

M U SIC & SO U N D
O N YO UR AM STRAD

C P C 4 6 4

Ian Sinclair

MELBOURNE HOUSE
PUBLISHERS

© 1985 Ian Sinclair

All rights reserved. This book is copyright and no part may
be copied or stored by electromagnetic, electronic,
photographic, mechanical or any other means whatsoever
except as provided by national law. All enquiries should be
addressed to the publishers:

IN THE UNITED KINGDOM -
Melbourne House (Publishers) Ltd
Castle Yard House
Castle Yard
Richmond, TW10 6TF

IN AUSTRALIA —
Melbourne House (Australia) Pty Ltd
2nd Floor, 70 Park Street
South Melbourne, Victoria 3205

ISBN 0 86161 192 6

Printed and bound in Great Britain by Short Run Press Ltd, Exeter

Edition 7 6 5 4 3 2 1
Printing F E D C B A 9 8 7 6 5 4 3 2 1
Year 90 89 88 87 86 85

Contents

CHAPTER 1 — SOUND SENSE 1
The shape of the w a v e ... 5

The language of so un d 7
Stereo e ffect.. 11
Sound snags.. 15

CHAPTER 2 -M USIC HATH CHARMS 17
Naming notes and writing m u s ic .. 22

CHAPTER 3 — THE AMSTRAD SOUND 35
The BASIC beep... 38
Superior SOUND... 38
Timing the note .. 42
Make thy musick... 43
Formula M u s ic ... 49

CHAPTER 4 — HARMONY AND STEREO 55
Synchronisation... 65
How to synchronise.. 70
Stereo S ound ... 71
Rolling your own 75
The program action.. 80
Harmoniser... 8 1

CHAPTER 5 — WAVEFORMS AND EVELOPES 83
Hardware envelopes... 87
An absolute envelope .. 93
An evelopes program .. 102
Pitch Envelopes ... 106

CHAPTER 6 - USING NOISE 111
Pitch envelope effects... 118
The whole caboodle! ... 123

CHAPTER 7 - LOOSE ENDS 127
The PSG registers... 134
The enable register 135
The sound routines... 138

APPENDIX A — MUSICAL TERMS 145
APPENDIX B-MUSICAL INSTRUMENTS 149
APPENDIX C — CONNECTING TO OTHER UNITS 151

P re fa c e

One of the most enjoyable developments In computing in the 80’s has been the
ability of the computer to produce sound. This started as a weak squeak,
developed to a mellow bellow, and now allows what we might call a strange
range. Modern computers can play all the notes of a very extended musical
scale, and many have the ability to carry out a limited amount of sound synthesis.
This allows some imitation of other instruments, but more importantly, it permits a
vast range of sound effects to be generated. The Amstrad CPC464 and CPC664
machines are rightly renowned for the possibilities that they offer to any program
mer who wants to create sound effects, and this book is dedicated to the user
who wants to make a start with this fascinating branch of computing with the
Amstrad machines.

One of the problems with programming for sound is that the computer owner
may not know much about sound, less about musical notation, and nothing at all
about sound effects. If that reads like a description of you, then this is your
guidebook. Whatever you want to do, a quick snatch of tune to liven up a game,
a long piece of music in three-part harmony, or sound effects for a Space Adven
ture, you’ll find all the hints and tips here. In addition, you’ll find a detailed
description of what sound is, how the computer can produce sound, and how
you can control it. All I have assumed is that you have had a little experience of
programming your Amstrad machine in BASIC, so that you know how to write
program lines. Since few of us can compose music well, I’ve included lots of
detail on how to read sheet music and convert these strange-looking dots into
numbers that the computer can use. All this has been written from the point of
view of a computer owner rather than that of a music student, though by the time
you have finished, you'll certainly know more about music than most people. I
have put in a very short section for the machine-code programmer, assuming
that anyone who wants to program for sound in this way will already know quite a
lot about machine code, and needs only a few hints and tips on the techniques of
using the sound routines.

I hope that, whatever your interests in computing for sound, you will find this
book a good introduction and a useful source of programs and information. I
have included Appendices on musical terms, the pitch ranges of instruments,
and how to connect the CPC464 and CPC664 to amplifiers and to tape recorders
in order to obtain better quality sound. Since a large number of computer owners
are also Hi-Fi enthusiasts, this information should be very useful and is not easy to
dig out anywhere else.

Finally, I must thank all at Melbourne House, who saw the potential of this book,
and encouraged me in the writing of it. I specially want to thank Alan Giles, who
intially reacted favourably to the title, commissioned the book, and who has
edited my manuscript into the form that you now see before you.

Ian Sinclair, June '85

1
S o u n d s e n s e
Have you ever thought how different sound is as compared to
other computer actions? For example, if you have programmed
in BASIC for some time, you can look at a program for your
CPC464 and have a good idea of what it does. Even if graphics
instructions are used, if you have used the graphics of the
machine to any extent you can always make a good guess about
what you'll see on the screen when the program runs. Sound is
very different. Even after a lot of experience, it’s still difficult to
look at a sound program and be able to say what kind of sound
you expect. Part of the problem is that we can’t describe sounds
easily. You can draw on a piece of paper what a graphics pro
gram might produce, and you can say what an accounts program
will print on to paper, but you can’t mimic the sound that you’ll
hear when a sound program runs. Sound is different, and to
master sound programming on the CPC464 you have to under
stand sound itself as well as have a reasonable knowledge of
programming in BASIC. Your reward for all this effort is the ability
to enrich your programs (or any other programs in BASIC) with
a vast range of sound effects or musical phrases. If you go on
to program your CPC464 in machine code, then what you have
learned about sound programming in this book will still be useful
to you — the programming details may be different, but the
principles are exactly the same, and Chapter 7 contains a special
section devoted to the subject of machine coded sound.

Most of the sound that we hear comes to us through the air, so
we’ll concentrate on that. Air is an elastic material, which means
that its volume can be changed by squeezing it. When you block

1

Waves o f compressed air moving
out in all directions

Figure 1.1 How a wave of sound can be formed. Anything that makes air move
will also compress it, and the wave of compression moves outwards as a sound

wave.

2

the outlet of a bicycle pump and push the plunger down, for
example, you are squeezing (or c o m p r e s s i n g) the air, and its
volume is less; it takes up less space in the pump. A vacuum
pump works the other way round, using a plunger that pulls at
the air and increases its volume so that it takes up more space.
You don't even need to have the air inside a pump to be able
to push and pull at it like this. Suppose you compressed some
air in a pump, and then released the end? The air in the pump
rushes out, and the only way it can get room outside the pump
is by compressing the air outside. This lot in turn compresses
the air next to it, so that if you could see compressed air, you
would see a bunch of compressed air working its way outwards
all round the pump (Figure 1.1). It’s not the same chunk of com
pressed air, though. All that has happened is that the air at each
place round the end of the pump gets compressed and then
recovers its place by compressing the next lot of air. The air
behaves like the steel balls in a Newton’s Cradle, passing on
the push to the next one. This is what is called a sound wave.
The name isn’t a coincidence, because water waves behave in
the same way. When you look at waves, you feel sure that the
waves are moving into the shore. If you watch something floating
on the water, though, all you see is the up-and-down movement.
That’s because each patch of water is just moving up and down
— the wave that you see is the result of the way that the movement
spreads from one patch of water to the next.

How does that affect us? Well, what we hear depends on the
vibration of air that reaches our ears. When the sound has been
generated by a computer, the air is set into its wave movement
by the cone of a loudspeaker (Figure 1.2). As the cone moves
forward, it compresses the air, and as it moves back again, the
air is de-compressed (the technical term is that the air is ‘rare
fied’). The result, once again, is a wave which reaches our ears.
Inside the ears this air pushes and pulls alternately at the ear
drum, vibrating the bones inside the ear and causing electrical
signals in the nerves. That’s what we call ‘hearing’; one of these
miracles that we take for granted. All of the things that we hear

3

Figure 1.2 How the moving cone of a loudspeaker creates sound waves.

4

are things that vibrate the air. The skin of a drum vibrates, pushing
and pulling at the air. The string of a guitar can’t push much air,
but if it's fastened to a wooden box, the string vibrates the box
and the box moves the air. Nowadays the alternative is more
complicated — the guitar string moves a magnet which gen
erates an electrical signal which is amplified and works a loud
speaker. Some musical instruments move the air directly, like
the flute, clarinet, oboe, bassoon, trumpet, trombone and other
wind instruments.

The shape of the wave
When you look at waves in fairly calm water, you can see a
definite shape, a smooth up-and-down appearance of the sur
face of the water. Sound waves are invisible, but we can make
the shape of the wave appear by using electronic instruments.
The o s c i l l o s c o p e is the instrument that is used, and when it is
connected to a microphone, the shape of any sound wave that

sine wave

typ ica l waveshape
— vio lin

typ ica l waveshape
— piano

Figure 1.3 Waveshapes — the simplest shape is called the sinewave', but the
waveshapes from musical instruments are much more complicated.

5

reaches the microphone can be seen on the screen of the os
cilloscope. The simplest type of wave is the smooth up-and-
down type, which technically is called a ‘sine wave'. It's the
shape of wave that you see when you whistle into the microphone,
but the waves that musical instruments generate are much more
complicated (Figure 1.3). Most musical instruments generate
waves that are of a more jagged shape, and the exact shape
depends a lot on the type of instrument and how it is being
played. That's one of the reasons why you can tell one instrument
from another. A note played on a flute does not sound like the
same note played on a clarinet, for example, or the same note
played on a piano. A lot of electronic instruments can produce
notes that do not sound like the notes of any conventional musical
instrument, and this is done by using a very different shape of
wave.

A sound synthesiser is an electronic instrument that can mimic
other instruments by producing waves that are roughly the right
shape. Your computer doesn’t have this sort of versatility, and
the wave shape that it produces is roughly square (Figure 1.4).
This is because it happens to be a very easy shape of wave for
a computer to generate. It’s done by switching a voltage on and
off, which produces an electrical wave that is perfectly square.
The loudspeaker can’t cope with such a wave, however, so what
you get from the loudspeaker is rather more like the second
drawing in Figure 1.4. If you feel that having just one wave shape
is a bit disappointing, remember that a sound synthesiser costs

square wave

w hat comes ou t o f
the loudspeaker

Figure 1.4 The square wave, and what a loudspeaker does to it. The loudspeaker
rounds off all the corners, and allows the flat parts of the wave to droop.

6

a lot more than a computer and it can’t display graphics or work
out your income tax.

There’s another perfectly good reason for using this shape of
wave, however. Because it's a fairly jagged sort of shape, it’s
closer to the shape of real musical instruments that you could
get by using a rounded ‘sine’ type of wave. As it happens, a lot
of synthesisers generate a square wave electrically, and then
operate on it to change its shape to what is needed. This requires
the use of ‘filters’ which act to change the shape of a square
wave. Once again, you can’t do this easily with your computer,
but you c a n do quite a number of things that will make the Sound
resemble a note from another instrument rather more closely. In
addition, it’s possible to use ‘noise’. Noise means a wave with
no fixed shape and no pattern to it. It’s the musical equivalent
of a set of random numbers, and the computer can generate this
noise by using signals which are controlled by the random num
ber generator. Noise is the heart of all of the sound effects, like
gunshots, puffing trains, space launches and all the other favour
ites of the games. With the combination of square waves and
noise, then, your computer can be programmed to produce some
quite impressive sounds.

The language of sound
Nobody has to tell you very much about the language of graphics.
You knew what was meant by a line, a circle, and a colour before
you started using a computer. Once again, sound is different,
and you may not have met the words that are used to describe
a sound unless you have taken an interest in Hi-Fi or in music
synthesis. That’s because the words that we need are about the
wave, and you can’t see the wave. Unless you have worked with
an oscilloscope you will never have seen what the shape of a
sound wave looks like, and the words ‘amplitude’ and ‘frequency’
won’t mean much to you.

The amplitude of a wave means its wave height. For a water
wave, you would measure this from the level of still water to the
crest of a wave, and on the diagram of a sound wave, we can
show the same sort of measurement in Figure 1.5. Since you

7

I

Figure 1.5 The amplitude of a wave is its size measured from a peak to the
centre.

can't normally see this, how does it affect you? The answer is
loudness. The greater the amplitude of a sound wave, the louder
it sounds to your ear — assuming that you can hear it at all. The
connection is not guite so simple as you might think, though. If
you listened to a set of different notes, all of the same amplitude,
you would not hear them all as being equally loud. That’s because
the human ear is not equally sensitive to all sounds. The ear is
most sensitive to sounds in the range that we make for ourselves
when we speak, and it’s less sensitive to sounds outside this
range. To put it another way, the voice and the ear were designed
as a matching pair, and any other source of sound seems to
have been an afterthought.

There’s another feature of all waves that affects sound. When
you look at water waves, you see some that are slow-changing,
so that only a few waves pass you in a minute. Others seem to
be spreading rapidly, many more in the minute. The number of
sound waves that passes a point in each s e c o n d is called the
‘frequency’ of the sound. The second is chosen as the measure
of time because a minute is much too long. Sound waves are
packed quite closely together, with several hundred typically
passing your ear per second. This frequency of waves corres
ponds to what we call the p i t c h of a sound. A low pitch corres
ponds to a low frequency, and a high pitch to a high frequency.
Putting some numbers to these ideas, the lowest notes of a
church organ might have a frequency of about 30 waves per
second, and the highest notes of a piccolo about 4000 waves
per second. A frequency of one wave per second is called one
Hertz (after Heinrich Hertz, who discovered radio waves) so that
the range of these musical sounds is from 30 Hertz, written as

8

30 Hz, to 4000Hz. To avoid writing a lot of zeros, 4000 Hz is
usually written as 4 kHz, where the ‘k’ means kilo, a thousand.
Your ear, if it’s in perfect condition, can detect sounds in the
range of about 30 Hz to 18 kHz. As you get older, though, the
ear becomes less sensitive to the higher notes, and you end up
with the top end of the range at about 7 kHz or less. You might
think that since the highest note that a musical instrument can
make is at about 4 kHz, this doesn’t matter. Unfortunately, it
does. A simple smooth sinewave at 4 kHz consists only of waves
at this frequency, but a wave of any other shape is more com
plicated. The reason for a wave having a different shape is that
it contains higher frequencies which are related to the main
frequency. What I mean by that is that if the instrument generates
a square shaped note at 4 kHz, then that note also contains
frequencies at 8 kHz, 12 kHz, 16 kHz, 20 kHz and so on. These
frequencies are twice, three times, four times (and so on) the
frequency of the main note. We call these notes ‘harmonics' and
any wave that is not a perfect sinewave contains harmonics.
They make the note sound more interesting to our ears, and they
give a note some character, so that we can tell one instrument
from another. The square wave which is obtained from your
computer is rich in these harmonics, which is why it can be used
so successfully in creating sounds.

There’s another feature of sound that’s just as important, but
much more difficult to measure. You can measure amplitude as
a size number, and frequency as a number of Hertz, but you
can’t so easily make a simply measurement of the e n v e l o p e of
a musical note. You see, musical instruments don’t give out
waves that are continuous. Each note of music is separate, so
that the waves start, continue for a time, and then stop. The way
that musical instruments are constructed, the amplitude of the
waves is not constant during the time of a note. Right at the start
of a note, the amplitude is low, so that the note starts soft. The
amplitude then increases to its peak, falls away, and finally stops.
You can examine the shape of a complete note using the os
cilloscope, and typically you get something like the shape in
Figure 1.6. This is not the shape of the w a v e , remember, it’s the

9

Figure 1.6 An envelope (a) is the name of the shape that is traced out by the
different amplitudes of the waves in a note. We usually show one half of the

shape only, with no waves (b).

shape that shows how the amplitude of the waves changes. This
shape, the envelope, has a lot to do with how a sound affects
our ears. Explosive or hammering sounds, for example, have
envelopes that grow very rapidly and then die away very rapidly.
Many musical instruments produce sounds whose envelopes
grow fairly rapidly, and die away in two stages, slowly at first
and then faster. This type of shape (Figure 1.7) is called an ADSR
shape, the letters meaning Attack, Decay, Sustain, Release. The
names are given to the four distinct sections of the envelope
shape which are shown in Figure 1.7. If you want to synthesise
the sounds of music, and in particular if you want to create good
sound effects, then you must be able to control the envelope of
each note. Fortunately, the Amstrad CPC464 and CPC664 allow
you to control this feature of sound very satisfactorily. In addition
to this variation of amplitude during a note, the sound of some
instruments varies p i t c h throughout a note. This effect can also
be reproduced with the Amstrad computers, and it’s one that
we’ll look at later in this book.

Decay

Figure 1.7 Most envelope shapes can be reproduced approximately by using a
shape made out of four straight lines. The sections are attack, decay, sustain

and release.

10

Stereo effect
There is a very noticeable difference between listening to music
from a mono radio and listening to the same performance live.
Quite apart from the sound quality, you are always aware that
the sound from a radio comes from one small loudspeaker,
whereas the live sound comes from a variety of instruments that
are spread out in front of you. You can't, however, overcome the
difference by listening to the sound from two loudspeakers
placed some distance apart a n d p l a y i n g t h e s a m e s o u n d . The
effect of using two loudspeakers like this is simply that you hear
the sound coming from one or the other, with no illusion of space.
The essential feature of sound that creates the illusion of a wide
spaced source is that the loudspeakers should each play s l i g h t l y

d i f f e r e n t sounds. Even if you imagine that the musicians at each
end of a stage are playing the same notes on the same instru
ments, it is quite impossible that the soundwaves which they are
creating are i d e n t i c a l in every way. Because of these slight dif
ferences, we can locate the positions of sound sources. It was

Figure 1.8 Stereo uses two separate microphones picking up different parts of
the sound and transmitting them to two separate loudspeakers.

11

once thought that this was mainly due to possessing two ears,
but there is evidence to show that even with only one ear, a
human listener can appreciate the difference between stereo
and mono sound from loudspeakers.

The vital difference between stereo and mono, then, is not the
number of loudspeakers but the sound that emerges from the
loudspeakers. If each loudspeaker gives out a slightly different
version of the sound, corresponding to what a microphone picks
up in part of the place where the recording is made, then the
effect will be of stereo sound (Figure 1.8). This means that you
will be aware of the positions of instruments, and of a feeling
that the sound is coming from a wide source, not from a single
point. It's much easier to understand if you think of a sound effect
like a passing jet aircraft, rather than a band. Imagine that a jet
fighter (all right, an F-15 if you want an example) is crossing from
left to right in front of you. The sound will start off faint in the left
ear, and fainter at the right ear. As the plane moves, the sound
gets louder in both ears, but while the plane is still to the left,
it will still seem louder in the left ear. When the plane is in front
of you, the sound will be equal in both ears, and as it moves to
your right, the sound in the right ear will start to be greater than
the sound in the left ear. This continues until the plane is out of
earshot. As it happens, because the sound moves so much
slower than the light, the plane still sounds on your left when it
has passed over to the right, but the sequence is the same, and
it's illustrated in Figure 1.9. If you wanted to program this sound
in stereo, you would have to reproduce these different levels of
sound in the two ears, which means using two different envelopes.

The alternative to loudspeakers for stereo sound is, of course,
earphones. Nowadays, the use of large earphones is less com
mon, and the portable stereo player of the Sony Walkman variety
is the most usual version of earphone stereo. When earphones
are used, the differences between the sounds that are fed to the
two ears are very much greater than when loudspeakers are
used. The stereo effect is therefore much stronger, and is quite
artificial and totally unlike a live performance. For sound effects,
this doesn’t matter, and you can make use of ‘Walkman’ type

12

Sound reaches bo th ears
together, equal loudness

Sound reaches righ t ear firs t,
and is louder on tha t side

Figure 1.9 Both the loudness and the timing of the sound from a moving object
cause the ears to hear different ‘envelopes’ of sound.

13

earphones to hear a lot of interesting effects. The Amstrad com
puters are almost unique in allowing you to hear sounds in stereo.
This is done by having two of the sound generators of the com
puter connected to different points in a standard ‘Walkman’ ear
phone jack. If your program can generate different signals to
these points, then, the result will be stereo sound, providing that
your programming is suitable. The effect is not quite so good
for music, but for sound effects like jet fighters flying past, it’s
devastatingly good. The only problem is that the amplitude of
the signals at the headphone jack is not very large, and you
have to have the volume of the signals turned well up to hear
anything at all. This does n o t mean the volume control on the
computer, because it has no effect on the earphone signals.
Different earphones have different sensitivity, and some ear
phones are better than others in this respect. Appendix C shows
how you can use a small amplifier for your earphone signals.

You aren't stuck with earphones for your sound, though. Nor
mally, the sound of the CPC464 and 664 comes from a built-in
loudspeaker. There's just one speaker, and so you don’t get
stereo sound from this. You can, however, make up connecting
links that will let you connect the headphone socket to the input
of any stereo amplifier. Details of such links are given in Appendix
C. With this connection made, you can now generate sounds
that will strip the paint from the walls if you want it to. With a
stereo amplifier attached, you have a better control of volume,
and you can also make use of the balance control to adjust the
position of sound. Another possibility is to record the sound on
a stereo cassette so that you can hear it in all its glory later. Like
any other aspect of producing sound with a computer, good
stereo effects can be produced only after a bit of experience
and a lot of try-it-and-see experiments. Don’t be disheartened
if your first efforts don’t seem to be as good as you expected.
If you follow the advice in this book, you will know where to start,
and how to get more quickly to what you want. The important
point is that you m u s t listen to the examples, because it’s only
by learning to associate a sound with its program that you can
make short-cuts when it comes to designing your own sound
programs.

14

Sound snags
Nothing’s perfect, and sound systems are no exception. For one
thing, the computer is operated from the mains supply of elec
tricity. This mains supply consists of an electrical wave whose
frequency is 50 Hz, and in the course of being turned into the
DC that your computer needs to operate it, a frequency of 100 Hz
is generated. Now this particular signal is no worry to the com
puting circuits, because they work at high speeds and ignore
anything so low. The sound circuits, however, will pick up this
signal and amplify it. It sounds like a rough rasping hum, and
because its frequency is fairly low, you don’t hear it very ob-
strusively on the earphones, and certainly not from the built-in
loudspeaker. This is because small loudspeakers do not repro
duce low frequencies well. If, however, you have connected your
Amstrad to a Hi-Fi system, you can expect to hear this hum rather
more noticeably. Once again, if you are making use of sound
effects, it doesn’t matter much, but it limits the amount of am
plification that you can successfully use.

Hum is just one of the problems that troubles you when you start
to make use of an external amplifier. You can also run up against
limitations of amplifiers, loudspeakers — and ears. The sound
generator of the Amstrad machines will provide sounds whose
frequency can range from 30 Hz to 125 kHz. Now 30 Hz is too
low for many amplifiers to cope with, and most loudspeakers
give up on frequencies below 80 Hz. You should avoid this sort
of frequency, then, unless you are making up programs to test
your Hi-Fi. You also have to avoid frequencies that are much
above 15 kHz. Once again, though most amplifiers can cope,
few loudspeakers can, and no cassette recorders, and in any
case you aren’t likely to hear anything in this range. Frequencies
above 20 kHz are strictly for dogs, cats and bats and of little use
to humans. You can’t record these frequencies, and unless you
have access to an oscilloscope, you can’t even detect them in
any other way. As a practical range, use the range of 100 Hz
to 4 kHz, and your efforts, whether they are musical or not, will
at least be h e a r d .

15

16

2
M u s ic h a th c h a rm s
All music consists of sound, but not all sounds are musical. The
ancient Greeks thought that music was a branch of mathematics,
but I can promise you that you won’t need much in the way of
calculation for this Chapter. What I want to do is to show how
music can be made on the Amstrad Micros, and I have to start
by assuming that you don't know anything about music. If you
do, then a lot of this chapter will be old-hat to you, and you can
skip chunks of it. If music is like a closed scorebook to you, then
a lot of what follows will be very useful if you want to program
your Amstrad to play simple tunes. In the course of this Chapter,
there will be several simple programs to enter and listen to. I
haven’t explained how they work, because that comes later —
listen first, understand later is the motto of sound programming I
Listening, as I have said before, is important, because that’s the
only way that you’ll learn to associate the program instructions
with the sounds that they produce.

To start with, music has been around for a much longer time
than computers. Musicians have evolved their own language
and their own way of writing music, and unless you intend to
struggle along by singing notes and trying to match them with
the computer, you really have to know something about this
system of musical notes and how they are written down. Start
with some fact — by trying the program in Figure 2.1. This plays
a note, pauses, plays another note, pauses again, then plays
the two notes together. Now these two notes sound very much
alike. The second one is at a higher pitch than the first one, but
there is a strong similarity to the ear, and when they are played
together, they blend perfectly. The reason is that the first note

17

10 SOUND 1,478,20©
20 FOR N=1 TO 3000:NEXT
30 SOUND 1,239,200
40 FOR N=1 TO 3000:NEXT
50 SOUND 1,478,300
60 SOUND 2,239,300
70 END

Figure 2.1 Octaves. A note whose frequency is exactly twice the frequency of
another is its octave. You sense that there is a pitch difference, but that the

notes are otherwise similar.

was at a frequency of about 261.5 Hz, and the second at about
523 Hz, exactly twice the frequency of the first one. I have taken
approximate numbers rather than show several places of dec
imals, because the important point is that the second frequency
is e x a c t l y twice as much as the first. In ancient times, they couldn’t
measure frequencies but their ears were sharp enough to tell
that there was a relationship between these two notes. Musicians
say that the higher note is a n o c t a v e a b o v e the lower one. It
extends beyond this, because if you listen to a note whose fre
quency is half of the frequency of the first note, it also seems
to fit in perfectly — musicians say that this new note is an octave
below the first one. Music is designed around these keynotes,
and what we call a m u s i c a l scale is a set of notes that starts at
one keynote and ends at the next one above it, the octave above.

How do you divide up so as to get a set of notes for a scale?
We might think that a reasonable method would be to have notes
whose pitch increased by exactly equal amounts. With the ad
vantage of several centuries of science to help us, we can divide
up the notes in this way. The usual system is to have a total of
eight notes, counting both keynotes, and that's where the word
‘octave’ (meaning a group of eight) came from. Perhaps the
ancient musicians reckoned there was something special about
a set of eight, just as the modern computer designers did. If you
divide out the frequencies so that you have seven notes between
the keynotes, all with exactly equal frequency differences, the
result sounds as in the program of Figure 2.2. It starts off rea
sonably well with the first three notes, but the later notes sound
definitely odd. It would be difficult to write a tune that sounded
good using this set of notes. What’s worse is that it's difficult to

18

10 FOR J=1 TO 8
20 READ F
30 SOUND 1,F,200
40 FOR N=1 TO 800:NEXT
50 NEXT
60 DATA 478,418,372,335.304,279,257,239

Figure 2.2 A scale which has equal intervals, meaning that the differences of
frequency between notes are equal.

make harmony. Harmony means that the name suggests — that
you can sound a couple of notes together with a reasonable
chance that they will blend well. With this set of notes, there are
precious few harmonies.

Well, that’s a bit of egg on the face of mathematics for you. The
ancient musicians, knowing nothing about any of this frequency
stuff, decided that the easiest way around the problem was
simply to adjust some of the notes. Most of them were reduced
a bit in pitch, a few increased. This operation was called ‘tem
pering’, and an instrument which was tuned to an adjusted scale
was called ‘well-tempered’. As an example of what they did, try
the program in Figure 2.3. It starts with the keynote and ends
one octave above, but the notes in-between have been altered
so as to make one variety of tempered scale. It certainly sounds
more familiar and easier on the ear. More important, its set of
notes allows us to make better sounding tunes and to create
better harmonies. This particular scale is called the scale of ‘C-
Major’. The ‘C ’ part of it comes from its keynote, which is the note
that is called Middle C. We’ll come back to that later. The ‘Major’
part serves to distinguish this from other scales, because this
isn’t the only possible group of notes that you can use as a scale.

What is it about this scale that makes it a ‘Major’ scale? The

1 0 FOR J = 1 TO 8
20 READ F
30 SOUND 1,F,200
40 FOR N=1 TO 800:NEXT
50 NEXT
60 DATA 478,426,379,358,319,284,253,239

Figure 2.3 A ‘tempered' scale, in which the intervals are not equal. This was
originally found by trial and error, and it sounds a lot better. This particular

variety is a Major scale.

19

10 FOR J = 1 TO 8
20 READ F
30 SOUND 1,F,200
40 FOR N=1 TO 800:NEXT
50 NEXT
60 DATA 506,451,402,379,338,301,268.253

Figure 2.4 Another Major scale, which this time starts a semitone lower.

answer is in the way that it’s arranged. If you listen carefully to
this scale, you’ll notice that the pitch differences between notes
(called intervals) are nothing like equal. Even if we ignore the
effects of tempering, there are two quite different sizes of inter
vals. The interval between note 3 and note 4 is only about half
of the interval between the other pair of consecutive notes, and
the interval between note 7 and note 8 is another small one. We
call the bigger interval a tone and the smaller one a semitone.
What makes a scale a Major one is that its semitones are between
notes 3 & 4 and 7 & 8, with all the rest of the intervals being
tones. You can start a scale on any other keynote, and to make
it a Major scale, you have to get the semitone intervals into the
same places. Try the scale in the program of Figure 2.4 now.
It starts on a note which is a semitone lower than the scale in
Figure 2.3, but it’s still a Major scale, because it has the same
sized intervals in the same places. Whatever the keynote, a major
scale gives you a set of notes that are ideal for bright cheerful
music.

Some Minor problems
The Major scale is useful, but not all of the music that we want
to play is going to be bright and cheerful. We need scales which
contain notes that sound mournful and sad, or angry and bitter.
Does that sound far-fetched? Music i s something that makes
direct contact with your emotions, and the only way we can
describe in words how it sounds is by using words for emotions.
Since we want to be able to convey the full range of emotions
with music, then, we need the scales that are described as Minor.
Now though there’s one form of major scale, there are quite a
lot of minor scales. A lot of these are of interest to the professional
musician only, and we’ll look at just one, the Natural Minor. Figure

20

10 FOR J=1 TO 8
20 READ F
30 SOUND 1 , F,200
40 FOR N=1 TO 800:NEXT
50 NEXT
60 DATA 478,426,402,358,319,301,268,239

Figure 2.5 A Minor scale, in this example, the Natural Minor. The difference is
remarkable — the scale sounds sad and mournful.

2.5 illustrates what this sounds like for a Scale of C-Minor. This
has its semitones between notes 2 & 3 and notes 5 & 6. Listen
to it, and compare it with the scale of C-Major. You can hear that
the notes sound different — it’s hard to imagine when you look
at the numbers in the DATA line that the two scales could be s o

different. Just to rub in the gloom, try the slightly different scale
whose DATA line is shown in Figure 2.6. This is called the Har
monic Minor, and it sounds even more gloomy than the Natural
Minor.

10 FOR J=1 TO 8
20 READ F
30 SOUND 1,F,200
40 FOR N=1 TO 800:NEXT
50 NEXT
60 DATA 478,426,402,358,319,301,253,239

Figure 2.6 For even more misery, try the Harmonic Minor scale!

Not all scales are even of eight notes, one octave, because not
all music has come from Europe. You’ll find quite different ccaics
used in music from India, from China, from Japan. A lot of our
popular music is based on the African scale which came into
Jazz music as the Blues Scale. Figure 2.7 illustrates this scale,
which uses only seven notes rather than eight, and has a com
pletely different arrangement of intervals. Before your head starts
to reel with all these possibilities, though, remember that the

10 FOR J=1 TO 7
20 READ F
30 SOUND 1,F,200
40 FOR N=1 TO 800:NEXT
50 NEXT
60 DATA 478,402,358,338,319,268,239

Figure 2.7 The Blues scale, with one note less, and different intervals. This is
the great scale of Jazz.

21

10 FOR J = 1 TO 13
20 READ F
30 SOUND 1 , F,200
40 FOR N=1 TO 800:NEXT
50 NEXT
60 DATA 478,451,426,402,379,358.338,319,
3 0 1 , 2 3 4 , 2 6 8 , 2 5 3 , 2o9

Figure 2.8 A Chromatic scale, which uses all of the notes of other scales.

scale is just a convenient way of selecting notes that sound out
the message of the music. You will certainly be concerned with
selecting a scale if you are composing music, but it’s more likely
that you will be using music that some-one else has written. The
snag here is that you might want to change the music so that
it sounds better on your Amstrad, by shifting its keynote up or
down. This is called transposing, and to do it correctly, you really
need a good ear for the sound of different scales. To round off
this business of scales, take a listen to the results of Figure 2.8.
This is called a chromatic scale’, and it consists of thirteen notes.
These consist of all the notes that are used by any other scales,
and in Western music, these are all the notes that exist between
one keynote and its higher counterpart one octave up. Just to
make life difficult, this is often called a ‘twelve-note scale’, be
cause if you count only the first keynote and not the octave note,
there are twelve notes in the scale, with the higher keynote in
our program acting as number thirteen. Like computer buffs,
musicians sometimes count inclusively, and sometimes don’t!
Some composers have written music using twelve-tone scales,
but to me this music has all the appeal of thrashing myself around
the face with a wet fish. Come back, Wolfgang Amadeus Mozart,
you have never been out of fashion!

Naming notes and writing music
Musicians have one considerable advantage as compared to
computer-users — standardisation. If we stick to traditional West
ern music (no, not Country & Western, Hank, just Western
Europe), the method of naming notes and writing music has
been pretty standard for several hundred years. If you can read
music which is written to this standard, then you can convert it
into the form that’s needed for your computer. No two computers

22

(apart from MSX) deal with music in identical ways, though, and
it can be very difficult if you want to convert a music program
that was written for one computer into the form that is needed
by your Amstrad. For those of you who can work with machine-
code, Chapter 7 deals with how to convert the SOUND instruc
tions of the MSX computers (and others) into Amstrad form.
Sometimes the only easy way is to convert from the X-brand
computer program into written music, and from the written music
into Amstrad program form. It may sound a very roundabout
method, but it’s often quicker and easier. All of that means that
we need to be able to read conventionally written music. You
don’t have to be able to read as fast as a musician might, only
fast enough to decide which note is which.

To start with then, music is written on a grid of five lines and four
spaces which is called a staff or stave. The pitch of a note is
indicated by these lines and spaces, as Figure 2.9 shows. For

Treble clef 5 lines & 4 spaces
_ High notes

a sian 3 in each c ef

Bass clefM iddle c Position
s i g n ___ ____________

Figure 2.9 Music manuscript. Music is written down by putting marks in a grid
of lines and spaces. Each line or space represents one note in the scale of C

Major. To make music easier to read, the high notes are put on to the upper part
(treble clef) and low notes on the lower part (Bass clef).

a lot of written music, we use two sets of staves, with markings
that indicate the range. The one which is marked with the ’&'
sign is called the treble stave, and it consists of the higher range
of notes. The one that is marked with what looks like a reversed
letter ‘C’ is the bass stave, and it consists of the lower range of
notes. These staves are arranged with space for one line between
them. This line is never printed in, because it would make the
music difficult to read. The note that belongs on this line is called
Middle C and it i s in the middle, between the staves. When a
note i s written in this place, a short line is put through it to show
that it belongs in this position. Figure 2.9 also shows how these
stave positions for notes are named, and these names are the

23

High C, or C'"^M idd le C

Figure 2.10 One octave of the scale of C-Major, treble clef, written down. There’s
nothing to show which intervals are tones and which are semitones.

ones that we use for the notes. The naming system simply uses
the letters of the alphabet from A to G.

Now when you look at this, you’ll see one flaw in the system.
There’s absolutely nothing that shows how a scale is arranged.
If you look at the scale of C-Major put on to a stave (Figure 2.10),
you’ll see that there is nothing to show you where the semitones
come. That’s the way it is, I’m afraid, but it does have the ad
vantage of letting you use the same stave to write with any sort
of scale you want to use. At the same time, though, it gives a
rather unfair advantage to the scale of C-Major, because this
one can be written on the stave with no modifications, just by
using the natural positions. It’s the only scale that c a n be written
in this way. For any other scale, you have to use special markings
to indicate notes that are n o t the same as they would be in the
scale of C-Major. These marks are called sharps and flats, and
when they are used to show a scale which is not the scale of
C-Major, the arrangement is called a ‘key signature’. If you just
want to have an odd note that is sharp or flat, you put a sign
next to the note, and this type is called an ‘accidental’. The key
signature signs are put at the start of each line of music, and
they affect each note that is in their line or space.

The sharp mark looks like the computer’s hashmark, and it means
that the note which is sounded is to be a semitone higher than
the position of the note for C-Major. Now if you put a sharp sign
on the top line of the treble stave, that means that this note will
always become a semitone higher. The ‘natural’ note, with no
sharp mark, is F, and by putting a sharp on this top line, you
always play F# (pronounced F-sharp) instead of F natural. Now,
as it happens, if you play a Major scale that starts with G, you
need to play F# in place of F natural. This, then, is a very con
venient method of showing which scale you are using as well
as which note has to be modified. This particular key signature,

24

Low notes
Treble clef

F sharp
3

m

F sharp
F sharp

Figure 2.11 A scale of G Major which extends over three octaves. Each marked
F is played as F-sharp.

the F# marking, belongs to the key of G-Major. The reason should
be clear by now — it’s because with the F# permanently in
place, we can play a Major scale which starts with G. Figure
2.11 shows the notes of this scale.

y ____

P 3 + ------V
r ------------ \

B -flat

B-fla t C-sharp

Figure 2.12 The flat sign is used to show that a note one semitone lower than
the printed position is to be played. With a B-flat permanently in place, we can

play a scale of F-Major (a) or D-Minor (b). The Minor scale needs another change
— C# in place of C natural.

The other mark is the flat, which looks like a droopy letter ‘b ’.
When this mark is in place, then you sound a note which is a
semitone l o w e r than you would expect in this position. Look, for
example, at Figure 2.12. This shows a flat mark on the middle
line of a treble stave. This note position is B, and so every B
becomes a B-flat, a semitone lower than B. Now if we happen
to start a Major scale on the note F — a scale of F-Major, then
we need to use B-flat in place of B, and Figure 2.12 (a) shows
the notes of this scale. We can also start a natural Minor scale
on the note D, and find that this also needs B-flat in place of B.
The use of this mark, then, can mean that you are working with
the scale of F-Major or the scale of D-minor! The notes of the
D-Minor scale are shown in Figure 2.12 (b), and you can listen
to the notes of the two scales in the program of Figure 2.13. The
scales sound quite different, one major, one minor, and yet they
use the same stave. At first sight, this can be confusing, but it’s
really very useful to be able to write all music with the same set

25

10 CLS: PRINT"F-MAJOR"
20 FOR K=1 TO 2
30 FOR J=1 TO 3
40 READ F
50 SOUND 1,F,100
60 FOR N=1 TO 50O:NEXT
70 NEXT
80 FOR N=1 TO 3000:NEXT
90 CLS:PRINT"D-MI NOR"
100 NEXT
110 DATA 353,319.284,268,239,213,190,179
120 DATA 426,379,358,319,284,268,239,213

Figure 2.13 How these two scales, F-Major and D-Minor, sound on the Amstrad.

of grid lines, and adjust some of the notes with the sharp or flat
signs when you need to. There's another sign, the natural (Figure
2.14) which is used if for some reason you have marked a line
or space with a sharp or flat and you don't want to use it.

C natural

Figure 2.14 A natural sign. This is used to show that the normal note should be
played, cancelling the effect of a sharp or flat sign at the start of a line of music.

The most commonly used musical instrument is the human voice,
and the staves were originally designed for writing music for
singers. The next most common instrument nowadays is still the
piano, and we can include with the piano all instruments that use
the piano keyboard. The piano is arranged so that it can play
any chromatic scale, and any set of notes that belong to a chro
matic scale. This means that the note A-sharp is the same as
the note B-flat; D-sharp is the same as E-flat and so on. In some
Eastern music, these notes would not be the same, and instru
ments which do not use keys (guitars, violins for example) can
play notes which are quarter-tones, so that B, B-flat, A-sharp,
A would sound like four different notes. On the piano, these are
only the three notes, and for most Western music, the other
instruments follow the example of the piano. When you get to
the Amstrad musical pitch numbers, you’ll see that they deal
with sharps only (because the hashmark is easier to get on a
keyboard than the flat mark). You can, however, generate notes

26

that are quarter tones if you want to simulate Eastern music.

That deals with how we map out notes. With this mapping, you
can write the pitch of a note just by putting the note in position
on a line or space. If the note that you want to use comes above
the range of the treble stave or below the range of the bass
stave, then you can draw in extra lines above or below. These
lines are not put in all the way along a page, but only through
the notes that need them. Once again, like the Middle-C line,
this is done so that you can see the staves clearly, with no
confusion due to extra lines. In addition to pitch, however, a note
has duration and volume. We need some method of indicating
this in music. Here, too, because the history of written music is
so long, things have become standardised, but in the course of
this standardisation there has been a bit of confusion. There are,
in fact, two ways of indicating the duration of the notes. One way
is relative. This means that there is a note of ‘standard' duration,
and all the other notes are measured relative to this. Once again,
there is a curious similarity to computing (machine code, too),
because the multiples are all twos. The standard length note is
called the crochet. It’s marked by its shape (Figure 2.15), with
a black dot and a tail which can point either up or down. A note
which lasts for twice as long as a crochet is called a minim, and
its shape is a circle with a tail. The note which lasts for twice as
long as the minim, four times as long as the crochet, is the
semibreve, which is marked by a rugby-ball shape, with no tail.
There’s a note twice as long as this, the breve, but you hardly
ever come across it. Going to the shorter end of the scale, a note
which lasts for only half as long as the crochet is called the
quaver. It looks rather like the crochet, but with a hook on the

U

Crochets M inims Semibreve Quavers Semiquavers Joined
Semiquavers

Figure 2.15 The durations of notes are indicated by the note shapes. You often
find that the short notes (quavers and shorter) are joined by the tails.

27

tail. Put another hook on the tail, and you have the semiquaver,
which lasts only half as long as the quaver, a quarter of the
duration of the crochet. Yet another hook gets us to the demi-
semiquaver, which lasts half as long as the semiquaver. If you
like them really brief, there’s also a hemidemisemiquaver!

All of this is starting to look like the old problem of how long a
piece of string is. The thing that we really need to know is how
long a crochet lasts. Unfortunately, that’s the slippiest item in the
whole of music. The traditional method is to divide music into
bars which take equal amounts of time, and to say whether you
want the music played fast, medium or slow. You then write what
your unit of timing is to be and how many of them you want in
each bar. It all looks very technical, but it’s useful only to the
musician who has learned by experience what these figures (the
‘time-signatures') mean. For the rest of us, it looks vague, to say
the least. It became a lot less vague around 1823, when the
metronome was invented. The metronome is just a piece of clock
work which uses a little swinging pendulum to mark time. The
timing is adjustable, and the adjustment is usually marked in
terms of the number of crochets per minute. Now you might think
that once the metronome had been invented, all the older ways
of describing timing would have been abandoned. Don’t you
believe it! Though the metronome was taken up and used by
composers (including Beethoven, who, since he was deaf greatly
appreciated the idea), you still don’t see all that much music
marked with metronome settings. The reason is that musicians
feel that a metronome setting ties them down too much. If the
only indication of time is a remark like ‘walking pace’, then the
musician can decide what he/she calls a walking pace. That’s
just one of the reasons why a piece of music that you may have
heard a hundred times can still be made to sound fresh and
different. Once you fix a metronome reading, you have to keep
to its pace, and that limits your scope for using your own ideas
about how the music should sound.

What do we do, then, about transferring music to the computer?
The best approach is to assume that if the music is to be played
at an ordinary pace, then a crochet should last for about half a

28

10 FOR J = 1 TO 16
20 READ F
30 SOUND 1,F,50
50 NEXT
60 DATA 478,426,379,478
70 DATA 358,478,319,478
80 DATA 284,473,319,358
90 DATA 379,426,478,473

Figure 2.16 A program for a tune that is played with each crochet lasting for
half a second.

second. This corresponds to a metronome setting of 120. The
Amstrad SOUND command gives you a default (meaning what
you get if you don’t change it) setting of 1/5 second for a note,
corresponding to a metronome setting of 300. This is a fairly fast
setting. Figure 2.16 uses the half-second crochet in a little set
of sixteen notes, just to let you hear the pace. If you remove the
last part of the SOUND instruction (which reads ,50), then you
can hear the Amstrad default speed. This corresponds to the
sort of pace which a musician would label as allegro. No, there's
no pace called Montego.

A bit of flexibility
If there’s anything that a musician, composer or performer hates,
it’s being tied too rigidly to a measurement of anything, whether
its timing or even pitch of note. As we have seen with the business
of the time of a crochet, a bit of flexibility is very strongly valued
in music. For those of us who are not dedicated musicians
(though I confess to having a clarinet, a piccolo and a trumpet
in the computer-room) this refusal to be tied down is a nuisance
when it comes to writing music programs for the CPC464 or
CPC664. I said at the start of this book that ‘sound is different’,
and this is just one of the differences. You can, with a bit of
practice, soon learn to transfer the written notes of a music score
into the SOUND code numbers for the Amstrad computers. You’ll
always be slightly uncertain, however, whether the timing is just
right, and only your ear will tell you. This is what I meant when
I said that you can’t just look at a program for making music and
knew what it will sound like. With experience, you can tell what
the notes are, and you can even get a pretty good idea of the

29

timing, but unless you have a really good musical ear, you still
don't quite know what it will sound like. Most of us are cursed
with putty ears as far as music is concerned, but this is something
that you can work at. With a bit of practice, you can adjust your
programs here and there and end up with them sounding quite
a lot more musical. Before we start on that, though, we’d better
look at a few of the ways in which composers and performers
make this written music into a more flexible form.
One method is by using dotted notes. The standard note lengths
are the ones that were illustrated in Figure 2.15. Every now and
again, though, you need a note that is not exactly of one of these
lengths. This is done by placing a dot following a note. The effect
to the dot is to make the note half as long again. For example,
if you count a crochet as a single unit of time, then a dotted
crochet counts as one and a half. If a standard minim is two
units, then a dotted minim is three. If a standard semibreve is
four units, then a dotted semibreve is six. The idea of dotting
notes extends to the shorter notes also. Another way of making
the length of a note differ from the normal is by ties. If you draw
a bowed line that joins two identical notes, it means that the two
have to be sounded as one note whose duration is the combined
duration of the two notes. Figure 2.17 illustrates this and the dot
system of extending note durations.

i ----------:---- ^

r 1 * ' r i r " r

Dotted Dotted Dotted Dotted Tied
crochet m inim semibreve quavers crochets

Figure 2.17 Dots and ties. Following the note with a dot extends the note by
50%. The dot is put in the space (not on the line) following the note. The tie

mark linking two identical notes means that they should be played as one note.

Another effect in music arises from having rests. Every now and
again, you want the notes to stop, and since the time of silence
is as important as the time of a note, there must be markings in
written music to indicate how long these silences or rests are
to be. Figure 2.18 shows the symbols for the rests, which are

30

Crochet m inim semibreve quaver semiquaver

Figure 2.18 The symbols for 'rests’ or silences. These use the same timing as
notes, and can also be dotted.

geared to the same relative time settings as the notes. You can
use dots and ties on these symbols as well if you want to create
times of rests that are not catered for with the ordinary symbols.
Anything that is longer than a few notes will be played in
‘phrases’. This means that the notes will be grouped, with short
silences between the groups of notes, and so the composer
must be able to specify the time of the silence. Since the pace
of the music will still be set by using vague words like a l l e g r o

and a n d a n t e (which means at a walking pace), the musician can
use a bit of discretion about how long the silence is, and so vary
the effect of the phrasing.

The musician’s main guide to the problem of how long a crochet
should be sounded is the ‘tempo’. This is Italian for ‘time’, and
the words that musicians use are Italian words. Figure 2.19 lists
these timing words, in order of very slow to very fast, and with
a p p r o x i m a t e metronome and CPC464 speed figures. I must
stress that these numbers are approximate, because musicians
_ .

Word Meaning Metronome CPC464
Duration

Largo slow 60/70 100/85
Lento slow 60/70 100/85
Grave slow 60/70 100/85
Andante rather slow 120/75 50/80
Allegretto fairly fast 150/120 40/50
Allegro fast 300/150 20/40
Vivace lively 300/150 20/40
Con brio dashing 300/150 20/40
Presto fast 600/300 10/20
Prestissimo very fast 1200/400 5/15

Figure 2.19 Musical speeds. The words that indicate speed are deliberately
vague, and these metronome figures and CPC464 timing numbers are

approximate only.

31

will never be tied down on these figures. If you see these tempo
words being used in a score, however, the figures in the list will
be a good guide, and will give you a starting point at least. You
can then use the judgement of your own ears to decide whether
you want the piece played faster or slower, but at least you have
something to start you off. Appendix A lists these and other
words, Italian and otherwise, which you will find cropping up in
written music.

We’ve said nothing about volume, the amplitude of sound. Once
again musicians like a bit of flexibility about this, and you can't
really blame them. Music, you see, may be played by a variety
of instruments, some of which can make a lot more noise than
others. Because of this, you can’t have an absolute figure of
volume, and it’s this that makes the difference between real live
music and a lot of synthesiser systems. The traditional method
is to use the letter f (for ‘forte’) to mean loud, and p (for ‘piano’)
to mean soft. The loudest note your instrument can play is in
dicated by fff, and the softest note that you can achieve by ppp.
If the music is unmarked, you play at somewhere between these
two. Where the composer wants the sound to get louder as you
play some notes, there is a ‘crescendo’ (pronounced creshendo)
mark over the notes, or music that gets softer, the opposite mark
is the ‘diminuendo’. Both of these marks are made by having
signs over the stave like the less-than and greater-than signs
(Figure 2.20).

To crown it all, there’s one effect which is practically unwritable
- rhythm. A rhythm comes about when notes are played in

groups, and certain notes are stressed. A note can be stressed
by playing it slightly louder, or slightly longer, than the others.

c r e s c ._____ d i m

getting louder getting softer louder softer

Figure 2.20 The signs that show when music should change volume, either
louder or softer.

32

Written music shows the grouping of notes by drawing vertical
lines across the stave. The space between two lines is called
a bar, and in a given piece of music, there are always a fixed
number of crochets in a bar. This doesn’t mean that a l l of the
notes are crochets, though. If you music uses four crochets in
a bar, you can have a single semibreve in a bar, because its
time is the time of four crochets. You could also use two minims,
or a dotted minim and a crochet, anything in fact that added up
to the correct time of four crochets. To get the rhythm, then, you
would stress one of the notes in each bar, usually the first or the
second. This can become monotonous, though, so very often
the stress can be varied, strong in places, weaker in others. You
might also want to syncopate, which means that the stressed
note is not always in the same position in each bar. Once again,
all this adds up to the fact that even when you have the correct
collection of notes, played with the correct times, you still might
not have anything that sounds like m usic! Until you get your ears
accustomed to listening to music, you’ll find it very difficult to
appreciate all this, but in the following Chapters, we’ll be looking
at programming methods and showing how these subtle effects
can be achieved.

33

34

3

T h e A m s tra d S o u n d
A computer is not a piano, and you’d look rather silly trying to
play Harrier Attack on a violin. The computer produces sound
by a bit of fiddling with electrical signals which are then used
to work a loudspeaker. It can never make a sound that is e x a c t l y

like a piano, or a violin or a clarinet, but you can produce a lot
of sounds that are musically pleasing. In addition, you can pro
gram your CPC464 to create a lot of sound e f f e c t s that no musical
instrument could ever produce. In this Chapter, we’ll look at how
sound is produced, and how we can control what we get.

To start with, a loudspeaker makes a sound when it gets an
electrical signal. This electrical signal consists of a rising and
falling electrical voltage. As the voltage rises, the cone of the
loudspeaker is pushed forwards, pressing the air outwards. As
the voltage falls, the cone is pulled backwards, de-compressing
(rarifying) the air. If the cone of the loudspeaker is pushed al
ternately forwards and backwards 100 times a second, the result
is a sound wave whose frequency is 100 Hz. If we use a large
electrical voltage, the cone of the loudspeaker moves further,
and the amplitude of the sound is greater. The sound that comes
from the loudspeaker, then, is a wave which is a copy, as near
as is possible, of the electrical wave of voltage, Figure 3.1.

As it happens, everything that happens in your computer is
decided by electrical waves, and they all have the same shape
— square. A square wave simply means that an electrical voltage
is switched on suddenly, held steady for a short time, and then
switched off suddenly. The signals that make things happen in
the microprocessor of the computer are called ‘clock pulses',
and they are switched on and off pretty rapidly. In the CPC464,

35

Figure 3.1 How the electrical signals to the loudspeaker affect the cone,
pushing and pulling it and so creating sound waves.

in fact, these signals go through a cycle of off-on-off at a rate
of 4 MHz. That's four m i l l i o n Hertz, which is a long way beyond
anything that we can use as sound. We can make this clock
operate slower switches, however, just as we can make the
ticking of a watch operate a minute hand. By programming, for

36

example, we could make a voltage stay high for 2000 clock
cycles, and low for another 2000 cycles. Since 2000 clock cycles
takes a time of half a thousandth of a second, we would in this
way create a wave which was at high voltage for half a thousandth
of a second, and low for the same time. This gives a wave whose
total time is one thousandth of a second, and if we continued
with these, we would have a thousand waves per second. This
is a reasonable sound frequency of 1 kHz, one thousand Hertz.
What it all boils down to is that if we use a routine in machine
code, we can feed a number to this routine, and it will use this
number to keep a voltage high for that number of clock cycles,
and low for the same number. This will generate a wave which,
if we choose numbers wisely, will be in the range of sound
frequencies that we can hear.

The CPC464 does not use such large numbers as 2000 directly.
Instead, the numbers are scaled down, by using a slower clock
rate for the sound generating system, and for a frequency of
1000 Hz (1 kHz), the number that is used is 125. The machine
code program which actually carries out the work will then mul
tiply this up into the size that is actually needed in the timer.
Figure 3.2 shows the formula which allows you to find what pitch
number will correspond to a frequency. For example, if you want
to use a frequency of 1000 Hz, then 125000/1000 gives 125,
which is the pitch number for the SOUND command. What is
going on inside, however, is a lot more complicated, as you will
have gathered by now.

Tone Period No. = 125000/frequency
(frequency must be in Hertz. If the frequency is given in kHz, then
multiply by 1000.)

Example: Frequency of 1.5 kHz. This is 1500 Hz, and so the tone
period is 125000/1500, which is 83 (nearest whole number).

Figure 3.2 The formula for the CPC464 pitch numbers.

37

The BASIC beep
The simplest sound is the beep that you can use in programs
to indicate that some attention is needed. To get this beep (fre
quency about 1.389 kHz), you simply put PRINT CHR$(7) into
your program. The time of the beep is fixed, and its frequency
and volume are also fixed, so there’s not a great deal that you
can do with it apart from making it last longer. If you want a BEEP
for special occasions, for example, you can use:

FOR X=1 TO 20:?CHR$(7); :NEXT

which will give a long beep. The semicolon following the CHR$(7)
is needed to stop the computer taking a new line o n t h e s c r e e n

every time the loop goes round. You can also program a ‘dotted
beep’, using:

FOR N =1 TO 20:?CHR$(7);:FOR J =1 TO 400:NEXT:NEXT

which will give you a repeating beep. You can alter the timing
of the silence between beeps by changing the number in the
J loop. That, however, just about exhausts the possibilities of the
BASIC beep.

Superior SOUND
The sound system of the CPC464 is based around a unit which
is called the Programmable Sound Generator (PSG). This is one
of the chips inside the case of your Amstrad, and its type number
is AY-3-8912, made by General Instruments of the U.S.A. It can
generate square waveforms, nothing else, and the shape of this
waveform will then be altered only by the loudspeaker. This is
mainly because the cone of the loudspeaker cannot move as
fast as would be needed for perfectly vertical sides, and cannot
remain at rest long enough for the flat top of a square wave. If
you feed the sound signals to a high-quality amplifier and loud
speaker system, you will hear a very different type of sound, but
no loudspeaker can ever reproduce perfectly square shaped
waves. The sound generator chip uses clock signals that have
been obtained by dividing the frequency of the clock pulses
from the main computer, and the chip action is programmed by

38

the main computer. It will generate three channels of sound, two
of which can be kept separate to use as stereo channels. The
third channel feeds into both stereo outputs. There is also a
noise-generating circuit that can be connected to any or all of
the channels. The chip contains memories (registers, if you know
about microprocessors) which are used to store set-up instruc
tions, and in addition, the main memory of the computer can
also be used to store a set of commands. You have probably
noticed in the examples so far that the computer screen showed
the READY prompt long before the sound stopped. This is be
cause complete sound instructions are held in the memory, using
a type of system which is called FIFO, meaning First-in, First-
out. This memory can hold five sound instructions for each chan
nel, so that if you have a tune that consists of five notes only,
the computer processes this almost immediately, putting the
information into the memory of the sound chip, and then getting
on with other processing. By the time all five notes have played,
the computer may be working on something quite different. This
can cause you problems if you want the sound to keep in step
with something that is appearing on the screen, and that’s some
thing that we’ll have to look at later. In the examples so far, I
have made use of time delays to overcome this type of problem.
This FIFO action of memory is referred to in the manuals as the
‘sound queue’, and this is a good description of how it works.

In this book, we’ll keep mainly to programming methods in
BASIC, because you can hear the results more quickly and get
to grips with it more easily. If you eventually intend to program
the sound chip by machine code, then the methods that are
needed in BASIC still hold good, but you will have to know how
to make use of the registers in the sound chip. That's fairly
advanced programming, and you’ll need to make use of the
Amstrad Firmware Specification manual for details of machine
code calls. Advice on machine code programming for readers
who have had experience with this type of program is in Chapter
7. Right now, what we’re going to look at is how we can work
with the straightforward SOUND instructions of the CPC464
BASIC.

39

SOUND is an instruction word which can be used in either a
simple way, or with added complications, and we’ll build up to
the more complicated uses later. The simplest form of the
SOUND instruction uses just two numbers following SOUND. The
first of these is the channel number. Now when we are dealing
with the simple form of the SOUND instruction, the channel num
bers can be 1, 2 or 4. If we call the channels A, B, and C, then
using the number 1 gives channel A, 2 gives channel B, and 4
gives channel C. No, Marilyn, you can’t use F and get Chanel
No.5. You can, however, use zero, and get no sound at all. The
channels refer to the fact that you can have three independent
sound generators. This means that you can simulate the effect
of three instruments playing all at the same time. You can also
add the numbers, so that 1 +2 =3 gives you channels A and B
playing, 2 +4 =6 gives you channels B and C, 1 +4 =5 gives you
channels A and C, and 1 + 2 + 4 = 7 gives you all three. Adding
numbers like this forces more than one channel to play the same
note.

The second number in the SOUND command is the pitch num
ber. Now it’s a little bit misleading to call it a pitch number,
because a high number value gives a low pitch, and a low value
number gives a high pitch. It would be more accurate to call it
a time number, because it affects the timer that generates the
square wave. The Amstrad manuals refer to it as a tone period
number, and we’ll keep to this description from now on. The
values that can be used here range from 0 to 4 0 9 5 . If you use
zero, there will be no sound, and this can be a useful way of
getting a silence. Apart from this value of zero, the numbers
which are very low or very high really aren't particularly useful.
Very low bass notes simply can’t be reproduced correctly by the
tiny loudspeaker, so that unless you have a v e r y good Hi-Fi
system connected, it's not a good idea to use tone period num
bers larger than about 1 0 0 0 . You c a n get sounds with higher
numbers, but they are not particularly musical. With an amplifier
and a good big loudspeaker, you can get really impressive bass
notes, but not with the built-in loudspeaker. You won’t get very
impressive bass notes with earphones either unless you have
fairly sensitive earphones.

40

On the high pitch (low number) side, there isn't much point in
programming notes that only a bat can hear. The manual shows
values down to 16 in the musical note lists, and this is about as
high as you can usefully use. Above this, the loudspeaker doesn’t
cope very well and you can hardly hear the note. More important,
it gets much more difficult to get the exact musical notes that
you want when you use these numbers, because the intervals
get larger as the numbers get smaller. This is because of the
formula, 125000/(frequency). If we turn this around, it becomes
Frequency = 125000/(Tone period). Now for a tone period of
1000, the frequency is 125 Hz. If we use a tone period of 995,
just five less, then the frequency is 125.63 Hz. You would really
have your work cut out to tell the difference. If you use 20 as the
tone period, though, the frequency is 125000/20 = 6250 Hz, or
6.25 kHz. Take a tone period of five less, 15, and the frequency
is 125000/15 = 8333 Hz or 8.33 kHz. So a difference of five in
the tone period number makes a difference of 0.63 Hz in a bass
note, but a difference of more than 2 kHz in a treble note!

10 FOR N=1000 TO 10 STEP -5
20 SOUND 1, N
30 NEXT

Figure 3.3 Using a SOUND instruction in a loop, with the loop counting number
acting as the tone period. We would normally use integer numbers in a loop of

this type.

This is made clear in the example of Figure 3.3. This uses the
SOUND instruction in a loop, playing notes by using the tone
period numbers in the loop. Because the loop uses steps of
-5 , the frequencies change only very slightly at first, but by the
time you get to around Middle C, the notes are almost a tone
apart, and at the upper end of the scale the differences are
enormous. Using SOUND in a loop with the loop number con
trolling tone period is not quite so useful! You can, however, get
just the opposite — steps of frequency. Because pitch number
is 125000/(frequency), you can program as in Figure 3.4. This
takes the loop from frequency values of 100 to 5000 in steps of
five. Within the loop, the tone period number is calculated for
each frequency by setting P =125000, and using P/N. Don't use
125000/N in calculations like this, because it slows the computer

41

10 P=125000
20 FOR N=100 TO 5000 STEP 5
30 S*/.=P/N
40 SOUND 2, S7.
50 NEXT

Figure 3.4 Programming with frequency values rather than with tone period
numbers.

down. Numbers are stored in a coded form when you assign
them to a variable like P, but if you keep them as numbers, they
have to be converted each time the number is used, and that
slows down the loop. You'll find that this loop needs no slowing!
This time, the change of frequency is most noticeable at the low
frequency end, and the changes are very gradual at the high
frequency end.

Timing the note
If you use only a channel number and a tone period number,
then each note will be sounded for one fifth of a second. If you
are happy about this, and it’s quite useful for a lot of musical
effects, then you need use only two numbers in a SOUND in
struction. By using a third number, however, also separated by
a comma, you can specify a different time of note. For the simple
use of the SOUND instruction, the range of this time number is
1 to 500 or so. You can use zero, and you can use negative
values, with numbers up to 32767, but for the moment, keep to
the simple use of this part of the instruction. When you use a
positive number, it is equal to the number of hundredths of a
second of duration. Using 100, for example, gives 100/100 of
a second, which is one second. A value of 500 gives a five
second note, which is longer than you would normally use for
music. Going to the other extreme, a value of 1 gives a note
which lasts only for 1/100 of a second, and it can be useful in
some of these loops. Take a listen to the effect of Figure 3.5,
which uses a loop with frequency values from 1000 to 2000, with
a note time of one hundredth of a second. This gives a rapidly-
rising type of note, and to make it sound more interesting, I have
put it inside another loop so that it repeats five times. This is a
very good ‘disaster-warning’ type of note, which you could use

42

l e p = 125000

20 FOR J=1 TO 5
3© FOR N=1000 TO 2000 STEP 10
40 SOUND 1 , P / N ,1
50 NEXT
60 NEXT

Figure 3.5 A note with rapidly rising pitch, using a loop.

in programs to signal something unpleasant about to happen.
In general, if you want to use loops with either frequency numbers
or tone period numbers, then make the time of each note as
short as possible by using a 1 as the third number in the SOUND
instruction.

Make thy musick
It’s time we got to grips with the actual business of making music
with the CPC464. We'll start with a simple melody, using Yankee
Doodle. You’ll find that in this book, all the melodies are either
traditional or of my own composition. The reason is that a com
poser’s copyright lasts for fifty years after he dies, and copyright
fees can cost quite a lot. This is also the reason that you don't
hear the latest tunes being played in your computer games
either! Getting back to the music, Figure 3.6 shows the score
of the part of the tune that we’ll use. The unit of time is the crochet,
and there are two crochets in each bar. This information comes
from the ‘time signature' at the start of the line of music. The
figure ‘2’ on top means two units in each bar, and the ‘4 ’ under
neath means crochets. An ‘8’ in the lower position would mean
quavers, a ‘2 ’ would mean minims. As it is, the unit is the crochet,
and two crochets to the bar means four quavers, which is what
most of the melody uses. If you’ve never seen music script before,
you might be wondering why the tails of the quavers are shown
joined together. There’s no particular reason, except that it looks
neater, but in this case it can be used as a rhythm indicator. If

^ s --- !—
■ n

if r 9 • 9 ~9~ 9— ,r |F" 9 _ p. »
I T i #

V L r « i ^ 4 ____U— L___
__ 1,-1— H ----- - H

H__J— — - i f — £ - = n

Figure 3.6 The first part of the score for Yankee Doodle. The vertical lines mark
the end of bars, the divisions of the music. The twin vertical bars mark the end

of a section.

43

you place more stress on the first note of each connected pair,
the music sounds better.

However, that’s going a bit too fast for the moment. What we
need to do is to transform this piece of written music into a form
that we can use in a program. The easiest way is to ensure that
we will read the note pitch values from a DATA line. Practically
all of the notes are quavers, and the three that aren’t can be
dealt with by playing two quavers (same pitch)togetherto sound
like a crochet. The last ‘note’ is a quaver-length rest — this is
because this example uses only the first line of a tune that con
tinues for several lines more — but it’s enough for an example.
The first thing to do, then, is to count notes. There are 31 quavers,
counting each crochet as two quavers, so we need a FOR. .NEXT
loop that counts from 1 to 31. The tone periods will be read from
a DATA line, and we can put them in later. We can make up a
skeleton program then, in the form:

10 FOR N% =1 TO 31 :READ K%
20 SOUND 1 ,K% :NEXT

which will attend to reading the values, and sounding them. Once
this has been done, we need to write the DATA lines that will
carry the melody. A good rule here is to write a DATA line for
each bar. It might look wasteful, but it makes things a lot easier
if you are trying to chase a faulty note. There's no wasted time
either, because the computer can put notes into the sound queue
a lot faster than the sound chip will be playing them. In this first
effort, because the notes are quavers, we’re going to use the
‘default’ timing of one fifth of a second.

Now if you read music fluently, it's perfectly easy to convert from
the score to the tone period numbers. If you don’t, then the safest
method is to carry this out in two stages. In the first stage, write
the n a m e s of the notes under the score. The tune starts with the
C above Middle C, and you can mark this as C ’ to distinguish
this from Middle C. If you use the apostrophe mark like this for
all notes in the octave above the end of the C-Major scale, you
won’t confuse a high D with a low D or the other way round. With
the notes written in, the score looks as in Figure 3.7. Count them

44

C' C' D ‘ E' C' E1 D ' G C' C ' D ' E' C ’ B C' C' D ' E' F' E' D ' C' B G A B C' C' '

Figure 3.7 The score with the note names written in. This is always a useful
step unless you read music really well. It’s particularly useful if there are a lot of

sharps or flats in the scale.

again, and remember that you need to show two notes where
there has been a crochet. You can now look up these notes in
the Appendix of the CPC464 manual, where the tone period
number for each note is illustrated. Keeping to four numbers in
each line, we need eight lines. The last line ends with a 0, but
this is not actually read by the program. Later, we’ll see that this
can be a way of ending a program that is operated by a
WHILE. .WEND loop. The result is in Figure 3.8, and when you
run this, you’ll hear that the choice of timing is about right, be
cause this is a quick little tune. The only thing that’s wrong with
the way the computer plays it, in fact, is that the notes which
should be separated are not.

10 FOR N7.= 1 TO 31: READ K7.
20 SOUND 1, K71: NEXT
30 DATA 239,239.213,190
40 DATA 239,190,213,319
50 DATA 239,239,213,190
60 DATA 239,239,253,253
70 DATA 239,239,213,190
30 DATA 179,190,213,239
90 DATA 253,319,284,253
100 DATA 239,239,239,0

Figure 3.8 Yankee Doodle written as a CPC464 program.

Now this isn't quite so easy to deal with. You can, of course,
modify the program so that it looks as in Figure 3.9, with a line
30 which will cause a brief silence between notes. This makes
most of the tune sound better, with short sharp notes — the
correct musical name is s t a c c a t o . The trouble is that it also
causes separation of notes that ought to be played together. In
a short and simple tune like this, we can overcome the problem
quite easily, as Figure 3.10 shows. The places where we d o n ’ t

want the staccato effect occur when N% has values of 13, 14,
15, 16 and 29. By changing line 30 so that the short silence is

45

10 FOR N'/.= l TO 31: READ K7.
20 SOUND 1, K7.

30 SOUND 1,0,2
40 NEXT
50 DATA 239,239,213,190
60 DATA 239,190,213,319
70 DATA 239,239,213,190
SO DATA 239,239,253,253
90 DATA 239,239,213,190
100 DATA 179,190,213,239
110 DATA 253,319,284,253
120 DATA 239,239,239,0

Figure 3.9 Using brief silences between notes to make the notes sound more
clearly separated.

10 FOR N7.= l TO 31: READ K7.
20 SOUND 1, K7.

30 IF (N'/.< 13) OR (N7.>16 AND N7.<29> OR (N7.>
29) THEN SOUND 1,0,2
40 NEXT
50 DATA 239,239,213,190
60 DATA 239,190,213,319
70 DATA 239,239,213,190
80 DATA 239,239,253,253
90 DATA 239,239,213,190
100 DATA 179,190,213,239
110 DAT A 253,319,284,253
120 DATA 239,239,239,0

Figure 3.10 Joining selected notes by making use of the note counter number.

added only for other values of N%, we can make the notes join
up in the few places where we want them joined, and remain
staccato for all the other notes. It’s not a solution that would be
useful for more elaborate tunes, because there would be too
many conditions to get into the ‘silence’ line, but it’s a perfectly
good solution for this type of example. After all, many of your
applications for sound will be to little phrases of music just like
this one.

Figure 3.11 shows another example, starting with the score (a)
for part of the traditional song, the Keel Row. Now this uses
minims, crochets, quavers and semiquavers, and in most of the
bars there is a crochet followed by a dotted quaver tied to a

46

Q ^ M----------- 9 — ^ 9 ------------- r ~ r w -------------m— r f -------- \ * • — — ------- —
___ *

i r r -r sV) * T __ i ^ 1 _____ __ ^ ___

E’ C' E' F ' D ' F' E‘ C' E' D ' B G E' C' E' F ‘ D ' F' E' C' D ' B C'

i n i J - t L

-------- 2 ___ _______ --------- “ ---------
5 ^ ■ ^ Z 2

----------------------- L .k ,

C' E' G' E" C " G' F ' E' C' E' D ' B G C' E' G ’ E " C " G r F' E' C' D' B' C'

1 0 J 7 . = l

20 WHILE J7.< >0
30 READ J7.,D7.
40 BOUND 1, J7.,S*D7.
50 SOUND 1,0,2
60 WEND
70 DATA 190,4,239,3,190,1
80 DATA 179,4,213,3,179,1
90 DATA 190,4,239,3,190,1
1 00 DATA 213,3,253,1,319,4
1 10 DATA 190,4,239,3, 190, 1
120 DATA 179,4,213,3, 179, 1
130 DATA 190,3,239,1,213,3,253,1
140 DATA 239,8
150 DATA 239,3,190,1,159,3,119,1
160 DATA 142,4,159,3,179,1
170 DATA 190,4,239,3,190,1
ISO DATA 213,3,253,1,319,4
190 DATA 239,3,190,1,159,3,119,1
200 DATA 142,4,159,3,179,1
210 DATA 190,3,239,1,213,3,253,1
220 DATA 239,8,0,0

Figure 3.11 The Keel Row arranged for Amstrad. The score (a) has the note
names pencilled in, and the program (b) has data lines that have been obtained
by looking up the tone period numbers for the notes. On the score, the ‘hooks'

of the semiquavers are normally shown as stubs when notes are joined as
shown.

semiquaver. The time is once again two-four, meaning that the
unit is the crochet, and there are two beat units to each bar. The
problems here are to get the r e l a t i v e timing right, and then to
get the a b s o l u t e timing correct so that the tune goes at a good
pace. This last part is purely a matter of judgement, and a real
Tynesider might think I have made it too slow. We start, as usual,
by putting the letter names under the notes. Most of the notes
are in the octave above the middle one, with the odd note two
octaves above Middle C. The timing will be set in this example

47

by including a timing number with each pitch number in the
DATA lines. For each note, then, we will read J%, which is the
tone period, and D%, which is a duration number. We d o n ’ t have
to get these duration numbers exact, however, as long as they
are r e l a t i v e l y correct. In this example, I have used a duration
number of 4 for a crochet, 8 for a minim, 3 for a dotted quaver
and 1 for a semiquaver. That makes all of these notes correctly
timed relative to the crochet. To get the a b s o l u t e timing, I have
multiplied D% by 8 in line 40 of Figure 3.11 (b). This figure of 8
is easily changed — use a smaller value if you want the tune to
rip along faster, a larger value if you want it slower. This is much
easier than altering the timing numbers in each DATA line, and
it’s a technique that you should try to use as far as possible.
There is quite enough work as it is in writing all these DATA lines!
In this example, also, I have avoided the need to count the notes
by using a WFIILE. . .WEND type of loop. The loop is arranged
to detect a value of zero for J%, so we have to start by arranging
a value which is not zero, 1 in this example. The loop will be
read until it finds an item of data equal to zero in the J% position.
This is satisfactory providing that you don’t have a zero anywhere
used as a silence mark. If your melody contains rests, its safer
to use a value of -1 for the duration number as the terminator
for the loop.
The loop is set up, then, with both tone period and duration
numbers being read, and used in the SOUND statement in line
40. The silence line, line 50, can be kept constant this time,
because we don’t need to combine notes to get the timing right in
this example. The hard work now is to write the DATA lines. This is
always tough going, because it means looking up tables and
entering values, and it's more so this time because there are two
numbers for each note. It’s a drag, but it’s not particularly difficult,
and when you try it, the effect is quite rewarding. The bonus here
is that you can keep the part of the program that plays the music,
and write a new tune simply by using different DATA lines.

48

Formula Music
The worst part of converting from written music to Amstrad tone
periods is having to look up each number in the manual. If you
are struggling to learn how to read music, you might not agree
with this, but in fact, it’s in the looking up that most mistakes are
made. Now as it happens, it’s not strictly necessary to look up
the number for each note. The frequency of each note in the
musical scale can be calculated, and the calculated result is so
close to the correct value that only a very well-trained musical
ear would ever detect the difference. The formula is given in the
Amstrad manual, but in my edition it has been printed incorrectly
with (10-N) in place of (N-10). Now you would probably think that
using a formula of the kind that is shown in the manual is even
worse than looking up the values, but help is at hand. You see,
if the frequency and the tone period numbers can be calculated,
then the computer can calculate them for us. It would make the
process one step easier if you could enter the names of the
notes, and have the machine generate a set of tone period
numbers for you. Because the notes names use only the letters
A to G, we need to be able to specify which octave we want to
use. The Amstrad manual numbers the octaves with 0 used for
the octave that starts with Middle C, and -1 for the octave below,
+ 1 for the octave above. If we want to keep our notefinder
program simple, we will need a rather different numbering sys
tem, starting with 1 for the lowest octave (useless if you are using
only the built-in loudspeaker), 4 for the octave that contains
Middle C, and 8 for the highest octave. We could then enter a
string of notes such as: 03B04CDEF#B and have each note
in the string converted to the correct tone period number. This,
in fact, is very similar to the method of programming music that
some other types of computers, notably the MSX computers,
use. The program will have to read each letter in the string, and
decide whether it is an octave command or a note. If the letter
is ‘O’, then the number that follows it will have to be read and
converted into the correct form for the formula. If the letter is a
note letter, then we find from a table a number which acts as the
code number for the formula. The numbering system uses 1 for

49

C, 2 for C#, 3 for D and so on, starting with the note C in each
octave. If we assign the numbers for the letters, we can then test
by reading the next character to see if it is a sharp or a flat. If
it’s a sharp, we add 1 to the code number, if the character is a
flat, then we subtract 1. Once we have the octave number and
the note number, the formula can be used to find the tone period.
We can then sound the note and print the number. With the
numbers on the screen, you can then use the editing system to
type a line number, the word DATA, and then copy down a line
of numbers. The space between them allows room for duration
numbers and anything else you want to put in. You can then
save the DATA lines, and write the rest of your music program.
Easy!

The program is shown in Figure 3.12. It starts by clearing the
screen, assigning the number 125000 to variable CK, and setting
a zone of ten characters wide for printing on the screen. The
figure of 125000 is needed for the conversion of frequency values
to tone periods, and the use of a ZONE of ten characters makes
it easy to print four columns of numbers. This allows you to have
four tone period numbers in each DATA line. The lines up to line
80 then print the title and remind you what the program does,
and how the music strings are entered. The length of a string
has been limited to 80, because otherwise, there will be too many
numbers, leaving you no room to edit in DATA lines. The string
is input in line 90, and its length measured, with the length test
carried out in line 100.

The program from 110 onwards then clears the screen, analyses
the string of notes, and prints the results. Line 120 sets the
variable V% at 0 so that if you forget to start with an octave
setting, the Middle-C octave will be set by default. The main loop
then starts in line 130, picking characters out of the string one

10 CLS:CK=125000:ZONE 10
20 PRINT TAB(15)"NOTEFINDER"
30 LOCATE 1,3
40 PRINT "Please type music string"
50 PRINT"Use □ for Octave (1 to 8>.":PRI
NT"Midle C starts Octave 4."

50

60 PRINT"A to G -for notes. Use tt -for sha
rp"
70 PRINT" and ! -for -flat. Example:
80 PP. I NT "01 BCDttCGA "
90 INPUT Musict:L/I=LEN (Music*)
100 IF L7.>30 THEN PRINT"Too long- only 8
0 will be pr i nted " : L'C=S0
110 CLS:PRINT TAB(15)"Your notes..."
120 LOCATE 1,2:V7.=4
130 FOR N7.= l TO LV.: P$=MID$ (Musi c$, N7., 1 >
140 IF P$="0" THEN GOSUB 1000:GOTO 180
150 IF ASCCP$>>64 AND ASC(P*)<72 THEN GO
SUB 2000:GOTO 130
160 F'RINT"Error in music string- please
check"
170 PRINT Musi ct:END
130 NEXT
190 END
1000 N7.=N7.+l:P$=MID*<Music*,N7., 1)
1010 V7.=VAL <F'$> : IF V7.< 1 OR 97.>3 THEN GOT
O 160
1020 V7.=V7.-4
1030 RETURN
2000 IF P*="C" THEN X7.= l
2010 IF P*="D" THEN X7.=3
2020 IF P$="E" THEN X7.=5
2030 IF P3>="F" THEN X7.=6
2040 IF P$="G" THEN X7.=8
2050 IF F'$=" A" THEN X7.= 10
2060 IF F‘$= ”B” THEN X7.= 12
2070 K$=MID$(Music$, N7.+ 1, 1)
2030 IF KS>="#" THEN X7.= XV.+ 1: N7.=N7.+ 1
2090 IF K*="!" THEN X7.= X7.-1: N7.=N7.-1
2100 GOSUB 3000
2110 RETURN
3000 F=440* (2-' < \ T / . + (X7.-10 > / 12) >
3010 G7.=R0UND (CK/F)
3020 SOUND 1,G7.,10
3030 PRINT G7.,
3035 FOR J=1 TO 400:NEXT
3040 RETURN

Figure 3.12 Converting note names into sound and CPC464 tone period
numbers. This program can be used to make the task of conversion much

easier.

51

by one, using N% as a counter. Each character is assigned to
variable P$, and line 140 tests to find if this is ‘O ’ for Octave. If
it is, then the program shifts to a subroutine which will set the
octave number. The next line, 150, runs only if no octave letter
has been found. This tests for a letter being A to G, the correct
range of note letters. If this test succeeds, then another subrou
tine is called to deal with note numbers. If neither of these tests
succeeds, then the character must be an illegal one, and lines
160, 170 deal with it by printing an error message and the string.
If there is a small error in your string, you can edit it out and use
the direct command GOTO 110 to try again.

The meat of the program is, an usual, in the subroutines. At line
1000, the counter is incremented and another character ex
tracted. This is because this routine has been called to deal with
an octave number, so the character that follows the ‘O' must be
the number. This is converted to number form in line 1010 and
tested, with a jump to the error report if the value is unacceptable.
Line 120 then converts from the 1 -to-8 range which we need to
use, into the - 3 to +4 range that the formula needs. The sub
routine which starts at 2000 then deals with the note letters. Lines
2000 to 2060 assign numbers according to the letter that is
found, and lines 2070 to 2090 check for the next character
being a sharp (#) or flat(!) sign. Since computers do not have
the musical flat sign the exclamation mark (also called pling or
shriek) has been used. The effect of either of these characters
is to modify X%, the note number. The routine then ends by
calling up the final subroutine, which prints and sounds the note,
and returns.

In line 3000, the formula is used to calculate the frequency of
the note, using the octave number and the note number. This
formula is based on the agreement that the note ‘A ’ in the Middle
octave has a frequency of 400 Hz. In an orchestra, it is the job
of the oboe player to tune up, checking with a tuning fork that
the instrument will produce this frequency of ‘A ’, and then the
other instruments tune from the oboe’s ‘A ’. The formula, which
has been in use for rather longer than computers have been
around, uses a power of two, another curious similarity between

52

computing and music. Once the frequency number has been
found from this, the tone period can be found by dividing this
number into 125000, and this is why the variable CK was as
signed early on. The result, G%, in line 3010, is the correct tone
pitch number. This number is an integer, and it is not exact, but
since the sound generator will not accept fractions, it’s as close
as we can get. Note that you must not use an integer for F,
otherwise a lot of the notes, particularly the low notes, will be
seriously out of pitch. Line 3020 then sounds the note, using a
fairly short duration, and line 3030 prints the tone period value.
This is followed by a comma to force the printing into columns
which have been preset by the use of ZONE. Line 3035 then
puts in a time delay which is intended to counteract the effect
of the sound queue. With the time delay, each number pops
onto the screen just as the note sounds, so that you have a
chance to check the note against the number. Later, we'll look
at another way of performing this synchronisation action. Though
this doesn’t let you do any more than check the pitch, it's a good
guide as to whether you have the right tune or not! You can also,
of course, alter the program so that you can use it as a music
subroutine, allowing you to specify tunes by using the note
names. Help yourself!

53

54

4

H a rm o n y a n d
S te re o
Harmony in music means sounding suitable notes together, and
a set of such notes is called a c h o r d . What are ‘suitable’ notes?
Once again, there is no set answer to this — the suitable notes
are the ones that sound good to your ear when they are sounded
together. Though the history of music has been long, composers
were still inventing ‘new’ harmonies right into this century. There
are a few guidelines, though. Suppose we want a cheerful har
mony, the type that is called a m a j o r c h o r d . Once again, the
word ‘major’ is being used to mean cheerful and bright, and as
you might expect, the notes of a major chord are picked from
a major scale. The keynote of any major scale will be in harmony
with the t h i r d and the f i f t h notes of the scale. If you want two-
note harmony, you can pick either, and the program in Figure
4.1 illustrates a few of these major chords. In this program, each
note in a C-major scale is used as a key. The note is played,
then the first chord, the second chord and finally the three-note
chord.

Looking through this program gives you some idea of how the
chords are produced. If you go back to the idea of numbering
the notes of a chromatic scale, illustrated in Figure 4.2, then the
notes that you want for a chord are numbered 1, 5 and 8 where
note 1 is the one that you select as the keynote. For example,
if you select the note F as your keynote, you call this note 1, and
you count up to note 5, which is A. Note that this is the t h i r d note
of a scale that starts at F. You then count up to note 8, which
is C, the f i f t h note of the scale. The notes F, A and C' (the high

55

1 0 D 7 .= 5 0

20 FOR N7.= l TO 7

30 READ S*,A7.,B7.,C7.
40 PRINT St;" Major chords."
50 SOUND 1 , A7., D7.
60 GOSUB 1O00:REM DELAY
70 SOUND 1, A7., D7.: SOUND 2,B7., D7.
80 GOSUB 1000
90 SOUND 1,A7.,D7.: SOUND 4,C7.,D7.
100 GOSUB 1000
110 SOUND 1 , A*/., D7.: SOUND 2, B7-, D7.: SOUND 4,
C7-, D7.
120 GOSUB 1000
130 PRINT
140 NEXT
150 END
160 DATA C,478,379,319
170 DATA D,426,338,284
180 DATA E,379,301,253
190 DATA F,358,284,239
200 DATA G,319,253,213
210 DATA A,284,225,190
220 DATA B,253,201,169
1000 START=TIME
1010 WHILE TIME < START + 300
1020 WEND
1030 RETURN

Figure 4.1 Examples of Major chords, using the first, third and fifth notes of
each major scale.

1m---------------------------- # 3 i 'V17 - #
A Y ~ . r r r -

C C # D D # E F F # G G # A A # B C'
1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 4.2 The chromatic scale numbered, starting at Middle C.

C above F) are then the three notes for a major chord. You can
sound two-note chords with F and A or F and C, or the complete
three-note chord with F, A and C together. This is what the
program does for each of seven notes. The name of the keynote
is read from a DATA line, along with numbers for the keynote
and its two chord notes. The keynote name is printed, then the

56

keynote is sounded, using Channel 1. After a time delay, the
keynote and its 'third' (the third note of the major scale in which
the keynote is number 1) are sounded together. This gives one
harmony. After another delay, the keynote and its fifth are
sounded together, which gives a rather different sounding har
mony. Another delay, and then all three notes are sounded to
gether. This is then repeated for all the notes of the C-major
scale, so that you can hear what these chords sound like for
each keynote.

Once again, not all music wants these particular happy con
tented notes, and for any major chord of three notes, we can

C E G
Major chord

Figure 4.3 Major and minor chord of C. The flattened note can be written as E-
flat or as D-sharp.

C Eb-G C -D # -G

M inor chord

1© D7.=50
20 FRINT"MAJOR CHORD"
30 SOUND 1,47B,D7.: SOUND 2, 379, D7.: SOUND 4
,319, D7.
40 GOSUB 1000
50 PRINT"MINOR CHORD"
60 SOUND 1,478, D7-: SOUND 2, 402, D7.: SOUND 4
, 319, D7.
70 GOSUB 1000
80 GOTO 20
1000 START=TIME
1010 WHILE TIME < START + 300
1020 WEND
1030 RETURN

Figure 4.4 The program which demonstrates these chords.

make small changes which will create quite different effects. You
can change a major chord into a minor chord by flattening the
third. In plain language, that means reducing by one semitone
the pitch of the note which is number three in the scale, the
middle note of the chord. In musical notation, Figure 4.3 shows

57

what this amounts to, and the short program of Figure 4.4 lets
you hear the effect. This simply plays the major and then the
minor chord of C, and repeats until you press the ESC key. You’ll
hear how very different the minor chord sounds, sad and de
pressed compared to the cheerful optimism of the major chord.

Now try another type of change. This time, the major chord is
played, followed by an augmented chord. The augmented chord
is one in which the fifth is sharpened by one semitone. The effect
is sounded in Figure 4.5, and you can hear that the effect is to
make the chord into one which carries a sense of something
about to happen, and also with even more of a feeling of optimism
than the ordinary major chord. Figure 4.6 shows how this looks

1 0 D7.=50>
2C> PRINT "MAJOR CHORD"
3C' SOUND 1,478, D7.: SOUND 2,379, D7.: SOUND 4
, 319.D7.
40' GOSUB 10»0'0>
50 PR INT"AUGMENTED CHORD"
60) SOUND 1,478, D7.: SOUND 2,379, D7.: SOUND 4
, 301 , D7.
70' GOSUB 10'0'0>
80 GOTO 20
1000' ST ART=T I ME
1010' WHILE TIME < START + 30>0'
10'20 WEND
1030' RETURN

Figure 4.5 The sound of an augmented chord.

y

..

* e.

^ %
C E

L 1
G

M ajor chord Augmented chord

Figure 4.6 How the augmented chord looks on paper.

in written music. In use, you always expect to hear another chord
follow an augmented chord like this, and you n e v e r end a tune
on such a chord. Figure 4.7 illustrates another tinkering with the
chord, this time lowering both the third and the fifth by a semitone

58

10 D7.=50
20 PRINT"MAJ OR CHORD"

30 SOUND 1,478, D7.: SOUND 2, 379, D7: SOUND 4

,319, D7.

40 GOSUB 1000

50 F'R I NT " DIMINI SHED CHORD"

60 SOUND 1,478, D*'.: SOUND 2, 402, D/l: SOUND 4

,338,D7.

70 GOSUB 1000

80 GOTO 20

1000 ST ART=TIME

1010 WHILE TIME < START + 300

1020 WEND

1030 RETURN

Figure 4.7 The sound of a diminished chord.

Zdj —
-̂---3 ■ ■ . U r - -\) 2o

C-E-G C-Eb-Gb C -D # - f#
Major chord______ ~~ Diminished chord

Figure 4.8 The diminished chord written down.

each. Again, this makes the bright chord into something quite
different, depressed, and waiting for something unpleasant to
happen. Figure 4.8 shows the notes in standard musical notation.

All of these harmonies have made use of the three channels,
obtained by using the channel numbers 1, 2 and 4. The next
step is to show how simple melodies with harmony can be put
into computer form by making use of these channels. For a
moment, we’ll stick to comparatively simple methods, ignoring
awkward problems of the sound queue and synchronising chan
nels. The first point is how to get hold of music, assuming that
you will not be writing your own. Piano music, or music for the
various types of small electronic organs, is the best to work with.
Don’t on any account use music for instruments like the clarinet
or trumpet, because these are ‘transposing instruments’ (see
Appendix B). What that means is that the sounds you get don’t

59

correspond to the written notes. For example, when the written
music shows C, a B-flat clarinet will give you B-flat (yes, that’s
why it’s called a B-flat clarinet!). This is deliberately arranged
as a way of making life easy for orchestral composers, but it
makes it very awkward for anyone who wants to know what a
score for one of these instruments sounds like. If you keep to
piano and organ music, you’ll have none of these problems at
least. If you compose your own music, your problems will be
quite different! Whatever you do, be careful about copyright.
Unlike programmers, composers have the full weight of the Law
behind them, and a very effective organisation called the Per
forming Rights Society. The aim of both is to ensure that the
composer gets a royalty each and every time his/her music is
played in public. This means every time it's played in public on
a radio, from a disc or tape — or from a computer. Places where
music is played, including pubs, restaurants, clubs, shops, cin
emas, all have to take out licences and pay money for the music
that they play. Not all do, but they pay a lot more if they are
caught out! If you are going to use music in a program which
you will then sell or perform in public, then you must either take
out a licence with the Performing Rights Society, or make sure
that none of the music that you use is in copyright — which
means composing your own or sticking to music that was written
more than a hundred years ago. I just hope that musicians are
as fussy about observing the copyright of any computer pro
grams that t h e y use! If you are going to put music into a program
of your own for your own use, there is nothing to hinder you
buying the sheet music for the latest hit and using it.

With that warning, let's take a look at a tune that uses harmony
in a simple way. Figure 4.9 shows the score for a slow-moving
piece of music — the original is marked ‘Cantabile’ which means
with a singing tone, not in sharp bursts like a staccato piece.
This uses minims for practically all of the notes except the last
ones, which are semibreves. As before, we can fake the semi
breves by playing two minims together, but since the loop is not
a FOR. . .NEXT loop, we can’t, in this example, run the two com-

60

Figure 4.9 A harmony example. The original includes repeats and some
crochets, but this has been adapted for simplicity.

10 A7.= 1: D7.=7W: N=650

20 W H I L E A7.>0

30 READ A 7., B7., C7.

40 S O U N D 1 , A 7., D7.: SOUND 2, B7., D7.: SOUND 4 , C

7.,D 7.

50 FOR J=1 TO N:NEXT

60 WEND

70 D A T A 4 2 6 , 319,506

80 DATA 4 2 6 , 2 84,568

90 DA T A 4 2 6 , 253,638

100 DATA 4 2 6 , 284,676

1 10 DATA 451 , 3 1 9 , 5 6 8

120 DATA 426 , 3 3 3 , 5 6 8

130 DATA 451 , 3 7 9 , 5 6 8

140 DATA 676,426,851

150 DATA 5 0 6 , 3 1 9 , 7 5 8

160 DATA 4 2 6 , 284,676

170 DATA 4 2 6 , 2 53,638

180 DATA 3 1 9 , 239,638

190 DATA 426,253,633

200 DATA 4 7 8 , 284,676

210 DATA 506 , 3 1 9 , 6 3 8

220 DATA 5 0 6 , 319,638

230 DATA 0,0, 0

Figure 4.10 The program for the music for Figure 4.9.

pletely together. The program corresponding to this is in Figure
4.10. It uses the type of reading instructions that you should be
familiar with by now, with a WHILE. . .WEND loop used to read
data until the first of a set is a zero. The DATA lines have been
taken direct from the written music, using the table of notes in
the Amstrad manual. The times of the notes have been set with
D% equal to 70 to make the music slow, and the delay loop uses
a value of N =650. This last value has been evolved by trial and

61

error. When you are trying out a tune like this, it’s always a good
idea to use a delay loop that is much too long, such as you get
with N =1000 or even more. That way, when the tune plays, you
will hear each chord separately, which makes it a lot easier to
hear if one of them sounds a bit off. In this example, I did just
that, and then reduced the value of the counter N until the chords
were jus t beginning to run into each other. This is what produces
a reasonable 'singing' note. If you alter the value of the note
length, D%, then you will also have to alter the value of the loop
count N, so it’s advisable to get the note length right first.

Now it’s not exactly like the latest rock hit, but we have to move
slowly when we are learning the ropes. It does at least play
something, and that’s what we want it to do. The next thing we
can check out is whether we can improve on this. As it stands,
it’s a bit drab and featureless, just a set of chords. Suppose, for
starters, that we emphasised the melody a bit. The melody is in
channel 2, the B% numbers, and we could emphasise it by
making it slightly louder. Now for the simple use of the SOUND
instruction, you can specify volume by adding another number
following the duration number. The permitted range is 0 to 7
— later we’ll look at the circumstances in which this can be
extended to 15. If you don’t specify any volume number, then
you get the volume that corresponds to level 4. Suppose that
we change the volume in the B% numbers to 6. We can do this
by altering line 40 so that it reads:

40 SOUND 1 ,A%,D%:SOUND 2,B%,D%,6:SOUND
4,C%,D%

— with the change of volume only in the middle channel, the
one which carries the melody. If you play this one now, you’ll
find that the melody sounds much clearer, and the effect is better.
You can make another improvement by jacking up the volume
of the bass notes, but you won't notice so much change unless
you are using a Hi-Fi system, or sensitive earphones. A volume
figure of 5 in the C% SOUND instruction will boost the bass
nicely, enough to be noticeable on these systems, but not if you
are using just the built-in loudspeaker. If you are using head
phones, incidentally, you’ll find that the notes are separated, with

62

the bass appearing mainly in the right-hand earpiece. W ell be
looking at stereo sound in more detail later but for the moment,
it’s worth noting that if you are likely to be writing music for stereo
output, you should always try to put the melody into the middle,
‘B’, channel rather than in the A or C channels, and that's why
it has been done in this example.

We can go rather further in making this sound better, though.
One of the things that still makes it seem a bit featureless is that
the notes all carry pretty much the same weight, there's nothing
that conveys a rhythm. Now this can be remedied if we empha
sise the first note in each bar which, in this case, means the first
in each two notes. We can emphasise this note either by making
it fractionally longer or by making it louder. Suppose we try
making it louder. If we numbered the notes 1, 2, 3 and so on,
the loud ones would be the odd numbered ones. We can number
the notes by returning to using a FOR. . .NEXT loop for reading
the data, and testing the number which is the loop counter. If
this number divides evenly by 2 we can play the note softly,
because it will be an even numbered note. If the number does
not divide evenly by two, then the number is odd, it’s the first
note in a bar, and we make it loud!

This method of putting a bit of rhythm into a tune is illustrated
in Figure 4.11. The FOR. . .NEXT loop is arranged to read in all
the notes from the DATA lines, and also to produce the emphasis.
The method that is used may be new to you, however. MOD is
a word that does not appear in the list of BASIC keywords in the
manual, because it is one of the number operators, like + - , *
and /. The effect of MOD is to produce the remainder of an
integer division, and the MOD is placed between the numbers
just as you would place a division sign, but with the important
difference that there m u s t b e a s p a c e b e t w e e n M O D a n d e a c h

n u m b e r . For example, if you write X% MOD 3, then this gives 1
if X% =1, 2 if X% =2, and 0 if X% =3. It will then give 1 again if
X%=4, 2 again if X%=5, 0 again if X% =6 and so on. These
numbers are the remainders after the value of X% has been
divided by three. In our example, we want to detect the odd
notes, and this means that there will be a remainder when we

63

10 D/l=70sN=65©

20 FOR J7.= l TO 16

30 IF(J7. MOD 2) =0 THEN V7.=5 ELSE V7.=7

40 READ A7,B7.,C7.

50 SOUND 1 , A7., D7.: SOUND 2,67., D7., V7.: SOUND

4, C7., D7., 5

60 IF J7.<16 THEN FOR J = 1 TO N:NEXT

70 NEXT

8W DATA 426,319,506

90 DATA 426,284,568

100 DATA 426,253,638

110 DATA 426,284,676

120 DATA 451,319,568

130 DATA 426,338,568

140 DATA 451,379,568

150 DATA 676,426,851

160 DATA 506,319,758

170 DATA 426,284,676

180 DATA 426,253,638

190 DATA 319,239,638

200 DATA 426,253,633

210 DATA 478,284,676

220 DATA 506,319,638

230 DATA 506,319,638

Figure 4.11 Putting rhythm into a tune by emphasising the first note in each bar.

divide the counter number J% by 2. If we test for (J% M OD2)=0,
then this will be true when J% is even, false when J% is odd.
We could, of course, just as easily test for (J% MOD 2)=1 which
would be true when J% was odd. In the program of Figure 4.11,
this test has been made in line 30. If J% is odd, then the volume
number V% is 5, but if J% is even, the volume number 7 is used.
This gives a good emphasis to the first note in each bar. The
test in line 60 also allows us to combine the last two minims into
a complete semibreve, which sounds more appropriate for the
end of the phrase. Finally, Figure 4.12 shows the other method.
The same test has been used, but this time, the first note in each
bar has been made slightly longer. This, of course, makes a bit
of a mess of the composer’s timing, and it’s not something that
you would use unless you thought that the effect warranted it.
The technical name for this sort of time distortion is 'rubato',
meaning literally ‘robbery’. You have robbed the second note

64

1O D7.=TO: N = 5 5 o : V7.=5

20 FOR J7.= l TO 16

30 IF<J7 MOD 2) =0 THEN D7.=50 ELSE D7.=70

40 READ A7.,B7.,C7.

50 SOUND 1,A7.,D7.: S OUND 2, B7., D7., V7.: SOUND

4,C7.,D7.,5

60 IF J7.< 16 THEN FOR J = 1 TO N : NEXT

70 NEXT

BO DATA 426,319.506

90 DATA 4 2 6 , 284,568

100 DATA 4 2 6 , 253,638

110 DATA 426,284,676

120 DATA 4 5 1 , 319,568

130 DATA 426,338,568

140 DATA 4 5 1 , 3 79,568

150 DATA 676,426,851

160 DATA 506,319,758

170 DATA 426,284,676

180 DATA 4 2 6 , 2 53,638

190 DATA 3 1 9 , 239,638

200 DATA 4 2 6 , 253,638

210 DATA 4 7 8 , 234,676

220 DATA 5 0 6 , 319,638

2 o O DATA 506,319,638

Figure 4.12 The other method of emphasising a note by making it slightly
longer.

in each bar of some of its time in order to extend the first. The
dalay loop has been slightly altered to accommodate this change
of timing.

Synchronisation
Suppose we have a piece of music which looks something like
the example in Figure 4.13. The treble melody line uses crochets
and quavers, but the bass line uses minims and quavers. In
each bar, a minim in the bass plays for the same time as two

SF
P P —

f t _ _L_

Figure 4.13 A slow-moving melody which uses a mixture of note times.

65

of the crochets (or a crochet and two quavers) in the treble, and
the important point is that these notes must be synchronised.
Now for a v e r y s h o r t tune, this does not need any special effort
on your part. You can use a slight modification of the methods
that we have used so far, with a channel number included as
part of the DATA. If you read for each note the channel number,
tone period number, and a duration number, then you can place
the data lines in order. The order is the order of playing, re
membering that the data will be read from the sound queue into
the channel each time a channel is free. Take a look, for example,
at the first bar of this tune which uses a crochet and two quavers
in the treble, and a single minim in the bass. The most straight
forward way of programming this is to put in the data for the
minim, using channel A, and then three data lines for the treble,
the crochet and the two quavers. Providing that the timing is
correct, this should sound completely acceptable. The data for
the minim is read, goes at once into the head of the sound queue
for Channel A, and the data for the three treble notes is also
read, this time into the sound queue for Channel B with the data
for the crochet going at once to the head of the queue. There
is very little difference in the time between starting the minim and
starting the crochet, so the two appear to make a good chord.
Whenever the crochet finishes, the next quaver is taken from its
queue, and when this quaver is finished, the second quaver is
put from its sound queue into its channel.

For a few notes, even for a few bars, this is reasonably satis
factory, but after some time, the synchronisation falls apart. The
reason is that taking data from the sound queue into the sound
channels is not absolutely instantaneous. There is always a slight
delay caused by this transfer, and when you feed in a lot of notes
in sequence like this, these delays build up. The effect of this
cumulative delay is to make the treble and the bass out of step
after several bars. When a tune consists of a stream of notes
with no rests, and when you can use an organ-note effect with
no separation between notes, the lack of synchronisation is not
really important, because you won’t notice it unless you are
working with really long pieces. Try, for example, the tune in
Figure 4.14, which is the Amstrad version of the piece of music

66

It) L7.=40:C7.= 1
20 WHILE C7.O0
30 READ C7̂ ,N7,D/C
40 IF C7.=2 THEN V7.=7 £LSE V7=5
50 SOUND C7., N7., DV.*L7., V7.
60 WEND
70 DATA 1,478,4
80 DATA 2,190,2
90 DATA 2,179,1
1 00 DATA 2,190,1

1 10 DATA 1,506,4
120 DATA 2,213,2

130 DATA 2,159,2
140 DATA 1,568,4
150 DATA 2,239,2
160 DATA 2,213,1
170 DATA 2,190,1
180 DATA 1,638,4
190 DATA 2,190,2
200 DATA 2,213,2
210 DATA 1,506,2
220 DATA 2,179,2
230 DATA 1,638,2
240 DATA 2,159,1
250 DATA 2,179, 1
260 DATA 1,478,2
270 DATA 2, 190,2
280 DATA 1,716,2
290 DATA 2,213,1
300 DATA 2,239, 1
310 DATA 1,633,2
320 DATA ^ * 21-3, o
330 DATA 1,1276,:
340 DATA 2,239,1
350 DATA 1,956,4
360 DATA 2,239,4
370 DATA 0,0,0

Figure 4.14 The melody programmed for the CPC464. If you can try this with
output from a good stereo system, it sounds quite impressive.

in Figure 4.13. This has been programmed with data lines which
contain the channel number, the tone period, and the duration.
The SOUND instruction then uses these values, with a multiplier
L% used at the start of the program to set the timing. This has

67

been set so as to give about the right pace. The original music
(by Handel) is marked ‘Andante’, which means ‘at a walking
pace’. If you imagine your legs moving in time to the beat of the
music, you should find that the tempo is, as it suggests, a walking
pace. The melody line is emphasised by making this channel
(Channel B, code 2) play louder. This has been done by testing
at the reading stage, and if a ‘2 ’ has been read for the channel
number, then the volume number V% is set to 7, otherwise to
5. When each note is put into a data line like this, control of
volume becomes easier. You could, if you liked, even control the
volume of each note separately by having a V% entry into each
data line, but it’s unusual to have to change the volume so often.
A more useful method is to use a FOR. . .NEXT loop to read in
the data, and to change the volume at various places by checking
the value of the counter variable.

This little tune, then, plays acceptably with no problems of syn
chronisation, provided that we accept its limitations of no spaces
between notes. When we want to make the notes of the melody
sound separated, however, we are likely to run into trouble. If
we simply use a delay loop after each melody note, then both
melody and accompaniment seem to suffer from hiccups, and
the effect is not pleasing. A neater method is to detect a note
which uses C%=2, and to insert a SOUND instruction which
plays a short space. This can be done by adding a line 55 which
reads:

55 IF C% =2 THEN SOUND 2,0,5,0

which will give a short space, only two units, between notes of
the melody. The normal crochet space is 80 (with L% =40 and
D%=2), and a gap of 5 units doesn't seem too drastic. When
you play this one, the notes of the melody are nicely separated,
but the accompaniment is badly out of synchronisation. This
shows itself after a few notes, when you can hear the bass note
change at the wrong time, and you find that bass and treble are
not in step at the start of any bar.

Getting out of this one involves using the synchronisation codes
of the Amstrad SOUND instruction. Try it out on your ears first,

68

10 L7.=40: C7.= 1: J = 6 0 0

2 0 WHILE C7.O0
3© READ C7.,N7.,D7.
40 IF C7.=2 THEN V7.=7 ELSE V7.=5
50 SOUND C7., N7., D7.*L7., V7.
55 IF C7.=2 THEN SOUND 2,0,5,0
60 WEND
70 DATA 17,478,4
30 DATA 10,190,2
90 DATA 2,179,1
100 DATA 2,190,1
1 10 DATA 17,506,4
120 DATA 10,213,2
130 DATA 2,159,2
140 DATA 1,568,4
150 DATA 2,239,2
160 DATA 2,213,1
170 DATA 2,190,1
180 DATA 17,638,4
190 DATA 10,190,2
200 DATA ■** 9 •*- 1 ° 9 -*-
210 DATA 1,506,2
220 DATA 2,179,2
230 DATA 1,638,2
240 DATA 2,159,1
250 DATA 2,179,1
260 DATA 17,478,2
270 DATA 10,190,2
280 DATA 1,716,2
290 DATA 2,213,1
300 DATA 2,239,1
310 DATA 1,638,2
320 DATA
330 DATA 1,1276,2
340 DATA 2,239,1
350 DATA 17,956,4
360 DATA 10,239,4
370 DATA 0,0,0

Figure 4.15 The new version of the melody, with spaces and with
synchronisation added.

by playing the program in Figure 4.15. This is very much the
same as Figure 4.14, but with some cunning alterations to the

69

Number Effect

8 Synchronise with note in Channel A
16 Synchronise with note in Channel B
32 Synchronise with note in Channel C

In addition, we have the following —
64 Hold note until RELEASE

128 Remove all notes from queue.

Figure 4.16 The essential synchronisation numbers.

DATA lines. You’ll see that some of the channel numbers have
been changed, and when you play the program, your ear will
tell you that the synchronisation is much better. What the changes
have done is to force the channels to synchronise at the start
of each bar. This still allows the notes to drift apart slightly at the
end of the bar, but the difference is small and acceptable. Pro
vided the start of each bar is synchronised, then the effect is a
great improvement on the version of Figure 4.14 which included
the ‘silence’ line to separate the melody notes.

How to synchronise
Getting sounds to synchronise, or ‘rendezvous' as the manual
puts it, is done by adding numbers to the channel numbers. The
numbers which can be added are shown in Figure 4.16. These
numbers must be added to the channel number o f e a c h c h a n n e l

t h a t i s t o be s y n c h r o n i s e d , not just to one channel. In our tune,
we want the first note in Channel B to synchronise with the first
note in Channel A. The first DATA line contains the numbers for
the minim that is the first note in channel A, code number 1. To
make this synchronise with Channel B, the melody channel, we
must add 16 to the channel code number, making it 17. This will
have no effect unless we also mark the note in Channel B which
is to sound at the same time. To do this, we add 8 to the Channel
B code of 2, making 10. If we had added 8 to another note in
Channel B, then the synchronisation would have occurred on
that note instead of the first one. The program has then been
altered by picking out the lines that contain the first notes of
each bar in the two channels. These have their C% numbers

70

altered, making each 1 into 17 and each 2 into 10. This ensures
that the channels are synchronised at the start of each bar. We
could, if we liked, synchronise other notes but, as I have said,
it’s quite reasonable to synchronise just the starting notes like
this. The effect is certainly a lot better than you get normally
w h e n there is a set of short silences in the melody line. I must
emphasise that for short pieces, played in organ style with no
silences, you don’t have to worry about synchronisation. Where
you want to use separated notes in the melody, or where these
is a complicated set of silences in a tune, and particularly if the
tune is a long one, then you d o have to worry about synchron
isation. If you are using three channels, then the third channel
is synchronised in the same way, using the appropriate code
numbers. The best scheme is to use Channel B as the melody
channel, and to make the other two synchronise with it at the
start of each bar. it may be, of course, that some bars will start
with a silence in one channel. You can still write a DATA line for
a silence, however, and synchronise with it. The alternative is
to synchronise the other channels, and then synchronise again
when a note is played after the silence.

Synchronisation really becomes essential, however, when we
start to use ‘envelopes’ to create notes that have a pattern like
that of most musical instruments. This is something that we’ll be
looking at in the following Chapter, but as an introduction, the
use of an ‘envelope’ means that the volume of a note can be
made to vary during the time it is sounded. This makes it possible
to have notes that sound separated without the use of silences,
but it also means that control of duration is less easy. In turn,
this makes synchronisation very difficult unless we make use of
these extended Channel numbers to ensure that notes start out
in step at the start of each bar. In some cases, synchronisation
may be needed more than once per bar. The effects can be very
pleasing — so now you have something to look forward to!

Stereo Sound
We've met the idea of stereo sound briefly, but it's now time to
take a look at how the CPC464 can produce this type of sound.

71

It's done simply by using the channels. Channel A, code 1, feeds
the left-hand socket. If you type:

SOUND 1,239,5000,7

and plug in stereo headphones, you can hear the effect. You
will need to turn the volume control down as far as possible. This
volume control affects only the built-in loudspeaker, not the head
phone socket. When you press ENTER, you’ll hear the sound
— but in the left ear only. Now type:

SOUND 4,200,5000,7

and press ENTER, and you’ll hear this other note in the right ear.
This is Channel C in use, code 4. If you now type:

SOUND 2,300,5000,7

then you’ll hear the sound equally in each ear, because the
sound of Channel B is fed equally to both parts of the output
socket. This is why, up until now, I have advocated using Channel
B for the melody line. When you use the built-in loudspeaker of
the CPC464 (or the TV loudspeaker when you use a TV receiver
and power-pack in place of a monitor), the stereo signals are
combined, and it is this combined signal that is controlled by
the volume control. When you use earphones, the only control
that you have over volume is by way of the volume number, 0
to 7, in the SOUND instruction. You can, of course, follow the
hint in Appendix C and attach a low-power stereo amplifier to
the output so that you have complete control over the earphone
output.

By way of introduction to the idea, give a listen to the scrap of
waltz in Figure 4.17. In this example, the melody is kept in the
left stereo channel and the accompaniment in the right channel.
On headphones or with a stereo amplifier, the separation is very
noticeable, though there is no hint of it when you listen with the
internal loudspeaker. Separation like this is entirely artificial, and
you would do this kind of thing only when you particularly wanted
the effect of separation. A more interesting effort is illustrated in
Figure 4.18, which uses the same tune and the same main pro
gram, but with some considerable alterations to the DATA lines.

72

f t r=

_ - 0 - r

-̂--------- i—■—

. -r r . + * t1 - I I - \ 4 I I

10 L7.=20
20 FOR N7.= l TO 31
30 READ C7.,T7.,D7.
40 IF C7.=31 THEN V7.=7 ELSE V7.=5
50 SOUND C7., T7., L7.*D7., V7.
80 SOUND 1,0.2,0: SOUND 4,0,2,0
70 NEXT
80 DATA 1,284,2,1,239,2,1,213,2
90 DATA 33,190,6,12,588.2,4,478,2,4,478,

1 00 DAT A 12,379, 8, 33, 190,2, 1,213,2, 1,239
n

j J—

110 DAT A 33,213,6,12,506,2,4,426,2,4,426

120 DATA 12,379,6,33,253,2,1,213,2,1,190
, 2
130 DATA 33,179,6,12,5 06,2,4,426,2,4,426
9 2

140 DATA 12,379,6,33,179,2,1,190,2,1,213
n

9 ^

150 DATA 33,239,6,12,568,2,4,478,2,4,478
*

Figure 4.17 (a) A scrap of waltz and a program (b) which will give the sound in
stereo.

In this example, we shall put the melody line in Channel B, and
split the accompaniment into channels A and C. The way this
will be done is fairly typical of stereo music programs. The tune
is a waltz, and each alternate bass line is the characteristic ‘rum -
pum-pum' of waltz-time. The first of these three notes, which is
usually the lowest pitch, will be put into Channel C, and the other
two in Channel A. When the bass line consists of only one note,
then it will be played in both A and C. In all other respects, the
program is the same as that of Figure 4.17.

The synchronisation, however, is far from straightforward. No
synchronisation is needed in the first DATA line, because the

73

10 L7.=2«
20 FOR N7.= l TO 3B
30 READ C7.,T7.,D7.
40 IF C7.=31 THEN VV.=7 ELSE V7.=5
50 SOUND C7., T7., L7.*D7., V7.
60 SOUND 1,0,2,0:SOUND 4,0,2,0:SOUND 2,0 ,2 , 0
70 NEXT
100 D A T A 2,284,2,2,239,2,2,213,2
110 DATA 34,190,6,20,568,2,12,0,4,33,478
,2,1,478,2
120 DATA 17,379,6,20,379,6,42,190,2,2,21
' - ' , 2 ,2 , i j 9 , 2

130 DATA 34,213,6,20,506,2,12,0,4,33,426
,2,1,426,2
140 DATA 17,379,6,20,379,6,42,253,2,2,21
3,2,2,190,2
150 DATA 34,179,6,20,506,2,12,0,4,33,426
,2,1,426,2
160 D A T A 17,379,6,20,379,6,42,179,2,2,19
0, ^ 1
170 DATA 34,239,6,20,568,2,12,0,4,33,478
,2,1,478,2

Figure 4.18 Using further stereo effects to emphasise the waltz time.

notes of the first bar are unaccompanied. The next DATA line
is slightly more complicated. The melody note, a dotted minim,
is to be in Channel B (code 2), and must synchronise with the
first accompanying crochet, which will be in Channel C. Since
the synchronisation number for C is 32, this adds up to 34 for
this channel number. The next note in the DATA line is the first
crochet of the accompaniment. This is in Channel C (code 4),
and must synchronise with the melody in Channel B (sync, code
16). Adding, we get the code of 20 to use as channel number
for this note.

Now things get more complicated. The next two notes of the
accompaniment are to be played in Channel A. If we put them
in with no synchronisation, they will be played at the same time
as the other notes. What can we synchronise them with, when
no other note starts at the same time? The answer is to ‘play’ a
silent note in Channel C for two beats, and synchronise to this.

74

Channel C (code 4) synchronised to A (code 8) gives 12, and
we need a tone period of 0 to get silence, with a length number
of 4 for two beats. We can now put the second note of the
accompaniment into Channel A, and synchronise to this ‘dummy’
note in C. Channel A (code 1) synchronised to C (code 32) gives
33, which is therefore the channel number for this note, and it
is then repeated, this time with the Channel number code of 1
because the last note needs no synchronisation.

Now take a look at DATA line 120, which contains the next lot
of surprises. We start with the first accompaniment note in Chan
nel A, synchronised to channel B with the number 17 (= 1 +
16), and then code 20 is used to play the bass note also in
Channel C, synchronised to Channel B. What we want now is
to play the first melody note in Channel B, synchronised to b o t h

A and C. If you try to synchronise to one or the other, the program
will hang up, waiting for something to start first! The note is to
be in B, code 2, with sync, to A (code 8) and to C (code 32).
The sum of 2+ 8+ 32 is 42, and that’s the number to use. After
this hurdle has been dealt with, the other two notes in the melody
line are dealt with in the normal way. The remaining lines now
follow the pattern of either iine 110 or line 120. The important
point here is that you may have to synchronise a note to t w o

other channels. If you find that a music program which uses
synchronisation hangs up, then print out the values of channel
and note numbers after pressing ESC twice. You will usually find
a synchronisation error at a point in the data just before the place
where reading stopped. It’s not always easy for you to spot when
this is needed, but the machine certainly can!

Rolling your own
If you seriously intended to become a composer, then using a
computer is the hardest way of going about it, and you would
be better off using one of the range of Casio or Yamaha key
boards. I’m saving my pennies for one right now. If, however,
you just want to knock off the odd phrase to liven up a game
that you have devised, or you want to use the sound as an aid
to a blind user, or you want to use some sound in a business

75

Id D7.=30
20 FOR N7.=22 TO 71
30 IF INKEY (N7.)=0 THEN X7.=N7.-21: ELSE 50
40 ON X-/. GOSUB 80,100,110,120,140,160,18
0,200,220,240,260,280,300,320,340,360,38
0,400,420,440,460,480,500,520,540,560,57
0,590, 610, 630,650,670,690,710,730,750,77
0,790,310, 830,850,870,890,910,930,940,96
0,970,990,1000
50 NEXT
60 IF INKEY (79) =0 THEN FDR J7.= l TO 4:PRI
NT CHRS(8) ; CHR$(16)j:NEXT
70 CALL &SB03: GOTO 20-
SO SOUND 2, 100, D7., 7: PRINT"lOO " ;
90 RETURN
100 RETURN
110 RETURN
120 SOUND 2, 1 19, D7., 7: PRINT" 119 5
130 RETURN
140 SOUND 2, 1 13, D7., 7: PRINT”1 13 II a

%

150 RETURN
160 SOUND 2, 142, D7., 7: PRINT" 142 II a

9

170 RETURN
130 SOUND 2, 106, D7., 7: PRINT- 106 II a

9

190 RETURN
200 SOUND 2, 134, D7., 7: PR I NT " 134 115
210 RETURN
220 SOUND 2, 127, D7., 7: PRINT" 127 " 5
230 RETURN
240 SOUND 2, 159,DX,7:PRINT" 159 II a

9

250 RETURN
260 SOUND 2, 150,D7.,7:PRINT" 150 9

270 RETURN
280 SOUND 2, 190, D7., 7: PR I NT "190 ";
290 RETURN
300 SOUND 2, 179, D7., 7: PRINT" 179 " 9

310 RETURN
320 SOUND 2,225, D7., 7: PRINT" ET II a

330 RETURN
340 SOUND 2, 169, D/C, 7: PRINT" 169 " 5
350 RETURN
360 SOUND 2,213, D7., 7: PRINT"213
370 RETURN

76

330
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
6 S 0

690
700
710
720
730
740
750
760
770
780
790
800

SOUND 2,253, D7., 7:
RETURN
SOUND 2,201,D7.,7:
RETURN
SOUND 2,239,D7.,7:
RETURN
SOUND 2,301,D7.,7:
RETURN
SOUND 2,284,D7.,7:
RETURN
SOUND 2,358,D7.,7:
RETURN
SOUND 2,338, D7., 7:
RETURN
SOUND 2,268,D7.,7:
RETURN
SOUND 2, 319, D7-, 7:
RETURN
RETURN
SOUND 2,379,D7.,7:
RETURN
SOUND 2, 478, D7., 7:
RETURN
SOUND 2,568,D7.,7:
RETURN
SOUND 2,451,D7.,7:
RETURN
SOUND 2,426 , D7., 7:
RETURN
SOUND 2,536,D7,7:
RETURN
SOUND 2,402,DX,7:
RETURN
SOUND 2,506,D7.,7:
RETURN
SOUND 2,602,D7.,7:
RETURN
SOUND 2,753,D7.,7:
RETURN
SOUND 2,716,D7.,7:
RETURN
SOUND 2,902, D7., 7:
RETURN

PRINT"253

PR INT"201

PRINT“239

PR INT"301

PRINT"284

PRINT"358

PRINT"338

PRINT"268

PRINT"319

PRINT"379

PRINT"478

PRINT"568

PRINT"451

PRINT"426

PRINT"536

PRINT"402

PRINT"506

PRINT"602

PRINT"753

PRINT"716

PRINT"902

77

81© SOUND 2 ,8 5 1 , D7„, 7 : PR I NT "851

B2© RETURN

83© SOUND 2 ,6 7 6 , D7., 7 : PR I NT "6 7 6 " :

84© RETURN

85© SOUND 2 ,6 3 8 , D7., 7 : PR I NT "6 3 8 " ;

86© RETURN

87© SOUND 2 , 8© 4, D7., 7 : PR I NT " 8©4

88© RETURN

89© SOUND 2 , 12©4, D7., 7 : PR IN T" 12©4" ;

9©© RETURN

91© SOUND 2 ,9 5 6 , D7., 7 : P R IN T "9 5 6 " ;

92© RETURN

93© END

94© SOUND 2 , 1 13 5 . D7., 7 : PR IN T" 1 135" ;

95© RETURN

96© RETURN

97© SOUND 2 ,1 © 7 3 ,D 7, 7 : P R IN T "1 © 7 3 ";

98© RETURN

99© RETURN

1©©© SOUND 2 , 1©12, D7-. 7 : PR IN T" 1©12" ;

1©1© RETURN

1©2© RETURN

Figure 4.19 A program which allows you to use the keys of the computer as a
musical keyboard.

program, then it’s entirely reasonable to do your own compo
sitions on the computer. To aid you, here are two short but useful
programs. The first, Figure 4.19, turns the keys of the CPC464
into a music keyboard. It’s not exactly like a piano keyboard,
because the positions of the notes are rather unorthodox, but
it does allow a fair range of notes to be produced, and shows
the tone period number for each note on the screen unless you
delete it. The keys that are used are shown in Figure 4.20, with
the note that each key can sound. It would be possible to get
even more notes by making use of the SHIFT and CTRL keys
along with the character keys, but for the sake of (relative!)
simplicity, this has not been done. There are 44 active keys,
which is the same as some of the smaller electronic keyboards
on the market. The duration of the note is fixed, but because the
key action is contained in a loop, a key will sound for at least
as long as you press it, and usually quite a lot longer. You can
control this to some extent by altering the value of D% in line 10,

78

E
S
C

,
G
*

C,

E.

G
f

C

E
G
#

r — .!
I ,, , I I

I n
i 1____

x
j)

4*:
Q

O

*
O

*< TJ0)
'5co
a>
£

*o

*o

o

*<

<

%
o

%Q

Q

Oc
o
<Dcn ■c ^Jr to ro zr

P o
• <D■o £<d t:
g> c
<o °

0)

o o
k_
CO

_TO TO a>
X) X)

o "O o X! (0
_TO E TO E <0
X 3

x>
E
0)

TO>
o
-QTO

XJ
X!
E
$

$o
TO
XI

a>
JC
o
sz

Q TO _o TO +*
-DTO >TO TOX) >TO 5
TO
> s TO> U

O XTO
t>

o
$

TO
O

o
$ o

o O CN
I 1 1 1

„ a>
b b o' o' 3

O)
Li-

<

I
_ I
i I
I I
I I
I I

cjO

<
O

79

but if you make D% much smaller than 20, the repeat action will
cause a set of beeps rather than a continuous note. Large values
of D% give a note that plays for much too long after the key has
been released. When the program is used, only the keys noted
have any musical effect. The DELETE key will wipe out the note
numbers on the screen, so that you can delete a note which you
d idn’t intend or don’t like. The ESC key will allow you to terminate
the program. If you use a RETURN in place of the END in this
line (line 930) then the program will be interruptable only by
pressing CTRL SHIFT ESC, and the program will be wiped when
this is done. You should save the program before testing it in
case any mis-typing causes a lock-up of this kind. Once you
have played a melody, wiping out any notes that you don't like,
you can leave the program, type a high line number and the
word DATA, and then use the copy action of the CPC464 editor
to copy down the tone period numbers for your melody. You can
then wipe the program lines, leaving you with one or more DATA
lines which you can record for use later. Talk about instant
com posing!

The program action
The program works by checking the keyboard in a loop. The
INKEY(N%) action is to return -1 if key number N% is not
pressed, and a value of 0 if the key is pressed. By testing each
key number from 22 to 71 in a loop, each of the keys in the set
shown in Figure 4.20 is tested, along with some others. When
one of these keys is pressed, its keyboard number N% has 21
subtracted, so that the range of the result, X%, is 1 to 50. This
number can now be used in an ON X% GOSUB line to cause
one of fifty subroutines to be run. In each subroutine, there is
a SOUND 2 statement which gives the correct pitch note, the
duration set by D%, and volume 7. There is also a PRINT state
ment which will print the pitch number. The next line is the
RETURN line. For the keys which are not used for notes, the
subroutine line contains only a RETURN, the exception being
the ESC key, which ends the program. The DELETE key is tested
for in line 60, and if it has been pressed, then four backspace
and delete actions are carried out. This is enough to wipe clear

80

any of the numbers that has been printed on the screen. Three-
figure numbers are printed with a space between them, but the
few four-figure numbers will be butted close to each other — this
should not cause too much confusion. The CALL in line 70 clears
the keyboard buffer, so that you do not see a set of garbage
characters on the screen when you break the program.

Harmoniser
The program in Figure 4.21 is a chordfinder. The principle is that
you can input a tone number, and the note that corresponds to
this number will be played. You can then input another tone
number for a harmony. After a short delay, this too will be
sounded. If you like the result, you press the ENTER key and
you will be prompted for another note. If you don't like a harmony,
then pressing the spacebar will allow you to try another number.
After you have accepted the second harmony, the chord is timed
and will end when the program ends. Note that when you enter
the second harmony, you have to press ENTER to input the tone
number, and then press ENTER again to show that you approve
of the result. The note times have been set very long to allow
you some time to make up your mind about the harmonies. The

16 REM CHORDFINDER
20 INPUT "Melody number ";AX
30 SOUND 1,AX,30000,6
40 INPUT"Harmony 1 “; BX
50 SOUND 130,0,0
60 SOUND 2,BX,30000
70 K*=INKEY»:IF K5.= ""THEN 70
80 IF K*=CHR$(32) THEN 40
90 INF'UT "Harmony 2 " ; CX
100 SOUND 132,0,0
110 SOUND 4,CX,30000
120 K*= INKEY4.: IF K.$=" " THEN 120
130 IF K$=CHR$(32) THEN 90
140 START=TIME
150 WHILE TIME< START+2000:WEND
160 CLEAR
170 END

Figure 4.21 A chordfinder program. This allows you to make up your own
chords, listen to them, and edit them!

81

program action is straightforward, and the only point which needs
some explanation is the use of CLEAR in line 160. This clears
out all the sound queues, among other things, so that the sound
stops. Without this statement, the sound can continue for a long
after the program ends.

82

5

W a v e fo rm s a n d
E n v e lo p e s
If you cast your mind (and your ear) back to the start of this
book, you’ll remember that I said that two things in particular
affected the quality of a note. By quality, I mean the peculiarity
of sound that allows us to tell if a note is being played by a violin,
a clarinet, a guitar, or whatever else. These notes might contain
waves of the same amplitude and pitch, but the way that they
sound in our ears is quite different. The two reasons, remember,
are waveform and envelope. The waveform of a note from a
musical instrument is normally a complicated and jagged one,
not one that can be easily reproduced by the comparatively
simple sound generating system that is used by most computers.
The envelope is something quite different. A note from an in
strument consists of a lot of sound waves, often several hundred.
Now whatever way we create a note on an instrument, it doesn’t
start instantaneously, and it never carries on unchanged. When
you start a note, the first few waves are of lower amplitude than
the rest, because they form the build-up to the final amplitude.
This part of a note is called the ‘attack’, it’s the part in which the
amplitude of each wave is considerably greater than the am
plitude of the one that went before it.

What happens after that depends a lot on what sort of musical
instrument makes the note. If the instrument is one that is struck
or plucked, like drum, piano or guitar, then the note reaches its
maximum amplitude just after the striking or plucking has
stopped. From then on, the amplitude fades away again to zero.
The shape, which we call the ‘amplitude envelope’ of the note,

83

Figure 5.1 A typical envelope shape for a plucked or struck instrument. The
note starts quickly and then dies away.

Figure 5.2 The rather different envelope shape for an instrument which is
'continually excited’, as distinct from being struck.

is rather like the one in Figure 5.1. The shape is symmetrical
around the time axis — in other words, if you folded it around
the horizontal line that runs through the middle, the two halves
would match. When we draw these envelope shapes, then, we
can concentrate on one half, the top half, and we don’t have to
draw the waves either. Figure 5.2 shows the rather different type
of envelope that you can expect when an instrument produces
a note by ‘continual excitation’. Unlike instruments that are
plucked or struck, some instruments are bowed or blown for all
the time that a note is to be sounded. This makes the envelope

84

Decay

Figure 5.3 The classic Attack, Decay, Sustain, Release pattern.

have an attack, then a section in which the amplitude decreases,
the ‘decay’ section. When the amplitude of the note has settled
down like this, it can be steady for a little while, and this part is
called the ‘sustain’ section. Finally the player stops blowing or
bowing and the note dies away — this is the ‘release’ section.
Figure 5.3 shows the four sections for an imaginary envelope.

This type of envelope is an ‘amplitude envelope’, because it
deals with the way that the different waves of a note change
amplitude. The way some instruments are played, however,
causes another type of envelope, a ‘pitch envelope'. If you watch
a violin player at work, you’ll notice that the hand whose fingers
press on the strings is shaken to and fro while a note is being
played. This rolls the fingertips slightly over the strings that are
being held down, and it makes the pitch of the note increase
and decrease very slightly in time with the movement of the hand.
This action is called ‘vibrato’, and it’s a feature of instrumental
playing that has developed over the last couple of hundred years.
The aim is to make notes sound more interesting, richer, more
intense. Too much vibrato has just the opposite effect, it makes
the notes sound wavering and undecided. Vibrato cannot be
produced so easily on other instruments, apart from the slide
trombone, and the corresponding effect for these other instru
ments is ‘tremolo’. Tremolo in wind instruments can be produced
by variations in blowing, and it consists of amplitude variations
rather than frequency variations.

If the computer is to be able to make a good job of producing

85

sounds, then, it needs to be able to work with both an amplitude
envelope and a pitch envelope. Both of these effects are pro
duced by adding more data to the SOUND command, and so
we’ll take a look now at what is needed to specify an envelope.
To start with, your SOUND instruction m u s t have numbers for
channel, tone, duration and volume. The duration number m u s t

be zero, and the volume number m u s t have some value, normally
zero. If you are trying to reproduce the sound of a musical in
strument, the volume number should always be zero, because
the note of any instrument will start from zero and increase in
amplitude. Other values for the volume number (which specify
the starting volume) should be used only for special effects. The
range of volume numbers, which is normally 0 to 7, becomes
0 to 15 when an envelope is being used. This allows you a rather
better choice of shape for the envelope than would be possible
otherwise. The volume number is then followed by an amplitude
envelope (or v o l u m e envelope) number, which will normally be
in the range 1 to 15. If you use a zero here, you will get a two-
second note of constant volume.

The next thing, then, is to create an envelope shape. The SOUND
instruction will only specify that an envelope is to be used, with
the choice of fifteen different types. Until you define what each
of these envelopes looks like, the SOUND instruction cannot use
the envelope. You don't of course, have to specify 15 different
envelopes each time you program a sound that needs an en
velope. You very often want only one envelope to be used, and
so you will pick one number, usually 1. The amplitude envelope
shape is then created by using the ENV statement, specifying
the number of this envelope right at the start. This ENV statement
is one of the most complicated instructions in Locomotive BASIC,
but one which is very rewarding to master.

The ENV statement
To start with, there’s no way that you can produce an envelope
which is precisely like one that you would get from a musical
instrument. A genuine amplitude envelope has a pretty compli
cated shape, and the division into attack, decay, sustain and
release is an approximation only. In addition, the real envelope

86

outline would be a complicated curve, which is very difficult to
specify. The nearest that we can get is the use of horizontal or
vertical straight lines. This means that sloping lines have to be
simulated by ‘staircase’ shapes, and a curve by a set of straight
lines. Nevertheless, we can get sufficiently close to the true
envelope shape by these methods to make a very great im
provement to the sound of any note from the CPC464. The ap
proximations, however, make it very much easier to specify the
shape that we want.

To start with, there are three ways in which we can specify
envelopes. The three methods are described as hardw are, so ft
ware re lative and so ftw are absolute. The Amstrad manual de
scribes in detail only the software relative method, which is the
most complicated method. For a lot of purposes, however, you
might want to try the other two, and that’s what we shall start
with. The hardware envelope uses ‘built-in’ envelope shapes
which are part of a ROM that belongs in the sound chip. You
can put up to five of these ‘hardware’ envelope pieces into one
single envelope if you want, though for most purposes you will
probably want only one. You can also mix a hardware section
of envelope with a software section, and that's something that
we’ll look at later. The form of the ENV instruction for a hardware
envelope is:

ENV N%, =H%,P%

using just three numbers and the equals sign. Of these three
numbers, the first is the number of the envelope, 1 to 15. The
second number, range 8 to 15, decides which hardware en
velope will be used, and the third number (range 0 to 65536)
sets the period of the envelope.

Hardware envelopes
The hardware envelopes of the CPC464 allow a considerable
number of interesting sounds to be generated, and it’s quite a
task just to become acquainted with all the possible combina
tions. To start with, there are eight possible hardware envelopes,
whose shapes are sketched in Figure 5.4. The trouble with these
sketches is that it’s often very difficult for you to associate them

87

Number Description

8

Shape

Fast up, slow down and
repeat

9
Fast up, slow down, then
hold at zero volume

10
Fast up, slow down then
repeated slow up, slow down

11
Fast up, slow down, fast up
and hold at maximum

1 2

Slow up, fast down, then
repeat

13
Slow up then hold at
maximum volume

Slow up, slow down and
repeat

Slow up, fast down and
hold at zero volume

Figure 5.4 The hardware envelope shapes of the CPC464. Numbers 0 to 7 give
the envelopes of 9 and 15.

with the sounds that you hear. That’s because the effect that you
hear depends critically on the time period of the envelope as
well as on its shape. If you choose a very short time period, then
any envelope will be played very quickly. That can mean that
envelope shapes such as 9 and 15 are almost unheard, and you
don’t hear the start of envelopes 11 and 13. On the other hand,
if you pick a time period that is too great, the time that is taken
to change volume is so long that you hear only one section of
the envelope. A time period figure of around 1000 is usually the

88

10 FOR W7.=8 TO 15: RESTORE
20 PR I NT "Wave-form No. " ;W‘/.J
30 FOR J7.= l TO 4
40 READ N7.: PRINT" Period " ; N7.
50 ENV 1,=W7.,N7.
60 SOUND 2,239,0,0,1
70 FOR X7.= l TO 6000: NEXT
30 NEXT:NEXT
100 DATA 10,100,1000,10000

Figure 5.5 A program which lets you hear the hardware waveforms.

10 ENV 1,=8,10
20 ENV 2,=3,100
30 SOUND 2,20,0,0,1
40 SOUND 2,50,0,0,2

Figure 5.6 Creating blended notes with hardware envelopes.

ideal one to allow you to hear what is going on. So that you can
judge this for yourself, the program in Figure 5.5 runs over all
the possible waveform shapes, and plays each with time num
bers of 10, 100, 1000, and 10000. With the time of 10, the effects
are hardly noticeable. At 100, you hear a sharp click for wave
forms like 9 and 15, and a rasping sound for the repeating
waveforms like 8 and 12. This rasp is the result to mixing two
frequencies, one being the sound tone that you specify in the
SOUND instruction, the other being the fast repetition of the
envelope. You can certainly create some interesting effects in
this way! Try, for example, the two in Figure 5.6. The use of a
short period in the envelope with a high pitch SOUND produces
a blend of two notes. With a longer period in the envelope, the
sound becomes a warble. Neither has much application to music,
but they can both be useful sound effects.

At this point, it’s desirable to clear up what is meant by the period
number in these envelopes. This is a slightly misleading name,
because it suggests that it might be setting the total time of the
envelope. In fact, what it sets is the time that is needed for each
step of the changing part of a waveform. Take, for example,
waveform number 13. This consists of a sloping section, called
the ramp, and a steady part. The sloping section is represented
by sixteen steps, and the time between steps is set by the 'period'

89

number. According to the Amstrad hardware manual, the units
of this number are steps of 128 microseconds. Since a micro
second is a millionth of a second, you can also write this number
as 0.128 milliseconds, where a millisecond is a thousandth of
a second. For example, if we pick a period number of 100, it
means that each of the sixteen steps will require a time of 0.128
x 100 milliseconds, which is 12.8 milliseconds. This means that
all sixteen steps will be completed in 16 x 12.8 milliseconds,
which is 204.8 milliseconds. In seconds, this is 0.204, less than
a quarter of a second. This is why the low number produces so
little effect on our ears. A reasonable approximation is that if you
multiply the period number by two, that’s the time for the ramp
in milliseconds. The manual, however, states that the period
number is approximately the time in seconds for a ramp to be
completed. Tests with envelope 13, however, suggest that a
value of around 5000 for the period number produces a ramp
that lasts for one second. Either the manual is misleading, or my
ears need a 10,000 decibel service. In any case, whatever num
ber you choose will decide ramp time, but the overall length of
time is always about two seconds. This is because the envelope
instruction automatically puts in a two second pause after any
hardware envelope.

This pause can make it appear to be impossible to use the
hardware envelopes in music. If you write a tune program and
specify a hardware envelope for each sound, then the timing is
determined entirely by the envelope, and the tune will go rather
slowly. You can, however, get round this. The ENV instruction
allows you to put in up to five sections in each complete ENV.
Now it would be unusual to want to have five hardware sections,
unless you were constructing an envelope using the hardware
shapes as pieces. There are easier ways of doing this, as we
shall see. If, however, you make the first section a hardware
envelope, and then make the second section a short pause, you
will be able to get some control over the use of the hardware
envelope. To create the pause, you need to add the numbers
1,0,X to the ENV statement, where X is the pause number. This
should be a number between 0 and 255. Numbers 1 to 255 give
pauses in units of hundredths, so that 255 gives a delay of 2.55

90

10 ENV 2, =9, 1000, 1,0,40
20 ENV 4,=9,8000,1,O.40
30 FOR N7.= l TO 30
40 READ P7., E7.
56
60

SOUND
NEXT

2,P7.,0,0,E7.

70 DATA 253,2,213,2,213,2,213,2
80 DATA 253,2,213,2,213,2,213,2
90 DATA 190,2,239,2,284,2,239,2
100 DATA 239,2,253,2,253,4
1 10 'DATA 253,2,213,2,213,2,213,2
120 DATA 253,2,213,2,213,2,213,2
130 DATA 190,2,239,2,284,2,338,2
140 DATA 190,2,213,2,213,4

Figure 5.7 A melody which uses an envelope for each duration of note,
including a silence.

seconds. Zero, however, gives the maximum delay, of 2.56 sec
onds. Pauses of 10 to 50 are normal for music. Take a look, for
example, at the little tune in Figure 5.7.

This is programmed in what looks like the usual way, with DATA
lines that consist of note numbers and what you might think were
note duration numbers. It’s not quite so simple as that. Because
you cannot use a note duration number with an envelope, you
have to program one envelope for each duration of note. The
numbers 2 and 4 in this program are therefore the numbers of
different envelopes. I chose these particular numbers simply
because they were a convenient reminder of the note durations.
Each envelope has been given a period which is appropriate
to its note duration, but you have to find these by trial and error.
You might expect that a value of 2000 would give a note that
lasted for twice as long as a value of 1000, but it doesn’t work
out this way because these are ramp times, not note durations.
The pauses decide the times and use a pause-number of 40,
because this suits the note times. Once again, this is something
that you have to experiment with, and adjust to whatever you
think sounds right. The pause number and the period number
for the envelope have to be adjusted together.

Once you have tried out that example, which uses envelope 9,
try a modification. This time, the envelope will be made up from

91

13

9

Com bined envelope

tim e d iffe rence

Figure 5.8 Creating a new envelope pattern from two hardware envelopes. A flat
top can be added by putting in a delay.

envelope 13, a ramp rise, followed by envelope 9, which is a
ramp fall. The effect of combining the two is to give a waveform
which has a triangular shape (Figure 5.8). If we programmed a
short delay between them, of course, the result would be a rise,
a flat top, then a fall. Try first of all replacing the existing ENV
lines by:

10 ENV 2, =13,500, =9,500,1,0,40
20 ENV 4, =13,4000, =9,4000,1,0,40

and playing this one. The sound is now different because of the
different envelope shape. To try out a flat-topped envelope, try:

10 ENV 2, =13,500,1,0,7, =9,500,1,0,40

— you can hear the effect of the flat top quite clearly in this
example, but it depends a lot on choosing the correct number
for the pause in the middle. Using 10 gives too long a pause,
and 5 is too short. It’s because these numbers are so critical,
and their effect found only by a lot of trial and error that a lot of
Amstrad users tend to be put off the ENV statements.

The best way to regard the hardware envelopes is as a useful
set of Lego parts for an envelope. Sometimes you can make use

92

of one of these envelope parts directly, as I have demonstrated,
but it’s more likely that you will want to use the software control
over envelopes that the CPC464 provides. This consists of two
types, the absolute software envelopes and the relative software
envelopes. The difference between the two is that the absolute
envelope is a rather more crude one, with few changes of volume,
whereas the relative software envelope can change volume more
smoothly. The programming methods, however, are very similar,
and we can take them together.

To start with, we can specify a number of sections of the en
velope, up to a maximum of five, just as we could for a hardware
envelope. In each of these sections, you can have an outline
which consists of a horizontal straight line, or a set of steps that
follow the angle of a sloping line. This makes it quite easy, for
example, to simulate the classic attack, decay, sustain, release
(ADSR) shape with straight lines, and still have one section in
reserve. The absolute variety of envelope allows you only one
volume setting in each part of the envelope, so that the shape
of the envelope is made out of horizontal straight lines with steps
up or down only where one section meets another. You have to
specify three numbers in each section, a step count, a step size,
and a pause time. The step count can be any whole number in
the range 0 to 127. If you use zero, then the envelope is an
absolute one. The step size gives the amount by which the
amplitude is changed in each step. This can be positive (rising
amplitude) or negative (falling amplitude). Numbers of -1 2 8 to
+127 can be used, but in practice since the total range of am
plitude is only 0 to 15, it makes little sense to use numbers of
more than 2 or 3. Finally the period number is one that we have
come across already, it can be in the range 0 to 255, with zero
giving a pause of 2.56 seconds.

An absolute envelope
When you use these software envelopes, you have to design
each envelope, and the absolute envelopes are simpler from
this point of view. Design is best done on graph paper, with
centimetre divisions that you can rule off. Figure 5.9 shows an

93

Amplitude

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 5f

Time units

Figure 5.9 Using graph paper to design envelope shapes.

10 ENV 2,0,3, 10,0,9, 1O,0. 15, 10,0,9., 10,0,
3,10
20 ENV 4,0,3,20,0,9,20,0,15,20,0,9,20,0,
3,20
30 FOR NV.= 1 TO 30
40 READ F V . , E 7 .

5 0 S O U N D 2 , P7 . , 0 , 0 , E7 .

6 0 N E X T

7 0 D A T A :2 5 3 , 2 , 2 1 3 , 2 , 2 1 3 , 2 , 2 1 3 , 2

8 0 D A T A :2 5 3 , 2 , 2 1 3 , 2 , 2 1 3 , 2 , 2 1 3 , 2

9 0 D A T A 1 9 0 , 2 , 2 3 9 , 2 , 2 8 4 , 2 , 2 3 9 , 2

1 0 0 D A T A 2 3 9 , 2 , 2 5 3 , 2 , 2 5 3 , 4

1 1 0 D A T A 2 5 3 , 2 , 2 1 3 , 2 , 2 1 3 , 2 , 2 1 3 , 2

1 2 0 D A T A 2 5 3 , 2 , 2 1 3 , 2 , 2 1 3 , 2 , 2 1 3 , 2

1 3 0 D A T A 1 9 0 , 2 , 2 3 9 , 2 , 2 8 4 , 2 , 3 3 8 , 2

1 4 0 D A T A 1 9 0 , 2 , 2 1 3 , 2 , 2 1 3 , 4

Figure 5.10 A tune played with notes that use absolute envelope shapes.

example of graph paper with an absolute envelope designed
on it. The vertical lines represent volume levels, numbered 0 to
15. The horizontal line shows the times and the number of steps,
which f o r a n a b s o l u t e envelope can be only up to 5, one step
in each section. In each step, you have a fixed volume number,
which is the second number in the set. The last number then

94

settles the time for which the section is played. Figure 5.10 shows
what happens when the shape of Figure 5.9 is used for the tune
that we illustrated earlier. This isn't exactly impressive, and ab
solute envelopes need some care if the results are to be useful.
For one thing, each note follows the next with no pause. That’s
because we haven’t programmed any time at the end of the
envelope in which the volume is zero. By using a long pause at
the end, and a volume number of zero, we can program the time
between notes. This can make the use of absolute envelopes
useful just for notes of constant volume, or notes which do not
change volume much. The envelope lines in Figure 5.11 show
an improved version. In this one, the volume starts high, and is
changed by only a count of one on each section. The last section
is a silence, longer than the ordinary note sections. The envelope
of the crochet uses a l o n g e r s e c t i o n in the last part of the note,
so that the whole note will play for longer — it doesn’t work if
you just make the silence longer!

One particularly good use for the absolute envelope is the simple
creation of an echo effect. If you make the first section of the
note have a volume which is large, follow this by a silence, and
then by another section which gives a lower volume, you can
create an echo effect which is very useful for some purposes.

10 ENV 2,0,15,4,0,14,4,0,13,4,0,12,4,0,0
,20
20 ENV 4,0,15,4,0,14,4,0,13,4,0,12,30,0,
0,20

30 FOR N7.= l TO 30
40 READ F'7.,E7.
50 SOUND 2,F'7.,0,0,E7.
60 NEXT
70 DATA 253,2,213,2,213,2,213,2
80 DATA 253,2,213,2,213,2,213,2
90 DAT A 190,2,239,2,284,2,239,2
100 DATA 239,2,253,2,253,4
110 DATA 253,2,213, 2*, 213, 2,213, 2
120 DATA 253,2,213,2,213,2,213,2
130 DATA 190,2,239,2,284,2,338,2
140 DATA 190,2,213,2,213,4

Figure 5.11 Using a better envelope shape, with a silent section.

95

10 ENV 2,0,15,10,0,0,10,0,7,10,0,0,20
20 ENV 4,0, 15,20,0,0,20,0,7,16,0,0,16
30 FOR NX=1 TO 30
40 READ P7.,E7.
50 SOUND 2, P7. ,0,0, EX
60 NEXT
70 DATA 253,2,213,2,213,2,213,2
80 DATA 253,2,213,2,213,2,213,2
90 DATA 190,2,239,2,284,2,239,2
100 DATA 239,2,253,2,253,4
110 DATA 253,2,213,2,213,2,21--*,2
120 DATA 253,2,213,2,213,2,213,2
130 DATA 190,2,239,2,284,2,338,2
140 DATA 190,2,213,2,213,4

Figure 5.12 Designing absolute envelopes so as to create an echo. This can be
very impressive!

The timing of the notes should not be too short, and the echo
should not be too quiet, otherwise it’s easy to miss the effect.
Figure 5.12 shows the melody of 5.11 used with an echo on each
note. Four sections have been used in each envelope, and the
silence has been programmed as usual simply by using a section
with zero volume. Give a listen to this one, because the principle
of the echo is an important one that you might want to come
back to when we deal with sound effects.

The relative ENV
When you specify a software relative envelope, you are creating
an envelope shape which is considerably more complicated than
any that you can make up from the hardware shapes, or by the
use of software absolute methods. Nevertheless, now that you
have used a software absolute envelope, the creation of a soft
ware relative envelope is not such a large step into the unknown.
To start with, we can specify a number of sections of the en
velope, up to a maximum of five. In each of these sections, you
can have an outline which consists of a horizontal or vertical
straight line, or a set of steps that follow the angle of a sloping
line. This makes it quite easy, for example, to simulate the classic
attack, decay, sustain, release (ADSR) shape with straight lines,
and still have one section in reserve for a silence at the end of
the note. Alternatively, you can simulate a curve which does not

96

conform to the classic ADSR shape at all. The ENV instruction
word is followed as usual by the number 1 to 15 which is the
reference number for the envelope. You then have three numbers
for each section of the envelope. The first of these numbers is
the step count number. For an absolute envelope, this number
would be zero, but for a relative envelope it gives the number
of steps of volume change which will be used in this section of
the envelope. Remember that the starting volume will be decided
by the number that is used in the SOUND statement. If you make
the starting volume equal to zero, as is usual for envelope control,
then the first section of the envelope will be used to specify the
number of volume steps up to some volume level which will form
the ‘attack’ section of the note. The number of steps for a relative
envelope can be 1 to 127, but the practical range is 1 to 15,
because if the volume changes by one unit in each step, then
there is no point in having more than 15 steps. The second
number in each section is the step size, as it was for the absolute
envelope. Here again, you are permitted numbers in the range
-128 to +127, but since there are only volume steps of 0 to 15,
you must choose sensible figures. The final number, as for the
absolute envelope, is the pause time, in units of 1/100 of a
second. The number range is 1 to 256, with 0 giving the effect
of the number 256 (2.56 seconds).

What you need to watch is how these numbers interact with each
other. The step count multiplied by the pause time, for example,
gives the total time for the section. This should not be ridiculously
short, otherwise your ear simply will not detect the effect. It should
not be too long either, otherwise each note will last for so long
that it will be impossible to use for a melody unless a very slow
tempo is wanted. Suitable values are something that you simply
have to learn by trial and error, and the examples in this book
should be a good starting-point for you. The other interaction is
that the step time multiplied by the step size gives the volume
change. If you have ten steps, each of size one unit, for example,
then your volume change in the section will be ten volume units.
If the volume started at zero (in the SOUND instruction), then it
will end up at level 10. If the volume started at level 5, it will end
up at 15, the maximum. You might, of course, want the volume

97

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 46 48 50 52 54
Time Units

Figure 5.13 Graph paper set out to design a relative envelope.

to increase more sharply, such as by having five steps, each of
size 3 which would give a volume change of 15. This, however,
is a rapid change only if the pause time is short. If a long pause
time has been chosen, all this would do would be to make a
fairly large volume change five times over a comparatively long
period. For a really rapid rise, you would require one step of 15
volume units, with one time unit.

Since you are allowed five sections, the most obvious way of
using the ENV instruction is by specifying ADSR sections, with
a silence at the end specified by the fifth section. Let’s hear how
that sounds with an example, which will also show how we can
plan out these envelope shapes. We start, as always, with graph
paper, and Figure 5.13 shows how this should be marked out.
I use graph paper for convenience, simply because it’s marked
with a grid of lines. It’s a good idea n o t to draw your envelopes
directly on to the graph paper, but to work instead on tracing
paper with pencil. This is because you'll inevitably make a lot
of mistakes at first, and draw a lot of envelopes that either can’t
be programmed or which don’t produce anything like the results
you are looking for. By using tracing paper and pencil, you can

98

Figure 5.14 An envelope designed by placing tracing paper over the graph
paper.

experiment as much as you like, rubbing out the unsatisfactory
envelopes, and inking in the ones that produce good results.
You should, incidentally, be quite careful about this. It’s never
obvious from the shape of an envelope just how the sound will
be, and you can make your work a lot more durable if you write
on the sheet which contains the envelope shape the ENV pro
gram line, and also what it sounded like. The drawback about
using graph paper is that you tend to think that you have to work
with units of the same size. You needn’t, however, use the same
step size, number of steps or pause time in each section. Figure
5.14 shows an envelope designed on the lines of Figure 5.12.
Don’t attempt to draw the steps, because this is time-wasting
and difficult. Represent rises or falls by sloping lines, and show
the total time of each section, because this is important, partic
ularly when you want to make any changes in the note. When
you add the times for these sections, you will get the total time
for the note. In this example, the attack consists of 5 steps of
3 units each to the total volume of 15. This is a comparatively
slow attack, much slower that you would get from a plucked or
struck instrument. The total time for this attack is 5 units, because
the pause has been specified as one unit. The decay is then of
three steps, -1 volume units and time 1 unit. This makes the

99

10 ENV 2 , 5 , 3 , 1 , 3 , - 1 , 1 , 5 , 0 , 3 , 1 2 , - 1 , 1 , 5 , 0 ,

20 ENV 4 , 5 , 3 , 2 , 3 , - 1 , 2 , 5 , 0 , 6 , 1 2 , - 1 , 2 , 5 , 0 ,

30 FOR N7.= l TO 30

40 READ P7.,E7.

50 SOUND 2 , P X , 0 , 0 , EX

60 NEXT

70 DATA 2 5 3 , 2 , 2 1 3 , 2 , 2 1 3 , 2 , 2 1 3 , 2

80 DATA 2 5 3 , 2 , 2 1 3 , 2 , 2 1 3 , 2 , 2 1 3 , 2

90 DATA 1 9 0 , 2 , 2 3 9 , 2 , 2 8 4 , 2 , 2 3 9 , 2

100 DATA 2 3 9 , 2 , 2 5 3 , 2 , 2 5 3 , 4

110 DATA 2 5 3 , 2 , 2 1 3 , 2 , 2 1 3 , 2 , 2 1 3 , 2

120 DATA 2 5 3 , 2 , 2 1 3 , 2 , 2 1 3 , 2 , 2 1 3 , 2

130 DATA 1 9 0 , 2 , 2 3 9 , 2 , 2 8 4 , 2 , 3 3 8 , 2

140 DATA 1 9 0 , 2 , 2 1 3 , 2 , 2 1 3 , 4

Figure 5.15 A tune played using slow attack and decay.

decay go down in volume from 15 to 12, and take three time
units.

The sustain section uses 5 steps of zero volume change, with
pause 3. This makes the time equal to 15 units, with no change
in the volume. The release is then slow, using 12 steps of size
-1 to get the volume back from level 12 to zero. The pause is
1, so that the time is 12 units. Finally, the volume is held steady
(at zero) for five steps of pause 2, a total of 10 time units. The
total time for the whole note is 42 units, corresponding to 0.42
seconds. The envelope is programmed by the lines of Figure
5.15, using longer times for the minim envelope, and when you
use this in the melody, you’ll hear the typical sound of an envelope
which has comparatively slow attack and decay. Each note
sounds as if it's afraid to come out! Sounds like this have their
uses when you can also control the waveshape, but for the
square wave pattern that the CPC464 produces, such an en
velope is not a particularly good one, though it can produce
interesting piano-accordion tunes. For more interesting sounds
we have to look at much sharper attack times in particular.

There are two ways in which we can produce steeper attacks.
One is simply to use fewer steps with greater amplitude change,
and minimum pause time. The other is to use some starting

100

2 20 4

S te f

Size
T im

S tep 2

S ize -5
T im e 2

Figure 5.16 Using a much sharper attack with the amplitude starting at level 7.

amplitude in the SOUND instruction. If the SOUND starts with
a volume of 5, for example, it's easier to make a sharper attack.
The ultimate is to start the volume at 15, and use the envelope
to provide only the D, S and R sections. This provides the sharp
est attack that you can get with this system. Figure 5.16 shows
a plan for a shorter note with steeper attack. This has been
achieved by starting the SOUND volume at a figure of 7, and
increasing this to 15 in one step with a duration of two units. The
envelope then decays and releases in two further sections, with
no steady hold portion. This, as you can hear from Figure 5.17,
gives a reasonably good ‘plucked string’ sound, with a sharpness
to it that is good for picking out a melody. If you alter the envelope
so that it consists of the attack, followed by a decay that is
obtained from the numbers 15,-1,1 then you will get an even
sharper ‘plucked string’ type of note. The tempo of the music
will, however, be faster because of the decreased length of the
whole note. When you are designing envelopes for musical
effects, you have to be very careful about total length because,
as we have seen, you need one envelope for each note-length.
Any alteration that you make to any section of an envelope is

101

10 ENV 2, l,8,2,5,-1,4,2,-5,2
20 ENV 4,1,8,2,5,-1,8,2,-5,4
30 FUR N7.= l TO 30
40 READ P7.,E7.
50 SOUND 2,P7.,0,7,E7.
60 NEXT
70 DATA 253,2,213,2,213,2,213,2
80 DATA 253,2,213,2,213,2,213,2
90 DATA 190,2,239,2,284,2,239,2
100 DATA 239,2,253,2,253,4
110 DATA 253,2,213,2,213,2,213,2
120 DATA 253,2,213,2,213,2,213,2
130 DATA 190,2,239,2,284,2,338,2
140 DATA 190,2,213,2,213,4

Figure 5.17 The program which gives the envelope of Figure 5.16.

likely to affect the total length, and so throw out your timing. You
can make up for this by altering the timing of a silent section,
or by juggling steps between attack and decay sections. It's
always a ‘cut and fit’ business, seldom the matter of precisely
planning a good-looking envelope that you might expect.

An envelopes program
Many envelope-planning programs exist, but a lot of them are
not really helpful unless you have considerable experience. The
trouble with planning envelopes is that if you have an immense
amount of choice, you end up simply playing aimlessly with the
sound. You can certainly discover a lot of interesting sounds in
this way, but if you are trying to obtain some specific effect, the
method can be very time-consuming and frustrating. What fol
lows is a very simple envelope planner which I have found very
fast and useful. The principle is to restrict your choice to values
which give reasonable results, so that you can alter values easily
and quickly, listening to the note that is produced. You can also
go back down your list of choices, making any changes that you
want to, and being reminded of the previous choice. This is a
very much quicker method of editing an envelope than one which
requires you to input or draw each part of the envelope for
yourself, and it can save a lot of time when you are chasing that
elusive sound. When you end the program, the ENV statement

102

is printed out so that you can use the editor to make a copy.
You can, of course, make any further changes that you want in
the way of ‘fine-tuning’ on the ENV line.

The listing is shown in Figure 5.18. The program consists of a
large main loop which starts in line 40 and which will repeat until
you press the ‘Q ’ key at the end of the loop, or use the ESC key

10 CLS:Mi="Mi stake - please try again”
20 PRINT TAB(16)"ENVELOPE"
30 LOCATE 1,2
40 WHILE KiO"Q"
50 PRINT"Attack - Fast, Medium, Slow (FM
S> ":Xi=Ai
60 GOSUB 470:IF Ri=”P" THEN P R I N T X $:
GOTO 110:ELSE Ai=Ri
70 IF Ai="F" THEN A1 '/.= 1 : A27.= 15: A37.= 1
80 IF Ai="M" THEN A17.=3: A2*/.=5: A37.= l
90 IF Ai="S" THEN A17.=5: A27.=3: A37.=2
100 IF INSTR("FMS",A*)=0 THEN PRINT Mi:G
OTO 50
110 FRINT"Decay —None, Fast, Medium, Tot
al (NFMT) ":Xi=Bi
120 GOSUB 470:IF Rt="P" THEN PRINT"-";Xi
•.GOTO 180: ELSE Bi=Ri
130 IF Bi="N" THEN A47.= l: A57.=0: A67.= l
140 IF Bi="F" THEN A47.= l: A57.=—3: A67.= l
150 IF Bi="M" THEN A47.=3: A57.=-l : A67.=2
160 IF Bi="T"THEN A47.= 15: A57.=-l : A67.=2: EN
V 1,A17.,A27.,A37.,A47.,A57.,A67., 10.0, 10: GOTO
400
170 IF INSTR<"NFMT" , Bi)=0 THEN PRINT Mi
:GOTO 110
180 PRINT"Sustain - None, Short, Medium,
, Long (NSML) ":Xi=Ci
190 GOSUB 470:IF Ri="F" THEN PRINT"-";Xi
:GOTO 250:ELSE C$=R$
200 IF C$="N" THEN A77.= l: A87.=0: A97.= l
210 IF Ci="S" THEN A77-=2: A87.=0: A97.=2
220 IF Ci="M" THEN A77.=3: A87.=0: A97.=4
230 IF C$="L" THEN A77.=5: A87.=0: A97.=5
240 IF INSTR <”NSML",Ci)=0 THEN PRINT Mi
:GOTO 180

103

250 FRINT"Release- Quick, Medium, Slow (
QMS) ":Xt=D*
260 V7.=A 17.*A27.+A47.*A57.
270 GOSUB 470: IF RS="P" THEN FR I NT " —" J X t
:GOTO 320:ELSE D*=R*
280
1
290

IF D$="Q" THEN A107.= 1: A1 17.=—V7.: A127.=

IF D$="M" THEN A107.=2: AI 17.=- (V7./2) : A
1 27.=2
300 IF D$="S" THEN A107.=3: A1 17.=-V7./3: A12
7.=3
310 IF INSTR<"QMS",B*>=0 THEN FRINT M$:G
OTO 250
320 F'RINT"Si 1 ence time. Long, Medium, Sh
ort < LMS) ":X$=E$
330 GOSUB 470:IF R$="P" THEN PRINT"-"; X*
:GOTO 380:ELSE E*=R*
340 IF E$="L" THEN A137.= 10: A147.=0: A1 57.= 1
O
350 IF E*="M" THEN A137.=6: A1 47.=0: A157.=6
360 IF E*="S" THEN A137.=3: A1 47.=0: A157.=5
370 IF INSTR("LMS",E$> =0 THEN PRINT Mt:G
OTO 320
380 ENV 1 , A17., A27., A37., A47., A57., A67., A77., AS
7., A97., A107., A1 17., A127-, A137., A147., A157.
390 SOUND 130,0,0
400 SOUND 2,239,-20,0,1
410 PRINT"Press Q KEY to QUIT, any other
key to":PRINT"repeat choice. Pressing t
he P KEY":PRINT"1ets you skip that stage
and":FRINT"shows the previous choice."
420 K*=INKEYt:IF K$=""THEN 420
430 WEND
440 FRINT"Envelope parameters are:"
450 PR I NT "ENV 1, " ; A17.: " , " ; A27.; " , " ; A37.; " ,
" ; A47.; " , " ; A57.; " , " ; A67.; " , " ; A77.; " , " ; AB7.; " ,
" ? A97.; ", ": A107.; ", ";A117.; ", ";A127.; ", ";A13
7.; ","; A147.; ", ";A157.
460 END
470 R$=INKEY$:IF Rt=""THEN 470 ELSE RETU
RN

Figure 5.18 The envelope-editor program. This uses a restricted range of preset
values to make your selection quicker and easier.

104

at any other point. You will, however, see the ENV printout only
if you quit the program with the Q key. You are asked first for
a choice of attack, and the choices are fast, medium or slow
only. If you type F, M, or S and ENTER, values are assigned to
the first section of the envelope, using integer number variables
A1%, A2% and A3%. Each selection will cause the volume level
to go from zero to 15, but the rate of rise is different. You should
not type 'P' at this stage, and if you have typed any letter other
than P, F, M or S, then line 100 will catch the error and ask for
a re-run. Lines 110 to 170 then use a similar method to obtain
your choice of decay. In this set, however, you have the choice
of Total decay, meaning that the amplitude will decay to zero,
with no sustain or release sections. This requires a rather different
treatment, because for this choice, the envelope contains only
an attack and a decay section. A silence section is added, and
the envelope is played. The other choices are more orthodox,
and they lead to values for the decay section of A4%, A5% and
A6% and then proceed to the sustain section.

The sustain and release sections are dealt with similarly, and
then you are finally asked to choose a silence time to separate
repeated notes. This will also help to determine the rate at which
notes are played. The number parameters A1% to A15% are
then assigned to the ENV statement in line 380, assuming that
the Total decay choice was not made. The sound channels are
then cleared by line 390 (adding 128 to a channel number clears
the sound queue), and the note is played by the SOUND in
struction in line 400. This uses a duration number of -20. When
a negative duration number is used, the number is taken as a
number of repetitions for the envelope. Using a duration time of
-2 0 will then ensure that the envelope is repeated twenty times.
If, of course, you have made the envelope a very long one, and
have specified a short silence, you will hear only a long pulsing
note instead of the repetition. As always, you have to make
reasonably consistent choices and using a short silence along
with a long envelope is the only one that can cause confusion.
The quantities that are used for amplitude changes have been
organised so that any combination of ADSR choices will produce

105

a note. This means that when you choose a decay, it is always
from 15 to 12, because the volume figure of 12 can be released
completely in 2, 3, or 4 steps. This would not be possible for any
other choice of number other than 6, and though the program
works if other decay amplitudes are chosen, the note sounds
different on each repetition because the volume number is not
being returned to zero on each repetition. Alter the program by
all means to suit yourself, but don’t ignore the problems that this
could cause! One minor point is that if Total decay is chosen,
the ENV printout is not completely accurate, because it shows
a set of zeros for the sustain, release and silence sections. These
zeros can, of course, be edited out.

Pitch Envelopes
As well as the amplitude envelope, which decides the way that
amplitude changes during the time of a note, you can also alter
the pitch of a note while it is being sounded. Now for musical
notes, this is a way of getting vibrato, but it must conform to rules
if it is to sound successful. The rate of vibrato has to be carefully
chosen, and should be faster for high notes then for low notes.
The amount of vibrato also has to be regulated. It is normally
less than a semitone, because large amounts of pitch change
sound ridiculous — excessive vibrato is the main curse of the
type of amateur singer who sounds as if someone was using his/
her chest as a drum skin. We shall want to keep to small changes
for this chapter, but for special effects discussed in the following
chapter, we can make use of much greater vibrato and other
pitch envelope effects. The use of a pitch envelope requires an
extra number tacked on to the SOUND instructions, and the use
of an ENT statement to define the pitch envelope.

The ENT statement follows so closely the pattern of the ENV
statement that we can dispose of it quite quickly. As usual,
following ENT, we have the envelope number with the usual
range of 1 to 15. Choosing 0 will have the effect of leaving the
note as a steady one. There is a difference here, however, be
cause you can use a negative number as the envelope number.
If you do so, then the pitch variation will be repeated until the
note ends. The end of the note will be decided by its amplitude

106

envelope or by the duration number in the SOUND statement.
Following the envelope number, you can then define up to five
sections of pitch change, each of which can be an a b s o l u t e

setting or a r e l a t i v e one. The difference is that the absolute setting
decides a pitch number which is unchanged for a specified time,
but the relative setting can specify a rate of change and an
amount of change of pitch.

An absolute section of pitch envelope is obtained rather in the
way that a hardware amplitude envelope is obtained. Following
the envelope number, or the previous section, there is a comma,
then an equality sign, and then a tone period number, comma,
and a pause time number. The tone period will be a number in
the normal range (0 to 4095 permitted, 20 to 2000 more realistic),
and the pause time is a number in the range 0 to 255, with 0
providing the l o n g e s t pause of 2.56 seconds. In such an absolute
section, the tone period number gives the note that will be
sounded, and the pause time gives the time in hundredths of
a second for which it will be sounded. If the first section of a
tone envelope is an absolute section, the tone period number
in the SOUND instruction will be ignored. For example, using
ENT 1. = 239,50 will sound a C' note for half a second. Try as a
quick way of getting acquainted with it, the lines:

10 ENT -1 , =239,100, =190,100
20 SOUND 2,0,500,7,0,1

which will have the effect of sounding the notes C and E’ alter
nately. Now cut down the pause time in the ENT line to 1 from
100, and listen to the result. The absolute tone envelope is a very
useful way of programming short phrases, particularly if they
have to be repeated, and it can often be much simpler than the
use of a SOUND instruction in a loop with data read in. This is
particularly true if you only want a rapid jingle for a game, or a
theme for each character in an adventure, or a different warning
tune for different actions in a business program.

The relative type of envelope uses three numbers in each section.
The first number is the number of steps, the second is the step
size, and the third is the pause time. The step size, however, is

107

10 ENT 1,4,1,1,8,-1,1,4,1,1
20 SOUND 2,239,100,15,0,1

Figure 5.19 A short illustration of vibrato, using a pitch envelope.

not the size of an amplitude step but of a pitch step, and it
corresponds to a change in the note number. For example, if
you are playing note 279, then a step of +1 means a change
to 280, which is a l o w e r pitch. These step sizes can be positive
(lower pitch) or negative (higher pitch). The pause numbers are
in the usual units of 1/100 second intervals. Figure 5.19 illustrates
a note which starts with a bit of vibrato. The pitch changes in
four steps, each of one unit, positive, then eight negative, then
four positive again, ending with the same note. In the SOUND
portion of the program, the usual numbers are specified, but
with 0 for amplitude envelope. This is because there must always
be an amplitude envelope number preceding the ENT number,
and if you have no amplitude envelope specified, then a zero
must be used in this position.

As usual, it helps to some extent if we can draw the pitch en-

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

Time

Figure 5.20 A planner for pitch envelope shapes — this is more useful for
special effects.

108

For a musical vibrato:
1. Keep the pitch change number to 1 for high notes, 2-3 for low
notes.
2. Make the period number 1 for high notes, 2-3 for low notes.
3. The step count should be small, starting with 1-2 in the first section.
4 Use three sections. The step count in the middle section should be
negative and twice the size of the step count for the first section. The
step count in the third section should be equal to the step count for the
first section.

Figure 5.21 Designing ENT values for vibrato — this guide is more useful for
music.

velope, and Figure 5.20 shows a planner for ENT shapes. This
is more useful for special effects, however, and for musical notes,
it’s easier to follow the guidelines of Figure 5.21. Now since most
musical notes that use vibrato tend to have the vibrato used for
as long as they are sounded, it’s normal to use the negative
envelope numbers. Notice that the number is negative o n l y i n

t h e E N T s t a t e m e n t — you must not use a negative ENT number
in the SOUND statement. When you make the ENT number neg
ative in the program of Figure 5.19, you find that the vibrato is
rather excessive. The remedy is a smaller number of steps, since
you have already fixed the minimum possible pitch change. You
will then have to juggle with the number of sections and the
pause times to get the rate of vibrato that you want. Unlike
amplitude envelopes, your choices are very much more re
stricted if you want to use ENT for musical notes, because only
a very limited range of ENT effects sounds reasonably musical.
It’s quite different when we get to special effects, as you’ll see.

As an example of how notes can sound with both amplitude and
pitch envelopes, try the scale in Figure 5.22. This uses an am
plitude envelope which gives fast attack, small decay, medium
sustain and fast release, with a medium length silence. The pitch
envelope makes the pitch number rise in three steps, fall by six,
then rise three again to give the normal zig-zag pitch envelope
shape. The total time for the pitch envelope is 12 hundredths of
a second, and this is a figure which is ‘average’ for pitch en
velopes for notes in this range. Faster changes should be used

109

1G ENV 1,1,15,1,2,-3,1,5,G,5,1,-9,1,5,G,
4
2G ENT -1,3,1,1,6,-1,1,3,1,1
30 FOR N7.= l TO 8
4G READ F'7.
5G SOUND 2, P/t, 0, 0,1,1
6G NEXT
1G0 DATA 478,426,379,358,319,284,253,239

Figure 5.22 A scale of notes which have both amplitude and pitch envelopes.

for notes which are around one octave higher. Don’t feel that
because a pitch envelope c a n be used that it m u s t be used. A
lot of music sounds better without vibrato, and if you want to use
a melody and accompaniment, it’s better to confine any vibrato
to the melody.

At this point, then, we turn from strictly melodic musical effects
to something quite different — the use of noise. This will lead
us into rhythm instruments, such as drums, and also in the realm
of more advanced sound effects. Time, I think, for a new chapter.

110

6

U s in g N o is e
What we call noise is a kind of random sound. Musical notes
have definite values of pitch and amplitude, noise has not. We
can generate electronically what is called ‘white noise', meaning
that the sound contains a mixture of all frequencies and a large
range of amplitudes. When you see such white noise displayed
on the screen of an oscilloscope, it looks like a band of thick
cloud, with no distinct pattern or clear edges. The closest that
you usually get to hearing noise of this type is when you tune
between stations on an FM radio. Natural noises, however, aren’t
like this. The noise that you get from knocking two bits of wood
together, for example, is not anything like white noise. It has an
amplitude envelope with very fast attack and decay, and the
range of frequencies is quite limited. The frequency range of the
noise, in fact, is centred round a definite note which is related
to the length of each piece of wood. Similarly, when you strike
a drum skin, the sound is closer to noise than to a musical note,
but once again, the frequencies that are produced are centred
around one definite value, which depends on the size and tight
ness of the drum skin. All natural noises, from raindrops through
surf on the shore to thunder are of this type.

It's at this point, too, that descriptions become difficult, and you
have to use your ears carefully. Up to now, we could say that
a program produced a scale of C Major, and you knew what to
expect, no matter what kind of fancy work was being done in
the way of amplitude or pitch envelopes. When noise is used,
however, it’s a lot more difficult to know what a program will
produce, and small changes can often make the sound very
different to the ear. The examples in this chapter are all starting

111

points, a basis for you to make changes and listen to what you
get. The possibilities are so great that no-one could claim to
have created, listened to and catalogued every possible sound
effect. We'll look at programs which create some noises that
many programmers want to have available for games and other
purposes, but you can always modify these programs to produce
some dazzling effects of your own.

The CPC464 allows you to specify noise of 15 different ‘centre
tones’. This is done by adding a noise number, range 0 to 15,
following the tone envelope number. Using zero as the noise
number will, as usual, produce no noise. Noise can be produced
alone or in conjunction with other sounds. If you specify a pitch
number of zero for the sound channel, then no musical note will
be produced, allowing the noise only in that channel. Note, how
ever, that there is only one noise generator, and you cannot have
different noises in each channel. The best place to start is by
listening to straightforward noises to hear the effect of the noise
‘pitch’ numbers 1 to 31. Note that the CPC464 manual specifies
0 to 15, but the Complete Basic Specification manual reveals
that 0 to 31 can be used. Figure 6.1 illustrates this by cycling
through the effects of these numbers from 1 to 31. The noise is
rather like a release of steam, and the ‘pitch’ starts high and
ends low. Even with this comparatively simple type of statement,
you can produce a lot of interesting effects. By cycling through
these noise pitches more rapidly, for example, you can produce
a ‘raging surf’ sound, ideal for these tropical beaches. This one
is illustrated in Figure 6.2. The natural surf sound varies in pitch

10 FOR N7.= l TO 31
20 SOUND 2,0,50, 15, U, 0, N7.
30 FOR J=1 TO 10O0:NEXT
40 NEXT

Figure 6.1 The various noise pitch numbers and how they sound.

10 FOR X7.= l TO 10
20 FOR N7.= l TO 31
30 SOUND 2,0, 15, 15,0,0,N7.
40 NEXT:NEXT

Figure 6.2 The raging surf sound produced by cycling rapidly through the
noise numbers.

112

10 FOR J7.=« TO 79
20 IF J 7 . MOD 4=0 THEN 97.= 15 ELSE V7.=5
30 SOUND 2,0, 10, V7. ,0,0,5
40 FOR X=1 TO 150:NEXT
50 NEXT

Figure 6.3 The steam locomotive sound, using emphasis on the first noise of
each group of four.

from low to high because the size of the wave that produces it
is reduced as the wave breaks. In this program, the use of noise
pitch numbers 1 to 31 produces the correct variation in the
predominant pitch. Another simple use of noise is illustrated in
Figure 6.3, which produces the much-loved steam locomotive
note. This is not such a good loco simulation as would be pro
duced by using an envelope, but for a simple routine, it is quite
effective. The noise pitch is fixed at 5 and duration at 10, with
the volume of one in each four being boosted. This gives the
correct rhythm to the effect which would otherwise be rather
unconvincing.

Noise, however, really comes into its own when you can make
use of an amplitude envelope along with the noise. This does
not need to be an elaborate relative software envelope, because
impressive effects can be obtained from the range of hardware
envelopes. The hardware envelope 9 is particularly useful for a
variety of sounds that have a steep attack, and Figure 6.4 illus
trates gunshots in stereo. A useful tip here is to make the noise
pitches slightly different. In this example, one pitch is 10, the
other 12. This produces the effect of one gun being further away
than the other or in different surroundings, and combined with
the stereo effect gives a good impression of a running battle.

I© env i,=9 , 1 0 0 0

20 FOR N’i= 1 TO 12
30 SOUND 4,0,0 ,0,1,0,10
40 FOR J = 1 TO 1000:NEXT
50 SOUND 132,0,0
60 SOUND 1,0,0,0, 1,0, 12
70 FOR J=1 TO 1000:NEXT
80 SOUND 129,0,0
90 NEXT

Figure 6.4 Gunshots in stero — try this on a stereo system!

113

Note that this program is not entirely straightforward because
of the requirement for stereo. If you simply feed the sound in
structions into the sound queues, it’s very difficult to stop them
from synchronising, with the effect that you completely lose the
stereo effect, and both guns sound in the middle. By using a
time delay, with the queue for that channel flushed clear im
mediately afterwards, you can ensure that the signals on the
different channels are well separated. Unwanted synchronisation
is the curse of stereo sound effects, and it can often be very
difficult to avoid.

Meanwhile, back to the sound effects. The repeating hardware
envelopes are a lot more useful for sound effects than for music.
One particularly useful application is to sound effects which
consist of fast rhythmic noises, like old-style aero engines with
pistons. By using a fairly small time number in the hardware
envelope, along with shape 9, you can create quite a convincing
noise for a World War I Sopwith Camel (all right, SE5A if you
prefer it) warming up, as Figure 6.5 illustrates. Just to show how
versatile this system is, try changing to hardware shape 14 in
this program. You'll now hear the characteristic swishing of heli
copter blades. Using ENV 1, =12,200 is also a very good heli
copter blade sound. The combination of hardware shapes can
also be usefully employed, particularly shapes 13 and 9. Used
with short times, these give gunshot sounds, but with long times,
you can get the sort of steam hammer effect that you can hear
in Figure 6.6.

Obviously, you can make use of software relative envelopes to
ENV 1,=S,100

20 FOR N7.= l TO 12
30 SOUND 2,0,0,0,1,0,10
40 NEXT

Figure 6.5 An envelope which gives the effect of an old-time aero engine.

10 ENV 1,=13,20000,=9,20000
20 FOR N7.= l TO 12
30 SOUND 2,0,0,0,1,0,10
40 NEXT

Figure 6.6 A steam-hammer noise — add a few clanks and rumbles and you
have the Victorian iron foundry effect!

114

10 FOR N7.= l TO 20
20 ENV 1,5 ,5 , 2 ,4 , —2 ,1,5 , 0 ,3
30 SOUND 2j 0,0j Oj1,0,31
40 NEXT

Figure 6.7 Running feet on gravel — or joggers in the park!

control a noise, and once we get into this work, the sky’s the
limit! Take a listen to Figure 6.7, which is the sound of running
feet on a gravel path. You can try altering the timing of the various
sections of the envelope, and the predominant frequency of the
noise, to produce a huge range of effects. It’s because there are
so many parameters that can be altered that you find yourself
often spoiled for choice. If you modify the envelope generator
program so that the SOUND statement gives noise effects rather
than musical notes, however, you can experiment endlessly with
new sounds which use only noise in their composition.

Another dimension can be introduced by adding pitch envelopes
to noise. The effect of this is not to alter the predominant pitch
of the noise, because this is set by the last number in the SOUND
instruction, but to add a changing musical note. If you use a
positive step size in the ENT statement, then the note will start
at high pitch and change to lower pitch. This can make very
impressive sound effects for spaceships, zap-guns and all the
other items of games programs. Take a listen, for example to
Figure 6.8, which has been created by combining a hardware
envelope number 13 with a whistling sound that moves down
the scale. The hardware envelope creates a sound that becomes
steadily louder, and the ENT statement provides two hundred
steps of pitch change. The two together make a most impressive
effect. Now change the number of steps to 200, and the step

10 ENV 1,=13,6000
20 ENT 1,200,1,1
30 SOUND 2,0,0,0,1,1,10

Figure 6.8 Combining a whistling pitch envelope with noise.

10 ENV 1,=11,6000
20 ENT 1,200,1,1
30 SOUND 2,0,0,0,1,1,10

Figure 6.9 How the effect of Figure 6.8 can be changed by using a different
envelope.

115

10 ENV 1,=8,300
20 ENT 1,200,1,2
30 SOUND 2,0,0,0,1,1,31

Figure 6.10 The falling-down-a-ladder sound.

10 ENV 1,=14,5000
20 ENT 1,200,-4,2
30 SOUND 2,500,0,0,1,1,1

Figure 6.11 A good sound effect for a rapid disappearance.

size to 2, and hear the difference. Make the period number in
the ENT statement also equal to 2, and the sound changes again.
Another change brings us to Figure 6.9, which creates two rather
different sounding effects in one statement. Because hardware
envelope 11 has been used, the sound starts off rather like the
earlier version, but the volume drops to zero. When the volume
takes up again, the pitch of the whistle has changed consid
erably, giving the impression of two quite different sounds. This
is another good one for your ‘space wars’ library of sounds.

Now try the combination of a repetitive hardware envelope with
a pitch envelope in Figure 6.10. This is one for looney miners
falling down ladders! The ENT statement does not have to be
confined to descending notes either. If you want an ascending
note, though, you must put a starting value into the SOUND
statement. Figure 6.11 illustrates this idea, with a good ‘disap
pearing out of sight' sound. This uses a negative step size in the
ENT statement, with a starting tone number of 500 in the SOUND
line. A repetitive hardware amplitude envelope is used, and the
result, well listen to it for yourself!

Another fruitful field for experiments is in rhythm noises for
accompanying music. Figure 6.12 gives a passable imitation of
a cymbal and drum rhythm. This uses two envelopes, one with
a ramp up and quick release, the other with a fast attack and

lO ENV 1,15,1,1,1,-15,1,5,0,4
20 ENV 2,1,15,1,15,-1,1,5,0,5
30 SOUND 2,0,0,0,1,0,20
40 SOUND 2,0,0,0,2,0,25
50 SOUND 2,0,0,0,2,0,30

Figure 6.12 Synthesising the effects of cymbals and drums.

116

10 ENV 1,15,1,1,1,-15,1,5,0,4
20 ENV 2,1,15,1,15,-1,1,5,0,5
30 FOR N7.= l TO 8
40 READ A7., B7.„ C7.
50 SOUND 17, A7., 40,7
80 80UND 10,0,0,0,1,0,20
70 SOUND 17, B7,30,8
80 SOUND 10,0,0,0,2,0,25
90 SOUND 17, C7., 30,6
100 SOUND 10,0,0,0,2,0,20
110 NEXT
120 DATA 239,213,190,213,239,284
130 DATA 284,253,239,284,319,358
140 DATA 319,284,253,239,213,190
150 DATA 213,190,239,213,213,213

Figure 6.13 A melody of sorts with rhythm accompaniment.

slow decay. The drumbeats use different noise numbers so that
they sound slightly different. This can be combined with a melody
in another channel, and using synchronisation. Synchronisation
is essential in programs of this type, because otherwise the
rhythm and the melody would inevitably get out of step. The
result is shown in Figure 6.13 — not exactly hit-parade material,
but it's a start! Obviously you can synthesise any drum rhythm
you like, using suitable combinations of envelopes — after all,
you have fifteen to play with. All but the most complicated rhythm
patterns should be attainable, but as usual, it's hard work, and
you need a keen ear to check the results. Keep to reasonably
easy rhythms at first, until you get used to the techniques, par
ticularly of putting in silences. This is always the trickiest part,
and it’s the bit that makes software relative envelopes much
superior to other types for this sort of activity.

Some types of drumming and other noise have pitch changes
of noise during the time of the sound. These are particularly
difficult to synthesise, and the best way is to queue up a number
of SOUND instructions with different noise numbers. Figure 6.14
gives a passable imitation of a snare-drum by using an envelope
with medium attack and a loop which carries out SOUND in
structions with different noise numbers. This is followed by a
delay, then two sharp bursts of noise. The result is the drum roll

117

10 FOR J7.= l TO 3
20 ENV 1,3,5,1
30 FOR N'/.=23 TO 15 STEP -2
40 SOUND 2, O, O, 0, 1,0, N7.
50 NEXT
60 FOR X=1 TO 400:NEXT
70 FOR K7.= l TO 2
80 SOUND 2,0,10,7,0,0,5
90 FOR X=1 TO 400:NEXT
100 NEXT
110 FOR X=1 TO 500:NEXT
120 NEXT

Figure 6.14 Drum roll and taps program.

and two taps which you hear repeated three times. If you want
to change the noise number in a loop like this, with the sound
appearing to be continuous, you need to use fairly sharp attacks,
because if the envelope takes too long, you will not hear the
result as a single sound, simply as a series of sounds.

Pitch envelope effects
You can create a rich selection of sound effects by making use
of the pitch envelope along with musical notes. Normally for
musical effects, the pitch envelope is used only to a small extent
in creating vibrato, but when the pitch envelope is used to give
large pitch changes, the effects can be really interesting. We
have had some flavour of this already when using the pitch
envelope with noise. Take, for example, the warning note in
Figure 6.15. This is very simply achieved by using a pitch en
velope which specifies 200 steps of pitch change - 5 (upwards)
and a delay of 2 units. When this is applied to a sound that starts
at note 500, the result is a sound that changes rapidly to higher
pitch. You have to choose your sound duration number carefully
here, otherwise you will find odd effects caused by the pitch
control going off scale after the pitch envelope has finished. In

10 ENT 1,200,-5,2
20 FOR N7.= l TO 20
30 SOUND 2,500,100,7,0,1
40 NEXT

Figure 6.15 A warning note which is created with a pitch envelope.

118

10 ENT 1,10,-1,1
20 FOR N7.= l TO 20
30 SOUND 2,20,10,7,0,1
40 NEXT

Figure 6.16 A very piercing warning note which is obtained using the low values
of tone period.

this example, the whole sound instruction has been put into a
loop so that it repeats twenty times. This is a good one to signal
urgent evacuation of the working area when your reactor is about
to blow up. Incidentally, on past record, the oxygen/carbon re
actor (usually known as a coal-fired boiler) is a darn sight more
likely to blow up than the nuclear variety!

You can make really earsplitting warning notes of this kind if you
use the higher pitches. Figure 6.16 is an example of the sort of
thing that really knocks the wax out of your ears. The starting
note this time is of pitch number 20, a very high note, and the
ENT specifies 10 steps of -1 change, pause 1. This is a fast
change of pitch, and when the whole lot is put into a loop, the
results cannot be ignored! If you add to the SOUND instruction
a noise number, around 20, at the end, you get back to another
of these helicopter-blade sounds. This is just another example
of how a comparatively small change in an instruction can make
a big difference to what you hear. Another point to remember
is that you often don’t need to program any loops if you want to
repeat an envelope. By using a negative envelope number in
the ENT line (but not in the SOUND instruction), the pitch en
velope will be repeated for as long as the duration of the note
specified in the SOUND line. This can be very useful if you want
notes that wail up and down in pitch, as Figure 6.17 demon
strates. This uses a pitch envelope which specifies a change of
50 steps down, then 100 up, then 50 down again. When this is
used in conjunction with the negative envelope number, the result
is a wailing that can be used for all kinds of siren effects. You
can also do some tricks with this type of envelope, by making
the sections non-symmetrical. By that I mean that the pitch at

10 ENT —1,50,2,2,1OO,—2,2,50,2,2
20 SOUND 2,200,5000,7,0,1

Figure 6.17 A wailing note which is created using a repeating pitch envelope.

119

10 ENT -1,50,-2,1,90,2,1,50,-2,1
20 SOUND 2,200,1000,7,0,1

Figure 6.18 A modification to the wailing pitch envelope which makes the pitch
pattern change.

10 ENT -1,50,-2,2,50,0,2,50,2,2
20 SOUND 2,200,1000,7,0,1

Figure 6.19 A wailing pattern which has a period of steady tone.

the end of the envelope is not the same as the pitch at the
beginning. In the example of Figure 6.18, the envelope forces
the pitch to rise by 50 steps, but it then descends by only 90
steps and rises another 50. This leaves the pitch ten steps higher
at the end of the envelope than it was at the beginning, and the
effect is rather interesting — it’s a good one for the ‘1, 2, 3,
. . . and go' type of sound-effect. Remember also that you can
write pitch envelopes that have portions of steady pitch. This is
done by a section in which the pitch change number is zero, as
Figure 6.19 shows. This gives a wailing sound in which the high
note is maintained longer than the low note.

The next obvious step is to combine amplitude and pitch en
velopes with musical notes. With the sort of choice that you have
of amplitude envelopes, added to the choice of pitch envelopes,
this offers you a lifetime with never a dull moment. Just as a
starter, listen to the result of Figure 6.20. This uses hardware
envelope 9 with a long duration, and a pitch envelope that de
scends and then rises again. Now if the length of the note is
carefully trimmed so that the pitch variation has just finished as
the note fades away, you get this rather splendid effect. It's ideal
for the rebound of the unfortunate Tom from Jerry's stretched
rope! Try it with different starting pitches, too. You’ll find that the
higher pitches give more useful effects than the lower ones,
because a pitch change of one unit has much less effect on the
lower notes. Consider also what happens when you have a pitch
cycle combined with one of the repetitive hardware envelopes.

10 ENV 1,=9,6000
20 ENT 1,50,1,1,50,-1,2
30 SOUND 2,200,0,0,1,1

Figure 6.20 A splendid ‘rebound’ sound effect.

120

1C ENV 1,=8,200
20 ENT -1,20,1,1,40,-1,1,20,1,1
30 SOUND 2,200,0,0,1, 1

Figure 6.21 The weird effect of combining a repetitive hardware amplitude
envelope along with a pitch envelope.

1 0 ENV 1 , = 10, 1000
20 ENT -1,30,-1,1,5,6, 1
3C SOUND 2,200,0,0,1,1

Figure 6.22 The ‘flying insect' effect.

Figure 6.21 illustrates the sort of thing that you can get. This
sound can be greatly changed by using lower values of the
hardware envelope time. Try, for example, using a figure of 30
for the period of the hardware envelope. Lower numbers will give
even more weird sounds which are a mixture of steady tone and
fluctuating note. Another weird combination consists of a pitch
envelope which changes slowly in one direction and then fast
in the other, combined with a repeating amplitude envelope. This
is illustrated in Figure 6.22. On this one, try also making the
amplitude envelope duration number 10000 instead of 1000. For
the noise of a demented bee, try a duration number in ENV of
1000, and a note number in SOUND of 800. Once again, you
can get as many sound effects as you care to try out. How about
an American police car speeding towards you? This is the sound
of Figure 6.23. It’s been achieved by using hardware envelope
13, which ramps up and then keeps maximum volume, along
with a pitch envelope which changes up and down, but gets
lower (the car is slowing down and stopping near you). As a
variation on the same kind of theme, you can use a repetitive
envelope with a short time period, and with greater pitch change
to give the 'spiralling out of control’ kind of sound that is illustrated
in Figure 6.24.

Now for something completely different. More versatile sounds
can be obtained, as you might expect, if you make use of soft
ware relative amplitude envelopes. Using an amplitude envelope

10 ENV•1,=13,12000
20 ENT -1,28,-1,1,5,6,1
3© SOUND 2,80,0,0,1,1

Figure 6.23 The American police car siren sound.

121

1C’ ENV 1, =14,100
20 ENT -1,26,-1,1,5,6,1
30 SOUND 2,60,1000,0,1,1

Figure 6.24 Von Richthoven out of control — a good one for aerial combat!

10 FOR N7.= l TO 10
20 ENV 1,1,15,1,15,-1,3
30 ENT 1,10,-1,2
40 SOUND 2,1000,0,0,1,1
50 NEXT

Figure 6.25 The basic 'boing' sound — you can do a lot with this one!

which has fast attack and slower decay, along with a rising pitch
envelope gives the traditional ‘boing’ sound which is well illus
trated in Figure 6.25. At lower pitches, this is good for ‘giant’s
footsteps' (try it with an echo, too), and at higher pitches gives
quite a reasonable plucked string note. This is only because the
time of the amplitude envelope does not give time for more than
a fraction of the pitch variation, however. You always have to
remember how these envelopes are linked, with the amplitude
envelope deciding how long the note plays, irrespective of
whether or not the pitch envelope has finished. If you find that
a set of envelopes does not do what you expect, it’s often a
good idea to look at the total times of the envelopes.

Remember that if you have a slow changing amplitude envelope
and a fast pitch envelope, all of the pitch changes could be over
before the amplitude is loud enough to hear. If you get it the
other way round, the note could be too short for you to notice
any pitch change. As always, this is something that you have
to work at, but remember that you can always make the pitch
envelope repeat so as to fill in time in the amplitude envelope.

You can get a nice set of twittering sounds if you use high notes,
with fast attack and release, and also fast changes of pitch.
Once again, you have to match the times reasonably carefully,
and Figure 6.26 uses 41 time units in its amplitude envelope with
20 units in its pitch envelope. If you don’t want this one to end

10 ENV 1,1,15,1,5,0,5,1,-15,1
20 ENT 1,1,5,5,1,-5,5,1,5,5,1,-5,5
30 SOUND 2,20,0,0,1,1
Figure 6.26 A twittering sound, of alien birds perhaps?

1 2 2

10 ENV 1 , 1 , 1 5 , 1 , 6 , 0 , 6 , 1 5 , - 1 , 4

20 ENT 1 , 4 , 0 , 4 , 1 0 , - 1 , 1 , 1 0 , 0 , 2

30 SOUND 2 , 8 0 0 , 0 , 0 , 1 , 1

Figure 6.27 A bell note — this pattern can be used with a lot of different tone
periods.

10 ENV 1,3,5,1,10,0,5,5,-3,1
20 ENT 1,30,-2,5
30 SOUND 2,3000,0,0,1,1,1

Figure 6.28 The rattlesnake — file it away with the gunshots.

with the steady note, then just make the ENT number negative
in the usual way. As always, you can play with the pitch number
in the SOUND line to discover a huge range of sounds for different
purposes. Finally in this section, try some bells. A bell note needs
sharp attack and long sustain and release sections in its am
plitude envelope, with some pitch change just at the start of the
note. Figure 6.27 illustrates this type of thing. The sound, oddly
enough, is rather more convincing with the small built-in loud
speaker than it is with stereo headphones or a hi-fi setup. This
adds yet another dimension to the complications of sound
programs!

The whole caboodle!
You can now consider what can be done if you use amplitude
envelopes, pitch envelopes, tones and noise all in one sound.
It would be unreasonable to try to run through all of the possi
bilities that this set allows you, and all that we can do here is to
consider the main types of sound that can be obtained. If you
use very low notes, the effect is of bursts of noise, and the pitch
envelope does not have much real effect. This is illustrated in
Figure 6.28, which is a good one for a rattlesnake effect. File
this one near to your gunshots for that Wild West adventure you
always wanted to write. If you alter the ENT line so as to read:

ENT 1,200, -50,1

you will get noticeable pitch changes that remind me, at least,
more of a snare-drum. On the other hand, the combination of
whistle and rattle in Figure 6.29 reminds me of nothing I have
ever heard at all! Perhaps you could use it for the sound of the

123

10 ENV 1,3,5,1,10 , 0 ,5,5, —3,1
2 0 E N T 1 , 2 0 0 , - 1 , 1

3 0 SOUND 2 , 3 0 , 0 , 0 , 1 , 1 , 1

Figure 6.29 A combination of whistle and rattle.

10 ENV 1,15,1,1,10,0,10,1,-15,2
20 ENT -1,1,5,1,2,-5,1,1,5,1
30 SOUND 2,30,0,0,1,1,1

Figure 6.30 Sound effect for arrival of aliens.

Venusian Swamp-swallow. With more rapid pitch changes, a
high pitch note, and a fast attack long sustain amplitude en
velope, you get the sound of alien monsters approaching in
Figure 6.30. Altering the pitch of the musical note and the pitch
of the noise will both change this effect considerably.

You can get a lot of mileage, in particular, with really long en
velopes. A particularly good example is the envelope with a very
slow attack, so that the sound volume increases over a long
period. There are limits to this, because with only 16 steps of
volume (0 to 15) you will get a rather uneven effect if you stretch
out the envelope too much. As a 'gradual aproach' type of effect,
however, it can be very impressive. Try the one in Figure 6.31
to start with. Making the tone number 200 in the SOUND line is
also quite useful, giving a mysterious ringing with the noise. You
can then try giving it a bit more pitch wobble by making the
change of pitch numbers 10 and -1 0 . Different noise numbers
can also change the pattern of the sound quite considerably.
Just to illustrate how much a sound depends on its amplitude
envelope, though, look at the example in Figure 6.32. The am
plitude envelope has been changed to one with fast attack and
slow decay, but the effect now is of a gun shot with a long echo!

10 ENV 1,15,1,100
20 ENT -1,2,2,2,4,-2,2,2,2,2
30 SOUND 2,50,0,0,1,1,1

Figure 6.31 A good sound for gradual approach of something sinister.

1 0 ENV 1,1,15,1,15,-1,10
20 ENT -1,2,10,2,4,-10,2,2,10,2
30 SOUND 2,200,0,0,1,1,31

Figure 6.32 Gunshot with long echo.

124

The sound is entirely different if you use a noise number of 1 in
place of 31. Try also using a large note pitch number, around
4000, and once again, the type of sound changes completely.
This can be very frustrating if you are looking for a specific sound,
but fascinating if you just want to explore. The trouble with ex
ploring, however, is that you often forget just what arrangement
gave you some effect. If you want to be really methodical, number
your sound programs, and keep a cassette which has just the
sounds recorded on it, with your voice announcing the numbers.
You’ll find out how to record sounds in Appendix C.

This brings us to the end of this section, and in the next (and
last) Chapter, we’ll be looking at some other sound instructions
which are not quite so often used, and also, briefly, at sound for
the machine code programmer. There is no particular advantage
in turning to machine code for sound effects unless you are
writing a complete program in machine code, and for this reason,
I shall not go into a lot of detail about the use of machine code.
The remaining BASIC commands that concern the sound queue,
however, are more likely to be of interest to the programmer of
musical sounds, particularly when the sounds are used as part
of another program of text or graphics displays.

125

126

7

L o o se e n d s
By this stage, you have seen all of the techniques that are needed
to create both music and sound effects, and all that we shall do
in this last chapter is to tie up some of the loose ends of topics
that have been introduced in one way or another earlier. We shall
start with the sound queues, because this feature probably
causes more frustration than any other. As you have seen al
ready, failure to control the sound queues correctly will make it
impossible to obtain synchronised melody and accompaniment,
and can wreck stereo effects. The principle is illustrated very
clearly in the CPC464 manual, but it’s worth repeating the points.
When you program SOUND instructions, the machine will read
in up to five notes f r o m e a c h c h a n n e l into the sound queues.
These notes will be played in order in each channel, obeying
the pitch, duration, volume and other controlling numbers in the
SOUND instructions. Because all of the channel queues fill up,
though, the notes which are at the head of the queue in each
channel will normally always be played together, whether you
want them to be or not. We have seen already how this problem
can be overcome by using the synchronising numbers.

One action of the queues that we have not looked at is the hold-
and-release facility. If you add the number 64 to a channel num
ber, the effect is to hold that channel inactive until the RELEASE
instruction occurs in a program. If you hold the channel inactive,
of course, then because the SOUND instruction cannot be ob
eyed, the computer will hang up its sound chip, waiting for you.
The RELEASE instruction has to be followed by a channel num
ber, which can be any number from 1 to 7 depending on whether
you are releasing one channel or a number of channels — as

127

10 FOR N7.= l TO 8
20 READ P7.
30 SOUND 65,P7.,50,7
40 PRINT"Press a key to hear a note"
50 K*= INKEY*: IF K*=""THEN 50
60 RELEASE 1
70 FOR J=1 TO 500:NEXT
30 NEXT
90 DATA 239,213,190,179,159,142,127,119

Figure 7.1 Using the RELEASE instruction to remove the hold on a channel.

usual you add up the numbers of the channels that you want to
control. Figure 7.1 shows RELEASE in action with a program
which plays one note each time a key is pressed. This could be
a good starter for a 'name that tune’ type of game. The SOUND
instruction uses the channel code of 65, meaning the hold code
of 64, plus the channel number 1. This will cause the machine
to hang up on the SOUND instruction until a RELEASE is issued.
By ‘hang-up’, I don’t mean that it will stop operating, because
it obviously reaches line 50. The SOUND instruction cannot be
played, however, and other SOUND instructions cannot be read
until the RELEASE has been executed. This is done following the
‘Press any key’ step. The RELEASE number is followed by 1,
because we are using channel 1 — you do not use the number
65 which was put into the SOUND instruction. It’s sometimes
useful to use RELEASE 7 whether you need it or not — this
releases all channels, and it can save having to remember which
channel you had put the hold on. If you specify a release on a
channel which has not been held, there is no effect of any kind.
You can, of course, hold a note in one channel while notes are
playing in the other channels.

If the sound queue consists of only up to four notes, a note that
is held at the start of the queue does not cause any hang-up
except in the execution of sound. This allows notes to be queued
right at the start of a program, providing that no more than 4 are
queued. Try, for example, Figure 7.2 in which four notes are read
into a sound queue. Because of the position of the NEXT in this
program, all of the notes have been read before the ‘Press any
key’ message appears. When you press a key, as before, a note

128

10 FOR N7.= l TO 4
20 READ P-/.
30 SOUND 65, P ' / . , 50,7
40 NEXT
50 F'RINT"Press a key to hear a note"
60 K*=INKEYS>: IF K*=""THEN 60
70 RELEASE 1
80 FOR J = 1 TO 500:NEXT
90 GOTO 50
100 DATA 239,213,190,179,159,142,127,119

Figure 7.2 Using RELEASE with a short sound queue.

plays. In this example, however, there’s nothing that can detect
when the program should end. You play your four notes, and
after that, pressing a key has no effect, and you have to use ESC
to get out of the loop. Now if you make the first line read N% =1
TO 5 instead of 1 TO 4, then the program hangs up c o m p l e t e l y .

The sound queue will not accept another note while there is a
hold on the first one, and so the FOR. . .NEXT loop cannot pro
ceed. This is not quite sufficiently stressed in the manual.

You can test the state of the sound queue with the instruction
SQ (short for Sound Queue). SQ is a number which is coded as
shown in Figure 7.3. When there is a hold on a note, then SQ
will take a value which is 64 + the number of spaces in the sound
queue. By spaces, I mean places that are not occupied. The

To analyse the SQ number, proceed as follows:
1. Use the computer in direct mode to get the binary code for SQ.
You can do this with PRINT BINS (SQ,8). The result will contain eight
digits, 0 or 1.
2. Analyse the positions of the 1’s in the binary number as shown in
the table below. A zero means no action.

1 1 1 1 1 1 1 1

Channel Hold Sync. Sync. Sync. 4 free 2 free 1 free
playing to C to B to A spaces spaces space

For example, the number 00101011 would mean no channel playing,
no hold, sync with C and A, and three free spaces in the sound
queue.

Figure 7.3 Making use of SQ.

129

place numbers range from 0 to 4, so that the number 6 4 + 4
= 68 would mean that the sound queue was completely empty.
To see this in action, put a new line:

35 PRINT SQ(1)

into the program of Figure 7.2, and run again. This time, you will
see the numbers:

67
66
65
64

appear before the ‘Press any key' notice. This shows the state
of the sound queue after each SOUND instruction. The number
67 is 64+3, meaning that there are three blank spaces in the
queue. The other numbers indicate that the spaces are being
filled, and the final number 64 shows that there are no blank
spaces remaining. This analysis of the sound queue can be used
to make the program end correctly. Figure 7.4 illustrates this with
the test in line 90 checking the SQ(1) number. If this is more than
64, then there are still notes in the queue, and the program loops
back. A sim ilar test could have been made using a
WHILE. . .WEND loop. The SQ number can also show the ex
istence of synchronising commands, or a channel which is cur
rently playing. The SQ test is therefore used by sound
programmers in rather the same way way as the TEST instruction
is used for graphics. There is one type of SQ instruction, however,
which is particularly useful and which does not correspond to
any use of TEST in graphics.

10 FOR N7.= l TO 4
20 READ F'7.
30 SOUND 65,F'7,50,7
40 NEXT
50 F'RINT"F'ress a key to hear a note"
60 K$=INKEY$: IF K$=" "THEN 60
70 RELEASE 1
30 FOR J=1 TO 500:NEXT
90 IF SQ < 1)>64 THEN 50
10O DATA 239,213,190,179,159,142,127,119
Figure 7.4 Using SQ to terminate the program correctly.

130

1© FOR N7.= 1 TO 4
20 READ P7.
30 SOUND 65,P7.,50,7
40 NEXT
50 PRINT"F'ress a key to hear a note"
6W K$=INKEY*:IF K*=""THEN 60
70 RELEASE 1
30 FOR J=1 TO 500:NEXT
100 ON SQ(1) GOSUB 130:IF SO(1)>64 THEN
50
110 END
120 DATA 239,213,190,179,159,142,127,119
130 PRINT"How did you like that one'7'"
140 RETURN
Figure 7.5 A simple example of ON SQ GOSUB in action.

ON SQ GOSUB
The instruction, ON SQ GOSUB allows a subroutine to be run
whenever a note finishes playing, whether there are other notes
in the queue or not. As before, SQ has to be followed by a
channel number placed within brackets. The subroutine can be
of any type, and in the example of Figure 7.5 the subroutine
simply prints a phrase. The point of using ON SQ(1) GOSUB like
this is that the timing of the end of the note is exact. It is often
possible to make messages appear at the end of a note, and
there have been several examples in this book. Methods that are
based on time delays, however, require quite a lot of cut-and-
dry programming, which is completely obviated if the ON SQ
GOSUB type of instruction is used. This can be particularly useful
if you want to program messages or graphics immediately fol
lowing a sound effect that uses an envelope. The ON SQ GOSUB
instruction works only when it has been executed. In other words,
carrying out an ON SQ GOSUB will detect the end only of the
first note that plays in that channel. If you want to use the in
struction again, you need to put the ON SQ GOSUB into a loop,
as was done in the example. You should not put the ON SQ
GOSUB instruction in with any loop that is reading in sound
parameters which are being held, because unless a note is
actually sounding, the SQ routine will operate.

131

1© ON ERROR GOTO 150
2 0 GOSUB 10©
30 PRINT"Press a key to hear a note"
40 K$=INKEYS:IF K*=""THEN 40
50 RELEASE 1
60 FOR J=1 TO 5O0:NEXT
70 IF SQ(1)>64 THEN 30 ELSE GOSUB 10O:GO
TO 30
80 END
90 DATA 239,213,190,179,159.142,127, 119
100 FOR N*'.= 1 TO 4
1 10 READ P7.
120 SOUND 65, P'/., 50, 7
,130 NEXT
140 RETURN
150 END

Figure 7.6 A more elaborate note reading routine which avoids over-filling the
queue.

What do you do, then, if your ‘name that tune’ routine needs
more than four notes? Figure 7.6 shows a way out. In this ex
ample, the notes are read in by a subroutine, and in line 70, the
test of SQ will call the subroutine if the sound queue becomes
empty. Doing this would normally cause an error message (Out
of DATA) when there are no more notes to read, but this can be
avoided by using the ON ERROR GOTO line which makes the
program end when an error has been detected. When you try
this program, omit the ON ERROR GOTO line at first until you
are sure that you have no mistypings. The reason is that ON
ERROR GOTO used in this way does not discriminate one error
from another, and a syntax error will also cause the program to
end with no error report. In a genuine program, you would want
to use ERR to trap the Out of DATA error only, and keep the
normal error trapping routines for anything else.

Machine-code SOUND
In the past, some computers permitted the sound routines to be
programmed only by machine code. If you had no interest in
machine code, too bad, you couldn’t use sound. The CPC464
and CPC664 family allow you full control over the sound by using
BASIC keywords, and there is never any need to use machine

132

code to achieve any effect. The only possible reason for using
machine code for sound instructions, then, is because you are
writing a program in machine code and you need sound in the
program. If you have no interest in machine code, then what
follows is not for your eyes. If you want to learn about machine
code on the CPC464, then there are several excellent books to
guide you (modestly naming no names). What follows, then, is
purely for the machine-code buff who knows what it’s all about
with no detailed explanations.

To start with, you will need to have the excellent Amstrad tome
called the Complete Firmware Specification, coded SOFT 158
for the CPC464 — I don’t know the corresponding number for
the CPC664 at the time of writing. This contains details of all the
ROM routines that you will need to call in the course of sound
programming, and shows which registers have to be used, and
which saved on the stack to avoid corruption. Without this book,
you are really working in the dark, and Amstrad are to be con
gratulated on making this information available. Computer manu
facturers who keep this sort of thing a secret, or who wait until
someone else provides it, tend to go out of business these days!

The programmable sound chip is the General Instruments AY-
3-8912. This is one of a family of fairly similar chips, one of which
(AY-3-8910) is used in the MSX computers, and earlier varieties
of which were in the Colour Genie, Spectravideo, Dragon and
other machines. If you have programmed sound in machine code
for any of these machines, you will find it fairly easy to deal with
the system of the CPC464. There are complications, however.
In the CPC464, the sound chip is accessed through the port,
and if you try to address the port directly you can run into con
siderable difficulties because of the use of the port also for the
keyboard. If you are absolutely determined to get direct access,
then you should study the code in the ROM of the CPC464 from
address #0826 onwards. The better and much more trouble-
free way of gaining access to the registers of the PSG is through
the call to #BD34 (which calls to #0826). Before calling, you
must place the register number into the accumulator, and load
register C with the data that is to be sent. The routine corrupts

133

AF and BC, so that these registers should be put on to the stack
if you want to use their contents later. In fact, it’s better to place
these registers on the stack in any case, because corrupting
these registers can often make it impossible to return correctly
to BASIC.

The PSG registers
The PSG makes use of 14 registers, labelled R0-R13. Not all of
these registers are eight-bit, and in some the numbers that you
use are bit-significant, meaning that different actions can be
programmed by using different bits in the register. The general
arrangement is illustrated in Figure 7.7 . Registers R0-R5 control
the tone periods of the three channels. Of these six registers,
the even numbered ones are eight-bit registers which contain
a ‘fine-tune' bit. This is used to correct the number so that the
note will be in reasonably exact pitch. The coarse tune registers
have odd numbers, and are four-bit only. In other words, you
have a range of 15 selection numbers for your range of notes,
with 256 adjustment numbers to get the notes in each range.
This pair of numbers corresponds to the number range of 0 to
4095 which you can use as the tone number in BASIC. For a lot

Register Bits

RO Tone A fine
7 6 5 4 3 2 1 0

All eight bits used
R1 Tone A coarse Bits 3 — 0 only
R2 Tone B fine All eight bits used
R3 Tone B coarse Bits 3 — 0 only
R4 Tone C fine All eight bits used
R5 Tone C coarse Bits 3 — 0 only
R6 Noise period Bits 4 — 0 only
R7 Enable IN/OUT Noise Tone

R8 A amplitude
C B A C B A

Bits 4 — 0 only
R9 B amplitude Bits 4 — 0 only
R10 C amplitude Bits 4 — 0 only
R11 Envelope fine All eight bits
R12 Envelope coarse All eight bits
R1 3 Envelope shape Bits 3 — 0 only

Figure 7.7 The registers of the PSG.

134

of sound effects in machine code, you would use either the
coarse register or ignore tones and make use of noise.

Register R6 is the noise period register. This is a 5-bit register,
hence the range of 0 to 31 in BASIC for the noise period. The
number which is put into this register picks a predominant fre
quency, and the noise signal makes use of ‘random’ numbers
which are centred round this tone. Ignoring R7 for the moment,
registers R8-R10 are responsible for amplitude control. Using
three bits of these registers allows the normal range of 0 to 7 for
amplitude, but if the fifth bit is set, then four bits (range 0 to 15)
can be used for amplitude control by an envelope. Registers
R11 and R12 will then control the envelope period. These are
both eight-bit registers, with R12 containing the more significant
bit so that the range of numbers is 0 to 65535. R13 then holds
the envelope shape pattern, and the numbers in this register
correspond to the hardware envelope numbers that we have
looked at already. When you program directly, only these en
velope patterns are available, and if you want to use software
envelopes, you must program them for yourself or make use of
the calls to the ROM which will carry out this action.

The enable register
Register R7 is an enable register whose contents are bit signi
ficant. Bits 0, 1 and 2 are used to control tones, and the bits are
used inverted. In other words, a 1 in a bit position suppresses
a tone in the channel, a 0 produces tone. Since the bit positions
correspond to the channels, then the number binary 111 will shut
off all of the tone channels, and 000 will activate all of them. Bits
3, 4 and 5 similarly control the noise output to the three channels,
using the same convention that a 0 permits sound and a 1
suppresses it. Bits 6 and 7 are used to control input and output,
and the normal setting is bit 7 set, bit 6 reset. Figure 7.8 shows
the numbers that should be placed in this register in order to
switch tones and noise into the various channels. The correct
programming of this register is essential if you want to program
the chip directly, and an illustration will probably be helpful at
this point. The assembly language program is shown in Figure

135

Channels
Open

Tone number Noise number

A,B & C 0 0
B & C 1 8
A & C 2 16
C only 3 24
A & B 4 32
B only 5 40
A only 6 48
None 7 56

Add 128 to the sum of these control numbers. For example, if you
want to use A & C for tone, and B for noise, then use 2 + 40 + 128
= 170.

Figure 7.8 How register R7 is used.

7.9. The register pairs AF and BC are pushed on to the stack.
This may not always be necessary, but I found that my assembler
program (the Zen assembler) was corrupted if I did not preserve
these registers. The A register is then loaded with 7, to operate
the channel select system, and the C register with 183. This latter
number is made up from 7 (no tones selected) plus 48 (noise
in channel A) plus the statutory 128 (selecting out). The for
warding address of OBD34H is then called in order to place the
byte into the register. Channel A loudness is then set to its
maximum by using the number 15 in register 8, and the next set
of steps comprise a loop. The aim of the loop is to put numbers,
starting at 31 and cycling down to zero, into the noise frequency
register, R6. This is done by loading B with 31 and pushing the
BC pair on the stack. The A register is then loaded with 6, and
the C register from B to get the noise number. After calling the
access address of OBD34H, a delay is called so as to prolong
the sound. This is very important in a machine code program,
because without suitable delays, the sound is finished so soon
after it has started that you hear only a click! In this case, the
delay subroutine loads the maximum two-byte number of FFFFH
into the HL pair, and counts this down. This gives a rather short
delay, and for many sound effects, it would be better to use a
longer delay, with the DE registers as well as the HL registers.
Using, for example, the number FFFFH in HL and numbers in

136

ORG 07000H
LOAD $
PUSH AF
PUSH BC
LD A .7
LD C,183
CALL 0BD34H
LD A,8
LD C,15
CALL 0BD34H
LD B,31
PUSH BC
LD A,6
LD C,B
CALL 0BD34H
CALL DELY
POP BC
LDIR
LD A,8
LD C,0
CALL 0BD34H
POP BC
POP AF
RET

DELY: LD HL.OFFFFH
LOOP: DEC HL

LD A,L
OR H
JR NZ.LOOP
RET
END

Figure 7.9 A simple assembly language program which programs the PSG
directly.

the range 1 to 15 loaded into DE, you could program different
delays by loading DE before calling the routine. After the delay
has ended, BC is popped to restore the count number in B, and
the LDIR completes the loop. The volume register is then zero’d
and the program returns. The use of RET here assumes that you
are returning either to BASIC or to another machine code routine.

This example illustrates the techniques that are needed if you
are intending to program the sound chip directly. I must em-

137

phasise that you really don’t need to, because the ROM routines
for all the standard operations are available to you, but if you
feel that direct programming is necessary, then Figure 7.9 shows
how. Whatever the complexity of the program, the general meth
ods of loading A and C, followed by the call to BD34H remain
the same. A good guide to suitable programs can be obtained
in books that deal with the sound system of the MSX machines.
The MSX machines use an alternative sound command S O U N D ,

which is followed by a PSG register number and a data number.
Thus S O U N D 7 , 1 9 0 means that PSG register 7 is to be loaded
with 190, and in assembly language on the CPC464 this would
be programmed as:

LD A,7
LD 0,190
CALL 0BD34H

as we have seen. You have therefore a rich source of potential
sound-effect programs available to you!

The sound routines
If you do not program the PSG directly, you can make use of the
ROM routines of the CPC464 so that the same range of actions
that you have in BASIC becomes available to you also in machine
code. The snag here is that a considerable amount of setting
up is required in the form of data blocks. This means that a set
of numbers such as you might use in specifying an amplitude
envelope is stored in the RAM, and the starting address has to
be loaded into HL before calling the routine that will deal with
the numbers. Figure 7.10 shows an example of this type of thing,
with an amplitude envelope described, and a note put into the
sound queue. Once again, this illustrates how the routines are
used, and you can take it from here for yourself once you know
from using the BASIC instructions how the routines are used. In
the example, the registers AF and BC have been pushed on to
the stack as a precaution, and the call to BCA7PI resets the
sound system. This also is purely a precaution, and it has the
effect of shutting off the sound chip, clearing any sound queues,
and preparing for a new sound. This routine should be used to

138

ORG 07000H
LOAD $
PUSH AF
PUSH BC
CALL 0BCA7H
LD HL.BLOK
LD A , 1
CALL OBCBCH
LD HL.QUE
CALL OBCAAH
POP BC
POP
RET

AF

BLOK: DB 2,1,15,1,10,0,10
QUE: DB

END
1,1,0,2,5,0,7,0,0

Figure 7.10 An assembly language program which creates an envelope and
calls a SOUND.

The amplitude envelope data block can use up to 16 bytes, coded as
shown.
Byte 0 — Number of envelope sections.
Bytes 1-3 First section
Bytes 4-6 Second section
Bytes 7-9 Third section
Bytes 10-12 Fourth section
Bytes 1 3-1 5 Fifth section

In each section the first byte is the step count, the second is the step
size and the third is the pause time.

Figure 7.11 The amplitude envelope data block.

ensure that nothing from a previous sound call is still lurking in the
PSG registers.

The next step is LD HL.BLOK. This means that the HL pair is
loaded with the address BLOK, which is the first of two addresses
for data blocks. In this case, the block contains the amplitude
envelope data. Figure 7.11 shows what has to be stored in a
block of this type, which can use up to 16 bytes to describe a
complete envelope. In this example, a fairly simple block has
been used. The assembler will place bytes into memory using
the DB instruction, and the bytes in this case are shown in line

139

14. The first byte, 2, is the number of sections. This makes it
unnecessary to have any terminator for the data, but you must
be careful to use only numbers 0 to 5 in this place if you are
specifying a software envelope. If the number 0 is used, the
envelope will consist of a steady tone which lasts for two seconds.
The routines do not make any check for an impossible number
in this position, and if you are programming in machine code,
you simply have to be careful about this. The remaining bytes
then contain the normal envelope numbers for step count, step
size and pause time — remember if you want to use negative
step size how this will be represented as a single-byte number.
There is a special significance to the first byte of the block if the
most significant bit is set. This means that a hardware envelope
is to be selected, and in this case, the range of numbers in the
rest of the byte is the usual 8 to 15 for hardware envelopes. The
next two bytes then contain the period numbers, low-byte first.
You would normally follow such a hardware section with a soft
ware one to give a time delay.

With the block set up for the amplitude envelope, the envelope
number now has to be allocated. This is done by loading the
number into register A before calling the routine. The range of
permitted numbers is 1 to 15, and no envelope will be used if
a number outside this range is loaded. Once the HL address
and the envelope number have been loaded, the routine at
BCBCH is called to set up the envelope ready for use. A similar
method can then be used to set up a tone envelope You must
then put the note into the sound queue, by using the machine
code equivalent of the SOUND statement. This is done by once
again loading HL with the address for another block of data, and
calling the routine at BCAAH. In this example, the address QUE
contains the sound data, and Figure 7.12 shows how the bytes
are used. You need to be careful here, because it's easy to
assume that the numbers will be put in using the same order as
for the SOUND statement. As you can see, they are not, apart
from the first byte. In the example, the first byte of 1 is used to
specify Channel B, and the following 1 specifies amplitude en
velope number 1 which has already been set up. The next zero
is used because no tone envelope is prepared, and the following

140

Byte 0 Channel code
Byte 1 Amplitude envelope number
Byte 2 Tone envelope number
Byte 3 Tone period fine
Byte 4 Tone period coarse (4 bits only)
Byte 5 Noise period
Byte 6 Amplitude
Byte 7 Duration fine
Byte 8 Duration coarse

The channel code number in Byte 1 is coded in the same way as the
normal SOUND number, including any sync., hold or flush codes. If bit
7 of byte 0 is set, then the envelope is a hardware one. The first byte
then determines shape, and the follow ing two bytes determine period.

Figure 7.12 The sound data block.

numbers 2,5 set the tone period. This corresponds to the number
2 + 256*5 = 1282. The next zero specifies no noise number,
then 7 sets the initial amplitude. The last two bytes specify du
ration, and by using zero in both places, the control of duration
is passed to the amplitude envelope. Calling BCAAH then
sounds the note.

The amplitude envelope uses a fast rise, and then a steady
sustain, and since the numbers correspond exactly in position
and significance to the numbers that are used in the ENV state
ment, there’s little here to cause bother. There is more to worry
about in the sound queue list. The first byte, which is the channel
select byte, can use exactly the same range of numbers as the
first byte of the SOUND statement. In other words, you can set
synchronisation numbers, holds and flush actions by adding the
appropriate numbers to the channel codes. Any sound that is
sent to more than one channel will automatically be synchronised
with itself, something that can sometimes cause odd effects. The
sound time bytes (7 and 8) use the most significant bit to indicate
sign. If this bit is 0, then the number is treated as a duration
number. If the msb is 1, then the remainder of the number is
treated as the repeat number for the sound.

A tone envelope is set up with the call to BCBFH. This requires
the A register to be loaded with its envelope number, and the

141

Byte 0
Bytes 1-3
Bytes 4-6
Bytes 7-9
Bytes 1 0-1 2
Bytes 1 3-15

Number of sections in evelope
First section
Second section
Third section
Fourth section
Fifth section

Each section consists of step count byte, step size byte and pause
time byte. If the step count is on the range 240 to 255 then the
section is an absolute one. Bits 3-0 of the step count number are used
as the msb of tone period, and the step size number is used as the
Isb.

Figure 7.13 A tone envelope data block.

HL pair to be loaded with an address for a block of data. Figure
7.13 shows what must be provided in this data block — once
again, this corresponds exactly to the type and order of data in
the ENT statement. Byte 0 is the section count, and if the msb
of this byte is set, then the tone envelope will repeat for the
duration of the note. Step count numbers of 240 to 255 will select
an absolute envelope. The tone period is then a number which
is made out of the step count number and the step size number.
The low four bits of the step count become the high-byte of the
tone period, and the step size is the low-byte.

There are routines which correspond to the use of SQ (CALL
BCADH) and RELEASE (CALL BCB3H), and also ON SQ GOSUB
(CALL BCB0H). In addition, the ROM routines include calls which
can allow a closer control over some actions. One of these is
SOUND HOLD, called by BCB6H which stops all sound. A sound
which has been stopped by using this call can be restarted by
a SOUND CONTINUE call (to BCB9H), or by the use of an entry
into the sound queue or a call to sound release. Of more interest
to advanced programmers are the address calls. These allow
you to find out whereabout in the memory various items are
stored. The call to BCC2H, for example, obtains the address of
an amplitude envelope. Before making the call, the accumulator
is loaded with the envelope number, and following the call the
address of the amplitude envelope data block will be in HL, with
carry set, and with the length of the envelope in BC. If no envelope

142

of this number exists, then the carry bit is reset, and the HL
register will be corrupted. The address of tone envelope data
can be found in a very similar way, using a call to BCC5H.

I must emphasise that the information on machine code sound
techniques in this Chapter, while being a useful introduction,
does not allow you to dispense with the Firmware Specification
manual. The sort of detailed information that Amstrad have pro
vided is invaluable to the machine code programmer, and if, in
particular, you want to write machine code sound utilities, you
cannot proceed very far without this Manual. The machine code
programmer who has not attempted to program sound previously
will, however, be able to make a start with the help of the infor
mation in this Chapter, and that is exactly why I have it. Here's
to you, may it all sound marvellous!

143

144

A p p e n d ix A
M u s ic a l T e rm s
Musicians are familiar with the use of Italian words in musical
terms, but if you are learning music script along with CPC464
sound programming, you will probably be baffled by the words
that appear written over lines of a musical score, or which are
used to describe the music. This Appendix lists the more com
mon expressions, not all of which are Italian in origin. These are
written in full, although you will often see them abbreviated. I
have not made any attempt to create a full list of terms, because
many terms are of interest only to professional musicians, either
performers or composers. Instead, I have concentrated on the
terms that you are likely to meet in the course of working with
music on your computer.

Accelerando Getting quicker.
Accidental A sharp, flat or natural pitch sign which is not part of
a key signature (not at the start of the set of lines).
Accompaniment The notes that are played to form a harmony
to the melody.
Ad lib means that you need not keep to strict time.
Adagio A slow speed.
Air A simple tune, such as a folk-song.
Allegretto Slower than Allegro.
Allegro Fast, at a running pace.
Andante At a walking pace.
Animato In a lively style, bright, animated.
Arpeggio A way of playing the notes of a chord singly in order
rather than together.
Bar A division in music which emphasises the rhythm. The end
of a bar is marked by a vertical line.
Beat The rhythm of music.
Breve A very long note, equal to the time of two semibreves, and
hardly ever used.
Cadence The last phrase of a piece, usually ending on the key
note.

145

Canon A way of using a melody as its own accompaniment, by
starting it in one channel, and later in another. Also known as
a 'round'. Well known canons include Frere Jaques, and Pach
elbel's Canon.
Cantabile Literally means like a song. The music should be
played in a flowing way, smoothly.
Chord A combination of notes that are all sounded together.
Chromatic A scale that has every interval equal to a semitone,
so that there are 12 notes from a keynote to its octave note.
Clef The sign in a stave which distinguishes treble from bass.
Coda An end section of music.
Common time (C) Means 4/4 time, with four crochets in each
bar.
Compass The range of notes that an instrument can produce.
Compound time Any time that does not use two or four beats in
each bar.
Con Brio Played in a very energetic and dashing style.
Counterpoint The combination of two (or more) melodies to form
pleasing chords.
Crescendo (Cresc.) Getting louder to a climax.
Crochet Unit of note duration.
Da Capo from the beginning again. Often written as DC.
Diatonic Using the notes of a major or minor scale, not chromatic.
Diminished Flattened by a semitone.
Diminuendo (Dim.) Getting softer.
Discord Notes which sound unpleasant together.
Dominant The fifth note of a scale, counting the key note as 1.
Dot A marking which alters a note. When placed following the
note, lengthens the note by 50%. When placed above the note
means staccato.
Double bar Two vertical lines which mark the end of a piece of
music.
Duple time A time signature which contains either two or four
beats in the bar.
Dynamics The range of amplitude from soft to loud.
Expression marks The symbols that are marked on music by the
composer to indicate how the music is meant to be performed.
Most conductors prefer to think that they know better.
Figure A short repeated piece of tune.
Flat Lowering of pitch by one semitone.
Forte Loud, usually written as f on the music. Louder is written
as ff, and the loudest possible as fff.
Fugue A composition which makes use of counterpoint.
Gavotte An old-fashioned dance in 4/4 time which begins on the
third beat in the bar.
Giusto correct, strict time.

146

Glissando A rapid ascent or descent of a scale, played smoothly.
Grace note A note added, often by the player, to make the
change from one note to another more smooth. Found particularly
in bagpipe music for technical reasons.
Grave A slow tempo, almost funereal.
Grazioso Played with grace, elegantly.
Harmony Sounding together notes that give a pleasing effect.
Improvise To play notes that are not written in the score, to your
own fancy.
In Alt Means the octave above the treble clef.
In Altissima Two octaves above the treble clef.
Interval The pitch difference between two notes.
Key A note which lies at the start of a scale, its keynote.
Key signature Sharps or flats which are placed at the start of
each line of a piece of music to indicate from which scale the
notes are taken. If there is no key signature, the scale of C Major
is used.
Largo Slow, about one crochet per second.
Legato Smoothly performed.
Lento Slow, not quite so slow as Largo.
Maestoso Majestic, stately — and slow.
Major A type of scale which has semitones placed between the
3rd and 4th, and 7th and 8th notes.
Metronome A clockwork (or electronic) machine which keeps
time by means of a swinging pendulum or by flashing lights.
Metronome markings on music refer to the number of crochets
played per minute.
Minim'A note which is played for the time of two crochets.
Minor A form of scale which has the 7th note sharpened. Some
forms have the 6th note sharpened also.
Modulate To change from one key to another. Some singers do
this unintentionally!
Molto means much or very, so molto maestotois very majestic.
Movement A section of a large musical work, usually with a key
and timing that sets it apart from the rest.
Natural A note which has no sharp or flat, like all the notes of
the C Major scale.
Ninth An interval of nine notes.
Notation The script of music.
Note The unit of music, a complete musical sound.
Octave A set of eight notes, with the top note having the same
note name as the bottom note.
Opus Literally 'work'. The composer's method of numbering his
efforts.
Pavane A very ancient slow dance time.
Piano Soft, usually written as p in the music. Softer is indicated
by pp and as soft as possible by ppp.

147

Pitch Musical term for the frequency of a sound.
Pizzicato The sound produced by plucking strings rather than
using a bow.
Presto Very fast.
Prestissimo Very very fast!
Quaver Note which is sounded for half the time of a crochet.
Rallentando Slowing down, as often is required near the end of
a tune.
Recapitulation A repeat of a phrase or complete passage.
Rest A musical silence which is timed like a note.
Retrograde A melody played backwards.
Rhythm The beat, timing, and accentuation of musical notes.
Rubato Lengthening one note at the expense of another, not
keeping strict time.

Scale A set of notes which forms the building blocks of a melody.
Score A piece of music which consists of several parts for dif
ferent instruments.
Second An interval of two notes in a scale.
Semibreve A note which is played for a time of four crochets,
or two minims.
Semitone The smallest pitch interval in Western music.
Seventh An interval of 7 notes in a scale.
Sforzando Means forced, with a lot of effort.
Sharp A pitch that has been, raised by one semitone.
Simple time A time signature that uses two or four beats in each
bar.
Sostenuto Literally means sustained, the note is hung on to.
Staccato Each note sounded separately, not merged with the
next.
Staff, Stave The set of lines on which music is written.
Syncopation Shifting the stress or beat of music.
Tempo The speed of music, which can be specified by a met
ronome reading.
Third an interval of three notes in a scale.
Time The division of music for purposes of rhythm.
Tone The standard pitch interval in a scale.
Transcribe To arrange music for a different instrument.
Transpose To arrange music into a different key.
Tremolo Rapid to and fro change of amplitude.
Vibrato Rapid to and fro change of pitch.
Vivace Means lively, a merry pace.

148

A p p e n d ix B
M u s ic a l
In s tru m e n ts

Figure B1 shows the approximate pitch ranges of orchestral
instruments in terms of the conventional piano scale. For tran
scribing to computer program form, the best scores are for voices
and instruments in the upper ranges, because the bass notes
of the computer sound good only on Hi-Fi equipment. Figure B2
shows how instruments make use of written music. These in
struments for which the ‘Played’ column reads ‘As written' play
the notes that are shown on the music. In order to use the same
set of musical staves for all instruments, however, some instru
ments transpose. It would be ridiculous, for example, to show
each note for the double bass with lines drawn under the bass
clef, and with nothing in the treble clef. The player of the double
bass therefore uses music which shows the notes written one
octave higher, and he/she plays notes that are an octave lower
than the notes which are printed. Similarly, the piccolo player
sounds notes one octave higher than the ones in the music. You
will need to bear this in mind if by any chance you are working
from music for these instruments. Some instruments require dif
ferent transpositions, and these are shown in the chart. These
transpositions are used to allow the player to use two instruments
which are in different natural keys, like the A-clarinet and the B-
flat clarinet. The idea is that the music for either clarinet looks
the same, and the player presses the same keys, but the notes
that are produced are different. Don’t use music for these in
struments unless you are confident of being able to transpose
it back to normal.

149

Frequency

32.7 65.4 130.8 261.3 523.2 1046.5 2093 4186

| TlflOMBON^
1 1 1

1 1 1
VIOLIN (, r

I I * I I ^

I I * 1
I I I * I

I I I

1 1 * 1
OBOE

1 ^ 1 1
i i i r

, , , PIAfsIO & OR^

1 * 1 1

PAN I 1 , |
h i l l

I I | , i CLAR

1 1 * 1

NET 1 , | 1
i i i • * i

! , , FRENCH HORN
1 ^ 1 1

r 1 ! 1I I I I

1 , BASSOON ,

* i i i

1 1 1

[_____. , i i

1 * 1 1 1 *

, | , ,TRUMPE'
1 1 1 — | 1 " | l 1

SOPRANO

i i i k - y Qip E > i i i
TENOR

1 1 h V 0 ' f - 1 1 1 1
1 1 1 1 1 i 1 1

Middle
C„ C, C C' C " C '" C"

Notes

Figure B1 The approximate pitch ranges for orchestral instruments.

Instrument Played Clef (s)

Piano/Organ As written Treble & Bass

Violin As written T reble

Cello As written Bass & Treble

Double Bass Octave lower Bass

Clarinet (Bb) 1 Tone lower T reble

Oboe As written T reble

Bb Trumpet 1 Tone lower T reble

T rombone As written Bass & Treble

Piccolo 1 Octave higher T reble

Figure B2 How music is written for different instruments. Keep clear of music
for transposing instruments.

150

Appendix C
C o n n e c tin g to
o th e r u n its
The signal from the output socket at the left-hand rear of the
CPC464 is rather faint for most types of stereo headphones. You
can obtain louder results in two ways. One is to use a small
stereo amplifier between the computer and the headphones. A
suitable type is the Omega 3-Watt stereo amplifier, but only if
you are able to solder connections to it, and put it into a suitable
box. A few manufacturers supply small loudspeakers which are
complete with amplifiers that are battery powered. These are
intended for use with portable stereo players, and so they are
equipped with the correct connecting jack and are ideal for use
with the CPC464. One useful source of such amplifiers that I
have found is B.G. Audio & TV Ltd, of 8 Hatter St., Bury St.
Edmunds, Suffolk. (Tel: Bury St. Edmunds 5227.)

Another possibility is to record the music with a stereo cassette
recorder. If you have such a recorder as part of your Hi-Fi system,
you will need a suitable connector. You may be able to persuade
your local Hi-Fi store to make up a cable for you, but if you can
solder neatly, or know someone who can, the diagram of Figure
C1 shows what is needed. The cable is single way stereo,
screened, and has two connectors. One is a 3.5 mm stereo jack
plug, the other is a standard five-pin DiN plug. When the cable
is made up, plug the jack into the CPC464, and the DiN plug
into the cassette recorder. Switch on the recorder, insert a blank
tape, wound on to a suitable starting place, and select RECORD,
but do not start the tape moving. Now run the computer program,
and adjust the volume controls of the recorder until the reading

151

B ody - R - channel

Com m on/

C onnector to cassette recorder

(seen fro m back)

(cover removed)

Figure C1 The connections for a cable which will allow stereo recording.

is just hitting the peak marks on the recording level meter. A few
recorders use automatic volume control, but most Hi-Fi recorders
depend on correct manual setting like this. When the volume
controls are correctly adjusted, type RUN, start the tape, and
then press ENTER. Stop the recorder after the music has finished.
Now take out the cassette, rewind it, and prepare to have your
ears blasted out when you replay it on a good setup. The lowest
bass notes of the CPC464 can shake my floors beautifully (with
100W per channel!).

152

Index
Absolute pitch envelope . 107
Absolute software envelope . . . 93
Accidental . . . 24
ADSR . 1 0
ADSR shape . . . 96
Aero engine . . . 114
Air . . . 1
Alien monsters . . . 124
Allegro . 29
Amount of vibrato . . . 106
Amplifier . . . 14
Amplitude . . . 8, 32
Amplitude envelope . . . 83
Amplitude envelope block . . . 140
Andante . . . 68
Assembly language, sound routine

. . . 138
Assembly language example . . . 136
Attack . . . 10
Augmented chord . . . 58
Bar . 33
Bass stave . 2 3
Beep . . . 38
Bells . . . 123
Blues scale . . . 21
Boing sound . . . 122
Breve . . . 27
C-Major . . . 21
Calculating freguency . . . 49
Cantabile . 5 9
Centre tone of noise . . 112
Chord . . . 55
Chordfinder program . . 81
Chromatic scale . . . 22
Clock pulses . . . 35
Coarse-tune registers . . 135
Combining envelopes . . . 92
Complete firmware specification

. . . 133
Composing . . . 75
Compressing air . . . 2
Cone of loudspeaker . 3
Connecting to other units . . . 151
Copyright . . . 43, 60
Crescendo . . . 3 2
Crochet . . . 27
Cymbal & drum . . . 116

Decay . . . 10, 85
Default speed . . . 29
Default timing . . . 44
Demisemiquaver . . . 28

Designing envelopes . . . 93, 99
Diminuendo . . . 32
Direct programming . . . 135
Disappearing sound . . 116
Disaster warning . . . 42
Dotted beep . 3 8
Dotted notes . . . 30
Drum skin . . . 5
Duration . . . 27

Earphone jack . 14
Earphones . . 14, 72
Echo effect . 9 5
Electrical wave . . . 35
Emphasise melody . . . 62
Enable register . 135
ENT guidelines . . . 109
ENT planner . . . 109
ENT statement . . . 106
ENV statement . 86
Envelope . . . 10, 71, 83
Envelope period registers . . . 135
Envelope planner . . . 102

Falling noises . . . 116
FIFO memory . 39
Filters . . . 7
Fine-tune registers . 134
Flats . . 25
Flattened third . . . 57
Forte . 32
Frequency . . . 7
Frequency formula . 49
Frequency range . . . 15

Giants'footsteps . . 122
Gradual approach . . . 124
Guitar string . . . 5
Gunshot with echo . . . 123
Gunshots in stereo 113

Hardware envelope . 87
Harmonic minor . . 21
Harmonics . . . 9
Harmony . . . 18, 55
Hearing . . . 3
Helicopter blade . . 114
Hertz . 8
Hold & release . . . 127
Hum . . . 15
Human ear . . . 8

Insect effects . . . 121
Interval . . . 21

Jazz . 21
Jogging on gravel . . 115
Key signature . . . 24
Keynote . . . 19

Kilo . . . 9
Language of sound . . . 7
Loudness . . . 8
Loudspeaker . . . 35
Loudspeaker cone . . . 3

Machine-code . . . 132
Major chord . . . 55
Major scale . . . 19
Merging notes . . . 46
Metronome . . . 28
Middle C . . . 19, 23
Minim . . . 27
Minor chord . . . 58
Minor scale . . . 20
MOD effect . . . 63
Modified wails . . . 120
Mono . . . 12
MSX programs . . . 23
Music . . . 17
Music keyboard program . . . 78
Music program . . . 22
Music subroutine . . . 53
Musical phrases . . . 1
Musical terms . . . 145

Name to number program . . . 49
Names of notes . . . 23, 44
Natural minor . . . 21
Natural noises . . . 111
Noise . . . 6,111
Noise circuit . . . 38
Noise period register . . . 135
Noise pitch numbers . . . 112
Note duration . . . 42
Notefinder . . . 49

Octave . . . 18
ON SQ GOSUB . . . 131
Other routines . . . 142

Pause . . . 95
Period number . . . 89
Piano . . . 32
Piano keyboard . . . 26
Pitch envelope . . . 85, 106
Pitch number . . . 37
Pitch ranges of instruments . . . 149
Pitch variation . . . 9
Plucked string sound . . . 101
Police car siren . . . 121
Port . . . 133
Programmable Sound Generator

. . . 38, 134
PSG . . . 38, 134
PSG registers . . . 134
Quaver . . . 28

Raging surf sound . . . 112
Range of tone period . . . 41
Rarefied air . . . 3
Rate of vibrato . . . 109
Rattlesnake . . . 123
Reading time and pitch . . . 48
Rebound effect . . . 120
Registers . . . 39
Registers on stack . . . 134
Relative envelope . . . 96
Relative pitch envelope . . . 107
Release . . . 10, 85
RELEASE . . . 128
Remainder of division . . . 63
Rendezvous . . . 70
Repeating beep . . . 38
Rests . . . 30
Rhythm . . . 32, 63
ROM routines . . . 133
Rubato . . . 64

Scale . . . 18
Semibreve . . . 27
Semiquaver . . . 28
Semitone . . . 20
Shape of wave . . . 5
Sharps . . . 24
Sheet music . . . 59
Silence between notes . . . 45
Silent note . . . 74
Sine wave . . . 5
Singing note . . . 62
Skeleton program . . . 44
Snare-drum . . . 117
Sound channels . . . 39, 40
Sound effects . . . 1 ,7
SOUND instruction . . . 40
Sound program . . . 1
Sound queue . . . 39, 66, 127
Sound queue block . . . 140
Sound routines . . . 138
Sound synthesiser . . . 6
Sound wave . . . 3
Space war sound . . . 116
Spiral out of control . . . 121
SQ use . . . 130
Square wave . . . 6
Stacatto . . . 45
Staff . . . 23
Staircase shapes . . . 87
Stave . . . 23
Steam hammer . . . 114
Steam loco sound . . . 112
Steeper attacks . . . 100
Stereo . . . 12

Stereo amplifier . . . 14, 151
Stereo cassette recorder . . . 12
Stereo output . . . 63
Stereo sound . . . 71
Stereo synchronisation . . . 73
Stereo gunshots . . . 114
Stressed note . 3 2
Synchronisation with drum . . 116
Sustain . . . 10, 85
Symbols for rests . 30
Synchronisation . 65
Synchronisation codes . . . 68
Synchronising graphics with sound

. . . 130

Tempo . . . 31
Testing SQ number . . . 129
Tie line . . . 30
Time of note . . . 42
Time periods . 87
Time signature . 28, 43
Timing . . . 28
Tone evelope block . . . 141
Tone period . . . 40
Tone period forumula . . 41
Total decay . . . 105
Transposing instruments . . .

60, 149
Treble stave . 23
Tremolo . . . 85
Tune with harmony . . . 60
Twelve-note scale . . . 22
Twittering . . . 122
Two loudspeakers . . . 11
Using SQ . . . 129
Using five sections . . . 98

Vibrato . . . 85, 106
Volume number . . . 62
Wailing . . . 119
Walking pace . . . 28
Walkman . . . 12
Waltz . . . 72
Warning note . . . 118
Water wave . . . 3
Wave height . . . 7
Wave shape . . . 5
WHILE..WEND loop . . . 48
Whistle . . . 5
White noise . . . 111
Yankee Doodle . . . 43

T h e A m s t r a d C P C 4 6 4 c o n t a i n s o n e o f t h e m o s t

v e r s a t i l e s o u n d g e n e r a t i n g c h i p s t h a t c a n b e f o u n d i n

a n y o f t o d a y ’ s c o m p u t e r s .

T h i s g u i d e h a s b e e n d e s i g n e d f o r y o u , t h e A m s t r a d

u s e r , t o e x t r a c t t h e m a x i m u m b e n e f i t f r o m t h e

e x t r a o r d i n a r y s o u n d c a p a b i l i t i e s o f t h e C P C 4 6 4 .

W i t h t h e A m s t r a d ’ s v e r y p o w e r f u l B A S I C , y o u w o n ’ t

e v e n n e e d t o k n o w a b o u t m a c h i n e l a n g u a g e t o c r e a t e

m u s i c a n d s o u n d e f f e c t s t o d e l i g h t y o u .

B e g i n n i n g w i t h t h e f i r s t p r i n c i p l e s o f s o u n d y o u w i l l b e

s h o w n , s t e p - b y - s t e p , h o w t o c r e a t e m e l o d i e s , r h y t h m

a n d f a n t a s t i c s o u n d e f f e c t s t o l i v e n u p y o u r o w n

p r o g r a m s .

A l o n g w i t h t h e a i d o f t h e m a n y p r o g r a m e x a m p l e s y o u

c a n m a s t e r t h e A m s t r a d s o u n d c h i p a n d t a p y o u r o w n

c r e a t i v i t y .

£ 7.95

Melbourne ISBN
House I II |
Publishers 9 78O86161192s

</>
3
f t
9.

	Music and sound on your Amstrad (Ian SINCLAIR)
	Contents
	Preface
	CHAPTER 1 — SOUND SENSE
	CHAPTER 2 — MUSIC HATH CHARMS
	CHAPTER 3 — THE AMSTRAD SOUND
	CHAPTER 4 — HARMONY AND STEREO
	CHAPTER 5 — WAVEFORMS AND ENVELOPES
	CHAPTER 6 — USING NOISE
	CHAPTER 7 — LOOSE ENDS
	APPENDIX A — MUSICAL TERMS
	APPENDIX B — MUSICAL INSTRUMENTS
	APPENDIX C — CONNECTING TO OTHER UNITS
	● Numérisation | Scan : ACME – https://acpc.me ●

