
BASIC
PROGRAMMING

ON THE
AMSTRAD

Wynford James

MICRO PRESS

BASIC Programming
on the Amstrad

BASIC
Programming on

the Amstrad

Wynford James

MICRO PRESS

First published in 1984 in the United Kingdom by
Micro Press
Castle House, 27 London Road
Tunbridge Wells, Kent

© Wynford James 1984

All rights reserved. No part of
this publication may be reproduced,
stored in a retrieval system, or transmitted
in any form or by any means, electronic,
mechanical, recording or otherwise, without
the prior permission of the publishers.

ISBN 0-7447-0024-8

Amstrad and CPC 464 are trademarks of
Amstrad Consumer Electronics PLC

Typeset by Keyset Composition, Colchester, Essex
Printed and bound by MacKays of Chatham Ltd.

Contents

Chapter 1 Getting Started 1

Chapter 2 Programming 19

Chapter 3 Drawing Pictures 45

Chapter 4 Loops 73

Chapter 5 Making Decisions 97

Chapter 6 Strings 111

Chapter 7 Loops and Lists 131

Chapter 8 Games and Graphics 150

Chapter 9 Planning a Program 177

Chapter 10 Sound and Music 205

Chapter 11 Files 215

Index 227

v

Chapter One

Getting Started

Introducing the microcomputer system

You own an Amstrad microcomputer. You are in a rare position
for a micro owner, because the Amstrad computer is sold as a
complete microcomputer system. You do not need to buy any­
thing else to be able to use your Amstrad minutes after you have
unpacked it.

What is a microcomputer system? The Amstrad computer is
housed within a grey plastic case, and contains many electronic
components which together enable the Amstrad to draw
pictures, carry out arithmetic, and do all the things we have come
to expect personal micros to be able to do.

But the computer on its own is a dumb beast. It is as clever as a
driverless car. To do anything remotely useful the Amstrad must
receive instructions from a human being. Thus a keyboard is
built into the Amstrad so that we can communicate with the
microcomputer inside by typing in our instructions.

However, we humans do have one or two weaknesses com­
pared to the Amstrad. We like to be able to see what we're typing
for example. So the Amstrad comes with a monitor, a TV-like
screen on which the computer displays every character which we
type at the keyboard.

Now, we have a way of giving instructions to the Amstrad, via
the keyboard, the input device. And the computer can give
messages back to us by displaying them on the monitor, the
output device. And we have the Amstrad itself to do all the
computing. Surely we need nothing more? So what's this cassette
recorder doing at the right-hand end of the keyboard?

To understand why the Amstrad's integral cassette recorder is
so useful, we need to look a little more closely at the electronic
components within the Amstrad itself. Although there are a great
many of these components, the most important areas within the

1

2 BASIC Programming on the Amstrad

computer from our point of view are those that make up the
computer memory.

The forgetful computer

The Amstrad has two types of memory — ROM and RAM. It is
probably easier to understand why we need ROM and RAM if we
look at the sorts of things human beings remember.

We all remember our own names, where we live, which way is
up, and how to turn the television on. This type of information is
stored permanently in our brains, because it is vital for everyday
life.

The Amstrad also needs to remember some instructions per­
manently. It needs to know how to carry out arithmetic, which
shape to show on the monitor screen when the letter 'A' is
pressed at the keyboard, how to draw lines, and many other
things. The manufacturer of the Amstrad records instructions
which enable the Amstrad to carry out all these tasks in ROM,
Read Only Memory, within the computer.

The memory is known as Read Only because the Amstrad (and
its owner) can only examine or 'read' the instructions in the ROM
— these instructions are permanently recorded and cannot be
changed. This is just as well—we would not want to accidentally
affect the computer's ability to do arithmetic, or leave it display­
ing Q every time we pressed 'A' on the keyboard.

But we human beings do not permanently remember every­
thing that we do. We are thankful to forget that awful Western
film that was on TV last night, or the mark we got in the Maths
exam in the 4th year, or how far it is from the Earth to the moon. A
great deal of the information we use is only remembered for very
short periods — the telephone number of the local computer
shop, the name of the person who has just broken the UK 1500
metres record, etc.

In the same way, the Amstrad 'remembers' some information
only temporarily. The instructions stored in the ROM would
enable the Amstrad to multiply 12345 by 6789. But once the
Amstrad has carried out this calculation and displayed it on the
monitor, is there really much point in the micro storing the
answer 8384415 forever?

Not really. So the Amstrad stores the instructions that we give

Getting Started 3

it in RAM, or Random Access Memory. This is a temporary form
of memory. The RAM is empty when the Amstrad is switched on.
Gradually the RAM will get filled up as we type instructions at the
keyboard. That information will stay in the RAM until the
Amstrad is switched off.

The RAM acts as a kind of blackboard on which the Amstrad
can record information, and that blackboard is 'cleaned' if the
machine is switched off. The RAM can hold the equivalent
amount of information to about 30 pages of this book. Clearly the
micro would not be much use if we could only store information
permanently, because we would soon use up all the memory and
the computer would be useless. So we can clear the RAM at any
time either by asking the computer to do it for us, or simply by
switching the machine off.

Unfortunately, the ease with which RAM can be wiped clean
does pose another problem. Suppose we have been working
away with the Amstrad for several hours. We have typed in many
instructions at the keyboard. These instructions, known as the
computer program, enable the Amstrad to draw a view of the
Earth from space. But what is to become of this masterpiece now?
If we leave the Amstrad switched on all the time, to preserve the
program, we won't ever be able to use the micro again, because
any new program typed in will probably need the RAM occupied
by the old one. Yet if we switch the Amstrad off, the program
stored in RAM will be lost, and the wonderful picture it drew will
be just a memory.

At last, by a roundabout route, we have come to the reason for
that cassette recorder at the right-hand end of the Amstrad case.
The micro can take any program stored in RAM and convert it
into a series of sounds which can be recorded on cassette tape.
Once the program has been recorded or 'saved' we can switch the
Amstrad off with easy minds.

The next time we want to impress Aunt Gladys with our artistic
skills, we need only place the cassette on which the program is
recorded into the machine and play it back. The computer will
convert the tones recorded on the tape back into a program in
RAM — the program will be 'loaded'. We can command the
Amstrad to obey the program instructions—'run' the program—
and once again the monitor screen will display that view of Earth
from space.

It is probably worth while noting at this stage that different

4 BASIC Programming on the Amstrad

makes of micro cannot load or save each other's programs. Each
micro has a different ROM and understands a different set of
instructions.

The Amstrad

Now that we have identified the main parts of a microcomputer
system and why those parts are needed, let's look at the Amstrad
itself.

The Amstrad keyboard is set up in the same way as a typewriter
keyboard, with some additional keys which are in a different
colour to the rest of the keyboard. We are going to begin by
looking at the purpose of these keys, so switch your Amstrad on
now (full setting-up instructions are given on pages Fl. 1 to Fl.6
in the User Instructions supplied with the micro).

If you have never used a micro before you may perhaps be
worried that you might damage this expensive machine by
typing the wrong thing at the keyboard. Fear not. Nothing you
can do has any permanent effect on the Amstrad. If the screen
turns bright red and nothing you type appears on the display, the
worst that might happen is that you have to switch the Amstrad
off and then back on again, at which point everything returns to
normal.

Once your Amstrad is switched on you will see on your moni­
tor or TV screen a few brief lines of blurb announcing that you are
using the Amstrad computer, and then a line 'BASIC 1.0'. BASIC
is the computer language built into the Amstrad, a language with
its own set of rules. There are many computer languages, but
nearly all micros use BASIC as standard, although the BASIC
dialect can vary greatly from machine to machine.

Further down the screen is the word 'Ready', and on the next
line a small rectangle on the left-hand edge of the screen. This
rectangle is called the text cursor, and is the computer equivalent
of a pen-nib. The cursor is necessary so that you know the next
position the computer is going to 'write' text on the screen.

When you switch the Amstrad on, the keys are set to produce
lower case or small letters. The keyboard letters are all upper case
or capitals, but if you press the A, B and C keys in succession, you
will find that the Amstrad displays:

abc[

Getting Started 5

Note that the cursor moves along as you press the keys — it
always shows the next position at which the computer will print a
character.

Now press the green CAPS LOCK key at the left of the
keyboard. Press the A, B and C keys again. The screen will now
display:

abcABCf

Pressing the CAPS LOCK key switches all the alphabetic keys to
display capital letters. Pressing it again will cause the keys to
produce lower case letters once more, so press CAPS LOCK a
third time and type A, B and C.

abcABCabcf

So CAPS LOCK acts as a switch controlling whether the alpha­
betic keys produce small or capital letters. Unfortunately it is
impossible to tell which way the keys are set just by looking at the
keyboard. The only way to find out is to press a key and see the
result!

Making mistakes

However it doesn't really matter if you press the wrong key or get
capitals when you didn't want them, because the Amstrad allows
easy correction of errors. Put your finger on the green key at the
top right of the keyboard marked DEL, and hold the key down.

The cursor travels back to the start of the line, and erases all the
characters you have typed so far. The DEL key is the DELETE key,
and it erases the character immediately to its left. When you hold
the DEL key down for long enough, it auto-repeats, and deletes
further characters, back to the start of the line if you hold it down
for long enough.

In fact most of the keys on the Amstrad keyboard auto-repeat
after a short pause. Press the A key and hold it down until no
more As are displayed. You should find you have over 6 lines of
As, with the cursor coming to a sudden stop about one third of
the way along the seventh line.

The reason that the Amstrad stops the As auto-repeating is that
there are now 255 characters in succession, and the Amstrad will
not allow any line to have more than 255 characters (count them if
you don't believe me!). The Amstrad doesn't consider the edge of

6 BASIC Programming on the Amstrad

the screen to be the end of a line, so although you can see 7 lines of
As, the Amstrad still counts this as a single unbroken line (micros
have some funny habits).

As far as the Amstrad is concerned, a line only ends when you
tell the computer it has ended. You can tell the computer 'That's
the end of this line' by pressing the large blue key marked
ENTER. Press it now and see what happens.

You should have the following displayed after the lines of As:

Syntax error
Ready
[

Once you press the ENTER key, you are telling the Amstrad that
the line you are typing is now finished, and that the computer
should enter that line into its memory. At the moment you are
using the Amstrad in immediate or direct mode, so-called because
when you press the ENTER key the computer examines the line
you have just typed and immediately obeys the instructions you
have just given. However the Amstrad must be able to under­
stand those instructions to obey them. In this case the Amstrad
can make no sense of 255 letter As, and the words 'Syntax error'
are the micro's way of saying "I don't understand". The word
'Ready' just shows that the Amstrad has finished obeying all the
commands you typed in, and is now ready for more.

This book is devoted to looking at the instructions that the
Amstrad does understand, but before we begin experimenting
with those instructions let us finish this brief tour of the
keyboard.

The two green SHIFT keys are provided so that you can select
the characters shown on the upper half of the keys that carry two
symbols. Press the numbers 1234567890 (on the top row of the
keyboard) and then, while holding down either of the SHIFT
keys, press 1234567890 again.

1234567890!"£$%&'()_[

Any key which is marked with two characters will display the one
on the upper half of the key if it is held down at the same time as
either SHIFT key. If the CAPS LOCK is set so that the alphabetic
keys give small letters, holding down either SHIFT key and an
alphabetic key at the same time will produce a capital letter.

If you wished to use the " symbol (on the same key as 2 on the

Getting Started 7

top row of the keyboard) you might find it tedious to keep
pressing two keys every time you wanted one character. The keys
with two characters normally display the character on the bottom
half of the key, but they can be set so that they display the other
character. This is done by holding down the green CTRL key at
the bottom right of the keyboard and pressing CAPS LOCK once.

Try it now, and then press the numeric keys on the top row and
you should see:

!"£$%&'()_[

The alphabetic keys will now produce capital letters. You can still
type in numbers because the Amstrad has a separate numeric
keypad to the right of the main keyboard which you can use.
Note that the only way to return the keyboard to normal is to hold
down CTRL and press CAPS LOCK again.

The DEL key is all very well if you have made a mistake near the
end of a line, but what if the error is right back at the start and you
have no wish to get rid of nearly an entire line painstakingly
typed in? Type in the following, without pressing the ENTER key:

Hear is a mistake

'Hear' is to be corrected to 'Here'. Now remember that the cursor
tells you at which position the Amstrad will next display a charac­
ter. The position of the cursor can be adjusted by using the
arrowed keys just above the numeric keypad. For this reason
these keys are known as the cursor keys. Hold down the <— cursor
key. The key will move to the left of the line. Stop once the cursor
is over the letter 'a' in 'Hear'. (Don't worry if you go past the 'a' —
you can use the —> key to bring the cursor back to the right place.)

The 'a' is visible inside the cursor. If you now press the CLR
key, next to the green DEL key at the top right of the keyboard,
the 'a' disappears:

Her is a mistake

The rest of the characters on the line are shifted back one place,
and the cursor is now over the 'P in 'Her7. To delete any other
characters on the line you would follow exactly the same pro­
cedure: move the cursor to the offending character, then press
CLR. If several characters in succession are wrong, holding down
CLR at this stage will cause it to auto-repeat and all the characters

8 BASIC Programming on the Amstrad

will be erased. DEL erases the character to the LEFT of the cursor,
while CLR erases the character within the cursor.

In this example you also want to insert a new character in the
word 'Her'. Move the cursor to the space after 'Her' and press E.
The 'e' will be added on to 'Her' and the rest of the line pushed
one character to the right.

Here _is a mistake

Mistakes in lines are easy to correct using the CLR, DEL and
cursor keys, but note that this only works if you haven't pressed
the ENTER key. Once you do this, the computer regards the line
as finished and correcting and editing a completed line is done in
rather a different way.

The C TRL, ESC and COPY keys have special functions which
are more easily explained once you have used the Amstrad a little
longer. The TAB key has no special use and merely produces a
right arrow character.

Giving the Amstrad commands

We have just seen that the Amstrad cannot make sense of a line of
255 As. What sort of instructions can the Amstrad understand
and obey?

There is a whole variety of them, and you shall be introduced
to most of them in the rest of the book. There are commands that
cause the Amstrad to draw lines on the screen, to change the
colours shown, to carry out complex calculations, or to play notes
of music. All of these commands have one thing in common —
the Amstrad can obey them because the manufacturer has stored
the details of these commands in the ROM and the Amstrad can
therefore recognise them.

This leads to the computer seeming to be both very clever and
extremely stupid. It can do all sorts of marvellous things, yet if
you type a single wrong letter in an instruction the micro will
mulishly refuse to obey it, and will display a message like 'Syntax
error' to show its confusion. In a moment we shall look at one of
the commands the Amstrad will obey, the instruction PRINT. A
human would probably accept that FRONT really meant PRINT
(after all the I and the O are next to each other on the keyboard and
it would be easy to press the wrong one by mistake). The
Amstrad would not accept FRONT.

When giving commands to the Amstrad you must obey the

Getting Started 9

rules or syntax of the computer language the Amstrad under­
stands . Youcanstillunderstandthissentenceevenifithasnospaces,
but the Amstrad wouldn't. It is rather like an old-fashioned uncle
who is always correcting your grammar — it won't even listen to
you unless you talk to it properly.

The screen display

At last we are ready to begin using the Amstrad seriously. The
first thing to do is to reset the computer—return it to the state it is
at on switch-on, with the RAM completely clear. Resetting the
Amstrad can be achieved by switching the micro off and then on
again. You can get the same effect less drastically by holding
down CTRL and SHIFT at the same time and pressing the ESC
key. The screen clears and the Amstrad blurb appears at the top.

When you are satisfied that any line you have typed in or input
is correct, you must press the ENTER key to tell the Amstrad that
you have finished and the command can now be obeyed. For the
moment the ENTER key will be shown as one of the keys you
must press and will appear as [ENTER] after the other keys. Now
type the following:

mode2[ENTER]

You get the message:
Syntax error
Ready
[

The Amstrad has not understood the command. In Amstrad Basic
spaces are used to identify where one word ends and the next
starts. The Amstrad can understand 'mode' if a space follows it,
but in this case it believes the word is 'mode2' which it does not
recognise. Spaces are very important in Amstrad Basic, and so you
must make sure that you do not leave these spaces out in any of
the following examples. In some cases you will discover for
yourself that spaces do not appear to matter for some instruc­
tions, but it really is safer to always space your instructions out. If
the spaces aren't needed, the Amstrad will ignore them, but if
they are needed and you leave them out, the Amstrad will object.

Now type:

mode 2[ENTER]

10 BASIC Programming on the Amstrad

This time the Amstrad recognises the word 'mode' and obeys the
instruction. The screen clears and 'Ready' appears in much
smaller letters at the top left of the screen.

In the real world there are many varieties of paper for different
uses. An architect does not design houses on a note-pad, and a
novelist does not use foolscap paper to write stories. In com­
puting, the screen display is equivalent to a sheet of paper, and it
is useful to be able to change the display to suit the purpose. The
command 'mode' followed by the number 0,1 or 2 selects one of
the screen displays allowed on the Amstrad. Each mode allows a
different number of characters per line to be displayed on-screen.

Someone typing in a lot of text at the keyboard finds it useful to
be able to see as much of it as possible on-screen. Mode 2 is best
for this purpose — the Amstrad can print 25 lines with 80 charac­
ters in each line in mode 2.

Now type:

mode IfENTER]

Again the screen clears, and 'Ready' appears in the top left screen
comer. This mode should look familiar — the Amstrad auto­
matically reverts to mode 1 when reset or switched on. Mode 1
has 25 lines with 40 characters per line. Mode 1 gives the most
easily readable characters, and you can consider it as the
'working' mode when you are giving commands to the Amstrad.
In mode 1, it is much easier to read what you've typed!

Now input:

mode OfENTER] (the number is 0 — at the bottom left of the
numeric key-pad)

Once more 'Ready' appears — but this time in much larger
characters. Mode 0 gives 25 lines with just 20 characters per line.
This mode is the best one to use if you want to draw colourful
pictures, as you shall see later in the book.

Figure 1 The three screen modes available on the Amstrad.

Mode Number of lines Characters per line

0 25 20
1 25 40
2 25 80

Getting Started 11

Most micros are very fussy about whether you type commands
in small or capital letters, but one of the clever features of the
Amstrad is that it will accept mode 0, MODE 0, or even mOde 0 as
valid commands. For reasons that you will see later it is best to
use lower case letters all the time, although the Amstrad is quite
happy with other variations. Throughout the rest of this book
statements will be referred to in both upper and lower case to
emphasise their interchangeability, but you should get used to
using lower case when you are actually typing at the keyboard.

Finally, type:

mode 1[ENTER]

to return the Amstrad to the working mode.

The PRINT statement

Type:
print "Fred"[ENTER]
On the screen you get:
Fred
Ready
[

PRINT is used whenever you want to display anything on the
screen. The Amstrad prints whatever comes within the inverted
commas. Type:

print "7+5"[ENTER]
giving:
7+5
Ready
[

The Amstrad does not work out what 7+5 is, because it is within
inverted commas. The computer prints anything in inverted
commas exactly as it is. Let's use the Amstrad as a (very
expensive) calculator and use PRINT to display the results. Type:

print 7+5[ENTER] (you will have to hold down SHIFT and
press the key with; on it to get the + sign)

The Amstrad prints:

12

12 BASIC Programming on the Amstrad

The Amstrad does NOT print 7+5 because the numbers are not in
inverted commas this time. It recognises + as an instruction it
understands, and so it adds the numbers instead and displays the
answer. The space at the start of the 12 is for its sign. Numbers
larger than zero are printed with just a space in front rather than a
+ sign. Now type:

print 7—5[ENTER] (the — sign is on the same key as the =
sign)

The Amstrad prints:

2
Now try:

print 5 — 7[ENTER]

giving:

-2

Multiplication is a little more peculiar. Because x is a letter to the
computer, the Amstrad uses * for multiplication. Type:

print 9*7[ENTER] (hold down SHIFT and press the key
with : to get *)

giving:

63

There is no division sign on the keyboard, so / (below the ?) is
used. Type:

print 12/4[ENTER]
giving

3

Simple arithmetic so far, but of course the Amstrad can cope with
much more difficult calculations. Type:

print 12345* 9876[ENTER]

giving:

121919220

Or even:

print 12.34* 5.67* 8.9[ENTER]

Getting Started 13

giving:

622.71342

After the last calculation you will find that the whole screen
display shifts up or scrolls. The statement print “Fred" which
started this section off has now disappeared from the top of the
screen. The Amstrad always scrolls the display if it has to print
something when the cursor is on the bottom line of the screen.

The screen looks very cluttered now, so it is time to introduce
another Basic statement. Type:

cls[ENTER]

This is short for CLear Screen, and its effect is self-evident. From
now on type cls[ENTER] yourself whenever you feel that the
screen needs clearing.

Tidying up the screen

You will use the PRINT statement so often when programming
the Amstrad that you will probably be relieved to know that the
ROM recognises ? as an abbreviation for print. Type:

? “The ? is a short way of saying print“[ENTER]

(you will need to hold down the SHIFT key and press / to get ?).
Type:

? “If you add 7 and 6 you get";“the answer“[ENTER]

giving:

If you add 7 and 6 you get the answer

The ; tells the Amstrad to print whatever comes after the ; next to
the last character printed. In this case the two parts to be printed
have run together. Not very useful? Type:

? “If you add 7 and 6 you get“;7+6[ENTER]

giving:

If you add 7 and 6 you get 13

The Amstrad has carried out the calculation and printed the
result. But try:

? "If you work out 5 — 6 you get";5 — 6;“which is messy."
[ENTER]

14 BASIC Programming on the Amstrad

and you get:

If you work out 5 — 6 you get —1 which is messy.

which shows us that you have to be careful with;! If you are going
to use ; make sure that whatever is printed just before ends in a
space. Try:

? "If you add 7 and 6 you get ";"the answer. "[ENTER]
? "If you work out 5 — 6 you get ";5 — 6;"which is not messy."
[ENTER]

to see the difference. Type:

? 1;2;3[ENTER]

giving:

123

All numbers are printed with a space for the sign in front and a
space immediately after, so you can't have a messy display with
all the numbers running together. Type:

? 12;13;14[ENTER]

giving:

12 13 14

You should be able to see that these three numbers are not in line
with those printed further up the screen. This would produce a
very untidy display if you wanted a whole table of results on the
screen — none of the numbers would be in line vertically. Type:

? 1,2,3

giving

12 3

Type:

? 12,13,14[ENTER]

giving:

12 13 14

This still has some flaws, (we might not want the numbers to be
so far apart, for example) but at least the numbers are in line

Getting Started 15

vertically. The comma between the numbers tells the Amstrad to
print each number beginning at a particular position on-screen.
It can also be used with words:

? “Fred”,"Bill","Jenny”[ENTER]

giving:

Fred Bill Jenny

It might look as if these are in a different position to the numbers,
but don't forget that numbers are printed beginning with a sign,
and for + numbers this is shown by printing an invisible space.

The screen layout in mode 1

How does the Amstrad know where to print on the screen to keep
everything in line vertically? You saw earlier that in mode 1 there
are 25 lines of 40 characters.

A character can be printed anywhere on the screen, and its
position can be identified by referring to the column and the line
on which it lies. The letter A in Figure 2 lies in column 20 and on
line 13, roughly the middle of the screen. Note that the column
comes first when you are identifying a character position.

16 BASIC Programming on the Amstrad

14 27

ZONE
1

ZONE
2

ZONE
3

Figure 3 The print zones in mode 1.

The Amstrad divides the screen vertically into invisible zones
13 columns wide. If commas are used in a PRINT statement, the
Amstrad prints the first item starting in column 1, the next in
column 14, the next in column 27. As the next zone would begin
in column 40, there is no room for another zone of 13 characters,
so the Amstrad starts printing again on a new line. If any item is
so long that it fills more than one zone, the computer moves to a
new empty zone to print the next item.

Type:

? 1,2,3,4,5[ENTER]

and you will see the Amstrad print the last two numbers on a new
line. Or try:

? "Just too many words","two words","just three words"
[ENTER]

to see how the Amstrad copes with printing something that
needs more than just 13 columns.

The TAB and SPC statements

Although the zones are very useful for printing tables on the
screen, it would be restricting if these were the only positions on
a line you could print. Amstrad Basic also contains statements to

Getting Started 17

enable you to print to any position on a line. If you were printing
a heading that you wanted centred on a line you would use the
PRINT TAB statement, or ? TAB for short. Type:

cls[ENTER]
? tab(9)"This begins in column 9"[ENTER]

If you refer back to Figure 2 you can see that in mode 1 there are 40
columns in which characters can be printed. You can refer to any
of those columns by its number. By using ? TAB(9) you are saying
that what is printed should begin at column number 9. The
number in the brackets after the TAB can be anything from 1 to 40
in mode 1. You might like to experiment to see what the Amstrad
does if you use a number greater than 40, or a negative number!

You can use more than one TAB on a line:

? tab (9)"Hello"tab(20)"there"tab(30)"folks"[ENTER]

The TAB statement causes the Amstrad to print spaces up to the
column where printing is to begin. After the Amstrad has printed
"Hello", the cursor stays on the same line, and prints spaces up to
column 20, where the printing of "there" begins, and so on. You
might think:

? tab (30)"folks"tab(20)"there"tab(9)"Hello"[ENTER]

would give the same result. However, the Amstrad will not TAB
backwards along a line, and if a new TAB is to an earlier position
on the line, that TAB will be carried out on a completely new line.

Now type:

? "This"spc(4)"sentence"spc(4)"is"spc(4)"spaced"spc(4)
"out! "[ENTER]

The Amstrad prints 4 spaces between each of the words. SPC(10)
would leave 10 spaces, and so on. Again, in mode 1 the number in
brackets after SPC can be anything from 1 to 40. SPC and TAB can
be mixed in a command:

? tab(10)"A mixture of TAB"spc(8)"and SPC."[ENTER]

You might have noticed that all the words in the TAB and SPC
statements followed on directly from each other, as if semi-colons
had been used. In fact both TAB and SPC automatically conclude
with an 'invisible' semi-colon, so that any further TABs or SPCs
continue on the same line.

18 BASIC Programming on the Amstrad

Exercises

1) Try out the TAB and SPC statements in mode 0 and mode 2.
Are there any differences in the size of numbers you can use in
the TAB or SPC statements in the different modes?

2) Type in some PRINT statements using commas in modes 0 and
2. Why are the results different from what happens in mode 1?

Chapter Two

Programming

Simple programming

In the last chapter you were using the Amstrad in immediate or
direct mode. Any commands typed in at the keyboard were
obeyed instantly if the Amstrad understood them. Immediate
mode has its uses because it enables you to experiment with
commands and observe the effect straight away.

However you will spend most of your time using the Amstrad
in PROGRAM mode. You can see the difference between the two
modes by typing:

1 print"Tom"[ENTER]

When you press the ENTER key nothing happens. At the start of
the line you typed the number 1. The Amstrad reads this line
number and recognises that you do not want the computer to obey
the instruction that follows. Instead the Amstrad stores the line in
RAM, waiting for you to give the command to obey it.

You can confirm that the Amstrad now has your command
tucked away in its memory by typing:

list[ENTER]

Your program of one line is listed on the screen. The Amstrad
recognises the word 'print' as being one of the Basic language
key-words that it understands, and so converts it to 'PRINT' in the
listing. Type:

9 print "Harry''[ENTER]
5 print "Dick''[ENTER]
list[ENTER]

Although you typed in the lines in the order 1, 9 and then 5, the
Amstrad lists the program in line number order, from the lowest
number line to the highest. It will also obey the program instruc­

19

20 BASIC Programming on the Amstrad

tions in that same order, and . . . how do we get the Amstrad to
carry out the program? Type:

run[ENTER]

The computer RUNs the program, and obeys the program
instructions in line number order. When it has finished, the
program is still stored in the memory, as you can see by typing
LISTfENTER] again. Type:

5 print "Deirdre"[ENTER]
list[ENTER]

The new line 5 has replaced the old one, and poor Dick is gone.
You can always change any line just by typing a new line with the
same line number as the one you wish to replace. Type:

IfENTER]
list[ENTER]

Line 1 has been replaced by an empty line, so the Amstrad does
not even list it as part of the program. This is an easy way of
getting rid of a line you no longer want.

You could now do several things with your program. You could
extend it by adding new lines in any order. You could save it for
future use by recording it onto cassette. Or you can wipe it from
the RAM. Let's take the last course until we have a program that is
really worth saving. Type:

new[ENTER]

This tells the micro you want to delete the program and start
anew. Typing listfENTER] at this stage will produce nothing as
the program has gone.

Some help the Amstrad can give you

The Amstrad has several features which make programming
much simpler.

It is wise to spread line numbers out when you are typing a
program in, because you may later want to add a command which
needs to come before some of those already input. Things might
get tricky if you have numbered the lines 1, 2, 3, and 4 and now
you want to put a line after 2 but before 3! The standard practice is

Programming 21

to use line numbers going up in tens, to leave plenty of free line
numbers for any commands added later. The Amstrad will even
do this for you, so let's use this facility as we write the next
program. Type:

auto[ENTER]

The Amstrad prints TO' and waits for you to type a line in. Type:

10 modeOfENTER]
20 ? "This is in mode 0"[ENTER]
30 ? "Here comes a multiplication! ¡"[ENTER]
40 ? "73.45 times 5.769 gives ";73.45*5.769[ENTER]

After the last line the Amstrad prints the new line number 50, but
we have no more lines to add to the program. You can escape
from the automatic line numbering by pressing the red ESC key
at the top left of the keyboard. Type:

list[ENTER]

and you will see that line 50 is not included in the program. Type:

run[ENTER]

and you will see the effect as the Amstrad obeys your program
line by line. Type:

mode 1[ENTER]

to get back to the 'working' mode.
AUTO can be used to begin numbering at any line number,

with any interval in between, although generally it is used just as
you have seen above. Type:

auto 15,1[ENTER]

and line numbering begins at 15, with intervals of 1. Type:

15 ? "Here is an extra line"[ENTER]
16 ? "And here's another"[ENTER]

and press [ESC] again. List the program and then run it and you
will see the two new lines have been inserted into the correct
position within the program. The Amstrad checks to see if the
line number it generates has already been used in the program,
because this new line will replace the old one once [ENTER] is
pressed. The computer warns you if this might happen by printing

22 BASIC Programming on the Amstrad

a * after the line number it has just printed. If you [ESC] at this
point, the line will stay as it was. See for yourself by typing:

auto 10[ENTER]
The Amstrad prints:
10*

to tell you that you already have a line number 10 and if you
continue this line will be wiped out when you press [ENTER].
Press [ESC] and you will find your program is unchanged.

If you add too many extra lines to a program you may end up
having the problem we have tried to avoid — no room for new
line numbers. If you list the present program you will see that we
now have no room to put a line between 15 and 16. Luckily the
Amstrad can help us out here as well. Type:

renum[ENTER]
list[ENTER]

The command RENUM renumbers all the program lines, with the
first line as 10 and subsequent lines going up in tens. As with
AUTO, you can choose any number as the first line number, and
space the line numbers out by any amount you desire. Type:

renum 100,5[ENTER]
list[ENTER]

and the program will be renumbered beginning with line 100 and
going up in 5s.

What to do when you make a mistake

Type exactly the following:

1 pront “This is the first line“[ENTER]

On this line we have deliberately made a mistake, by putting
'pront' instead of 'print'. Once you press [ENTER] in immediate
mode the Amstrad will try to obey your command straight away.
If you make a mistake the computer will give an error message to
show that it doesn't understand the command.

In program mode things are very different. The Amstrad just
stores away any numbered lines and does not check to see if they
make sense until the program is run. Type:

run[EN TER]

Programming 23

The Amstrad tries to carry out line 1, and then abandons
execution of the program because it does not recognise 'pront'. It
tells you which line caused the trouble, and even prints the line
for you. You can now edit line 1 to correct the error.

Notice the cursor is over the first character on the line, the
number 1. Using the right cursor key (the arrow key next to the
green COPY key at the top right of the keyboard), move the cursor
until it is over the 'o' in 'pront'. In the last chapter we saw that
pressing CLR removed the character within the cursor. This is
exactly what we want to do now, because the 'o' is incorrect. Press
CLR once. The line is now:

1 pmt "This is the first line"

with the cursor over the n. We now need to add the character 'i'.
The Amstrad automatically inserts any characters typed in before
the character within the cursor. Type 'i'. The line is now:

1 print "This is the first line"

At the moment the only changes made have been to the line
shown on the screen. Press [ENTER] and the Amstrad replaces
the incorrect line with the line we have just edited. (It doesn't
matter that the cursor is half way along the line in this case.) You
can see the new line by listing the program again.

If you spot a mistake in your program before running it, you
can correct the line yourself by typing:

edit 1[ENTER]

or whatever line number you wish to edit. You can then use the
cursor keys, the CLR key and perhaps the DEL key to correct the
line. Try it out now — edit a few changes into some of your
program lines and then edit them out again.

Editing by copying lines

There is an alternative method of editing lines which you may
prefer to use. This involves copying the line. Type:

1 pront "Here is another line with a mistake"[ENTER]

Now hold down either of the SHIFT keys and at the same time
press the UP CURSOR key. The cursor splits in two, and one
cursor covers the 'T in the line you have just typed. The upper

24 BASIC Programming on the Amstrad

cursor is the COPY cursor and shows what you are about to copy.
The other cursor is the normal TEXT cursor which keeps your
place on the screen, and anything you copy will be printed here.
Press the COPY key once and you will see that the '1' is copied
onto the new line. Press COPY three times more and you should
see this on-screen:

1 pront "Here is another line with a mistake"
1 pr

At this stage we do not want to copy the 'o' because this is the part
of the line which is incorrect. The lower text cursor is the normal
cursor which shows where the next character typed will be
printed, so if you type 'i' it will be printed here and the screen will
now show:

1 pront "Here is another line with a mistake"
1 pri

We now want to copy the rest of line 1, but we don't want that 'o'!
You might think that you can move the copy cursor just by using
the cursor keys. Try it and see what happens.

The cursor keys move the text cursor—and the Amstrad bleeps
at you if you try to move beyond the new line you are making! To
move the copy cursor you must always hold down SHIFT and a
cursor key. Do it now to move the copy cursor onto the 'n' in
'pront'.

Make sure the text cursor is after the i in '1 pri', because it is
here that copying will start. Press the COPY key and hold it down
until you have reached the end of the line you are copying. Don't
worry if you copy a lot of spaces as well as the Amstrad doesn't
take any notice of them. Press [ENTER] and this new line 1 will
replace the old one in the computer's memory, as you can see by
listing the program.

This whole process may seem rather complicated at the
moment, but you will quickly discover it becomes second nature.
It's well worth spending some time getting the hang of editing,
because you'll find it speeds programming up considerably.

101 uses for the COPY key

Although the COPY key is useful for editing, I also use it a great
deal when inputting program lines. If several lines in a program

Programming 25

are similar, I copy chunks of one line to another. Let's look at a
simple example. Type:

new[ENTER]
auto[ENTER]
10 print"* ****** "[ENTER]

Now use the SHIFT and cursor keys to get the copy cursor onto
the 'p' of 'print'. Press the COPY key and copy the rest of the line,
then press [ENTER], You should now have:

10 print "* * ** * * * "
20 print"*****»*"
30

Repeat the copying process on lines 30,40 and 50. Press ESC once
the Amstrad prints line number 60. List and then run the
program. You should get a square of *s. You can use this same
technique to copy just part of a previous line or combine different
parts of several other lines.

We have concentrated so much on editing that we have rather
neglected the programming side of things. Let's use some of the
statements that were introduced in the last chapter. Type:

new[ENTER]
auto[ENTER]
10 ? "Here's a semi-colon ";[ENTER]
20 ? "and look what it does ¡"[ENTER]
30 [ESC]

Run the program. Remember what the semi-colon does? It causes
whatever is printed next to immediately follow the present
characters. Edit the; out of line 10 and run the program again.

This time the printing takes place on two lines. Whenever the
Amstrad comes to a PRINT statement, it will always begin
printing on a new line, unless the previous PRINT ended with a
semi-colon. This also applies to PRINT TAB and PRINT SPC:

new[ENTER]
auto[ENTER]
10 ?tab(9)"This is";[ENTER]
20 ?tab(17)"the Amstrad."[ENTER]
30 [ESC]

26 BASIC Programming on the Amstrad

Run the program and you will see all the printing takes place on
one line. Edit the; out of line 10, and run the program again. This
time two lines are used.

Use the COPY key to help you as you type in the next program:

newfENTER]
auto[ENTER]
10 ? tab(20);"A"[ENTER]
20 ? tab(19);"A A"[ENTER]
30 ? tab(18);"A";spc(3);"A"[ENTER]
40 ? tab(17);"A";spc(5);"A"[ENTER]
50 ? tab(16);"AAAAAAAAA"[ENTER]
60 ? tab(15);"A";spc(9);"A"[ENTER]
70 ? tab(14);"A";spc(ll);"A"[ENTER]
80 [ESC]

Run the program. Notice the use of SPC. It is much easier to use
this than to carefully count spaces and have lines like:

60 ?tab(15);"A

The LOCATE statement

You can print anywhere on the screen by using the LOCATE
statement:

new[ENTER]
auto[ENTER]
10 mode 1[ENTER]
20 ? "Let's print beginning at (10,12)."[ENTER]
30 locate 10,12[ENTER]
40 ? "Here it is ¡"[ENTER]
50 [ESC]

The LOCATE command at line 30 moves the cursor to column 10
of line 12 on the screen. Printing begins at that position when line
40 is obeyed.

Run the program again, changing line 10 to:

10 mode 0[ENTER]

The message is printed beginning in the middle of the screen.
There are only 20 columns in mode 0, and column 10 is half way
along. Similarly, running the program in mode 2 will print the

Programming 27

message much closer to the left-hand end of the screen. There are
80 columns in mode 2, and column 10 is only an eighth of the way
along a line.

You can still use SPC or TAB to get to other positions after a
LOCATE statement, although again you can't TAB backwards to
an earlier position on a line if you've already used LOCATE to go
further along the line.

Exercises

(You can use the COPY key to make the programming easier in all
the following questions. Make sure you type new[ENTER] to get
rid of any previous program which is no longer needed.)

1) Write a program to print the following pattern:

28 BASIC Programming on the Amstrad

2) Print this pattern beginning at (10,20) in mode 1:
* * * * *
* * * *
* * *
* *
*

3) Use TAB or SPC in a program to produce this pattern:

* * * *
* * *

* *
*

4) Use PRINT TAB or PRINT SPC to produce this display in
mode 0:

This
is

Amstrad

message
for
users

only

Using variables

Let's write a brief program to make the Amstrad print a message.
Type:

newfENTER]
auto[ENTER]
10 ? "Hello there my friend"[ENTER]
20 ? "My name is Amstrad"[ENTER]
30 ? "and I think you're wonderful ¡"[ENTER]
40 [ESC]

Run the program and you will find that the Amstrad prints the
message for you. Fantastic. Isn't the micro an amazing machine?
But this program isn't very exciting. If you run it again, you will
get exactly the same message. Wouldn't it be nice if we could get
the Amstrad to address whoever was using the program by their
name? Now that would be an improvement. Type:

5 let name$="Wynford"[ENTER] (put your name within the
inverted commas)

Edit line 10 to read:
10 ? "Hello there my friend ";name$

Programming 29

List the program, then run it. This time the Amstrad gives you a
personal message. This may not seem much better than the
previous effort, but there is an important difference between the
two programs. Line 5 reads:

5 let name$="Wynford"

The Amstrad's memory consists of thousands of memory loca­
tions, which can be considered as a series of empty pigeon holes.
Each of the holes can be used to store information. Line 5 of the
program tells the Amstrad to take the word 'Wynford', find any
one of those holes that is empty, label it with 'name$', and store
the word 'Wynford' in that hole.

Figure 5 Storing a string in memory.

The '=' sign in line 5 is rather misleading, because we generally
take '=' to mean that two things are exactly the same. In com­
puting, a line like 5 should be read as:

take the word 'Wynford' and store it in the memory location
labelled as 'name$'.

•w
When there is a reference to name$ in the program at line 10, the
Amstrad goes to the 'hole' labelled with 'name$', and fetches the
word it finds there. That word is then used in the print statement,
as you can see from the effect of line 10 when you run the
program.

If you change the value of name$ by typing:

5 letname$=''AttilatheHun"[ENTER]

and run the program again, you will see that the Amstrad has

30 BASIC Programming on the Amstrad

now stored 'Attila the Hun' at the memory location name$, and so
it uses 'Attila the Hun' when it obeys line 10. In fact you can store
anything in name$, and for this reason name$ is known as a
variable. This means its value varies and depends on what you
decide it should be. The '$' at the end of the variable shows that
name$ is a string variable. This means what is stored there is a
string of characters, which might be alphabetic, numeric or a
mixture of the two. Type:

5 letname$="123abc£$%"[ENTER]

and run the program again to see that name$ really can be used to
store anything.

Do we have to use name$? Type:

5 let DaftStringVariableName$="John McEnroe"[ENTER]
10 ? “Hello there my friend “;DaftStringVariableName$

[ENTER]

and run the program. The Amstrad has no objection to the vari­
able names in lines 5 and 10. However, when programming it
makes good sense to use variable names that remind you what
the variable is for. For example:

let makeofcar$=“British Leyland”
let titleofbook$—“The Tin Men"
let playerone$=“Fred“
let city$=“London"

Variables like 'jelly$' or 'xyz$' are not very helpful reminders as to
what the program does if you look at it months later and try to
correct the errors in it!

There are a few limitations on string variable names:

1) They must not begin with a number, although numbers can be
* used elsewhere in the name.
2) Only alphabetic or numeric characters can be used.
3) The variable cannot be more than 40 characters long.
4) You must not use a key-word like PRINT or LET as a variable

name.

Although you can use lower or upper case alphabetic charac­
ters, I prefer to use lower case all the time. This makes the
variables easier to pick out when the program is listed, as the
Amstrad automatically capitalises Basic key words like PRINT or

Programming 31

LET. This capitalisation is also why you should avoid using
key-words as variable names. The Amstrad will convert the
variables to the capitalised key-words and expect those key­
words to indicate commands.

The LET in line 5 of the program is optional and you do not have
to include it. Edit line 5 to omit the LET. You will find the
Amstrad still runs the program. Having just introduced LET, I am
afraid you will not see it again in this book — leaving it out
during programming saves a lot of typing!

If you are not certain if a variable name is valid or not, try it out
in immediate mode to see the Amstrad's reaction. Type:

thisisokay$="Strawberry jam sandwiches"

and the Amstrad gives you a 'Ready' message, showing the
variable name is acceptable, but type:

thisoneis not okay$="10 fat sausages sizzling in a pan"
[ENTER]

and you get an error message, because a space is not allowed in a
variable name.

Once you have given a variable a value, you can use it as many
times as you want within a program:

new[ENTER]
auto[ENTER]
10 letnicefood$="icecream"[ENTER]
20 let nastyfood$="chocolate ants"[ENTER]
30 ?"So you like ";nicefood$;" then?"[ENTER]
40 ?"Personally, I prefer ";nastyfood$[ENTER]
50 ?nicefood$," is okay for humans"[ENTER]
60 ?'Td like to see ";nastyfood$;" ";nicefood$[ENTER]
70 [ESC]

What happens if you store a new string in one of the string
variables you have already used? Type:

15 letnicefood$="trifle"[ENTER]

and run the program again. The string "ice cream" has been lost,
because the new string "trifle" replaces it. Line 15 tells the
Amstrad to store the word "trifle" in the memory location
nicefood$. The Amstrad finds that it already has the words "ice

32 BASIC Programming on the Amstrad

cream" at this memory location. It discards this and puts "trifle"
in its place.

Exercises

1) Which of the following are allowed string variable names?
AVERYBIGWORD$
PrimeMinister$
10DowningStreet$
T enDowningStreet$
T en-Downing-Street$
A$
t$
$

2) Correct the errors in this program so it will work:
10 let today'sdate$="July 24 1984"
20 print "The date is";today'sdate$

3) Complete this program so that when run it prints:
Hello, Mr. James
Or may I call you Wynford?
10 let sumame$="James"
20 let christianname$="Wynford"

4) Choose some suitable words to store in strings which the
computer uses to print out a description of the town sheriff.
Here is an example, with the strings being printed in capitals
so you can see where they go:

He wore a BLACK HAT on his HEAD and his name was
MUDD. KILLER MUDD, they called him, because of the
way he handled his GUN and the number of MEN he had
sent to BOOT HILL.

The INPUT statement

Our program has introduced variables to us, but it hardly seems
much better than the original program. Every time the program is
run it still gives the same old tired message, depending upon
what value you give name$ in line 5. But didn't I say that we were
going to write a program that would give a personalised message
to whoever used it? Indeed I did, and to do that you need to learn
about the INPUT statement. Type:

Programming 33

newfENTER]
auto[ENTER]
10 input "What do your friends call you"; name$[ENTER]
20 ?"And how are you today ";name$[ENTER]
30 [ESC]

Notice that nowhere in the program have we given name$ a
value. So how will the Amstrad know what to print at line 20?

Run the program. The Amstrad will print:

What do your friends call you?

Type your name in (there is no need for inverted commas) and
press [ENTER]. The Amstrad takes your name, stores it in name$,
and uses it when it comes to line 20. Rim the program a few times,
inputting a different name each time. You now have a general-
purpose program that will give a different message depending
upon who uses the program.

The INPUT statement enables the Amstrad to ask you for
information while the program is running. The message included
within the inverted commas in line 10 is called a prompt, as it
prompts you to type something at the keyboard and even
reminds you what information the Amstrad requires. The
prompt is optional, and you could just have:

10 input name$

but this just gives a very cold and unhelpful ? when you run the
program. There is too much of this sort of programming around.
Let's keep things friendly and always include a prompt in INPUT
statements.

The semi-colon at the end of the prompt just tells the Amstrad
that we want to keep the ? that it automatically generates for
INPUT statements. If you substitute a comma in line 10 you will
find the ? is omitted. This is really a matter of style. You may
prefer a more formal line 1 without a question mark. Type:

1 input "Type in your name. ",name$[ENTER]
run[ENTER]

to see the difference.
A single INPUT statement can be used to input several strings

in one go:

new[ENTER]

34 BASIC Programming on the Amstrad

auto[ENTER]
10 input "Give your name and age, with a comma between

",name$,age$[ENTER]
20 ? "Really, ";name$;"! You don't look ";age$;" years old."

[ENTER]
30 [ESC]

The Amstrad insists that the values input must be typed in
separated by commas. Failing to do this gives a 'Redo from start'
message. You will get the same message if you only input 1 of the
2 strings required, or if you input 3 strings instead of two. This is
another reason to include the prompt in the INPUT statement. It
reminds you how many inputs are needed, and what those
inputs are.

Exercises

1) You may have received one of the dreaded 'personal' letters
from a computer offering you a chance of winning a prize in a
competition. Usually you are also urged to buy a useful book
like 'The World Atlas of Worms'. Write a program to produce
such a letter, after you have input details like name, address,
today's date, etc. I offer my own example below, with the
information which has been input shown in capitals:

The Leatherbound Book Company
Greek Street
Lower Ecclestone
JULY 241984

Dear MR. JAMES,
I was just strolling past 20 SYCAMORE ROAD the

other day when I thought of you. MR. JAMES is one of the
wisest men in EAST BLUNSTONE, I thought to myself. I am
sure that he and everyone else in 20 SYCAMORE ROAD
would see what wonderful value 'Investment in Lower
Ecclestone' is, and at only £24.95!! And a chance for MR.
JAMES himself to win an all expenses paid trip to the
Leatherbound Book Company in Greek Street! Don't delay
MR. JAMES — you have just 7 days from JULY 24 1984 to
take advantage of this golden opportunity.

Yours sincerely,
A good friend

Programming 35

2) Write a program that accepts as input the endings for 3 lines of
a limerick, and then prints out the limerick. The following may
inspire (or disgust) you, the input strings being printed in
capitals:

There was a young fellow called JIM
Whose legs were exceedingly SLIM
He went for a run
In the hot midday sun
And then saw HIS LEGS LOOKED QUITE GRIM

3) Write a program which enables you to input your name and
address, and prints out an address label like the following:

NAME: Wynford James, B.Sc.
ADDRESS: 20 Sycamore Road

East Blunstone
Yorks.

The LINE INPUT statement

You may have had trouble with the last problem if your input
string included a comma. There are occasions when this
happens. For example, someone may type their name as 'Fred
Adams, M.B.E.'. The ordinary INPUT statement is unusable
here, as the Amstrad keeps on giving the 'Redo from start'
message if a comma is typed:

new[ENTER]
auto[ENTER]
10 input ''Your full title, Fred. ",title$[ENTER]
20 [ESC]

If you run this mini-program, you will find that inputs like
"HRH, the Queen” produce a 'Redo from start' message. The
command suggests to the Amstrad that your input is finished
after "HRH", and then you go on to type "the Queen”! The
Amstrad thinks you've INPUT two strings when it only wants
one, so it protests.

Here we must use the LINE INPUT statement, which accepts a
whole line of text, commas and all. Change line 10 to:

10 line input "Your full title, Fred. ",title$[ENTER]

36 BASIC Programming on the Amstrad

and you'll find that you can now type anything and it will be
acceptable as an input. You can only use LINE INPUT to input one
string, of course, because the Amstrad will no longer take a
comma to mean that you have finished the first string and now
want to input a second. One other point to remember about LINE
INPUT is that it won't give the ? that you get automatically with
INPUT. If you want a question mark you'll have to include it
yourself in the prompt string.

Numeric variables

You should use string variables whenever you want to store a
string of alphabetic characters, or a mixture of alphabetic and
numeric. It seems logical that you should also be able to store
numbers. Well, you can — but it depends what you want to do
with the numbers. Type:

newfENTER]
auto[ENTER]
10 firstnumber$="123"[ENTER]
20 secondnumber$="345"[ENTER]
30 ?"The first number is ";firstnumber$[ENTER]
40 ?"The second number is ";secondnumber$[ENTER]
50 [ESC]

Run the program. Works fine doesn't it? And if all you ever want
to do with those numbers is print them, then go ahead and use
string variables to store their values. But if you want to do any
arithmetic, type:

50 ? ''Multiplying them together gives
firstnumber$* secondnumber$[ENTER]

Run the program. The Amstrad prints:

Type mismatch in 50.

A new error message. It tells us that the Amstrad won't do
arithmetic with strings. Quite sensible really. After all,
firstnumber$ might be "Jellybabies'' and secondnumber$ might
be "The Atlantic Ocean" and you can hardly multiply those
together! Before it carries out arithmetic on any variables the
Amstrad needs to be absolutely sure it's dealing with numbers.

Programming 37

So if you have any numbers which are going to be used in
calculations they must be stored not in string variables but in
numeric variables.

Numeric variables are remarkably like string variables. The
only difference is that they lack the sign, and when we store a
value in them, we do not use inverted commas. For example:

length=27
height=7.6
distance=38.45
petrolused=5.5
temperature =—10.5

are all acceptable and reasonable variable names. Also accept­
able, but not very helpful for programming, are:

y33=5.6
A=75

Numeric variables can hold integer (whole) numbers like 27, or
decimal numbers like —10.5. But they won'thold strings—try it.

If you list the original program, you will see that with a few
minor changes you can make the program work. All you need to
do is edit a few lines so that the numbers are stored in numeric
variables rather than as strings. Edit your program so that it looks
like this:

10 first number=123
20 secondnumber=345
30 ?"The first number is ";firstnumber
40 ?"The second number is ";secondnumber
50 ?"Multiplying them together gives ";firstnumber*

secondnumber

Run your program. The last line should now read:

Multiplying them together gives 42435

Let's add a few more lines. Type:

auto 60[ENTER]
60 ? “Adding them gives ";firstnumber+secondnumber

[ENTER]
70 ? “Dividing them gives ";firstnumber/secondnumber

[ENTER]

38 BASIC Programming on the Amstrad

80 ? “Subtracting gives ";firstnumber— secondnumber
[ENTER]

run[ENTER]

In lines 50 to 80 the Amstrad fetches the numbers from their
locations in memory and uses them to carry out the arithmetic.
We can change lines 10 and 20 to INPUT statements so that the
value of firstnumber and secondnumber can be chosen while the
program is running:

10 input “What is the first number“;firstnumber[ENTER]
20 input "What is the second number";secondnumber

[ENTER]

The Amstrad now carries out all the calculations on the numbers
you input.

Exercises

1) You are going to visit Rurislovakia, where the currency is in
ruris, and there are 2.15 ruris to the pound. Write a program
which converts pounds to ruris after you have input the
number of pounds.

2) Write a program that will find the area of a carpet after you
input its length and width.

Arithmetic with variables

Although you have so far only learnt a few Basic statements, the
use of variables vastly increases the power of programs you can
write. For example, in just 3 lines you can write a program that
converts kilometres into miles:

new[ENTER]
auto[ENTER]
10 onemile=1.6093[ENTER] (a mile is 1.6093 kilometres)
20 input "What is the distance in kilometres

distanceinkilometres[ENTER]
30 ? "This is";distanceinkilometres/onemile;"miles."

[ENTER]
40 [ESC]

Now suppose we extend this program. Your car does about 30
miles to the gallon, and it would be useful to know how many

Programming 39

gallons you'll need to cover a particular distance in kilometres.
We already work out the number of miles at line 30. Rather than
work it all out again on another line, and then divide by 30 to find
out how many gallons we need, it is much simpler to save the
result of the calculation carried out in 30 and store it in another
variable. So add lines to your program until it is like this:

10 onemile=1.6093
20 input "How far is the distance in kilometres

distanceinkilometres
25 distanceinmiles=distanceinkilometres/onemile
30 ? "This is";distanceinmiles;"miles."
50 ? "It would take";distanceinmiles/30;"gallons."

Line 25 takes the result of dividing the distance in kilometres by
1.6093 and stores it in the variable distanceinmiles. This is used
again in line 50 to work out how many gallons of petrol are
required.

Petrol costs £1.80 a gallon, and you're very keen to know how
much the journey will cost. Let's try to make this program more
general now. After all, you will probably get a new car some time,
and it may not do 30 miles to the gallon. The price of petrol is
unlikely to stay the same either. Let's put all these numbers into
variables:

10 onemile=1.6093
12 milestothegallon=30
14 costofpetrol=1.80
20 input "How far is the distance in kilometres

distanceinkilometres
25 distanceinmiles=distanceinkilometres/onemile
30 ? "This is";distanceinmiles;"miles."
40 gallonsforjoumey=distanceinmiles/milestothegallon
50 ? "It would take";gallonsforjoumey;"gallons."
60 costforjoumey=gallonsforjoumey* costofpetrol
70 ? "It would cost";costforjoumey;"pounds."

In lines 25, 40 and 60 we are using variables whose values we
know to calculate the value of new variables, which are them­
selves used in later calculations. If you change your car, or the cost
of petrol goes up, you only need to edit line 12 or 14 to the new
value to find the program of use again. But that's the hard way to
do it, isn't it? The best program of all would be one where you
could input the number of miles your car did to the gallon, and

40 BASIC Programming on the Amstrad

the cost of petrol — then you would never need to edit any lines.
Therefore change lines 12 and 14 so that these values are input by
the user, just like line 20.

Exercises

1) You wrote an earlier program that accepted as input the length
and width of a room, and calculated the area to be carpeted.
Extend the program to find the cost of carpeting if the cost per
square yard is input by the user.

2) A fish-and-chip shop owner has just bought a computer to help
him. He wants to be able to type in the cost of an order, and
then have the computer work out the 15% VAT for the order.
The VAT is then added on to the cost to give the total price.
Write the program for him.

3) The ReadEasy Book Club sends a letter out to each member
every month in the following form:

Member's name: WYNFORD JAMES
Membership no.: 12345678
You owe us £12.50
This month's book costs +£5.95
Total £18.45
Last month's payment — thanks —£5.00
Outstanding £13.45
Write a program which accepts as input the member's name,
number, the amount owed, the cost of this month's book, and the
payment made by the member last month. The program then
prints out details of the money owed as shown above.

Does 2=2+1??

The heading of this section is intended to remind you that the '='
sign in programming does not always mean 'equals'. Type:

newfENTER]
autofENTER]
10 input "Type in any number. ",number[ENTER]
20 number=number+l[ENTER]
30 ? "The number is now ";number[ENTER]
40 [ESC]

Programming 41

Run the program and type in any number. You will find that the
value printed at the end of the program is 1 more than the number
you typed in. How has this happened?

Line 20 seems to be nonsense, and it is if you read the '=' as
meaning 'equals'. Let's go through the program from the start
and see what happens to the number you input. At line 10, the
value you type in is taken by the Amstrad and stored in a 'pigeon
hole' in memory, which is given the label 'number':

Figure 6 Storing an input value of 6 in memory.

In line 20, you are telling the Amstrad:

Take the value from 'number', add 1 to it, and put the result
back in 'number'.

Figure 7 Number=number+1 — what it means to the Amstrad.

42 BASIC Programming on the Amstrad

You can see the same effect here:
newfENTER]
autofENTER]
10 input “What are your savings";savings[ENTER]
20 input "How much have you spent recently'';spent[ENTER]
30 savings=savings -spent[ENTER]
40 ? “Now your savings are ";savings[ENTER]
50 [ESC]

Suppose your savings came to £60 and you spent £20:

Figure 8 Savings and expenditure.

20

Line 30 causes the Amstrad to take the value from 'savings' (60),
subtract 'spent' (20), leaving 40, which is then stored back in
'savings':

Figure 9 Savings and expenditure.

Programming 43

It is this value which is printed out in line 40. The value stored in
'spent' is unaffected.

This capability of variables gives us an easy way of counting up
to a certain value:

newfENTER]
auto[ENTER]
10 input "Please type in a starting value. ",value[ENTER]
20 value=value+1[ENTER]
30 ? "It is now ";value[ENTER]
40 value=value+IfENTER]
50 ? "It is now ";value[ENTER]
60 value=value+1[ENTER]
70 ? "It is now ";value[ENTER]
80 [ESC]

Does this repetition of lines seem rather tedious? There is a
shorter way of writing this program. But you will have to wait
until later in the book to find out how to do it!

Exercises

1) The fish-and-chip shop owner is now using the computer to
add up his bills. He inputs the separate cost of 4 items and the
computer adds the costs together to give a total. The VAT is
calculated and the bill printed out as, for example:

Item 1 £0.95
Item 2 £1.20
Item 3 £0.35
Item 4 £0.50
Total £3.00
VAT £0.45
Overall cost £3.45

There are still a lot of problems with this program. If there are
only 2 items, 0 must be input for the cost of the remaining items.
If there are more than 4 items, another bill must be printed.
Sometimes the VAT works out as 0.4275, and the overall cost then
contains small fractions of a penny. The fish-and-chip shop owner
(and you!) still have a lot to learn.

44 BASIC Programming on the Amstrad

Saving and loading programs

You may well feel that you are now beginning to produce pro­
grams worthy of being saved on cassette for future use. If that's
the case, then read page Fl.11 in the User Instructions, which
explains the whole business very clearly. Pages Fl.9 and Fl. 10 tell
you how to load the program back into memory from cassette.

One piece of advice is to clearly label the cassette with the
names of the programs it contains. It is very easy to end up with a
large pile of cassettes and not know which one holds the latest
programming masterpiece — or what it was called anyway!

On with the programming!

These first two chapters have been an introduction to computing.
You have learnt about RAM and ROM, and you have also learnt
about variables, which are fundamental to computing. You have
been introduced to a few Basic keywords like PRINT, LET, and
INPUT, and written some programs of your own.

In the succeeding chapters the pace will quicken, so don't
attempt to 'do' the entire book in a day. Don't miss anything out,
as the programs in later chapters use Basic statements introduced
in earlier ones.

From now on I will not remind you to press [ENTER] when
inputting program lines, and it will be up to you to use AUTO,
RENUM, and the editing facilities of the Amstrad to make your
task easier.

Lastly, do remember that there are many different ways to
write a program to carry out a particular task. There are no correct
answers to the programming exercises in this book. Provided
your program works, be satisfied. Later in the book we will be
seeing how writing longer programs can be made easier by
pre-program planning, but for the moment, go your own way
and enjoy yourself.

Chapter Three

Drawing Pictures

The graphics screen

In Chapter 2 we saw that the Amstrad can position text on the
screen by using text coordinates. The micro can also draw lines on
the screen, but to do this the Amstrad has to know where the lines
begin and end. The graphics screen is divided up into 640 points
horizontally and 400 points vertically.

We can identify the position of any point on the screen by
describing how far along and how far up the screen the point is.

The position of the point in the figure is (200,300). The first
number is called the X coordinate of the point (how far along it is)
and the second number is the Y coordinate (how far up it is).

399

300

I

0

I
I
I
I
I
I
I
1

200 639

Figure 10 The graphics screen, showing the point (200,300)

45

46 BASIC Programming on the Amstrad

Notice that these graphics coordinates are measured from the
bottom of the screen, and that the bottom left-hand point on the
screen has the coordinates (0,0). This can be a bit confusing,
because text coordinates work in a completely different way, with
the top left-hand character position having the coordinates (1,1)!
Notice also that because the numbering of points begins with 0,
the top right-hand point has the coordinates (639,399) and not
(640,400) as you might imagine.

Run the following program:

10 MODE 1
20 MOVE 124,156
30 DRAW 300,300
40 DRAW 200,400
50 DRAW 124,156

When we use the graphics commands on the Amstrad, we are
using the graphics cursor to draw lines on the screen. Normally the
graphics and text cursor remain together, but as soon as we use a
graphics command the invisible graphics cursor is used.

The MOVE command in line 20 causes the graphics cursor to
move invisibly to the point (124,156). The DRAW command
makes the cursor move from its position at (124,156) to the new
coordinates (300,300) drawing a line between the two points. The
remaining DRAW commands in lines 40 and 50 draw the two
other sides of a triangle.

In general terms, we can say that MOVE x,y causes the graphics
cursor to move to the point x,y without drawing a line. DRAW x,y
causes a line to be drawn from the last point visited by a MOVE or
a DRAW to the point x,y.

The different modes

Although the graphics screen is divided into 640 horizontal and
400 vertical points, the Amstrad cannot really tell all these points
apart. We saw in Chapter 1 that there are 3 screen modes, each
with a different-sized text screen. The graphics screen is the same
for all the modes, but in some of the screen modes the Amstrad is
better able to tell points apart than others. Rim the above program
again after you have edited line 10 to be:

10 MODEO

Drawing Pictures 47

The drawing remains the same, but the lines are much thicker
and the picture looks more 'chunky'. Now try:

10 MODE 2

This time the lines are very fine. Mode 2 is called the high
resolution mode, because when using mode 2 the Amstrad can
distinguish between 640 points horizontally and 200 points
vertically, which results in very fine lines when you use DRAW.

In mode 2 the Amstrad cannot tell the difference between
points that are vertically too close. It would treat the points (10,10)
and (10,11) as exactly the same. In fact both mode 1 and mode 0
have the same vertical resolution of 200 points as mode 2, but
their horizontal resolutions are much worse. Type:

10 MODE 1

and run the program again. Mode 1 is the medium resolution mode,
and in mode 1 the Amstrad can only show 320 separate horizontal
points. This means that, for example, (200,300) (200,301) (201,300)
and (201,301) are all treated as the same point. Now type:

10 MODEO

and run the program for the third time. Mode 0 is the low reso­
lution mode, and can only identify 160 different horizontal points.

You may wonder why on earth anyone would choose to use a
screen mode that produces 'chunky' drawings when the high
resolution mode 2 is available. The main reason is that although
mode 0 is low resolution, it can display drawings in up to 16
different colours on the screen at the same time. Modes 1 and 2 are
much worse:

Figure 11 The different graphics resolutions and number of colours available
in the different modes.

Graphics resolution Number of colours on-screen simultaneously

Mode 0 160 x 200 2

Mode 1 320 x 200 4

Mode 2 640 x 200 16

You mustn't forget that the Amstrad has only a limited amount of
memory. It can only record a certain amount of information about

48 BASIC Programming on the Amstrad

the screen in the RAM. As with many things in computing, there
is a trade-off here. The RAM can be used to record details of many
points of two possible colours, fewer points of 4 possible colours,
or very few points with 16 possible colours. The Amstrad gives
you the choice and you must select the mode which seems best
suited to your purposes.

Exercises

1) Try to write a brief program using MOVE and DRAW
commands to draw a rectangle on the screen.

2) Using the MOVE and DRAW statements write a program that
draws this picture of a robot head:

3) Write a program to draw the following shape:

Figure 13 Triangles.

Drawing Pictures 49

The PLOT statement

The Amstrad can also display individual points on the screen,
although a single point is rather difficult to see in mode 2! This
program plots 6 separate points on the screen:

10 MODE 0
20 PLOT 160,200
30 PLOT 320,200
40 PLOT 324,200
50 PLOT 328,200
60 PLOT 332,200
70 PLOT 480,200

In mode 0, the resolution is so low that the four points plotted in
lines 30 to 60 merge to form a line. In mode 1 all the points can be
seen, and the points are so fine in mode 2 that you may not be able
to see them at all.

PLOT works in the same way as MOVE or DRAW. The PLOT
command must be followed by the x and y coordinates of the
point to be plotted. In fact the 'point' is really made up of a
number of points, because none of the modes is accurate enough
to identify every point on the screen. The smallest 'block' of
points on screen that can be located in the different modes is
called a pixel:

Figure 14 The size of a graphics pixel in each of the modes.

50 BASIC Programming on the Amstrad

Variables and graphics programs

This program draws the outline of a house, with a roof:

10 MODE 1
20 REM draw a rectangle as the house fr
30 MOVE 120,100
40 DRAW 500,100
50 DRAW 500,300
60 DRAW 120,300
70 DRAW 120,100
80 MOVE 120,300
90 DRAW 185,380
100 DRAW 435,380
110 DRAW 500,300

The above program introduces the REM statement. This is short
for REMark, and is included to make the program easier to follow.
Now that the programs are getting longer, I will include REM
statements to explain the different parts. The Amstrad does
nothing when it finds a REM statement — REMs are included
purely as notes for the programmer's benefit.

Longer programs pose another problem because when they are
listed they will not fit completely onto the screen. You can list any
part of a program by typing, for example:

list 10-30

which lists lines starting with line 10 and going up to and
including line 30.

We can make the program much more interesting by using
variables, whose values can be changed easily:

10 MODE 1
20 REM set up coordinates for house front
30 houseleftx=120
40 houseboty=100
50 houserightx=500
60 housetopy=300
70 REM draw the house front
80 MOVE houseleftx,houseboty

Drawing Pictures 51

90 DRAW houserightx,houseboty
100 DRAW houserightx,housetopy
110 DRAW houseleftx,housetopy
120 DRAW houseleftx,houseboty
130 REM set up coordinates for roof
140 roof 1eftx = 185
150 rooftopy=380
160 roofrightx=435
170 REM draw the roof
180 MOVE houseleftx,housetopy
190 DRAW roofleftx,rooftopy
200 DRAW roofrightx,rooftopy
210 DRAW houserightx,housetopy

Notice that because many of the coordinates are used twice, we
do not need as many variables as you might think. You can now
make the house lower just by changing line 60 to give the house
top a lower y coordinate, such as 200. Or you can raise the roof by
increasing rooftopy in line 50. Once again this shows the power
of variables. If the house was drawn using specific numbers you
would need to change many lines to get the same effect. How can
you make the house narrower? Why do you have to change two

Figure 15 House.

52 BASIC Programming on the Amstrad

variables rather than one? What does the Amstrad do if you have a
coordinate which is too big, such as setting rooftopy to 500 in line
150?

When we use graphics to draw pictures, there are many ways of
producing the same result. It is worth spending a bit of time
looking at the shape you want to draw, because you can make the
program a lot shorter if you visit all the 'comers' in your shape in
the right order. The house was drawn by visiting the comers in
the order shown in Figure 15.

Exercises

1) The program to draw the house took 9 MOVE and DRAW
statements. Can you shorten this to 8 by drawing the lines in a
more sensible order?

2) Write a program that draws this shape on-screen:

Figure 16 Window.

INPUT and graphics

Using the INPUT statement gives us a problem, as you can see if
you delete lines 30 to 60 and put:

30 INPUT "What is the left x coordinate for
the house";houseleftx

Drawing Pictures 53

40 INPUT "What is the bottom y coordinate for
the house";houseboty

50 INPUT "What is the right x coordinate for
the house";houserightx
60 INPUT "What is the top y coordinate for th
e house" ;housetopy

The prompt and the input values make a mess of the screen
display. We can avoid this by telling the Amstrad to print text
only to a certain part of the screen. This is done by using the
WINDOW statement:

10 MODE 1
20 REM set up coordinates for house front
25 WINDOW 1,40,20,25
30 INPUT "What is the left x coordinate for t
he house";houseleftx
40 INPUT "What is the bottom y coordinate for
the house";houseboty

50 INPUT "What is the right x coordinate for
the house";houserightx
60 INPUT "What is the top y coordinate for th
e house";housetopy
70 REM draw the house front
80 MOVE houseleftx,houseboty
90 DRAW houserightx,houseboty
100 DRAW houserightx,housetopy
110 DRAW houseleftx,housetopy
120 DRAW houseleftx,houseboty
130 REM set up coordinates for roof
140 roofleftx=185
150 rooftopy=380
160 roofrightx=435
170 REM draw the roof
180 MOVE houseleftx,housetopy
190 DRAW roofleftx ,rooftopy
200 DRAW roofrightx,rooftopy
210 DRAW houserightx,housetopy

54 BASIC Programming on the Amstrad

The 'window' inside which the text is printed is identified by
giving the left-most column to be within the window, followed
by the right-most column, the top-most line, and the lowest line.
Because we are talking about the position of text here, we must
use text coordinates to describe the window:

Figure 17 The shaded area contains the characters that would lie within the text
window set up by WINDOW 1,40,20,25

The WINDOW continues to work even when the program has
finished, as you can see if you list the program. You can return
everything to normal by typing in a mode command. You might
like to complete the program by changing lines 140 to 160 so that
the roof coordinates are also input.

We could set the window to the top of the screen using:

25 WINDOW 1,40,1,2

Try to adjust the window so that it is to the right of the picture
drawn by the program.

One thing you will have noticed is that choosing the wrong-
size window can make the text a bit difficult to follow. The way to
avoid this is to plan ahead and decide what portion of the screen
you need for graphics and what for text, and adjust your INPUT
prompts accordingly.

Drawing Pictures 55

Note that setting a text window has no effect on the graphics
screen. You can still draw lines through the text window if you
have positioned the window in the wrong place, such as the
middle of the screen.

Exercises

1) Write a program to enable you to input 3 sets of coordinates
which the computer then uses to draw a triangle.

2) Write a program that accepts as input 4 sets of graphics co­
ordinates and then draws an arrow on-screen.

Adding colour

When you switch the Amstrad on, the micro is set to print yellow
text and graphics on a blue background in all the modes. In fact
there are 27 different colours which can be displayed on the
screen, although some of them are a bit difficult to tell apart
(especially for those of you with green-screen monitors). Each
colour has a number, called the INK number, and whenever we
refer to a colour we use this number rather than the name of the
colour itself: see Figure 18 overleaf.

At this stage it is important to realise that the computer does
not actually use the whole of the screen while it is printing or
doing graphics. You may have noticed already that the Amstrad
actually works within a large rectangle around which there is a
border of unused screen: see Figure 19 overleaf.

Although the Amstrad does not use this border, it is kept the
same colour as the rest of the screen. The border is not really part
of the computer memory, because it always stays the same colour
and is never used by the Amstrad for printing or drawing
graphics. Within the main screen, the Amstrad has to use a great
deal of memory to record what letters are currently printed on the
screen, what lines have been drawn, and what colours have been
used. Although the screen looks as if it never changes, the
Amstrad is actually redrawing it all many times a second. (The
same redrawing process takes place with the pictures shown on
an ordinary television.)

The border around the screen is a very different matter. As the
Amstrad never uses the border, it need only record one piece of

56 BASIC Programming on the Amstrad

Ink number Colour

0 Black
1 Blue
2 Bright blue
3 Red
4 Magenta
5 Mauve
6 Bright red
7 Purple
8 Bright magenta
9 Green

10 Cyan
11 Sky blue
12 Yellow
13 White
14 Pastel blue
15 Orange
16 Pink
17 Pastel magenta
18 Bright green
19 Sea green
20 Bright cyan
21 Lime green
22 Pastel green
23 Pastel cyan
24 Bright yellow
25 Pastel yellow
26 Bright white

Figure 18 The 27 INK colours that can be used on the Amstrad.

Figure 19 The BORDER area on your monitor or TV.

Drawing Pictures 57

information about it—its colour. That is all the Amstrad needs to
be able to redraw the border area. Within the rectangle the
Amstrad uses much more memory, because it has to record
information about every possible point. After all, the main screen
area might contain hundreds of lines in different colours.

I have gone to some length to point out why the border is not
the same as the rest of the screen. It is because of this difference
that the border is treated in a different way when it comes to
colours. The border can be set to any colour in any mode. There
are never any restrictions on the colour of the border. Mode 2 can
only display 2 colours at once within the main screen rectangle,
but its border can be any colour. Type:

MODE 2
BORDER 0

If you refer back to Figure 18 you will see that 0 is the INK number
for the colour black. By typing BORDER 0 you are telling the
Amstrad to set a black border. Set the border to a few other
colours - you can use any number from 0 to 26, so there are 27
possible border colours altogether. BORDER 26 gives you a white
border for example.

The border can be set in modes 0 and 1 in exactly the same way.
You will find that if you set a border and then change mode, the
border remains set to its new colour. When the Amstrad is
switched on or reset the border becomes blue, BORDER 1. You
could add a BORDER command to any of the programs you have
written so far. It won't affect the program in any way, except
perhaps to make it more colourful.

PEN and PAPER colours

You can also change the colours used within the main screen
rectangle. Here the question of RAM becomes important, and
there are restrictions on the number of colours you can have
simultaneously on the screen at any one time.

You can change the colour the Amstrad 'writes' with by using
the PEN command. Type:

MODEO
PEN 4

You might expect from Figure 18 that this will give you magenta

58 BASIC Programming on the Amstrad

characters, but I did tell you that the colours in the border worked
differently to those for the main screen! Choosing PEN 4 actually
causes the Amstrad to print in white. You can think of PEN 4 as
being filled with white ink. Typing:

PEN 5

chooses a pen full of black ink. You can even have:

PEN 14

which gives you flashing blue/yellow ink!
There are 16 pens available for use in any mode and Figure 20

shows the colour number for the INK that the pens use.

Figure 20 The PEN and PAPER colours for the different modes. In mode 0,
choosing PEN or PAPER 14 gives a flashing colour which alternates between the

two colours shown.

PEN or
PAPER
number

Mode
0

Mode
1

Mode
2

0 1 1 1
1 24 24 24
2 20 20 1
3 6 6 24
4 26 1 1
5 0 24 24
6 2 20 1
7 8 6 24
8 10 1 1
9 12 24 24

10 14 20 1
11 16 6 24
12 18 1 1
13 22 24 24
14 1/24 20 1
15 16/11 6 24

Note that the same pen can write with a different ink in another
mode. This means that a program that works perfectly well in
mode 0 may well give you a blank screen in mode 2! The pen you
have chosen may have the same colour as the background in
mode 2. As you can see, the 16 pens aren't much use in mode 2,
because 8 of them write in yellow and the other 8 in blue. We will

Drawing Pictures 59

see later how to change the inks that can be used in each mode,
but for the moment switch to mode 0, and type:

PEN 11

to see the pink ink in action. One frequent problem when playing
around with the pen colours is that you can end up being unable
to read anything on the screen, because you are using a pen with
the same colour ink as the background. If you are confident of
your typing ability, just change the pen number by typing in a
new pen command in invisible characters. Otherwise you can
reset the machine to its normal ink and text colours by holding
down [CTRL] and [SHIFT] and pressing [ESC], (A word of
warning. If you do this it clears the memory and you will lose any
program you have input.)

It is worth mentioning here that it is possible to write a
program that for one reason or another the computer cannot
finish. If you ever find that the micro seems to have got 'stuck' in a
program, you can make the computer abandon the program by
pressing [ESC] twice in succession. If you press [ESC] once the
computer will pause and if you then press any key other than
[ESC] the computer will continue with the program as if nothing
has happened.

You can change the background colour as well by using the
PAPER command. Reset the micro by holding down [CTRL] and
[SHIFT] and pressing [ESC]. Then switch to mode 0. Type:

PAPER 3

and the next characters printed will be printed on a red back­
ground. You can change the whole of the inner screen area to this
new colour by typing:

CLS

The Amstrad clears all of the main screen to the new paper colour.
PAPER in mode 0 comes in the same 16 colours as the pens.

PEN 14 gave us flashing blue/yellow ink, and PAPER 14 gives a
flashing blue/yellow background. Figure 20 can be used to help
you select both the pen and paper colours. For example, to get red
characters on a white background in mode 0, type:

pgv
INK 3
PAPER 4
CLS

60 BASIC Programming on the Amstrad

PEN and PAPER commands can, of course, also be used in
programs:

10 MODE 0
20 LOCATE 4,7
30 PEN 3
40 PAPER 5
50 PRINT "Red on black"
60 LOCATE 4,13
70 PEN 6
80 PAPER 3
90 PRINT "Blue on red"
100 LOCATE 4,19
110 PEN 5
120 PAPER 6
130 PRINT "Black on blue"
140 REM turn pen and paper back to normal
150 PEN 1
160 PAPER 0

If you run this program in the other two modes by changing line
10, you'll find you get some funny results, because the PENs
contain different INKs in the other modes. You can also use
variables:

10 MODE 0
20 redpeninmode0=3
30 blackpaperinmode0=5
40 PEN redpeninmodeO
50 PAPER bl ackpaperinmodeO
60 CLS
70 LOCATE 8,12
80 PRINT "Done!"
90 REM turn pen and paper back to normal
100 PEN 1
110 PAPER 0

The last two lines restore normal PEN and PAPER colours so you
are not left with some unreadable mixture like yellow on white.

Drawing Pictures 61

Exercises

1) Change the program on page 60 so that it prints the three
words in green on white, red on yellow, and white on black.
Make the border cyan.

2) You can even print every letter of a word in a different colour.
Use the LOCATE statement to move to the right place and then
change pens before printing each letter. Print the word
RAINBOW in mode 0, with every letter a different colour.

3) Write a program that allows you to input the PEN and PAPER
numbers to be used, and then clears the screen to the new
colour and prints “The new colours" in the centre. (You must
input the PEN and PAPER numbers to numeric variables and
not string variables, as the Amstrad is expecting a number to
go with both PEN and PAPER statements.)

Graphics and colour

Drawing pictures in colour is remarkably easy on the Amstrad.
You have already used the commands MOVE and DRAW in
programs. These commands, used on their own, always result in
lines drawn using PEN 1 for whatever mode you are in. Thus all
the graphics programs we have looked at so far have produced
lines drawn with PEN 1. PEN 1 contains INK number 24 in all
modes, so the lines have all been bright yellow (see Figures 18
and 20 if you're not sure about this).

If you want to have a different colour when drawing a line, you
must use an extension of the DRAW command. Reset the
Amstrad, and type:

MOVE 100,100
DRAW 300,300,2

The Amstrad draws a line from (100,100) to (300,300) using PEN 2,
which contains INK number 20, bright cyan, in mode 1. Type:

DRAW 400,0,3

and a red line is drawn with PEN 3 from (300,300) to (400,0). PEN
3 uses INK number 6, red, in mode 1. (You may find this line
difficult to see against the blue background.)

The commands are just as easy to use in a program. Again,
remember that a program that works in one mode may not work

62 BASIC Programming on the Amstrad

in another because of the different INKs the PENs have in
different modes. This program draws a rectangle in mode 1, with
one side in yellow, one in cyan, and the other two in red:

10 MODE 1
20 MOVE 100,100
30 DRAW 400,100
40 DRAW 400,300,3
50 DRAW 100,300,2
60 DRAW 100,100,3

Notice that at line 30 no PEN is specified, so the Amstrad auto­
matically uses PEN 1, which draws a yellow line. After you have
run the program once, run it again. You may be surprised to find
that there is no longer a yellow line!

If no PEN number is given, as in line 30, the Amstrad uses PEN
1 only if this is the first draw command it has obeyed. Otherwise,
the PEN used is the same as the one used in the last draw
command. After you run the program the first time, the last PEN
used is PEN 3. When the Amstrad runs the program the second
time, it has just used PEN 3 in its last DRAW command, so it uses
PEN 3 again at line 30 where no PEN is specified.

The advantage of this is that once you have set the PEN in a
draw command, all lines drawn after that are automatically
drawn in that same colour unless you introduce a new PEN
number:

10 MODE 1
20 MOVE 200,100
30 DRAW 400,200,2
40 DRAW 100,350
50 DRAW 200,100

You might like to try running this program in mode 2, where PEN
2 holds a different colour INK.

Mode 0 is by far the best mode to use if you want a colourful
graphics display and you are not too concerned about the
resolution:
10 REM draws a flag in 10 different coloi
20 MODE 0
30 PAPER 1

Drawing Pictures 63

40 CLS
50 REM set up -flagpole coordinates
60 poleleftx=100
70 polerightx=120
80 poleboty=50
90 poletopy=350
100 knobleftx=80
110 knobrightx=140
120 knobtopy=370
130 REM draw -flagpole
140 MOVE poleleftx,poleboty
150 DRAW poleleftx,poletopy,0
160 DRAW knobleftx,knobtopy
170 DRAW knobrightx,knobtopy
180 DRAW polerightx,poletopy
190 DRAW polerightx,poleboty
200 REM setup flag coordinates
210 f1agrightx=500
220 flagtopy=240
230 MOVE polerightx,f1agtopy
240 DRAW f1agrightx,f1agtopy, 2
250 DRAW flagrightx,f1agtopy-100,2
260 MOVE flagrightx,flagtopy
270 flagtopy =flagtopy-10
280 DRAW polerightx,f1agtopy,3
290 flagtopy =flagtopy-10
300 DRAW f1agrightx,f1agtopy, 4
310 flagtopy =flagtopy-10
320 DRAW polerightx,f1agtopy,5
330 flagtopy =flagtopy-10
340 DRAW flagrightx,flagtopy,6
350 flagtopy =flagtopy-10
360 DRAW polerightx,f1agtopy,7
370 flagtopy =flagtopy-10
380 DRAW flagrightx,flagtopy,8
390 flagtopy =flagtopy-10

64 BASIC Programming on the Amstrad

400 DRAW polerightx,f1agtopy,9
410 flagtopy =flagtopy-10
420 DRAW flagrightx,flagtopy,10
430 flagtopy =flagtopy-10
440 DRAW polerightx,f1agtopy,11
450 flagtopy =flagtopy-10
460 DRAW flagrightx ,flagtopy,12
470 REM turn paper back to normal
480 PAPER 0

You can lower the flag to half-mast just by changing line 220!

Exercises

1) Draw a picture of a door in green on a white background. Print
the number 12 on the door in blue, and draw a letter box in
black. Use mode 0.

2) Modify your previous program so that it draws the same scene
in different colours in mode 1. (You will have to use different
pens here, because the pens you have chosen for your first
program may be filled with the same colour INK in mode 1).

3) Take the house program from earlier in the chapter and modify
it so that you can input the colours of the lines to be used in the
drawing.

Stained glass WINDOWS

We saw a little earlier in the chapter how useful a text window
could be when we were using INPUT statements. The WINDOW
statement has other more valuable functions when we are dealing
with graphics. It is possible to set up more than one text window
at once:

10 MODE 1
20 REM set up first window at top left
30 WINDOW 1,20,1,12
40 REM set up second window at bottom right
50 WINDOW #1,21,40,13,25
60 PRINT "This goes to the main text window"
70 PRINT #l,"And this goes to the other."

Drawing Pictures 65

The 'main' text window is always chosen as the one for which all
commands like PRINT and CLS are intended. If you now type:

? ''hello''

this will be printed automatically to the main text window. If you
type:

? #1, "hello"

the message will be printed within the other window. Each
window has a number—the main window is number 0. In line 50
of the program, window number 1 is set up using WINDOW #1.
A message is printed to this window in line 70 using PRINT #1.
The main window can be printed to using either PRINT #0 or just
PRINT. Try:

? #0, "This is window #0"
? "This is window #0, too"

The #0 is OPTIONAL when you are dealing with the main text
window. If you don't mention a WINDOW number the Amstrad
always assumes you are referring to WINDOW #0, the main
window.

Before the windows send you cross-eyed, you can always get
the normal screen back by doing a mode command. Try it now.

The clever thing about WINDOWS is that as well as printing to
them, we can set the windows to use different PAPER and PEN
colours. Add these lines to the program:

51 REM print to the main window
52 PAPER 3
54 CLS
56 PEN 1
60 PRINT "This goes to the main text window"
61 REM now print to the second window
62 PAPER #1,2
64 CLS #1
66 PEN #1,0

WINDOW #0, the main window, now prints in yellow text on a
red background, while WINDOW #1 prints in blue text on a cyan
background! When choosing the PEN and PAPER colours for a

66 BASIC Programming on the Amstrad

window, you must give the WINDOW number to which the
commands apply. This is why all the statements in lines 62 to 70
contain #1, like PEN #1,0 at line 66. This chooses pen 0, which
holds blue ink, to be used for printing in WINDOW #1 ONLY.
Again, the #0 for the main window is optional for the PEN and
PAPER colours. Lines 52 to 56 could be written:

52 PAPER #0,3
54 CLS #0
56 PEN #0,1

with exactly the same result when the program is run. All the
commands you have met so far that deal in any way with text can
also apply to text windows. Try:

CLS #1

and you will see WINDOW #1 cleared to cyan. Notice that
although the CLS applies to WINDOW #1, the Amstrad still
prints messages like 'Ready' to the main window, WINDOW #0.
You can even list your program in WINDOW #1 with:

LIST #1

Type:

PEN #1,3

Nothing seems to have happened. We have changed the pen used
in WINDOW #1 to PEN 3, filled with red ink. To see the effect of
this change we must first print something to WINDOW #1, so
type:

PRINT #1, "Printing in red at #1"

We could change the background with:

PAPER #1,1

and again nothing will appear to happen until something is
printed to WINDOW #1, so type:

PRINT #1, "A bright yellow background."

and:

CLS #1

Drawing Pictures f>7

clears the whole of WINDOW #1 to the new PAPER 1 colour,
which is bright yellow.

Exercises

1) Set up two text windows for the top and bottom half of the
screen, and print your first name in the top window and your
surname in the lower.

2) Set up two text windows in mode 0, and print the message
WINDOW #0 in the main window in green on a white back­
ground, and WINDOW #1 in the other window in black on a
red background.

Graphics and windows

Windows can even be set to overlap:

10 MODE 1
20 REM set up main window
30 WINDOW 1,20,8,16
40 PAPER 3
50 CLS
60 REM set up second window to overlap
70 WINDOW *1,11,30,10,18
80 PAPER #1,2
90 CLS #1

Notice that WINDOW #1 is in front of WINDOW #0. When
windows overlap, the window cleared last always overlaps the
one cleared first. If you add:

100 CLS

and delete line 50, you will find that because WINDOW #1 is
cleared first, it is covered by WINDOW #0. WINDOW #0 is not
permanently in front, as you can see if you try CLS[ENTER] and
CLS #1[ENTER] a few times.

As if overlapping windows are not mind-boggling enough, the
Amstrad allows you to set up as many as 8 separate text windows,
numbered from 0 to 7!

68 BASIC Programming on the Amstrad

10 MODE 0
20 WINDOW 1,20,23,25
30 INPUT "Give 4 pen colours (0-16)pen 1,pen2,pen3,

pen4
40 INPUT "Now 4 paper colours“;paperl,paper2,paper3,

paper 4
50 REM set the windows up, create PEN and PAPER

colours for them
60 WINDOW #1,6,15,13,22
70 CLS #1
80 PEN #l,penl
90 PAPER #l,paperl
100 CLS #1
110 REM move roughly to centre of window for printing
120 LOCATE #1,5,5
130 PRINT #1,"1"
140 WINDOW #2,1,8,7,16
150 PEN #2,pen2
160 PAPER #2,paper2
170 CLS #2
180 LOCATE #2,4,5
190 PRINT #2,"2"
200 WINDOW #3,7,14,1,10
210 PEN #3,pen3
220 PAPER #3,paper3
230 CLS #3
240 LOCATE #3,4,5
250 PRINT#3,"3"
260 WINDOW #4,13,20,6,15
270 PEN #4,pen4
280 PAPER #4,paper4
290 CLS #4
300 LOCATE #4,4,5
310 PRINT#4,"4"

The last program shows how valuable the WINDOW statement
can be. It gives us a fast and easy way of filling a rectangular area
with a colour.

Drawing Pictures 69

In line 120 the LOCATE command is used for the first time with
a window. The text coordinates used in the LOCATE statement
are based on the new window. The top left comer of each window
is taken to have the coordinates (1,1), and each rectangle is about
7 characters wide and 9 lines deep, so the centre of each window
is at(4,5).

This program demonstrates once again the advantages of vari­
ables, and reminds us that wherever we use numbers, we can
make the program more flexible by using variables instead.

The graphics programs we looked at earlier suffered because
there was no way to fill an area with a particular colour, although
we could draw lines in different colours. We can now combine
MOVE, DRAW and the WINDOW statements to produce some
very effective displays. (Remember that the graphics screen is
unaffected by any text windows set, and still covers the whole
screen. So the coordinates used here are just as they would be if
no text windows were set.)

10 MODE 0
11 REM create red roof
20 WINDOW 3,18,1,5
30 PAPER 3
40 CLS
41 REM create brown house front
50 WINDOW #1,3,18,6,20
60 PAPER #1,9
70 CLS #1
71 REM create green door
80 WINDOW #2,10,12,15,20
90 PAPER #2,12
100 CLS #2
101 REM create blue window
110 WINDOW #3,6,8,9,12
120 PAPER #3,6
130 CLS #3
131 REM create second blue window
140 WINDOW #4,14,17,9,12
150 PAPER #4,6
160 CLS #4

70 BASIC Programming on the Amstrad

161 REM draw panes for window
170 MOVE 208,208
180 DRAW 208,272,1
190 MOVE 160,240
200 DRAW 256,240
201 REM draw panes for other window
210 MOVE 416,240
220 DRAW 544,240
230 MOVE 480,208
240 DRAW 480,272
241 REM <draw outline within door
250 MOVE 296,88
260 DRAW 296,168,5
270 DRAW 372,168
280 DRAW 372,88
290 DRAW 296,88

One problem that does arise when WINDOWS and DRAWs are
combined is that two different sets of coordinates are being used.
To draw accurately within a window we need to calculate at what
graphic coordinates that text window starts. If we superimpose
the graphics and text coordinates in mode 0, it is clear that each
text character position is 32 points wide and 16 points high:

I
I

Figure 21 Each text coordinate in mode 0 is 32 points wide and 16 points high.
The diagram shows the graphics points at the same position as the character

position (1,25).

71

From this we can work out that the graphics coordinates for the
bottom left comer of any character in mode 0 can be found from:

graphicsx = (textx — 1)*32
graphicsy = (25 — texty) * 16

For example, the green door in the program above is created by a
WINDOW statement at line 80, and the character at the bottom
left of the door has the text coordinates (10,20). From this we can
see that the extreme bottom left point within the door is:

graphicsx = (10 — 1)* 32 = 9*32 = 288
graphicsy = (25 — 20)* 16 = 5*16 = 80

or (280,80). Knowing that the bottom left of the door lies at
(280,80) enables us to plan what coordinates the MOVE and
DRAW commands need. For example the drawing of the outline
within the door begins on line 250 with a MOVE to the point
(296,88). This was chosen because we know (296,88) is just to the
right and above the bottom comer of the door at (280,80).

If this all seems rather complicated, don't worry about it for the
moment. Converting from text to graphics coordinates is only
necessary if you intend to use both sorts of commands to produce
a screen display. We shall see later that this conversion is
important if you plan to draw any diagram or graph accom­
panied by text, but we shall also see that there are much simpler
ways to do this than the one suggested above!

Exercises

1) Set up 4 windows in different colours to produce this display:

cyan

red

blue

yellow

Figure 22 Colour windows.

72 BASIC Programming on the Amstrad

2) Using mode 0, draw a picture of a red car with the windows in
blue and the square 'tyres' in black with a white hubcap:

See if you can add more detail by using MOVE and DRAW
commands.

3) Extend your previous program so that you can input the colour
of the car and the character position at which the car is to be
printed on screen.

4) Create a picture of a stick man waving from one of the
windows of a house. Use the WINDOW, MOVE and DRAW
statements.

Chapter Four

Loops

Over and over again

So far all the programs we have looked at have had one thing in
common. When the program is run, the Amstrad obeys the
instructions in line number order, from the lowest numbered line
to the highest number. Yet you may already have noticed that in
some circumstances this is a handicap. Quite often in a program
we give a series of instructions which we would like to repeat.

Any program you write contains sequences of instructions
which are obeyed in line number order. In this chapter you will
find out how to include repetitions of instructions in your
programs. A program containing repeated instructions is much
more powerful than one which uses a simple sequence of instruc­
tions, as you will see if you run this program:

10 MODE 1
20 FOR count=l TO 100
30 PRINT count
40 NEXT

Line 20 sets up a loop of instructions. The variable 'count' is used
to count the number of times the loop will be carried out. In this
case the loop begins with 'count' being set to 1. Line 30 prints out
the value of 'count' — 1 the first time around the loop.

When the Amstrad gets to line 40 the NEXT statement tells it to
add 1 on to 'count'. It will now do the next repetition of the
statements within the loop, providing that 'count' has not
reached the stopping value of 100 as given in line 20. 'Count' is
known as the control variable for the loop, because its value
controls when the loop stops.

All the statements between the FOR at line 20 and the NEXT at

73

74 BASIC Programming on the Amstrad

line 40 are obeyed 100 times. This is clear if you add another
statement between the two ends of the loop:

10 MODE 1
20 FOR count=l TO 100
30 PRINT count
35 PRINT "Hello!"
40 NEXT

Each time around the loop the Amstrad prints the value of 'count'
at line 30 and then prints 'Hello!' at line 40. If you change line 20
to:

10 MODE 1
20 FOR count = 5 TO 9
30 PRINT count
35 PRINT "Hello!"
40 NEXT

you can see that the loop now begins with 'count' being 5, and
continues until 'count' is 9. Lines 30 and 40 are obeyed 5 times
altogether before the loop ends. To make sure you've got the idea,
edit line 20 so that the loop begins with 'count' at 3 and runs until
its value is 15.

Let's look at a short program which shows the power of the
loop:

10 MODE 1
20 PRINT
30 INPUT "What is the multiplication table";table
40 PRINT
50 FOR count = 1 TO 10
60 PRINT count;" times “jtable;" is ";count*tab1e
70 NEXT

This program prints out a multiplication table for any number
you care to input at line 20. The control variable can always be
used in calculations or statements within the loop:

10 MODE 2
20 FOR xcoordinate=l TO 60

Loops 75

30 PRINT TAB(xcoordinate);"Tab within a loop"
40 NEXT

(The peculiar effect in this program occurs because the line at the
top of the screen is scrolled off, and all the other lines are shifted
up one as a new line is printed.) Similarly, the control variable
might be used in a LOCATE statement:

10
20

MODE 1
FOR x = 10 TO 30

30 LOCATE x,8
40 PRINT
41 LOCATE x,17
42 PRINT
50 NEXT
60 FOR y = 9 TO 16
70 LOCATE 10,y
80
90

PRINT ;SPC(19)j
NEXT

Not exciting enough for you? Try:

10
20

MODE 1
LOCATE 20,1

30 PRINT "*M;
40 FOR y = 2 TO 10
50 LOCATE 21—y,y
60 PRINT
70 LOCATE 19+y,y
80 PRINT
90 NEXT
100 LOCATE 10,11
110 FOR count = 1 TO 21
120 PRINT
130 NEXT

Or for a colourful example:

10 MODE 0
20 FOR colour=0 TO 15

76 BASIC Programming on the Amstrad

30 PEN colour
40 PRINT "Amstrad“
50 NEXT
60 REM pen back to normal
70 PEN 1

Line 30 chooses a PEN with a different number every time
through the loop, as the value of the variable 'colour' automatic­
ally increases by 1. Loops give especially impressive results in
graphics programs. This one draws a succession of triangles
inside one another:

10 MODE 1
20 leftx=100
30 boty=0
40 rightx=500
50 midx=300
60 topy=300
70 FOR count = 1 TO 40
80 MOVE leftx,boty
90 DRAW rightx,boty
100 DRAW midx,topy
110 DRAW leftx.boty
120 leftx = leftx+10
130 boty = boty+10
140 rightx = rightx-10
150 topy = topy -10
160 NEXT

Loops provide an easy means of keeping a running total:

10 MODE 1
20 totalspent = 0
30 FOR month = 1 TO 12
40 PRINT "What did you spend in month "jmonth;
50 INPUT spent
60 totalspent = totalspent+spent
70 NEXT
80 PRINT "You spent total spent;" pounds altogether"

Loops 77

Notice that an INPUT statement with a prompt is not used at line
40. This is because the variable 'month' is included as part of the
printout, and the Amstrad would have mistaken 'month' as the
variable in which it should store the input value.

Exercises

1) Write a program to print your name until it fills the screen in
mode 1.

2) Write a program to print a large letter 'M' in asterisks on the
screen.

3) Extend the 'totalspent' program so that it also takes account of
your savings in each month, and calculates the total savings
for the year.

4) Write a program that draws a succession of pentagons inside
each other. The colour of the pentagons and the rate at which
they 'shrink' is input at the start of the program.

5) Write a program to print 'Amstrad' in yellow on the 16
different PAPER backgrounds in mode 0.

Controlling the loop

There is no reason why the start and stop values for a loop should
not themselves be variables under your control. A loop gives us
an easy way of generating a series of WINDOWs:

10 MODE 0
11 WINDOW 1,20,20,25
20 INPUT "How many wi ndows11; number of wi ndows
30 FOR count = 1 TO numberofwindows
40 WINDOW Icount,count,count+5,count,count+4
50 PAPER Icount,count
60 CLS #count
70 NEXT

Line 30 produces the WINDOWS. You might like to extend the
program so that the windows drawn at line 30 are of different
sizes. Here is another example where the stop value for the loop is
input:

78 BASIC Programming on the Amstrad

10 MODE 1
20 INPUT “How many lines do you want10 11 ; number o
f1ines

10 REM draws 9 rectangles
20 MODE 0
30 FOR count=0 TO 500 STEP 60
40 MOVE count,0
50 DRAW count+50,0

30 FOR count = l TO numberof 1ines
40 MOVE count*10,0
50 DRAW 320,350
60 NEXT

You can use any number you like at 20, but anything above a few
hundred means a long wait while the program finishes! I chose a
random position in line 50, although you could even make that
dependent on the control variable. Try an input value of 50 with
this program:

10 MODE 1
20 INPUT "How many lines do you wantnumbero
flines
30 FOR count=l TO numberof1ines
40 MOVE count*10,0
50 DRAW 500,count*10
60 NEXT

When we are dealing with graphics coordinates, a loop with a
control variable which changes in steps of one is not very useful.
In the above program, the control variable had to be multiplied
by 10 to ensure that the lines drawn w’ere visibly separated
on-screen. If you edit lines 40 and 50 so that 'count* 10' becomes
'count', and run the program again, you will find that the lines
merge together because they are too close.

We can change the rate at which the control variable increases
by including a STEP value at the start of the loop:

Loops 79

60 DRAW count+50,200
70 DRAW count,200
80 DRAW count,0
90 NEXT

Line 30 gives 'count' the starting value of 0, and at the end of the
loop at line 90 that value is increased not by 1 but by the STEP
value of 60. A point to note is that the stopping value for the loop
does not have to be an exact number of STEPs above the starting
value. 'Count' is first 0, then 60,120,180, 240, 300, 360,420, 480,
and the loop then ends because 'count' becomes 540 which is
greater than the stopping value of 500. The STEP value itself can
be a variable. Add an input statement to the above program so
that you can select the STEP, and experiment with different
STEPs to see the results.

This program is similar, but produces more interesting results.
It draws a series of (possibly) overlapping squares. Try input
values of 5 and 50, for example:

10 REM draws squares of different sizes
20 MODE 1
30 INPUT"Distance between squares"; distance
40 INPUT"Length of side for square";length
50 FOR count=0 TO 400 STEP distance
60 MOVE count,count
70 DRAW count+1ength,count
80 DRAW count+length,count+1ength
90 DRAW count,count+1ength
100 DRAW count,count
110 NEXT

Exercises

1) Write a program to draw a rectangular grid on the screen. (You
will need two loops, one which first draws the parallel vertical
lines, and the other which draws the horizontal ones.)

80 BASIC Programming on the Amstrad

2) Write a program that accepts as input the sales figures for a
number of months, and then draws a bar chart, with a bar to
show each month's sales in different colours. Use mode 0.
(You can either draw the bars using DRAW commands to give
an outline only, or use text WINDOWS in which case your bars
cannot be so accurately drawn.)

3) The fish-and-chip shop owner of Chapter 2 has now learnt
about loops, and wants to write a program which accepts as
input the number of items bought, and the cost of each item. It
then calculates the total cost and prints out this cost, the 15%
VAT, and the total of the two. Write the program to help him
out.

4) Write a program that accepts as input the text coordinates of a
box and the character to be used when drawing the sides, and
then draw the box. You can use the program that draws a
rectangular box of asterisks as a basis. Add colour if you wish.

5) Write a program that allows you to print a triangle of asterisks
anywhere on the screen in a colour that is input.

Different STEPS

The STEP used in a FOR . . . NEXT loop can be negative and can
even be decimal. If negative steps are used, the start value in the
FOR . . . NEXT loop must be higher than the stopping value:

10 MODE 1
20 FOR countdown=10 TO 1 STEP-1
30 PRINT countdown
40 NEXT
50 PRINT "BLASTOFF!!!!!!!!!!!"

Decimal steps are used a lot in graphics programs where the
figure being drawn is not a simple triangle or rectangle, but a
polygon (many-sided figure). The coordinates for the comers of
the figure are easily calculated using sines and cosines, which
have values less than 1.

The following program enables you to draw any polygon, from
a triangle up to a circle. You can choose where the figure is
centred, its 'radius' (i.e. the distance from its centre to its
comers), and the number of sides the figure will have. This
program is extremely useful, although if you are not familiar with
sines and cosines you may find it difficult to follow. The variable

Loops 81

PI is always necessary for these sorts of calculations, and so this
has been built into the Amstrad and does not need to be given a
value in the program:

10 MODE 1
20 INPUT "Radius of figure"; radius
30 INPUT "X and Y coordinates for centre"; centrex,

centrey
40 INPUT "Number of sides"; sides
50 CLS
60 stepsize=2*PI/si des
70 MOVE centrex,centrey+radius
80 FOR angle = 0 TO 2»PI STEP stepsize
90 DRAW centrex+radius*SIN(angle),centrey+radius*

COS(angle)
100 NEXT
110 DRAW centrex,centrey+radius

Exercises

1) Write a BLASTOFF!!! program in mode 0, with the countdown
numbers being printed within successively smaller bars as the
countdown progresses.

2) Extend the polygon program so that the Amstrad draws 2
different-coloured polygons, one inside the other.

READ and DATA

Suppose we wish to write a program that takes the names and
examination marks for a succession of schoolchildren, and calcu­
lates and prints out the total mark as a percentage. We may well
be looking at the marks for 100 different children, and it is
obviously not going to be an easy job inputting 100 names and
their associated marks! When we need to input a lot of data to
enable a program to run, there is a much better way of doing it
than using INPUT statements or setting a large number of
variables to the chosen values. We can instead READ the infor­
mation from DATA statements:

10 MODE 1
20 FOR pupil = 1 TO 5

82 BASIC Programming on the Amstrad

30 READ pupilname$,markl,mark2
40 marklpercent=markl/60*100
50 mark2percent=mark2/80*100
60 average=(marklpercent+mark2percent)/2
70 PRINT pupiInamel;marklpercent;mark2percent; average
80 NEXT
90 DATA Arkwright,40,20,Busby,10,16
100 DATA Cuthbert
110 DATA 7,34,Jones,55
120 DATA 76,Knight,58,71

The output from this program is a real shambles, but we shall sort
that out in a moment! Let's concentrate on the new features
introduced in the program. At line 30 there is a READ statement.
This tells the Amstrad to search through the program from the
start until it finds a line beginning with a DATA statement. The
first DATA statement is at line 90. The Amstrad now reads the
first item after the word DATA, and stores that item in the
variable given at line 30. So 'Arkwright' is stored in the variable
'pupilname$'.

But there are two other variables given in line 30. The Amstrad
carries on reading after 'Arkwright', and stores 40 in the variable
'markl' and 20 in the variable 'mark2'. It then uses these variables
to calculate the average percentage mark for the child (markl is a
mark out of 60, and mark2 is out of 80), and prints out the results
at line 70.

Line 80 is a NEXT, so the computer returns to the start of the
loop at line 20 to repeat the instructions again. This time line 30 is
treated a little differently. The Amstrad keeps track of how many
itemsdt has READ from a DATA statement, and it now reads the
next item it finds — in this case 'Busby' — and stores that in
'pupilname$'.

The whole process is repeated until all the names and marks
have been read in and the loop has been completed. If the
Amstrad comes to the end of a DATA statement, it just searches
for the next data statement and carries on reading there. The
items in the DATA statements must be separated by commas, but
the program gives exactly the same results if items are kept in the
same order but split over the DATA lines in a more sensible way:

Loops 83

90 DATA Arkwright,40,40
95 DATA Busby,10,16
100 DATA Cuthbert,7,34
110 DATA Jones,55,76
120 DATA Knight,58,71

It's much easier to spot and correct errors if the DATA lines are
kept fairly short. The DATA lines can be placed anywhere in the
program. The computer will ignore the lines until it needs to find
them because of a READ statement. You can even place the lines
right at the start of the program — try it for yourself. It's best
to keep the DATA lines together because it makes them easier to
locate and change, so you should aim to collect your DATA lines
at the start or end of the program.

Sometimes the data need to be used again later in the
program. For example, in the exam-marks program the pupils'
names and marks might be printed out twice at different stages of
the program. It would be pointless to duplicate all the data,
because the Amstrad can be told to begin reading the DATA from
any particular data line by using the RESTORE statement. If you
add this line to the exam-marks program:

25 RESTORE 95

and run it again, you will find that only Busby's marks are printed
out! You have told the Amstrad to READ the DATA beginning at
line 95, and every time the computer begins the loop again, it is
forced to start reading the data at the same place as before. If you
delete 25 and put:

15 RESTORE 100

the Amstrad goes into the loop at line 20 and reads the DATA
from line 100 the first time through the loop, the data from 110 the
next time, then the data from 120, and on the next occasion there
is no data line left to read and the Amstrad gives an error
message.

Using RESTORE without a line number automatically causes
the computer to start reading data at the first data line. This
program uses RESTORE to draw a series of stick men to different
places on the screen.

84 B ASIC Programming on the Amstrad

10 MODE 1
20 FOR count = 100 TO 500 STEP 100
30 RESTORE
40 READ 1egx , 1egy,groinx,groiny,1egx1,1egy1
50 READ armx , army,midx,midy,armx1,army 1
60 READ headx,heady,earx,eary,earxl,earyl
70 MOVE 1egx+count,1egy: DRAW groinx+count,gro
i ny
80 MOVE 1egx1 + count,1egy1 s DRAW groinx+count,g
r oi ny
90 DRAW midx+count,midy:DRAW armx+count,army
100 MOVE armx1+count,army 1 : DRAW midx+count,mi
dy
110 DRAW headx+count,heady : DRAW earx+count,ea
ry:DRAW earx1+count,eary: DRAW headx+count,hea
dy
120 NEXT
130 DATA 35,105,70,150,90,110
140 DATA 60,170,80,180,95,160
150 DATA 80,190,65,205,85,210

Tidying-up arithmetic

Returning to the program on page 82, there are several ways in
which the program could be improved. First, it's clear that we
need some way to round off the marks. There are several
'rounding' commands on the Amstrad. We could use INT, which
rounds off numbers to the nearest smaller integer (whole
number):
40 marklpercent=INT(markl/60*100)
50 mark2percent=INT(mark2/80*100)
60 average=INT((marklpercent+mark2percent)/2)

Notice the value to be rounded is bracketed after the INT. Using
INT for exam marks seems a bit unfair, because now all the marks
are rounded down. A better expression to use is CINT, which
converts numbers to the NEAREST integer. Thus 3.4 would be
rounded down, and 3.5 rounded up:

Loops 85

40 marklpercent=CINT(markl/60*100)
50 mark2percent=CINT(mark2/80*100)
60 average=CINT((marklpercent+aark2percent)/2)

Exercises

1) Improve the exam marks program by tidying-up the printout.
Use PRINT TAB to organise the marks into columns, and give
each column a heading.

2) Take your sales figures program from the previous exercise
and modify it so that the sales figures are read from DATA
statements before the bar chart is drawn.

3) Write a program that reads in the text coordinates for 7
windows and their paper colours, and sets up the windows
on-screen.

4) Write a program that reads in the x and y coordinates and the
PEN colour to be used to draw a series of lines which build up
to make a picture of a ship.

Random numbers

Now that you have met INT and CINT, it is worth looking at a
function which is immensely useful in games — the RND state­
ment which generates a random number. Type:

?md

The Amstrad prints a random number greater than 0 but less than
1. If you type the same thing again, you will get a completely
different random number. Unfortunately random numbers less
than 1 aren't much use in games. If we write a program that
'throws' two dice, we want the computer to produce random
numbers from 1 to 6 for the 2 dice, so we have to play about with
RND and INT to get the range of numbers we want. In general,
this is how we convert the random number from having a value
between 0 and 1 to having a value in the range we want:

1) Generate the random number.
2) Take the lowest number of the range from the highest and add

1.
3) Multiply the random number by this difference.

86 BASIC Programming on the Amstrad

4) Add the lowest number of the range to this result.
5) Use INT to round off the value.

If this seems hard to follow, don't be too concerned! Provided
you know how to get random numbers, there's no need to worry
about the way it works. This program demonstrates the process
in reality:

10 MODE 1
20 INPUT "What is the lowest random number1owest
30 INPUT "What is the highest random number highest
31 REM print 20 random numbers in this range
40 FOR count = 1 TO 20
50 randomnumber=INT(RND*(highest-lowest+l)+lowest)
60 PRINT randomnumber;
70 NEXT

Random numbers are the basis for countless games. Here's a
program that rolls those two dice:

10 MODE 1
20 INPUT "How many times shall I throw the 2 dice";throw5
30 FOR count = 1 TO throws
40 dice1=INT(RND*6+1)
50 dice2=INT(RND*6+l)
60 dicetotal=dicel+dice2
70 PRINT "Throw";count;"gave";dicetotal
80 NEXT

We can also have great fun with graphics. This program draws a
random number of triangles in random positions on the screen:

10 MODE 0
20 numberoftriang1es=INT(RND*100+1)
30 FOR count = 1 TO numberof triangles
40 leftx=INT(RND*640)
50 rightx=INT(RND*640)
60 midx=INT(RND*640)
70 lefty=INT(RND*400)

Loops 87

80 righty=INT(RND*400)
90 midy=INT(RND*400)
100 pencolour=INT(RND*16)
110 MOVE leftx,lefty
120 DRAW rightx,righty,pencolour
130 DRAW midx,midy
140 DRAW leftx,lefty
150 NEXT

Note that because the lowest number in our range is the graphics
coordinate 0, there is nothing to add at stage 4) of our calcu­
lation, and the random coordinates are produced by a slightly
shorter expression in lines 40 to 90.

Exercises

1) Write a program to print out 100 random numbers from 1 to 10
on the screen. You should have a fair idea if your program
works, because you should be able to find at least one occur­
rence of each number in the output.

2) Extend the random triangles program so that random rec­
tangles or some other shape are also drawn on the screen. You
might like to add WINDOWS, but don't forget that these use
text coordinates and will require numbers in a different range
to the graphics statements.

3) Use random numbers in the LOCATE statement to print 100
asterisks in random colours in mode 0.

Random maths

Another popular use of random numbers is to generate arith­
metic problems, in this case on the multiplication tables up to 12:

10 MODE 1
20 FOR questions = 1 TO 10
30 number 1 = I NT(RND*12+1)
40 number2=INT(RND*12 + 1)
50 PRINT "What is";number 1times";number2;
60 INPUT answer
70 NEXT

88 BASIC Programming on the Amstrad

It would obviously be better if the computer could tell us if the
answer given is right or wrong. We might decide to repeat the
question if the answer is wrong, to give the user another chance.
Repetition — sounds like an opportunity to use a loop, doesn't it?
Unfortunately, the sort of loop we've met so far is useless in these
circumstances. The FOR . . . NEXT loop always ends as the result
of a count. The Amstrad counts the number of times the loop has
been obeyed, and when this count reaches the stop value for the
loop, the loop ends.

However, there are many occasions when we don't know
beforehand how many times a loop may have to be repeated.
Repeating a question which has been answered wrongly is one of
them. It would be ludicrous to expect anyone to know beforehand
how many times a question will have to be repeated before they
get it right. We need something different here ... a loop, but not
a FOR. . .NEXT loop.

The WHILE . . . WEND loop

The WHILE . . . WEND loop is the answer to our problem. The
difference between this and the FOR . . . NEXT loop is that FOR
. . . NEXT always terminates as the result of a count, but WHILE
. . . WEND terminates as the result of a condition being satisfied:

WHILE the answer is wrong
ask the question again

WEND

Let's look at a short program which asks a single multiplication
question repeatedly until the correct answer is given:

10 MODE 1
20 response=0
30 number 1 = INT(RND*12 +1)
40 number2=INT(RND*12+1)
50 WHILE response<>numberl*number2
60 PRINT"What i snumber 1ti mes11; number 2;
70 INPUT response
80 WEND

Line 50 includes < >, which you may not be familiar with. It
means 'not equal'. So line 50 basically says 'While the response

Loops 89

given is not equal to the two numbers multiplied together, repeat
the commands that follow'. The end of this WHILE loop is given
by the WEND (short for WHILE END) at line 80. Notice the
difference from FOR . . . NEXT. We have no idea when this loop
will end, but we do know the conditions under which it will end
— when the response given is equal to the two numbers multi­
plied together. Line 50 tells the Amstrad "WHILE the response is
wrong, keep asking the question".

The WHILE loop is valuable where we want to restrict the input
from the keyboard to a particular range of values. One of the
problems with computing is that you can't trust people! Someone
using a program may be asked to type in a number less than 10,
but respond by typing 10. A well-designed program will reject a
number in the wrong range and prompt the user to try again. This
is very easy to achieve with the WHILE loop:

10 MODE 1
20 response=ll
30 WHILE response>10
40 INPUT "Please give a number less than 10. ",response
50 WEND

This program raises a number of points. Line 30 introduces >,
which means 'greater than', so the line reads 'While the response
is greater than 10, repeat the commands that follow'. When you
run the program, the Amstrad repeatedly asks for a number less
than 10, until you cooperate, when the loop ends.

At line 20, the variable 'response' is set to 11. It is very important
when using WHILE that you make sure that you have set up a
condition so that the Amstrad will carry out the WHILE loop at
least once. If you delete line 20 and run the program again you
will get the 'Ready' message, and nothing else happens. This is
because the Amstrad treats any variables which have not been
given a value as being 0. The computer obeys line 10, then it
comes to line 30, a WHILE loop to only be carried out while
'response' is greater than 10. The Amstrad checks the value of the
variable 'response', finds it has not been given a value and is
hence 0, and so does not carry out the WHILE loop at all. As far as
the computer is concerned, the condition for ending the WHILE
loop has been satisfied even before the loop has been carried out
once!

90 BASIC Programming on the Amstrad

We can also use WHILE as a way of getting an endless loop
which we can terminate in our own time by inputting an appro­
priate value. For example, using a FOR . . . NEXT loop we could
construct this program to let us add up our expenses for the
month:

10 MODE 1
20 totalexpense=0
30 INPUT "How many expense items";items
40 FOR count=l TO items
50 PRINT"How much was spent on item ";count;
60 INPUT expense
70 totalexpense=totalexpense+expense
80 NEXT
90 PRINT "The total expense was 11; total expense; "pounds.

We can use WHILE to avoid having to input the number of items:

10 MODE 1
20 totalexpense=0
30 answer!="Y"
40 WHILE answer!="Y"
50 INPUT "Please input the expense. ",expense
60 totalexpense=totalexpense+expense
70 INPUT "Any more (Y/N)";answer!
80 WEND
90 PRINT "The total expense was ";total expense;"pounds.

If we are reading values from a data statement, and we have no
idea how many values there are, we can add a WHILE loop which
relies on a data terminator to bring it to an end:

10 MODE 1
20 READ name!,tel ephonenumber!
30 WHILE name!O"XXX"
40 PRINT name!,tel ephonenumber!
50 READ name!,tel ephonenumber!
60 WEND

Loops 91

70 DATA Albert,01 234 5657 , Betty,0734 2105,Cu
thbert,92 4165,Deirdre,21 4358
80 DATA Egbert,87 5502,Francis,27148, Gi1bert,
33 3333,XXX,YYY

The data terminator is a value we include in the data to indicate
that the data has now reached its end. In this case the terminator
is 'XXX'. Line 30 causes the computer to carry on reading names
and telephone numbers from data while the name is not 'XXX'.
Notice that because we are always reading two values at a time
from DATA in line 50, we need to include some sort of value for
telephonenumber$ after 'XXX'. I have used 'YYY', but it is really
irrelevant what you put for this value. It plays no part in the
program and is only included because the Amstrad would object
if it found no value for telephonenumbei$ in the data.

You should always choose a data terminator value that can't
possibly occur otherwise. When reading in exam marks out
of 100, it would be unwise to have a data terminator of 0. For
example, Bloggs of 4C might have managed to get 0, and the
reading of data would end part way through. In a case like this a
more appropriate terminator would be —99, or something
similar.

You might be a little confused by some features of the program.
Why the READ statement at line 20, outside the WHILE loop?
This takes care of two problems. First, it is unlikely but possible
that there is no data at all except for the data terminator. Line 20
ensures that in this case the WHILE loop is never carried out. The
Amstrad would read the first two values at line 20, find that
name$='XXX', and so not obey the loop beginning at line 30. We
'read ahead' to check what the data is before we do anything with
it.

The second problem with not carrying out a 'read ahead' on the
DATA is that the data terminator may well be printed out in the
list of names and telephone numbers! You can see this if you try a
simpler version of the program, which may seem at first sight to
be just as good as the other:

10 MODE 1
30 WHILE naffle$< >,1XXX”
40 READ name!,telephonenuiiiberl

92 BASIC Programming on the Amstrad

50 PRINT name$,telephonenu«8ber$
60 WEND
70 DATA Albert,01 234 5657,Betty,0734 2105,Cu
thbert,92 4165,Deirdre,21 4358
80 DATA Egbert,87 5502,Francis,27148,Gi1bert,
33 3333,XXX,YYY

This points to one feature of WHILE loops which you must be
careful about. If you are going to end the WHILE loop as a result of
a particular value being reached, you must make sure that the
value occurs as the result of statements at the end of the WHILE
loop. In this case name$ is read at the start of the loop, and so line
50 prints out 'XXX' as being a name. (Contrast this with the
previous program, where the new string name$ was only READ
at the end of the loop.)

Exercises

1) Write a program that reads the names, ages and birthdays of
your friends from DATA and prints a list on the screen.
Include a suitable data terminator.

2) Write a program which enables you to draw pictures from the
keyboard. Set up a text window to allow the user to input x,y
coordinates to a program which draws lines from the last
coordinates given to the new ones. (You will only be able to
draw pictures that do not involve the 'pen' being lifted off the
'paper'.) Use WHILE to end the program when you input a 'N'
response to the question 'Any more coordinates?'.

AND and OR

Sometimes it is useful to end a WHILE loop if any of several
different conditions occur. In our multiplication test, we might
decide that rather than repeat the question endlessly if the
answer is wrong, we will repeat it WHILE the answer is wrong
AND the number of tries at a correct answer is 3 or less. This
part-program illustrates the idea:

10 tries=0
20 response=0

Loops 93

30 f irstnumber=INT(RND*12+1)
40 secondnumber=INT(RND*12+1)
50 WHILE response<>firstnumber*secondnumber A
ND tries<3
60 PRINT "What is ";firstnumber;"times ";seco
ndnumber;
70 INPUT response
80 tries=tries+l
90 WEND

We have set up a count of tries at the answer here, rather like the
one the computer uses in FOR . . . NEXT loops, and the lines
dealing with that count are 10, 50, and 80. Line 50 tells the
computer the conditions under which it should carry out the
WHILE loop. In this case, it is WHILE both the response is wrong
AND the number of tries is less than 3. Both conditions must be
true for the Amstrad to obey the WHILE loop. Run the program a
few times and you will find that the loop ends either if you get the
answer right or you make 3 wrong tries.

Lines 10, 50 and 80, which are involved in the count for the
number of tries, are very important. It is easy to make mistakes
when setting up a count, and find that it ends too early, too late,
or not at all! In this case, the counting of the tries begins at 0, line
10, and each try is counted after the try has been made, line 80.
After the third try, tries=3, and the WHILE loop ends. The
variable tries is no longer less than 3, which is one of the con­
ditions given in line 50 for the loop to continue.

If this seems obvious, you might care to discover what happens
if line 10 sets the value of tries to 1, which, after all, does not seem
an unreasonable value, as you are just about to have your first try at
the answer. You will find that you have to change the terminating
conditions in line 50.

Here's a simple guessing game which gives you 8 tries at
guessing a random number from 1 to 100 that the computer has
generated:

10 MODE 1
20 tries=l

94 BASIC Programming on the Amstrad

30 randomnumber=INT(RND*100+l)
40 guess=0
50 WHILE guess<>randomnumber AND tries<9
60 PEN 1
70 PRINT
80 PRINT"This is guess number ";
90 PEN 3
100 PRINT tries
110 PEN 2
120 PRINT
130 INPUT "What is your guess";guess
140 IF guess<randomnumber THEN PRINT"Too low"
150 IF guess>randomnumber THEN PRINT"Too high
II

160 tries=tries+1
170 WEND

Lines 140 and 150 are a preview of the next chapter. I have added a
bit of colour to liven things up. This time tries is set to 1 at line 20,
rather than 0. This isn't deliberate awkwardness — if you can't
see the reason, set tries to 0 and see what happens. I might add
that, difficult though this may be to believe, the random number
can always be guessed in 8 tries, provided you use the right
approach.

We can also set up a WHILE loop so that it ends under one
condition OR another. For example, a program that plays a game
of Noughts-and-Crosses might contain lines like the following:

500 WHILE win=0 OR moves<9
510 PRINT "What is your move";

where win is set to 0 at the start of the game and will be set to 1 if
either side wins. The loop here is:

WHILE neither of us have won
OR

there are any places left to move
carry on playing the game

WEND

Loops 95

If we had the first condition only, we might have to carry on
playing the game even when there was nowhere left to move. If
we had the second condition only, we would have to carry on
playing the game even when someone had won, because there
would still be places left to move. We need to end the game
EITHER if someone wins OR if there's nowhere left to play.

We can use OR in a WHILE statement to ensure that the input
falls into a given range. The previous example program that did
this only ensured that the input value was below 10. Now we can
fix the input so it falls between two numbers:

10 MODE 1
20 INPUT "Type in a number from 5 to 10";numb
er
30 WHILE number<5 OR number>10
40 PRINT "That won't do."
50 INPUT "Please pick a different number. ",nu
mber
60 WEND
70 PRINT number;" is just right!"

Line 30 starts the loop, and will continually ask for a number
WHILE the number input is less than 5 OR the number input is
above 10. There are many games such as Noughts-and-Crosses or
Battleships where one of the restrictions on a player's move is that
the move must be on the board. (Not unreasonable!) A WHILE
loop like the above can enable the computer to reject moves
which fall outside the range of the board.

Testing that input is reasonable is known as data validation, and
you can see from the above that such validation is as vital in
games as it is in business or educational programming.

Exercises

1) Write a program that accepts as input a graphics x coordinate,
and rejects any coordinate that lies off-screen. (The x co­
ordinates run from 0 to 639.)

2) Write a program to print a line of asterisks anywhere on­
screen in mode 1. The program accepts as input the x and y
text coordinates and the length of the line. The program rejects

96 BASIC Programming on the Amstrad

invalid x and y coordinates, and invalid lengths for the line,
and will not print the line if it cannot fit in the space remaining
on that line. (You will need to use separate WHILE loops to test
the validity of each of the 3 input items.)

Chapter Five

Making Decisions

Making choices

In the last chapter we began to develop a simple program that
asked multiplication questions, but we were handicapped
because there was no way we could get the Amstrad to make a
choice within the program. We would really like the Amstrad to
give us the right answer if we keep getting the question wrong.
We want to be able to say:

1) If the answer's wrong then give the right answer.
2) Otherwise, just carry on to the next question.

Yes No

Is the
answer wrong?

Give the
right

answer

Do
nothing

Ask
the next
question

Figure 24 Flow diagram.

We can choose between two different courses of action by using
the IF . . . THEN statement:

97

98 BASIC Programming on the Amstrad

10 MODE 1
20 INPUT "How old are you";age
30 IF age>18 THEN PRINT"You must have left school

by now."

If you run this program and input various ages you will find that
line 30 is only carried out if you input an age greater than 18. The
Amstrad looks at the statement immediately after the IF, and if
this turns out to be true, the rest of the line is obeyed. If the
statement after the IF is false (i.e. the age is less than 18), the
computer just ignores the statements after the THEN and carries
on to the next line of the program. We could easily extend the
program by adding a variety of other IF . . . THEN statements
which would apply for different age ranges:

10 MODE 1
20 INPUT "How old are you";age
30 IF age>18 THEN PRINT“You must have left school

by now."
40 1F age<=ll THEN PRINT"So you're at primary school."
50 IF age>=65 THEN PRINT"! see you're retired."
60 IF age>100 THEN PRINT"0ver 100! Congratulations!"

Line 40 tests if the age is less than or equal to 11, and line 50 if the
age is greater than or equal to 65. Notice that if you input 67, two
of the IF . . . THENs are true, and you get two messages, and if
you input 110 you get three messages!

The statements after the THEN don't have to be PRINTs, they
can be any valid Basic statement. For example, to return to our
multiplication test, we can use IF . . . THEN to add up the
number of wrong answers given:

10 MODE 1
20 wrong=0
30 FOR questions = 1 TO 10
40 number1 = INT(RND*12+1)
50 number2=INT(RND*12 + 1)
60 PRINT "What is ";number 1times ";number2;
70 INPUT answer

Making Decisions 99

80 IF answer<>numberl*number2 THEN wrong=wrong+1
90 NEXT
100 PRINT
110 PRINT "You had wrong;"wrong. "

Line 80 checks if the input answer is not equal to the two random
numbers multiplied together— i.e. whether the answer is wrong
or not. If the answer is wrong, 1 is added to the running total of
wrong answers held in the variable 'wrong'.

The program would be better if, when your answer was wrong,
the computer told you so and gave the correct answer so that you
could learn from your mistakes. It might seem that we need
another two IF . . . THEN statements:

80 IF answer<'/number l*number2 THEN wrong=wron
g + 1
85 IF answer<>numberl»number2 THEN PRINT"No t
hat's wrong."
86 IF answer<>numberl*number2 THEN PRINT"The
answer is number 1»number2

This seems tedious and repetitive. After all we've checked if the
answer's right in line 80, why should we have to do it again? In
practice we can use a multi-statement line at line 80:

80 IF answer<>numberl»number2 THEN wrong=wron
g+l:PRINT"No that's wrongPRINT"The answer
is numberl»number2

If the answer's wrong then the Amstrad obeys all the statements
after the THEN in line 80. The statements must be separated by
colons, and they must be on the same line as the IF . . . THEN
statement. If they are on other lines, the Amstrad will obey them
regardless of the result of the IF . . . THEN.

In fact you can have multi-statement lines on any line:

10 MODE 1:wrong=0:FOR questions = 1 TO 10:num
berl=INT(RND»12+l):number2=INT(RND»12+1): PR IN
T "What is "jnumberl;"times ";number2;:INPUT
answer

100 BASIC Programming on the Amstrad

20 IF answer<>numberl*number2 THEN wrong=wron
g+l:PRINT"No that's wrong.":PRINT"The answer
is 11; number l*number2
30 NEXT:PRINT:PRINT "You had ";wrong;"wrong

II

This program is the same as the one at the end of page 99. Unless
you are working on an enormous program which uses up a lot of
memory, I would suggest you avoid using multi-statement lines
like those above. They make a program difficult to read and
difficult to edit. Stick to one or two statements per line, except
when you use IF . . . THEN.

The program we've just looked at serves as the basis for in­
numerable question-and-answer programs. With a few minor
additions, it can be tailored to ask geography questions, test
knowledge of French, or even see if you know how many days
there are in the months:

10 MODE 1
20 wrong=0
30 FOR questions = 1 TO 12
40 READ month!,days
50 PRINT "How many days are there in "¡month!
5
60 INPUT response
70 IF response<>days THEN wrong=wrong+l:PRINT
"No that's wrongPRINT month!;“ has "¡days;
"days."
80 NEXT
90 PRINT
100 PRINT "You had wrong; "wrong."
110 DATA January,31,February,28,March,31,Apri
1,30,May,31,June,30
120 DATA July,31,August,31, September,30,Octob
er , 31,November,30,December,31

The data for the test in this case is just the names of the months
and the number of days in each month. In a general knowledge

Making Decisions 101

quiz you would probably make the data the entire question,
because each question would be phrased differently, and your
data section might look like this:

200 DATA What is the capital of the U.K., Lon
don
210 DATA Who is the President of the United S
tates, Ronald Reagan

Exercises

1) Write a program to accept as input someone's height and
weight, and make appropriate comments on the figures.

2) Write a program to read a list of names and exam marks from
data statements, and print out the names with PASS next to
those who have 45 or more, and FAIL next to the others. Print
PASS and FAIL in different colours.

3) Extend the multiplication program using IF . . . THEN state­
ments so that after answering 10 questions you are given a
message which depends on the number of wrong answers you
gave. Print the messages using different PENs.

4) Devise your own question-and-answer program and include a
count for right answers only. Print a message at the end
depending upon the number of right answers, and convert the
number of right answers to a percentage of the total.

IF . . . THEN . . . ELSE

In the multiplication test program we could easily add a line to
print a suitable message every time a question was answered
correctly:

10 MODE 1
20 wrong=0
30 FOR questions = 1 TO 10
40 number1=INT(RND*12+1)
50 number2=INT(RND*12 + 1)
60 PRINT “What is number 1times ";number2;
70 INPUT answer

102 BASIC Programming on the Amstrad

80 IF answer<>number1»number2 THEN wrong=wron
g+l:PRINT"No that's wrong.":PRINT"The answer
is ";numberl*number2
85 IF answer=numberl*number2 THEN PRINT"That'
s right. Well done. "
90 NEXT
100 PRINT
110 PRINT "You had wrong;"wrong."

We have here a situation which occurs quite commonly in com­
puting — there are just two possible outcomes when an answer is
input. Either the answer is right, or it is wrong—there is no other
possibility. In these circumstances where there are just two out­
comes, we can use an extension of the IF . . . THEN statement to
take care of both outcomes at once:

80 IF answerC>number1»number2 THEN wrong=wron
g + l:PRINT"No that's wrong." sPRINT"The answer
is ";numberl»number2 ELSE PRINT"That's right.
Well done."

Line 80 now says 'IF the answer's wrong THEN do this ELSE it
must be right so do this'. Notice that you cannot extend the IF. . .
THEN statement any further as it stands. A program to cope with
many different outcomes requires more than a single IF . . .
THEN . . . ELSE statement to take care of all the possibilities. For
example, the IF . . . THEN . . . ELSE statement is ideal for a
program drawing a monthly temperature bar chart for the U.K.
After all, temperatures can only be above or below zero, can't
they?

10 MODE 0
11 REM set up axes
20 yzero=100
30 MOVE 35,0
40 DRAW 35,399
50 MOVE 35,yzero
60 DRAW 600,yzero

Making Decisions 103

61 REM draw bar chart
70 FOR month = 1 TO 12
80 READ temperature
90 IF temperature<0 THEN pencolour=6 ELSE pen
colour=3
100 scaledtemperature=temperature*12
110 MOVE month»40,yzero
120 DRAW month*40,yzero+scaledtemperature,pen
colour
130 DRAW month*40+35,yzero+scaledtemperature
140 DRAW month*40+35,yzero
150 NEXT
160 DATA -5,-1,0,5,11,15,20,22,14,12,10,-3

Running the program shows us that there are in fact 3 possibilities
here: a temperature can be above, equal to, or below zero. If we
want to show that a temperature of 0 belongs neither to the above
zero or below zero group we need another line:

95 IF temperature=0 THEN pencolour=12

You might like to try the following, which is an amusing little
program using IF. . . THEN . . . ELSE. This gives an insight into
how computers can often seem intelligent when in fact they are
doing remarkably little:

10 MODE 1
20 INPUT "What's your name";name$
30 PRINT "Pleased to meet you, ";name$
40 PRINT "I'm thinking of an animal and I wan
t you to try and guess its name."
50 PRINT "You can ask me any questions you li
ke about what the animal looks like, but
you only get one guess at its name."
60 PRINT "If you think you know the animal, t
ype y when you're asked if you want to make
your one guess."

104 BASIC Programming on the Amstrad

70 PRINT "Okay, what's your -first question?"
80 response!="n"
90 guess=0
100 WHILE response^ >"y"
110 PRINT
120 guess=guess+l
130 LINE INPUT question!
140 IF RND >0.5 THEN PRINT"Yes" ELSE PRINT"
No"
150 INPUT "Are you ready to make a guess yet
(y/n)";response!
160 IF response!«: >"y" THEN PRINT"What's your
next question then?"
170 WEND
180 INPUT"What do you think the animal is";an
i mal!
190 PRINT
200 IF RND(l)>0.5 THEN PRINVYes!!! You guess
ed it in",-guess;"guesses." ELSE PRINT"No, I'm
sorry, you're wrong. And you've had";guess;"

guesses 1"

Exercises

1) Improve the exam-marks program you did earlier, by using IF
. . . THEN . . . ELSE to select those who fail and those who
pass the exam.

2) Write a program which reads a series of names and ages from a
data statement, and prints the names in two columns, one for
those old enough to vote, and another for those too young to
vote.

3) Write a program that allows you to input your savings and
expenditure via the keyboard, with expenditure being input
as negative numbers. Set up a text window on the screen, and
print the savings and expenditure to two different columns,
with totals at the end. Print expenditure in red and savings in
another colour.

Making Decisions 105

Input from the keyboard: another way

In cases where there are many options it is often simpler just to
use a series of IF . . . THEN statements. Here is a simple program
that enables you to draw on the screen from the keyboard:

10 MODE 1
20 di rection$=" "
30 xcoord=320
40 ycoord=200
50 WINDOW 1,40,24,25
60 WHILE di rection$<>"y"
70 INPUT "Which direction (L/R/U/D)";directio
n$
90 IF direction$="d" THEN ycoord=ycoord-l
90 IF direction$="u" THEN ycoord=ycoord+l
100 IF direction$="l" THEN xcoord=xcoord-l
110 IF direction$="r" THEN xcoord=xcoord+l
120 PLOT xcoord,ycoord , 1
130 WEND

You can end the program by typing 'y' at the keyboard.
There are several points made by this program. First, because

we want to be able to move in any of 4 different directions, left,
right, up or down, we have little choice but to use several IF . . .
THEN statements. Second, the program does not work with the
CAPS LOCK on, because all the keys then produce upper case
letters, and the IF . . . THEN statements check only for lower case
letters. Lastly, the continual need to press a key and then press
ENTER is irritating and makes the program almost unusable. Is
there no better way of arranging for input from the keyboard?

There is. Instead of using INPUT we can use INKEY$:

10 MODE 1
20 di rection$=""
30 xcoord=320
40 ycoord=200
60 WHILE direction$<>"y"
70 direction$=INKEY$

106 BASIC Programming on the Amstrad

80 IF direction$="d" THEN ycoord=ycoord-1
90 IF direction$="u" THEN ycoord=ycoord+l
100 IF direction$="l" THEN xcoord=xcoord-l
110 IF direction$="rH THEN xcoord=xcoord+l
120 PLOT xcoord,ycoord,1
130 WEND

The program is transformed. INKEY$ continually scans the key­
board and picks up the state of the keys from the keyboard
without the ENTER key being pressed. If you want to draw a line
to the left, you need only hold the L key down. It will auto-repeat,
and send a whole stream of characters to INKEY$, which will pick
them up one by one. Line 70 stores the character currently in
INKEY$ into the variable 'direction$'. It is this variable which is
used in the IF . . . THEN statements on lines 80 to 120 to decide in
which direction the line should be drawn or whether the program
should finish.

The INKEY$ statement is valuable in any program where time
is a factor and a single-key response is appropriate. You should
be aware though that INKEY$ does not wait for a key depression.
It is continually scanning the keyboard, even when no key is
pressed. You can see this if you run this short program:

10 MODE 1
20 response$="n"
30 WHILE responses>"y"
40 PRINT"Are you ready to stop yet (y/n)?"
50 response$=INKEY$
¿0 WEND

The computer continually prints 'Are you ready to stop yet?'
because INKEY$ scans the keyboard, gets no response, and the
program continues. As the next line is WEND, the whole loop
repeats until you press zy'. Use INKEY$ only when you are pre­
pared for your program to continue even if there is no response
from the keyboard. If you want a response, use INPUT or LINE
INPUT.

INKEY$ provides a means for someone using a program to give
an instant response. We can now include a time factor in tests or

Making Decisions 107

games, and see how long it takes the user to respond. This is the
basis for the keyboard familiarisation program included on the
Amstrad Welcome tape. We haven't yet learnt how to generate
random letters, so the following program is a crude version which
tests you on one letter read from data:

10 MODE 1
15 PEN 1
20 PRINT "I am going to print a letter"
30 PRINT “on the screen, and I want you to fi
nd"
40 PRINT "that letter as quickly as possible
on"
50 PRINT "the keyboard, and press it."
60 PEN 3
70 PRINT:PRINT"You will be timed!"
80 PRINT "Press R when you are ready"
90 response$=INKEY$
100 WHILE responseK >"R" AND response^>"r"
110 response$=INKEY$
120 WEND
130 starttime=TIME
140 READ letter«
150 PRINT “The letter is
160 PEN 2
170 PRINT letter!
180 response$=INKEY!
190 WHILE response!»""
200 response$=INKEY!
210 WEND
220 totaltime=TIME-starttime
230 PRINTsPRINT "That took ";totaltime/300;"s
econds."
240 IF response!»!etterI THEN PRINT"At least
you got it right." ELSE PRINT"And you got it
wrong!"
250 DATA q

108 Making Decisions

Lines 90 to 120 scan the keyboard until you press the 'R' key.
Notice that the WHILE loop set up in line 100 continues WHILE
the response is not R AND not r. (A bit mindboggling!) This
means that the loop will end when R is pressed, whether an upper
case R or lower case r is produced as a result of CAPS LOCK being
on or off.

At line 130 we set the time for the start of our one letter test.
TIME is a variable that the Amstrad uses to store the time in
l/300ths of a second since the machine was switched on. Try:

?TIME

and the Amstrad will show you how long it's been switched on!
The Amstrad updates TIME continually, as you can see if you
print its value out again; you will find it has increased. We store
the TIME at which the test begins in the variable starttime.

Lines 180 to 210 perform a similar waiting exercise to lines 90 to
120, only this time we're waiting for ANY key to be pressed and
not a particular one. As soon as a key is pressed, the test is over,
so line 220 calculates the difference between the present TIME
and the starttime. This tells us the total time it took to answer the
question. Line 230 divides that time by 300 to turn it into
seconds.

The program we've just looked at introduces several new ideas,
although it is incomplete as it stands — we'll finish it off properly
in the next chapter. TIME is a handy variable and can be used just
as easily where INPUT is involved, if timing seems appropriate.

Exercises

1) Take the random number multiplication test program you
wrote earlier and add a timing element to it. Print the total
time at the end of the test, together with a comment depend­
ing on whether that time was fast, average, or slow.

2) Write a program to continually print TIME in minutes and
seconds until you press 'N' for 'no more'.

3) Extend the keyboard drawing program so that lines can also be
drawn diagonally by the depression of a single key. Include an
option to plot points in the background colour. This will
enable you to erase lines and to move about from one part of
the screen to the other without leaving a line behind. (One
problem with this is that you can no longer see where you are

Making Decisions 109

on the screen! You will have to plot two points every time —
one in the PAPER colour to erase the old position, and one in a
PEN colour so that you can see where you are.)

Compound conditions with IF . . . THEN

We can also use AND and OR with IF . . . THEN statements. Our
multiplication test with timing might include lines like:

100 IF totaltime>1000000 AND rightanswers<5 T
HEN PRINT "You're slow as well as stupid!"
110 IF totaltime<5000 AND rightanswers<5 THEN

PRINT "There's no point in being Fast and ge
tting them wrong!"

A program to test whether you are a fit person to go to a famous
university might have the line:

200 IF income>200000 OR IQ>130 THEN PRINT"Wel
come to the University!"

This program 'bounces' a single point around the screen in a
colourful and very organised manner:

10 MODE 0
20 finish=0
30 xcoord=300
40 ycoord=100
50 xchange=4
60 ychange=8
70 WHILE finishCl
80 IF xcoord+xchange<0 OR xcoord+xchange>639
THEN xchange=-xchange
90 IF ycoord+ychange<0 OR ycoord+ychange>399
THEN ychange=-ychange
100 xcoord=xcoord+xchange
110 ycoord=ycoord+ychange
120 col our = 1 NT(RND*15+1)
130 PLOT xcoord,ycoord,colour
140 WEND

110 BASIC Programming on the Amstrad

The point begins with coordinates (300,100), lines 30 and 40, and
is then moved by the amounts in lines 50 and 60. The WHILE loop
beginning at line 70 is a perpetual one, and you can only get out of
it by pressing ESC twice. Lines 80 and 90 work out what the new x
and y coordinates will be once xchange and ychange have been
added on. If the new coordinate is outside the screen area, the IF
. . . THEN statement reverses the direction of movement by
making the change minus whatever it was before. This makes the
point 'bounce' off the screen sides. You can confine the point to
'bounce' within any area you like by changing the 'edge' co­
ordinates as given in lines 80 and 90. Substitute 100 for 0 and 400
for 639 in line 80, for example.

Exercises

1) Modify the 'bounce' program so that the point plotted only
changes colour when it bounces off one of the screen sides.

2) Write a program which reads in from data the number of times
a criminal has been convicted and his age. Print out the names
and ages of all criminals with more than 10 convictions who
are under the heading PERSISTENT OFFENDERS.

3) Bank customers are credit-rated as 1 (safe), 2 (average), or 3
(very risky). Write a program which reads in from data cus­
tomers' names, credit ratings and their current bank balance,
and prints out the details for any who are credit-rated as 3 or
owe more than £500.

Chapter Six

Strings

Strings and things

In the previous chapters we have tended to concentrate on
numeric variables and the commands we can use to manipulate
them, but there are equally potent commands for dealing with
string variables. Surprisingly, some statements which you might
expect to work exclusively for numeric variables also work for
strings:

10 MODE 1
20 INPUT "What's your first name";name!
30 INPUT "What's your surnamesurname!
40 wholelot!=name!+surname!
50 PRINT "Put them together and you get ";who
lelot!

Strings can be joined together or concatenated simply by putting a
'+' sign between them. We can also compare strings using <, >,
and = , just as we can compare numbers:

10 MODE 1
20 INPUT "Type in the first word.",first!
30 INPUT "Type in the second wordsecond!
40 IF first!=second! THEN PRINT"The two words
are identical.": END

50 IF first!<second! THEN PRINT first!;" come
s before "jsecond!;" alphabetically." ELSE PF
INT second!;" comes before ";first!;" alphabe
tically."

111

112 BASIC Programming on the Amstrad

With strings, the '=' sign means that the two strings must be
absolutely identical, character for character. If you type 'Apple'
and 'apple' the Amstrad will not regard these words as being the
same. After all, one begins with a capital letter! Indeed, the
computer has its own ideas about the alphabet, and all capital
letters are counted as being 'earlier' in the alphabet than the lower
case ones.

As you have probably discovered from running the program,
the Amstrad counts '<', (smaller than), as meaning 'earlier in the
alphabet' when dealing with strings. Line 40 ends with a state­
ment we have not met before, END. This just tells the Amstrad to
finish running the program. The Amstrad does this automatically
anyway, once it runs out of lines, but it is convenient to include
END here, as it prevents the Amstrad from going on to line 50.
You might like to remove the END to see what effect this has
when you input two identical strings!

The ability to compare strings is useful for sorting purposes. It
is quite common for names to be put into alphabetical order, for
example, and the computer can take the donkey work out of tasks
like this. We may set up a database of information about a par­
ticular topic, and the computer can rapidly search through that
data and extract the information we want. For example, you could
have a program which recorded all your friends' names and
birthdays. The Amstrad can quickly find the birthday of your
friend, once you input the name:

10 MODE 1
20 INPUT "What is your friend's name";friend*
30 WHILE name*O"XXX" AND name*< >f riend*
40 READ name!,birthday*
50 IF name*=friend* THEN PRINT friend*;" has
a birthday on "jbirthday*
60 WEND
70 IF name*="XXX" THEN PRINT "I'm sorry, but
I don't have that name in my data."
80 DATA JANE JAMES,October 29,FRED BLOGGS,May
16,GERALD SPUD,June 3

90 DATA XXX,XXX

This program may seem a bit silly in its present form, as it's a lot

Strings 113

quicker just to list the program and look at the names and birth­
days. We shall see later that it is possible to store data like this
outside the program itself, and of course in practice such a
program would only be used when many hundreds of data items
were involved.

One problem you may have uncovered with the program was
identified at the start of the chapter. Unless you type in your
friend's name exactly as it is in the data section, the computer
doesn't realise the two strings are the same and announces that it
can't find the name. On some micros the only way around this is
to extract the individual characters from the word input and
convert them all into lower or upper case as required. On the
Amstrad things are simpler. Type:

? UPPER$("Fred")

and you will see the entire word printed in upper case letters.
UPPERS converts whole words to upper case — you can probably
guess what LOWERS does:

? LOWER$("Fred")

We can improve the birthdays program by adding this line:

25 friend$=UPPER$(friend$)

This tells the Amstrad to take the string from friend$, convert it to
upper case, and put the new string back into friend$. If you run
the program again you'll find it doesn't matter how you type in
your friend's name now — if it's in the data the Amstrad will find
it. One consequence of using UPPERS or LOWERS to convert
input is that it's much more sensible to make DATA items con­
sistently either upper case or lower case. Converting the input is
no help if the strings in the DATA are themselves mixtures of
upper and lower case characters!

Exercises

1) Write a program that accepts as input your surname, first
name, and title (Mr., Mrs., etc.), concatenates them, and
prints out your full name with your title in front.

2) Write a foreign language dictionary program that finds the
equivalent foreign word for an English word that you input.

114 BASIC Programming on the Amstrad

3) Write a program that accepts as input 3 names and prints them
out in alphabetical order. (This is more tricky than you might
think.)

How long is a string?

On many occasions in programming it is useful to know the
length of a string. An input string may have to be used as a
column heading in a table being printed out, and we need to
make sure that the string is not too long to fit in the column.
Alternatively, the string may have to be centred on a line, and we
can only do this if we know its length. The length of a string can
be found by using LEN:

? LEN("Fred")

The Amstrad prints 4. We can use LEN in a centring program:

10 MODE 1
20 INPUT "What's your name";name$
30 CLS
40 length=LEN(name!)
50 xposn= (40-1ength)/2
60 LOCATE 18,11
70 PEN 3
80 PRINT"Hello"
90 LOCATE xposn,13
100 PEN 2
110 PRINT name*

Line 40 first subtracts the length of the string from the line length
(40 for mode 1) to find out how many spaces are left on the line. To
centre a word, these spaces need to be placed equally to the right
and left of the word, so this result is divided by 2 to give the x
coordinate for the string on the line. Strictly speaking, the value
of xposn in line 50 should be rounded using INT, but the
LOCATE command at line 90 doesn't seem disturbed by the fact
that xposn is partly decimal.

You may find that some input strings don't seem centred very
well. This is because words with an odd number of letters leave

Strings 115

an odd number of spaces on the rest of the line. The spaces are
inevitably shared unequally to the right and the left.

Here's another example of LEN in action:

10 MODE 1
20 INPUT "What length words are you searching
for" j 1ength

30 READ word*
40 WHILE word*<>"XXX"
50 IF LEN(word*)=1ength THEN PRINT word*
60 READ word*
70 WEND
80 DATA One,feature,of,computing,became,appar
ent,that,still,applies,today.(Computers,were,
becoming
90 DATA faster,smaller,"and,",above,"al 1,",ch
eaper,with,each,passing,year.,The,use,of,tran
si stors,resulted , i n
100 DATA switching,speeds,of,mi 11ionths,of,a,
second. , XXX

You might notice a slight flaw in this program — try looking for
words of 6 letters, for example. We shall be seeing how to get
around this problem shortly. Line 90 may be a bit confusing. As
the Amstrad recognises commas as dividing one data item from
another, it can only accept commas as part of a string when the
whole string is placed within inverted commas, hence the use of
"and," and "all,".

The Amstrad can also generate a string of any required length
composed of a single repeated character:

? STRING$(20,"A")

This is useful as it means that we no longer need a loop to produce
a line full of repeated characters:

10 MODE 1
20 INPUT "How long is the rectang 1e"; 1ength
30 INPUT "How high is it";height
40 CLS

116 BASIC Programming on the Amstrad

50 LOCATE 1,1
60 PRINT STRING«(1ength,)
70 FOR yposn=l TO height-2
80 PRINT"*";SPC(1ength-2);
90 NEXT
100 PRINT STRING«(1ength)

We need to use height-2 in line 70 because the comer asterisks
also count towards the height, so we must subtract the contri­
bution of two asterisks that will be made by lines 60 and 100.

Exercises

1) Modify the program that finds words of a given length so that
all the words are printed to the screen to make up lines of text.
The words of the chosen length are printed in a different
colour so they stand out from the rest of the text.

2) A typical feature of word-processors is the search-and-replace
facility, which allows the user to get the computer to search
through the text and replace occurrences of one word by
another. Write a program that allows you to specify a search
word and a replacement word. The program then reads text
from DATA and prints it to the screen, substituting the
replacement word wherever it finds the search word. (The
town sheriff description from Chapter 2 provides an amusing
piece of text to experiment with.)

3) Write a program that accepts as input your name, and then
prints it centred within a box of asterisks.

Little bits of strings

The program that searched for words of a requested length
suffered from one obvious weakness. The program considered
strings like "today.” as having 6 letters because the full stop was
included.

We can eliminate the full stop by checking the last character of
each word and removing it from consideration if it is not alpha­
betic. To do this we use one of three string-handling commands
which allow you to extract substrings (shorter strings) from a
larger string. Let's look at an example. Type:

? LEFT$(”Hello there”,4)

Strings 117

This tells the Amstrad to print the LEFTMOST4 characters of the
string given, so we get 'Hell'. Or we could have:

? LEFT$("Aircraft-carrier",8)

giving us 'Aircraft'. You can probably guess what this does:

? RIGHT$("Start",4)

It takes the rightmost 4 characters from the string. The third
command is a little more versatile, as it can carry out both the
LEFT$ and RIGHTS functions as well as extracting substrings
from the middle of longer strings:

? MID$("Gigantic",4,3)

MID$ produces a substring beginning at the 4th character of the
string and continuing for 3 characters, so we get 'ant'. The second
number need not be included:

? MID$("Elasticity",7)

This gives 'city'. The substring begins at the 7th character and
carries on to the end of the string.

As with everything else in programming, LEFTS, RIGHTS and
MID$ work equally well with string variables.

To return to our original problem: we need to strip off the last
character from a string and ignore it if it's not alphabetical. We
can modify the program like this:

40 WHILE word$<>"XXXH
41 endofword$=RIGHT$(word$, 1)
42 wordlength=LEN(word$)
43 IF endofword$="." OR endofword$=", " THEN w
ordlength=wordlength-l
50 IF wordlength=length THEN PRINT word!
60 READ word*
70 WEND

Line 41 takes the rightmost character out of the word. If this
character is a comma or a full stop, line 43 reduces the word length
by one, as punctuation shouldn't count towards that length.

MID$ can help us to eliminate characters we don't want from
input. In an earlier program we saw how the computer would not
accept “Smith" and "SMITH" as being the same thing to we

118 BASIC Programming on the Amstrad

humans. We can get round that problem by using UPPERS or
LOWERS on the input string. But another common problem is
that many people inadvertently type extra spaces before, during,
or after strings. The computer ignores spaces before or after an
input string, but it can do nothing about extra spaces within a
string. It does not recognise "J. SMITH" or "J. SMITH" as being
the same string as the "J.SMITH" it has stored as data. How can
they be the same? As far as the computer's concerned, the string it
has stored is even a different length to the other two!

This program strips out the spaces anywhere within an input
string. It could easily be used at the start of the program where
you input your friend's name and the computer searches for and
prints out the friend's birthday. In order to make the action of the
program visible, the original string is printed flanked by charac­
ters to make the spaces clear. The new string produced by
stripping out all the spaces is then printed in the same way:

10 MODE 1
20 INPUT "Please type in your word. ",words
30 wordlength=LEN(word!)
40 newword$=""
50 FOR character=l TO wordlength
60 letter$=MID$(word!,character,!)
70 IF letterSO" “ THEN newword$=newword$ + let
ter I
80 NEXT
90 PRINT
100 PRINT "The old word was:"
110 PRINT
120 PRINT STRINGS(10,"*");word!;STRINGS (10,
")
130 PRINT
140 PRINT
150 PRINT "The new word stripped of spaces is
a H •
160 PRINT
170 PRINT STRINGS(10,"»");newwordS;STRINGS(10

Strings 119

We could also use MID$ to produce an anagram of an input word:

10 MODE 1
20 PRINT "I will produce an anagram of any wo
rd you input."
30 PRINT
40 INPUT "Type in the word. “,word!
50 anagram!=word!
60 length=LEN(word!)
70 FOR muddle=l TO length
80 random=INT(RND*1ength +1)
90 rightbit=length-random
100 anagram!=LEFT!(anagram!,random-l)+RIGHT!(
anagram!,rightbit)+MID$(anagram!,random,!)
110 NEXT
120 PEN 1
130 PRINTsPRINT "The anagram is ";
140 PEN 3
150 PRINT anagram!
160 PRINT
170 REM restore normal pen colour
180 PEN 1

The loop from lines 60 to 110 muddles up the letters of the word
that has been input. The loop could be set to run, say, 5 times, but
this would mean long words would not be well muddled, so the
loop is set to run a number of times equal to the length of the
original word. The anagram is produced by first selecting a
random position within the word, line 80. We then work out how
many letters are to the right of this position, line 90. Finally line
100 rearranges anagram$ so that the left and right halves are
closed up and the letter at the random position is extracted and
placed at the end of the word.

Exercises

1) Write a program that accepts as input a word and prints out the
letters of the word on separate lines.

120 BASIC Programming on the Amstrad

2) Extend the previous program so that the word is now printed
on a single line, but with all the letter 'e's printed in a different
colour.

3) Write a program that accepts as input your first name, and
then prints out your initial.

4) Write a program that will read words from DATA and print out
those beginning with a capital letter in a different column to
those beginning with a lower case letter. (Remember that the
Amstrad considers all upper case letters to be earlier in the
alphabet than lower case ones.)

5) Produce a program which allows you to input your name in
full and then prints out all your initials.

Using INSTR

In the earlier programs in this chapter, any text used was held in
DATA as individual words, rather than as sentences. The easiest
way to locate words in a long string such as a sentence is by using
the INSTR statement:

? INSTR("Unbeatable","be")

The Amstrad searches the string “Unbeatable” for the first occur­
rence of the string “be”, and then prints the character position at
which the shorter string begins. Try:

? INSTR(”Unbeatable",“table”)

and you get 6. What if the second string doesn't occur at all in the
first, or the second is longer than the first?

? INSTR("Jam”, "marmalade")

The Amstrad prints 0 if it can't find a matching string.
It is just as easy to use INSTR with a much longer string:

? INSTR(”there is the theatre”,“the")

The Amstrad prints 1, because the substring "the" first appears at
character 1, as part of "there". Once we know the position of the
first occurrence of a substring, we can optionally ask the Amstrad
to continue the search for the substring by choosing the character
position at which the search will begin. We know that "the" first
occurs at character position 1, so let's carry out a second search

Strings 121

beginning at character position 2:

? INSTR(2,"there is the theatre","the")

The Amstrad tells us that "the" occurs again beginning at
position 10. Let's carry on the search at position 11:

? INSTR(11,"there is the theatre","the")

The micro prints 14. We could continue the search from position
14, until we reached the last position in the string where the
substring occurred. We would then know that we had found all
the occurrences of the shorter string within the longer. (If we
were only really interested in the word "the" on its own, how
could we make sure that we found only this word and not its
occurrences in longer words like "there", "theatre", or "other"?)

The following program uses INSTR to discover how many
letter 'e's there are in an input word:

10 MODE 1
20 INPUT "Type in the word. ",word$
30 start=l
40 numberof65=0
50 continue®!
60 WHILE continue®!
70 position=INSTR(start,word$,"e")
80 IF position>0 THEN numberofes=numberofes+1
: PRINT’There is an 'e' at position ";positio
n:start=positibn+l ELSE continue=0
90 WEND
100 PRINT "There are ";numberofes;" 'e's in y
our word.“

Line 80 ensures that the variable 'start' is reset to the character
position one after that where a match was discovered. If no match
is made, the ELSE sets 'continue' to 0 so that the WHILE loop will
terminate.

We could easily use an approach like the above for checking
letters in a game of Hangman:

10 MODE 1
11 REM choose a random word

122 BASIC Programming on the Amstrad

20 numberofwords=10
30 chosenword=INT(RND*numberofwords+l)
40 FOR words=l TO chosenword
50 READ words
60 NEXT
61 REM set up the variables
70 length=LEN(word!)
80 answer!=STRING!(1ength,)
90 tries=l
100 guess!=""
101 REM give 10 tries
110 WHILE triesCll AND answer!<>word!
120 PEN 3
130 PRINT
131 REM show what letters have been correctly
guessed so Far

140 PRINT”The word is “janswer!
150 PRINT
160 PEN 1
170 PRINT"This is try number ";tries
180 PRINT
190 INPUT"Guess a letter. ",letter!
191 REM check if that letter occurs in t
he word
200 start=l
210 continued
220 WHILE continue3!
230 position=INSTR(start,word!,letter!)
231 REM if letter occurs, place it in answer
at right position
240 IF position>0 THEN answer!=LEFT!(answer!,
position-1)+letter!+MID!(answer!,position+1):
start=position + l ELSE continued
241 REM continue letter check until we don't
find any matches
250 WEND

Strings 123

251 REM give another try
260 tries=tries+l
270 WEND
280 PEN 2
290 PRINT
300 IF answer$=word$ THEN PRINT"You've got it
!" ELSE PRINT"It was ";word$
310 PEN 1
320 END
330 DATA jackal,1ynx,antelope,elephant,tiger
340 DATA rhinocerous,iguana,ostrich,panda,wha
1 e

This program contains two WHILE loops, one inside the other.
These 'nested loops' will be discussed in more detail in the next
chapter, but for the moment let us look at the program as a whole.
The words to be used in the game are held in DATA in lines 330
and 340. If you want to use some of your own words, just add
more DATA statements and change line 20 to show how many
words there now are.

The first part of the program randomly selects a word by
reading through a random number of words. Once the word has
been chosen, line 80 sets up another string of exactly the same
length, but filled with dashes. The outer WHILE loop beginning
at 110 allows you to have 10 tries at guessing the word. The inner
loop, from 220 to 250, checks the word to see where the letter
occurs, if at all. When the program discovers the position of the
letter guessed, line 240 places that letter at exactly the same
position in answer$. In other words, a correctly guessed letter
replaces one of the dashes in answer$. Eventually, either 10 tries
have been made, or answer$ and word$ are identical (i.e. all
the letters of word$ have been correctly guessed), so the game
ends.

You may find this program difficult to follow at present, but it
should serve to illustrate that the Basic statements so far intro­
duced already allow us to write programs of some sophistication.
The Hangman program above performs the same function as the
one on the Welcome cassette, although it clearly lacks the
graphical frills.

124 BASIC Programming on the Amstrad

Exercises

1) The Hangman program has two weaknesses. First, a player
can type in more than a single letter at a time as a guess.
Second, the player is not told what guesses have already been
made. Improve the program so that these problems are over­
come. (Hint: for the second weakness, how could concatena­
tion help you keep a record of a player's guesses?)

The Amstrad character set
In an earlier program we saw how we could eliminate non-
alphabetic characters like , or . from the end of a string by
checking the last character position. If a comma or full stop was
present, it could then be stripped off the end of the word. Clearly
this approach is not of much general use — there are a host of
other non-alphabetic characters which might be at the end of a
string, such as ",!,?,',(, or). Are we going to have to check in case
each of these might be present as well? Is there no way we can
immediately identify any non-alphabetic character which may be
at the end of a word?

Indeed there is. Every character on the keyboard has associated
with it a code number, called the ASCII code. The codes range
from 0 to 255, with codes 0 to 31 having special meanings to the
computer, like 'Switch the printer on' or 'Turn the screen off'. The
codes from 32 to 255 each represent a particular character. The
advantage of the ASCII codes is that alphabetic characters are
collected together over a particular range of codes, and so it is
very easy to spot a non-alphabetic character because its ASCII
code lies outside that range. For example, codes 65 to 90 are the
codes for the upper case characters:

10 MODE 1
20 FOR code=65 TO 90
30 PRINT CHR$(code);
40 NEXT

Line 30 introduces CHR$, which tells the Amstrad 'Print the
character that has the code that follows in brackets'. Code 65
stands for the letter A, 66 for B, and so on. Codes 97 to 122 are for
the lower case letters. Edit line 20 so that the loop starts at 97 and

Strings 125

finishes at 122 and run the program again to see that this is so.
The remaining codes are for the numbers, punctuation, mathe­

matical symbols, and a whole series of other characters mainly
used in games. Edit line 20 so the loop runs from 32 to 255 and you
will see most of the Amstrad character set, which includes
grinning faces, crotchets and quavers, and even a variety of stick
men!

A warning here. The codes under 32 give the Amstrad all sorts
of commands, and if you use any of them by mistake you can get
some very funny effects. As the program is short, you might like
to try printing the characters from 0 to 255. You can restore things
to normal with a mode change, or you can reset the computer
with [CTRL] [SHIFT] and [ESC] if you don't feel up to that!

There are characters with codes 0 to 31, but they can only be
printed if you precede them by printing the character with an
ASCII code of 1. Character 1 tells the Amstrad 'Print the character
that comes straight after, even if it's in the range 0 to 31 — and
none of that funny business!'

10 MODE 1
20 FOR code=0 TO 31
30 PRINT CHR$(1);CHR$(code);
40 NEXT

You can actually get most of these characters directly by holding
down [CTRL] and at the same time pressing the non-numeric
keys on the keyboard. Rim through the alphabet. The characters
printed are the same as those just produced by the program.

Most of the character set is described in detail in Appendix 3 of
the User Instructions, but the following table identifies the most
useful ASCII codes:

Figure 25 Some of the more useful ASCII codes to know.

Characters ASCII codes

Various special
codes

A space

0-31

0-9 32
A-Z 48-57
a-z 65-90

97-122

126 BASIC Programming on the Amstrad

There are many advantages to the ASCII codes. One is that they
provide us with an easy means of restricting input from the
keyboard to a particular range of characters. The following
program will print only any upper case characters you input and
ignore all other inputs. Press the CAPS LOCK to make the keys
produce upper case letters before you run the program, otherwise
you will find yourself unable to print anything! The program uses
a non-terminating loop, so you will have to press [ESC] twice to
escape from it:

10 MODE 1
20 continue=l
30 WHILE continue=l
40 code*=INKEY*
50 IF code*<>"" THEN code=ASC (code!)
60 IF code>64 AND code<91 THEN PRINT code*;
70 WEND

Line 40 uses INKEY$ to scan the keyboard. If a key is pressed, the
character produced is saved in code$. Line 50 introduces a new
Basic key word. ASC takes a single character and produces the
ASCII code for that character. Unfortunately we need the IF . . .
THEN part, because if no key has been pressed, code$ is “ ", and
the Amstrad gives an error message if it's asked to find the ASCII
code of nothing! Line 60 prints code$ if the code for the character
is greater than 64 and less than 91. From Figure 25 we can see that
the effect of this is to print only letters which are upper case.

We could use the ASCII codes to write a simple encoding/
decoding program:

10 PRINT
20 INPUT "What is the code";change
30 PRINT
40 LINE INPUT "What is the message? ",message
*
50 length=LEN(message*)
60 codedmessage*=""
70 FOR count=l TO length
80 Ietter$=MID*(message*,count,1)
90 letterascii=ASC(1etter*)

Strings 127

100 codedletter!=CHR!(letterascii+change)
110 codedmessage!=codedmessage!+codedletter!
120 NEXT
130 PRINT
140 PRINT"The coded message is:"
150 PEN 3
160 PRINT
170 PRINT codedmessage!
180 PEN 1

Type in any whole number of 120 or less as input. The computer
accepts your message at line 40. The loop from 70 to 120 takes the
letters one at a time from your message and adds the number you
input to the ASCII codes to produce a new ASCII code. This is
turned back into a character at 100 and added to the coded
message in 110.

I have not included the usual mode command at the start of the
program. This gives you the chance to try decoding your encoded
message, and if the screen is not cleared you can copy the
encoded message using the COPY key, rather than trying to
remember what may be a string of gibberish! To decode a
message you must input minus the number you used to encode
the message, i.e. if you used 23 for encoding you must use —23 to
decode. Using high numbers for encoding will give you a
message consisting completely of non-alphabetic characters, and
you may end up with a mixture of those stick men and quavers
we mentioned earlier!

VAL and STR$

On some occasions it is easier to treat a number as part of a string,
for example, when a date is input. Yet later that number may be
needed for arithmetic, and we saw much earlier in the book that
the Amstrad quite rightly refuses to do arithmetic with strings.
We need to be able to convert the string version of the number
into a numeric variable. To do this we use VAL, which converts a
numeric string into a numeric variable:

10 MODE 1
20 INPUT “Type in any characters, but begin w
ith a number, '^characters!

128 BASIC Programming on the Amstrad

30 number=VAL(characterst)
40 PRINT "The number was "jnumber

VAL only looks at the first character position of the string to see if
there's a number there. If you input 'June 6th', for example, line
30 will produce 0, because the first character is not a number and
VAL looks no further. The '6' could be extracted from the date:

10 MODE 1
20 INPUT "Input a date (eg June 6th). ",datet
30 continued
40 position=l
50 WHILE continue=l
60 lettert=MIDt(datet,position,!)
70 code=ASC (1etter$)
80 IF code>47 AND code<58 THEN continued ELS
E position=position+1
90 WEND
100 numbert=MIDt (datet, position)
110 number=VAL (numbert)
120 PEN3
130 PRINT"You typed in day " ; number;" of the m
onth. "

140 PEN1

The program examines the letters of the string one by one until an
ASCII code indicating a number is found (line 80). Line 100
removes the part of the string containing the number, and this is
converted to a number by VAL in 110. A simpler solution is to
insist that the first characters of the date are the number, i.e. '6th
June' rather than 'June 6th'!

STR$ performs the opposite function to VAL, converting a
numeric variable into a string variable:

10 MODE 1
20 INPUT "Type in today's date in the form 31
/6/83",datet
21 REM convert day and month to numbers
30 day=VAL(datet)

Strings 129

40 monthposi ti on = INSTR(date!,"/")
50 month!=MID!(dat'e!,monthposition + l)
60 month=VAL(month!)
70 yearposition=INSTR(monthposition+l,date!,“
/")
80 year!=MID!(date!,yearposition+l)
81 REM find out name of month
90 FOR count=l TO month
100 READ nameofmonth!,numberofdays
110 NEXT
111 REM find next Meek's date
120 day=day+7
121 REM if this is more than the number of da
ys in the month
122 REM find the next month
130 IF day>numberofdays THEN day=day-numberof
days:READ nameofmonth!,numberofdays
140 weekfromtoday!=nameofmonth!+STR!(day)+“,
19M+year!
150 PRINT
160 PRINT"0ne week from today the date will b
e:"
170 PEN 3
180 PRINT weekfromtoday!
190 PEN 1
200 DATA January,31,February,28,March,31,Apri
1,30, May,31,June,30
210 DATA July,31,August,31,September,30,Octob
er,31,November,30,December,31

This program works out a date one week after today's date. Both
the day and the month are needed as numbers, the day because
arithmetic is performed on it, line 120, and the month because it
is used to set a loop to read the right number of data items to find
the month's name, lines 90 to 110. In line 140 the numeric variable
'day' is converted back to a string using STR$.

Although the exercise of converting string variables to

130 BASIC Programming on the Amstrad

numerics may seem an academic one, it is worth studying the
techniques used above to extract the numeric values from a
string. Converting numbers to strings and subsequently conca­
tenating the strings provides an easy way of keeping a series of
associated values together without having to describe them
individually. The original numbers can be rapidly obtained by
using MID$ to remove the required part of the string.

Exercises

1) Write a program that will only allow you to type numeric
values at the keyboard.

2) The program that calculates next week's date fails if next week
is in a new year. Improve the program so that it will give the
correct date even for inputs such as 25/12/84.

3) Another flaw in the program is that it does not take into
account leap years. Leap years are those years divisible by 4.
Centuries such as 1700,1800, etc., are only leap years if they are
divisible by 400. For example 1600 is a leap year but 1700 is not.
Improve the program so that it adjusts the number of days in
February depending on whether the year is a leap year or not.

4) Write a program that finds how many shopping days there are
until Christmas after today's date has been input.

5) For a real challenge, write a program that will tell you how
many days you have lived after you have input your birthdate
and today's date.

Chapter Seven

Loops and Lists

Nested loops

In the last chapter we had an example of a program using two
loops, one of which was inside the other. These nested loops
enable us to simplify programs that might otherwise require
many more separate loops. Let us look at a simple example which
demonstrates the nature of nested loops:
10 MODE 1
20 FOR outerloop=l TO 3
30 PEN 3
40 PRINT "Outer loop is "jouterloop
50 FOR innerloop=l TO 4
60 PEN 2
70 PRINT “Inner loop is "jinnerloop
80 NEXT
90 NEXT
100 PEN 1

The output from the program looks like this:

Outer loop is 1
Inner loop is 1
Inner loop is
Inner loop is
Inner loop is 4
Outer loop is 2
Inner loop is 1
Inner loop is 2
Inner loop is 3
Inner loop is 4
Outer loop is 3
Inner loop is 1
Inner loop is 2
Inner- loop is 3
Inner loop is 4

Figure 26 Program output.

131

132 BASIC Programming on the Amstrad

When you run the program, the Amstrad begins the outer loop at
line 20 and prints its value, 1, at line 40. A second, inner loop
begins at line 50, and yet the Amstrad is still within the first loop,
because it hasn't reached a NEXT to tell it that the first loop is
finished. So the micro sets up a second loop, and prints its value,
1, at line 70.

At line 80 the program contains the first NEXT statement. Now
you might imagine that the Amstrad would take this to mean
'Now do the next step in the outer loop'. This is not the case. The
first time the Amstrad finds a NEXT, it is associated with the most
recent FOR encountered. Here the most recent FOR came at line
50, so the Amstrad proceeds to count through this inner loop and
print 2, 3, and 4. Once the inner loop has reached its stopping
value, the computer carries out line 90 — another NEXT, and this
is associated with the most recent FOR that still doesn't have a
NEXT — i.e. the outer loop beginning at line 20.

So the Amstrad goes back to line 20 to begin the next circuit of
the outer loop, prints 2, comes to the inner loop, prints 1, and
proceeds to run through the inner loop again, printing 2,3, and 4.
And so on. The inner loop 'nests' completely within the outer
loop:

Figure 27 Nested loop.

Loops and Lists 133

Within a nested loop, the start and end of each loop can always be
joined without crossing a line joining the start and end of another
part of the nested loop:

The loops can begin and end with any value, and you may like to
play about with the nested loops in the program above to make
sure you understand what's happening.

Enough of the example. Let's look at a real program, extra­
ordinarily brief, that prints out all the multiplication tables from 1
to 10:

10 MODE 1
20 FOR tables=l TO 10
30 PEN 3
40 PRINT tables;" times table"
50 PRINT
60 PEN 2
70 FOR number=l TO 10
80 PRINT number;" times “;tables;" = ";number
»tables
90 NEXT
100 PRINT
110 NEXT
120 PEN 1

134 BASIC Programming on the Amstrad

This program would have been much longer but for nested loops,
as it would have involved setting up 10 separate loops to count
through each multiplication table! If the tables whizz by a bit too
quickly for you, you might like to consider the place to put an
INPUT statement that asks if you're ready for the next table, so
that you get a good chance to look at each of them.

This program draws a series of triangles to fill the screen:

10 MODE 1
20 FOR xcoordinate= 0 TO 500 STEP 100
30 FOR ycoordinate= 0 TO 350 STEP 50
40 MOVE xcoordinate,ycoordinate
50 DRAW xcoordinate+90,ycoordinate+10
60 DRAW xcoordinate+40,ycoordinate+40
70 DRAW xcoordinate,ycoordinate
80 NEXT
90 NEXT

The STEP size and the coordinates of the triangle itself are
arbitrary, and you might like to experiment with different values
and see the results.

In Chapter 3 there was a short program that drew the outline of
a house. With a few modifications to the size of the house, we can
use a nested loop to produce a whole street full of houses:

10 MODE 1
20 REM set up coordinates for house front
30 FOR houseleftx=0 TO 500 STEP 100
40 houseboty=200
50 houserightx=houseleftx+90
60 nousetopy=250
70 REM draw the house front
80 MOVE houseleftx ,houseboty
90 DRAW houserightx,houseboty
100 DRAW houserightx ,housetopy
110 DRAW houseleftx,housetopy
120 DRAW houseleftx,houseboty
130 REM set up coordinates for roof
140 roofleftx=houseleftx+15

Loops and Lists 135

150 rooftopy=270
160 roofrightx=houseleftx + 75
170 REM draw the roof
180 MOVE houseleftx,housetopy
190 DRAW roofleftx,rooftopy
200 DRAW roofrightx,rooftopy
210 DRAW houserightx,housetopy
220 NEXT

In the last chapter one of the programs produced an anagram of
any word input. We can now extend that program using a nested
loop so that it produces a series of anagrams which have to be
guessed as quickly as possible:

10 MODE 1
20 starttime=TIME
30 FOR anagrams=l TO 10
40 READ word!
50 anagram!=word!
60 length=LEN(word!)
70 FOR muddle=l TO length
80 random=INT(RND*length+l)
90 rightbit=length-random
100 anagram!=LEFT!(anagram!,random-l)+RIGHT!(
anagram!,rightbit)+MID!(anagram!,random,!)
110 NEXT
120 PEN 1
130 PRINT:PRINT "The anagram is
140 PEN 3
150 PRINT anagram!
160 PEN 2
170 PRINT:INPUT "What is the word";guess!
180 PRINT
190 IF guess!=word! THEN PEN 3:PRINT"Right!"
ELSE PEN l:PRINT"Wrong, it's ";word!
200 NEXT
210 totaltime=TIME-starttime

136 BASIC Programming on the Amstrad

220 PRINT“That took you totaltime/300;" sec
onds. "
230 DATA ready,enormous,kangaroo,jel1ybaby,fu
rn i ture
240 DATA electricity,window,polystyrene,funne
1 ,spaghetti

In this case the outer loop asks the questions, while the inner loop
is used to muddle up the words and produce the anagram. We
could choose to use a slightly different form of nested loop, with
the outer loop being a WHILE, so that we can impose a time limit.
Add these lines:

11 timelimit=100
12 PRINT "You have a time limit of "jtimelimi
t;“seconds to solve 10 anagrams."
13 timesecs=0
14 right=l
15 countofwords=0

31 countofwords=countofwords+1

•

191 timenow=TIME-starttime
192 timesecs=timenow/300
193 PRINT:PRINT"You have used timesecs;"sec
onds. 11

225 IF right)! THEN PRINT"You got ";right;“ri
ght." ELSE PRINT"And you didn't get one right

WHILEs can also be nested:

10 MODE 1
20 READ question!,answer^
30 WHILE question$<>“XXX"

Loops and Lists 137

50 PEN 3
60 PRINTzPRINT question!
70 PEN 2
80 response!=""
90 tries=l
100 WHILE response!«:'/answer! AND tries<4
110 LINE INPUT response!
120 tries=tries+1
130 IF response!;>answer! AND tries<4 THEN PR
INT"Wrong, try again."
140 WEND
150 IF response$<>answer! THEN PRINT "The ans
wer was "janswer!
160 READ question!,answer!
170 WEND
180 PEN 1
190 DATA How many letters are there in the al
phabet?,26
200 DATA What is the capital o-f the UK?,Londo
n
210 DATA Who won the Wimbledon's Mens Singles
Title this year?,John McEnroe

220 DATA Who won the last World Cup?,Italy
500 DATA XXX,YYY

In this case the first WHILE loop running from line 30 to 170
ensures that questions are asked until the data terminator 'XXX'
is reached. The inner WHILE loop allows three tries at the correct
answer. The main advantage of using an outer WHILE loop rather
than just a FOR . . . NEXT loop to read in the 4 questions is that
the WHILE loop enables us to add new questions to the DATA
without having to change the program anywhere else. Every time
we add a new question we just make sure the DATA statement
has a line number less than 500, so that it comes before the data
terminator is read. If a FOR . . . NEXT loop was used, we would
need to change the stopping value for the loop every time we
added a new question.

138 BASIC Programming on the Amstrad

Exercises

1) Print a rectangle completely made up from asterisks using a
nested loop. (This can be done with just a single loop and the
use of STRING$, but try it with a nested loop for the practice.)

2) Print an asterisk to all the text coordinate positions which
contain an odd coordinate, such as (1,1), (2,7), (5,4), etc.

3) Write a program that reads in the names of pupils and their
marks from 12 exams and prints them on the screen together
with the average mark. (Use an outer loop to read in the pupil's
name, and an inner loop to read in the 12 exam marks and find
their average.)

4) Extend the program that draws a row of houses so that it draws
several rows, each in a different colour. Add doors and
windows to the houses.

5) Write a program that draws a large building with 3 rows of
windows, 5 windows in each row, all the windows being of
identical size.

Lists

Both of the last two programs of the previous section suffered
from a weakness, because exactly the same questions are asked
every time the program is run. We can get around this difficulty
by reading through a random number of questions before asking
each question, but this only creates a different problem — how
can we make sure we don't repeat a question?

In one of the questions in the last exercise you were asked to
read the names and examination marks for some pupils from data
and print them on the screen. If this were a program being used in
real life, the data might well be required for further use. It would
be helpful, for example, if the computer could sort all the Maths
marks into order and print out the pupils' names and their marks
from highest to lowest. The micro could well repeat this exercise
with the other 11 sets of marks. Yet to sort the marks into order
the computer needs to be able to compare marks, and to compare
marks it needs to have access to all the marks at once, and not just
to the marks which have been read in for one pupil.

The above problems show that there is a need at times for the
computer to hold lists of data, so that it can compare items in

Loops and Lists 139

those lists, and, if necessary, rearrange them. With our present
knowledge this is an incredibly tedious business. Suppose we
just wanted to sort the Maths marks for 15 pupils. The computer
needs to have all 15 marks at once so that it can compare and sort
them. The first part of the program would just read the names and
marks in from data:

10 MODE 1
20 READ name 1 $,mar k 1
30 READ name2?,mark2
40 READ name3?,mark3
50 READ name4?,mark4
60 READ name5?,mar k5
70 READ name6?,mark6
80 READ name7?,mark7
90 READ name8$,marks
100 READ name9?,mark9
110 READ namel0?,mark 10
120 READ namellt,markl 1
130 READ namel2?,mark 12

. . . and so on, and we haven't even started sorting the marks yet!
This approach is hopeless, and thankfully there is a much simpler
way.

Instead of reading the data items into separate variables so that
all the data is available to the computer at any time, we can choose
to read the data into an array (a fancy word for a list!):

10 MODE 1
20 DIM name?(15),mark(15)
30 FOR count=l TO 15
40 READ name?(count),mark(count)
50 NEXT
400 DATA Adams,40,Bunter,56,Crane,77,Digby, 12
, Easterby,84
410 DATA Fernham,45,Goddard,9,Humphrey,31,May
,92,Norcot,94
420 DATA Reed,11,Stanley,54,Terence,63,Venabl
es , 44, Wal 1 ace, 18

140 BASIC Programming on the Amstrad

Line 20 tells the Amstrad that there are going to be 15 names in
our list and 15 marks. We are setting the dimensions of the list,
hence the new Basic key-word DIM. Notice that we can have
string arrays, such as name$() or numeric arrays, such as
mark(). The loop from 30 to 50 reads the 15 names and marks into
the two lists. The value in the brackets on line 40 is called the
subscript, and because the count changes each time through the
loop, the subscript also changes. The net result of this is that
when the loop finishes, all the data has been stored in the form
shown in Figure 29.
Any of the elements in the list can now be referred to by their
subscript. Try, for example, the following in immediate mode
after running the program:

? name$(15)

The Amstrad prints 'Wallace', the 15th name in the array. Try:

? mark(5)

The computer prints 84, the 5th mark in the list. As the names and
marks are now held in the list, we can direct the Amstrad to do all
sorts of things without having to READ the DATA again, as we
can see by adding these lines to the previous program:

60 PRINT “I will print out the names of those
with a mark lower than any mark you give."

70 PRINT
80 INPUT “What is the high mark";highmark
90 PEN 3
100 PRINTsPRINT "Pupils with marks less than"
¡highmark
110 PR I NT:PR I NT"Name", "Mark"
120 PEN 2
130 FOR count=l TO 15
140 IF mar k(count)<highmark THEN PRINT nametl
count),mar k(count)
150 NEXT
160 PEN 1

The loop from 130 to 150 enables the Amstrad to examine the 15

Loops and Lists 141

142 BASIC Programming on the Amstrad

marks in the array one by one, and print out the name and mark
for anyone whose mark is lower than the input value. This under­
lines the link between the two lists. For example, name$(14)
refers to the 14th name in the array, and we can find the mark for
that pupil by looking at the value in the marks list with the same
subscript, mark(14). Individual parts of an array like name$(ll) or
mark(7) are termed the elements of the array.

Although arrays must be referred to by their subscript, the
elements of an array are fundamentally exactly the same as
normal string or numeric variables. Any action we can carry out
on a string variable can similarly be carried out on a string array
element, and any action we can carry out on a numeric variable
we can carry out on a numeric array element. Try these, for
example:

? LEFT$(name$(ll),2)
? mark(7)+mark(12)
? name$(l)+name$(6)

The array elements behave exactly as if they were ordinary
variables. Their only difference lies in the way we refer to them.

We can also use arrays to store a list of results. In an earlier
program we threw two dice by generating random numbers. We
can now store the result of each throw in an array, and use the
array values to set up a display of the results as the program runs:

10 MODE 1
20 WINDOW 1,40,1,1
30 WINDOW #1,1,40,2,25
40 INPUT "How many throws";throws
50 DIM diceresult(12)
60 FOR dicetotal=2 TO 12
70 LOCATE#!,1,dicetotal»2
80 PRINT#1,dicetotal
90 NEXT
100 FOR count= 1 TO throws
110 dicel=INT(RND*6+1)
120 dice2=INT(RND*6+l)
130 total=dicel+dice2
140 diceresult(total)=diceresult(total)+l

Loops and Lists 143

150 LOCATE#1,4,tot al*2
160 PRINT#l,diceresult(total)
170 NEXT

Whenever an array is set up as in line 50, all the elements of the
array are set to zero. What we are doing here is creating 12 'boxes'
which are going to hold the number of times each total of the dice
has occurred. (We have an extra box diceresult(l) which we don't
use, as you can't get 1 if you throw two dice!)

Lines 60 to 90 print the numbers 2 to 12 spaced one line apart.
This just makes it clearer what's happening as each throw takes
place.

Every time a new random dice total is created by lines 110 to
130, the contents of that box are increased by 1 in line 140. Figure
30 overleaf shows what happens if a total of 7 was the first throw.
The new value of the box is printed at the right position in line
160. If you think the display is rather uninspiring, you might like
to change line 160 to:

160 PR I NT#1,STRING!(diceresult(total)

This prints a string of asterisks, the string containing one asterisk
for every time that total has occurred. An even more striking
display arises if we choose to display the totals as rectangular bars
drawn using the graphics commands:

100 FOR count= 1 TO throws
110 dicel=INT(RND*6+1)
120 dice2=INT(RND*6+1)
130 total=dicel+dice2
140 diceresult(total)=diceresult(total)+l
141 graphicsy=(24-total*2)* 16
142 graphicsx=50
143 MOVE graphicsx+diceresult(total),graphics
y
144 DRAW graphicsx+diceresult(total),graphics
y+16
170 NEXT

144 BASIC Programming on the Amstrad

Fi
gu

re
 30

 Die
th

ro
w

.

Loops and Lists 145

Each time a total occurs, a new graphics line is drawn at lines 143
and 144, and this makes the bars grow as the program runs. The
graphicsy position is calculated using the formula introduced in
Chapter 3, although a slight adjustment is necessary because the
text positions are within a 24 line high window.

Because the graphicsy resolution remains unchanged even
when you use a different mode, you can get an even more impres­
sive display in colour by changing just these lines:

10 MODE 0

142 graphicsx=150

144 DRAW graphicsx+diceresult(total),graph!cs
y + 16, total

Each bar is drawn in a different colour. The graphicsx coordinate
at line 142 has to be moved to the right, because the numbers
printed down the left of the screen are wider in mode 0 and would
otherwise overlap the start of the bars.

In an earlier chapter we observed the attempts of a fish-and-
chip shop owner to use his computer to help calculate customers'
bills. This now becomes easier to implement through the use of
arrays. First, we must read in the name of the item and its cost:

10 MODE 1
20 numberofitems=12
30 DIM nameofitern!(numberofiterns),cost(number
of iterns)
40 FOR count=l TO numberofiterns
50 READ nameofitemi(count),cost(count)
60 NEXT
400 DATA "chips,smal1",0.22,"chips,med!urn" ,0.
28,"chips,large“,0.35,"cod,small",0.45," cod,m
edium",0.55,"cod,large",0.65
410 DATA sausage,0.20,pie,0.36,chicken leg,0.
76,beefburger,0.20,pasty,0.28,sausage roll,0.
25

146 BASIC Programming on the Amstrad

Notice that we can use a variable in the DIM statement at 30. Once
the data has been read in, the fish-and-chip shop owner can leave
his computer running for the rest of the day while it processes
customers' orders. This program is complicated enough for it to
be worth while planning it out beforehand. The program will
need 3 nested WHILE loops:

WHILE the fish shop is open '
ask for the first item in the order

WHILE the item in the order is not "xxx"
search for the price for the item

WHILE there are still items to look at in the list
keep examining the list

IF you find the item THEN work out the cost
WEND

If you can't find the item THEN complain
ask for the next item in the order

WEND
print out the overall cost of the order

WEND

The above outline is written in pseudo-code. It isn't exactly a
program, but it's certainly not English either! This leads to the
following program, which continues indefinitely until the [ESC]
key is pressed:

10 MODE 1
20 numberofitems=12
30 DIM nameofitem$(numberofiterns),cost(number
of items)
40 FOR count=l TO numberofiterns
50 READ nameofitemt (count),cost(count)
60 NEXT
61 REM set up windows for inputs and bill
70 WINDOW 1,40,21,25.
80 WINDOW #1,1,40,1,20
81 REM first while loop - never-ending!
90 continue^!
100 WHILE continued
110 CLS

Loops and Lists 147

120 PEN 1
130 PRINT "Input name of item, end with xxx"
140 PRINT
160 INPUT “Input item, number of portions. 11,
i tem$,port i ons
170 CLS#1
180 PEN #1,3
190 PRINT #l,"Item"," Number"," Cost"
200 PRINT #1
201 REM second while loop to process each ite
m
210 WHILE item$<>"xxx"
220 count=l
230 found=0
231 REM search for cost while there are any i
terns left in the list and we still haven't fo
und the item
240 WHILE count<=numberofitems AND found=0
250 IF item$=nameofitern!(count) THEN cost=por
tions»cost(count):PRINT #1,nameof i tem$(count)
,port ions,cost:totalcost = totalcost + cost:found
= 1
260 count=count+l
270 WEND
271 REM ask for item again if we couldn't fin
d i t
280 IF count>numberofiterns AND found=0 THEN P
EN 2:PRINT"I can't find ";item$:PRINT"Pl ease
type it in again.":PEN 1
290 INPUT "Input item, number of portions. ",
i tem$,porti ons
300 WEND
301 REM work out overall cost
310 PEN #1,2
320 PRINT #1, "Total costtotal cost
330 PRINT #1,"VAT:",,0.15*total cost

148 BASIC Programming on the Amstrad

340 PRINT #1,"Overall cost:",total cost* 1.15
341 REM and do the next order!
350 WEND
400 DATA chips-smal1,0.22,chips-mediurn,0.28,c
hips-large,0.35,cod-small,0.45,cod-medium,0.5
5, cod-1arge,0.65
410 DATA sausage,0.20,pie,0.36,chicken leg,0.
76,beefburger,0.20,pasty,0.28,sausage rol1,0.
25

This program serves as a good example of the use of both nested
loops and arrays. One feature makes it more difficult to use and
also serves to make the program more complicated. Each item on
an order must have its name typed in full exactly as it has been
stored in the list, because the computer uses the name of the item
to locate its cost in the cost array. The program can be much
simpler if the fish-and-chip shop owner refers to the items by
their subscript, i.e. 'chips-small' is 1, and 'pie' would be 8. Edit
160 and delete lines 210-350, substituting these:

160 INPUT "Input item number, number of porti
ons. ",item,portions
210 WHILE item<>-99
220 IF item<>-99 AND item<=numberofitems THEN
cost=portions*cost(item):PRINT #l,nameofitem

$(item),portions,cost:totalcost=totalcost+cos
t
230 IF item>numberofitems THEN PEN 2:PRINT"Th
at's too big as an item numberPR I NT"Type i
t again.":PEN 1
240 INPUT “Input item, number of portions. ",
i tern,port i ons
250 WEND
260 PEN #1,2
270 PRINT #1, "Total costtotal cost
280 PRINT #1,"VAT:",,0.15*totalcost
290 PRINT #1,"Overall cost:", totalcost*l. 15
300 WEND

Loops and Lists 149

In this case the number input is used to find the name and cost of
the item directly, and there is no need to search through the entire
array to see if there is a matching name for the one typed in. This
method is obviously more efficient, because we can go to the
element in the array directly, rather than as previously, when we
had to look through the entire list to find the element we were
interested in. Of course, the whole exercise is much simplified if
we ignore the names of the items completely, and only use their
costs in the program. One advantage of including the names and
printing them on the bill is that it is easier to see if the wrong
number has been input — 7 for sausage instead of 8 for the more
expensive pie, for example.

It is worth studying the above program, even though at the
moment it may appear to be of only limited interest. The tech­
nique used to find an element within the array is of general use,
as we shall see in the chapter on files.

Exercises

1) Improve the anagrams program from earlier in the chapter by
reading the words to be anagrammed into a string array and
choosing the word to be used at random from the array. If you
feel able, try to ensure that no word is selected more than once
during a run of the program.

2) Write a program to read in the names and telephone numbers
of your friends into two string arrays. The program then
accepts as input a friend's name and will find and display the
telephone number, or give an appropriate message if the name
cannot be found.

3) Write a program that 'throws' a coin by generating a random
number 1 or 2. If the number is 1, count the throw as a head,
otherwise count it as a tail. Display the results of the throws,
either by printing 'H' or 'T' at an appropriate position every
time the coin is thrown, or alternatively by drawing a graphics
bar chart.

4) Read a number of nouns and verbs into two string arrays, and
use them to produce brief random sentences of the form 'The
(NOUN) (VERB) the (NOUN)', e.g. 'The lion ate the giraffe'.

5) If you are really ambitious, try to create a random limerick!

Chapter Eight

Games and Graphics

Making up your own characters

In Chapter 6, you had a chance to view the entire Amstrad
character set. Although there are a wide range of characters pro­
vided, it is obviously impossible to cater for all situations, and so
the Amstrad allows us to define our own characters using the
SYMBOL statement.

All characters are built up on an 8x 8 grid, as you can see if you
look at Page 2, Appendix III of the User Instructions. To design a
new character, it is best to take a piece of squared paper and
shade in the grid until you get the effect you want. Below is a
tentacled creature which might appear in a game:

///^

% 'V/
'///

/Z^Z ////

z'zjz;
V//

////
///,

'///
s'/'/ ////

%

//̂ // %
V'

/// v//%
Figure 31 Game character.

Each row of the character can be described by a hexadecimal
number (a number produced by counting in 16s, rather than the
more familiar denary numbers we get by counting in 10s). The
hexadecimal system is explained in detail on page 5, Appendix II
of the User Instructions. In practice, good old denary numbers

150

Games and Graphics 151

serve just as well, so we shall use these to describe our tentacled
friend.

We can get the numbers by adding together the figures at the
top of the column for any squares in a row that are shaded:

If you understand binary and hexadecimal, you will know why
the column headings have the value given, but otherwise you
will have to take it on trust that these values always apply.

We can define the character with the 8 numbers and then use it
in a program:

10 MODE 1
20 SYMBOL 240,24,60,126,219,255,255,165,165

Line 20 tells the Amstrad that we want to define a character. The
first number after the SYMBOL key-word gives the ASCII code
the new character will have, in this case 240. If you type:

? CHR$(240)

you will see that the redefined character remains after the
program ends. Appendix III of the User Instructions tells us that
character 240 is an arrow pointing up, but this character has now
been redefined. The Amstrad automatically allows us to define 16
new characters using the codes 240 to 255.

152 BASIC Programming on the Amstrad

We can redefine more than 16 ASCII codes, but only after using
another statement:

SYMBOL AFTER 60

This tells the Amstrad that we want to be able in this case to
redefine any ASCII codes after 60. (In fact the statement is slightly
misleading, because we can also use ASCII code 60 itself.) We
could now define nearly 200 characters of our own!

Any previous character definitions are lost, as you can confirm
by printing CHR$(240) again. It is back to its original form as an
arrow. Having used the SYMBOL AFTER statement, it is now
possible to redefine some of the keyboard characters. We could
redefine the 'A' as our creature:

SYMBOL 65,24,60,126,219,255,255,165,165

Not to be recommended — it makes typing a program very
difficult!

In practice the 16 characters automatically provided are enough
for most purposes. We can use the characters in games of our
own. The following program demonstrates how easy it is to place
the tentacled creature under keyboard control (make sure the
CAPS LOCK is off for this program):

10 MODE 1
20 PRINT"You can now guide the creature using
the 'a' and 'z' keys to move it up and down,
and the and keys to move it left and
right."

25 PRINT:PRINT"Press 's' to stop."
30 INPUT "Press ENTER when you're ready.",rep
ly$
40 MODE 0
50 SYMBOL 240,24,60,126,219,255,255,165,165
51 REM set up start position
60 xcoord=10
70 ycoord=12
80 newxcoord=10
90 newycoord=12
100 PEN 6

Games and Graphics 153

110 PAPER 1
120 CLS
130 response$=""
140 continue=l
150 WHILE response$<>,,s‘l
151 REM scan keyboard
160 response$=INKEY$
161 REM update creature's position - check it
's not off-screen
170 IF response$="a"
ord=ycoord-l

AND ycoord >1 THEN newyco

180 IF response$ = "z " AND ycoord<25 THEN newyc
oord=ycoord+1
190 IF response^","
ord=xcoord-l

AND xcoord>l THEN newxco

200 IF response$=". " AND xcoord<20 THEN newxc
oord=xcoord+l
201 REM if movement key has been pressed, pri
nt blank in old position
210 IF responseK>"" AND responseK >"s" THEN
LOCATE xcoord,ycoord:PRINT" ":xcoord=newxcoor
d:ycoord=newycoord
211 REM print creature
220 LOCATE xcoord , ycoord
230 PRINT CHRK240);
240 WEND
250 PEN 1
260 PAPER 0

The above skeleton program can form the basis for many games,
as we shall see later. A few points to note are that we need to check
that the creature is not being moved off-screen, and we must rub
the creature out from its last position before we print it to a new
one, otherwise we leave a trail of creatures behind! The semi-colon
after CHR$(240) is printed is vital. If you leave it out you will find
that the screen scrolls when you move to the bottom right comer,
which leads to some funny effects.

154 BASIC Programming on the Amstrad

The keys I have used to control the movement are traditional in
computer games, and a lot easier to use than the cursor keys.
Some people prefer to use their hands the other way around, with
'z' and 'x' controlling left/right movement andand 7' up/down
movement. The program is easily modified to this if you wish.

As we noted a little earlier, CHR$(240) is normally an up-arrow.
The character set in Appendix III of the User Instructions shows
us that characters 240 to 243 are all arrows, pointing in different
directions. We could elaborate on the program above by creating
4 creatures that 'look' in different directions, but for simplicity's
sake let's use the characters already available, and change our
program so that an arrow is moved around. Before you make the
changes and run the program, just type SYMBOL AFTER 240 to
reset CHR$(240) to its normal arrow form:

50 arrow$=CHR*(240)

170 IF response*="a" AND ycoord>l THEN newyco
□rd=ycoord-l:arrow$=CHR$(240)
180 IF response$="z" AND ycoord<25 THEN newyc
□ord=ycoord+l:arrow$=CHR*(241)
190 IF response*="," AND xcoordM THEN newxco
ord=xcoord-l:arrow*=CHR*(242)
200 IF response*="." AND xcoord<20 THEN newxc
oord=xcoord+l:arrDw$=CHR$(243)

230 PRINT arrow*;

Each time the character is moved, the appropriate arrow character
is chosen in lines 170 to 200.

Bigger characters

Single characters can be rather small to work with, but it is easy to
combine them to produce larger figures. We could define a rather
uninspired giant version of the creature by using 4 characters
joined together as shown in Figure 33.
One problem with larger figure is that its parts must be printed to
4 different character positions. We can simplify things a little by
joining the two characters at the top to create one string, and do

Games and Graphics 155

Figure 33 Game character using four characters.

the same for the two characters below to create a second string.
We now only need to print using two different LOCATE state­
ments:

10 MODE 1
20 PRINT"You can now guide the creature using
the 'a' and 'z' keys to move it up and down,
and the and '.' keys to move it left and
right. "

25 PRINT:PRINT"Press 's' to stop."
30 INPUT “Press ENTER when you're ready.",rep
ly$
40 MODE 0
41 SYMBOL 240,3,3,15,15,63,63,243,243
42 SYMBOL 241,192,192,240,240,252,252,207,207
43 SYMBOL 242,255,255,255,255,204,204,204,204
44 SYMBOL 243,255,255,255,255,51,51,51,51
45 top$=CHR$(240)+CHR$(241)
46 bottom$=CHR$(242)+CHRt(243)
51 REM set up start position
60 xcoord=10
70 ycoord=12
80 newxcoord=10
90 newycoord = 12

156 BASIC Programming on the Amstrad

100 PEN 6
110 PAPER 1
120 CLS
130 response^""
140 continued
150 WHILE response$<>"s"
151 REM scan keyboard
160 response$=INKEY$
161 REM update creature's position - check it
's not off-screen
170 IF response$="a" AND ycoord>l THEN newyco
ord=ycoord-l
180 IF response$="z " AND ycoord<25 THEN newyc
oord=ycoord+1
190 IF response$=", " AND xcoord>l THEN newxco
ord=xcoord-l
200 IF response$=". " AND xcoord<20 THEN newxc
oord=xcoord+l
201 REM if movement key has been pressed, pri
nt blank in old position
210 IF responseK>"" AND responseK >"s" THEN
LOCATE xcoord,ycoord: PRINT“ "zLOCATE xcoord,
ycoord+1:PRINT" ":xcoord=newxcoord:ycoord=ne
wycoord
211 REM print creature
220 LOCATE xcoord , ycoord
230 PRINT top!;
231 LOCATE xcoord,ycoord+1
232 PRINT bottom!;
240 WEND
250 PEN 1
260 PAPER 0

There are a few weaknesses in this modified program, as you may
have discovered! The difficulties arise because xcoord and ycoord
are actually the text coordinates for the top left character of the

Games and Graphics 157

creature only. If we want to prevent it straying off the screen we
must amend lines 170 to 200.

Exercises

1) Define a single character of your own, and print it to the screen
using the 16 different PENs available in mode 0.

2) Improve the arrow program by defining four more arrow
characters to represent the different diagonal movements
possible. You will need to use four other keys on the keyboard
to allow the user to move the arrow diagonally.

3) Modify the program that moves the large character around so
that the creature does not behave in such a peculiar fashion
when it is moved to the right-hand column or the bottom line.

4) Define your own larger character, such as a dog or a robot, and
write a program to allow it to be moved about on-screen.

Bumping and shooting

We are well on the way to writing a games program. We have
found out how to define characters, how to move them around
the screen, and how to stop them going off the screen edge. There
is one more thing we need to know. All games that involve
on-screen movement also require checks for what is at nearby
screen positions. If we have to shoot down hordes of attacking
aliens, we need to detect if one of the enemy is in the path of our
'bullets'. If we are trying to get through a maze in a race against
the clock, we need to know where the maze openings are, other­
wise the game will lose all meaning as we move a character
around oblivious to the 'walls' in front of it.

We can detect the pen used at a graphics position by using
TEST (x,y). The program we wrote in the previous section used
text coordinates, but you may recall that in Chapter 3 we worked
out a connection between text and graphics coordinates in mode
0:

graphicsx = (textx - 1) * 32 (use 16 for mode 1, and 8 for
mode 2)

graphicsy = (25 - texty)*16

This gave the graphics coordinates for the bottom left comer of

158 BASIC Programming on the Amstrad

any text position. The graphics coordinates for the centre of a
character position would be:

graphicsx = 16 + (textx - 1)*32 (8,16 for mode 1; 4,8 for
mode 2)

graphicsy = 8 + (25 — texty)* 16

We now have a means of testing any character position on screen
to find its colour, but the text coordinates must first be converted
to graphics coordinates. Let's look at an example based on the
earlier arrow program:

10 MODE 1
20 PRINT "You must try to guide the arrow to
the bottom right as rapidly as possible."
30 INPUT "Skill level (1-10) (l,easy to 10,ha
rd)"; ski 11
40 INPUT "Press ENTER when you're ready.",rep
ly$
50 MODE 0
60 PAPER 1
70 CLS
80 arrow$=CHR$(240)
90 REM set up start position for arrow
100 xcoord=l
110 ycoord=l
120 REM set up walls in red
130 PEN 3
140 FOR count=l TO skill*12
150 randomxcoord=INT(RND*20+l)
160 randomycoord=INT(RND*25+1)
170 LOCATE randomxcoord,randomycoord
180 PRINT CHRK233) ;
190 NEXT
200 REM set up destination in flashing colour

210 PEN 15
220 LOCATE 20,25
221 PRINT"*”;
230 PEN 6

Games and Graphics 159

240 response^" "
250 REM loop continues until (20,25) is reach
ed
260 WHILE xcoord<>20 OR ycoord<>25
270 REM scan keyboard
280 response!=INKEY!
290 REM set coords to present position
300 newxcoord=xcoord
310 newycoord=ycoord
320 REM update arrow position - check it's no
t off-screen
330 IF response!="a" AND ycoord>l THEN newyco
ord=ycoord-l:arrow!=CHR!(240)
340 IF response$="z" AND ycoord<25 THEN newyc
oord=ycoord+l:arrow!=CHR!(241)
350 IF response!="," AND xcoord>l THEN newxco
ord=xcoord-l:arrow!=CHR!(242)
360 IF response!=". “ AND xcoord<20 THEN newxc
oord=xcoord+l:arrow$=CHR$(243)
370 graphicsx=16+(newxcoord-l)»32
380 graphicsy=8+(25-newycoord)*16
390 colonrpen=TEST(graphicsx,graphicsy)
400 REM if it's a wall, don't move the arrow
410 IF response!<>"" AND colourpen<>3 THEN L0
CATE xcoord,ycoord: PRINT" "; :xcoord=newxcoord
:ycoord=newycoord
420 REM print arrow
430 LOCATE xcoord,ycoord
440 PRINT arrow!;
450 WEND
460 PEN 1
470 PAPER 0

This sets up a maze consisting of randomly placed red 'walls', the
object being to guide your arrow as rapidly as possible to the
bottom right of the screen. Note that you can vary the difficulty of

160 BASIC Programming on the Amstrad

the game. The number of walls randomly placed by the loop from
line 140 to 190 depends on the skill level chosen in line 30.

The walls are printed using PEN 3, and line 410 tests the colour
at the new text position. Only if the colour has not been produced
by PEN 3 is the arrow's position changed to the new text co­
ordinates.

The game is incomplete as it stands, because it is possible to be
unable to reach the destination due to the walls blocking all
paths. There are several ways around this. One is to avoid
printing walls within several character positions of the top left
and bottom right comers, as this reduces the chances of a
blockage. An alternative is to allow the player to 'blow up' a
certain number of walls in the course of the game, by moving
directly into them:

75 blowups=0
410 IF response$<>"" AND (colourpen<>3 OR bio
wups<2) THEN LOCATE xcoord , ycoord:PRINT “ ";:x
coord=newxcoord:ycoord=newycoord
415 IF response$<>"" AND colourpen = 3 THEN bio
wups=blowups+l

In this version the player can destroy two walls by running the
arrow into them. This results in a rather complicated condition in
line 410. IF a movement key has been pressed AND either the
move is to a non-wall position OR the player can still blow up
walls, move the arrow.

The same principles can be applied to a variety of games. The
player may have to guide a car around a race track, avoiding slicks
of black 'oil'; or try to direct a hungry caterpillar towards green
'leaves' while avoiding the poisonous red 'berries'. In each case
TEST would be used to find the colour at the next character
position, and the computer would take different courses of action
depending on what that colour was.

Let's look at another simple program involving the use of
TEST. This is a two-player game where each player must try to
avoid bumping into the walls, or each other. As the characters
move, they leave a trail behind, so the game gets harder the
longer it goes on!

In a game like this it is much easier to break down the program

Games and Graphics 161

into shorter sections, so let's begin with setting up the game
itself: giving the instructions, and so forth:

10 MODE 1
20 PEN 1
30 PRINT "Try to avoid hitting each other, or
the walls."

40 INPUT"What's your name, left hand player";
p1ayerlname$
50 PRINT"Use the z and x keys to turn left or
right."

60 PRINT"Use the d and c keys to go up or dow
n. "
70 PRINT“Your character looks like this: ";:P
EN 3:PRINT CHR$(143)
80 PRINT:PEN 1
90 INPUT"What's your name, right hand player"
; player2name$
100 PRINT"Use the , and . keys to turn left o
r right. "
110 PRINT"Use the / and ; keys to go up or do
wn. "
120 PRINT"Your character looks like this: ";:
PEN 2.-PRINT CHR$(143)
130 PRINT:PEN 1
140 INPUT"Press the ENTER key when you are re
ady.",enter

Now we need to draw the rectangular playing area and set up the
start positions for both players:

150 PAPER 1
160 PEN 0
170 CLS
180 wal1$=CHR$(233)
190 bang$=CHR$(238)
200 leftx=l
210 bottomy=20

162 BASIC Programming on the Amstrad

220 rightx=40
230 topy=l
240 FOR count=topy TO bottomy
250 LOCATE leftx,count
260 PRINT wallt;
270 LOCATE rightx,count
280 PRINT wallt;
290 NEXT
300 LOCATE leftx,topy
310 PRINT STRINGt(rightx-1eftx,wal1t)
320 LOCATE leftx.bottomy
330 PRINT STRINGt(rightx-1eftx ,wallt)
340 playerlx=13
350 playerly=7
360 playerlxmove=l
370 playerlymove=0
380 pl ayer 1t=CHRt(143)
390 playerlhit=O
400 player2x=26
410 player2y=14
420 player2xmove=-l
430 player2ymove=0
440 player2t=CHRt(143)
450 player2hit=0
460 PEN 3
470 LOCATE p1 ayer 1x,p1 ayer 1y
480 PRINT playerlt;
490 PEN 2
500 LOCATE p1 ayer2x,pI ayer2y
510 PRINT player2t;

Finally, we have the game itself, which continues as long as
neither player has hit a wall or the trail the other player leaves
behind:

520 WHILE playerlhit=O AND player2hit=0
530 responset=INKEYt

Games and Graphics 163

540 IF response$="z" THEN pl ayer 1xmove=-1:p1 a
yer 1ymove=0
550 IF response$="x" THEN pl ayer 1xmove=l:p1 ay
er lymove=0
560 IF response$="d" THEN pl ayer 1xmove=0:p1 ay
er 1 ymove = -1
570 IF response$ = "c1' THEN pl ayer 1xmove=0:p1 ay
er 1 ymove= 1
580 playerlx=playerlx+playerlxmove
590 playerly=playerly+playerlymove
600 graphicsx=8+(playerlx-l)*16
610 graphicsy=8+(25-playerly)*16
620 colourpen=TEST(graphicsx,graphicsy)
630 LOCATE p1 ayer 1 x,p1 ayer 1y
640 IF colourpenOl THEN PEN OzPRINT bang$;:p
layerlhit=l ELSE PEN 3:PRINT playerlt;
650 IF response$="," THEN p1 ayer2xmove=-1:p1 a
yer2ymove=0
660 IF response$ = "." THEN player2xmove=l:play
er2ymove=0
670 IF response$=";" THEN player2xmove=0:pl ay
er2ymove=-l
680 IF response$="/" THEN player2xmove=0:pl ay
er2ymove=l
690 player2x=player2x+player2xmove
700 player2y=player2y+player2ymove
710 graphicsx=8+(player2x-l)*16
720 graphicsy=8+(25-p1 ayer2y)* 16
730 colourpen=TEST(graphicsx,graphicsy)
740 LOCATE pl ayer2x,p1 ayer2y
750 IF colourpenOl THEN PEN OsPRINT bang$;:p
layer2hit=l ELSE PEN 2:PRINT player2$;
760 WEND
770 LOCATE 1,24
780 IF playerlhit=l AND player2hit=l THEN PRI
NT"It was a draw. ":END

164 BASIC Programming on the Amstrad

790 IF playerlhit=l THEN PRINT p 1 ayer2name$;"
won." ELSE PRINT playerlname$;" won."

800 PEN 1
810 PAPER 0

There are a few ways things can be speeded up. We could allow
the player to turn only left or right which means we need only
check for two keys instead of four:

540 IF response$="z" OR response$="x" THEN IF
playerlxmove<>0 THEN player1ymove=-player1xm

ove:playerlxmove=0 ELSE p1ayer1xmove=playerly
move:playerlymove=0
550 IF response$="x" THEN playerlxmove=-playe
rlxmove:playerlymove=-playerlymove

650 IF response^"," OR response^"." THEN IF
p1ayer2xmove<>0 THEN player2ymove=-player2xm

ove:player2xmove=0 ELSE player2xmove=player2y
move:player2ymove=0
660 IF response$=". " THEN player2xmove=~playe
r2xmove:player2ymove=-player2ymove

The resulting lines are over-complicated, and the time-saving
minimal, but you might like to figure out why they work!

Another way to speed up the program would be to avoid the
problem of having to convert from text to graphics coordinates.
But how do we do that?

Exercises

1) Improve the maze program by adding timing, so that a player
can see how rapidly he gets through the maze. Calculate a
score based on the skill level chosen and the time taken.

2) Extend the maze program so that some of the walls are printed
in a different colour. Every time the player bumps into these
walls, the score is reduced.

3) Improve the two-player program by making the game con­
tinue until one player has won three games. Print the players'
names and their current scores underneath the playing area.

Games and Graphics 165

4) Make the two-player program more difficult by designing a
new playing area which is not rectangular. Define two new
characters of your own to represent the two players in the
game.

5) Design four racing car characters to represent the different
directions the car might move on the screen. Write a program
to enable you to guide the car around a track drawn in black on
the screen. If the car moves off the track, it crashes. The car will
be easier to control if you include a 'brake' key to bring it to a
halt. Time the car, and bring the game to an end when the car
reaches the finish line, which is printed in a different colour.

6) Extend your previous program by including obstacles on the
track, and adding a second car under another player's control.
You might like to send this car the other way around the
circuit!

Printing to the graphics cursor

All this fiddling about with conversion from text to graphics
coordinates is all very well, but it really points to a weakness in
the approach we have used so far. Here we are, with a graphics
resolution of at worst 160 x 200, and yet in the games we have so
far produced the characters move from one text position to
another. The best text resolution is in mode 2, and even here we
only have 80 characters per line and 25 lines. What we need is to
be able to print characters to a graphics coordinate position. This
way we get the best of both worlds, and we will no longer have to
worry about converting from text to graphics coordinates.

Text can be printed to the graphics position by using the TAG
command (short for Text cursor Attached to Graphics cursor?).
This makes the design of graphs and charts much easier, because
any text can be printed at the right place by using the graphics
coordinates. For example, this program draws a bar chart for 12
months' sales, printing the first letter of the month under the
relevant bar:

10 MODE 1
20 barwidth=50
30 monthwidth=16
40 leftoverwidth=barwidth-monthwidth

166 BASIC Programming on the Amstrad

50 monthposition=leftoverwidth/2
60 xzero=20
70 xmax=639
80 yzero=50
90 ymax=350
100 MOVE xzero,ymax
110 DRAW xzero,yzero, 1
120 DRAW xmax,yzero
130 TAG
140 FOR month=l TO 12
150 READ montht,sales
160 MOVE xzero+ (month-1)*barwidth,yzero
170 DRAW xzero+(month-1)»barwidth,yzero+sales
,3
180 DRAW xzero+month#barwidth,yzero+sales
190 DRAW xzero+month*barwidth,yzero
200 MOVE xzero+(month-1)*barwidth+monthpositi
on, yzero-16
210 PRINT LEFT$(months,1);
220 NEXT
230 DATA January,97,February,130,March,141,Ap
ril ,155,May,210,June,276
240 DATA July,240,August,223,September,112,0c
tober,99,November,84,December,76

A point to note is that the top left comer of a character is tagged to
the graphics cursor, and so you must still be a little careful when
deciding where to print text. This is the reason for the calcu­
lations in lines 20 to 50: they make sure that the single letter will
be printed in the middle of the bar by adding on monthposition
to the x coordinate when the bar is drawn. You might like to
change barwidth at line 20 to 75 or 150 — the letter is still printed
centred beneath the correct bar (although you will find that the
bars are now too wide to all fit on the screen!).

TAG can be switched off by using TAGOFF, at which point the
printing of text will resume at the position the text cursor was at
prior to the TAG command. TAG switches off automatically at the
end of a program or if it is interrupted.

Games and Graphics 167

One point to note if you intend to use TAG in games is that
movement must take into account the limitations of the reso­
lution in whatever mode you're using. It is not possible, for
example, to move a single point vertically in any mode. Doing so
will cause confusion, as the Amstrad will print the moved
character to exactly the same position on-screen. The y move­
ment must always be at least +2 or —2 in any mode. The
horizontal movement varies from mode to mode, and you should
be guided by Figure 14 as to the minimum x movement which
will give a visible change in each mode. This program makes the
process clear:

10 MODE 1
20 TAG
30 x=300
40 y=200
41 MOVE x,y:PRINT CHR$(249);
50 response**""
60 WHILE response*«! >"n"
70 response*=INKEY*
GO IF response*="z" THEN MOVE x,y:PRINT" ";:x
=x-l:M0VE x,y:PRINT CHR*(249);
90 IF response*="x" THEN MOVE x,y:PRINT" ";:x
=x+l:M0VE x,y:PRINT CHR$(249);
100 WEND

You will find that you need to press a key twice to get any visible
movement on-screen. If you run the program in mode 0, the
situation becomes even worse, because here the minimal visible
x movement is +4 or —4, and it takes four key depressions to
make the character move!

ORIGIN and relative movement

The sales program can be simplified even further by drawing
each bar after setting a new graphics origin. We saw earlier in the
book that we could set up text windows, each with their own
coordinates relative to their top left comer. In a similar way, we
can set up new graphics coordinates by shifting the origin, the
point normally at (0,0):

168 BASIC Programming on the Amstrad

10 MODE 1
20 barwidth=50
30 monthwidth=16
40 leftoverwidth=barwidth-monthwidth
50 monthposition=leftoverwidth/2
60 xzero=20
70 xmax=639
80 yzero=50
90 ymax=350
100 MOVE xzero,ymax
110 DRAW xzero,yzero,1
120 DRAW xmax,yzero
121 ORIGIN xzero,yzero
125 MOVE 0,0
130 TAG
140 FOR month=l TO 12
150 READ month*,sales
170 DRAW 0,sales,3
180 DRAW barwidth,sal es
190 DRAW barwidth,0
200 MOVE monthposition,-16
210 PRINT LEFT*(month* , 1) ;
215 xzero=xzero+barwidth
216 ORIGIN xzero,yzero
220 NEXT
230 DATA January,97,February,130,March,141,Ap
ril,155,May,210,June,276
240 DATA July,240,August,223,September,112,0c
tober,99,November,84,December,76

As you can see, the calculations involved in drawing each bar are
greatly simplified. Through the loop beginning at 140, the origin
is shifted each time to be at the bottom left comer of the next bar
to be drawn. The DRAW commands needed to produce the bar
are now very straightforward, as the graphics cursor only needs
to be moved the distance 'sales' vertically to draw the height of
the bar, and 'barwidth' horizontally to draw the width of the bar.

Games and Graphics 169

The advantage of using ORIGIN is that it easily enables us to
draw figures of the same general shape to any position on the
screen. In the sales program each of the bars was a different
height, but changing the origin made the commands to draw
each bar a lot simpler.

Often, the drawing of any figure can be simplified if that
drawing can be described in relative rather than absolute co­
ordinates. Take this program that draws a rectangle:

10 MODE 1
20 MOVE 0,0
30 DRAW 200,0
40 DRAW 200,100
50 DRAW 0,100
60 DRAW 0,0

The coordinates in the program are absolute — in line 30 the
DRAW command refers to the position (200,0) on the graphics
screen, and no matter how many times the program is run, these
coordinates will not change. Yet although this is only a very
simple figure, it is easy to see that having to work out all the
coordinates for the DRAWs makes things much more difficult.
You have probably already noticed this yourself when trying to
write short graphics programs in earlier chapters. It would be
better if a figure could be drawn by referring to the distance to be
moved from the present position, rather than having to work out
the absolute coordinates. The relative moves to draw the rectangle
would look like this:

(-200,0)

(-100,0)'' (100,0)

* ------ >------
(200,0)

Figure 34 Rectangle.

170 BASIC Programming on the Amstrad

In fact we can get relative MOVEs and DRAWs without setting up
a new origin:

10 MODE 1
15 INPUT "Where do you want the rectangle";x,
y
20 MOVE x,y
30 DRAWR 200,0
40 DRAWR 0,100
50 DRAWR -200,0
60 DRAWR 0,-100

The DRAWR commands in lines 30 to 60 tell the computer to
move relative to the previous position visited. Line 30 causes a
line to be drawn from the last point visited to 200 points along and
0 points up. Line 60 causes a line to be drawn from the last point
visited to a point 0 points along and 100 points down.

Adding a scale factor enables us to draw a whole range of
similar rectangles:

10 MODE 1
15 INPUT "Where do you want the rectang1e";x ,
y
20 MOVE x,y
25 INPUT "How big is it going to be";scale
30 DRAWR 200*scale,0
40 DRAWR 0,100»scale
50 DRAWR -200*scale,0
60 DRAWR 0,-100«scale

Inputting a value of 1.5 for the scale gives a rectangle 1.5 times the
size drawn before; a value of 0.1 gives a rectangle just a tenth the
size. Although they are not demonstrated in the above program,
MOVER and PLOTR work in the same way, moving and plotting
relative to the last position. The building up of a picture com­
posed of repetitive elements is made much easier by using
ORIGIN and/or relative drawing commands.

Games and Graphics 171

Exercises

1) Rewrite the maze program from earlier in the chapter so that
the arrow is moved to graphics coordinates rather than text
coordinates.

2) Print a title for the sales chart in an appropriate position
underneath it. Scale the left-hand axis so that it is clear how
many sales there were in each month.

3) Write a program that displays the results of throwing two dice
200 times by drawing a bar chart. Label the axes of the graph
horizontally and vertically.

4) Write a program that draws the outline of a figure using
relative moves and draws:

5) Extend the previous program so that a series of figures is
drawn to form a 'human pyramid', each row being in a dif­
ferent colour.

Changing the INK

So far we have only been able to see some of the colours that the
Amstrad can produce. There are only 16 pens available, and yet
Figure 18 in Chapter 3 showed us that there are 27 INKs we can
use. The Amstrad allows us to change the INK in each PEN so that
we can choose any combination of colours for a particular mode.

The number of colours that can be used on-screen at the same
time in any mode does not change, however. Although we can

172 BASIC Programming on the Amstrad

have bright red text on a white background in mode 2, these are
the only colours we could have on-screen at that time. We are
always limited to 2 colours in mode 2,4 in mode 1, and 16 in mode
0.

When you switch on or reset the Amstrad, it reverts to mode 1
and uses PAPER 0, which is blue (INK number 1) in all the modes,
and PEN 1, which is yellow (INK number 24) in all the modes.
Reset the computer now, and type:

INK 1,6

All the text on-screen changes colour from yellow to bright red
instantly. The INK command needs two numbers. The first
number is the number of the PEN or PAPER whose ink is to be
changed. The second number gives the colour INK which is to be
used instead.

The command INK 1,6 told the Amstrad to change the INK in
PEN 1 to INK number 6, bright red. Anything previously printed or
drawn using PEN 1 has its colour changed from the old to the new
INK. So to turn all the text blue you need only type:

INK 1,2

and what was bright red now becomes bright blue. How would
we return the text to normal? Perhaps you can work it out for
yourself. Type:

INK 1,24

Normally PEN 1 uses INK 24 in all the modes, as you can see if you
look back at Figure 20 in Chapter 3 again.

It is equally easy to change the PAPER colour. At the moment
the Amstrad is using PAPER 0, which is blue. Let's change this to
white:

INK 0,26

Perhaps the text is a bit difficult to read. Try:

INK 0,6

or perhaps:

INK 0,0

The PAPER in all modes is usually blue, INK number 1. This time
I'll leave it to you to turn everything back to normal.

Games and Graphics 173

We don't need to have already used a PEN or PAPER colour to
change it. Reset the Amstrad and type:

INK 3,0

Nothing seems to happen. If we now go on to choose PEN 3 in
mode 1, Figure 20 suggests that text will be printed using INK 6,
bright red. But we have just used the INK command to change the
INK used by PEN 3 to INK 0, black. Type:

PEN 3

and all the text is printed in black. Type:

INK 3,6

and now PEN 3 and all the text it printed is set to INK number 6,
bright red. This colour change remains even if you change mode.
Try it. It is even possible to set a colour so that it flashes between
two different colours! Try:

INK 1,3,26

to see the text printed using PEN 1 changing from INK 3, red, to
INK 26, white, and back again.

One obvious advantage of the INK command is that it enables
us to choose any colour combinations from the 27 INKs. Even in a
two-colour mode like mode 2 we can brighten things up by using
red text on a white background, instead of being restricted to just
the colours yellow and blue which are available at switch-on.
This program lets you see the more than 700 combinations of
colour you now have in mode 2:

10 MODE 2
20 FOR x=0 TO 27
30 CLS
40 INK 0,x
50 FOR y = 0 TO 27
60 IF xOy THEN INK 1, y: PR I NT" INK "; y
70 response$=""
80 WHILE re5ponse$=""
90 response$=INKEY$
100 WEND
110 NEXT
120 NEXT

174 BASIC Programming on the Amstrad

A less obvious advantage is that by setting the PEN colour to that
of the background, messages or diagrams can be made to appear
on the screen instantly, instead of seeing them as they are drawn:

10 MODE 0
20 REM print stick men using different pens
30 FOR x = 1 TO 17 STEP 4
40 FOR y = 1 TO 20 STEP 4
50 PEN 1
60 REM set to background colour
70 INK 1,1
80 LOCATE x,y
90 PRINT CHRi(248) ;
100 NEXT
110 NEXT
120 PEN 5
130 INK 5,24
140 LOCATE 1,22
150 PRINT"Press any key to see the men.";
160 REM wait for key depression
170 response^""
180 WHILE response**""
190 response*=INKEY$
200 WEND
210 INK 1,24

We can set a whole series of PENs so that they produce the
background colour, which is in INK 1. This program takes the last
idea a stage further, and produces a veritable ballet of stick men
that prance across the screen as the PEN colours are switched
from foreground to background and back again:

10 MODE 0
11 REM print stick men using different pens
20 FOR x = 1 TO 17 STEP 4
30 FOR y= 1 TO 20 STEP 4
40 PEN 1
41 REM set to background colour

175

50 INK 1,1
60 LOCATE x,y
70 PRINT CHR$(248);
80 PEN 2
81 REM set to background colour
90 INK 2,1
100 PRINT CHR$(249);
110 PEN 3
111 REM set to background colour
120 INK 3,1
130 PRINT CHRK250);
140 PEN 4
141 REM set to background colour
150 INK 4,1
160 PRINT CHR$(251) ;
170 NEXT
180 NEXT
190 PEN 5
200 INK 5,24
210 LOCATE 1,22
220 PRINT"Press any key to see the men move."
?
221 REM cycle through colours
230 FOR colours=0 TO 50
231 REM wait -for key depression
240 response**""
250 WHILE response**""
260 response*=INKEY$
270 WEND
271 REM work out colour to change to backgrou
nd
280 wipe=colours MOD 4
290 IF wipe=0 THEN wipe=4
300 INK wipe,l
301 REM work out colour to change to foregrou
nd

176 BASIC Programming on the Amstrad

310 show=(col ours +1) MOD 4
320 IF show=0 THEN show=4
330 INK show,24
340 NEXT
341 REM turn PEN 1 back to normal
350 PEN 1
360 INK 1,24

Line 230 runs through the INK colours from 0 to 50. We are
actually interested only in INK colours 1 to 4, and we get numbers
in this range in lines 280 and 310. The MOD command gives the
remainder when the number is divided. For example, 17 MOD 4
yields 1, because there is a remainder of 1 when 17 is divided by
4. There is still a slight problem, because the range of numbers we
get actually goes from 0 to 3, and not from 1 to 4. 8 MOD 4 gives a
remainder of 0, so lines 290 and 320 are included to adjust the
result to show a 'remainder' of 4. The net effect is that on each
pass through the loop, one colour is switched to 1, the back­
ground, and the next colour is switched to 24, the foreground.
The program cycles through INKs 1, 2, 3 and 4, and the eye is
deceived into seeing the men move across the screen, when they
are actually just being switched on and off like light bulbs.

Exercises

1) Write a program that resets the INK colours so that a message
is printed in mode 1 on a white background with the text being
in purple, black and green.

2) Add a few lines to the maze program from earlier in the
chapter so that the screen display is drawn in the background
colour and appears instantly once it is complete.

3) Draw a picture of a house against a blue sky, with green grass
in front of it. On the touch of a key, switch the colours so that
the same scene is shown at night, with light shining from the
house windows.

4) Envelop the house in your previous program in flames, pro­
duced by drawing lines in a series of suitable flashing colours.

Chapter Nine

Planning a Program

How the Amstrad can help you

We have come some way in the last few chapters, and the
programs we have looked at have been longer and more complex
than those at the beginning of the book. By now you should be
well used to the editing facilities of the Amstrad, but there is still
a few other ways the micro can make programming easier that
we have not yet discovered. One of the things we shall discuss in
this chapter is how the Amstrad can help you track down the
errors or 'bugs' that inevitably occur in any developing program.

However, the primary purpose of this chapter is to emphasise
the importance of planning programs, and suggest ways in
which you can avoid the problems which tend to occur in poorly
organised programs. To this end, this chapter contains a games
program from its conception to its final appearance as a working,
bug-free program.

First, let's make life a little easier for ourselves and discover
how the Amstrad can help lazy humans.

The function keys

You will already have found there are some commands that you
seem to use excessively. For example, you have typed LIST and
RUN with monotonous frequency in the course of this book.
Help is at hand! You can LIST or RUN a program by pressing just
a single function key. (Load or type in a brief program now so that
you have something that can be listed or run!)

We saw in Chapter 6 that every character has associated with it
an ASCII code. The codes from 0 to 31 have special meanings; the
codes 32 to 127 are for the upper and lower case characters, the
numbers, and various other characters; and the codes 128 to 159

177

178 BASIC Programming on the Amstrad

can each be associated with a much longer string which will be
produced when the appropriate key is pressed.

Although the separate numeric keys appear to be no different
to the top row of numeric keys in the characters they generate, the
Amstrad sees each of the keys on the numeric keypad as auto­
matically associated with the special ASCII codes 128 to 140:

Key ASCII code

0
1
2
3
4
5
6
7
8
9

ENTER

128
129
130
131
132
133
134
135
136
137
138
139

Figure 36 ASCII codes.

Each of the numeric keys can be set to produce a whole string
when it is pressed by first setting the key with a command like:

KEY 128,“Hello there Amstrad user!”

From Figure 31 we can see that 0 on the numeric keypad is
associated with the code 128, and if you now press 0, you will see
'Hello there Amstrad user!' printed at a single key-stroke.
Although any key on the keyboard can be set to carry out this
kind of action, only the keys on the numeric keypad can be
programmed so easily, and so they are known as the function
keys. Each of these keys can have its functions redefined to
produce a particular result when it is pressed.

A more sensible use for the key might be to set it to LIST a
program:

KEY 128,“LIST”

Notice that the key number must be followed by a comma, and
anything we want printed must be in inverted commas. If you
press 0 again you will find that LIST is printed, but the cursor

Planning a Program 179

stops at the end of the word, waiting for you to press [ENTER].
Sometimes you may want the cursor to stop here, but in this case
it would be nice if the Amstrad pressed its own [ENTER] key so
that the listing could go ahead.

The action of pressing [ENTER] is represented by one of those
ASCII codes from 0 to 31, in fact ASCII code 13. Type:

KEY 128,"LIST"+CHR$(13)

and press 0 again, and you will see the Amstrad prints LIST and
moves the cursor to a new line, listing any program you currently
have in the computer.

It's sensible to include an [ENTER] at the start of the key
definition. If you've just input a line and you have forgotten to
press the [ENTER] key, pressing the 0 at this stage will tack LIST
onto the end of the program line — not what you really intended!
If you define the key as:

KEY 128,CHR$(13)+"LIST"+CHR$(13)

the Amstrad will start a new line and then print LIST when you
press 0.

The key definition can be extended to include other Basic
key-words. It is a good idea to switch to mode 1 before listing a
program. For example:

KEY 128,CHR$(13)+"MODE 1:LIST"+CHR$(13)

Because the numeric keys are still available on the top row of the
keyboard, all the keys on the numeric keypad can be redefined so
that they produce frequently used commands at the touch of a
key. These definitions can be included in a program and saved for
future use:

10 KEY 128,CHR$(13)+"mode 1; 1 ist"+CHR$(13)
20 KEY 129,CHRI(13)+"run"+CHR$(13)
30 KEY 130,CHR$(13)+"save"
40 KEY 131,CHR$(13)+"1oad"
50 KEY 138,CHR$(13)+"auto"
60 KEY 139,CHR$(13)+"cls"+CHR$(13)
70 KEY 132,"while"
80 KEY 133,"wend"
90 KEY 134,"for"

180 BASIC Programming on the Amstrad

100 KEY 135,"next"
110 KEY 136, "read"
120 KEY 137,"data"

How you choose to define the keys is a matter of personal choice.
The first few definitions in the program above are of general use,
whereas lines 70 to 120 set the remaining keys to produce key­
words I use a lot in programming. You might have your own
preferences.

The great advantage of setting the definitions in a program is
that the program can be loaded and run at the start of any pro­
gramming session, thus your keys are ready for use! You can
even have several sets of key definitions, the one you use
depending on the type of program you're working on. For
example, for graphics work you might define the keys like this:

10 KEY 128,CHR$(13)+"mode 1:1ist"+CHR$(13)
20 KEY 129,CHR$(13)+"run“+CHR$(13)
30 KEY 130,CHR$(13)+"save"
40 KEY 131 ,CHR$(13)+ "load"
50 KEY 138,CHR$(13)+"auto"
60 KEY 139, CHR$(13) + "c15 " + CHR$(13)
70 KEY 132,"move"
80 KEY 133,"draw"
90 KEY 134,"plot"
100 KEY 135,"pen"
110 KEY 136,"window"
120 KEY 137,"data"

One weakness of the function keys is that unfortunately there is
no way of making it clear exactly what each key now does. The
only way around this is to stick some labels onto the keys, or to
cultivate a good memory! Don't let this put you off the function
keys. Unless you are a touch-typist the keys are a valuable
resource and you should use them.

There is a limitation on the number of characters that can be
stored within the function keys. There can be no more than 120
characters shared between all the keys. You can see this if you
edit the last line of the last program so that KEY 137 has a

Planning a Program 181

definition covering 2 lines in mode 1. (Just hold down any key to
fill up the line with characters.) When you run the program the
Amstrad gives an error message, because the key definition,
taken with the others, exceeds 120 characters. Unless you plan on
using very long key definitions, this is unlikely to be a problem.
You may even regret having no other keys to redefine if your
present key definitions don't use all the 120 characters allowed.

Defining other keys

Other keys on the keyboard can also be redefined, but the
procedure here is more complicated than the programming of the
numeric keypad. First, we must select a key to redefine. Let's use
'A'. Next, we must decide what we wish to define the key to
produce. We can only redefine it to another ASCII code, not a
string of characters as we did for the other keys. Let's redefine 'A'
to produce the ASCII code for 'Z':

KEY DEF 69,1,90

The first number in the definition is the KEY NUMBER for 'A'. A
full list of all key numbers is given in Appendix III, page 16, of the
User Instructions. The second number is either 0 or 1, and indi­
cates whether we want the key to auto-repeat or not, 1 allowing
auto-repeat, and 0 switching it off. The third number is the ASCII
code of the character we now want the key to produce. The ASCII
code for an upper case 'Z' is 90.

So key 46, 'A', is now set to produce 'Z' every time it is pressed.
You will find that this applies whether the CAPS LOCK is on or
off. The key still generates an upper case 'Z'. To turn the key back
we must redefine it to its lower case ASCII code:

KEY DEF 69,1,97

where 97 is the ASCII code for a lower case 'a'.
This whole exercise seems rather a waste of time. What

advantage does it give us to be able to swap the ASCII codes
around on the keyboard and confuse ourselves?

Earlier I said that the codes 128 to 159 can each be associated
with a longer string. We have seen that codes 128 to 140 are
automatically allocated to the numeric keypad. But what about
the codes 141 to 159? How can we get at these codes and use them?

The answer is to use both the KEY and KEY DEF commands.

182 BASIC Programming on the Amstrad

Let's select a key that we don't ordinarily use, and redefine it. I
have chosen the key with the £ sign:

KEY DEF 24,0,141

The £ key will now produce the ASCII code 141 when we press it.
Press it now and nothing happens, because 141 is one of those
special codes, and we haven't defined it yet! Type:

KEY 141"read"

Now press the £ key again. 'Read' is printed. We have set up an
indirect connection between the keyboard and one of the in­
accessible special codes, 141.

In general, the way to extend function key use beyond the
numeric keypad is as follows:

1) Select a key on the keyboard that is rarely used.
2) Redefine that key with KEY DEF so it produces one of the

special ASCII codes in the range 141 to 159.
3) Define the special ASCII code using KEY to give the longer

string you want printed when you press the key.

This principle has been adopted in the following program, which
redefines 5 of the rarely used keys to the right of the keyboard:

10 KEY 128,CHR$(13)+" mode 1:1 ist"+CHR$(13)
20 KEY 129,CHR$(13)+" run"+CHR$(13)
30 KEY 130,CHR$(13)+" save"
40 KEY 131,CHR$(13)+ “ load"
50 KEY 138,CHR$(13)+" auto"
60 KEY 139,CHR$ (13) +11 cl s"+CHR$(13)
70 KEY 132,"move"
80 KEY 133,"draw"
90 KEY 134,"plot"
100 KEY 135,"pen"
110 KEY 136,"window"
120 KEY 137,"data"
121 REM pound sign
130 KEY DEF 24,0,141
140 KEY 141, "read"

Planning a Program 183

141 REM 'at' sign
150 KEY DEF 26,0,142
160 KEY 142,“while"
161 REM left square bracket
170 KEY DEF 17,0,143
180 KEY 143,"wend"
181 REM right square bracket
190 KEY DEF 19,0,144
200 KEY 144,"For"
201 REM slash
210 KEY DEF 22,0,145
220 KEY 145,"next"

Another key you may care to redefine is the TAB key to the left of
the keyboard, but after that it becomes difficult to find keys
which could be spared from their normal duties. One way around
this is to use the extended KEY DEF statement to redefine a key to
more than one function:

KEY DEF 22,0,145,146,147
KEY 145,"if”
KEY 146,"then"
KEY 147,"else"

The slash key has now been redefined to produce ASCII code 145
when pressed on its own, 146 when pressed at the same time as
[SHIFT], and 147 when pressed with [C TRL]. Try out the different
combinations and you will find you can produce a whole IF . . .
THEN . . . ELSE statement using just the slash key and a few
others!

Exercises

1) Set up your own function keys, and save the program for
future use. A few other functions you might like to include
are: resetting of PEN and PAPER colours to your favourite
combination; setting keys to produce KEY and KEY DEF to
speed up redefinition of keys; setting keys to print frequently
used variable names like 'count', 'continue', 'number', etc.

184 BASIC Programming on the Amstrad

Bugs and debugging

Earlier in the book we mentioned the mistakes that are made in
programs — the quaintly named 'bugs' that we have to seek out
and correct before the program runs properly. Contrary to what
you may believe, no program springs into being fully working
the first time it is run, unless it is of a very trivial nature. Most
programs are the result of pre-program planning, followed by a
period of tinkering with the program to iron out problems that
the programmer has failed to anticipate in the original program
design. If the programmer has not spent enough time in plan­
ning, the changes that need to be introduced can be so major that
the program needs to be virtually rewritten.

So don't be surprised by bugs — expect them, especially if you
are new to computing and still unfamiliar with the commands.
The Amstrad itself has facilities to help identify errors, and if you
use these facilities wisely you will find it much easier to detect
and correct bugs. Let's look at a very short program that demon­
strates some of these programming aids:

10 ON ERROR GOTO 100
20 pront"Hel1o"
30 END
100 PRINT"The error occurred at line ";ERL
110 PRINT"The error number is ";ERR
120 END

Line 20 contains a deliberate mistake — FRONT instead of
PRINT. Line 10 tells the Amstrad that whenever it finds an error
anywhere in the program, it should jump to line 100 and obey the
commands there. Line 100 prints the line number for the line
containing the error, and 110 prints the error number. The latter
is a number the Amstrad assigns to indicate the type of error it
has encountered. If you run the program, you will find that the
error number is 2. Appendix VIII of the User Instructions gives a
list of the error numbers and the errors associated with them, and
this reveals that error 2 indicates a syntax error—a mistake in the
'grammar' of the line.

The Amstrad also prints the offending line so that you can edit
it. Curiously, you receive rather more information if you leave

Planning a Program 185

line 10 out, because then the Amstrad actually describes the error
rather than just giving the error number! Most other micros don't
respond so positively when errors occur, and ON ERROR is more
important. The Amstrad actually seems to deal with some errors
better without ON ERROR, but it still has some features that
make it useful as the following program shows:

10 ON ERROR GOTO 1000
20 PEN 0
30 papper 1
40 END
1000 MODE 1
1010 INK 1,24
1020 INK 0,1
1030 PEN 1
1040 PAPER 0
1050 PRINT"The error occurred at line ";ERL
1060 PRINT"The error number is ";ERR
1070 END

The problem with line 20 is that the error occurs after PEN 0 has
been selected, so the normal error messages given by the
Amstrad would be invisibly printed in the background colour!
ON ERROR directs the program to line 1000, and lines 1010
onwards restore normal INK, PEN and PAPER values so that the
error report is readable. Any error which occurs after a switch in
PEN and PAPER colours can be difficult to read, as you may
already have discovered!

The errors we have discussed so far have all been syntax errors,
but there are many other sorts of errors which may occur in a
program. Typing:

number="Hello”

gives a 'Type mismatch' message which means we are trying to
store a string in a numeric variable. These errors are detectable by
the Amstrad because they disobey the 'rules' stored in the ROM,
and because they are detectable they are relatively easy to correct.
Much more of a problem are the logical errors made by the
programmer.

186 BASIC Programming on the Amstrad

A logical error is one which occurs as a result of a mistake in the
logic of the program. For example, this program adds two
numbers together ... or does it?

10 MODE 1
20 numberl=5
30 number2=7
40 PRINT numberl;" plus ";number2;" gives ";n
umber 1 «-number 2
50 END

The program runs perfectly well, as none of the lines breaks any of
the grammatical 'rules' that the Amstrad follows. Yet it still gives
the wrong result, because the programmer has made a logical
error on line 40, where the two numbers have been multiplied
instead of added. In this case the error is obvious, but suppose
the result had not been printed on the screen, but used as the
basis for another calculation, and then another, and then a
third. ... By the time it becomes clear that there is a bug some­
where in the program, the source of the problem would be many
lines further back, making the original error very difficult to
detect.

One typical logical error is where a non-terminating loop is set
up:

10 ON ERROR GOTO 1000
20 continued)
30 WHILE continue=0
40 WEND
50 END
1000 MODE 1
1010 INK 1,24
1020 INK 0,1
1030 PEN 1
1040 PAPER 0
1050 PRINT"The error occurred at line ";ERL
1060 PRINT"The error number is “;ERR
1070 END

Fortunately it is easy to escape from the program by pressing
[ESC] twice, because this even takes precedence over an ON

Planning a Program 187

ERROR statement. But what happens if we have something like
this:

22 PEN 2
24 INK 2,1

where lines 22 and 24 are part of the set-up procedure before the
program proper begins with the loop at line 30? Pressing [ESC]
now leaves us in a similar position to before, with everything
unreadable. Fortunately, a minor change to line 10 solves the
problem:

10 ON BREAK GOSUB 1000

Pressing [ESC] twice breaks from the program, and line 10 tells
the Amstrad what to do in these circumstances. It is to jump to
line 1000 and carry out the instructions there. You will notice that
the messages you get in lines 1050 and 1060 are not very appro­
priate any more, because the Amstrad has no errors to report, as
you have forcibly interrupted the program. Lines like this would
be deleted, but lines 1000 to 1040 serve a useful purpose in
restoring everything to normal.

Why GOSUB in line 10 and not GOTO as we had for ON . . .
ERROR? We shall come to that shortly.

Another useful debugging command is STOP:

10. MODE 1
20 FOR x = l TO 100
30 IF x MOD 5=0 THEN STOP
40 NEXT

STOP enables us to stop a program running, have a look at the
state of any variables we are interested in, and then continue the
program run. If you run the above program the Amstrad prints
'Break in 30'. At this stage you could type 'PRINT x' and the
Amstrad will give you the present value of the numeric variable x,
5. Now type CONT and the program continues from where it had
left off. The next time 'Break in 30' is reported, x is 10, and so on.
The program is a contrived example, but it is often useful to stop a
program part-way through a run to try to discover which variable
it is that is set to the wrong value.

When debugging a program it is best to set up an ON ERROR

188 BASIC Programming on the Amstrad

statement right at the start, to ensure any detectable errors are
caught and reported. STOP should be inserted at appropriate
points if it is clear that a logical error is involved, and the function
keys should be set up to print the values of any variables you are
interested in.

Organising your program

In the last section we met the ON BREAK GOSUB command for
the first time. We failed to use the GOSUB part of the command
correctly. A GOSUB command tells the computer to jump to the
line number given and carry out all the commands on the lines
following, until a RETURN is encountered:

10 MODE 1
20 GOSUB 100
30 PRINT"Now out of subroutine."
40 END
100 FOR count=l TO 10
110 PRINT" Inside subroutine loop count is ";c
ount
120 NEXT
130 RETURN

Line 20 directs the computer to the subroutine beginning at line
100. The Amstrad obeys the loop from lines 100 to 120, and at line
130 the RETURN statement tells the computer to jump back to the
instruction following the original GOSUB, which in this case
occurred at line 20. The computer prints the message at line 30
and the program ends.

Line 40 is rather important since without it the Amstrad will
come to the subroutine at line 100 and try to obey it again!

GOSUB is the first instruction we have met that breaks up the
progression of a program from first line to last. Admittedly, we
have used loops which cause the computer to repeatedly obey
some commands, but up until now all the programs we have
looked at have begun at the lowest-numbered line and pro­
gressed through to the highest-numbered line.

In the last few chapters the programs we have been looking at
have been getting more complex. Once a program grows longer

Planning a Program 189

than about 10 lines, it is much easier to cope with its development
if the program is broken into much smaller chunks. The use of
subroutines enables us to plan a program as a series of sub­
programs, each designed to carry out a particular task. Rather
than trying to write an entire program and then struggling
through the whole thing wondering where the bugs began, we
can write the program as several subroutines, and test and debug
each one before proceeding to the next.

This may all sound a bit abstract, so let's proceed to an example.
We are going to write a program to play a game. It's a popular
game, and there have been versions written for most micros.

Planning the program

In the game, the player controls an aeroplane which flies from left
to right across the screen, dropping down a line and beginning its
flight again whenever it reaches the right-hand side. The plane
flies above a number of tall buildings of differing heights.
Whenever the player presses the 'b' key, a single bomb is
dropped. If it hits a building, the top of the building is blown off.
Otherwise the bomb continues to fall until it hits the ground,
where it explodes. While a bomb is in flight the player cannot
drop another bomb. The object of the game is to land the plane
safely by destroying all the buildings. If the player fails to do this,
the plane's descending flight eventually causes it to crash into
one of the buildings, and the game ends.

From a programming point of view, we can view the game as
falling naturally into several separate sections:

1) The instructions for playing the game, the setting of the skill
level, etc.

2) The initialisation of the variables to be used in the game,
where each variable is given its starting value, and the
drawing of the screen display with the buildings and plane in
their start positions.

3) The game itself.
4) The after-game comments, plus the player's score, resetting of

INKs to normal, etc.

The above division is artificial, and you might well divide 2) into
two parts, for example. At this stage we are not too concerned
with the detail of the program, more with its overall shape.

190 BASIC Programming on the Amstrad

We can now begin to write our program:

1 ON ERROR GOTO 70
10 MODE 1
11 REM instructions
20 GOSUB 1000
21 REM set up start position for game
30 GOSUB 2000
31 REM play the game
40 GOSUB 3000
41 REM comments and score
50 GOSUB 4000
60 END
70 INK 0,1
80 INK 1,24
90 INK 2,20
100 INK 3,6
110 PEN 1
120 PAPER 0
130 PRINT"Error at line “;ERL
140 PRINT"Error number ";ERR
150 END
1000 REM we'll fill this up later
1100 RETURN
2000 REM we'll fill this up later
2100 RETURN
3000 REM we'll fill this up later
3100 RETURN
4000 REM we'll fill this up later
4100 RETURN

That was easy, wasn't it? True, the program doesn't do anything
yet, but we have set up its skeleton, and we can now add flesh to
the bones. The high numbers for the subroutines are so that we
have plenty of spare line numbers once we begin programming.
Keeping the major sub-programs at thousand-line intervals
makes it easy to remember which line numbers to list when you
are working on a particular subroutine. The 'empty' subroutines
are ready to be filled, but by setting them up we can ensure that

Planning a Program 191

we can run the program having written very little of it! Rim it
now.

Notice that we have already set up the ON ERROR statement at
line 1 to guard against any disasters with colour changes, and that
we have sprinkled REMs liberally about our few lines. When you
are working on a very long program, it is easy to forget over
several weeks what is the function of different parts of the
program. REMs are a valuable reminder. Do note that once the
program is complete, REMs make it longer and will slow it down.
It's often useful to save two versions of a 'completed' program,
one with and one without the REMs. If any bugs turn up, you still
have the REMed version to remind you of the purposes of
different parts of the program. The shorter version is the working
version, which you will usually want to run as quickly as
possible!

Okay, let's tackle subroutine 1000 first. This is going to give the
instructions and set the skill level. Let's liven things up by using
red text on white:

1000 PEN 3
1010 INK 0,26
1020 PRINT"In this game you must try to bomb
all"
1030 PRINT"the buildings so that your plane c
an “
1040 PRINT"land safely. Press b to drop a bom
b. "
1050 PRINT"0nce a bomb starts falling, you ca
n"
1060 PRINT"only launch another bomb when that
one"

1070 PRINT"has landed.
1080 PRINT:PRINT"What is your skill level (1,
easy"

1090 INPUT "to 10, hard)";skill
1100 RETURN

If you run the program now, you will receive the instructions and
have a chance to choose your skill level. The program then ends.
This may not seem very impressive, but the point is that we can

192 BASIC Programming on the Amstrad

now forget about this part of the program. We have tested it and,
on its own, it works.

It may be that a subroutine developed later will reveal an error
in this earlier routine. We might have used 'skilll' instead of 'skill'
at line 1090, for example. At the moment we don't do anything
with 'skill', so an error like that wouldn't come to light until later.
But any errors that do occur will be as a result of this subroutine's
interaction with another subroutine. We have tested this sub­
routine and, as far as we can see at the moment, it does the job for
which it was written.

Now let's look at subroutine 2000. There are a lot of decisions to
be made here, before the program proper begins. We must select
an appropriate mode. We must decide if this is the sort of game
that requires TAG or whether text coordinates are more appro­
priate. We must design characters for the plane and the
buildings, and decide whether these should be single characters
or multiple ones. We must decide what colours we should use,
and how much of the screen should be 'sky' and how much
'ground'. We must devise a way of drawing the buildings in their
various heights, and pick out a suitable starting position for the
plane.

With regard to the rest of the program, we need to have a
variable which we can set when a bomb is dropped, so that we
know whether to allow the player to drop another bomb or not.
We need to set a variable to indicate when the plane has hit a
building, so that we know when the game's over.

All of these decisions must be made before we write any lines
of the subroutine, and trying to decide at the keyboard will only
make the program take much longer to write. There are many
possible solutions to these problems, and the following is only an
example:

1999 REM set up 'sky'
2000 WINDOW 1,40,1,20
2010 INK 0,2
2020 PAPER 0
2030 CLS
2031 REM set up 'grass'
2040 WINDOW #1,1,40,21,25
2050 INK 2,19

Planning a Program 193

2060 PAPER #1,2
2070 CLS #1
2071 REM define back and front of plane
2080 SYMBOL 240,0,0,192,192,255,0,0,0
2090 SYMBOL 241,0,128,192,224,254,224,192,128
2100 pl ane!=CHR!(240)+CHR!(241)
2101 REM define one 'block' of building
2110 SYMBOL 242,221,221,255,221,221,221,255,2
21
2120 bui1 ding$=CHR$(242)
2130 bomb$=CHRI(252)
2140 bang$=CHR$(238)
2141 REM number of buildings depends on skill
2142 REM but add 5 because we must have some!
2150 numberofbuildings=INT(RND*skill+5)
2151 REM print them
2160 FOR number=l TO numberofbuiIdings
2161 REM pick random x text coordinate
2170 x=INT(RND*20+10)
2171 REM height depends on skill
2172 REM but add 1 because they must be at le
ast this high!
2180 height = I NT(RND*(ski11+3) +1)
2181 REM print building block by block
2190 FOR count=0 TO height
2200 y=20-count: PEN 3
2210 LOCATE x,y
2220 PRINT building!;
2230 NEXT
2240 NEXT
2241 REM place plane and print
2250 planex=l
2260 planey=l
2270 INK 1,0
2280 PEN 1
2290 LOCATE p1anex ,planey

194 BASIC Programming on the Amstrad

2300 PRINT planet;
2301 REM set variables to register bomb dropp
ing, plane hit, score
2310 planehit=0
2320 bomb=0
2330 score=0
2340 RETURN

Again, we can run the program and confirm that the first two
subroutines work. If all the buildings were drawn in the 'sky', or
the 'grass' was red, we would tinker with these logical errors until
the subroutine worked properly.

We now come to subroutine 3000, which is really the crux of the
whole program. The game itself is likely to be so complicated that
it may have to be broken down into further subroutines, so for
the moment we will only seek to identify the most important
aspect of the game — when does it end? Clearly, the game must
continue while the plane has not hit a building or 'landed' on
the grass. We can choose any position as the final landing
position which the plane must reach. I have chosen the bottom
right character position:

2999 REM keep game going while plane not land
ed or crashed
3000 WHILE (planex<>39 OR planey<>20) AND pla
nehit=0
3010 GOSUB 5000
3020 WEND
3021 REM keep final screen on display for 2 s
econds
3030 oldtime=TIME
3040 WHILE TIME<oldtime+600
3050 WEND
3060 RETURN

The condition at line 3000 is rather complicated, and it seems we
can really only test whether it's correct or not once subroutine
5000 has been developed. Let's leave that for later, and continue

Planning a Program 195

by completing the last of our main subroutines, that beginning at
line 4000:

4000 MODE 1
4010 INK 0,1
4020 INK 1,24
4030 INK 2,20
4040 INK 3,6
4050 IF planehit=O THEN score=score+skill
4060 PRINT"¥our score at skill level "jskill
4070 PRINT"was: ;
4080 PEN 3
4090 PRINT score*skill
4100 PEN 1
4110 RETURN

This subroutine resets normal INK and PEN colours and gives the
score. Unfortunately we can't reach this subroutine at the
moment, because the loop in subroutine 3000 never terminates
when the program is run. But wait. . . there is a way we can make
the loop terminate, simply by setting the variable planex, planey
or planehit to the right value. This also gives us the opportunity
to make sure the conditions at line 3000 are correct. Let's pop a
line inside subroutine 5000 which should terminate the loop:

5000 planehit=l
5100 RETURN

Run the program. It seems to work, doesn't it? And it proves that
subroutine 4000 works, too. Let's just make sure the loop also
terminates if planex and planey are set to their 'landing position'
values:

5000 planex=39:planey=20
5100 RETURN

That works too. We have now completed the main body of the
program, and can proceed with subroutine 5000, which will
control each cycle of the game. Looking at the screen display at
the start of the game, it is clear that the first thing we must do is

196 BASIC Programming on the Amstrad

erase the plane from its old position. Subsequently we will want
to:

1) Move the plane along and check its new position will not be on
a building.

2) If the plane has hit a building, do a suitable explosion, set
planehit to 1, and end the game.

3) If a bomb is dropping, move it down one and do explosions if
necessary.

4) If the 'b' key is pressed and no bomb is dropping, then drop
one.

I have added a further stage to increase the range of skill needed
in the game:

5) Pause for a time dependent on the skill level.

Stages 1) and 5) will take place every time, so we will confine these
to subroutine 5000. The remaining stages may or may not occur,
and they are each complex enough to warrant a separate sub­
routine. In the previous chapters some of the IF . . . THEN
statements have been very complex, because all the statements
following the IF have to be on the same line. If we put all the
statements into a separate subroutine the lines will be shorter,
and the program easier to understand and debug:

4999 REM main game routine - start by erasing
plane

5000 LOCATE planex , planey
5010 PRINT" 11;
5011 REM move plane along
5020 p1anex=p1anex+1
5021 REM move plane down if it's reached righ
t edge
5030 IF planex>39 THEN planex = l:planey = planey
+ 1
5031 REM calculate graphics coords for new po
sition of front of plane
5040 planegx=8+planex*16
5050 planegy=8+(25-planey)*16
5060 colourpen=TEST(planegx,planegy)

Planning a Program 197

5061 REM blow plane up if it's a building
5070 IF colourpenOO THEN GOSUB 6000:RETURN
5071 REM move bomb if it's dropping
5080 IF bomb=l THEN GOSUB 7000
5081 REM check keyboard
5090 response^INKEY$
5091 REM drop bomb only if one isn't dropping
5100 IF response$="b" AND bomb=0 THEN GOSUB 8
000
5101 REM print plane at new position
5110 PEN 1
5120 LOCATE p1anex,p1aney
5130 PRINT planet;
5131 REM pause from 0 to 3/100ths second
5140 oldtime=TIME
5150 WHILE TIME<oldtime+10-skill
5160 WEND
5170 RETURN
6000 REM we'll fill this up later
6100 RETURN
7000 REM we’ll fill this up later
7100 RETURN
8000 REM we'll fill this up later
8100 RETURN

Notice line 5070 — the first time we have used more than one
RETURN in a subroutine. What we are really saying here is that if
the plane has hit a building, we want to go to subroutine 6000, do
an explosion, and once this is carried out we want the present
subroutine to end. After all, the game will be over, and there
seems little point in going through stages 3) to 5).

Line 5040 doesn't seem the same as the line we have used
before to find the graphics x coordinate. The plane is made up of
two characters, and the planex coordinate is actually the text
position for the back part of the plane only. If we used TEST to
find the colour at the centre of the next text position, we would
end up looking at the front of the plane! So line 5040 examines the
colour of the character one text position further along.

198 BASIC Programming on the Amstrad

Run the program again, and you will see that we now have an
opportunity to test and debug this plane-move routine before
going any further. The plane seems to travel across the screen well
enough, but when it hits a building in line 5070 it carries right on
through! This is because we have not yet written subroutine
6000, which will set planehit to 1. Let's just add that line now to
make sure that this subroutine works:

6000 planehit=l

Run the program again. The plane hits a building, the game ends,
and you get the right sort of score for this very poor effort. We
should also make sure that the program behaves properly if we
manage to land the plane. The easiest way to do this is to run the
program with no buildings being drawn. If you add this line:

2143 GOTO 2250

the Amstrad will jump to the stated line number avoiding the
lines that print the buildings, and we can test the program again.
Many programs use the GOTO statement quite indiscriminately,
and it makes them hard to follow and difficult to debug. GOTO
does have its uses, as we've just seen here, but in general GOTOs
should be used sparingly . The one above is one of the few in this
book, and here we are using the GOTO primarily for test
purposes anyway, and can delete it once we confirm that sub­
routine 5000 works correctly.

We have begun to develop subroutine 6000, so let's complete it:

5999 REM blow plane up
6000 LOCATE p1anex,p1aney
6010 PRINT bang«;
6011 REM -flash colours
6020 INK 3,6,26
6021 REM indicate plane is hit
6030 planehit=l
6040 RETURN

Running the program again confirms that this section works.
Now let's turn our attention to subroutine 8000. This drops the

Planning a Program 199

bomb, and we must obviously get this routine working before we
can move on to the main bomb-drop routine at 7000:

7999 REM 'b' pressed - drop bomb
8000 bombx=planex
8001 REM bomb must be one line further down s
creen than plane
8010 bomby=planey+l
8011 REM don't drop it if the plane's on the
'grass'
8020 IF bomby>20 THEN RETURN
8021 REM indicate the bomb is dropping
8030 bomb=1
8031 REM print bomb to its start position
8040 LOCATE bombx,bomby
8050 PEN 1
8060 PRINT bomb$;
8070 RETURN

Run the program to confirm that you can drop a bomb. It remains
frozen in the 'sky', and no further bombs can be dropped because
'bomb' is set to 1 to show the bomb is dropping. This shows that
line 5100 has the conditions correctly set to prevent us from
dropping further bombs while one is in flight, and that sub­
routine 8000 seems to be working correctly.

Subroutine 7000 moves the bomb down the screen, and will be
very similar to subroutine 5000 which moves the plane:

1) Move the bomb down and check its new position will not be
on a building.

2) If the bomb has hit a building, do a suitable explosion, set
bomb back to 0, and end the subroutine.

3) Otherwise print the bomb at its new text position.

As with 5000, this contains stages 1) and 3) which occur most
often, so we will confine these stages to this subroutine but use a
separate one for stage 2) which only occurs on some occasions:

6999 REM bomb dropping routine - start by era
sing bomb
7000 LOCATE bombx,bomby

200 BASIC Programming on the Amstrad

7010 PRINT“
7011 REM move bomb down a line to new positio
n
7020 bomby=bomby+l
7021 REM calculate graphics coords for new po
sition of bomb
7030 bombgx=8*(bombx-1)*16
7040 bombgy=8+(25-bomby)* 16
7050 colourpen=TEST(bombgx,bombgy)
7051 REM blow bomb up if it's a building
7060 IF colourpenOO THEN GOSUB 9000:RETURN
7061 REM print bomb at new position
7070 PEN 1
7080 LOCATE bombx,bomby
7090 PRINT bomb$;
7100 RETURN
9000 REM we'll fill this up later
9100 RETURN

You can see by comparing this with subroutine 5000 how similar
the two routines are. Run the program again. The bomb is no
longer frozen in the sky, but continues to drop until it hits a
building or the ground. We can't drop any more bombs because
we haven't written subroutine 9000 yet. This will set 'bomb' back
to 0 to indicate that the bomb presently dropping has just
exploded and we are now free to drop another. Let's just add this
line to subroutine 9000:

9000 bomb=0

Subroutine 7000 seems to work correctly, although the bomb
remains on the screen, because its erasure will be part of the
routine at 9000. What else do we need to do in this routine?

We want to print an explosion to the bomb's final position,
then erase it. If a building has been hit, we need to update the
score. The variable 'bomb' must be set to 0 to show that there is no
longer a bomb dropping:

9000 REM we'll use this line in a moment!
9001 REM print the explosion and quickly flash it

Planning a Program 201

9010 LOCATE bombx,bomby
9020 INK 1,0,6
9030 PEN 1
9040 PRINT bang*;
9041 REM turn pen back to normal
9050 INK 1,0
9051 REM bomb no longer -falling - reset 'bomb

9060 bomb=0
9061 REM add to score if a building was hit
9070 IF colourpen=3 THEN score=score+1
9071 REM erase explosion
9080 LOCATE bombx,bomby
9090 PRINT"
9100 RETURN

Running the program proves we have a 'bug'. Whenever a bomb
hits the 'grass', the screen scrolls upwards! This is because the
'sky' makes up the main text window, and once bomby becomes
21 we are moving out of this window in our attempt to print the
explosion on the 'grass'. The Amstrad does its best to accom­
modate us by scrolling the main window up a line and then
printing the explosion!

We can easily get round the problem by treating this as a
special case, and adjusting bomby so that the explosion takes
place within the main text window rather than just outside it:

8999 REM move bomb back into window if it's g
one outside
9000 IF bomby>20 THEN bomby=20

A few runs of the program provide convincing evidence that
there are no major bugs. It is at this stage that it is easy to be
tempted into thinking that the program is bug-free and that it has
been fully tested under all possible conditions that can occur.
However, this is not the case.

You may already have discovered a logical error in the
program. When the plane is on the character position above a
building, a dropped bomb blows up several blocks of the

202 BASIC Programming on the Amstrad

building rather than just one. The flaw lies in subroutine 8000,
where we have failed to cater for this possibility. We should
check the colour at the bomb's new position even when it has just
been dropped.
We could cater for this by duplicating lines 7030 to 7060, which
check the colour of the bomb's new position, within subroutine
8000. But there is a better way.

One of the strengths of subroutines is that they provide us with
the means of breaking down a program into manageable pieces.
Their other great strength is that they give us an easy way of
isolating routines in the program which may need to be used
many times at different points. Instead of needlessly repeating
these lines, we can place them in a subroutine and use them over
and over again whenever they are required. This is exactly the
situation we have here. We can identify two routines with
similar needs:

Figure 37 Subroutines.

We will remove the lines that calculate the graphics coordinates
and place them in a subroutine beginning at 10000. We also need
to call the new subroutine from within subroutines 7000 and
8000:

7020 bomby=bomby+l
7021 REM calculate graphics coords for new po
sition of bomb
7030 GOSUB 10000

Planning a Program 203

7051 REM blow bomb up if it's a building
7060 IF colourpenOO THEN GOSUB 9000:RETURN

8030 bomb=l
8031 REM print bomb to its start position
8035 GOSUB 10000
8036 IF colourpenOO THEN GOSUB 9000:RETURN
8040 LOCATE bombx,bomby

9100 RETURN
10000 bombgx=8+(bombx-1)*16
10010 bombgy=8+(25-bomby)*16
10020 colourpen=TEST(bombgx,bombgy)
10030 RETURN

The quickest way to check that this has cleared up the bug is to
add this line, which causes all the buildings to be drawn 19 blocks
high:

2182 height=18

Run the program and drop a series of bombs. Only one block is
blown up, so the problem has been eliminated. We should now
thoroughly test the whole program again, because correcting one
mistake often introduces new ones! Although subroutine 10000
has solved our problem, you can probably see from Figure 38 that
subroutine 7000 and 8000 have more in common than just the
calculation of the graphics coordinates. See if you can extend
subroutine 10000 so that it includes all the similar lines that
subroutines 7000 and 8000 use.

Making life easy

Unfortunately, in a book devoted to explaining the commands
available on the Amstrad, it is difficult to give the business of
program planning the space it deserves. The main lesson to be
drawn from our example program is that planning the program
beforehand makes it easier to identify the separate routines that
the program will require. The routines themselves can then be
written one by one, each routine being thoroughly tested and

204 BASIC Programming on the Amstrad

debugged before the next one is developed. Any bugs which
subsequently surface will be easier to isolate and correct.

Drawing a diagram often helps program planning. There are
many formal methods of laying out a program design, but it is
often just as valuable to break the program down into separate
stages, box each stage, and connect them with a few lines as a
reminder of which routine calls which others. It is a good idea to
try to identify where the program lines will simply be a sequence
of instructions, where repetition occurs, and where choices must
be made, because these are often appropriate points to introduce
another routine. (You can see this from the description of the
plane move routine which was broken down into five stages and
involved three subroutines to cater for plane crashes, bomb
drops, etc.)

Accept that errors inevitably occur. The program we have just
looked at didn't work first time, but its division into subroutines
made it much simpler to debug.

Exercises

1) Improve the game by adding a routine to print the score as the
game progresses.

2) Limit the number of bombs the player can use. Print a running
total of the number of bombs left at the bottom of the screen.
(You will have to base the number of bombs available on the
height of the buildings to be destroyed, otherwise it may be
impossible to land the plane!)

3) Add routines to the program to enable the player to drop a
single 'mega-buster' bomb during the course of the game, by
pressing the 'm' key. The mega-buster bomb completely
destroys any building it drops on. (Don't forget that you will
need to adjust the score according to how many 'blocks' there
are in the building.)

4) Rewrite the two-player game from Chapter 8 so that it is made
up of a series of subroutines.

Chapter Ten

Sound and Music

Sounds amusing

One feature has been sadly lacking from our games in the earlier
chapters and that is the use of sound. The sound facilities on the
Amstrad are quite comprehensive. If you're interested in playing
music on the micro, you will find that there is plenty of infor­
mation about the use of sound in the Appendices, and it is
relatively straightforward to produce a note of a particular
frequency. The following program enables you to experiment
with the basic SOUND command:

1 ON BREAK 60SUB 500
10 MODE 1
20 GOSUB 1000
30 GOSUB 2000
200 GOSUB 500
300 END
500 MODE 1
505 INK 1,24
510 PEN 1
520 PAPER 0
530 END
1000 PAPER 1
1010 CLS
1020 PEN 3
1030 PRINT”This program gives you a chance to

1040 PRINT"experiment with the basic sound co
mmand. “

205

206 BASIC Programming on the Amstrad

1050 PRINT
1060 PRINT"Press any of the keys 1 to 7 to re
set"
1070 PRINT"the channel.“
1080 PRINT
1090 PRINT“Press 'h' to make the note higher,
and"

1100 PRINT"'!' to make it lower."
1110 PRINT
1120 PRINT"Press 'e' to end."
1130 PRINT
1140 PRINT"The SOUND command will be printed
on “
1150 PRINT“the screen so you can get an idea
of"
1160 PRINT"its effects."
1170 PRINT
1180 INPUT"Press ENTER when you're ready.",en
ter
1190 RETURN
2000 PEN 1
2010 PAPER 0
2020 CLS
2030 CLS
2040 response!2""
2050 tone=478
2060 channel=l
2070 x=4
2080 channelx=10
2090 tonex=12
2100 y=12
2110 INK 1,0
2120 PEN 3
2130 LOCATE x,y
2140 PRINT"SOUND";
2150 WHILE response!<>"e"

Sound and Music 207

2160 response^""
2170 WHILE response*1""
2180 response*=INKEY*
2190 WEND
2200 code=ASC(response*)
2210 IF code>48 AND code<56 THEN channel=code
-48
2220 IF code=108 AND tone<4000 THEN tone=tone
+ 1
2230 IF code=l04 AND tone>100 THEN tone=tone-
1
2240 PEN 1
2250 LOCATE channelx,y
2260 PRINT channel;
2270 PEN 3
2280 LOCATE tonex,y
2290 PRINT tone;
2300 SOUND channel,tone
2310 WEND
2320 RETURN

The sound is generated in line 2300. The two variables after
SOUND are both compulsory parameters and they must always be
included. The first variable tells the Amstrad which channel to use
for the sound. There are 3 channels available, each with a slightly
different 'voice', known as the A, B and C channels. Each channel
is represented by a number in the SOUND command. The
number can range up to 255:

Figure 38 Sound command numbers.

You may recognise some similarities between this layout and
that for using the SYMBOL command. We can tell the Amstrad to
play a note on channel A by using 1 in the SOUND command. If

208 BASIC Programming on the Amstrad

we want the note to play on channels A and C, we would use the
number 5 instead, adding together the numbers above the
channels in Figure 39, just as we did for the SYMBOL statement.
Playing a note on all 3 channels, A, B and C would require the
number 7.

Higher numbers enable us to synchronise the channels if notes
reach them at different times. A note might be sent to channel A,
and if a particular channel number was chosen the Amstrad
would not play that note immediately, but wait for another
SOUND command that sent a note to channel B, so that the notes
could be played together. The synchronisation and queuing of
notes is relatively straightforward, but this look at the complex
subject of sound is intentionally brief, and I shall leave it to those
of you with a keen interest in the subject to pursue it further.

The program confines itself to allowing us to play a note on 1,2
or 3 channels simultaneously. The second part of the sound
command sets the tone of the note. The tone is indicated by a
number in the range 0 to 4095. The lower the number, the higher
the pitch of the note, and vice versa. Appendix VII of the User
Instructions gives a very comprehensive list of the tone numbers
to use to produce notes in a particular octave, and you should look
to this for guidance if you have musical inclinations. The value of
tone is set to 478 in line 2050 — this is equivalent to middle C.

You can vary the channels and the tone while the program is
running. The tone is varied in steps of 1 in lines 2220 and 2230.
You may care to adjust these figures so that the pitch changes
more rapidly. At present lines 2220 and 2230 only allow tone
numbers in the range 100 to 4000, to ensure that if you edit the
lines and make a large change in tone, the tone will not move out
of the range 0 to 4095. Again, you could change these limits so
that you can hear the sound for tone number 4095, for example.
Each note automatically sounds for 0.2 seconds.

The program constantly scans the keyboard, line 2200, and
adjusts the channel and tone if appropriate keys are pressed, lines
2210 to 2230. The ASCII codes are used because it is simpler to
check for the numbers 1 to 7 in line 2210 by seeing if the code is in
the correct range. An alternative approach which avoids the
ASCII codes is to use a line of the form:

2210 IF INSTR(response$,"1234567")>0 THEN
number=VAL(response$): channel=number

Sound and Music 209

This line ensures that the key pressed is valid, and converts it into
a numeric value if it is an allowed value. This just shows once
again that there is always more than one way of solving a pro­
gramming problem!

The current values of the channel and tone are constantly dis­
played so that you can get an idea of how these values change the
resulting sound. As with most of the examples in this chapter, it
is easier to understand what varying the channel does when you
have run the program a few times and listened to the results.

Exercises

1) Write a program that READs the channel and tone for a simple
tune from DATA statements, and plays the tune by repeatedly
using the SOUND command.

2) Add suitable SOUND commands to the two-player game from
an earlier chapter. Use a different pitch of sound to show when
each player moves. You might also like to vary the pitch
depending on the direction of movement.

3) Extend the previous program by making the computer play a
tune once a player bumps into a wall or other obstacle.

The optional parameters

The SOUND command can be extended by the inclusion of up to
5 optional parameters. The extra parameters specify how long the
note should last (its duration); how loud it should be (its volume);
whether a volume envelope should be used to vary the volume;
whether a tone envelope should be used to vary the tone; and
how much 'noise' should be added to the tone. We shall investi­
gate the volume and tone envelopes later. For the moment we will
set them both to zero so that we can observe the effects of varying
the other parameters. Add these lines to the previous program:

1121 PRINT
1122 PRINT"Press 'i' to increase duration."
1123 PRINT"Press 'd' to decrease duration."
1124 PRINT
1125 PRINT"Press 'q' for quiet (lower volume)

210 BASIC Programming on the Amstrad

1126 PRINT"Press 'r' for rowdy (higher volume
) . "
1127 PRINT
1128 PRINT"Press 'n' for more noise."
1129 PRINT"Press SPACE BAR for less."
2061 duration=20
2062 volume=12
2063 noise=0
2070 x=4
2080 channelx=10
2090 tonex=12
2091 durationx=16
2092 volumex=20
2093 noisex=27
2141 LOCATE 23,y
2142 PRINT"0 0";
2231 IF code=105 THEN dur ation=duration +1
2232 IF code=100 THEN dur ation = duration-1
2233 IF code=113 AND volume>0 THEN volume=vol
ume-1
2234 IF code=114 AND volume<15 THEN volume=vo
1ume+1
2235 IF code=110 AND noise<31 THEN noise=nois
e + 1
2236 IF code=32 AND noise>0 THEN noise=noise-
1
2320 PEN 1
2330 LOCATE durationx,y
2340 PRINT duration;
2350 PEN 3
2360 LOCATE volumex,y
2370 PRINT volume;
2380 PEN 1
2390 LOCATE noisex,y
2400 PRINT noise;
2410 SOUND channel,tone,duration,volume,0,0,n
oi se

Sound and Music 211

2420 WEND
2430 RETURN

You can now change the other parameters while the program is
running, and their values will be displayed on the screen. I tried
to choose suitable keys to make it easy to change the parameters,
but inspiration failed me, and you may prefer to list the keys to
use on the screen so you know which ones to press!

The duration of the note is measured in hundredths of a
second, so line 2061 sets the duration initially to the standard
duration of 0.2 seconds which normally applies if the optional
duration parameter is not used. The volume can vary from 0
(silence) to 15, with the standard volume of 12 being set in line
2062. The noise is an extra which adds some crackle to the note.
The addition of noise is indicated by a number in the range 0 to
31, with the standard being 0, no noise. Adding noise might
seem rather counter-productive, but it's useful for games.

Exercises

1) Introduce some sound effects into the bombing program from
the last chapter. Use a note with a suitable duration and
addition of noise to give a bomb explosion. Play a note every
time the plane moves, but make the duration of the note
dependent on the skill level, so that the game is not slowed
down. Increase the tone every time the plane drops down a
line on the screen.

The volume envelope

The volume envelope can be used to change the volume of a
sound as it is played. Up to 15 envelopes can be defined, and once
an envelope has been set up, the computer stores the details of
that envelope and it can be used at any time up until the computer
is turned off. There is therefore usually no need to use an enve­
lope command for a particular envelope more than once in a
program, because once that envelope has been created it can be
used over and over again.

Normally the SOUND command contains all the parameters
affecting the sound, but including an envelope number of 1 to 15

212 BASIC Programming on the Amstrad

means that the sound varies according to the envelope previously
defined. For example, SOUND 1,478,20,12 would play middle C
on channel A for 0.2 seconds at volume 12. But SOUND
1,478,20,12,3 would vary the volume of that note depending upon
volume envelope 3, which would have been defined earlier.

Add these lines to the program, and you can set up a volume
envelope at the start and observe its effects on the notes:

15 GOSUB 600
600 PRIND'This subroutine enables you to set
up"
610 PRINU'a volume envelope before going on t
o"
620 PRIND'try different notes with it."
630 PRINT
640 INPUU'Envelope number (1-15)";volenvnumbe
r
650 INPUT“Step count (0-127)vol stepcount
660 INPUU'Step size (-128 - 127)volstepsize
670 INPUU'Pause (0-255)";vol pause
680 ENV volenvnumber,vol stepcount,volstepsize
, vol pause
690 PRINT
700 INPUT "Press ENTER to continue",enter
710 RETURN
2121 LOCATE x,y-2
2122 PRINT"ENV volenvnumbervolstepcoun
tvol stepsize;vol pause
2410 SOUND channel , tone,dur ation,volume,volen
vnumber,0,noi se

The overall description of the volume envelope is:

ENV envelope number, step count, step size, pause

The volume envelope number allocates the definition that follows
to a particular number so that it can be referenced from within the
SOUND statement.

The step count indicates how many steps are to be involved in
the variation of the volume.

Sound and Music 213

The step size indicates how much the volume should change at
each step.

The pause indicates what length pause in hundredths of a
second there should be between each step.

For example, ENV 1,100,-5,1 would indicate that any sound
using this envelope would have its volume falling in steps of 5
over 100 steps, with a pause of one hundredth of a second
between steps. One consequence of using a volume envelope is
that we must be careful with the SOUND definitions that use that
envelope. If we used SOUND 1,478,20,12,1 we would lose part of
the effect of the ENV command because the pauses alone take up
1 second (100 steps of l/100th of a second). Yet we have specified a
duration of 20/100ths of a second in the SOUND command, and
as this takes precedence we would not hear the full effect of the
ENV command.

The best way to get to grips with the ENV command is to run
the program above. Define a single volume envelope and set up a
suitable duration in the SOUND command so that you can get a
good idea of how the volume envelope affects the resulting note.
Then try changing just a couple of the parameters, say for the tone
and noise. If you get an interesting sound, it's worth making
notes of both the ENV and SOUND commands that produced it,
so that you can use them at a later date. Alternatively, extend the
program so that you can store any values in which you are
interested in an array just by pressing a suitable key. The
Amstrad could print out these values when you finish with the
program. (In the next chapter you will leam how you might save
this data on a file, so that you could build up your own sound
library.)

The tone envelope

This operates in a similar way to the volume envelope, with a few
minor variations. The overall description is:

ENT envelope number, step count, step size, pause

The envelope number again is a number from 1 to 15, but in this
case negative numbers can also be used to show that the envelope
is to be repeated.

The step count indicates into how many steps the tone is to be
divided.

214 BASIC Programming on the Amstrad

The step size shows how much the tone is to change at each
step.

The pause is the time in hundredths of a second between each
tone step.

Add these lines to the program to enable you to experiment
with the tone envelope:

16 GOSUB 800
800 PRINT"This subroutine enables you to set
up"
810 PRINT"a tore envelope."
820 PRINT
830 PRINT"Envelope number (1-15, using negati
ve"
835 INPUT"values makes it repeat)";toneenvnum
ber
840 INPUT"Step count (0-239)";tonestepcount
850 INPUVStep size (-128 - 127)";tonestepsiz
e
860 INPUT"Pause (0-255)";tonepause
870 ENT toneenvnumber,tonestepcount,tonesteps
i ze,tonepause
880 PRINT
890 INPUT "Press ENTER to continue", enter
900 RETURN
2123 LOCATE x,y-4
2124 PRINT"ENT toneenvnumbertonestepco
unt;",";tonestepsize;",“;tonepause
2410 SOUND channel ,tone,duration,volume,volen
vnumber,ABS(toneenvnumber),noise

It is worth keeping the volume envelope fixed, or not using it at
all, until you are reasonably sure that you understand the type of
effect the tone envelope can have on a sound.

Chapter Eleven

Files

Keeping records

In this chapter we will look at how you can use your computer to
store and retrieve data in the form of a file. A computer file is
much like a manual file — it consists of a series of records about
related subjects. A file of customer names for a small business
might contain a record for each customer, each record itself being
broken down into FIELDS containing information about the cus­
tomer: the name, address, what was ordered, how much it cost,
and so on.

The file that the computer creates is saved onto cassette, and
can subsequently be loaded back at a later date and examined or
amended. Typically there are only a few operations we can carry
out with a cassette-based filing system:

1) Creating or WRITING records to the file.
2) Retrieving or READING records from the file.
3) Adding records to the file.
4) Deleting records from the file.
5) Amending records in the file.

On a cassette-based system like the Amstrad we could load
individual records from a file into memory, but it would be rather
a pointless exercise. If we wished to change the record, we would
need to save the new version back onto cassette for future use,
and the swapping round of cassettes involved is far too tedious.

The simplest approach is to load the contents of an entire file
into memory, look at or change any records we are interested in,
and then if any amendments have been introduced, create a
completely new file containing the changed records. This will
involve the use of only two cassettes, one to hold the present file
which is read into the computer, and possibly a second cassette to
hold any new file created as a result of the deletion, insertion, or

215

216 BASIC Programming on the Amstrad

amendment of records. The cassettes will only be swapped once
instead of many times if individual records were being loaded
and saved.

These ideas will be easier to understand if we look at a simple
example, involving a file containing the names and telephone
numbers of your friends.

Creating the file

This first program is used to create the file:

10 MODE 1
20 GOSUB 1000
30 GOSUB 2000
60 END
1000 PRINT"You can use this progam to create
a"
1010 PRINT"file of names and telephone number
s. "
1020 PRINT"The technique is a general one, an
d"
1030 PRINT"you can substitute any data of you
r"
1040 PRINT"own that you want to save."
1050 PRINT
1070 PEN 2
1080 PRINT"In a moment you will be asked for
the"
1090 PRINT"names and telephone numbers of you
r"
1100 PRINT"friends. Type them in, and when yo
u"
1110 PRINT"want to finish, type xxx,xxx ."
1120 PRINT
1130 PRINT"The data will be recorded on casse
tte. "
1140 PRINT"Please insert a blank cassette. Yo
u

Files 217

1150 PRINT"will be told when to press the REC
ORD"
1160 PRINT"and PLAY buttons.
1170 PRINT
1180 INPUT"Press ENTER when

II

you are ready ■ ",e
nter
1190 RETURN
2000 CLS
2010 INPUT"What do you want to call this file
“¡file!
2020 0PEN0UT file!
2030 PRINT"P1ease type in a name and telephon
e"
2040 PRINT“number. "
2050 PRINT
2060 PEN 3
2070 INPUT"Name, telephone numbername!,tele
phone!
2080 WHILE name!<>"xxx “
2090 WRITE #9,name!,telephone!
2100 PRINT
2110 INPUT"Name, telephone numbername!,tele
phone!
2120 WEND
2130 CLOSEOUT
2140 PRINT
2150 PEN 1
2160 PRINT"Your data has been saved onto tape

II

2170 PRINT'lYou can now read the data from the

2180 PRINT"file using the next program."
2190 RETURN

Subroutine 1000 explains the procedure, and subroutine 2000
creates the file and writes the records to it. The process is straight­

218 BASIC Programming on the Amstrad

forward enough. The file is named in 2010, and opened ready to
receive output in 2020 with the OPENOUT command.

Any names and phone numbers you type at the keyboard are
written to the file by the loop from 2080 to 21020. Line 2090
WRITES the name and phone number to the cassette using the
WRITE #9 command. When you run the program you will find
that the Amstrad accepts many names and numbers before it asks
you to press RECORD and PLAY on the cassette. This is because
the computer is storing the data in an area of memory called the
buffer. It is only when this buffer is full that the Amstrad needs to
save the data.

Line 2130 is very important. It tells the Amstrad that we have
finished outputting data to the file, and we now want to close the
file.

Once the file has been created, we can switch the Amstrad off,
secure in the knowledge that the data that is wiped from the RAM
has actually been safely recorded on cassette and can be used
again in the future.

Reading from the file

We can extend the previous program so that it allows us to create a
file and then immediately read it back into memory. This is not
likely to be done very often in practice, but at least it demon­
strates that the file does actually exist!

40 GOSUB 3000
50 GOSUB 4000
3000 PEN 2
3010 PRINT
3020 PRINT"You can use this progam to read a"
3030 PRINT"file you have created back into me
mory."
3040 PRINT
3050 PEN 2
3060 PRINT"Please put the cassette containing

3070 PRINT"your file into the cassette record

Files 219

3080 PRINT
3090 INPUT"Press ENTER when you are ready.",e
nter
3100 RETURN
4000 CLS
4010 INPUT"What's the file cal 1ed";nameoffi1e
*
4020 OPENIN nameoffile*
4030 PRINT"Here come all those names and phon
eH
4040 PRINT"numbers!"
4050 WHILE NOT EOF
4060 INPUT #9,friend*,phone*
4070 PRINT
4080 PRINT friend*,phone*
4090 WEND
4100 CLOSEIN
4110 PRINT
4120 PRINT"That's all folks!"

Before the computer can load the file, it needs to know the file
name, line 4010. In this case we are reading from the file, and we
want to input data from it, so we use OPENIN at line 4020.

It's not very likely that we will remember how many records are
recorded on the file, so how can we tell when the file ends as the
Amstrad reads the records in?

The computer takes care of this itself. It indicates that it has
reached the end of the file by setting EOF to a certain value. We do
not have to concern ourselves with exactly how this works, but
we exploit it in the program with lines 4050 to 4090. These lines
are the equivalent of:

WHILE it's not the End Of File (EOF)
input a record from the file

print the record
WEND

INPUT #9 at 4060 tells the Amstrad to accept the input from the
cassette, instead of from the keyboard as usual.

220 BASIC Programming on the Amstrad

Having read the data from the file, we do face one problem —
we've lost all the records except the last one! Each time a record is
read in at 4060, the previous values for the variables friend$ and
phone$ are erased by the new values. How can we arrange the
program so that the input records are saved for examining at our
leisure?

We have to read the records into arrays:

4000 CLS
4010 INPUT"What' s the file cal 1ed";nameoffi1e
$
4015 DIM friend!(100),phone!(100)
4016 count=l
4020 OPENIN nameoffile!
4030 PRINT"Here come all those names and phon
e"
4040 PRINT'-numbers!"
4050 WHILE NOT EOF
4060 INPUT #9,friend$(count),phone!(count)
4070 PRINT
4080 PRINT friend! (count),phone!(count)
4085 count=count+1
4090 WEND
4100 CLOSEIN
4110 PRINT
4120 PRINT"That's all folks!"

Line 4015 sets up arrays big enough to hold 100 names and phone
numbers. In practice the arrays could be much bigger, provided
enough RAM is left for the program still to run.

The program uses a count to keep track of the number of
records input and that same count is used to store each successive
name and phone number in a different element in the arrays
friend$() and phone$(). When the file has finished loading, all
the information in the file will have been transferred to the arrays
in memory.

Earlier in the book we saw how an array could be searched for a
particular item. In the fish-and-chip shop prices program, the user
input the name of the item ordered, and the computer searched

Files 221

through the array until it found the item required. The price of
the item came from the corresponding element in the array for the
prices.

We could use a similar technique to find the phone number for
a friend, once we have input the name. Rather than try to extend
our program still further, let's reorganise it into a more coherent
form.

A menu-driven program

The program that follows uses the phone numbers file to demon­
strate how you can search a file or amend records in the file and
subsequently create a new file to hold those records. Although
the program is designed to operate only on the phone numbers
file, it is easily adapted and extended so as to be usable with any
file.

This program requires the user to make a choice from several
courses of action, and in circumstances like this the simplest way
to present those choices is in the form of a menu. The menu prints
the possible actions to the screen and the computer invites the
user to choose one:

10 MODE 1
20 GOSUB 1000
30 END
1000 response^""
1010 fileload=0
1020 WHILE response$<>"5"
1030 PEN 3
1040 PRINT
1050 PRINT“Choose 1 - 5:"
1060 PEN 1
1070 PRINT:PRINT" 1. Load file"
1080 PRINT:PRINT"2. Save file"
1090 PRINT:PRINT"3. Search file"
1100 PRINT:PRINT"4. Amend file"
1110 PRINT:PRINT"5. End"
1120 PRINT
1130 PEN 3

222 BASIC Programming on the Amstrad

1140 PRINT"Which?"
1150 WHILE response*=""sresponse*=INKEY*:WEND
1160 IF response*="1" THEN GOSUB 2000
1170 IF response*="2" THEN GOSUB 3000
1180 IF response*="3" THEN GOSUB 4000
1190 IF response*="4" THEN GOSUB 5000
1200 IF response*< >"" THEN CLS
1210 IF response**: >"5 " THEN1 response*=""
1220 WEND
1230 RETURN

In a more complex program, the choice might be between a series
of sub-menus, and after selecting a sub-menu the user would
have to make further choices once that sub-menu was on display.
Generally, choices are not made by laboriously typing in long
sentences but by the depression of a single key. The choices are
often numbered, as in this case.

Subroutine 2000 loads the file:

2000 CLS
2010 INPUT"What is the file name";fi1e*
2020 count=l
2030 IF fileload=l THEN ERASE name*,phone*
2040 DIM name*(100),phone*(100)
2050 OPENIN file*
2060 WHILE NOT EOF
2070 INPUT #9,name*(count),phone*(count)
2080 count=count+l
2090 WEND
2100 CLOSEIN
2110 PRINT
2120 PEN 2
2130 PRINT"The file has been loaded."
2140 INPUT“Press ENTER to return to menu.",en
ter
2150 fileload=l
2160 RETURN

Files 223

This is similar to the last section. Line 2030 is included so that if
we want we can come back and use this routine again and load
another file. When the routine has been carried out once, the
Amstrad knows from line 2040 that the array name$() and
phone$() contain 100 elements. If we use the routine again, the
Amstrad objects to 2040, because we have already dimensioned
the arrays and the computer knows how big they are. Line 2150
sets fileload to 1 to show the routine has been used, and if we
come to load a new file, the Amstrad detects this at 2030 and
wipes out entirely the arrays mentioned after the ERASE state­
ment. The computer is then quite happy with 2040, because it no
longer knows what size the arrays are.

Subroutine 3000 saves the file:

3000 CLS
3010 INPUT"What is the new file name";file!
3020 OPENOUT file!
3030 counter=l
3040 WHILE counterOcount
3050 WRITE #9,name!(count er),phone!(counter)
3060 counter=counter+l
3070 WEND
3080 CLOSEOUT
3090 PRINT
3100 PEN 3
3110 PRINT"The file has been saved."
3120 INPUVPress ENTER to return to menu.",en
ter
3130 RETURN

This again is similar to the earlier program.
Subroutine 4000 searches for a phone number, having been

given the friend's name:

4000 CLS
4010 INPUT"Whose number do you want";friend!
4020 counter=1
4030 found=0

224 BASIC Programming on the Amstrad

4040 WHILE count er<count AND found=0
4050 IF friend*=name*(counter) THEN found=l:P
RINT friend*;" has this phone number: "jphone
* (counter)
4060 counter=counter+l
4070 WEND
4080 IF found=0 THEN PRINT friend*;" is unkno
wn to me."
4090 PRINT
4100 INPUT"Press ENTER to return to menu.",en
ter
4110 RETURN

The computer searches through the elements of the array until
either it's looked unsuccessfully at them all, or the phone
number's been found. Line 4080 is a useful line to include, as it is
easy to make a mistake with the friend's name, and at least in this
case the computer lets you know what's happening.

Subroutine 5000 allows you to change phone numbers and uses
a similar search loop to that in the previous routine (a good excuse
for a further subroutine!).

5000 CLS
5010 INPUT"Whose number do you want to change
";friend*
5020 counter=l
5030 found=0
5040 WHILE counter<count AND found=0
5050 IF friend*=name*(counter) THEN found = l:I
NPUT"What's the new number";phone*(counter)
5060 counter=counter+l
5070 WEND
5080 IF found=0 THEN PRINT friend*;" is unkno
wn to me."
5090 PRINT
5100 INPUT"Press ENTER to return to menu.",en
ter
5110 RETURN

Files 225

The whole program is a skeleton file-handling program, and now
perhaps you'd like to put some flesh on it.

Exercises

1) The program only works with existing files. Add a routine so
that a new file can be created from the keyboard. Make sure
that you use either UPPER$ or LOWER$ on any strings being
saved to the file, to prevent later problems with string
matching when searches are carried out.

2) Add a routine to allow the user to browse through the records
in the file, displaying them one by one on the screen at the
depression of a key.

3) Extend the program so that records can be added to or deleted
from the file.

4) Rewrite the program so that it enables you to create and
maintain a file of your own data on some other subject.

Going further

Hopefully, this book has helped answer some of your questions
about the Amstrad computer. It is impossible to ever know
everything there is to know about a new micro — this is the
reason for the galaxy of computer magazines on sale at every
newspaper shop. Each month someone discovers a new way of
solving an old problem, or uncovers an ability of the computer
that few realised existed.

In the limited space available I have attempted to introduce
most of the commands which you will use frequently on the
Amstrad. Inevitably, there have been omissions, and for that I
apologise. In some case there remains a great deal to be said: the
graphics commands that have been described here are the basic
ones, but there are other facilities which it would be inappro­
priate to introduce in a book which is essentially an introductory
one.

If you wish to go further, the only source of information at the
moment is the official User Instructions, but this will surely
change in the future, and you can expect to see books and com­
puter magazines offering advice on computing on the Amstrad.

226 BASIC Programming on the Amstrad

Lastly, do remember that the people who write so knowledge­
ably in the computer magazines were once beginners like your­
self. You are just starting to learn about programming on the
Amstrad and what at present seems difficult will one day seem
ludicrously easy. Enjoy your investigations.

Index

alphabetical order 112
arithmetic 38-40
arrays 139-45,148-9,220, 223

elements 142-3,149
ASCII codes 124-8,151-2,177-83,

208
auto-repeat 181

BASIC computer language 4
binary system 151
border of screen 55-7
'bounce' program 110
buffer 218
bugs 177,184-8,191,201,204
bumping 157-65

CAPS LOCK key 5-7,105,108,126,
152,181

cassette recorder 1,3
cassettes 44,215,218-19
centring 114
channels 207-9
characters, bigger 154-6
character set 124-7,150

non-alphabetic 124
charts 165
choices 97-101
CINT command 84-6
CLRkey 7-8,23
colours 47-8, 55-70,172-6
comma 35-6,115
commands 8-10
control variables 73, 78
coordinates 45

graphics 46, 70-1,164-9, 202-3
text 70

copy cursor 24—5
copying 23-6
COPY key 8,24-6,127
CTRL key 7-9,59,125
cursor keys 7

right 23

cursors 4-5,13, 23-5

database 112
DATA statement 81-3, 90,123,137
data terminator 90-1,137
data validation 95
debugging 184-8
decision-making 97-110
decoding 126-7
definitions 179-81
DELETE key 5,7,8,23
denary numbers 150
DIM statement 146
direct mode 19
DRAW command 46-7,61-2,69,

168-70
drawing 45-70,168-70

editing 23-5
by copying 23-4

elements of arrays 142
encoding 126-7
END statement 112
ENTER key 6-17,105-6
ENV command 213
error message 22, 31
errors 5-8, 22-3,177,184-8,192

correction 5-8
logical 185-8
syntax 6,184-5

ESC key 8-9,21,59,126

fields 215
files 215-26
FOR . . . NEXT loops 80, 88-90, 93,

137
function keys 177-83

games 150-76
GOSUB command 187-8
GOTO statement 198
grammar 184

227

228 BASIC Programming on the Amstrad

graphics 45-55,150-76
graphics coordinates 46, 70-1,

164-9, 202-3
graphics cursor 46,165-8
graphs 165

hexadecimal system 150-1
high resolution mode 47

IF. . . THEN statement 97-100,105,
109-10,126,196

IF . . . THEN . . . ELSE statement
101-1,183

immediate mode 19, 22, 31
INK, changing 171-6
INK number 55-7
INKEY$ statement 105-6,126
INPUT statement 32-4, 77,134

graphics 52-5
INSTR statement 120-4
instructions 73
INT command 84-6
inverted commas 11,115,178

keyboard 1,4, 7
KEY command 180-2
KEY DEF command 181-3
key numbers 181

LEFTS function 116-17
LEN function 114-15
LINE INPUT statement 35-6
line numbers 20-1
lists 138-49
loading programs 44
LOCATE statement 26-7,69,75,114,

155
logical errors 185-8, 201
loops 73-96,130-49

controlling 77-9
FOR . . . NEXT 80, 88-90, 93
nested 123,130-8
WHILE . . . WEND 88-95

lower-case letters 11, 30,113,118
low resolution mode 47

medium resolution mode 47
memory 2-3,29-30,215,218
menus 221
microcomputer system 1
MID$ function 117,130
mistakes 5-8,22-3
MOD command 176

MODE 0 10, 47,57-9, 70
MODE 1 10,17,47,57-8,62

print zones 16
screen layout 15-16

MODE 2 10, 47, 57-8, 62
monitor 1
MOVE command 46, 69,170
multi-statement line 99-100
music 205-14

'nested' loops 123,130-8,148
NEXT statement 132
noise 211
non-alphabetic characters 124
numeric keys 178
numeric variables 36-8, 111, 127-8

ON ERROR statement 185,191
OPENOUT command 218
ORIGIN command 167-70

PAPER colours 57-9
PAPER command 59-60
parameters 207-11

compulsory 207
optional 209

pause 213-14
PEN colours 57-9
PEN command 57-60
pictures 45-70
pixel 49
PLOT statement 49,170
polygons 80
PRINT statement 8,11-13,25
program mode 19, 22
programming 19-44,177-204

organising 188-204
planning 177-204

pseudo-code 146

Random Access Memory (RAM)
2-3, 9, 48, 57, 218, 220

random maths 87-8
random numbers 85-92
Read Only Memory (ROM) 2,4, 8,

185
READ statement 81-3, 91
records 215,219-21
relative movement 167-70
REM statement 50,191
RENUM command 22
repetitions of instructions 73
resetting 9

Index 229

RESTORE statement 83
RIGHTS function 116-17
RND statement 85
rounding commands 84

saving programs 44
screen display 9-11,13

border area 55-7
layout in mode 1 15-16

scrolling 13
search-and-replace facility 116
semi-colon 153
sequences of instructions 73
SHIFT keys 6,9,13,23,59
shooting 157-65
sound 205-14
SOUND command 205-13
spaces 9,118
SPC statement 16-17
step count 212-13
STEPS 80
step size 134, 213-14
STEP value 78-9
STOP command 187-8
string arrays 142
string variables 36-7,111-30

compared 111
concatenated 111
length 114-15

STR$ function 128-9
sub-menus 222
sub-programs 190
subroutines 189-204, 217, 223-4
subscripts 140,142,148
substrings 116-17,120-1
SYMBOL statement 150-1, 207-8
SYMBOL AFTER statement 152,154
syntax error 6,184-5

TAB key 8
TAB statement 16-17
TAG command 165-7,192
TEST function 157,160
text coordinates 70
text cursor 4-5, 24
text resolution 165
text windows 64-5, 67, 69
TIME variable 108
tone 208
tone envelope 213-14
type mismatch 185

upper case letters 113,118,126

VAL function 127-8
variables 28-32

graphics programs 50
numeric 36-8, 111
string 36-7,111-30

volume envelope 211-14

WHILE. . .WENDloops 88-95,108,
121,123,137

WINDOWS
colours 64—7
generating 77
text 64-5, 67, 69

WINDOW number 65-6
WINDOW statement 53-4, 64, 68-71

X coordinate 45

Y coordinate 45

zones of screen 17

Other titles available from Micro Press:

THE MICRO MAZE: A GUIDE TO
PERSONAL COMPUTING
Wynford James
0 7447 0000 0

20 GAMES FOR THE ORIC-1
Wynford James
0 7447 0003 5

QUALITY PROGRAMS FOR THE
BBC MICRO
Simon
0 74470001 9

QUALITY PROGRAMS FOR THE
BBC MICRO (Cassette)
Simon
07447 0011 6

15 GRAPHIC GAMES FOR THE
SPECTRUM
Richard G. Hurley
07447 0002 7

MASTERING THE TI-99
Peter Brooks
0 7447 0008 6

ADVANCING WITH THE
ELECTRON
Peter Seal
07447 0012 4

QUALITY PROGRAMS FOR THE
ELECTRON
Simon
07447 0004 3

MAKING THE MOST OF YOUR
SPECTRUM MICRO DRIVES
Richard G. Hurley
07447 00051

GRAPHIC ADVENTURES FOR THE
SPECTRUM 48K
Richard G. Hurley
0 7447 0013 2

SPECTRUM SUPERGAMES
Richard G. Hurley
07447 0017 5

EDUCATIONAL GAMES FOR THE
BBC MICRO
Ian Soutar
07447 00167

THE ATMOS BOOK OF GAMES
Wynford James
0 7447 00183

THE COMMODORE 64 BOOK OF
SOUND AND GRAPHICS
Simon
0 7447 00159

QL SUPERBASIC: A
PROGRAMMER'S GUIDE
John Wilson
07447 0020 5

THE QL BOOK OF GAMES
Richard G. Hurley
0 7447 0022 1

THE SPECTRUM OPERATING
SYSTEM
Steve Kramer
07447 00191

MACHINE CODE FOR BEGINNERS
ON THE AMSTRAD
Steve Kramer
0 7447 0025 6

BASIC PROGRAMMING ON THE
COMMODORE 64
Gordon Davis and Fin Fahey
07447 00264

BASIC PROGRAMMING
ON THE AMSTRAD

The Amstrad CPC 464 is a powerful new machine with
excellent sound and colour graphics facilities. The official
Amstrad manual offers a sprint through the facilities of the
machine. This book is for the joggers, the walkers and those
who are not sure they can even manage to reach the starting
line.

The first two chapters are for the complete beginner. The
remainder of the book introduces the majority of the BASIC
commands available on the Amstrad. The last few chapters
deal with topics of more specialised interest such as the use of
sound, and how to create files and read data from them. Each
chapter contains example programs and exercises.

The Author
Wynford James writes educational material (including
software) for a major microcomputer company. Prior to that
he was a technical author for ICL. He has also taught mathe­
matics and was actively involved in the development of
computer studies throughout his school.

GB Í NET +007 - HS
ISBN 0-?H47-0Q24-fl

9 780744 700244

https://acpc.me/

CPC

[FRA] Ce document a été préservé numériquement à des fins éducatives et d'études, et non commerciales.
[ENG] This document has been digitally preserved for educational and study purposes, not for commercial purposes.
[ESP] Este documento se ha conservado digitalmente con fines educativos y de estudio, no con fines comerciales.

	BASIC Programming on the AMSTRAD
	Contents
	1 - Getting Started
	2 - Programming
	3 - Drawing Pictures
	4 - Loops
	5 - Making Decisions
	6 - Strings
	7 - Loops and Lists
	8 - Games and Graphics
	9 - Planning a Program
	10 - Sound and Music
	11 - Files
	Index
	● Raw HQ scan : Maxime CROIZER for ACME | Cleaning/Restoration/Layout/OCR : ACME – https://acpc.me | Thanks to Rafa CPCMANIACO for lending the book ● 2020-11-26

