
Derek Ellershaw and Peter Schofield ™

VERY BASIC
BASIC

The first 15 hours on your

AMSTRAD

Derek Ellershaw and Peter Schofield

VERY BASIC

BASIC
The first 15 hours on your

AMSTRAD
(CPC 464)

CENTURY PUBLISHING CO. LTD.
WITH

MELBOURNE HOUSE (PUBLISHERS) LTD.

Published in the United Kingdom by:
Century Publishing Co. Ltd
Portland House,
12-13 Greek Street,
London WTV 5LE
in conjunction with
Melbourne House (Publishers) Ltd.,
Church Yard,
Tring, Hertfordshire HP23 5LU
ISBN 0 7126 0669 6

Copyright © 1985 by D. Ellershaw and P. Schofield

All rights reserved. This book is copyright. No part of this book
may be copied or stored by any means whatsoever whether
mechanical or electronic, except for private or study use as
defined in the Copyright Act. All enquiries should be addressed to
the publisher.

Reproduced, printed and bound in Great Britain by
Hazell Watson & Viney Limited,
Member of the BPCC Group,
Aylesbury, Bucks

CONTENTS

SECTION 1 PREPROGRAMMING... 1

CHAPTER 1 INTRODUCTION... 3
Don’t panic... 3
The first step.. 3
How to use this book.. 4
Before programming.. 4
Basic techniques... 5
Useful aids... 5
More about programming....................................... 5

CHAPTER 2 KEYBOARD BASICS... 7
Before you begin... 7
The different modes .. 7
Summary.. 9
More keyboard hints... 9
Number keys... 10
Cursor keys .. 10
More pre-programming hints 11
Memory and screen clearing................................ 12
Command words... 13
The REM .. 13

CHAPTER 3 HOW TO CORRECT MISTAKES................................ 15
Correcting mistakes.. 15
Correcting typing errors before pressing ENTER 15
Correcting errors after pressing ENTER............. 16
Correcting errors in a program which you are
trying to RUN... 17
Using LIST.. 19
Exercises.. 20

CHAPTER 4 USES OF THE PRINT COMMAND 21
Print instruction... 21
Example.. 21

A better example ... 21
RENUM... 22
Screen layout.. 24
LOCATE and position printing............................... 24
Experiment yourself.. 25
The TAB command... 25
Using speech marks..26
More use for TAB.. 26
Exercises... 27

SECTION 2 BASIC PROGBAMMING TECHNIQUES 29

CHAPTER 5 HOW TO USE INPUT.. 31
Getting information.. 31
Using INPUT.. 31
Let’s go deeper.. 32
A working example.. 32
Another example.. 33
You can use the examples 34
Using INPUT for letters and words..................... 34
A handy program for Xmas.................................. 35
The Xmas program explained............................... 35

CHAPTER 6 NUMBERS AND YOUR COMPUTER 37
Using your computer as a calculator.................. 37
Addition sign + .. 37
Subtraction — .. 38
Explanation... 38
Multiplication sign... 38
Division... 39
Order of calculation .. 39
A program to print numbers................................. 40
N is a numeric variable ... 40
Naming and giving a value to a numeric variable 41
What is allowed as a name................................... 41
More uses for numeric variables........................ 42
Explanation... 43
Two new words — FOR and NEXT..................... 43
To repeat a group of instructions........................ 44
Consider this program.. 44
Explanation... 44
The computer as a calculator............................... 45
A tables program.. 45
A program for the ten times table....................... 46

The RND function... 46
RND is useful ... 47
A list of calculations is easily printed................. 48
Some useful formulae ... 48
Varying the level of difficulty............................... 49
Different ways to use the computer.................... 49
When the computer uses decimal......................... 51
Raising a number to a power............................... 51
Dealing with fractions... 51
LET is optional.. 52

CHAPTER 7 STRINGS AND THINGS ... 53
Introduction.. 53
How to recognise a string variable 53
An example .. 54
A use for the example .. 55
Adapting the example.. 55
Using the adaptation... 56
Another use of a string variable.......................... 56
Another example — a quiz.................................... 56
String variables do vary... 57
A true string variable explained........................... 57
Using the quiz .. 57
A primitive word processor................................... 57

CHAPTER 8 SCREEN CLEARING AND TIMING........................... 59
Introduction.. 59
To recap ... 59
Consider this program.. 59
Explanation.. 60
The untidy result ... 60
Another approach... 60
A slower, more readable result............................. 61

CHAPTERS LOOPING AND BRANCHING...................................... 63
Using GOTO to repeat.. 63
Going round in a loop... 63
GOTO branching.. 63
Other uses of GOTO and branching using
IF-THEN.. 64
How branching and GOTO looping work.............. 65
The END command... 66
Over to you.. 66
Explanation.. 67
How branches and GOTO looping work................ 68

Tilings to notice.. 68
String variables.. 69
More detail about END... 69
IF-THEN conditional statements............................ 70
ELSE — a better way.. 71
Both = and <> can also be used with words 71
Four more signs... 71
Example.. 71
Explanation... 72
Two important words used with IF..................... 73
The meaning of AND... 73
An example of its use... 73
Logical operators can be used with words........ 74
An example ... 74
An example of the use of NOT.............................. 75

CHAPTER 10 SUBROUTINES... 77
Introduction..77
When to use GOSUB.. 77
For example .. 77
Explanation... 78
An improved example.. 78
Explanation... 78
Conclusion.. 79

CHAPTER 11 SUMMARY.. 81

CHAPTER 12 USING THE DATACORDER..................................... 83
Amstrad advantage ... 83
How to use pre-recorded tapes............................. 83
Saving programs on tape.. 83

CHAPTER 13 THE PRINTER ... 85
Commercial advantage.. 85
Consider before buying... 85
Commands for the printer...................................... 86
Printing listings .. 86

SECTION 3 INTRODUCTION TO COLOUR, SOUND AND
GRAPHICS 87

CHAPTER 14 MODES AND A FEW TIPS.. 89
Three different modes... 89
An example using the three modes..................... 89
Screen clearing... 90
Something to notice... 90

AUTO... 91
Any sequence.. 91
Save typing time... 92
Another time saver .. 92
Beware.. 93

CHAPTER 18 COLOUR.. 95
Introduction... 95
BORDER.. 95
PAPER — the screen background........................ 96
More colours here.. 97
Flashing colours ... 97
PEN — the text colour... 97
Experiment yourself.. 98
Example.. 98
INK... 99
Example of the use of INK..................................... 99
Explanation.. 98
Computer language.. 100
Change PAPER colour ...100
Change PEN colour.. 100
Switch-on state ...101
Experiment.. 101

CHAPTER 16 GRAPHICS.. 103
Amstrad character set..103
ASCII...103
Displaying the character set...................................105
Simple animation... 104
It’s up to you..104
Screen format...105
What is a pixel...105
Graphics cursor..105
Using PLOT and DRAW...106
Screen refinement using GOTO106
Diagonal lines...107
Co-ordinates X and Y..107
Use for XPOS and YPOS... 108
Don’t forget to experiment....................................... 108
Round in circles.. 109
Radius circumference...109
Mathematical signs DEG, COS, SIN........................ 109
Another way to DRAW circles.................................110
Colouring circles.. 110

Create your own design... 110
The ORIGIN command.. Ill
A dash of colour..Ill
Imagination...112

CHAPTER 17 SOUND... 113
High quality from the Amstrad.............................. 113
Basic music...113
Bay a note..113
Musical scale... 114
Sing along..115
Sounds better..115
Rules for the ‘SOUND’ command........................... 116
SOUND ENVELOPES...116
Four rules for ‘ENV’ ...117
The ENT command..117
‘SOUND’ effects.. 118
Musical notes... 118

SECTION 4 MORE RASIC TECHNIQUES....................................121

CHAPTER 18 HOW TO HANDLE DATA... 123
An example of READ and DATA explained........ 123
How you go on... 124
Another example explained.....................................124
And it’s over to you..125
An example of arrays.. 125
A different use for DATA... 127
Sorting letters...128
Now you can experiment... 129

CHAPTER 19 HOW TO ADAPT PROGRAMS....................................131
Introduction..132
A more complex program... 132
Explanation...133
The program teaches as well as tests...................133
How to alter the program.. 134
Another example.. 134
How to adapt it.. 135
Variations on a theme... 136
A test of logic..138

SECTION 1

PREPROGRAMMING

1

This introduction tells you how to use the book
and how it is laid out.
By now you may have unpacked your Amstrad
CPC 464, plugged everything in and perhaps
have run a few games on it. You may even have
tried some programs. If you are finding the
manual difficult to follow, if you found that you
understood the first few pages and little after
that, then THIS IS THE BOOK FOR YOU. Don’t
feel ashamed! Don’t burst into tears of
frustration! Thousands before you have found
computing difficult to understand. Very few
people understand computers and programming
from the very start. Many people feel that
computing books go too far, too fast, too soon.
This book is written for adults, teenagers, or any
beginner. It avoids the use of jargon for its own
sake and explains computing in English. New
and technical terms are always fully explained.

Don’t panic

The first
STEP

This book does NOT aim to tell you everything
about your Amstrad. It is very limited in its
scope. It tries to guide you through the first
hours and weeks of understanding, when
confusion can often creep in. However, if you
follow it carefully, it should provide a basis
which will help you to understand the more
complex books on the subject of programming.

3

How TO USE

THIS BOOK
(1) Look carefully at the Sections and
Chapters at the front of the book. They are set
out very clearly because you will have to use
them when you start to program. You will then
be referred back or forward to another chapter
if you want a more detailed explanation, but only
do so if you really want an immediate
explanation.
(2) You should ideally start at the
beginning and work through the book unless the
instructions indicate otherwise. The Chapters
are arranged in a sequence. There are exercises
in some Chapters. Make a real effort to attempt
them to get the maximum benefit.
(3) The book is split into four main
sections:
SECTION 1 PRE-PROGRAMMING
SECTION 2 BASIC PROGRAMMING

TECHNIQUES
SECTION 3 INTRODUCTION TO COLOUR, SOUND

AND GRAPHICS
SECTION 4 MORE BASIC TECHNIQUES

Before
PROGRAMMING

SECTION 1
This section outlines a number of things you
need to know before you can begin
programming. Yes, there are some simple
programs but the main weight of the section is
on helping you to be clear about using easy
commands and knowing how to set out your
programs.

SECTION 2
These chapters concentrate on the bare bones of
programming techniques (for more information
see Section 4). You are introduced to variables,
looping, branching, counting, together with
associated commands. We have aimed to make
all the programs have a practical application,
rather than make them theoretical exercises. We
aim to help fathers and mothers, daughters and
sons to discover how computers can help with
education, leisure, home management and
business.

Basic
TECHNIQUES

SECTION 3
These chapters are meant as an introduction
only to some of the attractive features of your
computer. Suggestions are made to incorporate
these features in your programs.

Useful aids

More ABOUT
PROGRAMMING

SECTION 4
This section takes you a little further into
programming and has some advice on program
adaptation.

5

This chapter concentrates on clearing a number
of obvious things out of the way so that you can
begin programming.

Before you
begin

It is possible to use the Amstrad CPC 464 with
either an Amstrad colour or “Green screen”
monitor, or a domestic T.V. You should therefore
follow carefully the instructions in the User
Instructions supplied with your computer to set
up your equipment.
Once you have switched on you will see the
message:
Amstrad 64K Microcomputer (vl) c 1984
Amstrad Consumer Electronics Pic and
Locomotive Software Ltd.
BASIC 1. 0
Ready
■
This ■ is called a CURSOR. You are now ready to
begin computing.

The
DIFFERENT
MODES

The computer is now READY to accept
instructions from you — the CURSOR acts as a
prompt — in other words it is encouraging you
to type some instruction. Whenever you see the
word READY followed by the cursor you know
that the computer is waiting for you.

7

Press the number keys on the top row of the
keyboard and then try some letters of the
alphabet. Now press the keys with the symbols;
and This shows that the computer is
automatically locked into the small (lower case)
letters. Now find the CAPS LOCK key. It is one of
the green keys on the left hand side of the
keyboard. Press it. Try the number keys again
— still numbers. Try the symbols; and: — still
displaying the lower symbol. Now press some
letter keys 1! 1 When the CAPS LOCK key is pressed
once all letters are displayed as capitals (upper
case) but it is still possible to get the numbers
and the lower symbols. To release the CAPS
LOCK key just press it again. Now find one of the
green SHIFT keys — there are two, one on the
left and one on the right hand side of the main
keyboard. Whilst holding down a SHIFT key
press the number keys. This time the symbols
above the numbers are displayed. Tiy some of
the other symbols keys whilst holding SHIFT.

There is another key that can be used whilst
typing. It is the green CTRL key which is next to
the space bar on the bottom row. This key is the
ConTRoL key and has a few functions. Return
the keyboard to the lower case (small letters)
mode. Now by holding the CTRL key down press
the CAPS LOCK key once. Type some letters again
— now try the number keys. This time you can
get capital letters and the upper symbols — this
can be useful when typing in some programs. To
return to lower case letters and numbers hold
down the CTRL key and press CAPS LOCK once.
To return to capital letters you will have to press
CAPS LOCK again.

Our screen is beginning to look a little cluttered
—let’s see if we can clear the screen so that we
can start afresh. On the left hand side of the top
row you will see a red key ESC. This is the
ESCape key. Hold down the CTRL key and a
SHIFT key and then press ESC. The computer is
now Ready to start again!

8

To summarise so far:
(a) We refer to the rectangle underneath
Ready as a CURSOR.
(b) The computer is set initially to lower
case (small) letters.
(c) With the CAPS LOCK key you can get
Capital letters whilst retaining the numbers.
(d) With SHIFT you can get Capital letters
and the Upper symbols.
(e) With CTRL and CAPS LOCK you can
also get capital letters and the Upper symbols.
(f) CTRL, SHIFT and ESC clears the screen
and returns the computer to its initial state.
Practice using the keyboard — try the tape
provided with your computer — it has a good
keyboard practice exercise.

You will have noticed other keys with
instructions written on them. Let us have a look
at these. First of all clear the screen (CTRL,
SHIFT and ESC). Type several letters and then
press the key marked ENTER. You will see the
following:
Syntax Error
followed by Ready and the CURSOR. The words
“Syntax Error” mean that the computer does
not understand the message you have typed.
This is to be expected because we are only
“playing” with the keyboard and not actually
giving instructions. We can ignore the error
message for now (it is explained in more detail
later) and continue playing because we have the
word Ready and the Cursor tells us that the
computer is awaiting further instructions.

Summary

More
KEYBOARD
HINTS

9

The ENTER key (sometimes called the RETURN
key on other computers) is the most important
key of all because it is the key that is used to
ENTER the information typed into the computer.
After typing any instruction line of a program
the ENTER key must be pressed. You will soon
become used to this.

Number

There are in fact two ENTER keys on the
Amstrad — you will find the other next to the
cluster of number keys to the left of the
Datacorder. This ENTER key can also be used—
it’s obviously very handy if you have to type in a
lot of numbers when the number cluster can be
used more easily than the top row.

Cursor

Above the cluster of numbers you will find
another cluster of keys. We will ignore the green
key in the middle (COPY) for the time being as
this is covered in the next chapter.
The four keys with arrows on control the
position of the cursor. Clear the screen again
(CTRL, SHIFT and ESC) and press the key with
the down arrow . You will see the cursor move
down the screen. Try the other arrow keys. If
you hold one of these keys down you will see that
the arrow moves rapidly in the direction
indicated. This is known as AUTO-REPEAT and
you will find that this facility is very useful in
correcting typing errors (next chapter).
Experiment with the cursor control keys to
familiarise yourself with the movements of each
key.
We will explain the functions of the other
command keys as we come across them in later
chapters.

10

More PRE­
PROGRAMMING
HINTS

The following is useful as a reference list. On
their own the points made may not seem to mean
much at this stage but you may need to refer
back to this list as you work through the next
few pages until you become familiar with the
workings of the machine.
Type this (clear the screen first CTRL, SHIFT,
ESC)
Note ▲ means leave a space.
10 print ▲ 3
You will notice that the computer doesn’t leave a
space unless you do. Therefore, to leave a space,
press the long space bar below the keys.

(a) When you first type a program line and
it appears on the screen the information will not
be retained in the computer’s memory until you
press ENTER. You must press ENTER to get each
program line into the computer’s memory.
Now press ENTER. You will notice that the
cursor appears on the next line, it is telling you
that it is expecting a further instruction. The
computer is storing the previous instruction.

(b) You cannot get the computer to do
anything with your information unless you type
the word RUN. Until then it simply stores your
instructions. Type RUN and then press ENTER.
3 appears beneath the word RUN because your
instruction was: PRINT 3. PRINT is a command
word. We will come across many more as we
progress.
Congratulations! You have just RUN your first
program! Note that we put 10 at the start of the
line. All programs have their lines numbered e.g.
10, 20, 30, etc.
They are important for the computer to know the
order in which it should carry out instructions.

11

(c) We number lines 10,20,30 rather than
1,2,3 in case we wish to insert additional lines.
We can then use 11,12,13 etc. as line numbers.
If we did not use this technique we would have to
do a lot of retyping!
(d) Be careful not to confuse the number 0
with the letter 0. They are not interchangeable.
Similarly you must not confuse the number one
(1) with the letter I on the keyboard nor the
number one (1) with the small L (1).
(e) In this book, the symbol ▲ means
make sure you leave a space. Spaces are
important on the Amstrad—you will see why as
we progress. To leave a space press the space
bar once, or twice if ▲ ▲ appears — even if
you do not see the sign it may be necessary to
leave a space.

Memory
AND SCREEN
CLEARING

You already know that you can clear the screen
and memory by pressing the CTRL, SHIFT and
ESC keys. This is fine but you may wish to start
your programs on a screen which does not
display the Amstrad 64K Microcomputer etc.
message.
Type the letters
CLS
and press ENTER
That’s better. CLS is another command word
which means clear the screen — we suggest
that whenever you start a new program, the
screen is cleared completely in this way.
It is also possible to use the command word NEW
or new (the Amstrad recognises both upper and
lower case command words — more about this
shortly) to clear memory but this does not clear
the screen. Similarly the command word CLS or
cis only clears the screen. It does not clear the
memory. To clear both the screen and the
memory you have to use both commands.

12

Type the following, pressing ENTER after each
line:
10 print ▲ 3
20 print ▲ 4
Type RUN and press ENTER.
Now type CLS and press ENTER — the screen
should be clear — if it’s not start again. If it is
clear type RUN and press ENTER. The screen
should now be displaying the numbers 3 and 4
which proves that your program is still there.
Type:
NEW
and now press ENTER.
Now type RUN and press ENTER. This time the
program has gone. Type CLS, press ENTER —
the screen and memory are now both clear.

You will see that all command words in this book
are shown in capital letters. You do not have to
type them in capitals because the Amstrad
recognises command words typed in lower case.

Command
words

Finally in this section we would like to explain
the command REM. It is important to remember
that REM does not have a computer function nor
does it affect the running of a program. Its
purpose is to act as a REMinder or REMark for
your benefit when writing or identifying your
own programs.

The rem

13

Correcting
mistakes

When you begin to write programs you will make
mistakes; you may not spot these until you try to
RUN the programs. Also, you will make simple
typing errors. This short chapter shows how to
correct these and other mistakes.

Correcting
typing
ERRORS
BEFORE
PRESSING
ENTER

(a) Consider the following first line in a
program. You are ready to press ENTER and you
find a typing error. Type this line with the error,
but don’t press ENTER.
10 REM : This is tz show you how to

correct mistakes.
(b) Find the green DEL key which is on the
top row above the large ENTER key. Press it to
see what happens — it rubs out or DELetes one
letter at a time. Delete all the letters up to the
mistake and then type the line again exactly as
before — that is without the mistake. The DEL
key used in this way is particularly effective if
you realise that you have just made a typing
error and want to correct it immediately. It is
less useful if you have typed a long line before
realising your mistake.

15

Correcting
errors
AFTER
PRESSING
ENTER

(c) You should have the incorrect line
displayed on the screen. If not, type it in again
— don’t press ENTER. This time we are going to
use the CLR key which is next to the DEL key.
First of all, by using the cursor control key, the
one with the arrow —> on it, place the cursor
over the mistake. Now press the CLR key and the
z will disappear. Type the correct letter (o) and
your mistake is corrected. If you now move the
cursor to the end of the line, you will see that the
computer has also remembered to leave the
space between the corrected letter o and the s of
the next word.
(d) If you hold down the DEL key you will
see that it also has the facility to AUTO-REPEAT
— it keeps going backwards eating up your
typing until you take your finger off the key. CLR
(which stands for CLeaR) also works in a
similar way except it appears to swallow up
everything in front of it. Try it!

There will of course be many times when you
have ENTERed a program line before noticing
errors. Type and ENTER the following;

10 REM : Moor mistakes
20 PRINT A “ I luv”
30 PRINTA“Compooters”

To correct these mistakes we can:
(e) Retype a new line completely using the
same line number. The computer will replace the
old line with the new one. To see what we mean
type and ENTER :
10 REM : More mistakes
Now to prove that this new line 10 has actually
taken the place of the old one, type LIST and
press ENTER. The LIST command does exactly as
it says. It LISTs, your program (more about LIST
shortly).

16

You can see that the corrected line 10 has taken
the place of the old one.
(!) Another way is to use the command
word EDIT. We are now concentrating on the
mistake in line 20 so type:
EDITA20
Press ENTER and you will see that line 20 is
displayed with the cursor covering the 2. You
can now, by using the cursor control keys and
either DEL or CLR, correct the line in the way
described in paragraphs (b) and (c).
When you have corrected the mistake (I love)
press ENTER. Type LIST again — press ENTER
and you will see that we have now corrected 2 of
the 3 lines. We could also correct line 30 by using
EDIT 30 — this would bring line 30 out of the
listing — but let’s try another way.
(g) The green COPY key which is situated
in the middle of the cursor control keys is
another useful editing key. Hold down the SHIFT
key and press the f cursor key. You wiU see
another cursor appear — this is the copy
cursor. Position this cursor over the 3 in line 30.
Now, whilst still holding down SHIFT, press the
COPY key until it is over the second o in
compooters. The COPY cursor has copied the line
exactly; now type u — hold down shift and with
the cursor control key —> position the copy
cursor over the t — press the COPY key (don’t
forget to keep holding down the SHIFT key) until
the line is complete. Press ENTER — type LIST
— ENTER and the lines are correct.

Correcting
ERRORS IN A
PROGRAM
WHICH YOU
ARE TRYING
TO RUN

The mistakes which we have shown are spelling
errors and would not have affected the running
of the program but some errors may be
programming errors — errors which stop the

17

program from actually running. Type these lines
exactly as they appear — don’t forget ENTER
after each line:

10 PRINT A "Hello"
20 PRINT A "I am"
30 PRINT ▲ Your"
40 "AMSTRAD''_________

Now type RUN and press ENTER.
You were expecting the words
Hello
I am
Your
AMSTRAD
to be displayed but in fact it hasn’t quite worked
out that way. Lines 10 and 20 have worked all
right but line 30 has displayed 0 and we have
been told that there is a Syntax error in 40.
The problem in line 30 has been caused because
we have forgotten to put the ‘‘(speech marks)
after the instruction PRINT (see next chapter
for more detail). The Syntax error in line 40 is
caused because we have forgotten the command
word PRINT.
Let’s correct these mistakes. Press ENTER, type
LIST and press ENTER again.
Hold down SHIFT and press the cursor control
key until the COPY cursor is covering the 3 in
line 30. Now, using the COPY key, and holding
down SHIFT, position the COPY cursor over the
y. Now insert the speech marks and then COPY
the rest of the line. When you have done this
press ENTER. That’s one line corrected. Now
let’s correct line 40.
This time type EDIT ▲ 40 and press ENTER.
Now using the cursor control key position the
cursor between 40 and AMSTRAD. Type PRINT
and press ENTER. Your program should now
look like this:

10 PRINTA"Hello"
20 PRINT A "I am"
30 PRINT A "Your"
40 PRINT A "AMSTRAD"

18

RUN it to see that everything is all right.
Let’s have a closer look at the command word
LIST. Clear screen and memory.

Type and ENTER the following lines (it is not a
program so don’t try to RUN it.):
10 A
20 B
30 C
40 D
50 E
60 F
70 G
You already know what will happen when you
type and ENTER the command LIST. Try it. The
computer has LISTed all the program lines. Now
type:
LISTA30
Press ENTER. This time only line 30 has been
displayed. Try:
LIST A 30 - (minus sign on top row)
This time the computer has started at line 30
and listed all the lines from that point to the end
of the program. Try:
LIST A - 30
This time the listing has stopped at the first line
and stopped at line 30. Now try:
LIST A 30 - 60
Starts at line 30 — finishes at line 60.
This command is very useful as you go further
and become involved with long programs. It
enables you to list any line or block of lines for
checking. It is also useful to know that you can
interrupt a listing by pressing the ESC key —
try it by typing LIST, pressing ENTER and then
pressing ESC. Pressing ESC will stop the listing
and once stopped can be continued by pressing
the space bar.
Experiment with the commands that you have
come across in this chapter.

Using list

19

Exercises
(1) Type in the following lines as they
appear and then correct each one before
pressing ENTER. Remember to clear screen and
memory before starting any new program:

10 REM : This is an inkorrect line
20 PRINT ▲ "I ave a computer"
30 PRINT A "It is gud fun"
40 PRINT A Computer

(8) Type the following, pressing ENTER
after each line. Then using the COPY method,
correct each line and then RUN the program:

10 REM i There is a mistake on every lane
20 "Correct each after each line has been ENTERed".
30 PRINT A Hello again
40 PRINT A "3+3=7"
50 PRINT A This is the end

(5) Type the following, pressing ENTER
after each line. Then using the EDIT method
correct each line and then RUN the program:

10 REM : Wot more mistakes
20 PRINT A I'm getting fed up of this
30 PRINT A "Only one more lane"
40 PRINT A Goodnight.

(4) Using the LIST command on the
previous exercise, list
(a) Line 20 to the end
(b) Lines 20 and 30

20

The PRINT instruction is one of the most
frequently used commands in programming. It is
also one of the easiest to understand! You have
already used it in Chapters 2 and 3.

Print
INSTRUCTION

Type this — don’t forget ENTER after each line:
Example

10 PRINT ▲ "John"
20 PRINT A "Smith"
30 PRINT A "35"
40 PRINT A "Acacia Ave"
50 PRINT A "ANYTOWN"_____________

Now type RUN and ENTER. This simply shows
howto print a list of words or phrases one below
the other.
Note that each phrase is within speech marks.

A BETTER
EXAMPLE

The following version looks neater:

10 PRINT A "John Smith"
20 PRINT A "35, Acacia Ave"
30 PRINT A "ANYTOWN"

Look at these additional lines:
15 PRINT
25 PRINT

21

Type them in and RUN the program again. The
addition of lines 15 and 25 leaves a space
between each line of the address — lines 15 and
25 don’t PRINT anything, they are empty PRINT
lines for display purposes. If you have a printer
you could print out your own address labels
from this program.
If you now LIST the program you will see that the
computer has automatically put lines 15 and 25
in their correct positions. Here’s another little
tip — if you wish to keep your program lines
numbered in tens for neatness type:

Renum
Press ENTER — now LIST the program again.
Very handy! You could RENUMber them within
any range you like — try:
RENUM ▲ 100, 100
Whilst we’re on about tips and hints here’s
another. You will have noticed that we show our
program lines:
10 PRINT A “Hello”
We said earlier that a space must be left after a
command word. This is not strictly true because
it is possible to use a punctuation mark, e.g. ? ,;
: ” instead of a space. Type and RUN — (don’t
leave a space after PRINT this time):
10 PRINT“Hello”
Where were we?
Let’s see how different layouts can be achieved
simply by using commas and semi-colons and
spaces. Type and RUN (where A appears press
the space bar):

10 PRINT A 123
20 PRINT; 123
30 PRINT A 1 A 2 A 3
40 PRINT; A 123
50 PRINT; ; 1;2;3
60 PRINT; 1,2,3
70 PRINT ,1,2,'3
80 PRINT” 123"

22

Type RUN and press ENTER.
Interesting isn’t it?
(a) Lines 10, 20, 30 and 40 all print the
numbers together. Printing starts one space in
from the left hand margin. Typing spaces in lines
10, 30 and 40 has no effect on the display.
(b) The semi-colons in lines 20 and 40 do
not appear to have an effect, but they do ensure
that printing starts at the first available
position.
(c) The semi-colons in lines 50 and 70
however do have an effect. They ensure that,
when handling numbers, sufficient space is left
to separate them. Imagine the problem if spaces
were not left!
(d) The commas in lines 60 and 70 tell the
computer to leave 13 spaces (columns) after the
first character printed before printing again.
The screen is therefore effectively divided into 3
parts (more about this shortly).
(e) Line 80 is interesting. The speech
marks make the computer print right up against
the left hand margin.
(f) It has been explained that spaces (▲)
used on their own have no effect on the display.
Add this line
90 PRINT “1AA2AA3”
and RUN it.

What has happened this time? That’s right, the
spaces (A) have been printed this time
because they are within speech marks.
(g) Now add this line and RUN it:
100 PRINT “1,2,3,4”
Commas and semi-colons within speech marks
have no effect on the display!
(h) That’s enough to start with!
Experiment yourself with different spacings.
You can see how important being able to print in
columns can be.
Type and RUN the following:

23

10 PRINT "What is 3+2?"
20 FOR A T = 1 A TO A 3000 : NEXTAT
30 PRINT "The answer is...."; 3 + 2

LINE 10 — PRINTS the question.
LINE 20 — waits for a short time (see Chapter 8
for explanation).
LINE 30 — PRINTS “The answer is....” and
completes the calculation. Note that when 3+2
is written within speech marks on line 10 no
calculation takes place but when 3+2 is outside
the speech marks the computer works out the
calculation. You will see that the answer is
printed one character position away from “The
answer is....” (like lines 10,20,30 and 40 in the
previous program).

Screen
layout

You will of course want to PRINT something in an
exact place on the screen and to do so you must
give the computer the correct instructions. The
screen in MODE 1 is split into 40 vertical
columns numbered from 1 to 40 and 25
horizontal rows, numbered from 1 to 25.

Locate and
position
PRINTING

The command used to give the computer these
instructions is LOCATE. Clear screen and
memory and then with CLS clear the screen
completely.

Type and RUN:
24

10 LOCATE A 20,12
20 PRINT “A”
You will see the letter A appear in the middle of
the screen. It has been LOCATED at position
20,12.
20 is the column number
12 is the row number
Change line 10 to read:
10 LOCATE A 20, 20
Clear the screen (CLS) and RUN it again.

Experiment with this feature. Remember the
first number is the column number, the second
is the row.

There is another command word which is useful
when used with the PRINT command — TAB.
Type and RUN the following line:
10 PRINTATAB (20)“Hello”
It has printed “Hello” starting 20 columns from
the left hand margin. TAB therefore, followed by
a number from 1 to 40, will PRINT whatever is
asked starting at the stated column number.
Type and ENTER the following:
10 PRINTATAB (20) “Hello”
20 LOCATE A 20,12
30 PRINT “there”
40 PRINT A TAB (20) “again!”
Clear the screen (CLS) before RUNning it.
You will see that the word “Hello” has been
printed at column 20 because of the TAB
command in line 10. The cursor is then
positioned at column 20 row 12 by the
instruction LOCATE 20,12. The word “there” is
then printed at position 20,12. Finally the word
"again!” is printed on the next line TABbed
across to column 20.

Experiment
yourself

The tab
COMMAND

25

Using
speech
MARKS

Try these:
(a) 10 LOCATE A 30,20

20 PRINT ▲ 35

Clear the screen and RUN it.

(b) 10 LOCATE A 10,20
20 PRINT “35”

Clear the screen and RUN it.

(c) 10 LOCATE A 20,10
20 PRINTA7 * 5

Clear the screen and RUN it.

(d) 10 PRINT A TAB (35) “75 ”*

Clear the screen and RUN it.

Notice that the speech marks in (b) have not affected
the display. As in (a) 35 has been displayed on the
screen. However, look what happened when in
example (c) we asked it to work out 7 * 5. When we left
the speech marks off, the calculation was completed
and the answer, 35, given. When the calculation was
placed inside speech marks, the computer printed
exactly what was inside them, i.e. “7*5 ”

Try this.

(e) 10 PRINTATAB (15) “John”

Clear the screen and RUN it.

(f) 10 PRINTATAB (15) John

Note what happens when you RUN these two lines,
(e) prints “John” at column 15 but (f) prints 0. This
is because there appeared to be nothing to print
because there was no speech marks around John.

WHENEVER YOU WANT TO DISPLAY LETTERS OR A
COMBINATION OF LETTERS WITH A PRINT
STATEMENT, YOU WILL HAVE TO USE SPEECH
MARKS.

More use
FOR TAB

One final thought about TAB. You can use more
than one TAB command in a line; type and RUN:
10 PRINT A TAB (10) “Hi” TAB (30) “there”

26

(a) Write a program that PRINTS your
name at three different positions on the screen.
(b) Write a program using TAB, that prints
the sum “6+6=” and on the same line but 15
columns further along prints “Answer 12”.

Exercises

27

SECTION 2

BASIC
PROGRAMMING

TECHNIQUES

29

Getting
INFORMATION

Let us now look at the command word INPUT.
This command is of great use as it enables you to
INPUT or feed information into a program which
is already running.

Using input
Type this program into your computer:

10 REM : This is one way to print numbers.
20 INPUT "What is your number N
30 PRINT ▲ N
40 GOTO A 20

Type RUN and press ENTER.
You will see that the computer is asking you to
give it a number. After the words “what is your
number?” you will see the cursor. The computer
is now waiting for you to INPUT any number of
your choice — remember, it expects a number
i.e. 1,2 etc. NOT one, two — it will not accept
letters. Press 1 and you will see the number
appear after the question mark. Now press
ENTER. The number 1 has been printed on the
screen and the question appears again.
The computer has followed the instructions in
the program, i.e.
LINE 20 — it has asked you to INPUT a number.
LINE 30 — it has PRINTed that number.
LINE 40 — it has been sent back to line 20
— GOTO line 20 (GOTO is explained in more
detail in Chapter 9).

31

Lets go
deeper

This program will continue for as long as the
instructions are followed. To break into the
program press ESC twice.
The simple program that we have just examined
is not very useful in itself. It can, however, be
adapted in many ways. Let us go a little deeper.

A WORKING
EXAMPLE
EXPLAINED

Type, ENTER and RUN the following:

10 REM Mental Arithmetic Quiz
20 INPUT "what is your first number"; A
30 INPUT "what is your second number"; B
40 PRINT, " " A
50 PRINT, " " B "+"
60 PRINT, "
70 FORAT = 1 A TO A 6000 : NEXTAT
80 PRINT, A+B" A = A ANSWER"
90 GOTO A 20

Remember the techique explained in the
previous program. It also applies to this quiz.
The computer asks you for your first number —
INPUT any number you like, but remember line
10 of the program! You don’t want the computer
to beat you yet! After INPUTing your first
number you are asked for a second number.
After you have pressed ENTER this time the
computer will print the sum on the screen; you
have approximately 10 seconds to answer before
the computer answers for you. Did you get it
right?
Let us study the program.
LINE 20 — asks you to INPUT a number
LINE 30 — asks you to INPUT another number
LINE 40 — PRINTS the first number
LINE 50 — PRINTS the second number
LINE 60 — draws a line.

32

LINE 70 — FOR T = 1 TO 6000 : NEXT T
— acts as a stop watch — the time can be
altered by making the number 6000 higher or
lower as desired. (FOR-NEXT is explained in
Chapter 6).
LINE 80 — PRINTS the answer
LINE 90 — GOTO 20 sends the program back to

line 20 to start again.
Let us now look at another simple arithmetical
program, the basis of which has many
possibilities.

Type and ENTER:

Another
example

10 REM : ARITHMETIC
20 INPUT "what is the first number"; A
30 INPUT "what is the second number"; B
40 PRINT
50PRINTAA; "+";B; "="
60 PRINT
70 INPUT "My answer is -—"; C
80 PRINT
90 PRINTAA; "+";B; "="; C

100 PRINT "Computer answer —"; A+B
110GOTOA20

RUN it. after INPUTing your two numbers as
before, the sum is displayed in a slightly
different form and you are now asked to INPUT
the answer. Once you have answered the
question the computer then displays the correct
answer.
Program explanation.
LINE 20 — requests a number.
LINE 30 — requests second number.
LINE 40 — empty PRINT line (for display

purposes).
LINE 50 — PRINTS the question.
LINE 60 — empty PRINT line.
LINE 70 — requests the answer.
LINE 80 — empty PRINT line.

33

LINE 90 — PRINTS the question again this time
with your answer.

LINE 100 — PRINTS the correct answer.
LINE 110 — sends the computer back to line 20

to start again.

You CAN USE

THE EXAMPLES

Using input
FOR LETTERS
AND WORDS

The previous two programs are adaptable and
can be incorporated in longer and more
sophisticated educational programs. It is our
aim to help and encourage you to develop your
own.

We have seen how the computer accepts
numbers. You will, of course, wish to INPUT
letters, or more importantly, words. Clear
memory and screen. You will remember the first
simple program in this chapter which began:
10 REM : This is one way to print numbers.
Well we can change it slightly to meet our needs.

Type and ENTER.
10 REM: This is one way to print a line of words
20 INPUT “What word do you want printed”
30 PRINT A A$
40 GOTOA20
RUN it.
The words “what word do you want printed”
followed by a question mark and the cursor will
appear.
Type in your name and press ENTER. Now type
in your full address, including the post code. You
will see that the computer will accept numbers
as well as letters, in fact it will accept whatever
is INPUT except quotation marks. Break into this
program as previously explained by using the
ESC key.

34

A HANDY
PROGRAM
FOR XMAS

Here is a program which, with the aid of a
printer, will greatly assist with the chore of
writing Christmas thank you letters. (You can,
of course, display this on the screen, even
without a printer.) Type and ENTER.

10 REM : Thank you letters
20 INPUT "Dear", A$
30 INPUT "Thank you for the"; B$
40 INPUT "It is very"; C$
50 INPUT "Best wishes"; D$
60 CLS
70 PRINT "Dear "; A$
80 PRINT
90 PRINT A TAB (8) "Thank you for the "; B$

100 PRINTATAB (8) "It is very "; C$
110 PRINT ATAB (8) "Wishing you a very happy New

Year"
120 PRINT
130 PRINTATAB (12) "Best wishes, "; D$

RUN it.
You will see the word Dear appear on the screen
followed by ? and the cursor. INPUT the name of
the person to whom you are writing — don’t
forget to press ENTER. The first line of your
letter will appear for you to complete, followed by
the second and finally your name. The xmas

PROGRAM
EXPLAINED

The program works as follows:
LINE 20 — Asks you to INPUT the name
LINE 30 — asks for the description of the

present
LINE 40 — asks your opinion of the present
LINE 50 — asks you to sign your name
LINE 60 — CLS — clears the screen
LINE 70 — prints the name
LINE 80 — empty print line

35

LINE 90 — prints the thank you line
LINE 100 — prints your opinion
LINE 110 — prints the greeting
LINE 120 — empty print line
LINE 130 — prints your signature.
You can of course, extend or adapt this type of
program quite easily by adding more INPUT lines
and corresponding PRINT lines. The layout can
also be made more attractive by using LOCATE
and TAB to greater effect.

36

CHAPTER 6

Numbers and your
computer

Your computer can work as a calculator.
Moreover, it will display calculations on the
screen, show you if you have the correct answer
and allow you to rectify any error.
The computer is quite capable of handling
complex mathematical calculations but this
chapter concentrates on handling some simpler
functions.

Using your
COMPUTER AS
A CALCULATOR

Addition
sign +

Type and RUN:
10 PRINTA3+4
You will see 7 printed on the screen.
Type and RUN:
10 PRINT “3+4”
This time 3+4 is printed.
Type and RUN:
10 PRINT “3+4= ”;3+4
This time both the calculation and answer have
been displayed.
(a) Therefore, if you simply want to see the
result of adding two numbers, follow the first
method.
(b) If you put the calculation inside speech
marks, it will print whatever is within them and
it will not complete the calculation.

37

(c) If you wish to print the calculation and
it result then follow the last example.

Subtraction

Type and RUN the following:

10 PRINTA12-6
20 PRINT "12-6"
30 PRINT "12-6="; 12-6

As you see, subtraction follows the same rules.
Type NEW to clear memory and then type:
10 PRINT A12-6+3+2

Explanation
RUN this and you will get the answer 11. This is
because the computer follows the signs —I- as
they appear. You will see the importance of this
in the paragraph about order of calculations.
Type this:
10 PRINTA8+7+6-3
RUN this and the answer 18 will be displayed for
the same reason.

Multipuca-
TION SIGN

The sign the computer uses for multiplication is
* not x. The rules are similar to the paragraph
on Addition and Subtraction.
Type this:

10 PRINT A 4*6
20 PRINT "4*6"
40 PRINT "4*6=" ; 4*6

Now RUN it.
38

Division /
The sign the computer recognises for division is I
not the usual 4-.
Type and RUN:

10 PRINT A10/2
20 PRINT "10/2"
30 PRINT "10/2= 10/2

Where a calculation involves mixing signs, the
computer deals with them in a definite order.
That is, it deals with * and I before + and - NO
MATTER WHAT ORDER THEY COME IN.

Order of
CALCULATION

Consider the following:

10 PRINTA3+2+4*5

If you saw this calculation you might think the
answer would be 45. The computer disagrees.
RUN it. It has given the answer 25, because it
works out 4*5 before performing the additions. If
you want the computer to calculate in the order
you have written it down, you have to use
brackets, as follows:

10 PRINT (3 + 2+4)*5

The computer gives priority to the calculation
within the brackets.

Let’s move on a little.
39

A PROGRAM
TO PRINT
NUMBERS

Type in the following:

10 REM : Program to print a list of numbers
20 LETAN = 1
30 PRINT AN
40 LET AN = N+l
50 PRINT AN
60 GOTO A 40

Now RUN it.
You will see that the computer is printing a list of
numbers in sequence down the left hand side of
the screen — and it will continue to do so until it
runs out of memory. Press ESC to stop the
printing. Now press any key to continue. PRESS
ESC twice when you have seen enough and read
on.
LINE 10 — remember the computer ignores this

line because it begins with REM.
LINE 20 — means LET N (the first number)

= 1
LINE 30 — prints N — that is 1
LINE 40 — adds 1 to N to make it 2
LINE 50 — prints the new value of N — that

is, 2
LINE 60 — sends the program back to line

40 which gives a new value to N
which is one more than the old N
— this time it will be 3.

The computer continues doing this and printing
each number.

N IS A
“NUMERIC
VARIABLE’

The N in the program is called a NUMERIC
VARIABLE — because the value of N varies —
first it is 1, then 2, then 3 etc. When we write LET
N = 1, we talk about establishing a variable —
saying what its value is.

40

The program actually works perfectly well
without lines 20 and 30. Try it — delete the two
lines 20 and 30 and RUN the program again.

Naming and
giving A
VALUE TO A
NUMERIC
VARIABLE

This time the computer first puts its value to N
— N = 0, immediately increases it by one,
therefore the first number printed is 1.
(N=20 8N+lorN=0 + 1) we have included
lines 20 and 30 because we feel that it is easier to
understand the setting up of the variable.

Also you will have noticed that we have called
the variable by a single letter. We can call a
numeric variable by any letter of the alphabet
from A-Z.
We can, if we wish, use more than one letter for
our variable name — or a combination of
letters, numbers or symbols.
There are some rules which must be obeyed
when naming variables however:
(i) Numeric variables must always begin
with a letter.
(b) Commas, spaces or speech marks are
not allowed in variable names.
(c) Words which the computer recognises
as commands cannot be used on their own, but
can be used within a phrase or longer word —
for example:
10 LET ▲ PRINT = 6
20 PRINT ▲ PRINT
is not allowed, but

What is
ALLOWED AS A
NAME

41

10 LET A SPRINT = 6
20 PRINT A SPRINT
is allowed.
Here are a few examples; type and RUN them:
10 LET A ABC = 3
20 PRINT A ABC
10 LET A AMSTRAD = 64
20 PRINT A AMSTRAD
10 LETAR2D2 = 1
20 PRINTAR2D2
10 LET A HELLO! = 6
20 PRINT A HELLO!
We couldn’t use:
LET A 3D = 25 (it doesn’t begin with a letter)
LETANEW = 60 (NEW is a command word)
LET A HI, THERE = 5 (, commas are not
allowed)

More uses
FOR NUMERIC
VARIABLES

We have demonstrated one use of a numeric
variable in an earlier paragraph to print a list of
numbers. It saves space in a program and in
that particular one saves a long list of PRINT
statements:

10 PRINT 1
20 PRINT 2

990 PRINT 99
Consider this program.

10 REM : controlling numbers
20 FORAN = 1ATOA15
30 PRINT AN
40 NEXT AN

Type and RUN it.
42

LINE 20 — sets the lower and upper limits
of the list of numbers, that is,
the lowest value of N will be 1
and the highest will be 15.

LINE 30 — prints the first number — 1.
LINE 40 — increments the value of the

number by 1, that is 2.
LINE 30 — prints 2
LINE 40 — increments the value of the

number by 1, that is 3, and so
on.

LINE 30 — prints the new number.
When the number reaches 15 the program has
finished.

You will have noticed two new words FOR and
NEXT. They are used together when you want to
count in a program. The program LOOPS round
lines 30 and 40, printing and incrementing the
numbers until the upper limit set in line 20 is
reached.
To summarise, the numeric variable is N, and N
varies between 1 and 15.
This diagram may help you to understand FOR/
NEXT loops.

Explanation

Two NEW

WORDS - FOR
AND NEXT

There can be more than one line between lines
20 and 40.

To REPEAT A

GROUP OF
INSTRUCTIONS

If you want to do something a certain number of
times, you simply include the instructions as
part of a FOR/NEXT loop.

Consider
this
PROGRAM

Type and RUN:
10 REM : Program to demonstrate FOR/NEXT
loop.

20 FORAN = 1 A TO A 10
30 PRINT "This is a FOR/NEXT loop"
40 PRINT "2x6=" ; 2*6
50 PRINT
60 NEXT AN
70 PRINT
80 PRINT "The end"

Explanation
Lines 20 to 60 are the FOR/NEXT loop. The
program runs through 10 times, hence FOR N =
1 TO 10.
Lines 30 and 50 are PRINT lines
Line 80 is executed after the FOR/NEXT loop has
been completed.
When you use a FOR/NEXT loop in this way, it
doesn’t actually print the numbers 1,2,3 etc.
What would you add to the program if you
wanted to actually number your PRINT
statements? That’s right, alter line 30 so that it
reads:
30 PRINT AN; “This is a FOR/NEXT loop”
If you really want this display to look better,
change line 40 to read:
40 PRINT A TAB (4) “2x6 = 2*6
and RUN the program again.

44

Remember that we showed you how to use the
computer as a calculator. Instead of typing in
each calculation, the program can be written as
follows:

COMPUTER
AS A
CALCULATOR

A TABLES
PROGRAM

10 REM : Using Numeric Variables
20 LET A N = 1
30 FOR A C = 1 A TO A 9
40 PRINT "What is N; "+" ; C
50 PRINT
60 LETAN = N+ 1
70 NEXT AC

Type and RUN it.
LINE 20 — sets variable N at 1
LINE 30 — sets the lower and upper limit of

the FOR/NEXT loop.
LINE 40 — prints the sum as follows

what is N (1) + C(l)
LINE 60 — adds 1 to the value of N

(N=N+1)
LINE 70 — increments the value of C by 1.
If you do not quite understand this, delete line 20
and RUN the program again. You will see that
the value of N is then set by the computer at 0
and therefore each increase in the value of N
will always be 1 less than C. Remember that the
value of C is set at 1 in line 30.

45

A PROGRAM
FOR THE TEN
TIMES TABLE

This program asks the ten times table:

10 REM : MULTIPLICATION
20 LETAN = 10
30 FORAC = 1 TO 12
40 PRINT "What is”; C; N
50 PRINT
60 NEXT AC

Compare with the previous program.
LINE 20 — sets N at 10 because this is the

ten times table.
LINE 30 — sets the limits of C from 1 to 12.
LINE 40 — the variables have changed

places and the + sign becomes

LINE 60 — has been omitted because the
value of N must remain at 10.

LINE 70 — becomes new line 60
Now RUN it.
Clever — change line 40 to read:
40 PRINT “What is ”;C;”* ”;N;TAB(25)
“Answer”; C*N
Run it again.
Remember TAB — very useful, but the really
effective part of the line is the calculation C * N.
You can see the strength of numeric variables
here — the value of C is incremented each time
by the FOR/NEXT loop and the new value used in
the calculations!

The rnd
FUNCTION

Let’s now look at another useful command —
RND, which instructs the computer to choose
numbers at RaNDom. This can be very effective
in many types of programs especially those
dealing with mathematics.

46

Type and RUN:
10 PRINT A RND
20 GOTO A 10
Use the ESC key to stop the program and you will
see that the computer has generated numbers
between 0 and 1. Press any key to continue the
program. When you have seen enough, press
ESC twice.
We will not attempt to explain how the computer
produces these numbers except to say that they
are not completely random but present in
random sequences within the computer’s
memory. Producing numbers with so many
decimal places is not really much use to us here
so let’s introduce another command — INT.
Using the COPY cursor control keys, change line
10 to read:
10 PRINT A INT (RND)
RUN it again and this time you will see that a row
of 0s has been printed. RND has this time chosen
numbers between 0 and 1 but the command INT
(INTEGERISE) has rounded them down to 0.
Try this:
10 PRINT A INT (RND) + 1
RUN it and you see a line of Is. Again the
sequence of numbers generated by the computer
was between 0 and 1, but INT rounded each
down to 0 and finally added 1.
Try:
10 PRINT A INT (RND) + 2
RUN it to satisfy yourself that the same principle
applies. Remember INT always rounds down.

We are now in a position to make RND and INT
work for us. Let’s see what we can do.
Type and RUN.

Rnd is
USEFUL

47

10 REM : Random numbers between 1 and 10
20 LET A N = INT (RND (1) * 10) + 1
30 PRINT A N

Or, for random numbers between 1 and 100.
Change line 20 to read:
20 LET A N = INT (RND (1) * 100) + 1
You should have the idea now so let’s try a
simple program.

A LIST TYPE
OF
CALCULATIONS
IS EASILY
PRINTED

Type the following:

10 REM : Program to show use of RND
20 LETAN = INT (RND (1) * 10) + 1
30 LET A C = INT (RND (1) * 10) + 1
40 PRINT "What is"; N; C; TAB (25) "Answer" ; N + C
50 PRINT
60 GOTO A 20

RUN it. Use ESC to see what is happening.
LINE 10 — chooses a random number

between 1 and 10 for the
numeric variable N.

LINE 20 — chooses another random number
between 1 and 10 for the
variable C.

Some
useful
FORMULAE

The following are useful formulae for selecting
certain random numbers.
Numbers between 1 and 15 inclusive.
10 LETAN = INT (RND (1) * 15) + 1
Numbers between and 1 and 100 inclusive
10 LETAN = INT (RND (1) * 100) + 1

48

Numbers between 10 and 100 inclusive
10 LETAN - INT (RND (1) * 91) + 10
Numbers between 100 and 1000 inclusive
10 LETAN = INT (RND (1) * 901) + 100

Once you are able to choose which numbers to
print, you are then in a position to vary the level
of difficulty of your calculations. For instance, if
you are just beginning to learn multiplication,
then the numbers you choose might be between
1 and 10. If you are more advanced then you
might want long multiplication, say numbers
between 99 and 1000.

Remember that you can use the computer in
different ways:
(1) to list questions — which you might
answer yourself on paper.

(11) to ask a question, using the timing
statement to give you the answer after you have
again worked it out on paper or in your head.
(Chapter — Timing).

(ill) to INPUT answers into the computer
and then be told if you are right or wrong,
perhaps after giving a specified number of
attempts (Chapters — Looping and Conditioned
Statements).

Varying the
level OF
DIFFICULTY

Different
ways TO
USE THE
COMPUTER

(Iv) If you have a printer, you can print
worksheets.

49

(v) You can also set out your calculations
attractively by using the simple techniques
already learned. The following program is for
long multiplication.

10

20
30
40
50
60
70
80
90

100
110
120
130
140
150
160

PRINT "Long Multiplication" TAB
(26)" Answer"
PRINT A TAB (15) ""
PRINT
FOR AD = 1ATOA12
LET A A = INT (RND (1) * *900) + 100

This is what the screen looks like:

Long multiplication Answer
980
*53 1

51940
579
*11 2

6369

etc. until twelve calculations have been printed.
Note that the timing statement in line 130 only
gives about 10 seconds. If you need more time to
work out the sum, change 10000 to 30000 or
even 60000.

LET AB - INT (RND (1) * 90) + 10
LETAC = A * B
PRINT "AAAAA"; A
PRINT "AAAAA*"; B
PRINT "AAA A_____ " TAB (5); D
PRINT "AAAA_____ "
PRINT "AAAA_____ "
FORAT = 1 ATOA 10000 : NEXTA T
PRINT "AAA A_____ " TAB (26); C
PRINT
NEXT AD

50

When the
computer
USES DECIMAL

At this stage, if you are attempting division
calculations, you cannot guarantee that the
answer will be in whole numbers. The computer
always uses decimals if you have a calculation
like this:
10 PRINTA5/2
Type and RUN it.

Next, in this chapter about numbers, a brief
word about the sign f . This is the computer’s
way of showing that a number has been raised
to a certain “power”. For example, if you type in
10 PRINTA3 f 2
and RUN it, you will get the answer 9 because
3 j means 3 x 3 or 3 squared.

Equally:
10 PRINTA2 f 8
means 2x2x2x2x2x2x2x2.
How many do you think this is? Try it!

Raising a
NUMBER TO A
POWER

Your computer will also deal with fractions but
you must set it out as either:
10 PRINTA2+1/2 + 3 +1/2
10 PRINT (2+1/2) + (3+1/2)
which is the way to ask it to add 21/a + SVz.

Dealing
with
FRACTIONS

51

Let is
OPTIONAL

One final thought. The command word LET does
not HAVE to be used, for example:
10 LETAN = 1
can be written
10 N = 1
Throughout this book we have continued to use
LET. We feel this is clearer for beginners.
Similarly, we have not shortened any other
commands.

52

Introduction
We have already explained that “numeric
variable” is the term given to a name
representing a number. “String variable” is the
term given to a name representing a word or
collection of words.

(a) You will always be able to recognise a
“string variable” because it has the $ sign
written after it. The $ sign is on the 4 key.
(b) A “string variable” MUST begin with a
letter and always end with the $ sign. The
variable can be of almost any length, from a
single letter upwards (up to a maximum of 255
characters) e.g. AS, Bt, ABCS, HELLOS.
(c) For the purposes of this book the value
of the string variable (what it is equal to) must
be typed within speech marks. A STRING is
simply several letters, graphics or numbers.
That is, the computer will print anything that is
within speech marks, including numbers. It does
not have to be of any particular length, for
example:
LETANS = “John”
This is called establishing, or declaring a
variable. The LET command is used as it was
with numeric variables. You could also type the
string as follows:

How TO
RECOGNISE A
STRING
VARIABLE

53

LETANL# = “John”
LETANLRP# = “John”

(d) The computer will not accept command
words on their own but they are acceptable
within a longer variable name. For instance:
10 LETAPRINT# = “Hello”
20 PRINT A PRINT#
is not acceptable but
10 LET A PRINTER# = “Hello”
20 PRINT A PRINTER#
is. Try both of them.
The first example as you see results in a Syntax
error, because the computer recognises the
variable as a command. Consult your manual
for all command words.
Here is a program to show a use of string
variables on their own. (For simplification, all
string variables are shown as single letters
followed by the sign $) Let us imagine that you
wanted to display on the screen a number of
items on a weekly shopping fist. Your program
might read as follows:

An example

10 REM : Shopping List
20 LETAI$ = "Jam"
30 LETAC$ = "Coffee"
40 LETAP$ = "Potatoes"
50 LETAS$ = "Sugar"
60 LETAM$ = "Milk"
70 PRINT A J$, C$, P$, S$, M$

Type and RUN this program. You will simply get
a list of five things you may wish to buy.

54

However, if you only want to buy two of the items
this month, you would simply alter line 70 to
read:
70 PRINT A J$, S$
This particular program might not seem to have
much value until you consider say the 30 or so
items which might make up a household
shopping list. If you SAVEd a program such as
this on tape and, at the start of each week,
scanned the program to see what you needed
and then altered the last line, you would be able
to print on the screen your requirements for
that week. (See Chapter 12 for SAVE.) If you
had a printer it would then be a moment’s task to
print out the list. No more forgotten items at the
supermarket!

A USE FOR
THE EXAMPLE

Adapting
THE EXAMPLE

The program would need very little adaption to
print out the cost of your list, by using numeric
variables as well as string variables. Look at this
adapted program:

10 REM : Shopping list
20 LETAJ$ = "Jam" : LETAJ =.40
30 LET A C$ = "Coffee" : LET AC = 1.20
40 LETAP$ = "Potatoes": LETAP = 2.00
50LETAS$ = "Sugar": LETAS= 1.60
60 LETAM$ = "Milk" : LET A M = 5.00
70 PRINTAJS, C$, P$, $, M$
80 LET A T = J+C + P+S+M
90 PRINT

100 PRINT "TOTAL £ " ; T
Note that in line 20 it is perfectly possible to have
a string variable and a numeric variable
providing there is a colon (:) between the LET
statements.
RUN this program. Now before RUNning it again,
delete J$ and CS from line 70 and J and C from
line 80.

55

Using the
ADAPTATION

You will see that you now have two different lists
and two different totals. You could use this as a
guide to see how much money you would need
when you go shopping. Also, if you only had <£20
and your list came to say, £25, you could try
different combinations to see which would be the
best way to spend your money.

Another
use OF
STRING
VARIABLES

One of the uses of “string variables” is to save
typing the same words time and again.
This is particularly useful in a long program
where you might want to use a particular string
variable several times.

Another
example -
A QUIZ

Here is another example of string variables used
in a quiz:

10 REM : Kings and Queens
20 LET A AS = "William 1"
30 PRINT "Who was King of England in 1063"
40 INPUT "My answer is"; B$
50 PRINT "Your answer is" ; B$; "The correct answer is

60 END

Type and RUN this. Type RUN to RUN it again.
56

String
VARIABLES DO
VARY

One thing that often puzzles people is that string
variables do not seem to vary! For example, in
the previous program AS = “William 1” — AS
however did not have to equal William 1 — it is
only equal to William 1 because we gave it that
value!

A TRUE
STRING
VARIABLE
EXPLAINED

Now look at BS—this, if you like, is a true string
variable because it is not equal to anything until
you give it a value. You could give it the value
Elizabeth 1 or George III — its value could vary
depending on your answer, what you INPUT.

We will develop this quiz in a later chapter to
show how it can be adapted to help with
homework and revision.

Using the
quiz

Let’s now turn to look at a primitive word
processor. This program permits you to tell a
“story” using some of your own words for the
characters and places. It is possible to get books
printed with a child’s name appearing in it as
the hero all the way through. Perhaps this is
how it’s done:

A PRIMITIVE
WORD
PROCESSOR

57

10 REM : This shows the use of string variables in a
story.
20 PRINT "I went to see T$ and then we met K$ before
going to the Y$"
30 INPUT "My word for T$ is ";T$
40 INPUT "My word for K$ is ";K$
50 INPUT "My word for Y$ is ";Y$
60 PRINT
70 PRINT "I went to see A ";T$; "A and then we met A

";K$; "A before going to the A ";Y$
80 END

If you have young children you could use
program such as this to build vocabulary,
limits are only those of your imagination.

58

This chapter is about clearing the screen for
more effective displays and timing.

Introduction

In a previous chapter it was explained that it is
possible to clear the television screen by typing
CLS. It is also possible to clear the screen by
using the SHIFT, CTRL and ESC keys but this of
course clears the memory.

To RECAP

Type and RUN:

Consider
this
PROGRAM

10 REM : Addition
15 PRINT
20 LET ▲ A = INT (RND (1) *10) +1
30 LET ▲ B = INT (RND (1) *10) +1
40 PRINT "What is ";A;" + ";B
50 INPUT "My answer is"; C
60 PRINT "Your answer is ,...";C
70 PRINT "Correct answer A + B
80 PRINT
90 GOTO ▲ 15

59

LINE 15 — empty print line
LINE 20 — chooses a random number

between 1 and 10
LINE 30 — chooses a random number

between 1 and 10
LINE 40 — asks you to add the two numbers
LINE 50 — asks for your answer
LINE 60 — prints your answer
LINE 70 — prints the correct answer
LINE 80 — empty print line
LINE 90 — back to the start line 15

The untidy

Answer the questions a few times and before
long you will fill the screen with text which can
be rather irritating and is also untidy.

Another

Let’s see if we can tidy it up a little. Break into
the program (press ESC) and change line 15 to
read:
15 CLS
RUN the program again. This time the screen
has been cleared before the program starts,
which looks better doesn’t it but now look. After
you have INPUT your answer, the screen clears
with remarkable speed and the next question is
printed. This gives you no time to see if your
answer was correct. There are ways round this
and here is one. Break into the program and
type:
80 FOR A T = 1 A TOA5000 : NEXTAT

60

A SLOWER,
MORE
READABLE
RESULT

This will over-write the existing line 80. RUN the
program again and you will see that you now
have sufficient time to read the answer before
the screen is cleared.
If you like, line 80 acts as a clock. The statement
effectively stops the program for a given length
of time.
FOR AT = 1 TO 1000 : NEXT AT = 1% secs
approximately
FORAT = 1 TO 5000 : NEXTAT = 6 secs
approximately
FORAT = 1 TO 10000: NEXTAT = 12 secs
approximately
You can see how the combination of CLS and the
timing loop can help to improve your programs.
You will find it useful to always begin all your
programs with the CLS command, e.g. 10 CLS.
This gets rid of all program listings etc. ensuring
that you have a clear screen where your
program starts RUNning.

61

You can use GOTO in a program when you want
to repeat something.
Type and RUN:

Using goto
TO REPEAT

10 REM : This is an example of looping
20 PRINT "This will help to show a use for GOTO"
30 GOTO ▲ 20

The computer proceeds to PRINT the contents of
line 20 indefinitely because after first doing so,
line 30 sends the program back to line 20 each
time. The flickering bottom line is proof that the
computer is still printing line 20. Break into the
program by pressing the ESC key twice.

Goto
BRANCHING

This process is called LOOPING because the
program goes round in a loop.

GOTO, however, has another use. Consider this
program!

Going
round IN A
LOOP

10 REM : This is an example of Branching
20 PRINT "Hello"
30 INPUT "What's your name"; A$
40 GOTO ▲ 60
50 PRINT "That's a funny name!"
60 PRINT "Hello A$; " I'm pleased to meet you"

63

Type and RUN it.
INPUT your name when asked and see what
happens.
You might have expected the reply “That’s a
funny name!” because of the PRINT statement at
line 50. We have, however, managed to stop the
computer from being rude to you by placing a
GOTO statement at line 40 — GOTO 60. This
means exactly what it says — GOTO line 60 —
do not execute any lines in between! The GOTO
command is therefore veiy easy to understand.
It is also one of the most effective commands at
your disposal. When used with other commands
it also becomes extremely useful.

Other uses
OF GOTO AND
BRANCHING
USING
IF-THEN

Let’s introduce another two new words — IF
and THEN.
Type and RUN:

10 REM : Another way to count
20 PRINT "I want this program to count from 0 to 10''
30 LET A C = 0
40 PRINT A C
50 LET A C = C+l
60 IF A C=11 A THEN A GOTOA80
70 GOTO A 40
80 PRINT "The End"

This is what has happened:
LINE 20 — Print line
Line 30 — LET 0 = 0 simply means let the

count start at 0
LINE 40 — Prints C
LINE 50 — LET 0=0+1 means let the new

count equal the old count plus
one. Therefore the count works
like this:

64

C = 0
PRINT 0
C = 0 + 1
PRINT 1
0= 1+1
PRINT 2 etc

Ab the count continues the program runs
through line 60 -- IF C = 11 THEN GOTO 80. IF
the count doesn’t equal 11 THEN this instruction
is ignored and the program continues to line 70
and therefore loops back to line 40. When the
count does equal 11, the computer takes notice
of the instruction in line 60 and goes to line 80
where the print statement is “The End”.
IF statements are considered as “conditional
statements”. That is, the computer will act as an
instruction after considering the information
received.

This diagram may help you to see what is
happening with the GOTO, IF-THEN statements.

How
BRANCHING
AND GOTO
LOOPING
WORK

10
20

30
40

A loop

70 ----- >--------

80

There is another way to END a program. This is
by using the command END.

The end
COMMAND

Change line 60 to read:
60 IF A C = 11 A THEN A END
and now delete line 80.
RUN the program again. We will discuss END in
more detail shortly but first let’s look at a
slightly more involved program which uses
GOTO and IF-THEN.
Type and RUN:

10 REM : French Vocabulary Program
20 PRINT "Do you want to give answers in French

(Press 1) or in English (Press 2)"
30 INPUT "My choice is ";A
40 IF A A = 1 A THEN A GOTOA70
50 IF A A = 2 A THEN A GOTO A 110
60 GOTO A 30
70 PRINT "What is the French for....the table"
80 INPUT "My answer is";B$
90 IF AB$= "la table" THEN A GOTO A 200

100 GOTO A 70
110 PRINT "What is the English for...la table"
120 INPUT "My answer is"; C$
130 IF A C$ = "the table" THEN A GOTO A 200
140 GOTO A 110
200 PRINT "Well done, correct answer"

Over to
you

This is an unsatisfactory program in a number
of ways, not least because it only tests one word!
However, its main purpose is for you to see how
GOTO and IF-THEN are put to work within a
program. There is a French vocabulary test in
Chapter 19 which is of real use and worth
SAVEing on tape.

66

Program commentary:
LINE 20 — asks whether you want to answer in

English or French.

LINE 30 — asks you to INPUT your choice either
1 or 2

LINE 40 — IF you INPUT 1 THEN the computer
branches to line 70 for the French
question and ignores lines 50 and 60.
IF-THEN conditional statement — IF
the condition is fulfilled THEN....

LINE 50 — IF you INPUT 2 THEN the computer
branches to line 110 for the English
question and ignores lines 60 -100.

LINE 60—this is an interesting line. If you type
any number other than 1 or 2, line
60 will send the program back to line
30. This will continue until you type
1 or 2.

LINES 70 and 80 — question and answer lines

LINE 90 — another IF-THEN GOTO line. IF your
answer is correct THEN GOTO line
200 for some praise. This is a branch
— lines 100 to 140 are ignored.

LINE 100 — sends the program back to line 70 to
repeat the question should you get
it wrong. One important point. Your
answer must be exactly the same
as the answer in line 90, otherwise
the computer will treat it as
incorrect.

LINES 110 and 120 — question and answer line.

LINE 130 — IF answer is correct THEN GOTO
line 200 for praise.

LINE 140 — back to line 110 for another try

LINE 200 — print line.

Explanation

67

How

BRANCHES
AND GOTO
LOOPING
WORK

This diagram may help to see the flow of the
program.

10

branch |”

branch

branch

Things to
notice

Some points to notice. Lines 30, 40 and 50 all
mention A, and also the numbers 1 and 2. ‘A’ is
an example of a numeric variable. Simply, ‘A’
can either be the number 1 or 2, i.e. it can vary
— hence numeric variable (see chapter 6 if you
are not sure).

68

LINES 80 and 90 both mention B$. When you see
the sign $ together with a letter, you have come
across a string variable (see Chapter 7). In this
Instance the string is going to be two words —
hopefully la table! However, the answer you give
may be la plume, or something else — your
answer can vary as B$ is a string variable.

You will recall that we introduced the command
END earlier in this chapter. This command can
be used to finish off your program in a more
satisfactory way. Type and RUN:
10 PRINT “Hello”
20 PRINT “there!”
You will see that once the program has been
RUN, the computer tells you that it is Ready for
more instructions. Add this further line:
50 END

and RUN it again.
Just the same result — obviously END is not
necessary in as simple a program as this. Now
add this line:
25 GOTO ▲ 10

and RUN it again.
The screen is filled again as the computer
continues printing Hello There. The END
statement has no effect at all because line 25 —
GOTO 10 returned the computer to the first print
line.
You can see, therefore, if you want to look back
at the counting program it is important to place
the END command where it is needed — not
necessarily at the end of the program listing.

String
VARIABLES

More
DETAIL ABOUT
END

69

If-then
CONDITIONAL
STATEMENTS

After that little diversion, let’s get back to
conditional statements. Type and RUN:

10 PRINT "What is 3+4"
20 INPUT "My answer is....";A
30IFAA=3+4A THEN ▲ PRINT "Correct"
40IFAAO3+4A THEN ▲ PRINT "Incorrect"

Answer the question both correctly and
incorrectly. After you have given the computer
your answer it will apply it firstly to line 30,
(because that is the next line in the program)
and IF the answer is correct, that is IF A = 3+4,
the instruction in that line will be effected, i.e. it
will print the word “correct”. Should the answer
be wrong i.e. IF A <> 3+4 the computer
considers that line 30 does not apply and
therefore passes to line 40 and prints the word
“incorrect”.
You will know that the sign = means “equal to”
but you may not be sure about the sign <> at
line 40. <> means “is not equal to” and is just
the symbol < together with the > symbol.
Therefore whenever IF is used in this way you
may well have to use both = and <>, as the
computer’s next move will be conditional on the
information it has received.

Else — a
BETTER WAY

There is another and probably better way of
writing lines 30 and 40. Change line 30 to read:
30 IF ▲ A = 3+4 ▲ THEN ▲ PRINT

“Correct” ELSE ▲ PRINT “Incorrect”

Now delete line 40 and RUN the program again
getting the answer both right and wrong.

70

You can see what has happened. The computer
considers the answer — IF it agrees that your
answer is correct THEN it prints “correct” — or
ELSE it prints the word “incorrect”. In other
words, either your answer is correct or ELSE it
isn’t!

Both = and
<> CAN ALSO
BE USED WITH
WORDS

We feel, however, that as you feel your way you
may be happier at first using the sign = and
<>. Both of these signs can be used with words
as well as numbers.

There are other signs which are used in the
same way as = and <>. These are:
< which means “less than”
> which means “greater than”
<= which means “less than or equal to”
>= which means “greater than or equal to”.

Here is a program which demonstrates the
different functions of these signs. Type and
RUN:

Four more
signs

Example

10 CLS
20 PRINT "Give me a number between 3 and 8"
30 INPUT "Number";A
40 PRINT
50 PRINT ▲ A
60 IF ▲ A < 4 ▲ THEN ▲ PRINT "Low"
70 IF ▲ A < = 5 ▲ THEN ▲ PRINT "Five or under"
80 IF ▲ A > = 6 ▲ THEN ▲ PRINT "Six or over"
90 IF ▲ A > 7 ▲ THEN ▲ PRINT "High-

100 PRINT
110 GOTO ▲ 20

71

Explanation
If you INPUT the numbers 3 to 8 in sequence you
will see how the computer acts on the
instructions in the conditional lines. The
computer will consider the IF lines in sequence;
if the number input is 3 it will act as follows:
LINE 60 — is the number less than (<) 4?

— answer yes — then print
“low”.

LINE 70 — is the number 5 or less than
(<=) 5? — answer yes —
then print “five or under”.

LINE 80 — is the number greater than or
equal to (>-) 6 — answer no
— no action.

LINE 90 — is the number greater than (>)
7 — answer no — then no
action.

If the number INPUT is 8, then the same
principle applies except that the computer acts
on lines 80 and 90.
However, if the number INPUT is either 4 or 5,
the computer will consider line 60 and ignore it
because neither 4 or 5 is less than (<) 4. It will
though act on line 70 because both numbers
fulfil the condition in that line — 4 is less than 5
whilst 5 is equal to 5.
If the number, INPUT are either 6 or 7, the
computer will only act on line 80. Why?
That’s right! > = means greater than or equal
to.

Two
IMPORTANT
WORDS USED
WITH IF

Let us now look at two more words which can be
used with IF-THEN. These are AND and OR. They
are known as Logical Operators.

72

The MEANING
OF “AND”

AND means that one statement AND another
must be true for the computer to comply with the
command.

Type and RUN this short program:

An example
OF ITS USE

10 REM : Logical operators
20 CLS
30 PRINT "Give me the lowest four numbers in

sequence which are divisible by 5"
40 INPUT "Lowest number" ; A
50 INPUT "Next lowest"; B
60 INPUT "Next lowest"; C
70 INPUT "Next lowest"; D
80 IF A A = 5 A AND A B = 10 A AND AC = 15 A

AND A D = 20 A THEN A PRINT "Correct" ELSE A
PRINT "Incorrect"

The conditional line 80 is dependent on the
answer at lines 40,50,60 and 70 being correct to
get the computer to say so. A wrong answer at
any of those lines will result in the computer
printing “incorrect”. Why? That’s right —
because all the answers must be correct—A =
BAND B = 10 AND C = 15 AND D = 20.
Now change line 80 to read:
80U'AA = 5AORAB = 10AORAC =

15 A OR A D = 20 A THEN A PRINT
“Good try” ELSE A PRINT “Sorry all
wrong”

and add line 90:
90 PRINT “The answer is 5,10,15,20”
The condition in the new line 80 means that if
ANY of the answers given are correct the
computer will print “Good try” followed by the
correct answer.

73

Logical
operators
CAN BE USED
WITH WORDS

As with the signs = and < > the operators AND
and OR can be used with words as well as
numbers. Their use can be very effective where
your computer is being used as a teaching aid.
Consider the following:

An example

10 CLS
20 PRINT "What is the capital of France"
30 INPUT "My answer is A$
40 IF A A$ = "Paris" THEN A PRINT "Correct-
50 IF ▲ A$ <> "Paris" THEN A PRINT "Incorrect, the

answer is Paris"

Type and RUN it.
For the sake of argument let us suppose that the
word Paris is incorrectly spelt, e.g. Parris. The
answer is almost correct but the computer only
recognises Paris as the correct answer. We
could, therefore, change lines 40 and 50 to
include as many variations of spelling as we
realistically think possible, for example:

40 IF A A$ = "Paris" OR ▲ A$ = "Parris" OR A A$ =
"Pariss" ▲ THEN A PRINT "Correct"

50 IF A A$ <> "Paris" AND A A$ <> "Parris" AND A
A$ <> "Pariss" THEN A PRINT "Incorrect, the
answer is Paris"

Try it again, using the variations.
Just a reminder — we could have typed the
IF-THEN lines as:
40 IF A A$ = “Paris” OR A A$ = “Parris” OR

A A$ = “Pariss” THEN A PRINT “Correct”
ELSE A PRINT “Incorrect, the answer is
Paris”

74

Leave this program on the screen whilst we
consider the final word to be looked at in this
chapter — NOT. This, like AND and OR, is also a
Logical Operator and again is usually used with
the command IF.

It is unlikely however that you will use this
command, as it is easier to get the same result
using the sign <> or the command ELSE.
However, change line 50 to read:
50 IF A NOT A AS = “Paris” AND A NOT A

Al = “Parris” AND A NOT A AS =
“Pariss” THEN A PRINT “Incorrect, the
answer is Paris”

RUN the program again — making sure you get
the answer wrong of course. The result is the
same as before.

An example
OF THE USE
OF “NOT”

75

You have seen in the previous chapter that the
GOTO instructs the computer to skip lines in a
program. There is another command which has
a similar function — GOSUB.

Introduction

When to
use GOSUB

GOSUB is short for GO TO SUBROUTINE. It can be
used when a number of identical lines are
repeated at different stages within a program.

Consider this program BUT DO NOT TYPE IT:

For
EXAMPLE

10 LET A A - 5
20 LET A B - 6
30 PRINT "What is"; A; " + B
40 INPUT "My answer is...." ; C
50 IF A C = A + B A THEN A PRINT "Correct" ELSE

A PRINT "Incorrect — the answer is A + B
60 LET A A 7
70 LET A B = 4
80 PRINT "What is "; A; "+"; B
90 INPUT "My answer is C

100 IF A C = A -t B THEN A PRINT "Correct" ELSE A
PRINT "Incorrect — the answer is A + B

110 END

77

Explanation
LINES 10 and 20 — set up the variables.
LINE 30 — asks the question
LINE 40 — invites the answer
LINE 50 — considers the answer and

responds
LINE 60 — 100 — repeat the exercise and

you can imagine the length of
program necessary to ask 20
questions with answers.

An
IMPROVED
EXAMPLE

This is much better; type it in:

10 REM : Subroutine
20 LET A A = 5
30 LET A B = 6
40 GOSUB A 1000
50 LET A A = 7
60 LET A B = 4
70 GOSUB A 1000
80 END

1000 PRINT "What is A;" + "; B
1010 INPUT "My answer is" ; C
1020 IF A C = A + B A THEN A PRINT "Correct" ELSE

A PRINT "Incorrect — the answer is A + B
1030 RETURN

Explanation
Let us examine the program as the computer
obeys each instruction.
LINES 20 and 30 — set the variables.
LINE 40 — sends the computer to the

subroutine at line 1000.
LINE 1000 — asks the question.
LINE 1010 — invites your answer.
LINE 1020 — considers your answer and

responds.
78

LINE 1030 — RETURN sends the computer
back to the main program at
the line IMMEDIATELY after
the GOSUB line.

LINE 50 and 60 — set up the new variables.
LINE 70 — sends the computer back to the

subroutine.
LINES 1000 to 1020 — repeat the exercise.
LINE 1030 — RETURNS the computer to the

line after GOSUB in line 70.
LINE 80 — ENDs the program. The command

END is important here because if
it were to be left out the program
would eventually crash.

Delete line 80 and RUN the program again to see
what happens.
You can see from this program that it would now
be quite easy to add further lines similar to 20,
30,50 and 60, to Instruct the computer to ask
more and more questions.

Subroutines (GOSUB-RETURN) are a very
Important part of programming and you will find
that you use them more and more as your
programs get longer.

Conclusion

79

CHAPTER 11

Summary

Before you go any further you should satisfy
yourself that you have understood what you
have read so far. The following is a useful check
list.
(1) Do you know the uses of the following
keys: ENTER, SHIFT, CTRL, ESC, COPY, CAPS
LOCK, DEL, CLR?
(i) Can you move the cursor around the
screen?
(3) Do you know how the computer uses “
” , ; ? and when to leave spaces?

(4) Do you understand the command
words:
PRINT, RUN, END, NEW, LET, GOTO, GOSUB,
RETURN, CLS, FOR, NEXT, INPUT, INT, RND,
TAB, LOCATE, REM, ELSE, IF, THEN, LIST,
RENUM?
(8) Can you give examples of numeric and
string variables? Can you write simple
programs using them?
(8) Can you recognise looping, branching
and subroutines? Can you write simple
programs involving them?
If you feel unhappy about any of the above you
should go back and refresh your memory. If you
feel confident, then go straight ahead.

81

Amstrad

The built-in Datacorder gives the Amstrad a
significant advantage over other home
computers which have to use plugged-in tape
recorders to load and save programs. Loading
from such recorders can often prove
frustrating. No such problems for you.

ADVANTAGE

The introductory manual which accompanies
your computer is very clear about how to load
and save tapes, so hints from us, we feel, will
suffice.

How TO

USE PRE­
RECORDED
PROGRAMS

Saving
programs
ON TAPE

It is advisable when saving your own programs
to bear in mind:
(i) Make sure that your program RUNs
before saving it.
(b) Use the VERIFY command to confirm
that you have SAVED the program listing as it
appears on the screen.

83

(c) SAVE each program twice or three
times in case anything goes wrong with one of
the programs.
(d) Don’t use long tapes. C15 or less is all
you need.

84

CHAPTER 13

The Printer

Commercial
ADVANTAGE

The CPC 464 certainly has an advantage over
many home computers in that it is capable of
connecting with a printer of commercial
standard.

Consider
before
BUYING

You will of course have to consider its value to
you, as these “add-ons” are not cheap. If you
intend to put your computer to real use, then a
printer becomes a must and should not be
purchased without professional advice.

If you already have a printer then it is obviously
possible to produce “hard copy” of all your
programs. You can then keep a file of your best
programs. Browsing through these can often
give you a good idea for other programs or
suggest improvements to your existing ones.

Moreover, if you hit problems with a program, a
print-out of where you have got to will make it
easier for you to discuss with other computer
fanatics the problems you have faced, in the
hope that a solution can be found. Exchanging
programs by swapping printouts is also a good
deal cheaper than swapping by cassette.

85

Commands
for THE
PRINTER

Several of the programs in this book are test
programs. They need very little adaptation to be
able to print, say, a score out of 20 in a
vocabulary test together with a complete
printout of the words and the correct answers.
This “hard copy”, in it’s turn, provides a basis
for further future revision.

Printing
listings

It is also possible to produce worksheets for all
educational subjects, quiz programs and of
course copies of graphic designs.
This has been just a short insight into the
possible uses of a printer. We hope it has been of
use in assessing its value.

86

SECTION 3

INTRODUCTION TO
COLOUR, SOUND AND

GRAPHICS

87

We are now going to look briefly at the different
types of screen display which are built into the
Amstrad. You will remember that we explained
in Chapter 3 that the screen is split into 40
vertical columns and 25 horizontal rows.

There are actually three different sizes of screen
layouts—they are called MODES and these are:
MODE 1—which is 40 columns wide by 25 rows

— this is the size of screen seen
when the computer is first switched
on.

MODE 0 — which is 20 columns wide by 25
rows.

MODE 2 — which is 80 columns wide by 25
rows.

Here is a short program to demonstrate the
three effects.

Three
DIFFERENT
MODES

An example
USING THE
THREE MODES

Type and RUN:

10 MODE ▲ 1
20 GOSUB ▲ 1000
30 MODE ▲ 0
40 GOSUB ▲ 1000

89

50 MODE ▲ 2
60 GOSUB A 1000
70 END

1000 LOCATE A 12,12
1010 PRINT "Wow!"
1020 FOR A T = 1 A TO A 5000: NEXT A T
1030 RETURN

You will see that the exclamation has been
printed first in usual size (MODE 1) at position,
12,12 (LOCATE) — then in larger print (MODE
0) — and finally in small print (MODE 2).

Screen
clearing

LINE 10 — is interesting. It is not really necess-
ary but it has done the job that the
command CLS DOES — it has
cleared the screen before starting
the program.

LINE 30 — then sets the computer into MODE 0.
a smaller screen, thereby making
the printing bigger. We will look a
little closer at MODE 0 in the chapter
about colour.

LINE 50 — finally sets the screen as its largest
size thereby reducing the size of
print. This MODE is very useful
when typing in programs because so
much more text can be displayed
making it easier to follow.

Something
to NOTICE

Notice also how we have used the subroutine
(lines 1000 to 1030) technique in this program.
You will see too that the computer remains in
MODE 2. To return to it’s switched-on state,
simply type:

90

MODE ▲ 1 and press ENTER
We can actually restore to MODE 1 via our
program. Type tills extra line:
65 MODE ▲ 1
Now RUN the program again.

A UTO
Let’s now try to make life a little easier for you
and perhaps help to save some typing time.
Consider the following program but don’t type it
in:

10 CLS
20 PRINT "Hints and tips"
30 PRINT
40 PRINT "Always use AUTO"
50 PRINT "It saves time!"

Now type the word AUTO and press ENTER.
You will see that the number 10 has been
printed and the cursor is ready to accept your
program line. Now type the first line of the
program:
CLS
Press ENTER and 20 is printed — the cursor is
waiting for you again. Now type the rest of the
program and after pressing ENTER after line 50
press the ESC key. The computer can now accept
the command RUN. Line 60 will not be included
in your program — type LIST to confirm.
AUTO is obviously very useful when entering
programs and can be pre-set to any line number
you require as follows. Type:

AUTO A 2,2

and press ENTER a few times.
Press ESC

Any
SEQUENCE

9.1

Type:
AUTO A 50, 100
Type:
AUTO A100, 100
AUTO on it’s own always starts at line 10 and
goes up in tens.
Here’s another little tip.

Save typing
time

Type and ENTER (don’t forget AUTO):

10 CLS
20 PRINT "Another tip"
30 PRINT "The ? is short for PRINT"
40 PRINT "That's useful!"

Line 30 says “The ? is short for PRINT”. Type
this extra line using SHIFT and ?
50 ? “So it is”
This really can save time when you think that
PRINT is probably the most used command of all!
We shall however still use the word PRINT in all
programs in this book, but if you feel confident
about using then go ahead!

Another
TIME SAVER

Here’s another hint — add this line but don’t
type the last set of speech marks:
60 PRINT “Look no speech marks at the end of

this sentence.
92

Beware!
Just one point about speech marks — only leave
them off if it is the end of a program line. Don’t
leave them out in the middle of a line otherwise it
will result in a syntax error. Again, for the
purposes of this book all speech marks are
included.
As you progress you will find other short cuts
which will reduce typing and programming time.

93

CHAPTER IS

Colour

This chapter serves as a brief introduction to
colour. The Amstrad has a large range of colours
available — some 27 in all. Let’s see if we can
demonstrate some of them. For those who have
the green screen monitor, the changes in colour
will appear as varying shades of green — but
you will still get the general idea of colour
change.

Introduction

Border
The screen is actually made up of two parts —
the border and the screen display area. When
the computer is switched on both the border and
screen are blue.
Type:
BORDER ▲ 0
Press ENTER.
Now try:
BORDER ▲ 1
Press ENTER.
So you now know that when the computer is
switched on, the border colour is colour 1.
The border colour can change through all 27
colours — they are numbered from 0 to 26.
This program will demonstrate all 26 colours:

10 REM : Border colours
20 FOR ▲ A = 0 ▲ TO ▲ 26
30 BORDER ▲ A
40 FOR ▲ T = 1 ▲ TO ▲ 1000 : NEXT ▲ T
50 NEXT

95

You will remember how we use FOR-NEXT. The
loop increases the value of A each time,
therefore the first value 0 = colour black,
second value 1 = colour blue and so on until
colour 26.
Now before RUNning it again type:
MODE ▲ 2
and press ENTER.
You can see that even in MODE 2 the border
colour can change to all 27 colours. The same
applies to MODE 0.
Refer to the AMSTRAD manual for the full range
of border colours. SHIFT, CTRL, ESC.

Paper — the
screen
BACKGROUND

Let’s now look at the screen display area and see
what we can do with that.
Type:
PAPER ▲ 0
Press ENTER and apparently nothing has
happened.
Type CLS and press ENTER. Again nothing
unusual here.
Type:
PAPER ▲ 1
Press ENTER, type CLS and press ENTER. Well at
least that shows that PAPER 0 is blue!
The screen area colours can therefore be
changed in a similar way to border colour. There
is an important difference, however. The screen
colours are determined by the MODE. MODE 1
allows for four colour changes — Blue, Yellow,
Light Blue and Red.
MODE 2 allows for only two colour changes —
Blue and Yellow.

96

More
COLOURS
HERE

MODE 0 — the colour mode — allows for
sixteen changes. Remembering the BORDER
program.
■type and RUN:

10 MODE ▲ 0
20 FOR ▲ A = 0 ▲ TO ▲ 15
30 PAPER ▲ A : CLS
40 FOR ▲ T = 1 ▲ TO ▲ 1000 : NEXT A T
50 NEXT A A

Again you can see the computer demonstrating
the background colours available. The last two
are interesting — colour 14 is flashing between
blue and yellow and colour 15 between pink and
sky blue.
Again consult your AMSTRAD manual for the
full range. SHIFT CTRL, ESC.

We have looked at BORDER and PAPER — let’s
now change the colour of the printing.
Type:

PEN A 0
and press ENTER.
This time the pen colour is the same as the
border colour because the cursor has vanished.
Try:

PEN A 1
ENTER.
So yellow is pen colour 1.
Again the PEN colours are governed by the
MODE.

Flashing
colours

Pen - the
TEXT COLOUR

97

MODE 1 — has four colours available — blue,
yellow, pale blue and red.

MODE 2 — has two — blue and yellow.
MODE 3 — has the same sixteen as the PAPER

colours.

Experiment
yourself

Experiment with these colours to familiarise
yourself with them.
Using these features we can begin to make our
programs look more effective, for example.

Example

10 REM : Simple effects
20 MODE A 0
30 BORDER A 0
40 PAPER A 0 : CLS
50 PENA 14
60 LOCATE A 9,9
70 PRINT "We"
80 LOCATE A 9,10
90 PRINT "Won"

100 LOCATE A 7,11
110 PRINT "The Cup"
120 GOTO A 120

Program explanation:
LINE 20 — sets the MODE.
LINE 30 — BORDER colour
LINE 40 — screen colour: CLS clears the screen

to the set colour.
LINE 50 — PEN colour — which is the flashing

yellow/blue.
LINES 60-110 — positions the cursor.

98

LINE 120 — this may be new to you. It has the
effect of stopping the program —
but in reality it serves to keep the
Ready message and cursor off the
display.

Now change line 40 to read:
40 PAPER A 3
and RUN it again.
This time you will see that only the paper behind
the printing is red.

finally let’s look at the command INK.
This command can also be used to change the
colour of the PAPER and the PEN.

IMPORTANT — Press SHIFT CTRL and ESC
before typing:

Ink

Example of
the USE OF
INK

10 REM: Colour change with INK.
20 CLS:LOCATE A 7, 13
30 PRINT "Paper Blue — Pen bright yellow"
40 GOSUB ▲ 1000
50 INK A 0, 24 : INK A 1,1
60 PRINT "Paper bright yellow — Pen blue"
70 GOSUB A 1000
80 INK A 0, 6 : INK A 1,18
90 PRINT "Paper bright red — Pen bright green"

100 GOSUB A 1000
110 INK A 0, 26 : INK A 1,0
120 PRINT "Paper bright white — Pen black"
130 GOSUB A 1000
140 INK A 0, 1 : INK A 1,24
150 END

1000 FOR A T = 1 A TO A 5000 : NEXT A T
1010 CLS
1020 LOCATE A 7,13
1030 RETURN

99

Now run the program. You can see what the INK
commands in lines 50, 80 and 110 have done.
This is how INK works.

Both the screen (paper) colour and text (pen)
colour have their own number which the
computer recognises when used with the
command INK.
INK 0 = screen or paper colour
INK 1 = text or pen colour

Computer

Therefore to change either screen or text we
must tell the computer — in language it
understands — what we want to do. For
example, to change a screen colour we must tell
the computer that it is the screen — number 0
— and also tell it the colour number, e.g. 1 is
blue, 6 is bright red etc.

Change
PAPER

Therefore INK 0, 6 tells the computer to change
the screen colour to bright red.
Similarly with the text or pen colour. The text on
pen’s number is 1.

Change pen
COLOUR

Therefore INK 1,1 tells the computer that the
text colour should be changed to bright green:
80 INKA0, 6 : INKA 1,18
means that the screen is bright red and the text

inn
bright green.

You will see that at the end of the program the
screen returns to it’s “switch-on” state. Do you
know why — line 140 may give you a clue!
We can of course change the paper colour
without changing the pen colour, or vice versa.
IJpe this additional line and RUN the program
again:
146 INK ▲ 1,6
You can see that the ready message and cursor
have changed to red. This shows that the
computer stays in its last instructed colours. To
get back to the “switch-on” state — if you want
to — simply type INK, 1,24 and press ENTER.

SwiTCH-ON
STATE

Experiment until you are sure that you know
how to change colours using all commands
covered in this chapter — BORDER, PAPER,
PEN and INK. Look at the colour charts in your
User Instruction Manual.

Experiment

101

Amstrad
CHARACTER
SET

The AMSTRAD, like most home computers, has a
number of character symbols pre-set into its
memory. Some of these can be obtained direct
from the keyboard via the CTRL key. Hold this
key down and press some of the letter keys.
We can also use these symbols within a program
by using the command CHR$ followed by the
number of the symbol required placed in
brackets.
Type and RUN:

10CLS ”
20 LOCATE A 20, 12
30 PRINT A CHR$ (225)

Change line 30 to:
30 PRINT A CHR$ (248)
RUN it again.

The Amstrad in common with all home
computers has a character set. This set is
known as the ASCII code (American Standard
Code for Information Interchange). Some of the
codes are commands. Change line 30 to read:
30 PRINT A CHRS (7)
and try:
30 PRINT A CHR$ (12)

Ascii

103

The majority of code numbers — from 32 to 255
— are all characters. Some are the letters of the
alphabet, some numbers and others are the
pre-set symbols. Let’s have a look at all these
symbols. Remember how we use FOR/NEXT?

Displaying
the
CHARACTER
SET

Type and RUN:

10 FOR A A = 32 A TO A 255
20 PRINT A CHR$ (A)
30 FOR A T = 1 A TO A 500 : NEXT A T
40 NEXT A A

Sample
animation

Yle can do quite a few things with these symbols.
Type and RUN:

10CLS
20 FOR A A = 1 A TO A 40
30 LOCATE A 1,12
40 PRINT A TAB (A); CHR$ (251)
50 NEXT A A

Program explanation:
LINE 20 — sets the loop to the number of

columns.
LINE 30 — positions the cursor each time on

the middle row.
LINE 40 — prints the character 251 at the

next TAB setting.

It s up to

If you have a vivid imagination there is no end to
the shapes and movement available to you from
the character set.

YOU

104

You will, of course, want to draw your own
shapes and designs and the next few pages will
give you a basis from which to work.

We need to look at the way the screen is laid out
for the graphics cursor. You will remember that
in Chapter 4 we explained that the screen is laid
out as 25 rows of 40 columns:

Screen
format

The layout is really rows of squares in which the
letter or character is printed using the PRINT
command. Each of these squares is actually
broken down into a series of segments known as
pixels. The graphics screen consists of 400 rows
of pixels x 640 columns and looks like this:

What is a
pixel?

399
> 639

399

0

The graphics screen has its own cursor which,
unlike the character cursor, is invisible. This
cursor allows us to PLOT an exact position on the
screen and DRAW lines anywhere we wish.

Graphics
cursor

105

Using plot
AND DRAW

To do this we use the PLOT command to position
the cursor and then the DRAW command to
draw the lines. To show exactly what we mean
type this program (first press CTRL and ESC):
10 CLS
20 PLOT A 0, 0
Now type RUN and you will see a small dot at the
bottom left hand side of the screen. This is the
pixel at position 0, 0.
Now add:
30 DRAW A 0, 399
70 GOTO A 70
and RUN it again.

Screen
REFINEMENT
USING GOTO

You can now see that a line has been drawn
from the bottom left position 0,0 to the top left 0,
399. Line 70 merely prevents the character
cursor and the Ready message appearing on the
screen. Now add:
40 DRAW A 639, 399
RUN it again
Add:
50 DRAW A 639, 0
RUN again, and finally:
60 DRAW A 0, 0
Just to prove that this is drawn at the very
outside of the graphics screen add:
15 BORDER A 3
Now change line 70 to read:
70 DRAW A 639, 399
and add:
80 GOTO A 80

106

Diagonal
lines

This time a diagonal line is drawn to position 639

Now change line 80 to:
80 PLOT ▲ 0, 399

and add:
90 DRAW ▲ 639, 0

100 GOTO ▲ 100
This time a diagonal is drawn from the opposite
corners.
LINE 80 — positions the graphics cursor at

position 0, 399
LINE 90 — draws the line to position 639, 0

So to DRAW lines between given points we must
first PLOT the starting position and then DRAW
the line to the finishing position. This is how we
do it.

Co-ordinates
x and Y

To DRAW a vertical line as shown in the diagram
we must first PLOT the start position and the

107

finish position. These positions are known as
co-ordinates — X and Y. The X co-ordinate
PLOTS the position for the cursor across the
screen whilst the Y co-ordinate determines the
position on the screen.

180-
0 _

The X co-ordinate is quoted first in the PLOT
command, therefore start position = PLOT 399,

Again the X co-ordinate is quoted first, finish
position = DRAW 300, 280
Our program looks like this:
10 CLS
20 PLOT A 300, 180
30 DRAW A 300, 280
There are two commands which will help you
locate the graphics cursor at any time.

Use for
X POS AND
Y POS

Type:
PRINT ▲ X POS
and ENTER
Now type:
PRINT A Y POS
and ENTER

108

Experiment with the PLOT and DRAW commands
until you are confident that you can draw
straight lines anywhere on the screen.

Don’t
FORGET TO
EXPERIMENT

Let’s now move on to drawing circles. We can
draw a circle using PLOT after calculating the
position of each pixel in the circle. It is not quite
as difficult as it sounds. First of all we need to
PLOT the centre of the circle—let’s use our line
program and PLOT the cursor at position 300,
180. We then need to PLOT a point on the
circumference — the radius. Let’s say our
’adius is to be 100 (pixels).

Round in
CIRCLES

Radius
AND CIRCUM­
FERENCE

639
399

180

0

0
399

0
0 300 639

We must then PLOT each pixel position from the
centre of the circle.

You will probably know that there are 360
degrees in a circle, so by using the commands
DEG, COS and SIN....
Type and RUN:

Mathemat­
ical signs
DEG, COS, SIN

109

10 CLS
20 FOR A A - 1 À TO A 360
30 DEG
40 PLOT À 300, 180
50 PLOT A 300 + 100 * COS (A), 180 + 100

‘ SIN (A)
80 NEXT A A

We can also DRAW the circle in a different way.
Delete line 30 and RUN again.

Another
WAY TO DRAW
CIRCLES

By changing line 50 we can increase or decrease
the size of the circle. Change line 50 to:
50 PLOT A 300 + 25 * COS (A), 180 + 25 * SIN
(A)
RUN
Add these additional lines:

60 PLOT A 300, 280
70 PLOT A 300 + 25 * COS (A), 280 + 25 * SIN (A)

Obviously you can draw as many circles as you
like!

Colouring
circles

Let’s fill them in now. We need to change the
PLOT command in lines 50 and 70 to DRAW. Do
you know why? — because DRAW tells the
computer to DRAW a straight line between two
points. Change the lines and watch what
happens:
50 DRAW A 300 + 25 * COS (A), 180 + 25 *

SIN (A)
70 DRAW A 300 + 25 * COS (A), 280 + 25 *

SIN (A)
O.K. Now replace line 30:
30 DEG
and see what happens this time.

110

What about drawing one inside another? Change
your program to read:

Create
your OWN
DESIGN

10 CLS
20 FOR ▲ A = 1 ▲ TO ▲ 360
30 DEG
40 PLOT ▲ 300, 180
50 PLOT ▲ 300 + 100 * COS (A), 180 + 100 * SIN (A)
60 DRAW ▲ 300 + 25 * COS (A), 180 + 25 * SIN (A)
80 NEXT

It’s not just circles. Change line 60 to
60 DRAW ▲ 300 + 25 * COS (A), 280 + 25 *
SIN (A)
and add
70 DRAW ▲ 300, 350
LINE 70 DRAWS the line from the centres of the
circle to position 300, 350 and line 60 fills in all
the pixels.

The origin
COMMAND

There is another way to draw circles with the
AMSTRAD. The command ORIGIN positions the
centre of the circle. You must, of course, PLOT its
centre as before.

Type and RUN:

10 CLS
20 FOR A A l A TO A 360
30 DEG
40 ORIGIN ▲ 300, 180
50 PLOT A 100* COS (A), 100 * SIN (A)
60 NEXT ▲ A

Now change line 50 to:
50 DRAW ▲ 100 * COS (A), 100 * SIN (A)
You may feel that the ORIGIN command is easier
to use — it’s up to you.

Ill

A DASH OF
COLOUR

Finally in this section let’s add a touch of colour.
Remember the program which DRAWs two small
circles?
Type and RUN:

10 CLS
20 FOR A A = 1 A TO A 360
30 DEG
40 ORIGIN ▲ 300, 180
50 DRAW A 25 * COS (A), 25 * SIN (A)
60 ORIGIN A 300, 280
70 DRAW A 25 * COS (A), 25 * SIN (A)
80 NEXTA A

Now add these additional lines:
45 INK A 1,3
65 INK A 2,9
and change lines 50 and 70 to read:
50 DRAW A 25 * COS (A), 25 * SIN (A), 1
70 DRAW A 25 * COS (A), 25 * SIN (A), 2
RUN it again — easy isn’t it. I’m sure you can
see what we’ve done. First of all we have
specified the INK colour in line 45 and called it
INK 1. We have then put the INK 1 in the DRAW
line 50. Then we have specified the INK colour
for the second circle in line 65 and put INK 2 in
the DRAW line 70.

Imagination
Again — experimentation is the only way to
learn with these commands. Your designs are
limited only by your own imagination.

CHAPTER 17

Sound

High

The Amstrad has the facility to produce high
quality sound both musically and in the form of
arcade style sound effects. This chapter is aimed
at getting you started on producing sounds and
music so that you can begin to understand a
quite difficult concept.

QUALITY FROM
THE AMSTRAD

Basic sounds and musical notes are however
very easy to produce. Sounds are produced by
the command SOUND. Each note has a number
(a full list of musical notes appears at the end of
this chapter). The first number that appears
after the command SOUND, however, is the
channel number and must always be included.
There are three channels which make it possible
to play up to three different SOUNDS together.
We are only using channel 1 in this chapter.
Turn the volume control at the side of the
computer to it’s maximum setting. Let’s see what
we can do.

Basic music

Type and RUN:
10 SOUND ▲ 1, 478
The sound produced by this line is Middle C so,
using the musical note list, it should be fairly
easy to produce a chromatic scale.
Type and RUN:

Play a NOTE

113

Musical
scale

10 SOUND À 1, 478
20 SOUND À 1, 426
30 SOUND À 1, 379
40 SOUND A 1, 358
50 SOUND À 1, 319
60 SOUND A 1, 284
70 SOUND A 1, 253
80 SOUND A 1, 239

We can also tell the computer how long each note
should last — we have to add a number to our
type program lines. Change the following lines to
read:
10 SOUND ▲ 1, 478, 200
50 SOUND ▲ 1, 319, 200
80 SOUND ▲ 1, 239, 200
This third number can range from 0 to 32767
and each 100 = 1 second’s duration.
Change line 80 to:
80 SOUND ▲ 1, 239, 500
We have already used three numbers separated
by commas after the command SOUND. Each of
these numbers represents a different part of the
SOUND — the first number is Channel 1, the
second is the note or noise played and the third
is the duration or length of time that the note
lasts. Altogether there are seven different parts
to every sound. The first two MUST be typed in
— the other five are optional. Here is another
option. Alter the scale program to read:

10 SOUND A 1, 478, 200, 6
20 SOUND A 1, 426, 50, 2
30 SOUND A 1, 379, 50, 2
40 SOUND A 1, 358, 50, 2
50 SOUND A 1, 319, 400, 6
60 SOUND A 1, 284, 50, 2
70 SOUND A 1, 253, 50, 2
80 SOUND A 1, 239, 500, 6

114

I think you know what the fourth part of the
SOUND is! That’s right — it’s a volume control.
Let's see how it can be useful to control the
volume of notes.

type and RUN:

S/NG ALONG

10 REM : Sur le pont d'Avignoi
20 SOUND À 1, 478, 50, 4
30 SOUND À 1, 478, 50, 4
40 SOUND A 1, 478, 50, 4
50 SOUND A 1, 426, 50, 4
60 SOUND A 1, 426, 50, 4
70 SOUND A 1, 426, 50, 4
80 SOUND A 1, 379, 50, 4
90 SOUND A 1, 358, 50, 4

100 SOUND A 1, 319, 50, 4
110 SOUND A 1, 478, 50, 4
120 SOUND A 1, 506, 50, 4
130 SOUND A 1, 478, 50, 4
140 SOUND A 1, 426, 50, 4
150 SOUND A 1, 638, 50, 4

This plays the first four bars of the old French
tune “Sur le pont d’Avignon” but it may be
difficult to recognise because the first notes run
into each other. Add these lines.

Sounds
better

25 SOUND ▲ 1, 0, 5
35 SOUND ▲ 1, 0, 5
45 SOUND À 1, 0, 5
55 SOUND À 1, 0, 5
65 SOUND À 1, 0, 5
75 SOUND À 1, 0, 5

That’s better — SOUND 0 is silent and the 5
after SOUND 1, 0 leaves just the right delay
between the three C notes and three D notes.
Almost right — change lines 40 and 70 to read:

40 SOUND À 1, 478, 100, 4
70 SOUND À 1, 426, 100, 4

115

That sounds about right to me at least! You may
like to experiment further until it sounds good to
you.

Rules for
THE “SOUND’
COMMAND

You can see therefore that it is fairly easy to
produce simply tunes using the first four parto
of the SOUND command, that is:
1 — CHANNEL
2 — NOTE
3 — DURATION
4 — VOLUME

Sound
envelopes

After a while you will come to appreciate that
these notes sound rather bland or toneless and
to get the full range of sounds from the Amstrad
you will have to look to the next two parts of the
SOUND command:
5 — VOLUME ENVELOPE
6 — TONE ENVELOPE
These parts need quite a bit of understanding—
simplified they mean that you can specify the
volume of one note and make it go up or down or
stay constant. You can also specify the tone of
the note.
The volume ENVELOPE is governed by the
command ENV and must be followed by a series
of 4 numbers.
Type and RUN:
10 ENV ▲ 1, 10, 1, 50
20 SOUND ▲ 1, 478, 500, 4, 1
The volume ENV tells the computer that the
volume of the note middle C should rise. The ENV
command’s numbers correspond as follows.

116

Four rules
FOR “ENV”

First number — number given to the ENVelope
so that it can be specified in the SOUND
command. The ENVelope number is shown as
the fifth number in the SOUND command,
therefore if we give the ENV the number 1 (ENV
1), then the SOUND command reacts — SOUND
1,478, 100, 4, 1.
Second number — the number of steps in each
second as specified in the fourth number which
is called STEPTIME — range 0 to 127.
Third number — varies the sound level from a
number starting at 0 up to 15, or in a negative
form.
Fourth number — the length of time between
the steps in the second number. This time is
counted in lOOths of seconds (between 0 — 255
+ Max 2.55 secs).
You will see how the STEP TIMES are varied by
changing line 10 to read:
10 ENV ▲ 1, 10, 1, 100
Type and RUN. You will notice that the steps last
longer. You may have been a little puzzled by the
words “negative form” in the third number. Well
try:
10 ENV ▲ 1, 10, — 2, 50
20 SOUND ▲ 1, 478, 500, 4, 1
Experiment with the command ENV, changing
the last three numbers to see what different
sounds you can get. Remember the first number
in the ENV command must always appear in the
SOUND command at the fifth position.

The ENT command governs the tone of the
envelope and also has four parts — the first
must correspond with ENV and appears at the
sixth position in the SOUND command.

The ent
COMMAND

117

Type and RUN:
10 ENV ▲ 1, 10, 1, 50
20 ENT A 1, 10, 5, 50
30 SOUND A 1, 478, 500, 4, 1, 1
The ENT command sequence of numbers is:
First number — number given to the tone
envelope (ENT) so that it can be specified in the
SOUND command. (Position six.)
Second number — number of steps in each
second as specified in the fourth number. The
range of numbers is 0 to 230.
Third number — varies the tone of each step,
that is the tone is either higher or lower. Range
of tone period is —128 to +127.
Fourth number — the length of time between
the steps in the second number. Again the time is
counted in lOOths of a second between 0-255.

Sound
EFFECTS

The final part of the SOUND command is the
NOISE. This appears as the seventh number in
the SOUND command.
Type and RUN:
10 ENV A 1, 100, 1, 10
20 ENV A 1, 100, -2, 10
30 SOUND A 1, 200, 500, 4, 1, 1, 10
Ride em cowboy!!!
Again experiment with all these commands.

Musical
notes

OCTAVE — 3 OCTAVE — 2
Note Number Note Number
C 3822 C 1911
C# 3608 C# 1804
D 3405 D 1703
D# 3214 D# 160?
E 3034 E 151?
F 2863 F 1432
F# 2703 F# 1351
G 2551 G 1276

118

G# 2408 G# 1204
A 2273 A 1136
A# 2145 A# 1073
B 2025 B 1012
OCTAVE — 1 OCTAVE — 0
C 956 C 478
c# 902 0# 451
D 851 D 426
D# 804 D# 402
E 758 E 379
F 716 F 358
F# 676 F# 338
G 638 G 319
G# 602 G# 301
A 568 A 284
A# 536 A# 268
B 506 B 253
OCTAVE — 1 OCTAVE — 8
Note Number Note Number
C 239 C 119
C# 225 C# 113
D 213 D 106
D# 201 D# 100
E 190 E 95
F 179 F 89
P# 169 F# 84
G 159 G 80
G# 150 G# 75
A 142 A 71
A# 134 A# 67
B 127 B 63

OCTAVE — 3 OCTAVE — 4
C 60 C 30
c# 56 c# 28
D 53 D 27
D# 50 D# 25
E 47 E 24
P 45 F 22
P# 42 F# 21
G 40 G 20
G# 38 G# 19
A 36 A 18
A# 34 A# 17
B 32 B 16

119

SECTION 4

MORE BASIC
TECHNIQUES

121

An example
OF READ AND
DATA
EXPLAINED

This chapter is meant as an introduction only. It
concentrates on showing examples of how you
can begin to use READ, DATA and DIM.
The first program shows you how to use DATA.
Look at the program explanation carefully.
Type and RUN:

10 REM : Averages using READ and DATA
20 CLS
30 LET A T - 0
40 FOR A K = 1 A TO A 5
50 READ A N
60 PRINT A N
70 LET A T = T + N
80 NEXT A K
90 LET A A = T/5

100 PRINT "The average is A
110 DATA A 6,4,7,2,1____________________________________

In this program the numeric variable T stands
for total and is set in line 30 initially to 0.
LINE 40 — sets the FOR-NEXT loop. This loop

executed 5 times, during which
line 50 READS N, the first item
of the DATA Line, i.e. 6. The
command READ tells the
computer to search for the DATA
line.

LINE 60 — prints N
LINE 70 — then establishes a new total T(6)

— T(6) = T(0) + N(6)

LINE 80 — increments the loop counter.
The second time round the loop, line 50
READS N which is the next item in the DATA
line — 4.
LINE 40 establishes the new total T(10) —
T(6) = T(6) + N(4)
The program runs through the loop a third,
fourth and fifth time. After the fifth execution
the program then runs through line 90 which
sets up a new variable A (average).
Average = Total 5. After five loops the total is
now 20, therefore 20 5 will be the average.
Line 100 prints the average.

How YOU GO

ON
To adapt this program to find the average of
different totals is quite easy — simply change
the value of line 40 to 1 TO 10 1 TO 50 or
whatever and increase the number of items
accordingly in the DATA statement. Finally
change line 90 to T/10 or T/50 etc.

Another
example
EXPLAINED

READ and DATA statements, are very commonly
used in computer programs. Programs can be
written which use string variables instead of
numeric variables. The next program uses both
string and numeric variables together.
Type and RUN:

10 REM : PASS/FAIL TEST
20 CLS
30 FOR ▲ K = 1 ▲ TO ▲ 5
40 READ ▲ N$, M
50 PRINT ▲ N$, M
60 IF ▲ M>= 50 ▲ THEN A PRINT "Pass" ELSE ▲

PRINT "Fail"
70 PRINT
80 NEXT ▲ K

100 DATA "Fred", 25, "Joan", 44, "Alan", 63,"Rita", 89,
"Brian", 67

124

This is what the screen displays:
FRED 25
FAIL
JOAN 44
FAIL
ALAN 63
PASS
RITA 89
PASS
BRIAN 67
PASS

This time there are 10 items of DATA, 5 names
and 5 numbers representing the marks (M)
they obtained.
LINE 40 — READS the name then the marks
LINE 50 — prints the names and mark
LINE 60 — compares the mark obtained with

the pass mark — 50. If the
mark is > 50 (greater than 50)
then PASS is printed otherwise
FAIL is printed.

LINE 70 — empty print line for display
purposes.

Again the FOR/NEXT loop (lines 30 — 80) runs
through five times.

Can you adapt the program to print a PASS/FAIL
list for twelve pupils, where the pass mark is 80
and the marks are 32, 94, 26, 83, 70, 55, 99, 37,
85,10, 91, 70?

And it’s
OVER TO YOU

An example
OF ARRAYS

READ and DATA can also be used with the
command word DIM. Type and RUN the
following:

125

10 REM : BUBBLESORT
20 CLS
30 DIM ▲ A (5)
40 FOR ▲ K = 1 ▲ TO ▲ 5
50 READ ▲ A(K)
60 NEXT ▲ K
70 FOR A C = 1 A TO A 4
80 FOR A J = 1 A TO A 4
90 IF ▲ A(I) < A(J+1) THEN ▲ GOTO ▲ 130

100 LET ▲ D = A(J)
110 LET ▲ A(J) = A(J+1)
120 LET A A (J+l) = D
130 NEXT ▲ J
140 NEXT ▲ C
150 FOR K = 1 TO 5
160 PRINT K ▲ A(K)
170 NEXT ▲ K
180 DATA ▲ 6,3,7,2,1

When we use the command DIM (Dimension) it
is a way of reserving space in the computer
which can be used later for storing information.
We talk about DIMensioning an array. Line 30
DIM A (5) tells the computer to reserve five
spaces for a numeric variable, A.
The numeric variable A is actually recognised as
A(l), A(2), A(3), A(4) and A(5) and is
represented by the DATA in line 180 —
6,3,7,2,1.
The program works as follows:
LINE 70 — sets up the number of passes

through the DATA line.
LINE 80 — controls the number of

comparisons in each pass, that is
4, e.g. 6 with 3, 6 with 7 etc.

The computer READS the DATA on line 180 and
compares the first two numbers.
LINE 90 — If the first number compared is

less than the second, then the
program goes to the next
comparison and compares the
second number with the third.

If the statement in line 90 isn’t true, then lines
100,110 and 120 change the first two numbers
round, then the second and third etc.

126

Lines 150,160 and 170 — finally print the list of
numbers in ascending order, e.g. 1, 2, 3, 6, 7.
ftis program is called a “bubblesort”.

The next program shows another use for DIM
plus READ and DATA:

A DIFFERENT
USE OF DATA

10 REM : Printing chosen sentences
20 CLS
30 DIM ▲ A$ (5)
40 FOR ▲ J = 1 ▲ TO ▲ 5
50 READ ▲ A$ (J)
60 NEXT ▲J
70 PRINT "Here is a list of sentences. Type in the

number of the sentence you require."
80 PRINT
90 FOR ▲ Q = 1 ▲ TO ▲ 5

100 PRINT ▲ Q, A$ (Q)
110 NEXT ▲ Q
120 PRINT
130 INPUT "The sentence I require is";B
140 CLS
150 PRINT ▲ A$ (B)
160 DATA "The weather is sunny","It is foggy", "The

weather is raining", "It is snowing", "The weather
is windy".

This is what the screen displays
Here is a list of sentences. Type in the number of
the sentence you require:
1 The weather is sunny
2 It is foggy
3 The weather is raining
4 It is snowing
5 The weather is windy
The sentence I require is?
In this example the DIMensional array in line 30
is set to reserve five spaces — 30 DIM A$(5) —
to store our five sentences. You can of course,
set the array to 10, e.g. DIM A$ (10) for 10
sentences or 20, e.g. DIM A$ (20) for 200
sentences.

127

LINES 40, 50, 60 — READ the DATA in line 160
LINE 70 — prints the instruction
LINE 90,100,110 — print the sentence in the

DATA line.
LINE 130 — asks your choice.
LINE 150 — prints your chosen sentence.
On its own this program may not seem very
useful. However, where you have to choose a
selection of comments from a large number of
comments, or where you might be writing many
letters with slight variations, you can see how
useful an adaptation of such a program might
be.

Sorting
letters

Finally a simple alphabetical bubblesort.
Compare this with the numeric bubblesort:

10 REM : Simple alphabetic bubblesort
20 DIM A A$(26)
30 FOR A K = 1 A TO A 26
40 READ A A$(K)
50 NEXT A K
60 FOR A B = 1 A TO A 25
70 FOR A J = 1 A TO A 25
80 IF A A$(J)<A$ (J+l) THEN A GOTO A 120
90 LET A S$ = A$ (J)

100 LET A A$ (J) = A$(J+1)
110 LET A A$(J+1)= S$
120 NEXT A J
130 NEXT A B
140 FOR A K = 1 A TO A 26
150 PRINT A A$ (K);
160 NEXT A K
170 DATA A Q, W, E, R, T, Y, U, I, O, P, A, S, D, F, G, H, J,

K, L, Z, X, C, V, B, N, M

Not only does the computer have the ability to
distinguish between higher and lower
NUMBERS, but it can also order LETTERS. That
is, it is able to rank in alphabetical order — or
reverse alphabetic order!

128

If you compare the numeric and alphabetic
bubblesorts you will see how the arrays vary,
e.g. DIM A(5) and DIM A$(26).

Look also at lines 60 and 70. You should be able
to experiment with these programs.

The preceding programs have served as a
introduction to simple uses of DIM, READ and
DATA. Experiment with some ideas of your own.

Now YOU

CAN
EXPERIMENT

129

CHAPTER 19

How to Adapt
Programs

We feel that many educational programs do not
fit the individual’s needs. We have shown
already how to alter simple number programs
according to the level of difficulty required. Here
is a more complex program which you may not
fully understand yet, but you can adapt to your
needs:

Introduction

10 REM : Multi choice (random) program
20 DIM A A$ (10)
30 DIM ▲ B$ (10)
40 DIM A T(5)
50 GOSUB ▲ 380
60 CLS
70 FOR A N = 1 A TO A 5 : LET A T (N) = 0: NEXT A

N
80 FOR A N = 1 A TO A 5
90 LET A R = INT (RND * 10) + 1

100 FOR A Z = 1 A TO A 5
110 IF A T(Z) = R A THEN A GOTO A 90
120 NEXT A Z
130 LET A T(N) = R
140 NEXT A N
150 LET A Q = INT (RND * 5)+1
160 PRINT "CHEMISTRY QUIZ"
170 PRINT
180 PRINT "What is the chemical symbol for A$

(T(Q))
190 FOR A N = 1 A TO A 5
200 PRINT A N, B$ (T(N))
210 NEXT A N
220 PRINT
230 PRINT "Answer (1-5) =";

131

240 LET A R$ = INKEY$: IF A R$ <> ”1” AND A R$
<> "2" AND A R$ <> ”3" AND ▲ R$ <> "4" AND
A R$ <> "5" THEN A GOTO A 240

250 PRINT A R$
260 IF A VAL (R$) = Q A THEN ▲ PRINT "Correct":

GOTO A 310
270 PRINT "Incorrect — wait for correct answer!"
280 FOR A T = 1 A TO A 3000 : NEXT ▲ T
290 PRINT
300 PRINT "Answer was B$ (T (Q))
310 FOR A T = 1 A TO A 5000 : NEXT A T
320 CLS
330 INPUT "Another go — yes or no"; G$
340 IF A G$ = "yes" THEN A GOTO A 60
350 CLS
360 PRINT "END OF QUIZ"
370 END
380 FOR A N = 1 A TO A 10: READ A A$(N), B$(N):

NEXT A N : RETURN
390 DATA A HYDROGEN, H, POTASSIUM, K,

CARBON, C, NITROGEN, N, OXYGEN, O
400 DATA A SULPHUR, S, HELIUM, He, COPPER, Cu,

PHOSPHORUS, P, ZINC, Zn

A MORE
COMPLEX
PROGRAM

Here are some examples of the screen display:
CHEMISTRY QUIZ
What is the chemical symbol for OXYGEN
1 0
2 He
3 K
4 Zn
5 N
Answer (1-5) = 1
Correct
CHEMISTRY QUIZ
What is the chemical symbol for COPPER
1 S
2 He
3 H
4 Cu
5 N

132

Answer (1-5) = 5
Incorrect — wait for correct answer!
Answer was Cu.

What the program does:
(a) It stores in its DATA statement
chemical names and their symbols — see lines
390 and 400.

(b) The computer then chooses the full
word for the symbol at random and asks “What
is the chemical symbol for HYDROGEN (for
instance). You are then given a choice of 5
symbols to choose from and asked to press the
appropriate number from 1 to 5.
The correct answer is always one of the choices.

(c) If you are correct the computer tells
you; if you are incorrect the answer is given.

(d) You are then asked if you want
another go. If you type “yes” you get another go.
If you type “no” the program ends.
Type it carefully and RUN it.

The beauty of a program such as this is that it
teaches as well as tests. You could easily learn
these symbols without any prior knowledge. You
can, of course, easily increase the number of
items in the DATA line so that more questions
can be asked—you will have to change the DIM
statements and the random selection (line 90).

Explanation

The
program
TEACHES AS
WELL AS
TESTS

133

Howto
ALTER THE
PROGRAM

Let us say that you wanted to ask questions
about the capitals of Europe — this is what you
would need to alter:
LINE 180 to read ; 180 PRINT “What is the
capital of AS (T(Q))
LINE 390 and 400 — DATA FRANCE, PARIS,
RUSSIA, MOSCOW, etc. to a total of ten countries
and capitals.
NOTE: It is not necessary to use speech marks
unless you are using a space, colons, commas
etc. See DATA lines in the next program as an
example.

Another
example

This program is shorter and simply sets up two
arrays on lines 30 and 40, one for French words
and the other for the English equivalent. You are
asked to give the French for the English word,
which is presented on the screen in the form of a
question. Ready to test your French?

10 REM : Vocabulary
20 CLS
30 DIM A F$(5)
40 DIM A E$ (5)
50 DIM A C (5)
60 FOR A K = 1 A TO A 5
70 READ ▲ F$ (K), E$ (K)
80 NEXT A K
90 LOCATE A 8, 12

100 PRINT "French Vocabulary Quiz"
110 FOR A L = 1 A TO A 5
120 FOR A T = 1 A TO A 5000 : NEXT ▲ T : CLS
130 LET A T = 0
140 LET A R = INT (RND (1) * 5) + 1
150 IF A C(R) = 1 A THEN A GOTO A 140
160 LET A C(R) = 1
170 PRINT "What is the French for E$(R)

134

180 PRINT
190 INPUT "Answer is"; A$
200 PRINT
210 IF A A$ = F$(R) THEN A GOTO A 260 A ELSE A

LET A T = T+l
220 IF A T = 3 A THEN A GOTO A 240 A ELSE A

PRINT "Incorrect — try again"
230 FOR A T = 1 A TO A 5000 : NEXT A T : CLS :

GOTO A 170
240 PRINT "Hard luck — the correct answer is F$ (R)
250 GOTO A 130
260 PRINT "Well done — answer correct!": NEXT A L
270 FOR A T = 1 A TO A 5000 : NEXT A T : CLS
280 LOCATE A 16, 12 : PRINT "The End" : GOTO A

280
290 DATA "le jardin", "the garden", "le chat", "the

cat", "le chien", "the dog"
300 DATA "la robe", "the dress", "la cravate", "the tie"

If you answer correctly it is confirmed in line
260. If your answer is incorrect you are asked
the same question again — after three attempts
the answer is given. The program randomises
the questions but, because of the array DIM
0(5) in line 50 and lines 150 and 160, you will
not be asked the same question more than once.
Note also that this program is very particular.
You must INPUT your answer EXACTLY as it
appears in the DATA lines. Using capital letters
or slight spelling mistakes will give the response
“incorrect”. You will have to use the ESC key to
get out this program.

If you want to adapt this program for more
questions you will need to look at lines 30,40,50,
60,110,140 and of course, the DATA lines. Line
170 will also have to be changed if you want to
ask different questions. You don’t have to
change E$ and Ft Remember that these “string
variables” can stand for anything. They stand
for English and French in our program merely to
help you to understand the program.

Howto
adapt IT

135

This program is capable of handling other types
of material. For example, your question could be
“What is the French/German/Arabic foror it
could be “Who was monarch in The DATA
lines will of course have to have two blocks of
information, one representing the question and
the other the answer, e.g. “the house”, “das
Haus” or “1627”, “Charles 1”.

Variations
ON A THEME

The next two programs are variations on a
theme, one giving a score, the other using a
scoring routine to increase the degree of
difficulty:

10 REM Score
20 CLS
30 LOCATE A 12, 10 : PRINT "Multiplication"
40 LET A S = 0
50 FOR A Q = 1 A TO A 10
60 FOR A T = 1 A TO A 3000 : NEXT ▲ T
70 LET A A = INT(RNDd)* 1O)+ 1
80 LET A B = INT(RNDd)* 10)+ 1
90 PRINT A Q A TAB (7); "What is"; A; "*";B

100 PRINT
110 INPUT "Answer is C
120 PRINT
130 IF A C = A*B A THEN A LET A S = S + 1 A ELSE

A GOTO A 150
140 PRINT "Correct" : GOTO A 160
150 PRINT " Incorrect — the answer is A * B
160 NEXT A Q
170 FOR A T = 1 A TO A 3000 : NEXT A T : CLS
180 LOCATE A 3, 15: PRINT "You scored" ;S; " out of

10": GOTO A 180

10 REM : Increasing the difficulty
20 CLS
30 LOCATE A 9, 10 : PRINT "Multiplying by

degrees"
40 LET A S = 0
50 FOR A Q = 1 TO 10

136

60 GOSUB A 1000
70 GOSUB ▲ 5000
80 NEXT ▲ Q
90 FOR A T = 1 A TO A 3000 : NEXT A T : CLS

100 LOCATE A 3, 15
110 IF A S < 8 A THEN A PRINT "You only scored"

;S; "out of 10. Try again!" : GOTO 40
120 IF A S > 8 A THEN A PRINT "Well done ;S; "

out of 10"
130 PRINT "Try the next ten — they are harder"
140 FOR A T = 1 A TO A 3000 : NEXT A T : LET A

S=0
150 FOR A Q = 1 A TO A 10
160 GOSUB A 2000
170 GOSUB A 5000
180 NEXT A Q
190 FOR A T = 1 A TO A 3000 : NEXT A T : CLS
200 LOCATE A 3. 15
210 PRINT "You scored" ;S; "out of 10 this time"
220 END

1000 LET A A = INT (RND (1) * 10)+ 1
1010 LET A B = INT (RND (1) * 10)+ 1
1020 RETURN
2000 LET A A = INT (RND (1) * 100) + 1
2010 LET A B = INT (RND (1) * 10) + 1
2020 RETURN
5000 FOR A T = 1 A TO A 3000 : NEXT A T: CLS
5010 PRINT A Q A TAB (7); "What is" ;A; "*";B
5020 PRINT
5030 INPUT "Answer is"; C
5040 PRINT
5050 IF A C = A * B A THEN A LET A S = S+l A ELSE

A GOTO A 5070
5060 PRINT "Correct" : GOTO 5080
5070 PRINT "Incorrect — the answer is"; A‘B
5080 RETURN

Note how in the second program we have written
the random number selection lines and the
question and answer lines as subroutines using
GOSUB. This way saves typing time and also
leaves plenty of scope to insert further
subroutines should you wish to increase further
the degree of difficulty.

137

A TEST OF
LOGIC

The final program is a guessing game which is
also a test of logic! Who can guess the number in
the least attempts:

10 REM : Number guessing game
20 CLS
30 LOCATE ▲ 15, 12 : PRINT "Guess the number"
40 FOR A T = 1 ▲ TO A 3000 : NEXT ▲ T : CLS
50 LET A N = INT (RND * 100) + 1
60 LET A X = 0
70 LOCATE A 5, 12 : PRINT A TAB (5) "I am thinking

of a number between"
80 PRINT A TAB (17) "1 and 100"
90 PRINT

100 LET A X = X + 1
110 IF A X = 10 A THEN A GOTO A 170
120 INPUT "Have a guess"; G
130 PRINT
140 IF A G = N A THEN A CLS : LOCATE A 1, 12 :

PRINT "Well done. You got the number in
";X;"goes" : GOTO A180

150 IF A G < N A THEN A PRINT "You have guessed";
TAB(35); G; "but that is too low — try again":
PRINT : GOTO A 100

160 PRINT "You have guessed"; TAB (35);G; "but that
is too high — try again": PRINT : GOTOA 100

170 FOR A T = 1 A TO A 3000 : NEXT A T : CLS :
LOCATE A 6, 12 : PRINT "Sorry, no more guesses
left"

180 PRINT
190 PRINT A TAB (10) ; "The answer was "; N
200 END

You can adapt this to give any number of
attempts by altering line 110 and you can also
alter the limits of the numbers selected by
changing line 50.

138

INDEX

Adaptation of program ... 131
Addition.. 37
AND function... 73
ASCII..103
AUTO command .. 91
AUTO-repeat.. 10

BORDER command... 95
Brackets..
Branching... 60
Bubblesort..126

CAPSLOCK... 8
Channel .. 116
CHRI..103
CIRCLES.. 109
Circumference...109
CLR key... 16
CLS.. 12
Colour.. 95
Colouring circles.. 110
Comma... 23
Command words... 13
Conditional statements... 70
Co-ordinates... 107
COPY key.. 17
COPY Cursor.. 17
COS function... 109
Counting... 64
CRSR keys.. 8
CTRL Key.. 8
Cursor.. 7

DATA command...123
DATACORDER.. 83
Decimal.. 51
DEG function... 109
DEL key.. 16
DIM command...125
Division.. 39
Duration...116

EDIT command.. 17
ELSE function... 71
END command... 66
ENT command...117
ENTER KEY.. 10
ENV command...116
ESC KEY... 8

Example programs... 59
— Addition... 69
— Alphabetical bubblesort...................................128
— AND demonstration... 73
— Averages..123
— Border demonstration.................................... 95
— Branching.. 63
— CHRS demonstration 103
— Circle demonstration 109
— Design demonstration...................................... 110
— Division demonstration.................................. 35
— FOR/NEXT demonstration.............................. 44
— French vocabulary ... 66
— GOSUB... 78

Guessing game ..138
IF/THEN demonstration.. 72

— INK demonstration... 97
— INPUT demonstration...................................... 31
— INT demonstration.. 48
— Kings and Queens.. 56
— LOCATE demonstration................................... 24
— Multi-choice Chemistry Quiz..........................131
— Multi-choice French Quiz.............................. 66
— Multiplication.. 60
— Multiplication tests...136
— Numeric bubblesort...................................... 126
— Numeric variables demonstration.............. 46
— Operators demonstration............................... 73
— OR demonstration... 74
— PAPER demonstration..................................... 97
— PEN demonstration... 98
— PRINT a list of numbers............................... 40
— PRINT demonstration....................................... 127
— Rechange demonstration............................... 99
— RND demonstration.. 48
-Scale...114
— Shopping list.. 54
—String variables.. 58
—Sur le pont d’Avignon..115
—Word processer... 57

Flashing colours.. 97
FOR command... 43
Formulae.. 49
Fractions... 52

GOSUB command... 77
GOTO command... 63
Graphics ...103
Graphics cursor... 105

141

IF command..
INK command..
INPUT command..
INT function...

Keys..

LET command...
Line numbers...
LIST command...
LOCATE command...
Logical operators..
Long multiplication...
Loops ...
Lower case ...

Memory clearing...
MODES...
Multiplication...
Music...
Musical notes...
Musical scale ...

NEW command..
NEXT command...
NOT function..
Note...
Numeric variables ...

OR function..
ORIGIN command..

PAPER command...
PEN command...
Pixels...
PLOT command..
PRINT command..
Printer ...
Punctuation marks..

Quotation marks...

Radius..
Random numbers ...
READ command..
READY ...
REM command..
RENUM command..
RETURN ...

64
99
31
48

8

52
11
19
24

..74

60
8

16
89
40

114
114
114

13
43
75

116
40

73
111

96
97

105
106
21
85
23

26

109
46

123
7

13
22
77

RND command... 46
RUN.. 11

SAVE command.. 84
Screen clearing.. 12
Screen layout.. 24
Set up ... 7
SHIFT key... 8
Signs ...

— + .. 39
■ - ... 40

• ... 40
- -1... 35
—.. 71
-<>.. 71
- < ... 71

.. 71
.. 71
.. 71

—?...92

SIN function ..109
SOUND command...113
Sound effects ... 118
Spaces................. 12
Speech marks.. 26
String variables ... 69
Subtract.. 38
SYNTAX ERROR... 9

TAH command . 25
Tapes 83
THEN command 63
Timing................................... 63
Tone envelope 117
Typing errors . 15

Upper symbols.. 9

VERIFY command.. 83
Volume..116
Volume envelope ..116

Word processor.. 57

XPOS command..108

YPOS command ..108

142

This book is designed to guide the new Amstrad
user through the first few weeks of programming
- from the moment the machine is plugged in to a
proficiency in basic programming.

Topics include:
★ Introducing the keyboard
★ Useful computing aids such as recorders and

printers
★ Using easy commands
★ Howto build a program
★ Programming techniques with advice on

variables, looping, branching and counting
* Practical applications

This book is essential reading for any first-time
Amstrad user. It manages to avoid technical jargon
and is also great fun to use. All example programs
are presented in quiz, game or self-questionnaire
form, fully illustrated for easy reference.

. an excellently presented introduction to Basic... the
answer to all your introductory problems.’ WHAT MICRO

. remarkably understanding and sympathetic little book.
It starts right at the beginning.’ WHICH MICRO

ISBN 07126 0669 6
CENTURY COMMUNICATIONS LTD £2.95

¡s

I

I

£ en
ï o

https://acpc.me/

CPC

[FRA] Ce document a été préservé numériquement à des fins éducatives et d'études, et non commerciales.
[ENG] This document has been digitally preserved for educational and study purposes, not for commercial purposes.
[ESP] Este documento se ha conservado digitalmente con fines educativos y de estudio, no con fines comerciales.

	Very basic BASIC - The first 15 hours on your AMSTRAD
	CONTENTS

	SECTION 1 PREPROGRAMMING
	CHAPTER 1 INTRODUCTION
	CHAPTER 2 KEYBOARD BASICS
	CHAPTER 3 HOW TO CORRECT MISTAKES
	CHAPTER 4 USES OF THE PRINT COMMAND

	SECTION 2 BASIC PROGBAMMING TECHNIQUES
	CHAPTER 5 HOW TO USE INPUT
	CHAPTER 6 NUMBERS AND YOUR COMPUTER
	CHAPTER 7 STRINGS AND THINGS
	CHAPTER 8 SCREEN CLEARING AND TIMING
	CHAPTER 9 LOOPING AND BRANCHING
	CHAPTER 10 SUBROUTINES
	CHAPTER 11 SUMMARY
	CHAPTER 12 USING THE DATACORDER
	CHAPTER 13 THE PRINTER

	SECTION 3 INTRODUCTION TO COLOUR, SOUND AND GRAPHICS
	CHAPTER 14 MODES AND A FEW TIPS
	CHAPTER 15 COLOUR
	CHAPTER 16 GRAPHICS
	CHAPTER 17 SOUND

	SECTION 4 MORE RASIC TECHNIQUES
	CHAPTER 18 HOW TO HANDLE DATA
	CHAPTER 19 HOW TO ADAPT PROGRAMS

	INDEX
	● Raw HQ scan : Maxime CROIZER for ACME | Cleaning/Cover restoration/Layout/OCR/Coca light : ACME – https://acpc.me | Thanks to Rafa CPCMANIACO for lending the book ● 2020-11-02
	Untitled_1.png

