
Ready Made
Machine Language
Routines for the
Amstrad CPC464/CPC664

Ready Made
Machine Language

Routines for the
Amstrad CPC464/CPC664

Ready Made
Machine Language

Routines for the
Amstrad CPC464/CPC664

Joe Pritchard

wvwMELBOURNE HOUSE PUBLISHERS

© 1985 Joe Pritchard

All rights reserved. This book is copyright and no part may be copied or
stored by electromagnetic, electronic, photographic, mechanical or any
other means whatsoever except as provided by national law. All
enquiries should be addressed to the publishers:

IN THE UNITED KINGDOM —
Melbourne House (Publishers) Ltd
Castle Yard House
Castle Yard
Richmond, TW10 6TF

IN AUSTRALIA —
Melbourne House (Australia) Pty Ltd
2nd Floor, 70 Park Street
South Melbourne, Victoria 3205

ISBN 0 86161 198 5

Printed and bound in Great Britain by
Biddles Ltd, Guildford and King's Lynn

Edition: 7 6 5 4 3 2 1
Printing: FEDCBA987654321
Year: 90 89 88 87 86 85

Contents
Introduction... 1

1. Machine Language on the Amstrad.. 3
The Routines in this Book... 3
Memory Use on the Amstrad... 4
CALLing Machine Language Programs................................... 5
Integer Variables or Numbers.. 7
Variables Prefixed with @.. 8
Passing Strings... 9
Use of ROM calls.. 11
The Jumpblock.. 11

2. Text Output Routines.. 13

3. Graphics Routines.. 29

4. Scrolling the Screen.. 55

5. More Screen Routines.. 89
Clearing the Screen.. 89
Fill Routines.. 98
Moving Characters... 104
Multicoloured Characters.. 109

6. Keyboard Operations... 117

7. Sound Routines... 129
The Programmable Sound Generator...................................... 130
MC Sound Register.. 130
Register.. 130
Sound Techniques... 135

8. Cassette Handling Routines... 139
Motor Control... 139

9. BASIC and Machine Code.. 151
Cleaning up... 153
BASIC Line Structure.. 157
Resident System Extensions... 164
The Jump Table... 165
The Name Table.. 165

Appendix 1. Control Code Effects.. 169

Appendix 2. Instructions and Op-codes.................................... 171

Appendix 3. Flag Operation Summary....................................... 177

Introduction

One of the daunting prospects that lies ahead of any machine code
programmer is the writing of small routines for the machine of interest
to perform particular tasks, such as printing strings of characters, sav
ing areas of data on tape and inputting strings of characters from the
keyboard. These routines often then turn up in all sorts of different
programs, but the initial work of producing these routines can be a little
tedious. The routines provided in this book will hopefully solve the
problem. They have all been tested on the Amstrad CPC 464 Tape
System, but should all work with the 664 machine or the standard
machine with disks, although some relocation may be necessary in
some cases. Screen routines given have been designed for use on a
screen without windows, but this should give no problems. Wherever
possible, routines will run equally well in all screen modes, and many
can be used as useful subroutines for the BASIC programmer.
The programs were written using the ROM based MAXAM Assembler.
I would like to thank my publishers for giving the idea the go ahead,
and would like to acknowledge the help of Amsoft in the preparation
of the book. Finally, I’d like to dedicate this book to my Mother and
Father, for many years of tolerance beyond the call of duty!
Also, thanks to several local cats, who proved that it’s possible to
program a micro with a cat trying to attack you!
Joe Pritchard.
Nottingham, 1985

1

1.
Machine Language on
the Amstrad

This book will provide you with a wide variety of ready-to-run machine
language routines; however, a little knowledge about how machine
code programs can be used on the Amstrad, and a few pointers about
the structure of the Operating System, will allow you to get much more
from your programming activities.

The Routines in this Book
The first thing to do, of course, is to actually get the programs listed
into the computer. The best way to do this is to use an Assembler
program, such as the Amstrad DEVPAC published by Amsoft. Alter
natively, we can use the POKE command to enter the bytes that make
up the machine code programs directly in to memory. In this book,
you’ll see that all the programs are listed in the below fashion:
Hexadecimal Byte Assembler Listing
2A 00 00 LD HL,0000
CD C0 BB CALL &BBC0
C9 RET
thus allowing either method to be used. The Assembler listing can be
typed into an assembler program and the hexadecimal bytes can be
POKEd into memory in a variety of ways, the simplest being to use a
simple BASIC loader of the sort listed below.

20 FOR l=0 TO n:REM n=number of bytes
30 READ AS.POKE (address+I),VAL(“&”+A$):REM address is

where the code is to be loaded in memory
40 NEXT I
50 DATA DD,6E,00,DD,66,01,7E,DD,6E,02,DD,66,03,86,77,09

3

The DATA statement contains the hexadecimal representations of the
bytes that make up the program. Obviously, this method is rather useful
for combining machine language routines with BASIC programs, as
is often required. Listing the programs in the book as hexadecimal
bytes will thus allow programmers without access to an Assembler to
use the routines in the book.
Many of the routines will be written in such a way that they will be
runnable at any address in RAM that is available to the programmer
without alteration; such programs are said to be relocatable. Others
require that they be run at a particular location in the memory; such
routines are non-relocatable and alterations will be needed to allow
these routines to run at addresses other than those given. However,
details will be given wherever needed to allow you to make these
alterations. It will thus be possible to select which of the routines listed
in this book you require for a particular application, and load them into
memory where you want them.

However, where in the memory of the computer can we actually store
the machine code? If you've done a little machine code programming
on the Amstrad already, you might like to skip this section and rejoin
us when we look at the CALL routine. But, if you want a refresher course
on the subject, here we go.

Memory Use on the Amstrad
&FFFF

Screen

&C000

RAM

Stack
Workspace

& jump block
User Defined
Characters

&4000
Memory

&0040
&0000

Pool

RAM

-------------------- !

BASIC !
ROM '

____________ I

HIMEM

I
OS 1

ROM 1
I

____________ I
ROM

Simplified Amstrad
Memory Map

4

The area designated “Memory Pool" is the area of memory which is
used to store our BASIC programs and variables. Any machine code
programs that we write must be protected from being accidentally
overwritten by BASIC, and they must be safe from the ravages of the
rest of the Operating System, which uses various areas of memory as
workspace. The way in which we create such a safe area of memory
is quite simple; we “poach” some of the Memory Pool away from BASIC.
The last byte of RAM that is available to BASIC is given a special name
— HIMEM. PRINT HIMEM at any time will give the address of the last
byte of memory that is available to BASIC at that time. On turning on
the system, this is 43903 or &AB7F. The byte at address 43904 is part
of the definition of character number 240 in these circumstances, which
is the first User Definable Character available to the user at turn on.
We “borrow” some of the memory normally available to BASIC by
moving HIMEM down in memory, towards address &0000. The effect
of this is to create space between HIMEM and the first byte of the User
Defined Character definitions. We move HIMEM using the MEMORY
command. For example,

MEMORY 39999
will set HIMEM to address 39999, thus allowing us to use the space
between addresses 40000 and 43903 inclusive for machine language
routines. This is adequate for most applications. There are a couple
of points to note about the use of the MEMORY command. The first is
that you should use SYMBOL AFTER to reserve space for as many
User Defined Characters as you will require in your program BEFORE
you use MEMORY to move HIMEM. The second point to note is that
SYMBOL AFTER will not work properly whenever a file is open on the
Cassette System. This is due to the fact that the act of opening a file
causes HIMEM to be moved away from where SYMBOL AFTER expects
to find it!
So, by using MEMORY we can reserve a safe area for our machine
code programs, in to which we can POKE the bytes that make up the
programs, as was mentioned earlier in the Chapter. We need now to
be able to run the machine code. This is done with the CALL statement.

CALLing Machine Language Programs
You, as an Amstrad programmer, are rather lucky to have the CALL
statement; most home computers have a very poor interface between
BASIC and Machine Language. The Amstrad CALL statement is not
terribly well documented in the “Amstrad CPC 464 User Instructions”
but is a very versatile command indeed. As we’ll be using it throughout
the book to call our routines, let's examine it in some detail.

5

There are two different ways in which the instruction can be used, and
examples of these two modes of operation are shown below.

CALL &BD19
CALL 40000, A%,B%,C%

The first of these simply causes the machine language routine at ad
dress &BD19 of the Amstrad RAM to be executed. The second state
ment causes the routine at address 40000 to be executed, but in
addition makes the current values of the three BASIC variables A%,
B% and C% available to the machine language routine. This is clearly
very useful. A% and the others are said to be the PARAMETERS of this
call. Armed with this more advanced CALL statement, we can allow
our machine code routines to interact directly with BASIC numeric and
string variables.

So, let’s take a closer look at this CALL with parameters. We will only
consider routines that use Integer Numbers and Strings in this book;
experience has shown that most applications that involve complex
arithmetic and “Real" Numbers are best done in BASIC. This is partially
due to the fact that such machine code programs take a long time to
write, and are generally NOT as efficient as the routines present in the
BASIC ROM to carry out complex arithmetic operations.
There are three broad classes of parameter that can be passed over
as part of a CALL statement, and such a statement can have as many
parameters as you can fit on a line (up to 255 characters)! Of course,
the parameters for a particular CALL statement can be from any of the
three classes of parameter. The parameter types are:
(i) A number, such as 100,2 or 1000, an Integer Variable name, such
as A% or an expression that evaluates to give an integer result. The
value passed should be in the range 0 to 65535 although, as we shall
see later, there are a couple of points to be wary of. If an Integer
Variable is to be a parameter, such as A%, and has not been given
a value when it is included in the CALL statement then the variable will
be treated as holding the value 0.
An example of this type of CALL is

CALL 40000,A%

where 40000 is the address of the routine to be called and A% is the
parameter.

(ii) An Integer Variable name prefixed by the “@” character, such as
@A%. This method of passing a numeric parameter to a machine code
routine also allows us to have a “two way” transfer of information, to
and from the machine language program, as we’ll soon see.
(iii) A String Variable name prefixed by “@”. This is the only way in

6

which strings can be passed to machine code routines, We cannot
pass String Constants, such as “Joe”, to a routine, only the variables.
So, how do we gain access to the parameters passed over to the
machine code programs? On entry to the routine at the address called,
2 of the CPU registers have been set up by the BASIC Interpreter to
help you gain access to the parameters passed over. The A Register
holds the number of parameters passed over, and the IX Index Register
points to an area of memory called the PARAMETER BLOCK, which
contains a two byte entry for each parameter passed to the machine
code routine. IX points to the parameters in the below fashion, the
exact contents of each two byte entry depending upon the type of
parameter.

CALL 40000,paral ,para2

generates:
A Register =2
(IX + 3)

(1X + 2)

(IX + 1)

(IX) points here

V/////\
high byte of
para 1 entry
low byte of
para 1 entry
high byte of
para 2 entry
low byte of
para 2 entry

V////A
Let's now examine the contents we can expect to find in each parameter
block entry for each type of parameter.

Integer Variables or Numbers
These include such things as A% or 5, and the parameter block entry
will hold a two byte binary representation of the number. Thus for
CALL 40000,3 the parameter block entry would be:

CALL 40000,-1
CALL 40000,65535

7

will both leave &FFFF as the parameter block entry, this being the Two’s
Complement representation of -1 which is the way in which negative
integers are stored internally in the Amstrad. Also, attempting to pass
a value such as 65535 over to a machine code routine in an Integer
Variable, such as

A% =65535 :CALL 40000, A%
will cause the “Overflow” error, as integer variables can only hold
numbers in the range -32768 to +32767. Retrieving these values from
the parameter block into a Register or Register pair is quite simple.

LD L,(IX +0) ; low byte
LD H,(IX+1) ; high byte

Variables Prefixed with @
So far, communication between BASIC and machine language has
been a rather one way affair, with us being able to pass values from
BASIC to machine code but not the other way around. Use of "@”
allows us this facility. The parameter block entry for such a parameter
is no longer the actual value of the variable, as it was for A% or 5, but
is now the address of the variable; i.e. where in memory BASIC stores
the variable.

For example,
CALL 40000,@H%

will generate a parameter block containing the address of the H%
variable in RAM. For the sake of argument, let's say the two byte
parameter block entry holds the value 20000. This would indicate that
the low byte of the value of H% is stored at address 20000 and the
high byte of the value is stored at address 200001. Diagramatically,
this can be shown as:

(IX) —
high byte
low byte

parameter block

20000 » 0 high
2 low

Variable Storage Area

The useful thing about all this, of course, is that by altering the values
held in the two bytes used to store the value of H%, we can alter the
value of H% from our machine language program. Thus in this example,

8

to set H% to a value of 7 we would load 7 into location 20000 and 0
into location 20001. As a short demonstration, examine the below pro
gram which is called with CALL 40000,@A%,n.

40000
DD 7E 00 LD
DD 6E 02 LD
DD 6E 03 LD
77 LD
C9

A,(IX+0) ; get the value of n into A register
L, (IX +2) ; get address of the integer variable
H,(IX+3) ; in to the HL pair
(HL),A ; set the low byte to what is in
RET ; A and return to BASIC.

A% should be initialised to 0 before the call is made, as the program
only affects the low byte of the variable in memory, n should thus be
a value between 0 and 255. Of course, any integer variable can be
used, not just A%. Thus

joe% =0:CALL 40000,@joe%,6
fred% =0:CALL 40000,@fred%,67

are both legal. In the first case, joe% will be set to hold the value 6
after the call and in the second case fred% will hold the value 67. n
can also be a variable but without the @ prefix.
One final point about the use of @. It gives the user access to the
address of a particular variable PROVIDED THAT the variable in ques
tion has been previously used, even if it’s just been set to 0. If you
attempt a call using @ with an unspecified variable, an error message
will be given by the Amstrad. The reason for this is obvious; if a variable
hasn’t been previously used, then the BASIC Interpreter won’t have an
address that it can put in to the parameter block!

Passing Strings
Whereas numeric constants, such as "1” or “4000" can be passed to
machine code programs, you cannot pass string constants such as
“Help” or “Amstrad" to a machine code routine. You can pass string
variables over, but the variable name must be prefixed by the “@”
character.
Again, the string variable must be initialised before being used in a
CALL statement to allow the BASIC Interpreter to work out where in
memory the string is. A legal CALL involving a string variable is:

A$=“fred”:CALL 40000,@A$
The two byte parameter block entry for this type of parameter can be
interpreted in the below fashion. It points to an area of memory called
a string DESCRIPTOR BLOCK, which provides us with useful infor
mation about the string.

9

(IX)*

high byte of
address
low byte of
address

String Address
low byte of
String Address

77/7// strin9 Length
777777 777777

D
E_
F(
F

777
Parameter Block DESCRIPTOR STRING

The Descriptor thus tells us the length of the string and it’s whereabouts
in memory.

Of course, POKE can be used to place values in memory locations
where they can be picked up by your machine code routines, and
PEEK can be used to get values back from machine language into
BASIC. However, CALL gives us a method that is both elegant and
efficient in all but the simplest of cases, and so you’ll see it often used
in this book.

We’ll now go on and look at a few hints about using machine language
routines on the Amstrad, before looking at the use of ROM OS calls.

(i) Use of the Alternate Register Set
Under no circumstances should you use the alternate register set of
the Z-80. These registers are all used by the OS for various purposes
and so it would be ill advised to alter the contents of any of these
registers as the OS may require them at any time.

(ii) RAM overlaying ROM
By a clever feat of design, the ROM containing the OS has been overlaid
with RAM which we can use for storage of our BASIC or machine code
programs. Similarily, the BASIC ROM is overlaid by screen memory.
Under normal circumstances, the RAM will be accessible to the pro
grammer; if you want to read from ROM you have to be rather clever
about it.

(iii) State of CPU Registers
Use of ROM routines will tend to leave various registers corrupted, and
in many cases the Flag Register will also be corrupt. Thus any registers
that you want to preserve should be Stacked using PUSH before calling
ROM routines.

(iv) The CALL command
It has been suggested that on entering your machine code routine the

10

registers should be preserved anyway to help the return to BASIC from
the routine called with the CALL command. I’ve found that the machine
recovers very well from CALL without this.

Use of ROM calls
We will use the Amstrad ROM routines for such tasks as writing to the
screen and reading the keyboard. All these routines can be accessed
by calling routines at particular RAM addresses using the Z-80 CALL
instruction from our machine code programs. These are set up by the
OS at reset or power on. These addresses are in an area of memory
called the JUMPBLOCK, and all calls to ROM routines should be via
these jumpblock entry points for the following reasons.
The first reason, which will be explored in more detail below, is that
the ROMs are usually disabled, and so to use any ROM routines we
must first enable the ROM. This is done automatically by the Jumpblock
entry for a particular routine. Secondly, these Jumpblock addresses
are guaranteed by Amstrad, no matter how many different versions of
the OS there are. Thus a call to address &BB5A will always pass control
to the OS routine that prints a character, no matter what version of the
OS is in the machine. This effectively "future proofs” the machine, by
ensuring that future alterations to the OS will not invalidate programs
already written on earlier OS versions.
Thirdly, we can alter the Jumpblock for a particular OS routine and so
alter the way in which the OS reacts to particular occurrences.

The Jumpblock
This is quite a large area of RAM just above the Memory Pool that holds
the entry points for all the important OS routines and some of the BASIC
ROM routines. A typical entry in the Jumpblock is shown below.
Address in RAM Value
&BB18 &CF
&BB19 &56
&BB1A &9B

low byte of address
high byte of address

&CF is a rather special code on the Amstrad; put simply, it specifies
a jump to the routine that is held in ROM at the coded address given
in the two bytes following it. The two byte address, in this example
&9B56, is coded in the following fashion.
Bit 15 This bit of the address controls the BASIC ROM; if it is set to
1 then the BASIC ROM is disabled. If set to 0 the the ROM is enabled.
Bit 14 This bit of the address controls the OS ROM. Again, if it is set
to 1 the OS ROM is disabled and if set to 0 the OS ROM is enabled.

11

Bits 0 to 13 of the address specify the address of the routine within the
ROM that has been selected by the upper two bits. As a concrete
example, let's write the value of &9B56 in binary.

1001 1011 0101 0110
Bit 15 Bit 0

Here, Bit 15 is set to 1, thus disabling the BASIC ROM. Bit 14 is set
to 0, and so the routine is in the OS ROM, which is enabled by this bit.
The address held on Bits 0 to 13 is &1 B56, and so this is the address
of the routine within the OS ROM that will be called by a CALL to the
Jumpblock entry at &BB18. &CF isn’t the code for a proper Z-80 in
struction, it’s more of a "pseudo operation" that has been put together
by Amstrad for this particular application.
We’ll see later in the book how we can alter Jumpblock entries to
augment or replace the usual OS functions. If you do this, the &C3, the
code for JP, will replace the &CF, and the next two bytes will form the
RAM address of the routine which you have written. Thus an entry in
the Jumpblock of

&C3
&®0
&A0

will cause a jump to a routine at address &A000. The routine should
then end in one of two ways. The first is with a RET instruction, which
will cause the routine that you’ve added to replace totally the normal
OS function. The second way is to end your program with the original
contents of the Jumpblock, starting with the &CF byte. Note that patch
ing the OS in this way may cause problems with later versions of the
Operating System. In this latter case, your routine will be executed first
and then control will be passed on to the usual OS routine.
And that, as they say, is that! The rest of the book is what you bought
it for; ready made and documented machine code routines for the
Amstrad. I hope that you will also experiment with the routines, and
possibly develop them into routines that are even more versatile.

12

2.
Text Output Routines

In BASIC, text output is an easy job, as we have the PRINT command
to do all the work for us. This isn't so in machine code, so we have to
put together a few routines to enable us to do such mundane jobs as
print messages and numbers to the screen. We’ll see a variety of these
in this Chapter.

The first is called SPRINT, which stands for String PRINT, and it allows
us to print messages to the screen.

SPRINT
Prints a string to the currently selected stream in the current text colour
to the specified screen position. The routine is relocatable. Control
Codes are PRINTED, not acted upon.
Entry Requirements: B holds X position

C holds the Y position
IX points to the string in memory. The string
must end with a CHR$(0)

Exit Conditions: All corrupt.
Length: 37 Bytes.
DD E5 SPRINT PUSH IX
CD 54 BB CALL &BB54 ; enable text on this stream
3E 1F LD A.&1F
CD 5A BB CALL &BB5A ; position text cursor
78 LD A,B ; using CHR$(31)
CD 5A BB CALL &BB5A
79 LD A,C
CD $A BB CALL &BB5A
DD E1 POP IX
DD 7E 00 LOOP LD A,(IX+0) ;; get char of string
FE 00 CP 00 ; is it zero?

13

Notes If a sentence or message is too long to fit on the line on which
it started, it will continue on the next line.

C8 RET Z ; if so, finished
DD E5 PUSH IX
CD 5D BB CALL &BB5D ; print character
DD E1 POP IX
DD 23 INC IX ; point to next char.
18 EF JR LOOP ; round again

The best way to see this program in action is to type in the demonstration
program that is listed below. There are a few additional machine code
instructions in it, but these are simply to set the registers up before
calling SPRINT. The additional instructions are

LD IX.&9C40 ; address of string
LD B,nn ; X coordinate poked in
LD C,nn ; Y coordinate poked in

The values in the B and C registers when the SPRINT routine is called
must be appropriate to the screen mode in use at that time. The BASIC
program is:

10 REM SPRINT Demonstration
11 MEMORY 39999
15 CLS
20 GOSUB1000
30 LOCATE 1,20
40 INPUT “X Position’’;x
50 INPUT “Y Position”;y
60 INPUT “String”;a$
70 FOR 1=1 TO LEN(a$): POKE (39999+I),ASC

(MID$(a$,l)):NEXT I
80 POKE (39999+l),0:REM terminate the string in memory
90 POKE 40205,x:POKE 40207,y:REM POKE in x and y

100 CALL 40200
111 GOTO 30

1000 REM subroutine pokes in machine code
1005 FOR I =0 TO 44
1010 READ a$: POKE (40200+l),VAL(“&”+a$)
1020 NEXT I
1030 RETURN
2000 DATA dd,21,40,9c,06,00,0e,00:REM m/c to set registers

up
2010 DATA dd,e5,cd,54,bb,3e,1f,cd,5a,bb,78,cd,5a,bb,79,

cd,5a,bb,dd,el,dd,7e,00,fe,00,c8,dd,e5,cd,5d,bb,dd,
el,dd,23,18,ef

14

Running this program will allow you to position a string on the screen
from machine code.
You may have noticed in the above routine that we use a control code,
in this case ASCII code 31, to position the text on the screen. The
Amstrad Manual shows the various control codes available to us, and
documents their effects. We’ll now look at a short routine that enables us
to use these control codes from our programs so that we can take full ad
vantage of the facilities offered by the Amstrad machine.
The list, by the way, can be found on Pages Chapter 9 2-4 of the User
Manual. A quick examination there will reveal many useful codes.
In addition, of course, each control code has a printable character
associated with it, and this printable character is the one printed out
by SPRINT. Our next routine, CPRINT, prints nothing to the screen but
EXECUTES the control codes; thus passing CHR$(7) to CPRINT will
cause a “BEEP” to be generated, rather than printing the little “Space
Invader” style character that SPRINT prints.

CPRINT
Sends a string of control codes to the text VDU, and the routine is
relocatable.
Entry Requirements: B holds the number of characters.

IX points to a block of memory holding the
codes. The character code in the address
pointed to by IX will be the first one sent.

Exit Conditions: AF,BC and IX are corrupt.
Length: 14 Bytes.
CD 54 BB CPRINT CALL &BB54 ; enable text VDU
DD 7E 00 LOOP LD A,(IX+0)
CD 5A BB CALL &BB5A ; send control code
DD 23 INC IX
10 F5 DJNZ LOOP ; all done?
C9 RET ; yes
As a short example of its use, the below example shows how we might
use CPRINT to define a character — the machine code equivalent of
the SYMBOL command. A block of bytes is set up in memory holding
the data for the character. So, for SYMBOL 240,1,3,7,15,31,63,127,255
we would set the below block up.
n+9 255 last byte of definition

127
63
31

15

15
7
3
1

n+1 240 character to be defined
n+0 25 Control Code for Symbol.

CPRINT

10 MEMORY 39999
20 PRINT CHRSC240)
30 GOSUB 90
40 RESTORE 150
50 FOR 1=0 TO 9 ■ READ a : POKE (40000+i),a : NEXT
60 CALL 40200
70 PRINT CHR«<240)
80 END
90 FOR 1=0 TO 19
100 READ M : POKE (40200+1) . VAL < ”S«"+AS)
110 NEXT I
120 DATA 06,0a.dd,21,40.9c
130 DATA cd,54.bb,dd,7e,00,cd,5a,bb,dd,23,10,f5,c9
140 RETURN
150 DATA 25,240,1,3,7,15,31.63,127,255

Assume n =41000.
The machine code to call CPRINT would then simply be

LD IX,41000
LD B,10
CALL CPRINT
RET

An examination of the Control Codes list will show you how to use
CPRINT to change the text PEN and PAPER colour, giving you the
chance to change colour when using CPRINT in conjunction with
SPRINT.
So far we’ve only looked at positioning a text string at the text cursor.
What about a machine code equivalent of the BASIC TAG command?
GPRINT allows us to position text at the graphics cursor, and it also
allows us to specify the spacing in screen pixels between the characters
that make up the string.
GPRINT2 is an extended version of GPRINT that allows us to use an
extended CALL command to make use of this routine from BASIC with
greater ease.

16

GPRINT
Prints, in the current graphics colour, a string at the X and Y coordinates
specified. The spacing between characters printed can also be spec
ified. This routine is Relocatable.

Entry Conditions: BC holds number of pixels between characters
HL Y Coordinate
DE X Coordinate
IX points to the string in memory.

String must end with CHR$(0).
Exit Conditions: All Registers Corrupt.
Length: 37 Bytes.
C5 GPRINT PUSH BC preserve the registers
D5 PUSH DE
E5 PUSH HL
CD C0 BB CALL &BBC0 position text cursor

at X,Y
E1 POP HL restore registers
D1 POP DE
C1 POP BC
DD 7E 00 LD A, (IX +0); get character
FE 00 CP 00 if zero, finish
C8 RET Z
C5 PUSH BC
D5 PUSH DE
E5 PUSH HL
CD FC BB CALL &BBFC print char at the t

graphics cursor.
E1 POP HL
D1 POP DE
C1 POP BC
E5 PUSH HL preserve Y pos.
D5 PUSH DE get the X position
E1 POP HL into HL reg.
AF XOR A Clear Carry
ED 4A ADC HL,BC update the X position
E5 PUSH HL return X to
D1 POP DE DE register
E1 POP HL get Y back
DD 23 INC IX get next char pointed to
18 DB JR GPRINT round again

17

GPRINI

5 MODE 1
10 MEMORY 39999
15 CLS
20 GOSUB 1000
30 LOCATE 1,20
60 INPUT "String":a*
70 FOR 1 = 1 TO LENCaSl : POKE <39999+1>,ASC(MID*(a*,i)1 : N

EXT i : POKE <39999+11,0
80 CALL 40200
90 GOTO 30
1000 FOR i=0 TO 49
1010 READ aS : POKE <40200+11 ,VAL < “8<"+aS>
1020 NEXT i
1030 RETURN
2000 DATA dd,21,40,9c,11,c8,0,21,cS,0,1,10,00
2010 DATA c5,d5,e5,cd,c0,bb,el,dl,c1,dd,7e,00,fe,00,c8,c5,d5

,e5 ,cd, -f c ,bb ,el ,d 1 ,c 1 ,e5, d5,el ,a-f ,ed , 4a,e5, dl ,el ,dd ,23,1
8

2020 DATA db

Notes In this routine, any text that goes off the right hand edge of
the screen is lost. The value in BC can be varied to suit your require
ments, but the below values might give you good starting points.

Mode 0 BC =32
Model BC=16
Mode 2 BC =8

Obviously, the values loaded into DE and HL as X and Y coordinates
also depend upon the screen mode in use. The below program,
GPRINT2, will allow you to experiment more easily with this routine by
providing the instructions needed to get the parameters from a CALL
statement in BASIC.

GPRINT2
This routine is called by

CALL address,x%,y%,b%,@a$
where x%=X Coordinate, y%=Y Coordinate, b%=Character separa
tion and a$ holds the string to be printed. Of course, the three numeric
parameters can also be constants, ‘address’ is the address to which
you have loaded the routine.
Rather than repeat the listing of GPRINT, I’ll list the extra instructions
that are required to Isolate the parameters, and then I’ll give a BASIC
program to demonstrate the routine. GPRINT2 is 71 bytes long, in
cluding GPRINT.

18

FE 04 GPRINT2CP 4 ; see if 4 parameters
C0 RET NZ ; if not, go back
DD 6E 00 LD L, (IX +0); assemble the string
DD 66 01 LD H,(IX-i-1); address from the string
23 INC HL ; descriptor block
4E LD C,(HL) ;
23 INC HL
46 LD B,(HL) ; get the address into BC
C5 PUSH BC
DD 4E 02 LD C,(IX+2)
DD 46 03 LD B,(IX +3); character spacing now in

; the BC pair
DD 6E 04 LD L,(IX+4)
DD 66 05 LD H,(IX+5); Y coord in HL pair.
DD 5E 06 LD E,(IX+6)
DD 56 07 LD D,(IX+7); X coord, now in DE pair.
DD E1 POP IX ; string address in IX
The rest of the program is just GPRINT. Note that, just as in GPRINT,
the string to be printed out must end in CHR$(0). The below BASIC
program demonstrates the use of GPRINT2.

10 MODE 2
20 MEMORY 39999
30 GOSUB 1000: REM poke the machine code
40 LOCATE 1,22
50 INPUT “String”; $
60 a$=a$+CHR$(0):REM add the terminator character
70 INPUT “X Coordinate”; x%
80 INPUT "Y Coordinate”; y%
90 INPUT “Character Spacing"; b%

100 CALL 40200,x%,y%,b%,@a$: REM call the routine
110 GOTO 40

1000 REM Routine to POKE in the bytes
1010 REM Note that if you change the address you
1020 REM will also have to change the address in line 100
1030 FOR I =0 TO 70
1040 READ a$:POKE ($0200 + l),VAL(“&”+a$)
1050 NEXT I
1060 DATA fe,04,c0,dd,6e,00,dd,66,01,23,4e,23,46,c5,dd,4e,02

dd,46,03,dd,6e,04,dd,66,05,dd,5e,06,dd,56,07,dd,el
1070 DATA c5,d5,e5,cd,c0,bb,el,dl,cl,dd,7e,00,fe,00,c8,c5,d5

,e5,cd,fc,bb,el,dl,cl,e5,d5,el,af,ed,4a,e5,dl,el,dd,
23,18,db

Although we’ll be taking a closer look at graphic operations in the next

19

chapter, a short diversion is in order here in order to explain how we
can change the graphics pen colour. I mention it here because text
printed with GPRINT or GPRINT2 will be printed in the current graphics
colour. A ROM routine will enable us to set the Graphics Pen Colour,
and it is called GRA SET PEN.

GRA SET PEN
Changes the Graphics Pen Colour.
Entry Requirements: A = PEN Colour desired.
Exit Conditions: AF Corrupt.
Simply make a CALL to address &BBDE. Thus,

LD A,1
CALL &BBDE
RET

will set the graphics colour to PEN 1.

Printing Numbers
It’s very easy in BASIC to print numbers out; we simply use PRINT.
However, no such command exists in machine code, and so we must
write our own routine to deal with the problem. Routines to print the
contents of CPU registers as numbers can be very useful, whether it
be for a utility program or simply printing the current score in a games
program to the screen. We conclude this Chapter on Text output by
looking at a variety of routines to perform the following tasks:
(i) Print the contents of the A Register as either a binary, hexadecimal

or decimal number.
(ii) Print the contents of the HL Register pair as a binary, hexadecimal

or decimal number.
Let’s start with printing binary numbers out.

PBINA
Prints the contents of the A register as an 8 digit binary number to the
screen at the current text position and in the current text colour. The
routine is Relocatable.
Entry Requirements: A holds the number to be printed.
Exit Conditions: AF, BC Corrupt.
Length: 26 Bytes.
4F PBINA LD C,A ;copy A
06 08 LD B,8 ; 8 bits in A register

20

PB I NA

CB 21 LOOP SLA C ; shift bits to the
; left putting MSB in Carry

38 09 JR C.ZERO
3E 30 LD A,&30 ; ASCII code for ‘0’
C5 PUSH BC
CD 5A BB CALL &BB5A ; prints a ‘0’
C1 POP BC
18, 07 JR OUT
3E 31 ZERO LD A.&31 ; ASCII code for ‘1 ’
C5 PUSH BC
CD 5A BB CALL &BB5A ; print it
C1 POP BC
10 EA DJNZ LOOP ; all bits shifted?
C9 RET ; yes, so finish.

10 MEMORY 39999
20 FOR i-0 TO 27
30 READ aS : POKE (40200+i > , VAL < "S<"+a$)
40 NEXT i
45 INPUT "Value"sa
46 POKE 40201, a
50 CALL 40200
55 GOTO 45
60 DATA 3e,fP,4P,06,08,cb,21,38,09,3e,30,c5,cd,5a,bb,c1,18

,07,3e,31,c5,cd,5a,bb,c1,10,ea,c9
70 DATA 06,10,cb,25,cb,15,38,0b,3e,30,c5,e5,cd,5a,bb,el,c1

,18,09,3e,31,c5,e5,cd,5a,bb,e1,c1,10,ea,c9

One useful application of this routine is to give you a look at the status
of individual flags in the flag register. Obviously, the F register has to
be copied in to the A register before this can be done but this is not
too difficult.
The next routine prints out the contents of HL in a similar fashion.

PBINHL
This routine prints out the contents of the HL pair as a 16 digit binary
number. Number is printed at the current text position and in the current
text colour. The routine is relocatable.
Entry Requirements: HL holds the number.
Exit Conditions: AF, BC and HL Corrupt.
Length: 31 Bytes.

21

PB INHL

06 10 PBINHL LD B,16 ; 16 digits in number
CB 25 LOOP SLA L ; shift all 16 bits one
CB 14 RL H ; bit to left, MSB into C
38 0B JR C.ZERO
3E 30 LD A,&30 ; ASCII code for 0
C5 PUSH BC
E5 PUSH HL
CD 5A BB CALL &BB5A ; print it
E1 POP HL
C1 POP BC
18 09 JR OUT
3E 31 ZERO LD A.&31 ; ASCII for 1 .
C5 PUSH BC
E5 PUSH HL
CD 5A BB CALL &BB5A ; print‘T
E1 POP HL
C1 POP BC
10 E4 DJNZ LOOP ; if not 0, go round again
C9 RET

10 MEMORY 39999
20 FOR 1=0 TO 33
30 READ aS : POKE <40200+1>,VAL<"&"+aS)
40 NEXT i
45 INPUT "Value"sa
50 high=INT<a/256)
60 Iow=a-(hiqh»256)
80 POKE 40201,low
81 POKE 40202,high
90 CALL 40200
100 GOTO 45
110 DATA 21,00,00
120 DATA 06,10,cb,25,cb,14,38,0b,3e,30,c5,e5,cd,5a,bb,e1,c1

,18,09,3e,31,c5,e5,cd,5a,bb,el,c1,10,e4,c9

It is, however, more common for us to want to print out the contents
of a register in either decimal or hexadecimal notation. The next two
routines deal with the printing out of number in hexadecimal
representation.

PNUMA
Prints the A Register contents as a two digit hexadecimal number at
the current text cursor and in the current text colour. The routine is
Relocatable.

Entry Requirements: A holds the number.

22

PNUMA

Exit Conditions: AF, BC Corrupt.

Length: 41 Bytes.

06 00 PNUMA LD B.0 ; B used as a flag
4F LD C,A
CB 1F RR A ; next instructions move
CB 1F RR A ; the 4 high order bits
CB 1F RR A ; into low order part of
CB 1F RR A ; A register
E6 0F PRINLO AND &0F ; mask them off
FE 0A CP &0A ; if greater than or equal
3® ©8 JR NC.ATOF ; 10 jump
C6 30 ADD A,&30 ; make number in A

; into a character 0 to 9
C5 PUSH BC
CD 5A BB CALL &BB5A ; print digit
18 06 JR OUT
C6 37 ATOF ADD A,&37 ; convert to character in

; range ‘A’ to ‘F’
C5 PUSH BC
CD 5A BB CALL &BB5A ; print it
C1 OUT POP BC
78 LD A,B ; test flag, if 1 then all
FE 01 CP 1 ; the digits have been
C8 RET Z ; printed, so return
79 LD A,C ; get number back for

; second digit
06 01 LD B,1 ; set flag to 2
18 E2 JR PRINLO

, c6,30, c5, cd ,5a,bb,18,06, c6,37, c5, cd , 5a, bb , c 1 ,78, f e, 01,
8,79,06,01,18,e2

5 REM PNUMA
10 MEMORY 39999
20 FOR i=0 TO 42
30 READ a« : POKE <40200+1 > ,VAL < "8<“+a«)
40 NEXT i
45 INPUT " Val ue»f or ».A»Reqi ster " s a
60 POKE 40201,a
90 CALL 40200
95 PRINT
100 GOTO 45
110 DATA 3e,00
120 DATA 06,00,4f,cb,If,cb,If,cb,If,cb,If,e6,0f,fe,0a,30,08

23

At the heart of this routine are the two addition instructions that convert
the values 0 to 9 into the corresponding codes and the digits A to F
into their corresponding ASCII codes.

PNUMHL
Prints out the contents of the HL register paid as a hexadecimal number
with 4 digits. The number is printed at the current text position and in
the current text colour. The code is Non Relocatable, and the bytes
given below are for loading at address 41000. However, see the below
Notes to see how to alter the code.
Entry Requirements: HL holds the number.
Exit Conditions: AF, BC Corrupt.
Length: 51 Bytes.

7C PNUMHL LD A,H
CD 31 A0 CALL PNUMA
7D LD A,L
CD 31 A0 CALL PNUMA
C9 RET
06 00 PNUMA LD B.0
4F LD C,A
CB 1F RR A
CB 1F RR A
CB 1F RR A
CB 1F RR A
E6 0F PRINLO AND &0F
FE 0A CP &0A
3$ ®8 JR NC.ATOF
C6 30 ADD &30
C5 PUSH BC
CD 5A BB CALL &BB5A
18 06 JR OUT
C6 37 ATOF ADD &37
C5 PUSH BC
CD 5A BB CALL &BB5A
C1 OUT POP BC
78 LD A.B
FE 01 Cp 1
C8 RET Z
79 LD A,C
06 01 LD B,1
18 E2 JR PRINLO

24

PNUMHL

5 REM pnumhl
10 MEMORY 39999
20 FOR i=0 TO 6
30 READ a« : POKE <40200+i) , VAL ("S<"+a$)
40 NEXT i
41 FOR 1=0 TO 49
42 READ a* : POKE <41000+i) ,VAL < "S<"+a«)
43 NEXT 1
45 INPUT "Value «.for «HL^reqister";a
60 POKE 40202,INT(a/256)
61 POKE 40201,(a-(<INT <a/256))*256))
90 CALL 40200
95 PRINT
100 GOTO 45
110 DATA 21,00,00,cd,28,a0,c9
120 DATA 7c,cd,31,a0,7d,cd,31,a0,c9,06,00,4f,cb,lf ,cb,lf ,cb

,1f, cb,1f,e6,0f,fe,0a,30,08,c6,30,c5,cd,5a, bb ,18,06,c6,3
7,c5,cd,5a,bb,c1,78,fe,01,c8,79,06,01,18,e2

Notes The observant amongst you will have noted that PNUMHL is
simply two calls to PNUMA. It is in this that the problems start with our
relocatable code; because we have made part of our program into a
subroutine, its address will depend upon the address to which the
program has been loaded in memory. If PNUMHL is loaded to address
N, then PNUMA will be found at address (N+9). Then, bytes (N+2)
and (N+6) will have to be altered so as to hold the low byte of this
address and bytes (N+3)and (N+7) will have to be changed to hold
the high byte of the address of PNUMA.
The final number printing routines that we’ll look at print the contents
of registers out in decimal. Before we have a look at them, a little insight
in to the algorithm used here will be useful.
It is simply a case of repeatedly subtracting a power of ten from the
number being printed until the result is negative. We then add the
power of ten to the result, restoring it to being a positive number. The
number of times that particular power of ten was subtracted is the digit
for that particular power of ten. This is then printed. The process is then
repeated for the next lowest power of ten, and so on, until the units are
subtracted, leaving the result 0 as the number being tested. Thus for
an 8 bit register, we’d subtract, in turn, 100’s, 10’s and finally units.
These routines are useful in such applications as score tables in
machine code games, printing line numbers in machine code games,
printing line numbers in machine code utility routines and so on.

PDECA
Prints out the A register contents at the current text cursor position in
the current text colour as a 3 digit decimal number. The routine is Non

25

Relocatable, but see the below Notes. The below bytes will run correctly
at address 41060.

PDECA

Entry Requirements: A holds the number.

Exit Conditions: AF,BC,DE are corrupt.

Length: 30 Bytes.
16 64 PDECA LD D,100
CD 70 A0 CALL PDEC ; prints no. hundreds
16 0A LD D,10
CD 70 A0 CALL PDEC ; print no. tens
16 01 LD D,1
0E 00 PDEC LD C,0 ; zero the count
92 LOOP SUB D ; subtract the power of ten
38 03 JR C,OUT ; if result negative, jump
0C INC C
18 FA JR LOOP
82 OUT ADD A,D ; restore A to positive
F5 PUSH AF
79 LD A,C
C6 30 ADD &30 ; convert count to a digit
CD 5A BB CALL &BB5A ; and print it
F1 POP AF
C9 RET ; done

5 REM odeca
10 MEMORY 39999
20 FOR i=0 TO 5
30 READ at s POKE (40200+i) , VAL ("8<"+aS)
40 NEXT 1
41 FOR i=0 TO 29
42 READ a* : POKE (41060+i) , VAL ("8<"+at)
43 NEXT i
45 INPUT " Vai ue or »A^Reqi st er11; a
60 POKE 40201.a
90 CALL 40200
95 PRINT
100 GOTO 45
110 DATA 3e,00,cd.64,a0.c9
120 DATA 16,64,cd,70,a0,16,0a,cd,70,a0,16,01,0e,00,92,30,03

,0c,18,ia,02,T5,79,c6,30,cd,5a,bb,f1,c9

Notes If the routine above Is loaded to an address other than 41060,
say address N, then subroutine PDEC will be at address (N+12).
Locations (N +3)and (N +8)must hold the low byte of address (N+12)
and locations (N+4) and (N+9) must hold the high byte of address
(N+12).

26

PDECHL
Prints out the contents of the HL register pair as a five digit decimal
number, in the current text colour and at the current text cursor position.
The routine is Non Relocatable. The below bytes will function correctly
at address 41200, and see the Notes for details about running the
routine at other addresses.
Entry Requirements: HL holds the number.
Exit Conditions: AF, HL and DE Corrupt.

PDECHL

Length: 46 Bytes.

11 10 27 PDECHL LD DE, 1000
CD 0B A1 CALL PDECH ; print no. of 10000’s
11 E8 03 LD DE, 1000
CD 0B A1 CALL PDECH ; print no. of 1000’s
11 64 00 LD DE,100
CD 0B A1 CALL PDECH ; print no. of 100’s
11 0A 00 LD DE,10
CD 0B A1 CALL PDECH ; print no. of 10’s
11 01 00 LD DE,1
AF PDECH XOR A ; zero the counter
37 LOOP SCF
3F CCF ; clear carry flag
ED 52 SBC HL,DE ; do the subtraction
38 03 JR C.OUT ; until it goes negative
3C INC

A
18 F7 JR LOOP
19 OUT ADD HL,DE ; restore to positive
C6 30 ADD &30 ; convert count into

; ASCII digit and . . .
E5 PUSH HL
CD 5A BB CALL &BB5A ; print it
E1 POP HL
C9 RET

10 REM pdechl
20 MEMORY 39999
30 FOR 1=0 TO 6
40 READ aS s POKE <40200+i>,VAL("&"+a$>
50 NEXT i
60 FOR i =0 TO 45
70 READ a* : POKE <41200+1) .VAL < "8<"+a$)
80 NEXT i
90 INPUT "Value or »HL »Reqi ster " ; a

27

10(3
110
120
130
140
150
160

POKE 40201,<a—<INT<a/256)*256))
POKE 40202,INT(a/256)
CALL 40200
PRINT
GOTO 90
DATA 21,00,00,cd,f0,a0,c9
DATA 11,10,27,cd,0b,al,11,e0,03,cd,0b,al,11,64,00,cd,0b
,al, 11,0a, 00, cd, 0b, al, 11,01,00,af ,37,3-f , ed ,52,38,03,3c , 1
B, f 7,19, c6,30, e5, cd , Sa,bb , e 1, c9

Notes In this case, the subroutine PDECH is at address &A10B. It
will always be at address (N +27), where N is the address to which the
whole program has been loaded. You will thus have to alter the sub
routine calls at the start of this routine to point to the new address of
PDECH if you load the routine to a different address to that given.
That completes this Chapter on text output, although we will see other
routines that could have some bearing to text handling in later Chapters.
We’ll now go on to look at some graphics operations, including a variety
of routines that will augment the usual BASIC commands for graphics
handling.

28

3.
Graphics Routines

In this Chapter we'll see some routines that make use of the graphics
abilities of the Amstrad. We’ll also look at a few more text handling
routines, such as routines to print large characters to the screen and
some interesting routines to print "reversed” or “upside down” char
acters on the screen. In addition, there'll be a general purpose routine
for d'rawing graphics shapes and pictures on the screen from a table
of data, and several other useful graphics routines.
We’ll start with some routines for printing large characters to the screen,
useful for titles or demonstration programs. The first couple of these
do not use graphics routines, but introduce some interesting ROM
routines.

BIGCH
This prints a vastly enlarged character to the screen, 8 characters wide
and 8 characters high. It will work in any screen mode, and the large
character will be printed at the current text cursor position and will be
in the current text colour. See later notes for relocation retails.
Entry Requirements: When used from BASIC, is entered by CALL

address,n where n is the ASCII code of the
character to be printed.
If called from another machine code routine,
then A holds the value 1 and IX points to the
character code to be printed.

Exit Conditions: All registers corrupt. Routine is exited when
either the character has been printed OR the
wrong number of parameters was passed to
it.

Length: 80 bytes.

29

BIGCHAR

1000 MEMORY 39999
1010 SYMBOL 255,255.255.255.255,255.255.255,255
1020 GOSUB 1090
1030 CLS
1040 INPU1 al
1050 LOCATE 10.10
1060 FOR i«l ro LEN(a$) I LOCATE 1*8+1,10 1 CALL 40200.ASC(M

ID*(a$,i.1))
1070 NEXT
1080 END
1090 ASSEMBLE
1 100 LISI
1 110 ORG 40200
1 120 CP 1
1 130 RET NZ if not on» parameter
1140 3 return
1 150 CALL &B906 3 paqe in rom
1160 PUSH AF 8 save ROM status
1 170 LD A.(IX) 3 get character to be
1 180 3 printed
1 190 CALL &BBA5 ! pet pattern address
1200 LD I X,40000 1 this is where the
1210 3 pattern is to go
1215 LD B,8 | 8 bytes to move
1220 ’ LOOP LD A.(HL) 3 HL holds pattern
1230
1240 LD (IX) ,A

3 address

1250 INC HL
1260 INC IX
1270 DJNZ LOOP 3 transfer the 8 bytes
1280
1290 POP AF

8 of the pattern

1300 CALL &B90C 3 restore ROM state
1310 LD I X,40000
1320 LD D.8 3 8 bytes of character
1330 3 definition
1340 ' LOOP1 LD A.(IX) 3 get byte pointed
1350
1360 LD C.A

8 to by IX

1370 LD B.8
1380 ’ L00P2 SLA C 3 step through each
1390
1400 JR C.ZERO

3 bit of byte

1410 LD A, 32 1 print a space if
1420
1430 CALL &BB5A

3 bit is '0'

1440 JR OUT
1450 ' ZERO LD A, 255 8 print CHR«(255) if
1460
1470 CALL &BB5A

8 bit is '1'

1480 • .OUT DJNZ L00P2
1490 INC IX
1500 LD A. 10 8 down 1 line
1510 CALL &BB5A
1520 LD B.8
1530 • L00P3 LD A.8
1540 CALL &BB5A
1550 DJNZ L00P3 8 send 8 CHR«(8)'s
1560 DEC D
1570 JR NZ.LOOP1 8 if all byte of

30

1580 '
1590
1600 RET
1610 RETURN

; definition have been
: done...
: finish

FE 01 C0 CD 06 B9 F5 DD 7E 00 CD AS BB DD 21 40 9C 06 08
7E DD 77 00 23 DD 23 10 F7 Fl CD 0C B9 DD 21 40 9C 16 08
DD 7E 00 4F 06 08 CB 21 38 07 3E 20 CD SA BB 18 05 3E FF
CD SA BB 10 EE DD 23 3E 0A CD SA BB 06 08 3E 08 CD SA BB
10 F9 15 20 DS C9

Notes In use, the routine can be called in a BASIC statement such
as:

y =10:a$=“string’’:FOR x=1 TO LEN(a$): LOCATE x*8+1,y:
CALL 40200,ASC(MID$(a$,x,1)):NEXT x

Obviously, I have assumed that the code has been assembled to
address 40200. The bytes in the above program listing are correct for
this address. See the notes after VARCHAR for details about relocating
these routines.

DCHAR
This routine prints out a character at double it’s normal height. Again,
it prints in any mode and will print to the screen at the current text
cursor position in the current text colour.

□CHAR

Entry Requirements: When used from BASIC, it is accessed by a
CALL address,n statement, where n is the
ASCII code of the character to be printed.
If the routine is called from another machine
code routine, then IX points to the character
to be printed and A holds the value 1.

Exit Conditions: All registers are corrupt; the routine is exited
when the character has been printed or when
the wrong number of parameters have been
passed in a CALL.

Length: 73 Bytes.

1000 REM debar routine
1010 MEMORY 39999
1020 GOSUB 1070
1030 CLS
1040 A4="Joe .Pri tchard.was.here"

31

1050 Y —10 : XI =3 : FOR 1=1 TO LEN(AS) : LOCATE Xl+I-l.Y : CA
LL 40200.ASCiMIDS(AS.I,1>) s NEXT

1060 END
1070 lASSEM
1080 LIST
1090 ORB 40200
1 100 CP 1
1110 RET NZ : if not one parameter
1 120 : return
1 130 CALL &B906 : nape in rom
1 140 PUSH AF : save ROM status
1 150 LD A. (IX) : oet character to be
1 160 : printed
1 170 CALL &BBA5 ; net pattern address
1 180 LD IX.40000 ; this is where the
1 190 : pattern is to ao
1200 LD B.8 : 8 bvtes to move
1210 ’ L00P1 LD A.(HL)
1220 LD (IX).A : each bvte is copied
1230 INC IX : twice to dive a 16
1240 LD (IX).A ; bvte Iona double
1250 INC IX : heiaht definition
1260 INC HL
1270 DÛNZ L0DP1
1280 POP AF
1290 CALL S<B90C : restore the ROM status
1300 LD A.254 : define CHRS254 as too
1310 LD HL.40000 : of character
1 320 CALL !<BBA8
1 330 LD A.255 : define CHRS255 as
1340 LD HL.40007 : bottom half
1350 CALL 8<BBA8
1 360 LD A.254 t print top half
1 370 CALL &BB5A
1380 LD A.10 : down one line
1390 CALL 8-BB5A
1 400 LD A.8 ; back space one
1410 CALL !<BB5A
1420 LD A.255 : bottom half
1430 CALL &BB5A
1 440 REI : back to BASIC
1 450 ' END
1460 RETURN

FE 01 C0 CD 06 B9 F5 DD 7E 00 CD A5 BB DD 21 40 90 06 08
7E DD 77 00 DD 23 DD 77 00 DD 23 23 10 F2 Fl CD 0C B9 3E
FE 21 40 9C CD AB BB 3E FF 21 47 9C CD A8 BB 3E FE CD 5A
BB 3E 0A CD 5A BB 3E 08 CD 5A BB 3E FF CD 5A BB C9

Notes This routine will work in all screen modes, but is particularly
effective in Mode 0, where the double width text is rendered more
readable. If you wish to see the program in action, assemble the code
to address 40200 and try the below lines of BASIC. The bytes above
are for this address.

100 x=1 :y=10:REM get screen position
110 MODE 2

32

120 FOR i=x TO LEN(a$):LOCATE x+i-1 ,y
130 CALL 40200,ASC(MID$(a$,i,1)):NEXT

Again, relocation notes will be given after VARCHAR.
Speaking of which, let’s look at this final large character printing routine.
This uses graphics operations, as an examination of the listing will
show.

VARCHAR
This routine is a versatile program for printing characters out at a variety
of heights. Width of the characters is constant, and has been chosen
for maximum readability in all screen modes. The character printed will
be located at the current graphics cursor position and will be printed
in the current graphics colour.

VARCHAR

Entry Requirements: If used with CALL, CALL address,n,m is the
form, n is the ASCII code of the character to
be printed and m is an integer specifying the
relative height.
If called from a machine code program, A
holds the value 2 and IX points to a block of
memory. (IX+0) will hold the height, and
(IX +2) will hold the ASCI 1 code of the character.

Exit Conditions: All Registers Corrupt. Routine is exited on
completion or if there is an incorrect number
of parameters.

Length: 238 Bytes.

1000 MEMORY 39999
1010 GOSUB 1090
1020 CLS
1030 INPUT a$
1040 INPUT "SIZE",AX
1050 MOVE 100,100
1060 FOR 1=1 TO LEN(a$) s MOVE 1*80+10,100 : CALL 40200,ASC(

MID«(a«,i ,1)) ,A7.
1070 NEXT
1080 GOTO 1020
1090 (ASSEMBLE
1100 ' LIST
1110 ' ORG 40200
1120 CP 2
1130 RET NZ 5 i-f not two parameters
1140 J return
1150 LD A,(IX)
1160 LD (HEIGHT),A pick up height
1170 CALL &B906 5 page in rom
1180 PUSH AF 5 save ROM status

33

1190 LD A,(IX+2)
1200 * ; printed
1210 CALL &BBA5 ; get pattern address
1220 LD IX,40000 ; this is where the
1230 ; pattern is to go
1240 LD B,8 ; 8 bytes to move
1250 ' LOOP LD A,(HL) ; HL holds pattern
1260 ; address
1270 LD (IX) ,A
1280 ' INC HL
1290 INC IX
1300 DJNZ LOOP ; transfer the 8 bytes
1310 ; of the pattern
1320 POP AF
1330 ' CALL &B90C ; restore ROM state
1340 ' LD IX,40000
1350 ' LD D,8 ; 8 bytes of character
1360 • ; definition
1370 ■ LOOP1 LD A, (IX) ; get byte pointed
1380 • ; to by IX
1390 LD C,A
1400 LD B,8
1410 • L00P2 SLA C ; step through each
1420 ; bit of byte
1430 CALL GETCURS
1440 JR C,ZERO
1450 ' CALL VERTS
1460 • ; bit is '0'
1470 ■ JR OUT
1480 ' ZERO CALL VERT
1490 * ; bit is '1 '
1500
1510
1520

' .OUT
DJNZ L0DP2

1530 INC IX
1540 CALL OUTH
1550 ' DEC D
1560 ' JR NZ.LOOPl ; if all byte of
1570 1 definition have been
1580 ; done...
1590 ' RET ; finish
1600 ' PRINTBLOCK PUSH HL
1610
1620
1630
1640
1650

PUSH DE
PUSH BC
LD DE,6
LD HL,0
CALL &BBF9 ; draw a short

1660
1670
1680
1690
1700
1710
1720
1730 ' PRINTSPACE

; horizontal line
j draw is relative

POP BC
POP DE
POP HL
RET

PUSH HL
1740
1750
1760
1770
1780

•
PUSH DE
PUSH BC
LD DE,6
LD HL,0
CALL &BBC3 ; move along the

1790
1800
1810 »

; line
; move is relative

POP BC

34

1820 ' POP DE
1830 • POP HL
1840 - RET
1850 ' .OUTH PUSH BC
1860 ' PUSH HL
1870 ' PUSH DE
1880 ' LD HL,0 ; work out vertical
1890 ' LD A, (HEIGHT) ; relative move -from

1900 ' LD B,A ; height parameter
1910 ' DLOOP DEC HL j so that the next
1920 • DEC HL ; line of the char
1930 • DJNZ DLOOP ; can be drawn
1940 • LD DE,-48 ; back 8*6 pixels
1950 • CALL &BBC3 ; relative move
1960 • POP DE
1970 • POP HL
1980 • POP BC
1990
2000
2010 ■ GETCURS

RET

PUSH BC
2020 PUSH HL
2030 PUSH DE
2040 » PUSH AF
2050 • CALL &BBC6 ; get cur graph
2060
2070

•
LD B,6

; cursor pos....

2080 • CLOOP INC DE ; add 6 to x part
2090 » DJNZ CLOOP
2100 » LD (TEMPX) ,DE ; store it
2110 LD (TEMPY) ,HL ; store the y bit
2120 • POP AF
2130 • POP DE
2140 • POP HL
2150 • POP BC
2160
2170 ■ RESTORE

RET
PUSH BC

2180 • PUSH DE
2190 PUSH HL
2200 » LD DE,-6 ; relative move of 6
2210 • 5 pixels to the left
2220 • LD HL,-2 ; and two down
2230 CALL S.BBC3
2240 • POP HL
2250 • POP DE
2260 • POP BC
2270
2280 ■ NEXT

RET
PUSH AF

2290 PUSH BC
2300 PUSH DE
2310 » PUSH HL
2320 LD DE,(TEMPX)
2330 • LD HL,(TEMPY)
2340 • CALL &BBC0 ; absolute move to
2350
2360
2370
2380
2390

•

POP HL

; next 'pixel' pos.
; so that next part
; of line of char
; can be plotted

2400 POP DE
2410 POP BC
2420 POP AF
2430 RET

35

2440 ' VERT PUSH BC draw several
2450 CALL GETCURS horizontal lines,
2460 * LD A, (HEIGHT) below each other
2470 LD B,A 5 to give varying
2475 height
2480 • VLOOP CALL PRINTBLOCK
2490 CALL RESTORE
2500 DJNZ VLOOP
2510 CALL NEXT
2520 POP BC
2530 RET
2540 ' VERTS PUSH BC as VERT, no lines
2550 CALL GETCURS drawn
2560 * LD A,(HEIGHT)
2570 • LD B,A
2580 • VLOOPS CALL PRINTSPACE
2590 CALL RESTORE
2600 DJNZ VLOOPS
2610 • CALL NEXT
2620 • POP BC
2630 • RET
2640 •
2650 •
2660 •
2670 •
2680 ■ TEMPX WORD 0
2690 ' TEMPY WORD 0
2700 ' HEIGHT BYTE 0
2710 ' END
2720 RETURN

FE 02 C0 DD 7E 00 32 F5 9D CD
DD 21 40 9C 06 08 7E DD 77 00
DD 21 40 9C 16 08 DD 7E 00 4F
CD DC 9D IB 03 CD C7 9D 10 EF
E5 D5 C5 11 06 00 21 00 00 CD
11 06 00 21 00 00 CD C3 BB Cl
3A F5 9D 47 2B 2B 10 FC 11 D0
E5 D5 F5 CD C6 BB 06 06 13 10
DI El Cl C9 C5 D5 E5 11 FA FF
C9 F5 C5 D5 E5 ED SB Fl 9D 2A
C9 C5 CD 8C 9D 3A F5 9D 47 CD
9D Cl C9 C5 CD SC 9D 3A F5 9D
CD B4 9D Cl C9 00 00 00 00 00

06 B9 F5 DD 7E 02 CD A5 BB
23 DD 23 10 F7 Fl CD 0C B9
06 08 CB 21 CD 8C 9D 38 05
DD 23 CD 74 9D 15 20 El C9
F9 BB Cl DI El C9 E5 D5 C5
DI El C9 C5 E5 D5 21 00 00
FF CD C3 BB DI El Cl C9 C5
FD ED 53 Fl 9D 22 F3 9D Fl
21 FE FF CD C3 BB El DI Cl
F3 9D CD C0 BB El DI Cl Fl
54 9D CD A4 9D 10 F8 CD B4
47 CD 64 9D CD A4 9D 10 F8

Notes Due to the extensive use of subroutines, this routine is not
readily relocatable. However, if you are feeling adventurous, the fol
lowing points should be borne in mind:
(i) The workspace address, currently at 40000, will need to be

changed if the address of the program is changed so that it oc
cupies this region.

(ii) The bytes making up the subroutine addresses in the various CALL
instructions should obviously be changed.

36

(iii) The Assembler Directives ‘WORD’ and ‘BYTE’ are ‘DEFW’ and
‘DEFB’ on most assembler programs.

The bytes given above are for address 40200. As an example of its
use, you might like to try the below BASIC program. I am assuming
that the machine code is in the machine at the correct address.

10 MODE 2
20 INPUT "String ”,a$
30 INPUT “Size ",a%
40 MOVE 100,100:REM start pos. of string
50 FOR i =1 TO LEN(a$)
60 MOVE i‘50+10,100: REM move to next char, position
70 CALL 40200,ASC(MID$(a$,i,1)),a%
80 NEXT
90 INPUT “Press ENTER to go on”,a$

100 GOTO 10
The separation between printed characters can be adjusted by altering
the MOVE statement in line 60. The character is printed with its top left
hand corner at the current graphics cursor position.
Let’s take a little time out from our routines to examine some of the
ROM routines that have been used above. We’ll also look at some
limitations on where the machine code of the above three routines can
be relocated to, and why.

ROM Routines Used
&B906 This enables us to switch in the lower ROM instead of the
RAM that is normally in this area of the memory map. The Lower ROM
occupies the memory from &®®®®, to &4®®®, and we need to have it
available to us so that we can copy the Character definitions in the ROM
in to the workspace at address 4®®®® in these programs. On leaving this
routine, the A register carries what is known as the status of the ROMs,
so that we can, at a later point in the program, page out the ROM and get
the RAM back.
&B90C The routine at this address requires the status byte that was
generated by the Operating System when we paged a ROM in, and
it sets the ROM’s back in to the state that they were in originally. We
use this to set things back to normal after we’ve copied the Character
definitions from ROM in to RAM.
The use of these two routines to get access to the ROM is why we have
to be careful if we relocate the machine code. Think about it; if we page
out RAM in which our machine code is situated, our program will crash I
For this reason, we should only situate these programs in an area of
memory that will NOT be affected when we page RAM out to gain

37

access to ROM. Any address between &4®®® and &BFFF will not be af
fected when we page ROM in; thus you can relocate your program to
any address within this area, but you should not relocate the program or
workspace to addresses in the range &®®0® to &3FFF.

The other ROM addresses used by these routines are:
&BBA5 This routine, called by Amsoft TXT GET MATRIX allows us
to get the address of the first of the 8 bytes that define the pattern that
is printed to the screen when a character is printed. On calling this
routine, A should hold the ASCII code. On return HL holds the address.
&BBA8 DCHAR uses this to define the upper and lower halves of the
character. For our purposes, on entry HL holds the address of the first
of the 8 sequential bytes that make up the definition, and the A register
holds the ASCII code of the character that is to be defined.
A more detailed examination of ROM routines can be obtained in the
Amstrad Firmware Manual or in “The Ins and Outs of the Amstrad”.

The next two routines that we'll look at lack immediate practical use
but are quite interesting all the same! Both MIRRORV and MIRRORH
can be relocated anywhere in the region of memory between &4000
to &BFFF. From now on, this area of memory will be called the Memory
Pool.

MIRRORV
This routine prints the character whose ASCII code is passed to it
‘upside down’ on the screen. It is as if a mirror has been put at the
base of the character. The character is printed at the text cursor in the
current text colour. The routine is relocatable within the memory pool.
Entry Requirements: As the routine stands, it can be called with

CALL address,n where n is the ASCII code of
the character of interest.
If called from another machine code program,
then IX must point to the character code and
A=1.

Exit Conditions: All registers corrupt.
Length: 50 Bytes.

MIRRORV

1000 MEMORY 39999
1010 GOSUB 1100
1020 CLS
1030 INPUT "String
1040 LOCATE 10,10 : PRINT Ai

38

1050 LOCATE
(AS,I,

10,11 :
1))

FOR 1=1 TO LEN(AS) : CALL 40200,ASC(MIDS

1060 NEXT
1070 PRINT
1080 INPUT AS : GOTO 1020
1090 END
1100 (ASSEMBLE
1110 LIST
1120 ORG 40200
1130 CP 1
1140 RET NZ ; if not two parameters
1 150 : return
1160 CALL &B906 ; paqe in rom
1170 PUSH AF ; save ROM status
1 180 LD A.(IX)
1190 : printed
1200 CALL &BBA5 ; get pattern address
1210 LD I X,40000 ; this is where the
1220 LD DE, 7
1230 ADD HL, DE
1240 s pattern is to go
1250 LD B,8
1260 ’ LOOP LD A,(HL) ; HL holds address of
1270 ; last byte of pattern
1280 LD (IX),A
1290 DEC HL
1300 INC IX
1310 DJNZ LOOP S transfer the 8 bytes
1320 s of the pattern so
1330 ; that it’s upside down
1340 POP AF
1350 CALL &B90C ; restore ROM state
1360 LD HL,40000 ; redefine CHRS255
1370 LD A, 255
1380 CALL &BBA8
1390 LD A, 255 S print CHRS(255)
1400 CALL &BB5A
1410 RET
1420 ' END
1430 RETURN

FE 01 C0 CD 06 B9
00 19 06 08 7E DD
9C 3E FF CD AS BB

F5 DD 7E 00 CD A5
77 00 2B DD 23 10
3E FF CD 5A BB C9

BB DD 21 40 9C 11
F7 Fl CD 0C B9 21

07
40

Notes The routine can be relocated anywhere within the memory
pool, but remember to alter the workspace address (from 40000) if you
move the program in to this area of memory. To see the routine in
action, try the below BASIC program.

100 MODE 1
110 INPUT “String ”,a$
120 LOCATE 10,10:PRINT a$
130 LOCATE 10,11:
140 FOR 1=1 TO LEN(a$)
150 CALL 40200,ASC(MID$(a$,1,1)):REM assumes program at

39

160 REM address 40200 in memory
170 NEXT
180 PRINT
190 INPUT “Press ENTER to go on”,a$
200 GOTO 100

MIRRORH
This routine is similar to the one above but it prints a 'mirror image’ of
the character. The character is reflected down its right hand edge. The
character is printed in the current text colour at the text cursor position.
Entry Requirements: If used with CALL, a single parameter is used.

This is the ASCII code of the character to be
printed.
If called from machine code, IX must point to
the ASCII code and A=1.

Exit Conditions: All registers corrupt.
Length:

MIRRORH

56 Bytes.

1000 MEMORY 39999
1010 GOSUB 1100
1020 CLS
1030 INPUT "String at
1040 LOCATE 10,10 : PRINT At
1050 LOCATE 10,11 : FOR 1=1 TO LEN(At) : CALL 40200,ASC(MIDt

(At,I,1))
1060 NEXT
1070 PRINT
1080 INPUT At : GOTO 1020
1090 END
1100 (ASSEMBLE
1110 LIST
1120 ORG 40200
1130 CP 1
1140 RET NZ 5 if not two parameters
1150 • return
1 160 CALL &B906 ! page in rom
1 170 PUSH AF « save ROM status
1 180 LD A,(IX)
1190 : printed
1200 CALL &BBA5 : get pattern address
1210 LD I X,40000 ; this is where the
1220 ; pattern is to go
1230 LD B,8
1240 ’ LOOP LD A,(HL) : HL holds address of
1250 : first byte of pattern
1260 PUSH BC
1270 LD B,8 : 8 bits in byte
1280 LD C, A : get byte of def.
1290 ’ ILOOP RL C ; move bit from left
1300 RRA * of C into A
1310 DJNZ I LOOP

40

FE 01 C0 CD 06 B9
7E C5 06 08 4F CB
Fl CD 0C B9 21 40

1320 FOP BC restore BC
1330 LD (IX) ,A • transfer modified
1340 « byte of def.
1350 INC HL
1360 INC IX
1370 DJNZ LOOP transfer the 8 bytes
1380 of the pattern
1400 POP AF
1410 CALL S.B90C restore ROM state
1420 LD HL,40000 i redefine CHR*255
1430 LD A, 255
1440 CALL &BBA8
1450 LD A, 255 5 print CHRS(255)
1460 CALL &BB5A
1470 RET
1480 ' END
1490 RETURN

F5 DD 7E 00 CD A5
11 IF 10 FB Cl DD
9C 3E FF CD AS BB

BB DD 21 40 9C 06 08
77 00 23 DD 23 10 ED
3E FF CD 5A BB C9

Notes Again, the routine is relocatable within the memory pool, pro
viding that care is taken with the workspace address. The bytes above
are for address 40200.
It can be demonstrated by the BASIC routine given for MIRRORV.
We’ve seen enough of characters. Let’s get down to some real graphics.
The Amstrad OS makes using graphics operations from machine code
rather easy; routines exist to plot points, drawn lines, move the graphics
cursor and so on. The first graphics routine that I will describe is a sort
of graphical SPRINT. It accepts a table of "instructions” and graphics
coordinates and operates on them to draw the graphic shape specified
by the table of data. The table accepted by this routine is called a
Shape Table, 'cos it defines a shape! This is the best general approach
to graphics in machine code, because each person will want to draw
different shapes to the screen. Of course, for a given graphics job it
might be quicker to write a routine to do that job specially, but this
routine will be found to be very versatile and expandable.

GDRAW
A general purpose routine to draw graphics shapes to the screen in
any screen mode. Data for the shapes to be drawn is to be found in
a Shape Table, the structure of which is outlined in the notes below.
Entry Requirements: None. Program sets up all registers, but see

the Notes below.

Exit Conditions: All registers are corrupt.
Length: 99 Bytes.

41

GDRAW

1000 MODE 2
1010 MEMORY 39999
1020 GOSUB 1060
1030 MODE 0
1040 CALL 40200
1050 END
1060 ASSEMBLE
1070 ORG 40200
1080 ' GDRAW LD I X.SHAPET ■ aet address of data
1090 ’ LOOP LD A, (I X > : first bvte of 5
1 100 « will be an op code
1110 CP 0
1120 RET Z
1130 CP 1
1 140 CALL Z.MOVE : CALL when appropiate
1 150 CP 2
1160 CALL Z.DRAW
1170 CP 3
1 180 CALL Z.COLOUR
1 190 CP 4
1200 CALL Z.PLOT
1210 INC IX : IX incremented to
1220 ! point to next op code
1230 JR LOOP
1240 ' COLOUR PUSH AF s preserve AF so that
1250 ; on exit, A still has
1260 4 op code in it
1270 INC IX
1280 LD A.(IX) : get colour
1290 CALL &BBDE : change graphics pen
1300 INC IX
1310 INC IX
1320 INC IX 3 update IX
1330 POP AF
1340 RET
1350 ' MOVE PUSH AF
1360 CALL COORDS
1370 CALL &BBC0 : absolute move
1380 POP AF
1390 RET
1400 ' DRAW PUSH AF
1410 CALL COORDS
1420 CALL &BBF6 2 absolute draw
1430 POP AF
1440 RET
1450 ■ PLOT PUSH AF
1460 CALL COORDS
1470 CALL &BBEA 3 absolute plot
1480 POP AF
1490 RET
1500 ' COORDS INC IX ■ routine aets the x
1510 ! and y coords in
1520 : to DE and HL for
1530 3 ROM routines
1540 LD E,(IX)
1550 INC IX
1560 LD D.(IX) 3 X coordinate in DE
1570 INC IX
1580 LD L,(IX)
1590 INC IX

42

00

1600 LD H, (IX) ; Y coordinate in HL
1610 ' RET
1620 ' SHAPET BYTE
1630 WORD
1640 WORD
1650 BYTE
1660 ' WORD
1670 WORD
1680 BYTE
1690 WORD
1700 ' WORD
1710 BYTE
1720 ■ WORD
1730 ’ WORD
1740 BYTE
1750 WORD
1760 ’ WORD
1770 ' BYTE
1780 ' WORD
1790 ’ WORD
1800 BYTE
1810 " WORD
1820 WORD
1830 ' BYTE
1840 ' END
1850 RETURN

DD 21 6B 9D DD 7E 00 EE

2 s data from here
200
0
3
3
0
2
200
200
3
4
0
2
0
200
3
5
0

0
0
0 ; terminator

00 C8 FE 01 CC 3B 9D FE 02 CC 44
9D FE 03 CC 2A 9D FE 04 CC 4D 9D DD 23 18 E2 F5 DD 23 DD
7E 00 CD DE BB DD 23 DD 23 DD 23 Fl C9 F5 CD 56 9D CD C0
BB Fl C9 F5 CD 56 9D CD F6 BB Fl C9 F5 CD 56 9D CD EA BB
Fl 09 DD 23 DD 5E 00 DD 23 DD 56 00 DD 23 DD 6E 00 DD 23
DD 66 00 C9 02 C8 00 00 00 03 03 00 00 00 02 C8 00 C8 00
03 04 00 00 00 02 00 00 C8 00 03 05 00 00 00 02 00 00 00

00

Notes The address of the Shape Table is loaded into the IX register
early on in the program. You might like to alter this so that when the
program is called, the user can supply a Shape Table address to the
program. The routine is relocatable within the memory Pool provided
that, of course, the subroutine call addresses (Not the OS Routine Call
Addresses!) are modified to take the new addresss into account.
When the routine starts acting upon the graphics instructions stored
in the Shape Table, it will start operations in the current graphics colour
and at the current graphics cursor. Thus, if there is any doubt about
these when the routine is entered, you should ensure that the first
couple of entries in the Shape Table set the colour and cursor
appropriately.

The Shape Table
This consists of a series of 5 byte entries, all in the below format.

43

ENTRY

ENTRY+4

V/////\
op code

_____low
high

_____low
high

7/77/7

operation to be performed

X Coordinate or Colour

Y Coordinate or 0

The 5 byte entry is repeated for each operation to be performed by
GDRAW. The op codes understood by this routine are shown in the
Table below.

Table of GDRAW Op Codes

Op Code Operation

0
1
2
3
4

Finish
Absolute Move
Absolute Draw
Colour
Absolute Plot

Any sequence of operations should thus end with an all zero entry, to
indicate the fact. For the Move, Draw and Plot operations the X and
Y coordinates are stored in two bytes with the Low byte first. For Colour,
which specifies which of the colours available will be used next, the
low byte of the X coordinate entry is used to hold the colour code,
which will be the number of the graphics pen that you want to use. All
other entries for Colour will be zero.
It is easy to add more op codes to the routine, and if you want to do
this, to include, for example, relative Move and Draw instructions, then
the following will be helpful.

(i) The AF register should be preserved on entry to the routine that
services the new Op Code. This ensures that the A register can
be restored to its original value on leaving the routine. This is
important, as there is otherwise the chance for the program to call
a second subroutine before updating the IX register and getting
a new Op Code.

(ii) It's probably a good idea to leave 0 as the finish Op Code, unless
you want to alter the program.

44

I’ll now give you some routines that are dedicated to producing certain
shapes, such as triangles and rectangles.

TDRAW
This routine draws a triangle whose angles are at the last point visited
by the graphics cursor and the two points passed to the machine code
routine as parameters. The triangle is drawn in the current graphics
ink.

Entry Requirements: If called with a CALL statement, CALL ad
dress,x,y,x1 ,y1 is the correct form, x,y and
x1,y1 being the two angles of the triangle. If
called from another machine code program,
then IX points to a parameter block such as
that on the left. A =4.

Exit Conditions: All Registers Corrupt.
Length: 44 Bytes.

TDRAW

1000 MODE 1
1010 REM Triangle drawing routine
1020 gosub 1080
1030 CLS
1040 INPUT "First ..point", x ,y
1050 INPUT "Second^point" ,xl ,yl
1060 CALL 40200,x,y,x1,yl
1070 GOTO 1040
1080 ■ASSEMBLE
1090 ■ org 40200
1100 CP 4
1110 RET NZ
1120 CALL &BBC6

; are there 4 param

; get cursor position

45

FE 04 C0 CD C6
CD 24 9D El DI
66 03 CD F6 BB

1130 PUSH DE 5 save x
1140 PUSH HL 5 save y
1150 CALL DRAWV 5 draw to xl,yl
1160 INC IX 5 update IX point to
1170 INC IX ; x and y parameters
1180 INC IX
1190 INC IX
1200 CALL DRAWV 5 draw to x,y
1210 POP HL ; recover original x
1220 POP DE ? and y
1230 CALL &BBF6 draw back there
1240 RET
1250 • DRAWV LD L, <IX)
1260 LD H, <IX + 1)
1270 LD E,(IX+2)
1280 LD D,(IX+3)
1290 CALL &BBF6
1300 RET
1310 ' END
1320 RETURN

BB D5 E5 CD 24
CD F6 BB C9 DD
C9

9D DD 23 DD
5E 00 DD 56

23 DD 23 DD 23
01 DD 6E 02 DD

Notes The program can be relocated. The bytes given above are
suitable for all memory locations in the Memory Pool. When the triangle
has been drawn, the graphics cursor will be at the position it was before
the CALL was made.

BDRAW
This routine draws square or rectangular shapes on the screen, in
either outline or filled in. Drawing and filling is in the current graphics
ink. This routine is relocatable provided care is taken with the subroutine
addresses used.

Entry Requirements: For the CALL statement, CALL address,xy,
length,height,(n) n is optional, and if present
causes a filled in box to be drawn. It's value
isn’t important. See Figure 1 for the other
parameters.
If being called from another machine code
routine, IX should point to the parameter
blocks shown in Figure 2.

46

- length -

Figure 1

Figure 2

Exit Conditions:

height

filled in box

All Registers Corrupt.
Length: 149 Bytes.

BDRAW

1000 REM box drawing and filling
1010 GOSUB 1050
1020 CALL 40200,100,100,200,100
1030 CALL 40200,100,100,100,100,1
1040 END
1050 ASSEMBLE
1060 ORG 40200

47

1070 ' CP 4
1080 ' JR Z,OPENB
1090 ' CP 5 5 If 5 param, filled
1095 ' filled box
1100 ' JR Z,CLOSEB
1110 ' RET
1120 ' OPENB CALL MOVER
1130 ' LD E,(IX+2)
1140 ' LD D,(IX+3)
1150 ' LD HL,0
1160 ' CALL &BBF9 draw bottom
1170 • LD DE,0
1180 ' LD L,(IX)
1190 ' LD H,(IX+1)
1200 • CALL &BBF9 5 draw right edge
1210 • CALL MOVER
1220 ' LD DE,0
1230 ' LD L,(IX)
1240 ' LD H,(IX+1)
1250 ' CALL &BBF9 5 draw left edge
1260 ' LD HL,0
1270 ' LD E,(IX+2)
1280 ' LD D,(IX+3)
1290 ' CALL &BBF9 draw the top edge
1300 • RET
1310 ' MOVER LD L,(IX+4)
1320 ' LD H,(IX+5)
1330 ' LD E,(IX+6)
1340 ' LD D,(IX+7)
1350 ' CALL &BBC0 ; move start pos
1360 • RET of box.
1370 ' CLOSES CALL &BBCC
1380 ' PUSH DE
1390 ' PUSH HL ? get and save purr
1400 ' I graphics origin
1410 ' LD L,(IX+6)
1420 ' LD H,(IX+7)
1430 ' LD E,(IX+8)
1440 • LD D,(IX+9)
1450 CALL &BBC9 ; move grap org
1460 ' 5 to pos. of box
1470 ' LD L,(IX+2)
1480 ' LD H, (IX+3) : get number of
1490 ' PUSH HL : needed to fill box
1500 ' POP BC 5 in to BC register
1510 ' LD HL,0
1520 ' LOOP LD E,(IX+4) z draw a series of
1530 • LD D,(IX+5) : lines of length
1540 PUSH BC ! len to fill the
1550 • PUSH HL box up
1560 ' LD HL,0
1570 ' CALL &BBF9
1580 ' POP HL
1590 ' INC HL
1600 PUSH HL
1610 LD DE, 00
1620 ' CALL &BBC0
1630 POP HL
1640 POP BC
1650 DEC BC
1660 LD A,C
1670 ' OR B
1680 CP 0

48

FE 04 28 05
00 00 CD F9
9D 11 00 00
DD 56 03 CD
CD C0 BB C9
56 09 CD C9
DD 56 05 C5
BB El Cl 0B

1690 ' JR NZ,LOOP ; i-f not done round
1700 • POP HL ; again else restore
1710 • POP DE ; graphics origin
1720 '
1730 '
1740 ' END
1750 RETURN

CALL
RET

&BBC9

FE 05 28 48 C9
BB 11 00 00 DD
DD 6E 00 DD 66
F9 BB C9 DD 6E
CD CC BB D5 E5
BB DD 6E 02 DD
E5 21 00 00 CD
79 B0 FE 00 20

CD 48 9D DD 5E
6E 00 DD 66 01
01 CD F9 BB 21
04 DD 66 05 DD
DD 6E 06 DD 66
66 03 E5 Cl 21
F9 BB El 23 E5
E0 El DI CD C9

02 DD 56 03 21
CD F9 BB CD 48
00 00 DD 5E 02
5E 06 DD 56 07
07 DD 5E 08 DD
00 00 DD 5E 04
11 00 00 CD C0
BB C9

Notes There are several interesting points to note about this routine.
The first is the use of the number of parameters passed to the routine
to specify which of the two options, ‘filled’ or ‘open’ boxes, are drawn.
This is easily done by virtue of the fact that on entry to a machine code
routine using CALL the number of parameters in the CALL statement
is passed over in the A register. The value of parameter ‘n’ is of no
importance; it is its presence that causes the routine to be entered.
The other interesting points about this routine are the ROM routines
used and the method used to fill the boxes when necessary.
&BBCC This allows us to get the current position of the origin used
for the graphics operations. That is, the point used as 0,0 in all graphics
operations. On exit, HL contains the y coordinate and DE contains the
x coordinate. We need this information because we alter the origin
when we draw the filled in boxes, and it’s nice to restore things back
to normal before we go back to BASIC.
&BBC9 This ROM routine entry point allows us to set the graphics
origin to a particular x,y coordinate. DE holds the x coordinate and HL
holds the y coordinate. A call is then made to the routine. It's used in
this program to restore the graphics origin to it’s original position before
leaving the routine.
Although there is a routine within the Amstrad ROM to fill an area of
the screen with colour, it requires the pixel coordinates to be converted
into screen addresses; I decided to take the easy way out, and simply
draw lines to fill the area of the box. This isn’t as fast as the resident
fill routine, but is simpler to set up and use.
As a possible extension to this program, you could allow the 'n' par
ameter to specify'the colour that a filled box is to be drawn in. The
colour could be set using the GRA SET PEN routine that we discussed
briefly in Chapter 2.

49

Circle Drawing
A very common requirement in programming is to be able to draw
circles quickly. There are problems with using machine code to do this
however; ‘real’ numbers are involved in the calculation of the Sines and
Cosines used in circle drawing routines, and so this would mean that
the machine code routines written by us to calculate these values would
be rather long and not much, if at all, faster than BASIC. So, here I
present a couple of fairly useful BASIC routines for general purpose
circle drawing, and a hybrid machine code-BASIC program for special
cases.

CIRCLE1
This is a straight forward routine for drawing circles or most polygons.
This makes it rather useful. Any value of ‘n’ in the program will give a
shape of some sort, with the exception of 0, 1 and 2. Note that values
of n =5, n =10 or n =50 give a gap in the shape that is drawn. Values
of ‘n’ greater than 25 give a reasonable circle.

CIRCLE!

10 REM circle 1
20 REM Polvoon drawer, n values above about
30 REM 25 dive a circle. Higher the value
40 REM of n. the better the circle but it
50 REM takes longer to draw
¿0 MODE 2
70 INPUT "Number «.of «si des ««." ,n
80 xc=200 i vc«200 : REM centre of circle
90 csteb=6.28/n : REM increment needed
100 cend=6.28
110 crad=100 : REM radius of shape
120 MOVE xc+crad,vc
130 FOR i=0 TO cend STEP cstep
140 DRAW xc+crad*COS<1),yc+crad*SIN<i) I REM do it
150 NEXT
160 END

CIRCLE2
This routine is faster than the last but is not as versatile in that it cannot
draw other polygons. Indeed, the CIRCLE1 program is worthy of a little
experiment. The extra speed in this program is by virtue of the fact
that the time consuming job of calculating Sines and Cosines is only
done once. The other sine and cosine values that are required are
calculated from these initial values.

50

CIRCLES

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150

MODE 2
REM circle 2
REM -faster circles draw here
REM though no polygons.
cpad=100 : REM radius o-f circle
cx=100 : cv=100 1 REM centre o-f circle
c=C0S(3.14/25) s s=SIN<3.14/25)
oldc=l : oldsin=0
MOVE cx+crad*olde,cv+crad*oldsin
FOR i»l TO 50
newc=oldc*c-oldsi n*s
news! n=»ol dsi n»c+ol dc»s
DRAW cx+crad*newc,cv+crad*newsin
oldc=newc t ol dsi n«=newsi n
NEXT

CIRCLES
We now come to the hybrid method of drawing circles, which effectively
uses a variation on the GDRAW program that we saw at the start of
this Chapter. A BASIC routine works out the coordinates for the par
ticular circle that is to be drawn, and stores the values thus obtained
in a table where the machine code program can access the coordinates
and draw them to the screen when required. The disadvantage in this
method is that it is useful for only a particular radius circle at a particular
position on the screen; to draw a different circle it is necessary to
redefine the values in the data table used by the program by re-running
the BASIC part of the program with new parameters.

CIRCLE3

1000 MODE 2
1010 REM circle 3
1020 REM faster circles draw here
1030 REM circle is fixed position and
1040 REM fixed radius
1050 GOSUB 1270
1060 crad3100 : REM radius of circle
1070 cx=100 : cv=100 : REM centre of circle
1080 c=C0S<3.14/25) : s=SIN(3.14/25)
1090 oldc=l : oldsin=0
1100 coords=40300
1110 xcoord=cx+crad*oldc : GOSUB 1230
1120 xcoord=cv+crad*oldsin : GOSUB 1230
1130 FOR i=l TO 50
1140 newc*oldc»c-oldsin*s
1150 newsin=oldsin*c+oldc*s
1160 xcoord=cx+crad*newc : GOSUB 1230
1170 xcoord”cy+crad*newsin : GOSUB 1230
1180 oldc=newc : oldsin=newsin
1190 NEXT
1200 CLS : INPUT "Press.Enter.to.draw.Circ1e",at
1210 CALL 40200

51

1220 END
1230 a$=HEX$(xcoord) s a«=RIGHT«("0000”+a$,4)
1240 lo=VAL("!<',+RIGHTS<a$,2)) : hi =VAL ("&"+LEFT$ <a«,2))
1250 POKE coords.Io : coords=coords+1 : POKE coords,hi : coo

rds=coords+l
1260 RETURN
1270 REM assembles machine code
1280 (ASSEMBLE
1290 orq 40200
1300 LD I X,40300
1310 LD E,(IX)
1320 LD D,(IX+1)
1330 LD L,(IX+2)
1340 LD H.(IX+3)
1350 CALL &BBC0
1360 INC IX
1370 INC IX
1380 INC IX
1390 INC IX
1400 LD B,50
1410 ’ LOOP LD E.(IX)
1420 INC IX
1430 LD D,<IX)
1440 INC IX
1450 LD L,(IX)
1460 INC IX
1470 LD H.(IX)
1480 INC IX
1490 PUSH BC
1500 CALL &BBF6
1510 POP BC
1520 DJNZ LOOP
1530 RET
1540 ’ END
1550 RETURN

DO 21 6C 9D DD 5E
DD 23 DO 23 DD 23
23 DD 6E 00 DD 23

00 DD 56 01 DD 6E
DD 23 06 32 DD 5E
DD 66 00 DD 23 05

02 DD 66 03 CD 00 BB
00 DD 23 DD 56 00 DD
CD F6 BB 01 10 E5 09

The Assembler listing given above requires the coordinates for the
circle to be stored in memory starting at address 40300. The circle
drawing routine gets the first x and y coordinate and uses them to do
a MOVE operation to a point on the radius of the circle. Subsequent
points draw the rest of parameter of the circle. The below program will
load in the coordinate information, and call the routine to draw the
circle, which is expected to be at address 40300, with the data at
address 40200.

10 crad =100:REM radius of circle
20 ex =100:cy100:REM centre of circle
30 c =COS (3.14/25):s =SIN(3.14/25)
40 oldc=1 :oldsin=0
50 coords =40300: REM address of table

52

60 xcoord =cx+crad*oldc: GOSUB 800
70 xcoord =cy+crad*oldsin:GOSUB 800
80 FOR I =1 TO 50
90 newc =oldc*c-oldsin*s

100 newsin =oldsin*c+oldc*s
110 xcoord =cx+crad*newc:GOSUB 800
120 ycoord =cy+crad*newsin:GOSUB 800
130 oldc=newc:oldsin=newsin
140 NEXT
150 CLSJNPUT "Press Enter to draw Circle”,a$
160 CALL 40200: REM assuming the routine
170 REM is at this address
180 END
800 REM Subroutine to be discussed in the
810 REM Notes below
820 a$=HEX$(xcoord):a$=RIGHT$(“0000”+a$,4)
830 lo=VAL("&”+RIGHT$(a$,2))
840 hi =VAL("&”+LEFT$(a$,2))
850 POKE coords,Io
860 coords =coords+1
870 POKE coords,hi
880 coords =coords+1
890 RETURN

The subroutine at line 800 is quite useful for storing decimal numbers
in memory in the “low byte first” format that the Z80 expects to find all
its data in. Here it is used to store the coordinate information in memory
so that it can be used by the machine code drawing routine. You can
probably see from the listing exactly how the routine works; it converts
the number in to a string of characters representing the hexadecimal
of the number, and then uses RIGHTS and LEFTS to extract the low
and high bytes of the number.
That completes this Chapter of graphic routines, However, many of the
routines to be mentioned in the next two Chapters are graphically
oriented, so don't panic if you haven’t found exactly what you want yet!

53

4.
Scrolling the Screen

First of all, what is a scroll? Well, It’s the process of moving a whole
screen, or part of a screen, at once, retaining the displayed image.
This enables us to do some rather interesting things; the screen can
be moved up and down, or from side to side, or just a single word or
graphics shape can be made to move across the screen. Routines
exist in the firmware to do some simple vertical and horizontal scrolls,
and in this Chapter we’ll see some routines that use these, and other
scrolling routines that work by directly accessing the video memory.
There are two main types of scroll; the software scroll, in which the
scroll is carried out without the hardware that generates the screen
being involved, and the hardware scroll in which the hardware re
sponsible for generating the screen image is manipulated in some way.
We’ll start with a very simple routine which moves the whole screen
up and down.

HSCROLL
A routine to scroll the whole screen up and down by a given number
of character lines in any screen mode. The routine is relocatable, and
lines of text that are scrolled off the top or bottom of the screen are lost
forever. Lines that are ‘scrolled in’ to replace these lost lines are filled
in the current text paper colour.
Entry Requirements: Called from BASIC with CALL address,num,up

where num is the number of lines that you want
scrolling and up is either 0 or 1. up=1 will
scroll the screen up and up=0 will scroll the
screen down.
If called from machine code, A = 2 and IX
points to a parameter block, num should be
in the range 0 to 255 only, although large
values will simply clear the screen.

55

Exit Conditions: All Registers Corrupt.
Length: 22 Bytes.

HSCROLL Parameter Block

HSCROLL

10 MEMORY 39999
20 GOSUB 1000
30 MODE 2
40 PRINT lo"
50 PRINT
60 PRINT
70 PRINT "AA44.*4*A4F'eoplel !"
80 CALL 40200,1,dir
90 a$=INKEY* s IF a*="" GOTO 90
91 a=ASC(a*>
92 IF a=241 THEN dir=0
93 IF a=240 THEN dir=l
100 GOTO 80
1000 ASSEMBLE
1010 orq 40200
1020 CALL &BB99 i aet text pacer colour
1030 CALL S<BC2C : encode the colour for later

1040 ' LD B.(IX+2)s number of scrolls
1050 LOOP PUSH AF : preserve the reaisters
1060 PUSH BC
1070 LD B,(IX-r0)s is it ud or down?
1080 CALL &BC4D : do the scrol1
1090 POP BC
1 100 POP AF
1 110 DJNZ LOOP ; repeat until all done
1120 RET
1 130 ' END
1140 RETURN

CD 99 SB CD 2C BC DD 46 02 F5 C5 DD 46 00 CD 4D BC Cl Fl
10 F 4 C9

Notes This makes use of a very useful firmware routine that is called at
&BC4D to scroll the whole screen. On entry, If B = ® then the screen
is scrolled down one line, and if B=1 then it is scrolled up a line. The
below BASIC program demonstrates the above machine code.

56

10 MODE 2
20 PRINTPRINTPRINT
30 PRINT “Hello There”
40 PRINT “You guys!!”
50 CALL 40200,1 ,dir:REM assume code at 40200
60 a$=INKEY$:IF a$=“” THE GOTO 60
70 IF ASC(a$)=241 THEN dir=0:REM down
80 IF ASC(a$)=240 THEN dir =1 PEM up
90 GOTO 50

Pressing the up and down arrow keys will move the screen. The text,
if scrolled off the screen is lost for good.
It would be rather useful to be able to scroll the screen sideways. This
requires a little more work, as we must produce a slightly different
routine for each screen mode. Before we examine these routines in
detail, a few general notes.

Sideways Scrolling
These routines all scroll MOST of the screen, not all of it. Lines 0 and
24 of the display are used as ‘workspace’ by the routines, and so
shouldn't be used if you want to use these routines. The reason for this
will be made clear shortly.
We use a mixture of hardware and software scrolls to get the effect
that we want. It is easy to move sideways using hardware by altering
what is known as the Screen Offset. There isn't room here to go into
it in detail, and so you’re directed to the Firmware manual or some
similar work for full details.

1 2 3 4 5
1

2 3 4 5

Scroll to the left

You can see above how a pure sideways hardware scroll affects the
display. The first character in the line moves to the opposite edge of
the screen, and the other characters move to the left by a given amount.
Due to the hardware of the Amstrad, this value depends on the Screen
Offset in the following way.

57

Incrementing the screen offset leads to a scroll to the right and de
crementing the Screen Offset leads to a scroll to the left. The current
value of the offset can be obtained by the use of a firmware routine,
as we’ll soon see. A second routine can be used to write the modified
screen offset back to the Video Circuitry. In these three programs, the
Mode 1 and 2 offset is modified by 2 each time. In mode 1, this leads
to a single character move. In mode 2, this is a 2 character scroll. Thus
to scroll the mode 1 screen 1 character to the left, you simply reduce
the offset by 2. In mode 0, the screen offset is modified by 4 each time
a scroll is required. This leads to a single character scroll. The reason
for differing offsets required in each mode to achieve a single character
scroll is due to the different lay out of Video RAM in each screen mode.

However, the observant amongst you will have noticed that the scroll
shown above wasn’t a true sideways scroll; the character scrolled in
to the screen was a line higher or lower than the line from which it
originally came, depending upon the direction of the scroll. For ex
ample, a right scroll using this method would lead to a character that
is scrolled off of the right edge of the screen re-appearing on the left
edge of the screen, 1 line below its start line. For a true sideways scroll,
we must ensure that the material scrolled out of one side of the screen
is scrolled in to the other side of the screen on the same line, in the
below fashion.

1 2 3 4 2 3 4 1

This can be done using the SW SCROLL routine that is present in the
Amstrad Firmware. This allows us to scroll a particular area of the
screen up or down by one character row. Before looking at the scroll
routine, let’s briefly examine the Firmware routines that we’ll use.
&BC0B This routine returns the current value of the Screen Offset in
the HL register pair. This can then be modified and sent back to the
Video Circuitry.
&BC05 This routine allows us to set the Screen Offset to a value of
our choosing. On entry, the HL register pair should hold the desired
value of the Offset.

58

&BC50 This routine, called SW SCROLL, allows us to vertically scroll
a given area of the screen. On entry, B=0 for a down scroll or 1 for
an up scroll. H holds the left edge of the area to be scrolled, L the top
row, D the right edge and E the bottom row. All these are in terms of
character spaces, starting at 0,0 in the top left corner of the screen.
The A register holds the encoded ink that is to be used to fill the line
that is scrolled in. In our routines, we’ll be using the text paper colour
to fill the line scrolled in.
&BB99 This routine returns in the A register the current text paper
colour. Before we can use the value so returned in the SW SCROLL
routine, we have to encode it by a call to the routine at &BC2C.
An examination of the listings for the three sideways scroll routines will
show that we use the SW SCROLL routine to ‘line up’ the columns of
the screen display that have been scrolled off of one side of the screen
and on to the opposite edge of the screen.

SSCROLL2
This scrolls a mode 2 screen sideways by 2 character spaces. Screen
rows 0 and 24 are not scrolled properly. The routine can be relocated
provided that the address of the workspace is altered so as not to
clash with the program. The bytes given are for address 40200.
Entry Requirements: From BASIC: CALL address,dir where dir =1

for a left scroll or dir =0 for a right scroll. From
Machine code, A=1 and IX points to a single
byte holding ‘dir’.

Exit Conditions: All registers corrupt.

Length: 90 Bytes.

SSCR0LL2

1000 REM Mode 2 le-ft and right scroll
1010 MEMORY 39999
1020 GOSUB 1130
1030 MODE 2
1040 ORIGIN 0,32 : REM set graphics origin within window scr

oiled
1050 WINDOW 1,80,2,24 : REM set up the text window to be scr

ol 1 ed
1060 MOVE 0,10 : DRAW 100,100 : DRAW 150,50 : DRAW 200,50 :

DRAW 300,60 : DRAW 400,100 : DRAW 450,20 : DRAW 500,10 :
DRAW 600,150 : DRAW 640,10

1070 CALL &BD19 : REM only update when screen redrawn
1080 A«=INKEYS : IF A«='“' THEN GOTO 1080
1090 IF ASC(AS)=243 THEN CALL 40200,0 : REM detect arrow ke

ys
1100 IF ASC(A$>=242 THEN CALL 40200,1
1110 GOTO 1070

59

1120 END
1130 (ASSEMBLE
1140 □RG 40200
1150 DI ; turn off interrupts
1160 CALL &BB99
1170 CALL &BC2C
1180 LD (PAPER) ,A ; save curr text pap
1190 LD A,(IX) ; decide left/right
1200 CP 0
1210 JR Z,OTHER
1220 LD H,78
1230 LD L,0
1240 LD D,79
1250 LD E,24
1260 LD 0,0
1270 PUSH BC ; set up for scroll
1280 PUSH HL ; preserve reg's
1290 PUSH DE ; on the stack
1300 CALL &BC0B ; get offset
1310 INC HL
1320 INC HL ; update it
1340 CALL 8.BC05 ; and offset to 6845
1350 LD A,(PAPER)
1360 POP DE
1370 POP HL
1380 POP BC
1390 CALL &BC50 ; scroll a col get
1400 ; lined up
1410 El ; enable int
1420 RET
1430 • OTHER LD H,0 ; set reg's for
1440 LD L,0 ; col scroll at end
1450 LD D,1 ; of routine
1460 LD E,24
1470 LD B, 1
1480 LD A,(PAPER)
1490 PUSH AF
1500 PUSH BC
1510 PUSH DE
1520 PUSH HL
1530 CALL &BC0B ; get offset
1535 DEC HL
1540 DEC HL 1 alter the offset
1570 CALL &BC05 ; send it to 6845
1580 POP HL
1590 POP DE
1600 POP BC
1610 POP AF
1620 CALL &BC50 ; scroll left col get
1630 ; lined up
1640 El
1650 RET
1660
1670
1680
1690 ' PAPER BYTE 0
1700 ' END
1710 RETURN

60

F3 CD 99 BB CD 2C BC 32 SB 9D
2E 013 16 4F IE 18 06 00 CS E5
3A SB 9D DI El Cl CD 50 BC FB
06 01 3A SB 9D F5 CS D5 E5 CD
Cl Fl CD 50 BC FB C9 00

DD 7E 00 FE 00 28 20 26 4E
D5 CD 0B BC 23 23 CD 05 BC
C9 26 00 2E 00 16 01 IE 18
0B BC 2B 2B CD 05 BC El DI

Notes The very top and very bottom lines of the display are not
scrolled properly, this being a by product of the way in which altering
the offset affects material scrolled off of the side of the screen. The
central 23 lines of the display are scrolled properly, however.
Interrupts are disabled in this routine, to attempt to get a little more
speed. Also in order to provide a little more speed, note how the
registers for the call to SW SCROLL have been set up early on in the
routine. This cuts down the number of instructions that need to be
executed between the altering of the Screen Offset and the call to SW
SCROLL to clear the edge of the screen up.
SSCROLL1 and SSCROLL0 are similar routines, but are designed for
use in modes 1 and 0 respectively. The below BASIC routine can be
used to demonstrate all these routines in action.

100 MODE 2
110 ORIGIN 0,32:REM Don’t use bcaom screen line
120 WINDOW 1,80,2,24: REM Don't use bottom or top
130 REM lines of the text screen
140 MOVE 0,10:DRAW 100,100:DRAW 150,50:DRAW 200,50
150 DRAW 300,60:DRAW 400,100:DRAW 450,20
160 DRAW 500,10:DRAW 600,150:DRAW 640,10
170 CALL &BD19 : REM wait for next frame
180 A$=INKEY$:IF A$="“ THEN GOTO 180
190 IF ASC(A$)=243 THEN CALL 40200,0
200 IF ASC(A$)=242 THEN CALL 40200,1
210 GOTO 170

Pressing the sideways arrow keys will cause the screen picture to scroll
accordingly.

SSCROLL0
This routine does a sideways scroll by 1 character of the mode 0
screen.

Entry Requirements: As for SSCROLL2
Exit Conditions: As for SSCROLL2
Length: 96 Bytes.

61

SSCROLL0

1000 REM Mode 0 left and right scroll
1010 MEMORY 39999
1020 GOSUB 1130
1030 MODE 0
1040 ORIGIN 0,32 : REM set graphics origin within window scr

ol led
1050 WINDOW 1,20,2,24 : REM set up the text window to be scr

oiled
1060 MOVE 0,10 : DRAW 100,100 : DRAW 150,50 : DRAW 200,50 :

DRAW 300,60 : DRAW 400,100 : DRAW 450,20 : DRAW 500,10
DRAW 600,150 : DRAW 640,10

1070 CALL &BD19 : REM only update when screen redrawn
1080 A«=INKEY$ s IF A$=" " THEN GOTO 1080
1090 IF ASC(A«> =243 THEN CALL 40200 ,0 : REM detect arrow

1100
ys
IF ASC(A$) =242 THEN CALL 40200 ,1

1110
1120
1130
1140

GOTO 1070
END

ASSEMBLE
ORG 40200

1150 DI : disable int
1160 CALL &BB99
1170 CALL &BC2C
1180 LD (PAPER),A ; save text paper
1190 LD A,(IX) ; left or right
1200 CP 0
1210 JR Z,OTHER
1220 LD H,19
1230 LD L,0
1240 LD D,19
1250 LD E,24
1260 LD B,0
1270 PUSH BC ; set up scroll
1280 PUSH HL j preserve reg's
1290 PUSH DE ; on the stack
1300 CALL &BC0B ; get offset
1310 LD DE, 4
1320 ADD HL,DE 1 update it
1330 LD A,(PAPER)J get paper
1340 CALL &BC05 ; update offset to 6845
1350 LD A,(PAPER)
1360 POP DE
1370 POP HL
1380 POP BC
1390 CALL &BC50 ; scroll col get
1400 5 lined up
1410 El 1 enable int
1420
1430 ' OTHER

RET
LD H,0 ; set up reg's

1440 LD L,0 ; col scroll at end
1450 LD D,0 ; of routine
1460 LD E,24
1470 LD B,1
1480 LD A,(PAPER)
1490 PUSH AF
1500 PUSH BC
1510 PUSH DE
1520 PUSH HL
1530 CALL &BC0B ; get offset
1540 XOR A

62

1545 ' LD DE,4 ; alter it and
1550 ' SBC HL, DE
1560 LD A,(PAPER)
1570 ' CALL &BC05 : send to 6845
1580 ’ POP HL
1590 ' POP DE
1600 ' POP BC
1610 ' POP AF
1620 ' CALL &BC50 ; scroll left col get
1630 ' ; lined up
1640 ’ El
1650 ' RET
1660 '
1670 '
1680 '
1690 ' PAPER BYTE 0
1700 ' END
1710 RETURN

F3 CD 99 BB CD 2C BC 32 67 9D DD 7E 00 FE 00 2B 25 26 13
2E 00 16 13 IE 18 06 00 C5 ES D5 CD 0B BC 11 04 00 19 3A
67 9D CD 05 BC 3A 67 9D DI El Cl CD 50 BC FB C9 26 00 2E
00 16 00 IE 18 06 01 3A 67 9D F5 C5 D5 ES CD 0B BC AF 11
04 00 ED 52 3A 67 9D CD 05 BC El DI Cl Fl CD 50 BC FB C9
00

SSCR0LL1
This routine performs a sideways scroll of 1 character space in Mode
1.
Entry Requirements: As for SSCROLL2
Exit Conditions: As for SSCROLL2
Length: 96 Bytes.

SSCR0LL1

1000 REM Mode 1 left and right scroll
1010 MEMORY 39999
1020 GOSUB 1130
1030 MODE 1
1040 ORIGIN 0,32 : REM set graphics origin within window scr

oiled
1050 WINDOW 1,40,2,24 : REM set up the text window to be scr

ol led
1060 MOVE 0,10 : DRAW 100,100 i DRAW 150,50 : DRAW 200,50 :

DRAW 300,60 : DRAW 400,100 : DRAW 450,20 : DRAW 500,10
DRAW 600,150 : DRAW 640,10

1070 CALL &BD19 : REM only update when screen redrawn
1080 A*=INKEY* : IF A*="" THEN GOTO 1080
1090 IF ASC(A*)=243 THEN CALL 40200,0 : REM detect arrow ke

ys
1100 IF ASC(A*>=242 THEN CALL 40200,1
1110 GOTO 1070
1120 END

63

1130 ¡ASSEMBLE
1140 ORG 40200
1150 DI ; disable int
1160 CALL &BB99
1170 CALL &BC2C
1180 LD (PAPER), A ; save text paper
1190 LD A,(IX) ; left or right
1200 CP 0
1210 JR Z,OTHER
1220 LD H,39
1230 LD L,0
1240 LD D,39
1250 LD E,24
1260 LD B,0
1270 PUSH BC ; set up scroll
1280 PUSH HL ; preserve reg's
1290 PUSH DE ; on the stack
1300 CALL &BC0B ; get offset
1310 LD DE, 2
1320 ADD HL, DE
1330 LD A,(PAPER); get paper
1340 CALL &BC05 : update offset 6845
1350 LD A,(PAPER)
1360 POP DE
1370 POP HL
1380 POP BC
1390 CALL &BC50 ; scroll col get
1400 ; lined up
1410 El ; enable int
1420 RET
1430 ' OTHER LD H,0 ; set up reg's for
1440 LD L,0 ; col scroll at end
1450 LD D,0 ; of routine
1460 LD E,24
1470 LD B, 1
1480 LD A,(PAPER)
1490 PUSH AF
1500 PUSH BC
1510 PUSH DE
1520 PUSH HL
1530 CALL &BC0B ; get offset
1540 XOR A
1545 LD DE, 2
1550 SBC HL, DE
1560 LD A, (PAPER)
1570 CALL &BC05 ; send it to 6845
1580 POP HL
1590 POP DE
1600 POP BC
1610 POP AF
1620 CALL &BC50 ; scroll left col
1630 ; lined up
1640 El
1650 RET
1660
1670
1680
1690 • PAPER BYTE 0
1700 • END
1710 RETURN

64

00

F3 CD 99 BB CD 2C BC 32 67 9D DD 7E 00 FE 00 28 25 26 27
2E 00 16 27 IE 18 06 00 C5 E5 D5 CD 0B BC 11 02 00 19 3A
67 9D CD 05 BC 3A 67 9D DI El Cl CD 50 BC FB C9 26 00 2E
00 16 00 IE 18 06 01 3A 67 9D F5 C5 D5 E5 CD 0B BC AF 11
02 00 ED 52 3A 67 9D CD 05 BC El DI Cl Fl CD 50 BC FB C9

You can probably see that it would be possible to incorporate all these
routines into one program, the routine checking the screen mode in
use and setting up the registers for SW SCROLL and for the Screen
Offset routine appropriately.
We've now seen how we can scroll the whole screen up and down,
and the whole screen sideways. Using the Firmware routine called at
address &BC50, we can also scroll a given area of the screen, which
I’ll call the Scrolling Window, up or down. The next two routines that
we’ll examine scroll a small area of the screen sideways —a horizontal
version of SW SCROLL. Material that is scrolled out of one side of the
Scrolling Window is lost. However, to do these scrolls we must take
a brief look at the way in which the Amstrad Video Memory is arranged,
because we are going to have to work out a method of directly ac
cessing the screen memory to accomplish the rest of the scrolls in this
Chapter. All of the remaining scroll routines will still work on the char
acter space as the basic unit of movement during a scroll. So, on to
screen layout.
Each character on the screen, in any screen mode, is made up vertically
of 8 Screen Lines. The screen as a whole is 25 rows deep, thus giving
a total of 200 screen lines in all modes. All screen modes use 16384
bytes of RAM, starting at address &C000 and finishing at address
&FFFF. All the screen modes have displays that are 80 bytes wide.
That is, one screen line, from left to right, takes up 80 bytes of screen
RAM to define its contents. This explains the need for 16384 bytes of
screen RAM. (200 screen lines at 80 bytes per line.)
The exact layout of the screen memory with respect to character
squares, etc. depends upon the screen mode in use.

Mode 2
This is the simplest screen mode to use. Like the screen memory in
all the other screen modes, the Video RAM is split into 8 2k blocks of
memory, which after a mode change is arranged in the below fashion.
In Mode 2, each character is 1 byte wide; this is why we have an 80
column screen in this mode. Each bit of each byte corresponds to a
screen pixel. Thus, the top of screen location 1,1 is, after a mode
change, defined by the contents of &C000. The character is made up
of 8 screen lines, and these are taken from the other 7 2k blocks of

65

memory. In this case, row 2 of the character is defined by the byte at
&C800, row three by &D000, row four by &D800 and so on.

Mode 2 Character Mapping

66

If there are graphics on the screen, then the corresponding character
positions will have certain bytes altered according to the graphics
drawn. Once we know the address within the Screen RAM of the top
row of the character in question, we can obtain the other 7 bytes that
make up the definition of that character square by adding 2048 to the
first address repeatedly to get the addresses of the other screen rows.
There is no colour information in Mode 2; if a pixel is to be displayed
in the foreground colour, then the corresponding bit in the appropriate
byte is set to 1. If it is to be set to the background colour, then the bit
is set to 0. The relationship between rows of the same character position
— that is, them being separated from each other by 2048 bytes, is the
same in all screen modes.

Mode 1
Life gets a little more complicated here, due to the ability in this mode
to display more than one foreground colour. Each character square
is two bytes wide, thus explaining the fact that the Mode 1 screen is
40 columns wide. A Mode 1 character square is defined in the below
fashion. Again, we're looking at the defining bytes for screen character
location 1,1 after a Mode change.

Each byte of screen RAM defines the colour status of the pixels, as
well as the on or off state of them.
Each byte of screen RAM therefore defines the status of half the width
of a character for a screen line. Each character square is thus defined
by 16 bytes of Video RAM.

67

Mode 0
Because of the fact that there are 16 colours available in this screen
mode, each character requires more bytes to define it and so each
character is 4 bytes wide. This gives us the 20 column Mode 2 text
screen. Immediately after a Mode 0 command, the mapping of Video
RAM on to screen position 1,1 is as shown below.

Mode 0 — Screen RAM layout

Mode 0 therefore requires 32 bytes of Video RAM to define each
character.
Well, we know that each screen line is 2048 bytes apart from the next
screen line of the same character. All we need now is some means of
finding out the address in Video RAM of the top screen line of each
character that we are interested in.
Fortunately, the nice chaps at Amsoft have solved this problem by
giving us a Firmware routine to do the job. This is called at address
&BC1A, and the character position is passed over to the routine in the
HL register pair. The H register holds the X position and the L registers
the Y position. Both X and Y are measured from 0 upwards, 0,0 being
the top left corner of the screen.
The routine returns an address in the HL register pair. For Mode 2, this
is the address of the top screen row of the character position con
cerned. For Modes 0 and 1 it is the address of the left most byte of

68

the top screen row. Thus the address of the first byte of the second
screen row will be at address (HL+2048). At the heart of the scroll
routines that we are about to see are the LDIR and LDDR block move
instructions of the Z-80 CPU. For those of you not totally conversant
with these instructions, I’ll give a quick description of them and their use.

LDIR and LDDR
One method of transferring bytes around the computer memory might
be to repeat a loop of instructions like the below a given number of
times.

LD A,(HL)
LD (DE),A
INC HL
INC DE

This sequence is quite straight forward, and is able to do the transfer
quite adequately. The problem is that with a lot of data to be transferred,
this sequence, when often repeated, can take quite a lot of time. How
ever, the Z-80 has built in block transfer instructions. LDIR is set up
in the below fashion.

LD HL,source address
LD DE,Destination Address
LD BC.no. of bytes
LDIR

The address in the HL register is the address from which bytes are to
be transferred, and DE is the address to which the bytes are to be
copied. The BC register contains the number of bytes to be transferred.
The first byte transferred will go to the address in DE, the second to
address DE+1, and so on. Both HL and DE are incremented between
each individual transfer. Once the LDIR instruction starts executing,
it will not finish until all the bytes are transferred. It is very much faster
than doing the same job with individual Z-80 instructions, and so when
ever you’ve got a lot of data to copy you should use this instruction or
LDDR. LDDR does the same thing, except the DE and HL registers
are decremented between each individual transfer.
The listings of these scroll routines are well annotated, and you should
be able to follow what’s happening in them by examining the listings
and the above notes on the screen RAM arrangement for the different
screen modes.

LSCROLL
This routine will, in any mode, scroll a given area of the screen one
character space to the left.
Any material that is scrolled out of the left edge of the Scrolling Window
is lost. The routine is thus analogous to the SW SCROLL routine that
is in the Firmware.

69

Entry Requirements: From BASIC: CALL address,x1 ,y 1 ,x2,y2

Coordinates are from 1,1, this being the top
left corner of the screen. From machine code,
A =4 and IX points to a parameter block like
the one shown.

x1,y1

x2,y2

Parameter Block for LSCROLL

Exit Conditions:
Length:

All Corrupt.
169 Bytes.

LSCROLL

1000 MEMORY 39999
1010 MODE 1
1020 GOSUB 1070
1030 CLS : FOR 1=1 TO 10 : PRINT “1234567B901234567B90" : NE

XT
1040 CALL 40200,2,2,10,10
1050 FOR 1=0 TO 200 : NEXT ; GOTO 1040
1060 END
1070 ASSEMBLE
1080 ORG 40200

70

1090 ' CP 4
1100 ' RET NZ ? if <> 4 return
1110 ' CALL &BC11 5 get screen mode
1120 • LD (MODE),A
1130 ' CALL GWIDTH ; no. of chars to move
1140 ' LD (CHAR),A
1150 ' CALL MODEC 5 adjust this value to
1160 ' LD (CHAR),A 5 suit the mode in use
1170 ' XOR A
1180 ' LD (CHAR+1),A 5 set upper byte to 0
1190 ' LD H,(IX+6) get top left corner
1200 ’ LD L,(IX+4) 5 coordinates
1230 ' CALL HEIGHT ; no. of lines?
1240 ' OLOOP PUSH HL
1250 ' PUSH BC
1260 ' CALL MOVER 5 do the scroll
1270 ' POP BC
1280 • POP HL
1285 ' CALL PUTSP ? fill right col
1290 ' INC L scroll next line
1300 ' DJNZ OLOOP
1310 ' RET
1320 ' MOVER DEC L
1330 ' DEC H con coord for
1340 ' CALL &BC1A add calc
1350 ' Id b,8 5 8 bytes to move
1360 ' PUSH HL
1370 ‘ POP DE add move to in DE
1380 ' INC HL get add to mve char
1390 ' CALL FUDGE 5 byte from
1400 ' LOOP PUSH BC
1410 ' PUSH DE
1420 ' PUSH HL
1430 ' LD BC,(CHAR) í No of hor bytes
1440 ' LDIR 5 block move
1450 ' LD BC.2048 ; next is 2048 on
1460 ' POP HL
1470 ' ADD HL,BC 5 next source address
1480 ' POP DE
1490 ' PUSH HL
1500 ' PUSH DE
1510 ' POP HL
1520 ' ADD HL,BC
1530 ' PUSH HL
1540 ' POP DE 5 next dest add
1550 ' POP HL
1560 ' POP BC
1570 ' DJNZ LOOP ? do for 8 bytes
1580 ' RET
1590 ' MODEC LD A,(MODE) 5 adjusts hor no bytes
1600 ' CP 2 5 to move (mode)
1610 ' JR NZ,MOD1
1620 ' LD A,(CHAR)
1630 ' RET
1640 MODI CP 0
1650 ’ JR Z,MOD0
1660 ' LD A,(CHAR)
1670 ' ADD A J mode 1, 2 bytes width
1680 ' RET
1690 ' MOD0 LD A,(CHAR)
1700 ' ADD A
1710 ' ADD A mode 0, 4 bytes width
1720 ' RET

71

1730 ' FUDGE LD A, (MODE) adjust source add
1740 CP 2 for char width
1750 RET Z
1760 CP 1
1770 JR NZ.MOV0
1780 INC HL
1790 RET
1800 ' MOV0 INC HL
1810 INC HL
1820 INC HL
1830 RET
1840 ' HEIGHT PUSH HL calc lines
1850 LD A, fix) ! to move
1860 LD H,(IX+4)
1870 SUB H
1880 INC A
1890 LD B,A
1900 POP HL
1910 RET
1920 • GWIDTH LD A,(IX+2) no. of char, to
1925 PUSH HL 5 moved hor
1930 LD H,(IX+6)
1940 SUB H
1950 INC A
1955 POP HL
1960 RET
2170 • .PUTSP PUSH HL 1 fill in right
2175 LD H,(IX+2) col with space
2176 CALL &BB75
2180 LD A, 32
2190 CALL &BB5A
2200 POP HL
2210 RET
2270 • CHAR WORD 00
2290 • MODE BYTE 0
2310 • END
2320 RETURN

FE 04 C0 CD 11 BC 32 B0 9D CD 95 9D 32 AE 9D CD 5F 9D 32
AE 9D AF 32 AF 9D DD 66 06 DD 6E 04 CD 89 9D E5 C5 CD 38
9D Cl El CD A0 9D 2C 10 F3 C9 2D 25 CD 1A BC 06 08 E5 DI
23 CD 79 9D C5 D5 E5 ED 4B AE 9D ED B0 01 00 08 El 09 DI
E5 D5 El 09 E5 DI El Cl 10 E7 C9 3A B0 9D FE 02 20 04 3A
AE 9D C9 FE 00 28 05 3A AE 9D 87 C9 3A AE 9D 87 87 C9 3A
B0 9D FE 02 C8 FE 01 20 02 23 C9 23 23 23 C9 E5 DD 7E 00
DD 66 04 94 3C 47 El C9 DD 7E 02 E5 DD 66 06 94 3C El C9
E5 DD 66 02 CD 75 BB 3E 20 CD 5A BB El C9 12 00 01

Notes This routine is not protected against ‘funny’ parameters being
passed over to it, so don't try passing ridiculously large x and y co
ordinates to it, or having y2 smaller than y1. You have been warned!!
The program cannot easily be relocated, and the bytes above are for
address 40200. Note how we use a Firmware routine to recover the
screen mode in use. The routine, called at &BC11, returns a value in
the A register that corresponds to the screen mode. The routine then
moves the RAM bytes according to the screen mode.

72

RSCROLL
This routine scrolls a defined area of the screen one character space
to the right. Again, anything scrolled out of the right edge of the window
is lost. The routine will work in any screen mode.

Entry Requirements:
Exit Conditions:
Length:

As for LSCROLL
As for LSCROLL

183 Bytes.

RSCROLL

1000 MEMORY 39999
1010 MODE 1
1020 GOSUB 1070
1030 CLS ■ FOR 1=1 TO 10 : PRINT "12345678901234567B90" : NE

XT
1040 CALL 40600,2,2,10,10
1050 FOR 1=0 TO 200 : NEXT : GOTO 1040
1060 END
1070 ASSEMBLE
1080 ' ORG 40600
1090 CP 4
1100 ' RET NZ ; if parm 0 4 ret
1110 ' CALL &BC11 ; get screen mode
1120 LD (MODE),A
1130 ' CALL GWIDTH ; no. of chars to move
1140 LD (CHAR),A
1150 ' CALL MODEC ; adjust this value to
1160 • LD (CHAR),A ; suit the mode in use
1170 XOR A
1180 ' LD (CHAR+1),A ; set upper byte to 0
1190 ' LD H,(IX+2) ; get top right corner
1200 • LD L,(IX+4) ; coordinates
1210 ' CALL HEIGHT ; calc no. lines
1220 ' OLOOP PUSH HL
1230 ' PUSH BC
1240 ' CALL MOVER ; do the scroll
1250 POP BC
1260 POP HL
1270 ' CALL PUTSP ; fill right col spaces
1280 • INC L ; scroll next line
1290 DJNZ OLOOP
1300 ' RET
1310 ' MOVER DEC L
1320 ' DEC H ; con the coord for
1330 • CALL &BC1A ; the address calc
1331 ■ LD A,(MODE) | now adjust accord to
1332 • CP 2 ; the screen mode in use

1333 JR Z,OK
1334 CP 1
1335 JR Z,0K2
1340 INC HL
1350 ' INC HL
1360 ' 0K2 INC HL
1370 • OK LD B,8 ; 8 bytes to move
1380 PUSH HL

73

1390 • POP DE ; add to move to in DE
1400 DEC HL ; get add to move char
1410 ' CALL FUDGE ; byte -from
1420 ' LOOP PUSH BC
1430 PUSH DE
1440 ' PUSH HL
1450 ' LD BC,(CHAR) ; no. of hor bytes
1460 • LDDR ; block move
1470 • LD BC.2048 ;next char 2048 bytes on

1430 • POP HL
1490 • ADD HL,BC 1 next source address
1500 ' POP DE
1510 ' PUSH HL
1520 • PUSH DE
1530 POP HL
1540 ADD HL,BC
1550 ' PUSH HL
1560 ' POP DE ; next destination add
1570 • POP HL
1580 ' POP BC
1590 DJNZ LOOP ; do for 8 bytes
1600 ■ RET
1610 ' MODEC LD A,(MODE) ; adjusts hor no. bytes
1620 ' CP 2 ; to move for mode
1630 • JR NZ,MOD1
1640 ' LD A,(CHAR)
1650 RET
1660 ' MODI CP 0
1670 JR Z,MOD0
1680 ' LD A,(CHAR)
1690 ADD A ; mode 1, 2 bytes
1700 ' RET
1710 ' MOD0 LD A,(CHAR)
1720 ' ADD A
1730 ADD A ; mode 0, 4 bytes
1740 ' RET
1750 FUDGE LD A,(MODE) ; adjust source address
1760 • CP 2 ; to suit char, width
1770 - RET Z
1780 ' CP 1
1790 ' JR NZ,MOV0
1800 ' DEC HL
1810 RET
1820 ' MOV0 DEC HL
1830 DEC HL
1840 ' DEC HL
1850 ' RET
1860 ' HEIGHT PUSH HL ; calc no. of lines
1870 ' LD A, (ix) ; that are to be moved
1880 ' LD H,(IX+4)
1890 • SUB H
1900 ' INC A
1910 • LD B,A
1920 ' POP HL
1930 • RET
1940 • GWIDTH LD A,(IX+2) ; gets no. of char.
1950 ' PUSH HL ; moved hor
1960 LD H,(IX+6)
1970 ' SUB H
1980 ' INC A
1990 ' POP HL
2000 ' RET

74

FE 04 caco 11 BC 32 4E 9F
4C 9F AF 32 4D 9F DD 66 02
9E Cl El CD 3E 9F 2C 10 F3
02 28 07 FE 01 28 02 23 23
D5 ES ED 4B 4C 9F ED B8 01
DI El C1 10 E7 C9 3A 4E 9F
28 05 3A 4C 9F 87 C9 3A 4C
FE 01 20 02 2B C9 2B 2B 2B
47 El C9 DD 7E 02 ES DD 66
75 BB 3E 20 CD SA BB El C9

2010 ■ .PUTSP PUSH HL ; fill left
2020 LD H,(IX+6) ; cal with space
2030 CALL &BB75
2040 LD A, 32
2050 CALL &BB5A
2060 POP HL
2070 RET
2080 ' CHAR WORD 00
2090 • MODE BYTE 0
2100 ' END
2110 RETURN

CD 33 9F 32 4C 9F CD FD 9E 32
DD 6E 04 CD 27 9F ES C5 CD C8
C9 2D 25 CD 1A BC 3A 4E 9F FE
23 06 08 ES DI 2B CD 17 9F C5
00 08 El 09 DI ES D5 El 09 ES
FE 02 20 04 3A 4C 9F C9 FE 00
9F 87 87 C9 3A 4E 9F FE 02 C8
C9 ES DD 7E 00 DD 66 04 94 3C
06 94 3C El C9 ES DD 66 06 CD
12 00 01

Notes As with LSCROLL, no error trapping is carried out on the
parameters passed over to the routine. The routine is not easily relo
catable, and the bytes above are for address 40600.
The slowest part of both LSCROLL and RSCROLL is the PUTSP routine
that fills in the column that has been scrolled 'in' to the window with
spaces. This area of the program uses a Firmware routine. It should
be possible to replace it with a section of code that directly writes '0’s
in to the appropropriate screen RAM addresses.
The below BASIC program will demonstrate the LSCROLL and
RSCROLL routines, depending upon the addresses used.

100 MODE 1
110 REM add =40200 for LSCROLL
120 REM add =40600 for RSCROLL
130 add =40200
140 CLS:FOR 1=1 TO 10
150 PRINT “12345678901234567890”
160 NEXT I
170 CALL add,2,2,10,10
180 FOR I =0 TO 200:NEXT I:REM delay
190 GOTO 170

The main problem with the routines given so far is that material scrolled
out of one edge of the window is lost for ever. The final three scroll
routines that we’ll look at will get around this, providing a version of
SW SCROLL that scrolls in material that has been scrolled out of the

75

window, and versions of LSCROLL and RSCROLL that do the same
type of job. These routines will work in any screen mode and will scroll
both text and graphics, just like the previous routines.

LSCRF
This routine scrolls a defined area of the screen one character space
to the left. Anything that is scrolled out of the left edge of the screen
is scrolled in to the right edge. This can be very impressive for scrolling
title pages to programs, scrolling headings, etc., especially if under
AFTER or EVERY control from BASIC.
Entry Requirements: As for LSCROLL
Exit Conditions: All Registers Corrupt
Length: 385 bytes.

LSCRF

1000 MEMORY 39999
1010 MODE 1
1020 GOSUB 1070
1030 CLS : FOR

XT : PEN 2
1=1 TO 10

: LOCATE
: PRINT "12345678901234567890" : NE
2,4 : PRINT

1040 CALL 41500 ,2,2,10,10
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140

FOR 1=0 TO
END

lASSEMBLE

200 i NEXT s GOTO 1040

ORG 41500
CP 4
RET NZ
CALL &BC11
LD (MODE) ,A
CALL GWIDTH
LD (CHAR),A

1150 CALL MODEC ; adjust this value to
1160
1170

LD
XOR

(CHAR),A ;
A

suit the mode in use

1180 LD (CHAR+l),A ; set upper byte to 0
1190 LD H,(IX+6) j get top left corner
1200
1210
1220
1230

' OLOOP

LD
CALL
PUSH
PUSH

L,(IX+4> ;
HEIGHT
HL
BC

coordinates

1240 CALL CHGET ; get char
1250
1260
1270

CALL
POP
POP

MOVER ;
BC
HL

do the scroll

1280 CALL CHPUT ; fill right with char
1290
1300
1310
1320 ' MOVER

INC
DJNZ
RET
DEC

L 5
OLOOP

L

scroll next line

1330 DEC H ; con the coord for
1340 CALL &BC1A ; add calc
1350
1360

Id
PUSH

b,8 ;
HL

8 bytes to move

76

1370 ' POP DE
1380 ' INC HL
1390 ' CALL FUDGE
1400 ' LOOP PUSH BC
1410 ' PUSH DE
1420 ' PUSH HL
1430 ' LD BC,(CHAR)
1440 ' LDIR
1450 ' LD BC.2048
1460 ' POP HL
1470 ' ADD HL.BC ; next source add
1480 ' POP DE
1490 PUSH HL
1500 ' PUSH DE
1510 ' POP HL
1520 ’ ADD HL,BC
1530 ' PUSH HL
1540 • POP DE 5 next dest add
1550 ' POP HL
1560 ' POP BC
1570 ' DJNZ LOOP 5 do -for 8 bytes
1580 ' RET
1590 ' MODEC LD A,(MODE)
1600 • CP 2
1610 ' JR NZ.MOD1
1620 ' LD A,(CHAR)
1630 ' RET
1640 ' MODI CP 0
1650 ' JR Z,MOD0
1660 ' LD A,(CHAR)
1670 ' ADD A
1680 ' RET
1690 • MOD0 LD A,(CHAR)
1700 ' ADD A
1710 ' ADD A
1720 ' RET
1730 ' FUDGE LD A,(MODE)
1740 • CP 2
1750 ' RET Z
1760 ' CP 1
1770 ' JR NZ,MOV0
1780 ' INC HL
1790 ' RET
1800 ' MOV0 INC HL
1810 ' INC HL
1820 ' INC HL
1830 ' RET
1840 ' HEIGHT PUSH HL calc no. lines
1850 ' LD A,(ix) 5 moved
1860 ' LD H,(IX+4)
1870 ' SUB H
1880 ' INC A
1890 • LD B,A
1900 ' POP HL
1910 ' RET
1920 ’ GWIDTH LD A,(IX+2) gets char to be
1930 ' PUSH HL moved hor
1940 ’ LD H,(IX+6)
1950 ' SUB H
1960 • INC A
1970 ' POP HL
1980 ' RET
1990 ' CHPUT PUSH HL

77

2(300 PUSH DE
2010 PUSH BC
2020 PUSH IX
2030 LD H,(IX+2) ; get col to -fill
2040 • DEC H
2050 DEC L ; physical row/col
2060 LD A,(MODE) ; select routine
2070 CP 1 ; for the current screen

2080 • JR Z.PMOD1 ; mode
2090 CP 0
2100 JR Z.PMOD0
2110 • CALL INIT ; routine for mode 2
2120 ■ CHPL LD A,(IX) ; get from buffer
2130 LD (HL),A ; put in video RAM
2140 INC IX ; next buffer pos.
2150 ADD HL, DE ; byte of vid RAM
2160 DJNZ CHPL ; for 8 bytes
2170 ' POK POP IX ; restore reg's
2180 POP BC
2190 POP DE
2200 POP HL
2210 RET
2220 • PMOD1 CALL INIT ; mode 1 rout
2230 ' P1L CALL HLPUT ; each char 2 wide
2240 CALL HLPUT ; store 2 bytes in vid
2250 DEC HL
2260 * DEC HL
2270 ADD HL, DE ; add next byte RAM
2280 DJNZ P1L
2290 • JR POK
2300 ' PMOD0 CALL INIT ; mode 0, 4 bytes
2310 ' P0L CALL HLPUT ; get 4 bytes
2320 * CALL HLPUT ; row of character
2330 • CALL HLPUT
2340 • CALL HLPUT
2350 • DEC HL
2360 • DEC HL
2370 • DEC HL
2380 DEC HL
2390 ADD HL, DE ; next char, row
2400 • DJNZ P0L
2410 • JR POK
2420 ■ CHGET PUSH HL
2430 • PUSH BC
2440 • PUSH DE
2450 • PUSH IX
2460 DEC H
2470 • DEC L
2480 LD A,(MODE) ; get mode, jump
2490 • CP 1 ; to rout for
2500 JR Z.GMOD1 ; the mode in use
2510 * CP 0
2520 • JR Z,GMOD0
2530 CALL INIT ; mode 2, 1 byte
2540 • CHGL LD A,(HL)
2550 • LD (IX) ,A
2560 INC IX
2570 ADD HL, DE
2580 DJNZ CHGL
2590 ' CHOK POP IX ; restore reg's
2600 POP DE
2610 • POP BC

78

2620 * POP HL
2630 RET
2640 ' GM0D1 CALL INIT ; routine for mode 1
2650 ' MIL CALL HLGET ; save 2 bytes of vid
2660 • CALL HLGET ; for each char/line
2670 • DEC HL
2680 • DEC HL
2690 • ADD HL, DE ; next VRAM add
2700 • DJNZ MIL
2710 • JR CHOK
2720 • INIT CALL &BC1A ; rout get add of
2730 LD IX,TEMP ; start char square
2740 » LD B,8 ; in HL and set reg
2750 • LD DE,2048
2760 • RET
2770 • DJNZ MIL
2780 ■ GMOD0 CALL INIT ; rout for mode 0
2790 ' M0L CALL HLGET ; each char 4 bytes wid

e
2800 CALL HLGET
2810 • CALL HLGET
2820 • CALL HLGET
2830 • DEC HL
2840 • DEC HL
2850 • DEC HL
2860 DEC HL
2870 ADD HL, DE
2880 • DJNZ M0L
2890 • JR CHOK
2900 ■ HLGET LD A,(HL) transfers byte from
2910 LD (IX),A 5 video RAM to buff
2920 INC HL
2930 • INC IX
2940 • RET
2950 ■ HLPUT LD A,(IX) transfers a byte from
2960 LD (HL),A buffer to video RAM
2970 INC HL
2980 INC IX
2990 RET
3000 ' CHAR WORD 00
3010 ' CHAR2 BYTE 0
3020 ' MODE BYTE 0
3030 ' TEMP RMEM 40
3040 ’ END
3050 RETURN

EE 04 C0 CD 11 BC 32 74 A3 CD AC A2 32 71 A3 CD 76 A2 32
71 A3 AF 32 72 A3 DD 66 06 DD 6E 04 CD A0 A2 E5 C5 CD 06
A3 CD 4F A2 Cl El CD B7 A2 2C 10 F0 C9 2D 25 CD 1A BC 06
08 E5 DI 23 CD 90 A2 C5 D5 E5 ED 4B 71 A3 ED B0 01 00 08
El 09 DI E5 D5 El 09 E5 DI El Cl 10 E7 C9 3A 74 A3 FE 02
20 04 3A 71 A3 C9 FE 00 28 05 3A 71 A3 87 C9 3A 71 A3 87
87 C9 3A 74 A3 FE 02 CS FE 01 20 02 23 C9 23 23 23 C9 E5
DD 7E 00 DD 66 04 94 3C 47 El C9 DD 7E 02 E5 DD 66 06 94
3C El C9 E5 D5 C5 DD E5 DD 66 02 25 2D 3A 74 A3 FE 01 28
16 FE 00 28 22 CD 3A A3 DD 7E 00 77 DD 23 19 10 F7 DD El
Cl DI El C9 CD 3A A3 CD 69 A3 CD 69 A3 2B 2B 19 10 F5 18
EA CD 3A A3 CD 69 A3 CD 69 A3 CD 69 A3 CD 69 A3 2B 2B 2B
2B 19 10 ED 18 D2 E5 C5 D5 DD E5 25 2D 3A 74 A3 FE 01 28
16 FE 00 28 31 CD 3A A3 7E DD 77 00 DD 23 19 10 F7 DD El
DI Cl El C9 CD 3A A3 CD 61 A3 CD 61 A3 2B 2B 19 10 F5 18

79

EA CD 1A BC DD 21 75 A3 06 00 11 00 00 C9 10 E4 CD 3A A3
CD 61 A3 CD 61 A3 CD 61 A3 CD 61 A3 2B 2B 2B 2B 19 10 ED
10 C3 7E DD 77 00 23 DD 23 C9 DD 7E 00 77 23 DD 23 C9 12
00 00 01 30 C0 60 60 60 00 70 C0 60 60 60 60 30 C0 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00

Notes The routine is not easily relocated, and the bytes given above
are for address 41500. As with all the scroll routines, the speed of
scrolling is dependant upon the size of the window to be scrolled.
However, the routine is still very fast, even with a large window.

RSCRF
This routine scrolls a defined area of the screen one character space
to the right. Any material on the screen that is scrolled out of the right
edge of the Scrolling Window is scrolled in at the left edge.
Entry Requirements: As for RSCROLL
Exit Conditions: All Registers Corrupt
Length: 399 Bytes.

R'Sl .HF

1000 MEMORY 39999
1010 MODE 1
1020 GOSUB 1070
1030 CLS : FOR 1=1 TO 10 : PRINT "12545670901234567890" : NE

XT : LOCATE 2.4 s PEN 3 : PRINT"...JOE___ "
1040 CALL 40200.2.2.10.10
1050 GOTO 1040
1060 END
1070 ASSEMBLE
1080 ORG 40200
1090 CP 4
1 100 RE1 NZ Î if not 4 param, return

1 1 10 CALL &BC1 1 : aet screen mode
1 120 LD (MODE),A
1130 CALL GWIDTH : no. of chars to move
1140 LD (CHAR).A
1 150 CALL MODEC : adjust this value to
1160 LD (CHAR).A : suit the mode in use
1 170 XOR A
1 180 LD (CHAR+1>.A : set upper bvte to 0
1190 LD H,(IX+2) : get top right corner
1 200 LD L.(IX+4) : coordinates
1210 CALL HEIGHT : work out no. of lines
1220 ’ 0L00P PUSH HL
1230 PUSH BC
1 240 CALL CHGET
1250 CALL MOVER : do the scrol1
1260 POP BC
1270 POP HL
1280 CALL CHPUT : fill left col with char

80

1290 ■ INC L : scroll next line
1300 DJNZ OLOOP
1310 RET
1320 ’ MOVER DEC L
1330 DEC H : con the coord for
1340 CALL ScBClA ; the add calc
1350 LD A.(MODE) ; adjust according to
1360 CP 2 ; the screen mode in use

1370 JR Z.OK
1380 CP 1
1390 ' JR Z.0K2
1400 INC HL
1410 INC HL
1420 OK2 INC HL
1430 OK LD B.8 ! 8 bvtes to move
1440 PUSH HL
1450 • POP DE S add to move to in DE
1460 DEC HL : get address move char
1470 CALL FUDGE î bvte -from
1480 LOOP PUSH BC
1490 PUSH DE
1500 PUSH HL
1510 ’ LD BC.(CHAR) : no. of hor bvtes
1520 LDDR : block move
1530 ' LD BC.2048 : next part char 2048 on

1540 • POP HL
1550 ' ADD HL.BC 5 next source address
1 560 POP DE
1570 PUSH HL
1580 • PUSH DE
1590 POP HL
1600 ' ADD HL.BC
1610 PUSH HL
1620 POP DE : next dest add
1630 ' POP HL
1640 POP BC
1650 DJNZ LOOP ; do for 8 bvtes
1660 RET
1670 ’ MODEC LD A.(MODE) ! adjusts hor no. bvtes
1680 CP 2 : move to suit mode
1690 ■ JR NZ.MODI
1 700 LD A.(CHAR)
1710 RET
1720 ' MODI CP 0
1 730 JR Z.MOD0
1 740 LD A.(CHAR)
1 750 ADD A ; mode 1. 2 bvtes
1 760 RET
1 770 MOD0 LD A.(CHAR)
1 780 ADD A
1 790 ADD A : mode 0, 4 bvtes
1800 RET
1810 FUDGE LD A.(MODE) : ad just srce add
1820 ’ CP 2 ; suit char in use
1830 RET Z
1840 CP 1
1850 ' JR NZ.MOV0
1860 DEC HL
1870 ’ RET
1880 ■ MOV0 DEC HL
Í890 DEC HL

81

1900 DEC HL
1910 RET
1920 ' HEIGHT PUSH HL ; calc no. of lines
1930 LD A. (ix) : that are to be moved
1940 LD H.<IX+4)
1950 SUB H
1960 INC A
1970 LD B. A
1980 POP HL
1990 RET
2000 ' GWIDTH LD A.(IX+2) :no. of char to be
2010 PUSH HL ; moved horizontally
2020 LD H,(IX+6)
2030 SUB H
2040 INC A
2050 POP HL
2060 RET
5000 ' CHPUT PUSH HL
5010 PUSH DE
5020 PUSH BC
5030 PUSH IX
5040 LD H.(IX+6) : qet col to fill
5050 DEC H
5060 DEC L ; physical row/col
50 70 LD A.(MODE) : select corr rout
5080 CP 1 : for curr scrn
5090 JR Z.PMOD1 I mode
5100 CP 0
5110 JR Z.PMOD0
5120 CALL INIT : rout for mode2
5130 ' CHPL LD A.(IX) : qet from buffer
5140 LD (HL),A i out in video RAM
5150 INC IX : next buffer pos.
5160 ADD HL. DE ; next bvte of VRAM
5170 DJNZ CHPL : for 8 bvtes
5180 ’ POK POP IX ; restore reaisters
5190 POP BC
5200 POP DE
5210 POP HL
5220 RET
5230 ' PMOD1 CALL INIT : mode 1 routine
5240 ' P1L CALL HLPUT ; char 2 bvtes wide
5250 CALL HLPUT : 2 bvtes in VRAM
5260 DEC HL
5270 DEC HL
5280 ADD HL. DE : add next bvte VRAM
5290 DJNZ P1L
5300 JR POK
5310 ' PMOD0 CALL INIT : mode 0, 4 bvtes
5320 ' P0L CALL HLPUT ; qet 4 bvtes for each
5330 CALL HLPUT ; row of character
5340 CALL HLPUT
5350 CALL HLPUT
5360 DEC HL
5370 DEC HL
5380 DEC HL
5390 DEC HL
5400 ADD HL. DE ; start next char/row
5410 DJNZ P0L
5420 JR POK
5430 ' CHGET PUSH HL
5440 PUSH BC
5450 PUSH DE

82

5460 PUSH IX
5470 DEC H
5480 DEC L
5490 LD A.(MODE) ; pet mode, and jump
5500 CP 1 : to correct rout -for
5510 • JR Z.GMOD1 I the mode in use
5520 CP 0
5530 JR Z.GMOD0
5540 CALL INIT : mode 2. 1 bvte
5550 ■ CHGL LD A.(HL)
5560 LD (IX).A
5570 INC IX
5580 ADD HL. DE
5590 DJNZ CHGL
5600 ' CHOK POP IX ; restore reaisters
5610 POP DE
5620 POP BC
5630 POP HL
5640 RET
5650 • GMOD1 CALL INIT : rout -for model
5660 ' MIL CALL HLGET ; save 2 bytes VRAM
5670 CALL HLGET : -for each char, line
5680 DEC HL
5690 DEC HL
5700 ADD HL. DE ; next VRAM address
5710 DJNZ MIL
5720 JR CHOK
5730 • INIT CALL &BC1A : rout pets add of
5740 LD IX.TEMP ; start of char spr
5750 LD B.8 : into HL sets up rea
5760 LD DE.2048
5770 RET
5780 DJNZ MIL
5790 ’ GMOD0 CALL INIT : rout mode 0. with
5800 M0L CALL HLGET : each char 4 bvtes
5810 CALL HLGET
5820 CALL HLGET
5830 CALL HLGET
5840 DEC HL
5850 DEC HL
5860 DEC HL
5870 DEC HL
5880 ADD HL. DE
5890 DJNZ M0L
5900 JR CHOK
5910 ’ HLGET LD A,(HL) ; trans a bvte from
5920 LD (IX).A : VRAM to buffer
5930 INC HL
5940 INC IX
5950 RET
5960 • HLPUT LD A.(IX) : trans a bvte from
5970 LD (HL),A : buffer to VRAM
5980 INC HL
5990 INC IX
6000 RET
6010 ' CHAR WORD 00
6020 ■ CHAR2 BYTE 0
6030 ' MODE BYTE 0
6040 ' TEMP RMEM 40
6050 END
6060 RETURN

83

FE 04 C0 CD 11 BC 32 6E 9E CD A6 9D 32 6B 9E CD 70 9D 32
6B 9E AF 32 6C 9E DD 66 02 DD 6E 04 CD 9A 9D E5 C5 CD 00
9E CD 3B 9D Cl El CD Bl 9D 2C 10 F0 C9 2D 25 CD 1A BC 3A
6E 9E FE 02 28 07 FE 01 28 02 23 23 23 06 08 E5 DI 2B CD
BA 9D C5 D5 E5 ED 4B 6B 9E ED B8 01 00 08 El 09 DI E5 D5
El 09 E5 DI El Cl 10 E7 C9 3A 6E 9E FE 02 20 04 3A 6B 9E
C9 FE 00 28 05 3A 6B 9E 87 C9 3A 6B 9E 87 87 C9 3A 6E 9E
FE 02 C8 FE 01 20 02 2B C9 2B 2B 2B C9 E5 DD 7E 00 DD 66
04 94 3C 47 El C9 DD 7E 02 E5 DD 66 06 94 3C El C9 E5 D5
C5 DD E5 DD 66 06 25 2D 3A 6E 9E FE 01 28 16 FE 00 28 22
CD 34 9E DD 7E 00 77 DD 23 19 10 F7 DD El Cl DI El C9 CD
34 9E CD 63 9E CD 63 9E 2B 2B 19 10 F5 18 EA CD 34 9E CD
63 9E CD 63 9E CD 63 9E CD 63 9E 2B 2B 2B 2B 19 10 ED IB
D2 E5 C5 D5 DD E5 25 2D 3A 6E 9E FE 01 28 16 FE 00 28 31
CD 34 9E 7E DD 77 00 DD 23 19 10 F7 DD El DI Cl El C9 CD
34 9E CD SB 9E CD 5B 9E 2B 2B 19 10 F5 18 EA CD 1A BC DD
21 6F 9E 06 08 11 00 08 C9 10 E4 CD 34 9E CD 5B 9E CD 5B
9E CD 5B 9E CD 5B 9E 2B 2B 2B 2B 19 10 ED 18 C3 7E DD 77
00 23 DD 23 C9 DD 7E 00 77 23 DD 23 C9 12 00 00 01 70 C0
C0 60 C0 E0 D0 60 E0 60 C0 60 70 C0 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Notes Again, the routine is not relocatable. The bytes above are for
address 42000.
Both LSCRF and RSCRF can be demonstrated with the BASIC program
that was listed for use with LSCROLL earlier in this Chapter.

CSCRF
This routine scrolls an area of the screen either up or down. Material
scrolled out of either the top or bottom edge of the Scrolling Window
is scrolled in at the other edge. The routine will work in any screen
mode.

84

Entry Requirements: From BASIC, CALL address,x1 ,y1 ,x2,y2,dir
where x1 =left edge of area

y1 =top of area
x2 =right edge of area
y2 =bottom row of area
dir =0 — down scroll, dir =1 gives up

scroll. Coordinates are from 1,1, this being the
character square in the top left of the screen.
If the routine is to be called from machine
code, then IX must point to suitable parameter
block and A must hold the value 5.

Exit Conditions: All Registers Corrupt.

Length: 914 Bytes, including buffer.

CSCRF

900 MODE 1
1000 MEMORY 39999
1010 GOSUB 1120
1020 CLS
1030 FOR 1-1 TO 10 PRINT "0123456789012345678901234567890“

1040 NEXT
1050 PEN 3 : LOCATE 2,3 : PRINT "*»^JOE^**"
1060 G»=INKEY» : IF G»=“" THEN GOTO 1060
1070 IF ASC(G»)=240 THEN DIR=1
1080 IF ASC(G«)=241 THEN DIR=0
1090 CALL 41000,2,2,19,6,DIR
1100 GOTO 1060
1110 END
1120 ASSEMBLE
1130 ' ORG 41000
1140 • CP
1150 ' RET NZ ; ret if not 5 param
1160 • CALL &BB99
1170 • CALL &BC2C
1180 • LD (PAPER),A ; save text paper
1190 ' LD A,(IX)
1200 ' CP 0 ; decide if up/down
1210 ' JR Z,DOWN
1220 ' UP CALL GWID ; widthg of window
1230 ' LD H,(IX+8)
1240 ' LD L,(IX+6)
1250 ' LD A, 1
1260 ' LD (DIR),A
1270 ' CALL GETC ; save top line
1280 ' CALL SCROLL ; scroll up one
1290 ' CALL GWID
1300 ' LD H,(IX+8)
1310 ' LD L,(IX+2)
1320 ' LD A,0
1330 ' LD (DIR),A
1340 ’ CALL GETC ; print at bott
1350 ' RET
1360 ' DOWN CALL GWID

85

1370 ' LD H,(IX+B)
1380 • LD L,(IX+2)
1385 ■ LD A, 1 get bottom
1386 ' LD (DIR),A 5 line....
1390 ' CALL GETC get bottom line
1400 ' CALL SCROLL scroll down 1
1410 ' CALL GWID
1420 ' LD H,(IX+8)
1430 ' LD L,(IX+6)
1431 ' LD A,0 5 prepare print
1432 ' LD (DIR),A
1440 ' CALL GETC ! print at top
1450 ' RET
1460 ' GWID PUSH HL
1470 ' LD A,(IX+4)
1480 ' LD H,(IX+8)
1490 ' SUB H
1500 ' LD B,A
1510 ' INC A
1520 • LD (WIDTH),A
1530 ' INC B width in to B reg
1540 ' POP HL
1550 RET
1560 ' .GETC PUSH BC
1570 ' PUSH DE
1580 ' PUSH HL
1590 PUSH IX » preserve the reg’s
1600 LD I X,BUFFER
1610 ' LD B,8
1620 PUSH BC
1630 DEC H
1640 ' DEC L
1650 CALL &BC1A i get add of char
1660 LD (NWID),BC char width in NWID
1670 • LD DE,2048 J set up DE
1680 POP BC rec no lines (8)
1690 □LOOP PUSH BC i save again
1700 ' LD A,(WIDTH) get no o-f char's
1710 ' LD B,A
1720 ' PUSH HL save start add line

1730 ' OLOOP1 PUSH BC save no char's
1740 ' LD BC,(NWID) » get bytes char wid
1750 ' LOOP LD A,(DIR) ? get byte from VRAM
1760 CP 0 to buffer depending

1761 JR Z,CHPUT on value in DIR
1762 ' LD A,(HL)
1763 ' LD (IX) ,A
1770 ' CHOK INC IX next byte...
1780 • INC HL » do a screen line of

1790 ' DJNZ LOOP char in wind
1800 • POP BC
1810 ' DJNZ OLOOP1 for each char wind
1820 • POP HL
1830 ' ADD HL, DE get add lin VRAM
1840 • POP BC
1850 DJNZ OLOOP » repeat for char
1860 POP IX
1870 ' POP HL
1880 POP DE
1890 ' POP BC restore reg's

86

1900 RET
1902 ' CHPUT LD A,(IX)
1903 LD (HL),A
1904 JR CHOK
1910 ' SCROLL LD H,(IX+8) ; scroll area
1920 LD L,(IX+6)
1930 LD D,(IX+4)
1940 LD E,(IX+2)
1950 LD B, (IX)
1960 LD A,(PAPER)
1970 DEC H
1980 DEC L
1990 DEC D
2000 DEC E
2010 CALL &BC50
2020 RET
2030
2040 ' NWID WORD 00
2050 ' DIR BYTE 0
2060 ' .WIDTH BYTE 0
2070 ' BUFFER RMEM 700
2080 ' PAPER BYTE 0
2090 ' END
2100 RETURN

FE 05 C0 CD 99 BB CD 2C BC 32 B9 A3 DD 7E 00 FE 00 28 26
CD 87 A0 DD 66 08 DD 6E 06 3E 01 32 FB A0 CD 97 A0 CD DF
A0 CD 87 A0 DD 66 08 DD 6E 02 3E 00 32 FB A0 CD 97 A0 C9
CD 87 A0 DD 66 08 DD 6E 02 3E 01 32 FB A0 CD 97 A0 CD DF
A0 CD 87 A0 DD 66 08 DD 6E 06 3E 00 32 FB A0 CD 97 A0 C9
E5 DD 7E 04 DD 66 08 94 47 3C 32 FC A0 04 El C9 C5 D5 E5
DD E5 DD 21 FD A0 06 08 C5 25 2D CD 1A BC ED 43 F9 A0 11
00 08 C1 C5 3A FC A0 47 E5 C5 ED 4B F9 A0 3A FB A0 FE 00
28 17 7E DD 77 00 DD 23 23 10 F0 Cl 10 E8 El 19 Cl 10 DD
DD El El DI Cl C9 DD 7E 00 77 18 E7 DD 66 08 DD 6E 06 DD
56 04 DD 5E 02 DD 46 00 3A B9 A3 25 2D 15 ID CD 50 BC C9
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

87

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00

Notes The routine is non relocatable, due to the extensive use of
subroutines. The bytes given above are for address 41000.
The last three routines all use a buffer area of RAM. This is used in the
following way. For LSCRF and RSCRF, each screen row of the Scrolling
Window is moved to the side in turn. Before it is scrolled, however, the
area that will be lost by the scroll is copied in to the buffer area of
memory. This will only be the amount of memory needed to define one
character square, and so the most this will be will be 32 bytes for a
Mode 0 character square. When the scroll is completed, we simply
copy the buffer contents back in to the other edge of the screen row
that's just been scrolled. As we are only copying screen RAM contents,
the colour information and any graphics are retained, as well as char
acter information. In CSCRF, we have to retain a whole screen row.
This will be (80*8) bytes at maximum, assuming that some one may
want to scroll the whole screen width. This is 80 bytes wide, and there
are 8 bytes needed for each screen row in terms of screen lines. Each
time a scroll is done, the screen row that would otherwise be lost is
copied into this buffer area. Then, after the scroll, the contents of the
buffer are copied in to the appropriate areas of screen RAM to restore
the image at the other edge of the window.

88

5.
More Screen Routines

This Chapter is something of a mixed collection of routines for screen
handling. So, we'll start by looking at methods of clearing the screen.

Clearing the Screen
The easiest way to do this from machine code is to call the routine at
address &BC14. This will set the screen to ink 0 just like CLS. However,
the text cursor will not be returned to the top left corner of the screen.
Alternatively, the direct equivalent of CLS is

LD A,12
CALL &BB5A

which clears the text window and returns the cursor to the top left
corner of the window. CLG, of course, also clears the screen, but the
call to &BC14 does the job of CLG quite well.
However, all these methods of screen clearing are rather sudden, and
its occasionally useful to have a routine that ‘fades’ the screen image
gradually, rather than zapping it all at once. For example, you could
use such a routine to fade out the title page of a program that you’ve
written, giving your name the longest possible exposure! So, here are
a couple of routines that offer this facility.

FCLS
This routine fades the screen into ink 0. It is relocatable.
Entry Requirements: CALL address from BASIC or machine code.

Exit Conditions: AF,HL and DE are corrupt.
Length: 18 Bytes.

89

FCLS

1000 MEMORY 39999
1010 GOSUB 2000
1020 CALL 40200
1030 END
2000 (ASSEMBLE
2010 ORG 40200
2020 LD E,254 5 first mask
2030 ' LOOP0 LD HL,&C000 start of screen RAM
2040 • LOOP1 LD A,E get mask into A
2050 AND (HL) mask with curr scrn
2060 LD (HL),A 5 RAM byte, put back
2070 INC HL » next byte of RAM
2080 LD A,L i is address now 0000?

2090 OR H
2100 JR NZ.LOOP1 if not around again
2110 RL E 5 rotate the mask
2120 JR C,LOOP0 5 again if C is set
2130 RET
2140 • EMD
2150 RETURN

IE FE 21 00 C0 7B A6 77 23 7D B4 20 FB CB 13 38 Fl C9

Notes The routine works by repeatedly shifting a 0 through a byte
that is otherwise set to hold all 1’s. Each byte of the screen RAM is
then ANDed with this mask, and put back in the screen RAM. This has
the effect of gradually fading out the screen image. To speed things
up a little, the end of screen memory is looked for by checking the HL
register pair for zero; screen RAM ends at &FFFF and incrementing HL
when it contains this value will give HL the contents ®®®®. Also, note
the way in which the program checks to see if all 8 bits of the byte
have been set to zero. We wait until the C flag is set to zero, thus
indicating that the 0 from the byte has been rotated in to the C flag
after being in each position in the byte.

SCRCLS
This routine clears the screen by simply scrolling the contents of the
screen up or down by 25 lines. The routine is relocatable.

Entry Requirements: CALL address,dir from BASIC, dir =0 indicates
that a down scroll is wanted, dir =1 indicates
an up scroll is required. From machine code,
IX holds the address of the byte in memory
holding the value of dir specifying the direction
of scroll required. A =1.

Exit Conditions: All Corrupt.
Length: 48 Bytes, including temporary storage.

90

SCRCLS

DD 7E 00
IE 18 CD
50 BC El

1000 MEMORY 39999
1010 GOSUB 2000
1020 CALL 40200,1
1030 END
2000
2010

ASSEMBLE
ORG 40200

2011 LD A,<IX >
2012 LD (DIR),A
2013 CALL &BB99
2014 CALL &BC2C ; get text paper ink and
2015 LD (PAPER),A; store it encoded
2020 LD H,0 ; get the left edge
2030 LD L,0 ; get the top row
2050 LD E,24 ; bot 1 in to be scrolled
2051 CALL &BC17 ; get the last column
2052 LD D,B
2053 LD B,25
2060 ' LOOP PUSH BC
2061 PUSH DE
2062 PUSH HL
2070 LD A,(DIR)
2072 LD B,A
2073 LD A,(PAPER)
2080 CALL 4.BC50
2082 POP HL
2083 POP DE
2090 POP BC
2100 DJNZ LOOP
2110 RET
2120 • DIR BYTE 0
2130 • PAPER BYTE 0
2140 ' EMD
2150 RETURN

32 36 9D
17 BC 50
DI Cl 10

CD 99 BB CD 2C BC 32 37 9D 26 00 2E 00
06 19 C5 D5 E5 3A 36 9D 47 3A 37 9D CD
EE C9 01 00

Notes The bytes above are for address 40200. When relocating the
routine, don’t forget to change the address of the temporary storage
used. There is only one new ROM routine used in this program; the
call to &BC17. We saw the scrolling routine in the last Chapter. This
routine at &BC17 returns to us the last screen column and row available
to us in the present screen mode. It is called SCR CHAR LIMITS by
AMSOFT and on exit B holds the last screen column and C the last
screen row available. We use this information to give the scrolling
routine the correct number of columns to scroll for each screen mode.
When programming games routines, it’s often useful to detect whether
or not a character space on the screen is occupied by something else
before you move another character in to it. The next two routines are
designed to help out in this situation.

91

RDCHAR
This routine will return the ASCII code of any recognisable character
at a specified screen position.
Entry Requirements: From BASIC, CALL address,x,y,@char%

where x is the x coordinate, y is the y coor
dinate and char% is the variable which, on
return, will hold the result of the call. From
machine code, the IX register should point to
a 6 byte parameter block, shown left, and A =3.

RDCHAR

Exit Conditions: In BASIC, char% will hold the ASCII code if
the character was recognisable, or 256 if the
character was not recognisable. From machine
code, location(IX) will hold the ASCII code for
a ‘legal’ character and (IX+1)=0, or, for a
character that hasn’t been recognised by the
system (IX +0) =0 and (IX+1) =1. Alternatively,
C=1 (Carry Flag set) and A=ASCII code for
a legal character, otherwise A=0 and the C
flag is clear.

Length: 31 Bytes.

1000 MEMORY 39999
1010 GOSUB 2000
1015 F7.-0
1020 CALL 40200,10,10,9F'/.
1030 END
2000 ASSEMBLE
2010 ' ORG 40200
2015 ' CP 3
2016 ' RET NZ ; if wrong no. return
2020 ' LD H,(IX+4>
2030 ' LD L,(IX+2)
2040 ' CALL &BB75 ; position cursor

92

FE 03 C0 DD 66 04
66 01 30 05 77 23

2050 ' CALL ScBB60 5 get character
2055 ' LD L,(IX+0)
2056 ' LD H,(IX+l)
2060 ' JR NC,NOCHAR 5 if char not known..
2061 ' LD (HL),A ; load ASCII code in to

2062 ' INC HL ; the variable
2063 ' LD (HL),0
2064 ' RET
2065 ’ NOCHAR LD (HL),0 5 if char not known,
2066 ' INC HL 5 come here
2067 ' LD (HL),1
2068 ' RET
2140 ' END
2150 RETURN

DD 6E 02 CD 75 BB CD
36 00 C9 36 00 23 36

60 BB DD 6E 00 DD
01 C9

Notes The routine must be called with 3 parameters, otherwise an
immediate return to BASIC is made. Remember that when using ‘@’
to prefix variables, the variable used must have been previously de
clared. The most usual cause of 256 being returned is that a graphics
PLOT or DRAW command has left a line or point in that particular
character square, thus altering the image. A second cause of 256
being returned is that the pen and paper colour have been changed
since that image was put on the screen. The way around this is to
check the character position with each pen and paper combination.
However, as we are usually just looking for the presence or absence
of something, the routine is very useful.
A similar routine is called RDPOINT, but this gives the ink colour to be
found at a particular pixel position on the screen.

RDPOINT
Returns to the user the ink colour of a specified pixel. The routine is
relocatable.

93

Length: 29 Bytes.

Entry Requirements: From BASIC, CALL address,x,y,@i% where
x,y is the coordinate of the pixel and ¡% is the
variable in which the ink is to be returned. If
called from machine code, IX points to a pa
rameter block like that shown. A =3.

Exit Conditions: All registers corrupt. If wrong number of pa
rameters is passed, an immediate return to
BASIC is made.

RDPOINT

1000 MEMORY 39999
1010 GOSUB 2000
1015 F7.=0
1020 CALL 40200, 10,10.OF7.
1030 END
2000 ASSEMBLE
2010 □RG 40200
2015 CP 3
2016 RET NZ ; if not 3 parameters, return
2020 LD L,(IX+2)
2030 LD H.CIX+3)
2040 LD E,(IX+4)
2050 LD D,(IX+5)
2060 CALL &BBF0 ; get ink at DE,HL
2070 LD L,<IX+0)
2080 LD H,<IX+1>
2090 LD (HL>,A ; store ink in var.
2100 INC HL
2110 LD (HL),0
2120 RET
2140 ' END
2150 RETURN

FE 03 C0 DD 6E 02 DD 66 03 DD 5E 04 DD 56 05 CD F0 BB DD
6E 00 DD 66 01 77 23 36 00 C9

Notes In this routine, and in RDCHAR, if you're only wanting the
facility from machine code routines then it’s easier to simply call the
ROM routine directly, without putting the result returned in the appro
priate variable. The two ROM routines used are as follows.
&BB60 This was discussed in Chapter 4.

&BBFO This routine is entered with DE holding the x coordinate of
the pixel of interest and HL holding the y coordinate. On exit, the A
register will hold the ink colour.

The next routine is another “decorative” one. It inverts the screen by
swapping all the 1 bits in screen RAM to 0 and vice versa.

94

SCRINVERT
Changes the screen in any mode by complementing each byte of
screen RAM. The routine is relocatable.
Entry Requirements: CALL address.
Exit Conditions: HL,AF are corrupt.
Length: 12 Bytes.

SCR I NV

1000 MEMORY 39999
1010 GOSUB 2000
1020 CALL 40200
1030 END
2000 ASSEMBLE
2010 org 40200
2020 LD HL,&C000
2030 ' LOOP LD A,(HL) ; get screen byte
2040 CPL ; complement byte
2050 LD (HL),A ; put it back in RAM
2060 INC HL ; next byte
2070 LD A,L
2080 OR H
2090 JR NZ,LOOP s if HL not zero repeat
2100 RET
2110 ' END
2120 RETURN

21 00 C0 7E 2F 77 23 7D B4 20 F8 C9

Notes Each byte of screen RAM from &C000 to &FFFF is comple
mented. This simply means that each 0 is turned to 1 and each 1 is
replaced with a 0. For example, the byte 10101010 when comple
mented is 01010101. The changes in colour that occur can be rather
interesting, especially in Mode 0 with several colours on the screen at
once. Calling it twice will restore the screen to it’s original state.

The next routine is simple but heavy on memory use. It can be extremely
useful when it is necessary to quickly alter the image that is displayed
on the screen. We use the 16k of memory starting at address 26000
decimal as a temporary ’screen’ which can hold a copy of the screen
proper. We can draw an image on the screen, copy it in to this second
screen, and then draw a second image. When we wish to display the
contents of the second screen, we simply transfer the contents of RAM
starting at 26000 to screen RAM.

95

SCRMOVE
This routine allows the use of an area of memory as a secondary
‘screen’ which can hold a copy of the current screen. The screen thus
saved in RAM can be restored later in an almost instantaneous fashion.
Entry Requirements: CALL address,n from BASIC, where n speci

fies the ‘direction’ of data transfer, n =0 trans
fers data from screen to RAM, and n=1
transfers data from RAM to screen. From
machine code, IX points to a single byte of
memory holding the value of n and A=1.

Exit Conditions: All registers corrupt.
Length: 21 Bytes, plus the area of memory from 26000

decimal to 42384 inclusive.

SCRMVE

1000 MEMORY 24999
1010 GOSUB 1060
1020 CALL 25000,0
1030 CLS : INPUT "Press^ENTER^to^restore.screen",a*
1040 CALL 25000,1
1050 GOTO 1050 : REM prevents return of prompt
1060 (ASSEMBLE
1070 ORG 25000
1080 CP 1
1090 ' RET NZ ; return if wrong par
1100 LD A,(IX)
1110 CP 0
1120 JR Z,DOWN ; if 0, scrn to RAM
1130 ' LD DE,S<C000 ; move RAM to screen
1140 LD HL,26000
1150 LD BC,&4000
1160 LDIR
1170 RET
1180 ' DOWN LD DE,26000
1190 LD HL,&C000
1200 LD BC.&4000
1210 ' LDIR
1220 RET
1230 • END
1240 RETURN

FE 01 C0 DD 7E 00 FE
ED B0 C9 11 90 65 21

00 28 0C 11 00 C0
00 C0 01 00 40 ED

21 90 65 01 00 40
B0 C9

Notes You will note that the area of memory used for temporary
storage appears to be in a rather peculiar place. The reason for this
is simple. The second screen area needs to be 16384 bytes long, and
if we’d used memory much higher up in RAM then we would start

96

overwriting the firmware jump blocks. The result of this is a rather
catastrophic crash, as you might expect. Our machine code routine
must therefore be in memory either between the end of our ‘screen’
and the firmware jump block or below address 26000. Within these
constraints, though, the routine is relocatable.
Other points to note are as follows.

(i) Sensible results will only be obtained if the mode in use when the
screen is restored is the same as that in use when the screen was
saved.

(ii) An image should be saved before any scrolling occurs, and when
you want to 'load' the screen from RAM it should be done im
mediately after a mode change. The scrolling operations alter the
way in which screen RAM corresponds to particular screen
positions.

SCRMOVE has the disadvantage of destroying the image on the screen
when a transfer is made from our second ‘screen’ to the main screen.
The next routine gets around this by swapping the contents of the two
screens over.

SCRSWAP
This routine swaps the two ‘screens’ over, thus putting the current
screen image in RAM starting at address 26000 and displaying the
contents of RAM starting at 26000 on the screen. It is relocatable within
the limits put forward in the notes for SCRMOVE.

SCRSWP

Entry Requirements: CALL address.

Exit Conditions: All registers corrupt.
Length: 18 Bytes, plus the memory between address

26000 decimal and 42384 inclusive.

1000 MEMORY 24999
1010 GOSUB 2000
1020 CALL 25000
1030 CLS : DRAW 100,100 : DRAW 100,200 : DRAW 0,300
1040 FOR 1=0 TO 200 : NEXT
1050 CALL 25000
1060 GOTO 1040
2000 (ASSEMBLE
2010 ORG 25000
2020 LD DE,26000 5 initialise registers
2030 LD HL, &C000
2040 ■ LOOP LD C,(HL) 5 get byte -From screen
2050 LD A,(DE) get -From temp store
2070 LD (HL),A 5 next inst swap bytes
2071 LD A,C

97

11 90 65 21 00 C0 4E 1A 77 79 12 23 13 7D 04 20 F5 C9

2072 ' LD (DE),A
2080 ' INC HL ; next bytes pointed to
2090 ' INC DE
2100 ' LD A,L ; HL is zero when all
2110 ' OR H ; screen done so check
2120 ' JR NZ.LOOP
2130 ' RET
2140 ' END
2150 RETURN

Notes The swapping of the two screens leads to a ‘cross fade’ type
effect that can be obtained from slide projectors. The fade could be
slowed down by inserting a delay loop in the machine code listing
above. The below BASIC program demonstrates the machine code
routine, which I’ve assumed is at address 25000 decimal.

100 FOR I =1 TO 20: PRINT “Hello There”:NEXT I
110 CALL 25000
120 CLS: DRAW 100,100:DRAW 100,200:DRAW 0,300
130 FOR I =0 TO 300:NEXT:REM time delay
140 CALL25000
150 GOTO 130

Fill Routines
You may remember how in Chapter 3 I listed a routine for drawing
rectangles to the screen, with an option of them being filled or open.
There are a variety of ways in which an area of screen can be filled
with a colour, and later in this section we’ll see a general purpose
routine for filling a horizontal line, which can be the basis of general
purpose fill routines. Before we look at this, however, a brief examination
of the resident fill routines available to us might be of interest.
SCR FILL BOX, called at &BC44, will fill an area of screen with a
specified colour. However, there are limitations in the resolution of the
filled area, as its limits are specified in terms of character squares. On
entry, A holds the encoded ink colour, which can be obtained from the
normal ink number by the routine at address &BC2C. This was detailed
in Chapter 4. HL and DE specify the area to be filled in the below
fashion.

98

SCR FLOOD BOX gives us more resolution, but is a little more difficult
to use. It is called at address &BC47 and fills the specified area with
the ink colour whose encoded value is in the C register. The limits of
the area to be filled are given in terms of screen RAM addresses. This
usually involves us in the task of converting pixel or character locations
in to screen addresses. There are ROM routines to allow us to do this,
as we saw in Chapter 4. However, I'm not going to go into more detail
here. Suffice to say that the HL pair holds the address of the top left
corner of the area to be filled in, D holds the width of the area to be filled
in, in bytes, and E holds the height of the area in screen lines.

In all modes, the screen is 200 screen lines high, and 80 bytes wide,
hence explaining the presence of 16384 bytes of screen RAM (80*200).
In Mode 0, each character is 4 bytes wide, in Mode 1 it is two bytes
wide and in Mode 2 each character is only 1 byte wide. Thus to fill the
whole screen in in a particular colour, which we’re assuming is in C,
we’d execute code like the below.

LD HL.&C000 ; start of screen RAM-top left of screen
LD D,80
LD E,200
CALL &BC47
RET

However, both these routines are rather unintelligent, in that we have
to specify the borders of the area to be filled in, and this can be rather
tedious, especially if we’re trying to fill a non rectangular shape. What
is required is a routine that fills a screen line to a particular specified
border colour with a specified ink colour. Each screen line within a
shape can then be filled in. After we’ve examined the machine code,
we’ll see how it can be used to fill shapes such as triangles or circles.

99

LINEFILL
This routine fills a single screen line between two ‘border’ pixels, the
colour of which can be specified by the user. The colour in which the
line is filled is also specified by the user. If you wish to relocate the
routine, then it will be necessary to alter the address of ‘RIGHT’. The
bytes specified below are for address 40200 decimal.
Entry Requirements: From BASIC, CALL address,x,y,border,colour

where x,y is the position to start the fill at,
border is the ink colour to mark the limit of the
fill and colour is the ink in which the line is to
be filled. From machine code, IX points to a
parameter block like that shown, and A =4.

Exit Conditions:

Length:

an immediate return to BASIC is made. All the
registers are corrupt.
91 Bytes.

1000 MEMORY 39999

LNFILL

1010 GOSUB 2000
1020 MOVE 100,0 : DRAM 100 ,600 i MOVE 200,0 : DRAW 200,600
1030 CALL 40200 ,150,200,1, 1
1040 END
2000 lASSEMBLE
2010 ORG 40200
2020 CP 4
2030 RET NZ
2070 LD L,(IX+4)
2080 LD H,(IX+5)
2090 LD E,(IX+6)
2095 LD D,(IX+7)
2100 PUSH HL
2110 PUSH DE
2120 ' LOOP PUSH HL ; start scan to right

100

2130 ' PUSH DE
2140 • CALL &BBF0 ; get ink of pixel
2150 ' POP DE
2160 ' POP HL
2170 ’ CP (IX+2) ; is it border colour?
2180 ' JR Z,OUTR ; if so, out
2185 ' LD A,3 ; if D=3 then we're out

2186 ' CP D ; of screen, so get out

2187 ' JR Z,OUTR
2190 ' INC DE ; next pixel
2200 ' JR LOOP
2210 ' .OUTR DEC DE ; back one pixel
2220 ' LD (RIGHT),DE; store it away
2230 ' POP DE
2240 ' POP HL
2250 ' L00P2 PUSH HL ; now scan to the left
2260 ' PUSH DE
2270 ' CALL &BBF0 ; get pixel colour
2280 ' POP DE
2290 ' POP HL
2300 ' CP (IX+2) ; is it border?
2310 ' JR Z,OUTL
2320 ' DEC DE ; next pixel
2321 ' LD A,E ; if DE=0 then we're
2322 ' OR D ; out of screen
2323 ' JR Z,OUTL ; for this line so out
2330 ' JR LOOP2
2340 ' . OUTL INC DE ; next pixel
2350 ' LD L,(IX+4) ; Y coordinate into HL
2360 ' LD H,(IX+5)
2365 ' PUSH HL ; save it
2370 ' CALL &BBC0
2375 ' LD A,(IX+0> ; get the ink to fill
2376 ' CALL &BBDE ; line and set graph
2377 ' ; colour
2380 ' POP HL
2390 ' LD DE,(RIGHT); get the right X coord

2410 ' CALL &BBF6 ; draw the line
2420 ' RET ; done.
2430 ' RIGHT WORD 00
2440 ' END
2450 RETURN

FE 04 C0 DD 6E 04 DD 66 05 DD 5E 06 DD 56 07 E5 D5 E5 D5
CD F0 BB DI El DD BE 02 28 08 3E 03 BA 28 03 13 18 EC IB
ED 53 61 9D DI El E5 D5 CD F0 BB DI El DD BE 02 28 07 IB
7B B2 28 02 18 ED 13 DD 6E 04 DD 66 05 E5 CD C0 BB DD 7E
00 CD DE BB El ED 5B 61 9D CD F6 BB C9 98 00

Notes The method of operation of the routine is very simple, and use
is made of the Amstrad firmware routines to allow use in all screen
modes. It first searches to the right until either the x coordinate is
greater than 750 odd or until a pixel in the appropriate border colour
is found. The x position of this is then stored in the two byte variable
‘RIGHT’. The routine then resets the x position to the start position. The
search is then made in the left direction, until either a border pixel is

101

found or until the x coordinate is equal to zero. The line is then filled
in the required colour by a call to the line drawing routine. The colour
that was selected for filling in the line will be the graphics pen colour
after the fill has finished.
So, we can fill a line. What about real shapes? Well, it’s quite easy. We
choose an x coordinate that corresponds to the biggest y coordinate
associated with a particular shape. This means that fill operations on
complex shapes may have to be carried out in several steps. To make
this clearer, look at the two diagrams below.

Circle Triangle

The fill is then carried out with a FOR...NEXT loop that alters the y
coordinate from the lowest y coordinate on that x line to the highest
y coordinate. The below BASIC program demonstrates this in action.
I have assumed that the machine code routine is at address 40200.

100 MODE 1: REM set screen mode
110 PLOT 0,0,1 :REM move to 0,0, set graphics
120 REM pen to 1
130 DRAW 100,100:DRAW 200,0:DRAW 0,0:REM draw triangle
140 FOR y=1 TO 99:REM y coordinate loop
150 CALL 40200,100,y,1,2
160 NEXT

There are disadvantages with this routine, but it is still rather useful.
The main problem is speed, and so is best used with smaller shapes
or areas that need filling. This routine can be used with others to fill
in the bulk of a shape, leaving the fiddly areas of the shape to the
routine above.

GPEN
This simple routine just specifies the graphics pen and paper colour
to be used. It is relocatable. The graphics paper chosen only comes
into action after a CLG is executed.

102

Entry Requirements: BASIC CALL address,pen,paper where pen
is the ink colour to be used for the graphics
pen and paper is the colour to be used for the
graphics paper. For machine code, IX points
to a parameter block like that shown and A =2.

GPEN Parameter Block
Exit Conditions: All registers corrupt.
Length: 16 Bytes.

GF EN

1000 MEMORY 39999
1010 GOSUB 2000
1020 MODE 1 : PLOT 0.0.1
1030 DRAW 100.100 : CALL 40200,2,3 : DRAW 200.200
1040 END
2000 (ASSEMBLE
2010 ORG 40200
2020 CP 2 i i-F not 2 parameters
2030 RET NZ s return
2040 LD A.CIX+0)
2050 CALL &BBE4 s change graphics paper
2060 LD A,(IX+2)
2070 CALL VBBDE s change graphics ink
2080 RET
2090 ■ END
2100 RETURN

FE 02 C0 DD 7E 00 CD E4 BB DD 7E 02 CD DE BB C9

Notes The graphics pen colour comes into play immediately, the
paper at the next CLG.
We’ll now look at how we can move images around the screen, using
machining code routines. The rest of this Chapter will be concerned
with moving characters across the screen in any screen mode that you
like. We will be using the routines resident in the Amstrad Firmware to
print the characters to the screen, but this can still give good results.
After looking briefly at the techniques that are involved, I'll present a
program that moves a character around the screen. This provides the
Amstrad with a simple "pseudo Sprite” for general purpose moving
graphics. I’ll then finish with a look at multicoloured characters, and
how these can be moved around.

103

Moving Characters
The main operations that need to be carried out when we’re moving
characters around the screen are as follows:

(i) The character at the old position must be erased from the screen.
(ii) The x and y coordinates of the character must be updated to the

new position.
(¡ii) The character must be printed at the new position.
The smoothness of the resulting movement depends upon two factors.
These are the amounts by which the x and y coordinates are altered
and the frequency at which the position of the character is altered.
Smoother movement will be obtained if the character is moved by only
1 or 2 pixels at a time than if we move it whole character squares at
a time. Similarly, a rapid updating of the position of the character will
give smoother motion. With regard to erasing the character, the most
obvious way in which this can be done is to simply overprint the char
acter with a space. However, this can cause problems if the character
is moving across a background that has another image on it, as the
other image will be erased as well. So, we’ll not be using that tech
nique. A second method is to use the XOR graphics mode. Without
going into details, this will cause an image to disappear from the screen
if it is printed twice to exactly the same place. There are some dis
advantages with it, however; although this method leaves the back
ground image on the screen, while the character of interest is being
moved over it there can be some changes in colour of the background
image. However, it is probably the simplest way of doing things that
works reasonably well. Of course, you could always redraw the back
ground after every move, but this would tend to slow things down rather
a lot. So, let's look at a program to move around single coloured
characters using XOR.

MOVECHAR
This routine moves a specified user defined character, or normal char
acter, from one screen position to another instantly. At the heart of the
program is a table of information, called a Shape Table, that holds
information on each character that you will want to move during the
program. The program can be relocated, provided that the address
of ’TEMP’ and the Shape Table are suitably altered as well.
Entry Requirements: From BASIC, CALL address,char,xinc.yinc

where ‘char’ is the entry number in the Shape
Table of the character that is to be moved,
xinc is the alteration to be made to the x co
ordinate of the character position and yinc is

104

the change to be made to the y coordinate of
the character position. These alterations can
be either positive or negative. The value of
char must be greater than 0. If called from
machine code then A =3 and IX points to a
parameter block like that shown. A Shape
Table must also be present, as we’ll soon see.

Exit Conditions:

Length:

All Corrupt. The graphics pen colour will be
that of the character drawn, the graphics mode
will be ‘Force’ or ‘Absolute’ mode and the
graphics cursor will be at the final position of
the character.
127 Bytes, not including Shape Table.

MVECHR

900 MODE 1
1000 MEMORY 39999
1010 GOSUB 2000
1016 J=1
1017 MOVE 100,100 8 PRINT CHRS(23)+CHR*(1) : TAG : PRINT CHR

*(234); 8 TAGOFF
1025 FOR 1=1 TO 300 8 CALL 42000,1,J,0 : NEXT
1030 END
2000 ASSEMBLE
2010 ORG 42000
2020 CP 3
2030 RET NZ
2050 LD B,(IX+4)
2060 PUSH IX
2070 LD IX,TABLE ; start of shapetbl
2080 ' LOOP INC IX ; get entry
2090 INC IX
2100 INC IX
2110 INC IX
2120 INC IX
2130 INC IX
2140 DJNZ LOOP
2145 LD (TEMP),IX ; store start entry

105

2150 LD E,(IX)
2160 LD D,(IX+1) get x coordinate
2170 LD L,(IX+2) ; get y coordinate
2180 LD H,(IX+3)
2190 • PUSH HL
2200 PUSH DE
2210 CALL &BBC0 ; move to the position

2220 • LD A,(IX+5) ; set the colour
2230 CALL &BBDE
2240 LD A, 1 i set the XOR graphics

2250 • CALL &BC59 ; mode
2260 • LD A,(IX+4)
2270 • CALL &BBFC print the character
2280 POP DE
2290 • POP HL
2300 • POP IX ; recover IX
2310 • PUSH HL
2320 • PUSH DE
2330 • POP HL
2340 LD C,(IX+2) add the increment to

2350 • LD B,(IX+3) to x coordinate
2360 • ADD HL,BC
2370 • PUSH HL
2380 • POP DE ; get it into DE
2381 • PUSH IX
2382 LD IX,(TEMP)
2383 LD (IX) ,E store in table
2384 • LD (IX+1),D
2385 POP IX
2390 LD C,(IX+0) 1 add the increment to

2400 • LD B, (IX+1) ; the y coordinate
2410 • POP HL
2420 ADD HL,BC
2421 LD IX,(TEMP)
2422 LD (IX+2),L and store in table
2423 • LD (IX+3),H
2430 CALL &BBC0 1 move to new loc
2450 • LD A,(IX+4) print the character
2460 • CALL &BBFC
2470 • LD A,0 ! set ’■force' graph
2480 • CALL &BC59 mode...........
2490 RET J and finish.
2495 ■ TEMP WORD 00
2500 ' TABLE WORD 00 shape table
2510 WORD 00 1 is a dummy one
2520 WORD 00
2530 WORD 100
2540 * WORD 100
2550 • BYTE 234
2560 • BYTE 1
2570 ■ END
2580 RETURN

FE 03 C0 DD
23 DD 23 DD
02 DD bb 03
BC DD 7E 04

46 04 DD E5
23 10 F2 DD
E5 D5 CD C0
CD FC BB DI

DD 21 91 A4 DD 23
22 8F A4 DD 5E 00
BB DD 7E 05 CD DE
El DD El E5 D5 El

DD 23 DD 23 DD
DD 56 01 DD 6E
BB 3E 01 CD 59
DD 4E 02 DD 46

106

03 09 E5 DI
4E 00 DD 46
BB DD 7E 04
00 00 64 00

DD E5 DD 2A BF
01 El 09 DD 2A
CD FC BB 3E 00
64 00 EA 01

A4 DD 73 00 DD
BF A4 DD 75 02
CD 59 BC C9 00

72 01 DD El DD
DD 74 03 CD C0
00 00 00 00 00

Notes The program relies on the presence of a Table of data which
holds information on each character that the programmer is going to
move using this routine. This Table, called the Shape Table, has a 6
byte entry for each character, and the CALL to this routine specifies,
with the 'char' parameter, the Entry in the Shape Table containing
details of the character to be moved rather than the ASCII code of the
character itself. A typical entry in the Table is included in the above
listing, and a more detailed examination of a typical entry is given
below.

(TABLE+6)

Colour
Character

Entry end

y pos-

x pos

► Entry 1

Shape Table Entry for MOVECHAR

An entry for each character is prepared before any machine code
routine is called by POKEing appropriate values into the relevant Table
entry, remembering that the first 6 bytes of the Table, that correspond
to Entry 0, are blank. The Table holds the initial x and y position of the
character, the ASCII code of the character to be printed and the colour
in which it is to be printed. The x and y entries will be updated whenever
the position of the character is changed. By storing the information
about the characters to be moved in this way the routine is made as
generally useful as possible.
The program itself uses XOR to erase the character from one place
and redraw it in another. The latter position is worked out by aciding
the x increment (xinc) to the current x coordinate and by adding the
y increment (yinc) to the current y coordinate. This updated position
is then stored in the Shape Table. This works perfectly well on all
occasions except the very first appearance of the character on the
screen; a ‘shadow’ of the character is left on the screen. A moment or
two’s thought will reveal the answer to this problem.
When the routine is entered, it first erases the last position of the
character using XOR. However, if there is nothing there to erase, an

107

image will be left on the screen. Subsequent operations will work per
fectly. This is easily remedied by using a line of BASIC like the one
below to initially position each character at it's start position.

PLOT 1®®®,1®®®,1 :TAG:PRINT CHR$(23) +
CHR$(1);:MOVE startx.starty PRINT CHR$(character);:TAGOFF

The PLOT 1000,1000 statement sets the graphics PEN colour to 1, and
CHR$(23) followed by CHR$(1) sets up the graphics XOR mode. If you
had 100,100 in the Shape Table entry as the start point for a given
character, and 1 as the colour, and 254 as the ASCII code of the
character of interest in the Table, the above line of BASIC would be:

PLOT 1000,1000,1 PRINT CHR$(23)+CHR$(1);:TAG:
MOVE 100.100PRINT CHR$(254);:TAGOFF

The below demonstration program assumes that the above bytes, in
cluding the Shape Table, is at address 42000.

100 MODE 1 PRINT CHR$(23)+CHR$(1)
110 PLOT 1000,1000,1 JAG
120 MOVE 100,100:PRINT CHR$(234);:TAGOFF
130 yinc =1 :xinc =1
140 FOR I =1 TO 50:NEXT: REM delay loop
150 CALL 42000,1 ,xinc,yinc
160 GOTO 140

If you wish to re-run this program, then you’ll have to restore the start
x and y coordinates in the Shape Table to their initial values by POKES,
as they will have been modified during the running of the program.
When you are using this routine, a couple of things will become ap
parent. The first is that should you try and move the character too
quickly, it will appear to ‘roll’. This is due to interaction between the
frequency of movement of the character and the rate at which the
screen image is refreshed by the computer. The answer is simple; slow
down, using either a delay loop in BASIC or machine code or a CALL
&BD19, which will wait until the next screen frame has been drawn
before carrying on with the program. Secondly, small values of xinc
and yinc give the smoothest, though slowest, movement. Finally, al
tering the colour in which the character is printed after it’s started being
moved can cause some odd effects due to the XORing together of
different colours.
Before leaving this routine, let’s take a closer look at the Shape Table.
As already said, each entry is 6 bytes long, the first six bytes of the
Table being left set to 0. The first six bytes are called Entry 0, the
second Entry 1 and so on. The ‘char’ parameter of the CALL statement
is used to indicate which Shape Table entry you wish to use. So, let’s

108

say that we want Entry 1 to be a character 254, in Colour 1, starting
at 200,200 on the screen. The entry begins at address (TABLE+6)
where TABLE is the start address in memory of the Shape Table. The
full entry for this would be:

So, when we want to put this character on the screen for the first time,
we’d use a BASIC statement to print CHR$(254) to position 200,200
in graphics pen 1.
Several Entries can be put into the Shape Table and a subroutine can
be written to move all the characters at once, as shown below.

4000 REM Character moving routine
4010 number =6: REM 6 user defined characters
4020 FOR char=1 TO 6
4030 CALL 42000,char,xinc,yinc
4040 NEXT char
4050 RETURN

When used in conjunction with the EVERY statement from BASIC, the
movement of the characters around the screen can be made to occur
at set intervals, the various xinc and yinc values being altered in the
main body of the program.
The effects, by the way, of xinc and yinc are quite straightforward.
Positive xinc values cause a move to the right, negative xinc values
cause a move to the left. Positive yinc values will cause a move up the
screen and negative yinc will move down the screen.
We'll now look at a similar routine for moving characters of two colours.
The principles that will be discussed can be also applied to characters
having more than two colours. The first task here is to see how we can
print characters containing two or more colours to the screen. This
might well be useful to you in other routines as well.

Multicoloured Characters
The answer lies in the use of the XOR graphics mode. Imagine that we
want to produce a two coloured character like the one shown below.

109

Typical Two Colour Character

Two of the squares are of one colour, and two are of another colour.
From BASIC, such a character can be put on the screen using TAG,
as we’ll now see. The first task is to define a user defined character
for each foreground colour that the final composite character is to
possess. Thus, for a two colour character we will have to define two
user defined characters. Note that no areas should overlap. If this
happens when we are using XOR, then some rather odd colour effects
can occur. Thus for the above character, we might define two char
acters like:

Conveniently, these are available in the Amstrad Character set as
CHR$(134) and CHR$(137). All we do now is use TAG to print the
character on top of each other at graphics coordinates. This will su
perimpose the two images. If we print each of them in a different colour,
then we'll get our two colour character. The below BASIC program will
do this.

100 MODE 1
110 GOSUB 1000
120 FOR I =0 TO 300:NEXT
130 GOSUB 1000
140 GOTO 120

1000 REM subroutine to print character
1010 TAG
1020 PLOT 1000,1000,1 :REM set up colour for first char
1030 MOVE 100,100:REM move to position
1040 PRINT CHR$(134);:REM print the character
1050 TAGOFFPRINT CHR$(23)+CHR$(1):REM into XOR mode

110

1060 TAG
1070 PLOT 1000,1000,2 :REM set colour for second char.
1080 MOVE 100,100:REM move to position
1090 PRINT CHR$(137);:REM print the second char.
1100 RETURN

Run the program, and you will see the two coloured shape repeatedly
drawn and erased. You might like to examine other characters. If you
are interested in games, the below two character grids might be of
interest.

“body”

CHR$(134)

“eyes”

CHR$(137)

•gi] ink | [paper

The body of this beasty could be printed in yellow, and the eyes in
red. Again, remember that there should be no overlap. If there is, some
interesting colour effects can be obtained, and you might be interested
in trying out some of these effects.
We will now see a program that allows us to move two or more coloured
characters around the screen. Although the routine given is for two
coloured characters, the following notes should allow you to modify the
program if you want to.
MOVECHAR2, as I’ve rather imaginatively called the program, is very
similar to MOVECHAR, as an examination of the listing will show. The
difference starts in the Shape Table, where there is now a character
and colour entry for each separate ‘mask’ that goes to make up the com
posite character. Thus a two colour routine will have two character
and colour entries, one for each separate coloured part of the image.
Thus for a two colour Character, the Shape Table entries would be of
the form:

111

ENTRY 2

Two Colour Shape Table Entry

Within the body of the program itself, the main difference is the presence
of a second character printing routine at the erasure and redrawing
stages to erase and redraw the second coloured character. Obviously,
for a three colour character there would have to be a third drawing
and erasing operation to deal with the third coloured character. In
addition, a three colour character movement routine would need an
extra two bytes in the Shape Table Entry to define the third character
and colour. •

M0VECHAR2
This routine is used to move two coloured characters across the screen
in any mode. See the below notes for details of use.
Entry Requirements: From BASIC, CALL address,char,xinc.yinc

where char, xinc and yinc have the same sig
nificance as in MOVECHAR. From Machine
Code routines, A =3 and IX holds the address
of a parameter block that is identical in struc
ture to that for MOVECHAR.

Exit Conditions: All registers are corrupt. The graphics pen
colour will be that of the last character drawn.
The graphics mode will be ‘Force’ or ‘Absolute’
mode and the graphics cursor will be at the
position to which the character has been
moved.

Length: 175 Bytes, not including the Shape Table.

112

MVCHR2

1000 MODE 1
1010 MEMORY 39999
1020 GOSUB 1080
1030 CL5
1040 J=1
1050 PLOT 1000,1000,1 1 MOVE 100,100 : PRINT CHR$(23)+CHRS(1

) : TAG : PRINT CHR$(134); : PLOT 100,100,2 : PRINT CHR$
(137)j : TAGOFF

1060 FOR 1=1 TO 300 s CALL 42000,1,J,0 s CALL &BD19 : : NEXT

1070 END
1080 (ASSEMBLE
1090 ORG 42000
1100 CP 3
1110 RET NZ
1120 LD B,(IX+4)
1130 PUSH IX
1140 LD IX,TABLE ! start of shapetbl
1150 • LOOP INC IX 5 get entry
1160 INC IX
1170 INC IX
1180 INC IX
1190 INC IX
1200 INC IX
1210 INC IX
1220 INC IX
1230 DJNZ LOOP
1240 LD (TEMP),IX store start entry
1250 LD E,(IX)
1260 LD D,(IX+l) 9 get x coordinate
1270 LD L,(IX+2) 5 get y coordinate
1280 LD H,(IX+3)
1290 PUSH HL
1300 PUSH DE
1310 CALL &BBC0 move to the position

1320 LD A,(IX+5) set the -first colour

1330 CALL &BBDE
1340 LD A, 1 5 set the XOR graphics

1350 CALL &BC59 ; mode
1360 LD A,(IX+4)
1370 CALL &BBFC 5 print -first char
1380 LD A, (IX+7)
1390 CALL &BBDE 5 get second colour
1400 POP DE
1410 POP HL
1420 PUSH HL
1430 PUSH DE
1440 CALL &BBC0 J move to the position

1450 LD A,(IX+6)
1460 CALL &BBFC print 2nd char
1470 POP DE
1480 POP HL
1490 POP IX recover IX
1500 PUSH HL
1510 PUSH DE
1520 POP HL

113

1530 •
1540 '
1550 '

LD
LD
ADD

C,(IX+2)
B,(IX+3)
HL, BC

;
5

add the increment
to x coordinate

to

1560 PUSH HL
1570 POP DE get it into DE
1580 PUSH IX
1590 LD IX,(TEMP)
1600 LD (IX) ,E store in table
1610 LD (IX+l) ,D
1620 POP IX
1630 LD C,(IX+0) ; add the increment to

1640 LD B,(IX+l) the y coordinate
1650 POP HL
1660 ADD HL,BC
1670 LD IX,(TEMP)
1680 LD (IX+2),L ; store in table
1690 LD (IX+3),H
1700 PUSH HL
1710 PUSH DE
1720 CALL &BBC0 moveto new location
1730 LD A,(IX+5) get -first colour
1740 CALL &BBDE
1750 LD A,(IX+4) print first char
1755 CALL &BBFC
1760 POP DE
1770 POP HL
1780 CALL &BBC0
1790 LD A,(IX+7) ; get second colour
1800 CALL &BBDE
1810 LD A, (IX+6) î get second character

1820 CALL &BBFC
1830 LD A,0 ; set 'force' graph
1840 CALL &BC59 mode...........
1850 RET and finish.
1860 ' TEMP WORD 00
1870 ' TABLE WORD 00 shape table
1880 WORD 00 j is a dummy one
1890 WORD 00
1900 WORD 00
1910 WORD 100 shape table entry 1
1920 WORD 100 : y coordinate
1930 BYTE 134 char # 1
1940 BYTE 1 colour # 1
1950 BYTE 137 char # 2
1960 BYTE 2 colour # 2
1970 ' END
1980 RETURN

FE 03 C0 DD 46
23 DD 23 DD 23
56 01 DD 6E 02
3E 01 CD 59 BC
E5 D5 CD C0 BB
4E 02 DD 46 03
01 DD El DD 4E
74 03 E5 D5 CD
DI El CD C0 BB
CD 59 BC C9 C9
01 89 02

04 DD E5 DD 21
DD 23 DD 23 10
DD 66 03 E5 D5
DD 7E 04 CD FC
DD 7E 06 CD FC
09 E5 DI DD E5
00 DD 46 01 El
C0 BB DD 7E 05
DD 7E 07 CD DE
A4 00 00 00 00

Cl A4 DD 23
EE DD 22 BF
CD C0 BB DD
BB DD 7E 07
BB DI El DD
DD 2A BF A4
09 DD 2A BF
CD DE BB DD
BB DD 7E 06
00 00 00 00

DD 23 DD 23 DD
A4 DD 5E 00 DD
7E 05 CD DE BB
CD DE BB DI El
El E5 D5 El DD
DD 73 00 DD 72
A4 DD 75 02 DD
7E 04 CD FC BB
CD FC BB 3E 00
7A 00 64 00 86

114

Notes With care, the routine can be relocated. It will be necessary
to alter the address given in the above bytes, which are intended for
address 42000, for the Shape Table and the variable ‘TEMP’. As with
MOVECHAR, a character has to be first positioned at it’s start position
for it’s first appearance on the screen using TAG from BASIC, to prevent
the ‘shadow’ of the character being left on the screen as the character
moves away from it’s start position. Again, POKEs will be needed to
set up the Shape Table Entries for each entry. The below BASIC pro
gram will demonstrate the machine code of M0VECHAR2. I have as
sumed that the machine code is at address 42000, and that the Shape
Table entry given above has been included. Note that, as with
MOVECHAR, the first entry in the Shape Table, Entry 0, is left set to
all zeros.

100 MODE 1
110 xinc=1
120 yinc =1
130 PLOT 1000,1000,1 :REM set up colour 1
140 PRINT CHR$(23)+CHR$(1):REM set XOR mode
150 MOVE 100,100: REM move to start position
160 TAGPRINT CHR$(134);:REM print first character
170 PLOT 1000,1000,2:REM set second colour
180 MOVE 100,100:REM move to start position
190 PRINT CHR$(137);:REM print second character
200 TAGOFF
210 FOR I =0 TO 300
220 CALL 42000,1 ,xinc,yinc
230 FOR J =0 TO 20
240 NEXT J:REM delay loop
250 NEXT I
260 END

Again, should you wish to re-run this routine you will have to POKE the
start values back into the Shape Table. In fact, a simple machine code
program could be written that takes as parameters all the various pieces
of information that are needed for a Shape Table entry and puts them
into the correct place. I'll leave that for you to write!
The delay loop at lines 230-240 of the above program may need to be
altered, depending upon the rest of the program in which the characters
are being moved. Due to the addition of more printing routines, the
moving of multi-coloured characters is a slower process than the mov
ing of single coloured characters.

115

As an example of a simple BASIC subroutine to set up a Shape Table
Entry for the M0VECHAR2 program, look at the below subroutine. It
assumes that the variable ‘table’ holds the address of the very first byte
of the Shape Table.

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090

entry =table + (n*8):REM n=Entry Number
POKE entry,1®®:REM x coordinate
POKE (entry + 1),®
POKE (entry+2),100:REM y coordinate
POKE (entry+3),0
POKE (entry+4),134:REM first character
POKE (entry+5),1 :REM first colour
POKE (entry+6),137:REM second character
POKE (entry+7),2:REM second colour
RETURN

In both MOVECHAR and M0VECHAR2 it’s only on the first appearance
of the character on the screen that the character to be moved has to
be printed to the screen. After this, to move the character to any desired
screen location, simply provide the correct xinc and yinc values.
That completes this Chapter of graphics handling routines. We’ll now
go on to look at keyboard handling from within machine code routines,
with some useful routines for string entry, games playing and other
applications.

116

6.
Keyboard Operations

In Locomotive BASIC, we’re lucky to have a very sophisticated range
of commands available to allow us to do such things as setting the
repeat rate of individual keys, changing the character returned by keys
and so on. In addition, we have the KEY command that allows us to
attach strings of characters to given keys. And, of course, we’ve got
the usual INPUT, INKEY and INKEYS commands. However, in machine
code routines we’re usually concerned with simply finding out whether
a key has been pressed, and this is extremely simple from our own
programs due to the provision of excellent Firmware facilities. In this
Chapter, I’ll give you a variety of routines that will be of use in both
machine code and BASIC programs. So, without further ado, here we
go.

NORESET
This routine alters the behaviour of the computer on pressing the SHIFT -
CTRL-ESC sequence of keys. Instead of totally resetting the machine,
it is totally ignored in a running program, and simply generates the
‘Break* message in command mode. Similarily, ESC is totally disabled
in a running program. It thus gives, to a running program, a high degree
of protection! The routine is relocatable.
Entry Requirements: From BASIC- CALL address,n where n =0 dis

ables reset and n =1 causes SHIFT-CTRL-ESC
to generate the normal reset.
From machine code, IX points to a single byte
holding 'n' and A=1.

Exit Conditions: AF Corrupt.
Length: 22 Bytes.

117

NRSET

1000 MEMORY 39999
1010 GOSUB 2000
1020 CALL 40200.1
1030 END
2000 lASSEMBLE
2010 □RG 40200
2020 CP 1
2030 RET NZ
2040 LD A,(IX)
2050 CP 0
2060 JR Z,DISABLE
2070 LD A,195
2080 LD (&BDEE).A
2090 RET
2100 ' DISABLE LD A,201
2110 LD (&BDEE),A
2120 RET
2130 • END
2140 RETURN

FE 01 C0 DD 7E 00 FE 00 28 06 3E C3 32 EE BD C9 3E C9 32
EE BD C9

Notes This routine, as already mentioned, totally disables ESC from
a running program, and so if you execute a

CALL 40200,0

command, and then get into a continuous loop...tough I This line should
only be executed when you’ve got a working program. It functions by
altering the first byte of one of the jump block entries to hold the code
for a RET instruction. When the jump block is entered, after either of
the above key sequences is entered, then an immediate return is made.
To restore behaviour to normal, the old byte, which is 195, is put back
as the first byte in the Jump Block entry.

GET
Most computers have a function called GET, whose role is to cause
program execution to cease until a key is pressed. The function then
returns, as it’s result, the ASCII code of the key that was pressed. Thus

G=GET

will return the ASCII code in the variable G. Amstrad BASIC doesn’t
possess such a function, and we usually simulate it using a couple of
lines of BASIC like:

1010 G$ =INKEY$: IF G$ =”” THEN GOTO 1010
1020 G=ASC(G$)
1030 RETURN

118

Here is a machine code routine to do the GET function without the
need for the above BASIC lines.
Entry Requirements: From BASIC, CALL,address,@G%

where G% is a previously defined variable in
which the ASCII code of the key pressed will
be returned.
From machine code, it is better just to call the
firmware routine directly.

Exit Conditions:
Length:

AF, HL Corrupt
18 Bytes.

SET

1000 MEMORY 39999
1010 GOSUB 2000
1020 char7.“0
1030 CALL 40200,<*char7.
1040 PRINT char/.
1050 GOTO 1030
2000 ASSEMBLE
2010 ORG 40200
2020 ' CP 1
2030 ' RET NZ ; If wrong no. parameters
2035 ' ; return
2040 ' LD L, (IX)
2050 ' LD H,(IX+1); get address of charZ
2060 * CALL &BB18
2070 LD (HL),A
2075 • XOR A ; clear A
2076 • INC HL
2077 • LD (HL),0
2080 RET
2090 ' END
2100 RETURN

FE 01 C0 DD 6E 00 DD 66 01 CD 18 BB 77 AF 23 36 00 C9

Notes The variable used to hold the returned ASCII code must, as
is usual with variables prefixed by *©’, have been previously initialised
in some way, even if it’s just been set to zero. With regard to the
Firmware routine, the ASCII code is returned in the A register with the
C flag set to 1.
Other keyboard routines are available to the machine code program
mer, but they require no setting up and so can be called directly from
your machine code routines. They offer no new facilities to the BASIC
programmer.

119

READ KEY
This routine, called at &BB1 B, returns a code if a key is being pressed
at the instant of the routine being called. It doesn’t wait for a key to be
pressed. It is thus rather useful in games programs where delays are
not needed. If a key was pressed, then on return from the routine the
C flag will be set to 1 and A will hold the key code. Otherwise C will
be set to 0.

TEST KEY
This is a bit like the BASIC INKEY(n) function, in that it tests for a certain
key being pressed at the instant of the routine being called. On exit,
Z=0 if the key was pressed and Z=1 if the key in question wasn't
pressed. The routine is called at address &BB1E, with the A register
holding the relevant key number.
It is occasionally useful when programming to get information about
the current status of the SHIFT, CTRL, CAPS LOCK and SHIFT LOCK
states. This enables you to detect 'odd' key sequences, such as SHIFT-
CTRL-ENTER if you were so inclined. The routine is called STATUS.

STATUS
Returns the current status of the Shift, CTRL, Shift Lock and Caps Lock
keys. The routine is relocatable.
Entry Requirements: From BASIC, CALL address,@stat%

From machine code, IX points to a parameter
block with A =1. The parameter block is a two
byte block holding, low byte first, the address
of a two byte location where you want the sta
tus byte to be returned.

Exit Conditions: All Registers Corrupt.
Length: 31 Bytes.

STATUS

1000 MEMORY 39999
1010 GOSUB 2000
1020 charX=0
1030 CALL 40200, Schar'Z
1035 PRINT HEX* <char7.)
1036 INPUT aS
1040 GOTO 1030
2000 (ASSEMBLE
2010 ORG 40200
2020 CP 1
2030 RET NZ
2040 LD L,(IX+0)
2050 LD H,(IX+1)

120

FE 01 C0 DD 6E 00 DD 66 01 E5 CD IE BB C5 CD 21 BB 7D E6
80 6F 7C E6 01 85 C1 El 71 23 77 C9

2060 ' PUSH HL
2070 ' CALL S.BB1E ; get SHIFT/CTRL status
2080 ' PUSH BC ; save the BC register
2090 ' CALL &BB21 j get CAPS/ S/LOCK stat
2100 • LD A,L
2110 ' AND A,128 ; con CAPS lock stat
2120 ' LD L,A ; 128 or 0 and save it
2130 ' LD A,H ; con SHIFT lock stat

AND
2150 ' ADD L ; add to L to get comp
2160 ' POP BC ; value. Now get BC
2180 ' POP HL
2190 ' LD (HL) ,C 5 get SHIFT/CTRL in stat/.

2200 ' INC HL
2210 • LD (HL),A ; get lock stat in stat%
2220 ' RET
2230 ' END
2240 RETURN

Notes The value stored in the status byte locations or the value
returned to BASIC in the stat% variable, will need to be decoded before
the status of the various keys can be extracted from it. It’s best to
consider it in a 4 digit hexadecimal format, which you could get in
BASIC by using

stat% =0:CALL 40200,@stat%:stat$=HEX$(stat%)
PRINT stat$

The status can be resolved using the below Table.

CAPS LOCK SHIFT LOCK SHIFT CTRL

ON &0100 &8000 &0020 &0080

OFF &0000 &0000 &0000 &0000

A couple of examples to clarify the use of the Table. If the Shift Lock
was on, and CTRL was being pressed at the same time, then a status
value of

&8000+&0080
=&8080

Similarily, if a value of &A0 was to be returned, an examination of the
Table would reveal that for this value to be obtained from the values
in the table, it requires that both the SHIFT ad CTRL keys were pressed.
(&20+&80). The routine returns the LOCK statuses that were prevelant
at the last occasion that the machine was awaiting input of some kind.

121

One thing that you have probably noticed during your Amstrad pro
gramming is that keys pressed during long programming loops are
stored in the keyboard buffer and appear in the next INPUT or INKEY
statement to be encountered after the loop has finished. Try the below.
Once you’ve typed ‘ENTER’, press a couple of other keys, then see
how they turn up in the INPUT prompt line.

FOR I =0 TO 3000:NEXT I INPUT a$
This can cause confusion if you’re not expecting it, and if the program
is waiting for a key to be pressed before going on then these stored
up key presses can cause the program to continue without waiting!
Many machines have a means by which such characters can be re
moved from the keyboard buffer; this process is called FLUSHING the
keyboard buffer. It will remove all keys in the buffer at that time, and
so if used immediately before a 'GET' style command ensures that the
machine doesn’t crash on regardless. The routine below performs this
task, and is called FLUSH.

FLUSH
Flushes the keyboard buffer.

FLUSH

Entry Requirements: CALL address from both BASIC and Machine
Code.

Exit Conditions: AF Corrupt
Length: 6 Bytes.

CD 09 BB 38 FB C9

1000 MEMORY 39999
1010 GOSUB 2000
1020 END
2000 (ASSEMBLE
2010 ' ORB 40200
2020 LOOP CALL &BB09 ; get char from buffer
2030 JR C,LOOP ; if C=l, more char's
2040 RET
20S0 ' END
2060 RETURN

Notes To see the routine in action, try the following. The routine is
relocatable, but I've assumed that the bytes are at address 40200.

10 FOR 1=1 TO 3000:NEXT I
30 INPUT a$

122

Running this, pressing a few keys when the machine is executing line
10, will put some keys into the buffer which will then show up when the
INPUT statement is executed. Repeat the run, now, but with a CALL
40200 at line 20. The extra key presses will now be dumped, and the
only characters that show up in the INPUT statement will be those
entered after line 20 has been executed.

WAITKEY
This routine accepts as its parameters a string of characters and an
‘@’ prefixed variable. The routine then waits until the program detects
the pressing of one of the character keys specified in the parameter
string. The @ variable then returns the position within the parameter
string of the character that has been pressed. The routine is relocatable.
Entry Requirements:

(IX+ 3) —

(IX)-

From BASIC, CALL address,@a$,@p%
where a$ has been previously set up to hold
the characters that the routine is to wait for,
p% must be set to 0 before being called.
From machine code, things are a little more
difficult. IX points to a parameter block and
A =2. In the parameter block, stringadd is the
address of a Descriptor Block like the one
shown, ‘varadd’ is the address of a single byte
location that will hold, after the code has been
executed, the position of the key within the
data block of acceptable ASCII codes that are
pointed to in the Descriptor Block. With regard
to the Descriptor Block, num is the number of
ASCII codes stored in the table of acceptable
ASCII codes pointed to by 'address’.

V////AStringadd high
Stringadd low
varadd high
varadd low

WAITKEY Parameter Block

V////A address high
address low

num

c
b>
a

WAITKEY Descriptor Block

123

Exit Conditions: All the registers are corrupt. An immediate exit
is made if the wrong number of parameters
has been passed over, or if A is not equal to
2.

Length: 63 Bytes.

WAITKEY

1000 MEMORY 39999
1010 GOSUB 2000
1020 AS="abcdef " s p7.=0
1030 CALL 40200 , SAS, SP7.
1040 END
2000
2010

{ASSEMBLE
ORG 40200

2020 CP 2
2030 • RET NZ
2040 LD L,<I X)
2050 LD H,(IX+l>
2070 PUSH HL ; save address of
2075 ; var. on stack
2080 LD L, <IX+2) ; get des block add
2090 LD H, (IX+3)
2100 LD A,(HL) ; no. char in strg
2110 INC HL ; get add of
2120 LD C,(HL) ; the string in to the

2130 • INC HL ; BC pair...........
2140 LD B,(HL)
2150 • PUSH BC
2160 POP HL ; and then into HL
2170

rch
LD (TEMP),A ; save len/strg to sea

2171 LD (TEMP2),HL ; save add of strg
2180 ' L00P2 LD A, (TEMP) ; get leng. into B
2190 LD B,A
2195 LD HL,(TEMP2) ; recover address
2200 PUSH BC
2210 PUSH HL
2220 CALL &BB18 ; wait for character
2230 POP HL
2240 POP BC
2245 LD E,1 ; initialise a counter

2250 • LOOP CP (HL) ; comp char with
2260 JR Z,FOUND ; table, jump if ok
2265 INC E ; bump up counter..
2270 INC HL ; look next char
2280 • DJNZ LOOP ; until chars done
2290 • JR L00P2 ; i-f not -found again
2300 ■ FOUND POP HL ; recover var add
2310 LD (HL),E ; put the value in it

2320 • INC HL
2330 • LD (HL),0
2340 • RET ; back to BASIC
2345 ■ TEMP BYTE 0
2346 • TEMP2 WORD 00

124

2350 ' END
2360 RETURN

FE 02 C0 DD 6E 00 DD 66 01 E5
23 46 C5 El 32 44 9D 22 45 9D
CD 18 BB El Cl IE 01 BE 28 06
36 00 C9 06 91 01

DD 6E 02 DD 66 03 7E 23 4E
3A 44 9D 47 2A 45 9D C5 E5
1C 23 10 F9 18 E7 El 73 23

Notes The routine is very useful in many applications. For example,
vetting a user’s response to a question that requires just a ‘yes/no’
answer. The only response keys of interest are going to be ‘Y’, ‘N’, ‘n’
and ‘y’. So, from BASIC we can simply execute the line:

A$=“YyNn”:p% =0:CALL 40200,@A$,@p%
The routine will only return to BASIC when a suitable response has
been received from the keyboard, in this case Y,y,N or n. p% will then
hold a value that corresponds to the key pressed. Thus if ‘Y’ was
pressed, p%=1. Or, if ’n’ was pressed, p%=4.
The next routine that we’ll look at is a simple ’input’ routine that allows
the user to type in a string of characters, terminated by the ENTER key.
The routine is called INSTRING.

INSTRING
Accepts a string of characters from the keyboard, and stores them in
either a string variable or a block of memory.

INSTRING Descriptor Block

address—*■

XXXXXX
’data” high
‘data’ low

num

INSTRING Parameter Block

Entry Requirements: From BASIC, CALL address, @A$,L%
where L% is the maximum number of char
acters that the user is to be allowed to type
in. A$ is a string variable that has been pre
viously initialised to be longer than L%.
From machine code, IX points to a parameter
block and A =2. In the parameter block, ‘ad
dress’ is the address of a Descriptor Block.
In the Descriptor Block, num is the number of

125

INSTRING

bytes that have been set aside for the inputted
string. It should be greater than L%. ‘data’ is
the address in memory where the inputted
string is to reside.

Exit Conditions: All registers corrupt. The routine is terminated
when:
(i) ENTER is pressed.
(ii) The user types in more characters than
L%. The string returned in this case will be the
first L% characters.
In both cases, a short ‘beep’ will be generated.
The entered characters can then be accessed
either in a string variable or in the ‘data’ area
of memory.

Length: 137 Bytes.

1000 MEMORY 39999
1010 GOSUB 1070
1020 a$="JOE SOAP G II

1030 CALL 41000,Sa*,10
1040 PRINT
1050 PRINT a«
1060 END
1070 (ASSEMBLE
1080 ORG 41000
1090 CP 2
1100 RET NZ
1110 LD A,(IX)
1120 LD L,(IX+2)
1130 LD H,(IX+3)
1140 ' CP (HL)
1150 LD A,(HL)
1160 LD (TEMP),A
1170 JR C,OK ; only if length of string
1180 ; is longer than specified
1190 ; len do we go on
1200 RET
1210 ' OK INC HL
1220 LD C,(HL)
1230 INC HL
1240 LD B,(HL)
1250 PUSH BC ; get address of string
1260 LD A,(IX)
1270 LD B,A ; proposed length
1280 POP IX
1290 ' LD (TEMPI X) ,IX
1300 PUSH IX
1310 PUSH BC
1311 LD A,(TEMP)
1312 LD B,A
1320 ' CLEAR LD (IX),32
1330 INC IX

126

1340 DJNZ CLEAR clear string to spaces
1350 POP BC
1360 POP IX
1370 ' LOOP PUSH BC ? wait for a char.
1380 CALL &BB18
1390 CP 127
1400 JR Z,DELETE
1410 CP 13
1420 JR Z,FINISH 5 if enter, quit
1430 LD (IX) ,A
1440 CALL &BB5A ; print it to screen
1450 INC IX 5 next location to fill
1460 POP BC now see if max. len
1465
1470 ' L00P1 DJNZ LOOP

; exceeded

1480 JR FINISH2 Jump past POP
1490 ' FINISH POP BO 5 clear up stack
1500 ' FINISH2 LD A,7
1510 CALL &BB5A 5 beep for fun!!
1520 RET
1530 ' DELETE LD HL,(TEMPIX) ; here if del pressed
1540 XOR A
1550 PUSH IX
1560 POP DE
1570 SBC HL, DE ; if nothing in string...
1580 JR NZ,DOIT
1590 LD A,7
1600 CALL &BB5A
1610 JR NODO ; beep and exit to NODO
1620 • DOIT LD A,8
1630 CALL &BB5A
1640 LD A, 32
1650 CALL &BB5A
1660 LD A,8
1670 CALL &BBSA ; move back, print space
1680 POP BC ; fudge character counter

1690 INC B
1700 INC B
1710 DEC IX ; fudge string position
1720 LD (IX),32 ; set to space
1730 JR L00P1 ; back
1740 ' NODO POP BC
1750 INC B
1760 INC B
1770 JR L00P1 ; back to main loop
1780 ' TEMPIX WORD 00
1785 ' TEMP BYTE 0
1790 • END
1800 RETURN

FE 02 00 DD 7E 00 DD 6E 02 DD
09 23 4E 23 46 05 DD 7E 00 47
3A B0 A0 47 DD 36 00 20 DD 23
FE 7F 28 IB FE 0D 28 0D DD 77
18 01 Cl 3E 07 CD 5A BB C9 2A
07 3E 07 CD 5A BB 18 1A 3E 08
08 CD SA BB Cl 04 04 DD 2B DD
C4 91 01 1A

66 03 BE 7E 32 B0 A0 38 01
DD El DD 22 AE A0 DD E5 05
10 F8 Cl DD El C5 CD 18 BB
00 CD 5A BB DD 23 Cl 10 E9
AE A0 AF DD E5 DI ED 52 20
CD 5A BB 3E 20 CD 5A BB 3E
36 00 20 18 C9 Cl 04 04 18

127

Notes The routine is immediately exited if the number of parameters
isn’t correct, or if A does not hold the value 2. Also, if the value of L°/o
is greater than the length of the string (from BASIC) or the amount of
‘data’ space available (from machine code), then an immediate return
is made. Otherwise, once the routine is called you can type in char
acters until you press ENTER or the number of characters typed in
exceeds L%. The characters will be printed to the screen as well as
being put in the string area. Delete will work, and the routine will NOT
allow you to delete past the beginning of the string! It will ‘beep’ if you
try this.

Try the below demonstration routine in BASIC. The bytes above are
for address 41000, and I’ve assumed that the machine code is at that
address.

100 MODE 2
110 P% =10: REM number of characters.
120 A$=“ ”:REM 12 spaces in this line
130 CALL 41000,@A$,P%
140 PRINTPRINT
150 PRINT A$
160 END

If you run this, enter some characters and then list the program you’ll
notice that the string definition in line 120 has been modified to hold
the characters that have been typed in. More of this in Chapter 9, when
we’ll discuss the structure of the Amstrad BASIC program in more
detail.

Although ROM routines exist in the Amstrad to do such things as alter
the key repeat rates, etc. I do not intend looking at any routines here.
It’s usually easier to use the BASIC equivalents. So, that is where we'll
end our look at keyboard routines.

128

Sound Routines

The Amstrad 464 is capable of some very impressive sound effects
as you will no doubt be aware if you’ve tried to use the extensive sound
facilities of the machine from BASIC. Many of these facilities are also
available from machine code via the use of Firmware routines. These
allow the machine code programmer access to queueing, Tone En
velopes, Amplitude Envelopes, etc. They are documented thoroughly
in the Amsoft "Firmware Technical Manual", and there’s no point in
repeating such information here.
Instead, I want to look at the programming of the Programmable Sound
Generator chip directly. Why bother, I hear you say, if we can get
effects via the firmware routines? Well, the use of the Firmware often
requires that complicated tables of data are set up in memory before
the routines are called. The setting up procedures are not so long
winded when we use the PSG directly. Although the PSG cannot do
everything that is available from BASIC, it is capable of generating
tones, noise and has a few amplitude envelopes available to it as well,
so it is quite versatile. Tone Envelopes, etc, that are available from
BASIC, are produced by the PSG with a little help from the CPU. The
advantage about using the PSG directly is that for the sound effects
often desired in games programs, etc. it's more convenient to access
the PSG directly than to set up all the various tables, etc. that are
required for the Firmware routines. Of course, some sound effects will
require the use of Firmware routines, but you will find it surprising how
much you can get out of the PSG on its own.

Beep!
The simplest sound effect to get is that generated by the below piece
of machine code:

LD a,7
CALL &BB5A
RET

129

This ‘beep’ is useful for indicating that something has happened or that
an error has occurred and so on.

The Programmable Sound Generator
The PSG is a very versatile device, and is relatively simple to use even
if it looks a little daunting at first glance. It is a three voice device; that
is, it is capable of generating three separate noises at once. It also
has a few built in hardware amplitude envelopes, and control of the
volume of the sound produced on each channel is controllable. If you
are unsure about the meaning of the phrase Envelope, then ! suggest
that you consult the Amstrad Manual and read Chapter 6. The pitch
and amplitude of tones played are all individually controllable. The chip
is also capable of producing white noise. All this is done by a collection
of 15 registers within the PSG, which can be written to and read from
in a similar fashion to CPU registers. The PSG is also capable of
performing Input/Output operations, but we won’t go into that here.
Although the Amstrad OS accesses the chip via the PPI chip, we can’t
just write directly to PPI registers. Well, we could but it wouldn’t be very
advisable, due to the complexity of I/O operations on the Amstrad and
the possibility that we might mess something up doing this. Instead,
Amstrad have supplied us with a useful routine that enables us to write
a value to a particular PSG register without any danger of messing
things up.

MC SOUND REGISTER
This routine is called at address &BD34, with the C register holding
a value between 0 and 255 and the A register holding the number of
the PSG register to which you want to write the value. On exit, both AF
and BC are corrupt. The below routine, REGISTER, can be used from
BASIC to write values to the PSG registers.

REGISTER
A routine to allow the programmer to directly access PSG registers
from BASIC

Entry Requirements: From BASIC, CALL address, reg, value where
reg=register number and value is the value
to be written to the register. From machine
code, the ROM routines can be called directly.

Exit Conditions: Not Applicable.
Length: 12 Bytes.

130

REGISTER

1000 MEMORY 39999
1010 GOSUB 1030
1020 END
1030 ASSEMBLE
1040 orq
1050 LD
1060 LD
1070 CALL
10S0 RET
1090 ’ END
1 100 RETURN

40200
A,<IX+2>
C,(IX+0)
&BD34

DD 7E 02 DD 4E 00 CD 34 BD C9

Notes The main thing about this routine is that before you can use
it, you need some knowledge about the Programmable Sound Gen
erator registers. We'll now have a look at these.

PSG Registers
This section is something of a ‘crash course’ in PSG registers, and if
you really want to get fully versed in the device then the Data Sheet
for the device is the AY-3-8912 Data Sheet from General Instruments.
However, for programming purposes the data to be presented here
will probably be quite adequate. The registers of the PSG are num
bered, rather imaginatively, Oto 15. Registers 14 and 15 are not used
for sound generation purposes, but are involved with the I/O side of
the PSG. As with all such registers, if you do not know exactly what
you’re doing, DO NOT TOUCH!

Registers 0 to 5
These control the pitch of the note played on Channels 1 to 3. The pitch
of Channel 1 is controlled by Registers 0 and 1, that of Channel 2 by
Registers 2 and 3 and that of Channel 3 of Registers 4 and 5.
The registers are effectively 12 bit registers; the lower 8 bits are in the
lower numbered register of each pair and the higher 4 bits are held
in the higher numbered register of each pair. The lower 8 bit register,
i.e. Register 0 for Channel 1, is called the Fine Tune Control Register
and the higher 4 bit register is called the Coarse Tune Control Register.
The reason for this is obvious; a single count in the Coarse Control
Register has quite an effect on the pitch of the tone being played, while
a single count in the Fine Tune register gives a change in pitch that
is barely discernable. Thus Register 0 is the Fine Tune Control Register
for Channel 1 and Register 1 is the Coarse Tune Control Register for
the same Channel.

131

The larger the number placed in these registers, the lower is the pitch
of the tone generated on that particular channel.

Registers 8 to 10
These are called the Amplitude Control Registers of the PSG. There
is one for each Channel, and they are all 5 bit registers. That is, they
can hold a value between 0 and 31. However, if Bit 4 is set to 1, the
Channel in question behaves in a special way, as we'll soon see.
Normally, the volume of sound produced on each Channel depends
upon the value in Bits 0 to 3. A value of 0 gives silence, and a value
of 15 gives the loudest sound. If Bit 4 is set to 1, then the amplitude
of the sound generated on that Channel is under the control of one of
the PSG's built in Amplitude Envelopes rather than under the control
of the lower 4 bits of the appropriate Amplitude Control Register. We’ll
examine these Amplitude Envelopes in greater detail later. Register 8
controls the volume of Channel 1, Register 9 controls Channel 2 and
Register 10 controls the amplitude of Channel 3.
It is not enough on the PSG to set up the amplitude and pitch for a
particular channel and expect the PSG to play the note selected.
Whether a sound is generated on a particular channel or not depends
upon the status of certain bits in Register 7, which is the Control Register
of the PSG.

Register 7

| 7 16 |5 |4 | 3 12 11 |0|

" --------------------------- Channel 1 Tone Enable
------------------------------- Channel 2 Tone Enable

---------------------- —---------Channel 3 Tone Enable
---------------------------------------Channel 1 Noise Enable

L----------—-------- ———Channel 2 Noise Enable
------------------- -------—Channel 3 Noise Enable

-- I/O Control. LEAVE AT ZERO

Bits 6 and 7 of this register are concerned with the control of the Input/
Output facilities of the PSG. In the Amstrad, these would appear to be
involved with the Keyboard in some way, 'cos if you mess about with
Bit 6 and set it to 1 the keyboard appears to go dead. The only way
out, from direct mode, is to turn off I Of course, in a program you could
have other instructions to reset this bit, but I suggest that it is best to
leave both bits 6 and 7 set permanently to 0.

Bits 0 to 2
These control the generation of tone on Channels 1 to 3. If a bit is set

132

to 0, then tone will be generated on that channel, assuming a suitable
value has been put in the Amplitude Control Register forthat Channel.
Thus to play a Tone on Channel 1, the following steps would have to
be gone through.

(i) A suitable pitch would have to be in Registers 0 and 1.
(ii) A suitable Amplitude would have to be in Register 8.

(iii) Register 7 would have to be set to &X00111110.
When a bit for a given Channel is set to 0 in this way, the Channel
concerned is said to be ENABLED. If the bit in question is set to 1, no
tone will be played and the Channel is said to be DISABLED for tone
production.
Setting all three of these bits to zero would therefore allow tones to be
played simultaneously on all three channels.

Bits 3 to 5
These are called the Noise Enable Bits and are responsible for con
trolling whether or not white noise is played on any or all of the three
channels. More of noise in a while. Again, setting one of these bits to
0 will cause white noise to be played on a particular channel, at the
volume set by the Amplitude Control Register (R.8 to R.10) for that
Channel. Setting a bit to 1 disables noise on that Channel.
It is possible to have both Tone and Noise playing at the same time
on the same Channel, by setting both the Noise and Tone enable bits
for that Channel to 0. However, there is no separate Noise Amplitude
Control Register, and the Noise and Tone produced on a particular
Channel simultaneously are played at the same volume. Noise can
also, of course, be played under Envelope Control on a particular
Channel in a similar fashion to Tone.

Noise Generation
The Programmable Sound Generator is capable of producing white
noise over a range of ‘frequencies', if such a term can be applied to
noise. A low pitched noise is a ‘rushing’ sound, while the higher pitched
noise has more of a ‘hissy’ quality. The pitch of the noise played on
all Channels is controlled by a single register.

Register 6
This is the Noise Pitch Control Register. It is a 6 bit register, thus giving
noise pitch values between 0 and 31. 0 will give the highest pitched
noise and 31 will give the lowest pitched noise. As already mentioned,
there is only one Noise Pitch Control Register for all three Channels,
so the pitch of noise played on each channel cannot be individually
controlled.

133

Finally, we consider the resident Envelopes of the PSG. These are all
Amplitude Envelopes, and can be rather useful. The remaining PSG
registers are all concerned with the I/O and Envelope Control.

Envelopes
There are two parameters that describe the Amplitude Envelopes that
are provided by the PSG.

These are the Envelope Number, which describes the 'Shape’ of the
Envelope, and the Envelope Period, which is a measure of the amount
of time that is taken for an Enveloped sound to be played.

Register 13
The contents of this register specify the Shape of the Envelope that
will be applied to any Enveloped sounds played.

Register 13 Contents Envelope Shape

134

EP

EP stands for Envelope Period, and it’s duration is controlled by the
value held in the two Envelope Period Registers, R11 and R12. The
registers together form a 16 bit value, of which R11 is the low byte and
R12 is the high byte. The higher the value in this register, the longer
the Envelope Period. The longer the Envelope Period is, the slower is
the rate of change of amplitude during the playing of the Envelope.
Whether an Envelope is applied to a tone being played on a particular
Channel, or a noise for that matter, depends upon the setting of Bit 4
of that Channel’s Amplitude Control Register. ALL the channels that
have this bit set will play their tones or noise with the same envelope.
This is because of the fact that there is only one Envelope Shape
Register and Envelope Period Register.

Sound Techniques
The basic techniques of using the PSG directly are easy to master.
Generally, though, you will need to do a little trial and error before good
sound effects start coming out of the Amstrad loudspeaker. Although
you can turn a Channel off altogether by setting the appropriate Am
plitude Control Register to zero. This will work, but it’s probably not the
best way of doing things, if only because doing it like this kills both
noise and tone at the same time. On the whole, it is better to use
Register 7 to control the playing of sound. All the other registers for
each channel can be set up with, say, Register 7 set to hold
&X00111111, thus disabling both noise and tone on all channels. Then,

135

when you want to produce the sound, the relevant bits of Register 7
can be set to 0 to enable either noise, tone or both on the desired
channels.

Once a sound is being generated, you can alter the contents of the
registers. Thus a sound can be gradually faded out under CPU control,
or its pitch can be altered. This is how, in fact, the Amstrad Operating
System generates its amplitude and pitch envelopes, altering the PSG
registers under interrupt control. It should be noted, however, that once
started a Channel will continue playing until Register 7 is set up to stop
it playing. This is very useful, especially with the PSG’s Envelopes, as
it means that the CPU can start the PSG off and then go and do
something more important.

I’d like to finish this Chapter with a few examples of sound effects which
are produced with the PSG’s own Envelopes, just to show what is
available. Should you wish to produce more exciting effects, loops can
be produced in simple machine code routines to update the PSG
registers while the sound is being produced. However, these routines
should give you something to go on with. All that is necessary to hear
them is that the relevant PSG registers be set up with the values given,
Register 7 being set up last.

Explosion
Register

6
7
8

11
12
13

Steam Train
Register

6
7
8

11
12
13

Value
30

&X00110111
16

255
30

1

Value
30

&X00110111
16

255
0

14

You might like to try altering the noise pitch by changing the contents
of Register 6.

136

Laser Beam
Register Value

0 255
1 0
7 &X00111110
8 16

11 100
12 0
13 10

Boing
Register Value

0 0
1 9
7 &X00111110
8 16

1i 191
12 10
13 1

Gunshot
Register Value

6 30
7 &X00110111
8 16

11 255
12 2
13 1

In all these routines, it is assumed that PSG registers not specifically
mentioned are set to zero.

137

8.
Cassette Handling
Routines

There are a variety of routines in the Amstrad that allow the machine
code programmer easy access to the routines that are concerned with
cassette tape operations. With all the facilities that are available from
BASIC you might ask ‘Why Bother’ with accessing such routines from
machine code programs. Well, if you’re writing utility programs that
may need to write data to tape, it’s useful. Also, a little knowledge of
the cassette routines will allow you to produce Individualized cassette
formats for software protection or for special data files that only par
ticular programs can access.
However, we’ll start with a couple of useful Firmware calls that you can
use with no setting up.

Motor Control
One vaguely irritating feature about the Amstrad Cassette system is
the way in which the PLAY key is disabled except during input, output
or catalogue operations. This means that to find a blank piece of tape
it’s necessary to CAT the tape, thus preventing you from doing anything
else while the tape plays.
Two ROM routines can be used to control the motor; CALL &BC6E will
turn the motor ON and CALL &BC71 will turn the cassette motor off.
After you turn the motor on, there will be a slight pause before the
’Ready’ prompt returns. Don’t panic! This is just the operating system
ensuring that the tape has reached a smooth running speed before
returning.
The routine called at address &BC9B is also useful, as it does the
machine code equivalent of a CAT command from BASIC. If you use

139

this latter call, DE must point to a 2048 byte of memory that the Firmware
routine can use as workspace.

CAT
Not to be confused with the BASIC command of the same name, this
machine code routine will load in the header of a tape file. Once in
memory, the various details about the file, such as its length, start
address etc., are available to use.
Entry Requirements: From BASIC or machine code, simply CALL

the routine. There must be a buffer area avail
able. (See Notes.)

Exit Conditions: All Registers Corrupt.
Length: 12 Bytes + 64 Bytes for buffer.

DCAT

1000 MEMORY 39999
1010 GOSUB 2000
1020 CALL 40200
1025 name$="" s buffer=40000
1030 FOR I“buffer TO buffer+15 : namei=name$+CHR$(PEEK(I)) :

NEXT
1040 start=PEEK (bu-f fer+21) +256* (PEEK <buffer+22> >
1050 1 enqth=PEEK (buff er+24)+256*(PEEK(buffer+25))
1060 PRINT name* : PRINT "Lenqth s s 1 enqth : PRINT

3E 2C 21 40 9C 11 40 00 CD Al BC C9

"St ar t ..Address : .A.'Tstart
1065 PRINT : PRINT
1070 GOTO 1020
2000 ASSEMBLE
2010 ORG 40200
2020 LD A,S<2C ; sync code expected
2030 LD HL,40000 ; 'buffer' at 40000
2040 LD DE,64 ; no. of bytes to load
2050 CALL &BCA1 i load them
2060 RET ; finished
2070 ’ END
2080 RETURN

Notes This routine is relocatable, provided that the Buffer address
is altered if this becomes necessary. In this routine, HL is used to pass
the buffer address over to the Firmware routine. In the routine above,
40000 has been used as the buffer address. DE holds the number of
bytes that the Firmware routine is to load in, which is always 64 for a
header.

140

The A register must hold a value called the ‘sync byte’ on entry to the
Firmware routine, which effectively differentiates between the Header
of a file and a Data block of a file. The header for a data block is &16
and that for a header block is &2C. If the sync byte of a block of
information on tape does not correspond to the sync byte of the A
register, then that information will be ignored.
After the Firmware routine has pulled in the header, we simply return
to BASIC. However, it is also possible that the return to BASIC was
caused by an error condition of some type. We’ve made no use of this
information here, but you might like to extend the above routine by
adding error messages, so here we go.
If the load operation was successful, then the Carry Flag will be set
to 1. Otherwise, C =0. In this case, the A register holds an error number.
A=0 ESC was pressed to terminate the operation.

A =1 Overrun error. This occurs if more data was available from tape
than was specified in the DE register when the routine at &BCA1 was
called.
A =2 This indicates a CRC error. The Cyclic Redundancy Check is
the system by which the Operating System can determine if an error
has been made in the actual reading of a byte of data from tape. If this
occurs, it generally indicates that one or more of the bytes read in from
tape are corrupt.
Once we’ve got the header block in to memory, there remains the job
of decoding it. In this routine, we only want the File Name, Total File
Length and start address of the file. The remaining bytes of the header
we need not worry about here. If you are curious, however, the Firmware
Manual will give you the details that you require, as will “The Ins and
Outs of the Amstrad" also published by Melbourne House.
File Name This is stored in the first 16 bytes of the header, and this
is why a file name for cassette files can only be 16 characters long.
If the name is shorter than 16 letters, then it is made up to 16 characters
by filling it out with null codes (CHR$(0)).
Start Address This is stored in bytes 21 and 22 of the Header Block.
The block is numbered from 0 upwards. This address is that from which
the data was saved, and is stored in the usual z-80 format with the low
byte first. There is one point to remember, however. It is only the start
address of that particular block of data, and so will be the start address
of the whole file only for the very first block of data. For subsequent
blocks it is the start address for that particular data block. The block
number, which might be useful in these cases, is stored in Byte 16 of
the header.

141

File Length This is the total length of the file saved. It is stored in
bytes 24 and 25 of the Header, again with the low byte stored first.
The below BASIC program uses the CAT routine to provide a more
detailed catalogue based on the header entries mentioned above. I
have found it particularly useful in keeping an eye on my machine code
programs, which I tend to keep stored as byte files. By the way, this
routine is not designed to help you gain access to other people's
programs. It’s illegal, so don’t do it. I’ve assumed that the machine
code part of the program is at address 40200 and that the buffer for
inputted data is at address 40000. The program, when run, waits for
headers and prints a few details. Ecape will finish the program.

100 buffer =40000
110 CALL 40200
120 name$ =””
130 FOR I =buffer TO buffer+15
140 name$=name$+CHR$(PEEK(l))
150 NEXT I
160 start =PEEK(buffer+21)+256*PEEK(buffer+22)
170 length =PEEK (buffer +24)+256* PEEK (buffer +25)
180 PRINT nameS
190 PRINT “Length:” ; length
200 PRINT “Start Address:” ; Start
210 PRINTPRINT
220 GOTO 110

Once you have details about the rest of the header, you can easily
expand this routine. However, this is adequate for many applications.

CWRITE
This is a routine to write a named file of data to tape. It is effectively
a machine code version of the SAVE command when applied to binary
files, and for this reason no BASIC entry requirements will be given.
I will also give a couple of read routines, thus allowing you to save and
load data files from machine code.
Entry Conditions:

Exit Conditions:
Length:

IX points to a 64 byte header block, as shown
in the Notes for this routine.
All Registers Corrupt.
37 Bytes.

CWRITE

1000 MEMORY 39999
1010 GOSUB 2000

142

DD 21 2D 9D DD ES 21 2D 9D
DD 6E 15 DD 66 16 DD SE 13
45 S3 54 00 00 00 00 00 00
03 69 01 00

1020 CALL 40200
1030
2000
2010

END
ASSEMBLE

ORB 40200
2020 LD IX.HEADER
2030 PUSH IX
2040 LD HL.HEADER
2050 LD DE.64
2060 LD A.&2C
2070 CALL &BC9E
2080 POP IX
2090 LD L.<IX+21>
2100 LD H.dX+22)
21 10 LD E.<IX+19>
2120 LD D.dX+20)
2130 LD A.M6
2140 CALL &BC9E
2150
2160

RET
' HEADER TEXT "TEST",0,0.0,0.0,0,0,0,0,0,0,0

2170 BYTE 1,0.0
2180 WORD 1000
2190 WORD 361
2200 BYTE 00
2210
2220

• END
RETURN

11 40 00 3E 2C CD 9E BC DD El
DD 56 14 3E 16 CD 9E BC C9 54
00 00 00 00 00 00 01 00 00 ES

Notes The header block mentioned is a simplified version of that
used by the OS when it carries out BASIC save and load operations.
It is important to note that although files saved by CWRITE will show
up on BASIC CAT commands, they will not load using the BASIC LOAD
command. The file saved by CWRITE consists of a header, then a
block of data. The structure of a header block should be of the below
form:
Bytes 0 to 15
Bytes 19 and 20
Bytes 21 and 22
Bytes 24 and 25

FILENAME+CHR$(0)’s to fill up
FILE LENGTH, low byte first
START address, low byte first
FILE LENGTH, low byte first

All the rest of the bytes in the header should be set to zero. As a more
specific example, consider the below Header block, which will save
to tape a block of data 1000 bytes long, starting at address 361, with
the file name TEST.

HEADER TEXT “TEST”,0,0,0,0,0,0,0,0,0,0,0,0
BYTE 0
BYTE 0
BYTE 0

143

WORD
WORD
WORD
WORD

1000
361
00
1000

All the rest of the block is set to zero. Note that once the CWRITE
routine is called, the file will be saved immediately to tape, without the
usual prompts. These could easily be added, if it was important that
for a particular application prompts should be added. The only new
ROM routine to be used here is CAS WRITE, called at &BC9E. On
entry, HL holds the address of the data to be written, DE the length
and A the sync byte. We use it twice, once to put the header on tape
and a second time to put the data on tape.
Once we've written a file to tape, it’s useful to be able to read it back.
I offer two routines for this, OREAD and, very imaginatively, CREAD2.
The latter is just a more user friendly version of OREAD.

CREAD
This routine reads from tape files written by CWRITE.
Entry Requirements: See Notes.
Exit Conditions: All Registers Corrupt.
Length: 54 Bytes, excluding NAME and HEADER

tables.

CREAD

1000 MEMORY 39999
1010 GOSUB 2000
1030 END
2000
2010

ASSEMBLE
ORG 40200

2020 • LOAD LD DE, 64 5 No bytes in header
2030 LD HL,HEADER 5 put them here
2040 LD A.&2C i correct sync byte
2050 CALL &BCA1 load header
2060 LD HL,HEADER » DE and HL to point
2070 LD DE,NAME ■file name and
2075 5 desired name
2080 • LOOP LD A,(DE) check each character
2090 CP (HL)
2100 JR NZ,LOAD : if not same, load
2105
2110 INC HL

» next header

2120 INC DE
2130 LD A,(DE)
2140 CP 0 : zero indicates the
2145 5 end of name
2150 JR NZ,LOOP î if not end, next char

2160 LD I X,NAME 5 pick up load address

144

11 40 00 21 50 9D 3E 2C CD Al BC 21 50 9D 11 3E 9D 1A BE
20 EB 23 13 1A FE 00 20 F5 DD 21 3E 9D DD 6E 10 DD 66 11
DD 21 50 9D DD 5E 18 DD 56 19 3E 16 CD Al BC C9 54 45 53
54 00 00 00 00 00 00 00 00 00 00 00 00 40 9C 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00

2170 - LD L,(IX+16)
2180 • LD H,(IX+17)
2190 ‘ LD IX,HEADER ; pick up length -From
2195 ’ ; header
2200 - LD E, (IX+24)
2210 ' LD D, (IX+25)
2220 ' LD A,!<16 ; sync byte
2230 ’ CALL &BCA1
2240 • RET
2250 • NAME TEXT "TEST",0,0,0,0,0,0,0,0,0,0,0,0
2260 ' WORD 40000 ; load add
2270 ’ HEADER RMEM 64 | 64 zeros
2280 ' END
2290 RETURN

Notes This routine requires the presence of two tables of data, which
I've called NAME and HEADER. The HEADER table is simply a block
of 64 bytes into which a header can be loaded. NAME, however, must
be set up by the programmer. As its name suggests, it holds the name
of the tile that you want to read in. It also holds the address to which
the file is to be loaded. It is 18 bytes long.
Bytes 0 to 15 This holds the file name, filled out to 16 bytes long with
CHR$(0)'s.
Bytes 16 and 17 The load address of the file is stored in these two
locations, low byte first.
Due to its simplicity, there are some disadvantages associated with
this routine. These are mainly the inability to ‘break out’ of a search for
a file name, the lack of messages while the searching is going on and
the failure to check on file length. Let’s look at the last one first.
The number of bytes loaded by this routine is taken from the header
whose name matches the file name of interest. A potential problem
exists in that the bytes loaded into the space designated as starting
at the load address may overwrite programs or other data that they
are not supposed to. Of course, this shouldn’t happen if you are careful
in program design, but it could. If you are concerned about this hap
pening, then the fallowing steps can be taken.

(i) Designate a particular address in RAM as being the end of
the area in to which data read from tape can be loaded.

145

(ii) When a file header is read in, add its length to that held in
the ‘load address' entry in the NAME table. If the result ex
ceeds the address mentioned in (i), then do not load it.

CREAD2 does not include such a feature, but you should be able to
add it easily enough using the data given here.

CREAD2
A modified version of CREAD.
Entry Requirements: See Notes.
Exit Conditions: All Registers Corrupt.
Length: 215 Bytes, excluding NAME and HEADER.

CREAD2

1000 MEMORY 39999
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140

GOSUB 1030
END

¡ASSEMBLE
• ORG 40200

LD IX,SEARCH
' CALL SPRINT
' LOAD LD IX,OK

CALL SPRINT
CALL &BB18
CP 121
JR Z,YES
CP 89
RET NZ

' YES LD DE,64 ¡numb bytes in header
1150
1160
1170
1180
1190

1200

1210

t

' LOOP

LD HL,HEADER ; put them here
LD A,&2C ; correct sync byte
CALL &BCA1 ; load header
JR NC,OOPS ; carry dear=error
LD HL,HEADER ; set DE and HL to poin

LD DE,NAME ; fi1ename/desired name

LD A,(DE) ; check each character
1220
1230
1235
1240
1250
1260
1270
1275
1280

1290
1300
1310
1320
1330
1340

CP (HL)
JR NZ.LOAD | if not same, load

; next header
INC HL
INC DE
LD A,(DE)
CP 0 ; zero indicates the

; end of name
JR NZ,LOOP ; if not end, next char

LD IX,LOADING
CALL SPRINT
LD IX,NAME ; pick up load address
LD L,(IX+16)
LD H,(IX+17)
LD IX,HEADER ; pick len from head

146

1350 LD E,(IX+24)
1360 LD D,(IX+25)
1370 LD A,&16 j sync byte
1380 CALL &BCA1
1390 JR NC,OOPS
1400 RET
1410 ' SPRINT PUSH IX
1420 CALL &BB54
1430 LD A,13
1440 CALL &BB5A
1450 LD A,10
1460 CALL &BB5A
1470 POP IX
1480 ' LOOPS LD A,(IX)
1490 CP 0
1500 RET Z
1510 PUSH IX
1520 CALL &BB5D
1530 POP IX
1540 INC IX
1550 JR LOOPS
1560 ' OOPS LD IX,ERROR
1570 CALL SPRINT
1580 LD A,7
1590 CALL &BB5A
1600 RET
1610
1620 ' ERROR TEXT " I Abeg»to Jnf orin«you»Qf .error “ ,0
1630 • OK TEXT "Continue^Search?",0
1640 ' SEARCH TEXT "Searching............." ,0
1650 ' LOADING TEXT "Loading............." ,0
1660 ' NAME TEXT "TEST",0,0,0,0,0,0,0,0,0,0,0,0
1670 WORD 40000 ; 1oad add
1680 • HEADER RMEM 64 ; 64 zeros
1690 • END
1700 RETURN

DD 21 BE 9D CD
28 03 FE 59 C0
EC 9D 11 DA 9D
9D CD 61 9D DD
5E 18 DD 56 19
0D CD 5A BB 3E
CD 5D BB DD El
5A BB C9 49 20
79 6F 75 20 6F
75 65 20 53 65
67 2E 2E 2E 2E
00 54 45 53 54
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00

61 9D DD 21
11 40 00 21
1A BE 20 D8
21 DA 9D DD
3E 16 CD Al
0A CD 5A BB
DD 23 18 EF
62 65 67 20
66 20 65 72
61 72 63 68
2E 00 4C 6F
00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00
00 00 20 31

AD 9D CD 61 9D
EC 9D 3E 2C CD
23 13 1A FE 00
6E 10 DD 66 11
BC 30 23 C9 DD
DD El DD 7E 00
DD 21 90 9D CD
74 6F 20 69 6E
72 6F 72 00 43
3F 00 53 65 61
61 64 69 6E 67
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00

CD 18 BB FE 79
Al BC 30 56 21
20 F5 DD 21 CD
DD 21 EC 9D DD
E5 CD 54 BB 3E
FE 00 C8 DD E5
61 9D 3E 07 CD
66 6F 72 6D 20
6F 6E 74 69 6E
72 63 68 69 6E
2E 2E 2E 2E 2E
00 00 00 40 9C
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00

Notes As before, NAME holds the name of the file that you want to
read in and It’s load address. HEADER is a block of 64 bytes for the
temporary storage of headers read in from tape. You will note (I hope)
that we’ve use a variation on the SPRINT program to print out messages.

147

On calling the routine, the messages:
“Searching”
“Continue Search?"

will be displayed. Answering anything but “Y" or “y" at this point will
terminate the routine. This question will be asked each time a header
is read that is not the header of the file of interest. Reading errors are
also flagged with suitable message.
The only other tape handling routine that we are liable to need is a
verify function. CVERIFY provides this.

CVERIFY
This routine checks a file of bytes on tape against an area of memory
in the computer. It will thus allow you to check that an area of memory
has been correctly saved before clearing that area of memory.
Entry Requirements: See Notes.
Exit Conditions: All Corrupt.
Length: 221 Bytes, excluding NAME and HEADER.

VERIFY

1000 MEMORY 39999
1010 GOSUB 1030
1020 END
1030 ASSEMBLE
1040 ORG 40200
1050 ' LD IX,SEARCH
1060 CALL SPRINT
1070 • LOAD LD IX,OK
1080 CALL SPRINT
1090 CALL &BB18
1100 CP 121
1110 JR Z,YES
1120 CP 89
1130 RET NZ
1140 ' YES LD DE,64 ;No of bytes in head
1150 LD HL,HEADER ; put them here
1160 LD A,8<2C ; correct sync byte
1170 ' CALL &BCA1 ; load header
1180 JR NC,OOPS ; carry clear=error
1190 LD HL,HEADER ; set DE/HL to point
1200 LD DE,NAME ; fname/desired name
1210 ' LOOP LD A,(DE) ; check each character
1220 CP (HL)
1230 JR NZ,LOAD ; if not same, next hea

d
1240 INC HL
1250 INC DE
1260 LD A,(DE)
1270 CP 0 ¡0 means end name
1280 JR NZ,LOOP ; if not end, next char

148

1290 ' LD IX.LOADING
1300 CALL SPRINT
1310 LD IX,NAME ; pick up load address
1320 LD L,(IX+16)
1330 LD H,(IX+17)
1340 LD IX,HEADER ; pick len -From head
1350 LD E,(IX+24)
1360 LD D,(IX+25)
1370 LD A,8<16 ; sync byte
1380 CALL &BCA4
1390 JR NC.OOPS
1400 RET
1410 ' SPRINT PUSH IX
1420 CALL &BB54
1430 LD A, 13
1440 CALL &BB5A
1450 LD A, 10
1460 CALL S<BB5A
1470 POP IX
1480 ' LOOPS LD A,(IX)
1490 CP 0
1500 RET Z
1510 PUSH IX
1520 CALL &BB5D
1530 POP IX
1540 INC IX
1550 JR LOOPS
1560 ' OOPS LD IX,ERROR
1570 CALL SPRINT
1580 LD A,7
1590 CALL &BB5A
1600
1610

RET

1620 ' ERROR TEXT "Veri fy.error • ‘ " ,0
1630 ' OK TEXT "Continue^Search?",0
1640 ' SEARCH TEXT "Searching... . . " , 0
1650 ' LOADING TEXT "Veri fying...
1660 ' NAME TEXT "TEST",0,0,0, 0,0,0,0,0,0,0,0,0
1670 WORD 40000 ; load add
1680 ' HEADER RMEM 64 ; 64 0's
1690 ' END
1700 RETURN

DD 21 B0 9D CD 61 9D DD 21 9F 9D CD 61 9D CD 18 BB FE 79
28 03 FE 59 C0 11 40 00 21 DF 9D 3E 2C CD Al BC 30 56 21
DF 9D 11 CD 9D 1A BE 20 DB 23 13 1A FE 00 20 F5 DD 21 BF
9D CD 61 9D DD 21 CD 9D DD 6E 10 DD 66 11 DD 21 DF 9D DD
5E 18 DD 56 19 3E 16 CD A4 BC 30 23 C9 DD E5 CD 54 BB 3E
0D CD 5A BB 3E 0A CD 5A BB DD El DD 7E 00 FE 00 C8 DD E5
CD 5D BB DD El DD 23 18 EF DD 21 90 9D CD 61 9D 3E 07 CD
5A BB C9 56 65 72 69 66 79 20 65 72 72 6F 72 21 21 00 43
6F 6E 74 69 6E 75 65 20 53 65 61 72 63 68 3F 00 53 65 61
72 63 68 69 6E 67 2E 2E 2E 2E 2E 00 56 65 72 69 66 79 69
6E 67 2E 2E 2E 2E 00 54 45 53 54 00 00 00 00 00 00 00 00
00 00 00 00 40 9C 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00

149

Notes ‘NAME’ should be set up as for the CREAD routine, with the
difference that bytes 16 and 17 of NAME should now hold not the load
address but the address from which the bytes were saved. Should a
difference between the area of memory and the tape file be detected,
then an immediate exit of the routine is made, with an error message
to signify the fact. The routine only verifies the data block.
That completes this Chapter of Tape Handling Routines. For further
information on the Firmware routines, I direct you to the Amstrad “Firm
ware Technical Manual”, which is very useful indeed.

150

9.
BASIC and Machine Code

In this Chapter, we’ll see a couple of routines that are designed to help
the BASIC programmer, and some detailed notes on the Resident
System Extension — the way in which we can add commands to
Amstrad BASIC. However, we’ll start with a couple of routines that don’t
really belong in any other Chapter of the book.

TIMESET
The System Variable, TIME, will, when evaluated, return the amount of
time that has passed since the computer was first turned on. This does
not include such periods of time when interrupts were disabled from
within machine code routines, such as periods of tape operations. The
TIME variable is a 4 byte value, which is incremented once every 300th
of a second. It is thus very useful for timing applications. One feature,
though, that I miss is a means by which the TIME variable can be set
to any particular time. This sort of command is very common on other
machines, such as the BBC Microcomputer (Dare I say such words
in these pages?!) and is very useful when the timer is being used for
timing short events in a running program. Normally, we have to execute
a line such as:

T=TIME:GOSUB 1000PRINT TIME-T

whereas if we could set TIME to zero, we could just say:
CALL zerotime:GOSUB 1000:PRINT TIME

This makes what we’re trying to do rather more obvious. The next
routine, TIMESET, does this.

151

Entry Requirements: From BASIC, CALL add,low,high
where low is the lower 16 bits of the full 32 bit
value and ‘high’ is the high 16 bits of the full
32 bit value. From a machine code routine, IX
points to a parameter block and A holds the
value 2.

Parameter Block For TIMESET

Exit Conditions:

Length:

All registers corrupt. The routine will be exited
if the wrong number of parameters are passed
in to the routine.
98 Bytes.

TIMESET

1000 MEMORY 39999
1010 GOSUB 1030
1020 END
1030 [ASSEMBLE
1040 ORG 40200
1050 CP 0
1060 ' JR Z,ZERO » if no parameters, zero
1070 CP 2
10S0 JR NZ,OOPS ; if not 2 param, error
1090 LD E,(IX+0)
1100 LD D,(IX+1) ; high part of TIME
1110 LD L,(IX+2)
1120 LD H,(IX+3) J low part of TIME
1130 CALL &BD10 ; set TIME
1140 RET
1150 ' ZERO LD HL,0
1160 LD DE,0
1170 ' CALL &BD10 ; set TIME to zero
1180 RET
1410 ' SPRINT PUSH IX
1420 CALL &BB54
1430 LD A,13
1440 CALL &BB5A
1450 LD A, 10
1460 CALL &BB5A
1470 POP IX
1480 ' LOOPS LD A,(IX)
1490 CP 0
1500 RET Z

152

1510 PUSH IX
1520 CALL &BB5D
1530 POP IX
1540 INC IX
1550 JR LOOPS
1560 ' OOPS LD IX,ERROR
1570 ' CALL SPRINT
1580 LD A,7
1590 CALL &BB5A
1600 RET
1610
1620 ' ERROR TEXT "Parameter ^.Error ! " ,0
1690 ' END
1700 RETURN

FE 00 28 14 FE 02 20 3C DD 5E 00 DD 56 01 DD 6E 02 DD 66
03 CD 10 BD C9 21 00 00 11 00 00 CD 10 BD C9 DD E5 CD 54
BB 3E 0D CD 5A BB 3E 0A CD 5A BB DD El DD 7E 00 FE 00 C8
DD E5 CD 5D BB DD El DD 23 18 EF DD 21 59 9D CD 2A 9D 3E
07 CD 5A BB C9 50 61 72 61 6D 65 74 65 72 20 45 72 72 6F
72 21 00

Notes The fact that TIME is a 32 bit variable makes passing such a
value via a standard CALL statement rather difficult. This is why the
new TIME value is passed to the machine code routine in two parts.
Thus to set TIME to 100, we would execute a command such as:

CALL address, 100,0
with ‘low’ being first.
The bytes given above are for address 41000, but the routine can be
relocated with little trouble. Because I often want to set the TIME variable
to zero, I decided to make it a special case. CALL address on its own
will set the TIME variable to zero. A few notes will be given here about
values to pass as parameters. The value put in to TIME for any particular
combination of ‘high’ and ‘low’ will be:

TIME = low + (65536*high)
Thus, the command:

CALL address,0,2
will set TIME to (2*65536)+0, which is 13702. Of course, setting the
TIME variable to a very high value will lead to it eventually clocking
through zero and starting again.

Cleaning up
Badly written programs of any description are a bit like me; a lot of
cleaning up is needed after they’ve been executed, assuming that you
haven’t crashed the system. For example, a common problem is ac

153

cidentally generating a totally unreadable combination of INK and
PAPER, or a sound that goes on, and on, and on . . .
Well, there are a few routines in the firmware that can be called to clean
things up a little after such events. These are as follows:

&BB4E Text Screen Handling
&BB00 Keyboard
&BBBA Graphics Screen Handling
&BC02 Screen Pack
&BC65 Cassette Handling
&BCA7 Sound Handling
&BD37 Jump Block Restore

Of these, &BC02, &BCA7 and &BD37 are likely to be the most useful.
&BC02 is extremely useful, in that it sets the colours back to their
original states. Very useful after you’ve managed to get the pallette of
the computer into a bit of a mess by fiddling around! &BD37 is only
likely to be useful if you’re doing some advanced work that involves
you in altering Jump Block Entries. This routine sets them back to their
original conditions. Calling &BCA7 will provide relief from a sound that
doesn’t want to stop. It can also be used in running programs to ’flush’
the sound buffer and so stop any sounds being played at that time.

ROMREAD
As was mentioned earlier in this book, RAM overlays both 16k blocks
of ROM. POKE and PEEK both operate on RAM locations in these
areas only. However, it’s occasionally interesting to have a look in ROM
to see what error messages you haven’t discovered yet, command
table structures and even to see how the professional programmers
have done a particular piece of code. This routine lists the contents
of ROM locations in blocks of 20 bytes. It was originally written for use
in screen mode 2. Firmware routines are used to allow us to access
the upper and lower ROMs.

Entry Requirements: From BASIC, CALL address,start where start
is the address of the first location whose con
tents are to be listed. From machine code, IX
point to a two byte parameter block and A =1.

high 1
_____ low_____f

ROMREAD Parameter Block

154

Exit Conditions:
Length:

All registers corrupt.

161 Bytes.

ROMREAD

1000 MEMORY 39999
1010 GOSUB 1030
1020 END
1030 ¡ASSEMBLE
1040 ORG 40200
1050 LD B,20 5 print 20 bytes
1060 LD L,(IX+0)
1070 LD H,(IX+1) 5 pick up start address

1080 ' OLOOP PUSH BC
1090 PUSH HL 5 preserve the reg's
1100 CALL &B906 5 enable lower ROM
1110 PUSH AF : save ROM status
1120 CALL &B900 5 enable upper ROM
1130 LD A,(HL)
1140 LD (STORE),A î get byte and store it

1150 POP AF get ROM status
1160 CALL &B90C i put ROMs back to norm

1170 POP HL
1180 PUSH HL
1190 CALL PNUMHL 5 print address in hex
1200 LD IX,SPACE ï print spaces
1210 CALL SPRINT
1220 LD A,(STORE) » get byte read
1230 CALL PNUMA 5 print byte in hex
1231 LD IX,SPACE
1232 CALL SPRINT > print spaces
1233 LD A,(STORE) ; now print as a
1234 CALL &BB5D 5 char, inc cntrl codes

1240 LD A, 13
1250 CALL &BB5A
1260 LD A, 10
1270 CALL &BB5A 1 carriage return
1280 POP HL
1290 INC HL 5 next byte
1300 POP BC
1310 DJNZ OLOOP ? 20 bytes yet?
1320 ' SPRINT PUSH IX
1330 CALL &BB54
1340 POP IX
1350 • LOOPS LD A,(IX)
1360 CP 0
1370 RET Z
1380 PUSH IX
1390 CALL &BB5D
1400 POP IX
1410 INC IX
1420 JR LOOPS
1430 ' PNUMA LD B,0 ; these routines have
1440 LD C,A ; already documented
1450 RR A
1460 RR A

155

1470 ' RR A
1480 ' RR A
1490 ' ’RINLO AND &0F
1500 ' CP &0A
1510 ' JR NC,ATOF
1520 ' ADD A,&30
1530 PUSH BC
1540 ' CALL &BB5A
1550 ' JR OUT
1560 ' ATOF ADD A,S<37
1570 ' PUSH BC
1580 ' CALL &BB5A
1590 ' .OUT POP BC
1600 ' LD A,B
1610 ' CP 1
1620 ' RET Z
1630 ' LD A,C
1640 ' LD B, 1
1650 ' JR PRINLO
1660 ' PNUMHL LD A,H
1670 ' CALL PNUMA
1680 ' LD A,L
1690 ' CALL PNUMA
1700 • RET
1710 '
1720 ' SPACE TEXT " . 0
1725 ' STORE BYTE 0
1730 ' END
1740 RETURN

06 14 DD 6E 00 DD 66 01 C5 E5 CD 06 B9 F5 CD 00 B9 7E 32
AS 9D Fl CD 0C B9 El E5 CD 90 9D DD 21 99 9D CD 4F 9D 3A
AS 9D CD 67 9D DD 21 99 9D CD 4F 9D 3A AS 9D CD 5D BB 3E
0D CD 5A BB 3E 0A CD 5A BB El 23 Cl 10 Cl DD E5 CD 54 BB
DD El DD 7E 00 FE 00 C8 DD E5 CD 5D BB DD El DD 23 18 EF
06 00 4F CB IF CB IF CB IF CB IF E6 0F FE 0A 30 08 C6 30
C5 CD 5A BB 18 06 C6 37 C5 CD 5A BB Cl 78 FE 01 C8 79 06
01 18 E2 7C CD 67 9D 7D CD 67 9D C9 20 20 20 20 20 20 20
20 20 20 20 20 20 20 00 00

Notes 3 ROM routines are important here, and we’ve looked at two
of them before, when we examined the VARCHAR routine in Chapter
3. The Routine at &B900 pages in the Upper ROM that contains the
BASIC Interpreter, and returns the ROM status in the A register.
These three routines are not, strictly speaking, firmware routines be
cause they are in RAM. A second’s thought will explain why this is so.
There is little point in having routines to page in and out ROM in the
actual ROMs; if one is needed and the relevant ROM is paged out then
we would have problems!
The routine, when called with a start address, will print out the character
whose ASCII code is in the addresses being examined, even if the
ASCII code read from the address is that of a control code. We can
do this by using the routine at &BB5D instead of &BB5A. Because

156

ROMREAD makes extensive use of subroutines, it is very difficult to
relocate without the aid of an Assembler package. The bytes given
above are for address 40200. If you do decide to relocate the program,
then it is important to keep it all within the ‘Memory Pool’ area of RAM.
Otherwise, when the ROMs were paged in to gain access to their
contents, part or all of your program would be paged out! Not a de
sirable state of affairs.
The routine can, of course, be used to read the contents of RAM that
are not overlaid by ROM.
The next routine is called FIND, and is used to scan through a BASIC
program to find text or variable names. It then prints out the line numbers
at which a particular ‘target’ string has been found in programs. Before
we look at the routine, a short examination of how the text of a BASIC
program is stored in memory might be useful.

BASIC LINE Structure
A typical line of BASIC is in the form:

The line length is the number of bytes in the complete line, including
the line length bytes, line number and terminator bytes. The byte ‘0’
terminator acts to separate one line from another. The end of a program
can be located by searching through the program text for a line length
entry that is set to zero and a line number entry that is set to zero.
Altering line lengths and line numbers by POKEing in to the appropriate
positions in memory can be rather interesting; however, you can also
appear to lose a program with the line number POKEing. The program
is still there, but you have to provide the correct line length. One
interesting point is that you can often render a program unreadable,
and still run it. However, we are wandering off the point a little here.
The BASIC program text starts at address 368 with the low byte of the
line length of the first program line.
One point here is that, unlike on some machines, first line REM state
ments are not the best place to save machine code, mainly due to the

157

fact that it would be in an area of RAM overlaid by ROM. This would
give rise to problems if ROM were to be paged in.
Within the actual text of the line, BASIC keywords and functions are
stored as single bytes with values between 128 and 255 which are
called TOKENS. For example, ABS has the value 255, AFTER is 128
and REM is 197. Text after a REM token, or within the ‘ ’ of a string
assignment or a PRINT statement, is stored as a sequence of ASCII
codes. Any assignments in a program line, such as:

100 a$=“fred”

are quite interesting; if the address of a$ is passed over tp a machine
code routine, using CALL address,@a$, then the value given as the
address will be in the body of the program, in line 100. The interesting
thing is that if we modify the string within our machine code routine,
then line 100 will be modified. We saw this in action in the INSTRING
program. The address of any variable can be obtained by simply typing
in:

PRINT @variable-name
You do not have to include it as part of a CALL statement; @ can be
used separately. However, information such as the address of variables
is probably of minimal use to us in practical programming, due to the
fact that CALL sorts all the details out for us.
What is more use to us with regard to FIND is the way in which the
actual variable names are stored in the program lines. Variable names
are stored in ASCII, with their last character having 128 added to its
ASCII code. Thus for single letter variable names, the letter has 128
added to its ASCII code. By last character, I mean the last letter of the
variable name, NOT the Type Identifier if one is present. Thus the
variable name ‘fred’ would be stored as:

f 102
r 114
e 101
d 228 (128+100)

For our purposes, this is really all we need to know about the storage
of variable names. You can probably see one big problem with any
search for variable names in Amstrad BASIC programs; the last char
acter, with 128 added to its ASCII code, now has a code in the same
range as the BASIC Tokens. This can, and, with FIND occasionally
does, lead to problems, particularly when the variable name for which
we are searching has only got 1 letter in it. The routine will occasionally
find, when searching for single letter variable names, lines which con
tain a particular BASIC Token instead of the variable. However, with
longer names there is no problem.

158

FIND
A routine to find text or variable names within the body of a BASIC
program. Line numbers referring to the location of the ‘target’ text or
variable name are printed out.
Entry Requirements: From BASIC: CALL address,@a$,mode

where ‘mode’ defines whether the search will
be made for a variable name (with suitable
modified last character) when mode=0, or
normal text when mode =1. When mode =1 the
last character of the target string in a$ is not
modified and so variable names will not be
found. See Notes for further details.

Exit Conditions:
Length:

FIND

Not Applicable.
334 Bytes.

1000 MEMORY 39999
101(3 GOSUB 1050
1020 F-23
1030 SLINE-34
1040 END
1050 ¡ASSEMBLE
1060 ORG 42000
1070 CP 2
1000 JR NZ,PARAMS
1090 LD L,(IX+2)
1100 LD H,(IX+3)
1110 LD A,(HL)
1120 LD (LENGTH),A Î length/descriptor
1130 INC HL
1140 LD C,(HL)
1150 INC HL
1160 LD B,(HL)
1170 LD (STRING),BC ! string address
1180 LD A,(IX+0)
1190 CP 1
1200 JR Z,OK Ï if straight text go

1210 LD A,(LENGTH) ; otherwise modify
1220 LD E,A 5 the last character
1230 LD D,0 of the var.name
1240 DEC DE 5 by adding 128 to
1250 LD HL,(STRING) » it and then replace

1260 ADD HL, DE
1270 LD A,(HL)
1280 ADD A,128
1290 LD (HL),A 5 it in memory
1300 LD A,(LENGTH)
1310 CP 1 5 if var.name only 1
1320 CALL Z,POSSPROB 9 char print message
1330 • OK LD IX,368 9 start of prog in
1335 ; Tape system

159

1340 LOOP LD E,(IX+0)
1350 ' LD D,(IX+l) 5 DE = line length
1360 • LD L,(IX+2) HL = line number
1370 ' LD H,(IX+3)
1380 ' LD (LINE),HL
1390 ’ LD A,L
1400 ' OR H
1410 ' JR Z,FINISH ! if zero we've done
1420 ' CALL &BB1B
1430 • □ R C,FINISH J if key pressed
1435 ' 5 we've done
1440 ' CALL SLINE ; scan the line
1450 ' PUSH IX
1460 ' POP HL
1470 ' DEC DE
1480 ' ADD HL, DE ? update HL to point
1490 ' INC HL start of next line
1500 ' PUSH HL transfer to IX
1510 ' POP IX
1520 ' JR LOOP round again
1530 ' PARAMS JR PARAM2 ; needed for relative

1535 ' 5 jump !
1540 ' SLINE PUSH IX
1550 ' POP HL ; start of line in HL

1560 ' PUSH IX
1570 ' PUSH DE
1580 ' POP BC 5 length in BC
1590 ' DEC BC
1600 ' DEC BC
1610 ' DEC BC ; reduce line by 4
1620 ' DEC BC 5 so that only text
1625 ' is scanned
1630 ' PUSH DE
1640 ' LD DE, 04
1650 ' ADD HL, DE 5 point HL to start
1655 ' ? of text
1660 ' LOOP1 LD DE,(STRING) 5 address of target
1665 ' ? in DE
1670 ' PUSH BC ; preserve line leng
1680 ' LD A,(DE)
1690 ' CP (HL)
1700 ' JR Z.YES if two char, match,

1710 ' NOTOK POP BC decrement counter,
1720 ' DEC BC
1730 ' INC HL 5 point to next char.

1740 ' LD A,B
1750 ' OR C
1760 ' JR NZ,LOOP1 if line not done
1765 ' ; carry on
1770 ' POP DE
1780 ' POP IX s restore registers
1790 ' RET
1800 ' YES LD A,(LENGTH)
1810 ' LD B,A
1820 ' L00P2 LD A,(DE) 5 scan rest of target

1830 ' CP (HL) ? to see if match
1840 ' JR NZ,NOTOK 5 if not go back
1850 ' INC HL

160

I860
1870
1880

INC
DJNZ
CALL

DE
L00P2
FOUND ; get here it's a hit

1890 JR NOTOK
1900 • FOUND LD A, 10
1910 CALL &BB5A
1920 LD A, 13
1930 CALL &BB5A j CR + LF
1940 PUSH IX
1950 PUSH HL
1960 PUSH DE
1970 PUSH BC
1980 LD HL,(LINE)
1990 CALL PDECHL
2000 POP BC
2010 POP DE
2020 POP HL
2030 POP IX
2040 RET
2050 • PARAM2 LD IX, PARA
2060 CALL SPRINT
2070 RET
2080 ' POSSPROB LD IX,MESSI
2090 CALL SPRINT
2100 RET
2110 • FINISH RET
2120
2130 ' SPRINT PUSH IX ; routines documented
2140 CALL &BB54 ; elsewhere
2150 LD A, 10
2160 CALL &BB5A
2170 LD A, 13
2180 CALL &BB5A
2190 LD A,7
2200 CALL &BB5A
2210 POP IX
2220 ' LOOPS LD A,(IX)
2230 CP 0
2240 RET Z
2250 PUSH IX
2260 CALL &BB5D
2270 POP IX
2280 INC IX
2290 JR LOOPS
2300 ' PDECHL LD DE,10000
2310 CALL PDECH
2320 LD DE,1000
2330 CALL PDECH
2340 LD DE,100
2350 CALL PDECH
2360 LD DE, 10
2370 CALL PDECH
2380 LD DE, 1
2390 ' PDECH XOR A
2400 ' L00P4 SCF
2410 CCF
2420 SBC HL, DE
2430 JR C,PDOUT
2440 INC A
2450 JR L00P4
2460 ' PDOUT ADD HL, DE
2470 ADD A,&30

161

2480 ' PUSH HL
2490 ' CALL &BB5A
2500 POP HL
2510 RET
2520
2530 ' MESSI TEXT "May^give^some^edd^results! ! " ,0
2540 ■ PARA TEXT "Parameter ^.Errar ! ! '■ ,0
2550 ■ LINE WORD 0000
2560 ' STRING WORD 0000
2570 • LENGTH BYTE 00
2580 ' END
2590 RETURN

PE 02 20 5A DD 6E 02 DD 66 03 7E 32 58 A5 23 4E 23 46 ED
43 56 A5 DD 7E 00 FE 01 28 17 3A 58 AS 5F 16 00 IB 2A 56
A5 19 7E C6 80 77 3A 58 A5 FE 01 CC C8 A4 DD 21 70 01 DD
5E 00 DD 56 01 DD 6E 02 DD 66 03 22 54 AS 7D B4 28 75 CD
IB BB 38 70 CD 70 A4 DD E5 El IB 19 23 E5 DD El 18 DA 18
50 DD E5 El DD E5 D5 Cl 0B 0B 0B 0B D5 11 04 00 19 ED 5B
56 A5 C5 1A BE 28 0B Cl 0B 23 78 Bl 20 F0 DI DD El C9 3A
58 A5 47 1A BE 20 ED 23 13 10 F8 CD AS A4 18 E4 3E 0A CD
5A BB 3E 0D CD SA BB DD E5 E5 D5 C5 2A 54 A5 CD F8 A4 Cl
DI El DD El C9 DD 21 42 A5 CD DI A4 C9 DD 21 26 AS CD DI
A4 C9 C9 DD E5 CD 54 BB 3E 0A CD SA BB 3E 0D CD 5A BB 3E
07 CD 5A BB DD El DD 7E 00 FE 00 C8 DD E5 CD 5D BB DD El
DD 23 18 EF 11 10 27 CD 13 AS 11 E8 03 CD 13 A5 11 64 00
CD 13 A5 11 0A 00 CD 13 A5 11 01 00 AF 37 3F ED 52 38 03
3C 18 F7 19 C6 30 E5 CD SA BB El C9 4D 61 79 20 67 69 76
65 20 73 6F 6D 65 20 6F 64 64 20 72 65 73 75 6C 74 73 21
21 00 50 61 72 61 6D 65 74 65 72 20 45 72 72 6F 72 21 21
00 00 00 00 00 00

Notes Due to its extensive use of subroutines, this program can only
be relocated with difficulty. All references to subroutine addresses will
need to be altered. Use has been made of routines like PDECHL and
SPRINT which we saw earlier on in the book. The bytes in the above
listing are for address 42000. The program is relatively simple to use.

a$=“fred”:CALL 42000,@a$,0
will search for a variable name ‘fred’. Don’t put in the type identifier if
looking for something like ‘fred%’ or 'fred$'. Simply leave it out. FIND
will then come up with all occurrences of a variable name ‘fred’, irre
spective of the type. If you attempt to search for a single letter variable
name, you will be warned by the program that this can occasionally
give rise to some odd results. During a search, if you want to finish,
simply press any key. This will terminate the search.

a$=“fred”:CALL 42000,@a$,1
will search for a piece of text with ‘fred’ in it. This could be a PRINT
or REM statement, or could be part of a variable name, such as ‘freda’.
‘fred’ is in this, and will be detected by FIND. Using the routine with
mode=0 will return to BASIC with the last character of a$ being cor

162

rupted by having 128 added to it’s ASCII code. This does not happen
when mode =1.
We saw earlier in this Chapter how the end of a BASIC program is
indicated by the presence of line length and line number set to zero.
The next routine, PLENGTH, uses this fact to give the length, in bytes,
of a BASIC program.

PLENGTH
Prints the length of a BASIC program.
Entry Requirements: CALL address
Exit Conditions: Not Applicable.
Length: 93 Bytes.

PLENGTH

1000 MEMORY 39999
1010 GOSUB 1050
1020 F=23
1030 SPLINE=34
1040 END
1050 {ASSEMBLE
1060 ORG 42000
1330 ' OK LD IX,368 5 start prog/Tape
1335 LD BC,0
1340 ' LOOP LD E,(IX+0)
1350 LD D,<IX+l) : DE = line length
1360 LD L,(IX+2) 5 HL = line number
1370 LD H,(IX+3)
1390 LD A,L
1400 OR H
1410 JR Z,FINISH ; if zero we've done
1420 PUSH HL
1421 PUSH BC
1422 POP HL 5 BC into HL
1423 ADD HL, DE í add line len to HL
1424 PUSH HL
1425 POP BC » get BC/updated
1426 POP HL
1450 PUSH IX
1460 POP HL
1470 DEC DE
1480 ADD HL, DE 5 update HL to point
1490 INC HL 5 start of next line
1500 PUSH HL 5 transfer to IX
1510 POP IX
1520 JR LOOP í round again
2110 ' FINISH PUSH BC
2120 POP HL í BC in to HL
2130 CALL PDECHL 5 print it
2140 RET
2300 ' PDECHL LD DE,10000
2310 CALL PDECH
2320 LD DE,1000
2330 CALL PDECH

163

2590 RETURN

2340 ' LD DE,100
2350 ' CALL PDECH
2360 ' LD DE, 10
2370 ‘ CALL PDECH
2380 ' LD DE, 1
2390 ' PDECH XOR A
2400 ' L00P4 SCF
2410 ' CCF
2420 ' SBC HL, DE
2430 ' JR C, PDOUT
2440 ' INC A
2450 ' JR L00P4
2460 ' PDOUT ADD HL, DE
2470 ' ADD A,S<30
2480 ' PUSH HL
2490 ' CALL &BB5A
2500 ' POP HL
2510 ' RET
2580 ' END

DD
7D
El
5A
3F

21
B4
18
A4
ED

70 01 01 00 00 DD 5E 00 DD 56 01 DD 6E 02 DD 66 03
28 12 E5 C5 El 19 E5 Cl El DD E5 El IB 19 23 E5 DD
DE 05 El CD 3F A4 C9 11 10 27 CD 5A A4 11 E8 03 CD
11 64 00 CD 5A A4 11 0A 00 CD 5A A4 11 01 00 AF 37
52 38 03 3C 18 F7 19 C6 30 E5 CD 5A BB El C9

Notes The routine is again a little difficult to relocate due to the use
of subroutines. The above bytes are for address 42000. To use the
routine, simply CALL it when required. The program length will be
printed to the screen, and should there be no program in the computer
then a value of 0 will be printed.

Resident System Extensions
The assembler that was used to produce the listings in this book was
on a ROM chip, and was invoked by typing in the command

[ASSEMBLE
The vertical line, accessed from the keyboard by SHIFT @ informs the
BASIC Interpreter that the text following it is to be treated as an extra
command, and that details on how the command is to be processed
will be found in RAM or ROM. The facility that allows us to add com
mands like this to the BASIC command structure is called The Resident
System Extension, or RSX for short. Essentially, it is a way of calling
machine code routines by name, rather than having to remember the
address. This is clearly useful if you’ve got several different routines
that you want to call in your program from BASIC. Parameters can be
passed to RSX routines in a way that is virtually identical to the way
in which parameters can be passed to the machine code routines
accessed by CALL. RSX commands can pass values back to BASIC
variables using the ‘@’ function; a line such as:

164

|GET,@character%
could, for example, wait for a key press and return the ASCII code of
the key pressed In the variable ‘character%’. A line such as

character% = |GET
isn't possible. So, RSX commands are not true extensions to BASIC,
they’re more like named CALL routines. However, this should not de
tract from their usefulness.
The BASIC Interpreter must be informed of the presence of the RSX
commands, and we’re lucky in that all we need do is call one operating
system Firmware routine. To show this in action, we’ll add a couple of
RSX commands, |CLS and |FRAME.
|CLS will clear the screen and restores the usual ‘turn on’ colour pallette.
|FRAME will cause processing to halt until the next frame of the display
has been drawn. This is useful in graphics programs, where it can help
cut down flickering.
Neither of these commands accepts parameters, but we’ll shortly add
a command that does.
At the heart of the RSX System are two tables, the jump table and the
name table. I'll just give enough information here to allow you to use
the system. If you want full details you should consult the "Technical
Firmware Manual" from Amsoft.

The Jump Table
This holds the addresses to which the various RSX commands added
pass control. The addresses are stored as part of a Z-80 JP instruction.
TABLESTART WORD names ; address of name table

JP routinel ; first routine
JP routine2 ; second routine
JP routines ; and so on

The name table will be looked at shortly. One entry in the jump table
is needed for each RSX command that you're adding, and the order
in which they appear is the same order as that in which commands
appear in the RSX name table.

The name table
This holds the actual names of the RSX commands that you want to
add. The start address of this table is stored, low byte first, in the first
two bytes of the jump table.

165

names TEXT
TEXT
TEXT
BYTE

name—of—command 1
name—of—commands
name—of—commands
0

; name of routinel
; name of routine2
; name of routines
; terminates table

There is one important point to note about this table. That is that the
last character of each command name has 128 added to its ASCII
code. A further point to note is the order of the entries; ‘name-of-com-
mandT when encountered will cause a jump to 'routinel' and so on.
Finally, all entries in the Name table should be in upper case. All RSX
commands entered in to the machine are converted to upper case by
the BASIC Interpreter, so we might as well put the command names
in the table in upper case as well, remembering that the last character
has to be modified. The Interpreter also requires 4 bytes of workspace,
which can be anywhere in the Memory Pool. Once set up, the tables
are 'activated', and the commands added to the command structure,
by a call to address &BCD1 with the address of the workspace in HL
and the address of the start of the jump table in BC. This call should
only be done once. More than once for the same table seems to cause
the machine to occasionally lock up.
Other tables of commands can also be added, one after the other if
you want. Of course, you should ensure that two or more RSX com
mands don’t have the same name!

RSX1
This routine adds two RSX commands, |CLS and (FRAME.
Entry Requirements: CALL address, where address is the enabling

routine address. This should only be called
once.

Exit Conditions: Not Applicable.
Length: 44 Bytes, including RSX Tables.

RSX1

1000 MEMORY 39999
1010 GOSUB 2000
1020 CALL 40200
1030 END
2000 (ASSEMBLE
2010 □RG 40200
2020 LD BC,TABLE
2030 LD HL,WORK
2040 CALL &BCD1 ; set table up
20S0 RET
2060 ' FRAME CALL &BD19 ; routine for frame
2070 RET
2080 ’ CLS CALL &BC02 ; routine for CLS

166

01 IF 9D 21 30 9D CD DI BC C9 CD 19 BD C9 CD 02 BC 3E 0C
CD 5A BB C9 27 9D C3 12 9D C3 16 9D 46 52 41 4D C5 43 4C
D3 00 FB A5 IF 9D

2090 LD A, 12
2100 CALL &BB5A
2110 RET
2120 ' TABLE WORD NAMES 5 address of name table
2130 JP FRAME 5 jump to frame
2140 JP CLS » jump to cis
2150 • NAMES TEXT "FRAM",197 FRAME with last char

2155 ? modified
2160 TEXT "CL",211 CLS with last char.
2165 modi f i ed
2170 BYTE 0 5 terminator
2180 ' WORK RMEM 4 5 workspace
2190 ' END
2200 RETURN

Notes Once the tables have been set up by the enable routine, the
two commands |FRAME and |CLS will be enabled.
The passing of parameters to the RSX routines is easy. It is essentially
identical to passing routines with CALL. On entry to one of the RSX
routines, the IX register points to a parameter block and A holds the
number of parameters passed with the RSX command. The arrange
ment of parameters in the parameter block is the same as for the CALL
statement. The next routine, |PAUSE,n, demonstrates this.

PAUSE
An RSX command that causes a delay of about n/50 seconds. It does
this by repeatedly waiting for the next display frame to be drawn, a
process that occurs once every 50th of a second. The delay can also
be terminated by pressing a key.

Entry Requirements: |PAUSE,n where n is the desired delay, in
1/50 of a second, between 1 and 65535.

Exit Conditions: Not Applicable.
Length: 105 Bytes.

PAUSE

1000 MEMORY 39999
1010 GOSUB 2000
1020 CALL 40200
1030 END
2000 ASSEMBLE
2010 ' org
2020 ' LD

40200
BC,TABLE

167

2030 LD HL,WORK
2040 CALL &BCD1 ; set table up
2050 RET
2051 • .PAUSE CP 1
2052 • JR NZ,ERROR ; error on > 1 param
2053 LD C,<IX)
2054 • LD B, (IX+l> ; dur o-f pause in BC
2055 • LOOP PUSH BC
2056 CALL &BD19 ; pause
2057 CALL &BB1B ; key down?
2058 JR C,FINISH ; if yes exit
2059 POP BC ; otherwise...........
2060 DEC BC ; decrease BC and
2061 • LD A,B
2062 OR C
2063 • JR NZ,LOOP ; if not zero, again
2064 • RET ; all done, finish
2065 ■ FINISH POP BC ; here if key pressed
2066 RET
2067 ' ERROR LD IX,MESSI ; print error message
2068 LD A,7
2069 • CALL &BB5A
2070 • LOOP1 LD A,(IX)
2071 • CP 0
2072 • JR Z,DONE
2073 • CALL &BB5A
2074 • INC IX
2075 * JR LOOP1
2076 ■ DONE LD A, 13
2077 • CALL &BB5A
2078 • LD A, 10
2079 • CALL &BB5A
2080 • RET
2120 ■ TABLE WORD NAMES ; address of name table
2130 • JP PAUSE
2150 • NAMES TEXT "PAUS",197
2170 • BYTE 0 ; terminator
2180 • WORK RMEM 4 ; workspace
2185 ' MESSI TEXT "Parameter «.Error!!",0
2190 ' END
2200 RETURN

01 50 9D 21 5B 9D CD DI BC
01 C5 CD 19 BD CD IB BB 38
DD 21 5F 9D 3E 07 CD 5A BB
DD 23 18 F2 3E 0D CD 5A BB
9D 50 41 55 53 C5 00 F8 A5
72 20 45 72 72 6F 72 21 21

C9 FE 01 20 IB DD 4E 00 DD 46
07 Cl 0B 78 Bl 20 Fl C9 Cl C9
DD 7E 00 FE 00 28 07 CD 5A BB
3E 0A CD 5A BB C9 55 9D C3 12
50 9D 50 61 72 61 6D 65 74 65
00

Notes An instruction such as

| PAUSE,50

will, once the command has been activated by calling the routine,
cause a delay of about 1 second. A keypress during this time will also
cause an exit. Try:

P=TIME: PAUSE,50:PRINT TIME-P
which returns the duration of the pause in 1/300ths of a second.

168

Appendix 1.
Control Code Effects

CODE EFFECT
0 No effect.
1 Needs 1 parameter, a value between 0 and 255. The symbol

given by the parameter value is printed. This allows the sym
bols that are associated with characters 0 to 31 to be printed,
rather than treated as control codes.

2 Turn off text cursor.
3 Turn on text cursor.
4 One parameter, which is the screen mode. Thus PRINT

CHR$(4)+CHR$(1) will set Mode 1.
5 One parameter, between 0 and 255. The parameter is the

ASCII code of a character that you want to print to the graphics
cursor.

6 Enable the text screen.
7 Bleep.
8 Move cursor back one space.
9 Move cursor forward one space.
10 Move cursor down one line.
11 Move cursor up one line.
12 Clear text window.
13 Move cursor to left of current line.
14 One parameter, which is treated as the Paper Ink number.
15 One parameter, which is treated as the Pen Ink number.
16 Delete the character under the text cursor (same as CLR).
17 Clear from left edge of window to the current character

position.
18 Clear from the current character position to the right edge of

the window.
19 Clear from the start of the window to the current character

position.
20 Clear from the current character position to the end of the

window.

169

Control Codes 16-20 all clear the current character position as well as
the rest. The characters are cleared to the text paper colour.
21 Turn off the text screen.
22 One parameter. 0 disables transparent mode and 1 enables

transparent mode.
23 One parameter, which sets the graphics ink mode.

1 XOR Mode.
2 AND Mode
3 OR Mode.

24 Exchange pen and paper inks.
25 9 parameters. It is the equivalent of the SYMBOL command.

The first parameter is the ASCII code of the symbol to be
defined, and the next 8 are the definitions for each row of the
character. I’ve found that this code sometimes causes a little
trouble.

26 Same as a WINDOW command. Has 4 parameters. The first
two parameters specify the left and right hand edges of the
window. It doesn’t matter which order you put the parameters
in, as the smallest is always taken as the left edge. The next
two parameters are the top and bottom rows of the window,
the smallest value being the top row, the other being the
bottom.

27 No Effect.
28 3 parameters. Sets an ink to a pair of colours. The first par

ameter is the ink no., the second two are the colours.
29 Two parameters. Same as a BORDER command, the two

parameters being the colours.
30 Returns cursor to top left of screen window.
31 Two parameters. Same as a LOCATE command. This sets

the text cursor to position x,y where x is the first parameter
and y is the second parameter.

All these control codes can be passed through the CPRINT routine,
or through &BB5A. Note that the firmware routine called at &BB5D
does not act on these control codes, but prints the symbol associated
with them instead.

170

Appendix 2.
Instructions and Op-codes

171

MNEMONIC HEXADECIMAL MNEMONIC HEXADECIMAL MNEMONIC HEXADECIMAL

ADC A. (HL) 8E BIT 2.B CB 50 CP n FE XX
ADC A, (IX-Hits) DD 8E XX BIT 2.C CB 51 CP E BB
ADC A,(IY+dis) FD 8E xx BIT 2.D CB 52 CP H BC
ADC A,A 8F BIT 2.E CB 53 CP L BD
ADC A.B 88 BIT 2.H CB 54 CPD ED A9
ADC A.C 89 BIT 2.L CB 55 CPDR ED B9
ADC A.D 8A BIT 3,(HL) CB 5E CPI ED A1
ADC A.n CE XX BIT 3,(IX +dis) DD CB XX 5E CPIR ED Bl
ADC A.E 8B BIT 3,(IY+dis) FD CB XX 5E CPL 2F
ADC A.H 8C BIT 3,A CB 5F DAA 27
ADC A.L 8D BIT 3.B CB 58 DEC (HL) 35
ADC HL.BC ED 4A BIT 3.C CB 59 DEC (IX+dis) DD 35 XX
ADC HL,DE ED 5A BIT 3.D CB 5A DEC (IY+dis) FD 35 XX
ADC HL,HL ED 6A BIT 3.E CB 5B DEC A 3D
ADC HL.SP ED 7A BIT 3.H CB 5C DEC B 05
ADD A. (HL) 86 BIT 3.L CB 5D DEC BC OB
ADD A.(IX-Kits) DD 86XX BIT 4,(HL) CB 66 DEC C OD
ADD A,(IY+dis) FD 86XX BIT 4,(IX+di$) DD CB XX 66 DEC D 15
ADD A,A 87 BIT 4,(IY+dis) FD CB XX 66 DEC DE IB
ADD A.B 80 BIT 4,A CB 67 DEC E 1D
ADD A.C 81 BIT 4.B CB 60 DEC H 25
ADD A.D 82 BIT 4.C CB 61 DEC HL 2B
ADD A.n C6 XX BIT 4.D CB 62 DEC IX DD 2B
ADD A.E 83 BIT 4.E CB 63 DEC IY FD 2B
ADD A.H 84 BIT 4.H CB 64 DEC L 2D
ADD A.L 85 BIT 4.L CB 65 DEC SP 3B
ADD HL.BC 09 BIT 5,(HL) CB 6E DI F3
ADD HL.DE 19 BIT 5.(IX +dis) DD CB XX 6E DJNZ.dis 10 XX
ADD HL,HL 29 BIT 5,(IY+dis) FD CB XX 6E El FB
ADD HL.SP 39 BIT 5,A CB 6F EX (SP) .HL E3
ADD IX,BC DD 09 BIT 5.B CB 68 EX (SP) .IX DD E3
ADD IX.DE DD 19 BIT 5.C CB 69 EX (SP) .IY FD E3
ADD IX.IX DD 29 BIT 5.D CB 6A EX AF.AF' 08
ADD IX.SP DD 39 BIT 5.E CB 6B EX DE.HL EB
ADD IY.BC FD 09 BIT 5.H CB 6C EXX D9
ADD IY.DE FD 19 BIT5.L CB 6D HALT 76
ADD IY.IY FD 29 BIT 6.(HL) CB 76 IM 0 ED 46
ADD IY.SP FD 39 BIT 6,(IX*dis) DD CB XX 76 IM 1 ED 56AND (HL) A6 BIT 6,(IY*<1is> FD CB XX 76 IM 2 ED5EAND (IX+dis) DD A6 XX BIT 6.A CB 77 IN A, (C) ED 78AND (IY+dis) FD A6 XX BIT 6.B CB 70 IN A,port DB XX
AND A A7 BIT 6.C CB 71 IN B,IC) ED40

AO BIT 6.D CB 72 IN C, (C) ED 48AND C A1 BIT 6.E CB 73 IN D,(C) ED 50AND D A2 BIT 6.H CB 74 IN E,(C) ED 58AND n E6 XX BIT 6.L CB 75 IN H.(C) ED 60
A3 BIT 7.(HL) CB 7E IN L.(C) ED 68AND H A4 BIT 7.(IX+dis) DD CB XX 7E INC (HL) 34

AND L A5 BIT 7,(1 Y Kits) FD CB XX 7E INC (IX Kits) DD 34 XX
BIT 0,(HL) CB 46 BIT 7,A CB 7F INC (lY+tiis) FD 34 XX
BIT O.(IX+dts) DD CB XX 46 BIT 7.B CB 78 INC A 3C
BIT 0,(1 Y -Kits) FD CB XX 46 BIT 7.C CB 79 INC B 04
BIT O.A CB 47 BIT 7.D CB 7A INC BC 03
BIT o.B CB 40 BIT 7.E CB 7B INC C OC
BIT O.C CB 41 BIT 7.H CB 7C INC D 14
BIT O.D CB 42 BIT 7.L CB 7D INC DE 13
BIT O.E CB 43 CALL ADDR CD XX XX INC E 1C
BIT O.H CB 44 CALL C.ADDR DC XX XX INC H 24
BIT O.L CB 45 CALL M.ADDR FC XX XX INC HL 23
BIT 1 ,(HL) CB 4E CALL NC.ADDR D4 XX XX INC IX DD 23
BIT 1,(IX+dis) DD CB XX 4E CALL NZ.ADDR C4 XX XX INC IY FD 23
BIT 1,(IY+dis) FD CB XX 4E CALL P.ADDR F4 XX XX INC L 2C
BIT 1.A CB 4F CALL PE.ADDR EC XX XX INC SP 33
BIT 1.B CB48 CALL PO.ADDR E4 XX XX IND ED AA
BIT 1.C CB 49 CALL Z.ADDR CC XX XX INDR ED BA
BIT 1.D CB 4A CCF 3F INI ED A2
BIT 1.E CB 4B CP (HL) BE IN IR ED B2
BIT 1.H CB 4C CP (IX+dis) DD BE XX JP (HL) E9
BIT 1.L CB 4D CP (IY+dis) FD BE XX JP (IX) DD E9
BIT 2,(HL) CB 56 CP A BF JP (IY) FD E9
BIT 2,(IX+dis) DD CB XX 56 CP B B8 JP ADDR C3 XX XX
BIT 2,(1 Y+dis) FD CB XX 56 CP C B9 JP C.ADDR DA XX XX
BIT 2,A CB 57 CP D BA JP M.ADDR FA XX XX

172

HL.DE
IX.DE
IY.DE

MNEMONIC HEXADECIMAL MNEMONIC HEXADECIMAL MNEMONIC HEXADECIMAL

JP NC.ADDR D2 XX XX LD BC.nn 01 XX XX LDDR ED B8
JP NZ.ADDR C2 XX XX LD C. (HL) 4E LDI ED AO
JP P.ADDR F2 XX XX LD C. (IX *dis> DD 4E xx LDIR ED BO
JP PE.ADDR EA XX XX LD C. (1Y 4-dis) FD 4E XX NEG ED 44
JP PO.ADDR E2 XX XX LD C.A 4F NOP 00
JP Z.ADDR CA XX XX LD C.B 48 OR (HL) B6
JR C.dis 38 XX LD C.C 49 OR (IX+dis) DD B6 XX
JR dis 18 XX LD C.D 4A OR (IY«dis) FD 86 xx
JR NC.dis 30 XX LD C.n OE XX OR A B7
JR NZ.dts 20 XX LD C.E 4B OR B BO
JR Z.dis 28 XX LD C.H 4C OR C Bl
LD (ADDR) ,A 32 XX XX LD C.L 4D OR D 82
LD(ADDR) ,BC ED 43 XX XX LD D, (HL) 56 OR n F6 XX
LD (ADDR) ,DE ED 53 XX XX LD D. (IXKiis) DD 56 XX OR E 83
LD(ADDR) ,HL ED 63 XX XX LD D. (lY+dis) FD 56 XX OR H 84
LD (ADDR) ,HL 22 XX XX LD D.A 57 OR L 85
LD (ADDR) .IX DD 22 XX XX LD D.B 50 OTDR ED BB
LD (ADDR) , IY FD 22 XX XX LD D.C 51 OTIR ED B3
LD (ADDR) ,SP ED 73 XX XX LD D.D 52 OUT (C) .A ED 79
LD (BC) .A 02 LD D.n 16 XX OUT (C) ,B ED 41
LD (DE) .A 12 LD D.E 53 OUT (C) ,C ED 49
LD (HL) .A 77 LD D.H 54 OUT (C) ,D ED 51
LD (HL) ,B 70 LD D.L 55 OUT (C) ,E ED 59
LD (HL). C 71 LD DE, (ADDR) ED 5B XX XX OUT (C) ,H ED 61
LD (HL) ,D 72 LD DE.nn 1 1 XX XX OUT (C> ,L ED 69
LD (HL) ,n 36 XX LD E. (HL) 5E OUT part,A D3 port
LD (HL) ,E 73 LD E, (IXHiis) DD 5E XX OUTD ED AB
LD (HL) ,H 74 LD E, (IY*dis) FD 5E XX OUTI ED A3
LD (HL) ,L 75 LD E.A 5F POP AF F1
LD (IX+dis) .A DD 77 XX LD E.B 58 POP BC C1
LD (IXhJis) ,B DD 70 XX LD E.C 59 POP DE DI
LD (1X >dis) ,C DD 71 XX LD E.D 5A POP HL E1
LD (1X «-dis) ,D DD 72 XX LD E.n IE XX POP IX DD E1
LD (IXMis) ,n DD 36 XX XX LD E.E 5B POP IY FD El
LD (IXnMI ,E DD 73 XX LD E.H 5C PUSH AF F5
LD (IX*dis) ,H DD 74 XX LD E.L 5D PUSH BC C5
LD (IX Khs) ,L DD 75 XX LD H, (HL) 66 PUSH DE D5
LD (IY*di$) ,A FD 77 XX LD H. (IXHlisI DD 66 XX PUSH HL E5
LD (1Y Hi is) ,B FD 70 XX LD H, (lYfdis) FD 66 XX PUSH IX DD E5
LD (1Y *diS) ,C FD 71 XX LD H.A 67 PUSH IY FD E5
LD (IYkIis) ,D FD 72 XX LD H.B 60 RES 0. (HL) CB 86
LD (1Y *disl ,n FD 36 XX XX LD H.C 61 RES 0. (IX «dis) DD CB XX 86
LD (IY*dis) ,E FD 73 XX LD H.D 62 RESO, (IY«dis) FD CB XX 86
LD (lY^j.s) ,H FD 74 XX LD H.n 26 XX RES O.A CB 87
LD (IYhíis) ,L FD 75 XX LD H.E 63 RES 0,8 CB 80
LD A, (ADDR) 3A XX XX LD H.H 64 RES O.C CB 81
LD A, (BC) OA LD H.L 65 RESO.D CB 82
LD A. (DE) 1 A LD HL. (ADDR) ED 6B XX XX RES O.E CB 83
LD A. (HL) 7E LD HL.(ADDR) 2A XX XX RESO.H CB 84
LD A, (IXHlis) DO 7E XX LD HL.nn 21 XX XX RES O.L CB 85
LD A, (IY Klis) FD 7E XX LD I.A ED 47 RES 1. (HL) CB 8E
LD A,A 7F LD IX, (ADDR) DO 2A XX XX RES 1, (IX Hits) DD CB XX 8E
LD A.B 78 LD IX.nn DD 21 XX XX RES 1. (IY«dis) FD CB XX 8E
LD A.C 79 LD IY (ADDR) FD 2A XX XX RES I.A CB 8F
LD A.D 7A LD lY.nn FD 21 XX XX RES 1.B CB 88
LD A.n 3E XX LD L.A 6F RES 1.C CB 89
LD A.E 7B LD L.B 68 RES 1.D CB 8A
LD A.H 7C LD L.C 69 RES 1.E CB 8B
LD A.l ED 57 LD L.D 6A RES 1.H CB 8C
LD A.L 7D LD L.n 2E XX RES 1.L CB 8D
LD A.R ED 5F LD L.E 6B RES 2. (HL) CB 96
LD B, *HL) 46 LD L, (HL) 6E RES 2. (IX+dis) DD CB XX 96
LD B. (IX Hdis) DD 46 XX LD L.(IXHhs) DD 6E XX RES 2. (lY+dis) FD CB XX 96
LD B, (IYhIis) FD 46 XX LD L. (IY «dis) FD 6E XX RES 2.A CB97
LD B.A 47 LD L.H 6C RES 2.B CB 90
LD B.B 40 LD L.L 6D RES 2.C CB 91
LD B.C 41 LD R.A ED 4F RES 2.D CB 92
LD B.D 42 LD SP, (ADDR) ED 7B XX XX RES 2.E CB 93
LD B.n 06 XX LD SP.nn 31 XX XX RES 2.H CB 94
LD B.E 43 LD SP.HL F9 RES 2.L CB 95
LD B.H 44 LD SP.IX DD F9 RES 3, (HL) CB 9E
LD B.L 45 LD SP.IY FD F9 RES 3. (1X «dis) DD CB XX 9E
LD BC. (ADDR) ED 4B XX XX LDD ED A8 RES 3. (lY+dis) FD CB XX 9E

RES 3,A C8 9F

173

MNEMONIC HEXADECIMAL MNEMONIC HEXADECIMAL MNEMONIC HEXADECIMAL

RES 3,8 CB 98 RLC C CB 01 SET 1.L CB CD
RES 3.C CB 99 RLC D CB 02 SET 2. (HL) CB D6
RES 3.D CB 9A RLC E CB 03 SET 2, (IX-Hli$) DD CB XX D6
RES 3.E CB 9B RLC H CB 04 SET 2, (IY*dis) FD CB XX D6
RES 3.H CB 9C RLC L CB 05 SET 2,A CB D7
RES 3.L CB 9D RLCA 07 SET 2.B CB DO
RES 4, (HL) CB A6 RLD ED 6F SET 2.C CB D1
RES 4. (IX*di$) DD CB XX A6 RR (HL) CB 1E SET 2.D CB D2
RES 4, (lY+dts) FD CB XX A6 RR (IXtd.s) DD CB XX 1E SET 2.E CB D3
RES 4,A CB A7 RR (IY-^i.s) FD CB XX IE SET 2.H CB D4
RES4.B CB AO RR A CB 1F SET 2.L CB D5
RES 4.C CB Al RR B CB 18 SET 3, (HL) CB DE
RES 4.D CB A2 RR C CB 19 SET 3, (IX+di$) DD CB XX DE
RES 4.E CB A3 RR D CB 1 A SET 3, (IY+dis) FD CB XX DE
RES 4,H CB A4 RR E CB IB SET 3,A CB DF
RES 4,L CB A5 RR H CB 1C SET 3.B CB D8
RES 5 (HL) CB AE RR L CB ID SET 3.C CB D9
RES 5. (IXHits) 00 CB XX AE RRA 1F SET 3.D CB DA
RES 5, (1 Y*dis) FD CB XX AE RRC (HL) CB OE SET 3.E CB DB
RES 5.A CB AF RRC (IX*di$) DD CB XX OE SET 3.H CB DC
RES 5.B CB A8 RRC (lY+dis) FD CB XX OE SET 3.L CB DD
RES 5.C CB A9 RRC A CB OF SET 4. (HL) CBE6
RES 5.0 CB AA RRC B CB 08 SET 4, (IX*di$) DD CB XX E6
RES 5.E CB AB RRC C CB 09 SET 4. (1Y♦du) FD CB XX E6
RES 5.H CB AC RRC D CB OA SET 4.A CB E7
RES 5.L CB AD RRC E CH OB SET 4.B CB EO
RES6. (HL) CB B6 RRC H CB OC SET 4.C CB El
RES 6. (IX-Klis) DD CB XX B6 RRC L CB OD SET 4.D CB E2
RES 6, (IY+dis) FD CB XX B6 RRCA OF SET 4.E CB E3
RES 6.A CB B7 RRD ED 67 SET 4.H CB E4
RES6.B CB BO RST 00 C7 SET 4.L CB E5
RES 6.C CB Bl RST 08 CF SET 5. (HL) CB EE
RES 6.D CB B2 RST 10 D7 SET 5. (IX*di»J DD CB XX EE
RES 6.E CB B3 RST 18 DF SET 5. (IY4d.») FD CB XX EE
RES 6.H CB B4 RST 20 E7 SET 5.A CB EF
RES6.L CB B5 RST 28 EF SET 5.B CB E8
RES 7. (HL) CB BE RST 30 F7 SET 5.C CB E9
RES 7, (IX-»dis) DD CB XX BE RST 38 FF SET 5.D CB EA
RES 7. (IY*d.$) FD CB XX BE SBC A. (HL) 9E SET 5.E CB EB
RES 7,A CB BF SBC A. (IX♦dis) DD9E XX SET 5.H CB EC
RES 7.B CB B8 SBC A. (1Y 4-ciisl FD 9E XX SET 5.L CB ED
RES 7.C CB B9 SBC A,A 9F SET 6. (HL) CB F6
RES 7,0 CB BA SBC A.B 98 SET 6, (IX *d.i) DD CB XX F6
RES 7.E CB BB SBC A.C 99 SET 6, (IY<dis) FD CB XX F6
RES 7,H CB BC SBC A.D 9A SET 6.A CB F7
RES 7.L CB BD SBC A.n DE XX SET 6.B CB FO
RET C9 SBC A.E 9B SET 6.C CB F1
RET C D8 SBC A.H 9C SET 6.D CB F2
RET M F8 SBC A.L 9D SET 6.E CB F3
RET NC DO SBC HL.BC ED 42 SET 6.H CB F4
RET NZ CO SBC HL.DE ED 52 SET 6.L CB F5
RET P FO SBC HL,HL ED 62 SET 7. (HL) CB FE
RET PE E8 SBC HL.SP FD 72 SET 7. (IX♦dis) DD CB XX FE
RET PO EO SCF 37 SET 7,(IY-»d.$) FD CB XX FE
RET Z C8 SET 0. (HL) CB C6 SET 7.A CB FF
RETI ED4D SET 0. (IX+dis) DD CB XX C6 SET 7.B CB F8
RETN ED 45 SET 0. (IY*dis) FD CB XX C6 SET 7.C CB F9
RL (HL) CB 16 SET O.A CB C7 SET 7.D CB FA
RL (IX+d.s) DD CB XX 16 SET O.B CB CO SET 7.E CB FB
RL (IY+dis) FD CB XX 16 SET O.C CB Cl SET 7.H CB FC
RL A CB 17 SET O.D CB C2 SET 7.L CB FD
RL B CB 10 SET O.E CB C3 SLA (HL) CB 26
RL C CB 11 SET O.H CB C4 SLA (IXniis) DD CB XX 26
RL D CB 12 SET O.L CB C5 SLA (IY4d.$) FD CB XX 26
RL E CB 13 SET 1, (HL) CB CE SLA A CB 27
RL H CB 14 SET 1, (IX+dis) DD CB XX CE SLA B CB 20
RL L CB 15 SET 1. (IY4dis) FD CB XX CE SLA C CB 21
RLA 17 SET 1.A CB CF SLA D CB 22
RLC (HL) CB 06 SET 1.B CB C8 SLA E CB 23
RLC (IX-*dis) DD CB XX 06 SET 1.C CB C9 SLA H CB 24
RLC (1Y-Hiis) FD CB XX 06 SET 1.D CB CA SLA L CB 25
RLC A CB 07 SET 1.E CB CB SRA (HL) CB 2E
RLC B CB 00 SET 1.H CB CC SRA (IX4di$) DD CB XX 2E

174

HL.DE

MNEMONIC HEXADECIMAL MNEMONIC HEXADECIMAL MNEMONIC HEXADECIMAL

SRA (IY*dis) FDCBXX2E
SRA A CB2F
SRA B CB 28
SRAC CB 29
SRA D CB2A
SRAE CB 2B
SRA H CB2C
SRA L CB 2D
SRL(HL) CB3E
SRL(IXHiis) DDCBXX3E
SRL(IY+dis) FDCBXX3E
SRLA CB3F
SR LB CB 38
SRLC CB 39
SRLD CB 3A
SRLE CB 38
SRLH CB3C
SRLL CB3D
SUB (HL) 96
SUB (IX*dis) DD96XX
SUB (lY+dis) FD96XX
SUB A 97
SUB B 90
SUBC 91
SUB D 92
SUB E 93
SUB n D6XX
SUB H 94
SUB L 95
XOR (HL) AE
XOR (IXHlis) DDAEXX
XOR (IY+dis) FDAEXX
XOR A AF
XOR B A8
XOR C A9
XOR D AA
XORn EE XX
XOR E AB
XSOR H AC
XOR L AD

175

Appendix 3.
Flag Operation Summary

177

INSTRUCTION C z P/V s N H COMMENTS

ADC HL, SS # # V # 0 X 16-bit add with carry
ADX s; ADD s # # V # 0 # 8-bit add or add with carry
ADD DD, SS # — — — 0 X 16-bit add
AND s 0 # p # 0 1 Logical operations
BITb,s — # X X 0 1 State of bit b of location s is

copied into the Z flag
CCF # — — — 0 X Complement carry
CPD; CPDR; CPI; CPIR — # # X 1 X Block search instruction

Z=1 if A-(HL), else Z=0
P/V=1 if BCyO, otherwise
P/V=0

CP s # # V # 1 # Compare accumulator
CPL — — - - 1 1 Complement accumulator
DAA # # p # — # Decimal adjust accumulator
DEC s - # V # 1 # 8-bit decrement
IN r, (C) — # p # 0 0 Input register indirect
INCs — # V # 0 # 8-btt increment
IND; INI - # X X 1 X Block input Z -0 if B^0

else Z-1
INDRJNIR - 1 X X 1 X Block input Z-0 if B^0

else Z=1
LD A,I ; LD A,R — # IFF # 0 0 Content of interrupt enable

Flip-Flop is copied into the
P/V flag

LDD; LDI — X * X 0 0 Block transfer instructions
LDDR; LDIR - X 0 X 0 0 P/V = 1 if BCy0, otherwise

P/V = 0
NEG # # V # 1 # Negate accumulator
OR s 0 # p # 0 0 Logical OR accumulator
OTDR; OTIR - 1 X X 1 X Block output; Z = 0 if By©

otherwise Z=1
OUTD; OUTI - # X X 1 X Block output; Z=0 if B^O

otherwise Z-1
RLA; RLCA; RRA; RRCA # — — — 0 0 Rotate accumulator
RLD; RRD — # p # 0 / Rotate digit left and right
RLS; RLC s; RR s; RRCs
SLA s; SRA s; SRL s

p # 0 0 Rotate and shift location s

SBC HL, SS # # V # 1 X 16-bit subtract with carry
SCF 1 — — — 0 0 Set carry
SBC s; SUB s V 1 8-bit subtract with carry
XOR x 0 p 0 0 Exclusive OR accumulator

178

SYMBOL OPERATION

C Carry flag. C =1 if the operation produced a carry from the
most significant bit of the operand or result.

Z Zero flag. Z=1 if the result of the operation is zero.
S Sign flag. S =1 if the most significant bit of the result is one,

i.e. a negative number.
PA/ Parity or overflow flag. Parity (P) and overflow (0) share the

same flag. Logical operations affect this flag with the parity
of the result while arithmetic operations affect this flag with
the overflow of the result.
If P/V holds parity, PA/ =1 if the result of the operation is
even, PA/=0 if result is odd.
If PA/ holds overflow, P/V =1 if the result of the operation
produced an overflow.

H Half-carry flag. H =1 if the add or subtract operation pro
duced a carry into or borrow from bit 4 of the accumulator.

N Add/Subtract flag. N=1 if the previous operation was a
subtract.
H and N flags are used in conjunction with the decimal
adjust instruction (DAA) to properly correct the result into
packed BCD format following addition or subtraction using
operands with packed BCD format.

The flag is affected according to the result of the operation.
— The flag is unchanged by the operation.
0 The flag is reset (=0) by the operation.
1 The flag is set (=1) by the operation.
X The flag result is unknown.
V The PA/ flag is affected according to the overflow result

of the operation.
P PA/ flag is affected according to the parity result of the

operation.
r Any one of the CPU registers A,B,C,D,E,H,L.
s Any 8-bit location for all the addressing modes allowed for

the particular instructions.
SS Any 16-bit location for all the addressing modes allowed

for that instruction.
R Refresh register.
n 8-bit value in range 0-255.
nn 16-bit value in range 0-65535.

179

NOTES

NOTES

NOTES

NOTES

Give your Amstrad programs the power and speed of machine
language without actually having to learn machine language
programming.

Now, without any additional effort, you can overcome the
limitations of BASIC. The routines in this book will help you to
develop programs of professional quality; not only will your
programs look better by giving you direct access and control
over all the graphics features, run faster, and be more
spectacular — with superb sound effects — but the
development time will be a fraction of what you would normally
expect.

The routines in this book are all presented in a format that is
both easy to enter and understand. They also have
accompanying notes and requirements, so that alteration or
enhancement becomes a simple task.

The book includes routines such as displaying large characters,
manipulating and displaying strings, inverting characters and
screen, displaying graphics shapes, drawing and much more.

Whether you are a beginner Amstrad CPC 464/CPC 664 user or
an experienced programmer, this is a book you should have by
your side at all times.

£7.95

Melbourne
House
Publishers

ISBN o-flbibi-na-s

9 780861 611980'

s

G

O
Q

O

O<n

</>

https://acpc.me/

CPC

[FRA] Ce document a été préservé numériquement à des fins éducatives et d'études, et non commerciales.
[ENG] This document has been digitally preserved for educational and study purposes, not for commercial purposes.
[ESP] Este documento se ha conservado digitalmente con fines educativos y de estudio, no con fines comerciales.

	Ready made machine language routines for the AMSTRAD
	Contents
	Introduction
	1 - Machine Language on the Amstrad
	The Routines in this Book
	Memory Use on the Amstrad
	CALLing Machine Language Programs
	Integer Variables or Numbers
	Variables Prefixed with @
	Passing Strings
	Use of ROM calls
	The Jumpblock

	2 - Text Output Routines
	3 - Graphics Routines
	4 - Scrolling the Screen
	5 - More Screen Routines
	Clearing the Screen
	Fill Routines
	Moving Characters
	Multicoloured Characters

	6 - Keyboard Operations
	7 - Sound Routines
	The Programmable Sound Generator

	MC SOUND REGISTER

	REGISTER

	Sound Techniques

	8 - Cassette Handling Routines
	Motor Control

	9 - BASIC and Machine Code
	Cleaning up
	BASIC LINE Structure
	Resident System Extensions
	The Jump Table
	The name table

	Appendix 1 - Control Code Effects
	Appendix 2 - Instructions and Op-codes
	Appendix 3 - Flag Operation Summary
	● Raw HQ scan : Maxime CROIZER for ACME | Cleaning/Cover restoration/Layout/OCR/Coca light : ACME – https://acpc.me | Thanks to Rafa CPCMANIACO for lending the book ● 2020-11-03

