hardware of the computer. The interesting thing about this technique
is that a shape moving around on Plane 2 will appear to pass behind
any image on Plane 1 but in front of any image present on Plane 3.
Plane 1 is said to have a higher priority than Plane 2, which in turn
has a higher priority than Plane 3. We can place images on Plane 2
without affecting the images already present on Planes 1 or 3, and we
can similarly remove them without damage to the other planes.
However, there are some colour limitations, as we are using the
colours and the graphics Ink Mode to set the Plane Priority. A system
using 5 planes (including a background, thus giving a total of 4 planes

59

on which images can be drawn) is described in the CPC 6128
manual. Here is a simpler Plane Graphics System for Mode 1, which
explains the methods involved. This version has only three different
Planes, Plane 1 which is the foreground, Plane 2 which is the
midground and Plane 3 which is the background. We can only put
images on Planes 1 and 2, therefore, and Plane 1 has the highest
priority. Now there is just the problem of getting our images on to the
screen.

We use the OR Ink Mode, so let's just look at the pixel colours that
will arise on the screen from combinations of the 4 binary patterns
available (00 to 11 binary).

Bit pattern Plane Colour on
in a Pixel the screen

00 3 PEN 0
01 2 PEN 1
10 1 PEN 2
11 1 and 2 PEN 3

Here, all is clear until bit pattern 11.This will arise when an attempt is
made to put an image on Plane 1 at a position which is already
occupied by an image on Plane 2. The two bit patterns will be ORed
together, thus producing the binary 11 forthat particular pixel. Under
normal circumstances, therefore, this would result in places where
Plane 1 and Plane 2 images coincided having a different colour to
Plane 1 or Plane 2. This isn't desirable; the coincident bit pattern, 11,
must give rise to the same colour as Plane 1, which is the highest
priority plane. Thus, we must redefine INK 3 to be the same colour as
Ink 2. We never actually write an image to the screen in Ink 3; we write
to Plane 1 in ink 2 and Plane 2 in ink 1.

Let's see this in action. We'll set the background to blue, Plane 2
colour to yellow and Plane 1 colour to red. The commands to do this
are:

10 INK 0,1 : REM plane 3
20 INK 1,24: REM plane 2
30 INK 2,3: REM plane 1

There is now just Ink 3, which, as we've seen above, must be set to
the same colour as Ink 2. So, we can issue:

40 INK 3,3

60

to sort this out. To demonstrate this method of drawing graphics, try
the below program.

10 INK 0,1
20 INK 1,24
30 INK 2,3
40 INK 3,3
50 PEN 1
60 PRINT "First draw Plane 1"
70
80 REM set up OR graphics mode
90

100 PRINT CHR$(23)+CHR$(1)
110
120 REM now draw the Plane 1 image
130
140 MOVE 100,100,2
150 DRAW 100,200: DRAW 200,200: DRAW

DRAW 100,100
200,100

160
170 PRINT "Now press a key for Plane 2"
180 CALL &BB18
190
200 MOVE 110,110,1
210 DRAW 110,210: DRAW 210,210: DRAW

DRAW 110,110
210,110

220 END

So, we can now draw the images on the appropriate planes. You will
see from the above program that the drawing of the Plane 2 image
above goes behind the Plane 1 image without affecting it in any way.
To see what would happen if we didn't set INK 3 to be the same colour
as INK 2, alter line 40 to:

INK 3,24

There now remains the problem of deleting images from one plane
without affecting the image on another plane. To do this, let's consider
what we must do. Deleting an image on Plane 1 must remove the
Plane 1 image but leave any underlying Plane 2 image untouched.
Similarly, deleting Plane 2 images must not affect a Plane 1 image.
Let's now consider how we might do this. The operation of erasing
must have the following effects on the different bit patterns that
represent each pixel:

61

Plane 2 01
Plane 1 10

erased to Plane 3 00
erased to Plane 3 00

Plane 1+211 erased to Plane 2 01

It is clear that some sort of logical operation will be applied to each
pixel to convert it to the necessary pattern after an image has been
erased. The delete operations can be done as follows:

Erase Plane 2 by ANDing the pixel with 2
Erase Plane 1 by ANDing the pixel with 1

Thus we will use the Graphics AND Ink Mode to redraw the image on
Plane 2 in graphics pen 2 or use graphics pen 1 to redraw the image
on Plane 1. This redraw operation will erase the image on that plane,
but it will not damage the image on any other plane. To see how it
works:

Plane 2 Erasing.

01 AND 10 = 00

Plane 1 Erasing.

If only a Plane 1 image is at the position concerned:

10 AND 01 = 00

If a Plane 1 and Plane 2 image coincide:

11 AND 01 = 01

thus leaving the Plane 2 image on the screen. Thus we can draw and
erase images on the two planes, thus allowing us to produce simple
animation in which images pass in front of and behind each other.

We'll finish our look at animation techniques with a simple
'Pseudo Sprite' system. A sprite is a glorified user defined Character
which can be positioned on the screen under program control and
moved when desired without having to bother about erasing it. The
Sprite handler deals with this automatically. In addition, a Sprite
System can incorporate means of detecting if two Sprites are
overlapping on the screen, and the Sprites can pass in front of or
behind each other on the screen, just like our Plane Graphics above,
but with more Planes and colours. Some computer Systems, such as

62

the MSX machines, have Sprite Handling that is controlled by the
hardware responsible for the screen display.

Sprite 'collisions' can cause an Interrupt, similar to our AFTER or
EVERY interrupt, allowing games programs to be easily written.

Well, the machine code program listed here isn't as complicated
as this, but it allows us to move characters around the screen without
having to worry about XORing the characters. This is done by the
machine code. These 'Pseudo Sprites' are accessed by RSX
commands.

10 ; RSX sprites routine
20 ; using XOR
30
40 ORG 35000
50 LD BC,table
60 LD HL,worksp
70 CALL #BCD1
80 RET
90

100 temp: DEFW 0000
110 xcurs: DEFW 0000
120 ycurs: DEFW 0000
130 worksp: DEFS 4
140 table: DEFW names
150 JP init
160 JP sprite
170 names: DEFM "INI" ; command names
180 DEFB "T"+128
190 DEFM "SPRIT"
200 DEFB "E''+128
210 DEFB O
220 stable: DEFS 110 ; sprite info table
230
240 init: CP 5 ; if not 5 parameters
250 RET NZ ; finish
260 LD B, (IX+8) ; get sprite number
270 CALL find
280 CALL setup
290 LD IX, (temp)
300 CALL print
310 RET
320
330 find: PUSH IX

63

340 LD IX,stable ; get base address
350 loop INC IX
360 INC IX
370 INC IX
380 INC IX
390 INC IX
400 INC IX ; get the right entry
410 INC IX
420 INC IX
430 DJNZ loop
440 LD (temp),IX
450 POP IX
460 RET
470
480 setup: LD HL, (temp)
490 LD A, (IX) ; transfer char.
500 LD (HL),A
510 INC HL
520 INC HL
530 LD A,(IX+2) ; transfer colour
540 LD (HL), A
550 INC HL
560 INC HL
570 coords: LD A,(IX+4) ; transfer y coords.
580 LD (HL),A
590 INC HL
600 LD A,(IX+5)
610 LD (HL),A
620 INC HL
630 LD A,(IX+6) ; transfer x coordinate.
640 LD (HL),A
650 INC HL
660 LD A,(IX+7)
670 LD (HL),A
680 RET
690
700 print: CALL getcur
710 LD A,(IX+2)
720 CALL #BBDE ; set colour
730 LD A,1
740 CALL #BC59 ; set XOR mode
750 LD E,(IX+6)
760 LD D,(IX+7)

64

770 LD L,(IX+4)
780 LD H,(IX+5) ; get start coordinates
790 CALL #BBC0
800 LD A,(IX+0)
810 CALL #BBFC ; print character
820 LD DE.(xcurs)
830 LD HL.(ycurs)
840 CALL #BBC0
850 RET
860
870 sprite: CP 3
880 JR Z.move ; move the character
890 CP 4
900 JR Z,colour ; change colour
910 CP 5
920 JR Z.char ; change character
930 RET
940 move LD B,(IX+4)
950 CALL oldp
960 DEC IX
970 DEC IX
980 DEC IX
990 DEC IX

1000 LD HL, (temp)
1010 LD DE,4
1020 ADD HL,DE
1030 CALL coords ; transfer coords
1040 CALL newp
1050 RET
1060 colour: LD B,(IX+6)
1070 CALL oldp
1080 LD A,(IX)
1090 LD HL,(temp)
1100 INC HL
1110 INC HL
1120 LD (HL), A
1130 CALL newp
1140 RET
1150 char: LD B,(IX+8)
1160 CALL oldp
1170 LD A,(IX)
1180 LD HL,(temp)
1190 LD (HL),A

65

1200
1210

CALL
RET

newp

1220 getcur: CALL #BBC6 ; get cursor position
1230 LD (xcurs),DE
1240 LD (ycurs),HL
1250 RET
1260 oldp: CALL find
1270 PUSH IX
1280 LD IX,(temp)
1290 CALL print
1300 POP IX
1310 RET
1320 newp: LD IX,(temp)
1330 CALL print
1340 RET

The above assembler listing implements the two RSX commands that
allow us to use the 'sprites'. Set up the commands by CALL 35000.

At the heart of the program is a 100 byte table, which holds data
on up to 10 sprites. The data held in the Table for each sprite is the X
and Y position, the Colour of the Sprite and the Character that is to be
printed. This character can have any ASCII code you like, and the
colour can be any that is allowed in the mode in which the program is
being used. The X and Y coordinates specify the position of the Sprite.

To use a Sprite, it must first be initialised, using the [INIT
command.

The Syntax is:

|INIT,n,x,y,colour,char

where 'n' is the Sprite Number, 1-10, 'x' and 'y' specify the start
position of the sprite, 'colour' specifies the colour in which that Sprite
is to be displayed until further notice, and 'char' is the character that is
to be displayed as this sprite until further notice. Once executed, this
command sets up the entry for Sprite 'n' and will put the character on
the screen at the start position and in the specified colour. It is
essential that this command is issued before you use the |SPRITE
command.

If you want to use the |INIT command after you've had a given
sprite running around the screen for some time, then |SPRITE should
be used to set the 'x' and 'y' position of the sprite to an area off of the
screen. Then an [INIT command can be issued.

If you don't provide the |INIT command with the correct number of
parameters the command will be ignored.

66

The |SPRITE command is the main command added by this
program. This allows us to move the character to any position on the
screen, and to alter the character printed or the colour in which it's
printed. The simplest use of the command is:

|SPRITE,n,x,y

where 'n' is the Sprite number and 'x' and 'y' specify the new position
at which you want Sprite 'n' printed. This will erase the Sprite from its
last position and reprint it at the new position, thus making the job of
moving character easier. In addition, the use of machine code speeds
things up a little. To see the |SPRITE command in use, moving a
character, try the below program. Remember that the RSX commands
should have already been initialised.

10 MODE 1
20 |INIT,1,100,100,3,65
30 FOR l%=100 TO 400
40 |SPRITE,1 ,l%,l%
50 NEXT 1%

You will see the red letter 'A' move up and across the screen. Any
flicker present can be lessened by using CALL &BD19, FRAME or a
FOR...NEXT delay loop at line 45.

The |SPRITE command saves the current graphics cursor position
and the current graphics PEN colour on entry and restores them
before returning to BASIC. However, the Graphics Ink Mode is NOT
saved, and after a |SPRITE command you'll find that Ink Mode XOR is
selected. In practice, though, this isn't too much of a problem.

The second use of |SPRITE is to alter the colour of a given sprite
without altering the position of the sprite. The syntax is:

(SPRITE,n,x,y, colour

where only 'n' and 'colour' are relevant. The values allocated to 'x'
and 'y' are used by the program. The sprite will be printed at its
current position in the new colour, and the new colour will be used for
subsequent operations with that sprite, 'n' is the Sprite number.

The last use of the |SPRITE command is to change the character
that is printed for a given sprite. The syntax is:

|SPRITE,n,x,y,colour,char

67

Again, 'n' and 'char' are the only relevant parameters. The new
character will be printed at the current position and will be used in
subsequent actions with sprite 'n'.

That completes our examination of simple animation techniques.
We'll finish this Chapter by looking at a simple subroutine to take a

string of single letter commands referring to graphics operations and
act on them, and a quick look at routines for drawing graphs of various
types.

DRAW
We've already seen routines similar to this which plays sounds and
generates simple rhythms. This routine is the graphics equivalent,
accepting a string of simple commands and executing them. It thus
provides an alternative to the standard graphics commands and could
easily be extended to form a 'Turtle Graphics' program. The routine
uses the relative move and draw commands, rather than the absolute
ones, so operations are done relative to the point last visited. The unit
of measurement used for the Left and Right turns is the degree, and
that for the Forward and Backward moves is the Pixel.

The string 'm$' is set to hold any of the following commands, along
with any parameter necessary for its operation. A call is then made to
the draw subroutine which will execute each of the commands in the
string in turn.

F n.
FORWARD 'n' pixels. Exactly which direction on the screen this will be
depends on any angles that have been set up by R or L commands.

At initialisation, F100 would draw a line 100 pixels long towards
the top of the screen. R90 followed by F100 would produce a
horizontal line 100 pixels long.

B n.
BACKWARD 'n' pixels. Similar to F but moves draws a line backwards
relative to the current position.

L n.
LEFT 'n' degrees. This makes a Left Turn of 'n' degrees from the
current position. Thus the string:

m$="F100L90F100L90F100L90F100"

would draw a square with sides of length 100 pixels.

68

R n.
RIGHT 'n' degrees. This is similar to the L command but does a Right
Turn.

P n.
PEN n. This changes the graphics pen to 'n'.

U and D
These allow us to Move as well as DRAW. A 'U' command allows us to
move the current location around without drawing a line, and 'D'
allows us to start drawing lines again.

20000 REM DRAW subroutine and demo
20010 REM Joe Pritchard August 1985
20020 :
20030 :
20050 st$="FBRLPUD1234567890"
20060 dr%=1
20100 :
20110 REM these parameters are set up
20120 REM just the once
20130 :
20140 :
20145CLS
20146 MOVE 200,200
20150 m$="P1 F50R9P2F50R9P3F50R9P4F50R9"
20160 GOSUB 20210
20165 GOTO 20160
20170 END
20180 :
20190 :
20200 :
20210 REM DRAW subroutine
20215 DEG
20230 :
20260 :
20270 FOR i%=1 TO LEN(m$)
20280 a$=MID$(m$,i%,1)
20290 opt%=INSTR(st$,a$)
20300 IF opt%=0 OR opt%>7 THEN ERROR 5
20330 ON opt% GOSUB
20600,20660,20740,20810,20870,20900,20970
20340 NEXTi%

69

20350 RETURN
20360 :
20520 :
20530 REM read a number from string
20540 num$="":i%=i%+1
20550 IF i%>LEN(m$) THEN RETURN
20560 a$=MID$(m$,i%,1):IF (a$<="9" AND a$>="0") OR a$="." THEN

, num$=num$+a$:i%=i%+1 :GOTO 20550
20570 i%=i%-1 :RETURN
20580 :
20600 REM Forward routine
20610 GOSUB 20530
20620 y%=VAL(num$)
20630 IF dr%=1 THEN DRAWR y%*COS(angle),y%*SIN(angle)

ELSE MOVER y%*COS(angle),y%*SIN(angle)
20640 RETURN
20650 :
20660 REM Backwards routine
20670 GOSUB 20530
20680 y%=-VAL(num$)
20690 IF dr%=1 THEN DRAWR y%*COS(angle),y%*SIN(angle)

ELSE MOVER y%*COS(angle),y%*SIN(angle)
20700 RETURN
20710 :
20740 REM Right Turn routine
20750 GOSUB 20530
20760 y%=-VAL(num$)
20761 angle=(angle+y%) MOD 360
20762 RETURN
20800 :
20810 REM Left Turn Routine
20820 GOSUB 20530
20830 y%=VAL(num$)
20840 angle=(angle+y%) MOD 360
20850 RETURN
20860 :
20870 REM pen colour routine
20880 GOSUB 20530
20890 MOVER 0,0,VAL(num$)
20891 RETURN
20892 :
20900 REM Pen Up routine
20910dr%=0

70

20920 RETURN
20930 :
20970 REM Pen Down Routine
20980 dr%=1
20990 RETURN

Further features could be added to this routine, such as a REPEAT
function, which would allow the repetition of a given sequence of
commands a given number of times, and a means of drawing shapes
such as squares or circles from one command. The latter could easily
be added using routines we've seen already in this Chapter.

We'll finish this Graphics Chapter by looking at ways in which data
can be represented on simple graphs, such as Line Graphs, Bar
Charts and Pie Charts. These are all useful ways of displaying
information on the screen.

Line Graphs
These are the type of graphs we all know from school, in which a line
is drawn joining all the points. Examples are trigonometric graphs,
such as Y=SIN(X) or Y=COS(X), and graphs describing mathematical
equations, such as Y=MX+C. In each case, the Y coordinate is
obtained from the X coordinate by a mathematical operation. It's not
just a matter of getting the Y values for given X values; the resultant Y
values may not be of the correct size to fit on the screen. A graph
should be drawn so that as much of the available screen is used as
possible. Fitting the graph points on to a graphics screen of a given
size is called SCALING, and this is what we'll look at first. There are a
few steps to follow to Scale a set of points.

1. Find the maximum value of X, Xm, and the maximum value of Y,
Ym.

2. Calculate the scale factor, scf, for each axis by calculating
scfx=X/Xm and scfy=Y/Ym. 'Y' is the largest value in the Y axis,
and 'X' is the largest value of the X axis.

3. Multiply each X coordinate by scfx, and each Y coordinate by scfy.

In addition, an OFFSET is sometimes required. This is a value that is
added to or subtracted from the Y coordinate values AFTER they've
been scaled. It serves to move the plotted points up and down the Y
axis. One typical use of this is when we have a function, such as SIN(),
that returns negative values over part of its range. The offset is added

71

to ensure that all the points drawn are above 0. An alternative to this,
of course, is to set the graphics origin appropriately - say with y=200.

The first prerequisite here is that we have the coordinates already in
the machine. The most efficient way to do this is to store them in
Arrays. The listing below shows how we can set up arrays containing
a series of points to be plotted and then scale and plot them. Note how
the origin is moved so as to avoid the need to add an offset value.
The listing is self documenting.

10 REM Demonstration of scaling of a line
20 REM graph. Joe Pritchard, 1985
30 :
40 DIM x(360),y(360)
50 DIM x%(360),y%(360)
60 :
70 REM dimension the arrays
80 :
90 Y=200:X=640

100 :
110 REM largest Y coordinate is 200, as we'll
120 REM have moved the origin to 0,200 thus
130 REM allowing us to plot points without
140 REM adding an offset
150 :
160 ORIGIN 0,200
170 DEG
180 FOR i%=0 TO 360
190 x(i%)=i%
200 y(i%)=SIN(i%)
210 NEXTi%
220 :
230 REM Lines 160-210 set the origin, set degrees
240 REM and set up the arrays with the data. x(n)
250 REM is set for the sake of example: you could
260 REM get around having to use x() and x%()
270 :
280 xm=0
290 FOR i%=0 TO 360
300 IF ABS(x(i%))>xm THEN xm=ABS(x(i%))
310 NEXT i%
320 :
330 REM get the largeset value of x into xm
340 :

72

350 ym=0
360 FOR i%=0 TO 360
370 IF ABS(y(i%))>ym THEN ym=ABS(y(i%))
380 NEXT
390 :
400 REM now get the largest y value into ym
410 :
420 xscf=640/xm
430 yscf=200/ym
440 :
450 REM work out the scaling factors.
460 :
470 FOR i%=0 TO 360
480 x%(i%)=INT(x(i%)*xscf)
490 y%(i%)=INT(y(i%)*yscf)
500 NEXT i%
510 :
520 REM scale the points and store in arrays
530 :
540 MOVE 0,0,1
550 FOR i%=0 TO 360
560 DRAW x%(i%),y%(i%)
570 NEXT i%
580 :
590 REM now move to the origin and draw the
600 REM graph that we want, using the full amount
610 REM of the screen that is available to us

There is, of course, the matter of drawing and labelling the axes.
Drawing them is fairly straight forward; the Envelope designer
program will show how this could be done. However, labelling is a
bigger problem; sometimes the numbers are simply too large to fit on
to the graph. This can be partially alleviated by using the graphics
cursor to position the numbers, or by redefining some of the user
defined characters as 'thin' numbers. This is a particular problem in
Mode 0. As an alternative to this, you might consider the following
approach.

The graph is drawn, and a 'cursor' is positioned on the screen.
This cursor can be moved around using the arrow keys and can thus
be positioned at any point on the screen. The X and Y position of the
cursor will be known, and this, in conjunction with the scale factors
used, can be used to calculate the 'real' values represented by the
graph. These can then be displayed in a text window. The actual
program needed to do this is fairly simple, so I leave it to you!

73

Bar Charts
A second method of displaying information is the Bar Chart, in which
the graph consists of a series of vertical 'bars'. The basic principles of
drawing a bar chart are as follows.

1. The number of X values gives the number of bars that the chart will
have.

2. Use a routine similar to that above to get the largest Y value, and
then use this to produce a scaling factor for the Y values. Apply the
scaling factor to the Y values. This will give you the height of the
'bar' that is to be drawn on the screen.

3. Now draw the bar. There aren't many quick ways of doing this, as
we usually want the bar to be filled in with colour. From BASIC, the
best way is to use the height of the bar and its width to define a
graphics window, clear this to the graphics paper desired, then
reset the graphics window to its original size. This does mean
keeping the original size of window, origin and graphics paper in
variables, but this isn't a problem. If you've a 6128 system you can
draw the box and then use the FILL command to fill it in. An
alternative that might be useful is to use CHR$(143) to print the bar
on the screen, using the TAG option to position the bar.

Pie Charts
We'll finish off now with a simple routine to draw Pie Charts. These are
circular diagrams that have been split into sectors, the size of the
perimeter of each such sector representing the size of the parameter
being graphed.

The principle of drawing such a chart is fairly simple; we take the
values to be graphed and scale them so that they'll fit into a 360
degree circle. This gives us all the data we need to draw a circle with
the sectors marked out. We simply draw the circle as a series of arcs,
as was shown earlier in this Chapter. The below program shows this
in action, and can easily be written as a subroutine to fit in to your own
programs. Although I've only used 5 items of data, you could use
more. Be warned that the more data you have, the larger the circle
radius needs to be to show the different sectors clearly. Again, the
routine is well REMmed so you can follow and modify it.

74

10 REM Pie Chart Drawing Demonstration.
20 REM Joe Pritchard, 1985
30 :
40 FOR i=1 TO 5
50 READ y(i)
60 NEXT
70 :
80 REM read data in from data statement
90 REM at line 30000

100 REM could easily initialise array from
110 REM input statements or a data file
120 REM if you did and used more than 10
130 REM items, don't forget to DIM arrays
140 :
150 ytot=0
160 FOR i=1 TO 5
170 ytot=ytot+y(i)
180 NEXT
190 :
200 REM totalise the values so that we can
210 REM work out the proportion that each
220 REM Y data value is of the whole
230 :
240 FOR i%=1 TO 5
250 y%(i%)=INT(((y(i%)/ytot)*100)+0.5)*3.6
260 NEXT
270 :
280 REM work out the percentage that each y
290 REM data value represents and then
300 REM calculate the angle that it represents
310 REM as part of a circle
320 :
321 FOR i%=1 TO 5
322 y%(i7o)=y7o(i%)+y%(i%-1)
323 NEXT
324 :
325 REM now add up the values to get the
326 REM angles that are used for each arc
327 :
330 xp7o=300:yp7o=200:prad=100:c7o=1
350 :
360 REM set up the parameters for the
370 REM 'circle' that will be drawn out

75

380 REM of the various segments Centre it on
390 REM 300,200, in colour 1, with a
400 REM radius of 100.
430 :
440 FOR i%=1 TO 5
450 a=y%(i%-1):b=y%(i%)
460 GOSUB 20000
470 NEXT

20000 REM Modified arc drawing routine
20010 REM xp%,yp% is centre of arc
20020 REM c% is colour
20030 REM prad is radius of arc
20040 REM a is the start angle and
20050 REM b is the finish angle on
20060 REM the circle shown in Fig. 6.6
20065 :
20080 DEG
20090 ORIGIN xp%,yp%:MOVE 0,0
20100 DRAW prad*COS(a),prad*SIN(a),c%
20110 FOR i=a TO b
20120 DRAW prad*COS(i),prad*SIN(i)
20130 NEXT
20140 RETURN
30000 DATA 10,10,30,40,50

You might like to add labelling facilities to the routine, and colouring
facilities. This labelling can be easily done on larger charts with a
small number of sectors by using TAG to print a code letter in the
sector. This isn't so easy with smaller sectors.

76

Chapter 2
Sounding Out

In this Chapter we'll consider sound. I've assumed that you are
already conversant with the contents of the manual on this subject, so
you won't find much in the Chapter on the basics of sound production.
Instead, we'll concentrate on the more advanced aspects of Sound
production, including Envelope Design, synchronization of sound on
different Channels, sound effects and directly accessing the Sound
Generator hardware. We'll round off with a few useful subroutines and
programs for sound.

The SOUND command
Just a quick review of the SOUND command. The full Syntax is:

SOUND channel,tone,duration,volume,ENV,ENT,noise

Channel
This parameter is an 8 bit value which can be viewed on a bitwise
basis. We'll look at the details of synchronization, Holding and
Release of Channels later in this Chapter.

77

This parameter is compulsory.

Tone
This defines the period of the tone played, and hence its pitch. If you
have a Tone Envelope in use as well, then obviously the tone will vary
as the sound is played. Legal values are between 0 and 4095, 4095
being the lowest pitch.

Duration
This is the period of time, in units of 0.01 seconds, for which the
Channel is active. The default is a duration of 20 units, or 1/5 second.
In this role, the legal values are between 0 and 32767.

If the parameter is used in conjunction with Envelope commands,
then there are two special cases. If the Duration is set to zero, then the
duration will depend upon the duration of the Envelope (see later in
Chapter). The Channel will simply play the active Envelope, then go
silent.

If a negative value is given, say -10, then the envelope will be
played 10 times. Similarly, -4 would play the envelope 4 times.

Volume
This is the starting Volume of the sound being played on the Channel.
Legal values are between 0 and 15, 15 being the loudest note
available. If you omit this parameter, then we have a volume of 12.

ENV and ENT
These are the Amplitude and Tone Envelopes, which we'll look at
later in the Chapter. In both cases, legal values are in the range 1-15.

Noise
The last parameter of the SOUND command is that defining the pitch
of any noise being played on the Channel. Legal values are in the
range 1 to 31, with 31 giving noise of the lowest 'pitch' and 1 being the
highest pitch.

Noise is typically used in programs to provide sound effects of
various types. The noise produced is often called 'White' or 'Random'
noise, and if you want to hear an example try the below line:

SOUND 1,0,duration,volume,0,0,noise

where 'noise' is the pitch of the noise required, 'duration' and 'volume'
are as given above. The 'tone' parameter has been set to zero above,
but if you set this parameter to another value then you would get a

78

mixture of tone and noise being played on Channel A. The below
program will play the range of noise 'pitches' available on the
Amstrad.

10 FOR pitch=O TO 31
20 SOUND 1,0,10,15,0,0,pitch
30 NEXT pitch

Noise can be used to add a variety of sound effects to your programs,
with or without the use of Envelopes. You might like to try the two
programs below to get an idea of the potential of even simple routines.

10 REM rain on a roof??
20 J%=RND*50
30 FOR l%=0 TO J%:NEXT l%
50 SOUND 1,0,1 ,RND*15,0,0,RND*31
60 GOTO 20

10 REM running footsteps for a game?
20 J%=200
30 FOR l%=0 TO J%:NEXT l%
50 SOUND 1,0,2,15,0,0,31
60 GOTO 20

Some experimentation with these two routines - e.g. adjusting the
value of J% or the noise pitch and duration, or introducing some tone
- would probably give other effects. We'll see some more sound
effects when we consider envelopes later. As a final example, try the
below 'explosion'.

FOR l%=15TOO STEP -1:SOUND 1,0,5,l%,0,0,10: NEXT l%

Synchronization of Channels
You've probably already 'beeped' out tunes on the Amstrad; if not you
might like to try the 'Notes' program later in this Chapter. But a
common requirement in music and sound effects is for notes to be
played simultaneously on different channels, each channel playing a
different note. Synchronising two or three channels in this way isn't as
hard as it sounds, so we'll now examine how we can do it.

For example, say we want to play to tones, of period 200 and 300
on Channels A and B at the same time. A will be Synchronised with B,

79

and vice versa. Amsoft use the term 'RENDEZVOUS' when discussing
synchronisation of notes, and an alternative way of putting this is that
'A will rendezvous with B'. Once we tell two or more Channels to
rendezvous in this way, the only time that we'll get any sound out of
one channel is when the other channels (with which it is to
rendezvous) have got a sound in their queue.

Rendezvous can be applied to Noise as well as tone, and to
Enveloped or Non-Enveloped sounds.

So, how is it done? We use what I call the SYNCHRONISATION BITS
of the 'channel' parameter, Bits 3, 4 and 5. If we want to rendezvous a
given channel, with, say Channel A, we simply set Bit 3 to 1 as well as
setting the appropriate Channel Select bits (Bits 0 to 2). Telling a
Channel to rendezvous with itself is, by the way, a little pointless! So,
back to our original problem. Let's play the tone with period 200 on
Channel A. We need to get this Channel to rendezvous with Channel
B. The line of BASIC to do this is:

10 SOUND &X00010001,200

I've expressed it in binary rather than decimal for clarity. The Channel
B rendezvous bit, Bit 4, and the Channel A select bit, Bit 0, have both
been set to '1'. In a similar fashion, we can issue the below command
to Channel B:

20 SOUND &X00001010,300

Now type in the lines without line numbers. Note how no sound is
heard until after BOTH the commands are entered. An interesting
effect is noted if we use:

10 SOUND &X00010001,200,1000
20 SOUND &X00001010,202,1000

A 'beat' note can be heard, corresponding to the difference in
frequency between the two tone being played.

If we wanted to synchronise the activity of all three channels, then
we would use the following 'channel' parameters.

Channel A
Channel B
Channel C

&X00110001
&X00101010
&X00011100

Sync with B+C
Sync with A+C
Sync with A+B

80

One practical application of the rendezvous is the ability to play
musical chords. This isn't a music textbook, so all you'll get here are
the very basics.

A chord is a pleasant sounding combination of musical notes,
often 3. There are many different chords possible, but here are a
couple that might be of interest to you.

M=Major, m=Minor.

Chord Notes Tone Period Values
CM7 C,E,A# 239, 190, 134
Am A,C,E 142, 239, 190
AM7 A,C#,G 142, 225, 159
EM7 E,G#,D 190, 150, 213

To play them, just play all three notes at the same time.

Hold
It is possible to set up a sound, but not play it until a set time in the
future. The HOLD function on a given Channel is set by bit 6 of the
'channel' parameter for that Channel. If set to 1, then the sound is
placed in the Sound Queue but not played at once. Try:

SOUND &X10000001,200

No sound is heard until a RELEASE command is used. In this case,
RELEASE 1 will allow the tone to be heard. The parameter of
RELEASE is a 3 bit binary number, which specifies which channels
should be RELEASEd.

Channel A
Channel B
Channel C

A

X X X X X

----------- RELEASE CH. A
----- -------------RELEASE CH. B

------------------- ----- RELEASE CH. C.

FIGURE 2.2

81

As with the 'channel' parameter, these are additive, i.e. to RELEASE
any sounds in the Sound Queue of Channels A and B we'd simply
execute a

RELEASE 3

command. To see RELEASE in action, try the below program.

10 SOUND &X01000001,200
20 SOUND 1,300
30 SOUND 1,400

RUN it. No sound will be produced. Now type in RELEASE 1. This will
allow all three notes to be heard, one after another. Any sounds
added to a sound queue after a sound that has been flagged as 'Held'
by the 'channel' parameter will also be held.

Flush
Bit 7 of the 'channel' parameter is used to terminate sound production
on a given Channel. This has the effect of turning off any sound being
produced, clearing the queue, and playing the sound with the 'Flush'
bit set immediately. To see it in action, try:

10 SOUND 1,200,10000
20 a$='"':IF a$="" THEN GOTO 20
30 SOUND &X10000001,400

RUN the program; once a key is pressed you'll hear a change in tone
then silence.

To see what would happen without the 'Flush' bit set, replace line
30 with:

30 SOUND 1,400

The 'Flush' bit thus gives us a kind of 'priority' sound, which will have
precedence over anything else in the Sound Queue. To simply
silence Channel A, for example, execute:

SOUND 129,0

Sound Queues
The computer 'stacks up' sound commands that it has received for
each Channel in what is called a Sound Queue. The Programmable

82

Sound Generator deals with the production of sounds without any
interference from the CPU once it has been set going, but requires
updates from the CPU when the sound needs altering, as when
Software Amplitude or Tone Envelopes are being processed. As
sounds are produced in 'real time', the chances are that a request for
sound will come before a previous request has been fully dealt with.
The second sound is simply remembered and when the first sound
has finished the second can be handled.

The practical upshot of this is that when a lot of sounds are being
produced, one after another, on the same channel, there is often a
pause in the program execution while the Firmware tries to put a new
sound into an already full sound queue! Processing waits until there is
a space in the queue. This is not a desirable occurrence, and Amstrad
BASIC provides a means around such problems, as we'll soon see.

The status of each Sound Queue can be evaluated using the SQ()
function. This returns an 8 bit value which is decoded in the below
fashion.

CHANNEL

FIGURE 2.3

Bits 0 to 2 return the number of free spaces in the Sound Queue of
that Channel at that moment in time. The other bits are flags, if set to
'1' indicating that the fact is true and if set to 'O' indicating that the fact
is false. Bit 3 indicates that the sound at the head of the queue is to
rendezvous with Channel A, Bit 4 to rendezvous with Channel B and
Bit 5 to rendezvous with Channel C.

Bit 6 indicates that the sound at the front of the Sound Queue is 'Held'.
Bit 7 is set to '1' if a sound is currently being generated on this
Channel.

83

Due to this bitwise arrangement, if we want to isolate certain
information from the result returned by SQ we use the bitwise AND
command. Thus to return the number of free spaces in Channel A
we'd execute a:

free=(SQ(1) AND &X00000111)

To see the SQ function in use, try the below program.

10 chann=1
20 FOR l=0 TO 30
50 SOUND chann,200
60 x=SQ(1)
70 y=SQ(2)
80 PRINT chann,x,y
90 NEXT I

RUN the program, and you'll see the two channel statuses printed out.
In addition, the sound carries on after the program is finished. Now
add the following two lines:

30 IF (x AND &X00000111)=0 THEN chann=2
40 IF (y AND &X00000111)=0 THEN chann=1

These lines simply monitor the Queues of Channels A and B and
when there are no spaces left in the queue the 'chann' variable is
altered to switch sound output to the other channel. At some points,
therefore, there will be sound on both A and B.

Obviously, you could also use the SQ function to only issue a
SOUND command when there is room is the queue of the appropriate
Channel to play it.

The only values that make sense to the SQ function are 1,2 and 4.
If a value such as 5 is used, then information about only one channel
will be returned. In this case, 5 is equal to 1+4, and the information on
the lowest numbered Channel, in this case Channel A, will be
returned.

ON SQ(n) GOSUB m

This command allows a subroutine at line m to be entered when a free
space in the Sound Queue of Channel n appears. It can thus be used
to only send a sound to a channel when a free space will be in the
sound queue, thus ensuring that the program doesn't have to 'wait' for

84

a free space to arise. It can thus be used to play continuous music, for
example, in a games program. There is only one point to note about
this command; it is deactivated when the subroutine is entered. So,
before a RETURN is made, the ON SQ(n) GOSUB m command must
be issued again.

It's possible to use this Sound Queue Interrupt to control the flow
of a program, but I can't really see any advantages of this. However,
applications of the technique in machine code routines may prove
useful. So, here are the details.

The techniques consist of setting up a sound of zero volume and
tone, and putting it on 'Hold'. Releasing such a sound with an ON
SQ(n)... interrupt active will result in the appropriate subroutine being
entered. The below program demonstrates this:

100 FOR l=0 TO 3:GOSUB 220:NEXT I
110 count=0
120 ON SQ(1) GOSUB 18
121 :
130 a$=INKEY$
140 count=count+1
150 PRINT count
160 IF a$<>'"' THEN RELEASE 1
170 GOT0130
171 :
180 PEN 3:PRINT "Ouch!!'':PEN 1
190 GOSUB 220
200 ON SQ(1) GOSUB 180
210 RETURN
211 :
220 SOUND 65,0,1,0
230 RETURN

Line 100 primes the Sound Queue, the SOUND statement in line 220
using Channel 1, tone 0, duration 1 and volume 0. The main loop of
the program, from 130 to 170, simply increments and prints a variable,
while checking for a keypress. Once one is detected, a RELEASE 1
command is issued and this causes the subroutine at 180 to be
entered. In this, line 190 sets up the sound again and line 200 turns
on the ON SQ() interrupt again. RUN it and press keys to see the
routine work.

85

Envelopes
Not something for sticking letters in, but a means of altering either the
pitch or amplitude (loudness) of a sound while that sound is being
played. The amplitude is controlled by an AMPLITUDE ENVELOPE,
set up by the ENV command, and the pitch by a TONE ENVELOPE,
set up by the ENT command.

Let's now examine the actual business of designing Envelopes
and also see some useful examples.

Amplitude Envelopes
The usual way in which Amplitude Envelopes are described is to use
the ADSR Envelope. This stands for Attack-Decay-Sustain-Release.
Figure 2.4 shows a typical ADSR Envelope.

FIGURE 2.4

This is the type of Envelope that is possessed by the sounds produced
by musical instruments. As you can see from Figure 4.4, such an
Envelope is split into 4 sections, each of which we can define and put
into an ENV statement, which can define an Envelope of up to 5
sections, each section requiring 3 parameters. An ENV command is of
the form:

ENV n,henv,penv
or
ENV n,nstep,sizestep,ptime

86

'n' is the Envelope Number, 'henv' the Hardware Envelope Number
and 'penv' the Envelope Period. We'll examine the Hardware
Envelopes later in the Chapter when we look at directly accessing the
Programmable Sound Generator from BASIC using the SOUND
command we developed in Chapter 4. 'nstep' is the number of steps
to be used in a software Envelope, 'sizestep' is the size of each such
step in terms of volume and 'ptime' is the time between steps, in 1/100
seconds. More details will be found in the User Guide.Legal values of
'nstep' are between 0 and 127, values of 'sizestep' are between -128
and +127 and 'ptime' values between 0 and 255.

Simply issuing ENV n without any parameters will simply delete
Amplitude Envelope 'n' from memory.

ENV
This simple program allows you to enter parameters for each of the
four sections of an ADSR Envelope and see the Envelope displayed
graphically, thus allowing you to see roughly what the Envelope will
sound like. In addition, a list of ENV parameters is available and the
effect of the Envelope can be heard.

Using ENV
Running the program will present you with a screen split into two
parts, as shown in Figure 2.5. The scales are NOT shown on the
screen.

15

TIME
ATTACK SECTION

Number of Steps:

FIGURE 2.5

ENV screen.

87

Pressing ESCAPE twice will re-run the program. At each stage, the
parameter of interest then press [ENTER], Once a 'section' of an
Envelope has been entered it will be drawn on the graph. To hear
what you've produced at any time enter '#' instead of a number. This
will play the sound and also display the ENV parameters. Once an
Envelope is set up, pressing [ENTER] in response to a prompt without
entering a number will lead to the current value of the parameter
being preserved. This can also be used to set a parameter to zero if it
hasn't been used before. Experiment with the program a little to get
the hang of it. You could easily modify it to give a different time scale,
say 0 to 3 seconds instead of 0 to 6 seconds by altering the value of
the 'xs' variable. Note that if you design an Envelope with only two or
three sections in it using ENV. you'll have to execute an ENV
command containing only two sections to hear the sound properly; the
sound produced in the program can occasionally be misleading if
there aren't four sections to the Envelope.

It is possible to alter the program to accomodate Tone Envelopes.
(See later). In this program, the 'Number of Steps' is the number of
actual volume changes you want in this section of the Envelope. The
'Size of Step' is the amount by which the volume of the sound
changes with each step, and the last parameter is the duration of each
step in units of 0.01 seconds. Note that values for the 'Size of Step'
accepted by thie program are limited to the range -15 to +15. Once an
Envelope is developed it can be put into a program of your own. An
important point to remember is that the Envelope must be defined
before you try and use it with a SOUND command.

100 REM ENV program
110 REM Joe Pritchard
120 REM October 1985
125 ON BREAK GOSUB 10000
130 :
140 :
150 :
160 MODE 1
170 GOSUB 290
180 GOSUB 450
190 ORIGIN 10,120,10,640,400,120:CLG:MOVE 0,0,2:FOR i=1

TO sectioniDRAWR x%(i),y%(i):NEXT
200 FOR section=1 TO 4
210 GOSUB 580
220 GOSUB 720
230 NEXT section

88

240 PAPER#2,3:PEN#2,1 :CLS#2:PRINT#2:PRINT#2:PRINT#2,"
Press a key to go on":PAPER#2,0:CALL &BB18:CLS#2

250 GOTO 190
260 :
270 :
280 :
290 REM initialise routine
300 sf%=0
310 ys=17:xs=1
320 DIM name$(4)
330 DIM numstep%(4)
340 DIM stepsize%(4)
350 DIM ptime%(4)
360 DIM x%(5)
370 DIM y%(5)
380 RESTORE 410
390 FOR i%=1 TO 4:READ name$(i%):NEXT
400 WINDOW #2,1,40,20,25
410 DATA "Attack "."Decay "."Sustain","Release"
420 RETURN
430 :
440 :
450 REM draw axes
460 ORIGIN 0,100,0,640,400,100
470 CLG:MOVE 0,0,1
480 MOVE 0,0:DRAW 650,0
490 MOVE 0,10:DRAW 650,10
500 MOVE 0,0:DRAW 0,400
510 FOR y=30 TO 275 STEP 17
520 MOVE 0,y+8:DRAW 5,y+8
530 NEXT
540 FOR x=10 TO 640 STEP 50:MOVE x,0:DRAW x,5:NEXT
550 RETURN
560 :
570 :
580 REM enter an envelope section
590 PAPER#2,3:PEN#2,1 :LOCATE#2,10,1 :PRINT#2,name

(section Section."
600 n$="Number of Steps":sf%=0:lower%=0:upper%=127:GOSUB
900
610 IF sf%=1 THEN GOTO 600
620 IF no%=0 THEN numstep%(section)=num%
630 n$="Size of Steps":lower0/Q=-15:upper%=15:sf%=0:GOSUB 900

89

640 IF sf%=1 THEN GOTO 630
650 IF no%=0 THEN stepsize%(section)=num%
660 n$="Pause Time":sf%=0:lower7o=0:upper%=256:GOSUB 900
670 IF sf%=1 THEN GOTO 660
680 IF no%=0 THEN ptime%(section)=num%
690 RETURN
700 :
710 :
720 REM draw envelope
730 ORIGIN 10,120,10,640,400,120:CLG:MOVE 0,0,2
740 pt=ptime%(section):lF pt=O THEN pt=256
750 x7o(section)=numstep%(section)*pt*xs
760 y%(section)=ys*stepsize%(section)*numstep%(section)
770 FOR i=1 TO section:DRAWR x%(i),y%(i):NEXT
780 RETURN
790 :
800 :
810 REM check a string as a number
820 IF a$=’"' THEN no%=1 :RETURN ELSE no%=0
830 IF a$="#" THEN GOSUB 970:RETURN
840 IF (LEFT$(a$,1)<"0" OR LEFT$(a$,1)>"9") AND LEFT$(a$,1)<>"-"

THEN f%=1 ELSE f%=0
850 IF f%=1 THEN SOUND 1,100:RETURN
860 num%=VAL(a$)
870 RETURN
880 :
890 :
900 REM enter a parameter
910 PAPER #2,0:PEN#2,3
920 LOCATE#2,1,3:PRINT#2,n$+":

":LOCATE#2,1,3:PRINT#2,n$+":
";:PEN#2,1 :INPUT#2,"",a$:GOSUB 810:IF no%=1 OR sf%
=1 THEN RETURN

930 IF f%=1 OR (num%<lower% OR num%>upper%) THEN GOTO
910
940 RETURN
950 :
960 :
970 REM sound routine
980 ENV 1,numstep%(1),stepsize%(1),ptime%(1),

numstep%(2),stepsize%(2),ptime%(2),numstep%(3),
stepsize%(3),ptime%(3),numstep%(4) ,stepsize%(4),ptime%(4)

90

990 SOUND 1,200,0,0,1
1000 PAPER #2,3:PEN#2,1 :CLS#2:PRINT#2,"ENV

1 ,";numstep%(1)","stepsize%(1)","ptime%(1)","numstep%
(2)'',"stepsize%(2)'',''ptime%(2)",''num
step%(3)","stepsize%(3)","ptime%(3)","numstep%
(4)',,"stepsize%(4),,,"ptime%(4)

1010 PAPER #2,1 PEN #2,3:LOCATE #2,6,4:PRINT#2,"Type F to
Finish, C to go on"

1020 a$=INKEY$:IF a$='"' THEN GOTO 1020
1030 IF INSTR("FfCc",a$)=0 THEN SOUND 1,100:GOTO 1020
1040 IF INSTR("FfCc",a$)<3 THEN ON BREAK STOP:END
1050 PAPER

#2,0:CLS#2:PAPER#2,3:PEN#2,1 :LOCATE#2,10,1:
PRINT#2,names
(section);" Section.":PAPER#2,0:PEN#2,1:
a$='"':sf%=1:RETURN 10000 RUN

ENT
The ENT command has the syntax:

ENT n,tonep,ptime
or
ENT n,stepnumber,stepsize,ptime

n is the Tone Envelope Number, and 'ptime' and 'stepnumber' are the
same as for ENV. However, the maximum number of steps is now 239.
For ENT, however, 'stepsize' is a parameter in the range -128 to +127
that controls the way in which the pitch of the sound changes; a
negative value causes a decrease in pitch and a positive value
causes an increase in pitch.

For the two parameter ENT command, 'tonep' is a new value for
the pitch of a sound played with this Envelope.

Altering ENV to allow Tone Envelopes
The process of changing the program is fairly straight forward. Simply
alter the program by adding or altering the following lines.

190 ORIGIN 10,120,10,640,400,120: CLG:MOVE 0,100,2:
FOR 1=1 TO section: DRAWR x%(i),y%(i):NEXT

310 ys=0.1:xs=1

510 FOR y=30 TO 275 STEP 20

91

600 n$="Number of Steps": sf%=0: lower%=0:
upper%=239: GOSUB 900

630 n$="Size of Steps": lower%=-128: upper%=+127:
sf%=0: GOSUB 900

730 ORIGIN 10,120,10,640,400,120: CLG: MOVE 0,100,2

980 ENT 1, numstep%(1), stepsize%(1), ptime%(1),
numstep%(2), stepsize%(2), ptime%(2), numstep%(3),
stepsize%(3), ptime%(3), numstep%(4), stepsize%(4),
ptime%(4)

990 SOUND 1,1000,0,15,0,1

1000 PAPER#2,1: PEN#2,3: LOCATE#2,6,4: PRINT "ENT
1 ,";numstep%(1)", "stepsize%(1)"," ptime%(1)","
numstep%(2)"," stepsize%(2)"," ptime%(2)","
numstep%(3)"," stepsize%(3)"," ptime%(3)","
numstep%(4)"," stepsize%(4)"," ptime%(4)

The scaling of the axes is also different; horizontally the time scale is
the same, but vertically the lowest mark is '200', and after that each
marker is 200 period units apart. The ENT program starts its sounds
with a period of 1000 as it's tone parameter rather than zero, and it is
important to remember that with decreasing values of this parameter
lead to sounds of an increasing pitch.

Designing Envelopes
We'll now look at the business of designing some simple Envelopes;
but first, the problems that can be encountered.

One phenomenon to look out for when you are designing
Amplitude or Tone Envelopes is that of 'Cycling'. For example,
exceeding a volume of 15 will result in an actual volume of:

volume MOD 16

Thus a sound can go from being very loud (15) to inaudible (16) in
one step. This can be useful, but it is useful to be aware of this fact. It is
commonly caused by setting up an envelope that takes the value of
the amplitude above 15 or below 0. A similar thing can happen with
Tone Envelopes if we've set up an Envelope that takes the tone

92

generated below zero. This produces a 'buzzing' sound. The practical
difficulty that this problem presents is that Envelopes are not
universally applicable to sounds of all amplitudes and frequencies.

Stepping
The Envelopes set up are not 'continuous', but alter pitch or amplitude
in a stepwise fashion. This is particularly so with the Amplitude
Envelope, where there are relatively few steps available. The fact that
this is a limitation of the Programmable Sound Generator and not of
the Firmware means that it is almost impossible to ensure a smooth
change in volume. Smaller steps can be accommodated by the Tone
Envelope, but it is still possible to hear the transition from one tone
level to another as a sudden 'step' rather than as a smooth change.

The graphs drawn by the ENV program, are, therefore, not
truly accurate representations of how the Amplitude and Tone will
change with time.

Waveform
The PSG in the Amstrad machines produces a square wave. Musical
instruments produce a complex waveform based on the sine wave. If
you want to see the difference, look at Figure 2.6. Even after we add
our Tone and Amplitude Envelopes, we're still operating on a square
wave. For this reason, a computer generated 'piano' sound, for
example, will not sound the same as a real one. The waveform of a
sound gives it 'tonal quality', the property that makes a note of the
same frequence played on, say, a flute and an oboe different. You are
effectively stuck with the square wave tonal quality; you could try
filtering the output from the Amstrad and passing it to an external
amplifier, but this would have little effect and would not be
reproducible on other Amstrads. One point about the square wave is
that it is very rich in harmonics.

93

One approach that might be useful is to play tones at the same
time on different channels; this appears to produce some alternation
in the sound of the tone played. However, much of sound generation
is subjective, and so you must experiment to see if you can detect any
difference.

Designing Amplitude Envelopes
Before we go any further, it's useful to remember that you can also
vary the amplitude of a sound by using FOR...NEXT loops to alter
SOUND command parameters. Of course, this requires the total
attention of the computer, but is occasionally useful. The technique
can also be used in conjunction with ENV as we'll soon see. If ENV is
used to produce an Envelope with fewer than 4 sections in it, the ENV
command should only contain the sections actually used.

Modulation
This is the technical term for the process of continuously altering the
volume of a sound while it's being played. This is probably the
simplest amplitude Envelope available to us, and can be done with
the below ENV command. Type the parameters into the ENV program
to see what it looks like.

ENV 1,5, 1,2, 5,-1,2, 5, 1,2, 5,-1,2

This takes the amplitude up by 5 units in 0.1 seconds, then down by 5,
then repeats. The command:

SOUND 1,200,-32767,0,1

will repeat this envelope 32767 times, taking the volume from 0 to 5
and back again.

SOUND 1,200,-32767,5

will take the volume from 5 to 10 and back again. While the sound is
being produced, alter the envelope to:

ENV 1,5, 1,2, 5, -2,2, 5,1,1

This will result in the sound changing as the Envelope changes, and
now the sound starts at 5, goes up to 10, then down to 0, then back up
to 5. To see this type of Amplitude Envelope, where the amplitude
starts at some value other than zero, make the following alterations to
ENV.

94

190 ORIGIN 10,120,10,640,400,120: CLG:MOVE 0,5*ys,2:
FOR 1=1 TO section: DRAWR x%(l),y%(l):NEXT

730 ORIGIN 10,120,10,640,400,120: CLG:MOVE 0,5*ys,2

990 SOUND 1,200,0,5,1

This allows the Envelopes to be displayed with a starting volume of 5.
Again, remember that playing this three section Envelope from within
the ENV program, which expects a 4 section Envelope, may produce
odd sounding results. Such an Envelope can also, of course, be
applied to noise as well as tone.

Echo
It's useful to have an 'Echo' type sound effect to apply to sounds, and
this usually requires that we use a combination of Envelopes and a
FOR...NEXT loop to get a satisfactory sound. Try the below routine to
hear a reasonable 'echo'.

10 FOR 1=15 TO 5 STEP-5
20 ENV 1,1,0,1,5,-(I/5), 10
30 SOUND 1,200,-1,1,1
40 NEXT

Note how we use '-1' in line 30 to ensure that the Envelope is played
once. In addition, we've created a 'dynamic' envelope here, in which
the size of the step in the second section of the Envelope depends
upon the start value of the volume. This is necessary to prevent
cycling problems. The Envelope consisted of a start at a given volume,
then a decay to zero. This can form the basis of other effects,
especially when noise is used. For example, for an odd noise that is
reminiscent of a cat's purring, replace line 30 above with:

30 SOUND 1,2000,-1,1,1,0,15

A similar Envelope can be used for a 'Snare Drum' effect:

20 ENV 1,1,0,1,5,-(I/5),6
30 SOUND 1,299,-1,1,1,0,5

A final effect using an Envelope of this type is a 'gunshot' or explosion.

10 ENV 1,3,5,1,1,0,3,5,-2,10,5,-1,10
20 SOUND 1,1,0,0,1,0,31

95

Musical Instruments
When trying to simulate musical instruments with the PSG we always
need an Envelope of some sort. In this section I want to look at the
general procedure for designing such Envelopes. First of all, you have
to know roughly what sort of ADSR envelope an instrument produces,
AND have a knowledge of the HARMONICS produced by the
instrument. First of all, what's a Harmonic?

Well, when a tone is generated, say of FREQUENCY n, an
instrument will also generate frequencies of 2*n, 3*n, 4*n and so on.
The magnitude of these Harmonics with respect to each other,
combined with the Envelope used, gives the musical instrument its
characteristic sound. To hear a tone and its harmonics, RUN the
below program.

10 PRINT "This is a low 'C'"
20 SOUND 1,956,300,15
30 PRINT:PRINT:PRINT
40 PRINT "When it's finished"
50 PRINT "Press any key."
60 CALL &BB18
70 SOUND 65,956,300,15
80 SOUND 66.478.300.15
90 SOUND 68,239,300,15
95 RELEASE 7

Channel A plays the FUNDAMENTAL, or note of interest, Channel B
the second harmonic and Channel C the third harmonic. The 'tone'
parameter for the second and third harmonic can be obtained by:

second=fundamental 'tone' parameter/2
third=fundamental 'tone' parameter/3

This can cause problems when we're playing with Programmable
Sound Generators; the registers of the PSG, which are programmed
by the SOUND command, can only hold integer values. If we have a
fundamental of, say, 239, then 239/2 gives a non integer result, which
cannot be represented accurately in the PSG registers. This will give
2nd and 3rd harmonics that are not quite right.

The volume of harmonics often decrease as their order (2nd, 3rd,
4th..etc.) increases, but some instruments still produce sounds that
have a strong contribution from 7th or 8th harmonics. This is obviously
a problem for us on our three channel sound generator! So, we'll be
limiting ourselves to a maximum of the fundamental and two

96

harmonics, the actual harmonics used depending upon the instrument
we're trying to simulate.

A further problem with the harmonics generated by some
instruments is that the exact proportions of harmonics in a sound can
vary with the actual pitch of the note played. This means that for some
instruments, we could get a simulation of the sound produced by the
instrument only over a certain range of sounds.

We can easily get our 'mix' of harmonics by simply altering the
volume of each Channel. Once we've got our harmonic mix, we apply
an Envelope to it, and that's it. Figure 2.7 shows Envelopes for each of
the 3 most significant harmonics for a few instruments.

97

AMPLITUDE

FIGURE 2.7

As can be seen, the ADSR Envelope applied to each harmonic can
also be different. The listing below is a simulation of a woodwind
instrument.

10 ENV 1,1,15,6,1,-1,16,7,-2,2
20 ENV 2,1,9,6,1 ,-1,16,3,-2,1,2,-1,5
30 ENV 3,1,6,6,1 ,-1,16,2,-1,3,1 ,-1,6
40 SOUND 65,750,-1,0,1
60 SOUND 68,250,-1,0,3
70 RELEASE 7

A couple of points about this: firstly, we use RELEASE to synchronise
the three sounds. Secondly, each envelope should take about the
same amount of time to execute. An interesting point here is that the
fifth harmonic is 'louder' than the third harmonic. Finally, some
harmonics are always produced when we generate square waves like
this; we're simply controlling the proportions here.

You might like to try setting up Envelopes for other instruments
using the principles outlined here. In addition, noise could be added;
this will give a further quality to the sound generated.

Tone Envelopes
The simplest Tone Envelope to apply to a tone is often called 'Vibrato',
and is a fluctuation in the pitch of the tone. Try the below program to
hear this effect in action.

98

10 ENT-1,10,2,1,20,-2,1,10,2,1
20 SOUND 1,200,300,10„0
30 SOUND 1,200,300,10„1

The only thing to note about this program is the use of the negative
Envelope number in line 10. This ensures that when the tone
envelope is applied to a sound the envelope will be repeated for as
long as the sound is playing.

Glissando
In this effect we get a constant fall or rise in frequency, a little like a
falling bomb, or a trombone sound.

10 ENT-1,100,-2,1
20 SOUND 1,500,250,,,1

This effect can be applied to musical notes by gradually changing the
pitch of one note to that of the next note to be played. In this sort of
application, it's probably best to use FOR...NEXT loops to change the
pitch rather than a tone envelope. Try:

10 SOUND 1,200,100
20 FOR period=200 TO 300
30 SOUND 1 .period,1
40 NEXT period
50 SOUND 1,300,100

The Programmable Sound Generator
The Amstrad computers use the AY-3-8912 Programmable Sound
Generator, or PSG. We are usually insulated from it by the SOUND,
ENV and ENT commands, although machine code programmers have
to access the PSG directly.

The PSG is buried deeply in the hardware and isn't easily
accessed via the IN and OUT instructions from BASIC. Apart from the
lack of accessibility, it's generally ill advised to try and access the PSG
through any other route than the Firmware MC SOUND REGISTER
routine. This routine ensures that the data is sent to the PSG registers
only when the act of writing to the PSG will not affect anything else
that the PPI is doing. This is how the |SOUND command that we add
in Chapter 4 works. We will be using this command to write data to the
PSG registers.

The 8912, as it's known to its friends, is a three channel device,
capable of producing both tone and noise. Amplitude Envelopes are

99

also provided by the chip, but they are 'built in' to the device and we
cannot change any of them. Tone Envelopes are not provided. In
addition, it has an Input/Output port, which is used in the Amstrad for
keyboard/joystick control. Setting up a sound directly to the PSG often
involves writing to several registers, and you should remember that
when you're doing this you are bypassing all the Sound Queues, etc.
offered by the Sound Manager of the Firmware.

The PSG has 15 registers, numbered 0 to 14; if you should consult
the General Instruments data sheet for this device you may well see
reference to Register 15. Don't panic; there exists a device called the
AY-3-8910 which has an extra Input/Output register, Register 15.
Simply ignore any such reference to Register 15 if you've got on
8912.

The PSG Registers

Register 0 and 1.

These control the pitch of the tone to be played on Channel A.
Together they form a twelve bit register, with the lower 8 bits being
held in Register 0 and the upper 4 bits in Register 1. The value held in
these two registers thus defines the pitch of the tone generated. The
higher the value in this register, the lower the tone generated. The
value to put in this twelve bit register to get a particular frequency is
given by:

value=125000/frequency

Thus to write the value 255 to the Channel A tone control register,
we'd issue the commands,

SOUND 0,255: SOUND 1,0

assuming, of course, that we've installed the RSX commands!
Register 0, by the way, is called the FINE TUNE register, and Register
1 is called the COARSE TUNE register.

Registers 2 and 3.

These perform the same function as Registers 0 and 1 but for Channel
B.

Registers 4 and 5.

100

These perform the same function as Registers 0 and 1 but for
Channel C.

Register 6.

This is the Noise Pitch Control register, and is a 5 bit register. A value
of 31 will give the lowest noise frequency available, and one of 0 will
give the highest noise pitch available.

Register 8,9 and 10.

These are the Amplitude Control Registers for the three Channels.
Register 8 controls the volume of Channel A, 9 that of B and 10 that of
C. All the registers are effectively 5 bit registers. Values between 0
and 15 set the volume of a Channel in the same way as the volume
parameter of the normal SOUND command. That is, 0 gives silence
and 15 gives maximum volume. If bit 4 of the register is set to '1',
corresponding to a value in the register of 16 or above, then the status
of bits 0 to 3 is ignored and sound on the Channel is played under the
control of an Amplitude Envelope. More on this later.

Even after you've set up the Tone and Amplitude registers for a
given Channel, you still won't hear much. The reason for this is that for
sound to be played on a Channel that Channel must be ENABLED.
This is controlled by Register 7.

Register 7
This is a control register, arranged as a series of bits, each bit
controlling one aspect of the behaviour of the PSG.

Figure 2.8 shows the layout of this register.

FIGURE 2.8

101

The operation is quite simple; setting bit 0 to 'O' will allow a tone of the
pitch specified by Registers 0 and 1, and of the Amplitude set by
Register 8, to be played on Channel A. These bits are all 'active low'
bits; for tone or noise to be played on a channel the relevant bits must
be set to 'O' rather than T'. Setting a bit to '1' disables tone or noise on
the appropriate Channel.

Bit 6 controls whether the Input/Output port is to be used for output
or input. The Amstrad expects this port to be configured for Input, and
so this bit should be set to 'O'. Bit 7 isn't used in this version of the
PSG.

This register is at the heart of PSG operations; for example, we
can set up tones that are 'held' and then play them by 'releasing' them
by simply setting the appropriate bits of Register 7 to '1', setting up the
Amplitude and Tone Control Register for each Channel and then
setting the appropriate bits of R7 to 'O' to play the notes
simultaneously. For example, the below commands will play tones on
both Channels A and B.

10 SOUND,7,&X00111111
20 SOUND,0,255
30 SOUND,1,1
40 SOUND,2,257
50 SOUND,3,1
60 SOUND,8,10
70 SOUND,9,10
80 SOUND.7.&X00111100

Line 10 turns off both noise and tone on all channels. Lines 20-30 set
up a tone on Channel A, lines 40-50 set up a tone on Channel B and
lines 60-70 set up the Amplitude Control Registers. Finalkly, line 80
enables tone on Channel A and B. To mix some noise in to Channel
A, replace line 80 with:

80 SOUND,7,&X00110100

If you run this program you will hear the sound which will go on....and
on...and on! There is no duration register in the PSG, and we have to
deliberately turn the appropriate Channels off by either setting the
Amplitude to 0 or by disabling the Channel by setting the appropriate
bit in Register 7.

We now come to the Amplitude Envelopes that the PSG supports.
There are 8 of these, and the one selected depends upon the value in
Register 13. This is called the Envelope Shape Register. Figure 2.9

102

shows the different Envelopes available and the values of R13
needed to produce them. Other values in this register will simply
reproduce a couple of these Envelopes.

All of the volume Envelopes have a maximum volume of 15 and a
minimum of 0. Remember that to set a Channel to play a sound under
an Envelope, bit 4 of that Channel's amplitude control register must be
set to '1'.

In Figure 2.9, EP stands for Envelope Period, which is the duration
of the Envelope that is being played.

AMPLITUDE

EP

10

11

103

13

The duration of the Envelope is set by the Envelope Period Registers,
Register 11 and Register 12. R11 holds the least significant 8 bits and
Register 12 the most significant 8 bits of the value. These two registers
hold the duration of the Envelope in milliseconds. To hear a PSG
Envelope in action, try the below program:

10 SOUND,7,&X00111111
20 SOUND,0,255
30 SOUND,1,1
40 SOUND,8,16
50 SOUND,11,0
60 SOUND,12,4
70 SOUND,7,&X00111110

Again, this will go on until it's stopped. A quick way of doing this in
direct mode is to press the CLR key.

These Envelopes are the ones set up by the two parameter
version of the ENV command. They are very useful, and can be
applied to either tone or noise. However, we cannot alter them in any
way.

There are two other RSX commands that we add in Chapter 4 of
interest here. These allow us to get the parameters of an Envelope
back from memory so that we can inspect it. These commands are
TONE and |AMPLITUDE, and their use is described in Chapter 4.

To finish this Chapter, two useful subroutines. The first of these I
call 'PLAY', which simply takes a string of characters representing
musical notes and 'plays' them on a single channel. It is based on a
command present in MSX BASIC, although the subroutine here is no
where near as complicated.

104

The listing is given below and contains a short demo. The notes
are passed over to the subroutine in 'm$'. The routine is straight
forward, and you will no doubt be able to add more 'commands' to the
subroutine. The only points to note are that the RESTORE statements
are to specific lines in the program, and if you alter the positions of
these DATA statements, which contain the pitch information for the
notes in each of the three octaves that the subroutine handles, you
must alter the RESTORE commands accordingly. In addition, if the
subroutine is used in your own programs, the parameters such as
'octave', 'tempo' , 'duration0/,' and 'dot', as well as the array 'note%'
must be initialised before use.

Notes
Notes are represented in the string by the Upper Case letters for that
note. Where sharps are available, they are represented by the Lower
case letter for that note. If you attempt to input letters that are not Notes
or Commands, then the ERROR command is used to generate an
error.

('Improper Argument'). In the above program the default Octave is
set to 2, and so the notes played will be from this Octave, which is the
one containing middle 'C'.

20000 REM PLAY subroutine and demo
20010 REM Joe Pritchard August 1985
20020 :
20030 :
20040 DIM note%(12)
20050 st$="CcDdEFfGgAaBLORT.1234567890"
20060 tempo=1
20070 duration%=32
20080 octave=2
20090 dot=1
20100 :
20110 REM these parameters are set up
20120 REM just the once
20130:
20140 :
20150 m$="T0.25C....cDdR20EF01fGgL64AaB"
20160 GOSUB 20210
20170 END
20180 :
20190 :
20200 :

105

20210 REM PLAY subroutine
20220 GOSUB 20460
20230 :
20240 REM the above sets up the notes for
20250 REM the octave of interest
20260 :
20270 FOR i%=1 TO LEN(m$)
20280 a$=MID$(m$,i%,1)
20290 opt%=INSTR(st$,a$)
20300 IF opt%=0 THEN ERROR 5
20310 IF opt%<13 THEN GOSUB 20380:GOTO 20340
20320 opt%=opt%-12
20330 ON opt% GOSUB 20600,20660,20740,20810,20870
20340 NEXT i%
20350 RETURN
20360 :
20370 :
20380 REM play a note
20390 a$=M!D$(m$,i%+1,1)
20400 IF a$="." THEN i%=i%+1 :dot=1.5 ELSE dot=1
20410 SOUND 1 ,note%(opt%),tempo*duration7o*dot,15
20420 RETURN
20430 :
20440 :
20450 REM once an octave is read in, set it
20460 IF octave=1 THEN RESTORE 20920
20470 IF octave=2 THEN RESTORE 20930
20480 IF octave=3 THEN RESTORE 20940
20490 FOR j%=1 TO 12:READ note%(j%):NEXT
20500 RETURN
20510 :
20520 :
20530 REM read a number from string
20540 num$="":i%=i%+1
20550 IF i%>LEN(m$) THEN RETURN
20560 a$=MID$(m$,i7o,1):IF (a$<="9" AND a$>="0") OR a$="." THEN

num$=num$+a$:i%=i7o+1 :GOTO 20550
20570 i%=i%-1 :RETURN
20580 :
20590 :
20600 REM Ln is the duration of notes
20610 GOSUB 20530
20620 duration%=VAL(num$)

106

20630 RETURN
20640 :
20650 :
20660 REM get an octave command
20670 GOSUB 20530
20680 octave=VAL(num$)
20690 IF octave<1 OR octave>3 THEN ERROR 5
20700 GOSUB 20460
20710 RETURN
20720 :
20730 :
20740 REM rest routine
20750 GOSUB 20530
20760 rest%=VAL(num$)
20770 SOUND 1,0,rest%*tempo*dot,0
20780 RETURN
20790 :
20800 :
20810 REM Tempo routine
20820 GOSUB 20530
20830 tempo=VAL(num$)
20840 RETURN
20850 :
20860 :
20870 REM dot routine
20880 REM just in case one gets through!!
20890 RETURN
20900 :
20910 :
20920 DATA 239,225,213,201,190,179,169,159,150,142,134,127
20930 DATA 119,113,106,100,95,89,84,80,75,71,67,63
20940 DATA 60,56,53,50,47,45,42,40,38,36,34,32

In addition to us simply putting notes in the string, there are also a few
single letter 'commands' which allow you to alter the way in which the
notes are played.

O. The Octave command, followed by a single digit parameter, sets
the octave that is to be used by subsequent notes. Legal values are
1,2 and 3, 1 selecting the Octave below Middle 'C, 2 the Middle 'C
Octave and 3 the Octave above Middle 'C'. No other parameter values
are legal. If you use PLAY in your own programs, set up this

107

parameter before calling the PLAY subroutine. An example of its use
is:

m$=''03Cc"

T. The Tempo command sets the 'speed' at which the notes are
played, and has a single parameter. The lower the value of the
parameter (non integer values allowed), the faster the notes are
played. For example:

m$="T3"

L. This letter, followed by an integer number, sets the duration of all
subsequent notes. I would have used 'D' for this command, but we've
already got a note 'D'....

Fl. The Rest command takes a single integer parameter, and
generates a pause of that for that many note durations. As with note
lengths, the length of the rest depends upon the Rest parameter and
the Tempo.

The simply extends the length of the preceding note by 1.5
times. Only one dot is allowed after a note.

RHYTHM
This subroutine is similar to PLAY but allows you to put together
simple rhythms consisting of a drum, snare and 'poom!' sounds
beloved of all owners of drum synths! (Although, of course, ours aren't
so good ...)

The principles are the same as those behind the PLAY routine. A
string of characters are passed to the subroutine in 'm$'. The
'commands' available are as follows.

D. This simulates a 'drumbeat' sound.

S. This gives a Snare Drum sound.

P. This provides a ’Pooml!" sound.

L. As with PLAY, this sets the length of drumbeats. 'L' is followed by
a single integer parameter.

T. This sets the Tempo and is followed by a numeric parameter that
can be fractional if necessary. However, some fractional values, in

108

conjunction with some values for the 'L' parameter, will result in very
long sounds being produced.

You could easily combine these two routines into one program by
having 'PLAY' use one Channel and 'RHYTHM' use a second
Channel.

20000 REM RHYTHM subroutine and demo
20010 REM Joe Pritchard August 1985
20020 :
20030 :
20050 st$="DSPLRT.1234567890"
20060 tempo=1
20070 duration%=8
20095 GOSUB 20920
20100 :
20130 :
20140 :
20150 m$="T0.125L4DDR160L8SL4DDR160L8SSR200L8PL4R200"
20160 GOSUB 20210
20170 GOTO 20160
20180 :
20190 :
20200 :
20210 REM PLAY subroutine
20270 FOR i%=1 TO LEN(m$)
20280 a$=MID$(m$,i%,1)
20290 opt%=INSTR(st$,a$)
20300 IF opt%=0 THEN ERROR 5
20310 IF opt%<4 THEN GOSUB 20380:GOTO 20340
20320 opt%=opt%-3
20330 ON opt% GOSUB 20600,20740,20810,20870
20340 NEXT i%
20350 RETURN
20360 :
20370 :
20380 REM play a note
20410 GOSUB 20920
20420 IF a$="D" THEN SOUND 1,800,-1,0,1,0,31
20430 IF a$="S” THEN SOUND 1,0,-1,0,1,0,2
20440 IF a$="P" THEN SOUND 1,70,-1,0,1,1
20450 RETURN
20510 :
20520 :

109

20530 REM read a number from string
20540 num$="":i%=i%+1
20550 IF i%>LEN(m$) THEN RETURN
20560 a$=MID$(m$,i%,1):IF (a$<="9" AND a$>="0") OR a$="." THEN

num$=num$+a$:o/o=i%+1 :GOTO 20550
20570 i%=i%-1:RETURN
20580 :
20590 :
20600 REM Ln is the duration of notes
20610 GOSUB 20530
20620 duration%=VAL(num$)
20625 GOSUB 20920
20630 RETURN
20640 :
20650 :
20720 :
20730 :
20740 REM rest routine
20750 GOSUB 20530
20751 d%=VAL(num$)
20770 GOSUB 20920:SOUND 1,0,tempo*d%,0
20780 RETURN
20790 :
20800 :
20810 REM Tempo routine
20820 GOSUB 20530
20830 tempo=VAL(num$)
20835 GOSUB 20920
20840 RETURN
20850 :
20860 :
20870 REM dot routine
20880 REM just in case one gets through!!
20890 RETURN
20900 :
20910 :
20920 REM set up the envelopes needed
20930 ENV 1,1,15,1,15,-1 ,duration%*tempo
20940 ENT 1,65,1 ,duration%*tempo
20950 RETURN

That completes our examination of the Amstrad Sound facilities.
Sound is one area where experimentation is valuable, and I hope that
this Chapter has given you some new ideas.

110

Chapter 3
Getting down to BASICS

A programmer can quite happily live his life and program his computer
without ever knowing how his programs and their associated
variables are stored. But, you can get a lot more from your machine if
you have a knowledge of the way in which the programs are stored in
the machine. So, in this Chapter we'll look at this aspect of
programming the Amstrad.

BASIC programs are stored in the machine from address &0170
(368) upwards. The work in this book has been done on the Amstrad
464, but it is applicable to any of the other machines. For the other
machines, it might be useful to confirm that program storage begins at
this address. This can be done by the following steps.

1. Turn on the computer
2. i=0 (ENTER)
3. PRINT (@i-6) (ENTER)

This will return the address of the start of BASIC text storage space.

BASIC Program Storage
The arrangement of bytes that make up a program line is as follows:

low
high line length

low
high line number

111

text of the
program line

0 terminator

Line Length. This is the number of bytes in the program line, including
the bytes representing line length, line number, and terminator.

Line Number. This is the number of the line, stored low byte first.

Program Text. This is the actual body of the line; we'll take a look at
how different program structures are stored shortly.

Terminator. This zero byte is used to mark the end of a BASIC line.

A program consists, therefore, of a collection of these lines. The end of
the program is marked by a 'line' consisting of line length and line
number bytes, all set to zero.

Storage of statements
As you are probably aware, BASIC commands such as PRINT or REM
are stored as single bytes in program lines. These single bytes are
called TOKENS. Appendix 1 shows the Tokens used by the Amstrad.
In addition to these, certain numbers are used by the Amstrad to
indicate that a Real Variable is about to be encountered, or an Integer
Constant, and so on. We'll soon see these in use.

Tokenisation occurs between you typing in the code and the
representation being included in the BASIC program area. The
process also marks occurrences of variables and constants, etc. We'll
now look at how various commands are stored in the BASIC program
area.

Statement Separation
The is used to separate BASIC statements that occur on the same
line; this is represented in tokenised form as the value 1.

Variable Assignments
Let's examine a typical line, such as:

1 y=n

where n is a numeric constant. A simple program can be used to
PEEK out the contents of RAM, remembering that the program starts at

112

address 368. In all cases, the variable name will have its last
character modified by having 128 added to its ASCII code. For single
character variable names, that single character will have 128 added.
In addition, the variable name will be prefixed by bytes indicating what
type of assignment it is. The bytes used here vary for each variable
type, and also differ depending upon how the variable type has been
selected; in this discussion I'm assuming that the variable type has
been selected by a type definition character after the variable name,
rather than by the DEFINT, etc. commands.

Where ’n' is Integer
How 'n' is represented in the line depends on its size; a general
description of the tokenised line 1 above is:

lenlow.lenhigh, 1,0, t1 ,t2,t3, 249, 239, number, 0

Here, t1, appears to be the type identifier. The values of t2 and t3 vary
in different assignments, and those given here will be for illustrative
purposes only. I have not worked out their precise meaning. 249 is
(ASC("y")+128) and 239 is the token for'='. The number of bytes used
to represent 'number' varies, and so will the line length. In each of the
following tables, remember that t2 and t3 values are illustrative ones
only.

'n' between 0 and 9 inclusive

t1
t2
t3

13
5
0

'number' (’n’+14)

Thus 5 is stored with a single 'number' byte set to 19.

'n' between 10 and 255 inclusive

t1
t2
t3

13
5
0

'number' 25, value of n

Here 'number' is a two byte value.

113

'n' between 256 and 32767 inclusive

t1 13
t2 5
t3 0
'number' 26,nlow,nhigh

Here 'number' is three bytes long, with the two bytes representing 'n'
in the usual low-high order.

'n' greater than 32767

t1 13
t2 5
t3 0
'number' 31 ,n1 ,n2,n3,n4,n5

Here, 'number' is stored as a Floating Point number. The format of
these numbers will be looked at later in the Chapter. 31 indicates to
the BASIC Interpreter that a Floating Point Constant is coming.

With negative integers, little changes except that the 'number'
description given above is prefixed by 245 each time, this being the
'token' for the unary minus function.

Where 'n' is Floating Point
If we have 'n' as a decimal number, such as 0.234, then it's clear that
the representation of 'number' is going to be in the 5 byte Floating
Point format, prefixed by 31 to indicate an FP constant. If it is negative
(-0.234, for example) then the 31 is prefixed by 245, as above.

Where 'n' is a numeric variable
Take the line:

3 y=e

where 'e' has already been assigned a value. The coding of the line
is:

lenlow.lenhigh, 3,0, t1 ,t2,t3, 249,239, ta1 ,ta2,ta3, 229,0

Here, ta1 identifies the type of variable. As before, both variable
names are stored with ASCII code of the last character of their name

114

increased by 128. Irrespective of the value of e, t1 will be 13 and ta1
will be 13. Typical results are:

t1 13
t2 14
t3 0

ta1 13
ta2 5
ta3 0

If we change 'e' to 'e7o', then the new t values are:

t1 13
t2 11
t3 0

ta1 2
ta2 5
ta3 0

This indicates that the value 2 is used as an 'Integer' type identifier.
What about array variables on the right hand side of this assignment?
Let's start with the simple array e(n), which we DIM in the usual
fashion, initialise to a value and then put as line 2:

2 y=e(6)

then we get t values as follows:

t1
t2
t3

13
5
0

ta1
ta2
ta3

13
7
0

In addition to the t values, we must also consider the representation of
the 'e(6)’. Well, this is very simple; after the variable name comes the
ASCII code for'(', then the subscript, represented in the same way as
numeric constants were above, then the ASCII code for ’)'.If we had an
Integer array, then:

t1
t2
t3

13
5
0

ta1
ta2
ta3

2
7
0

Again, the subscript is stored in the encoded form we've already met.
A two or three dimensional array seems to make no difference to 't1'
value, the only change coming in the representation of the e(n,m) form
in the line; naturally, the coded subscripts are separated from each
other by a If the subscript is a variable, then it is preceeded by three
bytes to identify it's type.

115

Where 'n' is an expression
This appears to be fairly straight forward, and the line:

1 y=2+4

is encoded as:

lenlow.lenhigh, 1,0, 13,5,0, 249,239, 16, 244, 18, 0

where 244 is the token for'+', and the numbers 2 and 4 are held in a
coded form. Should variables be involved in the expression, then they
are preceeded by the ta bytes as we've already seen. If functions are
called, such as SIN, then the token for the function is prefixed by 255.

If the assignment is to be made to y% instead of y, then much of
the above is still true, the only difference being in the 't1* byte. t1 is
now 2 instead of 13. All else appears to be the same.

Longer Variable Names
It s already been mentioned that the last character of a variable name
has 128 added to it's ASCII code in order to indicate that it is the last
character. Well, that's really all there is to say about these variables;
there is no difference in the type bytes.

Assignments to an Array
What about the line:

y(6)=5
Well, this is tokenised with a t1 of 13 indicating FP and a ta1 byte
depending upon the right hand side of the assignment. If we have
typical examples, and they vary in value for different assignments.
This seems to indicate that the two bytes that follow the type identifier
byte are pointers to the location in memory where the data regarding
the variable is stored. This possibility is further reinforced by the fact
that t2 and t3 for variables that have NOT been assigned and yet are
being used after the '=' sign are set to 0. This is to be expected; the
BASIC interpreter has no address for such a variable. However, this is
no use to us, as if we want this sort of information we simply use the
'@' function!

To summarise the earlier notes
Variables are preceeded by three bytes, the first the type identifier and
the others possibly a pointer in to memory. 13 indicates a FP variable,
and 2 indicates an integer variable.

Numeric constants are stored in a variety of ways depending upon
whether they're big integers, small integers or FP numbers.

116

Before we go on to look at string variables, let's take a look at a
simple example of a program that 'writes' part of itself. Type in the
below listing, taking care with the DATA statement.

10 REM
20 REM *** line 10 has 20 spaces ***
30 PRINT Y
35 GOTO 10
40 RESTORE
45 FOR l=372 TO 382
50 READ A:POKE I,A
70 NEXT I
80 GOTO 10
90 REM DATA for 'y=y+6' *“
100 DATA 13, 0, 0, 217, 239, 13, 0, 0, 217, 244, 20

GOTO 40 to execute the program, then list it again. Lo and Behold,
line 10 has been miraculously transformed! Y will now be printed and
incremented. Let's see how this technique has worked.Firstly, line 10
has a REM statement that is long enough to hold all the bytes that our
'new line' will contain; it doesn't matter if it's too long, as the spaces
will be ignored by the Interpreter. The '372' in line 40 is the address of
the REM token in line 10 provided that this is the first line in the
program. Later we'll see how we can put REM statements that will
later be converted into statement lines anywhere in the program. The
FOR...NEXT loop then POKEs into the REM statement the bytes
needed to make up the statement 'Y=Y+6' from the DATA statement.
The bytes needed were arrived at in the following fashion.

1. 'Y' is a FP variable, so the first three bytes will be 13,0,0. The
interpreter will take care of t2 and t3.

2. Next the ASCII code of 'Y', plus 128. Then the ’=’ token.

4. So, the next three bytes will be to indicate a Floating Point
variable: 13,0,0. Then the variable name, Y (plus 128).

5. Next comes the'+'token, 244.

6. Finally, the encoded form of '6', which, from the above, is
6+14=20.

117

You might like to try other assignments in the DATA statement. In this
routine, the values are POKEd in to the REM statement before the
variable concerned is used at all in the program, but a line such as:

75 Y=90

can be added, and the routine will work perfectly starting off from 90.
The only thing to take care of is the number of bytes in the DATA
statement. Here are a couple more to start you off:

Y=Y*3 13,0,0,217,239,13,0,0,217, 246,17
Add line 75 Y=3, and GOTO 40 to start it off.

Y=A+Y 13,0,0,217,239,13,0,0,193,244,13,0,0,217
Add line 75 A=1, and GOTO 40 to start it off. Also, adjust the
FOR...NEXT loop in line 45 to suit the number of bytes in this
line.

It appears that the only't' parameter that we need set up when we are
'entering' program lines in this way is the first one. By the way,
replacing the first't' parameter with 2 will result in the automatic
insertion in the listed 'new' line of'%' signs at the appropriate places.

We'll see more examples of self modifying BASIC programs later.
Let's now move on to look at string variable storage.

String Variable Assignments
The most obvious example is:

1 y$="hello"

The structure of such a line could be:

lenlow,lenhigh, 1,0, 3,5,0 249, 239, 34, text bytes, 34,0 where 249 is
the modified single character variable name, 34 is the ASCII code for

and the t1 byte of 3, apparently indicating a string type.

For situations like:

1 y$=x$

118

where x$ has been previously assigned a value, the line is as follows,
using the format we outlined for numeric variables:

ta1 3
ta2 5
ta3 0

t1 3
t2 12
t3 0

Forthe line:

1 y$=x$(5)

assuming that the array has been dimensioned, we have:

t1 3 ta1 3
t2 5 ta2 7
t3 0 ta3 0

Similarly,

1 y$(1)=x$

assuming a dimensioned array code as:

t1 3
t2 7
t3 0

ta1 3
ta2 5
ta3 0

The array subscripts are stored as for numeric arrays.Again, in each
case, t2,t3,ta2 and ta3 act as pointers in to memory.

We won't look at all the constructs available in Amstrad BASIC.
That would take too long and would be intensely boring, unless you
appreciate that sort of thing. We will, however, consider a few others
now and when we put the 'self modifying program' idea in to action.

PRINT
There are many variations on the simple PRINT command, and here
we'll look at just a couple of them.

PRINT variable, constant or expression
The statement consists of the PRINT token, the space following it and
then the type identifier of the variable to be printed. The t2 and t3 bytes
point to the variable in memory, and then comes the variable name
coded as above. If we're dealing with a constant or expression, then
the rules outlined above apply.

119

IF...THEN
Again, this is fairly straightforward. The tokens of interest are 161 for
IF and 235 for THEN. Expressions after the IF are tokenised in the
way we've already seen. Thus a line like:

1 IF A=0 THEN PRINT

would be tokenised as:

lenlow.lenhigh, 1,0, 161,32, 13, t2,t3, 193, 239, 14,32, 235, 32,
191,0

We're now in a position to look at another example of a program that
writes part of itself.

A simulated EVAL function
A nice function is offered on some micros by which the user can type
in something like:

a$="2+3*SIN(4)":PRINT EVAL(a$)

and see the result of the expression printed to the screen. Thus
expressions can be typed in in response to prompts from the program,
stored as variables, and evaluated when necessary. This sort of
programming makes writing data base routines rather easy. For
example, say we have a simple data base whose records consist of
separate strings- say n$(n), a$(n) and t$(n), which hold the Name,
Address and Telephone Numbers of N people respectively. Say we
wanted to find all people whose names were Smith and who lived in
Croydon. If we had an EVAL function, we could assemble a string like:

”n$(l%)=""Smith'"' AND a$(l%)='"'Croydon...

or something similar. Then we could use a routine such as:

100 FOR l%=1 TO 100
110 IF EVAL(a$)=TRUE THEN GOSUB 1000
120 NEXT l%

to search 100 records. GOSUB 1000 would simply print out the
records containing both Smith and Croydon. Obviously, the search
criteria in a$ could be as complex as you like, and because a$ can be

120

set up like any other string variable, allows an infinite number of
different searches to be carried out with the same subroutine. All that
you need to do is change a$.

However, Locomotive BASIC hasn’t got such a function; but, we'll
soon change that. We’ll write a routine that accepts a string like that
above, and uses it to put together an IF...THEN statement dynamically,
while the program is running, and uses this statement to test to see if
our expression is true, setting a flag to indicate that it is or isn’t.

Our first task is to put a REM statement in the program that
contains enough spaces to hold any expression that you’ll want to
evaluate; if the REM statement isn’t long enough, then a long
expression will probably crash the BASIC program by overwriting the
Terminator byte and the next line! To make things easy, I usually put
this line as close to the start of the program as possible:

1 GOTO 10
2 flag%=0
3 REM *** as long as needed ***
4 RETURN
5

10 REM **** start of program ***

The line 1 GOTO jumps around our ’EVAL’ subroutine. Line 2
initialises a flag to 0, and the line 3 REM statement will eventually
contain our expression for evaluation. The line 4 RETURN allows us to
call this routine as a subroutine after we’ve set up line 3.

The first fact we need is the address of the REM token on line 3. If
the above is typed in exactly as shown above, then this address is
396. So, the first token of our expression will be POKEd in at address
396. We will also need the length of the REM statement, from the REM
token to the last space-DO NOT include the Terminator byte. We will
use this last fact to ensure that we don’t over run the space available,
and also to allow us to set the line to spaces before new expressions
are POKEd into the line.

Let’s begin by seeing how we can build an IF...THEN statement and
use it to set ’flag%'. The program below (Listing 1) shows how an IF
statement can be poked in to memory.

2
3
4

GOTO 10
flag%=0
REM
RETURN

121

5 :
6 :

10 INPUT"Give a value for a$";a$
20 GOSUB 10000
30 PRINT flag%
40 GOTO 10
50 :
60 :

10000 REM subroutine to set up IF...THEN statement
10010 RESTORE
10020 GOSUB 10600
10030 FOR l%=396 TO 419
10040 READ byte%
10050 POKE l%,byte%
10060 NEXT l%
10070 GOSUB 2
10080 RETURN
10090 :
10100 :
10600 REM subroutine to put REM statement back
10610 FOR l%=397 TO 427
10620 POKE l%,32
10630 NEXT I
10640 POKE 396,197
10650 RETURN
10660 :
10670 :
65000 DATA 161,32, 3, 0, 0, 225, 239, 34, 65, 65, 65, 34, 32,

235, 32, 2, 0, 0, 102, 108, 97, 231,239, 15

The IF...THEN statement held in line 65000 is:

IF a$="AAA" THEN flag%=1

Of course, you knew that, didn't you, by decoding the bytes in the
DATA statement.

In case you weren't sure of how I got this DATA statement, here is
a quick explanation.

161 is the IF token, then a space, then the string type identifier,
(3,0,0). Next comes ASC(''a")+128, the '=' token and the string "aaa".
Finally we have the THEN token, the integer type identifier (2,0,0), the
variable name 'flag', with the 'g' suitably modified, then the '=' token
and the representation for '1' to finish things.

122

The FOR...NEXT loop beginning at line 10030 POKEs these bytes
in to the 40 space REM statement at line 3. The subroutine at line
10600 sets line 3 to be a REM statement again, and replaces the first
thirty characters after the REM token with spaces. If you alter this
program, and put bytes in the DATA statement to represent other
IF...THEN statements, you'll have to alter this routine if the statements
are more than 30 characters long. In addition, of course, you'll have to
alter the line 10030 FOR...NEXT loop.

RUN the program, and type in a string in response to the question.
For all strings except 'AAA' flag% will be printed as 0, which is what
we expect. LIST the program and you will see line 3 suitably modified.
Listing 2 is a much more elaborate subroutine, which will accept a
string containing an expression to be evaluated, convert it in to to the
correct bytes, and POKE these bytes into line 3. The string should
contain either an IF...THEN statement or a variable assignment.
Examples will be given after the listing. The subroutine, as it stands, is
a little limited, but you will no doubt be able to expand it.

1 GOTO 50020
2 f lag%=0
3 a%=
4 RETURN

50000 :
50010 :
50020 INPUT s$
50030 GOSUB 50830
50040 GOSUB 50060
50050 END
50060 REM simple interpreter for
50070 REM new program lines
50080 REM variable names single
50090 REM character and identifier
50100 REM integer constants only
50101 REM will handle (var)=(expression)
50102 REM or IF (expr.) THEN (var)=(expr.)
50110 DEF FNchar(p%)=ASC(MID$(s$,p%,1))
50115 address%=396
50116 pointer%=1
50120 IF LEFT$(s$,2)="IF" THEN GOTO 51007
50130 address%=396
50140 pointer%=1
50150 GOSUB 50200
50160 GOSUB 50340
50170 GOSUB 50410
50180 RETURN

123

50190 :
50200 REM variable handler
50210 varnam%=FNchar(pointer%)
50220 varnam7o=varnam°/o+128
50230 pointer%=pointer%+1
50240 type%=0
50250 IF FNchar(pointer%)=ASC("%") THEN type%=2
50260 IF FNchar(pointer%)=ASC("$") THEN type%=3
50270 IF type%=0 THEN type%=13:pointer%=pointer%-1
50280 POKE address%,type%
50290 POKE address%+1,0
50300 POKE (address%+2),0
50310 address%=address%+3:pointer%=pointer%+1 POKE

address7o,varnam%:address%=address%+1
50320 RETURN
50330 :
50340 REM = subroutine
50350 IF FNchar(pointer%)oASC("=") THEN GOTO 50993
50360 POKE address%,239
50370 address%=address%+1
50380 pointer%=pointer%+1
50390 RETURN
50400 :
50410 REM expression subroutine
50420 IF pointer%>LEN(s$) THEN GOTO 50510
50421 IF FNchar(pointer%)=32 THEN GOTO 50510
50425 IF FNchar(pointer%)=ASC("=") THEN GOSUB 50340:GO

TO 50420
50430 IF FNchar(pointer%)>=ASC("A") THEN GOSUB 50200:GO

TO 50420
50440 IF FNchar(pointer%)=ASC("+") THEN GOSUB 50530:GO

TO 50420
50450 IF FNchar(pointer%)=ASC("-") THEN GOSUB 50580:GO

TO 50420
50460 IF FNchar(pointer%)=ASC("‘") THEN GOSUB 50630:GO

TO 50420
50470 IF FNchar(pointer%)=ASC(7") THEN GOSUB 50680:GO

TO 50420
50475 IF FNchar(pointer%)=ASC("(") OR FNchar(pointer%)=

ASC(")”) THEN GOSUB 51000:GOTO 50420
50480 IF FNchar(pointer%)>=ASC("0”) AND FNchar(poin

ter%)<=ASC("9") THEN GOSUB 50730:GOTO 50420
50490 IF FNchar(pointer%)=34 THEN GOSUB 50900:GOTO 50420
50491 IF FNchar(pointer%)=ASC(">") OR FNchar(poin

ter%)=ASC("<") OR FNchar(pointer%)=ASC(T) THEN
GOSUB 50975

50500 GOTO 50420

124

50510 RETURN
50520 ;
50530 REM + subroutine
50540 POKE address%,&F4
50550 pointer%=pointer%+1 :address%=address%+1
50560 RETURN
50570 :
50580 REM - routine
50590 POKE address%,&F5
50600 pointer°/o=pointer%+1 :address%=address%+1
50610 RETURN
50620 :
50630 REM * routine
50640 POKE address%,&F6
50650 pointer%=pointer%+1 :address%=address%+1
50660 RETURN
50670 :
50680 REM / routine
50690 POKE address%,&F7
50700 pointer%=pointer%+1 :address%=address%+1
50710 RETURN
50720 :
50730 REM number routine
50740 temp%=pointer%
50750 temp%=temp%+1
50760 IF temp%<=LEN(s$) THEN IF FNchar(temp%)>=ASC("0")

AND FNchar(pointer%)<=ASC("9") THEN GOTO 50750
50770 temp%=temp%-1
50780 sub$=MlD$(s$,pointer%,(temp%-pointer%+1))
50790 num%=VAL(sub$):pointer%=temp%+1
50800 IF num%<10 THEN POKE address%,(num%+14):ad

dress%=address%+1 :RETURN
50810 IF num%<=32767 THEN POKE address%,26:POKE

address%+1 ,num% MOD 256:POKE address%+
2,INT(num/256):address7o=address%+3:RETURN

50820 :
50830 REM spaces routine
50840 FOR i=396 TO 426
50850 POKE i,32
50860 NEXT i
50870 POKE 396,197
50880 RETURN
50890 :
50900 REM string reading
50910 POKE address%,34
50920 address%=address%+1 :pointer%=pointer%+1
50930 POKE address%,ASC(MID$(s$,pointer%,1))

125

50940 IF PEEK(address%)<>34 THEN GOTO 50920
50950 address%=address%+1 :pointer%=pointer%+1
50960 RETURN
50970 :
50975 REM relational operators
50976 IF FNchar(pointer%)=ASC("|") THEN GOTO 50988
50981 IF FNchar(pointer%)=ASC(">") THEN POKE address%,

238:pointer%=pointer%+1 :address%=address%+1 :RETURN
50982 IF MID$(s$,pointer%,2)="<>" THEN POKE address%,

242:address%=address%+1 :pointer%=pointer%+2:RETURN
50983 IF MID$(s$,pointer%,2)=">=" THEN POKE address%,

240:address7o=address%+1 :pointer%=pointer%+2:RETURN
50984 IF MID$(s$,pointer%,2)="<=" THEN POKE address%,

243:address%=address%+1 :pointer%=pointer%+2:RETURN
50985 IF FNchar(pointer%)=ASC("<") THEN POKE address%,

241 :pointer%=pointer%+1 :address%=address%+1 :RETURN
50986 GOTO 50993
50987 :
50988 pointer%=pointer%+1
50989 IF MID$(s$,pointer%,2)="OR" THEN POKE address%,

&FC:address%=address%+1 :pointer%=pointer%+2:RETURN
50990 IF MID$(s$,pointer%,3)="AND" THEN POKE address%,

&FA:address%=address%+1 :pointer%=pointer%+3:RETURN
50992 :
50993 REM error handler
50994 MODE 1
50995 PRINT "Ooops, error in:"
50996 PEN 3:PRINT s$
50997 PEN 1:END
50999 :
51000 REM brackets routine
51001 POKE address%,FNchar(pointer%)
51002 address%=address%+1 :pointer%=pointer%+1
51003 RETURN
51004 :
51007 REM routine to build IF...THEN
51008 REM statements.
51009 POKE address%,161 :address%=address%+1 :pointer%

=pointer%+3
51010 GOSUB 50410:pointer%=pointer%+1 :IF

MlD$(s$,pointer7o,4)="THEN" THEN POKE address%,&EB:ad
dress%=address%+1 :pointer7o=pointer%+5

51011 GOSUB 50200
51012 GOSUB 50340
51013 GOSUB 50410
51014 RETURN

126

The routine is reasonably straightforward, and its limitations are given
in the REEM statements. However, the routine will put together in to
line 3 some reasonably complicated expressions and assignments.
Note that AND and OR are supported, but must be preceded by a '['
symbol. Run the program, and type in a few simple assignments or
IF...THEN statements to be inserted in line 3. The routine isn't terribly
nice when it comes to errors; if you type in a silly statement, then the
routine probably won't tell you. Perhaps you could add some error
checking? In addition, you could also add array variables and long
variable names. However, the routine should give you the right ideas.

To test the routine, try some simple expressions:

a%=123
Enter this, then, after 'Ready' returns execute:

a%=0
GOSUB 2
PRINT a%

The correct value, 123, will be printed. Similarly, IF...THEN statements
such as:

IF a%=0 THEN g%=1

can be tried, or:

IF (a%+2)=7 THEN f$="Hello"

Try a few of these for yourself.
For more complex expressions in the IF...THEN statement, as you

might find if you were searching a database, things like:

IF (a$="Smith" |AND c$=''Croydon") THEN f%=1

could be put in to s$ and passed to the subroutine. To execute a
search of a string array, therefore, we'd simply put array elements in to
simple string variables before calling our 'tailor made' IF...THEN
statement.

Other possibilities for 'building' program lines in this way might be
routines that put DATA statements together, drawing programs which
put together lines of DRAW,PLOT statements, etc. or programs which
put SYMBOL definitions in to program lines. This whole book could
consist of ways of putting such lines together; as I intend to go on to

127

different subjects, I suggest that you use a simple routine like Listing 3
to inspect program lines so that you can study their construction.

In addition, if you put together several program lines you'll need a
means of finding the address of the REM token in a given program
line; such a routine will be given in Chapter 4.

1000 FOR l%=368 TO 40000
1010 PRINT l%,PEEK(l%);"
1020 IF PEEK(I%)>31 AND PEEK(I%)<127 THEN PRINT

CHR$(PEEK(I%)) ELSE PRINT
1030 NEXT l%

An alternative approach to putting program lines together is much
'cleaner', in that we don't have to POKE bytes in to the BASIC
program, but has the disadvantage of putting the program lines in to a
disc or cassette file rather than directly in to a program. The new lines
are stored in ASCII format, and so can be loaded in to the machine
when needed. This approach is good for SYMBOL definitions, etc. So,
we'll take a brief look at this approach to programs that can write other
programs.

The application is very trivial, but will again serve to demonstrate
the principles involved. The program is listed in Listing 4, and simply
allows you to type in lines of BASIC in response to the '?' prompt. Up
to 9 lines can be typed in to this routine, and these are stored in the
array ’bline$()'. Obviously, the program could be extended by making
this array larger. When you've finished, type in on its own as
response to the prompt. The program will then ask you for a file name
and save the 'program' to tape. It can now be 'MERGEd' in to the
machine, with the line numbers that you used when typing the lines in
in response to the prompts. This approach is very useful for providing
MERGable character and Envelope definitions, etc.

10 REM program to write programs
20 REM to a disc or tape file
30 :
40 DIM bline$(10)
50 bline%=1
60 :
70 INPUT bline$(bline%)
80 IF bline$(bline%)=...THEN bline%=bline%-1 :GOTO 110
90 bline%=bline%+1

100 IF bline%=10 THEN GOTO 110 ELSE GOTO 70
110 PEN 3:INPUT"What is the file name: ",a$

128

120 OPENOUT(a$)
130 FOR i%=1 TO bline%
140 PRINT#9,bline$(i%)
150 NEXT
160 CLOSEOUT
170 END

Variable Structure
We'll round off this Chapter on the storage of BASIC programs with an
examination of the way in which the different variable types are stored
in the computer. BASIC variables are stored after the program, and
the address of variables can be easily obtained by use of the
command. For example:

fred%=2
PRINT @fred%

This will return the address of the value stored in the variable 'fred%'.
For other numeric variables, @ can be used to find the value of the
variable in memory; for string variables, the @ function returns to us
the address of a three byte entry in memory which points us to the
string in memory. More details about this will be given later.

Integer Variables
This is a logical place to start, because these variables are fairly
simply stored. Take for example 'a%'.

0
ASC("A")+128
1

@a% low byte of value value=low+
high byte of value 256*high
0

We see that in this case, the variable name is a single character, and
this is stored with 128 added to its ASCII code, in the same way that
such variable names are stored in the program text. One thing to note
is the way in which the letters of the variable name are stored as the
ASCII codes of the Upper Case versions of the letters. This process
also affects the ASCII codes of numbers in variable names. To get the
name back to 'normal' use AND each character with 127 and OR if
with 32. For a longer variable name, only the last character has 128
added to it s ASCII code. The storage of, say a% as A%, explains why
Locomotive BASIC cannot distinguish between such variable names.

129

Note where @a% points to in this variable. POKEing this address, and
the next one, allows you to alter the value of the variable directly. (A
rather pointless exercise!)

Integer Arrays are stored in the following fashion; let's start with a%(n).

0
ASC("A")+128
1

numlow
numhigh

numdim

numellow
numelhigh

eleOlow
eleOhigh

elellow
ele1 high

0

Right, let's explain some of the terms used above, 'numlow' and
'numhigh' constitute a 16 bit number that is the number of bytes used
to hold the array elements, number of dimensions and number of
elements. For a%(10) this is 25. 3 bytes are used for the number of
elements, 1 for the number of dimensions and 22 for the array
elements. (a%(10) would have 11 elements, numbered 0 to 10, each
element using 2 bytes.) The elements are then stored in the usual
'low-high' order.

For a multi dimensional array, such as a%(x,y), we have a similar
arrangement. This is shown below.

0
ASC("A")+128
1

130

numlow
numhigh

numdim

numeleylow
numeleyhigh

numelexlow
numelexhigh

eleO.OIow
eleO.Ohigh

ele1,0low
ele1 ,Ohigh

ele2,0low
ele2,0high

0

'numeleylow' and 'numeleyhigh' and 'numelexlow' and 'numelexhigh'
hold the number of the 'x' and 'y' elements in the array. Again,
remember that arrays are numbered from 0 upwards.

'eleO.OIow'... and so on are the bytes used to store the array
elements. You might like to look at arrays containing various values
using a simple program to print out the value of the bytes that make up
the array structure; after all, that's how I worked out the details given
here!!

Strings
String variables are the next easiest variable type to consider; we'll
leave Floating Point Variables until last, because they are a little
complicated.

The '@' function, when applied to a string variable returns the
address of a three byte area in memory called the String Descriptor.
Take the below example, for the program statement a$="Hello".

0
ASC("A")+128
2 String Type

Identifier

131

5

addlow
addhigh

Descriptor
Block byte 1
Byte 2
Byte 3

byte

Again, the variable name is stored with it's last character modified by
the addition of 128 to its ASCII code. '2' is used as the string type
identifier here; dare I say it would have been a little easier for us if the
Type Identifiers used here and in variable definitions in the program
text had been the same? The String Descriptor starts with the string
length, in this case 5, and then continues with the address at which
the first character in the string can be found in memory. The address
will be either in the body of the program, if the definition of the string is
like any of the following,

1000 fred$="Hello"

110 f$=''test string"
120 a$=f$

or will be high in memory, if the definition of the string was made as a
direct command, such as

a$="fred" <ENTER>

or was made by concatenating strings or using CHR$. Thus the
characters in a string can be directly accessed by using @.

String Arrays
These are stored in memory as a collection of String Descriptor
blocks, with a 'preamble' that is similar in structure to that for Integer
Array. The structure for the array a$(n) is shown below.

0
ASC("A")+128
2

lenlow
lenhigh

dims

132

elelow
elehigh

descriptor for
element 0

'lenlow' and 'lenhigh' hold the number of bytes used to hold the String
Descriptors, number of elements and number of dimensions.

'dims' holds the number of dimensions in the array, and 'elelow'
and 'elehigh' hold the total number of elements in each dimension of
the array. Again, remember that array elements are numbered from 0
upwards. This two byte entry is repeated for each byte of the array. So,
for example, for the array a$(n,m), the first two byte entry after 'dims' is
the number of elements in the'm' dimension, followed by a two byte
entry holding the 'n' entry.

Two dimensional arrays have their elements in the following order:

0,0 1,02,0 3,0....

Floating Point Numbers
And so to the fun packed world of Floating Point (FP) numbers. As
we've already briefly mentioned, they are stored in 5 bytes and are the
means by which the Amstrad represents fractional or very large
numbers.

You can probably see that, using a straight binary representation
of numbers, 5 bytes wouldn't hold very large numbers. What we in fact
do is hold the number as a MANTISSA and EXPONENT. In decimal
arithmetic, we can write 1000 as:

1 ‘ 10 E+3

Here, 1 is the mantissa and 10 EXP(3) is the Exponent. Similarly, we
could write 1234 as:

1.234 * 10 E+3

The mantissa represents the value of the number, and the Exponent
indicates the position of the decimal point within that number. Well, in
binary it's the same, except we've got a binary point to worry about
rather than a decimal point. The arrangement of the 5 bytes is:

133

EXPONENT

Mantissa

MSB LSB

The Mantissa holds the binary representation of the number, without
any binary point needed. The position of the binary point is reflected in
the value of the Exponent.

Now, if we consider the binary number:

11.101101

then all the following combinations of Mantissa and Exponent
represent it.

11.101101 * 2E0
1.1101101 * 2 E +1
0.11101101 * 2 E +2

In computers, we generally prefer a single representation, and so over
the years a 'standard' means of representing Floating Point numbers
has been developed. This is known as Standard Form, or Normal
Representation. The process of getting an FP number into this format
is called 'Normalisation'. The first thing to note is that this format
assumes that the binary point is always to the left of the Most
Significant Bit of the Mantissa. The mantissa will, therefore, always
represent a binary fraction in this format, the Exponent indicating the
position of the binary point within the actual number being
represented.

The process of producing a normalised FP number is as follows.
To make things concrete, let's turn 1.0 into a Normalised FP Number.

i/ Write down a representation of the number in binary. This will be
the Mantissa. So, we could have:

0000 0001 0000 0000 0000 0000 0000 0000

It doesn't matter which byte of the Mantissa we put the 1 in to; after all,
the value in the Exponent can be used to modify the position of the
Binary point.

ii/ Get a value for the exponent which positions the Binary Point
in the Mantissa. In this case, remembering that the binary point starts
off to the left of the MSB of the mantissa, the Exponent will be 8. This
gives us:

0000 1000 0000 0001 0000 0000 0000 0000 0000 0000

134

iii/ Now we Normalise the number. We do this by shifting each bit of
the mantissa to the LEFT until the MSB of the mantissa has the value
'1'. Simple binary arithmetic tells us that for each bit position we move
to the left, we increase the value of the number by a power of two. It
follows therefore, that to keep the number representing the same
value we must decrease the value of the exponent by 1 for each bit
position that we move to the left. For the number above, we end up
with:

0000 0001 1000 0000 0000 0000 0000 0000 0000 0000

That completes normalisation.

iv/ We now come to consider the sign of the number. There are
two approaches that can be used here. We could use a separate bit or
byte to hold the sign of the number, or we could somehow incorporate
it in to the 5 bytes we're already using. Well, the latter approach is
chosen. Any normalised FP number is expected to have the MSB of
the mantissa set to 1, and so we can use this bit as the sign bit. If the
number is positive we set it to 0 and if negative we set it to 1. This has
the added advantage of giving us a quick way of changing the sign of
a number; we simply add 128 (&80) to the most significant byte of the
mantissa. Applying this to our representation so far we get:

&01 &00 &00 &00 &00

v/ Finally, we add &80 to the exponent byte. This gives us:

&81 &00 &00 &00 &00

and that's it. What about fractional numbers, such as 0.25? The same
rules apply. Firstly, write down a mantissa and exponent that
represent the number. For example:

0000 0000 0100 000 0000 0000 0000 0000 0000 0000

Now, the binary point is to the left of the MSB of the mantissa in any
case, so in this example the exponent starts off as zero.

To normalise the representation, the mantissa must be shifted
bitwise to the left until the MSB is 1. So, we end up with:

-1 1000 0000 0000 0000 0000 0000 0000 0000

135

Now we set the MSB of the mantissa to zero, as we had a positive
number, and add &80 to the Exponent to finish things off. This gives
us:

&7F &00 &00 &00 &00

There is one special case in this method of representing numbers; this
is 0, which is stored with the Exponent and all the mantissa bytes set
to 0.

As to the way in which FP variables are stored in the Amstrad, the
below bytes represent the variable a=0.25.

0
ASC("A")+128
4 Type

@ points
here 0 LSB Mantissa

0
0
0 MSB Mantissa

&7F Exponent
0

10 REM demonstration of Real Number
20 REM structure on Amstrad
30 :
40 MODE 1
50 :
60 INPUT "What is the number",a
70 i%=0:a%=0:a%=@a
80 PRINTPRINT
90 PEN 3PRINT "Mantissa LSB ";:PEN 1 PRINT

HEX$(PEEK(a%+0))
100 PRINT SPC(15);HEX$(PEEK(a%+1))
110 PRINT SPC(15);HEX$(PEEK(a%+2))
120 PRINT SPC(15);HEX$(PEEK(a%+3))
130 PEN 3PRINT "Exponent LSB ";:PEN 1 PRINT

HEX$(PEEK(a%+4))
140 PRINTPRINT
150 GOTO 60

136

The bytes making up the FP representation are stored 'backwards' in
memory. Floating Point arrays are stored in a similar fashion to Integer
Arrays, though with 5 byte FP entries replacing the two byte Integer
entries.

If you are interested in the way in which FP numbers are stored in
memory, then the program in Listing 5 might be of use. It prints out the
bytes used to represent any value you type in. To use, simply RUN it
and enter the value when prompted. @ is used to get the address of
the five bytes used.

That completes this brief review of Amstrad variable structure. In
Chapter 4 we'll come across routines that use the Information
presented in this Chapter to produce some useful utilities for BASIC
programmers that can be accessed by the RSX system. However, I'd
like to finish this Chapter off with a few comments about speed and
cutting down the size of programs.

Program Speed
The usual answer to any one who asks "How can I make my BASIC
program go faster?" is "Write it in machine code!".

However, there are techniques that can be applied to any BASIC
program to give it a little more speed.

Use of Integer Variables
If integer variables are used wherever possible, a program will run
faster. For example, the line:

FOR i%=1 TO 1000:NEXT i%

will run about twice as fast as:

FOR i=1 TO 1000:NEXTi

The reason for this is clear; the interpreter has less work to do in
sorting out Integers than in decoding Floating Point numbers.
However, there will be some situations in which Floating Point
numbers are necessary. However, in some of these cases scaling
might be useful. For example, let's assume we're writinn a program
dealing with money. We might have sums of money like £1.22 to deal
with. Well, we could simply convert such sums in to pence by
multiplying by 100, giving 122. We could then operate on these
integers until we come to display the result. However, this would only
be useful for small sums of money, due to the limited range of
numbers that can be held in an integer variable.

137

FOR...NEXT loops
We've already seen that an integer variable makes the FOR...NEXT
loop go faster. There are a couple of other things to try with these
loops to speed them up a little. The first is to miss off the variable
name off of the NEXT wherever possible. This results in a slight speed
up of the loop. The second thing to consider is to try and put the
statements to be executed by the FOR...NEXT loop on the same line of
the program e.g:

100 FOR i=1 TO 100:PRINT i:NEXT

rather than:

100 FORi=1TO100
110 PRINT i
120 NEXT

Functions
A BASIC function or arithmetic operation takes a finite amount of time,
and some functions are very long winded indeed. The below table
gives a rough ranking of the time taken by some functions and
arithmetic operations.

FAST +,-

*,/
ASC()

SQR()

SIN,COS

SLOW TAN

The only thing to do is to cut down the number of times that the more
complex functions, such as TAN, are evaluated.

Wherever possible, such operations should be done outside
loops. TAN takes about twice as long as SIN and COS. Also, the
actual time taken by some functions, for example, depends upon
whether the numbers involved are Integer or Floating Point.

138

Space Considerations
When we consider the amount of RAM available to the user on the
Amstrad, and compare it to the amount available on other popular
microcomputers you might wonder why we bother worrying about
space considerations. However, here we go.

Variables
Use short variable names wherever possible, and, again, integers if
possible. This is due to integers using less space in memory than FP
variables.

Multi-Statement Lines
If you get as many statements as possible on to a single line, then you
will save space. This is because the bytes needed for each separate
line, such as the line number, length and terminator byte will not be
needed.

REM Statements
Simply remove them.

In the next Chapter, we'll look at a collection of RSX routines that will
hopefully make BASIC programming easier.

139

Chapter 4
RSX Routines

In this Chapter you'll find a variety of extensions to the Amstrad BASIC
to help you with your BASIC programming. These commands are
added via the Resident System Extension facilities that are offered by
the Operating System of the Amstrad. The routines are all added to
BASIC by machine code programs, which will be presented in two
ways in this Chapter. At the end of the Chapter you will find a BASIC
Loader program which is used to POKE the bytes that make up the
machine code in to memory, thus allowing you to use the commands
with no knowledge whatsoever of machine code. Listings of the bytes
needed will also be given. However, for those of you who are
interested, I also offer Assembler Listings of the various routines so
you can ’take them apart' and possibly adapt them to your own use. In
addition, there will also be hints on combining machine code and
BASIC.

The RSX System
Those of you who are conversant with the RSX facilities can skip this
section, but if you're not, then this is what it's all about!

Quite simply, it's a means of adding 'commands' to the Amstrad.
These commands can best be viewed as named CALL statements;
indeed, parameters are passed to RSX statements in exactly the same
way as that in which we pass parameters to machine code routines
using the CALL statement.

RSX commands are prefixed by the T symbol, which can be
accessed on the keyboard by SHIFT-@. This system is perfect for
applications in which we wish to pass values from BASIC into
machine code, but, like the CALL statement, is a little awkward when it

141

comes to passing values back, as we'll soon see. The biggest
advantage of adding commands via the RSX system, though, rather
than just CALLing the appropriate machine code routines is that you
don't have to remember the addresses of the routines; quite handy if
there are a lot of routines!

At the heart of this system are two tables. I'll give you sufficient
knowledge here to allow you to add your own commands if you want
to, but for full details I direct you to the 'Amstrad Technical Firmware
Manual'.

The Jump Table
This table tells the OS where in memory the routines are to be found.
Its structure is shown below, in standard Z-80 Assembler Language.

jumptable DEFW
JP
JP

nametable
routinel
routine2

'nametable' is the address in memory of the other table used by RSX,
the Name Table, which we'll look at shortly. The rest of the table
consists of a series of JP instructions. In each case, the JP is to the
address of one of the RSX routines. These JPs must be in the same
order as that in which the names of the routines are listed in the Name
Table. Obviously, one Jump Table entry is needed for each RSX
command to be added.

The Name Table
This is a table in memory that holds the names of the RSX commands
to be added. The start address of this Table is stored, low byte first, in
the first two bytes of the Jump Table. The structure of a typical Name
Table is shown below.

nametable DEFS
DEFS
DEFS

name-of-routine1
name-of-routine2
name-of-routine3

DEFB 0

Here 'O' is used to terminate the Table. The command names are
stored in Upper Case with the last character of the name modified by
having 128 added to its ASCII code. The order of these routine

142

names corresponds to the order of JPs in the Jump Table. Thus, when
the BASIC interpreter encounters '|name-of-routine1' in a program it
will jump to address 'routinel' where it will expect to find a suitable
machine code program to run.

In addition to these two tables, the OS also requires a 4 byte block
of memory to act as workspace. This must be in the central 'Memory
Pool', not overlaid by ROM. There now remains the problem of telling
the BASIC Interpreter about these tables. That's easy; simply call
&BCD1 with HL holding the address of the first byte of workspace and
the address of the start of the JUmp Table in the BC register pair.

Only one thing; it's not a good idea to call this routine more than
once for a given name/jump table combination. It occasionally causes
the machine to hang up!

Parameter Passing
This is the same as for the CALL statement. On entry to the RSX
routine, IX points to a Parameter Block and A holds the number of
parameters that were passed over to the routine. The parameter types
that can follow an RSX command are:

// A number or variable that gives a value in the range 0 to 65535.
e.g.

Inewcommand, 100
a%=400:|newcommand,a%

The value is available to the machine code program, as we shall soon
see, but it's not possible to pass values back from the machine code
program using this technique.

0/ A variable preceded by the '@' symbol. This allows us to pass
values from BASIC to machine code and machine code to BASIC, e.g.

a%=45:|newcommand,@a%
PRINT a%

Hi/ A string variable preceded by the '@' symbol. It is not possible to
pass string constants over to machine code routines in this way, only
variables.

How are these variables and constants made available to the
machine code programs? Well, on entry to the RSX routine IX points
to a Parameter block as shown below.

newcommand, paral ,para2

143

PARA 1

PARA 2

Each parameter passed sets up a two byte entry in the parameter
block, the contents of these two byte entries depending upon the
parameter type.

Integer Numbers or Variable
Here the two byte entry contains the binary representation of the
value. Thus for the command:

newcommand,23

the parameter block would be:

(IX)

0 HIGH BYTE

LOW BYTE23

Numeric Variables prefixed by

Here, the two byte entry contains the ADDRESS of the variable. Thus
for the command:

newcommand,@fred%

144

the parameter block:

(IX)

will be set up, with the address of 'fred%' being in the parameter
block. This address can be used to get the current value of the
variable 'fred%'. In addition, though, the address can be used by the
machine code program to alter the value of 'fred%'. Thus a machine
code program can alter the value of a BASIC variable, allowing values
to be passed back to BASIC from machine code. There is one
important point to remember with regard to passing these '@'
parameters, though, and that is that the variable used, 'fred%' in this
case, must be assigned a value before it is passed over to the RSX
command, even if this value is just 0. Failure to do this will generate
an error.

String Variables prefixed by
In this case, the two byte parameter block entry is the address of a
String Descriptor Block, which was described in Chapter 3. Again, the
string variable can be modified by the machine code. Also, the string
variable must have a value assigned to it before it's passed to an RSX
command.

If you already have an RSX extension in operation in the machine,
then you can set up different RSX tables as above and use &BCD1 to
activate them. This won't affect the first RSX commands, but you
should ensure that two commands don't have the same name!

The MEMORY command should be used to set up a safe area in
memory into which the machine code can be placed. These RSX
commands were written on a 464 tape system, but there is no reason
why they shouldn't work perfectly well on a disk system.

The Routines
The RSX routines will be listed in 'modules', each module being a

145

functionally separate part of the program. This allows discussion of the
machine code as we go along. As the different sections have line
numbers, the listings will be easy to enter. They were written using the
Amsoft DEVPAC Assembler.

10 ; RSX commands, Module 1
20 ; initialises the RSX command
30 ; table and saves jumpblock
40 ; entries which the commands may
50 ; alter in use
60
70
80 ORG 38000
90 init: LD HL,wkspace

100 LD BC.jpblk
110 CALL#BCD1
120
130 ; the above lines set up the RSX
140 ; commands
150
160
170 LD A,(#BDEE)
180 LD (brktem),A
190 LD A,(#BDF1)
200 LD (prt1),A
210 LD A,(#BDF2)
220 LD (prt2),A
230 LD A,(#BDF3)
240 LD A,(prt3)
250
260 ; these lines have saved the contents
270 ; of jumpblocks that will be altered
280 ; in use
290
310 RET
320 wkspac: DEFS 4
360
370 jpblk: DEFW namtab
380 JP reset
390 JP pause
400 JP find
410 JP dump
420 JP search
440 JP get
450 JP romr
460 JP Hist
470 JP crtc
480 JP sound
490 JP ink
500 JP amplit
510 JP tone
520 JP symbol
530 JP brkon
540 JP brkoff
550 JP cat

560 JP motor
570
580 namtab: DEFM "RESE"
590 DEFB"T"+128
600 DEFM "PAUS"
610 DEFB"E”+128
620 DEFM "FIN"
630 DEFB"D"+128
640 DEFM "DUM"
650 DEFB"P"+128
680 DEFM "SEARC"
690 DEFB”H"+128
700 DEFM "GE"
710 DEFB"T"+128
720 DEFM "ROMREA"
730 DEFB"D"+128
740 DEFM "LLIS"
750 DEFB"T"+128
760 DEFM "CRT"
770 DEFB"C"+128
780 DEFM "SOUN"
790 DEFB"D"+128
800 DEFM "IN”
810 DEFB"K"+128
820 DEFM "AMPLITUD"
830 DEFB"E"+128
840 DEFM "TON"
850 DEFB"E"+128
860 DEFM "SYMBO"
870 DEFB"L"+128
880 DEFM "BRKOF"
890 DEFB"F”+128
900 DEFM "BRKO"
910 DEFB"N"+128
920 DEFM "CA"
930 DEFB"T”+128
940 DEFM "MOTO"
950 DEFB"R”+128
960 DEFM DEFB 0
965
970 ; these are the command names
990

1000 brktem; DEFB 00
1010 prt1: DEFB 00
1020 prt2: DEFB 00
1030 prt3: DEFB 00
1040
1050 ; the above bytes are for
1060 ; temporary storage of bytes
1070
1080

146

Module 1 of the program sets up the Tables for the RSX
commands that we will add to the BASIC of the Amstrad.

The program has been written to be self-explanatory. Lines 170
and 180 save the current value of the Jumpblock entry that is
responsible for Break event testing. Lines 190-240 save the current
contents of the Jumpblock entry that usually allows the character in
the A register to be sent to a printer. The|LLIST command will modify
this entry, and we must have a copy of it so that we can restore the
Jumpblock to normal when necessary.

This initialisation routine should only be called once, after which
the commands will be active.

The program has been written to start at address 38000 (as set by
the ORG command in line 80).

The rest of this module is mainly the Jump and Name Tables for
the new commands. Lines 1000-1030 supply some workspace.

Module 2 is more interesting. This contains the code for some of
the commands. Let's examine the code in more detail.

1090
1100 ; ******* MODULE 2 *******
1110
1120 ; this adds the shorter RSX commands
1133
1134 parerr: LD HL.errmess
1135 loopl: LD A,(HL)
1136 CP 0
1137 RET Z
1138 CALL#BB5A
1139 INC HL
1140 JR loopl
1150 errmes: DEFM "Parameter Error!!"
1160 DEFB13
1170 DEFB10
1180 DEFB 7
1190 DEFB0
1200
1210 ; routine prints out the error
1220 ; message if not correct number
1230 ; of parameters.
1233
1240 brkoff: LD A,(brktem)
1250 LD (#BDEE),A
1260 RET
1270
1280 ; brkoff routine turns on the
1290 ; normal Escape action
1320
1330 brkon: LD A,201
1340 LD (#BDEE),A
1350 RET
1360

1370 ; brkon puts a RET in #BDEE
1380
1400
1410 crtc: CP 2
1420 JP NZ,parerr
1430 LD A,(IX+2)
1440 LD BC,#BC0O
1450 OUT (C),A
1460 LD A,(IX)
1470 LD BC,#BD00
1480 OUT (C),A
1490 RET
1500
1510 ; CRTC routine allows the BASIC
1520 ; programmer to access the CRTC
1610
1620 sound: CP 2
1630 JP NZ,parerr
1640 LD A,(IX+2)
1650 LD C,(IX)
1660 CALL#BD34
1670 RET

1680
1690 ; this routine uses an OS routine
1700 ; to directly access the Sound chip
1710
1730 motor: CP 1
1740 JP NZ,parerr
1750 LD A,(IX)
1760 CP 0
1770 JR Z.motoff

147

1780 CALL#BC6E
1790 RET
1795
1800 ; above routine turns motor on
1810
1830 motoff: CALL #BC71
1840 RET
1850
1860 ; above routine turns motor off
1870
1890 reset: CALL#BB4E
1900 CALLtfBBOO

1910 CALLtfBBBA
1920 CALL#BC02
1930 CALL#BC65
1940 CALL#BCA7
1950 CALL#BD37
1960 LD A,(#BDEE)
1970 LD (brktem),A
1971 RET
1975
1980 ; 'reset' simply sets the jumpblocks
1990 ; back to normal
2000

Lines 1134-1180
This subroutine is used to print out the message 'Parameter Error!!" in
the event of an RSX command being entered without the appropriate
number of parameters. Its operation is simple; the HL register is set
up to point to the message, and then the character pointed to by HL is
printed to the text VDU until a zero byte is encountered. This routine
could be used as a general string printing routine if HL were set up
first and the routine entered at 'loopT.

Lines 1240-1260
These execute the|BRKOFF command by setting &BDEE to its usual

value.

Lines 1330-1350
The |BRKON command turns on the new Escape key handler. This
disables the Escape key in a running program, even preventing the
SHIFT-CTRL-ESCAPE sequence from operating. A Z-80 RET code is
loaded in to address &BDEE.

This ensures that when a call to this routine is made by the OS an
immediate return is made, rather than a jump to the appropriate OS
routine to check the Escape key.

Lines 1410-1490
These deal with the|CRTC command by writing values directly to the
6845 CRTC chip. This is accessed through the I/O map of the Amstrad.
The register number is written to I/O address &BC00 and the data to
address &BD00. Details of registers and what they do will be given in
Chapter 5. Should the number of parameters passed to the command
be incorrect then a message is printed and no further action is taken.

148

Lines 1620-1670
This code executes the |SOUND command. The Firmware routine

called via &BD34 ensures that write operations to the Programmable
Sound Generator do not interfere with the normal operation of the OS.
A message is printed if the number of parameters is incorrect and no
further action is taken.

Lines 1730-1840
These lines deal with the |MOTOR command. If there isn't one
parameter no further action is taken. Otherwise OS routines are used
to turn the Cassette motor on or off as required.

Lines 1890-1971
Here a variety of initialisation routines in the ROM are called and
these return much of the system back to its initial status. Finally, the
variable 'brktem' is set to the initial value of location &BDEE.

Module 3 contains a few more subroutines that will be used by
other routines, and also adds 4 commands. Again, the function and
syntax of the new commands will be examined after we've described
the listing.

2010
2020 ; ******* MODULE 3 *******
2030
2090 pause: CP 1
2100 JP NZ,parerr
2110
2120 ; check for one parameter
2130
2140 LD C,(IX)
2150 LD B,(IX+1)
2160ploop: PUSH BC
2170 CALL#BD19
2180
2190 ; BC holds the pause length in 1/50
2200 ; of a second units
2210
2240 CALL#BB1B
2250 JR C,finish
2260
2270 ; if key pressed then finish
2280
2290 POP BC
2300 DEC BC
2310 LD A.B
2320 OR C
2330 JR NZ.ploop
2340 RET

2350 finish: POP BC
2360 RET
2370
2380 ; decrement BC, and finish if zero
2390
2410 get: CP 1
2420 JP NZ,parerr
2430
2440 ; get parameter number
2450
2460 LD L,(IX)
2470 LD H,(IX+1)
2480
2490 ; get address of parameter
2500
2510 CALL#BB18
2512 ; wait for a key press
2513
2530 LD (HL),A
2540 INC HL
2550 LD (HL),0
2560 RET
2570
2590 ; the following subroutines
2600 ; print messages of a given length
2610 ; and print the contents of
2620 ; HL register pair as a number

149

2630
2660 messag: PUSH BC
2670 LD A,(HL)
2680 CALL #BB5A
2685 POP BC
2686 INC HL
2687 DEC BC
2690
2700
2710
2715

LD A,B
OR C
JR NZ,messag
RET

2720 Iret: LD A,13
2730 CALLSBB5A
2740 LD A,10
2750 CALL#BB5A
2760 RET
2770
2820 pnumhl: LD DE,10000
2830 CALL p1
2840 LD DE,1000
2850 CALL p1
2860 LD DE,100
2870 CALL p1
2880 LD DE,10
2890 CALL p1
2900 LD DE,1
2910p1: XOR A
2920 hloop: SCF
2930 CCF
2940 SBC HL,DE
2950 JR C.numout
2960 INC A
2970 JR hloop
2980 numout: ADD HL,DE
2990 ADD A,#30
3000 PUSH HL
3010 CALL#BB5A
3020 POP HL
3030 RET
3040
3050
3180 cat: LD A,#2C
3190 LD DE,64
3200 LD HL,buffer
3210 CALL#BCA1
3211 JR C,ok
3212 RET
3220
3230 ; above code loads in a 64 byte
3240 ; block from tape
3250
3260
3270 ok: LD HL,buffer
3280 LD BC.16
3290 CALL messag
3295 CALL Iret

3300
3310; print out the file name
3320
3330 LD HL.Ien
3340 LD BC,9
3350 CALL messag
3360
3370 ; print out 'Length'
3380
3390
3400
3410
3420
3421
3422

LD IX,buffer
LD L,(IX+24)
LD H,(IX+25)
CALL pnumhl
CALL Iret

3423 ; print Out the file length
3424
3430 LD HL,start
3440 LD BC,9
3450 CALL messag
3460
3470 ; print the word 'Start'
3480
3490 LD L,(IX+21)
3500 LD H,(IX+22)
3510 CALL pnumhl
3520 CALL Iret
3521
3522 ; now print the start address
3523
3540 LD HL,block
3560 LD BC,9
3570 CALL messag
3580 LD L,(IX+16)
3590 XOR A
3600 LD H,A
3610 CALL pnumhl
3615 CALL Iret
3620 CALL typer
3630 JR cat
3640
3650 ; above code prints out the
3660 ; block number and calls a
3670 ; subroutine to print out the
3680 ; file type, then return to cat
3690
3700 typer: LD BC,9
3710 LD HL,type
3720 CALL messag
3730 LD A,(IX+18)
3740 AND 14
3750 SRL A
3760
3770 ; get the type bits into the
3780 ; LSBs of the A register
3790

150

3810 CP 0
3820 JR Z,bas
3830 CP 1
3840 JR Z.code
3850 CP 2
3860 JR Z,screen
3870 CP 3
3880 JR Z,ascii
3890 cout: CALL form
3900 RET
3910
3920 ; now print the type out
3930
3940 bas: LD BC,5
3950 LD HL.basicm
3960 CALL messag
3970 JR cout
3980 code: LD BC,6
3990 LD HL,codem
4000 CALL messag
4010 JR cout
4020 screen: LD BC,12
4030 LD HL.screm
4040 CALL messag
4050 JR cout
4060 ascii: LD BC,5
4070 LD HL.ascm
4080 CALL messag
4090 JR cout
4100 form: LD B,6
4110floop: LD A,13
4120 CALL#BB5A
4130 LD AJO
4140 CALL#BB5A
4150 DJNZfloop
4170 RET
4180
4190 ; now more workspace for the
4200 ; CAT statement and string
4210 ■; definitions
4220
4230 type: DEFM "Type
4240 len: DEFM "Length
4250 start: DEFM "Start
4260 block: DEFM "Block
4270 basicm: DEFM "BASIC"

4280 codem: DEFM "BINARY"
4290 screm: DEFM "Screen Image"
4300 ascm: DEFM "ASCII"
4310 buffer: DEFS 70
4320
4330 ; now comes the definition of the
4340 ; |SYMBOL command
4350
4360 symbol: CP 2
4370 JP NZ.parerr
4380
4390 ; jump if not 2 parameters
4400
4410 CALL #B906
4420 PUSH AF
4430
4440 ; page in ROM with char, definitions
4450 ; and save the ROM status on the stack
4460
4480 LD A,(IX+2)
4490 CALL #BBA5
4500
4510 ; get char. def. into HL register
4520
4540 LD E,(IX+0)
4550 LD D,(IX+1)
4560 PUSH DE
4570 POP IX
4580
4590 ; get address of buffer area into IX
4600 ; register pair
4630
4640 LD B,8
4650 sloop: LD A,(HL)
4660 LD (IX+0),A
4670 INC HL
4680 INC IX
4690 DJNZ sloop
4700 POP AF
4710 CALL#B90C
4720 RET
4730
4740 ; transfer the bytes into the buffer and
4750 ; restore the ROM status to what it was
4760

Lines 2090-2360 deal with the pause command, and use 2 OS
routines. The first, at &BD19, waits for the Frame Flyback to occur.
This happens, roughly, once every 50th of a second. The second
routine, called at &BB1B, tests the keyboard and exits with the carry
flag set if a key has been pressed. If you want further details of the
Firmware routines, then consult the 'Amstrad Technical Firmware
Guide'.

151

Lines 2410-2570 execute the|GET instruction and wait for a key to

be pressed before passing the ASCII code of that key back to BASIC.
Lines 2530-2570 put the ASCII code into the variable that was passed
as the parameter for this command.

Lines 2660-2715 deal with the printing out of messages of a set
length.

The 'Iret' routine simply sends a Carriage Return to the screen,
forcing a new text line.

'pnumhl' prints out the contents of the HL register pair as a 5 digit
decimal number. The process is simply one repeated subtraction of
powers of 10 from the number, first getting the number of ten
thousands in the number, then thousands, and so on down to the
number of units. The result is then converted to the ASCII code for the
digit in question and printed out.

Lines 3180-4320 deal with the implementation of the |CAT
command, which is an extended CAT command. The routine uses the
Firmware Cassette read routine called at &BCA1 to read in the 64 byte
header of each block of a cassette file. This data is put in an area of
memory called 'buffer'. The actual details of this Header have no
place in this book, and have been described in The Ins and Outs of
the Amstrad published by Melbourne House.

The rest of the 'cat' routine simply accesses this buffer area and
prints out the information found therein.

The final lines of code, from 4330-4760 deal with the |SYMBOL
command, which returns the 8 byte pattern definition for a given ASCII
code. The pattern definition is stored in an area of memory whose
address is passed to the routine as one of the parameters of the
command.

The fourth module simply adds 4 more commands. The first of
these is |LLIST, and this alters the behaviour of the normal LIST £8

command, as will be described later. Lines 4810-5050 turn the LLIST
option on by pointing the MC WAIT PRINTER jumpblock to a piece of
our own machine code, 'prchar1. The lines 5070-5130 turn this option
off by restoring the original contents of the Jumpblock.

'pchar' at 5150-5180 first tries to write the character to the printer;
this is done by calling the original MC WAIT PRINTER routine. If this
fails due to the printer being busy, then a return is made with C clear.
This is detected in line 5160. If C is clear then a return to BASIC is
made. Otherwise, the character is also printed to the screen.

152

4770
4780 ; ******* Module 4 *******
4790
4810 Hist: CP 1
4820 JP NZ.parerr
4850 LD A,(IX)
4860 CP 0
4870 JR Z.loff
4880
4890 ; decide if option on or off
4900
4920 LD A,#C3
4930 LD HL,prchar
4940
4950 ; now set jumpblock up
4990
5000 LD (#BDF1),A
5010 LD A,L
5020 LD (#BDF2),A
5030 LD A,H
5040 LD (#BDF3),A
5050 RET
5060
5070 loff: LD A,(prt1)
5080 LD (#BDF1),A
5090 LD A,(prt2)
5100 LD (#BDF2),A
5110 LD A,(prt3)

5120 LD (#BDF3),A
5130 RET
5140
5150 prchar: CALL prt1
5160 RET NC
5170 CALL#BB5A
5180 RET
5190
5195 ; character to printer and screen
5200
5220 ink: CP 2
5230 JP NZ.parerr
5270 LD A,(IX+2)
5280 CALL #BC35
5290 LD L,(IX+0)
5300 LD H,(IX+1)
5310 LD (HL),B
5320 INC HL
5330 LD (HL),C
5340 RET
5350
5360 ; get colours and put in variables
5370
5450 find: CP 2
5460 JP NZ.parerr
5470 LD L,(IX)
5480 LD H,(IX+1)
5490 LD (varadd),HL
5500

5510 ; store variable address
5530
5540 LD L,(IX+2)
5550 LD H,(IX+3)
5560 LD (lineno),HL
5570
5580 ; store line number away
5590
5600 LD IX,368
5630 findlo: LD C,(IX+2)
5640 LD B,(IX+3)
5650 LD HL.(lineno)
5658 SCF
5659 CCF
5660 SBC HL,BC
5670 JR Z,found
5680
5690 ; test line number and if OK
5700 ; jump out of routine
5710
5720 CALL#BB1B
5730 RET C
5740
5750 ; check for the key press
5760
5770
5790 PUSH IX
5800 POP HL
5810 LD E,(IX)
5820 LD D,(IX+1)
5830 ADD HL,DE
5840 PUSH HL
5850 POP IX
5860 JR findlo
5870 found: INC IX
5880 INC IX
5890 INC IX
5900 INC IX
5910 PUSH IX
5920 POP DE
5930 LD HL,(varadd)
5940 LD (HL),E
5950 INC HL
5960 LD (HL),D
5970 RET
5980
5990 ; update IX to point to next
6000 ; line length byte then round
6010 ; again. Found routine returns
6020 ; the address in a variable
6030
6060 varadd: DEFW 0000
6070 lineno: DEFW 0000
6080
6090 ; now the search command
6100
6110 search: CP 2

153

6120 JP NZ.parerrs
6160 LD L,(IX+2)
6170 LD H,(IX+3)
6180 LD A,(HL)
6190 LD (length),A
6200
6210 ; get length into A
6220
6230 INC HL
6240 LD C,(HL)
6250 INC HL
6260 LD B,(HL)
6261 LD (stradd),BC
6262
6263 ; string address into stradd
6264
6266 LD A,(IX)
6267 CP 1
6268 JR Z,sok
6269
6270 ;; if mode is 1 then jump on
6271
6272 LD A,(length)
6273 LD E,A
6274 XOR A
6275 LD D,A
6276 DEC DE
6277 LD HL,(stradd)
6278 ADD HL,DE
6279 LD A,(HL)
6280 ADD A,128
6281 LD (HL),A
6282
6283 ;; add 128 to last character i
6284 ; variable name
6285
6286 LD A,(length)
6287 CP 1
6288 CALL Z.prob
6289
6290 ; if 1 char, variable name then
6291 ; indicate a possible problem
6293
6294 sok: LD IX,368
6295 seioop: LD E,(IX+0)
6296 LD D,(IX+1)
6297 LD L,(IX+2)
6298 LD H,(IX+3)
6299 LD (lineno),HL
6300 LD A,L
6301 OR H
6302 RET' Z
6303
6304 ; if line numnber=0 then finish
6305 CALL#BB1B
6306 RET C

6309
6310 ; if key pressed, finished
6311
6312 CALLsline
6313
6314 ; scan the line
6315
6316 PUSH IX
6317 POP HL
6318 DEC DE
6319 ADD HL,DE
6320 INC HL
'6321 PUSH HL
6322 POP IX
6323
6324 ; get new line start into IX
6325
6326 JR seioop
6327
6330 sline: PUSH IX
6331 POP HL
6332 PUSH IX
6333 PUSH DE
6334 POP BC
6335 DEC BC
6336 DEC BC
6337 DEC BC
6338 DEC BC
6339 PUSH DE
6340 LD DE,4
6341 ADD HL,DE
6342
6343 ; length of text in BC and HL points
6344 ; at start of text line
6345
6346
6347 selopl: LD DE,(stradd)
6348 PUSH BC
6349 LD A,(DE)
6350 CP (HL)
6351 JR Z,hit
6352
6533 ; if character is same as first
6534 ; character of search string then
6535 ; jump off and check rest of string
6537
6538 notok: POP BC
6539 DEC BC
6540 INC HL
6541 LD A.B
6542 OR C
6543 JR NZ,selopl
6544
6545 ; carry on and look at rest of strinq
6546
6549 POP DE

154

6550 POP IX
6551 RET
6552
6553 hit: LD A,(length)
6554 LD B,A
6555 selop2: LD A,(DE)
6556 CP (HL)
6557 JR NZ.notok
6558
6559 ; if mismatch, then go back
6560
6561 INC HL
6562 INC DE
6563 DJNZ selop2
6564
6565 ; get this far it's a find
6566
6567 CALL sefind
6568 JR notok
6569
6570 sefind: CALL Iret
6571 PUSH IX

6572 PUSH HL
6573 PUSH DE
6574 PUSH BC
6575 LD HL.(lineno)
6576 CALLpnumhl
6577 POP BC
6578 POP DE
6579 POP HL
6580 POP IX
6581 RET
6582
6583 ; print the line number
6584
6585 prob: LD BC,22
6586 LD HL.probm
6587 CALL messag
6588 RET
6589
6590 probm: DEFM "Will also find tokens"
6591 stradd: DEFW 0000
6592 length: DEFB 00
6594

The |INK command is added by lines 5220-5370, and returns in
BASIC variable the two colours associated with a given ink.

Lines 5450-6080 add the [FIND command, which returns the
address of the first text byte of a given program line. The routine is on
the whole self explanatory, but there are a couple of points of interest.
Lines 5658 and 5659 clear the C flag. The Firmware routine called at
&BB1 B returns with C set if a key is pressed.

|SEARCH is the last routine to be added by this module. Again, the
comments in the listing will explain most of the operation, but a quick
explanation of the search method follows.

We start at the line length low byte of a line, and then save the line
number for future reference. This is checked for 0, which would
indicate the program end. In addition, the keyboard is examined for a
key press. Either of these being found results in the routine finishing.
Otherwise, the line is scanned. The line length is reduced by 4 to
ensure that only the text part of the line is scanned, and the HL
register is pointed to the first 'text' character in the program line (i.e.
the first character after the line number high byte). Each byte of the
line is then examined to see if it's the same as the first character of the
search string, which is pointed to by DE. If a 'hit' is found, the routine
saves the current HL position and scans the next 'n' characters, where
n is the length of the search string. If a mismatch is found, the HL
register is restored and the search continues. Otherwise, the line
number is printed and the search continues.

155

And so on to Module 5, which completes this particular extension.
The first routine, '|ROMREAD', allows you to examine the contents of
ROM. The routine 'mode' sets the machine to mode 2, as 80 columns
are required. The number of parameters are checked, and if all is well
the two ROM's are enabled in lines 6608-6610. This means, of course,
that this machine code must reside in an area of RAM that is not
overlaid by ROM. If it were to be in such a place, the paging in of ROM
would page OUT the actual machine code!

The 'eight' routine, at lines 6635 to 6697 prints out 8 bytes in
hexadecimal on the left of the screen and the characters that these
bytes represent on the right of the screen. The address of the first byte
of the eight is also printed.

Lines 6618-6633 restore the ROMs to their original state, and then
wait for a key to be pressed. (CALL &BB18). If the key wasn't ENTER,
then the next 8 bytes are dumped. Otherwise, a RET is made to
BASIC.

The 'phexa' routine at lines 6699-6739 simply prints out the A
register contents as a 2 digit hexadecimal number.

6595 ;MODULE 5 ********
6596
6597 ; this is the last of the modules
6598
6599 romr: CALL mode
6600 CP 1
6601 JP NZ.parerr
6602
6603 LD L,(IX+0)
6604 LD H,(IX+1)
6605
6606 RLOOP1: PUSH HL
6607 LD (lineno),HL
6608 CALL #B906
6609 PUSH AF
6610 CALL#B900
6611
6612 ; enable upper and lower ROMs
6613
6614 CALL eight
6617 POP AF
6618 CALL#B90C
6619 CALL#BB18
6620 POP HL
6621
6622 ; wait for key press then restore HL
6623
6625 CP 13
6626 RET Z
6628 LD DE,8
6629 ADD HL,DE

6633 JR rloopl
6634
6635 eight: LD B,8
6636 LD DE,buffer
6637 LD HL,(lineno)
6638dloop1: LD A,(HL)
6639 LD (DE),A
6640 INC HL
6641 INC DE
6642 DJNZdloopI
6643
6644 ; get eight bytes from (HL)
6645
6646 LD HL.(lineno)
6647 CALLpnumhl
6648 LD A,10
6649 CALL#BB6F
6650
6651 ; print address of first byte then
6652 ; set column to 10
6653
6654 LD B,8
6655 LD DE,buffer
6656 dloop2: PUSH BC
6657 LD A,(DE)
6658 PUSH DE
6659 CALL phexa
6660 POP DE
6661
6662 ; get first byte and print in hex.
6663
6667 CALL #BB7B

156

6668 PUSH HL
6669
6670 ; get and save cursor position
6671
6672 LD A,H
6673 ADD A,30
6674 CALL #BB6F
6675
6676 ; prepare to print ascii codes
6677
6678 LD A,(DE)
6679 PUSH DE
6680 CALL#BB5D
6681 POP DE
6682 POP HL
6683
6684 ; print codes and restore registers
6685
6686
6687 LD A,H
6688 ADD A,4
6689 CALL #BB6F
6690
6691 ; get ready to print next byte
6692
6693 INC DE
6694 POP BC
6695 DJNZdloop2
6696 CALL Iret
6697 RET
6698

6706 prinlo: AND #0F

6699 phexa: PUSH BC
6700 LD B,0
6701 LD C,A
6702 RR A
6703 RR A
6704 RR A
6705 RR A

6730 atof: ADD A,#37
6731 CALL #BB5A
6732 phout: LD A,B

6707 CP 10
6708 JR NC.atof
6709 ADD A,#30
6710 CALL#BB5A
6720 JR phout

6733 CP 1
6734 JR Z.phfin
6735 LD A,C
6736 LD B,1
6737 JR prinlo
6738phfin: POP BC
6739 RET
6740
6750 mode: PUSH AF

6751 LD A,2
6752 CALL#BC0E
6753 POP AF
6754 RET
6755
6756
6757 dump: CP 1
6758 JP NZ,parerr
6763 CALL mode
6764 LD L,(IX+0)
6765 LD H,(IX+1)
6766 dumpl: PUSH HL
6767 LD (lineno).HL
6768 CALL eight
6769 CALL#BB18
6770 POP HL
6771 CP 13
6772 RET Z
6773 LD DE,8
6774 ADD HL,DE
6775 JR dumpl
6776
6777
6778 amplit: CP 2
6779 JP
6780 LD
6781 LD
6782 LD
6783

NZ,parerr
L,(IX+0)
H,(IX+1)
(varadd),HL

6784 ; get parameters
6785
6787 LD A,(IX+2)
6788 CALL#BCC2
6789 JP NC.serror
6790 LD DE.(varadd)
6791
6792 ; get envelope number into A
6793 ; and get address of data into HL
6794
6796 aloop: LD A,(HL)
6797 LD (DE),A
6798 INC DE
6799 INC HL
6800 DEC BC
6801 LD A,B
6802 OR C
6803 JR NZ,aloop
6804 RET
6805
6806 ; transfer the bytes of data
6807
6810 tone: CP 2
6811 JP NZ,parerr
6812
6813 ; now same for tone envelopes
6814

157

6822 tloop: LD A,(HL)

6815
6816
6817
6818
6819
6820
6821

LD L,(IX+0)
LD H,(IX+1)
LD (varadd),HL
LD A,(IX+2)
CALL#BCC5
JP NC,serror
LD DE,(varadd)

6832 serror: LD BC,32

6823
6824
6825
6826
6827
6828
6829
6830
6831

LD (DE),A
INC HL
INC DE
DEC BC
LD A,B
OR C
JR NZ,tloop
RET

6837 smess: DEFM "Can’t find the envelope!1

6833
6834
6835
6836

LD HL,smess
CALL messag
RET

|DUMP, coded in the lines 6757-6775 does the same job as
|ROMREAD, but only dumps out the contents of RAM.

The final two commands, |AMPLITUDE (lines 6778-6807) and
|TONE (lines 6810-6837) allow the currently in use envelopes to be
examined. Two firmware routines are used to get the address of either
the Amplitude or Tone envelopes, and the data held at these locations
is transferred to a user defined space.

Notes on the Assembler Used.
The listings were made under the Amsoft 'DEVPAC' Assembler. is
used to prefix a hexadecimal number, rather than the more usual '&'.
In addition, 'ORG' simply specifies the address at which you wish the
resultant machine code to be placed. Each label is followed by a
The DEFS n directive simply reserves an area of 'n' bytes. DEFM a$
puts the string 'a$' into memory at that point, DEFW nn sets two bytes
to the value 'nn' and DEFB sets a single byte to hold the value 'n'.

Using the Commands
|RESET. This sets screen colours, keyboard, sound etc. back to their

158

original state. Useful if you've been experimenting with colour
combinations and come up with something unreadable.

|PAUSE,n. This generates a time delay of 'n' 50ths of a second. It
can also be terminated by pressing a key.

|GET,@a%. 'a%' can be any integer variable. The command waits
until a key is pressed and returns the ASCII code of the character in
the variable.

|CRTC,register,value. Writes 'value' to register 'register' of the
6845 Cathode Ray Tube Controller chip. We'll see this in use in the
next Chapter.

|SOUND,register,value. Writes 'value' to register 'register' of the
Programmable Sound Generator. This command allows you to access
the PSG directly from BASIC.

|BRKOFF turns off the normal ESCAPE or BREAK key action from
within a running program.

|BRKON turns the normal Escape key action back on again.

|CAT. This command performs an enhanced CAT function by
providing type, length and load address information for files.

|MOTOR,n. It is an annoying feature of the 464 tape system that you
have to CAT the tape to actually find a blank bit of tape. This means
you can't do anything else while this is happening. Where 'n'=1 the
tape drive is turned on, and pressing play will allow the tape to be
heard without having to CAT. Where 'n'=0 the drive is turned off.

ISYMBOL,char,address. This command returns to you the 8 byte
pattern definition of the character whose ASCII code is 'char'. The 8
bytes are returned to the 8 memory locations starting at 'address'.

159

|INK,colour,@a%. This returns the two colours assigned to INK
'colour'. The two colours are returned in the variable ’a%'.
INT(a%/256) will give the first colour and a% MOD 256 will give the
second colour.

|TONE,n,address. This command will return the bytes of the Tone
envelope 'n' to you. They will be stored at address 'address'.

|AMPLITUDE,n,address. As for |TONE, but returns an Amplitude
Envelope.

|FIND,n,@a%. This returns the address, in 'a%', of the first byte
after the line number of line 'n'. Should the line not exist, you can exit
the command by pressing a key.

|SEARCH,n$,flag%. This will search the program text for
occurrences of the text string 'n$'. If 'flag%' is set to 1 then variable
names will be searched for. If set to 0, then simply text will be
searched for. The numbers of lines in which the text is found are
printed to the screen. There are a couple of points to note when using
this command. The first is that searching for single character variable
names will occasionally throw up lines which do not appear to contain
that variable. However, they do contain a token which has the value of
the encoded single letter variable name. In true computing fashion,
we'll turn this bug into a feature by documenting it, and say that by
looking at the Token tables in the Appendices, and by subtracting 128
from the token of interest and putting the resultant character in as n$,
we can search for Tokens as well as text.

The second point is that a search for a string, like 'cat' will also find
strings of which 'cat' is part, such as 'scatter' or 'catapult'.

|LLIST,n. This command offers the option of directing any material
sent down Stream 8 to the printer to both printer AND screen. |LLIST, 1
will enable this and |LLIST,0 will return things to normal. Thus if, like
me, your printer is some distance away from the computer you can
see what is being printed out without wandering between printer and
computer. An idle programmers command, this one!

160

IROMREAD,address. This command allows you to inspect the
contents of ROM. 'address' holds the address of the first byte you want
displaying, and then lines of 8 bytes will be displayed. To exit the
routine, press ENTER. To see another 8 bytes, press SPACE. The
bytes are displayed in hexadecimal, and the characters represented
by these bytes are also displayed.

|DUMP,address. This is the same as |ROMREAD, but allows you to
inspect RAM instead of ROM.

A dump of the bytes needed for this program will be given at the
end of this Chapter.

Machine Code and BASIC
The rest of this Chapter will be devoted to the ways in which machine
code and BASIC programs can interact with each other in ways other
than the simple passing of variables. Some of the routines here will
make use of calls into the Amstrad BASIC ROM, and so are
rather 'dirty'. The work was done on an Amstrad 464 with BASIC
Version 1.0. So, if you haven't got this version of BASIC, be warned;
the routines may not work as they stand. However, notes are given in
the Appendices on altering the routines to run on BASIC 1.1.

Patching Jumpblocks
In a computer, the Operating System deals with the tedious jobs,
such as putting a character on the screen, reading the keyboard,
interacting with discs or cassette, etc. In the Amstrad, the OS routines
are accessed by calls to addresses in the central RAM area which are
called Jumpblocks. These contain a three byte instruction which
simultaneously pages in the appropriate ROM and jumps to the
required address within that ROM. The reason why we go through
these 'middle men’ is simple; if later versions of the OS are written,
only the contents of the Jumpblocks need be altered to maintain
compatibility with earlier versions. Thus, if programmers have kept to
the rules and used the Jumpblock to access OS routines, their
programs will work on any version of the Operating System.

There is also a second advantage; we can alter the contents of
Jumpblocks ourselves to point to our own code, and so alter the
behaviour of Operating System routines. In fact, the |LLIST command
above was an example of this.

161

Now, as BASIC uses the Jumpblock entries itself, we can, by
patching the Jumpblocks in this way, also alter the behaviour of
BASIC to a small degree. In this section we'll see how this can be
done; don't worry, it's a surprisingly easy and painless process!

How it's done
1. The current values stored in the Jumpblock of interest should be
stored somewhere safe, so that a CALL or JP can be made to old
Jumpblock contents if required.

2. The Jumpblock should now be patched with a JP address
instruction to point to your new code. The first byte holds the code
'&C3', which is the op-code for JP, and the other two bytes hold the
address of the routine stored low byte first. It's good practice to ensure
that code does exist at 'address' before the jumpblock patch is put in.
If there isn't, and the OS calls the Jumpblock, the consequences could
be nasty!

3. If your code replaces the normal OS routines completely, then a
RET can be used to finish the new routine. This isn't, however,
common; patches in to the OS usually only partially replace the
normal OS behaviour. In this case, there are two options.

i/. CALL the usual Jumpblock entry, then do a RET. This was
done in the |LLIST command.

ii/. JP to the usual Jumpblock entry. This will result in the
normal OS routine being executed as a final act before
control returns to the routine which originally called the
Jumpblock address.

One point that is obvious is that we don't really need to know what the
Jumpblock entries are; we simply copy them and use them as
required.

One final point to note is that of interrupts. If a Jumpblock were to be
altered just as an interrupt was to call the routine, then a rather nasty
crash would probably result. So, to get around this it's useful to
disable the Z-80 interrupts before altering the Jumpblock contents and
re-enable them after setting the Jumpblock up. Of course, this needn't
be done for all such operations.

162

SPLITON and SPLITOFF
To demonstrate the addition of another command that alters a
Jumpblock, examine the SPLITON/SPLITOFF listing. This adds a
useful facility for putting each statement in a multistatement line on a
separate line when a listing is made, thus making the listing easier to
read. It works by intercepting the bytes sent to &BB5A and checking
for the ASCII code for

In addition, the routine recognises if a colon appears in quotation
marks. In this case it doesn't split the line up. In the program, lines
60-160 set the commands up and make a copy of the Jumpblock that
we'll be altering. The 'spon' routine, at lines 180-220, turns on the line
splitting facility by putting a:

JP newcode

instruction in to it. Using JP instructions like this means that the
additional code must be in the central area of RAM - i.e. that area of
RAM between &4000 and &BFFF which is not overlaid by RAM.

'spoff turns off the line splitting facility by restoring the usual
contents to the &BB5A Jumpblock.

10 ; An RSX routine to add the
20 ; ISPLITON and |SPLITOFF
30 ; commands
40
50 ORC5 37800
60 LD HL.worksp
70 LD BC,table
80 CALL#BCD1
90 LD A,(#BB5A)
100 LD (add1),A
110 LD A,(#BB5B)
120 LD (add2),A
130 LD A,(#BB5C)
140 LD (add3),A
150 RET
160
170 ; save the normal jump block
180 ; contents and set up the
190 ; command tables
200
210 table: DEFW names
220 JP spon
230 JP spoff
240 names: DEFM "SPLITO"
250 DEFB”N"+128
260 DEFM "SPLITOF"
270 DEFB"F"+128
280 DEFB 00
290

300 spon: LD A,#C3
310 LD HL.newcod
320 LD (#BB5A),A
330 LD (#BB5B),HL
340 RET
350
360 ; put the address of the routine
370 ; into the jumpblock and a jump ins.
380
390
400 spoff: LD A,(add1)
410 LD (#BB5A),A
420 LD HL,(add2)
430 L.D (#BB5B),HL
440 RET
450
460 newcod: CP
470 JR NZ.dont
480 PUSH AF
490 LD A,(flag)
500 CP 0
510 JR Z.lret
520 POP AF
530 JP add1
540
550 ; check to see if it's a colon
560 ; and also make sure that it's not
570 ; within quotation marks
580

163

590
600 Iret: LD A,13
610 CALL add 1
620 LD A,10
630 CALL add1
640 CALL space
650 POP AF
660 LD A,":"
670 JP add1
680
690 ; Iret prints out a carriage return
700 ; and some spaces if the colon is a
710 ; statement separator
720
730
740 dont: CP 34
750 JR NZ.out
760 PUSH AF
770 LD A,(flag)
780 CP 0
790 JR Z,setfig
800 LD A,0

810 LD (flag),A
820 JR out1
830 setfig: LD A,1
840 LD (flag),A
850 out1: POP AF
860 out: JP add1
870
880 ; dont checks for quotes and if it's
890 ; a closing quote then set flag to-
900 ; 0. If it's an opening quote set the flag
910 ; to 1.
920
930 space: LD B,5
940 loop: LD A,32
950 CALL add 1
960 DJNZ loop
970 RET
980 flag: DEFB00
990 add1: DEFB 00
995add2: DEFB 00
996 add3: DEFB 00

The code to which we point the Jumpblock, 'newcod' (Lines
300-580) first sees if the character is a colon. If it isn't, then a jump is
made to 'dont' where the character is checked to see if it's a quotation
mark. If it is, then we ascertain whether it's an opening or closing
quote depending upon the value in 'flag'. The character is then
printed, by making a JP to the old Jumpblock contents, thus
terminating the routine.

If the character isn't a colon or a quote, then it's simply printed.
For colons, a check is made on 'flag' to see if we're in the middle of
two quotation marks. If we are, it's printed as usual. If it is a statement
separator, then a carriage return and 5 spaces are printed, followed
by the colon which is printed by a jump back to the old contents of
&BB5A.

Other Jumpblocks could easily be altered; for example, it should
be possible to alter the Jumpblocks for Cassette routines to point to
user defined tape handling routines, new printer routines and so on.
Of course, there's little point in altering some Jumpblocks, but the
above techniques are applicable to any such operation.

Errors in Machine Code Programs
One thing you'll have probably noticed is that the messages printed
out in response to error conditions in the RSX commands above are
not real 'Error Messages' as are produced by BASIC errors such as
'Syntax Error', etc. The messages generated in the RSX routines
won't stop a running program at all; in this section I'll explain how we

164

can get an error generated in a machine code routine to be the same
as an Error generated in BASIC. That is, ERR and ERL will be set up,
and the program will stop with the appropriate message. If an ON
ERROR GOTO nn instruction has been issued from BASIC, then it will
be responded to in the usual fashion. The only drawback is that we
will be limited to the Error Messages and Numbers that exist in the
BASIC ROM. However, this isn't too bad, and it does allow us to trap
errors within machine code routines that would otherwise be difficult to
deal with. Once such an error has been generated, action can be
taken in an ON ERROR trap to clear up the error condition.

A demonstration machine code routine is shown in the 'ERROR'
listing. This could, of course, be put in any of your programs. Line 110
pages in the Upper ROM; this is essential, as otherwise we could call
a screen RAM location rather than a ROM routine! The actual business
of generating an error is simple; the A register is set up with the
number of the Error that you want to generate and then a call to the
ROM routine at &CA93. This is, incidentally, an entry in to the
interpreter code that takes care of the 'ERROR' command. We are
effectively, therefore, performing a machine code version of the
ERROR command. To see this routine in action, simply call it and
you'll see the error generated.

10 ; demo program to generate errors
20 ; from within machine code that
30 ; are picked up by the usual BASIC
40 ; error handler
50
60 ; the address given is for BASIC
70 ; version 1.0
80

100 ORG 38000
110 CALL#B900
120
130 ; enable the BASIC ROM so we
140 ; can call the routine
150
160 LD A,4
170
180 ; put error number in A
190
200 CALL #CA93
210
220 ; call the routine

Thus, this routine offers us the chance to generate error messages
from within machine code routines and also allow machine code
routines to direct the flow of a BASIC program by use of ON ERROR
GOTO.

165

Remember that the address given in the listing is for BASIC 1.0.
The ROM routine is called, but the return is made via the BASIC

Interpreter. Examination of the ROM code around this point indicates
that the Z80 Stack Pointer is reset to &C000, which thus clears the
stack. This could be the reason why there is no ON ERROR GOSUB
instruction.

There are other ways in which machine code routines can affect a
BASIC program other than by the ON ERROR GOTO instruction. One
way is to use Event Blocks.

Use of Event Blocks
I will not go in to the details of how Events are implemented on the
Amstrad computer; this is adequately covered in other places, such as
the Amsoft 'Concise Firmware Manual'. In this section I will examine
how use of Event blocks can help the BASIC programmer. Of course,
this will involve some machine code programming.

The simplest Event to use is the Break Event, usually generated at
the keyboard when ESCAPE is pressed. As you will be aware,
pressing ESC twice in a running program will cause the program to be
terminated, or, if an ON BREAK GOSUB has been issued, cause
execution of the relevant subroutine. It is not too difficult to generate
this Event from within a machine code routine, and once called will,
within a running program, simulate the action of ESC being pressed
twice. The machine code routine to do this is shown in listing 'BREAK'.
It uses the technique just outlined to change the contents of a
jumpblock.

First of all, a few words about how the Break Event is usually
processed. A single press of the Escape key leads to the BASIC Break
Handling routine at address &C45E (Version 1.0) being entered. This
leads to a suspension of any sounds being generated, and a halt to
the execution of the program by a call to MC WAIT CHAR.

10 ORG 38000
20
30 ; first of all, save the contents
40 ; of the MC WAIT CHAR jumpblock
50 ; entry into 'temp'
60
70 LD A,(#BB06)
80 LD HL,(#BB07)
90 LD (tempi),A
100 LD (temp2),HL
110
120 ; now set the jumpblock up to point
130 ; to our new routine
140

HL.newr
(#BB07),HL
A,#C3
(#BB06),A

150 LD
160 LD
170 LD
180 LD
190
200 ; now we arm the break events
210
220 LD DE,#C45E
230 LD C,#FD
240 CALL#BB45
250
260 ; kick the break event
270
280 CALL#BB4B

166

290 RET
300
310
320 newr: LD A,(tempi)
330 LD (#BB06),A
340 LD HL,(temp2)
350 LD (#BB07),HL
360
370 ; above code resets the jumpblock

380
390 LD A,#FC
400 SCF
410 RET
420
430 ; finally simulate pressing escape
440
450 tempi: DEFB 00
460temp2: DEFW 0000

This causes the machine to wait until a key is pressed; should this
return with the number &FC in the A register, then the Escape key has
been pressed and it is clear that the user wishes a full Break; the OS
then generates the full Break Condition. Any other number in the A
register will lead to the Break event being discarded and the program
execution carrying on. This program works by altering MC WAIT
CHAR to point to a routine of our own just before the Break Event is
kicked. Thus, when the ROM routine calls MC WAIT CHAR it actually
calls our routine, which returns the code &FC in A. In addition, our new
MC WAIT CHAR routine resets the Jumpblock for MC WAIT CHAR to
its original contents. The purpose of this messing about with MC WAIT
CHAR is to simulate the second pressing of the Escape Key, thus
completing the Break Event. CALLing this routine from a running
program will cause any ON BREAK GOSUB routine that is in
operation to be entered.

Lines 70-100 of BREAK save the usual contents of the MC WAIT
CHAR Jumpblock into three temporary locations. Lines 150-180 set
up the Jumpblock with a JP instruction to pass control to 'newr' when
the routine is called from this point on. Lines 220-240 arm the Break
Event with the address of the Event Routine in DE and the ROM
selection code in the C register. It is necessary to arm these events
because the default state of the Break Event is disarmed. Finally, we
kick the Break Event in line 280, thus causing the routine at &C45E to
be entered.

The 'newr' routine at line 320 is entered only once, when the
&C45E routine calls MC WAIT CHAR to get the second press of the
Escape Key. So, the first job to do is to set up MC WAIT CHAR with it s
usual contents. This is done in lines 320-350.

Lines 390-400 put &FC in the A register, thus simulating an
Escape Key press, and sets the carry flag, thus simulating the normal
return conditions to be expected after a call to MC WAIT CHAR.

Finally, a RET is made to finish our routine.
The Break Event thus generated offers you another means of

altering the running of a BASIC program from within machine code,
thus allowing the various ON BREAK instructions from BASIC to be
interacted with by machine code.

167

The Frame Fly Event
A more typical event is the frame fly event, a timed interrupt that occurs
50 times per second on UK machines. It is generated by the Video
Hardware after each frame of the display has been completed. It is
thus a means by which we can carry out a given machine code routine
very regularly. The routine 'KEY' shows this in action, reading the
keyboard 50 times per second and putting the ASCII code of any key
pressed into an integer variable. This variable thus

10 ORG 38000
20 LD L,(IX)
30 LD H,(IX+1)
40 LD (varadd).HL
41
42 ; the above lines get the address of
43 ; the variable passed over as a
44 ; parameter and is then stored
45
50
60
70
80
90
91

LD HL.blk
LD B,5
LD DE,routin
LD C,#FD
CALL #BCEF

92 ; then set up an event block for
93 ; a synchronous event with priority
94 ; 4. This gives a class in B of 5
98

100 LD HL,spare
110 CALLffBCDA
120 RET
121
122 ; now add the event block to the list

123
140 routin: CALL #BB09
150 JR NC.out
160 CALL putin
170 RET
180 out: LD A,0
190 CALL putin
200 RET
210
211 ; this 'routin' reads the keyboard every
212 ; 1 /50th of a second and if a key is
213; pressed the value returned is put in
214 ; a variable
215
220 putin: LD HL.(varadd)
230 LD (HL),A
240 INC HL
250 LD (HL),0
260 RET
270
280 spare: DEFW 0000
290 blk: DEFS 10
300 varadd: DEFW 0000

reflects the status of the keyboard at any time in a running program.
The routine is activated by a line such as:

10 char%=0:CALL 38000,@char%

From this point on, char% will hold the value of a key being pressed at
that instant in time; it will be, at most, 1/50 th second out of date. The
advantage of this over the usual INKEY operation is that the act of
reading the keyboard is now slightly faster because all that we need to
do is to access the variable!

The listing 'KEY' shows this routine. Lines 20-40 transfer the
address of the integer variable passed as a parameter of the CALL to
a temporary storage location; the variable address is pointed to by the
IX register.

Lines 50-90 set up an Event Block. HL is pointed to workspace,
DE is given the address of the Event Routine and B is the class of the

168

Event. This is described in the Firmware manual, and all I will say here
is that we've set it up as a Synchronous Event, priority 4, near
address. The priority is self explanatory, and the term 'near address'
simply indicates that the routine pointed to by DE is in central RAM.
&BCEF is the jumpblock routine to set it up. The next step is to add this
Event Block to the list of Events that are under the control of the Frame
Fly. This is done by loading HL with the address of the Event Block
minus two, and then calling &BCDA. This is done in lines 100-120.

That completes the routine as far as the setting up of the Event-
goes. Each time the Event Block is 'kicked' by the Frame Fly Interrupt,
the machine code at 'routin' will be executed as soon as possible
after the kick. This simply reads the keyboard (Line 140) and if no key
is pressed puts zero in the variable (Lines 180-200). If a key is
pressed, then the ASCII code is put in the variable. (Line 160).

The routine should only be added to the Frame Fly list once, and
once active will be until you reset the machine or use the DEL FRAME
FLY routine in the OS to remove it from the Frame Fly list.

ON KEY GOSUB
Let's now look at a useful RSX command for games programmers; a
routine that causes a subroutine to be executed whenever a key is
pressed. This routine uses the BREAK program and the KEY program,
and is used as follows.

After the |KEYON,@char% instruction, pressing a key will cause
the a Break Event to occur. This can then be detected by an ON
BREAK GOSUB subroutine. The value of the key that caused the
routine to be entered will then be in 'char%'; examination of this will
also indicate if the routine was entered by a normal Break Event rather
than a key press. |KEYOFF turns off this behaviour, and should be
used BEFORE jKEYON is used.

10 ; RSX to add |KEYON and |KEYOFF
20 ; commands to Amstrad BASIC
30
40 ORG 37600
50 JP doit
60
70 ; jump around the tables
80
90 name: DEFM "KEYNO"

100 DEFB"N"+128
110 DEFM "KEYOF"
120 DEFB"F"+128
130 DEFB0
140 table: DEFW name
150 JP keyon
160 JP keyoff

170 doit: LD HL.worksp
180 LD BC,table
190 CALL#BCD1
200 RET
210
220 ; set up the two RSX commands
230
240 keyon: CP 1
250 RET NZ
260
270 ; check for 1 parameter
280
290 LD A,(fig)
300 CP 1
310 RET Z
320

169

330 ; if keyon is already active we
340 ; simply return
350
370 LD A,1
380 LD (fig),A
390
400 ; set the flag to indicate it's active
410
420

790 ; zeros the variable used.
800
830 frame: CALL #BB09

430 LD L,(IX)
440 LD H,(IX+1)
450 LD (varadd),HL
460 LD HL,blk
470 LD DE,frame
480 LD B,5
490 LD C,#FD
500 CALL#BCEF
510 LD HL,spare
520 CALL #BCDA
530 RET

840 JR NC.out
850 CALL putin
860 RET
870 out: LD A,0
880 LD HL,(varadd)
890 LD (HL),0
900 INC HL
910 LD (HL),0

540
550 ; set up frame fly block to
560 ; read the keyboard every 1 /50th
570 ; of a second using the code at frame
580
590 worksp: DEFS 4
600 varadd: DEFW 0000
610 spare: DEFW 0000
620 blk: DEFS 10
630 fig: DEFB 0
640
650 keyoff: CP 0
660 RET NZ
670 LD A,0
680 LD (fig),A
690 LD HL,spare
700 CALL#BCDD
710 LD HL,(varadd)
720 LD (HL),0
730 INC HL
740 LD (HL),0
750 RET
760
770 ; turns off the frame fly routine
780 ; and resets the flag byte and also

920 RET
930 putin: LD HL,(varadd)
940 LD (HL),A
950 INC HL
960 LD (HL),0
970 LD A,(#BB06)
980 LD HL,(#BB07)
990 LD (tempi),A

1000 LD (temp2),HL
1010 LD HL,newr
1020 LD (#BB07),HL
1030 LD A,#C3
1040 LD (#BB06),A
1050 LD DE,#C45E
1060 LD C,#FD
1070 CALLSBB45
1080 CALL#BB4B
1090 RET
1100
1110 ; the frame routine reads the keyboar
1120; and if a keypress is detected then
1130 ; a break event is generated
1170
1180 tempi: DEFB 0
1190temp2: DEFW 0000
1200
1210 newr: LD A,(tempi)
1220 LD (#BB06),A
1230 LD HL,(temp2)
1240 LD (#BB07),HL
1250 LD A,#FC
1260 SCF
1270 RET

The subroutine can then carry out certain actions depending upon
the key pressed, such as modifying the position of a character on the
screen, and so on.The KEYON listing shows the routine, and the Hex
for the routine is given at the end of the Chapter. The Hex is for
address 37600.

Lines 50-200 set up the RSX tables. Lines 240-630 and lines
830-1270 deal with the KEYON command. The main parts of these
routines have already been dealt with; the code at lines 280-310

170

simply ensures that the Frame Fly Event Block is only added to the
Frame Fly list once. The KEYOFF code, between lines 650-750, takes
this Frame Fly Event Block off of the Frame Fly list, and sets the flag
byte and variable accordingly. The lines of BASIC below show how
the routine might be used:

1 CALL 37600: REM set up RSX
2 char%=0:|KEYOFF:|KEYON,@char%
3 ON BREAK GOSUB 10000
4
5 REM rest of program
6

10000 REM Break Routine
10010 IF char%=252 OR char%=0 THEN |KEYOFF:END
10020 PRINT char%
10030 RETURN

Line 10010 of the above program trap the normal pressing of the
Escape key, turning off the ON KEY GOSUB event and stopping the
program. Line 10020 just prints the ASCII code of the key that was
pressed. Line 1 sets up the RSX commands, and line 2 sets the
variable to zero and initialises the |KEYON command to put the ASCII
code in the 'char%' variable. Note how KEYOFF is used to set the
system in a 'known' state before KEYON is used.

There are other ways in which machine code routines can interact
with BASIC; there will be other occasions in this book when such
routines will be used. However, we've now completed our RSX
routines. As to entering the routines, the above assembler listings can
be typed in if you've got an Assembler. Otherwise, use the BASIC
loader program to enter the Hexadecimal listings given on pages 176
to 178. To enter the listings, start at the top left of the page and work
across the page from left to right, top to bottom. The program is
reasonably efficient and will allow you to enter small machine code
programs.

10 REM machine code editor program
20 REM to allow bytes to be entered
30 REM into memory
40 REM Joe Pritchard
50 REM September 1985
60 :
70 DIM array%(10,10)
80 in$="0123456789ABCDEFabcdef#"+CHR$(13)
90 GOSUB 1000

100 GOTO 90
110 :

171

1000 MODE 1
1010 RESTORE
1020 LOCATE 10,1
1030 PEN 3:PRINT"Options Available”
1035 j=1 :FOR i=4 TO 7:READ a$:LOCATE 12,i*2:PEN 3:PRINT j;”.

";:PEN 1 PRINT a$:j=j+1 :NEXT
1040 PEN 3:LOCATE 10,18PRINT "Press 1,2,3 or 4"
1050 a$=INKEY$:IF a$="" THEN GOTO 1050
1060 IF INSTR("1234",a$)=0 THEN LOCATE 1,1 PRINT

CHR$(7):GOTO 1050
1070 ON INSTR(”1234",a$) GOSUB 2000,3000,4000,5000
1080 RETURN
1081 :
1082 :
2000 REM enter bytes subroutine
2010 MODE 2
2015 WINDOW#1,1,80,1,23
2020 WINDOW#7,1,80,24,25:INPUT#7,;"What is the start address:

",add
2021 finflg%=0:counter%=1
2030 PRINT#1,add;"
2040 GOSUB 8000
2041 counter%=counter%+1
2044 POKE add,num%:add=add+1
2045 IF counter%=11 THEN counter%=1 :PRINT#1 :GOTO 2030
2046 IF finflg%=1 THEN RETURN
2050 GOTO 2040
2060 :
3000 REM subroutine to edit bytes in memory
3002 MODE 2
3004 WINDOWS,1,80,1,23
3006 WIND0W#7,1,80,24,25:INPUT#7,;"What is the start address:

",add
3008 finflg%=0:counter%=0:initadd=add
3010 PRINT#1,add;"
3020 FOR i=0 TO 9:PRINT#1 ,HEX$(PEEK(add+i),2);"

";:array%(i,counter%/10)=PEEK(add+i):NEXT
3030 PRINT#1:add=add+10
3040 counter7o=counter%+10
3050 IF counter%o110 THEN GOTO 3010
3060 :
3070 REM now the screen editor
3080 xp=13:yp=1 :xa=0:ya=0:finflg%=0
3090 a$=INKEY$:IF a$="" THEN GOTO 3090
3100 char%=ASC(a$):k%=0
3105 IF a$=" ” THEN k%=1 :finflg%=1
3110 IF char%=240 AND yp>1 THEN ya=ya-1 :yp=yp-1 :k%=1
3120 IF char%=241 AND yp<11 THEN ya=ya+1 :yp=yp+1 :k%=1
3130 IF char%=243 AND xp<58 THEN xp=xp+5:xa=xa+1 :k%=1
3140 IF char%=242 AND xp>13 THEN xp=xp-5:xa=xa-1 :k%=1
3150 IF k%=0 THEN LOCATE 1,1 PRINT CHR$(7):GOTO 3090
3160 IFfinflg%=1 THEN RETURN
3170 LOCATE #1 ,xp,yp:GOSUB 9000:IF finflg%=1 THEN RETURN
3180 GOTO 3090
3190 :
4000 REM save bytes routine

172

4010 CLS:LOCATE 10,1 PEN 3
4020 PRINT "Save bytes to Tape"
4030 PEN 1
4040 PRINTPRINTPRINTPRINT
4050 PRINT "Position tape, press a key when ready"
4055 n$=""
4060 a$=INKEY$:IF a$=”" THEN GOTO 4060
4070 PEN 3PRINTPRINTPRINT"Start Address ";PEN

11NPUT”",add
4080 PEN 3PRINTPRINTPRINT"End Address ";PEN

1 :INPUT"",fin
4090 PEN 3PRINTPRINTPRINT"File Name ";PEN

1 INPUT"",n$
4099 n$="!"+n$
4100 SAVE n$,B,add,(fin-add)
4110 RETURN
4120 :
5000 REM load bytes routine
5010 CLS:LOCATE 10,1 PEN 3
5020 PRINT "Load bytes from Tape"
5030 PEN 1
5040 PRINTPRINTPRINTPRINT
5050 PRINT "Position tape, press a key when ready"
5060 a$=INKEY$:IF a$="" THEN GOTO 5060
5070 PEN 3PRINTPRINTPRINT"File Name ";PEN

1 INPUT"”,n$
5100 PEN 3PRINTPRINTPRINT"Load Address ",:PEN

1 INPUT"",add
5110 n$="!"+n$
5120 LOAD n$,add
5130 RETURN
5140 :
8000 REM routine to get two hex characters
8001 num$='"'
8005 WINDOW#2,(POS(#1)+1),(POS(#1)+2),VPOS(#1),VPOS(#1)
8010 a$=INKEY$:IF a$="" THEN GOTO 8010
8020 IF INSTR(in$,a$)=0 THEN LOCATE 1,1 PRINT CHR$(7);:GOTO

8010
8025 IF (a$=CHR$(13) AND num$<>"") THEN SOUND

1,200,20 :num%=VAL("&"+RlGHT$(num$,2)):LOCATE
#1 ,POS(#1)+4,VPOS(#1):RETURN

8026 IF a$="#" THEN finflg%=1 :RETURN
8030 IF a$<>"#" AND a$<>CHR$(13) THEN num$=num$+a$PRINT

#2,a$;
8040 GOTO 8010
8050 :
9000 WINDOW#2,(POS(#1)+1),(POS(#1)+

3),VPOS(#1),VPOS(#1):CLS#2
9010 a$=INKEY$:IF a$="" THEN GOTO 9010
9015 char%=ASC(a$):IF char%<240 OR char%>243 THEN

num$="":GOSUB 8020POKE (initadd+10*ya+
xa),num%:array%(xa,ya)=num%:RETURN

9020 PRINT#2,HEX$(array%(xa,ya),2)
9030 RETURN
10000 DATA "Enter Bytes”,"Edit Bytes","Save Bytes","Load Bytes"

173

Using the Machine Code Loader
On running the program you will be confronted by a 4 option menu. To
enter a given option, simply press the relevant number on the
keyboard.

Option 1. Enter Bytes
The start address should be typed in in decimal or hexadecimal. This
will then be printed in the top left of the screen. The bytes can then be
typed in as two digit hexadecimal numbers followed by the <ENTER>
key.

If you enter an incorrect number, simply type in the correct one;
only the last two digits entered will be treated as the Hex number
when the <ENTER> key is pressed. If you type in too many numbers at
this point, (more than 255), an error may be generated. If this happens
simply re-run the program and carry on with the Edit or Enter Bytes
option. On pressing <ENTER> a 'beep' will be generated and you will
be able to enter the next byte. After 10 bytes the current address will
be printed at the left of the screen and you will be able to enter the
next ten bytes. When you've entered all the bytes, simply press '#'.
This will return you to the main menu.

Option 2. Edit Bytes
The start address is entered and then the next 110 bytes will be
printed to the screen. The Cursor keys can then be used to move
'around' this grid of bytes. The cursor keys will allow a 'space' to be
positioned over any of the bytes displayed. Once the space is
displayed, pressing the cursor keys will remove the space and restore
the byte thus covered to its original value. Pressing the cursor key a
second time will move the 'space' to another adjacent byte.
Alternatively, when the 'space' is displayed a two digit hexadecimal
number can be entered as in the 'Enter Bytes' option. This will be
entered at the address of the byte that was originally covered by the
'space'.

This allows you to edit the contents of memory. The best way to get
used to this editor is to simply use it!

Option 3. Save Bytes
This option simply allows you to save a block of memory to tape.
Simply position the tape, enter the start address, which is the address
of the first byte to be saved, the finish address, which is the address of
the last byte, and the name under which you wish the bytes to be
saved. I tend to always add a few bytes to the finish address so as to
ensure that I get all the bytes I want on to tape.

174

Option 4. Load Bytes
This simply allows you to load bytes in to memory. Simply enter the
name of the tape file and the address to which the bytes are to be
loaded.

You might like to add more facilities to the program, which, as it
stands, is very basic (pardon the pun!!). But it will allow the routines
listed in this chapter, and any others in the book, to be entered. Keep it
handy, we'll be looking at memory in Chapter 3 using this program.
This chapter is now finished by the byte listings for the various
machine code routines. Good Luck with them!

175

HEX DUMPS FOR RSX PROGRAMS

START ADDRESS 38000 RSX

21 92 94 01 96 94 CD DI BC 3A EE BD
32 28 95 3A Fl BD 32 29 95 3A F2 BD

32 2A 95 3A F3 BD 32 2B 95 C9 92 94

96 94 CE 94 C3 93 95 C3 AF 95 C3 EO

97 C3 9F 99 C3 33 98 C3 CC 95 C3 FC
98 C3 93 97 C3 5A 95 C3 70 95 C3 CB

97 C3 Cl 99 C3 E6 99 C3 6B 97 C3 54

95 C3 4D 95 C3 25 96 C3 7F 95 52 45

53 45 D4 50 41 55 53 C5 46 49 4E C4

44 55 4D DO 53 45 41 52 43 C8 47 45

D4 52 4F 4D 52 45 41 C4 4C 4C 49 53

D4 43 52 54 C3 53 4F 55 4E C4 49 4E

CB 41 4D 50 4C 49 54 55 44 C5 54 4F

4E C5 53 59 4D 42 4F CC 42 52 4B 4F

46 C6 42 52 4B 4F CE 43 41 D4 4D 4F

54 4F D2 00 C3 C3 F8 07 21 39 95 7E

FE 00 C8 CD 5A BB 23 18 F6 50 61 72

61 6D 65 74 65 72 20 45 72 72 6F 72

21 21 OD OA 00 3A 28 95 32 EE BD C9

3E C9 32 EE BD C9 FE 02 C2 2C 95 DD

7E 02 01 00 BC ED 79 DD 7E 00 01 00

BD ED 79 C9 FE 02 C2 2C 95 DD 7E 02

DD 4E 00 CD 34 BD C9 FE 01 C2 2C 95

DD 7E 00 FE 00 28 04 CD 6E BC C9 CD

71 BC C9 CD 4E BB CD 00 BB CD BA BB

CD 02 BC CD 65 BC CD A7 BC CD 37 BD

3A EE BD 32 28 95 C9 FE 01 C2 2C 95

DD 4E 00 DD 46 01 C5 CD 19 BD CD IB

BB 38 07 Cl OB 78 Bl 20 Fl C9 Cl C9

FE 01 C2 2C 95 DD 6E 00 DD 66 01 CD

18 BB 77 23 36 00 C9 C5 7E CD 5A BB

Cl 23 OB 78 Bl 20 F4 C9 3E OD CD 5A

BB 3E OA CD 5A BB C9 11 10 27 CD 12

96 11 E8 03 CD 12 96 11 64 00 CD 12

96 11 OA 00 CD 12 96 11 01 00 AF 37

3F ED 52 38 03 3C 18 F7 19 C6 30 E5

CD 5A BB El C9 3E 2C 11 40 00 21 25

97 CD Al BC 38 01 C9 21 25 97 01 10

00 CD DF 95 CD EC 95 21 EE 96 01 09

00 CD DF 95 DD 21 25 97 DD 6E 18 DD

66 19 CD F7 95 CD EC 95 21 F7 96 01

09 00 CD DF 95 DD 6E 15 DD 66 16 CD

F7 95 CD EC 95 21 00 97 01 09 00 CD

DF 95 DD 6E 10 AF 67 CD F7 95 CD EC

95 CD 86 96 18 9F 01 09 00 21 E5 96

CD DF 95 DD 7E 12 E6 OE CB 3F FE 00

28 10 FE 01 28 17 FE 02 28 IE FE 03

28 25 CD D6 96 C9 01 05 00 21 09 97

CD DF 95 18 Fl 01 06 00 21 OE 97 CD

DF 95 18 E6 01 OC 00 21 14 97 CD DF

176

95 18 DB 01 05 00 21 20 97 CD DF 95
18 DO 06 06 3E OD CD 5A BB 3E OA CD
5A BB 10 F4 C9 54 79 70 65 20 20 20
20 20 4C 65 6E 67 74 68 20 20 20 53
74 61 72 74 20 20 20 20 42 6C 6F 63
6B 20 20 20 20 42 41 53 49 43 42 49
4E 41 52 59 53 63 72 65 65 6E 20 49
6D 61 67 65 41 53 43 49 49 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 FE 02 C2 2C 95
CD 06 B9 F5 DD 7E 02 CD A5 BB DD 5E
00 DD 56 01 D5 DD El 06 08 7E DD 77
00 23 DD 23 10 F7 Fl CD OC B9 C9 FE
01 C2 2C 95 DD 7E 00 FE 00 28 11 3E
C3 21 C3 97 32 Fl BD 7D 32 F2 BD 7C
32 F3 BD C9 3A 29 95 32 Fl BD 3A 2A
95 32 F2 BD 3A 2B 95 32 F3 BD C9 CD
29 95 DO CD 5A BB C9 FE 02 C2 2C 95
DD 7E 02 CD 35 BC DD 6E 00 DD 66 01
70 23 71 C9 FE 02 C2 2C 95 DD 6E 00
DD 66 01 22 2F 98 DD 6E 02 DD 66 03
22 31 98 DD 21 70 01 DD 4E 02 DD 46
03 2A 31 98 37 3F ED 42 28 13 CD IB
BB D8 DD E5 El DD 5E 00 DD 56 01 19
E5 DD El 18 DE DD 23 DD 23 DD 23 DD
23 DD E5 DI 2A 2F 98 73 23 72 C9 00
00 00 00 FE 02 C2 2C 95 DD 6E 02 DD
66 03 7E 32 FB 98 23 4E 23 46 ED 43
F9 98 DD 7E 00 FE 01 28 17 3A FB 98
5F AF 57 IB 2A F9 98 19 7E C6 80 77
3A FB 98 FE 01 CC D9 98 DD 21 70 01
DD 5E 00 DD 56 01 DD 6E 02 DD 66 03
22 31 98 7D B4 C8 CD IB BB D8 CD 90
98 DD E5 El IB 19 23 E5 DD El 18 DC
DD E5 El DD E5 D5 Cl OB OB OB OB D5
11 04 00 19 ED 5B F9 98 C5 1A BE 28
OB Cl OB 23 78 Bl 20 FO DI DD El C9
3A FB 98 47 1A BE 20 ED 23 13 10 F8
CD C5 98 18 E4 CD EC 95 DD E5 E5 D5
C5 2A 31 98 CD F7 95 Cl DI El DD El
C9 01 16 00 21 E3 98 CD DF 95 C9 57
69 6C 6C 20 61 6C 73 6F 20 66 69 6E
64 20 74 6F 6B 65 6E 73 2E 00 00 00
CD 97 99 FE 01 C2 2C 95 DD 6E 00 DD
66 01 E5 22 31 98 CD 06 B9 F5 CD 00
B9 CD 29 99 Fl CD OC B9 CD 18 BB El
FE OD C8 11 08 00 19 18 El 06 08 11
25 97 2A 31 98 7E 12 23 13 10 FA 2A
31 98 CD F7 95 3E OA CD 6F BB 06 08
11 25 97 C5 1A D5 CD 6D 99 DI CD 7B

BB E5 7C C6 IE CD 6F BB 1A D5 CD 5D

BB DI El 7C C6 04 CD 6F BB 13 Cl 10
DE CD EC 95 C9 C5 06 00 4F CB IF CB
IF CB IF CB IF E6 OF FE OA 30 07 C6

177

30 CD 5A BB 18 05 C6 37 CD 5A BB 78
FE 01 28 05 79 06 01 18 E4 Cl C9 F5
3E 02 CD OE BC Fl C9 FE 01 C2 2C 95
CD 97 99 DD 6E 00 DD 66 01 E5 22 31
98 CD 29 99 CD 18 BB El FE OD C8 11
08 00 19 18 EC FE 02 C2 2C 95 DD 6E
00 DD 66 01 22 2F 98 DD 7E 02 CD C2
BC D2 OB 9A ED 5B 2F 98 7E 12 13 23
OB 78 Bl 20 F7 C9 FE 02 C2 2C 95 DD
6E 00 DD 66 01 22 2F 98 DD 7E 02 CD
C5 BC D2 OB 9A ED 5B 2F 98 7E 12 23
13 0B 78 Bl 20 F7 C9 01 17 00 21 15
9A CD DF 95 C9 43 61 6E 27 74 20 66
69 6E 64 20 74 68 65 20 45 6E 76 65
6C 6F 70 65 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00

START ADDRESS 37800 SPLITON/SPLITOFF

21 42 94 01 C4 93 CD DI BC 3A 5A BB
32 3F 94 3A 5B BB 32 40 94 3A 5C BB
32 41 94 C9 CC 93 C3 DC 93 C3 E8 93

53 50 4C 49 54 4F CE 53 50 4C 49 54

4F 46 C6 00 3E C3 21 F5 93 32 5A BB

22 5B BB C9 3A 3F 94 32 5A BB 2A 40

94 22 5B BB C9 FE 3A 20 IF F5 3A 3E
94 FE 00 28 04 Fl C3 3F 94 3E OD CD
3F 94 3E OA CD 3F 94 CD 34 94 Fl 3E

3A C3 3F 94 FE 22 20 15 F5 3A 3E 94

FE 00 28 07 3E 00 32 3E 94 18 05 3E

01 32 3E 94 Fl C3 3F 94 06 05 3E 20

CD 3F 94 10 F9 C9 00 CF 00 94 92 94

C4 93 00 00 00

START ADDRESS 37600 KEYON/KEYOFF

C3 F7 92 4B 45 59 4F CE 4B 45 59 4F
46 C6 00 E3 92 C3 01 93 C3 3F 93 21
2C 93 01 EF 92 CD DI BC C9 FE 01 CO

3A 3E 93 FE 01 C8 3E 01 32 3E 93 DD
6E 00 DD 66 01 22 30 93 21 34 93 11

56 93 06 05 OE FD CD EF BC 21 32 93

CD DA BC C9 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 FE
00 CO 3E 00 32 3E 93 21 32 93 CD DD
BC 2A 30 93 36 00 23 36 00 C9 CD 09
BB 30 04 CD 6A 93 C9 3E 00 2A 30 93
36 00 23 36 00 C9 2A 30 93 77 23 36
00 3A 06 BB 2A 07 BB 32 94 93 22 95
93 21 97 93 22 07 BB 3E C3 32 06 BB
11 5E C4 OE FD CD 45 BB CD 4B BB C9
00 00 00 3A 94 93 32 06 BB 2A 95 93

22 07 BB 3E FC 37 C9 00 00

178

Chapter 5
The CRTC and Screen Memory

In this Chapter we'll examine the 6845 Cathode Ray Tube Controller
integrated circuit that controls screen output on the Amstrad
Computers. We'll also take a look at how screen memory is arranged,
and see how it's possible to program these two facets of the system
directly. Before we go on, there is no reason why we need to directly
interact with these components of the computer. However, it's: a)
Educational, and b) Fun!

The 6845
We'll start with this chip. First of all, what does it do? In broad terms, it
sets the screen format in terms of character columns and rows, where
the screen is to be positioned in memory and is responsible for
keeping an eye on the complex timing relationships that are
necessary to keep the screen readable! It is helped in this by the
Video Gate Array, and these are together controlled by the Firmware
Routines. As you will probably appreciate, carelessly fiddling around
with the CRTC is a bit like putting sand in a car gearbox; the results
are interesting but on the whole undesirable!

The CRTC contains 18 control registers, labelled RO to R17. These
are accessed in the Input/Output map of the system, and the
addresses used are as follows:

&BC00 output of Register Number
&BD00 output of Value to Register
&BE00 Read the CRTC Status Register
&BF00 Read a Value from a Register

179

The BASIC IN and OUT instructions can be used to interact with the
CRTC directly, or The |CRTC command that is in the RSX commands
we added in Chapter 4. I will use |CRTC when writing to the CRTC.

NEVER read values from &BC00 or &BD00
NEVER write values to &BE00 or &BF00

Of the CRTC registers, RO to R13 are WRITE ONLY registers, R16 and
R17 are read only, and R14 and R15 are read/write registers. The
status register contains various bits of information about the CRTC.
We'll take a detailed look at all the registers, with programming
examples, shortly.

Sending data to or reading data from the CRTC is easy. The
register number is set up on &BC00, and the data to be written is set
up on &BD00. To use |CRTC, the syntax is simply |CRTC,register,
value.

Alternatively, the Register number is set up on &BC00 and data is
read with an IN instruction from &BF00. The status register is read
directly.

One point to note is that the contents of some of these registers
appear to be reset to the values expected by the Firmware when a
return to the 'Direct Mode' of operation is made. (When a program
finishes executing, for example). Another point to note is that loading
certain values to some registers causes the machine to 'lock up',
requiring you to turn the computer on and off again! To help you in
your programs, the below list gives the usual status of the CRTC
registers. There appears to be no difference in register contents in
different screen modes.

Register Contents

0
1
2
3
4
5
6
7
8
9

63
40
46
&8E
38

0
25
30

0
7

180

These values are for UK versions of the Amstrad Computers. The
contents of registers 10 to 17 can be altered by the Operating System
of the computer during normal operation.

The Screen according to the 6845
The way in which the CRTC 'sees' the screen is quite different from
the way in which we do. Before we see how to program the registers,
a few words on the terminology of the CRTC. Figure 5.1 shows a
diagram of the screen according to the CRTC. You will note
immediately that there are two measurements of screen width; the
DISPLAYED CHARACTER WIDTH and the TOTAL CHARACTER
WIDTH. The 'Character Width' is used as the unit of time in CRTC
programming, various registers being programmed in terms of
character widths. Vertically, each character is seen by the CRTC as
being made up of a number of SCAN LINES on the screen. You can
see these if you look closely at the screen.

TOTAL CHARACTER WIDTH

FIGURE 5.1
UNDISPLAYED - USED FOR
OFFSET ADJUSTMENT

CRTC Screen Layout.

181

The 8 lines that make up a character are called a CHARACTER ROW.
The Scan Line is used as the basic unit of time for the structure of the
screen vertically.

Vertically, we have the DISPLAYED ROW NUMBER and the
TOTAL ROW NUMBER. In addition, the CRTC often has a few 'spare'
scan lines called the SCAN LINE ADJUST which can be used to
move the displayed portion of the screen up or down a character row
or two.

The CRTC is also responsible for generating what are called
SYNCHRONISATION PULSES. These simply provide signals to the
hardware of the display which indicate when a scan line has been
completed, when a new one is to start, etc. We needn't go into this in
any detail, as the hardware expects these Sync Pulses to be of a
certain size and to occur at certain times. If we start messing around
with them we will almost certainly cause the screen display to become
unreadable.

There are two Sync Pulses; Vertical and Horizontal. They are
defined by their WIDTH, and their POSITION. For the Horizontal Sync
Pulse the width is in terms of characters, and the position is in terms of
character widths from the left hand edge of the screen for a given scan
line. For the Vertical Sync Pulse, its width is measured in terms of
'scan line times', one of which is the amount of time needed for the
display to produce a scan line. Its position is in terms of Character
Rows.

The only other thing that we need bother about at the moment is
the INTERLACE of the screen. The screen is made up of scan lines,
split into Odd and Even lines; the screen is refreshed every 50th of a
second, but each refresh will affect only the Odd numbered lines of the
screen or the Even numbered lines of the screen. It's possible to get
the CRTC to write to Even Scan lines (Normal Synchronisation), or
both Even and Odd Scan lines. (Interlace Sync. - so called because
the two 'fields' of Even and Odd scan lines are interleaved with each
other.) Figure 5.2 shows this.

182

0

Finally, Frame Flyback. Once the CRTC has produced a full screen of
information, it sends an interrupt to the Z-80 CPU to inform it of the
fact. This is rather important, as after the screen of information, or
FRAME, has been produced, there is a period in which nothing is
written by the CRTC to the screen. This allows the hardware of the
display circuitry to get the electron beam which writes to the screen
from the bottom right corner of the screen, where scans finish, to the
top left of the screen, where scans start. This is called the Flyback
Period, and occurs every fiftieth of a second on UK versions of the
Amstrad. The Operating System uses the Frame Flyback period to do
such things as change inks, or similar operations where it's important
not to change things half way through a screen being produced. We
can also make use of the Frame Flyback interrupt as a source of
timing pulses, as we've already seen, or as a means of getting
smoother moving graphics, as we'll see later.

Let's now go on to study the Registers of the CRTC and see what
we can do with them.

Before going any further, a few notes about Character Widths. On
the Amstrad, a Character Width as seen by the 6845 only
corresponds to the character width as seen by our own eyes in Mode
1. In Mode 2, a single character width is used to display two
characters on the screen, thus giving an 80 column screen, and in
Mode 0 two character widths are required to display a single
character, thus giving a 40 column screen.

183

Register 0
This register controls the Total Number of Horizontal Characters, and
is set up to be 63 by the Firmware. RO is always set to hold one less
than the number of Displayed and Non Displayed characters across
the screen. This CRTC register isn't terribly useful to us; 63 and 64 are
the only values in this register that give a readable screen. Values of
less than around 50 cause the computer to lock up, requiring that the
system be turned off and on again. Other values cause instability of
the display.

Register 1
This register determines the number of Displayed Characters per line.
Altering it can produce interesting, but on the whole useless, results.

Register 2
This is a slightly more useful register. It is called the Horizontal Sync.
Position Register, and determines the position of the Horizontal Sync
Timing pulse in terms of character widths from the left hand side of the
screen. Altering the value held in the register alters the position of the
start of each screen line on the screen. This has the effect of moving
the whole display to the left or to the right. Increasing the value held in
this register will move it to the left and decreasing it moves the whole
screen to the right. However, there are limits; only values between 0
and 63 are useful. Above 63 will crash the system. The reason for this
is that we'd be trying to generate a whole CRTC line of 63 character
widths without a Sync Pulse. It doesn't like this. Program 'CRTC2',
below, shows this register in use. Note that the CRTC command has
been used, so either load the RSX commands into your system or
replace the CRTC command with:

OUT &BCOO,2:OUT &BD00,value%

To see the program in use, press the left and right arrow keys. These
will move the screen. Try running the program in different screen
modes. Note how the program keeps register values to between 0 and
63 to prevent crashes.

100 ON BREAK GOSUB 220
110 MODE 0
120 FOR i=0 TO 100
130 DRAW RND*640,RND*400,RND*15
140 NEXT
150 value%=43

184

160 a$=INKEY$:IF a$='"'THEN GOTO 160
170 char%=ASC(a$)
180 IF char%=242 AND value<63 THEN value%=value%+1
190 IF char%=243 AND value>1 THEN value%=value%-1
200 |CRTC,2,value%
210 GOTO 160
220 |CRTC,2,43
230 MODE 1
240 END

Program CRTC2
Once the lines have been drawn, press the arrow keys to see the
screen move.

Register 3
This determines the width of the Vertical and Horizontal Sync Pulses,
the Vertical pulse being defined by the upper 4 bits of the register and
the Horizontal pulse width being defined by the lower 4 bits. Best left
alone.

Register 4
This register, aided by Register 5, is used to determine the rate at
which the screen is refreshed. It is thus vital for the stability of the
display, and very little can be done with it.

Register 5
This register is used with Register 4 to provide some 'fine control' to
the refresh rate. Called the Scan Line Adjust register, it controls the
number of extra scan lines at the bottom of the screen. It can be used
to a small extent to move the screen display 'down' slightly. However,
if you do this, any scrolling of the screen will lead to the system locking
up. I would suggest, therefore, that you leave this register alone.

Register 6
This is called the Vertical Displayed Character Register, and it
determines the number of rows of characters to be displayed on the
screen. This is set to 25 on the Amstrad, giving the 25 character rows
that we all know and love!

We can modify the contents of this register with safety, producing a
screen that has fewer lines displayed. For example,

|CRTC,6,20

185

produces a display in which there are only 20 displayed rows of
characters. These are the top twenty rows of the display. If you do this,
then the CRTC only displays twenty rows but the Firmware still thinks
that it's got 25 rows to play with. To get around this, the WINDOW
command is used to limit the area of the screen that can be written to
and the ORIGIN command is used to set up a graphics window of the
same size. The program 'CRTC6' shows this in action.

100 REM setting up a 'short' mode 1
110 REM for other modes simply alter
120 REM the parameters of the WINDOW
130 REM statement. CRTC must be
140 REM implemented, or replace with
150 REM OUT commands.
160 MODE 1
170 |CRTC,6,20
180 ORIGIN 0,80,0,640,400,80
190 FOR i=0 TO 7
200 WINDOW #i,1,40,1,20
210 BORDER 2
220 NEXT

Listing of CRTC6
An interesting point to note is that the bottom 5 lines of the display in
this modified screen display are given to the screen Border, and their
colour is now set by the BORDER command. A practical application for
this technique will be described when we look at the structure of the
Screen Memory.

Register 8
This is the Interlace and Delay Register of the CRTC and isn't much
use to us. Again, altering this register can cause the display to
become unstable. If you are interested in having a play, then the
register is arranged as follows.

Bits 0 and 1
These control the Interlace Mode to be used by the CRTC. 00 and 10
give normal Sync, 01 gives Interlaced Sync.

Bits 4,5,6,7
These are called Blanking Delay Bits and are used by the CRTC to
take account of the amount of time needed by the computer system to
transfer data from memory to display circuitry. On the Amstrad, this

186

delay isn't required, as the system is fairly fast. Thus these bits are all
set to zero, as are Bits 0 and 1.

Register 9
This is another register of limited use to us, as it controls the number of
scan lines that the CRTC uses to display a character. It is set to n-1,
where n is the number of scan lines. The Amstrad screen displays use
8 scan lines to display a character, so the register is set to 7. Altering
this value offers us no benefits.

Registers 10 and 11
The CRTC can provide a cursor, and these two registers define the
size of the cursor. However, I have been unable to get any useful
results from messing around with these registers, and so can offer no
suggestions for their use.

Registers 12 and 13
These are very interesting registers, and are used to define the start
address of the screen memory. The CRTC treats the contents of these
two registers as a 14 bit address which specifies the start of the area
of memory to be used as video data. The low byte of the address is in
Register 13 and the High 6 bits are in Register 12. We'll see how the
CRTC expects to find its Video memory in the second part of this
Chapter.

For the time being, however, type in the program 'CRTC12'. RUN it
and then use the Cursor keys. This will alter the address used as the
start address by the CRTC. The start address refers to the address of
the top left byte of the screen. This is usually &C000; in this program
we're simply altering the screen address by 40 to move up and down
a character row, and 1 to move left or right.

100 REM altering CRTC registers 12
110 REM and 13 to move the area of
111 REM memory used as screen memory
120 ON BREAK GOSUB 240
130 MODE 1
140 LOCATE 10,10:PRINT "Hello There"
150 value=&C000
160 a$=lNKEY$: IF a$="" THEN GOTO 160
170 char%=ASC(a$)
180 IF char%=240 THEN value=value+40

187

190 IF char%=241 THEN value=value-40
200 IF char%=242 THEN value=value+1
210 IF char%=243 THEN value=value-1
220 |CRTC,13,value MOD 256:|CRTC,12,value\256
230 GOTO 160
240 REM break subroutine
250 MODE 1
260 END

Listing of CRTC12
When you first press a key, the screen changes and you will see the
text that was printed in the lower part of the screen and a pattern in the
upper part of the screen. The last line of this pattern is the stack, and
you can see how the stack is constantly changing by the way in
which the pattern displayed changes. Pressing keys will also cause
alteration to the pattern that is displayed. If you press 'ESCAPE' once,
you'll see the stack 'freeze' and other parts of the pattern come to life.
Try the below as a further demonstration. Again, it's important to
remember to have the RSX commands in the machine!

array
100 MODE 1
110 ON BREAK GOSUB 210
120 DIM a(2000)
130 PRINT "Press any key to see the"
140 PRINT "Array fill up”
150 CALL &BB18
160 |CRTC,12,0:|CRTC,13,0
170 FOR i=0 TO 2000
180 FOR i=0 TO 100:NEXT
190 a(i)=i
200 NEXT
210 REM Break Key handler
220 MODE 1
230 END

Listing of ARRAY
This program allows you to see the array 'a' being initialised. The odd
way in which the screen is filled up is due to the arrangement of the
Screen Memory, and we'll look at this shortly. The rapidly changing
areas, about 1 /3rd of the way down the screen are due to the 'i' and 'j'
variables.

188

Registers 14 and 15
These set the position of the CRTC generated cursor, and the contents
represent a screen memory. There is little to be gained from altering
this register.

Register 16 and 17
These are used when we wish to use a Light Pen with the Amstrad.
On the Amstrad computers, there is a connection on the Expansion
Bus called L.PEN, and this is connected to the CRTC in such a way
that a pulse on it causes the CRTC to load registers 16 and 17 with the
screen address that it's currently writing information to. The pulse on
the LPEN line is typically caused by a Light Pen which senses the
position of the scanning electron beam on the screen by the light
generated when the beam hits a spot on the screen. We cannot see
this due to the speed at which the screen is scanned, but a suitable
sensor will detect this. The address thus strobed into the Light Pen
Registers is stored with the high 6 bits in Register 16 and the low 8 bits
in Register 17. It's beyond the scope of this book to look at practical
Light Pens, however.

Screen Memory
Unlike the CRTC, the way in which the Screen Memory is used varies
in different Screen Modes. In addition to the actual 16k of screen
memory, there are other areas of RAM used by the Firmware involved
in screen handling as workspace. These are described in 'The
Amstrad Whole Memory Guide', also published by Melbourne House.

The Screen memory of the Amstrad is 16384 bytes long and is
mapped into the addresses &C000 to &FFFF. It is overlaid by the
ROM, and PEEKs and POKEs to any address in this area of memory
will always access Screen RAM. Firmware routines are needed to
access the ROM, as can be seen by examining the listing of the
'ROMREAD' RSX command that was described in Chapter 4.

We've already seen how the CRTC uses registers 12 and 13 to tell
it where the screen memory is to start. There is a provision in the
Firmware for the screen to begin at any of &0000, &4000, &8000 or
&C000. However, of these, only the &4000 and &C000 addresses are
viable; the others overwrite the Firmware Workspace, Jumpblocks or
System Restarts. For the BASIC programmer, only address &C000 is
useful, as the other address, &4000, limits the amount of space we've
got for a BASIC program to a rather miserly 15k or so.

Of course, if you're writing a large part of the program in machine
code, then the area of memory from &C000 can be used.

189

The screen itself consists of 200 screen lines, each consisting of
80 bytes of memory. Even my poor arithmetic tells me that this comes
to'16000, not 16384. There are some areas of RAM in the section put
aside for screen memory that are not used. Later we’ll see how these
bytes can be used for temporary storage. The RAM that is used as
screen memory is split into 8 2048 byte blocks, which are addressed
as follows.

Block 1 &C000-&C7FF
Block 2 &C800-&CFFF
Block 3 &D000-&D7FF
Block 4 &D800-&DFFF
Block 5 &E000-&E7FF
Block 6 &E800-&EFFF
Block 7 &F000-&F7FF
Block 8 &F800-&FFFF

Each line of the screen is defined by 80 consecutive bytes. For
example, the top line of the screen is defined by the first 80 bytes of
Block 1. To see this, try the below short program.

10 MODE 1
20 FOR address=&C000 TO &C04F
30 POKE address,255
40 NEXT address
50 GOTO 50

Line 50 is needed to prevent the ’Ready’ prompt from returning. A red
line is generated across the top of the monitor screen. Now, you might
expect the second line of the screen to begin at address &C050, and
run to &C09F. Well, I did, anyway. But it doesn't. Instead, the second
screen line is defined by the first 80 bytes of Memory Block 2. This is
repeated as shown in Figure 5.3. It is this rather odd arrangement that
gave the peculiar way in which the screen filled up in the 'ARRAY'
program. The way in which the memory maps on to the display in this
odd fashion also makes directly accessing the screen rather difficult.
You might like to try the below routine out to confirm the arrangement
of screen RAM.

190

10 MODE 1
20 POKE &C000.255
30 POKE &C800.255
40 POKE &D000.255
50 POKE &D800.255
60 POKE &E000.255
70 POKE &E800.255
80 POKE &F000.255
90 POKE &F800.255
95 GOTO 95

Again line 95 prevents the prompt from reappearing. This
arrangement doesn't alter in different modes. What does, however, is
the way in which the 80 bytes that make up the screen line represent
characters on the screen. Let's now see how this is done.

Screen Mode 2
We'll start here because this is the easiest screen mode to
understand. As with all screen modes, the first byte of the top screen
line is only at address &C000 immediately after a Mode change and
before any scrolls of the screen take place. Each of the bytes of a
screen line represents a single character width, thus bytes &C000,
&C800, &D000, &D800, &E000, &E800, &F000 and &F800 will
represent the character at screen position 1,1. This can be
demonstrated by the below routine. Don't forget to load in the RSX
commands from Chapter 4.

10 MODE 2
20 ISYMBOL,65,30000
30 add=30000
40 FOR screen=&C000 TO &F800 STEP &800
50 POKE screen,(PEEK(add))
60 add=add+1
70 NEXT screen
80 GOTO 80

This simply transfers the bytes that define the letter 'A' to screen
memory,line 80 stopping the prompt returning. Each bit of the byte that
is set to 1 will be displayed in the INK colour, and a 'O' will be in the
PAPER colour. There is no other Colour Information involved, as there
are only two colours available in Mode 2. Thus we get the 80 column
screen, as each bit in the byte can represent a pixel of the character.

191

Screen Mode 1
This is slightly more involved, as we have 4 possible colours in which
a pixel can be displayed. In Mode 2, each byte defined 8 pixels; here,
each byte only defines 4 pixels. As each character is 8 pixels wide this
reduces the width of the screen to 40 characters. Figure 5.4 shows
how the screen characters are defined, and also how bits in the bytes
define pixels on the screen. Each character square is thus defined by
16 bytes of video RAM.

Mode 0
This mode has 16 colours, and a byte of memory defines only two
pixels, 4 bits being needed to code which of the 16 colours that
particular pixel is to be displayed in. This gives us a screen width of
only twenty characters, each character being defined by 4 bytes on
each screen line. A character in Mode 0 is thus defined by a total of 32
bytes. Figure 5.5 shows how the memory is arranged for Mode 0.

If you were to run the 'TRANSFER' program in Modes 0 or 1 then you
would get an image on the screen that was certainly NOT a letter 'A'!

This leads us to one of the big problems in using fast graphics on
the Amstrad, and many other popular home computers. That is, the
time needed by the Operating System to work out exactly what bytes
are to be placed in screen memory for a given character to be
displayed in a given colour. In the above case, the bytes read back by
|SYMBOL as the definition of 'A' would need to be further processed
before they could be put on the screen to represent the character
required.

Direct manipulation of the Screen Contents is best done, however,
with machine code routines, as these will provide the necessary
speed. Examples of such routines can be found in my book 'Ready
Made Machine Language Routines for the Amstrad' published by
Melbourne House. However, let's see what we can do without
machine code. The first problem is to find out how our usual method of
addressing a screen position in terms of row and column can be
converted to an actual screen address.

Columns, Rows and Screen Addresses
The address of the top row of a given character position on the screen
can be calculated using the below equation.

address=&C000+(pixercolumn)+(row*80)

192

This assumes that there is no OFFSET, which is a slight amendment
to the screen start address which can be made by the Firmware and
the CRTC. Here 'pixel' depends on the mode; it is 1 for Mode 2, 2 for
Mode 1 and 4 for Mode 0. 'column' and 'row' are numbered from 0
upwards. The address returned is that of the first byte of the top line of
the character location, and the address of the other lines of the
character location can be obtained by adding 2048 to this base
address for each screen line. Thus, for example, to put a block of
foreground colour at location 20,20 on a Mode 2 screen, we could try
the below program. Note that row and column locations are from 0
upwards when we are accessing memory directly.

10 MODE 2
20 row=19
30 column=19
40 pixel=1
50 address=&C000+column*pixeI+80‘row
60 FOR screen=0 TO 7
70 POKE address,255
80 address=address+2048
90 NEXT screen

For other modes, the value of 'pixel' would have to be changed. In
addition, the bytes that make up the rest of the character width would
have to be taken in to account and the colour considerations taken
in to account. To see the above working in Mode 1, simply alter the
program as follows:

10 MODE 1
40 pixel=2
70 POKE address,255-.POKE (address+1),255

The rest of the program remains the same.

How are bits in a byte mapped on to pixels? Well, it's fairly straight
forward, and Figure 5.6 shows how each byte in different screen
modes maps on to actual pixels on the screen. Starting with Mode 2,
there are only two colours, and so each bit when on sets foreground
colour for that pixel and when off sets that pixel to be background
colour. For Mode 1:

193

MSB of Pixel LSB of Pixel Colour

0
0
1
1

0 PENO
1 PEN 1
0 PEN 2
1 PEN 3

In a similar fashion, Mode 0 maps as:

MSB LSB Colour

0000
0001
0010

PENO
PEN 1
PEN 2

1111 PEN 15

You can see now why we are limited to a given number of colours in
each mode. You might like to experiment with setting different pixels in
a character square to different colours, thus giving you multicoloured
characters. The program PCOLOUR shows a 'character' that was put
together using this technique, and shows how it can be moved
around. Obviously, superior results would come from machine code.

100 MODE 1
110 row=19
120 add= &C000+row*80
130 FOR i=add to add+79
140 POKE i,RND*255
150 POKE (i+2048),RND*255
160 POKE (i+4096),RND*255
170 CALL&BD19
180 POKE i,0
190 POKE (i+2048),0
200 POKE (i+4096),0
210 CALL &BD19
220 NEXT

Listing of PCOLOUR
The CALL &BD19 simply causes processing to pause until a Frame
Flyback operation. User of the 6128 may replace these with a FRAME
command. Direct access of the memory can thus produce interesting,
multicoloured characters. However, for moving graphics that make

194

use of direct screen access machine code is needed, and that is
beyond the scope of this book. We will see more practical methods of
animation from BASIC in a later Chapter.

This method of arranging screen memory does make one thing
rather difficult, and that is finding the character at a given screen
location. In version 1.1 of BASIC, the COPYCHR$ function returns
the character at a given screen location. In Version 1.0 the firmware
routines will have to be used.

Saving and Loading Screen Memory
The easiest way to save screens of data is as a byte file, with a save
command such as:

SAVE "screen",B,&C000,&4000

assuming that the screen hasn't scrolled since the picture was drawn.
Such a file can then be loaded back with a command such as:

MODE n:LOAD "screen",&C000

The 'MODE' command here serves two functions; that of setting the
appropriate mode and that of ensuring that address &C000
corresponds to the top left of the screen.

'Poaching' Screen Memory
It is possible to 'borrow', or poach, some of the Screen Memory and
use it for storage of machine code programs, bytes, etc. You can't use
memory thus released for BASIC programs, and neither can any
machine code placed in such memory call ROM routines that 'live' in
the upper ROM.

We mentioned earlier on in this Chapter that some bytes of screen
memory are not accessed by the CRTC under most circumstances.
These areas of memory are:

&C7D0 - &C7FF
&CFD0 - &CFFF
&D7D0-&D7FF
&DFD0-&DFFF
&E7D0 - &E7FF
&EFD0-&EFFF
&F7D0-&F7FF
&FFD0 - &FFFF

195

These areas are, however, used by the Video Circuitry when a scroll
of the screen takes place. For example:

10 MODE 1
20 FOR screen=&D7D0 TO &D7FF
30 POKE screen,j
40 j=j+1
50 NEXT screen
60 CALL &BB18
70 FOR screen=&D7D0 TO &D7FF
80 PRINT PEEK(screen)
90 NEXT

This will poke a series of numbers into Video RAM; observation of the
screen reveals no change. Line 60 simply waits for a key to be
pressed before the same addresses are peeked out. You will see that
the values are unchanged -1,2,3...etc.

However, if we alter the program by putting in:

65 FOR scroll=0 TO 30:PRINT:NEXT scroll

will result in the screen scrolling and the bytes POKEd in lines 20-50
of the above program are lost as the screen memory is used by the
scroll. This is obviously an unsatisfactory method of using the 'spare'
video memory. What we need is some means of stopping the CRTC
actually accessing the memory. We can do this by using the CRTC
registers, as we'll now see.

We'll use CRTC register 6, the Vertical Displayed Register, and
modify it to alter the number of character rows displayed. We then set
Graphics and Text Windows up to limit the screen to the appropriate
size. The program listing below does this. Note that the Mode change
is important to initialise the screen memory to start with &C000 at the
top left of the screen. Before going on, the program listing. Again, I've
assumed that you've loaded the RSX commands from Chapter 4.

10 |CRTC,6,20
20 MODE 1
30 scrwidth=40
40 FOR w=0 TO 7
50 WINDOW #w,1 ,scrwidth,1,20
60 NEXTw
70 ORIGIN 0,80,0,640,400,80
80 CLS:CLG

196

The 'scrwidth' variable in line 30 should be set according to the mode.
(20 for Mode 0, 40 for Mode 1 and 80 for Mode 2). Lines 40 to 60 set
up the seven text windows to a new default size of only twenty lines.
Line 70 sets the graphics window and origin in a similar fashion.

If you run this, a BORDER 2 command will clearly show the new
screen size. Now to the memory that we've freed by this process. The
first thing to note is that it is NOT a continuous block of memory; this is
due to the way in which the screen memory is arranged. The memory
available is arranged in a series of 80 byte 'chunks', some of which do
follow each other in the memory map. To see what addresses these
chunks have, run the below program. The addresses printed are the
addresses of the first and last byte of each block, respectively. Add the
lines to the above program.

100 FOR row=20 TO 24
110 addr=&C000+row*80
120 j=0:FOR i=0 TO 7
130 PRINT HEX$(addr+j,4), HEX$ (addr+j+79,4)
140 j=j+2048
150 NEXT

These blocks of memory can be used to store short machine code
routines, data, etc. The addresses given above are only correct if the
Mode was set in the above way, but are correct for any screen mode. If
you do use this technique, take care to ensure that you don’t write or
draw outside the area set by the Windows. The results could be rather
messy, especially if you're storing machine code in the freed space!

You will notice one peculiarity about the screen when used in this
way; any scrolls take place as normal but seem a little slower than
usual. Try listing the above program a couple of times to see what I
mean. This should cause no problems, however.

197

Chapter 6
AFTER and EVERY

Locomotive BASIC is one of the few dialects of BASIC that offers us
interrupt facilities in BASIC; in most home computer systems, the
programmer who wishes to use interrupts is forced into machine
code, and even then has difficulties in implementing the facilities
required and interfacing the machine code to BASIC. In this Chapter I
will examine the AFTER, EVERY and associated commands, discuss
applications and also have a brief look at what makes them 'tick'. (If
you'll pardon the pun . . .)

AFTER
The Syntax for the AFTER command is:

AFTER time GOSUB m
AFTER time,timer GOSUB m

where'm' is the line number of the start of a subroutine to which
control is to be passed 'time' fiftieths of a second after either of these
commands have been issued. AFTER is a 'one off interrupt; it will
cause the subroutine in question to be entered once only. Of course, a
subroutine can issue another AFTER command:

10 AFTER 50 GOSUB 100
20 PRINT l:l=l+1:GOTO 20
30 END
40 :

100 SOUND 1,100
110 AFTER 50 GOSUB 100
120 RETURN

199

but this is the sort of thing that the EVERY command is for! This
program will 'beep' every second while the program is running.

The 'timer' parameter is an optional integer between 0 and 3.
There are 4 timers available to AFTER, and each of them could be set
to activate a different subroutine after different lengths of time. The
default timer, and the one we used in the above example, is 0. Timer
'O' is the lowest priority timer, and Timer '3' the highest priority timer. If
it should pass that two AFTER commands should time out at the same
instant in time, then the subroutine attached to the highest priority
timer will be executed first, followed by the other routine.

There are a couple of other commands and functions related to the
AFTER command.

D! and El
These Disable and Enable the 4 timers respectively. DI will ensure
that no AFTER events are recognised by the system until one of three
occurrences:

1. A RETURN command is executed.
2. An El command is executed.
3. RUN is executed.

The prime use for DI is to ensure that 'time critical' portions of BASIC
programs are not interrupted by AFTER or EVERY commands. You
might, therefore, execute such a command as the first operation in a
subroutine that has been entered by an AFTER or EVERY command.
This will ensure that your interrupt subroutine isn't interrupted!
Remember that the act of entering a subroutine under control of one of
the Interrupt Timers will disable any timers of the same or lower
priority for the duration of the subroutine. Thus important AFTER and
EVERY commands should use the highest priority timer.

El simply reverses the effect of DI.

REMAIN(n)
This function returns the number of fiftieths of a second left on a
particular Timer, 'n'. It also stops that particular Timer.

The Effect of Break on AFTER and EVERY
Pressing ESC generates an interrupt that is of a higher priority than
any of the Timers. It cannot be disabled by DI, although we've already
seen an RSX command in Chapter 4 that will disable this event.

However, when ESC is pressed once, the program pauses but the
AFTER and EVERY events keep being 'kicked' by the Operating

200

System. Pressing any other key than ESC at this point will cause
program execution to continue, starting with the execution of all
outstanding AFTER and EVERY subroutines. This means that you can
have several seconds, or longer, in which the Amstrad is simply
'making up' for the time lost between the two key presses.

If we have a full Break Event, then if we are able to restart the
program with CONT, any 'pending' AFTER and EVERY events will be
processed in the same manner.

EVERY
The EVERY command is a repetitive AFTER command, ensuring that
a given BASIC subroutine is entered EVERY now and again. EVERY
again counts in fiftieths of a second; in fact, it uses the same timers as
the AFTER command, and what we have said about REMAIN, DI, El
and priority applies to EVERY as well as AFTER. The fact that the
same timers are used can cause problems to the unwary; if we set up,
say, an AFTER and then set up an EVERY command on the SAME
timer, the AFTER will be forgotten. Only the EVERY interrupts will be
obeyed. The same applies, of course, if we set up an EVERY before
an AFTER on the same channel.

The syntax for EVERY is:

EVERY time GOSUB m
EVERY time,timer GOSUB m

We will see a couple of applications of the EVERY command shortly.

General Applications and Problems
Of the two, EVERY finds the most use in my programs. We can use it to
cause a given sequence of operations to be executed every so often.
For example, in a games program, we could enter a subroutine every
tenth of a second to read the keyboard. However, before we get too
carried away with schemes for interrupt driven programs, remember
that every second spent in an AFTER or EVERY subroutine is a
second spent away from the main body of the program. In extreme
cases, with very frequent interrupts, this can lead to a serious slowing
down of the program.

On a similar theme, don't make the interrupt subroutines too long.
To have a routine that takes 2 fiftieths of a second to execute called
every fiftieth of a second by an EVERY command is a little silly; at best
it will be executed once every 1/25th second, and would probably
slow up the main program to a standstill!

201

In this case, you would need to either increase the time between
successive entries to the subroutine by altering the EVERY command
or shorten the subroutine's execution time.

A further point to note is that INPUT appears to cause the timer
action to be suspended, much like when ESCAPE is pressed once.

Some Applications
Let's now see how we can use these commands. The first application
simply uses AFTER as a timer, without bothering about its interrupt
facility. We are using it here to time subroutines:

10 AFTER 32767 GOSUB 1000
20 FORI=0TO100
30 PRINT I
40 NEXT I
50 GOSUB 1000
60 END

1000 PRINT 32767-REMAIN(0)

Here we are timing the routine in lines 20-40. Line 10 starts the timer,
and line 50 stops it. Line 1000 then stops the timer by using REMAIN
and prints the time that has lapsed in fiftieths of a second.

AFTER could be used in a similar way in other programs. 32767 is
used to give a nice long delay before the interrupt would fire off. The
principle could be used for reaction timing (possibly in conjunction
with the ON KEY command of Chapter 4), or other timing applications.
A second use might be to add a 'password' to a program. We could
save a program as a protected program, which contains the following
lines:

1 ON BREAK GOSUB 10000
2 AFTER 200 GOSUB 10000
3 a$=INKEY$:IF a$='"' THEN GOTO 3
4 IF ASC(a$)<>65 THEN GOTO 3
5 a=REMAIN(0)
6 :
7 REM start of program

10000 NEW

This routine is quite simple. Line 2 sets up a 4 second delay before
line 10000 is executed, zapping the program. As it's not common to
accidentally press ESCAPE twice, line 1 does the same on Break!
Line 3 waits for a keypress, and line 4 checks it to see if it's the correct

202

password, in this case "A". If it is, then line 5 turns off the AFTER.
Otherwise, control goes back to line 3. Further security could be
introduced by repeating lines 3 and 4 as often as you want, only
executing the REMAIN command when a two or three letter password
has been entered. INPUT isn't used because it would:

1. Display any letters entered on the screen.
2. Allow the user to break in at the INPUT stage.
3. Disable the timer for the AFTER command while input was

awaited.

EVERY can be used to provide a 'Dynamic' view of memory locations,
PEEKing out and printing the contents of memory locations
repeatedly. The below program does this:

10 EVERY 50 GOSUB 1000
15 MODE 2
20 a%=a%+1 :GOTO 20

1000 REM EVERY routine
1010 LOCATE 1,1
1020 FOR l%=0TO 10
1030 PRINT l%+@a%,PEEK(l%+@a%);" "
1040 NEXT l%
1050 SOUND 1,200
1060 RETURN

As it stands, the display will be updated every second; you can reduce
the 'time' parameter in line 10 down to 26, thus updating the display
every half second or so. The program will print out the 11 bytes
starting at the memory locations used to store the variable 'a%'.

The main function of this program, though, is to show one of the
problems that the EVERY user can encounter. If we change line 10 to:

10 EVERY 20 GOSUB 1000

then the EVERY routine is re-entered repeatedly, as indicated by the
'beeping'. However, the routine is entered so often that the main
program doesn't have time to do anything else, as indicated by the
fact that the bytes of 'a%' do not change.

An obvious function for EVERY is some sort of 'clock', which
displays the time while a program is running. I've always thought this
a rather redundant application, given the cheapness of digital
watches! However, here are the 'bare bones' of a subroutine to
implement such a function.

203

5 MODE 1
10 hours=10:minutes=30:timer$="12:00"
20 CLS
30 WINDOW #7,32,40,1,1 PAPER #7,3:PEN #7,1: CLS#7
40 EVERY 3000 GOSUB 1000
50 REM rest of program
60 :
70 :

1000 REM Clock subroutine
1010 minutes=minutes+1
1020 IF minutes=60 THEN minutes=0: hours=hours+1
1030 minute$=RIGHT$(STR$ (minutes), LEN (STR$

(minutes))-1)
1040 IF hours=24 THEN hours=0
1050 hour$=RIGHT$(STR$ (hours), LEN (STR$ (hours))-1)
1060 IF LEN(hour$)=1 THEN hour$= "0"+hour$
1070 IF LEN(minute$)=1 THEN minute$= "0"+minute$
1080 PRINT #7:PRINT #7, hour$;":";minute$;
1090 IF timer$=(hour$+":"+minute$) THEN FOR l=0 TO 200

STEP 10: SOUND 1,1: NEXT I
1100 RETURN

The program is fairly simple: window 7 is used to print the time, and
line 10 sets up the start time on the 24 hour clock. The string 'timer$'
allows a simple 'alarm clock' function to be implemented. It should be
set to hold the 24 hour time (e.g. 'timer$="07:05'" for five past seven)
and then when this time is reached a sound will be generated. The
subroutine is kicked every minute by the EVERY command. If you
want, you could kick it every second, by modifying the EVERY
command and adding lines to increment a second counter in a similar
way to that in which we've incremented the minute counter. Lines
1030, 1050, 1060 and 1070 serve to convert the 'hours' and 'minutes'
variables into strings of the format required.

How AFTER and EVERY work
It is clear that AFTER and EVERY are somehow controlled by the
Events System of the Amstrad. In this section, we'll do some detective
work that will lead to a full description of how AFTER and EVERY
interact with the Operating System. Note that the 'gory details' will be
specific to the Amstrad CPC464; any addresses given will be for that
machine.

The fact that AFTER and EVERY on UK machines measure their
time delays in fiftieths of a second point to either the Frame Flyback or

204

the Ticker Events being involved. The fact that the timers used by the
commands still use fiftieths of a second in other machines points to the
Ticker Event as the driver for AFTER and EVERY.

On the 464, the start of the 'Ticker List', which contains all the
Event Blocks to be kicked by the Ticker Event, occupies locations
&B190 and &B191. Normally, with no Ticker Events running, this
address is zero. However, after the execution of a line such as:

10 AFTER 32767 GOSUB 1000

the address held in these locations is &AC5C. This confirms that the
Ticker Event is responsible for controlling AFTER and EVERY. It
therefore follows that each AFTER or EVERY command sets up a
Ticker Event Block.

Ticker Event Block
A typical Ticker Block is shown in Figure 5.1.

EVENT
BLOCK

TICK
BLOCK

TICK

CHAIN

TICK

COUNT

TICK

RECHARGE

EVENT

CHAIN

COUNT

CLASS

EVENT HANDLER

ADDRESS

ROM

USER BYTES

I
I

Points to next Ticker Block

Count remaining until
Event Block is Kicked

Recharge Value

DON’T TOUCH!

Outstanding Kicks

Event Class - usually 2 for
AFTER

Address of Routine to
Process EVENT

Selects ROM

Figure 5.1

205

So, we now set up an AFTER command as a program line, and
investigate the contents of &AC5C and onwards. I used the RSX
|DUMP command to do this.

10 AFTER 32767 GOSUB 1000
20 IDUMP.&AC5C
30 GOTO 30

1000 RETURN

This program was typed in after a hard reset of the machine. The
following were revealed:

Ticker Count:
Event Class:
ROM select:
Address of Event Handler:

Depends on AFTER command.
&02
&FD
&C879

In addition, there are 5 extra bytes after the end of the Event Block that
appear to be concerned with the AFTER command. I assumed that
somewhere in these bytes would be either the line number referred to
by the AFTER statement. In this assumption I was partially right. The
line number isn't stored as such, but an address referring to that line.
Of the 5 bytes, I haven’t determined the significance of the first three
bytes but the last two hold what appears to be the address of the line
number which is the destination of the GOSUB command in the
AFTER statement, minus 1. Thus for:

AFTER 300 GOSUB 1000

if line 1000 started at address &0135 then these two bytes would be
found to hold &0134. To see if this supposition was true, I tried the
below program. Type it in EXACTLY as it is written, as the two bytes
POKEd in in line 2 refer to an address within the program.

1 AFTER 200 GOSUB 1000
2 POKE 44140,&BE:POKE 44141 ,&1
3 GOTO 3

1000 PRINT "Line 1000"
1010 END
2000 PRINT "line 2000"
2010 END

206

RUN the program, and you will see after 4 seconds the message 'Line
2000' printed to the screen rather than the expected 'Line 1000'!. Thus
our supposition about these bytes was correct. If you look back at the
BASIC line structure shown in Chapter 3, then you will see that this
address is the address of the end of line marker ('0') for the line
immediately before the one referred to by the AFTER statement.

If you want to experiment with poking different values into the
locations mentioned above, there are a couple of points to note.

1. These addresses are for the first AFTER or EVERY
declared in the program.

2. The addresses given above are for the Amstrad 464 only.

3. You will need to find the address of the BASIC line which
you want to POKE in. To do this, you can use the RSX
FIND command, and subtract 5 from the value returned.

Although the above details were ascertained for the AFTER command,
they are very similar for EVERY. The only real difference is in the
Ticker Block Recharge Count. This two byte parameter is accessed by
the OS when the Ticker Count reaches zero. The 'Count' bytes are
'recharged' from the 'recharge' bytes, thus starting the whole thing off
again. For EVERY, the recharge bytes are non-zero, the actual value
depending upon the EVERY command which set up the block. For
AFTER, which is a one off timing event, the recharge bytes are zero.

This leads us rather nicely onto the fact that once a Tick Block has
a zero Tick Count, it is not serviced by the OS but is still taking up
space and the computer has to spend a little time checking whether
the block does need servicing. I am not sure whether an AFTER block
is deleted from the Ticker List when it's been kicked.

One final point. Although POKEing the AFTER or EVERY block is
possible, as we've seen above, it can be a little hairy! Think what
could happen if we POKEd one value into, say, 44140, but before we
could POKE the next value the Event Block was kicked. The address
held in the Event Block would not be that of the desired line number,
and would probably lead to a messy crash!

It's also possible to PEEK out values from these blocks; if we have
just one AFTER running, we can have lines like:

10
20
30

AFTER 32767 GOSUB 1000
PRINT PEEK(&AC5E)+256‘PEEK(&AC5F)
GOTO 20
RETURN1000

207

This will print out the count remaining on the AFTER timer, just like
REMAIN, in fact. However, unlike REMAIN it doesn't stop the clock.

So, what use can we make of this information. Well, just as we
'hijacked' the Break Event in Chapter 4, we could use the
AFTER/EVERY Event Block to allow our machine code routines to
pass control to a BASIC line by simply setting up an Event Block
containing the details above, with the address of our line number, and
then kicking that Event. Alternatively, we could hitch such an Event
Block up to our 'ON KEY GOSUB' routine, so we don't use the Break
Event. Or, what about adding a fifth AFTER/EVERY timer, accessed by
RSX commands. You might think that we could add a 'fast'
AFTER/EVERY command that uses the Fast Ticker. This wouldn't,
though, be that efficient, because even with the normal ticker we still
have problems finishing our subroutines before the next event is
kicked if we have an EVERY that is trying to call the subroutine very
frequently. A Ticker six times as fast would allow a little more
'resolution' in the timing, but even the accuracy would be wasted to
some degree as BASIC isn't really fast enough to make the best use
of it.

A further application might be to add AFTER and EVERY
commands that mimic the already existing ones but provide you with
an additional timer. In addition, a new |REMAIN function could be
added which could return the amount of time remaining by getting the
contents of the 'Tick Count' bytes, without stopping the clock. It should
also be possible to alter 'recharge' values while a count down is in
progress, and so on.

However, all these are a little beyond the scope of the book; after
all, we're supposed to be discussing advanced BASIC, not advanced
machine code! However, I hope that this information has given you a
few ideas as to further ways in which machine code and BASIC can
interact.

208

Chapter 7
Some Hints on Programming

In this Chapter I want to look at some useful subroutines that haven't
really fitted in to any other Chapter. In addition, I'll also look at general
programming style.

Program Design and Programming Style
Whenever I write a program I start with a pile of paper, a pencil, and
copious amounts of coffee. I don’t go to the computer until I've done
quite a lot of work. The first requirement is that you have a clear idea
in your own mind about what you want the program to do. It's not a
good idea to allow a program to 'grow like topsy' as you're actually
writing it. Any facilities that are to be in the final program should be
designed in to it when you're actually planning the program; failure to
do this can lead to problems when the program is running.

Once you have such a 'specification', you can begin to design the
program, still without touching the computer. I use a technique known
as 'Top Down' design. The specification is split into a series of tasks
that the program must perform, and each task is then split into further
sub-tasks. This process carries on until the description of each task is
detailed enough for you to write the program in whatever language
you choose. The description of each task is often done in a 'pseudo
language', which describes the operations to be carried out. For
example:

PRINT"Please press a key"
WHILE key-is-not-pressed
DO
END

209

This simply tells us that the program would wait until a key is pressed.
In this particular case, the 'pseudo language' description is very close
to a Locomotive BASIC routine. In other cases, there might be a big
difference between the p-language description and the BASIC
routine. Once we've got a 'p-language' description for each part of the
program, we can begin to write the routines.

We now go backwards, in effect. We write the small sub tasks as
BASIC functions or subroutines, starting with routines that might be
called by many parts of the program. An example might be a routine
that waits for a key to be pressed on the keyboard. These routines, I
call Primitives. Each such primitive can then be tested independantly
from the rest of the program, and you can thus debug your program as
you are writing it by debugging the small subroutines. This means that
when you write the larger sections of a program, you can at least rely
on the small sections you've already tested.

This process is made a little difficult on the Amstrad due to the
absence of what are called LOCAL variables. These are variables
that are only operative within a subroutine, not in the main body of the
program. For example:

1000 REM will not work on Amstrad
1010 J%=0
1020 GOSUB 2000
1030 PRINT J%
1040 END
2000 LOCAL J%
2010 J%=2
2020 PRINT J%
2030 RETURN

On a system supporting Local variables, the PRINT statement in line
2020 will print out '2' and that in line 1030 will print out 'O'. It is as if
two separate variables of the same name are maintained by the
system. The problem that lack of this ability on the Amstrad causes is
that we might write a subroutine that affects the value of a variable that
is used elsewhere in the program! The subroutine would thus cause a
bug that might be many lines of code and several seconds or minutes
away from the subroutine call that set the problem up - a 'time bomb'
in the program, if you like. The only way around this is to use care
when naming variables for use in subroutines, only use them in
subroutines and don't use them in the main body of the program. You
in Chapter 6, for example, xp% and yp% turned up everywhere; these
are two of my 'pet' names for subroutine variables.

210

Of course, you will have to set up the variables used in the
subroutine before calling the subroutine.

Again, the programs in Chapter 6 show many examples of this.
The practical result of following this method of program design is that
a program may consist of a series of GOSUB calls in it s first few lines,
each subroutine call doing a particular task in the program. For
example, the first may initialise arrays and set up variables to initial
values, the second print up the rules of a game and prepare the game
screen, and a third may allow the user to play the game. This allows
you to easily track down bugs that occur; just isolate them to the
subroutine that does the job, then find the particular routine that
causes the problem. More on debugging later.

Style and the Subroutine!
The way in which programs are written is obviously dependant on the
programmer, but there are various rules which can help him develop a
good 'style'. Just as in English, BASIC has a 'grammar', which tells us
how commands can be used. In addition, however, there are stylistic
points which might not help the program run any faster but make the
logic of it much easier to follow, thus allowing easy alteration and
debugging. Even if you only write programs for yourself, it's a good
habit to get into. Two or three months away from a program can lead
to the type of mystification usually attributed to 'experimental' films
when you come to read the program again. I know - I've experienced
both!

Seriously, though, a well written program can remove the need for
explanatory notes, and makes life easier.

REMs. We saw in Chapter 1 that REMs take up space. It's a nasty
fact of life that well structured and documented programs are very
heavy on memory. For this reason I often keep TWO versions of my
programs; one containing all the REMs and with well spaced
subroutines, and another run-time version which crams the program
into as little space as possible. I consider the following to be the
principle uses of REM statements.

1. At the top of the program, giving date, version and name of
program, together with your name and address, and copyright
notice. In addition, put in any system requirements - i.e. BASIC
1.1, disc drive, printer etc. This is especially important if you
intend selling the program. Documentation can easily get
separated from programs in the commercial environment, so
make sure that at least some of your details are in the program.

211

2. Any 'odd' bits of code should be REMmed for later use. The
rule here is 'If it ain't clear what it does-REM it.' This can be
useful to you at a later date when you want to use routines
from the program in another program.

3. Subroutine 'headers'. These give details about the
requirements of the subroutine. The REMs here will detail what
the routine does, what variables are used for what purposes,
and any special points about the subroutine.

4. File Structure. If the program uses files, then I find it useful to
include a REM statement in the File handling subroutine that
contains information about how the program expects data to
be stored in files.

Variable Names
Again, memory considerations and clarity conflict. A variable name
should be descriptive of what the variable represents. For example, in
a market garden data base (!) we could have the line:

1000 carrots=2000

which is clearer than:

1000 c=2000

The first obviously refers to a property of carrots - probably the
number that are available. The second could refer to anything.

In addition, I use certain variables for particular jobs. I%, J%, K%
tend to be used as loop control variables in FOR...NEXT loops.
xp%,yp% are used as coordinates, and so on.

Thus I can often see at a glance exactly what a part of a program
refers to. A similar thing can be done with array names.

Whilst on the subject of variables, I like to try and define them all
explicitly. Locomotive BASIC encourages lazy thinking in one of its
aspects, in that a variable that is not assigned a value BUT is used
assumes the value of 'O' or an empty string rather than signalling an
error. This can lead to some funny errors on occasion, so always set
variables to start values in your initialisation subroutine. In addition, I
find it a good idea to explicitly DIM the arrays to be used, rather than
rely on the fact that Locomotive BASIC doesn't require you to DIM
arrays with less than 10 elements.

212

FOR...NEXT loops
Where loops are nested to any great depth, I like to follow each NEXT
with the variable to which it refers. This makes the program easier to
follow. FOR...NEXT loops are used to carry out a sequence of
instructions a known number of times. However, it is possible to exit a
FOR...NEXT loop before the full number of passes is achieved, and
exit the loop in a reasonably 'clean' way. For example:

990 found=0
1000 FOR l%=1 TO 100
1010 IF file$(l%)="Fred" THEN found=l%
1020 NEXT l%

This routine is simple enough; check each entry in the array 'file$' and
then set the variable 'found' to hold the element which is equal to
'Fred'. Now, as it stands, more than one occurence of 'Fred' will result
in 'found' holding the element containing the last occurrence of 'Fred'.
If you wanted the first occurrence, then there are two ways of doing it.
Replace line 1010 with:

1010 IF found=0 AND file$(l%)="Fred" THEN found=l%

or, exit the loop. The latter is often the best solution, as the above
method still requires that all 100 entries are searched. To exit the loop,
replace line 1010 with:

IF file$(l%)="Fred" THEN found=l%: l%=101

This will cause the loop to terminate the next time NEXT l% is
encountered, as l% will be greater than the loop termination value in
the FOR statement. GOTO to get out isn't a good idea. Neither is the
below structure:

1000 FORI%=0TO200

1100 IF l%>100 THEN GOTO 20

1500 NEXT l%
1510 RETURN

2000 NEXT l%
2010 RETURN

213

This might be alright on small loops, but can lead to confusion on
longer loops.

And so on to a subject that causes much wailing and gnashing of
teeth in computing circles. The GOTO statement. BASIC needs it, but
the general rule is to use it as little as possible, and then over small
ranges of lines. Don't have GOTO statements sending control all over
the program. This is known as 'Spaghetti Programming', because the
resultant program is more convoluted than a bowl of spaghetti!

This is reduced by using the Top Down approach of design, as
each subroutine can be written as a self contained unit. As most of
these routines are short, GOTO'S can in my opinion, be used with
safety within the confines of the subroutine. By the way, a subroutine
longer than a couple of 50 or so lines of code should be given a quick
examination; see if there aren't smaller tasks that the subroutine could
be split into. On the Amstrad, WHILE...WEND is available, and this can
be used in some places instead of GOTO. However, I find GOTO
provides greater clarity IF USED WITH care in many situations. The
emphasis, here, of course, is on 'if used with care'. So, some simple
GOTO rules.

1. Don't have masses of GOTOs going all over the program.

2. Keep the line containing the GOTO and the destination line within
a few lines of each other, certainly within a screen full of code.
Only break this rule in dire emergency. (World War Three, etc.)

3. Before using GOTO try and think of other ways of achieving the
same end.

GOSUB...RETURN
A subroutine can be entered at any line within it, not just the first line of
the subroutine. This isn't good practice, though, as it makes the
program less clear to read. It usually indicates that a subroutine has
two functions. Split it into two and just let each subroutine have one
entry point. Similarly, a subroutine can have any number of RETURN
statements to terminate it. I like to try and use just one RETURN, even
if it is jumped to in some cases by a GOTO statement.

ON...GOTO, ON...GOSUB.

These structures can get rid of the many IF...THEN statements that
extensive use of menus can produce. Again, they clarify the reading of
a program.

214

General Program Structure
I try and make my larger programs conform to a general structure in
which the first few lines are REMs, followed by a few subroutine calls
that make up the body of the program. The definitions of these
programs I usually start at around line 1000, and I try and keep all the
'primitive' subroutines in lines above 20000. DATA statements I try
and put near to the subroutines that use them, or put at the end of the
program.

Error Traps and Error Prevention
This section is of most use to those of you writing programs for that
difficult to please animal, the 'computer illiterate user', who will no
doubt find every single bug in your program, and will take fright at
such messages as 'Subscript out of range' appear as the program
grinds to an embarrassing halt. You will no doubt get rid of such
errors as 'Syntax Error' or other such programming errors, but don't
forget that the user may type in some data that gives the program a
severe headache. In this section, we'll see how this can be prevented,
starting with deliberate attempts to get in to the program.

BREAK. If you don't want a program to be broken into, use ON
BREAK CONT, ON BREAK GOSUB, etc. to prevent this occurrence.

Protected Files. A program saved as a 'P' file can only be run
from tape, not loaded and listed.

Input to the Program
Programs usually accept an input from files or keyboard, and here is
where problems can arise. Beginning with the keyboard, no keypress
should be accepted that the program cannot deal with. The practical
upshot of this is that for programs designed to be used by non experts
the use of INPUT is rather amateur. The Input Routines featured later
in this Chapter show how to do it properly. When waiting for a key to
be pressed, use a routine such as:

1000 a$=INKEY$
1010 IFa$='"'THEN GOTO 1000

If you are waiting for a specific key to be pressed, then a little more
sophistication is needed. The INSTR function makes life easier here.
For example, a common requirement is to wait until Yes/No response
is obtained by waiting for 'Y' or 'N' to be pressed. The below routine
does this.

215

1000 a$=INKEY$
1010 IF a$="" THEN GOTO 1000
1020 response°/o=INSTR("YyNn",a$)
1030 IF response%=0 THEN GOTO 1000
1040 RETURN

Lines 1000-1010 wait for a key to be pressed, then 'response%' is set
up with a call to the INSTR function. If this is 0 then the process is
repeated. Otherwise, response% will have the value 1 or 2 for a Yes
response or 3 or 4 for a No response. Note how we check for both
upper and lower case letters here.

For numeric and string inputs, it's best to use an input routine like
the ones listed later in the chapter. These tend to return strings, which
can be used as they are or further processed. For example, a string
representing a number can be converted into a number using VAL.
This might be a record number in a data base, so the first thing to do is
to make sure that the number returned is a legal record number. If
there are only 100 records in the data base, and a value of 101 is
entered, then this would cause an error. Therefore, we refuse to
accept the number and ask for another one. The user can be informed
of why the number is unacceptable, if desired. This does, of course,
mean more work for the programmer but we end up with a more
'robust' and 'user friendly' program. Such 'data validation' can also
make it impossible for a user to enter a string when a number is
expected, and so on.

If this 'data validation' is effective, then your program will not crash
due to incorrect user inputs.

Other validation might include ensuring that data entered for use
as a file name is not too long, that data entered into a database
program isn't too long for the space available, and so on. Reading
data from a file that is not the correct type for the program will lead to a
variety of errors, including 'Type Mismatch'. The best way out of this
problem is to use the ON ERROR trap to enter a subroutine to indicate
that the file type is wrong to the user.

ON ERROR GOTO
With all your programming skill, there are some conditions that are
almost impossible to get around using data validation. So, we trap
these with an ON ERROR GOTO command which directs control to a
given line number when an error occurs. If possible, the error 'trap'
routine, as it's called, should clear the error and use RESUME to get
things going again. The user should be informed of the error
condition. (The system variable ERR holds the error number. On the

216

whole, line numbers at which the error occurred are useless unless
the program is still being tested and it's expected that some 'Syntax
Errors', etc. might still show. Users might get a little worried at a
plethora of line numbers!) If the error condition is such that you cannot
RESUME, then finish the error trap routine with a GOTO statement that
passes the user back to a menu, etc. after the error has been cleared.

Debugging Routines
A nicely written routine is also easier to debug than routine written
using meandering GOTO statements and meaningless variable
names. In this section, I want to look at some of the more common
problems that you may encounter.

Syntax Errors
These are usually caused by incorrect use or spelling of BASIC
commands. It is a good idea to enter all commands in lower case; if
correct the BASIC interpreter will list the statements thus entered in
upper case, thus making it easy to see any BASIC keywords that have
been entered incorrectly. This also allows you to see those occasions
when you've entered a keyword as part of a BASIC variable name.

Additionally, this error can be caused by the number of opening
and closing brackets being different. For example:

PRINT (((a+b)+2)

will give a 'Syntax Error' due to there being three opening brackets
and two closing brackets.

The error is also caused by typing in absolute rubbish!

Memory Full
This can be caused by a variety of things. The most common cause is
while you are manipulating the value of HIMEM, possible to reserve
space for machine code routines. If you try and set the value of HIMEM
too high or low then this error can be generated. The opening of a file
or use of SYMBOL AFTER will affect the values of HIMEM that are
'legal', and so this should be taken into account when using the
MEMORY command.

The other cause of this error is when the program or its variables
get too large for the available RAM. If this is the case, you will
somehow have to cut down the size of the program; shorten variable
names, use Integer variables wherever possible, use multi-statement
lines.

217

A third cause is where a series of FOR...NEXT, WHILE...WENDS or
GOSUB...RETURNS are very deeply nested. This can happen with
tiny programs in memory, as we are troubled here by a loss of space
for the information about the active control structures rather than
memory for storing programs or variables.

A similar error is 'String Space Full', caused by there being too
many strings in the memory. The setting up of strings in a computer is
often a memory intensive task. Try the below:

10 PRINT FRE(O)
20 A$=STRING$(50,"#")
30 PRINT FRE(O)
40 A$=STRlNG$(70,"#")
50 PRINT FRE(0)
60 A$="HELLO"
70 PRINT FRE(0)

Running this program on a CPC 6128 returned the following figures:

42144
42085
42013
42013

Comparing these figures with the program will reveal that although A$
ended up with only five characters in it ("HELLO"), the system had still
allocated to it room for a longer string. This is how the string space
gets filled up. The extra memory, that at one time was used for string
storage but is now not needed is not available for general use. A
process called 'Garbage Collection' is carried out by BASIC on
occasion to reclaim this memory. We can force such an event
whenever we need it by using:

PRINT FRE('"')

rather than PRINT FRE(0). If we replace each occurrence of FRE(0) in
the above routine with FRE('"') then my system returned:

42140
42081
42061
42133

218

This obviously has returned more memory to us through the garbage
collection process. The way to avoid this error, therefore, is to do a
garbage collection at frequent intervals when a lot of string processing
is going on. The result of FRE("") doesn't have to be printed; it can just
as easily be assigned to a variable. One possibility would be to attach
a line such as:

dummy=FRE(" ")

to a routine that is called by an EVERY statement.

Numeric Errors
There are a wide range of errors caused by numeric problems, such
as 'Overflow', 'Divide by Zero', and so on. There isn't much you can do
about these except try to make sure that they don't happen! They are
usually generated by a user typing in some data that is outside the
range expected by the program. This is where data validation comes
in useful. 'Subscript out of range' can also be generated by invalid
inputs.

Other numeric problems, such as 'Operand Missing' or 'Type
Mismatch' are caused by programming errors.

Control Errors
There are several error conditions that can arise when the computer
comes across part of a control structure, such as NEXT or WEND,
when it's not expecting it. Such errors are 'Unexpected NEXT',
'Unexpected WEND', 'Unexpected RESUME', 'WEND Missing', 'NEXT
Missing', and so on. These are commonly caused by programming
errors or injudicious use of the GOTO statement. A useful habit to
cultivate to get rid of some of these errors is to indent nested loops as
you type them in by adding spaces after the line number. For example:

10 FOR J=0 TO 10
20 FOR l=0 TO 5
30 PRINT l*J
40 NEXT I
50 NEXT J

can also be typed in as:

10 FOR J=0 TO 10
20 FORI=0TO5
30 PRINT l*J
40 NEXT I
50 NEXT J

219

which is clearer, although it uses more memory. All lines at the same
level of 'nesting' are indented by the same number of spaces. Missing
NEXTs or WENDs are thus clearly visible. This is another good reason
for putting the control variable after the NEXT:

NEXT I rather than NEXT

because if the control variable isn't the one being used in the
corresponding FOR loop then it's clear that a NEXT is missing, and the
BASIC interpreter will signal this fact with an error.

Finding the Bug
Once an error has been flagged, and the line number obtained, it's
simply a matter of editing the offending line. This is usually easy, but in
multi-statement lines can be a little more difficult. The best solution
here is to put each statement in such a line on a different line then
re-run the program. This will enable you to get the offending
statement.

This assumes that the error is a straightforward one; occasionally
the error could well have occurred in a totally different part of the
program to that in which the error is flagged. In such a case, TRACE
can be useful, though screen fulls of line numbers leading up to the
point at which the problem occurred can be confusing rather than
helpful. Use the TRON and TROFF statements in program lines to turn
the Trace facility on and off at the required places in the program.
Check the values of variables in the offending statement against their
expected values. If all else fails, go through the listing, playing at
being a computer! This can be tedious, but often works.

Of course, the bug could be caused by your logic in designing the
program, rather than the computer's execution of the program. So,
check the algorithm that you used. Go through it with pencil and paper
to see if it returns the correct results with input data that you have
already got answers for. Common problems of this type are as follows.

1. Priority
Expressions passed to the Amstrad are evaluated on a priority basis,
that we've already seen. If you want to get around this in built priority
of arithmetical operations, say to do an addition before a multiplication
is carried out, then the addition must be bracketed. So:

1+a*3 would be written as (1+a)*3

You will soon get used to this, but I tend to put more parentheses in
than are absolutely necessary; it gives me peace of mind!

220

Use of AND and OR
The logical operators often cause problems, mainly because in
spoken English we don't often exhibit the logical precision that the
computer requires! The only solution here is to go through logical
expressions carefully. In addition, remember that they can often be
written in a couple of different ways. So,

IF a=6 AND b=7 THEN GOTO 2300

would require both a=6 and b=7 before line 2300 would be visited.
The same job could be done by:

IF NOT(a<>6 OR b<>7) THEN GOTO 2300

The first version is much more obvious, and it's a good idea to try and
simplify any logical expressions that you use.

Some rather hard to find bugs can be introduced if you are using
AFTER, EVERY or similar interrupt driven routines. It is essential that
you get these working BEFORE you try and debug a program
containing them. I would suggest that these routines be tested by
simply deleting the EVERY or AFTER statement from the program, and
insert, somewhere in the program where it will be regularly executed,
a GOSUB to the routine in question. Bugs can then be sorted out with
you knowing the exact place in the program from where the EVERY
routine was called, and also knowing the state of variables, etc. when
it was called. Two error conditions associated with Interrupt routines
that can catch out the unwary (they caught me out, repeatedly!) are:

1. Variables being used in an EVERY routine that are also used in
the main body of the program. It's clear that you must take a great
deal of care with the variables used in EVERY routines to ensure
that any alteration of variables is either desirable, e.g. changing
the position of something on the screen, or unimportant.

2. Timing. If you call an EVERY routine too frequently, your program
can appear to 'hang up'. This is due to the computer attempting to
service the EVERY routine too quickly. As soon as one execution
of the routine has been completed, the next one is being
requested. The solution here is to speed up the execution of the
EVERY routine or decrease the rate at which it is called!

221

Useful Subroutines
We'll begin with a couple of input routines, which allow users to type
responses in to the computer without using the INPUT or INPUT LINE
statements. You may ask; why bother? Indeed, if no one else uses
your programs then you can probably trust yourself not to type in 'daft'
responses to questions asked by the machine. However, for other
uses, such an input routine will screen out at least some of the
potential errors. Remember that it's easier to prevent errors happening
in a program than to clear them up when they have happened. The
first routine is called TEXTINP.

10 MODE 1
20 le%=10
30 emf%=0
40 xp7o=10:yp%=10
50 g$="abcdefghijklmnopqrstuvwxyz":a$=g$+UPPER$(g$)
60 GOSUB 30000
65 PRINT
70 PRINT s$
80 END
90 :

30000 REM a text input routine
30010 REM for use in programs.
30020 REM xp%, yp% is the position of
30030 REM the first character, a$ contains
30040 REM the acceptable characters, le%
30050 REM the maximum number of characters
30060 REM the string is returned in s$
30065 REM emf%=0 means empty strings not acceptable
30066 REM emf%=1 means empty strings are acceptable
30070 :
30080 IF LEN(a$)<1 THEN ERROR 5
30090 IF le%<1 THEN ERROR 5
30100 :
30110 REM ensure that length and a$ are
30120 REM reasonable values.
30130:
30135 a$=a$+CHR$(13)+CHR$(127)
30140 LOCATE xp%,yp%
30150 s$=""
30160 :
30170 g$=INKEY$:IF g$="" THEN GOTO 30170
30180 flag=0: IF INSTR(a$,g$)=0 THEN SOUND 1,50:GOTO 30170

222

30190 char%=ASC(g$)
30200 IF char%=127 AND s$='"' THEN SOUND 1,50:GOTO 30170
30210 IF char%=127 THEN flag=1
30220 IF emf%=1 THEN IF (char%=13 AND s$='"') THEN RETURN
30230 IF emf%=0 THEN IF (char%=13 AND s$<>"") THEN RETURN
30240 IF flag=o THEN IF LEN(s$)<le% THEN s$=s$+g$:LOCATE

xp%,yp%:PRINT s$; ELSE SOUND 1,50
30250 IF flag=1 THEN

c$=MID$(s$,1 ,(LEN(s$)-1)):s$=c$:c$=LEFT$(c$+STRING$(le%,"
"),le%):LOCATE xp%,yp%:PRINT c$;

30260 GOTO 30170

This routine is simple enough to use; xp% and yp% set the position of
the input in text coordinates. The input will be in the current text pen
colour. 'Ie%' is the maximum number of characters that is to be
accepted, and emf% determines whether or not an 'empty string' is to
be accepted as a response. (Obtained by pressing <ENTER> alone
without any other characters being entered). emf%=0 will NOT accept
such empty strings, while emf%=1 will. 'a$' holds all the characters
that are to be accepted by the routine. In the demonstration part of the
above listing, the routine has been programmed to accept all upper
and lower case letters of the alphabet. In the relevant line of the
program, I originally tried the line:

a$="abcdefghijklmnoqrstuvwxyz"+UPPER$(a$)

but it didn't seem to work. So, I replaced it with:

g$="abcdefghijklmnopqrstuvwxyz":a$=g$+UPPER$(g$)

The string typed in is terminated with the <ENTER> key, as with a
normal INPUT statement. Any character that is not in 'a$' is not
accepted in to the input string, which is in 's$' when the subroutine
returns.

NUMINP
This routine serves a similar function as the above, but is dedicated to
accepting numeric input.

10 MODE 1
20 ma=10:mi=1
40 xp%= 10 :yp%= 10
50 le%=10

223

60 GOSUB 30000
65 PRINT
70 PRINT num
80 END
90 :

30000 REM a number input routine
30010 REM for use in programs.
30020 REM xp%, yp% is the position of
30030 REM the first character, ma is the
30040 REM largest number available and
30050 REM mi is the minimum number acceptable
30060 REM the value is returned in num
30065 REM le% is the max. number of characters
30066 REM acceptable.
30070 :
30080 a$="0123456789.-"
30090 IF macmi THEN ERROR 5
30100 :
30110 REM ensure that length and a$ are
30120 REM reasonable values.
30130 :
30135 a$=a$+CHR$(13)+CHR$(127)
30140 LOCATE xp%,yp%
30150 s$=""
30160 :
30170 g$=INKEY$:IF g$="" THEN GOTO 30170
30180 flag=O: IF INSTR(a$,g$)=0 THEN SOUND 1,50:GOTO 30170
30190 char%=ASC(g$)
30200 IF char%=127 AND s$="" THEN SOUND 1,50:GOTO 30170
30205 IF char%=127 AND s$<>"" THEN flag=1
30210 IF (char%=13 AND s$='"') THEN GOTO 30170
30220 IF char%=13 AND VAL(s$+".0")>=mi THEN

num=VAL(s$):RETURN
30225 IF char%=13 AND VAL(s$+".0")<mi THEN
s$="":LOCATE xp%,yp%:PRINT STRING$(le%,” ");:SOUND
1,50:GOTO 30170

30240 IF flag=O AND (VAL(s$+g$+".0")<=ma AND LEN(s$)<le%)
THEN s$=s$+g$:LOCATE xp%,yp%:PRINT s$; ELSE SOUND
1,50

30250 IF flag=1 THEN
c$=MID$(s$,1 ,(LEN(s$)-1)):s$=c$:c$=LEFT$(c$+STRING$
(le%," "),le%):LOCATE xp%,yp%:PRINT c$;

30260 GOTO 30170

224

20351 FOR row%=1 TO 8
20352 l%(row7o)=VAL("&X"+b$(row%))
20354 NEXT
20360 RETURN
20370 :
20400 REM sideways routine 2
20405 FOR g7o=1 TO 8:b$(g7o)="":NEXT
20410 FOR row7o=1 TO 8
20420 c$=BIN$((PEEK(35999+row7o)),8)
20520 FOR column7o=8 TO 1 STEP -1
20530 b$(column7o)=b$(column7o)+MID$(c$,column7o,1)
20540 NEXT:NEXT:d7o=8
20550 FOR row7o=1 TO 8
20560 l7o(row7o)=VAL("&X"+b$(d7o)):d7o=d7o-1
20570 NEXT
20580 RETURN

xp7o,yp7o and Ie7o have the same function as they did in TEXTINP.
'mi' is the minimum value that will be accepted, and 'ma' is the
maximum value that will be accepted. Integers and numbers
containing decimal points will be accepted, as will negative numbers.

A digit will NOT be accepted if accepting that digit would take the
value of the number over 'ma'. On pressing <ENTER>, the number is
checked to see if it is greater than or equal to 'mi'. If it isn't, then the
user is prompted to type in another number. The number will be
returned in the variable 'num', and the string of characters that
generate it will be returned in 's$'.

There are a variety of alterations that can be made to these two
simple routines. For example, the 'box' drawing subroutines seen
previously could be used to put a box around the area of the screen in
which the input is to be made. In addition, the double height
subroutine could be incorporated into the above routines to give input
routines that print the inputted characters larger than usual.

Sort Routines
Once data is in the computer, stored in arrays, etc. it's often useful to
be able to sort it into some sort of order; numeric or alphabetic,
depending upon whether you're dealing with numbers or strings.
Locomotive BASIC already includes commands to obtain the largest
and smallest numbers in a list; here we'll see a simple routine to sort
arrays into order. The programs will sort integer arrays, but it is an
easy job to get them to sort string or real arrays simply by altering the
type of arrays used in the subroutines. Subroutines to perform sort

225

operations in BASIC have one disadvantage, though; they are often
fairly slow. However, machine code routines can easily be written to
sort string and integer arrays into the correct order fairly quickly using
the information presented in Chapters 1 and 2 of this book.

The Bubble Sort
There are a variety of sort routines available. This is one that is
reasonably efficient in most circumstances for smallish quantities of
data. The order into which the data is sorted depends on the operator
in line 20090 of 'BUBSORT':

> sorts the numbers into descending order.
< sorts the numbers into ascending order.

10 REM Bubble Sort Demonstration
20 REM Joe Pritchard, Nov. 1985
30 :
31 MODE 2
32 PRINT "Raw Data":t=TIME
35 num%=10
40 GOSUB 1000
50 GOSUB 20000
60 GOSUB 2000
70 END
80 :

1000 REM initialise array with random
1010 REM numbers and list them out
1020 DIM a%(30)
1030 FOR i=1 TO num%
1040 a%(i)=RND*100
1050 PRINT a%(i)
1060 NEXTi
1070 RETURN
1080 :
2000 REM print out sorted array
2005 PRINT "Sorted Data ",TIME-t
2010 FOR i=1 TO num%
2020 PRINT a%(i)
2030 NEXT
2040 RETURN
2050 :

20000 REM sort routine
20010 REM a%() holds an array of numbers

226

20020 REM to be sorted out into order
20030 REM uses Bubble Sort algorithm
20040 REM enter routine with num%
20050 REM holding number or entries
20060 :
20070 i%=0
20075 REM replaces outer loop
20080 FOR j%=2 TO num%
20090,IFa%(j%)<a%(j%-1)THEN

temp%=a%(j%-1):a%(j%-1)=a%(j%):a%(j%)=temp%:i%=j%-1
20100 NEXTj%
20110 IF i%>1 THEN GOTO 20070
20120 RETURN

The operation of this routine is fairly simple. Repeated comparisons
are made of each item in the array with the item following it. This is
done by the inner of the two FOR...NEXT loops. This will result in each
pair of items being sorted into the correct order. This is then repeated
num%-1 times by the outer FOR...NEXT loop, where num% is the
number of items to be sorted in the array.

This will eventually sort ALL the items in to the correct order. As it
stands, this isn't very efficient, as the outer loop will repeat num%-1
times even if the items in the array have been already sorted by earlier
passes. A 'flag' can be introduced into the program to detect this
occurrence, and this makes the program more efficient in some
circumstances, thus making it take less time. This modification has
been added to the program 'BUBSORT2'.

10 REM Bubble Sort Demonstration
20 REM Joe Pritchard, Nov. 1985
30 :
31 MODE 2
32 PRINT "Raw Data":t=TIME
35 num%=10
40 GOSUB 1000
50 GOSUB 20000
60 GOSUB 2000
70 END
80 :

1000 REM initialise array with random
1010 REM numbers and list them out
1020 DIM a%(30)
1030 FOR i=1 TO num%
1040 a%(i)=RND*100

227

1050 PRINT a%(i)
1060 NEXTi
1070 RETURN
1080 :
2000 REM print out sorted array
2005 PRINT "Sorted Data ",TIME-t
2010 FOR i=1 TO num%
2020 PRINT a%(i)
2030 NEXT
2040 RETURN
2050 :

20000 REM sort routine
20010 REM a%() holds an array of numbers
20020 REM to be sorted out into order
20030 REM uses Bubble Sort algorithm
20040 REM enter routine with num%
20050 REM holding number or entries
20060 :
20070 i%=0
20075 REM replaces outer loop
20080 FOR j%=2 TO num%
20090, IFa%(j%)<a%(j%-1)THEN

temp7o=a%(j%-1):a%(j0/o-1)=a%(j%):a%(j0/o)=temp%:i%=j%-1
20100 NEXTj%
20110 IF i%>1 THEN GOTO 20070
20120 RETURN

Here we dispense with the outer FOR...NEXT loop and the number of
times that the outer loop is executed is determined by the state of the
data.

The time taken to execute a Bubble sort of either of the above
types depends upon the state of the 'raw' data presented to the
routine and the number of elements to be sorted. For BUBSORT time
is proportional to num%*num% where num% is the number of items in
the array. If the data is already partially sorted, then BUBSORT2 will
take less time than BUBSORT.

You may ask why we bother sorting data in this fashion. One
reason is when we are searching through a table of data, say names,
to find a particular piece of information. Say we wish to find the name
'Pritchard' in a string array. There are a few approaches.

Linear Search
The Linear Search is very simple, very crude, and can be slow. The
data being searched is not sorted into order, and we start at array

228

element 1 and work through to the end of the string array. This can
take a long time if the 'Pritchard' entry is at the end of the array, or if it's
not in at all!

Alphabetical Search
Here, the array is first sorted into alphabetical order. We then search
from element 1 until the first element whose first letter is 'greater than'
'P'. If we haven't found 'Pritchard' by this time he's not in the list. This
will speed up the search time in many instances.

Binary Chop
No, not a new form of martial art ("Way of the Exploding Binary
Chop"?) but a technique which uses a sorted list of data.

Say we have 100 items, sorted into alphabetical order. We
examine item 50. If this is 'less than' 'Pritchard', then we know, due to
the data being sorted, that 'Pritchard' cannot be in the first 50 entries.
We now look at item 75. Again, if it's less than 'Pritchard' we know that
'Pritchard', if present, must be in the last twenty five entries. We carry
on in this fashion until we have only a few entries to examine, or we're
sure that 'Pritchard' isn't in the list. We can then examine the
remaining entries in turn until we find 'Pritchard'. This technique cuts
down the number of comparisons we have to make and hence
speeds up the process.

If we have a simple database in which data is stored in several
arrays, say name and address in one array and telephone number in
another, then when we sort the data into order we must sort EACH
array into order using ONE array as the one to be sorted. We say that
we are sorting on a particular array. For example:

Names Age
Joe 24
Fred 32
Neil 47
Billy 2

sorted on 'Age' we'd get:

Billy 2
Joe 24
Fred 32
Neil 47

229

but sorted on 'Name' we might get:

Billy 2
Fred 32
Joe 24
Neil 47

Failure to sort all the arrays into order on the same field can lead to a
phenomenon known in the computer trade as a 'mess'!

The whole business of manipulating data in this way is a vast
subject. We'll leave it there.

I’d like to finish this Chapter, and the book, with brief looks at the
aspects of the Amstrad 464 system that I haven't looked at yet; the
cassette and keyboard.

The Keyboard
Let's begin with a look at the Firmware routines that we can use
directly from BASIC by simply CALLing the address given here.

CALL &BB18.

I have used this in some of the BASIC routines listed in this book, and
it simply causes the machine to wait until a key is pressed. The user
gets no indication of what the key was that was pressed, but it is a
useful call.

CALL &BB00.

This call is of less use but is still a handy call to know. It is the Key
Manager Initialise routine, which resets the Key Manager part of the
Firmware. This is the section of the Firmware that looks after the
keyboard. For the BASIC programmer the implications are as follows.

i/ Key Expansions are set back to their default values.
ii/ Key translations are set back to their 'turn on' values.
iii/ Repeat Speed and the keys that can Repeat are set back to their

initial values.
iv/ Shift and Caps lock are turned off, and the Break Event is

disarmed.

230

The call thus offers a quick way of clearing the keyboard.
The other Key Manager routines are not useful from BASIC, as

they need setting up with parameters in the Z-80 registers before they
can be useful. The behaviour of the keyboard can, however, be
modified by BASIC commands. I will give a quick review of these
here.

Key Repeat
Basic commands allow us to alter the rate of key repeat AND the keys
that are allowed to repeat. Starting with repeat rate, the SPEED KEY
command is used as following:

SPEED KEY delay,rate

'delay' specifies the delay in fiftieths of a second before key repeat
starts and 'speed' specifies the time between each subsequent
repeat, again in fiftieths of a second. The default values are 30 and 2
respectively. When programming, it's a good idea to have some
means of returning the keyboard repeat parameters back to their
normal values for when you wish to edit the program. Typing in
anything can be impossible with parameters of, for example, 1,2! I
usually have a function key programmed with the appropriate SPEED
KEY command when developing a program, but in a running program
I usually have the following pieces of code in the program.

1. Any ON ERROR trap set up contains a SPEED KEY command to
set the repeat rates appropriately in case the user has to type in
some information before normal program execution is resumed.
Before going back to the main part of the program, the key repeat
rate can be set to the value required by the rest of the program.

2. An option to leave the program should leave the machine with the
keyboard repeat rates set to their default value.

In programs to be used by non-computer programmers, fingers tend to
be left on keys for a long time; this can cause unwanted repeats. The
way around this is twofold;

1. Turn off the repeat on some keys altogether, as is done by the
Firmware with the ENTER key.

2. Make the 'delay' parameter in the above as long as possible, so
that repeats are only given when the user deliberately holds the
key down for a length of time.

231

Note that all keys able to repeat repeat at the same rate.

To turn off the repeat facility for a given key we use the KEY DEF
command:

KEY DEF number,repeat

where 'number' is the Key Number of the key in question. This is NOT
the ASCII code returned by the key; it is the 'reference number' used
by the hardware for a particular key. The key number for a given key
can be found in the Manual for 464/664 users and on the computer
itself for 6128 users. A 'repeat' parameter of 0 turns off the repeat for
that key, and a '1' turns it on.

This can be particularly useful for programs in which several
screens of text are to be viewed by the user pressing the space bar,
etc. to go on to the next page. Here, turn off the repeat on the Space
bar to prevent the user 'running through' all the screens by
inadvertently leaving his finger on the key!

KEY DEF
This is a very useful command indeed. It allows us to alter the ASCII
code returned by a particular key when that key is pressed. We've
already used the simplest form of it to control whether or not a key
repeats. The full syntax is:

KEY DEF number,repeat,normal, shift,Ctrl

where 'normal' is the ASCII code to be returned when the key is
pressed on its own, 'shift' when shift is pressed and 'Ctrl' when the
control key is pressed at the same time as the key. Try the below line
to see it in action:

KEY DEF 47,1,32,65,66

which programs the space bar (key number 47), to return 32 when
pressed alone, ASCII code 65 ('A') when pressed with shift and 66
('B') when pressed with control. The letters entered by pressing
SHIFT-SPACE or CTRL-SPACE are received by the computer as if
they'd come from the A or B keys. This command makes data
validation a little easier; we can program all the keys to return, say,
their upper case values no matter what the SHIFT,CAPS-LOCK or
CTRL status is at the time.

232

In addition, the command is useful in games programming, where
we use the keyboard to control the game. Usually we have to use one
key for each direction. Say we had a simple 'invaders' style game. We
might consider using 'Z' to move left, 'X' to move right and 'space' to
fire. Well, this works but we occasionally lose our fingering on the keys
and are zapped while we get back to the correct keys. However, with
KEY DEF, you could define all the keys on the left hand side of the
keyboard to return the ASCII code for 'Z' and all those on the right
hand side to return the ASCII code for 'X'. Apart from increasing your
high score, it spreads the wear and tear across more keys on the
keyboard! The ASCII codes given to keys using the KEY DEF
command can be the codes for Expansion Tokens, in the range 128 to
159, thus allowing normal keys, say CTRL-A onwards, to return strings
that have been programmed into the 'function keys'.

The final keyboard interrogation command we'll examine is
INKEY. In this book we've used INKEY$. Whereas that command
returned the character associated with a given key, the INKEY
command uses Key Numbers, and tells us whether a particular key is
pressed or not. It is thus of use in games, or while waiting for a key to
be pressed. The syntax is:

INKEY(number)

where the value of 'number' is the Key Number of interest.

Thus if we were interested in the status of the Space Bar we would
use 47 as the value of number, as this is the Key Number for the
space bar. The value returned by this function depends upon the
status of Shift and CTRL as well as whether or not the key in question
is pressed. If the key in question isn't pressed then a value of -1 is
returned, irrespective of the status of Shift and CTRL. Thus, to wait for
the Space Bar to be pressed we could have:

1000 key=INKEY(47)
1010 IF key=-1 THEN GOTO 1000

If neither Shift or CTRL is pressed then a value of 0 will be returned.
CTRL pressed will set bit 7 of the value returned to 1 and Shift will set
bit 5 to 1 if pressed. If both are pressed, both bits will be set to 1.

One potential problem with this call is that the key pressed is NOT
removed from the keyboard buffer, and is still there, waiting for an
INPUT or INKEY$ to remove it. The safest policy here is to get rid of
the key press before going further. One method, which can be used on

233

any Amstrad, is add the following line to the above routine:
1020 a$=INKEY$

This will set a$ to hold, in this case,"" when the space bar is pressed.
On systems using Locomotive BASIC 1.1, line 1020 can be replaced
with:

1020 CLEAR INPUT

This will flush the character from the input buffer. Note that INKEY
looks at the keyboard every fiftieth of a second.

The Cassette System
There isn't much we can do with the Cassette system from BASIC
except use it; I gave some useful machine code routines to make use
of the cassette interface in my book 'Ready Made Machine Language
Routines for your Amstrad', also published by Melbourne House.
Again, let's begin with an examination of the Firmware routines that
we can CALL directly from BASIC.

CALL &BC65
This resets the Cassette Manager portion of the Firmware, closes files
and sets up the default rate for tape write operations.

CALL &BC6E
This closes the Cassette Motor Control Relay, and will hence cause
the cassette motor to start if PLAY or RECORD are pressed.

CALL &BC71
This opens the Cassette Motor Control Relay and so stops the
cassette motor if it's running.

CALL &BC7D
This aborts any cassette read operation in progress. A call to &BC92
does the same job for any write operation in progress.

Apart from the BASIC save and load commands, the only
command that alters the status of the cassette system is the SPEED
WRITE command, which sets the speed at which data is written to
tape.

SPEED WRITE 0

234

is the default rate of 1000 baud and is generally more reliable.

SPEED WRITE 1

will send data out at 2000 baud. Faster, but on the whole less reliable.
In practice, I find that both baud rates work fine but it's more important
to keep your tape drive clean for the higher baud rate. 6128 or 664
users may be best advised to keep to 1000 baud due to the fact that
the tape recorders used with these machines may not be as good at
the job as the integral one built in to the 464.

The software for reading automatically determines the write rate
used on the file being read in from the File Header Leader tone. A
cassette operation can generate error messages where appropriate.
'Read Error a' or 'Read Error b' are generated w'hen the machine has
difficulty reading data from the cassette tape. This can be caused by
dirty tape heads or pinch roller in any system, or by not setting the
volume and tone controls of an external tape recorder properly for 664
or 6128 systems. In addition, problems can be experienced by loading
a tape recorded on one tape recorder into a machine using another
tape recorder. This problem isn't important between different 464
computers as for all intents and purposes the recorders are identical. It
is more likely to cause problems on 664/6128 systems or 464
machines running tapes recorded using different recorders. There’s
not much you can do here, but follow the below simple rules for
saving and loading. Apart from the ’cleanliness' rules, they aren't
necessary for 464 systems.

Cleanliness
Clean the recording heads in the tape recorder fairly frequently, using
cotton buds and a tape head cleaning solution. This is usually based
on Ethanol or Propanol, with a touch of detergent in it. Under NO
circumstances should any water based cleaning solution be used. As
soon as a cotton bud shows any sign of discolouration, it should be
discarded.

Finish off the cleaning operation with a clean, dry cotton bud.
Metal items, such as screwdrivers, should NEVER be used to clean
tape heads.

In addition to the heads the 'Pinch Roller' should be cleaned. This
is the rubber roller to one side of the cassette drive. This is best
cleaned with one of the 'cleaning tapes' that has a series of felt pads
which can be soaked in tape head cleaner. This 'tape' is then put in
the drive and PLAY and RECORD are pressed. This causes the felt
pads to 'brush' at the heads and Pinch Roller, thus removing the dirt. A

235

dirty pinch roller is particularly nasty; apart from causing variations in
tape speed which can cause read errors, a really dirty one can crease
the tape and so permanently damage it. This can be rather
unpleasant, given the cost of software which, on the whole, cannot be
backed up.

There are two other ways in which the performance of your cassette
drive can be 'perked up'. The first is to have it 'aligned'. This is simply
a procedure which maximises the signal that the tape head reads from
the tape. You can get commercial kits which include instructions on
how to do this. The second thing to consider might be the
demagnetisation of the heads. You can get devices to do this.
However, it should be considered only after you've done everything
else. The tape heads can become permanently magnetised due to the
magnetic tapes being moved past them.

This is a very slow process, however, and tape problems are more
likely to be due to dirt.

External Recorders
The 664 and 6128 machines require that an external tape recorder be
used when tape programs are to be run. This leads to a whole host of
potential problems.

Positioning.The recorder shouldn't be too close to any source of
magnetic fields.

Tape Lead.The lead shouldn't run parallel to any mains leads, under
monitors, etc. or anywhere near magnetic or electric fields.

Batteries or Mains.If you MUST use batteries, then 'High Power'
batteries are essential. If possible, get alkaline batteries, as these will
provide longer life with less fluctuation in tape speed as the batteries
fail. This is the main problem with batteries; as they fail, the speed of
the tape varies. This leads to the pitch of the recorded tones that
represent the program information varying, and thus the computer
may not recognise the signals as data.

Battery recorders can be useful if you've got 'dirty' mains; that is, a
source of mains electricity that has electrical noise on it, from things
like electric drills, thermostats, central heating pumps, people
switching things on and off,etc. Most houses experience this problem
occasionally, but in some houses it seems to be a constant problem.
However, it's only in extreme cases that batteries should be
considered; the tape system can usually handle a little noise.

236

RFI. This stands for Radio Frequency Interference, and I mention it
here 'cos I once had it from a CB transmitter nearby. Radio signals
turn up in the tape system, and if strong enough can cause loss of
data.

Volume and Tone Control Settings
These are the most common cause of data loss. The volume must be
high enough for the computer to 'hear', but if too high can cause
distortion. This will then lead the computer to 'mishear' the tones
representing data.

The Tone control should be set at about three quarters to full,
giving a clear sound.

The settings for your machine will have to be found by trial and
error.

Another error, 'Read Error d', is possible but would require that the
data written to the tape has been written incorrectly. Error d indicates a
'Block too long' error. Even if you can read the tape data in, there are
still potential problems to deal with. The following are those that have
given me the most 'fun' while programming the Amstrad.

Memory Full
This error message is occasionally generated when an attempt is
made to load in a binary file with HIMEM set to a value HER than the
start address of the binary file. The solution to this is to set HIMEN to
an appropriate value before trying to load the byte file in. It is NOT
usually possible to load a binary file representing a machine code
program to a different address as the subroutine calls, absolute jumps
etc, within the machine code with be incorrect for the new address.

SYMBOL AFTER
This command cannot be used whilst a file is opened (file opened by
OPENOUT or OPENIN) unless a previous SYMBOL AFTER 256 had
been issued. This is due to the fact that the act of opening a file to
tape sets up a 2k buffer. SYMBOL AFTER needs a continuous block
of memory around HIMEM for subsequent character definitions, and
with the file buffer in the way it cannot do this. The error 'Improper
Argument' is returned.

Other Problems
With large programs, or with programs that have brought HIMEM
down to a few thousand or so, any attempt to open a file will produce
the 'Memory Full' message; there isn't enough room for the Firmware
to set the 2k buffer up.

237

Once a tape operation has started the only way out before it's
finished is to use Escape. Escape is checked for directly; the key press
is not put in to the keyboard buffer. The practical result of this is that
you occasionally have to hold the Escape key down for a length of
time, until the keyboard is scanned again.

238

Appendix 1
ROM Routines Used

The BASIC ROM routines are not publicised in any way by Amsoft, as
they do not wish to encourage the development of software which may
not run on all machines that they manufacture. However, in this book I
have used two BASIC ROM routines. The addresses of the routine in
BASIC 1.0 and BASIC 1.1 are shown below.

Error Entry Point:
BASIC 1.0 &CA93
BASIC 1.1 &CB55

Break Event Handler:
BASIC 1.0 &C45E
BASIC 1.1 &C492

These routines are used in Chapter 2, and so users of BASIC version
1.1 should use the address given above rather than the one in the
program listings in Chapter 2.

239

240

Appendix 2
BASIC Tokens

This information should be used in conjunction with that from Chapter
1, and is useful if you wish to examine the structure of a BASIC
program.

&00 ABS &01 ASC &02 ATN
&03 CHR$ &04 CINT &05 COS
&06 CREAL &07 EXP &08 FIX
&09 FRE &0A INKEY &0B INP
&0C INT &0D JOY &0E LEN
&0F LOG &10 LOG10 &11 LOWERS
&12 PEEK &13 REMAIN &14 SGN
&15 SIN &16 SPACES &17 SP
&18 SQR &19 STR$ &1A TAN
&1B UNT &1C UPPERS &1D VAL
&1E - &40 EOF &41 ERR
&42 HIMEM &43 INKEYS &44 PI
&45 RND &46 TIME &47 XPOS
&48 YPOX &71 BINS &72 DECS
&73 HEX$ &74 INSTR &75 LEFTS
&76 MAX &77 MIN &78 POS
&79 RIGHTS &7A ROUND &7B STRINGS
&7C TEST &7D TESTR &7E -
&7F VPOS &80 AFTER &81 AUTO
&82 BORDER &83 CALL &84 CAT
&85 CHAIN &86 CLEAR &87 CLG
&88 CLOSEIN &89 CLOSEOUT &8A CLS
&8B CONT &8C DATA &8D DEF
&8E DEFINT &8F DEFREAL &90 DEFSTR
&91 DEG &92 DELETE &93 DIM
&94 DRAW &95 DRAWR &96 EDIT

241

&97 ELSE &98 END &99 ENT
&9A ENV &9B ERASE &9C ERROR
&9D EVERY &9E FOR &9F GOSUB
&A0 GOTO &A1 IF &A2 INC
&A3 INPUT &A4 KEY &A5 LET
&A6 LINE &A7 LIST &A8 LOAD
&A9 LOCATE &AA MEMORY &AB MERGE
&AC MID$ &AD MODE &AE MOVE
&AF MOVER &B0 NEXT &B1 NEW
&B2 ON &B3 ON BREAK &B4 0 N ERROR GOTO
&B5 ON SQ &B6 OPENIN &B7 OPENOUT
&B8 ORIGIN &B9 OUT &BA PAPER
&BB PEN &BC PLOT &BD PLOTR
&BE POKE &BF PRINT &C0 -
&C1 RAD &C2 RANDOMISE &C3 READ
&C4 RELEASE &C5 REM &C6 RENUM
&C7 RESTORE &C8 RESUME &C9 RETURN
&CA RUN &CB SAVE &CC SOUND
&CD SPEED &CE STOP &CF SYMBOL
&D0 TAG &D1 TAGOFF &D2 TROFF
&D3 TRON &D4 WAIT &D5 WEND
&D6 WHILE &D7 WIDTH &D8 WINDOW
&D9 WRITE &DA ZONE &DB DI
&DC El &E3 ERL &E4 FN
&E5 SPC &E6 STEP &E7 SWAP
&EA TAB &EB THEN &EC TO
&ED USING &EF = &F1 <
&F4 + &F5 MINUS &F6

*

&F7 / &F8 &F9 DIV
&FA AND &FB MOD &FC OR
&FD XOR &FE NOT

In addition, the Version 1.1 BASIC will probably have additional
tokens for the extra commands that are added to the BASIC.

242

Index

A
After..199-200
||AMPLITUDE................................... 160
Animation..................................... 49-55

B
BASIC................................... 111 et seq
Boxes... 21-23
Break, effect on After......................200
UBRKOFF... 159
HBRKON...159

C
Cassette use........................... 234-238
i|CAT...159
Channel Synchronisation............ 99-81
Circles...32-34
Copying Screen Sections............46-49
||CRTC.. 159
CRTC..179
CRTC Registers....................... 184-189
Curves.. 35-38

D
Debugging Programs................ 217-22
DI..200
Double Width Characters................. 7-8
DRAW program.............................68-71
||DUMP... 161

E
Echo...95
El..200
Ellipses...34-35

Envelopes.................................... 86-94
Errors in m/c programs................164-66
Eval... 120-129
Event Blocks............................ 166-168
EVERY..201-2

F
Filling in... 38-46
||FIND.. 160
Flush...82
Frame Flyback.................................. 183

G
||GET... 159
Glissando...99
Graphics.....................................1 et seq
Graphics Screen...........................19-23

I
IF. . .THEN....................................... 120
||INK.. 160
Ink Modes....................................... 51-3
Input to Program........................ 215-16
Interlace.. 182-3

J
Jumpblocks.............................. 161-164

K
Keyboard use.......................... 230-234

L
Large Characters..................................6
Line Length.................................. 111-2

243

Line Number'...............................111-2
IILLIST.. 160

M
Machine Code and BASIC.......161-178
Machine Code Loader............. 174-178
Mode 0... 52
Mode 1... 52
Mode 2... 52
Modulation... 94
IIMOTOR...159
Musical Instruments......................96-98
Multicolour Characters....................... 17

N
NUMINP program..................... 223-225

0
ON ERROR................................ 216-17
ON KEY.....................................169-173
ON SQ..84

P
Pallette Switching.........................55-68
Patching Jumpblocks.................161-62
||PAUSE... 159
Pie Charts..................................... 74-76
Plane Graphics................................... 39
PLAY program..........................104-108
Polygons...................................... 30-32
PRINT..119-20
Program Design.......................209-216
Program Size....................................139
Program Speed..........................137-39
Program Storage........................111-12
Program Structure........................... 217
Program Style.............................209-16
Programmable Sound

Generator...............................99-100
PSG Registers.............................. 100-5
Proportional Spacing........................3-4

Q
Queues...82-5

R
REMAIN..200
||RESET...158-9
Resolution...1-2
RHYTHM program.......................108-10
HROMREAD......................................161
RSX routines.................................... 141

S
Screen Addresses....................... 192-4

Screen Columns.......................... 192-4
Screen Memory..........................189-91
Screen Rows................................192-4
USEARCH.. 160
Shadow effects................................ 4-6
Sort routines.............................. 225-28
||SOUND...159
SOUND command.............................77
USPLITOFF...................................163-4
USPLITON.....................................163-4
Sprites.. 62-8
SQ..82
Statement Storage..........................112
HSYMBOL.. 159
SYMBOL.......................................12-16
Sync Pulses.....................................182

T
TEXTINP program...................... 222-23
Text Printing................................... 2-17
||TONE..160
Transformations......................... 232-38
Two Dimensional Graphics................ 18

U
Upside Down Characters...................10
User Defined Characters..............12-13

V
Variable Assignments

Numeric..................................114-18
String......................................118-19

Variable Size Characters................ 9-10
Variable Structure...................... 129-37
Vibrato.. 98-9

W
Waveform.......................................93-4

X
XOR graphics.................................52-5

244

NOTES

NOTES

NOTES

NOTES

Do you want to get just that little bit more out of the
Amstrad BASIC interpreter? Joe Pritchard’s latest book
is an excellent collection of hints, tricks and routines
that every Amstrad owner will want to read.

Locomotive BASIC is a powerful programming tool, and
Joe Pritchard shows how to get the best out of it, as well
as an introduction to expanding its capabilities with
commands of your own.

Chapters covering graphics and animation, sound
design and playback, and the way your BASIC program
looks to the machine will enhance your programming
style. RSX routines and short machine-code routine will
expand the capabilities of your machine and make
programming in BASIC more simple.

A detailed look at the screen is also provided, so you
will be able to take complete screen control.

In short, this book is a must for any Amstrad CPC
owner.

£12.95

Melbourne ISBN D-flblbl-5DE-7
House
Publishers 9 780861 612024

________ J

>

z
om□
>
C/>

3
>□

o
o0
■■■
o

Q
Q.

	AMSTRAD ADVANCED BASIC

	Contents

	Introduction

	Chapter 1 - Graphics and Animation
	Chapter 2 - Sounding Out
	Chapter 3 - Getting down to BASICS
	Chapter 4 - RSX Routines
	Chapter 5 - The CRTC and Screen Memory
	Chapter 6 - AFTER and EVERY
	Chapter 7 - Some Hints on Programming
	Appendix 1 - ROM Routines Used
	Appendix 2 - BASIC Tokens
	Index

	● Numérisation : Maxime CROIZER | Mise en forme : ACME – https://acpc.me ●

