
Writing Adventure
Games on the
Amstrad CPC464/CPC664

Mike Lewis & Simon Price

' • -Ki^- •** ,
- Æ2 --^

i

'5'

■ i-te-Ä

I ■■

A.e
“■ «sz

SIS
Bp^(dr"

WRITING
ADVENTURE GAMES
ON THE AMSTRAD

WRITING
ADVENTURE GAMES
ON THE AMSTRAD

Mike Lewis and Simon Price

MELBOURNE HOUSE
PUBLISHERS

©1985 Mike Lewis & Simon Price

All rights reserved. This book is copyright and no part may be copied
or stored by electromagnetic, electronic, photographic, mechanical or
any other means whatsoever except as provided by national law. All
enquiries should be addressed to the publishers:

IN THE UNITED KINGDOM —
Melbourne House (Publishers) Ltd
Castle Yard House
Castle Yard
Richmond, TW10 6TF

IN AUSTRALIA —
Melbourne House (Australia) Pty Ltd
2nd Floor, 70 Park Street
South Melbourne, Victoria 3205

ISBN 0 86161 196 9

Printed and bound in Great Britain by
Mackays of Chatham Ltd, Chatham, Kent

Edition
Printing:
Year:

7654321
FEDCBA987654321
90 89 88 87 86 85

AKNOWLEDGEMENTS

To Andy Tyson and Doug Walker for playtesting
To Lesley Boxer for the artwork

and Tim Harrison — the "Printer Driver”.

CONTENTS
SECTION ONE — ADVENTURE GAMES 1

Chapter 1
Chapter 2
Chapter 3
Chapter 4

Chapter 5

INTRODUCTION......................................
HISTORY OF ADVENTURE GAMES......
PLOTTING AN ADVENTURE GAME......
THE STRUCTURAL ELEMENTS OF AN
ADVENTURE GAME................................
SAVING SPACE.......................................

.3

. 7
17

25
37

SECTION TWO — THE ADVENTURE KERNEL 45

Chapter 6
Chapter 7
Chapter 8
Chapter 9

WHAT IS AKS?.......................................
ACTIONS IN AKS...................................
TRIGGERS IN AKS.................................
LOCATIONS, OBJECTS AND EVENTS
IN AKS..

Chapter 10 EXPRESSIONS IN AKS.........................

47
51
55

59
63

SECTION THREE —IMPLEMENTING AKS ON THE AMSTRAD . 67

Chapter 11 PROGRAMMING TECHNIQUE................................
Chapter 12 STRUCTURAL OVERVIEW OF AKS........................
Chapter 13 IMPLEMENTING THE EXPRESSION EVALUATOR
Chapter 14 EXTENDING AKS..

69
73
79
85

SECTION FOUR — WITCH HUNT — AN EXAMPLE SCENARIO . 89

Chapter 15 WITCH HUNT PLOT AND DESIGN
Chapter 16 BREAKDOWN OF WITCH HUNT...

91
97

Appendix A LISTING OF AKS AND WITCH HUNT
AKS Chexsum................

131
155

Appendix B BIBLIOGRAPHY 165

SECTION 1
ADVENTURE GAMES

1

2

INTRODUCTION

The arcade shoot-’em-up style of computer games is the one most
associated with home computers. They are games of skill, involving
fast reflexes and good hand-to-eye coordination. While there are some
elements of strategy in arcade games, it is more along the lines of
“which baddy do I shoot first?” than any complex planning. These are
games of action; adventure games are games of thought, of planning,
of strategy. Fast reactions will not help you in a standard adventure
game — you must use your brain, not your joystick.

There are many different forms of adventure game, as we shall see
in the next chapter, but they can all be considered to ultimately be the
same type of game. They are all linked at the basic level by a game
format which involves the player interacting with the computer in order
to solve puzzles, collect objects, and perhaps kill monsters. The player
takes the part of a character, who is free to roam around an imaginary
world, within his computer, and whose actions are controlled by the
player through the computer. The best adventure games give you the
opportunity to get lost in their worlds, to take on roles which allow you
to escape from mundane, ordinary life and become an adventurer, an
explorer. Adventure games can give you the same feeling of enjoyment
and involvement which is available from a well-constructed, well-paced
novel; or from a well-run roleplaying game session. Of course, not all
adventure games are good, far from it, many lack atmosphere, ideas
or even a vaguely logical plot. They can reduce the whole adventure
playing process to a simple game of guessing which word to use,
which object to pick up, etc rather than an exploration of the author’s
world. Playing a poorly designed adventure game is mechanical at
best, if you even bother to play it, that is.

3

WHY READ THIS BOOK?
With the growth in popularity of adventure games, and the realisation
by computer games companies that a good adventure game can sell
as well as a good arcade game, there has been a boom in the number
of adventures being produced. There has also been a comparative
boom in utilities such as The Quill, which allows you to write your own
adventures without knowing any programming techniques. This has
led to a lot of Quilled adventures, some of which are very good — a
lot of which are quite dire. There seems to be a similar expression to
“Everyone has at least one novel in them” — with computers, everyone
seems to have at least one adventure in them. These utilities allow
them to produce their one (or even more) adventures.

There has also been a boom in adventure game books, which purport
to show you how to write an adventure game easily and simply. Un
fortunately, beyond giving you some form of programming knowledge,
which can be picked up by typing in listings, these books have very
little to offer. The standard format is to show how to write one adventure
game, which is produced by directly coding the adventure in the form
of BASIC, and to then claim that this will enable you to write your own
adventures. Sadly, it doesn’t do this at all; because of the adventure
format chosen. The adventures presented as examples are directly
coded programs which only apply to their adventure game alone; if
you wish to write your own adventure, you have to code your game in
the same way, from scratch. What is more, you will have to code each
adventure game you write subsequently, in the same way, program
ming it directly. Far from allowing you to write adventures easily and
quickly, this technique wastes a lot of your time, and produces fairly
standard adventures, as well as teaching you very little.

That is the conclusion which we came to, after tiring of reading the
same material time and again in adventure game books and articles.
There are so many computing techniques and methods which can be
applied to adventure games, and they seem to remain the secrets of
large software houses. Well, this book sets out to outline some of the
techniques which you can employ to write your own adventures, some
of them fairly advanced; techniques which will actually teach you some
thing new about computing. We have also set out to provide a complete
adventure generating system which can be used to design any number
of adventure games, without direct coding, or any programming being
necessary. The Adventure Kernel System is easier to modify and more
flexible to use than most commercial adventure designers as well, as
it enables you to see the structure of your adventure game, in a way
which menu systems cannot.

4

WHY WRITE ADVENTURE GAMES?
You may be wondering why anyone would want to write their own
adventure games. The simple, and short, answer is for enjoyment and
a feeling of satisfaction. A large adventure game is very similar to a
novel, in the way it must be designed, plotted and finally written; and
there is the same feeling of achievement when you finally finish an
adventure as you get from writing a book. Designing and implementing
adventure games is fun, as well. Your imagination has complete free
dom to produce whatever strange ideas and puzzles you want, and
you are able to stamp your own personality and feelings on an ad
venture game in a way which is not possible with an arcade game.
There is also the enjoyment which can be had from watching other
people play your adventure game, trying to puzzle through all those
problems you carefully designed. In fact, it is often more fun watching
people play your game than playing other peoples’ adventures — an
inside view gives you a wonderful perspective on the player’s actions.

Besides the enjoyment derived from writing an adventure game, you
can learn new programming techniques, something which isn’t possible
with a novel! An adventure game is easier to construct and write than
a novel, as well, which may be why so many adventure games writers
appear to be frustrated novelists! If you are creative and as much of
a technophile as we are, it also gives a chance to do something useful
and constructive using your treasured computer for a change. No
longer will people be able to say that you are wasting your time playing
silly games — you are creating them instead!

5

6

2
THE HISTORY OF
ADVENTURE
GAMES

THE DEVELOPMENT OF ROLEPLAYING
Roleplaying games grew out of the hobby of wargaming in the late
sixties and early seventies. Wargames take the form of battles fought
on table tops with miniature figures. Each figure represents ten, twenty
or more men and the gamers move the armies according to a complex
series of rules which govern movement, terrain, and the like — with
combat being resolved through the use of dice; wargames recreate
many different periods of warfare, from ancient Rome through Napo
leonic battles to the conflicts of the 20th century. Wargames themselves
developed from chess and the military strategic games played by the
Prussian Military Command at the end of the 19th century.

The first factor which influenced the development of Roleplaying
Games, (RPGs as they are known today) was without doubt the pub
lishing of JRR Tolkein’s LORD OF THE RINGS in paperback in 1967.
This fired the imagination of a vast audience of young people, the idea
of recreating the battles between men, dwarves, elves and orcs ap
pealing to the fantasy fan and wargamer alike. Because of the demand
for rules which could cope with the magic and creatures depicted in
the books, the publishers of medieval wargames rulebooks had ap
pendices added to include the use of fantasy elements such as Dragon
Fire and magic swords.

In Lake Geneva, Wisconsin, USA a small group of wargamers pub
lished a book for medieval combat called Chainmail through Gary
Gygax’s small press games company Tactical Studies Rules, which

7

had previously published other wargames rules. While this essentially
covered the medieval period, it also had a large fantasy element, with
giants, spells, trolls and dragons. The game was reasonably popular
due to these added fantasy elements.

From here, the game grew with Dave Arneson — a member of the
group — creating a dungeon beneath the castle in his campaign. Here
individual characters adventured, governed by the rules in CHAIN-
MAIL. The new concept of playing a unique character proved very
popular and this idea was developed by Arneson and Gygax into the
game Dungeons and Dragons (D&D) which was published by Gygax’s
Tactical Studies Rules company.

D&D sold extremely well and vast numbers of supplements were
soon added to the game to cover the inconsistencies present and the
problems that ‘combat according to the rules in CHAINMAIL’ (as the
original rules stipulated) caused.

While the game of D&D was the first, it was obviously incomplete
and in many ways had flaws as a games system. There were a number
of individuals around who felt that they could do better and soon several
rival roleplaying games sprung up. These were games such as Tunnels
and Trolls, a very simple level game developed by Ken St. Andre, and
published by Flying Buffalo with different rules for magic and combat
but still drawing on the fantasy background of elves, dwarves and trolls
as inspiration for adventures.

THE GROWTH OF ADVENTURE GAMES
Back in the dim and distant days of 1973, when roleplaying games
were first invented, computers were still immense mainframes filling
rooms, and while computer games did exist they consisted of Noughts
and Crosses and games like Star Trek. While many computer pro
grammers played D&D, they never thought of implementing the game
on a computer system. Roleplaying and computers remained very
separate entities until two bright students by the names of Crowther
and Woods created ADVENTURE.

The game ADVENTURE was created on one of these large main
frames and coded entirely in FORTRAN and Crowther and Woods were
clearly D&D fans, for ADVENTURE contains many of the elements found
in roleplaying games. It is set in a vast underground complex of caves
which are populated with monsters to be fought, puzzles to solve and
treasure to win. The player moves his ‘character’ around the caves by
giving two word instructions describing his actions. These consist of
a verb and a noun pair such as ‘GO NORTH’, ‘KILL DWARF’, etc. Thus
he is able to manipulate objects, attack monsters and solve puzzles
via simple commands. The game was tremendously innovative at the
time, and doubtless many hours of hideously expensive computer time

8

were spent trying to unravel its mysteries. The player receives a score
out of 350 when he dies and the aim of the adventure is to win by
completing all the actions possible and to thus score 350.

ADVENTURE remained unavailable to all but a select few due to the
scarcity of mainframe facilities to those other than students or com
puting specialists. The game might have remained a minor diversion
for computer scientists, but for one person — Scott Adams. Scott had
played the game at work, and had found it fascinating, he wanted to
be able to show it to his friends, but couldn't take them into work. So,
the obvious solution was to bring the adventure to them! This he did
by programming the game in BASIC on the 16K TRS-80 Model 1, despite
his colleagues’ assurances that it couldn’t be done!

Once it had been shown that you could reproduce an adventure
game on a microcomputer in just 16k (the original adventure used over
64k of main store) other programmers caught on, and soon other ad
ventures began to appear.

Adventure games consisted of the same basic elements: the two
word input, puzzle solving and limited character interaction until rela
tively recently, when the Infocom games appeared. These grew out
of experiments with a parsing system, and as such allow very complex
input and output. Zork was the first of the new breed of games, and
it provides a surprisingly user-friendly game with some very intricate
and subtle puzzles.

Unfortunately, due to the large amounts of memory and disk space
required to run ZORK it is only implemented on a few machines. How
ever, some of the techniques shown in ZORK can be reproduced in
any adventure games system extremely effectively and easily.

Nowadays, adventure games are a very common piece of computer
software, and there are several different types available on all of the
small home computers, the Amstrad having its fair share of innovative
adventures.

While all adventure games have essentially the same structure —
in that they are composed of an interaction between the player and
the game, during which the player attempts to solve puzzles and over
come obstacles — they can be sub-divided. These divisions can be
based on the style of input and output and how these two are linked
through the game.

DIFFERENT ADVENTURE TYPES
Text Adventures
This is the original type of adventure game, and the text adventures
available on the Amstrad differ very little in format from the original
ADVENTURE on a mainframe computer. The game consists of plain

9

text input and output on a normal screen with no graphics, sound and
normally no use of colour.

The original Crowther and Woods Adventure is available on the Am
strad as Colossal Caves from Level 9, which not only includes the
original 200 locations, but adds 70 more! Quite a programming feat
for just a small home computer!

The game includes all the elements of the original and more. You
start the game on a road near a building, with a forest to the north and
a valley to the south. Commands are entered by typing in a two word
command consisting of a verb and a noun. Thus, “Enter building” will
take you into the building, where the program describes the location
as:

You are in a small building with a well in the middle of the only
room. A rusty ladder leads down the well into darkness.
There is a bunch of keys here.
There is a small brass lamp here.
There is an empty bottle here.

Typing “Get Lamp" will enable you to pick up the lamp and typing
“Inventory” will list all the objects you are carrying. The adventure
recognises the standard abbreviations for directions, such as “S” for
“South”, “D” for “Down”, “E” for “East” and so on. The two word input
is limited compared to some games that allow full sentence input, but
it is sufficient to play the game (and indeed to play most adventures).

Graphics Adventures
Text adventures with added pictures showing what the locations looked
like have been around for a while on computers such as the Apple
— the use of discs enabling fast access to picture data. The graphics
adventure boom on small computers, however, was really sparked off
by the release of The Hobbit adventure from Melbourne House. This
led to a lot of other graphics adventures, which attempt to add at
mosphere to the game by showing each of the locations you can visit
in glowing colour.

The major problem with any graphics adventure is that the addition
of graphics to the program eats up the available memory at a ferocious
rate! This means that there is less space for locations, objects and
actions, and thus the adventure has to be smaller with fewer puzzles
and they generally prove to be less of a challenge. While the graphics
do add a certain feeling of atmosphere to the game, they can never
be detailed enough to accurately represent your location, and thus
add little to the adventure element of the game. Most “committed”
adventure games players tend to prefer text based games, as they
offer a greater challenge.

10

Arcade Adventures
This type of adventure game bears the least resemblance to the original
ADVENTURE, as it is entirely graphical in nature, with very little (if any)
text. The character in the game is controlled by a joystick, or via cursor
keys, and is moved around the screen collecting objects and fighting
monsters. The screen generally depicts a set of corridors or a maze,
which must be negotiated, and the monsters are overcome by firing
at them — as in arcade games.

Because the action is purely graphical and the standard of animation
of the characters in the game has to be high, the graphics will take up
even more memory than with the Graphical Adventures. Thus, the
actual adventure element of the game tends to be reduced to just
picking up or dropping objects, fighting monsters and so on. All things
which require skill on the joystick and good reflexes rather than the
complex thought and calculation required by the traditional puzzle
adventure. However, Arcade adventures may appeal to people who
like a little more storyline to their blasting of aliens than in the standard
shoot ’em up.

Adventure Simulations
Although The Hobbit falls into this category in many ways, with its
interactive characters and their unpredictable behaviour, as do the
Infocom games, the only real program to live up to the name is Valhalla
from Legend (sadly, only available on the Spectrum and Commodore
64 at the time of writing.).

The world of Valhalla is that of Norse legend and myth, with the gods
and goddesses, giants and dwarves, wolves and dragons. You take
the part of a character in this world and you interact with the other
characters present. Each of these characters has a unique personality
and acts with complete independence from you or the other characters
around them. The thing that makes Valhalla very different from The
Hobbit or any other game available is that all this action takes place
graphically on the screen. When you type in the command “Drink
Wine", one of the little characters on the screen will raise a wine bottle
to his lips and take a drink!

Each location is shown as a fairly detailed and colourful picture, with
the terrain varying from plains to marsh or forest, and with castles and
huts dominating the skyline. The characters are shown as little figures
who walk about the central strip of the screen, drop food, pick up
weapons, fight, etc. All this while you can stand and watch.

In fact, one of the fascinations when you start to play the game is
just to sit and watch the other 36 characters in the game interact with
one another while you don't do a thing! You can join in this world
through a fairly complex sentence input which enables you to ask the

11

other characters for things, ask them to do things and move around
the world.

Due to the graphics again, the adventure element is rather limited
because of the sheer complexity of handling the animation and in
dependence of the characters. You are really limited to just eating/
drinking (a vital necessity to avoid dying of hunger), buying/selling,
fighting and handling objects. The commands for such actions can be
very complex in structure though, such as: “Sell the axe to Thor for 30
crowns’’.

The purpose of the game is to find the six magical items scattered
throughout the world, which must be collected in order. To achieve this
you will need the help of the other characters and this can only be
gained by impressing them with your prowess at fighting etc.

Quite clearly, the adventures currently available on home computers
are a massive improvement over the original Adventure, both in terms
of complexity and playability, while still owing their format to the original
game.

MACHINE REQUIREMENTS AND
PROGRAMMING LANGUAGES
The resources required by an adventure game really depend on the
type of game (as classified above) and on the aims of the game. All
adventure games require a reasonable size of computer memory and
they can be greatly enhanced if some form of disk storage is available.

Ideally an adventure game should have at least 48K available for
the data and the driving routines. It is possible to get away with less
than this, especially if some form of text compression is used, but the
adventure game which can be fitted into a 16K machine pales into
insignificance beside a 48K game! When available memory is limited,
you are forced into using compression techniques and machine code,
to create a useable adventure. This distracts you from the game itself,
as far more time is devoted to perfecting coding techniques than de
veloping the adventure game. There is a lot to be said for using a high-
level language rather than machine code, and getting on with the game
itself.

Which high-level language is most suitable for writing adventure
games? Well, the major task which an adventure game performs is the
manipulation of large amounts of text, usually in the form of strings; so
any language which provides good string handling functions can be
used. The original ADVENTURE was written in FORTRAN, simply be
cause that was the only language available, however it is really de
signed for scientific number crunching, not for text manipulation. The
most commonly used language for writing adventure games on micro-

12

computers is, of course, BASIC, Most BASICs have good string hand
ling, it is a relatively simple language to learn to program in, and it is
widely available, all good reasons for using it.

The major problem with using BASIC is that the larger the program,
the slower it will run. For most adventure games this is not too much
of a problem, as the response times to the player’s input are still fast
enough to be acceptable. The response delay only becomes a real
problem when you are attempting to produce a more advanced ad
venture game, which will allow complex sentence input. The parsing
of sentences takes time, and the delays can easily become totally
unacceptable. No player wants to wait thirty seconds between inputting
a command and the program responding! Thus, as the games become
more ambitious and complex, you are forced to abandon BASIC in
favour of machine code, or a compiled language.

As we have already mentioned, resorting to machine code will slow
down the development of the adventure game by a significant factor.
Machine code takes longer to learn initially, as it requires a totally
different programming approach to a high-level language, and this can
put the development of an adventure game even further back. Once
you have written your adventure game in machine code on one
machine, you are then faced with the problems of implementing the
same game on a different machine. With a BASIC adventure game,
transferring the game to a new machine is simply a matter of translating
the program into the new dialect of the BASIC. Despite the lack of
standards in BASIC, this is a fairly straight forward task, and it will
certainly take you far less time than rewriting the game from scratch
on the new machine. If your game is written in machine code, then this
is exactly what you will have to do — rewrite the whole game! Even
assuming that the new machine uses the same machine language,
(e.g. both the Amstrad and the Spectrum use Z80 machine code), you
cannot simply copy the program across. The routines for printing out
text to the screen, inputting commands from the keyboard, drawing
pictures, all the things BASIC does for you, will have to be completely
rewritten.

BASIC has the advantages of making your adventure game portable,
so it can run on another machine with minimal changes, yet it is not
the only language you can use. We mentioned compiled languages,
and PASCAL is such a language, which is becoming widely available
on a lot of micros — the Amstrad included — for a relatively small
price. The advantages of compiling a language are that you can write
the game in a high-level language which is as easy to use as BASIC,
yet it will run at almost the speed of machine code! Unfortunately,
standard PASCAL is not very suitable for adventure games program
ming, as it lacks even elementary string handling functions, making
text manipulation a difficult and complex problem. Fortunately, the

13

people developing the new micro-based versions of PASCAL have
realised that the language does have some severe limitations, and they
have taken steps to overcome them. The most common addition to the
language, and the one feature we really need, is string handling, so
you can manipulate text in the same way as BASIC.

If you write your adventure game in PASCAL, implementing it on a
new machine is simply a case of putting the same program on the new
machine and then compiling it, using that machine’s version of PASCAL.
Your adventure is then ready to run, without any alteration! There are
disadvantages to using a compiled language like PASCAL, as it is not
as fast as machine code, and the compiled code is not as compact
as machine code; but these are outweighted by the ease of use, the
portability, and the fast development time.

The other problem, of course, is being able to afford a PASCAL
compiler! While they are becoming more widely available, not everyone
can afford to buy one, and thus we will stick with BASIC in this book
— every Amstrad has BASIC built into it!

THE FUTURE OF ADVENTURE GAMES
As all of computer technology and computer games are constantly

developing, so is the adventure games genre. There are airways new
ideas to be tried and new complexities of programming to be reached.
The future of adventure gaming looks very healthy, with a wealth of
new technology and knowledge to draw on.

We have already seen the use of video disks in the computer games
field with arcade games such as M.A.C.H. 3 and the adventure game
Dragon’s Lair (DL). In these games, the computer projects images from
the video-disk which correspond to the players actions. Thus, in
Dragon’s Lair, you control Dirk the Daring, a fearless fighter, and all
the action is shown on screen in the form of an animated cartoon.
Unfortunately, games such as DL bear little resemblance to the ad
venture games we know, because the action is so limited. The computer
cannot access frames continuously from the disk, in response to the
players actions, and thus the game comprises of a number of scenes,
which are “jumped” between. In DL the player moves Left, Right or
waves his sword at the appropriate point. There is very little interaction.

However, the technology is coming here, and it should soon be
possible to have a fully interactive use of Video. The adventure would
now take the form of a live “film” in which the player takes an active
part. The characters in the film will respond to you, and the character
representing you will act out the actions you dictate. Thus it will be like
Valhalla in some ways, but far more realistic and with the storage
capacities of Video Disk, the true adventure element can be preserved.

14

Developments in the field of Artificial Intelligence research will also
have a great effect on future adventure games. There is not only the
concept of using the logic and knowledge processing techniques that
have appeared in games such as Sherlock from Melbourne House and
the Infocom games, where the other characters in the game appear
to be intelligent, and thus you can order them around, hold conver
sations with them, etc. There is also the work in the field of natural
language processing which has obvious applications to adventuring.
One of the most frustrating aspects of playing an adventure game is
the limited vocabulary available to you, and the problems often en
countered when trying to find just the right word for a desired action.
However, if you could type your commands into the computer in your
natural language, in English, there would be no problem; you are freed
from the restraints of an artificial language and able to concentrate on
the adventure and absorb its atmosphere, without distraction.

Typing in commands is always a problem, especially when you want
to use a long sentence and are a poor typist. Here, Artificial Intelligence
research can help as well, in the field of Speech recognition. A truly
interactive film could be produced if you were able to physically speak
to the characters in the game, and to hold a spoken conversation with
them!

Multi-user adventures are already starting to appear with the most
famous of these being MUD, which is run on a small minicomputer.
The acronym standing for Multi-User-Dungeon. MUD enables the
player to not only enter a large, and complex adventure world, but to
do this in the company of other players! Thus, the characters you meet
while playing the game will not obey simple rules devised by the pro
grammer — these characters have exactly the same potential for un
expected behaviour as you do as their controllers are human. While
MUD is a fairly limited adventure game, bigger and better versions are
already being worked upon with hundreds of locations, objects and
players! The concept of multi-user games, either on large mainframes,
where the players take part via a modem and a phone line, or via a
large multi-user local network system, each player using one system
terminal, offers almost infinite possibilities for expanding the present
day adventure game and increasing the realism.

Fairly obviously, most of these ideas are a long way from becoming
reality, yet they do show that there are many areas of computing which
can be applied to adventure games and adventure game program
ming; areas which are on the forefront on computing research. Con
sidering the growth of computing and computing techniques over just
the last ten years, they could be here sooner than you think.

15

16

3
PLOTTING AN
ADVENTURE
THE IMPORTANCE OF A GOOD PLOT
When first confronted by a new adventure game what is it that attracts
a player? Is it the style of presentation, the colour the text is printed
in or even the packaging? Most adventures on the computer market
bear a very close resemblance to each other, especially with text
adventures; there is only so much you can do with plain text output
and input. Packaging may affect a buyer’s choice, but it cannot hide
a terrible adventure game beneath it.

When you consider any adventure game and the intitial appeal it has
to a player, indeed the whole appeal of playing it — you realise there
is one over-riding factor. The plot. Above everything else the adventure
game must have a good plot. The plot idea is the game, all else is just
trimmings to improve presentation rather than contents. Yet, it isn’t
enough to just have a good plot, even a well thought out plot with
multitudes of twists and turns can bore a player very quickly — if he’s
seen it all before.

The plot is the very heart of your adventure and as such should be
strong and well-defined. The best adventure games have plots which
lead the player in stages through the game, until the eventual climax.
If the plot meanders along, the player is going to be left wondering
what he is supposed to be doing, and is going to lose interest in the
whole thing. There must always be a firm goal in the player’s mind as
to what the adventure game is about, and what he is trying to achieve
— of course, he may find out that he is totally wrong! But that is just
one possible twist in the adventure.

The plot of an adventure game is composed of two elements, the
actions and puzzles which make up the plotline and the background
to the adventure — the setting in which everything takes place. We’ll

17

look at the background in a moment, but for now let’s consider the
basic elements of an adventure game plot.

(a) The Map
This is the very lowest basis of any adventure game and it will show
the area over which the player can move and where all the action takes
place. While it may seem that the map in an adventure game is really
only a list of locations and their connections which has no direct bearing
on the plot, this really is not true. As the map is the basis of your
adventure game so it is the basis of your plot, and a good, well thought
out map can improve an adventure immensely.

The basic map will contain all the locations necessary for the action
in your game to take place, each location might be used for an object,
or an action to take place or even just as a red herring. The problem
when designing an adventure game is deciding on how detailed the
map should be — should you describe each room in a house, or simply
have one location representing the whole house? Should you represent
a road on your map as a series of (similar) locations, or just ignore it
with the player moving from one end of the road to the other in one
turn?

These difficulties can only be overcome by considering just how
important each of these locations is in your game, and how each relates
to the main plot and purpose of your game. If the only part the house
plays in your game is to provide somewhere for a knife to be found,
then why bother with more than one location — or perhaps two with
a kitchen? The extra rooms in the house serve no useful purpose and
will either bore the player or side track him from the main part of the
game if he tries to find out what use they are. In any adventure game
the number of irrelevant locations should be kept to a minimum — you
do need them to keep the atmosphere of the game flowing properly.
If your player is on foot, making locations long distances apart will only
make the game seem unrealistic — either provide him with a means
of transport or separate the locations with intermediate ones.

Making your locations and their descriptions interesting is an im
portant part of the adventure writing process. Think about the back
ground and basis for your game and come up with locations which
match the atmosphere and style of your game. A mystery/horror ad
venture is best set in a spine-chilling mansion, not in the centre of town I
Location descriptions should be long and evocative as well, two liners
like “You are in the hall near the stairs and the kitchen” hardly convey
a rich atmosphere.

(b) The objects
Many of the points already raised about locations apply equally well
to objects. Try to avoid having too many objects in a game which are

18

not useful. Just because a kitchen usually has pots and pans in it
doesn’t mean you have to provide them if there is no use for them. The
objects and locations should tie together in some way, without ap
pearing too contrived, and without the objects seeming out of place.

(c) Puzzles
These are the major component of an adventure game and are what
make the game a challenge to play. Poorly thought out puzzles can
make a game far too easy to solve and thus bore the player or make
the game impossible to complete, thus frustrating the player. The trick
is to balance your puzzles somewhere between the two extremes,
something which is not easy to do!

If you have difficulty thinking up puzzles of your own, then it is possible
to adapt puzzles from other adventure games and disguise them by
altering their circumstances and the objects used to solve them. For
instance, in the original ADVENTURE, you must capture a bird in order
to get past a large green snake. When you approach the snake, re
leasing the bird causes it to drive the snake away. In other games this
has been translated into throwing Egyptian bird statues at a snake god
while exploring a pyramid, and so on! Disguising a puzzle is not always
easy and you cannot really rely on other adventure games for all your
puzzles!

A puzzle should be both logical and yet hard to see unless you strike
on the correct sequence of events. There is nothing more infuriating
in an adventure than totally illogical puzzles which have no basis on
any reality for their ideas. There must always be some way of solving
a puzzle other than wildly guessing which objects to use and in which
order and in which room! Because of this, it is important to try out your
puzzle ideas on other people, just to see that you haven’t made a
logical jump from the solution to the problem which is impossible to
make in the correct order. Not everyone will think in the same way as
you, in fact very few people might have your knowledge about particular
situations and events, so make puzzles fairly general. A solution which
involves knowing a complex mathematical formula and how to apply
it is not going to be solvable by most people unless you give a lot of

■ clues!

BACKGROUND
The major pitfail that new adventure game designers (and several
experienced ones) fall into is the reliance on the same old standard
plot lines for their adventures. Game after game allows you to take the
role of a heroic fighter whose mission is to save someone, or thing,
from a horde of monsters. Just cast your mind over the games you
have played or seen which are based on quasi-fantasy lands populated

19

with Orcs. Trolls, Dwarves and Wizards — all eager to get at your
treasure. A lot of them, aren’t there? All these games draw on the same
background, that of the fantasy roleplaying games such as Dungeons
and Dragons. Even the original ADVENTURE took this as an influence,
and other programmers have been doing it ever since!

So, the first aim behind any adventure game we design is that the
plot should attract the player into wanting to play the game, and avoid
giving him a feeling of deja vu as he reads the instructions! This means
constructing an original and thought provoking plot by using an un
conventional background for our game or by using a standard plot in
a new and unusual way. What we must not do is fall back on the same
old ideas culled from the adventure games that we’ve seen — there
is no point in recreating some one else’s game and ideas!

If the fantasy genre is out, what can be used as a basis for the
adventure plot? The answer is everything else really! There are so many
sources for adventure game ideas that it would be impossible to even
begin to list them all! The following are a few areas that are worth
considering:

Historical
There are a large number of periods in history which could be drawn

upon in a successful and entertaining adventure game. The major
problems with using a historical period as the basis for your plot is that
of accuracy. You must stick to the period in detail, and avoid any
inconsistencies which a player might pick up, thus ruining the game.
For example, you cannot introduce modes of transport such as cars
or trains before the period they were available.

There is also the problem of recreating the atmosphere of the period,
so that the player feels as though they actually are playing a game set
in Victorian England, or wherever, rather than just a standard adventure
with a few oddities thrown in. The secret here is to use the small details
from the period to reinforce the feeling and mood of the adventure, for
example, the music from the period overheard in the street, details of
people’s clothing, perhaps even the styles of characters’ speech can
all add to the adventure’s atmosphere.

Some periods are obviously more suitable than others for an ad
venture game, as there is more happening, or a more interesting back
ground for the adventure to take place against. Possibly the player
could take part in an historical occasion, where only their actions enable
history to come out as it should have done. Or perhaps they can alter
history, playing the part of a famous historical figure.

It is far harder to write a consistent and believable historical adventure
game than almost any other type, because of the little details needed
to create the atmosphere, but it is, or can be, one of the most rewarding
to write and play.

20

Fictional
Basing the plot for your adventure game on a book may seem a very

good idea — your plot has been written for you! All you have to do is
translate the book into an adventure — far simpler than creating a plot
from scratch. Indeed, there are a lot of books which would make quite
excellent adventure games and some have been used (for example
The Hobbit) as adventure games already.

The major problem with this approach is if your player has already
read the book when he comes to play your adventure. If the adventure
bears any resemblance to the book, it is going to be relatively easy
to solve the adventure as all the actions and their correct sequence,
are already known. If the book and adventure are different in content
and style it may make the game more of a challenge, but you are going
to lose the atmosphere of the book, which the player will be expecting.

A better approach is to base the adventure on the style and feel of
one of your favourite books, but without the exact plotline. This makes
the atmosphere of the game easier to put across and the game easier
to write — if you are happy with your game and enjoy the book, you
will find it easier to recreate that atmosphere than with an unknown
subject. Pick perhaps the best and most amusing bits from the book
and include these if you wish, slightly altered so that a reader will pick
up the reference without making the game too easy for him.

There are also the mercenary advantages of not basing your ad
venture game directly on a book — if it should prove to be a saleable
product, you will need permission from the book's author/publishers
to use it. This means paying them a royalty and less money for you!
If you are writing adventures purely for fun, however, this won’t really
bother you.

Modern Day
There seem to be very few adventures based on modern day situations
as most people prefer to escape from the present not experience it on
their computers! For the adventure writer, though, the idea of setting
an adventure in the present is not only a challenge, it may prove to be
easier to write than you think. The advantages of such a plot is that the
player can be assumed to be familiar with the situation he finds himself
in which makes the explanation and background work you have to put
into the game so much easier and shorter!

While there may not seem much you can do with an adventure game
based on today, there is a whole world of excitement going on around
you! We are not suggesting that the adventure should be based on
travelling to work, etc — no one wants to play through the humdrum
things of everyday life. What about foiling terrorist plots, freeing kid
napped people, etc? There is still plenty of scope to create novel and

21

interesting plots even with the limitations of an up-to-date and modern
setting.

SUPPORT MATERIAL
Adventure games can never create a complete atmosphere which

holds the attention of the player, and totally suspends his belief, be
cause of their limited format. Any graphical adventure game will be let
down by the limited graphics available on home computers. This is
where adventures can be improved through the provision of additional,
non-computer based material.

Rather than waste vast amounts of memory on computer graphics
which generally fail to convey any real atmosphere, why not provide
a separate set of pictures tied in to each location. This idea has been
used by several commercial adventures, and enables the adventure
game to be more complex and absorbing by utilising the extra space,
as well as improving the quality of the art enough to allow extra clues
to be hidden in the picture information.

Another idea is to provide a map with the adventure game showing
the general area in which the adventure game takes place. This enables
the player to move around the area he is supposed to know, thus
making the game more realistic, while not giving away just which lo
cations appear in the actual adventure game, or how they are con
nected. A separately produced map can be made far easier to read
and more attractive than any produced on the computer screen. It is
also far more practical if the player has to refer to the map while he
is playing!

There is no reason why you should limit the support material provided
with a game to just the graphical elements from an adventure. If the
player starts with a number of items in his pocket then provide actual
physical counterparts for these items! You have to take a practical
approach to this of course, but such things as bus tickets, cinema
passes, small fragments of map and so on are easy to produce and
add so much more to the atmosphere of an adventure. Providing the
actual items cuts down on the detailed descriptions needed and en
ables the player to examine them in far more detail than is possible
within the program.

Other ideas for source material which will improve and expand on
a simple adventure game include character portraits, if you have char
acters in the game, these will enable the player to visualise just who
he is interacting with; object illustrations, which will show far more detail
than it is possible to include when the player examines the object.
Obviously this is only really necessary for important objects, rather than
the mundane, everyday things such as knives, etc.

22

The support material provided with Witoh Hunt, the example scenario
detailed in later chapters should give you some idea of the type of
material which is suitable for an adventure game. One pitfall to try and
avoid is going over the top on support material, to the detriment of the
adventure itself. If your support material contains far more information
and details than are in the actual adventure game, you are going to
reduce the players’ enjoyment of the game, rather than enhancing it.
Once this happens, the adventure becomes less of a computer based
game, and more of a computer assisted game, where the computer
adds to the main adventure, rather than controlling it.

23

24

4
THE STRUCTURAL
ELEMENTS OF AN
ADVENTURE GAME

As we have already seen in chapter 3, an adventure game breaks
down into elements such as locations, objects and puzzles. Each of
these structural elements can be implemented in a number of different
ways, and in this chapter we will describe some of the methods which
are possible, though we will leave the actual programming implemen
tation details until we discuss AKS in later chapters.

A. LOCATIONS
Let’s leave the methods of storing and accessing the location text until
later, when we will consider all the text the game requires as a whole.
For the moment, the major thing we are concerned with is how to link
each of the locations with its neighbours and how to tie these links in
with the commands the player will use to move around. We will use the
small adventure map shown below as an example. Each of the locations
is shown as a box, and the directions the player can move are indicated
by the arrows.

5

2

4 1

3

FIGURE 4.1

25

Each of the locations in an adventure is connected to others via a
link, and the structure we use to represent this is known, reasonably
enough, as a link map. The simplest form of a link map is a straight
forward table. The link map for our example is shown below:

LOCATION DIRECTIONS
NUMBER North South EastNorth West

1
2
3
4
5

2
5
1
2
0

3
1
0
0
2

0
0
4
1
0

4
0
0
0
0

Each of our locations is represented by a number, these running down
the table. For each location we then show which location we will be
taken to if we take one of the four directions. Thus, in the above example,
assuming we start at location 1, moving South, then East will take us
to location 4. Note, if there is a 0 shown for the direction it indicates
that we cannot move from that location in that direction, e.g. there is
nowhere to go to East of location 1. Obviously, there is no reason why
we should limit ourselves to just the four basic directions, and most
adventures include the other compass directions NE, NW, SE, SW as
well as UP and DOWN.

Using this method, we just need to store a series of numbers for
each location, giving details of the links to other locations, and these
are checked each time a movement command is entered. If it is possible
to move in that direction, the player’s location is altered to become that
of the link entry, otherwise the “You cannot move in that direction”
message is printed.

While the basic design of link map is fine for simple adventures, it
limits what you can actually do during the adventure to fixed move
ments. The possible directions you can move in from on location never
vary. However, there will be times when you want the player to perform
an action before he is allowed to go in a certain direction. To return
to the snake and the bird problem mentioned earlier, the player’s way
is blocked by a giant snake unless he has the bird and releases it to
drive off the snake. Once he has solved this particular puzzle, he is
free to move in the direction the snake blocked, and onto a new location.
Thus, we need some method of representing this type of conditional
move; the answer is to add a link condition to the link map.

This is done by adding a condition to each directions information,
which must be true before the player can move in the direction. In a
lot of cases the condition will simply be TRUE, meaning the player is
able to move in that direction any time he wishes to; for some it will be

26

FALSE, meaning there is nowhere to go in that direction, while a few
will have condition to be evaluated. In the case of the snake and bird
puzzle, the player can only move once he has released the bird and
there are a couple of methods of testing this. We could simply test if
the bird is present in this location, if it is, the player has dropped it and
we have already dealt with the snake. This presents problems, as if
the player picks the bird up again, he will meet the snake again! A
better solution is to use a flag — a variable which can be TRUE or
FALSE — and test this to see if the player has released the bird yet.
It will have an initial value of FALSE, so the player will not be able to
get past the snake, when the bird is released, it is set to TRUE, and
the way is now free.

The use of conditions can also apply to location descriptions, and
it enables the adventure to produce different location descriptions
depending on which condition is true. Most adventures use this facility
to provide a long description the first time you visit a location, with a
shorter, compact description for subsequent visits. The conditions need
not be limited to flags alone, and they can include tests to see if you’ve
visited a certain location, are carrying an object, wearing an object,
or an object is present at the location.

B. OBJECTS
The first requirement for objects is to have some form of Object Char
acteristics, which will describe each object, and its details. The objects
have to be manipulated by the player, and thus we will need some way
of limiting the number of objects a player can carry at any one time.
One simple and commonly used technique is simply to limit the number
of objects to a fixed total, usually around 4 or 6 objects. Yet, this is
unrealistic, as objects will have different properties and weights, and
the player should be able to carry more of one type of object than
another due to these properties. The Object Characteristics Vector is
a simple table with an entry for each object, which gives the value for
that object for each of the designer’s chosen properties. Let us just
consider one property, that of weight: each object can be assigned
a weight value, which will represent a proportion of the total weight a
player can carry. Thus, deciding if the player can carry an object is
a simple matter of comparing the object’s weight with the weight the
player is capable of carrying.

This approach allows the player to carry a variety of objects and
forces him to balance objects against each other — do you carry
around one heavy object you think you need soon, or a number of
lighter ones? It is also possible to stop players picking up objects which
should be immovable, simply by setting their weight to more than the

27

total carrying capacity of the player. If they attempt to lift them, they
are then told that the object is too heavy!

Only certain actions can be performed on each object, after all you
can’t ride a brick or eat a mirror, or whatever, and we need some way
to represent these facts! The solution is to use Action Suitability codes for
each of the objects, which explicitly state which actions can be
performed on each of the objects. Thus, the entry for a hat might allow
the actions: GET, DROP, WEAR, REMOVE, and EXAMINE to be per
formed on it. If the player attempts to say something like “EAT HAT”,
he will just get a standard “YOU CAN’T EAT THAT!” reply!

As well as needing to know how much objects weigh, and what
actions the player can perform on them, we also have to know just
where they are! The object’s location is represented by a number,
which simply shows at which location the object is present. When the
location description is printed, the program then scans the Object
Location Pointers and prints out the description for all the objects whose
location matches the current player location.

There are a few special location numbers which can be used to show
where objects are when they are not in a physical location. Objects
may also be carried by the player, or possibly worn or they might not
even exist yet! This requires the program to have a standard set of
numbers to represent this. For example, we might use:

0 = object does not exist
254 = object carried
255 = object worn

Thus, if a player picks up an object, its location pointer is altered from
pointing to the current location, to being 254 to indicate it is being
carried. Occasionally, when an object has been used by the player to
solve a puzzle, we might want that object to be used up, or if the player
eats some food, we have to take the food off him. This is done by
setting the object’s location pointer to 0, which “destroys” the object.
Resetting an object’s location pointer from 0 has the effect of “creating”
it.

When programming, it is more efficient and safer to use all data
structures in a consistent way — programs are easier to debug and
understand. The use of special location numbers is a “dirty” technique,
in this respect, as we are using a straight forward data structure in a
messy way. If you can avoid this approach (and it is really a hang-over
from the early days of adventure games programming) then so much
the better. The alternative is to have an array representing the objects
worn, which point to the object descriptions.

28

c. ACTORS
These are the player himself and the non-player characters which may
inhabit the adventure, and with whom the player can interact. There
are several ways in which to implement actors, some of which involve
very complex and time-consuming techniques. One of the simplest
ways of dealing with actors is to regard them as a type of pseudo
object. If this approach is taken, the player can be moved from one
location to another and manipulated in exactly the same way as any
ordinary object. The difference being that the pseudo objects are not
described along with the normal objects when the location description
is given. Thus, the pseudo objects may only be manipulated by actions
from within the program, not by the player himself. This avoids the
problems inherent in the player picking himself up!

One slightly more advanced way of implementing non-player char
acters (NPCs) is to regard each of them as a player in their own right,
with a predefined set of commands and desires. Thus, interrupts are
used to share the processing time between all the actors, with each
taking their turn to perform an action if they desire. This enables the
NPCs in the game to have an appearance of true independence and
lets them perform all of the actions the player is capable of performing.
The programming implementation of such a system is harder to pro
duce, and it requires careful calculations on timings to ensure that the
player cannot be “locked out” of the game by hyper-active NPCs!

D. ACTIONS AND EVENTS
Actions are the result of commands from the player and they cause
objects to be moved around and things to occur. An example of this
is the movement verbs, which will cause the player to change location
according to the links in the link map for the current location.

Events are actions which are triggered independently of a command
from the player. This is usually implemented using a condition, which
is tested each time the player inputs a command, to see if it has been
triggered yet. When the condition evaluates to TRUE, the relevant event
is set into motion. This approach allows you to implement events which
will occur after a set number of turns have passed. For example, if the
player drinks some poison, he may have a number of turns in which
to find the antidote, after which the poisoned event will trigger and he
will be informed he is dead! Alternatively, events can be used to regu
larly trigger an action after every few turns. This might be used to
implement hunger, for example, so the player becomes hungry after
every 20 turns have passed and then has 5 turns in which to find food;
but the effect wears off and thus he has to find food again, and so on.

29

E. VOCABULARY
The vocabulary of an adventure game consists of the commands avail
able to the player, which can be used while interacting with the ad
venture game. It is not only the actions and objects which make up the
vocabulary (as in “GET LAMP”), even in a simple game. Sherlock has
a vocabulary of 800 words, and the Infocom games have a similar
range of words, which allow you to construct very complex sentences
such as “Get all the boxes except the yellow one and put the blue box
under the bed”!

While the storage of vocabulary as data statements is fairly straight
forward, a decision has to be made about where the player can access
that part of the vocabulary. Often, during an adventure game, the player
will reach a location where a special command is needed to solve a
puzzle; this command only works in the one location and it has no
effect elsewhere. If the vocabulary is stored globally, that is all the
words are available throughout the adventure, the entire vocabulary
will have to be searched each time a command is input. Even if the
vocabulary is reasonably simple, searching all of it is going to take a
fair amount of time, and reduce the response time to the player’s
commands even further. Obviously, the number of words to be
searched through can be reduced considerably if the “special” com
mands are stored separately.

Within each location, we store a list of special commands which can
be used here, and when a command is input, these are checked before
the global vocabulary. While saving time, this approach does mean
that words will generate very different messages depending on which
location you are in, as the “special” commands will result in a standard
“YOU CANNOT DO THAT” message unless you are at the pertinent
location. The error reporting could be greatly enhanced if messages
such as “YOU NEED THE WAND TO DO THAT” could be output. It is
a question of balancing the user-friendly responses with the reaction
time you want.

Once we have decided where to store our text, we have to consider
the method of storage. The easiest approach to implement and under
stand is that of a serial list. This is usually just a series of data statements
which contain the commands available, one after the other, with details
of which actions to perform for each command. Thus, if we want to
have a command PICK UP, and we already have an action GET, we
might define it as:

IF ACTION

which would perform a GET and then print out the message “OKAY”.
We will see more about this when we examine AKS in later chapters.

PICKUP THEN PERFORM GET, PRINT OKAY

30

While the serial list approach is fine for small vocabularies, if the
vocabulary is large it will require a long time to search through it all,
especially if the word to be matched occurs near the end of the list.
A more effective approach, but requiring more memory, is to store the
vocabulary alphabetically, with pointers to the start of each letter of the
alphabet. While this could be implemented using simple data state
ments, the most efficient method uses LINKED LISTS and what is known
as an I LIEFE vector. For those of you who have never come across list
structures, we’ll explain them before demonstrating how they can be
used in adventure games.

Linked Lists
A normal list is a straight forward, sequential list, which starts at one
end and which can be followed to the other. This can be implemented
using a normal one-dimensional array, as shown below:

1 2 3 4 5 6 7

VO A B C E F G

FIGURE 4. 2

The array V has seven elements, of which six contain a letter of the
alphabet. The seventh element is empty. If we wish to search through
the list V for a letter, we simply start at the first element V(1), and
continue through the elements until we reach V(7), or find what we are
looking for. If we wanted to add a new element, D to the array, we can
either place it in V(7), or if we wish to retain our alphabetical order, we
have to place it in V(4), which means moving the elements E to G along.
With a small array, as in our example, having to move the elements to
make room for a new entry is no problem, but if you have an array
which has several hundred elements it is time consuming!

Let’s now look at simple linked lists. These are similar to normal lists,
except that each of the elements has a pointer to the element after it
in the list. A pointer is simply a variable which contains a value cor
responding to a location in the array. Thus, a linked list version of V
would look like this:

VO A EB C F G

A
START FREE *► *

FIGURE 4. 3
So, each element has a pointer to the element which immediately
follows it. We also have two special pointers, outside of the array. These
are a pointer to the start of information in the array, and a pointer to

31

the start of the free space — i.e. the first element of the array which
is empty.

If we wish to add the new element D to the linked list V, there are
a number of steps to be followed. Firstly, we put the new element into
the first free space, as indicated by the Free Space pointer, this gives
us:
V() A B C E F

T
START

G

I
D

T
FREE

FIGURE 4. 4
We now have to find out where in the list D should be put, this is done
by searching down the list from the element the Start Pointer points at.
We then follow the pointers from each element to its successor, until
we find that D should go between C and E. We now have to insert D
so that it is pointed to by C and it points to E.

We set the D’s pointer to point to E, which will give us:

(
VO A B C E F G

START FIGURE 4. 5
We can now set C’s pointer to point to D.

D
"T
FREE

FIGURE 4.4

vo A B C E F G D

T i.tFIGURE 4.6START
FREE

This has now linked D into the list, without shuffling any elements
around. If you follow the pointers from the start, you can see we will
go from A to B, to C, to D, and E and so on. The last thing we must
do is adjust the Free Space Pointer, otherwise we will overwrite D if we
add a new element. So, we set the Free Space Pointer to the next
element after D. In our example, D is the last element of the array, and
thus the Free Space Pointer will be set to a * indicating that the list is
now full.

That is only a brief overview of linked lists, a very useful technique
for manipulating data, and one which can be much more complex with
two-way lists, circular lists, etc. If you are interested in more examples
and explanations of how linked lists work, we recommend you look at
any computing book on data structures or algorithms.

32

Right, you now know what a linked list is, and must have already
realised how useful they can be in adventure games for storing data.
If you wish to add an element to a list, you simply need to rearrange
a couple of pointers, and avoid the problem of shifting large amounts
of data to keep everything in order. For storing vocabulary in such a
way, that it can be accessed quickly and simply, we require 26 linked
lists, one for each letter, and a method of pointing to them. The pointer
to each linked list is known as an IFLIFFE Vector, and is simply a linked
list whose elements point to other linked lists. The only major problem
with this method being the overheads of storage needed for all our
pointers. Thus, the arrangement we will have is shown in FIG 4.7.

VOCABULARY LINKED LIST

POINTER TO
THE START OF

"A" WORDS

POINTER
vTO "B"

POINTER
TO "C"

ILIFFE VECTOR FIGURE 4.7

Now, when we have a command we wish to find, we take the first letter
of the command and then follow the appropriate pointer from the ILIFFE
Vector to the start of the commands beginning with that letter. For
example, if the command was “KILL”, we would take the K, which is
the 12th letter of the alphabet. This means that the 12th element of the
ILIFFE Vector points to the start of the commands beginning with K.
We follow the pointer and can then scan down the list of “K” words.
This ability to go directly to the section of the alphabet we require
makes the list scanning very much faster, and thus the response time
quicker.

The ILIFFE Vector arrangement shown in FIG 4.7 is relatively simple,
for very big vocabularies, there is no reason why you shouldn’t have
an ILIFFE Vector which points to a series of ILIFFE Vectors, which then
point to the word list. This enables you to split the words up even more,
using the first letter to find the appropriate ILIFFE Vector, and then the
second letter to find the start of such words in the command list! It
really depends on the space you have available and the size of your
vocabulary.

Simple Parsing Techniques
Now that we have considered how to store your vocabulary, the next
step is to look at methods of interpreting the input you receive from the
player, and matching this up with the vocabulary. The process of an
alysing an input string and breaking it down to the individual commands

33

is known as parsing, and we’ll look at a few basic methods of achieving
this.

The simplest, most basic form of command input is the one used by
the original ADVENTURE and a lot of adventure games since — the
two word command. This consists of a verb, which denotes an action,
followed by a noun, usually an object. Thus commands along the lines
of “GO SOUTH”, “GET LAMP”, “ENTER BUILDING”, etc are all that
are accepted by the program.

The two word command does have a lot going for it, in that it is
extremely simple to parse. The command string can be split easily into
the two words, by taking the space (or spaces) between the two words
as a separator, and assuming that the first word is an action and the
second an object. The action is compared with the list of possible
actions, and control is passed to the action routine it matches with.
This routine will then compare the object section of the command string
with the list of objects it expects, and will perform the action if it matches.
Error reporting is fairly straight forward, if the action is not found, the
program replies with a “I DON’T UNDERSTAND.”; if the object cannot
be found, it simply says "YOU CANNOT action WITH object”. Very
basic, but effective.

The first complication which can be built into the parser is to make
it accept “and”, “then”, “the” and the use of commas. This allows the
player to say things like:

“GET THE APPLE, GO SOUTH AND THEN THROW THE APPLE.”
It looks a fairly complex sentence, as the player is performing three

actions with just one command. Yet, it is really just three actions which
follow each other. The parser can ignore all uses of the word “the”, as
this is just a flowery addition to the sentence. The words “and”, “then”
and are simply command separators. The player could have typed
in the above sentence as:

“GET APPLE”
“GO SOUTH”
“THROW APPLE”

with exactly the same effects. The parser simply has to scan through
the input string from left to right, building up a list of commands. It will
find “GET APPLE” first, and this is stored; the comma indicates the end
of one command and the start of the next so it can be ignored. "GO
SOUTH” is a straight forward command and can be stored as such.
The only complication comes with the use of “AND THEN” where the
player has to use two connectives. The parser has to take “AND” as
a connective between two commands, and then realise that “THEN”
is another connective, and thus ignore it, leaving “THROW APPLE” as
the final command. Very complex sentences can be parsed using this

34

method, and it speeds the game up, as the player doesn’t have to wait
for the results of each input before typing in the next one.

Very complex parsing techniques can be used, which allow the user
to use adjectives, adverbs, etc in his commands. These techniques
require some very advanced Natural Language processing, a subject
which is a field of Artificial Intelligence Research in its own right! Even
in the most advanced Natural Language systems, these techniques
have not been fully implemented yet.

35

36

5
SAVING SPACE

Adventure games can be developed very successfully in BASIC; the
Adventure Kernel System described in the next section is a good
example. It is possible to create a game which contains most of the
elements of the original adventure or the commercial adventures avail
able today. That is, you can create small games which contain these
elements — the moment you try to create a game the size of Adventure
(which had over 200 locations) — you are going to run into problems.
The home computers available today simply don’t have enough mem
ory to contain that big an adventure. Even the Amstrad, with 64K
available, would be hard pushed to hold more than 100 locations, and
even then, the descriptive text would have to be kept to a minimum.

So, how can you produce an adventure game with vast amounts of
flowing prose, and a large number of locations, puzzles and objects?
You can resort to programming your game in machine code, but this
will only save a small amount of space. The major part of any adventure
game is not the driving routines, the actual program, but the data which
makes up the adventure. Even using machine code, your data is going
to occupy the same amount of space. However, it is possible to produce
large, complex adventures on even a small machine, as Melbourne
House has proved with the Hobbit. So, how do they fit all that information
into the machine? Well, there are a couple of techniques employed by
commercial adventure games which can be used by anyone to produce
large adventure games. These are using discs as a backing storage,
and using text compression. We’ll look at each of the methods in detail.

DISC ADVENTURES
As well as providing a fast storage medium for the initial loading of the
adventure, discs can be used during the game, to load in different
sections of the adventure game, as the player encounters them, thus

37

abolishing the problems of fitting the whole adventure into the computer
at the same time.

In an adventure game, the player is only ever at one location at one
time — fairly obviously! This means that the location data for all the
other locations is not needed, and thus does not need to be in memory
at all. When the player moves from the current location to another one,
the new location data is loaded in from disc.

The technique of loading data in from disc, when it is required, is
known as PAGING, and is used by large computers to simulate a much
larger memory capacity than they actually have. In the adventure game
situation, we can divide memory up into several FRAMES (typically 256
bytes long) which can each hold a PAGE of data from disc. All the
adventure data is stored in the form of pages, including objects, puzzles
and commands, and the relevant sections are loaded in when needed.
The driving routine is the only part of the data to be permanently in
memory, and it searches all the frames of data, for the action, object
or location data it requires. If the data is not currently present in the
computer, then a PAGE FAULT is generated which causes the required
page of data to be loaded.

If we just loaded in new pages each time we needed the new data,
without considering the pages we were replacing, or even which page
we should replace, then we would soon run into problems. If a page
has been altered in some way, and we do not store the alterations, the
next time the page is loaded, those alterations will have been forgotten
by the adventure. In an adventure game, which relies on manipulating
object data and the player’s location, this would prevent us doing
anything! The answer lies in developing a PAGE REPLACEMENT
POLICY, which will enable us to save pages which have been altered,
and to decide just which page to replace. The latter point is a very
important one, if we replace a page which is being accessed all the
time by the adventure — perhaps it contains the data for a command
the player is using a lot — then the number of page faults will increase
dramatically; slowing down the adventure game’s response as it con
stantly loads in new data from disc.

The best approach to the problem is to consider the data to be split
into three distinct types:

A. Resident Data
This is the data which will remain in the computer all the time the
program is running, and it comprises the main driving routines, and
sometimes the most important variables and counters in the game.

B. Pure Page Data
This is data which cannot be altered by the program, and thus
it will never need to be written back to disc before replacing it with a

38

new page. An example of pure data is the location data, where the
descriptions and connections never alter during the game.

C. Impure Page Data
This is the data which may be altered, and thus must be written back
to disc before it can be replaced in memory. Each page contains a
special marker, which is set when the page is altered in any way. When
the page comes to be replaced, the marker is checked, and only if it
is set is the page saved to disc. This prevents time from being wasted
by saving pages which have not been altered.

The impure data consists of all the volatile, changeable parts of the
adventure game, and it is here that the object pointers, flags, counters
and variables would be stored. This also allows the adventure game
to be saved during a game by saving the impure data alone, and to
be restored by reloading the same data.

As well as saving pages before replacing them, we must consider
which pages to actually replace, as we have already noted, and this
has created a large number of very complex PAGE REPLACEMENT
ALGORITHMS within the world of mainframe computing. We won’t
consider them all here, just take a brief look at one possible approach
to the problem. Fairly obviously, we do not want to replace a page
which is shortly to be used again, as this only means reloading it from
disc. But, how do we tell when a page is in use? Or whether it is no
longer required by the adventure game? There is little point in keeping
location data for a location the player can no longer reach, for example,
or object data for a puzzle the player has solved and no longer requires.

Well, in the case of impure page data, we can tell if the page has
been used by looking at the marker which says if it has been written
to; if this marker is set, then the page is in use. Thus, we replace the
pages which have not been accessed before the pages which have
been written to. This is not an infallible approach, however, and useless
when it comes to considering pure page data. During the course of
an adventure game, data tends to be altered very rarely, it is read by
the program far more times than it is written to; thus we need some
way of telling if a page has been accessed by the program and when,
since all loaded pages will have been asked for by the program. This
requires the addition of a reference marker, which contains the last
time the page was accessed. This could be done by putting in the time
— if the computer has a real-time clock, or simply by storing which
turn of the adventure the page was looked at.

When we come to replace a page, we now only have to find the page
which hasn’t been accessed for the longest time; if two pages contain
the same access date, we choose to replace the page which doesn’t
have to be saved first. The overhead of a reference and written-to

39

markers in extra storage is offset by the time which can be saved, and
the reduction in page faults made possible by using them.

TEXT COMPRESSION
There are a number of text compression techniques, all of which are
designed to reduce the amount of space required to store text, by
coding it in some way. We will take a look at just two of the more
popular methods in this chapter. The advantage of text compression
is that it offers a method of reducing the size of your adventure data
base, thus allowing you to develop a much larger adventure: or for the
whole adventure to fit into the machine at once, rather than loading
sections in from disc.

The major disadvantage of text compression is that it requires you
to encode all your adventure data using a special encoding routine.
This can be time-consuming and drastically reduces the development
time if the adventure is so large you have to encode the data during
the testing stages, and every time you wish to alter part of the adventure.

3:2 Byte Compression
This technique compresses three bytes worth of information into two
bytes — hence its name! Before we can begin to understand how the
technique works, let’s look at how conventional text is stored on the
Amstrad.

Each character which makes up text has its own, unique character
code, this varies from machine to machine, but the Amstrad uses the
most popular form of coding — ASCII (American Standard Code for
Information Interchange). Each character is stored in the form of a one
byte number, which contains the code for that character. Thus, in ASCII,
“A” is represented by the number 65, “B” by 66 and so on. The ASCII
codes run from 0 to 255 (the maximum number you can fit into 8 bits),
and offers letters, numbers, special control codes and graphics. We
really don’t need all of these symbols in an adventure game — indeed
we need very few characters.

Adventure game text very rarely uses much in the way of punctuation,
and really only requires the upper and lower case letters, space and
perhaps and for punctuation. This is a mere 55 characters, rather
than the 255 which ASCII provides — and we would only require 6 bits
to store the codes, rather than the normal 8 in a byte, as 6 bits can
represent the numbers 0-63. This would allow you to reduce the text
to three-quarters of its original size. Ah, but wait a moment, do we
really need to have code for both upper case and lower case letters?
Why not simply have a code which means switch into upper case, and
a second code to switch into lower case? This would mean we only
needed 26 + 3 -t- 2 codes, or 31. This can be represented by just 5

40

bits, in the form of the numbers 0-31, allowing us one spare code in
case we need it.

To understand how storing a character in just five bits instead of
eight can save us space, let’s consider an example, where we wish
to store the word GOLDEN.

Figure 5.1 shows how the ASCII representation of GOLDEN’s six
letters would look in terms of six bytes.

G L E NO D

BYTES 1 2 4 5 63
FIGURE 5.1

Now, if we assume that our 5-bit codes for our letters start at 0 to
represent "A”, the “G”, “O”, “L", “D”, “E”, “N” would be represented
by the numbers 6, 14, 11,3, 4, 13. The bit pattern for 6 can be stored
in the first byte of storage, as shown in Figure 5.2.

00110 ; 000 00000000 00000000 00000000
1

G FIGURE 5.2
We can consider the bytes of storage to be continuous, so we next
store the 5 bits which represent 14 in last three bits of the first byte,
and the first 2 bits of the second byte. This is shown in Figure 5.3.

T

00110 ¡011 10}
1

G O
FIGURE 5.3

The bit pattern for the third letter, “L”, is then stored in the next 5 bits
available. This method of storage is then repeated for the last three
letters of GOLDEN, and it produces the pattern of bits shown in Figure
5.4.

T T

00110 ¡011 10.01011 0 00011 001 00-01101 ¡0
i X

G O E NL D
FIGURE 5.4

Notice that we do not use the last bit of the second byte, or the last
bit of the 4th byte. If we did use this, it would cause problems when
we came to decode the text, as it would radically alter the bits a letter
could start at. In our example, a letter starts at bit 8 of the first byte,
bit 2 of the first byte, and bit 5 of the second byte. This gives only three
cases to deal with. Using the last bit of the second byte would mean

41

that a letter could start at any one of the bits in a byte, making decoding
far more difficult.

Once your data is encoded using the 3:2 byte compression, you will
obviously need a decoding routine to uncompress it! This simply has
to step through the bit patterns, decoding the letters, translating them
into ASCII, and then printing them out to the screen. This will have to
be a machine code routine, as BASIC is far too slow at this type of
thing, and doesn’t provide the facilities to access individual bits like
machine code does.
Huffman Coding
Huffman coding is a text compression technique which is based on
the relative frequency of each letter. This means that if all the letters
occur with the same frequency, there will be no space saved! This
never occurs though, as the frequency of letters always varies in a
piece of text — with “e” being fairly frequent and “z” fairly infrequent,
for example.

The technique is to build up a dictionary tree, which can be used
to decode the encoded text. The dictionary which allows you to decode
the text is specific to one piece of text, and must be built up anew for
each fresh set of text. This can be very slow, and time consuming, but
the space savings which can be achieved by Huffman Coding more
than make up for this disadvantage. Besides which, you would normally
only compress your adventure text once — after each section has been
completely tested.

The Huffman method represents different letters with a different num
ber of bits, depending on their frequency. Thus, the most frequent
ietters will be represented by 1 or 2 bits, with the least frequent being
represented by 8 or even more bits. Because the coding and decoding
technique doesn’t use a fixed number of bits, it must ignore byte bound
aries, as the bits representing a letter can start in one byte and end
in the next one.

The best way to explain the Huffman Coding technique is to give an
example of its use. As the technique is quite long winded to do by
hand (in practice, we would write a coding routine to scan through text
and code it automatically), we will consider just one word, as an illus
tration of compression. In this case, we’ll use minimum as the word we
wish to code.

The first step is to find out which letters occur in the word, and the
frequency of these letters. Using our example, we can build up the
table below: Letter

i
m
n
u

Frequency
2
3
1
1

42

Having done this, we search through the list of frequencies to find the
two least frequent letters, and then pair these together, giving us:

i 2
m 3

n-u 2

We then repeat this pairing, with the next two lowest scoring letters,
to give us:

i-(n-u) 4
m 3

And, finally, we pair up the last two frequencies, giving:

(m-(i-(n-u))) 7

Having built up this pairing of frequencies, we can now build up our
dictionary tree, as shown in figure 5.5

n
FIGURE 5.5

When we wish to encode a character, we start at the top of the tree
(known as the root — in computing, trees grow upside down!), and
work our way down the tree until we reach the desired letter. For each
time we take a left fork in the tree, we write down a 0, and for every
right fork, we write a 1. This means that the letters in minimum will be
represented as follows:

m = 0
i = 10

n = 110
u =111

If you take the paths indicated by these numbers, you’ll find that you
end up at the letter they represent, and that is all there is to decoding
a Huffman tree I

Now that we have calculated the dictionary tree for the word mini
mum, we can now code it into bits. The resultant code is shown in
Figure 5.6.

o o o o o1 1O 1 1 1 11

1st BYTE 2nd BYTE

FIGURE 5.8

43

As can be seen from Figure 5.6, the representation for minimum is now
a byte containing 01011010 and 5 bits containing 01110. Thus, the
word now occupies just over one and half bytes. Using standard ASCII
representation, it would normally occupy seven bytes (one for each
letter). That is a reduction to just 23% of its original size — quite a
saving! Obviously, the Huffman Coding technique works especially
well with a word like minimum, due to the large number of repeated
letters — the reason we chose it. The reductions in size for a normal
piece of text won’t be quite so spectacular, but should be in the region
of 50-60% of original size at the worst.

One way to compress text even further, using Huffman Coding, is
to use not just the frequency of letters, but also common phrases. Thus,
you can represent phrases such as “A LARGE CAVERN”, which may
be quite common using just a few bits. This technique is used by a lot
of the commercial software houses, as it enables adventures with sev
eral hundred locations to be fitted into most of the home computers
currently available.

44

SECTION 2
THE ADVENTURE
KERNEL SYSTEM

45

46

6
WHAT IS AKS?

This section of the book describes the use of AKS — the Adventure
Kernel System. This has been designed as a data driven adventure
games system which enables you to change the adventure scenario
data without needing any knowledge of programming and without hav
ing to modify the main driving routines. Yet, it has been written in BASIC
so that you can understand and modify the data simply and easily, if
you so desire.

What can you use AKS for, and why would you want to use it? What
are the advantages over writing your own adventures? Well, we’ll try
and give you an idea of the wide range of possibilities available with
AKS, and the uses to which it can be put.

The first and obvious use for the AKS system is to create and play
your own adventure games. This section outlines the commands avail
able in AKS and gives examples of each of them. You will find that
very complex games can be created using the techniques and com
mands shown and that they can be developed quickly and easily, as
there is no actual programming work involved. The advantage of not
writing your own adventure from scratch is that we have done all the
hard work for your already! There is little point in duplicating programs
when you can use the time creatively to design adventure games!

The fact that AKS is based on a data-driven structure means that
new adventures can be constructed simply by changing the actual
scenario data, without having to modify the program, or rewrite any
part of it. The approach most adventure game books have advanced
in the past is that of specific coding — each action and event in the
game is tied to a specific piece of code which deals with that one part
of the adventure alone. This is extremely inefficient, and a criminal
waste of time and effort as the basis of most adventure games is exactly
the same, although with different data components. The specific coding
approach requires you to rewrite the whole adventure game from

47

scratch each time you create a new scenario; the data-driven approach
simply means coding your scenario data each time.

Apart from designing your own adventure games without resorting
to programming, the AKS system can teach you a lot of useful tech
niques for adventure games writing, and careful study of the program
will prove extremely helpful. After you have mastered designing ad
venture games using AKS, you can then move on to expanding the
system, using your own programming skills. We will look at the ex
pansion possibilities of AKS in a later chapter.

We have included an example AKS scenario WITCHHUNT in the
book, and you might wish to buy the cassette tape version of AKS and
WITCHHUNT before you read through the relevant chapters on the
scenario, so that you can enjoy the game, and then study the plot
details after you have finished playing it.

DATA REPRESENTATION IN AKS
There are basically two approaches to representing the actual scenario
data for an adventure game. The first of these is to store the data as
straight fonward BASIC DATA statements as any ordinary program data
might be stored; or to store the data in arrays, which are generated
by a special data preparation program and loaded into the program
from tape or disk each time it is run. There are advantages and dis
advantages to both of these methods, and the method we have chosen
to use with the Adventure Kernel System is the first approach. Let's
look at the two methods and try to explain why we found our chosen
style of game the most suitable for AKS.

Advantages of readability over coding
With all the scenario information stored directly in the program itself,
all the data is immediately visible to the scenario designer, you can
easily list the locations or objects you are interested in, without having
to print out array values or load in separate programs. This advantage
will be immediately evident to someone who has tried to design any
adventure game using either commercial adventure creators, or other
programming methods. The adventure game data can be seen as a
whole using DATA statements, something which is not possible other
wise; and if you want to check just what object 16 is, there is nothing
more annoying than having to go through several menus, or printing
out an array.

Coding the scenario within the program does mean that data cannot
be easily edited or altered. Adding a location can mean having to
change a large chunk of the program as well as just the locations array.
Data statements mean the data can be easily added to and corrected
using nothing more than the Amstrad BASIC editor, which allows you

48

to simply alter lines of scenario data in the same way you would alter
any program line. This also avoids the necessity of having to write a
special editor for the data, or having to learn to use one!

Not only can the data be entered and corrected more easily using
this method of representation, but the whole process of debugging
and developing the adventure game is speeded up. If the data is stored
separately from the main adventure program and has to be loaded in
to the machine each time, it is going to slow development work down
enormously. Each time you edit and correct an invalid part of the
adventure game, you will have to load in the data generator, load the
data, edit the data, save the data, load the adventure driver, and finally
load the edited data! With the AKS method you simply have to load
the adventure program and your data is already there. Simply edit any
data which is wrong and re-run the driver. The only time the program
has to be loaded or saved is at the start and end of the design session.
Clearly, the use of a separate data generator on a tape based machine
is totally impractical, as most of the time will be spent swapping tapes!

The other major advantage of using BASIC and a very readable form
of data is that the BASIC interpreter is already resident in the machine,
and avoids the necessity of loading in yet another program for each
session. This is a major failing with adventure design systems where
you have to load the programming “language” and the database every
time you wish to use them.

Disadvantages of readable data compared with coded data
Despite all the advantages listed above and the fact that we have
chosen this method for the AKS system, it is not totally perfect and can
cause some serious problems.

One problem on a lot of machines is that the data is in no way
compacted. Using text compression techniques can reduce the size
of the data by a significant amount. The problem is balancing the need
for space against the need for readability and ease of development.
Compressing text can take a lot of time, and you don’t want to have
to do that each time you test a new part of the adventure! On a machine
with limited memory
extremely pressing if the game is going to have more than just a few
locations, or a reasonable number of locations and little descriptive
text. In this case, text compression would probably be advisable,
though it may be possible to test at least part of the adventure game
before compressing the text for the final version. On a 64K machine
such as the Amstrad, this is not such a problem and you are unlikely
to find space a major concern while using AKS, unless you are trying
to write a truly enormous adventure!

The use of large amounts of uncompressed text also results in a
large program, which will slow the game down. The more data the

say only 16 or 32K, the need for space is

49

program has to scan through, the slower it will become and the use
of DATA and RESTORE can slow the program by a significant amount.

Adventure games are meant to be a challenge and they should keep
the player occupied for at least several hours, if not days or months.
However, players can often be driven to extremes by a puzzle they
cannot solve and thus they may be tempted to "cheat". This is not
possible on most games where the text messages and responses for
the game are coded — in order to find the solution to a puzzle you will
have to write a decoding routine of your own; and this can be a major
puzzle in itself! However, with the AKS approach the whole idea is to
have adventure puzzles, solutions, etc as visible and as easy to find
as possible, so that the writer can easily debug and finish the game.
This will allow any player to cheat, simply by listing the program and
finding the pertinent DATA statement. On most machines this is a
problem, but there is a solution on the Amstrad. Develop your game
using the normal mode of files and tape handling. Once you are sure
that the program is fully debugged, tested and finished, save it using
the PROTECT option. This will allow other people to load in your ad
venture and play it, but they won’t be able to break into the listing to
find the solutions to problems. Keep an unprotected copy for yourself
though, just in case there are any bugs left undetected!

Considering the overall advantages and disadvantages, it can be
seen that the use of easily read, easily edited DATA statements is the
better approach for the Amstrad AKS system. The problems are far
outweighed by the advantages.

THE LAYOUT OF AKS
AKS is designed rather like a programming environment, in that each
part of the program and data has a set place in memory. The diagram
in FIG 6.1 is a memory map of the AKS system, and shows you the
order of data.

FIGURE 6.1 AKS DRIVING ROUTINES
LOCATION DATA.
OBJECT DATA._________
EVENT DATA.
F-END OF DATA.

MEMORY MAP OF AKS

Thus, all the data Is located below the AKS system, and It should be
presented In the order of Locations, Objects and then Events. The end
of the data section is marked simply by an F. Within each section, the
data is ordered by location, object or event number in numerical, in
creasing order.

50

7
ACTIONS IN AKS

The AKS actions are the parts of the vocabulary which cause an action
to take place, there are nineteen separate commands, each of which
is represented by a two letter abbreviation. A command line starts with
an A, to indicate an action. The actions are only performed:

a) as the result of a trigger
or b) as the result of an event firing.

We'll take a look at each of the Actions in turn, together with an ex
planation of the effect of using each one. Later chapters will show how
these commands are actually incorporated within an AKS database,
as well as expressions and triggers.

Assign Flag (AF)
AKS provides a number of flags, which may be set to TRUE or FALSE
by the user, and then tested in later operations. The assignflag com
mand will set the specified flag to the specified state, and takes the
form of:

AF,<fnum>,<flagstatus>
e.g. AF,11,T

where <fnum> is the specified flag and flagstatus is T or F.
NOTE: If flagstatus has a value other than T, then the flag will be set
to FALSE, without an error being reported.

DROP (DR)
This will result in the object mentioned in the player's command line
being dropped, providing it is being carried, and that it can be dropped.
Otherwise, a suitable error message is produced.

51

Examine (EX)
The object in the player’s command line is tested, and if it is present
and may be examined, the description is then printed.

GEt (GE)
As with the drop command, the object to be taken is checked for
suitability, and to see if it is present. If all the conditions are met, the
object is added to his inventory.

GO (GO)
This command causes the player to move in the direction given, moving
him to a new location if a connection exists from the player’s current
location; otherwise printing “You cannot go that way”. The command
takes the form:

GO,<direction>
e.g. GO,N

where <direction> is usually one of N, S, E, W, U or D — indicating
north, south, east, west, up or down respectively. The direction may
be any word, providing it has been used in both the action and location
definition.

Haltcounter (HC)
The AKS system provides a number of counters, which are decre
mented each move. The HC command will stop the specified counter
from counting. The command’s form is:

HC, <cnum>
e.g. HC, 11

IncScore (IS)
A scoring facility is provided by AKS and the IS command will add the
score increment to the score. The command format is:

IS, <int>
e.g. IS, 25

The increment can be positive or negative.

InitialiseCounter (1C)
This will initialise the counter indicated to <int>, and starts the count
down of moves. When 0 is reached, the event <cnum> will fire. The
command format is:

1C, <cnum>, <int>
e.g. 1C, 11, 10

52

INventory (IN)
Displays the objects which the player is currently carrying or wearing.

LOad (LO)
This reloads a SAved game from tape.

MoveObject (MO)
This will move the object specified to the location number specified,
it takes the format of:

MO, <obj>, <loc>
e.g. MO, 12, 24

PutOn (PO)
This changes the status of the object referred to in the command line
to show that it is now being worn by the player.

PRint (PR)
Prints the following string onto the screen. The print command takes
the form of:

PR <string>
e.g. PR, you cannot eat that!

QUit (QU)
This will quit the game (note: without requesting a confirmation from
the player), and then prompts “Another Game?’’.

SAve (SA)
This saves all the variables associated with the game to tape, so that
the game can be reloaded later on.

score (SC)
Prints the player’s current score on the screen.

TakeOff (TO)
The opposite of PutOn, fairly naturally, this changes the status of the
object referred to in the command line from being worn, to being carried
by the player.

ZapIn (Zl)
This takes an object from whatever location it is currently at, and brings
it to the player’s current location. The command form is:

Zl, <obj>
e.g. Zl, 11

53

ZapOut (ZO)
This takes an object and changes its location to “nowhere", effectively
destroying it. It takes the form of:

ZO, <obj>
e.g. ZO, 11

RANGES
The parameters to the above actions have maximum and minimum
values, which cannot be exceeded; an Amstrad Basic error "Subscript
out of range” will occur if you do exceed the values. These are defined
as follows:

<int> = BASIC integer (signed).
<fnum> =0..maxflag.
<string> = BASIC string. NB must be surrounded by quotes if

the string contains commas.
<obj> =0..noofobjs (where 0 is the player).
<loc> = -1 ..nooflocs (0 is the player, -1 is nowhere)
<cnum> = 0..maxcount.

The upper limits to some of these ranges are set within the program,
by the constants at the start of AKS. The initial (and arbitrary) values
are:

maxflag = 30
maxcount = 5
maxobj = 20
maxioc = 30

Their values can easily be changed using the normal BASIC editor.

54

8
TRIGGERS IN AKS

Actions in AKS can be activated in two ways, either directly from the
player input, or indirectly inside the program. These are known as
triggers and events respectively, and we will look at the former in this
chapter.

The format of a trigger command is:

T, word list, condition
A, action

The word list is simply a list of words, which will cause this trigger to
become active if they appear in the player’s input. These are followed
by a condition, which governs the condition under which the actions
may be performed. The trigger line is then followed by a list of actions
which will be performed.

While triggers are easy to implement, it is important to pick the correct
words for the word list, to ensure that you have covered ail the possible
player input, which should cause the actions to trigger. For example,
if the player has to give an object to another character in the game,
he might use “GIVE”, but you should also include words such as
“SHOW”, “HAND”, etc. Only using one direct phrase such as “GIVE
THE COINS”, results in a very limited vocabulary and causes great
frustration to the player. You want players to enjoy your game — not
tear their hair out while playing it!

There are two forms of trigger in AKS, local and global triggers. The
first of these, as their name suggests, are triggers which can only be
activated when the player is at the current location, and which are
ignored at all other locations. The second type, global triggers, are
active all the time, and can be triggered by player input from any
location. The AKS system examines the local triggers before the global
triggers are searched, which enables you to alter the behaviour of
commands within different locations. Let’s look at some examples to

55

see what we mean by this, and how to use triggers in your own
adventures.

Firstly, the global triggers. These are entered in the database as part
of location 0. This is a special location, which does not appear in the
actual adventure game — the player can never visit location 0. It is
here that we can declare all the synonyms for our global vocabulary.
For example, we might want the player to be able to perform a “GET”
action, enabling them to pick up objects. As well as “GET”, it would
be convenient to allow the player to type in “TAKE”, “PICK UP”, and
so on. This is done by declaring a global trigger as follows:

T, get, take, pick up,*
A, GE

So, if the player inputs any of the words in the trigger line, then the
system performs a GET action. We can do the same for all the usual
commands as well — if you look at the listing for WITCH HUNT, you
will see that most of the global commands you’d ever want to use have
been declared.

The local triggers are very similar to this, except that they are declared
within the location description they apply to. They are declared in
exactly the same way, so a declaration of:

T, feed ducks, feed duck,*
A, PR, the ducks gobble up all the bread and leave.
A, ZO, 5

would only trigger if it was at the player’s current location. If this was
true, and the player typed in “FEED DUCKS”, then the system would
print the appropriate message and then remove the ducks from that
location (the ducks being object 5).

As well as declaring actions which manipulate objects, we can
change the possible directions the player can move. If the current
location has connections east and west, with a small building to the
east, the player can move east or west by using the usual movement
commands. However, most adventure players will expect to be able
to go east to the building by typing “IN”, not just “EAST”. This can be
allowed by declaring a trigger such as:

T, in, enter,*
A, GO, E

which will move the player east when they type “IN” or “ENTER”.
We can also alter the actions a command word had in each of the

locations. For example, suppose we have declared this global trigger:

T, rub amulet, stroke amulet, *C5
A, PR, nothing happens.

56

If the player rubs the amulet (object 5) the system will simply inform
him that “NOTHING HAPPENS". In one location, however, we want
rubbing the amulet to actually cause a very different action. This can
be implemented by declaring a similar trigger in the desired location.
This might take the form of:

T, rub amulet, stroke amulet,*C5
A, PR, The portcullis rises up and out of sight!
A, AF, 10, T

This means that rubbing the amulet causes a message to be printed
and the flag 10 to be set to TRUE. This is possible because, as noted
before, AKS scans the current location for triggers before scanning the
global triggers. When a trigger is found, it is activated, and the trigger
search is terminated. This ensures that only one trigger will be activated
for each of the player’s inputs.

57

58

9
LOCATIONS,
OBJECTS AND
EVENTS IN AKS

An AKS scenario is based around the structures of Locations, Objects
and Events, as these govern which actions take place where, which
objects can be manipulated and so on. In this chapter we will take a
look at how the Actions and Triggers we have already considered fit
into the Location and Object structures.

The ordering of different data types is important in AKS, as the
memory map in chapter 6 shows, and thus we will deal with these
differing data types in the order they will appear in an AKS scenario.

LOCATIONS
Locations must be declared in an AKS database in ascending order
of location number. Location zero is the special global location, as we
have already mentioned in the previous chapter while looking at Trig
gers. Each location has a very similar header, which might look like
this:

L, 15
D, *, In the dark woods.
C, N, *, 16
C, S, *, 18

This declares location 15, with a description of “In the dark woods”,
which has no condition attached. The location is connected to location
16 to the north, and location 18 to the S. There are no conditions
attached to the player moving to either of these two locations. There

59

can be as many descriptions (each with an associated condition) as
you wish, which enables us to simulate darkness, or to abbreviate the
description if the player has already visited this location. We simply
include these facts in the relevant condition; see the next chapter for
a detailed description of the conditions available in AKS, and their use.

The above location declaration is very basic, as it does not include
any triggers, these are simply added in before or after the connection
information. An example location might be:

L, 15
D, *, In the dark woods.
C, N, *, 16
C, S, *, 18
T, climb tree, go tree, *

A, PR, you cannot climb trees.
T, plant acorn, plant, bury, * C7

A, PR, the planted acorn grows into an oak tree
A, ZO, 7
A, Zl, 8

This adds triggers which will detect attempts to climb trees, and plant
acorns!

OBJECTS
Objects must be declared in numerical order, any out of sequence
objects being reported by the AKS system when you attempt to execute
the adventure. In the same way that location 0 is special, so is object
0, as it represents the player! This does mean that object 0 can be
manipulated in the same way as other objects — so you can move the
player around, but, the declaration for the player will normally only
include an initial starting location and nothing else.

There are a number of elements to an object declaration, and we
will look at each of these in turn. The best method is to consider the
following example, and we can then look at what each element stands
for:

O, 4
D, *, A small rusty lamp.
P, 19
N, rusty lamp, torch, *
S, GE, *
S, DR, *
S, EX, *

This declares object number 4. The first line of the declaration gives
the object a description, which will be printed out with no conditions

60

attached. The “P, 19” says that the lamp’s initial position at the start
of the adventure will be location 19. We need to let the player refer to
the lamp by different names in his command input, so we declare a
set of names using the “N” command, which allows you to attach a
condition to the player using that name.

Finally, the “S" construct lets us set the suitability of the object to be
used with certain of the inbuilt AKS actions. In our example above, our
lamp is suitable for GEtting, DRopping and Examining; there is no limit
to the actions which can be performed on an object (except com
monsense of course!).

EVENTS
An event is acted upon whenever the counter associated with it reaches
a value of zero, after it has been activated by another part of the
database. This is where the Initialise Counter action comes in, as we
can set the counter to a number of turns, after which the event associ
ated with that counter will come into action.

An example event might be declared as follows:

E, O
A, PR, You have run out of time . . .
A, SC
A, QU

This declares event 0 (which is not special in the way location and
object 0 are) and lists a number of actions to be performed. In the case
of our example, when the event is triggered, a message “You have run
out of time ..." is printed, the player’s score displayed and then the
game ended. This could be used if the player had a maximum number
of moves to complete some action, or even the whole game, in. If he
fails to do so, event 0 comes into action.

61

62

10
EXPRESSIONS IN
AKS

At certain points in AKS you may wish to attach a condition to something.
If the condition is true then some operation is performed otherwise it
is not. When writing an adventure game scenario in Basic a condition
can be expressed as an “IF condition THEN perform operation” state
ment. AKS aims to do away with the need to write in Basic in order to
specify your scenario and so cannot use this technique. However, the
need for some form of conditional testing when specifying an adventure
game cannot be overlooked. How could the puzzle with the big green
snake barring the way of the player be implemented if the scenario
were unable to test if this puzzle had been solved. Obviously, AKS
must have conditional testing. A glance at the scenario definition for
WITCHHUNT will reveal the presence of a large number of asterisks
at various positions in the definition statements. Each of these may be
followed by a string of characters terminated by the end of the line or
by a comma. The absence of this string represents the absence of any
condition — i.e. the associated operation is unconditional.

As in Basic, an AKS condition may have the value of true (T) or false
(F). If the condition is true the operation is performed. An IF statement
which only allowed you to say “IF T THEN ..." or “IF F THEN . . . ’’
would be useless. To be of use the condition must be allowed to be
something which is evaluated to either T or F. At the simplest level this
could be a flag variable. For example, a flag variable could be set
aside to indicate whether or not the snake puzzle has been solved.
AKS has flags called F0, F1, F2 . . . and so on. Supposing we have
allocated F10 to represent the snake puzzle then we can write the
condition as *F10. AKS initialises all flags to F at the start of a game.
When the player solves the puzzle the scenario assigns the value T

63

D, *, You are in the Hall of the Mountain King.
D, * F10, A large green snake bars your way ahead!
T, release bird, *

A, PR, The bird drives the snake away.
A, AF, 10, T

to F10. The AKS coding for the snake puzzle could be implemented
by defining the appropriate location (18) as follows :

DATA L,18
DATA
DATA
DATA
DATA
DATA

When the player first arrives at this location he will be greeted by the
following description:

You are in the Hall of the Mountain King.
A large green snake bars your way ahead!

The player can now drive the snake away by entering the command
“RELEASE BIRD” to which AKS will respond:

The bird drives the snake away.

The AssignFlag (AF) command then sets F10 to T indicating that the
puzzle has been solved. Now the description of the location will appear
as just:

You are in the Hall of the Mountain King.

This is fine but there is nothing there which states that the player must
be carrying the bird in order to release it. Another test is required to
replace the unconditional indicator at the end of the trigger line. One
possibility would be to set a flag to T when the player catches the bird
and test this as we did for the snake puzzle. However, you then have
to remember to reset the flag to F if the player drops the bird. A neater
solution is to have a function which tests to see if the object is being
carried by the player and becomes T or F accordingly. This type of
function is called a predicate and can be tested in a similar way to a
flag. So that 00, 01, 02, . . . indicate whether objects 0, 1, 2, ... are
being carried. Therefore, if the bird is object number 3, the snake
puzzle coding can be updated to:

DATA L, 18.
DATA
DATA
DATA
DATA
DATA

AKS supports six different types of predicates and flags for use in
expressions. With the exception of the flag type discussed earlier, the

D, *, You are in the Hall of the Mountain King.
D, * F10, A large green snake bars your way ahead!
T, release bird, * C3

A, PR, The bird drives the snake away.
A, AF.10, T

64

AKS program maintains the necessary information to return a value of
T or F for each of these tests. The flag variables F0, Fl, F2 . . . are only
altered by actions in the scenario definition and their meaning is de
cided by the scenario designer. The AKS predicates and flags are
listed below:

Cx........ Carrying object x
Fx Flag x
Lx at Location x
Ox........ Object X at current location
Wx........ Wearing object x
Vx Visited location x

Although these flags and predicates allow a number of tests to be
performed it is often useful to be able to invert the result of a test. The
operator “NOT” allows you to do this in Basic. The “NOT” of true is
false and vice versa. AKS uses a minus sign to perform the same
operation. For example, -03 can be used to test for the bird not being
carried and to print an appropriate message if you try to release it:

DATA L, 18
DATA
DATA
DATA
DATA
DATA
DATA
DATA

In addition to the “NOT” operator, Basic conditional expressions allow
the use of “AND” and “OR” to construct complex tests. AKS uses the
symbols “.” for “AND” and “/” for “OR”. So far there is nothing in the
example scenario location to stop the player passing the snake even
though he has been told his way is barred. This requires that all the
connections from this location except up (U) which is the way back
out of the location, only be opened when F10 is T:

DATA L, 18
DATA D, *, You are in the Hall of the Mountain King.
DATA ■ “
DATA
DATA
DATA
DATA
DATA
DATA
DATA

D, *, You are in the Hall of the Mountain King.
D, *F10, A large green snake bars your way ahead!
T, release bird, *C3

A, PR, The bird drives the snake away.
A, AF, 10, T

T, release bird, *-C3
A, PR, Good idea, but you don’t have it.

D, *F10, A large green snake bars your way ahead!
T, release bird, *C3

A, PR, The bird drives the snake away.
A, AF, 10, T

T, release bird, *-C3
A, PR, Good idea, but you don’t have it.
C, N, *F10, 17
C, E, *F10, 12

65

C,W, ‘F10, 25
C, U, *, 5

DATA
DATA

This has defined the connections north, east and west to locations 17,
12 and 25 to be open only when the snake has been driven off. Now,
let us introduce another problem the player is faced with at this location.
Once the snake is disposed of, the player is free to explore the con
nected locations and is able to find three treasures. However, certain
of these treasures are too large or heavy to carry up the stairs from the
Hall of the Mountain King together. If the player is carrying the gold
bar (object 4) and the axe (object 5) or alternatively, the gold bar and
the jewels (object 6) and wearing or carrying the armour (object 7) then
he may not go up. This can be expressed by;

DATA L, 18
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

AKS evaluates conditional expressions starting with the highest priority
operators first unless brackets specify otherwise, as does Basic. The
priority of operators in descending order are - (not), / (or), . (and). So in
the above example the order of evaluation is:

<a> (C4. C5)
W7/C7
<c> C4. C6
<d> result of <c> . result of
<e> result of <a> / result of <d>
<f> - result of <e>

D, *, You are in the Hall of the Mountain King.
D, *F10. A large green snake bars your way ahead!
T, release bird, *C3

A, PR, The bird drives the snake away.
A, AF, 10, T

T, release bird, *-C3
A, PR, Good idea, but you don’t have it.

C, N, *F10, 17
C, E, *F10, 12
C,W, *F10, 25
C, U, *-((C4.C5)/(C4.C6.W7/C7)), 5

"I" is higher than

66

SECTION THREE
IMPLEMENTING AKS
ON THE AMSTRAD

67

68

11
PROGRAMMING
TECHNIQUE

AKS has been written in a highly structured format with an emphasis
on readability and robustness of the Basic code. The techniques
adopted in the programming of AKS to achieve this structured format
are described below.

1. PROCEDURAL APPROACH
The problem tackled by AKS has been divided into several sub
problems and each of these divided into sub-problems and so on until
each sub-problem becomes trivial. These trivial sub-problems are then
coded as Basic Subroutines. It is important that the interaction between
these subroutines is tightly controlled and made clear in the listing. To
this end, the assignment of a value to a variable which is to be used
in another subroutine is made on the same line as the ‘GOSUB’ state
ment (e.g. ‘loc=0:GOSUB 1230:REM ‘isobjatloc*’). If a subroutine re
turns a value in a variable then where possible any testing of that value,
or any use of that value is performed immediately after returning from
that routine.

2. SENSIBLE VARIABLE USAGE
The most obvious point here is the use of meaningful variable names
to increase readability. Amstrad Basic allows multi-character variable
names for this reason. In addition to enhancing readability, the use of
long variable names reduces the chance of conflicting use of a vari
ables (i.e. attempting to use the same variable for different things at
the same time). All variable names are in lower case to make them
stand out from the upper case Basic keywords.

69

AKS initialises several constants at the start of the program (e.g. the
number of scenario locations is set by 'rnaxloc =30’). As their name
suggests these ‘variables’ are not changed anywhere else in the pro
gram, even though it is strictly possible to do so. This has two effects.
Firstly, it increases readability and secondly, it makes it easy to modify
the program because the value need only be changed in one place.

3. COMMENTING
Comments are used in an orderly and consistent way. Lines containing
just a colon are used extensively to space the program out and divide
it into logical blocks. In the main part of the program a logical block
is a group of instructions with a similar function. For the rest of the
program, a logical block is a subroutine. In addition, every subroutine
is headed by two ‘REM’ statements. The first of these has the name
adopted throughout AKS for that routine bracketed by three asterisks
(e.g. ‘REM *** resetflags *“’). The second is just a blank ‘REM’ statement
to highlight the routine title.

Any subroutine call is followed by a comment containing the name
of the routine bracketed by single asterisks (e.g. ‘GOSUB 5000:REM
’‘resetflags*’). To maintain this standard some ‘IF condition THEN
gosubsomewhere ELSE gosubsomewhereelse’ statements have been
split into two statements (i.e. ‘IF condition THEN gosubsomewhere’ and
‘IF NOT (condition) THEN gosubsomewhereelse’) to allow the ‘GOSUB’s
to be followed by a comment.

Although the game is written to run in the 40 column MODE 4, the
commenting has been written for viewing in the 80 column MODE 2.
Where possible, comments about the operation of program lines are
on the same line and use the single quote character instead of ‘:REM
. . .’ to start the comment. This helps to distinguish normal comments
from subroutine labels on ‘GOSUB’s. Should the comment be too long
to fit on the same screen line or if it is syntactically invalid to have a
comment on the same line as that type of statement then the comment
is placed, where possible, on the line preceding the statement, in this
case a normal ‘REM’ is used instead of a single quote to make the
comment stand out from the Basic statements. Unless emphasising
something, comments are in lower case to make the upper case Am
strad Basic keywords easy to see.

4. CAREFUL CONTROL OF FLOW
Something which explicitly controls the flow of a program is potentially
very dangerous. Apart from having the potential to make a program
totally unreadable, incorrect use of flow controlling instructions can
result in corruption of the Basic stacks. The most obvious control flow

70

instruction is 'GOTO'. Much has been written about the use and misuse
of ‘GOTO’, but few will deny that it is difficult to program in Basic without
it. Amstrad Basic goes some way towards removing the need to use
‘GOTO’ by allowing the use of ‘WHILE..WEND’ loops as well as the
normal ‘FOR..NEXT' loops. AKS makes much use of the ‘WHILE..WEND’
construction. Another common use of ‘GOTO’ is to implement multiline
'IF..THEN..ELSE..’ statements. AKS avoids using ‘GOTO’ for this by the
use of multistatement lines instead. However. AKS does make use of
GOTO' as a quit instruction to skip over the rest of a ‘WHILE’ loop’s
instructions and go directly to the ‘WEND’. This technique of jumping
to ‘WEND’ is used to terminate the loop without corrupting the Basic
stack. When AKS does this, a comment is used to identify the ‘GOTO’
as a quit instruction.

Another frequently misused control flow instruction is ‘GOSUB’. To
make a subroutine easily understandable, a subroutine should have
only one entry point. In the AKS listing the entry point to each subroutine
is the line immediately following the title ‘REM’. It is a good idea not
to ‘GOSUB’ or ‘GOTO’ a ‘REM’ statement, as these are often removed
from the runtime version of the program; thereby causing a ‘line does
not exist’ error. The last instruction in every AKS subroutine is a ‘RE
TURN’. The practice of using ‘GOTO’ to jump in and out of subroutines
is avoided. However, it is often desirable to skip the remaining instruc
tions in a subroutine. This could be done using ‘GOTO’ to jump to the
‘RETURN’ instruction. A cleaner solution is to use another ‘RETURN’
instruction instead of the ‘GOTO’. Even here, AKS comments the pre
mature subroutine exits as quits.

DIRTY TRICKS
Examination of the first few lines of the AKS listing will reveal that
everything is not perfect. To implement AKS in Amstrad Basic a signi
ficant problem must be overcome. AKS works by interpreting a scenario
database specified in ‘DATA’ statements at the end of the program.
Each statement occupies one ‘DATA’ line and AKS must be able to
find the start of any given statement. Unfortunately, Amstrad Basic
does not allow use of the ‘RESTORE’ statement with a variable line
number (i.e. ‘RESTORE fred’ is illegal). Instead, it insists on a literal
line number (e.g. ‘RESTORE 500’). Totally legitimate use of ‘RESTORE’
in AKS would require a ridiculously time consuming search from the
first ‘DATA’ statement, reading a string (not a line) at a time, until the
desired line is found. Therefore, AKS resorts to a ‘dirty technique’ which
‘POKE’S the value of a variable into the space occupied by the literal
line number part of a ‘RESTORE’ statement IN THE BASIC PROGRAM.
This explains the existence of the first few lines of the program. For
example, to ‘RESTORE’ to line 370. AKS would perform ‘lin =370:GOSUB

71

20:REM *restorelin*’. This fudge routine is placed at the front of the
program along with comments giving a warning of the dangers inherent
in this technique. Obviously, changing this routine will result in the
wrong part of the program being altered and may corrupt the code.
Things are further complicated by the fact that the ‘RESTORE’ state
ment’s line number must be set to a non-existent line number before
attempting to 'RENUM’ber the program. The small ‘ENTER’ key is pro
grammed to do this. AKS requires the ‘DATA’ statements in the scenario
to be numbered in increments of the constant ‘lineinc’. The normal
value of ‘lineinc’ will be 10 — which is the default line number increment
used by Basic ‘RENUM’ and ‘AUTO’.

In addition to knowing the line number increment, AKS must know
the line number of the first ‘DATA’ statement of the scenario definition.
It is unreasonable to expect a programmer working on AKS to find this
out and set a variable to the value everytime he adds a new line of
Basic. For this reason, a second ‘dirty technique’ is used. To find this
value, AKS jumps to a purposely included invalid program line that
immediately precedes the first ‘DATA’ statement of the scenario defi
nition. AKS traps the error generated using ‘ON ERROR..’ and assigns
‘datastart’ the line number of the line after the invalid line (i.e.
‘ERL -I- lineinc'). Although not as dangerous as the first 'dirty technique',
this technique is also heavily commented.

72

12
STRUCTURAL
OVERVIEW OF AKS

The overall structure of the AKS driving routines can be broken down
into six different sections, which we will consider and briefly outline in
this chapter. In order to understand how the routines work in detail,
you are advised to study the full listing of AKS in Appendix A, as it is
fully commented, with meaningful variable and routine names. To detail
the program within this section, in the same way, would simply duplicate
the information in the Appendix. This chapter is merely considering the
structural elements of AKS, and the way these elements relate to the
overall program.

INITIALISATION
The first stage of the program requires it to initialise all the variables
it is going to use. This is done by the three routines Initiocations,
Initobjects, and Initevents. As their names suggest, they initialise all
the variables associated with the locations, the objects, and the events
respectively. We’ll look at each of these separately.

Initiocations
This routine starts at the beginning of the data, with location 0, and

it searches through the data, until it encounters a data declaration for
an object, event or the F end marker. While it is scanning through these
data declarations, the location numbers declared in the "L, < locnum >"
command are noted, and any missing or out of order locations are
reported. The array element "locline(loc)” is set to the program line at
which the data for the location “loc" begins. This process of scanning

73

continues until a non-location declaration is found, at which point
“nooflocs” is set to the number of locations found, and the routine
returns to the main initialisation.

Initobjects
This routine works in a similar way to Initiocations, except that it deals
with Objects, and it scans until it finds a declaration for an Event or the
"F” end marker. During this scanning process, the array element
“objline(obj)” is set to the data line which begins the declaration for
the object “obj”, in the same way as “locline(loc)” is used. Any out of
order, or missing object numbers are reported by the system, and the
scanning is stopped.

This initial scanning process also allows us to find the start locations
for each of the objects and to set their position in the “objloc(obj)”
array where all the object positions are stored. When the scanning
search for objects has'finished, the “noofobjs” can be set, and the
routine returns to the main initialisation section.

Initevents
This initialisation routine deals with any events which may have been
declared at the end of the data block, and sets the array “eventlin(cnt)”
to mark the data line at which each event begins. The search for events
finishing when the “F” end marker is encountered.

After initialising the locations, objects and events, all the program
flags are initialised by Resetflags, which simply sets all of them to the
value FALSE. This then completes all the initialisation the program has
to do.

MAIN PROGRAM LOOP

This is a very simple WHILE loop, which runs continually until the flag
“eogame” becomes TRUE, whereupon the game ends. This flag is
obviously only set by the player losing, winning or quitting the game.

Thus, the loop consists of five different operations:

(a) Describing the current location.
(b) Noting that the current location has been visited.
(c) Inputting a command from the player.
(d) Processing this command line.
(e) Updating any countdowns which are currently active.

The second action is simply a case of setting a flag corresponding to
the current location in the visited array to TRUE, which is very straight
forward. The other routines are a little more complex, so we will consider
these separately.

74

DESCRiBELOC
This is the routine which prints out the appropriate description for the
current location, in a neat and formatted form. The first step is to find
the data line at which the player’s current location is defined, and then
to call Describeln, to print out the current description. We then test to
see if any objects are at the current location. If there are objects here,
we search through all the objects, printing out the object descriptions
for all objects at this location. This done, we return to the main loop.

Describeln
This routine searches through the data statements for the current lo
cation, looking for description data (beginning with a "D”), until it
reaches the start of another location, object or event. Once it finds a
line of description, the condition attached to that description has to be
evaluated, and this is done with a call to the expression evaluator
(which is covered in great detail in the next chapter). If the condition
evaluates to TRUE, we can then print the description by calling Print-
descr, and carry on searching for the next one.

Printdescr
This is the routine which performs the actual act of printing the location
description to the screen. This is not a simple matter of printing out the
text in a straightforward fashion. If we did this, some words would
overlap the edge of the screen, being split across two lines. This would
not only be difficult for the player to read, but it would give our adventure
games a very untidy, messy appearance. A lot of the appeal of the
adventure game is the way in which it is presented to the player. A
slapdash, untidy presentation only a discourages the player from both
ering with the game.

The printdescr routine gets around this problem by making sure that
words are not split over two lines, and that punctuation is not put in
at the beginning of a line. This is done by taking the description string
a screen width’s worth at a time, e.g. if our screen width is 80 characters,
and we have already printed the first 10 characters on the current
screenline, we consider the next 80 characters of the description. This
is then checked to see if the end of the string occurs in the middle of
a word, if it does, we search backwards through the string to find the
end of the previous word. The string can now be printed up to that
point. We then consider the next 80 characters from this point and so
on, until the string left is less than (or equal) to the screen width when
we simply print it, and return from the routine.

This printing routine is very general-purpose and not just specific to
the AKS program, so you could easily use it to present neat, word-
wrapped output in your own programs.

75

GETCOMLINE
This is a very short and simple routine, which prompts the player with
the question “What now?”. The player’s command line is then input into
the variable “in$”. Obviously, we cannot provide for all the possible
combinations of upper and lowercase which the player might type in,
so we use LOWERS to convert the input string to be totally lowercase.
This does mean that all the commands, and object name which you
include in the object and location declarations must all be in lowercase
also. But, this is small price to pay in return for faster processing of the
command line.

PROCESSCOMLINE
This is the most important routine in the program, in many ways, as it
checks the player input against the database and causes actions to
be performed if matches have been found. The first stage is to search
for triggers in current location, and then in the global location; matching
the input string against the trigger phrases. It is worthwhile noting at
this point that it is important to order trigger phrases in the correct
order — substrings after the main string. By this, we mean that “FEED
THE DUCKS” should come before “FEED”, “WIND UP THE CLOCK”
should come before ‘‘WIND UP” and so on. If you fail to do this, then
the mam phrases will never be activated, due to the search method
that the Triggertest routine uses. If no triggers are found then the “Sorry
I do not understand that” message is printed and control returns to the
main loop. If the command is recognised, then the Actions routine is
called to carry out the required action.

Triggers
This routine steps through the current location data (until it reaches a
new declaration for location, object or event) searching for Trigger
commands. If a command is found, it is tested by the routine triggertest.

Triggertest
This routine attempts to match the command line with the trigger
phrases for the current trigger. This is done by scanning the trigger
line until the end marking is found, which marks the start of the
condition. A test is made for each of the trigger phrases to see if it
occurs within the command line (using the string function INSTR). If
a match is made, the condition for that trigger is evaluated. Only if
there is a match and the condition evaluates to TRUE, is success
reported back to Triggers and PROCESSCOMLINE.

Actions
This routine simply scans down the list of actions which follow a Trigger

76

command. The type of action is read in, and then the appropriate action
routine is called, depending on the action. When all the actions have
been read in, the routine returns to the main loop. Each of these actions
then performs the required tests and manipulations to carry out their
function, before returning to the main action routine. If you wished to
add more actions to the AKS system, it is simply a matter of adding
a new test on "actS” inside this routine’s WHILE loop, with a GOSUB
to your new action routine.

UPDATECOUNTDOWNS
This routine steps through all the counters possible and tests to see
if they are currently counting. If a counter is active, then it is decre
mented by one. If the counter value is still above 0, nothing further is
done, and the routine returns to the main program loop.

However, if the counter has reached a value of zero, the counter is
reset to a non-counting state and the appropriate event is activated.
This is done by setting the current dataline to the start of that event,
and then calling the Actions routine to step through and perform the
required actions. Once this is complete, the main program loop is
resumed.

That completes the mam program structure. You should find all the
above routine descriptions relatively easy to follow, using the comments
in the program as a guideline. Many of the routines described in this
chapter can quite easily be used in other programs, not just adventure
games. The pretty printing abilities of Printdescr being just one such
example, along with the whole method of data searching employed by
AKS.

77

78

13
IMPLEMENTING
THE EXPRESSION
EVALUATOR

The behaviour of the AKS expression evaluator has already been dis
cussed. This chapter explains how the AKS Basic program arrives at
a result of true or false for a conditional expression. This description
of the expression evaluator will be invaluable should you decide to
alter the terminology, implement additional operators or allow the use
of further flags and predicates. In addition, the expression evaluator
in AKS illustrates some fundamental programming techniques and data
structures.

The Basic code corresponding to the expression evaluator is con
tained in the subroutine ‘evalthis* and the subroutines it invokes. On
entry to this routine, the expression string should be stored in the
variable 'expr$’. On exit, the variable ‘res’ holds the result of true or
false. The integer values representing true or false are -1 and 0 re
spectively. This is the same as the internal notation used by Amstrad
Basic when it evaluates conditional expressions in IF statements. Con
sequently, the AKS program can test the result returned by ‘evalthis*
as follows:

IF res THEN . . .

Thus to evaluate an expression, AKS copies the expression string into
expr$ and calls ’evalthis" Often, the AKS program wishes to read in
the next string and then evaluate it. This is reflected in the presence
of the subroutine ‘evalnext*, which reads the next string in the DATA
into ‘exprS’ and then calls ‘evalthis* to evaluate it.

79

Considering that the function of ‘evalthis* is to return something
which can be tested by a Basic IF statement, it may seem pointless
to go to the trouble of writing a conditional expression evaluator to do
the same thing as the existing Amstrad Basic conditional expression
evaluator. Take for example, the AKS condition string (having already
stripped off the preceding

-(W3/C3).V12

It is not difficult to see how, by substituting ‘NOT’ for ’OR’ for '/’ and
‘AND’ for this could be transformed into the string:

NOT (W3 OR 03) AND V12

Now if you replaced all occurrences of sequences of digits by ’(’, the
sequence of digits itself and ’)’, the resulting string appears to become
a Basic conditional expression:

NOT (W(3) OR 0(3)) AND V(12)

Given that the arrays W, C and V existed and contained true/false
values (-1 or 0), it would be very convenient if Amstrad Basic could
then be made to evaluate this for us. Unfortunately, this information is
locked inside a string variable and Amstrad Basic is unable to evaluate
a string variable. For example, it is INVALID to write in a program:

IF expr$ THEN . . .

Some Basics have a command to overcome this problem and force
the Basic interpreter to evaluate a string. A very ‘dirty’ way in which
Amstrad Basic could be made to evaluate a string would be to convert
the string into Amstrad Basic’s internal representation and POKE this
into the program between an IF and a THEN and then execute this line.
However, AKS expressions are variable lengths and so other parts of
the program would need to be adjusted to create exactly the right
number of spaces between the IF and the THEN. An alternative method
of evaluation must be used.

Therefore, the AKS program is forced to do a step by step evaluation
of ’expr$’. Ignoring the trivial case of ‘expr$’ being just
‘evalthis* returns true, the evaluation process can be divided into three
stages:

1. Substitution of flags and predicates (eg. C3,W3,V12) in expr$
for‘t’ or ‘f’ representing their true or false values.
2. Reorganisation of the expression according to operator priority
and bracketing (ie. before ’.’ and ’.’ before ’/’ unless brackets
dictate otherwise). The now redundant brackets are discarded.
3. Evaluation of operators and their’t' and ‘f’ operands in the order
established in stage 2.

where

80

Although the evaluation takes place in three logical stages, in practice
stage 1 can be performed during the same scan through the expression
string as stage 2. A brief glance at *evalthis* reveals that it has two
subroutines performing the three stages:

1. ’converttoRP* — stages 1 and 2.
2. ‘evaluateRP* — stage 3.

The letters ‘RP’ stand for Reverse Polish. An expression written in
Reverse Polish notation requires no brackets or operator prededence
as the ordering of the expression precisely represents the order of
evaluation. To achieve this, Reverse Polish notation places an operator
after its operands, giving rise to the alternative name of postfix notation.
The normal notation used in mathematics and Basic is called infix
notation and places an operator in between its operands. The scenario
writer is allowed to write AKS expressions in infix notation for the sake
of readability. It would be unacceptable to force the scenario writer to
learn Reverse Polish before he could use AKS. However, anyone who
has done a lot of programming in the language Forth, which uses
Reverse Polish all the time, may be happier writing expressions in
Reverse Polish. If this is the case, the ‘converttoRP* subroutine can
be replaced by a subroutine which just performs stage 1 of the eval
uation process. A slight increase in the execution speed would also
be achieved. To help convince you to stick to infix notation, some
examples of infix AKS expressions and their corresponding Reverse
Polish versions are given below:

INFIX______________
W3/C3
-(W3/C3)
-(W3/C3).V12
(C1.C2)/(C3.C4.C5.C6)

The subroutine ‘converttoRP* converts the infix expression held in
‘expr$’ into the Reverse Polish equivalent which is returned in ‘revpol$’.
It repeatedly calls ‘getlex* to get the next operator or operand from
‘expr$’. It is the subroutine *getlex* which performs the substitution of
flags and predicates for either‘t’ or ‘f to perform 1 of the evaluation
process. When *getlex* encounters an operator (ie. next character is
7’, '(’ or 7), it simply returns it to ‘converttoRP* in 'dat$’. However,
if it encounters a flag or predicate (ie. next character is ‘F’, ‘V’, ‘W, ‘C,
‘L’ or ‘O’) then it calls *evalflag* to determine a value of true or false
and set 'dat$’ to ‘t’ or ‘f’ accordingly.

Having performed stage 1 of the evaluation, ‘converttoRP* must
reorder the lexical units returned by calls to ‘getlex* to form Reverse
Polish. There are several algorithms which could be used to do this

REVERSE POLISH
W3C3/
W3C3/-
W3C3/-V12.
C1C2C3C4C5C6..../

81

reordering and removal of brackets. All of these algorithms require a
means of determining the priority of operators shown below:

OPERATOR PRIORITY
highest

I lowest

The algorithm used in AKS is often referred to as the Shunting Algorithm.
This name arises from an analogy with a simple railway network, shown
in the diagram below.

OUTPUT
(REVERSE POLISH

EXPRESSION)

INPUT
(INFIX EXPRESSION)

SIDING

Let us ignore brackets for the moment. The algorithm takes carriages
(lexical units) from ‘input’ (infix expression) one at a time. If the carriage
is type-A (operand) then it passes straight across to ‘output’ (Reverse
Polish). However, if the carriage is type-B (operator) it goes into the
’siding’. Each carriage has a priority (operator priority). When a new
carriage approaches the ’siding’ it allows carriages already in the ’sid
ing’ to go to ’output’ one at a time until a carriage of lower priority is
at the front of the ’siding’. The new carriage then takes its place at the
front of the ’siding’. Eventually, there are no more carriages at ’input’
and all the carriages in the ‘siding’ are allowed to continue to ’output’.
The Reverse Polish expression is now at ’output’. An example con
version using this algorithm is given below. For clarity, flags and pred
icates are shown as their identifiers instead of their actual’t’ or ‘f’ values
from stage 1.

INPUT SIDING OUTPUT

C5.-V7/F4
.-V7/F4
-V7/F4
V7/F4
/F4
F4
empty
empty

empty
empty

I
I
empty

empty
C5
C5
C5
C5V7

C5V7-.F4
C5V7-.F4/

82

By a simple extension, this algorithm can be made to remove brackets
after they have served their purpose. Firstly, the symbol ')' must be
considered as the highest priority operator. When a '(’ is encountered
it goes into ‘siding’ obeying the same rules as the other operators. The
algorithm then continues as normal until a ')’ is encountered. This
causes all operators in ‘siding’ to be released to ‘output’ until a ’(’ is
reached. This bracket pair can now be discarded. For example:

INPUT SIDING OUTPUT

-(C3/W3).V12
(C3/W3).V12
C3/W3).V12

W3).V12
).V12
.V12
V12
empty
empty

empty

(-

/(-
/(-

empty

empty
empty
empty
C3
C3
C3W3
C3W3/
C3\N3/-
C3\N3/-\/12
C3\N3/-\/^2

In computing terms, a structure called a stack embodies the idea
of the ‘siding’. Machine code programmers will undoubtedly be very
familiar with the operation of the Amstrad’s hardware stack. The AKS
program is unable to use this stack freely because Amstrad Basic is
using it as the program is running. Therefore AKS maintains its own
software stack. Whether it is implemented in hardware or in software,
a stack has the same logical structure. There are two operations associ
ated with a stack, adding an item and removing an item. In Z80 as
sembler these operations are known as PUSH and POP respectively.
AKS uses somewhat the more readable names of ‘stack’’^ and 'unstack*
for the subroutines performing these operations. The important thing
to remember about a stack is the Last In First Out (LIFO) rule, which
means last item in will be the first item out. This is the reason for the
analogy of the Shunting Algorithm where the last carriage in is always
the first carriage out. The internal mechanism by which the status of
a stack is maintained is by a pointer to the next free element of the
stack. The AKS stack elements are held in an array called ‘stack’ and
the pointer to the next free element of ‘stack’ is ‘stacktop’. At the start
of the program ‘stacktop’ is initialised to point to the first element of
‘stack’. From then on, ‘stacktop’ is only changed by the ‘stack* and
‘unstack* subroutines. Stacking or unstacking a variable is done by
storing the value of the variable in ‘dat’ and calling ‘stack* or ‘unstack*
respectively.

83

Having converted the infix string into Reverse Polish it must be eval
uated. This can be done very simply by the use of a stack. As
‘converttoRP* has finished using the software stack, ‘evaluateRP* can
make use of the same stack. The algorithm scans through ‘revpol$’
one character at a time from left to right. If the character is an operand
(‘t’ or ‘f’) then stack it. If the character is an operator then take the
required number of operands off the stack, perform the operation and
stack the result of‘t’ or ‘f. The binary operators, and 7' will unstack
two operands whereas the unary operator will just unstack one op
erand. When all the characters in ‘revpol$’ have been processed, a
single value remains on the stack. If this value is ‘t’, ‘daf is set to ‘true’
otherwise 'daf is set to ‘false’. The expression has now been fully
evaluated.

However, what happens if the original ‘expr$’ was incorrect? For
tunately, this method of expression evaluation allows simple checks
to be made at each stage of the evaluation process to detect the validity
of the expression. Firstly, if any invalid characters (ie. not in “-./
OFVWCLO” or a digit) are included then these are recognized during
the initial scan through the string — stage 1 of the evaluation process.
Missing numbers after a flag or predicate character (eg. ‘(C/W3)’) are
detected when the evaluator attempts to substitute ‘f or ‘f for the flag/
predicate — stage 2. Finally, an incorrectly structured expression (eg.
‘(C3/W3)V12’) will be detected after the Reverse Polish expression has
been evaluated because the stack will hold more than just the result
— at the end of stage 3.

84

14
EXTENDING AKS

While the basic AKS system does provide a complete adventure game
generator, and one which can be used to create some very complex
and large adventures, obviously there are additions which could be
made. Everyone has their own ideas for adventure games, and for the
types of actions and situations they would like to include in their own
games. In this chapter we will detail some of the additions we have
thought of, as well as methods for adding your own additions and
extensions to the basic AKS format. We hope that you will experiment
with AKS, and add your own new actions, commands and so on; you
will learn a lot more about programming and adventure games writing
in this way than from any commercial games designer.

EXTRA ACTIONS

This is the simplest addition to AKS, and the easiest to carry out. The
actions included in the basic system cover all the usual adventure
game requirements, but you may well wish to add other actions which
cannot be constructed from several existing ones. Possible new actions
might be EAT, DRINK or even SLEEP! These can be fitted into the
system by inserting a new subroutine which deals with the objects the
new action affects. This new subroutine is then accessed by adding
a new line into the Actions routine, which tests “act$" for the new value.
An example might be:

IF act$=“SL” THEN GOSUB 6000 : REM *SLeep*

where the subroutine dealing with the sleep action is located at line
6000.

85

REAL TIME ACTION
Although the AKS system already provides a system of counters which
can simulate a timed event, where the time is measured in turns, this
may not be enough. In many games, the adventure is played in real
time, with time ticking away between turns (while the player is making
his decisions and typing in a command) as well as while the computer
is actively engaged in processing a command. In machine code, this
is fairly easy to achieve, using interrupts to update a clock. Indeed,
on some machines a realtime clock is provided by the computer’s
hardware. In the case of the Amstrad, we are fortunate that the Basic
itself provides for interrupts, and allows us to create real time events
from Basic.

The way such a feature could be implemented is to alter the Initialise
Counter subroutine so that it sets an interrupt timer in progress. Thus,
we would use the Amstrad AFTER statement to say that a certain
subroutine would execute after a certain amount of time. This would
enable us to set an event going, and then the basic hardware would
interrupt whatever process was going on in order to execute our event
after the elapsed time. Once the event has occurred, we can return
to the main program at the point we left it.

It would also be possible to implement an event which occurred
every so often using the basic command EVERY, instead of AFTER,
as in the above example. This would cause our event subroutine to
execute at regular intervals, instead of just once. One possible use for
this would be intelligent characters, who could move through the game
of their own accord, with their position updated after every three minutes
or so.

The Amstrad manual gives full details of the interrupt facilities avail
able in Chapter 10.

DON’T CARE MATCHES
At the moment, we have to match all of our command input against a
set of trigger phrases, with a match for each word in the trigger phrase
being necessary. Wouldn’t it be better if we didn’t always have to match
every word, but could just make sure that some of the input phrase
was correct, while not caring about the rest? This is where what is
known as a “don’t care” indicator comes in. This enables us to say
that we are not bothered about what value some part of the phrase
has, just that we want that part of the phrase to be present. To add this
feature to AKS, we simply have to add a “don’t care” facility into the
routine triggertest, which compares the phrases with the command line
input. This could be a symbol such as “£’’, which would represent a
“don’t care" word. For instance, in:

86

T,eat £,*

we are simply testing to see if the player wants to eat an object, we
are not bothered about which object he is trying to eat!

This facility also allows us to set unconditional triggers which will
activate whenever the player inputs a command at their location, re
gardless of what that command is. This is done by using the trigger:

T,£,‘

which will ignore the player’s input completely. This might be useful
if we wish to cause an action the first time the player tries to do some
thing in a location, or perhaps to simulate something like the player
being drunk, where it will trap any of the player’s input!

A RANDOM FACTOR
Although, personally, we do not like random happenings in adventure
games, as they can spoil an othenwise excellent adventure by taking
away any skill factor, some people do like them. If you wish to add a
random facility to AKS, it would be possible by adding the random
facility to the conditions part of a trigger. Thus, the trigger:

T,jump,’‘R25

would only happen 25% of the time, where the “R25” condition indicates
the random 25% chance.

SKILLS
With the growth of roleplaying games and the increasing interest in
such games, there are more and more adventure games being pro
duced which attempt to emulate a roleplaying game. This means add
ing player character skills to the adventure. In AKS, this would require
a character generating section, which would enable the player to create
his character. You could then test these skills in the normal conditional
checks to see if the player is capable of performing an action, or to
see if the player is affected by an event. Again, skills do tend to add
to the random elements in the adventure game, and produce a poorer
adventure in our opinion. There is no way a computer can substitute
for a human games master!

87

88

SECTION FOUR
WITCH HUNT - AN

EXAMPLE AKS
SCENARIO

89

90

15
WITCH HUNT PLOT
DESIGN

Designing the plot for an adventure game is very similar to designing
the plot of a novel. You begin with basic ideas about the situations and
characters you want to deal with, often just in the form of short, dis
connected notes. These must be brought together, and interlinked, to
form a continuous storyline. Within the adventure context, you do not
have to bother quite so much about detail, or even realism, but you
are faced with several other problems. In a novel, the main character
or characters, stick to the storyline you have set out — they don’t have
a mind of their own; in an adventure game, your central character is
the player, and they can think for themselves! In this chapter we will
be looking at how an adventure game is designed, and how to develop
the basic ideas into a fully-fledged plotline.

The example plot and adventure game we will be considering is
Witch Hunt. This is a relatively simple and fairly short scenario which
has been implemented using AKS. As such, we are able to break down
the whole scenario into sections, and show just how each of these
sections connects with each other and the overall plot. If you have not
yet played through Witch Hunt, and would like to puzzle out the game
by yourself, we suggest that you do so before reading this chapter.
The following pages discuss Witch Hunt in detail, and thus give away
most of the solutions to the scenario.

BASIC PLOT IDEAS
The basic idea behind Witch Hunt was to develop a short scenario
which offered a chance to interact with some characters, and which
had an overall goal. We also wanted to get away from the very over
worked theme of magicians, knights and dragons — in fact the whole
fantasy milieu has been done to death.

91

Thus, we settled on an approximation of Middle Ages England, with
the player’s task requiring him to find the identity of a witch in a small
village. With both of us being firm fans of Monty Python’s Holy Grail
film this was a fairly natural choice! Once we had decided on the theme
of the adventure, we had to decide on some of the basic elements of
the plot.

The Setting
In order to keep the adventure within a reasonable size, and thus keep
down the number of locations, we decided to base the adventure in
and around a small country village. Once this had been fixed, it was
immediately possible for us to work on the map of the adventure game.
As the game was relatively small, we needed only show the major
buildings and sites of interest during the game, thus people’s houses
could be left out, along with miles of road, fields, etc. This enabled us
to produce the map shown in Figure 15.1, which is a rough sketch map
of the area the adventure takes place in. Note, that at this stage we
are not bothered about how each location is connected, or what each
location contains, just with what locations we have; all the connection,
etc information comes later, when we start to produce the actual scen
ario data.

•ft

FIGURE 15.1

92

The Purpose of the Game
While we have already said that the player’s mission is to find out which
person in the village is the witch; just how does he do that? We came
up with, and discarded, several ideas before hitting on the concept
used in the Witch Hunt scenario. The player finds a hat which belongs
to the witch in question, and thus, he must find the person this hat fits
(shades of Cinderella!).

Characters
If the player is looking for a witch in his village, then there must be
some inhabitants for him to try the hat on! Thus, we will need some
non-player characters for the player to interact with. Well, we have
already drawn up the map, and this shows a number of important
locations within the village. Obviously, the owners of the various prem
ises within the village can be used as characters, as this has the
advantage of tying them down to a logical, fixed location. This gives
us a woodcutter, innkeeper, blacksmith, priest, goatherd and miller.

The Objects and Puzzles
The player has to try the witch’s hat he finds on everyone in the village,
without them realising what he is doing, that is the major puzzle, but
there has to be more than this in the game. We have to introduce some
puzzles (and objects associated with them) that will hinder him in his
task, and prevent the player just breezing through the game.

One limitation is to set a time limit on the game — either he solves
the mystery and finds the witch by midday, or he is burnt! This gives
the game a sense of desperation, but doesn’t really stop the player
completing the quest simply and easily. What else is there associated
with a witch? Black cats, of course, and thus the black cat in the church
yard enters the game. This sets another time limit on the player, but
requires him to solve this puzzle (how to lose the cat, before he is
burned as a witch), rather quickly; it also adds extra puzzles which
must be solved to achieve this aim. All these puzzles use the locations
we have already put on the map, and objects which would naturally
be there.

Having developed a few rough ideas for our adventure, we can
connect these into a complete plot, for the whole adventure. The best
approach to plotting the adventure is to consider the actions the player
must take to solve the game as a short narrative — thus we write them
out as a short story. This enables us to spot inconsistencies in actions,
and helps us check that it is possible to perform the actions in the
order we require. The plot line for Witch Hunt, our example game is
written out below:

93

WITCH HUNT: THE PLOT
Introduction
You are a simple village lad, who works for the local miller, fetching
and carrying grain for him. Your life was reasonably happy and settled,
very little disturbs the tranquil lifestyle of your small country village.
That is, nothing disturbed it until recently; there have been some strange
goings onl The crops have been turning bad, the corn at the mill has
been plagued with rats (previously unseen locally) and the goatherd
has vanished. These occurrences would be worrying by themselves,
even if they didn’t relate to you; unfortunately, the villagers have decided
that your working at the mill has something to do with the corn, and
the fact you found a secret crypt near the church (and were discovered
there by the priest) has led them to accuse you of being the witch!
You have protested your innocence, of course, to no avail, and they
have given you until noon today to prove your innocence by finding
the “real” witch — if there is one!

Plot
The game starts on the village green, at the centre of the village. Where
can you go to find the witch, or even to find out if there is one? The
first clue comes from the village pond, here you find a small toad, which
seems strangely afraid of water! So, you pick up the toad and drop
it into the pond, and to your surprise there stands the missing goatherd.
He is wet and confused, but manages to tell you that he was attacked
and turned into a toad in the woods. You also discover that the ducks
on the pond are guarding something, and they appear to be hungry
enough to object to you reaching it.

Once you are in the woods, your surroundings all look very similar,
and you find yourself lost. Whilst wandering through the maze of trees,
you hear someone running away from you, and there on the ground
is a witch’s hat! This must belong to the witch — and you quickly realise
that whoever it fits will be shown to be the witch! You now have a way
of identifying your quarry. You slip the hat onto your own head — it
doesn’t fit!

In the centre of the woods is a small clearing, and here you see the
woodcutter, he is breathing heavily and looks hot and bothered. He
shades his eyes from the sun and then notices the hat you are wearing.
Commenting that it will shade him from the sun, he tries it on for size
— it doesn’t fit him. That is one suspect you can strike off your list.

Coming out of the woods, you pass through the churchyard, and as
you do so, a black cat steps out in front of you. You almost trip over
it, but manage to keep your feet, only to find that it follows you. You
quickly realise that if the villagers find you with the witch’s hat and the
black cat, they are not going to believe in your innocence for very long!

94

You have to find some way of getting rid of the cat — food seems a
good idea, and then you remember the rats at the mill. You will need
to catch them, and that will require cheese, so you head for the inn.

Unfortunately, the innkeeper is in the inn kitchen, and he prevents
you from taking his cheese, or his last loaf of bread. Luckily, however,
you are able to steal the cheese when his back is turned. So, armed
with some bait you (and the cat!) head for the mill. Once inside, you
can see some movements on the rafters, and dropping the cheese
brings a mouse scurrying down. This you catch and give to the cat,
hastily leaving while its attention is diverted! While you are up at the
mill, you wonder if the miller is the witch — he might have spoilt his
own corn as a cover! When you find the miller he is busy carrying
sacks of flour, and he looks thirsty and tired. An idea strikes you, and
you fill your witch’s hat from the stream, offering it to the miller. He
thanks you, grudgingly, and drinks some of the water, before pouring
the rest over his head. You can see that the hat will not fit him, as he
does this. Another suspect can be crossed off the list.

As the miller takes the hat, he drops a sack of flour, and you remember
that the inn-keeper wanted one, which would enable you to get the
bread to feed the ducks. You head back to the inn, where the innkeeper
accepts the sack and lets you have the loaf of bread. As you leave the
kitchen, you notice that the innkeeper is continually running backwards
and forwards between the main part of the inn and the kitchen. This
gives you an idea for testing the hat against the innkeeper’s head. You
carefully balance the hat on the door between the two rooms, and then
call in the inkeeper — the hat falls from the door onto his head! It
doesn’t fit, but he is so furious with you that he throws you and the hat
out of the inn! Ah well, you can’t go there again but at least you know
the innkeeper isn't the witch, as the hat didn’t fit him.

The next place to try is the church, where the priest will be. He isn’t
in sight when you enter, so you climb the belfry to look for him. Once
by the bell, you cannot resist the urge to strike it, and so you ring the
bell. There is a shout below you, and you see the priest run into the
nave of the church, and stand looking up directly below you! This is
too good an opportunity to miss, and so you drop the hat, which sails
gently down and over the priest’s head. And over his shoulders as
well! You hurry down to the nave and pull the hat from his head, he
seems annoyed and hurries back to the crypt. You follow him, and find
the strange carvings on the floor of the crypt that you saw earlier, as
well as torches lining the walls. Strangely, the brackets holding the
torches onto the wall are made of iron — an expensive method! That
reminds you — you haven’t been to see the blacksmith yet!

The blacksmith is very unhelpful and very unfriendly, when you try
and approach him. Perhaps he is trying to hide something? Like the
blacksmith’s ducks are? It is time to find out just what the ducks are

95

hiding, and so you feed them the bread. They scatter and reveal the
gold which they have been guarding. The woodcutter appears and
claims the gold as the money which was stolen from him — obviously
by the blacksmith ! This is a fairly serious offence, and so the blacksmith
is put into the stocks on the green.

This gives you the opportunity to try the hat on the blacksmith, now
that he is immobile, and ... it fits! The blacksmith is the witch, and you
have proved your innocence! You celebrate that evening with the burn
ing of the blacksmith, glad that it isn’t you who is being burnt!

Obviously, when you are constructing your own plot lines, you do
not need to write them out in such a detailed and structured way as
the one above. That is written out like this, to make it interesting to read
and follow for other people — you are the only one who has to under
stand your plot notes.

The next stage in preparing your adventure is to go from the plot
notes to the actual data statements required for coding the adventure
using AKS. The next chapter shows how this is done, with a full break
down of the Witch Hunt plot described above. If you study both the
chapters together, you will see how a plot idea can be translated in
a straight forward way into AKS statements.

96

16
BREAKDOWN OF
WITCH HUNT

This chapter consists of a detailed breakdown of each location, object
and event in the example scenario Witch Hunt, explaining how they
can be implemented using the AKS system. The breakdown consists
of the following:

1) The location map of AKS, showing how each of the locations
is connected.

2) Tables listing each of the flags used, the scores given, the
location names, and the objects with their start locations.

3) Locations.
4) Objects.
5) Events.

FLAGS
Flag no.

0
1
2
3
4
5
6
7
8 I
9 .

10 I
11 :

Meaning
found hat
rung church bell
hat dropped on priest’s head
put toad in pond
being followed by cat
hat balanced on inn door
banned from inn
fed mouse
hat full of water
given miller water
blacksmith in stocks
started counting game moves

97

LOCATION MAP
FOR

WITCH HUNT

7.
POND

5.
GRAZING
LAND

17.
STREAM

4.
GREEN
NORTH

1.
_ GREEN

MIDDLE

2.
INN
BAR

16.
MILL

15.
BRIDGE

14.
ROAD

3.
_ INN

KITCHEN

9.
FORGE

8.
MEADOW

6.
GREEN
SOUTH

12.
CRYPT

10.
CHURCH
NAVE

11.
BELFRY

G
19.
WOODS

18.
WOODS

13.
CHURCH
YARD

c
20.
WOODS

1TT
WOODS □

22.
WOODS

Ü
23.
WOODS

24.
CLEARING

25.
WOODCUTTER'S

TWO-WAY LINK

ONE-WAY LINK

98

SCORES
Puzzle
Trying hat on woodcutter
Trying hat on priest
Trying hat on innkeeper
Trying hat on miller
Trying hat on blacksmith
Getting blacksmith in stocks
Getting rid of the cat
Freeing goatherd from spell
Finding gold
Loading a saved game

Maximum score is 100 points.
If you save the game, you only get 99 points.

Score
10
10
10
10
20
20
10
5
5

-1

LOCATIONS
Location no.

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Location
global location/player
green middle
inn bar
inn kitchen
green north
grazing land
green south
pond
meadow
forge
church nave
church belfry
church crypt
churchyard
road
bridge
mill
stream
woods
woods
woods
woods
woods
woods
clearing
woodcutter's

99

OBJECTS
Object no.

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

Object
player
hat
toad
ducks
cheese
bread
mouse
bell
goats
priest
sack of flour
woodcutter
cat
innkeeper
gold
miller
blacksmith
stocks

Initial location
green middle (1)
woods (23)
meadow (8)
pond (7)
inn kitchen (3)
inn kitchen (3)
mill (16)
church belfrey (11)
grazing land (5)
church crypt (12)
nowhere (-1)
woodcutter’s (25)
nowhere (-1)
inn kitchen (3)
nowhere (-1)
mill (16)
forge (9)
green north (4)

LOCATION 0 - THE GLOBAL LOCATION
Many of the definitions in this location will be standard for most AKS
scenarios. Commands which are usually explicitly coded in the Basic
program of other adventure games, such as movement, inventory, get
and drop, are defined in the AKS scenario global location. The explicit
coding in AKS is associated with the action (A) statements not with the
keywords which cause their execution. Witch Hunt defines the action
of going east as:

T,e,east,*
A,GO,E

This associates the keywords ‘e’ and ‘east’ with the action ‘GO,E’ so
that when the player’s command line contains either then word ‘e’ or
the word ‘east’ AKS will perform the action of moving the player east.
Supposing you wished to adapt Witch Hunt to print a message on the
screen confirming the action, it is a simple matter to add an extra action
to this trigger as follows:

T,e,east,*
A,PR,Going eastwards
A,GO,E

No modification of the AKS program itself is required. In addition to

100

allowing modification of the fundamental actions of an adventure game
scenario, actions may be deliberately omitted from a scenario by
omitting their definition from the global location.

The way Witch Hunt implements the cat following the player around
shows the flexibility of AKS triggers. From the above example, it can
be seen that adding actions to triggers allows extension of an action.
A brief examination of the Witch Hunt global location definition will
reveal that it has two versions of every movement command. Both
versions contain the same keywords but have different trigger condi
tions and actions. The first version will fire when flag 4, the ‘player being
followed by cat’ flag, is set to true (ie. ‘*F4’ evaluates to true). The
second version will fire unconditionally and so if the first version does
not fire the second version will. The first version, which fires when flag
4 is set to true, results in the player being moved by the ‘GO’ action
and the object 12 (the cat) being Zapped Into the player’s new location.
The second version, which fires when version one fails to fire, just does
a normal move player using ‘GO’. To cause the cat to start or stop
following the player merely requires setting flag 4 to true or false
respectively.

The global location in Witch Hunt also contains triggers for actions
not fundamental to adventure games in general but which may be
performed at any location in the Witch Hunt scenario. An example is
the action of eating something. Commands containing ‘eat loaf’ or ‘eat
bread’ will cause ‘Yummy yummy!’ to be printed and the loaf (object
5) to be Zapped Out to nowhere; provided, of course, that the player
is carrying the loaf (ie. “C5’ is true). A similar trigger exists for eating
the cheese. However, if the player enters ‘eat church’ then neither of
these triggers will fire and AKS will reach the ‘T,eat,*’ trigger and print
‘No thanks’. The addition of these extra scenario specific commands
helps to give the scenario credibility.

The global location cannot be reached by the player and so requires
no description or connection statements. Triggers which may occur
in any location must be defined here. However, remember that triggers
defined in the player’s current location (local triggers) have priority over
triggers defined in the global location (global triggers). If a local trigger
is satisfied then the global trigger will never even be tested. This is
illustrated in Witch Hunt by the global trigger ‘T,n,north,*’ and the local
trigger defined in location 13, ‘T,n,north,church,*-F4.012’. If the player is
at location 13 and enters the command ‘go north’ then AKS try to
match the local trigger first. The keyword ‘north’ will match and so the
condition “-F4.012’ will be evaluated. When this evaluates to false, the
trigger is not satisfied and so AKS continues to try the remaining local
trigger statements; only when all these have been tried are the global
triggers tried resulting in the firing of the unconditional ‘T,n,north,*’. In
the case where ‘*-F4.012’ evaluates to true, the actions immediately fol-

101

DATA L,0 DATA -
DATA DATA
DATA DATA
DATA DATA
DATA DATA
DATA
DATA
DATA DATA
DATA DATA
DATA
DATA DATA
DATA
DATA DATA
DATA DATA
DATA
DATA
DATA DATA
DATA DATA
DATA
DATA
DATA
DATA DATA
DATA DATA
DATA
DATA
DATA
DATA DATA
DATA DATA
DATA DATA
DATA DATA DATA DATA
DATA
DATA DATA
DATA DATA
DATA

T,n,north,*F4A,G0,N A,ZI,12
T,n,north,* A,GO,N
T,e,east,«F4 A,G0,E
A,ZI,12T,e,east,*
A,60,E

T,s,south,*F4
A,GO,5A,ZI, 12T,s,south,* A,GO,S
T,w,west,*F4A,G0,W
A,ZI ,12T,w,west,«A,G0,WT,u,up,*F4
A,GO,U A,ZI,12T,u,up,*
A,G0,U
T,d,down,*F4
A,G0,D
A,ZI, 12T,d,down,«
A,GO,D

T,wear,put on,*A,PO
T,remove,take off,*A, TO
T,get,take,pick up,catch,*
A,GET,drop,put,throw,release,* A, DR
T,ex,exam,examine,look at,*
A,EX

T,i , inv,inventory,* A,INT,score,*A, SC
T,1oad,*A,LOA,IS,—1 T,save,*A,SA
T,eat bread,eat loaf,*CS Á,PR,yummy yummy!
A,ZO,S

T,eat cheese,*C4
A,PR,Far too mouldy!

T,eat,*

lowing the local trigger statement are executed and no further trigger
testing is done; hence AKS does not reach the global trigger statement.
In this way, the same keyword can be made to have different effects
in different locations. Here, ‘north’ is made to cause an entirely different
action in location 13 to the normal global one.
7690 7700
7710 7720
7730 7740
7750 7760
7770 7780
7790
7800
7810 7820 7830 7840
7850
7860 7870 7880
7890 7900
7910 7920
7930
7940
7950
7960
7970 7980
7990
8000
8010 8020
8030
8040 8050
8060
8070
8080 8090
8100
8110 8120
8130
8140 8150 8160 8170
8180
8190
8200
8210
8220 8230
8240

102

02508260
8270

DATA
DATA
DATA
n runs o-ff.
DATA
DATA DATA DATA
DATA DATA
DATA

82808290
83008310 0320
83308340

DATA
DATA DATA
DATA DATA

A,PR,No thanks.
T,Teed cat,drop mouse,release mouse,«C6.012
A,PR,The cat takes both mouse and cheese and the
A,is,10
A,AF,4,F A,20,6
A,20,12
A,HC,0 T,hit,kill,attack,*A,PR,Sorry. No violence Is allowed in this game.

8350 DATA T, show, gi ve, accuse,-feed , *
8360 DATA A,PR,Not interested.8370 DATA T,qult,*
8380 DATA A,SC8390 DATA A,QU
LOCATION 1 - GREEN MIDDLE
This is the first real game location in the scenario definition. Witch Hunt
starts the player off at this location. This location has two description
definitions (D statements). The description the player is given will al
ways start with the first of these which has no condition attached. The
second description is only given when the player has not spent one
game turn at this location (ie. not visited location 1, “-VI is true). Being
as the player starts at this location he will only receive the second
description once — before his first move. In this way, Witch Hunt
implements the usual introduction to an adventure game (ie. as the
second description).

The player is only allowed 100 turns in which to complete Witch Hunt.
The counting of moves is done using one of the AKS counters (counter
1). When the counter reaches zero event 1 will fire automatically and
the actions defined in event 1 will be executed. These actions are
described later in this chapter. However, for a countdown to be started,
the player’s first move must result in an initialise counter (1C) action.
For this reason there is a trigger for each possible direction of movement
from this location (N,S,E,W). In addition to the normal effect of moving
the player (by ‘G0,N’, ‘GO,S’, etc.) each of these triggers initialises
counter 1 to 100 (by ‘IC,1,100’). Although this would have the desired
effect on the player’s first move, if the player later returns to this location
and moves off again then the counter will be reinitialised to 100. This
would be fine if you wanted to implement something like a player
holding his breath as he leaves a diving bell and having to return to
the bell within 100 moves or drown, but we don’t. Therefore a flag (flag
11) is used to indicate whether the initialisation has been done or not.
AKS automatically initialises all flags to false (F) at the start of a game.
The movement triggers test for this flag not being true (by “-FIT)
before firing and once fired they assign a value of true to flag 11 (by
‘AF,11,T’). Counter 1 will only be initialised by the player’s first move
ment as these triggers will never fire again.

103

Travelling east from this location will take the player to location 2
— the inn. The trigger keyword ‘inn’ allows the player to enter com
mands like ‘go inn’ or 'enter inn'. However, if the player has been
banned from the inn (ie. flag 6 is set to T) then the trigger ‘T,inn,*-F6'
will not fire. Instead, the ‘T,e,east,inn,*F6’ trigger will fire and print a
message saying that the player may not enter. The latter is another
example of the local trigger having priority over the global trigger.
8400 8410
8420

DATA L,1 DATA " DATA
see your home - the mill. To east is the inn. The church
where all this trouble began is to the south. You can h

ear the goats making goaty noises to the west. DATA - •
DATA
DATA
DATA
inn. DATA DATA
DATA
DATA DATA DATA
DATA DATA
DATA DATA DATA
DATA DATA DATA DATA DATA
DATA
DATA
DATA DATA

D,*,In the middle of the village green.
D,*-V1,Beyond the north end of the green you can

84308440
8450
8460
8470
8480
8490
85008510
8520
85308540
855085608570
8580859086008610
86208630
86408650
8660

T,inn,*-F6
A,GO,E
T,e,east,i nn,*F6
A,PR,The innkeeper refuses to let you enter the
T,e,east,i nn,*-F11 A,GO,E
A,AF,11,T A,IC,1,100T,n,north,*-Fl1
A,G0,NA,AF,11,T
A,IC,1,100T,w,west,*-Fl1 A,G0,W A,AF,11,T A,IC,1,100
T,s,south,*-F11A,GO,8A,AF,11,T
A,IC,1,100

C,N,*,4
C,S,*,6C,E,*,2
C,W,*,5

LOCATION 2 - INN BAR
The bar in the Melbourne Inn has an unconditional short description
and a long description for the first visit to the location implemented in
the same way as for location 1. The long description mentions that the
kitchen door is slightly ajar thereby giving a clue to the way of trying
the hat on the innkeeper. A third description is given when the player
has balanced the hat on the door. Triggers exist to allow the hat to be
placed on the door and to retrieve it should the player fail to complete
the puzzle. Two versions of calling the innkeeper allow him to enter the
room when the hat is either on or off the door (flag 5). Notice that the
innkeeper object is never actually moved as the messages displayed
make this seem to happen without having to genuinely move the object.
When the innkeeper is called and the hat is on the door, the player
discovers that the hat does not fit him, gains ten points for solving this

104

puzzle (by Increment Score — 'IS,10’), gets thrown out of the Inn with
the hat and banned from returning (by ‘AF,6,T’).
8670
86808690
8700

87108720
8730
87408750
8760
8770
87808790
880088108820
8830
88408850

8860
8870
8880

8890
89008910
8920
8930
8940
89508960
8970

DATA L,2
DATA “ DATA of the kitchen door!
DATA [.unexplained spoiling of the ale. The kitchen door sits
slightly ajar at the east end of the room.DATA - -
DATA
kitchen door. DATA

DATA DATA
DATA DATA
DATA DATA
DATA
DATA DATA
DATA
DATA DATA
i ng ,»you»he..cr osses,»hi msel f ^and,„dashes,^back ^i nto,^the,*ki tc hen. "
DATA
DATA and steps in the room.
DATA '
Ike a thimble on a giants head. He throws you and your h at out of the inn.DATA
DATA
DATA DATA
DATA DATA
DATA DATA
DATA

D,*,The bar in the Melbourne Inn. D,*F5,Some fool has balanced a pointed hat on top
D,*-V2,The inn is closed at the moment due to the

T,balance hat,put hat,place hat,«Cl A,PR,You manage to balance the hat on top of the
A,AF,5,T
A,ZO,1T,e,east,ki tchen,*F5
A,PR,The hat falls to the floor.A,ZI,1A,AF,5,F
A,G0,E
T,get hat,*A,ZI,1
A,AF,5,F
A,GET,cal 1,shout,*-F5
A, PR, "The^i nnkeeper .comes.i nto^the,..room, ,..but „.see

T,cal1,shout,*F5
A,PR,The innkeeper pushes the kitchen door open
A,PR,PLOP! The hat lands on his head. It looks 1

A,IS,10 A,G0,W
A,Z1,1 A,AF,5,F
A,AF,6,T
T,1 eave,out,* A,G0,W
C,E,*,3 C,W,*,1

5 s jcia

B

105

LOCATION 3 - INN KITCHEN
The kitchen in the Melbourne Inn is the home for two puzzles — the
cheese and the bread. The innkeeper will not allow the player to take
either of these objects. Provided that the objects are present, local
triggers will trap an attempt to ‘get cheese’ or any mention of the words
'loaf and ‘bread’. Instead of performing the normal get action, a mes
sage is printed telling the player that the innkeeper has prevented his
action. Both messages contain clues to a way of obtaining the appro
priate object. In the case of the cheese, the clue is in the words “. . .
openly trying to take . . .”. The solution is to not try and take the cheese
openly — ‘steal’ it. In the case of the bread, the clue is in the words
". . . last loaf. . .” and in the fact that on entering the inn bar the player
is told that the innkeeper is broke. Giving the innkeeper a sack of flour
from the mill allows him to bake some new loaves and so he gives the
player the old one. This is implemented by the trigger “T,give,*C10.05”
which may fire when the player is carrying the flour (object 10) and
when the innkeeper has the loaf to give away (object 5 is at this location).
Although dishonest enough to accept stolen flour, he will not be in
terested in receiving money from the player because of the danger of
being accused of stealing the woodcutter’s gold.
8980 8990
9000
90109020
90309040

DATA L,3 DATA -
data nnkeeper is a little short of money at the moment. DATA - -
DATA
DATA DATA trying to take my -food!
DATA - ■ ------
data akE»some„mare„loave3„now." and grabs your sack of flour.
"You.„can.„have.„this.„loaf. "

DATA DATA DATA
DATA o take my last loaf! DATA “ ‘ DATA DATA

D,*,Kitchen in the Melbourne.D,«-V3,It seems surprisingly empty. Perhaps the i
T,steal cheese,*A, GE
T,cheese,*04A,PR,GET OFF MY CHEESE! What do you mean openly. . . * * I
T,gi ve,*C10.05A,PR,The innkeeper says "Oh.,goody .„goody. » I .can90509060

9070
908090909100

A,MO,5,0A,ZO,10T,1 oaf,bread,*05A,PR,GET OFF MY BREAD! What do you mean trying t ' * ’ * I
911091209130

T,1eave,out,bar,* A,Ga,W
C,W,»,2

106

LOCATION 4 - GREEN NORTH
The north end of the village green is the location where the game can
be completed. With the blacksmith in the stocks here for stealing the
woodcutter’s gold (flag 10 is set to T), the hat can be tried on the
woodcutter and found to fit. The final twenty points are awarded for
doing this (by ‘IS,20’) and the player clears himself.

9140
9150
9160

91709100
9190

9200
9210
9220
923092409250
9260

DATA L,4
DATA ■
DATA
row rotten -food (and the odd brick) at people in the sto cks. This is where they always burnt witches. You rememb
er throwing on wood... Those were good times.DATA “ --- - ---
DATA DATA
h.»i s^the...wi tch ! " screams the priest. ! „.Burn.„himI ". And they do. Everyone has a real good time
... roasting chestnuts and potatoes in the -fire. You hav e cleared yoursel-f.
DATA ■■ ■■
DATA
DATA
DATA
DATA DATA
DATA

the north end o-f the village green. D,*-V4,You remember coming here in the past to th

T,put hat,place hat,try hat,*Cl.F10A,PR, It -fits!
A,PR,A crowd of villagers gather. "The.„blacksmit

"Burn.„him! .„Burn.„him

A,IS,20A, SC
A, QU
T,road,»
A,G0,EC,S,»,1

C,E,*,14

LOCATION 5 - GRAZING LAND
This location is a red herring. It is a very good v»/ay of losing bread and
cheese to the goats. If the player is carrying either the cheese or the
bread and tries to feed these (or any other object) to the goats then
a goat will help itself to either cheese or bread. The order of triggers
makes the goats prefer cheese to bread. In addition to this, any attempt

107

DATA L,5
DATA
DATA
DATA
DATA
DATA
DATADATA
DATA

to perform an action using either cheese or bread will result in the
goats snatching one or the other.
9270
92B0 9290
9300
9310
9320 9330 9340 9350

D,*,An area of grazing land.
T,f eed,cheese,*C4A,PR,A goat snatches your cheese and eats it.
A,Z0,4
T,f eed,bread,1 oaf,*C5A,PR,A goat snatches your bread and eats it.
A,Z0,5
C,E,*,1

LOCATION 6 - GREEN SOUTH
93609370
9380
9390
940094109420
94309440
9450

DATA L,6 DATA ■
DATA the meadow at the west of the green.
DATA DATA DATA
DATA
DATA DATA
DATA

D,*,At the southern end of the village green.D,*-V6,A foul odour drifts from the direction of
T, meadow,*
A,Ga,WT, church,* A,BO,S
C,W,*,8
C,N,*,1
C,S,*,10

s

LOCATION 7 - POND
The water in the pond is stagnant and may not be reached by the
player. The pond does provide a means of releasing the goatherd from
the spell which has turned him into a toad. Throwing the toad into the
pond undoes the spell and so he turns back into a boy. Five points are
awarded for this and a clue from the boy tells the player to try exploring
the woods. The changing of the toad to a boy is only a change in the
description of the toad object (object 2) brought about by setting a
flag (flag 3) to true. This technique is explained in the description of
the toad object later in this chapter.

108

Feeding the ducks the bread from the inn makes the ducks move
away from their nest and reveal the woodcutter's gold. Unlike the toad
to boy change, the ducks to gold change involves a genuine substi
tution of objects. The ducks object (object 3) is Zapped Out to nowhere
and the gold object (object 14) is Zapped In from nowhere. The reason
for this alternative approach is that the gold object can be manipulated
by the player whereas the boy object can not. Were the description
switching technique used here, the player could create strange effects
by referring to the gold as ducks. While not doing any harm in terms
of the scenario, this would make the game appear rather stupid to the
player.
9460
9470
94809490
9500
9510

952095309540
9550
9560 9570
9500 95909600 96109620

DftTft L,7 DftTft -
DATA
DATA
-F3 DATA
DATA"Where.^am.»I?.»What^happened?" he mutters as he climbs ou
t of the pond. "Last^thing.^I^rememberAl*waB»strol 1 Ing.,!n
.«the..woods ! " DATA
DATA DATA
DATA ere was something hidden in their nest. DATA - -- -
DATA DATA
DATA DATA DATA
DATA

D,*,At the edge of the village pond.
D,*-V7,The pond is stagnant and smells -foul.
T,put toad,drop toad,throw toad,release toad,*C2.
ft, DR
ft,PR,Splash.! The toad turns into a small boy.

A,AF,3,T
A,IS,5T,feed duck,feed ducks,«CSA,PR,The ducks gobble up the bread and leave. Th
A,Z0,3A,Z0,5A,ZI,14A,IS,5
T,f i11,water,pond,* A,PR,It is impossible to get at the water.C,S,*,8

109

LOCATION 8 - MEADOW
96309640
9650

9660
96709680

DATA L,8 DATA “ DATA
e ground becomes marshy. At the western end of the meado
w you can see a wooden building.
DATA
DATA
DATA

D,*V8,In the meadow.D,*-V8,In the middle of a meadow. To the north th

C,N,*,7
C,W,*,9
C,E,*,6

LOCATION 9 - FORGE
The description the player is given on the first visit to this location says
that the blacksmith is well known for his all round handyman skills. This
might give the player a clue as to who carved the intricate markings
on the floor of the secret crypt.

Showing the blacksmith anything other than gold coins, or accusing
him of something when the coins (object 14) are not carried results in
the player being told to go away. However if the player is carrying the
coins the blacksmith will confess to stealing the woodcutter's gold and
is dragged away by the villagers. The player is not told where they take
him — to the stocks on the north of the green (by ‘MO, 16,4’). A flag
is set (flag 10) to indicate that the blacksmith is in the stocks. Twenty
points are awarded for completing this puzzle.
969097009710

9720
9730

9740
9750

DATA L,9 DATA ■
DATA
. The blacksmith always repairs everyones tools. He is a pretty good all round handyman.DATA - ■ - ■ - - -
e,*C14 DATA
..I.»conf ess.»-^I.»stole,»the^woodcutter 's^gold. " he blurts o ut.
DATA leading blacksmith away. DATA “

D,*,At the blacksmith's forge.
D,*-V9,You remember coming here often in the past

T,show gold,give gold,show coins,give coins,accus
A,PR,The blacksmith bursts into tears. "Alright.

A,PR,A crowd of villagers rush up and drag the p
A,IS,20

110

97609770
97809790

DATA DATA
DATA
DATA

A,AF,10,TA,MO,16,4
T,show,g i ve,accuse,forge,anvil,*
A,PR,He shouts "Be^off .^with^you! .»Littlej.wltch. ".

9800 DATA C,E,*,8

flip?ii'JM

i5

u
; li > i jI

i:

r
<

' Xj

LOCATION 10 - CHURCH NAVE
Once the player has managed to get the hat to land over the priest’s
head and shoulders as described in the next location explanation, the
hat must be retrieved. The trigger which traps the keyword ‘hat’ when
the hat is on the priest’s head Zaps Out the priest (object 9), Zaps In
the hat (object 1) and then does a Get to pick it up.

98109820
9830

D,»,In the church nave. D,*-Vl0,The secret entrance to the crypt you -foun

9840 98509860 987098809890
9900
9910
9920 99309940
9950
9960 9970
9980

DATA L,10 DATA ■
data d lies open. High above you is the belfry balcony. The f ront door is to the north. In the south wall is a small
door.
DATA DATA DATA DATA DATA
DATA
DATA DATA
DATA DATA
DATA DATA
DATA DATA
DATA

T,hat,«F2.09
A,PR,Tug...
A,ZI,1 A,AF,1,F A,Z0,9 A,BE
A,PR,The priest storms off.
T,crypt,*
A,60,DT,belfry,*
A,GO,UC,N,*,6
C,S,*,13C,D,*,12
C,U,*,11

111

LOCATION 11 - CHURCH BELFRY
The puzzle at this location is a two stage one, given that the player has
already found the hat. The first stage is to ring the bell which causes
the priest (object 9) to come from the crypt and stand in the nave
(location 10) directly below you (by ‘MO,9,10’). Setting flag 1 to true
causes the priest’s description to change to say he is looking up at the
belfry. The second stage of the puzzle involves dropping the hat from
the belfry onto the priest’s head (indicated by setting flag 2 to T) to
reveal that it is too large for the small priest and gain ten points. If the
bell has not been rung when the hat is dropped (flag 1 is F) then it just
falls onto the nave floor, as a result of the second ‘drop hat’ trigger
statement.

9990
10000 DATA
10010 DATA
10020 DATA
10030 DATA10040 DATA
10050 DATA
10060 DATA10070 DATA10080 DATA lØØiØ DATA
10100 DATA

DATA L,llD,*,In the belfry.D,*-Vll,Far below you can see the church nave.
T.ring bell,*-<Fl/F2)A,PR,The bell tolls and nearly deafens you!
A,MO,9,10A,PR,You see the priest run into the church dire

ctly below you.A,AF,1, T
T,ring bel 1 ,«A,PR,Ding dong...!T,drop hat,throw hat,*Cl.FlA,PR,The hat drops from the belfry and lands ove

r the priest's head.
A,IS,10A,AF,2,TA,ZO,1T,drop hat,throw hat,*Cl.-Fl

10110 DATA10120 DATA10130 DATA
10140 DATA

112

10150 DATA
10160 DATA10170 DATA
10180 DATA10190 DATA

A,PR,Weeee.... it falls from the belfrey.
A,MO,1,10
T,nave,1 eave,*
A,GO,D

C,D,»,10

LOCATION 12 - CHURCH CRYPT
This is the location discovered by the player (before the game started)
and where he was caught by the priest. The function of the crypt in
the Witch Hunt scenario is to provide the player with clues to the identity
of the witch, without providing any hard and fast evidence. The clues
are obtained by examining the location. Examination of the markings
on the floor reveals nothing of their meaning but the player is told that
they are well carved. When the player first visits the blacksmith, he is
reminded that the smith is well known for his all round handyman skills.
This clue is a little vague whereas the clue given by examining the
torches on the wall is very informative. Just mentioning torches says
that they are firmly attached to the wall by brackets. The unwary player
may take this to only mean that the torches may not be taken. However,
this should prompt the player to examine the brackets and discover
that they are made of iron. This points very strongly at the blacksmith’s
involvement. Notice that the markings, torches and brackets are not
objects and so their examination requires explicit triggers in the crypt
location definition; whereas objects have their examination details
embedded in the object definition.
10200 DATA L,12 10210 DATA
10220 DATA D,«,In the

D,«“V12,The air is icy cold. The floor is intrica
tely carved with strange markings. On the wall are lit t orches.10230 DATA10240 DATA

secret crypt.

T,torches,torch,wal1,wal1s,«
A,PR,A couple of torches are firmly attatched to the wall by brackets.
T.bracket.brackets,«
A,PR,Just plain iron brackets.T,f1oor,markings,«
A,PR,You can make no sense of the markings but y

10250 DATA
10260 DATA10270 DATA
10200 DATA

OU can see they are well carved.10290 DATA - -
10300 DATA10310 DATA

T,leave,«
A.GO.UC,U,»,10

fil f/l s{m>Ai

«
iwwww

.1

^|i||h7

113

LOCATION 13 - CHURCHYARD
When the player goes north from here he trips over a black cat which
will then follow him around for 20 moves before a crowd of villagers
notice he has a black cat familiar and decide to burn him. The counting
of moves is done using counter 0 and the villagers burning the player
is event 0. The local trigger which traps an attempt to move north starts
the countdown by the action 'IC,0,20’. In addition to this, a flag is set
to indicate that the player is being followed by the cat (flag 4). This
prevents the same trigger from firing again when the player tries to go
north again and it allows firing of the alternative set of movement triggers
defined in the global location. These alternative movement triggers
move both player and cat. The way in which the player may get rid of
the cat is described in the explanation of the mill location definition
(location 16). It should be noted that the cat will appear again should
the player return here and go north again after having got rid of the
cat at the mill. However, the objects to get rid of the cat have been
destroyed (Zapped Out to nowhere) at this stage in the game so the
cat can not be disposed of again.
10320 DATA L,13
10330 DATA ■
10340 DATA 10350 DATA ere !
10360 DATA 10370 DATA

D,«,In the churchyard.
T,d i g,grave,headstone,tomb,• A,PR,Careful... they bury grave robbers around h
T,n,north,church,*-F4A,PR,You trip over a black cat which appears fro

m behind a headstone!
A,ZI, 12A,AF,4,T
A,IC,0,20

T,church,*A,GO,N T,woods,«
A,Ga,W C,N,*,10

C,W,*,10

10380 DATA10390 DATA
10400 DATA
10410 DATA
10420 DATA10430 DATA
10440 DATA10450 DATA
10460 DATA

LOCATION 14 - ROAD
To prevent the player wasting many hours trying to give a hat full of
stream water to characters other than the miller, a local trigger will fire
as the player moves westwards carrying the hat of water. This trigger
tells the player that he tripped and spilt it. The flag indicating that the
hat is full of water (flag 8) is reset to F; thereby emptying the hat.
10470 DATA L,14
10480 DATA10490 DATA

D,*,ThB road.
D,*-V14,You know this road well. To the north it

passes by the mill on its way to town.
T,w,west,*F8A,PR,WHOOPS I You tripped and spilt the water.
A,AF,B,FT,fol low road,along road,«
A,eO,N

C,W,»,4C,N,*,15

10500 DATA
10510 DATA
10520 DATA10530 DATA10540 DATA
10550 DATA
10560 DATA

LOCATION 15 - BRIDGE
The player may not fill the hat at this location. If he attempts this then
the trigger will say that he is unable to fill it here. A careless adventurer
may take this to mean that the hat may not be filled instead of ‘not filled
here’.
10570 DATA L,15
10500 DATA
10590 DATA10600 DATA

e.

D,*,On a bridge over a stream. T, Mater, str earn, -f 111 , down, d, *A,PR,The stream is totally inaccessable from her
1(9610 DATA
10620 DATA

C,S,»,14
C,N,*,16

115

LOCATION 16 - MILL
There are two problems to be overcome at the mill. Firstly, the mouse
must be caught. However, the player is not automatically told that there
is a mouse here. Instead he is told that something is moving around
in the rafters. Examination of the rafters or listening in this location will
inform the player that he thinks that there is a rat in the rafters. If the
player then mentions the keyword ‘rat’ or ‘rats’ he is told that it is a
mouse not a rat. These triggers only fire when the mouse is in the rafters
(ie. flag 7 is F). The mouse can be tempted from the rafters by feeding
it the cheese or just dropping the cheese. When this happens, the
cheese object is Zapped Out (by ‘Z0,4’) and flag 7 is set to T indicating
the mouse is no longer in the rafters. The description of the mouse
changes as a result of setting flag 7 and becomes a ‘piece of cheese
with a mouse attached to it’. An attempt to get the cheese when flag
7 is set to T results in a message saying that the mouse refuses to let
go of it. If the player has the hat he may catch the mouse in it otherwise
the mouse will slip through his fingers. From hereon the mouse and
cheese may be manipulated as one object.

The second problem faced by the player in this location is finding
out if the hat fits the miller. This is solved by giving the miller the hat
full of water. He will drink some of the water and then pour the rest
over his head at which point the player sees that the hat would not fit
the miller. Ten points are awarded for doing this. However, if the player
has already done this once (ie. flag 9 is T) and tries a second time,
the miller just smiles and says go away creep. When the miller took
his drink, he put down the sack of flour (object 10) he was carrying
and did not pick it up again when he started working again. The sack
can now be picked up by the player. Previously, any mention of flour
or sacks caused a trigger to fire which said the miller growls at you.
10630 DATA L,li> 10640 DATA 10650 DATA
10660 DATA
10670 DATA
10680 DATA
10690 DATA10700 DATA
10710 DATA 10720 DATA

ese.10730 DATA10740 DATA
10750 DATA

D,*,The mill.T,1isten,*-F7A,PR,You can hear a faint scurrying noise. You w
onder if it is a rat.

T,rafters,«-F7A,PR,Something is making noises. You wonder if i
t is a rat.T,rat,rats,*-F7A,PR,Rat! Pah! I'm a mouse you fool.

T,feed mouse,drop cheese,*C4A,PR,The mouse scurries down and nibbles the che
A,AF,7,TA,Z0,4T,catch mouse,get mouse,take mouse,pick up mouse,

*F7.C1.-(W1/F8>A, GEA,PR,You caught the mouse in the hat.T,catch mouse,get mouse,take mouse,pick up mouse.
10760 DATA10770 DATA
10780 DATA *F7

116

10790 DATA10800 DATA
10810 DATA
10820 DATA
10830 DATA
10840 DATA10850 DATA
10860 DATA

10870 DATA
10880 DATA10890 DATA
10900 DATA10910 DATA
10920 DATA10930 DATA
10940 DATA

A,PR,He slips through your fingers. T,cheese,*F7.(06/06)
A,PR.The mouse holds onto the cheese.
T,flour,sack,grain,bag,ml 11,*-F9
A,PR,The miller growls at you! T,give,*F8.-F9
A,PR, "The.»mi 11 er.»puts..thej,sack.^down,.^takes.^the..,hat.^and.»dr 1 nks.Bome ..water.
A,PR,He says "Ta..Lad. " and then pours the rest o

ver his head. As he does this you notice that the hat is too small for him to wear.A,IS,10
A,AF,8,F A,ZI,10
A,AF,9,T T,gi ve,*F8.F9
A,PR,He smiles and says "Go^away..creep." C,S,»,15 C,W,«,17 ,

7

LOCATION 17 - STREAM
Unlike the bridge over the stream and the pond this location allows the
player to fill the hat with water. To indicate the hat is full of water, flag
8 is assigned the value T. Should the player be foolish enough to forget
to take the hat off (ie. ‘W1’ is T) before attempting to fill it, he is told
why his action failed.
10950 DATA L,1710960 DATA ' 10970 DATA
10980 DATA10990 DATA
11000 DATA
11010 DATA
11020 DATA

11030 DATA
11040 DATA
11050 DATA

D,*,By the stream.
D,*-V17,A loud sploshing sound comes from the wat er wheel. The water looks as -fresh and clear as ever.
T,fill,*C1.-<W1/C6)
A,PR,If you insist. A,AF,8,T

Tjfill hat,*Wl
A,PR,Sargle...gargle...bubble! You are unable to

hold your breath any longer and take your head out of t he stream.
T.mill,*A,GD,E
C,E,«,16

117

LOCATION 18 - WOODS (a)
This location is the first WOODS location the player reaches. When the
player arrives here for the first time, the second description is given
in addition to the main description as a warning to the player.
11060 DATA L,1B
11070 DATA11080 DATA 11090 DATA
11100 DATA

D,«,In the deep dark woods.
D,*-V18,Careful ! You might get lost.C,E,*,13
C,W,*,19

LOCATION 19..22 - WOODS (b)
These locations all have the same description as location 18 making
it difficult for the player to find his way around. To further complicate
navigation of this maze, moving in a certain direction does not always
take the player to the next physical location in that direction. Reference
to the location map will quickly clarify this idea.
11110 DATA L,19
11120 DATA ■11130 DATA11140 DATA11150 DATA11160 DATA L,2011170 DATA *
11180 DATA11190 DATA
11200 DATA11210 DATA11220 DATA L,2111230 DATA ■11240 DATA
11250 DATA
11260 DATA11270 DATA L,22
11280 DATA
11290 DATA
11300 DATA

D,«,In the deep dark woods.
C,E,»,1BC,S,*,20C,W,»,21
D,*,In the deep dark woods.C,W,*,23C,N,»,19C,S,*,22C,E,«,21
D,*,In the deep dark woods.C,W,«,20
C,E,«,21
C,S,*,23
D,«,In the deep dark woods.
C,N,*,20
C,E.*,23

LOCATION 23 - WOODS (c)
This is another location in the maze but, as the player arrives for the
first time a second description tells the player that he thought he saw
someone run away. The player finds the hat here.
11310 DATA L,23
11320 DATA -
11330 DATA

D,*,In the deep dark woods.
D,*—V23,As you arrived you thought you saw someon

e run away.
C,N,*,20C,E,*,24
C,W,»,22

11340 DATA11350 DATA
11360 DATA

118

LOCATION 24 - CLEARING
The clearing in the woods exists to provide the player with a hint for
getting the woodcutter to try the hat on. One part of the location des
cription says that the clearing is sheltered from the wind and the sun
seems very hot. Wearing the hat removes this part of the description.
The player must be wearing the hat when he first moves south to the
woodcutter's house. Seeing that the player is wearing the hat, the
overheating woodcutter takes it and tries it on for size to see if it will
shade him from the sun. It does not fit so he replaces it on the player’s
head. The player is awarded ten points for solving this part of the
scenario.
11370 DATA L,24
113BØ DATA
11390 DATA

D,*,In a clearing in the woods.
HIM D,»-Wl,It is sheltered -from the wind here and the sun is uncomfortably hot,

D,»-V24,You hear a loud chopping sound to the sou11400 DATA
th.11410 DATA

11420 DATA11430 DATA
11440 DATA
11450 DATA

T,s,south,*-V23.Wl
A,IS,10
A,GO,5

C,W,*,22
C,S,*,25

119

LOCATION 25 - WOODCUTTER’S
The woodcutter can be found here. Any mention of the woodcutter’s
hut results in the player being told off by the woodcutter.
11460 DATA L,25
11470 DATA
11480 DATA11490 DATA

D,*,The wood cutter'* hut.
T,hut,*A,PR,The woodcutter bars your way. "I've^^already

^had ^y .»gol distal en. ».I ' m»not »gol ng».to»l ose»anyth 1 ng »el se . »Keep »out !"C,N,*,2411500 DATA

OBJECT 0 - THE PLAYER
In AKS the player is considered to be a special type of object. The
player object is defined in a similar way to all the other objects although
any description statements will never be printed by AKS. The initial
position of the player can therefore be defined using the position state
ment. Witch Hunt starts the player off at location 1, the middle of the
village green. Unlike other objects, it makes no sense to start the player
object off at a special location (ie. either location 0 — carried, or location
-1 : nowhere). The player object may be given names (using the N
statement) and suitabilities (using the S statements) to allow reference
to the player character in the game. It makes no sense to allow the
player to get himself (by 'S,GE,*’) or wear himself (by ‘S,PO’) whereas
it may be desirable to allow the player to examine himself (by
‘S,EX,*,description'). Witch Hunt, however, sticks to the more conven-

120

tional adventure game format and does not implement actions on the
player by the player.
11510 DATA 0,0
11520 DATA p.l

OBJECT 1 - HAT
The witch’s hat can exist in two states depending on the value of the
‘hat full of water’ flag (flag 8). As far as the hat object is concerned
these states are just different descriptions —one for each state of flag
8. The hat starts off at location 23 (position 23 — ‘P,23’). The hat is
fundamental to completion of Witch Hunt and the player can get an
important hint by examining it. Note that the hat may not be put on
when full of water (’S,P0/-F8’).

11530 DATA 0,111540 DATA ■
11550 DATA
11560 DATA11570 DATA
11580 DATA CUE Witch's Hat hat !
11590 DATA
11600 DATA11610 DATA
11620 DATA

D,*-F8,a witch's hat.
D,«F8,a witch's hat Full of water.
P,23
N,hat,*
5,EX,*,It has a label on the inside which says 'A

SIZE 9'. You wonder who wears a size 9
S,GE,*
S,DR,(F8/C6>S,P0,»-<Fe/C6)S,T0,«

121

OBJECT 2 - TOAD
The toad has two states, toad and goatherd, implemented in an identical
manner those of object 1. When in the goatherd state (flag 3 is T) this
object may not be picked up (‘S,GE,*-F3’). Names are defined for both
states to allow the object to be examined in either state. The description
given depends on the state of the object.
11630 DATA 0,211640 DATA
11650 DATA11660 DATA
11670 DATA
116Q0 DATA11690 DATA
11700 DATA
11710 DATA

D,*-F3,a small wart-covered toad.
D,»F3,a wet and -frightened goat herd.
P,8
S,GE,*-F3
S,DR,*N,toad,boy,herd,•S,EX,«-F3,a very human looking toad.
S,EX,*F3,a very toady looking human.

OBJECT 3 - DUCKS
The ducks object can be referenced by the names ‘duck’ or ‘ducks’.
It is important not to make a scenario too fussy about small details of
the vocabulary. In general a plural object should be made to recognise
its singular form.

D,*,several ducks.
P.7N,ducks,duck,«S,EX,*,They seem to be sitting on something.

11720 DATA 0,3
11730 DATA11740 DATA
11750 DATA
11760 DATA

122

OBJECT 4 - CHEESE
11770 DATA 0,4
11780 DATA11790 DATA
11800 DATA11810 DATA11820 DATA
11830 DATA

D,»,a small piece o-f cheese.
P.3N,cheese,»
S,GE,»S,DR,» S,EX,»,Looks a bit cheesy!

OBJECT 5 - LOAF
11B40 DATA 0,5
11850 DATA
11860 DATA11870 DATA11880 DATA11890 DATA

D,«,« loa-f at bread.
P.3N,loa-f ,bread,»
S,GE,*8,DR,»

OBJECT 6 - MOUSE
The mouse object exists in three states:

1) mouse
2) mouse and cheese
3) mouse and cheese in hat

The current state and description of the object is controlled by only
one flag, the 'mouse fed’ flag (flag 7). If the mouse has not been fed
the cheese this flag has the value F and the mouse is in state 1. On
feeding the mouse this flag is set to T. After feeding the mouse, but
before picking it up (“F7.-C6), the object is in state 2. Once the object
has been picked up ('*F7.C6’), it enters state 3. The sequence of
transitions from state to state is fixed as 1-2-3. This object is known by
the names cheese or mouse. Another cheese object already exists so
a condition must be attached to the recognition of the name. The mouse
may not be handled before it has been fed; by which time the real
cheese object has been Zapped Out to nowhere. Therefore, when the
mouse has been fed (flag 7 is T) it is valid to refer to the mouse object
by the cheese name. This is implemented by the ‘N,mouse,cheese,*F7'
statement.
11900 DATA 0,6
11910 DATA *11920 DATA
11730 DATA
11940 DATA
11950 DATA
11960 DATA
11970 DATA

D,»-F7,something moving around in the rafters.
D,*F7.-C6,a piece o-f cheese with a mouse attatche

d to It.D,»F7.C6,the mouse and the cheese In the hat.
P,16
N,mouse,cheese,»F7
8,GE,»
8,DR,»

123

OBJECT 7 - BELL
11980 DATA 0,7
11990 DATA “
12000 DATA12010 DATA
12020 DATA

D,*,a large brass bell.
P,llN,bell,*S,EX,»,a large church bell inscribed with the let

ters 'ring me!'.

OBJECT 8 - GOATS
The goats object is a red herring. Examination of the goats will just
confirm the genuine disappearance of the goatherd.
12030 DATA 0,8 12040 DATA “ 120S0 DATA
12060 DATA 12070 DATA

0,*,a lot of goats.
P,5
N,goat,goats,*S,EX,*,They are tethered to posts. Strange! They

seem to have eaten all the good grass they can reach. Pe
rhaps they have not been moved for a while?

OBJECT 9 - PRIEST
The priest may be described as doing one of three things depending
on whether the bell has been rung (flag 1) and whether the hat is on
the priest’s head (flag 2). The sequence of state transitions is 1-2-3-1.

12080 DATA 0,912090 DATA D,*-<F1/F2),a very small priest blessing the seer
et crypt.

124

12100 DATA D,«Pl.-F2,a very agitated priest looking up at th
e beltrey.D,*F2,a priest wearing a black hat over his head12110 DATA
and shoulders!12120 DATA

12130 DATA12140 DATA
P, 12
N,priest,* S,EX,*,He looks very small to you.

OBJECT 10 - SACK OF FLOUR
Note that the initial position is ‘nowhere’ (location -1).
12150 DATA 0,10121Ó0 DATA D,*,a sack of flour.
12170 DATA12180 DATA
12190 DATA12200 DATA
12210 DATA

P,-lN,sack,bag,flour,*
S,GE,* S,DR,»
S,EX,«,1t is labelled 'MegaMill Flour Co.'

OBJECT 11 - WOODCUTTER
When the player first encounters the woodcutter (“-V25’), he is given
the first description. If the player is also wearing the hat (object 1) on
this first encounter ('*-V25.W1 ') the first two descriptions are given. The
first description will appear in the object list, indented as normal. The
second description will appear underneath the object list and will not
be indented. This is another way implementing an event in AKS. Sub
sequent descriptions of this object will only give the third description.

125

12220 DATA 0,11 12230 DATA “
s axe.12240 DATA

D,*-V2S,an out o-f breath woodcutter resting on hi
D,*-V25.W1,Suddenly the woodcutter snatches the h

at and trys it on. "I^wonder^if^thls^wi 11 ..shield^me^-from .the.sun.,?" he says. "Pi ty. .. ^not^.iny^sl ze. " he grumbles and replaces the hat on your head.12250 DATA " ---
12260 DATA12270 DATA
12280 DATA

D,»V25,the woodcutter hard at work.P,23N,woodcutter,«
S,EX,»,A rather hot sweaty woodcutter.

OBJECT 12 - CAT
122V0 DATA 0,12
12300 DATA

nkles.
12310 DATA12320 DATA
12330 DATA
12340 DATA

0,«F7,a -friendly black cat drooling around your a
D,*-F7,a -friendly black cat.
P.-l N,cat,*
S,EX,«,1t looks -friendly.

126

OBJECT 13 - INNKEEPER
12350 DATA 0,13
12360 DATA “12370 DATA
12380 DATA
12390 DATA

D,«,the Innkeeper.
P,3
N,innkeeper,«
S,EX,«,He is rather large.

OBJECT 14 - GOLD
12400 DATA 0,1412410 DATA -
12420 DATA 12430 DATA
12440 DATA 12450 DATA
12460 DATA

ust have come from somewhere else.

D,«,sonie gold coins!
P.-lN,coins,gold,«S,6E,»S,DR,*
S,EX,«,No. They are not sliced golden egg. They m

OBJECT 15 - MILLER
Examination of the miller will give different descriptions before and after
he has been given the hat full of water.

12470 DATA 0,1512480 DATA "12490 DATA
12500 DATA
12510 DATA12520 DATA

D,»,The miller humping sacks about. P,16N,mi11er,«
S,EX,*-F9,He looks hot and thirsty.S,EX,«F9,He looks wet.

127

OBJECT 16 - BLACKSMITH
The blacksmith object may be in one of two states depending on
whether he has been put in the stocks or not (ie. flag 10 is T or F
respectively).
12530 DATA 0,16
12540 DATA '12550 DATA
12560 DATA12570 DATA12580 DATA12590 DATA

D,*-F10,The blacksmith hard at work.
D,«F10,The blacksmith in ths stocks. P,9
N,blacksmi th,smith,«S,EX,*-F10,He looks rather hot.
S,EX,«F10,He looks stuck.

128

OBJECT 17 - STOCKS
The stocks have no function other than as something for the player to
examine. The description given depends on flag 10 in the same way
as object 16.
12600 DATA 0,17
12610 DATA -
12620 DATA
12630 DATA
12640 DATA
1265(9 DATA

D,«,soine stacks.
P,4
N,stacks,«
S,EX,»-F10,Thsrs is a brass plaque with 'Made by

0X0' engraved on it.5,EX,*F10,There seems to be a blacksmith in them!

EVENT 0
The actions in this event are executed when counter number 0 reaches
zero. These actions kill the player because he has been followed by
the cat for too long. The final score is printed and a quit actioned.

1266(3 DATA E,0 12670 DATA
12680 DATA

A,PR,"^"A,PR,A crowd o-f villagers gather round you. The p
riest points at the cat and says “Look..Jie.^ha5.^a.*black...ca
t.»'f ami 1 iar ! .»That.»proves.^hej,is.»a..wi tch. “. They drag you a way and test your inflammability.

12690 DATA12700 DATA
A, sc
A,QU

EVENT 1
This event fires when counter number 1 reaches zero indicating that
the player has had 100 game turns. This is used to represent the
midday deadline for the player clearing himself of being a witch. The
optimal solution to the game requires nowhere near 100 game turns.
12710 DATA E,112720 DATA - - -

A,sc A,QU

A,PR,The church bell rings. It is midday. The vil
lagers drag you away and burn you. It was a really jolly occasion and people came -from miles around to see you.12730 DATA * —12740 DATA i

12750 DATA F

129

130

APPENDIX A
THE AKS AND
WITCH HUNT
LISTING

This section contains the complete listing for the Adventure Kernel
System and the Witch Hunt example scenario. The program is over 30k
long, so it is a major typing task! In order to get AKS into your machine
and fully functioning as easily as possible, we recommend that you
follow a couple of guidelines. Firstly, leave in the comments and in
dentation as you type in the program. They may mean a lot more typing,
but you’ll be grateful for them if you are trying to debug a section of
code! Secondly, pay particular care to the punctuation and format of
the DATA statements. If you do find errors after you have typed in the
program, this is a very likely place for them to occur.

After the program has been fully debugged, then you can remove
the REM statements and the indentation to create more space for
scenario data. This will also speed up the response time of AKS.

GOTO 60POKE 429,1i n MOD 256
POKE 430.1in\256
RESTORE 10RETURN ’from *** restorelin ***
REM That routine enables the program to RESTORE to a va
riable value.REM It does this bv poking the line no. stored in "lin"
into line 40.

REMREM >>>IMP0RTANT<<<
REM
REM i)REM ii> Do not use the normal RENUM command.
REM
key pad.

10
2030
40
50
Ó0
70
80
90 100
110
120
130

Do not chanae lines 10-40.
instead - press the <ENTER> key on the numeric

131

140
150
160
170 180 190
200
210
220 230
235 240
250
260 270
275 280 290
300 310 320
330 340
350 360 370
380 390400
410
420
430 440450
460 470
480

REM
REM
REM NB : the program must be RUN to initialise the <ENT ER> key...
KEY 139,"poke 429,0 : poke 430,0 z renum"+CHR»(13)

Ignore the error message.

KERNEL (AKS)
«

SYSTEM« » «

REM •««»*»«•»•«»•«»••»«*«»»«»«•*«»»*««»»*»»»•»»»**«*»
REM «
REM «ADVENTURE REM *
REM «REM «««««««*««*««««««««««««««««««««««««««««««««««««««
REM «
REM «AKS was written and developed by : Simon Price.«REM « WITCH HUNT was written jointly by i «
REM « Mike Lewis b Simon Price. «REM « «
REM «
REM « «REM «««*«
I :

WITCH HUNT was written jointly by
Mike Lewis b Simon Price. I

(C) Mike Lewis and Simon Price 19SS.

MODE 1 set 40 column screen modePRINT "Welcome to AKS."
PRINT : PRINT "Initialising... please wait"
REM declare all numeric variables as integers DEFINT a-z:
REM initialise constants REM
1ineinc=10 maxloc=30
maxob i=20 maxflaq”30
maxcount=S maxstack>’20

i ncrement
locations

o-f scenario defineable flags

«

'BASIC line no.'maximum no. 'maximum no. obiects
' no.
'no. scenario defineable counters 'maximum size of expression evaluator stack

490
500510
520530540

true=-l false=B
1 inien=40

boolean values recognised by IF statement
screen width for description output

550
560
570 580
590 600
610
620 630 640
650
660

REM find value of the constant 'datastart'REM ie. the line no. of the first scenario DATA staterne nt
ON ERROR GOTO 570 'next but one line
GOTO 7680 an erroneous line immediately preceding firs t DATA statement
IF ERRO2 THEN ERROR ERR ELSE RESUME 590 REM report if not expected error type datastart=ERL+lineinc ON ERROR GOTO 0 'turn error trapping off

REM initialise variables REM

670
680
690

DIM 1ocline(max 1oc> definitions
GOSUB 1080 : REM «initiocations*

'line no.5 of start of object DATA

DIM Obj1ine(maxobi) A definitions 'line no.s of start of location DAT

132

700710
720730

'initial location of objects

'event action definition start 1
740
750760
770
780
790
800
810 820
830
840
850 860
870
880 890
900
910
920
930 940
950 960 970
980 990
1000 1010
1020 1030 1040 1050
1060
1070 1080 1090
1100

DIM obj1oc(maxobj) GOSUB 1320 : REM »initobjects« !
DIM eventlin(maxcount> i nesGOSUB 1710 : REM «Initevents«
: DIM flag(maxflag)
DIM worn(noofObjs)
DIM visited(nooflocs>
s DIM counting(noofcnts>
GOSUB 1920 3 REM «resetflags«
DIM count(noofcnts)
DIM stack(maxstack>
stacktop^Ø<
score^a

'scenario defined flags'object worn flags
'location visited by player flag
'countdown timer on flag

'value of countdown timer
'expression evaluation stack

REM main program body
REM
CLS
eooame”fal seWHILE NOTCeogame)
GOSUB 2090 s REM »descrlbeloc«
Vi si ted (ob il oc (0) > ”true
GOSUB 4300 : REM «getcomline«GOSUB 4390 ; REM «processcomline*
GOSUB 4790 : REM »updatecountdowns« WEND

PRINTINPUT "Another game ?",rest
IF LOWERt(LEFTt(rest+"y",1))”"y" THEN RUN GOTO 1030 'hang machine up s

'dummv value to force at least one iteration
1110
11201130
1140
1150
11601170
11801190
12001210
1220
1230
1240

REM *«* initlocations ***
REM 1in=datastart 1 OC“0
typet””?" of WHILE
WHILE INSTR<"OEF",typet)”0

GOSUB 20 : REM »restorelin* READ typet
IF tvpet”"L" THEN GOSUB 1230 i REM »initloc* 1in”lin+1ineinc

WEND
nooflocs=loc-l RETURN

1250
12601270
1280

!
REM «*» initloc *** REM
READ defloc
IF loc<>defloc THEN PRINT"loc out of seguence AT LINE "
Si in : END
loci ine (1 oc) ”1 in-i-l i nei nc 1OC”1oc+1
RETURN
I

133

1290
1300 1310 1320 13301340 1350
1360 1370
13801390
14001410 1420
1430
1440
1450 1460 1470
1480 1490
1500 1510
1520 1530 1540
15501560 1570
1580 1590 1600
1610
1620 1630
1640
1650
1660 1670
1680
1690
1700 1710
1720
1730 1740
1750 1760
1770 1780 1790
1800 1810
1820 1830 1840
1850
18601870
1880

:REM *** initobjects ***
REMOb i"01 i n=*l i n—1 i nei ncWHILE INSTR("EF",type*)=0

IF type»="0" THEN GOSUB 1460 i REM *initobj* 1in=lin+1ineinc
GOSUB 20 ! REM «restorelin»
READ typesWEND

noof Ob js=ob j-1RETURN

'dummy value

:REM »»» initob) »»»REM
READ defob)IF obi<>defobi THEN PRINT“obl out of sequence AT LINE "
:lin : END
ob iline(ob j)=1in+1ineinc tvpeS="?"WHILE INSTR("DEF",types)=0

lin=lin+lineinc
GOSUB 20 s REM »restorelin» READ types IF tvpeS="P" THEN GOSUB 1630 ! REM »Initobjloc»

WEND lin=lin-1ineinc
obj=obj+1
RETURN

adjust to suit «initobjects*

t

REM *** initobjloc ***
REM
READ locIF loc<—1 DR 1oc>noof1ocs THEN PRINT"obj loc out of ran
ae AT LINE 1 in : END
Ob j 1 oc (ob j) =1 oc
RETURN

REM *** initevents *«**
REM
noofcnt5=0WHILE typeS<>"F"

GOSUB 20 : REM »restorelin*
READ types
IF tvpeS="E" THEN GOSUB 1830 ! REM »initeventlin» lin=lin+lineincWENDRETURN

REM *** initeventlin ***REM
READ ent
IF entOnoofents THEN PRINT"event out of sequence AT LI NE"!lin
event 1 in(ent)=lin+lineinc noofcnts=noofcnts+1
RETURN
I

134

1890 1900 1910
1920 1930
1940
1950 1960 1970
1980 1990
2000
2010 2020
2030 2040
2050 2060 2070
2080 2090
2100
2110 2120 2130 2140
2150

:REM *** resettlaqs »*•
REMFOR 1=0 TO maxtlaq
11 ag(i)“tal se

NEXTFOR i="0 TO noofobjs
worn (1) “tal se

NEXT
FOR i“0 TO nootlocs vi sited (i > “tal se
NEXTFOR i“0 TO nootents counting(i)“tal se
NEXT RETURN

2160 2170
2180 2190
22002210
2220 2230 2240
2250
2260 2270 22802290
2300 2310
2320 2330

REM *** describeloc ***
REMPRINT : PRINT : PRINT STRING»(40,) 1in“locli ne(objloe(0)> i GOSUB 2220 : REM »describeln*
loc=objloc(0) : GOSUB 2610 s REM «isobjatloc* IF NOT(res) THEN RETURN quit
PRINT"There is/are s " FOR obj“l TO nootobjsIF Objloc(obj)=objloc(0) THEN PRINT"
ne(obj) I GOSUB 2220 : REM «describeln*
NEXT RETURN

"s « lin»objli

'dummy value

! REM *** describeln
REM 1i neteed“true
GOTO 2270 REM *** describe ***
REM 1i neteed=talse
type»“"?"WHILE INSTRC'LOEF".tvpe»)=0
GOSUB 20 I REM *restorelin*
READ type»IF type»<>"D" THEN 2340 'qo try next DATA line
GOSUB 2700 : REM *evalnext*IF res THEN READ desert i GOSUB 2410 : REM *printdesc

23402350
23602370
2380239024002410
2420

1 i n=li n+1i nei nc WEND
RETURN:
I
REM *** printdescr ***
REM WHILE LENCdescr«) > 1 i nien-POS(#0»+1
riim«linlen-POS<#0)+1 'right hand side ot scre

2430
2440
2450
2460

en rhs-rlim+1 qht
WHILE MID$(desert,rhs,1)<>" “

rhs^rhs-l 'skip backwards over rightmost word on
lineWEND

' 1 char beyond screen ri

135

2470
2480
2490 ‘start new line if not at
2500
2510

rhs=rhs-l PRINT LEFT»(descr*,rhs)X
IF POS(#0)>1 THEN PRINT

start of onedescr*=RIGHT*(descr*,LEN(descr*>-rhs)
HHILE LEFT*(descr*,1)-" " skip over leading space

2520
25302540
2550 25602570 2580
2590
2600 26102620 2630
2640
2650
2660
2670
2680
2690 2700
2710
2720 2730 2740
2750 2760 2770
2780

descrt-RIGHTtIdescr»,LEN(deserS)-1)
MEND

MENDPRINT descr»»
IF linefeed THEN PRINT RETURN
t
REM »»» isobjatloc »»»REMres’false
FOR obj=l TO noofob isIF Objloc(Obj)-loc THEN res-true
NEXT
RETURN
I

IREM »»» evalnext »»»
REM
READ expr*GOSUB 2770 i REM »evalthis*
RETURN
I

2790
2800 28102820
2830 2840
2850
2860 2870
2880
2890 2900
2910
2920

REM *** evalthis *«*
REMchar*”LEFTS(exprS,1>IF chariO"*" THEN PRINT"EXPR expected AT LINE " » 1 i n z
ENDIF LEN(expr<)=l THEN res-true j RETURN ‘quit
exprt»RI6HT«<expr»,LEN(expr«)-l)GOSUB 2880 J REM »converttoRP*GOSUB 3780 : REM «evaluateRP*
RETURN ‘res is either true/false

29302940
2950
29602970
2980299030003010
30203030
3040

REM *** converttoRP »**
REM
revpol*="" dat*>ASC(" (") I GOSUB 4120 : REM «stackdat«
HHILE LEN(expr*)<>0
GOSUB 3050 : REM «qetlex»
IF INSTR("tf",dat*)<>0 THEN TO 2980 'next lex
REM dat* is an operator dat=ASC(dat*)
IF dat*="(" THEN GOSUB 4120 : REM »stackdat*
IF dat*=")" THEN GOSUB 3430 : REM »closepar»
IF INSTR("()",dat*)«0 THEN GOSUB 3540 i REM »comparep ri ori ty» WEND

GOSUB 3430 : REM »closepar» RETURN

REM »** qetlex ***REM

evpoli’revpol*+dat$: GO

136

3050
30603070
3080
3090
3100
311031203130
314031503160
3170
31803190
3200

dat«=LEFTi(exprS,1)
expr$=RIGHT«(expri,LENlexpr$)-l) used=false
IF INSTR("FVWECLO",datO<>0 THEN used-true : GOSUB 3150 ; REM »eval-flag*
IF NOT(used) AND INSTR("()/.-",dat<>-0 THEN PRINT"inval id expr AT LINE ";lin i END RETURN

'convert to digit

3210
3220
3230324032503260
3270
32803290
3300
3310

:
REM *** eval flag *** REM num—0
isdigit-true : gotnum-false WHILE isdigit AND LEN(exprS)<>0
chari-LEFTt(exprt,1)
chval—ASC(char«)-ASC(“0">
IF chvaKØ OR chval >9 THEN isdigi t=f alse ELSE expr«=R 1GHT« (expr«,LEN (expr»)-1) t num-num«10-«-chval i gotnum-tr ue

WEND
IF NDT(gotnum) THEN PRINT"flag no. missing AT LINE "jli n ! END
GOSUB 3300 : REM »setbool*
IF bool THEN dat«="f ELSE dat«=''f" RETURN

332033303340
3350
3360
3370
3380 3390
34003410
3420 3430 3440
3450 3460
3470

•F-f lag 'V-Í1ag
W—f lag

!
REM *»* setbool ***
REM bool-false
ON INSTRl"FVWCLO",dat«) GOTO 3320,3330,3340,3350,3360,3 370 bool-flag(num) : RETURN bool—visi ted(num) : RETURN
bool-worn(num) : RETURN
IF objloc(num)=0 THEN bool-true : RETURN ELSE RETURN C-flag
IF Objloc(0)-num THEN bool-true : RETURN ELSE RETURN •L-flag
IF Ob Hoc(num)-objloc(0) THEN bool-true i RETURN ELSE R ETURN
RETURN

•0-t1ag

3480
3490
3500 3510 3520
3530 3540
3550 35603570

REM •** closepar ***
REM releasing-true WHILE releasing

GOSUB 4200 : REM »unstackdat*op«=CHR«(dat)
IF oo<-"(" THEN releasing-false ELSE revpoK-revpolt*

opt WEND
RETURN

REM *** coiDparepr i or i ty **»
REM
newop-datGOSUB 3720 ; REM «priority* newpri-oppri
releasi ng—true

save new operator code

137

3580
3590
3600
3610
3620
36303640
3650
3660
3670
36803690
3700
37103720
37303740
3750
376037703780
3790
3800
3810

WHILE releasing AND stacktopOØ
GOSUB 4200 ! REM »unstackdat*
GOSUB 3720 ; REM »priority*
IF newprKoppri THEN revpol ♦“revpol $+CHR4> tdat) : GOTO

3650 'nextrel easi nq=-f al se
GOSUB 4120 : REM «stackdat«
dat"newop

WEND
GOSUB 4120 : REM «stackdat«
RETURN

REM *** priority ***REM
oppr i = INSTRCHR»(dat)) RETURN

38203830
38403850
386038703880
3890 3900
3910 3920
3930 39403950 3960
3970 39803990 4000
4010 4020
4030 4040
4050
4060
4070
4080
40904100
4110 4120 4130
4140

REM ««« evaluateRP ««« REM
WHILE LENtrevpol*)>0 dat«=LEFT» trevpol«,1)
revpol»-RIGHT» trevpol»,LEN trevpol»)-1)
IF INSTR t "t-f " ,dat»>< >0 THEN dat-ASC tdat») i GOSUB 412

O : REM «stackdat«IF INSTRf'tT",dat»)-0 THEN GOSUB 3940 i REM «evalop« WEND GOSUB 4180 : REM «unstackdat« IF dat-ASCft") THEN dat-true
IF dat-ASCff") THEN dat-false res—dat 'dat may already have been boolean 10,-1) IF StacktopOØ THEN PRINT" Inval id expr AT LINE "si in s
END RETURN
:REM ««« evalop «««
REMGOSUB 4180 : REM «unstackdat« IF dat=ASC<"t“) THEN opl-true ELSE opl-íalse IF dat»<>"-" THEN 4000 not a unary operator
dat=N0T topi) GOTO 4050 'store result REM binary operators GOSUB 4180 s REM «unstackdat«
IF dat=ASCt"t") THEN op2-=true ELSE op2-false IF dat$="." THEN dat=opl AND op2
IF dat*="/" THEN dat=opl OR op2 REM store result
IF dat THEN dat=ASCt"t") ELSE dat-ASCt"T">
GOSUB 4120 : REM «stackdat«
RETURN

41504160

REM *** stackdat **«
REMstack <stacktQp)=datstacktop“stacktop+lIF stacktop>fliaxstack THEN PRINT"expr too large AT LINE ": 1 i n : ENDRETURN

138

417041804190
4200
4210
4220
42304240
4250
42604270 42804290
43004310 4320 4330 4340
4350 4360
4370
4380

REM *»* unstackdat ***REM
stacktop=stacktop-l
IF Btacktop<0 THEN PRINT"Incomplete expr AT LINE ";lin : END
dat=stack(stacktop)RETURN

REM *** qetcomline ***REMPRINT 5 INPUT "What now 7 ",in*PRINTcoml 1ne5=L0WERi(i n>)RETURN
:

eq.
4390
44004410
4420
4430
4440
4450 4460
4470 44804490
4500
4510 4520
4530 4540 4550 45604570
4580 4590
4600
4610
4620

REM *** processcomline ***REM
REM remember to ensure that strings come before substri nqs - eq. "take off" must be defined before "take" or it would never be reached.tri q”false
1in=locl1 ne(objloc(0)) : GOSUB 4480 : REM «triggers* IF NOT(trig) THEN 1 in-1ocline(0) i GOSUB 4480 : REM *tr i ggers*
IF NOT(trig) THEN PRINT "Sorry I do not understand that
." ELSE GOSUB 5430 : REM »actions*RETURN

'dummy value
REM *** triggers ***
REM type»-"?"
WHILE NOT(trig) AND INSTR("LOEF ", type»)-0GOSUB 20 : REM «restorelin«

READ type»
IF type»—"T" THEN GOSUB 4600 s REM «triggertest* 1 in-1in+1inei ncWEND

RETURN

: xcomline$-" ''+coml i neS+'' ’’ c
4630
4640
4650
4660
467046804690
47004710

REM *** triggertest *»* REM
match-false
trigsleft-true comlen-LEN(comlinei)
onstants within loop
WHILE NOT(match) AND trigsleft

READ trig»
IF LEFT»(trig»,1)—"*" THEN trigsleft=false ! GOTO 467 0 'quit loop
IF comlen >= LEN(trig») THEN IF INSTR(xcoml ine»," "+t riq»+" ")<>0 THEN match-trueWEND

WHILE trigsleft READ trig»
IF LEFT»(trig»,1)="*" THEN trigsleft-falseWEND

'consume remaining triggers upto expr

139

4720
4730
4740
4750
4760
4770 4780
4790
4800
4810
4820 4830 4840
48504860 4870
4880 48904900
4910
4920 4930
4940

IF NOT(match) THEN rts’false ELSE expr«-trig» t GOSUB 2
770 : REM »evalthis* trig-resRETÚRN
:
REM *** updatecountdowns ***
REM
FDR 1=0 TO noo-fcntsIF NOT(counting(i)) THEN 4860 'test next one
count(i)-count(i)-1
IF count(i)>0 THEN 4860 no event yet
counting <1)=false1 in-event 1 in(1) : GOSUB 20 : REM »restorelin*
GOSUB 5430 : REM »actions*NEXT

RETURN

t

REM »** assignobj REM
ob j=l

♦

'start with first real object (as objø is player)
4950
49604970
49804990
5000
501050205030
5040
5050
5060 50705080 5090
5100 5110
51205130 5140
515051605170
5180 5190
52005210
5220
52305240
5250
5260 5270
5280 5290 5300
5310

tr 1 g—-f al se
WHILE NOT(trig) AND obi<-noofobjs11n=ob J11 ne(ob j)
GOSUB 5100 I REM «naniBsearch«
obj-obJ+1

WENDIF NOT(trig) THEN PRINT "You cant do that." z RETURN
Obj=obj-1
GOSUB 5220 : REM »suitability*IF NOT(res) THEN trig-false : PRINT"That is not possibl
e. "
RETURN
:

'dummy value
REM *** namesearch **»
REM
type«-"?"WHILE NOT(trio) AND INSTR("OEF",type«)-0
GOSUB 20 : REM *re5torelin»
READ type«IF type«=“N" THEN GOSUB 4600 : REM »triggertest*
1in=lin+1ineinc

WEND
RETURN

'dummy value

REM *** suitability ***
REM
1i n=ob j1i ne(ob j) res=false type«-"?"
WHILE NOT(res) AND INSTR("OEF",type«)-0 GOSUB 20 : REM *restorelin*

READ type«
IF type«="S" THEN GOSUB 5360 : REM *Buittest* lin=lin+lineincWEND

RETURN

140

5320 53305340
5350
5360
5370
538053905400
5410
54205430
54405450
5460
5470 54805490

t

REM *** suittest ***
REM
READ suit«
IF suitS«actsuit« THEN GOSUB 2700 i REM «evalnext* RETURN
t

l

'maintain a eeperate lin for this routine 'dummy value

5500 5510
5520 5530 55405550 5560 5570
55805590 5600 56105620 5630
5640 5650
5660 5670
5680 5690
5700 5710
5720 5730
5740
5750 57605770
5780
5790 5800
5810
5820 5830

REM *** actions ***
REM actline=lin
acttype»="?"
WHILE 1NSTR("TLOEF",ac11 ype«)=0

1 intact line > GOSUB 20 : REM *restor,el in*
READ acttypes actli ne=actline+1ineinc
IF acttypeX>"A" THEN GOTO 5700 'no more actions for this triggerREAD acts
IF actS=»"SC" THEN GOSUB 5760 « REM *SCore*IF acts-"IN" THEN GOSUB 5820 s REM *INventory*IF actS="QU" THEN GOSUB 5960 : REM *QU1t*IF acts-"IS" THEN GOSUB 6020 I REM *IncScore*
IF acts—"AF" THEN GOSUB 6090 ! REM *AssiqnFlag*IF actS-"PR" THEN GOSUB 6160 ! REM *PRint*IF acts-"GO" THEN GOSUB 6320 « REM *GO*IF acts—"MO" THEN GOSUB 6250 : REM *MoveDbj*IF acts—"GE" THEN GOSUB 6580 s REM *GEt*IF acts—"DR" THEN GOSUB 6660 I REM *DRop*IF actS="PO" THEN GOSUB 6740 i REM *PutOn*IF actS="TO" THEN GOSUB 6820 s REM *TakeOt+*
IF acts—"EX" THEN GOSUB 6900 : REM *EXamine*IF acts—"IC" THEN GOSUB 6990 : REM *InitCounter*
IF actS-"HC" THEN GOSUB 7070 s REM *HaltCounter*IF actS-"ZI" THEN GOSUB 7140 i REM *Zapln*
IF actS-"ZO" THEN GOSUB 7220 : REM *ZapOut*IF acts—"LO" THEN GOSUB 7300 i REM *LOad*
IF acts—"SA" THEN GOSUB 7440 : REM *SAve*WENDRETURN

REM *** score ***REM
PRINT "You have scored "s score
RETURN

5840
5850
5860

REM *** INventory **»
REM
1oc—0 s GOSUB 2610 s REM «isobjatloc* IF NOT(res) THEN PRINT “You are not carrying anything."

: KLIlJKN 'quit
PRINT"You are carrying : "
FOR obj“l TO nooFobjs

IF Objloc(obj)<>0 THEN GOTO 5900 'this obj not carrie
d5870

588058905900
5910

»I aPRINT "
1in=obj1ine<obJ) ; GOSUB 2260 : REM »describe* IF worn(Obj) THEN PRINT" NEXT RETURN

(worn)" ELSE PRINT

141

59205930
59405950
59605970
5980
59906000
6010
602060306040
605060606070
608060906100

REM *** QUi t ***REM
eoqame=true RETURN

REM *** IncScore *** REM READ inc
score=Bcore+i nc RETURN

6110 6120 6130 6140 61506160 6170
6180
6190 6200
6210
6220
6230 6240
6250
6260
62706280 6290
6300 6310
6320 6330 6340 6350
63606370 6380
63906400 6410
6420

REM *** AsslgnFlag ***REMREAD T1 agnuni,boolt
IF boolt="T" THEN T1ag(f1agnum)-true ELSE f1ag<f1agnum) =false RETURN
I
REM *** PRint **•REMREAD desert 1ineteed=true
GOSUB 2410 3 REM »printdescr* PRINT
RETURN

REM *** MOve ***
REMREAD Ob i,1oc
Ob jl oc (ob j > =1 oc
Morn(obi)=false RETURN

64319
6440
64506460
6470
6480
6490
650065106520

REM «** GO ***
REM
READ dirt
1i n=locline(obJloc(0)) match=-f al se tvpet="7"
WHILE NOT(match) AND INSTR("LOEF",tvpet)»0 BOSUB 20 s REM »restorelin* READ typet

IF tvpet="C" THEN GOSUB 6480 1 REM *G02* 1i n=li n+1i nei nc WEND
IF NOT(match) OR (match AND NOT(res)) THEN PRINT"You ca n not go that way."
RETURN

'dummy value

REM *** 802 ***
REMREAD deídir»
IF dir«<>deFdir« THEN RETURN quit
inatch=trueBOSUB 2700 : REM *evalnext* IF res THEN READ objloc<0)

142

653065406550
6560
6570
65806590
6600

RETURN

66106620
66306640
66506660
6670
6680

REM «** GEt *»*
REM
actsuit*="GE" ! GOSUB 4940 : REM »assiqnobj*
IF NOT(trig) THEN RETURN quit
IF obj1oc(obj)=objloc(0) THEN obJloc(obJ)=0 i PRINT "Ta
ken." ELSE PRINT"You can not see it here."
RETURN

REM *** DRop *** REMactsuit*»"DR" X GOSUB 4940 x REM »assiqnobj*
IF NOT(trig) THEN RETURN quit
IF objloc(obj)=0 THEN obj1oc(obj)»obj1oc(0) x worn(obj)
»false X PRINT"Dropped." ELSE PRlNT"You do not have it."

6690
67006710
6720673067406750
6760

RETURN

6770
6780679068006810
682068306840

REM *** PutOn *** REM
actsuit»="F0" : GOSUB 4940 : REM »assiqnobj*
IF NOT(triq) THEN RETURN quitIF obtloc(obj)*=0 THEN worn(obj)»true s PRINT"Worn." ELS
E PRINT"You do not have it." RETURN

6850
6860687068806890
6900
69106920

REM «»* TakeOTT *** REM
actsuitS="TO" s GOSUB 4940 x REM »assiqnobj* IF NOT(trig) THEN RETURN guitIF worn(obj) THEN worn(obJ>»false i PR INT"Removed." ELS E PRINT"You are not wearing it."
RETURN
1

6930
6940
6950
69606970
6980
6990
7000
7010 7020
7030 7040
7050
7060 7070
7080

REM *** Examine ***REM
actsuit*="EX" X GOSUB 4940 x REM «assignobj«IF NOT(trig) THEN RETURN quitIF NOT(objioc(obj)=0 OR objloc(obj)»objloc(0)) THEN PRI
NT"You see nothing special." ELSE READ descr* x linefeed »true X GOSUB 2410 x REM »printdescr«
1i n=objline(obj)
RETURN
!

REM *** InitCounter ***
REMREAD cnum.cval
count(cnum)»cval Count i nq(cnum)»true RETURN

REM *** HaltCounter ***
REM
READ cnum counting (cnum) =-f al se

143

7090 7100
7110
7120
7130 7140
7150

RETURN

7160
7170
71807190
7200
7210
7220
7230

REM *** Zap In ***
REM
READ objObjloc(obj)-Obj1oc(0>
n
worn(obj)-false
RETURN

REM *** ZapOut ***REM
READ objOb jloc <ob j) —1

'inova ob Jaet to current locatio

'set object location to nowhere
7240
7250 7260
7270
7280 7290
7300
7310
7320 7330 7340 7350

worn(obj)-false RETURN
I

73607370
7380 7390 7400
7410
7420
7430 7440
7450
7460 7470
7480

REM **» LOad ♦**REM
GOSUB 7570 : REM »getfname»
SPEED WRITE 1
OPENIN file*INPUT *9,Bcore,noof1ocs,noofobjs,maxf1ag,noofents
FOR 1-0 TO nooflocs ! INPUT »9,visited(1) i NEXT 1FOR 1-0 TO noofobjs i INPUT «9,obj1oc(1),worn(1> i NEXT 1
FOR 1-0 TO maxflag i INPUT #9,flag(l) i NEXT 1FOR 1-0 TO noofents i INPUT *9,count(1>«counting(1) i N EXT 1CLOSE IN RETURN

7490
7500
7510
7520 75307540
7550
75607570

:
REM *** SAve ***
REMGOSUB 7570 i REM «getfname«
OPENOUI file*
WRITE *9,score,noofIocs,noofobjs,maxf1ag,noofentsFOR 1-0 TO nooflocs i WRITE «9,visi ted(í> i NEXT 1
FOR 1-0 TO noofOb is i WRITE »9,objloc(1>«worn(1) i NEXT

IFOR 1-0 TO maxflag i WRITE «9,flag(l) i NEXT 1FOR 1-0 TO noofents I WRITE »9,count(1)«count!ng(1) i N
EXT 1CLOSEOUT
RETURN
I
>

I RETURN 'default na
7580 'extract
7590
7600
7610
7620

REM *** getfname **«
REM
IF LEN(comline*)<6 THEN file*- me
comlinB*=MID*(comllnB*+STRING*(16," "),6,16) fileñame
file*»"”
FOR 1=1 TO LEN(comline*) 'remove any quote marks

IF MID*(comline*« 1 « 1)<>CHR*(34) THEN f11a*-f11e*+MI0 *(comline*,l ,1) ELSE f i le*-f i le*+"»'' NEXT 1

144

Z¿30 7640 7650
7660 7670
7680
7690 7700
7710
7720 7730
7740
7750 7760 7770
7780 7790
7800
7810 7820
7830
7840
7850
7860 7870
7880 7890
7900
7910
7920 7930 7940
7950 7960 7970
7980 7990
8000
8010 8020 8030 8040
8050 8060 8070
8080 8090
8100 8110 8120 8130 8140 8150
8160 8170
8180 8190
8200 8210
8220
8230 8240
8250

RETURN

THIS LINE GENERATES AN ERROR
DATA L,0 DATA
DATA
DATA DATA
DATA
DATA DATA
DATA
DATA
DATA DATA
DATA
DATA DATA
DATA
DATA DATA
DATA
DATA
DATA
DATA
DATA DATA DATA
DATA DATA DATA
DATA
DATA DATA DATA
DATA
DATA DATA
DATA DATA DATA
DATA DATA DATA DATA
DATA
DATA DATA DATA DATA DATA
DATA
DATA DATA
DATA DATA
DATA
DATA DATA
DATA

T,n.north,*F4
A.GO.N
A,ZI,12
T,n,north,*
A.GO.N
T,e.east,*F4A.GO.E
A,Z1,12
T.e.east,*
A.GO.ET.s,south,*F4
A,GO,S
A,ZI,12T,B.south .*
A.GO.S
T.M.west.*F4A.GO.N
A,Z1,12
T.w,west.*A.GO.U
T,u,up.«F4
A.GO.U A,Z1,12 T,u,up.»
A.GO.UT,d,down,*F4
A.GO.DA.Zl, 12
T,d,down,*
A.GO.DT,wear,put on,*A, PO
T,remove,take o-f-f,* A,TOT,qet.take,pick up.catch,*
A,GET,drop,put,throw,release,*
A, DRT,ex.eKam,examine,look at,*
A,EXT.l,inv,Inventory,*
A, IN T,score,*A, SCT.load,*
A,LO A,1S,-1
T.save,*A,SAT,eat bread,eat loaT,*CS
A,PR,yummy yummy!A,ZO,S
T,eat cheese,*C4
A,PR,Far too mouldy! T,eat,*
A,PR,No thanks.

145

8260
8270
8280
82908300
8310
8320
8330
8340

DATA
DATA
n runs off.
DATA
DATA DATA
DATA
DATA
DATA
DATA

T,feed cat,drop mouse,release mouse,«C6.012
A,PR,The cat takes both mouse and cheese and the
A,IS,10
A,AF,4,F A,Z0,6
A,Z0.12
A,HC,0 T,hit,kill,attack,*
A,PR,Sorry. No violence is allowed in this game.

8350
836083708380839084008410
8420

T,show,gi ve,accuse,f eed,•
A,PR,Not interested.T,qui t,*A,SCA,QU

84308440
8450
8460
8470 84808490
8500 8510
852085308540
8550
8560 8570
85808590 8600
8610
8620 8630
8640
8650
86608670
8680
8690
8700

8710
8720
8730
87408750
87608770
8780

DATA
DATA DATA DATA
DATADATA L,1
DATA DATA
see your home — the mill.
where all this trouble began is to the south. You can h ear the goats making goaty noises to the west.DATA DATA

DATA
DATA i nn. DATA DATA DATA
DATA DATA
DATA DATA DATA
DATA DATA DATA
DATA DATA DATA
DATA DATA
DATA
DATA
DATA DATA
DATA L.2 DATA
DATA of the kitchen door!
DATA D.*-V2.The inn is closed at the moment due to the
unexplained spoiling of the ale. The kitchen door sits

slightly ajar at the east end of the room.DATA - . .
DATA kitchen door.
DATA
DATA DATA
DATA DATA
DATA

D,*,ln the middle of the village green. DVI,Beyond the north end of the green you can
To east is the inn. The church

T,i nnF6 A,GQ,E
T,e,east,i nn,*F6
A,PR,The innkeeper refuses to let you enter the
T, e,east,i nn,*-F11 A,G0,E
A,AF,11, TA, IC,1,100T,n,northF11
A,G0,NA,AF,11,T
A,IC,1,100T,w,west,*-F11 A,GO,W A,AF,11,T
A,1C,1,100
T,s,south,*-F11 A,G0,S A,AF,11,T
A,IC,1,100C,N,*,4

C,S,*,6
C,E,*.2
C,W,*,5
D,*,The bar in the Melbourne Inn.
D,*F5,Some fool has balanced a pointed hat on top

T,balance hat,put hat,place hat,«Cl A,PR,You manage to balance the hat on top of the
A,AF,5,T
A,ZO,1
T,e,east.kitchen,*F5
A,PR,The hat falls to the floor.A, Z 1,1
A.AF,5,F

146

8790
88008810
88208830
88408850

A,GO,E
T,get hat,«A,ZI,1A,AF,5,F
A, GE

T , cal1,shout,«-F5A,PR,"The innkeeper comes into the room, but see

8860
8870

T,cal 1,shout,*F3
A,PR,The innkeeper pushes the kitchen door open

BSBØ

8890 8900
8910
8920
89308940
89508960
8970
8980
8990
9000

A,IS.10 A,G0,W
A,Z1,1
A,AF,5,F A,AF,6,T
T,1 eave,out,«
A,B0,W
C,E,*,3
C,W,*,1
D,*,Kitchen in the Melbourne.
D,«-V3,lt seems surprisingly empty. Perhaps the i

9010
902090309040

T,steal cheese,«A,GE
T,cheese,«04
A,PR,GET OFF MY CHEESE! What do you mean openly

9050
9060 T.qiv»,«C10.05A,PR,The innkeeper says "Oh goody goody. I can b

90709080
90909100
9110
9120
9130 9140
9150
9160

917091809190

9200
9210 9220
92309240

DATA
DATA DATA DATA
DATA
DATA DATA
Ing you he crosses himself and dashes back into the kite
hen. " DATA
DATA
and steps in the room. DATA ike a thimbl at out of the inn. DATA DATA
DATA
DATA DATA
DATA
DATA DATA
DATA
DATA L,3
DATA
DATA
nnkeeper is a little short of money at the moment. DATA DATA
DATA DATA trying to take my food! DATA
DATA ake some more loaves now." and grabs your sack of flour."You can have this loaf." DATA DATA
DATA DATA o take my last loaf! DATA
DATA
DATA DATA L,4 DATA
DATA row rotten food (and thi
cks. This is where they always burnt witches. You rememb
er throwing on wood... Those were good times.DATA ■DATA DATA
h is the witch!" screams the priest. ! Burn him!". And they do. Everyone has a real good time ... roasting chestnuts and potatoes in the fire. You hav e cleared yourself. DATA
DATA DATA
DATA DATA

A,PR,PLOP! The hat lands on his head. It looks 1 on a giants head. He throws you and your h

A,MO,5,0A.ZO.IØ
T,1 oaf,bread,«05A,PR,GET OFF MY BREAD! What do you mean trying t
T,1 eave,out,bar,» A,GO,W
C,W,«,2
D,»,At the north end of the village green.
D,*—V4,You remembei coming here in the past to th odd brick> at people in the sto

T,put hat,place hat,try hat,«Ci.F10A,PR,It Tits! A,PR,A crowd of villagers gather. "The blacksmit
"Burn him! Burn him

A, 15,20
A, SC A,QU
T,road,*A,GO,E

147

9250
92609270
9280
92909300
9310
9320
9330
9340935093609370
9380

C,S,*,1 C,E,«,t4
D,«,An area of grazing land.
T,f eed,cheese,*C4A,PR,A goat snatches your cheese and eats it.
A,Z0,4T,feed.bread,1 oaf,«C5
A,PR,A goat snatches your bread and eats it.
A,Z0,5
C,E,«,1
D,*,At the southern end ot the village green.
D,*-V6,A -foul odour drifts from the direction of

939094009410
94209430
9440
945094609470
94809490

T,meadow,« A,G0,MT ,church,*
A,GO,8C,W,«,8
C,N,*,1
C,S,«,10
D,*,At the edge of the village pond.
D,*-V7,The pond is stagnant and smells foul. T,put toad,drop toad,throw toad,release toad,»C2.

95009510 A, DR A,PR,5plash...! The toad turns into a small boy.

952095309540
9550
9560
957095809590
960096109620
96309640
9650

A,AF,3,TA,IS,5
T,feed duck,feed ducks,*C5A,PR,The ducks gobble up the bread and leave. Th

nest.A,Z0,3
A,Z0,5A,Z1,14A,IS,5
T,f i11,water,pond,* A,PR,It is impossible to get at the water.
C,S,«,8

966096709680
9690
9700
9710

9720
9730

9740

DATA
DATA DATA L,S
DATA
DATA DATA
DATA DATA
DATA
DATA DATADATA L,6 DATA
DATA the meadow at the west of the green.
DATA DATA DATA
DATA
DATA DATA
DATA DATA L,7 DATA
DATA
DATA -F3
DATA DATA“Where am I? Mhat happened?" he mutters as he climbs ou
t of the pond. "Last thing I remember I was strolling in the woods f"DATA DATA DATA
DATA ere was something hidden in thei DATA - -
DATA DATA
DATA DATA DATA DATA
DATA L,8
DATA DATA
e ground becomes marshy. At the western end of the meado w you can see a wooden building.
DATA DATA
DATA
DATA L,9 DATA
DATA . The blacksmith always repairs everyones tools, pretty good all round handyman.DATA
e,«C14
DATA

I confess
ut. DATA

D,*V8,ln the nieadow.
D,*-V8,In the middle o-f a meadow. To the north th

C,N,*,7
C,W,*,9
C,E,*,6
D,*,At the blacksmith s forge. D,*—V9,You remember coming here often in the past He isa
T,show gold,give gold,show coins,give coins,accus
A,PR,The blacksmith bursts into tears. "Alright.

I stole the woodcutter's gold." he blurts o
A,PR,A crowd o-f villagers rush up and drag the p

148

9750
9760
97709780
9790

leading blacksmith away. DATA
DATA
DATA DATA
DATA

A,15,20
A,AF,10,T
A,MO,16,4
T,show,gi ve,accuse,forge,anVi 1,*
A,PR,He shouts "Be off with you! Little witch.".

98009810
9820
9830

9840
9850
98609870
98809890990099109920
9930994099509960997099809990
10000 DATA
10010 DATA
10020 DATA
10030 DATA10040 DATA
10050 DATA
10060 DATA
10070 DATA10080 DATA10090 DATA
10100 DATA

DATA
DATA L,10
DATA
DATA
d lies open. High above you is the belfry balcony. The f
root door is to the north. In the south wall is a small door. DATA
DATA DATA DATA
DATA DATA DATA DATA
DATA
DATA DATA DATA DATA DATA DATA
DATA L,ll

D,«,ln the belfry.
D,«-Vll,Far below you can see the church nave.
T.ring bel 1.*-<F1/F2)
A.PR,The bell tolls and nearly deafens you! A,MO,9,10
A.PR,You see the priest run into the church dire ctly below you.A,AF, 1 , TT.ring bel 1 ,«
A,PR,Ding dong...!T.drop hat,throw hat,«Cl.Fl
A,PR,The hat drops from the belfry and lands ove r the priest's head.
A,IS,10A,AF,2,T
A.ZO,1
T.drop hat,throw hat,«Cl.-Fl A.PR.Weeee. .. . it falls from the belfrey.
A,MO,1,10 T,nave,1 eave,«
A,G0,DC,D,«,10

C,E,*,8
D,*,ln the church nave.
D,*-V10,The secret entrance to the crypt you foun

T,hat,*F2.09
A.PR,Tug...A,Z1 ,1A.AF,1,FA,Z0,9A, GE
A,PR,The priest storms off.T,crypt,* A.GQ.D
T,belfry,* A,G0,UC,N,*,6C,S,*,13C,D,»,12C,U,*,11

10110 DATA10120 DATA
10130 DATA
10140 DATA
10150 DATA10160 DATA10170 DATA
10180 DATA
10190 DATA
10200 DATA L,12
10210 DATA
10220 DATA

secret crypt.D,«,In the
D,«-V12,The air is icy cold. The floor is intrica

tely carved with strange markings. On the wail are lit t
orches.10230 DATA 10240 DATA

10250 DATA
10260 DATA10270 DATA

T,torChes,torch,wal1,wal1 s.«
A,PR,A couple of torches are firmly attatched to the wall by brackets.T.bracket.brackets,«
A,PR,Just plain iron brackets.T,f1oor.markings,«

149

10260 DATA A,PR,You can make no sense of the markings but y OU can see they are well carved.T,1 eave,*A,GO,U
C,U,«,10

10290 DATA
10300 DATA
10310 DATA10320 DATA L,13
10330 DATA
10340 DATA
10350 DATA

ere !
10360 DATA
10370 DATA

D,*,In the churchyard.T,dig,grave,headstone,tomb,*
A,PR,Careful... they bury grave robbers around h
T,n,north,church,*-F4
A,PR,You trip over a black cat which appears fro m behind a headstone!
A,ZI,12
A,AF,4,T
A,IC,0,20 T,church,*
A,GO,N T,woods,*A,G0,M

C,N,*,10
C,W,*,18

10380 DATA
10390 DATA
10400 DATA
10410 DATA
10420 DATA
10430 DATA10440 DATA
10450 DATA
10460 DATA
10470 DATA L,14
10480 DATA
10490 DATA

D,*,The road.
D,*-V14,You know this road well. To the north it passes by the mill on its way to town.
T,w,west,«P8
A,PR,MHOOPS! You tripped and spilt the water.A,AF,8,F
T,follow road,along road,«A,60,N
C,M,«,4
C,N,*,15

10S00 DATA
10510 DATA10520 DATA
10530 DATA
10540 DATA
10550 DATA10560 DATA
10570 DATA L,1510580 DATA10590 DATA
10600 DATAe.

D,*,0n a bridge over a stream. 1,water,strearn,fi11,down,d,«
A,PR,The stream is totally Inaccessabl •from her

10610 DATA
10620 DATA10630 DATA L,1610640 DATA106S0 DATA10660 DATA

C,S,*,14
C,N,*,16

10670 DATA10680 DATA

D,*,The mill. T,1i sten,«—F7A,PR,You can hear a faint scurrying noise, onder if it is a rat.T,rafters,*-F7
A,PR,Someth!ng is making noises. You wonder if 1t is a rat.
T,rat,rats,*-F7
A,PR,Rat! Pah! I'm a mouse you fool.T.feed mouse,drop cheese,«C4A,PR,The mouse scurries down and nibbles the che

You w

10690 DATA
10700 DATA10710 DATA10720 DATA

ese.
10730 DATA10740 DATA
10750 DATA
10760 DATA 10770 DATA
10780 DATA *F710790 DATA
10800 DATA

A,AF,7,T
A.Z0.4
T,catch mouse,get mouse,take mouse,pick up mouse,

*F7.C1.-<M1/F8>A, GE
A,PR,You caught the mouse in the hat. T,catch mouse,get mouse,take mouse,pick up mouse.
A,PR,He slips through your fingers.
T,cheese,*F7.(Û6/C6)

150

10810 DATA
10820 DATA10830 DATA10840 DATA
10850 DATA
10860 DATA

10870 DATA
10880 DATA
10890 DATA
10900 DATA
10910 DATA
10920 DATA
10930 DATA10940 DATA
10950 DATA L,17
10960 DATA10970 DATA

A,PR,The mouse holds onto the cheese.
T,f1 our,sack,grain,bag,mi 11,*-F9
A,PR,The miller growls at you!
T,give,*F8.-F9
A,PR,"The miller puts the sack down, takes the h

at and drinks some water.A,PR.He says "Ta Lad." and then pours the rest o ver his head. As he does this you notice that the hat is
too small for him to wear.

A,IS,10A,AF,8,F
A,ZI,10 A,AF,9,T

T,gi ve,*F8.F9A,PR,He smiles and says "Go away creep."
C,S,»,15
C,W,*,17

10980 DATA10990 DATA
11000 DATA11010 DATA
11020 DATA

D,*,By the stream. D,*-V17,A loud sploshing sound comes from the wat
er wheel. The water looks as fresh and clear as ever.

T,fill,*C1.-(W1/C6)
A,PR,If you insist.A,AF,8,T
T,fill hat,*WlA,PR,Gargle...gargle...bubble! You are unable to

hold your breath any longer and take your head out of t
he stream.T,mi11 ,*

A,GO,EC,E,»,16
11030 DATA 11040 DATA
11050 DATA 11060 DATA L,18
11070 DATA 11080 DATA 11090 DATA
11100 DATA11110 DATA L,!’
11120 DATA
11130 DATA11140 DATA 11150 DATA
11160 DATA L,20 11170 DATA
11180 DATA
11190 DATA
11200 DATA 11210 DATA11220 DATA L,21
11230 DATA 11240 DATA
11250 DATA
11260 DATA11270 DATA L,22
11280 DATA11290 DATA
11300 DATA11310 DATA L,23
11320 DATA 11330 DATA

D,»,In the deep dark woods.
D,*-V18,Careful ! You might get lost.C,E,*,13
C,W,*,1'?
D,«,In the deep dark woods.
C,E,*,18C,S,*,20
C,M,«,21
O,»,In the deep dark woods.
C,W,«,23
C,N,*.19
C,S,*,22C,E,*,21
D,*,In the deep dark woods.
C,W,»,20
C,E,*,21 C,S,«,23
D,«,In the deep dark woods.
C,N,*,20C.E,*,23

11340 DATA11350 DATA11360 DATA

D,*,In the deep dark woods. D,*-V23,As you arrived you thought you saw someon
e run away.C,N,«,20C,E,*,24

C,M,«,22

151

11370 DATA L,2411380 DATA
11390 DATA D,*,In a clearing in the woods.

D,*-Wl,lt is sheltered from the wind her« sun is uncomfortably hot.D,«—V24,You hear a loud chopping sound to the sou
and tha

11400 DATA
th.11410 DATA

11420 DATA11430 DATA
11440 DATA11450 DATA
11460 DATA L,2511470 DATA
11480 DATA
11490 DATA

T,s,south,*-V25.W1A,18,10A,80,S
C,W,*,22
C,S,*,25
D,*,The wood cutter's hut.
T,hut, *A,PR,The woodcutter bars your way. "I've already

had my gold stolen. I'm not going to lose anything else
. Keep out 1"C.N,«,24

P, 1
D,«-FB,a Mitch's hat.
D,«F8,a witch's hat full of water.P.23
N,hat,*
S.EX,*,It has a label on the inside which says 'A

SIZE 9'. Vou wonder who wears a size 9
S,GE,*S,DR,*—(F8/C6)
S,P0,*-(F8/C6)
S,ro,*
D.*-F3,a small wart-covered toad.D,«F3,a wet and -frightened goat herd.
P,8S,GE,*-F3
S,DR,*
N,toad,boy,herd,«S.EX,*-F3,a very human looking toad. S,EX,«FS,a very toady looking human.

11500 DATA
11510 DATA 8,0
11520 DATA11530 DATA 0.1 11540 DATA
11550 DATA 11560 DATA 11570 DATA
11580 DATA

CME Witch's Hat hat !11590 DATA 11600 DATA
11610 DATA 11620 DATA11630 DATA 0,2
11640 DATA 11650 DATA
11660 DATA11670 DATA
11680 DATA
11690 DATA 11700 DATA
11710 DATA
11720 DATA 0,311730 DATA 11740 DATA
11750 DATA 11760 DATA11770 DATA 0,4
11780 DATA - 11790 DATA 11800 DATA 11810 DATA
11820 DATA 11830 DATA11840 DATA 0,5
11850 DATA 11860 DATA11870 DATA
11880 DATA
11890 DATA
11900 DATA 0,6 11910 DATA
11920 DATA

D,*,several ducks.P.7 N, ducks,duck,*S,EX,*,They seem to be sitting on something.
D,»,a small piece of cheese.
P.3N,cheese,*
S,GE,*S.DR,*S,EX,«,Looks a bit cheesy!
D,»,a loaT oT bread.
P, 3N,1oaT,bread,*
S,GE.*
S,DR,*
D,*-F7,someth!nq moving around in the rafters.D,*F7.-C6,a piece of cheese with a mouse attatche

d to it.

152

11930 DATA 11940 DATA11950 DATA
11960 DATA11970 DATA11980 DATA 0,7
11990 DATA
12000 DATA 12010 DATA
12020 DATA

D,«F7.C6,the mouse and the cheese in the hat. P,16N,mouse,cheese,*F75,GE,•
S,DR,*
D,»,a large brass bell. P, 11N,bel1,»
S,EX,»,a large church bell inscribed with the letters 'r i ng me ! ’.

12030 DATA 0,8 12040 DATA
12050 DATA
12060 DATA
12070 DATA

D,»,a lot of goats.P,5
N,goat,goats,»S,EX,».they are tethered to posts. Strange! They

seem to have eaten all the good grass they can reach. Perhaps they have not been moved for a while?12080 DATA 0,9
12090 DATA
12100 OATA
12110 DATA

D,»-(F1/F2),a very small priest blessing the seer et crypt.
D,»F1.-F2.a very agitated priest looking up at th e belfrey.
D,»F2,a priest wearing a black hat over his head and shoulders!P, 12
N,pri est,»
S,EX,»,He looks very small to you.

12120 DATA
12130 DATA12140 DATA12150 DATA 0,10
12160 DATA12170 DATA12180 DATA
12190 DATA
12200 DATA12210 DATA 12220 DATA 0,11
12230 DATA

s axe.

D,*,a sack of flour.
P,-lN,sac k,bag,f1 our,• 5,GE,*
5,DR,*
S,EX,»,1t is labelled 'MegaNiil Flour Co.'
0,«-V25,an out of breath woodcutter resting on hi

12240 DATA D,»-V25.W1.Suddenly the woodcutter snatches the h at and trys it on. "1 wonder if this will shield me from
the sun ?" he says. "Pity... not my size." he grumbles and replaces the hat on your head.

D,»V25,the woodcutter hard at work.P,25
N,woodcutter,» S,EX,»,A rather hot sweaty woodcutter.

12250 DATA
12260 DATA
12270 DATA12280 DATA12290 DATA 0,12 12300 DATA

nkles.12310 DATA12320 DATA12330 DATA12340 DATA
12350 DATA 0,1312360 DATA
12370 DATA
12380 DATA12390 DATA
12400 DATA 0,14
12410 DATA
12420 DATA12430 DATA12440 DATA12450 DATA

D,*F7,a Triendly black cat drooling around your a
D,*-F7,a -friendly black cat.
P,-lN.cat,*S,EX,»,1t looks friendly.
D,«,the innkeeper.
P,3N,i nnkeeper,*S,EX,*,He is rather large.
D,»,sonie gold coins!
N,coins,gold,* S,GE,«
S,DR,*

153

12460 DATA

D,*,The mi Iler humping sacke about.
P,16N,mi11 er,*S,EX,*-F9,He looks hot and thirsty.
S,EX,*F9,He looks wet.
D.*-F10,The blacksmith hard at work. D,*F10,The blacksmith in the stocks.
P,9N,blacksmith,smi th,•
S.EX,*-F10.He looks rather hot. S,EX,*F10,He looks stuck.

S,EX,«,No. They are not sliced golden egg. They m
ust have come from somewhere else.

12470 DATA 0,15
12480 DATA 12490 DATA
12500 DATA
12510 DATA 12520 DATA 12530 DATA 0,16
12540 DATA 12550 DATA
12560 DATA 12570 DATA
12580 DATA 12590 DATA12600 DATA 0,17 12610 DATA
12620 DATA 12630 DATA 12640 DATA
12650 DATA

D,«,some stocks.P.4N,stocks,*S.EX,»-F10,There is a brass plaque with 'Made by
0X0’ engraved on it.S,EX,»F10,There seems to be a blacksmith in them!

12660 DATA E,012670 DATA
12660 DATA

A,PR," "A,PR.A crowd of villagers gather round you. The p
riest points at the cat and says “Look he has a black ca t -familiar! That proves he is a witch.". They drag you a
way and test your inflammability.A, SCA,QU12690 DATA12700 DATA

12710 DATA E,112720 DATA It is midday. The vil
It was a really jollyA,PR,The church bell rings,

lagers drag you away and burn you. occasion and people came from miles around to see you.
A, SCA,QU12730 DATA12740 DATA

12750 DATA F

154

CHEXSUM

The unique CHEXSUM program validation.

WHY
When a listing, such as this is keyed in, everybody invariably makes
reading and typing mistakes and then spends ages trying to sort out
where and what is causing the error (errors!).

Even experienced programmers often cannot identify an error just
by listing the relevant line and need to do the tedious job of going back
to the book, especially with DATA statements.

Realising that this is a major cause of frustration in keying the pro
grams, we decided to do something about it.

You should key in and save the following listings before you key in
the AKS listing.

Using the Chexsum routine you will be able to find out if you have
made any keying errors at all and in which lines, before you even run
the program.

This means that you need not waste time looking for keying errors,
you simply run the routine and look at the display to identify lines
containing errors. It’s that easy.

The principle behind the routines is a unique chexsum which is
calculated on each individual line of the program as you have keyed
it in. Compare this chexsum value with the value for that line in the list
at the end of the program listing; if they are the same the line is correct,
if not there is an error in that line.

WHEN
The simplest method is to enter the CHEXSUM program in now and
save it to tape or disk.

You can type in the chexsum program at any time, even if you have
started to type in a program. You cannot, of course LOAD in CHEXSUM
from tape or disk because it will erase all you have typed so far.

The obvious solution is to MERGE the programs. The CHEXSUM
program should be saved onto a separate cassette to allow easy
access.

HOW CAN YOU TELL IF CHEXSUM HAS
BEEN ENTERED CORRECTLY
After having keyed CHEXSUM the logical thing would be to chexsum

155

the program to make sure it is correct. But is it possible to to this? If
you follow the instructions you will be able to check CHEXSUM.

1. Type and save CHEXSUM.
2. RUN Chexsum and it will check itself.
3. Check output against the table of values at the end of the program.
4. If the program is incorrect, edit the incorrect lines and resave the

program.

Below is the listing of CHEXSUM and instructions on its use.

1.

USING CHEXSUM
The greatest problem encountered when typing in programs from a
book is errors made by the user. Most of these are picked up when
the computer responds to the RUN command with the 'Syntax Error’
message. The user then has only to LIST the line and compare it with
the line in the book. Unfortunately, some errors are more subtle and
not fatal to program operation. These types of errors will cause the
program to run, but incorrectly, and the computer will not be able to
detect them as such.

ChexSum is a special program which generates a unique sum for
each line in a program and a grand total of all line sums. After each
program listing is a table of check sums. You need only compare the
numbers in the ChexSum table for each program with those generated
by ChexSum. If two numbers differ, check that particular line.

Type in AKS. Save it to tape or disk with the statement; SAVE
“AKS”.
Reload the program if necessary, using the statement; LOAD
“AKS”.
To join ChexSum to the end of your program, enter the statement;
MERGE “CHEXSUM”.
When merged, enter RUN 60000 to activate ChexSum. The pro
gram will prompt:

OUTPUT TO PRINTER (P) OR SCREEN (S)

Entering a P will cause output to go to the printer, and entering S
will cause output to go to the screen.

5. ChexSum will now output the check-sum table for the program.
To halt the program press the escape key once, and to restart the
output press any key other than escape. When ChexSum has
finished you may remove ChexSum from memory with the DELETE
instruction. For example:

DELETE 60000 - 62990

2.

3.

4.

156

6. Check your grand total with that in the book. If they differ a line
has been entered incorrectly. Compare line numbers until you
locate the bad ones and then edit them.

7. Repeat steps 4 to 6 until the program is debugged.
9. When the program is running satisfactorily, delete the ChexSum

program as described above.
10. Finally save the debugged version onto a clean tape or disk, with:

SAVE “AKS”.

s

ae

10 =
20 -
30 -
40 -
50 -
60 «
70 -
80 >
90
100
110
120 »
130 =
140 »
150 =■
160
170
180
190
200 -
210
220 =
230 -
235 =
240 =
250 -
260 >
270 «
275 -
280 «
290 =
300 -
310 =
320 -
330 -
340 -
350 »
360 -
370 -
380 -
390 -
400 -
410 -
420 -
430 -
440 -

282
1238
1205
271
2273
0
0
O
0
0
0
O
0
0
0
0
3180
0
0
0
O
0
O
0
0
0
0
0
0
0
0
0
0
0
o
2720
1567
3008
0
0
470
0
0
O
3482
3371

B

B

450 -
460 «
470 -
480 =
490 =
500 =
510 =
520 =
530 =
540 =■
550 -
560 =
570 =
580 =
590 »
600 -
610
620 -
630 -
640 -
650 -
660 -
670 =
680 =
690 -
700 =
710
720 -
730 =
740 =
750 «=
760 -
770 =
780 -
790 »
800 -
810 -
820 =■
830 -
840 -
850 »
860 >
870 >
880 -
890 »
900 >

3132
4402
4622
5675
5265
915
4794
O
0
0
2493
6226
2104
0
2694
2696
0
0
0
0
O
6224
2003
0
6444
4695
1762
O
5953
1812
0
4069
3755
5532
4741
1742
0
4578
0
4939
1265
O
932
0
0
O

910 =
920 =
930 =
940 =*
950 »
960 »
970 =
980 =
990 »
1000 -
1010 "
1020 -
1030 >
1040 -
1050 -
1060 >
1070 =
1080 >=
1090 =
1 100 =>
1110 "
1120 =
1130 =
1140 -
1 150 =
1160 -
1170 =
1180 =
1190 =
1200 >
1210 >
1220 «
1230 »
1240 «
1250 >
1260 =
1270 =
1280 »
1290 -
1300 =
1310 =
1320 -
1330 -
1340 »
1350 -
1360 »

138
1662
1342
1736
2673
1818
2100
2486
213
191
2026
2881
1857
0
0
0
0
1808
710
5920
1862
1650
808
2955
2284
213
1962
201
0
O
0
0
987
5255
3241
1412
201
0
O
0
O
707
2285
1783
2930
2284

1370 =
1380 >
1390
1400 =
1410 -
1420 -
1430 =
1440 =
1450 ~
1460 =
1470 =
1480 >
1490 =
1500
1510
1520 =
1530 »
1540 -
1550 =
1560 -
1570 =
1580 =
1590 =
1600 =
1610 >
1620
1630 »
1640 =
1650
1660
1670 -
1680 -
1690 ■=
1700 >
1710 =
1720 =
1730 =
1740 -
1750 =
1760 =
1770 =
1780 -
1790 =
1800 =
1810 -
1820 -

as

se

1650
808
213
1956
201
0
O
0
0
984
5246
3235
2273
1862
2284
1650
808
3164
213
5171
1406
201
0
O
O
0
684
6754
2003
201
0
0
0
0
1266
1207
1650
808
3334
2284
213
201
0
0
0
0

157

1830 -
1840 -
1850 -
1860 ~
1870 -
1880 -
1890 ”
1900 =
1910 =
1920 -
1930 =
1940 -=
1950 =
1960 -
1970 -
1980
1990
2000 -
2010 -
2020 -
2030 =
2040 =
2050 -
2060 =
2070 =
2080 "
2090 -
2100 -
2110 "
2120 =
2130 -
2140 »
2150 »
2160 -
2170 -
2180 »
2190 =
2200
2210 «=
2220 ~
2230
2240
2250 -
2260 "
2270 =
2280 =
2290
2300
2310 =
2320 -
2330 =
2340 »
2350 -
2360
2370 «
2380 -
2390 «
2400 «

SS

s

s

691
5526
3375
2524
201
0
0
0
0
1862
1775
176
1990
1819
176
1993
2125
176
2000
2236
176
201
0
0
0
0
1288
4297
3225
2141
1464
2201
7201
176
201
0
O
0
O
1793
452
0
0
1868
2273
1938
1650
808
3565
1556
3553
2284
213
201
0
0
0
0

9B

241(9 >
2420 "
2430 -
2440 =
2450 -
2460 <*
2470 «■
2480 =
2490 -
2500 =
2510 =
2520 =
2530 =
2540 =
2550 ■=
2560
2570
2580 -
2590 “
2600 =
2610 =
2620 -
2630 =
2640 »
2650 =
2660 =
2670 =
2680 >
2690 =
2700 =
2710 =
2Z20 -
2730 -
2740 =
2750 »
27bVi »
2770 =
2780 =
213^ -
2800 =
2810 °
2820 -
2830 -
2840 -
2850 "
2860
2870 «
2880 -
2890 =
2900 =
2910 =
2920 -
2930 ■=
2940 -
2950
2960
2970 »
2980 «

a

3316
5184
4184
2076
5771
213
1443
1911
5084
3787
4324
3330
213
213
942
1650
201
O
0
0
1370
2201
3790
176
201
O
0
O
0
805
1619
201
0
0
0
0
1874
4064
3815
3084
1768
1762
2699
0
0
0
0
1102
2559
1430
1429
5890
0
1472
2705
2791
4235
213

2990 =
3000 -
3010 "
3020 >
3030 -
3040 -
3050 -
3060 "
3070 -
3080 "
3090 "
3100 -
3110 -
3120 >
3130 -
3140 -
3150 -
3160 -
3170 =
3180 =■
3190 -
3200 -
3210 -
3220 -
3230 -
3240 -
3250 =
3260 >
3270 -
3280 -
3290 -
3300 -
3310 -
3320 =
3330 -
3340 -
3350 «
3360 -
3370 »
3380 -
3390 -
3400 «
3410 -
3420 -
3430 -
3440 -
3450 »
3460 »
3470 =
3480 »
3490
3500
3510 -
3520 =■
3530 -
3540 -
3550 =
3560 =

a

1507
201
0
O
0
0
1773
3084
1473
5148
5891
201
0
O
0
0
728
3421
2600
1874
4266
11723
213
4611
1535
2963
201
0
O
O
0
1468
2742
2863
3229
2924
4800
4817
5665
201
O
0
0
0
1919
1339
1729
1384
5798
213
201
0
0
O
0
3720
1583
1732

3570 -
3580 -
3590 -
3600 -
3610 -
3620 -
3630 -
3640 -
3650 •
3660 >
3670 -
3680 •
3690 -
3700 «
3710 -
3720 -
3730 «
3740 »
3750 -
3760 -
3770 -
3780 -
3790 -
3800 -
3810 -
3820 -
3830 -
3840 -
3850 -
3860 >
3870 -
3880 -
3890 -
3900 -
3910 -
3920 -
3930 -
3940 -
3950 -
3960 »
3970 ”
3980 -
3990 -
4000
4010
4020 -
4030 -
4040 ”
4050 -
4060 “
4070 -
4080 -
4090 -
4100 -
4110 -
4120 “
4130 -
4140 =

a

1919
2921
1729
1583
6033
1994
1422
1383
213
1422
201
0
0
0
0
2465
201
0
0
0
O
1643
1990
3735
4869
3268
213
1709
2982
3043
4756
4426
201
0
0
0
0
1709
4437
3654
1437
1900
O
1709
4439
3117
3120
0
3506
1422
201
O
O
0
O
2457
2522
5589

158

4150 -
4160 -
4170 -
4180 >
4190 -
4200 -
4210 -
4220 -
4230 -
4240 -
4250 -
4260 -
4270 -
4280 "
4290 -
4300 -
4310 -
4320 -
4330 -
4340 «
4350 -
4360 =•
4370 -
4380 -
4390 »
4400 -
4410 -
4420 ■■
4430 -
4440 »
4450 -
4460 -
4470 -
4480 -
4490 -
4500 -
4510 -
4520 -
4530 «»
4540 -
4550 -
4560 -
4570 -
4580 "
4590 -
4600 -
4610 -
4620 -
4630 -
4640 -
4650 -
4660 -
4670 »
4680 "
4690 »
4700 -
4710 -
4720 »

201
0
O
0
0
2523
4754
2457
201
O
O
O
0
O
0
1748
191
1812
201
O
O
0
O
o
1478
4082
4633
6125
201
O
O
0
O
2273
3164
1650
808
3468
2284
213
201
O
O
O
0
1565
1945
7415
2678
796
5363
7413
213
1365
4639
3942
213
6051

s

4730 -
4740 -
4750 “
4760 «»
4770 »
4780 «
4790 -
4B00 -
4810 -
4820 -
4830 -
4840 -
4850 -
4860 -
4870 -
4880 -
4890 =
4900 -
4910 =
4920 «
4930 »
4940 -
4950 »
4960
4970 -
4980 =
4990 -
5000 >
5010 -
5020 "
5030 -
5040 -
5050 -
5060 -
5070 -
5080 -
5090 -
5100 -
5110 -
5120 »
5130 -
5140 =■
5150 -
5160 -
5170 =
5180 =
5190 -
5200 -
5210 -
5220 "
5230 -
5240 -
5250 -
5260 -
5270 -
5280 >
5290 »
5300 <*

1285
201
O
O
O
O
2000
3936
2533
3423
2236
3685
1363
176
201
O
O
O
0
O
O
5291
1478
3172
2114
1837
1406
213
3461
1407
1858
4999
201
O
O
O
O
2273
3088
1650
808
3462
2284
213
201
0
0
O
O
2114
1370
2273
2980
1650
808
3159
2284
213

5310 -
5320 -
5330 -
5340 -
5350 -
5360 •
5370 -
5380 -
5390 -
5400 >
5410 -
5420 -
5430 “
5440 =
5450 -
5460 -
5470 -
5480 -
5490 =
5500 "
5510 -
5520 >
5530 -
5540 -
5550 -
5560 -
5570 -
5580 >
5590 »
5600 -
5610 -
5620 >
5630 “
5640 -
5650 >
5660 >
5670 -
5680 -
5690 -
5700 -
5710 -
5720 -
5730 -
5740 -
5750 -
5760 -
5770 -
5780 -
5790 -
5800 -
5810 "
5820 >
5830 -
5840 >
5850 -
5860 -
5870 -
5880 -

201
O
O
O
O
811
3735 201
O
O
O
O
5628
2585
2334
3227
1120
3110
5357
670
2553
3080
2425
2878
3128
2472
2277
2753
2378
2330
2548
2802
2883
3162
3230
2677
2637
2444
2337
213
201
O
O
0
O
2502
201
O
O
0
O
2372
5302
1905
2201
4423
446
3703

SB

S

5890 =
5900 =
5910 -
5920 =
5930 -
5940 «
5950 -
5960 -
5970 -
5980 »
5990 »
6000 -
6010 -
6020 »
6030 -
6040 »
6050 -
6060 -
6070 -
6080 -
6090 -
6100 -
6110 =
6120 »
6130
6140 -
6150 -
6160 ==
6170 »
6180 -
6190 a
6200
6210 -
6220 -
6230 -
6240 -
6250 -
6260 -
6270 -
6280 <=
6290 -
6300 -
6310 -
6320 «
6330 **
6340 >
6350 -
6360 -
6370 «
6380 a
6390 »
6400 >
6410 -
6420 -
6430 "
6440 *=
6450 -
6460 -

2821
176
201
O
0
O
O
1587
201
O
O
O
0
680
2294
201
O
O
O
0
1715
6383
201
O
O
O
O
887
1793
1736
191
201
O
O
O
0
1182
2003
2029
201
O
0
O
677
2530
1565
2273
3251
1650
808
2287
2284
213
6079
201
O
O
O

159

6470 -
6480 >
6490 -
6500 -
6510 -
6520 -
6530 -
6540 "
6550 ”
6560 -
6570 -
6580 >
6590 -
6600 -
6610 =
6620 -
6630 >
6640 =
6650 -
6660 >
6670 »
6680 “
6690 -
6700 -
6710 »
6720 -
6730 -
6740 -
6750 -
6760
6770 -
6780 -
6790 »
6800 =>
6810 -
6820 «
6830 -
6840 -
6850
6860
6870 -
6880
6890 -
6900 »
6910
6920
6930
6940 =
6950 -
6960 -
6970 -
6980 =
6990 -
7000 =
7010 =
7020 -
7030 -
7040 =

XX

0
980
2750
1490
1556
2023
201
0
0
0
O
2934
2249
7869
201
0
0
0
0
2944
2249
9642
201
O
0
0
0
2953
2249
6857
201
0
0
0
0
2957
2249
7230
201
0
0
0
O
2951
2249
12249
2114
201
0
0
0
0
1406
2147
2491
201
0
0

cx

7050 -
7060 -
7070 -
7080 -
7090 «
7100 =
7110 -
7120 -
7130 -
7140 -
7150
7160 -
7170 -
7180 =
7190 -
7200 -
7210 -
7220 -
7230 -
7240 -
7250 -
7260 -
7270 -
7280 -
7290 -
7300 «
7310 -
7320 -
7330 -
7340 -
7350 -
7360 =
7370 -
7380 -
7390 -
7400 -
7410 -
7420 =
7430 -
7440 -
7450 -
7460 -
7470 «
7480 -
7490 -
7500 -
7510 »
7520 »
7530 -
7540 -
7550 -
7560 -
7570 «
7580 -
7590 =■
7600 >=
7610 »
7620 -

0
0
801
2566
201
0
0
O
0
681
5691
2029
201
0
0
0
0
681
4966
2029
201
0
0
0
O
1549
501
761
5049
3977
4812
3496
5159
136
201
0
0
0
0
1549
762
5103
4031
4866
3550
5213
137
201
0
0
0
0
4448
5130
854
4618
7566
455

7630 -
7640 =
7650 -
7660 >
7670 -
7680 -
7690 -
7700
7710 -
7720 -
7730 -
7740 -
7730 “
7760 -
7770 -
7780 -
779VÍ -
7800 >
7810 =
7820 =
7830 =
7840 =
7850 ■»
7860 =
7870 =
7880 =■
7890 =
7900 -
7910 »
7920 =
7930 »
7940 «=
7950 »
7960 =
7970 =
7980 -
7990 =
8000 -
8010 >
8020 -
8030 •*
8040 -
8050
8060 -
8070 =•
8080
8090 =
8100 >
8110 °
8120 >
8130 «
8140 ■*
8150 -
8160 >
8170 =
8180 >
8190 -
8200 >

201
0
0
0
0
1996
340
1217
553
587
1095
553
1082
544
587
960
544
1230
558
587
1108
558
1122
562
587
1000
562
898
560
587
776
560
1092
543
587
970
543
1459
440
1852
444
2458
421
2601
431
2591
438
1918
432
926
431
802
436
575
817
429
2170
1706

8210 -
8220 -
8230 -
8240 «
8250 -
8260 -
8270 «
8280 "
8290 »
8300 >
8310 -
8320 -
8330 -
8340 -
8350 -
8360 =
8370 -
8380 -
8390 -
8400 >
8410 o
8420 -
8430 -
8440 -
8450 -
8460 -
8470 -
8480 -
8490 -
8500 -
8510
8520 -
8530 >
8540 -
8550 -
8560 =•
8570 -
8580 -
8590 -
8600 «
8610 -
8620 -
8630 -
8640 -
8650 -
8660 >
8670 -
8680 °
8690 =
8700 =
8710 =
8720 =
8730 -
8740 -
8750 -
8760 -
8770 =
8780 =

Bl

547
1472
1869
700
1403
3911
5409
578
626
548
593
512
1859
4417
2426
1949
837
431
447
341
3538
18611
880
544
1453
4893
1542
544
686
703
1308
553
686
703
1213
562
686
703
1321
558
686
703
543
550
332
553
342
2940
6313
13386
3209
5666
641
543
1869
2923
537
627

160

as

as

8790 -
8800 =
8810 =
8820 -
8830 =
8840 =
8850 =
8860 =
8870 -
8880 °
8890
8900
8910
8920
8930 =
8940 -
8950 -
8960 •=
8970 -
8980 -
8990 =
9000 «
9010 •=
9020 =
9030 =
9040 =
9050 =
9060 "
9070 =
9080 «
9090 =
9100 =
9110 -
9120 »
9130 »
9140 -
9150 -
9160 =
9170 ~
9180 -
9190 -
9200 -
9210 -
9220 “
9230
9240 -
9250 -
9260 =
9270 -
9280 -
9290 -
9300 >
9310 «
9320 =
9330 -
9340 =
9350 -
9360 -

544
1055
537
627
421
1573
10061
1528
6579
10713
578
562
537
627
642
1299
562
533
549
343
2695
9243
1576
421
1138
6022
1155
11540
626
591
1490
5710
1652
562
550
344
3811
18838
3063
1179
20966
579
431
447
808
544
545
583
345
2510
1574
4147
546
1926
4036
547
531
346

B

9370 -
9380 -
9390 -
9400 -
9410 -
9420 -
9430 »
9440 -
9450 -
9460 “
9470 «
9480 =
9490 -
9500 =
9510 »
9520 =
9530
9540 -
9550 -
9560 »
9570 =
9580 -
9590 »
9600 -
9610 -
9620 >
9630 -
9640 -
9650 -
9660 -
9670 -
9680 -
9690 -
9700 -
9710 -
9720 -
9730 -
9740 -
9750 -
9760 =
9770 -
9780 -
9790 "=
9800 "
9810 -
9820 -
9830 -
9840 -
9850 -
9860 -
9870 -
9880 -
9890 »
9900 -
9910 -
9920 -
9930 -
9940 -

4144
7726
1023
562
1023
558
556
540
593
347
3222
4001
4754
431
15077
639
534
2383
7991
545
547
589
534
1877
3873
552
348
1763
12337
546
557
536
349
2757
12728
5162
9686
6724
579
685
680
3135
4195
538
389
2079
14996
1005
929
537
623
551
421
2576
948
543
1030
560

9950 -
9960 -
9970
9980 »
9990 -
10000 "
10010 -
10020 »
10030 -
10040 "
10050 -
10060 -
10070 -
10080 >
10090 -
10100 >
10110 >
10120 -
10130 -
10140 "
10150 -
10160
10170 -
10180 =
10190 -
10200 >
10210 -
10220 -
10230 -
10240 >
10250 -
10260 >
10270 »
10280 -
10290 -
10300 -
10310 -
10320 -
10330 -
10340 -
10350 -
10360 -
10370 -
10380 -
10390 -
10400 -
10410 -
10420 -
10430 >
10440 ~
10450 -
10460 -
10470 -
10480 -
10490 -
10500 -
10510 -
10520 -

545
596
580
596
390
1628
4043
1677
4007
679
5962
637
1265
1500
2410
6265
578
638
543
2455
3621
671
1381
543
578
391
2224
10161
2801
6534
2009
2870
1836
7329
911
560
595
392
2053
2748
4801
1943
6383
587
640
655
1023
553
942
562
588
60S
393
1159
7794
1 126
4046
630

10530 "
10540 >
10550 -
10560 »
10570
10580 "
10590 =
10600 >
10610 «
10620 -
10630 -
10640 =
10650 -
10660 -
10670 -
10680 "
10690 °
10700 «
10710 -
10720 -
10730 -
10740 -
10750 -
10760 -
10770 -
10780 =
10790 -
10800 -
10810 -
10820 -
10830 -
10840 »
10850 -
10860 -
10870 «
10880 -
10890 -
10900 -
10910 -
10920 -
10930 -
10940 -
10950 -
10960 -
10970 -
10980 -
10990 -
11000 -
11010 -
11020 =
11030 "
11040 -
11050
11060 =
11070 -
11080
11090 -
11100 -

2526
553
552
593
394
2676
2724
4764
597
594
395
1167
121 1
6245
1315
5393
1369
3019
2628
4903
643
546
5566
421
3405
4923
3371
1560
3463
2961
2814
1157
6683
11588
578
630
585
645
1112
3517
598
604
396
1640
9258
1401
1787
644
1294
10327
816
544
585
397
2436
3143
582
606

161

11110 -
11120 >
11130 -
11140 -
11150 -
11160 "
11170 »
11180 >
11190 »
11200 «
11210 -
11220 -
11230 -
11240 -
11250 -
11260 <*
11270 »
11280 -
11290 -
11300 ”
11310 =
11320 ■=
11330 -
11340 -
11350 -
11360 -
11370 -
11380 -
11390 -
11400 >
11410 -
11420 -
11430
11440
11450 -
11460 >
11470 -
11480 "
11490 -
11500 »
11510 -
11520 -
11530 -
11540 «
11550 -
11560 -
11570 -
11580 >
11590 =
11600 ”
11610 «
11620 -
11630 -
11640 -
11650 >*
11660 >
11670 -
11680 -

s

398
2436
587
594
599
390
2436
601
597
596
581
391
2436
598
581
597
392
2436
589
583
393
2436
5547
589
584
600
394
2785
6895
4691
1524
578
558
600
599
395
2396
723
10410
593
343
345
344
1762
3008
397
697
9129
525
955
964
548
345
2971
3339
352
691
535

11690 -
11700 -
11710 -
11720 -
11730 -
11740 -
11750 -
11760 -
11770 -
11780 =
11790 -
11800 -
11810 -
11820 -
11830 -
11840 >
11850 -
11860 "
11870 -
11880 "
11890 -
11900 -
11910 -
11920 -
11930 -
11940 -
11950 -
11960 -
11970 -
11980 =
11990 -
12000 »
12010 -
12020 "
12030 »
12040 -
12050 -
12060 -
12070 >
12080 -
12090 -
12100 "
12110 >
12120 -
12130 -
12140 -
12150 -
12160 -
12170 -
12180 -
12190 -
12200 -
12210 -
12220 -
12230 >
12240 -
12250 -
12260 •

1641
3193
3269
346
1740
351
1385
4051
347
2530
347
1001
525
535
2292
348
1750
347
1352
525
535
349
4320
4978
3908
399
1723
525
535
350
2086
394
795
5828
351
1699
349
1393
13407
352
5187
5314
5737
395
1043
3084
392
1792
390
1736
525
535
3574
393
5031
17192
3237
399

12270 -
12280 -
12290 -
12300 -
12310 -
12320 -
12330 -
12340 -
12350 "
12360 >
12370 -
12380 -
12390 -
12400 -
12410 -
12420 -
12430 -
12440 -
12450 -
12460 "
12470 -
12480 >
12490 »
12500 -
12510 -
12520 -
12530 -
12540 -
12550 -
12560 -
12570 -
12580 -
12590 -
12600 -
12610 -
12620 -
12630 -
12640 -
12650 -
12660 -
12670 -
12680 -
12690 -
12700 -
12710 -
12720 -
12730
12740 -
12750 -

1484
3575
394
5156
2461
390
692
2298
395
1730
347
1341
2290
396
1865
390
1386
525
535
7499
397
3310
399
1025
3086
1884
398
3182
3257
353
2031
2642
2142
399
1547
348
1043
5852
4347
333
587
17573
431
447
334
14619
431
447
242

TOTAL - 217S197

162

: CLS s LOCATE 11. li PRINT "CH60000 PRINT «8.CHRÍ«27)!"G"x EXSUM.PROGRAM"
60010 LOCATE 1, 5 I PRINT "OUTPUT*TO*PRINTER*«P)*OR*SCREEN*«S

> *?" S60020 X» = INKEY« i IF XI = "" THEN 6002060030 IF X« - "P" OR X« » "p" THEN STREAM - 8 i PRINT "P"
60040 IF X« “ "S" OR X« - "s" THEN STREAM = 0 : PRINT "S"60050 LOCATE 1, 10 ! INPUT "STARTING*LINE*NUMBER": X« : IF VA L« X« > >0 THEN LSTART - VAL« X«) ELSE 60050
60060 TOTAL - 0 : LLIMIT - 62990 X MEM - 368 : NEXTMEM - MEM
60070 :
60080 NEXTMEM

<1 II

PEEK« MEM » + 256 « PEEK« MEM + 1) + NEXTMEM
60090 LN « PEEK« MEM + 2) + 256 * PEEK« MEM + 3) ! IF LN >=

LLIMIT THEN 62000 ELSE IF LN < LSTART THEN MEM = NEXTMEM
: GOTO 6008060100 MEM = MEM + 4 i CHXSUM = 0 : QUOTE60110 IF PEEK« MEM) = 32 THEN MEM = MEM60120 IF PEEK« MEM I =■ 1 DR PEEK« MEM) » 197 THEN MEM

MEM ; GOTO 6100060130 WHILE MEM < NEXT MEM60140 TOKEN - PEEK« MEM) i IF TOKEN - 34 THEN QUOTE = QUOTE
XOR 160150 IF QUOTE =■ 1 OR TOKEN <> 32 THEN 6017060160 LASTOK = PEEK« MEM - 1) s NEXTOK = PEEK« MEM OSUB 61500 1 IF IGNORE - 1 THEN 60180

60170 CHXSUM - CHXSUM + TOKEN60180 MEM > MEM + 1 : WEND61000 PRINT «STREAM, USING "#*#**"! LNs : PRINT «STREAM.
"! CHXSUM61010 TOTAL - TOTAL + CHXSUM j GOTO 60080

61490 >61500 IGNORE “ 061510 IF LASTOK - 44 OR LASTOK » 32 OR LASTOK = 40 OR LASTOK OR « LASTOK > 237 AND LASTOK < 250) THEN IGNORE =
1 t RETURN61520 IF NEXTOK = 41 OR NEXTOK - 1
TOK < 250) THEN IGNORE - 1 i RETURN

61530 RETURN
61990 :62000 PRINT «STREAM i PRINT «STREAM, "TOTAL*“..'
62990 I

MEM + 4 i CHXSUM 0 1 s GOTO 60110NEXT

SB

s 1) : G

se 1
ta

OR « NEXTOK > 237 AND NEX

TOTAL

s

se

60000
60010
60020 »
60030 -
60040
60050 >
60060 -
60070 -
60080 =
60090 B
60100
60110
60120 -
60130 -
60140 =
60150 -
60160 >=

es

2809
3059
2061
3313
3297
5713
4283
0
4367
921 I
3256
3432
4964
1687
5092
2819
6113

60170 =
60180 -
61000 "
61010 >=
61490 -
61500 -
61510 -
61520 >
61530 -
61990 -
62000 -
TOTAL -

2585
1578
3897
2604
0
1022
9964
7455
201
O
2964
97746

163

164

APPENDIX B
BIBLIOGRAPHY

The following is a short list of some useful and interesting books and
articles which will provide more information about areas we have cov
ered in this book. If you have found some of the more advanced
techniques we have mentioned intriguing, then these sources will be
well worth looking at.

Blanc, M. S. and Galley, S. W., 1980: How to fit a large program into
a small machine. Creative Computing VOL 6 no 7, 80-87.

Daynes, R., 1982: The video disk interfacing primer. Byte, June, 48-
59.

Jackson, Principles of Program Design. Academic Press.
Knuth, Donald. Fundamental Algorithms. Addison Wesley.
Lebling, P. D., Blanc, M. S. and Anderson, T. A., 1979: ZORK: A com

puter fantasy simulation game. IEEE Computer, April, 51-59.
Lister, A. M. Fundamentals of Operating Systems. Macmillan Publishers

Ltd.
Reed, K., 1980: Adventure II — an epic game for non-disc systems.

Practical Computing, August 68-75.
Tolkein, J. R. R. The Lord of the Rings. Unwin Paperbacks.
Winston, P. H. Artificial Intelligence. Adison Wesley.

165

AKS CASSETTE
A cassette containing the Adventure Kernel System is available on
cassette from:

Bookpoint Ltd.,
39 Milton Trading Estate,
Abingdon,
OXON, 0X14 4TD.

Please send 80p (post & pack) plus -2 3.95.

** i

166

Writing Adventure Games On The Amstrad

Customer Registration Card

Please fill out this page (or a photocopy of it) and return it so that we
may keep you informed of new books, software and special offers.
Post to the appropriate address on the back.

Date 19

Name

Street & No

City....................................

Model of computer owned

Postcode

Where did you learn of this book?:

□ friend □ RETAIL SHOP

□ MAGAZINE (give name)

□ other (specify)

□ 10-15 □ 16-19Age?

How would you rate this book?

□ Excellent

□ Overprice

QUALITY:

□ 20-24 □ 25 and over

□ Good

□ Good

□ Poor

□ Underpriced

What other books and software would you like to see produced for
your computer?

VALUE:

EDITION 7 6 5 4 3 2 1

X 167

Melbourne House addresses
Put this Registration Card (or photocopy) in an envelope and post it to
the appropriate address:

United Kingdom
Melbourne House (Publishers) Ltd
Castle Yard House
Castle Yard
Richmond, TW10 6TF

Australia and New Zealand
Melbourne House (Australia) Pty Ltd
2nd Floor, 70 Park Street
South Melbourne, Victoria 3205

WRITING ADVENTURE GAMES ON YOUR AMSTRAD is for every
Amstrad owner interested in adventures, whether a
beginner or experienced programmer.

This book describes what adventure games are, how to
play them, and more importantly how you can write them.
And it’s all here tor you, ready to type in. The book
includes a simple adventure game that you will be able
to play immediately.

The sample game in this book was written using the
authors’ own Adventure Kernel System (AKS). This is the
heart of all adventure programs, and with this you will be
able to write and devise any adventure game of your
own.

The mysteries of creating adventures are unravelled for
you and simply explained. Mike Lewis and Simon Price
show you how to define the problems, break them down
into structured elements as well as more advanced
techniques such as text compression and much more.

WRITING ADVENTURE GAMES ON YOUR AMSTRAD will enable
you to enjoy a complete adventure game immediately as
well as opening up the potential of hundreds of new and
exciting adventures that you and your friends will be able
to write.

£6.95

Melbourne
House
Publishers

ISBN D-flLlLl-nL-n

78086l"61196697,

<o

Io
?

g
3
S
o

>
3</>
o

https://acpc.me/

CPC

[FRA] Ce document a été préservé numériquement à des fins éducatives et d'études, et non commerciales.
[ENG] This document has been digitally preserved for educational and study purposes, not for commercial purposes.
[ESP] Este documento se ha conservado digitalmente con fines educativos y de estudio, no con fines comerciales.

	Writing Adventure Games on the Amstrad CPC464/CPC664
	CONTENTS
	SECTION 1 - ADVENTURES GAMES
	1 - INTRODUCTION
	2 - THE HISTORY OF ADVENTURE GAMES
	3 - PLOTTING AN ADVENTURE
	4 - THE STRUCTURAL ELEMENTS OF AN ADVENTURE GAME
	5 - SAVING SPACE

	SECTION 2 - THE ADVENTURE KERNEL
	6 - WHAT IS AKS?
	7 - ACTIONS IN AKS
	8 - TRIGGERS IN AKS
	9 - LOCATIONS, OBJECTS AND EVENTS IN AKS
	10 - EXPRESSIONS IN AKS

	SECTION 3 - IMPLEMENTING AKS ON THE AMSTRAD
	10 - EXPRESSIONS IN AKS
	11 - PROGRAMMING TECHNIQUE
	12 - STRUCTURAL OVERVIEW OF AKS
	13 - IMPLEMENTING THE EXPRESSION EVALUATOR
	14 - EXTENDING AKS

	SECTION 4 - WITCH HUNT - AN EXAMPLE AKS SCENARIO
	15 - WITCH HUNT PLOT DESIGN
	16 - BREAKDOWN OF WITCH HUNT

	APPENDIX A - THE AKS AND WITCH HUNT LISTING
	APPENDIX B - BIBLIOGRAPHY
	
✅ Raw HQ scan : KailoKyra for ACME
✅ Cleaning/Restoration/Layout/OCR : ACME – https://acpc.me
✅ Thanks to Rafa CPCMANIACO for lending the book
✅ 2021-11-30

