7:0 REFERENCE CUIDE

Z80 Reference Guide

Z80 REFERENCE GUIDE

Alan Tully

MELBOURNE HOUSE

 PUBLISHERS
(C) 1984 Alan Tully

All rights reserved. This book is copyright and no part may be copied or stored by electromagnetic, electronic, photographic, mechanical or any other means whatsoever except as provided by national law. All enquiries should be addressed to the publishers:

IN THE UNITED KINGDOM -
Melbourne House (Publishers) Ltd
Castle Yard House
Castle Yard
Richmond, TW10 6TF
IN THE UNITED STATES OF AMERICA -
Melbourne House Software Inc.
347 Reedwood Drive
Nashville TN 37217
IN AUSTRALIA -
Melbourne House (Australia) Pty Ltd
Level 2, 70 Park Street
South Melbourne, Victoria 3205

Printed by The Whitefriars Press Ltd, Tonbridge, Kent
ISBN 0861611624

```
Edition: 7654321
Printing: F E D C B A 9 8 7 654 3 2 1
Year: }9089888786858
```


CONTENTS

CHAPTER 1 - Introduction 1
CHAPTER 2 - Registers and Flags 3
CHAPTER 3 - Timing 17
CHAPTER 4 - Instruction Groups 19
CHAPTER 5 - Z80 Machine Code Instructions 71
CHAPTER 6 - Hints and Tips 353
APPENDIX A - ASCII Codes 357
APPENDIX B - ASCII/Hexadecimal/Decimal Conversion 359
APPENDIX C — Quick Reference to Z80 Instruction Set 361

CHAPTER 1

Introduction

This book is intended for users and prospective users of $Z 8 \emptyset$ based micro-computers who already have some machine code programming experience and wish to extend their ability to write and modify programs. It is designed to be a convenient reference manual when specifying and coding new programs or debugging and modifying existing systems and programs.
The Zilog Z8Ø micro-processor was designed to be compatible with the Intel $808 \emptyset$ range of micro-processors. That is programs which run on Intel $8 \emptyset \emptyset 8$ or $8 \emptyset 8 \emptyset$ processors will also run ont he $\mathbf{Z 8 \emptyset \text { , although, as the }}$ Z8Ø provides additional facilities (instructions, registers, block input/ output, etc.) it is extremely unlikely that a program written for the $\mathrm{Z} 8 \emptyset$ would run successfully on either the $80 \emptyset 8$ or $8 \emptyset 8 \emptyset$.
Chapter 2 describes the various registers provided in the $Z 8 \varnothing$ and contains tables showing the effect various groups of transactions have on the Flag Register.
Chapter 3 gives brief details of the timing principles used in the $Z 8 \emptyset$.
Chapter 4 contains a summary of the instructions, identified within a number of groups, each of which is related to specific functions or activities. This chapter is intended for the programmer who knows what is required of the program and needs to select the most appropriate instruction(s).

Chapter 5 gives full details of each individual instruction, together with its effect on the Flag Register, Timing and an example of all except the most simple instructions.
Chapter 6 contains various practical hints and tips based on the experience of a number of individual programmers.
The following tables are provided as appendices for easy reference:
Appendix A - ASCII Codes.
Appendix B - ASCII Hexadecimal/Decimal Conversion.
Appendix C - Glossary of Terms and Abbreviations used in this book.
Appendix D - Table of Instructions by Operator Code, indexed.
Appendix E - Table of Instructions by mnemonics, indexed.

CHAPTER 2

Registers and Flags

Z80 Registers can be considered under three different groups:

Type of Register

No.
General Purpose Registers 14
Flag Register 1
Special Purpose Registers 6

General Purpose Registers

Fourteen 8-Bit General Purpose Registers are provided, in two sets, identified as A, B, C, D, E, H and L plus $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}, E^{\prime}, H^{\prime}$ and L^{\prime}. Only one set, together with the equivalent Flag Register (F or F^{\prime}) can be in use at any one time. A "set" of registers may consist of either A and F or A^{\prime} and F^{\prime} plus either B, C, D, E, H and L or $A^{\prime}, \mathrm{B}^{\prime}, \mathrm{C}^{\prime}$, $D^{\prime}, E^{\prime}, H^{\prime}$ and L^{\prime}, i.e.:

Set	Set	Set	Set	
A	A	A^{\prime}	A^{\prime}	
B	B^{\prime}	B	B^{\prime}	
C	C^{\prime}	C	C^{\prime}	
D	or	D^{\prime}	or	D
or	D^{\prime}			
E	E^{\prime}		E	E^{\prime}
H	H^{\prime}	H	H^{\prime}	
L	L^{\prime}	L	L^{\prime}	

Special Register Selection instructions provide the facility to switch between the two sets of registers, allowing extra storage in registers, which is much faster than using external memory, particularly if interrupts are likely to occur.

The A Register is the Accumulator and is the most frequently used of all the registers. The result of an Arithmetic or Logical operation, such as ADD, SBC, XOR, etc., is always stored in the Accumulator (Register A).
The remaining six General Purpose Registers in a set can be used to store either data or memory addresses and are frequently referred to as Register Pairs - BC, DE, HL. This enables a Register Pair to be used to store a complete memory address (up to 64 K) or to provide double precision arithmetic facilities.

NOTE: The H and L registers were originally designated as such because one held the High (H) byte of a memory address and the other the Low (L) byte of the same memory address.

Register Pairs

High Order Byte

Low Order
Byte

$\begin{array}{cc}\text { High Order } & \text { Low Order } \\ \text { Byte } & \text { Byte }\end{array}$

Flag Register

Two Flag Registers are provided, one identified as the F Register, which is always associated with Register A, and the other identified as F^{\prime}, which is always associated with Register A^{\prime}. The Flag (F) Register contains 8 Bits, as do the General Purpose Registers, but each individual Bit is used to identify conditions within the C.P.U. (Central Processing Unit) which exist after an instruction has been obeyed. The purpose of each Bit within the Flag Register is given on the next page.

Bit Positions

$\left.$| 7 | 6 | 5 | 4 | 3 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | 1 \right\rvert\, 0.

Bit	Flag	Details
7	Sign	SET = 1 if the result of certain operations are negative, RESET $=\varnothing$ if the result is not negative. (See Table 2.1)
6	Zero	SET $=1$ if the result of certain operations are zero, RESET $=\emptyset$ if the result is not zero. (See Table 2.1)
5	-	Not used.
4	Half Carry	Indicates whether there has been a carry from Bit 3 (Add operations), borrow from Bit 4 (Subtract operations) or if the Low Order half byte of the result of an operation has a value greater than $1 \emptyset \emptyset 1$, i.e. is invalid for Binary Coded Decimal purposes. (See Table 2.3)
3	-	Not used.
2	Parity/Overflow	A dual-purpose flag. When used to indicate Parity, it is SET = 1, for Even Parity and RESET $=\emptyset$ for Odd Parity. When used to indicate Overflow it is SET $=1$ if the result of an arithmetic operation is too large to be contained in 8 Bits (or 16 Bits for Two Byte operations). (See Table 2.4)
1	Subtract	SET $=1$ if the instruction was a Subtract operation, RESET $=\emptyset$ if the instruction was an Add Operation.
\emptyset	Carry	Indicates whether there has been a Carry or Borrow during Arithmetic operations and can be SET or RESET by certain Shift and Rotate operations. (See Table 2.5)

Table 2.1 - Sign Flag

Instruction Group (See Ch.4)	Instructions	
Single Byte Load Group	LD A, I	Effect otherwise RESET $=\emptyset$ if the I Register is negative,
Exchange, Block Transter and Search Group.	CPI CPIR CPD CPDR	SET $=1$ if the result is negative, otherwise RESET $=\emptyset$.
Single Byte Arithmetic Group	ADC A,s ADD A,s AND s CP s DEC s INC s OR s SBC A,s SUB s XOR s	SET $=1$ if the result is negative, otherwise RESET $=\emptyset$.
Two Byte Arithmetic Group.	ADC HL,rr SBC HL,rr	SET $=1$ if the result is negative, otherwise RESET $=\emptyset$.
General Purpose Arithmetic and C.P.U. Control Group	DAA	SET $=1$ if the most significant bit of the Accumulator $=1$, otherwise RESET $=\emptyset$.

NOTES:

b represents a specified Bit
r represents a specified Register.
s represents a specified Operand.
rr represents a specified Register Pair.

Rotate and Shift Group	RLs RR s RLC s RRC s SLA s SRA s SRL s RLD RRD	SET $=1$ if the result is negative, otherwise RESET $=\emptyset$. SET $=1$ if the Accumulator is negative after the shift, otherwise RESET $=\emptyset$.
Bit Set, Reset and Test (Flag) Group.	BIT b, r	Unknown
Input and Output Group	IN R,(C) IND INDR INI INIR OTDR OTIR OUTD OUTI	SET $=1$ if the input data is negative, otherwise RESET $=\emptyset$. Unknown

NOTES:
b represents a specified Bit.
r represents a specified Register.
s represents a specified Operand
rr represents a specified Register Pair.

Table 2.2 - Zero Flag

Instruction Group (See Ch. 4)	Instructions	Effect
Single Byte Load Group	LD A,I LD A,R	$\begin{aligned} & \text { SET }=1 \text { if } \operatorname{l} \text { Register }=\emptyset \text {, otherwise } \\ & \text { RESET }=\emptyset . \\ & \text { SET }=1 \text { if the R Register }=\emptyset, \\ & \text { otherwise RESET }=\emptyset . \end{aligned}$
Exchange, Block Transfer and Search Group	CPD CPI CPDR CPIR	SET $=1$ if the contents of the Accumulator $=$ the contents of the memory location whose address is held in Register Pair HL.
Single Byte Arithmetic Group	ADC A,s ADD A,s CPs DEC s INC s OR s SBC A,s SUB s XOR s	SET $=1$ if the result $=\varnothing$, otherwise RESET $=\emptyset$.
Two Byte Arithmetic Group	$\begin{aligned} & \text { ADC HL,rr } \\ & \text { SBC HL,rr } \end{aligned}$	SET $=1$ if the result $=\emptyset$, otherwise RESET $=\emptyset$.
General Purpose Arithmetic and C.P.U. Control Group	$\begin{array}{\|l} \text { DAA } \\ \text { NEG } \end{array}$	SET $=1$ if the result $=\emptyset$, otherwise RESET = \emptyset.

NOTES:
b represents a specified Bit.
r represents a specified Register.
s represents a specified Operand
rr represents a specified Register Pair.

Rotate and Shift Group	RLs RR s RLD RRD RLC s RRC s SLA s SRA s SRL s	SET $=1$ if the result $=\emptyset$, otherwise RESET $=\emptyset$.
Bit Set, Reset and Test (Flag) Group	BIT b,r	SET $=1$ if the nominated Bit in the specified Register $=\emptyset$, otherwise RESET $=\emptyset$.
Input and Output Group	IN r,(C) IND INI INDR INIR OTDR OTIR OUTD OUTI	SET $=1$ if the Input Data $=\emptyset$, otherwise RESET $=\emptyset$. SET $=1$ if the contents of Register $B-1=\emptyset$, otherwise RESET $=\emptyset$. SET $=1$. $\text { SET }=1$ SET $=1$ if the contents of Register $B-1=\emptyset$, otherwise RESET $=\emptyset$.

NOTES:

b represents a specified Bit.
r represents a specified Register.
s represents a specified Operand.
rr represents a specified Register Pair.

Table 2.3 - Half Carry Flag

Instruction Group (See Ch. 4)	Instructions	Effect
Single Byte Load Group	LD A,I LD A,R	RESET $=\emptyset$.
Exchange, Block Transfer and Search Group	CPD CPI CPDR CPIR LDD LDI LDDR LDIR	SET $=1$ if no Borrow from Bit 4, otherwise RESET $=\emptyset$. $\text { RESET = } \emptyset .$
Single Byte Arithmetic Group	ADC A,s ADD A,s INC s	SET = 1 if Carry from Bit 3, otherwise RESET $=\emptyset$.
	$\begin{array}{\|l\|} \hline \text { CP s } \\ \text { DEC s } \\ \text { SBC A,s } \\ \text { SUB s } \end{array}$	SET $=1$ if no Borrow from Bit 4, otherwise RESET = \emptyset
	AND s OR s XOR s	SET $=1$.
Two Byte Arithmetic Group	$\begin{aligned} & \text { ADC HL,rr } \\ & \text { ADD HL,rr } \\ & \text { ADD IX,rr } \\ & \text { ADD IY,rr } \end{aligned}$	SET $=1$ if Carry from Bit 11, otherwise RESET $=\emptyset$.
	SBC HL,rr	SET = 1 if no Borrow from Bit 12 , otherwise RESET $=\emptyset$.
NOTES b represents a specified Bit. r represents a specified Register.		s represents a specified Operand rr represents a specified Register Pair

General Purpose Arithmetic and C.P.U. Control Group	CCF	Not affected.
	CPL	SET $=1$.
	DAA	Not known.
	NEG	SET = 1 if no borrow from Bit 4, otherwise RESET $=\emptyset$.
	SCF	RESET $=\emptyset$.
Rotate and Shift Group	RL s RR s RLA RLD RRA RRD RLC s RRC s RLCA RRCA SLA s SRA s SRL s	RESET $=\emptyset$.
Bit Set, Reset and Test Group	BIT r,s	SET $=1$.
Input and Output Group	IN r,(C) IND IN\| INDR INIR OTDR OTIR OUTD OUTI	$\text { RESET }=\emptyset .$ Not known.

NOTES:

b represents a specified Bit.
r represents a specified Register.
s represents a specified Operand.
rr represents a specified Register Pair.

Table 2.4 - Parity/Overflow Flag

Instruction Group (See Ch. 4)	Instructions	Effect
Single Byte Load Group	$\begin{aligned} & \text { LD A,I } \\ & \text { LD A,R } \end{aligned}$	Set equal to the contents of IFF2.
Exchange, Block Transfer and Search Group	CPD CPI CPDR CPIR LDD LDI	SET $=1$ if the new contents of Register Pair $\mathrm{BC}=\emptyset$, otherwise RESET $=\emptyset$.
	$\begin{aligned} & \text { LDDR } \\ & \text { LDIR } \end{aligned}$	RESET $=\emptyset$.
Single Byte Arithmetic Group	ADC A,s ADD A,s CP s SBC A,s SUB s	SET = 1 if Overflow, otherwise RESET $=\emptyset$.
	AND s OR s XOR s	SET = 1 for Parity Even, RESET $=\emptyset$ for Parity Odd.
	DEC s	SET $=1$ if operand was $8 \emptyset$ (Hex.) before decrement, otherwise RESET $=\emptyset$.
	INC s	SET $=1$ if Operand was $7 F($ Hex.) before increment, otherwise RESET $=\emptyset$.
Two Byte Arithmetic Group	$\begin{aligned} & \text { ADC HL,rr } \\ & \text { SRC HI rr } \end{aligned}$	SET $=1$ if Overflow, otherwise RESET $=\emptyset$.

NOTES:
s represents a specified Operand. rr represents a specified Register Pair.

General Purpose Arithmetic and C.P.U. Control Group	DAA NEG	SET $=1$ if the Accumulator is Parity Even, otherwise RESET $=\emptyset$. SET $=1$ if the Accumulator contents $=80$ (Hex.) before negate, otherwise RESET $=\emptyset$.
Rotate and Shift Group	RLs RR s RLD RRD RLC s RRC s SLA s SRA s SRL s	SET = 1 for Parity Even, RESET $=\emptyset$ for Parity Odd.
Bit Set, Reset and Test Group	BIT b,r	Not known.
Input and Output Group	IN r,(C) IND INI INDR INIR OTDR OTIR OUTD OUTI	SET = 1 for Parity Even, RESET $=\emptyset$ for Parity Odd. Not known

NOTES:

b represents a specified Bit.
r represents a specified Register. s represents a specified Operand. rr represents a specified Register Pair.

Table 2.5 - Carry Flag

Instruction Group (See Ch. 4)	Instructions	Effect
Single Byte Arithmetic Group	ADC A s ADD A,s CP s SBC s SUB s AND s OR s XOR s	SET $=1$ if Carry from Bit 7 , otherwise RESET $=\emptyset$. SET $=1$ if no Borrow, otherwise RESET $=\emptyset$. RESET $=\emptyset$.
Two Byte Arithmetic Group	ADC HL,rr ADD HL, rr ADD IX,rr ADD IY,rr SBC HL,rr	SET $=1$ if Carry from Bit 15, otherwise RESET $=\emptyset$. SET = 1 if no Borrow, otherwise RESET $=\emptyset$.
General Purpose Arithmetic and C.P.U. Control Group	CCF DAA NEG SCF	SET = 1 if the C (Carry) Flag $=\emptyset$ before the instruction, otherwise RESET $=\emptyset$. SET $=1$ if Binary Coded Decimal $(B C D)$ carry, otherwise RESET $=\emptyset$. SET $=1$ if the contents of the Accumulator $=\varnothing \emptyset($ Hex. $)$ before the instruction, otherwise RESET $=\emptyset$. SET $=1$.

NOTES:

b represents a specified Bit
r represents a specified Register
s represents a specified Operand
rr represents a specified Register Pair.

Rotate and	RLs	
Shift	RLC s	Set from Bit 7 of the Operand.
Group	SLA s	
	RR s	
	RRC s	Set from Bit \emptyset of the Operand.
	SRAs	SR
	RLA	SLCA
	RRA Bit 7 of the Accumulator.	
RRA	Set from Bit \emptyset of the Accumulator.	

NOTES:
b represents a specified Bit.
r represents a specified Register.
s represents a specified Operand
rr represents a specified Register Pair.

CHAPTER 3
 Timing

The execution of instructions within the $Z 8 \emptyset$ requires time which is measured in cycles. There are two types of cycle - the clock or time cycles, known as T Cycles, and a longer machine cycle, referred to as the M Cycle. T Cycles are always of the same length, and indicate the time taken for the 'clock' which is used to co-ordinate the actions of the Z8 \emptyset to 'tick' once. They are the fundamental unit of time for the processor. Machine cycles are more abstract, each one representing the time taken for the $\mathrm{Z} 8 \emptyset$ to perform one particular action, such as fetching a program instruction, or writing a byte to memory. Because they can represent different actions, M Cycles can take varying amounts of time, from 3 to 6 T states (Note: this is simply another term for a T cycle). To find the actual time taken by an instruction, divide the number of T states taken by the clock rate being used. Thus, if an instruction taken 11 T states, and the Z 80 is being run at 2 megahertz, the instruction will take 5.5 microseconds to execute. If a 2 MHz . clock is used to control the $\mathrm{Z8} \emptyset$ (as is assumed throughout this book), each T cycle will take $\emptyset .5$ microseconds to complete.
NOTE: A 4 MHz . clock will reduce the completion time of one T cycle to 0.25 microseconds but will not necessarily halve the time required to execute any given instruction, as it may not be possible to fetch instructions and data from the memory twice as fast as they were previously being fetched.
Since the time required to execute a given instruction, or follow a loop or subroutine, can be crucial to the design and efficient running of a program, full details of the number of M and T cycles, and the processing time in microseconds (assuming a 2 MHz . clock) are given for each individual instruction code in chapter 5 . Note that some conditional instructions will not always take the same amount of time to execute. Where two execution times are shown, one is for the case in which the condition is met, and the other is for the case in which the condition is not met. For instance, the instruction JR Z, $190 \emptyset$ will take 12 T states if the zero flag is set, and the jump is performed, whereas it will take 7 T states if the zero flag is not set, and the jump is not performed.

Each instruction can be considered as executing in three stages;

- fetch the instruction
- where appropriate, read from the memory
- where appropriate, write to the memory, e.g.

During stage 1 the instruction will be fetched and decoded, then any necessary processing carried out within the C.P.U. If the instruction requires a memory read, this will take place during stage 2 and, similarly, any memory write activity takes place during stage 3.

CHAPTER 4

Instruction Groups

Full details of each instruction are given in Chapter 5. However, for convenience of programming, these can be considered under a number of separate groups, each related to a specific function or activity. These Groups are:

1. Single Byte (8 Bit) Load Group.
2. Two Byte (16 Bit) Load Group.
3. Exchange, Block Transfer and Search Group.
4. Single Byte (8 Bit) Arithmetic Group.
5. Two Byte (16 Bit) Arithmetic Group.
6. Logical Group.
7. General Purpose Arithmetic and C.P.U. Control Group.
8. Rotate and Shift Group.
9. Bit Set, Reset and Test (Flag) Group.
10. Jump, Call (Subroutine) and Return Group.
11. Input and Output Group.

The following pages give a brief description of each transaction within each of these groups, each transaction being cross-referenced to full details in Chapter 5.

1．Single Byte（8 Bit）Load Group

							ーェルロロ为		\%	0 0 80 080 0 0 0
	刀刀万刀ワ刀ワ ベきむざさるさ a口aのaのa	응믐ㅁㅁㅁㅁㅁ ベจัむざさささ aのaのaのa	びさひさささき	ワクワワクワク aの日aのロa	응믐믐믐 					
	$\vec{\nu} \vec{\omega} \vec{\omega} \vec{v} \vec{\Delta} \vec{\rightharpoonup} \vec{\omega} \vec{v} \vec{\rightharpoonup}$ －a～a～a～	NNNNNN NTN $\overrightarrow{\vec{v}} \vec{\sigma} \vec{\omega} \vec{\rightharpoonup}$ aのロロロのa	$\vec{\rightharpoonup} \vec{\rightharpoonup} \overrightarrow{\vec{u}} \overrightarrow{\mathrm{u}} \overrightarrow{\mathrm{\omega}} \vec{\omega} \vec{N} \vec{\rightharpoonup}$	 －a～ana～	NNNNNNN NTN －a a a a a a					
$z z z z z$	z	z	z	z	z	z	z	z	z	0
$z z z z z$	z	z	z	z	z	z		z	z	N
$z z z z z$	z	z	z	z	z	z	z	z	z	エ ワ
$z z z z z$	z	z	z	z	z	z		z	z	$\stackrel{0}{2}$
$z z z z z$	z	z	z	z	z	z	z	z	z	z
$z z z z z$	z	z	z	z	z	z	z	z	z	\bigcirc
$\rightarrow-\Delta \Delta N$	ω	ω	－	ω	ω	－	N	N	－	$\begin{aligned} & \text { Qoz } \\ & \substack{\text { an } \\ \text { No }} \end{aligned}$
nounas	\cdots	0	\sim	ur	ar	N	N	\sim	－	$\begin{aligned} & \stackrel{?}{2} \\ & \stackrel{2}{2} \\ & \stackrel{0}{0} \\ & \hline 0 \end{aligned}$
$\sim \sim \vec{\omega} \vec{\bullet}$	$\stackrel{\rightharpoonup}{\bullet}$	$\stackrel{\rightharpoonup}{6}$	\sim	$\stackrel{\rightharpoonup}{6}$	$\stackrel{\rightharpoonup}{\bullet}$	\checkmark		\sim	Δ	
	$\stackrel{6}{u}$	$\stackrel{\square}{0}$	$\stackrel{\omega}{\sim}$	$\stackrel{\ominus}{\circ}$	$\stackrel{\circ}{*}$	$\stackrel{\omega}{\sim}$		$\stackrel{\omega}{\sim}$	N	$\begin{aligned} & \mathrm{N} \text { in } \\ & \mathrm{S}_{1}^{\mathrm{N}} \mathrm{O} \\ & \mathrm{~N} \end{aligned}$
										$\begin{aligned} & 0 \\ & 0 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 0 \end{aligned}$
$\stackrel{\sim}{\sim}$	NNNNNN $\overrightarrow{\mathrm{v}} \overrightarrow{\mathrm{v}} \stackrel{\rightharpoonup}{\mathrm{o}} \overrightarrow{\mathrm{ov}} \overrightarrow{\mathrm{o}} \overrightarrow{\mathrm{u}}$	NNNNNNN $\overrightarrow{\mathrm{v}} \overrightarrow{\mathrm{v}} \overrightarrow{\mathrm{v}} \overrightarrow{\mathrm{o}} \overrightarrow{\mathrm{ov}} \overrightarrow{\mathrm{o}} \overrightarrow{\mathrm{v}}$	$\stackrel{N}{N} \stackrel{N}{N} \stackrel{N}{N} \stackrel{N}{N}$							$\xrightarrow{\text { T }}$

SINGLE BYTE (8 BIT) LOAD GROUP TABLE (cont.)

$\begin{aligned} & \text { SOURCE } \\ & \text { CODE } \end{aligned}$	$\left\|\begin{array}{c} \text { OBJECT } \\ C O D E(H E X) \end{array}\right\|$	DECIMAL	FLAGS							TIMING			COMMENTS	CH. 5 REF.					
			S	2	H	PN	N	C		M CYCLES	$\begin{gathered} \mathrm{T} \\ \text { STATES } \end{gathered}$	$\begin{gathered} \mu \mathrm{SEC} @ \\ 2 \mathrm{MHZ} \end{gathered}$							
LDA, (nn)	3 Ann	050 ก	N	N	N	N	N	N	3	4	13	6.5		185					
LD (BC), A	02	002	N	N	N	N	N	N	1	2	7	3.5		210					
LD(DE), A	12	018	N	N	N	N	N	N	1	2	7	3.5		210					
LD(nn). A	32 nn	050 nn	N	N	N	N	N	N	3	4	13	6.5		205					
LDA. 1	ED57	237087	*	*	0	IFF	0	N	2	2	9	4.5		183					
LDA, R	ED5F	237095	-	*	0	IFF	0	N	2	2	9	4.5		184					
LDI, A	ED47	237071	N	N	N	N	N	N	2	2	9	4.5		195					
LDR, A	ED 4F	237079	N	N	N	N	N	N	2	2	9	4.5		196					
FLAGKEY N	- Not affected.																		
0	- RESET $=0$.																		
1	- SET $=1$.																		
?	- Unknown																		
- Affected according to the result.																			

r and r' represent any of the C.P.U. registers A, B, C, D, E, H or L.

This instruction simply loads the contents of the r ' register into the r register, leaving the contents of the r ' register untouched.

Chapter 5, Page 188
Where:
r represents any of the C.P.U. registers A, B, C, D, E, H or L.. n is an 8-bit value, specified in the instruction.
This instruction loads the 8 -bit value n into the register r .

```
LD r,(HL)
Where:
```

Chapter 5, Page 191
r represents any of the C.P.U. registers A, B, C, D, E, H or L.
This loads the contents of a memory location, identified by the contents of register pair HL , into the register r , leaving the contents of both the memory location and register pair HL untouched.
$L D$ r,(IX + d)
Where:

Chapter 5, Page 193
r represents any of the C.P.U. registers A, B, C, D, E, H or L. d is the displacement, in Bytes, from the location identified by the contents of Index Register IX.
This loads the contents of a memory location, identified by the contents of Index Register IX (modified by displacement d, which is specified in the instruction), into the register r, leaving the contents of both the memory location and Index Register IX untouched.
d is the displacement, in Bytes, from the location indentified by the contents of the Index Register IY.

This loads the contents of a memory location, identified by the contents of Index Register IY (modified by displacement d, which is specified in the instruction), into the register r, leaving the contents of both the memory location and Index Register IY untouched.
$L D(H L), r$
Chapter 5, Page 212
Where:
r represents any of the C.P.U. registers, A, B, C, D, E, H or L.

This loads the contents of register r into a memory location which is identified by the contents of Register Pair HL. The contents of Register Pair HL remain untouched.
$L D(I X+d), r$
Chapter 5, Page 215
Where:
r represents any of the C.P.U. registers A, B, C, D, E, H or L. d is the displacement, in Bytes, from the location identified by the contents of Index Register IX.

This loads the contents of register r into a memory location, which is identified by the contents of Index Register IX (modified by displacement d, which is specified in the instruction). The contents of Index Register IX remain unaltered.

$$
\begin{gathered}
L D(I Y+d), r \\
\text { Where: }
\end{gathered}
$$

Chapter 5, Page 215
r represents any of the C.P.U. registers A, B, C, D, E, H or L. d is the displacement, in Bytes, from the location identified by the contents of Index Register IY.

This loads the contents of register r into a memory location, which is identified by the contents of Index Register IY (modified by displacement d, which is specified in the instruction). The contents of Index Register IY remain unaltered.

LD (HL),n
Chapter 5, Page 211
Where:
n is an 8-bit value, specified in the instruction.
Loads the value n into a memory location identified by the contents of Register Pair HL.
$L D(I X+d), n$
Chapter 5, Page 214
Where:
n is an 8 -bit value, specified in the instruction.
d is the displacement, in Bytes, from the location identified by the contents of Index Register IX.

Loads the value n into a memory location, identified by the contents of Index Register IX (modified by displacement d, which is specified in the instruction).

$$
\begin{gathered}
L D(I Y+d), n \\
\text { Where: }
\end{gathered}
$$

Chapter 5, Page 214
n is an 8 -bit value, specified in the instruction.
d is the displacement, in Bytes, from the location identified by the contents of Index Register IY.

Loads the value n into a memory location, identified by the contents of Index Register IY (modified by displacement d, which is specified in the instruction).
LD A, (BC)
Chapter 5, Page 186
Loads the contents of a memory location, specified by the contents of Register Pair BC, into the Accumulator, leaving the contents of the memory location untouched.

LD A, (DE)

Chapter 5, Page 187
Loads the contents of a memory location, identified by the contents of Register Pair DE, into the Accumulator, leaving the contents of the memory location unaltered.

LD A, (nn)

Chapter 5, Page 185
Where:
$n n$ is a spcific memory location, identified in two bytes of the instruction.

Loads the contents of the specified memory location, nn, into the Accumulator, leaving the contents of location nn unaltered.
LD (BC), A
Chapter 5, Page 210
Loads the contents of the Accumulator into a memory location identified by the contents of Register Pair BC. The contents of the Accumulator remain unchanged.
LD (DE), A
Chapter 5, Page 210
Loads the contents of the Accumulator into a memory location identified by the contents of Register Pair DE, leaving the contents of the Accumulator unchanged.

Where:
$n n$ is a specific memory location, identified by two bytes of the instruction.

Loads the contents of the Accumulator into the memory location specified in the instruction, leaving the contents of the Accumulator unaltered.

LD A,I
Chapter 5, Page 183
Loads the contents of the Interrupt Register I into the Accumulator, leaving the contents of Interrupt Register I untouched.
LD A,R
Chapter 5, Page 184
Loads the contents of the Refresh Register ' R ' into the Accumulator, leaving the contents of Refresh Register R unchanged.

LD I,A
Chapter 5, Page 195
Loads the contents of the Accumulator into the Interrupt Register I, leaving the contents of the Accumulator unchanged.
LD R,A
Chapter 5, Page 196
Loads the contents of the Accumulator into the Refresher Register R, leaving the contents of the Accumulator unaltered.

2. Two Byte (16 Bit) Load Group

LDIX,nn
 Where:

$n n$ is a specific memory location.
Loads the contents of memory location nn, specified in the instruction, into the Low Order byte of Index Register IX and the contents of memory location nn+1 into the High Order byte of Index Register IX.
nn is a specific memory location.
Loads the contents of the memory location nn, specified in the instruction, into the Low Order byte of Index Register IY and the contents of memory location nn +1 into the High Order byte of Index Register IY.

LD dd,(nn)
Chapter 5, Page 199
Where:
dd is any of the register pairs $\mathrm{BC}, \mathrm{DE}, \mathrm{HL}$ or SP .
nn is a specific memory location.
Loads the contents of memory location nn (specified in the instruction) into the Low Order byte of the specified Register Pair and the contents of memory location $n n+1$ into the High Order byte of the same Register Pair. The contents of both memory locations remain unchanged.

LD IX,(nn)
Chapter 5, Page 201
Where:
nn is a specific memory location.
Loads the contents of memory location $n n$, which is specified in the instruction, into the Low Order byte of Index Register IX and the contents of memory location nn+1 into the High Order byte of the same register. The contents of both memory locations remain unchanged.

Chapter 5, Page 201
Where:
$n n$ is a specific memory location.
Loads the contents of memory location nn, specified in the instruction, into the Low Order byte of Index Register IY and the contents of memory location $n n+1$ into the High Order byte of that register, leaving the contents of both memory locations unaltered.

Where:
nn is a specific memory location.
dd is any one of the Register Pairs BC, DE, HL or SP.

Loads the contents of the Low Order byte of the nominated Register Pair into memory location nn, and the contents of the High Order byte of the same Register Pair into memory location $n n+1$. The contents of the Register Pair are not affected.

Chapter 5, Page 208
Where:
$n n$ is a specified memory location.
Loads the contents of the Low Order byte of Index Register IX into memory location nn and the contents of the High Order byte of the same register into memory location $n n+1$. The contents of Index Register IX remain unchanged.

Chapter 5, Page 208
Where:
$n n$ is a specified memory location.
Loads the contents of the Low Order byte of Index Register IY into memory location nn and the contents of the High Order byte of the same register into memory location $n n+1$. The Index Register contents are not changed.
LD SP,HL
Chapter 5, Page 203
Loads the Stack Pointer with the contents of Register Pair HL, but does not change the contents of Register Pair HL.
LD SP,IX
Chapter 5, Page 204
Loads the Stack Pointer with the contents of Index Register IX, leaving the contents of that register unchanged.
LD SP,IY
Chapter 5, Page 204
Loads the Stack Pointer with the contents of Index register IY, leaving the contents of that register unaltered.
PUSH rr
Chapter 5, Page 246
Where:
rr is any of the Register Pairs AF, BC, DE or HL.
Pushes the contents of the nominated Register Pair on to the memory stack. The Stack Pointer (SP), which contains the address of the top of the memory stack, is decremented and the High Order byte of the Register Pair is pushed out to that location. The Stack Pointer is again decremented and the Low Order byte of the Register Pair is pushed out to this new location. The contents of the Register Pair are not changed.
PUSHIX
Chapter 5, Page 248
Pushes the contents of the Index Register IX on to the memory stack. The Stack Pointer (SP), which contains the address of the top of the memory stack, is decremented and the High Order byte of register

IX is pushed out to that location. The Stack Pointer is again decremented and the Low Order byte of Index Register IX is pushed out to the new location. The contents of Index Register IX are not affected.

PUSH IY

Chapter 5, Page 248
Pushes the contents of the Index Register IY on to the memory stack. The Stack Pointer (SP), which contains the address of the top of the memory stack, is decremented and the High Order byte of Index Register IY is pushed out to that location. The Stack Pointer is again decremented and the Low Order byte of Index Register IY pushed out to that new location. The contents of Index Register IY remain unaltered

POP rr Chapter 5, Page 242 Where: $r r$ is any of the register pairs $\mathrm{AF}, \mathrm{BC}, \mathrm{DE}$ or HL .
Loads the contents of the memory location identified by the Stack Pointer into the Low Order byte of the nominated Register Pair. The Stack Pointer is then incremented and the contents of the location now identified by the Stack Pointer is loaded into the High Order byte of the same Register Pair. Finally, the Stack Pointer is again incremented.

Chapter 5, Page 244
Loads the contents of the memory location identified by the Stack Pointer into the Low Order byte of Index Register IX. The Stack Pointer is then incremented and the contents of this new location loaded into the High Order byte of the IX Index Register. The Stack Pointer is once again incremented.

POP /Y
Chapter 5, Page 244
Loads the contents of the memory location identified by the Stack Pointer into the Low Order byte of Index Register IY. The Stack Pointer is then incremented and the contents of that location loaded into the High Order byte of Index Register IY. The Stack Pointer is then incremented once more.

3. Exchange, Block Transfer and Search Group

This group of instructions allows the exchange of 16 bit data blocks between register pairs in the same set of registers AND between the two sets of registers. It also includes instructions which transfer data from one block of memory to another and those which search a specified block of memory.

$\begin{aligned} & \text { SOURCE } \\ & \text { CODE } \end{aligned}$	$\begin{gathered} \text { OBJECT } \\ \text { CODE (HEX) } \end{gathered}$	DECIMAL	FLAGS							TIMING			COMMENTS	$\mathrm{CH} 5$ REF
			S	Z	H	P/V	N	C		M CYCLES	T STATES	$\begin{gathered} \mu \mathrm{SEC} @ \\ 2 \mathrm{MHZ} \end{gathered}$		
EXDE, HL	EB	235	N	N	N	N	N	N	1	1	4	2		149
EXAF, AF ${ }^{\text {+ }}$	08	008	N	N	N	N	N	N	1	1	4	2		148
EXX	D9	217	N	N	N	N	N	N	1	1	4	2		154
EX(SP). HL	E3	227	N	N	N	N	N	N	1	5	19	9.5		150
EX(SP). IX	DD E3	221227	N	N	N	N	N	N	2	6	23	11.5		152
EX(SP). IY	FD E3	253227	N	N	N	N	N	N	2	6	23	11.5		152
LDD	ED A8	237168	N	N	0	*	0	N	2	4	16	8		217
LDDR	ED B8	237184	N	N	0	0	0	N	2	5	21	11.5	If $B C \neq 0$	219
										4	16	8	$1 \mathrm{BC}=0$	
LDI	ED AO	237160	N	N	0	-	0	N	2	4	16	8		221
LDIR	ED B0	237176	N	N	0	0	0	N	2	5	21	11.5	If $B C \neq 0$	223
										4	16	8	$11 B C=0$	
CPD	ED A9	237169	-	-	*	*	1	N	2	4	16	8		129
CPDR	ED B9	237185	-	-	-	-	1	N	2	5	21	10.5	$\begin{aligned} & \text { If } B C \neq 0 \text { and } \\ & A \neq(H L) \end{aligned}$	130
										4	16	8	$\begin{aligned} & \text { If } B C=0 \text { or } A \\ & =(H L) \end{aligned}$	
CPI	ED A1	237161	*	*	-	-	1	N	2	4	16	8		132
CPIR	ED B1	237177	*	-	-	*	1	N	2	5	21	10.5	$\begin{aligned} & \text { If } B C \neq 0 \text { and } \\ & A \neq(H L) \end{aligned}$	133
										4	16	8	$\begin{aligned} & \text { If } B C=0 \text { or } A \\ & =(H L) \end{aligned}$	
FLAG KEY: $\begin{array}{cc}\text { N } \\ & 0 \\ & 1 \\ & ? \\ & \cdot \\ & \text { IFF }\end{array}$	- Not affected.													
	- RESET $=\emptyset$.													
	- SET $=1$.													
	- Unknown													
	- Affected according to the result.													
	- Content of Interrupt Flip Flop copied into flag.													

A. Exchange Instructions

EXDE,HL
Chapter 5, Page 149
Exchanges the contents of the DE and HL Register Pairs.
EX AF,AF'
Chapter 5, Page 148
Exchanges the contents of Register Pair AF with Register Pair AF'.

$$
E X X
$$

Chapter 5, Page 154
The contents of Register Pairs BC, DE and HL are exchanged with the contents of Register Pairs BC^{\prime}, DE', and HL' respectively.
EX (SP),HL
Chapter 5, Page 150
The Low Order byte of Register Pair HL (i.e. the contents of Register L) is exchanged with the contents of the memory location whose address is contained in the Stack Pointer (SP). The High Order byte of Register Pair HL is exchanged with the contents of the next sequential memory location. The contents of the Stack Pointer are not changed.

Exchanges the Low Order byte of Index Register IX with the memory location whose address is contained in the Stack Pointer (SP) and the High Order byte of that register is exchanged with the next memory location. The contents of the Stack Pointer are not altered.
EX (SP),IY
Chapter 5, Page 152
The contents of the Low Order byte of Index Register IY are exchanged with the memory location whose address is contained in the Stack Pointer (SP) and the High order byte of the register is exchanged with the next sequential memory location. The contents of the Stack Pointer are not changed.

B. Transfer Instructions

LDD

Chapter 5, Page 217
Transfers one byte of date from the memory location whose address is held in register Pair HL to the memory location whose address is held in Register Pair DE. Register Pair BC is used as a byte counter. All three register pairs (BC, DE and HL) are then decremented.

LDDR
Chapter 5, Page 219
Transfers one byte of data from the memory location whose address is held in Register Pair HL to the memory location whose address is held in Register Pair DE. Register Pair BC is used as a byte counter. The three Register Pairs are then decremented. If Register Pair BC becomes zero, then the instruction is terminated, otherwise the Program Counter is decremented by 2 and the instruction is repeated.
WARNING: If Register Pair BC is initially set to zero, the instruction will loop through all 64 K of memory.

Chapter 5, Page 221
Transfers one byte of data from the memory location whose address is held in Register Pair HL to the memory location whose address is held in Register Pair DE. Register Pair BC is used as a byte counter. Register Pairs DE and HL are then incremented while Register Pair BC is decremented.

Chapter 5, Page 223
Transfers one byte of data from the memory location whose address is held in Register Pair HL to the memory location whose address is held in Register Pair DE. Register Pair BC is used as a byte counter. Register Pairs DE and HL are then incremented while Register Pair BC is decremented. If Register Pair BC becomes zero then the instruction is terminated, otherwise the Program Counter (PC) is decremented by 2 and the instruction is repeated.
WARNING: If Register Pair BC is initially set to zero, the instruction will loop through 64 K of memory.

6. Search Instructions

CPD

Chapter 5, Page 129
Compares the contents of the Accumulator with the contents of the memory location whose address is contained in Register Pair HL. If the contents match Condition Flag Z is set, otherwise it is reset. The contents of Register Pair HL are decremented as are the contents of Register Pair BC (used as a byte counter).

Chapter 5, Page 130
Compares the contents of the Accumulator with the contents of the memory location whose address is contained in Register Pair HL. If the contents match Condition Flag Z is set, otherwise it is reset. The contents of both Register Pair HL and Register Pair BC (used as a byte counter) are decremented. If either a match has been achieved, or the new value of Register Pair BC is zero, the instruction is terminated. If neither of these conditions are met the Program Counter (PC) is decremented by 2 and the instruction is repeated.
NOTE: Execution of this instruction increments the Program Counter
(PC) by 2 , therefore failure of the tests returns the Program Counter to the start of the CPDR instruction.
WARNING: If Register Pair BC is initialised to zero, this instruction will loop until either a match is found or it has cycled through all 64 K of memory. It can therefore be used to test all 64 K of memory.

Chapter 5, Page 132
Compares the contents of the Accumulator with the contents of the memory location whose address is contained in Register Pair HL. If the conditons match Condition Flag Z is set, otherwise it is reset. The contents of Register Pair HL are incremented while the contents of Register Pair BC (used as a byte counter) are decremented.

Chapter 5, Page 133
Compares the contents of the Accumulator with the contents of the memory location whose address is contained in Register Pair HL. If the contents match, then Condition Flag Z is set, otherwise it is reset. The contents of Register Pair HL are incremented while the contents of Register Pair BC (used as a byte counter) are decremented. If either a match has been achieved, or the new value of Register Pair BC is zero, the instruction is terminated. If neither of these conditions are met the Program Counter (PC) is decremented by 2 and the instruction is repeated.
NOTE: Execution of this instruction increments the Program Counter (PC) by 2, therefore failure of both tests returns the Program Counter to the start of the CPIR instruction.

WARNING: If Register Pair BC is initialised to zero, this instruction will loop through until either a match is found or it has cycled through all 64 K of memory. It can be used to test the entire memory.

4. Single Byte (8 Bit) Arithmetic Group

SINGLE BYTE (8 BIT) ARITHMETIC GROUP TABLE

SOURCE CODE	$\begin{gathered} \text { OBJECT } \\ \text { CODE (HEX) } \end{gathered}$	DECIMAL	FLAGS							TIMING			COMMENTS	$\begin{aligned} & \mathrm{CH} .5 \\ & \text { REF } \end{aligned}$
			S	z	H	PNV	N	C		$\begin{array}{\|c\|} \hline \mathrm{M} \\ \text { CYCL.ES } \end{array}$	$\begin{array}{\|c\|} \hline \\ \text { STATES } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \mu \mathrm{SEC}(1) \\ 2 M H Z \end{array}$		
ADCA, n	CET	206	*	-	-	V	0	-	2	2	7	3.5	Adds with Carry	71
ADCA, 1			*	-	-	\checkmark	0	*	1	1	4	2	Adds with	
$r=A$	8 F	143											Carry	73 74
$r=B$	88	136												74 74
$r=C$	89	137												74 74
$r=D$	8A	138												74 74
$r=E$	8 B	139												74
$r=H$	8 C	140												74 74
$r=\mathrm{L}$	8D	141												74
ADCA, (HL)	8 E	142	*	-	-	v	0	*	1	2	7	3.5		76
ADC A. (IX + d)	DD 8E d	221142 d	*	-	-	v	0	-	3	5	19	9.5		78
ADC A. $(1 Y+d)$	FD 8E d	253142 d	*	-	-	v	0	-	3	5	19	9.5		78
ADDA. n	C6n	198n	*	*	-	v	0	-	2	2	7	35		82
ADDA. 1			*	-	-	v	0	-	1	1	4	2		
$r=A$	87	135												83
$r=B$	80	128												83
$r=C$	81	129												83
$r=D$	82	130												83
$r=E$	83	131												83
$r=H$	84	132												83
$r=L$	85	133												83
ADDA, (HL)	86	134	*	*	-	v	0	-	1	2	7	3.5		85
ADD A. (IX + d)	DD 86 d	221134 d	*	*	*	\checkmark	0	*	3	5	19	9.5		86
$A D D A,(1 Y+D)$	FD 86 D	253134 D	-	-	-	\checkmark	0	-	3	5	19	9.5		86
$\begin{aligned} & \text { DEC } d \\ & d=A \end{aligned}$	3D	061							1	1	4	2		138
$\mathrm{d}=\mathrm{B}$	05	005							1	1	4	2		138
$d=C$	OD	013							1	1	4	2		138
$d=0$	15	021							1	1	4	2		138
$\mathrm{d}=\mathrm{E}$	1D	029							1	1	4	2		138
$d=H$	25	037							1	1	4	2		138
$d=L$	2D	045							1	1	4	2		138
DEC(HL)	35	053	*	*	*	v	1	N	1	3	11	5.5		140
DEC ($1 \mathrm{X}+\mathrm{d}$)	DD 35 d	221053 d	*	*	*	V	1	N	3	6	23	11.5		141
DEC (IY + d)	FD 35 d	253053 d	-	*	-	V	1	N	3	6	23	11.5		141
INC r r ${ }_{\text {d }}$			*	*	*	v	0	N	1	1	4	2		
$r=A$	3 C	060												162 162
$r=B$ $r=C$	04 0 C	004 012												162 162
$\mathrm{r}=\mathrm{D}$	14	020												162
$r=E$	1 C	028												162
$r=H$	24	036												162
$r=L$	2 C	044												162
INC(HL)	34	052	*	*	-	\checkmark	0	N	1	3	11	5.5		165
INC (IX + d)	DD 34 d	221052 d	*	*	*	v	0	N	3	6	23	11.5		166
INC (IY + d)	FD 34 d	253052 d	*	*	-	v	0	N	3	6	23	11.5		166
SBCA. n	DEn	$222 n$	*	*	-	v	1	*	2	2	7	3.5	Subtract with	301
SBCA. 1			*	*	-	v	1	*	1	1	4	2		
$\mathrm{r}=\mathrm{A}$	9 F	159											Carry	302
$r=B$	98	152												303
$r=C$	99	153												303
$\mathrm{r}=0$	9A	154												303
$r=E$	9 B	155												303
$r=H$	9 C	156												303
$r=L$	9 D	157												303
SBCA. (HL)	9 E	158	*	*	*	v	1	-	1	2	7	3.5		305
SBC A, (1 X + d)	DD 9E d	221158 d	*	*	-	V	1	-	3	5	19	9.5		307
SBC A, (IY + d)	FD 9E d	253158 d	*	*	,	v	1	*	3	5	19	9.5		307
SUB n	D6n	$214 n$	*	*	*	v	1	*	2	2	7	3.5		334
SUB r			*	*	*	v	1	-	1	1	4	2		
$r=A$ $r=B$	97	151 144												336 337
$r=C$	91	145												337
$r=D$	92	146												337

SINGLE BYTE (8 BIT) ARITHMETIC GROUP TABLE (cont.)

$\begin{aligned} & \text { SOURCE } \\ & \text { CODE } \end{aligned}$	$\begin{aligned} & \text { OBJECT } \\ & \text { CODE (HEX) } \end{aligned}$	DECIMAL	FLAGS							TIMING			COMMENTS	$\begin{aligned} & \mathrm{CH} .5 \\ & \mathrm{REF} \end{aligned}$
			S	z	H	PN	N	C		M CYCLES	T STATES	$\begin{gathered} \mu \mathrm{SEC} @ \\ 2 M H Z \end{gathered}$		
$\mathbf{r}=\mathrm{E}$	93	147												337
$r=H$	94	148												337
$r=L$	95	149												337
SUB (HL)	96	150	*	*	*	V	1	-	1	2	7	3.5		339
SUB (IX + d)	DD 96 d	221150 d	-	-	-	V	1	-	3	5	19	9.5		341
SUB (IY + d)	FD 96 d	253150 d	-	-	-	V	1	-	3	5	19	95		341

FLAGKEY N - Notaffected
P - Contains the Parity of the result (1 = Parity Even)
V - Contains the Overflow of the result ($1=$ Overflow) - RESET $=0$

- SET = 1
? - Unknown
- Affected according to the result

IFF - Content of Interrupt Flip Flop copied into flag

ADC A, n
Chapter 5, Page 71
Where:
n is an 8-bit value, specified in the instruction.
Adds the value n to the Accumulator, with Carry.
ADC A,r
Chapter 5, Page 73
Where:
r represents any one of the single byte registers A, B, C, D, E, H or L.

Adds the contents of the specified register to the Accumulator, with Carry.

Adds the contents of the memory location whose address is contained in Register Pair HL, to the Accumulator, with Carry.

ADC A, (IX + d)
 Where:

Chapter 5, Page 78
d is the displacement, in bytes, from the location identified by the contents of Index Register IX.

Adds, with Carry, the contents of a memory location, identified by the contents of Index Register IX (modified by displacement d, which is specified in the instruction) into the Accumulator. The contents of the memory location remain unaltered.
d is the displacement, in bytes, from the location identified by the contents of Index Register IY.

Adds, with Carry, the contents of a memory location, identified by the contents of Index Register IY (modified by displacement d, which is specified in the instruction) into the Accumulator. The contents of the memory location remain unchanged.

ADD A,n
Chapter 5, Page 82
Where:
n is an 8-bit value, specified in the instruction.
Adds n to the Accumulator.
ADD A,r
Chapter 5, Page 83
Where:
r represents any one of the registers $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{H}$ or L .
Adds the contents of the register specified in the instruction to the Accumulator. The register remains unchanged.

ADD A, (HL)
Chapter 5, Page 85
Adds the contents of the memory location whose address is contained in Register Pair HL to the Accumulator. The contents of the location remain unaltered.

$$
A D D A,(I X+d)
$$

Chapter 5, Page 86
Where:
d is the displacement, in bytes, from the memory location identified by the contents of Index Register IX.

Adds the contents of a memory location, identified by the contents of Index Register IY (modified by displacement d, which is specified in the instruction) to the Accumulator. The contents of the memory location remain unchanged.

$A D D A,(I Y+d)$
 Where:

Chapter 5, Page 86
d is the displacement, in bytes, from the memory location identified by the contents of Index Register IY.
Adds the contents of a memory location, identified by the contents of Index Register IY (modified by displacement d, which is specified in the instruction) to the Accumulator. The contents of the memory location remain unaltered.

Chapter 5, Page 138
Where: r represents any one of the registers A, B, C, D, E, H or L.

Decrements the contents of the specified register by 1 .

Decrements by 1 the contents of the memory location whose address is held in Register Pair HL.

$D E C(I X+d)$

Chapter 5, Page 141
Where:
d is the displacement, in bytes, from the memory location identified by the contents of Index Register IX.

Decrements by 1 the contents of a memory location, identified by the contents of Index Register IX (modified by displacement d, which is specified in the instruction).

Chapter 5, Page 141
d is the displacement, in bytes, from the memory location identified by the contents of Index Register IY.

Decrements, by 1 , the contents of a memory location, identified by the contents of Index Register IY (modified by displacement d, which is specified in the instruction).

INC r
Chapter 5, Page 162
Where:
r represents any one of the Registers $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{H}$ or L .. Increments the contents of the specified register by 1 .

INC (HL)
Chapter 5, Page 165
Increments by 1 the contents of a memory location whose address is held in Register Pair HL.

INC (IX + d)
Chapter 5, Page 166
Where:
d is the displacement, in bytes, from the memory location identified by the contents of Index Register IX.

Increments by 1 the contents of a memory location, identified by the contents of Index Register IX (modified by displacement d, which is specified in the instruction).
d is the displacement, in bytes, from the memory location identified by the contents of Index Register IY.

Increments, by 1, the contents of a memory location, identified by the contents of Index Register IY (modified by displacement d, which is specified in the instruction).

SBC A, n
Chapter 5, Page 301
Where:
n is a single byte integer, specified in the instruction.
Subtracts n, and the Carry Flag, from the Accumulator.

SBC A, r
Chapter 5, Page 302
Where:
r represents any one of the registers A, B, C, D, E, H or L.
Subtracts the contents of the register specified in the instruction, and the Carry Flag, from the Accumulator. The contents of the register are not changed.

SBC A, (HL)
Chapter 5, Page 305
Subtracts the contents of the memory location whose address is contained in Register Pair HL, and the Carry Flag, from the Accumulator. The contents of Register Pair HL are unchanged.

SBC A, (IX $+d)$
Chapter 5, Page 307
Where:
d is the displacement, in bytes, from the memory location identified by the contents of Index Register IX.
Subtracts the contents of the memory location, identified by the contents of Index Register IX (modified by displacement d, which is specified in the instruction), and the Carry Flag, from the Accumulator. The contents of the memory location and Index Register IX remain unchanged.

Subtracts the contents of the memory location, identified by the contents of Index Register IY (modified by displacement d, which is specified in the instruction), and the Carry Flag, from the Accumulator. The contents of the memory location and Index Register IY are not altered.

SUB n
Chapter 5, Page 334
Where:
n is a single byte integer, specified in the instruction.
Subtracts the integer n from the Accumulator.
SUBr
Chapter 5, Page 336
Where:
r represents any one of the registers A, B, C, D, E, H or L
Subtracts the contents of the register specified in the instruction from the Accumulator. The contents of the register remain unchanged.

$S \cup B(H L)$

Chapter 5, Page 339
Subtracts the contents of the memory location whose address is contained in Register Pair HL from the Accumulator. The contents of the memory location are not changed.
$\operatorname{SUB}(I X+d)$
Chapter 5, Page 341
Where:
d is the displacement, in bytes, from the memory location identified by the contents of Index Register IX.

Subtracts the contents of the memory location identified by the contents of Index Register IX (modified by displacement d, which is specified in the instruction) from the Accumulator. The contents of the memory location are unchanged.
$S U B(I Y+d)$
Where:

Chapter 5, Page 341
d is the displacement, in bytes, from the memory location identified by the contents of Index Register IY.

Subtracts the contents of the memory location identified by the contents of Index Register IY (modified by displacement d, which is specified in the instruction) from the Accumulator. The contents of the memory location remain unaltered.

5. Two Byte (16 Bit) Arithmetic Group

TWO BYTE (16 BIT) ARITHMETIC GROUP TABLE

SOURCE CODE	$\begin{array}{\|c} \text { OBJECT } \\ \text { CODE (HEX) } \end{array}$	DECIMAL	FLAGS						NO. OF BYTES	TIMING			COMMENTS	$\begin{aligned} & \mathrm{CH} .5 \\ & \text { REF } \end{aligned}$
			S	z	H	PN	N	C		$\begin{array}{\|c\|} \hline M \\ \text { CYCLES } \end{array}$	$\begin{array}{c\|} \hline \\ \hline \text { STATES } \\ \hline \end{array}$	$\left\lvert\, \begin{gathered} \mu \mathrm{SEC} @ \\ 2 M H Z \end{gathered}\right.$		
ADC HL, ss			*	-	-	-	0	-	2	4	15	7.5		
$\mathrm{ss}=\mathrm{BC}$	ED 4A	23774												80
ss $=\mathrm{DE}$	ED 5A	23790												80
ss $=\mathrm{HL}$	ED 6A	237106												80
ss $=$ SP	ED 7A	237122												80
SBC HL, ss			-	-	-	-	1	-	2	4	15	7.5		
ss $=\mathrm{BC}$	ED 42	23766												309
ss $=\mathrm{DE}$	ED 52	23782												309
ss $=\mathrm{HL}$	ED 62	23798												309
ss $=\mathrm{SP}$	ED 72	237114												309
ADDHL, ss			N	N	*	N	0	*	1	3	11	5.5		
ss $=\mathrm{BC}$	09	009												88
ss $=\mathrm{DE}$	19	025												88
ss $=\mathrm{HL}$	29	041												88
$\mathrm{ss}=\mathrm{SP}$	39	057												88
ADDIX,pp			N	N	-	N	0	*	2	4	15	7.5		
$\mathrm{pp}=\mathrm{BC}$	DD09	221009												89
$\mathrm{pp}=\mathrm{DE}$	DD 19	221025												90
$\mathrm{pp}=1 \mathrm{X}$	DD29	221041												91
$\mathrm{pp}=\mathrm{SP}$	DD39	221057												93
ADDIY, Ir			N	N	-	N	0	*	2	4	15	75		
$r=B C$	FD09	253009												89
$r \mathrm{r}=\mathrm{DE}$	FD 19	253025												90
$r \mathrm{rl}=1 \mathrm{Y}$	FD 29	253041												92
r = SP	FD 39	253057												93
DECss			N	N	N	N	N	N	1	1	6	3		
$\mathrm{SS}=\mathrm{BC}$	OB	011												143
ss $=\mathrm{DE}$	IB	027												143
SS $=\mathrm{HL}$	2B	043												143
SS $=$ SP	3B	059												143
DECIX	DD2B	221043	N	N	N	N	N	N	2	2	10	5		144
DECIY	FD2B	253043	N	N	N	N	N	N	2	2	10	5		144
INCss			N	N	N	N	N	N	1	1	6	3		
ss $=\mathrm{BC}$	03	003												164
ss $=\mathrm{DE}$	13	019												164
Ss $=\mathrm{HL}$	23	035												164
ss $=$ SP	33	051												164
INCIX	DD23	221035	N	N	N	N	N	N	2	2	10	5		168
INCIY	FD23	253035	N	N	N	N	N	N	2	2	10	5		168

FLAG KEY: N - Not affected

- Reset $=0$.
- Set $=1$.
? - Unknown
- Affected according to the result.

ADC HL,ss
Chapter 5, Page 80
Where:
ss represents any one of the Register Pairs BC, DE, HL or SP.

Adds the contents of the nominated Register Pair to the HL Register Pair with carry. If the nominated Register Pair is BC, DE or SP its contents remain unaltered.
ADD HL, ss
Chapter 5, Page 88
Where:
ss represents any one of the Register Pairs BC, DE, HL or SP.
Adds the contents of the nominated Register Pair to the HL register pair. If the nominated Register Pair is BC, DE or SP its contents are unaltered.
pp represents any one of the Register Pairs BC, DE, SP, or Index Register IX.

Adds the contents of the nominated Register Pair to Index Register IX. If the Register pair BC, DE or SP is nominated, the contents of that Register Pair are unchanged.

ADD IY,rr
Chapter 5, Page 89
Where:
rr represents any one of the Register Pairs BC, DE or SP, or Index Register IY.

Adds the contents of the nominated Register Pair to Index Register IY. If Register Pair BC, DE or SP is nominated, the contents of that Register Pair are not changed.
SBC HL,ss
Chapter 5, Page 309
Where:
SS represents any one of the Register Pairs BC, DE, HL, or SP.

Subtracts the contents of the nominated Register Pair plus the carry, from the HL Register Pair. If the nominated Register Pair is BC, DE, or SP, its contents remain unaltered.

DECss

Chapter 5, Page 143
Where:
ss represents any one of the Register Pairs BC, DE, HL or SP.

Decrements the contents of the nominated Register Pair.
DEC IX
Decrements Index Register IX.
DEC IY
Decrements Index Register IY.
DEC IY
Decrements Index Register IY.
Chapter 5, Page 144

Chapter 5, Page 144
INC ss
Chapter 5, Page 164
Where:
ss represents any one of the Register Pairs BC, DE, HL or SP.

Increments the contents of the nominated Register Pair.
INCIX
Chapter 5, Page 168
Increments the contents of Index Register IX.
INC IY
Chapter 5, Page 168
Increments the contents of Index Register IY.

6. Logical Group

LOGICAL GROUP TABLE

$\begin{aligned} & \text { SOURCE } \\ & \text { CODE } \end{aligned}$	$\begin{gathered} \text { OBJECT } \\ \text { CODE (HEX) } \end{gathered}$	DECIMAL	FLAGS						NO OF BYTES	TIMING			COMMENTS	$\begin{aligned} & \mathrm{CH} .5 \\ & \text { REF. } \end{aligned}$
			S	Z	H	PN	N	C		$\begin{gathered} M \\ C Y C L E S \end{gathered}$	T STATES	$\begin{gathered} \mu \text { SEC @ } \\ 2 M H Z \end{gathered}$		
AND n	E6n	230 n	-	*	1	P	0	0	2	2	7	3.5		94
ANDr			-	*	1	P	0	0	1	1	4	2		
$r=A$	A7	167												95
$r=B$	AO	160												95
$r=C$	A1	161												95
$r=D$	A2	162												95
$r=E$	A3	163												95
$r=H$	A4	164												95
$r=L$	A5	165												95
AND (HL)	A6	166	*	*	1	P	0	0	1	2	7	3.5		98
AND ($1 \mathrm{X}+\mathrm{d}$)	DD A6 d	221166 d	*	*	1	P	0	0	3	5	19	9.5		99
AND ($1 Y+d)$	FD A6 d	253166 d	-	-	1	P	0	0	3	5	19	9.5		99
CPn	FEn	ก	*	*	-	V	1	*	2	2	7	3.5		122
CPr			-	*	-	V	1	*	1	1	4	2		
$r=A$	BF	181												123
$r=B$	B8	184												124
$r=C$	B9	185												124
$r=D$	BA	186												124
$r=E$	BB	187												124
$r=H$	BC	188												124
$r=L$	BD	189												124
$\mathrm{CP}(\mathrm{HL})$	BE	190	*	*	*	V	1	*	1	2	7	3.5		126
$C P(1 X+d)$	DD BEd	221190 d	*	*	*	V	1	*	3	5	19	9.5		127
$\mathrm{CP}(\mathrm{IY}+\mathrm{d})$	FD BE d	253190 d	*	*	*	V	1	*	3	5	19	9.5		127
OR n	F6 n	246 n	-	*	1	P	0	0	2	2	7	3.5		227
ORr			*	*	1	P	0	0	1	1	4	2		
$r=A$	B7	183												229
$r=B$	BO	176												229
$r=C$	B1	177												229
$r=D$	B2	178												229
$r=E$	B3	179												229
$r=H$	B4	180												229
$r=L$	B5	181												229
OR (HL)	B6	182	*	*	1	P	0	0	1	2	7	3.5		231
$\mathrm{OR}(\mathrm{IX}+\mathrm{d})$	DD B6 d	221182 d	*	*	1	P	0	0	3	5	19	9.5		233
$\mathrm{OR}(\mathrm{IY}+\mathrm{d})$	FD B6 d	253182 d	-	*	1	P	0	0	3	5	19	9.5		233
XOR \cap	EEn	$238 n$	-	*	1	P	0	0	2	2	7	3.5		343
XOR			*	*	1	P	0	0	1	1	4	2		
$r=A$	AF	175												345
$r=B$	A8	168												347
$r=C$	A9	169												347
$r=D$	AA	170												347
$r=E$	$A B$	171												347
$r=H$	AC	172												347
$r=L$	AD	173												347
XOR(HL)	AE	174	*	*	1	P	0	0	1	2	7	3.5		349
XOR (IX + d)	DD AE d	221174 d	-	*	1	P	0	0	3	5	19	9.5		351
XOR (IY + d)	FD AE d	253174 d	*	*	1	P	0	0	3	5	19	9.5		351

FLAG KEY N - Not affected
P - Contains the Parity of the result (1 = Parity Even).
V - Contains the Overflow of the result ($1=$ Overflow) - RESET = 0

- SET $=1$.
? - Unknown
Affected according to the result.

The AND instruction compares a specified operand, bit by bit, with the Accumulator. For each bit position, if either operand or Accumulator is \emptyset, then \emptyset is placed in that bit position in the Accumulator. If a bit position in both the operand and the Accumulator contain a 1 , then a 1 is placed in that bit position in the Accumulator. The prime use of the AND instruction is to mask out unwanted bits in a field.

Where:
n represents a single byte, specified in the instruction.
Performs a Logical AND on the contents of the Accumulator with n and stores the result in the Accumulator.

AND r
Chapter 5, Page 95
Where:
r represents any one of the registers A, B, C, D, E, H or L
Performs a Logical AND on the contents of the Accumulator, with the contents of the nominated register, and stores the result in the Accumulator. The contents of that register are not changed.

AND (HL)

Chapter 5, Page 98
Performs a Logical AND on the contents of the Accumulator, with the contents of the memory location whose address is contained in Register Pair HL and stores the result in the Accumulator. The contents of the memory location are not changed.

$$
\begin{gathered}
\text { AND }(1 X+d) \\
\text { Where: }
\end{gathered}
$$

Chapter 5, Page 99
d is the displacement, in bytes, from the memory location whose address is identified by the contents of Index Register IX.
Performs a Logical AND on the contents of the Accumulator with the contents of the memory location identified by the contents of Index Register IX (modified by displacement d, which is specified in the instruction) and stores the result in the Accumulator. The contents of the memory location remain unaltered.

```
AND (IY + d)
Chapter 5, Page 99
Where:
```

d is the displacement, in bytes, from the memory location whose address is identified by the contents of Index Register IY.

Performs a Logical AND on the contents of the Accumulator with the contents of the memory location identified by the contents of Index Register IY (modified by displacement d, which is specified in the instruction) and stores the result in the Accumulator. The contents of the memory location are not changed.
The COMPARE (CP) instructions compare a specified operand with the contents of the Accumulator and, if the two bytes are equal (i.e. a TRUE condition exists) then a Flag is set.

Where:
n is a single byte, specified in the instruction.
Compares the contents of the Accumulator with n . If a TRUE condition exists a Flag is set. The contents of the Accumulator are not altered.

Chapter 5, Page 123
Compares the contents of the Accumulator with itself. Since a TRUE condition must always exist this is a convenient method of setting a particular Flag. The contents of the Accumulator are not changed.

CPr
Chapter 5, Page 124
Where:
r represents any one of the registers $\mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{H}$ or L .
Compares the contents of the Accumulator with the contents of the register nominated in the instruction. If a TRUE condition exists a Flag is set. The contents of the nominated register and the Accumulator remain unchanged.
CP (HL)
Chapter 5, Page 126
Compares the contents of the Accumulator with the contents of a memory location whose address is held in Register Pair HL. If a TRUE condition exists, a Flag is set.
$C P(I X+d)$
Chapter 5, Page 127
Where:
d is the displacement, in bytes, from the memory location whose address is identified by the contents of Index Register IX.

Compares the contents of the Accumulator with the contents of the memory location identified by the contents of Index Register IX (modified by displacement d, which is specified in the instruction). If a TRUE condition exists, a Flag is set.
$C P(I Y+d)$
Chapter 5, Page 127
Where:
d is the displacement, in bytes, from the memory location whose address is identified by the contents of Index Register IY.
Compares the contents of the Accumulator with the contents of the memory location identified by the contents of Index Register IY (modified by displacement d, which is specified in the instruction). If a TRUE condition exists, a Flag is set.
The OR instruction compares a specified operand, bit by bit, with the Accumulator. For each bit position, if either the operand or the Accumulator is 1 , then the result is always 1 . This instruction can be used to set any number of bits to 1 .

Where:
n is a single byte, specified in the instruction.
Performs a Logical OR on the contents of the Accumulator with n and stores the result in the Accumulator.

ORr
Chapter 5, Page 229
Where:
r represents any one of the registers A, B, C, D, E, H or L.
Performs a Logical OR on the contents of the Accumulator with the contents of the nominated register and stores the result in the Accumulator. The contents of the register are not altered.
OR (HL)
Chapter 5, Page 231
Performs a Logical OR on the contents of the Accumulator with the contents of the memory location whose address is contained in Register Pair HL and stores the result in the Accumulator. The contents of the memory location remain unchanged.
$O R(I X+d)$
Chapter 5, Page 233
Where:
d is the displacement, in bytes, from the memory location whose address is identified by the contents of Index Register IX.

Performs a Logical OR on the contents of the Accumulator with the contents of the memory location identified by the contents of Index Register IX (modified by displacement d, which is specified in the instruction) and stores the result inthe Accumulator. The contents of the memory location are not changed.
$O R(I Y+d)$
Chapter 5, Page 233
Where:
d is the displacement, in bytes, from the memory location whose address is identified by the contents of Index Register IY.
Performs a Logical OR on the contents of the Accumulator with the contents of the memory location identified by the contents of Index Register IY (modified by displacement d, which is specified in the instruction) and stores the result in the Accumulator. The contents of the memory location remain unchanged.
The Exclusive OR (XOR) instruction differs from the OR instruction in only one respect. It compares a specified operand, bit by bit, with the Accumulator and, as for the OR instruction, if either the operand or Accumulator value for a bit position is 1 , then the result is 1 . However, unlike the OR instruction, if BOTH operand and Accumulator have a value of 1 in the same bit position, then the result is \emptyset.

Where:
n is a single byte, specified in the instruction.
Performs a Logical XOR on the contents of the Accumulator with n and stores the result in the Accumulator.

XOR r
Chapter 5, Page 345
Where:
r represents any one of the registers A, B, C, D, E, H or L
Performs a Logical XOR on the contents of the Accumulator with the contents of the nominated register and stores the result in the Accumulator. If the nominated register is B, C, D, E, H or L the contents of that register are not changed.
$X O R(H L)$
Chapter 5, Page 349
Performs a Logical XOR on the contents of the Accumulator with the contents of the memory location whose address is contained in Register Pair HL and stores the result in the Accumulator. The contents of the memory location are not changed.
$X O R(I X+d)$
Chapter 5, Page 351
Where:
d is the displacement, in bytes, from the memory location whose address is identified by the contents of Index Register IX.

Performs a Logical XOR on the contents of the Accumulator with the contents of the memory location identified by the contents of Index Register IX (modified by displacement d, which is specified in the instruction) and stores the result in the Accumulator. The contents of the memory location remain unaltered.

Where:
d is the displacement, in bytes, from the memory location whose address is identified by the contents of Index Register IY.

Performs a Logical XOR on the contents of the Accumulator with the contents of the memory location identified by the contents of Index Register IY (modified by displacement d, which is specified in the instruction) and stores the result in the Accumulator. The contents of the memory location are not changed.

7. General Purpose Arithmetic and C.P.U. Control Group

All instructions in this Group are implied addressing instructions.
general purpose arithmetic and c.p.u. Control group table

$\begin{aligned} & \text { SOURCE } \\ & \text { CODE } \end{aligned}$	$\begin{array}{\|c\|} \text { OBJECT } \\ \text { CODE (HEX) } \end{array}$	DECIMAL	FLAGS							TIMING			COMMENTS	$\begin{aligned} & \mathrm{CH} .5 \\ & \mathrm{REF} . \end{aligned}$
			S	Z	H	P/V	N	C		M CYCLES	T STATES	$\begin{gathered} \mu \mathrm{SEC} \text { @ } \\ 2 \mathrm{MHZ} \end{gathered}$		
CCF	3 F	063	N	N	?	N	0	*	1	1	4	2		121
CPL	2 F	047	N	N	1	N	1	N	1	1	4	2		135
DAA	27	039	-	.	-	P	N	-	1	1	4	2		136
DI	F3	243	N	N	N	N	N	N	1	1	4	2		145
EI	FB	251	N	N	N	N	N	N	1	1	4	2		147
HALT	76	118	N	N	N	N	N	N	1	1	4	2		155
IMO	ED 46	237070	N	N	N	N	N	N	2	2	8	4		156
IM 1	ED 56	237086	N	N	N	N	N	N	2	2	8	4		157
IM 2	ED5E	237094	N	N	N	N	N	N	2	2	8	4		158
NEG	ED44	237068	\cdots	*	*	V	1	*	2	2	8	4		225
NOP	00	000	N	N	N	N	N	N	1	1	4	2		226
SCF	37	055	-	-	0	*	0	1	1	1	4	2		311

FLAGKEY $\quad \mathrm{N}$ - Not affected.
P - Contains the Parity of the result (1 = Parity Even).
V - Contains the Overflow of the result ($1=$ Overflow)

- RESET $=0$.
-SET = 1 .
? - Unknown.
Affected according to the result.

Complements (i.e. reverses) the Carry bit C in the Flag Register.
Chapter 5, Page 135
Complements the entire contents of the Accumulator.

DAA

Chapter 5, Page 136
The Accumulator is decimal adjusted to obtain the correct representation for Binary Coded Decimal (BCD).

DI
Chapter 5, Page 145
Resets the Interruptable Flip-Flops, disabling all maskable interrupts.

El
Chapter 5, Page 147
Sets the Interruptable Flip-Flops, enabling the maskable interrupt function. The maskable interrupt function is not enabled until this instruction is completed.
HALT
Chapter 5, Page 155
Suspends operation of the CPU, until interrupt or reset is received.
NOTE: The CPU NOP's so that memory refresh continues until interrupt or reset is received.

MO
Chapter 5, Page 156
Sets the Interrupt Mode \emptyset allowing an interrupting device to insert an instruction code on the data bus for immediate execution.

Sets Interrupt Mode 1, allowing the CPU to execute a restart to Location $\emptyset \emptyset 38 \mathrm{H}$ (Hexadecimal) when an interrupt takes place.

IM 2

Chapter 5, Page 158
Sets Interrupt Mode 2. A memory address is placed on to the address bus, the lower order byte being supplied by the interrupting device and the higher order byte being the contents of the Interrupt Vector Register I. A CALL to this address is then executed by the CPU. NEG

Chapter 5, Page 225
Negates the contents of the Accumulator, equivalent to subtracting those contents from zero.
NOP
Chapter 5, Page 226
No Operation. Nothing is done for one machine cycle.
${ }^{\text {SCF }}$ Sets the Carry Flag C in the Flag Register F. Chapter 5, Page 311

8. Rotate and Shift Group

rotate and shift group table

$\begin{aligned} & \text { SOURCE } \\ & \text { CODE } \end{aligned}$	$\begin{gathered} \text { OBJECT } \\ \text { CODE (HEX) } \end{gathered}$	DECIMAL	FLAGS							TIMING			COMMENTS	$\begin{aligned} & \mathrm{CH}_{5} 5 \\ & \mathrm{REF} . \end{aligned}$
			S	z	H	P/V	N	C		$\begin{gathered} \mathrm{M} \\ \mathrm{CYCLES} \end{gathered}$	$\begin{gathered} \mathrm{T} \\ \text { STATES } \end{gathered}$	$\begin{array}{\|c\|} \hline \mu \mathrm{SEC} @ \\ 2 \mathrm{MHZ} \end{array}$		
RLr			-	-	0	P	0	-	2	2	8	4		
$r=A$	CB17	203023												263
$r=B$	CB 10	203016												263
$r=C$	CB11	203017												263
$r=0$	CB12	203018												263
$\mathrm{r}=\mathrm{E}$	CB13	203019												263
$r=H$	CB14	203020												263
$r=L$	CB 15	203021												263
RLA	17	023	N	N	0	N	0	*	1	1	4	2		269
RL (HL)	CB 16	203022	.	-	0	P	0	-	2	4	15	7.5		265
RL ($1 \mathrm{X} \times \mathrm{d}$)	DD CB a 16	221203 d 022	,	-	0	P	0	*	4	6	23	11.5		267
RL (ir + d)	FD CB d 16	253203 d 022	-	-	0	P	0	*	4	6	23	11.5		267
RLCr			-	-	0	P	0	*	2	2	8	4		
$r=A$	CB07	203007												271
$r=B$	CB00	203000												271
$r=C$	CB01	203001												271
$r=0$	CB02	203002												271
$r=E$	CB03	203003												271
$r=H$	CB04	203004												271
$r=L$	CB05	203005												271
RLCA	07	07	N	N	0	N	0	-	1	1	4	2		277
RLC(HL)	CB06	203006	-	-	0	P	0	-	2	4	15	7.5		273
RLC ($1 \mathrm{X}+\mathrm{d}$)	DD CB d 06	221203 d 006	.	-	\bigcirc	P	0	*	4	6	23	11.5		275
RLC (IY + d)	FD CB d 06	253203 d 006	-	-	0	P	0	*	4	6	23	11.5		275
RLD	ED6F	237111	-	-	0	P	0	N	2	5	18	9		279
RR r			-	-	0	P	0	*	2	2	8	4		
$r=A$	CB1F	203031												281
$r=B$	CB 18	203024												281
$r=C$	CB 19	203025												281
$r=D$	CB1A	203026												281
$r=E$	CB1B	203027												281
$r=H$	CB1C	203028												281
$r=L$	CB1D	203029												281
RRA	1 F	31	N	N	0	N	0	-	1	1	4	2		287
RR(HL)	CB1E	203030	.	-	0	P	0	*	2	4	15	7.5		283
RR (IX + d)	DD CB die	221203 d 030	-	-	0	P	0	*	4	6	23	11.5		285
RR (IY + d)	FDCBdIE	253203 d 030	-	-	\bigcirc	P	0	*	4	6	23	11.5		285
RRCr			-	-	0	P	0	*	2	2	8	4		
$r=A$	CBOF	203015												289
$r=B$	CB08	203008												289
$r=C$	CB09	203009												289
$r=0$	CB0A	203010												289
$r=E$	CB0B	203011												289
$r=H$	CBOC	203012												289
$r=L$	CB0D	203013												289
RRCA	OF	15	N	N	0	N	0	-	1	1	4	2		295
RRC(HL)	CboE	203014	-	-	0	P	0	*	2	4	15	7.5		291
RRC ($\mathrm{IX}+\mathrm{d}$)	DD CB dOE	221203 d 014	*	-	0	P	0	*	4	6	23	115		293
RRC ($\mathrm{IY}+\mathrm{d}$)	FD CB d OE	253203 d 014	*	-	0	P	0	*	4	6	23	11.5		293
RRD	ED67	237103	-	-	0	P	0	N	2	5	18	9		297
SLAr			*	-	0	P	\bigcirc	*	2	2	8	4		
$r=A$	CB27	203039												316
$r=B$	CB20	203032												316
$r=C$	CB21	203033												316
$r=D$	CB22	203034												316
$r=E$	CB23	203035												316
$r=H$	CB24	203036												316
$r=L$	CB25	203037												316
SLA(HL)	CB26	203038	*	-	0	P	0	*	2	4	15	7.5		318
SLA (IY + d)	FD CB d 26	253203 d 038	*	-	0	P	0	*	4	6	23	11.5		
SRA r			*		0	P	\bigcirc	*	2	2	8	4		
$r=A$	CB2F	203047												322
$r=B$	CB28	203040												322
$r=C$	CB29	203041												322
$r=0$	CB2A	203042												322
$r=E$	CB28	203043												322
$r=H$	CB2C	203044												322
$r=L$	CB2D	203045												322

ROTATE AND SHIFT GROUP TABLE (cont.)

SOURCE CODE	$\left\lvert\, \begin{gathered} \text { OBJECT } \\ \text { CODE (HEX) } \end{gathered}\right.$	DECIMAL	FLAGS						NO OF BYTES	TIMING			COMMENTS	CH. 5 REF
			S	Z	H	P/V	N	C		$\begin{gathered} \mathrm{M} \\ \mathrm{CYCLES} \end{gathered}$	T STATES	$\begin{array}{\|c\|} \hline \mu \mathrm{SEC} @ \\ 2 \mathrm{MHZ} \end{array}$		
SRA (HL)	CB2E	203046	-	-	0	P	0	-	2	4	15	7.5		324
SRA (IX + d)	DD CBd 2E	$221203 d 046$	*	-	0	P	0	*	4	6	23	11.5		326
SRA (IY + d)	FD CBd 2E	253203 d 046	*	*	0	P	0	*	4	6	23	11.5		326
SRL r			-	*	0	P	0	*	2	2	8	4		
$r=A$	CB3F	203063												328
$r=B$	CB38	203056												328
$r=C$	CB39	203057												328
$r=D$	CB3A	203058												328
$r=E$	CB3B	203059												328
$r=H$	CB3C	203060												328
$r=L$	CB3D	203061												328
SRL (HL)	CB3E	203062	-	*	0	P	0	-	2	4	15	7.5		330
SRL ($\mathrm{IX}+\mathrm{d}$)	DD CBd 3E	221203 d 062	-	-	0	P	0	-	4	6	23	11.5		332
SRL ($1 Y+d)$	FD CBid 3E	253203 d 062	*	-	0	P	0	-	4	6	23	11.5		332

FLAGKEY: N - Not affected
P - Contains the Parity of the result (1 = Parity Even)
\checkmark - Contains the Overflow of the result ($1=$ Overflow)

- RESET $=0$
- SET $=1$.
? - Unknown
Affected according to the resul

Where:
This has the same effect as RL A, although it is slightly faster. This instruction is included to retain compatibility with the Intel $8 \emptyset 8 \emptyset$ processor.

RL r
Chapter 5, Page 263
Where:
r represents any one of the registers A, B, C, D, E, H or L
Rotates the contents of the nominated register Left. The content of Bit 7 is placed in the Carry Flag (C in the Flag Register) and the previous content of C is placed in Bit \emptyset of the nominated register.

RL (HL)
Chapter 5, Page 265
Rotates Left the contents of the memory location, whose address is contained in Register Pair HL. The content of Bit 7 is placed in the Carry Flag (C in the Flag Register) and the previous content of C is placed in Bit \emptyset of the memory location.

Chapter 5, Page 267
d is the displacement, in bytes, from the memory location whose address is identified by the contents of Index Register IX.

Rotates Left the contents of the memory location identified by the contents of Index Register IX (modified by displacement d, which is specified in the instruction). The content of Bit 7 is placed in the Carry Flag (C in the Flag Register) and the previous content of C is placed in Bit \emptyset of the memory location.
d is the displacement, in bytes, from the memory location whose address is identified by the contents of Index Register IY.
Rotates Left the contents of the memory location identified by the contents of Index Register IY (modified by displacement d, which is specified in the instruction). The content of Bit 7 is placed in the Carry Flag (C in the Flag Register) and the previous content of C is placed in Bit \emptyset of the memory location.

RLCA
Chapter 5, Page 277
Where:
This has the same effect as RLC A, although it is slightly faster. This instruction is included to retain compatibility with the Intel $808 \emptyset$ processor.

Chapter 5, Page 271
Where:
r represents any one of the registers A, B, C, D, E, H or L.
Rotates Left the contents of the nominated register. Bit 7 is placed in both the Carry Flag (C in the Flag Register) and the Bit \emptyset position.

Chapter 5, Page 273
Rotates Left the contents of the memory location whose address is contained in Register Pair HL. The content of Bit 7 is placed in both the Carry Flag (C in the Flag Register) and the Bit \emptyset position.
RLC (IX $+d$)
Chapter 5, Page 275
Where:
d is the displacement, in bytes, from the memory location whose address is identified by the contents of Index Register IX.

Rotates Left the contents of the memory location whose address is identified by the contents of Index Register IX (modified by displacement d , which is specified in the instruction). The content of Bit 7 is placed in both the Carry Flag (C in the Flag Register) and the Bit \varnothing position.

Chapter 5, Page 275
d is the displacement, in bytes, from the memory location whose address is identified by the contents of Index Register IY.

Rotates Left the contents of the memory location whose address is identified by the contents of Index Register IY (modified by displacement d, which is specified in the instruction). The content of Bit 7 is placed in both the Carry Flag (C in the Flag Register) and the Bit \emptyset position.
RLD
Chapter 5, Page 279
Rotates the contents of a memory location, whose address is held in Register Pair HL, with the Accumulator as follows:

1. The Lower Order four bits (\emptyset to 3) of the memory location are placed in the Higher Order four bit positions (4 to 7) of the same location.
2. The Higher Order four bits (4 to 7) of the memory location are placed in the Lower Order four bits (\emptyset to 3) of the Accumulator.
3. The Lower Order four bits (\emptyset to 3) of the Accumulator are placed in the Lower Order four bits of the memory location.
NOTE: This instruction has no affect on the Higher Order four bits (4 to 7) of the Accumulator.

RR r
Chapter 5, Page 281
Where:
r represents any one of the registers A, B, C, D, E, H or L.
Rotates Right the contents of the register nominated in the instruction.
The content of Bit \emptyset is placed in the Carry Flag (C in the Flag Register) while the previous content of C is placed in Bit 7 of the nominated register.
RRA
Chapter 5, Page 287
Where:
This has the same effect as RR A, although it is slightly faster. This instruction is included to retain compatibility with the Intel 8080 processor.
$R R(H L)$
Chapter 5, Page 283
Rotates Right the contents of the memory location whose address is contained in Register Pair HL. The content of Bit \emptyset is placed in the Carry Flag (C in the Flag Register) while the previous content of C is placed in Bit 7 of the memory location.
$R R(I X+d)$
Where:
Chapter 5, Page 285
d is the displacement, in bytes, from the memory location whose address is identified by the contents of Index Register IX.
Rotates Right the contents of the memory location identified by the contents of Index Register IX (modified by displacement d, which is
specified in the instruction). The content of Bit \emptyset is placed in the Carry Flag (C in the Flag Register) while the previous content of C is placed in Bit 7 of the memory location.
$R R(I Y+d)$
Chapter 5, Page 285
Where:
d is the displacement, in bytes, from the memory location whose address is identified by the contents of Index Register IY.

Rotates Right the contents of the memory location identified by the contents of Index Register IY (modified by displacement d, which is specified in the instruction). The content of Bit \emptyset is placed in the Carry Flag (C in the Flag Register) while the previous content of C is placed in Bit 7 of the memory location.

RRCA
Chapter 5, Page 295
Where:
This has the same effect as RRC A, although it is slightly faster. This instruction is included to retain compatibility with the Intel 8080 processor.

RRC r
Chapter 5, Page 289
Where:
r represents any one of the registers $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{H}$ or L .
Rotates Right the contents of the register nominated in the instruction. The content of Bit \emptyset is placed in both the Carry Flag (C in the Flag Register) and Bit 7 of the nominated register.
RRC (HL)
Chapter 5, Page 291
Rotates Right the contents of the memory location whose address is contained in Register Pair HL. The content of Bit \emptyset is placed in both the Carry Flag (C in the Flag Register) and Bit 7 of the memory location.
$R R C(I X+d)$
Chapter 5, Page 293
Where:
d is the displacement, in bytes, from the memory location whose address is identified by the contents of Index Register IX.

Rotates Right the contents of the memory location whose address is identified by the contents of Index Register IX (modified by displacement d , which is specified in the instruction). The content of Bit \emptyset is placed in both the Carry Flag (C in the Flag Register) and Bit 7 of the memory location.
d is the displacement, in bytes, from the memory location whose address is identified by the contents of Index Register IY.

Rotates Right the contents of the memory location whose address is identified by the contents of Index Register IY (modified by displacement d , which is specified in the instruction). The content of Bit \emptyset is placed in both the Carry Flag (C in the Flag Register) and Bit 7 of the memory location.

RRD
Chapter 5, Page 297
Rotates the contents of a memory location, whose address is held in Register Pair HL, as follows:

1. Places the Lower Order four bits $(\varnothing$ to 3) of the memory location into the Lower Order four bit positions of the Accumulator.
2. Places the previous contents of the Lower Order four bits (\emptyset to 3) of the Accumulator into the Higher Order four bits (4 to 7) of the memory location.
3. Places the original contents of the Higher Order four bits (4 to 7) of the memory location into the Lower Order four bits (\varnothing to 3) of the same location.

NOTE: This instruction has no effect on the Higher Order four bits (4 to 7) of the Accumulator.

SLAr
Chapter 5, Page 316
Where:
r represents any one of the registers A, B, C, D, E, H or L.
Shifts Left the contents of the register nominated in the instruction as follows:

1. Bit \emptyset is Reset to \emptyset.
2. Bits 1 to 6 are Shifted Left one position.
3. The previous content of Bit 7 is placed in the Carry Flag (C in the Flag Register).

Shifts Left the contents of the memory location whose address is held in Register Pair HL as follows:

1. Bit \emptyset is Reset to \emptyset.
2. Bits $\mathbf{1}$ to 6 are Shifted Left one position.
3. The previous content of Bit 7 is placed in the Carry Flag (C in the Flag Register).

SLA (IX + d)
Chapter 5, Page 320
Where:
d is the displacement, in bytes from the memory location whose address is identified by the contents of Index Register IX.
Shifts Left the contents of the memory location whose address is identified by the contents of Index Register IX (modified by displacement d , which is specified in the instruction), as follows:

1. Bit \emptyset is Reset to \emptyset.
2. Bits $\mathbf{1}$ to 6 are Shifted Left one position.
3. The previous content of Bit 7 is placed in the Carry Flag (C in the Flag Register).
$S L A(I Y+d)$
Chapter 5, Page 320
d is the displacement, in bytes from the memory location whose address is identified by the contents of Index Register IY.
Shifts Left the contents of the memory location whose address is identified by the contents of Index Register IY (modified by displacement d , which is specified in the instruction), as follows:
4. Bit \emptyset is Reset to \emptyset.
5. Bits 1 to 6 are Shifted Left one position.
6. The previous content of Bit 7 is placed in the Carry Flag (C in the Flag Register).
SRA r
Where:
Chapter 5, Page 322
r represents any one of the registers A, B, C, D, E, H or L.
Shifts Right the contents of the register nominated in the instruction as follows:
7. The contents of Bit positions 1 to 7 are Shifted Right one position.
8. The original content of Bit position 7 remains unaltered.
9. The original content of Bit position \emptyset is placed in the Carry flag (C in the Flag Register).

Shifts Right the contents of the memory location whose address is held in Register Pair HL as follows:

1. The contents of Bit positions 1 to 7 are Shifted Right one position.
2. The original content of Bit position 7 remains unchanged.
3. The original content of Bit position \emptyset is placed in the Carry Flag (C in the Flag Register).
$S R A(I X+d)$
Chapter 5, Page 326
Where:
d is the displacement, in bytes, from the memory location
whose address is identified by the contents of Index Register IX.
Shifts Right the contents of the memory location whose address is identified by the contents of Register IX (modified by displacement d, which is specified in the instruction) as follows:
4. The contents of Bit positions 1 to 7 are Shifted Right one position.
5. The original content of Bit position 7 remains unaltered.
6. The original content of Bit position \emptyset is placed in the Carry Flag (C in the Flag Register).
$S R A(I Y+d)$
Chapter 5, Page 326
Where:
d is the displacement, in bytes, from the memory location whose address is identified by the contents of Index Register IY.
Shifts Right the contents of the memory location whose address is identified by the contents of Index Register IY (modified by displacement d, which is specified in the instruction) as follows:
7. The contents of Bit positions $\mathbf{1}$ to 7 are Shifted Right one position.
8. The original content of Bit position 7 remains unchanged.
9. The original content of Bit position \emptyset is placed in the Carry Flag (C in the Flag Register).

SRL r
Chapter 5, Page 328
Where:
r represents any one of the registers A, B, C, D, E, H or L.
Shifts Right the contents of the register nominated in the instruction as follows:

1. The contents of Bit positions 1 to 7 are Shifted Right one position.
2. Bit position 7 is Reset to \emptyset.
3. The original content of Bit position \emptyset is placed in the Carry Flag (C in the Flag Register).

Shifts Right the contents of the memory location whose address is held in Register Pair HL as follows:

1. The contents of Bit positions $\mathbf{1}$ to 7 are Shifted Right one position.
2. Bit position 7 is Reset to \emptyset.
3. The original content of Bit position \emptyset is placed in the Carry Flag (C in the Flag Register).
SRL (IX + d)
Chapter 5, Page 332
Where:
d is the displacement, in bytes, fromthe memory location whose address is identified by the contents of Index Register IX.

Shifts Right the contents of the memory location whose address is identified by the contents of Index Register IX (modified by displacement d , which is specified in the instruction) as follows:

1. The contents of Bit positions 1 to 7 are Shifted Right one position.
2. Bit position 7 is Reset to \emptyset.
3. The original content of Bit position \emptyset is placed in the Carry Flag (C in the Flag Register).
SRL $(I Y+d)$
Chapter 5, Page 332
Where:
d is the displacement, in bytes, from the memory location whose address is identified by the contents of Index Register IY.

Shifts Right the contents of the memory location whose address is identified by the contents of Index Register IY (modified by displacement d, which is specified in the instruction) as follows:

1. The contents of Bit positions 1 to 7 are Shifted Right one position.
2. Bit position 7 is Reset to \emptyset.
3. The original content of Bit position \emptyset is placed in the Carry Flag (C in the Flag Register).

9. Bit Set, Reset and Test (Flag) Group.

These instructions either Set, Reset or Test one of the Bits in a specified CPU register or, alternatively, a particular memory location.

BIT SET, RESET AND TEST (FLAG) GROUP TABLE

SOURCE CODE	$\begin{array}{\|c\|} \text { OBJECT } \\ \text { CODE (HEX) } \end{array}$	DECIMAL	FLAGS							TIMING			COMMENTS	$\mathrm{CH} 5$REF
			S	Z	H	P/V	N	C		$\begin{array}{\|c\|} \hline \mathbf{M} \\ \text { CYCLES } \end{array}$	STATES	$\mu \mathrm{SEC} \text { @ }$		
BITb.r			?	-	1	?	\bigcirc	N	2	2	8	4		
$r=A b=0$	CB47	203071												101
$b=1$	CB4F	203079												101
$b=2$	CB57	203087												101
$b=3$	CB5F	203095												101
$b=4$	CB67	203103												101
$\mathrm{b}=5$	CB6F	203111												101
$b=6$	CB 77	203119												101
$b=7$	CB7F	203127												101
$r=B b=0$	CB40	203064												101
$b=1$	CB48	203072												101
$b=2$	CB50	203080												101
$b=3$	CB58	203088												101
$\mathrm{b}=4$	CB60	203096												101
$b=5$	CB68	203104												101
$b=6$	CB 70	203112												101
$b=7$	CB78	203120												101
$r=C \cdot b=0$	CB41	203065												101
$b=1$	CB49	203073												101
$b=2$	CB51	203081												101
$b=3$	C859	203089												101
$\mathrm{b}=4$	CB61	203097												101
$\mathrm{b}=5$	C869	203105												101
$b=6$	CB71	203113												101
$b=7$	CB 79	203121												101
$r=0 . b=0$	CB42	203066												101
$b=1$	CB4A	203074												101
$b=2$	CB52	203082												101
$b=3$	CB5A	203090												101
$\mathrm{b}=4$	CB62	203098												101
$b=5$	CB6A	203106											.	101
$b=6$	CB72	203114												101
$b=7$	CB7A	203112												101
$r=E, b=0$	CB43	203067												101
$b=1$	CB4B	203075												101
$b=2$	CB53	203083												101
$b=3$	CB5B	203091												101
$b=4$	CB63	203099												101
$b=5$	CB6B	203107												101
$b=6$	CB73	203115												101
$b=7$	CB7B	203123												101
$r=H, b=\varnothing$	CB44	203068												101
$b=1$	CB4C	203076												101
$\mathrm{b}=2$	CB54	203084												101
$b=3$	CB5C	203092												101
$b=4$	CB64	203100												101
$b=5$	CB6C	203108												101
$b=6$	CB74	203116												101
$b=7$	CB7C	203124												101
$r=L, b=0$	CB45	203069												101
$b=1$	CB4D	203077												101
$b=2$	CB55	203085												101
$b=3$	CB5D	203093												101
$b=4$	CB65	203101												101
$b=5$	CB60	203109												101
$b=6$	CB75	203117												101
$b=7$	CB7D	203125												101
BITb. (HL)			?	-	1	?	0	N	2	3	12	6		
$\mathrm{b}=\varnothing$	CB46	203070												103
$b=1$	CB4E	203078												103
$\mathrm{b}=2$	CB56	203086												103
$b=3$	CB5E	203094												103
$b=4$	CB66	203102												103
$b=5$	CB6E	203110												103
$b=6$	CB 76	203118												103
$b=7$	CB7E	203126												103
BITb, (IX + D)			?	*	1	?	0	N	4	5	20	10		
$\mathrm{b}=0$	DDCB d 46	221203 d 070												105
$b=1$	DDCB d 4E	221203d 078												105
$b=2$	DDCB d 56	$221203 d 086$												105
$b=3$	DDCA d5E	221203d 094												105

BIT SET, RESET AND TEST (FLAG) GROUP TABLE (cont.)

BIT SET, RESET AND TEST (FLAG) GROUP TABLE (cont.)

BIT SET, RESET AND TEST (FLAG) GROUP TABLE (cont.)

$\begin{aligned} & \text { SOURCE } \\ & \text { CODE } \end{aligned}$	OBJECT	DECIMAL	FLAGS						NO OF BYTES	TIMING				
			S	Z	H	P/V	N	C			$\begin{gathered} \mathrm{T} \\ \text { STATES } \end{gathered}$	$\left\lvert\, \begin{gathered} \mu \mathrm{SEC} \text { @ } \\ 2 \mathrm{MHZ} \end{gathered}\right.$	COMMENTS	$\begin{aligned} & \mathrm{CH} .5 \\ & \mathrm{REF} \end{aligned}$
SETb, (HL)			N	N	N	N	N	N	2	4	15	7.5		
$b=0$	CBC6	203198												313
$0=1$	CBCE	203206												313
$b=2$	CBD6	203214												313
$b=3$	CBDE	203222												313
$b=4$	CBE6	203230												313
$b=5$	CBEE	203238												313
$b=6$	CBF6	203246												313
$b=7$	CBFE	203254												313
SET b, (IX + d)			N	N	N	N	N	N	4	6	23	115		
$b=0$	DD CB d C6	221203 d 198												314
$b=1$	DD CB d CE	221203 d 206												314
$b=2$	DD CB d D6	221203 d 214												314
$b=3$	DD CB d DE	221203 d 222												314
$b=4$	DD CB d E6	221203 d 230												314
$b=5$	DD CB d EE	221203 d 238												314
$b=6$	DD CB d F6	221203 d 246												314
$b=7$	DD CB d FE	221203 d 254												314
SET b, ($1 \mathrm{Y}+\mathrm{d}$)			N	N	N	N	N	N	4	6	23	11.5		
$\mathrm{b}=0$	FD CB d C6	253203 d 198												314
$b=1$	FD CB d CE	253203 d 206												314
$b=2$	FD CB d D6	253203 d 214												314
$b=3$	FD CB d DE	253203 d 222												314
$b=4$	FD CB d E6	253203 d 230												314
$b=5$	FD CB d EE	253203 d 238												314
$b=6$	FD CB dF6	253203 d 246												314
$b=7$	FD CB d FE	253203 d 254												314

FLAGKEY: N - Not affected.
P - Contains the Parity of the result (1 = Parity Even).
V - Contains the Overflow of the result ($1=$ Overflow) - RESET = 0

- SET = 1
? Unknown
Attected according to the result

BIT b,r
Chapter 5, Page 101
Where:
b specifies the bit position concerned.
r identifies one of the registers A, B, C, D, E, H or L.
This instruction tests the specified bit in the nominated register and Sets/Resets the Z Flag in the Flag Register to the COMPLEMENT of that bit.

BIT b, (HL)
Chapter 5, Page 103
Where:
b specifies the bit position to be tested.
Tests the specified bit in a memory location whose address is held in the Register Pair HL then Sets/Resets the Z Flag in the Flag Register to the COMPLEMENT of that bit.

BITb, (IX + d)

Where:
Chapter 5, Page 105
b specifies the bit position concerned.
d is the displacement, in bytes, from the memory location
whose address is identified by the contents of Index Register IX.

Tests the specified bit in a memory location whose address is identified by he contents of Index Register IX (modified by displacement d, which is specified in the instruction) then Sets/Resets the Z Flag in the Flag Register to the COMPLEMENT of that bit.
$B I T$ b, (IY + d)
Chapter 5, Page 107
Where:
b specifies the bit position concerned.
d is the displacement, in bytes, from the memory location
whose address is identified by the contents of Index Register IY.

Tests the specified bit in a memory location whose address is identified by contents of Index Register IY (modified by displacement d, which is specified in the instruction) then Sets/Resets the Z Flag in the Flag Register to the COMPLEMENT of that bit.

RES b,r
Chapter 5, Page 250
Where:
b specifies the bit position required.
r represents one of the registers A, B, C, D, E, H or L.
Resets to \emptyset the specified Bit in the register nominated in the instruction.
RES b,(HL)
Where:
Chapter 5, Page 251
b specifies the bit position required.
Resets to \emptyset the specified bit in the memory location whose address is held in the Register Pair HL.

RES b, (IX + d)
Chapter 5, Page 253
Where:
b specifies the bit position required.
d is the displacement, in bytes, from the memory location whose address is identified by the contents of Index Register IX.

Resets to \emptyset the specified bit in the memory location whose address is identified by the contents of Index Register IX (modified by displacement d, which is specified in the instruction).

RES b,(IY + d)
Chapter 5, Page 253
Where:
b specifies the bit position required.
d is the displacement, in bytes, from the memory location
whose address is identified by the contents of Index Register IY.

Resets to \emptyset the specified bit in the memory location whose address is indentified by the contents of Index Register IY (modified by displacement d, which is specified in the instruction).
SET b,r
Chapter 5, Page 312
Where:
b specifies the bit position required.
r represents one of the registers A, B, C, D, E, H or L.
Sets to 1 the specified bit in the Register nominated in the instruction.
SET b, (HL)
Chapter 5, Page 313
Where:
b specifies the bit position required.
Sets to 1 the specified bit in the memory location whose address is held in Register Pair HL.

SETb, $(I X+d)$

Chapter 5, Page 314
Where:
b specifies the bit position required.
d is the displacement, in bytes, from the memory location
whose address is identified by the contents of Index
Register IX.
Sets to 1 the specified bit in the memory location whose address is identified by the contents of Index Register IX (modified by displacement d, which is specified in the instruction).

SETb, $(I Y+d)$
Where:
Chapter 5, Page 314
b specifies the bit position required.
d is the displacement, in bytes, from the memory location whose address is identified by the contents of Index Register IY.
Sets to 1 the specified bit in the memory location whose address is identified by the contents of Index Register IY (modified by displacement d , which is specified in the instruction).

10. Jump, Sub-Routine Call and Return Group

JUMP instructions transfer control to another location in memory but do not save the contents of the Program Counter (PC) to identify where the jump occurred.
CALL instructions also transfer control to another memory location but save the original contents of the Program Counter in the Memory Stack.

RETURN instructions transfer the contents of the top of the Memory Stack to the Program Counter, thus returning control to the location where the CALL instruction occurred.

JUMP. (SUB-ROUTINE) CALL AND RETURN GROUP TABLE

p is the Lower Order byte of the address to which control is to be transferred.
q is the Higher Order byte of the address to which control is to be transferred.

Pushes the contents of the Program Counter (PC) on to the top of the Memory Stack then loads address pq into the Program Counter. This calls the subroutine which starts at memory address pq.

NOTE: To return from the subroutine, a RET instruction must be included in the subroutine code.

CALL cc,pq
Chapter 5, Page 111-120
Where:
cc specifies the condition which must be met for the Call to become effective, based on the following table:

Condition		cc (Bin.)	Flag
Non-zero	NZ	ФФФ	Z
Zero	Z	001	Z
Non-Carry	NC	010	C
Carry	C	011	C
Parity Odd	PO	100	P/V
Parity Even	PE	101	P/V
Sign Positive	P	110	S
Sign Negative	M	111	S

p is the Lower Order byte of the address to which control is to be transferred.
q is the Higher Order byte of the address to which control is to be transferred.

Provided condition cc is TRUE, Pushes the contents of the Program Counter (PC) to the top of the Memory Stack then loads pq into the Program Counter. If Condition cc is NOT TRUE, the Program Counter is incremented and the program continues.

NOTE: A RET instruction must be included in the subroutine code to return control to the main program.

DJNZe
Chapter 5, Page 146
Where:
e is the displacement required if the Jump instruction is to be followed.

NOTE: The initial value of the second byte of this instruction must be e-2.

Decrements register B and Jumps if the result is Non-Zero, when e is added to the Program Counter (PC) giving the address to which control is to be transferred. If the contents of register B are Zero, the Jump does not take place and the program continues with the next instruction.

$$
J P n n
$$

Chapter 5, Page 175
Where:
nn is a memory location specified in the instruction.
Jumps unconditionally to memory location nn, where the next instruction is held.

JP cc,pq
 Where:

Chapter 5, Page 178
cc specifies the condition which must be met for the Jump to become effective, based on the following table:

Condition		cc (Bin.)	Flag
Non-Zero	NZ	ФФФ	Z
Zero	Z	001	Z
Non-Carry	NC	010	C
Carry	C	011	C
Parity Odd	PO	100	PN
Parity Even	PE	101	PN
Sign Positive	P	110	S
Sign Negative	M	111	S

p is the Lower Order byte of the address to which control is to be transferred.
q is the Higher Order byte of the address to which control is to be transferred.

Provided Condition cc is TRUE, loads pq into the Program Counter (PC). If condition cc is False the Program Counter is incremented to the next sequential instruction.
$J P(H L)$
Chapter 5, Page 176
Jumps unconditionally to the memory location whose address is held in Register Pair HL, i.e. the contents of HL are loaded into the Program Counter (PC).
JP (IX)
Chapter 5, Page 177
Jumps unconditionally to the memory location whose address is held in Index Register IX, i.e. the contents of IX are loaded into the Program Counter (PC).

Jumps unconditionally to the memory location whose address is held in Index Register IY, i.e. the contents of IY are loaded into the Program Counter (PC).
${ }^{J R e}$ Where:
Chapter 5, Page 180
e is the displacement required from the current contents of the Program Counter (PC).
Adds e to the Program Counter (PC), the next instruction being fetched from the location identified by the new contents of the Program Counter.
JR C, e
Chapter 5, Page 181
Where:
e is the displacement from the current contents of the Program Counter (PC) required if the Jump instruction is to be followed.
JR NC, e
Chapter 5, Page 181
Where:
e is the displacement from the current contents of the Program Counter (PC) required if the Jump instruction is to be followed.
If the Carry Flag $\mathrm{C}=1$, the program continues to the next instruction and the Jump does not occur. If the Carry Flag $C=\emptyset$, e is added to the Program Counter (PC) and the next instruction is fetched from the location identified by the new contents of the Program Counter.

JR NZ, e

Chapter 5, Page 181
Where:
e is the displacement from the current contents of the Program Counter (PC) required if the Jump instruction is to be followed.
If the Zero Flag $Z=1$ the program continues to the next instruction and the Jump does not occur. If the Zero Flag $Z=\emptyset, \mathrm{e}$ is added to the Program Counter (PC) and the next instruction is fetched from the location identified by the new contents of the Program Counter.
JR Z, e
Chapter 5, Page 181
Where:
e is the displacement from the current contents of the Program Counter (PC) required if the Jump instruction is to be followed.

If the Zero Flag $Z=\emptyset$ the program continues to the next instruction and the Jump does not occur. If the Zero Flag $Z=1$, e is added to the Program Counter (PC) and the next instruction is fetched from the location identified by the new contents of the Program Counter.

Chapter 5, Page 255
Returns program control to the main program after a subroutine has been executed. Loads the Lower Order byte of the Program Counter (PC) with the contents of the memory location whose address is identified by the Stack Pointer (SP) and the Higher Order byte of the Program Counter with the contents of the next sequential location, i.e. SP +1 .

RET Cc
Chapter 5, Page 257
Where:
cc specifies the condition which must be met for the Return to become effective, based on the following table:

Condition
Non-Zero
Zero
No Carry
Carry
Parity Odd
Parity Even
Sign Positive
Sign Negative

	cc (Bin.)	Flag
NZ	$\emptyset \emptyset \emptyset$	Z
Z	001	Z
NC	010	C
C	011	C
PO	100	P/V
PE	101	P/V
P	110	S
M	111	S

If the condition specified in the instruction is TRUE, control is returned to the main program. The Lower Order byte of the Program Counter (PC) is loaded with the contents of the memory location whose address is held in the Stack Pointer (SP) and the Higher Order byte of the Program Counter is loaded with the contents of the next sequential memory location (SP +1).
RETI
Chapter 5, Page 259
Returns control to the main program following an Interrupt by placing the contents of the top two bytes of the Memory Stack into the Program Counter (the Top byte of the Memory Stack is placed in the Lower Order byte of the Program Counter and the next byte in the Higher Order byte of the Program Counter).
NOTE: An El instruction must be executed before the RETI instruction to re-enable interrupts.

RETN
Chapter 5, Page 261
Similar to a RET instruction but used at the end of a subroutine servicing a non-maskable interrupt. Returns program control to the main
program by loading the Lower Order byte of the Program Counter (PC) with the contents of the top location in the Memory Stack and the Higher Order byte with the contents of the next sequential location (SP +1). The contents of IFF2 Flip-Flop are also copied back into IFF1, restoring it to its original condition.

RST p
Chapter 5, Page 299
Where:
p is the Lower Order byte of an address in low memory where the program is to be restarted.
NOTE: The Higher Order byte of this address is automatically loaded with $\emptyset \emptyset \mathrm{H}$, thus restricting the number of possible restart addresses to eight, based on the following values of p :

| H Hex. | Bin. | Hex. |
| :--- | :--- | :--- |\quad Bin.

The contents of the Program Counter (PC) are loaded on to the top of the Memory Stack (as for the PUSH instruction) and the Program Counter is then loaded with $\emptyset \emptyset H$ in the Higher Order byte and the value of p specified in the instruction in the Lower Order byte. The next instruction is then fetched from the nominated location in low memory.

11. Input and Output Group

This Group allows the transfer of single or multiple bytes (up to 256) between CPU registers or memory blocks and any one of 256 Input/ Output device addresses.
infut and output group table

$\begin{aligned} & \text { SOURCE } \\ & \text { CODE } \end{aligned}$	$\begin{gathered} \text { OBJECT } \\ \text { CODE (HEX) } \end{gathered}$	DECIMAL	FLAGS						NO. OF BYTES	TIMING			COMMENTS	$\begin{aligned} & \mathrm{CH} .5 \\ & \mathrm{REF} . \end{aligned}$
			S	Z	H	PN	N	C		$\begin{array}{\|c\|} \hline M \\ C Y C L E S \end{array}$	$\begin{gathered} \mathrm{T} \\ \text { STATES } \end{gathered}$	$\begin{aligned} & \hline \mu \mathrm{SEC} @ \\ & 2 \mathrm{MHZ} \end{aligned}$		
INA, (N)	DBN	219 N	N	N	N	N	N	N	2	3	11	5.5		159
$\underline{N} \mathrm{r}, \mathrm{(C)}$			-		*	P	0	N	2	3	12	6		
$r=A$	ED78	237120												160
$r=B$	ED 40	237064												160
$r=C$	ED48	237072												160
$r=D$	ED50	237080												160
$r=E$	ED58	237088												160
$r=H$	ED60	237096												160
$r=L$	ED68	237104												160
IND	EDAA	237170	?	*	?	?	1	N	2	4	16	8		169
\| N	EDA2	237162	?	-	?	?	1	N	2	4	16	8		172
INIR	ED B2	237172	?	1	?	?	1	N	2	5	21	10.5	If Register $\mathbf{B} \neq 0$	170
										4	16	8	If Register $\mathrm{B}=0$	
INDR	EDBA	237186	?	1	$?$?	1	N	2	5	21	10.5	If Register $B \neq 0$	235
										4	16	8	If Register $\mathrm{B}=0$	
OTDR	ED BB	237187	?	1	$?$?	1	N	2	5	21	10.5	If Register $\mathrm{B} \neq 0$	173
										4	16	8	If Register $B=0$	
OTIR	EDB3	237179	?	*	?	?	1	N	2	5	21	10.5	If Register $B \neq 0$	236
										4	16	8	If Register B $=0$	
OUT (n), A	D3 n	211 n	N	N	N	N	N	N	2	3	11	5.5		239
OUT(C). r			N	N	N	N	N	N	2	3	12	6		
$r=A$	ED 79	237121												238
$r=B$	ED41	237065												238 238
$r=C$	ED49	237073												238 238
$r=0$	ED51	237081												238
$r=E$	ED59	237089												238
$r=H$	ED61	237097												238
$r=L$	ED69	237105												238
OUTD	EDAB	237171	?	.	$?$?	1	N	2	4	16	8		240
OUTI	EDA3	237163	?	*	?	?	1	N	2	4	16	8		241

[^0]IN A, (N)
Chapter 5, Page 159 Where:
(N) is the address of the Input Port, in the range \emptyset to 255.
N (the address of the Input Port) is placed in the Lower Order byte of the Address Bus and the contents of the Accumulator are placed in the Higher Order byte of that Bus. One byte from the Input Port is placed in the Accumulator.
in r,(C)
Chapter 5, Page 160 Where:
r represents one of the registers $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{H}$ or L .
The C register contains the address of an Input Port in the range \emptyset to 255 . This Input Port is read and the single byte of data loaded into the nominated register. The Lower Order byte of the address bus is copied from Register C while the Higher Order byte is the previous contents of the B register.

This instruction reads, one byte at a time, up to 256 bytes of data from an Input Port and stores that data in consecutive memory locations. The address of the Input Port must be held in the C register (value \emptyset to 255) and Register B is used as a byte counter so must contain the number of bytes to be read. Register Pair HL must contain the address of the first memory location to be used to store the data. As each byte is read and stored both Register B and Register Pair HL are decremented.

Similar to instruction IND except that the contents of Register Pair HL are incremented, rather than decremented, as each byte is stored. Up to 256 bytes of data are read, one byte at a time, from an Input Port and stored in consecutive memory locations. Register C must contain the address (value \emptyset to 255) of the Input Port and Register B must contain the number of bytes to be read. Register Pair HL must contain the address of the first memory location to be used to store the data. As each byte is read and stored Register B is decremented and Register Pair HL is incremented.

INDR
Chapter 5, Page 170
Identical to IND except:

1. If the contents of Register $B-1=\emptyset$, the next instruction is executed.
2. If the contents of Register $B-1 \neq \emptyset$, the Program Counter (PC) is decremented by 2 and the INDR instruction is repeated.
NOTE 1: If the contents of Register b are \emptyset at the start of this instruction, 256 Bytes of data will be input.
NOTE 2: Interrupts will be recognised after each loop.
Chapter 5, Page 173
Similar to the INDR instruction except that the contents of Register Pair HL are incremented after each execution instead of being decremented.

Chapter 5, Page 235
Outputs a pre-determined number of bytes of data, one byte at a time, to an output port selected from up to 256 (i.e., \emptyset to 255) possible ports. The sequence of events is:

1. The data stored in a memory location whose address is held in the Accumulator is temporarily stored in the CPU.
2. Register B (used as a byte counter) is decremented and the new (decremented) value placed in the Higher Order byte of the Address Bus.
3. The contents of Register C are placed in the Lower Order byte of the Address Bus. This contains the identity of the Output Port to which the data is to be directed, (i.e. a value between \emptyset and 255).
4. The data byte temporarily stored in the CPU is placed on the Data Bus for output to the nominated Output Port.
5. Register Pair HL is decremented.
6. If Register B is non-zero, the Program Counter (PC) is decremented by 2 and the instruction is executed again. If the value of Register B is zero, the program proceeds with the next sequential instruction.
NOTE 1: If Register B is set to zero prior to the first execution of this instruction then 256 bytes of data will be output.
NOTE 2: Interrupts are permitted after each byte is output.

OTIR

Chapter 5, Page 236
Similar to OTDR except that Register Pair HL is incremented instead of decremented after each data byte is output.
OUT (n), A
Chapter 5, Page 239
Where:
(n) is the address of one of 256 (i.e. \emptyset to 255) Output Ports.
Places the Output Port address (n) in the Lower Order byte of the Address Bus and the contents of the Accumulator in the Higher Order byte of the Address Bus. The contents of the Accumulator are then passed to the selected Output Port.

```
OUT (C), \(r\)
Where:
```

Chapter 5, Page 238
r represents one of the registers A, B, C, D, E, H or L.
Outputs the contents of the nominated register to the Output Port whose identity (0 to 255) is held in the C Register. The contents of the C Register are placed in the Lower Order byte of the Address Bus.
OUTD
Chapter 5, Page 240
Outputs one or more (up to 256) bytes of data from consecutive memory locations to an Output Port identified by the contents of Register C. Register B is used as a byte counter and must therefore contain the number of bytes to be output. Register Pair HL contains the address of the first byte to be output. After each data transfer both Register B and Register Pair HL are decremented.

OUTI

Chapter 5, Page 241
This instruction is identical to OUTD except that, after each data transfer, Register Pair HL is incremented instead of decremented.

CHAPTER 5

Z89 Machine Code Instructions

This chapter contains details of each Z80 Machine Code instruction, in Source Code sequence, with the Object Code (Hexadecimal), Bit Pattern, Decimal Code, Flag Register Status, Addressing Mode, Timing and Description of each instruction.

ADC A,n

Description: Adds the contents of the Accumulator plus the carry bit to n and stores the result in the Accumulator.
No. of Bytes: 2
Object Code (Hex.): CE n Decimal: 206 n
Where n is an 8 Bit value, specified in the instruction.
Bit Pattern

$$
\begin{array}{llllllllll}
1 & 1 & \emptyset & \emptyset & 1 & 1 & 1 & \emptyset & n
\end{array}
$$

Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET $=1$ if the result is negative, otherwise RESET $=\emptyset$.
Zero	Z	6	SET $=1$ if the result is zero, otherwise RESET $=\emptyset$.
-	-	5	Not used.
Half Carry	H	4	SET = 1 if Carry from Bit 3, otherwise RESET $=\emptyset$.
-	-	3	Not used.
Parity/Overflow	P/V	2	SET $=1$ if Overflow, RESET $=\emptyset$ if no overflow.
Subtract	N	1	RESET $=\emptyset$.
Carry	C	0	SET $=1$ if Carry from Bit 7 .

Example: LD A, 02 H
SCF
ADC A, Ø27H
If the Accumulator contains $\emptyset 2 \mathrm{H}$, the Carry Flag is set, and n in the instruction is 27 H , then the result stored in the Accumulator will be $\emptyset 2 \mathrm{H}$ $+27 \mathrm{H}+\emptyset 1 \mathrm{H}=2 \mathrm{AH}$. If the Carry Flag is not set, the result will be $\emptyset 2 \mathrm{H}+$ $27 \mathrm{H}+\emptyset \emptyset \mathrm{H}=29 \mathrm{H}$.

Addressing Mode: Immediate.
Timing:

M Cycles	T States	$\mu \sec @ 2 \mathrm{MHz}$.
2	7	3.5

ADC A,A

Description: Adds the contents of the Accumulator plus the carry bit to itself and stores the result in the Accumulator.

No. of Bytes: 1
Object Code (Hex.): 8F Decimal: 143
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET = 1 if the result is negative, otherwise RESET = \varnothing
Zero	Z	6	SET $=1$ if the result is zero, otherwise RESET = \emptyset
-	-	5	
Half Carry	H	4	SET = 1 if Carry from Bit 3, otherwise RESET = \emptyset
-	-	3	Not used.
Parity/Overflow	P/V	2	SET $=1$ if Overflow, RESET $=\emptyset$ if no overflow
Subtract	N	1	RESET = \varnothing
Carry	C	\emptyset	SET $=1$ if Carry from BIT 7.

Example: LD A, Ø3H

$$
\begin{aligned}
& \text { SCF } \\
& \text { CCF } \\
& \text { ADC A,A } \\
& \text { or } \\
& \text { LD A, } \varnothing 3 H \\
& \text { SCF } \\
& \text { ADC A,A }
\end{aligned}
$$

If the Accumulator contains $\emptyset 3 \mathrm{H}$ prior to this instruction being executed, and the Carry Flag is reset, the result will be $\emptyset 6 \mathrm{H}$. If the carry bit is set, the result will be $\emptyset 7 \mathrm{H}$.
Addressing Mode: Implicit.
Timing:

M Cycles	T States	$\mu \sec @ 2 \mathrm{MHz}$.
1	4	2

ADC A,r

Where r is any of the registers B, C, D, E, H or L.
Object Code:

	Hex	Decimal
ADC A,B	88	136
ADC A,C	89	137
ADC A,D	8 A	138
ADC A,E	8B	139
ADC A, L	8 C	140
	$8 D$	141

Description: Adds the contents of the Accumulator plus the carry bit to the contents of any of the other registers and stores the result in the Accumulator.

No. of Bytes: 1
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET $=1$ if the result is negative, otherwise RESET = \varnothing
Zero	Z	6	SET $=1$ if the result is zero, otherwise RESET = \emptyset
-	-	5	Not used.
Half Carry	H	4	SET = 1 if Carry from Bit 3, otherwise RESET $=\emptyset$.
-	-	3	Not used.
Parity/Overflow	P/V	2	SET $=1$ if Overflow, RESET $=\emptyset$ if no Overflow.
Subtract	N	1	RESET $=\varnothing$
Carry	C	\emptyset	SET $=1$ if Carry from Bit 7, otherwise RESET = \varnothing

Example: LD A,01H
 SCF
 ADC A,B
 or
 LD A, 01 H
 SCF
 CCF
 ADC A,B

If the Accumulator contains $\emptyset 1 \mathrm{H}$, the Carry Flag is set, and register B contains $\emptyset 2 \mathrm{H}$, the result will be $\emptyset 1 \mathrm{H}+\emptyset 1 \mathrm{H}+\emptyset 2 \mathrm{H}=\emptyset 4 \mathrm{H}$. If the Carry Flag is reset, the result will be $\emptyset 1 \mathrm{H}+\emptyset \emptyset \mathrm{H}+\emptyset 2 \mathrm{H}=\emptyset 3 \mathrm{H}$.

Addressing Mode: Implicit.
Timing:

M Cycles	T States	$\mu \mathrm{sec}$ @ 2 MHz.
1	4	2

ADC A,(HL)

Description: Adds the contents of the Accumulator plus the Carry Flag to the contents of the memory location whose address is held in Register Pair HL and stores the result in the Accumulator.

No. of Bytes: 2
Object Code (Hex.): 8E
Decimal: 142
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET $=1$ if the result is negative, otherwise RESET = \varnothing
Zero	Z	6	SET $=1$ if the result is zero, otherwise RESET = \varnothing
-	-	5	Not used.
Half Carry	H	4	SET $=1$ if Carry from Bit 3 , otherwise RESET = \emptyset
-	-	3	Not used.
Parity/Overflow	P/V	2	SET = 1 if Overflow, otherwise RESET $=\emptyset$
Subtract	N	1	RESET $=\emptyset$
Carry	C	0	SET $=1$ if Carry from BIT 7, otherwise RESET = \emptyset.

Example: LD A, 02 H
LD L, $\varnothing 4 \mathrm{H}$
LD H, 05 DH
SCF
ADC A,(HL)
or
LD A, Ø2H
LD L, 94 H
LD H, 05 H
SCF
CCF
ADC A, (HL)
If the Accumulator contains $\emptyset 2 \mathrm{H}$, the Carry Flag is reset, the H register contains 5 DH and the L Register contains $\emptyset 4 \mathrm{H}$ then this instruction will add $\emptyset 2 \mathrm{H}$ to the contents of memory location $5 \mathrm{D} \emptyset 4$. If the contents of that location are $\emptyset 3 \mathrm{H}$ the result will be $\emptyset 2 \mathrm{H}+\emptyset \emptyset \mathrm{H}+\emptyset 3 \mathrm{H}=\emptyset 5 \mathrm{H}$. If the carry flag is set, the result will be $\emptyset 2 \mathrm{H}+\emptyset 1 \mathrm{H}+\emptyset 3 \mathrm{H}=\emptyset 6 \mathrm{H}$. The result is stored in the Accumulator, and there is no effect on the contents of the memory location.
Addressing Mode: Indirect.
Timing:

M Cycles	T States	μ sec @ 2 MHz.
2	7	3.5

ADC A,(IX+d) ADC A,(IY+d)

Description: Adds the contents of the Accumulator plus the Carry Flag to the contents of a memory location whose address is identified by the contents of Index Register IX or IY (modified by displacement d, which is specified in the instruction) and places the result in the Accumulator.
No. of Bytes: 3
Object Code:

	Hex	Decimal
ADC A,(IX+d)	DD 8E d	221142 d
ADC A,(IY +d)	FD 8E d	253142 d

Where d is the displacement, in bytes, from the memory location whose address is identified by the contents of Index Register IX.

Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET $=1$ if the result is negative, otherwise RESET = \varnothing
Zero	Z	6	SET = 1 if the result is zero, otherwise RESET = \emptyset
-	-	5	Not used.
Half Carry	H	4	SET = 1 if Carry from Bit 3 , otherwise RESET = \emptyset
-	-	3	Not used.
Parity/Overflow	P/V	2	SET = 1 if Overflow, otherwise RESET \emptyset.
Subtract	N	1	RESET = \varnothing
Carry	C	\emptyset	SET $=1$ if Carry from BIT 7 , otherwise RESET $=\emptyset$.

Example: LD IX,3125H
LD A, 23 H
SCF
ADC (A, (IX + 3)
or
LD IX,3125H
LD A, 23H
SCF
CCF
ADC A, $(1 X+3)$
If the contents of the IX Index Register are 3125 H and the value of d is $\emptyset 3 \mathrm{H}$, the content of location 3128 H is 15 H , the value of the Accumulator is 23 H , and the Carry Flag is reset, the result placed in the Accumulator will be $15 \mathrm{H}+\emptyset 0 \mathrm{H}+23 \mathrm{H}=38 \mathrm{H}$. If the Carry Flag is set, the result will be $15 \mathrm{H}+\emptyset 1 \mathrm{H}+23 \mathrm{H}=39 \mathrm{H}$

Addressing Mode: Indexed.
Timing:

M Cycles	T States	$\mu \sec @ 2 \mathrm{MHz}$.
5	19	9.5

ADC HL,rr

Where $r r$ is any of the register pairs $B C, D E, H L, S P$.
Description: Adds the contents of Register Pair rr to the contents of Register Pair HL plus the Carry Flag, then stores the result in Register Pair HL.
No. of Bytes: 2
Object Code:

	Hex	Decimal
ADC HL,BC	ED 4A	$237 \emptyset 74$
ADC HL,DE	ED 5A	$237 \emptyset 9 \emptyset$
ADC HL,HL	ED 6A	237196
ADC HL, SP	ED 7A	237122

Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET = 1 if the result is negative, otherwise RESET = \emptyset
Zero	Z	6	SET $=1$ if the result is zero, otherwise RESET = \varnothing
	-	5	Not used.
Half Carry	H	4	SET = 1 if Carry from Bit 11, otherwise RESET = \emptyset
	-	3	Not used.
Parity/Overflow	P/V	2	SET = 1 if Overflow, otherwise RESET = \varnothing
Subtract	N	1	RESET $=\emptyset$
Carry	C	\emptyset	SET $=1$ if Carry from BIT 15, otherwise RESET = \varnothing

Example: LD HL, ØF18H
LD BC,3291H
SCF
ADC HL,BC
If the contents of the BC Register Pair are 3291 H and that of the HL Register Pair ©F 18H and the Carry Flag is reset, then the result will be 41 A9H which is placed in Register Pair HL. If the Carry Flag is set, the result will be 41AAH.

Addressing Mode: Implicit.
Timing:

M Cycles	T States	μ sec @ 2 MHz.
4	15	75

ADD A,n

Description: Adds n to the contents of the Accumulator, then stores the result in the Accumulator.

No. of Bytes: 2
Object Code (Hex.): C6n Decimal: 198 n
Where n is an 8 Bit value, specified in the instruction.
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET $=1$ if the result is negative, otherwise RESET = \varnothing
Zero	Z	6	SET $=1$ if the result is zero, otherwise RESET = \emptyset
	-	5	Not used.
Half Carry	H	4	SET $=1$ if Carry from Bit 3, otherwise RESET = \varnothing
	-	3	Not used.
Parity/Overflow	P/V	2	SET = 1 if Overflow, otherwise RESET $=\varnothing$
Subtract	N	1	RESET $=\emptyset$
Carry	C	\emptyset	SET $=1$ if Carry from BIT 7, otherwise RESET = \emptyset

Example: LD A,2AH
ADD A,33H
If the second byte of the instruction contains 33 H and the contents of the Accumulator are 2AH, then the result will be 5DH.
Addressing Mode: Immediate.
Timing:

M Cycles	T States	μ sec @ 2 MHz.
2	7	3.5

ADD A, r

Where r is any of the registers A, B, C, D, E, H, or L.
Object Code:

	Hex	Decimal
ADD A,A	87	135
ADD A,B	80	128
ADD A,C	81	129
ADD A,D	82	130
ADD A,E	83	131
ADD A,H	84	132
ADD A,L	85	133

Description: Adds the contents of the Register r to the contents of the Accumulator and stores the result in the Accumulator. NOTE: in the case of ADD A, A the effect is to double the contents of the Accumulator.
No. of Bytes: 1
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET $=1$ if the result is negative, otherwise RESET $=\emptyset$.
Zero	Z	6	SET = 1 if the result is zero, otherwise RESET $=\emptyset$.
-	-	5	Not used.
Half Carry	H	4	SET = 1 if Carry from Bit 3, otherwise RESET $=\emptyset$.
-	-	3	Not used.
Parity/Overflow	P/V	2	$\begin{aligned} & \text { SET }=1 \text { if Overflow, otherwise } \\ & \text { RESET }=\emptyset . \end{aligned}$
Subtract	N	1	RESET $=0$.
Carry	C	\emptyset	SET = 1 if Carry from Bit 7, otherwise RESET $=\emptyset$.

Example: LD A,3EH
LD B, 09 H
ADD A,B
If the contents of the Accumulator are 3EH and the contents of the B register are $\emptyset 8 \mathrm{H}$, the result will be 47 H .

Addressing Mode: Implicit.
Timing:

M Cycles	T States	$\mu \sec @ 2 \mathrm{MHz}$.
1	4	2

ADD A,(HL)

Description: Adds the contents of the memory location whose address is held in Register Pair HL to the contents of the Accumulator and stores the result in the Accumulator.

No. of Bytes: 1
Object Code (Hex.): 86
Decimal: 134
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET $=1$ if the result is negative, otherwise RESET = \emptyset
Zero	Z	6	SET $=1$ if the result is negative,, otherwise RESET = \emptyset
-	-	5	Not used.
Half Carry	H	4	SET = 1 if Carry from Bit 3, otherwise RESET = \emptyset
-	-	3	Not used.
Parity/Overflow	P/V	2	SET $=1$ if Overflow, otherwise, RESET $=\varnothing$
Subtract	N	1	RESET $=\varnothing$
Carry	C	\emptyset	SET $=1$ if Carry from BIT 7 , otherwise RESET = \emptyset.

Example: LD HL,5A@2H
LD (HL), 24H
LD A,16H
ADD A,(HL)
If the contents of Register Pair HL are 5 AO 2 H , the contents of that location are 24 H and the contents of the Accumulator are 16 H , then the result, stored in the Accumulator, is 3 AH .

Addressing Mode: Indirect.
Timing:

M Cycles	T States	μ sec @ 2 MHz.
2	7	3.5

ADD A,(IX + d)
 ADD A,(IY + d)

Description: Adds the contents of the memory location identified by the contents of Index Register IX or IY (modified by displacement d, which is specified in the instruction) to the contents of the Accumulator and stores the result in the Accumulator.

No. of Bytes: 3
Object Code:

	Hex	Decimal
ADD A,(IX + d)	DD 86 d	$221134 d$
ADD A, (IY + d)	FD 86 d	$253134 d$

Where d is the displacement required from the memory location whose address is held in Index Register IX or IY.

Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET = 1 if the result is negative, otherwise RESET = \emptyset
Zero	Z	6	SET $=1$ if the result is zern, otherwise RESET = \varnothing
	-	5	Not used.
Half Carry	H	4	SET $=1$ if Carry from Bit 3, otherwise RESET = \varnothing
	-	3	Not used.
Parity/Overflow	P/V	2	$\begin{aligned} & \text { SET }=1 \text { if Overflow, otherwise, } \\ & \text { RESET }=\varnothing \end{aligned}$
Subtract	N	1	RESET = \varnothing
Carry	C	\emptyset	SET $=1$ if Carry from BIT 7 otherwise RESET = \emptyset.

Example: LDIX,122AH
LD HL, 125AH
LD (HL), 15H
LD A, 2AH
ADD A, (IX $+30 \mathrm{H})$
If the contents of Index Register IX are 122 AH and displacement is 30 H , the required memory location is 125 AH . If the contents of that location are 15 H and the contents of the Accumulator are 2 AH , then the result, stored in the Accumulator, will be 3FH.

Addressing Mode: Indexed.
Timing:

M Cycles	TStates	$\mu \sec @ 2 \mathrm{MHz}$.
5	19	9.5

ADD HL,rr

Where $r r$ is any of the register pairs $B C, D E, H L, S P$.
Description: Adds the contents of Register Pair rr to the contents of Register Pair HL and stores the result in Register Pair HL.
No. of Bytes: 1
Object Code:

	Hex	Decimal
ADD HL,BC	$\boxed{ }$	$\boxed{1}$
ADD HL,DE	19	$\emptyset 25$
ADD HL,HL	29	$\emptyset 41$
ADD HL,SP	39	$\emptyset 57$

Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	SET = 1 if Carry from Bit 11, otherwise RESET = \emptyset
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	RESET $=\emptyset$
Carry	C	\emptyset	SET = 1 if carry from Bit 15, otherwise RESET $=\emptyset$.

Example: LD BC,150AH
LD HL,2112H
ADD HL,BC
If the contents of Register Pair BC are 150AH and the contents of Register Pair HL are 2112 H , the result is 361 CH .
Addressing Mode: Implicit.
Timing:

M Cycles	T States	$\mu \mathrm{sec} @ 2 \mathrm{MHz}$.
3	11	5.5

ADD IX,BC
 ADD IY,BC

Description: Adds the contents of Register Pair BC to the contents of Index Register IX or IY and stores the result in Register IX or IY.

No. of Bytes: 2
Object Code:

	Hex	Decimal
$A D D I X, B C$	DD $\emptyset 9$	$221 \emptyset \emptyset 9$
ADD IY,BC	FD $\emptyset 9$	$253 \emptyset \emptyset 9$

Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	SET = 1 if Carry from Bit 11 otherwise RESET = \emptyset
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	RESET $=\emptyset$
Carry	C	\emptyset	SET $=1$ if Carry from BIT 15, otherwise RESET $=\emptyset$.

Example: LD BC,1172H
LDIX,1012H
ADD IX,BC
If the contents of Register Pair BC are 1172 H and the contents of Index Register IX are $1 \emptyset 12 \mathrm{H}$, the result will be 2184 H .
Addressing Mode: Implicit.
Timing:

M Cycles	T States	$\mu \sec @ 2 \mathrm{MHz}$.
4	15	7.5

ADD IX,DE
 ADD IY,DE

Description: Adds the contents of Register Pair DE to the contents of Index Register IX or IY and stores the result in Index Register IX or IY.
No. of Bytes: 2
Object Code:

	Hex	Decimal
ADD IX,DE	DD 19	221 @25
ADD IY,DE	FD 19	253025

Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	SET $=1$ if Carry from Bit 11, otherwise RESET = \emptyset
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	RESET = \emptyset
Carry	C	\emptyset	SET $=1$ if Carry from BIT 15, otherwise RESET $=\emptyset$.

Example: LD DE,1321H
LDIX,2243H
ADD IX,DE
If the contents of Register Pair DE are 1321H and the contents of Index Register IX are 2243 H , the result will be 3564 H .

Addressing Mode: Implicit.
Timing:

M Cycles	T States	μ sec @ 2 MHz.
4	15	7.5

ADD IX,IX

Description: Adds the contents of Index Register IX to the contents of Index Register IX and stores the result in Index Register IX, i.e. doubles the contents of that Index Register.
No. of Bytes: 2
Object Code (Hex.): DD 29 Decimal: 221 Ø41.
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	SET $=1$ if Carry from Bit 11, otherwise RESET $=\varnothing$
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	RESET = \varnothing
Carry	C	\emptyset	SET = 1 if Carry from BIT 15, otherwise RESET = \emptyset.

Example: LD IX,2345H
ADD IX,IX
If the contents of Index Register IX are 2345 H , then the result will be 23
$45 \mathrm{H}+2345 \mathrm{H}=468 \mathrm{AH}$.
Addressing Mode: Implicit.
Timing:

M Cycles	T States	μ sec @ 2 MHz.
4	15	7.5

ADD IY,IY

Description: Adds the contents of Index Register IY to the contents of Index Register IY and stores the result in Index Register IY, i.e. doubles the contents of Index Register IY.
No. of Bytes: 2
Object Code (Hex.): FD 29
Decimal: 253 @41.
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	SET $=1$ if Carry from Bit 11, otherwise RESET = \emptyset
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	RESET = \emptyset
Carry	C	\emptyset	SET $=1$ if Carry from BIT 15, otherwise RESET $=\emptyset$.

Example: LD IY,1342H

ADD IY,IY
IF the contents of Index Register IY are 1342 H , then the result is 1342 H $+1342 \mathrm{H}=2684 \mathrm{H}$.

Addressing Mode: Implicit.
Timing:

M Cycles	T States	μ sec @ 2 MHz.
4	15	7.5

ADD IX,SP ADD IY,SP

Description: Adds the contents of the Stack Pointer (Register Pair SP) to the contents of Index Register IX or IY and stores the result in Index Register IX or IY.

No. of Bytes: 2
Object Code:

	Hex	Decimal
ADD IX,SP	DD 39	$221 \emptyset 57$
ADD IY,SP	FD 39	$253 \emptyset 57$

Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	SET $=1$ if Carry from Bit 11, otherwise RESET = \emptyset
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	RESET = \emptyset
Carry	C	\emptyset	SET $=1$ if Carry from BIT 15, otherwise RESET = \emptyset.

Example: LD SP,352BH
LD IX,221AH
ADD IX,SP
If the contents of the Stack Pointer are 35 2BH and the contents of Index Register IX are 221 AH , the result will be $352 \mathrm{BH}+221 \mathrm{AH}=5745 \mathrm{H}$.
Addressing Mode: Implicit.
Timing:

M Cycles	T States	μ sec @ 2 MHz.
4	15	7.5

AND n

Description: Performs a Logical AND on the contents of the Accumulator with n , storing the result in the Accumulator.
No. of Bytes: 2
Object Code (Hex.): E6 n Decimal: 230 n
Where n is an 8 Bit value, specified in the second byte of the instruction.
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET $=1$ if the result is negative, otherwise RESET = \emptyset
Zero	Z	6	SET $=1$ if the result is zero, otherwise RESET = \emptyset
-	-	5	Not used.
Half Carry	H	4	SET = 1
	-	3	Not used.
Parity/Overflow	P/V	2	SET = 1 for Parity Even, RESET = \varnothing for Parity Odd.
Subtract	N	1	RESET $=\emptyset$
Carry	C	¢	RESET $=\emptyset$

Example: LD A, ØA2H
AND 38H
If the contents of the Accumulator are A2(Hex). (Bit Pattern 10100010) and the value of n is 38 H (Bit Pattern $\emptyset \emptyset 111 \emptyset \emptyset \emptyset$) this has the effect of masking out Bits 7, 6, 2, 1 and \emptyset in the Accumulator as follows:

Accumulator - 10100010
n - Ø011100Ф
Result - $\emptyset 01 \emptyset 00 \emptyset 0=20 \mathrm{H}$
Addressing Mode: Immediate.
Timing:

M Cycles	T States	$\mu \mathrm{sec}$ @ 2 MHz.
2	7	3.5

AND A

Description: Performs a Logical AND on the contents of the Accumulator with the contents of the Accumulator and stores the result in the Accumulator. In practice, the contents of the Accumulator remain unaltered but the condition of the Flag Register Bits may change.
No. of Bytes: 1
Object Code (Hex.): A7 Decimal: 167.
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET $=1$ if the result is negative, otherwise RESET $=\emptyset$. Zero
Z	6	SET if the result is zero, otherwise RESET $=\emptyset$.	
-	-	5	Not used.
Half Carry	H	4	SET $=1$ - Pot used.
Parity/Overflow	P/N	2	Not 1 for Parity Even, RESET $=\emptyset$ SET $=1$ for Parity Odd.
Carry	N	1	RESET $=\emptyset$ RESET $=\emptyset$.

Example: LD A, ØC3H
AND A
If the contents of the Accumulator are $\mathrm{C} 3(\mathrm{Hex)}$.) (Bit Pattern 11000011) the Logical AND will perform as follows:

$$
\begin{aligned}
& \text { Accumulator - } 11000011 \\
& \text { Accumulator - } 11000011 \\
& \text { Result } \quad-11000011=\mathrm{C} 3 \mathrm{H}
\end{aligned}
$$

Note that this has no effect on the value of the A register, but may change the values of the flags. This instruction is used specifically for its affects on the flags. For instance, if we want to RESET the Carry Flag, it is quicker and easier to say AND A than SCF followed by CCF.

Addressing Mode: Implicit.
Timing:

M Cycles	T States	$\mu \mathrm{sec}$ @ 2 MHz.
1	4	2

AND r

Where r is any of the registers B, C, D, E, H or L.
Object Code:

	Hex	Decimal
AND B	AØ	160
AND C	A1	161
AND D	A2	162
AND E	A3	163
AND H	A4	164
AND L	A5	165

Description: Performs a logical AND on the contents of the Accumulator with the contents of any of the other registers and stores the result in the Accumulator.
No. of Bytes: 1
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET $=1$ if the result is negative, otherwise RESET $=\emptyset$.
Zero	Z	6	SET $=1$ if the result is zero, otherwise RESET $=\emptyset$.
-	-	5	Not used. Half Carry -
Parity/Overflow	P/V	3	2
SET 1.			
Not used.			
SET $=1$ for Parity Even, RESET $=\emptyset$			
for Parity Odd.			
Carry	N	1	RESET $=\emptyset$. RESET $=\emptyset$.

Example: LD A, ØA1H
LD B,29H
AND B
If the contents of the Accumulator are A1(Hex.) (Bit Pattern 10100001) and the contents of Register B are 29H (Bit Pattern Ø0101001) the Logical AND will perform as follows:

Accumulator	-10100001
Register B	$-\underline{00101001}$
Result	$-\boxed{00100001}=21 \mathrm{H}$

Addressing Mode: Implicit.
Timing:

M Cycles	T States	$\mu \sec @ 2 \mathrm{MHz}$.
1	4	2

AND (HL)

Description: Performs a Logical AND on the contents of the Accumulator with the contents of a memory location whose address is held in Register Pair HL, then stores the result in the Accumulator.
No. of Bytes: 1
Object Code (Hex.): A6
Decimal: 166.
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET $=1$ if the result is negative, otherwise RESET $=\emptyset$. SET $=1$ if the result is zero, Zero
Z	6	5	otherwise RESET $=\emptyset$. Not used.
Half Carry	-	4	SET $=1$ Not used.
Parity/Overflow	P/V	2	SET $=1$ for Parity Even, RESET $=\emptyset$ for Parity Odd.
Subtract	N	1	RESET $=\emptyset$ Carry
	C	\emptyset	RESET $=\emptyset$.

Example

$$
\begin{aligned}
& \text { LD A,4AH } \\
& \text { LD (HL), } 0 \mathrm{C} 8 \mathrm{H} \\
& \text { AND (HL) }
\end{aligned}
$$

If the contents of the Accumulator are 4A(Hex.) (Bit Pattern $0100101 \emptyset$) and the contents of the memory location are C8H (Bit Pattern 11001000) the Logical AND will perform as follows:

$$
\begin{array}{lrl}
\text { Accumulator }-\emptyset 1 \emptyset \emptyset 1 \emptyset 1 \emptyset & =4 \mathrm{AH} \\
\text { Memory Location }-\underline{11 \emptyset \emptyset 1 \emptyset \emptyset \emptyset} & =\mathrm{C} 8 \mathrm{H} \\
\text { Result } & -\underline{\varrho 1 \emptyset \emptyset 1 \emptyset \emptyset \emptyset} & =48 \mathrm{H}
\end{array}
$$

Addressing Mode: Indirect.
Timing:

M Cycles	T States	$\mu \sec @ 2 \mathrm{MHz}$.
2	7	3.5

AND (IX + d)
 AND (IY + d)

Description: Performs a Logical AND on the contents of the Accumulator with the contents of a memory location whose address is identified by the contents of Index Register IX or IY (modified by displacement d, which is specified in the instruction), then stores the result in the Accumulator.

No. of Bytes: 3
Object Code:

	Hex	Decimal
AND $(I X+d)$	DD A6 d	$221166 d$
AND $(I Y+d)$	FD A6 d	$253166 d$

Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET $=1$ if the result is negative, otherwise RESET $=\emptyset$.
Zero	Z	6	SET $=1$ if the result is zero, otherwise RESET $=\emptyset$.
-	-	5	Not used.
Half Carry	H	4	SET $=1$
	-	3	Not used.
Parity/Overflow	P/V	2	SET = 1 for Parity Even, RESET $=\varnothing$ for Parity Odd.
Subtract	N	1	RESET $=\emptyset$
Carry	C	\emptyset	RESET $=\emptyset$.

Example: LD A,7DH
LD (IX + 5), 6CH
AND (IX + 5)
If the contents of the Accumulator are 7D(Hex.) (Bit Pattern Ø1111101) and the contents of the nominated memory location are 6CH (Bit Pattern 01101100) the Logical AND will perform as follows:

$$
\begin{aligned}
& \text { Accumulator - } \emptyset 11111 \emptyset 1=7 \mathrm{DH} \\
& \text { Memory Location - } \underline{\emptyset 11011 \emptyset \emptyset}=6 \mathrm{CH} \\
& \text { Result }-\underline{\emptyset 11 \emptyset 11 \emptyset \emptyset}=6 \mathrm{CH}
\end{aligned}
$$

Addressing Mode: Indexed.
Timing:

M Cycles	T States	$\mu \mathrm{sec}$ @ 2 MHz.
5	19	9.5

BIT b,r

Description: Tests an individual Bit in the specified Register and sets the Z Flag in the Flag Register to the complement of the specified Bit.
No. of Bytes: 2
Where:
b identifies the Bit to be tested by the instruction in the range \emptyset to 7 .
r identifies one of the Registers A, B, C, D, E, H or L which contains the Bit to be tested.

Object Code: (Hex.): CB xx
Decimal $2 \emptyset 3$ yyy
Where: $x x$ or $y y y$ are taken from the table below:

Bit	A		B		C		D		E		H			
	XX	yyy	x x	yyy										
0	47	$\emptyset 71$	40	064	41	065	42	066	43	067	44	068	45	069
1	4F	079	48	072	49	073	4A	074	4B	075	4C	076	4D	077
2	57	087	50	081	51	081	52	082	53	083	54	084	55	085
3	5 F	095	58	088	59	089	5A	090	5B	091	5C	092	5D	093
4	67	103	60	096	61	097	62	098	63	099	64	100	65	101
5	6F	111	68	104	69	105	6A	106	6B	107	6C	108	6D	109
6	77	119	70	112	71	113	72	114	73	115	74	116	75	117
7	7F	127	78	120	79	121	7A	122	7B	123	7C	124	7D	125

Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	Unknown. Zero
Z	6	SET $=1$ if Bit B of Register R is \emptyset, otherwise RESET $=\emptyset$.	
-	-	5	Not used.
Half Carry	H	4	SET $=1$.
-	-	3	Not used.
Parity/Overflow	P/V	2	Unknown.
Subtract	N	1	RESET $=\emptyset$.
Carry	C	\emptyset	Not affected.

Example: LDC, 101001B
BIT 3,C
If bit 3 or the C register is set, BIT 3,C will leave the Z Flag $=\emptyset$. (BIT 3, C produces the Object Code CB 59.)

Addressing Mode: Indexed
Timing:

M Cycles	T States	$\mu \sec @ 2 \mathrm{MHz}$.
2	8	4

BIT b, (HL)

Where b is any value from \emptyset to 7 .
Object Code:

	Hex	Decimal
BIT $\emptyset,(\mathrm{HL})$	CB 46	$2 \emptyset 3 \emptyset 7 \emptyset$
BIT 1,(HL)	CB 4E	$2 \emptyset 3 \emptyset 78$
BIT 2,(HL)	CB 56	$2 \emptyset 3 \emptyset 86$
BIT 3,(HL)	CB 5E	$2 \emptyset 3 \emptyset 94$
BIT 4,(HL)	CB 66	$2 \emptyset 31 \emptyset 2$
BIT5,(HL)	CB 6E	$2 \emptyset 311 \emptyset$
BIT 6.(HL)	CB 76	$2 \emptyset 3118$
BIT 7.(HL)	CB 7E	$2 \emptyset 3126$

Description: Tests the appropriate Bit b of a memory location whose address is held in Register Pair HL and sets the Z Flag in the Flag Register to the complement of that Bit.

No. of Bytes: 2
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	Unknown.
Zero	Z	6	SET $=1$ if Bit $\emptyset=\emptyset$, otherwise RESET $=\varnothing$.
-	-	5	Not used.
Half Carry	H	4	SET $=1$.
-	-	3	Not used.
Parity/Overflow	P/V	2	Unknown.
Subtract	N	1	RESET $=\emptyset$.
Carry	C	\emptyset	Not affected.

Example: LD HL,26A1H
LD (HL), \varnothing
BIT Ø, (HL)
If the contents of Register Pair HL are 26 A1(Hex.) and Bit \emptyset of memory address 26 A1 contains a \emptyset, then the Z Flag is $S E T=1$.

Addressing Mode: Indirect.
Timing:

M Cycles	T States	$\mu \mathrm{sec} @ 2 \mathrm{MHz}$.
3	12	6

BIT b, (IX + d)

Where d is the required displacement from the memory location whose address is held in Index Register IX.
Object Code:

	Hex	Decimal
BIT $\emptyset,(1 \mathrm{X}+\mathrm{d})$	DD CB d 46	221203 d $97 \emptyset$
BIT 1, $(1 X+d)$	DD CBd4E	221203 d 978
BIT 2, (IX + d)	DD CB d 56	221203 d 986
BIT 3, $(1 \times+d)$	DD CBa 5 E	221203 d 994
BIT 4, (IX + d)	DD CBd 66	221203 d 102
BIT 5, (IX + d)	DD CBd6E	221203 d 110
BIT 6, (IX + d)	DD CBd76	221203 d 118
BIT 7, (IX + d)	DD CBd7E	221203 d 126

Description: Tests Bit b of the contents of a memory location identified by the contents of Index Register IX (modified by the two's complement displacement d, which is specified in the instruction), then sets the Z Flag in the Flag Register to the complement of that Bit b.

No. of Bytes: 4
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	Unknown.
Zero	Z	6	SET $=1$ if Bit $\emptyset=\emptyset$, otherwise RESET $=\emptyset$.
-	-	5	Not used.
Half Carry	H	4	SET $=1$.
-	-	3	Not used.
Parity/Overflow	P/V	2	Unknown.
Subtract	N	1	RESET $=\emptyset$.
Carry	C	\emptyset	Not affected.

Example: LD, HL,12ø0H
LD (HL), 5
LD IX,11FCH
BIT 2,(IX + 4)
If Bit 2 of the nominated memory location contains a $\mathbf{1}$, then the Z Flag is RESET $=\emptyset$.

Addressing Mode: Indexed.
Timing:

M Cycles	T States	μ sec @ 2 MHz.
5	$2 \emptyset$	$1 \emptyset$

BIT b, (IY + d)

Where D is the required displacement from the memory location whose address is held in Index Register IY.
Object Code:

	Hex	Decimal
BIT $\emptyset,(I Y+d)$	FD CB d 46	$2532 \emptyset 3 d \emptyset 7 \emptyset$
BIT 1, (IY + d)	FD CB 4E	$2532 \emptyset 3 \mathrm{~d} \emptyset 78$
BIT 2, (IY + d)	FD CB d 56	$2532 \emptyset 3 \mathrm{~d} \emptyset 86$
BIT 3, (IY + d)	FD CB d 5E	$2532 \emptyset 3 \mathrm{~d} \emptyset 94$
BIT 4, (IY + d)	FD CB d 66	$2532 \emptyset 3 \mathrm{~d} 1 \emptyset 2$
BIT 5, (IY + d)	FD CB 6E 6E	$2532 \emptyset 3 \mathrm{~d} 11 \emptyset$
BIT 6, (IY + d)	FD CB 76	$2532 \emptyset 3 \mathrm{~d} 118$
BIT 7, (IY + d)	FD CB 7 7E	$2532 \emptyset 3 \mathrm{~d} 126$

Description: Tests Bit b of the contents of a memory location identified by the contents of Index Register IY (modifed by the two's complement displacement D, which is specified in the instruction), then sets the Z Flag in the Flag Register to the complement of that Bit b.

No. of Bytes: 4
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	Unknown.
Zero	Z	6	SET $=1$ if Bit $\emptyset=\emptyset$, otherwise RESET $=\emptyset$.
Half Carry	-	5	Not used.
-	H	4	SET $=1$.
Parity/Overflow	-	3	Not used.
Subtract	N	2	Unknown.
Carry	C	\emptyset	RESET $=\emptyset$.

$$
\text { Example: } \begin{aligned}
& \text { LD HL, } 101 \mathrm{H} \\
& \text { LD } Y, 1 \emptyset \emptyset \mathrm{H} \\
& \operatorname{LD}(H L), 44 \mathrm{H} \\
& \text { BIT } 3,(Y Y+1)
\end{aligned}
$$

If Bit 3 of the nominated memory location contains a \emptyset, then the Z Flag is SET $=1$.

Addressing Mode: Indexed.
Timing:

M Cycles	T States	$\mu \mathrm{sec} @ 2 \mathrm{MHz}$.
5	20	10

CALL nn

Description: Calls a sub-routine whose address is specified in the second and third bytes of the instruction (nn). The existing contents of the Program Counter (PC) are pushed on to the top of the Memory Stack and the sub-routine address nn loaded into the Program Counter. The second byte of the instruction contains the Lower Order byte of the sub-routine address while the third byte contains the Higher Order byte of that address.
NOTE: To return from the sub-routine to the main program, a RET instruction must be included in the sub-routine code.

No. of Bytes: 3
Object Code (Hex.): CD n n Decimal: 205 n n
Where $n n$ is the memory location to which control is to be transferred.
Flag Register: None of the flags is affected.
Example: If the existing contents of the Program Counter are 25 BA (Hex.) and the top of the Memory Stack is at location 48 18(Hex.), then the Stack Pointer (SP) will contain address 4818 H . If a CALL instruction then quotes a sub-routine address 32 AA , the current contents of the Program Counter will be placed in memory locations 4816 and 4817 (i.e. on top of the memory stack) and the contents of the Stack Pointer will be changed to 4816 H . The contents of the second and third bytes of the instruction are then placed in the Program Counter, which will then contain 32 AAH.

Object Code			Before	After
CD AA 32	PC	-	25 BA	32 AA
	SP	-	4818	4816
	Loc'n 48 16	-	$?$	BA
	Loc'n 48 17	-	$?$	25
	Loc'n 48 18	- Unchanged	Unchanged	

NOTE: The Lower Order byte of the original contents of the Program Counter is placed in the higher of the two new memory locations at the top of the Memory Stack and the Stack Pointer (SP) will therefore contain the address of that Lower Order byte.

Addressing Mode: Immediate.

Timing:

M Cycles	T States	$\mu \mathrm{sec}$ @ 2 MHz.
5	17	8.5

CALL C,nn

Description: If the C Flag in the Flag Register indicates a Carry (i.e. $=1$), this instruction CALLS a sub-routine whose address is specified in the second and third bytes of the instruction. If the C Flag contains \emptyset the instruction is ignored. If the condition is met $(C=1)$, the existing contents of the Program Counter (PC) are pushed on the top of the Memory Stack and the sub-routine address nn loaded into the Program Counter. To return from the sub-routine a RET instruction should be included in the sub-routine code.
NOTE: The second byte of the Object Code instruction contains the Lower Order byte of the address and the third byte contains the Higher Order byte of that address.

No. of Bytes: 3
Object Code (Hex.): DC n n Decimal: $22 \emptyset \mathrm{n}$ n
Where nn is the memory location to which control is to be transferred if the condition is met, i.e. True

Flag Register: None of the flags is affected.
Example: SCF
CALL C,2425H
If the C Flag $=1$ (Carry), the existing contents of the Program Counter are 4235 and the top of the Memory Stack is at memory location 46 2B, then he Stack Pointer (SP) will contain address 46 2B. If the CALL C nn instruction quotes address 2425 , then the current contents of the Program Counter (4235) are placed in memory locations 46 2A (Higher Order byte) and 4629 (lower Order byte), the Stack Pointer is changed to 4629 and address 2425 ($n n$ in the instruction) is placed in the Program Counter.

Object Code			Before	After
D42524	PC	-	4235	2425
	SP	-	$462 B$	4629
	Loc'n 4629	-	$?$	35
	Loc'n 462A	-	$?$	42
	Loc'n 462B		- Unchanged	Unchanged

Addressing Mode: Immediate.

Timing:	M Cycles	TStates	$\mu \mathrm{sec} @ 2 \mathrm{MHz}$.
Condition True	5	17	8.5
Condition Untrue	3	10	5

CALL NC,nn

Description: If the C Flag in the Flag Register indicates a No Carry (i.e. $=$ Ø), this instruction CALLS a sub-routine whose address is specified in the second and third bytes of the instruction. If the C Flag contains 1 the instruction is ignored. If the condition is met $(C=\emptyset)$, the existing contents of the Program Counter (PC) are pushed on the top of the Memory Stack and the sub-routine address nn loaded into the Program Counter. To return from the sub-routine, a RET instruction should be included in the sub-routine code.
NOTE: The second byte of the Object Code instruction contains the Lower Order byte of the address and the third byte contains the Higher Order byte.

No. of Bytes: 3
Object Code (Hex.): D4 n n Decimal: 212 nn
Where nn is the memory location to which control is to be transferred if the condition is met, i.e. True
Flag Register: None of the flags is affected.
Example: SCF
CCF
CALL NC, 1245H
If the C Flag $=\emptyset$ (No Carry), the existing contents of the Program Counter are 45 A3 and the top of the Memory Stack is at memory location 56 78, then the Stack Pointer (SP) will contain address 56 78. If the CALL NC nn instruction quotes address 12 45, then the current contents of the Program Counter (45 A3) are placed in memory locations 5677 (Higher Order byte) and 5676 (Lower Order byte), the Stack Pointer is changed to 5676 and address 1245 (nn in the instruction) is placed in the Program Counter.

Object Code			Before	After
D44512	PC	-	$45 \mathrm{A3}$	1245
	SP	-	5678	5676
	Loc'n 5676	-	$?$	A3
	Loc'n 5677	-	$?$	45
	Loc'n 5678		- Unchanged	Unchanged

Addressing Mode: Immediate.

Timing:	M Cycles	T States	$\mu \sec @ 2 \mathrm{MHz}$.
Condition True	5	17	8.5
Condition Untrue	3	10	5

CALL P,nn

Description: If the S Flag in the Flag Register indicates a Positive sign condition (i.e. $=\emptyset$), this instruction CALLS a sub-routine whose address is specified in the second and third bytes of the instruction. If the S Flag contains a 1 the instruction is ignored. If the condition is met (SFlag = \varnothing), the existing contents of the Program Counter (PC) are pushed on to the top of the Memory Stack and sub-routine address $n n$ is loaded into the Program Counter. To return from the sub-routine a RET instruction should be included in the sub-routine code.
NOTE: The second byte of the Object Code instruction contains the Lower Order byte of the address and the third byte contains the Higher Order byte of that address.

No. of Bytes: 3
Object Code (Hex.): F4nn Decimal: 244 nn
Where nn is the memory location to which control is to be transferred if the condition is met, i.e. True.

Flag Register: None of the flags is affected.
Example: LD A, \varnothing
ADD A, 1
CALL P, 2244H
If the S Flag $=\emptyset$ (Sign Positive), the existing contents of the Program Counter are 1567 and the top of the Memory Stack is at location 32 46, then the Stack Pointer (SP) will contain address 32 46. If the CALL P,nn instruction quotes address 22 44, then the current contents of the Program Counter (1567) are placed in memory locations 3245 (Higher Order byte) and 3244 (Lower Order byte), the Stack Pointer is changed to 3244 and address 2244 (nn in the instruction) is placed in the Program Counter.

Object Code			Before	After
F4 4422	PC	-	1567	2244
	SP	-	3246	3244
	Loc'n 32 44	-	$?$	67
	Loc'n 32 45	-	$?$	15
	Loc'n 32 46	-	Unchanged	

Addressing Mode: Immediate.

Timing:

	M Cycles	T States	$\mu \sec @ 2 \mathrm{MHz}$
Condition True	5	17	8.5
Condition Untrue	3	10	5

CALL M,nn

Description: If the S Flag in the Flag Register indicates a Negative condition (i.e. $=1$), this instruction CALLS a sub-routine whose address is specified in the second and third bytes of the instruction. If the S Flag contains a \emptyset the instruction is ignored. If the condition is met (S Flag = 1), the existing contents of the Program Counter (PC) are pushed on to the top of the Memory Stack and sub-routine address nn is loaded into the Program Counter. To return from the sub-routine a RET instruction should be included in the sub-routine code.
NOTE: The second byte of the Object Code instruction contains the Lower Order byte of the address and the third byte contains the Higher Order byte of that address.

No. of Bytes: 3
Object Code (Hex.): FC nn Decimal: 252 nn
Where $n \mathrm{nn}$ is the memory location to which control is to be transferred if the condition is met, i.e. True.

Flag Register: None of the flags is affected.
Example: LD A, \varnothing
SUB A, 1
CALL M, 3814H
If the S Flag $=1$ (Sign Negative), the existing contents of the Program Counter are 4224 and the top of the Memory Stack is at location 9A 21, then the Stack Pointer (SP) will contain address 9A 21. If the CALL M, nn instruction quotes address 38 14, then the current contents of the Program Counter (42 24) are placed in memory locations 9A 20 (Higher Order byte) and 9A 1 F (Lower Order byte), the Stack Pointer is changed to 9A 1F and address 3814 (nn in the instruction) is placed in the Program Counter.

Object Code			Before	After
FC 1438	PC	-	4224	3814
	SP	-	$9 A 21$	$9 A 1 F$
	Loc'n 9A 1F	-	$?$	38
	Loc'n 9A 20	-	$?$	14
	Loc'n 9A 21	-	Unchanged	

Addressing Mode: Immediate.

Timing:	M Cycles	T States	$\mu \sec @ 2 \mathrm{MHz}$
Condition True	5	17	8.5
Condition Untrue	3	10	5

CALL Z,nn

Description: If the Z Flag in the Flag Register indicates Zero (i.e. $=1$) this instruction CALLS a sub-routine whose address is specified in the second and third bytes of the instruction. If the Z Flag contains a \emptyset the instruction is ignored. If the condition is met ($Z=1$) the existing contents of the Program Counter (PC) are pushed on to the top of the Memory Stack and sub-routine address nn is loaded into the Program Counter. To return from the sub-routine a RET instruction should be included in the sub-routine code.
NOTE: The second byte of the Object Code instruction contains the Lower Order byte of the address and the third byte contains the Higher Order byte of that address.
No. of Bytes: 3
Object Code (Hex.): CC nn Decimal: $2 \emptyset 4 \mathrm{nn}$
Where nn is the memory location to which control is to be transferred if the condition is met

Flag Register: None of the flags is affected.
Example: SUB A,A
CALL Z,7639H
If the Z Flag $=1$, the existing contents of the Program Counter are 2A 26 and the top of the Memory Stack is at location 58 2C, then the Stack Pointer (SP) will contain address 58 2C. If the CALL Z nn instruction quotes address 7634 , then the current contents of the Program Counter (2A 26) are placed in memory locations 58 2B (Higher Order byte) and 58 SA (Lower Order byte), the Stack Pointer is changed to 58 2A and address 6734 (nn int he instruction) is placed in the Program Counter.

Object Code			Before	After
CC 3476	PC	-	2 A 26	3476
	SP	-	582 C	582 A
	Loc'n 582A	-	$?$	26
	Loc'n 582B	-	$?$	2 A
	Loc'n 582C		- Unchanged	Unchanged

Addressing Mode: Immediate.

Timing:	M Cycles	T States	$\mu \mathrm{sec} @ 2 \mathrm{MHz}$.
Condition True	5	17	8.5
Condition Untrue	3	10	5

CALL NZ,nn

Description: If the Z Flag in the Flag Register indicates a Non-Zero (i.e. $=\emptyset)$ this instruction CALLS a sub-routine whose address is specified in the second and third bytes of the instruction. If the Z Flag $=1$ the instruction is ignored.
NOTE: The second byte of the Object Code instruction contains the Lower Order byte of the address and the third byte contains the Higher Order byte.
If the condition is met, the existing contents of the Program Counter (PC) are pushed on to the top of the Memory Stack and the sub-routine address (nn) loaded into the Program Counter. To return from the sub-routine to the main program, a RET instruction should be included in the sub-routine code.

No. of Bytes: 3
Object Code (Hex.): C4nn Decimal: 196 n n
Where nn is the memory location to which control is to be transferred if the condition is met.

Flag Register: None of the flags is affected.

$$
\begin{aligned}
\text { Example: } & \text { LDA, } \varnothing \\
& \text { ADD A, } 1 \\
& \text { CALLNZ,3521H }
\end{aligned}
$$

If the Z Flag $=\emptyset$, the existing contents of the Program Counter are 17 14(Hex.) and the top of the Memory Stack is at memory location 28 1A, then the Stack Pointer (SP) will contain address 28 1A. If the CALL NZ nn instruction quotes sub-routine address 3521 , the current contents of the Program Counter (1714) are placed in memory locations 2819 (Higher Order byte) and 2818 (Lower Order byte), the Stack Pointer is changed to 2818 and address 3521 ($n n$ in the instruction) is placed in the Program Counter.

Object Code			Before	After
C43521				
	PC	-	1714	3521
	LPc'n2818	-	281 A	2818
	Loc'n 2819	-	$?$	14
	Loc'n 28 1A		- Unchanged	Unchanged

Addressing Mode: Immediate.

Timing:

	M Cycles	T States	$\mu \sec @ 2 \mathrm{MHz}$.
Condition True	5	17	8.5
Condition Untrue	3	10	5

CALL PE,nn

Description: If the P/V Flag in the Flag Register indicates a Parity Even condition (i.e. $=1$), this instruction CALLS a sub-routine whose address is specified in the second and third bytes of the instruction. If the P/V Flag contains a \emptyset the instruction is ignored. If the condition is met ($\mathrm{P} / \mathrm{V}=$ 1), the existing contents of the Program Counter (PC) are pushed on to the top of the Memory Stack and sub-routine address nn is loaded into the Program Counter. To return from the sub-routine a RET instruction should be included in the sub-routine code.
NOTE: The second byte of the Object Code instruction contains the Lower Order byte of the address and the third byte contains the Higher Order byte of that address.
No. of Bytes: 3
Object Code (Hex.): EC n n Decimal: 236 n n
Where nn is the memory location to which control is to be transferred if the condition is met, i.e. True.

Flag Register: None of the flags is affected.
Example: LD A, \varnothing
AND 1BH
CALL PE,12DFH
If the P/V Flag = 1 (Parity Even), the existing contents of the Program Counter e 6854 and the top of the Memory Stack is at location 35 9A, then the Stack Pointer (SP) will contain address 35 9A. If the CALL PE,nn instruction quotes address 12 DF , then the current contents of the Program Counter (6854) are placed in memory locations 3599 (Higher Order byte) and 3598 and (Lower Order byte), the Stack Pointer is changed to 3598 and address 12 DF (nn in the instruction) is placed in the Program Counter.

Object Code			Before	After
EC DF 12	PC	-	6854	12 DF
	SP	-	$359 A$	3598
	Loc'n 35 98	-	$?$	54
	Loc'n 35 99	-	$?$	68
	Loc'n 35 9A	-	Unchanged	

Addressing Mode: Immediate.

Timing:	M Cycles	T States	$\mu \mathrm{sec} @ 2 \mathrm{MHz}$
Condition True	5	17	8.5
Condition Untrue	3	10	5

CALL PO,nn

Description: If the P/V Flag in the Flag Register indicates a Parity Odd condition (i.e. $=\emptyset$), this instruction CALLS a sub-routine whose address is specified in the second and third bytes of the instruction. If the P/V Flag contains a 1 the instruction is ignored. If the condition is met ($\mathrm{P} / \mathrm{V}=$ Ø), the existing contents of the Program Counter (PC) are pushed on to the top of the Memory Stack and sub-routine address nn is loaded into the Program Counter. To return from the sub-routine, a RET instruction should be included in the sub-routine code.
NOTE: The second byte of the Object Code instruction contains the Lower Order byte of the address and the third byte contains the Higher Order byte of that address.

No. of Bytes: 3
Object Code (Hex.): E4 n n Decimal: 228 n n
Where nn is the memory location to which control is to be transferred if the condition is met, i.e. True.
Flag Register: None of the flags is affected.
Example: LD A, \varnothing
AND 19H
CALL PO,3A4FH
If the P/V Flag $=\emptyset$ (Parity Odd), the existing contents of the Program Counter are 1331 and the top of the Memory Stack is at location $18 \emptyset 5$, then the Stack Pointer (SP) will contain address 18 @5. If the CALL PO,nn instruction quotes address 3A 4F, then the current contents of the Program Counter (1331) are placed in memory locations $18 \emptyset 4$ (Higher Order byte) and $18 \emptyset 3$ (Lower Order byte), the Stack Pointer is changed to $18 \emptyset 3$ and address 3A 4F (nn in the instruction) is placed in the Program Counter.

Object Code			Before	After
E4 4F 3A	PC	-	1331	3A 4F
	SP	-	1895	18 ¢ 3
	Loc'n 1803	-	?	31
	Loc'n 18 ¢4	-	?	13
	Loc'n 1805		Unchanged	Unchanged

Addressing Mode: Immediate.

Timing:	M Cycles	T States	$\mu \sec @ 2 \mathrm{MHz}$
Condition True	5	17	8.5
Condition Untrue	3	10	5

CCF

Description: Complements the Carry (C) Flag in the Flag Register, i.e. if the existing content is 1 , it is changed to \emptyset; if the existing content is \emptyset, it is changed to 1 .
No. of Bytes: 1
Object Code (Hex.): 3F
Decimal: $\emptyset 63$
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	Previous carry status
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	RESET $=\emptyset$
Carry	C	\emptyset	SET $=1$ if previous content was \emptyset.

Addressing Mode: Implicit.
Timing:

M Cycles	T States	$\mu \sec$ @ 2 MHz.
1	4	2

CP n

Description: Compares the contents of the Accumulator with the 8 Bit value n and sets a flag according to the result.

No. of Bytes: 2
Object Code (Hex.): FE n Decimal: 254 n
Where n is an 8 Bit value, specified in the instruction.
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET = 1 if the result is negative, otherwise RESET = \varnothing
Zero	Z	6	SET $=1$ if the result is \emptyset, otherwise RESET $=\emptyset$
-	-	5	Not used.
Half Carry	H	4	SET = 1 if no Borrow from Bit 4, otherwise RESET = \varnothing
-	-	3	Not used.
Parity/Overflow	P/V	2	SET = 1 if Overflow, otherwise RESET \emptyset.
Subtract	N	1	SET $=1$
Carry	C	\emptyset	SET $=1$ if no Borrow, otherwise RESET $=\emptyset$.

Example: LD A,127
CP 129
If the contents of the Accumulator are 127 (Decimal) and the value on n in the instruction is 129, then n (129) is subtracted from 127 giving a result of -2 . The S Flag and the N Flag are both SET $=1$ and Flags Z, H, P / V and C are all RESET $=\emptyset$. The contents of the Accumulator remain unchanged and the result is discarded.

Addressing Mode: Immediate.
Timing:

M Cycles	T States	$\mu \mathrm{sec}$ @ 2 MHz.
2	7	3.5

CP A

Description: Compares the contents of the Accumulator with the contents of the Accumulator and sets a flag or flags according to the result. The contents of the Accumulator remain unchanged and the result is discarded.
NOTE: The result of this instruction must always be zero.
No. of Bytes: 1
Object Code (Hex.): BF
Decimal: 191
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET $=1$ if the result is negative, otherwise RESET = \varnothing
Zero	Z	6	SET $=1$ if the result is \emptyset, otherwise RESET $=\emptyset$. In practice this will always be SET $=1$.
-	-	5	Not used.
Half Carry	H	4	SET = 1 if no Borrow from Bit 4, otherwise RESET $=\emptyset$
-	-	3	Not used.
Parity/Overflow	P/V	2	SET $=1$ if Overflow, otherwise RESET Ø. In practice this will always be RESET $=\emptyset$.
Subtract	N	1	SET $=1$
Carry	C	\emptyset	SET = 1 if no Borrow, otherwise RESET $=\emptyset$. In practice this will always be RESET $=\emptyset$.

Example: LD A,23H

CP A

If the contents of the Accumulator are 23 H the result is calculated as $23 \mathrm{H}-23 \mathrm{H}=\emptyset$. Flags $\mathrm{Z}, \mathrm{H}, \mathrm{N}$ and C are $\mathrm{SET}=1$ and flags S and P / V are RESET $=\emptyset$.

Addressing Mode: Immediate.
「iming:

M Cycles	T States	$\mu \mathrm{sec} @ 2 \mathrm{MHz}$.
1	4	2

CP r

Where r is one of the registers B, C, D, E, H, L.
Description: Compares the contents of Register B with the contents of the Accumulator and sets a flag or flags according to the result. The contents of the register and the Accumulator remain unchanged while the result is discarded.

No. of Bytes: 1
Object Code:

	Hex	Decimal
CPB	B8	184
CPC	B9	185
CPD	BA	186
CPE	BB	187
CPH	BC	188
CPL	BD	189

Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET $=1$ if the result is negative, otherwise RESET = \varnothing
Zero	Z	6	SET = 1 if the result is zero, otherwise RESET $=\emptyset$.
-	-	5	Not used.
Half Carry	H	4	SET $=1$ if no Borrow from Bit 4, otherwise RESET = \emptyset
-	-	3	Not used.
Parity/Overflow	P/V	2	$\begin{aligned} & \text { SET }=1 \text { if Overflow, otherwise } \\ & \text { RESET }=\emptyset \text {. } \end{aligned}$
Subtract	N	1	SET = 1
Carry	C	\emptyset	SET $=1$ if no Borrow, otherwise RESET $=\emptyset$.

Example: LD A,17H
LD B, Ø2H
CPB
If the contents of the Accumulator are 17H and the contents of Register B are $\emptyset 2 \mathrm{H}$, the result is calculated as $17 \mathrm{H}-\emptyset 2 \mathrm{H}=15 \mathrm{H}$. Flags H, N and C are $\mathrm{SET}=1$ and flags S, Z and P / V are RESET $=\emptyset$.

Addressing Mode: Immediate.
Timing:

M Cycles	T States	$\mu \mathrm{sec}$ @ 2 MHz.
1	4	2

CP (HL)

Description: Compares the contents of a memory location whose address is held in Register Pair HL by subtracting the contents of that memory location from the Accumulator then sets a flag or flags according to the result. The contents of the register and the Accumulator remain unchanged while the result is discarded.
No. of Bytes: 1
Object Code (Hex.): BE Decimal: $19 \emptyset$

Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET $=1$ if the result is negative, otherwise RESET = \emptyset
Zero	Z	6	SET $=1$ if the result is zero, otherwise RESET $=\emptyset$.
-	-	5	Not used.
Half Carry	H	4	SET = 1 if no Borrow from Bit 4 , otherwise RESET $=\emptyset$
	-	3	Not used.
Parity/Overflow	P/V	2	SET = 1 if Overflow, otherwise RESET $=\emptyset$.
Subtract	N	1	SET $=1$
Carry	C	\emptyset	SET = 1 if no Borrow, otherwise RESET $=\emptyset$.

Example: LD A,34H
LD (HL),21H
$\mathrm{CP}(\mathrm{HL})$
If the contents of the Accumulator are 34 H and the contents of the memory location are 21 H , the result is calculated as $34 \mathrm{H}-21 \mathrm{H}=13 \mathrm{H}$. Flags H and N are SET $=1$ while flags $\mathrm{S}, \mathrm{Z}, \mathrm{P} / \mathrm{V}$ and C are RESET $=0$. Addressing Mode: Indirect.

Timing:

M Cycles	T States	$\mu \mathrm{sec}$ @ 2 MHz.
2	7	3.5

CP (IX + d)
 CP (IY + d)

Description: Compares the contents of the Accumulator with the contents of a memory location identified by the contents of Index Register IX or IY (modified by displacement d, which is specified in the instruction). The contents of the memory location are subtracted from the Accumulator and a flag or flags set according to the result. The contents of both the Accumulator and the memory remain unchanged while the result is discarded.

No. of Bytes: 3
Object Code:

	Hex	Decimal
$C P(I X+d)$	DD BE d	$221190 d$
CP $(I Y+d)$	FD BE d	$253190 d$

Where d is the required displacement from the memory location whose address is held in Index Register IX or IY.
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET $=1$ if the result is negative, otherwise RESET $=\emptyset$
Zero	Z	6	SET $=1$ if the result is zero, otherwise RESET $=\emptyset$.
-	-	5	Not used. SET $=1$ if no Borrow from Bit 4, Half Carry otherwise RESET $=\emptyset$
-	-	3	Not used. SET $=1$ if Overflow, otherwise
Parity/Overflow	P/V	2	RESET $=\emptyset$. Subtract Carry
	N	1	SET $=1$ SET $=1$ if no Borrow, otherwise RESET $=\emptyset$.

Example: LD A, 12H
LD (100@H),A
LD A, 17H
LD IY, ФFФÐH
$C P(I Y+1 Ф 0 \mathrm{H})$
If the contents of the Accumulator are 17 H and the contents of the nominated location are 12 H , the result is calculated as $17 \mathrm{H}-12 \mathrm{H}=$ ©5H. Flags H and N are SET $=1$ while flags $\mathrm{S}, \mathrm{Z}, \mathrm{P} / \mathrm{V}$ and C are RESET $=$ \emptyset.
Addressing Mode: Indexed.
Timing:

M Cycles	T States	μ sec @ 2 MHz.
5	19	9.5

CPD

Description: The contents of the Accumulator are compared with the contents of a memory location whose address is held in Register Pair HL. The contents of the memory location are subtracted from the Accumulator and a flag or flags set depending on the result. The contents of the memory location and the Accumulator remain unchanged while the result is discarded. The contents of both Register Pair HL and Register Pair BC (Byte Counter) are decremented.
No. of Bytes: 2
Object Code (Hex.): ED A9
Decimal: 237169

Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET $=1$ if the result is negative, otherwise RESET = \emptyset
Zero	Z	6	SET $=1$ if the result is zero, i.e. $\mathrm{A}=$ (HL), otherwise RESET $=\emptyset$.
-	-	5	Not used.
Half Carry	H	4	SET = 1 if no Borrow from Bit 4, otherwise RESET $=\emptyset$
-	-	3	Not used.
Parity/Overflow	P/V	2	SET $=1$ if the contents of Register Pair BC - 1 (i.e. the Byte Counter) $=\emptyset$, otherwise RESET $=\emptyset$.
Subtract	N	1	SET $=1$
Carry	C	0	Not affected.

Example:
LD A, 16 H
LD (HL), 12 H
CPD

If the contents of the Accumulator are 16 H and the contents of the memory location are 12 H , the result is calculated as $16 \mathrm{H}-12 \mathrm{H}=\varnothing 4 \mathrm{H}$. Flags H and N are SET $=1$, flags S, Z and P / V are RESET $=\emptyset$ while flag C is unaffected.
Addressing Mode: Indirect.
Timing:

M Cycles	T States	$\mu \sec @ 2 \mathrm{MHz}$.
4	16	8

CPDR

Description: The contents of a memory location whose address is held in Register pair HL are subtracted from the contents of the Accumulator. If the result is zero (i.e. $A=(\mathrm{HL})$), the zero bit is set and both Register Pair HL and Register Pair BC are decremented and the instruction is terminated. The instruction is also terminated if the new value of Register Pair BC is zero, even if the contents-of the memory location and the Accumulator are not equal. If the new value of Register Pair BC is not zero, AND the contents of the memory location do not equal the contents of the Accumulator, the Program Counter is decremented (by 2) and the instruction is repeated, i.e. the Program Counter is returned to the value it contained when the CPDR instruction was initiated.

NOTE 1: If the Register Pair BC is initialised to \emptyset prior to this instruction being initiated it will fail the $\mathrm{BC}=\emptyset$ test and cycle through all 64 K of memory.
NOTE 2: Data interrupts can be recognised after each time the instruction is processed.
No. of Bytes: 2
Object Code (Hex.): ED B9 Decimal: 237185

Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET = 1 if the result is negative, otherwise RESET = \emptyset
Zero	Z	6	SET $=1$ if the contents of the memory location and the Accumulator are equal, otherwise RESET $=\emptyset$.
-	-	5	Not used.
Half Carry	H	4	SET $=1$ if no Borrow from Bit 4, otherwise RESET $=\varnothing$
-	-	3	Not used.
Parity/Overflow	P/V	2	SET = 1 if the contents of Register Pair $B C<>\emptyset$, otherwise RESET $=$ \emptyset.
Subtract	N	1	SET $=1$
Carry	C	\emptyset	Not affected.

Example: If the contents of the Accumulator are 25 H and the contents of the memory location whose address is held in Register Pair HL are 22 H , then the Program Counter is returned to the point where the instruction was initiated while Register Pair HL and Register Pair BC are decremented. The instruction is then repeated (provided Register Pair $B C$ does not contain zero), using the PRECEDING memory location. If the contents of this new location equal the contents of the Accumulator, then Flag Z will be SET = 1 and the instruction terminated.

Addressing Mode: Indirect.
Timing:

	M Cycles	T States	$\mu \sec @ 2 \mathrm{MHz}$.
$\mathrm{BC}=\emptyset$ or A $=1 \mathrm{HL})$	4	16	8
$\mathrm{BC}<>\emptyset$ and $A<>(H L)$	5	21	9.5

CPI

Description: The contents of the memory location whose address is held in Register Pair HL are subtracted from the Accumulator and a flag or flags set depending on the result. Register pair HL is INCREMENTED while Register Pair BC is DECREMENTED. The contents of the memory location and the Accumulator remain unchanged while the result is discarded.

No. of Bytes: 2
Object Code (Hex.): ED A1
Decimal: 237161

Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET $=1$ if the result is negative, otherwise RESET = \emptyset
Zero	Z	6	SET $=1$ if the result is \emptyset, otherwise RESET $=\varnothing$
-	-	5	Not used.
Half Carry	H	4	SET = 1 if no Borrow from Bit 4, otherwise RESET $=\emptyset$
-	-	3	Not used.
Parity/Overflow	P/V	2	RESET $=\emptyset$ if new value of Register Pair $B C=\emptyset$, otherwise SET $=\emptyset$.
Subtract	N	1	SET $=1$
Carry	C	0	Not affected.

Example: LD A,@A3H
 LD (HL), A
 LD BC, 1
 CPI

If the contents of both the Accumulator and the nominated location are A 3 H , the result is calculated as $\mathrm{A} 3 \mathrm{H}-\mathrm{A} 3 \mathrm{H}=\emptyset \emptyset \mathrm{H}$. Flags Z, H and N are SET $=1$ (also P/V if the new value of Register Pair $B C=\emptyset$ while flag S is RESET $=\emptyset$. Flag C is not affected.
Addressing Mode: Indirect.
Timing:

M Cycles	T States	$\mu \mathrm{sec}$ @ 2 MHz.
4	16	8

CPIR

Description: The contents of a memory location whose address is held in Register Pair HL are subtracted from the contents of the Accumulator. If the result zero, i.e. $A=(H L)$, the zero flag is set, Register Pair HL is INCREMENTED and Register Pair BC is DECREMENTED, then the instruction is terminated. The instruction is also terminated if the new value of Register Pair BC is zero, even if the contents of the memory location are not equal to the contents of the Accumulator. If the new value of Register Pair BC is not zero, AND the contents of the memory location do not equal the contents of the Accumulator, the Program. Counter is decremented (by 2) and the instruction is repeated, i.e. the Program Counter is returned to the value it contained when the CPIR instruction was initiated.

NOTE 1: If Register Pair BC is initialised to \emptyset prior to this instruction being initiated it will fail the $B C=\emptyset$ test and cycle through all 64 K of memory.
NOTE 2: Data interrupts can be recognised after each time the instruction is processed.

No. of Bytes: 2
Object Code (Hex.): ED B1 Decimal: 237177

Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET $=1$ if the result is negative, otherwise RESET = \varnothing
Zero	Z	6	SET $=1$ if the contents of the memory location and the Accumulator are equal, otherwise RESET $=\varnothing$
	-	5	Not used.
Half Carry	H	4	SET $=1$ if no Borrow from Bit 4, otherwise RESET = \emptyset
-	-	3	Not used.
Parity/Overflow	P/V	2	RESET $=\emptyset$ if new value of Register Pair $B C=\emptyset$, otherwise SET $=1$.
Subtract	N	1	SET $=1$
Carry	C	0	Not affected.

Example: LD A,ØA3H
LD (HL),95H
LD BC,2
CPIR
If the contents of the Accumulator are A 3 H and the contents of the memory location, whose address is held in Register Pair HL, are 95H, then the Program Counter is returned to the point where the instruction was initiated while Register Pair HL is INCREMENTED and Register Pair BC is DECREMENTED. Provided Register Pair BC does not then contain zero, the instruction is repeated, using the NEXT memory location (now pointed to by the contents of Register Pair HL). If the contents of this new location equal the contents of the Accumulator, then Flag Z will be SET $=1$ and the instruction terminated.

Addressing Mode: Indirect.
Timing:

	M Cycles	T States	$\mu \sec @ 2 \mathrm{MHz}$
$\mathrm{BC}=\emptyset \circ \mathrm{or}$ $\mathrm{A}=(\mathrm{HL})$	4	16	8
$\mathrm{BC}<>\emptyset$ and $A<>\emptyset$	5	21	9.5

CPL

Description: Complements the contents of the Accumulator.
No. of Bytes: 1
Object Code (Hex.): 2F
Decimal: 047

Flag Register:

Flag	Code	Bit	
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	SET $=1$.
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	SET $=1$
Carry	C	\emptyset	Not affected.

Example: LD A,3DH CPL

If the contents of the Accumulator are 3DH (Bit Pattern $\emptyset 0111101$) they are changed to C 2 H (Bit Pattern 110ФФФ1Ф) and Flags H and N are both SET = 1 .

Addressing Mode: Implicit.
Timing:

M Cycles	T States	$\mu \mathrm{sec} @ 2 \mathrm{MHz}$.
1	4	2

DAA

Description: Adjusts the Accumulator to obtain the correct Bit Pattern for Binary Coded Decimal (BCD). This is achieved by conditionally adding 6 to either the left or right half byte of the Accumulator, based on the status of flags after an arithmetic operation.
No. of Bytes: 1
Object Code (Hex.): 27
Decimal: Ø39

Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET $=1$ if the Most Significant Bit (MSB) of the Accumulator $=1$ after the instruction is executed, otherwise RESET $=\emptyset$.
Zero	Z	6	SET $=1$ if the value of the Accumulator $=\varnothing$ after the instruction is executed.
	-	5	Not used.
Half Carry	H	3	See Operation Table below. Not used
Parity/Overflow	P/V	2	SET = 1 if the Accumulator has Parity Even after the instruction is executed.
Subtract	N	1	Not affected.
Carry	C	\emptyset	See Operation Table below.

Operation Table:

N	C	Initial Value of			Value Added to Acc	Final Value of C .
		Lower Dig (Bits 3 -	H	Upper Digit (Bits 7-4)		
\emptyset	\emptyset	0-9	\emptyset	Q-9	$\emptyset \emptyset$	\emptyset
(ADD,	\emptyset	A-F	\emptyset	Q-8	06	\emptyset
ADC,	\emptyset	0-3	1	Q-9	06	\emptyset
INC)	\emptyset	D-9	\emptyset	A-F	$6 \emptyset$	1
	\emptyset	A-F	\emptyset	9-F	66	1
	\emptyset	0-3	1	A-F	66	1
	1	(0-9	\emptyset	Q-2	60	1
	1	A-F	\emptyset	0-2	66	1
	1	0-3	1	Q-3	66	1
1	\emptyset	Q-9	0	Q-9	Qロ	\emptyset
(SUB,	\emptyset	6-F	1	0-8	FA	\emptyset
SBC,	1	Q-9	\emptyset	7-F	A \emptyset	1
DEC,	1	6-F	1	6-F	9A	1

Example: LD A,@BBH
 INC A
 DAA

Assuming that the preceding arithmetic operation was NOT a subtract, then the value of the N Flag will be \emptyset. If, as a result of that operation, the contents of the Accumulator are BC (Hex.) and the value of the H Flag is \emptyset, then 66 H is added to the Accumulator, making the value of the contents 22(BCD). The C Flag is made $=1$.

Addressing Mode: Implicit.
Timing:

M Cycles	T States	μ sec @ 2 MHz.
$\mathbf{1}$	4	2

DEC r

Decrements Register contents.
Where r is any of the registers A, B, C, D, E, H or L.
Object Code:

	Hex	Decimal
DEC A	3D	$\emptyset 61$
DEC B	$\emptyset 5$	$\emptyset \emptyset 5$
DEC C	$\emptyset D$	$\emptyset 13$
DEC D	15	$\emptyset 21$
DEC E	$1 D$	$\emptyset 29$
DEC H	25	$\emptyset 37$
DEC L	$2 D$	$\emptyset 45$

Description: Subtracts 1 from specified Register.
No. of Bytes: 1
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET $=1$ if the result is negative, otherwise RESET = \emptyset.
Zero	Z	6	SET $=1$ if the result is zero, otherwise RESET $=\emptyset$.
-	-	5	Not used.
Half Carry	H	4	SET $=1$ if no Borrow from Bit 4, otherwise RESET $=\emptyset$.
-	-	3	Not used.
Parity/Overflow	P/V	2	SET $=1$ if the contents of the Accumulator were $8 \emptyset$ (Hex.) before the instruction was carried out, otherwise RESET $=\emptyset$.
Subtract	N	1	SET $=1$.
Carry	C	\emptyset	Not affected.

Example: LD A,8AH

 DEC AIf the original contents of the Accumulator are $8 \mathrm{~A}(\mathrm{Hex}$.$) , then after the$ instruction is carried out the contents of the Accumulator will be 89 (Hex.), Flags H and N will be SET $=1$ and Flags S, Z and P / V will be RESET $=\emptyset$.

Addressing Mode: Implicit.
Timing:

M Cycles	T States	$\mu \sec @ 2 \mathrm{MHz}$.
1	4	2

DEC (HL)

Description: Decrements the contents of a memory location whose address is held in Register Pair HL.
No. of Bytes: 1
Object Code (Hex.): 35 Decimal: 053

Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET $=1$ if the result is negative, otherwise RESET $=\emptyset$.
Zero	Z	6	SET $=1$ if the result is zero, otherwise RESET = \emptyset.
-	-	5	Not used.
Half Carry	H	4	SET = 1 if no Borrow from Bit 4, otherwise RESET $=\emptyset$.
-	-	3	Not used.
Parity/Overflow	P/V	2	SET $=1$ if the contents of the memory location were $8 \emptyset$ (Hex.) before the instruction was processed, otherwise RESET $=\emptyset$.
Subtract	N	1	$\mathrm{SET}=1$.
Carry	C	\square	Not affected.

Example: LD HL,24ACH
LD (HL), 45H
DEC (HL)
If, before the instruction was processed, the contents of Register Pair HL were 24 AC and the contents of memory location 24 AC were 45 (Hex.), then after the in instruction is processed the contents of Register Pair HL will remain unchanged, the contents of memory location 24 AC will be 44(Hex.), Flags H and N will be SET $=1$ and Flags S, Z and P / V will be RESET $=\emptyset$.

Addressing Mode: Indirect.
Timing:

M Cycles	T States	μ sec @ 2 MHz.
3	11	5.5

DEC (IX + d)
 DEC ($\mathrm{IY}+\mathrm{d}$)

Description: Decrements the contents of a memory location identified by the contents of Index Register IX or IY (modified by displacement d, which is specified in the instruction).
No. of Bytes: 3
Object Code:

	Hex	Decimal
DEC $(I X+d)$	DD 35 d	221 Ø53 d
DEC $(I Y+d)$	FD 35 d	$253 \emptyset 53 d$

Where d is the required displacement from the memory location whose address is held in Index Register IX or IY.
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET $=1$ if the result is negative, otherwise RESET = \varnothing.
Zero	Z	6	SET $=1$ if the result is zero, otherwise RESET $=\emptyset$.
-	-	5	Not used.
Half Carry	H	4	SET $=1$ if no Borrow from Bit 4, otherwise RESET $=\emptyset$.
-	-	3	Not used.
Parity/Overflow	P/V	2	SET $=1$ if the contents of the memory location were 80 (Hex.) before the instruction was processed, otherwise RESET $=\emptyset$.
Subtract	N	1	SET $=1$.
Carry	C	\emptyset	Not affected.

Example: LD A,ØA9H
LD (36ADH),A
LD IX,36ABH
DEC (IX + 2)
If, before the instruction was processed, the contents of Index Register IX were 36 AB , the contents of memory location 36 AD were A9(Hex.) and the value of d in the instruction was $\emptyset 2(H e x$.$) , then after the$ instruction was processed, the contents of the Index Register IX remain unchanged, the contents of memory location 36 AD will be A8(Hex.), Flags H and N will be $S E T=1$ and Flags S, Z and P / V will be RESET $=\emptyset$.
Addressing Mode: Indirect.
Timing:

M Cycles	T States	$\mu \sec$ @ 2 MHz.
6	23	11.5

DEC rr

Where $r r$ is any of the register pairs $B C, D E, H L$ or $S P$.
Object Code:

	Hex	Decimal
DEC BC	QB	$\emptyset 11$
DEC DE	1B	$\emptyset 27$
DEC HL	2B	$\emptyset 43$
DEC SP	3B	$\emptyset 59$

Description: Decrements the 16-Bit contents of the Register Pair BC, DE, HL or SP.
No. of Bytes: 1
Flag Register:

Flag	Code	Bit	
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	Not affected.
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	Not affected.
Carry	C	\emptyset	Not affected.

Example: LDBC, ØAC11H
DEC BC
If the contents of Register Pair BC and AC 11, then the effect of this instruction will be to decrement those contents to AC 10.

Addressing Mode: Implicit.
Timing:

M Cycles	T States	$\mu \sec @ 2 \mathrm{MHz}$.
1	6	3

DEC IX
 DEC IY

Description: Decrements the contents of Index Register IX or IY.
No. of Bytes: 2
Object Code:

	Hex	Decimal
DEC IX	DD 2B	$221 \emptyset 43$
DEC IY	FD 2B	$253 \emptyset 43$

Flag Register:

Flag	Code	Bit	
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	Not affected.
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	Not affected.
Carry	C	\emptyset	Not affected.

Example: LDIX,45H

DECIX
If the original contents of the register are 45 (Hex.) then after the instruction is processed those contents will be 44(Hex.)
Addressing Mode: Implicit.
Timing:

M Cycles	T States	$\mu \mathrm{sec}$ @ 2 MHz.
2	10	5

DI

Description: Resets the Interrupt Flip-Flops, thus disabling the Maskable Interrupt function.
No. of Bytes: 1
Object Code (Hex.): F3 Decimal: 243

Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	Not affected.
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	Not affected.
Carry	C	\emptyset	Not affected.

Addressing Mode: Implicit.
Timing:

M Cycles	T States	$\mu \sec @ 2 \mathrm{MHz}$.
1	4	2

DJNZ, d

Description: Decrements the contents of Register B and performs a Jump instruction if the new contents of that register are non-zero by adding displacement d to the Program Counter (PC), which then contains the address of the next instruction to be carried out. If the new contents of Register B are zero, the Jump instruction is ignored and the next sequential instruction is obeyed.
No. of Bytes: 2
Object Code (Hex.): $10 \mathrm{~d}-2 \quad$ Decimal: $016 \mathrm{~d}-2$
Where d is the displacement required from the current contents of the Program Counter (PC) if the Jump instruction is to be obeyed.
Flag Register:

Flag	Code	Bit	
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	Not affected.
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	Not affected.
Carry	C	\emptyset	Not affected.

Example: $\begin{gathered}\text { LD BC, } 01 \\ \text { DJNZ } 6\end{gathered}$
If the contents of the Program Counter are 1011 , the contents of Register B are $\emptyset 1$, and displacement d in the instruction is $\emptyset 6$, then the effect of this instruction is to decrement the contents of Register B to $\emptyset \emptyset$, the Jump instruction is ignored and the contents of the Program Counter are incremented by 2 to 1013 . If B were not zero, the program counter would be set to $1 \emptyset 17$.

Addressing Mode: Immediate.
Timing:

	M Cycles	TStates	$\mu \sec @ 2 \mathrm{MHz}$.
$\mathrm{B}<>\emptyset$	3	13	6.5
$\mathrm{~B}=\varnothing$	2	8	4

El

Description: Sets the Interrupt Flip-Flops thereby enabling the Maskable Interrupt function.

No. of Bytes: 1
Object Code (Hex.): FB
Decimal: 251
NOTE: The Maskable Interrupt function is not enabled until this instruction has been completed.

Flag Register:

Flag	Code	Bit	
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	Not affected.
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	Not affected.
Carry	C	0	Not affected.

Addressing Mode: Implicit.
Timing:

M Cycles	T States	μ sec @ 2 MHz.
1	4	2

EX AF,AF'

Description: Exchanges the contents of Register Pair AF with the contents of Register AF'
No. of Bytes: 1
Object Code (Hex.): $\emptyset 8$
Decimal: $\emptyset \emptyset 8$

Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	Not affected.
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affeced.
Subtract	N	1	Not affected.
Carry	C	\emptyset	Not affected.

Example: If the contents of Register Pair AF are 34 H and the contents of Register Pair AF' are ABH, then after this instruction is processed Register Pair AF will contain ABH and Register Pair AF' will contain 34H.
Addressing Mode: Implicit.
Timing:

M Cycles	T States	$\mu \sec$ @ 2 MHz.
1	4	2

EX DE,HL

Description: Exchanges the contents of Register Pair DE with the contents of Register Pair HL.
No. of Bytes: 1
Object Code (Hex.): EB Decimal: 235

Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	Not affected.
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	Not affected.
Carry	C	\emptyset	Not affected.

Example: LD DE,23H
LD HL, 67H
EXDE,HL
If the contents of Register Pair DE are 23 H and the contents of Register Pair HL are 67 H , then after this instruction is processed Register Pair DE will contain 67 H and Register Pair HL will contain 23 H .

Addressing Mode: Implicit.
Timing:

M Cycles	T States	μ sec @ 2 MHz.
1	4	2

EX (SP),HL

Exchange contents of Register Pair HL with the top of the Stack.
Object Code:

	Hex	Decimal
$E X(S P), H L$	E3	227

Description: Exchanges the Low Order byte of Register Pair HL (i.e. the contents of Register L) with the contents of the memory location whose address is pointed to by the contents of the Stack Pointer (SP) and exchanges the High Order byte of Register Pair HL with the contents of the next sequential memory location. The contents of the Stack Pointer remain unchanged.
No. of Bytes: 1
Flag Register:

Flag	Code	Bit	
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	Not affected.
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	Not affected.
Carry	C	\emptyset	Not affected.

Example: LD BC, ФFAACH
LD (1824H),BC
LD SP,1824
LD HL, 7A2BH
EX (SP),HL
If the contents of Register Pair HL are 7A 2B, the Stack Pointer contains the address of memory location 1824 , memory location 1824 contains AC and memory location 1825 contains FA, then after this instruction is processed the contents of Register Pair HL will be FA AC, the contents of memory location 1824 will be 2B and the contents of memory location 1825 will be 7A.
Addressing Mode: Indirect.

Timing:

M Cycles	T States	$\mu \sec$ @ 2 MHz.
5	19	9.5

EX (SP),IX
 EX (SP),IY

Exchange contents of an Index Register and top of Stack.
Object Code:

	Hex	Decimal
Ex(SP),IX	DD E3	221,227
EX (SP),IY	FD E3	253,227

Description: Exchanges the Low Order byte of designated Index Register with the contents of the memory location whose address is held in the Stack Pointer (SP) and exchanges the High Order byte of that Index Register with the contents of the next sequential memory location. The contents of the Stack Pointer remain unaltered.

No. of Bytes: 2
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	Not affected.
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	Not affected.
Carry	C	0	Not affected.

Example: LDIX,89ADH
LD SP,34A6H
LD (SP), Ø219H
EX (SP),IX
If the contents of Register Pair IX are 89 AD, the Stack Pointer contains the address of memory location 34 A6, memory location 34 A6 contains 19 and memory location 34 A7 contains 02, then after this instruction is processed the contents of Index Register IX will be 02 19, the contents of memory location 34 A6 will be AD and the contents of memory location 34 A7 will be 89.

Addressing Mode: Indirect.
Timing:

M Cycles	T States	μ sec @ 2 MHz.
6	23	11.5

EXX

Description: Exchanges the contents of Register Pairs BC, DE and HL with the contents of the equivalent Register Pairs B^{\prime} ', $D E$ ' and H^{\prime} '.

No. of Bytes: 1
Object Code (Hex.): D9 Decimal: 217

Flag Register:

Flag	Code	Bit	
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	Not affected.
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	Not affected.
Carry	C	0	Not affected.

Example: If the contents of Register Pairs BC, DE and HL are 1990 , $2 \emptyset 34$ and DA AD respectively, and the contents of Register Pairs BC', DE' and HL' are AB CD, EF 12 and 3456 respectively, then after this instruction has been processed the contents of each of these Register Pairs are:

$$
\begin{array}{lll}
B C-A B C D & D E-E F 12 & H L-3456 \\
B C^{\prime}-199 \emptyset & D E^{\prime}-2 \emptyset 34 & H L^{\prime}-D A A D
\end{array}
$$

Addressing Mode: Implicit.
Timing:

M Cycles	TStates	$\mu \sec @ 2 \mathrm{MHz}$.
1	4	2

HALT

Jescription: CPU suspends operations, executing NOP's until either an nterrupt or a reset is received.

Vo. of Bytes: 1
Object Code (Hex.): 76 Decimal: 118
=lag Register:

Flag	Code	Bit	
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	Not affected.
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	Not affected.
Carry	C	\emptyset	Not affected.

Addressing Mode: Implicit.
「iming:

M Cycles	T States	μ sec @ 2 MHz.
$\mathbf{1}$	4	$2+$ Indefinite NOP's

IM \varnothing

Description: Sets Interrupt Mode \emptyset allowing the interrupting device to insert an instruction on to the Data Bus for immediate execution.

No. of Bytes: 2
Object Code (Hex.): ED 46 Decimal: 237 @7Ø

Flag Register:

Flag	Code	Bit	
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	Not affected.
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	Not affected.
Carry	C	\emptyset	Not affected.

Addressing Mode: Implicit.
Timing:

M Cycles	T States	μ sec @ 2 MHz.
2	8	4

IM 1

Description: Sets Interrupt Mode 1, i.e. the C.P.U. will execute a Restart to memory location $\varnothing \emptyset$ 38(Hex.) when an Interrupt occurs.
No. of Bytes: 2
Object Code (Hex.): ED 56
Decimal: $237 \emptyset 86$

Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	Not affected.
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	Not affected.
Carry	C	\emptyset	Not affected.

Addressing Mode: Implicit.
Timing:

M Cycles	T States	$\mu \sec @ 2 \mathrm{MHz}$.
2	8	4

IM 2

Description: Sets Interrupt Mode 2. When an interrupt occurs a single byte is provided by the interrupting device and this is used as the Low Order byte of a memory location address to which control is to be transferred as a result of the interrupt. The contents of the Interrupt Register (I) are used as the High Order byte of that address.

No. of Bytes: 2
Object Code (Hex.): ED 5E Decimal: 237 @94

Flag Register:

Flag	Code	Bit	
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	Not affected.
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	Not affected.
Carry	C	0	Not affected.

Addressing Mode: Implicit.
Timing:

M Cycles	T States	μ sec @ 2 MHz.
2	8	4

IN A,(n)

Input to Accumulator from Port n.
Object Code:

	Hex	Decimal
IN A,(n)	DB n	219 n

Description: Loads the Accumulator with a single byte of data from the Input Port identified by n in the instruction. The value of n is placed in the Lower Order byte of the address bus and the contents of the Accumulator are placed in the High Order byte of that address bus while the instruction is being processed.
No. of Bytes: 2
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	Not affected.
-	-	3	Not used.
Parity/Overflow	PN	2	Not affected.
Subtract	N	1	Not affected.
Carry	C	0	Not affected.

Example: LD A, \varnothing

INA,(3)
If the second byte of the instruction contains $\emptyset 3 \mathrm{H}$ as the value of n , and the accumulator contains $\emptyset \emptyset \mathrm{H}$, a single data byte will be loaded from Input Port 3 to the Accumulator.
Addressing Mode: External.
Timing:

M Cycles	T States	μ sec @ 2 MHz.
3	11	5.5

IN r,(C)

Input to Register r where r is any of the registers A, B, C, D, E, H or L.
Object Code:

	Hex	Decimal
IN A, (C)	ED 78	$23712 \emptyset$
IN B, (C)	ED $4 \emptyset$	$237 \emptyset 64$
IN C, (C)	ED 48	$237 \emptyset 72$
IND, (C)	ED $5 \emptyset$	$237 \emptyset 8 \emptyset$
IN (C) (C)	ED 58	$237 \emptyset 88$
IN H, (C)	ED 60	$237 \emptyset 96$
IN (C) (C)	ED 68	237104

Description: The address (Range \emptyset - 255) of an Input Port is held in Register C and this address is placed in the Lower Order byte of the address bus. The previous contents of Register B are used as the Higher Order byte in the address bus. A singlebyte of data is read from the nominated Input Port and placed in Register r.

No. of Bytes: 1
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET $=1$ if the input data is negative, otherwise RESET $=\emptyset$.
Zero	Z	6	SET $=1$ if the input data is zero, otherwise RESET $=\emptyset$.
-	-	5	Not used.
Half Carry	H	4	SET $=1$ if no Borrow from Bit 4 otherwise RESET $=\emptyset$.
-	-	3	Not used.
Parity/Overflow	P/V	2	$\begin{aligned} & \text { SET }=1 \text { if Parity Even, RESET }=\emptyset \text { if } \\ & \text { Parity Odd. } \end{aligned}$
Subtract	N	1	RESET $=\emptyset$.
Carry	C	\emptyset	Not affected.

Example: LD A,21H
 LD C, 09 H
 IN A, (C)

If the B register contains 21 H and Register C contains $\emptyset 9 \mathrm{H}$ the address bus will be loaded with $21 \emptyset 9$, which identifies Input Port 9 . If Input Port 9 holds a data byte, value A 2 H , that value is placed in the Accumulator, replacing the original contents $(21 \mathrm{H})$.
Addressing Mode: External.
Timing:

M Cycles	T States	$\mu \sec @ 2 \mathrm{MHz}$.
3	12	6

INC r

Increment Register contents where r is any of the Registers A, B, C, D, E, Hor L.

Object Code:

	Hex	Decimal
INC A	$3 C$	$\emptyset 6 \emptyset$
INC B	$\emptyset 4$	$\emptyset \emptyset 4$
INC C	$\emptyset C$	$\emptyset 12$
INC D	14	$\emptyset 2 \emptyset$
INC E	$1 C$	$\emptyset 28$
INC H	24	$\emptyset 36$
INC L	$2 C$	$\emptyset 44$

Description: Add 1 to the specified register.
No. of Bytes: 1
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET $=1$ if the result is negative, otherwise RESET $=\emptyset$.
Zero	Z	6	SET $=\mathbf{1}$ if the result is zero, otherwise RESET $=\emptyset$.
-	-	5	Not used.
Half Carry	H	4	SET = 1 if Carry from Bit 3 otherwise RESET = \emptyset.
-	-	3	Not used.
Parity/Overflow	P/V	2	SET = 1 if the contents of the Accumulator were 7 F (Hex.) before the instruction was executed, otherwise RESET $=\emptyset$.
Subtract	N	1	RESET $=\emptyset$.
Carry	C	\emptyset	Not affected.

Example: LD A,18H
INC A
If the contents of the Accumulator are 18 H the effect of INC A is to increment those contents to 19 H , then RESET flags $\mathrm{S}, \mathrm{Z}, \mathrm{H}, \mathrm{P} / \mathrm{V}$ and $\mathrm{N}=$ \emptyset.

Addressing Mode: Implicit.
Timing:

M Cycles	T States	$\mu \mathrm{sec}$ @ 2 MHz.
1	4	2

INC rr

Where rr is any of the register pairs $\mathrm{BC}, \mathrm{DE}, \mathrm{HL}$ or SP .
Object Code:

	Hex	Decimal
INC BC	$\boxed{ }$	$\emptyset 03$
INC DE	13	$\emptyset 19$
INC HL	23	$\emptyset 35$
INC SP	33	$\emptyset 51$

Description: Increments the 16 bit contents of the Register Pairs BC, $D E, H L$, or $S P$.

No. of Bytes: 1
Flag Register:

Flag	Code	Bit	
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	Not affected.
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	Not affected.
Carry	C	\emptyset	Not affected.

Example: LD BC,412H INC BC

If the contents of register pair $B C$ are 412 H , then $\operatorname{INC} B C$ will change this to 413 H . None of the flags will be changed.
Addressing Mode: Implicit.
Timing:

M Cycles	T States	$\mu \sec @ 2 \mathrm{MHz}$.
1	6	3

INC (HL)

Description: Increments the contents of a memory location whose address is held in Register Pair HL.

No. of Bytes: 1
Object Code (Hex.): 34
Decimal: 052

Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET $=1$ if the result is negative, otherwise RESET = \emptyset.
Zero	Z	6	SET $=1$ if the result is zero, otherwise RESET $=\emptyset$.
-	-	5	Not used.
Half Carry	H	4	SET = 1 if Carry from Bit 3, otherwise RESET $=\emptyset$.
-	-	3	Not used.
Parity/Overflow	P/V	2	SET $=1$ if the contents of the nominated location were 7F(Hex.) before this instruction was processed, otherwise RESET $=\emptyset$.
Subtract	N	1	RESET $=\emptyset$.
Carry	C	\emptyset	Not affected.

Example: LD HL,1815H
LD (HL), 1FH
INC (HL)
If the contents of Register Pair HL were 18 15, and the contents of memory location 1815 were 1F, the effect of this instruction is to increment the contents of memory location 1815 to 20(Hex.), SET flag H $=1$ and RESET flags $S, Z, P / V$ and $N=\emptyset$.
Addressing Mode: Indirect.
Timing:

M Cycles	T States	$\mu \mathrm{sec} @ 2 \mathrm{MHz}$.
3	11	5.5

INC (IX + d)
 INC ($\mathrm{IY}+\mathrm{d}$)

Description: Increments the contents of the memory location identified by the contents of Index Register IX or IY (modified by displacement d, which is specified in the instruction).
No. of Bytes: 3
Object Code:

	Hex	Decimal
INC (IX + d)	DD 34 d	221 Ø52 d
INC (IY + d)	FD 34 d	253 Ø52 d

Where d is the displacement required from the memory location whose address is held in Index Register IX or IY.

Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET $=1$ if the result is negative, otherwise RESET = \emptyset.
Zero	Z	6	SET $=1$ if the result is zero, otherwise RESET $=\emptyset$.
-	-	5	Not used.
Half Carry	H	4	SET $=1$ if Carry from Bit 3, otherwise RESET = \emptyset.
-	-	3	Not used.
Parity/Overflow	P/V	2	SET $=1$ if the contents of the nominated location were 7F(Hex.) before the instruction was processed, otherwise RESET $=\emptyset$.
Subtract	N	1	RESET $=\emptyset$.
Carry	C	0	Not affected.

Example: LD IX,56A2H

LD HL,56A8H
LD (HL), 7FH
INC (IX + 6)
If d in the instruction is $\emptyset 6 \mathrm{H}$ and the contents of Index Register IX are 56 A2, this instruction will increment the contents of memory location 56 A8. If the contents of that location were 7F they will be incremented to $8 \emptyset$ (Hex.), flags S, H and P / V will be $\mathrm{SET}=1$ and flags Z and N will be RESET $=\emptyset$.
Addressing Mode: Indexed.
Timing:

M Cycles	T States	$\mu \mathrm{sec}$ @ 2 MHz.
6	23	11.5

INC IX
 INC IY

Increment contents of an Index Register.
Object Code:

	Hex	Decimal
INC IX	DD 23	$221 \emptyset 35$
INC IY	FD 23	$253 \emptyset 35$

Description: The contents of the designated Index Register is increased by one.
No. of Bytes: 2
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	Not affected.
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	Not affected.
Carry	C	\emptyset	Not affected.

Example: LD IY,804H INC IY
If the contents of the IY register are 804 H , the effect of INC IY will be to change this to 805 H . None of the flags will be changed.

Addressing Mode: Implicit.
Timing:

M Cycles	T States	$\mu \mathrm{sec} @ 2 \mathrm{MHz}$.
2	10	5

IND

Description: The address (Range \emptyset - 255) of an Input Port is held in Register C and this address is placed in the Lower Order byte of the address bus. The contents of Register B (which is used as a Byte Counter) are placed in the Higher Order byte of the address bus. A single byte of data is read from the designated Input Port and stored in the memory location whose address is held in Register Pair HL, then both Register B and Register Pair HL are decremented.

No. of Bytes: 2
Object Code (Hex.): ED AA Decimal: $23717 \emptyset$
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	Unknown.
Zero	Z	6	SET $=1$ if the contents of Register B are zero AFTER the instruction is processed, otherwise RESET $=\emptyset$.
-	-	5	Not used.
Half Carry	H	4	Unknown.
	-	3	Not used.
Parity/Overflow	P/V	2	Unknown.
Subtract	N	1	SET $=1$.
Carry	C	\emptyset	Not affected.

Example: LD C, ©4H
LD HL, 1824H
LD B, $\emptyset 1 \mathrm{H}$
IND
If the contents of Register C are $\emptyset 4$ (Hex.), this identifies Input Port 4. If the contents of Register pair HL are 1824 and the contents of Register B are 01 H , this instruction will transfer the data byte from Input Port 4 to memory location 1824, decrement Register Pair HL to 1823, decrement Register B to $\varnothing \emptyset$ and SET flags Z and $\mathrm{N}=1$.

Addressing Mode: External.
Timing:

M Cycles	T States	$\mu \mathrm{sec} @ 2 \mathrm{MHz}$.
4	16	8

INDR

Description: The address (Range \emptyset - 255) of an Input Port is held in Register C and this address is placed in the Lower Order byte of the address bus. The contents of Register B (which is used as a Byte Counter) are placed in the Higher Order byte of the address bus. A single byte of data is read from the designated Input Port and stored in the memory location whose address is held in Register Pair HL, then both Register B and Register Pair HL are decremented. If the new contents of Register $\mathrm{B}=\emptyset$ the Program Counter (PC) is decremented by 2 and the instruction is repeated. If the new contents of Register $\mathrm{B}=\emptyset$ then the instruction is terminated.
NOTE 1: If the contents of Register B are set $=\emptyset$ prior to this instruction being processed, 256 bytes of data will be input and stored in consecutive memory locations.
NOTE 2: Interrupts can be accepted after each iteration of this instruction.

No. of Bytes: 2
Object Code (Hex.): ED BA Decimal: 237186

Flag Register:

Flag	Code	Bit		Effect
Sign	S	7	Unknown.	
Zero	Z	6	SET =1	
-	-	5	Not used.	
Half Carry	H	4	Unknown.	
Parity/Overflow	-	3	Not used.	
Subtract	2	Unknown.		
Carry	N	1	SET =1.	
	C	\emptyset	Not affected.	

Example: LD C, 06 H
LD HL,241@H
LD B, 08 H
INDR
If the contents of Register C are $\emptyset 6$, this identifies Input Port 6. If the contents of Register Pair HL are $241 \emptyset$ and those of Register B are $\emptyset 8 \mathrm{H}$, this instruction will transfer 8 bytes of date from Input Port 6 and store them in memory locations $241 \emptyset$ to $24 \emptyset 3$. Register B will be decremented progressively to zero while Register Pair HL will also be progressively decremented to $24 \emptyset 3$. Flags Z and N will be SET $=1$.
Addressing Mode: External.
Timing:

	M Cycles	T States	$\mu \sec @ 2 \mathrm{MHz}$.
$B=\emptyset$	4	16	8
$B<>\emptyset$	5	21	10.5

INI

Description: The address (Range \varnothing - 255) of an Input Port is held in Register C and this address is placed in the Lower Order byte of the address bus while the contents of Register B (which is used as a Byte Counter) are placed in the Higher Order byte of the address bus. A single byte of data is read from the designated Input Port and stored in the memory location whose address is held in Register Pair HL, then Register B is Decremented and Register Pair HL is Incremented.
No. of Bytes: 2
Object Code (Hex.): ED A2 Decimal: 137162
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	Unknown.
Zero	Z	6	SET $=1$ if the contents of Register B are zero AFTER the instruction is
			processed, otherwise RESET $=\emptyset$. - Half Carry - Parity/Overflow Subtract
P	5	4	Not used.
Unknown.	3	Not used.	
Carry	N	1	Unknown.
	SET $=1$.		
	\varnothing	\emptyset	Not affected.

Example: LD C, ©1H
LD HL, 1613H
LD B, 18H
INI
If the contents of Register C are 01 (Hex.), this identifies Input Port 1. If the contents of Register pairl HL are 1613 and those of Register B are 18 H , this instruction will transfer one data byte from Input Port 1 to memory location 16 13, Increment Register Pair HL to 1614, decrement Register B to 17 H , and SET flag $\mathrm{N}=1$ and RESET flag $\mathrm{Z}=\emptyset$.
Addressing Mode: External.
Timing:

M Cycles	T States	$\mu \mathrm{sec}$ @ 2 MHz.
4	16	8

INIR

Description: The address (Range $\emptyset-255$) of an Input Port is held in Register C and this address is placed in the Lower Order byte of the address bus. The contents of Register B (which is used as a Byte Counter) are placed in the Higher Order byte of the address bus. A single byte of data is read from the designated Input Port and stored in the memory location whose address is held in Register Pair HL, then Register B is Decremented and Register pair HL is Incremented. If the new contents of Register $\mathrm{B}=\emptyset$ the Program Counter (PC) is decremented by 2 and the instruction is repeated. If the new contents of Register $\mathrm{B}=\emptyset$ then the instruction is terminated.
NOTE 1: If the contents of Register B are set $=\emptyset$ prior to this instruction being processed, 256 bytes of data will be input and stored in consecutive memory locations.
NOTE 2: Interrupts can be accepted after each iteration of this instruction.
No. of Bytes: 2
Object Code (Hex.): ED B2
Decimal: 237178

Flag Register:

Flag	Code	Bit	
Sign	S	7	Unknown.
Zero	Z	6	SET $=1$
-	-	5	Not used.
Half Carry	H	4	Unknown.
-	-	3	Not used.
Parity/Overflow	P/V	2	Unknown.
Subtract	N	1	SET =1.
Carry	C	0	Not affected.

Example: LD C, ØAH
LD HL,2302H
LD B, $\varnothing 5 \mathrm{H}$
INIR
If the contents of Register C are $\emptyset A$, this identifies Input Port $1 \emptyset$. If the contents of Register Pair HI are 23 Ø2 and those of Register B are $\emptyset \mathrm{H}$, this instruction will transfer 5 bytes of data from Input Port 10 and store them in memory locations $23 \emptyset 2$ to $23 \emptyset 6$. Register B will be decremented progressively to zero while Register Pair HL will be incremented progressively to $23 \emptyset 6$. Flags Z and N will be $\mathrm{SET}=1$.
Addressing Mode: External.
Timing:

	M Cycles	T States	$\mu \sec @ 2 \mathrm{MHz}$.
$B=\emptyset$	4	16	8
$B<>\emptyset$	5	21	$1 \emptyset .5$

JP nn

Description: Unconditional Jump to a memory location specified in the second and third bytes of the instruction.
NOTE: The contents of the Program Counter are NOT saved.
No. of Bytes: 3
Object Code (Hex.): C3nn Decimal: 195 nn
Where n n is the memory location to which control is to be transferred.
Flag Register:

Flag	Code	Bit	
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	Not affected.
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	Not affected.
Carry	C	0	Not affected.

Example: JP 2E14H

If the second and third bytes in this instruction contain 2 E 14 , the contents of the Program Counter (PC) will be replaced by 2E 14 and the next instruction will be fetched from that memory location.

Addressing Mode: Immediate.
Timing:

M Cycles	T States	μ sec @ 2 MHz.
3	10	5

JP (HL)

Jump to address contained in register pair HL.
Object Code:

	Hex	Decimal
$J P(H L)$	E9	233

Description: Unconditional jump to a memory location whose address is held in Register Pair HL. The contents of that register pair are loaded into the Program Counter and the next instruction fetched from that location.

No. of Bytes: 1
Flag Register:

Flag	Code	Bit	
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	Not affected.
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	Not affected.
Carry	C	0	Not affected.

Example: LD HL,142BH JP (HL)
If the contents of Register Pair HL are 142 B that data will be placed in the Program Counter (PC) by this instruction and the next instruction will be fetched from memory location 142 B .
Addressing Mode: Implicit.
Timing:

M Cycles	T States	μ sec @ 2 MHz.
1	4	2

JP (IX)
 JP (IY)

Jump to address contained in the designated Index Register.
Object Code:

	Hex	Decimal
JP (IX)	DD E9	221,233
JP (IY)	FD E9	253,233

Description: Unconditional jump to a memory location whose address is held in the designated Index Register. The contents of that Index Register is loaded into the Program Counter and the next instruction fetched from that location.

No. of Bytes: 2
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	Not affected.
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	Not affected.
Carry	C	\emptyset	Not affected.

Example: LD IX,1F34H JP (IX)

If the contents of Index Register IX are 1F 34, that data will be placed in the Program Counter (PC) by this instruction and the next instruction will be fetched from memory location 1F 34.

Addressing Mode: Implicit.
Timing:

M Cycles	T States	$\mu \sec @ 2 \mathrm{MHz}$.
2	8	4

JP cc,nn

Jump to address nn if condition cc is met, where nn is the memory location to which control is to be transferred and cc can be NZ, Z, NC, C, PO, PE, P or M.

Object Code:

	Hex	Decimal
JPNZ,nn	C2nn	$194 n n$
JPZ,nn	CAnn	$2 \emptyset 2 n n$
JPNC,nn	D2nn	$21 \emptyset n n$
JPC,nn	DAnn	$218 n n$
JPPO,nn	E2nn	$226 n n$
JPPE,nn	EAnn	$234 n n$
JPP,nn	F2nn	$242 n n$
JPM,nn	FAnn	$25 \emptyset n n$

Description: A Conditional Jump is obeyed only if the condition in the Flag Register is met. The address specified in the second and third bytes of the instruction is loaded into the Program Counter (PC) and the next instruction is fetched from that memory location. For detailed explanations of the various conditions, see the conditional CALL instructions, such as CALL NZ, nn, CALL Z, nn, etc.
NOTE 1: The second byte of the instruction contains the Lower Order byte of the address and the third byte contains the Higher Order byte of that address.
NOTE 2: The previous contents of the Program Counter are NOT saved.

Condition	Flag
Non zero	Z
Zero	Z
Non carry	C
Carry	C
Parity odd	P / O
Parity even	P / E
Sign positive	M
Sign negative	M

No. of Bytes: 3

Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	Not affected.
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	Not affected.
Carry	C	0	Not affected.

Example: LD A, \varnothing

ADD A, 1
JP NZ,18A2H
If $n n$ in the instruction contains 18 A2(Hex.) and the Z flag in the Flag Register $=1$, the instruction is ignored and the next sequential instruction is obeyed.

Addressing Mode: Immediate.
Timing:

M Cycles	T States	$\mu \sec @ 2 \mathrm{MHz}$.
3	10	5

JR d

Description: Adds the value of $d-2$ to the contents of the Program Counter (PC) and stores the result in the Program Counter. The next instruction is fetched from the memory location whose address is the new contents of the Program Counter.
NOTE 1: The value of d specified in the Object Code instruction must be two less than the required displacement because the Program Counter will already be incremented by 2 on reading this instruction. The Source Code value of d is decremented automatically by the assembler process.
No. of Bytes: 2
Object Code (Hex.): 18d-2 Decimal: Ø24d-2
Where d is the required displacement from the current contents of the Program Counter (d may be negative).
Flag Register:

Flag	Code	Bit	
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	Not affected.
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	Not affected.
Carry	C	\emptyset	Not affected.

Example: JR 9
A Source Code statement of JR 9 will result in an Object Code instruction of 1807 (Hex.). If the contents of the Program Counter are 1A 28 immediately prior to this instruction being read, the contents of that Program Counter will become 1A 2A when the instruction is read, then 1A 31 when the instruction is obeyed, giving a total displacement of 9 from the original contents of the Program Counter.
Addressing Mode: Relative.
Timing:

M Cycles	T States	$\mu \mathrm{sec} @ 2 \mathrm{MHz}$.
3	12	6

JR cc,d

Where: Cc is one of the condition codes $\mathrm{NZ}, \mathrm{Z}, \mathrm{NC}$ or C .
d is the required displacement from the current contents of the Program Counter. (NOTE: d may be negative).
Object Code:

	Hex	Decimal
JR NZ,d	$2 \emptyset d-2$	$\emptyset 32 d-2$
JRZ,d	$28 d-2$	$\emptyset 4 \emptyset d-2$
JR NC,d	$3 \emptyset d-2$	$\emptyset 48 d-2$
JR C,d	$38 d-2$	$\emptyset 56 d-2$

Description: A Conditional Jump instruction which is obeyed only if the condition stated is true. If the condition is met, this instruction adds the value d-2 to the contents of the Program Counter (PC) and stores the result in the Program Counter. The next instruction is then fetched from the memory location whose address is the new contents of the Program Counter. If the condition is not met, this instruction is ignored and the next sequential instruction is executed. For detailed descriptions of the conditions, see the conditional call instructions, such as CALL NZ,nn and CALL Z,nn.

No. of Bytes: 2
Flag Register:

Flag	Code	Bit	
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	Not affected.
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	Not affected.
Carry	C	0	Not affected.

Example: SCF
JR C, 4
A Source Code statement of JR C, 4 will result in an Object Code instruction of $38 \emptyset 2$ (Hex.). If the contents of the Program Counter are 2B 62 before this instruction is read, the contents of that Program Counter will become 2B 64 when the instruction is read, then $2 B 66$ if the instruction is obeyed, giving a total displacement of 4 from the original contents of the Program Counter.

Addressing Mode: Relative.
Timing:

	M Cycles	T States	$\mu \mathrm{sec} @ 2 \mathrm{MHz}$.
Condition true	3	12	6
Condition false	2	7	3.5

LD A,I

Object Code: (Hex) ED 57 (Decimal) 23787.
Description: Loads the Accumulator with the contents of the I register. The I register is unaltered.

No. of Bytes: 2
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET=1 if result negative, otherwise RESET $=\emptyset$.
Zero	Z	6	SET=1 if result is zero, otherwise RESET $=\varnothing$.
-	-	5	Not used.
Half Carry	H	4	RESET $=\emptyset$.
-	-	3	Not used.
Parity/Overflow	P/V	2	Set to equal the contents of Interrupt Flip Flop 2.
Subtract	N	1	RESET $=\varnothing$.
Carry	C	\emptyset	Not affected.

Addressing Mode: Implicit.
Timing:

M Cycles	T States	μ sec @ 2 MHz.
2	9	4.5

LD A,R

Object Code: (Hex) ED 5F (Decimal) 23795.
Description: Loads the Accumulator with the contents of the R register. The R register is unaltered.

No. of Bytes: 2
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET $=1$ if result negative, otherwise RESET $=\emptyset$.
Zero	Z	6	SET=1 if result is zero, otherwise RESET $=\emptyset$.
-	-	5	Not used.
Half Carry	H	4	RESET $=\emptyset$.
-	-	3	Not used.
Parity/Overflow	P/V	2	Set to equal the contents of the Interrupt Flip Flop 2.
Subtract	N	1	RESET $=\emptyset$.
Carry	C	\emptyset	Not affected.

Addressing Mode: Implicit.
Timing:

M Cycles	TStates	$\mu \mathrm{sec} @ 2 \mathrm{MHz}$.
2	9	4.5

LD A,(nn)

Description: Loads the contents of a memory location whose address is specified as $n \mathrm{n}$ in the instruction into the Accumulator, leaving the contents of that memory location unaltered.
NOTE 1: In the Object Code, the second byte of the instruction contains the Lower Order byte of the address and the third byte contains the Higher Order byte of the address.
No. of Bytes: 3
Object Code (Hex.): 3A n n Decimal: $\emptyset 58 \mathrm{nn}$
Where nn is the address of a memory location.
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	Not affected.
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	Not affected.
Carry	C	\emptyset	Not affected.

Example: An instruction LD A,(3D18) will result in an Object Code (Hex.) instruction 3A 18 3D. The contents of memory location 3D 18 will be loaded into the Accumulator, leaving the same value unchanged in memory location 3D 18.

Addressing Mode: Direct.
Timing:

M Cycles	T States	$\mu \mathrm{sec}$ @ 2 MHz.
4	13	6.5

LD A,(BC)

Description: Loads the Accumulator with the contents of a memory location whose address is held in Register Pair BC, leaving the contents of that memory location unaltered.
No. of Bytes: 1
Object Code (Hex.): ØA Decimal: $\emptyset 1 \emptyset$

Flag Register:

Flag	Code	Bit	
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	Not affected.
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	Not affected.
Carry	C	0	Not affected.

Example: LD HL, 142AH
LD (HL), ØADH
LD BC,142AH
LD A, (BC)
If Register Pair BC contains 14 2A, and the contents of memory location $142 A$ are $A D$, this instruction will load $A D$ into the Accumulator, leaving the same value in memory location 142 A .
Addressing Mode: Indirect.
Timing:

M Cycles	T States	$\mu \mathrm{sec} @ 2 \mathrm{MHz}$.
2	7	3.5

LD A,(DE)

Description: Loads the Accumulator with the contents of a memory location whose address is held in Register Pair DE, leaving the contents of that memory location unaltered.

No. of Bytes: 1
Object Code (Hex.): 1A Decimal: 026

Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	Not affected.
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	Not affected.
Carry	C	0	Not affected.

Example: LD HL,4D23H
LD (HL), 68H
LD DE,4D23H
LD A, (DE)
If Register Pair DE contains 4D 23, and the contents of memory location 4D 23 are 68, this instruction will load 68 into the Accumulator, leaving the same value in memory location 4D 23.

Addressing Mode: Indirect.
Timing:

M Cycles	T States	$\mu \mathrm{sec} @ 2 \mathrm{MHz}$.
2	7	3.5

LD r,n

Where r is one of A, B, C, D, E, H, L.
Description: Loads the value of n into register r.
No. of Bytes: 2
Object Code:

	Hex	Decimal
LD A,n	$3 E n$	$\emptyset 62 n$
LD B,n	$\emptyset 6 n$	$\emptyset \emptyset 6 n$
LD c,n	$\emptyset E n$	$\emptyset 14 n$
LD D,n	$16 n$	$\emptyset 22 n$
LD E,n	$1 E n$	$\emptyset 3 \emptyset n$
LD H,n	$26 n$	$\emptyset 38 n$
LD L,n	$2 E n$	$\emptyset 46 n$

Where n is an 8 Bit integer, specified in the instruction.
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	Not affected.
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	Not affected.
Carry	C	\emptyset	Not affected.

Example: The Source Code statement LD B,14H will load the value 14(Hex.) into the accumulator.

Addressing Mode: Immediate.
Timing:

M Cycles	T States	μ sec @ 2 MHz.
2	7	3.5

LD r, r'

Where r and r^{\prime} are any of the Registers A, B, C, D, E, H or L.
Description: Loads Register r with the contents of Register r'. Register r^{\prime} is unaltered.

No. of Bytes: 1
Object Code: LD r, r' produces the object code $x x$ (Hex.) or yyy(Decimal.), where $x x$ and yyy are taken from the table below.

	$\begin{gathered} A \\ x x y y y \end{gathered}$	$\begin{gathered} B \\ x x y y y \end{gathered}$	$\begin{gathered} C \\ \text { xx yyy } \end{gathered}$	$\begin{gathered} D \\ x x y y y \end{gathered}$	$\begin{gathered} E \\ x x y y y \end{gathered}$	$\begin{gathered} H \\ x \times y y y \end{gathered}$	L xx yyy
A	7F 127	47 ¢71	4F 979	57 ¢87	5F 995	67103	6F 111
B	78120	40064	48072	50080	58088	60096	68104
C	79121	41 ¢65	49073	51081	59089	61097	69105
D	7A 122	42 Ø66	4A @ 74	52082	5A ¢90	62098	6A 106
E	7B 123	43 Ø67	4B $\emptyset 75$	53083	5B ø91	63099	6 B 107
H	7C 124	44 Ø68	4C $\emptyset 76$	54 ¢84	5Cø92	64100	6C108
L	7D 125	45 Ø69	4D $\emptyset 77$	55085	5D 093	65101	6D 109

Flag Register:

Flag	Code	Bit	Effect	
Sign	S	7	Not affected.	
Zero	Z	6	Not affected.	
-	-	5	Not used.	
Half Carry	H	4	Not affected.	
-	-	3	Not used.	
Parity/Overflow	P/V	2	Not affected.	
Subtract	N	1	Not affected.	
Carry	C	0	Not affected.	

Example: LD A,53H
LD L,A
If the contents of the Accumulator are 53 H , this instruction will load 53H into Register L, leaving the same value in the Accumulator.

Addressing Mode: Implicit.
Timing:

M Cycles	TStates	$\mu \sec @ 2 \mathrm{MHz}$.
1	4	2

LD r,(HL)

Where r is any of registers A, B, C, D, E, H or L.
Description: Loads Register r with the contents of the memory location whose address is held in Register Pair HL, leaving the contents of that memory location unaltered. Note that in the cases of LD H,(HL) and LD $L,(H L)$, the contents of the HL Register Pair will be altered.

No. of Bytes: 1
Object Code:

	Hex	Decimal
LD A,(HL)	$7 E$	126
LD B,(HL)	46	$07 \emptyset$
LD C,(HL)	$4 E$	0178
LD ,(HL)	56	086
LDE,(HL)	$5 E$	094
LD H,(HL)	66	102
LD L,(HL)	$6 E$	$11 \emptyset$

Where n is an 8 Bit integer, specified in the instruction.
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	Not affected.
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	Not affected.
Carry	C	\emptyset	Not affected.

Example: LD HL, 4732H
LD (HL), 56H
LD E,(HL)
If the Register Pair HL contains 4732 H , and the content of memory location 4732 H is 56 H , this instruction will load 56 H into Register E, leaving the same value in memory location 4743 H .

Cont.

Addressing Mode: Indirect.
Timing:

M Cycles	T States	$\mu \sec @ 2 \mathrm{MHz}$.
2	7	3.5

LD r,(IX + d) LD r,(IY + d)

Where r is one of the Registers A, B, C, D, E, H or L, and d is an 8 bit integer.
Description: Loads register r with the contents of the memory location whose address is indentified by the contents of Index Register IX or IY (modified by displacement d, which is specified in the instruction), leaving the contents of that memory location unaltered.

No. of Bytes: 3
Object Code:

	Hex	Decimal
LD A, (IX+d)	DD 7Ed	221126 d
LD A, (IY + d)	FD 7Ed	253126 d
LD B,(IX+d)	DD 46 d	$22107 \square d$
LD B,(IY + d)	FD 46 d	$25307 \square$ d
LD C, (IX +d)	DD 4E d	221078 d
LD C, (IY + d)	FD 4E d	253078 d
LDD, (IX + d)	DD 56 d	221086 d
LDD, (IY + d)	FD 56 d	253086 d
LDE, (IX+d)	DD 5Ed	221094 d
LDE, (IY+d)	FD 5E d	253094 d
LD H, (IX+d)	DD 66 d	221102 d
LDH, (IY + d)	FD 66 d	253102 d
LD L, (IX + d)	DD 6Ed	221110 d
LD L, (IY + d)	FD 6Ed	253110 d

Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	Not affected.
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	Not affected.
Carry	C	0	Not affected.

Cont.

Example: LD HL, 3224H
LD (HL), 62H
LD IX, 3221H
LC C, (IX+3)
If Index Register IX contains 3221 (Hex.), and din the instruction is 3, the required memory location is 3224 (Hex.). If the content of memory location 3224 is 62 (Hex.), this instruction will load 62 into register C, leaving the same value in memory location 3224.

Addressing Mode: Indexed.
Timing:

M Cycles	T States	$\mu \mathrm{sec} @ 2 \mathrm{MHz}$.
5	19	9.5

LD I,A

Load Interrupt Vector Register from Accumulator.
Object Code:

	Hex	Decimal
LD I,A	ED 47	$237 \emptyset 71$

Description: Loads the contents of the Accumulator into the Interrupt Vector Register (Register I), leaving the contents of the Accumulator unaltered.

No. of Bytes: 2
Flag Register:

Flag	Code	Bit	
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	Not affected.
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	Not affected.
Carry	C	0	Not affected.

Example: LD A,24H
LDI,A
If the Accumulator contains 24, this instruction loads 24 into Register 1, leaving the contents of the Accumulator unaltered.
Addressing Mode: Implicit.
Timing:

M Cycles	T States	$\mu \mathrm{sec} @ 2 \mathrm{MHz}$.
2	9	4.5

LD R,A

Description: Loads the contents of the Accumulator into the Memory Refresh Register (Register R), leaving the contents of the Accumulator unaltered.

No. of Bytes: 2
Object Code (Hex.): ED 4F Decimal: 237 @79

Flag Register:

Flag	Code	Bit	
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	Not affected.
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	Not affected.
Carry	C	\emptyset	Not affected.

Example: LD A,38
LD R,A
If the contents of the Accumulator are 38, this instruction will load 38 into Register R, leaving the same value in the Accumulator.

Addressing Mode: Implicit.
Timing:

M Cycles	T States	$\mu \sec @ 2 \mathrm{MHz}$.
2	9	4.5

LD rr, nn

Load Immediate into Register pair rr 16 bits of data $n n$, where rr is any of the Register Pairs BC, DE, HL or SP and nn is a two byte integer.
Object Code:

	Hex	Decimal
LD BC,nn	$\emptyset 1 n n$	$\emptyset \not 1 n n$
LD DE,nn	$11 n n$	$\emptyset 17 n n$
LD HL,nn	$21 n n$	$\emptyset 33 n n$
LD SP,nn	$31 n n$	$\emptyset 49 n n$

Description: Loads specified Register Pair with the two byte integer nn specified in the instruction. The second byte of the Object Code instruction is the Lower Order byte of the integer nn and the third byte of the Object Code instruction is the Higher Order byte of integer nn.
No. of Bytes: 3
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	Not affected.
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	Not affected.
Carry	C	0	Not affected.

Example: The Source Code statement LD HL,244EH will produce the Object Code instruction 21 4E 24(Hex.), which will load Register Pair HL with the data 244 E (Hex.).
Addressing Mode: Immediate.
Timing:

M Cycles	T States	$\mu \mathrm{sec} @ 2 \mathrm{MHz}$.
3	10	5

LD IX,nn

LD IY,nn

Description: Loads Index Register IX or IY with the two byte integer nn specified in the instruction. The third byte of the Object Code instruction is the Lower Order byte of the integer nn, and is loaded into the Lower Order byte of the Index Register, while the fourth byte of the Object Code instruction is the Higher Order byte of nn and is loaded into the Higher Order byte of the Index Register.
No. of Bytes: 4
Object Code:

	Hex	Decimal
LD IX,nn	DD $21 n n$	$221 \emptyset 33 n n$
LD IY, nn	FD $21 n n$	$253 \emptyset 33 n n$

Where $n n$ is a two Byte integer, specified in the instruction.
Flag Register:

Flag	Code	Bit	
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	Not affected.
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	Not affected.
Carry	C	0	Not affected.

Example: The Source Code statement LD IX,1020H will produce the Object Code instruction DD $212 \emptyset 10$ (Hex.), which will load Index Register IX with the data $1 \emptyset 20$ (Hex.).
Addressing Mode: Immediate.
Timing:

M Cycles	T States	μ sec @ 2 MHz.
4	14	7

LD rr,(nn)

Load Register Pair from memory where rr is either $\mathrm{BC}, \mathrm{DE}, \mathrm{HL}$ or SP .
Object Code:

	Hex	Decimal
LD BC,(nn)	ED 4Bnn	$237 \emptyset 75 n n$
LD DE,(nn)	ED 5Bnn	$237 \emptyset 91 n n$
LD HL,(nn)	ED 6Bnn	$2371 \emptyset 7 n n$
LD SP,(nn)	ED 7Bnn	$237123 n n$

Description: Loads Register Pair rr with the contents of the memory location whose address is specified in the instruction AND the contents of that memory location +1 . The contents of the specified memory location are loaded into the Lower Order byte of Register Pair rr and the contents of the next memory location into the Higher Order byte of that Register pair.
No. of Bytes: 4
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	Not affected.
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	Not affected.
Carry	C	0	Not affected.

Example: LD HL,3145H
LD (HL), 68H
LD BC,(3145H)
Source Code statement LD BC,(3145) will become Object Code instruction ED 4B 45 31. If the contents of memory location 3145 are 68, and those of memory location 3146 are A3, this instruction will load A3 into Register B and 68 into Register C, making the contents of Register Pair BC = A3 68 .

Addressing Mode: Direct.
Timing:

M Cycles	T States	$\mu \mathrm{sec}$ @ 2 MHz.
6	20	10

LD IY,(nn)
 LD IX,(nn)

Description: Loads Index Register IX or IY with the contents of a memory location whose address is specified in the instruction AND the contents of the next sequential memory location. The contents of the specified memory location are loaded into the Lower Order byte of Index Register IX or IY and the contents of the next memory location into the Higher Order byte of that Register.

No. of Bytes: 4
Object Code:

	Hex	Decimal
LDIX,(nn)	DD $2 A n n$	$221 \emptyset 42 n n$
LDIY,(nn)	FD 2Ann	$253 \emptyset 42 n n$

Where $(n n)$ is the address of a memory location.
Flag Register:

Flag	Code	Bit	
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	Not affected.
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	Not affected.
Carry	C	\emptyset	Not affected.

Cont.

Example: LD HL,1812H
LD (HL), 6AH
LD IX, (1812 H)
The Source Code statement LD IX,(1812) will produce Object Code instruction DD 2A 12 18. If the contents of memory location 1812 are 6A, and the contents of memory location 1813 are 24, this instruction will load 6A into the Lower Order byte of Index Register IX and 24 into the Higher Order byte of that Register, making the contents 24 6A.
Addressing Mode: Direct.
Timing:

M Cycles	T States	μ sec @ 2 MHz.
6	$2 \emptyset$	$1 \emptyset$

LD SP, HL

Move contents of Register Pair HL to Stack Pointer.
Object Code:

	Hex	Decimal
LD SP, HL	F9	249

Description: Loads the Stack Pointer with the contents of Register Pair HL , leaving the contents of Register Pair HL unaltered.
No. of Bytes: 1
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	Not affected.
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	Not affected.
Carry	C	\emptyset	Not affected.

Example: LD HL,5B24H
LD SP,HL
If the contents of Register Pair HL are 5B 24, this instruction will load 5B 24 into the Stack Pointer (SP), leaving the same value in Register Pair HL.

Addressing Mode: Implicit.
Timing:

M Cycles	T States	$\mu \sec @ 2 \mathrm{MHz}$.
$\mathbf{1}$	6	3

LD SP, IX LD SP, IY

Move contents of Index Register to Stack Pointer.
Object Code:

	Hex	Decimal
LD SP, IX	DD F9	221249
LD SP, IY	FD F9	253249

Description: Loads the Stack Pointer (SP) with the contents of specified Index Register, leaving the contents of Index Register unaltered.
No. of Bytes: 2
Flag Register:

Flag	Code	Bit	
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	Not affected.
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	Not affected.
Carry	C	\emptyset	Not affected.

Example: LD IX,26A5 LD SP,IX
If Index Register IX contains 26 A5, this instruction will load the Stack Pointer with the data 26 A5, leaving the same value in Index Register IX.

Addressing Mode: Implicit.
Timing:

M Cycles	T States	$\mu \sec @ 2 \mathrm{MHz}$.
2	10	5

LD (nn),A

Store Accumulator in memory location $n n$ where $n n$ is a two byte address.

Object Code:

	Hex	Decimal
$L D(n n), A$	$32 n n$	$\emptyset 5 \emptyset n n$

Description: Loads the contents of the Accumulator into the memory location whose address is specified in the second and third bytes of the Object Code instruction, leaving the contents of the Accumulator unaltered.
No. of Bytes: 3
Flag Register:

Flag	Code	Bit	
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	Not affected.
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	Not affected.
Carry	C	0	Not affected.

Example: LD A,9CH
LD (1A49H), A

If $n n$ is specified in the Source Code statement as 1A 49, this will produce the Object Code instruction 3249 1A (Note that the Lower Order byte of the address appears in the second byte of the Object Code instruction). If the contents of the Accumulator are 9C, this instruction will load 9C into memory location 1A, 49, leaving the same value in the Accumulator.

Addressing Mode: Direct.
Timing:

M Cycles	T States	μ sec @ 2 MHz.
4	13	6.5

LD (nn),rr

Store Register Pair into memory location nn where rr can be any of the Registers BC, DE, HL or SP.

NOTE: The Lower Order byte of the address is held in the third byte of the Object Code instruction and the Higher Order byte of that address is held in the fourth byte of that instruction.
Object Code:

	Hex	Decimal
LD (nn),BC	ED $43 n n$	$237 \emptyset 67 n n$
LD (nn),DE	ED $53 n n$	$237 \emptyset 83 n n$
LD (nn),HL	ED 63nn	$237 \emptyset 99 n n$
LD (nn),SP	ED $73 n n$	$237115 n n$

Description: Loads the Lower Order byte of the contents of the specified Register Pair into the memory location whose address is specified in the instruction, and the Higher Order byte of that Register Pair into the next sequential memory location, leaving the contents of the Register Pair unaltered.

No. of Bytes: 4
Flag Register:

Flag	Code	Bit	
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	Not affected.
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	Not affected.
Carry	C	0	Not affected.

Example: LD BC,6789H
LD (3456), BC
If $n n$ is specified in the Source Code statement as $3456, L D(3456), B C$ will produce the Object Code instruction ED 4356 34. If the contents of Register Pair BC are 67 89, this instruction will load the value 89 into memory location 3456 and the value 67 into memory location 3457 , leaving the value 6789 in Register Pair BC.

Addressing Mode: Direct.
Timing:

M Cycles	T States	μ sec @ 2 MHz.
6	$2 \emptyset$	$1 \emptyset$

LD (nn),IX
 LD (nn),IY

Store Index Register into memory location nn where $n n$ is the 2 byte address.

Object Code:

	Hex	Decimal
LD (nn),IX	DD $22 n n$	$221 \emptyset 34 n n$
LD (nn),IY	FD $22 n n$	$253 \emptyset 34 n n$

Description: Loads the Lower Order byte of the contents of the specified Index Register into the memory location whose address is specified in the instruction, and the Higher Order byte of that Index Register into the next sequential location, leaving the contents of the Index Register unaltered.
No. of Bytes: 4
Flag Register:

Flag	Code	Bit	
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	Not affected.
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	Not affected.
Carry	C	0	Not affected.

Example: LDIX,7766H
LD (11AAH), IX
If $n n$ is specified in the Source Code statement as 11 AA, LD (11AA), IY will produce the Object Code instruction FD 22 AA. If the contents of Index Register IY are 77 66, this instruction will load 66 into memory location 11 AA and 77 into memory location 11 AB , leaving the value 77 66 in Index Register IY.

Addressing Mode: Direct.
Timing:

M Cycles	T States	μ sec @ 2 MHz.
6	$2 \emptyset$	10

LD (rr), A

Load Accumulator into memory location addressed by Register Pair rr where rr is Register Pairs BC or DE.
Object Code:

	Hex	Decimal
$L D(B C), A$	02	$\emptyset 02$
$L D(D E), A$	12	$\emptyset 18$

Description: Loads the contents of the Accumulator into a memory location whose address is held in Register Pair rr, leaving the contents of the Accumulator unaltered.

No. of Bytes: 1
Flag Register:

Flag	Code	Bit	
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	Not affected.
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	Not affected.
Carry	C	0	Not affected.

Example: LD BC, 1A24H

$$
\begin{aligned}
& \text { LD A,4AH } \\
& \text { LD (BC), A }
\end{aligned}
$$

If the contents of Register Pair BC are 1A 24, and the contents of the Accumulator are 4A, this instruction will load 4A into memory location 1A 24 , leaving the same value in the Accumulator.

Addressing Mode: Indirect.
Timing:

M Cycles	T States	$\mu \mathrm{sec}$ @ 2 MHz.
2	7	3.5

LD (HL),n

Load Immediate into memory n , where n is an 8 bit integer.
Object Code:

	Hex	Decimal
$L D(H L), n$	$36 n$	$054 n$

Description: Loads the value n into a memory location whose address is held in Register Pair HL.
No. of Bytes: 2
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	Not affected.
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	Not affected.
Carry	C	0	Not affected.

Example: LD HL,223CH
LD (HL), 1CH
The Source Code statement LD HL,1CH will produce the Object Code instruction 361 C (Hex.). If the contents of Register Pair HL are 22 3C, this instruction will load the value 1C(Hex.) into memory location 22 3C.
Addressing Mode: Immediate/Indirect.
Timing:

M Cycles	T States	$\mu \sec @ 2 \mathrm{MHz}$.
3	$1 \emptyset$	5

LD (HL), r

Load memory location from Register r where r is any of the Registers A, B, C, D, E, H or L.

Object Code:

	Hex	Decimal
LD (HL),A	77	119
LD (HL),B	$7 \emptyset$	112
LD (HL),C	71	113
LD (HL),D	72	114
LD (HL),E	73	115
LD (HL),H	74	116
LD (HL),L	75	117

Description: Loads the contents of Register r into a memory location whose address is held in Register Pair HL, leaving the contents of Register r unaltered.
No. of Bytes: 1
Flag Register:

Flag	Code	Bit	
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	Not affected.
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	Not affected.
Carry	C	\emptyset	Not affected.

Example: LD HL,48E1H
 LD A,87H
 LD (HL), A

If the contents of Register Pair HL are 48 E 1 , and the contents of the Accumulator are 87, this instruction will load 87 into memory location 48 E1, leaving the same value in the Accumulator.
Addressing Mode: Indirect.
Timing:

M Cycles	T States	$\mu \sec @ 2 \mathrm{MHz}$.
2	7	3.5

LD (IX + d),n
 LD (IY + d),n

Description: Loads the integer n into a memory location which is identified by the contents of Index Register IX or IY (modified by displacement d, which is specified in the instruction), leaving the contents of that memory location unaltered.

No. of Bytes: 4
Object Code:

	Hex	Decimal
LD $(I X+d), n$	DD $36 d n$	$221 \emptyset 54 d n$
LD $(I Y+d), n$	FD $36 d n$	$253 \emptyset 54 d n$

Where: d is the required displacement from the memory location whose address is held in Index Register IX or IY.
Flag Register:

Flag	Code	Bit	
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	Not affected.
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	Not affected.
Carry	C	\emptyset	Not affected.

Example: LD IX,2A35H

LD (IX+3),5H
If the contents of Index Register IX are 2A 35 and d and n are specified in he instruction as 3 and 5 respectively, this instruction will load the value Q5(Hex.) into memory location 2A 38.
Addressing Mode: Indexed/Immediate.
Timing:

M Cycles	T States	$\mu \sec @ 2 \mathrm{MHz}$.
3	19	9.5

LD (IX+d),r LD (IY+d),r

Load memory from Register r using Index Register IX or IY, where r can be any of the registers A, B, C, D, E, H or L and d is the required displacement from the memory location whose address is held in the Index Register.
Object Code:

	Hex	Decimal
LD ($\mid Y+d), A$	FD 77 d	253119 d
$L D(I Y+d), B$	FD 70 d	253112 d
$L D(I Y+d), C$	FD 71 d	253113 d
$L D(I Y+d), D$	FD 72 d	253114 d
$L D(I Y+d), E$	FD 73 d	253115 d
$L D(I Y+d), H$	FD 74 d	253116 d
$L D(I Y+d), L$	FD 75 d	253117 d

	Hex	Decimal
LD $(\mid X+d), A$	DD 77d	$221119 d$
LD $(\mid X+d), B$	DD 70d	$221112 d$
LD $(\mid X+d), C$	DD 71d	$221113 d$
LD $(\mid X+d), E$	DD 73d	$221115 d$
LD $(\mid X+d), H$	DD 74d	$221116 d$
LD (IX+d),L	DD 75d	$221117 d$

Description: Loads the contents of Register r into a memory location whose address is identified by the contents of Index Register IX or IY (modified by displacement d, which is specified in the instruction), leaving the contents of the Register unaltered.
No. of Bytes: 3

Flag Register:

Flag	Code	Bit	
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	Not affected.
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	Not affected.
Carry	C	0	Not affected.

Example: LDIX,34A1H LD A, 48H
 LD (IX+6),A

If the contents of Index Register IX are 34 A 1 , and d in the instruction is 6 , the required memory location is 34 A 7 . If the contents of the Accumulator are 48, this instruction will load 48 into memory location 34 A7, leaving the same value in the Accumulator.

Addressing Mode: Indexed.
Timing:

M Cycles	T States	$\mu \mathrm{sec}$ @ 2 MHz.
5	19	9.5

LDD

Data transfer between memory locations. Decrement source and destination addresses.

Object Code:

	Hex	Decimal
LDD	ED A8	237168

Description: Transfers one byte of data from the memory location whose address is held in Register Pair HL to the memory location whose address is held in Register Pair DE, then decrements Register Pairs BC (which is used as a byte counter), DE and HL.
No. of Bytes: 2
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	RESET $=\emptyset$.
-	-	3	Not used.
Parity/Overflow	P/V	2	SET $=1$ if the new contents of Register Pair BC $\neq \emptyset, ~ o t h e r w i s e ~$
			RESET $=\emptyset$.
Subtract	N	1	RESET $=\emptyset$.
Carry	C	\emptyset	Not affected.

Example: LD HL,2145H
LD DE,6785H
LD BC, 01 H
LDD
If the contents of Register Pair HL are 2145 and the contents of Register Pair DE are 6785 , this instruction will transfer the contents of memory location 2145 to memory location 6785 , leaving the same value in memory location 21 45. It will also decrement Register Pair HL to 21 44, Register Pair DE to 6784 and, if the original contents of Register Pair BC were 01 , that Register Pair will be decremented to $\emptyset \emptyset$, then Flags $\mathrm{H}, \mathrm{P} / \mathrm{V}$ and N will be RESET $=\emptyset$.

Addressing Mode: Indirect.
Timing:

M Cycles	T States	μ sec @ 2 MHz.
4	16	8

LDDR

Data transfer between memory locations until counter is zero. Decrement source and destination registers.
Object Code:

	Hex	Decimal
LDDR	ED B8	237184

Description: Transfers one byte of data from the memory location whose address is held in Register Pair HL to the memory location whose address is held in Register Pair DE, then decrements Register Pairs BC (which is used as a byte counter), DE and HL. If the new contents of Register Pair BC $=\emptyset$ the instruction is terminated, otherwise the Program Counter (PC) is decremented by 2 and the instruction is repeated.
NOTE 1 If the initial value of Register Pair is set to zero, this instruction will cycle through all 64 K of memory.
NOTE 2 Interrupts can be accepted after each transfer is complete.
No. of Bytes: 2
Flag Register:

Flag	Code	Bit	
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	RESET $=\emptyset$.
-	-	3	Not used.
Parity/Overflow	P/V	2	RESET $=\emptyset$.
Subtract	N	1	RESET $=\emptyset$.
Carry	C	\emptyset	Not affected.

Example: LD HL,4680H
LD DE,2435H
LD BC, $\emptyset 3 \mathrm{H}$
LDDR
If the contents of Register Pair HL are 4689 , the contents of Register Pair DE are 2435 and the contents of Register Pair BC are ФDФ3, this instruction will transfer the contents of memory location 4680 to memory location 24 35, then decrement the contents of Register Pairs HL to 46 $7 F$, DE to 2434 and $B C$ to $\emptyset \emptyset \emptyset 2$ and RESET Flags $H, P / V$ and $N=\emptyset$. Because the new contents of Register Pair $\mathrm{BC}=\emptyset$, the Program Counter will be decremented by 2 (which returns it to the address of this instruction) and the LDDR instruction is repeated using the new memory location addresses in Register Pairs HL and DE.

Addressing Mode: Indirect.
Timing:

	M Cycles	T States	$\mu \sec @ 2 \mathrm{MHz}$.
$B C \neq \emptyset$	5	21	$1 \emptyset .5$
$B C=\emptyset$	4	16	8

LDI

Data transfer between memory locations. Increment source and destination addresses.

Object Code:

	Hex	Decimal
LDI	ED A \emptyset	237160

Description: Transfers one byte of data from the memory location whose address is held in Register Pair HL to the memory location whose address is held in Register Pair DE, then increments Register Pairs HL and DE and decrements Register Pair BC (which is used as a byte counter).
No. of Bytes: 2
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	RESET $=\emptyset$.
-	-	3	Not used.
Parity/Overflow	P/V	2	SET $=1$ if the new contents of Register Pair $\mathrm{BC}=\emptyset$, otherwise Subtract
Carry	N	1	RESET $=\emptyset$. RESET \emptyset.
	C	\emptyset	Not affected.

Example: LD HL,4567H
LD DE,32A5H
LD BC, 1628H
LDI
If the contents of Register Pair HL are 4567 and the contents of Register Pair DE are 32 A5 and the contents of Register Pair BC are 16 28, this instruction will transfer the contents of memory location 4567 to memory location 32 A5, leaving the same value in location 45 67, then increment the contents of Register Pairs HL and DE to 4568 and 32 A 6 respectively and decrement the contents of Register Pair BC to 1627. Flags H and N will be RESET $=\emptyset$ and Flag P/V will be SET $=1$.
Addressing Mode: Indirect.
Timing:

M Cycles	T States	$\mu \mathrm{sec}$ @ 2 MHz.
4	16	8

LDIR

Data transfer between memory locations until counter is zero. Increment source and destination registers.

Object Code:

	Hex	Decimal
LDIR	ED BØ	237176

Description: Transfers one byte of data from the memory location whose address is held in Register Pair HL to the memory location whose address is held in Register Pair DE, then increments Register Pairs HL and DE and decrements Register Pair BC (which is used as a byte counter). If the new contents of Register Pair BC $=\emptyset$ the instruction is terminated, otherwise the Program Counter (PC) is decremented by 2 and the instruction is repeated, using the new addresses in Register Pairs HL and DE.
NOTE 1 If the initial value of Register Pair BC is set to zero, this instruction will loop through all 64 K of memory.
NOTE 2 Interrupts can be accepted after each transfer is complete.
No. of Bytes: 2
Flag Register:

Flag	Code	Bit	
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	RESET $=\emptyset$.
-	-	3	Not used.
Parity/Overflow	P/V	2	RESET $=\emptyset$.
Subtract	N	1	RESET $=\emptyset$.
Carry	C	\emptyset	Not affected..

Example: LD HL,4668H
LD DE,2332H
LD BC, 011 H
LDIR
If the contents of Register Pair HL are 46 68, the contents of Register Pair DE are 2332 and the contents of Register Pair BC are $\emptyset \emptyset 11$, this instruction will transfer the contents of memory location 4668 to memory location 23 32, leaving the same value in location 46 68, then increment the contents of Register Pairs HL and DE to 4669 and 2333 respectively and decrement the contents of Register Pair $B C$ to $\emptyset \emptyset 1 \emptyset$. Flags $\mathrm{H}, \mathrm{P} / \mathrm{V}$ and N will be RESET $=\emptyset$.

Addressing Mode: Indirect.
Timing:

	M Cycles	T States	$\mu \sec @ 2 \mathrm{MHz}$.
$B C \neq \emptyset$	5	21	$1 \emptyset .5$
$B C=\emptyset$	4	16	8

NEG

Description: Negates the contents of the Accumulator by subtracting those contents from zero (two's complement) and storing the result in the Accumulator.
NOTE: If the contents of the Accumulator are $8 \emptyset$ (Hex.), those contents will not be changed by this instruction.
No. of Bytes: 2
Object Code (Hex.): ED 44
Decimal: 237 Ø68

Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET $=1$ if the result is negative otherwise RESET $=\emptyset$.
Zero	Z	6	SET $=1$ if the result is zero otherwise RESET $=\emptyset$.
	-	5	Not used.
Half Carry	H	4	SET $=1$ if no Borrow from Bit 4, otherwise RESET $=\emptyset$.
-	-	3	Not used.
Parity/Overflow	P/V	2	SET $=1$ if the original value of the Accumulator was 8Ø(Hex.), otherwise RESET $=\emptyset$.
Subtract	N	1	SET $=1$.
Carry	C	\emptyset	SET $=1$ if the original value of the Accumulator was NOT $\emptyset \emptyset$, otherwise RESET $=\emptyset$.

Example: LD A, Ø2H
 NEG

If the original contents of the Accumulator are $\emptyset 2$ (Hex.), this instruction will make those contents equal $\mathrm{FE}(\mathrm{Hex}$.), then SET Flags S, N and $\mathrm{C}=1$ and RESET Flags Z, H and $P / V=\emptyset$.

Addressing Mode: Implicit.
Timing:

M Cycles	T States	$\mu \sec @ 2 \mathrm{MHz}$.
2	8	4

NOP

Description: Nothing occurs for one Machine Cycle.
No. of Bytes: 1
Object Code (Hex.): $\varnothing \varnothing$
Decimal: $\emptyset \emptyset \emptyset$

Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	Not affected.
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	Not affected.
Carry	C	0	Not affected.

Addressing Mode: Implicit.
Timing:

M Cycles	T States	$\mu \mathrm{sec}$ @ 2 MHz.
1	4	2

OR n

OR Accumulator with data n , where n is an 8 bit integer.
Object Code:
Where n is an 8 Bit integer, specified in the instruction.

	Hex	Decimal
ORn	F6n	246 n

Description: Performs a Bit by Bit logical OR between the contents of the Accumulator and the integer n, then stores the result in the Accumulator.

No. of Bytes: 2
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET $=1$ if the result is negative, otherwise RESET $=\emptyset$. SET $=1$ i i the result is zero, otherwise RESET $=\emptyset$.
Zero	Z	6	5
-	-	Not used. RESET $=\emptyset$.	
Half Carry	H	4	Not used. -
Parity/Overflow	P/V	2	SET $=1$ for Parity Even, RESET $=\emptyset$ for Parity Odd.
Subtract	N	1	RESET $=\emptyset$. RESET $=\emptyset$.
Carry	C	\emptyset	

Example: LD A,6AH

OR 15H
If the contents of the Accumulator are 6AH (Bit Pattern $\emptyset 11 \phi 1 \phi 1 \varnothing$) and n in the intructions is 15 H (Bit Pattern $\varnothing \varnothing \varnothing 1 \varnothing 1 \varnothing 1$) the result will be 7FH (Bit Pattern $\emptyset 1111111$) and this is stored in the Accumulator, while Flags $S, Z, P / V, N, H$ and C are RESET $=\emptyset$.

Addressing Mode: Immediate.
Timing:

M Cycles	T States	$\mu \mathrm{sec}$ @ 2 MHz.
2	7	3.5

ORr

Or Register r with the Accumulator where r is any of the Registers A, B, C, D, E, Hor L.
Object Code:

	Hex	Decimal
OR A	B7	183
OR B	BØ	176
OR C	B1	177
OR D	B2	178
OR E	B3	179
OR H	B4	189
	B5	181

Description: Performs a Bit by Bit logical OR between the contents of the Accumulator and the contents of specified register, then stores the result in the Accumulator leaving the contents of the specified register unaltered. Note that this instruction will never change the value of the A register, but will change the value of some of the flags. As with AND A, OR A is used only for setting flags to useful values.
No. of Bytes: 1
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET $=1$ if the result is negative, otherwise RESET $=\emptyset$. SET $=1$ if the result is zero, Ztherwise RESET $=\emptyset$.
Zero	Z	6	5
Half Carry	-	Not used. RESET $=\emptyset$.	
-	-	3	Not used. SET $=1$ for Parity Even, RESET $=\emptyset$ Parity/Overflow for Parity Odd.
Subtract	N	1	RESET $=\emptyset$. Carry
	C	\emptyset	RESET $=\emptyset$.

Example: LD A,21H

ORA
If the contents of the Accumulator are 21 (Hex.) the logical OR is performed as follows:

as folows.	Hex	Binary
Accumulator	21	00100001
Accumulator	21	00100001
Result	21	Ф0100Ф01

Flag P / V is $\mathrm{SET}=1$ and Flags $\mathrm{S}, \mathrm{Z}, \mathrm{N}, \mathrm{H}$ and C are RESET $=\emptyset$.
Addressing Mode: Implicit.
Timing:

M Cycles	T States	$\mu \sec @ 2 \mathrm{MHz}$.
1	4	2

OR (HL)

Description: Performs a Bit by Bit logical OR between the contents of the Accumulator and the contents of a memory location whose address is held in Register Pair HL. The contents of both Register Pair HL and the memory location remain unaltered.
No. of Bytes: 1
Object Code (Hex.): B6
Decimal: 182
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET $=1$ if the result is negative, otherwise RESET $=\emptyset$. Zero
Z	6	SET $=1$ if the result is zero, otherwise RESET $=\emptyset$.	
-	-	5	Not used.
Half Carry	H	4	RESET $=\emptyset$ - Parity/Overflow
P/V	2	Not used. SET $=1$ for Parity Even, RESET $=\emptyset$ for Parity Odd.	
Subtract	N	1	RESET $=\emptyset$. Carry

Example: LD A,24H
LD HL,A367H
LD (HL), 12H
OR (HL)
If the contents of the Accumulator are 24(Hex.), the contents of Register Pair HL are A3 67 and the contents of memory location A3 67 are 12, the logical OR is performed as follows:

	Hex	Binary
Accumulator	24	$\emptyset 01 \emptyset \emptyset 1 \emptyset \emptyset$
Location A3 67	12	$\emptyset 0 \emptyset 1 \emptyset 01 \emptyset$
Result	36	$\varrho 011 \emptyset 110$

Flag P / V is SET $=1$ while Flags S, Z, N, H and C are RESET $=\emptyset$.
Addressing Mode: Indirect.

Timing:

M Cycles	T States	μ sec @ 2 MHz.
2	7	3.5

OR (IX + d)
 OR (IY + d)

Description: Performs a Bit by Bit logical OR between the contents of the Accumulator and the contents of a memory location whose address is identified by the contents of Index Register IX or IY (modified by displacement d, which is specified in the instruction), then stores the result in the Accumulator. The contents of both Index Register IX and IY and the memory location remain unaltered.
No. of Bytes: 3
Object Code:

	Hex	Decimal
OR $(I X+d)$	DD B6 d	$221182 d$
OR $(\mid Y+d)$	FD B6 d	$253182 d$

Where d is the required displacement from the memory location whose address is held in Index Register IX or IY.
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET $=1$ if the result is negative, otherwise RESET $=\emptyset$. Zero
Z	6	SET $=1$ if the result is zero, otherwise RESET $=\emptyset$.	
-	-	5	Not used.
Half Carry	H	4	RESET $=\emptyset$. - Parity/Overflow
P/V	3	2	Not used. SET $=1$ for Parity Even, RESET $=\emptyset$ for Parity Odd.
Subtract	N	1	RESET $=\emptyset$. Carry
	C	\emptyset	RESET $=\emptyset$.

Example: LD IX,2105H
LD HL,2108H
LD (HL), 12H
LD A, ØA3H
OR (IX+3)
If the contents of Index Register IX are 2105 and d in the instruction is 3 , the required memory location is 2108 . If the contents of the Accumulator are A3 and the contents of memory location $21 \emptyset 8$ are 12, the logical OR performs as follows:

	Hex	Binary
Accumulator	A3	$1 \emptyset 1 \emptyset \emptyset \emptyset 11$
Location 21 @8	12	$\emptyset \emptyset \emptyset 1 \emptyset \emptyset 1 \varnothing$
Result	B3	$1 \emptyset 11 \emptyset \emptyset 11$

Flag S is $S E T=1$, while Flags $Z, H, P / V, N$ and C are RESET $=\emptyset$.
Addressing Mode: Indexed.
Timing:

M Cycles	T States	μ sec @ 2 MHz.
5	19	9.5

OTDR

Description: Outputs, to the device identified by the contents of Register C, the contents of a memory location whose address is held in register Pair HL, then decrements register B (which is used as a byte counter) and Register Pair HL. If Register B is then $<>\emptyset$, the Program Counter (PC) is decremented by 2 and the instruction is repeated.
NOTE: Register C supplies Bits \emptyset to 7 to the Address Bus and Register B provides Bits 8 to 15 (after Register B is decremented.

No. of Bytes: 2
Object Code (Hex.): ED BB Decimal: 237187
Flag. Register:

Flag	Code	Bit	
Sign	S	7	Not known.
Zero	Z	6	SET $=1$
-	-	5	Not used.
Half Carry	H	4	Not known.
-	-	3	Not used.
Parity/Overflow	P/V	2	Not known.
Subtract	N	1	SET =1.
Carry	C	0	Not affected.

Example: LD C,21H
LD HL,43A1H
LD B, 1
OTDR
If Register C contains 21(Hex.) and Register Pair HL contains 43 A 1 , this instruction will output the contents of memory location 43 A1 to device number 21 H , then decrements Register B and Register Pair HL. If the new contents of Register $B=\emptyset$, the instruction is terminated, otherwise the Program Counter reverts to the address of the instruction which is then repeated (Register Pair HL will now contain $43 \mathrm{~A} \emptyset$).
Addressing Mode: External.
Timing:

	M Cycles	T States	μ sec @ 2 MHz.
$B<>\emptyset$	5	21	$1 \varnothing .5$
$B=\emptyset$	4	16	8

OTIR

Description: Outputs, to the device identified by the contents of Register C, the contents of a memory location whose address is held in register Pair HL, then decrements register B (which is used as a byte counter) and increments Register Pair HL. If Register B is then $<>\emptyset$, the Program Counter (PC) is decremented by 2 and the instruction is repeated.

NOTE: Register C supplies Bits \emptyset to 7 to the Address Bus and Register B provides Bits 8 to 15 (after Register B is decremented).

No. of Bytes: 2
Object Code (Hex.): ED B3 Decimal: 237179

Flag Register:

Flag	Code	Bit	
Sign	S	7	Not known.
Zero	Z	6	SET $=1$
-	-	5	Not used.
Half Carry	H	4	Not known.
-	-	3	Not used.
Parity/Overflow	P/V	2	Not known.
Subtract	N	1	SET =1.
Carry	C	0	Not affected.

Example: LD C,8H
LD HL,3564H
LD B, $1 \varnothing \mathrm{H}$
OTIR
If Register C contains $\emptyset 8$ (Hex.) and Register Pair HL contains 35 64, this instruction will output the contents of memory location 3564 to device number 8, then decrements Register B and increments Register Pair HL to 3565 . If the new contents of Register B are zero, the instruction is terminated, otherwise theProgram Counter reverts to the address of this instruction which is then repeated using the new memory location address which is now held in Register Pair HL.
Addressing Mode: External.

Timing:

	M Cycles	T States	μ sec @ 2 MHz.
$B<>\emptyset$	5	21	$1 \emptyset .5$
$B=\emptyset$	4	16	8

OUT (C), r

Output from Register r where r is any of the registers A, B, C, D, E, H or L. Object Code:

	Hex	Decimal
OUT (C),A	ED 79	237113
OUT (C),B	ED 41	$237 \emptyset 65$
OUT (C),C	ED 49	$237 \emptyset 73$
OUT (C),D	ED 51	$237 \emptyset 81$
OUT (C),E	ED 59	$237 \emptyset 89$
OUT (C),H	ED 61	$237 \emptyset 97$
OUT (C),L	ED 69	237105

Description: Output from Register r to I/O Port addressed by Register C.

No. of Bytes: 2
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	Not affected.
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	Not affected.
Carry	C	\emptyset	Not affected.

Example: LD A,18H
LD C, ØAH
OUT (C), A

If the contents of the Accumulator are 18(Hex.) and the contents of Register C are \emptyset A(Hex.), OUT (C),A will output 18(Hex.) to Port number QAH, leaving the original values in both the Accumulator and Register C.
Addressing Mode: External.
Timing:

M Cycles	T States	$\mu \mathrm{sec}$ @ 2 MHz.
3	12	6

OUT (n),A

Output A from the Accumulator to Port n , where n is any value from Ø-255.

Object Code: (Hex.) D3 n Decimal: 211 n
Description: Output from the Accumulator to Port n.
No. of Bytes: 2
Flag Register:

Flag	Code	Bit	Effect	
Sign	S	7	Not affected.	
Zero	Z	6	Not affected.	
-	-	5	Not used.	
Half Carry	H	4	Not affected.	
-	-	3	Not used.	
Parity/Overflow	P/V	2	Not affected.	
Subtract	N	1	Not affected.	
Carry	C	\emptyset	Not affected.	

Example: LD A,18H
OUT ($\emptyset \mathrm{AH}$), A
If the contents of the Accumulator are 18(Hex.) and the value of n is ØA(Hex.), this instruction will output 18(Hex.) to Port number ØAH leaving the original value in the Accumulator.
Addressing Mode: External.
Timing:

M Cycles	T States	$\mu \sec @ 2 \mathrm{MHz}$.
3	11	5.5

OUTD

Description: Outputs the contents of a memory location, whose address is held in Register Pair HL, to the Port (one of 256) whose address is held in Register C. The contents of the memory location and Register C remain unchanged while the contents of Register B (which is used as a byte counter) and Register Pair HL are both decremented.

No. of Bytes: 2
Object Code (Hex.): ED AB
Decimal: 237171
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	Not known.
Zero	Z	6	SET $=1$ if the new value of Register $B=\emptyset$, otherwise RESET $=\emptyset$.
-	-	5	Not used.
Half Carry	H	4	Not known.
	-	3	Not used.
Parity/Overflow	P/V	2	Not known.
Subtract	N	1	SET $=1$.
Carry	C	\emptyset	Not affected.

Example: LD HL,2134H
LD C, 08 H
LD (HL), 12H
LD B, \varnothing
OUTD
If the contents of Register Pair HL are 2134 and the contents of Register C are $\emptyset 8$ (Hex.), the requirement is for the contents of memory location 21 34 to be output to Port number 8 . If thecontents of memory location 2134 are 12(Hex.), this instruction will output 12(Hex.) to Port number 8, decrement Register Pair HL to 21 33, decrement Register B, SET Flag N $=\emptyset$ and either SET Flag $Z=1$ (if the new value ofRegister $B=\emptyset$) or RESET that flag $=\emptyset$.

Addressing Mode: External.
Timing:

M Cycles	T States	$\mu \sec @ 2 \mathrm{MHz}$.
4	16	8

OUTI

Description: Outputs the contents of a memory location, whose address is held in Register Pair HL, to the Port (one of 256) whose address is held in Register C. The contents of the memory location and Register C remain unchanged while the contents of Register B (which is used as a byte counter) are decremented, and Register Pair HL is incremented.

No. of Bytes: 2
Object Code (Hex.): ED A3 Decimal: 237163
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	Not known.
Zero	Z	6	SET = if the new value of Register
			B $=\emptyset$, otherwise RESET = \emptyset.
-	-	5	Not used.
Half Carry	H	4	Not known.
-	-	3	Not used.
Parity/Overflow	P/V	2	Not known.
Subtract	N	1	SET =1.
Carry	C	\emptyset	Not affected.

Example: LD HL,2134H
LD (HL),12H
LD C, 08 H
LD B, 1
OUTI
If the contents of Register Pair HL are 21 34, and the contents of Register C are Q8(Hex.), the requirement is for the contents of memory location 21^{2} 34 to be output to Port number 8. If the contents of memory location 21 34 are 12(Hex.), this instruction will output 12(Hex.) to Port number 8, increment Register Pair HL to 21 35, decrement Register B, SET Flag N $=\emptyset$ and either SET Flag $Z=1$ (if the new value of Register $B=\emptyset$) or RESET that flag $=\emptyset$.

Addressing Mode: External.
Timing:

M Cycles	T States	$\mu \mathrm{sec}$ @ 2 MHz.
4	16	8

POP rr

Read from top of Stack into Register Pair rr where rr is any of the Register Pairs AF, BC, DE or HL.
Object Code:

	Hex	Decimal
POP AF	F1	241
POP BC	C1	193
POP DE	D1	209
POP HL	E1	225

Description: Loads the contents of the memory location, whose address is held in the Stack Pointer (SP), into the Lower Order Byte of the designated Register Pair and the contents of the next memory location $(S P+1)$ into the Higher Order byte of that Register Pair. The Stack Pointer is incremented twice while the contents of both memory locations remain unaltered.

No. of Bytes: 1
Flag Register:

Flag	Code	Bit	
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	Not affected.
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	Not affected.
Carry	C	0	Not affected.

Example: LD BC, 0568 H
LD (1234),BC
LD SP,1234
POPAF
If the Stack Pointer (SP) contains 12 34, and memory location 1234 contains 68, that value (68) is loaded into Register F then the Stack Pointer is incremented to 1235 and the contents of memory location 12 35 (say 05 H), loaded into the Accumulator after which the Stack Pointer is incremented again to 1236.

Addressing Mode: Indirect.
Timing:

M Cycles	T States	μ sec @ 2 MHz.
3	10	5

POP IX
 POP IY

Read from top of Stack into Index Register.
Object Code:

	Hex	Decimal
POP IX	DD E1	221225
POP IY	FD E1	253225

Description: Loads the contents of the memory location, whose address is held in the Stack Pointer (SP), into the Lower Order Byte of the designated Index Register and the contents of the next memory location $(S P+1)$ into the Higher Order byte of that Index Register. The Stack Pointer is incremented twice while the contents of both memory locations remain unaltered.

No. of Bytes: 2
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	Not affected.
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	Not affected.
Carry	C	0	Not affected.

Example: LD BC,3714H
LD (4589H),BC
LD SP,4589H
POPIX
If the Stack Pointer contains 45 89, and memory location 4589 contains 14, that value (14) is loaded into the Lower Order byte of Index Register IX then the Stack Pointer is incremented to 458 A and the contents of memory location 45 8A loaded into the Higher Order byte of Index Register IX. If the contents of location 458A are 37, the contents of Index Register IX will be 37 14. The Stack Pointer is then again incremented to 458 B.

Addressing Mode: Indirect.
Timing:

M Cycles	T States	$\mu \sec @ 2 \mathrm{MHz}$.
4	14	7

PUSH rr

Write contents of Register Pair rr to the top of the Stack, where rr can be $A F, B C, D E$ or HL.

Object Code:

	Hex	Decimal
PUSH AF	F5	245
PUSH BC	C5	197
PUSH DE	D5	213
PUSH HL	E5	229

Description: Pushes the contents of the specified Register Pair on to the top of the memory Stack. The Stack Pointer is decremented and the contents of the Higher Order byte of the Register Pair loaded into the memory location whose address is now held in the Stack Pointer (SP), then the Stack Pointer is again decremented and the contents of the Lower Order byte of the Register Pair loaded into the memory location whose address is the new contents of the Stack Pointer. The contents of the Register Pair remain unaltered.
No. of Bytes: 1
Flag Register:

Flag	Code	Bit	
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	Not affected.
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	Not affected.
Carry	C	0	Not affected.

Example: LD SP,3462H
LD BC,AABBH
PUSH BC
If the contents of the Stack Pointer are 34, 62, PUSH BC will decrement this to 3461 and load the contents of the B Register into memory location 3461 , decrement the Stack Pointer again to $346 \emptyset$ and load the contents of the C Register into memory location $346 \emptyset$.
Addressing Mode: Indirect.
Timing:

M Cycles	T States	μ sec @ 2 MHz.
3	11	5.5

PUSH IX
 PUSH IY

Write contents of Index Register to the top of the Stack.
Object Code:

	Hex	Decimal
PUSH IX	DD E5	221229
PUSH IY	FD E5	253229

Description: Pushes the contents of the specified Index Register on to the top of the memory Stack. The Stack Pointer (SP) is decremented and the contents of the Higher Order byte of the Index Register loaded into the memory location whose address is now held in the Stack Pointer, then the Stack Pointer is again decremented and the contents of the Lower Order byte of the Index Register loaded into the memory location whose address is the new contents of the Stack Pointer. The contents of the Index Register remain unaltered.
No. of Bytes: 2

Flag Register:

Flag	Code	Bit	
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	Not affected.
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	Not affected.
Carry	C	\emptyset	Not affected.

Example: LD SP,5834H

LD IX, ØAABBH
PUSHIX
If the contents of the Stack Pointer are 58 34, this instruction will decrement this to 5833 and load the contents of the Higher Order byte of Index Register IX into the memory location 58 33, decrement the Stack Pointer again, to 58 32, then load the contents of the Lower Order byte of Index Register IX into memory location 5832.

Addressing Mode: Indirect.
Timing:

M Cycles	T States	$\mu \sec @ 2 \mathrm{MHz}$.
4	15	7.5

RES b,r

No. of Bytes: 2
Object Code (Hex.): CB xx Decimal: $2 \emptyset 3$ yyy
Where: b is the specified Bit (Range $\emptyset-7$) to be RESET. r is the nominated Register ($\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{H}$ or L) containing b . $x x$ and yyy are taken from the table below:

Bi	A		B		C		D		E		H		L	
	xx	yyy	x ${ }^{\text {d }}$	yyy	X \times	yyy								
0	87	135	80	128	81	129	82	130	83	131	84	132	85	133
1	8F	143	88	136	89	137	8A	138	8B	139	8 C	140	8 D	141
2	97	151	90	144	91	145	92	146	93	147	94	148	95	149
3	9 F	159	98	152	99	153	9A	154	9 B	155	9 C	156	9 D	157
4	A7	167	A 0	160	A1	161	A2	162	A3	163	A4	164	A5	165
5	AF	175	A8	168	A9	169	AA	179	AB	171	AC	172	AD	173
6	B7	183	B0	176	B1	177	B2	178	B3	179	B4	180	B5	181
7	BF	191	B8	184	B9	185	BA	186	BB	187	BC	188	BD	189

Description: RESETS $=\emptyset$ the specified Bit in the nominated Register.
Flag Register:

Flag	Code	Bit	
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	Not affected.
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	Not affected.
Carry	C	\emptyset	Not affected.

Example: LDE, QFFH
RES 3, E
The Source Code statement RES 3,E, will produce the Object Code instruction CB 9B(Hex.) which will RESET $=\emptyset$ Bit 3 in Register E.

Addressing Mode: Implicit.
Timing:

M Cycles	T States	$\mu \mathrm{sec} @ 2 \mathrm{MHz}$.
2	8	4

RES b, (HL)

Description: RESETS $=\emptyset$ the specified Bit in the memory location whose address is held in Register Pair HL.

No. of Bytes: 2
Object Code (Hex.): CB xx Decimal: $2 \emptyset 3$ yyy
Where b is the specified Bit (range \emptyset to 7) to be RESET.
$x x$ and yyy are taken from the table below:

Bit	$x x$	$y y y$
\emptyset	86	134
1	8 E	142
2	96	$15 \emptyset$
3	$9 E$	158
4	A6	166
5	AE	174
6	$\mathrm{B6}$	182
7	BE	190

Description: RESETS $=\emptyset$ the specified Bit in the memory location whose address is held in Register Pair HL.
Flag Register:

Flag	Code	Bit	
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	Not affected.
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	Not affected.
Carry	C	0	Not affected.

Example: LP HL,1000H
LD (HL), ФFFH
RES 5,(HL)
The Source Code statement RES 5,(HL), will produce the Object Code instruction CB AE(Hex.) which will RESET $=\emptyset$ Bit 5 in the memory location whose address is held in Register Pair HL.
Addressing Mode: Indirect.
Timing:

M Cycles	T States	$\mu \mathrm{sec}$ @ 2 MHz.
4	15	7.5

RES b,(IX+d)
 RES b,(IY+d)

Description: RESETS $=\emptyset$ the specified bit in the memory location whose address is held in the specified Index Register (modified by displacement d, which is specified in the instruction).

No. of Bytes:
Object Code:

	Hex	Decimal
RES b,(IX+d)	DD CB dxx	221203 dyyy
RES b,(IY+d)	FD CB dxx	$2532 \emptyset 3$ dyyy

Where:
b is the specified bit (range \emptyset to 7) to be RESET. d is the required displacement from the memory location whose address is held in the specified Index Register. $x x$ and $y y y$ are taken from the table below.

Bit	$x x$	yyy
\emptyset	86	134
1	8 E	142
2	96	$15 \emptyset$
3	9 E	158
4	A 6	166
5	AE	174
6	B 6	182
7	BE	190

Flag Register:

Flag	Code	Bit	
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
Half Carry	$-H$	5	Not used.
H	4	Not affected.	
Parity/Overflow	P/V	3	Not used.
Subtract	Not affected.		
Carry	N	1	Not affected
	C	\emptyset	Not affected.

Example: LD HL,4569H
LD (HL), @FFH
LD IX,4567H
RES 4,(IX+2)
If the contents of Index Register IX are 4567, and d in the instruction is 2, the required memory location is 4569. The Source Code statement RES 4,(IX+2) will produce the Object Code instruction DD CB 2 A6(Hex.) which will RESET $=\emptyset$ bit 4 in memory location 4569.

Addressing Mode: Indexed.
Timing:

M Cycles	T States	$\mu \mathrm{sec}$ @ 2 MHz.
6	23	11.5

RET

Return from subroutine.
Object Code:

	Hex	Decimal
RET	C9	$2 \emptyset 1$

Description: Returns control to the main program after a sub-routine has been called and followed. When the sub-routine was called the contents of the Program Counter (PC) at that time were stored in two consecutive memory locations and the address of the higher of those locations was placed in the Stack Pointer (SP). This instruction loads the contents of the memory location whose address is held in the Stack Pointer into the Lower Order byte of the Program Counter, then increments the Stack Pointer and loads the contents of the memory location now pointed to by the Stack Pointer into the Higher Order byte of the Program Counter then the Stack Pointer is incremented again.
No. of Bytes: 1
Flag Register:

Flag	Code	Bit	
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	Not affected.
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	Not affected.
Carry	C	\varnothing	Not affected.

Example: If the contents of the Stack Pointer are 21 14, and the contents of memory location 2114 are 3A, the value 3A is loaded into the Lower Order byte of the Program Counter, the Stack Pointer is incremented to 2115 and the contents of memory location 2115 (say 48) are loaded into the Higher Order byte of the Program Counter, making the contents of the Program Counter 48 3A. The Stack Pointer is then again incremented to 21 16. The next instruction will be fetched from memory location 48 3A.

Addressing Mode: Indirect.
Timing:

M Cycles	T States	$\mu \mathrm{sec}$ @ 2 MHz.
3	10	5

RET cc

Return from subroutine if condition cc is satisfied where cc can be NZ, Z, NC, C, PO, PE, P or M.
Object Code:

	Hex	Decimal
RET NZ	CØ	192
RET Z	C8	$2 \emptyset \emptyset$
RETNC	DØ	$2 \emptyset 8$
RETC	D8	216
RETPO	EØ	224
RETPE	E8	232
RETP	FØ	$24 \emptyset$
RETM	F8	248

Description: Conditionally returns control to the calling routine provided the condition is met. If this condition is not met, this instruction is ignored. If the condition is met, i.e. TRUE, this instruction loads the contents of the memory location whose address is held in the Stack Pointer into the Lower Order byte of the Program Counter, increments the Stack Pointer then loads the contents of the memory location now pointed to by the Stack Pointer into the Higher Order byte of the Program Counter, then again increments the Stack Pointer.

Condition	Flag
Non zero	Z
Zero	Z
Non carry	C
Carry	C
Parity odd	P/O
Parity even	S
Sign positive	S
Sign negative	S

No. of Bytes: 1

Flag Register:

Flag	Code	Bit	
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	Not affected.
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	Not affected.
Carry	C	0	Not affected.

Assuming that the C Flag is SET $=1$, if the contents of the Stack Pointer are 65 23, the contents of memory location 6523 are 4B and the contents of memory location 6524 are 87, RET C will load $4 B$ into the Lower Order byte of the Program Counter, increment the Stack Pointer to 65 24, load 87 into the Higher Order byte of the Program Counter and again increment the Stack Pointer (to 65 25). The new contents of the Program Counter will then be 874 B , and the next instruction will be fetched from that location.

$$
\text { Example: } \begin{aligned}
& \text { LD BC,874BH } \\
& \text { LD }(6523 H), B C \\
& \text { LD SP, } 6523 \mathrm{H} \\
& \text { SCF } \\
& \text { RET C }
\end{aligned}
$$

Addressing Mode: Indirect.
Timing:

	M Cycles	T States	$\mu \mathrm{sec} @ 2 \mathrm{MHz}$.
Condition Met	3	11	5.5
Condition Not Met	1	5	2.5

RETI

Description: Returns control to the calling routine after an interrupt has been received and serviced. Loads the contents of the memory location whose address is held in the Stack Pointer to the Lower Order byte of the Program Counter, increments the Stack Pointer, then loads the contents of the memory location now pointed to by the Stack Pointer into the Higher Order byte of the Program Counter. Finally, the Stack Pointer is again incremented and the IFF1 and IFF2 Flip Flops are RESET $=\emptyset$.
NOTE: An El instruction must be obeyed prior to the RETI instruction in order to re-enable interrupts.
No. of Bytes: 2
Object Code (Hex.): ED 4D Decimal: $237 \emptyset 77$

Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	Not affected.
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	Not affected.
Carry	C	0	Not affected.

Example: LD SP,436AH
LD BC, 78АЗH
LD (436AH),BC
EI

RETI

If the Stack Pointer contains 43 6A, the contents of memory location 43 6 A are A3 and the contents of memory location 436 B are 78, this instruction will load A3 into the Lower Order byte of the Program Counter, increment the Stack Pointer to 43 6B, load 78 into the Higher Order byte of the Program Counter, then again increment the Stack Pointer (to 43 6C). The new contents of the Program Counter will be 78 A3, and the next instruction will be fetched from that memory location.

Addressing Mode: Indirect.
Timing:

M Cycles	T States	$\mu \sec @ 2 \mathrm{MHz}$.
4	14	7

RETN

Description: Returns control to the main program after a Non-Maskable Interrupt has been received and serviced. Loads the contents of the memory location whose address is held in the Stack Pointer to the Lower Order byte of the Program Counter, increments the Stack Pointer, then loads the contents of the memory location now pointed to by the Stack Pointer into the Higher Order byte of the Program Counter. The Stack Pointer is again incremented, then the contents of the IFF2 Flip-Flop (Storage flip-flop) are copied into the IFF1 Flip-Flop, restoring it to the condition which existed before the Non-Maskable Interrupt.
No. of Bytes: 2
Object Code (Hex.): ED 45 Decimal: 237 Ø69

Flag Register:

Flag	Code	Bit	
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	Not affected.
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	Not affected.
Carry	C	\emptyset	Not affected.

Example: LD SP,3179H
LD BC, ØB42H
LD (3179H),BC
RETN
If the Stack Pointer contains 3179 , the contents of memory location 31 79 are 42 and the contents of memory location 317 A are $\emptyset \mathrm{B}$, this instruction will load 42 into the Lower Order byte of the Program Counter, increment the Stack Pointer to 317 A , load $\emptyset \mathrm{B}$ into the Higher Order byte of the Program Counter, then again increment the Stack Pointer (to 317 B). The contents of the IFF2 Flip-Flop will be copied in to the IFF1 FLip-FLop. The new contents of the Program Counter will be $\emptyset B$ 42 and the next instruction will be fetched from that memory location.

Addressing Mode: Indirect.
Timing:

M Cycles	T States	$\mu \sec$ @ 2 MHz.
4	14	7

RL r

Rotate Register r left where r is any of the registers A, B, C, D, E, H or L. Object Code:

	Hex	Decimal
RLA	CB17	$2 \emptyset 323$
RLB	CB10	$2 \emptyset 316$
RLC	CB11	$2 \emptyset 317$
RLD	CB12	$2 \emptyset 318$
RLE	CB13	$2 \emptyset 319$
RLH	CB14	$2 \emptyset 32 \emptyset$
RLL	CB15	$2 \emptyset 321$

Description: Rotate contents of Register r left one bit through carry status.

No. of Bytes: 2
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET $=1$ if the result is negative, otherwise RESET $=\emptyset$.
Zero	Z	6	SET $=1$ if the result is zero, otherwise RESET = \varnothing
-	-	5	Not used.
Half Carry	H	4	RESET = \emptyset.
	-	3	Not used.
Parity/Overflow	P/V	2	SET = 1 for Parity Even, RESET = \emptyset for Parity Odd.
Subtract	N	1	RESET $=\emptyset$.
Carry	C	\emptyset	Contains the data previously held in Bit 7 of Register B.

Example: LD B,3AH
SCF
CCF
RLB
If Register B contains $3 A$ (Hex.) and the C Flag $=\emptyset$, the effect of $R L B$ will be:

Flags S, Z, H and N are RESET $=\emptyset$, Flag P / V is SET $=1$ and Flag C will contain the \emptyset previously held in Bit 7 of Register B.
Addressing Mode: Implicit.
Timing:

M Cycles	T States	$\mu \sec$ @ 2 MHz.
2	8	4

RL (HL)

Description: Rotates Left the contents of the memory location whose address is held in Register Pair HL through the C (Carry) Flag in the Flag Register. Each Bit is shifted Left one position, i.e. the contents of Bit \emptyset are moved into Bit 1, the contents of Bit 1 are moved into Bit 2, etc. The contents of Bit 7 are moved into the C Flag and the previous contents of the C Flag are moved into Bit \emptyset.

No. of Bytes: 2
Object Code (Hex.): CB 16 Decimal: 203 Ø22

Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET $=1$ if the result is negative, otherwise RESET $=\emptyset$.
Zero	Z	6	SET $=1$ if the result is zero, otherwise RESET $=\emptyset$.
-	-	5	Not used. HESET $=\emptyset$.
-	H	4	Ralf Not used.
Parity/Overflow	P/V	2	SET $=1$ for Parity Even, RESET $=\emptyset$ for Parity Odd.
Subtract	N	1	RESET $=\emptyset$. Contains the data previously held in Bit 7 of the memory location.

Example: LD HL,2A15H
LD (HL),58H
RL (HL)
If Register Pair HL contains 2A 15, the contents of memory location 2A 15 are 58 , and the C Flag $=1$, the effect of this instruction will be:

	Memory Location							$\begin{gathered} \text { C } \\ \text { Flag } \\ \hline \end{gathered}$	
	Hex.	Bits							
		76	6	4	32	1			
Original Contents	58	$\emptyset 1$	1	1	10	\emptyset			1
New Contents	B1	10	1	1	$\emptyset \emptyset$	\emptyset			\emptyset

Flags Z, H and N are RESET $=\emptyset$, Flags S and P / V are SET $=1$ and Flag C will contain the \emptyset previously held in Bit 7 of the memory location.
Addressing Mode: Indirect.
Timing:

M Cycles	T States	$\mu \sec$ @ 2 MHz.
4	15	7.5

RL (IX + d)
 RL (IY + d)

Description: Rotates Left the contents of the memory location whose address is identified by the contents of Index Register IX or IY (modified by displacement d, which is specified in the instruction) through the C (Carry) Flag in the Flag Register. Each Bit is shifted Left one position, i.e. the contents of Bit \emptyset are moved into Bit 1, the contents of Bit 1 are moved into Bit 2, etc. The contents of Bit 7 are moved into the C Flag and the previous contents of the C Flag are moved into Bit \emptyset.

Object Code

	Hex	Decimal
$R L(I X+d)$	DD CB d 16	$221203 d \emptyset 22$
$R L(I Y+d)$	FD CB d 16	$2532 \emptyset 3 d \emptyset 22$

Where d is the required displacement from the memory location whose address is held in Index Register IX or IY.
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET $=1$ if the result is negative, otherwise RESET = \varnothing.
Zero	Z	6	SET $=1$ if the result is zero, otherwise RESET $=\emptyset$.
-	-	5	Not used.
Half Carry	H	4	RESET $=\emptyset$.
	-	3	Not used.
Parity/Overflow	P/V	2	SET $=1$ for Parity Even, RESET $=\varnothing$ for Parity Odd.
Subtract	N	1	RESET $=\emptyset$.
Carry	C	\emptyset	Contains the data previously held in Bit 7 of the memory location.

Example:
LD IX,5643H
LD A,89
LD (5649H),A
SCF
CCF

$$
\mathrm{RL}(\mathrm{IX}+6)
$$

If the contents of index Register IX are 56 43, and d in the instruction is 06 (Hex.), the required memory location is 56 49. If the contents of that memory location are 89 and the C Flag $=\emptyset$, the effect of this instruction will be:

Flags S, Z, H and N are RESET $=\emptyset$, Flag P / V is $S E T=1$ and Flag C will contain the 1 previously held in Bit 7 of the memory location.
Addressing Mode: Indexed.
Timing:

M Cycles	T States	μ sec @ 2 MHz.
6	23	11.5

RLA

Description: Rotates Left the contents of the Accumulator through the C (Carry) Flag. Each Bit is shifted Left one position, i.e. the contents of Bit \emptyset are moved into Bit 1, the contents of Bit 1 are moved into Bit 2, etc. The contents of Bit 7 are moved into the C Flag and the previous contents of the C Flag are moved into Bit \emptyset.

NOTE: This instruction has the same effect as instruction RL A but is faster in execution, and has a different effect on the Flag Register. It is provided for compatibility with the Intel $8 \emptyset 8 \emptyset$.
No. of Bytes: 1
Object Code (Hex.): 17 Decimal: $\emptyset 23$

Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	RESET $=\emptyset$.
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	RESET $=\emptyset$.
Carry	C	\emptyset	Contains the data previously held
			in Bit 7 of the Accumulator.

Example: LD A,57
 SCF
 RLA

If the contents of the Accumulator are 57, and the C Flag $=1$, the effect of this instruction will be:

		Accumulator							$\begin{gathered} \text { C } \\ \text { Flag } \end{gathered}$
	Hex.	Bits							
			65	54	43	2	1	\emptyset	
Original Contents	57		10	¢ 1	10	1			1
New Contents	AF		Q 1	$1 \varnothing$	¢ 1	1	1	1	\emptyset

Flags H and N will be RESET $=\emptyset$, and Flag C will contain the \emptyset previously held in Bit 7 of the Accumulator.

Addressing Mode: Implicit.
Timing:

M Cycles	T States	$\mu \sec @ 2 \mathrm{MHz}$.
1	4	2

RLC r

Rotate contents of Register r left circular where r is any of the registers A, B, C, D, E, H or L.

Object Code:

	Hex	Decimal
RLC A	CB $\emptyset 7$	$2 \emptyset 3 \emptyset \emptyset 7$
RLC B	CB $\emptyset \varnothing$	$2 \emptyset 3 \emptyset \emptyset \emptyset$
RLC C	CB $\emptyset 1$	$2 \emptyset 3 \emptyset \emptyset 1$
RLCD	CB $\emptyset 2$	$2 \emptyset 3 \emptyset \emptyset 2$
RLCE	CB $\emptyset 3$	$2 \emptyset 3 \emptyset \emptyset 3$
RLCH	CB $\emptyset 4$	$2 \emptyset 3 \emptyset \emptyset 4$
RLC L	CB $\emptyset 5$	$2 \emptyset 3 \emptyset \emptyset 5$

Description: Rotate contents of Register r left circular one bit, copying bit 7 into the carry status. That is, bit 7 is copied into bit \emptyset, and also into the carry flag.

No. of Bytes: 2
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET $=1$ if the result is negative, otherwise RESET $=\emptyset$.
Zero	Z	6	SET $=1$ if the result is zero, otherwise RESET $=\emptyset$
-	-	5	Not used. RESET $=\emptyset$.
Half Carry	H	4	3
Not used.			
Parity/Overflow	P/V	2	SET = 1 for Parity Even, RESET $=\emptyset$ for Parity Odd.
Subtract	N	1	RESET = \emptyset. Contains the data previously held in Bit 7 of the Accumulator.

Example: LD A,ØB6H
RLC A
If the contents of the Accumulator are B 6 , the effect of this instruction will be:

	Accumulator							$\begin{gathered} \text { C } \\ \text { Flag } \end{gathered}$
	Hex.	Bits						
			65	4	3	2		
Original Contents	B6		¢ 1	1	$\emptyset 1$	1		?
New Contents	6D		11	0	1	10		1

Flags $S, Z, H, P / V$ and N are RESET $=\emptyset$ and Flag C will contain the data previously held in Bit 7 of the Accumulator, which is identical to that now held in Bit \emptyset of the Accumulator.

Addressing Mode: Implicit.
Timing:

M Cycles	T States	$\mu \sec @ 2 \mathrm{MHz}$.
2	8	4

RLC (HL)

Description: Rotates Left the contents of the memory location whose address is held in Register Pair HL. Each Bit is shifted Left one position, i.e. the contents of Bit \emptyset are moved into Bit 1, the contents of Bit 1 are moved into Bit 2, etc. The contents of Bit 7 are moved into Bit \emptyset and into the C (Carry) Flag in the Flag Register.

No. of Bytes: 2
Object Code (Hex.): CB Ø6 Decimal: $2 \emptyset 3 \emptyset \emptyset 6$

Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET $=1$ if the result is negative, otherwise RESET $=\emptyset$.
Zero	Z	6	SET $=1$ if the result is zern, otherwise RESET $=\emptyset$.
-	-	5	Not used.
Half Carry	H	4	RESET $=\emptyset$.
	-	3	Not used.
Parity/Overflow	P/V	2	SET = 1 for Parity Even, RESET = \varnothing for Parity Odd.
Subtract	N	1	RESET $=\emptyset$.
Carry	C	\emptyset	Contains the data previously held in Bit 7 of the memory location.

Example: LD HL,1745H
LD (HL),5AH
RLC (HL)
If the contents of Register Pair HL are 1745, and the contents of memory location 1745 are 5A, the effect of this instruction will be:

Flags Z, H and N are RESET $=\emptyset$, Flags S and P / V are SET $=1$ and Flag C will contain the data previously held in Bit 7 of the memory location, which is identical to that now held in Bit \emptyset of the memory location.
Addressing Mode: Indirect.
Timing:

MCycles	T States	$\mu \mathrm{sec}$ @ 2 MHz.
4	15	7.5

RLC (IX + d)
 RLC ($\mathrm{IY}+\mathrm{d}$)

Description: Rotates Left the contents of the memory location whose address is identified by the contents of Index Register IX or IY (modified by displacement d, which is specified in the instruction). Each Bit is shifted Left one position. i.e. the contents of Bit \emptyset are moved into Bit 1, the contents of Bit 1 are moved into Bit 2, etc. The contents of Bit 7 are moved into Bit \emptyset and into the C Flag in the Flag Register.

No. of Bytes: 4
Object Code

	Hex	Decimal
RLC (IX + d)	DD CB d $\varnothing 6$	$2212 \emptyset 3 \mathrm{~d} \emptyset \emptyset 6$
RLC (IY + d)	FD CB d $\emptyset 6$	$2532 \emptyset 3 \mathrm{~d} \emptyset \emptyset 6$

Where d is the required displacement from the memory location whose address is held in Index Register IX or IY.

Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET $=1$ if the result is negative, otherwise RESET $=\emptyset$. SET $=1$ if the result is zero, otherwise RESET $=\emptyset$.
Zero	Z	6	5
-	-	Not used. RESET $=\emptyset$.	
Half Carry	H	3	Not used.
-	-	SET $=1$ for Parity Even, RESET $=\emptyset$ for Parity Odd.	
Parity/Overflow	P/V	2	
Subtract	N	1	RESET $=\emptyset$. Contains the data previously held in Bit 7 of the memory location.

Example: LD IX,4521H
LD A, 27H
LD (452BH), A
RLC (IX $+\emptyset A H$)
If the contents of Index Register IX are 45 21, and d in the instruction is $\emptyset A($ Hex.), the required memory location is 452 B . If the contents of Memory Location 452B are27(Hex.) the effect of this instruction will be:

		Memory Location			$\begin{gathered} \text { C } \\ \text { Flag } \end{gathered}$
	Hex.		Bits		
		765	432	1	
Original Contents	27	$\emptyset \emptyset 1$	$\emptyset \emptyset 1$	1	?
New Contents	4E	$\emptyset 10$	011	1	\emptyset

Flags $\mathrm{S}, \mathrm{Z}, \mathrm{H}$ and N are RESET $=\emptyset$, Flag P / V will be $\mathrm{SET}=1$ and Flag C will contain the data previously held in Bit 7 of the memory location, which is identical to that now held in Bit \emptyset of the memory location.
Addressing Mode: Indexed.
Timing:

M Cycles	T States	$\mu \mathrm{sec} @ 2 \mathrm{MHz}$.
6	23	11.5

RLCA

Description: Rotates Left the contents of the Accumulator. Each Bit is shifted Left one position, i.e. the contents of Bit \emptyset are moved into Bit 1, the contents of Bit 1 are moved into Bit 2, etc. The contents of Bit 7 are moved into Bit \emptyset and into the C (Carry) Flag in the Flag Register.
NOTE: This instruction is identical to RLC A, except for the effect on the Flag Register, but is faster in execution. It is provided for compatibility with the Intel 898 .

No. of Bytes: 1
Object Code (Hex.): $\emptyset 7$
Decimal: $\emptyset \emptyset 7$

Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	RESET $=\emptyset$.
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	RESET $=\emptyset$.
Carry	C	\emptyset	Contains the data previously held
			in Bit 7 of the Accumulator.

Example: LD A,37H

RLCA
If the contents of the Accumulator are 37(Hex.), the effect of this instruction will be:

	Accumulator							$\begin{gathered} \text { C } \\ \text { Flag } \end{gathered}$
	Hex.	Bits						
			65	43	21			
Original Contents	37		1	10	11			?
New Contents	6 E	01	11	$\emptyset 1$	11			\emptyset

Flags H and N are RESET $=\emptyset$ and Flag C will contain the data previously held in Bit 7 of the Accumulator, which is identical to that now held in Bit \varnothing of the Accumulator.
Addressing Mode: Implicit.
Timing:

M Cycles	T States	$\mu \sec$ @ 2 MHz.
1	4	2

RLD

Description: Rotates Left Decimal the Lower Order 4 bits of the Accumulator with the Higher Order 4 bits and the Lower Order 4 bits of the memory location whose address is held in Register Pair HL. The Higher Order 4 bits of the specified location is moved into the Lower Order 4 bits of the Accumulator, the Lower Order 4 bits of the Accumulator is moved into the Lower Order 4 bits of the memory location, and the Lower Order 4 bits of the memory location is moved into the Higher Order 4 bits of the same memory location.

No. of Bytes: 2
Object Code (Hex.): ED 6F Decimal: 237111
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET = 1 if the result in the Accumulator is negative, otherwise RESET $=\emptyset$.
Zero	Z	6	SET = 1 if the result in the Accumulator is zero, otherwise RESET $=\emptyset$.
-	-	5	Not used.
Half Carry	H	4	RESET $=\emptyset$.
	-	3	Not used.
Parity/Overflow	P/V	2	SET $=1$ if for Parity Even in the Accumulator result, RESET $=\emptyset$ for Parity Odd in the Accumulator result.
Subtract	N	1	RESET $=\emptyset$.
Carry	C	\emptyset	Not affected.

Example: LD HL1ФФФH
LD (HL),28H
LD A,6EH
RLD
If the contents of the Accumulator are 6 E (Hex.) and the contents of the nominated memory location are 28(Hex.) the effect of this instruction will be:

Original Contents		New Contents	
Accumulator	Location	Accumulator	Location
6 E	28	62	8 E

Flags $S, Z, H, P / V$ and N are RESET $=\emptyset$.
Addressing Mode: Indirect
Timing:

M Cycles	T States	$\mu \sec @ 2 \mathrm{MHz}$.
5	18	9

RR r

Description: Rotates Right the contents of Register r through the C (Carry) Flag in the Flag Register. Each Bit is shifted Right one position, i.e. the contents of Bit 7 are moved into Bit 6, the contents of Bit 6 are moved into Bit 5, etc. The contents of Bit \emptyset are moved into the C Flag and the previous contents of the C Flag are moved into Bit 7.

No. of Bytes: 2
Object Code

	Hex	Decimal
RR A	CB 1F	$2 \emptyset 3 \emptyset 31$
RR B	CB 18	$2 \emptyset 3 \emptyset 24$
RR C	CB 19	$2 \emptyset 3 \emptyset 25$
RR D	CB 1A	$2 \emptyset 3 \emptyset 26$
RRE	CB 1B	$2 \emptyset 3 \emptyset 27$
RRH	CB 1C	$2 \emptyset 3 \emptyset 28$
RR L	CB 1D	$2 \emptyset 3 \emptyset 29$

Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET $=1$ if the result is negative, otherwise RESET $=\emptyset$.
Zero	Z	6	SET $=1$ if the result is zero, otherwise RESET $=\emptyset$.
-	-	5	Not used.
Half Carry	H	4	RESET $=\emptyset$.
	-	3	Not used.
Parity/Overflow	P/V	2	SET = 1 for Parity Even, RESET $=\varnothing$ for Parity Odd.
Subtract	N	1	RESET $=\emptyset$.
Carry	C	\emptyset	Contains the data previously held in Bit \emptyset of the memory location.

Example: LD B,3AH

SCF
CCF
RRB
If Register B contains 3A(Hex.) and the C Flag $=\emptyset$, the effect of this instruction will be:

Flags $\mathrm{S}, \mathrm{Z}, \mathrm{H}$ and N are RESET $=\emptyset$, Flag P / V is SET $=1$ and Flag C contains the \emptyset previously held in Bit \emptyset of Register B.
Addressing Mode: Implicit.
Timing:

M Cycles	T States	usec @ 2 MHz.
2	8	4

RR (HL)

Description: Rotates Right the contents of the memory location whose address is held in Register Pair HL through the C (Carry) Flag in the Flag Register. Each Bit is shifted Right one position, i.e. the contents of Bit 7 are moved into Bit 6, the contents of Bit 6 are moved into Bit 5, etc. The contents of Bit \emptyset are moved into the C Flag and the previous contents of the C Flag are moved into Bit 7 .

No. of Bytes: 2
Object Code (Hex.): CB 1E Decimal: 203 Ø3Ø
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET $=1$ if the result is negative, otherwise RESET $=\emptyset$.
Zero	Z	6	SET $=1$ if the result is zero, otherwise RESET $=\emptyset$.
-	-	5	Not used.
Half Carry	H	4	RESET $=\emptyset$.
	-	3	Not used.
Parity/Overflow	P/V	2	SET = 1 for Parity Even, RESET $=\varnothing$ for Parity Odd.
Subtract	N	1	RESET $=\emptyset$.
Carry	C	\emptyset	Contains the data previously held in Bit \emptyset of the memory location

Example: LD HL,2A15H
LD (HL),58H
SCF
RR (HL)
If Register Pair HL contains 2A 15(Hex.), the contents of memory location 2A 15 are 58 (Hex.) and the C Flag $=1$, the effect of this instruction will be:

	Memory Location		$\begin{gathered} \text { C } \\ \text { Flag } \end{gathered}$
	Hex.	Bits	
		76543210	
Original Contents	58	$\emptyset 1 \emptyset 11 \emptyset \emptyset \emptyset$	1
New Contents	AC	10101100	0

Flags Z, H and N will be RESET $=\emptyset$, Flags S and P / V will be $S E T=1$ and the C Flag will contain the \emptyset previously held in Bit \emptyset of the memory location.
Addressing Mode: Indirect.
Timing:

M Cycles	T States	$\mu \mathrm{sec}$ @ 2 MHz.
4	15	7.5

RR (IX + d)
 RR (IY + d)

Description: Rotates Right the contents of the memory location whose address is identified by the contents of Index Register IX or IY (modified by displacement d, which is specified in the instruction) through the C (Carry) Flag in the Flag Register. Each Bit is shifted Right one position, i.e. the contents of Bit 7 are moved into Bit 6, the contents of Bit 6 are moved into Bit 5, etc. The contents of Bit \emptyset are moved into the C Flag and the previous contents of the C Flag are moved into Bit 7.

Object Code:

	Hex	Decimal
$R R(I X+d)$	DD CB d 1E	$2212 \emptyset 3 d \emptyset 30$
$R R(I Y+d)$	FD CB d 1E	$2532 \emptyset 3 d \emptyset 3 \varnothing$

Where d is the required displacement from the memory location whose address is held in Index Register IX or IY.

Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET $=1$ if the result is negative, otherwise RESET = \emptyset.
Zero	Z	6	SET $=1$ if the result is zero, otherwise RESET $=\emptyset$.
-	-	5	Not used.
Half Carry	H	4	RESET $=\emptyset$.
-	-	3	Not used.
Parity/Overflow	P/V	2	SET $=1$ for Parity Even, RESET $=\emptyset$ for Parity Odd.
Subtract	N	1	RESET $=\emptyset$.
Carry	C	\emptyset	Contains the data previously held in Bit \emptyset of the memory location

Example: SCF
CCF
LD IX,5643H
LD A, 89H
LD (5649H), A
RR (IX+6)
If the contents of Index Register IX are 56 43, and d in the instruction is Ø6(Hex.), the required memory location is 5649 . If the contents of that memory location are 89 and the C Flag $=\emptyset$, the effect of this instruction will be:

Flags S, Z, H and N are RESET $=\emptyset$, Flag P / V is SET $=1$ and the C Flag contains the 1 previously held in Bit \emptyset of the memory location.
Addressing Mode: Indexed.
Timing:

M Cycles	T States	μ sec @ 2 MHz.
6	23	11.5

RRA

Description: Rotates Right the contents of the Accumulator through the C (Carry) Flag. Each Bit is shifted Right one position, i.e. the contents of Bit 7 are moved into Bit 6, the contents of Bit 6 are moved into Bit 5, etc. The contents of Bit \emptyset are moved into the C Flag and the previous contents of the C Flag are moved into Bit 7.
NOTE: This instruction is provided for compatibility with the Intel $808 \emptyset$. It is similar to instruction RR A, except that the effect on the Flag Register is different and it is faster in execution.

No. of Bytes: 1
Object Code (Hex.): 1F
Decimal: 031

Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	RESET $=\emptyset$.
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	RESET $=\emptyset$.
Carry	C	\emptyset	Contains the data previously held
			in Bit \emptyset of the Accumulator.

Example: LD A,57H
SCF
RRA
If the contents of the Accumulator are 57 , and the C Flag $=1$, the effect of this instruction will be:

	Accumulator							$\begin{gathered} \text { C } \\ \text { Flag } \end{gathered}$
	Hex.	Bits						
		7	65	4	32	1	\emptyset	
Original Contents	57		10	1	$\emptyset 1$	1	1	,
New Contents	AB		D 1	0	10	1	1	1

Flags H and N will be RESET $=\emptyset$ and Flag C will contain the 1 previously held in Bit \emptyset of the Accumulator.
Addressing Mode: Implicit.
Timing:

M Cycles	T States	$\mu \mathrm{sec}$ @ 2 MHz.
1	4	2

RRC r

Rotate contents of Register r circular where r is any of the registers A, B, C, D, E, H or L.

Object Code:

	Hex	Decimal
RRC A	CB $\emptyset F$	$2 \emptyset 3 \emptyset 15$
RRC B	CB $\emptyset \mathrm{B}$	$2 \emptyset 3 \emptyset \emptyset 8$
RRC C	CB $\emptyset 9$	$2 \emptyset 3 \emptyset \emptyset 9$
RRCD	CB $\emptyset A$	$2 \emptyset 3 \emptyset 1 \emptyset$
RRC E	CB $\emptyset B$	$2 \emptyset 3 \emptyset 11$
RRCH	CB $\emptyset C$	$2 \emptyset 3 \emptyset 12$
RRC L	CB $\emptyset D$	$2 \emptyset 3 \emptyset 13$

Description: Rotates Right the contents of Register r. Each Bit is shifted Right one position, i.e. the contents of Bit 7 are moved into Bit 6, the contents of Bit 6 are moved into Bit 5, etc. The contents of Bit \emptyset are moved into Bit 7 and into the C (Carry) Flag in the Flag Register.

No. of Bytes: 2
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET $=1$ if the result is negative, otherwise RESET $=\varnothing$.
Zero	Z	6	SET $=1$ if the result is zero, otherwise RESET $=\varnothing$
-	-	5	Not used. RESET $=\emptyset$.
Half Carry	H	4	3
-	-	Not used. SET 1 for Parity Even, RESET $=\emptyset$ Parity/Overflow for Parity Odd.	
Subtract	N	1	RESET $=\emptyset$. Contains the data previously held Carry

Example: LD A,0B6H

RRC A
If the contents of the Accumulator are B6(Hex.), the effect of this instruction will be:

	Accumulator								$\begin{gathered} \text { C } \\ \text { Flag } \end{gathered}$
	Hex.	Bits							
			6	54	3	2	1	\emptyset	
Original Contents	B6		0	11	0	1	1		?
New Contents	5B		1	1	1	\emptyset	1	1	\emptyset

Flags $\mathrm{S}, \mathrm{Z}, \mathrm{H}, \mathrm{P} / \mathrm{N}$ and S are RESET $=\emptyset$ and Flag C will contain the \varnothing previously held in Bit \emptyset of the Accumulator, which is identical to that now held in Bit 7 of the Accumulator.

Addressing Mode: Implicit.
Timing:

M Cycles	T States	$\mu \sec @ 2 \mathrm{MHz}$.
2	8	4

RRC (HL)

Description: Rotates Right the contents of the memory location whose address is held in Register Pair HL. Each Bit is shifted Right one position, i.e. the contents of Bit 7 are moved into Bit 6, the contents of Bit 6 are moved into Bit 5, etc. The contents of Bit \emptyset are moved into Bit 7 and into the C (Carry) Flag in the Flag Register.

No. of Bytes: 2
Object Code (Hex.): CB ØE
Decimal: 203014
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET $=1$ if the result is negative, otherwise RESET $=\emptyset$.
Zero	Z	6	SET $=1$ if the result is zero, otherwise RESET $=\emptyset$.
-	-	5	Not used. RESET $=\emptyset$.
Half Carry	H	4	Not used. -
Parity/Overflow	P/V	2	SET = 1 for Parity Even, RESET $=\emptyset$ for Parity Odd.
Subtract	N	1	RESET $=\emptyset$. Contains the data previously held in Bit \emptyset of the memory location.

Example: LD HL,1745H
LD (HL),5A
RRC (HL)
If the contents of Register Pair HL are 17 45, and the contents of memory location 1745 are 5 A , the effect of this instruction will be:

Flags $S, Z, H, P / V$ and N are RESET $=\emptyset$ and Flag C contains the data previously held in Bit \emptyset of the memory location, which is identical to that now held in Bit 7 of the memory location.
A.ddressing Mode: Indirect.

Timing:

M Cycles	T States	$\mu \sec$ @ 2 MHz.
4	15	7.5

RRC (IX + d)
 RRC (IY + d)

Description: Rotates Right the contents of the memory location whose address is identified by the contents of Index Register IX or IY (modified by displacement d, which is specified in the instruction). Each bit is shifted Right one position, i.e. the contents of Bit 7 are moved into Bit 6 , the contents of Bit 6 are moved into Bit 5, etc. The contents of Bit \emptyset are moved into Bit 7 and into the C (Carry) Flag in the Flag Register.

No. of Bytes: 4
Object Code:

	Hex	Decimal
$R R C(I X+d)$	DD CB d $\varnothing E$	$2212 \emptyset 3 d \emptyset 14$
$R R C(\mid Y+d)$	FD CB $\emptyset E$	$2532 \emptyset 3 d \emptyset 14$

Where d is the required displacement from the memory location whose address is held in Index Register IX or IY.

Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET $=1$ if the result is negative, otherwise RESET $=\emptyset$.
Zero	Z	6	SET $=1$ if the result is zero, otherwise RESET $=\emptyset$.
-	-	5	Not used.
Half Carry	H	4	RESET $=\emptyset$.
-	-	3	Not used.
Parity/Overflow	P/V	2	SET = 1 for Parity Even, RESET $=\varnothing$ for Parity Odd.
Subtract	N	1	RESET $=\emptyset$.
Carry	C	\emptyset	Contains the data previously held in Bit \emptyset of the memory location.

Example: LD IX,4521H
LD A, 27H
LD (452BH),A
RLC (IX $+\emptyset$ AH)
If the contents of Index Register IX are 45 21, and d in the instruction is $\emptyset A($ Hex.) , the required memory location is 452 B . If the contents of memory location 452 B are 27 (Hex.) the effect of this instruction will be:

	Memory Location							$\begin{gathered} \text { C } \\ \text { Flag } \end{gathered}$
	Hex.	Bits						
			65	4	32	1	\emptyset	
Original Contents	27		D 1	\emptyset	¢ 1	1		?
New Contents	93		$0 \square$	1	$\emptyset \emptyset$	1		1

Flags Z, H and N are RESET $=\emptyset$, Flags S and P / V are SET $=\emptyset$ and Flag C will contain the 1 previously held in Bit \emptyset of the memory location, which is identical to that now held in Bit 7 of the memory location.
Addressing Mode: Indexed.
Timing:

M Cycles	T States	μ sec @ 2 MHz.
6	23	11.5

RRCA

Description: Rotates Right the contents of the Accumulator. Each Bit is shifted Right one position, i.e. the contents of Bit 7 are moved into Bit 6 , the contents of Bit 6 are moved into Bit 5, etc. The contents of Bit \emptyset are moved into Bit \emptyset and into the C (Carry) Flag in the Flag Register.

NOTE: This instruction is identical to RRC A, except for the effect on the Flag Register, but is faster in execution. It is provided for compatibility with the Intel $898 \emptyset$.
No. of Bytes: 1
Object Code (Hex.): QF Decimal: 015

Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	RESET $=\emptyset$.
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	RESET $=\emptyset$.
Carry	C	\emptyset	Contains the data previously held
			in Bit \emptyset of the Accumulator.

Example: LD A,37H
RRCA
If the contents of the Accumulator are $37(\mathrm{Hex}$.$) , the effect of this$ instruction will be:

	Accumulator					$\begin{gathered} \text { C } \\ \text { Flag } \end{gathered}$	
	Hex.	Bits					
		76	54	32	1		
Original Contents	37	$\emptyset \emptyset$	11	1	1		?
New Contents	9 B	10	Q 1	$\emptyset 1$	1		1

Flags H and N are RESET $=\emptyset$ and Flag C contains the 1 previously held in Bit \emptyset of the Accumulator, which is identical to that now held in Bit 7 of the Accumulator.

Addressing Mode: Implicit.
Timing:

M Cycles	T States	$\mu \sec @ 2 \mathrm{MHz}$.
1	4	2

RRD

Description: Rotates Right Decimal the Lower Order 4 bits of the Accumulator with the Higher Order and Lower Order 4 bits of the memory location whose address is held in Register Pair HL. The Lower Order 4 bits of the Accumulator is moved into the Higher Order 4 bits of the specified memory location, the Higher Order byte of the memory location is moved into the Lower Order 4 bits of the same location and the Lower Order 4 bits of that memory location is moved into the Lower Order 4 bits of the Accumulator.

No. of Bytes: 2
Object Code (Hex.): ED 67 Decimal: 237193
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET $=1$ if the result in the Accumulator is negative, otherwise RESET $=0$.
Zero	Z	6	SET $=1$ if the result in the Accumulator is zero, otherwise RESET $=\emptyset$.
-	-	5	Not used.
Half Carry	H	4	RESET $=\emptyset$.
	-	3	Not used.
Parity/Overflow	P/V	2	SET $=1$ if for Parity Even in the Accumulator result, RESET $=\varnothing$ for Parity Odd in the Accumulator result.
Subtract	N	1	RESET $=\emptyset$.
Carry	C	\square	Not affected.

Example: LD HL,1ФФФH
LD (HL),28H
LD A, 6 EH
RRD
If the contents of the Accumulator are 6 E (Hex.) and the contents of the nominated location are 28(Hex.) the effect of this instruction will be:

Original Contents		New Contents	
Accumulator	Location	Accumulator	Location
6 E	28	68	E 2

Flags $S, Z, H, P / V$ and N are RESET $=\emptyset$.
Addressing Mode: Indirect
Timing:

M Cycles	TStates	$\mu \mathrm{sec} @ 2 \mathrm{MHz}$.
5	18	9

RST n

Description: Restart from memory location $\emptyset \emptyset \mathrm{n}$. Pushes the contents of the Program Counter on to the top of the memory Stack by first decrementing the Stack Pointer (SP) and loading the Higher Order byte of the Program Counter (PC) into the memory location whose address is now held in the Stack Pointer, then decrementing the Stack Pointer again and loading the Lower Order byte of the Program Counter into the memory location whose address is the new contents of the Stack Pointer. Finally, the value $\emptyset \emptyset \mathrm{n}$ is loaded into the Program Counter and the next instruction is fetched from that address.

NOTE: The RST instructions transfer control to specific addresses in low memory. It can be used for a fast response to an interrupt

No. of Bytes: 1
Object Code:

	Hex	Decimal
RST $0 \emptyset$	C7	199
RST $\emptyset 8$	CF	207
RST 10	D7	215
RST 18	DF	223
RST 2ض	E7	231
RST 28	EF	239
RST 3Ø	F7	247
RST 38	FF	255

Flag Register:

Flag	Code	Bit	
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	Not affected.
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	Not affected.
Carry	C	0	Not affected.

Example: RST $\emptyset \emptyset$ - If the contents of the Program Counter are 64 B1, and the contents of the Stack Pointer are 3275 , the effect of this instruction will be:

	Program Counter		Stack Pointer	Location	
	Higher Byte	Lower Byte		Address	Contents
Original Contents New Contents	$\begin{aligned} & 64 \\ & 04 \end{aligned}$	$\begin{aligned} & \mathrm{B1} \\ & \emptyset \emptyset \end{aligned}$	$\begin{aligned} & 3275 \\ & 3273 \end{aligned}$	$\begin{array}{ll} 32 & 75 \\ 32 & 75 \\ 32 & 74 \\ 32 & 73 \end{array}$	$\begin{gathered} ? \\ ?(\text { Not } \\ \text { Changed) } \\ 64 \\ \text { B1 } \end{gathered}$

Addressing Mode: Implicit.
Timing:

M Cycles	T States	$\mu \mathrm{sec}$ @ 2 MHz
3	11	5.5

SBC A,n

Description: Subtracts from the Accumulator the integer n, summed with the contents of the Carry Flag in the Flag Register. The result is stored in the Accumulator.

No. of Bytes: 2
Object Code (Hex.): DE n Decimal: 222 n
Where n is an 8 Bit integer, specified in the instruction.
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET $=1$ if the result is negative, otherwise RESET = \varnothing.
Zero	Z	6	SET $=1$ if the result is zero, otherwise RESET $=\emptyset$.
-	-	5	Not used.
Half Carry	H	4	SET $=1$ if no Borrow from Bit 4 , otherwise RESET $=\emptyset$.
-	-	3	Not used.
Parity/Overflow	P/V	2	SET = 1 if Overflow, otherwise RESET $=\emptyset$.
Subtract	N	1	SET $=1$.
Carry	C	\emptyset	SET = 1 if no Borrow, otherwise RESET $=\emptyset$.

Example: LD A,45H
SCF
SBC A, 4
If the contents of the Accumulator are 45 (Hex.), the C (Carry) Flag $=1$ and n in the instruction is 4 , this instruction will subract $4+1(=5)$ from the contents of the Accumulator and store $4 \varnothing$ (Hex.), the result, in the Accumulator. Flags S, Z and P / V are RESET $=\varnothing$ and Flags N and C are SET $=1$.

Addressing Mode: Immediate.
Timing:

M Cycles	T States	$\mu \sec @ 2 \mathrm{MHz}$.
2	7	3.5

SBC A,A

Description: Subtracts from the Accumulator the contents of the Accumulator, summed with the contents of the C (Carry) Flag in the Flag register. The result is stored in the Accumulator. Note that the result in the Accumulator will always be $\emptyset \mathrm{H}$ or FFH (negative one in twos complement notation), depending on the contents of the carry flag.
No. of Bytes: 1
Object Code (Hex.): 9F
Decimal: 159
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET $=1$ if the result is negative, otherwise RESET = \emptyset.
Zero	Z	6	SET $=1$ if the result is zero, otherwise RESET $=\emptyset$.
-	-	5	Not used.
Half Carry	H	4	SET = 1 if no Borrow from Bit 4, otherwise RESET $=\emptyset$.
	-	3	Not used.
Parity/Overflow	P/V	2	SET $=1$ if Overflow, otherwise RESET $=\emptyset$.
Subtract	N	1	SET $=1$.
Carry	C	\emptyset	SET = 1 if no Borrow, otherwise RESET $=\emptyset$.

Example: LD A,28H
SCF
CCF
SBC A,A
If the contents of the Accumulator are 28(Hex.) and the C Flag $=\emptyset$, this instruction will subtract $28+\emptyset(=28)$ from the Accumulator and store the result ($($) in the Accumulator. Flags S and P / V are RESET $=\emptyset$ and Flags $\mathrm{Z}, \mathrm{H}, \mathrm{N}$ and C are SET $=1$.

Addressing Mode: Implicit.
Timing:

M Cycles	T States	μ sec @ 2 MHz.
1	4	2

SBC A,r

Subtract Register r with carry from the Accumulator where r is any of the registers A, B, C, D, E, H or L.
Object Code:

	Hex	Decimal
SBC A,B	98	152
SBC A,C	99	153
SBC A,D	$9 A$	154
SBC A,E	$9 B$	155
SBC A,H	9 C	156
SBC A,L	$9 D$	157

Description: Subtracts from the Accumulator the contents of Register r and the contents of the C (Carry) Flag in the Flag Register, then stores the result in the Accumulator.

No. of Bytes: 1
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET $=1$ if the result is negative, otherwise RESET $=\emptyset$.
Zero	Z	6	SET $=1$ if the result is zero, otherwise RESET $=\emptyset$
-	-	5	Not used. SET $=1$ if no Borrow from Bit 4, Half Carry otherwise RESET $=\emptyset$. Not used.
Parity/Overflow	P/V	2	SET $=1$ if Overflow, otherwise RESET = \emptyset.
Subtract Carry	N	1	SET =1. SET $=1$ if no Borrow, otherwise RESET = \emptyset.

Example: LD A, ØA9H
LD B, 16H
SCF
SBC A,B
If the contents of the Accumulator are A9(Hex.), the contents of Register B are 16(Hex.) and the C Flag = 1, the effect of this instruction will be:

	Accumulator	Register B	$\begin{gathered} \mathrm{C} \\ \text { Flag } \end{gathered}$
Original Contents Subtract (Register B)	$\begin{aligned} & \text { A9 } \\ & 16 \\ & \hline 93 \end{aligned}$	16	1
Subtract (C Flag) New Contents	$\begin{array}{r} 1 \\ \hline 92 \end{array}$	16	1

Flags Z and P / V are RESET $=\emptyset$ while Flags S, H, N and C are $S E T=1$.
Addressing Mode: Implicit.
Timing:

M Cycles	T States	$\mu \sec$ @ 2 MHz.
1	4	2

SBC A,(HL)

Description: Subtracts from the Accumulator the contents of the memory location whose address is held in Register Pair HL and the contents of the C (Carry) Flag in the Flag Register, then stores the result in the Accumulator.

No. of Bytes: 1
Object Code (Hex.): 9E
Decimal: 158

Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET $=1$ if the result is negative, otherwise RESET $=\emptyset$.
Zero	Z	6	SET $=1$ if the result is zero otherwise RESET $=\emptyset$.
-	-	5	Not used.
Half Carry	H	4	SET = 1 if no borrow from Bit 4 , otherwise RESET $=\emptyset$.
-	-	3	Not used.
Parity/Overflow	P/V	2	```SET = 1 if Overflow, otherwise RESET = \emptyset.```
Subtract	N	1	SET $=1$.
Carry	C	0	SET = 1 if no Borrow, otherwise RESET $=\emptyset$.

Example: LD HL, ØAF34H
LD (HL), 24H
LD A, 25 H
SCF
SBC A,(HL)
If the contents of Register Pair HL are AF 34, the required location is AF 34. If the contents of the Accumulator are 25(Hex.), the contents of memory location AF 34 are 24(Hex.) and the C Flag $=1$, the effect of this instruction will be:

	Accumulator	Memory Location	C Flag
Original Contents Subtract (Memory Location) Subtract (C Flag)	Ma $\emptyset 1$ 1	24	1
New Contents	$\emptyset \emptyset$	24	1

Flags S and P / V are RESET $=\emptyset$ while Flags Z, H, N and C are $S E T=1$.
Addressing Mode: Indirect.
Timing:

M Cycles	T States	$\mu \mathrm{sec}$ @ 2 MHz.
2	7	3.5

SBC A,(IX + d)
 SBC A,(IY + d)

Description: Subtracts from the Accumulator the contents of the memory location whose address is identified by the contents of Index Register IX or IY (modified by displacement d, which is specified in the instruction) and the contents of the C (Carry) Flag in the Flag Register, then stores the result in the Accumulator.

No. of Bytes: 3
Object Code:

	Hex	Decimal
SBC A,(IX + d)	DD 9E d	$221158 d$
SBC A, (IY + d)	FD 9E d	253158 d

Where d is the required displacement from the memory location whose address is held in Index Register IX or IY.
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET = 1 if the result is negative, otherwise RESET $=\emptyset$.
Zero	Z	6	SET $=1$ if the result is zero, otherwise RESET = \emptyset.
-	-	5	Not used.
Half Carry	H	4	SET $=1$ if no Borrow from Bit 4, otherwise RESET = \emptyset.
	-	3	Not used.
Parity/Overflow	P/V	2	SET = 1 if Overflow, otherwise RESET $=\varnothing$
Subtract	N	1	SET $=1$.
Carry	C	\emptyset	SET = 1 if no Borrow, otherwise RESET $=\emptyset$.

Example: SCF CCF LD HL, ØA244H
LD (HL), 12H
LD IX, ØA234H
LD A, 28H
SBC A, $(I X+10 \mathrm{H})$
If the contents of Index Register IX are A2 34, and d in the instruction is $16(10$ Hex.), the required memory location is A2 44. If the contents of the Accumulator are 28(Hex.), the contents of memory location A2 44 are 12 (Hex.) and the C Flag $=\emptyset$, the result of this instruction will be:

	Accumulator	Memory Location A2 44	C Flag
Original Contents Subtract (Index Register IX)	28 16	12	\emptyset
Subtract (C Flag)	\emptyset		
New Contents	16	12	\emptyset

Flags S, Z and P / V are RESET $=\emptyset$, while Flags H, N and C are $S E T=1$. Addressing Mode: Indexed.

Timing:

M Cycles	T States	$\mu \mathrm{sec} @ 2 \mathrm{MHz}$.
5	19	9.5

SBC HL,rr

Where rr is any of the Register Pairs BC, DE, HL, SP.
Description: Subtracts from the contents of Register Pair HL the contents of the specified register pair and the contents of the C (Carry) Flag in the Flag Register, then stores the result in Register Pair HL.

No. of Bytes: 2
Object Code:

	Hex	Decimal
SBC HL,BC	ED 42	$237 \emptyset 66$
SBC HL,DE	ED 52	$237 \emptyset 82$
SBC HL,HL	ED 62	$237 \emptyset 98$
SBC HL,SP	ED 72	237114

Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET $=1$ if the result is negative, otherwise RESET = \emptyset.
Zero	Z	6	SET $=1$ if the result is zero, otherwise RESET = \emptyset.
-	-	5	Not used.
Half Carry	H	4	SET $=1$ if no Borrow from Bit 12, otherwise RESET = \varnothing.
-	-	3	Not used.
Parity/Overflow	P/V	2	SET $=1$ if Overflow, otherwise RESET $=\varnothing$
Subtract	N	1	SET $=1$.
Carry	C	\emptyset	SET = 1 if no Borrow, otherwise RESET $=\emptyset$.

Example: LD HL,2816H
LD BC,2715H
SCF
SBC HL,BC
If the contents of Register Pair HL are 28 16(Hex.), the contents of Register Pair BC are 27 15(Hex.) and the C Flag = 1, the effect of this instruction will be:

	Register Pair HL	Register Pair BC	C Flag
Original Contents Subtract (Register Pair HL)	2816 2715	2715	1
Subtract (C Flag)	01 1		
New Contents	0100	2715	1

Flags S, Z and P / V are RESET $=\emptyset$ while Flags H, N and C are $\mathrm{SET}=1$.
Addressing Mode: Implicit.
Timing:

M Cycles	T States	$\mu \mathrm{sec}$ @ 2 MHz.
4	15	7.5

SCF

Description: SETS the C (Carry) Flag in the Flag Register $=1$.
No. of Bytes: 1
Object Code (Hex.): 37 Decimal: 055
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	RESET $=\emptyset$.
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	RESET $=\emptyset$.
Carry	C	\emptyset	SET $=1$.

Addressing Mode: Implicit.
Timing:

M Cycles	T States	μ sec @ 2 MHz.
1	4	2

SET b,r

Description: The specified Bit in the nominated Register is SET $=1$.
No. of Bytes: 2
Object Code (Hex.): CB xx Decimal: 203 yyy
Where: b is the Bit (Range $\emptyset-7$) to be SET $=1$ and r is the Register (A, B, C, D, E, H or L) which contains that bit. xx or yyy are taken from the table below:

Bi	A		B		C		D		E		H		L	
	xx	yyy	x	yyy		yyy	xx	yyy	xx	yyy	x \times	yyy	xx	yyy
\emptyset	C7	199	CD	192	C1	193	C2	194	C3	195	C4	196	C5	197
1	CF	207	C8	200	C9	201	CA	202	CB	203	CC	204	CD	205
2	D7	215	DQ	208	D1	209	D2	210	D3	211	D4	212	D5	213
3	DF	223	D8	216	D9	217	DA	218	DB	219	DC	220	DD	221
4	E7	231	ED	224	E1	225	E2	226	E3	227	E4	228	E5	229
5		239	E8	232	E9	233	EA	234	EB	235	EC	236	ED	237
6	F7	247		$24 \varnothing$	F1	241	F2	242	F3	243	F4	244	F5	245
7		255		248		249	FA	$25 \emptyset$		251	FC	252		253

Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	Not affected.
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	Not affected.
Carry	C	\emptyset	Not affected.

Example: LDE, \varnothing
SET 2,E
The Source Code statement SET 2,E, will result in the Object Code (Hex.) instruction CB D3 which will SET $=1$ Bit 2 in Register E .

Addressing Mode: Implicit.
Timing:

M Cycles	T States	$\mu \sec @ 2 \mathrm{MHz}$.
2	8	4

SET b,(HL)

Description: The nominated Bit in the memory location whose address is held in Register Pair HL is SET $=1$.
No. of Bytes: 2
Object Code (Hex.): CB xx Decimal: $2 \emptyset 3$ yyy
Where: $x x$ or yyy are taken from the table below:

Bit	xx	yyy
\emptyset	C6	198
1	CE	$2 \emptyset 6$
2	D6	214
3	DE	222
4	E6	$23 \emptyset$
5	EE	238
6	F6	246
7	FE	254

Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	Not affected.
-	-	3	Not used.
Parity/Overflow	P/V	2	Not affected.
Subtract	N	1	Not affected.
Carry	C	\emptyset	Not affected.

Example: LD HL,1000H LD (HL), Ø SET 5,(HL)
The Source Code statement SET 5,(HL) will produce the Object Code (Hex.) instruction CD EE, which will SET = 1 Bit 5 in the memory location whose address is held in Register Pair HL.

Addressing Mode: Indirect.
Timing:

M Cycles	T States	$\mu \sec @ 2 \mathrm{MHz}$.
4	15	7.5

SET b,(IX + d)
 SET b,(IY + d)

Description: SETs $=1$ the nominated Bit in the memory location whose address is identified by the contents of Index Register IX or IY (modified by displacement d , which is specified in the instruction).

No. of Bytes: 4
Object Code:

	Hex	Decimal
SET b,(IX + d)	DD CB $d x x$	$2212 \emptyset 3 d y y y$
SET b,(IY + d)	FD CB dxx	$2532 \emptyset 3 d y y y$

Where: b is the Bit (Range $\emptyset-7$) to be SET $=1$, and D is the required displacement from the memory location whose address is held in Index Register IX.
$x x$ or yyy are taken from the table below:

Bit	xx	yyy
\emptyset	C6	198
1	CE	206
2	D6	214
3	DE	222
4	E6	230
5	EE	238
6	F6	246
7	FE	254

Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	Not affected.
Zero	Z	6	Not affected.
-	-	5	Not used.
Half Carry	H	4	Not affected.
-			
Parity/Overflow	P/V	3	Not used.
Subtract	N	1	Not affected.
Carry	C affected.	\varnothing	Not affected.

Example: LD HL,348EH
LD (HL), \varnothing
LD IX,348AH
SET 2,(IX+4)
The Source Code statement SET 2,(IX + 4) will produce the Object Code (Hex.) instruction DD CB 4 D6. If the contents of Index Register IX are 348 A , the required memory location is 348 E (i.e. $348 \mathrm{~A}+4$). This instruction will SET = 1 Bit 2 in memory location 348 E .
Addressing Mode: Indexed.
Timing:

M Cycles	T States	μ sec @ 2 MHz.
6	23	11.5

SLA r

Where r is any of the registers A, B, C, D, E, H, L.
Description: Shifts Left the contents of the specified register, through the C (Carry) Flag in the Flag Register. Bit 0 is RESET $=0$, the previous contents of Bit 0 are moved into Bit 1, the previous contents of Bit 1 are moved to Bit 2, etc. The previous contents of Bit 7 are moved into the C (Carry) Flag in the Flag Register. The previous contents of the Carry Flag are destroyed.

No. of Bytes: 2
Object Code:

	Hex	Decimal
SLA A	CB 27	20339
SLA B	CB20	20332
SLA C	CB 21	20333
SLA D	DB 22	20334
SLA E	CB 23	20335
SLAH	CB 24	20336
SLA L	CB 25	20337

Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET $=1$ if the result is negative, otherwise RESET $=\emptyset$.
Zero	Z	6	SET $=1$ if the result is zero, otherwise RESET $=\emptyset$.
-	-	5	Not used. RESET $=\emptyset$.
Half Carry	H	4	3
-	Not used.		
Parity/Overflow	2	SET $=1$ for Parity Even, RESET $=\emptyset$ for Parity Odd.	
Subtract	N	1	RESET $=\emptyset$. Carry
	C	\emptyset	Contains the data previously held in Bit 7 of the Accumulator.

Example: LD A,93H
SLA H
If the contents of the Accumulator are 93(Hex.), the effect of this instruction will be:

Flags $S, Z, H, P / V$ and N are RESET $=\emptyset$ while Flag C contains the 1 previously held in Bit 7 of the Accumulator.
Addressing Mode: Implicit.
Timing:

M Cycles	T States	$\mu \sec @ 2 \mathrm{MHz}$.
2	8	4

SLA (HL)

Description: Shifts Left the contents of the memory location whose address is held in Register Pair HL, through the C (Carry) Flag in the Flag Register. Bit \emptyset is RESET $=\emptyset$, the previous contents of Bit \emptyset are moved into Bit 1, the previous contents of Bit 1 are moved into Bit 2, etc. The previous contents of Bit 7 are moved into the C Flag in the Flag Register. The previous contents of the carry flag are destroyed.

No. of Bytes: 2
Object Code (Hex.): CB 26 Decimal: 203 Ø38
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET $=1$ if the result is negative, otherwise RESET $=\emptyset$.
Zero	Z	6	SET $=1$ if the result is zero, otherwise RESET $=\emptyset$.
-	-	5	Not used.
Half Carry	H	4	RESET $=\emptyset$. - Pot used.
Parity/Overflow	P/V	2	SET $=1$ for Parity Even, RESET $=\emptyset$ for Parity Odd.
Subtract	N	1	RESET $=\emptyset$.
Carry	C	\emptyset	Contains the data previously held in Bit 7 of the memory location.

Example: LD HL,ØCD45H
LD (HL), 23H
SLA (HL)
If the contents of Register Pair HL are CD 45, and the contents of memory location CD 45 are 23(Hex.), the effect of this instruction will be:

	Memory Location CD 45							$\begin{gathered} \text { C } \\ \text { Flag } \end{gathered}$
	Hex.	Bits						
			65	54	32	1	\emptyset	
Original Contents	23		01	10	$\emptyset \emptyset$	1	1	
New Contents	46		10	\bigcirc	¢ 1	1	\emptyset	

Flags $S, Z, H, P / V$ and N are RESET $=\emptyset$, while Flag C contains the \varnothing previously held in Bit 7 of memory location CD 45.
Addressing Mode: Indirect.
Timing:

M Cycles	T States	$\mu \sec @ 2 \mathrm{MHz}$.
4	15	7.5

SLA (IX + d) SLA (IY + d)

Description: Shifts Left the contents of the memory location whose address is identified by the contents of Index Register IX or IY (modified by displacement d , which is specified in the instruction), through the C (Carry) Flag in the Flag Register. Bit \emptyset is RESET $=\emptyset$, the previous contents of Bit \emptyset are moved into Bit 1 , the previous contents of Bit 1 are moved into Bit 2, etc. The previous contents of Bit 7 are moved into the C Flag in the Flag Register. The previous contents of the carry flag are destroyed.

Object Code:

	Hex	Decimal
SLA $(I X+d)$	DD CB d 26	221203 d 38
SLA $(I Y+d)$	FD CB d 26	253203 d 38

Where d is the required displacement from the memory location whose address is held in Index Register IX or IY.
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET $=1$ if the result is negative, otherwise RESET = \emptyset.
Zero	Z	6	SET $=1$ if the result is zero, otherwise RESET $=\emptyset$.
-	-	5	Not used.
Half Carry	H	4	RESET $=\emptyset$.
-	-	3	Not used.
Parity/Overflow	P/V	2	SET = 1 for Parity Even, RESET = \varnothing for Parity Odd.
Subtract	N	1	RESET $=\emptyset$.
Carry	C	\emptyset	Contains the data previously held in Bit 7 of the memory location.

Example: LD HL,283AH
LD (HL), 16H
LD IX, 2834
SLA (IX +6)
If the contents of Index Register IX are 2834 and d in the instruction is 6, the required location is 283 A . If the contents of memory location 283 A are 16(Hex.), the effect of this instruction will be:

Flags $S, Z, H, P / V$ and N are RESET $=\emptyset$, while Flag C contains the \emptyset previously held in Bit 7 of memory location 28 3A.

Addressing Mode: Indexed.
Timing:

M Cycles	T States	$\mu \sec @ 2 \mathrm{MHz}$.
6	23	11.5

SRA r

Arithmetic shift contents of Register r right, where r is any of the Registers A, B, C, D, E, H or L.

Object Code:

	Hex	Decimal
SRA A	CB 2F	$2 \emptyset 3 \emptyset 47$
SRA B	CB 28	$2 \emptyset 3 \emptyset 4 \emptyset$
SRA C	CB 29	$2 \emptyset 3 \emptyset 41$
SRA D	CB 2A	$2 \emptyset 3 \emptyset 42$
SRA E	CB 2B	$2 \emptyset 3 \emptyset 43$
SRA H	CB 2C	$2 \emptyset 3 \emptyset 44$
SRA L	CB 2D	$2 \emptyset 3 \emptyset 45$

Description: Shift Register r right one bit. Bit 7 is unchanged. Bit \emptyset is moved into the carry flag. Bit 7 is moved into bit 6 , but is not itself changed. Bit 6 is moved into bit 5 . Bit 5 is moved into bit 4 , etc.

No. of Bytes: 2
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET $=1$ if the result is negative, otherwise RESET $=\emptyset$.
Zero	Z	6	SET = 1 if the result is zero, otherwise RESET = \emptyset
-	-	5	Not used.
Half Carry	H	4	RESET $=\emptyset$.
	-	3	Not used.
Parity/Overflow	P/V	2	SET = 1 for Parity Even, RESET = \emptyset for Parity Odd.
Subtract	N	1	RESET $=\emptyset$.
Carry	C	0	Contains the data previously held in Bit \emptyset of the Accumulator.

Example: LD A,93H
SRA A
If the contents of the Accumulator are 93(Hex.), the effect of this instruction will be:

	Accumulator							$\begin{gathered} \text { C } \\ \text { Flag } \end{gathered}$
	Hex.	Bits						
		76	5	4	32	1	\emptyset	
Original Contents	93		- 0	1	$\emptyset \emptyset$	1		?
New Contents	C9	11	10	\emptyset	10	\emptyset		1

Flags Z, H and N are RESET $=\emptyset$, Flags S and P / V are SET $=1$ while Flag C contains the 1 previously held in Bit \emptyset of the Accumulator.
Addressing Mode: Implicit.
Timing:

M Cycles	T States	$\mu \sec @ 2 \mathrm{MHz}$.
2	8	4

SRA (HL)

Description: Shifts Right the contents of the memory location whose address is held in Register Pair HL, through the C (Carry) Flag in the Flag Register. The contents of Bit 7 remain unchanged but are copied into Bit 6 , the previous contents of Bit 6 are moved into Bit 5 , the previous contents of Bit 5 are moved into Bit 4, etc. The previous contents of Bit \emptyset are moved into the C (Carry) Flag in the Flag Register.

No. of Bytes: 2
Object Code (Hex.): CB 2E
Decimal: $2 \emptyset 3 \emptyset 46$
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET $=1$ if the result is negative, otherwise RESET $=\emptyset$.
Zero	Z	6	SET $=1$ if the result is zero, otherwise RESET $=\emptyset$.
-	-	5	Not used. RESET $=\emptyset$.
Half Carry	H	4	Not used. - Parity/Overflow P/V
Subtract SET = 1 for Parity Even, RESET $=\emptyset$ for Parity Odd.			
Carry	N	1	RESET = \emptyset. Contains the data previously held in Bit \emptyset of the memory location.

Example: LD HL, ØCD45H
LD (HL), 23H
SRA (HL)
If the contents of Register Pair HL are CD 45, and the contents of memory location CD 45 are 23(Hex.), the effect of this instruction will be:

	Memory Location CD 45		
	Hex.	Bits	C
		76543210	Flag
Original Contents	23	$\theta \emptyset 10 \emptyset \emptyset 11$?
New Contents	11	$\emptyset \emptyset \emptyset 1 \emptyset \emptyset \emptyset 1$	1

Flags S, Z, H and N are RESET $=\emptyset$, Flag P/V is SET $=1$ while Flag C contains the $\mathbf{1}$ previously held in Bit \emptyset of memory location CD 45.

Addressing Mode: Indirect
Timing:

M Cycles	T States	$\mu \mathrm{sec}$ @ 2 MHz.
4	15	7.5

SRA (IX + d) SRA (IY + d)

Description: Shifts Right the contents of the memory location whose address is identified by the contents of Index Register IX or IY (modified by displacement d, which is specified in the instruction), using the C (Carry) Flag in the Flag Register. The contents of Bit 7 remain unchanged but are copied into Bit 6, the previous contents of Bit 6 are moved into Bit 5, the previous contents of Bit 5 are moved into Bit 4, etc. The previous contents of Bit \emptyset are moved into the C (Carry) Flag in the Flag Register.

$(I Y+d)$
No. of Bytes: 4
Object Code:

	Hex	Decimal
SRA $(I X+d)$	DD CB d2E	$2212 \emptyset 3 d \emptyset 46$
SRA $(I Y+d)$	FD CB d 2E	$2532 \emptyset 3 d \emptyset 46$

Where d is the required displacement from the memory location whose address is held in Index Register IX or IY.
Flag Register:

Flag	Code	Bit	Effect		
Sign	S	7	$\begin{array}{l}\text { SET }=1 \text { if the result is negative, } \\ \text { otherwise RESET }=\emptyset . \\ \text { SET }=1 \text { if the result is zero, } \\ \text { otherwise RESET }=\emptyset .\end{array}$		
Zero	Z	6	5		
Not used.				$]$	RESET = \emptyset.
:---					

Example: LD HL,283AH

LD (HL), 16H
LD IX, 2834H
SRA (IX+6)
If the contents of Index Register IX are 2834 and D in the instruction is 6 , the required location is 283 A . If the contents of memory location 283 A are 16(Hex.), the effect of this instruction will be:

	Memory Location 28 3A		C Flag
		Bits	
	Hex.	76543210	
Original Contents New Contents	16 QB	$\begin{array}{lllllllll}\emptyset & \emptyset & \emptyset & 1 & \emptyset & 1 & 1 & \emptyset \\ \emptyset & \emptyset & \emptyset & \emptyset & 1 & 0 & 1 & 1\end{array}$	$?$

Flags $S, Z, H, P / V$ and N are RESET $=\emptyset$, while Flag C contains the \varnothing previously held in Bit \emptyset of memory location 28 3A.
Addressing Mode: Indexed.
Timing:

M Cycles	T States	usec @ 2 MHz.
6	23	11.5

SRL r

Shift contents of Register r right logical, where r is any of the Registers A, B, C, D, E, H or L.
Object Code:

	Hex	Decimal
SRLA	CB 3F	$2 \emptyset 3 \emptyset 63$
SRL B	CB 38	$2 \emptyset 3 \emptyset 56$
SRLC	CB 39	$2 \emptyset 3 \emptyset 57$
SRLD	CB 3A	$2 \emptyset 3 \emptyset 58$
SRLE	CB 3B	$2 \emptyset 3 \emptyset 59$
SRLH	CB 3C	$2 \emptyset 3 \emptyset 6 \emptyset$
SRLL	CB 3D	$2 \emptyset 3 \emptyset 61$

Description: Shift contents of Register r right one bit. Bit 7 is RESET $=\varnothing$. Bit \emptyset is moved to the carry flag.

No. of Bytes: 2
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET $=1$ if the result is negative, otherwise RESET $=\emptyset$.
Zero	Z	6	SET $=1$ if the result is zero, otherwise RESET $=\emptyset$
-	-	5	Not used. RESET $=\emptyset$.
Half Carry	H	4	Rot used. Not SET $=1$ for Parity Even, RESET $=\emptyset$ Parity/Overflow P/V
Subtract	2	N Parity Odd.	
Carry	C	1 RESET $=\emptyset$.	

Example: LD A,93H

SRLA
If the contents of the Accumulator are 93 (Hex.), the effect of this instruction will be:

	Accumulator							$\begin{gathered} \text { C } \\ \text { Flag } \end{gathered}$
	Hex.	Bits						
			65	4	32	1	\emptyset	
Original Contents	93		$\emptyset \emptyset$	1	$\emptyset \emptyset$	1		?
New Contents	49		10	0	10	0		1

Flags S, Z, H, P/V and N are RESET $=\emptyset$, while Flag C contains the 1 previously held in Bit \emptyset of the Accumulator.
Addressing Mode: Implicit.
Timing:

M Cycles	T States	μ sec @ 2 MHz.
2	8	4

SRL (HL)

Description: Logical Shift Right of the contents of the memory location whose address is held in Register Pair IX. Bit 7 is RESET $=\emptyset$, the previous contents of Bit 7 are moved into Bit 6, the previous contents of Bit 6 are moved into Bit 5, etc. The previous contents of Bit \emptyset are moved into the C (Carry) Flag in the Flag Register.

No. of Bytes: 2
Object Code (Hex.): CB 3E Decimal: 203 Ø62

Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET $=1$ if the result is negative, otherwise RESET $=\emptyset$. SET $=1$ if the result is zero, Zero
-	-	5	otherwise RESET $=\emptyset$. Not used.
Half Carry	H	4	RESET $=\emptyset$. Not used.
Parity/Overflow	P/V	3	SET $=1$ for Parity Even, RESET $=\emptyset$ for Parity Odd.
Subtract	N	1	RESET $=\emptyset$.
Carry	C	\emptyset	Contains the data previously held in Bit \emptyset of the memory location.

Example: LD HL, ØCD45H
LD (HL),23H
SRL (HL)
If the contents of Register Pair HL are CD 45, and the contents of memory location CD 45 are 23(Hex.), the effect of this instruction will be:

	Memory Location CD 45					$\begin{gathered} \text { C } \\ \text { Flag } \end{gathered}$
	Hex.	Bits				
		76	54	43	10	
Original Contents	23	$\emptyset \emptyset$	10	$\emptyset \emptyset$	11	?
New Contents	11	$\emptyset \emptyset$	01	$\emptyset \emptyset$	01	1

Flags $\mathrm{S}, \mathrm{Z}, \mathrm{H}$ and N are RESET $=\emptyset$, Flag P / V is $\mathrm{SET}=1$, while Flag C contains the 1 previously held in Bit \emptyset of memory location CD 45.

Addressing Mode: Indirect.
Timing:

M Cycles	T States	μ sec @ 2 MHz.
4	15	7.5

SRL (IX + d)
 SRL (IY + d)

Description: Logical Shift Right of the contents of the memory location whose address is identified by the contents of Index Register IX or IY (modified by displacement d, which is specified in the instruction. Bit 7 is RESET $=\emptyset$, the previous contents of Bit 7 are moved into Bit 6 , the previous contents of Bit 6 are moved into Bit 5, etc. The previous contents of Bit \emptyset are moved into the C (Carry) Flag in the Flag Register.

No. of Bytes: 4
Object Code:

	Hex	Decimal
SRL (IX + d)	DD CB d 3E	221203 d $\varnothing 62$
SRL (IY + d)	FD CB d 3E	$2532 \emptyset 3$ d $\varnothing 62$

Where d is the required displacement from the memory location whose address is held in Index Register IX or IY.
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET $=1$ if the result is negative, otherwise RESET $=\emptyset$.
Zero	Z	6	SET $=1$ if the result is zero, otherwise RESET $=\emptyset$.
-	-	5	Not used.
Half Carry	H	4	RESET $=\emptyset$.
	-	3	Not used.
Parity/Overflow	P/V	2	SET = 1 for Parity Even, RESET $=\varnothing$ for Parity Odd.
Subtract	N	1	RESET $=\emptyset$.
Carry	C	\emptyset	Contains the data previously held in Bit \emptyset of the memory location.

Example: LD HL,283AH
LD (HL),16H
LD IX,2834H
SRL (IX+6)
If the contents of Index Register IX are 2834 and d in the instruction is 6 , the required location is 283 A . If the contents of memory location 283 A are 16(Hex.), the effect of this instruction will be:

Addressing Mode: Indexed.
Timing:

M Cycles	T States	$\mu \sec @ 2 \mathrm{MHz}$.
6	23	11.5

SUB n

Description: Subtracts the integer n from the contents of the Accumulator and stores the result in the Accumulator.

No. of Bytes: 2
Object Code (Hex.): D6n Decimal: 214 n
Where n is an 8 Bit integer, specified in the instruction.
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET $=1$ if the result is negative, otherwise RESET = \varnothing.
Zero	Z	6	SET $=1$ if the result is zero, otherwise RESET $=\emptyset$.
-	-	5	Not used.
Half Carry	H	4	SET $=1$ if no Borrow from Bit 4 , otherwise RESET = \emptyset.
-	-	3	Not used.
Parity/Overflow	P/V	2	SET = 1 if Overflow, otherwise RESET = \emptyset
Subtract	N	1	SET $=1$.
Carry	C	\emptyset	SET = 1 if no Borrow, otherwise RESET $=\emptyset$.

Example: LD A,45H
SUB 4
If the contents of the Accumulator are 45(Hex.) and n in the instruction is 4 , the effect of this instruction will be:

	Accumulator (Hex.)
Original Contents	45
Subtract n	4
New Contents	41

Flags S, Z and P / V are RESET $=\emptyset$ while Flags H, N and C are $S E T=1$.
Addressing Mode: Immediate.

Timing:

M Cycles	T States	μ sec @ 2 MHz.
2	7	3.5

SUB A

Description: Subtracts the contents of the Accumulator from the contents of the Accumulator and stores the result in the Accumulator. Note that this will always leave a result of zero in the Accumulator.

No. of Bytes: 1
Object Code (Hex.): 97
Decimal: 151
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET $=1$ if the result is negative, otherwise RESET $=\emptyset$.
Zero	Z	6	SET = 1 if the result is zero, otherwise RESET $=\emptyset$.
-	-	5	Not used.
Half Carry	H	4	SET = 1 if no Borrow from Bit 4 otherwise RESET $=\emptyset$.
-	-	3	Not used.
Parity/Overflow	P/V	2	SET $=1$ if Overflow, otherwise RESET $=\varnothing$
Subtract	N	1	SET $=1$.
Carry	C	\emptyset	SET = 1 if no Borrow, otherwise RESET $=\emptyset$.

Example: LD A,28
SUB A
If the contents of the Accumulator are 28 (Hex.), the effect of this instruction will be:

	Accumulator (Hex.)
Original Contents	28
Subtract	28
New Contents	$\emptyset \emptyset$

Flags S and P / V are RESET $=\emptyset$ while Flags Z, H, C and N are $S E T=1$.
Addressing Mode: Implicit
Timing:

M Cycles	T States	μ sec @ 2 MHz.
1	4	2

SUB r

Subtract Register r from the Accumulator, where r is any of the Registers B, C, D, E, Hor L.

Object Code:

	Hex	Decimal
SUB B	$9 \emptyset$	144
SUB C	91	145
SUB D	92	146
SUB E	93	147
SUB H	94	148
SUB L	95	149

Description: Subtract the contents of Register r from the contents of the Accumulator, contents of Register r unchanged.
No. of Bytes: 1
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET $=1$ if the result is negative, otherwise RESET = \emptyset.
Zero	Z	6	SET $=1$ if the result is zero, otherwise RESET = \emptyset
-	-	5	Not used.
Half Carry	H	4	SET $=1$ if no Borrow from Bit 4, otherwise RESET $=\emptyset$.
-	-	3	Not used.
Parity/Overflow	P/V	2	$\begin{aligned} & \mathrm{SET}=1 \text { if Overflow, otherwise } \\ & \text { RESET }=\emptyset \text {. } \end{aligned}$
Subtract	N	1	SET $=1$.
Carry	C	\emptyset	SET = 1 if no Borrow, otherwise RESET $=\emptyset$.

Example:
 LD A, ØA9H
 LD B, 16H
 SUB B

If the contents of the Accumulator are A9(Hex.), and the contents of Register B are 16(Hex.), the effect of this instruction will be:

	Accumulator	Register B
Original Contents Subtract (Register B)	A9	16
New Contents	93	16

Flags S, Z, and P / V are RESET $=\emptyset$, while Flags H, N and C are $\mathrm{SET}=1$. Addressing Mode: Implicit.

Timing:

M Cycles	T States	$\mu \mathrm{sec}$ @ 2 MHz.
1	4	2

SUB (HL)

Description: Subtracts from the Accumulator the contents of the memory location whose address is held in Register Pair HL, then stores the result in the Accumulator. The contents of the memory location remain unchanged.

No. of Bytes: 1
Object Code (Hex.): 96 Decimal: 150
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET $=1$ if the result is negative, otherwise RESET $=\emptyset$.
Zero	Z	6	SET $=1$ if the result is zero, otherwise RESET $=\emptyset$.
-	-	5	Not used.
Half Carry	H	4	SET = 1 if no Borrow from Bit 4 , otherwise RESET $=\emptyset$.
-	-	3	Not used.
Parity/Overflow	P/V	2	$\begin{aligned} & \text { SET }=1 \text { if Overflow, otherwise } \\ & \text { RESET }=\emptyset \end{aligned}$
Subtract	N	1	SET $=1$.
Carry	C	\emptyset	SET = 1 if no Borrow, otherwise RESET $=\emptyset$.

Example: LD HL, ØAF34H
LD (HL),24H
LD A, 25H
SUB (HL)
If the contents of Register Pair HL are AF 34, the required memory locatin is AF 34. If the contents of the Accumulator are 25(Hex.), and the contents of memory location AF 34 are 24(Hex.), the effect of this instruction will be:

	Accumulator	Memory Location AF 34
Original Contents Subtract (Memory Location)	25	24
New Contents	01	24

Flags S, Z and P / V are RESET $=\emptyset$, while Flags H, N and C are $S E T=1$. Addressing Mode: Indirect.
Timing:

M Cycles	T States	$\mu \sec @ 2 \mathrm{MHz}$.
2	7	3.5

SUB (IX + d)
 SUB (IY + d)

Description: Subtracts from the Accumulator the contents of the memory location whose address is identified by the contents of Index Register IX or IY (modified by displacement d, which is specified in the instruction), then stores the result in the Accumulator. The contents of the memory location remain unchanged.

No. of Bytes: 3
Object Code:

	Hex	Decimal
SUB $(I X+d)$	DD 96d	221150 d
SUB $(I Y+d)$	FD 96 d	253150 d

Where d is the required displacement from the memory location whose address is held in Index Register IX or IY.
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET = 1 if the result is negative, otherwise RESET $=\emptyset$.
Zero	Z	6	SET = 1 if the result is zero, otherwise RESET $=\emptyset$.
-	-	5	Not used.
Half Carry	H	4	SET = 1 if no Borrow from Bit 4 otherwise RESET $=\varnothing$.
-	-	3	Not used.
Parity/Overflow	P/V	2	$\begin{aligned} & \mathrm{SET}=1 \text { if Overflow, otherwise } \\ & \text { RESET }=\emptyset \end{aligned}$
Subtract	N	1	SET $=1$.
Carry	C	\emptyset	SET = 1 if no Borrow, otherwise RESET $=\emptyset$.

Example: LD HL, ØA244H
LD (HL), 12H
LD IX, ØA234H
LD A, 28H
SUB (IX+1@H)
If the contents of Index Register IX are A2 34, and d in the Source Code is $16(10 \mathrm{Hex}$.), the required memory location is A2 44 . If the contents of the Accumulator are 28(Hex.), and the contents of memory location A2 44are 12(Hex.), the effect of this instruction will be:

	Accumulator	Memory Location A2 44
Original Contents Subtract (Memory Location A2 44)	28	12
New Contents	12	12

Flags S, Z and P / V are RESET $=\emptyset$, while Flags H, N and C are $S E T=1$.
Addressing Mode: Indexed.
Timing:

M Cycles	T States	$\mu \sec @ 2 \mathrm{MHz}$.
5	19	9.5

XOR n

Description: Performs a Bit by Bit logical Exclusive OR between the contents of the Accumulator and integer n, then stores the result in the Accumulator. For any corresponding bit positions, if the two contents are equal, i.e. both $=1$ or both $=\emptyset$, the result, for that bit position, will be \emptyset, but if the two contents are not equal, i.e. one $=\emptyset$ and the other $=1$, the result for that bit position will be 1 .
NOTE: The XOR instruction can be used to complement the Accumulator by specifying n as 255 , i.e. $\operatorname{FF}(\mathrm{Hex}$.$) .$

No. of Bytes: 2
Object Code (Hex.): EE n Decimal: 238 n
Where n is an 8 Bit integer, specified in the instruction.
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET = 1 if the result is negative, otherwise RESET = \emptyset.
Zero	Z	6	SET = 1 if the result is zero, otherwise RESET $=\emptyset$.
-	-	5	Not used.
Half Carry	H	4	RESET = \emptyset
	-	3	Not used.
Parity/Overflow	P/V	2	SET = 1 for Parity Even, RESET $=\emptyset$ for Parity Odd.
Subtract	N	1	RESET $=\emptyset$.
Carry	C	\emptyset	RESET $=\varnothing$

Example: LD A,67H
XOR 5EH
If the contents of the Accumulator are 67(Hex.), and n is specified in the Source Code as 94 (5E Hex.), the effect of this instruction will be:

	Hex.	$\frac{\text { Bits }}{7654321 \emptyset}$						
Accumulator	67		1	1	,	,		
Value of n	5E		1	,	1	1		
Result	39		\emptyset	1	1	1	-	

Flags S, H, Z, N and C are RESET $=\emptyset$, while the P / V flag is $S E T=1$.
Addressing Mode: Immediate.
Timing:

M Cycles	T States	$\mu \sec$ @ 2 MHz.
2	7	3.5

XOR A

Description: Performs a Bit by Bit logical Exclusive OR between the contents of the Accumulator and the contents of the Accumulator. For any corresponding bit positions, if the two contents are equal, i.e. both $=1$ or both $=\emptyset$, the result, for that bit position, will be \emptyset, but if the two contents are not equal, the result for that bit position will be 1.
NOTE: The effect of this instruction will be to make the contents of the Accumulator equal $\emptyset \emptyset$ (Hex.).
No. of Bytes: 1
Object Code (Hex.): AF Decimal: 175
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET $=1$ if the result is negative, otherwise RESET $=\emptyset$.
Zero	Z	6	SET = 1 if the result is zero, otherwise RESET = \emptyset.
-	-	5	Not used.
Half Carry	H	4	RESET $=\emptyset$.
	-	3	Not used.
Parity/Overflow	P/V	2	SET = 1 for Parity Even, RESET $=\emptyset$ for Parity Odd.
Subtract	N	1	RESET $=\emptyset$.
Carry	C	\emptyset	RESET $=\varnothing$

Example: LD A,F4H XORA
If the contents of the Accumulator are F4(Hex.), the effect of this instruction will be:

Flags S, N and C are RESET $=\emptyset$, while Flags Z, H and P / V are $S E T=1$.
Addressing Mode: Implicit
Timing:

M Cycles	T States	$\mu \sec @ 2 \mathrm{MHz}$.
1	4	2

XOR r

Exclusive OR Register r with the Accumulator where r is any of the registers B, C, D, E, H or L.
Object Code:

	Hex	Decimal
XORB	A8	168
XOR C	A9	169
XORD	AA	$17 \emptyset$
XORE	AB	171
XORH	AC	172
XOR L	AD	173

Description: Exclusive OR Accumulator with the specified Register r. Contents of Register r unchanged.
No. of Bytes: 1
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET $=1$ if the result is negative, otherwise RESET $=\emptyset$.
Zero	Z	6	SET $=1$ if the result is zero, otherwise RESET = \emptyset
-	-	5	Not used.
Half Carry	H	4	RESET $=\emptyset$.
	-	3	Not used.
Parity/Overflow	P/V	2	SET $=1$ for Parity Even, RESET $=\varnothing$ for Parity Odd.
Subtract	N	1	RESET $=\emptyset$.
Carry	C	\emptyset	RESET $=\emptyset$.

Example: LD A, ØC4H
LD B, ØA7H
XOR B
If the contents of the Accumulator are $\mathrm{C} 4(\mathrm{Hex}$.$) , and the contents of$ Register B are A (Hex.), the effect of this instruction will be:

	Hex.	Bits					
			65	54	32	1	0
Accumulator	C4		19	\emptyset	Q 1	,	\emptyset
Register B	A7		$\emptyset 1$	10	01		,
Result	63		11	10	$\emptyset \emptyset$	1	1

Flags $\mathrm{S}, \mathrm{H}, \mathrm{Z}, \mathrm{N}$ and C are RESET $=\emptyset$, while the P / V flag is $\mathrm{SET}=1$.
Addressing Mode: Implicit.
Timing:

M Cycles	T States	$\mu \sec @ 2 \mathrm{MHz}$.
1	4	2

XOR (HL)

Description: Performs a Bit by Bit logical Exclusive OR between the contents of the Accumulator and the contents of the memory location whose address is held in Register Pair HL, then stores the result in the Accumulator. For any two corresponding bit positions, if the contents are equal, i.e. both $=1$ or both $=\emptyset$, the result, for that bit position, will he \emptyset, but if the two contents are not equal, the result will be 1 .

No. of Bytes: 1
Object Code (Hex.): AE
Decimal: 174
Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET $=1$ if the result is negative, otherwise RESET = \emptyset.
Zero	Z	6	SET $=1$ if the result is zero, otherwise RESET $=\emptyset$.
-	-	5	Not used.
Half Carry	H	4	RESET $=\emptyset$.
	-	3	Not used.
Parity/Overflow	P/V	2	SET = 1 for Parity Even, RESET = \emptyset for Parity Odd.
Subtract	N	1	RESET $=\emptyset$.
Carry	C	\emptyset	RESET $=\emptyset$

Example: LD HL, ØAD45H
LD (HL), ØB6H
LD A,9DH
XOR (HL)
If the contents of Register Pair HL are AD 45, the contents of memory location AD 45 are B6, and the contents of the Accumulator are 9 D (Hex.), the effect of this instruction will be:

Flags S, H, Z, N and C are RESET $=\emptyset$, while the P / V flag is $S E T=1$.
Addressing Mode: Indirect
Timing:

M Cycles	T States	$\mu \mathrm{sec} @ 2 \mathrm{MHz}$.
2	7	3.5

XOR (IX + d)
 XOR (IY + d)

Description: Performs a Bit by Bit logical Exclusive OR between the contents of the Accumulator and the contents of the memory location whose address is identified by the contents of Index Register IX or IY (modified by displacement d, which is specified in the instruction), then stores the result in the Accumulator. For any two corresponding bit positions, if the contents are equal, i.e. both $=1$ or both $=\emptyset$, the result, for that bit position, will be \emptyset, but if the two contents are not equal, the result for that bit position will be 1 .

No. of Bytes: 3
Object Code:

	Hex	Decimal
$X O R(I X+d)$	DD AE d	$221174 d$
XOR $(I Y+d)$	FD AE d	$253174 d$

Where d is the required displacement from the memory location whose address is held in Index Register IX or IY.

Flag Register:

Flag	Code	Bit	Effect
Sign	S	7	SET $=1$ if the result is negative, otherwise RESET $=\emptyset$. SET $=1$ if the result is zero, Zero Ztherwise RESET $=\emptyset$.
-	-	5	Not used.
Half Carry	H	4	RESET $=\emptyset$. - Not used.
Parity/Overflow	P/V	2	SET $=1$ for Parity Even, RESET $=\emptyset$ for Parity Odd.
Subtract	N	1	RESET $=\emptyset$. Carry
	C	\emptyset	RESET $=\emptyset$

Example: LD HL,45BDH
LD (HL), 18H
LDIX,45ADH
LD A, 22H
XOR (IX+10H)
If the contents of Index Register IX are 45 AD, and d in the instruction is 16 (10Hex.), the required memory location is 45 BD . If the contents of the Accumulator are 22(Hex.) and the contents of memory location 45 BD are 18(Hex.), the effect of this instruction will be:

Flags $\mathrm{S}, \mathrm{Z}, \mathrm{H}, \mathrm{N}$ and C are RESET $=\emptyset$, while the P / V flag is $\mathrm{SET}=1$.
Addressing Mode: Indexed
Timing:

M Cycles	T States	$\mu \mathrm{sec} @ 2 \mathrm{MHz}$.
5	19	9.5

CHAPTER 6

Hints and Tips

Experienced programmers frequently develop and use methods of doing things within a program which are unlikely to occur to the newcomer, or indeed, to other skilled programmers. This chapter gives details of some of these which may prove useful to the reader.

Using a Register Pair as a Loop Counter

Decrementing a Register Pair as a loop counter requires specific code to test for a Zero condition. A simple way of achieving this, using Register Pair BC as the Loop Counter, is:

DEC BC	Decrement Register Pair BC (Loop Counter)
LD A,C	Load the contents of Register C into the Accumulator.
OR B	Perform a Logical OR between the contents of the Accumulator and the contents of Register B.
JR NZ, nn	Where nn is the address of the DEC BC instruction. This will repeat the loop until a Zero condition exists, which will only occur when the contents of both Register B and Register C are Zero.

Memory Switching

A convenient way of switching between two different areas of memory is to utilise the XOR (Exclusive OR) instruction:

XOR A Clears the Accumulator to Zero.
XOR 96 Makes the Accumulator $=6 \emptyset$ (Hex.)
XOR 96 Makes the Accumulator $=\emptyset$.
Incorporation in a program of a loop which XORs the Accumulator repeatedly with the same integer changes the contents of the Accumulator to that integer, then to zero, then back to the integer, etc. This can then be used to switch control between different areas of memory.

Loading a Single Byte into a Register Pair

Sometimes it is necessary to load an 8 Bit number into a Register Pair without knowing the sign of that number. For positive numbers, the Higher Order byte of the Register Pair should contain ФQ(Hex.), while for negative numbers that byte should contain FF(Hex.). An 8 Bit number in Register E can be loaded into Register Pair BC using the following Code:

[^1]RLE Rotates Left Register E, placing the sign bit into the
SBC A,A Subtracts the contents of the Accumulator from itself, leaving a value of \emptyset but the sign from the Carry Flag affects the result so that, if the Carry Flag $=\emptyset$, the contents of the Accumulator become $\varnothing \varnothing(\mathrm{Hex}$.$) , i.e. \emptyset$, but if the Carry Flag $=1$, the contents of the Accumulator become FF(Hex.), i.e. $-\emptyset$.
LD B,A Loads Register B with the contents of the Accumulator, i.e. $\emptyset \emptyset$ (Hex.) or $\mathrm{FF}($ Hex.) to match the original sign bit of Register E .

Similarly, if it is necessary to load a 16 Bit number into a 32 Bit field, the sign can be moved into the Carry Flag, then copied throughout Register Pair HL by using the instruction SBC HL,HL.

Rotating 16-Bit (Two Byte) Register Through the Carry Flag

There is no instruction to rotate a 16 Bit Register Pair Left through the Carry Flag, a facility which is sometimes necessary. This can be achieved, using the Register Pair HL, by using the instruction ADC HL,HL, which adds the contents of Register Pair HL to itself, with carry.

Converting ASCII Characters from Lower to Upper Case

The only differences between the binary representation of Upper and Lower Case ASCII characters is that the Upper Case character has Bit 5 RESET $=\emptyset$, while the equivalent Lower Case character has Bit 5 SET = 1. The instruction AND n, where $n=\operatorname{DF}($ Hex. $)-11011111$ Binary, will RESET $=\emptyset$ Bit 5 regardless of its original value, thus ensuring that the character in the Accumulator is Upper Case.
NOTE: Confusion may be caused when using this tip if the input character is non alphabetic.

Quick Division

The contents of a Register can be divided by any multiple of 2 by using the SRA r instruction (where r is the specified Register) one for each power of 2, e.g. 3 times to divide by 8 . After each iteration of the SRA r instruction the remainder is placed in the Carry Flag in the Flag Register.

Quick Multiplication

A number can be multiplied by a multiple of 2 by using the appropriate SLA instruction, provided the result will not cause Overflow in the Register or Memory Location.
A number less than 256, contained in a Register Pair (say DE), can be multiplied by 256 by:

LD D,E Loads the contents of Register E (the Lower Order byte of the Register Pair, hence the number less than 256) into the Higher Order byte of the Register Pair.

LD E, $+\emptyset$ Loads $\emptyset \emptyset($ Hex.) into the Lower Order byte of the Register Pair.

APPENDIX A

ASCII Codes

Binary MSD		Hex	Char	Binary MSD	LSD	Hex	Char	$\begin{aligned} & \text { Binary } \\ & \text { MSD } \end{aligned}$	LSD	Hex	Char
Ф00ロ	Ø0ロロ	00	NUL	0010	0000	20	SP	0100	Ф00ロ	40	＠
Ф000	0001	01	SOH	0010	0001	21	！	0100	Ф001	41	A
Ф000	0010	02	STX	0010	0010	22		0100	0010	42	B
ФФФФ	0011	Q3	ETX	0010	0011	23	\＃	0100	¢011	43	C
ФDOQ	0100	04	EOT	0010	0100	24	\＄	0100	0100	44	D
0000	0101	05	ENQ	0010	0101	25	\％	0100	0101	45	E
DDDD	Q110	¢6	ACK	0010	0110	26	\＆	0100	0110	46	F
0000	0111	07	BEL	0010	0111	27		Q100	0111	47	G
0000	1000	08	BS	0010	1000	28	（	0100	1000	48	H
0000	1001	09	HT	0010	1001	29	）	0100	1001	49	I
OODO	1010	QA	LF	0010	1010	2A		0100	1010	4A	J
DODD	1011	QB	VT	Q010	1011	2B	＋	Q100	1011	4B	K
DODD	1100	QC	FF	0010	1100	2C		0100	1100	4C	L
OODD	1101	QD	CR	0010	1101	2D	－	0100	1101	4D	M
DODD	1110	QE	SO	0010	1110	2E		0100	1110	4E	N
OODO	1111	QF	SI	0010	1111	2 F	1	0100	1111	4F	0
0001	ФロロQ	10	DLE	0011	Ф00ロ	30	\emptyset	0101	ФロロФ	50	P
0001	0001	11	DC1	0011	0001	31		0101	Ф001	51	Q
0001	0010	12	DC2	0011	0010	32	2	0101	0010	52	R
0001	0011	13	DC3	0011	0011	33		0101	0011	53	S
0001	0100	14	DC4	0011	0100	34	4	0101	Q100	54	T
0001	0101	15	NAK	0011	0101	35	5	0101	0101	55	U
0001	0110	16	SYN	0011	Q110	36	6	0101	Q110	56	V
0001	0111	17	ETB	0011	0111	37	7	0101	0111	57	W
0001	1000	18	CAN	0011	1000	38	8	0101	1000	58	X
0001	1001	19	EM	0011	1001	39	9	0101	1001	59	Y
0001	1010	1A	SUB	0011	1010	3A		0101	1010	5A	Z
0001	1011	1B	ESC	0011	1011	3B	；	0101	1011	5B	［
0001	1100	1 C	FS	0011	1100	3C	＜	0101	1100	5C	I
0001	1101	1D	GS	0011	1101	3D	＝	0101	1101	5D	］
0001	1110	1E	RS	0011	1110	3E	＞	0101	1110	5E	\wedge
0001	1111	1 F	US	0011	1111	3F	？	0101	1111	5F	，

Binary MSD	LSD	Hex	Char	Binary MSD	LSD	Hex	Char	Binary MSD	LSD	Hex	Char
0110	0000	60		0110	1011	6B	k	0111	0110	76	\checkmark
0110	0001	61	a	0110	1100	6C	1	0111	0111	77	w
0110	0010	62	b	0110	1101	6D	m	0111	1 100	78	x
0110	0011	63	c	0110	1110	6E	n	0111	1001	79	y
0110	0100	64	d	0110	1111	6F	\bigcirc	0111	1010	7A	z
0110	0101	65	e	0111	$\emptyset \emptyset \emptyset \emptyset$	70	p	0111	1011	7B	\{
0110	0110	66	,	0111	$\emptyset \emptyset \emptyset 1$	71	q	Q111	1100	7 C	\{
0110	0111	67	g	0111	0010	72	r	01111	1101	7 D	\}
0110	1000	68	h	0111	0011	73	S	0111	1110	7 E	\sim
0110	1001	69	i	0111	Q100	74	t	01111	1111	7F	DEL
Q110	1010	6A	j	0111	0101	75	u				

APPENDIX B

ASCII/Hexadecimal/Decimal Conversion

ASCII	Hex	Dec									
NUL	Q\|	0	SP	$2 \emptyset$	32	@	40	64		60	96
SOH	01	1	$!$	21	33	A	41	65	a	61	97
STX	02	2	,	22	34	B	42	66	b	62	98
ETX	03	3	\#	23	35	C	43	67	c	63	99
EOT	04	4	\$	24	36	D	44	68	d	64	100
ENQ	05	5	\%	25	37	E	45	69	e	65	101
ACK	96	6	\&	26	38	F	46	70	f	66	102
BEL	07	7		27	39	G	47	71	g	67	103
BS	08	8	(28	40	H	48	72	h	68	104
HT	99	9)	29	41	1	49	73	i	69	105
LF	QA	10	*	2A	42	J	4A	74		6 A	106
VT	QB	11	$+$	2B	43	K	4B	75	k	6B	107
FF	๑C	12		2 C	44	L	4 C	76	1	6 C	108
CR	QD	13	-	2 D	45	M	4D	77	m	6D	109
SO	QE	14		2 E	46	N	4 E	78	ก	6 E	110
SI	QF	15	1	2 F	47	0	4 F	79	\bigcirc	6 F	111
DLE	10	16	0	30	48	P	50	80	p	70	112
DC1	11	17	1	31	49	Q	51	81	q	71	113
DC2	12	18	2	32	50	R	52	82	r	72	114
DC3	13	19	3	33	51	S	53	83	s	73	115
DC4	14	20	4	34	52	T	54	84	t	74	116
NAK	15	21	5	35	53	\cup	55	85	u	75	117
SYN	16	22	6	36	54	V	56	86	v	76	118
ETB	17	23	7	37	55	W	57	87	w	77	119
CAN	18	24	8	38	56	\times	58	88	x	78	120
EM	19	25	9	39	57	Y	59	89	y	79	121
SUB	1 A	26		3A	58	Z	5A	$9 \emptyset$	z	7 A	122
ESC	1 B	27		3B	59	[5B	91	[7B	123
FS	1 C	28	<	3 C	60	1	5 C	92		7 C	124
GS	1 D	29	$=$	3D	61]	5 D	93		7 D	125
RS	1 E	30	>	3E	62	i	5 E	94		7 E	126
US	1 F	31	?	3 F	63	-	5 F	95	DEL	7F	127

Special Character Codes

Code	Explanation	Code	Explanation
ACK	Acknowledge	FF	Form Feed
BEL	Bell or Alarm	FS	File Separator
BS	Backspace	GS	Group Separator
CAN	Cancel	HT	Horizontal Tabulation
CR	Carriage Return	LF	Line Feed
DC1	Device Control 1	NAK	Negative Acknowledge
DC2	Device Control 2	NUL	Null
DC3	Device Control 3	RS	Record Separator
DC4	Device Control 4	SI	Shift In
DEL	Delete	SO	Shift Out
DLE	Data Link Escape	SOH	Start of Heading
EM	End of Medium	SP	Space
ENQ	Enquiry	STX	Start of Text
EOT	End of Transmission	SUB	Substitute
ESC	Escape	SYN	Synchronous Idle
ETB	End of Transmission	US	Unit Separator
	Block		
ETX	End of Text	VT	Vertical Tabulation

APPENDIX C
 Quick Reference to Z80 Instruction Set

SINGLE BYTE (8 BIT) LOAD GROUP TABLE

SINGLE BYTE (8 BIT) LOAD GROUP TARLE (cont.)

$\begin{aligned} & \text { SOURCE } \\ & \text { CODE } \end{aligned}$	OBJECT	DECIMAL	FLAGS						NO. OF BYTES	TIMING			COMMENTS	CH. 5 REF.
			S	Z	H	P/N	N	C		M CYCLES		$\begin{array}{\|c} \mu \mathrm{SEC} @ \\ 2 \mathrm{MHZ} \end{array}$		
$r=L$	2 En	046 n												188
LDr, (HL)			N	N	N	N	N	N	1	2	7	3.5		
$r=A$	7E	126												191
$r=B$	46	070												191
$r=C$	4E	078												191
$r=D$	56	086												191
$r=E$	5E	094												191
$r=H$	66	102												191
$r=L$	6 E	110												191
LD r, (IX + d)			N	N	N	N	N	N	3	5	19	9.5		
$r=A$	DD 7E d	221126 d												193
$r=B$	DD 46 d	221070 d												193
$r=C$	DD 4E d	221078 d												193
$r=D$	DD 56 d	221086 d												193
$r=E$	DD 5E d	221094 d												193
$r=H$	DD 66 d	221102 d												193
$r=L$	DD 6E d	221110 d												193
LD r, (IY + d)			N	N	N	N	N	N	3	5	19	9.5		
$r=A$	FD 7E d	253126 d												193
$r=B$	FD 46 d	253070 d												193
$r=C$	FD 4E d	253078 d												193
$r=D$	FD 56 d	253086 d												193
$r=E$	FD 5E d	253094 d												193
$r=H$	FD 66 d	253102 d												193
$r=L$	FD 6E d	253110 d												193
LD(HL), r			N	N	N	N	N	N	1	2	7	3.5		
$r=A$	77	119												212

SINGLE BYTE (8 BIT) LOAD GROUP TABLE (cont.)

$\begin{aligned} & \omega \\ & \mathbf{\omega} \\ & \hline \end{aligned}$	SOURCE CODE	$\begin{aligned} & \text { OBJECT } \\ & \text { CODE (HEX) } \end{aligned}$	DECIMAL	FLAGS						NO. OF BYTES	TIMING			COMMENTS	CH. 5 REF.
				S	Z	H	P/V	N	C		$\begin{gathered} \mathrm{M} \\ \mathrm{CYCLES} \end{gathered}$	T STATES	$\begin{gathered} \mu \mathrm{SEC} @ \\ 2 \mathrm{MHZ} \end{gathered}$		
	$\mathrm{r}=\mathrm{B}$	70	112												212
	$r=C$	71	113												212
	$r=D$	72	114												212
	$r=E$	73	115												212
	$r=H$	74	116												212
	$r=L$	75	117												212
	LD (IX + d) , r			N	N	N	N	N	N	3	5	19	9.5		
	$r=A$	DD 77 d	221119 d												215
	$r=B$	DD 70 d	221112 d												215
	$r=C$	DD 71 d	221113 d												215
	$r=\mathrm{D}$	DD 72 d	221114 d												215
	$r=E$	DD 73 d	221115 d												215
	$r=H$	DD 74 d	221116 d												215
	$r=L$	DD 75 d	221117 d												215
	$L D(1 Y+d), r$			N	N	N	N	N	N	3	5	19	9.5		
	$r=A$	FD 77 d	253119 d												215
	$r=B$	FD 70 d	253112 d												215
	$r=C$	FD 71 d	253113 d												215
	$r=\mathrm{D}$	FD 72 d	253114 d												215
	$r=E$	FD 73 d	253115 d												215
	$r=H$	FD 74 d	253116 d												215
	$r=L$	FD 75 d	253117 d												
	LD (HL), n	36 n	054 n	N	N	N	N	N	N	2	3	10	5		211
	$L D(I X+d), n$	DD 36 dn	221054 d n	N	N	N	N	N	N	4	5	19	9.5		214
	$L D(I Y+d), n$	FD 36 d n	253054 d n	N	N	N	N	N	N	4	5	19	9.5		214
	LDA, (BC)	OA	010	N	N	N	N	N	N	1	2	7	3.5		186
	LDA; (DE)	1A	026	N	N	N	N	N	N	1	2	7	3.5		187

SIMGLE BYTE (8 BIT) LOAD GROUP TABLE (cont.)

$\begin{aligned} & \text { SOURCE } \\ & \text { CODE } \end{aligned}$	$\left\lvert\, \begin{gathered} \text { OBJECT } \\ \text { CODE (HEX) } \end{gathered}\right.$	DECIMAL	FLAGS							TIMING			COMMENTS	CH. 5 REF.
			S	Z	H	P/V	N	C		M	T STATES	$\begin{gathered} \mu \mathrm{SEC} @ \\ 2 \mathrm{MHZ} \end{gathered}$		
LD A, (nn)	$3 A n n$	050 n	N	N	N	N	N	N	3	4	13	6.5		185
LD (BC), A	02	002	N	N	N	N	N	N	1	2	7	3.5		210
LD (DE), A	12	018	N	N	N	N	N	N	1	2	7	3.5		210
LD (nn), A	32 nn	050 nn	N	N	N	N	N	N	3	4	13	6.5		205
LDA, I	ED 57	237087	*	*	0	IFF	0	N	2	2	9	4.5		183
LDA, R	ED 5F	237095	*	*	0	IFF	0	N	2	2	9	4.5		184
LDI, A	ED 47	237071	N	N	N	N	N	N	2	2	9	4.5		195
LDR, A	ED 4F	237079	N	N	N	N	N	N	2	2	9	4.5		196

```
FLAG KEY: N - Not affected
- RESET = 0
- SET \(=1\).
```

? - Unknown.

- Affected according to the result.

IFF - Content of Interrupt Flip Flop 2 copied into flag

TWO BYTE (16 BYTE) LOAD GROUP TABLE

$\begin{aligned} & \text { SOURCE } \\ & \text { CODE } \end{aligned}$	$\begin{gathered} \text { OBJECT } \\ \text { CODE (HEX) } \end{gathered}$	DECIMAL	FLAGS						NO. OF BYTES	TIMING			COMMENTS	CH. 5 REF.
			S	Z	H	PN	N	C			T STATES	$\begin{gathered} \mu \mathrm{SEC} @ \\ 2 \mathrm{MHZ} \end{gathered}$		
LD, dd, nn			N	N	N	N	N	N	3	3	10	5		
$\mathrm{dd}=\mathrm{BC}$	01 nn	001												197
$d d=D E$	11 nn	017												197
$d d=H L$	21 nn	033												197
dd $=$ SP	31	049												197
LDIX, nn	DD21nn	221033 nn	N	N	N	N	N	N	4	4	14	7		198
LDIY, nn	FD21nn	253033 nn	N	N	N	N	N	N	4	4	14	7		198
$\begin{aligned} & \text { LDdd, (nn) } \\ & \text { dd = BC } \end{aligned}$	ED 4B nn	237075	N	N	N	N	N	N	4	6	20	10		199
dd $=\mathrm{DE}$	ED 5B nn	237091												199 199
$\mathrm{dd}=\mathrm{HL}$	ED 6B nn	237107												199
$\mathrm{dd}=\mathrm{SP}$	ED 7B nn	237123												199
LDIX (nn)	DD2Ann	221042 nn	N	N	N	N	N	N	4	6	20	10		201
LDIY, (nn)	FD2Ann	253042 nn	N	N	N	N	N	N	4	6	20	10		201
$\begin{aligned} & L D(n n), d d \\ & d d=B C \end{aligned}$	ED 43 nn	237067 nn	N	N	N	N	N	N	4	6	20	10		206
$d d=D E$	ED $53 n \mathrm{n}$	$237083 n n$												206
$d d=H L$	ED63nn	237099 nn												206
$\mathrm{dd}=\mathrm{SP}$	ED73nn	237115 nn												206
LD(nn), IX	DD22nn	221034 nn	N	N	N	N	N	N	4	6	20	10		208
LD(nn), IY	FD22nn	253034 nn	N	N	N	N	N	N	4	6	20	10		208
LDSP, HL	F9	249	N	N	N	N	N	N	1	1	6	3		203
LD, SP, IX	DDF9	221249	N	N	N	N	N	N	2	2	10	5		204

TWO BYTE (16 BYTE) LOAD GROUP TABLE (cont.)

[^2]EXCHANGE, BLOCK TRANSFER AND SEARCH GROUP TABLE

SINGLE BYTE (8 BIT) ARITHMETIC GROUP TABLE

	SOURCE CODE	$\begin{gathered} \text { OBJECT } \\ \text { CODE (HEX) } \end{gathered}$		FLAGS						NO. OF BYTES	TIMING			COMMENTS	$\begin{aligned} & \text { CH. } 5 \\ & \text { REF. } \end{aligned}$
			DECIMAL	S	Z	H	P/V	N	C		$\begin{array}{c\|} \hline \mathrm{M} \\ \text { CYCLES } \end{array}$	$\begin{gathered} \hline \quad \mathrm{T} \\ \text { STATES } \end{gathered}$	$\left.\begin{array}{\|c\|c\|} \mu \mathrm{SEC} @ \\ 2 M H Z \end{array} \right\rvert\,$		
	ADCA, n	CEn	206	*	*	*	V	0	*	2	2	7	3.5	Adds with	71
	ADC A, r			*	*	*	V	0	*	1	1	4	2	Carry Adds with	
	$r=A$	8F	143											Carry	73
	$r=B$	88	136												74
	$r=C$	89	137												74
	$\mathrm{r}=\mathrm{D}$	8A	138												74
	$r=E$	8B	139												74
	$r=H$	8 C	140												74
	$r=L$	8D	141												74
ω	ADCA, (HL)	8E	142	*	-	*	V	0	*	1	2	7	3.5		76
∞	ADC A, (IX + d)	DD 8E d	221142 d	*	*	*	v	0	*	3	5	19	9.5		78
	ADC A, $(1 Y+d)$	FD 8E d	253142 d	*	*	*	V	0	*	3	5	19	9.5		78
	ADDA, n	C6n	198n	*	*	*	V	0	*	2	2	7	3.5		82
	ADD A, r			*	*	-	v	0	*	1	1	4	2		
	$r=A$	87	135												83
	$r=B$	80	128												83
	$r=C$	81	129												83
	$r=\mathrm{D}$	82	130												83
	$r=E$	83	131												83
	$r=H$	84	132												83
	$r=L$	85	133												83
	ADD A, (HL)	86	134	*	*	*	v	0	*	1	2	7	3.5		85
	ADD A, (IX + d)	DD 86 d	221134 d	*	*	*	v	0	*	3	5	19	9.5		86
	ADD A, (IY + D)	FD 86 D	253134 D	-	-	*	V	0	*	3	5	19	9.5		86
	DECd														

SINGLE BYTE (8 BIT) ARITHMETIC GROUP TABLE (cont.)

$\underset{\varnothing}{\omega}$	$\begin{aligned} & \text { SOURCE } \\ & \text { CODE } \end{aligned}$	$\begin{gathered} \text { OBJECT } \\ \text { CODE (HEX) } \end{gathered}$	DECIMAL	FLAGS						$\begin{array}{\|c} \mathrm{NO} . \\ \mathrm{OF} \\ \text { BYTES } \end{array}$	TIMING			COMMENTS	$\begin{aligned} & \text { CH. } 5 \\ & \text { REF. } \end{aligned}$
				S	Z	H	PN	N	C		$\begin{gathered} \mathrm{M} \\ \text { CYCLES } \end{gathered}$	$\begin{gathered} \mathrm{T} \\ \text { STATES } \end{gathered}$	$\begin{gathered} \mu \mathrm{SEC} @ \\ 2 \mathrm{MHZ} \end{gathered}$		
	$\mathrm{d}=\mathrm{A}$	3D	061							1	1	4	2		138
	$\mathrm{d}=\mathrm{B}$	05	005							1	1	4	2		138
	$d=C$	OD	013							1	1	4	2		138
	$d=D$	15	021							1	1	4	2		138
	$d=E$	1D	029							1	1	4	2		138
	$d=H$	25	037							1	1	4	2		138
	$d=L$	2D	045							1	1	4	2		138
	DEC (HL)	35	053	*	*	*	v	1	N	1	3	11	5.5		140
	DEC ($\mathrm{IX}+\mathrm{d}$)	DD 35 d	221053 d	*	*	*	v	1	N	3	6	23	11.5		141
	DEC ($\mathrm{IY}+\mathrm{d}$)	FD 35 d	253053 d	.	*	*	v	1	N	3	6	23	11.5		141
	$\mathrm{INCr}^{\text {r }}$			*	*	*	v	0	N	1	1	4	2		
	$r=A$	3 C	060												162
	$r=B$	04	004												162
	$r=C$	0 C	012												162
	$r=\mathrm{D}$	14	020												162
	$r=E$	1 C	028												162
	$r=H$	24	036												162
	$r=L$	2 C	044												162
	$1 \mathrm{NC}(\mathrm{HL})$	34	052	*	*	*	v	0	N	1	3	11	5.5		165
	INC ($1 \mathrm{X}+\mathrm{d}$)	DD 34 d	221052 d	*	*	*	V	0	N	3	6	23	11.5		166
	INC (IY + d)	FD 34 d	253052 d	*	*	*	v	0	N	3	6	23	11.5		166
	SBCA, n	DEn	$222 n$	*	*	*	v	1	*	2	2	7	3.5	Subtract with	301
	SBCA, r			*	*	*	V	1	*	1	1	4	2	Carry Subtract with	
	$r=A$	9 F	159											Carry	302

SINGLE BYTE (8 BIT) ARITHMETIC GROUP TABLE (cont.)

SOURCE CODE	$\begin{gathered} \text { OBJECT } \\ \text { CODE (HEX) } \end{gathered}$	DECIMAL	FLAGS							TIMING			COMMENTS	$\begin{aligned} & \mathrm{CH} .5 \\ & \text { REF. } \end{aligned}$
			S	Z	H	P/N	N	C		M CYCLES	T STATES	$\begin{gathered} \mu \mathrm{SEC} @ \\ 2 \mathrm{MHZ} \end{gathered}$		
$r=B$	98	152												303
$r=C$	99	153												303
$r=D$	9A	154												303
$r=E$	9B	155												303
$r=H$	9 C	156												303
$r=L$	9D	157												303
SBCA, (HL)	9E	158	*	*	*	V	1	*	1	2	7	3.5		305
SBC A, ($1 \mathrm{X}+\mathrm{d}$)	DD 9E d	221158 d	*	*	*	V	1	*	3	5	19	9.5		307
SBC A, (IY + d)	FD 9E d	253158 d	*	*	*	V	1	*	3	5	19	9.5		307
SUBn	D6n	214 n	*	*	*	V	1	*	2	2	7	3.5		334
SUBr			*	*	*	V	1	*	1	1	4	2		
$r=A$	97	151												336
$r=B$	90	144												337
$r=C$	91	145												337
$r=D$	92	146												337
$r=E$	93	147												337
$r=H$	94	148												337
$r=L$	95	149												337
SUB (HL)	96	150	*	*	*	V	1	*	1	2	7	3.5		339
SUB (IX + d)	DD 96 d	221150 d	*	*	*	V	1	*	3	5	19	9.5		341
SUB (IY + d)	FD 96 d	253150 d	*	*	*	V	1	*	3	5	19	9.5		341

FLAG KEY: $\quad \mathrm{N}$ - Not affected
P - Contains the Parity of the result (1 = Parity Even)
\checkmark - Contains the Overflow of the result (1 = Overflow)
© - RESET = \varnothing
$-\mathrm{SET}=1$
? - Unknown

- Affected according to the result

IFF - Content of Interrupt Flip Flop copied into flag

TWO BYTE (16 BIT) ARITHMETIC GROUP TABLE

TWO BYTE (16 BIT) ARITHMETIC GROUP TABLE (cont.)

[^3]
LOGICAL GROUP TABLE

LOGICAL GROUP TABLE (cont.)

GENERAL PURPOSE ARITHMETIC AND C.P.U. CONTROL GROUP TABLE

SOURCE CODE	$\begin{array}{\|l\|} \hline \text { OBJECT } \\ \text { CODE (HEX) } \end{array}$	DECIMAL	FLAGS						$\left\lvert\, \begin{gathered} \mathrm{NO} . \\ \mathrm{OF} \\ \text { BYTES } \end{gathered}\right.$	TIMING			COMMENTS	$\begin{aligned} & \mathrm{CH} .5 \\ & \text { REF. } \end{aligned}$
			S	Z	H	PN	N	C		$\begin{array}{\|c\|} \hline \mathrm{M} \\ \mathrm{CYCLES} \end{array}$	$\begin{array}{\|c\|} \hline 1 \\ \text { STATES } \end{array}$	$\begin{array}{\|c\|} \hline \mu \mathrm{SEC} @ \\ 2 \mathrm{MHZ} \end{array}$		
CCF	3 F	063	N	N	?	N	0	*	1	1	4	2		121
CPL	2 F	047	N	N	1	N	1	N	1	1	4	2		135
DAA	27	039	*	*	*	P	N	*	1	1	4	2		136
DI	F3	243	N	N	N	N	N	N	1	1	4	2		145
El	FB	251	N	N	N	N	N	N	1	1	4	2		147
HALT	76	118	N	N	N	N	N	N	1	1	4	2		155
IM 0	ED 46	237070	N	N	N	N	N	N	2	2	8	4		156
IM 1	ED56	237086	N	N	N	N	N	N	2	2	8	4		157
IM 2	ED5E	237094	N	N	N	N	N	N	2	2	8	4		158
NEG	ED 44	237068	*	*	*	V	1	*	2	2	8	4		225
NOP	00	000	N	N	N	N	N	N	1	1	4	2		226
SCF	37	055	*	*	0	*	0	1	1	1	4	2		311

[^4]| $\underset{\text { O/ }}{\text { W }}$ | SOURCE CODE | $\left\lvert\, \begin{gathered} \text { OBJECT } \\ \text { CODE (HEX) } \end{gathered}\right.$ | DECIMAL | FLAGS | | | | | | NO. OF BYTES | TIMING | | | COMMENTS | $\begin{aligned} & \text { CH. } 5 \\ & \text { REF. } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | S | Z | H | PN | N | C | | $\begin{gathered} \mathrm{M} \\ \text { CYCLES } \end{gathered}$ | $\begin{gathered} \mathrm{T} \\ \text { STATES } \end{gathered}$ | $\begin{array}{\|c\|} \hline \mu \mathrm{SEC} @ \\ 2 M H Z \end{array}$ | | |
| | RLr | | | * | * | 0 | P | 0 | * | 2 | 2 | 8 | 4 | | |
| | $r=A$ | CB 17 | 203023 | | | | | | | | | | | | 263 |
| | $r=B$ | CB 10 | 203016 | | | | | | | | | | | | 263 |
| | $r=C$ | CB11 | 203017 | | | | | | | | | | | | 263 |
| | $r=D$ | CB 12 | 203018 | | | | | | | | | | | | 263 |
| | $r=E$ | CB 13 | 203019 | | | | | | | | | | | | 263 |
| | $r=H$ | CB14 | 203020 | | | | | | | | | | | | 263 |
| | $r=L$ | CB 15 | 203021 | | | | | | | | | | | | 263 |
| | RLA | 17 | 023 | N | N | 0 | N | 0 | * | 1 | 1 | 4 | 2 | | 269 |
| | RL(HL) | CB 16 | 203022 | * | * | 0 | P | 0 | * | 2 | 4 | 15 | 7.5 | | 265 |
| | $R L$ (IX + d) | DD CB d 16 | 221203 d 022 | * | * | 0 | P | 0 | * | 4 | 6 | 23 | 11.5 | | 267 |
| | RL ($1 \mathrm{Y}+\mathrm{d}$) | FD CB d 16 | 253203 d 022 | * | * | 0 | P | 0 | * | 4 | 6 | 23 | 11.5 | | 267 |
| | RLCr | | | * | * | 0 | P | 0 | * | 2 | 2 | 8 | 4 | | |
| | $r=A$ | CB07 | 203007 | | | | | | | | | | | | 271 |
| | $r=B$ | CB00 | 203000 | | | | | | | | | | | | 271 |
| | $\mathrm{r}=\mathrm{C}$ | CB01 | 203001 | | | | | | | | | | | | 271 |
| | $r=D$ | CB02 | 203002 | | | | | | | | | | | | 271 |
| | $r=E$ | CB03 | 203003 | | | | | | | | | | | | 271 |
| | $r=H$ | CB04 | 203004 | | | | | | | | | | | | 271 |
| | $r=L$ | CB05 | 203005 | | | | | | | | | | | | 271 |
| | RLCA | 07 | 07 | N | N | 0 | N | 0 | * | 1 | 1 | 4 | 2 | | 277 |
| | RLC (HL) | CB06 | 203006 | * | * | 0 | P | 0 | * | 2 | 4 | 15 | 7.5 | | 273 |
| | RLC ($\mathrm{IX}+\mathrm{d}$) | DD CB d 06 | 221203 d 006 | * | * | 0 | P | 0 | * | 4 | 6 | 23 | 11.5 | | 275 |
| | RLC ($\mathrm{IY}+\mathrm{d}$) | FD CB d 06 | 253203 d 006 | * | * | 0 | P | 0 | * | 4 | 6 | 23 | 11.5 | | 275 |

ROTATE AND SHIFT GROUP TABLE (cont.)

SOURCE CODE	$\left\lvert\, \begin{gathered} \text { OBJECT } \\ \text { CODE (HEX) } \end{gathered}\right.$	DECIMAL	FLAGS						NO. OF BYTES	TIMING			COMMENTS	$\begin{aligned} & \text { CH. } 5 \\ & \text { REF. } \end{aligned}$
			S	Z	H	P/V	N	C		M CYCLES		$\begin{array}{\|c} \mu \mathrm{SEC} @ \\ 2 \mathrm{MHZ} \end{array}$		
RLD	ED6F	237111	*	*	0	P	0	N	2	5	18	9		279
RRr			*	*	0	P	0	*	2	2	8	4		
$\mathrm{r}=\mathrm{A}$	CB 1F	203031												281
$r=B$	CB 18	203024												281
$r=C$	CB 19	203025												281
$r=D$	CB1A	203026												281
$r=E$	CB1B	203027												281
$r=H$	CB1C	203028												281
$r=L$	CB 1D	203029												281
RRA	1F	31	N	N	0	N	0	*	1	1	4	2		287
RR (HL)	CB1E	203030	*	*	0	P	0	*	2	4	15	7.5		283
$R R(I X+d)$	DD CB d IE	221203 d 030	*	*	0	P	0	*	4	6	23	11.5		285
$R \mathrm{R}(\mathrm{I} Y+\mathrm{d})$	FD CB d IE	253203 d 030	*	*	0	P	0	*	4	6	23	11.5		285
RRCr			*	*	0	P	0	*	2	2	8	4		
$r=A$	CBOF	203015												289
$r=B$	CB 08	203008												289
$r=C$	CB09	203009												289
$r=D$	CBOA	203010												289
$r=E$	CB OB	203011												289
$r=H$	CBOC	203012												289
$r=L$	CBOD	203013												289
RRCA	OF	15	N	N	0	N	0	*	1	1	4	2		295
RRC (HL)	CBOE	203014	*	*	0	P	0	*	2	4	15	7.5		291
$\operatorname{RRC}(1 \mathrm{X}+\mathrm{d})$	DD CB doE	221203 d 014	*	*	0	P	0	*	4	6	23	11.5		293
RRC ($I Y+d)$	FD CB d OE	253203 d 014	*	*	0	P	0	*	4	6	23	11.5		293

ROTATE AND SHIFT GROUP TABLE (cont.)

SOURCE CODE	$\begin{array}{\|c\|} \text { OBJECT } \\ \text { CODE (HEX) } \\ \hline \end{array}$	DECIMAL	FLAGS						$\begin{gathered} \text { NO. } \\ \text { OF } \\ \text { BYTES } \end{gathered}$	TIMING			COMMENTS	$\begin{aligned} & \text { CH. } 5 \\ & \text { REF. } \end{aligned}$
			S	Z	H	P/V	N	C		$\stackrel{M}{\mathrm{M}} \mathrm{CYCLES}$	$\begin{gathered} \mathrm{T} \\ \text { STATES } \end{gathered}$	$\begin{array}{\|c\|} \hline \mu \text { SEC @ } \\ 2 M H Z \end{array}$		
														297
														316
														316
														316
														316
														316
														316
														316
														318
														322
														322
														322
														322
														322
														322
														322
														324
														326
														326
														328
														328
														328

ROTATE AND SHIFT GROUP TABLE (cont.)

SOURCE CODE	$\begin{gathered} \text { OBJECT } \\ \operatorname{CODE}(\mathrm{HEX}) \end{gathered}$		DECIMAL	FLAGS						$\begin{aligned} & \mathrm{NO} . \\ & \mathrm{OF} \end{aligned}$BYTES	TIMING			COMMENTS	$\text { CH. } 5$	
			S	Z	H	P/	N	C	$\begin{array}{\|c\|} \hline \mathrm{M} \\ \text { CYCLES } \end{array}$		$\begin{gathered} \hline \quad \mathrm{T} \\ \text { STATES } \end{gathered}$	$\begin{array}{\|c\|c\|} \hline \mu \mathrm{SEC} \\ 2 \mathrm{MHZ} \end{array}$				
$\mathrm{r}=\mathrm{D}$	CB3A	203		058												328
$r=E$	CB3B	203	059												328	
$r=H$	CB3C	203	060												328	
$r=L$	CB3D	203													328	
SRL (HL)	CB3E	203	062	*	*	0	P	0	*	2	4	15	7.5		330	
SRL (IX + d)	DD CBd 3E	221	203 d 062	*	*	0	P	0	*	4	6	23	11.5		332	
SRL (IY + d)	FD CBId 3 E	253	203 d 062	*	*	0	P	0	*	4	6	23	11.5		332	

FLAG KEY: N -Notaffected.
P - Contains the Parity of the result ($1=$ Parity Even).

- Contains the Overflow of the result ($1=$ Overflow)
- RESET $=\varnothing$.
- SET $=1$.
- Unknown.
- Affected according to the result.

BIT SET, RESET AND TEST (FLAG) GROUP TABLE
©

SOURCE CODE	$\begin{gathered} \text { OBJECT } \\ \text { CODE (HEX) } \end{gathered}$	DECIMAL	FLAGS						NO. OF BYTES	TIMING			COMMENTS	$\mathrm{CH} .5$ REF.
			S	Z	H	P/V	N	C		M CYCLES	T STATES	$\begin{array}{\|c\|} \hline \mu \mathrm{SEC} @ \\ 2 \mathrm{MHZ} \end{array}$		
BITb, r			?	*	1	?	0	N	2	2	8	4		
$r=A, b=0$	CB47	203071												101
$b=1$	CB4F	203079												101
$b=2$	CB 57	203087												101
$b=3$	CB5F	203095												101
$b=4$	CB67	203103												101
$b=5$	CB6F	203111												101
$b=6$	CB 77	203119												101
$b=7$	CB7F	203127												101
$r=B, b=0$	CB 40	203064												101
$b=1$	CB 48	203072												101
$b=2$	CB 50	203080												101
$b=3$	CB 58	203088												101
$b=4$	CB60	203096												101
$b=5$	CB68	203104												101
$b=6$	CB 70	203112												101
$b=7$	CB 78	203120												101
$r=C, b=0$	CB41	203065												101
$b=1$	CB 49	203073												101
$b=2$	CB51	203081												101
$b=3$	CB59	203089												101
$b=4$	CB61	203097												101
$b=5$	CB69	203105												101
$b=6$	CB 71	203113												101
$b=7$	CB 79	203121												101
$\mathrm{r}=\mathrm{D}, \mathrm{b}=0$	CB 42	203066												101
$b=1$	CB 4A	203074												101

BIT SET, RESET AND TEST (FLAG) GROUP TABLE (cont.)

$\begin{aligned} & \text { SOURCE } \\ & \text { CODE } \end{aligned}$	$\begin{aligned} & \text { OBJECT } \\ & \text { CODE (HEX) } \end{aligned}$	DECIMAL	FLAGS						NO. OF BYTES	TIMING			COMMENTS	$\begin{aligned} & \mathrm{CH} .5 \\ & \text { REF. } \end{aligned}$
			S	Z	H	P/V	N	C		$\begin{gathered} \mathrm{M} \\ \mathrm{CYCLES} \end{gathered}$		$\begin{array}{\|c\|} \hline \mu \text { SEC @ } \\ 2 M H Z \end{array}$		
$b=2$	CB52	203082												101
$b=3$	CB5A	203090												101
$b=4$	CB62	203098												101
$b=5$	CB6A	203106												101
$b=6$	CB 72	203114												101
$b=7$	CB7A	203112												101
$r=E, b=0$	CB 43	203067												101
$b=1$	CB 4B	203075												101
$b=2$	CB 53	203083												101
$b=3$	CB 5B	203091												101
$b=4$	CB63	203099												101
$b=5$	CB6B	203107												101
$b=6$	CB 73	203115												101
$b=7$	CB 7B	203123												101
$r=H, b=0$	CB 44	203068												101
$b=1$	CB 4C	203076												101
$b=2$	CB 54	203084												101
$b=3$	CB5C	203092												101
$b=4$	CB 64	203100												101
$b=5$	CB6C	203108												101
$b=6$	CB 74	203116												10.1
$b=7$	CB7C	203124												101
$r=L, b=0$	CB 45	203069												101
$b=1$	CB 4D	203077												101
$b=2$	CB 55	203085												101
$b=3$	CB 5D	203093												101
$b=4$	CB65	203101												101

BIT SET, RESET AND TEST (FLAG) GROUP TABLE (cont.)

BIT SET, RESET AND TEST (FLAG) GROUP TABLE (cont.)

	SOURCE CODE	$\begin{aligned} & \text { OBJECT } \\ & \text { CODE (HEX) } \end{aligned}$	DECIMAL	FLAGS							TIMING			COMMENTS	CH. 5 REF.
				S	Z	H	P/V	N	C		M	T STATES	$\begin{array}{\|c\|} \hline \mu \mathrm{SEC} @ \\ 2 \mathrm{MHZ} \end{array}$		
	$b=5$	FDCB d 6E	253203 d 110												105
	$b=6$	FDCB d 76	253203 d 118												105
	$b=7$	FDCB d 7E	253203 d 126												105
	RES b, r			N	N	N	N	N	N	2	2	8	4		
	$r=A, b=\emptyset$	CB87	203135												250
	$b=1$	CB8F	203143												250
	$b=2$	CB97	203151												250
	$b=3$	CB 9F	203159												250
	$b=4$	CBA7	203167												250
	$b=5$	CBAF	203175												250
	$b=6$	CBB	203183												250
W్రి	$b=7$	CB BF	203191												250
ద	$r=B, b=0$	CB 80	203128												250
	$b=1$	CB 88	203136												250
	$b=2$	CB 90	203144												250
	$b=3$	CB98	203152												250
	$b=4$	CB AO	203160												250
	$b=5$	CBA8	203168												250
	$b=6$	CBBO	203176												250
	$b=7$	CB B8	203184												250
	$r=C, b=0$	CB81	203129												250
	$b=1$	CB 89	203137												250
	$b=2$	CB91	203145												250
	$b=3$	CB99	203153												250
	$b=4$	CBA1	203161												250
	$b=5$	CBA9	203169												250
	$b=6$	CBB1	203177												250
	$b=7$	CB B9	203185												250

BIT SET, RESET AND TEST (FLAG) GROUP TABLE (cont.)

$\begin{aligned} & \text { W్⿰亻 } \\ & \underset{\sim}{2} \end{aligned}$	SOURCE CODE	$\begin{gathered} \text { OBJECT } \\ \text { CODE (HEX) } \end{gathered}$		FLAGS						$\begin{aligned} & \text { NO. } \\ & \text { OF } \\ & \text { BYTES } \end{aligned}$	TIMING			COMMENTS	$\begin{aligned} & \mathrm{CH} .5 \\ & \text { REF. } \end{aligned}$
			DECIMAL	S	Z	H	P/V	N	C		$\begin{array}{c\|} \hline \mathrm{M} \\ \text { CYCLES } \end{array}$	$\begin{array}{\|c\|} \hline \quad \\ \text { STATES } \end{array}$	$\begin{gathered} \mu \mathrm{SEC} @ \\ 2 \mathrm{MHZ} \end{gathered}$		
	$r=D, b=0$	CB 82	203130												250
	$b=1$	CB8A	203138												250
	$b=2$	CB92	203146												250
	$b=3$	CB9A	203154												250
	$\mathrm{b}=4$	CBA2	203162												250
	$b=5$	CBAA	203170												250
	$b=6$	CBB2	203178												250
	$\mathrm{b}=7$	CBBA	203186												250
	$r=E, b=\varnothing$	CB83	203131												250
	$b=1$	CB8B	203139												250
	$b=2$	CB93	203147												250
	$b=3$	СВ98	203155												250
	$\mathrm{b}=4$	CBA3	203163												250
	$\mathrm{b}=5$	CBAB	203171												250
	$b=6$	CBB3	203179												250
	$\mathrm{b}=7$	CBBB	203187												250
	$r=H, b=0$	CB84	203132												250
	b $=1$	CB8C	203140												250
	$b=2$	CB94	203148												250
	$\mathrm{b}=3$	CB9C	203156												250
	$\mathrm{b}=4$	CBA4	203164												250
	$\mathrm{b}=5$	CBAC	203172												250
	$b=6$	CBB4	203180												250
	$\mathrm{b}=7$	CBBC	203188												250
	$r=L, b=\emptyset$	CB85	203133												250
	$b=1$	CB8D	203141												250
	$\mathrm{b}=2$	CB 95	203149												250

BIT SET, RESET AND TEST (FLAG) GROUP TABLE (cont.)

$\begin{aligned} & \omega \\ & \underset{\sim}{0} \\ & \hline \end{aligned}$	SOURCE CODE	$\begin{gathered} \text { OBJECT } \\ \text { CODE (HEX) } \end{gathered}$	DECIMAL	FLAGS						NO. OF BYTES	TIMING			COMMENTS	$\begin{aligned} & \mathrm{CH} .5 \\ & \text { REF. } \end{aligned}$
				S	Z	H	P/	N	C		$\begin{array}{\|c\|} \hline \mathrm{M} \\ \text { CYCLES } \end{array}$	$\begin{gathered} \top \\ \text { STATES } \end{gathered}$	$\left.\begin{array}{\|c} \mu \mathrm{SEC} @ \\ 2 \mathrm{MHZ} \end{array} \right\rvert\,$		
	$\mathrm{b}=3$	CB9D	203157												250
	$b=4$	CBA5	203165												250
	$b=5$	CBAD	203173												250
	$b=6$	CBB5	203181												250
	$b=7$	CBBD	203189												250
	RES b, (HL)			N	N	N	N	N	N	2	4	15	7.5		
	$b=0$	CB86	203134												251
	$b=1$	CB8E	203142												251
	$\mathrm{b}=2$	CB96	203150												251
	$b=3$	CB9E	203158												251
	$\mathrm{b}=4$	CBA6	203166												251
	$\mathrm{b}=5$	CBAE	203174												251
	$b=6$	CBB6	203182												251
	$b=7$	CBBE	203190												251
	RES $b,(1 X+d)$			N	N	N	N	N	N	4	6	23	11.5		
	$b=\emptyset$	DD CB d 86	221203 d 134												253
	$b=1$	DD CB d 8E	221203 d 142												253
	$\mathrm{b}=2$	DD CBd 96	221203 d 150												253
	$\mathrm{b}=3$	DD CBd 9E	221203 d 158												253
	$\mathrm{b}=4$	DD CB d A6	221203 d 166												253
	$\mathrm{b}=5$	DD CBdAE	221203 d 174												253
	$\mathrm{b}=6$	DD CB d B6	221203 d 182												253
	$b=7$	DD CBdBE	221203 d 190												253
	RES b, (IY + d)			N	N	N	N	N	N	4	6	23	11.5		
	$b=0$	FD CB d 86	253203 d 134												253
	$b=1$	FD CB d 8E	253203 d 142												253
	$\mathrm{b}=2$	FD CB d 96	253203 d 150\|												253

BIT SET, RESET AND TEST (FLAG) GROUP TABLE (cont.)

ద్ద	SOURCE CODE	$\begin{gathered} \text { OBJECT } \\ \text { CODE (HEX) } \end{gathered}$	DECIMAL	FLAGS						$\begin{array}{\|c\|} \hline \mathrm{NO} . \\ \mathrm{OF} \\ \text { BYTES } \end{array}$	TIMING			COMMENTS	$\begin{aligned} & \text { CH. } 5 \\ & \text { REF. } \end{aligned}$
				S	Z	H	P/N	N	C		$\begin{array}{\|c\|} \hline \mathrm{M} \\ \mathrm{CYCLES} \end{array}$	$\begin{gathered} \mathrm{T} \\ \text { STATES } \end{gathered}$	$\left\|\begin{array}{\|c\|c\|} \mu \mathrm{SEC} @ \\ 2 \mathrm{MHZ} \end{array}\right\|$		
	$\mathrm{b}=3$	FD CB d 9E	253203 d 158												253
	$b=4$	FD CB d A6	253203 d 166												253
	$\mathrm{b}=5$	FD CB d AE	253203 d 174												253
	$\mathrm{b}=6$	FD CB d B6	253203 d 182												253
	$\mathrm{b}=7$	FD CB d BE	253203 d 190												253
	SETb, r			N	N	N	N	N	N	2	2	8	4		
	$r=A, b=0$	CBC7	203199												312
	$b=1$	CBCF	203207												312
	$b=2$	CBD7	203215												312
	$b=3$	CBDF	203223												312
	$\mathrm{b}=4$	CBE7	203231												312
	$\mathrm{b}=5$	CBEF	203239												312
	$b=6$	CBF7	203247												312
	$\mathrm{b}=7$	CBFF	203255												312
	$r=B, b=0$	CBCO	203192												312
	$\begin{aligned} & \\ & r a=0\end{aligned}$	CBC8	203200												312
	$b=2$	CBDO	203208												312
	$b=3$	CBD8	203216												312
	$b=4$	CBEO	203224												312
	$b=5$	CBE8	203232												312
	$b=6$	CBFO	203240												312
	$b=7$	CBF8	203248												312
	$r=C, b=0$	CBC 1	203193												312
	$b=1$	CBC9	203201												312
	$\mathrm{b}=2$	CBD1	203209												312
	$b=3$	CBD9	203217												312
	$b=4$	CBE1	203225												312

BIT SET, RESET AND TEST (FLAG) GROUP TABLE (cont.)

SOURCE CODE	$\begin{gathered} \text { OBJECT } \\ \text { CODE (HEX) } \end{gathered}$	DECIMAL	FLAGS						NO. OF BYTES	TIMING			COMMENTS	$\begin{aligned} & \text { CH. } 5 \\ & \text { REF. } \end{aligned}$
			S	Z	H	P/V	N	C		M CYCLES	T STATES	$\begin{array}{\|c\|} \hline \mu \mathrm{SEC} @ \\ 2 \mathrm{MHZ} \end{array}$		
$b=5$	CBE9	203233												312
$b=6$	CBF1	203241												312
$b=7$	CBF9	203249												312
$r=D, b=0$	CBC2	203194												312
$b=1$	CBCA	203202												312
$b=2$	CBD2	203210												312
$b=3$	CBDA	203218												312
$b=4$	CBE2	203226												312
$b=5$	CBEA	203234												312
$b=6$	CBF2	203242												312
$b=7$	CBFA	203250												312
$r=E, b=0$	CBC3	203195												312
$b=1$	CBCB	203203												312
$b=2$	CBD3	203211												312
$b=3$	CBDB	203219												312
$b=4$	CBE3	203227												312
$b=5$	CBEB	203235												312
$b=6$	CBF3	203243												312
$b=7$	CBFB	203251												312
$r=H, b=\emptyset$	CBC 4	203196												312
$b=1$	CBCC	203204												312
$b=2$	CBD4	203212												312
$b=3$	CBDC	203220												312
$b=4$	CBE4	203228												312
$b=5$	CBEC	203236												312
$b=6$	CBF4	203244												312
$b=7$	CBFC	203252												312

BIT SET, RESET AND TEST (FLAG) GROUP TABLE (cont.)

SOURCE CODE	$\begin{gathered} \text { OBJECT } \\ \text { CODE (HEX) } \end{gathered}$	DECIMAL	FLAGS						$\begin{array}{\|c} \mathrm{NO} . \\ \mathrm{OF} \\ \text { BYTES } \end{array}$	TIMING			COMMENTS	$\begin{aligned} & \mathrm{CH} .5 \\ & \text { REF. } \end{aligned}$
			S	Z	H	PN	N	C		$\begin{gathered} \mathrm{M} \\ \mathrm{CYCLES} \end{gathered}$	$\begin{array}{c\|} \hline \\ \text { STATES } \end{array}$	$\begin{gathered} \mu \mathrm{SEC} @ \\ 2 \mathrm{MHZ} \end{gathered}$		
$r=L, b=0$	CBC5	203197												312
$b=1$	CBCD	203205												312
$b=2$	CBD5	203213												312
$b=3$	CBDD	203221												312
$b=4$	CBE5	203229												312
$\mathrm{b}=5$	CBED	203237												312
$b=6$	CBF5	203245												312
$b=7$	CBFD	203253												312
SETb, (HL)			N	N	N	N	N	N	2	4	15	7.5		
$\mathrm{b}=0$	CBC6	203198												313
$b=1$	CBCE	203206												313
$b=2$	CBD6	203214												313
$b=3$	CBDE	203222												313
$b=4$	CBE6	203230												313
$b=5$	CBEE	203238												313
$b=6$	CBF6	203246												313
$b=7$	CBFE	203254												313
SET b, (IX + d)			N	N	N	N	N	N	4	6	23	11.5		
$b=\varnothing$	DD CB a C6	221203 d 198												314
$b=1$	DD CB d CE	221203 d 206												314
$b=2$	DD CB d D6	221203 d 214												314
$\mathrm{b}=3$	DD CB d DE	221203 d 222												314
$b=4$	DD CB d E6	221203 d 230												314
$\mathrm{b}=5$	DD CB d EE	221203 d 238												314
$\mathrm{b}=6$	DD CBdF6	221203 d 246												314
$\mathrm{b}=7$	DD CB d FE	221203 d 254												314

BIT SET, RESET AND TEST (FLAG) GROUP TABLE (cont.)

$\begin{aligned} & \text { SOURCE } \\ & \text { CODE } \end{aligned}$	$\left\|\begin{array}{c} \text { OBJECT } \\ \text { CODE (HEX) } \end{array}\right\|$	DECIMAL	FLAGS						NO. OF BYTES	TIMING			COMMENTS	CH. 5 REF.
			S	Z	H	PN	N	C		M CYCLES	T STATES	$\left\|\begin{array}{c} \mu \mathrm{SEC} \text { @ } \\ 2 \mathrm{MHZ} \end{array}\right\|$		
$\text { SET b, }(I Y+d)$	CB	253203 d 198	N	N	N	N	N	N	4	6	23	11.5		314
$b=1$	FD CB d CE	253203 d 206												314
$b=2$	FD CB d D6	253203 d 214												314
$b=3$	FD CB d DE	253203 d 222												314
$b=4$	FD CB d E6	253203 d 230												314
$b=5$	FD CB d EE	253203 d 238												314
$b=6$	FD CB d F6	253203 d 246												314
$b=7$	FD CB d FE	253203 d 254												314

FLAG KEY

[^5]JUMP, (SUB-ROUTINE) CALL AND RETURN GROUP TABLE

										NO		TIMING			
	SOURCE CODE	$\begin{gathered} \text { OBJECT } \\ \text { CODE (HEX) } \end{gathered}$	DECIMAL	S	Z	H	PN	N	C	OF	$\left\lvert\, \begin{gathered} \mathrm{M} \\ \text { CYCLES } \end{gathered}\right.$	$\begin{gathered} \mathrm{T} \\ \text { STATES } \end{gathered}$	$\begin{array}{\|c\|} \hline \mu \mathrm{SEC} @ \\ 2 \mathrm{MHZ} \end{array}$	COMMENTS	$\begin{aligned} & \text { CH. } 5 \\ & \text { REF. } \end{aligned}$
ట్ర	CALL pq CALLcc, pq	CDpq	205 pq	N	N	N	N	N	N	3	5	17	8.5		109
				N	N	N	N	N	N	3	5 3	17 10	8.5 5	If cc is true If cc is false	
	$\mathrm{cc}=\mathrm{NZ}$	C4 pq	196 pq												117
	$\mathrm{CC}=\mathrm{Z}$	CCpq	204 pq												116
	$\mathrm{cc}=\mathrm{NC}$	D4 pq	212 pq												112
	$\mathrm{cc}=\mathrm{C}$	DCpq	220 pq												111
	$\mathrm{cc}=\mathrm{PO}$	E4pq	228 pq												120
	$c \mathrm{CC}=\mathrm{PE}$	ECpq	236 pq												119
	$\mathrm{CC}=\mathrm{P}$	F4pq	244 pq												113
	$c \mathrm{C}=\mathrm{M}$	FCpq	252 pq												115
	DJNZe	$10 \mathrm{e}-2$	$16 \mathrm{e}-2$	N	N	N	N	N	N	2	2	8	4	If Register B = 0	146
											3	13	6.5	If Register $B \neq 0$	
	JPnn	C3nn	195 nn	N	N	N	N	N	N	3	3	10	5		175
	JPcc, pq			N	N	N	N	N	N	3	3	10	5		
	$\mathrm{cc}=\mathrm{NZ}$	C2 qp	194 qp												178
	$\mathrm{cc}=\mathrm{Z}$	CAqp	202 qp												178
	$\mathrm{cc}=\mathrm{NC}$	D2 qp	210 qp												178
	$\mathrm{cc}=\mathrm{C}$	DAqp	218qp												178
	$\mathrm{cc}=\mathrm{PO}$	E2 qp	226 qp												178
	$\mathrm{cc}=\mathrm{PE}$	EAqp	234 qp												178
	$c \mathrm{C}=\mathrm{P}$	F2 qp	242 qp												178
	$C C=M$	FAqp	250 qp												178
	$J P(H L)$	E9	233	N	N	N	N	N	N	1	1	4	2		176
	JP(IX)	DDE9	221233	N	N	N	N	N	N	2	2	8	4		177
	JP(IY)	FDE9	253233	N	N	N	N	N	N	2	2	8	4		177
	JRe	$18 \mathrm{e}-2$	024 e-2	N	N	N	N	N	N	2	3	12	6		

JUMP, (SUB-ROUTINE) CALL AND RETURY GROUP TABLE (cont.)

JUMP, (SUB-ROUTINE) CALL AND RETURN GROUP TABLE (cont.)

SOURCE CODE	$\left\lvert\, \begin{gathered} \text { OBJECT } \\ \text { CODE (HEX) } \end{gathered}\right.$		FLAGS						$\begin{gathered} \hline \mathrm{NO} . \\ \mathrm{OF} \\ \text { BYTES } \end{gathered}$	TIMING			COMMENTS	$\begin{aligned} & \mathrm{CH} .5 \\ & \text { REF. } \end{aligned}$
		DECIMAL	S	Z	H	P/V	N	C		$\begin{array}{\|c\|} \hline \mathrm{M} \\ \text { CYCLES } \end{array}$	$\begin{gathered} \mathrm{T} \\ \text { STATES } \end{gathered}$	$\begin{gathered} \mu \text { SEC @ @ } \\ 2 M H Z \end{gathered}$		
(Hex.)	D7	215												299
$\mathrm{p}=18$														
(Hex.)	DF	223												299
$\mathrm{p}=20$														
(Hex.)	E7	231												299
$\mathrm{p}=28$														
(Hex.)	EF	239												299
$\mathrm{p}=30$														
(Hex.)	F7	247												299
$\mathrm{p}=38$														
(Hex.)	FF	255												299

INPUT AND OUTPUT GROUP TABLE

${\underset{\omega}{\omega}}^{\omega}$	SOURCE CODE	$\begin{gathered} \text { OBJECT } \\ \text { CODE (HEX) } \end{gathered}$	DECIMAL	FLAGS						NO. OF BYTES	TIMING			COMMENTS	$\begin{aligned} & \text { CH. } 5 \\ & \text { REF. } \end{aligned}$	
				S	Z	H	PN	N	C		$\begin{gathered} \mathrm{M} \\ \mathrm{CYCLES} \end{gathered}$	$\begin{gathered} \mathrm{T} \\ \text { STATES } \end{gathered}$	$\begin{array}{\|c} \mu \mathrm{SEC} @ \\ 2 \mathrm{MHZ} \end{array}$			
	INA, (N)	DBN	219 N	N	N	N	N	N	N	2	3	11	5.5		159	
	$\mathrm{N} \mathrm{r}, \mathrm{(C)}$			*	*	*	P	0	N	2	3	12	6			
	$r=A$	ED 78	237120												160	
	$r=B$	ED 40	237064												160	
	$r=C$	ED 48	237072												160	
	$r=0$	ED 50	237080												160	
	$r=E$	ED 58	237088												160	
	$r=H$	ED60	237096												160	
	$r=L$	ED 68	237104												160	
	IND	EDAA	237170	$?$	*	$?$?	1	N	2	4	16	8		169	
	\| N		EDA2	237162	?	*	?	?	1	N	2	4	16	8		172
	INIR	ED B2	237172	?	1	?	?	1	N	2	5	21	10.5	If Register $B \neq 0$	170	
											4	16	8	If Register $\mathrm{B}=0$		
	INDR	EDBA	237186	?	1	$?$?	1	N	2	5	21	10.5	If Register $B \neq \emptyset$	235	
											4	16	8	If Register $B=\emptyset$		
	OTDR	ED BB	237187	$?$	1	$?$?	1	N	2	5	21	10.5	If Register $B \neq \emptyset$	173	
											4	16	8	If Register $B=0$		
	OTIR	EDB3	237179	$?$	*	$?$?	1	N	2			10.5	If Register $B \neq \emptyset$	236	
											4	16	8	If Register $B=\emptyset$		
	OUT (n , , A	D3 n	211 n	N	N	N	N	N	N	2	3	11	5.5		239	
	OUT (C), r			N	N	N	N	N	N	2	3	12	6			
	$r=A$ $r=B$	ED79	$\begin{array}{\|l} 237121 \\ 237065 \end{array}$												238	
	$r=C$	ED 49	237073												238	
	$r=D$	ED51	237081												238	
	$r=E$	ED59	237089												238	
	$r=H$	ED61	\| 237097												238	

INPUT AND OUTPUT GROUP TABLE (cont.)

SOURCE CODE	$\begin{gathered} \text { OBJECT } \\ \text { CODE (HEX) } \end{gathered}$	DECIMAL	FLAGS						NO. OF BYTES	TIMING			COMMENTS	$\begin{aligned} & \text { CH. } 5 \\ & \text { REF. } \end{aligned}$
			S	Z	H	P/V	N	C		$\begin{gathered} \mathrm{M} \\ \text { CYCLES } \end{gathered}$	$\begin{gathered} \mathrm{T} \\ \text { STATES } \end{gathered}$	$\begin{array}{\|c\|} \hline \mu \mathrm{SEC} @ \\ 2 \mathrm{MHZ} \end{array}$		
$r=L$	ED69	237105												238
OUTD	EDAB	237171	?	*	?	?	1	N	2	4	16	8		240
OUTI	EDA3	237163	?	*	?	?	1	N	2	4	16	8		241

FLAG KEY: $\quad \mathrm{N}$ - Not affected.
P - Contains the Parity of the result (1 = Parity Even).
\checkmark - Contains the Overflow of the result ($1=$ Overflow).

- $\quad-$ RESET $=0$.
$1-$ SET $=1$.
? - Unknown.
- Affected according to the result.

The Z80 Reference Guide is an essential book for programmers involved in Z 80 machine language programming.

The well laid out format of this book will make it clearer for readers to understand the capabilities of the $Z 80$ instruction set.
Many of the instructions which operate on all of the registers have been grouped together, placing all of the opcodes on the one page for easier reference.

All the opcodes are HEX and decimal, making machine language programs for BASIC programmers easier to implement.

The book serves as a quick and informative reference manual.
The effect each instruction has on the status register has been clearly presented for easy reference.

The Z80 Reference Guide is an indispensable book for anyone interested in learning machine language programming skills.

M

 hittys //agerame/

[FAH] Be doulment a teté práservé numériquement à das fins édurativas et dêtudes, at non commercielas.
[ENGU This doeument has heen digitally praserved for adurational and study purposes, not for commervial purposes.

[^0]: FLAG KEY: $\quad \mathrm{N}$ - Not affected. $\quad 1$ - SET $=1$
 P - Contains the Parity of the result ($1=$ Parity Even).
 V - Contains the Overflow of the result ($1=$ Overflow).
 ? - Unknown.

 - - RESET $=0$

[^1]: LD C,E Loads the contents of Register E into Register C, i.e. the Lower Order byte of Register Pair BC.

[^2]: FLAG KEY: N - Not aftectea.
 $0 \quad-$ Reset $=0$.

 - Set $=1$.
 - Unknown.
 - Affected according to the result.

 IFF - Content of Interrupt Flip Flop copied into flag

[^3]: FLAG KEY: N - Not affected.
 $0 \quad-$ Reset $=0$.

 - Set $=1$.
 ? Unknown.
 * - Affected according to the result.

[^4]: FLAG KEY: $\quad \mathrm{N}$ - Not affected.
 P - Contains the Parity of the result (1 = Parity Even).

 - Contains the Overflow of the result ($1=$ Overflow)
 - RESET $=0$
 - SET $=1$.
 - Unknown.
 - Affected according to the result.

[^5]: N - Not affected

 - Contains the Parity of the result (1 = Parity Even).
 - Contains the Overflow of the result ($1=$ Overflow)
 - RESET $=0$.
 - SET = 1 .
 - Unknown.
 - Affected according to the result

