
Xmstrad
CPC 464

Melbourne
House

Tneins& outsoitne ms trad

The Ins&■ Ouïs ofthe ■Amstrad
CPC 464

The Ins&■ Outs of the ■Xmstrad
CPC 464

Don Thomasson

MELBOURNE HOUSE
PUBLISHERS

© 1984 Don Thomasson
All rights reserved. This book Is copyright and no part may be copied or
stored by electromagnetic, electronic, photographic, mechanical or
any other means whatsoever except as provided by national law. All
enquiries should be addressed to the publishers:

IN THE UNITED KINGDOM —
Melbourne House (Publishers) Ltd
Castle Yard House
Castle Yard
Richmond, TW10 6TF

IN THE UNITED STATES OF AMERICA —
Melbourne House Software Inc.
347 Reedwood Drive
Nashville TN 37217

IN AUSTRALIA —
Melbourne House (Australia) Pty Ltd
2nd Floor, 70 Park Street
South Melbourne, Victoria 3205

ISBN 0 86161 190 X

Edition: 7 6 5 4 3 2 1
Printing: FEDCBA987654321
Year: 90 89 88 87 86 85 84

CONTENTS

Introduction ... VII

The Ins . . . IX
System Overview... 1
The Memory System ... 4
The Inner Peripherals ... 11

The I/O Address Map ... 11
The Video Gate Array ... 13
The CRT Controller... 14
The Parallel Peripheral Interface ... 18
The Printer Port... 21

The Outer Peripherals ... 23
The Programmable Sound Generator... 23
The Keyboard ... 26
The Cassette Recorder... 27

The Operating System ... 29
The RST Area ... 31
Jumpblock Entries ... 34
Interrupts and Events ... 34
Operating System Calls ... 37

The Interface ... 85

The Outs ... 89
General Principles ... 91
Parallel Interfaces... 93

Interface Rules... 93
Alternative Printer Port... 96
Software Support... 98
Communicating Computers... 101

Serial Interfaces ... 103
Analogue Interfaces ... 105
Sideways ROMs ... 108

ROM Types and Formats ... 109
Applications ... 112
External ROM Hardware ... 113

A Second Processor... 113

Overview ... 116

INTRODUCTION

The greater part of an iceberg lies hidden, accessible only to
those who have suitable equipment. Much the same could be
said of the capabilities of the AMSTRAD CPC464. Superficially
it may appear to be just another games-playing machine. However
there is a lot more to it than that. As with the iceberg, special
equipment is needed to explore the system capabilities in full,
and the object of this book is to provide such equipment.

Even at first glance, it is clear that the CPC464 is a little out
of the ordinary. That it has a built-in cassette recorder is by no
means unique, although the provision of a monochrome or colour
monitor, incorporating the system power supply, is a welcome
change, and other features are useful, if less obviously so.

For those who confine themselves to BASIC, the friendliness
of the machine will be sufficient to recommend it, but for the
‘hacker’, the user who wants to delve deeper into the mysteries
of the system, there is much to be explored.

Here we are mainly concerned with the way in which the
CPC464 will work with external equipment. To deal with that ef
fectively, we must first study and understand the internal system,
for that determines how add-on bits and pieces can be controlled.

The book is therefore divided into two main parts, the ‘Ins’
dealing with the internal system, and the ‘Outs’ dealing with ex
ternal additions.

It is inevitable that frequent reference will have to be made
to machine code routines. Those who need additional data on
this subject will find Programming the Z80 a useful aid. It is listed
in the Bibliography at the end of the book.

It should be said that the book is based on the cassette
system version of the CPC464, and some points may be modified
in the disc system version.

The Ins

THE INS

System Overview

The general arrangement of the internal hardware of the CPC464
is shown in Fig. 1. Note the directional arrows indicating the flow
of data or control information. They are important.

The Z80 sits at the centre of the system, and it controls —
directly or indirectly — everything that the system does. It com
municates on a two-way basis with 64K of RAM, and on a read
only basis with 32K of ROM, which is addressed in two 16K
blocks. Selection of ROM or RAM, at an address where both exist,
is controlled by signals from the Video Gate Array.

Through its I/O interface, the CPU communicates directly with
the CRT Controller, which works with the Video Gate Array to
maintain the display; with the PPI (Parallel Peripheral Interface);
and with the Printer Port. This is the primary peripheral area.

1

FIGURE 1 : INTERNAL HARDWARE SYSTEM

2

Outside that, in system terms, lies the secondary peripheral
area. This has no direct contact with the CPU, but communicates
with the primary peripheral area. The elements in this outer area
include the cassette recorder, which communicates with the PPI,
the keyboard, and the sound chip. The latter contains a pair of
data ports, one of which is used to communicate with the keyboard
output.

The Z80 CPU is driven by a 4 MHz clock, but in order to
interlace the memory accesses for the processor and display
system it is necessary to delay processor accesses, effectively
reducing the clock to 3.3 MHz.

The overall system is remarkably economical, in hardware
terms, and you may wonder how it can compete in performance
with systems that have three times as many components. The
answer lies largely in the system firmware, which is more thor
oughly organised than usual, and which displays some interesting
ingenuities. True, the bigger system can do things that the
CPC464 cannot, but many of these can be added as externals,
which means that you only pay for the ones you want. Many users
will see such facilities as unnecessary frills, while wanting features
beyond the scope of either machine.

The system programs are divided into nine groups:

a. Key Manager

Scans the keyboard, generates characters, implements
the function key expansions, tests for break, scans
joysticks.

b TextVDU

Puts characters on the screen, handles the cursor, and
responds to control codes.

c. Graphics VDU

Plots and tests points, draws lines.

d. Screen Pack

Interfaces b. and c. to the screen hardware and executes
common screen functions.

3

e. Sound Manager

Deals with sound generation.

f. Cassette Manager

Deals with cassette functions.

g. Kernel

The heart of the operating system, handling interrupts,
events, ROM selection and program execution.

h. Machine Pack

Handles printer and general hardware control.

i. Jumper

Controls access to routines via jumpblocks.

This covers the operating system, mainly held in the lower ROM.
The BASIC interpreter, if used, is held in the upper ROM, but can
be replaced by alternative programs in external ROMs.

Access to the system routines should be via the nominated
‘jumpblocks’, which are tables of jumps giving access to the
various entry points. These tables will remain unaltered in any
future version of the system, but the direct access points may
change.

The Memory System
Fig 2 shows the memory map in outline, but there is a lot of fine
detail which cannot be shown in that way. (Note that all memory
addresses are given in hexadecimal form.)

The overlap of ROM and RAM in the top and bottom quarters
of the map is a salient feature. Since bank-switching schemes
have run into problems in the past, the implications of this must
be examined carefully.

4

RAM ROM

SCREEN
RAM

LANGUAGE
ROM

STACK

WORKSPACE
AND CODE

COPIED FROM ROM

C000

BFF0

B100
EXTERNAL

ROMS

MEMORY
POOL

4000

OPERATING
SYSTEM

ROM

ROM COPY
0040
0000

FIGURE 2: OUTLINE MEMORY MAP

5

All memory writes go to RAM. It’s no use writing to ROM. It
doesn’t answer . . .

If a ROM is disabled, a memory read draws on the RAM in
that area. Either or both of the ROM blocks can be enabled
independently, in which case they supply the data for appropriate
read addresses.

The two ROM areas are in fact implemented by a single
component, a 32K ROM, the address lines of which are fiddled
as follows:

If address lines A14 and A15 are both false, address bit A14
to the ROM is false, and the lower ROM (0000-3FFF) is ad
dressed if it is enabled.

If address lines A14 and A15 are both true, address bit A14
to the ROM is true, and the upper ROM (C000-FFFF) is ad
dressed if it is enabled.

If the states of address lines A14 and A15 differ, ROM is
inactive.

The ROM enable lines come from the Video Gate Array, which
must be able to gain access to the screen memory between CPU
memory accesses. The relevant data is output to the Video Gate
Array directly, in bits 2 (lower ROM) and 3 (upper ROM) of a
control word. However, it will be seen that direct access is both
unwise and unnecessary. The other bits of the control word have
important meanings, and must be maintained in the correct state.

The RAM is implemented by eight 64K x 1 components.

Turning to fine detail of memory use, the 0000-003F area
holds the same data in ROM and RAM, the latter copied from
ROM during the initialisation process. This is necessary as the
Z80 RST instructions jump into this area, and must find code
available, whether the lower ROM is enabled or not. A number
of other short routines are packed into the same region, and they
must also be available in both ROM and RAM.

6

We will see later that certain of the RAM locations in this area
can be changed by the user for particular purposes, but this must
be done with care, adhering to strict rules.

From 0040 upwards, ROM and RAM diverge, the ROM con
taining operating system routines, while the RAM holds workspace
data. BASIC sets its stored program from 0170 upwards, for
example.

The cental area of RAM is known as the Memory Pool. Only
that part from 4000 to C000 can be guaranteed to be available
for immediate access. It would be foolish, for example, to position
the machine stack outside that area. It normally sits very com
fortably from BFFF downwards.

The upper part of the central area contains system variables
and more program that must always be accessible. In the extreme,
the block from A400 up to the stack may be occupied, if SYMBOL
AFTER 0 has been called to copy all character patterns to RAM.
If the ‘soft’ patterns remain at the standard level (From &F0 to
&FF), AB40 is the first location occupied.

Much of the area above AB40 is taken up by 'jumpblocks’,
which provide standard entries to many important routines. The
entry addresses to the routines may change, but the jumpblock
allocations will remain unaltered. This is important: It is wise to
make use of the jumpblock path, even when the actual access
point is known, because programs will then work with later marks
of operating system.

From C000 upwards, the RAM serves the screen, and ROM
implements the BASIC interpreter (Though some interpreter rou
tines are in the lower ROM). External ROMs may replace the
BASIC ROM, providing other ‘language’ implementations.

This rapid tour of the memory should have revealed the gen
eral pattern. No doubt it has encouraged thoughts of a more

7

detailed examination, in which case you may feel that the following
program would serve your purpose:

100 CLS
110 INPUT ’’Start Address”; A
120 a=a-65536«(a<0)
130 N%=A-8*INT(A/8)
140 PRINT HEX^(A,4)•
150 B=PEEK(A)
160 PRINT TAB(6+3*N%);HEX^(E,2)
170 A = A + 1
180 N%=N%+1
190 IF N%< 8 THEN 150
200
210 PRINT
220 GOTO 140

Line 120 is needed because input of a hexadecimal address
above 7FFF makes A negative, and in that event 65536 must be
added to give a positive value, or subsequent calculations will
give trouble. The variable N% puts the dumped values in the
correct column of the display, and starts a new line as appropriate.

But the results of running this program are disappointing.
Acres of zeroes are seen, with a limited amount of code here and
there. We are looking at RAM, because PEEK and POKE only
access RAM, ignoring ROM. Oh, dear! We need a different
approach.

Scanning the bulky Firmware Manual, we discover the fol
lowing calls, which will solve our problem:

B900: Enable upper ROM

B903: Disable upper ROM

B906: Enable lower ROM

B909: Disable lower ROM

For these four calls there are no entry conditions, but the
previous ROM status is returned in the A register. Flags are cor

8

rupt, but other registers are unaltered. The value returned in A
can be used to restore the Previous ROM state by use of:

B90C: Restore ROM state defined by contents of A register.
The return is with AF corrupt, but other registers are unaltered.

Conscience compels an admission that the statement that
other registers are unaltered is not entirely correct. Alternative
register O’ is changed, because it holds the updated state of the
data sent to the Video Gate Array. However, you are required not
to use the alternative registers, since they hold vital information
that may be needed at any moment.

Leave the program above set up, and overwrite it with the
following entries:

96 GOSUB 900
150 GOSUB 300
300 Q=INT(A/256)
310 POKE &7019.Q
320 POKE &7018, (A-256*^l)
330 CALL'&7000
390 B.=PEEK(&7020)
350 RETURN
900 FOR X =4 7000 TO &7012
910 READ Y
920 POKE X.Y
930 NEXT
990 RETURN
956 DATA &2A,&18,&70,&CD,&00,&B9,&F5
960 DATA A-CD,&06,&B9,&7E,&32,&20,&70
970 DATA &F1,&CD,&0C,4B9,&C9

With these changes, the program will dump ROM, upper and
lower. To see why, we must consider the machine code routine
set up by lines 400-470:

7000 2A 18 70 LD HL, (7018) ;Get byte address
7003
7006

CD 00
F5

B9 CALL B900
PUSH AF

;Enable upper ROM
;Save previous ROM
state

7007 CD 06 B9 CALL B906 ; Enable lower ROM

9

700A 7E LD A,(HL) ;Read byte
700B 32 20 70 LD (7020),A ; Store byte
700E F1 POP AF ; Recover previous

ROM state
700F CD 0C B9 CALL B90C ; Restore previous

ROM state
7012 C9 RET ; Return to BASIC

Lines 300-320 in BASIC set the value of A In 7018/9, lower
byte first, as usual. The subroutine in machine code is called, and
the value of A is picked up in HL. B900 is called to enable the
upper ROM, and the value it returns in the A register is pushed
on to the stack out of harms way. B906 enables the lower ROM,
and then the byte pointed to by HL is read into the A register and
thence into 7020. The previous ROM state is recovered from the
stack, and a call to B90C restores the ROMs to their previous
state.

Back in BASIC, PEEK(&7020) recovers the byte, and the pro
gram then proceeds as the original did.

Simple though this machine code is, purists may object that
parameters could be passed by an extension of BASIC line 300,
but that is scarcely worth while for such a short routine. The
number of parameters (in this case one, the variable A) would be
given in the A register, and register IX would point to the parameter
value, which would have to be transferred to HL, converting it
from floating point form in the process. The facility for passing
parameters is useful, but only when it is fully justified.

Putting that aside, you should now have a reasonably clear
picture of the memory system in your mind. To make good use
of the knowledge you will need to know other things, but even a
tyro may be tempted to experiment. There is plenty of room .. .

Talking of room, it is interesting to consider the statement that
42K of memory is available to the user. In hexadecimal terms,
this is A800, so the claim is not exaggerated. It would almost be
true to say 43K . . . However, the exact usage of workspace are
not too clear.

10

The Inner Peripherals

The I/O Address Map

Address Output Input
00XX to 7EXX Do not use Do not use
7FXX Video Gate Array Do not use
80XX to BBXX Do not use Do not use
BCXX CRTC Register Select Do not use
BDXX CRTC Data Do not use
BEXX Do not use Reserved (CRTC Status)
BFXX Do not use CRTC Data
C0XX to DEXX Do not use Do not use
DFXX Expansion ROM Select Do not use
E0XX to EEXX Do not use Do not use
EFXX Printer Latch Do not use
F0XX to F3XX Do not use Do not use
F4XX PPI Port A Data PPI Port A Data
F5XX PPI Port B Data PPI Port B Data
F6XX PPI Port C Data PPI Port C Data
F7XX PPI Control Undefined
F8XX Expansion Bus Expansion Bus
F9XX Expansion Bus Expansion Bus
FAXX Expansion Bus Expansion Bus
FBXX Expansion Bus Expansion Bus
FCXX to FEXX Do not use Do not use
FFXX Not used Not used

The arrangement of I/O addresses, summarised in the table given
here, appears even more complex than the memory map, but the
hardware decoding is relatively simple.

* lf address bit A15 is low, the Video Gate Array is selected.

‘If address bit A14 is low, the CRT Controller is selected.

* lf address bit A13 is low, the expansion ROM number must
be set.

‘If address bit A12 is low, the printer latch is selected.

‘If address bit A11 is low, the PPI is selected.

‘If address bit A10 is low, an expansion channel is implied.

11

Not more than one of bits A10 to A15 may be low in a given
address, which accounts for the large number of ‘do not use’
restrictions. It is especially important that this rule is observed for
inputs, since physical damage could otherwise occur.

In the case of the CRT Controller and the PPI, bits A8 and
A9 select a particular function of the device.

Since all the address bits used as above are in the upper
byte of the address, the Z80 instruction OUT (N),A must not be
used. It defines the upper address byte from the contents of the
A register, which must also hold data. IN A,(N) might be used,
if the required upper byte is first defined in the A register, but its
use is not encouraged.

The correct form of I/O instruction is OUT (C),r or IN r,(C),
where r is an eight-bit register. In this case, the I/O address is
defined by the contents of the BC register. The ‘repeating’ in
structions INIR, INDR, OTIR, OTDR must not be used, as they
employ the B register as a counter, and would generate changing
addresses.

There is a further limitation for user peripherals, arising from
the way the lower byte of the address is used.

* lf address bit 7 is low, the disc system is selected.

‘If address bit 6 is low, a reserved function is selected.

* If address bit 5 is low, a communications channel is selected.

For user peripherals, all these bits must be high, but a low
byte of &FF also has a special meaning, F8FF calling for all ex
pansion devices to be reset. The addresses available to the user
are thus:

F8E0 — F8FE

F9E0 — F9FF

FAE0 — FAFF

FBE0 — FBFF

This provides for free use of bits 0, 1, 2, 3, 8 and 9, giving
plenty of scope, providing simplified decoding is not used. If all
these bits, plus bit 10 low, are taken into account, 64 I/O channels

12

7 6 5 4 3 2 1
1 0 X X X X X

can be defined. If each bit were related to a particular channel,
no more than six channels could be used.

It is worth re-emphasising that the use of illegal I/O addresses
could cause damage in input operations, since more than one
data source could attempt to drive the highway.

The Video Gate Array

The Video Gate Array, on address 7FXX, has three types of data,
distinguished by the state of bits 6 and 7 of the data. The bit
allocations are as follows:

0 Mode & ROM setting.
x

MODE Control: 00 Mode 0
01 Mode 1
10 Mode 2
11 Illegal

Lower ROM: 0 enable
1 disable

Upper ROM: 0 enable
1 disable

Clear raster 52 divider if 1

Reserved. Must be 0.

0 Palette Pointer Register.
X

Palette pointer number.
0
X Palette Memory.

0 Colour number
X

Reserved.

ROM setting, it is essential to supply all the
active bits in the correct state, and this calls for a copy of the last

7 6 5 4 3 2 1
0 0 0 X X X X

7 6 5 4 3 2 1
0 1 0 X X X X

7 6 5 4 3 2 1
1 1 X X X X X

For mode and

13

output byte to be maintained. Such a copy is held in alternative
register C of the Z80. However, reference to that copy is automatic
when the standard jumpblock entries are used to make changes,
so there should be no need to refer directly to the register contents.

For colour setting, the palette pointer determines the ink to
be set, and the output to the palette memory determines the
colour, which is thereafter used to interpret data read from screen
memory.

The main function of the Video Gate Array is to obtain data
from the screen memory, on the basis of addresses supplied by
the CRT Controller, and rearrange it into a suitable form for trans
mission to the Video Display Unit.

The need for user access to the Video Gate Array is limited,
since the system takes care of all necessary actions, but there
could be special circumstances in which extremely fast response
was needed that could only be implemented by direct access.

The CRT Controller

The HD6845S CRT Controller is a standard component of con
siderable complexity, and it can only be described here in rela
tively superficial terms. It can be set up to control screen displays
of varying sizes and characteristics, generating the screen ref
erence addresses, the sync pulses, and putting up a synthesised
cursor character on demand.

The action of the chip is controlled by the contents of a number
of registers, eighteen in all, of which the present system accesses
sixteen. To set up these registers, it is necessary to output the
relevant register number on address BCXX, then the data on
BDXX. The standard settings are as follows:

R0 Horizontal Total: 63

This determines the horizontal scan period as 64 char
acter periods, which are in turn determined by the
clock frequency, in this case 8 MHz, giving one char
acter width per microsecond.

14

40R1 Horizontal Displayed:

This determines that 40 characters per line will be
displayed, the flyback blanking occupying 24
character periods.

R2 H Sync Position: 46

The horizontal sync pulse is generated 6 character
periods after the end of displayed characters.

R3 Sync Width: 142

This is a compound number, determining the width of
the vertical and horizontal sync pulses. The vertical
sync pulse is given as having a duration of 8 scan
lines, while the horizontal sync pulse has a duration
of 14 character periods. (8*16+14 = 142)

R4 Vertical Total: U.K. 38. U.S.A. 31

The total number of character lines (minus 1) has to
be different for 50 and 60 Hz scans. Each character
line uses 8 scan lines, so the precise figures would be
39.0625 and 32.8125, remembering that only one
frame is used, not two in interlace. The adjustment
necessary is made by R5.

R5 Vertical Total Adjust: U.K. 0. U.S.A. 6

This adds six scan lines to the vertical total in the 60
Hz case. The 50 Hz total is 39, while the 60 Hz total
is 32.75. These are acceptably close for practical
purposes.

R6 Vertical Displayed: 25

Twenty-five character lines are specified.

R7 Vertical Sync Position: U.K. 30. U.S.A. 27

Here again, there are two different standards. For 50
Hz, the vertical sync begins 5 character line periods
after the displayed area, whereas only two character
lines delay can be allowed in the 60 Hz case. In the
50 Hz case the vertical sync ends after 38 scan lines,

15

while in the 60 Hz case it ends at the full 32 character
line count, and is cut from 8 to 7 character line periods.

R8 Interlace Mode and Skew: 0

A zero entry calls for no interlace, no skew.

R9 Maximum Scan Line: 7

This determines the number of scan lines per character
line, less one. There will be eight scan lines per
character.

R10 Cursor Start: 0

No cursor is generated, because:

R11 Cursor End: 0

The cursor synthesised by the chip has zero height.

R12 Start Address (H): 48

R13 Start Address (L): 0

This determines the start address for screen memory
scan as 48 * 256 = 12288 (3000 hex). The address
is modified by the Video Gate Array.

R14 Cursor Register (H): 192
R15 Cursor Register (L): 0

This sets up the cursor address as &C000.

It need scarcely be said that these register values are so
closely interlinked that any change will destroy the display. Any
changes need to be carefully worked out in advance, taking into
account the fact that the Video Gate Array will modify the results
in some instances. For Mode 2, only one bit is needed to define
a pixel, only one byte is needed to define a row of a character
pattern. Eighty bytes must be read to define a screen line. For
Mode 1, twice as many bytes are needed, but there are half as
many characters per line, so the total number of bytes read per
scan line is still 80, though they are processed in a different way.
This can be repeated for Mode 0.

16

The addresses provided by the CRT Controller therefore have
to be processed before use. Only 40 addresses are provided by
the CRTC per scan line, but 80 bytes have to be read. The neces
sary conversion Is simple enough, but needs to be remembered
by anyone indulging in screen adventures. In general, such ac
tivities are best forgotten. The CRT Controller can usually be
regarded as a fixed-performance device, though changes to the
start address may have uses.

One function remains to be mentioned, and that concerns the
Light Pen. This uses a pin connected to the expansion interface.
A low to high transition on this pin causes the current screen
address to be copied into R16 (high byte) and R17 (low byte)
whence it may be read. The correct interpretation of this address
is best obtained by experiment, owing to the action of the Video
Gate Array in modifying addresses. The following outline of the
screen RAM layout will assist in this respect.

In all modes, the screen memory occupies 16K of RAM, nor
mally from C000 upwards. By use of the call SCR SET BASE the
screen can be moved to 4000 upwards, but other positions are
unacceptable.

The screen memory is divided into eight 2K blocks. Each
scan line of the display uses 80 consecutive bytes, but the first
scan line draws data from block 0, the second draws data from
block 1, and so on. Hence the first character in the top left corner
is defined by bytes at addresses C000, C800, D000, D800, E000,
E800, F000, F800, each giving one row of the character pattern
or, in Modes 0 and 1, part of the information for such a row. Mode
2 needs only one byte to define a character row, Mode 1 needs
two, and Mode 0 needs four.

For Mode 2, the pixels in a character pattern row are defined
by the bits of the byte read from screen memory.

For Mode 1, the pixels from left to right are determined by
bits 3 and 7, 2 and 6, 1 and 5, 0 and 4, and then the same bits
of the next byte continue the pattern row.

For Mode 0, the first pixel is defined by bits 1, 5, 3 and 7 of
the first byte, the next by bits 0, 4, 2 and 6, then by the corres
ponding bits of the three subsequent bytes.

17

None of this need worry you in the ordinary way, since the
firmware takes care of all the necessary conversions and inter
pretations, but it will at least explain the odd byte patterns which
you get if you dump screen RAM.

As a final complication, an offset is used, controllable by the
call SCR SET OFFSET (See the tabulation of operating system
calls given later). Changing the offset by &50 rolls the screen up
or down by one line. Now, this is an area where a great deal of
experiment is justified, but be wary. Remember that the rules for
each mode are different, so there will be different consequences
if you make small changes in the offset. Mode 2 will respond to
unit changes, but Mode 1 must have changes which are a multiple
of two, and Mode 0 requires a multiple of four.

Approached with suitable caution, the screen offers a number
of interesting possibilities, but rash fiddling will create chaos. Look
through the list of operating system calls, and use them after
careful thought.

The Parallel Peripheral Interface

The Parallel Peripheral Interface is another standard component.
It implements three ports, which can be set up for input or output.
Each port has its own address, and the control register, which
determines port action, has a fourth address.

In the CPC464, the standard configuration is:

Port A: Input or output as necessary. Bidirectional com
munication with the data lines of the sound generator
chip. Output is used to set up sound: Input senses
keyboard output.

Port B: Input only, with the following allocations:

Bit 0: Frame flyback pulse
Bit 1: 0 if link LK1 fitted These links determine
Bit 2: 0 if link LK2 fitted the name which the
Bit 3: 0 if link LK3 fitted CPC464 gives itself!
Bit 4: 0 if link LK4 fitted (60 Hz frame scan)
Bit 5: 0 if expansion port active
Bit 6: 1 if printer busy
Bit 7: Cassette data

18

Port C: Output only, with the following allocations:

Bit 0: Keyboard input 0
Bit 1: Keyboard input 1
Bit 2: Keyboard input 2
Bit 3: Keyboard input 3
Bit 4: Cassette motor control
Bit 5: Cassette data
Bit 6: BC1 to sound chip
Bit 7: BDIR to sound chip

These allocations are essential, but as a matter of interest the
chip configuration is set up by sending a control word to I/O
address F7XX. This word has two formats, one setting up the chip
mode, the other setting or resetting bits of Port C, of no great
interest in this context.

The format for mode setting is:

7 6 5 4 3 2 1 0
1 X X X X X X X

Port C low
Port B
Mode for above
Port C high
Port A
Mode for above

Mode 0 is basic input/output, mode 1 is strobed input/output,
mode 2 is bi-directional bus. If a port bit is set to 0, the port works
in output mode, if the bit is set to 1 the port works in input mode.
The byte sent by the CPC464 control system is &82, setting mode
0, Port B input, Ports A and C output. (Port C is implemented in
two halves, which can be set up independently.)

Being deeply embedded in the hardware system, the PPI
offers little scope for experimentation or change.

19

STROBE 1 19 GROUND
D0 2 20 GROUND
D1 3 21 GROUND
D2 4 22 GROUND

D3 5 23 GROUND
D4 6 24 GROUND
D5 7 25 GROUND
D6 8 26 GROUND
D7 9 27 GROUND
NC 10 28 GROUND

BUSY 11 29 NC
NC 12 30 NC
NC 13 31 NC

GROUND 14 32 NC
NC 15 33 GROUND

GROUND 16 34 NC
NC 17 35 NC

Note: A 34-way connector is used, but the numbering is adapted
to suit the 36-way printer connector, on which pins 18 and 36 are
unused.

FIGURE 3: PRINTER CONNECTOR

20

The Printer Port

The ‘Centronics Latch’, addressed by EFXX, is quite simple, in
fact a little too simple for some users, since it carries only seven
data bits, plus a strobe. There are a number of printers which will
find their performance limited, though only by a loss of the block
graphics of the type associated with Tandy systems. The upper
control codes, beginning at &80, are also lost, but while that could
be an embarrassment on some machines, due to conflict of the
lower control codes with VDU codes, the separation of VDU and
printer data into different streams makes the loss less important.

Note, however, that bit 7 of any codes in the upper half of the
ASCII range will be lost, which may on occasion produce un
expected results.

If an attempt is made to drive the printer directly, the following
rules must be applied:

The data bits must be firm at least 1 before the start of
the strobe pulse, and must remain firm until at least 1 /¿S after
the end of the strobe pulse.

The duration of the strobe pulse must be 1 to 500 /zS.

The strobe pulse must not be transmitted when the Busy
signal from the printer is true. This bit can be sensed by
reading bit 6 of the input to Port B of the PPI.

The need to consider these rules can be avoided by using
facilities provided by the operating system:

CALL BDF1: MC WAIT PRINTER

The character code to be sent is in the A register on entry.
If the character was sent correctly, the routine returns with
carry true, but carry false indicates that the port timed out.
Registers A and BC are corrupt on return, other registers
unaltered.

It is possible to divert this call to user code, in which case
other related calls are of interest.

21

CALL BD28: MC RESET PRINTER

The normal indirection of BDF1 is restored. There are no
entry conditions, but AF, BC, DE and HL are corrupt on
return.

CALL BD2B: MC PRINT CHAR

This calls MC WAIT PRINTER, even if the indirection has
been changed.

The arrangement of these calls allows the user to get the
codes being passed to the printer and apply conditional changes.

The timeout period is approximately 0.4 sec.

Other related calls are:

CALL BD2E: MC BUSY PRINTER

No entry conditions. The return is with carry true if the printer
is busy (or not fitted), false if the printer is idle. Flags are
corrupt, but registers are preserved.

CALL BD31: MC SEND PRINTER

The character in the A register is passed to the printer. The
return is with carry true, A corrupt, and other registers pre
served. This call may only be used if the printer is not Busy.

These are examples of the facilities which lie in wait in the
operating system for those who are able to use them. They need
to be called via machine code, since parameters have to be set
or flags sensed, but the routines required are simple enough for
a tyro to attempt.

There is one other point to watch. The CPC464 outputs both
CR and LF codes, but it also earths printer line 14, which makes
some printers add another LF action. To obtain single-spaced
text, it is necessary to disconnect line 14, which over-rides the
setting of the internal DIL-switches. The problem does not arise
with the AMSTRAD DMP1 printer, which has a slightly different
interface.

22

The Outer Peripherals

The Programmable Sound Generator

The AY-3-8912 Programmable Sound Generator is an interesting
device. It has three independent sound outputs, which can be
set up to generate square-wave tones or pink noise. The volume
level on each channel can be set to sixteen values, from silent
to maximum, and there is a relatively simple form of internal en
velope control. There are also two I/O ports, of which the CPC464
uses one.

A fully comprehensive description of this component would
take up a disproportionate amount of space, but the following
notes will cover the aspects special to the CPC464 system.

The PSG has sixteen control registers, and the method of
accessing them is similar to that used with the CRTC: A register
is selected first, and data can then be read from or written to it.
The transfer modes are selected by three control lines, BDIR,
BC1 and BC2. In the CPC464 BC2 is tied high, while BC1 and
BDIR are controlled by bits 6 and 7, respectively, of Port C of the
PPI. This gives the following modes:

BDIR BC1

0 0 Inactive

0 1 Read from PSG

1 0 Write to PSG

1 1 Latch address. (Select register)

The registers may be summarised thus:

R0-R5: Taken in pairs, determine the tone on channels A, B
and C respectively. Even-numbered registers contain low 8
bits of tone data, odd-numbered registers contain upper four
bits of tone data, giving 12-bit data in all.

R6. Noise Period. Five bits.

R7. Enable control. A 1 state disables, Bits 0-2 control tone
for the three channels, Bits 3-5 control noise for the three

23

channels, bits 6 and 7 control the two ports. (1 for output, 0
for input.)

R8-R10. Channel amplitude. Five bits. Values 0 to &F give
fixed levels. &1X gives envelope control.

R11-12. Envelope period. 16-bit word.

R13 Envelope type. Sixteen options.

R14-R15. I/O channels.

The tone period data set in the first three pairs of registers
is defined by:

Period data = 125000/Required frequency.

The clock fed to the said generator is at 1MHz.

Access to the chip is simplified by the use of a call:

MC SOUND REGISTER: CALL BD34

A must hold register number.

C must hold data to be sent.

On exit, AF and BC are corrupt.

Use of this direct access may prove to be more convenient
than control of the chip by the complex BASIC commands. The
full envelope control and automatic tone envelope control are not
available, but the envelope control within the chip is quite versatile.
The options are chosen by a four-bit word as follows:

0 to 3: Loud attack, fading to silence.

4 to 7: Build-up to full, then silence.

8: As 0-3, but repeated.

9: As 0-3.

10: Starts loud, fades, rises, and repeats.

11: Loud attack, fade to silence, then full.

12: Soft attack, builds to maximum, repeats.

24

13: Soft attack, builds to maximum, holds.

14: As 10 inverted.

15: As 4.

The contents of registers R11-R12 determine the time scales
of envelope action.

The simplest way to experiment with the sound chip is to use
a BASIC routine to set up the parameters and then call the fol
lowing short block of machine code:

7000 C5 PUSH BC

7001 E5 PUSH HL ;Save registers

7002 F5 PUSH AF

7003 21 10 70 LD HL,7010 ¡Set HL as pointer

7006 7E LD A,(HL) ;Read register number

7007 23 INC HL ¡Advance pointer

7008 4E LD C,(HL) ¡Read data

7009 CD 34 BDCALL BD34 ¡Call MC SOUND
REGISTER

700C F1 POP AF

700D E1 POP HL ¡Restore registers

700E C1 POP BC

700F C9 RET ¡Return to BASIC

The BASIC program must set up the above code, as was
demonstrated in the dump program earlier, and poke the register
number into &7010, the data into &7011. In some instances it will
be necessary to set two registers to cover the complete data, and
since individual ideas on the nature of the BASIC program are
bound to differ it will not be given in full. Working out what is
wanted will be a good exercise for a beginner, and will not trouble
the more experienced.

25

The sound output of the three channels is combined to feed
the internal loudspeaker, but split on the stereo output, channel
B feeding both sides, channels A and C one side each.

The square-wave tone is broadly characteristic of the clarinet,
but two or more tones of this type do not always blend well. It is
worth experimenting with low-pass filters in the stereo output lines
to obtain a more rounded tone.

Considerably more could be said about this interesting chip,
but enough data has been provided to allow and encourage
experiment.

The Keyboard

The keyboard is of the usual matrix-connected type, using ten
input rows and eight output columns. The rows are driven by bits
0-3 of channel C, and the columns are sensed via the PSG port
and Port A of the PPI.

The key number allocated to a given key is given by adding
the column number to eight times the row number. Thus the key
connected to the third row wire and the second column wire is
number 17, the wires being numbered from 0.

The keyboard is checked fifty times a second, and if any key
is depressed its number is entered in a buffer, and an entry is
made in a ‘bit map’. The key remains marked as depressed until
it has been released for two successive scans, this being a pro
tection against contact bounce. However, the system is vulnerable
to the simultaneous depression of three keys at the corners of a
rectangle of the matrix, the key at the fourth appearing to be
depressed as well. This does not seem to create problems in
practice.

It is only when a key number is removed from the keyboard
buffer that it is translated into a code, by reference to three tables
that define the key/code relationship for different shift states. The
shift state is also determined by buffer contents, so there is no
risk of translation error arising because the shift state has changed
since the key was pressed.

In addition to the Caps Lock state, toggled into and out of
use by the Caps Lock key, there is also a Shift Lock state, which

26

can be toggled on and off by pressing the Caps Lock key with
the Control key pressed, but direct transition from Shift Lock to
Caps Lock and vice versa is not possible. The normal state must
intervene.

For certain code values, expansion into strings is possible,
and the system is arranged so that either the code value or the
expansion can be obtained, according to which operating system
call is used.

The joystick connector links directly into the keyboard matrix,
and is sensed by the same mechanism.

The Cassette Recorder

The cassette recorder has a three-wire interface with the rest of
the system, the input and output data paths and the motor control.
It is a welcome fact that fast forward wind and rewind are not
affected by motor control, and can be used at any time.

The recording method used employs square-wave cycles,
those for a high bit having twice the duration of those for low bits.
The mean frequency can be varied between 700 and 2500 baud,
though 1000 and 2000 baud are regarded as standard. During
playback, the system deduces the recording speed used by
examination of the leader tone, which consists of a long sequence
of high-state cycles.

The overall format of a record is:

A leader.

N segments.

A trailer.

The leader consists of a pre-record gap, 2 048 high-state bits,
a zero bit, and a sync byte. The sync byte is &2C for a header
record, &16 for a data record.

Each segment consists of 256 data bytes and two CRC (Cyclic
redundancy check) bytes. The CRC polynomial used is:

x15 + x12 + x5 + 1

The initial seed is &FFFF. The first CRC byte is the high byte.

The trailer consists of 32 high-state bits.

27

The complete file begins with a header record containing 64
bytes which determine the way in which the remaining records
in the file are read and interpreted. The make-up of the header
is shown in the following table.

HEADER BLOCK FORMAT FOR CASSETTE RECORDING

User fields:

Bytes 0/15: Filename, padded out with null codes.

Byte 16: Block number.

Byte 17: Non-zero if last block.

Byte 18: File type:
Bit 0: True for protection.
Bits 1-3: 0: Internal BASIC

1: Binary
2: Screen Image
3: ASCII
4-7: Unallocated

Bits 4-7: Version (1 for ASCII, else 0)

Bytes 19/20: Data length. (Of record)

Bytes 21/22: Data location. (Start address when recorded)

Byte 23: Non-zero if first block.

Bytes 24/25: Number of bytes in file.

Bytes 26/27: Execution address for machine code.

Bytes 28/63: Unallocated.

The operating system calls associated with the cassette re
corder are somewhat more comprehensive than those available
in BASIC. CAS NOISY will disable prompt messages, CAS RE
TURN puts a character back into the read buffer, so that it can
be examined but read again later, CAS OUT ABANDON allows
an output file to be discarded, while CAS CHECK compares a
record on tape with the contents of store, giving a Verify facility.
These calls will be found listed in the tabulation of operating
system calls.

28

In general, the normal cassette handling facilities will suffice
for most purposes, but it is useful to know that there are other
possible modes of working. These, however, are likely to be purely
local, and would not produce tapes that could be used on other
CPC464 machines, and that is a deterrent.

An important point to note is that normal interrupt service is
suspended while the cassette recorder is in use, since interrupt
handling could ruin the signal timings. The elapsed time clock
does not advance, and other interrupt-controlled functions are
left to their own devices.

However, at whatever level it is used, the cassette system
has its advantages. There is one mystery about it which has not
been solved, though. After text data has been recorded or re
covered, there is sometimes a long wait for the prompt messages.
It is suspected that a ‘garbage disposal’ session is involved, the
time being about right .. .

The Operating System

Having examined the internal hardware of the CPC464, we must
now look at the firmware. This is not a simple matter. There are
more than 200 entry points, and all are in RAM, so that they can
be altered if you wish, accessing your own code instead of — or
in addition to — the normal routines.

For each entry point there is a function to be performed, there
are entry conditions, there are exit conditions, and there is a list
of the registers and flags that will have been corrupted. All this
is tabulated at the end of this section, in concise form to minimise
the space consumed.

Some of the routines, which have no entry conditions and
which return no data, are accessible from BASIC, but as we have
already seen there is usually a need to pass parameters from
BASIC to machine code and back.

The standard method of passing parameters is effective but
a little complex. Anyone using it is immediately confronted by the
complications of the different ways in which data is stored by
BASIC:

29

Integers are held In pairs of bytes as straight binary, low byte
first.

Strings involve a string descriptor and a string body. The
string descriptor uses three bytes, the first to define the length
of the string, then the address of the actual string. Only the
descriptor need be passed as a parameter.

Real numbers are stored in five-byte floating point, the man
tissa first (lowest byte first), and the exponent byte last. Con
verting that to integer form, or attempting to perform
calculations with it would be far from easy.

Fortunately, the parameters of a CALL are passed in simplified
form. The integer is passed as a signed two-byte word, effectively
unchanged. A real number is forced into unsigned integer form.
A variable is passed as its address, and the address of a string
descriptor Is given.

Each parameter is therefore passed as a two-byte word, and
the words are stored in a block to which the IX register points,
while the number of parameters is set in A. To complicate matters,
IX initially points to the last parameter.

So, suppose you want to call GRA LINE ABSOLUTE, which
draws a line to a point defined by the contents of DE and HL, as
the X and Y coordinates of the end point. You cannot call the
entry address, BBF6, directly, because DE and HL must be set
up first. What you will have to work from is:

A = 2 (Two parameters)

(IX + 2) = Parameter 1 (X)

(IX) = Parameter 2 (Y)

You need a routine which will copy (IX) to HL, and (IX+2) to
DE. That is fairly simple:

7000 DD 6E 00

7003 DD 66 01

7006 DD 5E 02

7009 DD 56 03

LD L,(IX)

LD H,(IX + 1)

LD E,(IX+2)

LD D,(IX+3)

Then you can call BBF6, following it by a return code (C9).

30

Notice that the count of parameters in A was not used. We
assumed that it was correct.

Perhaps you can see now why it was considered easier to
pass parameters in the earlier BASIC/machine-code routines by
poking them into store locations. Not as neat on the BASIC side,
perhaps, but easier overall. It would be possible to create a gen
eral routine for picking up parameters, in which case the eventual
call, if any, would be one of the parameters, but poking and
peeking are usually simpler.

No, it is not an easy matter to make use of operating system
routines by BASIC alone. To get the most out of the CPC464, you
must tangle with machine code.

As noted earlier, there are a few operating system entries
which can be used from BASIC without trouble. Many of these,
however, are already accessible via BASIC commands. Scan
through the tabulation, and you will soon pick out those that are
usable but not already covered.

One final point on this theme: BASIC seems able to recover
after a CALL without difficulty, but it may sometimes be useful to
save the main registers on the stack before calling an operating
system routine and restore them afterwards, just in case . . .

The RST Area

Mention has been made of the routines packed into the ‘RST
Area’, and you will need to know about these if you are to take
full advantage of the facilities offered. The available entries are:

0000 Startup entry, also accessed by op-code &C7. Com
plete reinitialisation follows use of this entry.

0008 Accessed by &CF, which has been converted into
a pseudo op-code. The two bytes following &CF are
picked up as data, using the standard low-byte-first
convention. Bits 0 to 13 define an address in the
bottom quarter of memory. Bit 14 controls lower ROM,
a 1 state disabling, and bit 15 similarly controls the
upper ROM. It is therefore possible to switch banks
and jump in response to a single call, the actions
appearing simultaneous. For example, CF F2 87 will

31

jump to 07F2 with the lower ROM enabled and the
upper ROM disabled.

000B Similar to 0008, but the two-byte definition is in HL.

000E Jump to an address defined in BC.

0010 Accessed by &D7. This is known as SIDE CALL. The
defining bytes follow &D7. Bits 0-12 are added to
C000 to define an address in upper ROM, while bits
13-15 define a ‘sideways ROM in terms of an offset
from the ROM select address of the main foreground
ROM. This allows direct access to a point in a given
sideways ROM.

0013 Known as SIDE POHL. As 0010, but the two defining
bytes are in HL.

0016 Known as PCDE. Jump to an address defined in DE.

0018 Accessed by &DF. Known as FAR CALL. The two
bytes which follow &DF are the address of a three-
byte definition, in which the first two bytes give the
required memory address, the third byte YY selecting
a sideways ROM on the following basis:

YY = 0 to &FB: Select ROM YY: Enable
lower.

upper, disable

YY = &FC No ROM change: Enable
lower.

upper, enable

YY = &FD No ROM change: Enable
lower.

upper, disable

YY = &FE No ROM change: Disable
lower.

upper, enable

YY = &FF No ROM change: Disable
lower.

upper, disable

001B FAR PCHL. As 0018, but address in HL, YY in C.

001E PCHL: Jump to address defined in HL.

0020 RAM LAM. Equivalent to LD A,(HL), but always ac
cesses RAM, whatever the ROM state. Accessed by
&E7.

32

0023 FAR ICALL. HL holds the address of a three-byte
definition, of which the first two bytes define an ad
dress, and the third has the significance of YY as
listed above.

0028 FIRM JUMP. Accessed by &EF. The two bytes fol
lowing &EF define a location in lower ROM or central
RAM. Note that this is a jump, not a call, and a return
address must be supplied on top of the stack.

All the above are copied from ROM into RAM during initial
isation, and must not be altered. We now reach a point where
‘patching’ is permissible.

0030 If this point is entered (by &F7) with the lower ROM
enabled, the following actions are executed:

Disable interrupt

Copy current ROM state to 002B

Disable lower ROM

Enable interrupt

Go to 0030 (In RAM)

It is therefore possible to patch user code in the 0030-0037
area with the assurance that it will be executed if 0030 is entered,
whether the lower ROM is enabled or not. Location 0030 in RAM
is initialised to &C7 to cover a situation where no patching is
carried out. The standard operating system does not call 0030.

The Z80 is set for operation in interrupt mode 1, so it responds
to an interrupt signal by calling an entry to 0038. Since either
ROM or RAM may be active when interrupt occurs, both store
banks must hold a jump to the interrupt handler. If the handler
fails to recognise the source of the interrupt, it calls 003B, which
usually holds a return op-code in both ROM and RAM. The call
is made with ROM disabled, however, so the user can patch his
own code in RAM between 003B and 003F. The code will normally
be a jump to a handling routine stored elsewhere.

The entry at 0038 could — but must not — be called by op
code &FF.

33

Making full use of these facilities calls for careful thought and
a familiarity with the Z80 instruction set. However, the worst con
sequences of mistakes can be put to right by a system reset.

Jumpblock Entries

At the end of this section, a list of more than two hundred operating
system calls is given. These should normally be accessed by way
of the ‘jumpblock' entries, which are held in RAM and can therefore
be modified. This provides a powerful programming tool.

Suppose, for example, that you wish to alter the routine that
sends code to the printer. This is accessed at BD2B, the MC
PRINT CHAR entry. At BD2B there is the following code:

CF F2 07

As noted earlier, this performs a jump to 07F2 in lower ROM,
where the printer driver routine is stored. However, the link can
be patched to give a jump to an entirely different user routine,
which is executed in place of the standard routine. Details of this
procedure are given in the latter part of the book, in relation to
an alternative set of hardware forming an eight-bit printer
interface.

Since the revised code will be held in RAM, and preferably
in the centre half of the address range, the CF command is not
necessary, and a normal &C3 jump code will be adequate.

It will be evident that some operating system calls should not
be altered, since the consequences of change would be too
extensive, but cautious experiment will always be in order.

Interrupts and Events

The CPC464 uses four standard timed interrupts:

’The Fast Ticker, occurring 300 times a second.

’The Sound Timer, occurring 100 times a second.

’The Frame Flyback, occurring at vertical scan frequency.

’The Ticker, occurring 50 times a second.

34

These are all normal interrupts of the maskable type. No
provision is made for dealing with Non-Maskable Interrupts (NMI),
which would cause a jump to 0066. That might be in ROM or
RAM, so the consequences would be unpredictable.

Events are short routines which may be triggered by interrupts
or by permission of the current foreground program. Those trig
gered by interrupt are called ‘asynchronous events’, those trig
gered by program action are called ‘synchronous events’.
Normally, a queue of event calls is used, with separate queues
for the two kinds of event, but ‘express events’ are serviced as
soon as they are called. Express events should be as short as
possible, and may not enable interrupt or corrupt the IX and IY
registers.

Events are defined by ‘event blocks', which are set up by the
operating system call KL INIT EVENT on the basis of data sup
plied. This data includes the address and ROM number of the
routine to be executed, and the location of the event block, which
is seven bytes long. The class of the event must also be stated,
using a byte defined as follows:

Bit 0 is true if the event involves a ‘near address’, false if a
‘far address’ applies, (see notes on the RST area.)

Bits 1 to 4 are only relevant to synchronous events, for which
they define a priority level.

Bit 5 is always zero.

Bit 6 is set to 1 for an express event.

Bit 7 is set to 1 for an asynchronous event.

KL INIT EVENT sets up an event block of the form:

Bytes 0,1: Chain Link to next block.

Byte 2: Count of events outstanding

Byte 3: Class of event >

Bytes 4,5: Address of event routine.

Byte 6: ROM select state required.

Reversed in
CPC464
documentation.

Bytes 7 onward may be set by the user to provide parameters.

35

To allow the event routine to pick these up, it is supplied with the
address of the event block.

When an event is ‘kicked’, the count in byte 3 is incremented,
and the count is decremented when the event is serviced. An
event can be disabled by setting the count byte to - 64. If the
count is zero it is not decremented, and if it is &7F it is not
incremented.

Operating system calls are available to arm and disarm
events. The foreground program must check at regular intervals
for outstanding synchronous events.

For asynchronous events, the event block is tagged on to a
header block appropriate to the type of interrupt involved. For
Ticker interrupts:

Bytes 0,1: Tick chain link.

Bytes 2,3: Tick count.

Bytes 4,5: Recharge count.

Bytes 6 on: Event block.

The count is set from the recharge count when an event is
‘kicked’, and is then decremented for each appearance of the
Ticker interrupt. When the count reaches zero, the event is again
kicked, and the count is set to the recharge value. Thus, if the
recharge count is set to 5, the event wil be kicked on every fifth
Ticker interrupt, or ten times a second.

For Frame Flyback and Fast Ticker interrupts, only the Chain
Link is prefixed to the event block.

Note that event and interrupt blocks are set automatically by
operating system calls, and should not be modified by the user
except where otherwise indicated.

On first acquaintance, the interrupt and event system is of
daunting complexity, but its potential is enormous. Using it to
display the time of day in a corner of the screen, while a normal
program proceeds, is merely scratching the surface of the pos
sibilities. A really inspired user might well fill the entire area of
middle RAM with event blocks and their routines, but that could
lead to a situation in which the computer was asked to achieve
the impossible. There is only one processor, and it can only do

36

a given amount in a given time. Each event pulls it away from its
foreground task, using up execution time and perhaps reducing
foreground time to nearly zero.

In particular, the Fast Ticker needs to be used with caution.
If the events it calls take, say, 330 microseconds to execute, they
will absorb a tenth of the processing time, slowing down fore
ground execution in the same proportion.

All event and interrupt blocks should be held in the centre
half of RAM, so that they are always accessible. A 'safe area' can
be defined by using the BASIC command MEMORY, which can
be used to create a protected area of store. This will be examined
in more detail later.

Operating System Calls

The operating system calls identified by AMSOFT are listed here
in as concise a manner as possible. Further details can be found
in the AMSTRAD CPC464 Firmware book. (See bibliography.)

Each call is identified by a name and the address of its jump
block entry. Each jumpblock entry defines the address of the
actual routine, and that address could be used if speed is vitally
important, but the correct ROM state must then be set, whereas
the jumpblock entry sets the state required automatically.

It should also be noted that AMSTRAD guarantee the jump
block entries, but not the direct routine entries, which may change
in later versions of the ROM.

For one section of the jumpblock, no call names or functions
are described by AMSOFT. Investigation of some of these entries
showed a converter from integer variables to floating point and
other useful functions. These are used by BASIC, but a full def
inition of their characteristics is not feasible, since they involve
a knowledge of the internals of the BASIC interpreter.

It can be assumed that registers not mentioned under Exit
conditions are preserved. However, it should be noted that this
does not include the ‘alternate’ registers, which are not available
for the user.

37

Operating System Calls
KM INITIALISE: BB00

Initialises Key manager completely, all variables, buffers and
special indirections being lost.

No entry conditions.

On exit AF, BC, DE and HL are corrupt.

KM RESET: BB03

Resets Key Manager indirections and buffers.

No entry conditions.

On exit AF, BC, DE and HL are corrupt.

KM WAIT CHAR: BB06

Waits for a character from the keyboard buffer or expansion
string.

No entry conditions.

On exit the character code is in A and carry is true. Other
flags are corrupt.

KM READ CHAR: BB09

Takes a character from the keyboard buffer or expansion
string if one is immediately available. Does not wait.

No entry conditions.

On exit, if a character is available the code is in A and carry
is true, else carry is false and A corrupt. Other flags corrupt.

KM CHAR RETURN: BB0C

A character is re-inserted in the keyboard buffer, so that it
can be read again later, allowing the character to be checked
without being lost.

Only one character can be ‘put back’ at a time. The character
put back must be read before another is put back.

38

On entry, A holds code of character to be put back.

On exit, all flags and registers are preserved.

KM SET EXPAND: BB0F

Sets up an expansion string related to a given token code.

On entry, B holds the expansion token to be used, and C
holds the length of the string to be set. HL points to the string.

On exit, carry is true if the setting was successful, else false.
A, BC, DE, HL and other flags are corrupt.

Note: The string must lie in RAM, not ROM.

KM GET EXPAND: BB12

Read a character from an expansion string. The first character
is number 0.

On entry, A holds the expansion token and L holds the char
acter number.

On exit, if the get was successful carry is set and the character
code is in A, else carry is false and A is corrupt. DE is corrupt,
and so are flags other than carry.

KM EXP BUFFER: BB15

A buffer for expansion strings is allocated, and initialised with
the default expansion strings.

On entry, DE holds the address of the buffer, HL holds its
length.

On exit, carry is true unless the buffer is too short. A, BC, DE,
and HL are corrupt, so are flags other than carry.

KM WAIT KEY: BB18

Waits for a key from the key buffer.

No entry conditions.

On exit, carry is true and A holds the character or expansion
token. (Tokens are not expanded.)

39

KM READ KEY: BB1B

Takes a key from the key buffer if one is available.

No entry conditions.

On exit, if a key was available carry is true and A holds the
character code or expansion token, else carry is false and
A is corrupt. Other flags are corrupt.

KM TEST KEY: BB1E

Tests whether a specified key is pressed.

On entry A holds a key number.

On exit, if the key is pressed the zero flag is false, else true.
Carry is always false, C contains the current shift and control
state, A, HL and other flags corrupt.

KM GET STATE: BB21

Checks for Caps and Shift LOCK states.

No entry conditions.

On exit, L holds Shift Lock state, H holds Caps Lock state.
If the lock is on, the state is &FF, else 0. AF is corrupt.

KM GET JOYSTICK: BB24

Check joystick state.

No entry conditions.

A and H contain state of joystick 0. L contains state of joystick
1. Flags are corrupt.

The reported bytes have the following form:

Bit 0 UP

Bit 1 DOWN

Bit 2 LEFT

Bit 3 RIGHT

Bit 4 FIRE 2

40

Bit 5 FIRE 1

Bit 6 Spare Button

Bit 7 0

KM SET TRANSLATE: BB27

Set code or token generated by given key.

On entry, A holds key number, B holds code or token.

On exit, AF and HL are corrupt.

The following token values have special use:

80 - 9F Expansion tokens.

EO - FC Edit system codes.

FD Caps Lock.

FE Shift Lock.

FF Ignore. (Key has no meaning.)

KM GET TRANSLATE: BB2A

Check translation of key with neither Shift nor Control.

On entry, A holds a key number.

On exit, A holds the translation. HL and flags corrupt.

KM SET SHIFT: BB2D

Set translation of key with Shift, not Control.

On entry, A holds a key number, B holds translation.

On exit, AF and HL are corrupt.

See KM SET TRANSLATE for special code meanings.

KM GET SHIFT: BB30

Check translation of key with Shift, not Control.

On entry, A holds a key number.

On exit, A holds the translation. HL and flags are corrupt.

41

KM SET CONTROL: BB33

Set translation of a key with Control.

On entry, A holds key number, B holds translation.

On exit, AF and HL are corrupt.

See KM SET TRANSLATE for special code meanings.

KM GET CONTROL: BB36

Check translation of key with Control.

On entry, A holds a key number.

On exit, A holds the translation, HL and flags are corrupt.

KM SET REPEAT: BB39

Determine whether a key is allowed to repeat.

On entry, A contains the key number; B contains &FF if the
key is to be allowed to repeat, else 0.

On exit AF, BC and HL are corrupt.

KM GET REPEAT: BB3C

Check whether a key is allowed to repeat.

On entry, A holds a key number.

On exit, the zero flag is false if the key is allowed to repeat,
else true. Carry is false, A, HL and other flags corrupt.

KM SET DELAY: BB3F

Set key repeat delay and period.

On entry H holds start delay, L holds repeat period. Values
are in fiftieths of a second. A zero value counts as 256.

On exit, AF is corrupt.

KM GET DELAY: BB42

Check key repeat delay and period.

No entry conditions.

42

On exit, H holds start delay, L holds repeat period. Values
are in fiftieths of a second. AF is corrupt.

KM ARM BREAKS: BB45

Enable break events.

On entry DE holds the address of the break event routine, C
holds the ROM select address for the routine.

On exit AF, BC, DE and HL are corrupt.

KM DISARM BREAK: BB48

Disable break events. (This is the default state.)

No entry conditions.

On exit AF and HL are corrupt.

KM BREAK EVENT: BB4B

Generate a break if break events enabled. Disable break
event.

No entry conditions.

On exit AF and HL are corrupt.

A break event token (&EF) is placed in the key buffer. This
generates a break event when read from the buffer.

TXT INITIALISE: BB4E

Full initialisation of the Text VDU, including all variables and
indirections.

No entry conditions.

On exit AF, BC, DE and HL are corrupt.

TXT RESET: BB51

Resets the Text VDU indirections and control table only.

No entry conditions.

On exit AF, BC, DE and HL are corrupt.

43

TXT VDU ENABLE: BB54

Allow screen display for currently-selected stream.

No entry conditions.

On exit AF is corrupt.

TEXT VDU DISABLE: BB57

Bar screen display for currently selected stream (including
cursor).

No entry conditions.

On exit, AF is corrupt.

TXT OUTPUT: BB5A

Output a code to the Text VDU.

On entry A holds the code to be sent.

On exit all flags and registers are preserved.

TXT WR CHAR: BB5D

Print a character at the cursor position of the current stream.
Control codes are printed, not obeyed. VDU must be enabled.

On entry A holds the character code.

On exit AF, BC, DE and HL are corrupt.

TXT RD CHAR: BB60

Read a character from the screen at the cursor position of
the current stream.

No entry conditions.

On exit, if a recognisable character was found; Carry is true
and A holds the character code, else carry is false and A
holds zero.

Other flags are corrupt.

TXT SET GRAPHIC: BB63

Enable or disable graphics character option.

44

On entry, A holds zero to turn on option, non-zero to turn it
off.

On exit, AF is corrupt.

TXT WIN ENABLE: BB66

Set up window for current stream.

On entry, D and H contain edge columns, the smaller being
the left edge. E and L contain edge rows, the smaller being
the top.

On exit AF, BC, DE and HL are corrupt.

TXT GET WINDOW: BB69

Check the boundaries of the window for the current stream.

No entry conditions.

On exit H contains left column, D contains right column, L
holds top row, E holds bottom row. Carry is false if the window
covers the whole screen.

In the last two calls, column and line positions count from 0,
not from 1, as in BASIC.

TXT CLEAR WINDOW: BB6C

Set the text window of the current stream to the paper ink for
that stream. Cursor to top left corner.

No entry conditions.

On exit AF, BC, DE and HL are corrupt.

TXT SET COLUMN: BB6F

Move the cursor for the current stream to a specified column.

On entry A holds the required column number. (1 upwards.)

On exit AF and HL are corrupt.

TXT SET ROW: BB72

Move the cursor for the current stream to a specified row.

On entry A holds the required row number. (1 upwards.)

On exit AF and HL are corrupt.

45

TXT SET CURSOR: BB75

Move the cursor for the current stream to a specified row and
column.

On entry H holds the column, L holds the row. (1 upwards.)

On exit AF and HL are corrupt.

TXT GET CURSOR: BB78

Check the location of the cursor for the current stream and
the ‘roll count’.

No entry conditions.

On exit H contains the column and L the row. A contains the
roll count, which is decremented when the window is rolled
up, and incremented when the window is rolled down. The
cursor position given is not necessarily valid.

TXT CUR ENABLE: BB7B

Enables the cursor for the current stream.

No entry conditions.

On exit, AF is corrupt.

TXT CUR DISABLE: BB7E

Disables the cursor for the current stream.

No entry conditions.

On exit, AF is corrupt.

TXT CUR ON: BB81

Allows the cursor for the current stream.

No entry conditions.

All flags and registers preserved.

TXT CUR OFF: BB84

Prevents the cursor for the current stream.

No entry conditions.

46

All flags and registers preserved.

Note: BB7B/E are intended to be used generally. They over
ride BB81/4 in respect of cursor suppression. BB81/4 are for
use by system ROMs.

TXT VALIDATE: BB87

Check if cursor within current window area.

On entry H holds column and L holds row (1 upwards) of
position.

On exit: If in window, carry is true and B corrupt. If window
would roll up, carry is false and B holds &FF. If window would
roll down, carry is false and B holds 0. In all cases H and L
hold the column and row at which the character would appear,
A and other flags corrupt.

TXT PLACE CURSOR: BB8A

Display a cursor for the currently selected stream. This allows
multiple cursors. It is unwise to call TXT PLACE CURSOR
twice for a given screen position without an intervening TXT
REMOVE CURSOR, as one cursor could persist.

No entry conditions.

On exit, AF is corrupt.

TXT REMOVE CURSOR: BB8D

Remove a multiple cursor from the screen.

No entry conditions.

On exit, AF is corrupt.

TXT SET PEN: BB90

Define foreground ink for current stream.

On entry A holds ink number.

On exit, AF and HL are corrupt.

TXT GET PEN: BB93

Check foreground ink for current stream.

47

No entry conditions.

On exit, A holds the ink number. Flags are corrupt.

TXT SET PAPER: BB96

Define background ink for current stream.

On entry A holds ink number.

On exit AF and HL are corrupt.

TXT GET PAPER: BB99

Check background ink for current stream.

No entry conditions.

On exit A holds the ink number. Flags are corrupt.

TXT INVERSE: BB9C

Exchange foreground and background inks for current
stream.

No entry conditions.

On exit, AF and HL are corrupt.

TXT SET BACK: BB9F

Determine whether background colour is displayed. It is dis
played in opaque mode, not in transparent.

On entry, A holds 0 for opaque mode, a non-zero value for
transparent mode.

On exit AF and HL are corrupt.

TXT GET BACK: BBA2

Check whether background colour is being displayed.

No entry conditions.

On exit, A holds 0 if opaque mode applies, else a non-zero
value. DE, HL and flags are corrupt.

TXT GET MATRIX: BBA5

Get the address of a character pattern.

48

On entry, A holds code for character.

On exit, HL holds the pattern address. If It Is in ROM, carry
is false. If it is in RAM, carry is true. A and flags corrupt.

TXT SET MATRIX: BBA8

Set a character pattern.

On entry, A holds the character code, and HL holds the
address of the matrix pattern to be set up.

On exit, carry is true if the character is user-definable, else
false. A, BC, DE, HL and flags corrupt.

TXT SET M TABLE: BBAB

Set multiple character patterns. (Up to &FF.)

On entry, DE holds first character code, HL contains address
of start or pattern source table.

On exit, if there was no user-defined table before, carry is
false and A and HL are corrupt. Otherwise carry is true, and
A holds the first character for the new patterns, HL holds the
address of the old table. BC, DE and flags corrupt.

TXT GET M TABLE: BBAE

Check the address of the user-defined matrix table and the
code for the first character in the table.

No entry conditions.

On exit, if there is no user defined pattern table carry is false
and A and HL are corrupt, else carry is true, A holds the first
character code in the table, and HL holds the start address
of the table. Other flags are corrupt.

TXT GET CONTROL: BBB1

Gets the address of the control code table. This has three
bytes per code. The first byte gives the number of parameters
which the code requires, the other two bytes give the address
of the related routine.

No entry conditions.

On exit, HL holds the address of the control table.

49

TXT STR SELECT: BBB4

Select stream.

On entry A holds stream to be set.

On exit HL and flags are corrupt.

TXT SWAP STREAMS: BBB7

Exchange two streams.

On entry B and C hold two stream numbers.

On exit AF, BC, DE and HL are corrupt.

GRA INITIALISE: BBBA

Initialise the graphics VDU. (All variables and indirections are
set to default values.)

No entry conditions.

On exit AF, BC, DE and HL are corrupt.

GRA RESET: BBBD

Set Graphics VDU indirections to default values.

No entry conditions.

On exit AF, BC, DE and HL are corrupt.

GRA MOVE ABSOLUTE: BBC0

Move the graphics cursor to an absolute position.

On entry DE holds the required X coordinate, HL holds the
Y coordinate.

On exit AF, BC, DE and HL are corrupt.

GRA MOVE RELATIVE: BBC3

Move the graphics cursor relative to its present position.

On entry DE holds the signed X offset, HL holds the signed
Y offset.

On exit AF, BC, DE and HL are corrupt.

50

GRA ASK CURSOR: BBC6

Check location of graphics cursor.

No entry conditions.

On exit DE holds the user X coordinate, HL contains the user
Y coordinate. AF is corrupt.

GRA SET ORIGIN: BBC9

On entry DE holds the standard X coordinate, HL holds the
standard y coordinate.

On exit AF, BC, DE and HL are corrupt.

GRA GET ORIGIN: BBCC

Check position of origin.

No entry conditions.

On exit DE holds standard X coordinate, HL holds standard
Y coordinate.

GRA WIN WIDTH: BBCF

Set right and left edges of graphics window.

On entry DE and HL hold the standard X coordinates for the
edges.

The smaller value will determine the left edge.

On exit AF, BC, DE and HL are corrupt.

GRA WIN HEIGHT: BBD2

Set top and bottom of graphics window.

On entry DE and HL hold the standard Y coordinates for the
edges.

The smaller value will determine the bottom edge.

On exit AF, BC, DE and HL are corrupt.

GRA GET W WIDTH: BBD5

Check right and left edges of graphics window.

51

No entry conditions.

On exit DE holds the standard X coordinate for the left edge,
HL holds the standard X coordinate for the right edge. AF is
corrupt.

GRA GET W HEIGHT: BBD8

Check top and bottom edges of graphics window.

No entry conditions.

On exit DE holds the standard Y coordinate for the top edge,
HL holds the standard Y coordinate for the bottom edge.

GRA CLEAR WINDOW: BBDB

Clear the graphics window to graphics paper colour.

No entry conditions.

On exit AF, BC, DE and HL are corrupt.

Note: The graphic cursor moves to the origin.

GRA SET PEN: BBDE

Set graphics foreground colour.

On entry A holds ink number.

On exit AF is corrupt.

GRA GET PEN: BBE1

Check graphics foreground colour.

No entry conditions.

On exit A holds the ink number. Flags are corrupt.

GRA SET PAPER: BBE4

Set graphics background colour.

On entry A holds ink number.

On exit AF is corrupt.

52

GRA GET PAPER: BBE7

Check graphics background colour.

No entry conditions.

On exit A holds the ink number. Flags are corrupt.

GRA PLOT ABSOLUTE: BBEA

Display a pixel at an absolute position.

On entry DE holds user X coordinate, HL holds user Y
coordinate.

On exit AF, BC, DE and HL are corrupt.

GRA PLOT RELATIVE: BBED

Display a pixel at a position relative to the graphics cursor
position.

On entry DE holds a signed X offset, HL holds a signed Y
offset.

On exit AD, BC, DE and HL are corrupt.

GRA TEST ABSOLUTE: BBF0

Check ink of pixel at absolute position.

On entry DE holds user X coordinate, HL holds user Y
coordinate.

On exit A holds ink number, BC, DE, HL and flags corrupt.

GRA TEST RELATIVE: BBF3

Check ink of pixel at a position relative to the graphics cursor.

On entry DE holds a signed X offset, HL holds a signed Y
offset.

On exit A holds an ink number, BC, DE, HL and flags are
corrupt.

GRA LINE ABSOLUTE: BBF6

Draw a line to an absolute position from the current cursor
position.

53

On entry DE holds the user X coordinate, HL holds the user
Y coordinate.

On exit AF, BC, DE and HL are corrupt.

GRA LINE RELATIVE: BBF9

Draw a line from the present cursor position to a position
relative to the present cursor position.

On entry DE holds a signed X offset, HL holds a signed Y
offset.

On exit AF, BC, DE and HL are corrupt.

GRA WR CHAR: BBFC

Place a character on the screen at the current graphics
position.

On entry A holds the character code.

On exit AF, BC, DE and HL are corrupt.

SCR INITIALISE: BBFF

The Screen Pack is fully initialised. All variables and indirec
tions are reset, as are screen mode and inks.

No entry conditions.

On exit AF, BC, DE and HL are corrupt.

SCR RESET: BC02

Resets Screen Pack indirections and colours, also flash rate
and write mode.

No entry conditions.

On exit AF, BC, DE and HL are corrupt.

SCR SET OFFSET: BC05

Set the screen offset.

On entry HL contains required offset.

On exit AF and HL are corrupt.

54

SCR SET BASE: BC08

Set the screen base address. (C000 or 4000.)

On entry A contains the high byte of the base address.

On exit AF and HL are corrupt.

SCR GET LOCATION: BC0B

Check screen memory base and offset.

No entry conditions.

On exit A holds high byte of base address, HL holds offset.
Flags are corrupt.

SCR SET MODE: BC0E

Sets screen mode.

On entry A holds required mode.

On exit AF, BC, DE and HL corrupt.

SCR GET MODE: BC11

Check current screen mode.

No entry conditions.

On exit, for Mode 0 carry is true, zero false, and A holds 0.
For Mode 1 carry is false, zero true, and A holds 1. For Mode
2 carry and zero are both false, and A holds 2. Other flags
corrupt.

SCR CLEAR: BC14

The screen is cleared to ink 0.

No entry conditions.

On exit AF, BC, DE and HL are corrupt.

SCR CHAR LIMITS: BC17

Check screen size in characters.

No entry conditions.

On exit, B holds last screen column, C holds last screen row.

AF is corrupt.
55

SCR CHAR POSITION: BC1A

Calculate screen address for top left corner of character
position.

On entry H holds column, L holds row, in physical values (0
up).

On exit HL holds screen address, B holds bytes per character.

AF is corrupt.

SCR DOT POSITION: BC1D

Calculate screen address for a pixel.

On entry DE contains X coordinate, HL contains Y coordinate.

On exit HL contains screen address, B holds pixels per byte
minus one, C holds the mask for the pixel. AF and DE are
corrupt.

SCR NEXT BYTE: BC20

Find screen address for one byte to right of given address.

On entry HL holds a screen address.

On exit HL holds updated screen address. AF is corrupt.

SCR PREV BYTE: BC23

Find screen address for one byte to left of given address.

On entry HL holds a screen address. AF is corrupt.

On exit HL holds updated screen address.

SCR NEXT LINE: BC26

Find screen address for one line down from given address.

On entry HL contains given screen address.

On exit HL contains updated screen address. AF is corrupt.

SCR PREV LINE: BC29

Find screen address for one line above given address.

On entry HL contains given screen address.

On exit HL contains updated screen address. AF is corrupt.

56

SCR INK ENCODE: BC2C

Encode an ink for all pixels in a byte.

On entry A holds an ink number.

On exit A holds the encoded ink. Flags are corrupt.

SCR INK DECODE: BC2F

Decode an ink

On entry A holds an encoded ink mask.

On exit A holds the corresponding ink number. Flags are
corrupt.

SCR SET INK: BC32

Set colours related to an ink number. If the two colours differ,
they will alternate in the display.

On entry A holds the ink number, B holds the first colour, C
holds the second colour.

On exit AF, BC, DE and HL are corrupt.

SCR GET INK: BC35

Check the colours related to a given ink.

On entry A holds the ink number.

On exit B holds the first colour, C holds the second colour.
AF, DE and HL are corrupt.

SCR SET BORDER: BC38

Set border colours. If the colours differ, they will alternate.

On entry B holds the first colour, C holds the second colour.

On exit AF, BC, DE and HL are corrupt.

SCR GET BORDER: BC3B

Check border colours.

No entry conditions.

On exit B holds first colour, C holds second colour. AF, DE
and HL are corrupt.

57

SCR SET FLASHING: BC3E

Set flash periods. (In frame scan periods.)

On entry H contains the first colour period, L contains the
second colour period.

On exit AF and HL are corrupt.

SCR GET FLASHING: BC41

Check flash periods. (In frame scan periods.)

No entry conditions.

On exit H contains first colour period, L contains second
colour period. AF is corrupt.

SCR FILL BOX: BC44

Fill a rectangular area of the screen with given ink.

On entry, A holds the encoded ink to be used, H contains the
left column to be filled, L contains the top row to be filled, D
contains the right column to be filled, E contains the bottom
row to be filled.

Coordinates are from 0 upwards.

On exit AF, BC, DE and HL are corrupt.

Note: The current VDU write mode is ignored.

SCR FLOOD BOX: BC47

Fill a rectangular area of the screen with a given ink, to byte
boundaries.

On entry HL contains the screen address of the top left corner
of the area to be filled, D holds the unsigned width to be filled
(in bytes). E contains the unsigned height of the area to be
filled (in screen lines). C contains the encoded ink to be used.

On exit, AF, BC, DE and HL are corrupt.

Note: Graphics VDU write mode is ignored.

SCR CHAR INVERT: BC4A

Convert a character at a given position to reverse video form,
by changing inks.

58

On entry, B and C contain encoded inks. H defines the text
column, L defines the text row. (Coordinates from 0 upwards.)

On exit AF, BC, DE and HL are corrupt.

SCR HW ROLL: BC4D

Roll the whole screen up or down by eight pixel lines. The
line brought on to the screen is cleared. Text roll is not
changed.

On entry, B holds 0 to roll down, a non-zero value to roll up.
A holds the encoded ink to which the cleared line will be set.

On exit AF, BC, DE and HL are corrupt.

SCR SW ROLL: BC50

Roll a defined screen area up or down by eight pixel lines.
The line brought in is cleared.

On entry B holds 0 to roll down, non-zero to roll up. A holds
the encoded ink to be used for the cleared line, H holds the
left column of the area to be cleared, D holds the right column,
L holds the top row, E holds the bottom row. (Coordinates
from 0 upwards.)

SCR UNPACK: BC53

Convert a character pattern to a set of pixel masks for the
current screen mode.

On entry, HL contains the address of the character pattern,
DE contains the address of the area which is to hold the result.

On exit AF, BC, DE and HL are corrupt.

SCR REPACK: BC56

Convert a displayed character to standard character form.

On entry A holds the encoded ink for the character, H holds
the column position and Lthe row position. (Coordinates from
0 upwards.) DE holds the address of the area in which the
conversion is to be set.

59

SCR ACCESS: BC59

Set the Graphics VDU mode.

On entry A holds a key to the required mode:
0: Absolute or Force mode.
1: XOR mode.

2: AND mode.
3: OR mode.

On exit AF, BC, DE and HL are corrupt.

SCR PIXELS: BC5C

Write a pixel to the screen, ignoring Graphics VDU mode.

On entry B holds the encoded ink to be used, C holds the
pixel mask, HL contains the screen address.

On exit AF is corrupt.

SCR HORIZONTAL: BC5F

Plot a horizontal line.

On entry A holds the required encoded ink, BC holds the X
coordinate for the end of the line, DE holds the X coordinate
for the start of the line, HL holds the Y coordinate. (DE must
be not greater than BC.)

On exit AF, BC, DE and HL are corrupt.

SCR VERTICAL: BC62

Plot a vertical line.

On entry A holds the required encoded ink, BC holds the Y
coordinate for the end of the line, DE holds the X coordinate,
and HL holds the Y coordinate for the start of the line. (HL
must not exceed DE.)

On exit AF, BC, DE and HL are corrupt.

CAS INITIALISE: BC65

Set up cassette manager, closing streams, setting default
write speed and turning on prompt messages.

60

No entry conditions.

On exit AF, BC, DE and HL are corrupt.

CAS SET SPEED: BC68

Determine the cassette write speed and precompensation.

On entry A contains precompensation, HL defines write
period. Precompensation can be between 0 and 255 (micro
seconds), the larger values being inappropriate. The contents
of HL give the half-period of a zero bit cycle in microseconds.
Mean baud rate is found by 106/(3*HL) HL must lie between
130 and 480.

Default values: Fast: HL = 167, A = 50. Slow: HL = 333, A
= 25.

CAS NOISY: BC6B

Control cassette prompts.

On entry A holds 0 to enable prompts, non-zero to disable.

On exit AF is corrupt.

CAS START MOTOR: BC6E

Turn on cassette motor and wait for speed to stabilise.

No entry conditions.

On exit A holds previous motor state. Carry is true unless
action aborted by pressing Escape.

CAS STOP MOTOR: BC71

Turn off cassette motor.

No entry conditions.

On exit A holds previous motor state. Carry is true unless
Escape pressed.

CAS RESTORE MOTOR: BC74

Restore previous motor state.

On entry A holds previous motor state.

On exit carry is true unless Escape pressed.

61

CAS IN OPEN: BC77

Open cassette input file.

On entry B holds length of filename, HL holds address of
filename, DE contains the address of a 2K buffer area.

On exit:
If opened correctly, carry is true and zero is false. HL
holds the address of the buffer containing the file header,
DE holds the data location given by the header, BC holds
the file length given by the header. A holds the file type.
If stream in use, carry and zero are false. A, BC, DE and
HL are corrupt.
If Escape was pressed carry is false and zero is true, A,
BC, DE and HL are corrupt.
In all cases IX and other flags are corrupt.

CAS IN CLOSE: BC7A

Close cassette input file.

No entry conditions.

On exit carry is true if action completed, false if stream was
not open. A, BC, DE, HL and other flags corrupt.

CAS IN ABANDON: BC7D

Abandon cassette input file.

No entry conditions.

On exit AF, BC, DE and HL are corrupt.

CAS IN CHAR: BC80

Read a character from a cassette input file.

No entry conditions.

On exit:
If action executed, A holds character code, carry is true,
zero is false.
If end of file was found, A is corrupt, carry false, zero
false.

62

If Escape was pressed, A is corrupt, carry false, zero
true.
In all cases IX and other flags are corrupt.

CAS IN DIRECT: BC83

Read complete file to store.

On entry HL holds address of block to be set from the cassette
input file.

On exit:
If action completed, HL holds entry address from the
header, carry is true, zero false.
If file was not open, HL is corrupt, carry false and zero
false.
If Escape was pressed, HL is corrupt, carry false, zero
true.
In all cases A, BC, DE, IX and other flags corrupt.

CAS RETURN: BC86

Return last character read to cassette input file.

No entry conditions.

On exit all registers and flags preserved.

CAS TEST EOF: BC89

Test for end of file.

No entry conditions.

On exit:
If not EOF, carry is true and zero false.
If EOF, carry is false and zero false.
If Escape pressed carry is false and zero true.
In all cases A, IX and other flags corrupt.

CAS OUT OPEN: BC8C

Open a cassette output file.

On entry B holds length of filename, HL holds address of

63

filename, DE holds address of 2K buffer area.

On exit:
If stream already open carry is false and HL is corrupt.
If opening successful carry is true and HL contains ad
dress of header buffer.
In both cases zero is false, A, BC, DE and IX are corrupt.

CAS OUT CLOSE: BC8F

Close a cassette output file. (And write it to tape.)

No entry conditions.

On exit:
If successful, carry is true and zero false.
If file not open, carry is false and zero false.
If Escape pressed, carry is false and zero true.
In all cases A, BC, DE, HL, IX and other flags are corrupt.

CAS OUT ABANDON: BC92

Abandon cassette output file.

No entry conditions.

On exit AF, BC, DE and HL are corrupt.

CAS OUT CHAR: BC95

Write character to cassette output file.

On entry A holds character to be written.

On exit:
If successful carry is true and zero false.
If file not open, carry is false and zero false.
If Escape pressed, carry is false and zero true.
In all cases A, IX and other flags are corrupt.

CAS OUT DIRECT: BC98

Write complete file.

64

On entry HL contains the address of the data to be written,
DE contains the length of the data to be written, BC holds the
entry address to be placed in the header, and A contains the
file type to be placed in the header.

On exit:
If action executed carry is true and zero false.
If file was not open, carry is false and zero false.
If Escape was pressed carry is false and zero true.
In all cases A, BC, DE, HL, IX and other flags are corrupt.

CAS CATALOG: BC9B

List files on tape.

On entry DE holds the address of a 2K buffer area.

On exit carry is true if all was well, false if the read stream
was in use (i.e. input file open). In all cases zero is false and
A, BC, DE, HL, IX and other flags corrupt.

CAS WRITE: BC9E

Write a record to tape.

On entry HL holds address of data to be written, DE contains
length of data, A holds the sync character. (&2C for header,
&16 for data.)

On exit carry is true and A is corrupt if all went well, otherwise
carry is false and A holds an error code:

0: Escape pressed
1: Overrun (writing error).

In any case BC, DE, HL and IX are corrupt.

CAS READ: BCA1

Read a record from tape.

On entry HL holds the address at which the data is to be set,
DE holds the length of the data, and A holds the expected
sync code.

On exit, if all went well carry is true and A corrupt. Otherwise
carry is false and A holds an error code:

65

0: Escape pressed.
1: Overrun. (Reading error.)
2: CRC check failure.

In any case BC, DE, HL, IX and other flags are corrupt.

Note: CAS READ and CAS WRITE start and stop the cassette
motor.

CAS CHECK: BCA4

Compare a tape record with the contents of store (Verify).

On entry HL holds the address of data to be compared, DE
holds the length of the data, A holds the expected sync
character.

On exit, if the check was successful carry is true and A is
corrupt. Otherwise carry is false and A contains an error code:

0: Escape pressed.
1: Overrun. (Read error.)
2: CRC check failed.
3: Data mismatch.

In any case BC, DE, HL, IX and other flags corrupt.

Note: CAS CHECK starts and stops the cassette motor.

SOUND RESET: BCA7

Reset the Sound Manager, silencing the sound chip and
clearing all queues.

No entry conditions.

On exit AF, BC, DE and HL are corrupt.

SOUND QUEUE: BCAA

Add a sound to a sound queue, if possible.

On entry HL points to a block of 9 bytes defining the sound
to be set up:

Byte 0: Bit 0: Channel A
Bit 1: Channel B
Bit 2: Channel C

66

Bit 3: Rendezvous with A
Bit 4: Rendezvous with B
Bit 5: Rendezvous with C
Bit 6: Hold until released
Bit 7: Flush queue.

Byte 1: Amplitude envelope select
Byte 2: Tone envelope select
Byte 3:

Tone period
Byte 4:
Byte 5: Noise period
Byte 6: Initial amplitude
Byte 7:

Duration or repeat count.Byte 8: H
On exit, if successful carry is true and HL corrupt. If not, carry
is false and HL is preserved. A, BC, DE, IX and other flags
corrupt.

SOUND CHECK: BCAD

Find whether there is space in a sound queue.

On entry A contains the bit indicating which channel to test.
(See SOUND QUEUE above.)

On exit, A hold the channel status thus:
Bits 0-2: Number of free slots in queue
Bit 3: Waiting for rendezvous with A
Bit 4: Waiting for rendezvous with B
Bit 5: Waiting for rendezvous with C
Bit 6: Held
Bit 7: Active (Sound being produced.)

BC, DE, HL and flags corrupt.

SOUND ARM EVENT: BCB0

Establish an event to run when sound queue empty.

On entry A holds the bit indicating a channel (see SOUND
QUEUE above), and HL holds the address of the event block
to be executed.

67

On exit AF, BC, DE and HL are corrupt.

See KL INIT EVENT.

SOUND RELEASE: BCB3

Release a held sound.

On entry A holds the bit/s indicating the channel. (See SOUND
QUEUE above.)

On exit AF, BC, DE, HL and IX are corrupt.

SOUND HOLD: BCB6

Stop all sounds at once.

No entry conditions.

On exit carry is true if sound was active. A, BC, HL and other
flags are corrupt.

SOUND CONTINUE: BCB9

Restart sounds that have been held.

No entry conditions.

On exit AF, BC, DE and IX are corrupt.

SOUND AMPL ENVELOPE: BCBC

Set up an amplitude envelope.

On entry A holds the envelope number, HL holds the address
of a data block made up as follows:

Byte 0: Number of sections.
Bytes 1- 3: First section.
Bytes 4- 6: Second section.
Bytes 7- 9: Third section.
Bytes 10-12: Fourth section.
Bytes 13-15: Fifth section.

Within each section, the first byte gives step count, the second
gives step size, and third gives pause time. Unused sections
need not be set up. The data block must not lie in a ROM-
masked area of RAM.

68

On exit, carry is true if the action was successful. HL holds
the data block address plus &10, A and BC are corrupt.

Note: The details of this call and the next can be very complex,
but can be resolved by reference to the User Instruction
Manual.

SOUND TONE ENVELOPE BCBF

Set up a tone envelope.

On entry conditions are as for the previous call, SOUND AMPL
ENVELOPE, except that the step size refers to pitch instead
of amplitude.

On exit, conditions are as for SOUND AMPL ENVELOPE.

SOUND A ADDRESS: BCC2

Find address of amplitude envelope data.

On entry A holds envelope number.

On exit carry is true if action was successful, HL holds the
address of the data block, BC holds envelope length. If action
failed carry is false, HL corrupt, BC is preserved. A always
corrupt.

SOUND T ADDRESS: BCC5

Find address of tone envelope data.

Entry and exit conditions as for SOUND A ADDRESS above.

KL CHOKE OFF: BCC8

Clear all event queues, timer and frame flyback lists, clearing
all pending synchronous events and time related functions
except sound generation and keyboard scanning. (Prepares
for MC BOOT PROGRAM, BD13.)

No entry conditions.

On exit B holds ROM select address for the current foreground
ROM, C holds ROM select address for a RAM foreground
program, DE holds the entry address for the current fore
ground ROM. AF and HL are corrupt.

69

KL ROM WALK: BCCB

Identify and initialise all backround ROMS.

On entry DE holds the address of the first usable byte in
memory, HL holds the address of the last usable byte.

On exit DE holds the address of the new first usable byte, HL
holds the address of the new last usable byte. AF and BC
are corrupt.

KL INIT BACK: BCCE

Initialise a background ROM.

On entry C holds the ROM select address, DE holds the
address of the first usable byte in memory, HL holds the
address of the last usable byte in memory.

On exit DE holds the address of the new first usable byte, HL
holds the address of the new last usable byte. AF and B are
corrupt.

KL LOG EXT: BCD1

Set up a Resident System Extension. (Add to list of external
command servers.)

On entry BC holds the address of the Resident System Ex
tension’s command table, HL holds the address of a four-
byte area of RAM.

On exit DE is corrupt.

Note: Neither the command table nor the four-byte area may
lie under ROM. The use of Resident System Extensions will
be discussed in the latter part of the book.

KL FIND COMMAND: BCD4

Search for a command word.

On entry HL holds the address at which the command word
is stored.

On exit carry is true if the command was found, and C then
holds the ROM select address, HL holds the address of the
related routine. If the command was not found carry is false

70

and HL and C are corrupt. In either case A, B and DE are
corrupt.

Note: Only sixteen letters of the command are significant.

KL NEW FRAME FLY: BCD7

Initialise and add a block to the frame flyback list.

On entry HL holds the address of the block, B holds the event
class, C holds the ROM select address for the event routine,
DE holds the address of the event routine.

On exit AF, DE and HL are corrupt.

KL ADD FRAME FLY: BCDA

Add block to frame flyback list.

On entry HL contains the address of the block.

On exit AF, DE and HL are corrupt.

KL DEL FRAME FLY: BCDD

Remove a block from the frame flyback list.

On entry HL holds the address of the block.

On exit AF, DE and HL are corrupt.

KL NEW FAST TICKER: BCE0

Initialised and add a block to the fast ticker list.

On entry HL holds the address of the block, B contains the
event class, C holds the ROM select address for the event
routine, DE holds the address of the event routine.

On exit AF, DE and HL are corrupt.

KL ADD FAST TICKER: BCE3

Add a block to the fast ticker list.

On entry HL holds the address of the block.

On exit AF, DE and HL are corrupt.

71

KL DEL FAST TICKER: BCE6

Remove block from fast ticker list.

On entry HL holds the address of the block.

On exit AF, DE and HL are corrupt.

KL ADD TICKER: BCE9

Add a block to the ticker list.

On entry HL holds the address of the tick block, DE holds the
initial count value, BC holds the recharge value.

KL DEL TICKER: BCEC

Remove block from the ticker list.

On entry HL holds the address of the block.

On exit, if the block was found carry is true and DE holds the
count remaining. Otherwise carry is false and DE corrupt. In
either case A, HL and other flags are corrupt.

KL INIT EVENT: BCEF

Initialise an event block.

On entry HL holds the address of the event block. B holds
the event class, C holds the ROM select address for the event,
and DE holds the address of the event routine.

KL EVENT: BCF2

Activate an event block.

On entry HL holds the address of the event block.

On exit AF, BC, DE and HL are corrupt.

KL SYNC RESET: BCF5

Clear the synchronous event queue.

No entry conditions.

On exit AF and HL are corrupt.

72

KL DEL SYNCHRONOUS: BCF8

Remove a synchronous event from the event queue.

On entry HL holds the address of the event block.

On exit AF, BC, DE and HL are corrupt.

KL NEXT SYNC: BCFB

Get next event from the queue.

No entry conditions.

On exit, if there is an event awaiting processing carry is true,
HL holds the address of the event block, and A holds the
priority for the previous event, if any. Otherwise carry is false,
A and HL are corrupt. DE is always corrupt.

KL DO SYNC: BCFE

Execute an event routine.

On entry HL holds the address of the event block.

On exit AF, BC, DE and HL are corrupt.

KL DONE SYNC: BD01

Complete processing an event.

On entry C holds the previous event priority, HL holds the
address of the event block.

On exit AF, BC, DE and HL are corrupt.

KL EVENT DISABLES: BD04

Disable normal synchronous events.

No entry conditions.

On exit HL is corrupt.

KL EVENT ENABLE: BD07

Enable normal synchronous events.

No entry conditions.

On exit HL is corrupt.

73

KL DISARM EVENT: BD0A

Prevent an event from occurring.

On entry HL holds the address of the event block.

On exit AF is corrupt.

KL TIME PLEASE: BD0D

Find the elapsed time.

No entry conditions.

On exit DE/HL hold the four-byte time count, DE holding the
two more significant bytes.

KL TIME SET: BD10

Set the time count.

On entry DE/HL hold the four-byte time count, DE holding the
two more significant bytes.

On exit AF is corrupt.

MC BOOT PROGAM: BD13

Load and run a program.

On entry HL contains the address of the routine to call to load
the program.

There is no exit as such, but if the load fails the loader routine
should return with carry false. For a correct load the return
should be with carry true and HL holding the program entry
link.

MC START PROGRAM: BD16

Run a foreground program.

On entry HL holds the start address and C holds the required
ROM selection byte.

There is no exit, as such.

74

MC WAIT FLYBACK: BD19

Wait for frame flyback.

No entry conditions.

On exit all registers and flags are preserved.

MC SET MODE: BD1C

Set screen mode.

On entry A holds required mode.

On exit AF is corrupt.

MC SCREEN OFFSET: BD1F

Set the screen offset.

On entry A holds required screen base, HL holds required
screen offset.

On exit AF is corrupt.

MC CLEAR INKS: BD22

Set all inks and border to the same colour.

On entry DE holds an ink vector. D holds the common ink
colour, E holds the border colour.

On exit AF is corrupt.

MC SET INKS: BD25

Set colours for all inks.

On entry, DE holds the address of an ink definition block, in
which byte 0 defines the border colour, and bytes 1 to 16
define the colours for inks 0 to 15.

On exit AF is corrupt.

MC RESET PRINTER: BD28

Restore the normal printer indirection.

No entry conditions.

On exit AF, BC, DE and HL are corrupt.

75

MC PRINT CHAR: BD2B

Offer a character to the printer port.

On entry A holds the character to send. (Bit 7 will be ignored.)

On exit carry is true if the action was completed, false if the
timeout (approx 0.4 sec) was completed with no action. In
either case A and other flags are corrupt.

MC BUSY PRINTER: BD2E

Test whether printer port is busy.

No entry conditions.

On exit carry is true if the port is busy, else false. Other flags
are corrupt.

MC SEND PRINTER: BD31

Send a character to the printer port. (No busy test.)

On entry A holds the character to be sent. (Bit 7 ignored.)

On exit carry is true and A corrupt.

MC SOUND REGISTER: BD34

Send data to sound chip.

On entry A holds the register number, C holds the data byte.

On exit AF and BC are corrupt.

JUMP RESTORES: BD37

Re-establish the standard jumpblock.

No entry conditions.

On exit AF, BC, DE and HL are corrupt.

That completes the main firmware jumpblock. Firmware in
direct jumps follow, but there is an intervening continuation of the
main jumpblock for which no definitions are available. (BASIC
functions.)

76

Indirections

IND:TXT UNDRAW CURSOR: BDD0

Remove the cursor from the screen.

No entry conditions.

On Exit AF is corrupt.

IND:TXT WRITE CHAR: BBD3

Put a character on the screen.

On entry A holds the character code, H holds the column,
L holds the row. (Coordinates from 0 upwards.)

On exit AF, BC, DE and HL are corrupt.

IND:TXT UNWRITE: BBD6

Read a character from the screen.

On entry H holds the column and L the row marking the
character to be read.

On exit, if a readable character was found carry is true and
A holds the character code, else carry is false and A holds
zero.

In either case BC, DE, HL and other flags are corrupt.

IND:TXT OUT ACTION: BDD9

Output a character or control code.

On entry A holds the character or control code.

On exit AF, BC, DE and HL are corrupt.

IND:GRA PLOT: BDDC

Plot a point.

On entry DE holds X coordinate and HL holds Y coordinate.

On exit AF, BC, DE and HL are corrupt.

77

IND:GRA TEST: BDDF

Test a pixel.

On entry DE contains the X coordinate and HL holds the Y
coordinate.

On exit A holds the decoded ink for the point. BO, DE and
HL and flags are corrupt.

IND:GRA LINE: BDE2

Draw a line. (From the current graphics cursor position.)

On entry DE holds the X coordinate of the endpoint, HL holds
the Y coordinate.

On exit AF, BC, DE and HL are corrupt.

IND:SCR READ: BDE5

Read a pixel from the screen and decode its ink.

On entry HL holds the screen address of the pixel, and C
holds the mask for the pixel.

On exit A holds the decoded ink for the pixel. Flags are
corrupt.

IND:SCR WRITE: BDE8

Write a pixel or pixels on the screen.

On entry HL holds the screen address for the pixel/s, C holds
the pixel mask, and B holds the encoded ink to be used.

IND:SCR MODE CLEAR: BDEB

Clear the screen to ink 0.

No entry conditions.

On exit AF, BC, DE and HL are corrupt.

IND:KM TEST BREAK: BDEE

Test for Break and Reset, calling appropriate event.

On entry interrupt must be disabled, and C hold SHIFT and
CTRL key states.

78

On exit AF and HL are corrupt.

IND:MC WAIT PRINTER: BDF1

Print a character or time out.

On entry A holds the character code to be sent to the printer.

On exit carry is true if the action succeeded, else false. A and
BO are corrupt.

That completes the indirections, and we now come to the
High Kernel Jumpblock, which accesses routines held in RAM.

High Kernel Jumpblock
HI:KL U ROM ENABLE: B900

Enable the upper ROM.

No entry conditions.

On exit A holds the previous ROM state.

HI:KL U ROM DISABLE: B903

Disable the upper ROM.

No entry conditions.

On exit A holds the previous ROM state.

HI:KL L ROM ENABLE: B906

Enable the lower ROM.

No entry conditions.

On exit A holds the previous ROM state.

HI:KL L ROM DISABLE: B909

Disable the lower ROM.

No entry conditions.

On exit A holds previous ROM state.

79

HI:KL ROM RESTORE: B90C

Set ROM state.

On entry A holds ROM state, as returned by above calls.

On exit AF is corrupt.

HI:KL ROM SELECT: B90F

Select an upper ROM.

On entry C holds the select address for the required ROM.

On exit C holds the previous select address, B holds the
previous ROM state. AF is corrupt.

HI:KL CURR SELECTION: B912

Check which upper ROM is currently selected.

No entry conditions.

On exit A holds select address for current upper ROM.

HI:KL PROBE ROM: B915

Check class and version of an upper ROM.

On entry C holds the relevant ROM select address.

On exit, A holds the ROM class, L holds the mark number,
and H holds the version number.

HI:KL ROM DESELECT: B918

Restore previously selected upper ROM.

On entry B holds previous ROM state, C holds previous select
address.

On exit C holds the ROM select address now applicable, B
is corrupt.

HkKLLDIR: B91B

Copy store, with an incrementing pointer, ROMs disabled.

On entry BC holds length of data block, DE holds destination
address, HL holds source address. (Initial values.)

80

On exit F, BC, DE and HL are as set by LDIR instruction.

Note: Do not use where original and copy areas overlap, with
copy higher.

HI:KL LDDR: B91E

As KL LDIR above, but with decrementing pointer. For use
where LDIR is inappropriate, as indicated above.

HI:KL POLL SYNCHRONOUS: B921

Check if an event with a higher priority than the current event
is pending.

No entry conditions.

On exit carry is true if a higher priority event is pending. A
and other flags are corrupt.

Note that this last entry is direct, and cannot be patched.

81

82

The Interface

83

Sound 1 2 Ground
A15 3 4 A14
A13 5 6 A12
A11 7 8 A10

A9 9 10 A8
A7 11 12 A6
A5 13 14 A4
A3 15 16 A2
A1 17 18 A0
D7 19 20 D6
D5 21 22 D4

D3 23 24 D2
D1 25 26 D0

+5v 27 28 MREQ
M1 29 30 RFSH

IORQ 31 32 RD
WR 33 34 HALT
INT 35 36 NMI

BUSRQ 37 38 BUSAK
READY 39 40 BUS RESET
RESET 41 42 ROMEN

ROMDIS 43 44 RAMRD
RAMDIS 45 46 CURSOR

LIGHT PEN 47 48 EXP
GND 49 50 CLOCK

FIGURE 3a: EXPANSION PORT CONNECTOR

84

THE INTERFACE

The pin allocations of the 50-way expansion connector are shown
in Fig 3a. All the central processor lines are brought out, plus a
number of system control lines, but it should not be assumed that
all the lines can be used.

Lines A0-A15 are outputs defining a memory or I/O address.
If the output MREQ is low, a memory access is required. If the
output IORQ is low, an I/O transfer is required. The address should
be interpreted accordingly, data being transferred in either case
via the bidirectional data lines D0-D7.

The Ml line has caused a certain amount of confusion. It is
an output which goes low when the central processor is fetching
an op-code, which is the first byte of an instruction, except where
the first byte is &CB, &DD, &ED, or &FD, in which case the op
code occupies the first two bytes. Ml does not remain low while
any subsequent bytes of the instruction are being fetched, so it

85

cannot be used to control a system which fetches instructions
from one memory area and data from another.

If both M1 and IORQ are pulled low, the processor is ac
knowledging an interrupt.

The output RFSH goes low when the lower seven address
lines are carrying a refresh address for dynamic memory. The
built-in refresh facility is one of the strong points of the Z80 pro
cessor, but needs to be used with care, since there are circum
stances in which the refresh service is suspended, as explained
below.

HALT is an output which goes low when the processor has
executed a HALT instruction and is waiting for an interrupt. During
this period the processor executes NOPs to maintain refresh
action.

INT is the main interrupt input to the processor. It should be
driven on an open-collector basis, being pulled low to call an
interrupt. In this system, the processor responds by jumping to
address 0038, the address of the instruction which would other
wise have been executed being pushed on to the stack, to allow
return to that instruction when interrupt processing is complete.
The Z80 interrupt mode 1 is used.

NMI is the non-maskable interrupt line. It should never be
made low, since this would induce a jump to location 0066, which
might be in RAM or ROM. The response is therefore unpredictable,
but probably will be catastrophic.

BUSRQ is an input to the processor. When it is made low, it
asks the processor to release control of all its lines other than Mi,
RFSH and HALT. Having completed the current instruction, the
processor releases the lines and pulls BUSAK low to indicate that
it has done so. The bus may now be controlled by an external
system, which must replace the control actions normally executed
by the processor. When BUSRQ is made high again, the system
returns to normal.

The most common use for this facility is Direct Memory Access
(DMA), which allows data to be transferred to and from memory
or I/O channels without the need to execute program. Such trans
fers can be very fast, but it is unwise to keep BUSRQ low for too
long, as this halts normal refresh action. The usual course is to

86

transfer one DMA byte at a time. This is called ‘cycle stealing’,
because the external system takes over for one machine cycle.

READY is the processor signal WAIT, an input telling the
processor that it should prolong its machine cycle by inserting
wait states, usually because a peripheral or memory device is not
ready for transfer.

That completes the processor signals. The processor outputs
are not buffered within the CPC464, and should not be asked to
drive more than one TTL load. Similarly, the 5v supply should not
be asked to provide more than 100 mA. (Though a little more may
be permissable if the cassette recorder is out of use.)

The lines which relate to the CPC464 system are as follows:

ROMEN is an output which goes low to select the external
upper ROM. ROMDIS is an input which is made high to disable
the internal ROM. Similarly, RAMRD goes low to enable external
RAM, while the matching input RAMDIS goes high to disable
internal RAM.

The timing of these signals is important. If two data sources
are connected to the data bus at the same time, they could burn
each other out. ROMDIS should therefore go high before ROMEN
goes low, and so on.

CURSOR is the CURSOR signal of the CRT Controller, which
goes high to indicate a valid cursor address in registers 10 and
11 of the Controller.

LIGHT PEN is the light pen input to the CRT Controller, which
acts as described in the Ins section.

EXP is bit 5 of Port B of the PPI. This bit is identified as
‘Reserved’ in the documentation, and is normally set to the low
state. Making use of this line involves reference to the C register,
which holds the state of the other Port B bits, and needs to be
considered with care.

BUS RESET is pulled high through a 2K2 resistor. If it is
grounded a complete reset, as at switch-on, will occur.

SOUND is connected via 10K resistors to the three tone out
puts of the sound generator.

87

The CLOCK signal is at 4 MHz.

The above data is given in good faith, but it is based on rather
scanty information, and needs to be used with care.

88

The Outs

89

90

THE OUTS

General Principles
Since you have access to almost all the central processor lines,
there is virtually no limit, in theory, to the variety of external equip
ment that can be tacked on to the CPC464. The first stage will
always involve the creation of a parallel interface, which, in turn,
can be made to drive other devices, or be driven by them. The
transfer of input and output data is the key process, but it may
need to be supported by the passage of control data to set modes,
ensure correct synchronism, sense external conditions.

Once the parallel interface is established, the data it handles
can be converted to or from serial data. Similarly, conversion to
or from analogue data is possible, opening up an entirely new
range of possibilities. Finally, the CPC464 allows scope for pro
gram extensions, but this is a rather more complex matter. In
formation regarding it will be given, but a complete treatment
would fill more than one book of this size.

91

FI
G

U
R

E
4:

 M
O

TH
ER

BO
AR

D
 E

XT
EN

D
ER

92

It must be noted that the hardware extensions must share
facilities with the disc system and other AMSTRAD extensions.
It is therefore worth using a ‘motherboard’ system, the parent unit
plugging into the external interface, providing facilities for con
necting the disc system as well as other peripherals. The scheme
shown in Fig 4 could provide a convenient answer. The moth
erboard is fitted with two-part connectors into which daughter
boards can be plugged to stand vertically, while the outer end
of the motherboard mirrors the original external connector of the
CPC464.

Avoid the temptation to work in ‘bird’s nest’ fashion, with wires
running here and there at random, but be equally careful not to
use closely bunched cables. The signals you are dealing with
have sharp edges, and can easily set up crosstalk in adjacent
lines. Ribbon cable is useful, especially if alternate wires are
earthed, and the twisted-pair form is particularly valuable — if
you can find it.

It is important to watch the loading on the interface lines, not
least on the 5v power supply. Where possible, load limits have
been specified, but not all are known with certainty. Buffering is
advisable, but remember that buffers introduce time delays, which
can upset the action of critical systems.

British constructors will probably turn automatically to the
Veroboard system of construction, but it appears that this system
is not as widely known in other parts of the world. Briefly, it provides
pre-punched insulating boards, the holes typically at 0.1" pitch,
with copper overlay strips connecting rows of holes. The strips
can easily be divided into shorter lengths by cutting away the
copper. There are also specialised boards with hole and strip
patterns particularly suited to integrated circuit systems.

Details can be obtained from Vero Electronics Ltd, Industrial
Estate, Chandler’s Ford, Hampshire, U.K.

Parallel Interfaces

Interface Rules

In the final analysis, all interfaces between a computer and the
outside world are initially parallel in essence. Conversion to or

93

A10

FIGURE 5: CONTROL FOR PARALLEL PORT

94

from serial or analogue form is a matter for external circuitry. The
computer will only talk in parallel terms.

The exception to this rule arises when a special serial adaptor
is fitted as an internal part of the computer. In the case of the
CPC464, such an interface adaptor is envisaged as an external
extension.

For data output, the state of the data lines D0-D7 must be
copied into a set of latches, since the data is only available briefly
on these lines. Copying must occur when the following conditions
are satisfied:

‘The relevant I/O address is recognised as being present on
the lines A0-A15, though it may not be necessary to take all
the lines into consideration.
‘The IORQ line is low, indicating an I/O transfer.
‘The WR line is low, indicating an output (write) transfer.

For data input, the data sources must normally allow the data
lines to 'float', and this requires the use of a ‘tri-state’ source
device, which can pull the lines high, pull them low, or exert no
influence at all on them, showing a high impedance. Only one
such source may be taken out of the high impedance state at a
given time, the required conditions being:

‘The relevant I/O address is recognised.
‘The IORQ line is low.
‘The RD line is low.

As noted earlier, there are rules limiting the choice of address
for user peripherals. All permissible addresses have bit A10 low,
which can be used to simplify decoding. Suppose, for instance,
that it is decided to use addresses F8E0 and F8E1, the first for
input and output of control data and the second for data output.
The circuit shown in Fig 5 will generate the required control
signals.

The eight-input NAND gate is supplied with the signals IORQ,
A4, A5, A6, A7, A8, A9, A10. Its output will go low when an I/O
address of the form XXXX X000 1110 XXXX is generated. If the
address limitation rules are observed, this will be in the range
F8E0-F8EF.

95

The NAND gate output is taken to three three-input NOR
gates. The first is also fed by A0 and RD. Its output will be high
if the NAND gate output is low, A0 is low, and RD is low. It will
therefore signal an input for an even-numbered address in the
range stated above. This includes F8E0, but also covers F8E2,
F8E4, etc. If these other addresses were to be used, additional
decoding would be necessary.

The second NOR gate receives the NAND gate output, A0,
and WR. It will give a high output for an even-numbered address
output transfer. The addresses which satisfy this are as listed
above.

The third NOR gate receives the NAND gate output, A0, and
WR. Its output will go low for an output transfer on an odd address
in the F8E1-F8EF range.

The three NOR gate outputs control the remainder of the I/O
system.

An Alternative Printer Port
To illustrate how the above circuit is put to use, let us consider
the provision of a full eight-bit printer port. We will need an eight
bit latch to accept output data and drive the printer. We will need
a single line control output to generate the strobe signal, which
tells the printer to take the data. We will need a single-line control
input to sense the state of the BUSY signal, which warns that the
printer is unable, for the moment, to accept further data.

Some systems use the ACK signal instead of BUSY, and a
comment on this is needed. BUSY goes high when the printer
accepts an input, and remains high until a further input can be
accepted. It may remain high while a line of stored data is printed,
or just long enough for a single character code to be stored.

ACK, on the other hand, is a low-going pulse a few micro
seconds long, with its trailing edge coinciding with the transition
of the BUSY signal from high to low. It would be difficult to be
sure of seeing this pulse in a read transfer, so it must be used
to clear a bistable set by STROBE, so generating a local form of
BUSY.

Quite apart from this, the use of BUSY allows detection of a
situation in which the printer is not fitted, in which case the BUSY

96

D-TYPE BISTABLE

AN INVERSION MAY BE NEEDED.

FIGURE 6: PARALLEL PRINTER PORT

97

line will be high continuously. To discover this, the BUSY line must
be checked at a time when no strobe has been output for several
seconds.

It might appear that the control output signal from the second
NOR gate could be inverted to provide STROBE, and this method
has been used successfully, but the STROBE pulse then lasts no
more than half a microsecond, and that is too short for some
printers. The NOR gate output must set a bistable to a state
determined by a data line.

The control input signal, on the other hand, must be used to
enable an element with ‘tristate’ output. Such elements are not
easy to find in single-channel form, so the added circuit shown
in Fig 6 uses an eight-bit element. This can be useful in providing
for other input control lines, and control output can similarly be
made eight bits wide for the same reason.

It should be noted that some printers provide extra output
lines signalling their internal state, and also accept additional
inputs which control that state. The system shown will accom
modate this, though additional software support will be needed
to handle the additional data.

Software Support
The original printer firmware of the CPC464 is of no use where
this external printer port is concerned, since it is specialised to
the port allocations of the internal hardware. A set of revised
routines must be provided, and the jumpblock entries must be
changed to access those routines. There are five calls relevant
to the printer, and while one would serve for normal purposes it
is best to retain the layout of the original, so that the calls remain
valid. The five calls may be summarised thus:

BD2B: MC PRINT CHAR: Calls MC WAIT PRINTER with BC
preserved.

BDF1: MC WAIT PRINTER: Enters MC SEND PRINTER if MC
BUSY PRINTER returns with carry clear.

BD31: MC SEND PRINTER: Sends a byte to the printer.
BD2E: MC BUSY PRINTER: Returns with carry clear if BUSY

is low.

98

BD28: MC RESET PRINTER: Resets the jumpblock entry for
MC WAIT PRINTER.

The required routines are defined here in source code. The
question of their position in store will be examined later.

MPC PUSH
CALL
POP
RET

BC
MWP
BC

¡MC PRINT CHAR
¡Call MC WRITE PRINTER

MWP LD BC.&0032 ;MC WRITE PRINTER. Set timeout
count.

L1 CALL MBP ¡Call MC BUSY PRINTER
JR NC.MSP ¡If BUSY low, output data.
DJNZ L1 ;Loop up to 50 times.
DEC C
JR NZ,L1 ; Repeat 256 times.
OR A ;Clear carry: Action failed on

timeout.
RET

MSP PUSH BC ;MC SEND PRINTER.
LD BC.&F8E1 ;Data address
OUT (C),A ¡Set up data
DEC BC ;Control address
XOR A
OUT (C),A ¡Set STROBE
LD A,1
OUT (C),A ¡Terminate STROBE
POP BC
SCF ¡Set carry: Action succeeded.
RET

MBP PUSH BC ;MC BUSY PRINTER
LD BC.&F8E0 ¡Control address
IN C,(C) ¡Read BUSY
RR c ¡Bit 0 to carry
POP BC
RET

99

RES LD A.&C3 ;This routine resets the jumpblock
LD (&BD2B),A
LD HL.MPC
LD (&BD2C),HL
LD (&BDF1),A
LD HL.MWP
LD (&BDF2),HL
LD (&BD31),A
LD HL,MSP
LD (&BD32),HL
LD (&BD2E),A
LD HL.MBP
LD (&BD2F),HL
RET

Note that the entries made are straight jumps, rather than the
&CF calls normally used for these links. The routines must be in
the ‘Memory Pool’, not under the ROMs, so the ROM selection
state is irrelevant.

But where should the programs be stored? BASIC may use
any location above A3FF, and will need to go that far down only
if SYMBOL AFTER 0 has been called, copying all character pat
terns into RAM. If we enter MEMORY &A000, we will have reserved
1K of RAM in a protected state. This is important, because all
locations from LOMEM to HIMEM are cleared when a BASIC
program is loaded or NEW is called.

There is no need to reserve a full kilobyte for the programs
we are concerned with at the moment, but the reserved area can
be set as we wish, the call MEMORY &A000 being merely an
example.

By the way, once you have reset the upper memory limit, you
will be unable to use SYMBOL AFTER, as the character pattern
copies would then be split, instead of being continguous.

One other reservation is necessary. If any ‘sideways ROMs’
are fitted, the store area committed to other purposes may
change. To be strictly correct, the revised printer driver routines
should be relocatable, to allow for this. However, it will usually be
possible to put them in a predictable position.

100

Communicating Computers
There are occasions when it would be convenient to be able to
pass data from one computer to another. If the computers are of
the same type, transmission via cassette tape may be convenient,
and in the early days of personal computers, this was seen as
the only way for computers — even computers of different types
— to talk to each other, despite the need for a lot of hardware
and software to achieve compatibility.

More recently, serial transmission has become popular for
this purpose, but it can be seen as the older tape method without
the tape. There may still be problems of incompatibility of baud
rate and data format.

Parallel transmission was shunned because it involved direct
connections between the communicating computers, and that
was felt to be risky. The advent of opto-isolators has removed that
worry, and it is possible to arrange relatively simple transfer of
data between totally different computers, given that the receiving
computer has a suitable input interface.

Opto-isolators consist of a light-emitting diode and a photocell
mounted in a single unit. The input to them lights the diode, and
the photocell provides an output in response, yet there is abso
lutely no connection between input and output. One opto-isolator
is needed in each data line and each control line.

The circuit for the parallel input interface is almost identical
with that for the parallel output interface, but differs in the following
ways:

‘The output data latch is replaced by a tri-state buffer similar
to that used in the output interface for control input.
*A bistable must be added to generate the BUSY signal. It
is set by the incoming STROBE signal and cleared by a pulse
generated by the controlling software.
‘The software must be revised to store data, rather than read
it, and to produce the ACK pulse when storage is complete.

Rather than enlarging on what must be reasonably obvious,
we must turn from the hardware to consideration of the software
implications.

101

If the source computer has a facility for generating an ASCII
listing of a BASIC program, the resulting data could be applied
to the destination computer as if it came from the keyboard. It
would not be possible to run the program so transferred without
some adjustment. A program transferred from a BBC Computer
to a CPC464 would probably need to have a lot of spaces inserted,
and the sound and graphics commands would need to be
changed, but that would be a lot less tedious than transferring
the program by hand.

Transfer of data is usually straightforward, but machine code
is only transferable if the computers use the same processor. It
might be possible, in theory, to convert code for one processor
to matching code for a different processor, but the converter
might leave little room for anything else. Emulators, which execute
‘foreign’ machine code, are a different matter, but they are rather
slow.

So transferring the data from one computer to another is not
the whole story. Once transferred, conversion of some sort is
almost certainly necessary to put the code or data into intelligible
form.

But we are in danger of straying into an area of great com
plexity. Suffice it to say that the idea of transferring programs
between different computers is not as impossible as it may seem.
Those who wish to experiment in this area may care to reflect that
an intermediate jumpblock might be used to convert operating
system entries to match the ‘foreign’ code . . .

102

Serial Interfaces
A serial interface caters for a need to send data at a limited rate
over a single pair of wires. Parallel transmission is faster and
simpler, but the multiple wires it entails may be inconvenient.

Serial interfaces can take various forms, but it is usual now
adays to transmit data in separate bytes, rather than on a con
tinuous basis, since this allows the elimination of a transmitted
clock. The system relies on separate clock generators at the
transmitting and receiving ends of the line, and these must gen
erate the same frequency to within one or two percent. For each
byte transmission, there is an added ‘start bit’, which is used to
bring the clock at the receiving end into temporary synchronism
with the transmitter clock, and this synchronism lasts long enough
to allow proper clocking of the subsequent data bits. There may
also be a ‘stop bit’, which serves as a buffer between one byte
transmission and the next.

The actual clock rate may, in theory, be anything up to about
9000 Hz or so, perhaps up to 20,000 Hz In favourable conditions,
but there are preferred values at 110, 150, 300,1200, 2400, 4800,
9600 and 19,200 Hz. (The 110 Hz case is a left-over from mech
anical teleprinters, which are still with us in odd corners.)

Serial interface converters come in two main varieties. There
are the slave types, which need the help of a computer to function
properly, and the master types, which make all their own deci
sions. The slave types have to be set up by computer outputs,
and can be made to perform in a variety of formats and baud
rates, whereas the master type have these options preset. If there
is no computer at one of the communicating stations, a master
component must be used there.

The CPC464 has no built-in serial Interface, but an external
interface is planned. This will have its own controlling ROM, and
hence raises no problems of associated software. Since the cre
ation of a similar system would entail a great many difficulties, it
is suggested that no more than a dual master system be consid
ered for a DIY project. The details would depend on the com
ponent chosen.

103

+ 5V

FIGURE 7: SIMPLE DIGITAL TO ANALOGUE CONVERTER

104

Analogue Interfaces
The simplest way of generating an analogue output from a com
puter system is shown in Fig 7. This has been used with great
success in the generation of sounds from stored waveform data.
Indeed, the flexibility of such a system is considerable, and the
tone quality can be much superior to that generated by square
waves.

In such an application there is no need for precise accuracy
in the relation between data output and the voltage it produces.
A little deviation may actually improve the sound quality! The
method used to generate the data involves setting up a table of
values representing instantaneous levels within one cycle. The
table can be established by a short BASIC program, and may be
a sinewave or may include harmonics.

The different pitches are obtained by scanning through the
table at differing rates. The actual sample rate can remain con
stant, but the increments of the pointer can vary. If the whole table
is scanned in 1/440th of a second, the note produced is the A
above middle C.

By using multiple pointers, and adding the results, it is pos
sible to generate four-part harmony. However, as with all music
generators, the chore of setting up the necessary controlling data
is a deterrent, though the result can be surprisingly rewarding.

This system was pioneered by one Howard Arrington, of
Boise, Idaho, and its full ramifications cannot be pursued here.

For a more precise output, the arrangement in Fig 8 may be
used. This is a 'ladder' system, and has the advantage that the
resistors have only two values.

Analogue input is a different matter. In concept, it is possible
to turn an analogue output system round, so to speak, driving the
digital side from a counter and stopping when the generated
voltage matches the input voltage, but this is rather slow and
crude. At the opposite extreme there are proprietary components
which can give a fabulous performance — at a cost — and in
between there are many different levels of price and performance.
Most devices will need a certain amount of software support,
especially those which serve multiple channels.

105

FIGURE 8: D/A CONVERTER USING AN R.2R LADDER

106

A simple demonstration of the operation of an analogue to
digital converter is provided by the program below:

100 INPUT
110 A%=128
120 B%=0
130 FOR X%+1 TO 8
160 B%=B%+A%
150 C%=D%-B%
160 IF 0% < 0 THEN B%»0% XOR A%
170 PRINT A%)TAB(6)!B%;TAB(12)¡0%
180 A%=A%/2
190 NEXT
200 PRINT B%
210 GOTO 100

Input a number in the 1 to 255 range, and you will see that
B% is built up to equal it.

The program can be adapted to perform an actual analogue
input. Delete lines 100 and 160, and add lines as follows:

160 Output B% to a port driving a simple digital to analogue
converter.

163 Input a bit from a port, the bit depending on the state
of a comparator driven on one side by the D/A converter
output, and on the other side by the voltage to be
checked. Take the input asC%, which is 0 if the external
voltage is lower than the D/A converter output.

166 IF C = 0 THEN B%=B% XOR A%

The details have been left general: The hardware has all been
defined, and you may want to choose your own port addresses.

This arrangement is faster than the simple counter approach,
which may require 256 comparisons, instead of 8. It is advisable
to check that the D/A converter is reasonably linear in its output,

107

otherwise there may be some odd results. To check linearity, the
simplest method is to output the numbers 0 to 255 to the converter,
pausing on each number. A meter connected to the converter
output should show a steadily increasing reading, without hesi
tations or set backs.

To obtain the best results from analogue conversions in either
direction, precision devices are really essential, but the above
experiment will produce quite useful results, given a little care.

Sideways ROMs
It is almost inevitable that any external system added to the
CPC464 will require some software support, and the overall sys
tem concept allows that support to be provided by ROMs that
are mounted in unit with the rest of the external hardware. In the
extreme, no less than 252 such ROMs could be added, but in
practice the method is the same for one ROM or more.

First, each ROM is allocated a number, and output of that
number on I/O channel &DFXX must enable the ROM. It will then
replace the internal upper ROM as far as the system is concerned.
Even external ROM 0 will do that, though the internal ROM is also,
nominally, ROM 0.

Once the external ROM is selected, the routines which it
contains can be executed. It is possible to call or enter routines
in other external ROMs, using the facilities provided in the ‘RST
area’, such as FAR CALL.

Since programs held in external ROMs will need workspace,
each ROM should contain an initialisation program, which is called
at power on or system reset by the main operating system. This
program will define an amount of RAM space which it requires,
and the RAM limit pointers are adjusted automatically.

A program held in an external ROM can have its own set of
command words, which form an extension of the normal reserved
words, and which will be implemented by a call to a particular
routine.

The external ROMs must conform to a specified format, and
their use involves a certain degree of complexity. The details

108

which follow are as complete as possible, but some grey areas
remain in the available data. However, it is believed that all the
key points have been covered.

The main difficulty in implementing the extensions may well
be the creation of the necessary ROMs. However, it is not im
possible to use RAM, perhaps loaded by external means and
sustained by battery power.

ROM Types and Formats
ROM programs may be of the ‘Foreground’ or ‘Background’ type.
Foreground programs are in overall control, while background
programs supply supporting functions as called up by the fore
ground program currently in use. For example, a background
program might provide additional sound control facilities in re
sponse to a call from the current foreground program, but would
not be able to run a complete program on its own. (In some
senses, the operating system can be seen as a background
program, in that it provides services in response to requests from,
say the BASIC interpreter, but it can also act as a foreground
program in some circumstances.)

Most peripheral extensions would require a background pro
gram to support them. The program might be as simple as that
given earlier for the alternative printer port, or might amount to
a complete disc operating system.

Up to seven background ROMs may be used, and their ref
erence numbers must lie in the range 1 to 7. External ROMs in
general may have reference numbers in the range 0 to 251. The
ROM numbers must be consecutive from 0 or 1 upwards. If the
reference 0 is used, the on-board ROM will be available at the
first reference number not used by external ROMs.

Up to four ROMs with consecutive reference numbers may
be used to hold a single foreground program.

All of which may sound rather complicated, but the fog will
clear in due course.

A given external ROM will occupy addresses C000 to FFFF,
and may be up to 16K in size. The first six locations must be set
up as follows:

109

C000: ROM type. 0 for a foreground ROM
1 for a background ROM
2 for an extension ROM.

(The onboard ROM is given type &80)
0001: ROM Mark number
0002: ROM Version number
0003: ROM Modification level.
0004/5: Address of external command table.

At 0006 onward there must be a jumpblock, beginning with
the entry to the initialisation routine and continuing with jumps
that match the external command words.

The external command table must list the command words,
with &80 added to the code for the last letter in each word. It is
advisable to use upper case letters for command words.

An external command is distinguished by being prefaced by
a vertical divide character. It is implemented by KL FIND COM
MAND, at BCD4, which is entered with HL pointing to the com
mand string, and returns with the ROM select address in C and
the address of the required routine in HL. The command word
table is terminated by ‘0’.

Use of the external command table is optional. The format
used for the BASIC interpreter ROM is:

C000 80 01 00 00 4C C0

This defines the ROM as onboard; Mark 1; Version 0; Mod
level 0, and places the command table at C04C.

At C04C:

C04C 42 41 53 49 C3 00 : BASIC

The final zero shows that there is only this one external com
mand word, so instead of a jumpblock starting at C006 it is pos
sible to start the initialisation routine at that point.

Some distinctions between foreground and background
ROMs can now be examined in more detail.

At initial start-up, the peripherals and firmware managers are
reset, and ROM 0 is then entered at C006 with HL = ABFF (top

110

of available RAM), DE = 0040 (bottom of available RAM) and BC
= B0FF (highest usable byte). The stack pointer is reset to C000.

The ROM 0 initialisation program reserves space by adding
012F to the value held in DE, moving the lower limit of free-use
RAM up to 016F. (The stored BASIC program begins at 0170.)
The new limits are stored in workspace.

As noted earlier, the upper limit of free RAM can be modified
by the BASIC command MEMORY, and this protects an area of
store in which routines can be held in RAM.

If MC START PROGRAM is called with HL holding 0000,
initialisation as above is repeated, but if the entry is called with
HL holding any other value the ROM defined in the C register is
entered at the address defined in HL, once again with BC, DE
and HL holding the memory limits. The program entered must
claim any workspace areas which it requires by modifying the
contents of DE and/or HL appropriately, and storing them for
reference.

Note that when the ROM entered by MC START PROGRAM
returns, a full system reset occurs, so the onboard ROM is re
selected as at power-up.

The foreground program set up in this manner may choose
to activate one or more background programs which it requires
as support. It may do so by calling KL ROM WALK, which calls
KM INIT BACK for all available background ROMs, or it may call
INIT BACK for particular ROMs which it requires. The BASIC ROM
calls KL ROM WALK, initialising any ROMs that may be available.

The background programs respond by modifying the avail
able RAM limits held in DE and HL, so reserving areas which they
can use for workspace. Now, the actual location of these areas
may depend on the amount of memory reserved by the foreground
program, so the background programs must note where the area
begins, and access the area on a displacement basis. This can
be done by using IX as a base. If IX is always set when the
program is entered, then a given location in the workspace can
be accessed by LD A,(IX+n), or similar instructions.

We thus have a system which allows the use of any one of
a number of foreground ROMs, each of which may contain a

111

number of different programs called by external command words,
plus up to seven background ROMs, which can supply support
routines. Once we are in a foreground ROM we must stay there,
except for excursions to background ROMs, because a return
from a foreground ROM results in a general reset.

Applications
The possible ways of using the sideways ROM system are too
numerous to examine in detail, but it may be useful to point out
some ideas on the subject.

The provision of alternative languages, such as Pascal or
FORTH, is a fairly obvious starting point, while other foreground
programs might implement word processors or spreadsheets. A
considerable advantage is that the use of on-board RAM can be
minimal, only workspace being required.

As mentioned earlier, the use of battery-supported RAM in
stead of ROM would extend the scope even further, since large
amounts of data could be stored externally, being brought into
main RAM as and when required. There would be no need to
implement 'virtual memory’ techniques, which make a given
amount of RAM look much larger than it really is, since the external
ROM system effectively does much the same thing.

Background ROMs could be used to extend existing systems,
offering a total of 112K of program space. It is probable, however,
that some of this space will be pre-empted by official add-ons,
such as a disc system or serial interface.

A word of caution is necessary. With such a complex system,
some time may pass before it is fully explored and any hidden
limitations are exposed. Some aspects of the system may yet
change in minor ways. Very few 'bugs’ have been discovered,
and those that have emerged are trivial, such as the insertion of
a line feed if a text line looks like overrunning the screen width.
(This may be deliberate, but it is not popular!)

We are now far down the iceberg, and the image of the
CPC464 as a simple BASIC machine is getting more and more
remote. It can be used in that way, but it will do far more, given
proper persuasion. The level of knowledge needed to take full
advantage of this is far from trivial, and there is a lot to be studied.

112

External ROM Hardware

The actual hardware needed to implement an external ROM is
not very complex. First, output addresses of the form DFXX must
be recognised, and the associated data byte must be transferred
to a latch. The latched data must be compared with the ROM
select number for the ROM in question, and if the two match the
ROM must be enabled, but only if the ROMEN line of the interface
is low. The full address is available to select a ROM location, and
a read transfer should be expected, with RD low.

The relevant address can be recognised with the aid of an
eight-input NAND gate and an inverter. The latch can be a stand
ard eight-bit latch. The ROM can be of almost any type of suitable
size. Fig 9 sketches a possible configuration, using comparators
to detect the ROM select number.

If RAM is used instead of ROM, it needs to be of the static
type, to avoid the need for refresh. While refresh action could be
arranged, it is an inconvienient complication.

There is no need, of course, to mount each ROM on a separate
daughterboard. The address recognition elements and the latch
could be common to more than one ROM, separate comparators
being used to detect which ROM is required.

As in other areas covered in this book, it seems a pity to be
too specific, since the possible variations are so vast. Merely
breadboarding circuitry to try out some of the ideas that come
to mind would take a very long time. Without that, it is only possible
to indicate what those ideas are . . .

A Second Processor
The technique of using the BBC Computer as an ‘intelligent ter
minal’ serving an external second processor system has led to
enquiries regarding the application of a similar technique to the
CPC464. Some comments are therefore offered, though a com
plete response would be far too complex to include here.

First, the need to add a second processor is much reduced
by the greater capabilities of the CPC464, by its extra RAM space,
and by its use of the Z80 processor, which makes it directly

113

FI
G

U
R

E
9:

 R
O

M
 S

EL
EC

T
H

AR
D

W
AR

E
R

O
M

 S
EL

EC
T

114

compatible with CP/M. However, it is possible to envisage situa
tions in which it would be useful to carry on an external process
simultaneously with that being run in the CPC464 itself. (The
CPC464 can cope with ‘concurrent’ execution of two processes,
alternating between them, but ‘simultaneous’ operation implies
that both processes are running all the time.)

In any logical system, it is important to distinguish between
a ‘master’ element and ‘slave’ elements. There can only be one
master at a time, though the master role may be transferred from
one element to another in particular system states. The master
determines overall system action, exercising control over the
slaves, which may ask for assistance by raising interrupts, but
which otherwise must do what they are told.

By definition, any external processor using the CPC464 as
an intelligent terminal must be the master, but if both the internal
and external processors are working independently most of the
time they can both be masters, until intercommunication is re
quired. This is where the external processor must exert its
authority, by raising an interrupt. That forces the internal processor
to respond, and the response must take the form of a transfer of
data. This could be executed by a background program, called
by an ‘event’. The external processor could pass data defining
the required action.

The routine servicing the external processor interrupt would
have to be brief, since normal internal action must be maintained.

An alternative approach, which may have advantages where
only data is to be passed, is based on the BUSRQ and BUSAK
lines. The external processor takes over the internal bus for one
memory cycle, and passes a data byte to the internal memory.
This can be repeated to send a complete 'message', the internal
processor being allowed to continue execution between data
transfers, while the external system picks up another data byte.

The message can be interpreted by a foreground program,
and could instruct the display of text or a change in the action
of the internal foreground program. This might be implemented
in response to a synchronous event called by the foreground
program, which would ensure that a partially-transferred message
was not used prematurely.

115

Enough has been said to indicate the possibilities, and to
show that appreciable effort would be needed to detail the hard
ware and software systems. A beginner would be in much the
same case as an average motorist whose car has broken down
miles from anywhere. He may have all the tools needed for a
repair, but he lacks the detailed knowledge of how the tools should
be used.

The CPC464 provides a vast array of tools. Learning to use
them properly could take time.

Overview
The CPC464 has been revealed as a wolf in sheep’s clothing. To
the superficial observer, it looks like another simple games
machine, though with some rather nice characteristics. Explo
ration reveals more and more that is hidden under that innocent
exterior.

Making use of all that has been discovered is not a simple
matter. Involvement with machine code is virtually essential, and
even a simple external add-on may call for careful hardware
design.

However, it is a machine which will serve a developing user
well. It will support him as he learns to walk, yet keep pace when
he aspires to run. As his confidence grows, it is expected that
machine enhancements will appear, mainly as external additions,
and these will help him on his way.

116

BIBLIOGRAPHY

Programming the Z80, Rodney Zaks (Sybex Inc.)
Amstrad BASIC, AMSOFT
Amstrad CPC464 Firmware, AMSOFT
Amstrad DEVPAC for CPC464, AMSOFT

117

118

Enhanced Dump Program for print or display, ROM or RAM

1// GOSUB 37/
11/ CLS
12/ PRINT "MODE /,Display ROM
13/ PRINT "MODE 1,Print ROM
14/ PRINT "MODE 2.Display RAM
15/ PRINT "MODE 3,Print RAM
16/ INPUT "MODE";Y
17/ X=Y MOD 2
18/ Z=Y\2
19/ INPUT "Start Address";A
2// A=A-65536*(A</)
21/ NL%=A-8*INT(A/8)
22/ PRINT #(X*8),HEX$(A,4);
23/ ON Z+l GOSUB 31/,46/
24/ PRINT #(X*8),TAB(6+3*NL%);HEX$(B,2);
25/ A=A+1
26/ NL%=NL%+1
27/ IF NL%<8*(X+l) THEN 23/
28/ NL%=/
29/ PRINT #(X*8)
3// GOTO 22/
31/ Q=INT(A/256)
32/ POKE &7/19,Q
33/ POKE &7/18,(A-256*0)
34/ CALL &7///
35/ B=PEEK(&7/2/)
36/ RETURN
37/ FOR X=&7/// TO &7/12
38/ READ Y
39/ POKE X,Y
4// NEXT
41/ RETURN
42/ DATA &2A,&18,&7/,&CD,&//,&B9
43/ DATA &F5,&CD,&/6,&B9,&7E
44/ DATA &32,&2/,&7/,&Fl,&CD,&/C
45/ DATA &B9,&C9
46/ B=PEEK(A):RETURN

119

Index
Cassette Recorder... 27
Cassette Manager... 11,27, 61

CATALOG ... 65
CHECK ... 66
IN ABANDON ... 62
IN CHAR ... 62
INCLOSE. . . 62
IN DIRECT... 63
IN OPEN ... 62
INITIALISE ... 60
NOISY ... 61
OUTABANDON ... 64
OUT CHAR ... 64
OUT CLOSE. . . 64
OUT DIRECT. . . 64
OUT OPEN ... 63
READ ... 65
RESTORE MOTOR ... 61
RETURN ... 63
SET SPEED. . . 61
START MOTOR ... 61
STOP MOTOR ... 61
TEST EOF . . . 63
WRITE ... 65

CRT Controller... 14
Events ... 34
FAR CALI____ 32
FAR ICALI____ 33
FAR PCHI____ 32
Fast Ticker... 34, 71
FIRM JUMP. . .33
Frame Flyback ... 34, 71
Graphics VDU... 3, 51,77

ASK CURSOR ... 51
CLEAR WINDOW ... 52
GET ORIGIN ... 51
GET PAPER ... 53
GET PEN . . . 52
GET W WIDTH ... 51
GETWHEIGHT. . . 52
INITIALISE ... 50
LINE ... 78
LINE ABSOLUTE ... 53
LINE RELATIVE ... 54
MOVE ABSOLUTE ... 50

MOVE RELATIVE ... 50
PLOT... 77
PLOT ABSOLUTE ... 53
PLOT RELATIVE ... 53
RESET ... 50
SET ORIGIN ... 51
SET PAPER ... 52
SET PEN . . . 52
TEST ... 78
TEST ABSOLUTE ... 53
TEST RELATIVE ... 53
WIN WIDTH ... 51
WIN HEIGHT. . . 51
WR CHAR ... 54

Hardware System ... 1
Header Block... 28
Indirections ... 77
Interface ... 83, 93
Interrupt... 33, 34
I/O Addresses ... 11
I/O Instructions... 12
Joystick... 27
Jumpblocks ... 4, 34, 38
Jumper... 4, 76
Jump Restore ... 76
Kemal... 4, 69

ADD FAST TICKER ... 71
ADD FRAME FLY . . . 71
ADD TICKER ... 72
CHOKE OFF . . . 69
CURR SELECTION ... 80
DEL FAST TICKER ... 72
DEL FRAME FLY ... 71
DEL TICKER ... 72
DISARM EVENT ... 74
DO SYNC ... 73
DONE SYNC ... 73
EVENT ... 72
EVENT DISABLE ... 73
EVENT ENABLE ... 73
FIND COMMAND ... 70
INITBACK ... 70
L ROM DISABLE ... 79
LROM ENABLE. . . 79
LDDR ... 81

LDIR ... 80
LOG EXT . . . 70
NEW FAST TICKER ... 71
NEW FRAME FLY . . . 71
NEXT SYNC ... 73
POLL SYNCHRONOUS ... 81
PROBE ROM ... 80
ROM DESELECT ... 80
ROM RESTORE ... 80
ROM SELECT ... 80
ROM WALK ... 70
SYNC RESET... 72
TIME PLEASE ... 74
TIME SET ... 74
U ROM DISABLE ... 79
U ROM ENABLE ... 79

Key Manager... 3, 38, 77
ARM BREAKS ... 43
BREAK EVENT... 43
CHAR RETURN ... 38
DISARM BREAKS ... 43
EXP BUFFER ... 39
GET CONTROI___ 42
GET DELAY ... 42
GET EXPAND ... 39
GET JOYSTICK ... 40
GET REPEAT ... 42
GET SHIFT. . . 41
GET STATE ... 40
GET TRANSLATE ... 41
INITIALISE ... 38
READ CHAR ... 38
READ KEY . . . 40
RESET ... 38
SET CONTROI____42
SET DELAY ... 42
SET EXPAND ... 39
SET REPEAT ... 42
SET SHIFT. . . 41
SET TRANSLATE ... 41
TEST BREAK ... 78
TEST KEY . . . 40
WAIT CHAR ... 38
WAIT KEY . . . 39

Keyboard ... 26
Light Pen ... 17, 84
Machine Pack ... 4, 74, 77

BOOT PROGRAM ... 74
BUSY PRINTER ... 76
CLEAR INKS ... 75

PRINT CHAR ... 76, 96
RESET PRINTER ... 75
SCREEN MODE ... 75
SCREEN OFFSET ... 75
SEND PRINTER ... 76, 96
SOUND REGISTER ... 76
START PROGRAM ... 74
WAIT FLYBACK ... 75
WAIT PRINTER ... 79

Memory ... 5
Memory Pool... 5
Motherboard ... 92
Operating System ... 29,37
Parameter Passing ... 10,29
PCBC ... 32
PCDE ... 32
PCHI____32
PPI . . . 18
Printer Port... 20, 96
Programmable Sound Gen. ..
RAM ... 6
RAM LAM ... 32
RESET ... 31
ROM ... 6
RST Area... 31
Screen Pack ... 3, 54, 78

ACCESS ... 60
CHAR INVERT... 58
CHAR LIMITS ... 55
CHAR POSITION ... 56
CLEAR ... 55
DOT POSITION ... 56
FILL BOX. . . 58
FLOOD BOX . . . 58
GET BORDER ... 57
GET FLASHING ... 58
GET INK ... 57
GET LOCATION ... 55
GET MODE ... 55
HORIZONTAI___ 60
HW ROLL ... 59
INITIALISE ... 54
INK ENCODE ... 57
MODE CLEAR ... 78
NEXT BYTE ... 56
NEXT LINE ... 56
PIXELS ... 60
PREV BYTE ... 56
PREVLINE ... 56
READ ... 78

.23

REPACK ... 59
RESET... 54
SET BASE ... 55
SET BORDER ... 57
SET FLASHING ... 58
SET INK ... 57
SET MODE. . . 55
SET OFFSET. . . 54
SW ROLL ... 59
UNPACK ... 59
VERTICAl___ 60
WRITE ... 77

SIDE CALL ... 32
SIDE PCHI____32
Sound Manager... 4,66

A ADDRESS ... 69
AMP ENVELOPE ... 68
ARM EVENT ... 67
CHECK ... 66
CONTINUE ... 68
HOLD ... 68
QUEUE ... 66
RELEASE ... 68
RESET ... 66
TONE ENVELOPE ... 69

Sound Timer... 34
Text VDU ... 3, 43, 75

CLEAR WINDOW ... 45
CUR DISABLE ... 46
CUR ENABLE ... 46
CUR OFF . . . 46
CUR ON ... 46
GET BACK ... 48
GET CONTROI___ 49
GET CURSOR ... 46
GET M TABLE ... 49
GET MATRIX. . . 48
GET PAPER ... 48
GET PEN ... 47
GET WINDOW ... 45
INITIALISE ... 43
INVERSE ... 48
OUT ACTION ... 77
OUTPUT ... 44
PLACE CURSOR ... 47
RD CHAR ... 44
REMOVE CURSOR ... 47
RESET ... 43
SET BACK ... 48
SET COLUMN ... 45

SET CURSOR ... 46
SET GRAPHIC ... 44
SET M TABLE ... 49
SET MATIX ... 49
SET PAPER ... 48
SET PEN ... 47
SET ROW ... 45
STR SELECT ... 50
SWAP STREAMS ... 50
UNDRAW CURSOR ... 77
UNWRITE ... 77
VALIDATE ... 47
VDU ENABLE ... 44
VDU DISABLE ... 44
WIN ENABLE ... 45
WR CHAR ... 44
WRITE CHAR ... 77

Ticker... 34, 71
User Reset... 32
Veroboard ... 93
Video Gate Array ... 13

Ins and Outs of the
Amstrad CPC 464

Customer Registration Card

Please fill out this page (or a photocopy of it) and return it so that we may
keep you informed of new books, software and special offers. Post to the
appropriate address on the back.

Date 19

Name..

Street & No..
City.. Postcode/Zipcode..........................

Model of computer owned...

Where did you learn of this book:
□ FRIEND □ RETAIL SHOP

□ MAGAZINE (give name)..

□ OTHER (specify) ...
Age? □ 10-15 □ 16-19 □ 20-24 □ 25 and over

How would you rate this book?
QUALITY: □ Excellent □ Good □ Poor

VALUE: □ Overpriced □ Good □ Underpriced
What other books and software would you like to see produced for your
computer?

EDITION 7 6 5 4 3 2 1

Melbourne House addresses

Put this Registration Card (or photocopy) in an envelope and post it to
the appropriate address:

United Kingdom
Melbourne House (Publishers) Ltd
Castle Yard House
Castle Yard
Richmond, TW10 6TF

United States of America
Melbourne House Software Inc.
347 Reedwood Drive
Nashville TN 37217

Australia and New Zealand
Melbourne House (Australia) Pty Ltd
2nd Floor, 70 Park Street
South Melbourne, Victoria 3205

Amstrad
CPC 464

Melbourne
House

The AMSTRAD CPC464 is a unique and very special computer in very
many ways.

One of the most important features of this computer is the ease with
which all major software functions can be accessed by simple calls to the
operating system. Th is means that you can make the maxi mum use of your
Amstrad computer whether you are a first-time user or a professional
programmer.

Don Thomasson explores all this in the INs chapters of this book in a
clear, well-structured manner that will allow you to write more powerful
professional programs. Features such as screen plotting, cassette
input/output and so on, can be reduced to simple calls to subroutines.

Other unique features of the Amstrad CPC464 are its abilities to
interface with the outside world, and the option of external ROMs which
vastly expand the potential of this computer. Don Thomasson detailsail of
this in the OUTs chapters of this book.

A comprehensive description of how to add external devices to the
Amstrad CPC464 through the use of the expansion and printer ports is
given. Hardware enthusiasts will find this book indispensible.

INS AND OUTS OF THE AMSTRAD CPC464 shows you howto best
explore that part of the Amstrad computer which is otherwise hidden.

Melbourne ISBN o-fitibi-no-x
== House
fflLS Publishers 9 "780861 611904

https://acpc.me/

CPC

[FRA] Ce document a été préservé numériquement à des fins éducatives et d'études, et non commerciales.
[ENG] This document has been digitally preserved for educational and study purposes, not for commercial purposes.
[ESP] Este documento se ha conservado digitalmente con fines educativos y de estudio, no con fines comerciales.

	The Ins and Outs of the AMSTRAD CPC 464
	CONTENTS

	INTRODUCTION

	THE INS

	System Overview

	The Memory System

	The Inner Peripherals

	The I/O Address Map

	The Video Gate Array

	The CRT Controller

	The Parallel Peripheral Interface

	The Printer Port

	The Outer Peripherals

	The Programmable Sound Generator

	The Keyboard

	The Cassette Recorder

	The Operating System

	The RST Area

	Jumpblock Entries

	Interrupts and Events

	Operating System Calls

	THE INTERFACE

	THE OUTS

	General Principles

	Parallel Interfaces

	Interface Rules

	An Alternative Printer Port

	Software Support

	Communicating Computers

	Serial Interfaces

	Analogue Interfaces

	Sideways ROMs

	ROM Types and Formats

	Applications

	External ROM Hardware

	A Second Processor

	Overview

	BIBLIOGRAPHY

	Index

	● Raw HQ scan : Maxime CROIZER for ACME | Cleaning/Cover restoration/Layout/OCR/Coca light : ACME – https://acpc.me | Thanks to Rafa CPCMANIACO for lending the book ● 2020-11-02

